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Abstract 

Cancer associated fibroblasts (CAFs) are known to influence tumour progression 

through the secretion of factors which influence tumour growth and invasion. 

Collagen production is a major aspect of the secretory CAF phenotype. High 

collagen content in breast cancer is a marker of poor prognosis and is known to 

promote tumour growth and metastasis, as well is impeding drug delivery to the 

tumour through reduced perfusion. Tumour metabolism is also well established as 

a hallmark of cancer, however, how the metabolism of CAFs influences their pro-

tumourigenic phenotype is not yet well understood. 

 

We investigated metabolic differences between paired CAFs and normal 

fibroblasts (NFs) from breast tissue. Using an unbiased phosphoproteomic analysis, 

we identified pyruvate dehydrogenase kinase 2 (PDK2) as the most downregulated 

kinase in CAFs. PDK2 phosphorylates and deactivates pyruvate dehydrogenase 

(PDH), which is a key metabolic protein that converts pyruvate to acetyl-CoA in 

the mitochondria, providing a key link between the major metabolic pathways of 

glycolysis and the TCA cycle. However, extensive metabolic profiling of CAFs and 

NFs did not reveal metabolic differences that could be attributed to PDH activity. 

 

Acetyl-CoA is also used for protein acetylation, and, using an MS-proteomic 

approach, we discovered increased histone acetylation in CAFs, which has 

epigenetic implications for how CAFs regulate their activated phenotype. Using a 

combination of proteomics, metabolomics, in vitro assays and imaging analyses 

we investigated the role of PDH-mediated histone acetylation in CAFs and 

uncovered the importance of histone acetylation in regulating collagen and ECM 

production by CAFs. PDH activity also regulated PYCR1 expression in CAFs, and we 

further discovered that proline production by PYCR1 is further required to 

maintain PDH-activity induced collagen synthesis in CAFs. Our findings open up 

new possibilities for targeting the desmoplastic stroma to reduce tumour growth 

and metastasis, and improve drug delivery. 
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Chapter 1 Introduction 
 

1.1 Cancer associated fibroblasts in the tumour 

microenvironment 
 

1.1.1 The tumour microenvironment 

 

Tumours do not exist only as an isolated mass of tumour cells, but must exist in 

an already present complex body; indeed tumours utilise their surrounding tissues 

to provide them with a wide range of factors which they require to grow and 

progress. Whereas initial research on cancer as a disease focussed on targeting 

the tumour cells themselves, in more recent decades it has become clear that the 

cells and tissue surrounding the tumour, known as the ‘tumour microenvironment’ 

(TME), is a key targetable feature of the tumour. The TME is inseparably 

intertwined with the fate of the tumour through a complex array of interactions 

and crosstalk between different cell types and extracellular matrix (ECM), such 

that a tumour can be considered as a new and separate organ, albeit an 

abnormally functioning one (Egeblad et al., 2010).  

 

Tumour cells recruit and activate cells from their surrounding tissue via the 

secretion of growth factors, chemokines and cytokines. For example, VEGF 

secreted by tumour cells stimulates blood vessel sprouting (Carmeliet, 2005), 

which is a critical step in tumour vascularization. Intratumoural blood vessels are 

important for tumour development because in order to grow the tumour needs to 

develop its own supply of oxygen and nutrients, as well as providing tumour cells 

with a means of dissemination into the blood stream to form distant metastases. 

Tumours also create an immunosuppressive environment to evade being targeted 

by the immune system. For example, secretion of cytokines, such as IL-23, CXCL5, 

CXCL7, IL-1β, IL-6, CCL2 and CCL9, recruit immunosuppressive macrophages, 

neutrophils and CD4+ T cells to the tumour, while repelling immunoactive NK, B 

and CD8+ T cells (Koyama et al., 2016, Rabinovich et al., 2007, Kortlever et al., 

2017). Additionally, tumours secrete factors including IL-4 and IL-13 to polarise 

macrophages from the immunoactive M1 phenotype to the immunosuppressive M2 

(Aras and Zaidi, 2017).  Finally, cancer associated fibroblasts (CAFs) are highly 

abundant in the TME. CAFs have a highly secretory phenotype themselves that 
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promotes tumour growth, progression, and metastasis, and have been shown to 

be recruited and activated through a combination of growth factors and cytokines 

including TGF-β, TNF-α, PDGF and FGF2 (LeBleu and Kalluri, 2018), as well as 

signalling proteins such as Wnt (Avgustinova et al., 2016) and integrin mediated 

interactions with the ECM (Franco-Barraza et al., 2017).  

 

Therapeutically, targeting the TME has a number of advantages. Since cells of the 

TME are more genetically stable than tumour cells, they are less likely to gain 

resistance to therapies. Furthermore, the tumour microenvironment may provide 

support to tumour cells which enables them to overcome traditional cytotoxic 

therapies, and also reduces efficient drug delivery due to the leaky vasculature 

and increased interstitial fluid pressure (Joyce, 2005). Combination therapies 

combining standard chemotherapy with tumour microenvironment targeting drugs 

have been particularly successful in the clinic. For example, using the anti-VEGF 

antibody Avastin to normalise the tumour vasculature in combination with 

standard chemotherapy has shown benefits and is an approved line of treatment 

in some colorectal, breast and non-small cell lung cancers (Sini et al., 2016, 

Hurwitz, 2004, Sandler et al., 2006), and the anti β1-integrin antibody P5, which 

targets interactions between tumour cells and the ECM, has reached stage III 

clinical trials in combination with cisplatin for treatment of non-small cell lung 

cancer (Kim et al., 2016). Of recent years, targeting the immune response in 

tumours has been a breakthrough in cancer treatment, with the recent completion 

of several phase II or III trials combining checkpoint inhibitors with standard 

chemotherapy in lung, HNSCC and breast cancers (Gandhi et al., 2018, Bauml et 

al., 2017, Schmidt, 2019). Two immunotherapies have also recently been 

approved for treatment of acute myeloid leukaemia and diffuse-large B cell 

lymphoma (Maude, 2018, Schuster and Investigators, 2019). Therefore 

understanding the mechanisms that regulate the pro-tumourigenic 

microenvironment has led to the development of important anti-cancer therapies, 

and is vital to gain insight into potential vulnerabilities of the tumour. During my 

PhD I focussed on how the pro-tumourigenic phenotype of CAFs is regulated, and 

therefore in the following sections I will describe in more detail the fundamental 

role of CAFs in the TME and the myriad of ways in which they promote tumour 

progression.  
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1.1.2 The origins and definition of cancer associated fibroblasts 

 

Fibroblasts are found throughout the body as cells whose primary function is to 

continuously secrete ECM to maintain the structure of connective tissues. 

Fibroblasts secrete components of the fibrillar ECM and basement membrane, 

including collagens, fibronectin and laminin (Tomasek et al., 2002, Rodemann and 

Muller, 1991), as well as matrix metalloproteases (MMPs) to regulate ECM turnover 

(Simian et al., 2001). Fibroblasts are also mediators of the wound healing 

response, providing new ECM deposition to act as a scaffold for wound closure, 

contractile forces to close the wound, pro-angiogenic factors to promote blood 

vessel formation and growth factors to promote cell proliferation (Darby et al., 

2014). In order to carry out these functions, fibroblasts in a wound become 

‘activated’, a state which is most often characterised by an increase in the 

cytoskeletal protein α-smooth muscle actin (αSMA) expression. A chronic wound 

healing response is also found in diseases of fibrosis and in tumours, since the 

continuously growing tumour causes persistent injury in the surrounding tissue. 

This has led to the description of tumours as ‘wounds that do not heal’ (Dvorak, 

2015). In accordance with this, activated fibroblasts make up a significant 

component of tumours, where their wound healing phenotype is co-opted by the 

tumour to provide a stroma that promotes tumour growth and development. 

 

The activation of quiescent fibroblasts into CAFs has been the subject of much 

study, with many different pathways being implicated. Undoubtedly the most 

widely known activating factor is transforming growth factor beta (TGF-β), which 

is produced initially by cancer cells and binds to the type 2 TGF-β receptor on 

CAFs, stimulating ECM production and secretion of paracrine signalling factors. 

TGF-β activation then is maintained by autocrine CAF signalling, creating a 

positive feedback loop of CAF activation (Ronnov-Jessen and Petersen, 1993, 

Kojima et al., 2010, Colak and Ten Dijke, 2017). Platelet derived growth factor 

(PDGF) is another CAF activating factor frequently secreted by tumour cells and 

has been shown to stimulate ECM production and fibroblast proliferation (Shao et 

al., 2000, Cadmuro et al., 2013). CAFs have also been shown to be activated by 

other secreted proteins including Wnt7a signalling (Avgustinova et al., 2016), and 

inflammatory TNFα, IL-1β and IL-6 signalling (Giannoni et al., 2010, Katanov et 

al., 2015). In recent years, several studies have shown that tumour derived micro-



17 
 
RNAs, which are transferred to CAFs via exosomes, also play a role in CAF 

activation (Fang et al., 2018, Pang et al., 2015, Dror et al., 2016). The physical 

alterations that occur in the tumour microenvironment can further contribute to 

CAF activation, such as increased mechanical stress, hypoxia and oxidative stress 

(Calvo et al., 2013, Toullec et al., 2010, Chiavarina et al., 2010, Martinez-

Outschoorn et al., 2010a). Interestingly, hypoxia has also been shown to 

deactivate fibroblasts via loss of PHD2 (Madsen et al., 2015), so the role of hypoxia 

in fibroblast activation has yet to be elucidated. Therefore there is no single 

pathway that activates CAFs from normal fibroblasts, and the specific mechanism 

may depend on the tumour cells and other factors of the TME for each individual 

cancer. 

 

In addition to being activated through a combination of different signalling 

pathways, CAFs can also be derived from a variety of different cell types. Although 

the majority of CAFs are likely to be derived from resident quiescent fibroblasts 

from the tissue of origin of the cancer, other cell types can also be recruited by 

the cancer and develop a CAF-like phenotype. Bone marrow mesenchymal stem 

cells are a popular source of CAFs, with reports showing that up to 20-25% of CAFs 

originate from the bone marrow in mouse models of pancreatic and gastric cancer 

(Ishii et al., 2003, Quante et al., 2011). In breast cancer models, bone marrow 

derived CAFs can form a separate CAF subpopulation which may even be more 

aggressive than CAFs derived from resident fibroblasts (Raz et al., 2018)  

Furthermore, Jotzu et al. demonstrated that adipocyte stem cells, which are 

known to interact with tumour cells, develop an αSMA positive, myofibroblast-like 

phenotype when treated with cancer cell conditioned media (Jotzu et al., 2010). 

TGF-β treatment of endothelial cells can induce a myofibroblastic phenotype 

(Zeisberg et al., 2007), and it has even been suggested that epithelial cells can 

develop into CAFs or activated fibroblasts through undergoing epithelial to 

mesenchymal transition (EMT) (Petersen et al., 2001, Iwano et al., 2002). 

 

With such a varied array of origins and activation pathways, it is unsurprising that 

there is no common consensus for defined markers of CAFs. αSMA is the most 

commonly used CAF marker, both because it is a hallmark of upregulated TGF-β 

signalling, which as mentioned previously is one of the most well-defined 

pathways of CAF activation, and because αSMA expression is often equated with 
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the contractile, ECM producing myofibroblast phenotype. However, it has been 

demonstrated that not all contractile fibroblasts are αSMA positive (Sun et al., 

2016). There are many other markers associated with activated fibroblasts 

including upregulation of vimentin, PDGFRα, fibroblast activating protein (FAP) 

and fibroblast specific protein (FSP-1), and downregulation of caveolin-1 (CAV1) 

and CD36. These markers do not always appear concurrently, and none of them 

are specific for cancer associated fibroblasts as they also label other cell types. 

Even αSMA is also highly expressed in pericytes (Kalluri, 2016). Therefore CAFs are 

a broad and heterogeneous group of cells, which can be recruited from a number 

of different cell types and activated by a combination of many different 

mechanisms. Perhaps this reflects the heterogeneity of the tumours themselves, 

as different tumours are likely to be able to utilise different pathways of CAF 

activation. 

 

1.1.3 The pro-tumourigenic phenotype of CAFs 

 

A multitude of studies have demonstrated that CAFs promote tumour progression, 

growth and metastasis. Early studies showed that isolated CAFs support tumour 

formation in vivo whereas normal fibroblasts do not (Olumi et al., 1999, Orimo et 

al., 2005) and are also more pro-invasive and pro-angiogenic (Dimanche-Boitrel et 

al., 1994, Fukumura et al., 1998) One of the key features of CAFs that distinguishes 

them from normal fibroblasts is their highly secretory phenotype which influences 

both tumour cells and other cell types of the TME (Fig. 1-1). CAFs have been shown 

to secrete several growth factors which stimulate tumour proliferation and 

metastasis. Among these are HGF, which has also been shown to promote 

chemoresistance, CTGF, EGF and IGF, secretion of which is upregulated under 

hypoxic conditions (Straussman et al., 2012, Ding et al., 2018, Tyan et al., 2011, 

Ren et al., 2015, Rozenchan et al., 2009) (Unger et al., 2017, Hirakawa et al., 

2016). CAFs can also fuel tumour growth through secretion of metabolites such as 

lactate, ketones and amino acids (Martinez-Outschoorn et al., 2010) and stimulate 

growth, EMT and cell migration through cytokines such as IL-6 (Wu et al., 2017, 

Kinoshita et al., 2013). 

 

A key group of secreted factors by CAFs is pro-angiogenic factors. CAFs are a major 

regulator of angiogenesis in the TME, which is vital to provide tumours with a 
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supply of oxygen and nutrients for growth, and also a means of metastasis. The 

excess of pro-angiogenic factors in the TME also creates a leaky and irregular 

network of blood vessels, which further promotes metastasis and impairs drug and 

oxygen delivery creating more aggressive tumours (Carmeliet and Jain, 2000). 

CAFs induce angiogenesis through secretion of VEGF, the most potent and well-

known pro-angiogenic factor, as well as TGF-β, PDGF, SDF-1 and IL-6 (Nagasaki et 

al., 2014, Ferrara, 2010, Gomes et al., 2013). ECM remodelling due to the 

increased contractility of CAFs also increases vascularisation (Sewell-Loftin et al., 

2017). Interestingly, stromal angiogenesis can preclude response to anti-VEGF 

treatment. A study found that tumours with blood vessels predominantly within 

the tumour cells responded better to the VEGF antibody bevacizumab either as a 

single therapy or in combination with traditional chemotherapy, as opposed to 

tumours with predominantly stromal blood vessels (Smith et al., 2013), suggesting 

that blood vessels stimulated by CAFs are more resistant to anti-angiogenic 

therapies. 

 

CAF protein secretion also influences the immune response. Secretome and 

proteomic analyses of CAFs have revealed a highly immunomodulatory secretome 

(Torres et al., 2013, Ge et al., 2012). More in depth studies have shown that 

secretion of growth factors, cytokines and chemokines such as TGF-β, CCL2, CCL5, 

CXCL14, CXCL12, SDF1 and IL-6 promote M2 macrophage differentiation, recruit 

neutrophils and inhibit cytotoxic T-cells and natural killer cells (Comito et al., 

2014, Takahashi et al., 2017, Castriconi et al., 2003, Ziani et al., 2018). 

Upregulated production and secretion of the prostaglandin PGE2 also inhibits the 

anti-tumour immune response (Kalinski, 2012). Moreover, CAFs may account for 

the failure of some patients to respond to immunotherapy. In a mouse model of 

pancreatic ductal adenocarcinoma (PDAC), it was found that CXCL12 produced by 

FAP+ CAFs was preventing response to two checkpoint inhibitor therapies, despite 

the presence of tumour suppressive CD8+ T cells. Simultaneously treating tumours 

with a CXCL12 receptor inhibitor and the checkpoint inhibitor α-PD-L1 caused 

rapid recruitment of T-cells to the tumour and reduced tumour size (Feig et al., 

2013). This study highlights the advantages of using combination therapies 

targeting the tumour microenvironment alongside the tumour cells to increase 

tumour sensitivity and response to drugs. 
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Another important aspect of the TME influenced by CAF secretion is the ECM, 

which I will expand upon in later sections. Briefly, CAFs upregulate secretion of 

ECM components including collagens, fibronectin and laminin, resulting in a 

thicker and stiffer desmoplastic stroma that promotes tumour growth and 

invasiveness (Naba et al., 2014, Alexander and Cukierman, 2016, Kai et al., 2019). 

Conversely, CAFs also secrete matrix metalloproteases (MMPs) which degrade the 

matrix and enable angiogenesis and tumour cell migration (Boire et al., 2005, 

Deryugina and Quigley, 2015). ECM also confers drug resistance through adhesion 

of cancer cells to the ECM and through compressing blood vessels so that perfusion 

is limited in the tumour (Hazlehurst and Dalton, 2001, Chauhan et al., 2013).  
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Figure 1-1 CAFs are highly secretory cells 

Diagram showing the wide variety of secreted factors from CAFs. Images were adapted from 

https://smart.servier.com/ 
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Although the majority of studies on CAFs demonstrate that they are pro-

tumourigenic, several works have also demonstrated an anti-tumour effect of 

CAFs. Two studies in PDAC demonstrated a tumour suppressive role for CAFs. 

Depleting sonic hedgehog, which is a CAF activator, in a mouse model of PDAC 

actually increased tumour aggressiveness and vascularisation, showing that a high 

stromal content is not necessarily pro-tumourigenic (Rhim et al., 2014). Similarly, 

depleting αSMA+ cells in PDAC also increased tumour aggressiveness, (Ozdemir et 

al., 2014) suggesting that αSMA is not necessarily a marker of the pro-tumourigenic 

CAF phenotype. Patient derived mammary fibroblasts have been shown to express 

high levels of SLIT-2, which suppresses breast cancer cell invasion and is a 

predictor of better clinical outcome in patients (Chang et al., 2012). Once again, 

the heterogeneity of CAFs is evident in their functionality in addition to their 

origins and activation mechanisms. 

 

In recent years, the heterogeneity of CAFs has been further expanded by the 

discovery of different subpopulations of CAFs which may co-exist in the same 

tumour. For example, Ohlund et al. distinguished between two spatially distinct 

subpopulations of contractile, αSMA high myCAFS and proinflammatory iCAFs in 

KPC tumours (Ohlund et al., 2017). Subsequent studies have identified four 

subpopulations in CAFs derived from breast tumours through the more high-

throughput analysis techniques of single cell RNA-sequencing and flow cytometry 

analysis (Costa et al., 2018, Bartoschek et al., 2018). Still, αSMA expression and 

modulation of the immune response remain key distinguishing features between 

the different subtypes. In the Costa et al. study, it was shown that enrichment in 

breast tumours for either or both of two of their four defined subtypes was a 

predictor for subsequent metastasis, demonstrating the prognostic power of the 

stroma. Another recent study identified a subset of CAFs driving tumour growth 

as well as promotion of cancer stem cells and chemoresistance in lung and breast 

cancer. Usefully, these CAFs could be identified by the cell surface markers CD10 

and GPR77, and were successfully targeted by an anti-GPR77 antibody, providing 

evidence that it may be possible to target specific tumour promoting CAF 

subpopulations (Su et al., 2018). There is also evidence to suggest that CAFs 

derived from different cell types contribute to functionally different 

subpopulations, as bone marrow derived CAFs and resident CAFs formed two 

distinct subpopulations defined by PDGFR expression in the MMTV-PyMT model 
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(Raz et al., 2018). In a review on CAFs, Kalluri postulates that there may be many 

subtypes including tumour restraining, tumour promoting, secretory and ECM-

remodelling CAFs (Kalluri, 2016). As this is a relatively recent field of CAF 

research, it will be interesting to see what future developments there are in 

identification of CAF subpopulations, and what the implications are for trying to 

pharmacologically target the CAF phenotype.  

 

So far, no drugs have been developed specifically to target CAFs, although 

pirfenidone has been approved to treat fibrotic fibroblasts, which have a similar 

activated, wound healing phenotype (Takeda et al., 2014). Drugs have also been 

developed that target aspects of the TME known to be regulated by CAFs, such as 

suramin, which targets ECM turnover and blocks FGF and PDGF signalling and has 

shown promising results in breast and prostate cancers (Cheng et al., 2019). Yet 

drugs specifically targeting CAF activation, such as Shh inhibitors and the anti-FAP 

antibody sibrotuzumab, have so far failed to show benefits in clinical trials. 

However, new therapies are constantly being developed. A vitamin D analogue 

which has been shown to deactivate CAFs in pancreatic cancer (Sherman et al., 

2014) is currently being tested in clinical trials in combination with standard 

chemotherapy. CAFs have also been targeted with nanoparticles which both 

deactivate the CAFs and cause apoptosis of surrounding tumour cells (Miao et al., 

2015). Therefore there is still much to be discovered about the pro-tumourigenic 

CAF phenotype and vulnerabilities for potential therapeutic treatment. 

 

1.1.4 CAFs in breast cancer 

 

During my PhD I focussed on mammary CAFs. Breast cancer is the most common 

cancer in women worldwide, and according to the world health organisation 

(WHO) over 600,000 women died from breast cancer in 2018. In high income 

countries such as Japan or the USA, the survival rate is around 80% due to early 

detection programmes as well as advances in diagnosis and treatment, whereas in 

low income countries the survival rate is halved to around 40%. However, even 

with up to 80% of patients able to be successfully treated, the 20% who are not 

are still make up a considerable number. In the UK, breast cancer accounts for 7% 

of all cancer deaths and worldwide for 15% of all cancer deaths, with the rate of 

breast cancer incidence and mortality increasing most rapidly in the developing 
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world. Therefore there is still a need for new targets and therapies, and for a 

greater understanding of the molecular mechanisms driving breast cancer. 

 

The current system of patient classification for therapy is based on the standard 

clinical factors of tumour size, grade and presence of metastases, but also on 

breast cancer specific molecular markers. These consist of three receptors: the 

oestrogen receptor (ER), the progesterone receptor (PR) and the human epidermal 

growth factor receptor 2 (HER2). The system of classification was developed about 

twenty years ago by comparing gene expression data with clinical data from 

patient tumours (Perou et al., 2000, Sorlie et al., 2001). Five subtypes were 

identified: Normal-like (ER+ PR+ HER2-), Luminal A (ER+ PR+ HER2-), Luminal B 

(ER+ PR+ HER2+/-), HER2-amplified (ER- PR- HER2+) and Triple negative (ER- PR- 

HER2-). The ER+ and PR+ tumours have the best predicted outcome (Dunnwald et 

al., 2007) and usually respond to hormonal therapies, such as tamoxifen. Triple 

negative breast cancer (TNBC) has the worst prognosis, and there are currently no 

targeted therapies; the only options are standard chemotherapy, radiotherapy and 

surgery.  

 

The stroma is an extremely important aspect of breast cancer. Breast cancers 

have a particularly high stromal component with up to 80% of fibroblasts being 

activated as defined by high αSMA expression (Sappino et al., 1988) and the 

presence of αSMA positive myofibroblasts is further correlated with decreased 

survival and higher proliferation of tumour cells in breast cancer (Surowiak et al., 

2007). Other studies have also shown a correlation with a higher proportion of 

stroma in breast tumours with a poorer clinical outcome, especially in TNBC (de 

Kruijf et al., 2011, Moorman et al., 2012, Kramer et al., 2019). Furthermore, the 

gene signature of breast cancer stroma can serve as a prognostic marker. Using 

microdissected stroma from 53 breast cancer patients, Finak et al. formulated a 

set of 26 prognostic genes which, when applied to other data from independent 

studies, successfully predicted patient outcome (Finak et al., 2008). Further 

stromal prognostic markers in breast cancer have been identified, such as PDGFR 

expression (Paulsson et al., 2009) and ERK phosphorylation, which predicts 

tamoxifen resistance (Busch et al., 2012). Interestingly, one of the studies on CAF 

subpopulations also connected different CAF subpopulations with the different 

molecular subtypes of breast cancer, with enrichment of the immunosuppressive 
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CAF-S1 subtype in TNBC and enrichment of the myofibroblastic CAF-S4 subtype in 

HER2+ tumours (Costa et al., 2018). This suggests that, for example, the CAF-S1 

subtype could be targeted to improve response to immunotherapies such as anti-

PD-L1 treatment. Another intriguing recent study suggested that the stroma may 

play an active role in determining the molecular subtype of breast cancer. 

Targeting the signalling between PDGF producing basal-like carcinoma cells and 

the corresponding PDGF-receptor expressing CAFs transformed the cancers into a 

hormone receptor positive state, increasing their sensitivity to hormone therapy 

that they had previously shown resistance to (Roswall et al., 2018). Therefore 

breast cancer stroma plays a significant role in controlling patient outcome and is 

a potential therapeutic target. 

 

The molecular mechanisms underpinning the pro-tumourigenic aspects of 

mammary CAFs have been studied in some detail. The classic tropes of high αSMA 

expression and TGF-β signalling are key features of mammary CAFs. 

Overexpression of TGF-β or HGF in mammary fibroblasts stimulated breast cancer 

initiation in mice (Kuperwasser et al., 2004), and TGF-β treatment of mammary 

fibroblasts resulted in increased expression of many ECM-remodelling and pro-

tumourigenic proteins, including hyaluron synthase 2, fibulin-5, CTGF, 

podocalyxin and EphA2 in a proteomic study (Groessl et al., 2014). As well as being 

activated by TGF-β secreted by tumour cells, CAFs also produce their own TGF-β, 

and it has been shown that Wnt7a produced by breast cancer cells stimulates TGF-

β production and signalling in CAFs (Avgustinova et al., 2016). After activation by 

TGF-β, mammary CAFs can maintain their myofibroblast activation through 

autocrine TGF-β and SDF1 signalling (Kojima et al., 2010). TGF-β signalling by 

mammary CAFs is an important aspect of their pro-tumourigenic phenotype. For 

example, TGF-β signalling is known to upregulate αSMA expression; and mammary 

CAFs overexpressing miR-200 to reduce αSMA expression and contractility formed 

smaller tumours in vivo (Tang et al., 2016). In co-culture experiments, TGF-β 

production by CAFs also stimulated EMT in breast cancer cell lines (Yu et al., 

2014), which increased their metastatic potential. Furthermore, TGF-β activation 

in mammary CAFs stimulated CAF metabolic reprogramming, with an increase in 

oxidative stress, autophagy and a more glycolytic metabolism, which in turn 

promoted tumour growth (Guido et al., 2012). TGF-β signalling has been further 

associated with regulating production of MMPs and chemokines in mammary CAFs 
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(Moore-Smith et al., 2017, Fang et al., 2015). However, targeting TGF-β in CAFs 

can simply lead to compensation by HGF, which also promotes tumour growth and 

invasion (Cheng et al, 2008). 

 

Mammary CAFs have been implicated in all of the pro-tumourigenic effects of CAFs 

on the TME. They promote angiogenesis through upregulation of VEGF signalling 

(Kugeratski et al., 2019), through deformation of the ECM (Sewell-Loftin et al., 

2017), and through secretion of factors such as the oxidoreductase CLIC3, which 

acts via TGM2 (Hernandez-Fernaud et al., 2017), and SDF-1, which additionally 

promotes tumour growth via CXCR4 (Orimo et al., 2005). Mammary CAFs also 

contribute to an immunosuppressive microenvironment (Cohen et al., 2017, Liao 

et al., 2009) and promote chemoresistance (Mao et al., 2014).  They have been 

further shown to promote breast cancer invasion and metastasis through a variety 

of secreted factors, including CLIC3, CXCL12, and IL-32 (Hernandez-Fernaud et 

al., 2017, Dvorak et al., 2018, Wen et al., 2019). 

 

In addition to secreting protein factors and metabolites, there is a growing field 

of research showing that CAFs, including mammary CAFs, also modulate the TME 

through secretion of extracellular vesicles containing proteins, metabolites and 

nucleic acids. Luga et al. first showed that CAFs from breast cancer patients 

produced CD81+ exosomes which increased breast cancer cell motility and 

metastasis through Wnt signalling activation (Luga et al., 2012). The transfer of 

Wnt10b by CAF-derived exosomes was also shown to increase breast cancer cell 

invasion (Chen et al., 2017). In addition to protein transfer, one of the key ways 

in which vesicles from mammary CAFs are able to influence cancer cells is through 

miRNA transfer. The miR221/222 secreted by CAFs was shown to induce 

hyperactive MAPK signalling in breast cancer cells, which is known to be associated 

with a higher risk of recurrence and poorer survival (Shah et al., 2015). Similarly, 

a combination of three miRNAs contained in CAF-derived exosomes promoted 

cancer cell stemness and EMT in breast cancer (Donnarumma et al., 2017). 

Mammary CAF-derived exosomes can also contain mitochondrial DNA, which has 

been shown to restore oxidative phosphorylation to breast cancer cells with 

impaired metabolism and enable therapy resistance (Sansone et al., 2017). 

 



27 
 
Therefore CAFs in breast cancer stroma play an extremely important role in 

tumour progression, and understanding the mechanisms involved in how CAFs 

create a pro-tumourigenic microenvironment could provide important information 

on how to therapeutically target breast cancer. In the following sections I will go 

into more detail about the crucial roles that CAF derived ECM and CAF metabolism 

play in creating a pro-tumourigenic TME. 
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1.2 The role of CAF-derived ECM in cancer 

 

1.2.1 Properties of the extracellular matrix 

 

The ECM is made up of a variety of proteins, glycoproteins, proteoglycans and 

polysaccharides (Ozbek et al., 2010). There are two types of ECM: the basement 

membrane and the interstitial matrix. The basement membrane separates 

epithelium from stromal cells and is very compact, whereas the interstitial matrix 

contributes to the tensile strength of tissues and is more porous. The basement 

membrane is composed primarily of collagen IV, fibronectin, laminins and linker 

proteins. The interstitial matrix also contains a high proportion of fibronectin and 

collagens, but additionally contains a greater amount of glycoproteins and 

proteoglycans (Egeblad et al., 2010). The ECM therefore contains a high degree of 

biophysical and biochemical diversity. 

 

Physically, the ECM’s orientation, stiffness, porosity and ability to act as a barrier 

determine the scaffolding and integrity of tissues. The orientation of fibres, the 

physical barrier and the availability of proteins for cell adhesion also regulate cell 

migration (Lu et al., 2012). Furthermore, ECM elasticity and stiffness is a key 

environmental regulator of cell behaviour. Focal adhesion complexes, which are 

plasma membrane-associated multi-protein complexes that interact with the ECM 

through receptors such as integrins, act as mechanosensing links between ECM 

stiffness and the cytoskeleton and cell signalling pathways. Their components can 

change conformation depending on the applied force (Sawada et al., 2006, del Rio 

et al., 2009). This leads to functional consequences for the cell, including 

regulation of cell fate, cell contractility, and conventional cell signalling pathways 

(Engler et al., 2006, Gehler et al., 2009, Maeda et al., 2011).  

 

Biochemically, the ECM is rich in signalling cues, acting as a reservoir of signalling 

molecules such as the growth factors FGF and VEGF, which bind to proteoglycans. 

It has been suggested that this can create growth factor gradients, which are 

important for determining cell fate in development, or that these growth factor 

reserves can be released when required by ECM degradation (Hynes, 2009). 

Integrins provide cells with the ability to anchor themselves to the ECM, and are 
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also key mediators of signalling pathways regulating cell growth and proliferation, 

metabolism and migration, such as the MAPK cascade (Ata and Antonescu, 2017, 

Schwartz and Assoian, 2001).  

 

Tissues can constantly make new ECM, degrade existing ECM via MMPs and 

rearrange or realign ECM fibres via crosslinking and covalent modifications, making 

the ECM a highly dynamic structure that is able to stimulate rapid changes in cell 

behaviour. 

 

1.2.2 An overview of collagen 

 

Collagen accounts for approximately a third of all proteins in humans and other 

animals, and is furthermore the most abundant protein in the ECM. Approximately 

28 different collagens have been identified in vertebrates (Gordon and Hahn, 

2010). It is primarily a structural protein, and all collagens contain three 

polypeptide α-chains which fold together to form a rod-like triple helix. Each chain 

consists of a repeating Gly-X-Y triplet amino acid motif, in which X and Y are most 

commonly proline or hydroxyproline, which is a derivative of proline produced by 

prolyl hydroxylases. This is because small, flexible amino acids are required to fit 

into the helix conformation, and in particular glycine is the only amino acid small 

enough to fit into the centre of the triple helix. Furthermore, the hydroxyproline 

residues can form hydrogen bonds along the helix to stabilise it. Some collagens 

contain interruptions or imperfections in the Gly-X-Y motif which destabilise the 

helix and thus give them increased flexibility. Collagens are heavily post-

translationally modified in the endoplasmic reticulum where lysyl hydroxylases 

and prolyl hydroxylases create hydroxylysine and hydroxyproline respectively on 

the nascent polypeptide. The hydroxylysine residues can be further glycosylated. 

After folding, the full length collagen chain or ‘procollagen’ consists of a 

collagenous NC1 domain and a non-collagenous NC2 domain, which keeps the NC1 

domain soluble in the cell. Upon secretion, the NC2 domain is cleaved by 

procollagen N-proteases, which causes a sudden decrease in solubility and the 

collagens form aggregates. Lysyl oxidases can further stabilise the fibrillar 

aggregates by covalently crosslinking adjacent fibrils (Boot-Handford and 

Tuckwell, 2003, Kadler et al., 2007). 
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There are three classes of collagens: fibrillar collagens which make up the 

interstitial matrix, network-forming collagens which are found in the basement 

membrane, and transmembrane collagens which are involved in cell adhesion 

(Shoulders and Raines, 2009, Franzke et al., 2003). Collagen I is the archetypal 

fibrillar collagen, although collagens II, III, V and VI are also common fibrillar 

collagens, while collagen IV is the most abundant network-forming collagen. 

 

1.2.3 Features and properties of CAF-derived ECM 

 

As discussed previously, the main function of quiescent fibroblasts is to maintain 

the ECM of connective tissue. Under normal activation in wound healing, ECM 

production is enhanced in order to produce new ECM to heal the wound and create 

a scaffold for the cells migrating and proliferating to close the gap. Therefore it 

is unsurprising that one of the main outputs of fibroblasts activated in the context 

of cancer is ECM production. Indeed CAFs are the main source of ECM in tumours 

(Bhowmick et al., 2004). CAF-derived ECM differs from normal ECM in its 

composition, turnover and stiffness, and in the alignment of fibres. 

 

One of the major differences between CAF and normal fibroblast (NF) derived ECM 

is simply that they make more of it. CAFs deposit large quantities of ECM proteins 

including fibronectin, hyaluronic acid and collagen, which is the most abundant 

ECM protein and makes up to 30% of the total protein mass of animals (Frantz et 

al., 2010). Many collagens are enriched in tumour ECM, including collagen I, II, III, 

IV, V, VI and XI (Kauppila et al., 1998, Nissen et al., 2019). In addition to producing 

more collagen, CAFs also induce higher rates of ECM turnover and remodelling of 

the basement membrane through increased expression of ECM degrading enzymes, 

the most prominent of which are the MMPs, paving the way for cancer cells to 

proliferate, migrate and for new blood vessel formation (Kessenbrock et al., 

2010). Furthermore, the presence of collagen degradation products in serum can 

distinguish between healthy and breast or ovarian cancer patients (Bager et al., 

2015). 

 

In addition to increasing ECM production and turnover, CAF-derived ECM is also 

stiffer, in part because there is more of it but also due to increased crosslinking 

of fibrillar proteins such as collagens and elastin by lysyl oxidase and 
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transglutaminase, expression of both of which are upregulated in CAFs (Levental 

et al., 2009, Lucero and Kagan, 2006). Fibres in the ECM produced by CAFs are 

also more directionally aligned and bundle together to create gaps in the 

basement membrane. Indeed, the alignment of collagen fibres in the ECM can be 

used to predict patient outcome in breast cancer (Bredfeldt et al., 2014, Conklin 

et al., 2011).  Ao et al. showed that the mechanical forces that CAFs exert on the 

ECM also cause alignment of fibronectin fibres (Ao et al., 2015). Interestingly, high 

Cav-1 expressing mouse fibroblasts also showed more fibronectin and collagen 

alignment via increased Rho-mediated contractile force (Goetz et al., 2011), 

despite the fact that other studies have claimed that loss of Cav-1 in CAFs is a 

marker of the TGF-β induced myofibroblastic phenotype (Guido et al., 2012, 

Martinez-Outschoorn et al., 2010a), again highlighting fibroblast heterogeneity 

and the many different opposing signalling pathways that fibroblasts can use to 

create a pro-tumourigenic microenvironment. Similarly, it was shown that CAFs 

expressing Snail-1, which induces RhoA and αSMA mediated contractility, 

increased anisotropic fibre organisation and matrix stiffness (Stanisavljevic et al., 

2015). CAF contractility was also shown to be necessary for matrix remodelling in 

gastric cancer, where cancer cells were able to invade matrigel that was being 

remodelled by CAFs (Yamaguchi et al., 2014). Therefore it seems that the 

myofibroblastic, contractile, αSMA positive CAF phenotype is key to ECM 

remodelling in the TME. 

 

1.2.4 CAF-derived ECM sustains and promotes tumour development 

 

Taken together, the increased ECM deposition and turnover as well as increased 

matrix stiffness and remodelling create a highly pro-tumourigenic environment. 

One of the hallmarks of cancer is sustained proliferation, and CAF-derived ECM 

sustains proliferation through several pathways. Firstly, as mentioned previously, 

the increased ECM deposition by CAFs enables integrin adhesion by cancer cells, 

which sustains proliferative signalling through Fak activation leading to Erk/PI3K 

signalling and cell cycle progression (Schwartz and Assoian, 2001). The increased 

stiffness of the ECM further upregulates integrin-mediated Fak phosphorylation 

and accelerates cell cycle progression (Bae et al., 2014, Provenzano and Keely, 

2011). Equally, integrin mediated adhesion to the ECM can inhibit tumour growth 

suppressors such as BRCA1 and p21 and allow cancer cells to circumvent these 
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pathways (Kim et al., 2008, O'Connell and Martin, 2000), as well as inducing anti-

apoptotic factors and blocking p53-mediated apoptosis to promote cell survival 

(Gilmore et al., 2000, Lewis et al., 2002). Furthermore, as discussed previously, 

the ECM can act as a reservoir of growth factors and signalling molecules such as 

FGF and Wnt. Enhanced degradation of the ECM by MMPs produced by CAFs can 

release these factors, stimulating tumour growth. Additionally, TGF-β, which is a 

key factor promoting tumour progression, is secreted in an inactive form and is 

subsequently activated by MMP cleavage or by mechanical stress, both of which 

are enhanced by CAFs (ten Dijke and Arthur, 2007). Interestingly, it has recently 

been shown that cancer cells can use the ECM for metabolic fuel; taking up and 

degrading collagen to satisfy their demand for amino acids and promote tumour 

growth and survival (Gouirand and Vasseur, 2018). In vivo, the effects of the ECM 

on tumour growth have been assessed in several studies. Ablation of Col6a1 or 

Col5a3 in the MMTV-PyMT mammary tumour model resulted in reduced hyperplasia 

and primary tumour growth (Iyengar et al., 2005, Huang et al., 2017). Conversely, 

mice which have been engineered to produce more collagen (Col1a1tm1jae) showed 

increased tumour growth in the MMTV-PyMT model (Esbona et al., 2016, 

Provenzano et al., 2008). Inhibition of production of other ECM components such 

as hyaluronan, fibronectin and tenascin-C also suppresses tumour initiation and 

growth (Udabage et al., 2005, Lingasamy et al., 2019). 

 

In addition to promoting tumour growth and survival, CAF-derived ECM is a key 

factor in determining the metastatic ability of tumours by promoting EMT, 

inducing invadopodia formation and providing cancer cells with escape routes. 

Increased ECM stiffness has been shown to promote hallmarks of EMT in cancer 

cells, such as TWIST1 activation, vimentin expression and β-catenin nuclear 

localisation (Wei et al., 2015, Rice et al., 2017). One of the many roles of TGF-β 

signalling is to promote EMT, and so the combination of increased matrix stiffness 

and enhanced MMP activity can further drive EMT through release and activation 

of TGF-β (Leight et al., 2012). Integrin binding to proteins enriched in CAF-derived 

ECM, such as collagen and laminins, also promotes EMT in tumour cells (Scott et 

al., 2019). The combination of increased ECM stiffness and integrin receptor 

binding to the ECM also regulates formation of invadopodia, which are membrane 

protrusions which enable cell migration and invasion. Increased stiffness caused 

by collagen crosslinking promoted integrin clustering in cancer cells to stimulate 
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focal adhesion assembly and promote PI3K signalling, which is required for 

invadopodia formation (Levental et al., 2009). Increased MMP remodelling, which 

can be stimulated by integrin signalling at focal adhesion complexes, also enables 

invadopodia formation (Jacob and Prekeris, 2015). Alternatively, CAFs can 

combine MMP remodelling with increased collagen directionality due to Rho-ROCK 

mediated contractile forces to create ‘tracks’ for cancer cells to migrate along 

(Gaggioli et al., 2007). This allows cancer cells to migrate while still maintaining 

epithelial properties so that there is no need for them to undergo EMT. Similarly, 

it was observed that CAFs invaded first into matrigel using MMPs, and the cancer 

cells followed the path taken by the CAFs (Li et al., 2016). In addition to providing 

paths for tumour cells to migrate along, the forces exerted by CAFs on the 

basement membrane create holes, increasing the leakiness of blood vessels and 

allowing cancer cells to escape the tumour boundary and enter the bloodstream 

(Egeblad et al., 2010, Glentis et al., 2017). 

 

Another important aspect of the CAF ECM is to induce angiogenesis, which also 

affects tumour metastasis by providing the tumour cells with a means of 

extravasation into the blood stream. As well as acting as a reservoir of factors that 

induce tumour growth, the ECM also stores VEGF and other pro-angiogenic factors, 

which can be released by matrix deformation and MMP remodelling. Both MMP-7 

and MMP-9 have been implicated in promoting angiogenesis in tumours (Littlepage 

et al., 2010). Conversely, anti-angiogenic factors could be released by the same 

means, so the ECM can also inhibit angiogenesis in some cases. Increased ECM 

stiffness was also shown to promote endothelial cell MMP activity and endothelial 

VEGF expression, which is required for blood vessel branching and growth 

(Bordeleaux et al., 2017, Mammoto et al., 2009). Stiffness-induced ROCK 

activation in cancer cells further promotes angiogenesis (Croft et al., 2004). 

 

CAF derived ECM also affects the immune response of the tumour. Integrin 

signalling can mediate avoidance of the anti-tumour immune response (Weaver et 

al., 2002). Collagen I has been specifically implicated in inhibiting T-cell 

proliferation and activation, and a collagen rich ECM promotes the 

immunosuppressive M2 macrophage phenotype, although conversely fibronectin 

rich ECM can promote M1 macrophage polarisation (Meyaard, 2008, Wesley et al., 

1998, Perri et al., 1982). This is perhaps in part due to collagen rich ECM being 
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stiffer due to collagen crosslinking, as a stiffer ECM has also been shown to 

promote M2 macrophage polarisation and T-cell activation (Patel et al., 2012, 

O'Connor et al., 2012). Collagen assembly has also been recently shown to impede 

T-cell access to the tumour (Mariathasan et al., 2018). This may explain why 

immune checkpoint inhibitors often fail to produce a response in stroma-rich 

tumours, and, indeed, combining checkpoint inhibitors with targeting CXCL12 

production by myofibroblastic CAFs has shown success in a mouse model of PDAC 

(Feig et al., 2013). The ECM can also regulate cytokine availability. MMPs such as 

MMP-12 can cleave and inactivate cytokines which would recruit neutrophils and 

inflammatory monocytes (Dean et al., 2008). TGF-β release and activation by the 

ECM can further modulate the immune environment by influencing T-cell 

differentiation to being pro or anti-inflammatory in a concentration dependent 

manner (Li and Flavell, 2008). 

 

Drug response and resistance in tumours is also affected by the ECM. The increased 

stiffness of tumour associated ECM increases interstitial fluid pressure, which has 

been shown to reduce the efficiency of drug delivery. Matrix composition and 

organisation also affects drug delivery as increased collagen content and 

alignment in ECM have been shown to impede drug transport (Heldin et al., 2004, 

Netti et al., 2000). Further to this, normalisation of tumour stroma has been shown 

to improve response to therapy (Liu et al., 2012a). Cancer cell-ECM interactions 

also play a key role in drug resistance. Integrin mediated fibronectin attachment 

has been shown to enhance drug resistance and integrin β1 has been implicated 

in resistance to radiotherapy and chemotherapy in head and neck, breast and lung 

cancer (Damiano, 2002, Eke et al., 2012, Huang et al., 2011). Cancer stem cells 

expressing integrins β4 and β3 have also all been found to be enriched after 

chemotherapy treatment and in relapsed tumours, suggesting that integrin-ECM 

interactions may mediate drug resistance through promoting cancer stem cell 

survival (Zheng et al., 2013, Seguin et al., 2015). 

 

Therefore the increase in ECM output by CAFs and the increase in stiffness due to 

collagen crosslinking and fibre alignment creates a pro-tumourigenic 

microenvironment by promoting tumour cell growth and survival, invasion and 

metastatic potential, angiogenesis, an immunosuppressive immune response and 

also contributes to drug resistance and tumour relapse. The ECM plays a key role 
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in breast cancer pathology, and in particular increased collagen deposition and 

crosslinking have been shown to contribute to breast cancer progression (Kaushik 

et al., 2016). 
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1.3 Epigenetic control of collagen and ECM production 
 

1.3.1 Epigenetics 

 

Epigenetics is defined as the heritable modification of gene function without 

alterations in the DNA sequence, either by DNA or histone modification or by 

changes in chromatin structure. Histone modification is a major source of 

epigenetic regulation in cells. Histones are the core component of nucleosomes, 

which compact chromatin by wrapping DNA around them. In general, nucleosome 

compaction is obstructive to gene transcription as it reduces DNA accessibility to 

the transcriptional machinery. However, post translational histone modification 

can further regulate chromatin accessibility as well as recruiting specific 

transcription factors. So far, observed histones modifications include methylation, 

acetylation, phosphorylation, ubiquitination, deamination, ribosylation and 

sumoylation (Lawrence et al., 2016). Lysine acetylation and methylation are the 

most widely studied histone modifications and as far as we know have the greatest 

impact on chromatin accessibility and regulation of gene transcription (Bartova et 

al., 2008). In general, it is thought that acetylation neutralises the positive charge 

on lysine, destabilising bonds with negatively charged DNA and causing chromatin 

to form a more open conformation, enabling transcription machinery access. 

Conversely, methylation is associated with increased chromatin compaction and 

repression of transcription (Margueron et al., 2005). There are several exceptions 

to this, for example, H3K4me3 is known to be a transcriptional activator marking 

transcriptional start sites (Schneider et al., 2004). Furthermore, lysine residues 

can be modified with up to 3 methyl groups, and different numbers of methyl 

groups can have different effects. For example, H3K27me3 represses transcription 

whereas H3K27me1 promotes transcription (Ferrari et al., 2014). Methylation and 

acetylation have been further shown to influence recruitment and binding of 

transcription factors and the transcriptional machinery to gene promoters 

(Vettese-Dadey et al., 1996, Wysocka, 2006, Lawrence et al., 2016). DNA itself 

can also be methylated, and methylation of CpG dinucleotides at transcriptional 

start sites is a marker of transcriptional repression (Edwards et al., 2017, Jones, 

2012). 
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1.3.2 Regulation of CAF activation and fibrotic collagen production by 

epigenetics 

 

Many factors have been shown to contribute to increased collagen synthesis by 

activated fibroblasts in fibrotic tissue, including cytokines such as TGF-β, IL-3 and 

IL-4, growth factors such as CTGF and PDGF and the Wnt and Notch signalling 

pathways, and miRNA mediated post-transcriptional regulation (Bhogal et al., 

2005, Leask, 2010, Beyer et al., 2013, Dees et al., 2011, Nijhuis et al., 2014). 

However, in recent years epigenetic regulation of fibroblast activation and fibrosis 

through altering histone modification patterns or DNA methylation has been shown 

to be an important and targetable point of regulation of collagen synthesis.  

 

Since CAF activation is accompanied by dramatic alterations in gene and protein 

expression, which leads to increased production and secretion of many factors, it 

is to be expected that epigenetic alterations underpin at least a part of the 

process of CAF activation. Furthermore, the fact that the CAF phenotype is self-

sustaining in culture (Kojima et al., 2010) and does not require the presence of 

cancer cells to maintain activation suggests that an epigenetic switch supports 

CAF activation. Initial studies showed that CAF DNA was overall hypomethylated 

in comparison to NF DNA, suggesting an overall increase in active transcription 

(Jiang et al., 2008, Hu et al., 2005, Vizoso et al., 2015). Recently, a more in depth 

analysis of global DNA methylation in paired prostate CAFs and NFs using whole 

genome bisulphite sequencing revealed that CAFs had many consistent differences 

in methylation compared to NFs, particularly in genes involved in stromal-

epithelial signalling and tissue development. These genes tended to be 

hypomethylated in comparison with NFs, which implies that they are more actively 

transcribed (Pidsley et al., 2018).  

 

TGF-β signalling is a hallmark of activated, ECM producing myofibroblasts and a 

potent fibrotic activator. The major downstream effectors of TGF-β are the 

transcriptional modulators Smad2 and Smad3, which translocate into the nucleus 

and recognise Smad binding elements to promote transcription of target genes 

(Feng and Derynck, 2005). Blocking Smad signalling reduces collagen transcription 

(Ding et al., 2013). In addition to regulating transcription factor translocation to 

the nucleus to regulate collagen transcription, TGF-β signalling has also been 
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found to promote expression of fibrotic genes via regulating histone modifications. 

In rat mesangial cells, TGF-β activation upregulated expression of fibrotic genes, 

including collagen I, by increasing H3K4 trimethylation, a marker of active 

transcription, and decreasing repressive H3K9 methylation at the promoters of 

these genes. Furthermore, TGF-β upregulated the expression and recruitment of 

the H3K4 methyltransferase SET7/9 to the collagen I promoter, again to activate 

its transcription (Sun et al., 2010). Additionally, the combination of the cytokines 

TGF-β, TNFα and IL1-β induced alterations in histone modification at the 

promoters of fibrotic genes in fibroblasts, including hyperacetylation of histone 3 

and hypermethylation of histone 4 at the Col1a2 promoter, increasing its 

expression at the mRNA level (Sadler et al., 2013). TGF-β signalling has also been 

implicated in decreasing DNA CpG methylation at collagen promoters and thereby 

activating transcription via downregulation of the DNA methyltransferases DNMT1 

and DNMT3 (Pan et al., 2013). Other studies have also demonstrated a decrease 

in DNA methylation in activated fibroblasts at the promoters of fibrotic genes 

including collagens due to DNMT inhibition (Hu et al., 2010, Ko et al., 2013). 

However, increased DNA methylation of certain genes stimulates CAF activation. 

For example, a study by Albrengues et al. demonstrated that methylation of the 

gene encoding protein phosphatase SHP-1 resulted in activated JAK1/STAT3 

signalling in fibroblasts, leading to a pro-invasive CAF phenotype (Albrengues et 

al., 2015). Therefore upregulation of the fibrotic response in CAFs, as stimulated 

by TGF-β, involves epigenetic alterations, and epigenetic regulation of collagen 

transcription is a key aspect of this. 

 

Many studies have shown that increased expression of collagen by fibroblasts 

activated during fibrotic diseases is also regulated at the epigenetic level. 

H3K27me3 is a well-known marker of transcriptional repression that recruits 

polycomb group proteins to target genes, creating repressive polycomb 

complexes. In fibrotic sclerosis, H3K27me3 was shown to be decreased in 

fibroblasts, causing loss of transcriptional repression of collagen (Kramer et al., 

2013). In glioma cells, increased collagen expression was associated with the 

presence of H3K4me2, H3 hyperacetylation, and a reduction in H3k27me3, 

showing that epigenetic regulation of collagen production at the histone 

modification level is not limited to fibroblasts (Chernov et al., 2010). At the DNA 

methylation level, Gotze et al. explored the role of DNA methylation in 
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fibrogenesis of hepatic stellate cells and found an increase in hypomethylated 

genes, similar to the findings in CAF activation, although collagen was not 

specifically studied (Gotze et al., 2015). 

 

Epigenetic therapies have had some success at treating collagen production in 

fibrosis and in CAFs. DNA methylation inhibition reduced collagen I and collagen 

III in human fibroblasts and in spontaneously hypertensive rats (Watson et al., 

2016). BET inhibitors and histone deacetylase (HDAC) inhibitors have been 

investigated as an effective combination therapy in mouse models of PDAC, and 

BET inhibitors were further shown to effectively target PDAC stroma (Mazur et al., 

2016). BET inhibitors inhibit BRD transcription factors, which bind acetylated 

histone motifs and recruit further transcription factors and chromatin 

remodellers. Kumar et al. showed that in pancreatic stellate cells and in an in vivo 

model of PDAC, BET inhibition reduced collagen I expression through inhibition of 

BRD4 (Kumar et al., 2017). BET inhibitors or BRD4 knockdown have also been 

shown to decrease fibrosis-driven collagen production in lung and renal fibroblasts 

(Tang et al., 2013, Xiong et al., 2016). This further shows that histone acetylation 

is required for activation of collagen production in fibroblasts. BRD4 is strongly 

associated with the H3K27ac motif, which is found at enhancer regions and is a 

powerful activator of transcription (Raisner et al., 2018, Lee et al., 2017). As 

mentioned earlier, loss of H3K27me3 and hyperacetylation of histone 3 are also 

associated with increased collagen production, suggesting that a switch from 

methylation to acetylation of H3K27 could be a key epigenetic alteration 

stimulating collagen production in CAFs. On the other hand, HDAC inhibitors also 

have shown effectiveness in reducing fibrotic ECM. In cardiac fibrosis, HDAC1 and 

HDAC2 inhibition reduced collagen I, III and fibronectin (Nural-Guvener et al., 

2015). Similarly, the HDAC inhibitor SAHA effectively inhibited fibrotic collagen 

production in lung fibroblasts (Wang et al., 2009). Thus, it is clear that epigenetic 

alterations are a crucial aspect of CAF activation, particularly with regard to 

collagen and ECM production, and can be targeted with already existing inhibitors, 

several of which have undergone testing in clinical trials. 

 



40 
 

1.4 CAF metabolism 
 

In the past decade, there has been increasing research into how the metabolic 

rewiring of CAFs contributes to their pro-tumourigenic phenotype. The majority 

of this research focusses on how CAFs produce metabolites which can be taken up 

by tumour cells and used as fuel to promote growth and invasion.  

 

One of the first observations about CAF metabolism was an increase in glycolysis 

in CAFs. This was initially demonstrated in mammary fibroblasts by the Lisanti 

group (Pavlides et al., 2009). Proteomic analysis of fibroblasts activated upon 

knockdown of caveolin-1 (Cav-1) showed a general upregulation of glycolytic 

proteins. Downregulation of Cav-1 has been further shown to be a marker of CAFs, 

and to promote tumour growth and metastasis. Cav-1 is downregulated in CAFs 

due to increased oxidative stress and HIF1α stabilisation, which are caused both 

by TGF-β activation in CAFs and by the reactive oxygen species (ROS) and the 

hypoxic microenvironment created by tumour cells (Martinez-Outschoorn et al., 

2010a). The authors hypothesised that the increase in lactate produced by 

glycolytic CAFs could be used to fuel oxidative phosphorylation in cancer cells. 

This metabolic cross talk has been termed ‘the Reverse Warburg effect’ because 

the stromal cells are highly glycolytic instead of the tumour cells, as was initially 

discovered by Otto Warburg. Transcriptomic analysis of breast tumours also 

showed evidence of upregulation of glycolytic enzymes in the stroma (Pavlides et 

al., 2010c), and it was shown that Cav-1 knockdown in mammary fibroblasts led 

to increased glycolysis (Pavlides et al., 2010b). TGF-β activation of mammary 

fibroblasts leading to oxidative stress, upregulated autophagy, HIF-1α stabilisation 

and Cav-1 loss caused increased glucose uptake and lactate secretion (Guido et 

al., 2012). Furthermore, in co-cultures with the MCF7 breast cancer cell line, 

fibroblasts upregulated the expression of the lactate transporter MCT4, and this 

was shown to be a result of increased oxidative stress. This was coupled with 

corresponding expression of the lactate importer MCT1 in the MCF7 cells, 

suggesting that they are able to utilise the fibroblast-produced lactate. The 

upregulation of MCT4 in the fibroblasts protected the cancer cells against cell 

death, showing that the metabolic reprogramming of CAFs is important for tumour 

cell survival (Whitaker-Menezes et al., 2011b). Other studies have also 

demonstrated that cancer cells rely on lactate from the tumour microenvironment 
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(Sonveaux et al., 2008), and that a similar transfer of lactate occurs between 

glycolytic hypoxic and oxidative normoxic tumour cells, suggesting that this 

metabolic coupling is a common mechanism promoting tumour survival (Allen et 

al., 2016). Furthermore, treatment of xenografts containing Cav-1 (-/-) fibroblasts 

cotransplanted with MDA-MB-231 breast cancer cells with glycolysis inhibitors 

reduced the positive effect on tumour growth of the Cav-1 (-/-) fibroblasts. 

However, whether the glycolysis inhibitors would have had a similar effect on 

tumours containing normal fibroblasts was not assessed (Bonuccelli et al., 2010). 

A Cav-1 independent pathway stimulating glycolysis in mammary CAFs was 

discovered by Yu et al. in which the G-protein coupled Oestrogen receptor (GPER) 

was translocated to the cytoplasm in CAFs, where it promoted glycolysis via PKB 

and CREB signalling. Pyruvate and lactate produced by the CAFs were then used 

to fuel mitochondrial metabolism in tumour cells (Yu et al., 2017). A recent study 

also showed that MYC driven breast cancers stimulated glycolysis in CAFs via miR-

105, which was secreted in tumour cell-derived extracellular vesicles. miR-105 

caused fibroblasts to upregulate genes involved in glycolysis and glutaminolysis 

(Yan et al., 2018). 

 

Another aspect of the reverse Warburg effect hypothesis is that oxidative stress 

drives increased autophagy in CAFs, leading to mitochondrial breakdown and 

secretion of autophagic breakdown metabolites, such as ketones and amino acids, 

which can also be used to drive oxidative phosphorylation in cancer cells. 

Therefore CAFs should show evidence of mitochondrial dysfunction whereas 

cancer cells should show evidence of upregulated mitochondrial activity. In 

sections of breast cancer tissue, it was demonstrated that the stroma had little 

mitochondrial activity as measured by cytochrome C oxidase, NADH and succinate 

dehydrogenase staining whereas adjacent cancer cells were highly positive 

(Whitaker-Menezes et al., 2011a). In vitro, co-cultures of mammary fibroblasts 

and MCF7 cells demonstrated that CAFs had decreased levels of intact 

mitochondria whereas the MCF7 cells increased their levels of intact mitochondria 

(Martinez-Outschoorn et al., 2010b). In support of an autophagic CAF phenotype 

catabolically producing metabolites, metabolic analysis of mammary fat pad 

fibroblasts from Cav-1 (-/-) mice demonstrated upregulated production of ketone 

bodies, amino acids and markers of the breakdown of collagen and other proteins 

(Pavlides et al., 2010a). It was further demonstrated that MBA-MB-231 breast 
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cancer cells take up and use lactate and ketone bodies to fuel mitochondrial 

metabolism, growth and metastasis (Bonuccelli et al., 2010). Cav-1 loss has been 

shown to promote mitophagy by enabling accumulation of nitric oxide (NO). NO 

accumulation inhibits cytochrome c oxidase which causes mitochondrial 

uncoupling and triggers mitophagy (Pavlides et al., 2010b).  Interestingly, Cav-1 

(-/-) mammary fibroblasts showed increased expression of the matrix remodelling 

factors PAI1 and PAI2, which activate plasmin and MMPs to degrade ECM proteins. 

Fibroblasts overexpressing PAI1/2 also demonstrated an increase in autophagy, 

suggesting that ECM remodelling and degradation may have an unexplored role in 

regulating stromal metabolism. It is possible that either the protein break down 

products or pro-autophagic factors released from the degraded ECM stimulate 

autophagy in mammary CAFs (Castello-Cros et al., 2011). Other ECM related 

proteins such as the growth factors CTGF and MSF, which is a truncated form of 

fibronectin, have also been shown to promote the reverse Warburg effect in 

mammary CAFs. CTGF led to HIF1α stabilisation and thereby increased autophagy 

and glycolysis, whereas MSF stimulated Akt and mTOR signalling to promote 

glycolysis in mammary CAFs (Capparelli et al., 2012, Carito et al., 2012). 

Interestingly the reverse Warburg effect has been further shown to enable drug 

resistance in breast cancer cells. Increased oxidative phosphorylation mediated 

by TIGAR enabled tamoxifen resistance in MCF7 cells. The cells could be 

resensitised to tamoxifen by treating them with anti-mitochondrial drugs such as 

metformin (Martinez-Outschoorn et al., 2011a). 

