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Abstract 

Amphotericin B is the compound of choice for the treatment of leishmaniasis, however a 
definitive mode of action and full knowledge of causes of resistance to this polyene are 
still poor. The aim of this project is to use a polyomic approach to characterise laboratory 
generated mutant lines of Leishmania spp., selected for resistance against the polyene 
antifungals, amphotericin B and nystatin. While previous work has characterised multiple 
lines of L. mexicana resistant to amphotericin B, this is the first report of resistant lines 
selected against nystatin in Leishmania spp. Ergosta-7,22-dien-3-ol and cholesta-5,7,22-
trienol, were the two main sterol intermediates replacing ergosterol in all eight polyene-
resistant lines of Leishmania spp. The former sterol intermediate was associated with five 
novel mutations in sterol C5-desaturase, in two and six AmBR- and NysR-mutants and the 
latter resulted from changes in C24-sterol methyl transferase, along with deletion of the 
miltefosine transporter and its neighbouring gene downstream in two AmBR lines. 
Interestingly, switching from ergosterol to these two sterol intermediates was associated 
with an increased and an attenuated inflammatory response in vivo, respectively. In all 
cases, viable parasites were recovered post-infection and the retention of resistance in vivo 
was confirmed. In addition, response to treatment with amphotericin B was observed only 

in wild type parasites. Untargeted metabolomics provided hints towards modes of action in 
addition to the binding to ergosterol. Upregulation of the pentose phosphate pathway plays 
a central role as a key provider of NADPH suggesting an immediate pulse of oxidative 
stress associated with addition of the drug. Amphotericin B treatment rapidly altered lipid 
metabolism, decreasing the abundance of Acetyl-CoA, NADPH, leucine and mevalonate. 

In all mutants, the total or partial loss of the key membrane sterol ergosterol lead to 
amphotericin B resistance. All polyene resistant mutants were more susceptible to 
pentamidine and paromomycin. Conversely, miltefosine resistance was found in all 
mutants, with this increase being more pronounced in two lines showing a deletion of the 
miltefosine transporter. The grounds of cross-resistance to a new library of sterol 
inhibitors, 1,2,3-triazolylsterols, was also assessed. The most active hits showed a 
micromolar potency, albeit a mode of action independent of the inhibition of sterols is 
suggested. Considering the increase of resistance against the antileishmanials and the 
limited therapies available, this thesis provides valuable information on the MoA and 
resistance of polyenes in Leishmania, should the resistance against AmB, the drug of 
choice for leishmaniasis, increases in clinical settings, and to improve the discovery of 
potential new drug targets.  
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FAD  Oxidised Flavin adenine 

dinucleotide 
 RT Reverse transcriptase 

FADH2 Reduced flavin adenine 
dinucleotide  

 s Seconds 

FBS Fetal bovine serum  SbIII Trivalent antimony 
FC Fold change  SbV Pentavalent antimony 
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FCS Fetal calf serum  SBP Sterols Biosynthetic Pathway 
fg Fentograms  SC5D Sterol C5-desaturase 
g Gravitational force  SEM  Standard Error of the Mean 
GAPDH Glyceraldehyde 3-phosphate 

dehydrogenase 
 SHAM  Salicylhydroxamic acid  

GC Gas chromatography  SIDER Small interspersed degenerate 
retrotransposon 

GC-MS  Gass Chromatography/ Mass 
Spectrometry 

 SIT  Sterile insect technique 

GFP Green fluorescent protein  SL Spliced leader 
GO Gene ontology  SMT Sterol C24-methyltransferase 
GOX Glucose oxidase  SNP Single nucleotide polymorphism 
gRNA  guide Ribonucleic acid  SNPs  Single nucleotide polymorphisms 
GSH glutathione  SREBP Sterol regulatory element binding protein 
GWAS genome-wide association study  TAO  Trypanosomal alternative oxidase 
HAPT1 high-affinity pentamidine transporter   TCA Tricarboxylic acid 
HAT Human African Trypanosomiasis  TDR1 thiol dependent reductase 
HILIC Hydrophilic interaction liquid 

chromatography 
 TRYP1 tryparedoxin peroxidase  

HIV  Human immunodeficiency virus  TDPX tryparedoxin dependant peroxidases  
HMG-CoA 
reductase 

3-Hydroxy-3-methylglutaryl-CoA 
reductase 

 TLR Toll-like receptor 

HR Haploid Ratio  TORC1 Target of rapamycin complex 1 
Hsp Heat shock protein  tRNA Transfer ribonucleic acid 
   TSH trypanothione 
IEF  Iso-electric focusing  TRYR Trypanothione reductase 
Ig Immunoglobulin  TRYS Trypanothione synthetase 
InDel Mutation involving a small insertion 

or deletion 
 TRYX Tryparedoxin 

k Kilo (103)  UTR Untranslated region 
kDNA kinetoplast Deoxyribonucleic acid  UV Ultraviolet 
KEGG Kyoto encyclopaedia of genes and 

genomes 
 V Volts 

l Litres  VL Visceral leishmaniasis 
LC Liquid chromatography  VSG  Variant surface glycoproteins  
LC-MS  Liquid Chromatography/Mass 

Spectrometry  
 WGS Whole genome sequencing 

LB Luria-Bertani  WHO  World Health Organisation 
 

 



 Introduction 

 Neglected tropical diseases 

Diseases that affect the poorest populations are mainly infectious diseases and to some 
extent, are preventable. Currently, there are twenty classified Neglected Tropical Diseases 
or NTDs and 70% of these are caused by parasites (Roger et al. 2017) 
(https://www.who.int/neglected_diseases/diseases/en/). Some parasitic NTDs are 
controllable by mass drug administration (MDA), but MDA has been restricted to NTDs 
caused by helminths given the safety of the antihelminthics (de Souza and C Dorlo 2018; 
Webster et al. 2018) (https://www.cdc.gov/globalhealth/ntd/diseases/index.html) and 
because for many years there were no oral compounds to treat leishmaniasis, Chagas 
Disease or African sleeping sickness, which are caused by trypanosomatid protozoans. 

Drug treatment remains a key step towards the control and elimination of leishmaniasis 
(Ponte-Sucre et al. 2017) and the advantages of oral treatments are key to achieve this goal. 
The first (and only) oral drug to treat leishmaniasis, miltefosine (Sunyoto, Potet, and 
Boelaert 2018), has provided some encouraging evidence regarding using oral 
formulations against these devastating diseases. More recently, fexinidazole, the first oral 
treatment for sleeping sickness (Torreele et al. 2010) was approved by the European 
Medicines Agency (EMA) (European Medicines Agency 2018) 
(https://www.ema.europa.eu) and is expected to improve the treatment management and 
the epidemiology of this disease. 

 Leishmania parasites and other kinetoplastids 

In 1885, David Cunningham was the first to record Leishmania parasites but the first to 
recognise them as protozoa was Piotr Borovsky. In 1900, Sir William Boog Leishman and 
Charles Donovan identified the agent causing “Kala-azar”, which Ronald Ross named as 
“Leishman-Donovan bodies” and the disease leishmaniasis (Andrade-Narváez et al. 2001; 
Steverding 2017)  (http://www.glazgodiscoverycentre.co.uk/media/media_239689_en.pdf). 

Leishmania species are intracellular parasites of the order Kinetoplastida and the family 
trypanosomatidae. These flagellated protozoan possess similar structural features including 
a single DNA-containing mitochondrion, the kinetoplast, specific organelles for glycolysis 
known as glycosomes and a microtubular corset. Other biochemical pathways such as the 
thiol metabolism and the synthesis of ergosterol are also unique of this grouping, which 
includes many species of Leishmania and Trypanosoma (Barrett and Croft 2012) and other 
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organisms such as Crithidia and Leptomonas (Chauhan et al. 2011). Among the 
Kinetoplastids are the causes of several key vector borne diseases in human and animals 
that are endemic in many tropical countries and represent a burden for the governments 
cause disease. The Leishmaniases are a spectrum of diseases with various forms or clinical 
manifestations caused by infection with different species of Leishmania. Chagas Disease is 
caused by Trypanosoma cruzi and human African trypanosomiasis (HAT or African 
sleeping sickness) by subspecies of Trypanosoma brucei. In animals, infection by 
trypanosomes and leishmania is also complex (Dantas-Torres 2009; Otranto and Dantas-
Torres 2013)(http://www.leishvet.org/wp-content/uploads/2018/07/EN-Guidelines.pdf). 
Understanding the biology of the Kinetoplastids is important in the quest for new 
treatments and other methods of control for these diseases (Daneshvar et al. 2003; Stuart et 
al. 2008). 

 Epidemiology and clinical forms of Leishmaniasis 

Leishmaniasis is a vector-borne disease (VBD) and a major public and animal health issue 
that is related to poverty with over 1 billion people are at risk of infection in endemic areas. 
The World Health Organization (WHO) has estimated that between 600,000 to 1 million 
new cases of the cutaneous form, and 50,000 to 90,000 of Visceral leishmaniasis occur 
worldwide each year (Burza, Croft, and Boelaert 2018) (https://www.who.int/news-room/fact-

sheets/detail/leishmaniasis). The epidemiology of leishmaniasis is complex and is determined 
by the interaction between the triad of “host-parasite-vector” with many factors including 
climate change, poverty, treatments available and the emergence of resistance, human and 
animal migrations, distribution of the vector, geography, season, etc. (Lewis 1971; Piscopo 
and C. 2006; Steverding 2017). Moreover, emerging genotypes (ISC1 of L. donovani ) 
have been identified (Cuypers et al. 2018) and the prevalence of leishmaniasis is unknown 
in areas where sand flies are not the main vector (e.g. fomites, needles, blood transfusions), 
asymptomatic carriers or secondary modes of transmission (vertical) between hosts 
(Dantas-Torres, 2009; Michel, et al., 2011), and where routine diagnosis is not active, 
particularly risk areas like suburban settings where the prevalence has been reported to be 
increasing (Table 1-1 ; LSHTM, 2019, https://www.futurelearn.com/courses/visceral-

leishmaniasis/2/todo/39413) (https://www.who.int/research-

observatory/analyses/gohrd_analysis_leishmaniasis.pdf).   
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Leishmaniasis appears in different clinical forms that are caused by at least twenty species 
of the genus Leishmania, divided into Old World and New world varieties (Burza et al. 
2018). Recently, L. infantum and some species of the newly added L. enriettii complex 
have been found to cause infections in both regions (Akhoundi et al. 2016).  

Cutaneous leishmaniasis (CL) is the most common form of leishmaniasis with 90% of the 
cases occurring in nine countries (https://www.who.int/news-room/fact-
sheets/detail/leishmaniasis) (Burza et al. 2018). CL is clinically polymorphic and is 
characterised by skin ulcers that are often misdiagnosed (Karimkhani, et al., 2017) or 
mistaken for fungal infections. The most frequent form of CL is a “localized” (LCL) form 
also known as American leishmaniasis (ACL) which represents between 50 and 75% of the 
new clinical cases globally. Lesions are often disfiguring and have an impact on the 
economy and quality of life of the patients. As it is often self-healing or can be 

Figure 1-1. Global prevalence of cutaneous (CL) and visceral leishmaniasis (VL).  
CL (top) is present in the Mediterranean Basin, the Middle East, Africa and the Indian 
subcontinent (Old World species) and Central and South America (New World species). VL 
(bottom) exists in Asia and Africa (L. donovani) and in the Mediterranean Basin, Middle 
East, central Asia, South America and Central America (L. infantum) (Data source: WHO, 
2016 https://www.who.int/leishmaniasis/burden/en/  
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asymptomatic, CL has received less attention than other forms of leishmaniasis. CL also 
appears as other variants that are less frequent, including a “diffuse” form (DCL) 
characterised by non-ulcerative lesions, disseminated cutaneous leishmaniasis and 
Leishmania recidivans (Ghazanfar and Malik 2016). 

 

In the Old-world CL is caused by species from the L. major complex (L. aethiopica, L. 

major and L. tropica) and in the New World by the L. mexicana complex (e.g. L. 

mexicana, L. amazonensis, L. venezuelensis), and members of the Viannia subgenus (e.g. 
L. braziliensis, L. panamensis, L. peruviana). Species causing CL are mainly restricted to 
the skin and are seldom described within lymphoid tissues (e.g. spleen, liver, lymph nodes, 
bone marrow) as is typical VL caused by L. donovani and L. infantum. However, viable 
amastigotes of cutaneous species (e.g. L. mexicana) have been observed and reisolated 
from lymph nodes in a murine experimental model, which may be due to inflammatory 
monocytes trafficking parasites via the draining lymph nodes (Kaye and Scott 2011) (see 

Chapter 5, section 5.2.7). It is also believed that patients with CL develop a curative 
immune response (Stuart et al. 2008) which leads to self-healing lesions. CL lesions can 
also be treated with locally with intralesional injections (antimonials), topical formulations 
(paromomycin)(Burza et al. 2018), and thermotherapy should also be considered (Cardona-
Arias, Vélez, and López-Carvajal 2015; Gonçalves and Costa 2018).  

Figure 1-2. The phylogenetic tree of the Leishmania species causing disease and other 
related Trypanosomatids.  
The construction was made using 29 trypanosomatids and combining different methods. 
This tree includes species from the L. enriettii complex and a novel Australian 
trypanosomatid (Zelonia australiensis, 2017), a common ancestor of trypanosomatids, 
including the genus Leishmania. Text adapted from Barratt, et al. 2017 and Cotton, 2017. 
Source (Barratt et al. 2017). 
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Mucocutaneous leishmaniasis (MCL) is a potentially life-threatening condition caused by 
L. braziliensis.MCL is a highly disfiguring and disabling condition, also known as 
Espundia, characterized by the destruction of the oronasopharyngeal tissues. If untreated, 
this form of the disease can lead to secondary complications like pneumonia and can 
evolve or coexist with CL (Burza et al. 2018; Ghazanfar and Malik 2016).  

Visceral leishmaniasis (VL) is the most severe form of the disease and is known as “kala-
azar” (taken from the Hindi word meaning darkened skin, which is an occasional symptom 
of the disease). Humans are the main reservoir for infections caused by L. donovani. The 
course of the disease is often accompanied by hepato and splenomegaly, fever, 
lymphadenopathy, anaemia and severe weight loss and can also evolve and coexist with 
CL (Ghazanfar and Malik 2016). VL is caused by members of the L. donovani complex (L. 

donovani and L. infantum) in the Old world and L. chagasi (L. chagasi and L. infantum are 
synonymous) and L. (Viannia) braziliensis in the Americas (Dantas-Torres 2009; Michel et 
al. 2011). In the old world, VL species can also cause a condition known as post-kala-azar 

dermal leishmaniasis or PKDL which involves the skin, where plaques, nodules or papules 
are often seen months after a VL has apparently resolved clinically. PKDL results from the 
host immune response against residual parasites that are usually absent from lymphoid 
organs and which survived treatment and now manifest in the dermal lesions. For this 
reason, PKDL is considered a reservoir and important in the transmission of VL (Das et al. 
2017). Other conditions as associated with Leishmania coinfection with helminths, HIV, 
tuberculosis or fungal diseases are also associated with PKDL (Martínez et al. 2018). 
Ninety per cent of the cases of VL exist in only six countries, Bangladesh, Brazil, Ethiopia, 
India, South Sudan and Sudan (Figure 1-1) (Burza et al. 2018).  

Although the global prevalence of VL has been reduced significantly since 2005 when 
India, Nepal and Bangladesh, which used to have more than 50% of the global burden, 
committed to an elimination programme for leishmaniasis. However, in some countries the 
figures from the WHO showed an increase in prevalence between 2013 and 2017 (see 
Table 1-1). Additionally, countries where VL was non-endemic have reported human VL 
caused by L. infantum, in Uruguay the first autochthonous case ocurred in a four-year-old 
girl in Uruguay (Ministerio de Salud Publica Uruguay, 2018, consulted in December 
2018). A month later, the second case of human VL was reported in the same region of 
Uruguay (Salto District), however, the Uruguayan Health Minister confirmed that 

transmission within this region is not active (Ministerio de Salud Publica Uruguay, 2019, 
consulted in January 2019). The previous year an outbreak of autochthonous canine VL 
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was reported also in Uruguay, and L. infantum was isolated from sandflies in this region, 
revealing the presence of the complete life cycle (Satragno et al. 2017).  

Country 2013 2014 2015 2016 2017 

Brazil 3,253 3,453 3,289 3,200 4,297 
Sudan 2,389 3,415 2,829 3,810 3,894 
South Sudan 2,364 7,472 2,840 4,285 3,541 

Ethiopia 1,732 2,705 1,990 1,593 1,490 

Kenya 181 880 894 692 954 
Somalia 936 1,045 1,165 911 858 

China 120 292 514 321 190 

      

Although canine VL caused by L. infantum (L. chagasi) has been progressively diagnosed 
in this region of Uruguay since 2010, leishmaniasis needs to be reconsidered as a major 
health risk in Uruguay (Grill and Zurmendi 2017; Roger et al. 2017), particularly because 
dog are the main reservoir of L. infantum, and the disease is also fatal. Interestingly, 
hunting Foxhounds (American) present higher prevalence in areas (United States) where 
outbreaks have occurred, possibly due to vertical (trans placental/trans-mammary) 

(Boggiatto et al. 2011; Petersen and Barr 2009). Other factors such as the genetics of the 
animal, are also related with the outcome of the disease (Ribeiro et al. 2018). More 
recently, a case report of a 3-year-old male Shih Tzu cross, possibly, the first reported case 
of Leishmaniosis (thus named by Veterinarians) in the United Kingdom, due to the 
presence of another dog that was euthanised due to severe Leishmaniosis, the authors 
raised the possibility of direct dog-to-dog transmission through bites or wounds (Mckenna 
et al. 2019). 

 Biology and molecular biology of Leishmania 

Leishmania are heteroxenous (digenetic) parasites characterised by two main 
morphologically distinct stages of multiplication: the amastigote and the promastigote. The 
parasites are transmitted between several mammal hosts (animals and human) by the bite 
of female sand-flies. To complete their life cycle, parasites must adapt and survive across a 
wide range of environmental conditions, e.g. pH, temperature, etc. (Roque and Jansen 
2014).  The haploid genome of Leishmania spp. (~32 Mb) contains between 7,400 and 
8,200 predicted genes (Kazemi 2011; Rogers et al. 2011), which are organised in 34, 35 or 

Table 1-1. Number of cases of VL reported from 2013 to 2017 in regions with higher 
prevalence. 

Numbers in bold and red reflect an increase in prevalence in relation with the previous year. 
©WHO 2018. Consulted in January 28th, 2019, and WHO 2013 (map): 
http://apps.who.int/neglected_diseases/ntddata/leishmaniasis/leishmaniasis.html,  
http://gamapserver.who.int/mapLibrary/Files/Maps/Leishmaniasis_VL_2013.png?ua=1&ua=1 
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36 chromosomes that varies between species. For instance, in L. mexicana two fusion 
events (linkage group) are known between Chr8 and Chr29, and between Chr20 and 
Chr36, which are merged into Chr8 and Chr30, respectively (Valdivia et al. 2017). In L. 

mexicana and in L. (L.) amazonensis, Chr30 (the homologue of Chr31 in the old world 
species L. major, L. infantum and L. donovani, and in the new world Viannia species (L. 

braziliensis), is frequently supernumerary (Rogers et al. 2011). The latter of these species 
also has a fusion between Chr20 and Chr34 (Kazemi 2011). 

The protein-coding genes lack introns (most of them), transcription factors and promoters, 
instead, gene expression is controlled by means of polycistronic transcription and trans-
splicing (Clayton and Shapira 2007; Ivens et al. 2005a). Different than in bacteria, 
transcripts in Leishmania are split into various mRNAs, followed by the attachment of a 
common leader sequence named spliced leader sequence (SL), and a poly-A tail, to the 5’- 
and the 3’ ends, respectively (Lebowitz et al. 1993)(Ginger 2005). Some evidence suggests 
that the 3’ untranslated region (UTR), is involved in post-transcriptional and post-

translational gene regulation. Although the role of RNA polymerase II in regulation of 
protein coding genes is unclear (Ginger 2005), some sequences of subunits of RNA 
polymerases I, II and III, homologous to other eukaryotes has been described in 
trypanosomatids (Martínez-Calvillo et al. 2010). 

Another unique feature of the genome in trypanosomatids is the plasticity. Leishmania spp. 
can adapt to different conditions (e.g. drug selection) through several genomic changes, 
such as gene dosage, up- and downregulation of mRNA transcripts (Ubeda et al. 2008), 
SNPs, gene amplification, gene duplication (Mukherjee, Langston, and Ouellette 2011), 
and gene deletion (Ouameur et al. 2008), copy number variations (CNVs). Other 
modifications such as recombination and rearrangement of chromosomes, and aneuploidy, 
are also frequent (Rogers et al. 2011). Some of these changes result from drug exposure 
and are related with resistant phenotypes, whereby is essential to differentiate them from 
those alterations that appear stochastically as part of the adaptive mechanisms of 
Leishmania spp. to the environment (Ubeda et al. 2014). 

 Life cycle 

The dixenous life cycle of Leishmania species is complex. The amastigote form is taken up 

by a sandfly during its blood meal and transforms into a flagellated stage called the 
promastigote which needs to survive and pass through various life cycle stages within the 
insect digestive tract before being reinoculated into a new mammalian host (Grimaldi and 
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Schottelius 2001). Section 0., provides a detailed description of the stages within the insect 
vector.  

  

After being inoculated into the mammalian host, the infective promastigotes attach to 
macrophages and are phagocytosed before transforming into amastigotes which replicate 
inside the parasitophorous vacuole, which is a modified phagolysosome. The cell body 
length of the intracellular amastigote is smaller (1-2 μm in all species except L. mexicana 

and L. amazonensis) than the promastigote (10-12 μm) and morphologically distinct (De 
Pablos, Ferreira, and Walrad 2016; Richard J Wheeler, Gluenz, and Gull 2011), 
characterised by the lack of a protruding flagellum (Kaye and Scott 2011). 
Amastigogenesis is an important process during which parasites adapt their metabolism to 
the intracellular environment of the phagolysosome within the host macrophages. The 
amastigote is metabolically less active than the promastigote (Kloehn et al. 2015), and this 
metabolic plasticity confers some advantages for their survival and progression of 
transmission as well as protecting them against environmental stresses imposed by the 

Figure 1-3. Life cycle of Leishmania spp.  
Leishmania spp. are transmitted to different mammal hosts by adult female sand flies 
during blood meals. Sandflies inoculate infective metacyclic promastigotes into their hosts 
via the proboscis and they transform into amastigotes inside macrophages (mainly of 
lymphoid organs in species causing VL and dendritic cells of the skin in those species 
causing CL) and multiply by binary fission until the burst of the cell allows them to infect 
more cells until they are ingested again by the insect vector during the blood meal. Inside 
the sand fly, amastigotes differentiate into several intermediate stages before reaching the 
infective stage (metacyclic) and are taken up again by the sandfly in the next blood meal 
recommencing the life cycle. Sand flies also need to become adults in order to be 
competent vectors and their growth and development depends on the environment 
(Modified from: (Tesh 1995) and (Kaye and Scott 2011). 
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phagocytic cell in which they reside, the immune system and even drug exposure (Barisón 
et al. 2017; Sánchez-Valdéz et al. 2018). 

1.5.1 The sandfly vector  

Leishmaniasis is transmitted by the female sandflies of the family Psychodidae. Although 
not all the sandfly species are competent vectors, over 50 species of the genus 

Phlebotomus and Lutzomyia in the Old and New World, respectively, have been identified 
to transmit the disease. In some endemic regions (e.g. Mexico) up to four endemic species 
of sandflies are involved in the transmission of L. mexicana (Pech-May et al. 2010). 
Sandflies can travel from 300 to 2300 m (Ghazanfar and Malik 2016).  

 

Generally, descriptions of the Leishmania spp. life cycle focus on the procyclic and 
metacyclic promastigotes as the main stages, nonetheless, the parasites undergo at least 
five different stages within the vector. Leishmania species possess certain level of tropism 
towards different portions of the insect gut, most species (e.g. L. mexicana and L. 

infantum) develop in the midgut (suprapylaria) before reaching the foregut and mouthparts 
in order to be regurgitated and transmitted, whereas species from the subgenera Viannia 

(e.g. Leishmania braziliensis) localise in the hindgut (peripylaria) before migrating towards 
the midgut and mouthparts of the vector (Dostálová and Volf 2012). Finally, species of the 
subgenus Sauroleishmania (e.g. Leishmania tarentolae) attach to the pyloric region at the 
posterior end of the hindgut (hypopylaria) during their development within Lutzomyia 

longipalpis and little is known about the fitness costs for the sand fly and to what extent 
this determines their pathogenicity and transmission to the lizard, some hypotheses suggest 
that the infection occurs orally and that the parasites are ingested during the insectivorous 
behaviour of the reptile (Gossage, Rogers, and Bates 2003; Kaufer et al. 2017). 

Figure 1-4. Tropism of Leishmania species within the sandfly vector.  
Most species of the subgenera Leishmania develops within the midgut and foregut 
(suprapylaria) and the species of the subgenera Viannia develop within the hindgut 
(peripylaria). Modified from: (Kaufer et al. 2017). 
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1.5.1.1 The life stages of Leishmania within the sandfly 

It is often assumed that Leishmania parasites live only as promastigotes within the sand 
fly, however, the parasites undergo a complex, multi-staged life cycle within the sandfly 
(Figure 1-5 and Figure 1-6). During the first 24-48 hours post blood meal, amastigotes (1) 
transform into procyclic promastigotes (2). Between 48-72 hours they replicate and 
elongate becoming long nectomonad promastigotes (3), which is a non-dividing stage. The 
digestion of the blood meal takes place in the abdominal midgut where promastigotes are 
surrounded by the peritrophic matrix (PM) which is eventually digested by the sand fly 
enzymes releasing the parasites.  

    

The long nectomonads cross the posterior end of the PM and secrete a filamentous 
proteophosphoglycan (PSG) that obstructs the thoracic midgut, creating a plug, which 
needs to be removed together with the stomodeal valve for the reflux of infective stage to 
the foreparts of the sand fly. Nectomonads also attach to the midgut of the insect and 
transform between 4-7 days into the next stage which is shorter than the nectomonad and is 
known as the leptomonad (4). These replicate and transform between 5 to 7 days into two 
subpopulations: the haptomonad (5) that attaches to the chitin of the stomodeal valve, and 
the metacyclic promastigote (6) which is the infective stage that is regurgitated to the 
foregut and mouthparts before being regurgitated into the mammalian host, when infection 

occurs (Bates 2018; Dostálová and Volf 2012; Gossage et al. 2003; Kamhawi 2006; 
Serafim et al. 2018). Metacyclic promastigotes were long believed to be non-replicative 
and the terminally differentiated stage inside the vector. Recently, however, Serafim et al. 
showed in laboratory conditions that after a second uninfected blood meal in Leishmania-
infected sandflies, metacyclic can enter a reverse metacyclogenesis and dedifferentiate into 
a new replicative stage called retroleptomonad promastigotes (7). Retroleptomonads reach 

Figure 1-5. The life cycle of Leishmania within the sandfly vector.  
The different stages within the sandfly appear at different time points during the blood meal 
and the sugar phases. Source: (Kamhawi 2006). 
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levels up to 125-fold higher than leptomonads from a classic infection and differentiate 
into two subpopulations: the haptomonads (8) and the infective metacyclic (9). Both are 
functionally similar to the first populations of haptomonads (5) and metacyclic 
promastigotes (6) but are amplified in number and with enhanced infectivity, resulting in, 
first, a larger haptomonad sphere in the stomodeal valve (Figure 1-6), and second, a 4-fold 
increase of the lesion frequency (Serafim et al. 2018). 

 

Interestingly, the question of how different functionally and biochemically these 

subpopulations are remains unanswered but is important as it may offer new options for the 
treatment and control of the disease (Bates 2018). Previous work has shown, for instance, 
that the metabolism of L. mexicana and L. major metacyclics is biochemically preadapted 
to survive as amastigotes within the intracellular acidic pH of the phagolysosome (Bates 
and Tetley 1993; Opperdoes and Coombs 2007). Analysis of the transcriptome revealed 
that procyclic promastigotes had amino acid transporters and other genes related to the 
glucose metabolism upregulated as compared with amastigotes (Inbar et al. 2017). 

 Use, mode of action and resistance to antileishmanial 
drugs 

Current therapy relies on just a few Antileishmanials that have been used for decades and 
are inadequate for many reasons including toxicity, cost, course of administration and 
increasing drug resistance (Barrett and Croft 2012; Burza et al. 2018; Creek and Barrett 

Figure 1-6. Old and new life cycle of Leishmania within the insect vector.  
a) The old (classical) life cycle of Leishmania stages within the insect. Amastigotes are 
taken up from the infected host, transform into procyclic, Nectomonads, leptomonads 
which differentiate into two subpopulations: haptomonads which form the stomodeal plug 
and metacyclics, the infective stage which is transmitted in the next blood meal. b) the so-
called New life cycle shows that metacyclic dedifferentiate through a reverse 
metacyclogenesis step into a new stage called retroleptomonads, which replicate in higher 
numbers than leptomonads forming a bigger plug in the stomodeal valve, metacyclics from 
retroleptomonads are also hyper infective. See text 0 for a more detailed explanation 
(modified from Serafim, 2018). 
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2014). Although little or no resistance has been reported in the field against paromomycin 
(Hendrickx et al. 2015), miltefosine and amphotericin B (AmB), these drugs have not, to 
date, been widely used for a substantial period of time (AmB has been for over 50 years to 
treat CL). PM resistant lines develop easily in laboratory conditions (Hendrickx et al. 
2015; Jhingran et al. 2009; Rastrojo, et al. 2018), as does miltefosine (Seifert et al. 2003; 
Shaw et al. 2016) – and the first reports of miltefosine treatment failure are appearing in 
the field (Bhandari et al. 2012; Deep et al. 2017; Rijal et al. 2013; Sundar et al. 2012).  

 

AmB is an antifungal that has replaced other compounds (e.g. antimonials) as the drug of 
choice (Fairlamb et al. 2016; Rastrojo, et al. 2018). The need for new compounds is 
pressing as there is no vaccine registered for use in humans (Burza et al. 2018; Dantas-
Torres 2009). In dogs, a vaccine comprised of an attenuated L. infantum strain has shown 
good levels of protection and potential to control the disease in humans (Daneshvar et al. 

2003, 2009, 2010, 2012; Daneshvar et al. 2014; Daneshvar et al. 2014). Several vaccines 
licensed for veterinary use contain excreted/secreted antigens of L. infantum and have an 
efficacy between 68.4 and 80% (Consulted on January 2019: http://www.leishvet.org/wp-
content/uploads/2018/07/EN-Guidelines.pdf). Drug designing of an antileishmanial needs 
to consider the chemistry of the molecule (Figure 1-7) and the barriers that the drug needs 
to cross in order to reach the amastigote, which resides inside the parasitophorous vacuole 
within the macrophages, in many tissues.  The pharmacokinetics differ between different 

Figure 1-7. Compounds used for the therapy of leishmaniasis.  
A. AmB B. paromomycin C. meglumine antimoniate D. sodium stibogluconate E. 
pentamidine and F. miltefosine. Modified from (Barrett and Croft 2012). 
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internal organs affected by leishmania species which compounds problems in seeking a 
pan-leishmaniasis drug. 

1.6.1 Pentavalent antimonials  

Pentavalent antimonials (SbV) have been used since 1940 to treat all forms of leishmaniasis 
(VL, CL, MCL), when often, albeit not always, were effective (Baker 1969) In patients 
infected with L. mexicana, Glucantime -15 series of IM QP (daily) injections 60-100 
mg/kg BW and 10 days intervals- or Repodral -series of 3 IM injections of 1.5, 3.5 and 5ml 
(a 1/5 of this dose in paediatric patients per 10 kg BW) with 10 days intervals- were 
applied in series of three injections. Others like Camolar (cycloguanil pamoate -6-8 mg/kg 
BW IM at 38-40 C, use needle 18-calibre, painful c/2 months-) cured up to 70 percent of 
the cases with only one intramuscular injection and similar efficiency with oral 
metronidazole (Flagyl) and nimorazole - a water soluble, 5-nitroimidazole- (Naxogil) 15-
20 mg/kg BW/day 15 days PO (Biagi 1974). Biagi and colleagues also observed that 420 

mg of IM Camolar prevented ulcers development in susceptible patients (even when 
infected) every 4 months or 2-3 days before visiting endemic areas. Despite drug resistance 
in some regions (Matrangolo et al. 2013; Pund and Joshi 2017) and the severe adverse 
effects (e.g. cardiotoxicity, hepatotoxicity) (Sundar and Chakravarty 2013) these 
compounds are still the first choice in many countries (e.g. sub-Saharan Africa and Brazil), 
probably because they are more cost-effective than other compounds (Frézard, Demicheli, 
and Ribeiro 2009). Meglumine antimoniate (Glucantime®) and sodium stibogluconate 

(Pentostam®) contain different concentrations of SbV (85 mg/mL and 100 mg/mL, 

respectively (Robert N. Davidson, in Infectious Diseases (Fourth Edition), 2017). The 
trivalent antimony SbIII is the active/toxic form with antileishmanial activity and is formed 
after the reduction of SbV by the parasite and human reductases. A third antimonial, 

Potassium Antimony (III) Tartrate trihydrate (PAT) is a metalloid salt in which the 
antimony is in the trivalent state, SbIII, which is used as oxidative stress inducer in 
promastigotes (Ouellette M et al. 1998; Rojo et al. 2015; Tirmenstein et al. 1995), which 
can be selected for PAT resistance in vitro (Liarte and Murta 2010), too toxic for 
therapeutic use, but widely used in laboratory experimentation to test modes of action and 
resistance mechanisms.  

Although it remains unclear exactly how antimonials are reduced by either the 
macrophage, the parasite or both (Kaur and Rajput 2014), it has been described that the 
reduction of SbV to SbIII can occur within the host macrophages where the acidic pH and 
the slightly elevated temperature favour the reaction. Moreover, the ability of Leishmania 
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to reduce SbV to SbIII is stage-specific (Pund and Joshi 2017), amastigotes being more able 
to perform this reaction rendering them more susceptible than promastigotes to antimony 
(Liarte and Murta 2010; Ouellette M et al. 1998; Tirmenstein et al. 1995). 

In Leishmania, the uptake of SbIII (generated within the macrophage) is modulated by the 
aquaglyceroporin AQP1 the expression of which affects parasite susceptibility to SbIII, 
however, interpretation is complex as deletions of chromosome 31 have been reported in 
antimony-resistant lines (Kaur and Rajput 2014), in Leishmania, AQP1 is located in this 
chromosome which frequently presents polyploidy (Fairlamb et al. 2016). The transporter 
responsible for uptake of SbV is unknown, although inside the parasite it has been proposed 
that SbV is reduced to SbIII by thiol-dependent reductase (TDR1) (Singh, Kumar, and Singh 
2012). In addition, an arsenate reductase (LmACR2) in L. donovani and L. infantum has 
been proposed to be responsible for this reduction (Kaur and Rajput 2014).  

Although the MoA of antimonials in Leishmania is not fully understood, it has been 
proposed to involve inhibition of glycolysis and β-oxidation of fatty acids (Wyllie, 

Cunningham, and Fairlamb 2004), phosphorylation of ADP (Singh et al. 2012), DNA 
fragmentation (Ouellette, Drummelsmith, and Papadopoulou 2004) and inhibition of 
trypanothione reductase (TRYR) (Wyllie et al. 2004). Antimony generates intracellular 
oxidative stress (Singh et al. 2012; Wyllie et al. 2004) and apoptosis (Moreira, Leprohon, 
and Ouellette 2011). Transcriptomics and metabolomics has shown that the polyamine-
trypanothione pathway (PTP) (see 1.7.3) to be upregulated after treatment with antimonials 
and in resistant lines (Kaur and Rajput 2014; Wyllie et al. 2010), which protects 
Leishmania against reactive oxygen species (ROS) and nitric oxide (NO) (Mandal et al. 
2017; Manta et al. 2013).  

Resistance against antimonials is multifactorial (Figure 1-8) (Singh et al. 2012; Wyllie et 
al. 2010, 2004) and some of the molecular mechanisms known to be involved include: 1) 
lower reduction of SbV to SbIII (Singh et al. 2012). 2) reduced uptake of SbIII via the AQP1 
transporter (Kaur and Rajput 2014). 3) increased efflux or sequestration of the complex 
SbIII-thiol-mediated by the ATP-binding cassette (ABC) transporters e.g. that encoded by 
the multidrug resistance protein A (MRPA) gene (Fairlamb et al. 2016; Kaur and Rajput 
2014; Singh et al. 2012). 4) upregulation of thiol metabolism producing increased 
abundance of trypanothione (TSH) is observed in antimony resistant lines and parasites 
under oxidative stress conditions induced by the intracellular SbIII (Kaur and Rajput 2014; 

Singh et al. 2012; Wyllie et al. 2010, 2004). 5) overexpression of TDR1 and other enzymes 
such as arsenate reductase (ArsC-), ornithine decarboxylase (OCD), over-expression of the 
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intracellular meta-thiol PgpA transporter, and gamma-glutamylcysteine synthetase (gsh1) 
which favour detoxifying the drug conferring a resistant phenotype (Wyllie et al. 2004; 
Wyllie, Vickers, and Fairlamb 2008). 

 

1.6.2 Pentamidine 

Pentamidine (PENT) was developed in 1937 and has been used to treat the first stage of 
human African trypanosomiasis (HAT) caused by T. brucei gambiense as well as other 
infectious diseases. Like other diamidines, PENT targets the mitochondrion of 
trypanosomatids although its exact mode of action remains unclear (Bridges et al. 2007; 
Zhang et al. 2002). It binds to DNA, RNA and nucleotides and disrupts the mitochondrial 
genome (kinetoplast) (Wilson et al. 2008). In T. brucei PENT is transported into the cell 
through the P2 amino purine transporter as well as a low affinity pentamidine transporter 
and a high-affinity pentamidine transporter (HAPT1) (Munday, Settimo, and de Koning 

2015). HAPT1 is encoded by the aquaglyceroporin TbAQP2, and drug resistance has been 
related with the loss of this gene, as well as the P2 amino purine transporter gene TbAT1. 
The expression of the wild type copy of TbAQP2 in TbAQP2 knockout cells restored 
HAPT1activity and susceptibility. Interestingly, the wild type copy of the AQP2 gene was 
absent or replaced by a chimeric protein containing part of the TbAQP3 gene (which sits 
adjacent to TbAQP2 in the trypanosome genome) in both lab strains and field isolates of 
PENT resistant trypanosomes. L. mexicana promastigotes expressing TbAQP2 developed 
40-fold hypersusceptibility to PENT (Munday et al. 2014). Recently, the accumulation of 
PENT in high concentrations inside the cells was shown to collapse the mitochondrial 

Figure 1-8. Model of the MoA and MoR of antimonials in Leishmania.  
SbV enters the host macrophage and is reduced to SbIII and uptake into the amastigote via 
AQP1, another portion enters as SbV and is reduced via the amastigote-specific TDR1 and 
other enzymes. Intracellular TSH concentrations increase and regulated by enzymes of the 
polyamine-trypanothione pathway (γ-GCS or ODC). Efflux or sequestration of the complex 
SbIII-thiol. Source: (Mandal et al. 2017). 
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membrane potential leading to selective inhibition of replication and progressive loss of 
kinetoplast DNA (Kaur and Rajput 2014; Thomas et al. 2018). 

Twenty years ago, Basselin et al. showed that PENT affects the kDNA and that polyamine 
metabolism was altered in Leishmania lines resistant to PENT (Basselin et al. 1997). 
Efflux of PENT via plasma membrane pumps (PRP1) has also been shown to confer 
resistance (Coelho et al. 2007; Kaur and Rajput 2014). In T. cruzi in which PENT strongly 
inhibited the transport of putrescine and spermidine in epimastigotes and amastigotes (Díaz 
et al. 2014), however, although pentamidine also inhibits transport of polyamines in 
Leishmania (Díaz et al. 2014), uptake of radiolabelled pentamidine was not inhibited by 
polyamines, hence it does not enter on a polyamine transporter (Basselin et al. 2002). In L. 

donovani and L. amazonensis, polyamine biosynthesis showed differences between wild 
type and PENT resistant lines. Although spermidine was unaltered between lines, in wild 
type, putrescine, arginine and ornithine decreased, while in PENT resistant lines, the 
content of putrescine also decreased, however, an increase in arginine and ornithine was 

observed. In this work, interestingly, spermidine synthase showed increased affinity for 
spermidine and decreased affinity for PENT (Basselin et al. 1997). In summary, 
mechanisms of resistance proposed for PENT in Leishmania include 1) changes in kDNA 
sequence (Basselin et al. 1997) and loss of kDNA, 2) the efflux of the drug by the 
pentamidine resistance protein 1 (PRP1) pump (Coelho et al. 2007; Kaur and Rajput 2014), 
3) changes in membrane potential (Basselin et al. 2002) and 4) alterations in  polyamine 
and arginine metabolism (Kaur and Rajput 2014; Ouellette et al. 2004). Interestingly, some 
of these proposed mechanisms are similar to those described with antimonials (section 0 
and Figure 1-8). Moreover, L. mexicana promastigotes selected for AmB resistance 
showed higher susceptibility to PENT (Mwenechanya et al., 2017; Pountain et al., 2019; 
PhD Thesis Raihana Binti, unpublished data), although mechanistic reasons for this are not 
yet understood. Similar results were also found in all AmBR and NysR lines in this study, 
and are discussed further (see chapter 3). 

1.6.3 Paromomycin 

Paromomycin (PAR) is an aminoglycoside, a group of antibiotics extensively used in 
human and veterinary medicine (Jhingran et al. 2009). Paromomycin, also known as 
aminosidine and monomycin, has been used to treat leishmaniasis for more than 50 years 

(Hailu et al. 2010). In India, a Phase III clinical trial showed 94% efficacy of parenterally-
administered paromomycin in patients with VL (Sundar et al. 2007). A topical formulation 
with 15% PM has been approved for the treatment of CL (de Morais-Teixeira, et al, 2014; 
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Jhingran et al., 2009; Soto et al., 2018). In bacteria, PAR inhibits protein synthesis, but the 
specific MoA in Leishmania spp. is not fully understood. Shalev et al. showed the binding 
of PAR to an rRNA model using X-ray crystallography at 3.0 Å resolution, these models 
have been also used to explore interactions between aminoglycosides in prokaryotic and 
eukaryotic ribosomal A-sites (Shalev et al. 2015). PAR and other analogues inhibited 
translation and growth in L. donovani, L. major and L. tarentolae and the structural data 
presented by Shalev and colleagues, showed the binding of PAR to the ribosomal A-site, 
stressing the importance of the position 5” of ring III to determine the selectivity and 
enhanced binding for the leishmanial cytosolic ribosomes versus their prokaryotic 
counterpart. In L. mexicana the effects of PAR on translation were observed to be different 
than those on its mammalian host (Fernández, Malchiodi, and Algranati 2011). Other work 
in L. donovani and L. mexicana promastigotes also demonstrated that PAR inhibited 
protein synthesis with strong specific binding to rRNA of the parasite but little or no 
binding to mammalian ribosomes.  A lower proliferation rate and reduction in 

mitochondrial membrane potential were also observed (Fernández et al. 2011; Jhingran et 
al. 2009). Although PAR has the advantage of low cost and that resistant clinical isolates 
ha e not been identified (Hendrickx et al. 2015; Rastrojo, et al. 2018), poor efficacy in VL 
was observed with parenteral PAR in Sudan (Hailu et al. 2010).  

Experimentally, resistant lines have also been developed relatively easily and rapidly in 
both promastigotes and amastigotes (Hendrickx et al. 2015; Jhingran et al. 2009; Rastrojo, 
et al. 2018). A resistance mechanism may involve different efflux transporters (ABC-type 
efflux, MDR1) with reduced uptake and increased efflux of the drug  (Jhingran et al. 
2009). MDR1 has also been proposed to contribute to an efflux of AmB from L. donovani 
possibly contributing to resistance to this polyene (Purkait et al. 2012, 2014, 2015). 
Another interesting feature in PAR resistant lines selected in vitro is the lack of evidence 
related with cross-resistance against other Antileishmanials (Bhandari, et al., 2014; 
Jhingran et al., 2009). Genomics and transcriptomics recently showed two transcripts 
(LINF_270027300 and LINF_270027400), a D-lactate dehydrogenase-like protein (D-
LDH) and an aminotransferase of branched-chain amino acids (BCAT) which transcripts 
were significantly overexpressed (56- and 32-fold, respectively) and both fall within a 
region in which the coverage of the genomic DNA was up-regulated by 150-fold in the 
PAR resistant line compared with the parental wild type, suggesting that these might be 

one of the mechanisms of action of this drug (Rastrojo, García-Hernández, Vargas, 
Camacho, Corvo, Imamura, J.-C. Dujardin, et al. 2018). 
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1.6.4 Miltefosine 

Antileishmanials that target components of the membrane of the parasite such as MF is 
also known as hexadecylphosphocholine and is the only oral treatment available with 
antileishmanial activity. Initially, it was licenced for VL in India in 2002 but it is also used 
for other forms of leishmaniasis, particularly in regions where drug resistance against 
antimonials is a problem (Banerjee, Roychoudhury, and Ali 2008). After receiving orphan 
drug status, MF was also approved in 2015 by the FDA for leishmaniasis (Sunyoto et al. 
2018). Initially investigated for its antitumor and anti-inflammatory properties, MF is an 
alkyl-phospholipid analogue of phosphocholine which mimics the structure of 
phospholipids found in cell membranes. Miltefosine interacts with phospholipids and 
sterols in the membrane. Apart from some side effects such as vomiting, diarrhoea and 
nausea, the issue of teratogenicity is a major concern for its use (Sunyoto et al. 2018).  

Although resistance against MF is multifactorial, the long course of administration of more 

than 20 days, i.e. 100 mg/kg for 28 days (Abongomera, et al., 2019), as with the 
administration of parenteral antimonials or topical paromomycin, might lead to low 
compliance and lead to under-dosing, treatment failure and possibly, drug resistance 
(Burza et al. 2018). Although oral MF was initially a breakthrough, over the years some 
clinical cases have reported decreased efficiency and unresponsiveness to MF in endemic 
regions (Rijal et al. 2013) and relapse (Hendrickx et al. 2015). Clinical isolates refractory 
to treatment with MF were also resistant to other antileishmanials (e.g. antimonials). 
Importantly, in recent years, characterisation of the mechanisms underpinning resistance to 
MF in Leishmania has improved our understanding on the MoA of this phospholipid 
derivative, although it is still not fully understood (Barrett and Croft 2012). In Leishmania 
and Trypanosoma cruzi, it has been observed perturbation of the alkyl-lipid metabolism, 
phospholipids and membrane biosynthesis and apoptosis after treatment with MF and other 
alkyl-lysophospholipid analogues (Seifert et al. 2003; Varela-M et al. 2012).  

As with PAR, generation of laboratory stable MF resistant lines has proven easy to achieve 
(Seifert et al. 2003; Shaw et al. 2016) although some studies in L. donovani found this to 
be very challenging (Hendrickx et al. 2015). In some studies, no cross-resistance to other 
antileishmanials was observed (AmB, sodium stibogluconate and PAR) (Fairlamb et al. 
2016; Seifert et al. 2003). However, other studies found higher susceptibility (3-fold) 

against PENT (Turner et al. 2015), and more recently, reciprocal cross-resistance between 
two MF- and AmB resistant lines of L. infantum, was reported (Fernandez-Prada et al. 
2016). In the latter of these studies, the resistance was determined by the effect of lipid 
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species caused by the mutations in the MF transporter during the selection with both 
compounds (Fernandez-Prada et al. 2016). In MF resistant lines of L. donovani selected in 

vitro, there was no evidence of amplification of the P-glycoprotein gene, which has been 
previously described to be resistant against ether lipids in L. tropica (Seifert et al. 2003). In 
another work, MF resistant L. donovani showed an altered composition of membrane 
lipids, including fatty acids, phospholipids and sterols. Interestingly, in wild type parasites, 
cholesterol was significantly higher in mitochondrial membranes without Ergosterol being 
detected. On the other hand, the content of ergostane-type (i.e. C-24 alkylation) 
intermediates was reduced in resistant parasites, although the susceptibility against MF was 
unaltered (Rakotomanga, et al., 2005). Changes in the content of sterols and phospholipids 
have been observed in tumour cells after treatment with MF (Geilen, et al., 1996).  

The depletion of sterol was shown to decrease the susceptibility to MF by 40% in both 
wild type and MF resistant L. donovani promastigotes, moreover, resistant cells showed a 
more rigid membrane than wild type. Nuclear magnetic resonance (NMR) indicated that 

MF stimulates lipid trafficking across the parasite membrane (Saint-Pierre-Chazalet et al. 
2009). Characterisation of MF resistant strains using genomic and transcriptomic 
approaches has confirmed that mutations (SNPs, indels) in the MF transporter gene 
(LINF_130020800) triggered a significant reduction of the uptake of the drug and a MF 
resistant phenotype (Mondelaers et al., 2016; Pérez-Victoria et al., 2006; Shaw et al., 2016;  
Srivastava, et al., 2017), and a mitochondrial heat shock protein HSP70 
(LINF_300030100) which overexpression confers more susceptibility to MF but without 
increasing its uptake (Pérez-Victoria et al., 2006; Vacchina, et al., 2016). In clinical 
isolates from patients with VL refractory to treatment with MF, an MF resistant phenotype 
was caused by mutations in both genes (LINF_130020800-LINF_320010400) of the lipid 
transporting complex LiMT-LiRos3 (Ros3 is an accessory protein associated with function 
of MF (Mondelaers et al. 2016). 

Shaw et al. showed disruption of the profile of lipids that are important for the stability of 
the membrane (e.g. phosphatidylcholines, lysophosphatidylcholines) and revealed that the 
Kennedy pathway may play a role in MF resistance (Shaw et al. 2016). Vincent et al, using 
metabolomics, revealed many effects of MF on the biochemical pathways of Leishmania. 
For instance, after 3.5 hours of treatment, 10% of metabolites were significantly altered, 
including alkanes and decreased levels of sugars, thiols and polyamines, which are related 

to the production of ROS. Membrane phospholipids were normal, suggesting the integrity 
of the membrane. When cells were treated for 5 hours signs of membrane disintegration 
such as generalised depletion of many metabolites was observed suggesting a cell death 
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phenotype. Interestingly, these alterations observed in wild type cells were similar in SbIII 
resistant parasites, but not in MF resistant lines, in which MF was not internalised (Vincent 
et al., 2014). Contrary to these findings, another study found a significant decrease in 
membrane phospholipids in L. donovani amastigotes treated with MF, while other lipids 
including sphingolipids and sterols increased. A possible role for sphingolipids in MF 
mode of action was implied since a knockout line of serine palmitoyl transferase gene 
(ΔLCB2) which cannot make sphingolipids de novo was 3-fold less sensitive to MF than 
wild-type (WT) parasites (Armitage et al. 2018). However, whole genome sequencing of 
the ΔLCB2 revealed an unexpected deletion in the MF transporter gene, possibly selected 
as a compensation during selection of the ΔLCB2 mutant, hence it is possible that the link 
between sphingolipids and MF mode of action is indirect and complex (Shaw et al. 2016). 
Recently a genome-wide association study (GWAS) looking for SNPs in isolates from 
patients refractory and sensitive to treatment with MF found a locus associated with the 
failure of MF against VL caused by L. infantum, the presence of this locus named 

Miltefosine Sensitivity Locus (MSL) is associated with response whereas the absence of 
MSL leads to an increased risk of treatment failure by 9.4-fold (Carnielli et al. 2018). 

1.6.5 Polyene antifungals 

Polyenes are natural metabolites produced by the soil Actinomycete genus Streptomyces. 
Although there are more than one hundred known polyenes, amphotericin B (AmB) and 
nystatin (Nys) have been widely used to treat fungal (Lopes and Castanho 2002) and 
protozoan infections for over fifty years (McCarthy et al 2009 revised by (Mayers 2017). 
Polyenes are formed by a macrolide lactone ring and two chains, a hydrophobic chain 
composed by alternating conjugated carbon double bonds (C=C) joined to a mycosamine 
group, and an antagonist hydrophilic chain formed by a similar number of hydroxyl 
groups. The number of carbon double bonds is variable and determines the MoA, energy, 
stability and other properties of these compounds, including their classification into large 
and small polyenes (see Figure 1-9 and Figure 1-10).  
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Large polyenes are used as dyes due to the absorption of high energy/light from the 
ultraviolet (<380 nm) or visible spectrum (380-760 nm) which is a property of the C=C 
bonds alternated in the hydrophobic chain, and this chain is indeed the side of the polyene 
molecule that binds to sterols (Boukari et al. 2016; Sokol-Anderson, Brajtburg, and Medoff 
1986; Tutaj et al. 2015; Te Welscher et al. 2010). AmB owes its name to the amphoteric 

properties which is characteristic of the members of this group. Natamycin (NMC), also 
known as primaricin, is also amphiphilic (amphipathic), in its pure form both AmB and 
NMC have low solubility in water and poor absorption systemically, however, NMC is less 
toxic than AmB and is widely used in the food industry to prevent fungal contamination (te 
Welscher, 2010). NMC can also be administered intraocular (Lakhani, et al., 2019) at 
higher concentrations than AmB as to treat Candida spp. (O’Day & Head, 2006; O’day, et 
al., 1986; Te Welscher et al., 2010). The use of this route of administration (intraocular) 
remains unexplored in human and animal patients with leishmaniasis.  

AmB and Nys are the most widely used antifungals, while Nys is mainly used to treat 
Candidiasis and AmB has a broader spectrum of action, is also active against yeast, mould, 

Figure 1-9. Chemical Structure and classification of polyenes and their target sterols.  
A, B, C and D show large (≥35) and small polyenes (<30) carbon atoms. A. NMC (33) 26 
carbons, B. Nys (47) 38 carbons, C. Filipin 35 carbons lacking the mycosamine and D. AmB 
(47) 37 carbons. E. Cholesterol (C27) and F. Ergosterol (C28). The structural differences are 
the presence of an extra double bond at C7 in the B-ring and at C22 of the side chain, and 
an extra methyl group at C24(C28) of the side chain (Welscher et al., 2008; Welscher et al. 
2010; Tutaj, 2015). 
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and is the only effective drug against some mycoses, and is effective to treat parasitosis 
caused by protozoa (Yardley and Croft 1997) and some stages (sporocyst) of Schistosoma 

mansoni (Moné, et al., 2010). AmB is also the drug of choice for the treatment of other 
fatal infections such as the primary amoebic meningoencephalitis (PAM) caused by the 
amoeba Naegleria fowleri (Debnath et al. 2012) which has been successful for the 
treatment of PAM in combination with other antimicrobials (Vargas-Zepeda et al. 2005). 

1.6.5.1 Mode of action of polyenes 

The MoA of polyenes differs from other antigunfals that interfere with the synthesis of 
essential components of the cell. Azoles and statins, for instance, disrupt the synthesis of 
sterols by targeting the enzymes C14-Lanosterol demethylase (C14DM) and 3-hydroxy-3-
methylglutaryl-CoA reductase (HMGR), respectively. In some fungi, echinocandins inhibit 
the β-(1,3)-D-glycan synthase, necessary for the synthesis of the cell wall (Grover 2010), 
although this structure is not present in trypanosomatids. Polyenes on the other hand, bind 

to ergosterol and other sterols that are the final product of the Sterol Biosynthetic Pathway 
(SBP). The interaction between polyene and sterols is determined by the structure of the 
polyene itself and by the type and composition of the different sterols within the 
membrane. Given the structural differences between large and small polyenes (Figure 1-9), 
their MoA (Table 1-2), efficacy and toxicity present important differences (Ben‐Ami, et 
al., 2008; Chiou, et al., 2000; de Souza & Rodrigues, 2009b; O’day et al., 1986). 

Polyene MYC Size Mode of Action 

AmB and 
Nystatin Yes Large ≥35 

carbons 

Disrupt and form pores (permeabilization) in plasma 
membranes, causing leaking and cell death. Binding to 
ergosterol and cholesterol 

Filipin No Medium Form complexes and loss of function of the membrane as 
barrier. Neutral polyene 

Natamycin Yes Small <30 
carbons 

Unique MoA does not disrupt or alter the permeability of 
the membrane. Instead, NMC accumulates in the 
membrane, form blisters, disrupts the cell wall and blocks 
growth (at least in fungi). Ergosterol specific binding 

MYC: mycosamine group 

 
Both AmB and Nys, have a hydrophobic chain of similar size joined to a mycosamine 
group, the latter is also present in NMC but joined to its shorter macrolide ring. Filipin on 
the other hand, lacks the mycosamine group, which is essential for the antifungal 
properties of these compounds. Gray et al. 2012 studied the functionality of the 
mycosamine and found that this group is essential for the orientation of the polyene within 
the membrane. The authors produced analogues of AmB and NMC, named 

Table 1-2. Modes of action (MoA) of large and small polyenes. 
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amphoteronolide B and natamycin aglycone, respectively, which lost their antifungal 
properties, particularly the ability to bind to sterols, after removing the mycosamine. 

Electron microscopy revealed that large polyenes produced a more distinctive 
morphological change on fungal membranes than small polyenes (Kitajtma, Sekiya, and 
Nozawa 1976). Large polyenes, AmB and Nys, bind to sterols found in the membrane of 
yeast (Serhan, et al., 2014), pathogenic fungi and Leishmania, forming transmembrane 
pores between 4-10 Å in diameter which leads to the loss of monovalent ions (e.g. Na+, K+, 
Cl-) and small organic particles. Filipin, of medium size, binds to cholesterol and ergosterol 
disrupting the membrane and forming pits or invaginations of 250-300 Å that allowed the 
leakage of both, small ions and large molecules (e.g. K+ and glucose-6- phosphate 
dehydrogenase). Finally, the small polyene NMC showed a unique mechanism of 
membrane disruption (Figure 1-10), producing aggregated areas of 800-1000 Å that 
appeared elevated and without formation of pores (Bolard, 1986; Kitajtma et al., 1976; Te 
Welscher et al., 2010; te Welscher et al., 2008). 

1.6.6 Amphotericin B 

Initially used as a second-line treatment, AmB is now the drug of choice for leishmaniasis, 
particularly in endemic regions where resistance against some antileishmanials (e.g. 
antimonials) is prevalent (Mayers et al., 2009). AmB is also effective against CL but the 
self-healing nature of this form of the disease has limited its use (Yardley and Croft 1997, 
2000), AmB has comparable efficacy in vitro against clinical isolates of L. infantum 

causing VL in dogs (Aït-Oudhia et al. 2012). Due to its poor solubility in aqueous 
solutions at physiological pH, AmB needs to be in complex with solubilising agents before 
administration. Sodium deoxycholate for instance, allows the administration of AmB 
intravenously, intra-lesionally and intra-articularly. The dissociation of AmB from 
deoxycholate (AmB-D) occurs in the blood, however, the use of AmB alone or in complex 
with deoxycholate (Fungizone®) presents some disadvantages; it requires hospitalization 
and special monitoring during the infusion and can cause acute and chronic toxicity with 
severe side effects including nausea, hypertension, myocarditis, hypokalaemia and 
nephrotoxicity. The use of lipid formulations lessens the toxicity associated with AmB 
significantly. The properties and uses of AmBisome are discussed further (see section 
1.6.6.2). 



 

 

36 

36 

 

1.6.6.1 Mode of action of amphotericin B 

The MoA of AmB is related to the impairment of  stability and the permeability of the 
plasma membrane. The selectivity and toxicity of AmB are determined by the interaction 
with different types of sterols found in membranes of both the host and the pathogen, and 
other components such as phospholipids and in particular, lipid rafts, which contain high 
amounts of sterols, sphingolipids and proteins, which are involved in maintaining the 
integrity and signaling functions of the membrane (Anderson et al. 2014; Pike 2003). The 
molecule of AmB has a macrolide ring of about 24 Å in length that allows the formation of 
trans-membrane pores with a diameter of 8 Å. Each pore is composed of two complexes of 
eight molecules of AmB that together extend towards both sides of the membrane, 
reaching the intra and extracellular space and acting like aqueous channels (Figure 1-10 
and Figure 1-11). These pores can transport monovalent ions, water and other intracellular 
components, leading to an alteration of the osmotic equilibrium and eventual cell lysis 
(Bolard 1986; Sokol-Anderson et al. 1986; Tutaj et al. 2015). Contrary to the dogma that 
the formation of the aqueous channels was responsible for the cidal effects of AmB, Gray 
et al. showed that the antifungal properties of AmB can also depend on the binding to 
ergosterol without forming pores, which is only a secondary effect independent of the 

presence of sterols. These aqueous channels tend to accumulate at higher concentrations of 
AmB and the permeability of the membrane seems to be involved (Gray et al. 2012). In 
accordance with this, Anderson, et al. proposed a new model called "the sponge model" in 
which AmB binds ergosterol without being internalised within the lipidic bilayer, instead, 
AmB aggregates in the outer surface of the membrane extracting ergosterol. This depletion 
of ergosterol then causes disruption and impairment of the functions of the plasma 

Figure 1-10. Model of the MoA of large and small polyenes in sterol-containing membranes.  
Large polyenes (AmB and Nys) bind sterols in the membrane and form pores that span the 
entire membrane. Small polyenes (NMC) only form complexes with the membrane sterols 
disrupting the structure and blocking the growth of the cell. Modified from: (Bolard, 1986; 
Denis and Head, 1987; Gray et al, 2012). 
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membrane. Interestingly, this model resembles with the MoA of small polyenes which bind 
ergosterol without forming pores (Anderson et al. 2014; Te Welscher et al. 2008, 2010). 

According to the sponge model, the interaction between AmB and ergosterol is essential. 
The binding of AmB to ergosterol and other sterols has been analysed in a series of 
molecular dynamic simulations and experimental models (Anderson et al., 2014; Baginski, 
et al., 2002; Boukari et al., 2016; Gray et al., 2012). The study of Anderson et al. in 
particular, characterised the nature of the binding of AmB to various membrane sterols, 
and  minor structural differences were shown to cause differences in affinity (Lohner 
2014). AmB bound to ergosterol in a strong manner whereas for cholesterol the binding 
was weak, and no binding was observed between AmB and lanosterol (Anderson et al. 
2014), although in some reports, including 3D modelling (Boukari et al. 2016), the latter 
has been cited to act as a target of AmB (Adler-Moore, et al., 2016). In another study 
published over forty years ago, De Kruijff et al. incorporated sterols other than cholesterol 
into membranes and determined three components that are essential. Only those sterols 

with, 1) a 3β-OH group, 2) a planar molecule, and 3) a hydrophobic side chain in C17, 
were able to bind to a large polyenes and permeabilise the membrane (De Kruijff, et al., 
1974). In 1973, Hsuchen and Feingold, described the importance of these structural 
components of the sterol molecule, highlighting that the distribution of the double bonds 
within the sterol nucleus is another structural feature that is key to determine the selectivity 
of AmB and other polyenes.  

Briefly, sterols with two double bonds bind more strongly than those with only one double 
bond within the sterol ring (Hsuchen and Feingold 1973). Recently, the selective toxicity 
of AmB was reduced upon modification of some bulky substituents in the amino sugar 
moiety (mycosamine). All the derivatives obtained were significantly less toxic than AmB 
in several mammalian cell lines, and those with the best selectivity index, induced 
potassium release in C. albicans, but not in human cells (erythrocytes) at concentrations 
lower than 100 ug/mL (108.2 uM) and are therefore considered as promising antifungals 
(Borowski et al. 2018). In Leishmania and fungi, the first of these double bonds is 
introduced by the C-8 sterol isomerase (C8SI) (ERG2 in fungi, LmxM.08_29.2140 in L. 

mexicana) that catalyses the isomerization of ∆8 double bond to ∆7 position, whereas the 
second double bond is introduced at the position ∆5 by the glycoprotein C5-sterol 
desaturase (C5DS) (ERG3 in fungi, LmxM.23.1300 and/or LmxM.30.0590 in L. 

mexicana). With regard to the lateral chain, in Leishmania, a double bond in the position 
24 of the side chain is introduced by the enzyme C-24 sterol methyl-transferase (C24SMT) 
which has two copies (LmxM.36.2380 and LmxM.36.2390 in L. mexicana) arranged in 
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tandem (Jiménez-Jiménez et al. 2008; Mukherjee et al. 2018), and has no orthologue in 
mammals (Chawla and Madhubala 2010), making this enzyme an attractive target for drug 
development against Trypanosomatids (Gros et al. 2006; Magaraci et al. 2003). Evidence 
of defects in both enzymes, C5DS and C24SMT, have been implicated with AmB 
resistance in yeast, pathogenic fungi (Kelly et al. 1994), and more recently in Leishmania 

(Pountain et al. 2019). Details of the mechanistic of these changes are discussed further 
(see 1.6.6.3). Structural differences between ergosterol (Leishmania and fungi) and 
cholesterol (mammals), i.e. the extra double bonds at C7 and C22, in the A ring and the 
side chain, respectively, and an additional methyl group at C24(C28) of the side chain, are 
important for the selectivity and the binding to polyene antibiotics (Smith, Crowley, and 
Parks 1996; Veen and Lang 2005). 

 

Gray et al. and Anderson et al., showed in their respective models, that AmB also induces 
oxidative stress (Anderson et al. 2014; Gray et al. 2012). In Leishmania, AmB has also 
been described to disrupt metabolic pathways other than the sterol biosynthetic pathway 
(SBP), such as the pentose phosphate pathway (PPP) (Fan et al. 2014), and the polyamine-
trypanothione pathway (PTP) (see 1.7.2 and 1.7.3) (Mandal et al. 2017; Manta et al. 2013; 

Figure 1-11. Model of structure and interaction of AmB and ergosterol-and phospholipid 
containing membranes.  
a) Structure of AmB and Ergosterol (Erg). b) classic channel (pores) model, c) sequestering 
model, AmB positioned in the head group region of the membrane parallel-oriented and 
pulling out Erg to the surface. d) sponge model, AmB initially aggregates outside of the 
membrane and extracts Erg from the lipid bilayers. e) 3D structure of AmB, and other 
Ergostanes f) Cholesterol g) Ergosterol and h) Lanosterol i) 3D binding AmB-Cholesterol in 
aqueous solvent j) channel with 8 molecules of AmB (yellow) and 8 of Cholesterol (cyan). 
Polar head of AmB and Hydroxyl group of Cholesterol are coloured in CPK (red for oxygen, 
white for hydrogen, blue for nitrogen and cyan for carbon atoms, respectively). Source: 
Anderson et al, 2014; Boukari et al, 2015; Gray et al, 2012. 
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Purkait et al. 2012). In both pathways, some enzymes are unique of Trypanosomatids and 
therefore attractive drug targets. The use of antioxidants in fungi caused effects associated 
with changes in the susceptibility towards AmB, suggesting that oxidative stress is 
possibly another MoA (Mesa-Arango, Scorzoni, and Zaragoza 2012), however, the 
molecular basis of the generation of ROS by AmB and in Leishmania is unknown. Some 
studies have suggested a central role of the mitochondria in the protective against ROS. In 
this sense, Bonneau, et al. showed that after sequestering ergosterol from membranes of 
tobacco cells, filipin triggered a transient production of ROS dependent of NADPH 
oxidase (Bonneau et al. 2010). This enzyme and the mitochondrial metabolism are the 
primary source of ROS in immune cells, including macrophages, and ROS can contribute 
to killing intracellular pathogens (Abuaita, Schultz, and O’Riordan 2018).  

Genome-wide studies (GWAS) showed that AmB caused upregulation of genes of both, 
the SBP, and oxidative stress pathways (Liu et al. 2005). Barker et al. also observed 
overexpression of several ergosterol and catalase genes after the treatment of C. albicans 

with sub lethal concentrations of the antifungal fluconazole, the adaptive process against 
the induced oxidative stress increasing the tolerance against AmB. In this study, the 
activity of mitochondrial enzymes (e.g. Acetyl Co-A synthetase) was reduced and resulted 
in low abundance of other ROS intermediates, suggesting that the MoA of AmB is related 
to the production of ROS (Barker et al. 2004). Oxidative stress seems to occur 
independently of the permeabilization of the membrane but to contribute to the lethal 
properties of AmB (Sokol-Anderson et al. 1986). In accordance to the models of Gray et 
al., and Anderson et al., both which establish that pores form independently of the content 
of ergosterol, peroxidation of lipids was observed in membranes of Candida (Bolard, 1986; 
Bolard, et al., 1991), and other pathogenic fungi that were resistant to AmB (Walsh et al. 
1990). Interestingly, these membranes were permeable to polyenes regardless their 
complete lack of sterols (Walsh et al. 1990). AmB also induces the production of Nitric 
Oxide (NO) and ROS intermediates in both infected and uninfected macrophages, 
triggering an immuno-regulatory effect, particularly at sub-lethal concentrations (Bolard 
1986), and a pro-inflammatory response, accelerating the elimination of the pathogen 
(Mesa-Arango et al. 2012).  

AmB is known to induce a pro-inflammatory Th1 response with depletion of Th2 type 
cells, and to also bind to Toll-like receptors (TLR), releasing chemokines and cytokines 

(Mesa-Arango et al. 2012). Before the work of Abuaita, et al., it was unclear how ROS kill 
pathogens inside the phagosome, by inducing a stress response. On the one hand, the 
secretion of mitochondrial ROS (mROS) is elicited by the endoplasmic reticulum (ER), 
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and on the other side, mitochondrial-formed vesicles carry and deliver both, mROS and the 
mitochondrial enzyme superoxide dismutase-2 (Sod2) within the phagosome, this process 
involves TLR receptors and Sod2. If Sod2 is depleted, the production of mROS and the 
capacity to eliminate the pathogen are both reduced significantly (Abuaita et al. 2018).  

The parenteral use of AmB creates a potential interaction with other components of the 
blood, particularly lipoproteins and sterol-containing cells, such as erythrocytes which also 
have cholesterol in their membranes. Such interactions affect the efficacy and toxicity of 
AmB (Brajtburg et al., 1984). Bekersky, et al. compared the amount of AmB that was 
bound to plasma lipoproteins between AmB-D and AmBisome. Even though both 
formulations showed similar mechanism of renal clearance of the unbound drug, AmB was 
highly bound (>95%) to plasma proteins such as albumin and glycoproteins whereas in 
AmBisome, most of the drug (97%) was in an unbound state (i.e. inside the liposomes), 
reducing significantly the total amount of drug cleared from the body (Bekersky et al. 
2002). Lipoproteins are particularly important because they transport lipids within the 

body, including cholesterol bound to low density-lipoproteins (LDL) (up to 50%) (Estrada-
Luna, et al. 2018). The binding of AmB to lipoproteins forms a complex which is 
internalized by endocytosis, possibly mediated by LDL receptors. The mechanism of 
delivery of AmB within the cell depends on the physicochemical properties (e.g. size <100 
nm, content of cholesterol) of the LDL particles and the liposomes. Interestingly, both type 
of particles carry the molecule of AmB in a very similar manner inserted within the lipid 
bilayer (Brajtburg and Bolard 1996). Other aspects of the binding between AmB and 
lipoproteins are important to consider for studies in vitro, due the addition of serum into 
the culture medium, similarly, dosing and availability of AmB in studies in vivo need to 
consider the possibility of less drug available due to this binding. 

