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Abstract In this dissertation we consider some boundary value and stability problems
for electro-active soft rubberlike materials which withstand finite deformations elastically.

In the beginning we consider in detail the problem of finite deformation of a pressurized
electroelastic circular cylindrical tube with closed ends with compliant electrodes at its
curved boundaries. Expressions for the dependence of the pressure and reduced axial
load on the deformation and a potential difference between the electrodes, or uniform
surface charge distributions, are obtained in respect of a general isotropic electroelastic
energy function. To illustrate the behaviour of the tube specific forms of energy functions
accounting for different mechanical properties coupled with a deformation independent
quadratic dependence on the electric field are used for numerical purposes, for a given
potential difference and separately for a given charge distribution. Numerical dependences
of the non-dimensional pressure and reduced axial load on the deformation are obtained for
the considered energy functions. Results are then given for the thin-walled approximation
as a limiting case of a thick-walled cylindrical tube without restriction on the energy
function. The theory provides a general basis for the detailed analysis of the electroelastic
response of tubular dielectric elastomer actuators, which is illustrated for a fixed axial load
in the absence of internal pressure and fixed internal pressure in the absence of an applied
axial load.

Using the theory of small incremental electroelastic deformations superimposed on an
electroelastic finitely deformed body, we then look for solutions of underlying configura-
tions which are different from perfect cylindrical shape of the tube. First, we consider
prismatic bifurcations. We obtain the solutions which show that for neo-Hookean elec-
troelastic material prismatic modes of bifurcation become possible under inflation. This
result is different from the pure mechanical case considered previously in Haughton & Og-
den (1979), because in Haughton & Ogden (1979) prismatic bifurcation modes were found
only for an externally pressurised tube. Second, we consider axisymmetric bifurcations,
and we obtain results for neo-Hookean and Mooney-Rivlin electroelastic energy functions.
Our solutions show that in the presence of an electric field the electroelastic tube become
more unstable: axisymmetric bifurcations become possible at lower values of circumferen-
tial stretches as compared with the values of circumferential stretches found for analogous
problems solved for electromechanically indifferent materials, or equivalently, when electric
field is not present.

Within similar lines we consider the bifurcation of a thick-walled electroelastic spher-



ical shell with compliant electrodes at its curved boundaries under internal and external
pressure. The solutions obtained for neo-Hookean electroelastic energy function show that
in some cases axisymmetric modes of bifurcation become possible under inflation in the

presence of electric field.
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Chapter 1

Introduction

In this thesis we consider some boundary-value and stability problems for electro-active
elastomeric materials which recently received a strong interest in the literature due to
their specific properties suitable for many applications in engineering science, for example,
production of actuators, sensors and other devices.

Before proceeding any further in discussion of problems for electroelastic materials we
will discuss here briefly analogous problems for pure elastic materials. In the series of
papers Haughton & Ogden (1978, 1979) have given an extensive bifurcation analysis for
thin- and thick-walled cylindrical and spherical shells of elastic material under internal and
external pressure. A more recent analysis which involves some new aspects of the solutions
of these problems can be found in Zhu et al. (2008), deBotton et al. (2013).

It is a well known fact that an inflated tube made of a rubber material may develop a
bulge at some point of deformation caused by internal pressure!. Likewise a spherical shell
may become aspherical under internal pressure at some point of deformation (Alexander,
1971). The studies of spherical shells were motivated by applications in meteorology which
employ high altitude weather balloons. It is interesting to note that these configurations
which deviate from perfect cylindrical or spherical configurations of shells may arise under
symmetrical load.

In order to model these cases when deviations from perfect cylindrical and spherical
configurations are possible we use the theory of incremental deformations superimposed
on an underlying finite deformation. The solutions obtained using this theory may contain

cases when cylindrical or spherical shape is still preserved, for example, rigid-body trans-

'Experimental data for internal pressure as a function of a volume ratio up to the critical pressure where

bulging may occur can be found in Charrier & Li (1977) and Skala (1970).

12



CHAPTER 1. INTRODUCTION 13

lation and other cases. We are not interested in these solutions and we discard them from
our consideration. It is worth noting that the theory of incremental deformations used
here can essentially model the onset of small deformations deviating from perfect original
underlying configuration. In order to model full finite bifurcation configurations full non-
linear equations are needed (as opposed to linearized versions of these equations for small
incremental deformations). Some progress in this regard can be found in Haughton (1980).

Successes in the technological production of electro-active polymers instigated a de-
velopment of theories which account for electromechanical coupling. The theories which
account for electromechanical coupling in continuum may be traced to the middle of the
last century in the seminal work of Toupin (1956), who was concerned with the theory gov-
erning elastic dielectric materials. Books dealing with the theory include Eringen & Maugin
(1990); Hutter & van de Ven (1978); Maugin (1988); Nelson (1979). The approach to the
theory in the form described by Dorfmann & Ogden (2005), however, has led to further
developments and has proved to be amenable to the solution of boundary-value problems,
as exemplified in Dorfmann & Ogden (2006) and the recent monograph by Dorfmann &
Ogden (2014c) and references therein.

In this PhD dissertation we analyze the response of an electroelastic tube to the com-
bination of a radial electric field, an internal pressure and an axial load using the nonlinear
theory of electroelasticity developed in Dorfmann & Ogden (2005). Then we superimpose
incremental small deformations and electric displacements on the deformed underlying con-
figuration of a cylinder and initial electric field. This allows us to consider the problem
of stability of a cylinder made of electroactive material at the presence of electric field
under internal and external pressure. The analysis of the nonlinear response of electroe-
lastic spherical shell was done in Dorfmann & Ogden (2014b). We use some results and
notation from this work and perform stability analysis for electroelastic shell using the the-
ory of small electroelastic deformations. For stability analysis we use simple strain energy
functions which can be expressed in terms of invariants: Neo-Hookean and Mooney-Rivlin
electroelastic models.

This thesis is structured in the following manner. In Chapter 2 we give the most
important ingredients of a general theory of Electroelasticity within the lines proposed by
Dorfmann & Ogden (2005). The electroelastic constitutive laws are based on the so-called
total energy density function which allows us to write constitutive laws in a simple form,

and thus constitutive laws can be regarded as direct generalizations of pure mechanical
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counterparts. Incremental electroelastic constitutive laws are formulated in this chapter,
and we also give the explicit formulae for electroelastic moduli tensors. This chapter ends
with some important connections between the electroelastic moduli tensors used further in
the text of the thesis.

In Chapter 3 we consider in great detail the problem of inflation and extension of
electroelastic tubes with closed ends in the presence of electric field. The electric field is
generated by compliant electrodes attached to the inner and outer surfaces of the tube.
This construction with compliant electrodes can essentially be considered as an actuator
where the actuating force can be generated by both inflation and electric field. General
expressions are obtained for the internal pressure in a tube with closed ends and the axial
load on its ends. Next, by considering a simple specific form of energy function, we obtain
explicit expressions for the pressure and axial load in terms of the deformation and the
electrostatic potential (or charge) applied to the compliant electrodes.

From the formulas for a thick-walled tube we provide numerical results which illustrate
the dependence of the pressure and (reduced) axial load on the tube radius (via the az-
imuthal stretch on its inner boundary) and length (via the axial stretch). This is done for
different values of the applied potential or charge for three different forms of the elastic
part of the energy function for two different wall thicknesses (one relatively thin and one
thicker) and we compare results with the results for the purely elastic case. It was found
that there is very little difference qualitatively between the results for different tube thick-
nesses. Thus, it is appropriate to specialize to the thin-walled tube approximation, and we
obtain explicit expressions for the pressure and (reduced) axial load in respect of a general
electroelastic constitutive law.

In Chapter 4 we present a bifucation /stability analysis for the electroelastic tube with
flexible electrodes in the presence of electric field under internal and external pressure.
Without taking into account electromechanical coupling this problem was discussed by
Haughton & Ogden (1979) and we return to this problem with the view to include the
affect of electric field on the stability of electroelastic tube. First, we considered prismatic
bifurcations. In this case we are looking for configurations of the tube with cross-sections
deviating from a perfect circle, but remaining in the same shape along the axis of the
tube, i.e. if z is the axis of the tube, then the shape of cross-sections does not depend
on z axis along the tube. For the neo-Hookean electroelastic model we received quite

a striking result: prismatic modes of bifurcations become possible under inflation in the
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presence of an electric field. Second, we considered axisymmetric bifurcations. These
are the configurations of the tube with perfect circular cross-sections, the radius of which
depends on the axis of the tube z. We compared our results with those obtained for
pure elastic materials: the presence of electric field makes the electroelastic tube more
unstable for both used energy functions neo-Hookean and Mooney-Rivlin, i.e. we could
see from the obtained bifurcation curves that unstable configurations become possible at
lower circumferential stretches as opposed to the cases with pure elastic materials without
electromechanical interactions. A more general case of asymmetric bifurcations can be
considered along the same lines, although in this case the number of equations in the system
of ordinary differential equations increases and they become even more cumbersome.

In Chapter 5 we consider bifurcation/stability analysis of an electroelastic shell with
flexible electrodes at the boundaries at the presence of electric field under internal and ex-
ternal pressure. For the purely mechanical case in Haughton & Ogden (1978) dependence
on a spherical coordinate ¢ was omitted, because inclusion of it does not have influence on
bifurcation criteria for pure mechanical case. We adopt this approach here, and therefore,
we consider only axisymmetric bifurcations. The results show that a neo-Hookean electroe-
lastic shell may develop axisymmetric modes of bifurcation under inflation in the presence
of electric field. This result is different from pure elastic case where it was shown that
axisymmetric bifurcation can be possible only under external pressure for neo-Hookean
material.

Unlike Haughton & Ogden (1978, 1979) we used a more general formulation of governing
equations and boundary conditions, because, first, they were expressed in terms of functions
¢ and v and then we specified these functions appropriately.

In all cases the electroelastic term in the energy functions was expressed as e~ I5/2.
It can be shown that this leads to a linear constitutive law for E, and D,: E, = ¢ 'D,
with electric permittivity being independent of deformation. At least for some materials
this can be viewed as a limitation and we discuss it briefly at the end of Chapter 3.

In Appendix A we give the derivations of some relations, used in Chapter 3. In Ap-
pendix B we give MATLAB code for our numerical calculations. We also discuss and
explain briefly some important aspects of this code. The code employs a numerical scheme
used in Haughton & Ogden (1979). We note that for the type of the problems considered
here another numerical scheme known as matrix compound method can be successfully

used. A good reference for this method can be found in Haughton (1997), for example.



Chapter 2

General Theory of Nonlinear

Electroelasticity

2.1 The equations of nonlinear electroelasticity

In continuum mechanics we work with physical quantities either in reference or current
configurations. We consider a deformable electrosensitive body which occupies the ref-
erence configuration B, with the boundary 0B, in the absence of mechanical loads and
electric fields. Application of an electric field and mechanical loads induces deformation
which results in a new configuration B with the boundary 988, normally called the current
configuration. We label a material point in the reference configuration B, by a position
vector X, and this point in the current configuration B by a position vector x. Deformation
is described by the vector field x, which relates the position of a particle in the reference
configuration to the position of the same particle in the current configuration: x = x(X).

The deformation gradient tensor, denoted F, is defined by
F = Gradx, (2.1)

where Grad is the operator defined with respect to X.
Along with the deformation gradient we use the right and left Cauchy—Green deforma-
tion tensors, defined by

c=F'F, b=FFT. (2.2)

The quantity, defined by
J =detF (2.3)

16
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accounts for volumetric changes.

We note that for incompressible materials

detF = 1. (2.4)

2.1.1 Governing equations and boundary conditions

Here we give specializations of Maxwell’s equations for the electric field variables provided
that we do not have magnetic fields, free currents, free volumetric electric charges (free
surface charges can be present on the boundaries dB), and we have no time dependence.
In this case we have

curlE=0, divD =0, (2.5)

where E denotes electric field vector, and D is electric displacement vector. Operators curl
and div are defined with respect to x. We assume that outside the body we have vacuum.
We will use a star to denote the respective quantities outside the body. In this case we

have a standard relation between the electric field and the electric displacement
D* = ¢ E*, (2.6)
where ¢q is the vacuum permittivity. In vacuum we have
curlE* =0, divD* =0. (2.7)
Fields E* and D* have to satisfy the boundary conditions
nx (E*—E)=0, n-(D*-D)=0; on 0B, (2.8)

where n is the unit outward normal to 9B, o is the free surface charge on 0B per unit
area. Derivations of (2.8) can be found in Dorfmann & Ogden (2014c).

In Dorfmann & Ogden (2005) it was shown that electromechanical equilibrium equation
can be conveniently written as

divr = 0, (2.9)

where 7 is the total Cauchy stress tensor. We note that the total Cauchy stress tensor
depends on the deformation and electric field via a constitutive law, which will be discussed
in Section 2.1.3. We assume that there are no mechanical body forces, whereas electrical
body forces are incorporated in (2.9) implicitly. Tensor 7 is symmetric, provided that the

mechanical angular moments are balanced or not present at all.
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The boundary condition for the total Chauchy stress is
™ =t, +t; on 0B, (2.10)

where 0B; is the part of the boundary where the mechanical traction t, is prescribed along

with t; = 7in which is the load due to the Maxwell stress 7}, calculated from the fields

outside the body B. The Maxwell stress is defined by
1
T, =c0E* @ E* — 550(E* -E9), (2.11)

where I is the identity tensor.

2.1.2 Lagrangian forms of the electric fields

Lagrangian forms of electric fields are given by the following relations
E, =F'E, Dy =JF'D, (2.12)

where we recall that J = detF. Justification of these relations can be found in Dorfmann

& Ogden (2005). The counterparts of equations (2.5) in the reference configuration are
CurlEf, =0, DivDy =0. (2.13)

Here operators Curl and Div are defined with respect to X.
In order to obtain a Lagrangian form of the equilibrium equation (2.9) we introduce

the total nominal stress tensor T defined by
T=JF 7. (2.14)

We note that expression (2.14) is a generalization of the nominal stress tensor in nonlinear
elasticity. Using identity DivA = Jdiv(J 'FA) we obtain a Lagrangean form of the

electromechanical equilibrium equation (2.9)
DivT = 0. (2.15)
The boundary condition associated with (2.15) can be obtained with the help of relation
rnds = TTNdS, (2.16)

connecting infinitesimal areas ds and dS in the current and reference configurations, n
and N being respective normals to these areas. Relation (2.16) has been obtained from

Nanson’s formula nds = JF~TNdS and (2.14).
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Therefore, (2.10) transforms to
TIN =tp +t5 on 0By, (2.17)

where 0B, is the part 0B, on which electromechanical tractions are defined, to and tf =
TETN (with T} = JF~17%) being the mechanical traction and the Maxwell traction per
unit reference area, respectively.

Using Nanson’s formula and relations (2.12) boundary conditions (2.8) in Lagrangian

form can be written as

(FTE* —E ) xN=0, (JF'D*-Dy)-N=or on 0B, (2.18)
where N is the unit outward normal to 0B,, op is free surface charge density per unit area
of 0B,.
2.1.3 Constitutive equations

In the problems discussed in this thesis it is convenient to choose Dy, as an independent
variable. For mechanically unconstrained and incompressible materials the total stress

tensor and the electric field in Lagrangian form are, respectively,

o o
T_aT7 EL—TI)L, (219)
o o
T = —pF ! R =2 2.2
oF " 0 P T oDy (2.20

where Q* is a total energy density function (Dorfmann & Ogden, 2005), which depends on

F and Dy, through the invariants of the right Cauchy-Green deformation tensor c
1 2 2
L =tre, L= 5[(trc) —tr(c?)], (2.21)

I,=Dy-Dy, Is=Dy-(cDy), Is=Dy-(c*Dy), (2.22)

and p is a Lagrange multiplier associated with the incompressibility constraint (2.4).

For incompressible deformations I3 = detc = J? = 1, therefore, we did not include it
in (2.21). In general I3 must be used to account for volumetric changes for compressible
materials. Following the same convention used by Dorfmann and Ogden in their papers
on Electroelasticity, we retained the asterisk in €2*, which signifies that the total energy
function was defined in terms of Dy.,.

From (2.14) the total stress 7 can be defined as a (partial) push forward of a total
nominal stress T: 7 = FT, and push forward of Er, according to (2.12): E = F~TEL.
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Therefore, pushing forward the quantities (2.20) and using the fact that Q* is defined

through the invariants (2.21) and (2.22) we can get the following expressions:
T = 20%b + 2Q5(I1b — b?) — pI + 20D ® D + 20Q4(D ® bD + bD ® D), (2.23)
E =2(Qb 'D + QiD + QibD), (2.24)

where f is a partial derivative 9Q*/01; for i = 1,2,4,5,6, and the deformation tensor b

was defined earlier by (2.2)s.

2.2 Incremental Formulation

In this section we give the equations governing incremental deformations and electric dis-
placements superimposed on a deformed configuration and an initial electric field. A more
detailed discussion of this theory and relevant equations can be found in the book by

Dorfmann & Ogden (2014c).