 

All the above studies were carried out using only mammary CAFs, however, 

aspects of the reverse Warburg effect, namely increased glycolysis and autophagy 

in CAFs, have been observed in other cancers. In prostate cancer, a similar 

coupling of lactate metabolism was observed with CAFs expressing high levels of 

MCT4 and tumour cells expressing MCT1. Also in fibroblasts derived from prostate 

cancer, activation by TGF-β or PDGF was demonstrated to increase glycolysis by 

causing downregulation of isocitrate dehydrogenase 3α (IDH3α). This led to an 

imbalance in the α-ketoglutarate-succinate ratio, causing inhibition of PDH2 and 

HIF1α stabilisation, thus mimicking the upregulation of glycolysis caused by the 

hypoxic response. IDH3α downregulation was also seen in the stroma of prostate 

cancer patients, suggesting that this mechanism occurs in vivo (Zhang et al., 

2015). In ovarian cancer, BRCA mutated ovarian cancer cells were shown to 
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produce hydrogen peroxide, stimulating oxidative stress and thereby autophagy, 

mitophagy and increased glycolysis including higher MCT4 expression in ovarian 

CAFs via upregulation of NFκB signalling (Martinez-Outschoorn et al., 2012). In 

pancreatic tumours, PDAC tumour cells stimulated autophagy in pancreatic 

stellate cells leading to stromal alanine secretion. Alanine was then used in 

preference to glucose and glutamine, which can be limited in the tumour 

microenvironment, to fuel the TCA cycle and amino acid and lipid synthesis in the 

tumour cells and also rescued the growth of PDAC cells under nutrient deprived 

conditions (Sousa et al., 2016). In another study, pancreatic CAFs had increased 

expression of glycolytic enzymes such as LDHA, MCT4 and PKM2 compared to NFs, 

and conditioned media from CAFs both stimulated mitochondrial biogenesis and 

upregulated expression of MCT1 and TCA cycle enzymes fumarate dehydrogenase 

and succinate dehydrogenase in pancreatic cancer cell lines (Shan et al., 2017). 

 

Upregulated glycolysis is not a feature of all CAFs, however. Although many of the 

aforementioned studies in breast cancer demonstrated the existence of the 

reverse Warburg effect in breast tumours, many of the co-culture and xenograft 

experiments were carried out using MCF7 cancer cells. ER+ breast cancer cells, 

such as MCF7, have previously been shown to rely more on mitochondrial 

metabolism whereas the more aggressive HER2+ and TNBC subtypes are more 

glycolytic (Choi et al., 2013, Lanning et al., 2017). The study by Choi et al. 

classified stromal-tumour metabolic relationships by using immunohistochemistry 

to determine whether the stromal and tumour compartments used predominantly 

glycolytic or oxidative metabolism. The authors found a mixture of traditional 

Warburg, reverse Warburg, mixed (both tumour and stroma are glycolytic) or null 

(both tumour and stroma are oxidative) metabolic relationships between tumour 

and stroma. Lower grade ER+ tumours displayed the highest proportion of the 

reverse Warburg phenotype, and TNBC and HER2+ tumours constituted the 

majority of traditional Warburg and mixed metabolism phenotypes. Therefore, 

targeting the reverse Warburg effect in breast cancer stroma might be more 

effective in ER+ patients. In support of this, a study showed that CAFs from the 

more aggressive basal-like breast cancers stimulated glucose uptake in both basal 

and luminal cancer cells, whereas CAFs derived from luminal breast cancers 

suppressed glucose uptake in cancer cells, which is more reminiscent of the 

reverse Warburg effect (Brauer et al., 2013).  
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Several other studies have demonstrated that the Reverse Warburg effect is not a 

feature of all CAFs. In prostate cancer, one study found that p62 is downregulated 

in prostate cancer stroma. The authors showed that p62 loss was involved in 

increased ROS production by the CAFs, which is consistent with the reverse 

Warburg effect, but that this was mediated through metabolic reprogramming 

involving a decrease in glutamine metabolism, as well as a decrease in glucose 

uptake and lactate secretion, which is directly in contradiction with the catabolic 

metabolism of the Reverse Warburg effect theory (Valencia et al., 2014). Another 

recent study demonstrated that in head and neck squamous cell carcinoma CAFs 

actually induced a more glycolytic phenotype in the tumour cells, and utilised the 

lactate produced by the glycolytic tumour cells for oxidative phosphorylation, 

which again is in opposition to the reverse Warburg effect (Kumar et al., 2018). 

Similarly, in co-cultures of lung cancer cells and fibroblasts, the fibroblasts were 

found to upregulate pyruvate dehydrogenase and the lactate importer MCT1, 

suggesting a more oxidative metabolism, whereas the tumour cells upregulated 

lactate dehydrogenase and decreased pyruvate hydrogenase activity which is in 

accordance with the glycolytic tumour phenotype of the traditional Warburg 

effect (Koukourakis et al., 2017). In a mass-spectrometry based analysis of 

metabolism in lung derived CAFs and NFs, although it was found that CAFs had 

metabolic markers of increased autophagy, such as dipeptides, the levels of these 

markers correlated with the glycolytic capacity of the tumour which the CAFs were 

derived from. Therefore in this study, increased autophagy in the CAFs did not 

seem to be related to mitochondrial metabolism in the tumours, and instead 

verified the original Warburg effect theory that more glycolytic tumours are more 

aggressive. Even without promoting a switch to mitochondrial metabolism in 

cancer cells, CAF autophagy can still provide cancer cells with nutrients, such as 

amino acids, lipids and nucleic acids, as well as protecting against oxidative 

damage (Kimmelman, 2011).  

   

Therefore although autophagy does seem to be a common feature of the CAF 

phenotype, providing tumour cells with metabolites to fuel growth and metastasis, 

the question of whether CAFs develop a glycolytic metabolism to fuel oxidative 

metabolism in tumour cells via lactate transfer has not been resolved. Given the 

high levels of heterogeneity in CAFs previously discussed, it is likely that the 
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reverse Warburg effect is present in some tumours but further stratification is 

needed to determine which tumours might respond to therapies targeting this 

aspect of tumour-stroma crosstalk. In breast cancer, it is likely that the reverse 

Warburg effect occurs predominantly in lower grade, ER+ tumours. 

 

Other mechanisms of metabolic coupling between CAFs and tumour cells have 

been discovered. In ovarian cancer, CAFs were shown to upregulate synthesis of 

glutamine, which was then taken up and used by the tumour cells to fuel 

glutamate synthesis. By simultaneously targeting glutamine synthase in CAFs and 

glutaminase in cancer cells in an orthotopic mouse model of ovarian CAFs the 

authors were able to reduce both tumour growth and metastasis (Yang et al., 

2016). Another study in ovarian cancer showed that glutathione and cysteine 

released by CAFs promotes resistance to platinum-based chemotherapy (Wang et 

al., 2016). In PDAC, activation of pancreatic stellate cells was recently shown to 

induce production and secretion of lipids, including lysophosphatidylcholines, 

which were used by the tumour cells to produce components of cell membranes, 

facilitating proliferation, and also to support migration and Akt activation 

(Auciello et al., 2019). CAFs can further provide tumour cells with nutrients 

through secretion of exosomes. In PDAC, pancreatic stellate cells produce 

exosomes containing amino acids including alanine, which, as discussed above, 

has been shown to be an important metabolite driving mitochondrial metabolism 

in PDAC cells (Zhao et al., 2016). The exosomes also contained glucose, glutamine, 

lactate, acetate, TCA cycle metabolites and lipids, all of which can be used to 

fuel tumour growth.  

 

Taken together, all of these studies show that, as with most other aspects of their 

phenotype, CAFs are metabolically highly diverse and promote tumour growth, 

metastasis and chemoresistance through upregulation of a variety of metabolic 

pathways. However, there is a common thread running through them in that the 

highly secretory phenotype of CAFs clearly extends to their metabolism, as all of 

these studies focus on how CAFs secrete metabolites to promote tumour 

progression. 
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1.5 The role of metabolism in collagen production 

 

Since both metabolism and upregulated ECM production have been shown to be 

vitally important aspects of the CAF phenotype, an interesting question that has 

been little explored is whether alterations in CAF metabolism regulate ECM 

production. The many studies discussed in the previous section on how CAFs rewire 

their metabolism predominantly focus on how this enables CAFs to secrete 

metabolites, which can be taken up and used as fuel by cancer cells, but little 

research has been done on how fibroblast metabolism might underpin other 

aspects of their activated phenotype. Since collagen is such a major part of the 

protein output of activated fibroblasts, it is reasonable to suggest that there may 

be energetic requirements necessary to maintain this, or requirements for amino 

acids to support the translational output. In recent years, a few studies have 

shown this to be the case. It was shown that fibroblasts require an increase in 

glucose uptake and glycolysis to maintain TGF-β-induced collagen production in 

fibrosis, demonstrating a need for increased energy to fuel protein synthesis 

(Nigdelioglu et al., 2016). At the amino acid level, two recent studies have 

demonstrated that upregulation of glycine and serine production is required to 

maintain upregulated collagen synthesis in fibrotic disease. As discussed 

previously, collagen is predominantly made up of the Gly-X-Y motif, meaning that 

approximately 1/3 of collagen amino acid residues are glycine. The first study 

demonstrated that TGF-β treatment of fibroblasts caused upregulation of enzymes 

involved in de novo synthesis of glycine and serine from glucose, such as PHDGH 

and SHMT2. PHDGH and SHMT2 are also upregulated in lungs from patients with 

idiopathic pulmonary fibrosis, and inhibition of PGDGH or SHMT2 by genetic or 

pharmacological means led to reduced collagen production by fibroblasts. Since 

glycine is synthesised from serine, this implies that upregulation of glycolysis in 

fibrosis is used to fuel the serine/glycine synthesis pathway and increased glycine 

production is required for collagen synthesis (Nigdelioglu et al., 2016). More 

recently, Selvarajah et al. elucidated the mechanism of this pathway and showed 

that canonical TGF-β signalling through Smad3 in fibroblasts enhanced expression 

of glycine synthesis enzymes via activation of mTORC1 leading to upregulation of 

the transcription factor ATF4. ATF4 induced transcription of the glucose importer 

GLUT1 and enzymes for synthesising serine and glycine from glucose. Inhibition of 

this pathway reduced glycine incorporation into collagen (Selvarajah et al., 2019). 
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These two studies demonstrated a need for amino acid synthesis to maintain the 

increased collagen output of activated fibroblasts, and discovered a further role 

for TGF-β activation of glycolysis in activated fibroblasts: to produce glycine for 

collagen synthesis. Although these studies were carried out in the context of lung 

fibrosis, since CAFs and fibroblasts in fibrotic disease share many similarities in 

the upregulation of ECM production the mechanism is likely to be relevant for CAFs 

as well. 

 

A requirement for glycine for collagen synthesis by fibroblasts has therefore been 

demonstrated, but a requirement for proline, the second most abundant amino 

acid in collagen, has been little studied. Some nutritional studies have shown that 

a diet supplemented with proline improves growth in young animals, which could 

be linked to an increased ability to synthesise proline-rich proteins such as 

collagens (Wu et al., 2011). A recent study of collagen synthesis in chondrocytes 

showed that supplementing media with proline, lysine or glycine, but not other 

amino acids, stimulated an increase in collagen production, although interestingly 

both proline and lysine had a greater effect at lower doses whereas glycine 

supplementation maintained a consistent level of collagen production at higher 

doses, suggesting that an excess of proline and lysine might adversely affect the 

cells (de Paz-Lugo et al., 2018).  

 

Another metabolic aspect of collagen synthesis is the requirement for prolyl and 

lysyl hydroxylases, which convert α-ketoglutarate to succinate as a by-product of 

the hydroxylation reaction. The α-KG:succinate ratio is therefore very important 

for prolyl hydroxylase function as an excess of α-KG activates the enzymes 

whereas an excess of succinate is inhibitory (Gorres and Raines, 2010). The impact 

of the α-KG:succinate ratio on prolyl hydroxylases has mostly been studied in the 

context of HIF-1α, which is targeted for degradation when hydroxylated 

(MacKenzie et al., 2007, Selak et al., 2005, Zhang et al., 2015). The requirement 

for α-KG by prolyl hydroxylases has also been linked to amino acid sensing by 

mTOR, since α-KG is a degradation product of several amino acids and the product 

of glutamine deamination (Duran et al., 2013). As previously discussed, mTOR 

activation has also been linked to collagen production through activation of 

glycine synthesis. It has further been shown that α-KG promotes collagen 

formation by fibroblasts, both by activation of mTOR and by proline hydroxylation 
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of procollagen (Ge et al., 2018). A more recent study demonstrated that HIF-1α 

activation in chondrocytes led to increased glutaminolysis and thereby 

accumulation of α-KG. This enhanced proline and lysine hydroxylation on collagen, 

making the matrix more resistant to degradation by MMPs and ultimately resulting 

in skeletal dysplasia (Stegen et al., 2019). Since HIF-1α signalling is also often 

activated in CAFs, this mechanism could also be relevant for increased collagen 

modification in the tumour microenvironment. Another recent study 

demonstrated that breast cancer cells require extracellular pyruvate to fuel α-KG 

synthesis and thus maintain activation of the prolyl hydroxylase P4HA. Inhibition 

of the pyruvate transporter MCT2 resulted in decreased collagen hydroxylation 

and functionality in vivo, and this could be rescued by α-KG. Furthermore 

succinate, which inhibits P4HA, also inhibited pyruvate driven proline 

hydroxylation. The authors also demonstrated that collagen hydroxylation was 

dependent on pyruvate and the α-KG:succinate ratio in CAFs but not in normal 

fibroblasts (Elia et al., 2019). 

 

Therefore, metabolic rewiring in CAFs is an important factor to maintain the 

increase in collagen synthesis that accounts for the majority of CAF-derived ECM. 

CAFs both increase the synthesis of specific amino acids to support translation of 

collagen and maintain the α-KG:succinate ratio to promote the activity of prolyl 

and lysyl hydroxylases, which are essential for the correct folding and stabilisation 

of collagen proteins. 

 



49 
 

1.6 An overview of PDH and PYCR1 and their roles in 

cancer 

 

1.6.1 Pyruvate dehydrogenase 

 

In my thesis, the first of the two key metabolic enzymes I investigated was 

pyruvate dehydrogenase (PDH). Pyruvate dehydrogenase is an extremely 

important metabolic enzyme because it sits at the centre of glucose and oxidative 

metabolism, connecting the two major metabolic pathways in the cell: glycolysis 

and the TCA cycle. For this reason it has been named the ‘mitochondrial 

gatekeeper’. Inhibition of PDH generally results in a more glycolytic metabolism 

and activation leads to oxidative, mitochondrial metabolism. The reaction 

catalysed by PDH involves the reduction of 3-carbon pyruvate to 2-carbon acetyl-

coA, with the release of carbon dioxide and the reduction of NAD+ to NADH. The 

pyruvate dehydrogenase complex (PDC) is made up of three subunits: E1 (Pyruvate 

dehydrogenase or PDH), E2 (Dihidrolipoyl transacetylase or DLAT) and E3 

(Dihydrolipoyl dehydrogenase or DLD). The E1 subunit catalyses the rate limiting 

step, which is the decarboxylation of pyruvate into an acetyl group and CO2, with 

vitamin B6 as a cofactor. The acetyl group reduces a lipoyl moiety linked to the 

E2 subunit. The E2 subunit then catalyses the transacylation reaction transferring 

the acetyl group to the thiol of coenzyme A producing acetyl-coA. Finally, the E3 

subunit restores the complex to the resting state by reoxidising the lipoyl 

moieties, mediated by the reduction of NAD+ to NADH with FAD as a cofactor (Fig. 

1-1).  

 

The conversion of pyruvate to acetyl-coA is irreversible, and therefore the flux 

through the pyruvate dehydrogenase complex is tightly regulated (Patel and 

Korotchkina, 2006). Since the E1 subunit catalyses the rate limiting reaction, it 

has been the most highly studied and is the subunit subject to most regulation at 

the post translational level and by allosteric binding. Allosterically, the products 

of the reaction, acetyl-coA and NADH, both inhibit PDH activity. At the post-

translational level, the major way that the E1 subunit is regulated is through 

inhibitory phosphorylation (Harris et al., 2001). The PDC has four regulatory 

phosphorylation sites. Three of these are on the E1 alpha subunit (PDHA1) and are 
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regulated by pyruvate dehydrogenase kinases (PDKs): S293, S232 and S300. The 

fourth, Y301, is on the E2 subunit and is thought to be phosphorylated by 

epidermal growth factor (EGF) and other tyrosine kinases (Fan et al., 2014), 

causing obstruction of pyruvate binding. The S293 site is the most well-studied 

and is also the most potent, as phosphorylation reduces PDH activity by over 97% 

by blocking the active site (Patel and Korotchkina, 2006).  

 



51 
 
 

 

Diagram showing the reaction catalysed by each of the three PDC subunits to 

produce acetyl-coA from pyruvate 

 

Figure 1-2 Reaction catalysed by PDC 
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1.6.2 Regulation of PDH phosphorylation 

 

There are four PDKs in mammals, named PDK1-4, which share ~70% homology. The 

different PDKs preferentially phosphorylate different sites. PDK1 is the only PDK 

known to phosphorylate all three sites of PDHA1, but all PDKs will phosphorylate 

S293 and S300 in vitro (Patel and Korotchkina, 2001). S293 is the site most rapidly 

phosphorylated in PDH isolated from mammalian tissues (Yeaman et al., 1978). 

PDK2 exhibits the highest affinity for the S293 phosphorylation site, followed by 

PDK4, PDK1 and PDK3 and therefore PDK2 activity has the greatest effect on PDH 

inhibition, at least in vitro. The different PDK isoforms further show differences 

in tissue distribution. In rat tissue, PDK1 and PDK4 are predominantly found in 

heart and skeletal muscle, PDK2 is expressed in most tissues and PDK3 is most 

highly expressed in the testes and lungs (Bowker-Kinley et al., 1998). In mouse 

tissues, PDK1 and PDK2 were ubiquitously expressed whereas PDK3 and PDK4 were 

more limited. PDK3 was found only in testes, lung, brain and heart. PDK4 was only 

expressed at very low levels in muscular tissues (Klyuyeva et al., 2019). 

 

Regulation of the PDKs is as diverse as the differential tissue expression. In 

general, all the PDKs can be activated by the outputs of the PDH-catalysed 

reaction: mitochondrial acetyl-coA and NADH. They can be additionally activated 

by ATP, as are many kinases. Conversely, pyruvate, NAD+ and ADP inhibit the PDKs 

(Pratt and Roche, 1979, Hansford, 1976, Cate and Roche, 1978). However, the 

combination of NADH and acetyl-coA increases the activity of PDK1 and PDK2 by 

200-300 fold, whereas PDK3 is unresponsive to NADH and PDK4 is unresponsive to 

acetyl-coA and only increases its activity 2 fold with NADH stimulation (Bowker-

Kinley et al., 1998). PDK1 has been shown in several studies to be upregulated by 

HIF1α signalling in hypoxia to promote a more glycolytic metabolism by blocking 

flux into the TCA cycle. This maintains ATP production whilst blocking ROS 

accumulation (Kim et al., 2007, Kim et al., 2006a, Papandreou et al., 2006). 

Another study demonstrated that under hypoxia, Akt accumulates in the 

mitochondria and phosphorylates PDK1 to activate it (Chae et al., 2016). 

Therefore hypoxia appears to be a major regulator of PDK1 activity. PDK3 has also 

been shown to be upregulated by hypoxia (Lu et al., 2008). Both PDK2 and PDK4 

have been shown to be upregulated by starvation and in diabetes (Huang et al., 

2002) and insulin decreases the expression of both PDK2 and PDK4 (Kim et al., 
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2006c). Little is known about how PDK2 is regulated by insulin, but the PDK4 

promoter contains insulin response sequences which are binding sequences for the 

FOXO1 and FOX3 transcription factors, which have been shown to upregulate PDK4 

transcription (Furuyama et al., 2003). The nuclear hormone receptors PPARs have 

also been associated with increased expression of PDK2, PDK3 and PDK4, possibly 

via FOXO activity, however the evidence suggests that PDK2 is probably not a 

direct target of PPARs (Degenhardt et al., 2007, Holness and Sugden, 2003). Other 

nuclear hormone receptors and factors that have been shown to upregulate PDK4 

expression include the glutocorticoid receptor, Estrogen-related receptors and 

Thyroid hormone receptors (Huang et al., 2002, Zhang et al., 2006, Attia et al., 

2010, Connaughton et al., 2010). However, none of these pathways have 

conclusively been shown to also upregulate PDK2 expression. Interestingly, p53 

has been shown to repress PDK2 activity which could contribute to metabolic 

alterations and increased glycolysis in tumours with p53 mutations (Contractor 

and Harris, 2012). Therefore PDK1 and PDK3 appear to be predominantly activated 

by hypoxia, whereas PDK2 and PDK4 are more responsive to metabolic stimuli such 

as starvation and insulin. The regulation of PDK4 is better understood than that of 

PDK2, despite PDK2 being the more ubiquitously expressed throughout the body. 

 

PDH phosphorylation by the PDKs is opposed by pyruvate dehydrogenase 

phosphatases of which there are two isoforms: PDP1 and PDP2. Little is known 

about their regulation in comparison to the PDKs. Both PDPs are activated by 

insulin, in contrast to the inhibitory effect of insulin on PDK2 and PDK4 (McLean 

et al., 2008). PDP1 activity is also known to be stimulated by Ca2+ ions, but PDP2 

is not. As with the PDKs, the PDPs are expressed in a tissue specific manner. PDP1 

is the predominant isoform in skeletal muscle, whereas PDP2 is more abundant in 

the liver and in adipocytes (Huang et al., 1998). PDHA1 phosphorylation has 

further been shown to be downregulated by PI3K/Akt signalling, although it is 

unclear which PDKs and/or PDPs are responsible for this (Cerniglia et al., 2015). 
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1.6.3 Regulation of PDH activity by acetylation 

 

Due to the high concentration of acetyl-coA, which is the substrate for protein 

acetylation, in the mitochondria, many proteins are auto-acetylated and this can 

impact on their activity. Acetylation in the mitochondria is predominantly 

regulated by deacetylases, the major mitochondrial deacetylase being SIRT3 

(Lombard et al., 2007). Although not so highly characterised as PDH 

phosphorylation, a few studies have investigated the role of PDH acetylation. 

K321, which is the lysine residue that binds the FAD cofactor, has been identified 

as a regulatory acetylation site on the E1 subunit that inhibits PDH activity when 

acetylated. Deacetylation by SIRT3 restored PDH activity (Ozden et al., 2014). 

Treatment with a SIRT3 inhibitor increased PDH acetylation and decreased its 

activity in myocardial tissue (Zhang et al., 2018). In a further study, both PDH and 

PDP1 were shown to be regulated by acetylation. Again, K321 acetylation was 

shown to inhibit PDH activity by recruiting PDK1, and PDP1 acetylation on K202 

caused PDP1 to dissociate from PDH, leading to an overall increase in glycolytic 

metabolism (Fan et al., 2014). PDH was also shown to be more acetylated in mice 

fed a high fat diet; it is possible that acetylation decreased PDH activity so that 

fatty acid oxidation could take over as the main source of acetyl-coA in the 

mitochondria (Thapa et al., 2017). Therefore acetylation, like phosphorylation, is 

an inhibitory modification for PDH, and can furthermore provide a mechanism to 

reduce PDH activity if there is an excess of acetyl-coA that is not converted to 

citrate, maintaining metabolic homeostasis. 

 

1.6.4 The varied roles of PDH 

 

The acetyl-coA produced by the PDH complex is a highly versatile metabolite. It 

consists of an acetyl group joined by a thioester bond to Coenzyme A, which is a 

derivative of vitamin B5 and cysteine. The thioester bond is high in energy, and 

therefore the acetyl group can easily be transferred to acceptor molecules such 

as metabolites or proteins. Acetyl-coA from PDH is one of two routes that pyruvate 
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can take to enter the TCA cycle and therefore controls the flux into the TCA cycle 

from glycolysis. Acetyl-CoA can then be exported out of the mitochondria either 

via citrate or acetylcarnitine, where it can be used for fatty acid, sterol and 

ketone body synthesis. PDH thus links glucose, oxidative and lipid metabolism (Fig. 

1-2). It is vital for an organism to be able to adapt nutrient usage to nutrient 

availability, that is, to be able to rapidly switch between using carbohydrates or 

lipids depending on supply, because the inability to do this leads to diseases such 

as diabetes, obesity and metabolic syndrome. PDH therefore sits at a central 

metabolic point.  Finally, acetyl-coA is the substrate for protein acetylation which 

is a key post-translational modification, especially in the nucleus where histone 

acetylation can drastically alter the epigenetic code.  

 

The majority of the studies on PDH activity have focussed on its ability to switch 

cell metabolism from glycolytic to oxidative and vice versa. The PDKs play a vital 

role in the metabolic flexibility of different organs, particularly PDK2 and PDK4. 

PDK4 is upregulated in skeletal muscle during and after exercise to inactivate the 

PDH complex and promote glycolysis. This enables increased ATP production 

during exercise to meet the higher energy demands and subsequently allows the 

cells to replenish glycogen stores to restore metabolic homeostasis (Pilegaard and 

Neufer, 2004). The PDH complex is also a crucial enzyme in the liver, which 

regulates blood glucose levels and the supply of other nutrients to tissues. In 

fasting conditions, the liver must produce glucose from non-carbohydrate sources 

by gluconeogenesis. Inactivation of PDH by upregulating PDK4 enables pyruvate 

derived from glucose to directly enter the TCA cycle via oxaloacetate rather than 

being used for fatty acid synthesis. This promotes the use of lipids for 

gluconeogenesis (Randle, 1986). In the liver, conversion of glucose to lipids is also 

important for storing energy. PDH knockdown decreased fatty acid synthesis in 

the liver. Interestingly, PDH knockdown also decreased expression of lipid 

synthesis genes, suggesting that acetyl-coA is not only a building block for lipid 

synthesis but also a regulator of gene expression, possibly through altering histone 

acetylation (Mahmood et al., 2016). As mentioned earlier, PDH plays an important 

role in the switch to glycolytic metabolism in hypoxia, via HIF-1α upregulation of 

PDK1 to phosphorylate and inhibit PDH activity. This is important to block access 

to the TCA cycle and initiate the switch to lactate production, increasing ATP 



56 
 
synthesis and reducing toxic ROS production in the mitochondria to prevent 

hypoxia-induced apoptosis (Kim et al., 2006a). 

 

Failure to correctly regulate PDH activity leads to disease. Pyruvate 

dehydrogenase deficiency leads to a build-up of lactate leading to acidosis and 

genetic disorders such as encelopathy, demonstrating the importance of PDH in 

regulating oxidative metabolism (Asencio et al., 2016). PDH activity also plays an 

important role in insulin resistance, which is characterised by an inability to switch 

from lipid to glucose oxidation when stimulated. Insulin resistant patients have 

increased PDK2 and PDK4 expression, and fail to reduce PDK4 expression in 

response to insulin, demonstrating the importance of regulating PDH activity to 

maintain metabolic flexibility (Kim et al., 2006c). Metabolic flexibility is also 

important in the heart, because the heart has to be able to rapidly oxidise glucose 

to meet energy demands. PDK4 is upregulated in cardiomyopathy, and 

overexpression of PDK4 in cardiac tissue in mice led to a decrease in glucose 

catabolism and increased hypertrophy and death (Zhao et al., 2008). Interestingly, 

PDH activity has also been linked to neurological disorders. The brain relies 

primarily on glucose oxidation for energy, which requires an active PDH. 

Alzheimers disease has been linked to dysfunctional glucose metabolism involving 

a reduction in PDH activity (Yao et al., 2009), and the expression of PDK1 and 

PDK2 is upregulated in the aging brain (Nakai et al., 2000). 

 

Although the PDH complex is a major source of acetyl-coA in cells and it is known 

that acetyl-coA is the substrate for protein acetylation, there are few studies 

showing that PDH activity has a direct impact on protein acetylation. Mitochondria 

are known to have a disproportionately high level of acetylated proteins, and this 

is thought to occur due to the high concentration of acetyl-coA in the mitochondria 

which stimulates autoacetylation of lysine residues (Baeza et al., 2016). 

Acetylation of mitochondrial proteins is generally inhibitory (Anderson and 

Hirschey, 2012). PDH activity could therefore regulate mitochondrial acetylation 

to control mitochondrial metabolism. Although PDH is typically a mitochondrial 

protein, studies have shown that PDH can be located in the nucleus in lung 

fibroblasts, where the acetyl-coA it produces is used to acetylate specific lysine 

residues on histones to enable cell cycle progression (Sutendra et al., 2014, Chen 

et al., 2018). Mitochondrial acetyl-coA production can also affect histone 
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acetylation. Recently, studies have shown that mitochondrial dysfunction leads to 

decreased histone acetylation. Under conditions of mitochondrial DNA depletion, 

the pool of mitochondrial acetyl-coA was reduced, leading to loss of histone 

acetylation, and particularly of H3K9 and H3K27 acetylation (Lozoya et al., 2019). 

However whether this is due specifically to loss of PDH activity or is a general 

response to mitochondrial dysfunction is unclear. Similarly, loss of the 

transcription factor TFAM, which is important for transcription of mitochondrial 

genes, led to decreased mitochondrial metabolism and a corresponding decrease 

in histone acetylation in erythroid cells (Liu et al., 2017). However, at present 

there is still no direct link between mitochondrial PDH activity and nuclear histone 

acetylation in the literature. 
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Diagram showing the production of acetyl-coA by PDH and the varied metabolic 

and acetylation pathways that acetyl-coA can be used for both inside and 

outside the mitochondria. 

 

Figure 1-3 Acetyl-coA is a central metabolite 
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1.6.5 PDH activity in cancer 

 

In addition to regulating metabolic diseases, PDH activity has been shown to play 

a critical role in cancers in many studies. One of the most well-known metabolic 

alterations in tumour cells is the Warburg effect, in which cancer cells become 

more glycolytic. PDH is a key player in this, and PDKs are upregulated in many 

cancers in order to inhibit oxidative metabolism and promote glycolysis. PDK1 is 

upregulated in several types of cancer and high PDK2 expression in cervical cancer 

cells is a prognostic factor for metastasis and poor survival (Lyng et al., 2006). 

PDK3 expression is increased in colorectal cancer and is associated with drug 

resistance and tumour relapse (Lu et al., 2011). PDK4 has been shown to be both 

up and downregulated in various cancers including lung, ovarian, breast and 

prostate tumours (Grassian et al., 2011, Ross et al., 2000). Therefore in some 

tumours an increase in PDH activity is required, possibly to produce acetyl-coA for 

fatty acid synthesis, which can be upregulated in cancer cells. Furthermore, as 

discussed previously, in the reverse Warburg effect some tumours rely more on 

lactate uptake to fuel oxidative phosphorylation than on glycolysis. This would 

require a more active PDH and therefore reduced PDK4 expression would be 

beneficial. The role of PDK1 in mediating metabolic adaptation to hypoxia is also 

important in the context of cancer, where hypoxia is a commonly occurring stress 

in the tumour microenvironment due to poor oxygenation by dysfunctional blood 

vessels. PDK-mediated inhibition of PDH activity has also been associated with 

metastasis. PDK4 upregulation enhanced the ability of mammary cancer cells to 

resist matrix detachment-induced apoptosis, otherwise known as anoikis, which is 

a barrier to metastasis (Kamarajugadda et al., 2012). 

 

Targeting PDH to increase its activity and reduce the Warburg effect has been 

proposed as a metabolic therapy for cancer. Several studies have shown that 

increasing PDH activity reduces cancer aggressiveness. For example, in BRAF 

driven melanoma, senescence was shown to be mediated by PDK1 downregulation 

and induction of PDP2 to activate PDH activity. Furthermore, PDK1 knockdown in 

BRAFV600E cell lines made them more sensitive to BRAF inhibitors (Kaplon et al., 

2013). Dichloroacetate (DCA), which activates PDH by inhibiting the PDKs, is the 

most well studied drug targeting PDH. It is already used clinically to target lactic 

acidosis, and was shown to have anti-tumour properties, causing apoptosis in 
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several cancer cell lines and reducing tumour growth in xenografts (Bonnet et al., 

2007, Michelakis et al., 2008). In breast and non-small cell lung cancer xenografts, 

inhibition of PDK2 with DCA also reduced angiogenesis and suppressed 

pseudohypoxic HIF signalling (Sutendra et al., 2013). DCA has shown additive or 

synergistic effects in pre-clinical experiments in combination with already existing 

therapies, including radiation, metformin, cisplatin and bevacizumab (Cao et al., 

2008, Florio et al., 2018, Kumar et al., 2013a, Kumar et al., 2013b). As a cancer 

therapy, DCA has been effective in treating some individual cases (Flavin, 2010a, 

Flavin, 2010b). In clinical trials however, its effectiveness has not been 

conclusively demonstrated so far. In a trial on glioblastoma patients, some 

patients showed a response, but a phase II clinical trial on breast and non-small 

cell lung cancer had to be halted due to safety concerns and DCA had no effect on 

head and neck cancer in phase II trials (Powell, 2015, Dunbar et al., 2014, Garon 

et al., 2014). Conversely, inhibiting PDH has shown great effectiveness in some 

cancers. CPI-613, which inhibits both PDH and α-ketoglutarate dehydrogenase to 

block mitochondrial metabolism, has been shown to improve response and 

enhance sensitivity to chemotherapy in AML, T-cell lymphoma and pancreatic 

cancer, and is currently in stage II and III clinical trials for treatment of pancreatic 

cancer patients (Pardee et al., 2018, Alistar, 2018, Lamar, 2016). Therefore it 

appears that PDH activity can have both positive and negative effects on tumour 

progression, and further investigation is needed in order to determine which 

tumours would benefit from PDH-targeting therapy and whether to inhibit or 

activate PDH. 

 

Although there has been much research on PDH activity in cancer cells, little is 

known about its role in the stroma. As discussed earlier, the metabolism of the 

stroma is often the opposite to that of the tumour, creating a metabolic symbiosis. 

Therefore if tumour cells have an inactive PDH to promote glycolysis, it is possible 

that PDH is more active in the stroma and promoting a more oxidative metabolism. 

In support of this, one study has found that PDH expression is upregulated in lung 

fibroblasts co-cultured with cancer cells, and, conversely, the cancer cells 

upregulate PDK1 expression to reduce PDH activity and promote glycolysis 

(Koukourakis et al., 2017). On the other hand, one of the studies demonstrating 

the existence of the reverse Warburg effect, PDH expression was found to be 

downregulated in CAFs in response to oxidative stress as part of the switch to 
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glycolytic metabolism (Martinez-Outschoorn et al., 2010). Therefore the role of 

PDH in the stroma is still an open question, and may depend on whether the 

tumour the CAFs are derived from has a more glycolytic or oxidative metabolism. 

 

1.6.6 PYCR1 and proline metabolism 

 

Pyrroline-5-carboxylate reductase 1 (PYCR1) is the second metabolic enzyme that 

I discovered regulated in mammary CAFs during my PhD. PYCR1 catalyses the final, 

rate limiting step in proline production from glutamate or ornithine in cells: the 

NAD(P)H dependent conversion of pyrroline-5-carboxylate (P5C) to proline. P5C is 

the intermediate linking the two pathways of proline synthesis, and is synthesised 

from glutamate by P5C synthase (P5CS or ALDH18A) or from ornithine by ornithine 

aminotransferase (OAT) (Fig. 1-4). Proline is an unusual amino acid because its α-

amino group is contained within its pyrrolidine ring, and therefore its metabolic 

pathways of synthesis and degradation are distinct from those of other amino 

acids. For example proline does not undergo decarboxylation, deamination and 

other pyridoxal phosphate (vitamin B6) catalysed reactions typical of other amino 

acids (Adams and Frank, 1980). 

 

There are three homologous PYCR genes: PYCR1, PYCR2 and PYCR3. De Ingeniis et 

al. showed that PYCR1 and PYCR2 are mitochondrial, whereas PYCRL is 

cytoplasmic. The authors also suggested that PYCR1 and PYCR2 mainly use 

glutamate as a source of proline whereas PYCR3 participates only in the conversion 

of ornithine to proline. However, these results were only demonstrated in 

melanoma cells, so whether they are also relevant in other cell lines is unknown. 

Other studies suggest that P5C is derived from either glutamate or ornithine in the 

mitochondria and can then be exported for conversion to proline by PYCR3 (Tanner 

et al., 2018). The three isoforms also differ in their response to product inhibition: 

PYCR2 is the most highly inhibited by proline, followed by PYCR1, and PYCR3 is 

not inhibited by proline within a physiological range (De Ingeniis et al., 2012). 

PYCR3 could therefore maintain a baseline level of proline synthesis even when 

cytosolic proline levels are high.  
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Diagram showing the production of proline from both ornithine and glutamate, with the final 

step being catalysed by PYCR1 

 

Figure 1-4 Proline synthesis pathway 
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Proline synthesis plays an important role in protecting cells from stress. The 

production of proline by PYCR1 oxidises NAPDH or NADH to NADP+/NAD+, which 

can support glycolysis and the pentose phosphate pathway (Liu et al., 2015). 

Equally, the interconversion of P5C and PYCR1 creates a shuttle of the redox 

equivalents NADPH/NAP+ between the mitochondria and cytosol, meaning that 

proline production plays a role in maintaining redox homeostasis (Hagedorn and 

Phang, 1983). Furthermore, the proline molecule itself protects against ROS via 

the secondary amine of the pyrrolidine ring and has also been reported to protect 

against photoxidative UVA damage (Wondrak et al., 2005). The importance of 

proline production to protect against ROS has been demonstrated in several 

studies. For example, treatment of mammalian cell lines with hydrogen peroxide 

resulted in increased PYCR1 expression, and higher PYCR1 expression was then 

found to protect cells from ROS-induced apoptosis. Conversely, overexpression of 

proline dehydrogenase (PRODH) resulted in decreased intracellular proline levels 

and decreased resistance to ROS (Krishnan et al., 2008). Interestingly, both PYCR1 

and PYCR2 have been found to interact with and promote the activity of RRM2B, 

a protein which promotes DNA damage repair in response to oxidative stress, in 

fibroblasts, showing that the anti-oxidant properties of PYCR1 are not solely due 

to its role in proline production but that it also plays a role in the wider cellular 

response to oxidative stress (Kuo et al., 2016). Further demonstrating the diverse 

roles of PYCR1 as a protection against cellular stresses are studies showing that 

proline produced by PYCR1 can protect against protein misfolding in vitro and in 

E.Coli and plants by acting as a molecular chaperone (Samuel et al., 2000). This 

is due to its properties as an osmolyte, which is a substance that can change the 

physical properties of biological fluids such as the viscosity or ionic strength, and 

can therefore influence protein stability, folding rate and aggregation (Fisher, 

2006). 

 

As an amino acid, a major role of proline is to contribute to protein synthesis, and 

another important aspect of proline synthesis is the fact that it makes up a 

considerable proportion of collagen, the most abundant protein in the body, as 

discussed earlier in this chapter. Although there is little evidence so far in the 

literature connecting proline synthesis to collagen production, it is interesting to 

note that collagen production is downregulated in response to oxidative stress 

caused by ROS, and this can be rescued by treating cells with reducing agents 
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(Tanaka et al., 1993). It is therefore possible that collagen can be a means of 

getting rid of excess reducing potential in the form of proline, again demonstrating 

the importance of proline as a reducing equivalent.  

 

Clinically, PYCR1 mutations are one of the causes of cutis laxa, a disorder with 

symptoms including wrinkled skin, premature aging, and developmental delay, 

showing the importance of maintaining proline levels during development, and in 

fibroblasts for maintenance of skin elasticity and turnover. Research into the role 

of proline in cutis laxa showed that PYCR1 mutant fibroblasts did not display a 

reduction in intracellular proline, although patients had slightly lower levels of 

proline in their serum. However, the morphology of mitochondria in the fibroblasts 

was abnormal and they were more susceptible to ROS induced apoptosis, again 

showing the importance of PYCR1 in maintaining redox balance across the 

mitochondrial membrane (Reversade et al., 2009). The presence of abnormal 

collagen fibres and a decrease in collagen bundle compactness, along with a 

significant decrease in elastin fibres, has also been reported in the ECM of some 

patients with PCYR1 mutations (Kretz et al., 2011). Additionally, a study on pycr1 

KO zebrafish found that the zebrafish had reduced ECM content and decreased 

levels of proline and hydroxyproline in their tissues (Liang et al., 2019). Although 

none of these studies conclusively linked proline levels to collagen production, it 

is reasonable to hypothesise that a reduction of proline production can affect 

collagen production since proline is such a crucial component of collagen. 

 

Therefore aside from its role as an amino acid for protein synthesis, proline is a 

highly important molecule for maintaining redox balance and protecting cells from 

stresses such as ROS or protein misfolding. Since these factors are critical in 

tumours, where there are higher levels of ROS and oxidative stress, it is 

unsurprising that PYCR1 expression is dysregulated in many cancers. 

 

1.6.7 PYCR1 in cancer  

 

Increased PYCR1 expression is a common feature of tumours. In a meta-analysis 

of the mRNA profiles of 2000 tumours spanning 19 types of tumour, PYCR1 was 

found to be one of the most consistently upregulated metabolic genes (Nilsson et 
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al., 2014). This is at least in part due to the fact that PYCR1 is a known target of 

cMyc and has also been shown to be linked to PI3K signalling; both of which are 

oncogenes that are commonly activated in cancer. In tumours where PYCR1 is 

upregulated by cMyc, there also is a corresponding increase in intracellular 

proline, showing that PYCR1 overexpression has a functional output. (Liu et al., 

2015, Liu et al., 2012b). Increased proline production by tumour cells has been 

reported in other studies. In a study profiling central carbon metabolism in breast 

cancer, a significant increase in proline synthesis was the main metabolic 

alteration observed in metastatic cells when compared to non-metastatic cells 

(Richardson et al., 2008). PYCR1 and proline synthesis upregulation is not merely 

a side effect of oncogenic tumour formation, however, but also contributes 

significantly to tumour development. PYCR1 knockdown inhibited tumour 

formation by xenografts in vivo (Possemato et al., 2011). In both prostate and 

non-small cell lung cancer, PYCR1 is overexpressed and has been shown to 

promote proliferation and inhibit apoptosis (Cai et al., 2018). PYCR1 appears to 

be the main regulator of tumourigenesis out of the PYCR enzymes, since a study 

comparing PYCR1 and PYCR2 expression in data from 2535 breast cancer patients 

found that PYCR1, but not PYCR2, was upregulated in breast cancer and 

corresponded with poor survival and metastasis (Ding et al., 2017). The pro-

tumourigenic effects of PYCR1 have mostly been found to involve maintaining 

redox homeostasis. In glioma cells, IDH1 mutations, which cause loss of reducing 

potential and alter the NADPH:NADP+ ratio, were shown to upregulate PYCR1 

expression. This provided a mechanism of NAD(P)H reduction to maintain redox 

balance, and the increased production of proline from glutamate led to partial 

TCA cycle uncoupling from respiration. This enabled oxygen-independent 

synthesis of TCA cycle-derived metabolites, such as citrate and aspartate, which 

would give the cells a metabolic advantage under hypoxia (Hollinshead et al., 

2018). PYCR1 has further been shown to contribute to the adaptation of cancer 

cells to hypoxia by promoting HIF-1α signalling. In hepatocellular carcinoma, 

HIF1α signalling under hypoxia stimulated proline production, leading to increased 

hydroxyproline production. Increased levels of hydroxyproline stabilised HIF1α and 

enhanced hypoxia-driven signalling (Tang et al., 2018). PYCR1 has also been shown 

to be important for the broader metabolic rewiring of tumours. Because proline 

production is a source of NAD+/NAPDH+, it can stimulate glycolysis through GAPDH 

activity and nucleotide synthesis through the pentose phosphate pathway, both of 
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which enable increased proliferation of cancer cells. Because proline is derived 

from glutamine, proline production by PYCR1 thus links the frequently observed 

reliance on glutamine by tumours with nucleotide synthesis and the Warburg 

effect to promote proliferation (Liu et al., 2015) (Fig. 1-5).  

 

Tumour cells are also dependent on proline for protein synthesis. Ribosome 

profiling revealed that proline was a limiting factor for protein synthesis in both 

kidney and breast cancers, and that this was dependent on high expression of 

PYCR1. Loss of PYCR1 increased ribosome stalling and inhibited tumour growth 

(Loayza-Puch et al., 2016). Proline synthesis was also shown to be required for 

protein synthesis in melanoma cells, where P5C synthase knockdown inhibited 

protein synthesis via EIF2AK4 activation (Kardos et al., 2015). The necessity for 

tumour cells to maintain proline levels is also highlighted by the fact that tumours 

have recently been shown to use degraded collagen from the ECM as a source of 

proline to maintain protein synthesis and redox homeostasis. In PDAC, 

upregulation of MMPs, which are involved in collagen degradation, and PRODH, 

the proline catabolism enzyme, enabled tumour cells to scavenge and utilise 

collagen from the tumour microenvironment in times of nutrient scarcity 

(Gouirand and Vasseur, 2018, Olivares et al., 2017). This again highlights the 

importance of CAF-derived collagen in the ECM to promote tumour growth and 

metastasis. Additionally, upregulated expression of PRODH in breast cancer cells 

supported growth by maintaining ATP levels in 3D culture and promoted the 

formation of lung metastases in orthotopic mouse models (Elia et al., 2017). This 

could mean that breast cancer cells are also able to scavenge collagen from their 

environment as a source of proline. However, in this study the PYCR enzymes were 

still required even with exogenous proline treatment; therefore although cancer 

cells may degrade proline as a source of energy, it is probably still necessary to 

continue synthesising proline to maintain the cellular redox balance. 
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Diagram showing the pathways affected by the products of the PYCR1-catalysed reaction  

 

 

Figure 1-5 Metabolic impact of proline synthesis 



68 
 
Despite the aforementioned significance of proline metabolism and synthesis in 

tumour development and progression, until recently there were no drugs or other 

therapeutic agents targeting PYCR1, so the relevance of these findings to the 

clinic has been untested. However, very recently a small molecule inhibitor has 

been developed against PYCR1 which reduced intracellular proline and inhibited 

growth in breast cancer cell lines (Milne et al., 2019). Although the drug is 

metabolised rapidly in mice, and therefore is unlikely to be suitable for clinical 

studies, it is a good starting point for the development of treatments targeting 

PYCR1. Much of the initial work on targeting tumour metabolism was done on 

‘core’ metabolic pathways such as glucose or glutamine metabolism, which are 

indeed highly dysregulated in tumours. However, targeting these pathways has 

proved difficult, since they are also vital pathways for all cells in the body, so 

pharmacological inhibition produced severe side effects. Therefore targeting 

metabolic pathways which are not universally required but are dysregulated in 

tumour cells and therefore provide therapeutic vulnerabilities has become a more 

promising strategy, and proline production by PYCR1 falls under this category. 

 

Finally, although many studies have linked PYCR1 expression to poor clinical 

outcome in tumours and demonstrated the relevance of PYCR1 in cancer cells, 

little research has been done on the role of PYCR1 in the tumour 

microenvironment. PYCR1 has been shown to be important for fibroblast 

functionality in the context of cutis laxa caused by PYCR1 mutations, but so far 

no studies have investigated whether PYCR1 is relevant in CAFs or, indeed, in any 

other cells of the TME. As any drug targeted towards the cancer cells will naturally 

also have an impact on the stroma, to determine if PYCR1 is a viable therapeutic 

target it is also important to know what effect, if any, it has in the stroma.  
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1.8 Objectives 
 

The primary objective of this study was to gain further insight into how the 

metabolic rewiring of CAFs contributes to their pro-tumourigenic function, with 

the aim of discovering new potential targets for therapies targeting the tumour 

microenvironment, or to inform on existing lines of treatment. Many studies have 

shown that CAFs rewire their metabolism to secrete metabolites to fuel tumour 

cells. However, how CAF metabolic rewiring might affect other aspects of the CAF 

phenotype has been little explored. In particular, ECM production, which is a 

major function of CAFs, is known to be affected by metabolite availability but as 

yet few studies have investigated ECM production from a metabolic perspective in 

CAFs. Targeting ECM production in the stroma can improve tumour perfusion and 

drug delivery as well as reducing tumour growth and metastasis. Furthermore, as 

metabolic targets and therapies are being discovered for tumour cells, it is 

important to have an understanding of whether these will also target the CAF 

phenotype and if so whether they might have a pro or anti-tumourigenic effect. 

To uncover metabolic differences between CAFs and NFs which contribute to the 

pro-tumourigenic CAF phenotype, I used a combination of mass spectrometry-

based proteomics and metabolomics and in vitro assays. Based on these results, I 

selected candidate metabolic enzymes that were differentially regulated between 

CAFs and NFs. In order to characterise these targets and determine how they 

affected pro-tumourigenic phenotype of CAFs I carried out further proteomic and 

metabolomic experiments as well as characterising the effects of overexpression 

and pharmacological or RNAi mediated inhibition of these targets, both using in 

vitro assays and in vivo characterisation of xenografts containing CAFs with 

impaired metabolism. 
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Chapter 2  Materials and Methods 

 

2.1 Materials 
 

2.1.1 Reagents and kits 
 

Table 2-1 Reagents and kits 

Reagent Supplier Catalogue # 

Acetic acid Sigma 32009 

Acetonitrile Sigma 34967 

Alexa Fluor 647 azide Life Technologies A10277 

Amaxa nucleofector kit R Lonza VCA-1001 

Ammonium bicarbonate Sigma 11213 

Ampicillin Sigma A0166 

Bradford reagent Biorad 500-0205 

BSA Sigma A2153 

BSA standard Biorad 500-0206 

Calcium phosphate transfection 
kit 

Invitrogen K278001 

Chloroacetamide Sigma C0267 

Click-iT™ EdU Alexa Fluor™ 647 
Flow Cytometry Assay Kit 

Life Technologies C10419 

D-Glucose Sigma G7021 

D-Glucose U-13C6 Cambridge Isotope 
laboratories 

CLM-1396 

Dialysed FBS Sigma F0392 

DMEM Gibco 11960044 

DMEM 1g/l glucose (low glucose) Gibco 21885025 

DMEM no glucose Gibco 11966025 

DMEM no pyruvate Gibco 11960044 

DMSO Fisher 10080110 

DNAse I recombinant, RNAse free Roche 4716728001 

DTT Sigma 43819 

Empore solid phase extraction 
disk (C18) 

3M 2215 

F12 medium Gibco 21765029 

FBS Gibco 10270 

Fluorescent mounting medium Dako S3032 

Fungizone Gibco 15290018 

Glutamine   
 

Life technologies  25030-024 

Glutamine U-13C5 Cambridge Isotope 
Laboratories 

CLM-182 

Glycine Sigma G7126 

HEPES Sigma H3537 
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Horse serum  
 

Gibco  26-050-070 

Hygromycin  
 

Sigma   
 

H3274 

iScript cDNA synthesis kit Biorad 170-8891 

iTaq Universal SYBR green 
supermix 

Biorad 172-5121 

Kanamycin sulphate Sigma 11815024 

L-Arginine hydrochloride 13C6 
15N4 (Arg10) 

Cambridge Isotope 
laboratories 

CNLM-539-H-PK 

L-Lysine hydrochloride 13C6 15N2 
(Lys8) 

Cambridge Isotope 
laboratories 

CNLM-291-H-PK 

L-Arginine hydrochloride (Arg0) Sigma A6969-25 

L-Lysine monohydrochloride Sigma L8662 

LysC   

Growth factor reduced Matrigel Corning 15585729 

Methanol Sigma 32213 

Methanol (HPLC grade) Sigma 34860 

MitoSOX Red Mitochondrial 
Superoxide Indicator 

Life Technologies M36008 

Nicotinamide Sigma 72340 

Nitrocellulose transfer membrane 
0.45 µm 

GE Healthcare 10600003 

Non-fat milk Marvel 5000354167508 

NP-40 Sigma NP40S 

NuPage 4-12% Bis-tris 
polyacrylamide gel 

Life Technologies NW04120 

NuPage LDS sample buffer Life Technologies NP0007 

NuPage running buffer (MOPS) Life Technologies NP0001 

NuPage running buffer (MES) Life Technologies NP0002 

NuPage transfer buffer Life Technologies NP0006-1 

Optiblot Bradford reagent abcam ab119216 

Palmitate U-13C16 Sigma 605573 

Paraformaldehyde Sigma 441244 

PBS with Mg2+ and Ca2+ Sigma D8662 

Penicillin/Streptomycin Life Technologies 15140122 

Phalloidin Life Technologies A12379 

Ponceau Red Sigma P7170 

Puromycin Gibco A1113802 

PVDF transfer membrane 0.45 µm Thermo Scientific 88518 

Pyruvate dehydrogenase enzyme 
activity microplate assay 

abcam ab109902 

Qiashredder kit Qiagen 79656 

RNAse free DNAse Qiagen 79254 

RNEasy mini kit Qiagen 74904 

Saponin Sigma 84510 

Seahorse XF base medium Agilent 102353-100 

Seahorse XF24 Fluxpak Agilent 100867-100 
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SILAC DMEM (no Arg/Lys) Gibco A14431-01 

Sodium acetate Sigma 241245 

Sodium butyrate Sigma B5887 

Sodium chloride Fisher S/3160/60 

Sodium deoxycholate Sigma D6750 

Sodium dodecyl sulphate (SDS) Fisher S/P530/53 

Sodium hydroxide Sigma S5881 

Sodium pyruvate Gibco 11360070 

Sodium pyruvate (U-13C3) Sigma 490733 

Sulforhodamine B Sigma 230162 

TCEP Sigma C4706 

TFA Sigma T6508 

Thiourea Sigma T8656 

TMRE Life Technologies T669 

Tris Melford B2005 

Triton-X-100 Sigma X100 

Trypsin Life Technologies 15090 

Trypsin (MS-grade) Promega V5280 

Urea Sigma U5128 

Western blotting detecting 
reagent Amersham ECL 

GE Healthcare RPN2109 

Western blotting detecting 
reagent Amersham ECL Prime 

GE Healthcare RPN2232 
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2.1.2 Buffers and solutions 
 

Table 2-2 Buffers and solutions 

Name Composition 

Buffer A 0.5% (v/v) formic acid in HPLC water 

Buffer A* 2% (v/v) ACN, 0.1% (v/v) TFA in HPLC 
water 

Buffer B 80% (v/v) ACN, 0.5% (v/v) formic acid 
in HPLC water 

IAP buffer 50 mM MOPS, 10 mM sodium 
phosphate, 50 mM sodium chloride in 
HPLC water 

PBS 0.8 % (w/v) Sodium chloride, 0.02 % 
(w/v) potassium chloride, 0.115 % 
(w/v) di-sodium hydrogen phosphate, 
0.02 % (w/v) potassium dihydrogen 
phosphate, pH 7.3 

RIPA 50 mM Tris-HCl pH 7.5, 150 mM sodium 
chloride, 1 mM EDTA, 1% (v/v) NP-40, 
0.1% (w/v) sodium deoxycholate 

SDS buffer 2% (w/v) SDS, 100 mM Tris-base pH 7.4 

TBST Tris buffered saline with 0.05 % Tween-
20 

Urea buffer 6M Urea, 2M thiourea, 40 µM CAA, 10 
µM TCEP 
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2.1.3 Antibodies 
 

Table 2-3 Antibodies and dilutions used 

 

Antibody Supplier Catalogue # Dilution 

αSMA Sigma A5288 1:10,000 WB, 1:1000 IF 

Acetylated 
H3K27 

Abcam ab4729 1:1000 

ACLY CST 4332S 1:1000 

Β-tubulin abcam ab6046 1:1000 

GAPDH Santa Cruz sc-47724 1:1000 

CD31 BioRad MCA1370Z 1:100 

PDHA1 Abcam ab110334 1:1000 WB, 1:100 IF 

Phospho-ACLY 
(S455) 

CST 4331S 1:1000 

Phospho-
PDHA1 (S293) 

Abcam 177461 1:2000 

Phospho-Smad 
2 

CST 3108 1:1000 

PYCR1 ProteinTech 22150-1-ap 1:1000 

Vimentin Santa Cruz sc-7557 1:2000 

Vinculin Sigma V9131 1:1000 

Anti-mouse 
HRP 

CST 7076S 1:5000 

Anti-rabbit 
HRP 

CST 7074S 1:5000 

Anti-mouse 
Alexa fluor 555  

Life 
Technologies 

A32773 1:500 

Anti-rabbit 
Alexa Fluor 555 

Life 
Technologies 

A32794 1:500 

Anti-mouse 
Alexa fluor 647  

Life 
Technologies 

A32787 1:500 

Anti-rabbit 
Alexa Fluor 647 

Life 
Technologies 

A32795 1:500 

Anti-hamster 
Alexa Fluor 647 

Life 
Technologies 

A-21451 1:200 
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2.1.4 Primers 
 

Table 2-4 List of primers  

 
 

Gene 
name 

Forward (5’-3’) Reverse (3’-5’) 

18S AGGAATTGACGGAAGGGCAC GGACATCTAAGGGCATCACA 

ACTB GGCATGGGTCAGAAGGATT ACATGATCTGGGTCATCTTCTC 

COL1A1 TGAAGGGACACAGAGGTTTCAG GTAGCACCATCATTTCCACGA 

COL6A1 AGCAAGTGTGCTGCTCCTTC CTTCCAGGATCTCCGGCTTC 

GAPDH AGCCACATCGCTCAGACA GCCCAATACGACCAAATCC 

PDK1 GAATGTTACTCAATCAGCACTCTT CCTAGCATTTTCATAGCCATCTTT 

PDK2 CGGGGACCACAACCAAAGTC GCTGGATCCGAAGTCCAGAAA 

PYCR1 CCCCGCCTACGCATTCACA GCGCGTTGGAAGTCCCATCT 

PYCR2 GTACACTGTAGCGCCTTCCTG GTACACTGTAGCGCCTTCCTG 

TBP2 AGTGACCCAGCATCACTGTTT TAAGGTGGCAGGCTGTTGTT 
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2.1.5 Small interfering RNA  

 
Table 2-5 List of small interfering RNAs  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gene name Sequences (5’-3’) Supplier Catalogue # 

Control pool UGGUUUACAUGUCGACUAA,  
UGGUUUACAUGUUGUGUGA,  
UGGUUUACAUGUUUUCUGA, 
UGGUUUACAUGUUUUCCUA 

Dharmacon D-001810-10-05 
(On Target plus 
non-targeting 
pool) 

PDK2 CCACGUACCGCGUCAGCUA, 
AAGGCGUGCUUGAGUACAA, 
CAACGUCUCUGAGGUGGUC, 
UGGCUAAGCUCCUGUGUGA 

Dharmacon LQ-005020-00-
0002 (Set of 4) 

PYCR1 GACCAACACUCCAGUCGUG, 
GAUGUGCUCUUCCUGGCUG, 
GCCCACAAGAUAAUGGCUA, 
GCGCCGACAUUGAGGACAG 

Dharmacon LQ-012349-00-
0002 (Set of 4) 
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2.1.6 Short hairpin RNA  
 
Table 2-6 Short hairpin RNAs and their targets 
 
 

Target 
Gene  

Sequence (5’-3’) Supplier Catalogue # 

Control CCGGCAACAAGATGAAGAGCACCA
ACTCGAGTTGGTGCTCTTCATCTT
GTTGTTTTT 

Sigma SHC002 

PDK2 ACTATATACACAGAAGGTC Dharmacon V2LHS_169815 

PYCR1-a CCGGGAGGGTCTTCACCCACTCCT
ACTCGAGTAGGAGTGGGTGAAGAC
CCTCTTTTTG 

Sigma TRCN000003898
1 

PYCR1-b CCGGTGAGAAGAAGCTGTCAGCGT
TCTCGAGAACGCTGACAGCTTCTT
CTCATTTTTG 

Sigma TRCN000003898
3 
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2.1.7 Plasmids 
 

Table 2-7 Plasmids 

 

Name Source Catalogue # 

WT PDK2 Prof. Angus McQuibben  

N255A PDK2 Prof. Angus McQuibben  

hTERT (Lentivirus) Dr. Fernando Calvo  

pET28a-mCherry-CNA35 Addgene 61607 
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2.2 Methods 

2.2.1 Cell lines and culture 
 

2.2.1.1 iCAFs and iNFs 

iCAFs and iNFs were kindly provided by Prof. Akira Orimo (Kojima et al., 2010). 

The iNFs are normal human mammary fibroblasts derived from reduction 

mammoplasty tissue and immortalised with a construct containing hTERT, GFP and 

puromycin resistance. hTERT is the catalytic subunit of human telomerase, which 

prevents telomere shortening and thereby the induction of telomere controlled 

senescence. hTERT expression has been shown to effectively immortalise cells 

without causing phenotypic changes or making the cells cancerous (Lee et al, 

2004).  A subsection of iNFs were transformed into iCAFs by two rounds of co-

injection subcutaneously with MCF7-hRAS cells into mice and subsequent 

reisolation of the fibroblasts by culturing the isolated tumours with puromycin for 

5 days.  

 

2.2.1.2 pCAFs and pNFs 

pCAFs and pNFs were isolated in house by Lisa Neilson from matched normal and 

breast cancer tissue from patients obtained through NHS Greater Glasgow and 

Clyde Biorepository. All participants gave specific consent to use their tissue 

samples for research. The fat surrounding the tissue was removed before cutting 

the tissue into small pieces. The tissue was then treated with 10 mg collagenase 

A in DMEM (10% FBS, 2 mM glutamine, 1% penicillin/streptomycin, 1% fungizone) 

overnight, after which the fibroblasts were the only surviving cells. The following 

day, fibroblasts were isolated using a cell strainer and plated on a cell culture dish 

coated with 35 mg/ml collagen I. The isolated fibroblasts were either expanded 

and frozen down or used for subsequent immortalisation. Fibroblasts become 

senescent after several passages, so in order to continue using them for 

experiments, the pCAFs and pNFs were immortalised using an hTERT lentiviral 

construct (pIRES-hygro-hTERT) kindly provided by Dr. Fernando Calvo. HEK293T 

cells were used to generate the hTERT lentivirus. 2x106 HEK293T cells were plated 

in a 10 cm dish. The next day, the HEK293T were transfected with 10 µg of pIRES-

hygro-hTERT as well as 4 µg VSVG and 7.5 µg psPAX as packaging plasmids by 

calcium phosphate transfection. The following morning the medium was replaced 
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with DMEM with 1 mM sodium butyrate. After 24h, the medium containing the 

virus was collected and 4 µg/ml polybrene was added. The virus was filtered 

through a 0.45 µm membrane to remove HEK293T cells and transferred onto the 

primary fibroblasts. This step was repeated the following day. After 48h, the 

immortalised fibroblasts were selected with 100 µg/ml hygromycin. 