1.6.6.2 MoA of liposomal amphotericin B 

Liposomal AmB (AmBisome®) consists of unilamellar liposomes (Gilead Sciences Ltd, 
AmBisome®, 2018), Amphocil™ is a colloidal dispersion and Abelcet® contains AmB in 
a lipidic complex. The composition and physicochemical properties of these and other 
generic formulations available have been extensively tested against fungi and Leishmania 

spp., both in vitro and in vivo (Adler-Moore et al., 2016; Adler-Moore & Proffitt, 2008; 
Brajtburg & Bolard, 1996; Gangneux, et al., 1996; Gupta, et al., 2010; Tollemar, et al., 

2001; Yardley & Croft, 1997, 2000). Although its cost is higher, AmBisome is the most 
widely used formulation of AmB and is currently effective as monotherapy (40 mg/kg) to 
treat VL (Sundar et al. 2011). This formulation is particularly valuable in patients that 
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require special care, such as populations co-infected with HIV (Abongomera et al. 2018; 
Banerjee et al. 2008; Sundar and Jaya 2010) and in the Indian Subcontinent where VL is 
endemic and drug resistance is an issue (Singh et al., 2012; Sundar & Chakravarty, 2013). 

As combination therapy, liposomal AmB also represents a valuable alternative to be 
considered by health policy makers. A Phase III Trial showed that AmBisome (30 mg/kg) 
in combination with MF (100 mg/day for 28 days) was comparable to AmB monotherapy 
in VL patients co-infected with HIV (Abongomera et al. 2018; Diro et al. 2019). 
AmBisome is characterized by a favourable therapeutic index with a significant reduction 
of the toxicity and lower dose required to achieve 90% cure in VL patients. The duration of 
the treatment was also reduced up to 15-30 fold, AmBisome (7-10 mg/kg) administered for 
1-10 days was superior than doses up to 2-fold higher (11.25 to 20 mg/kg) over 15-30 days 
with AmB-deoxycholate complex (AmB-D) (Adler-Moore et al., 2016; Sharmaet al., 2011; 
Singh et al., 2012). The MoA of AmBisome is different than the conventional AmB due to 
its physicochemical properties. AmBisome liposomes are composed of cholesterol that 

binds to AmB, a hydrogenated soy phosphatidylcholine (HSPC), and distearoyl 
phosphatidyl-glycerol (DSPG) which is negatively charged and interacts with the positive 
amine group of AmB to form a complex within the lipid bilayer of the liposome, which is 
stable at body temperature. In Leishmania, AmBisome allows the internalization of AmB 
inside specific intracellular compartments such as the phagolysosome, and therefore 
delivering higher concentrations of drug that can target the amastigotes inside the 
macrophages (Adler-Moore et al. 2016).  

1.6.6.3 Drug resistance against polyenes 

Resistance to AmB and other antileishmanials is multifactorial (Mesa-Arango et al. 2012), 
and difficult to detect given the diversity of the MoA of polyenes. One common feature 
however, seems to be the loss of the wild type sterol, ergosterol, which is replaced by 
different sterol intermediates, depending on the mutations in different enzymes of the 
sterol biosynthetic pathway (SBP). The main MoA, i.e. binding to ergosterol, and the 
higher selectivity to AmB in comparison to cholesterol, is of particular interest in 
Leishmania, because both the ergostane and stigmastane families, are key endogenous 
sterols in trypanosomatids and are absent in mammals (Choi, Podust, and Roush 2014). 
This selective binding has been observed in different species of Leishmania (Xu, et al., 

2014). A study with ergosterol- and cholesterol-containing membranes, showed that the 
effect of AmB is concentration dependent. In cholesterol containing membranes, AmB 
showed no effects, and led to membrane permeability and leakage of K+ at concentrations 
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lower and higher than 80 nM, respectively. On the other hand, ergosterol containing 
membranes were more sensitive to AmB and similar effects were observed with a 
concentration ten-fold lower (8 nM). This study highlights the fact that apart from the type 
of sterol in the membrane, the concentration of AmB is also key to determine the effects of 
AmB (Bolard et al. 1991). 

In Leishmania, the lower abundance of ergosterol that is frequently observed in AmB 
resistant mutants created in laboratory conditions, is rare in clinical samples (Chakravarty 
and Sundar 2010; Fairlamb et al. 2016). Resistance to AmB has been, however, observed 
in clinical isolates of L. donovani with alterations of the membrane (and loss of ergosterol) 
(Purkait et al. 2012), in isolates from non-endemic areas (Srivastava, et al., 2011), and in 
other studies published before AmB became the first treatment for VL (Chakravarty and 
Sundar 2010; Durand et al. 1998; Giorgio 1999). Durand et al., 1998 could not detect a 
change in susceptibility in L. infantum promastigotes after the treatment with AmB in a 
patient co-infected with HIV. The effective dose (ED50) before and after the treatment was 

0.056- and 0.064 mg/kg body weight, respectively (Durand et al., 1998). Giorgio et al, 
1999 detected a reduction in the susceptibility (EC90) of isolates in eleven patients infected 
with L. infantum and HIV, which were obtained at the time of repeated relapses after 
treatment.  In this latter study, the susceptibility to AmB was determined using the EC90 
values, showing that in all cases, the lack of response after the treatment with intralipid 
AmB (intralipid 20% emulsion, Pharmacia SA, Paris, France) at 1–2 mg/kg per day, for 21 
days, was associated with an increase of the EC90 values. Moreover, promastigotes and 
amastigotes isolated from a patient after six relapses, were resistant to AmB (Giorgio 
1999). The fact of the increasing use of AmB after it became the leading compound for the 
treatment of VL cannot be ignored. Particular interest needs to be addressed to the lipid 
formulation, AmBisome, which increases the half-life of AmB within the body 
(Chakravarty and Sundar, 2010).  

Reports of clinical isolates resistant to AmB (and azoles) are now more frequent in fungi, 
particularly in emerging species (although it has been also reported in C. albicans), for 
instance, 50% or more of the resistant isolates are non-candida species (McCarthy et al. 
2017). The low susceptibility to AmB reported in fungi with normal levels of ergosterol 
suggests that other mechanisms are, possibly, involved in resistance (McCarthy et al. 
2017). In fungi, AmB resistance can be categorized into three main types: (1) primary or 

intrinsic, (2) acquired, and (3) clinical resistance (McCarthy et al. 2017). Some strains of 
Trichosporon beigelii, a pathogen that causes fatal disease, which have normal 
concentrations of ergosterol, are intrinsically resistant to AmB,  and oxidative stress 
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defence has been proposed to be involved in this protection (Walsh et al. 1990). Another 
species naturally resistant to AmB is Aspergillus terreus, where high levels of catalase 
involved in protection against oxidative stress have been proposed to play a role 
(McCarthy et al. 2017). Recent work showed that cross resistance between azoles and 
polyenes (AmB and nystatin in this study), was also present among other emerging fungal 
species including Candida auris (de Cássia, et al., 2018). 

The techniques and protocols employed to analyse resistance may also be related to the 
low frequency of reports about resistance to AmB. In fungi, the minimum inhibitory 
concentration (MIC) is normally used, while a minimum fungicidal concentration (MFC) 
would be better for the detection of in vivo and in vitro activity. The MIC, for instance, 
varies depending on many factors (e.g. strain, media, culture conditions), and cannot 
discriminate between susceptible and resistant strains because this technique is limited by 
the narrow concentrations of drug that are tested. Similarly, the great majority of studies in 
parasitology, report the half-maximum effective concentration (EC50) and most of the time, 

the inhibitory growth curve (Hill slope) is not provided and could indicate non-standard 
inhibitory characteristics. Moreover, the EC90 value is rarely published (McCarthy et al. 
2017). As described in section 1.6.6.1, the binding of AmB and other polyenes for 
ergosterol and other membrane sterols is variable (Anderson et al. 2014) and various 
factors influence the degree of such affinity. That said, changes in the sterol pathway that 
interrupt the biosynthesis and reduce the abundance of those intermediates that bind drug 
with high affinity are expected to confer resistance. Of particular interest in Leishmania, 
are the number of double bonds in the lateral chain, and the number and distribution of the 
double bonds within the sterol ring (Hsuchen and Feingold 1973). Changes in sterols with 
loss of ergosterol relate with AmB resistance in both pathogenic fungi and Leishmania. 
Some enzymes involved in changes in the content of ergosterol and antifungal resistance 
are, HMGR (Brooks et al., 2012; Dinesh, et al., 2014; Dinesh, et al., 2015; Singh, et al., 
2014; Young, et al., 2003b), C14DM (Kanafani & Perfect, 2010; Martel, et al., 2010; 
Mwenechanya et al., 2017), C24SMT (Pountain et al., 2019; Pourshafie et al., 2004; 
Purkait et al., 2012), C5DS (Geber et al., 1995; Alcazar-Fuoli et al., 2006; Morio et al., 
2012; Rastrojo, et al., 2018; Pountain et al., 2019), and C8SI (Kelly et al. 1994). 

Defects in C24SMT in Leishmania spp., have similar effects as in fungi (Laura et al, 
2003), in which AmB resistance is, in part, explained by the replacement of ergosterol and 

other ergostanes by cholestane-type intermediates, after the loss of expression of one 
transcript of C24SMT observed in L. donovani (Pourshafie et al. 2004; Purkait et al. 2012). 
The actual genome based mechanism of AmB resistance that operates due to changes in 
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this enzyme is, however, somewhat different than that observed with resistance associated 
with changes to C14DM or C5DS in Leishmania, and also in fungi, in which SNPs are 
frequently observed (Chakravarty and Sundar 2010).  

The loss of the trans-methylation in C-24 is derived from the loss of the function of 
C24SMT, which is in turn related with the loss of the expression of one of the two 
transcripts of this gene in L. donovani promastigotes (Pourshafie et al. 2004), and in L. 

mexicana (Pountain et al. 2019a). In both species, this resulted in the replacement of the 
wild type sterol profile with the cholestane, cholesta-5,7,24-trien-3B-ol, which leads to 
resistance to AmB. A detailed discussion of the changes in sterol intermediates, and the 
mechanism of resistance related with C24SMT are described further (see Chapter 5, and 
Chapters 4 and 6, respectively). The study of Purkait and colleagues, described the 
molecular mechanism of resistance to AmB, which was related to an alteration in the 
expression of the two transcripts coding for C24SMT, and resulted in a reduced binding 
affinity and less uptake of AmB (Purkait et al. 2012). In another study with four AmB 

resistant lines of L. mexicana, C24SMT was also involved in AmB resistance (Pountain et 
al. 2019a). C24SMT is a critical enzymatic step for the disruption of the biosynthesis of 
ergosterol and is also involved in the susceptibility/resistance to AmB in fungi (Konecna et 
al. 2018; Nes et al. 2009). Nystatin resistant mutants (yeast) showed defects in C24SMT 
(McCammon, et al., 1984). Mutations in other enzymes, i.e. C14DM (Mwenechanya et al., 
2017), and C5DS (Pountain et al., 2019), also lead to AmB resistance in L. mexicana 
promastigotes, in both cases, the loss of the wild type sterol and the accumulation of other 
intermediates, was observed. 

With regard to the role of the double bonds within the sterol ring, sterols with one double 
bond (∆5) in their sterol nucleus such as cholesterol (5-cholesten-3β-ol) and stigmasterol 
(5,22-choIestadien-24b-ethly3 β-ol) had less affinity for AmB (and Nys) in comparison 
with ergosterol (5,7,22-cholestatrien-24b-3β-ol or ergosta-5,7,22-trien-3β-ol) and 7-
dehydrocholesterol (5,7-cholestadien-3β-ol) which have two double bonds (∆5,7). AmB 
did not bind to dihydrocholesterol (5α-cholestan-3β-ol) which lacks double bonds in the 
sterol nucleus (Hsuchen and Feingold 1973). This is of major relevance in Leishmania and 
fungi, in which C8SI catalyses the isomerization of the ∆8 double bond to the ∆7 position, 
while C5DS introduces a second double bond at the position ∆5. The latter of these double 
bonds is essential for the synthesis of ergosterol and other ergostanes. C5DS converts 

episterol (ergosta-7,24(28)-dien-3-ol or ergosta-7,24(28)-dien-3β-ol) which has one double 
bond (∆7), into ergosta-5,7,24(28)trienol. Null mutants of S. cerevisiae (Bard et al. 1993a) 
and clinical isolates of several species of Candida with defects and reduced expression of 
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C5DS (and other sterol enzymes such as C14DM and C22-sterol desaturase (C22DS) 
(ERG11 and ERG5 in fungi, respectively) (Martel, et al., 2010; Miyazaki et al., 1999; 
Young et al., 2003a), showed reduced fitness and were resistant to AmB and azoles 
(Joseph-home et al., 1995; Martel, et al., 2010; Branco et al., 2017), and more susceptible 
to other antifungals (https://www.yeastgenome.org/locus/S000004046). Although there is 
no evidence of similar changes occurring in clinical isolates of Leishmania, a recent study 
in L. mexicana axenic promastigotes, demonstrated mutations in this enzyme associated 
with resistance (Pountain et al. 2019a). In my study, I identified five novel mutations in 
C5DS related with polyenes. Additional details related with the annotation of C5DS, and 
the implications of the recent evidence of the role of this enzyme with AmB resistance in 
Leishmania, are discussed further (see 1.6.6.3 and Chapter 4, section 4.1.5). Interestingly, 
no reports of the role of C8SI with resistance to AmB, have been described in Leishmania. 

Another challenge for the detection of resistance to AmB is the ability of Leishmania to 
replace endogenous ergostanes, with exogenous cholesterol and other sterol intermediates 

that can be obtained from the culture medium or from the host, allowing the parasites to 
maintain the functionality of their membrane (Andrade-Neto et al. 2011; De Cicco et al. 
2012; Ghosh et al. 2012a). A study in Leishmania amazonensis treated with two inhibitors 
of the enzymes HMGR and C14DM, showed that exogenous cholesterol was 
compensatory irrespective of which enzyme was inhibited (Andrade-Neto et al. 2011). 
Further confirmation on the role of exogenous cholesterol as a buffer mechanism, was also 
observed in mice with hypercholesterolemia (dietary and intrinsic), and in another group 
treated with statins after infection with L. donovani. Mice with hyper- and 
hypocholesterolaemia, were resistant and more susceptible to the infection with L. 

donovani, respectively, confirming that the parasites can uptake cholesterol from the host 
to their advantage. Moreover, amastigotes are able to extract cholesterol from the 
membrane of macrophages, leading to the disruption of the lipid rafts and to a lack of 
stimulation of T cells (Ghosh et al. 2012b). In mammals, the content of cholesterol in low 
density lipoproteins (LDL) is up to 50% (Estrada-Luna, et al. 2018), this concentration of 
cholesterol could, possibly, act as a sequestering mechanism of AmB. 

Some of these ergostane-type intermediates accumulate and are related with resistance to 
AmB and with the virulence in Leishmania (Mwenechanya et al. 2017; Yao and Wilson, 
2016; Vincent et al, 2013; Anderson et al., 2014; Mukherjee et al. 2018) and pathogenic 

fungi (Anderson et al., 2014). The use of other sterol intermediates to replace membrane 
sterols is also observed in fungi, in yeast for instance, lanosterol can support growth 
(Gachotte et al. 1997). However, systematic studies evaluating the selectivity and the 
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degree of the binding (affinity) of AmB towards other sterol intermediates in both 
Leishmania and fungi, are scarce. 

Resistance to AmB (and other polyenes) due to other mechanisms than the content of 
ergosterol, and other membrane sterol intermediates, is also relevant. The over-expression 
of multidrug receptors ABCB (ABCB4, MDR1) has been described in Leishmania 

resistant to AmB, suggesting that the parasites are able to increase the efflux of this 
polyene (Purkait et al. 2012). Studies related with the cross-resistance between MF and 
AmB are contradictory, while in some reports cross-resistance was not identified (Fairlamb 
et al. 2016; Seifert et al. 2003), reciprocal cross-resistance between these two 
antileishmanials was reported in L. infantum (Fernandez-Prada et al. 2016). Similarly, the 
loss of the miltefosine transporter was observed in some AmB resistant lines of L. 

mexicana (Pountain et al. 2019a). More recently, upregulation of the Pentose Phosphate 
Pathway (PPP), was also identified in promastigotes treated with higher concentrations of 
AmB (5 x the EC50) (PhD Thesis, Dr Raihana Binti, unpublished data). In L. donovani 

resistant to AmB, the upregulation of thiol metabolism and an increase of reduced-
intracellular-thiols, were involved in AmB resistant parasites isolated from patients 
(Purkait et al. 2012). Further studies of this clinical isolate also identified a NAD+ 
dependent histone deacetylase (HDAC) to be directly involved in the resistance to AmB. 
This protein (named LmSIR2 in L. major), is involved in detoxification of ROS and the 
concurrent  overexpression of the MDR1 transporter in resistant parasites, therefore 
confers protection against oxidative stress and increases the efflux of AmB (Purkait et al. 
2014). Studies with the small polyene natamycin (NMC), which disrupts the stability of the 
membrane without forming pores, are also indicative that other mechanisms are involved 
in the leishmanicidal (and fungicidal) properties of polyenes (te Welscher et al., 2008). 

Although the loss of ergosterol seems to be the main mechanism associated with AmB 
resistance in L. mexicana (Mwenechanya et al. 2017; Pountain et al. 2019a), other lipids 
are also related with the MoA (and resistance) of polyenes (Bolard 1986). Some lipids such 
as inositol phosphorylceramide (IPC), which are unique in Leishmania, are known to 
interact with sterols in the membrane, therefore, the loss of any of these components can 
contribute to its destabilisation (Denny, et al., 2006). The nature of this interaction is, 
however, very complex. Interestingly, the loss of ergosterol can result from the exposure to 
other antileishmanials that target the membrane lipids. For instance, ergosterol (and 5-

dehydroepisterol), was dramatically decreased in two lines of L. infantum that were 
selected for resistance to MF and AmB (Fernandez-Prada et al. 2016). Other sterols (C24-
alkylated) were strongly reduced (43%) in MF-resistant, and in MF-treated L. donovani 
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promastigotes (Rakotomanga, et al., 2007; Rakotomanga et al., 2005), possibly because the 
substrate of C24SMT, zymosterol, is a membrane component that depends on 
sphingolipids (Veen and Lang 2005). 

In another study with L. donovani axenic amastigotes, and L. major promastigotes, both 
ergosterol and sphingolipids, were involved in the susceptibility to both antileishmanials. 
After the treatment with MF, the content of membrane phospholipids and aminoacids was 
reduced, while the abundance of sterols and sphingolipids increased (Armitage et al. 2018). 
In contrast with this, a significant reduction in the content of ergosterol was observed in a 
L. major serine palmitoyl transferase null-mutant (∆LCB2) that lacks sphingolipid 
biosynthesis. Interestingly, ∆LCB2 was 3-fold less susceptible to MF (Armitage et al. 
2018), and 4.3-fold more susceptible to AmB (data not shown), irrespective of the lower 
abundance of ergosterol. In fungi, the higher susceptibility to AmB derived from the 
depletion of sphingolipids is associated with PMP3, a highly conserved small membrane 
protein that requires a functional sphingolipid pathway. No evidence of the presence of a 

similar protein to PMP3 is known in Leishmania. The overexpression and deletion of 
PMP3, resulted in increased resistance and susceptibility to AmB, respectively in fungi 
(Bari, et al., 2015). Moreover, the addition of phytosphingosine (an intermediate of the 
sphingolipid pathway), restored the susceptibility of the PMP3 deletion mutants, thus 
confirming that the interaction between the sterol and the sphingolipid pathways plays a 
key role in AmB resistance (Veen and Lang, 2005; Bari et al., 2015). Recently, another 
study using RNAi in T. brucei confirmed that the MoA of AmB, and the transport and 
metabolism of membrane lipids (phospholipids) are related. The depletion of the MT 
(Tb927.11.3350 in T. brucei), and other flippases, led to an increase in the EC50 of both, 
AmB and MF. Interestingly, a vesicle-associated membrane protein, TbVAMP7B, possibly 
with similar function to PMP3 in fungi, and other membrane associated hits, were 
identified to influence the activity of AmB and MF (Collett et al. 2019). 

Another aspect that remains poorly studied, is whether the composition of the sterols in the 
membrane in amastigotes is similar to that described in the promastigote stage. Yao and 
Wilson, observed in L. infantum, that the sterol composition was variable between log- and 
stationary (including metacyclic) stages, and involved in the virulence of the parasite (Yao 
and Wilson 2016). Similarly, differences in the abundance of sterols between the insect- 
and the intracellular stages, have also been described in AmB resistant lines of L. mexicana 

(Mbongo, et al., 1998), but is still unknown in other species. A summary of some of the 
mechanisms of drug resistance, in Leishmania is shown in Figure 1-12.  



 

 

48 

48 

 

 Leishmania metabolism 

The metabolism of Leishmania is different from other trypanosomes. For instance, L. 

major is the only trypanosomatid that metabolizes disaccharides (Ginger, 2005). In this 
specie, there are four hundred genes coding for unique enzymes that compose the main 
metabolic pathways of the parasite, and some of these genes (8%) have no orthologue in 
mammals (Opperdoes and Coombs 2007). Some examples of these genes are the C24-
sterol methyl transferase in Leishmania spp. (Jiménez-Jiménez et al. 2008), and the 
trypanothione reductase (TR), which are essential for the sterol- and the trypanothione- 

metabolism, respectively (Jain and Jain 2018; Mandal et al. 2017). Subramanian and 
colleagues, reconstructed the metabolic network in L. infantum, finding 142 genes 
encoding enzymes that perform 237 reactions which are localised in five different 
compartments of the parasite (Subramanian, et al., 2015).  

Leishmania are essentially aerobic parasites (Brand 1966), however, the parasites are 
adapted to starvation, showing features of aerobic fermenters with production of organic 

Figure 1-12. Molecular mechanisms of drug resistance in Leishmania spp. 
PANELS A and B show the mechanisms of resistance that are general to different drugs, 
and to polyenes, respectively. PANEL A: 1) Reducing the total concentration of drug inside 
the cell (reduced uptake, increased efflux. 2) inactivating or non-activating the drug. 3) 
sequestration from the target, 4) reduced target-affinity via mutations or 5) reducing effects 
of drug by over expression of the target, 6) Pathways can be either 6.1) salvaged/bypassed 
to diminish the impact of the drug or 6.2) activated to repair/compensate damage. PANEL B: 
a) membrane alterations (e.g. depolarization, fluidity) occur after the binding of polyenes to 
ergosterol (and other membrane sterols). Other mechanisms that block the entry of the drug 
are still unknown. b) Changes (SNPs, indels, CNVs, gene amplification/duplication) at the 
level of genes in different pathways (e.g. sterols, polyamine-trypanothione, pentose 
phosphate pathway) are known to be related with AmB resistance. c) tryparedoxin is 
involved in resistance to several antileishmanials that cause oxidative stress. d) various 
membrane drugs transporters (e.g. MDR1) have been described to be related with AmB 
resistance. In this diagram, miltefosine transporter and other mechanisms are not included. 
See text (section 1.6.6.3) for a detailed description. Adapted from (Fairlamb et al. 2016; Kaur 
and Rajput 2014). 

PANEL A:     PANEL B: 
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acids (e.g. succinate, acetate, pyruvate) in the presence of glucose and oxygen, suggesting 
that nutrients are not completely oxidised (Blum 1993; Brand 1966). Marchese et al. 
revised the uptake and the metabolism of amino acids in Leishmania. Apart from their 
function as building blocks for proteins, energy and carbon sources, amino acids are 
critical for other biological functions such as differentiation, regulation of the cell cycle, 
survival to adverse conditions, and for the establishment of the infection within the insect 
vector and the mammal hosts (Marchese et al. 2018). 

The metabolism of Leishmania is moreover, adapted to the various conditions that the 
parasites encounter along their life cycle (Burchmore and Barrett 2001; Subramanian et al. 
2015). Promastigotes, for instance, have their metabolism adapted to transform from the 
procyclic to the metacyclic stage within the different parts of the alimentary tract (e.g. 
midgut, foregut, mouth parts) of the sandfly (Dostálová and Volf 2012) and benefit from 
the sugar-rich nectar environment (Burchmore and Barrett 2001). It is unknown, however, 
if other metabolic differences between species are related to the development of certain 

species in specific compartments within the insect. For instance, L. mexicana and L. 

infantum (suprapylaria) live in the midgut, whereas L. tarentolae and L.(Viannia) 
braziliensis have tropism for the hindgut (Opperdoes and Coombs 2007; Rogers and Bates 
2007). Ideally, the metabolism of both stages of Leishmania spp. should be studied in their 
respective “natural” niches (i.e. sandflies and macrophages) (Opperdoes and Coombs 
2007). Both scenarios present, however, additional challenges. Some examples are: 1) 
facilities to rear and keep sandflies, 2) technical skills to maintain, infect and dissect 
sandflies, 3) type(s) of macrophages infected, 4) differences between species and lines, 5) 
recovery of Leishmania amastigotes from macrophages post-infection is challenging 

(Brand 1966), 6) dissecting the parasite-, from the host-cell metabolism is difficult. Axenic 
promastigotes are the most investigated model, given the easiness to handle and maintain 
this stage in vitro, although the interpretation of the biological value is still arguable 
(Barisón et al. 2017; Opperdoes and Coombs 2007). 

Promastigotes uptake glucose, and other essential nutrients (e.g. amino acids and purines), 
from their host or from the culture medium (Creek, Anderson, et al. 2012; Creek and 
Barrett 2014; McConville et al. 2015). In Leishmania, glucose is stored as mannogen 
(Opperdoes and Coombs 2007), and both glycolysis and gluconeogenesis (also a source of 
glucose) are important sources of energy. Most of the glycolytic enzymes reside within the 

glycosomes (peroxisome like organelles) and present important structural and mechanistic 
differences in comparison with other organisms (including humans) in which they are 
cytosolic (Opperdoes and Michels 2010; Verlinde et al. 2001). Some enzymes, such as 
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pyruvate kinase (Rigden, et al., 1999) and fructose-1,6-biphosphatase (F-1,6BP) are key 
for the regulation of glycolysis and gluconeogenesis, respectively (Opperdoes and Michels 
2010), the latter of these enzymes influences the virulence and is essential for replication 
of amastigotes in L. major, and promastigotes lacking this enzyme also exhibit a growth 
defect (Naderer et al. 2006). The expression of other enzymes is also stage-specific, for 
instance, alcohol dehydrogenase, enolase, and ATP synthase, are more highly expressed in 
promastigotes whereas hexokinase is preferentially expressed in amastigotes (Arjmand et 
al. 2016). 

Amastigotes are adapted to survive inside the phagolysosome of mammalian macrophages 
where the levels of sugar are low (Naderer et al. 2006), the acidic environment activates 
their metabolism, optimising the uptake of glucose at pH 5 (the first transport activity 
studied in amastigotes), polyamines, nucleosides and amino acids (Burchmore and Barrett 
2001). The latter seem to be the main source of carbon for amastigotes (McConville and 
Handman 2007) and the parasites scavenge them from the parasitophorous vacuole using 

specific permeases (McConville, et al., 2007). Some studies revealed that Leishmania 
avoids destruction by subverting macrophage functions (Handman and Bullen 2002), and 
disrupting metabolic and signalling pathways (Arango Duque & Descoteaux, 2015; Marr et 
al., 2014; Rosenzweig et al., 2008), including the central carbon metabolism (McConville 
2016). Although the role of the carbon sources in the metabolism of amastigotes is less 
complete than in promastigotes (Arjmand et al. 2016), it is known that axenic amastigotes 
have the glycolytic pathways reduced and that the β-oxidation of fatty acids is increased 
(Creek, et al., 2012). Fatty acids are degraded using thiolases that remove an acetyl-CoA 
group from the acyl-CoA, this group of enzymes are also important for the biosynthesis of 
sterols (condensation reaction) and ketone bodies (McConville et al. 2007; Opperdoes and 
Michels 2010). Amastigotes develop a stringent metabolic response in which the major 
changes seem to be related with the central carbon metabolism, while promastigotes are 
highly glycolytic and can co-catabolize amino acids, and fatty acids, the much lower (up to 
10-fold) uptake of glucose and amino acids is replaced by fatty acids that enter the 
tricarboxylic acid cycle (TCA) in amastigotes. Interestingly, differentiation also occurs in 

vitro and independently of the nutrients, suggesting that the down regulation of glucose 
and amino acids are controlled by the amastigotes (McConville 2016), which enters to a 
metabolically quiescent state with a lower growth rate (Kloehn et al. 2015). 
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1.7.1 The sterol biosynthetic pathway 

The sterol biosynthetic pathway (SBP) is essential for the synthesis of molecules with the 
1,2-cyclopenta-noperhydrophenanthrene ring system, such as cholesterol and ergosterol, 
which are the end products of the SBP, and the main sterol species in mammalian cell 
membranes, and in Leishmania and fungi, respectively (Nes, 2011a; Mesa-Arango, 
Scorzoni and Zaragoza, 2012). The structural differences between these two sterols are 
described in more detail later (see Chapter 5, Figure 5-1, Panel A, and Figure 1-9, Panels E 
and F) (Tutaj et al. 2015; Te Welscher et al. 2008, 2010). Cholesterol and ergosterol are 
also intermediates for the synthesis of vitamin D3 (cholecalciferol), and vitamin D2 
(ergocalciferol), respectively (https://www.genome.jp/kegg-
bin/show_pathway?map01100). In mammals, cholesterol is crucial for steroidogenesis, 
which is necessary for the synthesis of corticosteroids and other molecules with a wide 
range of physiological and regulatory functions (Miller and Auchus 2011; Mohammed 

2012). The SBP is an attractive drug target for the treatment of leishmaniasis, several 
enzymes, e.g. HMGR, C14DM and C24SMT (see Table 1-3 for more details) being 
proposed as targets, while rational drug design studies with others enzymes of this pathway 
(e.g. C5DS and C8SI), remain unexplored. Most antifungals disrupt the biosynthesis of 
sterols by targeting different enzymes, e.g. statins, azoles, azasterols, of this pathway. On 
the other hand, polyenes AmB, nystatin and natamycin, bind to the end products of the 
SBP, ergosterol, and to a lesser extent, to cholesterol (Anderson et al. 2014). The SBP was 
first described in the budding yeast (Bard et al. 1993c; Mo and Bard 2005b), and studies in 
Leishmania spp., have shown differences between the protozoan and fungal SBP. 
Similarly, some differences in the SBP are also present between kinetoplastids (Cosentino 
and Agüero 2014; Yao and Wilson 2016). In L. mexicana promastigotes, for instance, 
leucine is favoured as a carbon source for the SBP, while in T. cruzi, acetate seems to be 
more important for sterols biosynthesis (Ginger et al. 2000, 2001; Ginger, Chance, and 
Goad 1999). 
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The enzymatic reactions of the SBP includes around 40 enzymes, from acetyl-CoA until 
the last reaction, i.e. the conversion of ergosta-5,7,22,24(28)tetraenol to ergosterol. The 

SBP and the localisation within the cell in Leishmania spp., is shown in Figure 1-13 and 
Figure 1-14 (Bansal, et al. 2019; Carrero-Lérida, et al. 2009; Cosentino & Agüero, 2014; 
Fügi et al., 2014; Jiménez-Jiménez et al., 2008; Nes, 2011; Yao & Wilson, 2016b; Zhou, et 
al. 2006). Another model, the yeast two-hybrid system (Y2H), developed by Stagljar, et al. 
1998, showed that the SBP is a multi-enzymatic complex named, the ergosome, in which 
protein-protein interactions are essential for the correct function of the pathway (Mo & 
Bard, 2005b; Mo, Valachovic, & Bard, 2004; Stagljar, et al., 1998; Teske et al., 2008). 

The presence of an ergosome-like structure in trypanosomatids has been previously 
suggested in L. mexicana (Mwenechanya, et al. 2017), but still not observed. While some 
of the enzymes are well identified within specific compartments, the topology and 
localisation of others remain unclear, in some cases, due to the lack of the structure of the 
protein. Current genome editing tools, such as CRISPR/Cas9, allow N- and C-terminal 
fluorescent tagging, which will help to determine the topology of all the enzymes of the 

Figure 1-13. Enzymatic reactions of the Sterol biosynthetic pathway (SBP) in the budding 
yeast (Saccharomyces cerevisiae).  
The SBP starts from lanosterol and ends at ergosterol, the final product in yeast and other 
fungi. This scheme shows the SBP (post squalene) and the names of the enzymes and their 
ID’s in fungi, e.g. ERG1, ERG6, etc. A full description with the sequential order of the 
pathway and the type of reaction and product in each step, including the orthologues in 
Leishmania (including their ID, name, and E.C. and KEGG numbers), is detailed in Table 1-3. 
Modified from: (Kristan and Rižner 2012a; Veen and Lang 2005) 
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SBP in Leishmania spp. (Beneke, et al. 2017). Despite the lack of studies on the regulation 
of the SBP, some of the mechanisms are conserved in mammals and fungi , i.e. sterol 
regulatory element-binding proteins (SREBPs) (Quan-zhen, Yan, and Yuan-ying 2016), 
have also been identified in Leishmania. SREBPs modulate the transcription of LDL 
receptors and many of the sterol enzymes, e.g. 3-hydroxy-3-methylglutaryl-CoA synthase 
(HMGS), and are implicated in the synthesis of both, sterols and fatty acids (Horton and 
Shimomura 1999). 

 

SREBPs are also involved in protection against oxidative stress. After infection with L. 

donovani, SREBP2 regulates the expression of a mitochondrial protein that supresses the 
production of ROS in host mitochondria (Basu Ball et al. 2014), and the content of 
cholesterol in the macrophage (Mukherjee, Basu Ball, and Das 2014). Similar findings 
were found in vitro, cholesterol sequestration from the macrophage (between 72 and 96 
hours) was correlated with the upregulation of SREBPs (HMGR, farnesyl pyrophosphate 
synthase, squalene epoxidase and the LDL-receptor) involved in the synthesis of 
cholesterol (the end product of the mammalian SBP), after infection with L. mexicana 
amastigotes (Semini et al. 2017).  

Interestingly, SREBPs bind to specific repeats known as sterol response elements (SREs) 
which are located in the promoters of genes (Horton and Shimomura 1999). In Leishmania 

spp., repetitive sequences (small interspersed degenerate retrotransposon or SIDER) are 

Figure 1-14. Localisation of the SBP enzymes in the trypanosomatids.  
The scheme shows that the first part of the SBP from leucine to mevalonate (MVA) occurs 
within the protozoa mitochondrion, while the following steps up to the conversion of 
isopentenyl diphosphate (IPP) into dimethylallyl diphosphate (DMAPP) is performed within 
the glycosome. In the cytosol, geranyl diphosphate (GPP) is the substrate of farnesyl 
pyrophosphate synthase (FPPS) that synthesize farnesyl pyrophosphate (FPP). Squalene 
(SQ) is the precursor of all plant, animal, fungi and kinetoplastid sterols, SQ is converted 
into lanosterol by lanosterol synthase, and the latter is the substrate of C14DM. The 
following enzymes are localised within the endoplasmic reticulum (ER). Conversion of 
zymosterol into fecosterol is a reaction exclusive of fungi and kinetoplastids, the enzyme 
C24SMT (24SMT in this diagram) is not present in mammals. Adapted from (Carrero-Lérida et 
al. 2009). 
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also linked to post transcriptional gene regulation. SIDER elements are known to be 
dispersed throughout the Leishmania spp. genome (Smith, Bringaud, and Papadopoulou 
2009). Some SIDER elements were recently found to be related with the expression of 
some genes (C24SMT) of the SBP, and with AmB resistance (Pountain et al. 2019a). To 
the best of my knowledge, there is no evidence that suggests that these elements are related 
with the mode of action of SREBPs. As with other metabolic pathways that are stage 
specific, some enzymes of the SBP are expressed differently between amastigotes and 
promastigotes. For instance, all the enzymes of the SBP (except C24R), are downregulated 
in amastigotes (Fiebig, Kelly, and Gluenz 2015). Similar observations were found in 
amastigotes lacking C14DM, in which de novo sterol synthesis was downregulated (W Xu 
et al. 2014). In contrast, higher expression (mRNA, protein and the product stigmasterol) 
of the sterol gene, CYP710C1 (LmxM.29.3550 in L. mexicana), was found in the 
intracellular stage (Chang, et al., 2019).  

The entire picture of the organisation, topology and functionality of the SBP in Leishmania 

spp., still presents some caveats related with the annotation, and characterisation of some 
genes (https://tritrypdb.org). For instance, according to previous studies, the last enzymatic 
reaction before ergosterol is performed by sterol C-24 reductase (C24R) (ERG4 in fungi). 
However, an additional enzymatic step after ergosterol was described in a 3-beta 
hydroxysteroid dehydrogenase (LmxM.18.0080 in L. mexicana), which according to this 
study, converts ergosterol into ergosta-7,22-dien-3β-ol (Yao and Wilson, 2016). More 
recently, a plant-like gene, LmxM.29.3550 that is annotated as a cytochrome P450-like 
protein (https://tritrypdb.org), and which converts episterol into ergosta-
5,7,22,24(28)tetraenol in fungi and Leishmania, was reported to encode a CYP710C1, an 
enzyme that converts stigmasterol from β-sitosterol and is related with AmB resistance in 
L. donovani, suggesting the presence of a hybrid SBP (Bansal et al. 2019). Other genes of 
the SBP in which I identified similar disparities in their annotation, are discussed in detail 
in chapter 4 (see section 4.1.5). Although there is some evidence that the SBP can be a 
non-linear pathway, the order (in sequence) of the enzymes identified in kinetoplastids, 
including their orthologues in fungi and Leishmania spp., is outlined in Table 1-3.
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Yeast 

Gene ID 
# of 

reaction 
E.C. / KEGG 

numbers 
Leishmania 
Gene ID 

Leishmania spp. enzyme 

name 
Yeast enzyme name Type of reaction Product 

MEVALONATE PATHWAY (Pre-Squalene) 

       Acetyl-CoA 

Erg 10 1 
2.3.1.9 / 

K00626 
LmxM.23.0690 

3-ketoacyl-CoA thiolase-

like protein 

Acetyl-CoA C-acetyltransferase 
(acetoacetyl-CoA thiolase) 

Transfers an acetyl group from one 

acetyl-CoA molecule to another, first 

step of the Mevalonate biosynthesis 

Acetoacetyl-CoA 

(acetoacetyl-S-CoA) 

   LmxM.30.1640 
thiolase protein-like 

protein 
   

Erg 13 2 
2.3.3.10 / 

K01641 
LmxM.24.2110 

3-hydroxy-3-

methylglutaryl-CoA 

synthase, putative 

(HMGS) 

3-Hydroxy-3-methylglutaryl-CoA 

synthase  

Catalyses the formation of HMG-CoA 

from acetyl-CoA and acetoacetyl-CoA 

HMG-CoA 

((S)-3-hydroxy-3-methylglutaryl-CoA, 

hydroxymethylglutaryl-CoA, 3-hydroxy-3-

methylglutaryl-coenzyme A, 3-Hydroxy-3-

methylglutaryl-CoA) 

HMG1 &  3 
1.1.1.34 / 

K00021 
LmxM.29.3190 

HMG-CoA reductase 

(NADPH) (HMGR) 

3-Hydroxy-3-methylglutaryl-CoA 

reductase , putative 

Converts HMG-CoA to mevalonate, 

this is a rate-limiting step in sterol 

biosynthesis 

Mevalonate 

HMG2 4 
1.1.1.88 / 

K00054 
ND 

HMG-CoA reductase 

(HMGR) 
Similar than HMG1 Similar than HMG1  

Erg 12 5 
2.7.1.36 / 

K00869 
LmxM.30.0560 

mevalonate  kinase, 

putative  

(MVAK) 

Mevalonate kinase 

Forms isoprenoids and sterols. (catalyzes 

the phosphorylation of mevalonic acid to 

form mevalonate 5-phosphate. Enzymes in 

L. major and T. brucei present the three 

highly conserved motifs typical of the 

galactokinase, homoserine kinase, 

mevalonate kinase and phospho-

mevalonate kinase (GHMP) superfamily 

Mevalonate phosphate 

(mevalonate-5P, mevalonate-5-phosphate, (R)-5-

Phosphomevalonate, (R)-Mevalonic acid 5-

phosphate, (R)-5-Phosphomevaloonic acid, 

mevalonate-P, P-mevalonate, 5-

phosphomevalonate) 

        

Table 1-3. Sterol Biosynthetic Pathway (SBP) genes and enzymes in Leishmania spp. and orthologues in Saccharomyces cerevisiae.  
This list includes the mevalonate pathway, here I used the yeast S. cerevisiae SBP that is the pathway of reference for the development of the kinetoplastids 
counterpart. Names are according to the Enzyme Commission (E.C.) and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) identifier numbers. 
Sources: sterol genes E.C. were obtained from the Enzyme Nomenclature Database 
(https://web.archive.org/web/20060218084611/http://www.expasy.org/enzyme/) based on the analysis of the SBP described in parasites by (Fügi et al., 2014). 
Yeast orthologue names are from the Yeast Genome Database (https://www.yeastgenome.org/) and from Chemspider (http://www.chemspider.com/). 
Leishmania gene LmxM.18.0080 was described by (Yao and Wilson, 2016), and verified in the TriTrypDB 
(http://tritrypdb.org/tritrypdb/app/record/gene/LmxM.18.0080). Due to mismatches in the nomenclature, missing or unknown enzymes, or annotation 
discrepancies, some gene/enzyme(s) were not identified or not determined (ND) in Leishmania during this search. Their absence from this list is not a 
confirmation that they are not present or do not exist. Enzyme identity that have been described in the literature more recently are identified with starts as 
follows: ** Number was obtained from (W. David Nes 2011); *** Yao and Wilson, 2016; **** (Bansal et al., 2019). 
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Erg 8 6 
2.7.4.2 / 

K00938 
LmxM.15.1460 

Phospho-MEV-kinase-

like protein 
Phospho-MEV-kinase 

Essential to form isoprenoids and 

sterols. 

Mevalonate pyrophosphate 

(mevalonate 5-PP, mevalonate-diphosphate, (R)-5-

Diphosphomevalonate) 

ERG19 

(MVD1) 
7 

4.1.1.33 / 

K01597 
ND ND 

Mevalonate pyrophosphate 

decarboxylase 
ND 

isopentyl pyrophosphate 

(Δ3-isopentenyl-PP 

Synonyms: isopentenyl-pp, isopentenyl 

diphosphate, IPP, delta(3)-isopentenyl-PP, 

isopentenyl pyrophosphate) 

IDI1 15 
5.3.3.2 / 

K01823 
ND (IPP isomerase) 

Isopentenyl 

diphosphate:dimethylallyl 

diphosphate isomerase  

Activates the essential step for the 

synthesis of isoprenoids. 

dimethylallyl phosphate 

(dimethylallyl-pyrophosphate, DPP, dimethylallyl-

diphosphate, di-CH3-allyl-PPi, dimethylallyl-PP, 

dimethylallyl-PPi, DMPP) 

Erg 20 

17 
2.5.1.1 / 

K00787 
LmxM.33.4030 

Geranylgeranyl 

transferase, putative 

Geranyltranstransferase (geranyl-

diphosphate synthase, 

Prenyltransferase) Has both functions (geranyl and 

farnesyl). Forms C15 farnesyl 

pyrophosphate units for isoprenoid 

and sterols 

geranyl phosphate 

(geranyl-diphosphate, geranyl-pyrophosphate, 2 

geranyl-PP, GPP) 

20 

2.5.1.10 / 

K00787 

(Farnesyl 

diphosphate 

synthase)  

LmxM.22.1360 
farnesyl pyrophosphate 

synthase, putative 

Farnesyl pyrophosphate 

synthetase (FPP synthetase, 

farnesyl-diphosphate synthase, 

dimethylallyl-transtransferase) 

farnesyl pyrophosphate (farnesyl-PP, farnesyl 

diphosphate) 

Erg 9 

21 
2.5.1.21 / 

K00801 
LmxM.30.2940 

farnesyltransferase, 

putative 

Squalene synthase 

(farnesyltransferase) joins two farnesyl pyrophosphate 

moieties to form squalene 

Pre-squalene diphosphate 

 ND  
Pre-squalene diphosphate + 

NADPH 
squalene  

SQUALENE PATHWAY (Post-Squalene) OR STEROLS BIOSYNTHETIC PATHWAY 

Erg 1 22 
1.14.13.132 / 

K00511 
LmxM.13.1620 

squalene 

monooxygenase-like 

protein 

Squalene epoxidase  

(squalene monooxygenase) 
Epoxidation reaction  

2,3-oxidosqualene   

(Squalene 2,3-epoxide, Squalene 2,3-oxide, (S)-

Squalene-2,3-epoxide) 

Erg 7 23 
5.4.99.7 / 

K01852 
LmxM.06.0650  

lanosterol synthase, 

putative 

Lanosterol synthase  

(Squalene-2,3-oxide-lanosterol 

cyclase, oxidosqualene--

lanosterol cyclase, 2,3-

epoxysqualene--lanosterol 

cyclase) 

Cyclization of squalene 2,3-epoxide lanosterol  

Erg 11 
24  

(1)*** 

1.14.13.70 / 

K05917 
LmxM.11.1100 

Lanosterol 14-alpha 

demethylase (C14DM) 

C14-lanosterol demethylase 

(cytochrome P450 family 51 

(CYP51; lanosterol 14-

demethylase) 

Catalyses C-14 demethylation of 

lanosterol, removing the CH3 from 

C14. 

4,4,-dimethyl-8,14,24-trienol 

(4,4-dimethyl-cholesta-8,14,24-trienol) 

Erg 24 
25 

(2)*** 

1.3.1.70 / 

K00222 

(Delta14-sterol 

reductase) 

LmxM.31.2320 
C-14 sterol reductase, 

putative 
C14-sterol reductase  

4,4-dimethylzymosterol 

(4,4-dimethyl-8,24-cholestadienol, 4,4''-dimethyl 

cholesta-8,14,24-triene-3-beta-ol) 
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Erg 25 
26 

(3) 

1.14.13.72 / 

K07750 
LmxM.36.2540 

C-4 sterol methyl 

oxidase,putative (SMO) 

C4-sterol methyl oxidase  

(C-4 demethylase) 

(methyl sterol monooxygenase) 

First of three steps required to 

remove two C-4 methyl groups from 

Ergosterol intermediates 

4α-hydroxymethyl-4β-methyl-5α-cholesta-8,24-

dien-3β-ol 

4α-formyl-4β-methyl-5α-cholesta-8,24-dien-3β-ol 

or 4α-carboxy-4β-methyl-5α-cholesta-8,24-dien-

3β-ol 

Erg 26 
27 

(4)*** 

1.1.1.170 / 

K07748 
LmxM.06.0350 

NAD(P)-dependent 

steroid dehydrogenase 

protein, putative 

sterol C-3 dehydrogenase  

(C-3 sterol dehydrogenase, C4-

Sterol decarboxylase) 

Second of three steps required to 

remove two C-4 methyl groups from 

Ergosterol intermediates 

4-methyl zymosterol 

(3-keto-4-methylzymosterol, 4α-methyl-5α-

cholesta-8,24-dien-3-one) 

  ND LmxM.34.1230 short chain dehydrogenases, putative 
  

  ND LmxM.34.2150 short chain dehydrogenases, putative   

Erg 27 
28 

(5) 

1.1.1.270 / 

K09827 

(3-Keto steroid 

reductase) 

  
C3-Sterol ketoreductase  

(3-keto sterol reductase) 

Last of three steps required to 

remove two C-4 methyl groups from 

Ergosterol intermediates 

4-α-methylzymosterol 

(4-alpha-methylzymosterol, 4-methyl-8,24-

cholestadienol, 4-α-methyl-5α-cholesta-8,24-dien-

3β-ol) 

Erg 25 26 
Same than 

above 

Same than 

above 
Same than above Same than above Same than above 

4α-hydroxymethyl-5α-cholesta-8,24-dien-3β-ol 

4α-formyl-5α-cholesta-8,24-dien-3β-ol 

4α-carboxy-5α-cholesta-8,24-dien-3β-ol 

Erg 26 27 
Same than 

above 

Same than 

above 
Same than above Same than above Same than above 5α-cholesta-8,24-dien-3-one 

Erg 27 28 
Same than 

above 

Same than 

above 
Same than above Same than above Same than above 

zymosterol 

(5-alpha-cholesta-8,24-dien-3-beta-ol) 

Erg 28 
29 

(6) 

5.3.3.5 / 

K01824 

(Cholestenol 

delta-

isomerase) 

Possibly 

LmxM.08_29.19

70 

hypothetical protein, 

unknown function 
Scaffold 

In budding yeast facilitates protein-

protein interactions (Erg26-Erg27) 

and tether the enzymes to the ER. 

Another interesting and relevant 

interaction is Erg28-Erg6. 

None (Scaffold) 

Erg 6 
37 

(7)*** 

2.1.1.41 / 

K00559 

LmxM.36.2380 

sterol 24-c-

methyltransferase, 

putative (C24SMT1) 
C-24 Sterol methyl-transferase 

(SAM:C-24 sterol 

methyltransferase) 

Methylation of position C-24 in the 

side chain is localized to lipid 

particles, plasma and mitochondrial 

membranes and ER. 

fecosterol 

(Ergosta-8,24(28)-dien-3-ol) 

(5α-ergosta-8,24(28)-dien-3β-ol) 

(24-methylene-5-alpha-cholest-8-en-3-beta-ol) LmxM.36.2390 

sterol 24-c-

methyltransferase, 

putative (C24SMT2) 

Erg 2 
38 

(8)*** 
5.-.-.- / K09829 

LmxM.08_29.21

40 

C-8 sterol isomerase-like 

protein (C8SI) 
C8-Sterol isomerase 

Isomerization of delta-8 double bond 

to delta-7 position. 

episterol (lathosterol in human) 

ergosta-5,7,24(28)-trien-3-ol, (3β)- 

( (3β,5α)-ergosta-7,24(28)-dien-3-ol ) 

Erg 3 
31 

(9)*** 

1.14.21.6 / 

K00227 

(Lathosterol 

oxidase) 

LmxM.23.1300 
Lathosterol oxidase-like protein or 18 Erg 3 /14.1 Erg25 

(LOX) (syn. C5DS) 

Oxidizes Lathosterol in humans 5-DES 

is converted to 24-

methyelenecholesterol by DHCR7.  

Is the C5DS, possibly, in Leishmania 
and catalyses the dehydrogenation of 

a C-5(6) bond.  

Formed from episterol to   

5-dehydroepisterol 



 

 

58 

58 

Erg 3 
ND 

(9)*** 

1.14.21.6 

(5-SD) ** 
LmxM.30.0590 

C-5 sterol desaturase, 

putative (C5DS) 

C5-Sterol desaturase  

(Delta7-sterol Delta5-

dehydrogenase, Delta7-sterol 5-

desaturase, Delta7-sterol-C5(6)-

desaturase, and 5-DES) 

Introduces a C-5(6) double bond into 

Episterol. 

ergosta-5,7,24(28) trienol 

5-dehydroepisterol 

(5,7,24(28)-ergostatrienol) 

Erg 5 
ND 

(10)*** 
ND 

LmxM.29.3550 

and/or 

LmxM.33.3330 

cytochrome p450-like 

protein (TriTrypDB), 

C22-sterol desaturase 

(C22DS) **** 

cytochrome P450 subfamily,  

C22-sterol desaturase, CYP710C1 

**** 

A cytochrome P450 enzyme, forms of 

the C-22(23) double bond in the 

sterol side chain. 

ergosta-5,7,22,24(28)tetraenol 

(5,7,22,24(28)-ergostatetraenol) and possibly, 

stigmasterol **** 

Erg 4 
39 

(11)*** 

Possibly  

1.3.1.71 / 

K00223 

(Delta24[24 

(1)]-sterol 

reductase) 

LmxM.32.0680 
sterol C-24 reductase, 

putative (C24R) 
C24-sterol reductase 

Catalyses the “last” step in ergosterol 

biosynthesis. Mutants lack ergosterol 

but are viable. 

ergosterol 

ND 
ND 

(12)*** 
 LmxM.18.0080  

3-beta hydroxysteroid dehydrogenase/isomerase family, 

putative 
ND ergosta-7,22-dien-3β-ol 

 



1.7.2 The Pentose phosphate pathway 

The pentose phosphate pathway (PPP) provides the parasite with precursors of nucleotides 

(e.g. ribose 5-phosphate). In other organisms erythrose 4-phosphate from the PPP can be a 

precursor to aromatic amino acids, although Leishmania seem to require pre-formed 

aromatic amino acids rather than to synthesise them. Moreover, PPP is the main source of 

the reduced cofactor NADPH (other sources are pyruvate and malate). The pathway is 

composed by two branches. First, the oxidative branch generates NADPH and ribulose 5-

phosphate from glucose 6-phosphate (an intermediate of glycolysis). These NADPH 

generating reactions are catalysed by glucose-6-phosphate dehydrogenase (G6PDH), the 

first enzyme of this pathway, and 6-phosphogluconate dehydrogenase (6PGDH). The 

former of these enzymes was inhibited with steroids, causing arrest of cell growth and 

death in trypanosomes, but not in Leishmania (Kovářová and Barrett 2016; Opperdoes and 

Michels 2010). 

Second, the non-oxidative branch converts the product of the oxidative branch (i.e. 

ribulose 5-phosphate), into either ribose 5-phosphate or xylulose 5-phosphate, which are 

substrates of transketolase. These two reactions are catalysed by ribose-5-phosphate 

isomerase (RPI) and ribulose 5-phosphate epimerase (RuPE), respectively (Opperdoes and 

Michels 2010). During the non-oxidative branch various sugar phosphate intermediates are 

interconverted by transketolase (TKT) and transaldolase (TAL), thus providing an 

important metabolic flexibility for the parasite. As mentioned above, two of these 

substrates result from the oxidative branch (i.e. ribulose-5-phosphate), whereas other 

intermediates, i.e. sedoheptulose 7P, fructose 6P and glyceraldehyde 3P, are related with 

the non-oxidative branch (the latter two from glycolysis) (Kovářová and Barrett 2016). The 

names of all the enzymes of the PPP are shown in Figure 1-15.  

The PPP is important for cellular functions other than the biosynthesis of molecules; for 

example, this pathway is a key mechanism of protection against ROS through generation 

of NADPH (Opperdoes and Michels 2010). The shift in the flux of metabolites from 

glycolysis towards the PPP (Ghosh et al. 2015), and the activity of some enzymes of the 

PPP is increased when Leishmania spp., and other trypanosomatids (e.g. T. cruzi) are 

exposed to oxidative stress (Kovářová and Barrett 2016). Similar upregulation of the PPP 

has been observed in AmB resistant promastigotes of L. mexicana (PhD Theses Dr Andrew 

Pountain, and Dr R Binti, University of Glasgow). 
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1.7.3 Polyamine-trypanothione pathway 

The polyamine-trypanothione pathway (PTP) contains several enzymes that are essential 

for the growth, survival and infectivity of the parasite. One of the key functions of the PTP 

is in the production of particular thiols, which act as reductants to protect Leishmania 

against reactive oxygen species (ROS) and nitric oxide (NO) (Colotti and Ilari 2011; 

Mandal et al. 2017; Manta et al. 2013; Dos Santos Ferreira et al. 2003; Singh et al. 2012). 

Polyamines (putrescine, spermidine and spermine) can be synthesized and interconverted 

Figure 1-15. The Pentose Phosphate Pathway in Leishmania.  
Panel A (oxidative branch) and panel B (non-oxidative branch) show the PPP (highlighted in 
carnation lines) as they look in the general metabolism. Panel C shows a detailed 
breakdown of the enzymes of both branches. The enzymes of the oxidative branch (green): 
glucose 6-phosphate dehydrogenase (G6PDH), 6-phosphogluconolactonase (6PGL), 6-
phosphogluconate dehydrogenase (6PGDH) produce NADPH and ribulose 5P. The latter 
enters to the non-oxidative branch (purple) and is catalysed by either ribose 5-phosphate 
isomerase (RPI) or ribulose 5-phosphate epimerase (RuPE). Glycolysis (blue) is tightly 
connected to both branches of the PPP. First, glucose 6P enters the oxidative branch. On 
the other hand, fructose 6P and glyceraldehyde 3P are linked to the non-oxidative branch 
and are interconverted into other sugars by transketolase (TKT) and transaldolase (TAL). 
Another enzyme, sedoheptulose-1,7-bisphosphatase (SBPase) provides an additional 
intermediate. Only three enzymes of the glycolysis are shown here: hexokinase (HK), 
phosphoglucose isomerase (PGI) and pyruvate kinase (PK). Sources: Panels A and B were 
constructed from KEGG Pathways in Leishmania (https://www.genome.jp/kegg-
bin/show_pathway?map01100), panel C is from Kovářová & Barrett 2016. 
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within human cells (Birkholtz et al. 2011). On the other hand, trypanothione (TSH), the 

major redox active thiol in Leishmania, is found only in trypanosomatids (Vijayakumar 

and Das 2018), and is different from its mammalian counterpart, the disulphide glutathione 

(GSH). (Colotti and Ilari 2011; Fairlamb and Cerami 1992). For this reason, some proteins 

involved in the metabolism of TSH are attractive drug targets (Birkholtz et al. 2011; 

Rajasekaran and Chen 2015). 

The PTP is a complex pathway and can be divided in various steps outlined in Figure 1-16. 

The first two steps (1, 2) are the biosynthesis of the thiol, cysteine (Cys), followed by the 

synthesis of GSH (3). Cysteine can be obtained either from de novo synthesis from serine, 

or from reverse trans-sulfuration of methionine. GSH- and the spermidine are produced via 

two separate pathways. The synthesis of one molecule of GSH requires ATP for the 

ligation of glutamine and glycine to cysteine. Another separate step (4) is the uptake and 

biosynthesis of polyamines, which requires the conversion of arginine to ornithine and then 

on to putrescine by the enzymes arginase (ARG) and ornithine decarboxylase (ODC), 

which occur within the glycosomes and the cytosol, respectively (Marchese et al. 2018). 

The next-product of the polyamine synthesis, spermidine, is created by spermidine 

synthase (SpS) from putrescine and decarboxylated AdoMet, the product of AdoMet from 

S-adenosylmethionine decarboxylase (AdoMetDC). In the following step (5), spermidine 

is ligated with two molecules of GSH. This ligation requires ATP and is performed by 

glutathionyl spermidine synthetase and trypanothione synthetase (TRYS), resulting in one 

molecule of TSH in its reduced form T(SH)2 (Manta et al. 2013). T(SH)2 is regenerated 

from oxidised TS2 by the NADPH dependent trypanothione reductase (TRYR). The last 

step (7) is the use of T(SH)2 for the reduction of tryparedoxin (TRYX), a unique type of 

protein only found in kinetoplastids (Colotti and Ilari 2011), which serves as electron 

source for the complex of peroxidases form by tryparedoxin peroxidase (TRYP1 or type I), 

and tryparedoxin dependent peroxidases (TDPX or type II) (Colotti and Ilari 2011; Mandal 

et al. 2017; Manta et al. 2013). TRYP1/TDPX replaces the catalase and other peroxidases 

(Colotti and Ilari 2011) that are abundant in mammals and other organisms, e.g. M. 

tuberculosis (Spies and Steenkamp 1994), and are also present in some fungi (Mayers, 

Ouellette, J.D., Sobel, and Marchaim, K.S., Kaye 2017), but absent in Leishmania spp. 

(Colotti and Ilari 2011; Spies and Steenkamp 1994). Some studies with amastigotes have 

detected catalases in trace amounts, however, these are believed to be contaminants from 

the host cell (Fairlamb and Cerami 1992). The metabolism of ascorbate is another defence 

against ROS in some trypanosomatids, particularly in T. cruzi, although the biosynthesis of 

ascorbate is less clear in some Leishmania spp. (L. major and L. braziliensis) and in T. 
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brucei, due to the loss of some genes, ascorbate-dependent peroxidases are present in T. 

cruzi and L. major (Opperdoes and Coombs 2007). 

 

Ovothiol A, also known as (N’-methyl-4-mercaptohistidine), is an unusual thiol (Tetaud 

and Fairlamb 1998) that is also involved in detoxifying hydro-peroxide (H2O2) and other 

oxidants in trypanosomatids, e.g. L. donovani (Spies and Steenkamp 1994), and T. cruzi 

(Trochine, et al., 2014). Metabolomics studies have found an increase (2.79-fold) in 

ovothiol A, in AmB-SbIII resistant L. donovani promastigotes (Berg et al. 2015). A similar 

augmentation (3-fold) of ovothiol A disulfide was observed in a mutant of L. mexicana 

(DLmGT) deficient in glucose transport and more susceptible to oxidative stress 

(Akpunarlieva et al. 2017). In another study, the reduction (7%) of ovothiol A disulfide 

was correlated with the production of ROS after 1.2 hours of treatment with MF (EC90) in 

L. infantum (Vincent et al. 2014), confirming the role of this thiol in maintaining the redox 

equilibrium within the cell. Other antileishmanials in which the  PTP and thiols have been 

shown to be involved (Kaur and Rajput 2014) are, AmB (thiols were alerted during AmB 

selection for resistance)(Brotherton et al., 2014; Mbongo, et al., 1998), pentamidine 

(Basselin et al. 1997; Díaz et al. 2014; Kaur and Rajput 2014; Ouellette et al. 2004), and 

antimonials (Singh et al., 2012; Wyllie et al., 2004). 

Figure 1-16. The polyamine-trypanothione pathway in trypanosomatids. 
1. de novo cysteine biosynthesis; 2. reverse transsulfuration pathway; 3. glutathione 
biosynthesis; 4. spermidine biosynthesis; 5. trypanothione biosynthesis; 6 and 
7. trypanothione reduction/recycling, and oxidation/utilization. Tryparedoxin (TXN in this 
scheme) is referred in the text as TRYX. Some abbreviations shown in this diagram are not 
mentioned in the text. Modified from: Manta et al., 2013. 
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 Omics technologies, gene editing and drug discovery 

Omics technologies have accelerated our understanding of the MoA of antileishmanials 

within a biological context (Kaur and Rajput 2014). While the number of omics tools 

comprises over 30 fields, the most studied are genomics, transcriptomics, proteomics and 

metabolomics. These technologies, however, present various challenges such as the 

reduction of dimensionality of large-scale datasets, data integration and interpretation, 

reproducibility and statistical analysis, among others (Misra, et al., 2018).  

The use of metabolomics integrated with other approaches, i.e. genomics, proteomics and 

transcriptomics, enables for the identification of the molecular mechanisms related with 

specific phenotypes in Leishmania mutants (Akpunarlieva et al. 2017), and drug resistant 

parasites (Mwenechanya et al., 2017; Pountain et al., 2019), in a manner that is not 

possible to achieve using these tools separately et al., 2018; Barrett & Croft, 2012; Creek 

& Barrett, 2014; Kaur & Rajput, 2014). Recently, genomics coupled with metabolomics 

was applied in a field isolate that caused an outbreak of VL in the Indian subcontinent, 

identifying changes in various genes (i.e. SNPs, CNVs, indels), and metabolic pathways 

involved in the production of virulence factors, and that are essential for the interaction of 

Leishmania with the host (Cuypers et al. 2018). 

1.8.1 Whole genome sequencing and transcriptomics in 
Leishmania  

New sequencing tools allow for the identification of genomic- and other structural changes 

such as, single nucleotide polymorphisms (SNPs), copy number variants (CNVs), loss of 

heterozygosity variants, genomic rearrangements, and rare variants associated with drug 

resistance in Leishmania spp. (Misra et al. 2018). Sanger sequencing, whole genome 

(shotgun) sequencing (WGS), and next generation sequencing (NGS) tools, allow the high-

throughput sequencing and analysis of large-genomic datasets. These approaches are 

nowadays applied in either field isolated or laboratory generated resistant mutants, the 

latter can be generated in vitro by serial passage of Leishmania spp., with increasing 

concentrations of different anti-leishmanials in a step-wise manner (Leprohon, et al., 

2015). Generating resistant mutants of Leishmania can take months (as with AmB), and 

therefore the use of accurate NGS methods in these valuable samples is needed.  

NGS technologies are around 10 million times more powerful (4x10e9 versus <400 

sequence reads) than Sanger sequencing for the analysis of WGS. Another advantage of 

the higher base call accuracy, i.e. 99.99% and 99.4% for Illumina and Sanger, respectively. 
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The base call accuracy is the probability of calling the correct base and is measured using 

the so called, Phred quality score (Q). Phred scores values are Q10 (90%), Q20 (99%), 

Q30 (99.9%), Q40 (99.99%) and Q50 (99.999%), which determine the probability of an 

incorrect base call of 1/100 and 1/1000 for a Q20 and Q30 (as in Illumina), respectively. A 

Q30 is considered benchmark for NGS, a high Q score reduces the number of false positive 

variant calls (https://www.illumina.com/documents/products/technotes/technote_Q-

Scores.pdf). Sanger sequencing is the gold standard in clinical research and for NGS 

confirmation, however, it can read only short sequences (<1000 bp), and in some studies 

has been unable to provide insight about the gene copy number (Kaur and Rajput 2014), 

and it can be time consuming and more costly for the analysis of millions of fragments that 

can be sequenced in parallel using NGS.  

Library preparation is a key step of the NGS process and requires high quality DNA. 

Preparing DNA for sequencing requires breaking the DNA (using ultrasound, sonication or 

other methods) into fragments between 150 and 1000 bp (average of 350-500 bp). Based 

on their size, a minimum number of copies of each fragment is expected. Then adaptors 

(oligonucleotides that function as primers or linkers) are added to the DNA fragments 

binding to their 5’- and 3’ends where they serve as reference (barcodes or tags) of the 

position where the sequencing process should start. Adaptors have multiple components 

(sequences) that have different functions such as, binding to the oligonucleotides in the 

flow cell (as with Illumina), PCR amplification, sequencing, sample indexing, barcoding of 

specific libraries, and inserts that are target DNA or RNA in specific libraries, and are also 

essential for multiplexing sequencing (https://www.idtdna.com). The following steps then 

resemble a PCR reaction (hybridization, extension, denaturation, annealing), several cycles 

produce the extension of complementary strands, resulting in the formation of bridges and 

millions of clusters. In the final step, the process is finished by a denaturation step, 

resulting in single strands which serve as templates. The binding of the sequencing primers 

to the adaptor in the strand initiates the synthesis in which nucleotides with different 

fluorophore are added and identified with an instrument. One advantage of Illumina is that 

allows paired-end sequencing, which produces a higher volume of sequencing information, 

which are moreover, useful for accurate mapping of the reads during the analysis. 

The use of NGS in Leishmania spp. is challenging given the organisation of their genome, 

and the complexity of some of the changes of their genome, such as, chromosome- and 

copy number variations and genes arrayed in tandem (Rogers et al., 2011). Identification of 

some of these genomic alterations is particularly challenging with Illumina, due to the size 

of the reads produced by this platform. The first kinetoplastid genomes were published 
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over a decade ago (El-Sayed et al. 2005; Ivens et al. 2005a). These studies have 

contributed to understand the architecture and identified different elements that are unique 

in these parasites, such as, pseudogene formation and species-specific genes (Peacock et al. 

2007), the presence of retrotransposons and a putative RNAi machinery (in L. braziliensis) 

(Peacock, & Cruz, 2007), and Short Interspersed Degenerated Retroposons (SIDER) 

(Pountain et al., 2019; Smith et al., 2009). The presence of several genes that code for 

demethylases and methyltransferases has been also noted in Leishmania (Ivens et al. 

2005a). Interestingly, both types of enzymes are part of the SBP and are involved in 

polyene resistance (Mwenechanya et al., 2017; Pountain et al., 2019). A detailed 

explanation of the role of these two genes in the SBP of fungi and Leishmania is discussed 

further (see section 1.6.6.3, and chapter 3). Gene expression is also unique in Leishmania: 

many genes, often functionally unrelated, are arranged in polycistronic transcription units 

(El-Sayed et al. 2005; Peacock et al. 2007). These polycistrons, however, are different than 

in bacteria where gene regulation usually occurs at the transcription level, and a 

transcription promoter controls clusters of functionally related genes (Ginger, 2005). A 

compilation of all the previous and current releases of the kinetoplastid genomes, is 

available in TriTrypDB (https://tritrypdb.org/tritrypdb/). Although some caveats can be 

found in the annotation of some genes, the genome versions, and the platform are 

constantly updated and refined. 

NGS analysis uses these reference genomes to align short reads (as with Illumina) in 

combination with various tools such as MAQ and BWA (Burrows-Wheeler Alignment). 

The latter is particularly efficient to align short read to a reference genome (Li and Durbin 

2009). Another advantage of BWA is that it produces an output file with a SAM (Sequence 

Alignment/Map) format, which is the standard for the use of other applications, e.g. variant 

calling with SAMtools, are commonly used in the following steps of the analysis (Li and 

Durbin 2009). Interpretation of the increasing amount of NGS data makes necessary the 

use of bioinformatics tools that are often complex. Different platforms, such as the 

Genome Analysis Toolkit (GATK) (McKenna et al. 2010) and the Galaxy Project, a web 

browser-based platform (Blankenberg et al. 2010), have improved the development and 

use of different tools for the analysis of NGS data, and enabled access to data integration 

and data analysis using bioinformatics tools without the need of programming skills, 

command line tools or scripting (as with Linux). The workflow with all the steps used in 

this study for both, genomics and transcriptomics (RNAseq) analysis, is described in detail 

in the materials and methods section (see chapter 2). 
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1.8.2 Gene editing of Leishmania spp. as a tool for drug 
discovery 

NGS allows the identification of changes in one, or a set of genes that are responsible for a 

particular phenotype (forward genetics). Generating mutants using gene editing tools 

(reverse genetics) enables scientists to reverse this process by first disrupting a gene 

candidate, or several genes of the same pathway (as with the SBP), followed by the 

characterisation of their phenotype. Over the past decade, the genetic tools available for 

genetic manipulation in Leishmania has increased dramatically (Jones, et al., 2018; Santos 

et al., 2017). Some of these tools, such as RNA interference (RNAi) target sequencing 

(RIT-Seq), allowed for genome-scale loss-of-function (in T. brucei) screening and have 

contributed to our understanding on the MoA of drugs, including the antileishmanials 

AmB and MF (Collett et al. 2019). RNAi machinery does not exist in Leishmania, other 

than in L. (Viannia) braziliensis (Lye, et al., 2010) which has hindered progress, but 

CRISPR Cas9 as technology (Beneke et al., 2017) offers a means to improve research. 

