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I. Abstract 

Urbanised landscapes vary significantly from natural habitats because of their different and 

unique ecological features. These features can affect the ability of both animals and plants 

to occupy urban habitats. Ecological studies on avian species have often reported a 

reduction in several breeding parameters of urban populations compared to their rural 

counterparts. However, how the urban environment can influence the breeding success of 

these species remains largely unknown. One hypothesis is that urban-specific factors alter 

key physiological traits modulated by stress hormone levels in birds. Indeed, long-term 

exposure to high levels of stress can lead to sustained elevation of basal glucocorticoid 

levels and consequent detrimental effects, such as impaired immunity, inhibited growth 

and reduced survival. For instance, alterations to the microclimate, pollution, and 

limitations of food resources may act as strong stressors, resulting in an increased 

likelihood of parasite infection and related fitness costs, affecting the capacity of hosts to 

occupy urban areas. 

Environmental conditions can fluctuate from year to year, affecting birds directly or 

indirectly by limiting food availability, especially for carnivorous birds of which the main 

food (insects, e.g. caterpillars) is highly dependent on weather conditions. As the urban 

conditions are already harsh, fluctuations in the other environmental factors, like weather 

conditions, have the potential to severely affect urban birds. Conversely, the more 

favourable conditions in rural habitats may allow the birds to buffer against other 

potentially negative environmental factors. Therefore, in order to understand the impact of 

urbanization on bird stress and fitness across fluctuating environmental conditions, the first 

aim of my thesis was to explore and compare the fitness of an urban and a rural population 

of blue tit Cyanistes caeruleus across two breeding seasons (2016 and 2017) in relation to 

the stress levels they experience. Previous studies have suggested the use of corticosterone 

(CORT, the main avian glucocorticoid) levels as a biomarker of stress experienced by 

animals. In birds, long term or chronic exposure to stressors can be measured from feather 

corticosterone (fCORT). This non-invasive method can measure the level of CORT that 

has been metabolised and deposited in feathers during feather growth. Thus, I compared 

two populations of blue tits in relation to the level of stress experienced by nestlings, 

throughout their first thirteen days of life, that may influence their fitness in urban and 

rural habitats. CORT levels in nestlings can also be directly influenced by parents before 

oviposition (e.g. by maternal deposition of CORT in yolk). Therefore, I also tested the role 
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of origin of the bird on their fCORT levels, experimentally, to assess whether the pre-

oviposition environment has a role in nestling’s fitness (Chapter 2). Then, as parasite 

infections can play a major role in fitness differences between urban and rural birds, I 

decided to measure the prevalence of avian malaria (haemosporidian parasites of the 

genera Plasmodium, Haemoproteus and Leucocytozoon), which are widespread parasites in 

birds, infecting blood cells. Specifically, I compared avian malaria prevalence in nestlings 

from the two populations across the two breeding seasons, as well as tested the role of 

parental origin (based on a cross-fostering experiment) on their susceptibility to infection 

(Chapter 4). However, to detect haemosporidian parasite acute infection and identify the 

parasite genera in the studied blue tit populations, I developed a new molecular method, as 

current tools did not allow these investigations (Chapter 3). Using this new approach, I 

explored my next aim, where I tested the effect of Leucocytozoon infection prevalence on 

fitness-related traits (body weight and survival) of nestling blue tits from the two 

populations during the two breeding seasons. I also tested the potential synergistic impact 

of infection and urban-related stress on blue tit fitness by examining the relationship 

between the two factors – fCORT level and Leucocytozoon infection prevalence (Chapter 

5). I accomplished these aims using both experimental and correlational approaches, the 

former involving a cross-fostering experiment and a vector-manipulation experiment. In 

2016, I cross-fostered some clutches between and within sites to test for any effects that 

may be derived from inherited or maternal traits from parents to their offspring. 

Additionally, as both populations showed high malaria prevalence in 2016, in the 2017 

breeding season, I conducted a vector-repellent experiment to experimentally reduce 

infections in nestlings; this was done with the goal of better understanding the impact of 

parasites on bird’s fitness. 

The key findings of my thesis are as follows: First, monitoring the two populations of blue 

tit over two breeding seasons revealed that most breeding parameters are significantly 

different between the urban and rural blue tits. In both seasons, urban birds showed a 

significantly lower clutch size, hatching and fledging success compared to the rural ones. 

Additionally, fledging success at both sites was considerably lower in one breeding season 

(2017), during which nestling body weight was significantly lower in urban than rural 

birds; however, in 2016, when fledging success was higher, the two populations barely 

differed in their weight. Second, mirroring nestling body weight, during the 2017 breeding 

season, fCORT levels in nestlings were significantly higher in the urban nestlings 

compared to their rural counterparts, but not in 2016, further suggesting that 2017 was a 
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more challenging year. However, I found no association between the reduction in fitness-

related traits (body weight and fledging success) and fCORT. This lack of association 

between fCORT levels and nestlings’ fitness-related traits could have been missed as I 

pooled the feather samples per nest and did not measure individual nestlings for fCORT 

level, thus losing the inter-individual variation in fCORT levels that could be associated 

with fitness-related traits. Third, mirroring the fCORT variations, Leucocytozoon parasite 

infections varied in the two populations across seasons, showing that urban populations 

had lower or higher prevalence compared to rural birds depending on the year (2016 and 

2017, respectively). I found a strong association between infection with Leucocytozoon 

prevalence and lower weight of urban nestlings just before fledging (day 13 of age) as well 

as a reduction in urban nestling survival, which instead was not observed in rural birds. I 

found no association between infection prevalence and fCORT level, measured per nest, 

not individuals. Finally, experimentally tested in the field, the origin of the bird did not 

influence the infection susceptibility to Leucocytozoon, nor did it influence fCORT levels.  

In summary, my thesis highlighted the importance of year to year variation between the 

two populations (i.e. the urban and the rural populations of blue tits), that could be 

influenced by fluctuating environmental factors such as weather and food availability. 

Urban and rural populations that show similarities in certain traits during one year of study 

may be different during another year (e.g. fCORT level and body weight). Prevalence of 

vector-borne pathogens like Leucocytozoon parasites in a given population may also differ 

between populations, which can vary from year to year. The extent of the fitness effect of 

parasite infection also depends on various factors fluctuating from one year to another. 

This emphasises the need for longitudinal studies monitoring individuals and populations 

over multiple years and across a wide range of habitats that differ in quality and features.  
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Chapter 1 General introduction 

1.1 Abstract 

Urbanised areas differ significantly from natural areas in terms of their different 

ecological features. These features play a crucial role in shaping the properties of both 

the animal and plant communities that colonise urban habitats. In general, although 

some wild species thrive in urban areas, urbanisation has led to a loss of natural 

resources (such as food and habitats). It has also led to alterations in energy flux, 

hydrology and temperature balance, as well as to high levels of pollution. Urbanisation 

has affected species in a variety of ways, resulting in populations with reduced 

reproductive performance. However, the ways by which the urban environment has 

influenced the breeding success of urban dwelling species remain unclear. Factors 

such as alteration in microclimate, pollution, and limitation in food resources have 

negatively affected the health of some vertebrates, including many bird species. Such 

stresses may increase the likelihood of parasite infestations, affecting the capacity of 

hosts to occupy urban areas. Birds are the most common, and most studied, taxon in 

urban areas and are regularly used as model organisms in the field of urban ecology. 

In this chapter, I will define the basis of my thesis by overviewing the current 

knowledge of the following topics. First, the stressors in the urban environment that 

may affect bird species including disease prevalence. I will focus on haemosporidian 

parasite prevalence as a possible factor influencing the fitness of birds in urban 

landscapes. Second, corticosterone hormone (CORT) level as a biomarker of stress. 

Next, my thesis aims will be given, followed by a summary of my study sites and 

study species, before ending with an outline of my thesis structure. 

1.2 A framework for understanding the relationship 
between urban environment, parasite load and avian 
fitness 

Urban-related stressors such as light, noise, and chemical pollution can impact on the 

health of some vertebrates, including birds (e.g. Burger, 1991; Partecke et al., 2006; French 

et al., 2008). Such stresses may increase the likelihood of parasite infestations, affecting 

the capacity of hosts to occupy urban areas. Therefore, parasite load should be linked with 

measures of health and stress in birds. This is because parasites that do not influence 

fitness are unlikely to be factors in determining whether birds live in a given environment 

(e.g. urban area). An integrative approach among parasitism, immunology and physiology 

remains to be developed in urban areas (Marzluff, 2017). 
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Parasite infection may directly affect bird fitness via damage of blood cells or other tissues, 

but it could also indirectly affect their host by diverting resources away from important 

processes and self-maintenance, especially in harsh and resource-limited environment like 

urban areas (Figure 1-1). Nestlings are more likely to be affected by infection because 

during this early life stages they depend on their immature innate immunity and may need 

to trade-off between two energetically demanding process; immune defence and self-

maintenance (growth and survival). 

 

Figure 1-1 A framework for the effect of urban environment and parasite load through stress 
axis or synergistic effect of both factors on avian fitness and overall reproductive success   
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1.3 What is an urban landscape? 

Urban landscapes are those areas characterised by noticeable levels of human density, 

buildings and roads. According to the British Office of National Statistics, urban areas are 

those districts known as villages, towns or cities, which in turn are defined by land use. 

Any built-up land (e.g. roads and buildings) comprising a minimum of 20 hectares 

(200,000 square metres) is defined as an urban area (British Office of National Statistics, 

2011). Another definition of an urban area is provided by the United States Geological 

Survey (USGS); here, urban areas comprise a minimum of 30% of areas covered by 

constructed components, such as roads and buildings. 

1.4 Environmental features of urban areas and their 
impact on wildlife 

Urbanised areas are characterised by complex environmental features, some of which are 

unique to urban landscapes, such as light at night, roads and buildings, while others can be 

found in other areas far from human habitats. However, the complexity and combination of 

environmental features in urban areas makes them different from other types of landscapes 

(Faeth et al., 2011). Urban environment negatively altered several biological traits of its 

wild species, including their diet (Penick et al., 2015; Murray et al., 2015; Becker et al., 

2015; Pollock et al., 2017), behaviour (Sol et al., 2013), physiology (Dominoni et al., 2013; 

Salmón et al., 2016; Watson et al., 2017) immunity (Bailly et al., 2016; Capilla-Lasheras et 

al., 2017) and disease transmission (Brearley et al., 2012; Martin and Boruta, 2013; Hassell 

et al., 2017). 

1.4.1 Urbanised areas as ecological traps 

While urban-dwelling species have been often reported to be negatively affected by urban 

environment, some species tend to thrive in cities reaching high abundance in such 

environments (Seress and Liker, 2015; Meyrier et al., 2017). This could be because of 

some benefits urban environments provide to these species such as availability of food and 

nesting sites. In urban areas, humans provide food for animals either intentionally, such as 

by way of seed feeders, or accidentally, such as by scattering leftovers or food waste 

(Tryjanowski et al., 2015). Although, such factors of urban habitats can improve the health 

status and survival of urban birds (Robb et al., 2008; Suri et al., 2017), especially during 

winter (Batten, 1978), they could represent ecological traps for birds due to mismatches 
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between attractive sites for breeding and the cost imposed on fitness (Meyrier et al., 2017; 

Pollock et al., 2017). The greater availability of supplemental food in urban areas may 

encourage females to anticipate the breeding season, as they might take the abundance of 

food as an indication of appropriate conditions in which to rear their nestlings (the 

anticipation hypothesis; (Lack, 1954)). According to this hypothesis, birds evaluate the 

quality of their environment using information such as food availability. So, availability of 

winter food may serve as a misleading cue for birds, which predict the timing for abundant 

food in the breeding season, creating an ecological trap. Birds may start breeding early in 

the season and lay more eggs but of poor-quality. Rapid environmental change causes 

organisms to prematurely settle in habitats that turn out to be of poor quality for chick 

rearing. This early breeding may lead to a mismatch between the demands of nestlings for 

food and the peak of natural resources of food, which in turn results in reduced rates of 

nestling survival. 

Supporting the anticipation hypothesis, supplementary food experiments have frequently 

found early laying dates (reviewed by (Robb et al., 2008), and yet have rarely reported any 

notably larger clutch sizes (such as in blue tit Parus caeruleus (Ramsay and Houston, 

1997) and great tit Parus major (Nager et al., 1997). Rather, Harrison et al., (2010) 

reported reduced clutch size as well as a reduced number of fledged chicks of both blue tit 

Cyanistes caeruleus and great tit populations at their food supplemented sites. Increased 

clutch size has been reported with some supplemented birds (e.g, (Schoech, 1996), but 

with low quality eggs (Nager, 2006). 

Supplemented food may influence different species differently and may depend on whether 

it is provided prior to or throughout the breeding season. For instance, a landscape-scale 

experiment on blue tits suggests that the provision of food supplements prior to egg-laying 

is highly likely to improve the condition of the parents, which leads to the enhancement of 

parental care for the nestling and, hence, higher rates of nestling survival (Robb et al., 

2008). Another study of blue tits also shed light on the importance of the quality of the 

food provided over winter. The provision of fat-rich food negatively affected the quality of 

eggs and, in turn, nestlings’ body mass in the following breeding season, and yet this 

impact was mitigated when vitamin E was added to the fat (Plummer et al., 2013a; 

Plummer et al., 2013b). Interestingly, when a group of Florida scrub-jays Aphelocma 

californica were provided with protein- and fat-rich food, they laid their eggs earlier, and 
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laid larger eggs and clutches, compared to the group provided with fat-rich food only 

(Reynolds et al., 2003). 

1.4.2 The quality of anthropogenic food 

The nutritional condition has been proved to have a strong link to immunity; a growing 

number of studies suggest that food resource limitations are often associated with slower 

development, decreased immune activity and reduced body mass (e.g., Alonso-Alvarez and 

Tella, 2000; Killpack et al., 2015). The quality of food provided for birds in urban areas is 

crucial for their health. It has been reported that abundant but poor-quality anthropogenic 

food (high in fat and low in protein) has a detrimental effect on animal immune systems, 

especially antibody-mediated defences (van Heugten et al., 2007; Maggini et al., 2007). 

The quality of anthropogenic food provided by humans is unlikely to be appropriate for 

birds both as adults and nestlings. Anthropogenic food is fat-rich and protein-poor 

compared to food in their natural habitats (Heiss et al., 2009; Murray et al., 2015). The 

abundance of this suboptimal anthropogenic food has the potential to play a central role in 

birds physiological pattern and furthermore may culminate in other effects such as their 

immunity. 

Furthermore, bird feeders or waste points play an important role in disease transmission 

between birds, associated with certain behavioural adjustments (Jones and Reynolds, 

2008). Bird feeders or waste points work as a contact point between birds and vectors of a 

variety of infectious diseases. The human provisioning of animals with food may be the 

strongest driving factor of disease prevalence in urban areas. An increased number of 

studies have illustrated that, depending on the nature of provisioning and the particular 

host-pathogen interaction, anthropogenic resources play a role in the alteration of host-

pathogen interactions, resulting in either increased or decreased infection risks for both 

animals and humans (Becker et al., 2015). For example, some ticks, which are vectors of 

certain parasites, seem to be more prevalent in natural habitats compared to urban habitats 

(Evans et al., 2009). This pattern is expected because ectoparasites (including ticks) often 

have strict microhabitat needs (Logiudice et al., 2003). As a result, Lyme disease, which is 

caused by Borrelia burgdorferi (the tick-borne Ixodes sp. pathogen), is less common in 

urban areas in comparison with surrounding woodlands in the north eastern United States 

(Keesing et al., 2009). However, other types of parasites, such as haemosporidian parasites 
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(avian malaria) that are vectored by flying insects, showed mixed results (review Sehgal, 

2015). 

In addition, bird feeders works as a point of social conflicts (aggregation) for birds. 

Aggregations increase the level of stress hormones, and particularly corticosterone, which 

is the dominant steroid hormone of avian species (Hawley et al., 2006). Animals dwelling 

in urban habitats and occurring in high densities are vulnerable to disease because this 

hormone is believed to negatively affect immune functions (Moller and Saino, 2004). 

In nestlings, the high amount of anthropogenic food provided for birds during the rearing 

period may shift their diet towards a higher ratio of sub-optimal food, especially with the 

reduction of natural food availability (e.g.,  Sauter et al., 2006; Mennechez and Clergeau, 

2006). Since nestlings need protein-rich food, which is often scarce in urban areas (Van 

Nuland and Whitlow, 2014; Murray et al., 2015; Pollock et al., 2017), a high proportion of 

anthropogenic diet may result in a reduction in nestling body mass (e.g., Hõrak et al., 1999; 

Heiss et al., 2009). Moreover, any reduction in urban nestling body mass might be 

associated with an increased rate of mortality (e.g., Peach et al., 2008; Seress et al., 2012). 

In addition, nestling body mass is believed to be a good indicator of their potential success 

as breeding adults in many avian species (Schwagmeyer and Mock, 2008). 

1.4.3 Urban microclimate 

It is well-known that urbanised environments have significantly modified local 

meteorological conditions (Niemelä, J, Breuste, JH, Elmqvist, T, Guntenspergen, G, 

James, P and McIntyre, 2011), including air and ground temperatures, as well as the 

hydrology of cities and their surroundings. For instance, the high concentration of 

particulates in urbanised environments acts as condensation, often resulting in increased 

precipitation (Pickett et al., 2001). 

The pattern of urban heat islands is a well-documented feature of urban ecosystems. Urban 

areas often have higher temperatures compared with their surroundings (Collins et al., 

2000; Kalnay and Cai, 2003). This pattern shows the temperature variation between urban 

and non-urban areas, directly resulting from human activity and land cover. This variation 

in temperature is most notable after sunset; it is a few degrees on average but, depending 

on the area, can differ by as much as 10oC (Pickett et al., 2001). Consequently, the life 
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cycles of insects are affected, which in turn alters the availability of arthropod food for 

avian species. The earlier occurrence of arthropods may cause asynchrony between the 

peak abundance of prey (such as caterpillars) and the onset of breeding of insectivorous 

birds (Visser et al., 2006). However, the warmer climate of cities may play a significant 

role in the survival of bird species during winter, resulting in elevated breeding populations 

(Chace and Walsh, 2006). It is indeed challenging to examine the role of the warmer 

climate in itself as it cannot be separated from other factors, such as food availability. 

1.4.4 Urban structures and pollution 

Roads are one of the principal features to shape urbanised areas; they can alter 

hydrological systems (Coffin, 2007), and are responsible for the elevation of avian 

mortality rates due to collisions (Spellerberg, 1998). Bird populations have experienced a 

reduction in density due to the elevated proximity of roads (Benítez-López et al., 2010). 

Birds display behavioural adaptations to roads. For instance, some common European 

species make adjustments to their flight initiation distance (FID), depending on the speed 

limit of the road and escape earlier when the speed limit of the road is high (Legagneux 

and Ducatez, 2013). More importantly, many species avoid noise pollution, which is 

mainly related to traffic on roads in urbanised landscapes (Forman et al., 2002; Peris and 

Pescador, 2004). This type of anthropogenic pollution is related to the changed acoustic 

environments of urban areas and transportation networks, which affects the transmission of 

acoustic signals used by animals in their communication and behaviour. These signals and 

behaviour are very important in relation to certain processes, such as territorial defence, 

attracting mates and begging calls (Warren et al., 2006). For instance, a study of the house 

sparrow Passer domesticus demonstrates that chronic noise affects parent-offspring 

communication by masking the begging calls of nestlings and, as a consequence, reduces 

provisioning rate which then reduces their reproductive success (Schroeder et al., 2012). 

It has also been proven that noise pollution causes physiological stress and influences other 

factors of behaviour, for example by interfering with crucial sounds made during predator-

prey interactions (Barber et al., 2010). It is noteworthy that several avian species have been 

able to overcome the consequences of noise pollution by modifying particular 

characteristics of their singing, such as amplitude and frequency (e.g, Francis et al., 2011). 
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The considerable amount of artificial light present in urban landscapes is the main source 

of light pollution. This type of pollution mainly affects the behaviour of animals. For 

example, it can affect animal foraging behaviour, migration, orientation, reproduction and 

even communication (review by Longcore and Rich, 2004). The singing behaviour of birds 

is typically initiated by light; as such, the presence of artificial light at night also has an 

impact on courtship behaviour (Miller, 2006; Kempenaers et al., 2010). 

Artificial light at night also alters interactions between competitors (Petren and Case, 

1996), and between predators and their prey (Perry et al., 2008). It affects timing of 

reproductive behaviour (Kempenaers et al., 2010; Dominoni et al., 2013). Artificial light at 

night has a detrimental effect on a great variety of organisms, from flying insects 

(Eisenbeis and Hänel, 2009) to vertebrates such as birds (Miller, 2006). Many migrant 

birds use artificial light at night as a visual guide instead of natural cues on the horizon, 

especially when it is foggy or cloudy. Some burrowing seabirds (e.g. puffins, petrels and 

shearwaters) are attracted to light when fledging. In a natural environment this is the sea 

where they head for. But increasingly they get attracted to city lights where they are 

exposed to many threats (Longcore and Rich, 2004). 

A recent study on the captive Eurasian blackbird Turdus merula reported differences in the 

development of the reproductive system due to the amount of light to which individual 

birds were exposed. Birds exposed to low levels of light at night tend to develop their 

reproductive systems earlier compared to those kept under forest-like night conditions 

(Dominoni et al., 2013). In investigating the physiological drivers behind this difference, 

they conducted a comparison between urban and rural populations of the same species and 

found differences in their chronotypes (the propensity for the individual to sleep at a 

particular time during a 24-hour period) and circadian clocks (the central mechanisms that 

drive circadian rhythms). The urban birds were active for longer during the day and had 

shorter circadian clocks compared with the rural birds, as the former woke before dawn, 

whilst the latter followed the natural light when starting and ending their daily activities 

(Dominoni et al., 2013). A similar study of the same species found that birds in urban areas 

that are exposed to higher levels of light at night forage for longer after dusk, and this 

pattern was more pronounced when the period of daylight was shorter, such as is the case 

in early spring (Russ et al., 2014). 
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Concentrations of chemical pollution in urban areas are believed to be much higher than 

the global average. Emissions from traffic, factories and heating, as well as other chemical 

pollutants in the city, all contribute to soil, air and water pollution, which in turn leads to 

alterations in both bio-geochemical and nutrient cycles, as well as in primary production 

(Grimm et al., 2008) These negative effects of pollution during the breeding season would 

affect not only adults but also their offspring, either directly or via maternal transfer from 

mother to offspring during the egg formation process, for example (Ardia, 2005). 

The impact of pollutants may extend beyond the borders of cities and enter the food chain, 

posing real threats to many species, including birds (Eeva et al., 2005; Eeva and 

Lehikoinen, 2013). Since they occupy high trophic levels and have a high metabolic rate, 

small insectivorous songbirds are often used in studies as indicators of the impact of 

chemical pollution in urban areas. Bioaccumulation of heavy metals has detrimental effects 

on birds’ physiology (e.g. Hofer et al., 2010). Elevated levels of the bioaccumulation of 

heavy metals have been observed in a number of urban bird species, for example the blue 

tit (Dauwe et al., 2000; Brahmia et al., 2013), the American robin Turdus migratorius 

(Hofer et al., 2010) and the house sparrow (Swaileh and Sansur, 2006; Kekkonen, 2011; 

Bichet et al., 2013). The negative effects of this type of pollution on birds’ physiology have 

also been demonstrated by several studies (e.g., Ware, 1993; Eeva et al., 2003; Eeva et al., 

2005; Eeva et al., 2014). In general, young birds are believed to suffer the most from 

chemical pollution (Scheuhammer, 1987) particularly in terms of reduced body mass and 

higher mortality rates (Janssens et al., 2003). 

1.4.5 Disease prevalence 

Urban meteorological factors may make urban areas suitable for some diseases, and yet 

may reduce the prevalence of others (Martin and Boruta, 2013). One of these factors is the 

higher and less variable ambient temperatures in urban areas compared to their surrounding 

areas (Grimm et al., 2008; Pickett et al., 2011). Another factor might be the precipitation 

and relatively impermeable ground surfaces typical in urban areas, which fosters parasite 

transmission as well as the breeding of vectors (Githeko et al., 2000). In addition, the 

presence of permanent water bodies (such as ponds or fountains) throughout the year, 

which can be a limiting factor for vector reproduction during summer in some southern 

countries (Santiago-Alarcon et al., 2019). 
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Studies provided contrasting results of the impact of urbanisation on pathogen’s prevalence 

depending on the identity of species involved in the interaction (i.e. pathogen and host 

species) (Lachish et al., 2012; Renner et al., 2016). While a number of studies have found 

higher prevalence of disease in urban populations compared to rural populations of wild 

animals [trichomonoiasis in Cooper’s hawks Accipiter cooperii (Boal et al., 1998), 

unknown disease in the common racoon Procyon lotor (Prange et al., 2003), chronic 

wasting disease in mule deer Odocoileus hemionus (Farnsworth et al., 2005), West Nile 

virus in wild birds (Gibbs et al., 2006)], others reported the opposite where the rural 

wildlife populations have higher parasitism than their paired urban counterparts (Ixodes 

ticks in the common blackbird Turdus merula (Gregoire et al., 2002), dixenous helminths 

in the red fox Vulpes vulpes (Reperant et al., 2007), intestinal roundworm Baylisascaris 

procyonis in the common raccoon (Page et al., 2008)). 

1.4.5.1 Haemosporidian parasites prevalence 

Haemosporidian parasites (phylum Apicomplexa, order Haemosporida), are parasites 

commonly found in avian blood. Haemosporidian parasites from the genera Plasmodium, 

Haemoproteus and Leucocytozoon are often referred to as avian malaria parasites. They are 

transmitted by vectors (insects belonging to the order Diptera) including mosquitoes 

Culicidae in the case of Plasmodium species, biting midges Culicoides for Haemoproteus 

species and Leucocytozoon caulleryi, and blackflies Simulium for other Leucocytozoon 

species (Valkiūnas, 2005). 

Avian malaria parasites have been of central interest in the ecological and conservational 

studies of host-parasite interactions over recent decades (Bensch et al., 2009). These 

parasites are diverse, and mixed infection, when a bird is infected with more than one 

parasite genus, is thought to be common in birds (Bensch et al., 2009; Clark et al., 2014). 

Studies have shown that infection with these parasites is associated with costs on life-

history traits. Infections can affect host body condition (Merino et al., 2000; Valkiūnas et 

al., 2006), result in anaemia (Valkiūnas, 2005) and mortality (Cardona et al., 2002; Ilgūnas 

et al., 2016; Palinauskas et al., 2016). These parasites infect hosts’ blood cells (mainly red 

cells, but in case of Leucocytozoon also the white blood cells), tissues and other major 

organs such as liver, brain, heart and lungs (Bray, 1957; Garnham, 1966; Frevert et al., 

2008). 
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The parasite life cycle of infection starts by a bite from an infected vector (blood-sucking 

insects), allowing parasite sporozoites to enter the body and make their way to the liver 

infecting the hepatocytes and developing into schizonts; each schizont contains multiple 

numbers of merozoites. Development of schizonts sometimes occurs in the endothelial 

cells instead of the hepatocytes. Parasites at this stage enter their prepatent period, when 

the host is infected but show no symptoms of infection, then the merozoites are released 

into the bloodstream and infect, depending on parasite genera, and sometimes species, 

either erythrocytes, leukocytes, macrophages or endothelial cells. Each merozoite infects 

one single host cell and develops into a schizont, which is formed by multiple merozoites 

again. Merozoites infecting erythrocytes or leukocytes can develop into the sexual stage 

(gametocytes). The gametocytes are the transmissible stage that will infect and sexually 

reproduce in the insect vector, when the parasite life cycle starts again (Valkiūnas, 2005). 

Infection with haemosporidians found to be associated with reductions in a number of 

fitness-related traits in adult birds including host body condition, parental investment, 

reproductive success and survival (Dawson and Bortolotti, 2000; Merino et al., 2000; 

Marzal et al., 2005; Marzal et al., 2008; Lachish et al., 2011; Sudyka et al., 2019; Dadam et 

al., 2019). In contrast, some studies found that chronic infection with these parasites has no 

significant effect on their avian host’s overall condition and breeding success (Bennett et 

al., 1988; Ots and Hõrak, 1998; Kilpatrick et al., 2006; Podmokła et al., 2014). However, 

most of these studies are observational or correlational studies. Therefore, experimental 

studies would be essential to provide evidence of harmful effects of malaria parasites on 

their bird hosts. The effect of haemosporidian infection on their host is complex and has 

been suggested to be influenced by various factors including host trait (such as age, sex 

and health condition) as well as host’s rearing and nutritional conditions, in addition to the 

type of both the parasite and the host species (see example studies in Table 1-1). 

These parasites present a convenient study system because of their widespread among 

avian species and over wide geographical area (in every continent except Antarctica) 

(Valkiūnas, 2005). Studies of the impact of urbanisation on the prevalence of 

haemosporidian parasites showed mixed results (review Sehgal, 2015). For example, in the 

UK, eight out of 11 cities showed lower avian malaria (Haemoproteus) prevalence in adult 

blackbird Turdus merula compared to their surrounding woodlands (Evans et al., 2009). 

Similarly, Chasar et al. (2009) found higher prevalence of both Haemoproteus and 

Leucocytozoon parasites in the undisturbed areas in two bird species (adult yellow-
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whiskered greenbul Andropadus latirostris and olive sunbird Cyanomitra olivacea in 9-

paired natural habitat (disturbed verse undisturbed locations) in Cameroon. Likewise a 

very recent study on house sparrows (adults and yearlings) along urban gradients in Spain 

found higher prevalence of Leucocytozoon in natural habitat compared to urbanised areas 

(Jiménez-Peñuela et al., 2019). A study on five songbird species in a desert habitat showed 

that urban-adapter adult birds generally exhibited lower Haemoproteus parasites 

prevalence in urban compared to rural areas (Fokidis et al., 2008). In contrast, in Brazil, 

malaria prevalence (Haemoproteus and Plasmodium) in wild birds was higher in urban 

areas than in rural areas (Belo et al., 2011). Ferraguti et al. (2018) found no significant 

differences on Plasmodium prevalence or richness between habitat categories (urban, rural, 

natural).