 

2.2.1.3 Cell culture 

iCAFs, iNFs, pCAFs, pNFs, MCF7 and HEK293T cells were cultured in DMEM 

supplemented with 10% FBS, 2 mM glutamine, and 1% penicillin/streptomycin. 

MCF10DCIS.com cells were cultured in F12 medium supplemented with 5% horse 

serum, 2 mM glutamine, 1% penicillin/streptomycin and 0.1% fungizone. For SILAC 

experiments, cells were cultured in DMEM supplemented with 10% FBS, 2 mM 

glutamine, 1% penicillin/streptomycin and either 84 mg/l 13C6
15N4 L-arginine and 

175 mg/l 13C6
15N2 L-lysine or 84 mg/l 12C6

14N4 L-arginine and 175 mg/l 12C6
14N2 L-

lysine for ‘heavy’ and ‘light’ labelled cells respectively. All cells were cultured at 

37°C, 5% CO2, 21% O2 and harvested with trypsin (0.025% in PE). 

 

2.2.2 Cell based assays 
 

2.2.2.1 EdU proliferation assay (Immunofluorescence) 

EdU (5-ethynyl-2’-deoxyuridine) is an analogue of thymidine which is incorporated 

into newly synthesised DNA strands during S-phase. EDU incorporation can be 

detected using a fluorophore conjugated to an azide which is covalently cross-

linked to EdU via a Click-iT reaction. It can therefore be used as a readout for the 

rate of cell proliferation. 5x105 cells were seeded on 13 mm coverslips. After 24h, 

EdU was added at a concentration of 1 mM and incubated for 2h at 37°C. Cells 

were fixed in 4% PFA for 15min, washed twice in PBS and simultaneously blocked 

and permeabilised with 1% BSA and 0.5% Triton-X100 in PBS. The Click-iT reaction 

was performed using Alexa-fluor 647 azide according to the manufacturers’ 

protocol and the cells were counterstained with DAPI. Images were taken using a 

Zeiss 710 confocal microscope, and the percentage of cells that had incorporated 

EdU was calculated using an Image J macro. 
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2.2.2.2 EdU proliferation assay (Flow Cytometry) 

EdU was added to medium at a concentration of 1 mM and incubated with the 

cells for 2h at 37°C. Cells were harvested and fixed in 4% PFA for 15 min, washed 

twice in PBS and simultaneously blocked and permeabilised with 1% BSA and 0.5% 

Triton-X100 in PBS. The Click-iT reaction was performed using Alexa-fluor 647 

azide according to the manufacturers’ protocol. The cells were washed x3 in PBS 

and resuspended in PBS with 1% BSA before analysis by flow cytometry using an 

Attune NxT (RL1 channel). The percentage of cells that had incorporated EdU was 

calculated using FloJo software. 

 

2.2.2.3 PDH activity assay 

Pyruvate dehydrogenase (PDH) activity was measured using the Pyruvate 

dehydrogenase enzyme activity microplate assay kit (abcam). The kit contains 96 

wells coated with an antibody which captures the intact pyruvate dehydrogenase 

complex. PDH activity is then measured by following the reduction of NAD+ to 

NADH, which is a by-product of the conversion of pyruvate to acetyl-coA by PDH. 

This reduction is coupled to a reporter dye which produces a yellow reaction 

product, the concentration of which can be detected by measuring the absorbance 

at OD450. 5x15 cm dishes of CAFs and NFs at 80-90% confluency were harvested 

for each reaction and the assay was carried out following the manufacturers’ 

protocol. OD450 absorbance was measured over 30 mins to determine the rate of 

reaction. 

 

2.2.2.4 Seahorse assay 

5x104 cells were seeded in each well of the Seahorse xf24 cell culture plates and 

cultured for 48h. 30 mins before the assay the medium was replaced with the 

Seahorse base medium supplemented with 1% FBS, 2 mM glutamine and 1% 

penicillin/streptomycin and the cell culture plate was placed in a CO2 free 

incubator at 37°C. The Seahorse xf24 assay plate was prepared according to the 

manufacturers’ protocol. Using the Seahorse xf24, the oxygen concentration in 

the wells was measured 3 times over 12 minutes at basal levels, then following 

stepwise addition of 1 µM oligomycin, 1 µM CCCP and 1 µM of both Antimycin A 

and rotenone. Oligomycin inhibits ATP synthase by blocking the proton channel 
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(F0 subunit) thus reducing oxygen consumption. CCCP uncouples the electron 

transport chain from ATP synthesis by making the inner mitochondrial membrane 

permeable to protons, forcing the cells to consume oxygen at their maximum 

capacity. Finally Antimycin A and Rotenone inhibit cytochrome C and Complex I in 

the electron transport chain respectively to reduce oxygen consumption to almost 

nothing. The oxygen consumption was normalised to the protein content of the 

wells using SRB (Sulphurhodamine B). The cells were fixed in 10% TCA 

(Trichloroacetic acid) at 4°C overnight. The wells were washed with water, dried 

at RT and incubated with 0.04% SRB in 1% (v/v) acetic acid for 1 hr at RT. The 

wells were washed in 1% acetic acid and dried at RT. 200 µl of Tris-HCl pH 10.5 

was added to each well and incubated at RT for 30 min to resolubilise the dye. 

The OD for each well was measured at 510 nm and the cell number for each well 

was calculated by comparing the results to a standard curve of 20,000-100,000 

cells 

 

2.2.2.5 Bioanalyzer assay 

8x104 fibroblasts were seeded in each well of 6 well plates. A control plate was 

included with media but no cells. Every 24h for 96h, 1 ml of media was taken from 

3 wells for each biological replicate, centrifuged at 16000xg for 5 min and the 

supernatant was stored at -80°C. The cells from the wells were harvested and 

counted and the cell number was used to make a growth curve for each replicate. 

After all samples had been collected, 200 µl of each sample was analysed using 

the YSI 2950 Biochemistry Analyzer. The concentration of glucose, lactate, 

glutamine and glutamate was measured for each sample. The data was 

subsequently normalised to the metabolite concentrations from the control plate 

and to the number of cells in each well. The rate of metabolite exchange between 

the cells and the media was calculated with the following equation: 

𝑀𝑒𝑑𝑖𝑎 𝑓𝑟𝑜𝑚 𝑐𝑒𝑙𝑙𝑠 − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑚𝑒𝑑𝑖𝑎

𝑎𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑔𝑟𝑜𝑤𝑡ℎ 𝑐𝑢𝑟𝑣𝑒
 

 

2.2.2.6 Flow cytometry analysis of mitochondrial probes 

Cells were incubated for 30 min at 37°C with 100 nM MitoTracker Red CMXRos or 

100 nM TMRE in FBS free DMEM. Cells were harvested and fixed in 4% PFA for 15 

mins, washed twice in PBS and analysed by flow cytometry with the Attune NxT 

(YL1 or BL2 channel). The staining intensity was calculated using FloJo software. 
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2.2.3 Transient transfection and lentiviral infection 
 

2.2.3.1 Fibroblast transfection 

For transient expression or siRNA knockdown, 2x106 fibroblasts were harvested 

and used in each transfection. Cells were transfected with a Nucleofector device 

(Lonza) according to the manufacturer's protocol using the program T-20 and the 

Amaxa kit R. Cells were transfected with 1-3 nM non-targeting siRNA as a control 

or with siRNAs targeting PDK2 and PYCR1, or with 5µg pGCA-PDK2N255A or pGCA-

PDK2WT plasmids (kindly provided by Dr. Angus McQuibban, Shi et al. 2017). Cells 

were used for experiments 48-72h after transfection. 

 

2.2.3.3 Stable expression of shRNA in fibroblasts 

HEK293T cells were used to generate lentivirus expressing shRNA constructs. 2x106 

HEK293T cells were plated in a 10 cm dish. The next day, the HEK293T were 

transfected by calcium phosphate with 10 µg of DNA as well as 4 µg VSVG and 7.5 

µg psPAX as packaging plasmids. The following morning the medium was replaced 

with DMEM with 1 mM sodium butyrate. After 24h, the medium containing the 

virus was collected with the addition of 4 µg/ml polybrene, filtered through a 0.45 

µm membrane and transferred onto the fibroblasts. This step was repeated the 

following day. After 48h, the fibroblasts were selected with 1 µg/ml puromycin. 

Untreated fibroblasts were also placed under puromycin selection to ensure that 

all uninfected fibroblasts were killed. 

 

2.2.3.4 ECM production 

Cells were seeded at confluence and cultured for 3-7 days. Cells were lysed by 

incubating with extraction buffer (20mM NH4OH, 0.5% Triton X-100 in PBS) until 

no intact cells were visible but the ECM remained on the dish. The ECM was washed 

in PBS with Ca2+ and Mg2+, then residual DNA was digested with 10 µg/ml RNAse 

free recombinant DNAse I for 30 mins at 37°C. ECM was either stored at 4°C in 

PBS with Ca2+ and Mg2+ and used to plate cells on, or collected and lysed with 2% 

SDS buffer for western blot analysis. 
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2.2.5 Western blotting analysis 

 

2.2.5.1 Protein quantification 

Unless otherwise stated, cells were lysed in 2% SDS buffer, boiled at 95°C for five 

minutes, sonicated with a metal probe and centrifuged at 16000xg for 10 mins. 

The supernatant was quantified by Bradford assay. Up to 2 µl of each sample was 

added to 1 ml Optiblot Bradford reagent in triplicate, mixed and left to react for 

5 mins at RT. The absorbance at 595 nm was quantified with a spectrophotometer 

(Biophotometer plus, Eppendorf) and the absolute protein quantification was 

determined by comparison with a standard curve generated using 1-5 mg/ml BSA 

and an equal amount of SDS buffer. 

 

2.2.5.2 SDS Page and Western blotting 

Loading buffer containing 1M DTT was added to equal quantities of each sample 

and the samples were boiled for 5 mins at 95°C. Proteins were then separated on 

a 4-12% NuPage Bis-Tris polyacrylamide gel in MES or MOPS running buffer. 

Proteins were transferred onto methanol activated PVDF or nitrocellulose 

membrane at 100V for 60 mins in transfer buffer. The membrane was blocked in 

3% BSA or milk in TBST for 1 hr at RT, then incubated with the primary antibody 

diluted in the blocking solution overnight at 4°C. Excess antibody was removed 

with 3 x 10 min washes in TBST, followed by incubation with horseradish 

peroxidase conjugated secondary antibodies diluted 1:5000 in TBST for 45 mins at 

RT. Excess secondary antibody was removed with 3 x 10 min washes in TBST, and 

the western blots were imaged using chemiluminescence with a MyECL imager 

(Thermo Fisher Scientific). Image analysis was performed using Image Studio Lite 

software (LICOR). Western blots were stripped using 150 mM NaCl, 50 mM Glycine, 

1% NP-40, pH2 in PBS for 1 hr at RT. Stripping buffer was removed with 5 x 10 min 

washes in TBST, followed by re-blocking the membrane and probing with further 

primary antibodies. 
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2.2.6 Immunofluorescence 

 

2.2.6.1 2D cell cultures 

Cells were cultured on 13 mm coverslips and fixed in 4% PFA for 15 mins. The 

coverslips were washed x3 in PBS and simultaneously permeabilised and blocked 

for 1 hr at RT with 1% BSA in PBST. Incubation with the primary antibody diluted 

in blocking solution was performed for 1 hr at RT. Excess antibody was removed 

with 3 x 10 min washes in PBS and coverslips were then incubated with Alexa Fluor 

conjugated secondary antibodies diluted 1:500 in blocking solution for 1 hr at RT. 

Coverslips were counterstained with DAPI, washed with 3 x 10 min washes in PBS 

and mounted on glass slides in DAKO fluorescence mounting medium. Images were 

acquired using a Zeiss 710 confocal microscope. 

 

2.2.6.2 Xenograft tumour sections 

Tumours from xenografts containing shCtl or shPYCR1 pCAFs (Chapter 2.2.15) were 

sliced into 400 µm sections using a vibratome. The sections were blocked and 

permeabilised using blocking buffer (0.3% Triton-X, 0.05% Azide, 1% BSA, and 10% 

donkey serum in PBS) for 24h at RT. The primary antibody was diluted in blocking 

and incubated with the sections for 72h at RT, followed by an overnight wash in 

blocking buffer. The secondary antibody and DAPI were diluted in blocking buffer 

and incubated with the sections for 48h at RT. The sections were washed twice 

for 12h with blocking buffer, followed by a 1h wash in PBS. The sections were 

cleared with Ce3D solution for approximately 2h or until transparent (Li et al., 

2017) and mounted in Ce3D solution. Images were taken using a Zeiss 880 

multiphoton microscope with single harmonic generation imaging to detect 

collagen. 

 

2.2.7 Image analysis 

 

Quantification of collagen area and density or cell number in immunofluorescent 

images or tumour sections was carried out using ImageJ software. Quantification 

of cell number was achieved by splitting the image into red, green and blue 

channels, then keeping the blue channel which contained the DAPI stain. The 

number of nuclei were counted using the ‘Particle analysis’ function. To quantify 
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collagen overlapping with CAFs, the image was split into red, green and blue 

channels, with the red channel containing the collagen stain and the green 

channel for the CAFs. The area of CAFs was selected based on an appropriate 

threshold. In the case of the images acquired using the xenograft tumour sections, 

the selection was expanded by 0.05 inches to ensure that all collagen produced 

by the CAFs was included. The selection area was then applied to the red channel 

and the density of collagen staining within the selection or the percentage of the 

selection that was positive for collagen was calculated. For the analysis of 

collagen produced by non-CAF cells and therefore not overlapping with the CAFs, 

the selection of the CAF area was inverted and then applied to the red channel 

and analysed as described above. 

 

2.2.8 Bacterial transformation and plasmid generation 

 

Competent E. coli bacteria (DH5α or BL21-DE3) were thawed on ice and incubated 

with 2 µl plasmid for 30 mins on ice. The bacteria were then incubated for 1 min 

at 42°C before immediately being placed on ice for 2 mins. The transformed 

bacteria were then incubated in 1 ml LB broth for 1 hr at 37°C before being spread 

on an agar plate containing ampicillin or kanamycin and incubated overnight at 

37°C. One colony was subsequently picked and expanded in LB broth containing 

ampicillin or kanamycin for 24h at 37°C and 250 rpm. Bacteria were pelleted at 

4000xg for 20 min and the pellet was frozen. The plasmid was subsequently 

isolated from the pellet using a Qiagen maxiprep kit. 

 

2.2.9 CNA35-mCherry purification 

 

pET28a-mCherry-CNA35 was a gift from Maarten-Merx (Aper et al., 2014). The 

CNA35-mCherry plasmid was transformed into E.Coli BL21-DE3.  A single colony 

was expanded in LB broth containing 30 µg/µl kanamycin until the optical density 

at 600 nm reached circa 0.6 in 4 x 1 L flasks. CNA35-mCherry expression was 

induced by addition of 0.5 mM Isopropyl β-D-1-thioglasctopyranoside (IPTG). 

Expression was induced for 20 h at 25°C and 250 rpm. Bacteria were pelleted by 

centrifugation for 15 min at 10000xg and 4°C. The pellet was resuspended in 

Buffer 1 (20mM Tris-HCl pH 7.9, 0.5M NaCl) and the bacteria were lysed using a 
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High Pressure Homogeniser. The suspension was then centrifuged for 35 min at 

20000xg at 4°C and the supernatant containing the solubilised protein was purified 

by Ni2+-affinity chromatography since the protein has an N-terminal 6 x His-tag. A 

5 ml His-trap HP column (GE Healthcare) was used for purification in conjunction 

with an Akta flow system. The protein solution was loaded onto the column and 

CNA35-mCherry was eluted using an increasing imidazole gradient created by 

mixing Buffer 1 with an increasing proportion of Buffer 2 (20mM Tris-HCl pH 7.9, 

0.5M NaCl, 500 mM imidazole). The fractions containing the protein were easily 

identifiable as they were purple, and these were concentrated to 5 mL using 

Amicon Ultra-4 Centrifugal Filter Units. The protein was further purified using size 

exclusion chromatography. The protein containing fractions were concentrated to 

5 mL again and the concentration was determined by Bradford assay. 1 µl was 

added in triplicate to 1 ml Bradford reagent and allowed to react for 5 min at RT. 

The absorbance at 595 nm was measured using a spectrophotometer and absolute 

protein quantification was determined by comparison with a standard curve 

generated using 1-5 mg/ml BSA. Aliquots of the protein were snap frozen in liquid 

nitrogen and stored at -80. 

 

2.2.10 RNA extraction and RT-PCR 

 

2.2.10.1 RNA extraction 

RNA was extracted from cells grown to 80% confluence in 6 well plates. Cells were 

lysed in RLT buffer (Qiagen) and the cell lysate was either frozen immediately at 

-80°C or used immediately for RNA extraction. RNA was extracted using the Qiagen 

RNEasy mini kit according to the manufacturers protocol, eluted from the RNEasy 

spin column with 30 µl RNAse free H2O and 1 µl was used for quantification with a 

nanodrop. 

 

2.2.10.2 cDNA synthesis 

1 µg RNA was used for DNA synthesis. RNA was mixed with iScript reverse 

transcriptase and reverse transcription-reaction mix (BioRad) and RNAse free 

water was added to bring the total volume for each reaction to 20 µl. cDNA was 

generated using the following programme: 5 min at 25°C, 30 min at 42°C, 5 min 

at 85°C. 
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2.2.10.3 RT-PCR 

cDNA was diluted 1:5 for RT-PCR. 10 µl iTAQ Universal SYBR Green supermix 

(BioRad) was mixed with 2 µl cDNA and 400 nM forward and reverse primers diluted 

in 8 µl nuclease free H2O for each reaction. Each sample was analysed in triplicate, 

and, in addition to the target(s) of interest, primers for at least two reference 

genes were included for normalisation of each sample. Non-template controls 

were also run alongside each experiment. The RT-PCR reaction was carried out on 

a Quant Studio 3 RT-PCR machine (Thermo Scientific) using their Standard 

programme. 

 

2.2.11 MS-Metabolomics analysis 

 

2.2.11.1 Sample preparation for intracellular metabolomics 

2x105 fibroblasts were seeded in each well of 6 well plates. For each biological 

replicate 3 separate wells were used in each condition. For tracing experiments, 

cells were cultured in DMEM 10% FBS supplemented with either 25 mM U-13C6 

Glucose, 2 mM U-13C5 Glutamine, 1 mM U-13C3 Pyruvate or 100 µM U-13C16 

Palmitate. After 48h of culture, the cells were washed x3 in ice cold PBS to remove 

the media, then 400 µl ice cold extraction buffer (50% methanol, 30% acetonitrile, 

20% water) was added to each well and incubated at 4°C for 5 min. The extracted 

metabolites were collected and centrifuged at 16000xg for 5 min at 4°C. 200 µl 

from each sample was transferred to an LC-MS vial and stored at -80°C until 

analysis by LC-MS. 

 

2.2.11.2 Q-Exactive acquisition 

LC-MS was carried out using a previously described method (Mackay et al., 2015). 

A Q-Exactive Orbitrap mass spectrometer (Thermo Scientific) was used in 

combination with a Thermo Ultimate 3000 HPLC system. The HPLC system was set 

up with a Zic-pHILIC 5 µm polymer column, 150 x 2.1 mm (SeQuant, Merck) and a 

ZIC-pHILIC guard column, 20 x 2.1 mm (SeQuant, Merck). A volume of 5 µl of cell 

extract was injected and the metabolites were separated over a 15 min mobile 

phase gradient from an initial ACN content of 80% ACN with 20% ammonium 

bicarbonate (pH 9.2) decreasing to 20% ACN. The flow rate was 200 µL/min and 
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the column temperature was 45°C. The metabolites were detected over a period 

of 25 min using the Q-Exactive mass spectrometer across a mass range of 75-1000 

m/z and at a resolution of 35,000 (at 200 m/z). Electrospray ionisation and 

polarity switching enabled both positive and negative ions to be detected in the 

same run. Lock masses were used and the mass accuracy for each metabolite was 

less than 5 ppm. To detect acetyl-coA, a single ion monitoring (SIM) method was 

employed. The Q-Exactive mass spectrometer was used to monitor the three 

masses for acetyl-coA labelled M0, M1 or M2 (810, 811 and 812 m/z) with an 

isolation window of 1 m/z for each isotope. The resolution was 70,000 and the ion 

trap fill time was 100 ms. The automatic gain control (AGC) target value was 5e4. 

Only positive ions were detected as single polarity was used rather than polarity 

switching. Thermo Xcalibur software was used for data acquisition. 

 

 

2.2.11.3 Analysis of metabolomics data 

Data analysis was carried out using TraceFinder 4.0 software to determine the 

peak area of each metabolite of interest. The spectra were queried against a 

curated compound database created from analysis of commercial standards of 

each metabolite run previously on this LC-MS system and pHILIC column. 

Metabolites were identified based on the exact mass of the singly charged ion and 

the retention time on the column. Predicted retention times were manually 

adjusted based on those of a standard metabolite mix which was run on the LC-

MS system alongside the samples. The relative total metabolite levels and 13-C 

labelling patterns were determined based on the peak area for the accurate mass 

of each isotopologue for each metabolite. The peak areas were normalised to total 

protein content for each sample. Proteins were collected from each cell culture 

well after the metabolite extraction and quantified by Bradford assay. 

 

2.2.12 Sample preparation for MS-proteomics 

 

2.2.12.1 In solution digestion 

Proteins were denatured in urea buffer. The lysate was diluted 1:2 in 25 mM Tris-

HCl pH 8.5. For every 50 µg of protein, 1 µg of LysC was added and the mixture 

was incubated for 3h at RT. LysC partially digests the protein at the C terminus of 
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lysine residues, which enables more efficient trypsin digestion. The lysate was 

then further diluted 1:2 in 25 mM Tris-HCl pH 8.5 to give a final dilution of 1:4 

lysate:buffer, and 1 µg trypsin was added for every 50 µg of protein. The proteins 

were left to digest overnight at RT. The digestion reaction was then terminated 

by acidifying the sample with TFA (trifluoroacetic acid) to a final concentration of 

1%.  

 

2.2.12.2 In gel digestion 

Each sample was denatured in SDS buffer and run on a 4-12% SDS page gel to 

separate the proteins. The gel was stained with Coomassie blue for 1 hr and 

washed x3 in HPLC water. Each lane of the gel was cut into identical bands and 

each band was further chopped into small pieces and placed in a 1.5 ml Eppendorf 

tube. The Coomassie stain was removed with 3 x 20 min washes of a 1:1 mixture 

of 50 mM ABC and absolute ACN. The gel was then dehydrated in ACN for 10 min, 

and this step was repeated until the gel pieces were hard and white.  The gel was 

then dried in a Speed-Vac for 5 min. The gel was rehydrated in 10 mM DTT and 

incubated for 1 hr at 56°C to reduce cysteines. The reduced cysteines were then 

alkylated in 55 mM IAA at RT for 45 min in the dark. The gel pieces were washed 

in 50 mM ABC for 20 min and dehydrated with ACN for 10 min. The wash and 

dehydration steps were repeated. The gel was then dried in a Speed-Vac for 5 

mins. The proteins in the gel were digested with 625 ng trypsin for each sample. 

The trypsin was diluted in 50 µl of 50 mM ABC and allowed to rehydrate the gel 

pieces for 15 min. Then, a further 70 µl of 50 mM ABC was added, or enough to 

cover the gel pieces. The samples were incubated overnight at 37°C. The following 

day, the peptides were extracted from the gel pieces by alternating 10 min 

incubations of the extraction buffer (3% TFA, 30% ACN in water) with ACN to 

dehydrate the samples. The supernatant from each incubation step was kept and 

transferred to a new tube. After two rounds of extraction and dehydration, the 

supernatant was reduced in the Speed-Vac to a volume of approximately 100 µl. 

Samples were then desalted by StageTip before MS analysis. 
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2.2.12.2 StageTip desalting 

StageTips were prepared by loading 1 x C18 membrane for every 5 µg protein into 

a 200 µl pipette tip. The StageTip was activated for protein binding by adding 50 

µl methanol and centrifugation for 1.5 min at 600xg by which point all the 

methanol had passed through the membranes. Subsequently, 50 µl buffer B was 

passed through the membranes by centrifugation at 600xg, followed by 50 µl 

buffer A*. The digested peptides were then loaded onto the membranes and 

centrifuged at 200xg for 5 min. The bound peptides were washed with 50 µl buffer 

A at 600xg and eluted with 2 x 20 µl buffer B. The eluted peptides were stored at 

-80°C until MS-proteomic analysis, at which point the ACN was evaporated using 

a speed vacuum until ~3 µl remained and an equal volume of buffer A* was added. 

 

2.2.12.2 SILAC labelling 

SILAC (Stable isotype labelling of amino acids in cell culture) labelled cells were 

generated by culturing the cells in SILAC media (DMEM supplemented with light or 

heavy arginine and lysine) for 3 passages or until the cells were at least 95% 

labelled. The percentage of SILAC labelled proteins was determined by MS-

proteomics. Cells were lysed in urea buffer. The lysate was sonicated on ice with 

a metal probe and centrifuged at 16000xg for 10 mins. The supernatant was 

digested by in solution digestion followed by StageTip desalting and MS analysis. 

Incorporation of SILAC labels was determined using the peptides.txt output file 

from MaxQuant software analysis with R software. The incorporation of Arg10 and 

Lys8 were calculated separately with the equation 

𝐼𝑛𝑐𝑜𝑟𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 = 1 − (
1

𝑟𝑎𝑡𝑖𝑜 𝐻: 𝐿
) ∗ 100 

Once the incorporation was ≥ 95%, the cells were used for further MS-proteomic 

experiments. 

 

2.2.12.3 Acetylome enrichment 

SILAC labelled iCAFs and iNFs were grown to 80% confluence in 10 x 15 cm dishes 

for each cell line. The cells were lysed on ice in RIPA buffer supplemented with 

10 mM nicotinamide and 1 µM Trichostatin A to inhibit deacetylases. 1/10th of the 

volume of 5M NaCl was added to improve recovery of chromatin bound proteins 

and the lysates were incubated for 15 min on ice. The lysates were sonicated with 

a metal probe and centrifuged at 4800 x g. 4 volumes of ice cold acetone were 
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added and the lysates were incubated overnight at -20°C to precipitate proteins. 

The precipitate was pelleted at 4800 x g for 20 min at 4°C and washed with ice 

cold acetone. The pellets were resuspended in urea buffer and the protein 

concentration was determined by Bradford assay. Equal amounts of heavy and 

light labelled lysate were mixed and the samples were digested by in solution 

digestion. The samples were desalted by C18 SepPak column. The SepPak was 

activated by allowing 5 ml ACN to run through via gravitational flow and 

equilibrated with 2 x 5 ml 0.1% TFA. The sample was then loaded and allowed to 

flow through the column. The peptides were washed with 0.1% TFA and then with 

water. Peptides were eluted stepwise with an increasing gradient of ACN in 0.1% 

TFA (10, 15. 20, 25, 30, 40, 60% ACN). The eluates were pooled and evaporated 

by speed vacuum to a volume of approximately 1 ml. The sample was then mixed 

with 10 x IAP buffer to make a 1 x IAP buffer solution. The sample was brought to 

pH 7. 50 µl slurry containing agarose beads conjugated to anti-Acetyllysine 

antibody were centrifuged at 2000 x g for 30 sec and the supernatant was 

removed. The beads were washed x4 in PBS and resuspended in 40 µl PBS. The 

peptides were added to the beads and incubated on a rotation wheel overnight at 

4°C. The following day, the beads were centrifuged at 2000 x g for 1 min at 4°C. 

The beads were washed x4 with IAP buffer and x3 with water. The acetylated 

peptides were eluted with 50 µl 0.1% TFA and incubated at RT for 10 min before 

centrifugation at 2000 x g. The elution step was repeated twice and the combined 

supernatant was desalted by StageTip before MS analysis. 

 

2.2.13 Mass spectrometer set up 
 

2.2.13.1 Nano liquid chromatography 

All samples were further fractionated to separate the peptides by reverse-phase 

chromatography at high resolution. After StageTip desalting, the peptides were 

resuspended in buffer A* and injected into an EASY-nLC system coupled online to 

a mass spectrometer (Thermo Fisher Scientific). The peptides were separated on 

a 20 cm fused silica emitter column (New Objective) packed in-house with reverse-

phase Reprosil Pur Basic 1.9 µm (Dr. Maisch GmbH). The peptides were eluted 

with a flow rate of 300 nl/min over a 60 min linear gradient from 5% to 30% of 
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buffer B. The eluted peptides were ionised and injected into the mass 

spectrometer by electrospray ionisation. 

 

2.2.13.2 Q-Exactive HF acquisition 

The full MS scan was acquired with a mass range of 375-1500 m/z, a resolution of 

60,000 and an AGC of 3e6. The top 15 most intense peaks from the full MS scan 

were isolated for fragmentation and MS/MS analysis with an AGC target of 5e4 ions 

at a resolution of 15,000. Singly charged ions were excluded, and those ions that 

were selected for MS/MS analysis were subsequently added to a list of excluded 

ions to prevent the same ion from being fragmented multiple times. MS data were 

acquired using XCalibur software (Thermo Fisher Scientific). 

 

2.2.13.3 Orbitrap Fusion Lumos acquisition 

The full MS scan was acquired with a mass range of 350-1550 m/z, a resolution of 

60,000 and an AGC of approximately 5 x 105. The top 15-20 most intense peaks 

from the full MS scan were isolated for fragmentation and MS/MS analysis with an 

AGC target of 50-100,000 ions at a resolution of 15,000. The included charge range 

was 2-7 and those ions that were selected for MS/MS analysis were subsequently 

added to a list of excluded ions to prevent the same ion from being fragmented 

multiple times. MS data were acquired using XCalibur software (Thermo Fisher 

Scientific) 

 

2.2.14 Proteomic data analysis 

 

2.2.14.1 Data processing with MaxQuant 

The raw MS data files were processed for peptide and protein identification and 

quantification using MaxQuant software coupled to the Andromeda search engine 

(Cox and Mann, 2008, Cox et al., 2011). MaxQuant versions 1.6.0.7 or 1.6.3.3 were 

used. The data was queried against the human UniProt database 

(www.uniprot.org) to identify the presence of peptides and proteins based on 

their MS and MS/MS spectra. The following settings were used across all 

experiments: Acetyl (N-term) and Oxidation (M) were set as variable modifications 

and Carbomidomethyl (C) as a fixed modification and the digestion mode was 

Trypsin (P). Up to 2 missed cleavages were allowed. An initial mass deviation of 
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4-5 ppm for the parent mass and 20 ppm for the fragment ion was allowed. 

Matching between runs was enabled when fractions with similar chromatography 

were compared.  The false discovery rate was set to 1% for identification of 

peptides and proteins, and only unique peptides, i.e. peptides that are not found 

in any other protein, were used for quantification. For the acetylome experiment 

(2.2.11.3), I added Acetyl (K) as an additional variable modification. 

 

For SILAC experiments, MaxQuant can accurately quantify the relevant abundance 

of protein between samples based on the intensities of identified SILAC pairs. The 

additional MaxQuant settings for SILAC experiments were as follows: The 

multiplicity of the experiment was set to 2, with the light labels set as Arg0 and 

Lys0 and heavy labels Arg10 and Lys8. 

 

In the absence of isotopic labels, MaxQuant can still quantify differential peptide 

and protein amounts between samples using Label Free Quantification (LFQ) (Cox 

et al., 2014). Briefly, the normalisation of the fractions is delayed until all the 

peptide ion intensities across the fractions are summed and the normalisation 

factor for each fraction is then calculated in order to produce the least amount 

of variation between samples, based on the assumption that the majority of the 

proteome does not change between two conditions. For label free experiments, 

the LFQ setting was enabled in MaxQuant. 

 

MaxQuant software generates a set of output tables. For further analysis, I used 

the proteingroups.txt file and, if relevant, the Acetyl (K)Sites.txt file for further 

analysis with Perseus software (Tyanova et al., 2016). 

 

2.2.14.2 Perseus data analysis 

Perseus versions 1.5.5.3, 1.6.0.7 or 1.6.2.2 were used to carry out statistical 

analysis of the proteomic data. For all experiments, analysis of the 

proteingroups.txt file was as follows: For SILAC experiments, the SILAC ratios H/L 

were uploaded as main columns and for LFQ experiments the normalised LFQ 

intensities were uploaded as main columns. The data was then filtered by 

removing potential contaminants, such as keratins and trypsin derived peptides. 

Reverse peptides, which are identified by querying them against a decoy database 

(Elias and Gygi, 2010) were also removed. Finally peptides only identified by site, 
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meaning only the modified version of the peptide was identified, were also 

removed. Only proteins identified in at least two biological replicates were 

considered for analysis. For SILAC experiments, the SILAC ratio for the ‘Reverse’ 

experiment was inverted to make the comparison between Forward and Reverse 

labelled experiments consistent. SILAC ratios were then transformed by log2 and 

the intensities and LFQ intensities were transformed by log10. The distribution of 

the SILAC data was assessed using a histogram, and if the data did not follow a 

normal distribution centred on zero, the median ratio was subtracted from all the 

ratios for each sample. Proteins that were significantly different between 

conditions were identified by performing a two sample t-test (p ≤ 0.05) for the 

label free experiments.  

 

For the acetylome experiment, the Acetyl (K)Sites.txt file was analysed as follows: 

The data was filtered for contaminants and reverse peptides as described 

previously. Only peptides with a score differential > 0.5 and a localisation 

probability of > 0.75 were kept for the analysis. The site table was expanded to 

separate peptides with the same sequence but different numbers of acetylated 

sites. All acetylated peptides with a SILAC ratio in at least one biological replicate 

were used for the analysis to extract the maximum amount of data from the 

experiment. The acetylation sites were annotated with the following information 

about modification sites derived from the PhosphoSitePlus database 

(www.phosphositeplus.org): linear motifs, known sites, regulatory sites and 

sequence features. The SILAC ratios were transformed by log2 and the intensities 

by log10, and the Reverse ratios inverted. The data was then normalised to the 

total proteome by subtracting the SILAC ratio for each protein from the 

proteingroups.txt analysis from the SILAC ratio for each acetylated peptide. If the 

unmodified protein was not identified in the total proteome, a SILAC ratio of 0 

was imputed so as not to lose information about modifications. Significantly 

regulated peptides were identified using a one sample t-test, with an S0 ≤ 0.1 and 

a Benjamini-Hochberg false discovery rate (FDR) ≤ 0.05. The proteins were further 

annotated with information from the Gene Ontology Cellular Compartment 

(GOCC), Gene Ontology Biological Function (GOBF), Gene Ontology Molecular 

Function (GOMF), Kyoto encyclopaedia of genes (KEGG) and Protein families 

(Pfam) databases. A one dimension category enrichment analysis was then carried 

out to identify which categories from these databases were enriched for 
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acetylated peptides in the different conditions (Cox and Mann, 2012). The 

enrichment factor was calculated using the Fisher exact test with a Benjamini-

Hochberg FDR ≤ 0.02: 

 

𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 𝑥 𝑡𝑜𝑡𝑎𝑙 𝑠𝑖𝑧𝑒

𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 𝑥 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑠𝑖𝑧𝑒
 

 

An enrichment factor of > 1 denotes an enriched category and < 1 a depleted 

category. 
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2.2.15 Xenografts of MCF10DCIS.com cells and CAFs 
 

MCFDCIS.com breast cancer cells were combined with either the shCtl or shPYCR1 

pCAF cell lines in a 1:3 ratio and resuspended in 50% growth factor reduced 

matrigel and 50% PBS. 200 µl of the matrigel mixture containing 0.5 x 106 

MCF10DCIS.com cells and 1.5 x 106 CAFs was injected subcutaneously into the 

mammary fat pad of 12 Balb-C nude mice for each condition. The tumours were 

measured by calliper every 2-3 days. After 2 weeks, six mice from each condition 

with the largest tumours as measured by the calliper were culled and the tumours 

were collected. The tumours were weighed and cut in half. One half was fixed in 

4% PFA overnight and transferred to 70% ethanol before being embedded in 

paraffin blocks for immunohistochemical analysis. The other half was fixed in 4% 

PFA for 1 hr and subsequently sliced into 400 µm sections which were used for 

single harmonic generation imaging to detect collagen. The remaining mice were 

allowed to reach endpoint as determined by the tumours reaching a length of 15 

mm or the presence of ulceration. Each mice was culled at endpoint and the 

tumours were collected. The injection, monitoring and tumour collection were 

carried out by Sandeep Dhayade from the Beatson Institute. 
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Chapter 3  Pyruvate dehydrogenase activity is 

upregulated in mammary CAFs 

 

3.1 Characterisation of CAFs and NFs 
 

In this study I used paired CAFs and NFs derived in two different ways. The first 

are the iCAFs and iNFs which were kindly provided by Professor Akiro Orimo 

(Chapter 2.2.1.1). The iCAFs and iNFs have been characterised by the Orimo group 

and the iCAFs were shown to have an activated, myofibroblastic phenotype in 

comparison to the iNFs (Kojima et al., 2010), and this phenotype is maintained in 

culture in an autocrine manner through TGF-β and SDF-1 signalling. The iCAFs and 

iNFs have also been well characterised by our group (Hernandez-Fernaud et al., 

2017) (Kugeratski et al., 2019) and the iCAFs have been demonstrated to be more 

pro-invasive, pro-angiogenic and pro-tumourigenic than the iNFs, all of which are 

important characteristics of the CAF phenotype. 

 

The second type of CAFs and NFs are the pCAFs/pNFs which are derived from 

human breast cancer patients and which I immortalised (Chapter 2.2.1.2). I 

immortalised 3 matched pairs of CAFs and NFs where both cell types came from 

the same patient (pCAFs/NFs 1-3), and one unmatched CAF and NF cell line (pCAF 

4, pNF 5). All of the fibroblast lines expressed the mesenchymal cell marker 

vimentin as shown by immunofluorescence (Figure 3-1). Furthermore, our group 

has checked by flow cytometry analysis that the patient derived fibroblasts are 

uncontaminated with endothelial, immune or epithelial cells. In order to verify 

the activation of all the CAF cell lines I measured the levels of αSMA expression, 

which is the most commonly used marker of the activated myofibroblast 

phenotype, by western blot. Overall CAFs expressed more αSMA than NFs, 

although pNF 5 had relatively high αSMA levels (Figure 3-2). I regularly monitored 

αSMA levels in both the iCAFs/iNFs and pCAFs/pNFs during this study in order to 

be sure that they were maintaining their respective CAF and NF phenotypes. In 

this way I could carry out my experiments both using the iCAFs/iNFs, which have 

been extensively characterised, and the pCAFs/pNFs, which have been less well 

characterised and are likely to be more heterogeneous since we do not know what 
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cells the CAFs originate from, but are patient derived and therefore more 

clinically relevant. 
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Representative images of the pCAFs post-immortalisation stained for vimentin (green), 

phalloidin (red) to visualise the actin cytoskeleton and DAPI (blue). Images were 

acquired using the Zeiss 710 at 20x magnification. Representative images of n ≥ 3 

replicates 

 

 

Figure 3-1 Patient derived CAFs express the fibroblast marker vimentin 
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Representative western blots of n ≥ 3 biological replicates of αSMA levels in all the pairs of 

fibroblasts. Vinculin or β-tubulin was used as a loading control. Positions of molecular weight 

markers are shown.  

 

 

 

 

Figure 3-2 CAFs express more αSMA than NFs 
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3.2 Predicting kinase activity in iCAFs and iNFs 
 

Many key signalling pathways in cells are driven by changes in phosphorylation due 

to altered kinase activity. In particular, kinase dysregulation is a common feature 

of cancer cells. To further probe into how CAFs maintain their activated 

phenotype, we collaborated with Dr. Julio Saez-Rodriguez and Enio Gjerga from 

RWTH Aachen University (Germany) to elucidate changes in kinase activity from 

the phosphoproteomes of the iCAFs and iNFs. The MS-phosphoproteomic data was 

previously acquired and analysed by Juan Ramon Hernandez-Fernaud from our 

group. Samples from SILAC labelled iCAFs and iNFs were enriched for 

phosphorylated peptides and analysed by MS-proteomics. The experiment was 

performed with both forward and reverse labelled cells (i.e. heavy CAFs with light 

NFs and light CAFs with heavy NFs) to give two total experiments. The Saez-

Rodriguez group then used the differences between iCAFs and iNFs in the log2 

SILAC ratios of phosphosites known to be targeted by specific kinases to predict 

which kinases were more or less active in the iCAFs. From this modelling, only five 

kinases were predicted to have significantly different activity between iCAFs and 

iNFs: MAPK1, MAPK3, AKT3, CDK2 and PDK2 (Figure 3-3). Of these, I decided to 

focus on PDK2 (Pyruvate dehydrogenase kinase), the activity of which was 

downregulated in the iCAFs, because it was predicted to have the greatest 

difference in activity between iCAFs and iNFs. Furthermore, it has only one main 

target: Pyruvate dehydrogenase (PDH), although it has recently been shown to 

also phosphorylate PARL (Shi and McQuibban, 2017). The pyruvate dehydrogenase 

complex is made up of three subunits, of which the PDH subunit catalyses the rate 

limiting step of pyruvate decarboxylation and is therefore subject to the most 

regulation at the post-translational level. The PDC is a key metabolic enzyme 

because it converts pyruvate to acetyl-coA in the mitochondria, thus connecting 

the two major metabolic pathways of glycolysis and the TCA cycle. Acetyl-coA 

produced by the PDC can also be used for a variety of other metabolic pathways 

including cholesterol and fatty acid synthesis, as well as for protein acetylation, 

making it a versatile and central metabolite. Therefore changes in PDH activity 

could have a profound impact on the CAF phenotype. PDH was also the most highly 

regulated protein at the phosphorylation level in the phosphoproteomics data; 

three out of its four phosphorylation sites on the A1 subunit were highly 

downregulated in the iCAFs, including S293 which is the site that PDK2 has the 
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highest affinity for (Figure 3-4). Phosphorylation of any of these three sites is 

known to inhibit PDH activity by blocking binding of pyruvate to the active site. 

Therefore, since PDH phosphorylation was less phosphorylated in the iCAFs I 

hypothesised that PDH activity was downregulated due to a decrease in PDK2 

activity. 
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 Plot showing the score for the predicted difference in kinase activity in iCAFs 

compared to iNFs based on phosphoproteomic data from the iCAFs and iNFs. Data from 

two experiments with both forward and reverse labelled fibroblasts was used for the 

modelling. Each dot represents a kinase used in the analysis. Kinases with a significant 

p-value are named. 

Figure 3-3 Visualisation of predicted kinase activity in iCAFs and iNFs 
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Scatter plot showing the log2 difference of phosphorylated proteins between iCAFs 

and iNFs in two independent SILAC experiments. For each experiment both forward 

and reverse labelled experiments were averaged. Each dot represents a 

phosphorylation site. The three identified phosphorylation sites on PDH are 

highlighted in blue 

Figure 3-4 Phosphoproteomic data of iCAFs and iNFs highlighting PDH phospho-sites 
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3.3 Pyruvate dehydrogenase is less phosphorylated in 

CAFs 
 

To verify the results of the phosphoproteomic data, I assessed the levels of PDH 

phosphorylation in CAFs and NFs by western blot. I chose the S293 phosphorylation 

site to study because this is the site with the highest affinity for PDK2. I compared 

PDH phosphorylation levels between the iCAFs and iNF as well as two pCAF and 

pNF pairs: pCAF2/pNF2 and pCAF3/pNF3. I selected these two pairs because both 

had a good regulation of αSMA between NFs and CAFs and because the pCAF2/NF2 

fibroblasts are from an ER positive patient whereas the pCAF3/pNF3 are from a 

triple negative patient and I wanted to demonstrate that the regulation of PDH 

phosphorylation is not specific to CAFs from one subtype of breast cancer. I then 

used these pCAF/pNF pairs in all subsequent experiments involving pCAFs and 

pNFs. In all the fibroblast pairs, PDH was significantly less phosphorylated in the 

CAFs as shown by western blot analysis (Figure 3-5). The total amount of PDH did 

not decrease, showing that PDH phosphorylation is being regulated rather than 

the protein expression. This supports the phosphoproteomic data from the iCAFs 

and iNFs and shows that PDH regulation is not specific to the iCAFs but also occurs 

in patient derived CAFs. 
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 Representative western blots and quantification of pPDHA1 levels in CAFs and NFs. Graphs show 

SEM and mean of 3 independent experiments. Quantification represents pPDHA1 intensity 

normalised to both total PDHA1 intensity and vinculin intensity. Molecular weight markers are 

indicated next to the blots. Significance was calculated using an unpaired student t-test with 

Welch’s correction: p≤0.05 *, p≤0.01 ** 

Figure 3-5 PDHA1 phosphorylation in CAFs and NFs 
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3.4 PDK2 regulates PDH phosphorylation 

 

3.4.1 PDK2 expression is downregulated in CAFs 

 

Although PDK2 was the only pyruvate dehydrogenase kinase predicted to be 

regulated in the iCAFs by the modelling of the phosphoproteomic data, there are 

in fact four pyruvate dehydrogenase kinases that can phosphorylate and inactivate 

PDH: PDK1, PDK2, PDK3 and PDK4. These are isoforms which share ~70% homology. 

Of these, PDK3 is predominantly found in heart and skeletal muscle tissue in 

humans and detected only in lung, brain, kidney and testes in mice, so I discounted 

PDK3 from being the main driver of changes in PDH phosphorylation in the 

mammary CAFs. PDK1 and PDK4 are also only expressed highly in heart and skeletal 

muscle, however, they are overexpressed in several cancers (Grassian et al., 2011) 

(Hsieh et al., 2008) (Kaplon et al., 2013) (Pate et al., 2014) and PDK1 is known to 

be upregulated in response to hypoxia (Kim et al., 2006a), which is a common 

feature of the tumour microenvironment. PDK2 however is ubiquitously expressed 

in all tissues. In addition there are two pyruvate dehydrogenase phosphatases: 

PDP1 and PDP2 which can regulate PDH phosphorylation and activity. There are 

few studies on the PDPs, although there is evidence suggesting they are regulated 

at the post translational level in some cancers (Fan et al., 2014) (Shan et al., 

2014). However, neither PDP has ever been investigated as a drug target in the 

context of cancer or any other disease, whereas PDKs can be targeted with several 

drugs including dichloroacetate (DCA) which has so far been shown to be well 

tolerated in Phase I clinical trials involving cancer patients (Dunbar et al., 2014) . 

I therefore wanted to assess whether PDK2 was indeed the main kinase or 

phosphatase responsible for the difference in PDH phosphorylation. I designed and 

tested primers for PDK1, PDK2 and PDK4. PDK4 could not be detected by qPCR, 

but PDK2 was significantly downregulated at the mRNA level in CAFs compared to 

NFs and PDK1 was significantly downregulated in the pCAF2s (Figure 3-6a). PDK2 

was much more highly expressed in the fibroblasts than PDK1, so I concluded that 

the regulation of PDK2 in CAFs would have a greater effect on PDH 

phosphorylation. Although PDK4 could not be detected at the mRNA level, the 

protein expression of PDK4 in lysates from iCAFs and iNFs could be detected by 

western blot, but there was no difference in expression between iCAFs and iNFs. 
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I also tried to detect PDP1 and PDP2 by western blot, however, PDP1 expression 

was not upregulated in the iCAFs and I could not detect PDP2 (Figure 3-6b). 

Furthermore, treatment of the iNFs with DCA, the PDK inhibitor, greatly reduced 

PDH phosphorylation as shown by western blot (Figure 3-7a). This suggests that a 

PDK is driving increased PDH phosphorylation in NFs rather than a PDP driving 

increased dephosphorylation of PDH in CAFs. 

 

To see if PDK2 was also downregulated in CAFs in a clinical context, the expression 

of the PDKs was measured in laser capture microdissected sections of normal or 

tumour associated stroma from triple negative breast cancer patients in 

collaboration with Dr. Morag Park. This data showed that both PDK2 and PDK4 are 

downregulated in tumour associated stroma, whereas PDK1 and PDK3 are not 

(Figure 3-8). Although PDK4 was also highly downregulated in the tumour-

associated stroma, since it was not highly expressed or regulated between my 

CAFs and NFs whereas PDK2 consistently was, I focussed on PDK2 in my future 

experiments. 

 

I therefore concluded from these experiments that PDK2 expression was 

downregulated in CAFs and that this was likely to be the cause of the observed 

decrease in PDH phosphorylation 

 

3.4.2 PDK2 expression regulates PDH phosphorylation 

 

To confirm that PDK2 was controlling PDH phosphorylation in CAFs, I modulated 

the expression of PDK2 in the iCAFs and iNFs and quantified the level of PDH 

phosphorylation by western blot (Figure 3-7b). The iNFs were transfected with an 

siRNA pool against PDK2 to transiently knock down PDK2. The efficiency of the 

knock down was verified by RT-qPCR and showed that 48h after transfection there 

was a reduction in phosphorylated PDH in siPDK2 transfected iNFs compared to 

the siCTL. Conversely, the iCAFs were transfected with a plasmid to transiently 

overexpress either wild-type PDK2 or PDK2 with the mutation N255A which 

abrogates its kinase activity (Shi and McQuibban, 2017). Expression of PDK2WT was 

sufficient to increase PDH phosphorylation in comparison to PDK2N255A 48h after 

transfection. Therefore PDK2 is indeed a major regulator of PDH phosphorylation 
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in fibroblasts, and I am able to control PDH phosphorylation in both CAFs and NFs 

by overexpression or siRNA knock down of PDK2. 
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a: mRNA expression of PDK1 and PDK2 in CAFs and NFs as measured by RT-qPCR. The 

mean and SEM of at least 3 independent experiments are shown. PDK1 and PDK2 

expression was normalised to GAPDH expression for each cell line. n ≥ 3 biological 

replicates. Significance was calculated using an unpaired student t-test test with 

Welch’s correction: p≤0.05 *, p≤0.01 **, p≤0.001 *** 

b: Western blots showing the levels of PDK4 and PDP1 in the iCAFs and iNFS. Molecular 

weight markers are shown next to the blots. Representative images of n ≥ 3 biological 

replicates 

 

 

a 

b 

Figure 3-6 PDK expression in CAFs and NFs 
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a: Western blot showing the levels of phospho-PDHA1 in iNFs after 24h of treatment with 5 mM 

DCA or DMSO control. Molecular weight markers are shown next to the blots. b: Western blot 

showing the levels of phospho-PDHA1 in iCAFs transfected for 48h with PDK2N255A or PDKWT and 

iNFs transfected for 48h with siCTL or siPDK2. c. Western blot showing phospho-PDHA1 levels 

are not altered in CAFs transfected for 48h with the inactive PDK2N255A compared to an empty 

vector control. d. PDK2 expression measured by RT-qPCR in iNFs transfected for 48h with siCTL 

or siPDK2. PDK2 mRNA levels were normalised to TBP2. Graph shows mean and SEM of 3 

biological replicates. Significance was calculated using an unpaired student t-test with Welch’s 

correction: p≤0.05 * 

All Western blots are representative images of n ≥ 3 biological replicates 

 

 

a 

b c 

Figure 3-7 PDK2 regulated PDH phosphorylation 

d 



113 
 

 

 

 

 

 

Expression of PDK1,2,3 and 4 mRNA in microdissected sections of normal and tumour 

associated stroma from triple negative breast cancer patients. Each dot represents 1 

patient. Data was provided by Morag Park (McGill University). Error bars show mean 

and SEM. Significance was calculated using an unpaired student t-test: p≤0.05 *, 

p≤0.01 **, p≤0.001 *** 

 

 

Figure 3-8 PDK expression in normal and tumour-associated stroma 
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3.5 PDH is more active in CAFs 
 

3.5.1 The PDH complex is more active in CAFs in an in vitro assay 

 

It is well known that phosphorylation of PDH decreases its activity. Therefore the 

decrease in phosphorylated PDH in CAFs should mean that PDH is more active. To 

confirm that PDH is in fact more active in CAFs, I used an enzymatic assay to 

measure PDH activity in CAFs and NFs. The assay can be used to measure the rate 

of NADH production by immunocaptured PDH from cell lysates using a reporter 

dye which gives a yellow reaction product. The rate of NADH production was 

significantly higher in all CAF cell lines compared to their paired NFs, showing that 

PDH was indeed more active in CAFs than NFs (Figure 3-9). 

 

3.5.2 CAFs produce more acetyl-coA in a PDH phosphorylation-dependent 

manner 

 

The role of PDH is to convert pyruvate to acetyl-coA; in order to show that the 

decrease in PDH phosphorylation increased its activity in the CAFs I used MS-

metabolomics to quantify the amount of intracellular acetyl-coA in CAFs and NFs. 

The total amount of acetyl-coA in the CAFs was significantly higher than in NFs 

across all three pairs of fibroblasts, suggesting that CAFs do produce more acetyl-

coA (Figure 3-10a). However, acetyl-coA can be derived from several pathways. 

In addition to PDH, acetyl-coA can be produced from beta-oxidation of fatty acids, 

or from TCA cycle metabolites via citrate. I therefore performed a metabolomics 

tracing experiment to find out what proportion of acetyl-coA in CAFs was actually 

produced by PDH. The fibroblasts were labelled for 48h with media containing 

either 13C6-glucose or 13C3-pyruvate to trace acetyl-coA through PDH, 13C5-

glutamine for acetyl-coA produced via the TCA cycle or 13C16-palmitate for acetyl-

coA coming from fatty acids (Figure 3-10b). The intracellular metabolites were 

then harvested and analysed using LC-MS, and the percentage of heavy labelled 

metabolites incorporated into acetyl-coA was determined. This experiment 

showed that about 70% of acetyl-coA in the CAFs is derived from glucose and 

pyruvate combined, meaning that PDH is the main source of acetyl-coA in CAFs. 

To investigate whether PDH phosphorylation levels were responsible for the 

difference in acetyl-coA production between CAFs and NFs, I transfected the iNFs 
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with siPDK2 or siCTL and the iCAFs with PDK2WT or PDK2N255A to increase PDH 

phosphorylation in iNFs and decrease it in the CAFs, respectively. The intracellular 

metabolites were extracted from the fibroblasts 48h after transfection and the 

relative total amount of acetyl-coA was quantified (Figure 3-10c). Increasing PDH 

phosphorylation decreased intracellular acetyl-coA and vice versa. Therefore PDH 

activity is increased in CAFs as shown by the increase in acetyl-coA production, 

and this is dependent on the level of PDH phosphorylation, which is controlled by 

PDK2 expression. 
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Rate of pyruvate to acetyl-coA conversion by immunocaptured PDH. Rate of reaction 

was measured as the change in absorbance at OD405 nm and normalised to the rate 

of reaction in the NFs. Graphs show the mean and SEM of at least 3 independent 

experiments. Significance was calculated using an unpaired student t-test test with 

Welch’s correction: p≤0.05 *, p≤0.01 ** 

 

 

Figure 3-9 PDH complex activity in CAF and NFs 
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a: Total intracellular acetyl-coA in NFs and CAFs measured by LC-MS and normalised 

to protein content. b: Fraction of acetyl-coA labelled by glucose, glutamine, pyruvate 

and palmitate in iCAFs. Acetyl-coA was measured by LC-MS and normalised to protein 

content. c: Total intracellular acetyl-coA in iCAFs transfected for 48h with PDK2N255A 

or PDKWT and iNFs transfected for 48h with siCTL or siPDK2. Acetyl-coA was measured 

by LC-MS and normalised to protein content. 

Graphs show the mean and SEM of at least 3 independent experiments. Significance 

was calculated using an unpaired student t-test test with Welch’s correction:         

p≤0.05 *, p≤0.01 **, p≤0.001 *** 

 

 

a 

b 

c 

Figure 3-10 PDH activity regulates acetyl-coA in fibroblasts 
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3.6 Investigation of PDK2 regulation in CAFs 
 

I have shown that the decrease in PDH phosphorylation in CAFs is regulated by 

PDK2 expression, however, it is unknown what pathway in the CAFs leads to 

decreased PDK2 expression. I reasoned that there must be some aspect of the 

activated CAF phenotype that was linked to PDK2 expression. Upregulated TGF-β 

signalling is a hallmark of activated CAFs, so initially I investigated the impact of 

TGF-β on PDH phosphorylation. I treated the iNFs with recombinant human TGF-

β1 for 48h. This caused an increase in the levels of phospho-Smad2, a readout of 

activated TGF-β signalling, showing that the treatment was effective (Figure 3-

11). However, it did not decrease phospho-PDH, in fact, it slightly increased 

phospho-PDH levels. It is also well known that CAF activation is stimulated by 

factors produced by cancer cells. Therefore I also cultured the iNFs with 

conditioned media from MDA-MB-231 cells, which are a highly aggressive and 

invasive triple negative breast cancer cell line, for 48h (Figure 3-11). However, 

this also failed to reduce PDH phosphorylation in the iNFs. 

 

It has been previously shown that PI3K/Akt signalling stimulates decreased PDH 

phosphorylation on S293 by PDKs in head and neck cancer (Cerniglia et al., 2015). 

From the phosphoproteomic data from the iCAFs and iNFs there was evidence to 

suggest that Akt signalling is upregulated in iCAFs and other works have shown 

that PI3K-Akt signalling is active in CAFs (Sun et al., 2019). I therefore treated the 

CAFs with the Akt inhibitor MK2066 to investigate the effect of Akt signalling on 

PDH activity in the CAFs. The Akt inhibitor effectively reduced phospho-Akt, i.e. 

active Akt, levels after 24h of treatment, and correspondingly increased phospho-

PDHA1 levels in both the iCAFs and pCAF3s, although not in the pCAF2s (Fig. 3-

12). As PI3K/Akt signalling is stimulated by integrin signalling in response to 

extracellular matrix (ECM) adhesion and CAFs produce a very different ECM to NFs, 

both in terms of amount of protein and of composition, I investigated whether CAF 

and NF ECM produced a different response in regard to PDH phosphorylation. Both 

CAFs and NFs were seeded at confluence and allowed to produce ECM for 7 days. 

Then, the ECM was decellularised, and CAFs or NFs were seeded on the fibroblast-

derived ECM and cultured for 48h. Each pair of CAFs and NFs was seeded on ECM 

derived from the same pair. By western blot, CAF ECM significantly decreased 

phospho-PDH levels in NFs relative to NF ECM or plastic (Fig. 3-13). I also analysed 
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the expression of PDK2 in response to iCAF and iNF derived ECM by RT-PCR and 

again found that PDK2 expression decreased more in response to being cultured 

on iCAF derived ECM than iNF ECM or plastic (Fig. 3-14). I therefore concluded 

that there is a component of CAF derived ECM that stimulates a pathway leading 

to decreased PDK2 expression and thereby decreased PDH phosphorylation, 

probably via integrin mediated Akt signalling. 
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Western blot showing phospho-Smad, phospho-PDHA1 and total PDHA1 levels in iNFs 

after 48h treatment with either recombinant TGFβ or conditioned media from 

MBAMB231 cancer cells. β-tubulin was used as a loading control. Molecular weight 

markers are shown next to the blots. Representative image of n ≥ 3 biological 

replicates 

 

 

Figure 3-11 TGFB and cancer cell conditioned media do not activate PDH 
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Western blot showing phospho-Akt and phospho-PDHA1 levels in CAF cell lines after 

24h treatment with MK2206. Vinculin was used as a loading control. Molecular weight 

markers are shown next to the blots. Representative image of n ≥ 2 biological 

replicates 

 

 

Figure 3-12 Akt inhibitor increases PDH phosphorylation 
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Representative Western blot and quantification of pPDHA1 levels in CAFs and NFs 

cultured on plastic or on CAF or NF-derived ECM for 48h. The pPDHA1 intensity was 

normalised to total PDHA1 intensity and loading control intensity. Molecular weight 

markers are shown next to the blots.  

Graphs show mean and SEM of 3 independent experiments. Significance was calculated 

using a one-way ANOVA with Tukey’s multiple comparisons test p≤0.05 *, p≤0.01 **, 

p≤0.001 *** 

 

 

Figure 3-13 CAF ECM decreases PDH phosphorylation 
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RT-qPCR quantification of PDK2 expression on CAFs and NFs cultured on plastic or CAF 

or NF-derived ECM for 48h. PDK2 expression was normalised to 18S expression Graphs 

show mean and SEM of 3 independent experiments. Significance was calculated using 

a one-way ANOVA p≤0.05 *, p≤0.01 **, p≤0.001 *** 

 

 

Figure 3-14 CAF ECM decreases PDK2 expression 
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3.7 Conclusions 
 

The key finding of this chapter is that pyruvate dehydrogenase, a central 

metabolic enzyme which produces the versatile metabolite acetyl-coA, is more 

active in CAFs. The most common way that PDH activity is regulated in cells is by 

inhibitory phosphorylation, and this is decreased in CAFs compared to NFs. This 

decrease in phosphorylation was predicted to be regulated by PDK2 based on 

phosphoproteomic data from the iCAFs and iNFs and I then confirmed this 

prediction by showing that PDK2 is downregulated in the three CAF cell lines I am 

using, as well as in microdissected sections of tumour associated stroma from 

patients, and that PDK2 expression regulates PDH phosphorylation in the 

fibroblasts. Although there are other enzymes that modify PDH phosphorylation, 

the fact that PDH phosphorylation is drastically reduced by the PDK inhibitor DCA 

in NFs points towards the kinases rather than the phosphatases being responsible 

for regulating PDH phosphorylation in the fibroblasts. Furthermore, PDK2 is the 

only PDK that was consistently regulated both in my fibroblast cell lines and in 

stroma from patient samples, and was overall more highly expressed than the 

other PDKs. Finally, I could significantly alter PDH phosphorylation simply by 

modulating PDK2 expression in the fibroblasts, again pointing towards PDK2 as the 

major regulator of PDH phosphorylation in CAFs and NFs. Interestingly, a study 

found that PDH levels were increased in lung fibroblasts when co-cultured with 

tumour cells, although there was no difference in phosphorylation, showing that 

upregulated PDH activity could be a general mechanism across different types of 

CAFs and not specific to breast cancer stroma. Furthermore, increased levels of 

PDH in fibroblasts stimulated tumour cell migration, demonstrating that increased 

PDH activity has a functional effect in the tumour microenvironment (Koukourakis 

et al., 2017). 