Other methods like homologous recombination (HR) can incorporate targeted mutations 

into primers that are then PCR-amplified, however, long homology arms (~300 bp) are 

needed for accurate and efficient integration in Leishmania (Dean et al. 2015). 

Recently, clustered regularly interspaced short palindromic repeats (CRISPR) combined 

with Cas9 (an RNA-guided DNA endonuclease) genome editing methods (CRISPR-Cas9), 

have been developed for use in kinetoplastids (Beneke et al., 2017; Dean et al., 2015; 

Ishemgulova et al., 2018; Sollelis et al., 2015; Zhang & Matlashewski, 2015), including 

some inducible systems (in T. brucei) (Rico, et al., 2018). These systems have additional 

applications such as N- and C-terminal fluorescent and bioluminescent tagging of proteins, 

that can be further analysed for localisation, and for the assessment of the infection in other 

models where parasites can be visualised within the animal or insect tissues (Costa et al. 

2018). The first CRISPR system in Leishmania, simplified the generation of null mutant 

knockouts of genes arrayed in tandem in a single round of transfection and without 

producing off-targets (Sollelis et al. 2015). More recently, high-throughput methods have 

facilitated the generation of mutants in a scalable manner. The most notable of these 

systems, for instance, generates mutants in a single round of transfections, and without 

needing additional cloning or selection of individual clones (Beneke et al. 2017). Other 

systems like DiCRE (dimerizable Cre recombinase), allow for the study of gene expression 

of specific genes in a dose/time dependent manner (Santos et al. 2017). Importantly, due to 

possible caveats with these CRISPR-Cas9 editing systems in Leishmania, WGS of 

independent clones is still necessary to confirm their efficiency and accuracy. In my study, 
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I have used the system developed by Beneke et al., in L. mexicana, to generate a knockout 

of the C24SMT. Details of all the steps, and the characterisation (drug screening and sterol 

profiling with GC-MS) of this KO, are described further (see chapter 2, and chapter 6). 

1.8.3 Untargeted and targeted metabolomics 

Targeted and untargeted metabolomics allow for the detection and quantification of 

hundreds of molecules, e.g. lipids, carbohydrates, amino acids, organic acids, and others 

with low molecular weight (<1500 Da) (Atan et al. 2018). The study of the  whole 

metabolome can be performed in a broad range of biological samples, in response to 

different environmental or external conditions (Subramanian et al. 2015). The 

identification and characterisation of biochemical and enzymatic pathways can be 

improved using a stable isotope that can be traced, thus confirming or describing unknown 

features of some pathways (Creek, et al., 2012). Metabolomics can also detect 

perturbations induced by drugs used for the treatment of diseases caused by kinetoplastids, 

and which MoA is still unknown (Atan et al., 2018; Creek & Barrett, 2014; Vincent & 

Barrett, 2015; Vincent et al., 2012). Some examples of compounds analysed in these 

studies are, AmB (Mwenechanya et al. 2017), eflornithine (Vincent et al., 2010), and MF 

(Vincent et al., 2014).  

Other relevant uses of metabolomics include the identification of essential metabolites 

present in different formulations of culture media. Recently, a study devised six essential 

amino acids that support axenic growth of L. mexicana without the supplementation of 

serum. This medium, named, Nayak medium (NM), reduced both, cost, and the 

interference of other exogenous contaminants and unknown components from the serum 

(Nayak, et al., 2018). 

No universal method can detect all the metabolites present in a biological sample, 

therefore, combining different approaches increases the coverage. Mass spectrometry (MS) 

offers higher susceptibility than nuclear magnetic resonance (NMR), particularly for the 

analysis of the global metabolome (Creek, et al., 2012). MS measures the mass-to-charge 

ratio (m/z) of ions, which is calculated based on, the ionisation- and abundance of 

individual mass, of the metabolites present in the sample (Creek, et al., 2012). Metabolite 

detection with MS is improved by combining MS with other chromatographic methods 

such as gas chromatography (GC-MS), liquid chromatography (LC-MS), and capillary 

electrophoresis (CE), which are often used for the study of the effects of drugs on the 

metabolome of trypanosomatids (Armitage et al., 2018; Kloehn et al., 2016). These 
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methods can be used for both targeted and untargeted approaches and their main 

differences are related to sample preparation, and the number- and quantification of 

metabolites that can be detected.  

Some of the limitations of metabolomics are, the complexity and slow preparation of 

samples, the presence of similar isomers of the same metabolite, the inability of measuring 

every metabolite, including large molecules like proteins, creating gaps in various 

metabolic pathways, and the high costs of apparatuses, which can be found only in large 

institutions (Atan et al., 2018; Creek, et al., 2012; Kaur & Rajput, 2014). Data analysis is 

also slow and very complex, it requires complex bioinformatics tools (Kaur and Rajput, 

2014), and the synergy between bioinformaticians and biologists for the adequate 

interpretation of the data into a biological context. In this study, I focus on the use of 

untargeted (LC-MS), and targeted (GC-MS) metabolomics for the detection of 

perturbations in the global metabolome (see chapter 7), and the content of lipids (sterols) 

(see chapter 5), in AmB resistant L. mexicana promastigotes. 

1.8.3.1 Liquid Chromatography-Mass Spectrometry (LC-MS) 

LC-MS exploits the charge and the lipophilicity of metabolites for separation (Creek, 

Anderson, et al. 2012). LC-MS has the advantage of high coverage of mass range without 

derivatization and can also measure both lipid and aqueous samples (Atan et al. 2018). 

Hydrophilic interaction chromatography (HILIC) columns are frequently used with LC-

MS to overcome the loss of polar or charged metabolites with reverse columns. Another 

feature of LC-MS is the use of electrospray ionisation (EI) in either positive or negative 

modes. Metabolites are identified based on their ability to gain or lose (positive and 

negative, respectively) protons, therefore the analysis of both modes increases coverage.  

LC-MS presents some challenges such as the lack of a standard library of metabolites and 

higher variability (Atan et al. 2018), the adequate comparison of methods between 

laboratories that differ in several conditions, e.g. solvents, sample preparation, extraction- 

and analytical methods (Creek, et al., 2012). Another consideration is the different 

resolution between mass spectrometers. Orbitrap devices for instance, have increased their 

detection considerably, ultra-high-resolution mass accuracy (<1 ppm with resolution 

higher than 100,000) can now be achieved with this devices. One of the most notable 

disadvantages of LC-MS is that HILIC-based analysis poorly the detect lipids due to their 

hydrophobicity, giving several isomers with similar mass which are difficult to 

discriminate given the limited number of standards. Reverse phase chromatography with 

MS can improve resolution of hydrophobic compounds.  A more powerful approach in this 
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case is the use of GC-MS (for sterols), or for other lipids including fatty acids and other 

saponifiable lipids (sphingolipids and glycerophospholipids), is necessary to perform either 

biphasic extraction (lipid extracts are analysed from the organic phase) with further 

analysis using electrospray-mass spectrometry (ES-MS) for phospholipids, or using GC-

MS for further fatty acid derivation (T. K. Smith’s Lab, personal communication). Another 

method can also resolve for both, metabolomics and lipidomics samples using a single 

extraction and combining HILIC- and reverse phase (RP) chromatography for separate 

analysis of polar- and non-polar lipids, respectively (Fauland et al. 2011; Rampler et al. 

2018). Similar protocols have been adapted to optimise the analysis of the global 

metabolome of parasites, using the same instrument (e.g. Q-extractive or Fusion) 

(http://polyomics.mvls.gla.ac.uk/). 

Previous studies using metabolomics in kinetoplastids have developed and improved the 

methodology for sample preparation and analysis of the metabolome specific for 

Leishmania spp. These methods have determined, for instance, the minimum biomass 

needed for each method, i.e. 108 for LC-MS, and improved the freezing and quenching 

methods avoiding the lysis of the membrane caused by other protocols (Vincent & Barrett, 

2015; Vincent et al., 2012). Details on sample preparation, solvents and extraction methods 

used in this study, are described further (see chapter 2). 

1.8.3.2 Gas Chromatography-Mass Spectrometry (GC-MS) 

GC-MS can detect a broad range (hundreds) of metabolites (e.g. amino acids, sugars, 

lipids), with good reproducibility and precision (Creek, et al., 2012; Kaur & Rajput, 2014; 

Vincent & Barrett, 2015). In this study, however, I used GC-MS for the detection of sterol 

lipids in whole cell extracts. A detailed explanation of the methodology used here for GC-

MS, and the advantages of this approach over other methods that can also detect sterols, is 

discussed further (see Chapter 2, section 2.8, and Chapter 5, section 5.2, respectively). 

 Aims of the study 

The aim of this Thesis is to apply a polyomic approach to characterise laboratory generated 

polyene (AmB and NyS) resistance lines of Leishmania spp. to identify new drug targets 

and to understand the mode of action of polyenes, as well as the implications of resistance 

against AmB in Leishmania spp. Previous work has characterised multiple lines against 

AmB in both, amastigotes and promastigotes (Al-Mohammed, et al., 2005; Pountain et al., 

2019), and others have identified several genomic changes associated with resistance to 

AmB in L. mexicana (Mwenechanya et al., 2017; Pountain et al., 2019; PhD Thesis 
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Raihana Binti, University of Glasgow, unpublished). A common feature observed in all 

these studies, is the loss of the wild type ergosterol, which leads to AmB resistance.  

Here, I intended to use genomics coupled with untargeted and targeted metabolomics, to 

identify molecular changes that arise as an effect of drug pressure and to differentiate these 

changes from other stochastic alterations. Additionally, identifying mutations that are 

conserved across AmB resistant lines and to correlate these genomic changes with their 

sterol profiling and with their phenotype in vivo can help to identify potential new drug 

targets. Assessing the retention of resistance and the fitness cost of these mutants within 

the host and the insect vector, are both an essential objective of this project. Moreover, I 

will analyse the grounds of cross-resistance of these polyene-resistant lines against a series 

of compounds, including the antileishmanials, and also against a new library of sterol 

inhibitors. Therefore, the aims of this study were: 

• To select eight independent polyene-resistant L. mexicana lines and to characterise 
their phenotype, e.g. drug sensitivity, sterols profile, metabolome, growth, cross 
resistance. 

• Use NGS to identify mutations related with polyene-resistance, in particular in the 
sterol biosynthetic pathway 

• Characterise the infectivity and response to treatment of four AmBR-lines in vivo. 

• To determine the susceptibility of   these polyene-resistant lines to a new series of 
sterol inhibitors.



 Materials and methods 

 Culture of Leishmania spp. cells in vitro 

L. mexicana wild type promastigotes (reference strain WHO MNYC/BZ/62/M379 or 

simply M379) were cultured at 25°C in complete haemoflagellate-modified minimal 

essential medium named HOMEM (from GE Healthcare or Gibco®), described elsewhere 

(Berens et al. 1976), supplemented with 10% (vol/vol) heat-inactivated foetal bovine 

serum (HI-FBS) (Labtech International) and 1% (vol/vol) of penicillin-streptomycin 

(10,000 IU and 10 mg/ml in 0.9% NaCl, respectively) (Sigma®). HOMEM is a culture 

medium adapted from the Eagle's minimal essential medium (MEM), and the defined 

medium (DM) used in this study is a modified version from previous studies (Merlen et al. 

1999; Nayak et al. 2018), adapted by a former member of the Barrett Lab (PhD Thesis 

Raihana Binti, University of Glasgow, unpublished data) (see Supplementary file 1, 

composition of media; see page 8). L. tarentolae (strain Parrot-TarII), and L. infantum 

JPCM5 (MCAN/ES/98/LIM-877) were grown only in HOMEM.  

Promastigotes were maintained in culture by passaging cells weekly with a starting density 

between 1 to 5 x 105 cells per ml in HOMEM medium. Growth rate and assessment of 

morphology (including body size) of all the parental- and resistant lines, were determined 

by counting (in duplicates then the average count was reported) parasites density every 24 

hours during seven- or ten days, and compared with previous reports (Bates & Tetley, 

1993; Vermeersch et al., 2009). Cell density was determined in triplicate in parental wild 

type and polyene resistant lines (see chapter 3, Figure 3-4), and also CRISPR/Cas9 wild 

type (constitutive expression of Cas9) and knockout lines generated with this system (see 

chapter 6). Cultures were evaluated weekly using an inverted microscope to observe cell 

growth and motility of the promastigotes and morphological changes, i.e. mid- to late-

logarithmic, and stationary phases, respectively. A Neubauer chamber (haemocytometer) 

was used to asses cell density (for downstream experiments), and to determine growth rate 

of all clones (four AmB- and four from Nys-resistant from L. mexicana, and one AmB-

resistant from L. infantum), selected from each independent line (chapter 3, section 3.2.2, 

Figure 3-4). A list of the clones selected for each line and their EC50 (for AmB or nystatin) 

is shown in chapter 3 (see section 3.2.1, Table 3-1).  

Amastigotes derived from footpad lesions and lymph nodes tissue (macerates) of infected 

BALB/c mice (see section 2.6 and chapter 5, section 5.2.3), were transferred into HOMEM 

medium, whereupon they differentiated into promastigotes over 48-72 hours, and were 
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sub-cultured as described before for promastigotes. For those lines in which 

amastigogenesis was assessed, transformation was performed using Leishmania spp. late-

log stage (i.e. stationary phase) promastigotes, following the method described elsewhere 

(Bates, et al., 1992). Amastigotes, either from mice lesions or from axenic promastigotes, 

were maintained in culture using Schneider’s medium (SDM) with HI-FCS (10% v/v) and 

1.5 mL of hemin (2.5 mg per mL in 50 mM NaOH, 0.003% v/v), with a pH 5.5, and 

incubated at 32.5 ºC with 5% CO2 in vented cap 25 mL flasks, and sub-cultured weekly. 

 Selection of polyene resistant Leishmania spp. 

Leishmania mexicana, L. infantum and L. tarentolae axenic promastigotes were selected 

for resistance by exposure to increasing concentrations of polyenes, starting with a sub-

lethal concentration based on the EC50 of their respective parental wild type (between 20 to 

80 nM). The concentration of either AmB or nystatin, were increased in a stepwise manner 

following the method described elsewhere with some modifications (Al-Mohammed,et al. 

2005). All independent cell lines were cultured in parallel with their respective parental 

line that was cultured in absence of drug, to confirm that resistance and other changes were 

not the result of long‐term cultivation or other stochastic changes. A detailed explanation 

of the duration and concentrations added into the medium during the resistance selection is 

detailed in Chapter 3 (section 3.2.1, Figures 3-1 and 3-3). Aliquots of both, AmB and 

nystatin, were stored in 0.5 mL Eppendorf’s at -20°C and protected from light until use. 

Assessment of the increase in resistance was performed with the Alamar Blue assay 

(section 2.4.) at least every month or when the growth rate of cells exposed to drugs was 

similar to that of the parental wild type cultured without drug pressure. The maximum 

concentration of drug added into the culture and the EC50 values of all lines are described 

in detail in chapter 3 (section 3.2.3). All cell lines were preserved in culture medium with 

15% DMSO (v/v) and stored in cryovials in liquid nitrogen (-80°C). 

 Clonal populations by limiting dilution cloning 

After polyene resistant populations of L. mexicana and L. infantum were obtained, 

individual clones were isolated from each independent resistant line by limiting dilution, 

for further genotypic and phenotypic characterization. Briefly, selection of Individual 

clones involved diluting promastigotes to a concentration of 1 x 104 cell per mL, followed 

by further dilution of 5 x 102 cells per mL that was then adjusted to the final desired 

number of clones expected. In this study, I adjusted my protocol to a final concentration of 

approximately five cells per 5 mL (10 cells per 10 mL) as follows. Adding 50 ul to 4,950 
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ul (dilution factor (df) 1:100), or 50 ul cells into 9,950 ul (df 1:200) of HOMEM (final 

volume of 5 or 10 mL) that were plated out into 48 wells (100 ul per well) (Hu et al. 2016) 

(https://www.addgene.org/protocols/limiting-dilution/). 

 Drug screening assays 

The Alamar Blue® assay is a rapid method to measure quantitatively the inhibitory 

concentration (EC50) and to determine the toxicity and proliferation (viability) of 

compounds and cells, respectively. This assay measures the reducing activity of viable 

cells by correlating their proliferation with the intensity of fluorescence (Invitrogen™; 

Promega). In this study, this assay was used to measure the viability-toxicity of 

Leishmania spp. promastigotes (L. mexicana, L. infantum and L. tarentolae), exposed to 

more than twenty compounds, as described previously (Mikus and Steverding 2000; Pan 

1984; Shimony and Jaffe 2008). All of the compounds tested were purchased from Sigma 

unless otherwise stated. A stock solution of the following compounds was prepared using 

filter sterilised (0.22 uM filter) distilled water (dH2O): AmB, nystatin, natamycin, 

methylene blue, miltefosine hydrate, potassium antimonyl tartrate, paromomycin sulphate, 

pentamidine isethionate, mianserin and clomipramine. Ketoconazole and fenarimol stocks 

were dissolved in methanol, and the compounds from the library from Argentina (see 

below), were diluted in dimethyl sulfoxide (DMSO). Imipramine, a tricyclic antidepressant 

(TCA), was dissolved in either dH2O or DMSO. Other TCAs, desipramine and 

trimipramine (both at 1.0 mg/mL in methanol), were dissolved directly in HOMEM before 

use. For the drug screening assay, each drug was prepared the stock solution on the day of 

the assay by dissolving the stock solution in fresh medium (HOMEM) at a concentration 

two times higher than the desired starting concentration, maintaining the volume of the 

solvent below 1% of the final volume. A control with a similar volume of solvent without 

drug was included. Drugs were serially diluted in a two-fold stepwise fashion in 96-well 

plates with a final volume of 100 µl per well. The last well was always maintained without 

drug as negative control. Then a similar volume (100 ul) of either wild type or polyene-

resistant parasites was added to each well at a final density of 1 x 106 cells per mL and 

further incubated for 72 hours with drugs. Resazurin dye (0.49 mM dissolved in 1x 

phosphate-buffered saline (PBS), pH 7.4) was added (20 μL) into each well and incubated 

for another 48 hours. Resazurin (blue) is reduced to resorufin (fluorescent) by 

metabolically active cells and the absorbance (fluorescence) was measured using a BMG 

LabTech Fluostar Optima fluorometer. Intensity was read at λEX 530 nm and λEM 590 nm 

and analysed with Prism 8.0 software to obtain the 50% inhibitory concentration (EC50) for 

each compound using regression analysis.  
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I also screened a new library of heterocyclic steroid inhibitors, named 1,2,3-triazolyl 

sterols (TAZ), with expected activity against the C14DM and C24SMT enzymes. Stock 

solutions of these compounds were prepared in DMSO. A detailed description of their 

chemical structures is provided in Chapter 6 (see Table 6-1). Except for 2DR, 2DS and 

2ES that were synthesised by Yazmin Santos (Degree Thesis, Universidad Nacional del 

Rosario, unpublished), all of the other sterol inhibitors were synthesised by Dr Exequiel 

Porta, both members from Guillermo Labadie Lab, at The National University of Rosario, 

Argentina. All TAZ compounds were prepared from pregnenolone by adding a 

propargylamine to the side-chain following a method described previously (Porta et al. 

2014). Another library of twenty compounds (thiosemicarbazones), synthesised by Cristina 

Soares (Univ. of Argentina) was tested in some lines (not included in this Thesis, due to 

time constraints). Another AmBR clone, named AmB 0.27 µM hereon, with a mutation 

(N176I) in C14DM (Mwenechanya et al. 2017), and developed by a former member within 

the Barrett Lab, was also included in the screening of this library (chapter 6). In this study, 

I tested a total of thirty five compounds (chapter 3, section 3.2.3 and chapter 6, section 

6.2). Unless stated otherwise, all experiments were performed in three biological 

replicates. One-way ANOVA was performed independently for each compound to 

determine differences of the mean between groups, and a Tukey's multiple pairwise 

comparison was also performed to assess differences between polyene-resistant lines with 

respect to their parental wild type. 

  Time-to-kill and dose-to-kill in wild type and two 
resistant cell lines 

A time to kill assay was performed to determine cell viability of wild type and two AmBR 

lines (AmBRcl.14 and AmBRcl.8) of L. mexicana after the treatment with AmB (chapter 

7), and with the two most potent compounds (156.A and 156.D) from the library of 1,2,3-

triazolylsterol inhibitors (chapter 6). The stocks of the three compounds were prepared as 

described in section 2.4. Assessment of cell viability after drug exposure was performed 

using light microscopy (Zeiss Axiovert A1). Parasites were treated with AmB (5 x the 

EC50), and compounds 156.A and 156.D, were used at three doses, 1) 5 x EC50 (22.5 µM 

and 17.5 µM), 2) EC50 (4.5 µM and 3.5 µM) and 3) the minimum inhibitory concentration 

(MIC) (2.8 µM and 1.6 µM), and further incubated for 2, 6, 8, 16 and 24 hours. Treated 

cells were then cultured as described before (section 2.1). Considering the presence 

alterations in morphology, growth, motility and integrity (some death cells) at longer time 

of exposure, a time point and concentration of 15 minutes for AmB (Ms Alison Reilly, 

former student within the Barrett Lab, unpublished), and of 12 hours for the two 
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compounds 156.A and 156.D, were selected, respectively. Three separate sets of 

experiments, the first two for LC-MS and the third one for GC-MS, were then performed 

as follows:  

1. L. mexicana wild type, and two resistant lines, AmBR- cl.14 and cl.8, were treated with AmB 

at 5 x their respective EC50 (50 nM for wild type and 3 µM for both resistant lines), before 

samples were processed for LC-MS (see section 2.7. and chapter 7). 

2. Another L. mexicana line lacking the transketolase gene (including the parental line and the 

add-back), developed by a former member within the Barrett Lab (Kovářová et al. 2018), were 

also treated with 5 x their respective AmB EC50, as follows: a transketolase gene (ΔTKT) 

(EC50 52 ± 4.3 nM), the parental wild type (wtTKT) (EC50 67.5 ± 0.70 nM), and the add-back 

(+TKT) (EC50 52 ± 2.8 nM), final doses of AmB added in the culture (15 mins) were, 250 nM 

for both, the wild type and the add-back lines, and 338 nM for the ΔTKT, followed by the 

extraction of the metabolome for LC-MS as described in the previous step (see number one of 

this section). 

3. The effect of TAZ compounds, upon the content of sterols was assessed using GC-MS. 

Considering the volume of drug available, and the cost of the sterol analysis, I selected only 

one compound (156.D) to treat wild type and two AmBR lines with the same two 

concentrations of 156.D, i.e. 3.5 µM (1 x EC50), and 1.6 µM (MIC). Note that wild type and 

AmBRcl.14 were treated with both the EC50 and MIC, while AmBRcl.8 was treated only with 

the MIC, due to the lack of sufficient compound. After treatment, sterols were extracted as 

described in section 2.8. Parasite pellets (3 x 108 parasites) were weighed to estimate the 

content of sterols per parasite before samples were processed for GC-MS as described below 

(see section 2.8). Controls were included using the same volume of DMSO added with each 

treatment. 

  Infectivity of Leishmania mexicana in a murine model  

All animal experiments were performed by a certified technician, i.e. Ms Anne Marie 

Donachie, and Mr Ryan Ritchie. All mice were from Harlan UK Ltd, and kept at the 

Central Research Facilities of the University of Glasgow, Glasgow U.K, and were 

randomly assigned to either of the treatment groups (wild type versus AmB resistant lines). 

Infection of BALB/c female mice (two-months at the time of inoculation) was performed 

by inoculating L. mexicana (2 x 106) stationary promastigotes in 100-200 ul of filter 

sterilised PBS in the left footpad. Progress of the footpad lesions was assessed weekly 

during the entire duration of the experiment (thirteen weeks) and all infections were 

stopped before any of the lesions reached a size of 5 mm, following the Animals (Scientific 
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Procedures) Act, 1986 (ASPA) https://www.gov.uk/government/publications/consolidated-

version-of-aspa-1986). Amastigotes were recovered post infection, from all mice by sub-

culturing tissue from footpad lesions and lymph nodes after animals were euthanized, then 

amastigotes were transformed into promastigotes for downstream analysis (e.g. retention of 

resistance). A detailed explanation of all the wild type and all the four AmBR lines used 

for infection of mice is detailed in Chapter 5 (see section 5.2.3). Briefly, three BALB/c 

mice (one mouse for each line) were infected with two resistant lines (AmBRcl.14 and 

AmBRcl.8) and wild type (first infection experiment). A second experiment included four 

resistant lines (AmBRcl.14, AmBRcl.8, AmBRcl.6 and AmBRcl.3) and wild type, and 

mice were treated with AmBisome (see details in Figure 5-6) (second infection 

experiment). A third experiment was performed to test the activity of AmB in liposomes 

(AmBisome®). In this experiment, another AmB resistant line selected for resistance to 

AmB by a former student in the Barrett Lab (Dr Andrew Pountain), was used (see details 

in chapter 5, section 5.2.5). 

After all animals were euthanised, tissue from footpad lesions and lymph nodes were 

recovered and preserved in either neutral buffered formalin (10%) or paraformaldehyde 

(4%) in PBS and fixed during 24 hours. Tissue specimens were then placed and stored in 

ethanol (70%) until they were processed for histology at the Beatson Institute (Garscube 

campus, University of Glasgow, histology services from, head Colin Nixon). Samples were 

stained with haematoxylin and eosin (H&E), for their analysis with light microscopy. Note 

that tissue samples from the third experiment also included whole organs (liver, kidney, 

spleen), left hind footpad and popliteal lymph node from all mice (see section 5.2.5 and 

5.2.7.1). 

  Liquid Chromatography/Mass spectrometry (LC/MS) 
based metabolomics analysis 

The global effect of the treatment with AmB (as deoxycholate) was tested in L. mexicana 

wild type strain M379, and in two resistant lines (AmBRcl.14 and AmBRcl.8) to study the 

effects of AmB treatment on the metabolome of the parasites after 15 mins (the time point 

was determined previously, see section 2.5). To extract both polar and nonpolar metabolite 

species, 1 x 108 mid Log promastigotes were quenched by rapid cooling at 10°C in dry 

ice/ethanol bath, culture medium was removed by centrifugation at 1,250 g for 10 minutes 

at 4°C, then transferred centrifuged twice at 4,500 rpm for 10 minutes at 4°C with a wash 

in 1ml of cold PBS in between and the pellet was resuspended in 200 ul of monophasic 

chloroform/methanol/water (CMW 1:3:1) followed by 1 hour shaking (max speed) at 4°C 



 

 

77 

77 

and a final spin at 13,000 rpm for 10 minutes at 4°C. Pooled sample was made by taking 

10ul from each sample and blanks were also included. Samples were sealed after adding 

argon and stored at -80°C until analysis with LC-MS. Identification of metabolites for LC-

MS was performed with a ZIC pHILIC column (150 mm × 4.6 mm, 5 μm column, Merck 

Sequant) coupled to high-resolution Thermo Orbitrap QExactive (Thermo Fisher 

Scientific) mass spectrometry in both positive and negative ionization modes.  

Samples were analysed in four replicates and data were processed in Glasgow Polyomics 

and provided as raw data. Identification of Liquid Chromatography-Mass Spectrometry 

(LC-MS) was done with IDEOM workflow which requires data processing using XCMS, 

mzmatch, R tools, filtering and storage of data in peakML files, according to a method 

described elsewhere (Creek et al., 2012; and Creek et al. 2012b). A similar analysis was 

performed in parallel using PiMP, an in-house software developed by Glasgow Polyomics 

to standardize and automate metabolomics analysis (Gloaguen et al. 2017). PiMP is a user-

friendly platform that integrates all steps of a metabolomics study and allows users to share 

experimental designs and results online (http://polyomics.mvls.gla.ac.uk/). 

  Gas Chromatography/Mass spectrometry (GC/MS) 

GC-MS is the standard method for the identification and quantification of sterols (Goad 

and Akihisa 1997). Sterols were extracted for analysis with Gas chromatography-mass 

spectrometry (GC-MS) using a protocol developed within Glasgow Polyomics. Briefly, a 

total of 3 x 108 mid-log phase promastigotes (between 5 to 10 x 106 per mL) were 

resuspended and washed twice in PBS by spinning cells down at 1,250 – 1,300 g for 5 to 

10 minutes. Pellets were stored at -80°C until used. Before extraction, parasite pellets were 

thawed at room temperature and 500 ul of fresh KOH-ethanol (KO-EtOH) (20 ml dH2O, 

30 ml EtOH, 12.5 g KOH) was added to each sample (including a blank without cells), and 

incubating at 85°C for 1 hour in Pyrex glass tubes. After heating, a similar volume of n-

heptane was added and samples were mixed by vortexing for 30 seconds. Samples were 

left over 20 – 30 minutes to allow for separation of the organic and the aqueous layers. The 

supernatant (the organic layer at the top containing the sterols) was separated using a glass 

Pasteur pipette, transferred to glass borosilicate vials with Teflon cap (Thermo Fisher®), 

and stored at -80°C until they were analysed with GC-MS. All samples were prepared in 

triplicate, and a pooled sample was also made by adding between 10 to 20 ul of each 

sample in one. Further sample processing for GC-MS and data analysis were done at 

Glasgow Polyomics (https://www.polyomics.gla.ac.uk) by Dr Stefan Weidt.  
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Analysis of sterols used standards and derivatization with a silylation agent, (Koek et al. 

2011; Zarate et al. 2016), here trimethyl silane (TMS) was used. Sterols were then detected 

as their TMS ester derivatives but are reported as their underivatized form, and expressed 

as a percentage of the total sterol content after normalisation, and comparison with the pool 

of the reference standards. The stability and reproducibility of the instrument were 

assessed using external QC samples along with the pool samples (this is the mix of the 

Leishmania samples) followed by the addition of a mix of sterol standards and a blank 

(solvent only). Samples and standard mix were dried into amber with N2 flow at 60 °C 

glass vials, then 50 µl of N-methyl-n-trimethylsilyltrifluoroacetamide with 1% 2,2,2-

trifluoro-N-methyl-N-(trimethylsilyl)-acetamide, chlorotrimethylsilane (Thermo Scientific) 

were added and samples were vortexed for approximately 10 secs followed by incubation 

at 80 oC for 15 mins. Samples were cooled down at RT. After this, 50 µl of pyridine was 

added, together with 1 µl of the retention index solution, and samples were vortexed for 

another 10 secs. The retention mix consists of an n-alkane mixture of C12, C15, C19, C22, 

C25 and C29. Analysis in gas chromatography was performed in a TraceGOLD TG-

5SILMS column with 30 m length, 0.25 mm inner diameter and 0.25 µm film thickness 

(Thermo Scientific) installed in a Trace Ultra gas chromatograph (Thermo Scientific). 

Carrier gas used was helium at a flow rate of 1.0 ml/min, then 1 µl of TMS-derivatised 

sample was injected into a split/splitless (SSL) injector at 250 °C using a surged splitless 

injection, a splitless time of 30 secs and a surge pressure of 167 kPa. Initial oven 

temperature was 70 oC and this was increased up to 250 oC at a ramp rate of 50 oC/min 

followed by a ramp rate reduction of 10 oC/min reaching a final temperature of 330 oC that 

was maintained for 3.5 min. Eluting peaks were transferred at an auxiliary transfer 

temperature of 250 oC to a ITQ900-GC mass spectrometer (Thermo Scientific), with a 

filament delay of 5 min. Electron ionisation (70 V) was used with an emission current of 

50 µA and an ion source that was held at 230 oC. The full scan mass range was 50-700 m/z 

with an AGC (automatic gain control) of 50%, and maximum ion time of 50 ms. Then the 

Leishmania samples, QCs and standards were loaded into the instrument (Dr Stefan 

Weidt). Identification of sterols peaks detected in any of the Leishmania samples that 

matched the standards (see chapter 5, section 5.2 and Figure 5-2), was performed with a 

TraceFinder v3.3 (Thermo Scientific). Identification of peaks to which standards did not 

match was conducted by comparison to the NIST library, also using TraceFinder (Glasgow 

Polyomics, Metabolomics analysis Report by Stefan Weidt). 
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  DNA and RNA sample preparation 

Extraction of genomic DNA (gDNA) and RNA (total) from promastigotes (5 x 107) were 

performed using the Nucleospin Tissue and Nucleospin RNA kits (both from Macherey-

Nagel), respectively. Concentration (ng/μL) and purity (absorption ratios A260/A230 and 

A260/280 ≥2.0) of gDNA and RNA were determined using a Nano Drop machine (Thermo 

Scientific) and stored at -80°C until further processing and analysis. Both, preparation of 

library and sequencing, were performed by staff Dr David McGuiness, from Glasgow 

Polyomics (https://www.polyomics.gla.ac.uk/ngs_omics.html). Samples for Whole 

Genome Sequencing (WGS) were prepared using a TruSeq Nano DNA library preparation 

Illumina Kit. The cDNA libraries (for RNA seq) were generated using the Illumina TruSeq 

stranded mRNA library preparation kit, also from Illumina. Genomic DNA was obtained 

from the parental wild type, and all four independent AmBR lines (AmBcl.14, AmBcl.3, 

AmBcl.8 and AmBcl.6). A second clone (Lm8E12_S221) of the same line AmBcl.8 was 

included for comparison. After being sequenced, all files were provided as raw files, and 

transformed into, fasta and fastq files that were used for alignment to the reference genome 

(section 2.9.1).  

  Generation of Leishmania overexpression line of 
C24SMT 

L. mexicana promastigotes were transfected using the episomal vector pGL1132 that has 

been used in Leishmania spp. before (Diaz-albiter et al. 2018; Pountain et al. 2019b). 

Construction, transformation, PCR colony screening and amplification of positive colonies 

(including Sanger sequencing confirmation) of this plasmid (pGL1132-C24SMT) 

containing a wild type copy of the C24SMT (LmxM.36.2380) was previously performed 

by Dr A Pountain (Dr Andrew Pountain PhD Thesis, University of Glasgow). Briefly, 

pGL1132 is a construct made from the pNUS vector (http://www.pnus.cnrs.fr/tools.html) 

encoding the neomycin gene, elements for expression of inserted genes in Leishmania are 

mediated by the phosphoglycerate kinase B (5’UTR) and A (3’UTR). I amplified and 

purified this plasmid from E. coli grown in Luria-Bertani (LB) medium (100 µg per mL 

ampicillin), and using the Nucleospin plasmid kit (Macherey Nagel), followed by ethanol 

precipitation. Briefly, the pGL1132-C24SMT vector was resuspended in sodium acetate 

(NaOAc 0.3 M, pH 5.2) at a ratio 1:10 (v/v) NaOAc: pGL1132-C24SMT, followed by the 

addition of ice cold ethanol at a ratio 2:1 (v/v) EtOH: pGL1132-C24SMT.  



 

 

80 

80 

Samples were washed once with 70% ethanol, centrifuged at 17,000 x g, 10 min and 

supernatant removed. Samples were allowed to dry before resuspension in sterile water 

(dH2O) followed by determination of DNA concentration using a nanodrop 

spectrophotometer (Thermo Fisher). Parasites (1×107) were harvested, pelleted (1200 x g, 

per 10 min) and washed with ice-cold PBS before being resuspended in 100 μl transfection 

buffer (90 mM NaPO4, 5mM KCl, 50 mM HEPES, 0.15 mM, CaCl2, pH 7.3). Plasmid 

DNA (10 μg) was added into a cuvette and transfection was performed using the Amaxa 

protocol U-033 (NucleofectorII, Lonza). Transfected parasites were then transferred into 5 

mL of HOMEM medium and left to recover for 24-48 hours before positive selection of 

transfectants, the latter was performed with further passages over 1-2 weeks with G418 

disulfate salt (Sigma Aldrich) at 50 μg/ml in the medium, culture conditions were as 

described in section 2.1. G418 is an aminoglycoside structurally similar to gentamicin that 

inhibits elongation by interfering with the function of 80s ribosomes and protein synthesis 

in eukaryotes, this mechanism is analogue to neomycin. Resistance to G418 is conferred 

by neo gene which encodes an aminoglycoside 3’-phosphotransferase (ATP 3’ II). 

  Quantitative PCR 

Reverse transcription (RT) is performed by RNA reverse transcriptase to produce 

complementary DNA (cDNA). Here, the RT reaction was performed using Superscript III 

reverse transcriptase (Invitrogen) following the manufacturer’s instructions. Primers (0.3 

µg/µL), RNA (1 mg) and dNTPs (10 mM) were added into a nuclease-free eppendorf tubre 

with RNAse free water (final volume 14 µL), followed by heating (65°C for 5 minutes) in 

a PCR machine (G-Storm). The mixture was kept on ice (60 secs). First-Strand Buffer (5x) 

was added (4 µl), DTT (0.1 M) and Superscript III reverse transcriptase (1 µl) were added 

to the reaction tube and further incubated at 25°C for 5 minutes, and at 50°C for 60 min in 

a PCR machine. The reaction was inactivated at 70°C (15 min) and the remaining RNA 

was removed with E. coli RNAse H (1 µl) and incubation at 37°C (20 min). The single 

stranded cDNA product was resuspended in nuclease free water stored at -20°C. A control 

without enzyme (RNAase free water was added instead) was included to detect gDNA 

contamination. 

Levels of expression of C24SMT (LmxM.36.2380) were measured using quantitative 

reverse transcription PCR (qRT-PCR), C24SMT expression was normalised using the 

housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

(LmxM.36.2350 in L. mexicana). Pairs of primers: FP2 and RP2, and FP5 and RP5 (see 

Table 2-1) were previously designed (Primer Express v3 software (Applied Biosystem) 
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and optimized by a former member within the Barrett Lab (Dr. Andrew Pountain). 

GAPDH is a cytosolic single copy (Zhang, et al., 2013) that has been previously used as 

internal control reference gene in other expression analysis, and has the advantage of being 

located in the same chromosome (Chr20) than the two copies of C24SMT (Pountain et al. 

2019b; Vacchina, Norris-Mullins, Abengózar, et al. 2016). The reaction (Applied 

Biosystems) was prepared adding 2.5 µl of cDNA template and a similar volume of each of 

the primers (FP2 and RP2 or FP4 and RP4), 5 µl of RNAase free water and 12.5 µl of 

SYBR Green Master Mix to give a final volume of 25 µl. The reaction was plated out into 

a 96-well MicroAmp® optical qPCR reaction plate (Applied Biosystem), sealed with 

MicroAmp Optical Adhesive Film (Applied Biosystem) and placed in a RT-PCR system 

(Applied Biosystem 7500). Reaction steps were as follows: 2 min at 50 oC, and 10 min at 

95 oC, followed by 40 cycles at 95 oC during 15 secs and a final step at 60 oC during 60 

secs, fluorescence was measured in the latter of these steps. Passive reference dye used was 

ROX. All experimental reactions, and control (without RT enzyme) and blank (water-

only), were performed in three and two replicates, respectively. Delta Ct threshold (δCt) of 

6 value was used as a difference between experimental (RT-included) and control (RT-

free) samples. Although the threshold obtained with C24SMT was lower (-4.13), this was 

equivalent to a 17.5-fold difference in DNA abundance. 

  



 

 

82 

82 

  CRISPR Cas9 system 

In this study, I used the genome editing CRISPR-Cas9 system in L. mexicana 

promastigotes following the protocols designed by Beneke et al. 2017. An overview of the 

system, and the plasmids maps (the latter were provided by Dr Eva Gluenz Lab) used in 

this project is depicted in Figure 2-1 and Figure 2-2. Briefly, 5’ and 3’ sgRNA templates 

were PCR amplified using the following steps: 0.2 mM dNTPs, 2 μM of each, reverse 

(G00R), and 2 μM gene-specific forward primers (G00F), and 1 unit of HiFi Polymerase 

(Roche) were mixed in 1x HiFi reaction buffer with MgCl2 (Roche), adjusting to a final 

volume of 20 μl total per reaction. PCR steps were as follows: 30 seconds at 98°C, 

followed by 35 cycles of 10 seconds at 98°C, 30 seconds at 60°C, and 15 seconds at 72°C. 

The presence of the expected product (126 bp for both 5’ and 3’ sgRNAs) was verified 

adding 2-5 μl of each reaction to Gel Loading Dye (NEB®) Purple (6X) and run in a 2% 

agarose gel with SYBR® Safe (10 mg per mL) at 100 volts for 45-60 minutes in TAE 

(Tris-acetate-EDTA) running buffer. The remainder of each reaction was heat-sterilised at 

94°C for 5 minutes and maintained at 4°C and used for transfection of L. mexicana 

promastigotes without further purification (i.e. ethanol precipitation). Transformation of 

each plasmid was performed by mixing 5 ng (pre-diluted into 50 μl of dH2O), with 50 μl 

(1:10 v/v) of kit supplied E. coli DH5a thermo-competent cells that were kept on ice for 

15-20 mins followed by heat shock at 42 °C for 30- to 60 secs, and maintained on ice for 

another 2 mins. Cells were resuspended into 1 mL of LB broth and incubated for 30-60 

mins at 37 °C and plated on agar plates with ampicillin (100 µg per mL) for further 

incubation overnight at 37 °C. Positive colonies were obtained after 12 hours and one 

colony for each plasmid was selected and amplified in 30 mL of LB-ampicillin (100 

μg/ml), followed by: 1) concentration in LB broth with glycerol (15%) for long term 

storage at -80 °C (glycerol stocks), and 2) isolation of purified plasmids using the 

Nucleospin plasmid kit (Macherey Nagel), that were also stored at -80 °C. 

PCR amplification of targeting fragments was performed by mixing 30 ng of each pT 

plasmid (circular), 0.2 mM of dNTPs, 2 μM of each gene specific forward, upstream 

forward (UF) and downstream forward (DR), and reverse, upstream revers (UR) and 

downstream reverse (DR) primers, and 1 unit of HiFi Polymerase (Roche), then adding 1x 

HiFi reaction buffer (Roche), adjusted to a final 3.375 mM of MgCl2, and 3% (v/v) of 

DMSO, giving a final volume of 40 μl per reaction. PCR steps were as follows: 5 minutes 

at 94°C followed by 40 cycles of 30 seconds at 94°C, 30 sec at 65°C, 2 min 15 sec at 72°C, 

followed by a final elongation step for 7 min at 30 sec at 72°C. A volume of 2-5 μl of each 

reaction was mixed with Gel Loading Dye (NEB®) Purple (6X) and run in a 1% agarose 
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gel with SYBR® Safe (10 mg per mL) and TAE buffer to check for the presence of the 

expected products (see Table 2-1 section C, for the size of each plasmid). The remainder of 

each PCR reaction was heat sterilised at 94°C for 5 minutes and kept at 4°C until use for 

transfection without further purification. Sequences of all the primers used in this study are 

detailed in Table 2-1. All primers were synthesised by Eurofins® 

(https://www.eurofinsgenomics.eu). 

Transfection buffers (for knockouts) were as follows: a stock solution of buffer named 3x 

Tb-BSF (200 mM Na2HPO4, 70 mM NaH2PO4, 15 mM KCl, 150 mM HEPES pH 7.3), 

and a stock solution of CaCl2 (1.5 mM CaCl2 in dH2O) were prepared and stored at 4°C 

until used. Note that transfection buffer for tagging (not used in this thesis) is different 

(Beneke et al. 2017). Before transfection, cells were washed twice in cold PBS and 

resuspended in 150 μl KO transfection buffer that was freshly prepared by mixing 25 μl of 

CaCl2 with 83 μl of 3x Tb-BSF buffer and 42 μl of water. PCR amplicons were mixed 

directly from the PCR tube by adding 100 μl of the PCR reaction, giving a final 

transfection volume of 250 μl.  

Log phase L. mexicana M379 promastigotes expressing Cas9 (humanised S. pyogenes 

nuclease gene; hSPCas9), and T7 RNA polymerase (T7RNAP), as a driving mechanism of 

sgRNA transcription from DNA templates (Cas9 and T7RNAP were integrated in the β-

tubulin locus of L. mexicana). This Cas9-wild type cell line provided by Dr Eva Gluenz 

Lab, and cells were cultured with selection drugs in the Cas9 and T7RNAP construct, i.e. 

hygromycin (32 ug per mL) for a minimum of 4 passages. Before transfection, parasites 

were centrifuged at 800 g for 5 min and a total of 1 x 107 cells per transfection were 

resuspended in pre-chilled electroporation cuvettes, and transfected with one pulse using 

the X-001 protocol (Amaxa Nucleofector 2b) in sterile conditions. After transfection, cells 

were immediately transferred into 5 ml of pre-warmed (26°C) HOMEM medium (10% 

FCS) without antibiotics, in 25 cm2 flasks, and allowed to recover (8-16 hours) before 

further subculture with selection drugs of the repairing cassettes, pTb (5 ug per mL) and 

pTp (20 ug per mL), used in this study, and cultured until resistant populations were 

obtained. Transfections for double KOs were performed using two sgRNA templates (5’ 

and 3’ sgRNA), and two KO repairing cassettes (donor DNA), the latter two are necessary 

to ensure elimination of any heterozygous cells that may carry one copy of the gene of 

interest. Note that this is, possibly, more complex with genes that have two copies in 

tandem (as with C24SMT). According to the protocol developed by Beneke, et al. 2017, 

clonal selection to find null mutants can be necessary, if remaining copies of the target 

genes are identified and parasites do not survive the drug selection in vitro (Dr Eva Gluenz, 
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personal communication), here, positive selection of knockouts after transfection was 

performed by adding puromycin (20 µg/ml) and blasticidin (5 µg/ml) antibiotics without 

selection of clones by limiting dilution. Further characterisation of the phenotype of this 

mutant was performed by means of assessing growth rate, morphological alterations, and 

amastigogenesis in vitro. 

PCR diagnostic reactions were performed to test deletion of the gene of interest (GOI) and 

integration of the donor DNA cassette (plasmid) using a combination of primers (Table 

2-1). Three strategies can be used here, 1) a pair of primers that bind outside the ORF of 

the GOI or plasmid, 2) primers that both bind within the ORF/plasmid, and 3) one primer 

that binds outside (upstream of downstream) with another primer that binds inside of either 

the ORF or the plasmid. PCR reaction was prepared adding, template DNA (gDNA) (<500 

ng), reverse and forward primers (400 nM of each), 1 unit of HiFi Polymerase (Roche) 

mixed in 1x HiFi reaction buffer with MgCl2 (3 mM), dNTPs (1 mM) adjusted with 

nuclease free dH2O into a final volume of 50 μl total per reaction. PCR steps were as 

follows: 2 mins at 98°C initial denaturation, followed by 40 cycles of 15 seconds at 95°C, 

15 seconds at 55-65°C, and 50 seconds/Kb at 72°C. A final extension step of 10 mins at 

72°C and final hold at 4°C. The expected product(s) were verified by adding 2-5 μl of each 

reaction was mixed with Gel Loading Dye (NEB®) Purple (6X) and run in a 2% agarose 

gel at 80-100 volts for 45-60 minutes in TAE (Tris-acetate-EDTA) running buffer, using a 

1 Kb ladder as control (Promega). Further characterisation was also performed using drug 

susceptibility assays against a series of compounds, including AmB and other 

antileishmanials, and a new library of sterol inhibitors, potentially targeting C24SMT. 

Finally, sterol profiling using GC-MS (see section 2.8 and Chapter 5 for GC-MS details) 

was also performed in this mutant (see Chapter 6). Further characterisation of this mutant 

(e.g. Southern blot, qPCR, RNA-seq and Sanger sequencing) is essential to confirm the 

deletion of both copies of C24SMT, and could not be carried out due to time limitations in 

this thesis. 
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Figure 2-1. Detailed maps of pT plasmids of CRISPR-Cas9 used for generation of single and 
double knockouts of target genes in Leishmania spp.  
Here the plasmids maps show the different selection markers that need to be added in the 
culture medium for the selection of single (one plasmid only) or double (any combination of 
two plasmids) knockouts, after transfection (see section 2.12 for details). In this study, I 
used a combination of plasmids containing blasticidin (pTb) and puromycin (pTp). Details of 
the full strategy are described in Figure 2-1. Source: Beneke, et al. 2017.  
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Figure 2-2. Workflow of the CRISPR-Cas9 toolbox in Leishmania spp.  
A. PCR amplification of donor DNA (repairing cassettes) containing 30 nt homology flanks 
(HF1 and HF2) specific to the target locus. A. (b) PCR amplification of sgRNA templates 
using the primers G00F (reverse) and the G00F (forward) that are 5’ and 3’ gene specific. 
Double knockouts cells must undergo co-transfection with two plasmids (PCR product 1) 
containing different selection markers, in parallel with 5’ and 3’ sgRNA templates (PCR 
product 2), for the corresponding gene, which is later transcribed in vivo; B. Strategy using 
pT plasmid to generate donor DNA for repair of Cas9-induced double-strand breaks that 
allows for precise modification of the target locus. Deletion of a target gene in locus, 
requires sgRNA direct cuts to sites immediately upstream (5’) and downstream (3’) of the 
gene of interest (GOI). Repairing cassettes with drug-selectable marker genes (DrugR, see 
Figure 2-1 for details of the pT plasmids and selection markers) and 30 nt HF specific to the 
target locus are PCR-amplified from pT plasmids with primers 1 and 5. Successful deletion 
of the GOI and insertion of repair cassettes; C. the CRISPRCas9 system is shown in more 
detail (paralyzed flagella protein 16 gene (purple), LdBPK_201450.1 in L. donovani, was 
used here to allow visualization of both 5’- and 3’ ends, which was not possible with the 
C24SMT), sequence was obtained from TriTrypDB (https://tritrypdb.org) and all the 
components from steps A and B were added using Snapgene software 
(https://www.snapgene.com/). Orange: Cas9. Green: T7RNAP. Blue and yellow: 5’ and 3’ 
sgRNA, respectively. Pink: upstream- and downstream, forward and reverse primers (UF, 
UR, DF and DR). Adapted from Beneke, et al. 2017. 

A B 

C 
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A) sgRNA transcription primers 

G00F (forward) 
gene specific  

Upstream 5' sgRNA (126 bp) Downstream 3' sgRNA (126 bp) 
gaaattaatacgactcactataggGTGTAGGTGTGG
GGGTAAGTgttttagagctagaaatagc 

gaaattaatacgactcactataggAAGAACGCTGAA
CGCACTGGgttttagagctagaaatagc 

   
G00R (reverse) 
(size 80 bp) 

AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTT
CTAGCTCTAAAAC 

B) Forward and Reverse Primers of plasmids repairing cassettes (donor DNA) 

 Upstream 
(UF) 

Downstream 
(DF) 

Forward TGCGCACTACCTCTTCGCTTGTTTTCTCCTgtataa
tgcagacctgctgc 

ATCCGCGCTCGCAAGCCGTCCAAGGAGGTGggttctg
gtagtggttccgg 

   
 Upstream  

(UR) 
Downstream  
(DR) 

Reverse CGGCGCGGTCTCACGGCCACCGGCGGACATact
acccgatcctgatccag 

GCCAAGTATGGCGGAGGTTAGACGTAGCCGccaatt
tgagagacctgtgc 

C) Plasmids repairing cassettes (KO cassettes) 
Plasmid name Resistance marker Cassette size (kb) 

pTBlast (pTb) blasticidin 1.7 

pTPuro (pTp) puromycin 1.8 

pTNeo (pTn) neomycin 1.75 

D) Plasmids for PCR diagnostic of true C24SMT KOs  

 Forward Reverse Size  

CDS (both) ATGTCCGCCGGTGGCCGT (FP1) CTACACCTCCTTGGACGGCTTGC (RP1) 1,062 bp 

Intergenic 
region 

TGCCACGCGAAGGACAA (FP2)* CGGGCTTGATGACACGAAA (RP2)* 58 bp 

(both) FP1 TTCACCATCGTCGTGGTAGC (RP3)* 161 bp 

 ACCGAAGGGCACGTATAAGG (FP3)* RP1 130 bp 

 FP3 * RP3 * 2991 bp 

3 UTR 
(2390) 

TCCCTCCCTCCAAAGACATG (FP4) * CTCTGTTCACGAAAGTTGTCATATTCT 
(RP4) * 

78 bp 

GAPDH TCAACGACCTGCTGGATGTC (FP5) GCCATGCGTGGAGTCGTACT (RP5)  

E) Plasmids for checking integration of repairing cassettes 
Plasmid name Resistance marker Primers                                                                                      Expected size 

pTBlast (pTb) blasticidin Forward: CACCCTCATTGAAAGAGCAACGG                                295 bp 
Reverse: CACTATCGCTTTGATCCCAGGA 

pTPuro (pTp) puromycin ** Forward: AGAACTTCAAGAGTTATTCTTAACACGG                     341 bp 
Reverse: CAAGGAACGCCGGCACAC 

pPLOTp puromycin (included for comparison)                                                             2-3 kb 

   

Table 2-1. Primers sequences for PCR amplification of, sgRNA templates, and targeting 
fragments (plasmids with resistance cassettes) used to knockout L. mexicana C24SMT. 
A) sgRNA primers (5’ and 3’): Low case indicates the T7RNAP (left) and Cas9-backbone 
start (right), respectively, UPPER CASE (centre of the primer) indicates the 5' or 3' 20 
nucleotides of the sgRNA-target sites that are gene specific. B) UPPER CASE indicates the 
30 nucleotides homology arms for recombination. Lower case indicates the Primer Binding 
Site (PBS) that is located in both, the primer, and the plasmid repairing cassettes. C) 
Plasmid repairing cassettes of pT plasmids to generate knockouts (KO), plasmids size and 
selection markers are shown. D) PCR primers for diagnostic of C24SMT KOs. Modified from: 
Beneke, et al. 2017. * Pountain et al. 2019. ** Designed and provided by Dr Emily Dickie. All 
sequences are written from 5’ to 3’ orientation. 
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 Data analysis of genomics and transcriptomics 

2.13.1 Next generation sequencing 

Design and analysis of tailored tools for WGS was performed by Dr. Andrew Pountain. 

Tools used here are underlined. NGS was performed using Illumina sequencers, NextSeq 

500 and HiSeq 4000, to obtain reads of 2 x 75 bp paired-ends at Glasgow Polyomics. Data 

analysis was performed using two platforms, coding lines (Phyton, Linux) and Galaxy 

server (Afgan et al. 2018). Tools included in the workflow were as follows: Trim Galore 

v0.4.4_dev, was used to remove adaptors and for quality trimming, using a quality score 

cut-off of 20 and a minimum read length after trimming of 20 

(https://www.bioinformatics.babraham.ac.uk/). Reads were aligned to the version of the 

reference genome of L. mexicana MHOM/GT/2001/U1103 release 36, downloaded from 

the database TriTrypDB (http://tritrypdb.org). Fastq files were aligned with the reference 

genome and SAM/BAM files were produced (SAM files are very large and BAM (Binary 

Alignment/Map) files are their binary equivalent in a compressed size). Mapping was 

performed in BAM files using Burrows-Wheeler Alignment (BWA), which is a software 

package used for mapping low-divergent sequences against a large reference genome 

(http://bio-bwa.sourceforge.net)(Li and Durbin 2009). BWA-MEM algorithm was used 

with default settings. BWA-MEM is the latest of three algorithms of BWA for sequences 

from 70bp to 1Mbp (therefore specific for these samples) which is suggested for high-

quality queries and is faster and rendering more accurate alignments (http://bio-

bwa.sourceforge.net). SAMtools v.17 was used for storing the reads post-processing (Li et 

al. 2009), and Picard Tools v2.18.0-0 was used to remove PCR duplicates and adding read-

group names (http://broadinstitute.github.io/picard/). HTseq-count v0.6.1. was used to 

quantify mapped counts per-gene (Anders, et al., 2015). Python scripts adapted to the new 

genome release were used to calculate ploidy and haploid ratios (median length of 

individual chromosomes was compared with the median of all chromosomes) and 

customised by Dr Andrew Pountain. Freebayes v1.1.0-dirty was used to call variants on a 

BAM file (https://github.com/ekg/freebayes), and to generate genotypes (by merging 

outputs of previous step) that were annotated and filtered with SnpEff v4.3.1 (minimum 

quality score of 30, a minimum number of alterative counts across all samples of 5, and a 

minimum number of mapped reads (from the reference or alternative) across all samples of 

31). SnpSift v4.3.1 was used to convert variants obtained from VCF (variant call format) 

into a tabulated format. Other changes (e.g. non-coding changes, intergenic SNPs) were 

removed by filtering for “moderate” or “high” effects. Finally, a custom (in house) Python 

script (Dr Andrew Pountain PhD Thesis, University of Glasgow, 2018) was used to obtain 
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only those genotypes that were different between lines. Those genotypes that varied 

between different heterozygous genotypes only (e.g. 0/1 vs 0/0/1, 0/1/1 vs 0/0/1 etc.) were 

not included. SNPs, insertions and deletions (InDels) were called using FreeBayes 

(http://clavius.bc.edu/~erik/CSHL-advanced-sequencing/freebayes-tutorial.html). 

Freebayes (and most of the other tools used here), is available for use in the Galaxy server 

(https://toolshed.g2.bx.psu.edu/repository/display_tool?repository_id=491b7a3fddf9366f&render_r

epository_actions_for=tool_shed&tool_config=%2Fsrv%2Ftoolshed%2Fmain%2Fvar%2Fdata%2

Frepos%2F000%2Frepo_226%2Ffreebayes.xml&changeset_revision=156b60c1530f). A full 

script of the WGS workflow is provided (Supplementary file 2) (see page 8). 

  RNA-seq analysis 

RNA-seq (RNA sequencing) analysis was performed in L. mexicana wild type 

promastigotes transfected with the wild type copy of the C24SMT gene (LmxM.36.2380) 

(see section 2.10). After preparation of the cDNA library, RNA sequencing was performed in 

the NextSeq 500 system (Glasgow Polyomics) to generate a sequence size of 2 x 75 bp paired-

end reads. Raw data generated were aligned to the reference genome similarly to that 

described above for NGS analysis, with the difference of the genome version of reference 

(here release 32 was used). Differentially expressed genes were identified using the Galaxy 

server (http://heighliner.cvr.gla.ac.uk/root/login?redirect=%2F). The RNA-seq analysis 

workflow used here was published in the Galaxy server for public use at 

(http://heighliner.cvr.gla.ac.uk/workflow/editor?id=b06694bc6c2663c4), and is provided 

(Supplementary file 3) (see page 8). RNA-seq analysis with Linux (performed by Dr 

Andrew Pountain) using a similar workflow to that described below (with some differences 

indicated with stars **) was run in parallel to validate the usefulness of Galaxy tools. 

Briefly, FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and Trimmomatic 

(http://www.usadellab.org/cms/?page=trimmomatic) (**Trim Galore), were used to assess 

and improve the quality of the data. HISAT2 (**BWA) for splicing-alignment and 

mapping of RNA-seq reads. SAMtools was used to sort out BAM outputs. HTseq-count 

for counting of aligned reads, and DESeq2 to determine differentially expressed genes 

based on relative abundance of reads mapped to a reference genome (Love, Huber, and 

Anders 2014; Trapnell et al. 2012). 

  Bioinformatics and other computational tools 

In silico modelling of the sterol biosynthetic pathway (SBP) was performed in S. 

cerevisiae, L. donovani, L. infantum, L. mexicana, and T. cruzi, following the model of the 

ergosome described by (Mo and Bard 2005b). Protein-protein Interactions (PPIs) were 
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called using the STRING database (https://string-db.org/). BLAST search was performed 

against the National Center for Biotechnology Information (NCBI) database using default 

settings. ClustalW Omega was used to identify and align sequences with output format 

(https://www.ebi.ac.uk/Tools/msa/clustalo/). Nucleotide and amino acids sequences were 

submitted to Expassy (https://www.expasy.org/) or the Protein Data Bank (PDB) 

(https://www.rcsb.org) from which protein queries were obtained. Leishmania spp 

sequences (genomic, CDS or protein) were obtained from the TriTrypDB database 

(https://tritrypdb.org/tritrypdb/) or from Uniprot (https://www.uniprot.org/). Protein 

alignment viewers used were Clustal X2 (Thompson, et al., 1994) 

(https://www.ebi.ac.uk/Tools/msa/clustalo/), PyMOL (https://pymol.org/2/), Cytoscape, 

and the software UCSF Chimera (Pettersen et al. 2004) 

(https://www.cgl.ucsf.edu/chimera/). Modelling and localisation of SNPs and protein 

topology were optimised by means of the PDB databank (https://www.rcsb.org/) and the 

OPM database (https://opm.phar.umich.edu/).  

 Infectivity in the sandfly vector 

I intended to analyse the phenotype of AmBR resistant lines (as promastigotes) within the 

insect vector. For this, we developed a model using fluorescent Leishmania tarentolae 

parasites (Diaz-albiter et al. 2018). This non-invasive technique for detection of infection 

in sand flies, developed within the Barrett Lab, allowed us to perform infections of sand 

flies using L. tarentolae or L. mexicana. Parasites (2 x 106 per mL) were resuspended in a 1 

ml of heat inactivated (56 °C for 60 minutes) sheep blood serum, followed by blood 

feeding of colonies of sand flies Lutzomya longipalpis. Female sand flies were dissected 

and analysed between 3 to 5 days post infection, and cold anaesthetized before fluorescent 

microscopy analysis (GFP channel (at lEX 488 nm and lEM 509 nm). Sand flies infected 

with wild type and AmBR L. mexicana parasites were also performed, however, the low 

infection rates observed with both groups deemed for insufficient experimental controls. 

For this reason, the analysis of the phenotype of AmBR lines ex vivo within the insect 

vector were not included in this thesis. Infections with both species were performed 

following the methods described elsewhere (Díaz-Albiter et al. 2016). 



 Drugs screening in polyene resistant lines of L. 
mexicana 

 Introduction 

The emergence of resistance against the existing drugs for the treatment of leishmaniasis is 

one of the main challenges related with their use in clinical settings (Jain and Jain 2018). 

Other issues related to the antileishmanials are their toxicity, modes of administration and 

cost (Barrett and Croft, 2012,Creek and Barrett, 2014; Burza, Croft and Boelaert, 2018). 

For some antileishmanials (e.g. antimonials), resistance has spread across various regions 

(Matrangolo et al. 2013; Pund and Joshi 2017). Clinical resistance to antimonials has been 

recorded in up to 60% of patients that never received previous treatment with these 

compounds (Rojo et al. 2015; Sundar 2001). Reports of resistance to other antileishanials 

such as paromomycin (PAR) (Hendrickx et al. 2015), miltefosine (MF), and AmB, in the 

field are less common. One of the reasons for the little resistance found to AmB in the field 

is, possibly, the high initial cure rate (up to 99.3%) (Burza, Prabhat Kumar Sinha, et al. 

2014), and in the long term (98% at 6 months) (Burza, Prabhat K Sinha, et al. 2014) in 

patients treated with this polyene in its liposomal formulation, AmBisome (Burza, Prabhat 

K Sinha, et al. 2014; Burza, Prabhat Kumar Sinha, et al. 2014), and a belief that resistance 

mechanisms may carry a fitness cost for the pathogens, e.g. Leishmania parasites and fungi 

(Vincent et al. 2013). 

Clinical resistance and treatment failure with AmB and MF are, nonetheless, possible in 

Leishmania. Reports of the loss of efficacy (Bhandari et al. 2012; Deep et al. 2017; Rijal et 

al. 2013; Sundar et al. 2012), and treatment failure with MF (Carnielli et al. 2018), as well 

as high (8-fold) AmB resistance (Purkait et al. 2012), have also been reported in patients. 

AmB resistance is complex and can result from causes other than selection with AmB. For 

example, in fungi selection with other antifungals (e.g. azoles and echinocandins) (Marr 

2004; Yoon et al. 1999) has yielded cross-resistance to AmB. This cross resistance to AmB 

has been also observed in patients with leishmaniasis treated with the antileishmanials, 

antimonials and miltefosine. The possibility that AmB resistance may emerge is of 

considerable concern, given the drug has been used increasingly for VL both as 

monotherapy (Fairlamb et al. 2016; Mudavath et al. 2014; Rastrojo, García-Hernández, 

Vargas, Camacho, Corvo, Imamura, J.-C. Dujardin, et al. 2018) and is being considered  as 

a partner drug in combination therapy, e.g. with MF, in VL patients co-infected with HIV 

(Diro et al. 2019). Combined therapy can be an alternative to the problem or drug 

resistance with some advantages (e.g. cost-effective, less duration of treatment), however, 
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whether the use of two antileishmanials can contribute to prevent resistance are still 

unknown (van Griensven et al. 2010). Risks of cross-resistance between these two 

compounds, however, needs consideration too, since selection of resistance to AmB has, 

on occasion, been associated with cross-resistance to MF (Fernandez-Prada et al. 2016; 

Pountain et al. 2019a), due to mutations to the miltefosine transporter appearing during 

selection of AmB resistance. Other causes of resistance to miltefosine were recently related 

to the loss of a particular genetic locus, not involving the miltefosine transporter, LMT, 

increased the risk of treatment failure by 9.4-fold (Carnielli et al. 2018). 

Other examples of cross resistance are, paromomycin (García-Hernández et al. 2012; 

Pountain et al. 2019a), and azoles. Although in other studies, some AmBR lines 

(AmBRA/cl1 in the study of Pountain) have been also found to be more susceptible to this 

aminoglycoside (Mbongo et al., 1998; Mwenechanya, R. PhD Thesis University of 

Glasgow, 2014), possibly, due to mutations in different enzymes of the sterol pathway. 

With regard to azoles, point mutations in the enzyme Lanosterol 14-alpha demethylase 

(C14DM), the target of azoles, have been shown to cause AmB resistance in Leishmania 

(Mwenechanya et al. 2017)  and fungi (Sagatova et al. 2015), because ergosterol, the target 

of the drug is no longer produced when the enzyme is mutated. Kelly and colleagues 

observed cross-resistance to AmB in two fluconazole resistant strains of C. albicans 

isolated from humans with HIV/AIDS (Kelly et al. 1997). Another clinical isolate of C. 

albicans with mutations in ERG11 (C14DM in Leishmania) and ERG5 (C22-sterol 

desaturase), was cross-resistant to AmB and azoles (Martel, Parker, Bader, Weig, Gross, 

Warrilow, Kelly, et al. 2010). 

Laboratory-selected AmB resistant L. mexicana lines were more susceptible to 

pentamidine (PENT) (Mbongo et al. 1998a; Pountain et al. 2019a), an oxidative stress-

inducing agent (Mehta and Shaha 2004), and to other oxidising agents e.g. methylene blue 

(Buchholz et al. 2008; Farjami et al. 2010) and hydrogen peroxide (Mwenechanya et al. 

2017). Previous work of Mwenechanya, also found an increase in the abundance of 

trypanothione in the AmB resistant lines. This was linked to a duplication of chromosome 

five (Chr5) in which trypanothione reductase (LmxM.05.0350) is located, and to an 

increase in the CNV of this gene (PhD Thesis Mwenechanya, R. University of Glasgow, 

2014). Proteins involved in stress-responses have also been found to be increased in other 

AmB resistant lines (Brotherton et al. 2014).  

The scarcity of field isolates of Leishmania demonstrating AmB resistance has necessitated 

the creation of laboratory induced resistance, which has the advantage of allowing 
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comparison between isogenic lines. However, to do this, selection of individual lines in 

parallel is necessary, given the genome instability of Leishmania parasites grown in culture 

(Laffitte et al. 2016; Pountain et al. 2019a; Ubeda et al. 2008). A full description of all the 

enzymes related with polyene drug resistance in Leishmania spp., with special focus in 

AmB resistance in vitro (Al-Mohammed, et al., 2005; Mwenechanya et al., 2017; Pountain 

et al., 2019) and in clinical isolates (Durand et al. 1998; Giorgio 1999; Purkait et al. 2012), 

is discussed in chapter 1 (section 1.6.6.3). Lines resistant to  various antileishmanials, 

including AmB, antimonials (PAT and SbIII) (Berg et al. 2015; Parmar et al. 2011), PAR 

(Hendrickx et al. 2015; Jhingran et al. 2009; Rastrojo, et al. 2018), Ketoconazole 

(Andrade-Neto et al. 2012), MF (Canuto et al. 2014; Seifert et al. 2003; Shaw et al. 2016; 

Turner et al. 2015), as well as different combinations of these drugs (Berg et al. 2015; 

García-Hernández et al. 2012) have all been studied. Comparing results between non-

isogenic strains, and parasites selected under different experimental conditions (Fernandez-

Prada et al. 2016; Mbongo et al. 1998a; Mwenechanya et al. 2017; Purkait et al. 2012) can 

confound comparisons. Several studies have characterised multiple lines selected in 

parallel (Al-Mohammed et al. 2005; Pountain et al. 2019a). Al-Mohammed et al., selected 

for AmB resistance in both amastigotes and promastigotes, whereas Pountain et al. 

simultaneously selected four AmB resistant lines and profiled their sterol content as well as 

genome sequence, which revealed multiple different genetic changes, all of which lead to a 

reduction in ergosterol in the resistant parasites. Another advantage of generating clearly 

defined resistant lines in vitro is the ability it offers to analyse cross-resistance between 

antileishmanials, and to other compounds, including libraries that have never been 

explored previously.  

Given the minor structural differences between the two large polyenes AmB and nystatin 

(Nys) (see Figure 1-10, E and F), here we selected several independent lines for resistance 

to both polyenes, and assessed whether cross-resistance is reciprocal between these two, 

and to the small polyene, Natamycin (NMC), as well as to other compounds with different 

mode of action. One common change across AmB resistant lines (in Leishmania and in 

fungi) is the alteration of the composition of sterols, with ergosterol or closer relatives, that 

bind AmB replaced by various intermediates depending on the defects in different enzymes 

of the sterol pathway. For this reason, we used a more integrative approach combining 

genomics and other bioinformatics tools (chapter 4), and metabolomics (chapter 7), to 

characterise these polyene-resistant lines. Gas chromatography–mass spectrometry (GC-

MS) was employed to determine if changes in the sterol profile are associated in AmBR 

lines (chapter 5). Broader changes in the metabolism were also investigated using 

untargeted metabolomics (LC-MS) (chapter 7). Additionally, we explored the relationship 
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between these alterations in sterols in the AmB resistant lines and their infectivity in vivo, 

as well as the response to different formulations of AmB (i.e. AmB-D and AmBisome) in a 

mouse model. Finally, I present some evidence of the role of protein-protein interaction 

(PPIs) in the sterol biosynthetic pathway in Leishmania, and how this multi-enzymatic 

complex, initially described in the budding yeast (Mo and Bard 2005a), related to the 

mutations that were identified in this study, and in other reports, with AmBR lines of 

Leishmania spp. 