1.4.5.2 Need for better tools for avian malaria parasite detection 

Detection of haemosporidian parasites in host blood is relatively easy using molecular 

techniques and/or microscopy (Godfrey et al., 1987; Hellgren et al., 2004). The nested 

PCR protocol (nPCR) that has been developed by Bensch et al. (2000) and further 

modified by Waldenström et al. (2004) and Hellgren et al. (2004) has been widely used to 

detect the three genera of Haemosporidia (Clark et al., 2014). This protocol has been often 

used to assess the reliability and sensitivity of newly developed protocols by comparing 

their results with results of Haemosporidian parasite prevalence obtained from the nPCR 

method (Ishtiaq et al., 2017). Nevertheless, the nPCR and other PCR-based protocols often 

underestimate mixed infection because similar or equal amplicon sizes of different genera 

are expected (Valkiūnas, Bensch, et al., 2006). Additionally, cross-reactivity in the nPCR 

is another issue that adds to the shortcomings of these protocols. Previously, in nine out of 

12 samples that were positive for both Leucocytozoon and Haemoproteus/Plasmodium by 

nPCR, sequencing revealed that only one of the two parasites – Leucocytozoon or 

Haemoproteus – was present (Capilla-Lasheras et al., 2017). Thus, the field is in demand 

of a new sensitive and specific molecular technique to quantify and more importantly 

distinguish between parasites genera in avian blood.
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Table 1-1 Example studies investigating the effect of haemosporidian infection on adult host’s fitness traits 
Host Parasite Host trait Infection effect Observational/experimental  Reference 

american kestrels 
Falco sparverius 

(wild) 

Haemoproteus body condition during breeding • in female; poorer condition during 
incubation, but not prior to egg-laying, and 
reduction of return to study area 

• In male; poorer condition during incubation 
in one year but not the other 

observational (Dawson and 
Bortolotti, 2000) 

blue tit Parus 
Caeruleus 

 

Haemoproteus  

Leucocytozoon 

breeding performance • cost of infection paid by offspring body 
weight 

• Reduced parental care 

medication experiment in 
the field 

(Merino et al., 
2000) 

house martin Delichon 
urbica 

 

Haemoproteus breeding performance • reduced clutch size, hatching and fledging 
success 

• no effect of infection on offspring quality 
(tarsus length, body mass, haematocrit and 
T-cell immune response 

medication experiment in 
the field 

(Marzal et al., 
2005) 

house martin Delichon 
urbica 

(wild) 

Haemoproteus 

Plasmodium 

breeding performance • reduced survival. But have a different 
consequence on the breeding performance 
of single and double-infected birds 

observational (Marzal et al., 
2008) 

blue tit Cyanistes 
caeruleus 

(wild, data from 9 
years) 

Haemoproteus 

Plasmodium 

survival and recapture rate • reduced survival and recapture rate 
depending on parasite clade, host trait and 
local risk of infection 

observational (Lachish et al., 
2011) 

blue tit Cyanistes 
caeruleus 

(wild) 

Haemoproteus 

Plasmodium 

Telomere length (TL) • male only infected with Plasmodium had 
shorter TL compared to those infected with 
Haemoproteus 

observational (Sudyka et al., 
2019) 

red-winged blackbird 
Agelaius phoeniceus 

 

Plasmodium red cell production, 
haemoglobin level, body weight, 
immune system and stress 
physiology 

• treatment decreased parasitaemia, reduced 
red blood cell production and increased 
haemoglobin level. However, no effect of 

medication experiment in 
the field 

(Schoenle et al., 
2017) 
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treatment on the rest of the physiological 
traits tested 

great tit Parus major 

(wild, data from 3 
years, from an urban 
and a rural site (8km 
between the two sites) 

Haemoproteus • cell-mediated and humoral 
immune response 
(lymphocyte 
haemoconcentration and 
plasma gamma-globulin 
levels) 

• inflammatory response 
(Heterophile 
haemoconcentration and 
plasma albumin levels) 

• anaemia (haematocrit 
values) 

body weight 

• infected males only had elevated 
lymphocyte haemoconcentration and 
plasma gamma-globulin levels, and among 
these, the magnitude of the effect was more 
significant in old individuals than yearlings. 

• heterophile haemoconcentration and plasma 
albumin levels were not affected by 
infection status, suggesting that blood 
stages of Haemoproteus infection do not 
cause a severe inflammatory response. 

• parasitism was not related to haematocrit 
values, indicating that Haemoproteus 
infection does not cause anaemia 

• in two years, infected individuals were 
heavier than uninfected ones in the urban 
but not in the rural study area 

observational (Ots and Hõrak, 
1998) 

native Hawaiian 
honeycreeper 
Hemignathus virens 

(wild) 

Plasmodium breeding performance • infected parents did not significantly reduce 
their reproductive performance (clutch size, 
hatching and fledging success, daily 
nestling survival rate) 

observational (Kilpatrick et al., 
2006) 

blue tit Cyanistes 
caeruleus 

 

Haemoproteus 

Plasmodium 

breeding performance • infected birds produced heavier offspring 
and breed later in the season, but the 
infection did not affect clutch size 

• the infection had a stronger positive effect 
among birds with experimentally enlarged 
broods. 

brood enlargement 
experiment in the field 

(Podmokła et al., 
2014) 

3739 birds from 15 
species of passeriform  

Haemoproteus  

Leucocytozoon 

body mass • no effect of parasite prevalence on bird’s 
body mass 

observational (Bennett et al., 
1988) 
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(wild) 
house sparrow Passer 
domesticus 

(wild, 11 suburban 
sites) 

Plasmodium population growth decline • survival rate of juvenile and adult birds and 
population growth were negatively related 
to Plasmodium relictum infection intensity 

observational (Dadam et al., 
2019) 



1.5 Physiological stress response to urban environment 

Birds, like other vertebrates, can tackle environmental challenges by activating the 

hypothalamic-pituitary-adrenal (HPA) axis (Sapolsky et al., 2000; Bonier, 2012). The HPA 

axis is comprised of the hypothalamic paraventricular nucleus (PVN), the anterior pituitary 

gland, and the adrenal cortex. The activation of HPA axis lead to secretion of 

glucocorticoids (GCs) for several minutes to hours (Wingfield and Romero, 2011). The 

process starts when an organism encounters a stressor, the PVN is stimulated, causing the 

parvocellular neurons to release corticotrophin-releasing hormone (CRH) and other 

secretagogues, such as arginine vasopressin (AVP) into the hypophyseal portal system that 

connects the hypothalamus and the anterior pituitary. CRH and AVP stimulate the anterior 

pituitary to synthesize and cleave the precursor molecule proopiomelanocortin into 

adrenocorticotropin hormone (ACTH). ACTH is released into the blood stream and 

stimulates the adrenal cortex to secrete GCs above basal levels (Figure 1-2). 

HPA activation triggers an emergency response prioritising energetic expenses for survival 

over immunity and some crucial behaviours (e.g. escape behaviour or begging behaviour) 

(McEwen, 1998; Sapolsky et al., 2000). However, long term or chronic exposure to 

stressors and elevation of glucocorticoid levels may have detrimental effects (Boonstra et 

al., 1998; Blas et al., 2007). It has often been found that the amplitude and duration of the 

stress response negatively correlate with the overall health and well-being of animals 

(Sapolsky, 1983; Boonstra et al., 1998). Thus, GC levels have been used a proxy of animal 

well-being in ecological and conservational studies (Busch and Hayward, 2009). 
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Figure 1-2 The hypothalamic–pituitary–adrenal (HPA) axis, the response of birds to chronic 
stress due to urban-related stressors, and the main impacts stressors have on host’s 
biological and fitness traits. Figure adapted from (Sheriff et al., 2011). 

CORT is the main glucocorticoid for avian species, which has been found elevated in 

nestlings as a result of a variety of environmental stressors such as lack of food availability 

(Kitaysky et al., 2007; Alexis P Will et al., 2014; Patterson et al., 2015) and heavy metal 

pollution (Meillère et al., 2016). The detrimental effects of elevated glucocorticoid levels 

include impaired immunity (Saino et al., 2003; Eeva et al., 2005; French et al., 2008), 

inhibited growth (Belden et al., n.d.; Eeva et al., 2014; Alexis P Will et al., 2014; 

Rodríguez and Barba, 2016), and reduced reproduction (Wingfield and Sapolsky, 2003; 

Lendvai et al., 2007). Impairing immunity would mean that individuals are more 

susceptible to and affected by potential diseases in their environment. 

Usually, CORT is measured in plasma which provides a measure at a single point in time, 

giving information about the current physiological state. CORT can also be measured in 
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metabolites present deposited in feathers during their growth. The feather CORT (fCORT) 

provides a historical record of an individual’s CORT release during the period of feather 

growth. However, how CORT is deposited in feathers still an open question (Jenni-

Eiermann et al., 2015). 

It is costly for an organism to mount an immune response to fight off pathogens, thus they 

should be in a good condition to develop more effective response (Navarro et al., 2003). 

For instance, according to life history theory and the energetic trade-off hypothesis, during 

reproduction, there is a high demand for energy and immune functions may be reduced in 

order to redirect energy to allow an individual to invest in their reproductive effort and, 

hence, increase the likelihood of offspring survival (Norris and Evans, 2000). However, 

this process increases potential susceptibility to disease. A number of experimental studies 

have demonstrated that elevated immune activity can affect other key traits; for example, 

developing sexual ornamentation (Zuk, 2000), chick-feeding (Ilmonen et al., 2000), growth 

rates of offspring (Brommer, 2004) and clutch size (Martin et al., 2001). 

To conclude, my review of the literature shows that birds’ fitness can be affected by 

different aspects of the urban environment. Furthermore, birds are hosts to a variety of 

parasites and living in such an environment is likely to increase the susceptibility of birds 

to parasite infection in urban populations. However, the effect of parasite load on the 

fitness-related traits of species living in the urbanised areas has received little attention, 

and efforts are needed in this area. In general, the review shows a gap in evaluating fitness-

related traits of wild birds within urban environment. Parasite infections such as with 

haemosporidian parasites, and urban-related stressors that elevate stress hormone levels in 

urban-dwelling birds have the potential to form a synergistic impact that could affect the 

fitness of host living in such a harsh condition.  
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1.6 Thesis aims 

Urbanisation has negatively affected different fitness-related traits of urban species 

resulting in an overall loss of biodiversity and populations with reduced reproductive 

performance. However, the mechanisms behind this phenomenon remain unclear. Urban-

related stressors such as light, noise and chemical pollution, negatively affect the health of 

some vertebrates, including birds. These stressors may lead to a chronically elevated level 

of corticosterone hormone in birds, which may have detrimental consequences on avian 

body condition and fitness. Such stresses may increase the severity of parasite infestations, 

affecting the capacity of hosts to occupy urban areas. 

The aim of the thesis was to explore two factors that may be linked to differential success 

in urban and rural populations – stress and parasitism – and their relationship with 

reproductive fitness. By studying this relationship in both an urban and a rural population 

of blue tit across two breeding seasons, I aim to gain preliminary insights into whether 

these specific factors might contribute to reduced fitness in urban areas. I used both 

correlational and experimental approaches to study the potential link between 

haemosporidian parasite infection and stress hormone levels and their relationship with 

blue tit fitness. This thesis also presents a new molecular approach to quantify and identify 

haemosporidian parasite genera in avian blood. 

1.7 My study system 

1.7.1 Study sites 

I used existing nest box study systems used to monitor annual blue tit breeding success 

(woodcrete boxes: 260 × 170 × 180 mm, entrance = 32 mm, Schwegler, Germany in one 

urban and one rural site (Figure 1-3). Blue tits commonly breed in both urban and rural 

sites, allowing for a comparison of birds between the two habitats. The two populations of 

blue tit have been previously studied and lower reproductive success was observed in the 

urban population compared to the rural population (Capilla-Lasheras et al., 2017; Pollock 

et al., 2017), as has been shown by other studies on this and other passerine species 

(Chamberlain et al., 2009). Diet (i.e. availability of arthropods) had also been studied in the 

previous year at these exact study sites and the urban site showed lower quality and 

quantity of natural food (e.g. caterpillars) compared to the rural site (Pollock et al., 2017). 
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The rural site is a natural woodland park located on the eastern shores of the largest lake in 

Britain (Loch Lomond). The woodland has been recognised as an outstanding example of 

old sessile oak Quercus petraea wood with Ilex and Blechnum habitat. Atlantic oak 

woodland is found on acidic soil and is very rich in lower plants. Associated with this 

vegetation, under leaves and on the ground, are a myriad of insects providing a feast for 

birds and as a result, the woodland has high densities of breeding birds (up to 1500 pairs 

per km2). 

The urban site is a park characterised by intensive urban structures around the park, such as 

roads and buildings. The park is 34 hectares in size, sitting on the banks of the River 

Kelvin and located a few kilometres from the city centre of Glasgow. The park is in a 

central location linking the university of Glasgow from the west to other popular 

residential areas, making the surrounding of the park a popular route for commuters to the 

city centre. The park has playgrounds and memorial statues and is heavily visited by 

people. It is popular with dog-walkers, students, visitors and tourists. One of the largest 

museums and art galleries in the city is just next to the park. Summer outdoor 

entertainment events are often held in the park, just during the breeding season of most 

residential birds including my study species – the blue tit.

 

Figure 1-3 The urban and rural sites of blue tit populations under the studies of my thesis  
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1.7.2 Blue tit Cyanistes caeruleus 

The blue tit is a small hole-nesting passerine belonging to the Paridae family. The species 

is widely distributed in temperate regions. In the UK, the blue tit is a common passerine in 

lowland deciduous woodland, and also common in gardens and parks in urbanised areas. In 

research, it is an attractive study species because of its large population size. According to 

the British Trust for Ornithology (2016), there are 3.4 million breeding pairs each year in 

Britain and it is one of the 24 most common bird species in the country. Blue tits 

commonly take advantage of artificial nest boxes and use them to breed, which allows easy 

access to monitor their reproductive performance and conduct some experiments in nest 

boxes for research purposes. In Scotland, blue tits breed between April and June, start nest 

building in March and egg laying of a single brood takes place during April or May. Only 

females incubate the eggs, while the male brings food during incubation (Perrins et al., 

1965). After the eggs have hatched, both males and females start to feed the nestlings and 

continue to do so after fledging for a few days. 

1.8 Thesis structure 

In Chapter 2 (“Year-dependent variation in feather corticosterone hormone between an 

urban and a rural population of blue tit Cyanistes caeruleus”), I use an integrative measure 

of the level of corticosterone (the main avian glucocorticoid) metabolised and deposited in 

feathers (fCORT) of nestling blue tits inhabiting urban and rural sites over two breeding 

seasons. I aim to determine whether there are variations in the level of fCORT between 

nestlings from the two populations and whether this variation is consistent over time. In 

addition, I compare nestling survival and nestling body weight between sites and years and 

explore the association between these traits and fCORT level. In order to test for any 

variation in the level of nestlings’ fCORT that could be derived from mothers via hormone 

deposition in the egg, I cross-fostered clutches between urban and rural sites and, in 

addition, measured yolk corticosterone (yCORT) levels from eggs from both sites. The 

finding of this chapter gives a piece of overview information regarding the stress level, the 

fitness and overall breeding success of both urban and rural population. Next, I will 

investigate the association between these traits (fitness and stress level) and 

haemosporidian parasite infections. However, before testing this association, I needed to 

establish an adequate method to detect and accurately identify the parasites in blue tit 

nestlings in my study populations. 
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In Chapter 3 (“Molecular quantification of haemosporidian parasites (Leucocytozoon and 

Haemoproteus)”), I describe the development steps of a new quantitative Polymerase 

Chain Reaction (qPCR) approach for detecting haemosporidian parasites, specifically of 

the Leucocytozoon and Haemoproteus genera. I then compare the results from this new 

method with the results of a nested-PCR method (Hellgren et al., 2004). I assess the 

effectiveness of the qPCR method in detecting a very low intensity of malaria parasites 

which could not be detected with the nested-PCR method. This new approach also helps to 

detect co-infection more accurately, as in the nested PCR approach cross-reactivity is not 

excluded and co-infection might be falsely detected in some cases. Using this new 

approach, in Chapter 4 I go on to compare the prevalence of Leucocytozoon parasite, the 

predominant infection in my study population, between the two populations. Then, I go on 

to test the association between infection prevalence and fitness-related traits of blue tits. 

In Chapter 4 (“Leucocytozoon prevalence in blue tit Cyanistes caeruleus populations at an 

urban versus a rural site across two breeding seasons”), I test whether haemosporidian 

parasite prevalence differs between urban and rural sites by comparing Leucocytozoon 

infections and intensity of urban and rural populations of blue tits across two breeding 

seasons. To test if the susceptibility of the bird to the infection is driven by the origin of the 

bird (i.e. by traits inherited from parents to their offspring), I cross-foster some clutches 

between the sites in 2016, as described above. In order to test if vector abundance in the 

nest is influencing the prevalence of infection, I treat some nests with vector-repellent at 

both sites in 2017.  

In Chapter 5 (“Leucocytozoon infection prevalence is associated with reduced body weight 

and fledging success of urban wild blue tit nestlings”), I test the association of 

Leucocytozoon infection with fitness-related traits (body weight and survival) of nestling 

blue tits dwelling in an urban and a rural site during two breeding seasons. 

In Chapter 6 (“General discussion”), I bring the findings of my thesis together and evaluate 

the main points, and I shed light on possible future directions based on my findings. 

In this thesis, I address the knowledge gap regarding the impact of urbanization on bird 

fitness. I use an urban and a rural population of blue tit Cyanistes caeruleus across two 

breeding seasons (2016 and 2017) to test my hypotheses. I use corticosterone levels in 



 

  
   
 

36 

feathers as a biomarker of stress and test the prevalence of avia malaria parasites in these 

two populations.  
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Chapter 2 Year-dependent variation in feather 
corticosterone hormone between an urban and a 
rural population of blue tit Cyanistes caeruleus 

2.1 Abstract 

In order to cope and thrive in an urban environment, urban dwelling birds need to 

respond to the challenges in such an environment that differ from those in their natural 

habitat. It has often been reported that urban species show lower breeding success and 

lower body condition compared to their rural counterparts. However, the mechanisms 

behind this phenomenon remain poorly understood. One of the possible reasons for 

such an effect may be related to differences in urban species’ glucocorticoid secretion 

between environments. Glucocorticoid levels can modulate a number of physiological 

and behavioural processes to enable animals to meet the challenges of the urban 

environment, which can affect breeding success and body condition. Here, I used an 

integrative measure of the level of corticosterone (the main avian glucocorticoid) 

metabolised and deposited in feathers (fCORT) of nestling blue tit Cyanistes 

caeruleus inhabiting urban and rural sites over two breeding seasons. It was aimed to 

determine whether there are variations in the level of fCORT between nestlings from 

the two populations and whether this variation is consistent over the years. In order to 

test for any variation in the level of nestlings’ fCORT that could be derived from 

inherited traits from their parents such as from mothers via hormone deposition in the 

egg, I cross-fostered clutches between urban and rural sites and, in addition, measured 

yolk corticosterone (yCORT) levels from eggs collected from both sites. I found that 

fCORT levels differed between the sites depending on the year. I found a significant 

interaction between site and year, suggesting that annual differences in fCORT levels 

and nestling’s weight are inconsistent between the two populations. In the year where 

fCORT did not differ between habitats I also found no differences in yCORT levels 

between urban and rural sites nor did I find differences in fCORT between nestlings 

reared in a different environment than their environment of origin. In addition, I 

compared some fitness-related traits of the two populations (e.g. nestling survival 

(fledging success) and nestling body weight) over the two years. I found no 

relationship between fCORT and nestling body weight or fledging success. Overall, 

these results suggest that fCORT levels and blue tit nestling weight differ between 

years and between the foster parent but not the biological parent’s environment. This 

study emphasises the importance of multi-year monitoring and comparison between 

urban and rural avian populations in order to understand the mechanisms behind the 

negative impact of urbanisation on avian physiology and reproductive success.  
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Key words: blue tit, Cyanistes caeruleus, stress, urban, corticosterone, feather, 

maternal effect, yolk 

2.2 Introduction 

Human populations living in urban areas are increasing rapidly worldwide; currently, more 

than 50% of the world’s population resides in urbanised areas (UN, 2014). This rapid 

change will inevitably mean more anthropogenic structures and alterations to the natural 

environment, affecting wildlife. Although some urban-dwelling birds may benefit from the 

warmer microclimate during winter and the increased availability of food throughout the 

year in cities, the urban landscape also presents them with a number of stressors, including 

human disturbance (Fernández-Juricic and Tellería, 2000; Rebolo-Ifrán et al., 2015; Lamb 

et al., 2017), traffic (Forman et al., 2002), increased temperature or heat islands (Rodríguez 

and Barba, 2016), and different types of pollution such as noise (Peris and Pescador, 2004; 

Schroeder et al., 2012; Meillere et al., 2015), artificial light (Longcore and Rich, 2004; 

Eisenbeis and Hänel, 2009; Dominoni et al., 2013), chemical pollutants (Bichet et al., 

2013; Meillère et al., 2016), and disease burden (Hassell et al., 2017). 

Corticosterone (CORT, the main avian glucocorticoid) levels can be used as a biomarker to 

assess how urban environment, through multiple stressors, affects the stress physiology of 

urban dwelling birds. To cope with environmental challenges, the hypothalamic-pituitary-

adrenal (HPA) axis in vertebrates including birds (Sapolsky et al., 2000; Bonier, 2012) 

regulates the use of resources by adjusting plasma levels of glucocorticoids, for example 

the mobilization of glucose to enable high metabolic expenditure (Jimeno et al., 2017). 

Thus, the activation of the HPA axis triggers an emergency response, prioritising energetic 

expenses for immediate survival over self-maintenance, growth and immunity (McEwen, 

1998; Sapolsky et al., 2000). However, long term or chronic exposure to stressors leading 

to sustained elevation of basal glucocorticoid levels can have detrimental effects, such as 

impairing nestlings immunity (Moller and Saino, 2004; Eeva et al., 2005) and reduces their 

survival, e.g. vulnerability to West Nile virus (Owen et al., 2012), inhibiting growth (A. P. 

Will et al., 2014; Eeva et al., 2014; Rodríguez and Barba, 2016), and reducing reproduction 

(Wingfield and Sapolsky, 2003; Lendvai et al., 2007). CORT has been found elevated in 

nestlings as a result of environmental stressors such as lack of food availability (Kitaysky 

et al., 2007; A. P. Will et al., 2014; Patterson et al., 2015) and heavy metal pollution 

(Meillère et al., 2016). 
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However, no consistent patterns have been revealed and baseline CORT levels (the most 

frequently used biomarker) have been found to be similar, higher and lower in urban 

versus rural birds (reviewed in Bonier, 2012). Therefore, how and in which direction the 

urban environment affects CORT levels in birds is still poorly understood. In order to 

answer key questions concerning the impact of anthropogenic stressors on stress 

physiology of wild animals, which consequently affect their ability to thrive in cities, more 

experimental and comparative field studies are needed (Marzluff, 2017). However, 

experimental studies in the field, in addition to comparisons across multiple years, are rare 

in the literature. 

The level of glucocorticoid secretion, that is regulated by the HPA axis, can be driven by 

environmental factors directly affecting an individual throughout its lifetime. Prolonged 

levels of glucocorticoid secretion can induce alterations in gene expression profiles, 

through for example methylation of the DNA or histone tail modifications (e.g. Joëls et al., 

2007; Goerlich et al., 2012). Lastly, adjusting the level of glucocorticoid secretion may be 

inherited non-genetically through the mother, directly transferring hormones to the 

offspring during egg formation (e.g. Hayward and Wingfield, 2004; Saino et al., 2005; 

Almasi et al., 2012). 

CORT levels are usually measured from blood plasma which gives a snapshot of the bird’s 

stress experience at that time point. Although, the technique is relatively new and needs 

more validation, CORT can also be measured in feathers (fCORT). A number of studies 

found no correlation between fCORT and parameters of individual birds’ condition, 

indicating that fCORT might not be recording all the ecologically relevant stressors 

experienced by individuals (Fischer et al., 2017; Studholme et al., 2018; Beaugeard et al., 

2019). For instance, a food restriction experimental study on wild caught European 

starlings Sturnus vulgaris found no variation in fCORT levels between birds with 

unpredictable or continuous food access (Fischer et al., 2017). Similarly, in juvenile house 

sparrows Passer domesticus, fCORT levels were not corelated with individuals’ body mass 

or body condition. However, fCORT levels were significantly and possitively correlated 

with the degree of urbanisation (Beaugeard et al., 2019). Studholme et al. (2018) reported 

no relationship between fCORT levels and egg size of Cassin’s auklets Ptychoramphus 

aleuticus, but this lack of relationship may be because this study had been conducted under 

good enviromental conditions when birds do not face trade-offs (elevation of CORT) and 

have enough recources to allocate for foraging effort and reproduction (egg size), for 
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example. Neverteless, Bortolotti et al. (2008) and subsequent validation studies (e.g. 

Bortolotti et al., 2009; Jenni-Eiermann et al., 2015; Ganz et al., 2018) support using 

fCORT as a non-invasive way of measuring chronic stress experienced by birds over the 

period of feather growth (e.g. the whole nestling period). In addition, I am interested in an 

integrative measure of CORT, which can be accomplished by measuring the fCORT levels 

(e.g. Jenni-Eiermann et al., 2015). 

Nestling altricial birds (that need parental care for a length of time after hatching) present a 

good opportunity to investigate the relationship between habitat stressors, growth and 

CORT physiology, because of the relatively long period of nestling stage during which the 

majority of their developmental process occurs (Starck and Ricklefs, 1998), and this may 

reflect the quality of the surrounding environment and affect their survival and growth. To 

date, this crucial stage of bird life (i.e. nestling stage), however, has been understudied in 

research concerning the effect of urban environments on stress physiology. To my 

knowledge, only a few studies have used nestlings or early-fledglings to test variation 

between urban and rural populations in terms of CORT release, for example Meillère et al. 

(2016) on blackbirds Turdus merula and Meillère et al. (2015) on house sparrows Passer 

domesticus. The former study showed non-essential trace element burden in birds’ feathers 

is positively correlated with the degree of urbanisation and this increase in trace elements 

is positively associated with CORT level (Meillère et al., 2016). The latter concluded that 

urban house sparrows showed lower body size and mass compared to their rural 

counterparts, but the two groups did not differ in terms of their CORT level, indicating that 

urban house sparrows did not face stress. However, in a similar context, (Lodjak et al., 

2015) compared the level of fCORT in nestling great tit Parus major reared in different 

habitats (coniferous versus deciduous forests) after a brood size manipulation experiment. 

Coniferous forest is typically a poorer habitat for great tits than deciduous forest, thus 

brood manipulation is a stronger stressor there than in deciduous habitat. They showed that 

fCORT increased after enlargement of brood size only in coniferous forests where growth 

rate tends to be poorer compared to deciduous forests. 

The aim of this study was to compare the level of fCORT and the breeding success of blue 

tits in an urban and a rural site across two breeding seasons. I compared several breeding 

parameters (clutch size, egg weight, nestlings’ weight at day 13 and fledging success 

(nestlings survival) in urban and rural populations throughout the two breeding seasons of 

2016 and 2017. In vertebrates, body condition (based on relating body weight to linear 
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measures of body size, e.g. tarsus length, or wing length) is assumed to influence an 

animal’s health and fitness. However, I preferred to use nestling body weight instead, 

aiming to avoid bias or inter-individual variation on morphological measurements (i.e. 

tarsus length) because different researchers were involved in taking body measurements. I 

hypothesised that fCORT variation between urban and rural nestlings will be consistent 

across the years. The second aim of this study was to test if nestlings differ in fCORT, 

whether  the level of fCORT has been derived from parents and passed on to their 

offspring. Because CORT is deposited in the egg and can affect plasma CORT levels in 

nestlings in their early stage of life (Hayward and Wingfield, 2004), I also compared 

CORT levels in the egg yolk (yCORT) between sites. In order to experimentally test 

whether fCORT are determined epigenetically or environmentally, I conducted a cross-

fostering experiment by exchanging clutches between sites. I hypothesised that if the 

differences in fCORT were environmentally induced during nestling rearing and did not 

originate from differences at the egg stage (i.e epigenetically), I would expect similar 

fCORT levels in control and cross-fostered nestlings within the same site, irrespective of 

their origin. If there are effects of the laying environment, I hypothesised that fCORT of 

nestlings in the same rearing environment would differ depending on their origin. The third 

aim of this study was to test whether this possible spatial (from site to site) and temporal 

(from year to year) impact of urbanisation on fCORT levels is associated with lower 

nestling body weight at day-13 (just before they leave the nest) and lower nestling survival 

by looking at within-habitat relationships between these fitness-related traits. 

2.3 Materials and methods 

2.3.1 Ethical Statement 

All egg and feather sampling was conducted under licence of UK Home Office, Animals 

Scientific Procedures Act 1986, and individual ringing under licence from the British Trust 

for Ornithology. Egg collection and cross-fostering was carried out under licence from 

Scottish Natural Heritage (SNH). 

