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Abstract In this dissertation we consider some boundary value and stability problems

for electro-active soft rubberlike materials which withstand finite deformations elastically.

In the beginning we consider in detail the problem of finite deformation of a pressurized

electroelastic circular cylindrical tube with closed ends with compliant electrodes at its

curved boundaries. Expressions for the dependence of the pressure and reduced axial

load on the deformation and a potential difference between the electrodes, or uniform

surface charge distributions, are obtained in respect of a general isotropic electroelastic

energy function. To illustrate the behaviour of the tube specific forms of energy functions

accounting for different mechanical properties coupled with a deformation independent

quadratic dependence on the electric field are used for numerical purposes, for a given

potential difference and separately for a given charge distribution. Numerical dependences

of the non-dimensional pressure and reduced axial load on the deformation are obtained for

the considered energy functions. Results are then given for the thin-walled approximation

as a limiting case of a thick-walled cylindrical tube without restriction on the energy

function. The theory provides a general basis for the detailed analysis of the electroelastic

response of tubular dielectric elastomer actuators, which is illustrated for a fixed axial load

in the absence of internal pressure and fixed internal pressure in the absence of an applied

axial load.

Using the theory of small incremental electroelastic deformations superimposed on an

electroelastic finitely deformed body, we then look for solutions of underlying configura-

tions which are different from perfect cylindrical shape of the tube. First, we consider

prismatic bifurcations. We obtain the solutions which show that for neo-Hookean elec-

troelastic material prismatic modes of bifurcation become possible under inflation. This

result is different from the pure mechanical case considered previously in Haughton & Og-

den (1979), because in Haughton & Ogden (1979) prismatic bifurcation modes were found

only for an externally pressurised tube. Second, we consider axisymmetric bifurcations,

and we obtain results for neo-Hookean and Mooney-Rivlin electroelastic energy functions.

Our solutions show that in the presence of an electric field the electroelastic tube become

more unstable: axisymmetric bifurcations become possible at lower values of circumferen-

tial stretches as compared with the values of circumferential stretches found for analogous

problems solved for electromechanically indifferent materials, or equivalently, when electric

field is not present.

Within similar lines we consider the bifurcation of a thick-walled electroelastic spher-
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ical shell with compliant electrodes at its curved boundaries under internal and external

pressure. The solutions obtained for neo-Hookean electroelastic energy function show that

in some cases axisymmetric modes of bifurcation become possible under inflation in the

presence of electric field.
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Chapter 1

Introduction

In this thesis we consider some boundary-value and stability problems for electro-active

elastomeric materials which recently received a strong interest in the literature due to

their specific properties suitable for many applications in engineering science, for example,

production of actuators, sensors and other devices.

Before proceeding any further in discussion of problems for electroelastic materials we

will discuss here briefly analogous problems for pure elastic materials. In the series of

papers Haughton & Ogden (1978, 1979) have given an extensive bifurcation analysis for

thin- and thick-walled cylindrical and spherical shells of elastic material under internal and

external pressure. A more recent analysis which involves some new aspects of the solutions

of these problems can be found in Zhu et al. (2008), deBotton et al. (2013).

It is a well known fact that an inflated tube made of a rubber material may develop a

bulge at some point of deformation caused by internal pressure1. Likewise a spherical shell

may become aspherical under internal pressure at some point of deformation (Alexander,

1971). The studies of spherical shells were motivated by applications in meteorology which

employ high altitude weather balloons. It is interesting to note that these configurations

which deviate from perfect cylindrical or spherical configurations of shells may arise under

symmetrical load.

In order to model these cases when deviations from perfect cylindrical and spherical

configurations are possible we use the theory of incremental deformations superimposed

on an underlying finite deformation. The solutions obtained using this theory may contain

cases when cylindrical or spherical shape is still preserved, for example, rigid-body trans-
1Experimental data for internal pressure as a function of a volume ratio up to the critical pressure where

bulging may occur can be found in Charrier & Li (1977) and Skala (1970).
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lation and other cases. We are not interested in these solutions and we discard them from

our consideration. It is worth noting that the theory of incremental deformations used

here can essentially model the onset of small deformations deviating from perfect original

underlying configuration. In order to model full finite bifurcation configurations full non-

linear equations are needed (as opposed to linearized versions of these equations for small

incremental deformations). Some progress in this regard can be found in Haughton (1980).

Successes in the technological production of electro-active polymers instigated a de-

velopment of theories which account for electromechanical coupling. The theories which

account for electromechanical coupling in continuum may be traced to the middle of the

last century in the seminal work of Toupin (1956), who was concerned with the theory gov-

erning elastic dielectric materials. Books dealing with the theory include Eringen & Maugin

(1990); Hutter & van de Ven (1978); Maugin (1988); Nelson (1979). The approach to the

theory in the form described by Dorfmann & Ogden (2005), however, has led to further

developments and has proved to be amenable to the solution of boundary-value problems,

as exemplified in Dorfmann & Ogden (2006) and the recent monograph by Dorfmann &

Ogden (2014c) and references therein.

In this PhD dissertation we analyze the response of an electroelastic tube to the com-

bination of a radial electric field, an internal pressure and an axial load using the nonlinear

theory of electroelasticity developed in Dorfmann & Ogden (2005). Then we superimpose

incremental small deformations and electric displacements on the deformed underlying con-

figuration of a cylinder and initial electric field. This allows us to consider the problem

of stability of a cylinder made of electroactive material at the presence of electric field

under internal and external pressure. The analysis of the nonlinear response of electroe-

lastic spherical shell was done in Dorfmann & Ogden (2014b). We use some results and

notation from this work and perform stability analysis for electroelastic shell using the the-

ory of small electroelastic deformations. For stability analysis we use simple strain energy

functions which can be expressed in terms of invariants: Neo-Hookean and Mooney-Rivlin

electroelastic models.

This thesis is structured in the following manner. In Chapter 2 we give the most

important ingredients of a general theory of Electroelasticity within the lines proposed by

Dorfmann & Ogden (2005). The electroelastic constitutive laws are based on the so-called

total energy density function which allows us to write constitutive laws in a simple form,

and thus constitutive laws can be regarded as direct generalizations of pure mechanical
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counterparts. Incremental electroelastic constitutive laws are formulated in this chapter,

and we also give the explicit formulae for electroelastic moduli tensors. This chapter ends

with some important connections between the electroelastic moduli tensors used further in

the text of the thesis.

In Chapter 3 we consider in great detail the problem of inflation and extension of

electroelastic tubes with closed ends in the presence of electric field. The electric field is

generated by compliant electrodes attached to the inner and outer surfaces of the tube.

This construction with compliant electrodes can essentially be considered as an actuator

where the actuating force can be generated by both inflation and electric field. General

expressions are obtained for the internal pressure in a tube with closed ends and the axial

load on its ends. Next, by considering a simple specific form of energy function, we obtain

explicit expressions for the pressure and axial load in terms of the deformation and the

electrostatic potential (or charge) applied to the compliant electrodes.

From the formulas for a thick-walled tube we provide numerical results which illustrate

the dependence of the pressure and (reduced) axial load on the tube radius (via the az-

imuthal stretch on its inner boundary) and length (via the axial stretch). This is done for

different values of the applied potential or charge for three different forms of the elastic

part of the energy function for two different wall thicknesses (one relatively thin and one

thicker) and we compare results with the results for the purely elastic case. It was found

that there is very little difference qualitatively between the results for different tube thick-

nesses. Thus, it is appropriate to specialize to the thin-walled tube approximation, and we

obtain explicit expressions for the pressure and (reduced) axial load in respect of a general

electroelastic constitutive law.

In Chapter 4 we present a bifucation/stability analysis for the electroelastic tube with

flexible electrodes in the presence of electric field under internal and external pressure.

Without taking into account electromechanical coupling this problem was discussed by

Haughton & Ogden (1979) and we return to this problem with the view to include the

affect of electric field on the stability of electroelastic tube. First, we considered prismatic

bifurcations. In this case we are looking for configurations of the tube with cross-sections

deviating from a perfect circle, but remaining in the same shape along the axis of the

tube, i.e. if z is the axis of the tube, then the shape of cross-sections does not depend

on z axis along the tube. For the neo-Hookean electroelastic model we received quite

a striking result: prismatic modes of bifurcations become possible under inflation in the
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presence of an electric field. Second, we considered axisymmetric bifurcations. These

are the configurations of the tube with perfect circular cross-sections, the radius of which

depends on the axis of the tube z. We compared our results with those obtained for

pure elastic materials: the presence of electric field makes the electroelastic tube more

unstable for both used energy functions neo-Hookean and Mooney-Rivlin, i.e. we could

see from the obtained bifurcation curves that unstable configurations become possible at

lower circumferential stretches as opposed to the cases with pure elastic materials without

electromechanical interactions. A more general case of asymmetric bifurcations can be

considered along the same lines, although in this case the number of equations in the system

of ordinary differential equations increases and they become even more cumbersome.

In Chapter 5 we consider bifurcation/stability analysis of an electroelastic shell with

flexible electrodes at the boundaries at the presence of electric field under internal and ex-

ternal pressure. For the purely mechanical case in Haughton & Ogden (1978) dependence

on a spherical coordinate φ was omitted, because inclusion of it does not have influence on

bifurcation criteria for pure mechanical case. We adopt this approach here, and therefore,

we consider only axisymmetric bifurcations. The results show that a neo-Hookean electroe-

lastic shell may develop axisymmetric modes of bifurcation under inflation in the presence

of electric field. This result is different from pure elastic case where it was shown that

axisymmetric bifurcation can be possible only under external pressure for neo-Hookean

material.

Unlike Haughton & Ogden (1978, 1979) we used a more general formulation of governing

equations and boundary conditions, because, first, they were expressed in terms of functions

φ and ψ and then we specified these functions appropriately.

In all cases the electroelastic term in the energy functions was expressed as ε−1I5/2.

It can be shown that this leads to a linear constitutive law for Er and Dr: Er = ε−1Dr

with electric permittivity being independent of deformation. At least for some materials

this can be viewed as a limitation and we discuss it briefly at the end of Chapter 3.

In Appendix A we give the derivations of some relations, used in Chapter 3. In Ap-

pendix B we give MATLAB code for our numerical calculations. We also discuss and

explain briefly some important aspects of this code. The code employs a numerical scheme

used in Haughton & Ogden (1979). We note that for the type of the problems considered

here another numerical scheme known as matrix compound method can be successfully

used. A good reference for this method can be found in Haughton (1997), for example.



Chapter 2

General Theory of Nonlinear

Electroelasticity

2.1 The equations of nonlinear electroelasticity

In continuum mechanics we work with physical quantities either in reference or current

configurations. We consider a deformable electrosensitive body which occupies the ref-

erence configuration Br with the boundary ∂Br in the absence of mechanical loads and

electric fields. Application of an electric field and mechanical loads induces deformation

which results in a new configuration B with the boundary ∂B, normally called the current

configuration. We label a material point in the reference configuration Br by a position

vector X, and this point in the current configuration B by a position vector x. Deformation

is described by the vector field χ, which relates the position of a particle in the reference

configuration to the position of the same particle in the current configuration: x = χ(X).

The deformation gradient tensor, denoted F, is defined by

F = Gradχ, (2.1)

where Grad is the operator defined with respect to X.

Along with the deformation gradient we use the right and left Cauchy–Green deforma-

tion tensors, defined by

c = FTF, b = FFT. (2.2)

The quantity, defined by

J = detF (2.3)

16
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accounts for volumetric changes.

We note that for incompressible materials

detF = 1. (2.4)

2.1.1 Governing equations and boundary conditions

Here we give specializations of Maxwell’s equations for the electric field variables provided

that we do not have magnetic fields, free currents, free volumetric electric charges (free

surface charges can be present on the boundaries ∂B), and we have no time dependence.

In this case we have

curlE = 0, divD = 0, (2.5)

where E denotes electric field vector, and D is electric displacement vector. Operators curl

and div are defined with respect to x. We assume that outside the body we have vacuum.

We will use a star to denote the respective quantities outside the body. In this case we

have a standard relation between the electric field and the electric displacement

D? = ε0E
?, (2.6)

where ε0 is the vacuum permittivity. In vacuum we have

curlE? = 0, divD? = 0. (2.7)

Fields E? and D? have to satisfy the boundary conditions

n× (E? −E) = 0, n · (D? −D) = σf on ∂B, (2.8)

where n is the unit outward normal to ∂B, σf is the free surface charge on ∂B per unit

area. Derivations of (2.8) can be found in Dorfmann & Ogden (2014c).

In Dorfmann & Ogden (2005) it was shown that electromechanical equilibrium equation

can be conveniently written as

divτ = 0, (2.9)

where τ is the total Cauchy stress tensor. We note that the total Cauchy stress tensor

depends on the deformation and electric field via a constitutive law, which will be discussed

in Section 2.1.3. We assume that there are no mechanical body forces, whereas electrical

body forces are incorporated in (2.9) implicitly. Tensor τ is symmetric, provided that the

mechanical angular moments are balanced or not present at all.
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The boundary condition for the total Chauchy stress is

τn = ta + t?e on ∂Bt, (2.10)

where ∂Bt is the part of the boundary where the mechanical traction ta is prescribed along

with t?e = τ ?en which is the load due to the Maxwell stress τ ?e , calculated from the fields

outside the body B. The Maxwell stress is defined by

τ ?e = ε0E
? ⊗E? − 1

2
ε0(E

? ·E?)I, (2.11)

where I is the identity tensor.

2.1.2 Lagrangian forms of the electric fields

Lagrangian forms of electric fields are given by the following relations

EL = FTE, DL = JF−1D, (2.12)

where we recall that J = detF. Justification of these relations can be found in Dorfmann

& Ogden (2005). The counterparts of equations (2.5) in the reference configuration are

CurlEL = 0, DivDL = 0. (2.13)

Here operators Curl and Div are defined with respect to X.

In order to obtain a Lagrangian form of the equilibrium equation (2.9) we introduce

the total nominal stress tensor T defined by

T = JF−1τ . (2.14)

We note that expression (2.14) is a generalization of the nominal stress tensor in nonlinear

elasticity. Using identity DivA = Jdiv(J−1FA) we obtain a Lagrangean form of the

electromechanical equilibrium equation (2.9)

DivT = 0. (2.15)

The boundary condition associated with (2.15) can be obtained with the help of relation

τnds = TTNdS, (2.16)

connecting infinitesimal areas ds and dS in the current and reference configurations, n

and N being respective normals to these areas. Relation (2.16) has been obtained from

Nanson’s formula nds = JF−TNdS and (2.14).
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Therefore, (2.10) transforms to

TTN = tA + t?E on ∂Brt, (2.17)

where ∂Brt is the part ∂Br on which electromechanical tractions are defined, tA and t?E =

T?
E
TN (with T?

E = JF−1τ ?e) being the mechanical traction and the Maxwell traction per

unit reference area, respectively.

Using Nanson’s formula and relations (2.12) boundary conditions (2.8) in Lagrangian

form can be written as

(FTE∗ −EL)×N = 0, (JF−1D∗ −DL) ·N = σF on ∂Br, (2.18)

where N is the unit outward normal to ∂Br, σF is free surface charge density per unit area

of ∂Br.

2.1.3 Constitutive equations

In the problems discussed in this thesis it is convenient to choose DL as an independent

variable. For mechanically unconstrained and incompressible materials the total stress

tensor and the electric field in Lagrangian form are, respectively,

T =
∂Ω∗

∂F
, EL =

∂Ω∗

∂DL
, (2.19)

T =
∂Ω∗

∂F
− pF−1, EL =

∂Ω∗

∂DL
, (2.20)

where Ω∗ is a total energy density function (Dorfmann & Ogden, 2005), which depends on

F and DL through the invariants of the right Cauchy-Green deformation tensor c

I1 = trc, I2 =
1

2
[(trc)2 − tr(c2)], (2.21)

I4 = DL ·DL, I5 = DL · (cDL), I6 = DL · (c2DL), (2.22)

and p is a Lagrange multiplier associated with the incompressibility constraint (2.4).

For incompressible deformations I3 = detc = J2 = 1, therefore, we did not include it

in (2.21). In general I3 must be used to account for volumetric changes for compressible

materials. Following the same convention used by Dorfmann and Ogden in their papers

on Electroelasticity, we retained the asterisk in Ω∗, which signifies that the total energy

function was defined in terms of DL.

From (2.14) the total stress τ can be defined as a (partial) push forward of a total

nominal stress T: τ = FT, and push forward of EL according to (2.12): E = F−TEL.
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Therefore, pushing forward the quantities (2.20) and using the fact that Ω∗ is defined

through the invariants (2.21) and (2.22) we can get the following expressions:

τ = 2Ω∗1b + 2Ω∗2(I1b− b2)− pI + 2Ω∗5D⊗D + 2Ω∗6(D⊗ bD + bD⊗D), (2.23)

E = 2(Ω∗4b
−1D + Ω∗5D + Ω∗6bD), (2.24)

where Ω∗i is a partial derivative ∂Ω∗/∂Ii for i = 1, 2, 4, 5, 6, and the deformation tensor b

was defined earlier by (2.2)2.

2.2 Incremental Formulation

In this section we give the equations governing incremental deformations and electric dis-

placements superimposed on a deformed configuration and an initial electric field. A more

detailed discussion of this theory and relevant equations can be found in the book by

Dorfmann & Ogden (2014c).

2.2.1 Incremental equations and boundary conditions

We denote the increment for a certain variable by a superimposed dot. For example, ẋ

is the increment in the displacement, Ḟ = Grad ẋ being a corresponding increment in the

deformation gradient. Increments of ĖL, ḊL, Ṫ must satisfy the incremental governing

equations

CurlĖL = 0, DivḊL = 0, DivṪ = 0. (2.25)

Outside the material increments in electric displacement field and electric field are con-

nected by Ḋ? = ε0Ė
? and must satisfy the equations

curlĖ? = 0, divḊ? = 0. (2.26)

Incrementing electric and traction boundary conditions (2.18) and (2.17) with J = 1 we

have

(ḞTE? + FTĖ? − ĖL)×N = 0 on ∂Br, (2.27)

(F−1Ḋ? − F−1ḞF−1D? − ḊL) ·N = σ̇F on ∂Br, (2.28)

ṪTN = ṫA + τ̇ ?eF
−TN− τ ?eF

−TḞTF−TN on ∂Br, (2.29)

where τ̇ ?e is the incremental Maxwell stress which can be calculated from (2.11) and ex-

pressed as

τ̇ ?e = ε0[Ė
? ⊗E? + E? ⊗ Ė? − (E? · Ė?)I]. (2.30)
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We will work with the push-forward versions of increments in ĖL, ḊL and Ṫ defined by

ĖL0 = F−TĖL, ḊL0 = FḊL, Ṫ0 = FṪ. (2.31)

The above mentioned quantities with a zero subscript can be also referred to as the updated

quantities with respect to the current configuration B. A more detailed discussion of this

concept can be found in Ogden (1997) for pure mechanical problems, and here we use a

similar approach of updating variables with respect to the current configuration for an

electromechanical problem.

Therefore, using the previous relations it can be shown that governing equations (2.25)

are updated to

curlĖL0 = 0, divḊL0 = 0, divṪ0 = 0, (2.32)

and corresponding boundary conditions are updated to

(Ė? + LTE? − ĖL0)× n = 0 on ∂B, (2.33)

(Ḋ? − LD? − ḊL0) · n = σ̇F0 on ∂B, (2.34)

ṪT
0 n = ṫA0 + τ̇ ?en− τ ?eL

Tn on ∂B, (2.35)

where L = gradu, u being the increment in the displacement vector: u = ẋ. When

increment ẋ is treated as a function of x we can obtain L = ḞF−1. Incrementing (2.3) we

have J̇ = Jtr(ḞF−1). Since for incompressible materials J̇ = 0, a linearized form of the

incompressible condition (2.4) follows

trL = divu = 0. (2.36)

Let e1, e2, e3 are the unit basis vectors in the orthogonal curvilinear coordinate system.

Therefore, expression (2.32)3 gives three scalar equations

Ṫ0ji,j + Ṫ0jiek · ej,k + Ṫ0kjei · ej,k = 0 (i = 1, 2, 3), (2.37)

where summation over repeated indices j and k from 1 to 3 is implied.

2.2.2 Incremental constitutive equations

The increments in the deformation gradient Ḟ and Lagrangian electric displacement ḊL

will induce the increments in stress Ṫ and Lagrangian electric field ĖL. Incrementing
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the constitutive laws (2.19) we obtain linearized incremental constitutive equations for

unconstrained materials

Ṫ = A∗Ḟ + A∗ḊL, ĖL = A∗TḞ + A∗ḊL, (2.38)

where A∗, A∗, A∗ denote electroelastic moduli associated with the total energy Ω∗ =

Ω∗(F,DL). These quantities are the fourth-, third- and second-order tensors, respectively.

In component form they can be represented by

A∗αiβj =
∂2Ω∗

∂Fiα∂Fjβ
, A∗αi|β =

∂2Ω∗

∂Fiα∂DLβ
, A∗αβ =

∂2Ω∗

∂DLα∂DLβ
. (2.39)

Mixed derivatives in (2.39) allows us to see the following symmetries

A∗αiβj = A∗βjαi, A∗αβ = A∗βα. (2.40)

The vertical bar in the component form of A∗ separates the first 2 indices with the third

index, because the first 2 indices are associated with a second-order tensor, whereas the

third one is associated with a vector. The tensor A∗ maps a vector into a second-order

tensor, whereas the transpose of it does the opposite: maps a second-order tensor into a

vector. In the component form we can write A∗αi|β = A∗Tβ|αi.

In component form equations (2.38) can be written as

Ṫαi = A∗αiβjḞjβ + A∗αi|βḊLβ, ĖLα = A∗βi|αḞiβ + A∗αβḊLβ. (2.41)

Taking into account that Ω∗ in (2.39) depends on F and DL through invariants Ii,

i ∈ {1, .., 6} we can expand electroelastic moduli tensors and write

A∗αiβj =
6∑

m=1,m 6=4

6∑

n=1,n 6=4

Ω∗mn
∂Im
∂Fiα

∂In
∂Fjβ

+
6∑

n=1,n6=4

Ω∗n
∂2In

∂Fiα∂Fjβ
,

A∗αi|β =
6∑

m=4

6∑

n=1,n 6=4

Ω∗mn
∂Im
∂DLβ

∂In
∂Fiα

+
6∑

n=5

Ω∗n
∂2In

∂Fiα∂DLβ
,

A∗αβ =

6∑

m=4

6∑

n=4

Ω∗mn
∂Im
∂DLα

∂In
∂DLβ

+

6∑

n=4

Ω∗n
∂2In

∂DLα∂DLβ
, (2.42)

where Ω∗n = ∂Ω∗/∂In, Ω∗mn = ∂2Ω∗/∂Im∂In, m,n ∈ {1, . . . , 6}. In (2.42) we need to

calculate derivatives of invariants Ii, i ∈ {1, .., 6} with respect to F and DL. In component

form the non-zero first derivatives have the following expressions

∂I1
∂Fiα

= 2Fiα,
∂I2
∂Fiα

= 2(cγγFiα − cαγFiγ),
∂I3
∂Fiα

= 2I3F
−1
αi ,

∂I5
∂Fiα

= 2DLα(FiγDLγ),
∂I6
∂Fiα

= 2(cαβDLβFiγDLγ +DLαFiγcγβDLβ),

∂I4
∂DLα

= 2DLα,
∂I5
∂DLα

= 2cαβDLβ,
∂I6
∂DLα

= 2c2αβDLβ. (2.43)
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The non-zero second derivatives with respect to F are

∂2I1
∂Fiα∂Fjβ

= 2δijδαβ,

∂2I2
∂Fiα∂Fjβ

= 2(2FiαFjβ − FiβFjα + cγγδijδαβ − bijδαβ − cαβδij),

∂2I3
∂Fiα∂Fjβ

= 2I3(2F
−1
αi F

−1
βj − F−1αj F

−1
βi ),

∂2I5
∂Fiα∂Fjβ

= 2δijDLαDLβ,

∂2I6
∂Fiα∂Fjβ

= 2[δij(cαγDLγDLβ + cβγDLγDLα) + δαβFiγDLγFjδDLδ

+ FiγDLγFjαDLβ + FjγDLγFiβDLα + bijDLαDLβ]. (2.44)

The second derivatives of I4, I5, I6 with respect to DL are

∂2I4
∂DLα∂DLβ

= 2δαβ,
∂2I5

∂DLα∂DLβ
= 2cαβ,

∂2I6
∂DLα∂DLβ

= 2c2αβ. (2.45)

The mixed derivatives of I1, I2, I3 and I4 with respect to F and DL are equal to zero.