 Results 

3.2.1 Selection of polyene resistance in Leishmania spp. 

Leishmania mexicana M379 promastigotes were selected for resistance to the polyenes 

amphotericin B (AmB) and nystatin (Nys). The first step was to determine the EC50 for 

each of these compounds in the parental wild type. Subsequently, drug selection was done 

by adding a concentration of each drug similar to the EC50 for each polyene to the culture 

medium. Parasites growth and morphology were assessed by light microscopy. The 

concentration of AmB or Nys in the culture was increased in a stepwise-manner following 

the method described elsewhere (Mbongo et al. 1998a; Phelouzat, Lawrence, and Robert-

Gero 1993), with some differences for each of these polyenes, outlined below. 

3.2.1.1 Amphotericin B resistant lines 

Four independent lines of L. mexicana were selected for resistance against AmB. The 

starting concentration of AmB was between 50 to 60 nM, which corresponds to the EC50 of 

the parental wild type. Parasite growth was monitored weekly and compared with the 

parental line which was cultured in parallel for the same number of passages without 

adding drug. Drug assays (i.e. Alamar Blue assay) were performed approximately each 

four weeks to detect increases in the EC50. When parasites under drug pressure attained 

growth comparable to the parental line, or no inhibition of growth was observed between 

18 to 48 hours after adding the drug, the EC50 was measured and the concentration of drug 

added in the sample (culture medium) was doubled, adjusting based on the EC50 of each 

line. In some cases, this concentration was reduced by 25% after identifying a high 

percentage of cell death (over 50%) between 24 to 48 hours after increasing the 

concentration (i.e. if the new concentration had been increased from 50 to 100 nM, it was 

readjusted to 75 nM). Development of resistance against AmB showed variation between 

lines. The increase in resistance was more abrupt and occurred earlier in some lines (i.e. 

AmBRcl.14) whereas in others (e.g. AmBRcl.8) it appeared more gradually. After ceasing 
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the drug selection, and before selecting individual clones, the four AmBR lines were 

between 6 and 10-fold less sensitive to AmB in comparison to the parental line (Figure 

3-1). Although the fold change in resistance was marginally lower after selecting 

individual clones (Table 3-1), values in the order of 8 to 10-fold or above were observed in 

most of the experiments (Figure 3-5).  

 

Comparable fold changes to those found here have been reported in other AmB resistant 

Leishmania spp., including a clinical isolate of L. donovani that was 8-fold-higher (Purkait 

et al. 2012). Another strain of L. tropica attained a 16-fold resistance after only four 

months (Khan et al. 2016). In this study, the maximum fold change in all the AmBR lines 

of L. mexicana was between 11- to 12.7-fold change (see section 3.2.3.1) in resistance after 

eight months (Figure 3-1). Interestingly, the maximum concentration of AmB tolerated 

(i.e. added in the culture) by the resistant line of L. tropica, was 0.1 µg, which is 

comparable to the concentration added here (~1 µM) in all AmBR lines of L. mexicana. 

The difference in the final fold change observed between these two species, is probably, 

Figure 3-1. Selection of AmB resistance in L. mexicana promastigotes.  
The concentration of AmB in the culture medium was increased in a stepwise-manner with a 
starting density of 5x105 parasites per ml. The pipelines-like and left-hand y axis indicate the 
concentration of AmB (nM) added in the culture medium. The bars and right-hand y axis 
refer to the EC50 values (mean of triplicates) of AmB attained by the four resistant lines at 
different times during the drug selection process as indicated by the x axis. The horizontal 
dotted line (black) indicates the mean EC50 value of the parental wild type. Bars: Wild type 
(black). AmBRcl.14 (yellow). AmBRcl.3 (orange). AmBRcl.8 (dark blue). AmBRcl.6 (light 
blue). 
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due to the difference in their initial EC50 values for AmB (30 nM in L. tropica versus ~60 

nM in L. mexicana). However, while concentrations of 0.2 µg per ml were not tolerated by 

the AmBR of L. tropica (Khan et al. 2016), concentrations as high as 0.2 µg, were added in 

the culture in all the AmBR of L. mexicana. In some lines (e.g. AmBRcl.14) these 

concentrations were well tolerated for a period of up to four months. 

 

Individual clones were obtained from each independent line by limiting dilution (see 

chapter 2, section 2.3) and the EC50 was measured in at least two clones per line. One clone 

(the highest EC50) was selected from each line for downstream analysis (named AmBR 

cl.14, AmBR cl.8, AmBR cl.6 and AmBR cl.3). Retention of resistance was confirmed 

after sub-culturing all the selected clones for an additional 5 to 10 passages without drug 

pressure. Except for one clone of line 3 (cl.3E12), the mean EC50 was very similar between 

clones obtained from the same line (see Table 3-1). As with the mean EC50 observed in the 

four lines before the selection of clones, there was some variability in the mean EC50 

values between the four AmBR clones selected. However, the difference of the mean EC50 

between resistant lines and the parental wild-type was statistically significant either before 

(Figure 3-2) and after the selection of individual clones (Figure 3-5 and Table 3-2). 

Figure 3-2. Susceptibility of AmBR lines before the selection of individual clones.  
Mean EC50 values are shown in µM with their standard deviation (bars). Tukey's multiple 
comparison test measured pairwise differences between each resistant line compared with 
wild type. Statistically significant values (P<0.05, 95% Confidence Interval) are shown with 
stars: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001). 
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AmBR lines 

  

NysR lines 

Clone AmB 
EC50 (µM) ±SD Fold Change Clone Nys 

EC50 (µM) ±SD Fold 
Change 

WT 6.24E-02 3.87E-03 - WT HP 2.463 1.61E-06 - 
cl.14B3 5.19E-01 2.30E-02 8.3 cl.B1 * 48.69 0.00E+00 19.7 
cl.14G4 5.48E-01 7.79E-02 8.8 cl.B2 *  49.58 0.00E+00 20.1 
cl.8A11 4.37E-01 7.07E-04 7 cl.C1 *  22.95 0.00E+00 9.3 
cl.8E12 4.38E-01 9.83E-03 7 cl.C2 * 13.26 0.00E+00 5.3 
cl.6E10 4.19E-01 1.67E-01 6.7 WT P0 1.909 7.27E-07 - 
cl.6C3 3.57E-01 9.57E-02 5.7 cl.E1 * 23.08 0.00E+00 12.3 

cl.3B12 3.78E-01 5.95E-02 6.1 cl.E2 * 22.54 0.00E+00 11.8 
cl.3E12 2.19E-01 9.57E-02 3.51 cl.E3 * 22.96 0.00E+00 12 

        cl.FA3 (F1) 11.93 1.19E-05 6.2 
        cl.F F11 (F2) 13.72 1.38E-05 7.2 
         cl.F H6 (F3) 12.88 1.31E-05 6.7 

 
 

3.2.1.2 Nystatin resistant lines 

Selection for resistance of four independent lines against nystatin (NysR) was also 

performed in L. mexicana M379 promastigotes using the same method described with 

AmBR lines (see 3.2.1.1). However, unlike the selection with AmB in which four lines 

were selected from a single parental wild type, two parental wild types were used to select 

resistance for nystatin. The first wild type was a low passage (named WT P0) recently 

recovered from mice infection and subculture in vitro for one or two passages. The other 

wild type was a high passage wild type (named WT HP) from axenic culture which had 

been previously maintained in vitro for at least 50 passages. Each wild type was selected 

with two different concentrations of drug (named low and high), thus resulting in a total of 

four Nystatin resistant lines.  

The first concentration (high) was determined by the EC50 and a stable growth comparable 

to the parental line cultured in parallel without drug, as described with AmBR. On the 

other hand, the second concentration (low) was between 25 to 50% lower than the high 

Table 3-1. Susceptibility to AmB and Nys of individual clones selected for resistance.  
AmBR and NysR individual clones from each independent line were selected by limiting 
dilution and those with the highest fold change (highlighted in bold and red) with respect 
their respective parental wild type (WT) were selected for further experiments. AmB clones 
are all from the same WT. NysR clones are from two wild types. Clones cl.B2 and cl.C1 are 
from WT HP, and clones cl.E1 and cl.F2 are from WT P0 (all WT are highlighted in grey). 
Except in those clones marked with star (*) which are from a single test, the EC50 values 
show the mean ± standard deviation (SD) of at least two biological replicates. I decided to 
include the SD of duplicates to indicate the variation from the mean, although this value of 
SD from duplicates is nonetheless, less powerful than with samples with a larger N size (e.g. 
this is considering 95% confidence level, Student t distribution with n-1 degree of freedom, 
and assuming normal distribution of the sample, in which the multiplicative factor is 12.71 
when n= 2, instead of 1.96 when n= infinite). AmBR and NysR clones were tested for AmB 
and Nys, respectively. In the rest of this thesis, AmBR clones cl.14G4, cl.8A11, cl.6E10 and 
cl.3B12 correspond to names AmBR -cl.14, -cl.8, -cl.6 and -cl.3, respectively. 
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concentration. NysR-B and NysR-C were from the high passage wild type (WT HP), and 

NysR-E and NysR-F were selected from the low passage wild type (WT P0). Regarding 

the drug concentration, NysR-B and NysR-E were maintained with high concentration of 

Nys, whereas NysR-C and NysR-F were selected with lower concentration of drug. The 

starting EC50 of Nys in the parental wild types was between 1.5 to 1.7 µM. All four NysR 

lines, including both wild types, which were cultured in parallel without drug, were 

maintained for the same number of passages (Figure 3-3).  

In some assays, the level of resistance was correlated with the concentration of drug added 

in the culture. For instance, clones from lines NysR-C and NysR-F, which were maintained 

with lower concentration of Nys, attained a lower level of resistance than those from lines 

NysR-B and NysR-E (see Table 3-1). However, in subsequent tests, clones from line 

NysR-F showed comparable EC50 values to Nys as those lines selected with a higher 

concentration of drug, suggesting that other factors are involved in the development of 

resistance. This partial correlation between the concentration of drug and the degree of 

resistance was also observed in the cross-resistance to AmB in the same line NysR-F, and 

NysR-C (Figure 3-3, panels C and D). The highest concentration of Nys that was added to 

the culture medium at the time when drug selection was stopped, was around 12 µM. After 

one or two passages at this concentration, the amount of drug was reduced slightly in some 

lines (Figure 3-3, panel B) that showed signs of death cell (e.g. swollen or dark cells).  

As the main interest of investigating Nys was to gain insight with regard the MoA of AmB 

as one of the main treatments for leishmaniasis, the development of cross-resistance 

against both polyenes was also monitored in parallel during the drug selection (Figure 3-3 

Panels C and D). After 4 to 5 months selecting for Nys-resistance, lines attained 

comparable EC50 values of cross-resistance to AmB as those observed in the AmBR lines 

after 7 to 8 months. While the difference in the mean EC50 to AmB was significantly 

different than the parental wild type only in three lines (i.e. NysR-B, -C and -F), the 

difference in resistance developed to Nys was significant in all NysR lines (Table 3-3 and 

Figure 3-7).
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Figure 3-3 Selection of resistance to nystatin (NysR) in L. mexicana promastigotes and cross-resistance with AmB.  
Left hand Y axis shows the concentration (µM) of drug added in the culture. Right hand Y axis shows the Nys EC50 in µM (Panels A and B), and AmB EC50 in 
nM (Panels C and D). Lines NysR-B and NysR-C were selected from a high passage wild type (WT HP), and lines NysR-E and NysR-F were selected from a 
low passage wild type (WT P0). The horizontal dotted lines (black) indicate the mean EC50 values of the parental wild types. 

A B 

C D 
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As with AmBR lines, individual clones were also selected following the same protocol 

(limited dilution) described with AmBR lines. Similarly, the retention of the resistant 

phenotype in vitro was confirmed after an additional 5 to 10 passages without drug. Unlike 

AmBR clones, in which little variation between clones from the same line was observed, 

higher differences were observed between some clones obtained from the same line, 

possibly because the concentration of drug added to the culture medium attained during the 

drug selection was also more heterogeneous (to analyse the effect between high and low 

concentrations, as described before) than with the AmBR lines. Finally, the four most 

resistant clones (one from each line) were selected for further analysis (named NysRcl.B2 

NysRcl.C1 NysRcl.E1 and NysRcl.F2). The fold change in EC50 of the selected clones in 

comparison with their respective wild type was between 5- to 20-fold at the time of being 

selected by limiting dilution (Table 3-1). However, the maximum fold change observed in 

subsequent tests was between 7- to 11-fold (Figure 3-8). 

3.2.2  Growth rate of polyene resistant promastigotes. 

The growth of the polyene resistant lines was assessed and the presence of the different 

stages was assessed as described for L. mexicana wild-type promastigote (Bates and Tetley 

1993) and in chapter 2 (section 2.1). In general, no changes were observed in 

Haemoflagellate-modified minimal essential medium (HOMEM) medium 

(https://www.bioz.com/Gibco). Parasites of both, AmBR and NysR lines showed growth 

with a typical S-shape curve consisting of a log-phase during the first 72 hours, and a 

stationary phase from day four, and onwards. As shown in Figure 3-4 (Panels A and C), 

during the stationary phase, all AmBR and NysR clones achieved densities of 1.0 - 1.5 x 

107 comparable to their respective wild types, no-significant difference between their 

means (ANOVA, P= 0.9983). However, NysRcl.B2 and NysR.cl.C1 (Figure 3-4 Panel B) 

showed a reduced growth during log phase (between 48- and 72 hours) which was 

statistically different than in the parental wild type WT HP (Two-way ANOVA, P=0.0005 

and P<0.0001, respectively). As parasites were selected for resistance in this medium 

(HOMEM), therefore, the selection for resistance against both polyenes showed no 

significant effects on the growth of the resistant lines. Growth of AmBR clones was 

assessed in parallel in Defined Medium (DM) (see Chapter 2; PhD Thesis Raihana Binti, 

unpublished), a medium without foetal bovine serum (FBS) and lacking other 

macromolecules, which was engineered to grow Leishmania and avoiding variations due to 

the serum components between batches, among other additional advantages, such as 

reducing costs of medium (Ali, Ahmad, and Masoom 1998; Merlen et al. 1999). 
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In DM, all of the AmBR lines tested, including the parental wild type, no log phase was 

observed, and the highest density attained remained below 1.5 x 106 until day 8. However, 

in line AmBRcl.6, the mean value of growth was significantly higher than in the wild type 

(Tukey’s Test, P=0.0191). The distributions of cell body length are shown in Figure 3-4 

Panel D. Overall, the range of the cell body length was very similar to those values (6 - 12 

µm) described by Wheeler, Gluenz and Gull, 2011. Interestingly, while AmBRcl.6 was the 

only resistant line with similar cell body length as wild type with mean values of 8.4 µm 

and 8.6 µm, respectively (P=0.9814), AmBRcl.14, AmBRcl.8 and AmBRcl.3 showed a 

wider distribution of size (7 to 16 µm) with significant difference in comparison with wild 

type (P<0.001). Similarly, the mean values (8.4 - 12 µm) of the flagellum length in all 

Figure 3-4. Culture and growth rate and size of polyene resistant lines of L. mexicana 
promastigotes in HOMEM and Defined Medium (DM).  
Cell density of the procyclic promastigote stage was measured every 24 hours for 8 days 
using the haemocytometer. Starting density of 1 x 105 cells/ml. Panel A. AmBR in HOMEM, 
Panel B. AmBR in Defined Medium (DM) and Panel C. NysR in HOMEM. Measurements are 
the median of three biological replicate, bars represent standard deviation. Panel D. Violin 
plot of the mean size of the resistant lines is shown in µm. The central continuous line 
within each coloured plot represents the median value of each group. The cell body length 
was measured from the base of the flagellum until the posterior endpoint of the cell body of 
promastigotes in the stationary phase. Data were processed with ImageJ software and 
represent the measurements of at least 30 cells (empty circles). In all Panels, mean values 
are shown with their standard deviation (bars). Tukey's multiple comparison test was used 
to find pairwise differences between resistant lines and parental wild type. Statistically 
significant values (P<0.05, 95% Confidence Interval) are indicated with stars as follows: *P ≤ 
0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001). 

B. A. 

C. D. 
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resistant lines and wild type, were between the range (5 – 13 µm) reported before in 

Leishmania mexicana promastigotes (Richard J. Wheeler, Gluenz, and Gull 2011).  

3.2.3 Drug screening of polyene-resistant lines 

After confirmation of resistance, a total of eight polyene-resistant lines of L. mexicana 

(four AmBR and four NysR) were screened for the presence of cross-resistance against a 

broad range of compounds, including anti-leishmanials, some inhibitors of the synthesis of 

sterols, such as imipramine (Andrade-Neto, Pereira, Do Canto-Cavalheiro, et al. 2016), and 

other tricyclic antidepressants (TCA). A full list of the mean EC50 values of all the 

compounds screened in both, AmBR and NysR lines, is shown in Table 3-2 and Table 3-3, 

respectively. Similarly, fold-changes with respect to their parental wild types is shown for 

all compounds in Figure 3-6 and Figure 3-8. Additionally, two clones from each polyene 

(AmBRcl.14 and AmBRcl.8, and NysRcl.B2 and NysRcl.E1) were tested against a library 

of a new class of inhibitors active in Leishmania spp. (chapter 6). 

3.2.3.1 Cross-resistance between polyenes 

While cross-resistance to other compounds was heterogeneous, all AmBR and NysR 

clones were cross-resistant to AmB, Nys, and to a lesser extent, to the small polyene 

Natamycin (NMC). Cross-resistance between polyenes was expected, as polyene 

antifungals possess a similar MoA, with minor differences (Serhan et al. 2014), for 

instance, NMC has been reported to have the advantage of the lack of resistance 

(Welscher, et al. 2008; 2010). In general, AmBR clones were between 11- to 12.7-fold 

resistant to AmB. Similarly, NysR lines were between 7- to 11-fold resistant to Nys, 

although in the latter, resistance developed in less time. While no difference in resistance 

to AmB (P>0.9999), and Nys (P>0.997), was observed between the high passage (WT HP) 

and the low passage (WT P0) wild types, clones NysRcl.E1 and NysRcl.F2, selected from 

the latter, attained lower fold change (6.6- to 7.7-fold) in comparison with those from the 

WT HP (7.4- to 11-fold). This difference was significant when compared with the clone 

NysR.cl.B2 (P<0.01). Interestingly, cross-resistance between AmB and Nys increased in a 

similar fashion (between 10- to 20-fold). In contrast with this, cross-resistance to NMC 

was around ten times lower (i.e. 1.7- to 2-fold) in AmBR lines (NMC was not tested in 

NysR lines), possibly due to the structural differences between this small polyene in 

comparison with AmB and Nys (de Souza and Rodrigues 2009b), which are both large 

polyenes (Te Welscher et al. 2010). 
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3.2.3.2 Susceptibility to other anti-leishmanials 

For MF, NysRcl.B2 was the only line with mild increase in susceptibility, by contrast, all 

the other polyene resistant lines were cross resistant to MF, with a fold change up to three 

times higher in the AmBR lines than in the NysR lines (5- to 10-fold versus 2- to 3.7-fold, 

respectively). Moreover, AmBRcl.8 and AmBRcl.6 lines were twice less sensitive than the 

other two AmBR lines, AmBRcl.14 and AmBRcl.3. Although the uptake of MF was not 

determined in this study, the changes found in the MF transporter (MT) gene 

(LmxM.13.1530) in AmBRcl.8 and AmBRcl.6, can account for this difference in 

susceptibility (see chapter 4, section 4.1.2, Figure 4-3). On the other hand, no change 

(deletion or mutations) in the MT, was identified in AmBRcl.14 and AmBRcl.3, which 

were between 5.37- to 5.48-fold cross resistant to MF, possibly, derived from the alteration 

of the sterols, i.e. increase of ergosta-7,22-dien-3-ol (96.7%), in these two lines (see 

chapter 5, Table 5-1). Interestingly, a comparable increase in cross resistant to MF (2.2- to 

3.7-fold), was also observed in the two NysR clones, Nys.cl.E1 and NysR.cl.F2, which 

sterols profile resembled that observed in AmBR lines 14 and 3 (chapter 5, Table 5-3). The 

other two clones, NysR.cl.B2 and NysR.cl.C1, were between 3 to 4 times less resistant to 

MF, however, the difference in the EC50 with their respective wild type lines, was 

statistically significant for MF (P=0.0004). Changes at the gene level were not analysed in 

none of the NysR lines, as time did not permit. 

Comparable increase in resistance to MF (~3.8-fold) was reported in a line of L. infantum, 

selected for resistant to AmB, with a SNP in the MT (Fernandez-Prada et al. 2016). In the 

study of Pountain et al., in which four lines were selected in parallel for AmB, only one 

line, AmBRB/cl2, showed cross resistance to MF (2.3-fold), while the other three lines 

were MF-hypersusceptible. The low increase in MF resistance in the former, is somehow 

surprising, given that this line showed a complete deletion of the MT (Pountain et al. 

2019a). Contrary to the study of Pountain et al., the study of Fernandez and colleagues, and 

another study in L. donovani, showed a 13.2- and 13.7-fold increase, respectively, in 

resistance to MF (Fernandez-Prada et al. 2016; Pérez-Victoria et al. 2006), this increase is 

in agreement with the fold change observed in my study with lines AmBRcl.8 and 

AmBRcl6. Altogether, these studies show that MF resistance is associated with both, 

mutations (SNPs), and with the complete deletion of the MT, which derived from selection 

in vitro to either, MF or AmB. 

For PAT, significant increase in susceptibility was observed for NysRcl.B2, with no 

change in any other line. The only change observed with any of the anti-leishmanials 
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tested, that was consistent across all polyene resistant lines was the significant higher 

susceptibility to PAR and to PENT. The greatest degree of susceptibility was observed in 

AmBR lines in comparison to the NysR lines. Moreover, some AmBR lines with the 

highest levels of resistance to AmB and Nys, were also more susceptible to PENT and to 

PAR. This negative correlation between AmB resistance and increase susceptibility to 

PENT seems to be universal. For instance, a line of L. mexicana was 23-fold resistant to 

AmB and decreased its EC50 values to PENT by 13.3-fold (Mwenechanya et al. 2017).  

Another resistant line of L. donovani showed 18.9- and 0.52-fold change for AmB and 

PENT, respectively (Mbongo et al. 1998a). Equally, in four AmBR clones, those with the 

highest fold change to AmB (between 8 to 10-fold) were also the most sensitive to PENT 

(from 0.2 to 0.10-fold change) whereas the two lines with lower resistance levels (3 to 5-

fold) showed a decrease in their EC50 to 0.24-fold (Pountain et al. 2019a). Although the 

differences in EC50 values in the NysR lines were smaller, in all cases the difference with 

respect their parental wild type was significant. However, while there was no difference in 

the mean EC50 between wild types (low and high passage) for PAT (P=0.8799), EC50 

values between both wild types were significantly different for PAR (P=0.0488) and PENT 

(P=0.0007). This increased susceptibility to PENT was also observed in all the NysR lines 

(between 1.7- to 2-fold, P= 0.0041 and 0.0168), and 3- to 3.8-fold (P<0.0001) for the 

resistant lines derived from the high and low passage wild types, respectively (Table 3-3). 

3.2.3.3 Susceptibility to other sterol inhibitors 

We assessed the susceptibility to inhibitors of other enzymes in the sterol pathway. Azoles 

(ketoconazole) inhibit the enzyme lanosterol 14-alpha demethylase (C14DM, 

LmxM.11.1100) (Emami, Tavangar, and Keighobadi 2017; De Macedo-Silva et al. 2013; 

W Xu et al. 2014) and fenarimol, has also been shown to interfere with the sterol synthesis 

by inhibiting C14DM (Choi et al. 2014; Zeiman et al. 2008). No significant changes were 

observed in susceptibility to ketoconazole (Keto) or fenarimol, although lines AmBR.cl14 

and AmBRcl.3 were slightly more sensitive to these two compounds than AmBR.cl8 and 

AmBRcl.6. 

Other compounds included in the screening were the tricyclic antidepressants (TCA) 

imipramine (IMI), clomipramine, mianserin and ketanserin. TCAs have been found to 

inhibit the synthesis of sterols, targeting the C-24-sterol methyltransferase (C24SMT, 

LmxM.36.2380 and LmxM.36.2390) (Andrade-Neto, Pereira, Do Canto-Cavalheiro, et al. 

2016) and the 3-hydroxy-3-methylglutaryl-CoA synthase (HMG-CoA, LmxM.24.2110) 

(Brooks et al. 2012; Singh et al. 2014). In general, all lines showed mild resistance against 
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all these compounds. Mianserin was the only TCA with higher susceptibility in 

AmBRcl.14 and AmBRcl.3, but no statistical difference was observed. Susceptibility 

against a series of sterol inhibitors from a new library, 1,2,3-triazolyl sterols (TAZ), in 

AmBR lines (Figure 3-5) is discussed in more detail in chapter 6. 

3.2.3.4 Agents inducing oxidative stress 

AmB is known to induce oxidative stress (Anderson et al. 2014; Gray et al. 2012), for this 

reason, we tested the susceptibility of all the AmBR lines to methylene blue (MB). MB, 

also known as methylthionine hydrochloride or 3,7-bis(dimethylamino)phenothiazin-5-ium 

chloride (Buchholz et al. 2008), induces oxidative stress inside the cell by producing 

oxidised NADP+ from NADPH, thus stimulating the oxidation of glutathione (Kelner and 

Alexander 1985) and therefore can be utilised as REDOX indicator (Farjami et al. 2010). 

Interestingly, as with the antileishmanials PAR and PENT, MB also showed a significant 

increase in susceptibility which was consistent across all AmBR lines, with fold changes 

between 3- to 6.7-fold with respect the parental line. This higher susceptibility to oxidative 

stress inducing agents suggests that the reducing capacity is altered in AmBR Leishmania. 

MB susceptibility was not determined in none of the NysR lines neither in their parental 

wild types.  
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Figure 3-5. Susceptibility of AmBR lines of L. mexicana against different inhibitors.  
Mean EC50 values are shown in µM with their standard deviation (bars). Tukey's multiple 
comparison test was used to find pairwise differences between resistant lines compared 
with the parental wild type. Statistically significant values (P<0.05, 95% Confidence Interval) 
are shown with stars: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001). Abbreviations of 
AmBR lines and compounds is similar to that written in the text. C24SMTKO: C24-sterol 
methyl transferase knockout (see section 2.8.4, and Chapter 6 for a full description / 
screening of this line). 
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AmBR non-clonal WT AmBR line 14 AmBR line 3 AmBR line 8 AmBR line 6 ANOVA P value 
AmB Mean ± SD 0.085 ± 0.0246 0.6283 ± 0.0982 0.6893 ± 0.183 0.7536 ± 0.212 0.6731 ± 0.153   

 P value    0.0087  ** 0.0042  ** 0.0020  ** 0.0051  ** 0.0017 ** 
AmBR clones WT AmBRcl.14 AmBRcl.3 AmBRcl.8 AmBRcl.6 ANOVA P value 

AmB Mean ± SD 0.06 ± 0.004 0.6747 ± 0.216 0.7402 ± 0.234 0.7297 ± 0.228 0.7682 ± 0.264   
 P value    0.0327  * 0.0182  * 0.02  * 0.0142  * 0.0095 ** 

NMC Mean ± SD 3.161 ± 0.328 6.454 ± 0.496 6.585 ± 0.414 5.524 ± 0 6.167 ± 0.161   
 P value    <0.0001  **** <0.0001  **** 0.0002  *** <0.0001  **** <0.0001 **** 

Nys Mean ± SD 1.829 ± 0.101 36.49 ± 17.77 23.75 ± 9.609 32.68 ± 5.809 46.36 ± 8.366   
 P value    0.0124 *  0.1326  ns 0.0251  * 0.0022  ** 0.0032 ** 

Ketoconazole Mean ± SD 64.01 ± 25.58 48.49 ± 30.79 46.05 ± 19.9 61.53 ± 33.79 70.2 ± 36.09   
 P value    0.9652  ns 0.9424  ns >0.9999  ns 0.9989  ns 0.8292 ns 

Fenarimol Mean ± SD 96.12 ± 27.49 58.22 ± 0.227 61.83 ± 7.84 79.05 ± 27.15 84.34 ± 16.59   
 P value    0.1852  ns 0.2561  ns 0.8065  ns 0.9381  ns 0.1629 ns 

MF Mean ± SD 8.29 ± 2.13 45.43 ± 9.292 44.55 ± 10.01 76.87 ± 44.46 83.13 ± 39.29   
 P value    0.4912  ns 0.5126  ns 0.069  ns 0.0446  * 0.0446 * 

PAR Mean ± SD 390.2 ± 164.7 61.12 ± 7.888 71.91 ± 16.61 126.5 ± 19.87 41.11 ± 23.14   
 P value    0.0023  ** 0.003  ** 0.0108  * 0.0015  ** 0.0011 ** 

PAT Mean ± SD 69.14 ± 15.95 71 ± 6.371 86.6 ± 14.43 65.78 ± 11.9 56.6 ± 4.912   
 P value    0.9996  ns 0.4001  ns 0.996  ns 0.6818  ns 0.0955 ns 

PENT Mean ± SD 3.659 ± 0.681 0.7203 ± 0.08 0.8212 ± 0.261 0.3363 ± 0.016 0.3826 ± 0.079   
 P value    <0.0001  **** <0.0001  **** <0.0001  **** <0.0001  **** <0.0001 **** 

IMI Mean ± SD 51.09 ± 8.701 60.36 ± 13.26 59.47 ± 19.64 83.01 ± 31.77 76.24 ± 33.94   
 P value    0.9875  ns 0.9914  ns 0.5004  ns 0.6961  ns 0.4867 ns 

Mianserin Mean ± SD 86.2 ± 31.06 63.95 ± 28.13 70.14 ± 25.05 114.6 ± 18.56 113.8 ± 25.42   
 P value    0.8275  ns 0.9372  ns 0.6764  ns 0.6959  ns 0.1084 ns 

Clomipramine Mean ± SD 17.81 ± 2.586 26.46 ± 2.098 26.87 ± 0.86 28.37 ± 2.062 31.17 ± 5.496   
 P value    0.0372  * 0.0288  * 0.0114  * 0.0022  ** 0.0035 ** 

MB Mean ± SD 10.58 ± 1.881 2.815 ± 1.312 3.639 ± 2.024 1.469 ± 0.564 1.619 ± 1.199   
 P value    0.0006  *** 0.0014  ** 0.0002  *** 0.0002  *** 0.0001 *** 

Table 3-2. Susceptibility of AmBR lines and clones (L. mexicana) to a series of compounds.  
Values in µM, Mean ± Standard Deviation (SD). One-way ANOVA was performed independently for each compound to determine differences of the mean 
between groups. Tukey's multiple compared pairwise differences of resistant lines with respect the parental wild type. Except for NMC tested in AmBRcl.8, 
values are from at least three biological replicates. Statistical difference (P<0.05, 95% Confidence Interval) is shown with stars as follows: ns non-
significant or P>0.05; * P≤0.05; ** P≤0.01; *** P≤0.001; **** P≤0.0001. Abbreviations of compounds are as in the rest of the text. MB: methylene blue. 
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AmB NMC Nys Keto Fenarimol MF PAR PAT PENT IMI Mianserin Clomipram
ine MB 2DR 2ER 2ES

AmBRcl.14 11.23 2.04 19.95 0.76 0.61 5.48 0.16 1.03 0.20 1.18 0.74 1.49 0.27 0.57 0.56 1.19
AmBRcl.3 12.32 2.08 12.99 0.72 0.64 5.37 0.18 1.25 0.22 1.16 0.81 1.51 0.34 0.55 0.56 1.20
AmBRcl.8 12.15 1.75 17.87 0.96 0.82 9.27 0.32 0.95 0.09 1.62 1.33 1.59 0.14 0.31 0.54 1.03
AmBRcl.6 12.79 1.95 25.35 1.10 0.88 10.03 0.11 0.82 0.10 1.49 1.32 1.75 0.15 0.33 0.52 1.32
C24SMTKO 1.09 0.57 0.92
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Figure 3-6. Fold changes to a series of compounds of AmBR clones compared with the parental wild type. 
Fold changes in EC50 in comparison with the parental wild type cultured in parallel without drug. Bars indicate the standard deviation expressed as 
percentage (5%) of the fold change. Compounds abbreviations are as in the rest of the text, except for MB-methylene blue, keto-ketoconazole, and 2DR, 
2ER and 2ES are 1,2,3-triazolyl sterols (see chapter 6). C24SMTKO – C24-sterol methyl transferase double KO. Statistical differences are shown in Table 
3-2. Values higher and lower than 1, indicate resistance and higher susceptibility, respectively.
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Figure 3-7. Susceptibility of NysR lines of L. mexicana to different inhibitors.  
Mean EC50 values (µM) are shown with their standard deviation (bars). Vertical dotted black 
lines denote groups of clones related with their respective parental wild type as follows: 
Clones cl.B2 and cl.C1 are grouped with the parental wild type WT HP (wild type high 
passage). Clones cl.E1 and cl.F2 are grouped with the parental wild type WT P0 (low 
passage). Horizontal dotted black lines denote the mean of each wild type. Tukey's multiple 
comparisons test was used to identify pairwise differences of resistant lines in relation with 
their respective parental line. Statistically significant values (P<0.05, 95% Confidence 
Interval) are shown with stars: *P ≤ 0.05, **P ≤ 0.01, ***P≤0.001, ****P ≤ 0.0001). Abbreviations 
of AmBR lines and compounds is similar than in the text. 
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NysR Non-clonal WT HP (A) NysR- B NysR- C WT P0 (D) NysR- E NysR- F ANOVA P value 
Nys Mean ± SD 2.492 ± 0.687 31.94 ± 16.48 18.45 ± 12.88 2.205 ± 0.713 15.77 ± 8.386 23.13 ± 1.389 0.0120 *  

P value 
   

0.0198 
 

* 0.3398 
 

ns    0.5001 
 

ns 0.1296 
 

ns 
 

  
AmB Mean ± SD 0.118 ± 0.0048 0.82 ± 0.1049 0.7505 ± 0.1114 0.1081 ± 0.0215 0.304 ± 0.1089 0.3928 ± 0.1419 <0.0001 ****  

P value 
   

<0.0001 
 

**** <0.0001 
 

**** 
   

0.089 
 

ns 0.0064 
 

** 
 

  
Nys R Clones WT HP NysR cl. B2 NysR cl. C1 WT P0 NysR cl. E1 NysR cl. F2 ANOVA P value 

Nys Mean ± SD 2.973 ± 0.156 33.37 ± 8.624 22.09 ± 2.157 2.338 ± 0.5292 17.77 ± 0.9717 15.42 ± 2.975 <0.0001 ****  
P value 

   
<0.0001 

 
**** 0.0026 

 
** 

   
0.0316 

 
* 0.0449 

 
*   

AmB Mean ± SD 0.087 ± 0.021 0.7878 ± 0.1662 0.494 ± 0.0106 0.058 ± 0.0017 0.3962 ± 0.0062 0.4231 ± 0.058 <0.0001 ****  
P value 

   
<0.0001 

 
**** 0.0003 

 
***    0.0017 

 
** 0.0022 

 
**   

Ketoconazole Mean ± SD 26.39 ± 0 25.72 ± 0 25.48 ± 0 23.12 ± 0 11.07 ± 0.3465 10.56 ± 1.143 0.0085 **  
P value 

   
0.9849 

 
ns 0.9522 

 
ns    0.025 

 
* 0.0237 

 
* 

  

MF Mean ± SD 17.85 ± 0.704 15.79 ± 3.787 21.08 ± 2.483 5.564 ± 0.565 20.58 ± 0.0636 12.2 ± 1.987 <0.0001 ****  
P value 

   
0.8434 

 
ns 0.4885 

 
ns    0.0002 

 
*** 0.059 

 
ns   

PAR Mean ± SD 134.1 ± 12.3 39.19 ± 11.31 74.84 ± 6.668 168.8 ± 21.65 54.49 ± 3.159 62.49 ± 9.397 <0.0001 ****  
P value 

   
<0.0001 

 
**** 0.0012 

 
**    <0.0001 

 
**** <0.0001 

 
****   

PAT Mean ± SD 94.52 ± 2.275 52.9 ± 7.327 88.93 ± 16.48 85.5 ± 13.65 80.44 ± 0.6505 58.36 ± 4.299 0.0034 **  
P value 

   
0.0054 

 
** 0.9818 

 
ns    0.9929 

 
ns 0.1191 

 
ns   

PENT Mean ± SD 1.698 ± 0.312 1.026 ± 0.0546 0.8697 ± 0.138 2.739 ± 0.179 0.7059 ± 0.0042 0.965 ± 0.285 <0.0001 ****  
P value 

   
0.0168 

 
* 0.0041 

 
** 

   
<0.0001 

 
**** <0.0001 

 
**** 0.0007 *** 

IMI Mean ± SD 52.79 ± 17 55.78 ± 15.18 51.35 ± 11.63 39.36 ± 7.125 43.28 ± 2.284 40.86 ± 2.835 0.4425  Ns 
  P value   

 
  0.9994 

 
ns >0.9999   ns    0.9978   ns >0.9999   ns 

 
  

Table 3-3. Selectivity of NysR lines (L. mexicana) to antileishmanials, and other compounds.  
Values are shown in µM, Mean ± Standard Deviation (SD). One-way ANOVA test was performed independently for each compound to determine the 
difference of the mean between groups. Tukey's multiple comparison was used to identify pairwise differences with respect the parental wild type (WT). 
Lines B and C, and clones cl.B2, cl.C1 were compared with the parental WT HP. Lines E and F, and clones cl.E1 and cl.F2 are compared with the parental 
WT P0. Values are from at least three biological replicates. Statistically significant difference (P<0.05, 95% Confidence Interval) is shown with stars as 
follows: ns non-significant or P>0.05; *P≤0.05; **P≤0.01; ***P≤0.001 and ****P≤0.0001. Abbreviations of compounds are as in the rest of the text.  
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Nys AmB MF PAR PAT PENT Keto IMI

cl. B2 11.18 9.08 0.87 0.30 0.56 0.59 0.99 1.07

cl. C1 7.40 5.84 1.16 0.56 0.93 0.51 0.98 0.98

cl. E1 7.59 6.70 3.72 0.32 0.95 0.25 0.92 1.13

cl. F2 6.57 7.04 2.20 0.37 0.69 0.34 0.88 1.06
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Figure 3-8. Fold changes of NysR clones to a series of compounds.  
Fold change in EC50 in comparison with their parental wild type cultured in parallel without drug. Lines B and C, and clones cl.B2, cl.C1 were 
compared with the parental WT HP. Lines E and F, and clones cl.E1 and cl.F2 are compared with the parental WT P0. Bars indicate the standard 
deviation expressed as percentage (5%) of the fold change. Compounds abbreviations are as in the rest of the text, except for keto-ketoconazole, and 
IMI-imipramine. Statistical differences are shown in Table 3-3. Values higher and lower than 1, indicate resistance and susceptibility, respectively.  



 Discussion 

Profiling cross-resistance in either field isolates or laboratory generated resistant lines, has 
been proven to be an informative tool towards the understanding on the molecular MoA 
and resistance in Leishmania, moreover, screening a diverse number of molecules with 
similar structures, can help to differentiate the importance of other chemical groups related 
with their potency. Here, I have identified reciprocal cross resistance between AmB- and 
Nys resistant mutants selected in vitro. First, both methods of drugs selection were 
performed during comparable period of time between 6 and 9 months. Selection for 
resistance using nystatin, resulted in comparable EC50- and fold change final values, 
irrespective of the EC50 (micromolar range in wild type) of this polyene, is higher than its 
counterpart AmB, which is in the sub-micromolar or nanomolar order. Contrary to this, 
natamycin (a small polyene), which chemical structure and MoA is more different than that 
of these two polyenes, the highest increase observed was around 2-fold in AmBR lines 
(note that I could not get reliable numbers of EC50 with NMC in NysR lines). With the 
exception of NysRcl.B2, all polyene resistant lines were MF resistant, with a higher 
increase in those two lines (AmBRcl.8- and 6), in which the loss of the MT was identified 
using NGS analysis. Interestingly, two antileishmanials, PAR and PENT, were more potent 
in all resistant lines. While the mechanism of this in PAR is unclear, the increased 
susceptibility observed with PENT is more probably related with the oxidative stress 
induced by this compound, as confirmed with MB, another oxidative stress inducer. The 
oxidative stress induced by AmB has been previously reported in Leishmania, in my study, 
I have identified changes in metabolites such as upregulation of the PPP and other 
metabolites of the PTP, both which are related with the ability of Leishmania to detoxify 
ROS. Interestingly, both lines with the loss of the MT (and other changes in C24SMT), 
were more sensitive to the both PENT and MB, and another sterol inhibitor (2DR) that has 
never been studied (a more detailed analysis of the complete library of these new sterol 
inhibitors is discussed in chapter 6), than the other two AmBR lines. On the other hand, 
these two lines were more resistant (than AmBRcl.14 and 3) to IMI, a tricyclic 
antidepressant that has been reported to inhibit C24SMT, although these differences were 
marginal. The increased susceptibility towards PENT and MB, is in agreement with 
previous studies in another eight independent AmBR lines, previously characterised within 
the Barrett Lab, and are strong evidence of the usefulness of PENT (and other oxidative 
stress drugs) should the emergence of resistance against AmB emerge in the field, 
however, further studies on this are necessary. To further support this, a similar increase in 
susceptibility was observed in all four NysR lines characterised in this study. 



 Characterization of polyene resistant lines of 

Leishmania mexicana: whole genome 

sequencing 

 Results 

Enzymes of the sterol pathway that have been found to be related with AmB resistance in 
fungi are C14DM (Martel, et al., 2010 a; Xiang et al., 2013), C-8 sterol isomerase (C8SI) 
in S. cerevisiae and C. albicans (Kelly et al., 1994), and C5-sterol desaturase (C5DS) 
(Martel, et al., 2010 b) and C-22 sterol desaturase in C. albicans (Martel, et al., 2010 a; 
Sun et al., 2013). Similarly, in Leishmania spp., examples of enzymes related with AmB 
resistance are, the 3-hydroxy-3-methylglutaryl-CoA synthase (Brooks et al. 2012), C14DM 
(Mwenechanya et al. 2017), C-24-sterol methyltransferase (C24CSMT) (Jiménez-Jiménez 
et al., 2008; Cosentino and Agüero, 2014; Viana Andrade-Neto et al., 2016; Rastrojo, et 
al., 2018; Pountain et al., 2019), and C5DS (Pountain et al. 2019). In this chapter, I 
describe mutations, and other genomic alterations, identified in four AmBR clones. 
Moreover, these mutations were correlated with alterations in the sterol profile in these 
mutants similar to those described in other lines with an AmB resistant phenotype (Al-
Mohammed et al. 2005; Mbongo et al. 1998; Purkait et al. 2014),and their virulence in vivo 
(see chapter 5), and changes in other metabolites (chapter 7).  

The library and sequencing were performed at Glasgow Polyomics facility 
(https://www.polyomics.gla.ac.uk/). Whole Genome Sequencing and preparation of 
libraries of DNA were performed by Dr David McGuiness and run as paired ends with a 
length of 75bp with an average of over 12 million reads. Analysis was performed 
following the workflow described before using two platforms, Galaxy and Linux (see 
Chapter 2, section 2.12). Results are from samples processed from at least two biological 
replicates (Table 4-1). Genomic DNA was obtained from a wild type (LmWT) and four 
independent AmBR lines (AmBcl.14, AmBcl.3, AmBcl.8 and AmBcl.6). A second clone 
(Lm8E12) of line AmBcl.8 was included for comparison. The quality of reads (FastQC) in 
all of these samples was high, however, lower quality was observed in the reverse reads of 
LmWT3, Lm14G4-B, Lm3G4-B, Lm8A11-B and Lm6G7-B (Table 4-1, highlighted in 
red), was of lower quality, therefore these readings were not included in the analysis, 
which reduced their coverage in some samples. Forward readings from LmWT3 have 
higher quality and can be included to increase the coverage. Read number output are as 
follows: LmWT1: 12,114,797, AmBRcl.14: 8,099,926, AmBRcl.3: 8,725,643, AmBRcl.8: 



114 

 114 

8,942,188, AmBRcl.6: 10,840,973, and from project 3, LmWT2: 22,025,445. Overall, the 
percentage of reads mapped (BAM files) was high (94.23% to 97.68%). 

Illumina Sequencer  
 NextSeq 500 and HiSeq 

4000 * 
HiSeq 4000 HiSeq 4000 

Lines  Samples names 
LmWT1 LmWT1 LmWT3  
LmWT2   LmWT2 

AmBcl.14 Lm14G4 Lm14G4-B  
AmBcl.3 Lm3G4 Lm3G4-B  
AmBcl.8 Lm8A11 Lm8A11-B Lm8E12 
AmBcl.6 Lm6G7 Lm6G7-B  

*Due to insufficient read numbers, these samples were rerun in HiSeq 4000 
 
 

4.1.1  Chromosome changes 

Changes at the chromosome (Chr) level showed that ploidy was variable. Ploidy ratio was 
calculated as described before (Chapter 2, section 2.12). After the alignment with the 
reference genome (L. mexicana MHOM/GT/2001/U1103 release 9.0), obtained from the 
TriTrypDB database (http://tritrypdb.org/tritrypdb/), the majority of the chromosomes 
appeared without shifts in all lines, ploidy shifts were evident in eight chromosomes across 
the different resistant lines, and in ten chromosomes between wild types. All changes 
observed were an increase in copy number. No decrease in copy number or any universal 
change were observed in any resistant lines or the two wild types (Figure 4-1). There were 
more ploidy increases in Lm WT1 chromosomes than in WT2. Similarly, in many 
chromosomes (Chr4, Chr6, Chr11, Chr13, Chr15, Chr20 and Chr32), Lm WT1 decreased 
from triploidy or tetraploidy to diploidy in AmBR lines. 

AmBRcl.8 (A11) showed an increase in Chr3, Chr6 and Chr17, and lines AmBRcl.14 and 
AmBRcl.3, both showed an increase in Chr7, Chr16, Chr18 and Chr24. Only two 
chromosomes, Chr16 and Chr30, showed polyploidy in all four AmBR lines, and in both 
wild types. Interestingly, while a similar increase in Chr30 was also observed in another 
study on AmBR lines (Pountain et al. 2019), increase in these two chromosomes (Chr16 
and Chr30), has also been reported in two strains (M379 and U1103) of L. mexicana 
irrespective of drug pressure (Rogers et al. 2011). The work of Pountain observed between 
three to four copies in both Chr16 and Chr30, which is similar to our findings here, where 

Table 4-1. Samples for WGS of AmB resistant Leishmania mexicana promastigotes.  

Genomic DNA was obtained from wild type and four AmBR individual clones, in duplicates. 

Samples in red were not included due to low quality (see text). Samples and library were 

processed at Glasgow Polyomics https://www.polyomics.gla.ac.uk/. 
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chromosome 30 increased to four copies in all AmBR lines, and in the wild type Lm WT2, 
and to three copies in AmBRcl.8 (A11), and wild type Lm WT1. Chr16 showed triploidy 
in most lines, and two lines (AmBRcl.14 and AmBRcl.3) were tetraploid (Figure 4-2).  

In L. major, the equivalent homologous Chr31, numbered differently due to two fusion 
events in L. mexicana between Chr8 and Chr29, and between Chr20 and Chr36, which 
merged into Chr8 and Chr20, respectively (Valdivia et al. 2017), was the only 
supernumerary chromosome in all species (L. major, L. infantum, L. donovani and L. 
braziliensis) (Rogers et al. 2011). A similar observation was found in isolates of L. (L.) 
amazonensis, in which Chr30 (as in L. mexicana, and assuming a similar organisation, this 
is the homologue of Chr31 of the Old World Leishmania and New World Viannia species), 
was the only one showing a large increase in copy number. Interestingly, the read depth 
(Chr30) in both isolates was distributed homogenously, suggesting the amplification of the 
whole chromosome rather than duplication of a sub-region (Valdivia et al. 2017). The 
authors found that these results are contradictory given the diversity in aneuploidy that is 
characteristic across species, between different isolates or even within a single population. 
Rogers and colleagues, analysing the copy number of chromosomes in Leishmania, state 
that significant differences are present between some species and strains, in all of the 
species analysed (L. infantum, L. mexicana, L. braziliensis, L. major). This increase in the 
number of some chromosomes can also increase gene copy numbers and gene expression, 
and is related to the genetic basis of tropism of parasites as a response to external stressors 
(Rogers et al. 2011). In this study, the presence of changes observed in Chr30, for instance, 
suggests that these alterations may be related to events other than drug pressure, given that 
these changes were also observed in both wild type parasites that were included in the 
alignment. Increases between 2-20 fold in copy numbers in regions of genes involved in 
drug resistance have been observed before (Kazemi 2011). With regard to Chr30, many 
reports have found that this chromosome is polysomic in all Leishmania isolates that have 
been sequenced to date (Valdivia et al. 2017), suggesting that the polyploidy observed 
here, might not be a direct effect of drug pressure with AmB. 

4.1.2  Gene copy number and changes in chromosome ploidy 

Analysis of ploidy (number of copies of whole chromosomes) was performed for each 
sequenced line as described before (Chapter 2, section 2.12). The plasticity of the 

Leishmania genome can often lead to copy number variation (CNV) of genes, as a 
response to environmental stressors, including drug pressure and number of passages 
among others (Bussotti et al. 2018). As a result of this, the loss of specific regions or whole 
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chromosomes (aneuploidy) can be observed (Laffitte et al. 2016). Analysis of coverage per 
gene showed changes in two genes that may be functionally relevant to AmB resistance 
based on our understanding of the process to date. In both cases, secondary alterations 
were associated with genes proximal to what are considered genes of primary interest. In 
the first case, two lines: AmBRcl.6 and two clones from the same line, AmBRcl.8(A11) 
and AmBRcl.8(E12) showed lack of coverage of the gene LmxM.13.1530 encoding the 
miltefosine transporter (MT), and its neighbouring gene LmxM.13.1540 (see Figure 4-4), 
the latter which has unknown function  
(https://tritrypdb.org/tritrypdb/app/record/gene/LmxM.13.1540). This is interesting given 
the similarity of these changes with that reported in another AmBR line (AmBRB/cl2) of 
L. mexicana, in which a deletion of the 8 kb region spanning the loci of these two genes 
was also described (Pountain et al. 2019). Similar changes (i.e. the absence of a locus 
named Miltefosine Sensitivity Locus or MSL), have been observed in patients refractory to 
miltefosine treatment (Carnielli et al. 2018). Other types of alterations (SNPs, indels) in the 
MT, LINF_130020800 (Pérez-Victoria et al. 2006; Shaw et al. 2016; Srivastava et al. 
2017), are associated with reciprocal resistance between AmB and MF (Fernandez-Prada et 
al. 2016), and were confirmed by means of genomic and transcriptomic approaches 
(Mondelaers et al. 2016).  

Loss of expression in C24SMT was described in L. infantum and L. donovani resistant to 
AmB, and from a patient refractory to treatment with AmB. C24SMT has been related with 
AmB resistance, in several studies, due to the loss of the methylation in carbon 24, which 
is introduced by this enzyme. Some of these alterations resulted in the loss of ergostanes 
that were replaced by cholesta-5,7,24-trienol. The similarities between our findings and 
those reported by Pountain and colleagues, suggest a role for specific repetitive sequences 
(i.e. SIDER motifs), and that the homologous recombination model proposed by these 
authors, i.e. a fusion of the 5’-region including its UTR of LmxM.36.2380 and the 3’-
region including the UTR of LmxM.36.2390 that resulted in a chimeric version of 
C24SMT, can be responsible of these changes Other similarities, i.e. loss of ergosterol and 
other ergostane intermediates that were replaced with cholestanes, found in this study, are 
discussed further (see Chapter 5). 
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Figure 4-1. Ploidy changes derived from WGS data in AmBR lines and wild type Leishmania mexicana.  
Ploidy ratios shown per each chromosome (numbered from 01 to 34) in Leishmania are the median length (normalised) per-gene coverage of each 
individual chromosome over the median of every chromosome altogether. Wild type (green), AmBRcl.14 (yellow), AmBRcl.3 (orange), AmBRcl.8 (dark 
blue) and AmBRcl.6 (light blue). This graph is based on raw data provided by Dr Andrew Pountain, as indicated in section 2.12. 
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Figure 4-2. Ploidy (absolute) changes of Leishmania mexicana derived from WGS data.  
Ploidy ratios were converted into “absolute” ploidy by multiplying ratio values by two, assuming that default basal diploidy. Then values were 
rounded to the nearest integer value. Freebayes assumes diploidy for all samples by default and may be set to any level (-p) 
(https://github.com/ekg/freebayes). Wild type (green), AmBRcl.14 (yellow), AmBRcl.3 (orange), AmBRcl.8 (dark blue) and AmBRcl.6 (light blue). This 
graph is based on raw data provided by Dr Andrew Pountain, as indicated in section 2.12. Chromosomes are numbered from 01 to 34. 



4.1.3  Mutations triggering coding changes 

Using Whole Genome Sequencing (WGS), mutations in two genes, C24SMT and C5DS, 

of the sterol biosynthetic pathway (SBP) were identified. The nature of these changes 

varied between lines. Moreover, the sterol profiles derived provide strong evidence of the 

genetic basis of these alterations in AmBR L. mexicana promastigotes. First, two lines, 

AmBRcl.8 and AmBRcl.6 (including a second clone from line AmBcl.8), showed a lack of 

coverage of C24SMT (Figure 4-3 and Figure 4-5), which was associated with an additional 

total loss of the miltefosine transporter (MT) and its neighbouring downstream gene 

(Figure 4-4). C24SMT has two copies arranged in tandem. Haploid ratio (HR) is the ratio 

of length-normalised coverage for an individual gene to the median length-normalised 

coverage across all genes the parental chromosome. In two lines, AmBRcl.6 and 

AmBRcl.8 (including two clones, A11 and E12, both from line AmBRcl.8), HR showed 

little variation for the first copy (LmxM.36.2380). However, in the second copy 

(LmxM.36.2390), a decrease in HR between 0.26 to 0.4-fold in comparison to the parental 

wild types (LmWT1 and LmWT2) was observed, suggesting copy number variation 

(Figure 4-3, panels A and B).  The other two lines, AmBRcl.14 and AmBRcl.3, showed 

mutations in the sterol-C5-desaturase gene (C5DS), a detailed description of these changes 

is discussed further (section 4.1.5). 

 

  

Figure 4-3. WGS data showing coverage of the two copies of the C24SMT gene.  

Per-gene coverage of the two copies of the C24SMT gene (LmxM.36.2380 and 

LmxM.36.2390). Raw data was provided by Dr Andrew Pountain, as indicated in section 2.12. 

Lm14G4, Lm3G4, Lm6G7, Lm8A11 and Lm8E12, correspond to lines AmBRcl.14, AmBRcl.3, 

AmBRcl.6, AmBRcl.8 (A11) and AmBRcl.8 (E12), respectively.  
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4.1.4  Changes in the C-24 sterol methyltransferase gene 

Previous studies (Mbongo et al. 1998; Mukherjee et al. 2018; Nakagawa et al. 2014; 

Pountain et al. 2019; Purkait et al. 2012; Rastrojo, et al. 2018) have demonstrated the role 

of C24SMT in Leishmania and in AmB resistance (loss of C24 methylated sterols, altered 

sterols profiling) and virulence in vitro (Mukherjee et al. 2018). In these studies, the loss of 

expression of one of the transcripts of C24SMT (LmxM.36.2380) has been observed in 

several species, such as L. donovani (Pourshafie et al. 2004; Purkait et al. 2012), L. 
infantum (Rastrojo, et al., 2018) and L. mexicana (Pountain et al. 2019b). While the study 

of Rastrojo and colleagues found a deletion of one of the copies of this gene 

(LINF_360031200) in L. infantum and suggested that homologous recombination (HR) 

between the coding regions was a possible mechanism of this loss of expression, the study 

of Pountain showed clear evidence of the loss of the 3’UTR in one of the transcripts of the 

Figure 4-4. Visualization of the genomic region of LmxM.13.1530 (miltefosine transporter) 

and LmxM.13.1540: (unknown function).  

At the bottom is shown (blue) the locus or position of the genes. The bar on the left is the 

list of the different lines. At the top is shown a region spanning 15 kb of Chr13 from left to 

right and containing the coordinates of the genes. In grey areas of different height, showing 

the coverage or total read depth. The reads are arranged in read pairs. Red lines indicate 

read pairs, which map did not match bases on the reference genome. Note that at the centre 

in the line at the top (AmBcl.3) and at the bottom in line AmBcl.14 and LmWT1 and LmWT2, 

there is a small region (blank space) of low or complete absence of coverage. The intergenic 

region of the other three lines is described in the text. The image was created using the 

Integrative Genomics Viewer IGV (http://software.broadinstitute.org/software/igv/), including 
the experimental strains and the reference genome strains, and provided by Dr Andrew 

Pountain as indicated in section 2.12. 
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gene (LmxM.36.2380), and proposed a model of the role of the HR event in AmBR lines. 

Moreover, this study proved that both copies of C24SMT have different expression levels 

in wild type compared to AmBR lines. 

The loss of the first copy of the C24SMT gene, LmxM.36.2380, suggests that homozygous 

genotypes are present. For instance, line AmBRcl.3 was the only line that was called 

homozygous but did not show any changes in haploid ratio (Figure 4-3 panel A). 

Moreover, the low coverage of this line indicates that some of the reads with genotype 

G961, were, possibly, mis-mapped with the other copy, LmxM.36.2390, which genotype is 

A961, and consequently, these heterozygous genotypes are, possibly, not real heterozygous 

sites. This is shown in Figure 4-5, panel A, where the region between the two copies of 

C24SMT is missed. In the same figure (panel B), analysis using a mapping quality 

threshold of 1, removed reads with a similar probability to align with the sequence of either 

of the copies, resulting in a greater area miss-mapped. The downstream end (3’-UTR) of 

the copy C24SMT (LmxM.36.2380), and the upstream end (5’-UTR) of the copy C24SMT 

(LmxM.36.2390) are absent in lines AmBRcl.8 (in both clones A11, and E12), and 

AmBRcl.6. 

Similar alterations in C24SMT were described by Pountain and colleagues, in their study, 

loss of expression of C24SMT was observed in three lines (AmBRB/cl2, AmBRC/cl3 and 

AmBRD/cl2), and in some cases, loss of fitness, and in another three AmBR lines, selected 

by a former student in the Barrett Lab (PhD Thesis Raihana Binti Ithnin, unpublished). A 

concomitant loss of the MT was identified only in one line (AmBRB/cl2) of the study of 

Pountain and colleagues, and in one line with a novel mutation, A325V (C974T) described 

in the study of Dr Raihana Binti Ithnin. I analysed the ORF of this new SNP and observed 

that the mutation corresponds to the second base of the codon (GCT/GTT) resulting in a 

non-silent mutation (substitution from Alanine to Valine, both non-polar residues). The 

localisation of all these SNPs is shown in a 3D model constructed using PyMOL and 

Chimera (Figure 4-10). The presence of two copies of a particular gene allows the parasite 

to use HR. This can result in other changes such as deletions, extrachromosomal 

amplifications (linear and circular), aneuploidy, and eventually drug resistance (Genois et 

al. 2014; Ubeda et al. 2008). The advantages of HR have been previously observed in 

mutants of L. infantum and L. major highly resistant to methotrexate (Ubeda et al. 2008) 

and AmB (Pountain et al. 2019b). The latter of these studies showed that Leishmania used 

HR with two copies of the gene C24SMT to become resistant against AmB. 
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Lines Gene and mutations 
 LmxM.23.1300  

(LOX syn. C5DS) 
LmxM.36.2390  

(C24SMT) 
LmxM.13.1530 

(MT) 
 V74E 

(T221A) 
M93del  

(277-
279delATG) 

R244L 
(G731T) 

V321I  
(G961A) 

 

LmWT1    Het. 0/1  

LmWT2    Het. 0/1  

AmBRcl.14  Hom. Hom. Het. 0/1  

AmBRcl.3 Het.  Hom. Hom. 1/1  

AmBRcl.8 (A11)    Hom. 1/1 Deletion 

AmBRcl.8 (E12)    Hom. 1/1 Deletion 

AmBRcl.6    Hom. 1/1 Deletion 

NysRcl.B2  A95del (hom)    

      

      

In this study, the evidence of structural variations at the C24SMT locus was notable in 

lines AmBRcl.6 and AmBRcl.8 (clones A11 and E12), however some gaps in the assembly 

and the similarity of the sequences suggest the possibility of potential errors in these 

results, regardless the variation observed in the HR. Sanger sequencing and qRT-PCR 

would be necessary to confirm CNV, loss of expression of C24SMT, and genotype 

(possibly G391/A961). Sanger sequencing was previously used to prove that the G961 and 

A961 genotypes belong to LmxM.36.2380 and LmxM.36.2390, respectively (Pountain et 

al. 2019b). 

Genomic changes in C24SMT (ERG6 in fungi) in pathogenic fungi, result in the 

substitution of ergosterol and other ergostanes by cholestane intermediates characterised by 

lacking the C-24 methylation (Young et al. 2003). The accumulation of cholestane 

intermediates was also observed in C24SMT-null mutants of L. major promastigotes. In 

addition to the loss of ergosterol, these changes lead to AmBR resistance and an increase in 

susceptibility to other lipid inhibitors (Mukherjee et al. 2018). Similar observations in the 

substitution of the wild type sterol with an increase in cholestane-type intermediates, have 

been reported in L. donovani selected in vitro to AmB (Pourshafie et al. 2004), and in L. 
infantum after the loss of expression of C24SMT (LINF_360031200 in L. 
infantum)(Rastrojo, et al. 2018). These findings are in agreement with the increase of 

cholestane-based sterols observed two AmBR lines, AmBR.cl8 and AmBRcl.6. This 

increase in cholestanes was more pronounced (90.8 to 91.2%) in a C24SMT knockout 

created using CRISPR-Cas9 (Beneke et al. 2017) and discussed further (chapter 6). 

Table 4-2. Summary of genomic changes identified with WGS in AmBR and NysR lines of L. 
mexicana promastigotes.  

Hom: homozygous, Het: heterozygous. The homologous genotype that is possibly 

mismatched due to the alignment with the copy LmxM.26.2390 of the C24-sterol methyl 

transferase (C24SMT) gene, is shown in red. MT: miltefosine transporter. C5DS: C-5 

desaturase, LOX: lathosterol oxidase. 
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Figure 4-5. Visualization of the genomic region of LmxM.36.2380 and LmxM.36.2390. 

The lack of coverage in the intergenic region is clear in lines AmBRcl.6, AmBRcl.8A11 and 

AmBRcl.8E12. C24SMT (panel A) – no mapping quality threshold; (panel B) mapping quality 

threshold of 1 (as in Pountain, A. PhD Thesis). Image was created using the Integrative 
Genomics Viewer IGV (http://software.broadinstitute.org/software/igv/), including the 

experimental strains and the reference genome strains, and provided by Dr. Andrew 

Pountain as indicated in section 2.12. See Figure 4-4 for a full description of the panel 

features. 
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4.1.5 Changes in sterol C-5 desaturase 

Another enzyme in which mutations were found was LmxM.23.1300, this is annotated as 

lathosterol oxidase (LOX) (https://tritrypdb.org/tritrypdb/), which is a synonym of the 

glycoprotein C5-Sterol desaturase (C5DS). The functional role of LmxM.23.1300 as C5DS 

in Leishmania mexicana, was demonstrated for the first time in an AmBR mutant 

(AmBRA/cl1) of L. mexicana with defects in this enzyme, which was unable to produce 

sterols with the double bond (∆5) in the sterol nucleus (Pountain et al. 2019). In this work, 

Pountain and colleagues were the first in identifying the role of LmxM.23.1300 in AmB 

resistance. However, the annotation of another gene (LmxM.30.0590) as the putative 

C5DS in Leishmania spp., raised the question of the existence of another copy of this gene. 

The role of LOX (or C5DS) is essential for the synthesis of ergosterol and other 

ergostanes. These enzymes convert episterol (ergosta-7,24(28)-dien-3-ol or ergosta-

7,24(28)-dien-3β-ol) that has one double bond (∆7), into ergosta-5,7,24(28)trienol, with 

two double bonds (∆5,7). In null mutants of Saccharomyces cerevisiae (Bard et al. 1993b), 

and clinical isolates of several species of Candida spp., with defects and reduced 

expression of C5DS (ERG3 in fungi) (Miyazaki et al. 1999; Young et al. 2003), the 

increase in resistance to AmB and azoles (Branco et al. 2017; Joseph-home et al. 1995), 

and reduced fitness and higher susceptibility to some antifungals was noted 

(https://www.yeastgenome.org/locus/S000004046).  

In the present study, five novel mutations (3 and 2 in AmBR- and NysR lines) were 

identified in LmxM.23.1300 and resulted in three variants (Figure 4-6 and Figure 4-7). 

Unlike the only mutation, G139R, that has been reported to date in this enzyme in L. 
mexicana (and in any other species), and which changed the functionality of the residue 

from a non-polar with a single hydrogen (glycine) into a positively charged side chain 

(arginine), and is moreover, located between two His-rich regions (Pountain et al. 2019), 

none of the three SNPs found in this study, is localised between highly conserved clusters 

of His residues (Figure 4-7). These His clusters have been found to be functionally 

important for the binding of substrates in other fatty acid desaturases (as with LOX and 

C5DS) in the budding yeast (Taton and Rahier 1996) and in A. thaliana (Nes 2011), and 

also in other enzymes (e.g. ERG25) of this pathway (Kristan and Rižner 2012). The first of 

the three mutations identified in AmBR lines, was found only in one line (AmBRcl.3); a 

heterozygous substitution (T221A) causing an amino acid change from valine into 

glutamate (V74E). This change from a residue with a non-polar side chain to a negatively 

charged side chain could represent a change in functionality in this position.  
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The alignment with other orthologues in kinetoplastids, and other eukaryotes, revealed that 

the V74 residue is conserved across all Leishmania species (see Figure 4-7). Another 

mutation was found only in one line (AmBcl.14), this was a homozygous in frame codon 

deletion (277_279del ATG), which resulted in the loss of one methionine (M93del). The 

deleted methionine is one of a pair of methionines in positions M92-M93. While the 

former is conserved across all kinetoplastids, the latter is only conserved across all 

Leishmania species (Figure 4-7). The last of the three mutations observed here in C5DS, 

was found in two lines, AmBRcl.3 and AmBRcl.14. This was a homozygous substitution 

(G731T) that caused a change in from arginine to leucine (R244L). As with the other 

mutations, the functionality of the side chain was altered, in this case from a polar 

(positively charged) side chain (arginine) into a non-polar side chain (leucine). Given that 

this is conserved across all kinetoplastids, the budding yeast, and humans, the functional 

role of this residue could be relevant.  

  

The fact that these two lines were selected for resistance independently, the presence of an 

identical SNP is striking, and raises the possibility of cross contamination, either earlier in 

the course of cell culture or during the processing of the DNA samples. A further analysis 

Figure 4-6. Visualization of the genomic region of LmxM.23.1300 (LOX) (syn. of C5DS).  

The black arrows denotea substitution and an in-frame deletion. Red arrows highlight 

another mutation observed in two independent lines. The image was created using the 

Integrative Genomics Viewer IGV (including the experimental strains and the reference 

genome strains and provided by Dr Andrew Pountain as indicated in section 2.12. See 

Figure 4-4 for a full description of the panel features. 
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of other SNPs could help to identify this (Supplementary file 4) (see page 8). A full list of 

the genotypic changes identified in C24SMT (and in other enzymes) in this study, are 

shown in Table 4-2. Similarly, a complete summary of these mutations related to their 

sterol profile (GC-MS), and their phenotype in a mouse model, is detailed further (see 

Chapter 5).  

I identified several discrepancies related to the annotation of C5DS in Leishmania. First, 

there is another gene, LmxM.30.0590 (NCBI Reference Sequence: XP_003877581.1) 

annotated as putative C5DS in kinetoplastids (http://tritrypdb.org), whereas the gene 

LmxM.23.1300 (NCBI Reference Sequence: XP_003875772.1), is annotated in both 

databases, NCBI and Uniprot, as lathosterol oxidase-like protein (LOX). As mentioned at 

the beginning of this section, LOX is a synonym of the C5DS in humans (O75845 

SC5D_HUMAN) (https://www.uniprot.org/uniprot/O75845), and in other organisms 

(Altschul et al. 2005). Intriguingly, both genes, LmxM.30.0590 and LmxM.23.1300 

correspond to the ERG3 family (the orthologue of C5DS in yeast and other fungi), a sterol 

desaturase/sphingolipid hydroxylase, fatty acid hydroxylase superfamily 

(https://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi) that is involved in the transport 

and metabolism of lipids. Although LmxM.30.0590 is also annotated as C5DS in T. brucei 
and has some relatedness with LmxM.23.1300 and with ERG3 in fungi (Figure 4-8 panel 

A), its identity remains unclear. Both genes are syntenic with respect to other orthologues 

in Leishmania and in trypanosomes, including T. brucei brucei and T. cruzi 
(https://tritrypdb.org/tritrypdb/) (Figure 4-8 panel B and C). 

Interestingly, LmxM.23.1300 has two copies in tandem, CFAC1_150028200 (CfaC1_15: 

670365 – 671270), and CFAC1_150028300 (CfaC1_15: 673651– 674604) in Crithidia 
fasciculata (Figure 4-8 panel C), a non-human infective trypanosomatid parasite related to 

Leishmania and T. brucei, in which is located in Chr15. Similarly, various copies of the 

ERG3 lathosterol oxidase-like (LOX) gene, have been described in other fungi. For 

instance, in some studies, two copies of ERG3 are described in Aspergillus fumigatus 

(Alcazar-Fuoli and Mellado 2012), Candida albicans (Vale-Silva et al. 2012), and 

Schizosaccharomyces pombe (Sp). Contrary to this, the study of Iwaki and colleagues, 

highlights that only one copy of ERG3 is present in Saccharomyces cerevisiae (Sc) and 

Candida spp., while three copies exists in Aspergillus fumigatus (Iwaki et al. 2008). 
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Another noteworthy observation is that LmxM.30.0590 is annotated as C5DS or ERG3 in 

Sc and in Candida spp., whereas in Sp is differentiated into C5DS-Erg31 or C5DS-Erg32, 

which correspond to two copies with overlapping function (Iwaki et al. 2008). Studies of 

ergosterol in Sc, revealed that mutants lacking some enzymes of the SBP, e.g. C24SMT 

and C8SI (ERG6 and ERG2 in fungi, respectively), were unable to produce ergosterol and 

developed resistance to both polyenes studied in this thesis, i.e. AmB and nystatin, which 

resembles the resistant phenotype observed in the present, and other studies with AmBR 

lines of Leishmania spp. While single knockouts of the two ERG3 homologues in Sp, 

named Erg31p and Erg32p, respectively, showed unaltered synthesis of ergosterol and no 

change in resistance to polyenes, no ergosterol was observed in the ERG3-double 

Figure 4-7. Alignment of lathosterol oxidase LmxM.23.1300 (LOX) with orthologues (C5-

desaturase) from kinetoplastids and other eukaryotes.  