2.3.2 Field Protocol and sampling 

Work was carried out in one urban and one rural site in and around Glasgow, Scotland, 

between April and June in 2016 and 2017 (see detailed description in Chapter 1). At the 

beginning of the season nest boxes were visited once a week to monitor nest building 
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stages, laying date and the start of incubation. After the tenth day of incubation (first day of 

incubation was defined as when the last egg was laid), nests were visited every other day 

and it was estimated whether hatchlings had hatched the same day (day 0) or the day 

before (day 1) and a hatch date was assigned for every nest (Table 2-1). On day 13 after 

the first egg hatched (referred to as sampling date), three to four nestlings were weighed, 

and two to four body feathers (chest feathers cut from the base) from each of these 

nestlings were collected and kept in Eppendorf® tubes in a dark, dry place until lab 

analysis. Nest boxes were checked after fledging to search for dead nestlings. The number 

of hatchlings divided by the number of eggs laid represented hatching success, however 

since clutch size was reduced to six eggs in the experimental nests in 2016 (see below 

2.3.2.2), hatching success for these nests only was calculated as the number of hatchlings 

divided by six. The number of fledglings divided by the number of hatchlings represented 

fledging success (nestling survival). Sample sizes are presented in Table 2-2 under the 

statistical model for each response variable. 

2.3.2.1 Weather data 

The information of weather condition for the two breeding seasons 2016 and 2017 (April-

June), particularly daily mean temperature (oC) and daily rainfall (mm), was retrieved from 

the Met office (https://www.metoffice.gov.uk/) (Table 2-1). The weather information is for 

the nearest point to each site (i.e. the urban and the rural site) with complete weather data. 

These points are Bishopton station which is 12.3 miles away from the urban site, and 

Gartocharn portnellan farm which is 14.5 miles away from the rural site. 

Table 2-1 The timing of different breeding events and the mean temperature (°C) during the 
breeding season of blue tit s in the year 2016 and 2017: data are presented for both urban 
and rural sites.  

year Urban site Rural site 

Date of first egg laid 2016 22 April 22 April 
 
 

2017 20 April 17 April  

Mean of laying date 2016 4 May 30 April 
 
 

2017 1 May 2 May  

Date of first hatching 2016 11 May 16 May 
 
 

2017 12 May 8 May  

Mean of hatching date 2016 21 May 23 May  

2017 17 May 15 May  

*Daily mean temperature 
(oC) 
(maximum- minimum)  

2016 14 
(27.3-4.8) 

13.6 
(26.5-4.5) 

 

2017 13.1 
(26.2-3.4) 

13.0 
(26.5-3.1) 

 

*Daily total rainfall (mm) 2016 1.9 3.1  
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(maximum- minimum) (18.8-0) (20.7-0)  

2017 2.7 
(12.4-0) 

3.1 
(17.5-0) 

 

*from https://www.metoffice.gov.uk/ 

 

2.3.2.2 Cross-fostering experiment and egg collection (2016 breeding season) 

Eighteen blue tit clutches in the urban and 22 in the rural site were manipulated prior to 

clutch completion: 8 urban nests and 12 rural nests were swapped with each other within 

sites, representing control nests; and 10 nests were swapped across sites, representing 

experimentally cross-fostered nests (in total 40 manipulated nests) (Figure 2-1). Clutches 

within and across sites were matched based on the date the sixth egg was laid. Before 

swapping clutches, every egg involved in the experiment was individually marked, 

weighed, and temporarily stored at 4°C. Clutch size was reduced to six viable eggs in both 

sites in order to control for possible inter-site differences in clutch size. After swapping 

clutches, nests were checked every other day and newly laid eggs were replaced with clay 

eggs. 

 

Figure 2-1 Cross-fostering experimental design 

All collected eggs were weighed and put into a -80° freezer within three days of collection 

for later yolk corticosterone analysis. Using clay eggs, the original number of eggs laid by 

females (each nest contained six real eggs plus a variable number of clay eggs depending 

 

Urban site 

Rural site 
12 control nests 

8 control nests 

20 experimental nests; 10 from each site 
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on the number of eggs that females actually laid) was maintained. The clay eggs were 

removed from nests after hatching. From the eggs collected during the experiment, I used 

one to three eggs per nest from urban nests and one to five eggs from rural nests to analyse 

yolk corticosterone (yCORT). Analysing yCORT only from eggs laid late in the laying 

sequence is still representative for the entire clutch as excepted for the first-laid egg, 

previous research found no differences in the yCORT level deposited in great tit (a species 

related to blue tit) eggs depending on egg order (Lessells et al., 2016). When there was 

more than one egg used from a nest I took the mean of the yCORT level to represent the 

level of yCORT for this nest.  

2.3.3 Corticosterone Extraction and Measurement 

2.3.3.1 Feather Samples 

In order to extract corticosterone from feathers, it has been suggested that it is best to 

maximise the surface area by cutting it into pieces < 5mm (e.g. Bortolotti et al., 2008; 

Lattin et al., 2011). To establish the best treatment of blue tit feathers that maximises 

surface area and thus the CORT extraction, pilot studies were conducted. I pooled the 

samples collected from additional adult blue tits and pooled other samples collected from 

blue tit nestlings. For each group (adult and nestling), I first removed the calamus, then 

powdered the pooled feathers using a ball mill after freezing the feathers in liquid nitrogen. 

The results of an ELISA corticosterone assay showed that powdering and cutting the 

feathers to < 5mm gave a similar amount of fCORT (10.7 and 12.3 pg/mg of feathers, 

respectively). So, I decided to continue with cutting the feathers and skipping the 

powdering step in order to reduce the steps involved and lower the risk of possible loss of 

my small samples (two to four feathers from each nestling). 

fCORT was measured following Bortolotti et al. (2008), with minor modifications, by 

weighing each sample to the nearest 0.01 mg (Mettler AE160 digital analytical balance 

162g by 0.01mg) – all samples weighed > 1 mg (1-5 mg). I kept the samples in a 3ml glass 

vial, washed them with 20% methanol and shook them on a plate shaker for 10 mins before 

washing them twice with water in order to remove any possible contamination. I air-dried 

the samples by leaving the vials partially open at room temperature until totally dry. 

The day prior to running the ELISA assay for measuring the concentration of fCORT, I 

added 1ml HPLC-grade methanol to the feather samples and incubated the feather samples 
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overnight at 52°C, 120 rpm in Gallenkamp environmental shaker (model 10X 400). After 

19 hours of incubation, I transferred each sample into a borosilicate glass tube (10-15 ml) 

via a syringe with a filter to separate the liquid from the feathers. Then I evaporated the 

extract in a sample concentrator, medium temperature, volatile solvent setting. The sample 

was then dissolved in 300 µl immunoassay buffer and vortexed for 10 mins, and the assay 

run according to the manufacturer’s instructions (Cayman Chemical, corticosterone ELISA 

kit, item No. 501320). Each ELISA plate contained two blank wells (background 

absorbance), two non-specific binding wells, and an eight-point standard curve run in 

duplicate. All samples were run in duplicate; samples of 2016 were run in two plates, while 

samples of 2017 were run in a single plate. The average intra-assay coefficients of 

variation were 6%, and the inter-assay coefficients of variation were 14%. Optical density 

was measured at wavelength between 405nm and 420nm using a plate reader (Labtech/ 

LT-4500) and Assay Zap computer software was used to calculate fCORT concentration 

from optical density. I then corrected the results against the weight of the feathers by 

dividing the fCORT values by the weight of feathers and also standardised against the 

dilution factor, which is 3.33 (1 ml of HPLC-grade methanol/300 μl assay buffer). 

2.3.3.2 Yolk Samples 

Eggs that were stored in the freezer at -80°C were manually separated into yolk and 

albumen at a very low temperature (on ice) to minimise thawing of the egg and the mixing 

between yolk and albumen. The yolk was then dissolved in 5 ml 1% formic acid, vortexed 

for 30 s and centrifuged for 10 min. Then, 2.5 ml aliquot of the supernatant was transferred 

to another tube, and the lipid was defatted from the corticosterone and other yolk 

components by adding 2.5 ml of a solvent (hexane). The sample then was centrifuged, and 

the hexane phase was removed while the lower phase was transferred to another tube to be 

evaporated using a sample concentrator, medium temperature, volatile solvent setting. The 

dry residue was reconstituted in 100 μl methanol, vortexed for 10 s, and diluted with 900 

μl water. The sample was further purified using C18 SPE (Solid-phase extraction) column 

(HyperSepTM C18, Thermo Fisher, UK) after conditioning with 1 ml water and 1 ml 

methanol. Finally, samples were evaporated in a sample concentrator, medium 

temperature, volatile solvent setting. The samples were then dissolved in 300 µl 

immunoassay buffer and vortexed for 10 mins in preparation for the ELISA assay. The 

yCORT levels were then quantified following the instruction of the kit (Cayman Chemical, 

corticosterone Enzyme Immunoassay (EIA) Kit, item No. 500655). The plate design and 

reading are as mentioned above for fCORT plates. All samples (65 eggs from 20 rural 
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nests and 31 eggs from 14 urban nests) were run in duplicate in three separate plates. The 

intra-assay and inter-assay coefficients of variation were 6% and 53%, respectively. 

2.3.4 Determining sexing of nestling 

Sex of the nestlings was determined using DNA extracted from blood samples (see 

Chapter 3 for DNA extraction protocol) and following the molecular approach by 

(Griffiths et al., 1998). In brief, amplification of the target genes (CHD-W and CHD-Z) 

from sex chromosomes were obtained using the following PCR cycling profile; initial 

denaturation 94°C/2 min, denaturation 49°C/45 s, annealing 72°C/45 s, 94°C/30 s template 

extension 49°C/1 min, and a final extension 72°C/5 min. PCR was performed in 10µl of 

reaction mixture containing 5-10mg/μl DNA template, 2 mM MgCl2, 0.16 mM dNTP, 0.8 

mM of primers P2 and P8, 0.375 U/μl Taq polymerase (Promega) and 1 μl buffer 

(Promega). PCR products were separated by electrophoresis at 5V/cm for 60 minutes on 

2% agarose gel stained with ethidium bromide. Nestlings were sexed according to the 

presence of two bands for females and one band for males. 

2.3.5 Acknowledgements 

I am grateful to Leo Truglia under Michelle Bellingham’s supervision for conducting the 

yolk corticosterone lab analysis as part of his internship project at the university of 

Glasgow. I am also grateful to Zara Nelson under Barbara Mable’s supervision, and the lab 

technician Elizabeth Kilbride for the molecular identification of the sex of the birds as part 

of Zara’s honour project. 

2.3.6 Statistical analysis 

For every response variable, data analysis started with a global general and generalised 

linear models including all predictors assumed to be biologically important. Models were 

diagnosed for multicollinearity, when two or more of the predictors in a regression model 

are highly correlated, which is common in ecological data (Graham, 2003) using the 

variance inflation factor test (VIF). Hatching date and brood size were standardised within 

sites as they showed collinearity with other predictors (e.g. site or year). Hatching date was 

not normally distributed, so I standardised by subtracting the median date from each date 

value and divided by the interquartile range from that site. Brood size was normally 

distributed, and I standardised it by subtracting the mean brood size from each brood size 

value and divided by the brood size’s standard deviation from that site. 
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Starting from the most complex (global) model, stepwise simplification was applied using 

likelihood ratio tests (LRTs) of fully nested models until a final model was found. 

Statistical significance for each term was calculated by assessing the reduction in 

explanatory power after dropping the factor from the model. Statistical analyses used 

packages ‘car’ (Fox and Weisberg, 2011), ‘nlme’ (Pinheiro et al., 2009) and ‘lme4’ (Bates 

et al., 2014) in R v. 3.3.3 (R Development Core Team, 2017). 

A number of fitness-related traits were examined for both sites during each breeding 

season in 2016 and 2017. A linear model (LM), with normal distribution, was used to 

model clutch size, while generalised linear models (GLMs), with binomial distributions 

and logit link functions, were used to model hatching success and overall nestling 

survival (fledging success). In order to account for spatial or/and temporal trends, I 

included year, site, and interaction between year and site as predictors. In order to account 

for any variation in each response variable that could have been a result from inter-site or 

inter-year variation in date (laying date for clutch size and hatching success and hatch date 

for nestling survival) I included the interaction between year and date, and the interaction 

between date and site as explanatory factors in each model. I examined the relationship 

between fCORT level and nestling survival by modelling the nestling survival in a 

different model including only the nests that have been feather-sampled and I included the 

interaction between fCORT and year and interaction between fCORT and site as 

covariances in addition to the other variables mentioned above (the overall nestling 

survival analysis).  

Individual egg weight and yCORT level (only for 2016) were modelled using linear 

mixed models (LMMs) with nest ID as a random factor. For egg weight analysis, along 

with laying date I included the quadratic term of laying date because visual inspection of 

the data suggested that the relationship could be non-linear (egg weight might increase or 

decrease with increasing laying date depending whether it is early or late in the season). In 

order to test for any inter-site variation in relation to clutch size and laying date, interaction 

between laying date and site as well as interaction between site and clutch size were 

included as explanatory variables. 

Nestling weight (13-day-old) was analysed using LMM, with nest ID as a random factor 

and the following factors as explanatory factors: sex of nestling, the interaction between 

year and site, sampling date (day 13 since hatching), brood size on day 13, the interaction 
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between brood size and site, the interaction between brood size and year, the interaction 

between sampling date and year and the interaction between sampling date and site. The 

interaction terms were included to test for inter-site or inter-year variation that could 

influence the response variable. The sex of nestling was included to control for sex-

dependent variation in body weight due to physiological and behavioural variation between 

male and female nestlings. In a separate model, I examined the relationship between 

fCORT level and nestling weight using LM. I took the mean value of nestling weight 

from each nest included in the feather sampling to represent the nestlings’ weight of that 

nest. The following variables were included in the model as explanatory variables: site, 

year, fCORT, the interaction between site and year, the interaction between fCORT and 

site, the interaction between fCORT and year and brood size. 

Feather corticosterone levels were modelled using (LM). I first analysed the samples 

collected from the cross-fostering experiment in 2016 in order to test for any variation in 

fCORT that are related to the origin of the birds. This was done with the following 

variables as explanatory factors: site, treatment (control or cross-fostered), interaction 

between site and treatment, brood size at day 13 and date of sampling. I found no effect of 

the treatment on fCORT (see Results), so I started a new global model for all the samples 

from both years including the cross-fostered nests. In order to test for spatial and temporal 

variation in level of fCORT, year, site, date of sampling, the interaction between site and 

year, the interaction between date and year and the interaction between date and site were 

included as explanatory variables. The interaction between brood size at day 13 and site 

were also included as explanatory variables in order to test for a possible site-specific 

variation on the impact of brood size on fCORT level. 

2.4 Results 

2.4.1 Breeding parameters and nestlings’ survival 

In comparison with the rural blue tit population, the urban population laid on average 

1.63±0.32 fewer eggs, across the two breeding seasons (Table 2-2a). There was no 

significant variation between the two breeding seasons in relation to clutch size. Similarly, 

laying date had no significant variation on clutch size. In 2016, urban eggs weighed on 

average 0.07g less than rural eggs regardless of laying date and clutch size (Table 2-2b). 



 

  
   
 

49 

In both years, urban birds showed significantly lower hatching success compared to their 

rural counterparts (Table 2-2c). Eggs in urban nests had a 65% probability to hatch, while 

eggs in rural nests had a probability of 85% to hatch. Regarding nestling survival, the 

urban population also had reduced survival rate compared to their corresponding rural site 

in both years. Irrespective of the site, nestling survival was significantly lower during 2017 

breeding season compared to 2016 (Table 2-2d). The probability of urban nestlings to 

survive until fledging was 67%, while it was 72% for the rural birds. The probability of 

nestlings to survive during 2017 season at both sites was 2% lower compared to the 2016 

season (Table 2-2d). I found no relationship between fCORT level and nestling survival. 

For the subset of nests that were feather sampled, nestling survival was statistically lower 

in late hatched nests compared to earlier nests at both sites and years, although the 

coefficients suggest a small variation (Table 2-2e). I found no influence of site or year on 

the survival of these nests (i.e. feather-sampled nests).  
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2.4.2 Nestling body weight 

Mean nestling body weight decreased with increased brood size at both sites (Table 2-2f). 

However, there was no relationship between fCORT and mean nestling weight (for nests 

that were included in the feather sampling). I found a similar pattern when analysing all 

nests irrespective of whether fCORT was measured or not. For the latter analysis, I used 

individual birds body weight data, and the effect of the brood size was not significant 

anymore (Table 2-2g, Figure 2-2b). Adding the sex of nestlings to the model revealed a 

significant effect of sex on the body weight. Males were on average 0.30±0.26g heavier 

than females, and this was statistically significant (Table 2-2g, Figure 2-2a). In the urban 

site only, late-hatched nestlings had lower body weight compared to early-hatched 

nestlings (Table 2-2g). Rural nestlings were significantly heavier than urban nestlings in 

2017 but not in 2016 as there was a significant interaction between year and site (Table 2-

2f and 2-2g, Figure 2-2a). The average weight of rural nestlings during the 2016 breeding 

season was 11.34±0.29g, while for urban nestlings it was 9.03±0.26g during the 2017 

breeding season.  
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Table 2-2 Results from statistical models investigating how life history traits and body 
weight varied between urban and rural populations of blue tits across two breeding seasons 
(except egg weight that was measured only in 2016). Estimated coefficients and standard 
error (s.e.) for the models were selected using likelihood ratio tests (LRT). The reported p-
values are from LRTs. Interaction terms are only shown when statistically significant. I 
converted logit-estimates to probability (presented between brackets next to logit-
estimates). Probability = odds/ (1+ odds), odds= exp(logit). 
 

a) Clutch size~ site 
(N= 289; 76 urban nests and 213 rural nests) 

Predictors Coefficient s.e. p-value (LRT) 
Intercept  7.50 0.14 

 

site (urban)  -1.63 0.32 <0.001* 
year -0.16 0.26 0.52 
Laying date -0.03 0.01 0.12 

b) Egg weight~ site 
(N= 240; 108 from 18 urban nests and 132 from 22 rural nests) 
Predictors Coefficient s.e. p-value (LRT) 
Intercept  1.22 0.02 

 

site (urban)  -0.07 0.02 <0.001* 
Clutch size  -0.02 0.006 0.25 
laying date  0.002 0.003 0.57 
laying date2 -0.002 0.001 0.54 

c) Hatching success~ site 
(N= 289; 76 urban nests and 213 rural nests) 
Predictors  Coefficient s.e. p-value (LRT) 
Intercept  1.74 (0.85) 0.19 

 

site (urban)  -1.12 (0.65) 0.30 <0.001* 
Year 0.13 0.30 0.20 
Laying date 0.005 0.01 0.46 

d) Nestling survival~ site + year 
(N= 289; 76 urban nests and 213 rural nests) 

Predictors Coefficient s.e. p-value (LRT) 
Intercept 0.94 (0.72) 0.02 

 

site (urban) -0.22 (0.67) 0.04 <0.001* 
Year (2017) -0.07 (0.70) 0.03 0.04* 
Hatching date -0.0003 0.008 0.96 

e) Nestling survival ~ date  
(when accounting for fCORT effect) 
(N= 25 urban nests and 35 rural nests) 
Predictors  Coefficient s.e. p-value (LRT) 
Intercept  0.70 (0.67) 0.03  
Site (urban) -0.02 0.08 0.85 
year (2017) 0.11  0.06 0.08 
date -0.13 (0.64) 0.03 <0.001* 
fCORT -0.0007 0.003 0.21 



f) Nestling weight (mean weight per nest)~ site*year + brood size 
(when accounting for fCORT effect) 
(N= 25 urban nests and 35 rural nests) 
Predictors  Coefficient s.e. p-value (LRT) 
(Intercept)  11.77 0.18  
year (2017)  -0.24 0.28  
site (urban) -0.79 0.27  
date 0.07 0.11 0.47 
fCORT -0.01 0.01 0.31 
brood size -0.74 0.42 0.06* 
year*site  -1.95 0.41 <0.001* 

g) Nestling weight (individuals)~ site*year + site*date+ sex 
(N= 273; 37 urban nests and 44 rural nests) 
Predictors  Coefficient s.e. p-value (LRT) 
Intercept  11.34 0.29 

 

site (urban)  -0.92 0.26 
 

year (2017)  -0.47 0.35 
 

date -0.45 0.44  
brood size -0.08 0.07 0.14 
sex (male) 0.30 0.26 0.01* 
site(urban)*date 0.59 0.26 0.03* 
site(urban)*year(2017)  -1.28 0.45 <0.001* 

 

Figure 2-2 Nestlings’ body weight at day 13, a) year-specific variation in nestlings’ body 
weight. Male nestlings “m” are heavier than female “f”, b) general negative relationship 
between nestlings’ body weight and brood size. 
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2.4.3 fCORT and yCORT levels 

In the cross-fostering experiment in 2016, there was no effect of the origin of the nestling 

on the fCORT levels (Table 2-3a, Figure 2-3a). When ignoring the treatment of eggs and 

combining results of both years, nestlings that grew up in the rural site had lower fCORT 

levels compared to those in the urban site in 2017 but not in 2016; there was a significant 

interaction between year and site (Table 2-3b, Figure 2-3b). The yCORT levels (2016 

only) also did not differ significantly between eggs laid by urban and the rural blue tits. 

The only factor that was found correlating with yCORT level, as suggested by the 

statistical model, was the laying date; yCORT levels decreased in late-laid eggs compared 

to early-laid ones (Table 2-3c). 

Table 2-3 Results from statistical models investigating; a) how the treatment (origin of the 
bird) can affect the level of fCORT (results from cross-fostering experiment), b) how feather 
corticosterone (fCORT) level varied between urban and rural populations of blue tit across 
two breeding seasons, c) how yolk corticosterone (yCORT) level varied between urban and 
rural populations of blue tit. Estimated coefficients and test statistics for the final models 
selected using likelihood ratio tests (LRT). The reported p-values are from LRTs. Interaction 
terms are only showed when statistically significant. 

a) fCORT (2016)~ site+origin 

Predictors  Coefficient  s.e.  p-value (LRT) 
Intercept  5.86 1.41   
rearing habitat (urban)  0.64  1.87  0.66 
Habitat of origin(urban)  0.82  2.06  0.66 
Brood size 1.16 0.78 0.10 
date 0.21 0.36 0.52 

b) fCORT~ site*year 

Predictors  Coefficient  s.e.  p-value (LRT) 
Intercept 6.08   1.95  0.01  
site (urban)  0.21  2.90    
year (2017)  2.19  2.90  

 

Brood size 1.41 4.67 0.75 
date -0.15 1.21 0.44 
year (2017)* site(urban)  19.96  4.45  <0.001*  

c) yCORT~ laying date 

Predictors  Coefficient  s.e.  p-value (LRT) 
Intercept  4.89 0.61  <0.001  
site -0.15 0.42 0.58 
laying date  -0.17  0.07  0.01*  
Laying date2 0.002 0.03 0.94 
Clutch size 0.07 0.12 0.53 



 

  
   
 

54 

 
Figure 2-3 (a) no variation in the level of fCORT between nestlings reared in their original 
site and nestlings originated in one site and reared in the other site for both urban and rural 
blue tit populations. (b) Variation in the level of blue tit nestlings’ fCORT between urban and 
rural populations that differed from year to year. 
 
 

2.5 Discussion 

This study was conducted with the aim of determining whether there are variations in the 

level of fCORT between nestlings from the urban and rural populations and whether this 

variation is consistent over time. The other aim was to compare some breeding parameters 

of these two populations and determine whether fCORT is associated with fitness-related 

traits (i.e. nestling survival and body weight). To test for any variation in the level of 

nestlings’ fCORT that could be derived genetically from the parents or directly from 

mothers via hormone deposition in the egg, I cross-fostered clutches between urban and 

rural sites and, in addition, measured yolk corticosterone (yCORT) levels from eggs 

collected from both sites. 

I found no influence of the origin of the nestlings on their fCORT level and this was 

supported by the finding of similar yCORT levels between the urban and rural population 

under this study in 2016. However, this study revealed three main findings. First, as 
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expected, urban population had lower breeding parameters compared to their rural 

counterparts. These parameters included lower clutch size, lower hatching success and 

lower nestling survival. This reduction on key fitness-related traits in the urban population 

was consistent between the two breeding seasons. Second, nestling body weight at day 13 

(just before they fledged) was lower at the urban site only during 2017 breeding season 

compared to nestling in the rural site and no significant variation in body weight was 

observed between the two sites during the 2016 breeding season. Compared to 2016 

breeding season, nestling survival was significantly lower in 2017 at both sites. Third, 

feather corticosterone (fCORT) levels varied between years at both sites, and the extent of 

differences in fCORT levels between the two sites differed from year to year. I found no 

evidence that differences in fCORT were a result of maternal effects, neither post-hatching 

nor arising during the egg formation stage. The level of fCORT had no direct relationship 

with mean nestling body weight nor nestling survival in both sites during both years. 

Overall, the results suggest that glucocorticoids and weight of urban versus rural blue tit 

nestlings differ substantially from year to year. However, other fitness-related traits 

(hatching success, nestling survival and clutch size) were always lower in the urban 

compared to the rural site. 

2.5.1 Urbanisation and breeding parameters 

The poorer breeding success at the urban site is in agreement with the often-reported result 

that the urban environment is associated with a reduction in fitness of wild populations 

(Chamberlain et al., 2009; Lutz et al., 2015; Murray et al., 2015; Glądalski et al., 2016; 

Bailly et al., 2016). Previous studies on the same populations of blue tits during a recent 

breeding season (2015) also found a lower breeding success in the urban site (Capilla-

Lasheras et al., 2017; Pollock et al., 2017). However, my findings suggest that urban 

nestlings have lower body weight than their rural counterparts in one year, but not in 

another. The variation in urban nestling body weight between years may be related to food 

availability or weather conditions that can affect birds directly or indirectly by reducing the 

abundance of arthropods (the main food source for blue tits) which could be also affected 

by weather. The potential reduction in natural food availability in some years could be the 

reason for lower body weight of urban nestlings regardless of the availability of poor-

quality urban food (e.g. feeders) as an extra food resource. Table 2-1 shows that the two 

sites have similar timing of laying or hatching at each year. However, while the rural site 

had a relatively stable ambient temperature and daily total rainfall in both years, the urban 
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site was slightly colder and had heavier rain during 2017 breeding season compared to the 

2016 breeding season (Table 2-1). 

Thus, fluctuating weather conditions in the urban site may also explain why the urban birds 

show some variation in nestling body weight from year to year, while rural nestling body 

weight hardly varied across the years. Local conditions that fluctuate from year to year are 

believed to affect nestlings either directly or indirectly by changes in parental provisioning 

and brooding behaviour (McCarty, 2001; Greño et al., 2008; Henderson et al., 2017). 

Specifically, rainfall, was found to negatively affect the growth of blue tit nestling 

(Morganti, 2017). Rainfall can affect nestling indirectly by affecting the abundance of 

arthropods available as the most important source of protein-rich food for passerine 

nestlings (White, 2008), and particularly in urban environments which are known to have a 

lower abundance of natural food compared to rural areas (e.g. Vergnes et al., 2014; Pollock 

et al., 2017). 

2.5.2 Urbanisation and fCORT level 

My finding of higher fCORT at the urban site in 2017 is supported by other studies using 

plasma to measure stress-induced and/or baseline corticosterone in breeding adults (e.g. 

Fokidis et al., 2009; Zhang et al., 2011; Meillère et al., 2015; Meillère et al., 2016). 

Likewise, my finding of no site differences in fCORT during 2016 breeding seasons is also 

consistent with other studies on the endocrine ecology of a number of species in urban 

landscapes (e.g. adult dark-eyed junco Junco hyemalis (Atwell et al., 2012); adult and 

juvenile house sparrow (Meillère et al., 2015). Even for the same species (blackbirds) but 

in different locations and different years, there was no variation in baseline CORT between 

urban and rural birds (Partecke et al., 2006), while Meillère et al. (2016) found higher 

CORT levels in nestling blackbirds from more urbanised areas. Possibly the conflicting 

results could be due to different age, sampling methods or CORT measurements; however, 

I found the same fluctuation in my system even though I used the same methodology by 

measuring CORT in feathers throughout the two years and always took measurements 

from 13-day-old nestlings. 

In general, the findings suggest the important influence of year on the level of 

corticosterone when comparing urban versus rural populations of avian species. Even when 

I controlled for life history stage (i.e. only sampling nestlings) and sampling method (i.e. 
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fCORT), I still see a strong interaction between site and year, indicating that urban and 

rural blue tit nestlings differ in the level of corticosterone in one year but not in another. 

This finding is supported by a recent study over a four-year period on adult song sparrows 

Melospiza melodia which compared levels of corticosterone between urban and rural birds 

that also found a strong interaction between year and site, indicating that glucocorticoid 

differs between sites in some years but not in others (Foltz et al., 2015). 

Although the information of weather condition was not measured in exact local sites under 

this study (retrieved from the Met office (https://www.metoffice.gov.uk/) for the nearest 

point to each site), it could at least partly explain the finding of elevated fCORT observed 

in my urban blue tits during 2017 season compared to their rural counterparts. Similar to 

the effect of year on nestling body weight, the influence of year on the variation between 

urban versus rural blue tit nestlings in fCORT levels may be related to local weather 

conditions, for example rainfall, wind speed, and temperature during the breeding season. 

For instance, a study on an altricial alpine swifts Tachymarptis melba found that nestlings’ 

baseline CORT level was elevated as a result of cold and rainy conditions with strong 

winds (Bize et al., 2010). In adult blue tits, Henderson et al. (2017) found that elevated 

CORT levels were associated with lower temperatures, heavier rainfall and lower territory-

scale oak density. In the year with heaviest rain and lowest temperature (~1oC lower than 

other years and more than 10 days of rain), adult blue tits showed higher baseline CORT 

level (Henderson et al., 2017), which supports my finding of elevated fCORT during 

colder and wetter weather (2017) in the urban site compared to 2016 breeding season. 