For I5, I6 we calculate

∂2I5
∂Fiα∂DLβ

= 2δαβFiγDLγ + 2DLαFiβ,

∂2I6
∂Fiα∂DLβ

= 2FiβcαγDLγ + 2FiγDLγcαβ + 2FiγcγβDLα + 2δαβFiγcγδDLδ.

We introduce the notation b̄ = I1b − b2, D(1) = bD and D(−1) = b−1D. We obtain

the following expressions for the components of electroelastic moduli tensors
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JA∗0piqj = 4{Ω∗11bipbjq + Ω∗12(bipb̄jq + bjq b̄ip) + Ω∗22b̄ipb̄jq + I23Ω∗33δipδjq

+ I3Ω
∗
13(δipbjq + δjqbip) + I3Ω

∗
23(δipb̄jq + δjq b̄ip) + I23Ω∗55DiDjDpDq

+ I3Ω
∗
15(bipDjDq + bjqDiDp) + I3Ω

∗
25(DiDpb̄jq +DjDq b̄ip)

+ I23Ω∗35(DiDpδjq +DjDqδip)

+I23Ω∗66(D
(1)
i Dp +D(1)

p Di)(D
(1)
j Dq +D(1)

q Dj)

+ I3Ω
∗
16[bip(D

(1)
j Dq +D(1)

q Dj) + bjq(D
(1)
i Dp +D(1)

p Di)]

+ I3Ω
∗
26[b̄ip(D

(1)
j Dq +D(1)

q Dj) + b̄jq(D
(1)
i Dp +D(1)

p Di)]

+ I23Ω∗36[δip(D
(1)
j Dq +D(1)

q Dj) + δjq(D
(1)
i Dp +D(1)

p Di)]

+ I23Ω∗56(D
(1)
p DiDqDj +D

(1)
i DpDqDj +D(1)

q DpDiDj +D
(1)
j DpDiDq)}

+ 2{Ω∗1δijbpq + Ω∗2[2bipbjq − biqbjp + δij b̄pq − bijbpq]

+ I3Ω
∗
3(2δipδjq − δiqδjp) + I3Ω

∗
5δijDpDq

+ I3Ω
∗
6[δij(D

(1)
p Dq +D(1)

q Dp)

+bpqDiDj + bjpDiDq + biqDjDp + bijDpDq]}, (2.46)

J−1A∗0pi|q = 4[Ω∗14bipD
(−1)
q + Ω∗24b̄ipD

(−1)
q + I3Ω

∗
34δipD

(−1)
q

+ I3Ω
∗
45DiDpD

(−1)
q + I3Ω

∗
46(D

(1)
i Dp +D(1)

p Di)D
(−1)
q

+ Ω∗15bipDq + Ω∗25b̄ipDq + I3Ω
∗
35δipDq + I3Ω

∗
55DiDpDq

+ I3Ω
∗
56(D

(1)
p DiDq +D

(1)
i DpDq +D(1)

q DiDp) + Ω∗16bipD
(1)
q

+ Ω∗26b̄ipD
(1)
q + I3Ω

∗
36δipD

(1)
q + I3Ω

∗
66(D

(1)
i Dp +D(1)

p Di)D
(1)
q ]

+ 2[Ω∗5(δpqDi + δiqDp) + Ω∗6(δiqD
(1)
p + δpqD

(1)
i + bpqDi + biqDp)],

(2.47)

J−1A∗0ij = 4I3[Ω
∗
44D

(−1)
i D

(−1)
j + Ω∗55DiDj + Ω∗66D

(1)
i D

(1)
j

+ Ω∗45(D
(−1)
i Dj +D

(−1)
j Di) + Ω∗46(D

(−1)
i D

(1)
j +D

(−1)
j D

(1)
i )

+ Ω∗56(D
(1)
i Dj +D

(1)
j Di)] + 2(Ω∗4b

(−1)
ij + Ω∗5δij + Ω∗6bij), (2.48)

for an unconstrained material. In order to obtain the expressions for an incompressible

material we set J = I3 = 1 in the above formulas and omit the terms involving derivatives

of Ω∗ with respect to I3.
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We can evaluate the previous expressions with respect to the principal axes. Here we

give the expressions of tensors A∗, A∗, A∗ referred to principal axes of the left Cauchy-

Green tensor b, i.e. in terms of principal stretches λ1, λ2, λ3 and components (D1, D2,

D3) of the electric displacement vector D. In these expressions we note that the indices

are such that i 6= j 6= k 6= i.

JA∗0iiii = 2λ2i [Ω
∗
1 + (λ2j + λ2k)Ω

∗
2 + λ2jλ

2
kΩ
∗
3 + λ2jλ

2
kD

2
i (Ω

∗
5 + 6λ2iΩ

∗
6)]

+ 4λ4i {Ω∗11 + 2(λ2j + λ2k)Ω
∗
12 + (λ2j + λ2k)

2Ω∗22

+ λ2jλ
2
k[2Ω∗13 + 2(λ2j + λ2k)Ω

∗
23 + λ2jλ

2
kΩ
∗
33] + 2λ2jλ

2
kD

2
i [Ω
∗
15 + 2λ2iΩ

∗
16

+ (λ2j + λ2k)Ω
∗
25 + 2λ2i (λ

2
j + λ2k)Ω

∗
26 + λ2jλ

2
kΩ
∗
35 + 2I3Ω

∗
36]

+ λ4jλ
4
kD

4
i (Ω

∗
55 + 4λ2iΩ

∗
56 + 4λ4iΩ

∗
66)},

JA∗0iiij = 4DiDjI3λ
2
i {Ω∗6 + Ω∗15 + (λ2j + λ2k)Ω

∗
25 + λ2jλ

2
kΩ
∗
35

+ (λ2i + λ2j )[Ω
∗
16 + (λ2j + λ2k)Ω

∗
26 + λ2jλ

2
kΩ
∗
36]

+ λ2jλ
2
kD

2
i [Ω
∗
55 + (3λ2i + λ2j )Ω

∗
56 + 2λ2i (λ

2
i + λ2j )Ω

∗
66]},

JA∗0iiji = 2DiDjI3{Ω∗5 + (λ2j + 3λ2i )Ω
∗
6

+ 2λ2i [Ω
∗
15 + (λ2j + λ2k)Ω

∗
25 + λ2jλ

2
kΩ
∗
35]

+ 2λ2i (λ
2
i + λ2j )[Ω

∗
16 + (λ2j + λ2k)Ω

∗
26 + λ2jλ

2
kΩ
∗
36]

+ 2I3D
2
i [Ω
∗
55 + (3λ2i + λ2j )Ω

∗
56 + 2λ2i (λ

2
i + λ2j )Ω

∗
66]},

JA∗0iijj = 4λ2iλ
2
j{Ω∗2 + λ2kΩ

∗
3 + Ω∗11 + (I1 + λ2k)Ω

∗
12 + (I2 + λ4k)Ω

∗
22

+ λ2k[(λ
2
i + λ2j )Ω

∗
13 + (I2 + λ2iλ

2
j )Ω
∗
23 + I3Ω

∗
33]

+ λ2k(λ
2
jD

2
i + λ2iD

2
j )(Ω

∗
15 + λ2kΩ

∗
25)

+ 2I3(λ
2
iD

2
i + λ2jD

2
j )(Ω

∗
26 + λ2kΩ

∗
36)

+ I3(D
2
i +D2

j )(2Ω∗16 + Ω∗25 + 2λ2kΩ
∗
26 + λ2kΩ

∗
35)

+ I3λ
2
kD

2
iD

2
j [Ω
∗
55 + 2(λ2i + λ2j )Ω

∗
56 + 4λ2iλ

2
jΩ
∗
66]},

JA∗0ijij = 2λ2i {Ω∗1 + λ2kΩ
∗
2 +D2

i λ
2
jλ

2
kΩ
∗
5 + λ2jλ

2
k(2D

2
i λ

2
i +D2

i λ
2
j +D2

jλ
2
i )Ω
∗
6

+ 2D2
iD

2
j I3λ

2
jλ

2
k[Ω
∗
55 + 2(λ2i + λ2j )Ω

∗
56 + (λ2i + λ2j )

2Ω∗66]},
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JA∗0ijji = 2λ2iλ
2
j{−Ω∗2 − λ2kΩ∗3 + λ2k(λ

2
jD

2
i + λ2iD

2
j )Ω

∗
6

+ 2D2
iD

2
j I3λ

2
k[Ω
∗
55 + 2(λ2i + λ2j )Ω

∗
56 + (λ2i + λ2j )

2Ω∗66]},

JA∗0iijk = 4DjDkI3λ
2
i {Ω∗15 + (λ2j + λ2k)(Ω

∗
25 + Ω∗16) + (λ2j + λ2k)

2Ω∗26

+ λ2jλ
2
kΩ
∗
35 + λ2jλ

2
k(λ

2
j + λ2k)Ω

∗
36 +D2

i λ
2
jλ

2
k[Ω
∗
55 + (I1 + λ2i )Ω

∗
56

+ 2λ2i (λ
2
j + λ2k)Ω

∗
66]},

JA∗0ijki = JA0ijik = 2DjDkI3{λ2iΩ∗6 + 2D2
i I3[Ω

∗
55 + (I1 + λ2i )Ω

∗
56

+ (I2 + λ4i )Ω
∗
66]},

JA∗0jiki = 2DjDkI3{Ω∗5 + I1Ω
∗
6 + 2D2

i I3[Ω
∗
55 + (I1 + λ2i )Ω

∗
56

+ (I2 + λ4i )Ω
∗
66]},

J−1A∗0ii|i = 4Di{Ω∗5 + 2λ2iΩ
∗
6 + Ω∗14 + λ2iΩ

∗
15 + λ4iΩ

∗
16

+ (λ2j + λ2k)(Ω
∗
24 + λ2iΩ

∗
25 + λ4iΩ

∗
26) + λ2jλ

2
k(Ω

∗
34 + λ2iΩ

∗
35 + λ4iΩ

∗
36)

+ D2
i λ

2
jλ

2
k[Ω
∗
45 + λ2iΩ

∗
55 + λ4iΩ

∗
56 + 2λ2i (Ω

∗
46 + λ2iΩ

∗
56 + λ4iΩ

∗
66)]},

J−1A∗0ii|j = 4Djλ
2
iλ
−2
j {Ω∗14 + λ2jΩ

∗
15 + λ4jΩ

∗
16 + (λ2j + λ2k)(Ω

∗
24 + λ2jΩ

∗
25

+ λ4jΩ
∗
26) + λ2jλ

2
k(Ω

∗
34 + λ2jΩ

∗
35 + λ4jΩ

∗
36) +D2

i λ
2
jλ

2
k[Ω
∗
45 + λ2jΩ

∗
55

+ λ4jΩ
∗
56 + 2λ2i (Ω

∗
46 + λ2jΩ

∗
56 + λ4jΩ

∗
66)]},

J−1A∗0ij|i = 2Dj{Ω∗5 + (λ2i + λ2j )Ω
∗
6 + 2D2

i λ
2
jλ

2
k[Ω
∗
45 + λ2iΩ

∗
55 + λ4iΩ

∗
56

+ (λ2i + λ2j )(Ω
∗
46 + λ2iΩ

∗
56 + λ4iΩ

∗
66)]},

J−1A∗0ij|k = 4DiDjDkλ
2
iλ

2
j [Ω
∗
45 + λ2kΩ

∗
55 + λ4kΩ

∗
56

+ (λ2i + λ2j )(Ω
∗
46 + λ2kΩ

∗
56 + λ4kΩ

∗
66)],

J−1A∗0ii = 2λ−2i {Ω∗4 + λ2iΩ
∗
5 + λ4iΩ

∗
6 + 2D2

i λ
2
jλ

2
k[Ω
∗
44 + λ2iΩ

∗
45 + λ4iΩ

∗
46

+ λ2i (Ω
∗
45 + λ2iΩ

∗
55 + λ4iΩ

∗
56) + λ4i (Ω

∗
46 + λ2iΩ

∗
56 + λ4iΩ

∗
66]},

J−1A∗0ij = 4DiDjλ
2
k[Ω
∗
44 + λ2iΩ

∗
45 + λ4iΩ

∗
46 + λ2j (Ω

∗
45 + λ2iΩ

∗
55 + λ4iΩ

∗
56)

+ λ4j (Ω
∗
46 + λ2iΩ

∗
56 + λ4iΩ

∗
66)].
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For an incompressible material these relations remain valid if we omit all terms with

derivatives of Ω∗ with respect to I3 and set J = I3 = 1.

Incrementing a constitutive law (2.20) for incompressible materials we can obtain

Ṫ = A∗Ḟ + A∗ḊL + p∗F−1ḞF−1 − ṗ∗F−1, (2.49)

while equation (2.38)2 is not affected by the incompressibility constraint. Electroelastic

moduli are defined by the expressions (2.39) with J = 1 in this case. The updated versions

of (2.38) and (2.49) are

Ṫ0 = A∗0L + A∗0ḊL0, ĖL0 = A∗T0 L + A∗0ḊL0, (2.50)

Ṫ0 = A∗0L + A∗0ḊL0 + p∗L− ṗ∗I, ĖL0 = A∗T0 L + A∗0ḊL0, (2.51)

obtained from the connections (2.31).

Calculations show that electroelastic moduli tensors (2.39) are updated according to

the following relations in the component form

A∗0jilk = J−1FjαFlβA∗0αiβk, (2.52)

A∗0ji|k = FjαF
−1
βk A

∗
0αi|β, (2.53)

A∗0ij = JF−1αi F
−1
βj A

∗
0αβ, (2.54)

where J = 1 for incompressible materials.

The symmetries (2.40) for updated versions of electroelastic moduli tensors remain

valid and an additional symmetry for tensor A∗0 can be obtained

A∗0ij|k = A∗0ji|k. (2.55)

For unconstrained and incompressible materials we also mention here the following

useful connections

A∗0jisk −A∗0ijsk = τjsδik − τisδjk, (2.56)

A∗0jisk −A∗0ijsk = (τjs + pδjs)δik − (τis + pδis)δjk. (2.57)



Chapter 3

Finite Deformations of Electroelastic

Tube

3.1 Introduction

Recent successes in the technological production of new dielectric elastomeric materials

instigated a rapid development of devices which employ the properties of such materi-

als. For instance, actuators, sensors and even artificial muscles can be manufactured from

dielectric elastomers. We note that the theories which account for the nonlinear electrome-

chanical interaction can be traced to the middle of the last century (Toupin, 1956), but

Dorfmann & Ogden (2014c) indicated that the present theories cannot be used easily for

applications and for solutions of boundary-value problems. In this chapter we consider a

cylindrical configuration which is one the possible geometries for actuators (Pelrine et al.,

1998). Using the theory of Dorfmann & Ogden (2005), we analyzed the nonlinear response

of a pressurized thick-walled tube in the presense of radial electric field, which is generated

by two compliant electrodes attached to the lateral internal and external surfaces of the

tube. Previously, a similar problem was considered by Dorfmann & Ogden (2006) without

electrodes.

The boundary-value problem considered in this chapter can be used as a model for

an actuator, the actuating force of which can be generated by inflation and electric field.

This type of actuator can be deemed as multipurpose and versatile, because it has a

potential to be used for more applications where advantages of both actuation mechanisms

are required. For example, actuation by inflation can be used for handling fragile objects

where we need a soft touch (Reynolds et al., 2003). On the other hand, actuation by an

28
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electric field can be advantageous for some applications where we need quick and precise

deformation by actuation (Goulbourne, 2009). A mathematical model for cylindrical, fibre-

reinforced pneumatic actuators was considered in Goulbourne (2009). In this model a

purely elastic strain energy potential was used, which does not account for the interaction

between deformation and electric properties of dielectric material. The effect of the electric

field was modelled by Maxwell stress. The augmented Cauchy stress was calculated as a

sum of Maxwell stress and mechanical stress derived from a purely elastic strain energy

potential. Also purely elastic potentials were used in Zhu et al. (2010). The previous

models were based on nonlinear elasticity which allows us to model large deformations of

dielectric elastomers. For small range deformations a model based on linear elasticity was

proposed by Carpi & Rossi (2004).

Prototype actuators were initially proposed by Pelrine et al. (1998) as a proof of con-

cept for actuating dielectric elastomers by an electric field. We can mention briefly some

applications of actuators with cylindrical geometry. Cylindrical fiber actuators can be used

in building blocks mimicking the structure of real biological muscles (Arora et al., 2007).

Also they have a potential to be used in textiles to produce active, smart structures (Arora

et al., 2007). Tubular actuators were reported to be used in refreshable Braille displays

(Chakraborti et al., 2012). Since dielectric elastomer actuators are advantageous in many

aspects (Pelrine et al., 2001), we can expect further developments and expansion of the

areas of application of cylindrical and other types actuators in the future. Technological

aspects of production of tubular elastomer actuators are discussed in Cameron et al. (2008).

Cameron et al. (2008) proposed to use a commonly used procedure of coextrusion, which

allows us to produce elastomer tubes filled with conductive core. The authors indicated

that this method combined with inexpensive commercially available materials makes an

actuator of this type easily available to mass production.

This chapter is organized in the following order. In Section 3.2 we give general ex-

pressions for pressure and reduced axial load. In Section 3.3 we consider a simple energy

function and give specialized expressions for pressure and reduced axial load. In Sections

3.4 – 3.5 we derive expressions for pressure and reduced axial load for a thin-walled cylin-

drical shell. In Section 3.6 we obtained numerical dependences of nondimensional pressure

and reduced axial load on deformation for specific strain energy functions which account

for the pure mechanical properties of material. A short discussion of activation is con-

tained in Section 3.7, based on the thin-walled formulas from Section 3.4, by considering
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either zero internal pressure and activation at fixed axial load or zero reduced axial load at

fixed internal pressure. Specific results are illustrated in respect of the neo-Hookean elastic

model. Finally, some short concluding remarks are provided in Sect. 3.8. We can mention

that a similar analysis for an electroelastic spherical shell was done in Dorfmann & Ogden

(2014b).

3.2 Application to a thick-walled electroelastic circular tube

3.2.1 Extension and inflation of a tube

The geometry of a circular tube and its extension and inflation can be conveniently de-

scribed by cylindrical polar coordinates R, Θ, Z. In the reference configuration the tube

is described by

A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ L, (3.1)

where A and B the internal and external radii, L is the length of a tube.

Assuming that the circular symmetry is maintained in the current configuration we

have the counterpart of (3.1)

a ≤ r ≤ b, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ l, (3.2)

where r, θ, z are cylindrical polar coordinates, and a, b and l are the radii and the length

in the current (deformed) configuration.

Since we have incompressible deformation and the tube is extended according to the

relation l = λzL, the resulting deformation is

r2 = a2 + λ−1z (R2 −A2), θ = Θ, z = λzZ. (3.3)

We will define λ = r/R as the azimuthal stretch and λz = z/Z as the axial stretch. By

the incompressibility condition (2.4), the stretch in the radial direction can be expressed

as λr = λ−1λ−1z . From (3.3) we can calculate

λ2aλz − 1 =
R2

A2
(λ2λz − 1) =

B2

A2
(λ2bλz − 1), (3.4)

where

λa =
a

A
, λb =

b

B
, b = f(B). (3.5)

When the tube is inflated the following inequalities hold

λ2aλz ≥ 1, λa ≥ λ ≥ λb. (3.6)
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Note, that with respect to the chosen cylindrical polar coordinates the matrix of the defor-

mation gradient is diagonal: F = diag[λr, λ, λz]. The invariants I1 and I2 can be specialized

for this deformation gradient:

I1 = λ−2λ−2z + λ2 + λ2z, I2 = λ2λ2z + λ−2 + λ−2z . (3.7)

3.2.2 Boundary conditions

In this problem we consider an electroelastic tube, the lateral boundaries of which have

flexible electrodes. The charges on both electrodes are equal and have the opposite sign.

Therefore, by Gauss’s Theorem and because of the given geometry, we do not have a field

outside the material. We will denote a total charge at r = a by Q(a), and at r = b by

Q(b). Therefore, we have

Q(a) +Q(b) = 0. (3.8)

The free surface charge densities per unit area on the inner and outer boundaries in the

current deformed configuration will be

σfa =
Q(a)

2πal
, σfb =

Q(b)

2πbl
, (3.9)

where l is the length of the cylinder in the deformed configuration. Therefore, we can

rewrite (3.8) as

aσfa + bσfb = 0. (3.10)

Referred to the undeformed configuration we have the following analogues of the expressions

(3.9)

σFA =
Q(a)

2πAL
, σFB =

Q(b)

2πBL
, (3.11)

where L, A, B are the length, the inner and the outer radii of the cylinder in the undeformed

configuration. In the undeformed configuration we have the following connection between

free surface charge densities

AσFA +BσFB = 0. (3.12)

For the considered cylindrical geometry the radial electic displacementDr (Dθ = 0,Dz = 0)

will depend only on r and expression (2.5)2 will be equivalent to

1

r

d(rDr)

dr
= 0. (3.13)
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Therefore, rDr is a constant, which can be expressed at the boundaries r = a and r = b

as aDr(a) and bDr(b), respectively. And we have

rDr = aDr(a) = bDr(b) = const. (3.14)

Using the boundary condition (2.8)2, where D? = 0, we can relate radial electric field

components at the boundaries to free surface charge densities per unit area in the deformed

configuration

Dr(a) = σfa, Dr(b) = −σfb. (3.15)

Therefore, using (3.9) solutions (3.14) can be expressed as

rDr =
Q(a)

2πl
= −Q(b)

2πl
. (3.16)

We note that for a finite length tube boundary condition (2.8)1 applied to the ends of

the tube and the boundary condition (2.8)2 applied to the lateral cylindrical surface are

not compatible. Boundary condition (2.8)2 implies for this problem that we have a jump

in Er through the lateral cylindrical surface at r = a and r = b, since we do not have

electric field outside, and inside at the boundaries Er can be found from (3.23), whereas

condition (2.8)1 applied to the ends of the tube implies that tangential component Er is

continuous. We assume that we deal with a long enough tube so that the edge effects can

be neglected. We refer to the work of Bustamante et al. (2007), where the edge effects are

discussed for a magnetoelastic problem in more detail.

3.2.3 Electric field components

In this problem it is natural to choose the electric displacement as an independent variable.

We can control the electric field by prescribing a certain charge on the boundaries, and the

charge on the boundaries is related to the electric displacement field through the boundary

condition (2.8)2. We will consider a radial field (Dθ = 0, Dz = 0). Since the constitutive

law

EL =
∂Ω∗

∂DL
(3.17)

is expressed in terms of Lagrangian variable DL we will switch to this variable using relation

DL = F−1D. (3.18)
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Since electric displacement vector is aligned along the radial direction of strain, we have

[
DL] =




λλzDr

0

0


 =




DLR

0

0


 . (3.19)

Using (2.22), we calculate the invariants

I4 = λ2λ2zD
2
r = D2

LR, (3.20)

I5 = λ−2λ−2z D2
LR = λ−2λ−2z I4 = D2

r , (3.21)

I6 = λ−4λ−4z D2
LR = λ−4λ−4z I4 = λ−2λ−2z D2

r . (3.22)

The components of electric field can be found using equation (2.24).

Since the deformation gradient is diagonal and Dθ = Dz = 0 we have Eθ = Ez = 0 and

the third component will be

Er = 2(Ω∗4λ
2λ2zDr + Ω∗5Dr + Ω∗6λ

−2λ−2z Dr). (3.23)

For cylindrical symmetry (assuming no dependence on either θ or z) curlE = 0 will be

equivalent to rEθ = const and Ez = const, which are satisfied automatically. At this point

we do not need to impose any condition on the function Ω∗. For some types of deformations

we do need such a condition. We can refer to Dorfmann & Ogden (2006) for an example

of such a condition, where azimuthal shear deformation is considered.