2.2.1 Incremental equations and boundary conditions

We denote the increment for a certain variable by a superimposed dot. For example, x
is the increment in the displacement, F = Gradx being a corresponding increment in the
deformation gradient. Increments of Er, Di, T must satisfy the incremental governing
equations

CwlE;, =0, DivDy =0, DivT =0. (2.25)

Outside the material increments in electric displacement field and electric field are con-

nected by D* = ¢gE* and must satisfy the equations
curlE* =0, divD* = 0. (2.26)

Incrementing electric and traction boundary conditions (2.18) and (2.17) with J = 1 we

have
(FTE* + FTE* —E)x N=0 on 0B, (2.27)
(F'D*—F 'FF'D*-Dy)-N=6r on 9B, (2.28)
TIN=t) +7F "N - 2F TFTF TN on 05, (2.29)

where 77 is the incremental Maxwell stress which can be calculated from (2.11) and ex-
pressed as

75 =eo[E* @ E* + E* @ E* — (E* - E*)I]. (2.30)

e
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We will work with the push-forward versions of increments in Ey,, Dy, and T defined by
ELO = F_TEL, DLO = FDL, To =FT. (2.31)

The above mentioned quantities with a zero subscript can be also referred to as the updated
quantities with respect to the current configuration . A more detailed discussion of this
concept can be found in Ogden (1997) for pure mechanical problems, and here we use a
similar approach of updating variables with respect to the current configuration for an
electromechanical problem.
Therefore, using the previous relations it can be shown that governing equations (2.25)
are updated to
curlErg =0, divDyy =0, divTy=0, (2.32)

and corresponding boundary conditions are updated to

(E*+LTE*—E ) xn=0 on 9B, (2.33)
(D* —LD* —Dyg) -n=6py on 0B, (2.34)
Tin=tr0 +7in—7:LT™n on 9B, (2.35)
where L = gradu, u being the increment in the displacement vector: u = x. When

increment x is treated as a function of x we can obtain L = FF~!. Incrementing (2.3) we
have J = Jtr (FFil). Since for incompressible materials J = 0, a linearized form of the

incompressible condition (2.4) follows
trL = divu = 0. (2.36)

Let e, es, es are the unit basis vectors in the orthogonal curvilinear coordinate system.

Therefore, expression (2.32)3 gives three scalar equations
Toji; + Tojier - e + Torjei-ej =0 (i =1,2,3), (2.37)
where summation over repeated indices j and k from 1 to 3 is implied.

2.2.2 Incremental constitutive equations

The increments in the deformation gradient F and Lagrangian electric displacement Dr,

will induce the increments in stress T and Lagrangian electric field Ep,. Incrementing
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the constitutive laws (2.19) we obtain linearized incremental constitutive equations for

unconstrained materials
T = A*F + A*DL, EL = A*TF + A*DL, (2.38)
where A*, A* A* denote electroelastic moduli associated with the total energy Q* =

0" (F,Dy,). These quantities are the fourth-, third- and second-order tensors, respectively.

In component form they can be represented by

. 92O . 920* . 920 (2.39)
B T PFLOF;s P T 9F,0DLs’ P T 9Dp.0Dys’ '
Mixed derivatives in (2.39) allows us to see the following symmetries

The vertical bar in the component form of A* separates the first 2 indices with the third
index, because the first 2 indices are associated with a second-order tensor, whereas the
third one is associated with a vector. The tensor A* maps a vector into a second-order
tensor, whereas the transpose of it does the opposite: maps a second-order tensor into a
vector. In the component form we can write AZ” 5= AE};Z

In component form equations (2.38) can be written as

Aazﬁ]ﬂﬁ + Aaz\ﬂDLﬁ’ ELOé = Azanlﬁ + AZBDLﬁ' (241)

Taking into account that ©* in (2.39) depends on F and Dy, through invariants I;,
i€{1,..,6} we can expand electroelastic moduli tensors and write

. 6 5. . 09I, oI,
=D VDS on D e aFjg Z Q”8F 6F

m=1,m#4 n=1,n#4 n=1,n#

6

. :Z Z OLn Oy | §nge O'ln
oﬂ|5 T mnaDLB 8Fw¢ ~ na-FiaaDLﬂ7
6
oI, 0?1,
o = O 2.42
B = Z Z mn aDL OD13 + Z "9D1,a0D1’ (242)
m=4n=4 n=4

where QO = 0Q* /01, Q, = 0°Q*/01,0I,, m,n € {1,...,6}. In (2.42) we need to
calculate derivatives of invariants I;, ¢ € {1, ..,6} with respect to F and Dy,. In component

form the non-zero first derivatives have the following expressions

ol 01y 015
aﬂa = 2-Fiom 87,@ = Q(C'y'y-Fioz - Coz'yFiw)a E = 213 ai
ol 01
> — 2D1o(FiyDry), ——> = 2(capDrgFiy D1y + DroFiycysDig),
8Ea 8Fia
ol ol ol
I 2D1,, —2 = 2¢cqpD1g, 6 _ 2CiBDL5. (2.43)
0Dr1,0

aDLa
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The non-zero second derivatives with respect to F are

2
éuélé;?ﬁ=:25ﬁéaﬁ,
&£Z%ﬁ:QQEJ%—fﬁﬂa+w@ﬂw—hﬁw—qw%x
8£Z£%3:2AQE;F@L—E;FEU,éﬂig%B:Q&ﬂhﬂDw,
c’ﬁ?j;i’jg = 2[6;(caryDryDrg + ¢ D1y Dra) + 8apFiy D1y Fjs Dis

+ Fi'yDL'ijaDLB + Fj'yDL’yF’i,BDLa + bijDLaDLﬁ]- (244)

The second derivatives of Iy, I, Ig with respect to Dy, are

921y %I %I,

e S, y Sl B, 1 . S, P2 2.45
aDLaaDLﬁ oh aDLaaDL,B Caf aDLozaDLB Caﬁ ( )

The mixed derivatives of I, Is, I3 and I with respect to F and Dy, are equal to zero.

For I5, I we calculate

0*I5
—————— = 20,3F;, D 2D1,0.F;
aF‘iaaDLﬁ af Ly L'y“‘ Lal’iB;
%1
— 5 2-Fzﬂco¢'yDL'y + 2Fi'yDLfycaB + 2Fi'yc'yﬁDLa + 25aﬁFi'yC'y§DL5~
OFadDr;

We introduce the notation b = I1b — b2, D) = bD and DY = b~'D. We obtain

the following expressions for the components of electroelastic moduli tensors
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J Abpigy = H N 1bipbjq + Q5o (bipbjq + bighip) + Qiabipbjq + 15530105
+ 1303 (Bipbig + Sjgbip) + 13253 (Sipbjq + jgbip) + 13255 D:D; D, D,
+ 13Q75(bip D Dy + bjg Di Dp) + 13955(DiDijq + DquEip)
+1355(Di Dybjq + DiDgdip)
+1205(D" D, + DV D;) (DY D, + DV D)

l)Dj) + qu(DO)Dp + Dél)Di)]

)

+ I3Q5[bip (D D, + D
3% b, (DD, + DYDY + 5. (DY D+ DD D,
+ I305[bip (D} " Dy + Dy’ Dj) + bjg(D; " Dy + Dy, D)

+ B30%[0p (D Dy + DYV D;) + 84(DIV D, + DIV D)

+ 130%4(DY D; DyD; + DYV D,D,D; + DYV D,D:D; + D D, D;Dy)}
+ Q{Qféijbpq + Qz[%z‘pqu — bigbjp + 5ijl_7pq - bijbpq]

+ 13Q3(20ip0jq — digdjp) + 13025045 Dp Dy

+ I;3[0:;(DSY D, + DV D)

+bquZ‘Dj + bjpDiDq + bz‘quDp + bZ’ijDq]}, (246)
T A g = A2 abip DS + Q5,05 DS + 503,65, DS

+ Qs DiD, DY + LY(DY D, + DY D) DY

+ QisbipDg + Qasbip Dy + 13Q350p Dy + 13055 Di Dy D,

+ LQ%(DY DD, + DY DD, + DY DD, + Qighi, DY

5
D 4 L8, DY + 130%6(DY D, + DV D) D

(
q q

+ 2[Q§(5qui + 52’qu) + Qz(éiqu()l) + 6Pqu(1) + bqui + biqu)]?

(2.47)
TN = Al DV DY 4k DiD; + QDY DY
+ Qi5(D 7V D; + DYV D) + Qi(D VDY + DY DY)
+ (D D; + DV D)) + 20505 + Q38 + Qbig), (2.48)

for an unconstrained material. In order to obtain the expressions for an incompressible
material we set J = I3 = 1 in the above formulas and omit the terms involving derivatives

of Q* with respect to I3.
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We can evaluate the previous expressions with respect to the principal axes. Here we
give the expressions of tensors A", A*, A* referred to principal axes of the left Cauchy-
Green tensor b, i.e. in terms of principal stretches A1, A2, A3 and components (D;, Ds,
Ds) of the electric displacement vector D. In these expressions we note that the indices

are such that i # j # k # 1.
JASii = 2X7[QF + (A3 4+ MDD + ANARQ5 + NIALDF Q5 + 6A7Q%)]
+ AN+ 200 + A + (A + AR5,
+ AIAR[2903 + 2007 + ADQ55 + ATARQ5s] + 2XALDI Q5 + 2070
+ (A7 + A5 + 207 (A7 + AP Q36 + ATARQs + 213Q5]

+ )\?)\iD?( 55 + ANTQEs + 4N Q%) ),

JAiii; = AD; D IsNH{Q + Qf5 + (/\32‘ + AR5 + A?Ai 35
+ (A7 + AD[Q6 + (0] + AR) Q56 + A AZQ5]

+ NALD? [ 4 (BAT + AD)Q%6 + 207 (A7 + A6l

+ 2X7[5 4+ (AT + AD) Q35 + AZAR Q]
+ 20T (A + A9 [ + (A7 + AD)Q36 + ATAZ Q5]

+ 2I3D7 Q35 + (AT + A1) Qg + 207 (A + A7) Qg6

JASii5 = ANA{QS + AP + Qfy + (I + A + (T2 + X)) Q3
+ AR + A7) Q05 + (I + APAT)55 + 13025]
+ AL(AFDF + APDF) (015 + Af5s)
+ 2I3(\7 D} + A?D?)(Q% + An )
+ I3(D} + D?) (20 + Q35 + 203056 + \pQis)

+ IALD; D355 + 2(A7 + A5)Q6 + 47 AT},

JAGijii = 2N 4+ AiQ5 + DINIAZQE + NIAL(2DF A + DAY + DAY )Q

+ 2D7 D3 IsNIA Q5 + 2(A7 + A6 + (AT + A1)l ),
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JAS 50 = 2NN = Q5 — \iQ5 + A{(AT D] + A D7)

+ 2D7 D2 IsAL Qs + 2(A7 4+ A5 + (A7 + A7)*Q]

JAGiijk = AD; Dy IsAP{Q}5 + (Xf + A0 (D35 + Q) + (>\32 + A7)
+ NIARDs + NI+ M) Q6 + DIATAQ55 + (I + AT Q%

+ 27 (A7 + A2) Q%61

JAS ki = JAvijin = 2D; D Is{ N7 + 2D I3[Q55 + (I + A7) Qg

+ (I + M)}

JAS i = 2D DiIs{% + LG + 2D7 I3[ + (11 + A7)

JﬁlASii\i = AD{% + 2705 + Q7,4 + A7 Q75 + A

+ ()\? + A0 (R34 + APQ55 + AfQ56) + )\?)\%(Q& + A5 + A/ Q5)

+ Dz?)\?)\i[mif) + AT + N Qg + 2X7 (i + A7 Q56 + A Q6)]}

JflASii\j = 4Dj)‘12/\;2{QT4 + >\j2‘ 15+ A? 16+ ()\3 + A2 (5, + )\3935
+ AQ36) + AR5, + AT + NjQ5) + DINALIQs + ATQEs
+ /\?Qgﬁ + 227 (s + )\?QEG + )‘?926)]}’

TG = 2D + (AF + M) + 2DIAINL Qs + ATQ55 + A<

+ (A7 + A2 (6 + A6 + A/ Q%6)]
T AG i = 4D DiDR AN [ + A5 + A5
+ (A + X)) (6 + Ai Q6 + X Qo))

JTUAG = 2072{Q) + ATQE 4+ NQG + 2D NAZ [ + N Qs + A Qg

+ AT (s + ATQEs + A QE6) + A (s + AT + AT Q6]

JflASi]’ = 4AD; DiAF[Qg + NP5 + N/ Qs + )\?(915 + NQE5 + AJQ%)

+ )\?(QZGJF)\%Q%JF)\?QZG)]-

26
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For an incompressible material these relations remain valid if we omit all terms with
derivatives of Q* with respect to I3 and set J = I3 = 1.

Incrementing a constitutive law (2.20) for incompressible materials we can obtain
T = A'F + A*Dy, + p'F'FF ! — p*F 1, (2.49)

while equation (2.38)9 is not affected by the incompressibility constraint. Electroelastic
moduli are defined by the expressions (2.39) with J = 1 in this case. The updated versions
of (2.38) and (2.49) are

Ty = ASL + AjDro,  Ero = A;TL + AjDyy, (2.50)
To = AJL + AjDro + p'L — T,  Ero = Aj' L+ AjDyy, (2.51)

obtained from the connections (2.31).
Calculations show that electroelastic moduli tensors (2.39) are updated according to

the following relations in the component form

Abjite = I FraFip Ajaisns (2.52)
* —1

0jilk = Fiatlp, Aoais: (2.53)

Abii = TF oy Frj Noass (2.54)

where J = 1 for incompressible materials.
The symmetries (2.40) for updated versions of electroelastic moduli tensors remain

valid and an additional symmetry for tensor A can be obtained
Szj\k = ASmk‘ (2.55)

For unconstrained and incompressible materials we also mention here the following
useful connections

-Aéjisk - Aaijsk = Tjs0ik — TisOjks (2.56)

Abjisk — Avijsk = (Tjs +P8js)0ik — (Tis + pdis) k.- (2.57)



Chapter 3

Finite Deformations of Electroelastic

Tube

3.1 Introduction

Recent successes in the technological production of new dielectric elastomeric materials
instigated a rapid development of devices which employ the properties of such materi-
als. For instance, actuators, sensors and even artificial muscles can be manufactured from
dielectric elastomers. We note that the theories which account for the nonlinear electrome-
chanical interaction can be traced to the middle of the last century (Toupin, 1956), but
Dorfmann & Ogden (2014c) indicated that the present theories cannot be used easily for
applications and for solutions of boundary-value problems. In this chapter we consider a
cylindrical configuration which is one the possible geometries for actuators (Pelrine et al.,
1998). Using the theory of Dorfmann & Ogden (2005), we analyzed the nonlinear response
of a pressurized thick-walled tube in the presense of radial electric field, which is generated
by two compliant electrodes attached to the lateral internal and external surfaces of the
tube. Previously, a similar problem was considered by Dorfmann & Ogden (2006) without
electrodes.

The boundary-value problem considered in this chapter can be used as a model for
an actuator, the actuating force of which can be generated by inflation and electric field.
This type of actuator can be deemed as multipurpose and versatile, because it has a
potential to be used for more applications where advantages of both actuation mechanisms
are required. For example, actuation by inflation can be used for handling fragile objects

where we need a soft touch (Reynolds et al., 2003). On the other hand, actuation by an

28



CHAPTER 3. FINITE DEFORMATIONS OF ELECTROELASTIC TUBE 29

electric field can be advantageous for some applications where we need quick and precise
deformation by actuation (Goulbourne, 2009). A mathematical model for cylindrical, fibre-
reinforced pneumatic actuators was considered in Goulbourne (2009). In this model a
purely elastic strain energy potential was used, which does not account for the interaction
between deformation and electric properties of dielectric material. The effect of the electric
field was modelled by Maxwell stress. The augmented Cauchy stress was calculated as a
sum of Maxwell stress and mechanical stress derived from a purely elastic strain energy
potential. Also purely elastic potentials were used in Zhu et al. (2010). The previous
models were based on nonlinear elasticity which allows us to model large deformations of
dielectric elastomers. For small range deformations a model based on linear elasticity was
proposed by Carpi & Rossi (2004).

Prototype actuators were initially proposed by Pelrine et al. (1998) as a proof of con-
cept for actuating dielectric elastomers by an electric field. We can mention briefly some
applications of actuators with cylindrical geometry. Cylindrical fiber actuators can be used
in building blocks mimicking the structure of real biological muscles (Arora et al., 2007).
Also they have a potential to be used in textiles to produce active, smart structures (Arora
et al., 2007). Tubular actuators were reported to be used in refreshable Braille displays
(Chakraborti et al., 2012). Since dielectric elastomer actuators are advantageous in many
aspects (Pelrine et al., 2001), we can expect further developments and expansion of the
areas of application of cylindrical and other types actuators in the future. Technological
aspects of production of tubular elastomer actuators are discussed in Cameron et al. (2008).
Cameron et al. (2008) proposed to use a commonly used procedure of coextrusion, which
allows us to produce elastomer tubes filled with conductive core. The authors indicated
that this method combined with inexpensive commercially available materials makes an
actuator of this type easily available to mass production.

This chapter is organized in the following order. In Section 3.2 we give general ex-
pressions for pressure and reduced axial load. In Section 3.3 we consider a simple energy
function and give specialized expressions for pressure and reduced axial load. In Sections
3.4 — 3.5 we derive expressions for pressure and reduced axial load for a thin-walled cylin-
drical shell. In Section 3.6 we obtained numerical dependences of nondimensional pressure
and reduced axial load on deformation for specific strain energy functions which account
for the pure mechanical properties of material. A short discussion of activation is con-

tained in Section 3.7, based on the thin-walled formulas from Section 3.4, by considering
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either zero internal pressure and activation at fixed axial load or zero reduced axial load at
fixed internal pressure. Specific results are illustrated in respect of the neo-Hookean elastic
model. Finally, some short concluding remarks are provided in Sect. 3.8. We can mention
that a similar analysis for an electroelastic spherical shell was done in Dorfmann & Ogden

(2014b).