Growing nestling with their high energy demand (Lack, 1968; Ricklefs, 1983) and poor 

thermoregulatory abilities as the plumage is not fully developed (Howell, 1964), might be 

particularly harshly affected by unfavourable local environmental conditions. Elevation of 

glucocorticoid for a long period of time, which has detrimental consequences, can happen 

when energetic demands exceed the physiological state modulated by glucocorticoid 

hormones (McEwen and Wingfield, 2003; McEwen and Wingfield, 2010). A recent study 

on ducklings confirmed that stress conditions early in life temporarily supressed growth, 

and this stress is reflected by elevated fCORT levels (Johns et al., 2018). Similarly, a study 

on nestling black kites Milvis migrans showed that fCORT level is negatively associated 

with body condition and ambient temperature (López-Jiménez et al., 2016). 
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The observed higher fCORT in the urban nestling in 2017 might be at least partly related to 

poorer local rearing conditions. Even though urban site in 2017 had similar mean 

temperatures and similar daily rainfall as the usual conditions in the rural site (Table 2-1), 

urban populations may have been more vulnerable to such weather condition because of all 

the additional stressors they may experiences in the urban site including poor food (Pollock 

et al., 2017). 

Table 2-1 shows that the daily total rainfall is higher in 2017 compared to 2016 which 

could be related to the observed lower fledging weight in my urban population. Elevated 

CORT levels are often reported to be associated with food restriction (Saino et al., 2003; 

Herring et al., 2011; Boonstra, 2013), specifically for altricial nestlings like blue tits when 

starvation is believed to be the main cause of mortality at the nestling stage (Martin, 1987). 

Food limitation can be an important selective pressure in urban sites compared to rural 

sites for nestling blackbirds (Ibáñez-álamo and Soler, 2010). This could at least partly 

explain poor nestling weights and the reduction in nestling survival I observed in my 

system that was mirrored with elevated fCORT in the urban site in 2017 compared to the 

rural site. Thus, differences between urban and rural nestlings in the level of fCORT may 

be driven by weather or nutritional stress, but my data don’t allow distinguishing between 

the two. Elevated fCORT levels in blue tit nestlings in the urban site during 2017 may also 

reflect nestlings’ need for trade-offs between important physiological demands. For 

instance, such a trade-off can be between mounting an immune defence against parasite 

infection and growth, and both immunity and growth are energetically demanding 

processes. This idea will be tested in chapter 5 when I will be testing the effect of avian 

malaria infection on blue tit fitness. 

2.5.3 fCORT level and maternal or genetic effect  

The lack of an impact of origin on fCORT levels was further supported by the result that 

there was no difference in the mean of the yolk corticosterone measured in eggs collected 

from both sites. Even though, it has been found that the level of yolk corticosterone in eggs 

varies between clutches depending on the mother’s stress and level of plasma 

corticosterone, and eventually has a detrimental effect on nestling development, behaviour, 

immunity and growth (Hayward and Wingfield, 2004; Saino et al., 2005; Love et al., 2008; 

Almasi et al., 2012). This lack of an effect of origin on fCORT levels in nestlings suggests 

a direct impact of the surrounding environment and its related factors, such as limited food 
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or poor weather conditions after eggs were swapped. However, I collected eggs and 

conducted the cross-fostering experiment during the 2016 breeding season only, when 

there was no difference in fCORT levels between sites either (Table 2-2a). Thus, I cannot 

be certain whether this similarity between the level of yolk corticosterone or no-origin 

impact on fCORT is valid across all years or if it varies from year to year. 

2.5.4 fCORT, nestlings’ body weight, nestlings’ survival and brood 
size 

Although I found elevated feather CORT levels in the urban site compared to the rural site 

during 2017 breeding season, I unexpectedly did not find any significant relationship 

between feather CORT levels and mean nestling body weight or nestling survival, although 

feather and structural growth occur simultaneously in the nest. Previous studies have found 

negative correlation between CORT levels and body size and mass in pigeon and house 

sparrow nestlings (Jenni-Eiermann et al., 2015; Grace et al., 2017). In adult passerines, a 

study showed an association between high CORT and lower survival (Koren et al., 2012). 

The reason behind a lack of relationship in my study could be because I pooled feathers per 

nest which reduced sample size and prevented observing individual variation in such 

relationships. Taking the mean of body weight for several nestlings that have been feather 

sampled may be not the ideal procedures. However, ethically, I avoided collecting a 

sufficient number of feathers to run the assay from each nestling at this critical age (13 

days post-hatching). Furthermore, the high mortality rate observed in the urban nestlings 

may present a selective disappearance of nestlings with low body weight and potentially 

masking any possible relationship. 

Some studies reported a positive relationship between fCORT and brood size. For 

example, in experimentally enlarged clutches, Saino et al. (2003) found that barn swallow 

Hirundo rustica nestlings show higher level of baseline corticosterone in nests with a 

larger number of nestlings. Similarly, another study on nestling Florida scrub-jays 

Aphelocoma coerulescens found that baseline corticosterone was positively correlated with 

brood size (Rensel et al., 2011). More interestingly, a recent study on wild jackdaws 

Coloeus monedula found that this relationship seemed to impact all nestlings within a nest 

similarly as they found no relationship between baseline CORT and the individual 

nestlings body condition (Greggor et al., 2017). However, I found no relationship between 

fCORT level per nest and the number of nestlings in the nest at the day of sampling. This 

effect seems to vary from species to species because a number of studies with natural 
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brood variation or experimentally manipulated clutches support my findings and did not 

find any impact of brood size on fCORT (alpine swift (Bize et al., 2010); black-legged 

kittiwake Rissa tridactyla (Brewer et al., 2010); Eurasian kestrel Falco tinnunculus (Müller 

et al., 2010). 

2.6 Conclusion 

To conclude, the relationship between urban environment, breeding success and the stress 

physiology of avian species is complex and influenced by many factors that are difficult to 

disentangle. In addition, the fact that in my study fCORT levels were measured at nest 

level while body weight and survival were measured at individual level may limit the 

ability to test such a relationship. Differences in stress levels between populations were 

found to vary annually, highlighting the value of collecting longitudinal data to uncover 

broader trends. Some urban factors, such as food availability can readily vary between 

years, whereas other urban factors are relatively stable over time such as light, noise and 

chemical pollution. Given these different types of urban factors, I can conclude that 

investigating the impact of urban environment on a specific trait needs to be conducted 

over several years in order to draw an informative conclusion. Future studies on the 

relationship between urban environment, avian stress physiology and overall breeding 

success may need to concentrate on fixed factors such as light or pollution rather than 

making a general comparison between urban and rural populations. This has to be done 

experimentally and may help to better understand the effect of the urban environment on 

avian species in the long term. 



Chapter 3 Molecular quantification of 
haemosporidian parasites (Leucocytozoon and 
Haemoproteus) 

3.1 Abstract 

Haemosporidian parasites are common in birds and considered as model systems to 

study host-parasite interactions and evolution. Historically, they have been detected by 

microscopic screening of blood smears, but this needs considerable training and 

expertise. Currently, several molecular detection methods are combined with 

microscopy to increase the sensitivity and accuracy of detection. However, recent 

studies show that the available molecular protocols cannot quantify the parasite 

intensity (parasitaemia) for genus-level. Besides, until a very recent time (during the 

writing time of this chapter) there was a need for an accurate approach to discriminate 

between different parasite genera when more than one is present in a sample (mixed 

infection). Here, I established a new method to quantify Haemosporidian parasites 

intensity, particularly Leucocytozoon and Haemoproteus genera, in qPCR reactions. I 

designed genus-specific primers targeting a region of the mitochondrial genome 

(intergenic space between cytochrome B (cytB) and  cytochrome c oxidase subunit 1 

(cox1) genes). This protocol was applied to serial dilutions of a known number of 

specific targets (cloned into plasmids) for each genus. These serial dilutions allow 

testing the amplification efficiency of each primer set over different numbers of 

parasite gene copies. I quantified a bird house keeping gene (GAPDH) for each sample 

to calculate the absolute parasite intensity (parasitaemia) as a ratio of parasite gene 

copies to the bird gene copies. Through this new approach, I tested infection 

prevalence and intensity of 230 samples collected from wild nestlings and compared 

with the nPCR approach by Hellgren et al. (2004). The new qPCR protocol is 

significantly more sensitive in detecting infections compared to the nPCR. This 

protocol presents a sensitive and time effective method for detection and 

quantification of haemosporidian parasite of the two genera Leucocytozoon and 

Haemoproteus. 

Key words: avian malaria, passerine birds, nestling, real-time qPCR, Plasmodium, 

nPCR  
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3.2 Introduction 

Quantification of parasite intensity and accurate identification of parasite genera are 

critical points to understand several aspects of parasite-host interactions, cost of infection 

on host fitness, and the association between specific parasite species with avian pathology 

(i.e. the epidemiology of infection) (e.g. (Crofton, 1971)). Haemosporidian parasites 

(phylum Apicomplexa, order haemosporida), are parasites commonly found in avian 

blood. These parasites are diverse, and mixed infection – when a bird is infected with more 

than one parasite genus – is thought to be common in birds (Bensch et al., 2009; Clark et 

al., 2014). Despite the increased interest in avian malaria studies in the last two decades, 

progress in this field has been limited because it is still difficult to ascertain the prevalence 

of these parasites, particularly to accurately identify and quantify avian malaria intensity of 

infection (Marzal, 2012; Levin et al., 2013; Bernotienė et al., 2016; Ishtiaq et al., 2017). 

Parasite species associated with severe avian diseases are often difficult to detect under the 

microscope (low intensity), or they are in the initial exoerythrocytic (schizonts) stage of 

development and not yet circulated in the blood (Valkiūnas and Iezhova, 2017). 

Currently, there are two main methods used to detect and estimate avian malaria parasite 

intensity: microscopic screening of blood smears, and molecular techniques using 

polymerase chain reaction (PCR) protocols. Each method has its advantages and 

limitations (see Table 3-1). There are some molecular-based protocols that have been 

developed to detect the three closely related genera of haemosporidian parasites 

(Plasmodium, Haemoproteus and Leucocytozoon), targeting highly conserved 

mitochondrial gene regions among genera (Table 3-2). These protocols often include 

primers designed to amplify the target gene of one genus (e.g. Ciloglu et al., 2019) or all 

the three genera at once (e.g. Bell et al., 2015); or primers targeting specific lineages (e.g. 

Biedrzycka et al., 2014). The current qPCR protocols have been used only to determine the 

level of parasitaemia (screened by microscopy). Thus, no absolute quantification of the 

parasite intensity is accomplished by such qPCR, especially for Leucocytozoon genus. 

The nested PCR protocol (nPCR) that has been developed by (Bensch et al. (2000) and 

further modified by Waldenström et al. (2004) and Hellgren et al. (2004) has been widely 

used to detect the three genera of haemosporidia (Clark et al., 2014). Thus, this protocol 

has been often used to assess the reliability and sensitivity of newly developed protocols by 

comparing their results with results of haemosporidian parasite prevalence obtained from 
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the nPCR method (Ishtiaq et al., 2017). Nevertheless, the nPCR and other PCR-based 

protocols often underestimate mixed infection because similar or equal amplicon sizes of 

different genera are expected (Valkiūnas et al., 2006). Additionally, cross-reactivity in the 

nPCR is another issue that adds to the shortcomings of these protocols. Previously, in nine 

out of 12 samples that were positive for both Leucocytozoon and 

Haemoproteus/Plasmodium by nPCR, sequencing revealed that only one of the two 

parasites – Leucocytozoon or Haemoproteus –  was present (Capilla-Lasheras et al., 2017). 

Two very recent works have been published (during the time of writing this chapter) and 

partly attempted to tackle the mixed infection diagnostic challenge. The first protocol is by 

Pacheco et al. (2018) which presents a sensitive nested multiplex PCR protocol that can 

detect Plasmodium/Haemoproteus mixed infection, however, this protocol does not 

include Leucocytozoon. The second approach is by Ciloglu et al. (2019) which presented a 

one-step multiplex PCR to detect the three genera (Leucocytozoon, Plasmodium and 

Haemoproteus) in one single PCR reaction using multiple primers. However, these 

protocols do not provide a quantitative approach that allows quantifying the parasite 

intensity in a given amount of host DNA (parasitaemia). 

For accurate identification of the parasite by the traditional microscopic screening, the 

main developmental stages of the parasite are required to be present, which is not always 

the case especially in low-intensity samples. The relative ease of identification of the 

Haemoproteus and Plasmodium species’ developmental stages by microscopic screening 

led to them being reported more frequently in the literature compared to Leucocytozoon 

species, whose main developmental stages are detectable in the peripheral blood for a short 

time (Valkiūnas, 2005). 

Molecular diagnostic methods can overcome limitations associated with the microscopic 

screening of blood smears while microscopic screening of blood smears is needed for 

estimating parasite intensity. The qPCR technology has increased accuracy and sensitivity 

of target DNA detection in human malaria (Hermsen et al., 2001; Farcas et al., 2004; 

Perandin et al., 2004; Malhotra et al., 2005; Mangold et al., 2005). Thus, I suggest 

developing a real-time qPCR approach that will add to the effort built previously to 

increase the sensitivity and specificity of molecular detection of haemosporidian parasites 

and more importantly provide a tool for quantifying parasite intensity (parasitaemia). 



 

  
   
 

64 

Table 3-1 Comparison between microscopy screening and molecular detection of 
haemosporidian parasites 

 Molecular identification Microscopic screening 

Sample 
preparation/ 
time and 
experience 
required 

Can be performed on hundreds 
of samples in a relatively short 
time 
Archived for long term storage 
under different conditions 
Requires basic molecular lab 
skills  
If the DNA is degraded, it could 
lead to false negatives due to a 
weak template preventing the 
amplification of large DNA 
fragments (Freed and Cann, 
2006; Beadell et al., 2006)  

Screening of blood smears 
requires much time 
Good quality slides can be kept 
for long term storage 
Taxonomic expertise is essential 
(Valkiūnas et al., 2008) 
Preparation of good quality 
slides is crucial, and the number 
of microscope fields analysed is 
critical 

Sensitivity and 
limit of 
detection  

Sensitive and can increase the 
yield of amplification of the 
target DNA 
limit of detection is protocol-
specific issue. As an example, 
PCR reaches its limit of 
detection if parasitaemia falls 
below 0.5 infected red blood cells 
per microliter of blood (equal to 
0.0125 parasite per 104 
erythrocytes) (Zimmerman et 
al., 2004). 
Can underestimate mixed 
infections in birds (Valkiūnas, 
Bensch, et al., 2006). 

Could miss parasite infection of 
low intensity 
Reaches its limit of detection if 
parasitaemia falls below 40 
infected red blood cells per 
microliter of blood (equal to one 
parasite per 104 erythrocytes) 
(Zimmerman et al., 2004) 
An expert observer can 
accurately distinguish between 
different genera 

Identifying 
parasite stages 

Does not differentiate among the 
developmental stages within 
infected cells 

An expert observer can 
differentiate among the 
developmental stages within 
infected blood cells 

 Not all the PCR amplifications 
and sequencing of 
haemosporidian parasites from a 
blood sample reveals a 
true/complete parasite in one 
host, since it can include 
sporozoites and abortive stages 
of the parasite, which may not 
complete the reproduction 

It allows the identification of 
suitable hosts (both vector and 
vertebrate hosts) in which 
parasites complete sexual 
/asexual reproduction inside the 
host 

 

Although most DNA is packaged in chromosomes within the nucleus, mitochondria also 

have a small amount of their own DNA. This genetic material is known as mitochondrial 

DNA or mtDNA. Using the outer primers (292F/630R) of Fallon et al. (2003), I can 

amplify the parasite’s gene region of the mitochondrial genome (intergenic space between 

cytB and cox1 genes). By studying the characteristics of this gene region, different sets of 

primers can be designed to distinguish between avian malaria genera (i.e. primers are 
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different between genera, but each set of primers is identical across species within each 

genus. My qPCR protocol will be assessed by comparing my results on parasite prevalence 

with results from nPCR by Hellgren et al., (2004). The efficiency and reproducibility of 

each qPCR reaction will be evaluated by the standard curve method. Therefore, this study, 

aimed to develop a new qPCR method for avian malaria, presents a specific and time-

effective protocol for quantifying Leucocytozoon and Haemoproteus parasites in bird DNA 

samples. 

Table 3-2 Examples of previously used molecular methods for avian malaria detection and 
their ability to differentiate DNA amplification of the three genera; H= Haemoproteus, P= 
Plasmodium and L= Leucocytozoon. (+) means the parasite’ gene is amplified and (-) means 
it is not amplified. (+) for both genera means that primers cannot distinguish between two 
genera. 

PCR Primers code Target 
gene 
(genera) 

H/P 
amplification 

L 
amplification 

References 

Standard PCR HAEMF/HAE
MR2 

cytB 
(H/P) 

+ _ (Bensch et al., 
2000) 

Standard PCR HAEMNF/HA

EMNR2 

cytB 

(H/P) 
+ _ (Waldenströ

m et al., 2004) 

Nested 
PCR 

First; 

(HAEMNF1/H
AEMNR3) 

cytB   (Hellgren et 
al., 2004; 
Capilla-
Lasheras et 
al., 2017) 

HAEMF/HAE

MR2 

(H/P) + + 

HAEMFL/HA
EMR2L 

(L) + + 

Nested 
multiplex PCR 

First; 
(AE298/AE299
) 

cytB   (Pacheco et 
al., 2018) 

AE980/982 (H) + 
(H) only 

_ 

AE983/985 (P) +  
(P) only 

_ 

One-step 
multiplex PCR 

PMF/PMR Non-coding 
region of the 
mtDNA 

(P) 

+ 
(P) only 

_ (Ciloglu et al., 
2019) 

HMF/HMR Between the 
5` end of 

cytB and a 
non-coding 
region of the 

mtDNA (H) 

+ 
(H) only 

_ 

LMF/LMR  COX1 
(L) 

_ + 

Standard PCR 343F/496R SSU and 
LSU rRNA 

(H/P) 

+ _ (Fallon et al. 
2003) 

qPCR Lpri6-
19/Rpri19 (P) 

Lpri6/Rpri12 
(H) 
CY3- CytB-

BHQ2 
(TaqMan 
probe) 

cytB 
(P and H) 

+ _ (Bentz et al. 
2006) 

(Christe et al. 
2012) 

(Rooyen et al. 
2013) 
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18sPlasm7 
18sPlasm8 

18s rDNA 
(P) 

+ 
P(specific 
lineage) 

_ (Cellier-
Holzem et al. 
2010; 
Larcombe et 
al. 2013) 

SW1F/SW1R 

SW3F/SW3R 

cytB 

(H) 
+ 
H (specific 
lineages) 

(Biedrzycka 
et al. 2014) 

R330F/R480R

L 

cytB 

(H/P/L) 
+ + (Bell et al. 

2015) 

 

3.3 Materials and methods 

3.3.1 Sampling 

Samples were collected from nestling blue tits Cyanistes caeruleus breeding in nest-boxes 

in two locations (May-June), an urban and a rural location in 2016 and 2017 (see Chapter 

1). All blood sampling was conducted under licence of the UK Home Office, Animals 

Scientific Procedures Act, and individual ringing under licence from the British Trust for 

Ornithology. A total of 259 blood samples (20-50 µl) from the brachial vein were 

collected, using heparinised capillaries and directly stored in RNA-later in the field or kept 

in an ice-box for less than 3 hours before storing them in absolute ethanol. Samples then 

were kept in a refrigerator for up to a week, and subsequently at -40oC until lab analysis. 

In the lab, I extracted DNA from the blood samples. The extracted DNA samples were 

tested for the presence of the parasite DNA following the nPCR protocol by Hellgren et al. 

(2004). Then, in order to establish a real time qPCR protocol for quantifying 

Leucocytozoon and Haemoproteus parasites in bird DNA, I amplified the parasite target 

gene from several samples. I studied the characteristics of the target gene to design genus-

specific primers for my qPCR protocol that allows quantifying the parasite intensity from 

each genus. 

3.3.2 DNA extraction/confirmation 

I extracted DNA from blood using a commercial kit (DNeasy whole-blood extraction kit, 

Qiagen) and eluted with 80µl of water. Successful DNA extraction was confirmed using a 

Nanodrop ND-1000 Spectrophotometer (Nanodrop Technologies Inc., Wilmington, DE). 

DNA was further checked by testing against the presence of a bird reference gene, 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), following the protocol by Atema et 
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al. (2013). Briefly, I used the primer pair: forward (5’-TGTGATTTCAATGGTGACAGC-

3’) and reverse (5’-AGCTTGACAAAATGGTCGTTC-3’) to amplify a 80 bp fragment of 

the reference gene GAPDH (Atema et al., 2013). The thermal cycling profile was as the 

following: initial denaturation at 95°C for 10 seconds, 40 cycles at 95°C for 1 minute, 

annealing for 1 minute at 60°C and extension for 1 minute at 72°C, and then a final 

extension of 5 minutes at 72°C. The PCR products were then run out on a 1% agarose gel 

(using 0.5xTBE; 54g Tris Base, 27.5g boric acid and 4.65g EDTA in 1L distilled water), 

stained with SYBRTM Safe DNA Gel Stain (ThermoFisher Scientific, California, USA) and 

visualised under ultraviolet light. 

3.3.3 Parasite detection using nested PCR (nPCR) approach 

DNA extracted from the bird blood samples was tested for the presence of the genes of 

specific parasite genera following the nPCR protocol by Hellgren et al. (2004). For the first 

PCR, I used HaemNF1/HaemNR3 primers. After initial denaturation at 94°C for 3 min, 

eluted DNA was amplified by 20 cycles at 94°C for 30 s, 50°C for 30 s, and 72°C for 45 s, 

and then a final extension at 72°C for 10 min. A 2 µl aliquot from the result of this reaction 

was further amplified using the second primer set (HaemF/HaemR) for Haemoproteus and 

(HaemFL/HaemR2L) for Leucocytozoon. The same cycling profile of the first PCR was 

used for the second PCR, but performed over 35 cycles instead of 20 cycles. Both PCRs 

were performed in 20µl of reaction mixture containing a range of 15ng to 961ng DNA 

template, 0.48µM of each primer using 1x GoTaqÒ G2 hot start green master mix 

(Promega, USA– a premixed ready-to-use solution containing GoTaqÒ G2 hot start 

polymerase, dNTPs, MgCl2 and salts at optimal concentrations for efficient amplification 

of DNA templates by PCR). To check if the PCRs had been amplified successfully, I used 

positive controls for each run. The positive controls are samples with known avian malaria 

infections confirmed by sequencing results (Capilla-Lasheras et al., 2017). I used two types 

of negative controls in each run: 1) bird DNA samples showing negative amplification (no 

bands) and 2) nuclease-free water in place of DNA template in order to detect any possible 

contamination during the run. In addition, to avoid contamination during lab work, I 

considered working in dedicated spaces, cleaning thoroughly between rounds and careful 

opening of tubes. Products of the second PCR reaction were run out on a 1% agarose gel 

and visualised under ultraviolet light in order to check for the presence or absence of the 

parasite gene. 
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In order to test for any possible effect of the storing buffer (RNAlaterÒ or absolute ethanol) 

on the nPCR result, I compared the results of samples collected from 12 individuals and 

stored in two separate tubes; one containing RNAlaterÒ and the other containing absolute 

ethanol). Results were identical for each pair of samples stored in the two different buffers. 

3.3.4 Establishing a qPCR approach for parasite quantification 

In order to establish a real time qPCR protocol for quantifying Leucocytozoon and 

Haemoproteus parasites in bird DNA, it was necessary to amplify the parasite target gene 

from some DNA samples. After sequencing the parasite’s gene region of the mitochondrial 

genome (between cytB and cox1 genes) and studying the characteristic of the gene, I then 

designed genus-specific primers. Primers were designed based on two criteria: primers are 

different between the two genera, but they are identical in the species within the same 

genus. In order to have a known amount of each gene of interest, the target gene was 

cloned for each genus as well as a bird reference gene (GAPDH) was cloned. This design 

allows 1) test the primers; 2) test reaction efficiency of each qPCR assays by using the 

standard curve method. 

Amplifying and sequencing some DNA samples - As a precautionary step to avoid 

contamination in the lab, I decided to use a gene region that is different than the standard 

478 base-pair fragment of the cytB gene (Waldenström et al., 2004; Hellgren et al., 2004) 

because it is often amplified in our lab. Instead I targeted the conserved region of the 

mitochondrial genome that Fallon et al. (2003) have used to detect avian haemopsporidian 

infections because it is quite conserved in avian haemosporida, but still shows some 

variation between genera. I ran eleven DNA samples that nPCR indicated to be infected 

with different parasite genera (six infected with Leucocytozoon, one infected with 

Haemoproteus and four with mixed-infection with both genera) in standard PCR following 

Fallon et al.'s (2003) protocol with some modification of the thermal cycling profile (30 

seconds instead of one minute for the denaturation, annealing and elongation steps). I used 

the outer set of primers 292F/631R to amplify the parasite target gene. PCRs were 

performed in 20 µl reaction mixture using 1xGoTaqÒ G2 hot start green master mix 

(Promega, USA) and 0.32µM of each primer. I used two microliters of the eluted DNA for 

amplification. Cycling conditions were as follows: 5 min initial denaturation step at 94°C, 

followed by 35 cycles with 30 s denaturation at 94°C, 30 s annealing at 52°C and 

elongation at 72°C for 30 seconds. After the 35 cycles, a final elongation step followed at 
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72°C for 10 seconds. Products of the PCR reaction were examined on a 1% agarose gel. In 

order to amplify a fragment of a bird reference gene GAPDH, I ran two DNA samples in 

PCR following Atema et al.'s (2013) protocol. 

I cut and purified PCR product gels (positives for the parasites and for the GAPDH genes) 

following the manufacturer’s instructions from the available commercial kit (wizard-SV 

gel and PCR clean up system (Promega)). For each of the purified products (5 ng/µl), I 

prepared two sets – one for each primer (292F and 631R in the case of the parasite gene, 

and the forward and reverse primers for the avian GAPDH gene). I then sent purified 

products with corresponding primers for sequencing services by (Eurofins Genomics, UK) 

to obtain the full sequence from each sample. DNA sequences chromatograms were 

visualised and annotated using ’4peaks’ software (https://nucleobytes.com/4peaks), then I 

checked them for similarity with available sequences in the GenBank (BLAST server 

https://blast.ncbi.nlm.nih.gov/Blast.cgi) for the parasite or the bird gene identity 

confirmation, accordingly. 

Alignment of DNA sequences and primers design - The obtained DNA sequences 

were aligned against the available haemosporidian mitochondrial genome sequences from 

GenBank for some species commonly found in passerines (Table 3-3). For alignment 

analysis I used ClustalW in multilabel sequence alignment tool [Molecular Evolutionary 

Genetics Analysis (mega7 software)] (Kumar et al., 2016). In total, the sequences 

(obtained from the samples) included in the alignment were as follows: ten Leucocytozoon, 

one Haemoproteus. From the alignment of the obtained gene and in silico analysis, I 

designed primers manually to be genus-specific, but identical among several species within 

each genus. 

I checked primers’ features using the online tool ‘Net Primer’ 

(http://www.premierbiosoft.com/netprimer), taking into account four main requirements: 

1) the length of the primers should range from 18 to 24 bp to allow for adequate specificity 

but avoid excessive annealing; 2) adequate guanine-cytosine content (GC% content) to 

increase annealing stability; 3) because of the stronger hydrogen bonding of G and C bases 

(the GC clamp) compared to T/A bonding, primers should have 1-2 G and/or C bases 

within the last bases from the 3` end of primers which helps promote specific binding at 

the 3` end and contributes to the stability of the primer and template; and 4) annealing 

temperature (Ta) to be in the range of 50-60oC and within 1oC between each pair of 
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primers, in order to produce the best result. Additionally, primers’ secondary structures 

were taken into account such as dimers and hairpins produced by intermolecular or 

intramolecular interactions because they can affect primer-template annealing, generating 

poor or no yield of PCR product; self- and cross-dimers were avoided (lowest value for 

dimer were accepted).



Table 3-3 Parasite species sequences used for the alignment and analysis of the 
intergenetic space between cytB and cox1 genes prior to primer design. Resource; NCBI 
https://www.ncbi.nlm.nih.gov/gene 

Species Accession number 
Leucocytozoon fringilinarum KY653765.1 
Leucocytozoon majoris FJ168563.1 
Leucocytozoon dubreuili KY653795.1 
Haemoroteus coatneyi KT698210.1 
Haemoproteus sacharovi KY653811.1 
Haemoproteus tartakovski KY653810.1 
Haemoproteus.sp KY653805.1 
Haemoproteus belopolskyi KY653790.1 
Plasmodium relictum KY653773.1 
Plasmodium elongatum KY653801.1 
Plasmodium lutzi KY653816.1 
Plasmodium unalis KY653814.1 
Plasmodium vaughani KY653792.1 

Cloning PCR products - In order to test the efficiency of primers and to have different 

amount of plasmids from each target gene, I prepared three purified PCR products (PCR 

run and purification as mentioned above under ‘Amplifying and sequencing some DNA 

samples’ to insert into a plasmid vector. These products are as the follows Haemo (part of 

mtDNA Haemoprotues), Leuco (part of mtDNA Leucocytozoon) and GAPDH-BT 

(GAPDH Cyanistes caeruleus (blue tit)). I used T/A cloning methods following the 

manufacturer’s instructions in the commercial kit (Invitrogen – the original TA cloning 

kit). Taq polymerase has a nontemplate-dependent activity that adds a single 

deoxyadenosine (A) to the 3´ ends of PCR products. The linearised vector supplied in this 

kit has single 3´ deoxythymidine (T) residues. This allows PCR inserts to ligate efficiently 

with the vector. 