3.2.4 Stress components

Stress components can be calculated with the help of (2.23)

τrr = 2Ω∗1λ
−2λ−2z + 2Ω∗2(λ

−2
z + λ−2)− p+ 2Ω∗5D

2
r + 4Ω∗6λ

−2λ−2z D2
r , (3.24)

τθθ = 2Ω∗1λ
2 + 2Ω∗2

[
λ−2z + λ2zλ

2
]
− p, (3.25)

τzz = 2Ω∗1λ
2
z + 2Ω∗2

[
λ−2 + λ2λ2z

]
− p. (3.26)

Since the invariants are the functions of two independent stretches and I4, we can define a

reduced energy function in the form

ω∗(λ, λz, I4) = Ω∗(I1, I2, I4, I5, I6). (3.27)
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Therefore, we can calculate

∂ω∗

∂λ
= Ω∗1(−2λ−2z λ−3 + 2λ) + Ω∗2(2λλ

2
z − 2λ−3)

+ Ω∗5(−2λ−3λ−2z I4) + Ω∗6(−4λ−5λ−4z I4),

∂ω∗

∂λz
= Ω∗1(−2λ−2λ−3z + 2λz) + Ω∗2(2λ

2λz − 2λ−3z ) (3.28)

+ Ω∗5(−2λ−2λ−3z I4) + Ω∗6(−4λ−4λ−5z I4).

From (3.24), (3.25) and (3.26) we have

τθθ − τrr = Ω∗1(2λ
2 − 2λ−2λ−2z ) + Ω∗2(2λ

2
zλ

2 − 2λ−2) (3.29)

− 2Ω∗5D
2
r − 4Ω∗6λ

−2λ−2z D2
r ,

τzz − τrr = Ω∗1(2λ
2
z − 2λ−2λ−2z )+Ω∗2(2λ

2λ2z − 2λ−2z ) (3.30)

−2Ω∗5D
2
r − 4Ω∗6λ

−2λ−2z D2
r .

Therefore, we have the following connections featuring the stress differences:

τθθ − τrr = λ
∂ω∗

∂λ
, (3.31)

τzz − τrr = λz
∂ω∗

∂λz
. (3.32)

Also
∂ω∗

∂I4
= Ω∗4 + Ω∗5λ

−2λ−2z + Ω∗6λ
−4λ−4z . (3.33)

Therefore, expression (3.23) can be rewritten as

Er = 2λ2λ2z
∂ω∗

∂I4
Dr. (3.34)

According to Gauss’s theorem we have no field outside the tube, therefore by (2.11) the

Maxwell stress is zero. Thus, we have only mechanical load due to a pressure P inside the

tube applied to the inner surface at r = a and no loads at r = b, and hence

τrr = −P on r = a, τrr = 0 on r = b. (3.35)
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In this problem the equilibrium equation divτ = 0 reduces to

r
dτrr
dr

= τθθ − τrr = λω∗λ. (3.36)

In the previous expression we have used (3.31). Integrating (3.36) and using the boundary

conditions (3.35) we have ∫ 0

−P
dτrr =

∫ b

a
λω∗λ

dr

r
. (3.37)

Therefore,

P =

∫ b

a
λω∗λ

dr

r
. (3.38)

In some cases it is convenient to change the variable of integration from r to λ. To this

end, we rearrange and differentiate (3.3)1 with respect to r, taking into account that λ

depends on r. We have

r
dλ

dr
= −λ(λ2λz − 1). (3.39)

The details of the calculation which lead to (3.39) can be found in Appendix A of this

thesis. Therefore, expression (3.38) can be rewritten as

P =

∫ λa

λb

(λ2λz − 1)−1ω∗λdλ. (3.40)

From (3.4) we see that λb depends on λa. Therefore, assuming that λz is known, the

previous relation gives P as a function of λa and invariant I4 = Q2(a)/4π2L2R2, which is

known for a given charge Q(a) = −Q(b).

Similarly, since b =
√
a2 + λ−1z (B2 −A2) we see that (3.38) provides a relationship

between pressure and the inner radius a and invariant I4.

The total axial load N can be calculated from

N = 2π

∫ b

a
τzzrdr. (3.41)

Using (3.32), (3.31) and the equilibrium equation (3.36), the axial stress τzz can be ex-

pressed as

τzz =
1

2

[1

r

d

dr
(r2τrr)

]
− λω∗λ

2
+ λzω

∗
λz . (3.42)

Therefore, the total axial load can be rewritten as

N = 2π

∫ b

a

[1

2

[1

r

d

dr
(r2τrr)

]
− λω∗λ

2
+ λzω

∗
λz

]
rdr (3.43)

= π

∫ b

a
d(r2τrr) + π

∫ b

a
(2λzω

∗
λz − λω∗λ)rdr.
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Using the limits of integration for the given problem, finally, we have

N = π

∫ b

a
(2λzω

∗
λz − λω∗λ)rdr + πa2P. (3.44)

We assume that the cylinder has closed ends. The quantity F = N − Pπa2 can be

interpreted as a reduced axial load, because the action of pressure on the ends of the

cylinder is removed from the total load. Using the previous result (3.39) and (3.4), we can

change the variable of integration from λ to r

F = πA2(λ2aλz − 1)

∫ λa

λb

(λ2λz − 1)−2(2λzω
∗
λz − λω∗λ)λdλ. (3.45)

3.3 Illustrative example

We will consider the simple energy function

Ω∗ =
1

2
µ(I1 − 3) +

1

2
ε−1I5, (3.46)

where the constant µ is the shear modulus of the neo-Hookean material in the absence of

an electric field and the constant ε is the electric permittivity of the electroelastic material.

Using (2.21)1 and (2.22)2 with F = diag[λr, λ, λz] we can write potential (3.46) in the

reduced form

ω∗ =
1

2
µ(λ−2λ−2z + λ2 + λ2z − 3) +

1

2
ε−1λ−2λ−2z I4. (3.47)

To find the pressure inside the cylinder we need to calculate λω∗λ

λω∗λ = µ(−λ−2λ−2z + λ2)− ε−1λ−2λ−2z I4. (3.48)

Integral (3.38) for neo-Hookean material can be calculated explicitly and the result is

P = µ
[
λ−1z ln

λa
λb

+ λ−2z
λ2a − λ2b
2λ2bλ

2
a

]
− ε−1qλ−2z

b2 − a2
2a2b2

, (3.49)

where q is defined as q = σ2FAA
2 and related to the charge Q(a) via

q =
(Q(a)

2πL

)2
. (3.50)

Expression (3.49) gives P in terms of the charge q and λa. Again, recall that λb, a and b

can be expressed in terms of λa. The reduced axial load can also be evaluated explicitly

for neo-Hookean material

F = πA2µ[(λz − λ−2z )(η2 − 1)− λ−2z (λ2aλz − 1) log(λa/λb)]−
πq

ελ2z
log(b/a). (3.51)
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In (3.47) instead of a neo-Hookean material we can write more generally

ω∗ = ω(λ, λz) +
1

2
ε−1λ−2λ−2z I4. (3.52)

Therefore, we can rewrite (3.49) as

P =

∫ λa

λb

(λ2λz − 1)−1ωλdλ− ε−1qλ−2z
b2 − a2
2a2b2

, (3.53)

and the reduced axial load will have the following representation

F = πA2(λ2aλz − 1)

∫ λa

λb

(λ2λz − 1)−2(2λzωλz − λωλ)λdλ− πq

ελ2z
log

b

a
. (3.54)

3.4 Application to a thin-walled cylindrical shell

For a thin-walled cylindrical shell we can approximate expression (3.40) using the mean

value theorem

P ' (λa − λb)(λ2λz − 1)−1ω∗λ(λ, λz, I4). (3.55)

From the expression (3.4) to the first order in δ = (B −A)/A we can obtain the following

approximation

λa ' λb + δλ−1λ−1z (λ2λz − 1), (3.56)

where λ can be taken as either λa or λb to the first order approximation in δ. Therefore,

expression (3.55) can be rewritten as

P ' δλ−1λ−1z ω∗λ(λ, λz, I4). (3.57)

Approximation of I4 gives the following result

I4 ' σ2FA =
q

A2
= q̃, (3.58)

where we defined the notation q̃ = σ2FA. Therefore, for a fixed λz, P will be a function of

stretch λ and the charge σFA. For the reduced potential with a general elastic term we can

rewrite (3.57) as

P ' δλ−1λ−1z [ωλ(λ, λz)− ε−1λ−3λ−2z q̃]. (3.59)

We can see from this relation that the influence of the charge q̃ on the pressure P becomes

less and less with increasing azimuthal stretch λ (λz is fixed).

Using the mean value theorem and expression (3.56) we can approximate the reduced

axial load

F ' δπA2(2ω∗λz − λλ−1z ω∗λ). (3.60)
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In a similar way for a reduced energy potential with a general elastic term we can write

F ' δπA2(2ωλz − λλ−1z ωλ − ε−1λ−2λ−3z q̃). (3.61)

We can interpret this result in the following way. With increasing circumferential stretch

λ the influence of the electric field expressed in terms of charge q̃ becomes less and less.

3.5 Charge and potential

Since curlE = 0, there exists a scalar field φ (electrostatic potential) such that E = −gradφ.
For cylindrically symmetric problem φ depends only on r, therefore, Er = −dφ/dr. Previ-

ously, we found that Er = 2λ2λ2zω
∗
I4
Dr. Therefore, we have

dφ

dr
= −2λ2λ2zω

∗
I4Dr. (3.62)

Integration of the previous expression and use of (3.16) will give us an expression for

potential difference between the surfaces, and we have

φ(b)− φ(a) = −Q(a)l

πL2

∫ b

a
λ2ω∗I4

dr

r
. (3.63)

For the simple model (3.46) and fixing λz we have

φ(b)− φ(a) = −Q(a)

2πl
ε−1 log

b

a
. (3.64)

The obtained expression provides a relationship between potential difference at the bound-

aries, the charge Q(a) = −Q(b), the inner radius a and the length of the cylinder l.

We can rewrite the previous expression (3.64)

φ(b)− φ(a)

B −A =
σFA

λz(η − 1)
ε−1 log

λa
λbη

, (3.65)

where we defined η = B/A. Expression (3.65) provides the relationship between potential

and the charge σFA, azimuthal stretch λa, η and dielectric permittivity of material ε. We

will define reference electric field as

E0 =
φ(b)− φ(a)

B −A , (3.66)

and we can approximate (3.64) for the membrane

E0 =
Q(a)

2πλ2zλ
2LAε

. (3.67)



CHAPTER 3. FINITE DEFORMATIONS OF ELECTROELASTIC TUBE 39

Therefore,

q̃ = E2
0ε

2λ4λ4z, (3.68)

and we can rewrite (3.59) as

P ' δλ−1λ−1z [ωλ(λ, λz)− ελλ2zE2
0 ]. (3.69)

We can observe from this relation that for the considered case when the electric field is

defined by (3.66) through the potential difference, the second term in (3.69) is not affected

by the azimuthal stretch stretch λ. Therefore, in this case the effect of electric field is

uncoupled from mechanical stretch λ, provided that λz remains fixed.

For the reduced axial load we have the following result

F ' δπA2(2ωλz − λλ−1z ωλ − ελ2λzE2
0). (3.70)

Therefore, we can conclude that if electric field is expressed in terms of potential differ-

ence, the reduced axial load will be affected more and more significantly with increasing

circumferential stretch λ.

3.6 Numerical results

Here we give explicit relations, based on which the figures were produced. In figures 3.1(a)–

3.3(a) we used the following expression for a non-dimensional pressure P ∗ = P/µ

P ∗ =
1

µ

∫ λa

λb

(λ2λz − 1)−1ωλdλ− q̃(η2 − 1)

2εµλ3zλ
2
a[λ

2
a + λ−1z (η2 − 1)]

, (3.71)

obtained from (3.53), using (3.58), (3.5)1, (3.5)3, (3.3)1 and the definition η = B/A.

In figures 3.1(b)–3.3(b) we used

P ∗ =
1

µ

∫ λa

λb

(λ2λz − 1)−1ωλdλ− E2
0ε(η

2 − 1)(η − 1)2

2µλzλ2a(λ
2
a + λ−1z (η2 − 1))

[
log λa

λbη

]2 , (3.72)

obtained from (3.71), (3.58), (3.65) and (3.66).

In figures 3.4(a)–3.6(a) we used the following expression for a non-dimensional reduced

axial load F ∗ = (N − πa2P )/µπA2

F ∗ =
1

µ
(λ2aλz − 1)

∫ λa

λb

(λ2λz − 1)−2(2λzωλz − λωλ)λdλ+
q̃

εµλ2z
log

λa
λbη

, (3.73)

obtained from (3.54) and the definition for η.
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In figures 3.4(b)–3.6(b) we used

F ∗ =
1

µ
(λ2aλz − 1)

∫ λa

λb

(λ2λz − 1)−2(2λzωλz − λωλ)λdλ+
E2

0ε(η − 1)2

µ log λa
λbη

, (3.74)

obtained from (3.73), (3.58), (3.65) and (3.66). In the expressions for P ∗ and F ∗ λb can

be expressed in terms of λa through the relation (3.4).

In this section we show numerical results for different elastic models, which are ac-

counted for by the term ω(λ, λz) in (3.52). We used Mathematica (Wolfram Research,

2013) for this purpose. First, we will consider a neo-Hookean model. In Fig. 3.1 the di-

mensionless ratio P/µ is plotted for different charges meassured by dimensionless quantity

q̃/µε, and different potential differencies, measured by dimensionless quantity εE2
0/µ. We
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Figure 3.1: Plots of P/µ versus λa for the neo-Hookean electroelastic material based on Eq.

(3.71) and (3.72) with η = 1.1 and λz = 1.2: (a) for fixed charge with q̃/µε = 0, 1, 5, 10;

(b) for fixed potential difference with εE2
0/µ = 0.0, 0.2, 0.35, 0.5. In each of (a) and (b) the

value of P/µ decreases as the magnitude of the field measure increases.

see that the results for a thick walled tube (B/A = 1.1) are in conformity with formulas,

obtained for a thin-walled cylindrical shell. For a constant charge influence of the field be-

comes less and less with increasing azimuthal stretch λa. For a thin-walled shell this feature

can be observed from a factor λ−4 in (3.59). If we prescribe different constant potential

differences, we see that the effect of electric field measured by dimensionless potential dif-

ferences εE2
0/µ is now uncoupled from the mechanical deformation. We can observe the

same situation in the case of a thin-walled cylindrical shell. Observe that in the second

term of (3.69) the azimuthal stretch λ becomes unity.

Next, we will consider the Ogden model, (Ogden, 1972). The strain energy potential is
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expressed in terms of principal stretches

W (λ1, λ2, λ3) =
N∑

n=1

µn
αn

(λαn
1 + λαn

2 + λαn
3 − 3), (3.75)

where N is a positive integer, µn and αn are material constants, and shear modulus µ

satisfies

2µ =

N∑

n=1

µnαn. (3.76)

We will consider a three term version of this model: N = 3. It was found that this model

gives a good approximation for vulcanized natural rubber with the following values of

material constants: α1 = 1.3, α2 = 5.0, α3 = −2.0. To plot the dimensionless pressure

P/µ we will use material constants µn divided by shear modulus µ: µ∗n = µn/µ, with the

following values: µ∗1 = 1.491, µ∗2 = 0.0028, µ∗3 = −0.0237. For the considered deformation

of a cylinder the potential (3.75) specifies to

w(λ, λz) =
3∑

n=1

µn
αn

(λαn + λαn
z + λ−αn

z λ−αn − 3). (3.77)
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Figure 3.2: Plots of P/µ versus λa for the Ogden electroelastic material based on Eq.

(3.71) and (3.72) with η = 1.1 and λz = 1.2: (a) for fixed charge with q̃/µε = 0, 1, 5, 10;

(b) for fixed potential difference with εE2
0/µ = 0.0, 0.2, 0.35, 0.55. In each of (a) and (b)

the value of P/µ decreases as the magnitude of the field measure increases.

We can observe in Fig. 3.2 that most plots with low charge have maxima and minima,

which is in conformity with pure elastic case. Again, we have the same trend. When electric

field is expressed as a constant charge, with higher circumferential stretch, the influence of

the field becomes less and less.

Finally, we will consider the Gent model (Gent, 1996). This is an isotropic model. Its

distinctive feature is that it has an asymptote, which reflects the fact that polymeric chains
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Figure 3.3: Plots of P/µ versus λa for the Gent electroelastic material based on Eq. (3.71)

and (3.72) with η = 1.1 and λz = 1.2: (a) for fixed charge with q̃/µε = 0, 1, 5, 10; (b) for

fixed potential difference with εE2
0/µ = 0.0, 0.2, 0.35, 0.5. In each of (a) and (b) the value

of P/µ decreases as the magnitude of the field measure increases.

in rubber cannot be extended beyond a certain threshold. The elastic potential has the

following representation for this model

W (I1) = −µG
2

log

[
1− (I1 − 3)

G

]
, (3.78)

where G is a material constant. We took G = 97.2 for our calculations. This value was

used by Gent for the unfilled rubber vulcanizate. The results of numerical calculations are

shown at Fig. 3.3. We observed an asymptote at λ ' 10, which is not shown here.

In general we can note that electric field predeforms a cylinder by increasing its circum-

ferential stretch, therefore we can observe that in order to obtain a certain circumferential

stretch a lower pressure is required with respect to pure elastic case.

We assume that the cylinder has closed ends. In order to keep λz fixed, we need to

apply an external axial load. For the sign convention we accept that positive load tries to

extend the cylinder, and negative load tries to compress it. In this part of the thesis we

will consider how non-dimensional reduced axial load is affected by an electric field. We

define non-dimensional reduced axial load as F ∗ = (N − πa2P )/µπA2. We will consider

the previous models in the same order. The same trend can be observed in all figures.

With increasing electric field a lower axial load is required to keep λz fixed. Therefore, we

can conclude that according to this model the electric field tries to stretch the cylinder in

the axial direction, therefore a lower axial load is required for stronger electric field. As an

example, Fig. 3.4(a) can be interpreted in the following way. Initially, a positive extensional

load is required to have a prestretch λz = 1.2. Then due to the inflating pressure, which

extends the tube in the axial direction, we observe that reduced axial load is decreasing
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with increasing circumferential stretch λa. Next, if we apply electric field, it will give

an initial circumferential prestretch λa, and then as it was before, the axial load will be

decreasing due to inflation. We note that we used the same parameters (electric field, axial

stretch λz, ratio η = B/A), and there is a direct correspondence between the figures which

depict nondimensional pressure and reduced axial load for each model. Essentially similar

trends can be observed for models in Fig. 3.5–3.6.
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Figure 3.4: Plots of nondimensional reduced axial load F ∗ versus λa for the neo-Hookean

electroelastic material based on Eq. (3.73) and (3.74) with η = 1.1 and λz = 1.2: (a)

for fixed charge with q̃/µε = 0, 1, 5, 10; (b) for fixed potential difference with εE2
0/µ =

0.0, 0.2, 0.35, 0.5. In each of (a) and (b) the value of F ∗ decreases as the magnitude of the

field measure increases.
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Figure 3.5: Plots of nondimensional reduced axial load F ∗ versus λa for the Ogden elastic

material based on Eq. (3.73) and (3.74) with η = 1.1 and λz = 1.2: (a) for fixed charge

with q̃/µε = 0, 1, 5, 10; (b) for fixed potential difference with εE2
0/µ = 0.0, 0.2, 0.35, 0.5.

In each of (a) and (b) the value of F ∗ decreases as the magnitude of the field measure

increases.
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Figure 3.6: Plots of nondimensional reduced axial load F ∗ versus λa for the Gent elastic

material based on Eq. (3.73) and (3.74) with η = 1.1 and λz = 1.2: (a) for fixed charge

with q̃/µε = 0, 1, 5, 10; (b) for fixed potential difference with εE2
0/µ = 0.0, 0.2, 0.35, 0.5.

In each of (a) and (b) the value of F ∗ decreases as the magnitude of the field measure

increases.

Now we investigate the behaviour of pressure and reduced axial load if we increase

the wall thickness η. In Fig. 3.7–3.9 for both cases of electric field expressed in terms

of charge and potential difference we can observe that for a thicker-walled tube higher

levels of pressure are required to achieve the same level of radial deformation, which is

understandable intuitively.

In Fig. 3.10–3.12 reduced axial load as a function of radial deformation for thicker-

walled tubes is plotted. We observe in these plots that for thicker-walled tubes higher

levels of axial load (either extensional or compressive) are required to keep λz unchanged

for the same radial deformation in comparison with thinner-walled tubes. This behaviour

is understandable intuitively.

3.7 A note on activation

We now express the formulas for P and F from Section 3.4 in the dimensionless forms

P ∗ = λ−1a λ−1z ω̄λ(λa, λz)− λ−4a λ−3z q∗, F ∗ = 2ω̄λz(λa, λz)− λaλ−1z ω̄λ(λa, λz)− λ−2a λ−3z q∗,

(3.79)
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Figure 3.7: Plots of P/µ versus λa for the neo-Hookean electroelastic material based on Eq.

(3.71) and (3.72) with η = 1.5 and λz = 1.2: (a) for fixed charge with q̃/µε = 0, 1, 5, 10;

(b) for fixed potential difference with εE2
0/µ = 0.0, 0.2, 0.35, 0.5. In each of (a) and (b) the

value of P/µ decreases as the magnitude of the field measure increases.
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Figure 3.8: Plots of P/µ versus λa for the Ogden electroelastic material based on Eq.

(3.71) and (3.72) with η = 1.5 and λz = 1.2: (a) for fixed charge with q̃/µε = 0, 1, 5, 10, 15;

(b) for fixed potential difference with εE2
0/µ = 0.0, 0.2, 0.35, 0.5. In each of (a) and (b) the

value of P/µ decreases as the magnitude of the field measure increases.

from (3.59) and (3.61), and

P ∗ = λ−1a λ−1z ω̄λ(λa, λz)− λze∗, F ∗ = 2ω̄λz(λa, λz)− λaλ−1z ω̄λ(λa, λz)− λ2aλze∗, (3.80)

from (3.69) and (3.70), where q∗ = q̃/(µε) and e∗ = εE2
0/µ, ω̄ = ω/µ, and P ∗ = P/(δµ)

and F ∗ = F/(δµπA2), the latter two non-dimensionalizations being different from those

used in Section 3.6.

From either of (3.79) or (3.80) it follows that

F ∗ − λ2aP ∗ = 2ω̄λz(λa, λz)− 2λaλ
−1
z ω̄λ(λa, λz). (3.81)

If there is no internal pressure (P ∗ = 0) then for a given (fixed) axial load F ∗ this determines

a connection between λa and λz (in general implicit), and, for an applied voltage (in terms
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Figure 3.9: Plots of P/µ versus λa for the Gent electroelastic material based on Eq. (3.71)

and (3.72) with η = 1.5 and λz = 1.2: (a) for fixed charge with q̃/µε = 0, 1, 5, 10; (b) for

fixed potential difference with εE2
0/µ = 0.0, 0.2, 0.35, 0.5. In each of (a) and (b) the value

of P/µ decreases as the magnitude of the field measure increases.
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Figure 3.10: Plots of nondimensional reduced axial load F ∗ versus λa for the neo-Hookean

electroelastic material based on Eq. (3.73) and (3.74) with η = 1.5 and λz = 1.2: (a)

for fixed charge with q̃/µε = 0, 1, 5, 10; (b) for fixed potential difference with εE2
0/µ =

0.0, 0.2, 0.35, 0.5. In each of (a) and (b) the value of F ∗ decreases as the magnitude of the

field measure increases.

of e∗) for example, Eq. (3.80)1 provides a connection between λz and e∗, i.e. it determines

the change in λz due to activation from its initial value at e∗ = 0. Similarly, if F ∗ = 0 and

P ∗ is fixed activation with e∗ causes a change in λz.

For simplicity these general principles are now illustrated in respect of the neo-Hookean

elasticity model (3.47), for which

F ∗ − λ2aP ∗ = 2(λz − λ2aλ−1z ). (3.82)

For P ∗ = 0 we then have

λ2aλz = (1− λ2ze∗)−1/2, (3.83)
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Figure 3.11: Plots of nondimensional reduced axial load F ∗ versus λa for the Ogden elastic

material based on Eq. (3.73) and (3.74) with η = 1.5 and λz = 1.2: (a) for fixed charge

with q̃/µε = 0, 1, 5, 10; (b) for fixed potential difference with εE2
0/µ = 0.0, 0.2, 0.35, 0.5.