3.2 Application to a thick-walled electroelastic circular tube

3.2.1 Extension and inflation of a tube

The geometry of a circular tube and its extension and inflation can be conveniently de-
scribed by cylindrical polar coordinates R, ©, Z. In the reference configuration the tube
is described by

A<R<B, 0<0<2m, 0<Z<IL, (3.1)

where A and B the internal and external radii, L is the length of a tube.
Assuming that the circular symmetry is maintained in the current configuration we

have the counterpart of (3.1)
a<r<b 0<60<2m, 0<z<], (3.2)

where 7, 6, z are cylindrical polar coordinates, and a, b and [ are the radii and the length
in the current (deformed) configuration.
Since we have incompressible deformation and the tube is extended according to the

relation [ = A, L, the resulting deformation is
P=a®+ NN (R*—A?), 60=0, z=\.Z (3.3)

We will define A = r/R as the azimuthal stretch and A\, = z/Z as the axial stretch. By
the incompressibility condition (2.4), the stretch in the radial direction can be expressed

as A, = AIA\JL From (3.3) we can calculate

R? B?
Ads = 1= 5 (VA = 1) = Z5 (8. — 1), (3.4)
where
a b
M=% N=p. b=/(B). (3.5)

When the tube is inflated the following inequalities hold

NA>1, A=A N (3.6)
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Note, that with respect to the chosen cylindrical polar coordinates the matrix of the defor-
mation gradient is diagonal: F = diag[A,, A\, A;]. The invariants I; and I can be specialized

for this deformation gradient:

L=XA2240 422 L=X2+ 2402 (3.7)

3.2.2 Boundary conditions

In this problem we consider an electroelastic tube, the lateral boundaries of which have
flexible electrodes. The charges on both electrodes are equal and have the opposite sign.
Therefore, by Gauss’s Theorem and because of the given geometry, we do not have a field
outside the material. We will denote a total charge at » = a by Q(a), and at r = b by
Q(b). Therefore, we have

Q(a) +Q(b) = 0. (3.8)

The free surface charge densities per unit area on the inner and outer boundaries in the

current deformed configuration will be

~ Q(a) _ QM)
Ota =5 1> OB =5 0 (3.9)

where [ is the length of the cylinder in the deformed configuration. Therefore, we can
rewrite (3.8) as

aogq + bog, = 0. (3.10)

Referred to the undeformed configuration we have the following analogues of the expressions
(3.9)

_ Q)
OFB = 3 BL’ (3.11)

Qa
OFA = m AL’
where L, A, B are the length, the inner and the outer radii of the cylinder in the undeformed
configuration. In the undeformed configuration we have the following connection between
free surface charge densities

Aopy + Bopg = 0. (3.12)

For the considered cylindrical geometry the radial electic displacement D, (Dy = 0, D, = 0)
will depend only on r and expression (2.5)2 will be equivalent to

1d(rDy)

=0. 3.13
r dr ( )
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Therefore, rD, is a constant, which can be expressed at the boundaries r = a¢ and r = b

as aD,(a) and bD,(b), respectively. And we have
rD, = aD,(a) = bD,(b) = const. (3.14)

Using the boundary condition (2.8), where D* = 0, we can relate radial electric field
components at the boundaries to free surface charge densities per unit area in the deformed
configuration

Dy(a) = 0ta, Dy(b) = —op. (3.15)
Therefore, using (3.9) solutions (3.14) can be expressed as

_ Q) _ Qb
" 2l o2ml

(3.16)

We note that for a finite length tube boundary condition (2.8); applied to the ends of
the tube and the boundary condition (2.8)2 applied to the lateral cylindrical surface are
not compatible. Boundary condition (2.8)y implies for this problem that we have a jump
in E, through the lateral cylindrical surface at r = a and r = b, since we do not have
electric field outside, and inside at the boundaries E, can be found from (3.23), whereas
condition (2.8); applied to the ends of the tube implies that tangential component E, is
continuous. We assume that we deal with a long enough tube so that the edge effects can
be neglected. We refer to the work of Bustamante et al. (2007), where the edge effects are

discussed for a magnetoelastic problem in more detail.

3.2.3 Electric field components

In this problem it is natural to choose the electric displacement as an independent variable.
We can control the electric field by prescribing a certain charge on the boundaries, and the
charge on the boundaries is related to the electric displacement field through the boundary
condition (2.8)3. We will consider a radial field (Dg = 0, D, = 0). Since the constitutive

law
0
- 9Dy,

Er (3.17)

is expressed in terms of Lagrangian variable Dy, we will switch to this variable using relation

Dy, =F 'D. (3.18)
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Since electric displacement vector is aligned along the radial direction of strain, we have

[Dr] = 0 =10 |. (3.19)

Using (2.22), we calculate the invariants

I = N\2D? = D3, (3.20)
Is = \2\2D% p = A2\ %I, = D2, (3.21)
Is = \N"I\4D3 = NI\ = A2\ 2D2, (3.22)

The components of electric field can be found using equation (2.24).
Since the deformation gradient is diagonal and Dy = D, = 0 we have Fy = E, = 0 and

the third component will be
E, = 2(UN°N2D, 4+ QiD, + QEAT2N\2D,.). (3.23)

For cylindrical symmetry (assuming no dependence on either 6 or z) curlE = 0 will be
equivalent to rEy = const and E, = const, which are satisfied automatically. At this point
we do not need to impose any condition on the function 2*. For some types of deformations
we do need such a condition. We can refer to Dorfmann & Ogden (2006) for an example

of such a condition, where azimuthal shear deformation is considered.

3.2.4 Stress components

Stress components can be calculated with the help of (2.23)

Trr = 205A A2 4 20502+ A 72) — p+ 205 D2 + 4Q50 2N 2D2, (3.24)
o0 = 25N + 205 [A\27 + A2N] — p, (3.25)
Tox = 20502 + 205 [ A2 + A2NZ] — p. (3.26)

Since the invariants are the functions of two independent stretches and Iy, we can define a

reduced energy function in the form

w*()\,)\z,f4) = Q*(Il,IQ,I4,I5,IG). (327)
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Therefore, we can calculate

%“’A = O (2072073 4 2)) + Q52002 — 2073)
+ QE (=20 73AT2L) + Q5 (—4XTNM),

Ow* * —2y-3 *(0)2 =3

v QE(=2072A23 4 2)0,) + Q5 (2020, — 2)9)

F Q223 + QE(— 4TINS ).

From (3.24), (3.25) and (3.26) we have

Too — Trr = QF(2A%7 — 20720 72) + Q5(20202 — 2072
—20ED? — 40N T2\ 2 D2,

oo — Trr = Q5 (202 = 2X72A0%)+Q5 (20202 — 2X1?)
—20:D? — 405N\ 2D2.

Therefore, we have the following connections featuring the stress differences:

ow*

— Trr = )\77

Too — T N

ow*
zz — Trr — )\zi

T T, o

Also
‘3‘1 =5 A2 A

Therefore, expression (3.23) can be rewritten as

ow*™
E, =2)2\2=—D,.
29I,

34

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

According to Gauss’s theorem we have no field outside the tube, therefore by (2.11) the

Maxwell stress is zero. Thus, we have only mechanical load due to a pressure P inside the

tube applied to the inner surface at » = a and no loads at r = b, and hence

T =—P on r=a, 7,=0 on r=5a.

(3.35)
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In this problem the equilibrium equation divr = 0 reduces to

drr

dr

r =Top — Trr = )\W; (336)

In the previous expression we have used (3.31). Integrating (3.36) and using the boundary

0 b
d
/‘ dnrzl/ Al (3.37)
_p a T

b
}’:‘/)ijii. (3.38)

conditions (3.35) we have

Therefore,

In some cases it is convenient to change the variable of integration from r to A. To this
end, we rearrange and differentiate (3.3); with respect to r, taking into account that A

depends on r. We have
A
dr

The details of the calculation which lead to (3.39) can be found in Appendix A of this

A2, —1). (3.39)

thesis. Therefore, expression (3.38) can be rewritten as
Aa
P= (A2, — 1)~ hwidA. (3.40)
Ap
From (3.4) we see that )\, depends on \,. Therefore, assuming that A, is known, the

previous relation gives P as a function of A\, and invariant Iy = Q*(a)/472L?R?, which is

known for a given charge Q(a) = —Q(b).

Similarly, since b = \/&2 + A7 1(B2? — A?) we see that (3.38) provides a relationship
between pressure and the inner radius a and invariant Iy.

The total axial load N can be calculated from
b
N = 277/ Toordr. (3.41)
a

Using (3.32), (3.31) and the equilibrium equation (3.36), the axial stress 7,, can be ex-

pressed as
171d Awy .
T = 5 [;J(TQTTT)} — 2)‘ + AWy, (3.42)
Therefore, the total axial load can be rewritten as
b s
1r1d Aw N
N = 27I'/a |:§ [;5(7’27}@)} — T)\ + )\Z(U)\Z Td?“ (343)

b b
= 71'/ Ad(r*m.,) + 7T/ (2A.w}, — Awy)rdr.
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Using the limits of integration for the given problem, finally, we have
b
N = 7r/ (2A\.w} — Aw})rdr + Ta®P. (3.44)

We assume that the cylinder has closed ends. The quantity F = N — Pra? can be
interpreted as a reduced axial load, because the action of pressure on the ends of the
cylinder is removed from the total load. Using the previous result (3.39) and (3.4), we can
change the variable of integration from A to r

Aa

F=mA?(\2), —1) / (A2X; — 1) 72 (20w}, — Aw})AdA. (3.45)
Ap

3.3 Illustrative example
We will consider the simple energy function
* 1 1 -1

where the constant u is the shear modulus of the neo-Hookean material in the absence of
an electric field and the constant ¢ is the electric permittivity of the electroelastic material.
Using (2.21); and (2.22)2 with F = diag[A,, A\, \;] we can write potential (3.46) in the
reduced form

1 1
wh= opATAZH A AL = 3) 4 e AT L (3.47)
To find the pressure inside the cylinder we need to calculate Awy
Awi = p(=AT2A02 + A7) — e IA AN, (3.48)

Integral (3.38) for neo-Hookean material can be calculated explicitly and the result is

Aa 2

Ag—Ag] b a

P=puAin 2% 4 22 — 3.49
P I A * 2a? (3.49)
where ¢ is defined as ¢ = U%AA2 and related to the charge Q(a) via
Q(a)\2
0= (292, (3.50)

2rL

Expression (3.49) gives P in terms of the charge ¢ and A\,. Again, recall that Ay, a and b
can be expressed in terms of \,. The reduced axial load can also be evaluated explicitly

for neo-Hookean material

g
N2

z

F=mAu[(A: = A7) (07 = 1) = A72(A2h: — 1) log(Aa/Mo)] —

log(b/a). (3.51)
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In (3.47) instead of a neo-Hookean material we can write more generally
1
w* =w(\\,) + 55—1A—2A;2I4. (3.52)

Therefore, we can rewrite (3.49) as

Mg 1 12 —a?
P= AA, — 1) wad — e gL , .
" ( A ) WA € q)‘z 20212 (3 53)
and the reduced axial load will have the following representation
2012 Mg 2 Tq b
F o nA2(02), — 1) A (A~ 1) (20n, — Aoa)AdA — "% log (3.54)
b z

3.4 Application to a thin-walled cylindrical shell

For a thin-walled cylindrical shell we can approximate expression (3.40) using the mean
value theorem

P~ (A — X)X\, — 1) Lwi (N AL, L), (3.55)

From the expression (3.4) to the first order in 6 = (B — A)/A we can obtain the following
approximation

Aa = Xp +OATIATTARN, — 1), (3.56)

where A can be taken as either A\, or Ay to the first order approximation in §. Therefore,

expression (3.55) can be rewritten as
P~ AN i (0 AL, ). (3.57)

Approximation of I, gives the following result

Ii~od, = % =g (3.58)

where we defined the notation § = 01% 4- Therefore, for a fixed A, P will be a function of
stretch A and the charge op 4. For the reduced potential with a general elastic term we can
rewrite (3.57) as

P~ ST o AL) — e T30 2. (3.59)

We can see from this relation that the influence of the charge ¢ on the pressure P becomes
less and less with increasing azimuthal stretch A (A, is fixed).

Using the mean value theorem and expression (3.56) we can approximate the reduced
axial load

F o~ 0mA% (2w}, — A 'w}). (3.60)
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In a similar way for a reduced energy potential with a general elastic term we can write
F ~ 6mA?(2wy, — M\ twy — e IAT2N3G). (3.61)

We can interpret this result in the following way. With increasing circumferential stretch

A the influence of the electric field expressed in terms of charge ¢ becomes less and less.

3.5 Charge and potential

Since curl E = 0, there exists a scalar field ¢ (electrostatic potential) such that E = —grad ¢.
For cylindrically symmetric problem ¢ depends only on r, therefore, E, = —d¢/dr. Previ-

ously, we found that E, = 2)\2)\§w}4Dr. Therefore, we have

d<l5 24y2, %
E = -2\ )\zOJI4D7-. (362)

Integration of the previous expression and use of (3.16) will give us an expression for

potential difference between the surfaces, and we have

L[° d
5(6) — (a) = ~ 2 / Yo, (3.63)
For the simple model (3.46) and fixing A\, we have
Q) b

The obtained expression provides a relationship between potential difference at the bound-
aries, the charge Q(a) = —Q(b), the inner radius a and the length of the cylinder .
We can rewrite the previous expression (3.64)

o) = dla) _ o
B-A /\2(77 - 1)

Aa
Ao’

e llog (3.65)

where we defined n = B/A. Expression (3.65) provides the relationship between potential
and the charge op4, azimuthal stretch \,, n and dielectric permittivity of material £. We

will define reference electric field as

¢(b) — ¢(a)
Ey=—F—""—+ .
0= 20, (3.66)
and we can approximate (3.64) for the membrane
Eo Qla) (3.67)

T 27rAZN2LAe
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Therefore,

G = FE22NINY, (3.68)
and we can rewrite (3.59) as
P~ AT wa(M\ \L) — eAN2ER). (3.69)

We can observe from this relation that for the considered case when the electric field is
defined by (3.66) through the potential difference, the second term in (3.69) is not affected
by the azimuthal stretch stretch A. Therefore, in this case the effect of electric field is
uncoupled from mechanical stretch A, provided that A, remains fixed.

For the reduced axial load we have the following result
F ~ 6mA%(2wy, — M\ Twy — X2 ED). (3.70)

Therefore, we can conclude that if electric field is expressed in terms of potential differ-
ence, the reduced axial load will be affected more and more significantly with increasing

circumferential stretch \.

3.6 Numerical results

Here we give explicit relations, based on which the figures were produced. In figures 3.1(a)—

3.3(a) we used the following expression for a non-dimensional pressure P* = P/pu

1 [ i(n? — 1
P = / (A2X, — 1) Lwpd — at _3 , (3.71)
1, 2epAENG[AG + A (n? = 1)]

obtained from (3.53), using (3.58), (3.5)1, (3.5)3, (3.3)1 and the definition n = B/A.
In figures 3.1(b)-3.3(b) we used

1 [ E2e(n? —1)(n —1)?
P = / (A2X, — 1) twydA — o=(n” — D(n—1) (3.72)
A

0, 2uA: A2 (A2 + A7 (2 — 1)) [ log 2=

1

obtained from (3.71), (3.58), (3.65) and (3.66).
In figures 3.4(a)-3.6(a) we used the following expression for a non-dimensional reduced

axial load F* = (N — wa?P)/umrA?
Xa ~

1 _ q A
F*=Z(0\2\, — 1 A2N, — 1) 7220wy, — dwy)AdA log =% 3.73
03 >/Ab ( A, — Ao A+ Tolog 2 37)

z

obtained from (3.54) and the definition for 7.
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In figures 3.4(b)-3.6(b) we used

1 Aa E2 -1 2
F* = —(\2\, — 1)/ (N2, — 1) 72 (20 wy, — dwy)AdA + LA) (3.74)
K Xy plog £

obtained from (3.73), (3.58), (3.65) and (3.66). In the expressions for P* and F* \; can
be expressed in terms of A, through the relation (3.4).

In this section we show numerical results for different elastic models, which are ac-
counted for by the term w(A, A;) in (3.52). We used Mathematica (Wolfram Research,
2013) for this purpose. First, we will consider a neo-Hookean model. In Fig. 3.1 the di-
mensionless ratio P/u is plotted for different charges meassured by dimensionless quantity

G/ pe, and different potential differencies, measured by dimensionless quantity 5E§ /. We

P/p (a) P/ (b)
0.08 - 0.08 -
006 |- 0.06 -
0.04 - 0.04 -
0.02 - 0.02 -
0.00 L 0.00 Lo
0 0

Figure 3.1: Plots of P/u versus A, for the neo-Hookean electroelastic material based on Eq.
(3.71) and (3.72) with n = 1.1 and A\, = 1.2: (a) for fixed charge with ¢/ue = 0, 1,5, 10;
(b) for fixed potential difference with e E3/u = 0.0,0.2,0.35,0.5. In each of (a) and (b) the

value of P/u decreases as the magnitude of the field measure increases.

see that the results for a thick walled tube (B/A = 1.1) are in conformity with formulas,
obtained for a thin-walled cylindrical shell. For a constant charge influence of the field be-
comes less and less with increasing azimuthal stretch A,. For a thin-walled shell this feature
can be observed from a factor A™* in (3.59). If we prescribe different constant potential
differences, we see that the effect of electric field measured by dimensionless potential dif-
ferences e E2/u is now uncoupled from the mechanical deformation. We can observe the
same situation in the case of a thin-walled cylindrical shell. Observe that in the second
term of (3.69) the azimuthal stretch A becomes unity.