I ran all three samples in a total volume of 10 µl mix (5X T4 DNA ligase reaction buffer, 

25ng/µl pCR2.1 vector, 5X ExpressLinkTM T4 DNA ligase and 50ng/µl DNA). The cloned 

samples were labelled as follows pCR2.1-Haemo for Haemoproteus, pCR2.1-Leuco for 

Leucocytozoon, and pCR2.1-GAPDH-BT for the bird reference gene. I left the samples at 

room temperature for a minimum of 15 minutes to ensure efficient ligation. After ligating 

the inserts into pCR2.1, samples were placed on ice before I took them next to the Bunsen 

burner to add 2 µl from each reaction to a labelled tube of competent E.coli then stirring 

the mix gently and placing the tubes on ice for 30 minutes. In order to complete 

transformation, samples were heat shocked for 30 seconds in an incubator at 42°C before I 

returned them into the ice to cool down. This sudden increase in temperature creates pores 

in the plasma membrane of the bacteria and allows plasmid DNA to enter the bacterial cell. 

I added 250 µl of super optimal broth with catabolite repression (S.O.C), glucose-rich 
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bacterial growth medium, to each tube. The glucose will help the cells recover and grow 

faster after the heat shock. Tubes were then left in a shaking incubator at 200 rpm under 

37°C for an hour. This time of incubation is a critical step because it allows both the E. coli 

to recover from the heat shock and for them to express the antibiotic (kanamycin) 

resistance genes. Next to the Bunsen, I plated 100 µl of each transformation tube on a 

separate agar plate and incubated them overnight at 37°C to allow for colony growth. The 

following day, next to the Bunsen, I picked a clone from each part of each plate and let 

them grow overnight in Luria broth(LB), bacterial growth medium, containing 50 µg/mL 

of kanamycin (X100). Additionally, I plated each colony in a plate divided into five 

separate areas for long-term storage. 

Then, I ran the plasmid DNA in PCR reactions in order to amplify the parasite gene or the 

bird reference gene respectively. The successfully amplified samples were chosen for 

plasmid DNA isolation. I purified plasmid DNA using a commercial kit (QIAprep Spin 

Miniprep, Qiagen) following the manufacturer’s instructions and sequenced using the 

primers (T7/M13) (Eurofins Genomics, UK). I used ‘4peaks’ software 

(https://nucleobytes.com/) to visualise and annotate plasmids DNA sequence 

chromatograms, then checked them against the GenBank (BLAST) to confirm the gene’s 

identity. 

Quantification of plasmid - I calculated the molecular weight (MW) of each plasmid 

knowing the bp length and average MW per bp. I calculated the number of moles in a 

given ng quantified by nanodrop, then using Avogadro’s number to obtain the number of 

molecules per ng. 

Giving that pCR2.1 size is 3929 bp long; the mtDNA cloned sequence is 286 bp long; total 

gene region cloned plasmid (pCR2.1-Haemo or pCR2.1-Leuco) is 4215 bp long and 

GAPDH cloned gene is 151 bp long; total pCR2.1-GAPDH-BT gene is 4080 bp long, 

plasmids’ sizes (number of genes) were calculated using the equation below (Elliott and 

Elliott, 2009). In 1ng of the plasmid (pCR2.1-Haemo or pCR2.1-Leuco) there are 

~219.8* 106  plasmids and in 1ng of the pCR2.1-GAPDH-BT there are 227.1 * 106 

plasmids.



Number of molecules = gram ´ (6.022 ´ 1023) / length ´ 650g/mol 

• 650	g/mol	is	the	average	molecular	weight	of	a	base	pair	(MW)		

• Avogadro’s	number	indicates	that	there	are	(6.022×1023)	molecules/mol	

• MOL	=	grams/MW	

• ng	=	10-9g	

Given that the blue tit genome is ~1Gbp and I am planning to quantify 60ng (or 12ng/ 

µl*5µl) per PCR run, I calculated the number of bird genome copies (or copies of 

GAPDH) using the equation above and the result was 55587.69 gene copies. Assuming the 

parasitaemia to be ~1%, in 60ng of an infected bird I would have 555,87 copies of the  

parasite gene (i.e. 55587.69 copies of bird gene/100). I decided to set a standard for 

pCR2.1-GAPDH-BT and for pCR2.1-Haemo or pCR2.1-Leuco that was 1 or 2 orders of 

magnitude higher, respectively, in order to have the highest standard that is higher than 

what was expected to be measured. So, the initial pCR2.1-GAPDH-BT amount was 

105/227.073906*106 = 0.00044ng and the initial amount of pCR2.1-Haemo or pCR2.1-

Leuco was 104/219.801077*106 = 0.0000455ng. From this calculation I diluted the plasmid 

so that I had 37.5ng/µl, 17.3ng/µl and 23.7ng/µl for pCR2.1-GAPDH-BT, pCR2.1-Leuco 

and pCR2.1-Haemo, respectively. To calculate the initial volumes needed from each 

plasmid, to prepare 1 ml of the starting amount of each plasmid, I used the following 

equation (Elliott and Elliott, 2009): 

vi ´ ci = cf ´ vf 

• vi	=	initial	volume	

• ci	=	initial	concentration	

• cf	=	final	concentration	(ng/µl)	(=	starting	amount	of	plasmid/5)	

• vf	=	final	volume	(=1000µl each)	

In order to test the amplification efficiency of the primers, I prepared serial dilutions of 

each plasmid (pCR2.1-Haemo, pCR2.1-Leuco and pCR2.1-GAPDH-BT) starting with 104 

copies in the case of parasite gene standards and with 105 in the case of bird GAPDH 

standards, and then four dilutions of 1:10 each time.	

Selecting primers - In order to evaluate the different primer concentrations tested 

below, I specified three features that the primers should present to be selected as an 

efficient set of primers for amplifying the target gene: firstly, primers that show no cross-

reactivity with the DNA of other genera; secondly, primers that amplify only one product 
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(the target gene) as tested by the dissociation curve; and lastly, primers that amplify earlier 

are considered to be more efficient than those amplifying later. 

I tested nine different combinations of three common concentrations (300nM, 600nM and 

900nM) of each pair of primers (L146F/L146R and H160F/H160R) on three types of 

plasmid containing the same amount of the parasite target gene copies: pCR2.1-Haemo, 

pCR2.1-Leuco and mix of pCR2.1-Haemo+pCR2.1-Leuco. Each plate design included two 

negative controls: uninfected bird sample (to ensure that primers are not amplifying bird 

genes) and distilled nuclease-free water to check for any possible contamination during the 

run. In qPCR, the DNA amplification is detected when the fluorescent signal cross the 

detection threshold and the number of cycles required for this to occur is known as the 

cycle threshold (Ct) (Livak and Schmittgen, 2001). I ran each sample or control in two 

technical replicate (accepted only if no more than 0.5 Ct difference between the replicates) 

in order to control for the validity of the result. For GAPDH, the same primer 

concentration (100nM) suggested by Atema et al. (2013) was used. Reactions were run in 

MicroAmp Optical 96-well plates (0.1 ml) on Stratagene Mx3000. Reaction contained 1X 

SYBR Select Master Mix (X2) (applied biosystems) and the abovementioned 

concentrations from each set of primers (i.e. 300 nM, 600 nM and 900 nM). The total 

volume of the reaction was 15 µl, with 5 µl (12ng/µl) of DNA. 

Standards evaluation - I ran different amounts of each plasmid, in three qPCR assays 

using the corresponding primers concentration and Ta for each target gene (Table 3-4). The 

resulting Ct values of each serial dilution were plotted by the machine on a logarithmic 

scale along with corresponding concentrations. Then, the slope of a linear regression 

(standard curve) of the Ct on the initial quantity (copies) was calculated. As during each 

PCR cycle the DNA doubles, it requires 3.32 cycles to amplify a target by ten-fold dilution 

series. Thus, for an assay efficiency of 100% the resulting slope of the plot of log target 

concentration against Ct is -3.32 (Book et al., 2009). The assay efficiency is given through 

the equation: E= -1+ 10(-1/SLOPE) (Kubista et al., 2006; Book et al., 2009) with E = 1 

representing 100% efficiency and values between 0.9-1.1 representing an acceptable range. 

In addition, and to indicate the reproducibility of the assays, R2 value, which is a measure 

of the closeness of the replicate data points to the best-fit line (the slope), were calculated 

for each assay. 



 

  
   
 

75 

3.3.5 Parasite detection and quantification using the qPCR 
approach 

After testing the primers on the standards, I ran the DNA samples collected from wild blue 

tit nestlings in real-time reactions. I ran each sample in three different plates for the three 

target genes Haemoproteus (part of mtDNA), Leucocytozoon (part of mtDNA) for parasite 

gene quantification and GAPDH for normalising the parasite quantities result and 

calculating the absolute parasitaemia (parasite intensity). Each plate contained a standard 

run for assay evaluation (serial dilutions of plasmids and one distilled nuclease-free water 

as a negative control). All samples, standard and control were run in duplicate. Any 

replicate with >0.5 cycle difference was repeated in additional triplicates in order to control 

for the validity of the results. Results were accepted as positives only when they showed 

amplification in at least two out of three runs. In Leucocytozoon plates, the amplifications 

of the parasite gene tend to be imprecise when amplifying after 39 cycles (below 1 gene 

copy); in total 28 samples (<1 copy) were repeated and 60% of them were included as 

positives. I calculated absolute parasitaemia by dividing the quantity of parasite gene 

copies by the quantity of the bird gene (GAPDH) copies. 

3.3.6 Statistical analysis 

Statistical analyses were conducted in R v. 3.3.1 (R Development Core Team, 2011). To 

compare the detection of malaria infection between the two methods (qPCR versus nPCR 

protocol) I used a chi-square test. In order to examine the relationship between the parasite 

intensity in a given DNA sample (as quantified by qPCR) and the sensitivity of nPCR to 

detect the infection status (as tested by nPCR), I used a generalised linear model (GLM) 

with binomial distribution (package ‘lme4’) (Bates et al. 2014). The infection status (yes or 

no) was set as response variable and the parasite intensity was set as a predictable variable 

in the model. From the model coefficients and using different values of parasite intensity, I 

calculated the probability of nPCR to detect infection (Probability= parasite intensity * 

parasitaemia estimate coefficient + intercept estimate coefficient).  
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3.4 Results 

3.4.1 DNA extraction/confirmation 

DNA was extracted from 259 blood samples collected in the field and diluted in 80µl of 

water resulting in an average of 150 ng/ µl (range: 7.5ng/µl - 480.5ng/µl). DNA purities, 

estimated as the ratio of the intensity of absorption at 260/280 nm and 260/230 nm, were 

all close to the acceptable range of 1.8-2 and >2.0, respectively (Glasel, 1995). Out of 259 

DNA samples, I excluded samples with DNA concentrations <20 ng/µl (n = 10) because 

they all scored as negatives (no bands) when tested for the presence of the bird reference 

gene GAPDH. 

3.4.2 Parasites detection using nested PCR (nPCR) approach 

I tested a total of 249 DNA samples for the presence of avian malaria parasites 

(Leucocytozoon and Haemoproteus genera) using the nPCR protocol (Hellgren et al., 

2004). Of these 21% (N= 52) were found positive, showing a strong band with the 

expected size (478 bp for Leucocytozoon and 480 for Haemoproteus/ Plasmodium) in 

agarose gel as visualised under the UV light. 34.6% of these positives were scored as 

infected with Leucocytozoon alone, 3.85% as infected with Haemoproteus alone, and 

61.53% were scored as a mixed infection with both genera. 

3.4.3 Establishing a qPCR approach for parasite quantification 

Amplifying and sequencing some DNA samples - The sequences I obtained were 

similar to a part of the mitochondrial genome between the cytB and cox1 genes (available 

on GenBank from species of each corresponding genus commonly found in passerine 

species). 
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Figure 3-1 Schematic illustration of the directions and combinations of the different primers. 
L146F/L146R primer combination for amplification of a fragment (146bp) of the target gene 
region of Leucocytozoon genera. H160F/H160R primer combination for amplification of a 
fragment (160bp) of the target gene region of the Haemoproteus genera. Note that red-
underlined letters indicate the primer sequences not shared between the two genera. 
 

Alignment of DNA sequences and primer design - The alignment showed that 

sequences obtained from my samples and sequences available in the GenBank for parasite 

species of each genus are similar but varied slightly between genera (Appendices, Figure 

S1). According to the phylogenetic tree of this alignment (Appendices, Figure S2), the 

samples that had been identified as Leucocytozoon clustered around two specific species; 

most of them around (L. majoris) and two samples around (L. fringilinarum). However, the 

single Haemoproteus sample I have sequenced showed similarity to a number of 

Haemoproteus as well as Plasmodium species, indicating that my Haemoproteus primers 

(below) can also amplify Plasmodium species. I will report on my primers for both 

Haemoproteus and Plasmodium as Haemoproteus only because Plasmodium has never 

been detected in my study population (Capilla-Lasheras et al., 2017). 

Following the criteria set out in the methods section, I designed primers manually by 

selecting part of the sequences that were identical among species of one genus but differed 

from species of the other genera (Figure 3-1). Both sets of primers (Table 3-4) were 

suitable to amplify their target gene: 1) of acceptable length 20/22 base pair (bp) and 

22/23bp, respectively; 2) CG% content were between 40-50%; and 3) annealing 

temperature were 58 and 57oC, respectively.



Table 3-4 qPCR primer sequences, concentrations and annealing temperatures for amplified 
targets.  

primer  Target Sequence (5’-> 3’)  Product 
size (bp)  

Annealing 
temperature 

Concentration 

L146F  Leucocytozoon 
(between cytB 
and cox1 genes) 

GCTTCTATCGGTGAACTCTCGA  146  58oC  300/300nM 
L146R  TTATTCTTTGCCTGGAGGTAATG  

H160F  Haemoproteus 
(between cytB 
and cox1 genes) 

AGCTCACGCATCGCTTCTAA  160  57oC  600/600nM 
H160R  ATTTTCTTTGCTGGAGGTTAC  

F Blue Tit (GAPDH)* TGTGATTTCAATGGTGACAGC  80 60oC  100/100nM 
R AGCTTGACAAAATGGTCGTTC 

 

* The set of primers for GAPDH was designed by Atema et al. (2013) 

Selecting primers - I found that the optimal conditions for each set of primers were 

those listed in (Table 3-4). The chosen concentrations for each set of primers showed 

negligible amplification with the other untargeted gene, amplified only one product as 

shown by dissociation curves (one peak) and amplified earlier than the other 

concentrations (Figure 3-3). 

Standards evaluation - I tested primer efficiency on different amounts of plasmid and 

they successfully amplified each target gene in five different dilutions, allowing the testing 

of efficiency of each reaction run using the standard curve method. However, I excluded 

pCR2.1-GAPDH-BT standard with 105 copies because it amplified later than expected or 

showed an irregular amplification curve compared to the other standards. Figures 2A, B, 

and C show positive reactions (cycle threshold (Ct) value indicating at which fluorescence 

signals cross the threshold) for serial dilutions of pCR2.1.Haemo, pCR2.1.Leuco and 

pCR2.1-GAPDH-BT, respectively. The amplification efficiency of each standard assay 

was in the acceptable range for PCR amplification efficiency (90-112%) for each of the 

three standard assays. 

When testing the primers with higher amounts of plasmid (106-107 copies), the primers 

targeting one genus target gene also amplified the other genera target. However, this 

unspecific amplification was observed ~20 cycles after the expected Ct for the specific 

target. Therefore, the specificity of these primer sets still allow to determine real mixed 

infection in case that parasite intensity for both genera were similar (Figure 3-3). 

I found a significant correlation coefficient for the mean Ct values and value of each gene 

quantity (copies) which confirms specific amplification in the gene region of the DNA, 
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independent of DNA concentration with R2 > 0.97 (Figure 3-2). This confirms the 

reproducibility of the three assays. 

 

Figure 3-2 Sensitivity and linearity of pCR2.1.Haemo (A), pCR2.1.Leuco (B) and pCR2.1-
GAPDH-BT (C) qPCR standard assays. Amplification presented as mean of duplicate. Plot of 
mean Ct values from standards replicates tested against the corresponding DNA inputs are 
shown in the inset. Different amount of plasmids are shown in different colours; blue= 104 
copies; red=103; green= 102 copies; grey= 101 copies and yellow-green= 100 copy. The 
horizontal line at Fluorescence = 1 is the detection threshold line. 

A)  

B)  

C)  
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Figure 3-3 qPCR amplifications of three different plasmids (107 copies) (green line with 
triangles: mix of (pCR2.1.Haemo+ pCR2.1.Leuco), red line with squares: pCR2.1.Haemo, 
and blue line with dots: pCR2.1.Leuco). A) shows amplifications by using Haemoproteus 
primers while B) shows amplification by using Leucocytozoon primers. Note that the 
primers specific for one genus target sequence also amplified the other genera target; 
this nonspecific amplification appears ~20 cycles after the expected Ct for the specific 
target, allowing to distinguish such “nonspecific” amplification from real mixed infection 
cases, where expected parasite amplification is in the range of (104-100 gene copies). The 
horizontal line in the amplification plots is a threshold, which is the level of detection or 
the point at which a reaction reaches a fluorescent intensity above background levels. It 
was set at (1) for both assays. 
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3.4.4 Parasite detection and quantification using the qPCR 
approach 

The real-time qPCR protocol identified all 52 samples as infected that had been identified 

as infected by the nPCR protocol. However, in the qPCR test all 52 infections were 

identified as Leucocytozoon infection and there were no mixed infection or Haemoproteus 

infection as the nPCR result suggested (Figure 3-4). The real-time qPCR protocol 

identified additional samples as infected that scored as negatives by the nPCR (n = 62 for 

Leucocytozoon and n = 4, for Haemoproteus, Table 3-5).  

Table 3-5 Comparison of results from 230 samples generated from nPCR and qPCR 

. The first and fourth rows (in bold) show total samples with identical results from both 
nPCR and qPCR. The last three rows present the identification of the 52 samples found 
positive with both methods; nPCR and qPCR. 

Samples (N) nPCR qPCR 
112 negative negative 
62 negative Leucocytozoon 
4 negative Haemoproteus 

52 positive positive 
32 mixed-infection Leucocytozoon 
18 Leucocytozoon Leucocytozoon 
2 Haemoproteus Leucocytozoon 

 
Figure 3-4 Prevalence of avian malaria parasites (Leucocytozoon and Haemoproteus) in 
nestling blue tit blood as tested with nPCR approach vs qPCR approach (N = 52) 

Some of the samples showed low quantities of the bird reference gene (amplified at 29 Ct). 

Such low amount of bird DNA could be too low for samples with low parasitaemia (low 

parasitaemia samples usually amplified 10Ct after the bird gene) to be detected given that 

the maximum PCR cycle is 40 Ct. Therefore, a cut-off threshold (the minimum amount of 
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bird gene copies) was set under which parasite-negative samples were excluded and scored 

as ‘undetermined’, otherwise these samples could be potentially included as false 

negatives. However, any positive sample under the cut-off threshold, showing 

amplification of parasite gene, were included as a positive (N = 10) (Figure 3-5). In total, 

19 samples were scored as undetermined and excluded from the statistical analysis. 

 
Figure 3-5 A scatter plot shows the parasite gene quantity against the bird GAPDH gene 
quantity. Log10 of gene quantity was used to linearise this relationship. A cut-off threshold 
was set at 104 copies of the bird genes. All the parasite-negative samples (grey) below it 
were excluded and were treated as ‘undetermined’ in order to exclude potential false 
negatives. However, all the positve samples (black) that were under this threshold for the 
bird gene were included. 

  

10
4 Cut-off threshold 



 

  
   
 

83 

3.4.5 Comparison between nPCR and qPCR results 

 
Figure 3-6 Overall prevalence of malaria in (230 samples) is 51.3% when tested by qPCR, 
while it is only 22.6% when tested with the nPCR approach. The new qPCR method 
successfully quantified parasite target gene in several samples that were negative when 
tested by nPCR (N = 66 ) 

Statistical analysis suggests that there was a significant difference between the nPCR and 

the real-time qPCR in terms of detecting avian malaria infection (n=230, χ2= 40.64, df = 1, 

p <0.001) (Figure 3-6). Statistically supported, I found a positive association between the 

parasite gene copies quantified by qPCR in DNA samples (“parasites”) and the infection 

status (present/absent based on nPCR result); an infection is 73.5 times more likely to be 

detected with nPCR protocol when the parasite quantity increased by one copy (glm; 

parasite intensity, estimate coefficients = 75.27 (P<0.001), intercept, estimate coefficients 

= -1.7948 (P<0.001).When parasite intensity is above 0.1 parasite/blood cell (10% 

parasitaemia), both methods can detect infection (detection probability= 100%). However, 

below 10% parasitaemia nPCR probability to detect infection decreased (detection 

probability is only 60% when parasite intensity is 0.03 parasite/blood cell).  
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3.5 Discussion 

In this chapter, I present the development of a new quantitative protocol, using real-time 

qPCR for identifying, and most importantly quantifying avian malaria parasite infection by 

the two genera Leucocytozoon and Haemoproteus commonly found in passerine species. 

This approach allows quantification of the intensity of parasite infection in avian blood as 

well as estimation of the infection prevalence in bird populations. In addition, this 

approach attempts to tackle issues of existing screening methods for avian malaria. Several 

factors (which could affect the detection sensitivity and specificity of protocols) were 

considered when developing this qPCR protocol. These were DNA quality/quantity, 

parasite intensity and parasite diversity in a sample (Freed and Cann, 2006). 

The protocol shows high sensitivity of parasite detection as tested by the standard curve 

method. It is sensitive and successfully detects parasite intensity of ³ 10-5 parasite gene 

copy per blood cell. The protocol shows generality to detect and quantify some 

Leucocytozoon species commonly found in passerines’ blood in the local studied 

population. Leucocytozoon was found to be the most common species in some bird 

populations including my study population. It is generally believed that Leucocytozoon and 

its main vector (black fly) are common in northern temperate areas (Valkiūnas, 2005; 

Deviche et al., 2010). Nevertheless, it has been often neglected by studies concerning the 

effect of these parasites on host fitness. Moreover, wild birds are often reported to be 

infected with a mix of theses parasites, and interaction between them should not be 

neglected if effects on host fitness would be examined. My protocol presents a tool to 

discriminate between Leucocytozoon and Haemoproteus infection. In order for all the 

screened samples to be comparable across plates, the protocol allows to test the efficiency 

of each reaction run (PCR plate) by using the serial dilutions of plasmids (standard curve 

method). 

The presented protocol enables validation of the total DNA in order to avoid failure of 

detection because of insufficient DNA quality and quantity. PCRs can show failure of 

detection by either high or low amount DNA used (Altshuler, 2006). Certain concentration 

of DNA template (according to spectrophotometer readings) are often used in 

haemosporidian parasite diagnostic protocols. However, degraded DNA is included in the 

total DNA concentration value (Freed and Cann, 2006). In addition, testing the exitance of 

host’s house-keeping gene in samples by PCR is a good practise to validate the sample for 
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the presence of sufficient DNA. The extracted DNA from the host blood consists mostly 

from host DNA, and potentially a given ratio of parasite DNA (or the parasites in case of 

mixed infection). Thus, quantifying the amount of parasites DNA and the amount of host 

DNA is a key factor for accurate detection of infection. This allowed setting a cut-off 

threshold under which I excluded samples which possibly have very low amount of target 

(parasite) DNA to non-target (host) DNA, but give no amplification of the parasite DNA. 

Otherwise, such samples could be falsely included as negatives, biasing the overall results. 

In my protocol, a bird reference gene (GAPDH) was quantified, allowing for calculation of 

the parasitaemia (parasite intensity) as the ratio of parasite gene copies/bird gene copy. 

Then a cut-off threshold (the minimum amount of bird DNA) was set and negative samples 

with lower values than this threshold were excluded as false negatives could not be ruled 

out (Figure 3-5). 

The intensity of infections (the parasitaemia) is an important factor that may led to a failure 

of detection by PCR protocols; the lower the intensity the lower the probability that the 

PCR will detect infection. This was evidenced in the nPCR protocol I used on my samples 

(N= 230) to compare its results with the new qPCR. nPCR probability to detect infection 

decreased when parasite intensity was under 0.1parasite/blood cell (10% parasitaemia). 

The qPCR protocol found significantly more infected individuals than the nPCR. About 

56% of infected samples were missed by the nPCR. Similar to my result, although not 

statistically significant, Ciloglu et al. (2019) found that their multiplex PCR was better able 

to detect infections in a bird population (N= 180). The nPCR protocol missed 3.9% 

infected birds detected by their multiplex protocol. Bell et al. (2015) found a similar low 

infection prevalence that the nPCR protocol missed compared to their real-time protocol (2 

out of 42 birds, 4.8%). This could be because nPCR needs to amplify large fragments of 

the target (parasite) DNA and in case of low parasitaemia the amount of parasite DNA is 

low and would be more likely to be unable to amplify the required large fragment of the 

target DNA (Freed and Cann, 2006). 

The diversity of parasites in a sample is another factor to consider that could led to failure 

or inaccurate detection by PCR protocol. In a comparative analysis of five different PCR 

protocols for detection of mixed infection (Plasmodium/ Haemoproteus) including the 

protocol by (Hellgren et al., 2004) that I used, (Bernotienė et al., 2016) concluded that 

these broadly used molecular assays in haemosporidian research had low to moderate 

ability to detect mixed infection with these specific genera (7-53% of known mixed 
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infection). Similarly, Ciloglu et al. (2019) reported that their multiplex PCR detected more 

mixed infection cases (20%) than the nPCR (14%). However, my protocol shows that 

nPCR overestimated the mixed infection of Leucocytozoon/Haemoproteus by more than 

50% when used to test 52 samples found to be infected with Leucocytozoon only by qPCR. 

This supports the finding by (Capilla-Lasheras et al., 2017), on my population, who 

reported a possible cross-reactivity of nPCR where the parasite identity was confirmed by 

sequencing. The controversial results between my findings and others may be related to the 

type of parasites combination in mixed infection cases (i.e. in the former studies they were 

referring to Plasmodium/ Haemoproteus combination, while in my population I am 

referring to Leucocytozoon/Haemoproteus combination. 

Nevertheless, my methodology is able to detect with accuracy inter-genera mixed 

infections with Haemoproteus and Leucocytozoon in blue tits. However, some studies (e.g. 

Marzal et al. 2008) have shown that intra-genus mixed infections are more abundant. Thus, 

one limitation of my methodology is that still could not detect many mixed-infections 

(intra-genus) and hence sub-estimate the number of mixed infections in one population. 

In attempts to solve the issue of inaccurate detection of mixed infection cases, Pacheco et 

al. (2018) designed genus-specific primers that could discriminate between Plasmodium/ 

Haemoproteus, but Leucocytozoon is not included. Ciloglu et al. (2019) presented a one-

step multiplex protocol that could be used globally to discriminate between Leucocytozoon, 

Haemoproteus and Plasmodium. However, multiplex PCRs are believed to be associated 

with a number of issues that affect the sensitivity and specificity of detecting parasite DNA 

(Han, 2006); 1) each target in a multiplex reaction requires its own optimal conditions 

which often vary between targets, 2) several primers in one reaction reduce amplification 

efficiency, 3) differences in amplification efficiency may lead to variations in amplicon 

yields. Additionally, these PCR-based protocols often require performing of multiple PCR 

assays for each sample (i.e protocol by Pacheco et al. 2018) and may need further analysis 

of PCR products (i.e protocols by Pacheco et al. 2018 and by Ciloglu et al. 2019). 

Furthermore, both protocols did not account for the quality and quantity of the host DNA, 

which is crucial especially for low parasitaemia cases where parasite DNA is very low and 

can be missed. 

In diagnosis, test sensitivity is the ability of a methodology to correctly identify infected 

individuals (true positives), whereas specificity is the ability of the method to correctly 
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identify those without the infection (true negatives). There are a number of advantages of 

using the presented real-time qPCR protocol as a diagnostic method for haemosporidians. 

The main advantage is its ability to reliably and quickly identify and quantify 

haemosporidian infections. In real-time qPCR, there is no need for a gel electrophoresis 

step, thus, the results for full 96 or even 384 well PCR plates are available in 3 hours. 

While standard PCR requires more than 4 hours only for cycling time and needs extra time 

for gel electrophoresis of samples before results are ready. Although my protocol leaves a 

small proportion of samples undetected (below the cut-off threshold) (Figure 3-5), these 

are only a very small proportion of the total samples. In that there is a lower risk of biasing 

the overall prevalence results comparing with the choice of inclusion possible false 

negatives. 