His residues that are conserved across species are marked by black boxes. A black arrow 

denotes the G139R substitution in LmxM.23.1300 reported by Pountain et al. 2019. Red 

arrows highlight other novel mutations. A deletion (A95del) in LmxNysR cl.B2 (see Chapter 

3) is also shown (blue arrow). Kinetoplastids species are: L. mexicana (top), L. major, L. 
donovani, L. braziliensis, Crithidia fasciculata, T. brucei and T. cruzi. Also included ERG3 (S. 
cerevisiae), and SC5D (Homo sapiens) and from plants (bottom) Arabidopsis thaliana. 

Sequences were obtained from the databases TriTrypDB (https://tritrypdb.org/tritrypdb/) or 

from Uniprot (https://www.uniprot.org/). Alignment was performed with Clustal Ω 

(https://www.ebi.ac.uk/Tools/msa/clustalo/), provided and modified from (Pountain et al. 
2019), as indicated in section 2.12. 
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knockout, thus confirming that both orthologues have analogous function (Iwaki et al. 

2008). In Leishmania spp., however, there is no experimental data to support the presence 

of another copy of C5DS and to confirm the annotation of LmxM.30.0590, which is 

annotated as C5DS in the TriTrypDB, this gene has, possibly, a distinct function or is 

probably wrongly annotated as C5DS and is therefore, not a real C5DS. In agreement with 

these results, low identity (<35%) between the amino acid sequences of C5DS (ERG3) has 

been observed in various species, which suggests that these two orthologues have a low 

degree of relatedness (Nes 2011) and are possibly different genes (Figure 4-8, panel A).  

I also looked into another study in which the genome profiling of the sterol biosynthetic 

pathway was analysed in L. donovani, T. brucei, and T. cruzi (and other apicomplexan 

parasites), without further evidence supporting the role of LmxM.30.0590 as C5DS, as part 

of this pathway (Fügi et al. 2014). Further investigation in the AmBR line from Pountain et 

al. 2019, which has a mutation in LmxM.23.1300, also revealed the absence of SNPs in 

LmxM.30.0590, with respect to RNA expression, the latter showed a decrease of 15-20% 

relative to LmxM.23.1300, in two lines, AmBRB and AmBRC, however, the biological 

meaning of this is unknown (personal communication, Dr Andrew Pountain). Experimental 

characterisation of the phenotype of this gene in Leishmania, is needed, the use of genome 

editing tools, i.e. CRISPR-Cas9, DiCre (Beneke et al. 2017; Damasceno et al. 2018; 

Duncan et al. 2016; Jones et al. 2018), can contribute to characterise individual genes, 

however, the interpretation of changes in sterols in Leishmania spp. still represents a 

challenge.  

A summary of the mutations identified in this study in C5DS and C24SMT, and other 

changes related with the MoA of antleishmanials, e.g. deletion of the MT, is shown in 

Table 4-2. The results obtained in this study, are comparable to previous findings reported 

recently (Pountain et al. 2019), in eight AmBR lines of L. mexicana , which were selected 

independently by a former member of the Barrett Lab (PhD Thesis Raihana Binti Ithnin, 

unpublished). 
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Figure 4-8. Cladogram and synteny of L. mexicana C5DS and LOX genes.  

Panel A: cladogram with C5DS (red dotted boxes) and LOX (green dotted box). L. mexicana 
LOX, in which three novel mutations were found in this study is highlighted (green arrow). 

Source: Clustal Ω (https://www.ebi.ac.uk/Tools/msa/clustalo/). Panel C: synteny of (C5DS) 

LmxM.30.0590 and (LOX) LmxM.23.1300 (black arrows), with respect to other kinetoplastids. 

The two copies of LOX in C. fasciculata are highlighted (red arrows). Source: TriTrypDB 

(https://tritrypdb.org/tritrypdb/). 

XP_003877581.1 C-5 sterol desaturase L. mexicana MHOM/GT/2001/U1103 
XP_001685044.1 putative C-5 sterol desaturase L. major strain Friedlin 
XP_003863152.1 C-5 sterol desaturase, L. donovani 
XP_844558.1 C-5 sterol desaturase, T. brucei brucei TREU927 
XP_011773010.1 C-5 sterol desaturase, T. brucei gambiense DAL972 
XP_804009.1 C-5 sterol desaturase T. cruzi strain CL Brener 
EKF38146.1 C-5 sterol desaturase, T. cruzi marinkellei 
NP_001017369.1 methylsterol monooxygenase 1 isoform 2, Homo sapiens 
NP_001325854.1 Fatty acid hydroxylase superfamily protein, A. thaliana 
LmjF.23.1300 lathosterol oxidase-like protein, L. major strain Friedlin 
XP_003861049.1 lathosterol oxidase-like protein, L. donovani 
LmxM.23.1300 lathosterol oxidase-like protein, L. mexicana 
LmxM.23.1300 lathosterol oxidase-like protein, L. mexicana  
XP_847155.1 lathosterol oxidase, T. brucei brucei TREU927 
Tb427_080036900 Fatty acid hydroxylase superfamily, T. brucei Lister  
C3747_53g130 unespecific product, T. cruzi 
XP_802245.1 lathosterol oxidase, T. cruzi strain CL Brener 
BCY84_02439 lathosterol oxidase, T. cruzi strain Dm28c 2017 
EKF26854.1 lathosterol oxidase, T. cruzi marinkellei 
NP_001004630.1 lathosterol oxidase, Danio rerio (Zebra fish) 
NP_008849.2 lathosterol oxidase, Homo sapiens 
NP_766357.1 lathosterol oxidase, Mus musculus 
NP_013157.1 C-5 sterol desaturase, S. cerevisiae S288C 
EDN59602.1 C-5 sterol desaturase, S. cerevisiae YJM789 
AJV69430.1 Erg3p S. cerevisiae YJM1527 
XP_028891029.1 uncharacterized protein CJI97_003811, Candida auris 
O93875.1 C-5 desaturase, Candida albicans 
KHC57437.1 C-5 sterol desaturase, Candida albicans P60002 
NP_001018791.2 C-5 sterol desaturase Erg32, S. pombe 
NP_593135.1 C-5 sterol desaturase Erg31, S. pombe 

B  LmxM.30.0590 C  LmxM.23.1300 
 

A C5DS Leishmania 

 C5DS 
Fungi 

LOX 
Leishmania 
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4.1.6 Predicted protein-protein interactions in the ergosterol 

biosynthetic pathway in Leishmania. 

Computational and bioinformatics tools are an essential part of an integrative approach to 

large amounts of high-throughput biological data (e.g. genomics, proteomics, etc.) in the 

search of new drug targets (Rezende et al. 2012). Identification of protein-protein 

interaction (PPI) networks is part of these approaches that can provide a better 

understanding of complex protein interactions in biological systems, including in 

Leishmania major (Dashatan et al. 2018). Interactomes have also been predicted in other 

species, such as, L. braziliensis, L. infantum (Rezende et al. 2012) and L. major (Flórez et 

al. 2010; Rezende et al. 2012). The use of PPIs networks in Leishmania spp., has 

contributed to the understanding of the functionality of many hypothetical proteins present 

in such networks. If we consider that around 60% of the proteins lack a predicted function, 

the use of this approach, i.e. PPI, has provided a framework to better understand their 

organization in Leishmania spp. (Dashatan et al. 2018; Rezende et al. 2012). Moreover, 

interactomes can help to predict biological processes and to find potential drugs. For 

instance, Flórez et al. used enrichment analysis of clusters from 1,366 nodes and over 

30,000 interactions and predicted 263 interacting proteins and 142 drug targets. 

Importantly, in this work, PPI networks allowed to discriminate between those targets that 

are essential for the parasite and those that have no orthologue in human (Flórez et al. 

2010). 

The ergosome is a multi-protein complex proposed based on a study using a yeast-two-

hybrid system in the budding yeast (Mo and Bard 2005a). The ergosome model suggests 

that the PPI is key for the proper function of the SBP, and therefore for the synthesis of 

ergosterol, thus suggesting the feasibility of the presence of an ergosome in Leishmania 
spp. (and other species). Here, I modelled the PPI of the sterol biosynthetic pathway (SBP) 

in Leishmania major and L. infantum using the string database (http://string-db.org) 

(Szklarczyk et al. 2011, 2015). First, I obtained the 3D models of C14DM (Figure 4-9) and 

C24SMT (Figure 4-10), both of which are known to play a key role in AmB resistance 

(and to other antifungals). Second, using PyMOL and Chimera, I localised in these 

enzymes, those mutations that have been identified in AmBR lines of L. mexicana, 

including those found here. Finally, I discuss the ergosome in Leishmania spp. and how 

this might be related to these mutations (Figure 4-11). The PPI network was also predicted 

in T. cruzi and C. albicans, and then compared with the interactome (named the ergosome 

herein) which was originally described in the budding yeast (Mo and Bard 2005a) (Figure 

4-11, panels D to F).  
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Some examples of previous evidence of disruption of the SBP (and of ergosterol synthesis) 

due to various defects in several enzymes that support the hypothesis of the ergosome in 

Leishmania are, first, a SNP (N176I) described in the C14DM (Figure 4-9) (Mwenechanya 

et al. 2017), second, another SNP found in C5DS (G139R), and finally, a mutation (F72C) 

found in C24SMT (an exhaustive list is discussed below) (Pountain et al. 2019). The first 

of these SNPs (N176I) is localised out of the active site of the enzyme C14DM. Moreover, 

this residue seems to be functionally important across the Kinetoplastids, and is possibly 

relevant for protein-protein interactions (Mwenechanya et al. 2017). As shown by the 

authors, N176I caused the disruption of ergosterol synthesis with accumulation of various 

sterol intermediates. Another example that is, possibly, related with the presence of an 

ergosome in Leishmania, are the mutations identified here in C5DS (LmxM.23.1300) in 

two AmBR lines. Contrary to another mutation (G139R) detected in this enzyme, which is 

within a His-rich region that was predicted to be relevant for enzymatic activity after the 

alignment with orthologues in other eukaryotes (Pountain et al. 2019). In my study, the 

five mutations identified in LmxM.23.1300 are, possibly, localised out of the active site, 

given that the mutated residues are situated in the extremes of the protein sequence (see 

Figure 4-7, red arrows). However, this cannot be assumed since no structure of C5DS is 

available. The substrates of the enzyme C5DS (E.C. 1.14.21.6), are specific between 

different organisms, while cholest-7-enol, and campest-7-enol or stigmast-7-enol, are 

specific for animals and plants, respectively, ergosta-7,22-dienol is the counterpart, in 

fungi (Nes 2011), and possibly in kinetoplastids. A common feature in all these substrates 

is, however, the lack of the double bond system (∆5,7).  

In this study, the latter of these intermediates (i.e. the enzyme’s substrate) was the most 

abundant in two AmBR- and all four NysR-lines with SNPs in LmxM.23.1300, thus 

suggesting that these mutations, possibly, interfere with the activity of the enzyme (Table 

4-2) irrespective of their position with the amino acids sequence. However, other 

intermediates with two double bonds (∆5,7), including the product of the enzyme, i.e. 

ergosta-5,7,24(28)-trien-3β-ol, were also detected in low abundance (<1%) in AmBRcl.3, 

in which the mutation (V74E) was present, suggesting a partial activity of this enzyme in 

this line. Contrary to this, in AmBRcl.14, which has a different mutation (M93del), the 

substrate, ergosta-7,22-dien-3-ol, increased its abundance significantly (up to 96.73%), 

whereas the product of the enzyme C5DS was completely absent. As mentioned before, the 

lack of a structure in any specie, limits the prediction of the topology of C5DS, and further 

analysis of the potential effects of these mutations. Moreover, the presence of a common 

mutation in both lines (R244L), further complicates this picture, and the analysis of the 

individual effect of each of these mutations is also restricted.  
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The last of the three enzymes in which we identified mutations is C24SMT. As mentioned 

before, changes in this enzyme have been studied extensively in Leishmania spp. (section 

4.1.4). For this reason, I localised these mutations, along with those reported before by 

former members in the Barrett Lab, using a predicted model developed in S. cerevisiae 
(Figure 4-10). According to this model, C24SMT performs two types of activity, named 

C24SMT1 and C24SMT2, which form ergostanes and stigmastanes, respectively. The 

C24SMT1 type operates in fungi forming a single product, whereas type C24SMT2 is 

characteristic of protozoa. The above mentioned model was proposed after elucidation of 

the functional differences that were investigated using different substrates and site-directed 

mutagenesis to modify several residues (Nes et al. 2002; Ganapathy et al. 2008). 

According to the predicted secondary structure of C24SMT (ERG6 in the budding yeast), 

there are four regions which are formed by residues that are conserved between species: 

region I (residues 78-98), region II (121-133), region III (188-199) and region IV (215-

226). Region I, is an aromatic-rich signature motif relevant for the binding to sterols 

(Ganapathy et al. 2008). Interestingly, a mutation (F72C) in this region was identified in an 

AmBR line (AmBRC/cl3) of L. mexicana in which this mutation influenced the 

susceptibility (EC50) to AmB and the restoration of the wild type sterols (Pountain et al. 

2019). Previous work in Sc, had also confirmed that region I is the active site of C24SMT, 

Figure 4-9.Structural 3D models of C14DM (ERG11 in yeast and fungi) in Leishmania spp.  

A) model of the structure of CYP51 in L. infantum (LINF_110017200), PDB ID 3L4D, 97% 

amino acid sequence identity with the orthologue in L. mexicana (LmxM.11.1100) in which 

the non-synonymous mutation N176I (red arrow) localised out of the active site of the 

enzyme is shown (Mwenechanya et al. 2017). The stick model is the heme (yellow) and 

binding pocket for azoles (orange). The protein ribbon is coloured red (N-terminus), and 

purple (C-terminus). The first 27 amino acids were removed. Protein structure was 

processed using the software UCSF Chimera (Pettersen et al. 2004) 
(https://www.cgl.ucsf.edu/chimera/) Chimera. B) 3D models showing the orientation of 

membrane proteins ERG11 (C14DM) of S. cerevisiae, C. albicans, and L. infantum. Source: 
Protein query from panel A, is from the PDB databank (https://www.rcsb.org/) and modified 

from the 3L4D model (W Xu et al. 2014) using Chimera. Images from panel B are from the 

OPM Database (https://opm.phar.umich.edu/). 

A B 
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related with the catalysis and binding to sterols, and that this region is moreover, involved 

in substrate binding (i.e. zymosterol) and product formation (Nes et al. 2002; Marshall and 

Nes 1999). Due to similarities in the alignment between L. mexicana and Sc, Pountain and 

colleagues suggested that this SNP could also be relevant in the interruption of enzymatic 

activity in the parasite. 

Additional substitutions, V131I and V321I, in C24SMT (in LmxM.36.2380 and 

LmxM.36.2390, respectively) were also reported by Pountain and colleagues in three 

AmBR lines of L. mexicana. The former of these two mutations is localised in region II (as 

per the model of Ganapathy) (Figure 4-10, panels A to C), whereas the latter is, possibly, 

the most frequent change reported to date in C24SMT in AmBR lines of L. mexicana 
(Figure 4-10, panel D). Pountain and colleagues described its presence (V321I) in three 

lines (AmBRB/cl2, AmBRC/cl3 and AmBRD/cl2) and elucidated the mechanism of how 

this change occurred. Here, this SNP was also found in two individual lines, AmBRcl.8 

(two clones) and AmBRcl.6 (one clone). Interestingly, another neighbouring SNP (A325V) 

(Figure 4-10, panel E) was recently found in another line selected for AmB resistance 

(PhD Thesis Raihana Binti, unpublished). While both, V131I and V321I, are pre-existing 

differences between the two copies of C24SMT, there is no evidence suggesting that any 

of these three SNPs are related with drug resistance. In fact, these alterations in C24SMT 

seem to be localised out of the active site of the enzyme, notably, these residues are sitting 

in the extremes of the protein sequence. According to the model of Ganapathy, however, 

V321I and A325V, are located in a region that is, possibly, in contact with region I, in 

which case their role with the enzymatic activity of C24SMT, is an interesting observation 

to be further interrogated (Figure 4-10, panel E and F) (Ganapathy et al. 2008). 

Furthermore, the product of C24SMT, fecosterol, was undetected in these mutants. If this 

is the case, then the ergosome model is not supported by the effects derived from these 

changes, which affect the function of the enzyme along with a significant increase of its 

substrate. Interestingly, ergosterol (which is C-24 methylated), was detected in low 

abundance in both these mutants (see Table 5-1). This, as in the case of C5DS mentioned 

above, suggest that the ergosome is present and that the products of the enzymes are not 

being channelled adequately. Based on these data, the presence of a Leishmania the 
ergosome remains uncertain, given the fragmented nature of this evidence. 

As it is shown in the ergosome models obtained from the STRING database in several 

species, some of the enzymes (and interactions) of the SBP were absent (Figure 4-11, 

panels A and B). After comparing with the model of reference in yeast proposed by Mo 

and Bard (Figure 4-11-A), I identified eight enzymes of the SBP that were absent in 
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Leishmania (Figure 4-11-D, red and green circles). This is, in part, due to mismatches in 

the annotation of five enzymes which have two putative homologues (Figure 4-11-D, white 

dotted circles). Further analysis is needed to identify which of these enzymes are true 

orthologues of the yeast SBP enzymes. However, by revising previous evidence of the SBP 

in Kinetoplastids (Cosentino and Agüero 2014; Liendo et al. 1999; Viana Andrade-Neto et 

al. 2016a; Wei Xu et al. 2014; Yao and Wilson 2016), the presence of these enzymes in 

Kinetoplastids was corroborated. This was also revised using the Kinetoplastids database 

(http://tritrypdb.org), confirming that the interactomes obtained with the STRING database 

were incomplete in this database.  

A similar situation was observed in T. cruzi. Cosentino and colleagues, used a number of 

bioinformatics strategies and identified several genes of the isoprenoid, and the sterol 

pathway that were missing or truncated in the genome of T. cruzi (Cosentino and Agüero 

2014). This work also completed the sequence of another ERG26 gene (LmxM.06.0350) 

which has a non-orthologous homologue in yeast ERG25 (LmxM.36.2540), suggesting 

that this enzyme has been lost in trypanosomes, but not in Leishmania (Figure 4-11-D, red 

circles). Another interesting finding of the work of Cosentino and colleagues, is that two 

enzymes, ERG3 (LmxM.23.1300 in Leishmania) and ERG5, which are present in the 

interactomes of yeast and Leishmania, seem to be stage-specific in trypanosomes, 

appearing only in the epimastigote form, and being absent in amastigotes. The absence of 

some enzymes of the SBP has been also reported in Leishmania. Recently, a “new” 

tentative SBP was proposed. In this work, the authors highlight that the identification and 

organization of all the enzymes of this pathway in Leishmania spp. is still unclear (Yao and 

Wilson 2016). 
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Figure 4-10. Docking of the predicted secondary structure of C24SMT LmxM.36.2380 

(XP_003874589.1) of L. mexicana.  

The Model shows alpha-helices, B-sheets and loops from amino acid 103 (glycine) to amino 

acid 349, the first 102 and last 4 amino acids, from N- and C-terminal ends, respectively, 

were removed. Conserved amino acids between species (see S5 Fig. in Pountain et al. 2019) 

are shown in yellow and cyan. A) Valine V131 (in slate). The SNP V131I has five rotamers 

with different probabilities to occur, changing the interaction with the neighbour residues. 

B) The two most probable (74.5%) rotamers in V131I. C) Valine V321 (also in slate). D) Closer 

view of the most probable (79%) rotamer after the V321I mutation. E) A novel SNP, A325V 

(green), in LmxM.36.2390 (XP_003874590.1) in an AmBR line of L. mexicana (PhD Thesis 

Raihana Binti, unpublished). F) Zoom in of the area (grey quad arrow) spanning the contour 

region of residues possibly involved in catalysis (see text). Sequences were obtained from 

the databases TriTrypDB (https://tritrypdb.org/tritrypdb/) or from Uniprot 

(https://www.uniprot.org/). Modelling, mutagenesis and localisation of SNPs were made 

using PyMOL (https://pymol.org/2/). 
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Following the results of the study of Cosentino et al., and Yao and Wilson, I revisited the 

string database after two years when the interactome was called for the first time (Figure 

4-11, panels B to D). Surprisingly, in this second run, most of the enzymes were already 

present in the interactomes (Figure 4-11, panels E and F), reflecting that their initial 

absence was due to a lack of annotation or adequate update of the String database. The 

possibility of a Leishmania ergosome was proposed before based on the analogy of the 

yeast pathway (Mwenechanya et al. 2017). The yeast ergosome showed that the core of 

this multi-enzyme complex is formed by the following four enzymes: ERG11 

(LmxM.11.1100), ERG25 (LmxM.36.2540), ERG27 and ERG28, the latter two are 

unknown in Leishmania spp., ERG28 is the scaffold of the complex with a strong 

interaction with four enzymes of the pathway: ERG6 (LmxM.36.2380 and 

LmxM.36.2390), and with the three C-4 demethylation enzymes, ERG25, ERG26 

(LmxM.06.0350) and ERG27 (Mo and Bard 2005c; Mo et al. 2004), a full list with all the 

names of the orthologues of the SBP in Leishmania spp. and yeast, is shown in Table 1.3. 

Interestingly, in Leishmania, three orthologues of components of the yeast ergosome, 

ERG11, ERG3 (LmxM.23.1300) and ERG6 in yeast, respectively, have been found with 

mutations, some, possibly, located out of the binding pocket. Based on the yeast ergosome, 

ERG2 (LmxM.08_29.2140) and ERG3, have different interaction partners. While ERG2 

has a strong interaction with ERG24 (LmxM.31.2320) and ERG28, ERG3 strongly 

interacts with ERG25 (LmxM.36.2540) and ERG28. Importantly, these two enzymes, 

ERG2 and ERG3, perform two sequential reactions in the pathway, which are key for the 

presence of the two double bonds in positions ∆5,7, and for the binding to polyenes. 

Interestingly, ERG3 also interacts with ERG11 and ERG6. The protein-protein interactions 

between ERG3, ERG11 and ERG6 are of particular interest 

(https://www.yeastgenome.org). Similarly, the central role of ERG25 is intriguing, given 

that in AmBRB lines from Pountain (PhD. Thesis), a strong (3.9-fold) increase in RNA 

expression was observed in this gene, along with the significant decreases observed in both 

copies of the orthologue of ERG6 (Pountain et al. 2019b), in which mutations in the 

dominant transcript were identified (section 4.1.4 and Figure 4-30).  
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Figure 4-11. Protein-protein interaction (PPI) network in yeast and trypanosomatids.  

Source: A) from Mo and Bard, 2005 using the Yeast two-hybrid system (Y2H); B) S. 
cerevisiae, C) L. donovani, L. infantum and D) T. cruzi were called from the String database 

(http://string-db.org) from experimental data using Tandem Affinity Purification (TAP) and 

Mass Spectrometry (MS). Network nodes represent proteins. Coloured nodes represent 

primary interactions. Empty nodes represent proteins of unknown 3D structure. Filled 

nodes represent enzymes where 3D structure is known or predicted. A full list with 

orthologue names in yeast (ERG-) and Leishmania, is provided in Table 1-3. 

E F 

         T. cruzi      C. albicans           .         
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 Discussion 

In this study, the evidence of structural variations at the C24SMT locus was notable in two 

lines, AmBRcl.6 and AmBRcl.8 (clones A11 and E12). These changes were accompanied 

by alterations in their sterol content. The accumulation of of cholesta-5,7,22-trienol, 

observed in both these mutants, is in agreement with previous reports, in which other 

species of Leishmania with loss of expression of C24SMT has shown the increase of 

similar intermediates The five novel mutations identified in LmxM.23.1300 in three lines 

(i.e. AmBRcl.3, AmBRcl.14 and NysRcl.B2), produced changes in the sterol profile in 

both these mutants. Defects in C5DS lead to a loss of ergosterol with an increase in the 

abundance of sterol intermediates without the 5,6-double bond within the sterol ring, which 

is characteristic of the loss of functionality of the enzyme (Figure 5-3 lines AmBRcl.14 

and AmBRcl.3). Such alterations are expected from mutants with redundant C5DS, and 

resemble the effects of mutations previously observed in fungi (Alcazar-Fuoli et al. 2006; 

Geber et al. 1995; Morio et al. 2012), and in Leishmania (Pountain et al. 2019), thus 

confirming the functionality of this enzyme as C5DS.In the study of Pountain et al., a 

mutation (G415C) in LmxM.23.1300, which was observed in one line, AmBRA/cl1, of L. 
mexicana, resulted in an amino acid substitution (G139R) with a complete loss of 

ergosterol which, as in two of my lines, AmBRcl.14 and AmBRcl.3, was substituted by 

ergosta-7,22-dienol (changes in sterols are discussed further (see Chapter 5). As mentioned 

before, the presence of the two double bonds in carbons ∆5,7 is one of the structural 

components  of the sterol molecule (see Chapter 1, Figure 1-9 for a complete list), which 

determines their selectivity to polyenes (Hsuchen and Feingold, 1973). Polyenes Nys and 

AmB, have partial or total loss of binding (resistance) for those intermediates with only 

one double bond (∆5, such as cholesterol, stigmasterol, and dihydrocholesterol (Geber et 

al. 1995; Kontoyiannis and Lewis 2002). Given the relevance of these double bonds, the 

correct identification of the C5DS in Leishmania spp., is fundamental for downstream 

analysis. For instance, in the study of Cosentino et al. (and others), is not possible to 

differentiate if the authors refers to LmxM.23.1300 or LmxM.30.0590, when they compare 

with the ERG3 orthologue. Although most probably, they refer to the latter, which is 

annotated as C5DS in the TriTrypDB (and considering that the former was found to have 

C5DS activity after the publication of the study of Cosentino). Moreover, this is further 

complicated by the fact that ERG3, like other enzymes, are stage specific or have no 

orthologue between different species of kinetoplastids. In support of this, the fact that all 

the enzymes, and the organization of the SBP is still unknown  (Yao and Wilson 2016), 

makes their correct annotation essential. 
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Similarly, other sterol inhibitors, i.e. azoles, are also less effective in fungi with mutations 

in this enzyme (Vale-Silva et al. 2012). In my study, I present additional characterization 

of these two mutations (and others), such as their susceptibility to polyenes AmB and 

Nystatin and to various antileishmanials, their sterol profiling, and their phenotype in a 

mouse model. These analyses were also complemented with a characterisation of the 

histological alterations, which is an aspect that has never been described in AmBR lines of 

Leishmania spp. (Chapter 5, section 5.2.1 (sterols in AmBR lines) and section 5.2.7 

(histology of mice infected with AmBR lines). Contrary to those changes in C24SMT, 

which were always associated with the loss of the miltefosine transporter (MT), none of 

the mutations in C5DS observed in this study, were related with additional changes in this 

gene. In another AmB resistant line selected by a former student in the Barrett Lab, a novel 

mutation (C974T) in C24SMT and the loss of the MT were also identified (PhD Thesis 

Raihana Binti Ithinin, Barrett Lab, unpublished). Alterations in the MT are, possibly, 

incompatible (e.g. deleterious) with certain types of sterols (in particular sterols without the 

two double bonds 5,6), which are lost (ergostanes) to give place to the accumulation of 

cholestanes as a results of mutations in C5DS. However, in the study of Pountain, 

AmBR/cl.2, showed mutations in C5DS and C24SMT along with the loss of the MT 

(Pountain et al. 2019). 

In addition to the findings described here, which are consistent with the work of Dr 

Andrew Pountain and Raihana Binti Ithinin, in my study, I have identified an association 

between some of these mutations, their sterol profiling, and their phenotype in a mouse 

model. Moreover, I further characterised these phenotypes, using histology, and confirmed 

the presence (and virulence), and the retention of resistance of all these lines, including the 

two attenuated lines, after infection in vivo. Additionally, I screened a library of new sterol 

inhibitors (Chapter 6), which showed activity both in vitro in several species of wild type 

Leishmania, four polyene resistant mutants and a C24SMT KO (see chapter 6), and were 

also active against the L. mexicana C24SMT, with substrate specific assays (performed by 

Boden Vanderloop, from David Nes Lab, Texas Tech University). A summary of all the 

mutations in genes of the SBP in all four AmBR lines, and their phenotype (sterols, 

infectivity in vivo, and histology), is discussed further (Table 5-6, section 5.2.3 (infection 

in vivo), 5.2.7 (histological changes), and Chapter 7 (metabolomics), respectively. 

 



5 Sterol profiling and infectivity of polyene 

resistant lines of Leishmania mexicana 

5.1 Introduction 

Leishmania spp. generally contain ergosterol or closely relate ergostane sterols, in their 

membrane as the primary sterol. However, they can survive with an altered composition of 

sterols that derives from the loss of ergosterol as a result of defective enzymes in the sterol 

biosynthetic pathway (SBP). For example, exogenous cholesterol and other lipids, can be 

scavenged from the host or from culture medium (Andrade-Neto et al. 2011; Bastin et al. 

1996; Yao et al. 2013; Zhang and Beverley 2010). Cholesterol is abundant in the host and 

also has structural similarities to ergosterol (section 1.6.5, Figure 1-9). While the former is 

the main sterol in mammalian cell membranes, the latter is the most abundant in 

Leishmania and also in fungi. Briefly, these two sterols differ in the number of carbons 

they possess, cholesterol having 27, while ergosterol has 28. Other structural differences 

include the extra double bonds at carbons C7 and C22, and the methyl group at carbon 

C24(C28) (Tutaj et al. 2015; Te Welscher et al. 2008, 2010) of ergosterol. Other 

properties, e.g. chromatography retention time (RT), of these two sterols, and others, are 

discussed in more detail in this chapter. 

Ergosterol, along with sphingolipids, comprise core components of the lipid rafts in the 

membrane of Leishmania. The sterol ring physically contacts the acyl chains of the 

sphingolipids. Sterols and sphingolipids also contribute to cellular response to the 

environment and regulation of multiple cellular events (Gulati et al. 2010). Moreover, 

Leishmania parasites possess a unique sphingolipid, inositol phosphorylceramide (IPC), 

which, like ergosterol, is an attractive antileishmanial target (Denny et al. 2006), along 

with the enzymes involved in their synthesis. The loss of ergosterol observed in AmBR 

lines of Leishmania is, therefore, thought to alter the interaction between sterols and 

sphingolipids in the membrane and thus contribute to membrane destabilisation, albeit with 

no understanding of the mechanism of such events. Similarly, no studies have linked loss 

of sterol and IPC status in amphotericin B resistant lines that have lost ergosterol.  
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Defects in several enzymes of the Leishmania SBP give rise to AmB resistance, and to a 

range of different intermediates that replace the main sterol, ergosterol (or close isomers of 

the ergostane sterol type) (Andrade-Neto et al. 2011; Croft,et al. 2006; Pourshafie et al. 

2004; Purkait et al. 2012), and in fungi (Kelly et al. 1994; Laura Y. Young et al. 2003). 

Similar alterations in sterols can also be observed after the treatment with antifungals. 

Despite the significant progress in understanding the mechanism of resistance of AmB in 

Leishmania (Pountain et al. 2019), little is known with regard to how the parasite uses 

cholesterol, or other intermediates, to enable replacement of ergosterol in resistant lines. 

Some enzymes related with the synthesis of ergosterol, 3-hydroxy-3-methylglutaryl-CoA 

synthase (HMGS)(LmxM.24.2110) (Carrero-Lérida et al. 2009; Cosentino and Agüero 

2014), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR)( LmxM.29.3190) (Brooks et 

al. 2012; Dinesh et al. 2014, 2015; Ginger et al. 2001; Singh et al. 2014), and mevalonate 

kinase (MVAK) (LmxM.30.0560) have also been studied as drug targets in kinetoplastids 

(de Souza and Rodrigues 2009a). While the role of other enzymes that are essential in 

fungi, such as C-4 sterol methyl oxidase (SMO) (LmxM.36.2540) (Cosentino and Agüero 

2014; Gachotte et al. 1997; Mo and Bard 2005a; Taramino et al. 2010), and C-5 sterol 

desaturase (C5DS)(see chapter 4, section 4.1.5), is however, poorly understood in these 

parasites. Similarly, other genes, i.e. C8-sterol isomerase (C8SI) (LmxM.08_29.2140), 

have never been characterized in Leishmania spp. 

In the present study, I explored whether changes in sterols in lines I selected, resemble 

those reported previously in Leishmania spp. (Andrade-Neto, et al. 2016; Brooks et al. 

2012; Pountain et al. 2019). While previous work with AmB resistance had identified 

changes to sterol C-14 demethylase (C14DM), sterol C-24-methyltransferase (C24SMT) 

and sterol C-5 desaturase (C5DS), no studies around changes in parasites selected for 

resistance to another polyene, nystatin (Nys), in Leishmania spp., have been performed.  

Sterol and sphingolipid composition in the plasma membrane have been related with the 

infectivity in Leishmania previously, the latter, for instance, being important for the 

differentiation into the infective metacyclic promastigote form (Denny, Goulding, Michael 

A. J. Ferguson, et al. 2004; Yao et al. 2013). I therefore investigated possible associations 

of the sterol composition in AmBR lines with their phenotypes, including pathogenesis, 

response to treatment, and retention of resistance, during and after infection in BALB/c 

mice. 
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5.2 Results 

Given the complexity of the Sterol Biosynthetic Pathway (SBP), understanding the 

structure and nomenclature of the different types of sterols is essential. Cholestanes are a 

group tetracyclic triterpenes with 27 saturated carbons. Sterols that contain one- or two 

double bonds, within the ring system are known as cholestene (e.g. cholesterol) and 

cholestadienes (e.g. ergosterol), respectively. Both cholesterol and ergosterol are also 

sterols, because they contain an alcohol group. Other examples of cholestane derivatives 

are lanosterol and stigmasterol. Other types of tetracyclic triterpenes are ergostanes (e.g. 

campestanol), and stigmastanes, which contain 28- and 29-carbons, respectively (Figure 

5-1, Panel A). The sterol nucleus is formed by four domains or rings (named A, B, C and 

D). In the first domain A, the hydroxyl group located in the carbon 3, gives some polarity 

to the molecule (De Kruijff et al. 1974). In domains B and C, the number and position of 

double bonds affect the shape of the molecule, and the binding to polyenes (Hsuchen and 

Feingold 1973). Finally, domains C and D determine the orientation and length of the side 

chain, which is a unique substituent of ergostanes. Altogether, these features determine the 

functionality and other properties of the sterols. Importantly, these features can also be 

exploited for their identification (Nes 2011; Nes and Parish 1989a). Some of the first 

methods used for the identification of sterols were NMR and X-ray diffraction. These 

methods can differentiate ergosterol from cholesterol based on differences between their 

structures and their abundance in the cell. For instance, in plants and animals, the content 

of sterols is up to 50-fold (3000 fg/cell) higher than in yeast (20 fg per cell) (Nes 2011).  

Other approaches commonly used for the identification of sterols are high-pressure liquid 

chromatography (HPLC) and UV-vis spectroscopy; the former can detect small amounts 

(up to 0.04 µg per gram), and the latter, identifies sterols based on the number and 

distribution of the double bonds within their ring. While the number of possible 

combinations of double bonds in the molecule is numerous (more than 10 combinations), 

each combination gives a unique absorption spectrum (Qiao et al. 2015).  

Sterols with a pair of double bonds absorb energy between 240-300 nm. Ergosterol, for 

instance, has a ∆5,7 double bond system and a distinctive absorbance spectrum at 282-283 

nm (Dorfman 1953; Seitz et al. 1979; Sokol-Anderson et al. 1986). By contrast, cholesterol 

and other plant sterols (e.g. sitosterol, stigmasterol) only have one ∆5 double bond, and 

therefore absorb light at <240 nm (Seitz et al. 1977, 1979). In another study, 50 

triterpenoids were characterised and compared with 31 standards, using ultra-high-

performance liquid chromatography coupled with diode-array detection and quadrupole 
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time-of-flight mass spectrometry (UHPLC/DAD/qTOF-MS). Despite lacking the ∆5,7 

double bond, some sterols produced peaks between 198 - 274 nm (Figure 5-1 Panels B and 

C)(Qiao et al. 2015), however, those sterols with at least two double bonds located in other 

carbons, produced peaks more similar to those observed with ergosterol. While UV-vis is 

useful for the detection of ergosterol (Gutarowska and Zakowska 2010), its use for the 

accurate identification of other sterols is more limited. In another interesting method, 

ergosterol was combined with iodine, forming a highly stable fluorescent product that 

absorbs at 271 nm (and is even more stable than ergosterol alone which auto-oxidises). 

With this method, ergosterol was differentiated from other sterols, none of which produced 

a fluorescent product after the addition of iodine (Rao et al. 1989). UV-vis is also useful to 

determine the orientation of polyenes (i.e. AmB and Nys) within membranes (Castanho, 

Lopes, and Fernandes 2003; Lopes and Castanho 2002). 

In Leishmania, UV-vis identified the ergosterol spectrum, with a first peak at 281 nm, a 

second peak at 271 nm, and finally, a shoulder at 293 nm (Mwenechanya et al. 2017; 

Pountain et al. 2019a). In their work, Pountain and colleagues characterised various AmBR 

lines with defects in different sterol pathway enzymes (e.g. C14DM, C24SMT and C5DS), 

showing that those mutants with defects in the enzyme C5DS were lacking the 

characteristic spectra of ergosterol due to the absence of the ∆7 double bond within the 

sterol ring. Similarly, Mwenechanya et al. reported the absence of the ergosterol peak in 

AmBR lines of L. mexicana with a mutation in the enzyme C14DM. In another study in L. 
major, Xu and colleagues further confirmed this finding, using GC-MS. After the deletion 

of C14DM, a complete loss of various sterols with the ∆5,7 double bond system was found 

with GC-MS, including ergostane-based (i.e. 5-dehydroepisterol, ergosterol, and episterol), 

and a cholestane type (cholesta-5,7,24-trienol), suggesting a link between this enzyme and 

the production of sterols with two double bonds (Xu et al. 2014). UV-vis and GC-MS have 

been used previously in Leishmania spp. (Al-Mohammed et al. 2005; Pountain et al. 2019; 

Andrade-Neto et al. 2016b; Xu et al. 2014) and in T. brucei (de Souza and Rodrigues 

2009a). 

GC-MS offers a number of advantages and allows for the detection of a broad range of 

metabolites in any sample (e.g. amino acids, carbohydrates, fatty acids) and with good 

coverage (Zarate et al. 2016). GC-MS also has higher selectivity and susceptibility for the 

identification of different types of sterols (Varga, Bartók, and Mesterházy 2006). This 

method became the standard for the identification and quantification of sterols (Goad and 

Akihisa 1997) since the separation of sterols in gas-liquid systems (GLC) (such as GC-

MS) depends on the polarity and molecular weight of the sterol molecule (Heupel, cited in 
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(Nes and Parish 1989a). As with the UV-vis spectra, each one of the substituents within the 

sterol ring and the side chain determines the retention time (RT) of sterols in GC-MS 

(Goad and Akihisa 1997). For instance, the single addition of an alkyl group, the number 

and distribution of double bonds within the sterol ring or in the side chain, will give a 

unique RT.  

 

  

Figure 5-1. Nomenclature of Sterols and the double bond system.  

The numbers of the carbon atoms of the sterol molecule. Group R (in blue) is replaced by 

different substituents to form cholestanes (27 carbons), ergostanes (28 carbons), and 

stigmastanes (29 carbons), lanostanes can have 29 or 30 carbons (red). Double bonds (in 

green) system: cholestanes or ergostanes have one double bond (∆5), cholestadienes or 

ergostadienes have a pair of double bonds (∆5,7). More than two double bonds the suffix (-

triene for 3, -tetraene for 4) allows for the identification (Panel A). The maximum UV 

absorption for ergostanes (Panel B) and lanostanes (Panel C) of A. cinnamomea (as 

example) show the changes of the absorbance after incorporating different substituents. 

Sources: Panel A modified from (Nes and Parish 1989a); Panels B and C (Qiao et al. 2015). 
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Another example is the C-24 methyl substituent, introduced by the enzyme C24SMT, 

which increases the elution time from 1.28 min to 1.31  min (Relative Retention Time 

(RRT), i.e. relative to cholesterol which has a RT of 1.000) independently of the gas liquid 

chromatography (GLC) system used, GLC is often referred only as gas chromatography 

(Patterson G. 1971). Given the relevance that these substituents also have in the MoA 

(Anderson et al. 2014; De Kruijff et al. 1974), and resistance (Mwenechanya et al. 2017; 

Pountain et al. 2019a) to polyenes, the employment of methods for the correct 

identification of sterols is essential. This is particularly relevant with triterpenoids, which 

can be considered as one single compound with other less specific approaches, due to the 

high similarity between their structures (Qiao et al. 2015). However, the annotations of 

peaks sometimes can be problematic when adequate standards are not available. 

Particularly, for those molecules with a number of isomers and with very similar structure 

and related ion patterns. In these cases, the use of derivatization (chemical alteration of 

sterols to produce a more amenable molecule for the analysis) is essential, as this method 

provides a more reliable identification based on the differential RT values of the sterols.  

Although derivatization is an essential step for the accurate identification of sterols in GC-

MS, it has some disadvantages that can perturb analysis of a given sample (Goad and 

Akihisa 1997). In a recent approach, GC-MS was performed without derivatization, where 

fragmentation was sufficient to allow detection of ergosterol accurately, and with excellent 

correlation (R2>0.96) with HPLC (Zakir Hossain and Goto 2015).  

Other disadvantages of GC-MS include a need to include reference standards which are 

expensive and can vary from one laboratory to another, the lack of uniformity between 

methods (Patterson G. 1971), and the requirement of heating or vaporisation of the sample, 

which can interfere with the identification of volatile metabolites. This can be improved 

using trimethylsilyl (TMS)(a silylation agent) and using derivatization (Koek et al. 2011; 

Zarate et al. 2016). Finally, the nomenclature of sterols is rather complex and the 

identification of similar compounds can be difficult. Here, we use the IUPAC-IUB 

nomenclature recommended by Nes (IUPAC-IUB Comm. on Biochem. Nomencl 1970; 

Nes and Parish 1989b). 
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Figure 5-2. Ion chromatogram for the mass of the fragment ion for the standard mix- and the 

Leishmania-sterol peaks.   

Sterol standard mix from Glasgow Polyomics* (communication from Stefan Weidt). The 

upper frame depicts the total ion chromatogram (TIC) of TMS derivatives of fraction of 

sterols from the standards (Panel A - top) and Leishmania sterol samples (Panel B - 

bottom). The mixture of standards was run with a blank , and the samples, to provide a 

reference spectrum and retention times (RT) for matching the experimental samples. The 

proposed annotations of the TMS derivatives are shown as the underivatized form in Table 

5-1. * https://www.polyomics.gla.ac.uk/  

B) Leishmania sterol peaks  
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5.2.1 The sterol signature of AmB resistant lines 

5.2.1.1 Sterol signatures of AmBR promastigotes  

Sterol profiling using GC-MS was performed on all of the polyene resistant lines of 

Leishmania mexicana. First, all sterols were detected as their trimethylsilyl (TMS) ester 

derivatives (but reported here in their underivatized form). Individual sterols are expressed 

as a percentage of the total sterol content following normalisation. After comparison with a 

pool of the reference standards, only three of the standards (cholesterol, lanosterol and 

zymosterol) matched any of the Leishmania samples. Sterol peaks are presented in a 

sequential order, starting from lanosterol (upstream) and with ergosterol at the end 

(downstream) of the pathway (see Table 1-3, for a full list of the genes and orthologues of 

the Sterol pathway). Other intermediates (e.g. cholesterol, desmosterol) which are not part 

of the Leishmania pathway, or for which identification was unclear or contradictory, are 

listed after ergosterol. A complete list of all of the sterols identified with GC-MS and their 

differences between wild type and all AmBR and NysR lines is shown in Table 5-1 to 

Table 5-3, and Figure 5-3 to Figure 5-5.  

In this study, ergosta-5,7,24(28)-trien-3β-ol, was the most abundant sterol (72 - 82 %) in 

wild type promastigotes of L. mexicana. This sterol is an isomer of ergosterol (C28H44O) 

also known as 5-dehydroepisterol. These two isomers differ in the position of the double 

bond of their side chain, which is located in carbon 22, and carbon 24, in ergosterol and 5-

dehydroepisterol, respectively. The fragmentation pattern of both isomers is very similar, 

nonetheless, the corresponding peak for ergosterol in the Leishmania samples was very 

weak. In turn, the peak of 5-dehydroepisterol showed a strong signal. Moreover, the latter 

exhibited a different RT (11.61 to 11.67) than the reference standard of ergosterol (RT of 

11.37).  

A similar spectrum and RT in these two isomers was observed previously (Xu et al. 2014; 

Yao and Wilson 2016b). In the latter of these studies, two isomers of ergosterol (named 

type- I and II) with comparable values were reported in L. infantum chagasi (Yao et al. 

2013; Yao and Wilson 2016). In T. brucei, four structural isomers, 1) ergosta-5,7,22-trien-

3β-ol, 2) ergosta-5,7,25(27)-trien-3β-ol, 3) ergosta-5,7,24(28)-trien-3β-ol, and 4) ergosta-

5,7,24(25)-trien-3β-ol, displayed a similar UV light spectra similar to that of ergosterol 

(Zhou, Cross, and Nes 2007). However, none of these four isomers showed a match with 

the internal ergosterol standard or the Leishmania isomer, possibly, because these isomers 

are from T. brucei.  
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Another abundant sterol (based on the comparison with NIST libraries) identified in wild 

type parasites in this study was, ergosta-7,22-dien-3-ol (11%). Other less abundant sterols 

were also found and are shown in Table 5-1. The relative abundance of cholesterol was 

between 2 to 7% and was similar across all samples. Cholesterol is probably from an 

exogenous source, e.g. foetal bovine serum (FBS) which is added to the culture medium. 

Although in lower abundance (0.2 – 0.4%), the presence of traces of lanosterol in all 

samples, suggests that the enzyme C14DM was functional. The abundance of ergostanes, 

i.e. ergosterol, found in this study, is in agreement with previous reports in which this class 

of sterol has been reported as the most abundant in both, promastigotes (between 60- to 

80%), and amastigotes of Leishmania spp. (Roberts et al. 2003).  

The GC-MS profile of all the polyene resistant lines showed significant changes in relation 

to their respective parental wild type. The most notable change that was observed across all 

AmBR lines, was the total or partial loss of the wild type sterol ergosterol (or any of its 

isomers). Overall, the four AmBR lines displayed two main patterns of alterations. Two 

lines, AmBRcl.14 and AmBRcl.3, had the wild type ergosterol replaced by ergosta-7,22-

dien-3-ol (96 - 97%), the latter which is an intermediate lacking the 5(6) saturation. The 

presence of this intermediate suggests that defects in the enzyme C5-desaturase (C5DS) 

were, possibly, present or that the enzyme was redundant. In this study, five novel 

mutations were confirmed in this enzyme (discussed in detail in chapter 4) in resistant lines 

selected for resistance against AmB and Nys. 

Interestingly, this intermediate, ergosta-7,22-dien-3-ol, also showed a two-fold increase 

with respect to wild type (18 to 20%), in a line overexpressing an episomal wild type-copy 

of the C24SMT. LmxM.36.2380, named C24SMT herein, measured using RNA-seq and 

and qPCR (sections 2.14 and 2.11, respectively). RNA-seq data is shown in Figure 6-7 and 

is also provided as Supplementary 8 excel file (see page 8). The sterol profile (GC-MS), 

and susceptibility against a new library of sterol inhibitors of this line, is discussed further 

(Chapter 6, section 6.2). The negative controls, i.e. solvent without parasites pellet, used 

were as described in chapter 2 (see section 2.8). 
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The other two lines, AmBRcl.8 and AmBRcl.6, showed a different set of alterations. In 

these, the most abundant intermediate that replaced the wild type sterol was cholesta-

5,7,22-trienol, the abundance of which rose from 1.2% in the wild type, up to 86% and 

88% in both resistant lines, respectively. Another intermediate that increased moderately in 

AmBRcl.8 and AmBRcl.6, was cholesta-5,7,24-trienol (3.7 to 4%). These two 

intermediates have two double bonds and were absent or in very low abundance (0.2 and 

0.6%) in lines AmBRcl.14 and AmBRcl.3. With respect to the isomer of ergosterol, 5-

dehydroepisterol, it was absent from AmBRcl.6 and in low abundance (6 - 11%), in 

AmBRcl.8. In agreement with these findings, cholesta-5,7,24-trien-3-ol was also the most 

abundant membrane sterol in an AmBR-clinical isolate of L. donovani promastigotes, 

showing that this sterol showed a reduced affinity to AmB (Purkait et al. 2012). Similarly, 

cholestane-based intermediates, were the most abundant after the loss ergosterol and C24-

methylated intermediates in a C24SMT null mutant of L. major. In my study, I further 

confirmed this effect in a C24SMT knockout (named C24SMTKO hereon), created using 

CRISPR-cas9 (Beneke et al. 2017), in which the increase of cholesta-5,7,24-trien-3-ol and 

cholesta-5-7-dienol, was more pronounced (90.8 to 91.2%) (see chapter 6 for details). The 

increase of cholesta-5,7,22-trienol (from 3.0 to 64.0%) and cholesta-5,7,24-trienol (from 

3.0 to 64%), was also observed in wild type and one AmBR line of L. infantum 

Figure 5-3. Metabolite profiling by GC-MS in AmBR lines of L. mexicana promastigotes.  

Content of sterols is shown as a percentage of the total of sterol identified, as determined 

by GC-MS. Error bars represent standard deviation of the mean of three biological 

replicates. AmBR resistant lines. Sterol profile of AmBR lines recovered post infection (PI) 

are included for comparison with the axenic lines (high passage). 
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(Supplementary file 5) (see page 8) that I selected using a similar approach than with L. 
mexicana (see chapter 3, Figure 3-1). As with L. mexicana, this resistant line also showed a 

dramatic reduction of the wild type ergosterol (from 68 to 4%), and other ergostanes, i.e. 

ergosta-7,22-dien-3-ol (17 to 0%). Contrary to the samples of promastigotes and 

amastigotes of L. mexicana, in which only the isomer of ergosterol was detected, in this 

resistant line, both the isomer and ergosterol were present with similar abundance (4%). 

Resistance to the antileishmanials MF, PAR (Hendrickx et al. 2015, 2016; Mondelaers et 

al. 2016), and antimonials (Fadili et al. 2005; Leprohon et al. 2009) have been reported in 

L. infantum, two studies with AmB in this specie were found, the first one used flow 

cytometry to analyse the effect of catalase, ascorbic acid and ketoconaloze, on the 

permeability and potential of the membrane (Azas et al. 2001), whereas the second study, 

analysed the proteome of AmB resistant promastigotes (Brotherton et al. 2014). None of 

these two studies, however, analysed sterol changes. Two studies in L. donovani (both 

species are in the L. donovani complex), and another in L. major (Mukherjee et al. 2018), 

also found cholesta-5,7,22-trienol replacing the wild type ergosterol (Mbongo et al. 1998b; 

Purkait et al. 2012), and the only study in which both, sterols and AmB, are studied in L. 
infantum, found an increase in ergostane intermediates but not in cholestanes (Yao and 

Wilson 2016). A summary of these changes is showed in Table 5-5.  

Cholesterol was present (between 4.5 to 7%) in wild type and in all of the AmBR resistant 

lines from all species analysed, i.e. L. mexicana, L. infantum and L, tarentolae (the latter 

not included in this thesis). Interestingly, the abundance of cholesterol in AmBR lines, 

AmBRcl.14 and AmBRcl.3, with mutations in enzymes C5DS, was notably lower, 2.0 - 

2.8-fold, while in lines, AmBRcl.8 and AmBRcl.6, which have defects in C24SMT, in 

which cholesterol increased between 2.3 - 3.7-fold. Note that these fold changes are 

relative to the parental wild type. If the type of defects (and intermediates replacing 

ergosterol) are related with the ability of the AmBR mutants to uptake cholesterol is, 

however, unknown. This difference in the abundance of cholesterol in AmBR lines, 

indicates that in those lines with defects in C5DS there may be an altered association 

between sterols and sphingolipids, which caused a more fluid membrane (Xu et al. 2014). 

5.2.1.2 Sterol signature of AmBR amastigotes 

The extracts from amastigotes showed more sterols than promastigotes (Figure 5-4 and 

Table 5-2). Sterols were determined in amastigotes that were recovered from primary 

lesions or from lymph nodes and sub-cultured in vitro (only one passage), until a density of 

1 x 108 cells was attained. While resistant promastigotes had a partial or total loss of the 
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wild type sterol, 5-dehydroepisterol, in amastigotes this sterol was the most abundant in 

both, wild type (41.4%) and in the resistant line AmBRcl.8 (48.6%). The sterol 

intermediates of the latter, suggest that, as in promastigotes, this line has a functional 

C5DS. The increase in the abundance of ergosterol observed in amastigotes of AmBRcl.8, 

was not observed in amastigotes of the other resistant line, AmBRcl.14, possibly due to the 

mutations present in the latter, i.e. a deletion of a methionine (M93del), and a substitution 

R244L (G731T), in C5DS (LmxM.23.1300), which inactivates the enzyme (Note that 

gDNA for sequencing analysis was obtained from promastigotes in all AmBR lines, but 

not from amastigotes). A full description of the changes in different genes is discussed 

further (chapter 4, section 4.1.3). 

A secondary sterol, 4,4-Dimethylcholesta-5,7,24-trien-3-ol, was also abundant in wild type 

(11.6%) and AmBRcl.8 (12.9%) but absent in AmBRcl.14, and other less abundant sterols 

were also identified. For instance, lanosterol (0.3%) was only found in wild type 

amastigotes, whereas cholesta-5,7,22-trienol (2.7%), and cholesta-5,7,24-trienol (1.2%) 

were only present in AmBRcl.8. On the other hand, the resistant line AmBRcl.14, has two 

major sterols, ergosta-7,22-dien-3-ol (43%), and a new stigmastane-type sterol, which was 

annotated as stigmasta-5,7-dien-3β-ol (50%). Although of lower abundance, both 

intermediates were also detected in wild type and AmBcl.8 amastigotes. While the 

abundance of ergosta-7,22-dien-3-ol was 25.8% and 18.5%, that of stigmasta-5,7-dien-3ß-

ol was 8% and 6%, in wild type and AmBRcl.8, respectively (Figure 5-4 and Table 5-2). 

Amastigotes contain a comparable abundance of cholesterol as promastigotes, (7-10% of 

total sterol in all AmBR lines, and 8.1% in wild type). Although the concentration of 

cholesterol in the culture medium was not measured with GC-MS, some variation can be 

expected between batches. However, its relatively homogenous abundance observed with 

GC-MS between promastigotes and amastigotes is explained, at least in part, by the similar 

concentration (10%) of FBS added in their respective culture media.  

Overall, the identification of sterols is challenging given the nature of their complexity and 

that of the pathway. In Leishmania, this is more challenging as we need to consider that 

some genes have two copies (as in C24SMT), and that the amastigote stage also interacts 

and can uptake sterols from the host cell macrophages, e.g. cholesterol (Andrade-Neto et 

al. 2011; Bastin et al. 1996; Ginger et al. 1999; Yao et al. 2013a; Zhang and Beverley 

2010). In amastigotes, the increase of two intermediates, both with two double bonds, and 

which were absent in promastigotes is not well understood. An explanation for this can be 

the presence of another enzyme with similar function, i.e. C5DS, in the intracellular stage. 

Interestingly, another enzyme is annotated as the putative C5DS in Leishmania spp. 
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(LmxM.30.0590 in L. mexicana). A detailed discussion of the annotation between these 

enzymes and their identity with respect to other orthologues, was presented in chapter 4 

(see section 4.1.5). Alternative explanations to the increase of these intermediates with two 

double bonds in this line are, for instance, the presence of other host-desaturases, which 

could, possibly, convert other intermediates into ergosterol or stigmastane-type 

intermediates. This needs further investigations.  

 

The partial retention of activity of the enzyme is also feasible and could explain the 

increase of these intermediates. The presence of both, cholesta-5,7,22-trien-3-ol and 

stigmasta-5,7-dien-3-ol (both with ∆5,7 double bonds), in amastigotes from both lines, 

AmBRcl.14 and AmBRcl.8, also supports the idea of partial C5DS activity. Interestingly, 

in their study, Al-Mohammed and colleagues, showed that both intermediates (both which 

are alkylated at C-24 in the side chain), were totally absent from both amastigote and 

promastigote forms that were highly resistant to AmB. Instead, the most abundant sterol 

was a cholestane-type, 4,14,dimethyl-cholesta-8,24-dienol, which increased significantly 

from 62.4% in promastigotes, to 97,3% in amastigotes (Al-Mohammed et al. 2005). 

Previous studies have also reported some stigmastane type sterols, e.g. 

stigmasterol, stigmasta-5,22-dienol, and stigmasta-5-en-3-ol, in Leishmania (Goad, Holz, 

and Beach 1984; Pomel, Cojean, and Loiseau 2015; Roberts et al. 2003; Yao and Wilson 

2016). The study of Al-Mohammed et al., a stigmastane-type sterol, stigmasta-5,7,24(24)-

Figure 5-4. Metabolite profiling by GC-MS in AmBR lines of L. mexicana amastigotes. 

Content of sterols is shown in percentage of the total of sterol identified, as determined by 

GC-MS. Error bars represent standard deviation of the mean of three biological replicate.  
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trienol, was identified in wild type promastigotes (10.6%) and at significantly higher 

concentration (47.2%) in the wild type amastigote stage.  

Another notable difference between promastigotes and amastigotes was also observed with 

ergosterol (or its isomer ergosta-5,7,24(241)-trienol), the abundance of which decreased 

from 85.1% in the former to 40.9% in the latter. These values are comparable to those 

reported here in wild type promastigotes (81.63%) and amastigotes (41.4%), however, the 

isomer of ergosterol identified in this study was different, i.e. ergosta-5,7,24(28)-trien-3β-

ol (Table 5-1 and Table 5-2). Contrary to the study of Al-Mohammed, here, no 

stigmastane-type sterol was identified in any of the samples from wild type and from AmB 

resistant promastigotes. However, this sterol was detected in all of the amastigote samples 

analysed, i.e. wild type, AmBRcl.14 and AmBRcl.8 (Figure 5-4 and Table 5-2). Moreover, 

a stigmastane-type sterol was also detected in all four samples of promastigotes resistant to 

nystatin, discussed in the following section. In agreement to this, other studies have also 

reported low abundance (5%) of stigmastanes in promastigotes, which increased up to 

20%, in amastigotes of some Leishmania spp., suggesting that these C-29 intermediates, 

possibly, confer some advantage to this stage of the parasite within the macrophage 

(Roberts et al. 2003). 

5.2.2 Sterol signatures of nystatin resistant lines 

As in all the other wild types, the isomer 5-dehydroepisterol was the most abundant sterol 

(77.8-81.6%) in both the low and high passage wild type cell lines used in selecting 

nystatin resistance. Another abundant sterol was ergosta-7,22-dien-3-ol (10.9-12.1%), 

followed by 4,4-dimethylcholesta-5,7,24-trien-3-ol (1.4-2.2%), and other less abundant 

sterols (0.5-1.2%) were also detected (e.g. cholesta-5,7,24-trien-3-ol, cholesta-5,7,22-

trienol and ergosta-8,24(28)-diene). Unlike the two main patterns of alterations observed in 

AmBR lines, all four clones of NysR lines showed a similar profile. The most abundant 

intermediate replacing ergosterol was ergosta-7,22-dien-3-ol (80.2-89.1%), an intermediate 

lacking the C-5 desaturation. Interestingly, all four lines had a secondary sterol, stigmasta-

5,7-dien-3-ol, which was more abundant in lines NysRcl.B2 and NysRcl.C1 (9.9 and 

14.2%, respectively), than in NysRcl.E1 and NysRcl.F2 (6.1 and 7.0%, respectively). As 

described in chapter 4 (4.1.5), accumulation of ergostanes in these NysR mutants derived 

from lesions (A95del) in C5DS identified in NysRcl.B2 (the other three clones were not 

NGS-analysed due to costs limitations), which has never been reported in Leishmania spp. 
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As with all the other promastigote and amastigote AmBR lines, cholesterol was also 

present in all samples, being more abundant in WTHP (3.9-4.1%) than in WTP0 (2.3-

2.5%) (Figure 5-5 and Table 5-3). A summary with the mutations in genes of the SBP in 

all four AmBR lines, and their phenotype, is shown in Table 5-5, and discussed in more 

detail in sections 5.2.3 (infection in vivo, histology), and Chapter 7 (metabolomics). Based 

on the GC-MS profile of sterols observed with the four NysR lines (Figure 5 5 and Table 5 

3) was totally different than that for the AmBR lines, the analysis of the genotype using 

NGS, and phenotype in vivo of these lines, is important, but could not be carried out due to 

time constraints in this thesis.

Figure 5-5. Metabolite profiling by GC-MS in NysR lines of L. mexicana promastigotes.  

Content of sterols is shown as a percentage of the total of sterol identified, as determined 

by GC-MS. Error bars represent standard deviation of the mean of three biological replicate. 

Names of WTHP and WTP0, and NysR lines are described here in the text (5.2.2), and in 

Chapter 3 (see 3.2.1.2). 
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SBP 
number 

Peak and/or Putative 
Annotation 

Major frag 
mass m/z 

Molecular 
ion* m/z 

-TMS 
m/z 

Formul
a 

-TMS 
RT /min 

Evidence and 
Confidence 

WT 
 

WT PI 
AmBR 
cl.14 

AmBR 
cl.14 PI 

AmBR 
cl.3 

AmBR 
cl.8 

AmBR 
cl.8 PI 

AmBR 
cl.6 

1 Lanosterol, TMS 394 499 426 C30H50O 
11.85 - 
12.01 

Match both RT and 
m/z to standard 

0.41 ± 
0.13 

0.38 ± 
0.01 

0.18 ± 
0.02 

0.22 ± 
0.05 

0.18 ± 
0.21 

0.24 ± 
0.04 

0.32 ± 
0.13 

0.37 ± 
010 

 

Peak 6 - FF-MAS (aka 4,4-
Dimethylcholesta-5,7,24-trien-

3-ol), TMS or to 4,4-
Dimethylcholesta-5,7,9(11)-

trien-3-ol. 

377 483 410 C29H46O 
12.19 - 
12.38 

NIST Score 608 to 4,4-
Dimethylcholesta-

5,7,9(11)-trien-3-ol. 
Reported as FF-MAS 
based on previous 

data and literature. 

0.73 ± 
1.27 

       

 
Peak 1 - (22Z)-Cholesta-
5,7,22-trien-3-ol, TMS 

349 455 382 C27H42O 
11.19 - 
11.36 

NIST Score 678 
1.28 ± 
0.66 

2.57 ± 
0.47 

  
0.06 ± 
0.11 

86.23 ± 
4.25 

73.35 ± 
8.74 

87.91 ± 
2.91 

 
Peak 2 - Cholesta-5,7,24-

trienol 
343 456 383 C27H44O 

11.30 - 
11.47 

Desmosterol NIST 
match 699, wrong RT 

0.77 ± 
0.35 

0.88 ± 
0.18 

0.23 ± 
0.10 

0.16 ± 
0.04 

0.19 ± 
0.33 

3.72 ± 
0.25 

3.61 ± 
1.9 

4.04 ± 
0.60 

5 Zymosterol, TMS 369.4 456.4 383.3 C27H44O 10.98 Match to standard         

6 
Peak 3 - Ergosta-8,24(28)-
diene, TMS (or Fecosterol) 

366 470 397 C28H46O 
11.43 - 
11.6 

NIST Score 552   
1.24 ± 
0.08 

1.11 ± 
0.11 

1.33 ± 
0.14 

   

 
Peak 5 - Ergosta-7,22-dien-

3-ol, (3β,22E), TMS 343 470 397 C28H46O 
11.65 - 
11.82 

NIST Score 701 
10.95 ± 

1.93 
6.53 ± 
0.24 

96.73 ± 
0.23 

96.88 ± 
0.18 

96.01 ± 
1.08 

 
10.27 ± 
14.77 

 

8 
Peak 4 - Ergosta-5,7,24(28)-

trien-3β-ol (a.k.a.  
5-dehydroepisterol) 

363 469 396 C28H44O 
11.61 - 
11.7 

Ergosterol NIST 
Match score 804, 

wrong RT 

81.63 ± 
2.34 

86.91 ± 
0.43 

  
0.52 ± 
0.11 

3.04 ± 
5.27 

7.09 ± 
6.15 

 

10 Ergosterol, TMS 364   C28H44O 11.37 
 

     
0.5 ± 
0.18 

0.52 ± 
0.25 

0.23 ± 
0.21 

 
Peak 7 - Stigmasta-5,7-

dien-3-ol 
343 485 412 C29H48O 

12.33 - 
12.42 

NIST score 628 to 
Stigmasta-7,24(28)-

dien-3-ol-TMS. 
        

 Cholesterol, TMS 368 459 386 C27H46O 
10.71 - 
10.87 

Match both RT and 
m/z to standard 

3.90 ± 
1.26 

2.42 ± 
0.33 

1.41 ± 
0.26 

1.42 ± 
0.06 

1.89 ± 
0.59 

5.8 ± 
0.7 

4.5 ± 
1.85 

7.13 ± 
2.96 

 Desmosterol, TMS 441 456 383 C27H44O 
10.93 - 
11.09 

Partial match to 
standard 

0.33 ± 
0.07 

0.29 ± 
0.07 

0.14 ± 
0.01 

0.14 ± 
0.02 

0.14 ± 
0.01 

0.36 ± 
0.03 

0.35 ± 
0.10 

0.32 ± 
0.28 

Table 5-1. Metabolite profiling by GC-MS (derivatization with trimethylsilyl, TMS) in AmBR lines of L. mexicana promastigotes.  
Content of each sterol is the percentage of the total of the raw peak area detected per line ± Standard deviation of three independent biological replicates. 
Standards used were: Cholesterol, TMS. Desmosterol, TMS. 5α-Cholest-7-en-3β-ol, TMS. Ergosterol, TMS. Stigmasterol, TMS. β-sitosterol, TMS. Lanosterol, 
TMS. FF-MAS (4,4-dimethyl-5α-cholesta-8,14,24-trien-3ß-ol), and zymosterol (Source: Glasgow Polyomics). FF-MAS: Follicular fluid meiosis-activating 
sterol, is an intermediate in the cholesterol biosynthetic pathway present in all cells. Those peaks that did not match any standard were determined by 
comparing with the NIST spectral libraries with the ion trap mass spectrometer and Peak 4 was identified based on previous work (see text 5.1). SBP: 
Sterols Biosynthetic Pathway. RT: retention time. 
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SBP 
Number 

Peak and/or Putative 
Annotation 

Major frag 
mass m/z 

Molecular 
ion* m/z 

-TMS 
m/z 

Formula 
-TMS 

RT /min Evidence and Confidence WT 
AmBR 
cl.14 

AmBR 
cl.8 

1 Lanosterol, TMS 394 499 426 C30H50O 
11.95 - 
12.01 

Match both RT and m/z to 
standard 0.3 ± 0.6   

 

Peak 6 - FF-MAS (aka 4,4-
Dimethylcholesta-5,7,24-

trien-3-ol), TMS (4,4-
dimethyl-5α-cholesta-

8,14,24-trien-3β-ol) 

377 483 410 C29H46O 
12.28 - 
12.38 

NIST Score 608 to 4,4-
Dimethylcholesta-5,7,9(11)-trien-3-ol. 

Reported as FF-MAS based on previous 
data and literature. 