 

There have been few studies investigating pathways that regulate PDK2 expression 

(Cerniglia et al., 2015, Contractor and Harris, 2012). I began to investigate 

possible upstream pathways regulating PDK2 expression and showed that CAF 

derived ECM decreases PDK2 expression. Integrin receptors mediate cellular 

responses to the ECM, suggesting that this is an integrin regulated pathway. 

Integrin signalling has been shown to play an important role in the CAF phenotype; 

integrins αvβ3, α3 and β6 have all been shown to stimulate CAF activation (Jang 
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and Beningo, 2019). Integrins activate signalling pathways mainly through 

recruiting kinases to the membrane where they are activated. One such kinase is 

PI3K which activates Akt signalling. This was a good candidate for PDK2 regulation 

as we know Akt signalling is upregulated in the iCAFs and it has previously been 

shown to impact PDH phosphorylation. An Akt inhibitor effectively increased PDH 

phosphorylation in only two out of my three CAF cell lines however, so there may 

be different regulatory mechanisms happening. I did not pursue investigation into 

the upstream factors controlling PDK2 expression further, preferring instead to 

concentrate on the impact that increased PDH activity has on the CAF phenotype, 

which will be discussed in the following chapters. 

 

The output of increased PDH activity is an increase in acetyl-coA production, 

which I have demonstrated occurs in my CAF cell lines and that this is regulated 

by PDK2 dependent PDH phosphorylation. The next question was therefore what 

this increase in acetyl-coA levels is used for in the CAFs. PDH is primarily a 

mitochondrial protein, although it has been observed in the nucleus (Sutendra et 

al., 2014). The metabolic impact of PDH activity has been widely studied in 

tumour cells, although not in the tumour microenvironment. PDH has been called 

the ‘mitochondrial gatekeeper’ as it connects glycolysis to mitochondrial 

metabolism and many studies on PDH activity have shown that altering PDH 

phosphorylation and activity pushes cancer cells towards either glycolytic or 

oxidative metabolism, and that this impacts on tumour progression (McFate et al., 

2008, Kaplon et al., 2013, Saunier et al., 2017, Yonashiro et al., 2018). However, 

acetyl-coA can be exported from the mitochondria into the cytoplasm via citrate, 

and it has been shown that PDH activity affects cytoplasmic lipid synthesis 

(Rajagopalan et al., 2015). Acetyl-coA is also a substrate for protein acetylation, 

and PDH activity has also been shown to affect protein acetylation (Sutendra et 

al., 2014, Lozoya et al., 2019). An increase in acetyl-coA could therefore modulate 

a wide variety of pathways contributing to aspects of the activated CAF phenotype 

either through altered metabolism or through protein acetylation.  
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Chapter 4  PDH activity regulates histone 

acetylation in CAFs 

 

4.1 PDH is localised in the mitochondria 

 

In this chapter, I investigated how the acetyl-coA produced by PDH is used by the 

CAFs, since acetyl-coA is a highly versatile metabolite and can be used for a wide 

variety of metabolic and acetylation pathways (Pietrocola et al., 2015). PDH is 

typically known as a mitochondrial enzyme, however, studies have shown that 

PDH can relocalise to the nucleus and produce acetyl-coA there to promote 

histone acetylation (Sutendra et al., 2014, Shi et al., 2017). The localisation of 

PDH could impact on how the acetyl-coA it produces is used, although acetyl-coA 

can be shuttled between the cytosol and mitochondria or nucleus via citrate or 

acetyl-carnitine. Therefore, there is no barrier to acetyl-coA being produced in 

one compartment and being used in another. Even so, as a starting point to 

investigating the function of acetyl-coA in CAFs, I first determined the localisation 

of PDH. iCAFs and iNFs were labelled in culture with MitoTracker, which stains 

mitochondria. The cells were then fixed and probed by immunofluorescence with 

an antibody against PDHA1, which is the regulatory subunit of the PDH complex 

(Fig. 4-1a). The PDHA1 staining overlapped entirely with the mitochondrial 

staining and there was no detectable PDHA1 in the nucleus. To further verify these 

results, I fractionated lysate from iCAFs into nuclear, mitochondrial and cytosolic 

fractions using a cell fractionation kit. The efficacy of the fractionation was 

assessed by western blot of each fraction using an antibody cocktail for nuclear, 

mitochondrial, cytosol and plasma membrane markers: histone 3, ATP5A, GAPDH 

and Na+/K+ ATPase respectively. The localisation of PDHA1 in each fraction was 

determined by western blot and this showed that the PDHA1 band was only visible 

in the mitochondrial fraction (Fig 4-1b). Therefore, I have conclusively shown that 

PDH is localised in the mitochondria in the fibroblasts. 
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a: Representative image of CAFs stained for PDHA1 (green), MitoTracker Red (red) and 

DAPI (blue). Images were acquired at 40x magnification. Representative image of n ≥ 3 

biological replicates b: Western blot of mitochondria, cytosol and nuclear fractions from 

iCAF lysate showing expression of PDHA1 (top) and mitochondrial, plasma membrane, 

cytosol and nuclear markers (bottom). Molecular weight markers are shown beside the 

blots. Representative image of n = 2 biological replicates 

a 

b 

Figure 4-1 PDH is mitochondrial in CAFs 
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4.2 There is no difference in glycolysis or oxidative 

phosphorylation between CAFs and NFs 
 

4.2.1 There are no differences in uptake or secretion of major metabolites 

between CAF and NFs 

 

The majority of pathways that use acetyl-coA are metabolic pathways. Therefore 

when investigating the role of increased PDH activity in CAFs, the first step was 

to discover if there were any metabolic differences between CAFs and NFs. In 

order to obtain a basic overview of CAF and NF metabolism and to find out if there 

were major differences between them, I used the YSI 2900 biochemistry analyser 

to calculate the rate of uptake or secretion of four key metabolites: glucose, 

lactate, glutamine and glutamate. These metabolites account for most of the 

metabolic uptake and secretion by cells and are the main carbon sources for the 

two major metabolic pathways of glycolysis and the TCA cycle. 

I took samples of media from CAFs and NFs after 48h of culture and used the 

biochemistry analyser to measure the concentration of glucose, lactate, glutamine 

and glutamate in the media. The concentration of each metabolite was normalised 

to cell number and the rate of uptake or secretion per hour was calculated relative 

to media that had not been cultured with cells (Fig. 4-2). There were no consistent 

differences between the CAFs and NFs, which was surprising given that several 

studies have shown that mammary CAFs are more glycolytic than NFs (Guido et 

al., 2012, Pavlides et al., 2009, Yu et al., 2017) so I would have expected 

differences in glucose uptake and lactate secretion. I did however normalise for 

the increase in cell number over 48h, which would remove any differences in 

glycolysis due to differences in proliferation rate.  

 

The results of the above experiment were taken from cells under standard cell 

culture conditions, in media with a plentiful supply of metabolites. However in 

the tumour microenvironment cells can be under different stresses, including 

hypoxia and nutrient deprivation. To investigate whether stressing the fibroblasts 

would elucidate metabolic differences and possible vulnerabilities in the CAFs, I 

repeated the previous experiment with the CAFs and NFs, however the cells were 

either cultured in hypoxic conditions with 1% oxygen (Fig 4-3) or with ‘low glucose’ 

media (Fig 4-4), which contains 1 g/l glucose instead of 5 g/l and is more similar 



129 
 
to the glucose concentration in a tumour. Again, I took media after 48h of culture 

and measured the concentration of glucose, lactate, glutamine and glutamate 

using the biochemistry analyzer. Although the rate of glucose uptake and lactate 

secretion increased under hypoxia and decreased under low glucose conditions, 

there were still no consistent differences between CAFs and NFs. However, there 

were differences in individual metabolites between CAFs and NFs from the same 

pair, highlighting the heterogeneity of the patient derived CAFs compared to the 

iCAFs. For example, the pCAF2 line takes up a high amount of glutamine and 

secretes a high amount of glutamate under low glucose conditions. 

 

However, these experiments show that there are no metabolic differences 

between the mammary CAFs and NFs at the basic level of conversion of glucose to 

lactate and the glutamine/glutamate cycle. In order to discover whether the 

increased PDH activity in CAFs had any metabolic effects, it was necessary to gain 

a more in depth understanding of the metabolism of the CAFs and NFs. 
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Graphs showing the exchange rate between fibroblasts and media of glucose, lactate, 

glutamine and glutamate. Bars show the mean and SEM of three independent 

experiments. Significance between CAFs and NFs of the same pair was calculated using a 

students t-test with Welch’s correction 

Figure 4-2 Metabolic flux of CAFs and NFs in normoxia/high glucose conditions 
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Graphs showing the exchange rate between fibroblasts and media of glucose, lactate, 

glutamine and glutamate. Cells were cultured in 1% O2 for the duration of the 

experiment. Bars show the mean and SEM of three independent experiments. Significance 

between CAFs and NFs of the same pair was calculated using a students t-test with 

Welch’s correction: *p≤0.05, ** p≤0.01, *** p≤0.001 

Figure 4-3 Metabolic flux of CAFs and NFs in hypoxia 
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Graphs showing the exchange rate between fibroblasts and media of glucose, lactate, 

glutamine and glutamate. Cells were cultured in media containing 1 g/l glucose for the 

duration of the experiment. Bars show the mean and SEM of three independent 

experiments. Significance between CAFs and NFs of the same pair was calculated using a 

students t-test with Welch’s correction: *p≤0.05, ** p≤0.01, *** p≤0.001 

Figure 4-4 Metabolic flux of CAFs and NFs cultured in low glucose media 
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4.2.2 MS-metabolomic tracing experiments show few differences between 

CAFs and NFs 

 

The most obvious route for acetyl-coA produced in the mitochondria is to enter 

the TCA cycle. Indeed, the majority of studies on increased PDH activity show that 

it is used to fuel and promote oxidative metabolism in cells. In addition to fuelling 

oxidative phosphorylation, TCA cycle metabolites have many other roles including 

as precursors for amino acid and nucleotide synthesis and as signalling molecules. 

In order to obtain a more in depth overview of the metabolism of CAFs and NFs, I 

performed metabolomic tracing experiments with the iCAFs and iNFs as well as 

the pCAFs and pNFs. I cultured the fibroblasts with media containing 13C6-glucose 

for 48h before extracting the metabolites and analysing heavy glucose 

incorporation and relative levels of metabolites by LC-MS. 

 

Although in individual CAF and NF pairs there were significant differences in some 

metabolites, overall there were few consistently regulated metabolites between 

CAFs and NFs. N-acetyl-aspartate levels were higher in CAFs than in NFs in 2 out 

of 3 pairs, and incorporated heavy glucose at M+2, which could come from acetyl-

coA since the acetyl group has two carbons (Fig. 4-8). Additionally, intracellular 

proline and asparagine levels were consistently higher in CAFs than in NFs (Fig. 4-

7). I found that glycolytic metabolites were highly labelled, showing that the cells 

effectively took up the labelled glucose (Fig. 4-5), and that glucose labelled about 

25% of intracellular citrate. There was an increase in labelled citrate in CAFs 

compared to NFs. However, there was minimal labelling in the other TCA cycle 

metabolites (Fig 4-6), and in amino acids derived from them (Fig 4-7). This strongly 

suggested that acetyl-coA produced by PDH is converted to citrate, but is then 

exported out of the mitochondria where it can be converted back to acetyl-coA 

by ATP-citrate lyase (ACLY). Interestingly, a high proportion of heavy glucose was 

incorporated into acetylcarnitine in CAFs (Fig. 4-8). Acetylcarnitine is another 

pathway that can be utilised to export acetyl-coA out of the mitochondria. 

Mitochondrial carnitine O-acetyltransferase (CRAT) catalyses the reversible 

transfer of the acetyl group of acetyl-coA onto carnitine, which is shuttled out of 

the mitochondria and can again be converted back to acetyl-coA and carnitine in 

the cytosol. This has been shown to act as means of maintaining a steady state of 

oxidative phosphorylation by removing excess acetyl-coA from the mitochondria 
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(Davies et al., 2016). Taken together, the metabolomics tracing data suggests that 

acetyl-coA produced by PDH has a role outside of the mitochondria and is not used 

to fuel the TCA cycle.  
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 Graphs show the total intracellular glycolytic metabolites with the proportion of labelled 

carbons incorporated into each metabolite after 48h of labelling with 13C-glucose. NFs 

and CAFs were compared for each pair of fibroblasts. For each isotope, the peak area was 

normalised to the protein content of the cells from which the metabolites were 

harvested. Error bars show the mean and SEM for each isotope from 3 independent 

experiments. Significance was calculated using a student’s t-test with Welch’s correction: 

*p≤0.05, ** p≤0.01, *** p≤0.001 

Figure 4-5 13C-Glucose labelling of glycolytic metabolites 
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 Graphs show the total intracellular TCA cycle metabolites with the proportion of labelled 

carbons incorporated into each metabolite after 48h of labelling with 13C-glucose. NFs 

and CAFs were compared for each pair of fibroblasts. For each isotope, the peak area was 

normalised to the protein content of the cells from which the metabolites were 

harvested. Error bars show the mean and SEM for each isotope from 3 independent 

experiments. Significance was calculated using a student’s t-test with Welch’s correction: 

*p≤0.05, ** p≤0.01, *** p≤0.001 

Figure 4-6 13C-Glucose labelling of TCA cycle metabolites 
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   Figure 4-7 13C-Glucose labelling of non-essential amino acids 

Graphs show the total intracellular non-essential amino acids with the proportion of 

labelled carbons incorporated into each metabolite after 48h of labelling with 13C-

glucose. NFs and CAFs were compared for each pair of fibroblasts. For each isotope, the 

peak area was normalised to the protein content of the cells from which the metabolites 

were harvested. Error bars show the mean and SEM for each isotope from 3 independent 

experiments. Significance was calculated using a student’s t-test with Welch’s correction: 

*p≤0.05, ** p≤0.01, *** p≤0.001 
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Graphs show the total intracellular acetylated metabolites with the proportion of labelled 

carbons incorporated into each metabolite after 48h of labelling with 13C-glucose. NFs 

and CAFs were compared for each pair of fibroblasts. For each isotope, the peak area was 

normalised to the protein content of the cells from which the metabolites were 

harvested. Error bars show the mean and SEM for each isotope from 3 independent 

experiments. Significance was calculated using a student’s t-test with Welch’s correction: 

*p≤0.05, ** p≤0.01, *** p≤0.001 

Figure 4-8 13C-Glucose labelling of acetylated metabolites 
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Graphs show the NADH:NAD+ ratio calculated based on the total intracellular metabolite. 

NFs and CAFs were compared for each pair of fibroblasts. The peak area was normalised 

to the protein content of the cells from which the metabolites were harvested. Error bars 

show the mean and SEM for each isotope from 3 independent experiments. Significance 

was calculated using a student’s t-test with Welch’s correction: *p≤0.05, ** p≤0.01, *** 

p≤0.001 

Figure 4-9 NADH:NAD+ ratio in CAFs and NFs 
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4.2.3 Glutamine is the main source of TCA cycle metabolites in CAFs and NFs 

 

To further verify that acetyl-coA derived from PDH was not an important source 

of TCA cycle metabolites, I performed additional metabolomics tracing 

experiments with the iCAFs and iNFs. The fibroblasts were labelled for 48h with 

either 13C6-glucose, 13C5-glutamine or 13C16-palmitate. Glutamine can enter the 

TCA cycle via conversion to glutamate (glutaminolysis) and palmitate can enter 

the TCA cycle through conversion to acetyl-coA (fatty acid oxidation). I then 

extracted the intracellular metabolites and analysed the incorporation of heavy 

carbon by MS-metabolomics (Fig. 4-10, Fig. 4-11). Once again, there were no 

differences in the total proportion of heavy carbon incorporation into glycolysis or 

TCA cycle metabolites between CAFs and NFs. However, it was clear from this 

experiment that the majority of TCA cycle metabolites are derived from glutamine 

and not from glucose or palmitate. Glutamine labelled around 70% of TCA cycle 

metabolites, whereas glucose and palmitate gave around 5-10% label 

incorporation, with the exception of citrate as shown in the previous experiment. 

This experiment further supported my previous metabolomics data in showing that 

increased PDH activity does not increase oxidative phosphorylation in CAFs. 
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 Graphs show the proportion of labelled carbons incorporated into each metabolite after 

48h of labelling with 13C-glucose, glutamine or palmitate in the iNFs and iCAFs. For each 

isotope, the peak area was normalised to the protein content of the cells from which the 

metabolites were harvested. Error bars show the mean and SEM for each isotope from 3 

independent experiments. Significance was calculated using a student’s t-test with 

Welch’s correction: *p≤0.05, ** p≤0.01, *** p≤0.001 

Figure 4-10 13C labelling of glycolytic metabolites 
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 Graphs show the proportion of labelled carbons incorporated into each metabolite after 

48h of labelling with 13C-glucose, glutamine or palmitate in the iNFs and iCAFs. For each 

isotope, the peak area was normalised to the protein content of the cells from which the 

metabolites were harvested. Error bars show the mean and SEM for each isotope from 3 

independent experiments. Significance was calculated using a student’s t-test with 

Welch’s correction: *p≤0.05, ** p≤0.01, *** p≤0.001 

Figure 4-11 13C labelling of TCA cycle metabolites 
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4.2.4 CAFs have decreased mitochondrial functionality and are more 

autophagic than NFs 

 

To further investigate whether there are mitochondrial differences between CAFs 

and NFs, I stained the cells with MitoTracker or TMRE. MitoTracker labels 

mitochondria, thus giving a readout of the total mitochondrial content of the cells. 

TMRE, however, labels mitochondria in a membrane potential dependent manner, 

and therefore only labels functional mitochondria. After labelling the fibroblasts 

with the mitochondrial dyes in culture, the cells were harvested and fixed, and 

the intensity of the staining was quantified using flow cytometry. I could not 

detect significant differences in the total amount of mitochondria using 

MitoTracker staining between iCAFs/iNFs or pCAF3s/pNF3s, although pCAF2s had 

a significantly decreased mitochondrial content (Fig. 4-11a). However, both the 

iCAFs and the pCAF2s had a significantly lower amount of TMRE labelling after 

normalisation to the total mitochondrial content, indicating that their 

mitochondria are less functional (Fig. 4-12b).  

 

It has previously been reported that CAFs are more autophagic than NFs due to 

increased accumulation of reactive oxygen species (ROS), and it has been shown 

that the degradation products of autophagic CAFs provide tumour cells with key 

nutrients and building blocks for their faster rate of biosynthesis and metabolic 

turnover (Capparelli et al., 2012, Pavlides et al., 2012, Pavlides et al., 2010a). 

Mitochondrial dysfunction is a key aspect of autophagy, as dysfunctional 

mitochondria which cannot carry out oxidative phosphorylation accumulate ROS 

due to their dissipated membrane potential and thus stimulate autophagy (Ding 

and Yin, 2012). To assess whether the CAFs were more autophagic than NFs, I 

quantified the expression of LCBII after treatment of the iCAFs and iNFs with 

bafilomycin and chloroquine. LC3BII is the lapidated form of LC3B that recognises 

ubiquitinylated proteins and is recruited to autophagosomes as part of the 

autophagy process. In order for degradation to occur, autophagosomes must fuse 

with lysosomes and both bafilomycin and chloroquine inhibit this step, causing 

accumulation of autophagosomes and thereby LC3BII. Therefore the more LC3BII 

that is present after bafilomycin or chloroquine treatment, the higher the rate of 

autophagic flux is in the cells. The iCAFs accumulated more LC3BII after the drug 

treatment, indicating that in accordance with the literature they do have higher 
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levels of autophagy than the iNFs (Fig. 4-13). In this case, it is interesting that in 

spite of having a decrease in mitochondrial functionality and increased autophagic 

flux, the iCAFs still maintain the same quantity of mitochondria as the iNFs, as 

shown by MitoTracker Red (Fig. 4-12a). Normally, dysfunctional mitochondria are 

separated from the healthy network and degraded through a specific form of 

autophagy called mitophagy. This suggests that either the CAFs are synthesising 

new mitochondria to maintain the same amount as the NFs, or that mitophagy is 

impaired in some way. Interestingly, it has recently been shown that a second 

target of PDK2 is PARL (presenilin-associated rhomboid-like) (Shi and McQuibban, 

2017), which is a key player in one of the canonical mitophagy pathways. The 

authors showed that in response to mitochondrial depolarisation, PDK2 

phosphorylates PARL and prevents it from cleaving PINK-1 (PTEN-induced putative 

kinase 1). PINK-1 therefore accumulates at the outer mitochondrial membrane 

and recruits an E3 ubiquitin ligase to stimulate mitophagy. It is therefore possible 

that the lack of PDK2 in CAFs also reduces the efficacy of this mitophagy pathway, 

leading to accumulation of dysfunctional mitochondria. However, although PDK2 

expression may be involved in the observed differences in autophagy and 

mitochondrial dysfunction in between CAFs and NFs, it is unlikely that the 

increased PDH activity in CAFs would affect this pathway. Additionally, the 

pCAF3s/pNF3s did not show any differences either in mitochondrial content or 

TMRE labelling, so the differences are not consistent between different fibroblast 

pairs. Therefore I did not pursue this line of research any further, although it 

would be interesting to do so in the future. 
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a: Intensity of MitoTracker staining as measured by flow cytometry. Intensity was 

normalised to NF data for each pair of fibroblasts. b: Intensity of TMRE staining as 

measured by flow cytometry. Intensity was normalised to total mitochondrial content as 

determined by the MitoTracker staining, and to the NF data for each pair.  

Significance was calculated using a student’s t-test with Welch’s correction: *p≤0.05, ** 

p≤0.01, *** p≤0.001 

a 

b 

Figure 4-12 Mitochondrial content of CAFs and NFs 
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Western blot showing accumulation of LC3B-II (lower band) after 4h treatment with 

bafilomycin (Baf) or chloroquine (CQ) in iCAFs and iNFs. Vinculin was used as a loading 

control. Molecular weight markers are shown next to the blots 

Figure 4-13 LCB-II accumulation in iCAFs and iNFs 
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4.2.5 PDH activity does not affect mitochondrial functionality 

 

To further analyse mitochondrial metabolism in CAFs and NFs, I used the Seahorse 

XF24 Flux analyser. This measures oxygen consumption by cells and thus provides 

a readout for the rate of oxidative phosphorylation. I grew CAFs and NFs for 24h 

in Seahorse 24 well culture plates before carrying out the analysis with the 

Seahorse. Initially the basal oxygen consumption rate was measured, before 

adding oligomycin to block ATP synthesis and thereby reduce oxygen consumption, 

followed by CCCP to uncouple the electron transport chain from ATP synthase, 

forcing the cells to consume oxygen at their maximum capacity. Finally, antimycin 

A and rotenone were added to inhibit the electron transport chain and block 

oxygen consumption entirely. I could detect no difference between CAFs and NFs 

in basal oxygen consumption rate, although the iCAFs did have a lower 

mitochondrial capacity than the iNFs which is consistent with the TMRE staining 

showing that CAFs have a decrease in mitochondrial functionality (Fig 4-13a). The 

oxygen consumption rate of the pCAFs and pNFs was extremely low and I could 

detect no differences between CAFs and NFs (Fig 4-14a). To verify that the 

fibroblasts truly had a low level of oxygen consumption, I compared the rates with 

that of the MCF7 breast cancer cell line, which is known to have a high level of 

mitochondrial respiration (Rodriguez-Enriquez et al., 2010). All the fibroblast cell 

lines had a lower oxygen consumption rate compared to the MCF7 breast cancer 

cell line (Fig 4-14b). This experiment further supports the metabolomics data 

showing no differences in mitochondrial metabolism under normal conditions 

between CAFs and NFs and supports my hypothesis that PDH produced acetyl-coA 

is not used to increase flux through the TCA cycle in CAFs, especially since the 

fibroblasts have a low oxygen consumption rate. 

 

To finally show that PDH activity does not impact mitochondrial function, I 

transfected the iNFs with siPDK2 or siCtl to reduce PDH phosphorylation and 

increase its activity, then, 48h after transfection, I used the Seahorse to measure 

oxygen consumption. I could detect no differences between siCtl and siPDK2 

transfected iNFs in oxygen consumption either at the basal level or in 

mitochondrial capacity (Fig 4-13c). Therefore it seems that although CAFs do have 

a decrease in mitochondrial functionality compared to NFs, this does not affect 

their basal level of oxidative phosphorylation, which is relatively low. 
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Furthermore, PDH activity has no effect on oxidative metabolism and the evidence 

from the metabolomics tracing data strongly suggests that the majority of acetyl-

coA produced by PDH is exported out of the mitochondria and used elsewhere. 
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 a: OCR as measured by the Seahorse in all CAF and NF cell lines. Time points at which drugs 

were added are shown with dotted lines. OCR was normalised to cell number. b: OCR in 

CAF and NF cell lines in comparison with that of MCF7 cancer cell line. OCR was normalised 

to cell number. c: OCR of iNFs 24h after transfection with siCtl or siPDK2 and knockdown 

efficiency as measured by RT-qPCR. OCR was normalised to cell number. PDK2 mRNA was 

normalised to GAPDH. 

Mean and SEM of 3 independent experiments are shown. Significance was calculated using 

a student’s t-test: *p≤0.05, ** p≤0.01, *** p≤0.001 

 

 

a 

b 

c 

Figure 4-14 Oxygen consumption rate (OCR) of CAFs and NFs 
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4.3 ATP-citrate lyase is active in CAFs 
 

Acetyl-coA cannot traverse the mitochondrial membrane by itself. The most 

common way for acetyl-coA to leave the mitochondria is via conversion to citrate, 

which crosses the mitochondrial membrane via the transporter SLC25A1. Once 

outside the mitochondria, citrate can be converted back to acetyl-coA by ACLY, 

which is present both in the cytosol and the nucleus. ACLY is active when 

phosphorylated on S455 (Potapova et al., 2000). Interestingly, phosphorylation of 

this site is known to be stimulated by PI3K/Akt signalling, which I found to be a 

possible upstream pathway regulating PDK2 expression in the previous chapter. 

This means increased PI3K/Akt signalling in CAFs could doubly enhance acetyl-coA 

production by both activating PDH and ACLY. I therefore assessed the activation 

status of ACLY by western blot of lysates from all the CAF and NF cell lines using 

an antibody against phospho-ACLY (Fig. 4-15). ACLY was more phosphorylated in 

the iCAFs and pCAF2s that in their respective NFs, but phosphorylation was 

decreased between pCAF3 and pNF3. However, this experiment showed that ACLY 

is more active in two out of the three CAF cell lines I am using, and that activated 

ACLY is present in all the cell lines, meaning that acetyl-coA exported out of the 

mitochondria as citrate can be converted back to acetyl-coA in the cytosol and 

nucleus. 
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Western blot showing levels of phosphorylated and total ACLY in CAFs and NFs. Vinculin 

and β-tubulin were used as a loading control, and pACLY levels were further normalised 

to total ACLY levels. Molecular weight markers are shown next to the blots. pACLY 

quantification is shown under the blots. Representative images of n ≥ 2 biological 

replicates are shown 

Figure 4-15 p-ACLY levels in NFs and CAFs 
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4.4 PDH derived acetyl-coA is not used to fuel increased 

lipid synthesis 
 

Once outside the mitochondria, acetyl-coA can be used to fuel a variety of 

metabolic pathways, including synthesis of sterols and fatty acids. There was some 

evidence from previously acquired proteomic data of the iCAFs and iNFs that 

several proteins in the cholesterol synthesis pathway were upregulated in iCAFs, 

so initially I investigated the possibility of increased cholesterol synthesis in CAFs. 

I labelled the iCAFs and iNFs for 48h with media containing both 13C6-glucose and 

13C5-glutamine to maximise the amount of labelled carbon being incorporated into 

cholesterol. Then, in collaboration with Grace McGregor from Dr. Jurre 

Kamphorst’s group, the lipids were extracted from the fibroblasts and the heavy 

carbon incorporation was detected by GC-MS. We were unable to see any label 

incorporation in either the iCAFs or the iNFS, and furthermore there was no 

increase in the total amount of cholesterol in the iCAFs (Fig. 4-16a). In fact, there 

was slightly more cholesterol in the iNFs. This experiment therefore ruled out the 

possibility of acetyl-coA fuelling increased cholesterol synthesis in the CAFs. 

 

The next question to be addressed was whether the extra acetyl-coA in the CAFs 

was being used for fatty acid synthesis. Once again, I labelled the iCAFs and iNFs 

for 48h with media containing either 13C6-glucose or 13C6-glucose and 13C5-

glutamine and in collaboration with Grace McGregor extracted the lipids and 

determined the label incorporation into palmitate, oleate and stearate, using GC-

MS. There was an extremely low rate of incorporation of both glucose and 

glutamine into the fatty acids, and, as with the cholesterol, there was no 

detectable incorporation or increase in the total amount of metabolite in the 

iCAFs (Fig. 4-16b). In fact, I saw a slight decrease in the percentage of the fatty 

acids labelled in the iCAFs compared to the iNFs. Therefore it does not seem that 

the increase in acetyl-coA produced by PDH in CAFs is used to fuel increased lipid 

synthesis. 
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a: Total intracellular cholesterol in iNFs and iCAFs. b: Fraction of intracellular fatty acids 

labelled with either 13C-glucose or 13C-glucose+13C-glutamine after 48h of labelling in 

iNFs and iCAFs. 

Significance was calculated using a student’s t-test with Welch’s correction: *p≤0.05, ** 

p≤0.01, *** p≤0.001 

 

 

a 

b 

Figure 4-16 Lipid metabolism in iNFs and iCAFs 
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4.5 Histones are more acetylated in iCAFs 
 

Acetyl-coA is the substrate for acetylation of lysine residues on proteins. In the 

mitochondria, where the concentration of acetyl-coA is abnormally high and the 

environment is alkaline, proteins can be autoacetylated dependent on the amount 

of acetyl-coA present (Weinert et al., 2014). Outside the mitochondria, higher 

levels of acetyl-coA can stimulate acetyltransferase enzymes to increase protein 

acetylation (Choudhary et al., 2014). Acetylation is a common translational 

modification, and it is increasingly recognised that acetylation has significant 

impacts on protein functionality. Therefore changes in protein acetylation could 

have wide ranging effects on the CAF phenotype.  

 

To investigate whether there were differences in protein acetylation between 

CAFs and NFs, I used MS-proteomics to study the acetylomes of SILAC labelled 

iCAFs and iNFs. Because such a small fraction of the total proteome is modified, 

the samples had to be enriched for acetylated peptides. After digesting the lysates 

from the fibroblasts, agarose beads conjugated to an antibody against acetylated 

lysine residues were used to bind the acetylated peptides. After eluting the 

acetylated peptides, the samples were analysed by mass spectrometry using a Q-

Exactive HF. MaxQuant software (Cox and Mann, 2008) was used to identify the 

peptides discovered by the mass spectrometry with the addition of Acetyl(K) as a 

variable modification, and Perseus software (Tyanova et al., 2016)to carry out 

statistical analysis on the data. Data from three independent experiments, two of 

which was carried out by a visiting student, Claudia Boldrini,  was analysed in 

which for each experiment both forward and reverse labelled fibroblasts (i.e. 

heavy CAFs with light NFs and light CAFs with heavy NFs) were analysed, giving a 

total of four experiments. The log2 SILAC ratios of the acetylated peptides were 

normalised to the log2 SILAC ratios of the total protein in order to normalise for 

differences in protein levels between iCAFs and iNFs. Acetylation sites that were 

identified in at least two experiments were considered for the analysis. From a 

one-sample t-test analysis of the data, there were no significant differences in 

acetylation between iCAFs and iNFs. However, there was a trend towards histones 

being more acetylated in the iCAFs (Fig. 4-17). The identified proteins were 

further annotated with the gene ontology pathways for biological process, cellular 

compartment and molecular function. A one dimension enrichment analysis (Cox 
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and Mann, 2012)of the acetylation sites revealed that many of the categories with 

significantly upregulated acetylation in CAFs were related to histones, histone 

modifications and the nucleus, further supporting the increase in histone 

acetylation in the iCAFs (Fig. 4-18). 

  

Post translational modification of histones, and particularly on histone tails, is a 

major epigenetic factor determining which genes are transcribed into mRNA. 

Although modification of different sites can impact transcription differently, in 

general, histone acetylation is a marker of increased transcriptional activation. 

This is thought to be because acetylation of lysine residues neutralises the positive 

charge on lysine, which normally binds strongly to the negatively charged DNA 

(Margueron et al., 2005). Thus acetylation frees DNA from being so tightly bound 

to histones and allows the transcriptional machinery to be recruited. An increase 

in histone acetylation in CAFs could therefore have an extremely important role 

in activating transcription of genes required to maintain the activated CAF 

phenotype.  

 

To see if any of the upregulated histone acetylation sites were known to be 

involved in regulating transcription, I annotated the dataset using the PhosphoSite 

Plus database (https://www.phosphosite.org/homeAction.action), which is a 

repository for information on post translational modifications and how they affect 

protein function. According to this annotation, there were only a few acetylation 

sites identified in my data which have a known and verified functional impact on 

a protein (Fig. 4-19). Of these, the only upregulated histone acetylation site was 

H3K27ac. Acetylated H3K27 is a well characterised marker of activated 

transcription, and has been shown to be present at ‘super enhancer’ regions on 

chromatin (Raisner et al., 2018, Sen et al., 2019). I therefore chose to further 

investigate the regulation of H3K27 acetylation in relation to PDH activity in CAFs. 
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   Figure 4-17 iCAF vs iNF acetylome 

Volcano plot of a one-sample t-test showing regulation of acetylated peptides in iCAFs 

compared to iNFs. The x axis indicates the log2 SILAC ratio CAF/NF. Each point represents 

one acetylated peptide. Points above the dotted line have a p value < 0.05. Histone 

acetylation sites are coloured as follows: Histone 2, Histone 3, Histone 4. Results from 3 

independent SILAC experiments with both forward and reverse labelling were used in the 

analysis 

 

More acetylated in iCAF More acetylated in iNF 
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 Acetylated proteins were annotated using the gene ontology database and a 1D-

enrichment analysis was performed using the annotations. Plot shows significantly 

enriched and depleted annotations (FDR < 2%) in the dataset. Annotations relating to 

histones and histone modifications are highlighted in pink. 

Enriched in iCAF 

Figure 4-18 One-dimension enrichment analysis of acetylome data 
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Graph shows the log2 CAF/NF SILAC ratios for acetylated peptides with a known 

regulatory function identified in the acetylomes of iCAFs and iNFs. Error bars indicate the 

mean and SEM. 

Figure 4-19 Regulatory acetylated sites 
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4.6 H3K27 acetylation is regulated by PDH dependent 

acetyl-coA production 

 

4.6.1 H3K27 is more acetylated in CAFs than NFs 

 

In order to verify the results of the MS-acetylome data of the iCAFs and iNFs, I 

confirmed the upregulation of H3K27 acetylation by Western blot using lysates 

from all the CAF and NF cell lines. All the CAFs had increased H3K27ac levels 

compared to their respective NFs (Fig 4-20). 

 

4.6.2 H3K27 acetylation is regulated by acetyl-coA availability 

 

Histone acetylation is known to be regulated by the amount of acetyl-coA 

available in the cytosol and nucleus. ACLY is the main route of export of acetyl-

coA from the mitochondria via citrate, and ACLY expression has been shown to 

influence histone acetylation (Wellen et al., 2009). I had previously shown that 

ACLY is active in CAFs and that CAFs incorporate a higher proportion of glucose 

into citrate, therefore I investigated the role of ACLY activity in histone 

acetylation. To show that export of acetyl-coA from the mitochondria was 

necessary for H3K27 acetylation in the CAFs, I used an inhibitor against ACLY to 

prevent exported citrate from being converted back to acetyl-coA outside the 

mitochondria: BMS303141 (Li et al., 2007). To determine the effectiveness of the 

drug I used MS-metabolomics to demonstrate that BMS303141 caused an 

accumulation of citrate in CAFs. The iCAFs were treated with 10 or 50 µM 

BMS303141 in media with 13C6-glucose for 48h. The intracellular metabolites were 

then harvested and analysed by LC-MS. (Fig. 4-21a). The peak area was normalised 

to protein content of the fibroblasts for each samples. The metabolomics data 

clearly showed an accumulation of labelled citrate in the BMS303141 treated 

iCAFs, implying that the ACLY inhibitor was working because the acetyl-coA was 

being converted into citrate but was then unable to undergo conversion back to 

acetyl-coA. There was little effect with the 10 µM dose but a significant effect 

with the 50 µM dose so I used 50 µM BMS303131 in the following experiments. 
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To investigate the effect of ACLY inhibition of H3K27 acetylation, I treated CAFs 

with 50 µM BMS303141 with or without 2 mM sodium acetate. Acetate can be used 

by cells as a source of nucleocytosolic acetyl-coA, because it is converted to 

acetyl-coA by ACSS (Acyl-CoA synthetase short-chain family member) enzymes. By 

giving the fibroblasts an exogenous supply of acetate I expected to rescue the 

effect of ACLY inhibition because the cells would still be able to synthesise acetyl-

coA outside the mitochondria and use it for histone acetylation. After 48h of 

treatment, the CAFs were lysed and the levels of H3K27ac were determined by 

western blot (Fig. 4-21b). BMS303141 did indeed decrease the levels of H3K27ac, 

and this was rescued by additionally giving the CAFs sodium acetate. This 

experiment shows that H3K27 acetylation in the CAFs depends on the 

concentration of acetyl-coA outside the mitochondria. 

 

4.6.3 PDH activity regulates H3K27 acetylation 

 

I have shown that H3K27 acetylation is upregulated in CAFs, and is regulated by 

the presence of acetyl-coA outside the mitochondria. However, the impact of PDH 

activity on H3K27 acetylation was still unknown. To connect PDH activity to H3K27 

acetylation, I modulated PDK2 expression in the CAFs and NFs to regulate PDH 

phosphorylation and activity. The iCAFs were transfected with the enzymatically 

inactive PDK2N255A or PDK2WT. In contrast, the iNFs were transfected with siCTL or 

siPDK2 to decrease PDH phosphorylation, then after 48h the fibroblasts were lysed 

and the levels of H3K27ac were analysed by western blot (Fig 4-22). PDK2WT 

overexpression effectively reduced H3K27 acetylation compared to PDK2N255A 

overexpression, and siPDK2 transfection increased H3K27 acetylation compared to 

siCtl. I also created shCtl and shPDK2 cell lines using the pNF2 cells by lentiviral 

transduction. The level of PDK2 knockdown was determined by RT-qPCR, and the 

shRNA which gave the most efficient knockdown was used for the experiments. By 

western blot analysis of shCtl and shPDK2 cell lysates, shPDK2 both decreased PDH 

phosphorylation and increased H3K27 acetylation, in concordance with the siRNA 

knockdown of PDK2 (Fig. 4-23). Although the shPDK2 knockdown was not as 

effective as the siRNA knockdown, the level at which it altered PDH 

phosphorylation and H3K27 acetylation was similar, suggesting that a small change 

in PDK2 expression in the fibroblasts is sufficient to alter histone acetylation 

patterns. 
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In order to rescue the PDK2WT phenotype, the iCAFs were treated with 2 mM 

sodium acetate, providing a cytosolic supply of the acetyl-coA precursor which 

could be used to maintain H3K27 acetylation. 48h after transfection with or 

without acetate treatment, the iCAFs were lysed and the levels of H3K27ac were 

analysed by western blot (Fig 4-24a). PDK2WT overexpression effectively reduced 

H3K27 acetylation compared to PDK2N255A overexpression, and this was rescued by 

the acetate treatment. 

 

Conversely, to reverse the siPDK2 phenotype, the iNFs were treated with 25 µM 

c646, which is an EP300 inhibitor. EP300 is a histone acetyltransferase (HAT) 

known to target H3K27 and has been shown to induce H3K27 acetylation at 

enhancer regions (Raisner et al., 2018). After 48h with or without c646 treatment, 

the iNFs were lysed and the levels of H3K27ac were analysed by western blot (Fig 

4-24b). The inhibitor c646 reduced PDH activity-induced H3K27 acetylation, as 

predicted. Therefore acetyl-coA produced by PDH is required for the increase in 

histone acetylation in CAFs, and modulates H3K27 acetylation. Furthermore I 

could rescue the effects of modulating PDH activity in the fibroblasts on histone 

acetylation with either acetate or pharmacological inhibition of c646, which 

provided me with a good experimental system to further investigate the 

phenotypic effects of increased PDH activity in the CAFs. 
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Representative western blots from n ≥ 2 independent experiments showing that all CAF cell lines have increased 

histone acetylation at H3K27 compared to their paired NFs. Vinculin and β-tubulin antibodies were used as a 

loading control. Molecular weight markers are shown next to the blots. 

Figure 4-20 H3K27 is more acetylated in CAFs 
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  Figure 4-21 H3K27 acetylation is regulated by ACLY inhibition 
a: Total citrate with 13C-glucose label incorporation in iCAFs after 48h treatment with 

DMSO control, 10 µM or 50 µM BMS303141. Graph shows the mean and SEM of 3 

experiments. b,c,d: Representative western blots and quantification of H3K27ac in iCAFs, 

pCAF2s and pCAF3s respectively treated with 50 µM BMS303141 +/- 2 mM acetate. β-

tubulin was used as a loading control. Molecular weight markers are shown next to the 

blots. Graphs show the mean and SEM of at least 4 independent experiments. Significance 

was calculated using one-way ANOVA with Dunnett’s multiple comparisons test: *p≤0.05, 

** p≤0.01, *** p≤0.001 

a 

b 

c 

d 
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Representative western blots and quantification of H3K27ac in iCAFs/iNFs and 

pCAF2s/pNF2s transfected with siCTL/siPDK2 or PDK2N255A/PKD2WT. Vinculin or GAPDH was 

used as a loading control. Molecular weight markers are shown next to the blots. Graphs 

show the mean and SEM of 3 independent experiments. Significance was calculated using 

one-way ANOVA with Dunnett’s multiple comparisons test: *p≤0.05, ** p≤0.01, *** p≤0.001 

Figure 4-22 H3K27 acetylation is regulated by PDK2 expression 
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Figure 4-23-shPDK2 increases H3K27 acetylation 

a. qPCR for PDK2 expression in shCtl and shPDK2 pNFs. PDK2 mRNA was normalised to 18S 

mRNA. Graph shows the mean and SEM of 3 independent experiments. Significance was 

calculated using one-way ANOVA with Dunnett’s multiple comparisons test: *p≤0.05, ** 

p≤0.01, *** p≤0.001. b. Western blots of pPDHA1 and H3K27ac in shCtl/shPDK2 pNFs. 

Quantification of H3K7ac is shown under the blots. GAPDH was used as a loading control. 

Molecular weight markers are shown next to the blots. Representative image of 2 

independent experiments shown. 

a b 

1.35 2.86 
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Representative western blots and quantification of H3K27ac in a. iCAFs/iNFs and b. 

pCAF2s/pNF2s transfected with siCTL/siPDK2 or PDK2N255A/PKD2WT and treated with 2 mM 

acetate or 25 µM c646. Vinculin or β-tubulin was used as a loading control. Molecular 

weight markers are shown next to the blots. Graphs show the mean and SEM of 4 

independent experiments. Significance was calculated using one-way ANOVA with 

Dunnett’s multiple comparisons test: *p≤0.05, ** p≤0.01, *** p≤0.001 

a b 

Figure 4-24 H3K27 acetylation is regulated by PDK2 expression 
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4.7 Discussion 
 

In this chapter I set out to discover what the purpose of the increase in 

intracellular acetyl-coA produced by PDH in CAFs was. Because the majority of 

pathways involving acetyl-coA are related to metabolism, I first investigated 

metabolic differences between CAFs and NFs. I was expecting there to be 

differences in mitochondrial metabolism because I had demonstrated that PDH 

was localised in the mitochondria, and because PDH had been shown in previous 

studies to be a key metabolic enzyme controlling entry of glycolysis-derived 

metabolites to the TCA cycle to support its activity (Kaplon et al., 2013, McFate 

et al., 2008, Michelakis et al., 2008, Randle, 1986). For this reason, it has been 

named the ‘mitochondrial gatekeeper’ (Saunier et al., 2016). Initial experiments 

showed that there were no differences between CAFs and NFs in the uptake and 

secretion of four major metabolites: glucose, lactate, glutamine and glutamate. 

These are the main metabolic sources controlling flux through glycolysis and the 

TCA cycle. Further metabolic analysis of the CAFs and NFs using MS-metabolomics 

revealed that there were very few consistent metabolic differences between CAFs 

and NFs. This was surprising as there are many studies showing that CAFs are 

reprogrammed metabolically to produce metabolites which fuel tumour cell 

growth and invasion. However, these studies also highlight the high level of 

heterogeneity in CAFs. This is consistent with the literature since studies from 

different tumour types and tissues have discovered different metabolic pathways 

contributing to the pro-tumourigenic phenotype of the CAFs and their cross talk 

with the cancer cells. For example, Yang et al. have demonstrated that glutamine 

and glutamate production is a key metabolic cross talk pathway between ovarian 

CAFs and cancer cells (Yang et al., 2016), whereas studies in pancreatic cancer 

have shown that alanine secretion by pancreatic stellate cells, which are the cells 

that CAFs originate from in the pancreas, is a vital pathway to produce fuel for 

the cancer cells under nutrient deprived conditions (Sousa et al., 2016, Serrao et 

al., 2016). Conversely, my mammary CAFs showed increased total levels of proline 

and asparagine compared to their paired NFs as well as increased production of 

N-acetylaspartate, none of which have been previously been reported to be 

upregulated in CAFs.  Both asparagine and N-acetylaspartate are products of 

aspartate metabolism, levels of which were also upregulated in the pCAF cell 

lines. Since the production of aspartate involves conversion of glutamate to α-KG, 
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aspartate production could be increased in order to maintain α-KG levels, which 

were also higher in the CAFs. Since neither asparagine nor N-acetylaspartate can, 

so far as we know, be used for further metabolic reactions, these metabolites 

could then be a means of storing the excess aspartate without affecting other 

metabolic pathways.  

 

However, two themes of CAF metabolism which have been reported in CAFs from 

several tissues, including breast, is that CAFs are more glycolytic and autophagic 

(Bonuccelli et al., 2010, Guido et al., 2012, Whitaker-Menezes et al., 2011b, 

Pavlides et al., 2012, Zhang et al., 2015). None of my extensive metabolic profiling 

of the CAFs and NFs suggested that the CAFs were more glycolytic than the NFs. 

As many of the experiments showing that mammary CAFs upregulate glycolysis 

were done using co-cultures of CAFs and cancer cells (Martinez-Outschoorn et al., 

2010a, Whitaker-Menezes et al., 2011b, Martinez-Outschoorn et al., 2010b, 

Martinez-Outschoorn et al., 2011b), one possibility is that I would need to co-

culture my CAFs with cancer cells to see an upregulation in glycolysis. 

Furthermore, other studies have shown that there is variation in whether 

mammary CAFs are predominantly glycolytic or oxidative depending on the tumour 

they are derived from, so it is possible that I derived CAFs from tumours where 

glycolysis was not upregulated in the stroma (Choi et al., 2013). All of my CAFs 

and NFs however appear to be highly glycolytic cells as there is little incorporation 

of glucose into the TCA cycle metabolites from the metabolomics data and the 

oxygen consumption rate was lower than that of cancer cells, suggesting that 

fibroblasts in general rely more on glycolysis than oxidative phosphorylation.  

 

While I was investigating mitochondrial differences between the mammary CAF 

and NF cell lines I did however discover that there were differences in 

mitochondrial functionality between CAFs and NFs. CAFs had decreased levels of 

functional mitochondria, decreased mitochondrial capacity and increased 

autophagic flux compared to NFs. As mentioned previously, several studies have 

shown that CAFs are more autophagic and that the products of autophagic break 

down are used to fuel tumour cells. For example, Lisanti et al. showed that in co-

culture with breast cancer cells, fibroblasts experienced increased oxidative 

stress and upregulated autophagy and mitophagy via caveolin-1 downregulation 

(Martinez-Outschoorn et al., 2010a), providing tumour cells with metabolites such 
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as lactate and ketones. It is interesting to note that in data generated in our lab 

from proteomic analyses on the iCAFs and iNFs and on the pCAFs and pNFs, 

caveolin-1 is indeed downregulated in CAFs compared to NFs, suggesting that a 

similar autophagic pathway could be active in the CAFs used for my studies, 

although I do not see a corresponding increase in lactate secretion. Dysfunctional 

mitochondria can be degraded through mitophagy. However, the total levels of 

mitochondria were consistent between the iCAFs and iNFs, suggesting the 

dysfunctional mitochondria are not being degraded. This has a possible link to the 

downregulation of PDK2 in CAFs, as PDK2 has been shown to phosphorylate PARL 

to stimulate mitophagy. When PDK2 was knocked down in the iNFs, I did not 

observe the decrease in mitochondrial capacity that I had seen in the iCAFs, 

however this was a transient knockdown for only 48h and it would be interesting 

to investigate whether stable knockdown of PDK2 in NFs would decrease 

mitochondrial capacity in the long term, as this would suggest that it was involved 

in a mitophagy related pathway. 

 

Despite there being some differences in mitochondrial functionality between CAFs 

and NFs, I could not find any evidence that the increase in acetyl-coA produced 

by CAFs was used to increase flux through the TCA cycle. The majority of TCA 

cycle metabolites were derived from glutamine as shown by metabolic tracing 

experiments, and apart from citrate there was minimal label incorporation from 

heavy glucose into TCA cycle metabolites. Furthermore, there was no difference 

in OXPHOS under basal conditions between CAFs and NFs as shown by the Seahorse 

analysis, and altering PDH activity by knocking down PDK2 in NFs had no effect on 

oxygen consumption. Therefore I can conclude that PDH activity does not affect 

the TCA cycle in the fibroblasts. It is unclear why glucose is incorporated into 

citrate in both CAFs and NFs, but then makes a minimal contribution to other TCA 

cycle metabolites. One possibility is that the fibroblasts have an low isocitrate 

dehydrogenase activity, which would mean that α-ketoglutarate is synthesised 

mainly from glutamine and is converted through the TCA cycle to citrate, where 

it is blocked from re-entering the TCA cycle. This could explain why the fibroblasts 

also have a generally low oxygen consumption rate. Proliferating fibroblasts have 

previously been shown to have low IDH activity (Lemons et al., 2010). 

Mitochondrial IDH can be inhibited by acetylation (Zou et al., 2017), however the 

regulatory site was not identified in my analysis of the acetylomes of the iCAFs 
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and iNFs. IDH3 downregulation has been reported previously in CAFs as a means 

to maintain CAF activation through TGF-β and HIF-1α signalling (Zhang et al., 

2015), however, this does not account for the decrease in citrate conversion to α-

KG that I also see in the NFs. Therefore, if mitochondrial IDH is downregulated in 

fibroblasts, the mechanism is yet to be elucidated. It would be interesting to 

compare the relative activities of citrate synthase and IDH between the fibroblasts 

and a cell line such as the MCF7 cells which are known to have a functioning TCA 

cycle. 

 

Since I did see an increase in intracellular citrate labelled by glucose in the CAFs 

and also significant label incorporation into acetyl-carnitine, both of which are 

means of exporting acetyl-coA out of the mitochondria, I hypothesised that the 

acetyl-coA produced by PDH had a cytosolic role. Acetylcarnitine can cycle in and 

out of the mitochondria, and although it has mostly been studied as a means of 

transferring acetyl-coA groups derived from beta-oxidation of fatty acids into the 

mitochondria, it has also been shown to be a means of removing excess acetyl-

coA from the mitochondria in order to maintain a steady rate of TCA cycle 

metabolism. Citrate on the other hand is well known to be the main route of 

acetyl-coA export from the mitochondria. I demonstrated that ACLY was 

phosphorylated and therefore active in all the CAF cell lines and furthermore was 

more phosphorylated than the respective NFs in two out of three pairs. Inhibiting 

ACLY pharmacologically in the iCAFs caused significant accumulation of glucose-

labelled citrate, which must be derived from acetyl-coA, demonstrating that 

citrate is an important route of acetyl-coA export from the mitochondria. 

 

I therefore investigated the roles of acetyl-coA outside the mitochondria. 

Metabolically, acetyl-coA is used for lipid synthesis in the cytosol. However, by 

carrying out further metabolic tracing experiments in the iCAFs and iNFs it was 

clear that fatty acid and cholesterol synthesis in the fibroblasts is minimal and 

there is no difference in the rate of synthesis between CAFs and NFs. This is 

perhaps unsurprising given that the fibroblasts I am using are all derived from 

mammary tissue, which has a particularly high fat content. Therefore it is unlikely 

that in a breast tumour these CAFs would need to increase lipid synthesis since 

they are probably able to take up everything they need from their 

microenvironment. The increase in acetyl-coA produced by PDH in CAFs does not 
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seem to be contributing to any metabolic pathways in the CAFs; neither for 

oxidative phosphorylation in the mitochondria nor for lipid synthesis in the 

cytosol. 

 

The other major use for acetyl-coA is for protein acetylation. Protein acetylation 

was first studied in the context of histones, where it generally activates gene 

transcription by altering chromatin folding to open up DNA for transcription 

machinery binding and acting as a marker for recruitment of bromodomain 

containing transcription factors, acetyltransferases, and chromatin remodelling 

factors. Acetyl-coA availability and concentration has been shown to be a rate 

limiting factor for histone acetylation (Cai et al., 2011, Galdieri and Vancura, 

2012). For example, acetyl-coA production by ACLY, which as I previously 

discussed is activated in my CAF cell lines, has been shown to be required to link 

growth factor signalling to regulation of gene expression by histone acetylation 

(Wellen et al., 2009). However, acetylation has more recently been shown to also 

be an important post translational modification outside of the nucleus. 63% of 

mitochondrial proteins contain acetylation sites, and it has been shown that 

increased concentrations of acetyl-coA in mitochondria causes increased 

acetylation of proteins (Weinert et al., 2014). Moreover, acetylation can regulate 

the activity of mitochondrial metabolic enzymes such as succinate dehydrogenase 

(Cimen et al., 2010). Cytosolic proteins have also been shown to be regulated by 

acetylation; for example, acetylation of cytoskeletal proteins such as actin can 

increase fibre stability (Kim et al., 2006b). I therefore wanted to analyse the 

entire acetylome of the iCAFs and iNFs and not just histones. 

 

The most accurate method of quantifying global changes in post translational 

modifications in an unbiased manner is through mass spectrometry (Witze et al., 

2007). Using an IP enrichment for acetylated peptides to enable quantification of 

acetylation sites I analysed the acetylomes of SILAC labelled iCAFs and iNFs. This 

revealed a general upregulation of histone acetylation in the iCAFs. There was no 

overall increase of acetylation of mitochondrial proteins in the iCAFs, further 

supporting my previous data showing that acetyl-coA produced by PDH does not 

affect the mitochondria and that acetyl-coA is preferentially exported out of the 

mitochondria in CAFs via ACLY. Other nuclear proteins also showed an increase in 

acetylation in CAFs, including nucleoporins, splicing factors, transcription factors 
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including BRD8 and the histone acetyl-transferase CREBBP. Of interest, 

cytoskeletal proteins and ECM proteins including actin, filamin, fibronectin, 

collagen and myosin 9 showed a trend towards being less acetylated in CAFs. This 

could indicate increased cytoskeletal turnover since acetylation of cytoskeletal 

proteins has been shown to increase fibre stability. Glycolytic enzymes such as 

ALDOA, ENO1 and G6PD also showed decreased acetylation in CAFs. Acetylation 

of glycolytic enzymes has previously been shown to be inhibitory (Liu and Shyh-

Chang, 2017, Nakayasu et al., 2017), which would suggest that the enzymes are 

more active in CAFs, however, as discussed previously I was unable to discover 

any significant increase in glycolysis in CAFs. That being said, there is a slight 

increase in total intracellular glyceraldehyde-3-phosphate and 

phosphoenolpyruvate, which are produced by ALDOA and ENO1 respectively. G6PD 

catalyses the first step in the pentose phosphate pathway, however, I did not 

investigate the production of pentose phosphate metabolites in my experiments 

so whether the acetylation of this enzyme has a functional output is unknown. 

 

Acetylation is not so well characterised as post translational modifications such as 

phosphorylation; however, there a were few acetylation sites identified in my 

dataset which have a characterised regulatory function. Of these, the only site 

upregulated in CAFs was H3K27, which is a hallmark of activated transcription and 

is found at enhancer regions in chromatin. I demonstrated that H3K27 acetylation 

is indeed upregulated in all my CAF cell lines compared to their respective NF 

partners. Acetylation of H3K27 was also dependent on PDH activity in fibroblasts, 

as regulated by PDK2-mediated phosphorylation, and was further dependent on 

export of PDH produced acetyl-coA out of the mitochondria via citrate and ACLY. 

H3K27 is a known target of the HAT EP300, and other sites known to be acetylated 

by EP300, such as H3K18 and H3K23 were also among the most highly acetylated 

in the iCAFs. This suggests that EP300 activity is required for the increased histone 

acetylation CAFs, and my data showed that indeed EP300 inhibition reversed the 

increase in H3K27ac mediated by PDK2 knockdown in fibroblasts.  

 

Therefore in this chapter I have shown that the increase in acetyl-coA produced 

by PDH in CAFs does not contribute towards metabolic pathways in CAFs but is 

instead channelled into increasing histone acetylation, and in particular 

acetylation of the transcriptional activator H3K27. In CAFs, then, PDH is not a 
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metabolic regulator but an epigenetic regulator, which is an understudied role of 

PDH. This could have major implications for how CAFs epigenetically regulate their 

pro-tumourigenic phenotype and therefore in the following chapter I set out to 

investigate the phenotypic effects of PDH induced histone acetylation on the CAFs. 
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Chapter 5  H3K27 acetylation regulates collagen 

production in CAFs 

 

5.1 MS-proteomic analysis of c646 treated CAFs 
 

Since histone acetylation is generally associated with transcriptional activation, I 

predicted that modulating histone acetylation levels would affect the proteome 

of the fibroblasts. As discussed in the previous chapter, the EP300 inhibitor c646 

is known to target H3K27 acetylation and treatment of the iNFs with c646 was 

sufficient to reverse the effects of PDK2 knockdown on H3K27ac levels. Although 

other EP300 target sites were also regulated in the iCAF and iNF acetylomes, I 

focussed on H3K27ac as a readout for EP300 activity and histone acetylation since 

this site is the most highly associated with increased transcriptional activity. I 

therefore carried out a proteomic analysis of the iCAFs treated with c646 or DMSO 

control for 72 hours. The efficacy of EP300 on H3K27ac levels was assessed by 

western blot, which showed that c646 successfully reduced H3K27 acetylation in 

the iCAFs (Fig. 5-1). Lysates from three independent experiments of iCAFs 

cultured for 96h with or without c646 treatment were digested and the peptides 

were analysed using a Q-Exactive HF mass spectrometer. The relative amounts of 

each protein between samples was determined by label free quantification (LFQ) 

(Cox et al., 2014). In total, 5480 proteins were identified, and those that were 

quantified in at least two replicates were included in the analysis. A two tailed t-

test analysis revealed that c646 treatment drastically altered the proteome of the 

iCAFs, in fact, 489 proteins were significantly regulated by c646 which is almost a 

tenth of the proteins identified. I then considered proteins that were 

downregulated by c646 treatment as potential candidates for genes regulated, 

directly or indirectly, by histone acetylation. Strikingly, extracellular matrix (ECM) 

proteins, especially collagens and fibronectin, were highly downregulated in the 

c646 treated CAFs (Fig 5-2). Collagen and ECM production is an extremely 

important aspect of the activated CAF phenotype, as CAFs are the main source of 

collagen in the tumour microenvironment. Upregulated collagen production by 

CAFs has been shown to be an important factor contributing to increased tumour 

growth, progression and metastases. In support of this, proteomic data of SDS 

soluble ECM derived from the iCAFs previously acquired in our lab showed that 
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collagens and fibronectin make up the majority of CAF-derived ECM, with 

collagens alone constituting 40% of the total ECM (Fig. 5-2). I therefore further 

investigated the regulation of collagen expression in CAFs by histone acetylation. 
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Representative Western blot and quantification of H3K27ac levels in iCAFs treated 

for 48h with 25 µM c646 or DMSO control. GAPDH was used as a loading control.  

Molecular weight markers are shown next to the blots. Graph shows mean and SEM 

of 5 biological replicates.   

Significance was calculated using an unpaired student t-test with Welch’s 

correction: *p≤0.05 

 

Figure 5-1 c646 reduces H3K27 acetylation 
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Volcano plot showing the results of a two-sample t-test comparing the proteomes 

of control and c646 treated iCAFs. Three independent experiments were included 

in the analysis.  Each dot represents a protein. Proteins above the black line were 

classed as significantly regulated (cut-off values: p=0.05, S0=0.1). All collagens 

identified in both proteomes are highlighted in red. 

Figure 5-2 c646 downregulates collagen proteins 
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Plot showing all the proteins identified by MS-proteomics in the iCAF ECM and their 

average abundance, ranked from most abundant to least abundant. Collagens VI, I 

and XII are highlighted as being among the 10 most abundant ECM proteins. 

Figure 5-3 Collagens are highly abundant in iCAF ECM 
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5.2 c646 regulates collagen expression in CAFs 
 

To corroborate the results of the MS-proteomic data from iCAFs treated with c646, 

I assessed the effects of c646 treatment on collagen expression at the mRNA and 

protein level. From the MS-proteome of the iCAF ECM, two of the most abundant 

collagens were collagen VI and collagen I, expression of both of which are known 

to be increased in breast cancer (Kauppila et al., 1998, Chen et al., 2013) and 

both of which were downregulated in the proteomes of c646 treated CAFs. 