There are some points that need to be considered before using the presented qPCR protocol 

as a standard method to detect and quantify avian malaria parasites. First, the protocol was 

developed to detect the common parasites in our local population - Haemoproteus and 

Leucocytozoon - based on the parasite sequences I obtained from several infected bird 

samples. However, I included some other parasite species under each genus that are 

commonly found in passerines in order to generalize my primers to some extent. Secondly, 

my H146F/H146R primers that were designed to amplify Haemoproteus may also be used 

for some Plasmodium species (according to the similarity of the primer sequences to some 

Plasmodium species sequences tested by alignment in silico). Therefore, I recommend 

using an extra step for discrimination between the two genera, for example using the 

primers of Ciloglu et al. (2019). Thirdly, while it could be counted as advantageous that I 

tested my protocol on samples collected from wild birds in the field reflecting a real-life 

situation, it can be also seen as a limitation because collecting an exact amount of blood 

from each bird is a challenge in the field. In addition, DNA extraction procedures may also 

affect the amount of DNA extracted, especially the parasite DNA which is extracted less 

efficiently compared to the host DNA, thus affecting the estimation of infection result 

(Freed and Cann, 2006). Fourth, I collected blood samples from nestlings (<14 days old), 

which means parasitaemia was expected to be low which limits the possibility for 

microscopic screening of blood smears to be used as an additional validation step and also 

as an additional confirmation of the parasite identity and quantity as suggested by 

(Valkiūnas et al., 2008). The presented protocol is valid for detection of avian malaria at 

the level of genus, if further information on sub-genus is needed then I recommend using 

species-specific primers and sequencing the PCR product. Finally, this protocol estimates 
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the parasite intensity (parasitaemia) in avian blood by quantifying the parasite 

mitochondrial gene copies. Therefore, the result does not necessarily reflect the actual 

number of parasites, rather it reflects the number of mitochondrial gene copies. This is 

because each parasite is likely to have multiple mitochondria depending on their 

developmental stage. For instance, in the human malaria parasite Plasmodium falciparum 

the early ring stage has one mitochondrial organelle which contains 20 copies of the gene, 

while gametocytes have up to eight mitochondrial organelles (Preiser et al., 1996; 

Krungkrai, 2004).This method successfully quantified a few Leucocytozoon species, which 

provides an opportunity to better understand and study the effect of these specific parasites 

on their host. 

3.6 Conclusion 

Given the prominence of haemosporidian parasites as a model system to study host-

parasite interactions and evolution in parallel with a demand for an accurate and sensitive 

protocols to detect these parasites, I established a method to quantify parasite intensity of 

Leucocytozoon and Haemoproteus/Plasmodium using a qPCR reaction. Because 

sequencing of some samples (n= 24) obtained previously from birds in my study 

populations of blue tits showed that birds are infected only with Leucocytozoo or 

Haemoproteus with no Plasmodium detected (Capilla-Lasheras et al., 2017), my method 

focused on Leucocytozoon and Haemoproteus only, although the sequence alignment 

showed that the newly designed Haemoproteus primers could also be useful for some 

Plasmodium species. This new method successfully tackled the issue of cross-reactivity in 

nPCR protocol by Hellgren et al. (2004), that may lead to false identification of the 

parasite and/or false mixed infection diagnosis. The protocol presents a criteria of avoiding 

bias in prevalence result by excluding possible false negative results. In addition, this 

method presents an accurate and time-effective protocol for quantifying Leucocytozoon 

and Haemoproteus parasites’ gene copies in bird DNA samples. 



Chapter 4 Leucocytozoon prevalence in blue tit 
Cyanistes caeruleus populations at an urban 
versus a rural site: an opposite trend of variation 
depending on the year 

4.1 Abstract 

Urban ecological studies have focused on describing how urbanisation alters wildlife 

breeding performance but have rarely investigated potential mechanisms behind these 

alterations. Wild species living in urbanised areas are not only exposed to urban-

related stressors compared to their rural counterparts, but the prevalence of wildlife 

disease may also be affected. In this chapter, I tested whether haemosporidian parasite 

prevalence differs between urban and rural sites by comparing prevalence and 

intensity of Leucocytozoon infections in urban and rural populations of blue tit 

Cyanistes caeruleus across two breeding seasons. To test if the susceptibility of the 

birds to the infection is driven by the origin of the bird (i.e. by traits inherited from 

parents to their offspring), I cross-fostered some clutches between the two populations 

in 2016. In order to better understand the impact of parasites on bird’s fitness, I 

conducted a vector-repellent experiment to experimentally reduce infections in 

nestlings at both sites in 2017. I found that the origin of the bird does not influence the 

susceptibility of birds to the infection. Treatment with a vector-repellent did not 

significantly reduce infection prevalence in treated nests compared to control nests. 

Furthermore, age affected prevalence. I found that parasite infection prevalence was 

higher at day-13 of age compared to day-8 post-hatching as tested in 2017. Out of 211 

13-day-old blue tits (urban = 75 from 33 nests, and rural = 136 from 45 nests), I found 

that overall Leucocytozoon prevalence was 53.9% during the 2016 breeding season 

and 38.5% during the 2017 breeding season. While the intensity of the parasites in 13-

day-old nestlings’ blood was generally similar in both years and between the two 

populations, I found an inconsistent pattern of infection prevalence. Infection 

prevalence showed the opposite trend of variation between the sites depending on the 

year. While it was 60% more likely for a nestling to be infected in the urban site 

compared to the rural site during the 2017 breeding season, Leucocytozoon infection 

probability was 74% lower in the urban site compared to the rural site during the 2016 

breeding season. My findings suggest that monitoring haemosporidian prevalence 

across multiple years is needed to better explore the spatial pattern of infection 

prevalence in urban versus rural bird populations. 

Keywords: haemosporidian, susceptibility, nestling, blue tit, urbanisation, 

prevalence, intensity 
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4.2 Introduction 

Urbanisation is often associated with overall loss of biodiversity (McKinney, 2008). A 

number of urban-related stressors are found to affect several life-history traits of wild 

species living in urban areas, such as survival, body condition, and stress level (Sepp et al., 

2017). Urbanisation may also alter pathogen epidemiology and host susceptibility to 

infectious diseases (Bradley and Altizer, 2007; Giraudeau and McGraw, 2014; Kernbach et 

al., 2018). Alteration of landscape is expected to affect the dynamics of vector-borne 

parasites (e.g. Calegaro-Marques and Amato, 2014; Jiménez-Peñuela et al., 2019) and 

human activities are often blamed for the emergence of wildlife diseases (Jones and 

Reynolds, 2008). 

Haemosporidian parasites are one of the most popular models that scientists use to 

examine how parasites influence different aspects of host fitness. However studies of the 

impact of urbanisation on these parasites are rare (e.g. review Sehgal, 2015). Indeed, only a 

few studies have compared the prevalence of haemosporidian parasites in avian 

populations at natural versus urbanised habitats, reporting opposite trends depending on the 

parasite and the host species (see Chapter 1 under “1.4.5. disease prevalence”). 

The majority of current studies on wild avian hosts focus mostly on the influence of 

haemosporidians on adult birds, and overlook the nestling stage. Studies comparing birds 

of different ages reported contradictory results. While most studies reported significantly 

lower prevalence of infection in nestlings compared to adults, others found the opposite or 

no difference (Valkiūnas, 2005; Wilkinson et al., 2016). The low prevalence of infection 

among nestling in previous work may have been due to two reasons. First, nestlings may 

have been exposed to vectors for a very short period or not at all, and therefore may be less 

likely to be infected compared to adults. Second, nestlings might have been infected, but 

the parasite did not yet circulate in the peripheral blood stream (e.g. Plasmodium, 

Haemoproteus in blue tits (Cosgrove et al., 2006); and Plasmodium in skylarks Alauda 

arvensis (Zehtindjiev et al. 2012)). Moreover, the sensitivity of malaria detection might be 

influenced by the host species as well as the parasite genus and its prepatent period. 

However, the duration of the prepatent period following sporozoite-induced infection of 

these parasites remains largely undetermined (Valkiūnas et al., 2018). 
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Infection with Leucocytozoon and Haemoproteus parasites has been commonly detected in 

the populations in this study with high prevalence in nestlings since 2014 (unpublished 

data, 2014; Chapter 3; Capilla-Lasheras et al., 2017). Likewise, recently, Calero-Riestra et 

al. (2016) found 45% Plasmodium and Haemoproteus prevalence in seven- to 11-day-old 

wild tawny pipits Anthus campestris (n=90). They found that males are more likely to be 

infected than females. Another study on columbid species showed a high rate of infection 

in 14-day-old nestlings (68%) compared to 32% in seven-day-old nestlings (Dunn et al., 

2017). 

In disease epidemiology, the age of the first infection is a major factor (e.g. Hall et al., 

2002) and previous results from my study populations suggested a high prevalence of 

infection in nestling blue tits (Capilla-Lasheras et al., 2017). In addition, studying nestlings 

has some advantages over studying adult birds in that they have naïve immune systems, so 

prevalence (and fitness effects) are not confounded by previous exposures (adaptive 

immunity) which is the case in adult birds (Norris and Evans, 2000). Furthermore, during 

the early stage of life, acute infections may lead to selective disappearance from the 

population of severely infected individuals via death from the population (Atkinson et al., 

2000; Salmón et al., 2016), therefore biasing the overall results. 

In order to determine the ecological patterns of infection prevalence and intensity in a 

given avian population, there are two key points to consider. These points are a) the 

features of surrounding environment, b) the biological traits of the host (i.e. age, sex, body 

condition, immunity and genetic traits that are inherited from parents to their offspring). 

This is because the former (environmental features) can influence the overlap between 

vector abundance and host availability (hatching date in case of nestlings), while the latter 

(host traits) can influence the susceptibility of individuals to infection.  

In the case of vector-borne diseases, parasite prevalence depends largely on environmental 

conditions such as temperature, humidity and rainfall. These environmental conditions 

directly or indirectly affect the development, movement, and abundance of vectors 

(Githeko et al., 2000; Martinez-De la Puente et al., 2009). Furthermore, the absence or 

disturbance of suitable breeding sites for vectors, e.g. in arid or semi-arid areas, has been 

reported as a possible cause of low infection prevalence in some avian populations (Valera 

et al., 2003). Once vectors have entered the nest, infection prevalence could be influenced 

by the number of nestlings in the nest (brood size) via the encounter-dilution effect. Such 
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an effect arises when the probability of a nestling to be infected decreases proportionally 

with brood size and the insect does not feed proportionally on more nestlings in larger 

broods. In this case, it is very likely that a nestling living in a larger brood is safer from 

attacks by the blood-sucking insects and the parasites that they vector (Cote and Poulinb, 

1995; Patterson and Ruckstuhl, 2013). 

In the populations under this study, the predominant haemosporidian genus found to be 

prevalent is Leucocytozoon. According to qPCR results (Chapter 3), out of 249 blood 

samples, most of the infection was found to be with the genus Leucocytozoon (n=246) 

while only three nestlings were found to be infected by Haemoproteus. Leucocytozoon has 

been found to be more common in cavity-nesting birds (like blue tits) compared to open-

cup or closed-cup species (Lutz et al., 2015). Leucocytozoon is transmitted by biting 

blackflies Simuliidae which breed in river ecosystems and can transmit the infection from 

an infected host to another after several days (Valkiūnas, 2005). Disturbance to blackfly 

habitat by urbanisation via water pollution was found to affect their abundance and overall 

breeding success (Docile et al., 2015). Other weather-related features, that are likely to 

vary between urban and the rural sites, have also been suggested to affect the dynamic of 

blackflies, such as temperature, humidity, and wind speed (Lachish et al., 2012; Renner et 

al., 2016). 

Leucocytozoon can exploit the nestling periods of their altricial hosts for transmitting 

infection (Ashford et al., 1991; Valkiūnas, 2005). At such an early stage of host life, 

nestlings have only their naive immune system to respond to and fight off the infection, 

which is a costly process (Navarro et al., 2003). Allocation of resources to such a costly 

process may be challenging when nestlings are reared in a stressful environment (i.e. 

urban) that lacks a plentiful, good quality diet (e.g. Pollock et al., 2017). With poor diet, 

nestlings are expected to have increased susceptibility to infectious disease (Cornet et al., 

2014; Becker et al., 2015). 

Furthermore, urban birds seem to have a different gene-expression profile for some 

immune-related genes when compared to their rural counterparts (Watson et al., 2017). 

Gene-expression can be influenced by environment (e.g. poor diet post-hatching) or 

epigenetically from parents to their offspring. If the differential gene expression is 

triggered by genetic or maternal effects during embryonic development, the origin of 
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nestlings may also play a role in their susceptibility to infection regardless of their rearing 

environment or availability of high-quality diet. 

The inherited variation between populations can also result in variation in their respond to 

infection (infection intensity level). Hosts have two ways to respond to infection; 1) resist: 

they can directly fight off the parasites and protect themselves from subsequent harm 

(reduced parasite intensity); 2) tolerate:  they can limit the harmful effect of parasites 

without reducing the intensity (Aidoo et al., 2002). Thus, hosts that are able to reduce 

parasite intensity are not necessarily the healthiest, rather they can sometimes be healthy 

regardless of parasite intensity or they may die with parasite intensity that other hosts can 

cope with (Råberg et al., 2009). 

Variation  in response to infection (resistance versus tolerance) can be also mediated by 

glucocorticoid hormone concentrations, which often change in response to unstable 

environmental conditions and mediate changes in immune functions (Schoenle et al., 

2019). Glucocorticoids influence immunity through diverse mechanisms, such as limiting 

inflammation through their influence on immune signalling pathways, regulating adaptive 

immunity via effects on lymphocyte activation and apoptosis, and influencing cytokine 

activity (Cain and Cidlowski, 2017). 

In vertebrates, there is often variation between males and females in terms of parasite 

prevalence (Zuk and McKean, 1996). This variation between sexes has been largely 

interpreted as variation in sex-specific host traits, mainly interaction between endocrine 

and immune functions. Studies often show that sex hormones influence the immune 

system. While testosterone can suppress cell-mediated and humoral immunity in males, 

oestrogen can suppress cell-mediated immunity but boost humoral immunity in female  

(Schuurs and Verheul, 1990). During the early stage of life, sexes may also differ in their 

competitive ability and developmental strategies that influence the development of their 

immune system which is highly dependent on nutrition (e.g. Lochmiller and Deerenberg, 

2000). In experimentally enlarged broods (as poor rearing condition) of blue tit nestlings, 

Dubiec et al. (2006) found that males’ cellular immune response was more negatively 

affected than their female nest-mates. Similarly, pre-fledging survival of male but not 

female lesser black-backed gulls Larus fuscus was reduced as a result of experimentally 

manipulated parental condition (Nager et al., 2000). 



 

  
   
 

94 

It is clear that there is a lack of knowledge on the impact of urbanisation on 

haemosporidian infection prevalence in bird populations (Brearley et al., 2012; Sehgal, 

2015; Hassell et al., 2017; Santiago‐Alarcon et al., 2018). There is a need to advance our 

ecological understanding of how urbanisation is altering host-parasite interactions at the 

landscape scale (urban versus rural). Because determining the ecological patterns of 

infection prevalence in a given avian population is complex and there are several biotic and 

abiotic factors that can directly or indirectly influence the overall pattern of infection 

prevalence (as mentioned above), I will be focusing on the following factors using nestling 

stage and one parasite genus; habitat of rearing (site), habitat of origin (origin of the bird), 

exposure to vectors, brood size, age, sex of the nestling, hatching date and breeding season 

(year). The aim of this study is to provide information on avian haemosporidian infection 

prevalence (particularly Leucocytozoon) in blue tit populations inhabiting an urban and a 

rural site across two breeding seasons using the nestling stage. In order to examine the role 

of the origin of the bird on infection susceptibility, I cross-fostered some clutches between 

the two sites (urban and rural) and sampled the nestlings at both sites at day 13 of age. In 

order to test how infection intensity is changed with age, I sampled nestlings during the 

2017 breeding season at two time points: at day 8 and day 13 post-hatching. I sampled 

each individual at day 8 then at day 13 of age. If intensity increases with age, intensity may 

be considered a proxy of the longevity of acute infection. Indeed, relatively early infection 

would lead to higher intensity at a defined older nestling age as the parasite will have had 

more time to replicate and increase its levels. Because the infection prevalence in the urban 

and rural populations of blue tits during the past breeding seasons (2015 and 2016) was 

very high, I decided to conduct a vector-repellent experiment during the 2017 breeding 

season to reduce the number of vectors visiting the nests and potentially reduce infection 

prevalence. This manipulation was intended to experimentally test the effect of 

Leucocytozoon infection on their hosts and disentangle, to some extent, the impact of 

infection from the impact of other urban-related stressors at the urban site (this will be 

discussed in chapter 5). 

I hypothesised that the urban and rural blue tit populations will differ in Leucocytozoon 

prevalence at the nestling stage across the two breeding seasons (2016 and 2017). The 

pattern of infection prevalence between the two sites may also vary from year to year 

depending on fluctuating environmental conditions, such as food availability or weather 

conditions, that can affect the vector dynamic. Two alternative scenarios are possible and 

expected: 1) urban nestlings may be more susceptible to infection and this will be true 
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regardless of their rearing environment (Leucocytozoon infection prevalence and intensity 

will be higher in the urban populations); 2) alternatively, vector abundance is likely to be 

higher at the rural site, and if so I expect higher infection prevalence of Leucocytozoon in 

the rural population of blue tits compared to their urban counterparts. The vector-repellent 

treatment during 2017 breeding season is expected to reduce infection prevalence in 

treatment nests compared to control nests. 

It is difficult to predict how individual nestlings from each population may respond to 

infection (resistant or tolerant), and this question is beyond the scope of this study, but I 

expected to find variation between the urban and the rural populations in terms of 

Leucocytozoon intensity. I also expected intensity to increase with age from day 8 to day 

13 post-hatching in both sites. In addition, I expected to find variation between male and 

female nestlings in terms of Leucocytozoon infection prevalence and intensity; male 

nestlings in both sites are expected to show higher prevalence and intensity of 

Leucocytozoon infection. Vector-repellent is expected to reduce the number of vectors 

visiting the nests, hence reducing infection prevalence (Krams et al., 2013). Nest-related 

factors like hatching date and brood size are also expected to influence the overall pattern 

of Leucocytozoon infection prevalence. 

4.3 Materials and Methods 

4.3.1 Ethical statement 

Blood sampling was conducted under licence of the UK Home Office, Animals Scientific 

Procedures Act, and individual ringing under licence from the British Trust for 

Ornithology (see Chapter 2). 

4.3.2 Field protocol 

4.3.2.1 Sampling 

Work was carried out in one urban (Kelvingrove park) and one rural site (SCENE) in and 

around Glasgow, Scotland, between April and June in 2016 and 2017. In both sites, 

existing nest box study systems were used (see Chapter 1). Samples were collected from 

13-day old nestling blue tits (8- day old; only in 2017) for haemosporidian parasite 

detection. Sample size is presented in the tables and figures below (see results). Blood 
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samples (20-50 µl) from the brachial vein of the wing were collected, using heparinised 

capillaries and stored in absolute ethanol or RNAaterÒ until lab analysis (for more details, 

see Chapter 3). 

4.3.2.2 Cross-fostering experimental design 

In 2016, 18 blue tit clutches in the urban and 22 in the rural site were manipulated prior to 

clutch completion: 8 urban nests and 12 rural nests were swapped with each other within 

sites, representing control nests; and 10 nests were swapped across sites, representing 

experimentally cross-fostered nests (in total, 40 manipulated nests). Clutches within and 

across sites were matched based on the date the sixth egg was laid. After females laid the 

sixth egg, clutches were swapped. At day 13 post-hatching, blood samples for avian 

malaria detection were collected from nestlings (for details see Chapter 2). 

4.3.2.3 Vector manipulation experimental design (2017 breeding season) 

For this experiment, at both sites (urban and rural), I used nest boxes that were all located 

within 0.5 km of a water stream, where most avian malaria vectors reproduce. I randomly 

allocated each pair of neighbouring blue tit nest boxes to one of two groups: one to the 

control group, and the other to the experimental group. I treated some nests with insect 

repellent following a protocol that showed 80% reduction of the number of insects entering 

the nest due to the treatment by (Krams et al., 2013). The repellent consisted of 0.5 ml 

(citronella oil, “ASDA”, UK), 200 mg (carrageenan kappa, “special ingredients”, UK), and 

0.5 ml water. One day prior to the estimated hatching date a member of the field team 

installed tubes filled with insect repellent into the experimental nest boxes and empty tubes 

into the control nest boxes. I filled four Eppendorf tubes, with a hole at the top (3 mm), 

with insect repellent. The tubes were attached 3 cm away from the box entrance to the 

inner wall of the box. The repellent was changed once during the nestling stage, during the 

sampling process of nestlings at day-8 to reduce disturbance of the nests. The hatching date 

of all the nests involved in this experiment at each site were observed within eight days, 

and of all the nests of both sites were observed within 10 days. 
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4.3.3 Lab analysis 

4.3.3.1 Determining Leucocytozoon prevalence and intensity 

A new quantitative approach was used to detect and identify avian malaria parasites in blue 

tit nestlings (see Chapter 3).  

4.3.3.2 Determining sex of nestlings 

Sex of the nestlings was determined using DNA extracted from blood samples (see 

Chapter 3 for DNA extraction protocol), following the molecular approach by (Griffiths et 

al., 1998) (see Chapter 2). 

4.3.4 Statistical analysis 

For every response variable, data analysis started with global general and generalised 

linear models including all predictors assumed to be biologically important. Models were 

diagnosed for multicollinearity, when two or more of the predictors in a regression model 

are highly correlated, which is common in ecological data (Graham, 2003) using the 

variance inflation factor test (VIF) (Kutner et al., 2004). Hatching date and brood size 

(number of nestlings at day of sampling) were standardised within sites as they showed 

collinearity with other predictors (e.g. site or year). Hatching date was not normally 

distributed, so I standardised by subtracting the median date from each date value and 

divided by the interquartile range from that site. Brood size was normally distributed, and I 

standardised it by subtracting the mean brood size from each brood size value and divided 

by the brood size’s standard deviation from that site. 

Starting from the most complex model (global model), stepwise simplification was applied 

using likelihood ratio tests (LRTs) of fully nested models until a minimal adequate model 

was found. Statistical significance (P£ 0.05) for each term was calculated by assessing the 

reduction in explanatory power after dropping the factor from the model. Statistical 

analyses used packages ‘car’ (Fox and Weisberg, 2011), ‘nlme’ (Pinheiro et al., 2009) and 

‘lme4’ (Bates et al., 2014) in R v. 3.3.3 (R Development Core Team, 2017). 
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4.3.4.1 Leucocytozoon prevalence 

With infection prevalence at day 13 (yes/no) as a response variable, I analysed the data 

using “glmer” with binomial distribution and nest ID as a random factor. I included the site 

in order to test for spatial variation between urban and rural populations in infection 

prevalence. I included brood size, to test for possible encounter-dilution effect, and 

hatching date, to account for possible differences in overlap with vector availability, as 

predictors in the model. I also included the interactions between site and brood size, and 

between hatching date and site, to test if relationships varied between the sites. I included 

the year to test for year to year variation of infection prevalence. I included the interaction 

between the year and the site to test if the site difference is consistent between the years. I 

also included the interaction between the year and brood size as predictor factors of 

infection prevalence to test for any variation from year to year in the relationship between 

brood size and infection prevalence. I included sex of the bird as a predictor in order to test 

if one sex is more susceptible to infection than another due to physiological or behavioural 

trait variation. For infection prevalence at day 8, I built a similar model as above but with 

no year as a predictor variable as I collected blood samples at this age only during the 2017 

breeding season. 

For analysing the 2016 cross-fostering experiment, I included site (nestling-rearing 

habitat), origin (nestling-origin habitat) and their interaction in the “glmer” model as 

predictors in order to test for any influence of the origin of the bird on infection prevalence 

and whether this relationship is valid in both sites. I also included hatching date, brood 

size, the interaction between site and brood size, the interaction between site and hatching 

date and the sex of the bird as predictors for the same reasons mentioned above (control 

data analysis).  

For analysing the 2017 vector manipulation experiment, I tested the effect of the 

treatment (vector-repellent) on the infection prevalence in blue tit nestlings at both sites 

during the nestling phase in 2017, with infection prevalence as a response variable and 

treatment as predictor variable in “glmer” model. Because of the very low sample size in 

the urban site due to high nestling mortality rate during this season, I analysed the data 

without including hatching date, brood size and sex, and the interaction between site and 

treatment. 
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4.3.4.2 Leucocytozoon intensity 

With parasite intensity as a response variable, I analysed the data using “lmer” with nest ID 

as a random factor. I included the same predictor variables and interactions as the ones 

included above for (Leucocytozoon prevalence analysis). 

In a separate “lmer” model, I tested the relationship between Leucocytozoon intensity and 

age of nestling using a subset of 2017 samples (samples that were tested for Leucocytozoon 

intensity at both ages (8 and 13 days old). With parasite intensity as a response variable, I 

analysed the data using “lmer”. To control for non-independence of repeated observations 

from the same nestling and the same nest, I included nest ID and nestling ID as random 

factors in the “lmer” model.  
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4.4 Results 

4.4.1 Cross-fostering and vector repellent experiments 

I found no statistically significant effect of either treatment (cross-fostering or vector 

repellent) on infection prevalence during the blue tit nestling phase (Table 4-1). Thus, to 

ensure a robust sample size, I decided to analyse the two years data with treatment nests 

from both years pooled with the control data. Thereafter, the presented result (Table 4-2) is 

from pooled data (including experimental data). 

Table 4-1 Results from models investigating: a) whether variation in Leucocytozoon 
prevalence of cross-fostered day-13-old nestling between urban and rural populations of 
blue tit depends on their origin during 2016 breeding season, b) the relationship between 
infection prevalence and treatment with repellent during 2017 breeding season. The first 
column represents all the predictor variables that were included in the initial model (global) 
while the final model only contained the intercept and any predictors that were statistically 
significant (shown in bold). Interactions between the predictor variables were reported only 
if they were significant. Estimated coefficients and standard error (s.e.) for the models were 
selected using likelihood ratio tests (LRT). The reported p-values are from LRTs. I converted 
logit-estimates to probability (presented in bold, between brackets, next to logit estimates) 
only for the significant predictors. Probability = odds / (1 + odds). odds = exp(logit). 
a) Leucocytozoon prevelance 
(2016 data, n= 102 individuals from 47 nests) 
Predictors Coefficient (probability) s.e. p-value (LRT) 
Intercept 1.06 (0.74) 0.42 0.01 
site (urban) -1.87 (0.69) 0.64 0.001* 
origin (urban) -0.16 0.59 0.77 
brood size -0.17 0.12 0.15 
hatching date -0.38 0.29 0.19 
sex (male) -0.49 1.07 0.77 
b) Leucocytozoon prevelance 
(2017 data, n= 118 individuals from 35 nests) 
Predictors Coefficient (probability) s.e. p-value (LRT) 
Intercept 0.14 (0.53) 0.27 0.58 
treatment (repellent) -0.72 (0.64) 0.40 0.10 
 

4.4.2 Leucocytozoon prevalence and intensity in an urban versus 
rural population of blue tit 

Out of 211 13-day-old blue tits (urban = 75 from 33 nests, and rural = 136 from 45 nests), I 

found that overall Leucocytozoon prevalence was 46.2%. To specify, the infection 

prevalence was 53.9% during the 2016 breeding season and 38.5% during the 2017 

breeding season. At an earlier age (i.e. 8-day-old nestlings), during the 2017 breeding 

season I found that the overall Leucocytozoon prevalence was 19.5% (total = 118 
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individuals; urban = 42, rural = 76). As testing took place during the 2017 breeding season 

only, Leucocytozoon prevalence was significantly higher in the urban population of 8-day-

old nestlings. The probability of a nestling being infected was 68% more likely in the 

urban site compared to the rural site (Table 4-2a, Figure 4-1a). However, the infection 

prevalence in 13-day-old nestlings, which was tested during the two breeding seasons, 

showed the opposing trends of variation between the sites depending on the year. While it 

was 60% more likely for a nestling to be infected in the urban site compared to the rural 

site during the 2017 breeding season, Leucocytozoon infection probability was 74% lower 

in the urban site compared to the rural site during the 2016 breeding season (Table 4-2b, 

Figure 4-1b). I found no influence of sex, brood size, nor hatching date on Leucocytozoon 

prevalence at both sites (Table 4-2, Figure 4-1). 

Regarding the intensity of infection in 13-day-old nestlings, none of the predictor variables 

seemed to explain the intensity. There was no significant relationship between intensity 

and site, year, hatching date, brood size or the sex of the bird (Table 4-2c, Figure 4-1c). 