11.6 ± 1.0  12.9 ± 0.5 

 
Peak 1 - (22Z)-Cholesta-
5,7,22-trien-3-ol, TMS 349 455 382 C27H42O 

11.26 - 
11.36 

NIST Score 678   2.7 ± 0.8 

 
Peak 2 - Cholesta-5,7,24-

trienol 343 456 383 C27H44O 
11.38 - 
11.47 

Desmosterol NIST match 699, 
wrong RT 

  1.2 ± 0.2 

5 Zymosterol, TMS 369.4 456.4 383.3 C27H44O 10.98 Match to standard    

6 
Peak 3 - Ergosta-8,24(28)-
diene, TMS or Fecosterol 366 470 397 C28H46O 

11.5 - 
11.6 

NIST Score 552    

 
Peak 5 - Ergosta-7,22-dien-3-

ol, (3β,22E), TMS 
343 470 397 C28H46O 

11.74 - 
11.82 

NIST Score 701 25.8 ± 3.3 43.0 ± 1.5 18.5 ± 0.5 

8 
Peak 4 - Ergosta-5,7,24(28)-

trien-3β-ol (a.k.a. 5-
dehydroepisterol) 

363 (changed to 
337) 

469 396 C28H44O 
11.61 - 
11.7 

Ergosterol NIST Match score 804, 
wrong RT 

41.4 ± 4.8  48.6 ± 1.8 

 Peak 7 - Stigmasta-5,7-dien-
3-ol 

343 485 412 C29H48O 12.42  8.1 ± 1.0 49.1 ± 0.9 5.8 ± 0.3 

 Cholesterol, TMS 368 459 386 C27H46O 
10.78 - 
10.87 

Match both RT and m/z to 
standard 12.2 ± 0.9 7.3 ± 0.4 10.2 ± 0.7 

 Desmosterol, TMS 441 456 383 C27H44O 
11.02 - 
11.09 

Partial match to standard 
0.33 ± 0.07   

 
 
 

Table 5-2. Metabolite profiling by GC-MS (derivatization with trimethylsilyl, TMS) in AmBR lines of L. mexicana amastigotes. 
Content of each sterol is the percentage of the total of the raw peak area detected per line ± Standard deviation of three independent biological replicates. 
Standards are as in Table 5-1. Those peaks that did not match any standard were determined by comparing with the NIST spectral libraries with the ion trap 
mass spectrometer (see text). Peak 4 was identified based on previous work (see text 5.2.1). SBP: Sterols Biosynthetic Pathway. RT: retention time.  
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SBP 
Number 

Peak and/or Putative 
Annotation 

Major frag 
mass m/z 

Molecular 
ion* m/z 

-TMS 
m/z 

Formula 
-TMS 

RT /min Evidence and Confidence 
WT 
HP 

NysR 
cl.B2 

NysR 
cl.C1 

WT P0 
NysR 
cl.E1 

NysR 
cl.F2 

1 Lanosterol, TMS 393.4 498.4 426.4 C30H50O 11.83 
Match both RT and  
m/z to standard 

0.41 ± 
0.13 

0.1 ± 
0.0 

0.1 ± 
0.00 

0.3 ± 
0.00 

0.3 ± 
0.10 

0.3 ± 
0.10 

 
Peak 6 - to 4,4-

Dimethylcholesta-5,7,9(11)-
trien-3-ol, TMS 

377.3 482.3 410.3 C29H46O 12.17 NIST Score 608. 
2.20 ± 
0.44 

  
1.4 ± 
0.5 

 
3.0 ± 
3.0 

 
Peak 1 - (22Z)-Cholesta-
5,7,22-trien-3-ol, TMS 

349 454.2 382.2 C27H42O 11.17 NIST Score 678 
1.28 ± 
0.66 

  
0.5 ± 
0.6 

  

 
Peak 2 - C27 dienol. 
Cholesta-5,7-dienol 343.3 456.3 384.3 C27H44O 11.28 

Desmosterol NIST match 
699, wrong RT 

0.77 ± 
0.35 

 
0.3 ± 
0.0 

1.2 ± 
0.2 

0.8 ± 
0.9 

0.2 ± 
0.1 

5 Zymosterol, TMS 369.4 456.4 383.3 C27H44O 10.98        

6 
Peak 3 - Ergosta-8,24(28)-
diene, TMS or Fecosterol 

365.6 470.7 398.7 C28H46O 11.41 NIST Score 552  
1.1 ± 
0.03 

0.9 ± 
0.1 

0.1 ± 
0.00 

0.1 ± 
0.2 

0.9 ± 
0.1 

 
Peak 5 - Ergosta-7,22-dien-3-

ol, (3β,22E), TMS 343.2 470.3 398.3 C28H46O 11.63 NIST Score 701 
10.95 
± 1.93 

80.2 ± 
0.7 

84.7 ± 
0.2 

12.1 ± 
2.7 

88.8 ± 
3.4 

89.1 ± 
0.3 

8 
Peak 4 - Ergosta-5,7,24(28)-

trien-3β-ol (a.k.a. 5-
dehydroepisterol) 

363.3 (changed 
to 337) 

468.3 396.3 C28H44O 11.52 
Ergosterol NIST Match score 

804, wrong RT 
81.63 
± 2.34 

 
0.3 ± 
0.7 

77.8 ± 
5.0 

0.2 ± 
0.00 

 

 
Peak 7 - Stigmasta-5,7-dien-

3-ol 
343 485 412 C29H48O 12.42 

NIST score 628 to Stigmasta-
7,24(28)-dien-3-ol-TMS 

 
14.2 ± 

1.1 
9.9 ± 
0.2 

0.3 ± 
0.1 

6.1 ± 
3.5 

7.0 ± 
0.8 

 Cholesterol, TMS 368.3 458.3 386.2 C27H46O 10.68 
Match both RT and m/z to 

standard 
3.90 ± 
1.26 

4.1 ± 
1.0 

3.9 ± 
0.3 

6.1 ± 
2.3 

2.5 ± 
0.9 

2.3 ± 
0.8 

 Desmosterol, TMS 441.3 456.3 383.3 C27H44O 10.90 
Partial match to standard 0.33 ± 

0.07 
0.1 ± 
0.00 

 
0.3 ± 
0.00 

0.1 ± 
0.00 

0.1 ± 
0.00 

 
 
 
 

Table 5-3. Metabolite profiling by GC-MS (derivatization with trimethylsilyl, TMS) in NysR lines of L. mexicana promastigotes. 
Content of each sterol is the percentage of the total of the raw a peak rea detected per line ± Standard deviation of three independent biological replicates. 
Standards are as in in Table 5-1. Those peaks that did not match any standard were determined by comparing with the NIST spectral libraries with the ion 
trap mass spectrometer (see text). Peak 4 was identified based on previous work (see text 5.2.1). SBP: Sterols Biosynthetic Pathway. RT: retention time. 
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5.2.3  Infectivity of the AmBR lines in vivo 

Characterization of anatomical and histological changes caused within the host combined 

with the identification of biochemical alterations of the metabolome of the parasite, can 

pinpoint important information towards the search of new drug targets. While the 

anatomical description of the infection with different Leishmania spp., is important to 

identify some macroscopic features of the disease, histology is necessary to confirm the 

presence of the parasite and can help to characterise the nature of the inflammatory 

process, respectively. Here, I assessed the infectivity of four AmBR lines in a mouse 

model and identified differences with respect to their parental wild type using histology. I 

also compared whether the virulence of these lines was related to their sterol composition. 

Broader changes in the metabolism and the MoA of AmB was also analysed in two of 

these resistant lines, AmBRcl.14 and AmBRcl.8, and is discussed further (see Chapter 7). 

All mice were from Harlan UK Ltd, and kept at the Central Research Facilities of the 

University of Glasgow, Glasgow U.K. All the experiments were performed by a certified 

technician, i.e. Ms Anne Marie Donachie, and Mr Ryan Ritchie. Initially, three BALB/c 

mice (one mouse for each line) were infected with resistant lines AmBRcl.14 and 

AmBRcl.8, and wild type (first experiment). Progression of the infection was monitored 

weekly by assessing the growth of the lesion after subcutaneous inoculation with 2 x 106 

metacyclic promastigotes, in the left footpad. Infections were stopped before any of the 

lesions reached a size of 5 mm, according to the Animals (Scientific Procedures) Act, 1986 

(ASPA) https://www.gov.uk/government/publications/consolidated-version-of-aspa-1986). 

In this first infection, only AmBcl.14 and wild type produced an increase in footpad size of 

the mouse, whereas the footpad infected with AmBcl.8 retained normal size (as compared 

with the right footpad) and without any macroscopic alterations identified at physical 

exploration over the duration of the experiment (thirteen weeks).  

Interestingly, viable parasites were recovered from all three mice. Although the density of 

parasites recovered from the mouse infected with AmBRcl.8 was lower, as indicated by the 

longer time (around two weeks) to reach a density of at least 1 x 105 which is the minimum 

that can detected by microscopy. Next, additional mice were infected with all four AmBR 

lines (AmBcl.14, AmBcl.3, AmBcl.8, AmBcl.6). In this second experiment of (also 

performed by Anne Marie Donachie), the wild type and the AmBRcl.14 (termed WTP0-

low passage- and AmBRcl.14 PI -post infection- hereon) that were recovered after the first 

infection, were also included. While AmBRcl.8 was also recovered from the first infection, 

this clone was not included, as by the time of starting the second infection, the density of 
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parasites from this line was still insufficient, i.e. lower than 1 x 106. In these experiments, 

mice were treated with AmB and AmBisome (see section 5.2.4 and 5.2.5). Primary lesion 

kinetics (from the second infection), showed a progressive increase in the size of footpad 

lesions in BALB/c mice. While mice infected with wild type parasites presented a lesion 

between 2 to 2.5 mm in size at the end of the experiment (13 weeks in total), the lesion size 

of primary lesions observed in the resistant lines was more heterogeneous showing to 

phenotypes (Figure 5-6). First, footpad lesions from mice infected with lines AmBRcl.14 

(including AmBRcl.14 PI) and AmBRcl.3, were larger than in wild type. Lesions of mice 

infected with AmBRcl.14, started increasing in size around the second week, whereas in all 

the other lines, the growth of the lesion was not observed until week three or four. 

However, two resistant lines (AmBRcl.8 and AmBRcl.6) caused no increase in the size or 

any other sign of inflammatory reaction at the site of inoculation during the thirteen weeks 

of duration of the experiment, thus confirming that the observations from the preliminary 

infection with line AmBRcl.8, were, possibly, related with to a stable, attenuated 

phenotype. 

The attenuated phenotype observed in lines AmBRcl.8 and AmBRcl.6, suggests that some 

of the sterol changes (or other genetic alterations) identified in these two lines, are related 

with this loss of virulence, possibly due to a loss or reduced capacity to induce an 

inflammatory response, or by affecting other features of the parasite, such as its 

internalisation, amastigogenesis, and replication within the host macrophage. Remarkably, 

viable parasites were recovered from both primary lesions (footpads) and lymph nodes 

from all mice infected with these two attenuated lines. This was further confirmed with 

histological analysis of footpads and lymph nodes and is discussed further (section 5.2.7). 

However, one cannot rule out other changes not determined here, can also arise during 

long culture (Nolan and Herman 1985), and can be different between independent lines. 

Examples of other virulence factors that can be lost along long-term subculture are, 

leishmanolysin (also known as GP63) and lipophosphogycan (LPG) (Denny et al., 2004). 

Others related with the energy metabolism (Kovářová et al. 2018; Saunders et al. 2018), 

and the genetics of the host (Ribeiro et al. 2018), are also relevant and cannot be excluded. 

In spite of the possibility that AmBRcl.8 and AmBRcl.6 clones could have evolved 

avirulence during in vitro cultivation separately from other strains, it is noteworthy that 

these two lines had a common feature with regards to their sterol profile, i.e. both showed 

elevated (22Z)-cholesta-5,7,22-trien-3-ol, and cholesta-5,7,24-trienol (Table 5-1), 

suggesting that the presence of these particular intermediates could play an important role 

in allowing the parasite to survive within mice without causing severe inflammatory 
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response (attenuated phenotype). As outlined in section 5.2.3, infection of mice was 

performed with axenic promastigotes that were selected for resistance in vitro, for 7 to 8 

months (long passage) (Figure 3-1). In my study, I confirmed their transformation into 

amastigotes by histology, and by recovering amastigotes after infection. The absence of 

lesion and the fact that amastigotes of these two lines were not identified by microscopy, 

suggests that the two attenuated lines, did not replicate in vivo. This was also compared 

with tissue of mice infected with wild type and with the other two virulent lines, in which 

the numbers of amastigotes was estimated (see histology section 5.2.7.1 and Figure 5-9). 

However, the presence of these two intermediates (both cholestanes) alone, does not solely 

explain the lack of virulence, which can be instead, due to other factors that are related 

with the virulence of the parasite, such as the absence of ergostanes itself (Yao and Wilson 

2016) and others that were not analysed in this study. Attenuation in vivo and in vitro was 

also observed in MF-resistant L. major promastigotes without altering the survival of the 

parasite within the insect vector (Turner et al. 2015).  

In another study, Al-Mohammed and colleagues also observed an attenuated phenotype in 

BALB/c mice infected with AmB resistant promastigotes of L. mexicana that were 

cultured for 110 passages. This AmBR line showed an attenuated phenotype, with lesions 

that grew, although developed slower than those observed with wild type parasites. 

Interestingly, the most abundant sterols in promastigotes in these attenuated parasites were 

4,14, dimethyl-cholesta-8,24-dienol (62.4%), 4,14, dimethyl-cholesta-7,24-dienol (6.5%), 

and lanosta-8,24-dienol (31.1%). The same three sterol intermediates were present in the 

intracellular form, with a relative abundance of 97.3%, 1.4% and 1.3%, respectively (Al-

Mohammed et al. 2005). Although in their study, Al-Mohammed et al. did not measure 

short passage promastigotes, here I found an increase in two ergostanes, ergosta-

5,7,24(28)-trien-3β-ol and ergosta-7,22-dien-3-ol, (3β,22E), in line AmBRcl.8, after 

infection in mice (low passage). The presence of these two sterol intermediates in both 

attenuated promastigotes and the amastigotes, can be of clinical and epidemiological 

implications. 

While these intermediates seem to be related to some fitness cost within the mammalian 

host, it would be interesting to determine if this occurs also within the sand fly. 

Considering that insects lack de novo synthesis of sterols (Janson et al. 2009), and parasites 

deficient in the synthesis of specific intermediates have, possibly, an altered capacity to 

survive (or replicate) within the insect, further studies on the effect of sterol composition in 

Leishmania are essential. This could be considered when developing new vector control 

strategies. In my research, I attempted to study the phenotype of AmBR resistant lines 
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within the sand fly, however, numbers of infected sandflies that survived deemed for 

insufficient experimental controls, i.e. low number of survivors (infected sand flies) in 

both, AmBR- and wild type (control) arms, therefore, infection rates could not be 

determined (data not shown). 

 

The findings of the study of Al-Mohammed et al., are indicative that the loss of the wild 

type ergostanes, i.e. ergosterol and stigmastanes, can be related to the loss of virulence. 

Based on the slower development of the footpad lesions, the authors suggested that the 

acquisition of the resistant phenotype carries, possibly, some fitness cost that reduced the 

ability of amastigotes to replicate within the mice (Al-Mohammed et al. 2005). One 

difference between the attenuated lines in my study and that of Al-Mohammed et al., is 

that in the latter, the attenuated line produced lesions in mice, albeit at slower rate than the 

wild type, whereas in my study, the attenuation was more pronounced without increase in 

the lesion size (and other features such as amastigote replication rate). As with my study, 

another work with L. mexicana also reported the total absence of lesions in mice infected 

with attenuated parasites. In this study, parasites were attenuated after 20 passages in vitro 

and failed to transform into amastigotes in infected host cells (Ali et al. 2013). The authors 

concluded that attenuated parasites downregulated several virulence factors (e.g. Th2-

associated cytokines), which were up-regulated in virulent parasites that were passaged 

between 1 to 7 times (Ali et al. 2013).  

Figure 5-6. BALB/c mice inoculated with L. mexicana and treated with AmB.  
Parasites were inoculated at 2 x 106 into 500 µl of PBS. Evolution of lesion was followed for 
three months and measured weekly. BALB/c female mice were two-months old at the time of 
inoculation. Treatment: 1 mg per kg IV every other day in the tail vein. A total of six 
injections (~120 µl) of AmB deoxycholate (AmB-D) diluted in PBS were administered. 
Tukey's multiple comparison test was used to find pairwise differences between resistant 
lines and parental wild type. Statistically significant values (P<0.05, 95% Confidence 
Interval) are indicated with stars as follows: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001). 
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It is not certain that the loss of ergostane-type sterols is the sole mechanism responsible of 

the attenuated phenotype observed with lines AmBRcl.8 and AmBRcl.6, given that a 

combination of changes are present in these two lines, i.e. alterations in the C24SMT gene 

concomitant with the loss of the miltefosine transporter and its neighbouring downstream 

gene (see Chapter 4, section 4.2.2 and 4.2.4). The imbalance of these ergostanes could, 

however, provide a mechanism that facilitates a concomitant loss or reduction of other 

structural components of the membrane, e.g. sphingolipids, leading to an altered content of 

lipid rafts and other associated molecules associated with the stability of the membrane and 

involved in the virulence of Leishmania spp., such as, GP63, lipophosphogycan (LPG) and 

LPS (Denny et al., 2004), the latter is absent in L. mexicana (Torres-Guerrero et al. 2017).  

The loss of these components can also derive from long-term subculture. However, since 

the hypothesis of my project was aiming to determine the role of sterols, I did not directly 

determine the role of other virulent factors (some data analysed the difference in drug 

susceptibility in vitro between long- and short-term passage in NysR lines, and in the 

content of sterols in these mutants, and in two of the AmBR lines). Interestingly, LC-MS 

found significant changes in lipids (including glycerol-phospholipids, sphingolipids, 

glycerol-3-phosphocholine, phosphoinositol and ceramides) in two AmBR lines, which 

were treated at high concentration of AmB (5 x EC50). A detailed analysis of these changes 

is discussed further (see chapter 7). Attenuation has been reported frequently in 

Leishmania promastigotes after passaging cells long term (as during selection for drug 

resistance with AmB and Nys). This attenuation can also occur with several passages and 

regardless of the addition of drug to the medium (Nolan and Herman 1985). An example of 

this is an AmB-resistant line of L. tropica that was developed from a previously attenuated 

wild type. The attenuation of the latter was achieved through 20 serial passages without 

drug. After being attenuated, drug selection was performed using a stepwise increase of 

drug pressure (Khan et al. 2016), similarly to the method used here (section 3.2.1).  

In the present work, all AmBR lines and wild type were maintained as promastigotes in 

axenic culture for a period between eight and nine months, therefore, an attenuated 

phenotype was expected irrespective of drug treatment. Interestingly, attenuation has been 

reported previously in Leishmania promastigotes with depletion or alteration of the main 

endogenous sterols, such as ergosterol and stigmasterol (Singh et al. 2012; Wei Xu et al. 

2014; Yao et al. 2013). A mutant lacking the sterol enzyme C14DM, showed a dramatic 

attenuation of virulence in comparison with wild type and add-back parasites (both 

metacyclic promastigotes and lesion-recovered amastigotes), which caused a severe 

increase of the footpad lesion in BALB/c mice (Wei Xu et al. 2014). While attenuation can 
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take weeks or months in axenic conditions, it can also be attained in only 1 hour after the 

treatment (10 to 50 mM) of stationary and metacyclic promastigotes with methyl-beta-

cyclodextrin (MβCD), a sterol-chelating reagent that depletes ergosterol (or some of its 

isoform stereoisomers), cholesterol, ergosta-7,22-dien-3β-ol, and stigmasta-7-24(28)-dien-

3β-ol, without interfering with the ergosterol biosynthesis (Yao et al. 2013). 

Other examples of physiological changes that can influence the virulence of Leishmania 
major, include some enzymes related with the metabolism of glucose, such as the major 

glucose transporters (LmxGT1‐3 in L. mexicana) (Saunders et al. 2018), the gluconeogenic 

enzyme, fructose-1,6-bisphosphatase (FBP) that is expressed in both the extra- and 

intracellular forms of the parasite and being essential in the latter (Naderer et al. 2006), and 

transketolase (TKT), which is part of the non-oxidative branch of the pentose phosphate 

pathway (PPP) and plays a key role in the metabolism of glucose (Kovářová et al. 2018). 

In L. mexicana mutant amastigotes lacking the former of these enzymes, LmxGT1‐3 

transporters, showed a limited capacity to switch to using carbon sources other than 

glucose, and failed to induce lesions in vivo (Saunders et al. 2018). Similarly, a L. major 

FBP-null mutant was unable to grow in vitro, in the absence of an exogenous source of 

hexoses and were unable to metabolise glycerol and restoring growth (Naderer et al. 2006). 

When parasites were grown in a glycerol-containing medium, only wild type and FBP-

complemented parasites were able to grow (similar than in glucose-containing medium), 

although a depletion of internal sources of carbohydrates, i.e. intracellular β1,2-mannan 

oligosaccharides, was observed. 

As with the two attenuated lines, AmBRcl.8 and AmBRcl.6, the FBP-null mutant persisted 

in mice but failed to generate normal lesions. Moreover, FBP-null mutant promastigotes, 

were internalised and differentiated into amastigotes inside the macrophages, however, 

replication was suppressed. In my study, I did not determine if these two attenuated lines 

had either a reduced capacity to transform into amastigotes, or if after transformation, 

amastigotes did not replicate. Irrespective of the absence of the intracellular form at the 

histological analysis (using light microscopy), in both these lines, viable parasites were 

recovered after thirteen weeks of infection (from both FP and LN), suggesting that 

amastigogenesis did occur (see section 5.2.7.1 and Figure 5-9). In their work, Naderer and 

colleagues, concluded that given that the amastigote resides in an environment that is poor 

in glucose, this stage is highly dependent on gluconeogenesis and carbon sources other 

than glucose such as amino acids (fatty acids were proven as a poor carbon source in 

amastigotes) (Naderer et al. 2006).  
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A role of gluconeogenesis as a source of carbon has also been also demonstrated in T. 
brucei (bloodstream form) using a Cas9-mediated gene FBP-knockout (Tb927.9.8720 in T. 
brucei) which was able to metabolise glycerol as an alternative substrate for 

gluconeogenesis and the production of ATP and sugars, by converting fructose 1,6-

bisphosphate into fructose 6-phosphate. The activity of FBPase is increased when 

gluconeogenesis is activated, this function is, however, FBPase-independent. Moreover, 

gluconeogenesis activity was also observed in wild type parasites cultured in the presence 

of glucose and glycerol (Kovářová et al., 2018a). With regard to TKT, the loss of virulence 

observed in a L. mexicana TKT-knockout, was attributed to the depletion of the 

amastigote-specific polymer, mannogen. Mannogen, a major energy reserve source in L. 
mexicana that was known as mannan, is catabolized when the sources of glucose are 

depleted (Ralton et al. 2003). Interestingly, the addition (and re-expression) of TKT back 

into the TKT-knockout, recovered virulence but without restoring the synthesis of this 

polysaccharide (Kovářová et al., 2018b). The role of TKT with the MoA of AmB and the 

effects of the treatment with AmB on the metabolome of this TKT-knockout (along with 

two AmBR lines) are discussed further (see Chapter 7). 

Da Silva and Sacks (1987) observed that after repeated passages in vitro, attenuated 

promastigotes of L. major, recovered their virulence by a single in vivo passage in BALB/c 

mice, while avirulent parasites had a delayed metacyclogenesis, the authors related the 

virulence with the ability of the parasites to agglutinate with lecithin peanut agglutinin 

(PNA). For instance, log-phase parasites were 100% PNA-agglutinated and avirulent in 

mice, whereas in stationary parasites, only those with a non-agglutinable phenotype, PNA, 

were virulent. Moreover, clones derived from the PNA- population were the most virulent.  

To confirm the role of the PNA marker, a virulent clone that produced 90% of PNA- 

promastigotes, was maintained for 94 passages and the amount of PNA- parasites was 

reduced to 10%, rendering an attenuated population, which was further sub-cloned, from 

which the authors could not isolate an infective population (Da Silva and Sacks 1987). 

Similar observations of recovery of virulence in vivo, were also observed in attenuated 

parasites after serial passages through sand flies (Sadlova et al. 2006) and in strains of 

Leishmania infantum chagasi, in which virulence is maintained by routinely inoculating 

into golden hamsters (Yao et al. 2013). For this reason, I expected a possible increase in 

virulence in both the wild type (WTP0) and the resistant line (AmBRcl.14.PI) that were 

recovered after the first infection in mice. Intriguingly, while no increase in virulence was 

evident in the wild type, an opposite effect was observed with AmBRcl.14 PI, in which the 

lesion size was slightly smaller than with AmBRcl.14 (although this difference in the 
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lesion size was non-significant (P=0.7325). The reason of this possible slight reversal in 

virulence in the former was unclear. 

In contrast to the attenuated phenotype observed in lines AmBRcl.8 and AmBRcl.6, a 

slightly more virulent phenotype (relative to wild type) was present in two lines, 

AmBR.cl14 and AmBR.cl.3, and associated with significant changes in ergostanes, 

suggesting that these intermediates contribute, to some extent, to the fitness advantage 

observed in mice infected with these lines (see and Table 5-1). The most abundant 

intermediate in AmBRcl.14 and AmBRcl.3, was ergosta-7,22-dien-3-ol (96-96.7%). The 

presence of this ergostane might trigger an increased capacity for the parasite to replicate 

in vivo, or exacerbate and inflammatory response, or both. Histological analysis revealed 

that the number of parasites and inflammatory cells in footpads and lymph nodes was 

increased with these lines compared with WT (Figure 5-9). The presence of this sterol 

intermediate was also associated with an increase in virulence in L. infantum in which 

ergosta-7,22-dien-3-ol, increased significantly in virulent stationary parasites (Yao and 

Wilson 2016). In their study, Yao et al., did not measure ergosterol directly, due to the lack 

of deuterated standards. Instead, they extrapolated ergosterol (and the other sterols) based 

on the peak areas of the total- and relative amounts of cholesterol, and other sterols, in each 

sample, using deuterated H2-cholesterol as internal standard (R2 > 0.99). The two 

stereoisomers of ergosterol only differed in their RT (11.61 and 11.67), and in relation to 

the reference standard of ergosterol (RT of 11.37). Similarly, two isomers of ergosta-7,22-

dien-3-ol, named type I and II, showed a relative RT (RRT) of 1.078 and 1.131, 

respectively. In this case, RT was measured relative to cholesterol, which has a RT of 

1.000 (Yao et al. 2013; Yao and Wilson 2016).  

The variability in virulence between AmBR lines in mice needs to take into consideration 

other factors that also determine the pathogenicity and the course of the infection, and 

which were not measured here. Various examples of the role of the genetics of the host 

(Ribeiro et al. 2018), and of the immune system, have been described in different animal 

species. The former has been implicated in infections in hunting Foxhound dogs 

(Boggiatto et al. 2011; Petersen and Barr 2009). In another study, in hamsters, the 

individual immune response was found to be redundant for the resolution of the lesions 

caused by the infection with Leishmania mexicana (Parreira De Arruda et al. 2002). 

Similarly, the importance of the genetics of the host in the animal model studied here, i.e. 

BALB/c mice, has been confirmed experimentally in mice with different genetic 

backgrounds infected with L. amazonensis. While strains BALB/c, C57BL/6 and 

C57BL/10 were very susceptible to infection, strains CBA and DBA/2 developed mild to 
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severe late lesions, whereas the strain, C3H/He, showed no lesion and with a low or total 

absence of parasite load. Additionally, C3H/He, unlike all the other strains, showed no 

signs of visceralization, confirming that the genetic background of the host plays a key role 

in the pathogenesis of leishmaniasis (de Souza et al., 2018).  

Similarly, another study showed that BALB/c mice were more susceptible to infection than 

the strain C57BL/6. While in the former a higher index of infected peritoneal macrophages 

and lower nitric oxide (NO) levels were observed in the latter, the histopathological 

alterations were less severe and accompanied by a lower number of parasites found in the 

skin (Passero et al. 2009). In this study, the role of the genetics and the immune system 

were, however, not considered to be a determinant factor of the differences in the 

pathogenicity observed across different animals, given that all mice were from the same 

strain, i.e. BALB/c, this factor can be ruled out. Other factors are al also described at the 

end of this section (see 5.3). 

Despite the fact that the content of sterols between wild type and AmBR lines of 

promastigotes was significantly different, it cannot be concluded that the attenuated and 

infective (virulent) phenotypes observed in vivo, are a direct effect of these changes in the 

promastigote stage. Although these changes in sterols in the promastigote form were 

correlated with defects in several enzymes (see chapter 4, section 4.1.3) which explain 

their nature, however, some enzymes of the SBP in kinetoplastids have been shown to be 

stage specific (Cosentino and Agüero 2014). A summary of the mutations identified in this 

study (see chapter 4, section 4.1.3, Table 4-2) in relation with the sterols derived, is 

included at the end of this chapter (Table 5-5).  

Moreover, significant variations in sterols, including those related with the virulence of the 

parasite, i.e. ergosta-7,22-dien-3-ol, were observed between different stages (i.e. 

logarithmic, stationary and metacyclic) in L. infantum (MHOM/BR/00/1669), previously 

called L. chagasi, promastigotes (Yao and Wilson 2016). In this study, I measured the 

content of sterols only in L. mexicana promastigotes in logarithmic phase. Further analysis 

at later stages can provide useful information related to the sterol dynamics in these AmBR 

lines, particularly during the metacyclic stage. This in an important consideration given 

that, in this study, the metacyclic stage (instead of the logarithmic) was used to inoculate 

BALB/c mice (see section 5.2.3), which is the stage that is inoculated by the sand fly, thus 

mimicking the natural life cycle of the disease. Moreover, the metacyclic promastigotes 

have to undergo amastigogenesis within the mammalian host, and therefore, the content of 
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sterols in the intracellular stage is, possibly, an alternative explanation with regard to the 

relationship between sterols and the virulence of Leishmania spp. in vivo. 

In the amastigote form, the content of sterols showed significant differences with respect to 

the promastigote stage (section 5.2.1.2, Table 5-2 and Figure 5-4). This was notable in 

both, wild type and resistant lines (only AmBRcl.14 and AmBRcl.8 were analysed as 

amastigotes). Interestingly, one of the resistant lines, AmBRcl.8, amastigotes showed a 

similar profile of sterols as wild type amastigotes, whereas in the other resistant line, 

AmBRcl.14, the difference with respect wild type was remarkable. In agreement with this, 

these two intermediates, cholesta-5,7,24-trienol (5.6 to 5.8%), and another cholestane, 

cholesta-5,7,22-trienol (80 to 68.5%), were the most abundant in two AmBR lines that had 

a relative low infectivity in primary macrophages and in mice (lesions grew from 1.8 to 2.1 

mm) (Pountain et al. 2019a). It is unclear if the marginal increase observed in the former of 

these lines, in two cholestane-type intermediates, can explain the attenuated phenotype. 

With regard to the virulent phenotype shown with AmBRcl.14, this may be linked to two 

separate sets of changes in amastigotes. First, the total loss of ergosterol and of 4,4-

dimethylcholesta-5,7,24-trien-3-ol. On the other hand, the significant increase of ergosta-

7,22-dien-3-ol (1.7-fold), and a more dramatic increase of stigmasta-5,7-dien-3-ol (6.1-

fold), with respect to the parental wild type (see Table 5-2). Interestingly, ergosta-7,22-

dien-3-ol, was also the most abundant (69.7%) in AmBRcl.14 (and also in AmBRcl.3) in 

the promastigote form, in which the difference with respect the parental wild type was 

even higher (9.6-fold). Furthermore, the abundance of these two intermediates in virulent 

strains was significantly higher than in attenuated L. infantum metacyclic promastigotes 

(Yao and Wilson 2016). A comparison between the content of sterols in both the virulent 

and attenuated phenotypes, with other virulent/avirulent (Yao, et al. 2013; Yao and Wilson 

2016a), wild type and AmBR promastigotes and amastigotes (Al-Mohammed et al. 2005), 

is outlined in Table 5-6. 

The ergostane and stigmastane sterols are the main endogenous sterols in trypanosomatids 

and both are absent in mammals (Choi et al. 2014). These sterols also confer a selective 

binding to AmB (and possibly to other polyenes like nystatin) in different species of 

Leishmania (Xu et al. 2014). The effects in selectivity to AmB in the AmBR lines is 

discussed in more detail in the following section. As mentioned before, other virulence 

factors, including those that cannot be detected with the approaches used in this study, such 

as sphingolipids (Denny et al. 2006), and several enzymes of the energy metabolism 

(Kovářová et al. 2018; Saunders et al. 2018), and the number of passages in culture (Nolan 
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and Herman 1985), the host genetics (Ribeiro et al. 2018), and others not determined in 

this study, also influence the virulence of the parasite and cannot be excluded. 

5.2.4  Response to treatment with AmB in vivo 

Several alterations of sterols are related with AmB resistance in fungi (Kelly et al. 1994) 

and in Leishmania spp. (Andrade-Neto, et al. 2016; Cosentino and Agüero 2014; Mbongo 

et al. 1998; Mwenechanya et al. 2017; Pountain et al. 2019; Sagatova et al. 2015). After the 

identification of mutations in different genes of the SBP, which were associated with the 

presence of different sterol intermediates, and with remarkable differences in the size of 

lesions induced in mice, I sought to determine whether these resistant AmBR lines retained 

their resistant phenotype in vivo, and post infection. In a first experiment, mice were 

infected with WT and all four AmBR lines and treatment with a dose of 1 mg/kg AmB 

deoxycholate, AmB-D was administered at week eight (Figure 5-6). First, AmBRcl.14 and 

AmBRcl.3, showed a fitness advantage even before treatment, and resistance in vivo. 

Conversely, lesions from WT parasites showed a slight increase a few days after AmB was 

given, however, one week after the treatment was finished, WT reached a plateau by the 

end of the experiment (i.e. thirteen weeks), suggesting higher susceptibility to treatment in 

the parental line in comparison with AmBR- cl.14 and –cl.3 (Figure 5-6). To further 

confirm if the response to treatment was related with the retention of resistance within 

mice, viable parasites from all lines were recovered from footpad lesions, and from lymph 

nodes, at the end of the experiment, and their EC50 was measured (section 5.2.6, Figure 

5-8). These results showed that different sterol intermediates with the concomitant loss of 

ergosterol, are related to a differential in susceptibility towards AmB in vivo, and that the 

difference in their EC50 values in vitro, was significant (P≤ 0.01-0.05) in comparison with 

the parental wild type (chapter 3, Table 3-2). Arguably, a curative dose to cure infected 

mice could not be determined with the BALB/c mouse model used in this study. The 

persistence of all AmBR L. mexicana lines within mice regardless of the treatment, 

indicates that the maximum dose of AmB-D used here, was not sufficient to clear L. 
mexicana in BALB/c mice. In the study of Al-Mohammed and colleagues, mice infected 

with the AmB resistant, developed lesions more slowly than those infected with wild type. 

Chemotherapy with AmB was similar (1 mg/kg over a period of two weeks), than that used 

in my study, with the difference that Al-Mohammed et al. treated WT and AmBR lines, at 

week 8 and 18, respectively. In my study, however, all groups of mice infected with WT 

and all four AmBR lines, were treated at the same time, i.e week 8, and irrespective of the 

difference of the lesion size.  Although Al-Mohammed et al. reported a response to the 

treatment with AmB in both groups, being this effect higher in wild type than in the AmBR 
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line, this reduction of the size was only partial and temporary. The lesions restarted 

growing one week after the cessation of the treatment, attaining a comparable size to that 

observed in untreated mice, and suggesting that the emergence of resistant Leishmania is 

feasible. In their study, the authors did not provide additional information on the retention 

of resistance of these lines post infection. The recrudescence of lesions post treatment with 

AmB has also been observed in mice infected with L. amazonensis (Monzote et al. 2014). 

Other models for the assessment of the effect of AmB and AmBisome have been 

developed and are discussed further (see 5.3). 

The response to treatment can be addressed by increasing the concentration of the dose, 

however, the use of higher doses of AmB deoxycholate is limited due to toxicity in mice. 

The issue of toxicity can be partially addressed by the administration of lipid-based 

formulations of AmB, such as AmBisome, which allows increasing the dose, diminishing 

the risk of toxicity, and administering multiple doses (Abongomera et al. 2018; Adler-

Moore et al. 2016; Khalil et al. 2014). If other factors, such as the deactivation or 

sequestration of the drug within the animal tissues, contributed to the loss of the activity of 

AmB observed here, was not determined. However, I used the same AmB-D that was 

administered in mice, to test its activity and to determine if this stock had lost potency. By 

doing this, I could confirm that the AmB-D had comparable activity to that observed in 
vitro before the animal infections. 

5.2.5 Response to liposomal AmB (AmBisome®) in vivo 

In a recent publication, a clinical case of visceral leishmaniasis in a gorilla was confirmed 

(PCR positive for Leishmania sp. (donovani complex) in a zoo in Brazil and successfully 

treated with a single dose (1 mg/kg) of AmBisome (Tinoco et al. 2018). Similar and higher 

therapeutic doses have been tested against Leishmania spp. in vitro (O’Keeffe et al. 2019) 

and in other animal models (Forrester et al. 2019; Wijnant et al. 2018; Wijnant et al. 2018; 

Yardley and Croft 1997; Voak et al. 2018) including AmB resistant lines (Mohamed-

Ahmed et al. 2013). The study of Forrester et al., (in VL) for instance showed parasite 

elimination from liver and splee, after 7 days of treatment at 8mg/kg (Forrester et al. 2019). 

I therefore proposed to analyse the response to treatment using this formulation, instead of 

AmB in complex with deoxycholate (AmB-D) which was used in all the other experiments 

in vivo. As mentioned before, one of the main advantages of this formulation is the 

reduction of toxicity, thus allowing to increase the dose of AmB. Other benefits are the 

delivery of more drug at the target site (i.e. the phagolysosome within the macrophage).  
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To test the effect of AmBisome in lines resistant to AmB, a third experiment with infected 

mice was performed using another AmB resistant line, named AmBRcl.3 herein, which 

was selected for resistance to AmB by Dr Andrew Pountain (a former student in the Barrett 

Lab), was used. AmBRcl.3 had an infectivity comparable to wild type, in murine 

macrophages and in mice and was 3.9-fold resistant to amB with respect to the parental 

line, and the main sterol intermediate that replaced ergosterol in this line was cholesta-

5,7,22-trien-3-ol, with an abundance of 86.5% (PhD Thesis, Dr Andrew Pountain, 

Pountain et al., 2019). Additionally, I determined the EC50 of AmBisome in vitro in this 

line (data not shown here) and all the four AmBR lines, recovered post-infection. These 

experiments helped me to determine, on the one hand, if AmBisome was active, regardless 

the lack of response observed in vivo, and on the other side, provided me with information 

related to the retention of resistance post infection in AmBR lines (Figure 5-8, Table 5-4). 

Treatment with AmBisome® at doses between eight and fifteen times higher (8 and 15 

mg/kg) than in the previous experiment (1 mg/kg), showed no effect in the reduction of the 

lesion size in both, wild type and AmBRcl.3, in comparison with the untreated group that 

was treated with dextrose (5%) (See Figure 5-7, panel A). AmBisome can be used in doses 

up to 40 mg/kg to treat VL (Banerjee et al. 2008; Sundar and Jaya 2010). At concentrations 

of 25 mg/kg, AmBisome was more effective than other formulations or AmB to reduce the 

lesion size in mice infected with L. donovani (Yardley & Croft, 2000). In other works, 

concentrations of 50 mg/kg have also proved to be efficacious and without causing toxicity 

in mice (Adler-Moore et al. 2016; Yardley and Croft 2000). In other works, lower 

concentrations, i.e. 20 mg/kg, have been tested as prophylactic (administered before the 

infection) for the prevention of systemic fungal diseases (Garcia, Adler-Moore, and Proffitt 

2000). This prophylactic approach can be considered for future experiments with AmBR 

strains of Leishmania spp., in which doses of AmBisome up to 50 mg/kg of body weight, 

have been well-tolerated and showing total clearance of parasites from the animal tissues 

(Gangneux et al. 1996). I could not use higher doses, since we had only a limited quantity 

of AmBisome available for these experiments. 



171 

 171 

 

To confirm if the lack of response to AmBisome observed in mice related to retention of 

viable parasites, I recovered parasites from both primary lesions (footpad) and lymph 

nodes, from all mice (both groups, wild type and AmBRcl.3 were recovered). Interestingly, 

the number of parasites recovered from primary lesions (footpads), was significantly lower 

than the numbers obtained from lymph nodes in both groups of mice treated with 

AmBisome at 15 mg/kg (P ≤ 0.001), and 8 mg/kg (P ≤ 0.05). However, no difference was 

observed between treatments (see Figure 5-7, panel B). Parasites from the control groups 

(both footpad and lymph nodes) could not be recovered. The fact that the numbers of 

parasites recovered from primary lesions were lower than with lymph nodes, suggests the 

possibility that parasites migrated from infected inflammatory cells, i.e. monocyte-derived 

dendritic cells (moDCs) localised at the site of infection. Although the basis of the immune 

response is fully understood, some species causing VL such as, L. donovani and L. 
infantum, infect and replicate in lymphoid tissues, e.g. spleen, liver, lymph nodes, bone 

marrow), causing a severe symptomatology, whereas cutaneous species (such as L. 
mexicana), responsible for CL, cause lesions that are mainly restricted to the skin, 

possibly, after the inhibition of the host immune response (Torres-Guerrero et al. 2017). 

For instance, the protective response of DC infected with L. braziliensis can be inhibited, 

here upregulation of major histocompatibility complex class II (MHC-II) and the secretion 

of IL-2 are absent. A similar inhibition of the MHC-II has been observed in spleens 

infected with L. donovani, and in macrophages in which their lysosomal properties are 

Figure 5-7. Susceptibility to AmBisome of L. mexicana in BALB/c mice.  
Parasites were inoculated (2 x 106) in 500 µl of PBS. Evolution of lesion was followed for 
three months and measured weekly. BALB/c female mice were two-months old at the time of 
inoculation. Treatment: 1 mg per kg IV every other day in the tail vein. A total of six 
injections (~120 µl each) of AmBisome in PBS were administered. Tukey's multiple 
comparison test was used to find pairwise differences between resistant lines and parental 
wild type. Statistically significant values (P<0.05, 95% Confidence Interval) are indicated 
with stars as follows: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001). These data were 
collected by a certified animal handling technician, Ryan Ritchie, and analysed with Prism 
as indicated in chapter 2. 
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inhibited by promastigotes (Kaye and Scott 2011). Other investigators have re-isolated 

viable amastigotes of cutaneous species (L. mexicana) from lymph node macerates in 

murine experimental models (Kaye and Scott 2011), suggesting that inflammatory 

monocytes (macrophages and moDCs), can facilitate the traffic of parasites to the draining 

lymph nodes. See section 5.2.7.1 (Kaye and Scott 2011; Thalhofer et al. 2011). Differences 

in the lesion size can also be related with the the inflammatory response which influenced 

the activity and accumulation of AmBisome at infection site (Voak et al. 2018; Wijnant et 

al. 2018; Wijnant et al. 2018). For this reason, I recovered tissue (lymph nodes, footpads, 

liver, and spleen) from all of the infected animals. This tissue was stored in ethanol for 

future examination using histology (as with all four AmBR lines previously described 

(Figure 5-6), in combination with qPCR (to confirm parasite burden and replication) and 

immunohistochemistry (see details in section 5.2.7.1). These data, however, were not 

obtained here, due to limitations of time. 

5.2.6 Retention of AmB resistance after infection in vivo 

Considering the response to the treatment observed with both formulations of AmB, it was 

important to assess whether the resistance phenotype was retained in the AmBR lines after 

infection (see Figure 5-8). After being recovered from lesions, amastigotes were 

transformed into axenic promastigotes and the EC50 was measured during the first or 

second passage. The EC50 obtained with wild type promastigotes before (0.060 µM ± 

0.0039) and after (0.0634 µM ± 0.0076) infection were similar (Figure 5-8, panel A, and 

Table 5-4). Similarly, all four AmBR resistant lines showed a comparable fold change with 

respect to their parental wild type, with values between 10- to 11.6-fold, and 7- to 13-fold, 

before and after infection, respectively (Table 5-4). Overall, no significant differences were 

observed between the EC50 values before and post infection, indicating that all AmBR lines 

retained their resistant phenotype after being passaged, and recovered from mice. Previous 

studies have shown that AmBisome is up to 9 times more active than AmB in vivo (Adler-

Moore et al. 2016). Interestingly, AmB deoxycholate was more active than AmBisome 

against L. major and L. donovani, in a macrophage model, i.e. peritoneal macrophages 

(Adler-Moore et al. 2016; Yardley and Croft 2000). A possible reason for this is that 

AmBisome might be internalized inside specific compartments within the macrophages, 

such as the phagolysosome, in a different manner between both ex vivo and in vivo 

macrophages, therefore, delivering variable concentrations of drug that target the 

amastigotes (Adler-Moore et al. 2016). Contrary to its higher activity in vivo, here, 

AmBisome was between 7.5-fold less active than AmB alone in wild type axenic 

promastigotes (in vitro). This difference was more pronounced in AmBR lines, in which 
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the activity of AmBisome was between 11.12- to 39-fold lower as compared with AmB 

alone (Figure 5-8, panel B, and Table 5-4). 

 

The lower activity of AmBisome in vitro is, possibly, due to the fact that the MoA of 

AmBisome is based on the affinity of the liposome for the lipids in the membrane of the 

macrophage and the absence of endocytosis. Another possibility is that in vitro, AmB is 

not released from the liposome, at least at the same ratio than in vivo, and therefore lower 

amounts of drug are available to kill the promastigotes. The higher activity of AmB in 
vitro, has also been reported in other two strains of L. donovani. While AmB was between 

3- to 6-fold more active than AmB in promastigotes, this difference was more pronounced, 

i.e. 3- to 9-fold, in macrophages infected with amastigotes (Yardley and Croft 1997). 

AmBisome was effective (EC50 of 1.76- and 3.54 uM) against both wild type and AmBR 

L. donovani amastigotes intra-macrophage, however, the activity of AmBisome in axenic 

amastigotes, showed slightly better activity against wild type, but was inactive against 

AmBR amastigotes, with EC50 values of 1.73- and >100 uM, respectively  (Rochelle do 

Vale Morais et al. 2018). 

Figure 5-8. Susceptibility of AmBR lines of L. mexicana against AmB and AmBisome in 
vitro. 
Mean EC50 values of AmB (Panel A) and AmBisome (Panel B) are shown in µM with their 
standard deviation (bars).  
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AmB AmBisome 
Pre infection Post infection (P2) Post Infection (P2) 

   

 Mean ± SD P value FC  Mean ± SD P value FC  Mean ± SD P value FC 

WT 0.0600 ± 
0.0039 - - WTP2 0.0634 ± 

0.0076 - - WTP2 0.4762 ± 
0.0082 - - 

AmBR line 14 0.6747 ± 
0.2158 

0.0138  
* 11.2 AmBRcl.14P2 0.4315 ± 

0.0099 
0.3122 

ns 6.84 AmBRcl.14P2 7.553 ±  
0.8734 

0.6826  
ns 15.9 

AmBR line 3 0.7402 ± 
0.2335 

0.0053  
** 12.3 AmBRcl.3P2 0.6813 ± 

0.855 
0.0125  

* 10.8 AmBRcl.3P2 5.919 ± 
1.992 

0.8204  
ns 12.5 

AmBR line 8 0.7297 ± 
0.2281  

0.0062  
** 12.1 AmBRcl.8P2 0.5890 ± 

0.2195  
0.0458  

* 9.34 AmBRcl.8P2 23.55 ± 
15.18  

0.0255  
* 49.3 

AmBR line 6 0.7682 ± 
0.2642 

0.0036  
** 12.8 AmBRcl.6P2 0.7808 ± 

0.0410 
0.0089 

** 12.3 AmBRcl.6P2 Not 
determined - - 

 
 

Table 5-4. Susceptibility of AmBR lines of L. mexicana to AmB and AmBisome before and after infection in mice.  
Values in µM, Mean ± Standard Deviation (SD). One-way ANOVA was performed independently for each compound to determine differences of the mean 
between groups. Tukey's multiple compared pairwise differences of resistant lines with respect the parental wild type. Statistical difference (P<0.05, 95% 
Confidence Interval) is shown with stars as follows: ns non-significant or P>0.05; * P≤0.05; ** P≤0.01; *** P≤0.001; **** P≤0.0001. FC: Fold Change of AmBR 
lines is with respect their respective parental wild type (by column). 
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5.2.7 Histological analysis of mice infected with AmB resistant 
lines 

Based on the macroscopic differences observed in the lesions caused by different AmB 
resistant lines of L. mexicana, I decided to explore in more depth if these changes were 
also different between lines at the histological level. Histological studies are an important 
tool to understand the pathogenesis of a disease, as this approach provides relevant 
biological information that cannot be distinguished macroscopically. Despite all of the 
advantages provided by other molecular tools that have progressed significantly in recent 
decades (Czapiński et al. 2017), the isolation of the pathogen is still considered the gold 
standard for the diagnosis of many infectious diseases and to understand their effects inside 
the host. With regard to leishmaniasis, histology is still extensively used for the study and 
identification of the intracellular form of the parasite within mammalian tissues, and a 
valuable tool to understand many aspects of the pathophysiology of the disease that cannot 
be determined using other techniques. Histopathology can be used to identify differences 
in the degree of the lesion and parasite burden (Passero et al. 2009), and to determine the 
degree of susceptibility between various strains of mice which have different genetic 
backgrounds. It has also revealed key information related to the visceralization and the 
distribution of different Leishmania spp. that cause cutaneous and visceral leishmaniasis, 
within the different organs of the animal (de Souza et al. 2018). In this study, I used 
histology to determine parasite burden and virulence, the latter being estimated from the 
number of inflammatory cells present within the tissues. Similarly, histology was used to 
identify if the acquisition of resistance and other traits, i.e. sterol profiles and the 
metabolome, were associated with fitness costs in these AmB resistant mutants. Other 
methods that have become standard to determine parasite load and replication, e.g. qPCR, 
are discussed further (see section 5.3) 

As with other intracellular parasites, the granuloma is the typical lesion observed through 
histological analysis after infection with Leishmania spp. The granulomatous lesion results 
from the aggregation of inflammatory infiltrate which consist of macrophages and other 
inflammatory cells at the site of infection (Moreira et al. 2010). Histological analysis of the 
lesions can help to identify the nature of the alteration and to discriminate them from other 
alterations, i.e. increase of the lesion size, resulting from physiological processes other than 
an inflammatory response. Examples of this are a transudate and an exudate. The former is 
a non-inflammatory accumulation of liquid in a compartment of the body due to an 
increased hydrostatic pressure or low oncotic pressure derived from obstruction of the 
lymphatic draining system or other physiological causes. On the other hand, the exudative 
occurs only as a consequence of an infection. While both the transudate and the exudate 
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can cause an increase in size of an organ or tissue (as in the increase of the footpad lesions 
observed in this study), only in the latter, the augmented size is the direct consequence of 
the involvement of inflammatory cells, such as macrophages, dendritic cells and 
histiocytes. These cells release inflammatory mediators (e.g. bradykinin, histamine), 
causing dilation of blood vessels and other signs of inflammation, including increased 
blood flow, increased temperature, redness, tumour and pain (Kasper et al. 2015).  

Although these signs can be observed clinically (macroscopically), the use of histology 
becomes necessary to confirm the presence of the amastigotes and the inflammatory cells 
within the host. Moreover, leishmaniasis can be misdiagnosed due to the clinical and 
histological similarities with other inflammatory and neoplasic diseases such as leprosy, 
paracoccidioidomycosis and tuberculosis among others (Daneshbod et al. 2011; Handler et 
al. 2015; Hepburn 2000). Other approaches are therefore necessary (see 5.3 for a more 
complete description). 

5.2.7.1 Histopathology of footpads and lymph nodes infected with AmBR 
Leishmania mexicana. 

The increase in size and other haemorrhagic and inflammatory changes are frequently 
observed in lymph nodes and organs that are located near the centre of the infection. 
Although all of the superficial lymph nodes (and footpads) are bilateral (Nomina 
Anatomica Veterinaria; http://www.wava-amav.org/wava-documents.html), in this study, I 
only recovered and analysed tissue from primary lesions, i.e. footpad (FP), and from 
popliteal lymph nodes (PLN) from the same side (right) of the site of inoculation. The 
enlargement of other deep lymph nodes, e.g. mesenteric, deep cervical, and renal (Van den 
Broeck, Derore, and Simoens 2006), and from other organs, was not recorded. However, 
analysis of samples from both sides of the animal, and from other organs can be useful. 
Tissue samples from the opposite uninfected side can be useful as a control. Similarly, 
should amastigotes and inflammatory cells appear in tissues from these organs it would 
indicate an ability of the parasite to migrate to other tissues.  
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After infection in mice, I also measured the EC50 of AmB in parasites (all lines) recovered 
from both FP and PLN (and transformed into promastigotes) and found that all lines 
retained their resistance (Table 5-4 and Figure 5-8). Given the biological value of this 
biological material, and following the findings observed with the first two infections in 
BALB/c mice (section 5.2.3), fragments of tissue or the whole organs, liver, kidney, 
spleen, left hind footpad and popliteal lymph node, were surgically removed from all mice 
infected in the third experiment (section 5.2.5). These samples were stored in ethanol for 
the quantification of parasites using histology and qPCR, the latter can detect amounts as 
low as 100 fg of DNA of the parasites within tissues (Antonia, Wang, and Ko 2018; 
Galluzzi et al. 2018; Nicolas, Prina, and Lang 2002). These tissue samples were not 
qPCR/histology processed due to limitations of time during the course of this project and 
therefore, these data were not included in this PhD Thesis. Processing these samples would 
be informative for future work. 

While all lines were from an identical parental line, infectivity showed notable differences 
associated with their sterol profile (see Figure 5-3). Histological analysis of primary 
lesions (FP) revealed histiocytic infiltration and a granulomatous reaction with a density of 
amastigotes notably higher (Figure 5-9, panels A1-2 and B1-2 versus panels D1-2 and E1-
2) in mice infected with lines, AmBRcl.14 and AmBRcl.3, in which the primary lesions 
were larger than in mice infected with WT and lines AmBRcl.8 and AmBRcl.6, in which 
the lesion showed no increase in size and no amastigotes were detected, possibly, due to a 
density of parasites below the limit of detection, i.e. 1 x 105, by microscopy (Figure 5-9, 
panels D1-2 and E1-2). With respect to the number of amastigotes between the two 
virulent resistant lines, the number of parasites at microscopy, appeared comparable, i.e. 
between 7 to 30 parasites per macrophage (Figure 5-9) to those numbers observed in tissue 
infected with wild type parasites, although variability between samples was considerable. 
Moreover, the accuracy of light microscopy and the approach used here are limited (see 
explanation below).  

While the identification of the parasite is a confirmative diagnosis (Koçarslan et al. 2013), 
the opposite cannot be ruled out when parasites are not detected (false negatives can be 
diagnosed). In agreement with this, in this study, I recovered viable parasites from FP and 
PLN homogenates, from all mice infected with all four AmBR lines and wild type (Figure 
5-10), including those in which parasites were not identified by microscopy. Another 
change accompanying the increase in the density of parasites in FP lesions was the 
presence of a hyperkeratotic epidermis, which was observed in mice infected with both 
resistant lines, AmBRcl.14 and AmBRcl.3, and with wild type (Figure 5-9, panels A2 and 
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C2). Although the number of parasites can be determined by microscopy, this approach is a 
qualitative or semi-quantitative estimation of their total numbers. In this study, parasites 
were recovered without quantifying their exact density within tissues. Parasite burden can 
be estimated using a limiting dilution assay (De Souza et al. 2018), placing infected tissues 
into tissue culture medium and counting the numbers of promastigotes that can be 
recovered as growing over time. This method is, however, laborious, time consuming and 
can give inaccurate numbers, depending on the amount of tissue recovered, the region of 
the organ that is dissected, and other factors related to the culture such as the medium used 
and the phenotype of the strain, and other technical limitations such as the quality of the 
staining, the resolution of the microscope (and images), and the histological expertise of 
the investigator. 

Unlike the FP lesions which varied in size, there was no difference between the size of 
PLN from mice infected with AmBR lines and wild type, and no parasites were identified 
within the PLN tissue. However, viable parasites were recovered in cultures from all PLN 
irrespective of their size or their identification by microscopy. Other histological changes 
observed in PLN were the presence of mononuclear and inflammatory cells and other 
alterations resembling cytosolic lipid droplets (LDs). The increase in number and size of 
the LD observed in the footpad from one mouse infected with AmBcl.3 (see Figure 5-9, 
B2), was more pronounced and observed in most of the samples of lymph nodes from mice 
infected with AmBR- cl.14 and -cl.3 (see chapter 5, section 5.2.7.1, Figure 5-9 and 5-10). 

Interestingly, inflammatory cells were more abundant in PLN from mice infected with the 
attenuated lines (Figure 5-10, panels E1 and F1). The fact that the viable parasites were 
recovered from PLN, suggests that infected inflammatory cells, i.e. monocyte-derived 
dendritic cells (moDCs), localised at the site of infection, can facilitate their migration to 
the draining lymph nodes via lymphatic system. These findings are in agreement with 
those reported experimentally in a murine model in which viable amastigotes of L. 
mexicana were isolated from lymph node macerates (Kaye and Scott 2011).  

The absence of amastigotes identified within the PLN can be explained, at least in part, by 
the fact that cutaneous species are mainly restricted to the skin and are not described to 
replicate within other lymphoid tissues (i.e. spleen, liver, lymph nodes, bone marrow) like 
those species causing VL such as, L. donovani and L. infantum, which are known to inhibit 
the host immune response after infection (Kaye and Scott 2011; Thalhofer et al. 2011). 
This inhibition of the immune system by Leishmania has also been reported in dogs with 
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visceral leishmaniasis in which a severe granulomatous response was accompanied by 
higher parasite load, and associated with lymphoid atrophy (Moreira et al. 2010).  

With regard to the presence of lipid droplets, these structures are present in most cell types, 
and consist of an heterogeneous structure predominantly formed by triglycerides and sterol 
esters, which are surrounded by a monolayer of phospholipids (Carr and Ahima 2016). In 
other studies, accumulation of lipid storage bodies has been observed in L. amazonensis 
promastigotes after the treatment with thiosemicarbazones (Britta et al. 2014).  

In my study, I also screened a library of these compounds in some lines (not included in 
this Thesis due to time limitations). The formation of lipid bodies is indicative of cellular 
stress (Lee et al. 2013). Interestingly, LDs were more numerous in the two AmBR virulent 
lines (Figure 5-10, panels A1-2 and B1-2), in which other significant alterations in the 
metabolism of lipids (including triglycerides), and oxidative stress, were also identified 
with LC-MS, after the treatment with AmB (5 x the EC50). A detailed description of these 
changes, and other metabolites, is discussed further (see Chapter 7). 
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Figure 5-9. Histopathology of primary lesions (footpad) of BALB/c mice inoculated with AmBR lines of L. mexicana.  
Slides are representative of changes in two mice after 12 weeks of infection. Hematoxylin-eosin (H&E). Scale bar = ~10 µM Objective ~63x. A1-2 and B1-2: 
AmBRcl.14, AmBRcl.3 (yellow and orange) show skin histiocytes with intense parasitism and inflammatory infiltrate reaction with granulocytes and 
eosinophilic cytoplasm (arrow) and some vacuolated macrophages. C1-2: Wild type (green) show very similar load of parasites with some macrophages 
and diffuse inflammatory infiltration with internalised amastigotes (top image) and (bottom image) and parasites (arrow) among muscular fibres. D1-2 and 
E1-2: AmBRcl.8 and AmBRcl.6 (dark and light blue) some discreet areas of inflammatory reaction localised in papillary dermis without visible parasites. 
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Figure 5-10. Histopathology of lymph nodes of BALB/c mice infected with AmBR lines of L. mexicana.  
Slides are representative of changes in draining lymph nodes of two mice after 12 weeks of infection. Hematoxylin-eosin (H&E). Scale bar = ~10 µM 
Objective ~60x. In A1-2 and B1-2: AmBRcl.14 (yellow), C1-2: AmBRcl.3 (orange), skin histiocytes with intense parasitism and inflammatory infiltrate 
reaction with granulocytes and eosinophilic cytoplasm (arrow), and some vacuolated macrophages are shown. D1-2: Wild type (green) show less 
intense parasitism with some macrophages and diffuse inflammatory infiltration with internalised parasites. E1-2 and F1-2: AmBRcl.8 and 
AmBRcl.6 (dark and light blue) some discreet areas of inflammatory reaction localised in papillary dermis without visible parasites. 
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Gene Mutation and lines in 
this study 

Changes in 
other genes 

Sterol intermediates 
identified (GC-MS)  

Similar changes described in other studies Phenotype in vivo 
(lesions) 

Histological 
changes 

 
 
 
 
 
C5DS 
 

1- V74E(T221A) in 

line AmBRcl.3 

2- M93del (277-

279delATG)  

R244L (G731T) in 

line AmBRcl.14 

3- R244L (G731T) in 

lines AmBRcl.14 

and AmBRcl.3 

4- A95del in 

NysRcl.B2 

 

Not additional 

changes 

associated 

 

Loss of wild type 

ergosterol, and 

cholestane 

intermediates with  

an increase of  

ergosta-7,22-dien-3-

ol 

to 96 - 96.7% 

 

- A mutation G139R (G415C) in AmBRA/cl1. This residue is localized between His residues that are 

predicted to be enzymatically relevant (1). 

 

- increase of ergosta-7,22-dien-3-ol to 97.9% in one clone AmBRA/cl1 (1). 

 

- reduction of ergosterol (2-fold), with a significant increase of ergosta-7,22-dien-3-ol from 1.7% 

and 0.84% to 6.5% and 20.6%, in avirulent- and avirulent log and stationary promastigotes of L. 
infantum (8). This study did not anaylse mutations. 

 

Both lines were 

slightly more 

virulent in mice 

(relative to the 

parental wild 

type, with 

significant 

increase of the 

lesion size 

indicating parasite 

burden 

Presence of 

amastigotes in 

footpad’s tissue, 

inflammatory 

cells.  

Recovery of 

viable parasites 

from footpad 

and lymph 

nodes from all 

mice. 

 
 
 
 
 
 
 
C24SMT 

 

1. V321I (G961A) 

homozygous (I/I 

(A/A) in 

LmxM.36.2390 in 

three clones: 

 

- Two clones from 

line AmBRcl.8 (A11 

and E12), and   

 

- One clone from line 

AmBRcl.6 

 

Loss of 

miltefosine 

transporter 

(LmxM.13.1530), 

and the 

neighbouring 

gene 

downstream 

(LmxM.13.1540) 

In both lines 

 

Loss of wild type 

ergosterol and 

ergostane 

intermediates,  

with an increase of  

cholesta-5,7,22-

trienol  

to 86 - 87% 

 

- Similar substitution V321I (G961A) homozygous (I/I (A/A) in three clones, AmBRB/cl2, AmBRC/cl3 

and AmBRD/cl2, with increase of cholesta-5,7,22-trienol between 80 to 86.5% (1). 

- Similar substitution V321I, in three AmBR lines with loss of ergostanes and increase of cholesta-

5,7,22-trienol to 87.4 to 93% (2). 

- A novel mutation, A325V (C974T) associated with a similar loss of the miltefosine transporter (2). 

I analysed the ORF of this new SNP, the mutation corresponds to the second letter of the codon 

(GCT/GTT) resulting into a silent mutation (substitution from Alanine to Valine, both non-polar 

residues) (2). 

- Abundance of cholestanes (6) after structural changes in C24SMT (suggested) (3, 6). 

- Loss of C24SMT, AmB resistance (1, 2, 3). 

- Loss of miltefosine transporter in (1, 2). 

- Mutation (deletion) of the miltefosine transporter (4). 

- Modification of C24SMT activity (L. major), loss of expression of one transcript (5, 6). 

- C24SMT null-mutants (L. major) showed loss of ergosterol and increase of cholestanes (7). I also 

observed the same effect in a C24SMT KO created with CRISPR (see Chapter 6). 

- Loss of all C-24 methylated sterols (ergostanes) with increase of cholestanes in AmBR L. mexicana 
promastigotes (62.4%) and amastigotes (97%). In this study, changes in C24SMT were not 

determined (9). 

Both lines shown 

an attenuated 

phenotype in 

mice with no 

growth of the 

lesion size. 

Other studies 

showed total loss 

(7) or reduced 

infectivity in 2 of 

3 AmBR lines (1) 

associated with 

loss of expression 

of C24SMT. AmBR 

promastigotes 

and amastigotes 

were attenuated 

in vivo (9).  

 

No amastigotes 

observed in 

tissue from 

primary lesions, 

inflammatory 

infiltrate in 

lymph nodes. 

 

Recovery of 

viable parasites 

from footpad 

and lymph 

nodes from all 

mice. 

References: (1) Pountain et al., 2019, (2) PhD Thesis Dr Raihana Binti, Barrett Lab, unpublished, (3) Pourshafie et al., 2004, (4) Fernandez-Prada et al. 2016, (5) Mbongo et al., 2004, (6) Purkait et al., 2012, (7) Mukherjee et al. 

2018, (8) (Yao and Wilson 2016), (9) Al-Mohammed, et al. 2005.  

Table 5-5. Summary of the mutations identified in genes of the sterol pathway in AmB resistant promastigotes of Leishmania spp., coupled with their sterol 
profile (GC-MS) and their phenotype in a murine model.  
Gene annotations were obtained from the TriTrypDB database (https://tritrypdb.org/tritrypdb/). 
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Table 5-6. GC-MS profiling of Leishmania spp. amastigotes and promastigotes.  
Samples from this study were L. mexicana log phase promastigotes, and amastigotes, and are compared with L. infantum log promastigotes from (Yao 
and Wilson 2016), and promastigotes and amastigotes from (Al-Mohammed et al. 2005). LOG Prom: Logarithmic promastigotes growth in HOMEM. In this 
study the ergosterol was ergosta-5,7,24(28)-trien-3β-ol (a.k.a. 5-dehydroepisterol), which in the study of (Al-Mohammed et al. 2005) was ergosta-
5,7,24(241)-trienol, and the study of Yao and Wilson, discriminates two ergosterol isomers (type I and II). Similarly, here we identified ergosta-7,22-dien-3-
ol, which is identified as ergosta-7,24(241)-dienol (Al-Mohammed et al), and two isomers, i.e. ergosta-7,22-dien-3B-ol I and II, respectively (Yao and 
Wilson). All isomers reported in the latter if these studies have different RT. ** Statistically significant (P<0.05). Values of intermediates from this study 
are the mean of either the two attenuated- , or the two virulent lines, respectively. 

Peak of Sterol (%) 
(alternative name) 

LOG Prom 
(this study) 

LOG Prom 
(Yao and Wilson. 2016) 

 

LOG Prom 
(Al-Mohammed 

et al. 2005) 

Amastigotes 

(this study) (Al-Mohammed 
et al. 2005) 

WT 
HP Attenuated Virulent Avirulent Virulent WT AmB 

resistant 
WT AmB 

cl.8 
AmB 
cl.14 

WT AmB 
resistant 

Lanosterol 0.41 0.285 0.315 0.0 0.0 - - 0.3 0.0 0.0 - - 
Lanosta-8,24-dienol      0.0 31.1 0.0 0.0 0.0 0.0 1.3 

4,14,dimethyl-cholesta-8,24-dienol      0.0 62.4 0.0 0.0 0.0 0.0 97.3 
4,14,dimethyl-cholesta-7,24-dienol      0.0 6.5 0.0 0.0 0.0 0.0 1.3 

4,4-dimethylcholesta-5,7,9(11)-trien-3-ol or 

4,4-dimethylcholesta-5,7,24-trien-3-ol, or 

4,4-dimethyl-5α-cholesta-8,14,24-trien-3β-ol. 

2.20 0.0 0.0 - - - - 11.6 12.9 0.0 - - 

(22Z)-Cholesta-5,7,22-trien-3-ol 1.28 82.4 0.0 - - - - 0.0 2.7 0.0 - - 

Cholesta-5,7,24-trien-3-ol  - -   - - 0.0 1.2 0.0 - - 

C27 dienol-cholesta-5,7-dienol 0.77 3.7 0.395 - - - - - - - - - 
Zymosterol 0.0 0.0 0.0 0.0 0.0 - - - - - - - 

Ergosta-8,24(28)-diene (Fecosterol) 0.0 0.0 1.28 - - - - - - - - - 
Ergosta-7,22-dien-3-ol, (3β,22E)  

or any isomers (ergosta-5,7,24(241)-trienol, 

or ergosta-5,7,24(28)-trien-3β-ol, or  * 

10.95 0.0 96.5 
5.6 type I 

1.7 type II 

4.76 type I 

6.6 type II** 
4.2 0.0 25.8 18.5 43.0 4.6 0.0 

ERGOSTEROL or any of the  

Leishmania spp. isomers *  
81.63 0.4 0.25 

28.6 type I 

39.9 type II 

30.92 type I  

39.1 type II 
85.1 0.0 41.4 48.6 0.0 40.9 0.0 

Stigmasta-5,7-dien-3-ol 0.0 0.0 0.0 4.1 0.63 10.6 0.0 8.0 6.0 50.0 47.2 0.0 
Cholesterol 3.9 1.6 6.4 16.7 14.6 0.0 0.0 12.2 10.2 7.3 0.0 0.0 

Ergostatetraenol - - - 3.27 3.38 - - - - - - - 
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5.3 Discussion 

The lesions observed in mice infected with AmBR lines in this study are contradictory. On 
the one hand, two virulent lines trigerred an exacerbated inflammatory response, indicating 
a higher parasite burden which was estimated by the higher increase in the primary lesions 
alongside with other histological alterations. On the other hand, in the other two attenuated 
lines, the absence of lesions was observed, resembling some of the clinical signs observed 
in the disseminated form of cutaneous leishmaniasis in which only few parasites are 
detected with histology, nevertheless, other diagnostic tests, e.g. Leishmania skin test 
(LST) and antileishmanial antibodies, are positive (Burza, et al. 2014). The acquisition of 
drug resistance in the attenuated lines resembles the fitness cost that has been observed in 
naturally resistant strains of L. donovani in which the development of resistance in the field 
is, in some cases, associated with treatment failure in endemic regions where resistance is 
prevalent (Vanaerschot et al. 2018). This fitness cost does not explain, however, the 
phenotype observed in the other two virulent lines that showed an advantage over the wild 
type. Similarly, a higher parasite burden was also observed in mice infected with 
antimonial resistant lines of L. donovani (Ouakad et al. 2011). It is possible that the 
attenuation is derived from long term culture rather than the selection for resistance alone. 
Alternatively, the specific genetic and metabolic changes associated with resistance vary 
between strains, and it could be that these underlie resistance. The increase in the lesion 
size is, however, indicative of the inflammatory response and parasite load. Using qPCR 
can detect amounts as low as 100 fg of DNA of the Leishmania parasites within tissues 
(Antonia et al. 2018; Galluzzi et al. 2018; Nicolas et al. 2002) and has become is the the 
standard practice for confirmation of intra-macrophages parasite replication (Ponte-Sucre 
et al. 2017). The use of qPCR in animal models of CL treated with liposomal amphotericin 
B has shown (in L. mexicana, L. major and L. donovani ) that the inflammatory response 
has an effect on the activity of AmBisome and the accumulation of the drug within the site 
of infection (footpads in my study) (Voak et al. 2018; Wijnant et al. 2018; Wijnant et al. 
2018), therefore some of the differences in lesion size observed in this study are possibly 
due to pro-inflamatory differnces at the site of intection. 

As summarized in Table 5-5 and Table 5-6, in this and other studies, there is a clear 
evidence of the role of mutations in two genes, C24SMT and C5DS, which are directly 
correlated with the presence of specific sterol intermediates that lack the C24 alkylation in 

the side chain in the former, and the ∆5,7 double bond in the latter (Pountain et al. 2019a). 

The evidence of these mutations with regard to their phenotype is, however, scarce and the 
few studies available, are more heterogeneous with regard to the species studied, their 
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analytical methods (e.g. standards), and the intermediates identified, therefore, a 
comparison between studies is a challenge. The accumulation of cholestane intermediates 
was also observed in a C24SMT-null mutants of L. major promastigotes. In addition to the 
loss of ergosterol, these changes lead to AmBR resistance and higher susceptibility to other 
lipid inhibitors (Mukherjee et al. 2018). Similar observations have been reported in L. 
donovani selected in vitro to AmB (Pourshafie et al. 2004), and in L. infantum after the 
loss of expression of C24SMT (LINF_360031200 in L. infantum) (Rastrojo, et al. 2018). 
These changes were also observed in AmBR line of L. infantum (Supplementary file 5), 
(see page 8) and in two additional studies with AmBR-L. mexicana. In the latter two of 
these studies, cholesta-5,7,22-trienol was between 80 and 86.5% in three clones 
(AmBRB/cl2, AmBRC/cl3 and AmBRD/cl2) (Pountain et al. 2019), and between 87.4 to 
93%, in another three AmBR lines (PhD Thesis Dr Raihana Binti 2019, Barrett Lab, 
unpublished), which presented similar mutations in C24SMT (i.e. V321I). In both cases, 
the loss of ergostanes was also notable. Moreover, these findings are in agreement with the 
accumulation of cholestane-based sterols (90.8 to 91.2%) observed here in a C24SMT 
knockout, which was created using CRISPR-Cas9 system (Beneke et al. 2017), which GC-
MS profile is discussed further (see Chapter 6). 