In each of (a) and (b) the value of F ∗ decreases as the magnitude of the field measure

increases.
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Figure 3.12: Plots of nondimensional reduced axial load F ∗ versus λa for the Gent elastic

material based on Eq. (3.73) and (3.74) with η = 1.5 and λz = 1.2: (a) for fixed charge

with q̃/µε = 0, 1, 5, 10; (b) for fixed potential difference with εE2
0/µ = 0.0, 0.2, 0.35, 0.5.

In each of (a) and (b) the value of F ∗ decreases as the magnitude of the field measure

increases.

which requires that λ2ze∗ < 1. Note, in particular, that in the limit λ2ze∗ → 1, λa →∞ and

the wall thickness decreases to zero! Equation (3.82) requires that λz > λa for F ∗ > 0.

From (3.82) it also follows that

F ∗ = 2λz − 2λ−2z (1− λ2ze∗)−1/2. (3.84)

For several fixed positive values of F ∗ the interdependence of e∗ and λz is illustrated in

Fig. 3.13(a). In terms of different variables similar plots were provided in Zhu et al. (2010)

for different values of the initial axial stretch (equivalently, different values of F ∗) and for
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a thick-walled tube with B/A = 2. In Zhu et al. (2010) the maxima on the curves were

interpreted as corresponding to loss of electromechanical stability.

For contrast we now consider activation at fixed pressure and zero axial load, so that,

from (3.82),

P ∗ = 2λ−1z − 2λzλ
−2
a , (3.85)

which requires λa > λz for P ∗ > 0, while F ∗ = 0 yields the quadratic

(λ2ze
∗ + 1)λ4a − 2λ2zλ

2
a + λ−2z = 0 (3.86)

for λ2a, the only solution of which consistent with λa > λz being

λ2a =
λ2z +

√
λ4z − λ−2z − e∗
λ2ze
∗ + 1

, (3.87)

which requires λ4z − λ−2z > e∗. Hence

P ∗ = 2λ−1z −
2λz(λ

2
ze
∗ + 1)

λ2z +
√
λ4z − λ−2z − e∗

, (3.88)

and this equation is the basis for the plots in Fig. 3.13(b) in which the interdependence of

e∗ and λz is illustrated for several fixed values of P ∗.

As for the case with P ∗ = 0 and fixed F ∗ there is a maximum actuation voltage for each

considered value of P ∗ and again the maxima are associated with loss of electromechanical

stability. However, for the considered neo-Hookean model in the absence of a voltage the

radius can increase indefinitely as the pressure approaches a finite asymptote, and this

behaviour is a reflection of the limited applicability of the neo-Hookean model, which is

only realistic for stretches up to about 2. This should be borne in mind when assessing

the results of activation. For models such as those in Ogden (1972) and Arruda & Boyce

(1993) that are valid for a wider range of deformations than for the neo-Hookean model

there is no theoretical limit to the allowable voltage, which can increase indefinitely with

the axial stretch, possibly with an intermediate maximum followed by a minimum, as is

the case for a particular Arruda–Boyce model considered in Zhu et al. (2010).

Next, based on the equations in (3.79), we consider activation with specified charge

rather than a potential, in which case, with P ∗ = 0 we obtain

λ2aλz =
√

1 + q∗ (3.89)

and

F ∗ = 2λz − 2λ−2z
√

1 + q∗. (3.90)
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Figure 5. (a) For P ∗ = 0: plots of the activation potential (as measured by e∗) versus
the resulting axial stretch λz for the indicated fixed values 0.3, 0.8, 1.3 of the dimen-
sionless axial load F ∗ (corresponding to initial stretches, for e∗ = 0, of approximately
1.053, 1.153, 1.27, respectively), together with the limiting curve defined by λ2ze

∗ = 1.
(b) For F ∗ = 0: plots of the activation potential (as measured by e∗) versus the
resulting axial stretch λz for the indicated fixed values 0.4, 0.5, 0.6 of the dimension-
less pressure P ∗ (corresponding to initial stretches of approximately 1.01, 1.02, 1.04,
respectively), together with the limiting curve defined by e∗ = λ4z − λ−2

z .

be borne in mind when assessing the results of activation. For models such as those in [17] and [21]
that are valid for a wider range of deformations than the neo-Hookean model there is no theoretical
limit to the allowable voltage of which can increase indefinitely with the axial stretch, possibly with
an intermediate maximum followed by a minimum, as is the case for a particular Arruda–Boyce model
considered in [16].

Next, based on the equations in (78), we consider activation with specified charge rather that a
potential, in which case, with P ∗ = 0 we obtain

λ2aλz =
√

1 + q∗ (88)

and
F ∗ = 2λz − 2λ−2

z

√
1 + q∗. (89)

For F ∗ = 0 on the other hand we have

λ2aλz = λ3z +
√
λ6z − 1− q∗ (90)

and

P ∗ = 2λ−1
z −

2λ2z

λ3z +
√
λ6z − 1− q∗

. (91)

Results for P ∗ = 0 and F ∗ = 0, respectively, are illustrated in Fig. 6(a), (b) with q∗ plotted
against λz analogously to those in Fig. 5(a), (b) for e∗ against λz. In Fig. 6(a) the plots are for
F ∗ = 0, 3, 1, 2 and in Fig. 6(b) for P ∗ = 0.52, 0.56, 6. In Fig. 6(a), in contrast to Fig. 5(a), there is no
maximum and the stretch λz increases monotonically with the applied charge, whereas in Fig. 6(b)
there is a maximum for any pressure below the maximum attainable (P ∗ ' 0.75) with q∗ = 0 for the
neo-Hookean material and this has a similar ‘instability’ interpretation as for a fixed F ∗ at P ∗ = 0.

Figure 3.13: (a) For P ∗ = 0: plots of the activation potential (as measured by e∗) versus the

resulting axial stretch λz for the indicated fixed values 0.3, 0.8, 1.3 of the dimensionless axial

load F ∗ (corresponding to initial stretches, for e∗ = 0, of approximately 1.053, 1.153, 1.27,

respectively), together with the limiting curve defined by λ2ze∗ = 1. (b) For F ∗ = 0: plots

of the activation potential (as measured by e∗) versus the resulting axial stretch λz for

the indicated fixed values 0.4, 0.5, 0.6 of the dimensionless pressure P ∗ (corresponding to

initial stretches of approximately 1.01, 1.02, 1.04, respectively), together with the limiting

curve defined by e∗ = λ4z − λ−2z .

For F ∗ = 0, on the other hand, we have

λ2aλz = λ3z +
√
λ6z − 1− q∗ (3.91)

and

P ∗ = 2λ−1z −
2λ2z

λ3z +
√
λ6z − 1− q∗

. (3.92)

Results for P ∗ = 0 and F ∗ = 0, respectively, are illustrated in Fig. 3.14(a), (b) with

q∗ plotted against λz analogously to those in Fig. 3.13(a), (b) for e∗ against λz. In Fig.

3.14(a) the plots are for F ∗ = 0, 0.3, 1, 2 and in Fig. 3.14(b) for P ∗ = 0.52, 0.56, 6. In

Fig. 3.14(a), in contrast to Fig. 3.13(a), there is no maximum and the stretch λz increases

monotonically with the applied charge, whereas in Fig. 3.14(b) there is a maximum for

any pressure below the maximum attainable (P ∗ ' 0.75) with q∗ = 0 for the neo-Hookean

material and this has a similar ‘instability’ interpretation as for a fixed F ∗ at P ∗ = 0.
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Figure 6. (a) For P ∗ = 0: plots of the activation charge (as measured by q∗) versus
the resulting axial stretch λz for the indicated fixed values 0.3, 1, 2 of the dimen-
sionless axial load F ∗ (corresponding to initial stretches, for q∗ = 0, of approxi-
mately 1.05, 1.2, 1.47, respectively). (b) For F ∗ = 0: plots of the activation charge (as
measured by q∗) versus the resulting axial stretch λz for the indicated fixed values
0.52, 0.56, 0.6 of the dimensionless pressure P ∗ (corresponding to initial stretches of
approximately 1.02, 1.03, 1.04, respectively).

7. Concluding remarks
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Figure 3.14: (a) For P ∗ = 0: plots of the activation charge (as measured by q∗) versus the

resulting axial stretch λz for the indicated fixed values 0.3, 1, 2 of the dimensionless axial

load F ∗ (corresponding to initial stretches, for q∗ = 0, of approximately 1.05, 1.2, 1.47,

respectively). (b) For F ∗ = 0: plots of the activation charge (as measured by q∗) versus

the resulting axial stretch λz for the indicated fixed values 0.52, 0.56, 0.6 of the dimen-

sionless pressure P ∗ (corresponding to initial stretches of approximately 1.02, 1.03, 1.04,

respectively).

3.8 Concluding remarks

In this chapter the general formulation of nonlinear isotropic electroelasticity in the form

developed by Dorfmann & Ogden (2005) has been applied to the prototype problem of

a circular cylindrical tube of dielectric elastomer with compliant electrodes on its major

surfaces. Without specialization of the constitutive law general expressions have been

obtained for the internal pressure in the tube and axial load on its ends when subject

to a radial electric field generated by a potential difference between the electrodes while

the circular cylindrical geometry is maintained. The general results are then applied to

a material model for which the electrostatic part of the constitutive law is linear with a

deformation independent permittivity, and the electroelastic response of the tube has been

illustrated for three different models of the elastic contribution to the constitutive law from

rubber elasticity.

It is, of course, a simplifying assumption that the permittivity of the material is inde-

pendent of the deformation, an assumption that runs counter to experimental evidence,

at least for some dielectric elastomers. For example, in an extensive series of experiments

on the acrylic elastomer VBH 4910 Wissler & Mazza (2007) showed that the permittivity



CHAPTER 3. FINITE DEFORMATIONS OF ELECTROELASTIC TUBE 51

decreases with stretching, and this should be taken into account in the modelling in situa-

tions where the deformations are relatively large. Such an influence is easily accommodated

within the general constitutive framework presented in Section 2.1.3 and its specialization

to the considered geometry in Section 3.2.1. However, in general this leads to a more

complicated analysis and numerical solution will for the most part be required. Specific

models which do include deformation dependent permittivity have been examined in a va-

riety of boundary-value problems by Dorfmann & Ogden (2005, 2006, 2010a,b, 2014a) and

Dorfmann & Ogden (2014c), while the influence of deformation dependent permittivity on

stability considerations has been addressed in Zhao & Suo (2008), Liu et al. (2010) and

Jimenez & McMeeking (2013). The problem of stability of an electroelastic tube under

internal and external pressure is considered in the next chapter of this thesis.

To incorporate a fibre structure within the constitutive law is feasible but requires a

more involved theory with a much larger set of invariants than those considered here in

general, as exemplified in the case of a transversely isotropic electroelastic material by

Bustamante (2009).



Chapter 4

Bifurcation of Electroelastic Circular

Cylinders

4.1 Introduction

In the previous chapter we studied in detail the problem of inflation and extension of a

cylindrical circular electroelastic tube with closed ends with compliant electrodes at its

curved boundaries. The obtained solution for this problem preserves the perfect cylindri-

cal shape of the tube, although we know that inflation of a tube may lead sometimes to its

bulging, for example, as it was discussed briefly in Introduction of this thesis. In order to

capture these additional solutions (now for the more general case which accounts for elec-

tromechanical effects) we use the theory of small incremental deformations superimposed

on a finitely deformed electroelastic body. The solutions represent curves which show for

which values of circumferential stretch and axial stretch with fixed wall thicknesses and

fixed electric parameters the configuration of the tube may become unstable and the tube

may adopt a configuration which differs from perfect cylindrical shape. We start this chap-

ter formulating stress components. In this chapter we use a slightly different formulation

for stress components and we repeat this Section here with some appropriate changes.

Note that in order to have equations consistent with Haughton & Ogden (1979) in this

chapter we use a different order for the cylindrical polar coordinates and corresponding

principal stretches. Therefore, with respect to the cylindrical polar coordinates θ, z, r and

their respective counterparts in the reference configuration Θ, Z, R we have the following

sequence of stretches

λ1 = λθ = λ, λ2 = λz, λ3 = λr. (4.1)

52



CHAPTER 4. BIFURCATION OF ELECTROELASTIC CIRCULAR CYLINDERS 53

Thus, the deformation gradient is diagonal F = diag[λ, λz, λr]. Also, changing this

sequence affects expression (3.19), which for the present case changes to

[
DL] =




0

0

λλzDr


 =




0

0

DLR


 . (4.2)

4.2 Stress components

Let us now consider Ω∗ as a function of principal stretches λ1, λ2, λ3 and electromechanical

invariants I4, I5, I6. Recognizing the fact that in the present problem the only electrical

variable is I4 we can consider a function Ω̂∗ such that

Ω̂∗(λ1, λ2, λ3, I4) = Ω∗(λ1, λ2, λ3, I4, I5, I6). (4.3)

This allows us to obtain simple expressions for principal components of the Cauchy stress

tensor τii (i=1, 2, 3)1

τii = τi − p∗ (i = 1, 2, 3), (4.4)

where

τi = λi
∂Ω̂∗

∂λi
(i = 1, 2, 3). (4.5)

From the incompressibility condition (2.4) we can conclude that we have only two inde-

pendent principal stretches. Therefore, we can express λ3 in terms of λ1 and λ2 and we

introduce a new function w∗, such that

ω∗(λ1, λ2, I4) = Ω̂∗(λ1, λ2, λ3, I4). (4.6)

This allows us to write

τ11 − τ33 = λω∗λ, τ22 − τ33 = λzω
∗
λz , (4.7)

where ω∗λ, ω
∗
λz

denote derivatives ∂ω∗/∂λ, ∂ω∗/∂λz.

Expression (3.23) can now be rewritten as

Er = 2λ2λ2z
∂ω∗

∂I4
Dr. (4.8)

According to Gauss’s theorem, we have no field outside the tube, therefore by (2.11) the

Maxwell stress is zero. Thus, we have only mechanical load due to a pressure P inside the

tube applied to the inner surface at r = a and no loads at r = b

τrr = −P on r = a, τrr = 0 on r = b. (4.9)
1no summation for the subscript i.
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In this problem the equilibrium equation divτ = 0 reduces to

r
dτrr
dr

= τθθ − τrr = λω∗λ. (4.10)

In the previous expression we have used (3.31). Integrating (3.36) and using the boundary

conditions (3.35) we have ∫ 0

−P
dτrr =

∫ b

a
λω∗λ

dr

r
. (4.11)

Therefore,

P =

∫ b

a
λω∗λ

dr

r
. (4.12)

In some cases it is convenient to change the variable of integration from r to λ. To this

end, we rearrange and differentiate (3.3)1 with respect to r, taking into account that λ

depends on r. We have

r
dλ

dr
= −λ(λ2λz − 1). (4.13)

Therefore, expression (3.38) can rewritten as

P =

∫ λa

λb

(λ2λz − 1)−1ω∗λdλ. (4.14)

From (3.4) we see that λb depends on λa. Therefore, assuming that λz is known, the

previous relation gives P as a function of λa and invariant I4 = Q2(a)/4π2L2A2, which is

known for a given charge Q(a) = −Q(b).

Similarly, since b =
√
a2 + λ−1z (B2 −A2) we see that (3.38) provides a relationship

between pressure and the inner radius a and invariant I4.

4.3 Bifurcation analysis

In the present setting we use cylindrical polar coordinates θ, z, r with the corresponding

unit basis vectors e1, e2, e3. Derivatives in (2.37) denoted by subscripts with commas

(·),k can now be specified as ∂(·)/r∂θ, ∂/∂z, ∂/∂r for k = 1, 2, 3, respectively. For the

cylindrical polar coordinates in (2.37) the only non-zero scalar products ei · ej,k are

e1 · e3,1 = −e3 · e1,1 =
1

r
. (4.15)

The increment in the position vector x of a point in the current configuration is

ẋ = ve1 + we2 + ue3. (4.16)
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The components of L on the basis e1, e2, e3 can be calculated as



(u+ vθ)/r vz vr

wθ/r wz wr

(uθ − v)/r uz ur


 , (4.17)

where the subscripts θ, z, r are corresponding partial derivatives.

For an incompressible material we can write

trL = (u+ vθ)/r + wz + ur = 0. (4.18)

4.3.1 Prismatic bifurcations

For prismatic bifurcations we assume that u, v and w are independent of z. Furthermore,

we assume that w = 0, the justification of which will be mentioned later in this section.

We will specialize here previous expressions.

The gradient of the deformation displacement vector ẋ will specialize to



(u+ vθ)/r 0 vr

0 0 0

(uθ − v)/r 0 ur


 , (4.19)

Therefore, incompressibility condition reduces to

u+ vθ + rur = 0. (4.20)

Equation (4.20) is satisfied if we define function φ(θ, r) such that

u =
φ,θ
r
, v = −φ,r. (4.21)

For i = 1, 3 expression (2.37) gives respectively

Ṫ011,1 + Ṫ031,3 +
1

r
(Ṫ031 + Ṫ013) = 0, (4.22)

Ṫ013,1 + Ṫ033,3 +
1

r
(Ṫ033 − Ṫ011) = 0. (4.23)

In what follows we will consider the case when the electric field is generated by the

electrodes attached to the boundaries of the hollow tube. Therefore, according to Gauss’s

theorem there is no field outside the material. For the considered underlying deformation,

we have Fij = 0 for i 6= j, and for radial electric displacement field DL1 = DL2 = 0 the
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required non-zero values of electroelastic moduli tensors A∗0, A∗0, A∗0 can be obtained from

the general expressions given in Section 2.2.2. Therefore, we can write using (2.51)1

Ṫ011 = A∗01111L11 +A∗01133L33 + pL11 − ṗ+ A∗011|3ḊL03, (4.24)

Ṫ013 = A∗01313L31 +A∗01331L13 + pL13 + A∗013|1ḊL01, (4.25)

Ṫ031 = A∗03131L13 +A∗03113L31 + pL31, (4.26)

Ṫ033 = A∗03311L11 +A∗03333L33 + pL33 − ṗ+ A∗033|3ḊL03. (4.27)

Since there is no dependence on z, respective derivatives with respect to the variable z are

zero in (4.22) and (4.23).

Substituting these expressions into (4.22) and (4.23) and using incompressibility con-

dition (4.20) more than once we find that (4.22) and (4.23) give respectively

ṗθ =[r(A∗′03113 + p∗
′
) +A∗01313](uθ − v)/r + (rA∗′03131 +A∗03131)vr+ (4.28)

+A∗03131rvrr + (A∗01331 +A∗01133 −A∗01111)urθ + A∗011|3ḊL03,θ + A∗013|1ḊL01,

ṗr =[r(A∗′03333 + p∗
′ −A∗′01133) +A∗03333 +A∗01111 − 2A∗01133]ur/r+ (4.29)

+ (A∗03333 −A∗01133)urr +A∗01313(uθθ − vθ)/r2 +A∗01331vrθ/r+

+ A∗013|1ḊL01,θ/r + A∗
′

033|3ḊL03 + A∗033|3(ḊL03,r + ḊL03/r)− A∗011|3ḊL03/r,

where prime denotes differentiation with respect to r.

In the beginning of this section we assumed that w = 0. Without this assumption

calculations shows that we can still obtain expressions (4.28) and (4.29). For i = 2 from

(2.37) we get

Ṫ012,1 + Ṫ032,3 +
1

r
Ṫ032 = 0, (4.30)

where derivative with respect to z again was omitted for prismatic case. The expressions

for the other terms are

Ṫ012 = A∗01212L21, Ṫ032 = A∗03232L23. (4.31)

Therefore, (4.30) gives uncoupled equation for w

A∗01212wθθ/r +A∗′03232rwr +A∗03232(rwrr + wr) = 0, (4.32)
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which can be solved for w. This solution does not affect the shape of a cross-section of a

cylinder, and therefore, we may set it equal to zero, which was done in the beginning of

this section.

For the present case the governing equation (2.32)1 reduces to

∂(rĖL0θ)

∂r
− ∂ĖL0r

∂θ
= 0. (4.33)

From (2.51)2 we calculate

ĖL0θ = ĖL01 = A∗013|1L31 + A∗011ḊL01, (4.34)

ĖL0r = ĖL03 = A∗011|3L11 + A∗033|3L33 + A∗033ḊL03. (4.35)

Therefore, equation (4.33) gives

A∗013|1
uθ − v
r

+ A∗011ḊL01 + A∗
′

013|1(uθ − v) + A∗013|1
(uθr − vr)r − uθ + v

r
(4.36)

+ A∗
′

011rḊL01 + A∗011rḊL01,r − A∗011|3
uθ + vθθ

r
− A∗033|3urθ − A∗033ḊL03,θ = 0.

The governing equation (2.32)2 reduces to

∂(rḊL0r)

∂r
+
∂ḊL0θ

∂θ
= 0. (4.37)

The previous equation will be satisfied if we define a function ψ(θ, r) such that

ḊL0r =
ψ,θ
r
, ḊL0θ = −ψ,r. (4.38)

Eliminating ṗr and ṗθ in (5.49) and (5.52) by cross-differentiation and using expressions

(4.21) and (4.38), after some rearrangements, we can get two coupled equations for φ and
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ψ:

r4A∗03131φ,rrrr +A∗01313φ,θθθθ (4.39)

− (2A∗01331 + 2A∗01133 −A∗01111 −A∗03333)r2φ,θθrr
+ (2r4A∗′03131 + 2r3A∗03131)φ,rrr
−
[
(A∗03333 +A∗01111 − 2A∗01331 − 2A∗01133)r

+ (2A∗′01331 + 2A∗′01133 −A∗
′

01111 −A∗
′

03333)r
2
]
φ,θθr

−
[
2A∗01331 −A∗01111 −A∗03333 + 2A∗01133 − 2A∗01313

+ (A∗′01313 − 2A∗′01331 − 2A∗′01133 +A∗′01111 +A∗′03333)r

+ (A∗′′01331 + p∗
′′
)r2
]
φ,θθ

−
[
A∗′01331 + p∗

′
+A∗01313/r − 2A∗′03131 − rA∗

′′
03131

]
r3φ,rr

−
[
A∗′′01331 + p∗

′′
+A∗′01313/r −A∗01313/r2

]
r3φ,r

− (A∗011|3 + A∗013|1 − A∗033|3)r
2ψ,θθr − (A∗

′

011|3 − A∗
′

033|3)r
2ψ,θθ

+ A∗013|1r
3ψ,rr + A∗

′

013|1r
3ψ,r = 0,

(A∗013|1 + A∗011|3 − A∗033|3)rφ,θθr + (A∗033|3 − A∗013|1 − A∗011|3 + A∗
′

013|1r)φ,θθ (4.40)

+ A∗013|1r
2φ,rr + A∗

′

013|1r
2φ,r − r3A∗011ψ,rr − A∗033rψ,θθ − (A∗011 + rA∗

′
011)r

2ψ,r = 0.

Equation (4.40) was obtained from (4.36).

Now we will specialize the boundary condition (2.35). Since for the present case when

electric field is generated by electrodes there is no field outside the material. We have

ṪT
0 n = ṫA0 =




PLTn− Ṗn on r = a,

0 on r = b.

(4.41)

Calculations show that

rvr + uθ − v = 0 on r = a, b. (4.42)

(A∗03333 −A∗03311 + τ3)ur − ṗ+ A∗033|3ḊL03 =




−Ṗ on r = a,

0 on r = b.

(4.43)

The third component of (4.41) is satisfied automatically.

Boundary conditions (4.42) and (4.43) can be written in terms of functions φ and ψ:

r2φ,rr − rφ,r − φ,θθ = 0 on r = a, b, (4.44)
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r(A∗03333 − 2A∗01133 − 2A∗01331 +A∗03131 +A∗01111)φ,θθr + r3A∗03131φ,rrr (4.45)

− (rA∗′03131 +A∗03333 − 2A∗01133 − 2A∗01331 + 2A∗03131 +A∗01111)φ,θθ
+ r2(rA∗′03131 +A∗03131)φ,rr − r(rA∗

′
03131 +A∗03131)φ,r

+ r(A∗033|3 − A∗011|3)ψ,θθ + r2A∗013|1ψ,r = 0 on r = a, b.

In order to obtain (4.45) we differentiated (4.43) with respect to θ, set Ṗ = 0 and used

(4.28).