Leucocytozoon intensity increased in all tested nestlings from both sites (n = 38 during the 

2017 breeding season) from the age of day 8 to the age of day 13, however, this increase 

was not significant. The parasite intensity in 8-day-old nestlings was on average (0.23 

parasites/blood cell) lower than in 13-day-old nestlings (Table 4-2d, Figure 4-1d).  
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Table 4-2 Results from models investigating: a) how Leucocytozoon prevalence at day-8-old 
nestling varied between urban and rural populations of blue tit during 2017 breeding 
season, b) how Leucocytozoon prevalence at day-13-old nestling varied between urban and 
rural populations of blue tit across two breeding seasons, c) how Leucocytozoon intensity 
at day-13-old nestling varied between urban and rural populations of blue tit across two 
breeding seasons and, d) how Leucocytozoon intensity changed with the age of nestling. 
The first column represents all the predictor variables that were included in the initial model 
(global) while the final model only contained the intercept and any predictors that were 
statistically significant (shown in bold). Interactions between the predictor variables were 
reported only if they were significant. Estimated coefficients and standard error (s.e.) for the 
models were selected using likelihood ratio tests (LRT). The reported p-values are from 
LRTs. In the “glm” models (a) and (b), I converted logit-estimates to probability, in models 
(c) and (d), I anti-log transformed the estimates (presented in bold, between brackets, next 
to logit estimates) only for the significant predictors. Probability = odds / (1 + odds). odds = 
exp(logit). 

a) Leucocytozoon prevalence (at day-8)  
(2017 data, n= 118 individuals from 35 nests) 
Predictors Coefficient (probability) s.e. p-value (LRT) 
Intercept  -2.28 (0.09) 0.54  
site (urban)  1.35 (0.68) 0.66 0.04* 
brood size 0.05 0.21 0.83 
sex (male) 0.04 0.54 0.98 
hatching date 0.03 0.10 0.75 

b) Leucocytozoon prevalence (at day-13) ~ site*year 
(2016 & 2017 data, n= 211 individuals from 78 nests) 
Predictors Coefficient (probability) s.e. p-value (LRT) 
Intercept  1.04 (0.74) 0.40  
site (urban)  -1.88 0.62  
year (2017) -1.68 0.55  
brood size -0.06 0.16 0.73 
hatching date -0.21 0.25 0.40 
sex (male) 0.61 1.08 0.37 
site*year 2.29 (0.60) 0.86 0.008* 

c) Leucocytozoon intensity (at day-13) ~ site 
(2016 & 2017 data, n=97 individuals from 57 nests) 
Predictors Coefficient s.e. p-value (LRT) 
Intercept  0.24239 (0.7473) 0.05  
site (urban) -0.24226 (0.7468) 0.10 0.15 
year (2017) -0.0758 (0.1906) 0.09 0.14 
brood size -0.03 0.04 0.19 
hatching date 0.01 0.25 0.16 
sex (male) -0.12 0.24 0.36 

d) Leucocytozoon intensity ~ age 
(2017 data, n= 38 from 23 nests, including uninfected nestlings at day 8) 
Predictors Coefficient s.e. p-value (LRT) 
Intercept  0.11992 (0.32) 0.06  
age (8-day-old) -0.11876 (0.23) 0.08 0.33 
site (urban) -0.09568 (0.19) 0.08 0.18 
 



 
 
 

 
Figure 4-1 Leucocytozoon prevalence at 8- day-old and 13-day-old blue tit nestlings from an urban versus a rural population across two breeding seasons 
(2016 & 2017). Sample size for each group is presented in barallel of the x-axis. The error bars in plots (a), (b) and (d) are boot-strapped 95% confidence 
intervals; 
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a) Leucocytozoon prevalence in 8-day-old blue tit nestlings is higher in the urban site compared to the rural site as tested during 2017 breeding season only. 
Samples of day-8-old nestlings is not necessarily always from the exact individuals as at day-13 of age (plot b). Nine day-8-old nestlings died before being 
sampled at day 13 and 8 nestlings have missing data at one point either at day-8 or at day-13. 

b) Leucocytozoon prevalence in 13-day-old blue tit nestlings shows opposite pattern between the sites and the years. 

c) Leucocytozoon intensity in 13-day-old blue tit nestlings shows no significant variation between the sites depending on the year. 

d) Leucocytozoon intensity increases with age of nestling from day 8 to day 13 post-hatching during 2017 breeding season in both sites. 

e) There is no significant difference between male and female nestlings in terms of Leucocytozoon prevalence. f= female and m= male. 

f) Leucocytozoon prevalence at day-13-old blue tit nestlings from an urban versus a rural populations is not influenced by the origin of the nestling during 2016 
breeding season. 



4.5 Discussion 

The aim of the study was to examine the influence of urban environment on disease 

prevalence; specifically, I tested the prevalence of avian malaria parasites, of the genus 

Leucocytozoon, in two populations of blue tit – one from an urban site and the other from a 

rural site – during the nestling stage. I cross-fostered some birds between and within sites 

in order to test for any differences that may be driven from inherited traits from parents to 

their offspring. In contrast to my predictions, there was no significant effect of four factors: 

origin, sex, standardized hatching date, and standardized brood size on the susceptibility of 

infection as measured by the prevalence of Leucocytozoon parasites in 13-day-old 

nestlings. The insect-repellent treatment during the nestling stage in the 2017 breeding 

season reduced infection probability by 64%, but was not statistically significant. This lack 

of significant effect may be due to the fact that the citronella is not a strong repellent for 

insects (Lee, 2018). In addition, the high mortality rate of urban nestlings during this 

season also affected the sample size. This reduced sample size and consequently the power 

of the analysis. 

However, the statistical analysis of the data revealed the following two key findings. First, 

Leucocytozoon prevalence varied between the urban and the rural populations, but with a 

contrasting pattern depending on the year, while infection intensity showed no significant 

variation between the sites and the years. Second, Leucocytozoon intensity increases 

slightly with age. Although the increase of parasite intensity with the age was not 

statistically significant, it was always in the same direction in each individual; higher at 

day 13 compared to day eight of age. However, I found no significant variation in parasite 

intensity between the two populations. This may be because infections were still at the 

early stage of development when parasites established themselves in the host tissue and 

started reproduction (e.g .Ilgūnas et al., 2016). 

The origin of the nestling may have no important effect on their susceptibility to infection, 

however the sample size of this experiment (number of cross-fostered nestlings = 39, 

during a single season) could be too small to detect an effect (underpower). However, 

similar to my finding, in a recent cross-fostering experiment of the same populations as our 

system, Capilla-Lasheras et al. (2017) found no evidence of differences in transcript levels 

of immune-related genes due to the origin of the bird, which could mean that the 

differential gene expression is a result of the differences in rearing environment (Capilla-
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Lasheras et al., 2017). Similarly, for genes related to life expectancy, another cross-

fostering of a very close species, great tit Parus major, showed no effects of genetic or 

maternal factors on the observed shortened telomeres in the urban site (Salmón et al., 

2016). Furthermore, recent evidence has also shown gene expression profiles affected by 

urban environment in wild birds (Watson et al., 2017). 

The sex of the bird also seems to be not an important predictor of infection, possibly 

because male and female nestlings have a similar chance of becoming infected because of 

the limited ability to avoid vectors. Another possible reason for the lack of differences 

between male and female nestlings could be related to a small variation in physiological 

embryonic hormones between both sexes in altricial birds like blue tit (Carere and 

Balthazart, 2007). However, sex steroids can actually be quite high in juvenile males due 

to different growth strategies between male and female, while for example males develop 

their song system. Similarly, standardized hatching date does not seem to be an important 

predictor of infection prevalence nor intensity in nestlings; this could be a result of the 

standardization, and of relatively short period of time during the nestling stage when vector 

abundance is stable. Likewise, standardized brood size had no effect on infection, possibly 

because blue tit nestlings in their hole-nests (nest-boxes) have the same chance of being 

infected unlike those from open-nests, or adults that have more mobility to avoid vectors 

compared to nestlings (e.g. (Cote and Poulinb, 1995; Patterson and Ruckstuhl, 2013). 

The year-dependent pattern I observed in Leucocytozoon prevalence in the urban and the 

rural populations may be explained by factors related to other environmental factors that 

can fluctuate from year to year, such as weather and food availability. In chapter 2, I found 

that the 2017 season seems to be not a favourable season for the urban blue tit nestlings. 

The results showed a reduction in urban nestlings fitness-related traits and increased in 

fCORT levels in the 2017 compared to the 2016 season. In addition, higher prevalence in 

the urban site in 2017 can be also explained by vector-related factors, that can fluctuate 

from year to year, including distribution of parasite-transmitting vectors and subsequently 

host exposure (Atkinson and Charles van Riper, 1991; Shurulinkov and Chakarov, 2006) 

and spatial overlap between host and vectors (Atkinson and van Riper, 1991). Changes in 

factors such as temperature, rainfall, and humidity have been associated with the dynamics 

of malaria vector populations and therefore with the spread of the disease (e.g. White, 

2008; Lei et al., 2013). Furthermore, other host-related factors can also influence the 

patterns of infection between sites and years, including physiological variation in the host’s 
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condition such as the host’s ability to resist infection (Lindström and Lundström, 2000; 

Råberg et al., 2009) or differences in host mortality rate (Merino et al., 2000).  

Several environmental factors can make the urban site in my study a source of parasite 

vectors and subsequently lead to elevated prevalence of parasites in host populations. The 

availability of a water body (the river) in the urban site (Kelvingrove Park) and abundance 

and diversity of vegetation in the park make it a good breeding site for the biting insects 

(Murdock et al., 2013). The predominant genus of avian malaria in our system is 

Leucocytozoon (Chapter 3), which is transmitted by blackflies simuliids (Woodford et al., 

2018). Blackflies are known to be more abundant in habitats with fast flowing streams for 

their larva stages (Sehgal et al., 2005; Valkiūnas 2005). 

The prevalence of infection in the urban site in the current study was high (always > 30%), 

this finding supports the results of previous work focusing on the prevalence of other types 

of infection in urban sites. These studies linked this high prevalence of infection mainly to 

the artificial changes to the land cover and growing energy consumption, resulting in the 

‘urban heat island’ (e.g. lyme disease (Logiudice et al., 2003), nipah virus (Chua et al., 

1999) and human malaria (Tadei et al., 1998; Vittor et al., 2006). 

4.6 Conclusion 

It seems that there is no consistent pattern of variation between urban and rural sites in 

terms of Leucocytozoon parasite prevalence. From year to year, the number of biotic and 

abiotic factors can change between the sites, therefore affecting the overall pattern of 

variation in the pathogen prevalence. For understanding urban ecology, it is indeed 

essential to know which of these spatial patterns of disease is predominant by monitoring 

the prevalence across multiple years. If there is a spatial pattern in disease risk, then such a 

pattern may play a role in the likelihood of a given host species to inhabit urban habitats 

(Shea and Chesson, 2002) and their subsequent reproductive output, longevity, and 

population density (Moore, 2002). 



Chapter 5 Leucocytozoon infection prevalence is 
associated with reduced body weight and fledging 
success of urban wild blue tit nestlings 

5.1 Abstract 

Landscape transformation due to urbanisation strongly affects ecosystems worldwide. 

Both urban-related stressors and parasite prevalence have detrimental consequences 

on organism health, especially in their first stage of life when their immune system is 

still developing. However, the potential synergistic impact of those two factors has 

been rarely explored. I tested the effect of Leucocytozoon infection prevalence on 

fitness-related traits (body weight and survival) of nestling blue tit Cyanistes 

caeruleus dwelling at an urban and a rural site during two breeding seasons. In 

addition, I tested the relationship between Leucocytozoon infection and the levels of 

fCORT in nestling blue tits. Regardless of the sex of the bird, Leucocytozoon infection 

prevalence was significantly associated with a reduction in nestling survival and body 

weight at day 13 post-hatching of the urban but not the rural population of blue tit, 

significantly in the 2017 breeding season. However, I found no relationship between 

Leucocytozoon infection and the levels of fCORT in nestling blue tits. My findings 

suggest that urban environment and Leucocytozoon infection may have a synergistic 

effect on blue tit fitness-related traits, which have the potential to affect the breeding 

success of birds in urbanised landscapes. 

Keywords: haemosporidian, fitness, prevalence, survival, urbanisation 

5.2 Introduction 

Parasites that negatively affect the fitness of their hosts have the potential to form 

important evolutionary pressures in the wild because they can act as a selective force in 

natural populations (Poulin, 2007). Such parasites can play an important role in the 

likelihood of given host populations to inhabit given habitats (Shea and Chesson, 2002). 

Furthermore, they can influence the subsequent reproductive output, longevity, and 

population density of their host (Moore, 2002).The effect of parasites on their host is 

particularly important in the context of the host’s age and rearing condition prospects. 

According to life-history theory, individuals need to divide restricted resources between 

different processes, resulting in trade-offs between competing functions (e.g. Stearns, 

1989). Self-maintenance (i.e growth, tissue repair and survival) and immunity are both 

energetically costly processes (Lochmiller and Deerenberg, 2000). 
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Therefore, growing nestlings, particularly those living in stressful environments, may have 

to trade-off between two primary needs: growth and immune functions to fight off 

pathogens. Because nestlings still need to developing their immune system, fighting an 

infection in addition to develop their immune system may come at the expense of 

investment in growth (Moller, 2009). This would affect their maintenance and survival 

during the early stage of life. Alternatively, birds may invest their limited resources in 

growth over the immune defence. This would result in severe effects from the parasite 

infection on their health and survival, in addition to resources used by the parasites 

themselves. 

Infection with haemosporidians, like Leucocytozoon and its closely related genera, 

Plasmodium and Haemoproteus, is widespread among wild birds. The developmental 

stages of these parasites are generally poorly known and can vary slightly from one genus 

to another or even from subgenus species to another, but they are likely to be broadly 

similar in having three main stages of development (Valkiūnas, 2005). These 

developmental stages are necessary for the parasite to complete their life cycle; 1) 

exoerythrocytic stage, 2) gametocyte production, and 3) sexual production in dipteran 

insects (see details in Chapter 1). The two main developmental stages in bird (the host) are: 

1) exoerythrocytic merogony (schizogony), which occurs before parasitaemia (intensity of 

parasites in the blood) but also continues after and during parasitaemia; 2) development in 

blood cells and production of gametocytes (parasitaemia). During the exoerythrocytic 

stage, extensive development of parasites all over the body can damage the major organs 

of the host (Valkiūnas and Iezhova, 2017). 

Haemosporidian parasites have often been studied in the context of host-parasite 

interactions and their impact on host fitness traits (Ricklefs et al., 2004; Valkiūnas, 2005). 

Despite comprehensive research, the effect of these parasites on host fitness in the wild is 

still poorly understood. A severe negative effect was reported for naïve host populations 

(Atkinson and Riper, 1991; Atkinson and Samuel, 2010). However, for other populations 

that have coevolved with these parasites, the impact of infection on the host is unclear (see 

Chapter 1). A very recent study, in suburban London, found that house sparrows juvenile 

and adult survival rate and population growth were negatively related to Plasmodium 

relictum infection intensity (Dadam et al., 2019). Conversely, several studies found that 

chronic infection with avian malaria parasites has no significant effect on their avian host’s 

overall condition and breeding success (e.g. Bennett, Caines and Bishop, 1988; Ots and 
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Hõrak, 1998; Kilpatrick et al., 2006). This lack of effect of parasites on their host may be 

because birds which were able to survive the acute phase of infection will be able to 

tolerate the infection and reduce their negative impact. 

Thus, determining the initiation of infection is a critical point to assess the effect of 

parasites on their hosts fitness. It is difficult to accurately determine for how long a host 

has been infected in the wild. However, sampling of nestlings will help to estimate the 

timing of infection because of the relatively short period of time they have been exposed to 

infection. While intensity of infection can sometimes help estimating how long the host has 

been infected, it is not always a usable proxy of timing of infection. Indeed, during an 

acute phase of infection, the parasite intensity fluctuated depending on the parasite cycle. 

When sampling a bird at one point (e.g. day 13 post-hatching only), the exact part of the 

parasite cycle during which a bird is sampled is known. All the birds in my study are 

presumably still in the acute phase of infection. I expects this phase of infection to take 

more than 9 days in my study system (i.e. blue tit-Leucocytozoon). This is because in the 

previous chapter, I found that the infection intensity, in each bird sampled at two points, 

increased from day eight to day thirteen of age. Therefore, infected nestlings at day eight 

typically had the infection for, at least, four days post-hatching (Valkiūnas, 2005). In this 

case, I cannot reliably use the intensity of the parasite to test the effect of intensity on 

fitness-related traits of the blue tit nestlings under my study, rather infection prevalence 

(infected/uninfected) may be more able to answer my questions. 

Haemosporidian’s effect on wild nestlings has been poorly investigated because most 

studies reported either no infection or very low infection prevalence. In my study system, 

blue tit nestlings, breeding in nest-boxes at an urban and a rural site are often found 

infected with Leucocytozoon parasite (see results in Chapter 3). In contrast to the high rate 

of infection we found in blue tit  nestlings, other studies have tended to detect lower 

infection prevalence at this early stage of life, especially among passerine species (e.g. 

(Cosgrove et al., 2006; Zehtindjiev et al. 2012). However, recently, Calero-Riestra et al. 

(2016) found 45% Plasmodium and Haemoproteus prevalence in seven- to 11-day-old wild 

tawny pipits Anthus campestris (n=90). They found that males are more likely to be 

infected than females, and infected males have lower daily mass gain than infected females 

(Calero-Riestra et al.,  2016). Thus, haemosporidian infection can have consequences on 

fitness-related traits of the host, but they may vary between male and female nestlings due 

to behavioural or physiological differences between the sexes. 
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Leucocytozoon chronic infection, in poultry and domestic birds, is often linked to a 

weakened immune system and reduction in reproduction. Severe infection causes death 

due to dehydration, starvation, and convulsions. Major organs like the liver and spleen are 

enlarged due to severe infection (e.g. Adler and McCreadie, 2019). The severity of tissue 

damage during the Leucocytozoon exoerythrocytic stage seems to lead to the death of 

birds, but not necessarily the levels of parasitaemia. Indeed, there was no sign of disease 

observed in some birds with very high levels of parasitaemia (Bennett et al., 1993). 

While Leucocytozoon is known to cause death in poultry, its effect on wild hosts is 

generally not apparent. However, in some populations of Canada geese Branta canadensis, 

Leucocytozoon has been evident to be fatal in nestlings (Herman et al., 1975). Similarly, a 

high overall prevalence of Leucocytozoon spp. in association with a high incidence of 

chick mortality was observed in the endangered yellow-eyed penguin Megadyptes 

antipodes (Argilla et al., 2013). It has been also suggested that Leucocytozoon can cause 

mortality in nestling raptors (Remple, 2004). 

In my study system, across the two years (2016 and 2017), the prevalence of 

Leucocytozoon infection in the urban and the rural site was 53.9% and 38.5%, respectively. 

During the 2017 breeding season, I found that the urban site had higher Leucocytozoon 

prevalence compared to the rural site, while the opposite pattern was observed during the 

2016 season (see Chapter 4, Figure 4-1b). Also, during the 2017 breeding season I found 

that urban nestlings had higher CORT levels compared to their rural counterparts, as 

measured from nestlings’ feather samples (fCORT). However, the two populations had 

similar fCORT levels during the 2016 season (see Chapter 2, Figure 2-3b). 

Leucocytozoon infection may directly affect blue tit nestlings and show association with 

reductions in nestling body weight and survival due to blood pathogen or due to tissue 

damage during parasites development in birds’ main organs. Alternatively, Leucocytozoon 

infection may indirectly affect nestlings because the infection could divert resources away 

from growth. Male and female nestlings may be affected differently by infection. This is 

because, in blue tits, it has been suggested that males are heavier than females due to 

differences in growth strategies and competition for food in the nest (Dubiec et al., 2006; 

Mainwaring et al., 2011). Moreover, immune response to fight an infection may be 

supressed by high levels of corticosterone hormone (e.g. (Sheldon and Verhulst, 1996)). 

Thus, I expect to find a positive relationship between infection prevalence and the fCORT 
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level. The effect of infection on nestling body weight and survival may be more 

pronounced in urban nestlings, because urban nestlings are living in a stressful urban 

environments and are likely more limited in resources than rural birds (e.g. Chamberlain et 

al., 2008; Pollock et al., 2017). Trade-off between growth and immune defence to fight off 

the parasites might be more pronounced in urban birds than rural ones. The three following 

hypotheses will be tested. First, there is a negative relationship between fitness-related 

traits (nestling body weight at day eight, body weight at day 13, and nestling survival) and 

Leucocytozoon infection in nestling blue bit across the two breeding seasons. Within 

individuals, I expect the same pattern for body weight gain. Second, the negative effect of 

Leucocytozoon infection on the fitness-related traits above will be more significant in 

urban nestlings compared to their rural counterparts and in male nestlings compared to 

females. Finally, there is a positive interaction between fCORT level and Leucocytozoon 

infection prevalence. 

5.3 Materials and Methods 

5.3.1 Ethical statement 

Blood sampling was conducted under licence of the UK Home Office, Animals Scientific 

Procedures Act, and individual ringing under licence from the British Trust for 

Ornithology (see Chapter 2). 

5.3.2 Field protocol 

Work was carried out in one urban and one rural site in and around Glasgow, Scotland, 

between April and June in 2016 and 2017 (see Chapter 1). In both sites, blood and feather 

samples were collected from nestling blue tit Cyanistes caeruleus breeding in existing nest 

box study systems (see Chapter 2). 

Nestlings’ fitness-related traits parameters – During the 2016 breeding season, on day 

13 after the first egg hatched, three randomly chosen nestlings were weighed representing 

weight at day 13. During the 2017 breeding season, on day 8 after the first egg hatched, 

three to four randomly chosen nestlings were weighed representing weight at day 8. Then, 

after 5 days later, when possible, the same nestlings that were weighed at day 8 were 

weighed again representing weight at day 13. Individuals were recognised by their ring 

number. Body weight gain for each nestling was then calculated by subtracting weight at 
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day 8 from weight at day 13. During nest visits all dead chicks were recorded and collected 

to be kept in the freezer for possible future analysis. Nest boxes were checked after 

fledging to search for further dead nestlings, then individual nestlings were recorded as 

survived or not survived, representing fledging success. Sex of the birds was determined 

molecularly using the protocol by (Griffiths et al., 1998), (see Chapter 2). 

Nestlings’ feather and blood sampling - For measuring corticosterone hormone from 

feathers (fCORT), two to four body feathers (chest feathers cut at the base) from each of 

these nestlings were collected on day 13 post-hatching and kept in Eppendorf® tubes in a 

dark, dry place until lab analysis. For haemosporidian parasite detection, blood samples 

(20-50 µl) from the brachial vein of the wing were collected, using heparinised capillaries 

and stored in absolute ethanol or RNAaterÒ until lab analysis. Blood sampling took place 

during ringing and weighing of nestlings at day 8 and day 13 post-hatching as mentioned 

above. Feathers were collected first, then blood taken, from each nestling. In 2016 I carried 

out a cross-fostering experiment and in 2017 a vector-repellent experiment (described in 

Chapter 4). Because neither cross-fostering nor vector-repellent had a significant effect on 

infection prevalence, I pooled treatment and control nests in my analyses to ensure a robust 

sample size. 

5.3.3 Lab analysis 

A new quantitative approach was used to detect and identify avian malaria parasites in blue 

tit nestlings. After DNA extraction from blood samples, qPCR reactions were run. I used 

the set of primers (L146F/ L146R) to identify and quantify Leucocytozoon parasites in blue 

tit blood (see Chapter 3 for more details). The fCORT level was measured following 

Bortollotti et al. (2008) with some modifications. I pooled feather samples per nest to have 

a sufficient amount of feather for the ELISA assay (see Chapter 2 for more details). 

5.3.4 Statistical analysis 

In order to test the hypotheses outlined in the introduction, I started an analysis of each 

response variable with a global model including all the biologically meaningful predictor 

factors. The sample size for each response variable is mentioned in Table 5-1. Model 

selection, diagnosis for multicollinearity and packages used are mentioned in the 

“Statistical analysis” section of the previous chapter (Chapter 4). 
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To test the relationship between fCORT concentration and the prevalence of 

Leucocytozoon infection at day 13, I modelled the infection prevalence (percentage of 

infected nestlings per nest) as the response variable using “glm” on data from feather-

sampled nestlings only. I included mean fCORT per nest, site, and the interaction between 

fCORT and site to test for any variation in this relationship from site to site. I included year 

and the interaction between fCORT and year to test for any variation in this relationship 

between years. I included the interaction between site and year to test if variation in 

Leucocytozoon infection between the two sites still show variation from year to year, for 

this subset of samples, following the pattern I found in the previous chapter for the full 

data set (Table 4-2b and Figure1b in Chapter 4). 

Table 5-1 Sample size used for the statistical analysis. Samples were collected from blue tit 
populations breeding in nest-boxes at an urban and a rural site during 2016 and 2017 
breeding seasons. 
 Urban site Rural site 
 2016 2017 2016 2017 
 individual

s 
nest
s 

individual
s 

nest
s 

individual
s 

nest
s 

individual
s 

nest
s 

Leucocytozoo
n infection 
(per nest) 

- 13 - 9 - 16 - 13 

Weight at 
day 8 

- - 42 15 - - 76 19 

Weight gain - - 32 12 - - 63 19 
Nestling 
survival 
(fledging 
success) 

42 21 44 15 60 26 79 19 

Weight at 
day 13 

42 21 36 12 60 26 73 19 

 

In order to examine the relationship between Leucocytozoon infection prevalence and 

fitness-related traits of nestlings (i.e. nestling body weight at day eight, weight gain from 

day eight to day 13, nestling survival, and nestling body weight at day 13), I analysed data 

for individual nestlings with each trait as a response variable and the Leucocytozoon 

prevalence (infection status for individual nestlings) in addition to other biologically 

meaningful factors as predictors (see below). Nest ID was always kept in models as a 

random factor. Nestling survival was analysed using “glmer” with binomial distribution. 

The remaining response variables were analysed using “lmer”. For “weight at day 8” and 

“weight gain” models, I used the available data (2017 data only). For modelling “weight at 

day 13” and “nestling survival” I used data from both years 2016 and 2017. 
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5.3.4.1 2017 breeding season data 

When weight at day eight is a response variable, I included site as a predictor to control 

for between-site variation in body weight. I included infection prevalence (infected/ 

uninfected) as a predictor to test for the possible negative effect of infection on body 

weight. I also included the interaction between site and infection prevalence to test for site-

to-site variation in the effect of infection on body weight. I included sex of nestling to 

control for natural variation between male and female nestlings in body weight at this age. 

I included the interaction between infection prevalence and sex of nestlings to test for any 

possible sex-specific effect of infection on body weight. In addition, I also included brood 

size (number of hatchlings) because increased brood size could mean less food received by 

each individual, and this may affect their weight. I included hatching date because 

seasonality of food availability may influence nestling body weight. For weight-gain 

analysis, I used a similar model as mentioned above, and included weight at day 8 as a 

covariate. 

5.3.4.2 2016 and 2017 breeding season data 

For weight at day 13 analysis, I used the predictors mentioned above (i.e. weight at day 

eight model), and also included the year and the interaction between year and infection as 

predictor variables because I used data from two breeding seasons with possible year-to-

year variation. I included the interaction between site and year to test for any year-to-year 

differences in body weight at day 13 between sites. I included the interaction between year 

and hatch date and the interaction between site and hatch date to test for year-to-year or 

site-to-site variation in the effect of hatching date on body weight at day 13, respectively. I 

included the interaction between infection prevalence and brood size to test whether the 

body weight of infected nestlings is more affected by the infection when brood size is 

larger. For nestling survival (survived/not survived) during the nestling phase, the model 

did not allow testing of the relationship between infection prevalence and survival for both 

site due to “complete separation” issue. This issue occurs because there is some linear 

combination of parameters that perfectly separates the binary response variable (Albert and 

Anderson, 1984). In my data case, all rural infected birds survived, and only two 

uninfected nestlings died, both were from the same nest in the 2017 breeding season. Thus, 

I used urban data only from both years. I included infection prevalence as a predictor to 

test for the possible negative effect of infection on nestling survival. I included hatching 

date and brood size to check for any influence of these factors on nestling survival due to 
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resource availability. I included sex of nestling and the interaction between sex and 

infection prevalence to test for a sex-specific effect of infection on nestling survival. 

5.4 Results 

5.4.1 Leucocytozoon infection prevalence per nest at day 13 and 
fCORT concentration 

I found no relationship between Leucocytozoon infection prevalence per nest at day 13 and 

fCORT concentration (for the feather-sampled birds) (estimate coefficient = -0.02, s.e. = 

0.02, and P = 0.23). The only variable that statistically explained infection prevalence per 

nest was the interaction between site and year (Table 5-2a). Urban blue tit nestlings had 

higher Leucocytozoon infection prevalence during 2017 compared to their rural 

counterparts, and the opposite trend was observed during 2016 breeding season. This 

finding matches the overall pattern of Leucocytozoon infection prevalence I found in the 

previous chapter for the full data set (see Table 4-2b and Figure 4-1b in Chapter 4). 

5.4.2 Leucocytozoon infection and nestling growth 

During the 2017 breeding season, I found that Leucocytozoon infection had no significant 

effect on nestling’s body weight at day 8 and body weight gain from day 8 to day 13 

(Table 5-2b and Table 5-2c, respectively). Model coefficients suggested that there was a 

small negative, but not statistically significant effect of infection on body weight at day 8 

in addition to a significant effect of the urban site. Urban day-8-old nestlings were on 

average 1.26±0.26 g lighter than their rural counterparts. I found a small but statistically 

significant, positive association between weight gain and brood size (Table 5-2c). 

5.4.3 Leucocytozoon infection and nestling survival 

Across both 2016 and 2017, the survival rate of urban nestlings was 69.2% if they were 

infected with Leucocytozoon, while it was 91.5% if they were uninfected, while the 

survival rate of rural nestlings showed no variation due to infection (Figure 5-1d). Survival 

rate in the rural site was always high, to the extent that I couldn’t include data from this 

site in my statistical model. But I take this fact to indicate that infection had no effect on 

the rural site. In contrast, in the urban site, I found a significant negative association 

between Leucocytozoon infection and urban nestling survival (Table 5-2d). 
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5.4.4 Leucocytozoon infection and nestling body weight 

Regarding nestling body weight at day 13, there was a significant effect of Leucocytozoon 

infection on nestling’s body weight at day 13 depending on the site and the year. However, 

the effect of both interactions involving infection (with site and year) on nestling body 

weight was marginally significant (P = 0.05). Irrespective of infection, urban nestlings 

body weight at day 13 was significantly lower compared to their rural counterpart during 

2017 season, while nestlings from both sites showed similar body weight during 2016 

season (Figure 5-1c, Table 5-2e). Only in the urban site, body weight of late-hatched 

nestlings was on average 0.58±0.28g heavier than early hatched ones. Males were heavier 

at day 13 than females (Table 5-2e). 

 

 

Figure 5-1 Impact of Leucocytozoon infection prevalence on fitness-related traits of day-8-
old and day-13-old Blue Tit nestlings from an urban versus a rural population across two 
breeding seasons (2016 &2017). The sample size for each group is presented in parallel of 
the x-axis. In the boxplots, the horizontal line represents the median of weight, the top part 
of the box represents the third quartile (Q3) and the bottom part of the box represents the 
first quartile (Q1). The error bars in (d) are bootstrapped 95% confidence itervals.