In this study, the difference between virulent and attenuated phenotypes was related to the 
sterol profiling which derived from the mutations identified in two enzymes, i.e. C24SMT 
and C5DS, of the sterol biosynthetic pathway, and other changes associated with the loss 
of the miltefosine transporter (see Chapter 4). Moreover, the loss of the wild type 
ergosterol in all four AmBR resistant lines, was associated with resistance in vivo and in 
vitro. This is supported by the both, the macroscopic and histological findings in mice 
infected with AmBR lines, suggesting that the resistance of AmBR lines is carried forward 
from in vitro selection to in vivo, irrespective that a dose to cure was not achieved with 
either AmB deoxycholate or AmBisome. A clear description of the relationship between 
these mutations, and the sterols and phenotype in vivo, derived, including a comparison 
with similar changes reported elsewhere is summarised in Table 5-5.A similar explanation 
of the relationship between gene mutations, and changes in the metabolome in two AmBR 
lines (AmBRcl.14 and AmBRcl.8) is discussed in chapter 7.  
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6 Drug screening of a new class of sterol 
inhibitors in Leishmania promastigotes 

6.1 Introduction 

Azasterols (AZA) have been explored as C24SMT-specific inhibitors in Leishmania spp. 
(Contreras, Vivas, and Urbina 1997; Gigante et al. 2010; Gros et al. 2006; Haughan, 
Chance, and Goad 1995; Jiménez-Jiménez et al. 2008; Liendo et al. 1999; Lorente et al. 
2004b; Magaraci et al. 2003; Rodrigues et al. 2007). AZA are active against the C24SMT 
in Leishmania spp. and its orthologues in T. cruzi (Magaraci et al. 2003), T. brucei 
(bloodstream form) (Gros et al. 2006; Lorente et al. 2004b), and T. gondii (Martins-Duarte 
et al. 2011). C24SMT plays a key role in the biosynthesis of ergosterol and other 24-
methylated intermediates, and is related to drug resistance in Leishmania spp., particularly 
to AmB and nystatin which bind to ergostane type sterols (Pourshafie et al., 2004; Purkait 
et al., 2012; Pountain et al., 2019).  

Deletion of both copies of this gene in L. major, resulted in the loss of the virulence in vivo 
(Mukherjee et al. 2018). The loss of expression of C24SMT is also related with AmB 
resistance in L. infantum (Rastrojo, et al. 2018), and in L. mexicana (Pountain et al., 2019). 
The latter of these studies showed that AmB resistance was also associated with gene- 
amplification and duplication events within the C24SMT locus which contains two closely 
related genes expressed at different levels, and the presence of SIDER1 retrotransposon 
elements seemed to be related to these recombination related events. Another common 
feature observed in all these C24SMT mutants is the replacement of ergosterol by 
cholestane-type intermediates. 

In my study, genomic alterations identified in C24SMT lead to AmB resistance, increase in 
cholestanes with a concomitant loss of the wild type ergosterol, and a loss of virulence in 
vivo (in a murine model) (chapter 5, section 5.2.3), in two AmBR lines (see Chapter 4 for 
details). The replacement of ergosterol by cholestanes was more pronounced (>90%), in a 
C24SMT-knockout (C24SMTKO) (Figure 6-10 and Table 6-3) developed here with 
CRISPR-Cas9 (Beneke et al., 2017) (see chapter 2, section 2.8.4 for details). Accumulation 
of cholestanes has also been observed in L. major and T. cruzi, after the treatment with 

C24SMT inhibitors such as AZA (Magaraci et al. 2003), imipramine (IMI) and a-

tomatidine (TOM), which have been found to disrupt the synthesis of sterols in L. 
amazonensis promastigotes (Andrade-Neto, Pereira, Do Canto-Cavalheiro, et al. 2016; 
Medina et al. 2012). Other potential MoA of IMI and TOM are discussed in detail later 
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(section 6.3). For this reason, I decided to investigate potential C24SMT inhibitors other 
than AZA. First, I tested two compounds, IMI and TOM, followed by the screening of a 
new library of sterol inhibitors, 1,2,3-triazolylsterols (TAZ), which have structural 
similarities to AZA (Porta et al. 2014). I then used GC-MS to validate if sterol changes are 
similar to those described with other C24SMT-mutants. 

With regard to the screening of the TAZ inhibitors, I first tested three compounds, 2DR, 
2ER and 2ES, in four AmBR lines, followed by the screening of the complete library (N= 
16) (Table 6-1). For this second part, I made a rational selection of cell lines and mutants, 
as follows: two AmBR lines were selected considering their mutations in C5DS 
(AmBRcl.14), and in C24SMT (AmBRcl.8), respectively. Since all four NysR clones 
showed a similar sterol profile (chapter 5), I selected the two most resistant clones, NysR- 
clB2 and -cl.E1, with the highest fold change (FC) in their EC50 to nystatin (see section 
3.2.3.3 and Figure 3-8). As the enzymes C24SMT and C14DM have been proposed as 
potential targets of TAZ, I included a third AmBR clone with EC50 to AmB of 0.270 µM 
(3-fold) and with a mutation (N176I) in C14DM, that had been developed by a former 
member within the Barrett Lab (Mwenechanya et al. 2017). A C24SMT-overexpressor 
(C24SMT) (Figure 6-7), and a –knockout, named C24SMTKO herein, were also included.  

Importantly, TAZ were also assayed for specific inhibition of the recombinant L. mexicana 
C24SMT (LmxM.36.2380), using zymosterol as the preferred substrate (others substrates 
were also tested). Enzymatic assays were performed by Boden Vanderloop from the David 
Nes Lab at the Texas Tech University Lubbock, and Dr Minu Chaudhuri, from the 
Meharry Medical College, USA, and are part of a collaborative effort between the Barrett-, 
Labadie- and Nes Labs, from Glasgow-, Argentina and Texas Tech Universities, 
respectively. Except for two inhibitors that are shown here to illustrate the activity of these 
compounds (Figure 6-6), these data are reserved for a manuscript (in preparation), and are 
not included in this Thesis. After analysing the similarity in the EC50 obtained in vitro and 
the IC50 found in enzymatic assays (Table 6-2), the two most potent compounds were 
selected, to determine their time- and dose-to-kill (Figure 6-9), before assessing their effect 
on the content of sterols in L. mexicana promastigotes (section 6.2.3, and Figure 6-10).  
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6.2 Results 

6.2.1  Tricyclic antidepressants  

IMI, a tricyclic antidepressant (TCA), is also active in vivo (in mice and hamsters), against 
antimonial- resistant and -sensitive promastigotes and with higher potency in amastigotes 
(IMI inhibits trypanothione reductase) (Mukherjee et al. 2012; Sarkar and Manna 2015). 
Other effects of IMI and other TCAs (e.g. clomipramine), are the disruption of the 
membrane proton pumps (and cellular pH), the inhibition of the transport of L-proline 
(Zilberstein and Dwyer 1984; Zilberstein, Liveanu, and Gepstein 1990), and the binding to 
lipid bilayers that is derived from its affinity for some lipid components of the membranes, 
i.e. phosphatidylcholine and phosphatidylethanolamine. I tested IMI considering its 
potential to inhibit C24SMT (Viana Andrade-Neto et al. 2016a), IMI also targets other 
methyl transferases related with the methylation of phospholipids (Mukherjee et al. 2012). 
In L. donovani, IMI decreased the mitochondrial transmembrane potential and caused 
apoptosis (Mukherjee et al. 2012), while in L. mexicana promastigotes and amastigotes, 
inhibition of the uptake of D-glucose (2-deoxy-D-[1,2-3H]glucose) was observed 
(Burchmore and Hart 1995). The antileishmanial properties of IMI have been demonstrated 
in other Leishmania spp (Mukherjee et al. 2012; Sarkar and Manna 2015; Viana Andrade-
Neto et al. 2016b). These studies also showed that IMI has a good selectivity index and can 
be administered orally, which is an attractive property of this compounds, considering that 
to the present, MF is the only oral antileishmanial available (Sunyoto, et al., 2018).  

IMI triggered a significant inhibition of the growth rate in wild type and two AmBR lines 
of L. mexicana promastigotes between 24 to 48 hours post treatment (ANOVA P<0.0001; 
all pairwise comparisons were also significant, P<0.05) (see supplementary 6) (see page 8). 
Notably, this effect was more dramatic between days 5 to 7, and more pronounced in both 
AmBR lines than in wild type (Figure 6-1, panels A to C). In comparison, inhibition of 
growth was partial or absent in wild type and the two AmBR lines, AmBRcl.8 and 
AmBRcl.3, after the treatment with 100- and 150 nM of AmB, respectively. While growth 
of the wild type was restored after day 4 to 5 (Figure 6-1 Panel A), the absence of growth 
inhibition indicates higher resistance of both AmBR lines. Moreover, the addition of 
ergosterol (80 µM) in the culture medium, prevented the inhibition of growth in wild type 
treated with AmB, possibly due to its sequestration, and accelerated the growth rate in 
AmBRcl.3 (with mutations in C5DS) to a level comparable to untreated cells. However, 
the addition of ergosterol did not show any restoration of growth in AmBRcl.8 (with 
mutations in C24SMT and deletion of the miltefosine transporter). Interestingly, ergosterol 
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did not restore the growth in the wild type or any of the resistant lines after the treatment 
with IMI (100 µM) (Figure 6-1, panels A to C). 

The fact that wild type promastigotes restored their growth after 4-5 days after the 
treatment with AmB, even in the absence of ergosterol, can be explained by the fact that 

AmB is, possibly, degraded or inactivated in culture conditions at 26 °C. AmB is stable for 

one week at 2-8 °C, and for only 24 hours at room temperature (25 °C) 

(https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/r?dbs+hsdb:@term+@rn+@rel+1397-89-3), 
and is also indicative that some of the wild type parasites, possibly persister-like 
populations (Barrett, et al., 2019), tolerated AmB at the concentration added here (the EC50 
of AmB in wild type is between 60 to 100 nM). Conversely, the sustained inhibitory effect 
of IMI is, possibly, due to the fact that its metabolite, desipramine, is also active in 
promastigotes (Evans and Croft 1994; Sarkar and Manna 2015). Following these 
observations, I suggested testing IMI in four other AmBR lines selected by a former 
member within the Barrett Lab (Pountain et al., 2019). Interestingly, all of these lines, 
which were defective in ergosterol production, showed significant increase in susceptibility 
to IMI (P= 0.0217 to 4.51 x 10-4), irrespective of the presence of mutations in different 
enzymes of sterol synthesis, i.e. C24SMT and C5DS (Dr Andrew Pountain PhD Thesis, 
University of Glasgow).  

In my study, all four AmBR lines were cross resistant to IMI, with AmBR- cl.8 and -cl.6 
being slightly more resistant than AmBR- cl.14 and –cl.3 (chapter 3, Figure 3-6), however, 
all differences in EC50 between AmBR lines and wild type were non-significant (see Table 
3-2). Similarly, both lines, C24SMT–overexpressor (P=0.2290) and C24SMTKO 
(P=0.8421), were slightly more resistant to IMI than their respective parental wild type 
(Figure 6-2, panel B). I also tested other two compounds with a some structural similarities 
to IMI, i.e. desipramine and trimipramine (TRIMI), the former is the resulting metabolite 
of IMI (after a demethylation reaction) and is also active, whereas the latter is a derivative 
of IMI with a methyl group incorporated to its side chain (Figure 6-2, panel A). While the 
activity of TRIMI was similar across all lines, no activity was observed with desipramine 
(Figure 6-2, panel B). Previously, no increase in resistance to other C24SMT inhibitors, 
e.g. 22,26-azasterol, was observed in L. major promastigotes transfected with 
C24SMT, irrespective of the overproduction of the enzyme (Jimenéz-Jiménez et al. 2008). 

Following the experiments with ergosterol, I tested different concentrations (50, 25, 12.5 
and 6.25%) of foetal bovine serum (FBS) in the culture medium and measured the EC50 of 
AmB. A concentration dependent correlation was observed in wild type (R2= 0.96), and to 
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a lesser extent, in AmBcl.8 (R2= 0.64) (Figure 6-1, panels D and E). These assays suggest 
that the content of cholesterol and other components in the serum (see below), can affect 
the susceptibility of Leishmania to AmB. Previous studies showed that Leishmania spp., 
can uptake exogenous cholesterol to its advantage (Andrade-Neto et al. 2011), and 
compensate the loss of ergosterol derived from the binding with AmB, which is the main 
MoA of AmB (see chapter 1, section 1.6.6.1, and Table 1-2, for a detailed description on 
the MoA).  

Another possible explanation is the sequestration of AmB by cholesterol and other 
lipoproteins present in the plasma serum (Janina Brajtburg et al. 1984), which has been 
observed with both formulations, AmB deoxycholate and AmBisome (Bekersky et al. 
2002). Additional experiments adding different concentrations of cholesterol, are needed to 
clarify the effect of both, ergosterol and cholesterol, in AmBR lines. All four AmBR 
clones were tested again for AmB, confirming the resistance observed in previous assays 
(see Chapter 3), interestingly, the two lines with mutations in C24SMT and with a deletion 
of the miltefosine transporter, were both more resistant to AmB, than the other two lines 
which have defects in C5DS. No change was found in the C24SMT-overexpressor (EC50 
between 40 to 70 nM), while the C24SMTKO was 6-, 10-, and 2.3-fold resistant to AmB 
(P< 0.0001), AmBisome (P= 0.0116), and Nys (P= 0.0131), respectively, with respect to 
its parental line (Figure 6-2, panel B). 
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6.2.2  Sterol inhibitors, 1,2,3-triazolylsterols 

Compounds, 1,2,3-triazolylsterols (TAZ), are sterol derivatives with heteroatoms or 
heterocycles on their side chain (Table 6-1). In a previous study, some of these compounds 
showed sub-micromolar potency (EC50 2DR: 1.14 uM, 2ER: 1.94 uM and 2ES: 1.35 uM) 
in L. donovani promastigotes, although their target was unknown (Porta et al. 2014, 2017). 
In my study, TAZ inhibitors were very stable (in DMSO) with good reproducibility 

Figure 6-1. Effect of ergosterol in wild type and AmBR lines of L. mexicana after the 
treatment with sterol inhibitors 
Treatment with AmB and IMI was followed by the addition of ergosterol (80 µM) in the 
culture medium. Starting density of promastigotes for these assays was 5 x 105 per ml. 
Growth rate of wild type (Panel A); resistant lines AmBRcl.8 and AmBRcl.3, respectively 
(Panels B and C); correlation coefficient between the concentration of FBS in the culture 
medium and the EC50 of AmB in wild type (Panel D) and in AmBRcl.8 (Panel E). Figures are 
representative of one biological replicate. Ergosterol was diluted in sodium dodecyl sulfate 
(SDS) 2.5% in PBS (v/v). Final concentration of the solvent in the assay was <1% (0.25%). 
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between assays. However, the potency of these three TAZ compounds in L. mexicana 
promastigotes, was between 5 to 20-fold lower than in the study of Porta and colleagues. 
Differences in activity between different leishmania species, however, is not uncommon 
and has been observed with many antileishmanials (Croft et al. 2006), including AmB 
(Franco-Muñoz, Manjarré S-Estremor, and Ovalle-Bracho 2018; Zauli-Nascimento et al. 
2009). Similarly, in my study, TAZ were all less active than PENT and AmB (Table 3-2), 
which were used as in the study of Porta et al. While the most potent TAZ in L. donovani 

was 2DR (Porta et al., 2014), in my study, 2ES (EC50 7.5 ± 0.7) was between 3 to 5-fold 

more active than its isomers 2ER (EC50 22.4 ± 0.7) and 2DR (EC50 36.1 ± 9.2) in wild type 

L. mexicana promastigotes (Figure 6-2, panel C). 

While Porta and colleagues tested TAZ (2DR, 2ER, 2ES) only in wild type (L. donovani), 
here, I showed their activity in wild type plus four AmBR lines, and two C24SMT-
mutants. TAZ inhibitor 2ES was slightly less active in three AmB resistant lines, 
AmBRcl.14, AmBRcl.3 and AmBRcl.6, showing no significant difference with respect to 
wild type (P≥ 0.2265). No change in susceptibility was seen with AmBRcl.8, and with the 
C24SMTKO, while the C24SMT-overexpressor showed a marginal increase in 
susceptibility to this compound. The other two TAZ inhibitors, 2ER and 2DR, were more 
active in all four AmB resistant lines than in wild type. The former was 2-fold more potent 
in all AmBR lines (P≤ 0.0019), and the latter was ~1.7-fold more potent in lines 
AmBRcl.14 and AmBRcl.3 (P≥ 0.0894), and ~3.1-fold more potent in lines AmBRcl.8 and 
AmBRcl.6 (P≤ 0.0061), suggesting a C24SMT-specific activity. Additionally, the activity 
of 2DR in C24SMTKO was comparable to that found in wild type, while in the C24SMT-
overexpressor, 2DR was ~6-fold more potent than in the parental line (P=0.0009), although 
the effect in latter line was surprising (if the target is C24SMT, less potency is expected in 
an over-expressor), however, an alternative MoA of these inhibitors could explain this 
(Figure 6-2, panel C). All the EC50 values (mean ± SD) are provided in a separate file (see 
Supplementary 6) (see page 8). Following the screening of the first three TAZ inhibitors, 
2DR, 2ER and 2ES, I tested another sixteen analogues (Table 6-1). All of these compounds 
were less active than AmB (Figure 6-3), with five compounds showing statistical 
significance, B2N, B5, 90.A, 90.B (P< 0.0001) and C4 (P= 0.0349).   
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Figure 6-2. Susceptibility of AmBR lines of L. mexicana to 1,2,3-triazolylsterol inhibitors.  
Panel A: the structure of TCAs, imipramine (IMI), desipramine, and trimipramine (TRIMI) are 
shown with their respective molecular weight (MW). EC50 of IMI, clomipramine and 
mianserin, in AmBR and NysR lines is shown in chapter 3 (Figures 3-5 and Figures 3-7). 
Panels B and C: Mean EC50 values ± standard deviation (bars) are from three replicates 
(TRIMI in WTCas9 is from one replicate). A one-way ANOVA test was performed per each 
compound to determine the difference of the mean between groups. Tukey's multiple 
comparison test was used to find pairwise differences. Statistically significant values 
(P<0.05, 95% Confidence Interval) are shown with stars: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, 
****P ≤ 0.0001). A complete list of all values is provided in Supplementary file 6-1 (see page 
8). WT is the parental wild type, AmBRcl.14, AmBRcl.3, AmBRcl.8 and AmBRcl.6 are AmB 
resistant, and NysRcl.B2 is nystatin resistant. WTCas9 is the wild type expressing Cas9, 
C24SMTKO is a knockout of C24-sterol methyl transferase (section 2.8.4). Nystatin (Nys). 
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Comparisons between the activity of TAZ compounds showed that 156.D and 156.E were 
the two most potent inhibitors with an EC50 of 3.7- and 3.1 uM, respectively (Figure 6-3, 
highlighted in red), although the difference was not statistically significant with respect to 
those compounds with EC50 values within the same range, i.e. 5.0 to 16.7 µM. Compounds 
90.A and 90.B, were notably the two least active (P<0.0001). Similarly, the activity of B5 
and B2N, was significantly lower in all cell lines tested in comparison to the other TAZ 
compounds (P= 0.0274 to <0.0001). While the difference between compounds was 
significant (P< 0.0001), the effect on different cell lines, and the interaction between 
compounds and different cell lines, were both non-significant (P=0.3101 to 0.9288). The 
individual EC50 values of the TAZ tested in this study in each of the nine cell lines, is 
discussed below (Figure 6-4). A list of all the EC50 values (mean ± SD), and statistical 
analyses, is provided (Supplementary 6) (see page 8). Two inhibitors, B2N (P=0.5732) and 
C4 (P=0.1315), were notably more active in the AmBR line with a mutation in C14DM 
(AmB 0.27 µM) than in the wild type. 

 

  

Figure 6-3. Susceptibility of AmBR lines of L. mexicana to 1,2,3-triazolylsterol inhibitors.  
Mean EC50 values are shown in µM with their standard deviation (bars). All values are from 
three biological replicates. A two-way ANOVA test showed the difference of the mean 
between compounds (95% Confidence Interval) significant values are shown with stars: **** 
P ≤ 0.0001. Tukey's multiple comparison test was used to find pairwise differences between 
compounds. Statistically significant values (P<0.05, 95% Confidence Interval) are: a P≤ 
0.0001; b P ≤ 0.05; c P>0.05. A detailed list of all values is shown in Supplementary file 6-1. 
The two most active TAZ are highlighted in red. The EC50 values of each compound in each 
cell line separately (nine cell lines in total), is shown in Figure 6-4. 

B2N B3 B5 C1 C3 C4 C5
15

6.A
15

6.C
15

6.D
15

6.E 90
.A

90
.B

94
.A

94
.B

94
.C

Am
B

0.0
0.5
1.0

5

15

25

35

45

55

65

100
120
140
160

compounds

E
C

50
 [u

M
]

a

b

c

****



195 

 195 

CODE STRUCTURE CODE STRUCTURE 
 
 

Pregnenolon
e 

 

C5 

 

 
2ER 

(YZ-1-13) 

 

156.A 

 

 
2DR 

(YZ-1-15) 

 

156.B 

 

 
2ES 

 

 

156.C 

 

 
 

B2N 
 
 

 

156.D 

 

 
 

B3 
 

 

156.E 

 

 
 
 

B5 

 

90.A 

 

 
 
 

C1 

 

90.B 

 

 
 
 

C2N 

 

94.A 

 

 
 

C3 

 

94.B 

 

 
 

C4 

 

94.C 

 

  

Table 6-1. Chemical structure of the library of heterocyclic steroids from pregnenolone.  
The chemical steps for preparation of these compounds from pregnenolone (top left 
structure) were detailed elsewhere (Porta et al., 2014). All the structures and chemical 
details of these inhibitors were kindly provided by Dr Guillermo Labadie, from The 
University of Rosario, Argentina. The three compounds (2ER, 2DR and 2ES) that were 
studied in the initial stage of this screening are highlighted in grey. 
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Figure 6-4. Susceptibility of AmBR lines of L. mexicana to 1,2,3-triazolylsterol inhibitors.  
Mean EC50 values are shown in µM with their standard deviation (bars). All values are from 
three biological replicates (NysRcl.E1 is from one replicate). A one-way ANOVA test was 
performed per each compound to determine the difference of the mean between groups. 
Tukey's multiple comparison test was used to find pairwise differences between lines. 
Statistically significant values (P<0.05, 95% Confidence Interval) are shown with stars: *P ≤ 
0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001). A detailed list of all values is provided 
separately (Supplementary file 6-1) (see page 8). Polyene resistant lines are: AmB 0.27 uM; 
AmBR L. mex clone with a mutation in C14DM (Mwenechanya et al., 2017); AmBRcl.14 and 
AmBRcl.8, and NysRclB2 and NysRcl.E1 are AmBR and nystatin resistant, respectively (see 
chapter 3); WT and WT P0 are two wild type parental lines, and C24SMT and C24SMTKO are 
an overexpressor- and knockout created using CRISPR-Cas9 (Beneke, et al. 2017) of C24-
sterol methyl transferase 
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Figure 6-5. Fold changes to 1,2,3-triazolylsterol inhibitors in different sterol resistant lines of L. mexicana promastigotes. 
Fold changes (FC) in the mean EC50 are with respect to their parental wild type. Bars indicate the standard deviation expressed as percentage (5%). The 
structure of these compounds is shown Table 6-1. Abbreviations of the different cell lines is as shown in Figure 6-4. Except for AmB (control), which FC-
scale is shown in the right y-axis, the FC of all the TAZ compounds, refers to the scale from the x-axis. A full list with all the EC50 values is provided 
separately (Supplementary file 6-1) (see page 8).
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Except for compounds B3 (P≤0.05) and 90.A (P≤0.01) that were slightly less active in the 

C24SMT-overexpressor (relative to WT), none of the other TAZ inhibitors showed 

significant difference between wild type and each individual cell line (Figure 6-4). The 

C24SMT-specific activity of the TAZ was assessed against the recombinant protein and 

enzymatic assays (performed elsewhere but included here to help interpret my 

observations). Briefly, LmxM.36.2380 was cloned in E. coli and the expression of the 

recombinant protein was verified (unpublished data). Substrate specific assays were then 

performed using different substrates, including zymosterol that is the preferred substrate 

for C24SMT (David Nes et al. 2002; Nes et al. 1999). A preliminary screening identified 

those compounds with a Km/Vmax and IC50 values lower than 100 µM. Twelve out of 

twenty compounds (≥60% of activity with respect the control) were then selected for a 

complete screening, comprising eleven data points (from 400- to 1.6 µM) and three 

biological replicates. The two TAZ with the lowest- and highest activity are shown here 

(Figure 6-6 and Table 6-2). As mentioned in section 6.1, these assays were performed by 

Boden Vandeloop and Dr Minu Chaudhuri from David Nes’s Lab. 

 

The EC50 values in promastigotes in vitro were comparable to those found with their IC50 

in enzymatic assays in 62.5% (n= 10 out of 16 –four were not included in the enzymatic 

assays) of the compounds, indicative of their activity against C24SMT. I then selected the 

two most active, 156.D and 156.E, the former was 6-fold more active against the 

recombinant protein irrespective of showing equivalent activity against promastigotes (3.5 

and 3.0 µM, respectively), suggesting that their MoA is, at least in part, independent of the 

C24SMT inhibition. The low amount of 156.E remaining was deemed insufficient for 

further analysis (Note that GC-MS experiments require large quantities of compound and 

high cell numbers, 3 x 108). For this reason, I included the third most potent, 156.A (4.5 

Figure 6-6. Activity of TAZ compounds with the recombinant C24SMT L. mexicana. 
Left Panel: Michaelis Menten kinetics of C24SMT against zymosterol (fixed SAM at 150 μM, 
Km = 28.41, Vmax = 36.65. Middle and right panels: enzyme kinetics (IC50) of 90.B and 156.D 
against zymosterol (eleven serial dilutions within the range 400- to 1.6 µM and control 
without inhibitor). Assays were performed by Boden Vanderloop from the Texas Tech 
University Lubbock, and Dr Minu Chaudhuri from the Meharry Medical College. Data were 
provided by David Nes as a collaborative effort between the Barrett-, Guillermo Labadie- and 
David Nes Labs, for the screening of the whole library (not included in this Thesis). 
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µM in promastigotes) for the following experiments (time- and dose-to-kill), before the 

extraction of sterols for GC-MS. 

Compounds MW IC50 enzymatic 
assays µM 

EC50  in vitro 
Leishmania 

IC50 and EC50 
values match 

Azasterols (controls)     
24,25-epiminolanosterol 441  - - 

25-azalanosterol 429  - - 
25-azacholsterol 387  - - 

25-thiolanosterol salt 414  - - 
Library of TAZ tested     

90-A 502 39 35 X 
90-B 470 195 150 ü 
94-A 510 109 15 ü 
94-B 534 33 10 X 
94-C 530 52 10 ü 

156-B 484 136 ND ND 
156-C 510 8 11 ü 
156-D 534 1 3.5 ü 
156-E 516 6 3.0 ü 
B2N 540 101 32 ü 
B3 566 E 14 X 
C1 572 E 6.0 X 
B5 - E 45 ND 

C2N 542 E ND ND 
C3 566 E 8.6 X 
C4 590 E 20 ü 
C5 572 E 6.0 ü 

156.A - E 4.5 ND 
2DR 534 38 10 ü 
2ES 516 167 10 X 

 
As with IMI (section 6.2.1), no additional resistance with respect to wild type, was found 

with most of the TAZ compounds from this library in the line overexpressing C24SMT, 

possibly, due to alternative MoA or other unknown targets. Another explanation to the lack 

of fitness in this line can be the lack of expression of the C24SMT gene. For this reason, I 

assessed the overexpression of the wild type copy of C24SMT (LmxM.36.2380) using 

qPCR and RNA-seq transcriptomics analysis (Figure 6-7). While the former showed a 

Table 6-2. EC50 of the 1,2,3-triazolylsterol inhibitors (TAZ) in L. mexicana, and with the 
recombinant L. mexicana C24SMT-protein. 
Azasterols compounds with known activity against C24SMT were used as controls. 
Compounds highlighted in red were not determined (ND) in either, the L. mexicana 
promastigotes in vitro, or in the enzymatic assay. Compounds in bold were the two most 
active in both assays. Compounds with poor activity in the preliminary enzymatic assay, 
were excluded (E). The last column on the right shows the match (ticks), between EC50 (in 
vitro) and IC50 (enzymatic assays). IC50 assays were provided by Boden Vanderloop (Texas 
Tech University Lubbock, USA) and by Dr Minu Chaudhuri (Meharry Medical College, USA) 
from David Nes Lab. 
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17.5-fold difference in DNA abundance (Delta Ct threshold (δCt) of -4.13 for C24SMT; a 

δCt value of 6 was used as reference (section 2.8.3 and Supplementary 7) (see page 8), 

RNA-seq (section 2.9.2) showed a 3.67-fold change in expression (SE ± 0.1103, p<8.88E-

244). A similar increase, 3.52 Log2 FC (SE ± 0.1331, p<2.87E-154), was obtained with a 

parallel analysis using Galaxy (Afgan et al. 2018). Moreover, I confirmed (with RNA-seq 

only) that the other copy of C24SMT, LmxM.36.2390, was poorly expressed (Log2 FC 

0.1437; SE ± 0.1631, p<3.78E-01) (Figure 6-7, panel C), suggesting that transcript 

abundance associated with changes in drug resistance is associated with the 

LmxM.36.2380 copy that was transfected (section 2.8.2). RNA-seq, however, does not 

indicate the presence (or activity) of more protein, which needs to be determined using 

western blot. Although RNA-seq showed a large number of genes were differentially 

expressed, these changes remained within the range ± 1 log2 fold change that of the wild 

type (Figure 6-7, panel B). A full list of the fold changes of all genes is included 

(supplementary file 8, see page 8). 

Overexpressing C24SMT (6-fold increase in protein abundance shown by western-blot) in 

L. major, showed no additional resistance against 22,26 azasterols (C24SMT-specific), and 

to other sterol inhibitors (e.g. ketoconazole) (Jiménez-Jiménez et al. 2008). In their work, 

Jiménez-Jiménez and colleagues did not mention which transcript of C24SMT was 

transfected (Jiménez-Jiménez et al. 2008). This can be relevant considering that this gene 

has two copies arranged in tandem (positions, LmxM.20:950,430-951,491 and 

LmxM.20:954,192-955,253, respectively). Although both copies are of identical size 

(1.462 kb) and have similar function, LmxM.36.2390, has been shown to compensate 

when the dominant copy, LmxM.36.2380, is downregulated (Pountain et al., 2019). In my 

study, I did not measure the overexpression of protein (hence the presence of active 

enzyme within the parasite is unknown), which in Leishmania is relevant given the post-

transcriptional or post-translational changes that can occur and inactivate the product 

(Ivens et al. 2005b; Kazemi 2011).  

The C24SMTKO showed an increase in resistance (3.8 to 4.3-fold, P= 0.0116) to AmB 

(EC50 ~300 nM), AmBisome (7.1-fold, P<0.0001), and to nystatin (2.5-fold, P= 0.0131), in 

comparison to the parental wild type (here WT L. mexicana line expressing Cas9) (Figure 

6-2, panel B and C). The reduced susceptibility to polyenes in this C24SMTKO line 

confirms the role of C24SMT with regard to AmB resistance. In my study, the maximum 

increase in resistance observed in four AmBR lines selected in vitro over nine months of 

drug exposure, was between 10 to 11-fold (chapter 3, Figure 3-1). 



201 

 201 

 

A similar increase in resistance (4-fold) to both polyenes, AmB and Nys, has been 

described in various species of yeast (e.g. S. cerevisiae, C. albicans, Kluyveromyces lactis) 

lacking the C24SMT orthologue (ERG6 in fungi) (http://www.yeastgenome.org; Konecna, 

et al., 2016). In addition, polyene resistance was accompanied by dramatic changes in the 

sterols profiling of this mutant (Figure 6-10B, and Table 6-3), suggesting a disruption of 

the synthesis of 24-methylated sterols (section 6.2.3). To validate that changes in EC50 

were not related to differences in growth between C24SMTKO and the parental line, I 

assessed the growth rate of all the L. mexicana wild type expressing Cas9 and all the 

C24SMTKO mutants. All cell lines cultured in HOMEM showed a log- and stationary 

phase with no difference (P=0.8931) with respect to the parental wild type, i.e. WT-

expressing Cas9, and to other wild type included for comparison (Figure 6-8). As with all 

Figure 6-7. RNA-seq dataset of the C24SMT-overexpressor L. mexicana  
Panel A: Principal component analysis (PCA) of RNA-seq abundance in wild type (control, 
red circle) and C24SMT-transfected parasites (blue circle). Panel B: RNA-seq data 
distribution of expression changes (MAP Log fold change) analysed with DESeq2 (Love, et 
al., 2014). Significantly differentially expressed genes (adjusted P value <0.1) are shown in 
red points. Panel C: RNAseq Log fold change was analysed with Linux (blue) and Galaxy 
(red) (Afgan et al. 2018), see section 2.9.2 for details, x-axis shows the genes of the sterol 
pathway from LmxM.23.0690 (left) to LmxM.32.0680 (right). Abbreviations: WT, wild type; 
SMT, transfected parasites. MAP, maximum a posteriori Log fold change. 
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the other wild type- and polyene resistant-lines, none of the C24SMTKOs cultured in DM 

(a FBS-free culture medium), showed evidence of a log phase (cell densities were ≤ 5 x 

105 per ml during five days, suggesting that some of the components found in FBS are 

essential for the parasite (Figure 6-8). 

 

6.2.3  Effect of the 1,2,3-triazolylsterol inhibitors on the sterol 
profiling of Leishmania 

Although the most potent TAZ inhibitor (in promastigotes) was 156.E (3.0 µM), I selected 

compounds, 156.A and 156.D, with comparable potency (Figure 6-4), for further analysis, 

given the insufficient amount of the former. L. mexicana promastigotes were treated with 

different concentrations of these two compounds added into the culture medium in 24-well 

plates, and further incubated for 2, 6, 8, 16 and 24 hours (see section 2.5 for details). The 

morphology and number of parasites were examined at each of these time points. While 

the treatment with 5 x EC50 showed dead cells after two hours, a concentration of 1 x EC50 

caused changes in morphology (round cells) in approximately 50% of the promastigotes at 

eight hours post treatment. The number of swollen cells increased up to 95% after 16 hours 

of drug exposure. For this reason, twelve hours of drug exposure (Figure 6-9), was the cut-

off time point selected (Maes et al. 2017), before the extraction of sterols. Considering the 

cost of GC-MS and the number of drugs remaining, only one compound, 156.D, was used 

to assess its effects on the content of sterols using GC-MS. As described in section 6.2.2, 

Figure 6-8. Growth curve of C24SMTKOs of L. mexicana promastigotes in HOMEM and DM. 
Starting density of 1 x 105 cells/ml. Left panel shows growth in HOMEM (i.e. L. mexicana wild 
type (L.mex WT), L. mexicana expressing Cas9 (WT Cas9) and all the C24SMTKOs (see 
section 2.8.4 for details). Right panel shows the same lines cultured in Defined Medium 
(DM). Mean values are shown with their standard deviation (bars). One-way ANOVA was 
performed independently for each compound to determine differences of the mean between 
groups. Tukey's multiple comparison test was used to find pairwise differences between 
lines. Statistically significant values (P<0.05, 95% Confidence Interval) are indicated with a 
star. 
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156.D was the most potent TAZ in the enzymatic assays, and the second most potent 

against promastigotes in vitro (Table 6-2). L. mexicana wild type and two resistant lines, 

AmBRcl.14 and AmBRcl.8 (these two lines showed mutations in C5DS and C24SMT, 

respectively, see chapter 3 for details) were treated with two different concentrations of 

156.D, i.e. 3.5 µM (1 x EC50) and 1.6 µM (MIC). Sterols were extracted from whole 

lysates of parasites, and analysed with GC-MS, as described before (section 2.8). 

 

Overall, a reduction in some sterol intermediates (mainly ergostanes) and a corresponding 

increase in the relative proportion of cholestanes indicated that 156.D, and potentially other 

TAZ analogues, have a direct effect in altering the synthesis of sterols, targeting the 

C24SMT. Other C24SMT inhibitors, i.e. AZA, have also shown good activity against the 

recombinant enzyme, and triggered dramatic changes on the growth rate and composition 

of sterol profile in L. major and T. cruzi (Magaraci et al. 2003).  

In my study, an inhibitory effect on the growth rate was observed with both, 156.D and 

156.A (Figure 6-9). Also, the morphological alterations showed that promastigotes 

developed a round shape after two hours of drug exposure. After confirmation of the 

C24SMT-specific activity of the TAZ inhibitors (Figure 6-6), the changes on the sterol 

composition after treatment with 156.D were surprising. No significant changes were 

found in wild type or either of the AmBR lines analysed. Interestingly, a mild increase of 

dimethylcholesta-5,7,24-trien-3-ol and cholesta-5,7,24-trienol in wild type and AmBRcl.14 

were noted. On the other hand, AmBRcl.8, showed a reduction of ergosterol (and its 

Figure 6-9. Treatment with TAZ inhibitors for 12 hours in wild type and two AmBR lines of L. 
mexicana promastigotes. 
Cell density and morphology were assessed with a haemocytometer. Starting density of 1 x 
106 cells/ml and cells were cultured in HOMEM at 26 °C. Measurements are the median of 
three biological replicate, bars represent standard deviation. No significant difference was 
found between groups (P= 0.5846 and P= 0.9885, for compounds 156.A and 156.D, 
respectively). 

156.A         156.D  

EC50: 4.5 µM 

EC50: 3.5 µM 
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isomer 5-dehydroepisterol), and other ergostanes, from 13% to 0.5%, and of cholesta-

5,7,24-trienol from 21% to 16%, accompanied by a moderate increase in cholestane-

5,7,22,trien-3-ol from 60% to 70%. Note that the latter of these lines was only treated with 

the MIC dose.  

The results from GC-MS analysis, and a breakdown of all the sterols identified (percentage 

± SD) are provided (Figure 6-10, panel B, and Table 6-3). Irrespective of the small changes 

in sterols, an accumulation of zymosterol was observed after the treatment with both 

concentrations of 156.D (EC50 and MIC). Although the relative abundance of this 

intermediate was very low (< 1%), this marginal increase in zymosterol in wild type and 

AmBRcl.14 (Table 6-3), is in agreement with the specific activity shown with the 

recombinant protein (Figure 6-6), and with the EC50 reported here in all lines of L. 
mexicana (Figure 6-4). 

The content of cholestanes in AmBRcl.8 increased only by 4% after exposure to 156.D 

(this line was only treated with MIC), in comparison with the untreated parasites. 

Considering that the abundance of cholestanes in these lines was of 82% before the 

treatment, this small increase in cholestanes was expected, however, the concomitant loss 

of other ergostanes is indicative of the C24SMT inhibitory activity of 156.D.  

Also, an increase in cholesterol was observed in this line after the treatment, suggesting 

possible uptake of this sterol from the medium (Andrade-Neto et al., 2011; De Cicco et al., 

2012; Ghosh et al., 2012a) and host macrophages (Ginger et al. 1999), to compensate the loss 

of ergosterol and other sterols from the membrane. Notably, C24SMTKO and C24SMT 

over-expressor showed opposite changes in their content of sterols. While the former KO had a 
dramatic increase in cholestanes (91%), these intermediates were present in only 1.6% in the 

latter. Moreover, the content of ergostanes in these lines was of 0- and 90%, respectively. The 

increase of cholestanes is expected from C24SMT null mutants and after the treatment with 

C24SMT-inhibitors such as azasterols (AZA). This has been extensively studied in various 

species of Leishmania (Haughan, et al., 1995; Contreras, et al., 1997; Liendo et al., 1999; 

Magaraci et al., 2003; Lorente et al., 2004a; Gros et al., 2006; Rodrigues et al., 2007; 

Jiménez-Jiménez et al., 2008; Gigante et al., 2010).  
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Figure 6-10. Characterisation of AmBR lines, and C24SMT and C24SMTKO mutants of L. 
mexicana, using GC-MS (sterols) and RNA-seq. 
Panel A: L. mexicana promastigotes (3 x 108 parasites) were treated with the inhibitor 156.D 
for 12 hours at 3.5 µM (EC50) and 1.6 µM (MIC). Controls were treated with the same volume 
of solvent (DMSO). Pellets were weighed before GC-MS analysis, to estimate the content of 
sterols per 100 parasites, bars indicate the standard deviation of the mean of three 
biological replicates. Panel B: names and content of sterols is shown as percentage. Mean 
values and standard deviation (SD), are shown in detail in Table 6-3. C24SMT-
overexpressor-, and a C24SMTKO-lines, are included for comparison. Panels of gels are 
from one representative biological replicate. The paralyzed flagella protein 16 gene, 
LmxM.20.1400 (PF16) was used as positive control (Beneke et al. 2016). Panel C: DNA 
donors (repairing cassettes) were run in 1% agarose gel for 45’ at 90 V, Lanes: 10 kb ladder, 
1) pTpPF16, 2) pTpC24SMTKO, 3) pPLOTp.mNG.C24SMT.N-term (2.3 kb), 4) 
pPLOTp.mNeonGreenC24SMT.C-term (2.7 kb). Panel D: 5’- and 3’ sgRNAs templates, 
samples were run in 2% agarose gel at 100 V for 60 min, Lanes: 1 kb ladder, 1)3’sgRNAPF16 
(126 bp), 2 and 3) 5’sgRNAC24SMT, 4 and 5) 3’sgRNAC24SMT (126 bp). Panel E: PCR 
diagnostic of the L. mexicana C24SMTKO cell line showing the approximate expected 
presence/absence of C24SMT-specific bands for any of the two gene copies, i.e. 
LmxM.36.2380/90 (~1.1 kb). PCR products were run on agarose gel 2%. Lanes: 1 kb DNA 
ladder; P, parental cell line WT-Cas9 L. mexicana; KO, C24SMTKO population (non-clonal). 
Primers used were FP1 and RP1. PCR reactions and expected band size are as described in 
section 2.8.4 (Table 2-1).Table 6-3. Sterol profiling by GC-MS (derivatization with 
trimethylsilyl, TMS) in L. mexicana promastigotes treated with C24SMT inhibitors. 

A B 

C D E 
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Sterol intermediate WT WT EC50 WT MIC AmBRcl.14 AmBRcl.14 
EC50 

AmBRcl.14 
MIC 

AmBcl.8 AmBRcl.8 
MIC 

C24SMTKO LmC24SMT 

Peak 1 
Cholesta-5,7,22-trienol 

2.66 ± 0.09 1.93 ± 0.50 3.61 ± 0.97 0.27 ± 0.19 ND ND 61.05 ± 6.57 70.35 ± 4.90 82.92 ± 0.77 1.66 ± 0.35 

Peak 2 
Cholesta-5,7,24-trienol 

0.44 ± 0.38 3.06 ± 0.41 3.48 ± 0.50 ND 4.62 ± 0.31 5.88 ± 0.56 21.04 ± 4.39 16.11 ± 0.80 7.82 ± 0.48 ND 

Peak 3 
Ergosta-8,24(28)-dienol 

ND ND ND ND 1.13 ± 0.09 ND ND ND ND ND 

Peak 4 Ergosta-
5,7,24(28)-trienol  
(5-dehydroepisterol) 

88.17 ± 
1.02 

73.71 ± 1.87 74.61 ± 0.18 0.65 ± 0.63 0.10 ± 0.09 31.86 ± 0.55 5.65 ± 0.55 ND  ND 72.24 ± 4.85 

Peak 5 
Ergosta-7,22-dienol 

6.38 ± 0.54 9.43 ± 1.31 10.55 ± 2.13 93.9 ± 1.41 87.65 ± 2.14 41.04 ± 0.08 2.87 ± 4.96 ND ND  17.75 ± 2.50 

Cholesterol 1.80 ± 0.04 5.81 ± 0.49 4.70 ± 0.20 3.01 ± 0.59 2.44 ± 0.22 2.13 ± 0.04 3.90 ± 1.47 7.04 ± 0.28 7.04 ± 0.69 3.73 ± 0.52 
Ergosterol 

 
  

  
 4.09 ± 1.39 0.53 ± 0.12 0.41 ± 0.25  

Peak 6 
Dimethylcholesta-
5,7,24-trien-3-ol) 

ND 2.35 ± 0.39 2.00 ± 0.18 0.38 ± 0.66 ND 1.14 ± 0.99 ND ND ND 3.01 ± 2.70 

Desmosterol          0.55 ± 0.51 
Lanosterol ND 3.00 ± 0.72 1.20 ± 0.21 1.46 ± 0.30 3.49 ± 2.09 1.25 ± 0.52 1.16 ± 0.56 2.51 ± 0.41 1.79 ± 0.29 0.98 ± 0.95 
5α-Cholest-7-en-3β- ND 0.12 ± 0.20 0.11 ± 0.11 ND 0.11 ± 0.09 0.06 ± 0.10 ND 0.20 ± 0.18 ND 0.08 ± 0.13 
Zymosterol ND 0.55 ± 0.17 0.39 ± 0.07 ND 0.33 ± 0.03 0.54 ± 0.23 ND ND ND ND 

 

Table 6-3. Sterol profiling by GC-MS (derivatization with trimethylsilyl, TMS) in L. mexicana promastigotes treated with C24SMT inhibitors. 
Content of each sterol is the percentage of the total of the raw peak area detected per line ± standard deviation of three independent biological replicates. 
Standards used were: cholesterol, desmosterol. 5α-Cholest-7-en-3β-ol, ergosterol, stigmasterol, β-sitosterol, lanosterol, 4,4-dimethyl-5α-cholesta-8,14,24-
trien-3ß-ol, and zymosterol (Source: Glasgow Polyomics). Peaks that did not match any standard were determined by comparing with the NIST spectral 
libraries with the ion trap mass spectrometer. The identification of peak 4, and a complete description of the sterols identified, i.e. major frag mass m/z, 
molecular ion m/z, TMS m/z, chemical formula, and retention time RT/min, are described in Chapter 5 (Table 5-1). ND: non detected. 



6.3 Discussion 

The potency of TAZ inhibitors was lower than that reported previously (Porta et al. 2014). 
Similarly, other C24SMT inhibitors, e.g. AZA and TOM, have previously shown to be 
more active in Leishmania (EC50 in the nanomolar range), than any of the TAZ tested here 

(Magaraci et al. 2003; Medina et al. 2012). Various AZA analogues used as controls in the 
enzymatic assays were also more potent than TAZ in the recombinant protein assays 
(unpublished). Libraries of AZA were designed following the hypothesis of Nes, et al., i.e. 
that 22,26 azasterol is a inhibitor of C24SMT (Nes 2000; Nes et al. 2009). These libraries 
spanned multiple combinations of substituents introduced in the side chain of the sterol 
molecule (Magaraci et al. 2003; Porta et al. 2014). In this study a broad range of activity 
against L. mexicana promastigotes in vitro (EC50 values from 5-, to >100 µM) was noted 
across the different substituents of the lateral chain in the TAZ (Figure 6-3, Figure 6-4 and 
Figure 6-5). Importantly, these EC50 values (Table 6-2) were very similar to those obtained 
with the recombinant enzyme (Figure 6-6, only two compounds are shown in this Thesis), 
and with the dose-to-kill assays (Figure 6-9). Although the potency of TAZ was lower than 
expected, this study provides valuable information for further chemogenic and drug design 
studies, however, their potency needs to be tested using the amastigotes macrophages 
model in vitro. Some of the inhibitors tested in this Thesis, i.e. IMI, 2DR, 2ER, 2ES, have 
shown a good therapeutic window (Mukherjee et al. 2012; Porta et al. 2014), the former 
can moreover, be administered orally (Mukherjee et al. 2012). Here, I did not analyse the 
toxicity and other pharmacokinetic- or pharmacological properties that are essential for the 

characterisation of any drug candidate, particularly, considering that all the 
antileishmanials currently used are toxic, and have complex and long therapeutic schemes 
that can, in some cases, contribute to treatment failure and, possibly, drug resistance 
(Ponte-Sucre et al. 2017). TAZ inhibitors showed specific activity against C24SMT, 
however, other potential targets, e.g. C14DM, cannot be ruled out. Likewise, we cannot 
conclude on the sterol-specific activity (and other membrane lipids) of IMI given its 
numerous MoA (section 6.2.1). In the study of Porta and colleagues, and in other works 
with similar compounds (Haughan et al. 1995; Porta et al. 2017; Usachev 2018), C14DM 
was suggested as a potential target. In fact, in my study, I showed that the AmBR line with 
the mutation N176I in C14DM (Mwenechanya et al. 2017), was more sensitive than wild 
type, to B2N and C4, although the difference was not significant (Figure 6-3). Further 
enzymatic assays can help to determine if TAZ can inhibit other targets, including 
C14DM. In my study, the overexpression of C24SMT was confirmed with qPCR and 
RNA-seq (but not followed up at the level of enzyme activity), however, only four TAZ, 
B3, 90.A, 2DR and 2ES, showed a significant difference between their EC50 in the 
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C24SMT overexpressor over the wild type (and differences in susceptibility were 
relatively minor). This lack of correlation between the over-expression of transcripts of 
C24SMT in Leishmania, and the EC50 values of inhibitors C24SMT-specific is not well 
understood and has been described with another AZA (Jiménez-Jiménez et al., 2008). An 
explanation of this can be that given that this gene has two copies, the effect exerted by 
these inhibitors may be redundant. During my studies, I realised that there are no reports of 
resistance against C24SMT-inhibitors. In fact, I tried to select some IMI-Res lines of L. 
mexicana without detecting an increase in resistance to IMI or AmB (data not included). 
Nevertheless, additional experiments are needed to understand this in more depth. I did not 
attempt to induce resistance with any of the TAZ compounds (due to time constraints), but 
this could be informative to pursue. I also noted that inhibitors have not been designed and 
tested against C5DS in Leishmania spp., which is one of the few enzymes of the sterol 
pathway (post squalene) that has been related with AmB resistance in both, Leishmania 
spp. and fungi. One reason is that the role of C5DS in resistance in Leishmania was 

unknown until recently (Pountain et al. 2019). Also, to the best of my knowledge, the 
structure of C5DS is not available. I found only one study (in cardiovascular diseases), in 
which a new class of inhibitors of C5DS (EC 1.14.21.6), showed increase of lathosterol 
(Giera et al. 2008).  

Accumulation of cholestanes can result from the treatment of Leishmania spp. with 
C24SMT inhibitors, and from genetic manipulations. In the first case, AZA (Magaraci et 
al. 2003), IMI and TOM (Medina et al. 2012; de Souza and Rodrigues 2009a), are 
inhibitors that deplete 24-alkylated sterols and 5-dehydroepisterol (the most abundant 
sterol in wild type Leishmania also known as 24-methylene-cholesta-5, 7-dien-3β-ol), and 
accumulation of cholesta-5,7,22-trien-3β-ol, cholesta-7-24-dien-3β-ol (Viana Andrade-
Neto et al. 2016a), and of zymosterol (cholesta-8, 24-dien-3β-ol). 156.D showed a mild 
increase of cholestanes (Figure 6-10B), indicating some activity targeting C24SMT, other 
MoA cannot be excluded, however. Another possible explanation ot the lack of a clear 
change in sterols can be that the time point and the concentrations used here (12 hours, 
MIC and EC50) were insufficient to trigger sterol modifications. This could be assessed by 
increasing the concentration, e.g. 5 x EC50 (as with our experiments of LCMS). TOM 
proved inactive in both, WT and resistant lines. This was unexpected and is not well 
understood, considering that in previous studies, this steroidal glycoalkaloid showed 

nanomolar potency (EC50 124 nM in L. amazonensis promastigotes). TOM causes 
mitochondrial damage and increase of ROS, and other alterations such as the accumulation 
of bulky vacuoles and lipid droplets in the cytoplasm (Medina et al., 2012), which was also 
observed in promastigotes of L. amazonensis (Lorente et al. 2004a), and L. donovani 
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(Haughan et al. 1995; Lorente et al. 2004a), after the treatment with AZA, suggesting that 
the alteration of the metabolism of lipids, is possibly, related with the disruption of 
C24SMT. In my study, I described an increase in the number and size of lipid droplets in 
tissue from mice infected with AmB resistant lines of L. mexicana, being this change more 
prominent in lymph nodes than in footpad lesions (see chapter 5, section 5.2.7.1, Figure 5-
9 and 5-10). However, there is no evidence indicating that changes observed in mice are 
related with the MoA of AZA found in the parasite. 

Regarding the accumulation of cholestanes in Leishmania spp. after the deletion of the two 
C24SMT alleles (Mukherjee et al. 2018), and with other mutants with defects in this 
enzyme (Pountain, et al., 2019), I found a similar sterol profiling in two AmBR lines (see 
chapter 4 for details of lines AmBRcl.8 and AmBRcl6), and in a C24SMTKO generated 
with CRISPR-Cas9 (Beneke, et al., 2017), in which cholestanes increased notably (Figure 
6-10B and Table 6-3). In addition, C24SMTKO displayed a similar fold change in 
resistance to polyene antifungals (Figure 6-2B) comparable to that described after the loss 

of expression of C24SMT in L. infantum (Rastrojo, et al. 2018), in L. mexicana (Pountain 
et al., 2019), and also in yeast with a deletion of the orthologue (http://www.yeastgenome.org), 
suggesting a disruption of the synthesis of 24-methylated sterols (section 6.2.3).  

Further characterisation of the C24SMTKO is essential. In particular, the confirmation of 
the deletion (and expression) of both copies of the gene. Considering that C24SMT has 
two copies arranged in tandem that are identical in their sequence (except by one 
nucleotide) (Pountain et al., 2019), this represents a particular challenge. A combination of 
different of primers (Table 2-1) and other tools, e.g. qPCR and Sanger sequencing, can also 
help to determine the nature of genomic changes present. Furthermore, testing the 
infectivity in vivo, and in macrophages, will contribute to further characterise if the 
deletion of C24SMT carries some fitness cost, as it was noted with L. major (the deletion 
of both copies caused the loss of virulence in mice) (Mukherjee et al. 2018). Interpretation 
of the susceptibility to TAZ identified in this study, however, requires a better 
understanding of the regulation of the biochemical pathways in Leishmania spp., and an 
enhanced approach using a combination of genetically modified parasites. In general, TAZ 
show an activity within the micromolar range, most likely with a pleomorphic MoA 
partially related with the inhibition of sterols in L. mexicana.



7 Metabolic effects of AmB in the Leishmania 
mexicana promastigotes. 

7.1 Introduction  

In previous chapters, I presented evidence on the development of resistance to polyene 
antifungals in eight independent lines of L. mexicana promastigotes selected in vitro, by 
increasing the concentration of drug in the culture medium in a step-wise manner (section 
3.2.1). These polyene-resistant lines were then screened against a series of compounds, 
including the antileishmanials (chapter 3) and a new library of sterol inhibitors (chapter 6). 
Furthermore, genomic alterations (chapter 4) in two sterol enzymes, C24SMT and C5DS, 
lead to resistance against polyenes, AmB, nystatin and natamycin, and to cross-resistance 
and higher susceptibility towards other compounds. In agreement with other studies, here I 
described a significant increase in susceptibility against oxidative stress agents, such as 
PENT, methylene blue (Mbongo et al., 1998; Pountain et al., 2019), and hydrogen 
peroxide (Mwenechanya et al., 2017) in all four AmBR lines of L. mexicana (section 
3.2.3.4). Targeted metabolomics using GC-MS, established two sterols profiles correlated 

with the genomic changes in C24SMT and C5DS (chapter 5), whereas complementary 
studies in a murine model revealed a relationship between these two sterols signatures, and 
parasite infectivity in vivo. Notably, the replacement of the wild type ergosterol by 
ergostanes and cholestanes, was associated with a virulent and an attenuated phenotype, 
respectively. We further confirmed the retention of resistance (in vitro) of all four AmBR 
lines after the treatment of mice with AmB (1 mg per kg) (section 5.2.3). 

The use of metabolomics for the deconvolution of the MoA and resistance of antiparasitic 
drugs was discussed in detail in chapter 1 (section 1.8.3.1). LC-MS has pinpointed 
alterations of several metabolites and metabolic pathways after drug treatment (Vincent 
and Barrett 2015). For instance, antimonials (L. donovani) (Berg et al. 2015), MF (Vincent 
et al., 2014b), and AmB (Mwenechanya et al., 2017; Pountain et al., 2019), disrupted 
metabolic pathways that are relevant for the defences of the parasite against ROS (Wyllie 
et al., 2010; Kaur and Rajput, 2014), although it remains uncertain if such changes are a 
direct effect of the treatment or they resulted from a general stress response (M.-C. 
Brotherton et al. 2014). The MoA by which AmB generates oxidative damage (Anderson 
et al. 2014; Gray et al. 2012; Mesa-Arango et al. 2012) seems to be related to the 
disruption of other metabolic pathways, including the pentose phosphate pathway (PPP) 
(Fan et al., 2014), the polyamine-trypanothione pathway (PTP) (Purkait et al., 2012; Manta 

et al., 2013; Mandal et al., 2017). LC-MS also helped to identify that the metabolism of 
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phospholipids and other membrane lipids that interact with ergosterol, play a key role in 
the susceptibility to AmB. For instance, lower abundance of ergosterol (relative to wild 
type), was observed in a mutant (LCB2) lacking the sphingolipids pathway (SLP) 
(Armitage et al. 2018; Collett et al. 2019; Denny, Goulding, Michael A. J. Ferguson, et al. 
2004), which was reflected in significant fold-changes in susceptibility to AmB in this 
mutant (unpublished data). In another study, other membrane proteins (e.g. flippases), 
phospholipid flippases and the miltefosine transporter, were related to the MoA and 
resistance to AmB in T. brucei (Collett et al. 2019). Finally, peroxidation of the membrane 
lipids has also been related to AmB resistance in pathogenic fungi, e.g. Candida (Bolard, 
1986; Bolard et al., 1991; Walsh et al., 1990), but has not been studied in Leishmania spp. 

The sterol biosynthetic pathway (SBP), arguably the most relevant pathway related to 
AmB resistance in L. mexicana (Mwenechanya et al. 2017; Pountain et al. 2019a), and the 
genomic alterations in this pathway that derived in dramatic changes in sterols, were 
discussed in detail elsewhere (section 4.1.3 and 5.2.1.1). While the loss of ergosterol (and 

other sterol intermediates) in AmBR lines was expected (based on previous findings), 
changes in other metabolites appeared more heterogeneous and are less well studied.  

In order to identify changes in the metabolome of L. mexicana promastigotes, after short 
time exposure (15 min) to high concentrations of AmB (see section 2.5 for methods), that 
can provide hints towards understanding the MoA- and resistance-associated phenotype, I 
used LC-MS to interrogate broader changes in the metabolome in two AmBR lines 
selected in parallel. These lines were nominated for LC-MS analysis on the basis of their 
respective mutations in the enzymes of the sterol pathway, i.e. C5DS (AmBRcl.14) and 
C24SMT (AmBRcl.8). A third line of L. mexicana lacking the enzyme transketolase 
(TKT-KO), along with its parental line (WT) and the add-back (named R18 herein), were 
also included for comparison. The LC-MS approach (chloroform:methanol:water 1:3:1) 
used in this thesis (Creek, Anderson, et al. 2012), was developed and optimized by former 
members of the Barrett Lab, providing a high coverage of the Leishmania (and in 
Trypanosoma spp.) metabolome (Kovářová et al. 2018; Vincent et al. 2012, 2014), 
including five AmBR lines of L. mexicana (Mwenechanya et al. 2017; Pountain et al. 
2019), and allowing for the detection of metabolites present in samples in low abundance 
(nanomolar to picomolar range) (Monteiro et al. 2013).  
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7.2 Results 

Extraction of both polar and nonpolar metabolites was performed in four biological 
replicates per group (section 2.7). Peaks were then analysed based on their mass, and 
mass/retention time (RT) match, to a list of known standards. Identified peaks are those 

which both retention time and mass matched to a known standard, whereas annotated 
peaks are assigned putatively on the basis of mass alone. Datasets of AmBRcl.14 and 
AmBRcl.8 were mutually processed using IDEOM (Creek et al., 2012; and Creek et al. 
2012b) and PiMP (Gloaguen et al., 2017) pipelines (http://polyomics.mvls.gla.ac.uk). 
Datasets generated in IDEOM are provided as supplementary 10 (AmBRcl.8) and 
supplementary 11 (TKTKO) (see page 8). In order to assess their quality, a principal 
component analysis (PCA) was performed for each dataset (Batushansky et al. 2019). A 
good separation between experimental groups was found in both resistant lines (Figure 
7-1). Note that although the PCA from AmBRcl.14 performed with PiMP (Figure 7-1B) 
showed an overlap between two samples from both groups, wild type (WTTx) and AmBR 
(AmBRTx), which were treated with AmB, the PCA obtained with IDEOM confirmed a 
strong separation across all groups. While the first principal component (PC1), showed a 
clear effect (separation) of the treatment with AmB on the metabolic profiling, the PC2 
showed a clear difference between AmB resistant lines and wild type in both datasets 
(Figure 7-1D). PCA has been previously shown its power for the separation of metabolic 
profiling between groups analysed with LC-MS (Barisón et al. 2017). Following the 
assessment of peaks quality, PiMP then performs a retention time alignment of mzXML 

files using the OrbiWarp algorithm (http://polyomics.mvls.gla.ac.uk). 

The number of metabolites with significant fold-changes after the treatment with AmB, 
was considerably higher in the AmBRcl.14 dataset in comparison with AmBRcl.8. Initial 
targeting with PiMP detected a total of 5,001 and 2,246 peaks with a mass accuracy of 2 
ppm (entries), from which only 33 (AmBRcl.14) and 47 (AmBRcl.8) metabolites, matched 
to a known standard (i.e. identified peaks). The remaining peaks (4,968 and 2,199, 
respectively) from each group were annotated as putative. The identity of some peaks was 
annotated in PiMP as numbers (peak ID 1, 2, etc.), these unidentified hits were then 
manually inspected, allowing the identification of additional relevant metabolites related 
with AmB resistance, such as, amphotericin B, xanthine, hypoxanthine, D-fructose, 
inositol-1-phosphate, phosphatidyl inositol, L-proline, D-glucose, myo-inositol, L-
histidine, and some amino acids. The identity of some peaks, however, remained 
undetermined or redundant. This is related to the fact that a standard was not included, a 
poor quality of peaks, or because the peaks did not match the known standard. Also, in 
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some cases, some peaks with similar mass were listed by PiMP several times. To my 
knowledge, some of these repeated peaks correspond to isomers and manual inspection of 
these was necessary, however, curation of hundreds of hits is challenging and adds to time, 
considerably. 

  

Metabolites with significant fold-changes (P adjusted <0. 05) in each dataset, were 
identified by performing four pairwise comparisons, as follows: 1) AmBR control 
(AmBCx) relative to wild type control (WTCx); 2) wild type treated (WTTx) relative to 

WTCx; 3) AmBR lines treated (AmBTx) relative to AmBCx, and 4) AmBTx relative to 

Figure 7-1. Principal component analysis (PCA) of two AmBR lines of L. mexicana 
promastigotes treated with AmB.  
Top (A and B) and bottom (C and D) panels, show the PCA obtained with PiMP (Gloaguen et 
al., 2017) and IDEOM (Creek et al., 2012; and Creek et al. 2012b) platforms, respectively (see 
section 2.7 for details on the method). AmBRcl.8 is shown in the left panels (A and C) and 
AmBRcl.14 is shown in the right panels (B and D). Mid log phase L. mexicana promastigotes 
(1 x 108) were treated with a concentration of AmB 5 x EC50 of each line (600 nM for wild type 
and 3 µM for both AmBR lines), for 15 minutes (section 2.5) and the metabolome was 
extracted as described before (section 2.7). Each dataset was performed in four biological 
replicates. Abbreviations: WTTx: wild type-treated (blue circles); WTCx: wild type-control 
(untreated) (green circles); AmBTx: AmBR lines-treated (red circles); AmBCx: AmBR lines-
control (black circles). 
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WTTx. Metabolites with significant changes in all four comparisons are listed in 
Supplementary 9, Table 1 and 2 (see page 8). The ten most significant hits of all four 
comparisons can be visualized in the volcano plots obtained from each pairwise 
comparison (Figure 7-2, red and blue circles). Given that the aim of my study is to 
investigate the effects of the treatment with AmB on the metabolome of Leishmania, the 
analysis of the abundance of metabolites was focused on peaks resulting from the pairwise 
comparisons 2 and 3. Similarly, the most significant hits (identified and annotated) altered 
after the treatment with AmB, in wild type and in both resistant lines (comparisons 2 and 
3), are enlisted in Table 7-1. Three of these hits, i.e. sn-glycero-3-phosphocholine, L-
proline, and hypoxanthine, were significantly changed in wild type, and in both resistant 
lines (Table 7-1). With regard to AmB, fold change in Table 7-1 indicate the identification 
in treated cells relative to control without drug (total absence) of peak 349, although the 
annotation of five other peaks as AmB, is discussed further (Figure 7-13). Identified and 
putative metabolites from AmBRcl.14 and AmBRcl.8, mapped to 232 and 208 KEGG 

metabolic maps (pathways), with only a small fraction (8 and 6 maps, respectively), 
showing ≥75% of coverage. Some examples of these high-coverage pathways are: D-
arginine and D-ornithine metabolism (90% and 80% coverage), valine, leucine and 
isoleucine biosynthesis (87% and 74% coverage) and the Pentose Phosphate Pathway 
(PPP) (76.5% for AmBRcl.14). In all cases, map coverage was higher in AmBRcl.14 than 
in AmBRcl.8, including the PPP that had a coverage of only 41% in the latter. Coverage of 
all the other pathways was lower (25 to 75%). Comparison of metabolites with significant 
fold changes (P<0.05) in all four pairwise comparisons, showed a total of 319 and 202 
identified/putative metabolites. Of these, 181 and 64 peaks were detected only in 
AmBRcl.14 and AmBRcl.8, respectively, with 138 metabolites shared between both 
datasets (Figure 7-3A). To better understand the nature of these changes, I clustered 
metabolites into four groups, i.e. carbohydrates, amino acids, lipids, and other groups. The 
latter includes, energy-, nucleotide-, purines-, pyrimidines-, and nicotinate and 
nicotinamide- metabolism. (Figure 7-3, B and C). Carbohydrates (32-39%) and amino 
acids (30-38.1%) were the two most abundant, while ‘other groups’ (20-27%), and lipids 
(12-13%), were less abundant. After clustering metabolites into four groups, a slightly 
higher number of hits was noted, due to 27 (AmBRcl.14) and 7 (AmBRcl.8) hits, e.g. 
acetyl-CoA, D-glucose, and L-serine, which are key metabolites central to various 

pathways (see Figure 7-3, panels B and C, and Supplementary 9) (see page 8).
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Figure 7-2. Volcano plots of metabolites with fold-change after the treatment with AmB in L. mexicana wild type and AmBR promastigotes.  
 Mid log phase L. mexicana promastigotes (1 x 108) were treated with a concentration of AmB 5 x EC50 of each line (600 nM for wild type and 3 µM for both 
AmBR lines), for 15 minutes (section 2.5) and the metabolome was extracted as described before (section 2.7). Four pairwise comparisons were performed 
as follows: 1) AmBR control (AmBCx) relative to wild type control (WTCx); 2) wild type treated (WTTx) relative to WTCx; 3) AmBR lines treated (AmBTx) 
relative to AmBCx, and 4) AmBTx relative to WTTx. AmBRcl.14 is and AmBRcl.8 are shown in the panels from the left (yellow) and right (blue), respectively. 
Volcano plots show statistical significance (P<0.05), and fold-change in the y- and x-axes, respectively. Each dataset was performed in four biological 
replicates. Abbreviations: WTTx: wild type-treated; WTCx: wild type-control; AmBTx: AmBR lines-treated; AmBCx: AmBR lines-control. Circles highlight 
the ten most significant hits that are down- (blue) and up-regulated (red). 
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3) AmBTx / AmBCx  4) AmBTx / WTTx 

1) AmBCx / WTCx  2) WTTx / WTCx  
 
 
 
 
 
 
 
 
 
 
3) AmBTx / AmBCx  4) AmBTx / WTT 

AmBRcl.14         AmBRcl.8 



 
AmBRcl.14 AmBRcl.8 

Compound Peak (s) Log FC Adj. P-
Value 

Peak Log FC Adj. P-Value 

Pairwise comparison 2) WTTx / WTCx 

Hypoxanthine 131 (2005) 8.45 to 
9.65 

3.3E-14-
1.65E-15 

528 3.75 0.0000028 

Glucosamine / D-Glucosamine 337 7.76 5.1E-15 169 2.19 0.003 
Betaine 1465 (76) -3.84 to 

-4.64 
1.8E-08 
6.6E-08 

   

L-Proline 1 -4.21 3.4E-09 481 (10) -3.37 0.00000012 
sn-glycero-3-Phosphocholine 443 4.04 2.9e-06 23 2.06 0.00022 
L-Leucine 1489 -3.71 1.4e-06 

   

L-Valine 309 -3.43 4.7e-07 
   

Isonicotinic acid / nicotinate    128 (565) 3.03 0.0000014 
Glucose 6-phosphate / D-Glucose 6-
phosphate 

   515 2.39 0.0000099 

UTP (uridine triphosphate) 1996 -5.4 1.70E-09    

uridine 5'-diphosphate    547 -4.04 7.70E-06 
       
Pairwise comparison 3) AmBTx / AmBCx 

Isonicotinic acid / nicotinate 
   

128 (565) 3.41 9.10E-07 
Adenine 

   
530 2.97 0.0042 

Hypoxanthine 131 5.21 1.60E-11 55 2.74 0.0001 
sn-glycero-3-Phosphocholine 443 6.39 2.00E-08 23 2.62 2.90E-05 

Glucose 6-phosphate /  
D-Glucose 6-phosphate 

   
515 2.48 9.70E-06 

L-Proline 
   

481 (10) -2.23 1.50E-05 
L-Glutamic acid / L-Glutamate 

   
451 (53) -2.11 1.50E-05 

5-Oxoproline 
   

66 1.86 9.70E-06 
Guanine 400 10.18 2.3E-13 

   

Glucosamine / D-Glucosamine 337 7.15 1.90E-14 
   

Betaine 1465 -4.65 9.00E-08 
   

L-Leucine 1489 -4.11 5.80E-07 
   

L-Valine 309 -3.92 1.40E-07 
   

N-Acetylneuraminate 2927 3.44 5.00E-09 
   

amphotericin B 349 * 10.96 5.10E-16 
   

l-pipecolic acid 30 -3.43 0.00019 
   

       
Further analysis consisted in the partitioning of all metabolites from these four groups, into 

25 individual pathways, numbered as follows: 1) Glycolysis and Gluconeogenesis; 2) TCA 

cycle; 2) Pentose Phosphate Pathway (PPP); 4) Pentose and glucoronate; 5) fructose and 

mannose; 6) inositol phosphate; 7) Pyruvate, 8) amino sugar and nucleotide sugar, 9) Fatty 

acids (FA-) biosynthesis; 10) FA-elongation; 11) FA-degradation; 12) glycerolipids (GLs); 

Table 7-1. Metabolites (identified / annotated) significantly (P<0.05) altered in wild type and 
AmBR lines treated with AmB.  
Mid log phase L. mexicana promastigotes (1 x 108) were treated with a concentration of 
AmB 5 x EC50 of each line (600 nM for wild type and 3 µM for both AmBR lines), for 15 
minutes (section 2.5). Abbreviations: WTTx/WTCx: wild type-treated relative to wild type 
control (untreated); AmBTx/AmBCx: AmBR lines-treated relative to AmBR lines-control 
(untreated). *AmB peak 349 was the best hit (mass 924.49, RT 275.26). See Figure 7 13 for 
other peaks found for AmB. Values from additional peaks found (isomers) are shown in 
brackets. 
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13) glycerophospholipids (GPLs); 14) sphingolipids (SPLs); 15) terpenoids; 16) purines 

and pyrimidines; 17) Alanine, aspartate, glutamate; 18) Glycine, serine, threonine; 19) 

glutathione, cysteine and methionine; 20) valine, leucine, isoleucine; 21) arginine and 

proline; 22) histidine; 23) energy metabolism and oxidative phosphorylation; 24) 

lipopolysaccharide (LPS); and 25) nicotinate and nicotinamide. A complete list of fold 

changes from all four pairwise comparisons of all the identified/putative metabolites, is 

provided by individual pathway (Supplementary 9, Tables 1 to 3) (see page 8). 