Collagen VI is a mediator between the interstitial matrix and basement membrane 

and has been shown to stimulate tumour growth, angiogenesis and inflammation 

(Nissen et al., 2019, Chen et al., 2013). Collagen I is the classic structural collagen, 

with no imperfections in the Gly-X-Y repeats, and has been shown to promote 

tumour proliferation and metastasis in many tumour types including breast (Nissen 

et al., 2019). I therefore focussed on the expression of these two collagens in the 

following experiments. mRNA was extracted from CAFs treated with c646 or DMSO 

control for 72h and the expression of COL1A1 and COL6A1 was measured by RT-

PCR. Both mRNAs were downregulated in both c646 treated iCAFs and pCAF3s (Fig. 

5-4). This showed that c646 controls collagen expression at the transcriptional 

level, and strongly points to a role for histone acetylation and particularly H3K27 

acetylation in regulating Collagen I and Collagen VI expression. 

 

To show that collagen in the CAF ECM is regulated by EP300 activity, I determined 

the levels of Collagen VI in ECM from CAFs by western blot analysis. CAFs were 

seeded at confluence and treated with c646 or DMSO control for 1 week. 

Subsequently, the CAFs were lysed and removed, leaving the cell-free ECM 

attached to the dish. The ECM was harvested and the proteins denatured and 

analysed by western blot (Fig. 5-5). Collagen VI was significantly depleted in ECM 

from c646 treated CAFs, showing that not only does c646 treatment reduces 

collagen mRNA expression within the CAFs, but it also affects its abundance in the 

ECM. 

 

To further demonstrate that EP300 regulates collagen production by CAFs, I used 

fluorescent microscopy to visualise collagen in the ECM. I used a pan-collagen 

binding fluorescent protein: CNA35-mCherry. This protein has the advantage of 

binding all collagen proteins, rather than using an antibody against a specific 
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collagen, and also binds collagen in live cell cultures or in in vivo tissues (Aper et 

al., 2014).  The iCAFs were seeded at confluence on glass coverslips and allowed 

to produce ECM for 72h, with or without 25 µM c646 treatment. CNA35-mCherry 

was then added to the media at a concentration of 1 µM for two hours, following 

which the coverslips were fixed in 4% PFA, counterstained with DAPI and imaged 

(Fig. 5-6). The images clearly showed that collagen was reduced in the c646 

treated samples, again showing that inhibition of histone acetylation reduces ECM 

production in the CAFs. 

 

In order to show that this effect also occurs in CAFs when in the presence of cancer 

cells, I seeded the pCAF2s in a 1:1 ratio with Cellaria-Wood cancer cells at 

confluence on glass coverslips. The Cellaria-Wood cell line is a primary breast 

cancer cell line, derived from an ER+ infiltrating ductal and lobular carcinoma. 

After 96h of co-culture with or without c646 treatment, CNA35-mCherry was 

added to the media at a concentration of 1 µM for two hours, following which the 

coverslips were fixed, counterstained with DAPI and imaged (Fig. 5-7a). The 

pCAF2s are GFP positive, so I classed nuclei within the green area as fibroblasts, 

and nuclei outside the green area as cancer cells. The collagen staining overlapped 

almost solely with the fibroblasts, confirming that they are the main source of 

collagen (Fig.  5-7b). In the c646 treated cultures, there was a dramatic decrease 

in collagen staining, confirming that the c646 treatment is also effective when 

CAFs are in the presence of cancer cells (Fig. 5-7c). Interestingly, in the control 

cultures the Cellaria-Wood cells formed large clusters around which the fibroblasts 

formed a network, whereas in the c646 treated cultures the Cellaria-Wood cells 

formed much smaller clusters, suggesting that c646 affects interactions between 

the cells, or that interactions with the CAF-derived ECM is required for the cancer 

cells to form clusters. 
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a: COL1A1 mRNA levels in iCAFs (blue) and pCAF3s (green) with or without 25 µM 

c646 treatment. b: COL6A1 mRNA levels in iCAFs (blue) and pCAF3s (green) with or 

without 25 µM c646 treatment. The mRNA levels were measured by RT-qPCR and 

collagen mRNA was normalised to TBP2 levels. Graphs show mean and SEM of at 

least 3 independent experiments. Significance was calculated using an unpaired 

student t-test with Welch’s correction: *p≤0.05 

a 

b 

Figure 5-4 c646 reduces collagen expression at the mRNA level 
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Representative western blots and quantification of Collagen VI levels in ECM 

derived from iCAFs or pCAF2s after treatment with 25 µM c646 or DMSO control. 

Graphs show mean and SEM of 3 independent experiments. Significance was 

calculated using an unpaired student t-test with Welch’s correction: *p≤0.05 

* 

Figure 5-5 c646 reduces collagen levels in the ECM 
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Representative images and quantification of collagen stained with CNA35-mCherry 

after treatment with 25 µM c646 or DMSO control. Images were acquired using a 

Zeiss 710 at 20x magnification and the staining density was calculated using ImageJ 

software and normalised to cell number. Graph shows mean and SEM of 6 

independent experiments. Significance was calculated using an unpaired student t-

test with Welch’s correction: ***p≤0.001 

Figure 5-6 c646 reduces collagen production by CAFs 
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a: Representative images of pCAF2 (GFP positive) and Cellaria-Wood cancer cells in  

1:1 co-culture after 96h treatment with 25 µM c646 or DMSO control. Collagen was 

stained with CNA35-mCherry. Images were acquired as 5x5 tilescan using a Zeiss 

710 at 10x magnification. b: Graph showing mean density of collagen staining 

overlapping with CAF or Cellaria cells in the DMSO control treated cultures. c: Mean 

density of total collagen staining in the control vs c646 treated cultures. d: Mean 

area of Cellaria-Wood clusters in the control vs c646 treated cultures 

The staining density and cluster size was calculated using ImageJ software. Graphs 

show mean and SEM of 3 experiments. Significance was calculated using an 

unpaired student t-test with Welch’s correction: **p≤0.01 

a 

b c d 

Figure 5-7 c646 reduces collagen production in CAF/Cellaria-Wood co-cultures 
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5.3 Acetyl-coA availability regulates collagen production 

in CAFs 
 

5.3.1 ACLY inhibition reduces collagen production in CAFs 

 

I have shown that c646 treatment, which inhibits EP300 and thereby reduces 

H3K27 acetylation, decreases collagen production by CAFs. However, although I 

demonstrated that histone acetylation regulates collagen production, this is not 

necessarily dependent on acetyl-coA. Therefore, in order to further prove that 

acetyl-coA availability regulated collagen production by the CAFs, the iCAFs were 

cultured at confluence for seven days and were treated for the duration of the 

experiment with DMSO or BMS303141, the ACLY inhibitor which, as I showed in the 

previous chapter, regulates H3K27 acetylation. The ACLY inhibition was rescued 

by additionally treating the CAFs with 2 mM acetate to provide them with a source 

of nucleocytosolic acetyl-coA. The CAFs were then lysed and removed, leaving the 

ECM intact, and the cell-free ECM was harvested, denatured and analysed by 

Western blot. The level of collagen VI in the CAF-derived ECM was significantly 

reduced by BMS303141 treatment, and was subsequently rescued by the additional 

acetate treatment, thus showing that collagen production in CAFs requires a 

cytosolic and nuclear pool of acetyl-coA (Fig. 5-8). 

 

Again, to further demonstrate that inhibition of ACLY to block acetyl-coA export 

from the mitochondria reduces collagen production in CAFs, the iCAFs were 

cultured at confluence with Cellaria-Wood cancer cells with or without BMS303141 

treatment for 96 h, following which the collagen in the ECM was labelled with 

CNA35-mCherry and imaged. This clearly showed that ACLY inhibition also reduced 

collagen deposition by CAFs in the ECM when in the presence of cancer cells (Fig 

5-9). Interestingly, BMS303141 also reduced the size of the clusters of Cellaria-

Wood cells, as I saw previously with the EP300 inhibitor. This again suggests that 

blocking histone acetylation also affects some interactions between the cells, 

which could be related to the decreased ECM production or to an entirely different 

pathway that is regulated by acetyl-coA dependent histone acetylation. 

 

Finally, in order to show that ACLY inhibition affected collagen production at the 

gene expression level, mRNA was extracted from CAFs treated with BMS303141 
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with or without acetate rescue for 72h. The expression of COL1A1 and COL6A1 

mRNA was determined by RT-qPCR. This showed that ACLY inhibition reduced 

expression of the collagens compared to the DMSO treated control, and that this 

could be rescued by exogenous acetate treatment (Fig. 5-10). Therefore the 

nucleocytosolic pool of acetyl-coA in the fibroblasts regulates collagen production 

at the transcriptional level, further supporting my hypothesis that collagen 

production in CAFs is epigenetically regulated by increased histone acetylation in 

an acetyl-coA dependent manner.  

 



187 
 
 

Representative western blot and quantification of Collagen VI levels in ECM derived 

from iCAFs after treatment with 50 µM BMS303141 +/- 2 mM acetate or DMSO 

control for 72h. Graphs show mean and SEM of 3 independent experiments. 

Significance was calculated using a one way ANOVA with Dunnett’s multiple 

comparisons test: *p≤0.05 

 

 

Figure 5-8 BMS303141 reduces collagen in CAF-derived ECM 
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a: Representative images and quantification of pCAF2 (GFP positive) and Cellaria-

Wood cancer cells in 1:1 co-culture after 96h treatment with 50 µM BMS303141 or 

DMSO control. Collagen was stained with CNA35-mCherry. Images were acquired as 

5x5 tilescans using a Zeiss 710 at 10x magnification. b: Graph shows mean density 

of total collagen staining in the control vs BMS303141 treated cultures. The staining 

density was calculated using ImageJ software. c: Graph shows the mean area of 

Cellaria-Wood clusters in the control vs BMS303141 treated cultures.  

The staining density and cluster size was calculated using ImageJ software. Graphs 

show mean and SEM of 3 experiments. Significance was calculated using an 

unpaired student t-test with Welch’s correction: **p≤0.01 

a 

b c 

Figure 5-9 BMS303141 reduces collagen production in CAF/Cellaria-Wood co-
cultures 
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COL1A1 and COL6A1 mRNA levels in iCAFs after 48h of BMS303141 +/- 2 mM acetate 

or DMSO control treatment.  

The mRNA levels were measured by RT-qPCR and collagen mRNA was normalised to 

TBP2 levels. Graphs show mean and SEM of at 5 independent experiments. 

Significance was calculated using a one way ANOVA with Dunnett’s multiple 

comparisons test: **p≤0.01 

Figure 5-10 BMS303141 reduces collagen expression at the mRNA level 
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5.3.2 Acetate increases collagen production in NFs 

 

I had shown that reducing the cytosolic and nuclear pool of acetyl-coA decreased 

collagen production and deposition in CAFs, therefore I also attempted to increase 

the nucleocytosolic pool of acetyl-coA in NFs in order to activate collagen 

production. The NFs were treated with exogenous acetate to stimulate acetyl-coA 

production. After 72h of acetate treatment, the NFs were lysed for either western 

blot or RT-qPCR analysis. Western blot analysis confirmed that, as in the CAFs, 

acetate treatment increased H3K27 acetylation (Fig. 5-11). The mRNA was also 

extracted from NF lysates and the expression of COL1A1 and COL6A1 mRNA was 

determined by RT-qPCR (Fig. 5-12b). Acetate treatment significantly increased 

expression of both collagens at the mRNA level, suggesting that increased levels 

of acetyl-CoA are sufficient to epigenetically increase transcription of collagen 

genes. 

 

To show that acetate increases collagen deposition in the ECM in NFs, NFs were 

cultured at confluence with acetate treatment for seven days and then lysed and 

removed, leaving the ECM behind. The cell-free ECM was then harvested and 

analysed by Western blot (Fig 5-12a). This showed that Collagen VI levels in NF-

derived ECM were upregulated upon acetate treatment, thus connecting the 

increase in transcription of collagen genes with an increase in production and 

secretion of the protein. 
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Representative western blot and quantification of H3K27ac levels in iNFs after 

treatment with 2 mM acetate or DMSO control for 48h. Graphs show mean and SEM 

of 4 independent experiments. Significance was calculated using a paired student 

t-test: *p≤0.05 

 

 

Figure 5-11 Acetate increases H3K27 acetylation in NFs 
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a 

b 

a: Representative western blot and quantification of collagen VI levels in ECM 

derived from iNFs after treatment with 2 mM acetate or DMSO control for 48h. 

Graph shows mean and SEM of 4 independent experiments. b: Levels of COL1A1 and 

COL6A1 mRNA in iNFs after treatment with 2 mM acetate or DMSO control for 48h. 

mRNA levels were measured by RT-qPCR and normalised to TBP2 mRNA. Graphs 

show mean and SEM of 3 independent experiments. Significance was calculated 

using an unpaired student t-test with Welch’s correction t: *p≤0.05, **p≤0.01 

 

 

Figure 5-12 Acetate increases collagen expression in NFs 
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5.4 PDH activity regulates collagen production in 

fibroblasts 
 

I showed in the previous chapter that PDH activity regulates H3K27 acetylation in 

the fibroblasts, and in this chapter that pharmacological inhibition of histone 

acetylation either via EP300 or ACLY regulates collagen production in the CAFs. 

Therefore, I hypothesised that modulating PDH activity in the fibroblasts would 

also regulate collagen production and deposition in the ECM. In order to control 

PDH activity, I modulated the expression of PDK2 to control PDH phosphorylation, 

either by transfection of NFs with siCtl or siPDK2, or by transfection of CAFs with 

the enzymatically inactive PDK2N255A or PDK2WT. The transfected fibroblasts were 

seeded at confluence for 72h to produce ECM, and the ECM was then 

decellularised. The cell-free ECM was harvested, denatured and analysed by 

Western blot. As predicted, PDK2 knockdown to decrease PDH phosphorylation in 

NFs increased collagen VI deposition in the ECM, whereas PDK2 overexpression in 

CAFs decreased collagen VI in the ECM (Fig. 5-13). 

 

In order to assess the effect of PDK2 expression on collagen expression at the 

mRNA level, the fibroblasts were transfected as described above, with the 

addition of EP300 inhibition in the NFs and acetate treatment of the CAFs to 

reverse the effects of modulating PDK2 expression on H3K27 acetylation. The 

mRNA was extracted from the fibroblasts 48h after transfection with or without 

treatment, and the levels of COL1A1 and COL6A1 were assessed by RT-qPCR. In 

the NFs, siPDK2 increased collagen expression and this was reduced by c646 

treatment (Fig. 5-14a). Conversely, collagen mRNA levels were decreased by PDK2 

overexpression in CAFs and this was rescued with exogenous acetate (Fig 5-14b). 

Therefore PDH phosphorylation, as regulated by PDK2 expression, controls acetyl-

coA production to epigenetically regulate collagen production by CAFs. 
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a: Representative western blot and quantification of collagen VI levels in ECM 

derived from iNFs 48h after transfection with siCtl or siPDK2. b: Representative 

western blot and quantification of collagen VI levels in ECM derived from iCAFs 48h 

after transfection with PDK2-N255A or PDK2-WT. Graphs show mean and SEM of 6 

independent experiments. Significance was calculated using an unpaired student t-

test with Welch’s correction: *p≤0.05 

 

 

a b 

Figure 5-13 PDK2 expression regulates collagen production in fibroblasts 
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a: Levels of PDK2, COL1A1 and COL6A1 mRNA in iNFs 48h after transfection with 

siCtl or siPDK2 +/- 25 µM c646. The mRNA levels were measured by RT-qPCR and 

normalised to TBP2 mRNA. b: Levels of COL1A1 and COL6A1 mRNA in iCAFs 48h 

after transfection with PDK2-N255A or PDK2-WT +/- 2 mM acetate. mRNA levels 

were measured by RT-qPCR and normalised to TBP2 mRNA. Graphs show mean and 

SEM of 6 independent experiments. Significance was calculated using a one way 

ANOVA with Dunnett’s multiple comparisons test: *p≤0.05 

 

 

a 

b 

Figure 5-14 PDK2 expression regulates collagen mRNA in fibroblasts 
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5.5 Discussion 
 

The key finding of this chapter is that collagen production in CAFs is epigenetically 

regulated by histone acetylation, as measured by H3K27 acetylation, and that this 

in turn is regulated by the increase in acetyl-coA produced by upregulated PDH 

activity in CAFs. My proteomic analysis of proteins regulated by EP300 inhibition 

highlighted collagens as a key group of proteins whose expression correlated with 

EP300 activity, and I then demonstrated that EP300 activity does indeed regulate 

collagen expression both at the mRNA and protein level. This strongly suggests 

that collagen production is being controlled at the epigenetic level. I then 

connected collagen expression at the mRNA and protein level to acetyl-coA 

availability by pharmacologically controlling the pool of acetyl-coA in the cytosol 

and nucleus, further demonstrating that collagen expression in CAFs and NFs is 

dependent on acetyl-coA mediated histone acetylation. Finally, I showed that the 

increase in collagen expression and production in CAFs is dependent on PDH 

activity, thus linking for the first time metabolic regulation of acetyl-coA 

production to an epigenetic regulation of the CAF phenotype. 

 

The proteomic analysis of c646 treated CAFs clearly showed that collagens were 

a major group of proteins that were significantly downregulated by EP300 

inhibition, suggesting that they are under epigenetic control by histone 

acetylation. Other extracellular matrix proteins such as fibronectin, emilin and 

laminin were also downregulated, suggesting that there is a general 

downregulation of ECM production by c646. Another group of proteins that was 

downregulated by c646 was proteins related to cell adhesion and integrin 

signalling, including ITGB5, ITGAV, ITGA6, CDH6, CDH11 and IGTA11. Interestingly, 

ITGA11 is known to be a receptor for collagen and CDH11 has been implicated in 

regulating collagen synthesis (Row et al., 2016) (Fig. 5-15). It is possible that 

regulation of these two groups of proteins is connected, as if ECM production is 

decreased it makes sense to also decrease expression of proteins that bind to and 

respond to ECM proteins. A third group of proteins to be downregulated by EP300 

inhibition was proteins involved in collagen assembly (Fig. 5-16). This included 

PLOD1 and PLOD3, which are lysyl hydroxylases that convert lysine residues in 

collagen to hydroxylysine, enabling crosslinking of collagen fibres in the ECM. An 

increase in cross-linked collagen in the ECM of tumours leads to increased stiffness 
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of the tumour microenvironment, which has been shown to promote angiogenesis 

and metastasis. The prolyl hydroxylases P4HA2, P3H3 and P3H1 were also 

downregulated. Proline hydroxylation is a key part of collagen production and is 

critical for the correct folding and assembly of collagen. About half of all proline 

residues in collagen are modified to hydroxyproline. Indeed, proline is a vital 

amino acid for collagen production since one of the defining features of collagens 

is a tightly packed triple helix consisting of repeats of the Gly-X-Y motif. X and Y 

are most commonly proline or hydroxyproline, meaning that about 25% of collagen 

is comprised of proline or hydroxyproline residues. Interestingly the translation 

factor EIF5A, which is required for translation of polyproline sequences (Gutierrez 

et al., 2013, Doerfel et al., 2013) was also downregulated by c646 treatment. 

Additionally, the enzymes PYCR1 and OAT, which are involved in proline synthesis 

were downregulated by c646, with PYCR1 being one of the most highly 

downregulated proteins (Fig. 5-16). This suggested that proline production itself 

could be a limiting factor in collagen synthesis by CAFs, and I investigated this 

possibility further in the following chapter. Taken together, these proteomic data 

from the c646 treated fibroblasts show that collagen production is a major 

pathway regulated by histone acetylation in CAFs, since not only the collagen 

proteins but also proteins involved in collagen production and modification to 

promote its stability and structural assembly in the ECM were similarly regulated. 

 

Increased collagen and ECM production is one of the key aspects of the CAF 

phenotype. In fact, increased collagen production is a general feature of activated 

fibroblasts not only in the tumour microenvironment but also in fibrosis and in 

wound healing. In the context of cancer, the presence of collagen in the ECM 

drives tumour progression through a plethora of different pathways. It provides a 

substrate for integrin binding and downstream signalling to promote cell growth, 

acts as a reservoir for angiogenic factors, drives EMT and promotes focal adhesion 

assembly to drive cell migration. The finding that histone modification, and 

particularly H3K27 modification, is a driver of collagen production in fibroblasts is 

not a novel discovery. In fibroblasts in both cancer and other fibrotic diseases, 

collagen production has been shown to be epigenetically regulated. For example, 

BET inhibitors, which bind to BRD proteins and prevent them from binding to 

acetylated enhancer regions and activating transcription, have been shown to 

inhibit collagen production in pancreatic stellate cells. The BET inhibitors both 
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attenuated pancreatic fibrosis and decreased pancreatic tumour growth in a 

mouse model of pancreatic ductal adenocarcinoma (Kumar et al., 2017). H3K27 

trimethylation, the opposing modification to H3K27 acetylation, which decreases 

transcriptional activation, was shown to decrease collagen expression and 

fibroblast activation in sclerotic fibrosis (Kramer et al., 2013). Upregulated TGFβ 

signalling, which is one of the hallmarks of fibroblast activation, has been shown 

to alter histone methylation at the promoters of ECM related genes, including 

collagens, in fibroblasts (Sun et al., 2010). However, my work is the first study to 

link fibroblast metabolism with epigenetic regulation of aspects of the CAF 

phenotype, and particularly with collagen production. Most previous studies on 

CAF metabolism have focussed on how CAFs upregulated production and secretion 

of metabolites which can be taken up and used as fuel by the cancer cells. My 

results show that CAF metabolic rewiring is important for the CAFs themselves to 

maintain key aspects of their activated phenotype at the epigenetic level. 

 

Pharmacologically, targeting tumours at the epigenetic level has long been 

investigated as a line of treatment. Aberrant hypomethylation can drive the 

expression of oncogenes, and the presence of specific histone modifications can 

be a predictor of patient outcome. For example H3K4me was found to predict the 

recurrence of prostate cancer (Ellinger et al., 2010). DNA-methyltransferase 

inhibitors such as azacitadine and decitabine are effective in the treatment of 

some leukaemias. Azcitadine combined with histone deacetylase (HDAC) inhibition 

has also been shown to combat non-small cell lung cancer. My data show that 

epigenetic alterations are also an important feature of the tumour 

microenvironment, and should be taken into account when considering epigenetic 

therapies. In particular, HDAC inhibitors would also promote increased histone 

acetylation in the CAFs which, as I have shown, might increase collagen production 

which could then lessen the anti-tumour effects of the drug, either by hindering 

drug delivery or by its positive effects on tumour growth and metastasis. 
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Volcano plot showing the results of a two-tailed t-test comparing the proteomes of 

control and c646 treated iCAFs. Three independent experiments were included in 

the analysis.  Each dot represents a protein. Proteins above the black line were 

classed as significant (cut-off values: p=0.05, S0=0.1). All ECM and ECM adhesion 

proteins which were significantly downregulated by c646 treatment are highlighted 

in red.  

Figure 5-15 c646 downregulates ECM proteins 
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Volcano plot showing the results of a two-sample t-test comparing the proteomes 

of control and c646 treated iCAFs. Three independent experiments were included 

in the analysis.  Each dot represents a protein. Proteins above the black line were 

classed as significant (cut-off values: p=0.05, S0=0.1). All proteins relating to 

proline synthesis or collagen modification which were significantly downregulated 

by c646 treatment are highlighted in red. 

Figure 5-16 c646 downregulates proteins involved in proline and collagen synthesis 
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Chapter 6 6 Upregulated proline synthesis in CAFs 

promotes collagen production 

 

6.1 c646 regulates PYCR1 expression 
 

As mentioned in chapter 4, one of the few metabolites that was consistently 

regulated between CAFs and NFs was proline, which was upregulated in CAFs. I 

have also discussed how two enzymes involved in proline synthesis were 

downregulated in the proteome of c646 treated iCAFs: OAT and PYCR1. In 

particular, PYCR1 is known to be the rate limiting enzyme for proline synthesis 

and was one of the most highly downregulated proteins upon inhibition of EP300 

with c646. I therefore hypothesised that in addition to regulating collagen 

expression, the epigenetic control induced by PDH activity in CAFs could also be 

upregulating proline synthesis by increasing PYCR1 expression. Furthermore, 

proline makes up a significant proportion of the amino acids in collagen. Collagens 

are the most abundant proteins in the CAF ECM and most of them are among the 

top 334 proteins that make up 95% of CAF derived ECM as determined by MS-

proteomic analysis of iCAF ECM (Fig. 5-3). Therefore collagens provide a significant 

proportion of the total amount of proline in the ECM. Therefore it is possible that 

in order to support the increase in collagen production, CAFs need to increase 

proline production. In this chapter I investigated the regulation of PYCR1 

expression by PDH-mediated histone acetylation and its impact on proline and 

collagen synthesis. 

 

Firstly, I verified the results of the proteomic data by demonstrating that p300 

inhibition by c646 did indeed reduce PYCR1 expression. Expression of PYCR1 in 

lysates from CAFs treated with 25 µM c646 for 48h was examined at both the mRNA 

and the protein level. RT-qPCR for PYCR1 showed that c646 decreased PYCR1 

expression at the mRNA level (Fig. 6-1a), and western blot analysis showed that 

PYCR1 was also downregulated by c646 at the protein level and could therefore 

be regulated by the increase in histone acetylation in CAFs (Fig. 6-1b). 

Furthermore, PYCR1 and OAT were both upregulated in tumour associated stroma 

compared to normal stroma in microdissected sections of TNBC and normal stroma 

analysed in collaboration with Dr. Morag Park from McGill University, suggesting 
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that stromal PYCR1 expression  and proline synthesis is also relevant in a clinical 

setting (Fig. 6-2). Conversely, PRODH, the enzyme that degrades proline, was not 

upregulated. 
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a: PYCR11 mRNA levels in iCAFs treated for 48h with 25 µM c646 or DMSO control. 

mRNA levels were measured by RT-qPCR and PYCR1 mRNA was normalised to TBP2 

levels. b: Representative Western blot and quantification of PYCR1 levels in iCAFs 

treated for 48h with 25 µM c646 or DMSO control.  

 

Graphs show mean and SEM of at least 3 independent experiments. Significance 

was calculated using an unpaired Student t-test with Welch’s correction: *p≤0.05 

a 

b 

Figure 6-1 c646 reduces PYCR1 expression 
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PYCR1 and OAT mRNA expression in microdissected sections of stroma from normal 

and tumour associated stroma from triple negative breast cancer patients. Data was 

provided by Dr. Morag Park (McGill University). Error bars show mean and SEM. 

Significance was calculated using an unpaired student t-test: p≤0.05 *, p≤0.01 **, 

p≤0.001 *** 

 

Figure 6-2 Proline synthesis enzymes are upregulated in tumour-associated 
stroma 
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6.2 PYCR1 expression is regulated by acetyl-coA 
 

In order to determine whether the increase in PYCR1 expression in CAFs is 

regulated by the extra-mitochondrial pool of acetyl-coA, the CAFs were treated 

with the ACLY inhibitor BMS303141 for 48h to prevent export of acetyl-coA out of 

the mitochondria, and given exogenous acetate to replenish the cytosolic and 

nuclear pool of acetyl-coA. PYCR1 mRNA was downregulated by BMS303141 

treatment, and the expression of PYCR1 was restored by the acetate treatment as 

measured by RT-qPCR in both the iCAFs and the pCAF2s (Fig. 6-3a). Similarly, in 

the iCAFs, PYCR1 protein levels were decreased with the BMS303131 treatment 

and rescued by acetate when analysed by Western blot (Fig. 6-3b). Therefore the 

increase in PYCR1 mRNA also translated into an increase in PYCR1 protein, 

suggesting that this could have functional implications regarding proline 

production. 

 

To further show that the extra-mitochondrial pool of acetyl-coA controls PYCR1 

expression, iNFs and pNF2s were treated with 2 mM acetate for 48h. Acetate 

treatment was sufficient to increase PYCR1 expression at the mRNA level as 

determined by RT-qPCR (Fig. 6-4). Taken together, these data show that PYCR1 

expression at the mRNA level in both CAFs and NFs is dependent on the 

nucleocytosolic pool of acetyl-coA and is therefore likely to be under epigenetic 

regulation by histone acetylation.  
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a. PYCR1 mRNA expression measured by RT-qPCR in iCAFs treated for 48h with 50 µM 

BMS30141 ± 2 mM acetate. PYCR1 mRNA was normalised to TBP2. b. PYCR1 mRNA 

expression measured by RT-qPCR in pCAF2s treated for 48h with 50 µM BMS30141 ± 

2mM acetate. PYCR1 mRNA was normalised to TBP2. c. Representative Western blot 

and quantification of PYCR1 levels in iCAFs treated for 48h with 50 µM BMS30141 ± 2 

mM acetate. β-tubulin was used as a loading control. Molecular weight markers are 

shown next to the blots. 

 

Error bars show mean and SEM of ≥3 biological replicates. Significance was calculated 

using a one way ANOVA with Dunnett’s multiple comparisons test: p≤0.05 *, p≤0.01 

**, p≤0.001 *** 

 

a 

c 

b 

Figure 6-3 PCYR1 expression is regulated by extra-mitochondrial acetyl-coA 
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Figure 6-4 PCYR1 expression is regulated by extra-mitochondrial acetyl-coA 

a. PYCR1 mRNA expression measured by RT-qPCR in iNFs treated for 48h with 2 mM 

acetate. PYCR1 mRNA was normalised to TBP2. b. PYCR1 mRNA expression measured 

by RT-qPCR in pCAF2s treated for 48h with 2 mM acetate. PYCR1 mRNA was 

normalised to TBP2. 

 

Error bars show mean and SEM of 3 biological replicates. Significance was calculated 

using a Students’ t-test with Welch’s correction: p≤0.05 *, p≤0.01 **, p≤0.001 *** 

 

a b 
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6.3 PYCR1 expression is regulated by PDH activity 

 

To investigate the effect of PDH activity on PYCR1 expression in fibroblasts, I again 

modulated PDK2 expression in order to control PDH phosphorylation and thereby 

its activity. PDK2 expression was altered either by transfection of NFs with siCtl 

or siPDK2, or by transfection of CAFs with PDK2N255A or PDK2WT. To further tie PDH 

activity-induced PYCR1 expression to histone acetylation, I treated the siPDK2 

transfected NFs with c646 to reduce histone acetylation. Conversely I treated the 

PDK2 overexpressing CAFs with 2 mM acetate to replenish the intracellular pool of 

acetyl-coA and increase histone acetylation. 48h after transfection, the 

fibroblasts were lysed and the expression of PYCR1 was assessed by RT-qPCR. PDK2 

knockdown in the NFs to increase PDH activity increased PYCR1 expression at the 

mRNA level, and this was successfully reversed by c646 treatment (Fig. 6-5a). In 

the reverse, overexpression of PDK2 in the CAFs decreased PYCR1 expression at 

the mRNA level but acetate treatment rescued PYCR1 expression (Fig. 6-5b). This 

verified that PDH activity is an upstream regulator of PYCR1 expression, and that 

the increase in acetyl-coA and histone acetylation produced by PDH in CAFs is 

required for the increase in PYCR1 expression. 
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a. PYCR1 mRNA expression measured by RT-qPCR in iNFs 48h after transfection with 

siCtl or siPDK2 ± 25 µM c646 treatment. PYCR1 mRNA was normalised to TBP2. b. 

PYCR1 mRNA expression measured by RT-qPCR in iCAFs 48h after transfection with 

PDK2N255A or PDK2WT ± 2 mM acetate treatment. PYCR1 mRNA was normalised to TBP2. 

 

Error bars show mean and SEM of 3 biological replicates. Significance was calculated 

using a one way ANOVA with Dunnett’s multiple comparisons test: p≤0.05 *, p≤0.01 

**, p≤0.001 *** 

 

a b 

Figure 6-5 PYCR1 expression is regulated by PDK2 levels 
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6.4 PYCR1 expression regulates proline production 
 

6.4.1 PYCR1 knockdown reduces intracellular proline 

 

Although I had shown that expression of PYCR1 was upregulated by PDH activity 

in CAF, I had not yet shown that PYCR1 expression affected the intracellular 

proline levels. As discussed in Chapter 4, CAFs have more total intracellular 

proline than NFs, and, using 13C-labelled metabolites, I showed that in the 

fibroblasts proline is mainly derived from glutamine via the TCA cycle. Therefore, 

using the pCAF2s, I created shCtl and shPCYR1 cell lines via lentiviral transduction 

with five different shPYCR1 constructs. The level of PYCR1 knockdown in lysates 

of the shPYCR1 cell lines was assessed both by RT-qPCR and by Western blot. Two 

out of the five shRNAs against PYCR1 successfully knocked down PYCR1 expression 

by around 70% at the mRNA level and 50% at the protein level compared to the 

shCtl CAFs: henceforth called shPYCR1-a and shPCYR1-b (Fig. 6-6a, b). I therefore 

used these two cell lines for future experiments. To determine whether the 

shPYCR1 cell lines reduced proline production, the intracellular metabolites from 

shCtl and shPYCR1 cells were harvested and analysed by LC-MS. The total amount 

of intracellular proline was calculated by normalising the peak area to the protein 

content of the cells. Both shPYCR1 cell lines produced significantly less proline 

than the shCtl cells, demonstrating that PYCR1 activity is required to maintain 

intracellular proline levels in CAFs (Fig. 6-6c).  

 

There is another pyrroline-5-carboxylate reductase: PYCR2, which shares 84% 

homology with PYCR1. PYCR2 was not among the proteins regulated by c646 in the 

proteomic data, but in order to demonstrate that it does not compensate for the 

reduction in PYCR1 expression, I also assessed the expression of PYCR2 mRNA in 

the shPYCR1 and shCtl CAFs by RT-qPCR (Fig. 6-7). PYCR2 was not upregulated in 

the shPYCR1 cells, in fact it was also downregulated, showing that it is not acting 

as a compensatory mechanism. 

 

 

To further demonstrate that PYCR1 expression controls proline production, the 

CAFs were transfected with either siCtl or siPYCR1. The efficacy of the siPYCR1 

knockdown was determined by RT-qPCR and significantly reduced PYCR1 mRNA 
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48h after transfection. The intracellular metabolites were then harvested and 

analysed by LC-MS. The total amount of intracellular proline was calculated by 

normalising the peak area to the protein content of the cells. siPYCR1 also 

significantly reduced proline production by the CAFs (Fig. 6-8).  

 

6.4.2 Acetyl-coA regulates proline production 

 

In order to link proline production to upregulation of PYCR1 expression by acetyl-

coA dependent histone acetylation, I treated the iCAFs with the ACLY inhibitor 

BMS303131 with or without 2 mM acetate for 48h, which I previously showed 

regulates both H3K27 acetylation and PYCR1 expression. The intracellular 

metabolites were then harvested and analysed by LC-MS. The total amount of 

intracellular proline was calculated by normalising the peak area to the total 

protein content of the cells. BMS303141 reduced the amount of proline in the cells 

and this was rescued by the acetate treatment, showing that the extra-

mitochondrial pool of acetyl-coA regulates proline production in CAFs (Fig. 6-9). 
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 a. PYCR1 mRNA expression measured by RT-qPCR in shCtl and shPYCR1 CAFs. PYCR1 

mRNA was normalised to TBP2. b. Western blot and quantification of PYCR1 levels in 

shCtl and shPYCR1 CAFs. β-tubulin was used as a loading control. Molecular weight 

markers are shown next to the blots. c. Total proline in shCtl and shPYCR1 cell lines 

measured by LC-MS and normalised to total proline content. 

 

Error bars show mean and SEM of 3 biological replicates. Significance was calculated 

using a one way ANOVA with Dunnett’s multiple comparisons test: p≤0.05 *, p≤0.01 

**, p≤0.001 *** 

 

a 

b 

c 

Figure 6-6 Proline synthesis is regulated by PYCR1 expression 



213 
 

 

PYCR2 mRNA expression measured by RT-qPCR in shCtl and shPYCR1 CAFs. PYCR2 

mRNA was normalised to TBP2.  

 

Error bars show mean and SEM of 3 biological replicates. Significance was calculated 

using a one way ANOVA with Dunnett’s multiple comparisons test: p≤0.05 *, p≤0.01 

**, p≤0.001 *** 

 

Figure 6-7 PYCR2 does not compensate for PYCR1 
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a. PYCR1 mRNA expression measured by RT-qPCR in iCAFs 48h after transfection with 

siCtl or siPYCR1. PYCR1 mRNA was normalised to TBP2. b. Total proline in iCAFs 48h 

after transfection with siCtl or siPYCR1 measured by LC-MS and normalised to total 

protein content. 

 

Error bars show mean and SEM of ≥3 biological replicates. Significance was calculated 

using a student’s t-test with Welch’s correction: p≤0.05 *, p≤0.01 **, p≤0.001 *** 

 

a b 

Figure 6-8 Proline synthesis is regulated by PYCR1 expression 
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Total proline in iCAFs treated for 48h with 50 µM BMS30141 ± 2mM acetate measured 

by LC-MS and normalised to total protein content. 

 

Error bars show mean and SEM of 4 biological replicates. Significance was calculated 

using a one way ANOVA with Dunnett’s multiple comparisons test: p≤0.05 *, p≤0.01 

**, p≤0.001 *** 

 

Figure 6-9 Proline synthesis is regulated by acetyl-coA levels 
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6.5 PYCR1 produces proline for collagen production 
 

As I had demonstrated that PYCR1 expression does indeed control proline synthesis 

in cells, I then sought to assess whether, as I had hypothesised, this had a 

significant impact on collagen production by the fibroblasts. I wanted to show 

specifically that proline produced by PYCR1 is incorporated into collagen. Since 

PCYR1 produces proline from glutamate, we hypothesised that by giving the CAFs 

heavy glutamine we would be able to detect the incorporation of heavy proline 

into collagen. I therefore seeded the shCtl and shPYCR1 CAFs at confluence and 

cultured them with medium containing either 12C-glutamine or 13C-glutamine for 

72h. I then decellularised the ECM and lysed it. I separated the ECM proteins on 

an SDS-page gel and cut each sample into 3 bands, which I then processed by in-

gel digestion for MS-proteomic analysis. Sergio Lilla in the Proteomics Facility then 

carried out the data acquisition and analysis using the MaxQuant computational 

platform to determine the incorporation of heavy proline residues into peptides 

from ECM proteins. As a proof of principle, we focussed on peptides from COL1A1 

for the analysis, because it is highly abundant in the samples. I then compared the 

LFQ intensities of heavy labelled COL1A1 peptides in shCtl and shPYCR1 ECMs. For 

this analysis, I only considered peptides in which just proline residues were 

labelled, since glutamine can be used to produce many amino acids. Furthermore 

I only considered peptides in which all the proline residues were labelled to avoid 

complications due to different combinations of sites being quantified. Four 

quantified peptides fit these criteria. The 13C-proline containing peptides had a 

high intensity in the 13C-labelled samples while they were not detected in the 

unlabelled control, demonstrating that proline produced from glutamate via 

PYCR1 is used to produce collagen (Fig. 6-10a). Furthermore all of the peptides 

showed a decreased intensity in the shPCYR1 samples compared to the shCtl 

samples, again showing that proline produced by PYCR1 is required for collagen 

production in CAFs (Fig. 6-10b). 
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 a: Comparison of LFQ intensities for the 13C-proline labelled COL1A1 peptides between 

heavy labelled and unlabelled shCtl CAF-derived ECM. There is a significant 

incorporation of 13C-glutamine-derived proline into collagen in the labelled shCtl CAFs. 

b: Comparison of LFQ intensities of 13C-proline labelled COL1A1 peptides between shCtl 

and shPCYR1 CAF-derived ECM.  

Graphs show mean and SEM of 3 biological replicates. Significance was calculated using 

a Students t-test with Welch’s correction: p≤0.05 * p≤0.01 **, p≤0.001 *** 

 

a 

b 

Figure 6-10 PCYR1 produces proline for collagen synthesis 
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6.6 PYCR1 regulates collagen production 
 

I have shown that PYCR1 expression affects both proline synthesis and proline 

incorporation into collagen in CAFs; next, I wanted to investigate whether this 

affected the total amount of collagen produced by the fibroblasts. The shCtl, 

shPYCR1-a and shPYCR1-b CAFs were seeded at confluence and cultured for seven 

days to produce ECM. Additionally, the shPYCR1 were treated with 500 µM proline 

in order to rescue the effects of shPYCR1 loss on proline production. The ECM was 

then decellularised, and subsequently harvested and analysed by Western blot for 

collagen VI. shPYCR1 significantly reduced collagen VI in the ECM, and this could 

be rescued with the exogenous proline (Fig. 6-11). 

 

To confirm that PYCR1 levels regulated collagen accumulation in the ECM, I also 

transfected iCAFs with siCTL or siPYCR1 to acutely downregulate PYCR1, and the 

siPYCR1 transfected CAFs were further treated with 500 µM proline. 72h after 

transfection, the cells were removed and the ECM harvested and analysed by 

Western blot. As with the shRNAs against PYCR1, siPYCR1 decreased the amount 

of collagen VI in the ECM and this was rescued by treating the cells with proline 

(Fig. 6-12). 

 

To further demonstrate that collagen production by CAFs was dependent on 

proline levels produced by PYCR1, the shCtl and shPYCR1 CAFs were cultured at 

confluence on coverslips for seven days with or without proline treatment, 

following which the collagen in the ECM was stained with CNA35-mCherry. The 

cells were then fixed and counterstained with DAPI before being imaged (Fig. 6-

13). The intensity of the collagen staining was quantified using ImageJ software, 

and clearly demonstrated a decrease in the amount of collagen produced by the 

shPYCR1 cells, which was then rescued by the addition of extracellular proline. 

Therefore the production of collagen in CAFs is proline dependent, and relies on 

the expression of PYCR1. 

 

To finally link PDH activity to both proline production and collagen synthesis via 

PYCR1, the iNFs were transfected with siCtl, siPDK2 or both siPDK2 and siPYCR1. 

72h after transfection, the cells were removed, leaving the ECM intact and the 

ECM was harvested and analysed by Western blot. As demonstrated before, siPDK2 
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was sufficient to increase collagen VI levels in the NF derived ECM, however, the 

additional silencing of PYCR1 reduced the collagen VI levels back to those in the 

ECM from the siCtl cells (Fig. 6-14). This experiment showed that the proline 

produced by PYCR1 is required to support the increase in collagen production that 

is stimulated by the upregulated PDH activity following silencing of PDK2. 

Therefore collagen production in CAFs is regulated by a twofold metabolic 

pathway. First, upregulated PDH activity leads to an increase in acetyl-coA which 

is used to increase histone acetylation levels and in particular the transcription 

activation marker H3K27ac. This leads to an upregulation in transcription of 

collagen genes, but in order to provide sufficient amino acids for the translation 

of collagen mRNA an increase in proline synthesis is required. This is achieved by 

simultaneously upregulating PYCR1 expression via the increase in PDH-dependent 

histone acetylation. 

 



220 
 

 

Representative Western blot and quantification of collagen VI in ECM derived from 

shCtl CAFs compared to shPYCR1-a and shPYCR1-b CAFs ± 500 µM proline. Molecular 

weight markers are shown next to the blot. 

 

Error bars show mean and SEM of ≥3 biological replicates. Significance was calculated 

using a one way ANOVA with Dunnett’s multiple comparisons test: p≤0.05 *, p≤0.01 

**, p≤0.001 *** 

 

Figure 6-11 Collagen production is regulated by PCYR1 expression 
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Representative Western blot and quantification of collagen VI in ECM derived from 

CAFs 72 after transfection with siCtl or siPYCR1 ± 500 µM proline. Molecular weight 

markers are shown next to the blot. 

Error bars show mean and SEM of 4 biological replicates. Significance was calculated 

using a one way ANOVA with Dunnett’s multiple comparisons test: p≤0.05 * 

 

Figure 6-12 Collagen production is regulated by PYCR1 expression 
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Representative images and quantification of collagen produced over 5 days by shCtl 

and shPYCR1-b CAFs ± 500 µM proline. Collagen was stained with CNA35-mCherry 

and nuclei were stained with DAPI. Images were acquired using a Zeiss 710 at 20x 

magnification and the staining density was calculated using ImageJ software and 

normalised to cell number. Graph shows mean and SEM of 4 independent 

experiments. Significance was calculated using a one way ANOVA with Dunnett’s 

multiple comparisons test: *p≤0.05 

Figure 6-13 Collagen production is regulated by PYCR1 expression 
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Representative Western blot and quantification of collagen produced by iNFs 72h 

after transfection with siCtl, siPDK2 or siPDK2 and siPYCR1. Molecular weight 

markers are shown next to the blot. Graph shows mean and SEM of 4 independent 

experiments. Significance was calculated using a one way ANOVA with Dunnett’s 

multiple comparisons test: *p≤0.05 

Figure 6-14 PYCR1 is required for PDH activity-induced collagen production 
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6.7 in vivo co-transplantation of CAFs and 

MCF10DCIS.com cells 
 

In order to validate our findings in vivo I investigated the effect of PYCR1 

knockdown in CAFs on collagen production and tumour growth. MCF10DCIS.com 

cells were coinjected subcutaneously with either the shCtl or shPYCR1-b pCAF cell 

lines into Balb-C nude mice, with a ratio of CAFs to cancer cells at 3:1. Twelve 

mice were used for each condition. After two weeks, when the tumours started 

increasing size, half of the mice from each group were culled and the tumours 

were harvested. We took the tumours at such an early timepoint because, based 

on the experience of our group (Hernandez-Fernaud et al., 2017) the human CAFs 

are eventually overtaken by the murine stroma and we wanted to be sure that any 

effects on the tumours were due to the CAFs which we had transplanted. Even at 

the two week timepoint, there was already a significant reduction in tumour size 

in the mice that had been injected with the shPYCR1 CAFs (Fig. 6-15). I then fixed 

the tumours in 4% PFA and sliced them into 400 µm sections using a vibratome. 

The CAFs were GFP positive and were therefore easily detected using fluorescent 

microscopy. Z-stacks of the tissues were acquired using multi-photon microscopy 

with single harmonic generation imaging to visualise the collagen. Since collagen 

can be also produced by cancer cells, or by fibroblasts from the mice that had 

infiltrated the tumour, to assess whether shCtl and shPYCR1 CAFs deposited 

different amounts of collagen, I quantified only the collagen surrounding the GFP 

positive CAFs. There was significantly less collagen surrounding the shPYCR1 CAFs 

compared to the shCtl CAFs, which provides initial support to my hypothesis that 

PYCR1 knockdown also reduces collagen production in vivo (Fig. 6-16a). Although 

the amount of GFP positive fibroblasts remaining varied between tumours, there 

was no overall decrease in the area of GFP positive CAFs in the shPCYR1 tumours 

compared to the shCtl tumours, suggesting that the difference in collagen 

production is not due to an increase in cell death or decrease in proliferation 

caused by the PYCR1 knockdown (Fig. 6-16b). The remaining mice were allowed 

to reach endpoint before being culled, however there was no significant 

difference in the time take to reach endpoint between the tumours containing 

shCtl and shPYCR1 CAFs, probably because by this point the murine fibroblasts had 

completely taken over from the pCAFs. 
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Tumour weight of MCF10DCIS.com xenografts containing shCtl or shPYCR1 CAFs taken two 

weeks after injection. Graph shows mean and SEM of 6 tumours from one experiment. 

Significance was calculated using a Students t-test with Welch’s correction: p≤0.05 * 

Figure 6-15 Stromal PYCR1 promotes tumour growth 
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a 

a: Representative images and quantification of the proportion of the area of GFP positive CAFs 

that is also positive for collagen in sections of xenografts containing shCtl or shPYCR1 CAFs. b: 

Quantification of the average CAF area in the images used for a. 

Graphs show mean and SEM of at 3 biological replicates. Z-stacks of at least two areas from 

each tumour were acquired using a Zeiss 880 and each plane was analysed separately and the 

average taken.  

Significance was calculated using a Students t-test with Welch’s correction 

b 

Figure 6-16 PCYR1 promotes collagen production in vivo 
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6.8 Discussion 

 

In this chapter I investigated the link between proline synthesis and collagen 

production. Collagen is a significant proportion of the protein output of CAFs, and 

is a vital component of the ECM. Proline and hydroxyproline together constitute 

about 25% of the amino acids in collagen. Therefore when I found that firstly the 

amount of intracellular proline was higher in CAFs than in NFs and secondly that 

PYCR1, the rate limiting enzyme for proline synthesis was also upregulated in CAFs 

and was regulated by c646 suggesting that it was under the control of histone 

acetylation, I hypothesised that the upregulation of PYCR1 drives an increase in 

proline production that can be used to support the translation of collagen. 

Although some studies have correlated the proline synthetic pathway with ECM 

production in the genetic disorder cutis laxa (Skidmore et al., 2011, Liang et al., 

2019), until now there has not been an in depth investigation into whether proline 

production by PYCR1 affects collagen production. 

 

It is interesting to note that in the MS-proteomics experiment with c646 treated 

iCAFs, several genes related to proline were regulated, including OAT, which 

catalysed the first step in proline synthesis from ornithine, and EIF5A, which 

enables polyproline regions of mRNA to be translated. Therefore PYCR1 may not 

be the only enzyme relating to proline production or incorporation of proline into 

collagen to be under epigenetic control in CAFs. However, as PYCR1 is the rate 

limiting enzyme in proline synthesis, it is likely to play the most significant part 

in this process. 

 

I first demonstrated that PYCR1 is under control of the same pathway as collagen 

proteins in CAFs. This is the first time that acetyl-coA and proline production have 

been connected, and demonstrates the importance of acetyl-coA as a central 

metabolite in regulating diverse pathways. I verified using pharmacological 

inhibitors that EP300 activity does regulate PYCR1 expression in CAFs, and that 

PYCR1 expression is also regulated by the pool of extra-mitochondrial acetyl-coA. 

PYCR1 was regulated both at the mRNA and at the protein level, implying that 

there is an increase in PYCR1 transcription and therefore that PYCR1 expression 

may also be epigenetically regulated. Finally, I showed that PYCR1 expression is 
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also regulated by the activity of PDH, which again corroborates my previous results 

showing that PDH activity controls the levels of intracellular acetyl-coA and 

histone acetylation. I then demonstrated that PYCR1 expression does indeed 

control intracellular proline levels. Furthermore, intracellular proline was also 

regulated by the extra-mitochondrial pool of acetyl-coA. Therefore production of 

acetyl-coA regulates production of proline by regulating PYCR1 expression through 

increased histone acetylation. 

  

I then investigated whether the two pathways of proline synthesis and collagen 

production are connected, and indeed I demonstrated that collagen levels in 

fibroblast-derived ECM were regulated by PYCR1 expression. Collagen production 

was rescued by treating the cells with exogenous proline, showing that it is 

specifically proline availability that regulates collagen production. Furthermore, 

PYCR1 was required for PDH activity-induced collagen production, showing that 

PYCR1 is downstream from PDK2 and PDH activity in the process of collagen 

synthesis. Therefore, although PDH activity may cause increased transcription of 

collagen genes, the increased proline produced by PYCR1 is necessary to produce 

the collagen protein.  

 

The final question of this thesis was whether PYCR1 activity could limit collagen 

production in vivo and whether or not this would have an impact on tumour 

progression. Xenografts of the human breast cancer cell line MCF10DCIS.com and 

CAFs expressing shCtl or shPYCR1 showed that tumours with shPYCR1 CAFs grew 

more slowly and that the shPYCR1 CAFs produced less collagen in vivo as well as 

in vitro. Therefore targeting PYCR1 expression has a positive effect on inhibiting 

the tumour stroma as well as tumour cells, and targeting PYCR1 in patients would 

be an effective way to metabolically target both tumour and stroma 

simultaneously. Previously, targeting the tumour stroma has been considered a 

separate endeavour from targeting tumour cells, with combination therapies to 

target tumour and stroma separately. This is especially true in the context of 

metabolism, where many studies have focussed on tumour cells and CAFs having 

opposing but complimentary metabolism, making targeting tumour metabolism 

difficult without conversely activating CAFs or vice versa (Guido et al., 2012, 

Martinez-Outschoorn et al., 2010b, Yang et al., 2016). However, this research has 

provided a target that is relevant both in tumour and in stroma, at least in breast 
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cancer. Furthermore, the decrease in fibrosis caused by targeting stromal PCYR1 

could increase delivery and uptake of other chemotherapies, since high collagen 

density in the TME has been shown to impede drug delivery due to increased 

interstitial pressure and blood vessel compression (Netti et al., 2000, Chauhan et 

al., 2013) 

 

A connection between PYCR1 and collagen production has been demonstrated 

before, although not specifically in CAFs. A recent study showing that PYCR1 

expression is regulated by mechanotransduction through Kindlin-2 in lung 

adenocarcinoma also showed that when kindlin-2 expression was ablated in the 

lungs, there was a decrease in collagen and fibrosis in tumours, and a decrease in 

α-SMA positive CAFs. This suggests that PYCR1 is also required for CAF 

functionality (Guo et al., 2019). However, the study focussed on the role of PYCR1 

in the cancer cells. Whether there was a direct connection between proline 

produced by PYCR1 in CAFs and collagen was unexplored, and would be more 

difficult to prove given that the reduction in the overall number of activated CAFs 

could account for the decrease in collagen in the tumours.  

 

One question that must be addressed is the relevance of the link between proline 

and collagen synthesis in the context of a tumour, since proline is present in serum 

and I have been conducting my experiments in media that does not contain 

proline, with the exception of the SILAC media. Therefore CAFs may not 

experience so great a need to produce proline in the context of a tumour. 

However, the tumour microenvironment is frequently deficient in various 

nutrients due to the leaky vasculature of the TME and also the high demand of the 

cancer cells for nutrients to fuel their continual proliferation. Therefore it is 

reasonable to suppose that proline may be limited in the TME. In support of this, 

it has been shown that cancer cells take up and degrade collagen from the TME to 

provide them with a source of proline, showing that they require more proline 

than they can source from their blood supply (Olivares et al., 2017). Furthermore, 

the abundance of studies showing that PYCR1 is upregulated in cancer cells and is 

required for tumour progression also suggests that proline is limited in the TME 

(Cai et al., 2018, Ding et al., 2017, Hollinshead et al., 2018). From my own in vivo 

experiment, although some of the collagen in the tumours was produced by 

endogenous stroma, quantification of collagen surrounding the transplanted CAFs 
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suggested PYCR1 expression was a limiting factor for collagen production by CAFs 

in the tumour. This further suggests that CAFs are not able to uptake sufficient 

proline from the TME to meet their needs, although I did not quantify proline 

production by these cell lines in vivo.  

 

Since PYCR1 has been shown to be upregulated in many types of tumour, another 

question is whether PYCR1 and proline synthesis is also upregulated in the stroma 

of different types of tumour, since in my PhD I have focussed solely on mammary 

CAFs. We analysed two previously published transcriptome datasets of ovarian 

fibroblasts. In laser capture microdissected stroma from ovarian cancer tissue 

compared to normal fibroblasts (Leung et al., 2014) both PYCR1 and ALDH18A1, 

which is also involved in proline synthesis from glutamate, were upregulated (Fig. 

6-17). OAT, which is involved in proline synthesis from ornithine, was not 

upregulated however, suggesting that the glutamate pathway is more prominent. 

Similarly, transcriptome profiling of TGF-β treated and normal ovarian fibroblasts 

showed upregulation of PYCR1 and ALDH18A1, but not OAT (Fig. 6-18) (Yeung et 

al., 2013). Therefore upregulation of proline synthesis in the stroma is not 

confined to mammary CAFs and could be a more universal pathway to support 

collagen synthesis in CAFs. In the future, it would be useful to investigate PYCR1 

expression in the stroma of more types of tumour with a high stromal content, 

such as PDAC, in order to find out how universal this pathway is and also to further 

stratify which tumours might benefit from treatments targeting PYCR1 to reduce 

fibrosis. 
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Graph shows normalised expression of genes involved in proline synthesis between 

normal and tumour associated fibroblasts isolated from ovarian tissue samples by 

laser capture microdissection. Significance was calculated using a Students t-test 

with Welch’s correction: p≤0.05 *, p≤0.01 **, p≤0.001 *** 

Figure 6-17 Proline synthesis pathway is upregulated in ovarian stroma 
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Graph shows normalised expression of genes involved in proline synthesis between 

control and TGF-β treated ovarian fibroblasts. Significance was calculated using a 

students t-test with Welch’s correction: p≤0.05 *, p≤0.01 **, p≤0.001 *** 

Figure 6-18 Proline synthesis pathway is upregulated in TGF-B treated 
fibroblasts 
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Chapter 7 7 Discussion and Future work 
 

7.1 Discussion 

 

In this thesis I investigated the vital role of metabolism in the maintenance of the 

pro-tumourigenic phenotype in mammary CAFs. Specifically, I showed how CAF 

metabolism influences collagen production, which is a major output of CAFs in the 

TME. Collagen has long been known to play an important role in breast cancer. At 

the clinical level, breast tumours with a high collagen content have a poorer 

prognosis (Conklin et al., 2011, Kauppila et al., 1998). Collagens promote tumour 

growth and metastasis, and induce solid stress that impedes drug delivery to 

tumours (Provenzano et al., 2008, Netti et al., 2000, Kaushik et al., 2016). Indeed, 

targeting fibrotic collagen production with angiotensin inhibition improved 

chemotherapy delivery and reduced hypoxia in breast and pancreatic cancer 

models (Chauhan et al., 2013). Therefore targeting collagen production in breast 

cancer and other tumour types with a desmoplastic TME would be an effective 

way to target tumour growth and metastasis, as well as improving the efficiency 

of conventional anti-cancer therapies. Since CAFs are the major source of collagen 

in the TME, they are most promising target to reduce collagen in tumours. In this 

work, using an unbiased approach, I discovered metabolic pathways supporting 

collagen production in CAFs. Specifically, I uncovered two distinct, but connected, 

metabolic pathways that support collagen synthesis by CAFs: acetyl-coA synthesis 

by PDH and proline synthesis by PYCR1. PDH-derived acetyl-coA controls collagen 

transcription through epigenetic regulation, and PYCR1 supports collagen 

production by providing building blocks for its translation into protein (Fig. 7-1). 

The two metabolic pathways that I have identified as regulators of collagen 

production in CAFs both provide possibilities for developing new ways to 

therapeutically target collagen production by CAFs to inhibit the formation of a 

fibrotic TME. This has the potential to reduce the pro-tumourigenic functions of 

the TME and improve tumour perfusion. 
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Figure 7-1 Working model 

Increased PDH activity leads to increased acetyl-coA production in CAFs. Acetyl-coA 

is exported out of the mitochondria via citrate, and is converted back to acetyl-coA 

by ACLY. In the nucleus, acetyl-coA is used for histone acetylation, leading to 

increased transcription of collagen genes. Simultaneously, PYCR1 expression is also 

upregulated, enabling increased proline production. Proline is then used to support 

translation of collagen mRNA, and collagen is secreted into the ECM to create a pro-

tumourigenic, desmoplastic stroma. 
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I used two models of mammary CAFs and NFs for my research: the iCAFs/iNFs and 

pCAFs/pNFs. Whereas the iCAFs were activated from immortalised NFs isolated 

from a healthy individual by an in vivo co-culture with cancer cells, the pCAFs and 

pNFs were derived separately from breast cancer patient tissue samples. All the 

fibroblasts were immortalised with hTERT (Calvo et al., 2013) to enable in depth 

characterisation without them becoming senescent. Collagen production and high 

levels of aSMA expression are defining features of the activated, myofibroblast 

phenotype (Ronnov-Jessen and Petersen, 1993). My group has previously shown 

that the iCAF have a myofibroblast phenotype and I ensured that the pCAFs 

recapitulated the myofibroblast phenotype by monitoring their αSMA expression. 

All the CAFs expressed high levels of αSMA compared to the NFs, showing that they 

were activated. Further functional characterisation of the fibroblasts carried out 

by other members of the lab has shown that the CAF secretome is more pro-

invasive and pro-angiogenic than their paired NFs, further supporting that both 

the iCAFs and pCAFs are relevant models of the activated, myofibroblast 

phenotype. 

 

The first key finding of my thesis was that PDH phosphorylation at key regulatory 

sites is reduced in CAFs. I found this was due to the reduced expression of the 

kinase PDK2 in CAFs. As a consequence of its reduced phosphorylation, PDH was 

more active in CAFs. Moreover, by increasing or decreasing PDK2 expression in 

CAFs and NFs I could regulate PDH phosphorylation and acetyl-coA production, 

thus showing that, although other PDKs can phosphorylate PDH, PDK2 alone is an 

important regulator of PDH activity in fibroblasts. The role of PDKs and PDH have 

largely been unexplored in CAF metabolism, despite PDH being a central metabolic 

enzyme connecting glycolytic, oxidative and lipid metabolism. A comparison of 

metabolic protein levels by IHC staining in lung tumour and stromal cells showed 

that PDK expression was low and PDH expression high in stromal cells compared 

to the tumour cells (Koukourakis et al., 2014). A further study from the same group 

showed that PDH expression, but not phosphorylation, is upregulated in fibroblasts 

upon co-culture with lung tumour cells (Koukourakis et al., 2017).  While this is 

slightly different from the results from my mammary fibroblasts, in which PDH 

expression is unchanged but the phosphorylation is decreased in CAFs, the end 

result is still that PDH is more active in CAFs. However, neither of these studies 

investigated the functional consequences of PDH activity in the lung stroma. 
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Therefore, the discovery that PDH activity was upregulated in mammary CAFs 

opened up many questions regarding how CAFs might use the resulting acetyl-coA 

to rewire their metabolism or alter protein acetylation levels. 