Next, we will consider the Ogden model, (Ogden, 1972). The strain energy potential is
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expressed in terms of principal stretches
N
WA, Ao, As) = > %(/\(11" A"+ A5 = 3), (3.75)
n=1 "

where N is a positive integer, u, and «, are material constants, and shear modulus u

satisfies
N
2u = Z Y Oty (3.76)
n=1

We will consider a three term version of this model: N = 3. It was found that this model
gives a good approximation for vulcanized natural rubber with the following values of
material constants: a; = 1.3, as = 5.0, ag = —2.0. To plot the dimensionless pressure
P/u we will use material constants p, divided by shear modulus p: u! = py,/p, with the
following values: p = 1.491, pu5 = 0.0028, pz = —0.0237. For the considered deformation
of a cylinder the potential (3.75) specifies to

3
Hn _ _
AA) = (A NG L\ \TO 3, 3.77
w(X, A:) ; PR ) (3.77)
Plu (a) P/ (b)
0.08 0.08
0.06 |- 0.06 |-
004 | 0.04 |
0.02 - 0.02 -
000! ‘ 0.00 Lo
0 1 2 3 4 )\as 0 1 2 3 4 M 5

Figure 3.2: Plots of P/u versus A\, for the Ogden electroelastic material based on Eq.
(3.71) and (3.72) with n = 1.1 and A, = 1.2: (a) for fixed charge with ¢/ue = 0, 1,5, 10;
(b) for fixed potential difference with eEZ/u = 0.0,0.2,0.35,0.55. In each of (a) and (b)

the value of P/u decreases as the magnitude of the field measure increases.

We can observe in Fig. 3.2 that most plots with low charge have maxima and minima,
which is in conformity with pure elastic case. Again, we have the same trend. When electric
field is expressed as a constant charge, with higher circumferential stretch, the influence of
the field becomes less and less.

Finally, we will consider the Gent model (Gent, 1996). This is an isotropic model. Its

distinctive feature is that it has an asymptote, which reflects the fact that polymeric chains
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Figure 3.3: Plots of P/ versus A, for the Gent electroelastic material based on Eq. (3.71)
and (3.72) with n = 1.1 and A\, = 1.2: (a) for fixed charge with ¢/ue = 0,1,5,10; (b) for
fixed potential difference with eE2/u = 0.0,0.2,0.35,0.5. In each of (a) and (b) the value

of P/u decreases as the magnitude of the field measure increases.

in rubber cannot be extended beyond a certain threshold. The elastic potential has the

following representation for this model

W(lL) = —§1og {1 - (Il(; 3)} , (3.78)

where G is a material constant. We took G = 97.2 for our calculations. This value was
used by Gent for the unfilled rubber vulcanizate. The results of numerical calculations are
shown at Fig. 3.3. We observed an asymptote at A ~ 10, which is not shown here.

In general we can note that electric field predeforms a cylinder by increasing its circum-
ferential stretch, therefore we can observe that in order to obtain a certain circumferential
stretch a lower pressure is required with respect to pure elastic case.

We assume that the cylinder has closed ends. In order to keep A, fixed, we need to
apply an external axial load. For the sign convention we accept that positive load tries to
extend the cylinder, and negative load tries to compress it. In this part of the thesis we
will consider how non-dimensional reduced axial load is affected by an electric field. We
define non-dimensional reduced axial load as F* = (N — 7wa?P)/umA%. We will consider
the previous models in the same order. The same trend can be observed in all figures.
With increasing electric field a lower axial load is required to keep A, fixed. Therefore, we
can conclude that according to this model the electric field tries to stretch the cylinder in
the axial direction, therefore a lower axial load is required for stronger electric field. As an
example, Fig. 3.4(a) can be interpreted in the following way. Initially, a positive extensional
load is required to have a prestretch A\, = 1.2. Then due to the inflating pressure, which

extends the tube in the axial direction, we observe that reduced axial load is decreasing
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with increasing circumferential stretch A,. Next, if we apply electric field, it will give
an initial circumferential prestretch A,, and then as it was before, the axial load will be
decreasing due to inflation. We note that we used the same parameters (electric field, axial
stretch \,, ratio n = B/A), and there is a direct correspondence between the figures which

depict nondimensional pressure and reduced axial load for each model. Essentially similar

trends can be observed for models in Fig. 3.5-3.6.

F (a) F (b)
02+ A 02 A

I a - a
! ‘\‘ ! L ‘:\\N“H‘\HH\
0 [ 3 4 [ 3 4

—02 F -02 -

-04 - —04 -

-06 -06

-08 -08 -

-10 + -10+

Figure 3.4: Plots of nondimensional reduced axial load F* versus A, for the neo-Hookean
electroelastic material based on Eq. (3.73) and (3.74) with » = 1.1 and A\, = 1.2: (a)
for fixed charge with G/ue = 0,1,5,10; (b) for fixed potential difference with eFE3/u =
0.0,0.2,0.35,0.5. In each of (a) and (b) the value of F* decreases as the magnitude of the

field measure increases.
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Figure 3.5: Plots of nondimensional reduced axial load F™* versus A\, for the Ogden elastic
material based on Eq. (3.73) and (3.74) with n = 1.1 and A, = 1.2: (a) for fixed charge
with ¢/pe = 0,1,5,10; (b) for fixed potential difference with eE3/u = 0.0,0.2,0.35,0.5.
In each of (a) and (b) the value of F* decreases as the magnitude of the field measure

increases.
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Figure 3.6: Plots of nondimensional reduced axial load F* versus A, for the Gent elastic
material based on Eq. (3.73) and (3.74) with n = 1.1 and A\, = 1.2: (a) for fixed charge
with ¢/ue = 0,1,5,10; (b) for fixed potential difference with eEZ/u = 0.0,0.2,0.35,0.5.
In each of (a) and (b) the value of F* decreases as the magnitude of the field measure

increases.

Now we investigate the behaviour of pressure and reduced axial load if we increase
the wall thickness 1. In Fig. 3.7-3.9 for both cases of electric field expressed in terms
of charge and potential difference we can observe that for a thicker-walled tube higher
levels of pressure are required to achieve the same level of radial deformation, which is
understandable intuitively.

In Fig. 3.10-3.12 reduced axial load as a function of radial deformation for thicker-
walled tubes is plotted. We observe in these plots that for thicker-walled tubes higher
levels of axial load (either extensional or compressive) are required to keep A, unchanged
for the same radial deformation in comparison with thinner-walled tubes. This behaviour

is understandable intuitively.
3.7 A note on activation

We now express the formulas for P and F' from Section 3.4 in the dimensionless forms

P =22t (Oas ) = A3, F* =200, (Mas As) — dads ton(May As) — A 2035,
(3.79)
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Figure 3.7: Plots of P/ versus A, for the neo-Hookean electroelastic material based on Eq.
(3.71) and (3.72) with n = 1.5 and A\, = 1.2: (a) for fixed charge with ¢/ue = 0, 1,5, 10;
(b) for fixed potential difference with e E2/u = 0.0,0.2,0.35,0.5. In each of (a) and (b) the

value of P/u decreases as the magnitude of the field measure increases.
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Figure 3.8: Plots of P/u versus A\, for the Ogden electroelastic material based on Eq.
(3.71) and (3.72) with n = 1.5 and A\, = 1.2: (a) for fixed charge with ¢/ue = 0,1, 5,10, 15;
(b) for fixed potential difference with eE3/u = 0.0,0.2,0.35,0.5. In each of (a) and (b) the

value of P/u decreases as the magnitude of the field measure increases.

from (3.59) and (3.61), and
P* = A0 tan e, X)) — Ase®, F* =205, (Aas A2) — Ao toa(Mas A2) — A2A.e*, (3.80)

from (3.69) and (3.70), where ¢* = §/(ue) and e* = eEZ/pu, © = w/u, and P* = P/(5p)
and F* = F/(SumA?), the latter two non-dimensionalizations being different from those
used in Section 3.6.

From either of (3.79) or (3.80) it follows that
F* — X2P* =205, (Mas A2) — 200 A L n (Mg, As). (3.81)

If there is no internal pressure (P* = 0) then for a given (fixed) axial load F** this determines

a connection between A, and A, (in general implicit), and, for an applied voltage (in terms
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Figure 3.9: Plots of P/ versus A, for the Gent electroelastic material based on Eq. (3.71)
and (3.72) with n = 1.5 and A\, = 1.2: (a) for fixed charge with ¢/ue = 0,1,5,10; (b) for
fixed potential difference with eE2/u = 0.0,0.2,0.35,0.5. In each of (a) and (b) the value

of P/u decreases as the magnitude of the field measure increases.
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Figure 3.10: Plots of nondimensional reduced axial load F* versus A, for the neo-Hookean

electroelastic material based on Eq. (3.73) and (3.74) with n = 1.5 and A\, = 1.2: (a)
for fixed charge with §/ue = 0,1,5,10; (b) for fixed potential difference with eE2/u =
0.0,0.2,0.35,0.5. In each of (a) and (b) the value of F* decreases as the magnitude of the

field measure increases.

of €*) for example, Eq. (3.80); provides a connection between A, and e*, i.e. it determines
the change in A, due to activation from its initial value at e* = 0. Similarly, if F* = 0 and
P* is fixed activation with e* causes a change in A,.

For simplicity these general principles are now illustrated in respect of the neo-Hookean

elasticity model (3.47), for which
F* = 22P =20\, — A2\ ). (3.82)

For P* = 0 we then have
A2N, = (1—A2e") 12, (3.83)
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Figure 3.11: Plots of nondimensional reduced axial load F™* versus A, for the Ogden elastic
material based on Eq. (3.73) and (3.74) with n = 1.5 and A\, = 1.2: (a) for fixed charge
with ¢/pue = 0,1,5,10; (b) for fixed potential difference with eEZ/u = 0.0,0.2,0.35,0.5.

In each of (a) and (b) the value of F™* decreases as the magnitude of the field measure

increases.
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Figure 3.12: Plots of nondimensional reduced axial load F* versus A, for the Gent elastic
material based on Eq. (3.73) and (3.74) with n = 1.5 and A\, = 1.2: (a) for fixed charge
with §/ue = 0,1,5,10; (b) for fixed potential difference with eEZ/u = 0.0,0.2,0.35,0.5.
In each of (a) and (b) the value of F™* decreases as the magnitude of the field measure

increases.

which requires that A2e* < 1. Note, in particular, that in the limit A\2e* — 1, A, — oo and
the wall thickness decreases to zero! Equation (3.82) requires that A, > A, for F* > 0.
From (3.82) it also follows that

F* =2\, — 20721 — A\2e*)71/2, (3.84)

For several fixed positive values of F* the interdependence of e* and A, is illustrated in
Fig. 3.13(a). In terms of different variables similar plots were provided in Zhu et al. (2010)

for different values of the initial axial stretch (equivalently, different values of F*) and for
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a thick-walled tube with B/A = 2. In Zhu et al. (2010) the maxima on the curves were
interpreted as corresponding to loss of electromechanical stability.
For contrast we now consider activation at fixed pressure and zero axial load, so that,
from (3.82),
P =221 —2), 02 (3.85)

which requires A\, > A, for P* > 0, while F* = 0 yields the quadratic
(AZe* + A2 — 20202 1 A2 =0 (3.86)

for A2 the only solution of which consistent with A, > ), being

, A yM A
A2 = (3.87)

a Ae* +1 ’

which requires A2 — A2 > e*. Hence
Pt oyl 2\, (A2e* +1)

’ D Y N e

and this equation is the basis for the plots in Fig. 3.13(b) in which the interdependence of

(3.88)

e* and ), is illustrated for several fixed values of P*.

As for the case with P* = 0 and fixed F™* there is a maximum actuation voltage for each
considered value of P* and again the maxima are associated with loss of electromechanical
stability. However, for the considered neo-Hookean model in the absence of a voltage the
radius can increase indefinitely as the pressure approaches a finite asymptote, and this
behaviour is a reflection of the limited applicability of the neo-Hookean model, which is
only realistic for stretches up to about 2. This should be borne in mind when assessing
the results of activation. For models such as those in Ogden (1972) and Arruda & Boyce
(1993) that are valid for a wider range of deformations than for the neo-Hookean model
there is no theoretical limit to the allowable voltage, which can increase indefinitely with
the axial stretch, possibly with an intermediate maximum followed by a minimum, as is
the case for a particular Arruda-Boyce model considered in Zhu et al. (2010).

Next, based on the equations in (3.79), we consider activation with specified charge

rather than a potential, in which case, with P* = 0 we obtain
NN, =1+¢ (3.89)

and

F*=2)\, —2X72/1+¢". (3.90)
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Figure 3.13: (a) For P* = 0: plots of the activation potential (as measured by e*) versus the
resulting axial stretch A, for the indicated fixed values 0.3, 0.8, 1.3 of the dimensionless axial
load F* (corresponding to initial stretches, for e* = 0, of approximately 1.053,1.153,1.27,
respectively), together with the limiting curve defined by A2e* = 1. (b) For F'* = 0: plots
of the activation potential (as measured by e*) versus the resulting axial stretch A, for
the indicated fixed values 0.4,0.5,0.6 of the dimensionless pressure P* (corresponding to
initial stretches of approximately 1.01,1.02,1.04, respectively), together with the limiting
curve defined by e* = A\ — A2

For F* = 0, on the other hand, we have
NN, = X34 /N6 -1 — ¢ (3.91)

and

2)2

NNl g
Results for P* = 0 and F* = 0, respectively, are illustrated in Fig. 3.14(a), (b) with

P =2o)\71

z

(3.92)

q* plotted against )\, analogously to those in Fig. 3.13(a), (b) for e* against \,. In Fig.
3.14(a) the plots are for F* = 0,0.3,1,2 and in Fig. 3.14(b) for P* = 0.52,0.56,6. In
Fig. 3.14(a), in contrast to Fig. 3.13(a), there is no maximum and the stretch A, increases
monotonically with the applied charge, whereas in Fig. 3.14(b) there is a maximum for
any pressure below the maximum attainable (P* ~ 0.75) with ¢* = 0 for the neo-Hookean

material and this has a similar ‘instability’ interpretation as for a fixed F* at P* = 0.
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Figure 3.14: (a) For P* = 0: plots of the activation charge (as measured by ¢*) versus the
resulting axial stretch A\, for the indicated fixed values 0.3, 1,2 of the dimensionless axial
load F™* (corresponding to initial stretches, for ¢* = 0, of approximately 1.05,1.2,1.47,
respectively). (b) For F* = 0: plots of the activation charge (as measured by ¢*) versus
the resulting axial stretch A, for the indicated fixed values 0.52,0.56,0.6 of the dimen-
sionless pressure P* (corresponding to initial stretches of approximately 1.02,1.03,1.04,

respectively).

3.8 Concluding remarks

In this chapter the general formulation of nonlinear isotropic electroelasticity in the form
developed by Dorfmann & Ogden (2005) has been applied to the prototype problem of
a circular cylindrical tube of dielectric elastomer with compliant electrodes on its major
surfaces. Without specialization of the constitutive law general expressions have been
obtained for the internal pressure in the tube and axial load on its ends when subject
to a radial electric field generated by a potential difference between the electrodes while
the circular cylindrical geometry is maintained. The general results are then applied to
a material model for which the electrostatic part of the constitutive law is linear with a
deformation independent permittivity, and the electroelastic response of the tube has been
illustrated for three different models of the elastic contribution to the constitutive law from
rubber elasticity.

It is, of course, a simplifying assumption that the permittivity of the material is inde-
pendent of the deformation, an assumption that runs counter to experimental evidence,
at least for some dielectric elastomers. For example, in an extensive series of experiments

on the acrylic elastomer VBH 4910 Wissler & Mazza (2007) showed that the permittivity
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decreases with stretching, and this should be taken into account in the modelling in situa-
tions where the deformations are relatively large. Such an influence is easily accommodated
within the general constitutive framework presented in Section 2.1.3 and its specialization
to the considered geometry in Section 3.2.1. However, in general this leads to a more
complicated analysis and numerical solution will for the most part be required. Specific
models which do include deformation dependent permittivity have been examined in a va-
riety of boundary-value problems by Dorfmann & Ogden (2005, 2006, 2010a,b, 2014a) and
Dorfmann & Ogden (2014c), while the influence of deformation dependent permittivity on
stability considerations has been addressed in Zhao & Suo (2008), Liu et al. (2010) and
Jimenez & McMeeking (2013). The problem of stability of an electroelastic tube under
internal and external pressure is considered in the next chapter of this thesis.

To incorporate a fibre structure within the constitutive law is feasible but requires a
more involved theory with a much larger set of invariants than those considered here in
general, as exemplified in the case of a transversely isotropic electroelastic material by

Bustamante (2009).