 

7.2.1 Lipid metabolism 

In this thesis, LC-MS data were acquired using a ZIC-pHILIC column along with a mobile 

phase consisting of water/acetonitrile, with this approach, highly polar metabolites are 

retained in the column for longer time, while those semi-polar/hydrophobic metabolites (as 

with lipids) are eluted earlier, this explains, at least in part, the fact that lipids classes were 

the less abundant group (Figure 7-3, B-C), and with the lowest coverage (12-13%). Other 

Figure 7-3. Distribution of classes of metabolites in two resistant lines of L. mexicana 
promastigotes treated with AmB.  
Mid log phase L. mexicana promastigotes (1 x 108) were treated with a concentration of AmB 
5 x EC50 of each line (600 nM for wild type and 3 µM for both AmBR lines), for 15 minutes 
(section 2.5). Panel A) overlap between metabolites significantly (P < 0.05) altered in both 
datasets.  Panel B) Venn diagrams of the distribution and overlap of metabolites shown in 
Panel A, after being clustered into four groups (see text for details). Diagrams were 
constructed using Venny v2.1 tool (Oliveros 2015; 
https://bioinfogp.cnb.csic.es/tools/venny/). A full list with names of all metabolites is 
provided (see Supplementary 9, Table 1, 2 and 3) (see page 8). 
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methods, e.g. reverse-phase columns, and capillary electrophoresis–mass spectrometry 

(CE-MS) coupled with LC-MS, can detect lipids such as fatty acids, sphingolipids and 

glycerophospholipids (saponifiable), and other non-saponifiable species, i.e. sterols 

(Barbas-Bernardos et al. 2016). More recently, both polar and semi-polar metabolites have 

been analysed by performing a single extraction using a biphasic solvent, i.e. methyl tert-

butyl ether:ethanol (3:1 v/v) (Fauland et al. 2011; Rampler et al. 2018). The latter of these 

methods, has shown good results in kinetoplastids (Dr. Paul Denny’s Lab, unpublished 

data). Sterols are preferably analysed using GC-MS (an in my study, see Chapter 5), which 

is the standard method for identification of this group (Goad and Akihisa 1997). 

Performing a targeted lipidomics analysis can confirm these lipid classes described here 

using LC-MS, which are of biological relevance, and account for 5–15% of the cellular and 

membrane lipids, e.g. inositol phosphoryl ceramide (IPC), in Leishmania (Kaneshiro, 

Jayasimhulu, and Lester 1986). Treatment with AmB altered several pathways related with 

the metabolism of lipids, i.e. GLs, GPLs, linoleic acid, arachidonic acid, FA- biosynthesis, 

-elongation, -degradation, and biosynthesis of unsaturated FA (UFAs). Overall, these 

changes are indicative that these species are implicated in the response of L. mexicana, to 

the treatment with high concentrations of this polyene and other drugs, e.g. miltefosine, 

targeting the membrane, possibly, due to their role in the regulatory function of the 

membrane that is related with the sterols in this structure (Gulati et al. 2010; Varga et al. 

2006). In spite of the limitations of LC-MS to detect lipids, 39 and 26 peaks, showed 

significant fold changes in AmBRcl.14 and AmBRcl.8, respectively (Figure 7-3, B and C). 

With regard to saponifiable lipids, some patterns were noted in both datasets. Although 

undetected in AmBRcl.8, sn-glycerol-3-phosphoetanolamine showed a dramatic increase 

of 5.95 and 7.5-fold in AmBRcl.14 and its parental line, conversely, all the other GLs, 

GPLs and SPLs, e.g. choline, sn-glycerol 3-phosphate, and sn-glycerol 1-phosphate, 

showed a decrease (0.5 to 2.9-fold) in this line (Figure 7-4). In AmBRcl.8, three 

metabolites related with SPLs, showed an increase after being exposed to AmB, being 

these p-benzoquinone (2.2-3.2-fold), glycerophosphocholine and sn-glycero-3-

phosphocholine (2.0-2.6-fold for both metabolites). Similar downregulation of the order of 

2-fold was observed in some SPLs, e.g. sphinganine and sphingosine, in another AmBR 

line exposed AmB at similar concentrations (5 x EC50), with the difference that this line, 

was developed and treated in a serum-free medium (named DM) (PhD Thesis Dr Raihana 

Nithin, 2019, unpublished). Another work identified a similar increase in sn-glycero-3-

phosphocholine and glycerophosphocholine in three AmBR lines (Dr Andrew Pountain, 

PhD Thesis, 2018), these changes altogether, suggest that GPLs and SPLs, alongside with 

sterols (see chapter 5), are involved in the response to the treatment with AmB (Gulati et 

al. 2010). Additional changes in lipids from the FA cohort, i.e. linoleic acid, showed a 
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clear increase in abundance in both resistant lines and their respective parental wild types 

(2.8- and 4.9-fold in AmBRcl.8 and WT, respectively), although this change was more 

pronounced in AmBRcl.14 (4.27 to 4.78-fold). Another FA, eicosapentaneoic acid (EPA), 

also increased notably (8.3-fold), in AmBRcl.14, but was not detected in the other line. 

The increase of linoleic acid was also noted in the work or Dr Raihana Nithin, although in 

her work, AmBR cells were selected and treated in a serum-free medium, named defined 

medium (DM). Similarly, abundance of fatty acids increased from 4 to 57% in WT and 

AmBR, respectively and cholesta-5, 7, 24-trien-3β-ol (as in the study of Pountain and in 

my study in two lines -AmBRcl.8 and AmBRcl.6-). The latter was described to contribute 

to the permeability of the membrane in L. donovani (Mbongo et al. 1998b).  

Previous work has analysed sterols in Leishmania using LC-MS (Andrade-Neto, Pereira, 

Canto-Cavalheiro, et al. 2016; Jara et al. 2017), however, interpretation of these lipid-

species should be considered with caution. LC-MS also detected some sterol peaks. Some 

examples are, 2-C-methyl-D-erythritol 4-phosphate, an intermediate of the non-mevalonate 

pathway (this alternative route for the synthesis of isoprenoids is present in E. coli, M. 
tuberculosis, Plasmodium spp., and other protozoan, albeit to the best of my knowledge, its 

presence in Leishmania spp. is unknown), which increased by 1.0-1.76, and 2.55-2.79 in 

AmBRcl.14 and AmBRcl.8, respectively. Although only detected in AmBcl.8, other 16 

sterol peaks were detected with LCMS (Figure 7-5B). 7 of these showed a 3.35 to 3.75-

fold decrease in abundance after AmB exposure, while others remain unaltered. A list with 

their full names is provided in Supplementary 9 (see page 8). Similar observations were 

found in the levels of sterol precursors of the terpenoid pathway (mevalonate) and sterol 

biosynthesis pathway. Interestingly, short-time exposure to AmB reduced the abundance of 

acetyl-CoA, L-leucine, L-isoleucine and mevalonic acid in all wild types (Figure 7-5). 

Similarly, a reduction in mevalonic acid (0.59-2.99-fold) and acetyl-CoA (0.59-2.0-fold), 

was found after exposure to AmB, in AmBcl.14. This was accompanied by a 1.9-fold 

decrease of another precursor of isoprenoids, glyceraldehyde-3-phosphate (G3P) 

(annotated as D-glyceraldehyde-3-phosphate). Neither mevalonic acid (mevalonate) nor 

acetyl-CoA were altered in AmBRcl.8 (-0.5 to 0.03-fold) as an effect of the short treatment 

with AmB, however, the former was 1.63-1.92-fold less abundant than in their respective 

WT, in both untreated lines, AmBcl.8 and AmBRcl.14, possibly, as a result of the selection 

for AmB-resistance over 9-months (see section 3.2.1).  
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Figure 7-4. Lipid changes as detected by LC-MS. 
The parental wild type (green in both panels) and resistant lines AmBRcl.14 (bottom, yellow) 
and AmBRcl.8 (top, blue), were treated with 5 x EC50 (50 nM for wild type and 3 µM for the 
resistant lines). Significant fold changes (Log FC, P< 0.05) are relative to untreated cells (y-
axis). Each dataset included four biological replicates. Numbers of individual pathways 
shown here are: 9) Fatty acid (FA-) biosynthesis; 10) FA-elongation; 11) FA-degradation; 12) 
glycerolipids (GLs); 13) glycerophospholipids (GPLs); and 14) sphingolipids (SPLs). *stars 
indicate metabolites that are related to other pathways. Abbreviations: WTTx/WTCx: wild 
type-treated relative to wild type control (untreated); AmBTx/AmBCx: AmBR lines-treated 
relative to AmBR lines-control (untreated).Some peaks, e.g. glycerophosphocholine and sn-
glycero-3-phosphocholine are isomers with similar formula that PiMP cannot discriminate, 
and in some cases, are listed in more than one pathway. 
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The lower abundance of this sterol intermediates is probably related to the reduction of L-

leucine in both lines, with this effect being up to 3-fold more pronounced in AmBRcl.14 

(3.06-3.39-fold decrease with respect to wild type) than in AmBRcl.8 (Figure 7-5A). This 

is of particular relevance as in Leishmania spp., ergosterol derives mainly from this amino 

acid (up to 70-77% in L. mexicana), before entering the isoprenoid pathway (Ginger et al. 

2000; Ginger, et al., 1999). In their study, Ginger et al., used 14C and 13C-labelled acetate, 

glucose and leucine as substrates. To the best of my knowledge, this approach has never 

been attempted in AmBR lines, which could provide hints in understanding more on the 

MoA and resistance to this polyene. In my study, leucine, and L-isoleucine, both matched 

to the reference standard, and showed significant fold change in both, PiMP and IDEOM 

pipelines (Figure 7-5).  Contrary to L-leucine, isoleucine is poorly incorporated into lipids 

(in L. mexicana) (Ginger, et al., 1999).  

Other sterol peaks have been previously detected using LCMS in AmBR lines (Figure 

7-5B). Particularly, an increase in cholestanes was described in another study from a 

former member of our group. Interestingly, one of these two intermediates (cholesta-

5,7,22-trienol, C27H42O) was further identified with GC-MS (Dr Andrew Pountain, PhD 

Thesis, 2018). Also using GC-MS, the latter was the predominant intermediate in lines, 

AmBRcl.8 and cl.6 (see section 5.2.1). However, none of the sterols detected with LC-MS 

were similar to those reported by Dr Pountain with this platform, nor to those identified 

with GCMS in both studies. From those identified here with LC-MS, only one with the 

formula C20H30O3 showed a 2-fold increase, while seven other peaks (formulae 

C28H44O4, C28H42O2 and C28H42O3) were decreased by 3.5-fold, and another eight all 

with formulae C28H44O3, were unaltered (0.035 to 0.08-fold). A list with their full names 

(and the isomers identified) is provided in supplementary 9 (see page 8). 

7.2.2 Carbohydrates and energy metabolism 

Changes observed in some carbohydrate related pathways, e.g. glycolysis, Pentose 

Phosphate Pathway (PPP), were between 2.37 to 2.91-fold after the treatment with AmB, 

suggesting that AmB exposure in L. mexicana increases their flux as a response to an 

oxidative stress-environment (Maugeri and Cazzulo 2004; Purkait et al. 2012). In general, 

both AmBRcl.14 and AmBRcl.8 showed some evidence of changes in carbohydrates, 

being these changes with a similar pattern to that observed in their respective parental WT 

(Figure 7-6 and Figure 7-7). I therefore addressed these changes in carbohydrates by 

comparing both individual resistant lines, for simplification purposes. Evidently, 

“carbohydrates” represented the group with the largest difference in the number of 
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metabolites between both lines (126 in AmBRcl.14 and 65 AmBRcl.8).

 

Contrary to the a previous study with AmBR lines in which upregulation of glycolysis and 

TCA (in L. infantum) were observed (M.-C. Brotherton et al. 2014), in this study, 

glycolysis showed a decrease in abundance (from 1.5 to 4.5-fold) in AmBRcl.14, no 

decrease was found in AmBRcl.8. In both resistant lines, D-glucose 1-P and D-glucose 6-P 

showed a similar pattern (1.68- and ~2.5–fold increase, in AmBRcl.14 and AmBRcl.8, 

Figure 7-5. Perturbation of metabolites related with the sterol biosynthesis. 
Wild type (green) and AmBR lines of L. mexicana promastigotes were treated with| AmB 
(5 x EC50) and the abundance of metabolites was measured. PANEL A) AmBRcl.14 
(yellow) and AmBRcl.8 (blue) are shown. L-Leucine and L-isoleucine matched to their 
respective standards, while acetyl-CoA and mevalonate were putatively annotated. 
PANEL B) shows the abundance of sterol intermediates in AmBRcl.8, a full list of their 
names is shown in Supplementary 9 (see page 8), here their chemical formulas are used 
for convenience. Data were processed with PiMP pipeline (Gloaguen, 2017). Mean values 
from four replicates are plotted with their standard deviation (bars). Abbreviations: 
WT_Tx: wild type treated; WT_Cx: wild type control; AmB_Tx: AmBR line treated; 
AmB_Cx: AmBR line control. 

  Acetyl-CoA  L-Leucine  L-isoleucine  Mevalonate 
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respectively). D-fructose 6-P also increases by 1.68-fold, albeit only in the former. Except 

for succinic acid that showed dramatic reduction (15-fold) in AmBRcl.14 (in WT it was 

reduced only 1.5-fold), no other prominent changes were present in metabolites of the 

TCA cycle. Changes in other carbohydrates observed in AmBRcl.14 and AmBRcl.8 were 

variable (Figure 7-6 and Figure 7-7). In both datasets, change in metabolites related to 

pyruvate was heterogeneous. From those metabolites related with fructose and mannose, 

sorbose 1-P, beta-D-fructose 2-P, beta-D-fructose 6-P, D-allulose 6-P, D-allose 6-P, D-

mannose 1-P, D-mannose 6-P, and D-fructose 1-P, showed a similar pattern of increase in 

abundance from 1.61- to 1.68, and from 2.39 to 2.48-fold, in AmBRcl.14 and cl.8, 

respectively. Other members in this pathway decreased (only in AmBRcl.14) between 2 to 

4.51-fold. With regard to the inositol phosphate metabolism, some interesting changes 

were noted, in particular, four peaks (C6H13O9P) that can be either myo-inositol 1-

phosphate, myo-inositol 4-phosphate, D-Glucose 6-phosphate or inositol 1-phosphate 

(average of 1.68 to 2.48-fold rise), in WT and resistant lines from both datasets. In 

agreement with these changes, an AmBR-L. infantum with mutations in the miltefosine 

transporter (MT), also observed both increases and decreases in various inositol-associated 

metabolites (Fernandez-Prada et al. 2016). A direct comparison with this study is however, 

difficult, considering differences between the methodology of the study of Fernandez-

Prada et al., and that used in this thesis, i.e. GCMS and LCMS, respectively. The precise 

identification of these isomers without a standard is, however, problematic. 

Pentose phosphate pathway (PPP) is related with redox oxidative protection (Ghosh et al. 

2015; Kovářová and Barrett 2016) since NADPH, produced by the oxidative branch 

dehydrogenases, is the key electron donor in reductive processes (Figure 7-9). PPP 

metabolites were detected in higher amounts in AmBRcl14 than in AmBRcl.8 (21 vs 7) 

(see Supplementary 9 for a full list; see page 8). D-ribulose 5-phosphate showed an 

increase (three isomers with similar formula C5H11O8P and fold-change were found, 

namely D-Xylulose 5-phosphate, and the bis-phosphorylated forms, alpha-D-ribose 1-P, D-

ribose 5-P. D-gluconic acid, beta-D-fructose 6-P (and its isomer beta-D-glucose 6-P with 

formula C6H13O9P), D-arabino-hex-3-ulose 6-P (an isomer with formula C6H13O9P, 

alpha-D-glucose 6-P was found), showed an increase (from 1.6- to 3.98-fold), while four 

hits were decreased between 1.98 to 6.94-fold. This pattern of changes was consistent in 

both the WT and AmBRcl.14. In the other line, AmBRcl.8, only sedoheptulose 7-P, 

increased (in average ~2.45-fold), while other PPP metabolites showed no change (Figure 

7-6). NADPH was notably reduced (in average 2-fold) in AmBRcl.14 (two peaks with 

mass 746.097 were found), but appeared undetected in the dataset of AmBRcl.8. The PPP 

is the main source of NADPH, hence this reduced cofactor is of significant relevance in 
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drug resistance that protects the parasite against oxidative stress. The abundance of 

NADPH (in AmBRcl.14) along with the two enzymatic steps in the PPP from which is 

produced, i.e. glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate 

dehydrogenase (6PGDH), are shown in Figure 7-9. 

 

A TKT-KO L. mexicana cell line along with the parental WT and the add-back line, were 

all exposed to similar concentrations of AmB, i.e. 5 x their respective EC50 (Figure 7-8B). 

The PCA of this dataset showed a clear separation of samples from all six groups, PC1 

separated treated cells from the untreated controls in all groups. Similarly, PC2 showed a 

clear separation of the TKO-KO from both clusters formed the parental WT and the add-

back (R18) (Figure 7-8A). In this dataset, the coverage of the PPP was of 61.7%, and the 

hexose (D-glucose) was the only metabolite validated by a standard (i.e. identified), while 

all the other 20 peaks in this pathway were putative. Contrary to the rise seen in some PPP 

metabolites in both resistant lines (and in their WTs), TKT-KO showed a general decrease 

in abundance (between 0.72 to 4.21-fold) across all the PPP metabolites. 

Figure 7-6. Changes in carbohydrates metabolism. 
Numbers of pathways are as follows: 1) Glycolysis/Gluconeogenesis; 2) TCA cycle; 3) 
Pentose Phosphate Pathway (PPP); 4) Pentose and glucoronate; 5) fructose and mannose; 
6) inositol phosphate; 7) Pyruvate, 8) amino sugar and nucleotide sugars. Abbreviations: 
WTTx: wild type-treated; WTCx: wild type-control (untreated); AmBTx: AmBR lines-treated; 
AmBCx: AmBR lines-control. Fold changes are relative to each pairwise comparison and 
only significant changes (P<0.05) are shown. A full list of all metabolites is provided in 
Supplementary 9 (see page 8). Peaks were analysed and filtered using PiMP pipeline 
(Gloaguen et al. 2017). 
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Those metabolites that decreased in WT, R18 and TKT-KO (and in both resistant lines) 

were, deoxyribose, D-ribose (undetected in AmBRcl.8), beta-D-glucose, and D-glucose.  

All changes found in TKT-KO, the parental WT and the add-back (R18) are listed in Table 

7-2. Other changes in the TKT-KO were the decrease in some metabolites from oxidative 

phosphorylation (3 to 5-fold decrease in ADP and ATP), arginine metabolism (e.g. L-

proline 2.77-fold, L-glutamic acid 3.28-fold, and S-adenosyl-L-methionine 3.36-fold) and 

in other amino acids. The decrease in the arginine pathway, including the arginine pool that 

is an essential amino acid for promastigotes in culture (Muxel et al. 2018; Westrop et al. 

2015), was in agreement with those findings from the study of Dr Raihana Nithin in WT 

and one AmBR line that were both grown in defined medium, DM (a serum free culture 

medium). Changes in amino acids in both AmBR lines is discussed further (section 7.2.4). 

AmB also caused a decrease in the abundance of lactate, a product of the anaerobic branch 

of glycolysis, in all samples from the TKT experiment (also observed in AmBRcl.14), 

although this was opposite to the increase observed in AmBRcl.8, and in four other AmBR 

lines selected in our group (PhD Thesis, Dr A Pountain, University of Glasgow). Changes 

Figure 7-7. Additional changes in the metabolism of carbohydrates in AmBRcl.14. 
Fold changes are relative to each pairwise comparison and only significant changes 
(P<0.05) were selected. See Figure 7-6 for a full description, and for numbers of 
individual pathways. 
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in nicotinate and nicotinamide, which are precursors for the generation of NAD+ and 

NAP+, and in energy metabolism, are essential for redox metabolism. Nicotinate increased 

3.0 to 3.4-fold in AmBRcl.8 (also in the parental WT) while in AmBRcl.14 this rise was 

moderate (0.7 to 1.1-fold). Interestingly, both WT and the AmBRcl.8 had a pronounced 

depletion of nicotinate (3.2-3.5-fold) as a result of the drug selection (this is in untreated 

cells), which was also observed, albeit to a lesser extent, in AmBRcl.14. 

 

With regard to the energy metabolism in AmBRcl.8, a decrease in ATP (2.15-fold) and 

ADP (1.35-fold) were noted. This low abundance was more pronounced in AmBRcl.14 

(ATP 4.23-fold, ADP 2.14-fold). Reduction of NADPH was found between the same 

ranges (2.07-2.28-fold) and these changes were accompanied by a dramatic reduction 

(15.5-fold) in succinic acid in AmBRcl.14, which was reduced only by 1.48-fold in the 

parental line and remained unaltered in AmBRcl.8 (0.07 to 0.6-fold). Other metabolites of 

the nicotinate and nicotinamide metabolism that were reduced in AmbRcl.14 and its WT 

were, 4-methylaminobutyrate (3.4-.35-fold), L-aspartate (5.7-7.4-fold), and maleamate 

(8.7-8.8-fold). 

Figure 7-8. PCA and AmB EC50 of WT, ΔTKT and add-back-TKT L. mexicana promastigotes. 
PANEL A: principal component analysis (PCA) of wild type (WT), knockout (KO) and add-
back-back (R18), treated (-Tx) with AmB, and control groups (-Cx). PANEL B: the mean 
EC50 values are shown in µM with their standard deviation (bars). Tukey's multiple 
comparison test measured pairwise differences between each resistant line compared with 
wild type. Statistically significant values (P<0.05, 95% Confidence Interval) are shown with 
stars: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001). The mean EC50 ± SD for each group 
was 67 ± 0.70 nM (WT), 52 ± 4.3 nM (KO), and 52 ± 2.8 nM (R18). These values were 
increased 5 x (300 nM for the TKT, and 250 nM for the other two groups), for the treatment 
of cells during 15 min, then the metabolome was analysed using LC-MS (see sections 2.5 
and 2.7). Data from panels A and B were processed with PiMP pipeline (Gloaguen et al., 
2017), and Prism 8.0, respectively. 
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Figure 7-9. Metabolic changes in the PPP after the treatment with AmB in L. mexicana.  
Glycolysis (boxed in blue), the oxidative- (boxed in green) and non-oxidative (boxed in 
purple) –branches of PPP are shown. The enzymes glucose-6-phosphate dehydrogenase 
(G6PDH, green box), and 6-phosphogluconate dehydrogenase (6PGDH, blue box), and 
transketolase (TKT, grey boxes) are highlighted. Pie chart shows the map coverage. The two 
enzymatic steps (G6PDH and 6PGDH) that produce NAPDH are also indicated by green long 
arrows. Significant (P<0.05) fold changes after the treatment with AmB (see section 2.5) are 
shown in arrows and equal signs, indicating increase (up arrows), decrease (down arrows) 
or no change (equal signs), observed in the two resistant lines, AmBcl.14 (black arrows) and 
AmBRcl.8 (blue arrows), and the TKT-KO (red arrows). ** Values of fold changes in 
AmBRcl.14 and AmBRcl.8 are included for comparison (blue boxes-black numbers indicate 
decrease and yellow boxes-red numbers indicate increase). Bar graphs at the top show 
abundance of NAPDH (only in AmBRcl.14 dataset), and Lactate, after AmB-exposure, in WT 
(green), AmBRcl.14 (yellow), AmBRcl.8 (blue), TKTKO (red), R18 (black). Annotated and 
identified (only D-glucose) metabolites are highlighted in the pathway by the yellow- and 
grey dots, respectively. Adapted from KEGG maps). Analysis was performed with PiMP 
(Gloaguen et al. 2017). 

NADPH  LACTATE    
AmBRcl.14          AmBRcl.8            TKT-KO 
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7.2.3 Nucleotide metabolism 

As with the metabolism of some amino acids, e.g. L-arginine, Leishmania is auxotrophic 

for purine bases which need to be salvaged from the host, involving uptake via nucleoside 

transporters (Aoki et al. 2018; Monzani et al. 2007). Some purine analogues, e.g. 

allopurinol, are currently used as antileishmanials (canine leishmaniasis), and the purine 

salvage pathway is of great interest for potential drug targets (Croft and Coombs 2003). 

Figure 7-10 shows changes in both resistant lines related to purine and pyrimidine 

metabolism. In AmBRcl.14, dramatic increases were observed in the purines guanine (8.3- 

to 10.4-fold), xanthine (3.5- in WT and 11.3-fold in AmBRcl.14), hypoxanthine (5.2 to 

8.4-fold), and guanosine (6.7- to 8.4-fold). Other purines with moderate increases in this 

line were adenosine and deoxyguanosine (both with 2.7- to 3.6-fold). On the other hand, a 

dramatic decrease in abundance was also seen in glycine (4.3- to 5.16-fold), deoxyinosine 

(7.8- to 9.2-fold) and 5-Phospho-alpha-D-ribose 1-diphosphate (4.8-fold only in 

Table 7-2. Effects of AmB on the Pentose Phosphate Pathway in a TKTKO of L. mexicana 
. 

 
L. mexicana promastigotes lacking the transketolase (KO) gene (parental WT and add-back 
(R18) were included for comparison), were treated with AmB as described in Figure 7-8 and 
section 2.5 and 2.7. Abbreviations: WTTx: wild type-treated; WTCx: wild type-control; R18Tx 
and R18Cx: add-back-treated and control; KOTx and KOCx: transketolase KO-treated and 
control. Fold changes (LogFC P<0.05) from each pairwise comparison shows a decrease 
(red) and increase (blue) in abundance relative to control (untreated) cells. Data processed 
with PiMP pipeline (Gloaguen et al. 2017). Except for D-glucose that matched a reference 
standard (Identified, boxed in yellow), some metabolites (here in red) with similar formula 
(e.g. C6H12O6, C6H13O9P and C5H11O8P) are putatively annotated and these peaks can be 
any of the isomers. 
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AmBRcl.14). In turn, dGDP, ADP, adenosine 3',5'-bisphosphate showed a more moderate 

reduction (all with 1.17- in WT and 2.17-fold in AmBRcl.14), while other metabolites 

remained with little or no change.  

 

Notably, the pyrimidine CMP, also increased significantly (5.4- to 7.3-fold), while the 

opposite was observed with UDP and UTP, which decreased by 3.3- to 5.4-fold, and a 

dramatic lower abundance in methylmalonic acid (15.6-fold) was also found. UMP, 3'-

UMP, pseudouridine 5'-phosphate and beta-alanine all showed a similar decrease (between 

3.65- to 4.25-fold). Although to a lesser extent, a similar pattern of changes was observed 

in AmBRcl.8. Likewise, in AmBRcl.14, hypoxanthine showed the most pronounced rise 

Figure 7-10. Changes in nucleotides (purines and pyrimidines) metabolism. 
Numbers of pathways are as follows: 16) Purine and pyrimidines. Abbreviations: WTTx: 
wild type-treated; WTCx: wild type-control AmBTx: AmBR lines-treated; AmBCx: AmBR 
lines control. Wild type is shown in green. AmBRcl.14 and AmBRcl.8 are shown in yellow 
(bottom panel) and blue (top panel), respectively. Fold changes are relative to each 
pairwise comparison and only significant changes (P<0.05) are shown. A full list of all 
metabolites is provided in Supplementary 9 (see page 8). Peaks were analysed and filtered 
using PiMP platform http://polyomics.mvls.gla.ac.uk (Gloaguen et al. 2017). 

Purines         Pyrimidines 
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(2.7- to 3.7-fold in AmBRcl.8), followed by adenosine (and another peak annotated as 

deoxyguanosine with similar formula, C10H13N5O4) (both with 1.8- to 2.7-fold), and 

adenine, C5H5N5 (1.3- to 2.97-fold). Interestingly, in this line, xanthine remained 

unchanged as an effect of the short-term exposure to AmB. However, this purine was 

reduced ~4.1-fold in the untreated AmBRcl.8 with respect to WT, possibly derived from 

the long-term exposure (9 months) to this polyene. Also reduced were the pyrimidines 

uridine 5'-monophosphate (the isomers 3'-UMP and pseudouridine 5'-phosphate with 

formula C9H13N2O9P were also detected), all with 1.2- in WT and 4.39-fold in 

AmBRcl.8. UDP, deoxycytidine, 3-Ureidopropionate, and 3-aminoisobutanoic acid, which 

were less abundant (1.4- to 1.7) only in AmBRcl.8, but not in its parental line. 

7.2.4 Amino acid and polyamine-trypanothione pathway 

Along with carbohydrates, amino acids were the second group in which many metabolites 

were detected with LC-MS. 96 and 77 peaks showed significant changes after the 

treatment with AmB, in AmBRcl.14 and AmBRcl.8, respectively (Figure 7-12). Moreover, 

two pathways in this group (D-arginine and D-ornithine with 80-90%, and valine, leucine 

and isoleucine with 74-87%), showed the highest coverage in both datasets (Figure 7-3). 

As with the PPP and arginine-metabolism, amino acids and the polyamines-trypanothione 

pathway (PTP), are essential for the capacity of Leishmania to resist oxidative stress 

generated by AmB (Gray et al., 2012; Anderson et al., 2014) and may contribute to resistance 

to other antileishmanials (Mbongo et al., 1998a; Brotherton et al., 2014), e.g. pentamidine 

(Basselin et al., 1997; Ouellette, et al. 2004; Díaz et al., 2014; Kaur and Rajput, 2014), and 

antimonials (Wyllie, et al. 2004; Singh, et al. 2012). The PTP is also essential for the 

production of nitric oxide (NO) that is key for the differentiation of promastigotes into the 

intracellular stage, although the production of NO by Leishmania is controversial, given 

that NO is produced by the macrophages to eliminate the parasite (Aoki et al. 2018). 

Figure 7-11 shows the PTP-enzymes needed to produce the polyamines, putrescine, 

spermidine and spermine, and trypanothione (see section 1.7.3), as well as the precursors, 

i.e. L-arginine, L-serine, L-ornithine, that are also crucial for the correct functioning of the 

Leishmania-reducing machinery (Manta et al. 2013).  Additional to the changes in L-

isoleucine and L-leucine related with the sterol synthesis described before (section 7.2.1), 

numerous changes were observed in the metabolism of other amino acid groups (Figure 

7-12). From those related with the PTP, no changes were found in other amino acids 

involved in the reverse trans-sulfuration pathway, serine, methionine (1.4-fold rise only in 

AmBRcl.8), and homocysteine. Similarly, L-arginine and L-ornithine (both identified by 
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standards), precursors of the synthesis of spermidine, appeared without changes (a 

decrease of 1.12-fold was seen in the latter amino acid only in AmBRcl.14).  

 

Although ZIC-HILIC column is valuable to detect polyamines (Westrop et al. 2015), these 

are detected poorly with LCMS pHILIC chromatography approach used here (presumed to 

be retained by the column). Using the latter of these methods, we found no increase in 

spermidine and putrescine, while a reduced abundance (1.76- to 2.62-fold) was seen in 

trypanothione disulfide (this was detected only in AmBRcl.14) (Figure 7-11). This may 

relate to lower abundance of the amino acids involved in glutathione biosynthesis, e.g. 

glutamate (1.37-fold) and glycine 4.3- to 5.16-fold), observed in this line. Also, in 

AmBcl.14 (and WT) and in agreement with this, glutathione was reduced (2.44- to 2.55-

fold). Interestingly, gamma-L-glutamyl-L-cysteine was unchanged (0.15-fold -

AmBRcl.14-), while L-cystine increased notably (5.27- to 6.38-fold), but cysteine was not 

detected in this dataset. Glutathione was also detected in AmBRcl.8 albeit without change 

(0.33 to 0.37-fold). Other changes to the arginine and proline metabolism were highly 

significant. Some examples are L-citrulline, L-proline, hydroxyproline, L-aspartate, and 

carboxynor-spermidine, which showed decreased levels of 2.0-, 4.2-, 5.4-, 7,5-, and 7.9-

fold, respectively.  

Figure 7-11. Metabolic changes in the PTP in L. mexicana after AmB-exposure.  
1) L-arginine uptake is via the permease AAP3 in the cell- and glycosome- membranes; 2) 
inhibition of PTP can occur by inhibiting the different enzymes involved ARG, OCD and 
AdoMetDC, SpdS, SpmS and TryS (red circles); prevents replication; Metabolites (red 
circles) with significant (P<0.05) fold changes after the treatment with AmB (see section 2.5 
for details) observed in two resistant lines: AmBcl.14 (in black) and AmBRcl.8 (in red). 
Arrows and equal signs, indicate increase (up arrows), decrease (down arrows) or no 
change (equal signs). ND-not detected. Modified from (Aoki et al. 2018). 

Leishmania spp. 
amastigote form 
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Other related metabolites followed the same trend in AmBRcl.14 and to a lesser extent in 

AmBRcl.8 (see Supplementary 9, Table 1 and page 8). The opposite trend was observed in 

a number of amino acids in this group, e.g. 2-oxoarginine (6.5- to 7.9-fold increase) and 

N2-succinyl-L-arginine (2.6- to 3.4-fold increase), in AmBRcl.8 and AmBRcl.14, 

respectively. The increase of N2-succinyl-L-arginine serves as substrate for the production 

of L-glutamate followed by the biosynthesis of arginine and proline, which requires 

NADPH. Likewise, the clear increase of 2-oxoarginine is also indicative of the catabolism 

of arginine. Signs of changes in disruption in other amino acid groups were also detected 

as were changes to the levels of some thiols and polyamines. Arginine and proline are of 

Figure 7-12. Changes in amino acids and polyamines metabolism. 
Wild type (green in both panels), and resistant lines AmBRcl.14 (left panel, in yellow) and 
AmBRcl.8 (right panel in blue), were treated with 5 x EC50 (50 nM for wild type and 3 µM for 
both resistant lines). Significant fold changes (Log FC, P< 0.05) are relative to untreated 
cells (x-axis). Each dataset is from four biological replicates. Numbers of individual 
pathways are: 17) Alanine, aspartate, glutamate; 18) Glycine, serine, threonine; 19) 
Glutathione, cysteine and methionine; 20) valine, leucine, isoleucine; 21) arginine and 
proline; 22) histidine. Abbreviations: WTTx/WTCx: wild type-treated relative to wild type 
untreated; AmBTx/AmBCx: AmBR lines-treated relative to AmBR untreated. 
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particular interest, as they are related with the protection against ROS via the production of 

trypanothione, additional the decrease of these amino acids, a clear signature between both 

resistant lines was not obvious and would require the addition of reference standards, 

however. In another study in L. infantum treated with miltefosine, depletion of these two 

groups was suggested to derive from their release from the cytoplasm after membrane 

damage (Vincent et al. 2014) which is an alternative explanation for AmB. Altogether this 

shows that short term treatment (15 min) with AmB has a significant impact on the fate of 

PTP metabolites, fitting with the hypothesis that AmB induces changes in the oxidative 

metabolism and causing an increase of ROS, and altering various pathways including, PPP, 

and PTP.  

AmB is a good example of the redundancy of some peaks that are called by PiMP twice (or 

more). The mass of AmB is 924.1 g/mol based on the empirical formula, four peaks (peak 

ID numbers 349, 362, 1083 and 1257) were identified in the AmBRcl.14 dataset. The two 

formers showed a similar mass of 924.49 but differ in their RT (275.26 and 421.04). 

Likewise, the two latter had a similar mass of 946.47 and different RT values (424.8 and 

277.19). Strikingly, two more peaks were manually found upon the basis of mass and RT, 

i.e. peaks 1952 and 1963, again, their mass was similar (922.48) and discrepancy between 

their RT values was observed (275 and 420.38) (Figure 7-13A). The fact that the first four 

peaks were identified in the positive-, as were the latter two in the negative polarity, can be 

attributed to the amphiphilic properties of AmB.  

Neither mass nor RT identified AmB in the AmBRcl.8 experiment, possibly because this 

line has a deletion of the miltefosine transporter (MT), which is implicated in the 

susceptibility and resistance to AmB (Collett et al. 2019; Fernandez-Prada et al. 2016). 

AmBRcl.8 (and cl.6) was found to have the deletion of this transporter and was more 

resistant to miltefosine than WT (P values 0.0446 - 0.069), and with respect to the other 

two lines without this deletion (see section 3.2.3.2 for details). Similarly, AmBRcl.8 was 

significantly more resistant to AmB (P ≤ 0.0001), than WT and both AmBR- cl.14 and -

cl.3 (P ≤ 0.001) (Figure 7-13B). Another reason for the less abundant amount of AmB in 

this line, can be that the exposure time of 15 min was very short, and as both lines had a 

significant loss of cellular ergosterol in the membrane, there is significant less target for 

AmB to bind, or a combination of both mechanisms which synergism prevented the uptake 

and binding of the drug, due to changes in the composition and fluidity of the membrane, 

although this is evidently, unexpected in the wild type.  
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7.3 Discussion 

This study provides insights upon the metabolic effects derived from the short-time (15 

min) exposure to high concentrations (5 x EC50) of the polyene AmB, in L. mexicana 
promastigotes. It is noteworthy that the changes observed here are representative of the 

effects of AmB in both, the two AmBR-lines that were selected for AmB-resistance over a 

period of nine months, and in the parental wild type cultured in parallel in the absence of 

drug (section 3.2.1.1, Figure 3-1). The use of the parental WT allows for the elimination, at 

least partially, those changes that arose stochastically as part of the long-term culture. 

Ideally, one should compare the parental WT from passage number one (at the beginning 

of the experiment) against the same cell line (without drug exposure) at the end of the 

experiment, this was beyond the aim of this thesis, however. Also, these datasets provide 

information on the changes derived from the long-term drug pressure alone 

(Supplementary 9, see pairwise comparison 1: AmBRCx versus WTCx from in each 

dataset) (see page 8). Also important (not analysed here), is to notice that some differences 

were observed between WT in both datasets, although this was a bit surprising, considering 

that the same parental line was used in both experiments. These changes reflect however, 

the variability that can be found between experiments. Evidently, many peaks were 

annotated as putative whereas others remained unidentified, however, authenticated 

annotations of the total metabolome that comprises hundreds or in some cases, thousands 

Figure 7-13. AmB abundance and susceptibility (EC50) in the experimental groups. 
PANEL A) Data were processed with PiMP pipeline (Gloaguen, 2017). Mean values from 
four replicates are plotted with their standard deviation (bars). Significant fold changes 
after the treatment (WTTx relative to WTCx and AmBRTx relative to AmBRCx) are 
discussed in the text and showed in Supplementary 9 (see page 8). PANEL B) Mean EC50 
values are shown in µM with their standard deviation (bars). Tukey's multiple comparison 
test measured pairwise differences between each resistant line compared with wild type. 
Statistically significant values (P<0.05, 95% Confidence Interval) are shown with stars: *P ≤ 
0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001). Here four AmBR lines (named cl.14, cl.8, cl.3 
and cl.6 are shown). A full characterisation of these lines is discussed in chapters 3 to 5. 
Two wild types were tested here, P1-passage 1 after infection in mice, and hp-high passage 
(this was maintained in culture for at least 20 passages). 
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of detected peaks is complex, and is beyond the aim of this thesis. Moreover, some peaks 

annotated several times under different names correspond isomers, albeit is not possible to 

discriminate between them. Nonetheless, I provide the full lists of peaks, irrespective if 

they are annotated twice or more, which is of great value to understand the metabolome in 

a broader context. The use of targeted approaches, e.g. lipidomics, can however, help to 

corroborate the identity of specific peaks of interest.  

Untargeted metabolomics identified some similarities in the pattern of changes observed 

between WT and AmBR lines, which strongly suggest that alternative MoA might be 

operating as a response to this polyene, and that these are independent of the binding to 

ergosterol, arguably, the main MoA of AmB in Leishmania. Although some differences 

between both lines tested, AmBRcl.14 and AmBRcl.8, were noticeable, these results also 

raise the hypothesis that the other MoA suggested in this study, are moreover independent 

of the sterol intermediates that replaced the wild type ergosterol (sterol profiling with 

GCMS is amply discussed in chapter 5). Of particularly interest here, is the analysis of 

changes arose in lipid species other than sterols, as these molecules comprise the main 

structural components of the cell membrane, therefore relevant with respect to the MoA of 

AmB. Providing evidence that leads to hypothesize alternative MoA is one of the main 

contributions of using metabolomics in this study. Irrespective of the limitations of the 

method used here for the detection of lipids mentioned above (section 7.2.1), we identified 

disruption of the lipid metabolism after exposure to AmB, including GLs, GPLs and SLPs. 

These lipids interact with sterols in the membrane and are involved in the virulence of 

Leishmania (Ferguson 1999; Spath et al. 2003; Zhang et al. 2005; Zhang and Beverley 

2010), and in other signalling functions (Guan and Mäser 2017). Ergosterol along with the 

polar lipids (phosphatidylcholine, phosphatidyl-ethanolamine and phospholipids), both are 

the major components of the Leishmania membranes (Rakotomanga, et al. 2005; Saint-

Pierre-Chazalet et al. 2009). In my study, both these lipid classes decreased in AmBRcl.14, 

although a dramatic increase (5-fold) in sn-glycero-3-phosphoethanolamine was observed 

in this line. In AmBRcl.8, GLs and GPLs remained generally unaltered, but various SLPs 

increased notably. In the study of Fernandez-Prada and co-workers, an increase in 

phosphatidylethanolamine was also reported (Fernandez-Prada et al. 2016).  

A limitation of the approach used here is, however, that cannot differentiate between 

isomers of these lipid classes (Figure 7-6), which identification is challenging due to the 

complexity of their large molecules. Altogether, these studies show the degree of 

complexity of the interaction between these lipid species, which is one possible source of 

the heterogeneity of changes identified. This is further supported by the fact that although 



236 

 236 

the loss of ergosterol is the main signature in all AmBR lines studied so far (Mbongo et al. 

1998b; Mwenechanya et al. 2017; Pountain et al. 2019a; Purkait et al. 2012), this decrease 

is, however, not exclusive of the resistance to this polyene alone. In fact, decrease in 

ergosterol has been observed with other drugs, e.g. miltefosine. In the same trend, in this 

thesis I provide evidence that this loss of ergosterol also occurred in four lines selected for 

resistance to another polyene, nystatin (Nys) (section 3.2.1.2, Figure 3-3). Even though the 

latter was not surprising, considering that both AmB and Nys have a similar MoA (Table1-

2), this is, to the best of my knowledge, the first evidence of resistance against Nys in 

Leishmania mexicana. 

Another notable finding of this study, was the notable changes in abundance related to the 

metabolism of these structural components of the Leishmania membrane observed in this 

study, are the pronounced decrease in the abundance of leucine. This amino acid is an 

essential precursor for the synthesis of both, sterols and phospholipids in L. mexicana. Also 

related is the decrease in the abundance of Acetyl-CoA, glyceraldehyde-3-phosphate and 

mevalonate (Figure 7-5). These three metabolites are essential for the synthesis of 

ergosterol. As shown in Figure 1-14, Acetyl-CoA is used by 3-hydroxy-3-methylglutaryl-

CoA synthase (HMGS) to form HMG-CoA, which is then converted into mevalonate by 

the enzyme HMG-CoA reductase (HMGR), a NADPH dependent enzyme, and a rate-

limiting step in the biosynthesis of ergosterol. After its synthesis within the mitochondrion, 

mevalonate is further metabolized in the glycosome. This sequence of reactions above 

described, can be related with the also significant reduced abundance of NADPH in one of 

these lines (Figure 7-9), thus confirming the central role of the PPP as the main source of 

this reduced cofactor and in the response in Leishmania to AmB.  

It is relevant to remember that HMGR has been explored extensively as a potential drug 

target in Leishmania spp. (Dinesh et al. 2015; Sarkar and Manna 2015; Singh and Babu 

2018). Moreover, in section 1.7.1, I presented evidence on the role of the sterol regulatory 

element-binding proteins (SREBPs) (Quan-zhen, Yan and Yuan-ying, 2016), which modulate 

LDL receptors and the enzyme HMGS (the previous step to HMGR in the SBP). Also present 

in Leishmania, SREBPs are involved in the protection of the parasite against ROS (Basu Ball 

et al., 2014). HMGR itself was upregulated after infection of macrophages with L. mexicana 

amastigotes (Semini et al., 2017). The increase of EPA in AmBRcl.14 was higher than in 

the WT. The lack of studies with regard to the role of EPA further complicates the 

interpretation of the increased observed here in AmBRcl.14, moreover, it is unknown if 

Leishmania can produce EPA. Currently, a group from the state of Bahia in the Northeast 

of Brazil, (https://app.dimensions.ai/details/grant/grant.6941633), is currently investigating 
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the role of these lipid mediators, EPA and DHA and their role in the host-pathogen 

interaction. Another study showed that this natural lipid, conjugated-EPA, has an effect on 

both, L. donovani promastigotes and the purified Leishmania-topoisomerase I (Vassallo, et 

al. 2011). The role of these metabolites in the MoA of AmB merits further investigation. 

Additionally, untargeted metabolomics provided evidence on the effects of AmB in the 

carbohydrates metabolism in wild type and AmBR parasites ergosterol-deficient. Although 

in general glycolysis shows a trend to the decrease, this could suggest that those 

metabolites that flux through the PPP have been consumed in response to the demand of 

production of NADPH by the PPP, leading to an increase in abundance of ROS from the 

respiratory chain that correspond to the increase in the flux through PPP. Interestingly, all 

PPP metabolites augmented in AmBRcl.8, while in the AmBRcl.14, only one metabolite 

from the non-oxidative branch, sedoheptulose-7-P, increased its abundance. The other 

products of the PPP in the latter of these lines were more similar to those changes found in 

the TKT-KO cell line, which in all cases, were more to the decrease trend. To the best of 

my knowledge, this is the first study in which the effects of AmB on the PPP have been 

confirmed using a TKT-KO. 

The overexpression of the PPP enzymes, GPDH and 6PGDH (Figure 7-9), was 

accompanied by an increased consumption of glucose after exposing L. donovani to 

oxidative stress (Ghosh et al. 2015). This suggests that AmB exerts a similar increase in 

ROS, and these findings are in agreement with those from a previous report in AmBR of L. 
mexicana (PhD Thesis, Dr Raihana Nithin, unpublished). Interestingly, this upregulation of 

the PPP was absent in promastigotes cultured a serum-free culture medium, defined 

medium (DM), resembling that phenotype described above in the TKT-KO. While the 

AmBR line grown in DM developed resistance to AmB more gradually (and slowly) 

reaching a maximum level of resistance 4-fold lower than all four AmBR lines studied here 

(AmBRcl.14 and AmBRcl.8 were grown in HOMEM), some differences can be related to 

the lack of FBS (10%) in DM (see section 6.2.1 for the role of FBS on the MoA of AmB). 

This chapter provides a comprehensive list of metabolites useful as a platform for further 

analysis on alterations in metabolic pathways, in particular PTP and PPP, as a response to 

AmBR-exposure in both, wild type and laboratory generated AmBR mutants of L. 
mexicana. 



8  General Discussion 

Figure 8-1 provides a graphical overview of the scope of this thesis, chapters (Ch.-) 1 and 

2, are not considered in this diagram. 

 

  

Figure 8-1. Graphical abstract of this Thesis.  
Briefly, eight polyene-resistant lines were selected in parallel. Cross-resistance to 
antileishmanials and other compounds was performed (Ch.3). NGS identified genomic 
changes in two sterol genes (Ch.4) that triggered changes in cellular sterols (GCMS), which 
derived in two sterol-signatures that correlated with two reproducible phenotypes in vivo, 
i.e. virulent and attenuated (Ch.5). A new class of sterol-inhibitors was also investigated 
(Ch.6). Finally, untargeted metabolomics (LCMS) interrogated the MoA of AmB in two 
resistant-cell lines (Ch.7. RR: highly resistant, R: resistant, hs: hypersusceptible. Up- and 
down-arrows (↑ ↓) are increase and decrease, respectively. ND: not determined. 
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 Drug susceptibility of amphotericin B resistant lines 
against different compounds 

Although the definitive MoA of AmB is still unknown, this polyene is still the drug of 

choice for the treatment of the fatal form of the disease, Visceral 1eishmaniasis (VL). 

Other species that cause the cutaneous form, such as L. mexicana, are of similar 

importance, considering the social stigmatization and other mental health consequences 

that they generate (Bailey et al. 2019). Irrespective of the global prevalence of 

leishmaniasis showing a decreasing trend, and the progress achieved in recent years, some 

evidence shows increasing figures in some endemic areas (Table 1-1). The relatively 

infrequent resistance against AmB found in clinical isolates, has generated the perception 

that resistance against this polyene is unfeasible (Fairlamb, et al. 2016). Conversely, other 

work has identified AmB-resistance in clinical isolates (Purkait et al. 2012), including 

studies from non-endemic areas (Srivastava et al., 2011), and others in which AmB 

resistance was recognized from clinical cases identified before AmB became the frontline 

therapy for VL (Durand et al., 1998; Giorgio, 1999; Chakravarty and Sundar, 2010). In 

addition to this, there is evidence of intrinsic resistance to AmB and oxidative stress in 

some fungi. For instance, Trichosporon beigelii and Aspergillus terreus, have normal 

concentrations of ergosterol and high levels of catalase, respectively. Also, an increasing 

number of reports indicating resistance, and a recognition that methods to diagnose 

resistance in fungal strains are often flawed, complicates this picture (McCarthy et al. 

2017). While the study of fungi is beyond the aims of this thesis, in Leishmania spp., a 

number of studies have also shown the feasibility of the appearance of AmB-resistance in 

laboratory strains (section 1.6.6.3). In addition to the AmBR lines developed, this thesis 

provides, to the best of my knowledge, the first evidence of the development of resistance 

to another polyene, nystatin (Nys), in Leishmania spp. 

The methodology for the selection of drug resistance in Leishmania used in this study was 

similar for both polyenes. Promastigotes were cultured under drug pressure with AmBR 

and NysR over 30 and 20 weeks, respectively. Cross resistance profiling of all resistant 

mutants was then assessed for the antileishmanials, miltefosine (MF), pentamidine 

(PENT), paromomycin (PAR) and antimonials. Resistance against other polyenes was 

higher in all AmBR- compared to NysR-lines. Also, notable, was the small fold change 

(FC) observed with natamycin (NMC), a small polyene with a potentially different MoA 

than large polyenes, observed in AmBR- in comparison to NysR-lines. In a previous study 

in yeast, a similar inhibition pattern was observed between Nys and NMC, however, 

mutants lacking the sterol enzymes, C5-desaturase (C5DS) and C8-isomerase (C8SI), 
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triggered a loss of inhibition with both polyenes, indicating that the presence of double 

bonds within the sterol ring are implicated in the susceptibility to both antifungals (Te 

Welscher et al. 2010). While the role of the double bonds within the sterol ring is key for 

the binding of AmB (Hsuchen and Feingold, 1973), the role of the double bond at carbon 

5,6 (performed by C5DS) the loss of which leads to AmB resistance, was recently 

identified for the first time in L. mexicana (Pountain et al. 2019b). In my study, five novel 

mutations were identified in C5DS (AmBRcl.14, AmBRcl.3 and NysRcl.B2) (section 

4.1.5, Figure- 4-6 and 4-7). No evidence linking drug resistance to the double bond at 

position 7,8 of the sterol ring (C8SI-specific), has been found in Leishmania spp. 

With regard to miltefosine, the higher levels of resistance observed in lines AmBRcl.8 and 

AmBRcl.6, was attributed to the deletion of the miltefosine transporter (MT) identified in 

these lines (Figure 4-4). Interestingly, other AmBR lines with a MT-deletion showed an 

increase of resistance within the range of 2-fold (Pountain et al. 2019b), while the values 

shown here (9.2 to 10-fold) in these two lines, are comparable to those reported in a MF-

resistant line of L. infantum (11.95-fold) (Vincent et al. 2014). Changes in the MT have 

been previously found in other AmBR lines of L. mexicana (Pountain et al. 2019; PhD 

Thesis Dr. Raihana Ithinin, unpublished), suggesting that the MT is implicated in selection 

of resistance to AmB in some (but not all) AmBR lines. As with my study, the work of 

Pountain et al. and of Dr Ithnin, showed that the deletion of MT was accompanied by 

genomic changes in the C24-sterol methyltransferase (C24SMT), which resulted in the loss 

of expression of the latter and an altered sterol metabolism (increase of cholestane-like 

intermediates). The resistance derived from the loss of ergosterol is expected and has also 

been found in other MF-resistant cell lines of L. infantum (Fernandez-Prada et al., 2016) and 

L. donovani (Rakotomanga, et al., 2005; Rakotomanga et al., 2007). In the latter of these 

species, moreover, C24-alkylated sterols that are produced by C24SMT, were dramatically 

reduced in abundance (43%) after the treatment with MF, possibly because the substrate of 

C24SMT, zymosterol, is a membrane component that depends on sphingolipids (Veen and 

Lang 2005). More recently, a chemogenomic work in T. brucei confirmed the role of the 

MT, and other membrane associated hits, in the susceptibility to both, MF and AmB (Collett 

et al., 2019). Other modes of resistance to AmB, e.g. efflux via multidrug resistant proteins 1 

(MDR1), that are upregulated in some AmBR lines (L. donovani) (Purkait et al. 2012), cannot 

be ruled out, however.  

A significant signature in all polyene resistant lines was the increase in susceptibility to 

PENT and PAR, identified across all eight selected lines and regardless of their mutations 

in different sterol-genes. In a similar trend, was the increase susceptibility found in all 
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AmBR-lines against methylene blue, an oxidative stress inducer (Kelner and Alexander, 

1985). Intriguingly, the two lines with a deletion in the MT referred to above, were more 

sensitive to PENT and methylene blue, than the other two lines, AmBR- cl.14 and cl.3, 

with mutations in C5DS. Similar agment in susceptibility to PENT and methylene blue was 

reported previously in AmBR lines of L. mexicana (Mwenechanya et al. 2017; Pountain et 

al. 2019b), and in the work of another member from the Barrett Lab (PhD Thesis Dr. 

Raihana Ithinin, unpublished), suggesting a connection between polyene resistance and 

susceptibility to PENT, possibly related to modifications in the cell membrane of the 

parasite, e.g.  ergosterol content, and possibly, other structural lipids. As with all four 

AmBR lines from my study, a clear signature of increased susceptibility towards PENT 

was consistent across all four NysR mutants (Figure 3-8). Considering that both polyenes 

AmB and Nys have presumably a MoA in Leishmania spp., targeting ergosterol in the 

membrane, and that the loss of the wild type ergosterol was also the main feature in these 

lines (Figure 5-5), this increased susceptibility is, possibly, related with the oxidative stress 

induced by PENT (Mehta and Shaha 2004), and to other metabolic alterations induced by 

AmB identified with LCMS (chapter 7), although further investigation is needed. 

As resistance to existing drugs spreads, exploring new classes of compounds is essential. 

For this reason, I explored a library of new sterol inhibitors, 1,2,3-triazolylsterols (TAZ), 

with potential activity against C24SMT in Leishmania spp. Although very stable, TAZ 

inhibitors showed less potency in assays against L. mexicana promastigotes than that 

reported previously in other Leishmania species (Porta et al., 2014, 2017). TAZ inhibitors 

are analogues of azasterols (AZA) (Haughan, et al. 1995; Contreras, et al., 1997), however, 

no clear differences were identified between resistant lines, and in other mutants either 

lacking or over-expressing C24SMT. Two compounds were significantly less potent than 

all the other AZA-inhibitors, whereas non-significant differences between wild type and 

any of the mutant lines tested, were identified among those inhibitors that were more active 

(Figure 6-3). TAZ inhibitors showed activity against the recombinant L. mexicana-
C24SMT in enzymatic assays and with comparable EC50 values to those obtained in 

promastigotes in vitro, however, other potential MoAs of these compounds cannot be 

excluded. In agreement with this on-target activity, cholestane-type intermediates showed a 

marginal increase after exposure to the most potent compound from this library (Figure 6-

10B). The increase of cholestanes is expected from C24SMT inhibitors, i.e. AZA 

(Magaraci et al., 2003). Accumulation of the preferred substrate of C24SMT, zymosterol, 

was also poor, possibly because the exposure-time to the compounds was insufficient to 

trigger sterol changes. These results suggest that TAZ compounds probably  have other, as 

yet unknown targets, such as C14-sterol demethylase (C14DM) (Porta et al. 2017) and 
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even targets outside of the sterol biosynthesis pathway. Additional experiments are needed 

to further understand the MoA of these inhibitors in Leishmania spp. 

 Untargeted and targeted metabolomics in AmBR 
Leishmania 

Untargeted metabolomics identified patterns of change between WT and two AmBR lines 

of L. mexicana promastigotes, after short-time exposure (15 min) to high concentrations (5 

x EC50) of AmB. These changes suggest that alternative routes independent of the binding 

to ergosterol and other sterol intermediates that replaced it AmBR lines (Figure 5-3), 

arguably the main MoA of AmB, might be operating in Leishmania (and possibly in fungi) 

as a response to AmB. Considering that AmBRcl.14 (virulent) trigered a higher 

inflammatory response in comparison with WT and two other AmBR lines (AmBRcl.8 and 

cl.6) that were non-pathogenic (avirulent) in mice (section 5.2.3, Figure 5-6), I speculated 

on the possibility of EPA being used by the parasite to inhibit the immune response and to 

facilitate its replication within the host macrophages, as identified by histology from tissue 

lesions (footpads) from infected mice (Figure 5-9). In the context of the interaction with 

the host, Leishmania interacts with macrophages by first avoiding the inflammatory 

phenotype of the macrophages (M1) and subsequently, when macrophages change into an 

anti-inflammatory phenotype (M2), they produce cytokines and other lipids such as 

arachidonic-, eicosapentaenoic, and docosahexaenoic-acids (AA, EPA and DHA), to 

diminish the inflammation (Das 2018). The loss or increase of ergostanes cannot be 

considered as the sole cause of the absence of virulence, it could be associated with the 

loss of some virulence factors found in the membrane of the parasite (GP63, 

lipophosphoglycan (LPG) and lipopolysaccharides (LPS) (Denny et al., 2004), although 

the latter is not present in L. mexicana (Torres-Guerrero et al. 2017). In the same sense, 

LCMS identified significant alterations of membrane lipids, such as GLs, GPLs and SLPs, 

which are known to interact with sterols and be related with the virulence of Leishmania 

(Ferguson 1999; Spath et al. 2003; Zhang et al. 2005; Zhang and Beverley 2010). The increase 

of ergosta-7,22-dien-3-ol is stage specific, increasing in stationary parasites (L. infantum 
virulent strain) (Yao and Wilson 2016). Although I did not measure the variation of sterols 

across the different growth phases of promastigotes, doing this can help to determine if a 

similar increase occurs in L. mexicana, and to determine if this differs in AmBR lines. 

The reduced abundance of metabolites from glycolysis and TCA along with the increase of 

some enzymes from the PPP found in this study, are in agreement with the study of Dr 

Ithinin in AmBR-L. mexicana. Similar findings were observed in L. donovani after 
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oxidative stress exposure (Ghosh et al. 2015), but not in serum free medium nor in the TK-

TKO, confirming the role of PPP in the response to AmBR ROS-generation. A role for 

enzymes of the glucose metabolism pathways has previously been related to the virulence 

of promastigotes in L. mexicana (Naderer et al. 2006). This central role of the PPP in the 

response in Leishmania to AmB is also related with the low abundance of mevalonate which 

is a product of the enzyme HMGR, which requires NADPH (NAPDH itself was also 

diminished after amphotericin B exposure). 

 Sterol profile and virulence of AmBR-resistant 
Leishmania in vivo 

In previous studies, mutations in other enzymes such as C14DM, caused a similar loss of 

ergosterol in L. mexicana (Mwenechanya et al. 2017) and in L. major. In the latter of these 

mutants, an increase in the membrane fluidity, disruption of lipid rafts, and other 

morphological- and growth defects were concomitant with the loss of ergosterol (Xu et al. 

2014). The loss of ergosterol has also been found in L. infantum resistant to MF 

(Fernandez-Prada et al. 2016), and in another mutant cell line of L. major (ΔLCB2) lacking 

the sphingolipid pathway (Armitage et al. 2018; Denny, et al. 2004). These studies 

highlight the importance of the interplay between these two lipid components of the 

membrane with respect to the MoA of AmB. Interestingly, ergosterol, and other membrane 

lipids (fatty acids), decrease during the transformation of promastigotes into amastigotes 

(Bouazizi-Ben Messaoud et al. 2017).  

The role of the lipid membrane is intriguing, particularly if we consider that in my study, I 

also identified an attenuated phenotype in AmBRcl.8 and AmBRcl.6, which considering 

the absence of gross (lesions) and microscopic (histopathology) findings, most likely failed 

to replicate in vivo albeit remained viable within the host (amastigotes were also recovered 

post-infection from these two lines). The role of the parasite persistence factors was 

previously described in a cell line of L. major (also a cutaneous specie) lacking 

phosphoglycans and which was non-pathogenic within the host (Spath et al. 2003). A 

similar attenuated phenotype (absence of lesions) was described in another work with L. 

mexicana and the authors suggested that this lack of infectivity was related with the down 

regulation of virulence factors such as Th2 associated cytokines, which were on the other 

hand, were upregulated in virulent parasites (Ali et al. 2013). Other studies have described 

avirulent phenotypes after exposure to gentamycin (Daneshvar et al. 2009; Daneshvar et 

al., 2010), and to the chelating agent, methyl-beta-cyclodextrin (MβCD) that depletes 

ergosterol and other sterols after 1 hour (Yao et al. 2013).  
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The attenuated phenotype resembles that observed in persister-cells, although the latter are 

non-mutant cells, instead persister-cells are acknowledged as dormant phenotype that have 

evolved sophisticated immune evasion mechanisms (Fairlamb et al. 2016; Melorose, et al. 

2015). In fungi, persister-cells are commonly found in biofilms. Interestingly, these fungi 

have up-regulation of some ergosterol-related genes (Silva et al. 2017). Although little has 

been investigated in Leishmania, this intriguing persister-like phenotype in protozoa was 

recently addressed to be related with drug treatment failure (Barrett et al. 2019). In my 

study, I identified a similar phenotype in axenic wild type promastigotes cultured in vitro, 

which after being exposed to different inhibitors, e.g. imipramine and AmB, restarted 

normal growth after three or four days (Figure 6-1, panels A to C). 

The virulent and attenuated phenotypes, correspond to a dramatic accumulation of ergosta-

7,22-dien-3-ol (96-97%) and cholesta-5,7,22-trienol (86-88%), respectively. While the 

increase of the latter has been associated with loss of expression and disruption of 

C24SMT (Gigante et al. 2009; Gros et al. 2006; Jiménez-Jiménez et al. 2008; Lorente et al. 

2004; Magaraci et al. 2003), the accumulation of ergostane-type intermediates is less well 

studied but has been related with a hypervirulent phenotype in L. infantum metacyclic 

promastigotes (Yao and Wilson 2016). The study that identified the role of C5DS in AmB 

resistance in L. mexicana is currently the only evidence of this (Pountain et al. 2019b). 

While the study of Pountain et al., addressed the role of C5DS in AmB resistance, in their 

work, no clear association is presented with regard to the role of the accumulation of 

ergostanes in vivo. This is the first study showing evidence of a similar increase in 

resistance to AmB and ergostanes, derived from selection for resistance against Nys, in 

Leishmania spp. In the present study, however, ergostane-like intermediates accumulated 

in two AmBR lines (increase of ergostanes was also seen in all four NysR lines) which 

phenotype was preserved in vitro and in vivo. In this study, five novel mutations were 

identified in C5DS in two mutants (M93del in AmBRcl.14, V74E in AmBRcl.3, and 

R244L in both these lines) (section 5.2.3, Table 4-2). Similarly, ergosta-7,22-dien-3-ol was 

the most abundant sterol intermediate (up to 80.2-89.1%) in all four lines selected for 

nystatin, presumably derived from mutations in C5DS. Interestingly, NGS of the most 

resistant clone, NysRcl.B2, also showed novel mutations (e.g. A95del) in C5DS 

(sequencing of all clones was not possible due to costs) (see Figure 4-7). In this study, and 

others performed by former members of the Barrett Lab, we have shown that the 

emergence of resistance against polyene anti-leishmanials is feasible in vitro and with 

relative ease. Moreover, this study shows an association between sterol intermediates and 

virulence in vivo.  
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In addition, response to treatment with AmB (as deoxycholate) was noted in the parental 

wild type, while AmBRcl.14 and AmBRcl.3, and were both unresponsive to AmB in vivo, 

confirming that the resistant phenotype can be retained within the host. Furthermore, 

retention of resistance post-infection was confirmed in vitro (Alamar blue assay, section 

2.4) in all four AmBR lines, using both AmB (as deoxycholate) and the liposomal 

formulation of AmB, AmBisome. While the EC50 values of AmB were consistent with 

those found before infecting mice (Figure 5-8A, and 7-13B), AmBisome also showed an 

increase in resistance in all AmBR lines tested between 12- and 49-fold (Table 5-4). A 

separate experiment assessed the response to AmBisome in vivo. In this experiment, a 

higher number of parasites was recovered from footpad lesions than from lymph nodes, 

however, treatment with AmBisome (8 and 15 mg/kg) showed no effect in the reduction of 

WT- in comparison with AmBR-parasites. The lack of efficacy of AmBisome in this 

experiment was unexpected. Moreover, we were not able to recover tissue from untreated 

mice (placebo group injected with dextrose 5%), which further complicates the 

interpretation of results fro this experiment. 

With regard to the infectivity/virulence (both which are different concepts), is necessary to 

assess the response to treatment and retention of resistance in amastigotes macrophage in 
vitro models. Likewise, quantification of parasite replication using qPCR will the capacity 

of the parasites to replicate intra-macrophages (Ponte-Sucre et al. 2017) and to differentiate 

from other pro-inflamatory factor and from accumulation of the drug at the infection site 

involved which can influence the immune response (in L. major) and the activity of 

liposomal amphotericin B (Voak et al. 2018; Wijnant et al. 2018; Wijnant et al. 2018). In 

these studies, the response to treatment with AmBisome (an other liposomal formulations), 

was shown to be dependent on concentration and formulation of AmB, alongside with the 

disease stage, Leishmania spp., tissue inflammation and infections site. 

 Conclusions and future work  

This study adds to the field in providing evidence on the risk of emergence of AmB (and 

other polyenes) resistance in Leishmania, which conveys the risk of cross resistance with 

other antileishmanials currently in use, such as miltefosine. The increase in susceptibility 

identified in all AmBR and NysR lines, to pentamidine and to paromomycin, is indicative 

that alternative treatments might be considered should AmB resistance emerge in the field. 

On the contrary, a role of the deletion of the miltefosine transporter was associated with 
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increase in resistance to both AmBR and MF, indicating a possible risk of (occasional) 

cross resistance emerging between these drugs. 

Characterisation of four AmBR and four NysR lines identified an association between the 

genomic changes in two sterol enzymes, C24SMT (only in AmBR-lines) and C5DS and 

their sterol profiling in Leishmania mexicana and L. infantum. Notably, this is the first 

study in which resistance towards a polyene other than AmB, i.e. nystatin, has been 

achieved in Leishmania spp. and the implications related with AmB resistance were until 

now, unkown. 

Importantly, novel mutations in C5DS derived from selection for resistance to Nys were 

also associated with the loss of the wild type ergosterol (as with all AmBR lines), 

alongside with the increase in ergostane-intermediates requires further characterisation of 

these four NysR clones in the context of in vitro and in vivo models. These additional 

studies would be of relevance towards a better understanding on the appearance of 

polyene-resistance in Leishmania spp.  

Additional approaches (e.g. CRISPRcas9 multiplex in 96-wells plates) would allow for the 

screening of the entire library KOs lacking the genes of the sterol pathway, as well as gene 

editing of known SNPs and indels which were identified in this thesis, with further 

functional validation of the role of these changes in the context of resistance towards AmB 

(the drug of choice in visceral leishmaniasis) using other genetic tools, i.e. gene 

complementation. 

Moreover, this study shows that AmBR resistance can be carried in vivo, however, 

additional investigation is recommended in order to understand the mechanism of this 

resistance and to differentiate the virulent/attenuated phenotypes from other pro-

inflamattory changes. Our in vivo model showed that AmBR parasites are adaptable in vivo 

and that the attenuated phenotype, cannot be unequivocally associated with fitness cost, 

particularly, after viable parasites recovered from tissue showed a similar retention of 

resistant to those lines with virulent phenotype.  

The use of other models is also essential to expand the characterisation of these resistant 

lines, such as: drugs susceptibility to the antileishmanials in the amastigote macrophage in 
vitro model and other animal models (Wijnant et al. 2018) which use different infection 

sites and qPCR to determine parasite replication. Moreover, a full characterisation of the 

phenotype both in vitro and in vivo of all four AmBR- and nystatin-mutants, is also crucial 

to be carried out.  
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