In order to have equations consistent with Haughton & Ogden (1979) we write

φ = rfn(r) sinnθ and ψ = gn(r) sinnθ. (4.46)

The governing equations (4.39) and (4.40) are now can be expressed in terms of func-

tions fn(r) and gn(r) and their derivatives

r{A∗03131r3f ′′′n + (rA∗′03131 + 3A∗03131)r2f ′′n (4.47)

+ [rA∗′03131 −A∗03131 + n2(2A∗01331 + 2A∗01133 −A∗01111 −A∗03333)]rf ′n}′

+ (n2 − 1)[r2A∗′′03131 + rA∗′03131 + (n2 − 1)A∗03131 + n2(τ1 − τ3)]fn
+ A∗013|1r

2g′′n + A∗
′

013|1r
2g′n + (A∗011|3 + A∗013|1 − A∗033|3)rn

2g′n

+ (A∗
′

011|3 − A∗
′

033|3)rn
2gn = 0,

r2A∗013|1f
′′
n + [r2A∗

′

013|1 + 2rA∗013|1 − rn2(A∗013|1 + A∗011|3 − A∗033|3)]f
′
n (4.48)

+ r(A∗
′

013|1 − n2A∗
′

013|1)fn − r2A∗011g′′n − (A∗011 + rA∗
′

011)rg
′
n + A∗033n

2gn = 0.

In the governing equation (4.47) we have used the connection

p∗
′′

= A∗′′03131 −A∗
′′

01331 − (A∗03131 −A∗01313)/r2 + (A∗′03131 −A∗
′

01313)/r, (4.49)

which can be obtained from (3.36), (4.4) and (2.57).

Boundary conditions (4.44) and (4.45) can be rewritten as

r2f ′′n + rf ′n + (n2 − 1)fn = 0 on r = a, b, (4.50)

A∗03131r3f ′′′n + (rA∗′03131 + 4A∗03131)r2f ′′n (4.51)

+ [rA∗′03131 − (n2 − 1)A∗03131 + n2(2A∗01331 + 2A∗01133 −A∗01111 −A∗03333)]rf ′n
+ (n2 − 1)(rA∗′03131 +A∗03131)fn − n2(A∗033|3 − A∗011|3)gn

+ A∗013|1rg
′
n = 0 on r = a, b.
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Electrical boundary conditions (2.33) reduce to

ĖL01 = ĖL0θ = 0 on r = a, b. (4.52)

Boundary conditions (4.52) can be written in terms of functions φ and ψ and fn and gn,

respectively, as

A∗013|1(φ,θθ + rφ,r)/r
2 − A∗011ψ,r = 0 on r = a, b, (4.53)

A∗013|1[rf
′
n + (1− n2)fn]− A∗011rg

′
n = 0 on r = a, b. (4.54)

Boundary conditions (2.34) reduce to

ḊL0r =




−σ̇F0b on r = b,

σ̇F0a on r = a,

(4.55)

where σ̇F0 = σ̇FdS/ds is the increment of the free surface charge σF per unit area of ∂B,
and dS/ds is the ratio of area elements in ∂Br and ∂B. For the considered problem free

surface charges at the boundaries per unit area are different by the absolute value (and

sign, of course). Therefore, in general increments will be also different at the boundaries.

Thus, we can write

σ̇F0a = σ̇F|r=a
dS

ds
= σ̇F|r=a

A

a
λ−1z = σ̇F|r=aλ−1a λ−1z (4.56)

at the inner boundary, and

σ̇F0b = σ̇F|r=b
dS

ds
= σ̇F|r=b

B

b
λ−1z = σ̇F|r=aλ−1b λ−1z (4.57)

at the outer boundary.

In the present and following chapter we assume that boundary condition (2.34) is

satisfied implicitly, so to speak, and we do not use it directly in our calculations. Since

ḊL0r was defined as ḊL0r = ψ,θ /r the solution will lead to function ψ(θ, r) defined at the

boundaries r = a, b. Therefore, boundary condition (4.55) will be adjusted according to the

solution for function ψ. The same approach for incremental electric boundary conditions

was used in Dorfmann & Ogden (2014a).

In what follows we give non-dimensional equations. Relations (4.21) and (4.46)1 suggest

that non-dimensional function is defined as

f̂(r̂) =
fn(r)

A
. (4.58)
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Also, relations (4.38) and (4.46)2 imply that

ĝn(r̂) =
gn(r)

Dr(a)A
. (4.59)

The other non-dimensional quantities are defined as they are for axisymmetric bifurcations.

Axisymmetric bifurcations will be discussed in the next section of this chapter. We also

rearrange the governing equation (4.47) to make it more suitable for MATLAB (2014) and

we introduce new variables

ŷ1(r̂) = f̂n(r̂), ŷ2(r̂) = f̂ ′n(r̂), ŷ3(r̂) = f̂ ′′n(r̂), (4.60)

ŷ4(r̂) = f̂ ′′′n (r̂), ŷ5(r̂) = ĝn(r̂), ŷ6(r̂) = ĝ′n(r̂),

so that the governing equations (4.47) and (4.48) can be rewritten as a non-dimensional

system of 6 ordinary differential equations. The result of this manipulation is as follows

ŷ′1 = ŷ2, (4.61)

ŷ′2 = ŷ3,

ŷ′3 = ŷ4,

Â∗03131r̂4ŷ′4 + (6r̂3Â∗03131 + 2r̂4Â∗′03131)ŷ4 + {7r̂3Â∗′03131 + r̂4Â∗′′03131 + 5r̂2Â∗03131 + n2r̂2Q̂(r̂)}ŷ3+

(r̂3Â∗′′03131 + n2r̂2Q̂′(r̂) + r̂2Â∗′03131 − r̂Â∗03131 + n2r̂Q̂(r̂))ŷ2 + (n2 − 1)(r̂2Â∗′′03131 + r̂Â∗′03131+

(n2 − 1)Â∗03131 + n2(τ̂1 − τ̂3))ŷ1 + Â∗013|1r̂
2σ̂2faŷ

′
6 + {Â∗′013|1r̂2 + (Â∗011|3 + Â∗013|1 − Â∗033|3)r̂n

2}σ̂2faŷ6+

(Â∗
′

011|3 − Â∗
′

033|3)r̂n
2σ̂2faŷ5 = 0,

ŷ′5 = ŷ6,

r̂2Â∗013|1ŷ3 + [r̂2Â∗
′

013|1 + 2r̂Â∗013|1 − r̂n2(Â∗013|1 + Â∗011|3 − Â∗033|3)]ŷ2

+ r̂(Â∗
′

013|1 − n2Â∗
′

013|1)ŷ1 − r̂2Â∗011ŷ′6 − (Â∗011 + r̂Â∗
′

011)r̂ŷ6

+ Â∗033n
2ŷ5 = 0,

where for brevity we defined function

Q̂(r̂) = 2Â∗01331 + 2Â∗01133 − Â∗01111 − Â∗03333, (4.62)

and non-dimensional electric parameter was defined as

σ̂2fa =
D2
r(a)

εµ
. (4.63)

Also, we non-dimensionalize the boundary conditions (4.50), (4.51) and (4.54) and express

them in terms of new variables

r̂2ŷ3 + r̂ŷ2 + (n2 − 1)ŷ1 = 0 on r̂ = â, b̂, (4.64)
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Â∗03131r̂3ŷ4 + (r̂Â∗′03131 + 4Â∗03131)r̂2ŷ3+ (4.65)

[r̂Â∗′03131 − (n2 − 1)Â∗03131 + n2(2Â∗01331 + 2Â∗01133 − Â∗01111 − Â∗03333)]r̂ŷ2+

+ (n2 − 1)(r̂Â∗′03131 + Â∗03131)ŷ1 − n2(A∗033|3 − A∗011|3)σ̂
2
faŷ5+

+ Â∗013|1r̂σ̂
2
faŷ6 = 0 on r̂ = â, b̂,

Â∗013|1[r̂ŷ2 + (1− n2)ŷ1]− Â∗011r̂ŷ6 = 0 on r̂ = â, b̂. (4.66)

We use the neo-Hookean electroelastic material (3.46) and we calculate electroelastic

moduli for this material:

A∗03131 = A∗03333 = 2λ23Ω
∗
1 + 2D2

3Ω∗5, (4.67)

A∗01313 = A∗01111 = 2λ21Ω
∗
1,

A∗01331 = A∗01133 = 0,

2A∗013|1 = A∗033|3 = 4D3Ω
∗
5, A∗011|3 = 0,

A∗011 = A∗033 = 2Ω∗5, τ1 − τ3 = A∗01313 −A∗03131.

In non-dimensional form these moduli can be expressed as functions of r̂ as below

Â∗03131 = Â∗03333 =
λ−1z (r̂2A2 − a2) + λ−2z A2 + σ̂2faa

2

r̂2A2
, (4.68)

Â∗01313 = Â∗01111 =
r̂2A2

λz(r̂2A2 − a2) +A2
,

Â∗01331 = Â∗01133 = 0,

2Â∗013|1 = Â∗033|3 =
2a

r̂A
, Â∗011|3 = 0,

Â∗011 = Â∗033 = 1, τ̂1 − τ̂3 = Â∗01313 − Â∗03131.

The results of our calculations are given in Table 4.1.

We used the electroelastic neo-Hookean model (3.46) and we set λz = 1 for all cases.

We were changing electroelastic parameter σ̂fa and we calculated the values of λa (and

hence λb) at which prismatic bifurcations become possible for mode number n = 2. The

numerical scheme for this calculation is described in Section 4.3.2. First, we note that

the results for neo-Hookean electroelastic material with σ̂fa = 0 are almost identical to

those reported in Haughton & Ogden (1979) for Three-term energy function. Haughton &

Ogden (1979) also confirmed that under external pressure the values of λb (or equivalently

λa) remain almost the same for many strain energy functions for pure elastic materials, i.e.

essentially they do not depend on a particular form of energy function.
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Second, an important difference for the present electroelastic material is that unlike

the case for pure elastic materials the present example shows that due to electric field

electrically sensitive elastic material may bifurcate into a prismatic configuration under

internal pressure (P > 0). In Haughton & Ogden (1979) it was reported that prismatic

modes are possible for neo-Hookean and Three-term pure elastic materials under external

pressure only (P < 0), this can also be observed here in Table 4.1 for the case σ̂fa = 0: all

non-dimensional pressures at which prismatic bifurcations are possible are negative. The

values P/µ in Table 4.1 were calculated using formula (3.53) and connection q = σ̂2faεµa
2λ2z.

4.3.2 Axisymmetric bifurcations

For axisymmetric bifurcations we assume that u, v and w are independent of θ. Further-

more, we assume that v = 0.

The gradient of the deformation displacement vector ẋ will specialize to



u/r 0 0

0 wz wr

0 uz ur


 . (4.69)

Therefore, incompressibility condition will reduce to

u/r + wz + ur = 0. (4.70)

Equation (4.70) is satisfied if we define function φ(z, r) such that

u =
φ,z
r
, w = −φ,r

r
. (4.71)

For the axisymmetric motions expression (2.37) gives for i = 3, 2, respectively

Ṫ023,2 + Ṫ033,3 +
1

r
(Ṫ033 − Ṫ011) = 0, (4.72)

Ṫ022,2 + Ṫ032,3 +
1

r
Ṫ032 = 0. (4.73)

In (4.72) and (4.73) derivatives with respect to θ were omitted. Calculating from (2.51)1

we have

Ṫ023 = A∗02323L32 +A∗02332L23 + pL23 + A∗023|2ḊL02 (4.74)

Ṫ032 = A∗03232L23 +A∗03223L32 + pL32. (4.75)

Ṫ011 = A∗01111L11 +A∗01122L22 +A∗01133L33 + pL11 − ṗ+ A∗011|3ḊL03, (4.76)
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Ṫ022 = A∗02211L11 +A∗02222L22 +A∗02233L33 + pL22 − ṗ+ A∗022|3ḊL03, (4.77)

Ṫ033 = A∗03311L11 +A∗03322L22 +A∗03333L33 + pL33 − ṗ+ A∗033|3ḊL03. (4.78)

Substitution of the previous expressions in (4.72) and (4.73) and use of (4.70) give

respectively

ṗr =(rA∗′01133 −A∗01111)u/r2 + (rA∗′03333 + rp∗
′
+A∗03333)ur/r (4.79)

+A∗03333urr +A∗02323uzz + (rA∗′02233 +A∗02233 −A∗01122)wz/r

+ (A∗02233 +A∗03223)wrz + A∗023|2ḊL02,z

+ A∗
′

033|3ḊL03 + A∗033|3ḊL03,r + (A∗033|3 − A∗011|3)ḊL03/r,

ṗz =A∗03232wrr + (rA∗′03232 +A∗03232)wr/r +A∗02222wzz + (A∗02233 +A∗03223)urz (4.80)

+ (rA∗′03223 + rp∗
′
+A∗03223 +A∗01122)uz/r + A∗022|3ḊL03,z.

For i = 1 we have

Ṫ021,2 + Ṫ031,3 +
1

r
(Ṫ031 + Ṫ013) = 0, (4.81)

where again the derivative with respect to θ was omitted. The other terms will be

Ṫ021 = A∗02121L12, (4.82)

Ṫ031 = A∗03131L13 +A∗03113L31 + pL31, (4.83)

Ṫ013 = A∗01313L31 +A∗01331L13 + pL13 + A∗013|1ḊL01. (4.84)

Note that we assume that ḊL0θ = ḊL01 = 0. Substitution of the previous expressions into

(4.81) and use of (4.70) give

(rA∗′03131 +A∗03131)(rvr − v)/r2 +A∗02121vzz +A∗03131vrr = 0, (4.85)

which is satisfied, since we assumed that v = 0. Non-zero solutions of (4.85) are of little

interest, and we set v = 0. In (4.85) we have used connection

p∗
′

= A∗′03131 −A∗
′

01331 + (A∗03131 −A∗01313)/r, (4.86)

which can be obtained from the equilibrium equation (3.36), relation (4.4) and connections

for electroelastic moduli (2.57).

The governing equation (2.32)1 reduces to

∂ĖL0r

∂z
− ∂ĖL0z

∂r
= 0. (4.87)
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Using (2.51)2 we calculate

ĖL0z = ĖL02 = A∗023|2uz + A∗022ḊL02, (4.88)

ĖL0r = ĖL03 = A∗011|3u/r + A∗022|3wz + A∗033|3ur + A∗033ḊL03. (4.89)

Substituting (4.88) and (4.89) into (4.87) we have

A∗011|3uz/r + A∗022|3wzz + A∗033|3urz + A∗033ḊL03,z (4.90)

− A∗
′

023|2uz − A∗023|2uzr − A∗
′

022ḊL02 − A∗022ḊL02,r = 0.

The governing equation (2.32)2 reduces to

∂(rḊL0r)

∂r
+
∂(rḊL0z)

∂z
= 0. (4.91)

Equation (4.91) will be satisfied if we define a function ψ(z, r) such that

ḊL0r =
ψ,z
r
, ḊL0z = −ψ,r

r
. (4.92)

Again cross-differentiation of (4.79) and (4.80) and some rearrangement give

A∗03232r3φ,rrrr +A∗02323r3φ,zzzz − (2A∗02233 + 2A∗03223 −A∗02222 −A∗03333)r3φ,rrzz (4.93)

− (2r2A∗03232 − 2r3A∗′03232)φ,rrr −
[
(A∗02222 − 2A∗02233 − 2A∗03223 +A∗03333)r2

+ (2A∗′02233 + 2A∗′03223 −A∗
′

02222 −A∗
′

03333)r
3
]
φ,rzz

+ (3A∗03232r − 3A∗′03232r2 +A∗′′03232r
3)φ,rr

−
[
(2A∗02233 − 2A∗01122 − rA∗

′
01133 +A∗01111 −A∗03333)r

+ (A∗′01122 −A∗
′

02233 −A∗
′

03223 +A∗′03333)r2 + (A∗′′03223 + p∗
′′
)r3
]
φ,zz

− (3A∗03232 − 3A∗′03232r +A∗′′03232r
2)φ,r − (A∗022|3 + A∗023|2 − A∗033|3)r

3ψ,zzr

−
[
(A∗011|3 − A∗022|3)r

2 + (A∗
′

022|3 − A∗
′

033|3)r
3
]
ψ,zz = 0.

From (4.90) we have

r(A∗033|3 − A∗022|3 − A∗023|2)φ,rzz (4.94)

+ (A∗011|3 − A∗033|3 + A∗023|2 − rA∗
′

023|2)φ,zz

+ A∗033rψ,zz + A∗022rψ,rr + (rA∗
′

022 − A∗022)ψ,r = 0.

Specialization of the boundary condition (2.35) leads to

wr + uz = 0 on r = a, b, (4.95)

(A∗03333−A∗02233+τ3)ur+(A∗03311−A∗03322)u/r− ṗ+A∗033|3ḊL03 = 0 on r = a, b. (4.96)
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In (4.95) and (4.96) we set Ṗ = 0. The third component of (2.35) is satisfied automatically.

Boundary conditions (4.95) and (4.96) can be expressed in terms of functions φ and ψ:

rφ,zz − rφ,rr + φ,r = 0 on r = a, b, (4.97)

r2(A∗02222 +A∗03333 − 2A∗02233 + τ3 −A∗03223)φ,zzr + r2A∗03232φ,rrr (4.98)

+ r(A∗01133 − rA∗
′

03232 + rτ
′
33 −A∗01122 −A∗03333 − τ3 +A∗02233)φ,zz

+ r(rA∗′03232 −A∗03232)φ,rr + (A∗03232 − rA∗
′

03232)φ,r

+ r2(A∗033|3 − A∗022|3)ψ,zz = 0 on r = a, b.

In order to have a consistency with Haughton & Ogden (1979) we write

φ(z, r) = rf(r) cosαz and ψ(z, r) = g(r) cosαz. (4.99)

The governing equations (4.93) and (4.94) can be expressed respectively

r4[A∗03232f ′′′ + (rA∗′03232 + 2A∗03232)f ′′/r + (rA∗′03232 −A∗03232)f ′/r2 (4.100)

− (rA∗′03232 −A∗03232)f/r3]′ + α2r2[(2A∗02233 + 2A∗03223 −A∗03333 −A∗02222)r2f ′′

+ (2rA∗′03223 + 2rA∗′02233 − rA∗
′

03333 − rA∗
′

02222 −A∗03333 −A∗02222 + 2A∗02233 + 2A∗03223)rf ′

+ (r2A∗′′03223 + r2p∗
′′

+ rA∗′03223 + rA∗′01122 − rA∗
′

01133 − rA∗
′

02222

+ rA∗′02233 +A∗01111 +A∗02222 − 2A∗01122 − 2A∗03223)f ] + α4r4A∗02323f

+ α2r3(A∗022|3 + A∗023|2 − A∗033|3)g
′ + α2[(A∗011|3 − A∗022|3)r

2 + (A∗
′

022|3 − A∗
′

033|3)r
3]g = 0,

α2r2(A∗033|3 − A∗022|3 − A∗023|2)f
′ + α2(A∗011|3r − A∗022|3r − A∗

′

023|2r
2)f (4.101)

− A∗022rg
′′ − (A∗

′
022r − A∗022)g

′ + α2rA∗033g = 0.

The boundary conditions (4.97) and (4.98) can be rewritten as

r2f ′′ + rf ′ + (α2r2 − 1)f = 0 on r = a, b, (4.102)

A∗03232r3f ′′′ + (rA∗′03232 + 2A∗03232)r2f ′′ + (rA∗′03232 −A∗03232)rf ′ (4.103)

− (rA∗′03232 −A∗03232)f − α2r2[(A∗03333 +A∗02222 − 2A∗02233 −A∗03223 + τ3)rf
′

− (rA∗′03232 − rτ
′
33 +A∗03232 − τ3 +A∗01122 −A∗02222 +A∗02233 −A∗01133)f ]

− α2r2(A∗033|3 − A∗022|3)g = 0 on r = a, b.

The electrical boundary conditions (2.33) reduce to

ĖL02 = ĖL0z = 0 on r = a, b. (4.104)
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Boundary conditions (4.104) can be written in terms of functions φ and ψ and f and g,

respectively, as

A∗023|2φ,zz − A∗022ψ,r = 0 on r = a, b, (4.105)

A∗023|2α
2rf + A∗022g

′ = 0 on r = a, b. (4.106)

Boundary conditions (2.34) reduce to

ḊL0r =




−σ̇F0b on r = b,

σ̇F0a on r = a.

(4.107)

Here again we do not require boundary condition (4.107) to be satisfied explicitly. We

assume that this boundary condition is adjusted according the solution obtained with the

boundary condition (4.104), satisfied explicitly.

We introduce new variables

y1 = f(r), y2 = f ′(r), y3 = f ′′(r), y4 = f ′′′(r), y5 = g(r), y6 = g′(r). (4.108)

Thus, we can rewrite the governing equations (4.100) and (4.101) as a system of six ordinary

differential equations

y′1 = y2, y′2 = y3, y′3 = y4, y′5 = y6, (4.109)

r4A∗03232y′4 + (2r4A∗′03232 + 2r3A∗03232)y4
+ [r3(3A∗′03232 + rA∗′′03232)− 3r2A∗03232 + α2r4(2A∗02233 + 2A∗03223 −A∗03333 −A∗02222)]y3
+ [r3A∗′′03232 − 3r2A∗′03232 + 3rA∗03232 + α2r3(2rA∗′03223 + 2rA∗′02233 − rA∗

′
03333

− rA∗′02222 −A∗03333 −A∗02222 + 2A∗02233 + 2A∗03223)]y2
+ [3(rA∗′03232 −A∗03232)− r2A∗

′′
03232 + α2r2(r2A∗′′03223 + r2p∗

′′

+ rA∗′03223 + rA∗′01122 − rA∗
′

01133 − rA∗
′

02222 + rA∗′02233 +A∗01111 +A∗02222
− 2A∗01122 − 2A∗03223) + α4r4A∗02323]y1
+ α2r3(A∗022|3 + A∗023|2 − A∗033|3)y6 + α2[(A∗011|3 − A∗022|3)r

2 + (A∗
′

022|3 − A∗
′

033|3)r
3]y5 = 0,

α2r2(A∗033|3 − A∗022|3 − A∗023|2)y2 + α2(A∗011|3r − A∗022|3r − A∗
′

023|2r
2)y1

− A∗022ry
′
6 − (A∗

′
022r − A∗022)y6 + α2rA∗033y5 = 0.
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Boundary conditions in terms of new variables take the form

r2y3 + ry2 + (α2r2 − 1)y1 = 0, (4.110)

A∗03232r3y4 + (rA∗′03232 + 2A∗03232)r2y3 + (rA∗′03232 −A∗03232)ry2
− (rA∗′03232 −A∗03232)y1 − α2r2[(A∗03333 +A∗02222 − 2A∗02233 −A∗03223 + τ3)ry2

− (rA∗′03232 − rτ
′
33 +A∗03232 − τ3 +A∗01122 −A∗02222 +A∗02233 −A∗01133)y1]

− α2r2(A∗033|3 − A∗022|3)y5 = 0,

A∗023|2α
2ry1 + A∗022y6 = 0 on r = a, b.

In order to proceed further we use incremental boundary condition

u = 0 on z = 0, l, (4.111)

thus radial displacements at the ends of the cylinder are not allowed. Therefore, from the

previous relation, (4.71)1 and (4.99)1 we obtain the condition for α

α =
πn

l
=

πn

λzL
, (4.112)

where n = 1, 2, 3, ... is the axisymmetric mode number. We see from 4.112 that α may be

changed either by mode number n or the length of the cylinder L. We fix n = 1 and we

perform our analysis for different lengths of the cylinder.

We define initial values for the system (4.109) in the form

yi(a) = δik (i = 1, ..., 6), (4.113)

where δik is the Kronecker delta. Each k (k = 1, ..., 6) in (4.131) corresponds to the solution

yk of the system (4.109). The general solution of (4.109) can be written in the form

y =

6∑

k=1

cky
k, (4.114)

where ck are constants.

Now we require the solution (4.114) to satisfy boundary conditions (4.110). We are

interested in the solutions (4.114), where at least one constant ck is non-zero. Substitution

of (4.114) into (4.110) leads to the vanishing of 6 × 6 determinant of coefficients of ck.