Chapter 4

Bifurcation of Electroelastic Circular

Cylinders

4.1 Introduction

In the previous chapter we studied in detail the problem of inflation and extension of a
cylindrical circular electroelastic tube with closed ends with compliant electrodes at its
curved boundaries. The obtained solution for this problem preserves the perfect cylindri-
cal shape of the tube, although we know that inflation of a tube may lead sometimes to its
bulging, for example, as it was discussed briefly in Introduction of this thesis. In order to
capture these additional solutions (now for the more general case which accounts for elec-
tromechanical effects) we use the theory of small incremental deformations superimposed
on a finitely deformed electroelastic body. The solutions represent curves which show for
which values of circumferential stretch and axial stretch with fixed wall thicknesses and
fixed electric parameters the configuration of the tube may become unstable and the tube
may adopt a configuration which differs from perfect cylindrical shape. We start this chap-
ter formulating stress components. In this chapter we use a slightly different formulation
for stress components and we repeat this Section here with some appropriate changes.
Note that in order to have equations consistent with Haughton & Ogden (1979) in this
chapter we use a different order for the cylindrical polar coordinates and corresponding
principal stretches. Therefore, with respect to the cylindrical polar coordinates 6, z, r and
their respective counterparts in the reference configuration ©, Z, R we have the following
sequence of stretches

M=X=2X A=\, )\3=A\. (4.1)

52
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Thus, the deformation gradient is diagonal F = diag[A, A\,, A\;]. Also, changing this

sequence affects expression (3.19), which for the present case changes to

(D] = 0 =0 |. (4.2)

4.2 Stress components

Let us now consider €2* as a function of principal stretches A1, Ao, A3 and electromechanical
invariants Iy, Is, Is. Recognizing the fact that in the present problem the only electrical

variable is I; we can consider a function 2* such that

(A1, A2, Az, Ln) = QF (A1, A2, As, Lu, I, Ig). (4.3)

This allows us to obtain simple expressions for principal components of the Cauchy stress

tensor 75 (i=1, 2, 3)*

Tii = Ti — P* (Z = 17 27 3)7 (44)
where X
o

From the incompressibility condition (2.4) we can conclude that we have only two inde-
pendent principal stretches. Therefore, we can express A3 in terms of A\ and A9 and we
introduce a new function w*, such that

w*()\l,)\z,f4) = Q*(/\l,>\2,)\3,l4). (4.6)
This allows us to write

* *
TI1 — T33 = AWy, T2z — T33 = AWy, (4.7)

where w3, wy  denote derivatives dw* /0N, dw™ /OA..

Expression (3.23) can now be rewritten as

E, = 2)2)2 ?9?4 D,. (4.8)

According to Gauss’s theorem, we have no field outside the tube, therefore by (2.11) the
Maxwell stress is zero. Thus, we have only mechanical load due to a pressure P inside the

tube applied to the inner surface at » = a and no loads at » = b

Top=—P on r=a, 7,.=0 on r=>0b (4.9)

'no summation for the subscript i.



CHAPTER 4. BIFURCATION OF ELECTROELASTIC CIRCULAR CYLINDERS 54

In this problem the equilibrium equation divr = 0 reduces to

drr

dr

r =Top — Trr = )\W; (410)

In the previous expression we have used (3.31). Integrating (3.36) and using the boundary

0 b
/ dr = / )\w;‘\g. (4.11)
_p a r

b
P:/ ot (4.12)
a T

conditions (3.35) we have
Therefore,

In some cases it is convenient to change the variable of integration from r to A. To this
end, we rearrange and differentiate (3.3); with respect to r, taking into account that A

depends on r. We have
A

< AAZN, —1). (4.13)

Therefore, expression (3.38) can rewritten as
Aa
P= / (A2X, — 1)~ LwidA. (4.14)
Ab
From (3.4) we see that )\, depends on \,. Therefore, assuming that A, is known, the
previous relation gives P as a function of A, and invariant I, = Q?(a)/47?L%A?%, which is

known for a given charge Q(a) = —Q(b).

Similarly, since b = \/ a2 4+ \;1(B2 — A?) we see that (3.38) provides a relationship

between pressure and the inner radius a and invariant 1.

4.3 Bifurcation analysis

In the present setting we use cylindrical polar coordinates 6, z, r with the corresponding
unit basis vectors ej, eg, es. Derivatives in (2.37) denoted by subscripts with commas
(-).x can now be specified as 9(-)/rdf, 9/0z, 0/0r for k = 1,2,3, respectively. For the
cylindrical polar coordinates in (2.37) the only non-zero scalar products e; - e;, are
1
e -e3] =—€3-€] = o (4.15)

The increment in the position vector x of a point in the current configuration is

X = ve; + wey + ues. (4.16)
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The components of L on the basis e, ey, eg can be calculated as
(u+vg)/r vy vy
QUQ/T' Wy Wy | > (417)
(ug —v) /1 uy uy

where the subscripts 6, z, r are corresponding partial derivatives.

For an incompressible material we can write

trL = (u+ vg)/r + w, + ur = 0. (4.18)

4.3.1 Prismatic bifurcations

For prismatic bifurcations we assume that u, v and w are independent of z. Furthermore,
we assume that w = 0, the justification of which will be mentioned later in this section.
We will specialize here previous expressions.

The gradient of the deformation displacement vector x will specialize to

(u+wvg)/r 0 vy
0 00, (4.19)

(UQ - U)/T 0 Uy

Therefore, incompressibility condition reduces to
u~+vg + ru, = 0. (4.20)

Equation (4.20) is satisfied if we define function ¢(6,r) such that

oy’
u= "=,

= u=—0, (4.21)

For ¢ = 1,3 expression (2.37) gives respectively
) ) 1 . )
Ton + Tos1,3 + ;(T031 + To13) =0, (4.22)

. . 1. .
To13,1 + To33,3 + ;(T033 — To11) = 0. (4.23)

In what follows we will consider the case when the electric field is generated by the
electrodes attached to the boundaries of the hollow tube. Therefore, according to Gauss’s
theorem there is no field outside the material. For the considered underlying deformation,

we have Fj; = 0 for i # j, and for radial electric displacement field D1 = Dy = 0 the
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required non-zero values of electroelastic moduli tensors \Ag, A, Aj can be obtained from

the general expressions given in Section 2.2.2. Therefore, we can write using (2.51);

Ton = Agpin Ly + Afyiss Las + pLin —p + A(>§11|31'7L03’ (4.24)
Tz = Abizi3Lar + Abizzi L1z + pLis + Ay Dror, (4.25)
Tos1 = Ajgiz1Ls + AbziizLar + pLai, (4.26)

Toss = Apszin L1 + AgssssLss + pLss — p+ A333|3DL03- (4.27)

Since there is no dependence on z, respective derivatives with respect to the variable z are
zero in (4.22) and (4.23).
Substituting these expressions into (4.22) and (4.23) and using incompressibility con-

dition (4.20) more than once we find that (4.22) and (4.23) give respectively

Py =[r(Apziiz + 0 ) + Apizisl(ue — v) /7 + (rAjsizs + Aggiz)vr+ (4.28)

* * * * * - * -
+ Agz13170rr + (Apissr + Adrizs — Agii11)tre + Agy3Drose + Agizp Dron,

Pr =[r(Apzsss +P° — Apriss) + Abssss + Aot — 2A011ss)ur/7+ (4.29)
+ (Absszs — Ab1133)trr + Af1313(tgs — v9) /7% + Af13310r0/T+
+ Agian Drone/r + AjsssDros + Agsys(Dros,r + Dros/r) — AgyyjsDros/r

where prime denotes differentiation with respect to r.

In the beginning of this section we assumed that w = 0. Without this assumption
calculations shows that we can still obtain expressions (4.28) and (4.29). For i = 2 from
(2.37) we get

Tor2.1 + Toz23 + %T032 =0, (4.30)

where derivative with respect to z again was omitted for prismatic case. The expressions

for the other terms are
Toro = A§ioioLor,  Tozo = Afgazo Los. (4.31)
Therefore, (4.30) gives uncoupled equation for w

Aj1212Wee /T + A3;232rwr + Afses2 (rwer +w;) = 0, (4.32)
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which can be solved for w. This solution does not affect the shape of a cross-section of a
cylinder, and therefore, we may set it equal to zero, which was done in the beginning of
this section.

For the present case the governing equation (2.32); reduces to

d(rEro)  OFvor

= 0. 4.33
or 00 (4.33)
From (2.51)2 we calculate
Evop = Eror = Ajysp Lai + Agii Drot, (4.34)
Eror = Eros = Adyyslun + Afggs sz + Abss Dros. (4.35)

Therefore, equation (4.33) gives

. Ug—U . N «  (ugr —vp)r—ug+vw

o3 Aj11Drot + Agy) (g — v) + Afy— - , (4.36)
* . * . * Uug + Vgg * * T
+ Ao117Dro1 + AgiimDrotr — 01137, SoszsUro — Ao33Droz,e = 0.
The governing equation (2.32)2 reduces to
d(rDror) | dDrog
=0. 4.37
or + 00 (4:37)
The previous equation will be satisfied if we define a function (6, r) such that
. ”(/]’0 .

Dror = o Drog = =1, (4.38)

Eliminating p, and py in (5.49) and (5.52) by cross-differentiation and using expressions

(4.21) and (4.38), after some rearrangements, we can get two coupled equations for ¢ and
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P:

4 Ad3131 0 errr + Ab13130 0000 (4.39)
— (2481331 + 2481133 — Abiin — Abssss) >0 000
+ (2r" Aliar + 2 Ajgi31) B e
— [(Afs333 + A1 — 2401331 — 2A51133)7
+ (2A%1331 + 2A81133 — Adiinn — A3é333)7“2] ? 06r
— [2AG1331 — Abiinn — Adsazs + 2401133 — 2401313
+ (ASiz3 — 2451331 — 2451133 + Ad1in + Absass)T
+ (Adyggs + 7 )7 %] 6,00
- [A8/1331 + 0"+ Abia1s/r — 2455131 — TA3§131]7"3</5M
- [-’48/1/331 + "+ Afg1s/7 — Adiz13/7° ] ¢ 0
= ( 311\3 + A313\1 - AEk)33|3)7”21/’,9% - (AEk)/11|3 - AS:;3|3)7"2¢,96’

* 3 * 3 _
+ Agiap " Yrr + AU =0,

(AS13)1 T Ag11j3 — Avs33)7P,00r + (Agsgis — Agizp — Aorys T Aoizpr) 900 (4.40)
+ A813\1T2¢,rr + A813\1T2¢,r — 1P AG 1Y — Adgam .00 — (Abr + TAGL )1, = 0.

Equation (4.40) was obtained from (4.36).
Now we will specialize the boundary condition (2.35). Since for the present case when

electric field is generated by electrodes there is no field outside the material. We have

PLTn—Pn onr=a,

Tin =t = (4.41)
0 onr=~>ot.
Calculations show that
ro,+ug—v=0 on r=a,b. (4.42)
§ § ' § . —P onr= a,
(Adsszs — Apssin + T3)ur — D+ A033|3DL03 = (4.43)
0 onr=n>a.

The third component of (4.41) is satisfied automatically.

Boundary conditions (4.42) and (4.43) can be written in terms of functions ¢ and 1):

712¢,7‘7" - T¢,7‘ - ¢,99 =0 on r= a, b7 (444)
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r(Abssss — 2451133 — 2A51331 + Absizr + Abi111)S00r + 70 Abg1319, 0 (4.45)
— (rASaia1 + Abaazs — 2A51133 — 2451331 + 2453131 + Abi111) 600

+ 172 (r A1 + Absisy) b — T(r Adgisy + Adsia) b

+ 7(AGs3j3 — Aor1js) 00 + T2A313|1¢7r =0 on r=ab.

In order to obtain (4.45) we differentiated (4.43) with respect to 6, set P = 0 and used
(4.28).

In order to have equations consistent with Haughton & Ogden (1979) we write
¢ =rfu(r)sinnd and ¢ = g,(r)sinnb. (4.46)

The governing equations (4.39) and (4.40) are now can be expressed in terms of func-

tions f,,(r) and g,(r) and their derivatives

r{Assizr £l + (rASziz + 3Ab3131)r° fr (4.47)
+ [r Az — Abaiz +n*(2A 1331 + 2481133 — A1 — Absaas)Irfn}

+ (n? = D[P Abgra1 + rASsan + (07 — D AGgis + 02 (1 — 73)] fa

+ A313|17“29Z + A3;3\1T29;L + (Af11s + Agisp — A333|3)7"”29;z

+ (Afys — A833\3)m29n =0,
T2A813|1f7/1l + [T2A313|1 + 27A813\1 - 7'”2('&813\1 + A311\3 - 833|3)]f7/1 (4.48)
+(AGya — 1A g fa — P AGLG — (AS11 + AT, + Absan’gn = 0.
In the governing equation (4.47) we have used the connection
P* = Abziz — Adizar — (Abzizr — Abizs) /1 + (Azizn — Adizis) /7 (4.49)

which can be obtained from (3.36), (4.4) and (2.57).

Boundary conditions (4.44) and (4.45) can be rewritten as

P2 fn+rfy+ (0® =1 f =0 on r=ab, (4.50)
Absi1m° f! + (rAGsizy + 4A53131)7° (4.51)

! 2 * 2 * * * *
+ [rAjziz1 — (0 — 1) Afz131 + 17 (2A01331 + 2401133 — Ad1111 — Aossss)|” [
+ (0 = 1) (rAGgia1 + ASgizn)fo — 12 (Adazs — Abi1ja)9n

+ A813|17‘g;z =0 on r=a,b.
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Electrical boundary conditions (2.33) reduce to
ELOI = ELog =0 on r= a, b. (452)

Boundary conditions (4.52) can be written in terms of functions ¢ and ¢ and f,, and gy,

respectively, as

A813\1(¢,99 +r¢,.)/r? — A, =0 on r=a,b, (4.53)
Susplrfn + (1=n%) fu] = Agirg, =0 on 7 =a,b. (4.54)

Boundary conditions (2.34) reduce to

) —0rFop on 7T =>o,
Dro, = (4.55)

OF0a onr =a,
where opg = 6rdS/ds is the increment of the free surface charge op per unit area of 9B,
and dS/ds is the ratio of area elements in 95, and 9B. For the considered problem free
surface charges at the boundaries per unit area are different by the absolute value (and
sign, of course). Therefore, in general increments will be also different at the boundaries.

Thus, we can write

: : s . AL . 1y

OF0a = UF’TZ@E = UF’T:aEAZ I = UF|T:a)\a 1Az ! (456)
at the inner boundary, and

. ) ds . B _ . 1y

OF0b = O'F|r:b$ = Oplrzbz)\z L= Gpfrmal, AT (4.57)

at the outer boundary.

In the present and following chapter we assume that boundary condition (2.34) is
satisfied implicitly, so to speak, and we do not use it directly in our calculations. Since
Dro, was defined as Dy, = 1.9 /7 the solution will lead to function (0, r) defined at the
boundaries r = a, b. Therefore, boundary condition (4.55) will be adjusted according to the
solution for function 1. The same approach for incremental electric boundary conditions
was used in Dorfmann & Ogden (2014a).

In what follows we give non-dimensional equations. Relations (4.21) and (4.46); suggest

that non-dimensional function is defined as

f(7) = o (4.58)
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Also, relations (4.38) and (4.46)2 imply that

(4.59)

The other non-dimensional quantities are defined as they are for axisymmetric bifurcations.
Axisymmetric bifurcations will be discussed in the next section of this chapter. We also
rearrange the governing equation (4.47) to make it more suitable for MATLAB (2014) and
we introduce new variables

() = fu(P), 92(F) = fo(F),  93(7) = f/(7), (4.60)

A~ A

y4(f) = Jn (f’), yS(f’) = gn(ﬂ? yG(T) - g;(f)a

so that the governing equations (4.47) and (4.48) can be rewritten as a non-dimensional

system of 6 ordinary differential equations. The result of this manipulation is as follows

g1 = T2, (4.61)
Uy = U3,
U3 = Ja,

Ab1a17 9 + (67° Afgiar + 27" A1) + {775 Ajgin + 74 Az + 572 Alg 151 + 07 Q(F) s+

(7 Ajgizr + n2Q (7) + P2 Abgra1 — FASz131 + 02 Q)i + (n® — 1)(F2 Afg151 + 7 Adg15+

(n® = 1) Afg131 + n°(F1 — 73))ii1 + A313|17225']2%1% + {A813\1f2 + (Aén\g + ASL‘%H - A(’§33|3)72712}‘})2‘(1@64‘
(A 3/11|3 - Aglz’)gm)f”z&?a% =0,

U5 = Us»

72Z'A?)ls\ligi” + [f2A8;3\1 + 27QA313|1 - f’”z(ASmu + A311|3 — A 033(3)]92

+ P (A5an — 1P Agis)in — P AGGE — (A + PAGL )7

+ A633n23)5 = 0,
where for brevity we defined function
Q") = 2451331 + 2A01133 — Av1111 — Avsssss (4.62)

and non-dimensional electric parameter was defined as

A2 D?(a).

- 4.63
Tia = "2, (4.63)

Also, we non-dimensionalize the boundary conditions (4.50), (4.51) and (4.54) and express

them in terms of new variables

>
Il

Q>
[ b

PG5+ g2 + (n* = 1)j1 =0 on (4.64)
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Abs13173 90 + (FAS3131 + 44551517203+ (4.65)
[PAGs131 — (0% — 1) Afs131 + n? (2481331 + 2451133 — Aj1111 — Abssss) P+
+(n® = 1) (FAG3131 + Afgis1)01 — n*(Afazs — Ag11j3)07a05+

+ A(ﬁlg'lf&fa% =0 on #=a,b,
Abygn[Pg2 + (1 —n)91) — Aji7gs =0 on 7 =a,b, (4.66)

We use the neo-Hookean electroelastic material (3.46) and we calculate electroelastic

moduli for this material:

Abziar = Adzass = 22307 + 2D303, (4.67)
Ajizis = Agrinn = 2)‘%99{7

Apizs1 = Apr1ss = 0,

2A313|1 = A333|3 = 4D50s5, 311|3 =0,

¥ A% * _A* *
Aor = Agss = 205, 11 — 73 = Agiz13 — Apsiar-

In non-dimensional form these moduli can be expressed as functions of 7 as below
- - A HPPA? = a?) + AP A% + 67,07
Abziz1 = Aozsas = 242 ; (4.68)
22 42
" . A
A* = A* _ ,
01313 01111 )\Z(,,gQAQ _aQ) —|—A2

1% oAk o
Apizs1 = Adiss = 0,

Ak Ak 2a Ak
ZA013|1 = A033\3 = A A011|3 =0,

A*x A% ~ A~ A% 1%
AOll - A033 - 17 TN — T3 = A01313 - AO3131‘

The results of our calculations are given in Table 4.1.