 

Extensive metabolic profiling and mitochondrial characterisation of the CAFs and 

NFs did not immediately reveal differentially regulated pathways that might be 

affected by PDH activity. Surprisingly, there was no evidence that PDH activity 

affected TCA cycle flux. In proliferating fibroblasts compared to quiescent 

fibroblasts, it has been shown that there is a decrease in citrate conversion to 

alpha-ketoglutarate due to decreased IDH expression, and that citrate is 

preferentially exported to the cytosol (Lemons et al., 2010). IDH3 expression has 

also been found to be downregulated in prostate CAFs, which could further 

exacerbate TCA cycle truncation (Zhang et al., 2015). This is in accordance with 

my metabolic tracing experiments, in which I saw that in CAFs and NFs, which are 

both proliferative, glucose was incorporated into citrate but then was 

incorporated at a much lower ratio into other TCA cycle metabolites. Glutamine 

is then the main source of TCA cycle metabolites, although there was still 

evidence of a lack of transmission of labelled carbon atoms from citrate to α-

ketoglutarate and of some backwards flux from α-ketoglutarate to citrate (citrate 

+5 labelled) when cells were labelled with 13C-glutamine (Fig 4-10). Both CAFs and 

NFs clearly have a truncated TCA cycle, and the increased PDH activity in CAFs 

exacerbated this effect. CAFs contained significantly higher levels of intracellular 

citrate than NFs, yet this difference was not reflected in the levels of other TCA 

cycle metabolites. Furthermore, the increase in citrate in CAFs was also not 

reflected in total cholesterol levels or fatty acid synthesis. Instead, MS analysis of 

the global acetylome of CAFs and NFs suggested that the acetyl-coA produced by 

PDH may be used as an epigenetic regulator to increase histone acetylation. Many 

histone sites were more acetylated in CAFs, but of these H3K27 was the only site 

annotated with a known regulatory function: as a potent activator of transcription 

(Raisner et al., 2018). Since histone acetylation is known to be a general indicator 

of active transcription, I cannot exclude that the other identified acetylated 

histone sites also play a role in regulating gene expression in CAFs. For example, 

H3K18 and H3K23, both of which are also known to be regulated by EP300 and are 

associated with active transcription, were also more acetylated in CAFs. Further 
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investigation into deciphering the histone code is required to uncover the specific 

role of these acetylation sites.  

 

It may therefore be that in proliferating fibroblasts, the mechanism of channelling 

PDH-produced acetyl-coA into the cytoplasm and thence to the nucleus via citrate 

to maintain histone acetylation is shared between CAFs and NFs due to the 

truncated TCA cycle. However, in CAFs this is more pronounced by upregulating 

PDH activity to increase histone acetylation. Furthermore, there is some evidence 

that the levels of nucleocytosolic acetyl-coA influence the site specificity of EP300 

to alter histone acetylation patterns (Henry et al., 2014, Henry et al., 2013). 

Therefore in addition to increasing overall histone acetylation, the increased 

acetyl-coA in CAFs could also regulate which histone sites are more acetylated. 

 

In my thesis I directly connected mitochondrial acetyl-coA production by PDH with 

histone acetylation. Previous works showing that intracellular acetyl-coA levels 

induce histone acetylation have focussed on the synthesis of acetyl-coA in the 

nucleus from acetate or from nuclear PDH rather than mitochondrial PDH 

(Sutendra et al., 2014, Sivanand et al., 2018, Choudhary et al., 2014). The role of 

mitochondrial PDH has previously been studied for the most part as a metabolic 

gatekeeper linking glycolytic, oxidative and lipid metabolism (Randle, 1986, 

Saunier et al., 2016). PDH activity does not affect these metabolic pathways in 

CAFs and NFs, at least when kept in normal culture conditions, so while this is 

undoubtedly a vitally important function of PDH in many cell types, it does not 

appear to have a prominent role in my mammary CAFs. Mitochondrial acetyl-coA 

has been shown to contribute to protein acetylation in the mitochondria (Baeza 

et al., 2016), but whether mitochondrial PDH activity impacts acetylation of 

proteins outside of the mitochondria has not been largely explored. This is perhaps 

surprising given that it is well-known that acetyl-coA can be exported out of the 

mitochondria and it has been shown to impact cytoplasmic metabolic pathways, 

such as lipid synthesis (Mahmood et al., 2016). Indeed, ACLY, which is crucial for 

export of acetyl-coA from the mitochondria has been shown to play an important 

role in protein acetylation (Wellen et al., 2009, Kinnaird et al., 2016). My work 

therefore shows that protein acetylation and in particular histone acetylation 

should be considered along with cellular metabolism during future research into 

the role of PDH in cells. This is especially important when IDH activity is decreased 
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since low IDH activity prevents acetyl-coA from being channelled into the TCA 

cycle and therefore promotes export of acetyl-coA from the mitochondria. 

 

My work provides the first evidence that CAF metabolism regulates the CAF 

epigenetic phenotype through histone acetylation and that a link exists between 

PDH-mediated acetyl-coA production and collagen synthesis. My proteomic 

analysis of CAFs with inhibition of the HAT EP300 suggested that histone 

acetylation in CAFs was involved in activating transcription of ECM genes, which I 

subsequently confirmed with in vitro assays. There have been several studies 

showing that epigenetic changes are responsible for the increase in collagen 

production in myofibroblasts, indicating that a way through which CAFs can 

maintain a significant increase in collagen production is by increasing the 

transcription of the corresponding genes. My research has uncovered that PDH 

activity is an upstream regulator of this mechanism. TGFβ signalling is known to 

induce upregulation of ECM production in CAFs, and studies have shown that TGFβ 

is linked to expression of ECM genes through epigenetic alterations (Sun et al., 

2010, Vizoso et al., 2015). Since my work suggests that collagen expression is 

epigenetically regulated through PDH independently of TGFβ signalling, there may 

therefore be multiple mechanisms that CAFs can use to epigenetically control ECM 

production. Recently, CAF metabolism was shown to contribute to decreased 

H3K27 and H3K4 trimethylation through increased expression of nicotinamide N-

methyltransferase (NNMT) (Eckert et al., 2019). The decrease in histone 

methylation was induced by the depletion of S-adenosyl methionine by NNMT and 

promoted the transcription of markers of CAF activation, including ECM proteins. 

Furthermore, BET inhibitors, which block the response of BRD transcription factors 

to acetylated histones, inhibited the fibrotic phenotype in pancreatic cancer-

associated stellate cells, suggesting that increased histone acetylation is an 

important epigenetic regulator of fibroblast activation (Kumar et al., 2017). 

H3K27 acetylation is a known binding site for BRD4, and a decrease in H3K27me 

could be accompanied by an increase in H3K27ac, however, H3K27ac was not 

specifically investigated in these studies. Therefore my results showing that EP300 

activity and histone acetylation are increased in CAFs further corroborate the 

existence of an epigenetic switch in CAFs to promote ECM production. 

Additionally, also my findings indicate activation of transcription in CAFs, since 

H3K27ac is a well-known marker of active transcription and is often found at 
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enhancer regions (Raisner et al., 2018). It is already known that pathways 

activating transcription factors are upregulated in CAFs, such as TGFβ and NF-κβ 

signalling (Kojima et al., 2010, Pavlides et al., 2010b). Moreover, the CAF 

phenotype involves high levels of protein secretion (Hernandez-Fernaud et al., 

2017). It is therefore likely that overall transcription is upregulated in order to 

maintain an increased protein output, and my finding that overall histones were 

more acetylated supports this possibility. 

 

 In addition to ECM-related proteins, PDGFR, which is a well-known marker of CAF 

activation, was also significantly downregulated in the c646-treated CAF 

proteome. Other proteins that have been previously associated with CAF pro-

tumourigenic functions were also downregulated, such as TAGLN, THY1 and 

ITGA11 (Schliekelman et al., 2017, Navab et al., 2015, Yu et al., 2013). Therefore, 

in addition to regulating ECM production, histone acetylation may regulate other 

aspects of the activated CAF phenotype that might be relevant in cancer and 

therefore interesting to explore in the future. 

 

The second metabolic pathway that I found to regulate collagen production in 

CAFs was proline synthesis by PYCR1. There is increasing interest in how 

metabolites affect collagen synthesis. Amino acid availability clearly plays an 

important role, since glycine synthesis has been recently shown to regulate 

collagen production in fibrosis by maintaining the levels of glycine, which is highly 

abundant in collagens (Selvarajah et al., 2019). My work is the first to demonstrate 

that production and availability of the amino acid proline is important for collagen 

production. Pyruvate metabolism has also been shown to be important for collagen 

deposition. Collagen hydroxylation at proline residues is critical for the production 

of functional collagen molecules, because it stabilises the collagen helix. Pyruvate 

metabolism has been shown to support proline hydroxylation by providing a source 

of alpha-ketoglutarate which is a cofactor required for prolyl hydroxylase activity 

(Elia et al., 2019). Interestingly, the total levels of alpha-ketoglutarate were 

consistently higher in CAFs than in NFs, suggesting that the CAFs could also 

metabolically maintain the increased need of prolyl hydroxylase activity for 

collagen production. Why CAFs have more alpha-ketoglutarate is still an open 

question. The metabolomics tracing experiments that I performed showed that in 

CAFs alpha-ketoglutarate was derived mostly from glutamine rather than pyruvate 
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produced from glucose. I did not assess the contribution of extracellular pyruvate 

to TCA cycle metabolites, as pyruvate can enter the TCA cycle independently from 

the acetyl-coA pathway via conversion to oxaloacetate. Therefore tracing 

experiments using isotope labelled pyruvate should be performed to assess 

whether pyruvate could be a source of alpha-ketoglutarate in CAFs. Alternatively, 

the production of acetyl-coA from citrate by ACLY produces oxaloacetate in the 

cytosol. This oxaloacetate can be then combined with glutamate to make alpha-

ketoglutarate and aspartate (Fig. 7-2). It would therefore be interesting to 

investigate further the roles of extracellular pyruvate and alpha-ketoglutarate 

metabolism in regulating collagen production in CAFs.  
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Diagram showing that oxaloacetate and pyruvate are possible sources of alpha-

ketoglutarate  

Figure 7-2 Sources of alpha-ketoglutarate 
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By showing that PYCR1 expression is downstream of the PDH-induced histone 

acetylation in mammary CAFs, and that an increase in acetyl-coA availability 

corresponds with an increase in the intracellular proline levels, I provided the first 

link between acetyl-coA production by PDH and the proline synthesis pathway. 

Moreover, I have shown that EP300 activity is a key linker of these two pathways.  

However, I have not yet solved the details of the mechanism through which the 

epigenetic regulation triggered by PDH activity in CAFs coordinates the 

downstream increase in ECM and PYCR1 expression. Although, as discussed 

previously, it is already known that collagen synthesis is epigenetically regulated 

in fibroblasts, the regulation of PYCR1 at the epigenetic level has not been 

previously studied. Whilst I provided evidence that PYCR1 expression is controlled 

both by EP300 activity and acetyl-coA availability, it is possible that PYCR1 is not 

directly regulated by H3K27 acetylation, but is upregulated as part of a feedback 

mechanism when proline becomes limiting due to the increase demand of proline 

for collagen synthesis. PYCR1 levels have been shown to be upregulated by a lack 

of proline precursors (Loayza-Puch et al., 2016) and translation of mRNA 

transcripts for biosynthetic enzymes in bacteria is known to be inhibited by 

binding of amino acids to riboswitches, so that, when that amino acid is in short 

supply, translation of the mRNA is activated (Serganov and Patel, 2009). 

Transcription factors can also respond to shortages of amino acids, such as the 

ATF family of transcription factors (Kilberg et al., 2012). Therefore a proline 

sensing mechanism could be in place, so that when collagen production is 

increased and proline is used up more rapidly, more PYCR1 is produced. Since I 

saw upregulation of PYCR1 mRNA expression as well as the protein levels in 

conditions where histone acetylation is upregulated, it seems likely that there is 

a transcriptional or epigenetic component upstream of PYCR1 activation. 

 

I have shown that reduced levels of PYCR1 are sufficient to reduce the amount of 

collagen produced by CAFs, and that treating the cells with exogenous proline 

rescued the phenotype. This strongly points to the use of proline for translation 

as a limiting factor in collagen synthesis. A first indication of the importance of 

this process in vivo was the decreased tumour growth and collagen levels between 

MCF10DCIS.com breast cancer cells xenografts with shPYCR1 CAFs compared to 

the shCTL CAFs. This first in vivo experiment was important to show that reduced 

levels of PYCR1 in CAFs have a positive effect on reducing tumour growth in 
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xenografts, which provides further support for targeting PYCR1 in breast cancer, 

since reducing PYCR1 expression in breast cancer cells has already been 

demonstrated to reduce growth and invasion (Ding et al., 2017). If PYCR1 

inhibition also has a beneficial effect in inhibiting the pro-tumourigenic stroma, 

this could be a very effective strategy for targeting tumours. My data therefore 

suggest that tumours with both high PYCR1 expression and a significant stromal 

component would be good candidates for therapy involving PYCR1 inhibition. 

 

Much of the research on PYCR1 activity has focussed on its role in protecting 

against oxidative stress and apoptosis. In skin fibroblasts taken from cutis laxa 

patients with mutations leading to decreased levels or activity of PYCR1, there is 

an increase in mitochondrial dysfunction and ROS-mediated apoptosis due to the 

loss of protection against oxidative stress given by the activity of the proline cycle. 

(Cai et al., 2018, Reversade et al., 2009). No studies have yet investigated 

whether PYCR1 and proline production also protect against oxidative stress in 

CAFs. CAFs have been shown to have decreased mitochondrial functionality and 

increased ROS production in several studies (Martinez-Outschoorn et al., 2010b, 

Pavlides et al., 2010b). PYCR1 activity could therefore be a means of protecting 

the CAFs from ROS induced apoptosis and alleviating some of the negative effects 

of increased oxidative stress in CAFs. If PYCR1 activity does affect mitochondrial 

functionality in CAFs, inhibiting PYCR1 in the stroma could increase apoptosis in 

CAFs and thus reduce the total amount of pro-tumourigenic stroma in addition to 

targeting collagen production. Surprisingly, in my experiments the shCTL and 

shPCYR1 CAFs proliferated similarly in vitro. This suggests that if there are 

differences in mitochondrial functionality, they do not affect cell survival under 

standard cell culture conditions. These results are consistent with my data 

showing that, although there is a decrease in functional mitochondria in the 

mammary CAFs, this does not affect oxygen consumption rate, mitochondrial 

metabolism or proliferation under basal cell culture conditions, suggesting that a 

certain amount of mitochondrial dysfunction is tolerated by the CAFs. Although 

mitochondrial dysfunction may become a greater vulnerability in the context of 

the TME where nutrients and oxygen are limited, in the two week period that the 

shCTL and shPYCR1 CAFs grew together with the cancer cells in xenografts, I did 

not observe differences in the area of CAFs remaining. This suggests that the 

shPYCR1 CAFs are neither deficient in growth nor more apoptotic due to the loss 
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of PYCR1 in vivo. I cannot, however, exclude the possibility that differences would 

appear over a longer period of time. Further in vivo experiments would be 

required to confirm this. Another possible reason that I did not see differences in 

the amount of CAFs in vivo is that the shRNA against PYCR1 reduced PYCR1 levels 

only by about 50% at the protein level. This reduction could have been sufficient 

to reduce collagen production in culture, but it might not be enough to cause 

mitochondrial dysfunction and increased apoptosis as described in PYCR1 mutant 

cells.  

 

In recent years, the topic of CAF subpopulations and the possibility of targeting 

specific subpopulations have been studied more closely. I was therefore curious 

to investigate whether the metabolic pathways that I have identified are similarly 

regulated in a particular subset of CAFs. Current studies point to at least two 

subpopulations existing, of which one is pro-inflammatory and one is αSMA high 

and myofibroblastic (Bartoschek et al., 2018, Ohlund et al., 2017, Costa et al., 

2018). I analysed the gene expression data from the study by Ohlund et al., which 

focusses on two CAF phenotypes isolated from the KPC mouse model, because this 

study clearly differentiated between the pro-inflammatory and myofibroblastic 

subpopulations. I found that Pdk2 was downregulated and Pycr1 and Aldh18a1 

were upregulated in CAFs from the myofibroblastic subpopulation compared to 

the inflammatory subpopulation (Fig. 7-3) (Ohlund et al., 2017). This provides 

further evidence that the mechanism that I have discovered may be a general 

mechanism activated in myofibroblastic cells and not specific to the mammary 

CAFs I have studied, and also suggests that this pathway might be best targeted 

in tumours with a high proportion of αSMA positive CAFs in the stroma. 

 

To conclude, I have discovered an novel mechanism through which two metabolic 

pathways work together to support increase collagen production in activated CAFs 

both, at gene and protein expression level. Both of these pathways provide 

opportunities for targeting the activated CAF phenotype, with different 

advantages to each. PDH has several times been proposed as a therapeutic target; 

although until recently this has always been in the context of trying to activate 

PDH in tumour cells to mitigate the Warburg effect. However, although individual 

cases have responded to dichloroacetate treatment to inhibit PDK activity, in 

clinical trials no positive effect has been demonstrated (Dunbar et al., 2014, 
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Flavin, 2010b, Powell, 2015). Based on my work, activating PDH to reduce cancer 

cell aggressiveness might conversely increase the pro-tumorigenic and pro-fibrotic 

activity of the stroma, reducing the efficacy of this strategy. Thus, the effects of 

targeting PDH on the stroma should also be taken into account, and possibly 

tumours with a low stromal component would benefit most from PDK inhibitors. 

Furthermore, since PDH activation has a general effect on upregulating histone 

acetylation in CAFs, more pathways will be affected by PDH activation or 

inhibition than just ECM production, the effects of which I have not investigated. 

Therefore further investigation into which tumours might respond to DCA 

treatment is required, and probably tumours with a lower stromal component 

would be a better choice for further clinical testing. The drug CPI-613, which 

inhibits PDH activity, has had much greater success in clinical trials and, for 

example, has shown positive results in PDAC (Alistar, 2018), which is known to 

have a significant stromal component and in which the stroma has been shown to 

be highly pro-tumourigenic. CPI-613 is currently in clinical trials for other tumour 

types including breast, leukaemia, lung and liver cancer. It will be interesting both 

to find out whether CPI-613 is also effective in other tumours with a high stromal 

content, such as breast cancer, and also to investigate whether CPI-613 reduces 

the stromal component in mouse models as this would further support my results 

on the importance of activated PDH in promoting the fibrotic CAF phenotype. 

 

PYCR1 is well known to be upregulated in many tumours, and targeting PYCR1 in 

cancer cells inhibits tumour growth and metastasis (Cai et al., 2018, Ding et al., 

2017, Hollinshead et al., 2018). Here I have shown that PYCR1 is also upregulated 

and plays a pro-tumourigenic role in the stroma, making it an ideal target to 

simultaneously inhibit tumour and stromal cells. A small molecule PYCR1 inhibitor 

has been developed recently (Milne et al., 2019), which will create opportunities 

to test whether general PYCR1 inhibition, rather than specific ablation in cancer 

or stromal cells, is well tolerated in vivo and whether it is an effective anti-cancer 

therapy. The development of an inhibitor is a crucial step in being able to assess 

the impact of targeting PYCR1 in different tumour models and to verify whether 

it is an effective treatment strategy. 

 

The standard treatment for most breast cancers is either surgery or radiotherapy, 

combined with adjuvant or sometimes neoadjuvant chemotherapy or other drug 
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therapies. Targeting collagen synthesis in CAFs, either through PDH or PYCR1 

inhibition, would likely be most effective as a combination therapy with the 

current standard drug treatments. Reducing stromal collagen could improve 

tumour perfusion and thereby drug delivery, enhancing the effectiveness of the 

chemotherapy. Additionally, it could further contribute to reducing growth of the 

primary tumour in addition to any established metastases. In tumours where there 

are not yet detectable metastases, inhibiting collagen production by fibroblasts 

could also reduce the interaction of circulating tumour cells with the pre-

metastatic niche, since increased collagen crosslinking has been shown to be 

important for colony formation by disseminated breast cancer cells (Cox et al., 

2015). 
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Graphs show the log2 fold change in gene expression of PDK1, PDK2, the proline synthesis 

pathway and collagens in myofibroblastic CAFs (myCAFs) compared to inflammatory CAFs 

(iCAFs).  The dataset was taken from Ohlund et al., 2017. 

Figure 7-3 Expression of PDK, proline synthesis and collagen genes in CAF 
subpopulations 
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7.2 Future Work 
 

For the future, several questions remain outstanding which merit further research.  

It would be interesting to discover what lies upstream of PDK2 downregulation in 

CAFs to understand the trigger of the cascade of events that I have described. 

CAFs are known to maintain their activation through autocrine signalling feedback 

loops, such as TGFβ (Kojima et al., 2010). Therefore it is possible that interactions 

with their own ECM stimulate further ECM production by CAFs in another positive 

feedback loop to maintain CAF activation. My initial experiments suggest that CAF-

derived ECM stimulates PDK2 downregulation, possibly via PI3K/Akt signalling. 

Since integrins mediate a vast proportion of cell-ECM interactions, I would first 

carry out experiments in which integrins were inhibited to try and narrow down 

which integrin or integrins might be responsible for this pathway, and to 

investigate further the role of Akt/PI3K signalling in regulating collagen 

production by CAFs. I would also investigate the effects of FAK inhibitors on 

collagen production by CAFs, since FAK mediates integrin signalling and has 

previously been shown to regulate collagen production in fibroblasts (Kinoshita et 

al., 2013, Rajshankar et al., 2017). The PI3K/Akt/mTOR signalling pathway has 

been previously implicated in collagen production during idiopathic pulmonary 

fibrosis (Mercer et al., 2016). In this study the pathway was under the control of 

TGF-β signalling. However, TGF-β signalling does not appear to trigger PDK2 

regulation, because my data showed that TGFβ-1 stimulation did not regulate PDH 

phosphorylation in CAFs. Further experiments using other TGF-B receptor ligands 

would reveal whether TGF-β signalling plays any role at all in regulating PDK2 in 

CAFs. Interestingly, PYCR1 has recently been shown to be upregulated in response 

to ECM interactions in cancer cells (Guo et al., 2019). Therefore there is a 

precedent for ECM interactions regulating proline synthesis enzymes, and it will 

be important to test whether CAF-ECM can also stimulate proline production and 

PYCR1 expression in fibroblasts as this would further corroborate my results 

demonstrating a connection between PDH phosphorylation and PYCR1 expression. 

 

In this work I focussed on the role of histone acetylation and proline production in 

the context of collagen production in CAFs. Interestingly, several other ECM 

proteins were also downregulated in the MS-proteomic analysis of CAFs with EP300 
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inhibition by c646, including fibronectin. Fibronectin is known to contribute a 

significant proportion of CAF-derived ECM and to play important roles in tumour 

progression (Tang et al., 2016, Pickup et al., 2014). Our analysis of the proline 

content of ECM proteins showed that, similarly to collagens, fibronectin is also a 

proline-rich protein. It would therefore be interesting to extend my analysis and 

investigate the role of PDH and PYCR1 activity in the context of fibronectin 

production. It would also be important to do ChIP-Seq for H3K27ac in CAFs and 

NFs or CAFs treated with c646 to uncover which of the proteins that I found to be 

regulated by EP300 activity in my proteomic study are directly regulated by 

changes in H3K27 acetylation on enhancer regions of their genes. This would also 

clarify whether PYCR1 is epigenetically regulated by the same pathway as the 

collagens or whether it is regulated by other signalling downstream of collagen 

production. Moreover, since EP300 regulates acetylation of other histone sites and 

other histone sites were regulated between the acetylomes of CAFs and NFs, an 

unbiased MS-acetylome analysis of fibroblasts expressing different levels of PDK2 

would tell us whether the epigenetic control triggered by PDH activity also 

involves other histone modifications. c646 is also not completely specific for EP300 

(Shrimp et al., 2015), so to verify that my results are EP300 dependent I would 

need to repeat the key experiments with another EP300 inhibitor, such as A-485, 

which has been shown to specifically inhibit the ability of EP300 to acetylate 

H3K27 (Lasko et al., 2017). To explore the mechanism for the epigenetic control 

of collagen in CAFs in more depth, I would also need to investigate which 

transcription factors are regulating the epigenetic control of specific genes by 

EP300. To identify candidate transcription factors, I could use a MS-based 

proteomic approach and perform immunoprecipitation experiments to determine 

which factors interact with EP300 and H3K27ac in the fibroblasts with different 

levels of PDH activity.  

 

The role of proline in maintaining redox homeostasis and protecting against ROS 

and apoptosis has been investigated in the context of cancer cells (Cai et al., 

2018, Hollinshead et al., 2018, Kuo et al., 2016); as yet there have been no studies 

on proline metabolism and oxidative stress in CAFs. Although I did not observe any 

differences in survival between shCtl and shPCYR1 fibroblasts, either in vitro or in 

vivo, it is possible that a stronger depletion of PYCR1 is necessary to see 

differences. To address this, we are currently isolating mouse embryonic 
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fibroblasts (MEFs) from Pycr1 -/- mice which we plan to use for further xenograft 

experiments where they will be co-transplanted with 4T1 or E0771 cancer cells. 

The effect of the PYCR1 KO in these fibroblasts will be much stronger than the 

shPYCR1 cells that I have used for my experiments, so it is possible that we will 

see greater effects on vulnerability to ROS and survival in vitro and in vivo than 

we did with the shPYCR1 CAFs. 

 

Changes in the rate of proline production can also affect other metabolic 

pathways, because a by-product of proline synthesis by PYCR1 is the production 

of NADP+ or NAD+. I did not observe any significant differences in the NADH:NAD+ 

ratio between CAFs and NFs in my metabolomic experiments, with the exception 

of the pCAF3/pNF3 pair (Fig. 4-9). This suggests that the extra NAD+ in CAFs is 

used up in further metabolic reactions. NAD+ is required for production of acetyl-

coA by PDH, so the NAD+ could be used to maintain the increase in PDH activity 

in CAFs. NAD+ can be also be used to fuel glycolysis as it is required for flux through 

GAPDH. I did see an overall increase in intracellular PEP, which is downstream of 

GAPDH, in the CAFs, which could imply that there is an increase in flux through 

this part of the glycolytic pathway. NADP+ is required for the pentose phosphate 

pathway branch of glucose metabolism, which I did not investigate in my 

metabolomic tracing experiments, and PYCR1 activity has been previously shown 

to affect flux through the pentose phosphate pathway (Liu et al., 2015). 

Therefore, to determine whether the CAFs use PYCR1 produced NAD+ and NADP+ 

for glycolysis or the pentose phosphate pathway respectively I could use MS-

metabolomic tracing experiments to compare the flux through glyceraldehyde-3-

phosphate dehydrogenase and enzymes of the pentose phosphate pathway in the 

shCtl and shPYCR1 CAFs. 

 

Another question that is still not entirely answered is whether the proline residues 

produced by PYCR1 directly affect the translation of collagen mRNA into protein. 

I have shown that reducing PYCR1 levels is sufficient to reduce proline production 

and that the level of intracellular proline correlates with the amount of collagen 

deposited in the ECM by CAFs. I also demonstrated by MS-proteomics that proline 

produced by PYCR1 (i.e. 13C-proline labelled collagen) is incorporated into 

collagen, and that there is a decreased amount of collagen produced using 

glutamine-derived proline in the shPYCR1 CAFs. Whether this result is due to a 
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lack of proline for translation has not been conclusively shown. To answer this 

question, we are collaborating with Dr. Fabricio Loayza-Puch from the Deutsches 

Krebsforschung Zentrum in Heidelberg to measure whether there is an increase in 

ribosome stalling at proline codons in CAFs when CAFs express lower levels of 

PYCR1. This will determine whether proline produced by PYCR1 is necessary for 

protein translation. 

 

Finally, the in vivo xenograft experiment provided preliminary evidence that 

reducing levels of PYCR1 in fibroblasts affects collagen production and tumour 

growth in a xenograft model. However, the endogenous murine fibroblasts were 

also present in the stroma of the tumours, making it difficult to conclusively that 

the collagen measured was produced by the human pCAFs that we had 

transplanted. Further experiments are required to answer this question. First, I 

could isolate the transplanted fibroblasts and use qPCR and Western blot analyses 

to determine if the shPYCR1 fibroblasts express less collagen in vivo. Moreover, I 

could use a mouse model where PYCR1 is knocked out in the endogenous murine 

stroma, or perhaps treating tumour bearing mice with the small molecule inhibitor 

of PYCR1 which has recently been developed (Milne et al., 2019).  

 

Whether PDH inhibition in the stroma in vivo would have the same effect as 

inhibiting PYCR1 has not yet been addressed. We are currently working to create 

a model with Pdha1 specifically deleted in fibroblasts through an Fsp1-Cre model 

(Trimboli et al., 2008). In collaboration with the Transgenic Mouse Models team 

we are carrying out the necessary crosses to generate those mice in FVB and 

C57Bl/6 backgrounds for syngeneic orthotopic transplantation of breast cancer 

cells, such as E0771 or lines isolated from the GEM model MMTV-PyMT model. In 

addition to altering PDHA1 activity genetically, we could also target PDHA1 

pharmacologically using the PDH inhibitor CPI-613 in syngeneic orthotopic models 

or the MMTV-PyMT GEM model. CPI-613 is not specific for PDH as it also inhibits α-

ketoglutarate dehydrogenase, however it would be a good starting point to 

investigate the role of PDH activity on collagen production and tumour progression 

in vivo. If we find that CPI-613 and PYCR1 inhibition significantly decrease the 

amount of collagen in the stroma, we will test the effects of the inhibitors on 

tumour perfusion and whether this can improve drug delivery and the efficacy of 

chemotherapy. 
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To conclude, in this thesis I have shown that CAFs metabolically regulate collagen 

production both through increased PDH-mediated acetyl-coA production for 

epigenetic regulation of collagen genes, and through increased proline production 

to support production of collagen proteins. My results open up new possibilities 

for therapeutically targeting the desmoplastic TME to reduce tumour growth and 

metastasis, and to improve tumour perfusion and drug delivery. 



253 
 

References 
 
ADAMS, E. & FRANK, L. 1980. Metabolism of proline and the hydroxyprolines. Annu Rev 

Biochem, 49, 1005-61. 
ALBRENGUES, J., BERTERO, T., GRASSET, E., BONAN, S., MAIEL, M., BOURGET, I., 

PHILIPPE, C., HERRAIZ SERRANO, C., BENAMAR, S., CROCE, O., SANZ-MORENO, V., 
MENEGUZZI, G., FERAL, C. C., CRISTOFARI, G. & GAGGIOLI, C. 2015. Epigenetic 
switch drives the conversion of fibroblasts into proinvasive cancer-associated 
fibroblasts. Nat Commun, 6, 10204. 

ALEXANDER, J. & CUKIERMAN, E. 2016. Stromal dynamic reciprocity in cancer: intricacies 
of fibroblastic-ECM interactions. Curr Opin Cell Biol, 42, 80-93. 

ALISTAR, N. 2018. A Phase I/II Open-Label Dose-Escalation Clinical Trial of CPI-613 in 
Combination With Gemcitabine in Cancer Patients [Online]. Available: 
https://ClinicalTrials.gov/show/NCT00907166 [Accessed]. 

ALLEN, E., MIEVILLE, P., WARREN, C. M., SAGHAFINIA, S., LI, L., PENG, M. W. & HANAHAN, 
D. 2016. Metabolic Symbiosis Enables Adaptive Resistance to Anti-angiogenic 
Therapy that Is Dependent on mTOR Signaling. Cell Rep, 15, 1144-60. 

ANDERSON, K. A. & HIRSCHEY, M. D. 2012. Mitochondrial protein acetylation regulates 
metabolism. Essays Biochem, 52, 23-35. 

AO, M., BREWER, B. M., YANG, L., FRANCO CORONEL, O. E., HAYWARD, S. W., WEBB, D. 
J. & LI, D. 2015. Stretching fibroblasts remodels fibronectin and alters cancer cell 
migration. Sci Rep, 5, 8334. 

APER, S. J., VAN SPREEUWEL, A. C., VAN TURNHOUT, M. C., VAN DER LINDEN, A. J., 
PIETERS, P. A., VAN DER ZON, N. L., DE LA RAMBELJE, S. L., BOUTEN, C. V. & 
MERKX, M. 2014. Colorful protein-based fluorescent probes for collagen imaging. 
PLoS One, 9, e114983. 

ARAS, S. & ZAIDI, M. R. 2017. TAMeless traitors: macrophages in cancer progression and 
metastasis. Br J Cancer, 117, 1583-1591. 

ASENCIO, C., RODRIGUEZ-HERNANDEZ, M. A., BRIONES, P., MONTOYA, J., CORTES, A., 
EMPERADOR, S., GAVILAN, A., RUIZ-PESINI, E., YUBERO, D., MONTERO, R., PINEDA, 
M., O'CALLAGHAN, M. M., ALCAZAR-FABRA, M., SALVIATI, L., ARTUCH, R. & NAVAS, 
P. 2016. Severe encephalopathy associated to pyruvate dehydrogenase mutations 
and unbalanced coenzyme Q10 content. Eur J Hum Genet, 24, 367-72. 

ATA, R. & ANTONESCU, C. N. 2017. Integrins and Cell Metabolism: An Intimate 
Relationship Impacting Cancer. Int J Mol Sci, 18. 

ATTIA, R. R., CONNNAUGHTON, S., BOONE, L. R., WANG, F., ELAM, M. B., NESS, G. C., 
COOK, G. A. & PARK, E. A. 2010. Regulation of pyruvate dehydrogenase kinase 4 
(PDK4) by thyroid hormone: role of the peroxisome proliferator-activated receptor 
gamma coactivator (PGC-1 alpha). J Biol Chem, 285, 2375-85. 

AUCIELLO, F. R., BULUSU, V., OON, C., TAIT-MULDER, J., BERRY, M., BHATTACHARYYA, 
S., TUMANOV, S., ALLEN-PETERSEN, B. L., LINK, J., KENDSERSKY, N. D., VRINGER, 
E., SCHUG, M., NOVO, D., HWANG, R. F., EVANS, R. M., NIXON, C., DORRELL, C., 
MORTON, J. P., NORMAN, J. C., SEARS, R. C., KAMPHORST, J. J. & SHERMAN, M. 
H. 2019. A Stromal Lysolipid-Autotaxin Signaling Axis Promotes Pancreatic Tumor 
Progression. Cancer Discov, 9, 617-627. 

AVGUSTINOVA, A., IRAVANI, M., ROBERTSON, D., FEARNS, A., GAO, Q., KLINGBEIL, P., 
HANBY, A. M., SPEIRS, V., SAHAI, E., CALVO, F. & ISACKE, C. M. 2016. Tumour cell-
derived Wnt7a recruits and activates fibroblasts to promote tumour 
aggressiveness. Nat Commun, 7, 10305. 

BAE, Y. H., MUI, K. L., HSU, B. Y., LIU, S. L., CRETU, A., RAZINIA, Z., XU, T., PURE, E. & 
ASSOIAN, R. K. 2014. A FAK-Cas-Rac-lamellipodin signaling module transduces 
extracellular matrix stiffness into mechanosensitive cell cycling. Sci Signal, 7, 
ra57. 

BAEZA, J., SMALLEGAN, M. J. & DENU, J. M. 2016. Mechanisms and Dynamics of Protein 
Acetylation in Mitochondria. Trends Biochem Sci, 41, 231-244. 

https://clinicaltrials.gov/show/NCT00907166


254 
 
BAGER, C. L., WILLUMSEN, N., LEEMING, D. J., SMITH, V., KARSDAL, M. A., DORNAN, D. & 

BAY-JENSEN, A. C. 2015. Collagen degradation products measured in serum can 
separate ovarian and breast cancer patients from healthy controls: A preliminary 
study. Cancer Biomark, 15, 783-8. 

BARTOSCHEK, M., OSKOLKOV, N., BOCCI, M., LOVROT, J., LARSSON, C., SOMMARIN, M., 
MADSEN, C. D., LINDGREN, D., PEKAR, G., KARLSSON, G., RINGNER, M., BERGH, 
J., BJORKLUND, A. & PIETRAS, K. 2018. Spatially and functionally distinct 
subclasses of breast cancer-associated fibroblasts revealed by single cell RNA 
sequencing. Nat Commun, 9, 5150. 

BARTOVA, E., KREJCI, J., HARNICAROVA, A., GALIOVA, G. & KOZUBEK, S. 2008. Histone 
modifications and nuclear architecture: a review. J Histochem Cytochem, 56, 711-
21. 

BAUML, J., SEIWERT, T. Y., PFISTER, D. G., WORDEN, F., LIU, S. V., GILBERT, J., SABA, 
N. F., WEISS, J., WIRTH, L., SUKARI, A., KANG, H., GIBSON, M. K., MASSARELLI, 
E., POWELL, S., MEISTER, A., SHU, X., CHENG, J. D. & HADDAD, R. 2017. 
Pembrolizumab for Platinum- and Cetuximab-Refractory Head and Neck Cancer: 
Results From a Single-Arm, Phase II Study. J Clin Oncol, 35, 1542-1549. 

BEYER, C., REICHERT, H., AKAN, H., MALLANO, T., SCHRAMM, A., DEES, C., PALUMBO-
ZERR, K., LIN, N. Y., DISTLER, A., GELSE, K., VARGA, J., DISTLER, O., SCHETT, G. 
& DISTLER, J. H. 2013. Blockade of canonical Wnt signalling ameliorates 
experimental dermal fibrosis. Ann Rheum Dis, 72, 1255-8. 

BHOGAL, R. K., STOICA, C. M., MCGAHA, T. L. & BONA, C. A. 2005. Molecular aspects of 
regulation of collagen gene expression in fibrosis. J Clin Immunol, 25, 592-603. 

BHOWMICK, N. A., NEILSON, E. G. & MOSES, H. L. 2004. Stromal fibroblasts in cancer 
initiation and progression. Nature, 432, 332-7. 

BOIRE, A., COVIC, L., AGARWAL, A., JACQUES, S., SHERIFI, S. & KULIOPULOS, A. 2005. 
PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and 
tumorigenesis of breast cancer cells. Cell, 120, 303-13. 

BONNET, S., ARCHER, S. L., ALLALUNIS-TURNER, J., HAROMY, A., BEAULIEU, C., 
THOMPSON, R., LEE, C. T., LOPASCHUK, G. D., PUTTAGUNTA, L., BONNET, S., 
HARRY, G., HASHIMOTO, K., PORTER, C. J., ANDRADE, M. A., THEBAUD, B. & 
MICHELAKIS, E. D. 2007. A mitochondria-K+ channel axis is suppressed in cancer 
and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell, 
11, 37-51. 

BONUCCELLI, G., WHITAKER-MENEZES, D., CASTELLO-CROS, R., PAVLIDES, S., PESTELL, R. 
G., FATATIS, A., WITKIEWICZ, A. K., VANDER HEIDEN, M. G., MIGNECO, G., 
CHIAVARINA, B., FRANK, P. G., CAPOZZA, F., FLOMENBERG, N., MARTINEZ-
OUTSCHOORN, U. E., SOTGIA, F. & LISANTI, M. P. 2010. The reverse Warburg 
effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 
deficient cancer associated fibroblasts. Cell Cycle, 9, 1960-71. 

BOOT-HANDFORD, R. P. & TUCKWELL, D. S. 2003. Fibrillar collagen: the key to vertebrate 
evolution? A tale of molecular incest. Bioessays, 25, 142-51. 

BOWKER-KINLEY, M. M., DAVIS, W. I., WU, P., HARRIS, R. A. & POPOV, K. M. 1998. 
Evidence for existence of tissue-specific regulation of the mammalian pyruvate 
dehydrogenase complex. Biochem J, 329 ( Pt 1), 191-6. 

BRAUER, H. A., MAKOWSKI, L., HOADLEY, K. A., CASBAS-HERNANDEZ, P., LANG, L. J., 
ROMAN-PEREZ, E., D'ARCY, M., FREEMERMAN, A. J., PEROU, C. M. & TROESTER, M. 
A. 2013. Impact of tumor microenvironment and epithelial phenotypes on 
metabolism in breast cancer. Clin Cancer Res, 19, 571-85. 

BREDFELDT, J. S., LIU, Y., CONKLIN, M. W., KEELY, P. J., MACKIE, T. R. & ELICEIRI, K. W. 
2014. Automated quantification of aligned collagen for human breast carcinoma 
prognosis. J Pathol Inform, 5, 28. 

BUSCH, S., RYDEN, L., STAL, O., JIRSTROM, K. & LANDBERG, G. 2012. Low ERK 
phosphorylation in cancer-associated fibroblasts is associated with tamoxifen 
resistance in pre-menopausal breast cancer. PLoS One, 7, e45669. 



255 
 
CAI, F., MIAO, Y., LIU, C., WU, T., SHEN, S., SU, X. & SHI, Y. 2018. Pyrroline-5-carboxylate 

reductase 1 promotes proliferation and inhibits apoptosis in non-small cell lung 
cancer. Oncol Lett, 15, 731-740. 

CAI, L., SUTTER, B. M., LI, B. & TU, B. P. 2011. Acetyl-CoA induces cell growth and 
proliferation by promoting the acetylation of histones at growth genes. Mol Cell, 
42, 426-37. 

CALVO, F., EGE, N., GRANDE-GARCIA, A., HOOPER, S., JENKINS, R. P., CHAUDHRY, S. I., 
HARRINGTON, K., WILLIAMSON, P., MOEENDARBARY, E., CHARRAS, G. & SAHAI, E. 
2013. Mechanotransduction and YAP-dependent matrix remodelling is required for 
the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol, 
15, 637-46. 

CAO, W., YACOUB, S., SHIVERICK, K. T., NAMIKI, K., SAKAI, Y., PORVASNIK, S., URBANEK, 
C. & ROSSER, C. J. 2008. Dichloroacetate (DCA) sensitizes both wild-type and over 
expressing Bcl-2 prostate cancer cells in vitro to radiation. Prostate, 68, 1223-31. 

CAPPARELLI, C., GUIDO, C., WHITAKER-MENEZES, D., BONUCCELLI, G., BALLIET, R., 
PESTELL, T. G., GOLDBERG, A. F., PESTELL, R. G., HOWELL, A., SNEDDON, S., 
BIRBE, R., TSIRIGOS, A., MARTINEZ-OUTSCHOORN, U., SOTGIA, F. & LISANTI, M. P. 
2012. Autophagy and senescence in cancer-associated fibroblasts metabolically 
supports tumor growth and metastasis via glycolysis and ketone production. Cell 
Cycle, 11, 2285-302. 

CARITO, V., BONUCCELLI, G., MARTINEZ-OUTSCHOORN, U. E., WHITAKER-MENEZES, D., 
CAROLEO, M. C., CIONE, E., HOWELL, A., PESTELL, R. G., LISANTI, M. P. & SOTGIA, 
F. 2012. Metabolic remodeling of the tumor microenvironment: migration 
stimulating factor (MSF) reprograms myofibroblasts toward lactate production, 
fueling anabolic tumor growth. Cell Cycle, 11, 3403-14. 

CARMELIET, P. 2005. VEGF as a key mediator of angiogenesis in cancer. Oncology, 69 
Suppl 3, 4-10. 

CARMELIET, P. & JAIN, R. K. 2000. Angiogenesis in cancer and other diseases. Nature, 
407, 249-257. 

CASTELLO-CROS, R., BONUCCELLI, G., MOLCHANSKY, A., CAPOZZA, F., WITKIEWICZ, A. 
K., BIRBE, R. C., HOWELL, A., PESTELL, R. G., WHITAKER-MENEZES, D., SOTGIA, 
F. & LISANTI, M. P. 2011. Matrix remodeling stimulates stromal autophagy, 
"fueling" cancer cell mitochondrial metabolism and metastasis. Cell Cycle, 10, 
2021-34. 

CASTRICONI, R., CANTONI, C., DELLA CHIESA, M., VITALE, M., MARCENARO, E., CONTE, 
R., BIASSONI, R., BOTTINO, C., MORETTA, L. & MORETTA, A. 2003. Transforming 
growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: 
consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci U 
S A, 100, 4120-5. 

CATE, R. L. & ROCHE, T. E. 1978. A unifying mechanism for stimulation of mammalian 
pyruvate dehydrogenase(a) kinase by reduced nicotinamide adenine dinucleotide, 
dihydrolipoamide, acetyl coenzyme A, or pyruvate. J Biol Chem, 253, 496-503. 

CERNIGLIA, G. J., DEY, S., GALLAGHER-COLOMBO, S. M., DAURIO, N. A., TUTTLE, S., 
BUSCH, T. M., LIN, A., SUN, R., ESIPOVA, T. V., VINOGRADOV, S. A., DENKO, N., 
KOUMENIS, C. & MAITY, A. 2015. The PI3K/Akt Pathway Regulates Oxygen 
Metabolism via Pyruvate Dehydrogenase (PDH)-E1alpha Phosphorylation. Mol 
Cancer Ther, 14, 1928-38. 

CHAE, Y. C., VAIRA, V., CAINO, M. C., TANG, H. Y., SEO, J. H., KOSSENKOV, A. V., 
OTTOBRINI, L., MARTELLI, C., LUCIGNANI, G., BERTOLINI, I., LOCATELLI, M., 
BRYANT, K. G., GHOSH, J. C., LISANTI, S., KU, B., BOSARI, S., LANGUINO, L. R., 
SPEICHER, D. W. & ALTIERI, D. C. 2016. Mitochondrial Akt Regulation of Hypoxic 
Tumor Reprogramming. Cancer Cell, 30, 257-272. 

CHANG, P. H., HWANG-VERSLUES, W. W., CHANG, Y. C., CHEN, C. C., HSIAO, M., JENG, 
Y. M., CHANG, K. J., LEE, E. Y., SHEW, J. Y. & LEE, W. H. 2012. Activation of 
Robo1 signaling of breast cancer cells by Slit2 from stromal fibroblast restrains 
tumorigenesis via blocking PI3K/Akt/beta-catenin pathway. Cancer Res, 72, 4652-
61. 



256 
 
CHAUHAN, V. P., MARTIN, J. D., LIU, H., LACORRE, D. A., JAIN, S. R., KOZIN, S. V., 

STYLIANOPOULOS, T., MOUSA, A. S., HAN, X., ADSTAMONGKONKUL, P., POPOVIĆ, 
Z., HUANG, P., BAWENDI, M. G., BOUCHER, Y. & JAIN, R. K. 2013. Angiotensin 
inhibition enhances drug delivery and potentiates chemotherapy by decompressing 
tumour blood vessels. Nature Communications, 4. 

CHEN, J., GUCCINI, I., DI MITRI, D., BRINA, D., REVANDKAR, A., SARTI, M., PASQUINI, E., 
ALAJATI, A., PINTON, S., LOSA, M., CIVENNI, G., CATAPANO, C. V., SGRIGNANI, J., 
CAVALLI, A., D'ANTUONO, R., ASARA, J. M., MORANDI, A., CHIARUGI, P., CROTTI, 
S., AGOSTINI, M., MONTOPOLI, M., MASGRAS, I., RASOLA, A., GARCIA-ESCUDERO, 
R., DELALEU, N., RINALDI, A., BERTONI, F., BONO, J., CARRACEDO, A. & ALIMONTI, 
A. 2018. Compartmentalized activities of the pyruvate dehydrogenase complex 
sustain lipogenesis in prostate cancer. Nat Genet, 50, 219-228. 

CHEN, P., CESCON, M. & BONALDO, P. 2013. Collagen VI in cancer and its biological 
mechanisms. Trends Mol Med, 19, 410-7. 

CHEN, Y., ZENG, C., ZHAN, Y., WANG, H., JIANG, X. & LI, W. 2017. Aberrant low 
expression of p85alpha in stromal fibroblasts promotes breast cancer cell 
metastasis through exosome-mediated paracrine Wnt10b. Oncogene, 36, 4692-
4705. 

CHENG, B., GAO, F., MAISSY, E. & XU, P. 2019. Repurposing suramin for the treatment of 
breast cancer lung metastasis with glycol chitosan-based nanoparticles. Acta 
Biomater, 84, 378-390. 

CHERNOV, A. V., BARANOVSKAYA, S., GOLUBKOV, V. S., WAKEMAN, D. R., SNYDER, E. Y., 
WILLIAMS, R. & STRONGIN, A. Y. 2010. Microarray-based transcriptional and 
epigenetic profiling of matrix metalloproteinases, collagens, and related genes in 
cancer. J Biol Chem, 285, 19647-59. 

CHIAVARINA, B., WHITAKER-MENEZES, D., MIGNECO, G., MARTINEZ-OUTSCHOORN, U. E., 
PAVLIDES, S., HOWELL, A., TANOWITZ, H. B., CASIMIRO, M. C., WANG, C., 
PESTELL, R. G., GRIESHABER, P., CARO, J., SOTGIA, F. & LISANTI, M. P. 2010. HIF1-
alpha functions as a tumor promoter in cancer associated fibroblasts, and as a 
tumor suppressor in breast cancer cells: Autophagy drives compartment-specific 
oncogenesis. Cell Cycle, 9, 3534-51. 

CHOI, J., KIM, D. H., JUNG, W. H. & KOO, J. S. 2013. Metabolic interaction between 
cancer cells and stromal cells according to breast cancer molecular subtype. 
Breast Cancer Res, 15, R78. 

CHOUDHARY, C., WEINERT, B. T., NISHIDA, Y., VERDIN, E. & MANN, M. 2014. The growing 
landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol 
Cell Biol, 15, 536-50. 

CIMEN, H., HAN, M. J., YANG, Y., TONG, Q., KOC, H. & KOC, E. C. 2010. Regulation of 
succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. 
Biochemistry, 49, 304-11. 

COHEN, N., SHANI, O., RAZ, Y., SHARON, Y., HOFFMAN, D., ABRAMOVITZ, L. & EREZ, N. 
2017. Fibroblasts drive an immunosuppressive and growth-promoting 
microenvironment in breast cancer via secretion of Chitinase 3-like 1. Oncogene, 
36, 4457-4468. 

COLAK, S. & TEN DIJKE, P. 2017. Targeting TGF-beta Signaling in Cancer. Trends Cancer, 
3, 56-71. 

COMITO, G., GIANNONI, E., SEGURA, C. P., BARCELLOS-DE-SOUZA, P., RASPOLLINI, M. R., 
BARONI, G., LANCIOTTI, M., SERNI, S. & CHIARUGI, P. 2014. Cancer-associated 
fibroblasts and M2-polarized macrophages synergize during prostate carcinoma 
progression. Oncogene, 33, 2423-31. 

CONKLIN, M. W., EICKHOFF, J. C., RICHING, K. M., PEHLKE, C. A., ELICEIRI, K. W., 
PROVENZANO, P. P., FRIEDL, A. & KEELY, P. J. 2011. Aligned collagen is a 
prognostic signature for survival in human breast carcinoma. Am J Pathol, 178, 
1221-32. 

CONNAUGHTON, S., CHOWDHURY, F., ATTIA, R. R., SONG, S., ZHANG, Y., ELAM, M. B., 
COOK, G. A. & PARK, E. A. 2010. Regulation of pyruvate dehydrogenase kinase 



257 
 

isoform 4 (PDK4) gene expression by glucocorticoids and insulin. Mol Cell 
Endocrinol, 315, 159-67. 

CONTRACTOR, T. & HARRIS, C. R. 2012. p53 negatively regulates transcription of the 
pyruvate dehydrogenase kinase Pdk2. Cancer Res, 72, 560-7. 

COSTA, A., KIEFFER, Y., SCHOLER-DAHIREL, A., PELON, F., BOURACHOT, B., CARDON, M., 
SIRVEN, P., MAGAGNA, I., FUHRMANN, L., BERNARD, C., BONNEAU, C., 
KONDRATOVA, M., KUPERSTEIN, I., ZINOVYEV, A., GIVEL, A. M., PARRINI, M. C., 
SOUMELIS, V., VINCENT-SALOMON, A. & MECHTA-GRIGORIOU, F. 2018. Fibroblast 
Heterogeneity and Immunosuppressive Environment in Human Breast Cancer. 
Cancer Cell, 33, 463-479 e10. 

COX, J., HEIN, M. Y., LUBER, C. A., PARON, I., NAGARAJ, N. & MANN, M. 2014. Accurate 
Proteome-wide Label-free Quantification by Delayed Normalization and Maximal 
Peptide Ratio Extraction, Termed MaxLFQ. Molecular & Cellular Proteomics, 13, 
2513-2526. 

COX, J. & MANN, M. 2008. MaxQuant enables high peptide identification rates, 
individualized p.p.b.-range mass accuracies and proteome-wide protein 
quantification. Nat Biotechnol, 26, 1367-72. 

COX, J. & MANN, M. 2012. 1D and 2D annotation enrichment: a statistical method 
integrating quantitative proteomics with complementary high-throughput data. 
BMC Bioinformatics, 13 Suppl 16, S12. 

COX, T. R., RUMNEY, R. M. H., SCHOOF, E. M., PERRYMAN, L., HOYE, A. M., AGRAWAL, 
A., BIRD, D., LATIF, N. A., FORREST, H., EVANS, H. R., HUGGINS, I. D., LANG, G., 
LINDING, R., GARTLAND, A. & ERLER, J. T. 2015. The hypoxic cancer secretome 
induces pre-metastatic bone lesions through lysyl oxidase. Nature, 522, 106-110. 

DAMIANO, J. S. 2002. Integrins as novel drug targets for overcoming innate drug 
resistance. Curr Cancer Drug Targets, 2, 37-43. 

DARBY, I. A., LAVERDET, B., BONTE, F. & DESMOULIERE, A. 2014. Fibroblasts and 
myofibroblasts in wound healing. Clin Cosmet Investig Dermatol, 7, 301-11. 

DAVIES, M. N., KJALARSDOTTIR, L., THOMPSON, J. W., DUBOIS, L. G., STEVENS, R. D., 
ILKAYEVA, O. R., BROSNAN, M. J., ROLPH, T. P., GRIMSRUD, P. A. & MUOIO, D. M. 
2016. The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets 
Macronutrient-Induced Lysine Acetylation of Mitochondrial Proteins. Cell Rep, 14, 
243-54. 

DE INGENIIS, J., RATNIKOV, B., RICHARDSON, A. D., SCOTT, D. A., AZA-BLANC, P., DE, S. 
K., KAZANOV, M., PELLECCHIA, M., RONAI, Z., OSTERMAN, A. L. & SMITH, J. W. 
2012. Functional specialization in proline biosynthesis of melanoma. PLoS One, 7, 
e45190. 

DE KRUIJF, E. M., VAN NES, J. G., VAN DE VELDE, C. J., PUTTER, H., SMIT, V. T., LIEFERS, 
G. J., KUPPEN, P. J., TOLLENAAR, R. A. & MESKER, W. E. 2011. Tumor-stroma ratio 
in the primary tumor is a prognostic factor in early breast cancer patients, 
especially in triple-negative carcinoma patients. Breast Cancer Res Treat, 125, 
687-96. 

DE PAZ-LUGO, P., LUPIANEZ, J. A. & MELENDEZ-HEVIA, E. 2018. High glycine 
concentration increases collagen synthesis by articular chondrocytes in vitro: 
acute glycine deficiency could be an important cause of osteoarthritis. Amino 
Acids, 50, 1357-1365. 

DEAN, R. A., COX, J. H., BELLAC, C. L., DOUCET, A., STARR, A. E. & OVERALL, C. M. 2008. 
Macrophage-specific metalloelastase (MMP-12) truncates and inactivates ELR+ CXC 
chemokines and generates CCL2, -7, -8, and -13 antagonists: potential role of the 
macrophage in terminating polymorphonuclear leukocyte influx. Blood, 112, 3455-
64. 

DEES, C., ZERR, P., TOMCIK, M., BEYER, C., HORN, A., AKHMETSHINA, A., PALUMBO, K., 
REICH, N., ZWERINA, J., STICHERLING, M., MATTSON, M. P., DISTLER, O., SCHETT, 
G. & DISTLER, J. H. 2011. Inhibition of Notch signaling prevents experimental 
fibrosis and induces regression of established fibrosis. Arthritis Rheum, 63, 1396-
404. 



258 
 
DEGENHARDT, T., SARAMAKI, A., MALINEN, M., RIECK, M., VAISANEN, S., HUOTARI, A., 

HERZIG, K. H., MULLER, R. & CARLBERG, C. 2007. Three members of the human 
pyruvate dehydrogenase kinase gene family are direct targets of the peroxisome 
proliferator-activated receptor beta/delta. J Mol Biol, 372, 341-55. 

DEL RIO, A., PEREZ-JIMENEZ, R., LIU, R., ROCA-CUSACHS, P., FERNANDEZ, J. M. & SHEETZ, 
M. P. 2009. Stretching single talin rod molecules activates vinculin binding. 
Science, 323, 638-41. 

DERYUGINA, E. I. & QUIGLEY, J. P. 2015. Tumor angiogenesis: MMP-mediated induction 
of intravasation- and metastasis-sustaining neovasculature. Matrix Biol, 44-46, 94-
112. 

DIMANCHE-BOITREL, M. T., VAKAET, L., JR., PUJUGUET, P., CHAUFFERT, B., MARTIN, M. 
S., HAMMANN, A., VAN ROY, F., MAREEL, M. & MARTIN, F. 1994. In vivo and in vitro 
invasiveness of a rat colon-cancer cell line maintaining E-cadherin expression: an 
enhancing role of tumor-associated myofibroblasts. Int J Cancer, 56, 512-21. 

DING, J., KUO, M. L., SU, L., XUE, L., LUH, F., ZHANG, H., WANG, J., LIN, T. G., ZHANG, 
K., CHU, P., ZHENG, S., LIU, X. & YEN, Y. 2017. Human mitochondrial pyrroline-
5-carboxylate reductase 1 promotes invasiveness and impacts survival in breast 
cancers. Carcinogenesis, 38, 519-531. 

DING, N., YU, R. T., SUBRAMANIAM, N., SHERMAN, M. H., WILSON, C., RAO, R., LEBLANC, 
M., COULTER, S., HE, M., SCOTT, C., LAU, S. L., ATKINS, A. R., BARISH, G. D., 
GUNTON, J. E., LIDDLE, C., DOWNES, M. & EVANS, R. M. 2013. A vitamin D 
receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell, 153, 601-13. 

DING, W. X. & YIN, X. M. 2012. Mitophagy: mechanisms, pathophysiological roles, and 
analysis. Biol Chem, 393, 547-64. 

DING, X., JI, J., JIANG, J., CAI, Q., WANG, C., SHI, M., YU, Y., ZHU, Z. & ZHANG, J. 2018. 
HGF-mediated crosstalk between cancer-associated fibroblasts and MET-
unamplified gastric cancer cells activates coordinated tumorigenesis and 
metastasis. Cell Death Dis, 9, 867. 

DOERFEL, L. K., WOHLGEMUTH, I., KOTHE, C., PESKE, F., URLAUB, H. & RODNINA, M. V. 
2013. EF-P is essential for rapid synthesis of proteins containing consecutive 
proline residues. Science, 339, 85-8. 

DONNARUMMA, E., FIORE, D., NAPPA, M., ROSCIGNO, G., ADAMO, A., IABONI, M., RUSSO, 
V., AFFINITO, A., PUOTI, I., QUINTAVALLE, C., RIENZO, A., PISCUOGLIO, S., 
THOMAS, R. & CONDORELLI, G. 2017. Cancer-associated fibroblasts release 
exosomal microRNAs that dictate an aggressive phenotype in breast cancer. 
Oncotarget, 8, 19592-19608. 

DROR, S., SANDER, L., SCHWARTZ, H., SHEINBOIM, D., BARZILAI, A., DISHON, Y., APCHER, 
S., GOLAN, T., GREENBERGER, S., BARSHACK, I., MALCOV, H., ZILBERBERG, A., 
LEVIN, L., NESSLING, M., FRIEDMANN, Y., IGRAS, V., BARZILAY, O., VAKNINE, H., 
BRENNER, R., ZINGER, A., SCHROEDER, A., GONEN, P., KHALED, M., EREZ, N., 
HOHEISEL, J. D. & LEVY, C. 2016. Melanoma miRNA trafficking controls tumour 
primary niche formation. Nat Cell Biol, 18, 1006-17. 

DUNBAR, E. M., COATS, B. S., SHROADS, A. L., LANGAEE, T., LEW, A., FORDER, J. R., 
SHUSTER, J. J., WAGNER, D. A. & STACPOOLE, P. W. 2014. Phase 1 trial of 
dichloroacetate (DCA) in adults with recurrent malignant brain tumors. Invest New 
Drugs, 32, 452-64. 

DUNNWALD, L. K., ROSSING, M. A. & LI, C. I. 2007. Hormone receptor status, tumor 
characteristics, and prognosis: a prospective cohort of breast cancer patients. 
Breast Cancer Res, 9, R6. 

DURAN, R. V., MACKENZIE, E. D., BOULAHBEL, H., FREZZA, C., HEISERICH, L., TARDITO, 
S., BUSSOLATI, O., ROCHA, S., HALL, M. N. & GOTTLIEB, E. 2013. HIF-independent 
role of prolyl hydroxylases in the cellular response to amino acids. Oncogene, 32, 
4549-56. 

DVORAK, H. F. 2015. Tumors: wounds that do not heal-redux. Cancer Immunol Res, 3, 1-
11. 

DVORAK, K. M., PETTEE, K. M., RUBINIC-MINOTTI, K., SU, R., NESTOR-KALINOSKI, A. & 
EISENMANN, K. M. 2018. Carcinoma associated fibroblasts (CAFs) promote breast 



259 
 

cancer motility by suppressing mammalian Diaphanous-related formin-2 (mDia2). 
PLoS One, 13, e0195278. 

ECKERT, M. A., COSCIA, F., CHRYPLEWICZ, A., CHANG, J. W., HERNANDEZ, K. M., PAN, 
S., TIENDA, S. M., NAHOTKO, D. A., LI, G., BLAŽENOVIĆ, I., LASTRA, R. R., CURTIS, 
M., YAMADA, S. D., PERETS, R., MCGREGOR, S. M., ANDRADE, J., FIEHN, O., 
MOELLERING, R. E., MANN, M. & LENGYEL, E. 2019. Proteomics reveals NNMT as a 
master metabolic regulator of cancer-associated fibroblasts. Nature, 569, 723-
728. 