Thus, vanishing 6 × 6 determinant of coefficients of ck is a bifurcation criterion for this

problem.
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Nondimensional equations and boundary conditions (with no energy function applied):

ŷ′1 = ŷ2, ŷ′2 = ŷ3, ŷ′3 = ŷ4, ŷ′5 = ŷ6, (4.115)

r̂4Â∗03232ŷ′4 + (2r̂4Â∗′03232 + 2r̂3Â∗03232)ŷ4
+ [r̂3(3Â∗′03232 + r̂Â∗′′03232)− 3r̂2A∗03232 + α̂2r̂4(2Â∗02233 + 2Â∗03223 − Â∗03333 − Â∗02222)]ŷ3
+ [r̂3Â∗′′03232 − 3r̂2Â∗′03232 + 3r̂Â∗03232 + α̂2r̂3(2r̂Â∗′03223 + 2r̂Â∗′02233 − r̂Â∗

′
03333

− r̂Â∗′02222 − Â∗03333 − Â∗02222 + 2Â∗02233 + 2Â∗03223)]ŷ2
+ [3(r̂Â∗′03232 − Â∗03232)− r̂2Â∗

′′
03232 + α̂2r̂2(r̂2Â∗′′03223 + r̂2p̂∗

′′

+ r̂Â∗′03223 + r̂Â∗′01122 − r̂Â∗
′

01133 − r̂Â∗
′

02222 + r̂Â∗′02233 + Â∗01111 + Â∗02222
− 2Â∗01122 − 2Â∗03223) + α̂4r̂4Â∗02323]ŷ1
+ α̂2r̂3(Â∗022|3 + Â∗023|2 − Â∗033|3)σ̂

2
faŷ6 + α̂2[(Â∗011|3 − Â∗022|3)r̂

2 + (Â∗
′

022|3 − Â∗
′

033|3)r̂
3]σ̂2faŷ5 = 0,

α̂2r̂2(Â∗033|3 − Â∗022|3 − Â∗023|2)ŷ2 + α̂2(Â∗011|3r̂ − Â∗022|3r̂ − Â∗
′

023|2r̂
2)ŷ1

− Â∗022r̂ŷ
′
6 − (Â∗

′
022r̂ − Â∗022)ŷ6 + α̂2r̂Â∗033ŷ5 = 0.

Nondimensional boundary conditions (with no energy function applied):

r̂2ŷ3 + r̂ŷ2 + (α̂2r̂2 − 1)ŷ1 = 0, (4.116)

Â∗03232r̂3ŷ4 + (r̂Â∗′03232 + 2Â∗03232)r̂2ŷ3 + (r̂Â∗′03232 − Â∗03232)r̂ŷ2
− (r̂Â∗′03232 − Â∗03232)ŷ1 − α̂2r̂2[(Â∗03333 + Â∗02222 − 2Â∗02233 − Â∗03223 + τ̂3)r̂ŷ2

− (r̂Â∗′03232 − r̂τ̂
′
33 + Â∗03232 − τ̂3 + Â∗01122 − Â∗02222 + Â∗02233 − Â∗01133)ŷ1]

− α̂2r̂2(Â∗033|3 − Â∗022|3)σ̂
2
faŷ5 = 0,

Â∗023|2α̂
2r̂ŷ1 + Â∗022ŷ6 = 0 on r = â, b̂.

We consider neo-Hookean electroelastic material

Ω∗ =
1

2
µ(I1 − 3) +

1

2
ε−1I5, (4.117)

where the constant µ is the shear modulus of the neo-Hookean material in the absence of

an electric field and the constant ε is the electric permittivity of the electroelastic material.

With the energy function specified above, electroelastic moduli take the following values

A∗03131 = A∗03232 = A∗03333 = λ23(µ+D2
3λ

2
1λ

2
2ε
−1), (4.118)

A∗01122 = A∗01133 = A∗03223 = A∗02233 = A∗01331 = 0,

A∗02222 = A∗02323 = λ22µ,

A∗01111 = A01313 = λ21µ

A∗033|3 = 2A∗023|2 = 2D3ε
−1, A∗022|3 = A∗011|3 = 0, A∗022 = A∗033 = ε−1.
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We introduce new non-dimensional variables

r̂ =
r

A
, α̂ = αA, f̂(r̂) =

f(r)

A2
, ĝ(r̂) =

g(r)

Dr(a)A2
, (4.119)

τ̂ (r̂) =
τ

µ
, p̂(r̂) =

p(r)

µ
, Â∗0(r̂) =

A∗0
µ
, Â∗0(r̂) = A∗0(r)

ε

Dr(a)
,

Â
∗
0(r̂) = A∗0ε.

For the specified energy function the governing equation (4.100) or an equivalent (4.109)

can be rewritten in a non-dimensional form

r̂4Â∗03232f̂ ′′′′ + (2r̂4Â∗′03232 + 2r̂3Â∗03232)f̂ ′′′ (4.120)

+ [r̂3(3Â∗′03232 + r̂Â∗′′03232)− 3r̂2Â∗03232 − α̂2r̂4(Â∗03333 + Â∗02222)]f̂ ′′

+ [r̂3Â∗′′03232 − 3r̂2Â∗′03232 + 3r̂Â∗03232 + α̂2r̂3(−r̂Â∗′03333 − Â∗03333 − Â∗02222)]f̂ ′

+ [3(r̂Â∗′03232 − Â∗03232)− r̂2Â∗
′′

03232 + α̂2r̂2(r̂2p̂′′ + Â∗01111 + Â∗02222) + α̂4r̂4Â∗02323]f̂

+ α̂2r̂3(Â∗023|2 − Â∗033|3)ĝ
′D

2
r(a)

εµ
− α̂2r̂3Â∗

′

033|3ĝ
D2
r(a)

εµ
= 0.

We introduce a non-dimensional quantity

σ̂fa =
σfa√
εµ
. (4.121)

Using (3.15)1 we obtain
D2
r(a)

εµ
= σ̂2fa. (4.122)

Therefore, we use σ̂fa as a non-dimensional electrical parameter which accounts for free

surface charge per unit area on the inner boundary of a tube in the deformed configuration.

Governing equation (4.101) in a non-dimensional form can be rewritten as

α̂2r̂2(Â∗033|3 − Â∗023|2)σ̂
2
faf̂
′ (4.123)

− α̂2r̂2Â∗
′

023|2σ̂
2
faf̂ − Â∗022r̂σ̂

2
faĝ
′′ + Â∗022σ̂

2
faĝ
′ + α̂2r̂Â∗033σ̂

2
faĝ = 0.

Also boundary conditions (4.102), (4.103), and (4.106) specialise in a non-dimensional form

to

r̂2f̂ ′′ + r̂f̂ ′ + (α̂2r̂2 − 1)f̂ = 0 on r̂ = â, b̂, (4.124)

Â∗03232r̂3f̂ ′′′ + (r̂Â∗′03232 + 2Â∗03232)r̂2f̂ ′′ + (r̂Â∗′03232 − Â∗03232)r̂f̂ ′ (4.125)

− (r̂Â∗′03232 − Â∗03232)f̂ − α̂2r̂2[(Â∗03333 + Â∗02222 + τ̂3)r̂f̂
′

− (r̂Â∗′03232 − r̂τ̂
′
33 + Â∗03232 − τ̂3 − Â∗02222)f̂ ]

− α̂2r̂2Â∗033|3σ̂
2
faĝ = 0 on r̂ = â, b̂,
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α̂2r̂Â∗023|2f̂ + Â∗022ĝ
′ = 0 on r̂ = â, b̂. (4.126)

Using definitions (4.119) electroelastic moduli and other quantities can be expressed in

a non-dimensional form for particular choice of energy function (4.117)

Â∗03131(r̂) = Â∗03232(r̂) = Â∗03333(r̂) =
λ−1z (r̂2A2 − a2) + λ−2z A2 + σ̂2faa

2

r̂2A2
, (4.127)

Â∗01122(r̂) = Â∗01133(r̂) = Â∗03223(r̂) = Â∗02233(r̂) = Â∗01331(r̂) = 0,

Â∗02222(r̂) = Â∗02323(r̂) = λ2z,

Â∗01111(r̂) = Â∗01313(r̂) = λ2θ =
r̂2A2

λz(r̂2A2 − a2) +A2
,

Â∗033|3(r̂) = 2Â∗023|2(r̂) =
2a

r̂A
, Â∗022|3(r̂) = Â∗011|3(r̂) = 0, Â∗022(r̂) = Â∗033(r̂) = 1,

τ̂3(r̂) = Â∗03131(r̂), τ̂ ′33(r̂) = (Â∗01313(r̂)− Â∗03131(r̂))/r̂, α̂ =
πA

λzL
,

p̂′′(r̂) = Â∗′′03131(r̂)−
1

r̂2
(Â∗03131(r̂)− Â∗01313(r̂)) +

1

r̂
(Â∗′03131(r̂)− Â∗

′
01313(r̂)).

We introduce new variables

ŷ1(r̂) = f̂(r̂), ŷ2(r̂) = f̂ ′(r̂), ŷ3(r̂) = f̂ ′′(r̂), (4.128)

ŷ4(r̂) = f̂ ′′′(r̂), ŷ5(r̂) = ĝ(r̂), ŷ6(r̂) = ĝ′(r̂).

We can rewrite the governing equations (4.120) and (4.123) in terms of new variables as a

system of six ordinary differential equations

ŷ′1 = ŷ2, ŷ′2 = ŷ3, ŷ′3 = ŷ4, ŷ′5 = ŷ6, (4.129)

r̂4Â∗03232ŷ′4 + (2r̂4Â∗′03232 + 2r̂3Â∗03232)ŷ4
+ [r̂3(3Â∗′03232 + r̂Â∗′′03232)− 3r̂2Â∗03232 − α̂2r̂4(Â∗03333 + Â∗02222)]ŷ3
+ [r̂3Â∗′′03232 − 3r̂2Â∗′03232 + 3r̂Â∗03232 + α̂2r̂3(−r̂Â∗′03333 − Â∗03333 − Â∗02222)]ŷ2
+ [3(r̂Â∗′03232 − Â∗03232)− r̂2Â∗

′′
03232 + α̂2r̂2(r̂2p̂′′ + Â∗01111 + Â∗02222) + α̂4r̂4Â∗02323]ŷ1

+ α̂2r̂3(Â∗023|2 − Â∗033|3)σ̂
2
faŷ6 − α̂2r̂3Â∗

′

033|3σ̂
2
faŷ5 = 0.

α̂2r̂2(Â∗033|3 − Â∗023|2)ŷ2

− α̂2r̂2Â∗
′

023|2ŷ1 − Â∗022r̂ŷ
′
6 + Â∗022ŷ6 + α̂2r̂Â∗033ŷ5 = 0.
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Corresponding boundary conditions in terms of new variables are

r̂2ŷ3 + r̂ŷ2 + (α̂2r̂2 − 1)ŷ1 = 0, (4.130)

Â∗03232r̂3ŷ4 + (r̂Â∗′03232 + 2Â∗03232)r̂2ŷ3 + (r̂Â∗′03232 − Â∗03232)r̂ŷ2
− (r̂Â∗′03232 − Â∗03232)ŷ1 − α̂2r̂2[(Â∗03333 + Â∗02222 + τ̂3)r̂ŷ2

− (r̂Â∗′03232 − r̂τ̂
′
33 + Â∗03232 − τ̂3 − Â∗02222)ŷ1]

− α̂2r̂2Â∗033|3σ̂
2
faŷ5 = 0,

α̂2r̂Â∗023|2ŷ1 + Â∗022ŷ6 = 0 on r̂ = â, b̂.

We define initial values for the system (4.129) in the form

ŷi(â) = δik (i = 1, ..., 6), (4.131)

where δik is the Kronecker delta. Each k (k = 1, ..., 6) in (4.131) corresponds to the solution

yk of the system (4.129). The general solution of (4.129) can be written in the form

ŷ =
6∑

k=1

ckŷ
k, (4.132)

where ck are constants.

Now we require the solution (4.132) to satisfy boundary conditions (4.130). We are

interested in the solutions (4.132), where at least one constant ck is non-zero. Substitution

of (4.132) into (4.130) leads to the vanishing of 6 × 6 determinant of coefficients of ck.

Thus, vanishing 6 × 6 determinant of coefficients of ck is a bifurcation criterion for this

problem.

Now we consider augmented Mooney-Rivlin model

Ω∗ =
1

2
µ1(I1 − 3)− 1

2
µ2(I2 − 3) +

1

2
ε−1I5, (4.133)

where µ1 ≥ 0 and µ2 ≤ 0 are material constants satisfying µ1 − µ2 = µ. In what follows

we use µ1 = 0.8µ and µ2 = −0.2µ.
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We calculate (dimensional) electroelastic moduli:

A∗03131 = 2λ23(Ω1 + λ22Ω2 +D2
3λ

2
1λ

2
2Ω5) = 0.8µλ23 + 0.2µλ−21 +D2

3ε
−1, (4.134)

A∗03232 = 2λ23(Ω1 + λ21Ω2 +D2
3λ

2
1λ

2
2Ω5) = 0.8µλ23 + 0.2µλ−22 +D2

3ε
−1,

A∗03333 = 2λ23(Ω1 + (λ21 + λ22)Ω2 +D2
3λ

2
1λ

2
2Ω5), A∗01313 = 2λ21(Ω1 + λ22Ω2),

A∗01122 = 4λ21λ
2
2Ω2 = 4λ−23 Ω2 = 0.4λ−23 µ, A∗01133 = 4λ21λ

2
3Ω2 = 4λ−22 Ω2 = 0.4λ−22 µ,

A∗03223 = −2λ23λ
2
2Ω2 = −0.2µλ−21 , A∗02233 = 4λ22λ

2
3Ω2 = 4λ−21 Ω2 = 0.4µλ−21 ,

A∗01331 = −2λ21λ
2
3Ω2 = −0.2µλ−22 , A∗02222 = 2λ22(Ω1 + (λ21 + λ23)Ω2),

A∗02323 = 2λ22(Ω1 + λ21Ω2), A∗01111 = 2λ21(Ω1 + (λ22 + λ23)Ω2),

A∗033|3 = 4D3Ω5 = 2D3ε
−1, A∗023|2 = 2D3Ω5 = D3ε

−1,

A∗022|3 = 0, A∗011|3 = 0, A∗022 = 2Ω5 = ε−1, A∗033 = 2Ω5 = ε−1.

Now we rewrite these moduli as nondimensional quantities:

Â∗03131(r̂) =
0.8[λ−1z (r̂2A2 − a2) + λ−2z A2] + 0.2[λz(r̂

2A2 − a2) +A2] + σ̂2faa
2

r̂2A2
, (4.135)

Â∗03232(r̂) =
0.8[λ−1z (r̂2A2 − a2) + λ−2z A2 + σ̂2faa

2]

r̂2A2
+ 0.2λ−2z ,

Â∗03333(r̂) =
0.8[λ−1z (r̂2A2 − a2) + λ−2z A2] + 0.2[λz(r̂

2A2 − a2) +A2] + σ̂2faa
2

r̂2A2
+ 0.2λ−2z ,

Â∗01122(r̂) = 0.4
r̂2A2

λ−1z (r̂2A2 − a2) + λ−2z A2
,

Â∗01133(r̂) = 0.4λ−2z , Â∗01331(r̂) = −0.2λ−2z ,

Â∗03223(r̂) =
−0.2[λz(r̂

2A2 − a2) +A2]

r̂2A2
, Â∗02233(r̂) =

0.4[λz(r̂
2A2 − a2) +A2]

r̂2A2
,

Â∗02222(r̂) = 0.8λ2z + 0.2
[ r̂2A2

λ−1z (r̂2A2 − a2) + λ−2z A2
+
λz(r̂

2A2 − a2) +A2

r̂2A2

]
,

Â∗02323(r̂) = 0.8λ2z +
0.2r̂2A2

λ−1z (r̂2A2 − a2) + λ−2z A2
,

Â∗01111(r̂) =
0.8r̂2A2

λz(r̂2A2 − a2) +A2
+ 0.2

[ r̂2A2

λ−1z (r̂2A2 − a2) + λ−2z A2
+ λ−2z

]
,

Â∗01313(r̂) =
0.8λ−2z r̂2A2 + 0.2r̂2A2

λ−1z (r̂2A2 − a2) + λ−2z A2
, Â∗033|3(r̂) =

2a

r̂A
, Â∗023|2(r̂) =

a

r̂A
,

Â∗022|3(r̂) = 0, Â∗011|3(r̂) = 0, Â∗022(r̂) = 1, Â∗033(r̂) = 1.
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We also need the following derivatives of moduli:

Â∗′03131(r̂) =
−1.6A2 + 1.6A2λz + (−0.4A2 − 2A2σ̂2fa)λ

2
z + 0.4a2λ2z

A2r̂3λ2z
, (4.136)

Â∗′′03131(r̂) =
4.8A2 − 4.8a2λz + (1.2A2 + 6a2σ̂2fa)λ

2
z − 1.2a2λ2z

A2r̂4λ2z
,

Â∗′03232(r̂) =
−1.6A2 + 1.6a2λz − 2a2σ̂2faλ

2
z

A2r̂3λ2z
, Â∗′′03232(r̂) =

4.8A2 + a2λz(−4.8 + 6σ̂2faλz)

A2r̂4λ2z
,

Â∗′01313(r̂) =
A2r̂(1.6A2 − 1.6a2λz + 0.4A2λ2z − 0.4a2λ3z)

[A2 + (−a2 +A2r̂2)λz]2
,

Â∗′03223(r̂) =
0.4A2 − 0.4a2λz

A2r̂3
,

Â∗′′03223(r̂) =
−1.2A2 + 1.2a2λz

A2r̂4
,

Â∗′02233(r̂) =
−0.8A2 + 0.8a2λz

A2r̂3
,

Â∗′03333(r̂) =
−1.6A2 + 1.6a2λz + (−0.4A2 − 2a2σ̂2fa)λ

2
z + 0.4a2λ2z

A2r̂3λ2z
,

Â∗′01122(r̂) =
A2r̂λ2z(0.8A

2 − 0.8a2λz)

[A2 + (−a2 +A2r̂2)λz]2
,

Â∗′02222(r̂) =
(−0.4A6 + λz(1.2a

2A4 − 0.8A6r̂2 + a2λz(−1.2a2A2 + 1.6A4r̂2 + (0.4a4 − 0.8a2A2r̂2)λz)))

r̂3(A3 + (−a2A+A3r̂2)λz)2
,

Â∗
′

033|3(r̂) =
−2a

r̂2A
, Â∗

′

023|2(r̂) =
−a
r̂2A

.

Also we use the following connections in the governing system of ODEs and boundary

conditions

τ̂3 = Â∗03131(r̂)− Â∗01331(r̂), (4.137)

τ̂ ′33(r̂) = (Â∗01313(r̂)− Â∗03131(r̂))/r̂, (4.138)

p̂′′(r̂) = Â∗′′03131(r̂)− Â∗
′′

01331(r̂)−
1

r̂2
(Â∗03131(r̂)− Â∗01313(r̂)) +

1

r̂
(Â∗′03131(r̂)− Â∗

′
01313(r̂)).

(4.139)

In Fig. (4.1 – 4.5) we show pairs of λz and λa such that bifurcation criterion is satisfied.

We were able to reproduce exactly the results obtained by Haughton & Ogden (1979)

for neo-Hookean pure elastic material. We note though that Haughton & Ogden (1979)

associated their results with the wrong values of ratios L/B. Our calculations show that

in order to obtain correct values L/B in Fig. 3 in Haughton & Ogden (1979) we need to

divide them by 2. This was also confirmed by Zhu et al. (2008).

As far as Mooney-Rivlin material is concerned, Haughton & Ogden (1979) did not

report in their paper the values of material parameters µ1 and µ2 they used for their

calculations. In our calculations we used µ1 = 0.8µ and µ2 = −0.2µ. Because of our

assumption for the values of material parameters we obviously could not reproduce the
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results of Haughton & Ogden (1979) in the exact form, nonetheless qualitatively our results

for Mooney-Rivlin material is in accordance with the results reported in their paper in

Fig. 3.

From our results we can conclude that the presence of an electric field make an electroe-

lastic tube more unstable. We see that in the presence of an electric field an electroelastic

tube can bifurcate into unstable axisymmetric configuration at lower values of circumfer-

ential stretch λa. In each figure reported here the uppermost curve corresponds to pure

elastic case (or, equivalently, to the case when there is no potential between electrodes and

thus no electric field). Increasing of an electric field results in placing the curves one under

another with the downmost curve corresponding to the highest value of an electric field.

With or without presence of an electric field we can also note that decreasing L/B,

i.e. making a tube shorter leads to steeper bifurcation curves, thus limiting the range of

values λz where bifurcation is possible. This can be seen clearly here for Mooney-Rivlin

electroelastic material.

In Fig. (4.6–4.10) we showed the results for a thicker cylindrical shell with A/B = 0.5.

We can observe that for a thicker shell a higher circumferential stretch is required to make

the tube unstable.
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λz

λa

Figure 4.1: Plot of axisymmetric bifurcation curves for neo-Hookean electroelastic material

with L/B=10, A/B = 0.85, σ̂fa = 0, 0.75, 1.1, 1.5.
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λz

λa

Figure 4.2: Plot of axisymmetric bifurcation curves for neo-Hookean electroelastic material

with L/B=5, A/B = 0.85, σ̂fa = 0, 0.75, 1.1, 1.5.
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λz

λa

Figure 4.3: Plot of axisymmetric bifurcation curves for neo-Hookean electroelastic material

with L/B=2.5, A/B = 0.85, σ̂fa = 0, 0.3, 0.6, 0.9.
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λz

λa

Figure 4.4: Plot of axisymmetric bifurcation curves for Mooney-Rivlin electroelastic ma-

terial with L/B=10, A/B = 0.85, σ̂fa = 0, 0.3, 0.6, 0.9.
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λz

λa

Figure 4.5: Plot of axisymmetric bifurcation curves for Mooney-Rivlin electroelastic ma-

terial with L/B=5, A/B = 0.85, σ̂fa = 0, 0.3, 0.6, 0.9.
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λz

λa

Figure 4.6: Plot of axisymmetric bifurcation curves for neo-Hookean electroelastic material

with L/B=10, A/B = 0.5, σ̂fa = 0, 0.75, 1.1, 1.5.



CHAPTER 4. BIFURCATION OF ELECTROELASTIC CIRCULAR CYLINDERS 83

λz

λa

Figure 4.7: Plot of axisymmetric bifurcation curves for neo-Hookean electroelastic material

with L/B=5, A/B = 0.5, σ̂fa = 0, 0.75, 1.1, 1.5.
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λz

λa

Figure 4.8: Plot of axisymmetric bifurcation curves for neo-Hookean electroelastic material

with L/B=2.5, A/B = 0.5, σ̂fa = 0, 0.3, 0.6, 0.9.
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λz

λa

Figure 4.9: Plot of axisymmetric bifurcation curves for Mooney-Rivlin electroelastic ma-

terial with L/B=10, A/B = 0.5, σ̂fa = 0, 0.3, 0.6, 0.9.
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λz

λa

Figure 4.10: Plot of axisymmetric bifurcation curves for Mooney-Rivlin electroelastic ma-

terial with L/B=5, A/B = 0.5, σ̂fa = 0, 0.3, 0.6, 0.9.



Chapter 5

Bifurcation of Electroelastic

Spherical Shells

5.1 Introduction

In this chapter we give bifurcation analysis of an electorelastic thick-walled spherical shell

with compliant electrodes at its boundaries under inflation and compression. We start with

considering the underlying configuration: a finitely deformed electroelastic spherical shell.

The problem of the inflation of an electroelastic spherical shell was considered in Dorfmann

& Ogden (2014b). We use some results and notation from this work and then we develop

a bifurcation analysis within the similar lines as for a thick-walled electroelastic cylinder

in the previous Chapter 4. For the pure mechanical case in Haughton & Ogden (1978) it

was found that inclusion of φ−dependence does not affect the bifurcation criteria. Here,

we adopt this approach and we consider only axisymmetric bifurcations. We complete this

chapter with an analysis performed for the neo-Hookean energy function.

5.2 The underlying configuration

5.2.1 Spherically symmetric inflation of a spherical shell

The geometry of a spherical shell can be conveniently described by spherical polar coordi-

nates R, Θ, Φ. In the reference configuration the shell is described by

A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, 0 ≤ Φ ≤ 2π, (5.1)

where A and B are the internal and external radii.

87
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Assuming that the spherical symmetry is maintained in the current configuration we

have the counterpart of (5.1)

a ≤ r ≤ b, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ 2π, (5.2)

where r, θ, φ are spherical polar coordinates and a, b are the radii in the current (deformed)

configuration.