We used the electroelastic neo-Hookean model (3.46) and we set A, = 1 for all cases.
We were changing electroelastic parameter 67, and we calculated the values of A\, (and
hence \p) at which prismatic bifurcations become possible for mode number n = 2. The
numerical scheme for this calculation is described in Section 4.3.2. First, we note that
the results for neo-Hookean electroelastic material with 67, = 0 are almost identical to
those reported in Haughton & Ogden (1979) for Three-term energy function. Haughton &
Ogden (1979) also confirmed that under external pressure the values of A, (or equivalently
o) remain almost the same for many strain energy functions for pure elastic materials, i.e.

essentially they do not depend on a particular form of energy function.
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Second, an important difference for the present electroelastic material is that unlike
the case for pure elastic materials the present example shows that due to electric field
electrically sensitive elastic material may bifurcate into a prismatic configuration under
internal pressure (P > 0). In Haughton & Ogden (1979) it was reported that prismatic
modes are possible for neo-Hookean and Three-term pure elastic materials under external
pressure only (P < 0), this can also be observed here in Table 4.1 for the case 6¢, = 0: all
non-dimensional pressures at which prismatic bifurcations are possible are negative. The

values P/ in Table 4.1 were calculated using formula (3.53) and connection ¢ = &]% aa,uaz)\g.

4.3.2 Axisymmetric bifurcations

For axisymmetric bifurcations we assume that u, v and w are independent of #. Further-
more, we assume that v = 0.

The gradient of the deformation displacement vector x will specialize to

u/r 0 0
0 w, wy| - (469)
0 wu, u,

Therefore, incompressibility condition will reduce to
u/r +w, +u, = 0. (4.70)

Equation (4.70) is satisfied if we define function ¢(z,r) such that

u=""2 w= _Pr, (4.71)
r r
For the axisymmetric motions expression (2.37) gives for i = 3, 2, respectively
. . 1 . .
To2s2 + Toss,3 + ;(T033 — To11) = 0, (4.72)
: . 1.
Toz22 + Tos2,3 + Tos2 = 0. (4.73)

In (4.72) and (4.73) derivatives with respect to 6 were omitted. Calculating from (2.51);
we have

Toos = Afazas Lao + Abazza Loz + pLas + Ay Dros (4.74)
T032 = ./483232[/23 -+ A83223L32 + pL32. (475)

Toir = Ag11 L + Afyiaalos + AfyissLas + pLu — p+ A811|3DL037 (4.76)
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Thas = Ajoar1 Lt + Afaass Loz + Afpass Las + pLos — p+ A2<)22|3DL03, (4.77)
Toss = Agsain L1 + AbssaaLos + Alsszs Lss + pLlas — p + A833|3DLO3- (4.78)
Substitution of the previous expressions in (4.72) and (4.73) and use of (4.70) give

respectively

Pr =(rAfiizs — Asiii)u/r? + (rAass + 10" + Alazay)un /7 (4.79)
+ Abaazatinr + Abaaagtizz + (rAfsass + Abaszs — Abiioe)ws/r
+ (Abazss + Aozzzs)wrs + A323\21‘)L0272
+ A3233\3DL03 + A833|3DL0377" + (Agssjs — AEk)n\:s)DLOB/T:

Pz =Abzazawrr + (1 Apzass + Apsase)wr /7 + Adgagawzz + (Aggass + Agszas)ur:  (4.80)
+ (rAgsaas + 70" + Agzzoz + Adri22)uz/T + Agag3DLos, -

For i = 1 we have

) ) 1. )
To21,2 + To31,3 + ;(T031 + To13) =0, (4.81)

where again the derivative with respect to # was omitted. The other terms will be

T021 = Abo121L12, (4.82)
Tos1 = Abga1 L1z + As113Ls1 + pLsi, (4.83)
Tons = AfizisLar + Ajizsi L1z + pLiz + A313\1DL01~ (4.84)

Note that we assume that DLog =D o1 = 0. Substitution of the previous expressions into

(4.81) and use of (4.70) give
(TAE;/3131 + Abz131) (rvr — ) /1% + Afg191 V22 + Abz1310m = 0, (4.85)

which is satisfied, since we assumed that v = 0. Non-zero solutions of (4.85) are of little

interest, and we set v = 0. In (4.85) we have used connection

p* = Apsiz1 — Atsst + (Adziz1 — Avizis) /7 (4.86)

which can be obtained from the equilibrium equation (3.36), relation (4.4) and connections
for electroelastic moduli (2.57).

The governing equation (2.32); reduces to

8EL01" B aELOZ

o 5 =0 (4.87)
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Using (2.51)2 we calculate
Ero: = Ergs = Afggpus + AjaaDroz,
Eror = Eros = Ag11)3u/T + Agggzwe + Agggjgtr + Abss Dros-
Substituting (4.88) and (4.89) into (4.87) we have
Agy1j3uz/T 4 AfgsWez + Agggztirz + Abss Dros -
- A623|2“z - A323|2uzr - A322DL02 - A822DL027T =0.

The governing equation (2.32)2 reduces to

8(T'DLOT) + a(TDLOZ>

or 0z =0

Equation (4.91) will be satisfied if we define a function ¢ (z,r) such that

Yz Vr

Dror = ==, Dpp. = ——".
r T
Again cross-differentiation of (4.79) and (4.80) and some rearrangement give

Ab3237° D rrrr + Abozast’ @ zoze — (2AT0033 + 2A03003 — Adazzs — Absa33)7° b ez
- (2T2A33232 - 2T3A3§3232)¢,rw - [(A82222 — 2A02933 — 2A03223 + AS3333)T2
+ (2A85033 + 283003 — Algazg — -’4312333)7’3} D2z
+ (BAb32307 — BAS3a307% + Aliz30°) b o
- [(2v432233 — 2A01192 — 7““43/1133 + Ag111 — Agssss)r
+ (Afii22 — Abaoss — Abaazs + Abazss)r® + (Adsass + p*u)rg] b2z
— (3Ab3232 — 3A3§3232T + A3g2327"2)¢ r—( 322|3 + A023|2 333|3)7“37J),zzr
- [(ASHB - A822\3)7’2 + (As/zmg 033|3) e =

From (4.90) we have

(Ao33|3 - A022|3 023|2)¢ rzz

+ (Ag11)3 — Avaapz + Adesp — o23|2)¢ 2z

+ AlssTth,zz + Abaar e + (rASz — Afga) by = 0
Specialization of the boundary condition (2.35) leads to

w,+u, =0 on r=a,b,

(Abss33 — Adass +73)ur + (Adszin — Adsze)u/r =P+ Agsz3DLos =0 on r=a,b.

(4.88)

(4.89)

(4.90)

(4.91)

(4.92)

(4.93)

(4.94)

(4.95)

(4.96)
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In (4.95) and (4.96) we set P = 0. The third component of (2.35) is satisfied automatically.

Boundary conditions (4.95) and (4.96) can be expressed in terms of functions ¢ and v:

¢ —r0m+¢,=0 on r=a,b, (4.97)

2 * * * * 2 1%
7°(Ada202 + Apssss — 2A02233 + T3 — Apz223)D,22r + 77 Aj32329P 0w (4.98)
+7(Ap1133 — " Apsasz + 7733 — Adr12e — Aossss — T3 + Ajazss) .2z

+ 7(rAjsazs — Avzes2) e + (Ajzeze — 1 Apza32) O

+ rQ(A333|3 — Afgop3)¥22 =0 on r=a,b.
In order to have a consistency with Haughton & Ogden (1979) we write
¢(z,r) =rf(r)cosaz and (z,r) = g(r)cosaz. (4.99)
The governing equations (4.93) and (4.94) can be expressed respectively

r [ Abszaf” + (1 Abszs + 2A03050) /7 + (rASzass — Alaso) £ /7 (4.100)
— (rASzass — Abaaan) £/771 + oPr?[(2A50033 + 253003 — Abaazs — Abason)r> "

+ (2r Afgazs + 27 Abaazs — T Abaz3s — T AS2220 — Abaazs — Abazas + 2450033 + 2A83003)1 1
+ (12 Absans + 720" + T Absa0s + T AG 1190 — T AT1133 — T Ab2209

+ 1 Afgass + Abiinn + Abasss — 2451199 — 2A53293) 1 + &1 Afgsos f

+ 0427°3(A822|3 + A323|2 - A333|3)9/ + az[(ASMB - A822\3)7’2 + (A822|3 - A333|3)T3]9 =0,
2 2/ A% * * 2/ A* * *! 2
a1 (AGsss — Adans — Adage) f1 + 7 (AGyy a7 — Afagsm — Afgor™) f (4.101)
— Afaarg” — (Afaar — Ab2)g’ + a®rAfz39 = 0.
The boundary conditions (4.97) and (4.98) can be rewritten as

T2f”+7‘f/+(0127"2*1)f:0 on r=a,b, (4.102)

Abzazar® £+ (rAlsasy + 2A53030)7° f + (r Abzase — Absasa)rf (4.103)
— (rAbsasy — Absasa) f — &1 [(Afssss + Adszs — 2A80033 — Absass + 3)rf’
— (rApgasa — 7733 + Apsaze — 73 + Apr122 — Apazea + Adaass — Aoi1ss) f]

— a2r2(A833|3 — A822|3)g =0 on r=a,b.
The electrical boundary conditions (2.33) reduce to

Froe=FEr0.=0 on r=a,b. (4.104)
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Boundary conditions (4.104) can be written in terms of functions ¢ and ¢ and f and g,
respectively, as

Alos0®,22 — Abohr =0 on 1 =a,b, (4.105)
A823\2O‘27"f +Alpg =0 on r=a,b. (4.106)

Boundary conditions (2.34) reduce to

. _dFOb onr= b,
Dro, = (4.107)

OF0q onr=a.
Here again we do not require boundary condition (4.107) to be satisfied explicitly. We
assume that this boundary condition is adjusted according the solution obtained with the
boundary condition (4.104), satisfied explicitly.

We introduce new variables

yi=f(r), ye=1r ), ys=1"(r), va=f"(r), ys=9r), ys=4g(r). (4.108)

Thus, we can rewrite the governing equations (4.100) and (4.101) as a system of six ordinary

differential equations

YI=Y2 Yo=UYs Ys=Us Y5 = Yo, (4.109)
r Absosath + (21" Alazs + 20 Alzaza)

+ [ (BAG3230 + T Adzaz) — 3r2Abgass + @21 (2450033 + 2483005 — Abazss — Abazes)lys

+ [ Algags — 3r® Absazs + 37 Abaazs + o3 (2r Afans + 2r Algass — T Absass

— T ASpa20 — Abazas — Abasss + 2A0a033 + 2A53203) 112

+ [3(r Aoy — Abaazs) — T2 Abaazs + 212 (r2 Abgans + 170"

+ 1 Abga03 + T Ad 1122 — T A1133 — T ASga90 + T Aboa3s + Abii11 + Abasss

— 2451190 — 2A03903) + @' Afozaslyn

+ O‘QTB(A322|3 + Afas — Agsapz)ve + QQ[(A611\3 - A322\3)7“2 +( 3/22|3 - A3;3|3)7"3]y5 =0,
02T2(A333\3 - 322\3 - A323|2)y2 + QQ(ASMBT - A322|37“ - A3;3\2T2)3/1

— AG2arys — (Ad2ar — Ad)Ys + 027"A833?JS =0.
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Boundary conditions in terms of new variables take the form

r2ys 4+ ryo + (@*r? — 1)y = 0, (4.110)
Abasarya + (rASzass + 2A55030) 7%y + (T Afas0 — Az Ty

- (TA323232 — Absas2)y1 — 0‘27"2[(Af§3333 + Abazos — 2A00233 — Adsaas + T3)TY2

— (rASsasy — TT33 + Absazs — 73 + Abi109 — Abaozs + Abaazs — Adias)vi]

- a2r2(A333|3 - A322\3)y5 =0,

A323|20427“2/1 + AQaoy6 =0 on r=a,b.
In order to proceed further we use incremental boundary condition
u=0 on z=0,i, (4.111)

thus radial displacements at the ends of the cylinder are not allowed. Therefore, from the

previous relation, (4.71); and (4.99),; we obtain the condition for «

™ ™
o= —

where n = 1,2, 3, ... is the axisymmetric mode number. We see from 4.112 that o may be
changed either by mode number n or the length of the cylinder L. We fix n = 1 and we
perform our analysis for different lengths of the cylinder.

We define initial values for the system (4.109) in the form
yi(a) =6, (i=1,...,6), (4.113)

where ;1 is the Kronecker delta. Each k (k = 1,...,6) in (4.131) corresponds to the solution

y” of the system (4.109). The general solution of (4.109) can be written in the form

6
y=>_ ay", (4.114)
k=1

where ¢, are constants.

Now we require the solution (4.114) to satisfy boundary conditions (4.110). We are
interested in the solutions (4.114), where at least one constant cj, is non-zero. Substitution
of (4.114) into (4.110) leads to the vanishing of 6 x 6 determinant of coefficients of cy.
Thus, vanishing 6 x 6 determinant of coefficients of ¢ is a bifurcation criterion for this

problem.
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Nondimensional equations and boundary conditions (with no energy function applied):

01 =102, o =103, U3="0s Us="Ts, (4.115)
P Ay + (20 Alizaay + 275 Afg0) 14
+ [ (3 A0 + P ASsas0) — 372 Alggsa + 677 (2485055 + 2405005 — Absass — Alnana)1is
~3 A A2 2% A A% ~223 708 1% ~ 2% ~ A
+ [P Afsaze — 37" Ajgaga + 37 Ajgage + 6777 (27 Agg903 + 2P AG2933 — P Ajs3ss
— P Al990 — Alazss — Abasas + 2459935 + 2A83993)]1
+ [3(f¢48;232 — Ab3930) — 722«2‘3;,/232 + @QfQ(f2A3g223 + 72
+ f’Aaéma + ffignm - ffignz:«; - f'AEk)/szz + ffis/2233 + Ab + Alas
— 24811990 — 2A53003) + &1 Algz03]in

~2:3 « NA2 A A2[/Rx S Na2 | (R ;N
+atr (A022|3+A023\2 A033\3)Ufay6+04 [(Aon\g_ 022\3)T "‘(A 022[3 033|3) ]Ufay5_0

A2 A2 ~ A2 A% ~ A * A * A2\~
acr (A033|3 - A022|3 - A023|2)3/2 ta (A011|37“ - Aozz\?ﬂ" - A023|27“ )i

Al

— Aboalis — (Aboat — Aja) s + 67 #A5505 = 0.
Nondimensional boundary conditions (with no energy function applied):

P93 + P + (827 = 1)§1 =0, (4.116)
Al + (P ASzazs + 2 A53030)7%03 + (F Afg030 — Algasa) P2

— (P ASza0 — Abaasa)in — 6272 ((Algass + Alngs — 2480033 — Abazas + 73)7 i

— (A3 — P33 + Absoze — 73 + Af1100 — Abonas + Abaazs — A1133)01]

- @QfQ(AS33|3 - Aézz\s)&?a% =0,

A(*523|2d27ﬁ3?1 + A622Q6 =0 on = a, b.
We consider neo-Hookean electroelastic material
«_ 1 1,

where the constant p is the shear modulus of the neo-Hookean material in the absence of
an electric field and the constant ¢ is the electric permittivity of the electroelastic material.

With the energy function specified above, electroelastic moduli take the following values

Absis1 = Absasz = Afssss = A3(n+ D3NN, (4.118)
Api12o = Ao1133 = Apzaz = Agzasz = Agizzr =0,

Ab2zoz = Agzsaz = )‘%:U’a

Ajiinn = Aoizis = A

_ —1 * AKX _ * A% _ -1
033\3 21&023|2 - 2D3E ’ A022|3 — 01113 T 07 A022 - A033 =€
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We introduce new non-dimensional variables

f:%, & = aA, f(f)_{g), g(f):lm, (4.119)
Ay T AA_p(T) A*A_AS R*(a) . A* €

7(7) = —, p(r)—T, Aj(7) = P Ao(r)—Ao(T)Dr(a),

Ay (7) = Ae.

For the specified energy function the governing equation (4.100) or an equivalent (4.109)

can be rewritten in a non-dimensional form

M Aaaa [ + (27 Afsss + 273 Azasy) (4.120)
3o A A A 2 7 ~2.4, 7 - ;

+ [7°(3AG3232 + T Afz32) — 37 AGza3s — &7 (Afzs33 + Ad2aan) | f”
3 Fs! 9 7l A ~2 A3 A ~ e o

+ [7° Abzas0 — 37 Abzase + 37 Ajgase + &77° (=7 Afz333 — Abzzss — Adaaza) ]S

N4 1% ~2 A AD A AD Al 1% 1% 4 A4 A% A
+ [3(PApsase — Apsase) — 7°Agsage + &7 (P°D" + Agi111 + Apaaoe) + & 7  Agagas] f

2 2
+ 677 (Afgz — Abazs)d D;La) - d2f3A3333§D;(7) =0.
We introduce a non-dimensional quantity
Ofa = \J/];% (4.121)
Using (3.15); we obtain
Dfi@ — &2, (4.122)

Therefore, we use 6, as a non-dimensional electrical parameter which accounts for free
surface charge per unit area on the inner boundary of a tube in the deformed configuration.