EDWARDS, J. R., YARYCHKIVSKA, O., BOULARD, M. & BESTOR, T. H. 2017. DNA 
methylation and DNA methyltransferases. Epigenetics Chromatin, 10, 23. 

EGEBLAD, M., NAKASONE, E. S. & WERB, Z. 2010. Tumors as organs: complex tissues that 
interface with the entire organism. Dev Cell, 18, 884-901. 

EKE, I., DEUSE, Y., HEHLGANS, S., GURTNER, K., KRAUSE, M., BAUMANN, M., 
SHEVCHENKO, A., SANDFORT, V. & CORDES, N. 2012. 
beta(1)Integrin/FAK/cortactin signaling is essential for human head and neck 
cancer resistance to radiotherapy. J Clin Invest, 122, 1529-40. 

ELIA, I., BROEKAERT, D., CHRISTEN, S., BOON, R., RADAELLI, E., ORTH, M. F., VERFAILLIE, 
C., GRUNEWALD, T. G. P. & FENDT, S. M. 2017. Proline metabolism supports 
metastasis formation and could be inhibited to selectively target metastasizing 
cancer cells. Nat Commun, 8, 15267. 

ELIA, I., ROSSI, M., STEGEN, S., BROEKAERT, D., DOGLIONI, G., VAN GORSEL, M., BOON, 
R., ESCALONA-NOGUERO, C., TORREKENS, S., VERFAILLIE, C., VERBEKEN, E., 
CARMELIET, G. & FENDT, S. M. 2019. Breast cancer cells rely on environmental 
pyruvate to shape the metastatic niche. Nature, 568, 117-121. 

ELLINGER, J., KAHL, P., VON DER GATHEN, J., ROGENHOFER, S., HEUKAMP, L. C., 
GUTGEMANN, I., WALTER, B., HOFSTADTER, F., BUTTNER, R., MULLER, S. C., 
BASTIAN, P. J. & VON RUECKER, A. 2010. Global levels of histone modifications 
predict prostate cancer recurrence. Prostate, 70, 61-9. 

ENGLER, A. J., SEN, S., SWEENEY, H. L. & DISCHER, D. E. 2006. Matrix elasticity directs 
stem cell lineage specification. Cell, 126, 677-89. 

ESBONA, K., INMAN, D., SAHA, S., JEFFERY, J., SCHEDIN, P., WILKE, L. & KEELY, P. 2016. 
COX-2 modulates mammary tumor progression in response to collagen density. 
Breast Cancer Res, 18, 35. 

FAN, J., SHAN, C., KANG, H. B., ELF, S., XIE, J., TUCKER, M., GU, T. L., AGUIAR, M., 
LONNING, S., CHEN, H., MOHAMMADI, M., BRITTON, L. M., GARCIA, B. A., 
ALECKOVIC, M., KANG, Y., KALUZ, S., DEVI, N., VAN MEIR, E. G., HITOSUGI, T., 
SEO, J. H., LONIAL, S., GADDH, M., ARELLANO, M., KHOURY, H. J., KHURI, F. R., 
BOGGON, T. J., KANG, S. & CHEN, J. 2014. Tyr phosphorylation of PDP1 toggles 
recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase 
complex. Mol Cell, 53, 534-48. 

FANG, T., LV, H., LV, G., LI, T., WANG, C., HAN, Q., YU, L., SU, B., GUO, L., HUANG, S., 
CAO, D., TANG, L., TANG, S., WU, M., YANG, W. & WANG, H. 2018. Tumor-derived 
exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster 
lung metastasis of liver cancer. Nat Commun, 9, 191. 

FANG, W. B., MAFUVADZE, B., YAO, M., ZOU, A., PORTSCHE, M. & CHENG, N. 2015. TGF-
beta Negatively Regulates CXCL1 Chemokine Expression in Mammary Fibroblasts 
through Enhancement of Smad2/3 and Suppression of HGF/c-Met Signaling 
Mechanisms. PLoS One, 10, e0135063. 

FEIG, C., JONES, J. O., KRAMAN, M., WELLS, R. J., DEONARINE, A., CHAN, D. S., CONNELL, 
C. M., ROBERTS, E. W., ZHAO, Q., CABALLERO, O. L., TEICHMANN, S. A., 
JANOWITZ, T., JODRELL, D. I., TUVESON, D. A. & FEARON, D. T. 2013. Targeting 
CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with 
anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A, 110, 
20212-7. 

FENG, X. H. & DERYNCK, R. 2005. Specificity and versatility in tgf-beta signaling through 
Smads. Annu Rev Cell Dev Biol, 21, 659-93. 



260 
 
FERRARA, N. 2010. Pathways mediating VEGF-independent tumor angiogenesis. Cytokine 

Growth Factor Rev, 21, 21-6. 
FERRARI, KARIN J., SCELFO, A., JAMMULA, S., CUOMO, A., BAROZZI, I., STÜTZER, A., 

FISCHLE, W., BONALDI, T. & PASINI, D. 2014. Polycomb-Dependent H3K27me1 and 
H3K27me2 Regulate Active Transcription and Enhancer Fidelity. Molecular Cell, 
53, 49-62. 

FINAK, G., BERTOS, N., PEPIN, F., SADEKOVA, S., SOULEIMANOVA, M., ZHAO, H., CHEN, 
H., OMEROGLU, G., METERISSIAN, S., OMEROGLU, A., HALLETT, M. & PARK, M. 
2008. Stromal gene expression predicts clinical outcome in breast cancer. Nat 
Med, 14, 518-27. 

FISHER, M. T. 2006. Proline to the rescue. Proc Natl Acad Sci U S A, 103, 13265-6. 
FLAVIN, D. 2010a. Medullary thyroid carcinoma relapse reversed with dichloroacetate: A 

case report. Oncol Lett, 1, 889-891. 
FLAVIN, D. F. 2010b. Non-Hodgkin's Lymphoma Reversal with Dichloroacetate. J Oncol, 

2010. 
FLORIO, R., DE LELLIS, L., VESCHI, S., VERGINELLI, F., DI GIACOMO, V., GALLORINI, M., 

PERCONTI, S., SANNA, M., MARIANI-COSTANTINI, R., NATALE, A., ARDUINI, A., 
AMOROSO, R., CATALDI, A. & CAMA, A. 2018. Effects of dichloroacetate as single 
agent or in combination with GW6471 and metformin in paraganglioma cells. Sci 
Rep, 8, 13610. 

FRANCO-BARRAZA, J., FRANCESCONE, R., LUONG, T., SHAH, N., MADHANI, R., 
CUKIERMAN, G., DULAIMI, E., DEVARAJAN, K., EGLESTON, B. L., NICOLAS, E., 
KATHERINE ALPAUGH, R., MALIK, R., UZZO, R. G., HOFFMAN, J. P., GOLEMIS, E. 
A. & CUKIERMAN, E. 2017. Matrix-regulated integrin alphavbeta5 maintains 
alpha5beta1-dependent desmoplastic traits prognostic of neoplastic recurrence. 
Elife, 6. 

FRANTZ, C., STEWART, K. M. & WEAVER, V. M. 2010. The extracellular matrix at a glance. 
J Cell Sci, 123, 4195-200. 

FRANZKE, C. W., TASANEN, K., SCHUMANN, H. & BRUCKNER-TUDERMAN, L. 2003. 
Collagenous transmembrane proteins: collagen XVII as a prototype. Matrix Biol, 
22, 299-309. 

FUKUMURA, D., XAVIER, R., SUGIURA, T., CHEN, Y., PARK, E. C., LU, N., SELIG, M., 
NIELSEN, G., TAKSIR, T., JAIN, R. K. & SEED, B. 1998. Tumor induction of VEGF 
promoter activity in stromal cells. Cell, 94, 715-25. 

FURUYAMA, T., KITAYAMA, K., YAMASHITA, H. & MORI, N. 2003. Forkhead transcription 
factor FOXO1 (FKHR)-dependent induction of PDK4 gene expression in skeletal 
muscle during energy deprivation. Biochem J, 375, 365-71. 

GAGGIOLI, C., HOOPER, S., HIDALGO-CARCEDO, C., GROSSE, R., MARSHALL, J. F., 
HARRINGTON, K. & SAHAI, E. 2007. Fibroblast-led collective invasion of carcinoma 
cells with differing roles for RhoGTPases in leading and following cells. Nat Cell 
Biol, 9, 1392-400. 

GALDIERI, L. & VANCURA, A. 2012. Acetyl-CoA carboxylase regulates global histone 
acetylation. J Biol Chem, 287, 23865-76. 

GANDHI, L., RODRIGUEZ-ABREU, D., GADGEEL, S., ESTEBAN, E., FELIP, E., DE ANGELIS, 
F., DOMINE, M., CLINGAN, P., HOCHMAIR, M. J., POWELL, S. F., CHENG, S. Y., 
BISCHOFF, H. G., PELED, N., GROSSI, F., JENNENS, R. R., RECK, M., HUI, R., 
GARON, E. B., BOYER, M., RUBIO-VIQUEIRA, B., NOVELLO, S., KURATA, T., GRAY, 
J. E., VIDA, J., WEI, Z., YANG, J., RAFTOPOULOS, H., PIETANZA, M. C., 
GARASSINO, M. C. & INVESTIGATORS, K.-. 2018. Pembrolizumab plus 
Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N Engl J Med, 378, 2078-
2092. 

GARON, E. B., CHRISTOFK, H. R., HOSMER, W., BRITTEN, C. D., BAHNG, A., CRABTREE, 
M. J., HONG, C. S., KAMRANPOUR, N., PITTS, S., KABBINAVAR, F., PATEL, C., VON 
EUW, E., BLACK, A., MICHELAKIS, E. D., DUBINETT, S. M. & SLAMON, D. J. 2014. 
Dichloroacetate should be considered with platinum-based chemotherapy in 
hypoxic tumors rather than as a single agent in advanced non-small cell lung 
cancer. J Cancer Res Clin Oncol, 140, 443-52. 



261 
 
GE, J., CUI, H., XIE, N., BANERJEE, S., GUO, S., DUBEY, S., BARNES, S. & LIU, G. 2018. 

Glutaminolysis Promotes Collagen Translation and Stability via alpha-
Ketoglutarate-mediated mTOR Activation and Proline Hydroxylation. Am J Respir 
Cell Mol Biol, 58, 378-390. 

GE, S., MAO, Y., YI, Y., XIE, D., CHEN, Z. & XIAO, Z. 2012. Comparative proteomic analysis 
of secreted proteins from nasopharyngeal carcinoma-associated stromal 
fibroblasts and normal fibroblasts. Exp Ther Med, 3, 857-860. 

GEHLER, S., BALDASSARRE, M., LAD, Y., LEIGHT, J. L., WOZNIAK, M. A., RICHING, K. M., 
ELICEIRI, K. W., WEAVER, V. M., CALDERWOOD, D. A. & KEELY, P. J. 2009. Filamin 
A-beta1 integrin complex tunes epithelial cell response to matrix tension. Mol Biol 
Cell, 20, 3224-38. 

GIANNONI, E., BIANCHINI, F., MASIERI, L., SERNI, S., TORRE, E., CALORINI, L. & CHIARUGI, 
P. 2010. Reciprocal activation of prostate cancer cells and cancer-associated 
fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness. 
Cancer Res, 70, 6945-56. 

GILMORE, A. P., METCALFE, A. D., ROMER, L. H. & STREULI, C. H. 2000. Integrin-mediated 
survival signals regulate the apoptotic function of Bax through its conformation 
and subcellular localization. J Cell Biol, 149, 431-46. 

GLENTIS, A., OERTLE, P., MARIANI, P., CHIKINA, A., EL MARJOU, F., ATTIEH, Y., 
ZACCARINI, F., LAE, M., LOEW, D., DINGLI, F., SIRVEN, P., SCHOUMACHER, M., 
GURCHENKOV, B. G., PLODINEC, M. & VIGNJEVIC, D. M. 2017. Cancer-associated 
fibroblasts induce metalloprotease-independent cancer cell invasion of the 
basement membrane. Nat Commun, 8, 924. 

GOETZ, J. G., MINGUET, S., NAVARRO-LERIDA, I., LAZCANO, J. J., SAMANIEGO, R., CALVO, 
E., TELLO, M., OSTESO-IBANEZ, T., PELLINEN, T., ECHARRI, A., CEREZO, A., KLEIN-
SZANTO, A. J., GARCIA, R., KEELY, P. J., SANCHEZ-MATEOS, P., CUKIERMAN, E. & 
DEL POZO, M. A. 2011. Biomechanical remodeling of the microenvironment by 
stromal caveolin-1 favors tumor invasion and metastasis. Cell, 146, 148-63. 

GOMES, F. G., NEDEL, F., ALVES, A. M., NOR, J. E. & TARQUINIO, S. B. 2013. Tumor 
angiogenesis and lymphangiogenesis: tumor/endothelial crosstalk and 
cellular/microenvironmental signaling mechanisms. Life Sci, 92, 101-7. 

GORDON, M. K. & HAHN, R. A. 2010. Collagens. Cell Tissue Res, 339, 247-57. 
GORRES, K. L. & RAINES, R. T. 2010. Prolyl 4-hydroxylase. Crit Rev Biochem Mol Biol, 45, 

106-24. 
GOTZE, S., SCHUMACHER, E. C., KORDES, C. & HAUSSINGER, D. 2015. Epigenetic Changes 

during Hepatic Stellate Cell Activation. PLoS One, 10, e0128745. 
GOUIRAND, V. & VASSEUR, S. 2018. Fountain of youth of pancreatic cancer cells: the 

extracellular matrix. Cell Death Discov, 4, 1. 
GRASSIAN, A. R., METALLO, C. M., COLOFF, J. L., STEPHANOPOULOS, G. & BRUGGE, J. S. 

2011. Erk regulation of pyruvate dehydrogenase flux through PDK4 modulates cell 
proliferation. Genes Dev, 25, 1716-33. 

GROESSL, M., SLANY, A., BILECK, A., GLOESSMANN, K., KREUTZ, D., JAEGER, W., PFEILER, 
G. & GERNER, C. 2014. Proteome profiling of breast cancer biopsies reveals a 
wound healing signature of cancer-associated fibroblasts. J Proteome Res, 13, 
4773-82. 

GUIDO, C., WHITAKER-MENEZES, D., CAPPARELLI, C., BALLIET, R., LIN, Z., PESTELL, R. 
G., HOWELL, A., AQUILA, S., ANDO, S., MARTINEZ-OUTSCHOORN, U., SOTGIA, F. 
& LISANTI, M. P. 2012. Metabolic reprogramming of cancer-associated fibroblasts 
by TGF-beta drives tumor growth: connecting TGF-beta signaling with "Warburg-
like" cancer metabolism and L-lactate production. Cell Cycle, 11, 3019-35. 

GUO, L., CUI, C., ZHANG, K., WANG, J., WANG, Y., LU, Y., CHEN, K., YUAN, J., XIAO, G., 
TANG, B., SUN, Y. & WU, C. 2019. Kindlin-2 links mechano-environment to proline 
synthesis and tumor growth. Nat Commun, 10, 845. 

GUTIERREZ, E., SHIN, B. S., WOOLSTENHULME, C. J., KIM, J. R., SAINI, P., BUSKIRK, A. R. 
& DEVER, T. E. 2013. eIF5A promotes translation of polyproline motifs. Mol Cell, 
51, 35-45. 



262 
 
HAGEDORN, C. H. & PHANG, J. M. 1983. Transfer of reducing equivalents into 

mitochondria by the interconversions of proline and delta 1-pyrroline-5-
carboxylate. Arch Biochem Biophys, 225, 95-101. 

HANSFORD, R. G. 1976. Studies on the effects of coenzyme A-SH: acetyl coenzyme A, 
nicotinamide adenine dinucleotide: reduced nicotinamide adenine dinucleotide, 
and adenosine diphosphate: adenosine triphosphate ratios on the interconversion 
of active and inactive pyruvate dehydrogenase in isolated rat heart mitochondria. 
J Biol Chem, 251, 5483-9. 

HARRIS, R. A., HUANG, B. & WU, P. 2001. Control of pyruvate dehydrogenase kinase gene 
expression. Adv Enzyme Regul, 41, 269-88. 

HAZLEHURST, L. A. & DALTON, W. S. 2001. Mechanisms associated with cell adhesion 
mediated drug resistance (CAM-DR) in hematopoietic malignancies. Cancer 
Metastasis Rev, 20, 43-50. 

HELDIN, C. H., RUBIN, K., PIETRAS, K. & OSTMAN, A. 2004. High interstitial fluid pressure 
- an obstacle in cancer therapy. Nat Rev Cancer, 4, 806-13. 

HENRY, R. A., KUO, Y.-M. & ANDREWS, A. J. 2013. Differences in Specificity and 
Selectivity Between CBP and p300 Acetylation of Histone H3 and H3/H4. 
Biochemistry, 52, 5746-5759. 

HENRY, R. A., KUO, Y.-M., BHATTACHARJEE, V., YEN, T. J. & ANDREWS, A. J. 2014. 
Changing the Selectivity of p300 by Acetyl-CoA Modulation of Histone Acetylation. 
ACS Chemical Biology, 10, 146-156. 

HERNANDEZ-FERNAUD, J. R., RUENGELER, E., CASAZZA, A., NEILSON, L. J., PULLEINE, E., 
SANTI, A., ISMAIL, S., LILLA, S., DHAYADE, S., MACPHERSON, I. R., MCNEISH, I., 
ENNIS, D., ALI, H., KUGERATSKI, F. G., AL KHAMICI, H., VAN DEN BIGGELAAR, M., 
VAN DEN BERGHE, P. V., CLOIX, C., MCDONALD, L., MILLAN, D., HOYLE, A., 
KUCHNIO, A., CARMELIET, P., VALENZUELA, S. M., BLYTH, K., YIN, H., MAZZONE, 
M., NORMAN, J. C. & ZANIVAN, S. 2017. Secreted CLIC3 drives cancer progression 
through its glutathione-dependent oxidoreductase activity. Nat Commun, 8, 
14206. 

HIRAKAWA, T., YASHIRO, M., DOI, Y., KINOSHITA, H., MORISAKI, T., FUKUOKA, T., 
HASEGAWA, T., KIMURA, K., AMANO, R. & HIRAKAWA, K. 2016. Pancreatic 
Fibroblasts Stimulate the Motility of Pancreatic Cancer Cells through IGF1/IGF1R 
Signaling under Hypoxia. PLoS One, 11, e0159912. 

HOLLINSHEAD, K. E. R., MUNFORD, H., EALES, K. L., BARDELLA, C., LI, C., ESCRIBANO-
GONZALEZ, C., THAKKER, A., NONNENMACHER, Y., KLUCKOVA, K., JEEVES, M., 
MURREN, R., CUOZZO, F., YE, D., LAURENTI, G., ZHU, W., HILLER, K., HODSON, 
D. J., HUA, W., TOMLINSON, I. P., LUDWIG, C., MAO, Y. & TENNANT, D. A. 2018. 
Oncogenic IDH1 Mutations Promote Enhanced Proline Synthesis through PYCR1 to 
Support the Maintenance of Mitochondrial Redox Homeostasis. Cell Rep, 22, 3107-
3114. 

HOLNESS, M. J. & SUGDEN, M. C. 2003. Regulation of pyruvate dehydrogenase complex 
activity by reversible phosphorylation. Biochem Soc Trans, 31, 1143-51. 

HSIEH, M. C., DAS, D., SAMBANDAM, N., ZHANG, M. Q. & NAHLE, Z. 2008. Regulation of 
the PDK4 isozyme by the Rb-E2F1 complex. J Biol Chem, 283, 27410-7. 

HU, B., GHARAEE-KERMANI, M., WU, Z. & PHAN, S. H. 2010. Epigenetic regulation of 
myofibroblast differentiation by DNA methylation. Am J Pathol, 177, 21-8. 

HU, M., YAO, J., CAI, L., BACHMAN, K. E., VAN DEN BRULE, F., VELCULESCU, V. & POLYAK, 
K. 2005. Distinct epigenetic changes in the stromal cells of breast cancers. Nat 
Genet, 37, 899-905. 

HUANG, B., GUDI, R., WU, P., HARRIS, R. A., HAMILTON, J. & POPOV, K. M. 1998. 
Isoenzymes of pyruvate dehydrogenase phosphatase. DNA-derived amino acid 
sequences, expression, and regulation. J Biol Chem, 273, 17680-8. 

HUANG, B., WU, P., BOWKER-KINLEY, M. M. & HARRIS, R. A. 2002. Regulation of pyruvate 
dehydrogenase kinase expression by peroxisome proliferator-activated receptor-
alpha ligands, glucocorticoids, and insulin. Diabetes, 51, 276-83. 

HUANG, C., PARK, C. C., HILSENBECK, S. G., WARD, R., RIMAWI, M. F., WANG, Y. C., 
SHOU, J., BISSELL, M. J., OSBORNE, C. K. & SCHIFF, R. 2011. beta1 integrin 



263 
 

mediates an alternative survival pathway in breast cancer cells resistant to 
lapatinib. Breast Cancer Res, 13, R84. 

HUANG, G., GE, G., IZZI, V. & GREENSPAN, D. S. 2017. alpha3 Chains of type V collagen 
regulate breast tumour growth via glypican-1. Nat Commun, 8, 14351. 

HURWITZ, H. 2004. Integrating the anti-VEGF-A humanized monoclonal antibody 
bevacizumab with chemotherapy in advanced colorectal cancer. Clin Colorectal 
Cancer, 4 Suppl 2, S62-8. 

HYNES, R. O. 2009. The extracellular matrix: not just pretty fibrils. Science, 326, 1216-
9. 

ISHII, G., SANGAI, T., ODA, T., AOYAGI, Y., HASEBE, T., KANOMATA, N., ENDOH, Y., 
OKUMURA, C., OKUHARA, Y., MAGAE, J., EMURA, M., OCHIYA, T. & OCHIAI, A. 
2003. Bone-marrow-derived myofibroblasts contribute to the cancer-induced 
stromal reaction. Biochem Biophys Res Commun, 309, 232-40. 

IWANO, M., PLIETH, D., DANOFF, T. M., XUE, C., OKADA, H. & NEILSON, E. G. 2002. 
Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin 
Invest, 110, 341-50. 

IYENGAR, P., ESPINA, V., WILLIAMS, T. W., LIN, Y., BERRY, D., JELICKS, L. A., LEE, H., 
TEMPLE, K., GRAVES, R., POLLARD, J., CHOPRA, N., RUSSELL, R. G., 
SASISEKHARAN, R., TROCK, B. J., LIPPMAN, M., CALVERT, V. S., PETRICOIN, E. F., 
3RD, LIOTTA, L., DADACHOVA, E., PESTELL, R. G., LISANTI, M. P., BONALDO, P. & 
SCHERER, P. E. 2005. Adipocyte-derived collagen VI affects early mammary tumor 
progression in vivo, demonstrating a critical interaction in the tumor/stroma 
microenvironment. J Clin Invest, 115, 1163-76. 

JACOB, A. & PREKERIS, R. 2015. The regulation of MMP targeting to invadopodia during 
cancer metastasis. Front Cell Dev Biol, 3, 4. 

JANG, I. & BENINGO, K. A. 2019. Integrins, CAFs and Mechanical Forces in the Progression 
of Cancer. Cancers (Basel), 11. 

JIANG, L., GONDA, T. A., GAMBLE, M. V., SALAS, M., SESHAN, V., TU, S., TWADDELL, W. 
S., HEGYI, P., LAZAR, G., STEELE, I., VARRO, A., WANG, T. C. & TYCKO, B. 2008. 
Global hypomethylation of genomic DNA in cancer-associated myofibroblasts. 
Cancer Res, 68, 9900-8. 

JONES, P. A. 2012. Functions of DNA methylation: islands, start sites, gene bodies and 
beyond. Nat Rev Genet, 13, 484-92. 

JOTZU, C., ALT, E., WELTE, G., LI, J., HENNESSY, B. T., DEVARAJAN, E., KRISHNAPPA, S., 
PINILLA, S., DROLL, L. & SONG, Y. H. 2010. Adipose tissue-derived stem cells 
differentiate into carcinoma-associated fibroblast-like cells under the influence 
of tumor-derived factors. Anal Cell Pathol (Amst), 33, 61-79. 

JOYCE, J. A. 2005. Therapeutic targeting of the tumor microenvironment. Cancer Cell, 
7, 513-20. 

KADLER, K. E., BALDOCK, C., BELLA, J. & BOOT-HANDFORD, R. P. 2007. Collagens at a 
glance. J Cell Sci, 120, 1955-8. 

KAI, F., DRAIN, A. P. & WEAVER, V. M. 2019. The Extracellular Matrix Modulates the 
Metastatic Journey. Developmental Cell, 49, 332-346. 

KALINSKI, P. 2012. Regulation of immune responses by prostaglandin E2. J Immunol, 188, 
21-8. 

KALLURI, R. 2016. The biology and function of fibroblasts in cancer. Nat Rev Cancer, 16, 
582-98. 

KAMARAJUGADDA, S., STEMBOROSKI, L., CAI, Q., SIMPSON, N. E., NAYAK, S., TAN, M. & 
LU, J. 2012. Glucose oxidation modulates anoikis and tumor metastasis. Mol Cell 
Biol, 32, 1893-907. 

KAPLON, J., ZHENG, L., MEISSL, K., CHANETON, B., SELIVANOV, V. A., MACKAY, G., VAN 
DER BURG, S. H., VERDEGAAL, E. M., CASCANTE, M., SHLOMI, T., GOTTLIEB, E. & 
PEEPER, D. S. 2013. A key role for mitochondrial gatekeeper pyruvate 
dehydrogenase in oncogene-induced senescence. Nature, 498, 109-12. 

KARDOS, G. R., WASTYK, H. C. & ROBERTSON, G. P. 2015. Disruption of Proline Synthesis 
in Melanoma Inhibits Protein Production Mediated by the GCN2 Pathway. Mol 
Cancer Res, 13, 1408-20. 



264 
 
KATANOV, C., LERRER, S., LIUBOMIRSKI, Y., LEIDER-TREJO, L., MESHEL, T., BAR, J., 

FENIGER-BARISH, R., KAMER, I., SORIA-ARTZI, G., KAHANI, H., BANERJEE, D. & 
BEN-BARUCH, A. 2015. Regulation of the inflammatory profile of stromal cells in 
human breast cancer: prominent roles for TNF-alpha and the NF-kappaB pathway. 
Stem Cell Res Ther, 6, 87. 

KAUPPILA, S., STENBACK, F., RISTELI, J., JUKKOLA, A. & RISTELI, L. 1998. Aberrant type 
I and type III collagen gene expression in human breast cancer in vivo. J Pathol, 
186, 262-8. 

KAUSHIK, S., PICKUP, M. W. & WEAVER, V. M. 2016. From transformation to metastasis: 
deconstructing the extracellular matrix in breast cancer. Cancer and Metastasis 
Reviews, 35, 655-667. 

KESSENBROCK, K., PLAKS, V. & WERB, Z. 2010. Matrix metalloproteinases: regulators of 
the tumor microenvironment. Cell, 141, 52-67. 

KILBERG, M. S., BALASUBRAMANIAN, M., FU, L. & SHAN, J. 2012. The Transcription Factor 
Network Associated With the Amino Acid Response in Mammalian Cells. Advances 
in Nutrition, 3, 295-306. 

KIM, J. W., GAO, P., LIU, Y. C., SEMENZA, G. L. & DANG, C. V. 2007. Hypoxia-inducible 
factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth 
factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. 
Mol Cell Biol, 27, 7381-93. 

KIM, J. W., TCHERNYSHYOV, I., SEMENZA, G. L. & DANG, C. V. 2006a. HIF-1-mediated 
expression of pyruvate dehydrogenase kinase: a metabolic switch required for 
cellular adaptation to hypoxia. Cell Metab, 3, 177-85. 

KIM, M. Y., CHO, W. D., HONG, K. P., CHOI DA, B., HONG, J. W., KIM, S., MOON, Y. R., 
SON, S. M., LEE, O. J., LEE, H. C. & SONG, H. G. 2016. Novel monoclonal antibody 
against beta 1 integrin enhances cisplatin efficacy in human lung adenocarcinoma 
cells. J Biomed Res, 30, 217-24. 

KIM, S. C., SPRUNG, R., CHEN, Y., XU, Y., BALL, H., PEI, J., CHENG, T., KHO, Y., XIAO, 
H., XIAO, L., GRISHIN, N. V., WHITE, M., YANG, X. J. & ZHAO, Y. 2006b. Substrate 
and functional diversity of lysine acetylation revealed by a proteomics survey. Mol 
Cell, 23, 607-18. 

KIM, W., SEOK KANG, Y., SOO KIM, J., SHIN, N. Y., HANKS, S. K. & SONG, W. K. 2008. The 
integrin-coupled signaling adaptor p130Cas suppresses Smad3 function in 
transforming growth factor-beta signaling. Mol Biol Cell, 19, 2135-46. 

KIM, Y. I., LEE, F. N., CHOI, W. S., LEE, S. & YOUN, J. H. 2006c. Insulin regulation of 
skeletal muscle PDK4 mRNA expression is impaired in acute insulin-resistant 
states. Diabetes, 55, 2311-7. 

KIMMELMAN, A. C. 2011. The dynamic nature of autophagy in cancer. Genes Dev, 25, 1999-
2010. 

KINNAIRD, A., ZHAO, S., WELLEN, K. E. & MICHELAKIS, E. D. 2016. Metabolic control of 
epigenetics in cancer. Nat Rev Cancer, 16, 694-707. 

KINOSHITA, K., AONO, Y., AZUMA, M., KISHI, J., TAKEZAKI, A., KISHI, M., MAKINO, H., 
OKAZAKI, H., UEHARA, H., IZUMI, K., SONE, S. & NISHIOKA, Y. 2013. Antifibrotic 
effects of focal adhesion kinase inhibitor in bleomycin-induced pulmonary fibrosis 
in mice. Am J Respir Cell Mol Biol, 49, 536-43. 

KLYUYEVA, A., TUGANOVA, A., KEDISHVILI, N. & POPOV, K. M. 2019. Tissue-specific kinase 
expression and activity regulate flux through the pyruvate dehydrogenase 
complex. J Biol Chem, 294, 838-851. 

KO, Y. A., MOHTAT, D., SUZUKI, M., PARK, A. S., IZQUIERDO, M. C., HAN, S. Y., KANG, H. 
M., SI, H., HOSTETTER, T., PULLMAN, J. M., FAZZARI, M., VERMA, A., ZHENG, D., 
GREALLY, J. M. & SUSZTAK, K. 2013. Cytosine methylation changes in enhancer 
regions of core pro-fibrotic genes characterize kidney fibrosis development. 
Genome Biol, 14, R108. 

KOJIMA, Y., ACAR, A., EATON, E. N., MELLODY, K. T., SCHEEL, C., BEN-PORATH, I., 
ONDER, T. T., WANG, Z. C., RICHARDSON, A. L., WEINBERG, R. A. & ORIMO, A. 
2010. Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling 



265 
 

drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc 
Natl Acad Sci U S A, 107, 20009-14. 

KORTLEVER, R. M., SODIR, N. M., WILSON, C. H., BURKHART, D. L., PELLEGRINET, L., 
BROWN SWIGART, L., LITTLEWOOD, T. D. & EVAN, G. I. 2017. Myc Cooperates with 
Ras by Programming Inflammation and Immune Suppression. Cell, 171, 1301-1315 
e14. 

KOUKOURAKIS, M. I., GIATROMANOLAKI, A., BOUGIOUKAS, G. & SIVRIDIS, E. 2014. Lung 
cancer: An organized cellular and metabolic domain. Cancer Biology & Therapy, 
6, 1472-1475. 

KOUKOURAKIS, M. I., KALAMIDA, D., MITRAKAS, A. G., LIOUSIA, M., POULILIOU, S., 
SIVRIDIS, E. & GIATROMANOLAKI, A. 2017. Metabolic cooperation between co-
cultured lung cancer cells and lung fibroblasts. Lab Invest, 97, 1321-1331. 

KOYAMA, S., AKBAY, E. A., LI, Y. Y., AREF, A. R., SKOULIDIS, F., HERTER-SPRIE, G. S., 
BUCZKOWSKI, K. A., LIU, Y., AWAD, M. M., DENNING, W. L., DIAO, L., WANG, J., 
PARRA-CUENTAS, E. R., WISTUBA, II, SOUCHERAY, M., THAI, T., ASAHINA, H., 
KITAJIMA, S., ALTABEF, A., CAVANAUGH, J. D., RHEE, K., GAO, P., ZHANG, H., 
FECCI, P. E., SHIMAMURA, T., HELLMANN, M. D., HEYMACH, J. V., HODI, F. S., 
FREEMAN, G. J., BARBIE, D. A., DRANOFF, G., HAMMERMAN, P. S. & WONG, K. K. 
2016. STK11/LKB1 Deficiency Promotes Neutrophil Recruitment and 
Proinflammatory Cytokine Production to Suppress T-cell Activity in the Lung Tumor 
Microenvironment. Cancer Res, 76, 999-1008. 

KRAMER, C. J. H., VANGANGELT, K. M. H., VAN PELT, G. W., DEKKER, T. J. A., 
TOLLENAAR, R. & MESKER, W. E. 2019. The prognostic value of tumour-stroma 
ratio in primary breast cancer with special attention to triple-negative tumours: 
a review. Breast Cancer Res Treat, 173, 55-64. 

KRAMER, M., DEES, C., HUANG, J., SCHLOTTMANN, I., PALUMBO-ZERR, K., ZERR, P., 
GELSE, K., BEYER, C., DISTLER, A., MARQUEZ, V. E., DISTLER, O., SCHETT, G. & 
DISTLER, J. H. 2013. Inhibition of H3K27 histone trimethylation activates 
fibroblasts and induces fibrosis. Ann Rheum Dis, 72, 614-20. 

KRETZ, R., BOZORGMEHR, B., KARIMINEJAD, M. H., ROHRBACH, M., HAUSSER, I., BAUMER, 
A., BAUMGARTNER, M., GIUNTA, C., KARIMINEJAD, A. & HABERLE, J. 2011. Defect 
in proline synthesis: pyrroline-5-carboxylate reductase 1 deficiency leads to a 
complex clinical phenotype with collagen and elastin abnormalities. J Inherit 
Metab Dis, 34, 731-9. 

KRISHNAN, N., DICKMAN, M. B. & BECKER, D. F. 2008. Proline modulates the intracellular 
redox environment and protects mammalian cells against oxidative stress. Free 
Radic Biol Med, 44, 671-81. 

KUGERATSKI, F. G., ATKINSON, S. J., NEILSON, L. J., LILLA, S., KNIGHT, J. R. P., 
SERNEELS, J., JUIN, A., ISMAIL, S., BRYANT, D. M., MARKERT, E. K., MACHESKY, L. 
M., MAZZONE, M., SANSOM, O. J. & ZANIVAN, S. 2019. Hypoxic cancer-associated 
fibroblasts increase NCBP2-AS2/HIAR to promote endothelial sprouting through 
enhanced VEGF signaling. Sci Signal, 12. 

KUMAR, A., KANT, S. & SINGH, S. M. 2013a. Antitumor and chemosensitizing action of 
dichloroacetate implicates modulation of tumor microenvironment: a role of 
reorganized glucose metabolism, cell survival regulation and macrophage 
differentiation. Toxicol Appl Pharmacol, 273, 196-208. 

KUMAR, D., NEW, J., VISHWAKARMA, V., JOSHI, R., ENDERS, J., LIN, F., DASARI, S., 
GUTIERREZ, W. R., LEEF, G., PONNURANGAM, S., CHAVAN, H., GANADEN, L., 
THORNTON, M. M., DAI, H., TAWFIK, O., STRAUB, J., SHNAYDER, Y., KAKARALA, 
K., TSUE, T. T., GIROD, D. A., VAN HOUTEN, B., ANANT, S., KRISHNAMURTHY, P. 
& THOMAS, S. M. 2018. Cancer-Associated Fibroblasts Drive Glycolysis in a 
Targetable Signaling Loop Implicated in Head and Neck Squamous Cell Carcinoma 
Progression. Cancer Res, 78, 3769-3782. 

KUMAR, K., DECANT, B. T., GRIPPO, P. J., HWANG, R. F., BENTREM, D. J., EBINE, K. & 
MUNSHI, H. G. 2017. BET inhibitors block pancreatic stellate cell collagen I 
production and attenuate fibrosis in vivo. JCI Insight, 2, e88032. 



266 
 
KUMAR, K., WIGFIELD, S., GEE, H. E., DEVLIN, C. M., SINGLETON, D., LI, J. L., BUFFA, F., 

HUFFMAN, M., SINN, A. L., SILVER, J., TURLEY, H., LEEK, R., HARRIS, A. L. & IVAN, 
M. 2013b. Dichloroacetate reverses the hypoxic adaptation to bevacizumab and 
enhances its antitumor effects in mouse xenografts. J Mol Med (Berl), 91, 749-58. 

KUO, M. L., LEE, M. B., TANG, M., DEN BESTEN, W., HU, S., SWEREDOSKI, M. J., HESS, S., 
CHOU, C. M., CHANGOU, C. A., SU, M., JIA, W., SU, L. & YEN, Y. 2016. PYCR1 and 
PYCR2 Interact and Collaborate with RRM2B to Protect Cells from Overt Oxidative 
Stress. Sci Rep, 6, 18846. 

KUPERWASSER, C., CHAVARRIA, T., WU, M., MAGRANE, G., GRAY, J. W., CAREY, L., 
RICHARDSON, A. & WEINBERG, R. A. 2004. Reconstruction of functionally normal 
and malignant human breast tissues in mice. Proc Natl Acad Sci U S A, 101, 4966-
71. 

LAMAR, Z. 2016. CPI-613, Bendamustine Hydrochloride, and Rituximab in Treating 
Patients With Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma [Online]. 
Available: https://ClinicalTrials.gov/show/NCT02168907 [Accessed]. 

LANNING, N. J., CASTLE, J. P., SINGH, S. J., LEON, A. N., TOVAR, E. A., SANGHERA, A., 
MACKEIGAN, J. P., FILIPP, F. V. & GRAVEEL, C. R. 2017. Metabolic profiling of 
triple-negative breast cancer cells reveals metabolic vulnerabilities. Cancer 
Metab, 5, 6. 

LASKO, L. M., JAKOB, C. G., EDALJI, R. P., QIU, W., MONTGOMERY, D., DIGIAMMARINO, 
E. L., HANSEN, T. M., RISI, R. M., FREY, R., MANAVES, V., SHAW, B., ALGIRE, M., 
HESSLER, P., LAM, L. T., UZIEL, T., FAIVRE, E., FERGUSON, D., BUCHANAN, F. G., 
MARTIN, R. L., TORRENT, M., CHIANG, G. G., KARUKURICHI, K., LANGSTON, J. W., 
WEINERT, B. T., CHOUDHARY, C., DE VRIES, P., KLUGE, A. F., PATANE, M. A., VAN 
DRIE, J. H., WANG, C., MCELLIGOTT, D., KESICKI, E., MARMORSTEIN, R., SUN, C., 
COLE, P. A., ROSENBERG, S. H., MICHAELIDES, M. R., LAI, A. & BROMBERG, K. D. 
2017. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-
specific tumours. Nature, 550, 128-132. 

LAWRENCE, M., DAUJAT, S. & SCHNEIDER, R. 2016. Lateral Thinking: How Histone 
Modifications Regulate Gene Expression. Trends Genet, 32, 42-56. 

LEASK, A. 2010. Potential therapeutic targets for cardiac fibrosis: TGFbeta, angiotensin, 
endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ Res, 106, 1675-
80. 

LEBLEU, V. S. & KALLURI, R. 2018. A peek into cancer-associated fibroblasts: origins, 
functions and translational impact. Dis Model Mech, 11. 

LEE, J. E., PARK, Y. K., PARK, S., JANG, Y., WARING, N., DEY, A., OZATO, K., LAI, B., 
PENG, W. & GE, K. 2017. Brd4 binds to active enhancers to control cell identity 
gene induction in adipogenesis and myogenesis. Nat Commun, 8, 2217. 

LEIGHT, J. L., WOZNIAK, M. A., CHEN, S., LYNCH, M. L. & CHEN, C. S. 2012. Matrix rigidity 
regulates a switch between TGF-beta1-induced apoptosis and epithelial-
mesenchymal transition. Mol Biol Cell, 23, 781-91. 

LEMONS, J. M., FENG, X. J., BENNETT, B. D., LEGESSE-MILLER, A., JOHNSON, E. L., 
RAITMAN, I., POLLINA, E. A., RABITZ, H. A., RABINOWITZ, J. D. & COLLER, H. A. 
2010. Quiescent fibroblasts exhibit high metabolic activity. PLoS Biol, 8, 
e1000514. 

LEUNG, C. S., YEUNG, T. L., YIP, K. P., PRADEEP, S., BALASUBRAMANIAN, L., LIU, J., 
WONG, K. K., MANGALA, L. S., ARMAIZ-PENA, G. N., LOPEZ-BERESTEIN, G., SOOD, 
A. K., BIRRER, M. J. & MOK, S. C. 2014. Calcium-dependent FAK/CREB/TNNC1 
signalling mediates the effect of stromal MFAP5 on ovarian cancer metastatic 
potential. Nat Commun, 5, 5092. 

LEVENTAL, K. R., YU, H., KASS, L., LAKINS, J. N., EGEBLAD, M., ERLER, J. T., FONG, S. 
F., CSISZAR, K., GIACCIA, A., WENINGER, W., YAMAUCHI, M., GASSER, D. L. & 
WEAVER, V. M. 2009. Matrix crosslinking forces tumor progression by enhancing 
integrin signaling. Cell, 139, 891-906. 

LEWIS, J. M., TRUONG, T. N. & SCHWARTZ, M. A. 2002. Integrins regulate the apoptotic 
response to DNA damage through modulation of p53. Proc Natl Acad Sci U S A, 99, 
3627-32. 

https://clinicaltrials.gov/show/NCT02168907


267 
 
LI, J., JIA, Z., KONG, J., ZHANG, F., FANG, S., LI, X., LI, W., YANG, X., LUO, Y., LIN, B. 

& LIU, T. 2016. Carcinoma-Associated Fibroblasts Lead the Invasion of Salivary 
Gland Adenoid Cystic Carcinoma Cells by Creating an Invasive Track. PLoS One, 
11, e0150247. 

LI, J. J., WANG, H. X., TINO, J. A., ROBL, J. A., HERPIN, T. F., LAWRENCE, R. M., BILLER, 
S., JAMIL, H., PONTICIELLO, R., CHEN, L. P., CHU, C., FLYNN, N., CHENG, D., 
ZHAO, R. L., CHEN, B. C., SCHNUR, D., OBERMEIER, M. T., SASSEVILLE, V., 
PADMANABHA, R., PIKE, K. & HARRITY, T. 2007. 2-Hydroxy-N-
arylbenzenesulfonamides as ATP-citrate lyase inhibitors. Bioorganic & Medicinal 
Chemistry Letters, 17, 3208-3211. 

LI, M. O. & FLAVELL, R. A. 2008. TGF-beta: a master of all T cell trades. Cell, 134, 392-
404. 

LI, W., GERMAIN, R. N. & GERNER, M. Y. 2017. Multiplex, quantitative cellular analysis in 
large tissue volumes with clearing-enhanced 3D microscopy (Ce3D). Proc Natl Acad 
Sci U S A, 114, E7321-E7330. 

LIANG, S. T., AUDIRA, G., JUNIARDI, S., CHEN, J. R., LAI, Y. H., DU, Z. C., LIN, D. S. & 
HSIAO, C. D. 2019. Zebrafish Carrying pycr1 Gene Deficiency Display Aging and 
Multiple Behavioral Abnormalities. Cells, 8. 

LIAO, D., LUO, Y., MARKOWITZ, D., XIANG, R. & REISFELD, R. A. 2009. Cancer associated 
fibroblasts promote tumor growth and metastasis by modulating the tumor 
immune microenvironment in a 4T1 murine breast cancer model. PLoS One, 4, 
e7965. 

LINGASAMY, P., TOBI, A., HAUGAS, M., HUNT, H., PAISTE, P., ASSER, T., RATSEP, T., 
KOTAMRAJU, V. R., BJERKVIG, R. & TEESALU, T. 2019. Bi-specific tenascin-C and 
fibronectin targeted peptide for solid tumor delivery. Biomaterials, 219, 119373. 

LITTLEPAGE, L. E., STERNLICHT, M. D., ROUGIER, N., PHILLIPS, J., GALLO, E., YU, Y., 
WILLIAMS, K., BRENOT, A., GORDON, J. I. & WERB, Z. 2010. Matrix 
metalloproteinases contribute distinct roles in neuroendocrine prostate 
carcinogenesis, metastasis, and angiogenesis progression. Cancer Res, 70, 2224-
34. 

LIU, J., LIAO, S., DIOP-FRIMPONG, B., CHEN, W., GOEL, S., NAXEROVA, K., ANCUKIEWICZ, 
M., BOUCHER, Y., JAIN, R. K. & XU, L. 2012a. TGF-beta blockade improves the 
distribution and efficacy of therapeutics in breast carcinoma by normalizing the 
tumor stroma. Proc Natl Acad Sci U S A, 109, 16618-23. 

LIU, T. M. & SHYH-CHANG, N. 2017. SIRT2 and glycolytic enzyme acetylation in pluripotent 
stem cells. Nat Cell Biol, 19, 412-414. 

LIU, W., HANCOCK, C. N., FISCHER, J. W., HARMAN, M. & PHANG, J. M. 2015. Proline 
biosynthesis augments tumor cell growth and aerobic glycolysis: involvement of 
pyridine nucleotides. Sci Rep, 5, 17206. 

LIU, W., LE, A., HANCOCK, C., LANE, A. N., DANG, C. V., FAN, T. W. & PHANG, J. M. 
2012b. Reprogramming of proline and glutamine metabolism contributes to the 
proliferative and metabolic responses regulated by oncogenic transcription factor 
c-MYC. Proc Natl Acad Sci U S A, 109, 8983-8. 

LIU, X., ZHANG, Y., NI, M., CAO, H., SIGNER, R. A. J., LI, D., LI, M., GU, Z., HU, Z., 
DICKERSON, K. E., WEINBERG, S. E., CHANDEL, N. S., DEBERARDINIS, R. J., ZHOU, 
F., SHAO, Z. & XU, J. 2017. Regulation of mitochondrial biogenesis in 
erythropoiesis by mTORC1-mediated protein translation. Nat Cell Biol, 19, 626-
638. 

LOAYZA-PUCH, F., ROOIJERS, K., BUIL, L. C., ZIJLSTRA, J., OUDE VRIELINK, J. F., LOPES, 
R., UGALDE, A. P., VAN BREUGEL, P., HOFLAND, I., WESSELING, J., VAN 
TELLINGEN, O., BEX, A. & AGAMI, R. 2016. Tumour-specific proline vulnerability 
uncovered by differential ribosome codon reading. Nature, 530, 490-4. 

LOMBARD, D. B., ALT, F. W., CHENG, H. L., BUNKENBORG, J., STREEPER, R. S., 
MOSTOSLAVSKY, R., KIM, J., YANCOPOULOS, G., VALENZUELA, D., MURPHY, A., 
YANG, Y., CHEN, Y., HIRSCHEY, M. D., BRONSON, R. T., HAIGIS, M., GUARENTE, L. 
P., FARESE, R. V., JR., WEISSMAN, S., VERDIN, E. & SCHWER, B. 2007. Mammalian 



268 
 

Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell 
Biol, 27, 8807-14. 

LOZOYA, O. A., WANG, T., GRENET, D., WOLFGANG, T. C., SOBHANY, M., GANINI DA 
SILVA, D., RIADI, G., CHANDEL, N., WOYCHIK, R. P. & SANTOS, J. H. 2019. 
Mitochondrial acetyl-CoA reversibly regulates locus-specific histone acetylation 
and gene expression. Life Sci Alliance, 2. 

LU, C. W., LIN, S. C., CHEN, K. F., LAI, Y. Y. & TSAI, S. J. 2008. Induction of pyruvate 
dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch 
and drug resistance. J Biol Chem, 283, 28106-14. 

LU, C. W., LIN, S. C., CHIEN, C. W., LIN, S. C., LEE, C. T., LIN, B. W., LEE, J. C. & TSAI, 
S. J. 2011. Overexpression of pyruvate dehydrogenase kinase 3 increases drug 
resistance and early recurrence in colon cancer. Am J Pathol, 179, 1405-14. 

LU, P., WEAVER, V. M. & WERB, Z. 2012. The extracellular matrix: a dynamic niche in 
cancer progression. J Cell Biol, 196, 395-406. 

LUCERO, H. A. & KAGAN, H. M. 2006. Lysyl oxidase: an oxidative enzyme and effector of 
cell function. Cell Mol Life Sci, 63, 2304-16. 

LUGA, V., ZHANG, L., VILORIA-PETIT, A. M., OGUNJIMI, A. A., INANLOU, M. R., CHIU, E., 
BUCHANAN, M., HOSEIN, A. N., BASIK, M. & WRANA, J. L. 2012. Exosomes mediate 
stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell 
migration. Cell, 151, 1542-56. 

LYNG, H., BROVIG, R. S., SVENDSRUD, D. H., HOLM, R., KAALHUS, O., KNUTSTAD, K., 
OKSEFJELL, H., SUNDFOR, K., KRISTENSEN, G. B. & STOKKE, T. 2006. Gene 
expressions and copy numbers associated with metastatic phenotypes of uterine 
cervical cancer. BMC Genomics, 7, 268. 

MACKAY, G. M., ZHENG, L., VAN DEN BROEK, N. J. & GOTTLIEB, E. 2015. Analysis of Cell 
Metabolism Using LC-MS and Isotope Tracers. Methods Enzymol, 561, 171-96. 

MACKENZIE, E. D., SELAK, M. A., TENNANT, D. A., PAYNE, L. J., CROSBY, S., FREDERIKSEN, 
C. M., WATSON, D. G. & GOTTLIEB, E. 2007. Cell-permeating alpha-ketoglutarate 
derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. 
Mol Cell Biol, 27, 3282-9. 

MADSEN, C. D., PEDERSEN, J. T., VENNING, F. A., SINGH, L. B., MOEENDARBARY, E., 
CHARRAS, G., COX, T. R., SAHAI, E. & ERLER, J. T. 2015. Hypoxia and loss of PHD2 
inactivate stromal fibroblasts to decrease tumour stiffness and metastasis. EMBO 
Rep, 16, 1394-408. 

MAEDA, T., SAKABE, T., SUNAGA, A., SAKAI, K., RIVERA, A. L., KEENE, D. R., SASAKI, T., 
STAVNEZER, E., IANNOTTI, J., SCHWEITZER, R., ILIC, D., BASKARAN, H. & SAKAI, 
T. 2011. Conversion of mechanical force into TGF-beta-mediated biochemical 
signals. Curr Biol, 21, 933-41. 

MAHMOOD, S., BIRKAYA, B., RIDEOUT, T. C. & PATEL, M. S. 2016. Lack of mitochondria-
generated acetyl-CoA by pyruvate dehydrogenase complex downregulates gene 
expression in the hepatic de novo lipogenic pathway. Am J Physiol Endocrinol 
Metab, 311, E117-27. 

MARGUERON, R., TROJER, P. & REINBERG, D. 2005. The key to development: interpreting 
the histone code? Curr Opin Genet Dev, 15, 163-76. 

MARIATHASAN, S., TURLEY, S. J., NICKLES, D., CASTIGLIONI, A., YUEN, K., WANG, Y., 
KADEL, E. E., III, KOEPPEN, H., ASTARITA, J. L., CUBAS, R., JHUNJHUNWALA, S., 
BANCHEREAU, R., YANG, Y., GUAN, Y., CHALOUNI, C., ZIAI, J., SENBABAOGLU, Y., 
SANTORO, S., SHEINSON, D., HUNG, J., GILTNANE, J. M., PIERCE, A. A., MESH, K., 
LIANOGLOU, S., RIEGLER, J., CARANO, R. A. D., ERIKSSON, P., HOGLUND, M., 
SOMARRIBA, L., HALLIGAN, D. L., VAN DER HEIJDEN, M. S., LORIOT, Y., 
ROSENBERG, J. E., FONG, L., MELLMAN, I., CHEN, D. S., GREEN, M., DERLETH, C., 
FINE, G. D., HEGDE, P. S., BOURGON, R. & POWLES, T. 2018. TGFbeta attenuates 
tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature, 
554, 544-548. 

MARTINEZ-OUTSCHOORN, U. E., BALLIET, R. M., LIN, Z., WHITAKER-MENEZES, D., 
HOWELL, A., SOTGIA, F. & LISANTI, M. P. 2012. Hereditary ovarian cancer and 
two-compartment tumor metabolism: epithelial loss of BRCA1 induces hydrogen 



269 
 

peroxide production, driving oxidative stress and NFkappaB activation in the tumor 
stroma. Cell Cycle, 11, 4152-66. 

MARTINEZ-OUTSCHOORN, U. E., GOLDBERG, A., LIN, Z., KO, Y. H., FLOMENBERG, N., 
WANG, C., PAVLIDES, S., PESTELL, R. G., HOWELL, A., SOTGIA, F. & LISANTI, M. 
P. 2011a. Anti-estrogen resistance in breast cancer is induced by the tumor 
microenvironment and can be overcome by inhibiting mitochondrial function in 
epithelial cancer cells. Cancer Biol Ther, 12, 924-38. 

MARTINEZ-OUTSCHOORN, U. E., LIN, Z., TRIMMER, C., FLOMENBERG, N., WANG, C., 
PAVLIDES, S., PESTELL, R. G., HOWELL, A., SOTGIA, F. & LISANTI, M. P. 2011b. 
Cancer cells metabolically "fertilize" the tumor microenvironment with hydrogen 
peroxide, driving the Warburg effect: implications for PET imaging of human 
tumors. Cell Cycle, 10, 2504-20. 

MARTINEZ-OUTSCHOORN, U. E., PAVLIDES, S., WHITAKER-MENEZES, D., DAUMER, K. M., 
MILLIMAN, J. N., CHIAVARINA, B., MIGNECO, G., WITKIEWICZ, A. K., MARTINEZ-
CANTARIN, M. P., FLOMENBERG, N., HOWELL, A., PESTELL, R. G., LISANTI, M. P. 
& SOTGIA, F. 2010a. Tumor cells induce the cancer associated fibroblast 
phenotype via caveolin-1 degradation: implications for breast cancer and DCIS 
therapy with autophagy inhibitors. Cell Cycle, 9, 2423-33. 

MARTINEZ-OUTSCHOORN, U. E., TRIMMER, C., LIN, Z., WHITAKER-MENEZES, D., 
CHIAVARINA, B., ZHOU, J., WANG, C., PAVLIDES, S., MARTINEZ-CANTARIN, M. P., 
CAPOZZA, F., WITKIEWICZ, A. K., FLOMENBERG, N., HOWELL, A., PESTELL, R. G., 
CARO, J., LISANTI, M. P. & SOTGIA, F. 2010b. Autophagy in cancer associated 
fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and 
NFkappaB activation in the tumor stromal microenvironment. Cell Cycle, 9, 3515-
33. 

MAUDE, S. L. 2018. Tisagenlecleucel in pediatric patients with acute lymphoblastic 
leukemia. Clin Adv Hematol Oncol, 16, 664-666. 

MCFATE, T., MOHYELDIN, A., LU, H., THAKAR, J., HENRIQUES, J., HALIM, N. D., WU, H., 
SCHELL, M. J., TSANG, T. M., TEAHAN, O., ZHOU, S., CALIFANO, J. A., JEOUNG, 
N. H., HARRIS, R. A. & VERMA, A. 2008. Pyruvate dehydrogenase complex activity 
controls metabolic and malignant phenotype in cancer cells. J Biol Chem, 283, 
22700-8. 

MCLEAN, P., KUNJARA, S., GREENBAUM, A. L., GUMAA, K., LOPEZ-PRADOS, J., MARTIN-
LOMAS, M. & RADEMACHER, T. W. 2008. Reciprocal control of pyruvate 
dehydrogenase kinase and phosphatase by inositol phosphoglycans. Dynamic state 
set by "push-pull" system. J Biol Chem, 283, 33428-36. 

MERCER, P. F., WOODCOCK, H. V., ELEY, J. D., PLATE, M., SULIKOWSKI, M. G., 
DURRENBERGER, P. F., FRANKLIN, L., NANTHAKUMAR, C. B., MAN, Y., GENOVESE, 
F., MCANULTY, R. J., YANG, S., MAHER, T. M., NICHOLSON, A. G., BLANCHARD, A. 
D., MARSHALL, R. P., LUKEY, P. T. & CHAMBERS, R. C. 2016. Exploration of a 
potent PI3 kinase/mTOR inhibitor as a novel anti-fibrotic agent in IPF. Thorax, 71, 
701-11. 

MEYAARD, L. 2008. The inhibitory collagen receptor LAIR-1 (CD305). J Leukoc Biol, 83, 
799-803. 

MIAO, L., WANG, Y., LIN, C. M., XIONG, Y., CHEN, N., ZHANG, L., KIM, W. Y. & HUANG, 
L. 2015. Nanoparticle modulation of the tumor microenvironment enhances 
therapeutic efficacy of cisplatin. J Control Release, 217, 27-41. 

MICHELAKIS, E. D., WEBSTER, L. & MACKEY, J. R. 2008. Dichloroacetate (DCA) as a 
potential metabolic-targeting therapy for cancer. Br J Cancer, 99, 989-94. 

MILNE, K., SUN, J., ZAAL, E. A., MOWAT, J., CELIE, P. H. N., FISH, A., BERKERS, C. R., 
FORLANI, G., LOAYZA-PUCH, F., JAMIESON, C. & AGAMI, R. 2019. A fragment-like 
approach to PYCR1 inhibition. Bioorg Med Chem Lett. 

MOORE-SMITH, L. D., ISAYEVA, T., LEE, J. H., FROST, A. & PONNAZHAGAN, S. 2017. 
Silencing of TGF-beta1 in tumor cells impacts MMP-9 in tumor microenvironment. 
Sci Rep, 7, 8678. 



270 
 
MOORMAN, A. M., VINK, R., HEIJMANS, H. J., VAN DER PALEN, J. & KOUWENHOVEN, E. A. 

2012. The prognostic value of tumour-stroma ratio in triple-negative breast 
cancer. Eur J Surg Oncol, 38, 307-13. 

NABA, A., CLAUSER, K. R., LAMAR, J. M., CARR, S. A. & HYNES, R. O. 2014. Extracellular 
matrix signatures of human mammary carcinoma identify novel metastasis 
promoters. Elife, 3, e01308. 

NAGASAKI, T., HARA, M., NAKANISHI, H., TAKAHASHI, H., SATO, M. & TAKEYAMA, H. 2014. 
Interleukin-6 released by colon cancer-associated fibroblasts is critical for tumour 
angiogenesis: anti-interleukin-6 receptor antibody suppressed angiogenesis and 
inhibited tumour-stroma interaction. Br J Cancer, 110, 469-78. 

NAKAI, N., OBAYASHI, M., NAGASAKI, M., SATO, Y., FUJITSUKA, N., YOSHIMURA, A., 
MIYAZAKI, Y., SUGIYAMA, S. & SHIMOMURA, Y. 2000. The abundance of mRNAs for 
pyruvate dehydrogenase kinase isoenzymes in brain regions of young and aged 
rats. Life Sci, 68, 497-503. 

NAKAYASU, E. S., BURNET, M. C., WALUKIEWICZ, H. E., WILKINS, C. S., SHUKLA, A. K., 
BROOKS, S., PLUTZ, M. J., LEE, B. D., SCHILLING, B., WOLFE, A. J., MULLER, S., 
KIRBY, J. R., RAO, C. V., CORT, J. R. & PAYNE, S. H. 2017. Ancient Regulatory 
Role of Lysine Acetylation in Central Metabolism. MBio, 8. 

NAVAB, R., STRUMPF, D., TO, C., PASKO, E., KIM, K. S., PARK, C. J., HAI, J., LIU, J., 
JONKMAN, J., BARCZYK, M., BANDARCHI, B., WANG, Y. H., VENKAT, K., 
IBRAHIMOV, E., PHAM, N. A., NG, C., RADULOVICH, N., ZHU, C. Q., PINTILIE, M., 
WANG, D., LU, A., JURISICA, I., WALKER, G. C., GULLBERG, D. & TSAO, M. S. 2015. 
Integrin α11β1 regulates cancer stromal stiffness and promotes tumorigenicity and 
metastasis in non-small cell lung cancer. Oncogene, 35, 1899-1908. 

NETTI, P. A., BERK, D. A., SWARTZ, M. A., GRODZINSKY, A. J. & JAIN, R. K. 2000. Role of 
extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res, 
60, 2497-503. 

NIGDELIOGLU, R., HAMANAKA, R. B., MELITON, A. Y., O'LEARY, E., WITT, L. J., CHO, T., 
SUN, K., BONHAM, C., WU, D., WOODS, P. S., HUSAIN, A. N., WOLFGEHER, D., 
DULIN, N. O., CHANDEL, N. S. & MUTLU, G. M. 2016. Transforming Growth Factor 
(TGF)-beta Promotes de Novo Serine Synthesis for Collagen Production. J Biol 
Chem, 291, 27239-27251. 

NIJHUIS, A., BIANCHERI, P., LEWIS, A., BISHOP, C. L., GIUFFRIDA, P., CHAN, C., FEAKINS, 
R., POULSOM, R., DI SABATINO, A., CORAZZA, G. R., MACDONALD, T. T., LINDSAY, 
J. O. & SILVER, A. R. 2014. In Crohn's disease fibrosis-reduced expression of the 
miR-29 family enhances collagen expression in intestinal fibroblasts. Clin Sci 
(Lond), 127, 341-50. 