Since we have an incompressible deformation the shell is expanded (preserving spherical

symmetry) according to the relations

r = (R3 + a3 −A3)1/3, θ = Θ, φ = Φ. (5.3)

The resulting deformation gradient with respect to the spherical polar coordinate axes

is diagonal. The associated principal stretches λ1 and λ2 corresponding to the θ and φ

directions are equal and we can write

λθ = λφ = λ = r/R > 1. (5.4)

The principal stretch corresponding to the (third) radial direction is

λr =
dr

dR
= λ−2. (5.5)

We define the circumferential stretches at the inner and outer boundaries as λa = a/A and

λb = b/B. Using (5.3) we write

λ =
r

R
=
(
1 +

a3 −A3

R3

)1/3
, (5.6)

therefore the following relation follows

λ3 − 1 =
A3

R3
(λ3a − 1). (5.7)

Evaluating the previous relation at R = B we obtain the connection between the

stretches at the inner and outer boundaries

(λ3a − 1) =
(B
A

)3
(λ3b − 1). (5.8)

Since B/A > 1 we can conclude from the previous relations that

λa ≥ λ ≥ λb ≥ 1. (5.9)

The invariants I1 and I2 can be specialized for this deformation gradient:

I1 = 2λ2 + λ−4, I2 = λ4 + 2λ−2. (5.10)
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5.2.2 Electrical boundary conditions

In this problem we consider an electroelastic spherical shell the lateral boundaries of which

have flexible electrodes. The charges on both electrodes are equal and have the opposite

signs. Therefore, by Gauss’s Theorem and because of the given geometry, we do not have

an electric field outside the material. We will denote a total charge at r = a by Q(a), and

at r = b by Q(b), respectively. Therefore, we have

Q(a) +Q(b) = 0. (5.11)

The free surface charge densities per unit area on the inner and outer boundaries in the

current deformed configuration will be

σfa =
Q(a)

4πa2
, σfb =

Q(b)

4πb2
. (5.12)

Therefore, we can rewrite (5.11) as

a2σfa + b2σfb = 0. (5.13)

Referred to undeformed configuration we have the following analogues of the expressions

(5.12)

σFA =
Q(a)

4πA2
, σFB =

Q(b)

4πB2
, (5.14)

where A, B are the inner and the outer radii of the spherical shell in the undeformed

configuration. In the undeformed configuration we have the following connection between

free surface charge densities

A2σFA +B2σFB = 0. (5.15)

For the considered spherical geometry the radial electric displacement Dr (Dθ = 0,

Dφ = 0) will depend only on r and expression (2.5)2 will be equivalent to

1

r2
d(r2Dr)

dr
= 0. (5.16)

Therefore, r2Dr is a constant, which can be expressed at the boundaries r = a and r = b

as a2Dr(a) and b2Dr(b), respectively. And we have

r2Dr = a2Dr(a) = b2Dr(b) = const. (5.17)

Using the boundary condition (2.8)2, where D? = 0, we can relate radial electric field

components at the boundaries to free surface charge densities per unit area in the deformed

configuration

Dr(a) = σfa, Dr(b) = −σfb. (5.18)
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Therefore, using (5.12) solutions (5.17) can be expressed as

r2Dr =
Q(a)

4π
= −Q(b)

4π
. (5.19)

5.2.3 Electric field components

In this problem it is natural to choose the electric displacement as an independent variable.

We can control the electric field by prescribing a certain charge on the boundaries, and the

charge on the boundaries is related to the electric displacement field through the boundary

condition (2.8)2. We will consider a radial field (Dθ = 0, Dφ = 0). Since constitutive law

EL =
∂Ω∗

∂DL
(5.20)

is expressed in terms of Lagrangian variable DL we will switch to this variable using relation

DL = F−1D. (5.21)

Since the electric displacement vector is aligned along the radial direction of strain, we

have

[
DL] =




0

0

λ2Dr


 =




0

0

DLR


 . (5.22)

Using (2.22), we calculate the invariants

I4 = λ4D2
r = D2

LR, (5.23)

I5 = D2
r = λ−4I4, (5.24)

I6 = λ−4D2
r = λ−8I4. (5.25)

The components of electric field can be found using equation (2.24).

Since the deformation gradient is diagonal and Dθ = Dφ = 0, we have Eθ = Eφ = 0

and the remaining radial component will be

Er = 2(Ω∗4λ
4Dr + Ω∗5Dr + Ω∗6λ

−4Dr). (5.26)

For the spherical symmetry (assuming that there is no dependence on either θ or φ)

curlE = 0 will be equivalent to rEθ = const and rEφ = const, which are satisfied for this

problem. Here we do not need to impose any condition on the function Ω∗. Unlike the

present problem for some types of deformations we do need such a condition. We can refer

to Dorfmann & Ogden (2006) for an example of such a condition, where azimuthal shear

deformation is considered.
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5.2.4 Stress components

Let us now consider Ω∗ as a function of principal stretches λ1, λ2, λ3 and electromechanical

invariants I4, I5, I6. Recognizing the fact that in the present problem the only electrical

variable is I4 we can consider a function Ω̂∗ such that

Ω̂∗(λ1, λ2, λ3, I4) = Ω∗(λ1, λ2, λ3, I4, I5, I6). (5.27)

This allows us to obtain simple expressions for the principal components of the Cauchy

stress tensor τii (i=1, 2, 3)1

τii = τi − p∗ (i = 1, 2, 3), (5.28)

where

τi = λi
∂Ω̂∗

∂λi
(i = 1, 2, 3). (5.29)

From (5.4) and (5.5) we can conclude that the principal stretches are functions of a sole

variable λ. Therefore, we can introduce a new function w∗ such that

ω∗(λ, I4) = Ω̂∗(λ1, λ2, λ3, I4). (5.30)

This allows us to write

τ11 − τ33 =
1

2
λω∗λ, (5.31)

where ω∗λ denote derivatives ∂ω∗/∂λ.

Expression (5.26) can now be rewritten as

Er = 2λ4
∂ω∗

∂I4
Dr. (5.32)

According to Gauss’s theorem we have no field outside the tube, therefore by (2.11) the

Maxwell stress is zero. Thus, we have only mechanical load due to a pressure P inside the

shell applied to the inner surface at r = a and no loads at r = b

τrr = −P on r = a, τrr = 0 on r = b. (5.33)

In this problem the equilibrium equation divτ = 0 reduces to

r
dτrr
dr

= 2(τθθ − τrr) = λω∗λ. (5.34)

1no summation for the subscript i is implied here.
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In the previous expression we have used (5.31). Integrating (5.34) and using the boundary

conditions (5.33) we have ∫ 0

−P
dτrr =

∫ b

a
λω∗λ

dr

r
. (5.35)

Therefore,

P =

∫ b

a
λω∗λ

dr

r
. (5.36)

In some cases it is convenient to change the variable of integration from r to λ. To this

end, we rearrange and differentiate (5.3)1 with respect to r, taking into account that λ

depends on r. We have

r
dλ

dr
= −λ(λ3 − 1). (5.37)

Therefore, expression (5.36) can rewritten as

P =

∫ λa

λb

(λ3 − 1)−1ω∗λdλ. (5.38)

From (5.8) we see that λb depends on λa. Therefore, the previous relation gives P as

a function of λa and invariant I4 = Q2(a)/16π2A4, which is known for a given charge

Q(a) = −Q(b).

Similarly, since b = (B3+a3−A3)1/3 we see that (5.36) provides a relationship between

pressure and the inner radius a and invariant I4.

5.3 Bifurcation analysis

In the present setting we use spherical polar coordinates θ, φ, r with the corresponding

unit basis vectors e1, e2, e3. Derivatives in (2.37) denoted by subscripts with commas (·),k
can now be specified as ∂(·)/r∂θ, ∂(·)/r sin θ∂φ, ∂(·)/∂r for k = 1, 2, 3, respectively. For

spherical polar coordinates in (2.37) the only non-zero scalar products ei · ej,k are

−e3 · e1,1 = −e3 · e2,2 = e1 · e3,1 = e2 · e3,2 = r−1, (5.39)

e1 · e2,2 = −e2 · e1,2 = −r−1cotθ.

5.3.1 Axisymmetric bifurcations

The increment in the position vector x of a point in the current configuration is

ẋ = ve1 + we2 + ue3. (5.40)
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We will consider axisymmetric bifurcations, hence u, v and w are independent of φ,

and we also accept that w = 0. Therefore, the components of L on the basis e1, e2, e3 can

be calculated as 


(u+ vθ)/r 0 vr

0 (u+ vcotθ)/r 0

(uθ − v)/r 0 ur


 , (5.41)

where subscripts θ, r are corresponding partial derivatives.

For an incompressible material we can write

trL = 2u+ vθ + vcotθ + rur = 0. (5.42)

The incompressibility condition (5.42) is satisfied if we define u and v in terms of function

φ(θ, r) such that

u =
1

r2 sin θ

∂φ

∂θ
, v = − 1

r sin θ

∂φ

∂r
. (5.43)

For i = 1 the expression (2.37) gives

Ṫ011,1 + Ṫ021,2 + Ṫ031,3 + 2r−1Ṫ031 + r−1Ṫ013 + r−1cotθ(Ṫ011 − Ṫ022) = 0. (5.44)

In what follows we will consider the case when electric field is generated by the electrodes

attached to the boundaries of a spherical shell. Therefore, according to Gauss’s theorem

there is no field outside the material. For the considered underlying deformation we have

Fij = 0 for i 6= j, and for radial electric displacement field (DL1 = DL2 = 0) required non-

zero values of electroelastic moduli tensors A∗0, A∗0, A∗0 can be obtained from the general

expressions given in Section 2.2.2. Therefore, we can write using (2.51)1

Ṫ011 = A∗01111L11 +A∗01122L22 +A∗01133L33 + pL11 − ṗ+ A∗011|3ḊL03, (5.45)

Ṫ022 = A∗02211L11 +A∗01111L22 +A∗01133L33 + pL22 − ṗ+ A∗022|3ḊL03, (5.46)

Ṫ013 = A∗01313L31 +A∗01331L13 + pL13 + A∗013|1ḊL01, (5.47)

Ṫ031 = A∗03131L13 +A∗03113L31 + pL31. (5.48)

Since there is no dependence on φ the derivative of Ṫ021 with respect to variable φ is zero

in (5.44). Because the underlying deformation is radially symmetric in (5.46) we have used

A∗01111 = A∗02222 and A∗02233 = A∗01133.
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Substituting these expressions into (5.44) and using incompressibility condition (5.42)

we find that (5.44) gives

rṗθ =(uθ − v)[r(A∗′01331 + p′) +A∗01331 +A∗01313 +A∗01122 −A∗01111] (5.49)

+ rurθ[A∗01331 +A∗01133 −A∗01111] + rvr(rA∗
′

03131 + 2A∗03131)

+ r2vrrA∗03131 + A∗011|3rḊL03,θ + A∗013|1rḊL01 + rcotθḊL03(A∗011|3 − A∗022|3),

where prime denotes differentiation with respect to r.

For i = 3 in (2.37) we have

Ṫ013,1 + Ṫ023,2 + Ṫ033,3 + 2Ṫ033r
−1 + Ṫ013r

−1cotθ − (Ṫ011 + Ṫ022)r
−1 = 0. (5.50)

From (2.51)1 we can calculate

Ṫ033 = A∗03311L11 +A∗02233L22 +A∗03333L33 + pL33 − ṗ+ A∗033|3ḊL03. (5.51)

Note that derivative Ṫ023,2 = 0. Substituting expressions (5.45)-(5.47) and (5.51) in (5.50)

and using (5.42) we have

r2ṗr =rur{r(A∗
′

03333 −A∗
′

01133 + p′)− 3A∗01331 +A∗01313 +A∗01122 (5.52)

− 4A∗01133 + 2A∗03333 +A∗01111}+ r2urr(A∗03333 −A∗01331 −A∗01133)

+A∗01313(uθθ + uθcotθ + 2u) + A∗013|1(rḊL01,θ + rcotθḊL01)

+ A∗
′

033|3r
2ḊL03 + A∗033|3(r

2ḊL03,r + 2rḊL03)

− rḊL03(A∗011|3 + A∗022|3).

For the present case the governing equation (2.32)1 reduces to

ĖL0θ + r
∂ĖL0θ

∂r
− ∂ĖL0r

∂θ
= 0. (5.53)

From (2.51)2 we calculate

ĖL0θ = ĖL01 = A∗013|1L31 + A∗011ḊL01, (5.54)

ĖL0r = ĖL03 = A∗011|3L11 + A∗022|3L22 + A∗033|3L33 + A∗033ḊL03. (5.55)

Note that due to radial symmetry A∗011|3 = A∗022|3. Therefore, equation (5.53) gives

urθ(A∗013|1 + A∗011|3 − A∗033|3)− A∗013|1vr + A∗
′

013|1(uθ − v) (5.56)

+ A∗011(ḊL01 + rḊL01,r) + A∗
′

011rḊL01 − A∗033ḊL03,θ = 0.
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The governing equation (2.32)2 in spherical coordinates reduces to

1

r2
∂(r2ḊL0r)

∂r
+

1

r

∂ḊL0θ

∂θ
+

cot θ

r
ḊL0θ = 0, (5.57)

which after some rearrangements can be written as

∂(r2 sin θḊL0r)

∂r
+
∂(r sin θḊL0θ)

∂θ
= 0. (5.58)

Therefore, the governing equation (2.32)2 is satisfied if we introduce function ψ(θ, r) such

that

ḊL0r =
1

r2 sin θ

∂ψ

∂θ
, ḊL0θ = − 1

r sin θ

∂ψ

∂r
. (5.59)

Differentiating ṗθ from (5.49) with respect to r and ṗr from (5.52) with respect to θ and

using (5.43), (5.59) we obtain the governing equation in terms of functions φ and ψ

A∗03131φ,rrrr +A∗01313φ,θθθθ +
1

r2
(A∗03333 − 2A∗01331 − 2A∗01133 +A∗01111)φ,θθrr (5.60)

+ 2A∗′03131φ,rrr −
2

r4
cot θA∗01313φ,θθθ +

1

r2
cot θ(2A∗01331 + 2A∗01133 −A∗01111 −A∗03333)φ,θrr

1

r3
(rA∗′03333 − 2rA∗′01133 − 2rA∗′01331 + rA∗′01111 + 4A∗01331 + 4A∗01133 − 2A∗03333 − 2A∗01111)φ,θθr

{ 1

r4
(3 cot2 θ + 4)A∗01313 +

1

r4
(3rA∗′01331 − 3A∗01331 +A∗01313 +A∗01122 +A∗01111

− 2r(A∗′03333 −A∗
′

01133)− 4A∗01133 + 2A∗03333) +
1

r3
(2A∗′01133 − r(A∗

′′
01331 + p∗

′′
)

−A∗′01313 −A∗
′

01122 −A∗
′

01111)}φ,θθ + { 1

r3
cot θ(2rA∗′01331 − rA∗

′
03333 + 2rA∗′01133

− 4A∗01331 + 2A∗01111 − 4A∗01133 + 2A∗03333)−
1

r2
cot θA∗′01111}φ,θr

+ {A∗′′03131 −
1

r
A∗′03131 −

1

r2
[r(A∗′01331 + p∗

′
) +A∗01331 +A∗01313 +A∗01122 −A∗01111]}φ,rr

+ { 1

r4
A∗01313(−3 cot3 θ − 5 cot θ) +

1

r4
[2r(A∗′03333 −A∗

′
01133) + 3A∗01331 −A∗01313

−A∗01122 + 4A∗01133 − 2A∗03333 −A∗01111 − 3rA∗′01331] +
1

r3
cot θ[r(A∗′′01331 + p∗

′′
)

+A∗′01313 +A∗′01122 +A∗′01111 − 2A∗′01133]}φ,θ + { 2

r3
(rp∗

′
+A∗01331 +A∗01313

+A∗01122 −A∗01111)−
1

r2
[p∗

′
+ r(A∗′′01331 + p∗

′′
) +A∗′01313 +A∗′01122 −A∗

′
01111

−A∗′03131 + rA∗′′03131]}φ,r +
1

r2
(A∗033|3 − A∗013|1 − A∗011|3)ψ,rθθ

+
1

r2
cot θ(A∗013|1 − A∗033|3 + A∗011|3)ψ,rθ +

1

r
A∗013|1ψ,rr

+ { 1

r2
A∗

′

033|3 −
1

r3
(A∗011|3 + A∗022|3)−

1

r2
A∗

′

011|3 +
2

r3
A∗011|3}ψ,θθ

+ {1

r
A∗

′

013|1 −
1

r2
A∗013|1}ψ,r + cot θ{ 1

r3
(A∗011|3 + A∗022|3)−

1

r2
A∗

′

033|3

+
1

r2
A∗

′

011|3 −
2

r3
A∗011|3}ψ,θ = 0.

From (5.56) we obtain the second governing equation in terms of derivatives of functions
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φ and ψ

1

r2
(A∗013|1 + A∗011|3 − A∗033|3)φ,θθr −

1

r2
cot θ(A∗013|1 + A∗011|3 − A∗033|3)φ,θr (5.61)

+
1

r
A∗013|1φ,rr + { 1

r2
A∗

′

013|1 −
2

r3
(A∗013|1 + A∗011|3 − A∗033|3)}φ,θθ

+ (
1

r
A∗

′

013|1 −
1

r2
A∗013|1)φ,r + { 2

r3
cot θ(A∗013|1 + A∗011|3 − A∗033|3)−

1

r2
cot θA∗

′

013|1}φ,θ

− A∗011ψ,rr −
1

r2
A∗033ψ,θθ − A∗

′
011ψ,r +

1

r2
cot θA∗033ψ,θ = 0.

Now we will specialize the boundary condition (2.35). Since for the present case when

electric field is generated by electrodes there is no field outside the material. We have

ṪT
0 n = ṫA0 =




PLTn− Ṗn on r = a,

0 on r = b.

(5.62)

Calculations show that

rvr + uθ − v = 0 on r = a, b. (5.63)

(A∗03333 −A∗03311 + τ3)ur − ṗ+ A∗033|3ḊL03 =




−Ṗ on r = a,

0 on r = b.

(5.64)

The remaining component of (5.62) is satisfied automatically.

Boundary condition (5.63) in terms of function φ and its derivatives can be written as

r2φ,rr − φ,θθ + cot θφ,θ − 2rφ,r = 0 on r = a, b. (5.65)

In (5.64) we accept that Ṗ = 0 and differentiate (5.64) with respect to θ and use (5.49).

Thus we obtain boundary condition

A∗03131φ,rrr + { 1

r2
(A∗03333 − 2A∗01133 + τ3 −A∗01331 +A∗01111)}φ,θθr (5.66)

− 1

r3
[r(A∗′01331 + p∗

′
)−A∗01331 +A∗01313 +A∗01122 +A∗01111 + 2A∗03333

− 4A∗01133 + 2τ3]φ,θθ +
1

r2
cot θ(A∗01331 + 2A∗01133 −A∗01111 −A∗03333 − τ3)φ,θr

+A∗′03131φ,rr +
1

r3
cot θ[r(A∗′01331 + p∗

′
)−A∗01331 +A∗01313 +A∗01122 +A∗01111

+ 2A∗03333 − 4A∗01133 + 2τ3]φ,θ −
1

r2
[r(A∗′01331 + p∗

′
) +A∗01331 +A∗01313

+A∗01122 −A∗01111 + rA∗′03131]φ,r +
1

r2
(A∗033|3 − A∗011|3)ψ,θθ +

1

r
A∗013|1ψ,r

+
1

r2
cot θ(A∗022|3 − A∗033|3)ψ,θ = 0 on r = a, b.

The electrical boundary condition (2.33) will reduce to

ĖL01 = ĖL0θ = 0 on r = a, b, (5.67)
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which can be rewritten as

A∗013|1(φ,θθ − cot θφ,θ + rφ,r)− r2A∗011ψ,r = 0 on r = a, b. (5.68)

The boundary condition (2.34) will reduce to

ḊL0r =




−σ̇F0b on r = b,

σ̇F0a on r = a,

(5.69)

where σ̇F0 = σ̇FdA/da a is the increment of the free surface charge σF per unit area of

∂B, and dA/da is the ratio of area elements on ∂Br and ∂B. For the considered problem

free surface charges at the boundaries per unit area are different by the absolute value

(and sign, of course). Therefore, in general the increments will be also different at the

boundaries. Thus, we can write

σ̇F0a = σ̇F|r=a
dA

da
= σ̇F|r=a

A2

a2
(5.70)

at the inner boundary, and

σ̇F0b = σ̇F|r=b
dA

da
= σ̇F|r=b

B2

b2
(5.71)

at the outer boundary.

Here again we require only the boundary condition (5.67) to be satisfied explicitly.

Boundary condition (5.69) will be adjusted according to the solution of the problem with

the boundary condition (5.67) satisfied explicitly.

In order to have equations consistent with Haughton & Ogden (1978) we write

φ = − 1

m
r2fn(r) sin θ

d

dθ
Pn(cos θ), ψ = − 1

m
gn(r) sin θ

d

dθ
Pn(cos θ), (5.72)

where Pn(cos θ) is the Legendre polynomial of degree n and m = n(n+ 1).

Using the identity

d2

dθ2
Pn(cos θ) + cot θ

d

dθ
Pn(cos θ) + n(n+ 1)Pn(cos θ) = 0 (5.73)

and (5.72) we can rewrite governing equations (5.60) and (5.61) as

r4A∗03131f ′′′′n + (8r3A∗03131 + 2r4A∗′03131)f ′′′n + {10r3A∗′03131 + r4A∗′′03131 (5.74)

+ 12r2A∗03131 + r3τ ′33 + r2(mG− F )}f ′′n + {3r2(2A∗′03131 + τ ′33)

+ r3(2A∗′′03131 + τ ′′33) + 2r(mG− F ) + r2(mG′ − F ′)}f ′n
+ (m− 2)(r2A∗′′03131 − r2τ ′′33 + rF ′(r)− F (r) +mA∗01313)fn + A∗013|1rg

′′
n

+ {m(A∗013|1 − A∗033|3 + A∗011|3) + (rA∗
′

013|1 − A∗013|1)}g′n −m(A∗
′

033|3 − A∗
′

011|3)gn = 0,
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A∗013|1rf
′′
n + {3A∗013|1 + rA∗

′

013|1 −m(A∗013|1 + A∗011|3 − A∗033|3)}f ′n (5.75)

+ (2A∗
′

013|1 −mA∗
′

013|1)fn − A∗011g
′′
n − A∗

′
011g

′
n +mA∗033gn/r

2 = 0.

As in Haughton & Ogden (1978) in (5.74) for brevity we denoted

F (r) = A∗01331 +A∗01313 +A∗01122 −A∗01111, (5.76)

G(r) = 2A∗01331 + 2A∗01133 −A∗03333 −A∗01111. (5.77)

Also we have used expressions for the first and second derivatives of Lagrange multiplier

p∗ with respect to r

p∗
′

= A∗′03131 −A∗
′

01331 + 2(A∗03131 −A∗01313)/r, (5.78)

p∗
′′

= A∗′′03131 −A∗
′′

01331 − 2(A∗03131 −A∗01313)/r2 + 2(A∗′03131 −A∗
′

01313)/r (5.79)

and the following connections

τ3 = A∗03131 −A∗01331, (5.80)

τ ′33 = τ ′3 − p∗
′

=
2

r
(A∗01313 −A∗03131), (5.81)

r2τ ′′33 = 2(rA∗′01313 − rA∗
′

03131 −A∗01313 +A∗03131). (5.82)

Boundary conditions (5.65), (5.66) and (5.68) take the form, respectively

r2f ′′n + 2rf ′n + (m− 2)fn = 0 on r = a, b, (5.83)

r3A∗03131f ′′′n + r2(rA∗′03131 + 6A∗03131)f ′′n + r[2rA∗′03131 + rτ ′33 − F (5.84)

+m(G−A∗03131) + 6A∗03131]f ′n + (m− 2)(rA∗′03131 − rτ ′33 + F )fn

+ A∗013|1g
′
n −

m

r
(A∗033|3 − A∗011|3)gn = 0 on r = a, b,

A∗013|1{(m− 2)fn − rf ′n}+ A∗011g
′
n = 0 on r = a, b. (5.85)

In what follows we give non-dimensional equations. Expressions (5.43) and (5.72)1,

(5.59) and (5.72)2 suggest the following definition for non-dimensional functions f̂n(r̂) and

ĝn(r̂)

f̂n(r̂) =
f(r)

A
, ĝn(r̂) =

gn(r)

Dr(a)A2
. (5.86)

The other quantities are defined in the same way as they were defined for the cylindrical

shell. We also introduce new variables to transform the system of the governing equations

(5.74) and (5.75) into the system of 6 ODEs

ŷ1(r̂) = f̂n(r̂), ŷ2(r̂) = f̂ ′n(r̂), ŷ3(r̂) = f̂ ′′n(r̂), (5.87)

ŷ4(r̂) = f̂ ′′′n (r̂), ŷ5(r̂) = ĝn(r̂), ŷ6(r̂) = ĝ′n(r̂).
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For our numerical calculations MATLAB ODE solver requires representation of the gov-

erning equations as a system of 6 first-order ODEs.