Governing equation (4.101) in a non-dimensional form can be rewritten as
%1% (Agzsys — Abasy2)5Fal’ (4.123)
— &7 Bga06Faf — AiaafFad + Nona0Fad + 677 AG336F,9 = 0.
Also boundary conditions (4.102), (4.103), and (4.106) specialise in a non-dimensional form

to

PR rf 4 (622 - 1)f=0 on #=a,b, (4.124)

A% A3 7 ~ A% 1% A2 7 ~ 2% 1% ~ P
Ab30327 " + (7 Afz939 + 2A03232) 7 " + (F Ad3030 — Abzase) P f (4.125)
A A 1% ¢ A2 A27( A% 1% ~\aF
— (PAB3932 — Absaza) f — &°7°[(AGazss + Abazas + T3)7f
— (P Afsase — 7733 + Adzaza — 73 — Apgaza) f]

A2a2R % A2 A NP
—arAO33|3afang on f =a,b,
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&P Afggof + s =0 on 7 =a,b. (4.126)

Using definitions (4.119) electroelastic moduli and other quantities can be expressed in

a non-dimensional form for particular choice of energy function (4.117)

Adz131(7) = Agzasa(7) = Agazss(F) = 7242 : (4.127)

A(>;1122( ) "401133( ) A03223( ) A62233(’F) = A61331(7ﬁ) =0,
A02222( ) A02323(f) - )‘37

) f2A2
A01111( ) = A01313( ) =X = A (F2A2 — a?) + A2’

2a Ak Ak ~ Ak ~
A033\3( ) = 2Ao23|2( ) = A 022\3( ) = 011\3( 7) =0, Af(f) = Aggs(?) = 1,

A (A * N ~ r A A
73(7) = Afg1s1 (7),  7h3(F) = (Afy15(F) — «403131(T))/r’ :;7’

13”( ) A0l3l131 (f) A12 (AO3131( ) A01313(f)) (A03131( ) A01313 (f,))

jo)

We introduce new variables

() = f(#), g =FfE), §0) =), (4.128)
gu(F) = f7(7),  95(F) = g(7),  6(F) = §' (7).

We can rewrite the governing equations (4.120) and (4.123) in terms of new variables as a

system of six ordinary differential equations

=92 Uo=103, U3="70s 5= "Te, (4.129)
P Aoy + (27 Alizazs + 2723«2‘33232)734

+ [ (3 A53030 + P ASsa30) — 372 Algazy — 677 (Afsass + Abann) 13

+ [P Abazs — 372 Aoz + 37 Afgogs + 623 (—F Abaas — Adsazs — Abozss)lin

+ [B(F Alaz0 — Absaza) — P2 Abgaze + 672 (P9 + Al 111 + Algane) + 647 Algaa3]i1

243 A 2 .
+atr (A323\2 _A333|3)‘7fa96 a’r A033\3‘7]%1,?/5 0.

A2 420 A K A ~
a7 (Aggz3 — A023|2)?J2

A2 a2 Ak ~ Ak Anl Ak o~ ADQANK A
—ar A023|291 — Ao227Us + Agze¥e + T Agz35 = 0.
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Corresponding boundary conditions in terms of new variables are

P2gs + o + (827 = 1)g1 =0, (4.130)
Abs07 4 + (7 Az + 2 A83080)7%13 + (F AT3030 — Adzasa) P

— (FASa230 — Abzan)in — &7 [(Afaazs + Alazs + 73)7 2

— (P A3 — P33 + Abgazs — 73 — Abagn)in]

— &2 A g0136 7415 = 0,

&P AGgs001 + Ajaalls =0 on 7 =a,b.
We define initial values for the system (4.129) in the form

gi(a) =0y (i=1,...,6), (4.131)

where ;1 is the Kronecker delta. Each k (k = 1,...,6) in (4.131) corresponds to the solution

y” of the system (4.129). The general solution of (4.129) can be written in the form

6
y=>_ ay", (4.132)

where ¢ are constants.

Now we require the solution (4.132) to satisfy boundary conditions (4.130). We are
interested in the solutions (4.132), where at least one constant ¢y, is non-zero. Substitution
of (4.132) into (4.130) leads to the vanishing of 6 x 6 determinant of coefficients of c.
Thus, vanishing 6 x 6 determinant of coefficients of ¢ is a bifurcation criterion for this
problem.

Now we consider augmented Mooney-Rivlin model

1 1 1
Q= 5/11([1 - 3) - 5#2(12 - 3) + 5371[57 (4'133)

where p; > 0 and po < 0 are material constants satisfying p; — pe = p. In what follows

we use p1 = 0.8u and pe = —0.2u.
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We calculate (dimensional) electroelastic moduli:

Abaizr = 203 + A3Q0 + DINIAIO5) = 0.8uA2 4 0.2uN % + D3e™ L, (4.134)
Abangs = 203 + MQo + DINIAIO5) = 0.8uA2 4 0.2u0; % + D3e™ L,
Abzzzz = 2X5(Q1 + (AT + A3)Q + DIATADQ5),  Abiziz = 2A7 (0 + A30),
Af190 = ANINIQ = 40520 = 040320, Afj133 = 4NN = 4)5 20 = 0.40; %y,
Abzons = —2X3030 = —0.2uA72,  Adgoss = 4N3N300 = 4020 = 0.4u)[ 2,
Abias = —2A502 = —0.20057, Afgznr = 223(Q + (A + A5)Qa),
Abazas = 225(Q1 + A1), Afiiyr = 2032 + (A3 4 A3)Q),
Gasjs = 4D32s5 = 2D, Afyg0 = 2D3Q5 = Dye™ !,

Afoois =0, AGyy3 =0, Agy =205 = el Al =20 =",

Now we rewrite these moduli as nondimensional quantities:

0.8\ (7242 — a?) + A72A%) + 0.2[\, (7242 — a?) + A?] + 62 a2

Abs151(7) = : A2 fe  (4.135)
- o O08AJI(2A% —a®) + \J2A% 4 67,07 .
Adzsa(7) = A2 +0.2\77,
—1(32 42 _ 2 —2 42 8242 2 21 | 52 2

Ao () = 0.8[A; 1 (P7A% —a”) + AT2A%] + 0.2[A. (P A% — a”) + A% + 65,0 0202

03333\7 SYP LA, T

7
72 A?

Afy105(7) = 0.4

A H(P2A2 — a?) + ;%A%
Al1135(F) = 04772, Afys3 (F) = —0.2X72,

—0.2[\,(72A2 — a?) + A?] 0.4[\, (72 A? — a?) + A2

Abzes(F) = 2 A2 , ’2 Ab2233(F) = ) f;A2 ) ’
. 72 A A (72A% —a®)+ A

* ) = 0.8)2 + 0.2
Abazza () =t [)\Zl(,,ﬁQAQ —a?) + \;242 + 72 A2 ]’

0.272 A2
AL (72A2 — a2) + 2242

/%2323(73) =0.8)\7 +

() = 0.2 A
Aji111(7) N (72AZ — a2) + A2 + AL (7242 — a2) 4+ A;2A2 T2

o 0.8\ 27242 +0.272 A2 e 20 R a
Apiz13(F) = )\;1(722142 a2+ AS2A2 A033|3(7") T FA 023|2(7") T PA

0.87% A2 72 A? _2}

~

A322\3(72) =0, 311\3(73) =0, Agn(f) =1, Ag(?)=1
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We also need the following derivatives of moduli:

—1.6A4% + 1.6A%X, + (—0.44% — 24267, )A2 + 0.4a° )2

Abz131 () = 12732 ; (4.136)
z
A (#) 4.8A% — 4.80° X, + (1.24° 4 6a%57,) A2 — 1.2a A
03131\7) = - )
A2pAN2
A () = —1.6A4% + 1.6a*\, — 2a*67,\2 AL () = 4.8A% + a® X, (—4.8 4+ 657,).)
03232 A2’f‘3)\g ’ 03232 A2f4)\§ )
o A?P(1.6A4% — 1.6a2 ), + 0.4A%02 — 0.4a2)\3)
Abi313(7) = 2 2 242 2 )
, [A 2—1— (—a? + A%272) )\, ]
o . 0.4A4% — 0.4a° X
Abszo3(F) = 4273 =
s —1.2A% +1.2a°),
Absz23(F) = 2A27x4 ) ’
Al R —OSA + 08a )\
Af2os3(7) = 1273 Z,
o —L6AZ+1.6a%N; + (—0.44% — 2a°6F,)\] + 0.4a* A7
Afzsss(f) = AZ73)2 )

o AZPA2(0.84% — 0.8a%),)
Ab1122(7) = [A2 + (—a? + A272))\ 2"

(—0.4A% + X, (1.2a%2A4* — 0.84%2 + a2\, (—1.2a2 A% + 1.6 A*7% + (0.4a* — 0.8a2A%72)),)))

-/402222(7“) = 723(143 n (—a2A + A3f2))\z)2
Ay R —2a N N —a
033|3(7“) YR 023\2(7“) T R2A

Also we use the following connections in the governing system of ODEs and boundary

conditions
75 = Ajg131 (F) — Abi331 (), (4.137)
7%3(@ = (A31313(7A’) - A83131(f))/f7 (4.138)
F1(7) = Agiran () — At (7) — 55 (Agaran () — Abrans(®) + + (Aforar () — Adfons (7))
(4.139)

In Fig. (4.1 - 4.5) we show pairs of A\, and A, such that bifurcation criterion is satisfied.
We were able to reproduce exactly the results obtained by Haughton & Ogden (1979)
for neo-Hookean pure elastic material. We note though that Haughton & Ogden (1979)
associated their results with the wrong values of ratios L/B. Our calculations show that
in order to obtain correct values L/B in Fig. 3 in Haughton & Ogden (1979) we need to
divide them by 2. This was also confirmed by Zhu et al. (2008).

As far as Mooney-Rivlin material is concerned, Haughton & Ogden (1979) did not
report in their paper the values of material parameters pu; and uo they used for their
calculations. In our calculations we used p; = 0.8y and po = —0.2u. Because of our

assumption for the values of material parameters we obviously could not reproduce the

9
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results of Haughton & Ogden (1979) in the exact form, nonetheless qualitatively our results
for Mooney-Rivlin material is in accordance with the results reported in their paper in
Fig. 3.

From our results we can conclude that the presence of an electric field make an electroe-
lastic tube more unstable. We see that in the presence of an electric field an electroelastic
tube can bifurcate into unstable axisymmetric configuration at lower values of circumfer-
ential stretch A\,. In each figure reported here the uppermost curve corresponds to pure
elastic case (or, equivalently, to the case when there is no potential between electrodes and
thus no electric field). Increasing of an electric field results in placing the curves one under
another with the downmost curve corresponding to the highest value of an electric field.

With or without presence of an electric field we can also note that decreasing L/B,
i.e. making a tube shorter leads to steeper bifurcation curves, thus limiting the range of
values A, where bifurcation is possible. This can be seen clearly here for Mooney-Rivlin
electroelastic material.

In Fig. (4.6-4.10) we showed the results for a thicker cylindrical shell with A/B = 0.5.
We can observe that for a thicker shell a higher circumferential stretch is required to make

the tube unstable.
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Figure 4.1: Plot of axisymmetric bifurcation curves for neo-Hookean electroelastic material

with L/B=10, A/B = 0.85, 64 = 0,0.75,1.1, 1.5
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Figure 4.2: Plot of axisymmetric bifurcation curves for neo-Hookean electroelastic material

with L/B=5, A/B = 0.85, 64 = 0,0.75,1.1, 1.5,
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Figure 4.3: Plot of axisymmetric bifurcation curves for neo-Hookean electroelastic material

with L/B=2.5, A/B = 0.85, 57, = 0,0.3,0.6,0.9.
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Figure 4.4: Plot of axisymmetric bifurcation curves for Mooney-Rivlin electroelastic ma-

terial with L/B=10, A/B = 0.85, 6, = 0,0.3,0.6,0.9.
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Figure 4.5: Plot of axisymmetric bifurcation curves for Mooney-Rivlin electroelastic ma-

terial with L/B=5, A/B = 0.85, 6, = 0,0.3,0.6,0.9.
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Figure 4.6: Plot of axisymmetric bifurcation curves for neo-Hookean electroelastic material

with L/B=10, A/B = 0.5, 64 = 0,0.75,1.1, 1.5,
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Figure 4.7: Plot of axisymmetric bifurcation curves for neo-Hookean electroelastic material

with L/B=5, A/B = 0.5, 674 = 0,0.75,1.1, 1.5.
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Figure 4.8: Plot of axisymmetric bifurcation curves for neo-Hookean electroelastic material

with L/B=2.5, A/B = 0.5, 67 = 0,0.3,0.6,0.9.
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Figure 4.9: Plot of axisymmetric bifurcation curves for Mooney-Rivlin electroelastic ma-

terial with L/B=10, A/B = 0.5, 6, = 0,0.3,0.6,0.9.
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Figure 4.10: Plot of axisymmetric bifurcation curves for Mooney-Rivlin electroelastic ma-

terial with L/B=5, A/B = 0.5, 6, = 0,0.3,0.6,0.9.



Chapter 5

Bifurcation of Electroelastic

Spherical Shells

5.1 Introduction

In this chapter we give bifurcation analysis of an electorelastic thick-walled spherical shell
with compliant electrodes at its boundaries under inflation and compression. We start with
considering the underlying configuration: a finitely deformed electroelastic spherical shell.
The problem of the inflation of an electroelastic spherical shell was considered in Dorfmann
& Ogden (2014b). We use some results and notation from this work and then we develop
a bifurcation analysis within the similar lines as for a thick-walled electroelastic cylinder
in the previous Chapter 4. For the pure mechanical case in Haughton & Ogden (1978) it
was found that inclusion of ¢p—dependence does not affect the bifurcation criteria. Here,
we adopt this approach and we consider only axisymmetric bifurcations. We complete this

chapter with an analysis performed for the neo-Hookean energy function.

5.2 The underlying configuration

5.2.1 Spherically symmetric inflation of a spherical shell

The geometry of a spherical shell can be conveniently described by spherical polar coordi-

nates R, ©, ®. In the reference configuration the shell is described by
A<R<B, 0<060<21, 0<<2m, (5.1)

where A and B are the internal and external radii.

87
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Assuming that the spherical symmetry is maintained in the current configuration we

have the counterpart of (5.1)
a<r<b 0<0<2mr, 0<¢<2m, (5.2)

where 7, 6, ¢ are spherical polar coordinates and a, b are the radii in the current (deformed)
configuration.
Since we have an incompressible deformation the shell is expanded (preserving spherical

symmetry) according to the relations
r=R+d>—AH3, h=0, ¢=0a. (5.3)

The resulting deformation gradient with respect to the spherical polar coordinate axes
is diagonal. The associated principal stretches A\; and A9 corresponding to the 6 and ¢

directions are equal and we can write
=X =A=7r/R>1 (5.4)
The principal stretch corresponding to the (third) radial direction is

d
=2 (5.5)

Ap = o =
dR

We define the circumferential stretches at the inner and outer boundaries as A, = a/A and
Xy = b/B. Using (5.3) we write

3 _ A3
)\Zz:(l—i-a A)1/3

5.6
R R3 ’ (5:6)
therefore the following relation follows
A3
No1= ﬁ(Ai —1). (5.7)

Evaluating the previous relation at R = B we obtain the connection between the
stretches at the inner and outer boundaries

o -1=(5) -1 (5.8)

Since B/A > 1 we can conclude from the previous relations that
Aa = A> XN > 1. (5.9)
The invariants I; and I» can be specialized for this deformation gradient:

L=2 2+ L=X4+2072 (5.10)
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5.2.2 Electrical boundary conditions

In this problem we consider an electroelastic spherical shell the lateral boundaries of which
have flexible electrodes. The charges on both electrodes are equal and have the opposite
signs. Therefore, by Gauss’s Theorem and because of the given geometry, we do not have
an electric field outside the material. We will denote a total charge at 7 = a by Q(a), and

at r = b by Q(b), respectively. Therefore, we have

Qa) +Q(b) =0. (5.11)

The free surface charge densities per unit area on the inner and outer boundaries in the

current deformed configuration will be

Q(a) Q(b)
Ota =73 OB= 79 (5.12)
Therefore, we can rewrite (5.11) as
2 2 _
a“ogq + bopp = 0. (5.13)

Referred to undeformed configuration we have the following analogues of the expressions
(5.12)
Q(a) Q(b)
— = 14
OFA= 50 OFB = |53 (5.14)
where A, B are the inner and the outer radii of the spherical shell in the undeformed
configuration. In the undeformed configuration we have the following connection between

free surface charge densities

A0 + Bopp = 0. (5.15)

For the considered spherical geometry the radial electric displacement D, (Dy = 0,
Dy = 0) will depend only on r and expression (2.5)2 will be equivalent to

1 d(r®D,)
————==0. 5.16

r2 dr (5.16)
Therefore, 72D, is a constant, which can be expressed at the boundaries r = @ and r = b

as a?D,(a) and b2D,(b), respectively. And we have
2D, = a*>D,(a) = b*D,.(b) = const. (5.17)

Using the boundary condition (2.8)3, where D* = 0, we can relate radial electric field
components at the boundaries to free surface charge densities per unit area in the deformed

configuration

D,(a) = 0tq, Dy(b) = —0rp. (5.18)
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Therefore, using (5.12) solutions (5.17) can be expressed as

D, = %(:) = —Ci(:). (5.19)

5.2.3 Electric field components

In this problem it is natural to choose the electric displacement as an independent variable.
We can control the electric field by prescribing a certain charge on the boundaries, and the
charge on the boundaries is related to the electric displacement field through the boundary
condition (2.8)2. We will consider a radial field (Dy = 0, Dy = 0). Since constitutive law

o~

Er —
L= 5D,

(5.20)
is expressed in terms of Lagrangian variable Dy, we will switch to this variable using relation
Dy, = F7'D. (5.21)

Since the electric displacement vector is aligned along the radial direction of strain, we

have
0 0
D=1 0o |=] 0 |- (5.22)
>\2Dr Drr

Using (2.22), we calculate the invariants
I = \'D? = D3 p, (5.23)
Iy = D? = \741,, (5.24)
Is =A"1D? = \781,. (5.25)

The components of electric field can be found using equation (2.24).
Since the deformation gradient is diagonal and Dy = Dy = 0, we have Ey = Eg = 0

and the remaining radial component will be
E, = 2(UMN'D, + QiD, + QA TD,). (5.26)

For the spherical symmetry (assuming that there is no dependence on either 6 or ¢)

curl E = 0 will be equivalent to rEy = const and rEy = const, which are satisfied for this
problem. Here we do not need to impose any condition on the function 2*. Unlike the
present problem for some types of deformations we do need such a condition. We can refer
to Dorfmann & Ogden (2006) for an example of such a condition, where azimuthal shear

deformation is considered.
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5.2.4 Stress components

Let us now consider 2* as a function of principal stretches A1, Ao, A3 and electromechanical
invariants Iy, Is, Is. Recognizing the fact that in the present problem the only electrical

variable is I, we can consider a function Q* such that

Q*(A17 )\27 A3') I4) = Q*<)\17 A27 )\37 I47 I57 16) (527)

This allows us to obtain simple expressions for the principal components of the Cauchy

stress tensor 7; (i=1, 2, 3)!