NILSSON, R., JAIN, M., MADHUSUDHAN, N., SHEPPARD, N. G., STRITTMATTER, L., KAMPF, 
C., HUANG, J., ASPLUND, A. & MOOTHA, V. K. 2014. Metabolic enzyme expression 
highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. 
Nat Commun, 5, 3128. 

NISSEN, N. I., KARSDAL, M. & WILLUMSEN, N. 2019. Collagens and Cancer associated 
fibroblasts in the reactive stroma and its relation to Cancer biology. J Exp Clin 
Cancer Res, 38, 115. 

NURAL-GUVENER, H., ZAKHAROVA, L., FEEHERY, L., SLJUKIC, S. & GABALLA, M. 2015. 
Anti-Fibrotic Effects of Class I HDAC Inhibitor, Mocetinostat Is Associated with IL-
6/Stat3 Signaling in Ischemic Heart Failure. Int J Mol Sci, 16, 11482-99. 

O'CONNELL, F. C. & MARTIN, F. 2000. Laminin-rich extracellular matrix association with 
mammary epithelial cells suppresses Brca1 expression. Cell Death Differ, 7, 360-
7. 

O'CONNOR, R. S., HAO, X., SHEN, K., BASHOUR, K., AKIMOVA, T., HANCOCK, W. W., KAM, 
L. C. & MILONE, M. C. 2012. Substrate rigidity regulates human T cell activation 
and proliferation. J Immunol, 189, 1330-9. 

OHLUND, D., HANDLY-SANTANA, A., BIFFI, G., ELYADA, E., ALMEIDA, A. S., PONZ-SARVISE, 
M., CORBO, V., ONI, T. E., HEARN, S. A., LEE, E. J., CHIO, II, HWANG, C. I., TIRIAC, 
H., BAKER, L. A., ENGLE, D. D., FEIG, C., KULTTI, A., EGEBLAD, M., FEARON, D. 
T., CRAWFORD, J. M., CLEVERS, H., PARK, Y. & TUVESON, D. A. 2017. Distinct 



271 
 

populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. 
J Exp Med, 214, 579-596. 

OLIVARES, O., MAYERS, J. R., GOUIRAND, V., TORRENCE, M. E., GICQUEL, T., BORGE, L., 
LAC, S., ROQUES, J., LAVAUT, M. N., BERTHEZENE, P., RUBIS, M., SECQ, V., 
GARCIA, S., MOUTARDIER, V., LOMBARDO, D., IOVANNA, J. L., TOMASINI, R., 
GUILLAUMOND, F., VANDER HEIDEN, M. G. & VASSEUR, S. 2017. Collagen-derived 
proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient 
limited conditions. Nat Commun, 8, 16031. 

OLUMI, A. F., GROSSFELD, G. D., HAYWARD, S. W., CARROLL, P. R., TLSTY, T. D. & 
CUNHA, G. R. 1999. Carcinoma-associated fibroblasts direct tumor progression of 
initiated human prostatic epithelium. Cancer Res, 59, 5002-11. 

ORIMO, A., GUPTA, P. B., SGROI, D. C., ARENZANA-SEISDEDOS, F., DELAUNAY, T., NAEEM, 
R., CAREY, V. J., RICHARDSON, A. L. & WEINBERG, R. A. 2005. Stromal fibroblasts 
present in invasive human breast carcinomas promote tumor growth and 
angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 121, 335-48. 

OZDEMIR, B. C., PENTCHEVA-HOANG, T., CARSTENS, J. L., ZHENG, X., WU, C. C., 
SIMPSON, T. R., LAKLAI, H., SUGIMOTO, H., KAHLERT, C., NOVITSKIY, S. V., DE 
JESUS-ACOSTA, A., SHARMA, P., HEIDARI, P., MAHMOOD, U., CHIN, L., MOSES, H. 
L., WEAVER, V. M., MAITRA, A., ALLISON, J. P., LEBLEU, V. S. & KALLURI, R. 2014. 
Depletion of carcinoma-associated fibroblasts and fibrosis induces 
immunosuppression and accelerates pancreas cancer with reduced survival. 
Cancer Cell, 25, 719-34. 

OZDEN, O., PARK, S. H., WAGNER, B. A., SONG, H. Y., ZHU, Y., VASSILOPOULOS, A., 
JUNG, B., BUETTNER, G. R. & GIUS, D. 2014. SIRT3 deacetylates and increases 
pyruvate dehydrogenase activity in cancer cells. Free Radic Biol Med, 76, 163-172. 

PAN, X., CHEN, Z., HUANG, R., YAO, Y. & MA, G. 2013. Transforming growth factor beta1 
induces the expression of collagen type I by DNA methylation in cardiac 
fibroblasts. PLoS One, 8, e60335. 

PANG, W., SU, J., WANG, Y., FENG, H., DAI, X., YUAN, Y., CHEN, X. & YAO, W. 2015. 
Pancreatic cancer-secreted miR-155 implicates in the conversion from normal 
fibroblasts to cancer-associated fibroblasts. Cancer Sci, 106, 1362-9. 

PAPANDREOU, I., CAIRNS, R. A., FONTANA, L., LIM, A. L. & DENKO, N. C. 2006. HIF-1 
mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen 
consumption. Cell Metab, 3, 187-97. 

PARDEE, T. S., ANDERSON, R. G., PLADNA, K. M., ISOM, S., GHIRALDELI, L. P., MILLER, L. 
D., CHOU, J. W., JIN, G., ZHANG, W., ELLIS, L. R., BERENZON, D., HOWARD, D. 
S., HURD, D. D., MANUEL, M., DRALLE, S., LYERLY, S. & POWELL, B. L. 2018. A 
Phase I Study of CPI-613 in Combination with High-Dose Cytarabine and 
Mitoxantrone for Relapsed or Refractory Acute Myeloid Leukemia. Clin Cancer Res, 
24, 2060-2073. 

PATE, K. T., STRINGARI, C., SPROWL-TANIO, S., WANG, K., TESLAA, T., HOVERTER, N. P., 
MCQUADE, M. M., GARNER, C., DIGMAN, M. A., TEITELL, M. A., EDWARDS, R. A., 
GRATTON, E. & WATERMAN, M. L. 2014. Wnt signaling directs a metabolic program 
of glycolysis and angiogenesis in colon cancer. EMBO J, 33, 1454-73. 

PATEL, M. S. & KOROTCHKINA, L. G. 2001. Regulation of mammalian pyruvate 
dehydrogenase complex by phosphorylation: complexity of multiple 
phosphorylation sites and kinases. Exp Mol Med, 33, 191-7. 

PATEL, M. S. & KOROTCHKINA, L. G. 2006. Regulation of the pyruvate dehydrogenase 
complex. Biochem Soc Trans, 34, 217-22. 

PATEL, N. R., BOLE, M., CHEN, C., HARDIN, C. C., KHO, A. T., MIH, J., DENG, L., BUTLER, 
J., TSCHUMPERLIN, D., FREDBERG, J. J., KRISHNAN, R. & KOZIEL, H. 2012. Cell 
elasticity determines macrophage function. PLoS One, 7, e41024. 

PAULSSON, J., SJOBLOM, T., MICKE, P., PONTEN, F., LANDBERG, G., HELDIN, C. H., 
BERGH, J., BRENNAN, D. J., JIRSTROM, K. & OSTMAN, A. 2009. Prognostic 
significance of stromal platelet-derived growth factor beta-receptor expression in 
human breast cancer. Am J Pathol, 175, 334-41. 



272 
 
PAVLIDES, S., TSIRIGOS, A., MIGNECO, G., WHITAKER-MENEZES, D., CHIAVARINA, B., 

FLOMENBERG, N., FRANK, P. G., CASIMIRO, M. C., WANG, C., PESTELL, R. G., 
MARTINEZ-OUTSCHOORN, U. E., HOWELL, A., SOTGIA, F. & LISANTI, M. P. 2010a. 
The autophagic tumor stroma model of cancer: Role of oxidative stress and ketone 
production in fueling tumor cell metabolism. Cell Cycle, 9, 3485-505. 

PAVLIDES, S., TSIRIGOS, A., VERA, I., FLOMENBERG, N., FRANK, P. G., CASIMIRO, M. C., 
WANG, C., FORTINA, P., ADDYA, S., PESTELL, R. G., MARTINEZ-OUTSCHOORN, U. 
E., SOTGIA, F. & LISANTI, M. P. 2010b. Loss of stromal caveolin-1 leads to oxidative 
stress, mimics hypoxia and drives inflammation in the tumor microenvironment, 
conferring the "reverse Warburg effect": a transcriptional informatics analysis with 
validation. Cell Cycle, 9, 2201-19. 

PAVLIDES, S., TSIRIGOS, A., VERA, I., FLOMENBERG, N., FRANK, P. G., CASIMIRO, M. C., 
WANG, C., PESTELL, R. G., MARTINEZ-OUTSCHOORN, U. E., HOWELL, A., SOTGIA, 
F. & LISANTI, M. P. 2010c. Transcriptional evidence for the "Reverse Warburg 
Effect" in human breast cancer tumor stroma and metastasis: similarities with 
oxidative stress, inflammation, Alzheimer's disease, and "Neuron-Glia Metabolic 
Coupling". Aging (Albany NY), 2, 185-99. 

PAVLIDES, S., VERA, I., GANDARA, R., SNEDDON, S., PESTELL, R. G., MERCIER, I., 
MARTINEZ-OUTSCHOORN, U. E., WHITAKER-MENEZES, D., HOWELL, A., SOTGIA, F. 
& LISANTI, M. P. 2012. Warburg meets autophagy: cancer-associated fibroblasts 
accelerate tumor growth and metastasis via oxidative stress, mitophagy, and 
aerobic glycolysis. Antioxid Redox Signal, 16, 1264-84. 

PAVLIDES, S., WHITAKER-MENEZES, D., CASTELLO-CROS, R., FLOMENBERG, N., 
WITKIEWICZ, A. K., FRANK, P. G., CASIMIRO, M. C., WANG, C., FORTINA, P., 
ADDYA, S., PESTELL, R. G., MARTINEZ-OUTSCHOORN, U. E., SOTGIA, F. & LISANTI, 
M. P. 2009. The reverse Warburg effect: aerobic glycolysis in cancer associated 
fibroblasts and the tumor stroma. Cell Cycle, 8, 3984-4001. 

PEROU, C. M., SORLIE, T., EISEN, M. B., VAN DE RIJN, M., JEFFREY, S. S., REES, C. A., 
POLLACK, J. R., ROSS, D. T., JOHNSEN, H., AKSLEN, L. A., FLUGE, O., 
PERGAMENSCHIKOV, A., WILLIAMS, C., ZHU, S. X., LONNING, P. E., BORRESEN-
DALE, A. L., BROWN, P. O. & BOTSTEIN, D. 2000. Molecular portraits of human 
breast tumours. Nature, 406, 747-52. 

PERRI, R. T., KAY, N. E., MCCARTHY, J., VESSELLA, R. L., JACOB, H. S. & FURCHT, L. T. 
1982. Fibronectin enhances in vitro monocyte-macrophage-mediated tumoricidal 
activity. Blood, 60, 430-5. 

PETERSEN, O. W., LIND NIELSEN, H., GUDJONSSON, T., VILLADSEN, R., RONNOV-JESSEN, 
L. & BISSELL, M. J. 2001. The plasticity of human breast carcinoma cells is more 
than epithelial to mesenchymal conversion. Breast Cancer Res, 3, 213-7. 

PICKUP, M. W., MOUW, J. K. & WEAVER, V. M. 2014. The extracellular matrix modulates 
the hallmarks of cancer. EMBO Rep, 15, 1243-53. 

PIDSLEY, R., LAWRENCE, M. G., ZOTENKO, E., NIRANJAN, B., STATHAM, A., SONG, J., 
CHABANON, R. M., QU, W., WANG, H., RICHARDS, M., NAIR, S. S., ARMSTRONG, N. 
J., NIM, H. T., PAPARGIRIS, M., BALANATHAN, P., FRENCH, H., PETERS, T., 
NORDEN, S., RYAN, A., PEDERSEN, J., KENCH, J., DALY, R. J., HORVATH, L. G., 
STRICKER, P., FRYDENBERG, M., TAYLOR, R. A., STIRZAKER, C., RISBRIDGER, G. P. 
& CLARK, S. J. 2018. Enduring epigenetic landmarks define the cancer 
microenvironment. Genome Res, 28, 625-638. 

PIETROCOLA, F., GALLUZZI, L., BRAVO-SAN PEDRO, J. M., MADEO, F. & KROEMER, G. 2015. 
Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab, 21, 
805-21. 

PILEGAARD, H. & NEUFER, P. D. 2004. Transcriptional regulation of pyruvate 
dehydrogenase kinase 4 in skeletal muscle during and after exercise. Proc Nutr 
Soc, 63, 221-6. 

POSSEMATO, R., MARKS, K. M., SHAUL, Y. D., PACOLD, M. E., KIM, D., BIRSOY, K., 
SETHUMADHAVAN, S., WOO, H. K., JANG, H. G., JHA, A. K., CHEN, W. W., 
BARRETT, F. G., STRANSKY, N., TSUN, Z. Y., COWLEY, G. S., BARRETINA, J., 
KALAANY, N. Y., HSU, P. P., OTTINA, K., CHAN, A. M., YUAN, B., GARRAWAY, L. 



273 
 

A., ROOT, D. E., MINO-KENUDSON, M., BRACHTEL, E. F., DRIGGERS, E. M. & 
SABATINI, D. M. 2011. Functional genomics reveal that the serine synthesis 
pathway is essential in breast cancer. Nature, 476, 346-50. 

POTAPOVA, I. A., EL-MAGHRABI, M. R., DORONIN, S. V. & BENJAMIN, W. B. 2000. 
Phosphorylation of recombinant human ATP:citrate lyase by cAMP-dependent 
protein kinase abolishes homotropic allosteric regulation of the enzyme by citrate 
and increases the enzyme activity. Allosteric activation of ATP:citrate lyase by 
phosphorylated sugars. Biochemistry, 39, 1169-79. 

POWELL, S. 2015. Study of DCA (Dichloroacetate) in Combination With Cisplatin and 
Definitive Radiation in Head and Neck Carcinoma [Online]. Available: 
https://ClinicalTrials.gov/show/NCT01386632 [Accessed]. 

PRATT, M. L. & ROCHE, T. E. 1979. Mechanism of pyruvate inhibition of kidney pyruvate 
dehydrogenasea kinase and synergistic inhibition by pyruvate and ADP. J Biol 
Chem, 254, 7191-6. 

PROVENZANO, P. P., INMAN, D. R., ELICEIRI, K. W., KNITTEL, J. G., YAN, L., RUEDEN, C. 
T., WHITE, J. G. & KEELY, P. J. 2008. Collagen density promotes mammary tumor 
initiation and progression. BMC Med, 6, 11. 

PROVENZANO, P. P. & KEELY, P. J. 2011. Mechanical signaling through the cytoskeleton 
regulates cell proliferation by coordinated focal adhesion and Rho GTPase 
signaling. J Cell Sci, 124, 1195-205. 

QUANTE, M., TU, S. P., TOMITA, H., GONDA, T., WANG, S. S., TAKASHI, S., BAIK, G. H., 
SHIBATA, W., DIPRETE, B., BETZ, K. S., FRIEDMAN, R., VARRO, A., TYCKO, B. & 
WANG, T. C. 2011. Bone marrow-derived myofibroblasts contribute to the 
mesenchymal stem cell niche and promote tumor growth. Cancer Cell, 19, 257-
72. 

RABINOVICH, G. A., GABRILOVICH, D. & SOTOMAYOR, E. M. 2007. Immunosuppressive 
strategies that are mediated by tumor cells. Annu Rev Immunol, 25, 267-96. 

RAISNER, R., KHARBANDA, S., JIN, L., JENG, E., CHAN, E., MERCHANT, M., HAVERTY, P. 
M., BAINER, R., CHEUNG, T., ARNOTT, D., FLYNN, E. M., ROMERO, F. A., 
MAGNUSON, S. & GASCOIGNE, K. E. 2018. Enhancer Activity Requires CBP/P300 
Bromodomain-Dependent Histone H3K27 Acetylation. Cell Rep, 24, 1722-1729. 

RAJAGOPALAN, K. N., EGNATCHIK, R. A., CALVARUSO, M. A., WASTI, A. T., PADANAD, M. 
S., BOROUGHS, L. K., KO, B., HENSLEY, C. T., ACAR, M., HU, Z., JIANG, L., 
PASCUAL, J. M., SCAGLIONI, P. P. & DEBERARDINIS, R. J. 2015. Metabolic plasticity 
maintains proliferation in pyruvate dehydrogenase deficient cells. Cancer Metab, 
3, 7. 

RAJSHANKAR, D., WANG, Y. & MCCULLOCH, C. A. 2017. Osteogenesis requires FAK-
dependent collagen synthesis by fibroblasts and osteoblasts. FASEB J, 31, 937-953. 

RANDLE, P. J. 1986. Fuel selection in animals. Biochem Soc Trans, 14, 799-806. 
RAZ, Y., COHEN, N., SHANI, O., BELL, R. E., NOVITSKIY, S. V., ABRAMOVITZ, L., LEVY, C., 

MILYAVSKY, M., LEIDER-TREJO, L., MOSES, H. L., GRISARU, D. & EREZ, N. 2018. 
Bone marrow–derived fibroblasts are a functionally distinct stromal cell population 
in breast cancer. The Journal of Experimental Medicine, 215, 3075-3093. 

REN, J., GUO, H., WU, H., TIAN, T., DONG, D., ZHANG, Y., SUI, Y., ZHANG, Y., ZHAO, D., 
WANG, S., LI, Z., ZHANG, X., LIU, R., QIAN, J., WEI, H., JIANG, W., LIU, Y. & LI, 
Y. 2015. GPER in CAFs regulates hypoxia-driven breast cancer invasion in a CTGF-
dependent manner. Oncol Rep, 33, 1929-37. 

REVERSADE, B., ESCANDE-BEILLARD, N., DIMOPOULOU, A., FISCHER, B., CHNG, S. C., LI, 
Y., SHBOUL, M., THAM, P. Y., KAYSERILI, H., AL-GAZALI, L., SHAHWAN, M., 
BRANCATI, F., LEE, H., O'CONNOR, B. D., SCHMIDT-VON KEGLER, M., MERRIMAN, 
B., NELSON, S. F., MASRI, A., ALKAZALEH, F., GUERRA, D., FERRARI, P., NANDA, 
A., RAJAB, A., MARKIE, D., GRAY, M., NELSON, J., GRIX, A., SOMMER, A., 
SAVARIRAYAN, R., JANECKE, A. R., STEICHEN, E., SILLENCE, D., HAUSSER, I., 
BUDDE, B., NURNBERG, G., NURNBERG, P., SEEMANN, P., KUNKEL, D., ZAMBRUNO, 
G., DALLAPICCOLA, B., SCHUELKE, M., ROBERTSON, S., HAMAMY, H., WOLLNIK, B., 
VAN MALDERGEM, L., MUNDLOS, S. & KORNAK, U. 2009. Mutations in PYCR1 cause 
cutis laxa with progeroid features. Nat Genet, 41, 1016-21. 

https://clinicaltrials.gov/show/NCT01386632


274 
 
RHIM, A. D., OBERSTEIN, P. E., THOMAS, D. H., MIREK, E. T., PALERMO, C. F., SASTRA, S. 

A., DEKLEVA, E. N., SAUNDERS, T., BECERRA, C. P., TATTERSALL, I. W., 
WESTPHALEN, C. B., KITAJEWSKI, J., FERNANDEZ-BARRENA, M. G., FERNANDEZ-
ZAPICO, M. E., IACOBUZIO-DONAHUE, C., OLIVE, K. P. & STANGER, B. Z. 2014. 
Stromal elements act to restrain, rather than support, pancreatic ductal 
adenocarcinoma. Cancer Cell, 25, 735-47. 

RICE, A. J., CORTES, E., LACHOWSKI, D., CHEUNG, B. C. H., KARIM, S. A., MORTON, J. P. 
& DEL RIO HERNANDEZ, A. 2017. Matrix stiffness induces epithelial-mesenchymal 
transition and promotes chemoresistance in pancreatic cancer cells. Oncogenesis, 
6, e352. 

RICHARDSON, A. D., YANG, C., OSTERMAN, A. & SMITH, J. W. 2008. Central carbon 
metabolism in the progression of mammary carcinoma. Breast Cancer Res Treat, 
110, 297-307. 

RODEMANN, H. P. & MULLER, G. A. 1991. Characterization of human renal fibroblasts in 
health and disease: II. In vitro growth, differentiation, and collagen synthesis of 
fibroblasts from kidneys with interstitial fibrosis. Am J Kidney Dis, 17, 684-6. 

RODRIGUEZ-ENRIQUEZ, S., CARRENO-FUENTES, L., GALLARDO-PEREZ, J. C., SAAVEDRA, 
E., QUEZADA, H., VEGA, A., MARIN-HERNANDEZ, A., OLIN-SANDOVAL, V., TORRES-
MARQUEZ, M. E. & MORENO-SANCHEZ, R. 2010. Oxidative phosphorylation is 
impaired by prolonged hypoxia in breast and possibly in cervix carcinoma. Int J 
Biochem Cell Biol, 42, 1744-51. 

RONNOV-JESSEN, L. & PETERSEN, O. W. 1993. Induction of alpha-smooth muscle actin by 
transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. 
Implications for myofibroblast generation in breast neoplasia. Lab Invest, 68, 696-
707. 

ROSS, D. T., SCHERF, U., EISEN, M. B., PEROU, C. M., REES, C., SPELLMAN, P., IYER, V., 
JEFFREY, S. S., VAN DE RIJN, M., WALTHAM, M., PERGAMENSCHIKOV, A., LEE, J. 
C., LASHKARI, D., SHALON, D., MYERS, T. G., WEINSTEIN, J. N., BOTSTEIN, D. & 
BROWN, P. O. 2000. Systematic variation in gene expression patterns in human 
cancer cell lines. Nat Genet, 24, 227-35. 

ROSWALL, P., BOCCI, M., BARTOSCHEK, M., LI, H., KRISTIANSEN, G., JANSSON, S., LEHN, 
S., SJOLUND, J., REID, S., LARSSON, C., ERIKSSON, P., ANDERBERG, C., CORTEZ, 
E., SAAL, L. H., ORSMARK-PIETRAS, C., CORDERO, E., HALLER, B. K., HAKKINEN, 
J., BURVENICH, I. J. G., LIM, E., ORIMO, A., HOGLUND, M., RYDEN, L., MOCH, H., 
SCOTT, A. M., ERIKSSON, U. & PIETRAS, K. 2018. Microenvironmental control of 
breast cancer subtype elicited through paracrine platelet-derived growth factor-
CC signaling. Nat Med, 24, 463-473. 

ROW, S., LIU, Y., ALIMPERTI, S., AGARWAL, S. K. & ANDREADIS, S. T. 2016. Cadherin-11 
is a novel regulator of extracellular matrix synthesis and tissue mechanics. J Cell 
Sci, 129, 2950-61. 

ROZENCHAN, P. B., CARRARO, D. M., BRENTANI, H., DE CARVALHO MOTA, L. D., BASTOS, 
E. P., E FERREIRA, E. N., TORRES, C. H., KATAYAMA, M. L., ROELA, R. A., LYRA, 
E. C., SOARES, F. A., FOLGUEIRA, M. A., GOES, J. C. & BRENTANI, M. M. 2009. 
Reciprocal changes in gene expression profiles of cocultured breast epithelial cells 
and primary fibroblasts. Int J Cancer, 125, 2767-77. 

SADLER, T., SCARPA, M., RIEDER, F., WEST, G. & STYLIANOU, E. 2013. Cytokine-induced 
chromatin modifications of the type I collagen alpha 2 gene during intestinal 
endothelial-to-mesenchymal transition. Inflamm Bowel Dis, 19, 1354-64. 

SAMUEL, D., KUMAR, T. K., GANESH, G., JAYARAMAN, G., YANG, P. W., CHANG, M. M., 
TRIVEDI, V. D., WANG, S. L., HWANG, K. C., CHANG, D. K. & YU, C. 2000. Proline 
inhibits aggregation during protein refolding. Protein Sci, 9, 344-52. 

SANDLER, A., GRAY, R., PERRY, M. C., BRAHMER, J., SCHILLER, J. H., DOWLATI, A., 
LILENBAUM, R. & JOHNSON, D. H. 2006. Paclitaxel-carboplatin alone or with 
bevacizumab for non-small-cell lung cancer. N Engl J Med, 355, 2542-50. 

SANSONE, P., SAVINI, C., KURELAC, I., CHANG, Q., AMATO, L. B., STRILLACCI, A., 
STEPANOVA, A., IOMMARINI, L., MASTROLEO, C., DALY, L., GALKIN, A., THAKUR, 
B. K., SOPLOP, N., URYU, K., HOSHINO, A., NORTON, L., BONAFE, M., CRICCA, M., 



275 
 

GASPARRE, G., LYDEN, D. & BROMBERG, J. 2017. Packaging and transfer of 
mitochondrial DNA via exosomes regulate escape from dormancy in hormonal 
therapy-resistant breast cancer. Proc Natl Acad Sci U S A, 114, E9066-E9075. 

SAPPINO, A. P., SKALLI, O., JACKSON, B., SCHURCH, W. & GABBIANI, G. 1988. Smooth-
muscle differentiation in stromal cells of malignant and non-malignant breast 
tissues. Int J Cancer, 41, 707-12. 

SAUNIER, E., ANTONIO, S., REGAZZETTI, A., AUZEIL, N., LAPREVOTE, O., SHAY, J. W., 
COUMOUL, X., BAROUKI, R., BENELLI, C., HUC, L. & BORTOLI, S. 2017. Resveratrol 
reverses the Warburg effect by targeting the pyruvate dehydrogenase complex in 
colon cancer cells. Sci Rep, 7, 6945. 

SAUNIER, E., BENELLI, C. & BORTOLI, S. 2016. The pyruvate dehydrogenase complex in 
cancer: An old metabolic gatekeeper regulated by new pathways and 
pharmacological agents. Int J Cancer, 138, 809-17. 

SAWADA, Y., TAMADA, M., DUBIN-THALER, B. J., CHERNIAVSKAYA, O., SAKAI, R., TANAKA, 
S. & SHEETZ, M. P. 2006. Force sensing by mechanical extension of the Src family 
kinase substrate p130Cas. Cell, 127, 1015-26. 

SCHLIEKELMAN, M. J., CREIGHTON, C. J., BAIRD, B. N., CHEN, Y., BANERJEE, P., BOTA-
RABASSEDAS, N., AHN, Y.-H., ROYBAL, J. D., CHEN, F., ZHANG, Y., MISHRA, D. K., 
KIM, M. P., LIU, X., MINO, B., VILLALOBOS, P., RODRIGUEZ-CANALES, J., BEHRENS, 
C., WISTUBA, I. I., HANASH, S. M. & KURIE, J. M. 2017. Thy-1+ Cancer-associated 
Fibroblasts Adversely Impact Lung Cancer Prognosis. Scientific Reports, 7. 

SCHMIDT, E. V. 2019. Developing combination strategies using PD-1 checkpoint inhibitors 
to treat cancer. Semin Immunopathol, 41, 21-30. 

SCHNEIDER, R., BANNISTER, A. J., MYERS, F. A., THORNE, A. W., CRANE-ROBINSON, C. & 
KOUZARIDES, T. 2004. Histone H3 lysine 4 methylation patterns in higher 
eukaryotic genes. Nat Cell Biol, 6, 73-7. 

SCHUSTER, S. J. & INVESTIGATORS, J. 2019. Tisagenlecleucel in Diffuse Large B-Cell 
Lymphoma. Reply. N Engl J Med, 380, 1586. 

SCHWARTZ, M. A. & ASSOIAN, R. K. 2001. Integrins and cell proliferation: regulation of 
cyclin-dependent kinases via cytoplasmic signaling pathways. J Cell Sci, 114, 2553-
60. 

SCOTT, L. E., WEINBERG, S. H. & LEMMON, C. A. 2019. Mechanochemical Signaling of the 
Extracellular Matrix in Epithelial-Mesenchymal Transition. Front Cell Dev Biol, 7, 
135. 

SEGUIN, L., DESGROSELLIER, J. S., WEIS, S. M. & CHERESH, D. A. 2015. Integrins and 
cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends 
Cell Biol, 25, 234-40. 

SELAK, M. A., ARMOUR, S. M., MACKENZIE, E. D., BOULAHBEL, H., WATSON, D. G., 
MANSFIELD, K. D., PAN, Y., SIMON, M. C., THOMPSON, C. B. & GOTTLIEB, E. 2005. 
Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl 
hydroxylase. Cancer Cell, 7, 77-85. 

SELVARAJAH, B., AZUELOS, I., PLATE, M., GUILLOTIN, D., FORTY, E. J., CONTENTO, G., 
WOODCOCK, H. V., REDDING, M., TAYLOR, A., BRUNORI, G., DURRENBERGER, P. 
F., RONZONI, R., BLANCHARD, A. D., MERCER, P. F., ANASTASIOU, D. & CHAMBERS, 
R. C. 2019. mTORC1 amplifies the ATF4-dependent de novo serine-glycine pathway 
to supply glycine during TGF-beta1-induced collagen biosynthesis. Sci Signal, 12. 

SEN, P., LAN, Y., LI, C. Y., SIDOLI, S., DONAHUE, G., DOU, Z., FREDERICK, B., CHEN, Q., 
LUENSE, L. J., GARCIA, B. A., DANG, W., JOHNSON, F. B., ADAMS, P. D., SCHULTZ, 
D. C. & BERGER, S. L. 2019. Histone Acetyltransferase p300 Induces De Novo Super-
Enhancers to Drive Cellular Senescence. Mol Cell, 73, 684-698 e8. 

SERGANOV, A. & PATEL, D. J. 2009. Amino acid recognition and gene regulation by 
riboswitches. Biochim Biophys Acta, 1789, 592-611. 

SERRAO, E. M., KETTUNEN, M. I., RODRIGUES, T. B., DZIEN, P., WRIGHT, A. J., 
GOPINATHAN, A., GALLAGHER, F. A., LEWIS, D. Y., FRESE, K. K., ALMEIDA, J., 
HOWAT, W. J., TUVESON, D. A. & BRINDLE, K. M. 2016. MRI with hyperpolarised 
[1-13C]pyruvate detects advanced pancreatic preneoplasia prior to invasive 
disease in a mouse model. Gut, 65, 465-75. 



276 
 
SEWELL-LOFTIN, M. K., BAYER, S. V. H., CRIST, E., HUGHES, T., JOISON, S. M., 

LONGMORE, G. D. & GEORGE, S. C. 2017. Cancer-associated fibroblasts support 
vascular growth through mechanical force. Sci Rep, 7, 12574. 

SHAH, S. H., MILLER, P., GARCIA-CONTRERAS, M., AO, Z., MACHLIN, L., ISSA, E. & EL-
ASHRY, D. 2015. Hierarchical paracrine interaction of breast cancer associated 
fibroblasts with cancer cells via hMAPK-microRNAs to drive ER-negative breast 
cancer phenotype. Cancer Biol Ther, 16, 1671-81. 

SHAN, C., KANG, H. B., ELF, S., XIE, J., GU, T. L., AGUIAR, M., LONNING, S., HITOSUGI, 
T., CHUNG, T. W., ARELLANO, M., KHOURY, H. J., SHIN, D. M., KHURI, F. R., 
BOGGON, T. J. & FAN, J. 2014. Tyr-94 phosphorylation inhibits pyruvate 
dehydrogenase phosphatase 1 and promotes tumor growth. J Biol Chem, 289, 
21413-22. 

SHAN, T., CHEN, S., CHEN, X., LIN, W. R., LI, W., MA, J., WU, T., CUI, X., JI, H., LI, Y. & 
KANG, Y. 2017. Cancer-associated fibroblasts enhance pancreatic cancer cell 
invasion by remodeling the metabolic conversion mechanism. Oncol Rep, 37, 1971-
1979. 

SHERMAN, M. H., YU, R. T., ENGLE, D. D., DING, N., ATKINS, A. R., TIRIAC, H., COLLISSON, 
E. A., CONNOR, F., VAN DYKE, T., KOZLOV, S., MARTIN, P., TSENG, T. W., 
DAWSON, D. W., DONAHUE, T. R., MASAMUNE, A., SHIMOSEGAWA, T., APTE, M. V., 
WILSON, J. S., NG, B., LAU, S. L., GUNTON, J. E., WAHL, G. M., HUNTER, T., 
DREBIN, J. A., O'DWYER, P. J., LIDDLE, C., TUVESON, D. A., DOWNES, M. & EVANS, 
R. M. 2014. Vitamin D receptor-mediated stromal reprogramming suppresses 
pancreatitis and enhances pancreatic cancer therapy. Cell, 159, 80-93. 

SHI, G. & MCQUIBBAN, G. A. 2017. The Mitochondrial Rhomboid Protease PARL Is 
Regulated by PDK2 to Integrate Mitochondrial Quality Control and Metabolism. Cell 
Rep, 18, 1458-1472. 

SHI, W. Y., YANG, X., HUANG, B., SHEN, W. H. & LIU, L. 2017. NOK mediates glycolysis 
and nuclear PDC associated histone acetylation. Front Biosci (Landmark Ed), 22, 
1792-1804. 

SHOULDERS, M. D. & RAINES, R. T. 2009. Collagen structure and stability. Annu Rev 
Biochem, 78, 929-58. 

SHRIMP, J. H., SORUM, A. W., GARLICK, J. M., GUASCH, L., NICKLAUS, M. C. & MEIER, J. 
L. 2015. Characterizing the Covalent Targets of a Small Molecule Inhibitor of the 
Lysine Acetyltransferase P300. ACS Medicinal Chemistry Letters, 7, 151-155. 

SIMIAN, M., HIRAI, Y., NAVRE, M., WERB, Z., LOCHTER, A. & BISSELL, M. J. 2001. The 
interplay of matrix metalloproteinases, morphogens and growth factors is 
necessary for branching of mammary epithelial cells. Development, 128, 3117-31. 

SINI, V., CASSANO, A., CORSI, D., DE LAURENTIIS, M., GAMUCCI, T., MAURI, M., NASO, G., 
ROSELLI, M., RUGGERI, E. M., TONINI, G., VICI, P., ZAMPA, G. & MARCHETTI, P. 
2016. Bevacizumab as first-line treatment in HER2-negative advanced breast 
cancer: pros and cons. Tumori, 102, 472-480. 

SIVANAND, S., VINEY, I. & WELLEN, K. E. 2018. Spatiotemporal Control of Acetyl-CoA 
Metabolism in Chromatin Regulation. Trends Biochem Sci, 43, 61-74. 

SKIDMORE, D. L., CHITAYAT, D., MORGAN, T., HINEK, A., FISCHER, B., DIMOPOULOU, A., 
SOMERS, G., HALLIDAY, W., BLASER, S., DIAMBOMBA, Y., LEMIRE, E. G., KORNAK, 
U. & ROBERTSON, S. P. 2011. Further expansion of the phenotypic spectrum 
associated with mutations in ALDH18A1, encoding Delta(1)-pyrroline-5-
carboxylate synthase (P5CS). Am J Med Genet A, 155A, 1848-56. 

SMITH, N. R., BAKER, D., FARREN, M., POMMIER, A., SWANN, R., WANG, X., MISTRY, S., 
MCDAID, K., KENDREW, J., WOMACK, C., WEDGE, S. R. & BARRY, S. T. 2013. Tumor 
stromal architecture can define the intrinsic tumor response to VEGF-targeted 
therapy. Clin Cancer Res, 19, 6943-56. 

SONVEAUX, P., VEGRAN, F., SCHROEDER, T., WERGIN, M. C., VERRAX, J., RABBANI, Z. N., 
DE SAEDELEER, C. J., KENNEDY, K. M., DIEPART, C., JORDAN, B. F., KELLEY, M. J., 
GALLEZ, B., WAHL, M. L., FERON, O. & DEWHIRST, M. W. 2008. Targeting lactate-
fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest, 118, 
3930-42. 



277 
 
SORLIE, T., PEROU, C. M., TIBSHIRANI, R., AAS, T., GEISLER, S., JOHNSEN, H., HASTIE, 

T., EISEN, M. B., VAN DE RIJN, M., JEFFREY, S. S., THORSEN, T., QUIST, H., 
MATESE, J. C., BROWN, P. O., BOTSTEIN, D., LONNING, P. E. & BORRESEN-DALE, 
A. L. 2001. Gene expression patterns of breast carcinomas distinguish tumor 
subclasses with clinical implications. Proc Natl Acad Sci U S A, 98, 10869-74. 

SOUSA, C. M., BIANCUR, D. E., WANG, X., HALBROOK, C. J., SHERMAN, M. H., ZHANG, L., 
KREMER, D., HWANG, R. F., WITKIEWICZ, A. K., YING, H., ASARA, J. M., EVANS, R. 
M., CANTLEY, L. C., LYSSIOTIS, C. A. & KIMMELMAN, A. C. 2016. Pancreatic stellate 
cells support tumour metabolism through autophagic alanine secretion. Nature, 
536, 479-83. 

STANISAVLJEVIC, J., LOUBAT-CASANOVAS, J., HERRERA, M., LUQUE, T., PENA, R., LLUCH, 
A., ALBANELL, J., BONILLA, F., ROVIRA, A., PENA, C., NAVAJAS, D., ROJO, F., 
GARCIA DE HERREROS, A. & BAULIDA, J. 2015. Snail1-expressing fibroblasts in the 
tumor microenvironment display mechanical properties that support metastasis. 
Cancer Res, 75, 284-95. 

STEGEN, S., LAPERRE, K., EELEN, G., RINALDI, G., FRAISL, P., TORREKENS, S., VAN 
LOOVEREN, R., LOOPMANS, S., BULTYNCK, G., VINCKIER, S., MEERSMAN, F., 
MAXWELL, P. H., RAI, J., WEIS, M., EYRE, D. R., GHESQUIERE, B., FENDT, S. M., 
CARMELIET, P. & CARMELIET, G. 2019. HIF-1alpha metabolically controls collagen 
synthesis and modification in chondrocytes. Nature, 565, 511-515. 

STRAUSSMAN, R., MORIKAWA, T., SHEE, K., BARZILY-ROKNI, M., QIAN, Z. R., DU, J., DAVIS, 
A., MONGARE, M. M., GOULD, J., FREDERICK, D. T., COOPER, Z. A., CHAPMAN, P. 
B., SOLIT, D. B., RIBAS, A., LO, R. S., FLAHERTY, K. T., OGINO, S., WARGO, J. A. 
& GOLUB, T. R. 2012. Tumour micro-environment elicits innate resistance to RAF 
inhibitors through HGF secretion. Nature, 487, 500-4. 

SUN, G., REDDY, M. A., YUAN, H., LANTING, L., KATO, M. & NATARAJAN, R. 2010. 
Epigenetic histone methylation modulates fibrotic gene expression. J Am Soc 
Nephrol, 21, 2069-80. 

SUN, K., TANG, S., HOU, Y., XI, L., CHEN, Y., YIN, J., PENG, M., ZHAO, M., CUI, X. & LIU, 
M. 2019. Oxidized ATM-mediated glycolysis enhancement in breast cancer-
associated fibroblasts contributes to tumor invasion through lactate as metabolic 
coupling. EBioMedicine, 41, 370-383. 

SUN, K. H., CHANG, Y., REED, N. I. & SHEPPARD, D. 2016. alpha-Smooth muscle actin is 
an inconsistent marker of fibroblasts responsible for force-dependent TGFbeta 
activation or collagen production across multiple models of organ fibrosis. Am J 
Physiol Lung Cell Mol Physiol, 310, L824-36. 

SUROWIAK, P., MURAWA, D., MATERNA, V., MACIEJCZYK, A., PUDELKO, M., CIESLA, S., 
BREBOROWICZ, J., MURAWA, P., ZABEL, M., DIETEL, M. & LAGE, H. 2007. 
Occurence of stromal myofibroblasts in the invasive ductal breast cancer tissue is 
an unfavourable prognostic factor. Anticancer Res, 27, 2917-24. 

SUTENDRA, G., DROMPARIS, P., KINNAIRD, A., STENSON, T. H., HAROMY, A., PARKER, J. 
M., MCMURTRY, M. S. & MICHELAKIS, E. D. 2013. Mitochondrial activation by 
inhibition of PDKII suppresses HIF1a signaling and angiogenesis in cancer. 
Oncogene, 32, 1638-50. 

SUTENDRA, G., KINNAIRD, A., DROMPARIS, P., PAULIN, R., STENSON, T. H., HAROMY, A., 
HASHIMOTO, K., ZHANG, N., FLAIM, E. & MICHELAKIS, E. D. 2014. A nuclear 
pyruvate dehydrogenase complex is important for the generation of acetyl-CoA 
and histone acetylation. Cell, 158, 84-97. 

TAKAHASHI, H., SAKAKURA, K., KUDO, T., TOYODA, M., KAIRA, K., OYAMA, T. & 
CHIKAMATSU, K. 2017. Cancer-associated fibroblasts promote an 
immunosuppressive microenvironment through the induction and accumulation of 
protumoral macrophages. Oncotarget, 8, 8633-8647. 

TAKEDA, Y., TSUJINO, K., KIJIMA, T. & KUMANOGOH, A. 2014. Efficacy and safety of 
pirfenidone for idiopathic pulmonary fibrosis. Patient Prefer Adherence, 8, 361-
70. 



278 
 
TANAKA, H., OKADA, T., KONISHI, H. & TSUJI, T. 1993. The effect of reactive oxygen 

species on the biosynthesis of collagen and glycosaminoglycans in cultured human 
dermal fibroblasts. Arch Dermatol Res, 285, 352-5. 

TANG, L., ZENG, J., GENG, P., FANG, C., WANG, Y., SUN, M., WANG, C., WANG, J., YIN, 
P., HU, C., GUO, L., YU, J., GAO, P., LI, E., ZHUANG, Z., XU, G. & LIU, Y. 2018. 
Global Metabolic Profiling Identifies a Pivotal Role of Proline and Hydroxyproline 
Metabolism in Supporting Hypoxic Response in Hepatocellular Carcinoma. Clin 
Cancer Res, 24, 474-485. 

TANG, X., HOU, Y., YANG, G., WANG, X., TANG, S., DU, Y. E., YANG, L., YU, T., ZHANG, 
H., ZHOU, M., WEN, S., XU, L. & LIU, M. 2016. Stromal miR-200s contribute to 
breast cancer cell invasion through CAF activation and ECM remodeling. Cell Death 
Differ, 23, 132-45. 

TANG, X., PENG, R., REN, Y., APPARSUNDARAM, S., DEGUZMAN, J., BAUER, C. M., 
HOFFMAN, A. F., HAMILTON, S., LIANG, Z., ZENG, H., FUENTES, M. E., DEMARTINO, 
J. A., KITSON, C., STEVENSON, C. S. & BUDD, D. C. 2013. BET bromodomain 
proteins mediate downstream signaling events following growth factor stimulation 
in human lung fibroblasts and are involved in bleomycin-induced pulmonary 
fibrosis. Mol Pharmacol, 83, 283-93. 

TANNER, J. J., FENDT, S.-M. & BECKER, D. F. 2018. The Proline Cycle As a Potential Cancer 
Therapy Target. Biochemistry, 57, 3433-3444. 

TEN DIJKE, P. & ARTHUR, H. M. 2007. Extracellular control of TGFbeta signalling in 
vascular development and disease. Nat Rev Mol Cell Biol, 8, 857-69. 

THAPA, D., ZHANG, M., MANNING, J. R., GUIMARAES, D. A., STONER, M. W., O'DOHERTY, 
R. M., SHIVA, S. & SCOTT, I. 2017. Acetylation of mitochondrial proteins by GCN5L1 
promotes enhanced fatty acid oxidation in the heart. Am J Physiol Heart Circ 
Physiol, 313, H265-H274. 

TOMASEK, J. J., GABBIANI, G., HINZ, B., CHAPONNIER, C. & BROWN, R. A. 2002. 
Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev 
Mol Cell Biol, 3, 349-63. 

TORRES, S., BARTOLOME, R. A., MENDES, M., BARDERAS, R., FERNANDEZ-ACENERO, M. J., 
PELAEZ-GARCIA, A., PENA, C., LOPEZ-LUCENDO, M., VILLAR-VAZQUEZ, R., DE 
HERREROS, A. G., BONILLA, F. & CASAL, J. I. 2013. Proteome profiling of cancer-
associated fibroblasts identifies novel proinflammatory signatures and prognostic 
markers for colorectal cancer. Clin Cancer Res, 19, 6006-19. 

TOULLEC, A., GERALD, D., DESPOUY, G., BOURACHOT, B., CARDON, M., LEFORT, S., 
RICHARDSON, M., RIGAILL, G., PARRINI, M. C., LUCCHESI, C., BELLANGER, D., 
STERN, M. H., DUBOIS, T., SASTRE-GARAU, X., DELATTRE, O., VINCENT-SALOMON, 
A. & MECHTA-GRIGORIOU, F. 2010. Oxidative stress promotes myofibroblast 
differentiation and tumour spreading. EMBO Mol Med, 2, 211-30. 

TRIMBOLI, A. J., FUKINO, K., DE BRUIN, A., WEI, G., SHEN, L., TANNER, S. M., CREASAP, 
N., ROSOL, T. J., ROBINSON, M. L., ENG, C., OSTROWSKI, M. C. & LEONE, G. 2008. 
Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer 
Res, 68, 937-45. 

TYAN, S. W., KUO, W. H., HUANG, C. K., PAN, C. C., SHEW, J. Y., CHANG, K. J., LEE, E. 
Y. & LEE, W. H. 2011. Breast cancer cells induce cancer-associated fibroblasts to 
secrete hepatocyte growth factor to enhance breast tumorigenesis. PLoS One, 6, 
e15313. 

TYANOVA, S., TEMU, T., SINITCYN, P., CARLSON, A., HEIN, M. Y., GEIGER, T., MANN, M. 
& COX, J. 2016. The Perseus computational platform for comprehensive analysis 
of (prote)omics data. Nat Methods, 13, 731-40. 

UDABAGE, L., BROWNLEE, G. R., WALTHAM, M., BLICK, T., WALKER, E. C., HELDIN, P., 
NILSSON, S. K., THOMPSON, E. W. & BROWN, T. J. 2005. Antisense-mediated 
suppression of hyaluronan synthase 2 inhibits the tumorigenesis and progression of 
breast cancer. Cancer Res, 65, 6139-50. 

UNGER, C., KRAMER, N., UNTERLEUTHNER, D., SCHERZER, M., BURIAN, A., RUDISCH, A., 
STADLER, M., SCHLEDERER, M., LENHARDT, D., RIEDL, A., WALTER, S., 
WERNITZNIG, A., KENNER, L., HENGSTSCHLAGER, M., SCHULER, J., 



279 
 

SOMMERGRUBER, W. & DOLZNIG, H. 2017. Stromal-derived IGF2 promotes colon 
cancer progression via paracrine and autocrine mechanisms. Oncogene, 36, 5341-
5355. 

VALENCIA, T., KIM, J. Y., ABU-BAKER, S., MOSCAT-PARDOS, J., AHN, C. S., REINA-CAMPOS, 
M., DURAN, A., CASTILLA, E. A., METALLO, C. M., DIAZ-MECO, M. T. & MOSCAT, J. 
2014. Metabolic reprogramming of stromal fibroblasts through p62-mTORC1 
signaling promotes inflammation and tumorigenesis. Cancer Cell, 26, 121-135. 

VETTESE-DADEY, M., GRANT, P. A., HEBBES, T. R., CRANE- ROBINSON, C., ALLIS, C. D. & 
WORKMAN, J. L. 1996. Acetylation of histone H4 plays a primary role in enhancing 
transcription factor binding to nucleosomal DNA in vitro. EMBO J, 15, 2508-18. 

VIZOSO, M., PUIG, M., CARMONA, F. J., MAQUEDA, M., VELASQUEZ, A., GOMEZ, A., 
LABERNADIE, A., LUGO, R., GABASA, M., RIGAT-BRUGAROLAS, L. G., TREPAT, X., 
RAMIREZ, J., MORAN, S., VIDAL, E., REGUART, N., PERERA, A., ESTELLER, M. & 
ALCARAZ, J. 2015. Aberrant DNA methylation in non-small cell lung cancer-
associated fibroblasts. Carcinogenesis, 36, 1453-63. 

WANG, L., ZOU, X., BERGER, A. D., TWISS, C., PENG, Y., LI, Y., CHIU, J., GUO, H., 
SATAGOPAN, J., WILTON, A., GERALD, W., BASCH, R., WANG, Z., OSMAN, I. & LEE, 
P. 2009. Increased expression of histone deacetylaces (HDACs) and inhibition of 
prostate cancer growth and invasion by HDAC inhibitor SAHA. Am J Transl Res, 1, 
62-71. 

WANG, W., KRYCZEK, I., DOSTAL, L., LIN, H., TAN, L., ZHAO, L., LU, F., WEI, S., MAJ, T., 
PENG, D., HE, G., VATAN, L., SZELIGA, W., KUICK, R., KOTARSKI, J., TARKOWSKI, 
R., DOU, Y., RATTAN, R., MUNKARAH, A., LIU, J. R. & ZOU, W. 2016. Effector T 
Cells Abrogate Stroma-Mediated Chemoresistance in Ovarian Cancer. Cell, 165, 
1092-1105. 

WATSON, C. J., HORGAN, S., NEARY, R., GLEZEVA, N., TEA, I., CORRIGAN, N., MCDONALD, 
K., LEDWIDGE, M. & BAUGH, J. 2016. Epigenetic Therapy for the Treatment of 
Hypertension-Induced Cardiac Hypertrophy and Fibrosis. J Cardiovasc Pharmacol 
Ther, 21, 127-37. 

WEAVER, V. M., LELIEVRE, S., LAKINS, J. N., CHRENEK, M. A., JONES, J. C., GIANCOTTI, 
F., WERB, Z. & BISSELL, M. J. 2002. beta4 integrin-dependent formation of 
polarized three-dimensional architecture confers resistance to apoptosis in normal 
and malignant mammary epithelium. Cancer Cell, 2, 205-16. 

WEI, S. C., FATTET, L. & YANG, J. 2015. The forces behind EMT and tumor metastasis. 
Cell Cycle, 14, 2387-8. 

WEINERT, B. T., IESMANTAVICIUS, V., MOUSTAFA, T., SCHOLZ, C., WAGNER, S. A., 
MAGNES, C., ZECHNER, R. & CHOUDHARY, C. 2014. Acetylation dynamics and 
stoichiometry in Saccharomyces cerevisiae. Mol Syst Biol, 10, 716. 

WELLEN, K. E., HATZIVASSILIOU, G., SACHDEVA, U. M., BUI, T. V., CROSS, J. R. & 
THOMPSON, C. B. 2009. ATP-citrate lyase links cellular metabolism to histone 
acetylation. Science, 324, 1076-80. 

WEN, S., HOU, Y., FU, L., XI, L., YANG, D., ZHAO, M., QIN, Y., SUN, K., TENG, Y. & LIU, 
M. 2019. Cancer-associated fibroblast (CAF)-derived IL32 promotes breast cancer 
cell invasion and metastasis via integrin beta3-p38 MAPK signalling. Cancer Lett, 
442, 320-332. 

WESLEY, R. B., 2ND, MENG, X., GODIN, D. & GALIS, Z. S. 1998. Extracellular matrix 
modulates macrophage functions characteristic to atheroma: collagen type I 
enhances acquisition of resident macrophage traits by human peripheral blood 
monocytes in vitro. Arterioscler Thromb Vasc Biol, 18, 432-40. 

WHITAKER-MENEZES, D., MARTINEZ-OUTSCHOORN, U. E., FLOMENBERG, N., BIRBE, R. C., 
WITKIEWICZ, A. K., HOWELL, A., PAVLIDES, S., TSIRIGOS, A., ERTEL, A., PESTELL, 
R. G., BRODA, P., MINETTI, C., LISANTI, M. P. & SOTGIA, F. 2011a. Hyperactivation 
of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing 
the therapeutic effects of metformin in tumor tissue. Cell Cycle, 10, 4047-64. 

WHITAKER-MENEZES, D., MARTINEZ-OUTSCHOORN, U. E., LIN, Z., ERTEL, A., 
FLOMENBERG, N., WITKIEWICZ, A. K., BIRBE, R. C., HOWELL, A., PAVLIDES, S., 
GANDARA, R., PESTELL, R. G., SOTGIA, F., PHILP, N. J. & LISANTI, M. P. 2011b. 



280 
 

Evidence for a stromal-epithelial "lactate shuttle" in human tumors: MCT4 is a 
marker of oxidative stress in cancer-associated fibroblasts. Cell Cycle, 10, 1772-
83. 

WITZE, E. S., OLD, W. M., RESING, K. A. & AHN, N. G. 2007. Mapping protein post-
translational modifications with mass spectrometry. Nat Methods, 4, 798-806. 

WONDRAK, G. T., JACOBSON, M. K. & JACOBSON, E. L. 2005. Identification of quenchers 
of photoexcited States as novel agents for skin photoprotection. J Pharmacol Exp 
Ther, 312, 482-91. 

WU, G., BAZER, F. W., BURGHARDT, R. C., JOHNSON, G. A., KIM, S. W., KNABE, D. A., LI, 
P., LI, X., MCKNIGHT, J. R., SATTERFIELD, M. C. & SPENCER, T. E. 2011. Proline 
and hydroxyproline metabolism: implications for animal and human nutrition. 
Amino Acids, 40, 1053-63. 

WYSOCKA, J. 2006. Identifying novel proteins recognizing histone modifications using 
peptide pull-down assay. Methods, 40, 339-43. 

XIONG, C., MASUCCI, M. V., ZHOU, X., LIU, N., ZANG, X., TOLBERT, E., ZHAO, T. C. & 
ZHUANG, S. 2016. Pharmacological targeting of BET proteins inhibits renal 
fibroblast activation and alleviates renal fibrosis. Oncotarget, 7, 69291-69308. 

YAMAGUCHI, H., YOSHIDA, N., TAKANASHI, M., ITO, Y., FUKAMI, K., YANAGIHARA, K., 
YASHIRO, M. & SAKAI, R. 2014. Stromal fibroblasts mediate extracellular matrix 
remodeling and invasion of scirrhous gastric carcinoma cells. PLoS One, 9, e85485. 

YAN, W., WU, X., ZHOU, W., FONG, M. Y., CAO, M., LIU, J., LIU, X., CHEN, C. H., FADARE, 
O., PIZZO, D. P., WU, J., LIU, L., LIU, X., CHIN, A. R., REN, X., CHEN, Y., 
LOCASALE, J. W. & WANG, S. E. 2018. Cancer-cell-secreted exosomal miR-105 
promotes tumour growth through the MYC-dependent metabolic reprogramming 
of stromal cells. Nat Cell Biol, 20, 597-609. 

YANG, L., ACHREJA, A., YEUNG, T. L., MANGALA, L. S., JIANG, D., HAN, C., BADDOUR, 
J., MARINI, J. C., NI, J., NAKAHARA, R., WAHLIG, S., CHIBA, L., KIM, S. H., MORSE, 
J., PRADEEP, S., NAGARAJA, A. S., HAEMMERLE, M., KYUNGHEE, N., 
DERICHSWEILER, M., PLACKEMEIER, T., MERCADO-URIBE, I., LOPEZ-BERESTEIN, G., 
MOSS, T., RAM, P. T., LIU, J., LU, X., MOK, S. C., SOOD, A. K. & NAGRATH, D. 
2016. Targeting Stromal Glutamine Synthetase in Tumors Disrupts Tumor 
Microenvironment-Regulated Cancer Cell Growth. Cell Metab, 24, 685-700. 

YAO, J., IRWIN, R. W., ZHAO, L., NILSEN, J., HAMILTON, R. T. & BRINTON, R. D. 2009. 
Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female 
mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A, 106, 14670-5. 

YEAMAN, S. J., HUTCHESON, E. T., ROCHE, T. E., PETTIT, F. H., BROWN, J. R., REED, L. 
J., WATSON, D. C. & DIXON, G. H. 1978. Sites of phosphorylation on pyruvate 
dehydrogenase from bovine kidney and heart. Biochemistry, 17, 2364-70. 

YEUNG, T. L., LEUNG, C. S., WONG, K. K., SAMIMI, G., THOMPSON, M. S., LIU, J., ZAID, 
T. M., GHOSH, S., BIRRER, M. J. & MOK, S. C. 2013. TGF-beta modulates ovarian 
cancer invasion by upregulating CAF-derived versican in the tumor 
microenvironment. Cancer Res, 73, 5016-28. 

YONASHIRO, R., EGUCHI, K., WAKE, M., TAKEDA, N. & NAKAYAMA, K. 2018. Pyruvate 
Dehydrogenase PDH-E1beta Controls Tumor Progression by Altering the Metabolic 
Status of Cancer Cells. Cancer Res, 78, 1592-1603. 

YU, B., CHEN, X., LI, J., QU, Y., SU, L., PENG, Y., HUANG, J., YAN, J., YU, Y., GU, Q., 
ZHU, Z. & LIU, B. 2013. Stromal fibroblasts in the microenvironment of gastric 
carcinomas promote tumor metastasis via upregulating TAGLN expression. BMC 
Cell Biology, 14. 

YU, T., YANG, G., HOU, Y., TANG, X., WU, C., WU, X. A., GUO, L., ZHU, Q., LUO, H., DU, 
Y. E., WEN, S., XU, L., YIN, J., TU, G. & LIU, M. 2017. Cytoplasmic GPER 
translocation in cancer-associated fibroblasts mediates 
cAMP/PKA/CREB/glycolytic axis to confer tumor cells with multidrug resistance. 
Oncogene, 36, 2131-2145. 

YU, Y., XIAO, C. H., TAN, L. D., WANG, Q. S., LI, X. Q. & FENG, Y. M. 2014. Cancer-
associated fibroblasts induce epithelial-mesenchymal transition of breast cancer 
cells through paracrine TGF-beta signalling. Br J Cancer, 110, 724-32. 



281 
 
ZEISBERG, E. M., POTENTA, S., XIE, L., ZEISBERG, M. & KALLURI, R. 2007. Discovery of 

endothelial to mesenchymal transition as a source for carcinoma-associated 
fibroblasts. Cancer Res, 67, 10123-8. 

ZHANG, D., WANG, Y., SHI, Z., LIU, J., SUN, P., HOU, X., ZHANG, J., ZHAO, S., ZHOU, B. 
P. & MI, J. 2015. Metabolic reprogramming of cancer-associated fibroblasts by 
IDH3alpha downregulation. Cell Rep, 10, 1335-48. 

ZHANG, X., JI, R., LIAO, X., CASTILLERO, E., KENNEL, P. J., BRUNJES, D. L., FRANZ, M., 
MOBIUS-WINKLER, S., DROSATOS, K., GEORGE, I., CHEN, E. I., COLOMBO, P. C. & 
SCHULZE, P. C. 2018. MicroRNA-195 Regulates Metabolism in Failing Myocardium 
Via Alterations in Sirtuin 3 Expression and Mitochondrial Protein Acetylation. 
Circulation, 137, 2052-2067. 

ZHANG, Y., MA, K., SADANA, P., CHOWDHURY, F., GAILLARD, S., WANG, F., MCDONNELL, 
D. P., UNTERMAN, T. G., ELAM, M. B. & PARK, E. A. 2006. Estrogen-related 
receptors stimulate pyruvate dehydrogenase kinase isoform 4 gene expression. J 
Biol Chem, 281, 39897-906. 

ZHAO, G., JEOUNG, N. H., BURGESS, S. C., ROSAAEN-STOWE, K. A., INAGAKI, T., LATIF, 
S., SHELTON, J. M., MCANALLY, J., BASSEL-DUBY, R., HARRIS, R. A., RICHARDSON, 
J. A. & KLIEWER, S. A. 2008. Overexpression of pyruvate dehydrogenase kinase 4 
in heart perturbs metabolism and exacerbates calcineurin-induced 
cardiomyopathy. Am J Physiol Heart Circ Physiol, 294, H936-43. 

ZHAO, H., YANG, L., BADDOUR, J., ACHREJA, A., BERNARD, V., MOSS, T., MARINI, J. C., 
TUDAWE, T., SEVIOUR, E. G., SAN LUCAS, F. A., ALVAREZ, H., GUPTA, S., MAITI, 
S. N., COOPER, L., PEEHL, D., RAM, P. T., MAITRA, A. & NAGRATH, D. 2016. Tumor 
microenvironment derived exosomes pleiotropically modulate cancer cell 
metabolism. Elife, 5, e10250. 

ZHENG, Y., DE LA CRUZ, C. C., SAYLES, L. C., ALLEYNE-CHIN, C., VAKA, D., KNAAK, T. D., 
BIGOS, M., XU, Y., HOANG, C. D., SHRAGER, J. B., FEHLING, H. J., FRENCH, D., 
FORREST, W., JIANG, Z., CARANO, R. A., BARCK, K. H., JACKSON, E. L. & SWEET-
CORDERO, E. A. 2013. A rare population of CD24(+)ITGB4(+)Notch(hi) cells drives 
tumor propagation in NSCLC and requires Notch3 for self-renewal. Cancer Cell, 
24, 59-74. 

ZIANI, L., CHOUAIB, S. & THIERY, J. 2018. Alteration of the Antitumor Immune Response 
by Cancer-Associated Fibroblasts. Front Immunol, 9, 414. 

ZOU, X., ZHU, Y., PARK, S. H., LIU, G., O'BRIEN, J., JIANG, H. & GIUS, D. 2017. SIRT3-
Mediated Dimerization of IDH2 Directs Cancer Cell Metabolism and Tumor Growth. 
Cancer Res, 77, 3990-3999. 

 


	thesis_coversheet
	2019KayEmilyPhD