Now we can rewrite the governing equations and the boundary conditions in non-

dimensional form. The governing equations transform into the following system of non-

dimensional equations

ŷ′1 = ŷ2, (5.88)

ŷ′2 = ŷ3,

ŷ′3 = ŷ4,

r̂4Â∗03131ŷ′4 + (8r̂3Â∗03131 + 2r̂4Â∗′03131)ŷ4 + {10r̂3Â∗′03131 + r̂4Â∗′′03131

+ 12r̂2Â∗03131 + r̂3τ̂ ′33 + r̂2(mĜ− F̂ )}ŷ3 + {3r̂2(2Â∗′03131 + τ̂ ′33)

+ r̂3(2Â∗′′03131 + τ̂ ′′33) + 2r̂(mĜ− F̂ ) + r̂2(mĜ′ − F̂ ′)}ŷ2
+ (m− 2)(r̂2Â∗′′03131 − r̂2τ̂ ′′33 + r̂F̂ ′ − F̂ +mÂ∗01313)ŷ1 + Â∗013|1r̂σ̂

2
faŷ
′
6

+ {m(Â∗013|1 − Â∗033|3 + Â∗011|3) + (r̂Â∗
′

013|1 − Â∗013|1)}σ̂2faŷ6 −m(Â∗
′

033|3 − Â∗
′

011|3)σ̂
2
fay5 = 0,

ŷ′5 = ŷ6,

Â∗013|1r̂ŷ3 + {3Â∗013|1 + r̂Â∗
′

013|1 −m(Â∗013|1 + Â∗011|3 − Â∗033|3)}ŷ2
+ (2Â∗

′

013|1 −mÂ∗
′

013|1)y1 − Â∗011ŷ
′
6 − Â∗

′
011ŷ6 +mÂ∗033ŷ5/r̂

2 = 0.

The boundary conditions in terms of new variables in non-dimensional form are

r̂2ŷ3 + 2r̂ŷ2 + (m− 2)ŷ1 = 0 on r = â, b̂, (5.89)

r̂3Â∗03131ŷ4 + r̂2(r̂Â∗′03131 + 6Â∗03131)ŷ3 + r̂[2r̂Â∗′03131 + r̂τ̂ ′33 − F̂ (5.90)

+m(Ĝ− Â∗03131) + 6Â∗03131]ŷ2 + (m− 2)(r̂Â∗′03131 − r̂τ̂ ′33 + F̂ )ŷ1

+ Â∗013|1σ̂
2
faŷ6 −

m

r̂
(Â∗033|3 − Â∗011|3)σ̂

2
faŷ5 = 0 on r = â, b̂,

Â∗013|1{(m− 2)ŷ1 − r̂ŷ2}+ Â∗011ŷ6 = 0 on r = â, b̂. (5.91)

In the above mentioned non-dimensional expressions we used non-dimensional param-

eter

σ̂2fa =
D2
r(a)

εµ
. (5.92)

We calculate required electroelastic moduli for neo-Hookean electroelastic material
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(4.117):

A∗03131 = A∗03333 = 2λ23Ω
∗
1 + 2D2

3Ω∗5, (5.93)

A∗01313 = A∗01111 = 2λ21Ω
∗
1,

A∗01331 = A∗01122 = A∗01133 = 0,

2A∗013|1 = A∗033|3 = 4D3Ω
∗
5, A∗011|3 = 0,

A∗011 = A∗033 = 2Ω∗5, F (r) = 0.

In non-dimensional form the expressions for moduli can be rewritten as

Â∗03131(r̂) = A∗03333(r̂) =
(r̂3A3 − a3 +A3)4/3

r̂4A4
+
σ̂2faa

4

r̂4A4
, (5.94)

Â∗01313(r̂) = Â∗01111(r̂) =
r̂2A2

(r̂3A3 − a3 +A3)2/3
,

Â∗01331(r̂) = Â∗01122(r̂) = Â∗01133(r̂) = 0,

2Â∗013|1(r̂) = Â∗033|3(r̂) =
2a2

r̂2A2
, Â∗011|3(r̂) = 0,

Â∗011(r̂) = Â∗033(r̂) = 1, F̂ (r̂) = 0,

Ĝ(r̂) =
−(r̂3A3 − a3 +A3)4/3 − σ̂2faa4

r̂4A4
− r̂2A2

(r̂3A3 − a3 +A3)2/3
.

For our calcualtions we used numerical scheme described in Chapter 4, the results of

our calculations are given in Table 5.1.

Haughton & Ogden (1978) found that for neo-Hookean material axisymmetric bifurca-

tions are possible at external pressure (P < 0) only, no bifurcation solutions were found

for internally pressurized spherical shells. From the results in Table 5.1 we see that the

significant difference for the present problem of bifucation analysis of electrically sensi-

tive material is that some modes become possible for internally pressurized spherical shell

(P > 0). We note that here we used a numerical scheme described in Chapter 4. For the

purely mechanical case our calculations are very close to those reported in Haughton &

Ogden (1978); for convenience we reproduce the results from Haughton & Ogden (1978)

here in Table 5.2. We note that Haughton & Ogden (1978) used a different numerical

scheme in their work for bifurcation analysis of spherical shells. For thin shells Haughton

& Ogden (1978) reported that their method becomes increasingly sensitive.

The purely mechanical case of axisymmetric bifurcations of inflated and compressed

spherical shells was considered in a more recent work of deBotton et al. (2013). They used

the same theory as in Haughton & Ogden (1978) with different strain energy functions.
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Table 5.2: Bifurcation values λb for neo-Hookean spherical shell with different values A/B

and mode numbers n from Haughton & Ogden (1978)

A/B n λb

0.95 7 0.985

0.90 5 0.971

0.85 4 0.961

0.80 3 0.955

0.70 2 0.950

0.60 2 0.960

They also reported that additional solutions were found, which were not reported in liter-

ature before, for one-term Ogden material. Unlike Haughton & Ogden (1978), they used

a different numerical scheme known as matrix compound method. More details about this

numerical technique can be found in their work and in references mentioned therein.



Appendix A

Some Details

Here we provide some details of some non-trivial calculations.

A.1 Formula which allows to change the variable of integra-

tion from r to λ

In Section 3.2.4 we used formula (3.39), which allows us to change the variable of integra-

tion. The details for this calculation are as follows.

Since we have incompressible deformation, the volume of a cylinder remains unchanged:

π(B2 −A2)L = π(b2 − a2)l. (A.1)

Therefore, we have

r2 − a2 = λ−1z (R2 −A2) (A.2)

= λ−1z (λ−2r2 −A2),

where we introduced notation λz = l/L.

We rearrange the previous expression as follows:

r2(1− λ−2λ−1z ) = a2 − λ−1z A2. (A.3)

Differentiating (A.3) with respect to r, and taking into account that the vertical stretch

λz does not depend on r, whereas circumferetial stretch λ does depend on r we have:

2r(1− λ2λ−1z ) + r2(2λ−3λ−1z )
dλ

dr
= 0. (A.4)
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We have

r
dλ

dr
= −(λ2λz − 1)λ, (A.5)

or
dr

r
= − dλ

λ(λ2λz − 1)
. (A.6)

Thus, we obtained the required relation. Using a similar reasoning a corresponding relation

for a spherical shell used in Chapter 5 can be obtained.

A.2 Expression for axial stress

Using (3.32), (3.31) and the equilibrium equation (3.36), axial stress τzz can be expressed

as

τzz = τrr + λzω
∗
λz (A.7)

= τrr − τθθ + τθθ + λzω
∗
λz

= −λω∗λ + τθθ + λzω
∗
λz

= τθθ − τrr + τrr − λω∗λ + λzω
∗
λz

=
τθθ − τrr

2
+
τθθ − τrr

2
+ τrr − λω∗λ + λzω

∗
λz

=
1

2
r

dτrr
dr

+ τrr +
1

2
λω∗λ − λω∗λ + λzω

∗
λz

=
1

2

(
r

dτrr
dr

+ 2τrr
)
− λω∗λ

2
+ λzω

∗
λz

=
1

2

[1

r

d

dr
(r2τrr)

]
− λω∗λ

2
+ λzω

∗
λz .



Appendix B

Listing of computer programs

Here we give the MATLAB code we used for our numerical calculations in Chapter 4.

The following code will reproduce the results shown in Fig. 4.1. The other results can be

obtained with some minor modifications of this code. The code consists of 3 MATLAB

files. Discussion of this code can be found after MATLAB files, given here below.

File calculate_branch.m has the following contents:

1 function branch=calculate_branch(par,start,delta,Nb,dir)

2 % Now we initialize a matrix in which we will store the calculated current

radius a.

3 % We take Nb steps along the branch, each step along the branch is size

delta.

4 branch = zeros(2, Nb);

5

6 initial_guess=start(2); %Here the intial guess for radious a.

7

8 options = optimset('Display','iter','TolFun',1e−16);
9

10 %Here we find a point on the branch

11 [a, cond_val] = fsolve(@(a)determinant(lz,a,par), initial_guess,options);

12

13 branch(1,1)=lz;

14 branch(2,1)=a;

15
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16 %plot(branch(1,2), branch(2,2),'*');

17

18 options = optimset('Display','iter','TolFun',1e−16);
19

20 for i = 3:Nb

21

22 [x,fval]=fsolve(@(x) branch_fun(x,[branch(1,i−1);branch(2,i−1)],delta)
,[2*branch(1,i−1)−branch(1,i−2);2*branch(2,i−1)−branch(2,i−2)],
options);

23

24 branch(1, i) = x(1);

25 branch(2, i) = x(2);

26

27 plot(branch(1,1:i), branch(2,1:i),'−k'); hold on;

28 drawnow;

29 end

30

31 function out=branch_fun(x,x0,d)

32 out=[determinant(x(1),x(2),par);

33 (x(1)−x0(1))^2+(x(2)−x0(2))^2−d^2;];
34 end

35

36 end

File determinant.m has the following lines:

1 function [answer] = determinant(lz,a,par)

2

3 % Specifying the initial geometry

4

5 a0=par.a0;

6 b0=par.b0;

7 L=par.L;

8 s=par.s;
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9

10 % sigma denoted here as s is an electrical parameter

11

12 alpha = pi*a0/(lz*L);

13

14 % Specifying the deformation

15

16 b = sqrt(a^2 + (b0^2 − a0^2)/lz);

17

18 % Specifying the radii in non−dimensional form

19 ra = a/a0;

20 rb = b/a0;

21

22 % Solving the IVP

23 Tspan = [ra,rb];

24 %%%%

25 RelTol=1e−7; %relative tolerance for ODE solver

26 %%%%

27 options = odeset('Mass', @MASS, 'RelTol',RelTol,'MStateDependence','none');

28

29 [~,Y1] = ode15s(@ode, Tspan, [1 0 0 0 0 0],options);

30 [~,Y2] = ode15s(@ode, Tspan, [0 1 0 0 0 0],options);

31 [~,Y3] = ode15s(@ode, Tspan, [0 0 1 0 0 0],options);

32 [~,Y4] = ode15s(@ode, Tspan, [0 0 0 1 0 0],options);

33 [~,Y5] = ode15s(@ode, Tspan, [0 0 0 0 1 0],options);

34 [~,Y6] = ode15s(@ode, Tspan, [0 0 0 0 0 1],options);

35

36 function dydx = ode(r,y)

37 dydx = [y(2);

38 y(3);

39 y(4);

40 −(2*r^4*der_a03232(r)+2*r^3*a03232(r))*y(4)−(r^3*(3*der_a03232(r
)+r*der2_a03232(r))−3*r^2*a03232(r)−alpha^2*r^4*(a03333(r)+
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a02222(r)))*y(3)−(r^3*der2_a03232(r)−3*r^2*der_a03232(r)+3*r

*a03232(r)+alpha^2*r^3*(−r*der_a03333(r)−a03333(r)−a02222(r)
))*y(2)−(3*(r*der_a03232(r)−a03232(r))−r^2*der2_a03232(r)+
alpha^2*r^2*(r^2*der2_p(r)+a01111(r)+a02222(r))+alpha^4*r^4*

a02323(r))*y(1)−s^2*alpha^2*r^3*(a0232(r)−a0333(r))*y(6)+s
^2*alpha^2*r^3*der_a0333(r)*y(5);

41 y(6);

42 −alpha^2*r^2*(a0333(r)−a0232(r))*y(2)+alpha^2*r^2*der_a0232(r)*y
(1)−a022(r)*y(6)−alpha^2*r*a033(r)*y(5)];

43 % defining the ODE

44 end

45

46 function ret = MASS(r,y)

47 ret = [1 0 0 0 0 0;

48 0 1 0 0 0 0;

49 0 0 1 0 0 0;

50 0 0 0 r^4*a03232(r) 0 0;

51 0 0 0 0 1 0;

52 0 0 0 0 0 −a022(r)*r];
53 % Mass matrix of the ODE

54

55 end

56 %

57 m11 = bc1(ra,Y1(1,:));

58 m12 = bc1(ra,Y2(1,:));

59 m13 = bc1(ra,Y3(1,:));

60 m14 = bc1(ra,Y4(1,:));

61 m15 = bc1(ra,Y5(1,:));

62 m16 = bc1(ra,Y6(1,:));

63 %

64 m21 = bc3(ra,Y1(1,:));

65 m22 = bc3(ra,Y2(1,:));

66 m23 = bc3(ra,Y3(1,:));
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67 m24 = bc3(ra,Y4(1,:));

68 m25 = bc3(ra,Y5(1,:));

69 m26 = bc3(ra,Y6(1,:));

70 %

71 m51 = bc2(ra,Y1(1,:));

72 m52 = bc2(ra,Y2(1,:));

73 m53 = bc2(ra,Y3(1,:));

74 m54 = bc2(ra,Y4(1,:));

75 m55 = bc2(ra,Y5(1,:));

76 m56 = bc2(ra,Y6(1,:));

77 %

78 %

79 m31 = bc1(rb,Y1(end,:));

80 m32 = bc1(rb,Y2(end,:));

81 m33 = bc1(rb,Y3(end,:));

82 m34 = bc1(rb,Y4(end,:));

83 m35 = bc1(rb,Y5(end,:));

84 m36 = bc1(rb,Y6(end,:));

85 %

86 %

87 m41 = bc3(rb,Y1(end,:));

88 m42 = bc3(rb,Y2(end,:));

89 m43 = bc3(rb,Y3(end,:));

90 m44 = bc3(rb,Y4(end,:));

91 m45 = bc3(rb,Y5(end,:));

92 m46 = bc3(rb,Y6(end,:));

93 %

94 m61 = bc2(rb,Y1(end,:));

95 m62 = bc2(rb,Y2(end,:));

96 m63 = bc2(rb,Y3(end,:));

97 m64 = bc2(rb,Y4(end,:));

98 m65 = bc2(rb,Y5(end,:));

99 m66 = bc2(rb,Y6(end,:));
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100

101 matr = [m11 m12 m13 m14 m15 m16; m21 m22 m23 m24 m25 m26; m31 m32 m33 m34

m35 m36; m41 m42 m43 m44 m45 m46; m51 m52 m53 m54 m55 m56; m61 m62 m63

m64 m65 m66];

102

103 answer = 1/(cond(matr));

104

105 % Boundary conditions

106

107 function ret = bc1(r,y)

108 ret = r^2*y(3)+r*y(2)+(alpha^2*r^2−1)*y(1);
109 end

110

111 function ret = bc2(r,y)

112 % The electrical boundary condition

113 ret = alpha^2*r*a0232(r)*y(1)+a022(r)*y(6);

114 end

115

116 function ret = bc3(r,y)

117 ret = a03232(r)*r^3*y(4)+r^2*(r*der_a03232(r)+2*a03232(r))*y(3)+((r*

der_a03232(r)−a03232(r))*r−alpha^2*r^3*(a03333(r)+a02222(r)+
tau_3(r)))*y(2)+(a03232(r)−r*der_a03232(r)+alpha^2*r^2*(r*
der_a03232(r)−r*der_tau33(r)+a03232(r)−tau_3(r)−a02222(r)))*y(1)
−alpha^2*r^2*a0333(r)*s^2*y(5);

118 end

119

120 % Moduli

121

122 function ret = a03131(r)

123 ret = (lz^(−1)*(r^2*a0^2−a^2)+lz^(−2)*a0^2+s^2*a^2)/(r^2*a0^2);
124 end

125 function ret = a03232(r)

126 ret = (lz^(−1)*(r^2*a0^2−a^2)+lz^(−2)*a0^2+s^2*a^2)/(r^2*a0^2);
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127 end

128 function ret = a03333(r)

129 ret = (lz^(−1)*(r^2*a0^2−a^2)+lz^(−2)*a0^2+s^2*a^2)/(r^2*a0^2);
130 end

131 function ret = a02222(r)

132 ret = lz^2;

133 end

134 function ret = a02323(r)

135 ret = lz^2;

136 end

137 function ret = a01111(r)

138 ret = r^2*a0^2/(lz*(r^2*a0^2−a^2)+a0^2);
139 end

140 function ret = a0333(r)

141 ret = 2*a/(r*a0);

142 end

143 function ret = der_a0333(r) % first derivative of a0333(r) with respect

to r

144 ret = (−2*a)/(r^2*a0);
145 end

146 function ret = a0232(r)

147 ret = a/(r*a0);

148 end

149 function ret = der_a0232(r) % first derivative of a0232(r) with respect

to r

150 ret = −a/(r^2*a0);
151 end

152 function ret = a022(r)

153 ret = 1;

154 end

155 function ret = a033(r)

156 ret = 1;

157 end
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158 function ret = tau_3(r)

159 ret = a03131(r);

160 end

161 function ret = der_a03131(r) %first derivative of a03131(r) with respect

to r

162 ret = 2*(lz*a^2−a0^2−s^2*a^2*lz^2)/(r^3*lz^2*a0^2);
163 end

164 function ret = der_a03333(r) % first derivative of a03333(r) with

respect to r

165 ret = 2*(lz*a^2−a0^2−s^2*a^2*lz^2)/(r^3*lz^2*a0^2);
166 end

167 function ret = der2_a03131(r) %second derivative of a03131(r) with

respect to r

168 ret = −6*(lz*a^2−a0^2−s^2*a^2*lz^2)/(r^4*a0^2*lz^2);
169 end

170 function ret = der_a01313(r)

171 ret = 2*a0^2*r*(a0^2−a^2*lz)/(a0^2+(a0^2*r^2−a^2)*lz)^2;
172 end

173 function ret = a01313(r)

174 ret = r^2*a0^2/(lz*(r^2*a0^2−a^2)+a0^2);
175 end

176 function ret = der2_p(r) % second derivative of Lagrange multiplier p(r)

with respect to r. It can be expressed interms of electroelastic

moduli.

177 ret = der2_a03131(r)−(a03131(r)−a01313(r))/r^2+(der_a03131(r)−
der_a01313(r))/r;

178 end

179 function ret = der_tau33(r) % derivative of stress component tau_33(r);

it can be expressed in terms of electroelastic moduli.

180 ret = (a01313(r)−a03131(r))/r;
181 end

182 function ret = der_a03232(r) % first derivative of a03232(r) with

respect to r
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183 ret = 2*(lz*a^2−a0^2−s^2*a^2*lz^2)/(r^3*lz^2*a0^2);
184 end

185 function ret = der2_a03232(r) % second derivative of a03232(r) with

respect to r

186 ret = −6*(lz*a^2−a0^2−s^2*a^2*lz^2)/(r^4*a0^2*lz^2);
187 end

188

189 end

File experiment experiment1.m has the contents:

1 % Experiment 1

2

3 par1.a0=1;

4 par1.b0=1/.85;

5 par1.L=10/0.85;

6 par1.s=0;

7

8 branch1=calculate_branch(par1,[0.25,0.71],0.01,450,1);

9 axis equal;

10

11 % Experiment 2

12

13 par2.a0=1;

14 par2.b0=1/.85;

15 par2.L=10/0.85;

16 par2.s=0.75;

17

18 branch2=calculate_branch(par2,[0.25,0.71],0.01,450,1);

19 axis equal;

20

21 % Experiment 3

22

23 par3.a0=1;
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24 par3.b0=1/.85;

25 par3.L=10/0.85;

26 par3.s=1.1;

27

28 branch3=calculate_branch(par3,[0.25,0.71],0.01,450,1);

29 axis equal;

30

31 % Experiment 4

32

33 par4.a0=1;

34 par4.b0=1/.85;

35 par4.L=10/0.85;

36 par4.s=1.5;

37

38 branch4=calculate_branch(par4,[0.25,0.71],0.01,450,1);

39 axis equal;

The file experiment1.m should be run in order to start the calculation.

Some comments about this code follow here. According to the numerical scheme dis-

cussed in Chapter 4 we need to find pairs of λz and λa1 such that the matrix comprised

of coefficients ck mentioned after relation (4.132) becomes singular, i.e. the determinant

of this matrix becomes zero. In file determinant.m in line 103 instead of a direct calcu-

lation of determinant of this matrix we used another test for singularity which involves

a condition number of a matrix. The condition number is a measure how close a matrix

to being singular. A very large condition number suggests that matrix is almost singular.

The inverse of a condition number for the singular matrix is zero. We found that the

test for singularity which involves a condition number works better here, because in some

cases the code which involved a calculation of a determinant as a test of singularity could

not reproduce some parts of the branches correctly for purely elastic material which were

obtained by Haughton & Ogden (1979).

Lines 20 − 34 in file calculate_branch.m the program calculates pairs λz and a such
1This code actually calculates pairs λz and internal deformed radius a, because λa = a/A and we set

here in the code A = 1
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Figure B.1: Solution points which constitute a bifurcation curve.

that the following system of equations is satisfied




f(λz, a) = 0,

(λz − λ0z)2 + (a− a0)2 = ∆2,

(B.1)

where function f is the inverse of the condition number of the matrix which depends on

λz and a, λ0z and a0 are the known values from the previous step of calculation, ∆2 is the

length of the step between the previous and the current points on the bifurcation curve.

The second equation of (B.1) represents the equation of a circle with the centre at

(λ0z, a
0) and radius ∆. Standard mathematical solution of this system can normally give

2 solutions on the curve, but MATLAB solver fsolve looks for the one nearest solution

near the initial guess, which is updated in the code for each step. This ensures a correct

progressing along the curve. Formulation (B.1) is advantageous, because it allows to find

bifurcation curves even when they start turning back, for example, when there are 2 or

more values of a for each λz in some region of (λz, a)- plane.

The solver fsolve in the loop of the file calculation_branch.m has the initial guess which

is updated at each step. It can be calculated in this way. Let us assume that we know

two points with coordinates (xi−2, yi−2) and (xi−1, yi−1) from calculations for the previous

steps. Now we want to find the coordinates of the initial guess point where the solver fsolve

has to start looking. Tangent unit vector to the curve between the two points (xi−2, yi−2)

and (xi−1, yi−1) can be calculated approximately as

ti−1 =
(xi−1 − xi−2, yi−1 − yi−2)√

(xi−1 − xi−2)2 + (yi−1 − yi−2)2
=

(xi−1 − xi−2, yi−1 − yi−2)
∆

. (B.2)

2In the code it is denoted as delta and d
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Therefore, the coordinates for the initial guess can be found as

(xi−1, yi−1) + ∆ti−1 = (xi−1, yi−1) + (xi−1 − xi−2, yi−1 − yi−2) (B.3)

= (2xi−1 − xi−2, 2yi−1 − yi−2).

This result is used in the line 22 of calculate_branch.m file.
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