66                10                 29                  13 
39                 24                      17               15 

  28                  14                   19               17       28              14                 19              25 

  19               41                   47              26     19              31                   48              31 



Table 5-2 Results from models examining a) the relationship between the proportion 
of infected nestlings included in the fCORT analysis and the fCORT level. b-c) the 
impact of Leucocytozoon infection on nestlings’ body weight at day-8 and weight 
gain, and how this relationship differs between urban and rural populations of blue 
tit  during 2017 breeding seasons.d) the impact of Leucocytozoon infection 
prevalence on blue tit nestling survival during nestling phase, and how this 
relationship differ across two breeding seasons. e) the impact of Leucocytozoon 
infection prevalence on the nestlings’ weight at day-13 and how this relationship 
differs between urban and rural populations of blue tit across two breeding 
seasons. The first column included the response variables (a-e). Under each 
response variable, all the predictor variables that were included in the 
corresponding initial (global) model are represented, while the final model only 
contained the intercept and any predictors that were statistically significant (shown 
in bold). Infection and any interaction with infection are underlined because they 
were the main predictor variables tested in the analysis. Estimated coefficients and 
standard error (s.e.) for the models were selected using likelihood ratio tests LRT. 
The reported p-values are from LRTs. In (a & d “glm” models), I converted logit-
estimates to probability only for the main tested or significant predictors (presented 
between brackets next to logit-estimates. Probability = odds / (1 + odds). odds = 
exp(logit). 

a) Infection (% per nest) 
(both years data, n (2016)= 29 nests, n (2017)= 22) 
 

Coefficient s.e. p-value (LRT) 

Intercept 0.63 (0.65) 0.07  
year (2017) -0.28 0.11  
site (urban) -0.33 0.11  
fCORT (per nest) -0.02 0.02 0.23 
site * fCORT 0.004 0.01 0.69 
year * fCORT 0.01 0.02 0.34 
site * year 0.55 (0.71) 0.17 <0.001* 
b) Weight at day 8 
(2017, n=118 from 34 nests) 

Coefficient s.e. p-value (LRT) 

Intercept 8.67 0.26  
site (urban) -1.26 0.26 <0.001* 
infection (infected) -0.22 0.15 0.15 
sex (male) 0.09 0.11 0.16 
hatching date -0.005 0.04 0.80 
brood size (hatchlings) -0.11 0.08 0.27 
infection* site (urban) 0.29 0.31 0.54 
infection *sex (male) 0.23 0.31 0.89 
c) Weight gain (day 8 to 13) 
(2017, n=95 from 31 nests) 

Coefficient s.e. p-value (LRT) 

Intercept 0.86 0.33  
weight at day 8 -0.06 0.03  
site (urban) -0.33 0.09 0.005* 
infection (infected) -0.06 0.04 0.14 
sex (male) -0.02 0.04 0.06 
infection* site (urban) -0.14 0.09 0.29 
infection*sex 0.06 0.08 0.11 
brood size (hatchlings) 0.01 0.02 0.02* 
d) Survival 
(urban site, 2016 & 2017, n=86 from 36 nests) 

Coefficient s.e. p-value (LRT) 

Intercept 9.726 (0.99) 2.72  
infection (infected) -2.765 (0.97) 1.49 0.03* 
sex (male) -0.12 1.00 0.90 
year (2017) -3.75 1.95 0.14 
hatchlings 0.51 0.89 0.55 
hatching date -0.10 0.23 0.64 
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infection*sex (male) 0.75 1.89 0.54 
infection*year (2017) -1.75 2.57 0.49 
e) Weight at day 13 
(2017 &2016, n= 211 from 79 nests) 

Coefficient s.e. p-value (LRT) 

Intercept  11.13 0.32  
site (urban)  -0.67 0.28  
year (2017) -0.22 0.35  
infection (infected) 0.25 0.17  
brood size -0.07 0.07 0.11 
hatching date -0.37 0.25  
sex (male) 0.30 0.25 0.01* 
infection*brood size -0.09 0.08 0.17 
infection*site (urban) -0.44 0.20 0.05* 
infection*sex (male) -0.07 0.59 0.96 
infection*year (2017) -0.43 0.20 0.05* 
site (urban)* hatching date 0.58 0.28 0.04* 
year (2017)*hatching date  0.17 0.23 0.43 
site (urban) *year (2017) -1.29 0.44 0.004* 
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5.5 Discussion 

The presented study was conducted with the aim to explore the effect of Leucocytozoon 

infection prevalence on the fitness-related traits of blue tit nestlings dwelling in an urban 

site and rural site. Because I am sampling wild birds, it was impossible to know for certain 

how long the birds were infected for; nor was it possible to distinguish between birds 

resisting the infection so that intensity was reduced, or birds tolerating the infection so that 

intensity is increased with no sign of disease. This shortcoming prevents detailed 

quantitative examination of the impact of the intensity of the parasites on their host’s 

fitness. However, the following key findings are related to Leucocytozoon acute infection 

prevalence in blue tit nestlings aged eight and 13 days old. First, regardless of sex, 

Leucocytozoon infection was significantly associated with a reduction in urban but not 

rural nestling body weight at day 13 in 2017 but not in the 2016 season. Second, 

Leucocytozoon infection during the nestling phase had a significant effect on urban 

nestling survival in both years. This was tested at day eight and day 13 of age during 2017, 

and at day 13 of age only during the 2016 breeding season. Third, irrespective of sex or 

site, Leucocytozoon infection at day eight showed no significant association with nestlings’ 

body weight at day eight and body weight gain between days 8 and 13. The small negative 

effect of infection on nestlings’ body weight at day 8 may be because parasites have been 

in their host body at a very early stage of development and did not yet show significant 

effects on body weight. Alternatively, the small negative effect of infection might also be 

due to the small sample size, because I tested this only during the 2017 breeding season 

with a total of 76 birds from 19 rural nests, and 42 birds from 15 urban nests. Finally, in 

contrast to my expectation, there was no significant association between nestlings fCORT 

level and Leucocytozoon infection prevalence. 

Blue tit nestlings infected with Leucocytozoon parasites showed a reduction in body weight 

at day 13 at the urban but not the rural site (Figure 5-1c). This negative effect of infection 

at an early stage of life is likely to have negative consequences on the birds’ fitness in the 

longer-term scale. The negative association between Leucocytozoon infection and weight 

at day 13 might be because the effect of infection with these parasites is observed in 

stressed nestlings like the urban nestlings. 

The higher availability of caterpillars, the main natural food for blue tits; at the rural site 

(Pollock et al., 2017) is likely to help nestlings to allocate sufficient resources to two 
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demanding processes: growth, and mounting immune defence against parasitic infection. 

However, Leucocytozoon infection in the urban nestlings that have access to fewer 

caterpillars, thus suffering from nutritional stress (Pollock et al. 2017) may prevent them 

from allocating sufficient resources to both growth and immunity (Blount et al., 2003; 

Isaksson, 2015; Nettle et al., 2017). In support of this hypothesis, Pollock and others 

(2017) found clear evidence of food limitations and nutritional stress in the urban site, 

when comparing the food availability and provisioning behaviour between these two sites 

(urban vs rural). Caterpillars were the predominant food provided to the rural nestlings, 

while urban nestlings received a lower proportions of such a high-quality diet, and instead 

received some anthropogenic food available in their environment (Pollock et al., 2017). 

Studies on blue tit populations in Switzerland and Poland showed that resource availability 

can differ from year to year, and these inter-annual differences in food availability can 

affect the birds’ condition and survival (Naef-Daenzer and Keller, 1999; Marciniak et al., 

2007). From the latter study’s population, researchers found that haemoglobin levels in 

nestling blue tits are higher in years and habitats that are rich in ideal food availability 

(caterpillars) compared to years and habitats that are poor in caterpillar availability 

(Bańbura et al., 2007). Thus, these studies also support the observed variation in nestling 

body weight from year to year in my study populations, regardless of infection. 

The lack of significant effect of infection on body weight gain in my population could be 

due to selective disappearance of severely affected nestlings via death before sampling 

them. Death of birds can occur during the early stages of the parasite development, the 

exoerythrocytic stage, that cause tissue damage in main organs such as brain kidney and 

liver (Valkiūnas and Iezhova, 2017). Reduced infection prevalence with Plasmodium, 

Haemoproteus, and Leucocytozoon in nestling great tits led to greater survival rates during 

the nestling stage and a few weeks after fledging (Krams et al. 2013). An observational 

study suggests that the mortality of eight nestling great horned owls (Bubo virginianus) 

was likely associated with Leucocytozoon infection (Niedringhaus et al., 2018). 

Leucocytozoon infection has led to mortality of nestling Canada geese (Herman et al., 

1975). A recent study in captive cranes in Beijing zoo suggests that Leucocytozoon 

abortive infection at the juvenile stage is most likely responsible for mortality, while 

infection after a few months has no fatal effect on birds (Jia et al., 2018). 

In my study case, I found a significant association between Leucocytozoon infection and 

blue tit nestling survival, which indicates that blue tit nestlings are likely to be severely 
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affected by this infection but other species may not show such an effect. However, the 

mode of exoerythrocytic development can be host species-specific, resulting in species-

specific mortality. For instance, an exploratory pilot study of the pathology and virulence 

of Plasmodium in juvenile wild passerine birds (one individual each; Eurasian siskin 

Carduelis spinus, common crossbill Loxia curvirostra, and common starling Sturnus 

vulgaris) found that all birds died because of infection. Death of birds was observed when 

parasitaemia reached a very low level (i.e. reflecting the chronic stage) and not during 

parasitaemia at high levels (Ilgūnas et al., 2016). In a subsequent experiment using eight 

individuals from each species (house sparrows Passer domesticus, common chaffinches 

Fringilla coelebs, common crossbills and common starlings) researchers found differences 

in mortality rates depending on host species. Infection with Plasmodium causes mortality 

in chaffinches, house sparrows and crossbills (seven, five, and three individuals died 

respectively), but not in starlings (Ilgūnas et al., 2019). Similarly, a study investigating the 

developmental stages of Leucocytozoon and other haemosporidian parasites in several bird 

species, including passerines (all histologically tested birds were the result of road 

casualties or unexplained morbidity) suggests that there is evidence that when many 

schizonts are present, tissue damage may be fatal in some host species but not others 

(Peirce et al., 2004). The reason for these species differences is not clear.  

In my study populations, feather corticosterone level (as a possible biomarker of chronic 

stress) was significantly higher in the urban nestlings during 2017 compared to the 2016 

breeding season, while at the rural site there were no differences. This suggests that 

variation in fCORT over years is dependent on environmental conditions (see Chapter 2). 

Interestingly, Leucocytozoon prevalence was also higher in the urban site during the 2017 

breeding season, but no direct relationship was found between infection and fCORT levels 

in these birds. Presumably, in the urban site, birds are challenged by different urban-

associated stressors that are likely to increase stress hormone (circulating glucocorticoids) 

(Partecke et al. 2006; Bonier 2012), which is known to suppress immune function and 

increase susceptibility to disease. Similar to my finding, a recent study on wild blue-

crowned manakin Lepidothrix coronate demonstrated the lack of a relationship between 

fCORT levels and infection prevalence (Bosholn et al., 2019). This may indicate that 

immunity is not suppressed by corticosterone (if fCORT levels accurately reflect variation 

of corticosterone hormone). Corticosterone hormone levels have been suggested as a 

biomarker of allostatic load (McEwen, 1998). Thus, the level of fCORT may indicate that 
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urban nestlings had to trade-off between growth and immunity, resulting in indirect effects 

on the consequences of infection on nestlings’ body weight and survival. 

In the wild, most studies have investigated the effect of erythrocytic stages on fitness, 

while the effects of exoerythrocytic stages have often been neglected. This may explain 

why moderate or no signs of avian malaria fitness effects have been observed in wild birds 

(e.g. Bennett, Caines and Bishop, 1988; Ots and Hõrak, 1998; Kilpatrick et al., 2006). 

Most of the studies of the exoerythrocytic stage of infection are from old literature using 

traditional microscopic techniques (reviewed in Valkiūnas and Iezhova, 2017). However, 

few recent works used sensitive molecular techniques to understand the severity of 

infection, especially during the early stage of parasite development. All of these studies 

indicate a link between haemosporidian infection and death of birds (e.g. (Peirce et al., 

2004; Krams et al., 2013; Ilgūnas et al., 2016; Niedringhaus et al., 2018; Jia et al., 2018; 

Ilgūnas et al., 2019). There is a demand for more experimental studies to understand how 

haemosporidian parasites can affect their host’s fitness-traits, as most of the current 

evidence is correlational; experimental evidence would help our understanding. 

5.6 Conclusion 

The results of the present study suggested that altricial nestlings living in a harsh 

environment, like the urban site, that is characterised by a lack in the availability of an 

abundant and nutritious food, and maybe additionally other urban-related stressors, present 

an easy target to avian malaria vectors and the parasites they vector. Leucocytozoon 

infection showed a significant association with a reduction of urban nestling body weight 

and survival compared to their rural counterparts. Future studies could monitor the birds 

from early infection (during nestling phase) until adulthood in order to test the long-term 

effects of infection alongside stressful environment with poor food availability (such as in 

urban areas) on the hosts’ overall health and condition. Blue tits, however, might not be the 

ideal species for such long-term monitoring given its short life expectancy and its low ring 

recovery rate. In the UK, it has been reported that the survival rate of yearling blue tits is 

38% and adults’ annual survival rate is 53% (Siriwardena et al., 1998). My findings 

suggested that Leucocytozoon infection under certain conditions, like urban environment, 

can be related to reduction in their host’s fitness. 
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Chapter 6 General discussion 

My thesis has aimed to investigate aspects of the mechanisms behind the often-reported 

negative impact of urbanisation on avian fitness and reproductive success. Urban 

environment may affect directly, or indirectly via elevated stress levels, fitness-related 

traits and malaria acute infection in blue tits (see Figure 1-1 in Chapter 1). Nestling altricial 

birds present an excellent opportunity to investigate the relationship between habitat 

stressors, pathogen burden, corticosterone level and fitness-related traits, because of the 

relatively long period of the nestling stage during which the majority of their 

developmental process occurs (Starck and Ricklefs, 1998), and this may reflect the quality 

of the surrounding environment and its effect on their survival, growth and fitness. 

Although the urban environment can negatively affect wild species living in urbanised 

areas (e.g. McKinney, 2008; Kempenaers et al., 2010; Faeth et al., 2011; Aronson et al., 

2014; Meyrier et al., 2017), the extent of the impact of such a harsh environment depends 

on other environmental factors such as weather conditions that fluctuate from year to year. 

Because the urban conditions are already harsh, fluctuations in the other environmental 

factors are more likely to show an effect on the urban birds. Conversely, the better 

conditions at the rural site may allow the birds to buffer against those other environmental 

factors. If environmental quality and weather are not adverse, then additional urban-related 

stressors such as light at night, chemical pollution, or noise pollution might be the reason 

behind the observed pattern of a general reduction in breeding success at the urban site 

(clutch size, hatching success and fledging success). In my study sites, it seems that, 

compared to the 2016 season, the 2017 season was not a favourable season for blue tits for 

several possible inter-related factors. These factors are summarised from the findings 

across my chapters (presented in Table 6-1). Generally, the urban site in 2017 was colder 

and wetter than in the 2016 season. During the 2017 season, compared to the rural 

population, the urban population showed lower nestling body weight and survival, higher 

fCORT levels and higher Leucocytozoon prevalence compared to their rural conspecifics 

(Table 6-1). These findings have highlighted the importance of having included multiple 

years of sampling. 

For the purpose of my thesis in particular, studying nestlings has some advantages over 

studying adult birds in that they have naïve immune systems, so parasite infection and its 

fitness effect on the host are not confounded by previous exposures, which is the case in 
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adult birds (Norris and Evans, 2000). Furthermore, acute infections may lead to selective 

disappearance of severely infected individuals via death from the population (Atkinson et 

al., 2000; Salmón et al., 2016), therefore sampling adult birds only (as the majority of 

studies do) would not be representative of the entire population, because it would miss 

early infected birds via death. Ideally, future studies could monitor the birds from early 

infection (during nestling phase) to adulthood in order to test the long-term effects of 

infection on hosts’ overall health and fitness in stressful environments and/or poor food 

availability (such as in urban areas) on hosts’ overall health and fitness. 

Collecting blood samples from nestlings (<14 days old) means parasitaemia is expected, 

and eventually confirmed, to be low (see Chapter 3). It was not possible to detect all the 

acute infection with haemosporidian parasites in my study system with the widely used 

nested PCR methods by Hellgren et al. (2004), nor was it possible to accurately identify 

the parasite genus using this method (see Chapter 3). Thus, there was a need for a more 

sensitive assay and I developed a new qPCR protocol to detect low parasitaemia and 

distinguish between haemosporidian parasite genera encountered in blue tit nestlings in my 

study sites. However, the very low parasitaemia in the blood of nestlings has limited my 

ability to accurately conduct a microscopic screening of blood smears to use them as a 

validation step and also as an additional confirmation of the parasite identity and quantity, 

as suggested by Valkiūnas et al. (2008). Validation for the protocol in the future can be 

done with lab infected birds or adult birds for which parasitaemia is expected to be higher. 

To cope with environmental challenges, birds need to regulate their use of resources to a 

different physiological process by secretion of CORT hormone via HPA axis (Crespi et al., 

2012). However, chronic exposure to a high level of CORT can have a detrimental effect 

on birds, including impairing immunity and reduced fitness-related traits such as body 

weight and survival. If immunity is impaired due to high levels of infection, birds may be 

severely affected by parasite infection, particularly in an area or during a time of high 

prevalence of infection. In turn, an infection may also have a synergistic impact with a 

high CORT level on avian fitness-related traits, eventually resulting in reduced breeding 

success for the entire population. 

From Chapter 2, it became clear that there is a year to year variation in the effect of urban 

environment on blue tit fitness. The fCORT level in urban birds was only elevated 

significantly in one year. The prevalence of Leucocytozoon infection in both populations 
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also showed variation from year to year (Chapter 4). In the year of high level of fCORT in 

the urban population (i.e. 2017), the prevalence of Leucocytozoon was higher at the urban 

site compared to the rural site, while in the year of no significant variation in the level of 

fCORT between the two populations (i.e. 2016) the prevalence of Leucocytozoon was 

higher at the rural compared to the urban site (see Chapter 4). Nevertheless, I found no 

direct relationship between the proportion of infected birds included in the feather 

sampling and the level of fCORT (see Chapter 5). This year to year variation emphasises 

the need for long-term monitoring and examining the impact of urbanisation on avian 

physiological and fitness-related traits. 

Table 6-1: Comparison of the two sites in relation to number of environmental and fitness-
related parameters (the first columns) over the two breeding seasons (lower or higher= 

means in relation to the other site in that year).  = the urban site,  = the rural site 
 

  
 2016 2017 2016 2017 

• Daily rainfall 1.9 mm 2.7 mm 3.1 mm 3.1 mm 

• Daily temperature 14°C 13.1°C 13.6°C 13°C 

• fCORT level insignificantly 
higher  

higher  insignificantly 
lower 

lower 

• Parasite prevalence lower  higher  higher lower 

• Date of first hatching 11 May 12 May 16 May 8 May 

• Nestling body weight insignificantly 
lower  

lower  insignificantly 
higher 

higher 

• Fledging success 
(survival) 

lower  lower  higher higher 

• Clutch size lower  lower  higher higher 

• Hatching success lower  lower higher higher 

 

For altricial nestlings like blue tits, starvation is believed to be the main cause of mortality 

at the nestling stage (Martin, 1987). Thus, the overlap between hatching period and the 

abundance of food is a key factor for nestling survival (Drent and Daan, 1980; Noordwijk 

et al., 1995). The weather condition factors are very likely to affect the food availability 

and provision rate for nestlings (Marciniak et al., 2007; White, 2008), thus affecting their 

body conditions and survival (Bize et al., 2010; Mainwaring and Hartley, 2016). The 2017 

season showed colder and rainier conditions compared to the 2016 season, particularly at 
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the urban site. Foraging patterns and availability of food for birds, particularly insectivores 

like blue tits, may be affected by changing patterns of weather conditions and rainfall 

because their foraging behaviour is restricted, and their main prey are less active during 

adverse weather (Avery and Krebs, 1984). At the rural site, the structure of the forest may 

work as shelter that allows birds to forage for food provisions for their offspring, while the 

urban site (the park) lacks this natural structure of the forest, and therefore urban birds 

might be more restricted in their foraging for food and provide less food to their offspring 

compared to the rural birds. Furthermore, food limitation can be an important selective 

pressure at urban sites compared to rural sites for nestlings (Ibáñez-álamo and Soler, 

2010). This might be because the abundance of good quality food for rural birds may help 

parents to compensate for the non-feeding period (e.g. heavy rain) and provide good 

quality food to their offspring, while the urban nestlings are provided with limited and 

poor-quality food (Pollock et al., 2017). 

Studies have proven that availability of food for certain populations fluctuates from year to 

year (e.g. Marciniak et al., 2007). Quantification of food availability was done in my study 

population in previous years (Pollock et al., 2017) but not during my study seasons (2016 

and 2017). This is a point that should be taken into consideration for future monitoring of 

birds’ breeding performance in order to precisely evaluate each breeding season’s 

conditions. Although I cannot tell whether or not there was an overlap between the peak of 

caterpillars (the main food for blue tit) and hatching date of most of the birds during my 

study period, nestling weight can reflect food availability. Hatching later in one season or 

at one site compared to another would be considered beneficial only if it was reflected by 

heavier nestling body weight during that season or at that site. Nestling weight can reflect 

food availability, thus can also be used as a biomarker of the favourable season or 

environment (unlimited resource) versus unfavourable season or environment (limited 

resources). The first hatching date at the urban site was five days earlier than the rural site 

in 2016, and the average hatching date was two days earlier at the urban site. In 2017, the 

hatching date at the rural site was on average eight days earlier than their 2016 breeding 

season. During the 2017 breeding season, the first hatching date at the urban site was a day 

later than their 2016 hatching date, but on average two days later than their rural 

counterparts. Therefore, late hatching in 2017 at both sites may contribute to the observed 

reduced nestling body weight and survival compared to the 2016 season (see Chapter 2). In 

other words, maybe there was a mismatch between the peak of food and hatching date of 

most of the birds during the 2017 season, but there was an overlap between the hatchling 
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period and food abundance in the 2016 season. This again stresses the importance of 

quantifying food availability at each site, every season, in order to better understand the 

pattern of breeding performance of these birds. 

Differences between urban and rural nestlings in the level of fCORT may be driven by 

weather or nutritional stress. Other urban-related stressors may have also contributed to the 

observed high fCORT levels, for instance chemical pollution (e.g. Meillère et al., 2016). 

Elevated CORT levels are often reported to be associated with food restriction (Saino et 

al., 2003; Herring et al., 2011; Boonstra, 2013). Thus, this could at least partly explain poor 

nestling weights and the reduction in nestling survival I observed in my system that was 

mirrored with elevated fCORT and higher Leucocytozoon infection prevalence at the urban 

site in 2017 compared to the rural site (see Chapter 2 and Chapter 4). The high level of 

fCORT in the urban blue tit nestling in 2017 may have a detrimental effect on nestling 

fitness-related traits and may suppress their immunity, which can lead to severe impact of 

infection with Leucocytozoon parasites. 

However, I found no direct relationship between fCORT level and birds’ fitness-related 

traits, nor did I find an association between fCROT level and the proportion of 

Leucocytozoon infected nestlings. Pooling the feather samples and measuring the 

proportion of infected nestlings per nest may have led to limited power to detect significant 

differences. Thus, instead of pooling feather samples per nest, within-individual sampling 

could help tease apart how physiological and fitness-related traits interact, affecting the 

ability to see possible relationships between such traits. In addition, future studies could 

also measure biomarkers of immunity for nestlings in order to confirm or reject the 

hypothesis that immunity can be suppressed by a high level of CORT and therefore birds 

are severely affected. 

Both immunity and growth are energetically-demanding processes (Lochmiller and 

Deerenberg, 2000). Trade-offs between immune defence (against Leucocytozoon infection) 

and self-maintenance (e.g. growth and tissue repair) of nestlings are probably the 

mechanisms behind the observed year-specific variation between urban and rural 

populations of blue tit in relation to their body weight and survival, which was found to be 

negatively associated with Leucocytozoon infection prevalence, but only in the urban 

environment and more significantly in 2017. Nestlings’ resource allocation trade-offs are 

very likely to be during unfavourable seasons when birds face limited resources and higher 
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infection prevalence (e.g. urban birds during the 2017 breeding season). Urban and rural 

sites often exhibit variation in resource availability (e.g. Chamberlain et al., 2009), and 

resource availability tends to fluctuate from year to year (e.g. Marciniak et al., 2007). The 

unfavourable conditions can lead to the inability of birds to allocate resources to competing 

physiological needs, like immune defence and self-maintenance or growth. 

My thesis has highlighted that the inter-relationship between Leucocytozoon infection and 

blue tit fitness differences between the two sites. Under certain circumstances (in my study 

case, the urban environment), Leucocytozoon infection can be associated with a lower 

nestling body weight and survival, while under rural environments Leucocytozoon seemed 

to have no effect on nestling blue tit (see Chapter 5). This may explain the contradictory 

results of studies concerning the impact on haemosporidian parasite on host fitness. While 

negative effects of other avian malaria parasites have been reported for adult birds and 

nestlings (e.g. Dawson and Bortolotti, 2000; Merino et al., 2000; Marzal et al., 2005; 

Marzal et al., 2008; Lachish et al., 2011; Sudyka et al., 2019), other studies reported 

moderate or no sign of avian malaria fitness effects in wild birds (e.g. Bennett et al., 1988; 

Ots and Hõrak, 1998; Kilpatrick et al., 2006). Thus, future studies should consider the 

environmental and nutritional condition of a given population before concluding whether 

or not parasite prevalence negatively affects host fitness-related traits. 

The reason behind the observed negative association between Leucocytozoon infection and 

the urban nestlings’ body weight and survival is not clear. I do not know whether this 

effect is due to blood pathogens or because of tissue damage during the exoerythrocytic 

stage of parasite development. It has also been suggested that blood stages of the parasites 

do not cause severe inflammatory response in adult great tit, but infection affects their 

health status via activation of T-cell and humoral immunity (Ots and Hõrak, 1998). 

Conversely, activation of the immune system at an early stage of life (i.e. nestling) may be 

critical because it could drive energy away from growth, which has detrimental 

consequences on birds’ fitness-related traits. A future direction could be to test the 

exoerythrocytic stage of infection using tissue from the main organs of dead birds that we 

have already been collecting during both breeding seasons from nests. Tissue damage of 

main organs may be another reason behind the negative effect of acute infection on hosts’ 

body condition and survival (Valkiūnas and Iezhova, 2017). Sampling dead birds for the 

exoerythrocytic stage of infection may also reveal more infected birds than we believed, if 
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infected in the prepatent period or parasites not yet circulated in the blood in a datable level 

of intensity. 

In conclusion, my thesis has highlighted the complexities of the urban environment and the 

difficulty of examining the mechanisms behind the negative effect of urbanisation on avian 

fitness, either via correlational or experimental approaches in the field. My thesis has also 

presented a powerful tool to detect and identify acute infection of avian malaria parasites 

as well as pointed out a number of potential areas for future research. All in all, my results 

showed different patterns from year to year in the variation between the urban and rural 

populations of blue tit in a number of parameters I used to test my hypotheses, such as 

fCORT level, Leucocytozoon prevalence, and nestling body weight. As predicted, the inter-

relationship between Leucocytozoon infection and blue tit fitness is evident in the urban 

but not the rural environment. However, in contrast to my prediction, I did not find a direct 

relationship between infection prevalence and fCORT level. The reason behind this lack of 

relationship might be because of the way I tested this relationship. In the statistical model, 

I used fCORT level per nest as a variable (feather samples per nest were pooled), and the 

proportion of infected birds included in the feather sampling per nest (depending on how 

many nestlings were included) as another variable. Interindividual variation in fCORT 

should be used in future studies to test the potential correlation between fCORT level and 

infection better. More importantly, before generalising the effect of urban-related stressors 

as well as acute Leucocytozoon infection on blue tit fitness, data from more years and sites 

per habitat is needed. I used two years’ data only, and I focused on a specific geographical 

area and considered urbanisation as a binomial factor, which may sometimes mask the 

gradual effect of urbanisation on some environmental or biological traits of hosts. Future 

studies should precisely quantify the degree of urbanisation in order to test whether the 

effect of urbanisation on patterns of tested traits (e.g. parasite prevalence or/and CORT 

levels) vary according to the degree of urbanisation. 
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Figure S1 Illustration of sequences alignment shows the position of each set of primers 
(L146F/L146R) and (H160F/H160R) on the parasite target gene. illustration were built using 
jalview software version 2.10.5 (Waterhouse et al., 2009). 
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Figure S2 Molecular Phylogenetic analysis by Maximum Likelihood method 
The evolutionary history was inferred by using the Maximum Likelihood method based on 
the General Time Reversible model. The tree with the highest log likelihood (-388.56) is 
shown. The percentage of trees in which the associated taxa clustered together is shown 
next to the branches. Initial tree(s) for the heuristic search were obtained automatically by 
applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated 
using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology 
with superior log likelihood value. A discrete Gamma distribution was used to model 
evolutionary rate differences among sites (5 categories (+G, parameter = 200.0000)). The 
rate variation model allowed for some sites to be evolutionarily invariable ([+I], 0.00% sites). 
The tree is drawn to scale, with branch lengths measured in the number of substitutions per 
site. The analysis involved 23 nucleotide sequences  – 11 sequences from samples 
collected in my populations (samples 1-11) and 12 sequences obtained from the GenBank 
(see Table 3-3). There were a total of 182 positions in the final dataset. Evolutionary 
analyses and explaination of the phelogenetic tree were obtained from MEG 
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