Tis :Ti—p* (Z: 1,2,3), (528)
where R
on*
T, o, (i 3) (5.29)

From (5.4) and (5.5) we can conclude that the principal stretches are functions of a sole

variable A. Therefore, we can introduce a new function w* such that

W (N, L) = (A1, Aoy A3, Iy). (5.30)
This allows us to write

T — T33 = S AW), (5.31)
where w} denote derivatives dw* /0.
Expression (5.26) can now be rewritten as

10 (5.32)

B, =2\ -
0ly

According to Gauss’s theorem we have no field outside the tube, therefore by (2.11) the
Maxwell stress is zero. Thus, we have only mechanical load due to a pressure P inside the

shell applied to the inner surface at » = a and no loads at r = b
Top=—P on r=a, 7»=0 on r=hb. (5.33)

In this problem the equilibrium equation divrT = 0 reduces to

. d7yr
dr

no summation for the subscript ¢ is implied here.

= 2(Tpg — Trr) = AW). (5.34)
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In the previous expression we have used (5.31). Integrating (5.34) and using the boundary

0 b
/ dryy = / i & (5.35)
_P a T

b
d
P:/ /\wig. (5.36)

In some cases it is convenient to change the variable of integration from r to A. To this

conditions (5.33) we have

Therefore,

end, we rearrange and differentiate (5.3); with respect to r, taking into account that A

depends on r. We have
dx

r = —AN —1). (5.37)

Therefore, expression (5.36) can rewritten as

Aa
P= / (A3 — 1) twidA. (5.38)
A

b
From (5.8) we see that A, depends on \,. Therefore, the previous relation gives P as

a function of A, and invariant I = Q?(a)/167%A*, which is known for a given charge

Q(a) = =Q(b).
Similarly, since b = (B3 +a® — A3)'/3 we see that (5.36) provides a relationship between

pressure and the inner radius a and invariant 1.

5.3 Bifurcation analysis

In the present setting we use spherical polar coordinates 6, ¢, r with the corresponding
unit basis vectors ei, e, e3. Derivatives in (2.37) denoted by subscripts with commas (-) s
can now be specified as 9(-)/rof, 9(-)/rsin60¢, O(-)/0r for k = 1,2, 3, respectively. For

spherical polar coordinates in (2.37) the only non-zero scalar products e; - e; ), are

—1
—es - 61,1 = —e3 - 6272 = e - 6371 = €9 - 6372 =r -, (5.39)

el ey = —€y-€ey 3= —r~Leoth.

5.3.1 Axisymmetric bifurcations

The increment in the position vector x of a point in the current configuration is

X = ve] + wey + ues. (5.40)
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We will consider axisymmetric bifurcations, hence u, v and w are independent of ¢,
and we also accept that w = 0. Therefore, the components of L on the basis eq, e, e3 can

be calculated as

(u—+vg)/r 0 Uy
0 (u+ veot)/r 0 |, (5.41)
(ug —v)/r 0 Uy

where subscripts 6, r are corresponding partial derivatives.

For an incompressible material we can write
trL = 2u 4 vy + vcotd + ru, = 0. (5.42)

The incompressibility condition (5.42) is satisfied if we define w and v in terms of function

®(6,r) such that
1 09 B 1 90¢
YT 2simeo0’ VT rsmoor (5.43)

For i = 1 the expression (2.37) gives
T01171 + T021,2 + T03173 + 2T71T031 + T71T013 + rilcotH(Tou — TOQQ) =0. (5.44)

In what follows we will consider the case when electric field is generated by the electrodes
attached to the boundaries of a spherical shell. Therefore, according to Gauss’s theorem
there is no field outside the material. For the considered underlying deformation we have
F;j = 0 for i # j, and for radial electric displacement field (Dy; = Dy2 = 0) required non-
zero values of electroelastic moduli tensors Ag, A, Aj can be obtained from the general

expressions given in Section 2.2.2. Therefore, we can write using (2.51);

Torr = Ay L + Afyia9 Loz + Ajy1s3Lss + pLin — p + A22)11|31.)L03, (5.45)
Tooz = Afoori L1 + Abi111 Loz + AbiisLss + pLoy — p + A25)22|3DL037 (5.46)
Tors = Ajiz13Ls1 + Abyzs1 L1z + pLs + ASIB\IDLOD (5.47)

Tos1 = Afgi31L13 + Abs113L31 + pLay. (5.48)

Since there is no dependence on ¢ the derivative of Tha1 with respect to variable ¢ is zero
in (5.44). Because the underlying deformation is radially symmetric in (5.46) we have used

* _ * * — *
Abi111 = Afgaze and Afgozs = Afy13s-
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Substituting these expressions into (5.44) and using incompressibility condition (5.42)

we find that (5.44) gives

rpg =(ug — 0)[r(Abizs1 + 1) + Adizar + Adiz13 + Adr122 — Adii11] (5.49)
+ 7uro[Apizsr + Aor1zs — Aoria] + 7vr(rAgzizr + 2A453131)

2 * * - * - - * *
+ 70 Apzi31 + A011\37’DL03,0 + A013\17"DL01 + TCOWDL03(A011\3 - 022\3):

where prime denotes differentiation with respect to 7.

For i = 3 in (2.37) we have
Toiz + Toos + Toss,z + 2Thssr ™" + Touar™ cotd — (T + Thae)r ™" = 0. (5.50)

From (2.51); we can calculate
Toss = Asz11L11 + Aoz Lo + AlgsasLas + pLas — p + A333|3DLO3- (5.51)

Note that derivative Thoz 2 = 0. Substituting expressions (5.45)-(5.47) and (5.51) in (5.50)

and using (5.42) we have

r2pr =ru{r(Alssss — Abiss +7') — 3451331 + Az + Abii (5.52)
— 4481133 + 2A05533 + Abi111} + 77w (AGssss — Abiasr — Adiiss)
+ Ag1313(ugs + ugcott + 2u) + A313\1<7"DL01,9 + rcotfDrop)
+ A353\37’2DL03 + A833|3(7’2DL03,T + 2rDyo3)
- TDL03(A311|3 + Agag)3)-

For the present case the governing equation (2.32); reduces to

0ELw  9BLor

E =0. 5.53

Log + 7 or a0 (5.53)
From (2.51)y we calculate

Ergy = ELon = AgzLar + Al Drots (5.54)

ELOr = EL03 = AEk)11|3L11 + A822|3L22 + A833‘3L33 + A633DL03- (5.55)

Note that due to radial symmetry A311|3 = A322|3' Therefore, equation (5.53) gives

urg(Agrsin + Agrys — Adgss) — Aorsptr + Agyg) (e — v) (5.56)
+ Ad11(Drot + rDro1r) + ASIHTDLM — Aj33Drose = 0.
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The governing equation (2.32)2 in spherical coordinates reduces to

1 8(T2DL0T) 1 8DL09 cot 6 .
2 or T r o8

Drop =0, (5.57)

which after some rearrangements can be written as

d(r?sin Dy, n d(rsin @ Drog)
or 00

= 0. (5.58)

Therefore, the governing equation (2.32), is satisfied if we introduce function (6, r) such

that
1 0y . 1 oy

Digp = —— -0 = — iy
Lor = 25in g 90’ Lo6 rsind Or

(5.59)

Differentiating py from (5.49) with respect to r and p, from (5.52) with respect to 6 and

using (5.43), (5.59) we obtain the governing equation in terms of functions ¢ and

Abs1310rrrr + Aj13139,0000 +t3 (A03333 — 2A51331 — 2A01133 + Ao1111) 9 000 (5.60)
+ 2453131 er — - — cot 9A01313¢ 000 + 5 : 5 €0t (2451331 + 2401133 — Adi111 — Absss)@orr
i(7“-4323333 - 27"v401133 — 2 Af 15 + 7“v401111 + 4Ag1331 + 4AG1133 — 2A03333 — 2A01111) 9,00
{ 1 (3 cot? 0 + 4) Ajy313 T ! (37”A01331 3A1331 + Adiz1s + Aori22 + Ao

— 2r(Af3333 — Abi1za) — 4A01133 + 2A03333) + %(2A81133 —r(Ajizz +p7)

— A1z — Ajiioe — Abiinn) Yoo + {%3 cot 0(2r A1 — rAbaazs + 2rAfiia

— 4Ag1331 + 2-'4(931111 — 4Ag1133 + 2A03333) — rig cot O.AG 111 }b.or

+ {A03131 - *A03131 : [ (Adiz31 +P") + Adizar + Abizis + Adiioe — Abi111]} 6

+ {774A01313(—3 cot® 6 — 5 cot ) + %[QT(ASQ%?, — Abi1a3) + 3Ab1331 — Adians

— Abi1as + 4451133 — 2483333 — A1 — 3rAdiss] + T%COt Olr(Afyss + )

+ Az + Abiioe + Adiin — 24511331 b + {%(TP*/ + Agiss1 + Apizis

+ Abr122 — Aori11) — %[P*/ +r(Adizsr + 07 ) + Afizs + Abiiee — Asin

— Abgisn + r Az o + 712( 033]3 — A013|1 = Ag1113)¥,r00

+ rl cot 0(Agy 51 — Agggis T Aoi1s) Yo + *A*13|17/) rr

1 1
+{ A033|3 T —3 (Ad11j3 + Agagps) — 011\3 + Ao11|3}1/’ 66
* 1 *
+ { A013|1 2A013|1}¢,r + cot 9{,’73( o113 T A022|3) 72103303

+ Ao11|3 3A811\3}"¢,9 =0.

From (5.56) we obtain the second governing equation in terms of derivatives of functions
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& and 1)
ﬁ( 0131 T A011)3 — Aozs(3)P00r — 3 cot (Agisin T Ao11j3 — Agssis) dor (5.61)
1 * 1 *! 2 * * *
+ ;A013|1¢,rr + {7?21%13\1 - ﬁ( o131 T Ag11j3 — Agszjz) 1o.00

1 . 1 2 . . 1 /
+ (; 0131 — ﬁA313|1)¢,r + {773 cot O(Agyay + Agiys — Agsaps) — 3 cot 0AG131 100

. 1 . 1 .
— Ao ¥ — §A033¢,99 — Ao ¥ + -3 cot 0AG33,0 = 0.

Now we will specialize the boundary condition (2.35). Since for the present case when

electric field is generated by electrodes there is no field outside the material. We have

PLTn—Pn onr= a,

Ton =t = (5.62)
0 onr=~>ot.
Calculations show that
ro,+ug—v=0 on r=a,b. (5.63)
. i ' i} . —P onr= a,
(Adssss — Apssin + T3)ur — D+ A033|3DL03 = (5.64)
0 onr=~>ob.

The remaining component of (5.62) is satisfied automatically.

Boundary condition (5.63) in terms of function ¢ and its derivatives can be written as
TQQSM —¢gg+cotbpg—2rp, =0 on r=a,b. (5.65)

In (5.64) we accept that P = 0 and differentiate (5.64) with respect to 6 and use (5.49).

Thus we obtain boundary condition

Abs1310,0r + {%(A33333 — 2A61133 + 73 — Adizar + Aoi111) 1 0.00r (5.66)
- %3[7"(-'43/1331 + ") = Abiazn + Adiziz + Abiize + Adiin + 2483333

— 4Ap1133 + 273] 0 00 + %2 cot 0(Apiaz1 + 2A01133 — Aor111 — Abasss — 73)00r

+ ASg13100r + :*3 cot O[r (A +P*) — Adizar + Abizis + Adnize + Abiin

* * 1 *! *! * *
+ 2A03333 — 4Ap1133 + 27300 — 772[7"(«401331 +p") + Apizsr + Apisis
1

* * *! * * 1 *
+ Abr122 — Adrin + 7 Aoz e + 7,*2( 03313 — Ao11j3) %00 + ;A013|1¢,r

1 * *
+ 2 cot 0(Agags — Apggi3)e =0 on r=a,b.
The electrical boundary condition (2.33) will reduce to

Ern =FErp=0 on r=a,b, (5.67)
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which can be rewritten as
Agy31(d,00 — cot 0o g +1¢,) — A, =0 on r=a,b. (5.68)
The boundary condition (2.34) will reduce to

—Opgy onr=2b,

Dror = (5.69)

0F0a ONT =a,
where opg = 6pdA/da a is the increment of the free surface charge op per unit area of
0B, and dA/da is the ratio of area elements on 0B, and dB. For the considered problem
free surface charges at the boundaries per unit area are different by the absolute value
(and sign, of course). Therefore, in general the increments will be also different at the

boundaries. Thus, we can write

. . dA . A?

OF0a — O—F|r:aa = UF|r:a? (5.70)
at the inner boundary, and

. . dA B?

OF0b = OFlr=b g~ = OFlr=b 5 (5.71)

at the outer boundary.

Here again we require only the boundary condition (5.67) to be satisfied explicitly.
Boundary condition (5.69) will be adjusted according to the solution of the problem with
the boundary condition (5.67) satisfied explicitly.

In order to have equations consistent with Haughton & Ogden (1978) we write

1 5 . .d 1 . .d
o= - fn(r)sin QEPTL(COS 0), = —Egn(r) sin G@Pn(cos 0), (5.72)

where P, (cosf) is the Legendre polynomial of degree n and m = n(n + 1).

Using the identity

2

%PH(COS 6) + cot H%Pn(cos 0) +n(n+1)P,(cosf) =0 (5.73)

and (5.72) we can rewrite governing equations (5.60) and (5.61) as

rd A1 £+ (8r° Az + 2r* Abgia0) o) + {10 Al a1 + 1 Abgrs (5.74)
+12r% Afgiz + r°7hs + 12 (mG — P} + {30 (2A53131 + 53)

+ 12 (2AG131 + 783) + 20 (mG — F) +r2(mG' — F)}f,

+(m — 2)(rP Az — 27y + T F (1) — F(r) + mA§1513) fn + Agls\lrgx

+ {m(AGi3n — Abszs + Adurz) + (FAG3 — Afiz) tan — m(AGsss — Ajiiz)gn = 0,
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Az‘)13|17”f7,z/ + {3A313|1 + TA813|1 - m(A313|1 + AEk)11|3 - 633|3)}f7/1 (5.75)
+ (2A313|1 - mAéllsu)fn — A1 — A1 + mAS3n /17 = 0.
As in Haughton & Ogden (1978) in (5.74) for brevity we denoted
F(r) = Agiss1 + Abiais + Ajrize — Aoiins (5.76)
G(r) = 2401331 + 2A01133 — Adzass — Aoninr- (5.77)

Also we have used expressions for the first and second derivatives of Lagrange multiplier

p* with respect to r
" = Apsiz1 — Avissr + 2(Apsizr — Adizis) /7 (5.78)
*!! *!! *!7 * * 2 */ */
P* = Apsizr — Avisst — 2(Apsisr — Aoisis) /7 + 2(Agsizr — Adizis) /7 (5.79)

and the following connections

73 = Ajz131 — Ao13s1s (5.80)
*/ 2 * *
Ty =Ty —p° = ;(A01313 — Aps131)5 (5.81)
7“27'?/,/3 = 2(rApiz1s — rApsizt — Aoiziz + Apsiz)- (5.82)

Boundary conditions (5.65), (5.66) and (5.68) take the form, respectively

r2fl 4 2rf, +(m—2)f, =0 on r=a,b, (5.83)
r° Az fr + 7”2(7"«4325131 + 6A53131) f + 7”[27”/13;)131 +7r733 — F (5.84)

+m(G — Afz31) + 6A53131] fr, + (m — 2)(7’-/43;,131 — 1733+ F) fn

* m .
* A013\19;L - 7( 033[3 Ao11|3)9n =0 on r=a,b,
A813\1{(m ) fpn—rfr} +AG119, =0 on 7 =a,b. (5.85)

In what follows we give non-dimensional equations. Expressions (5.43) and (5.72)1,

(5.59) and (5.72)2 suggest the following definition for non-dimensional functions f,,(#) and

n(7)
f(r) gn(r)

() = R gn(7) = Dy (a) A2 (5.86)

The other quantities are defined in the same way as they were defined for the cylindrical
shell. We also introduce new variables to transform the system of the governing equations

(5.74) and (5.75) into the system of 6 ODEs

Ql((ﬁ) = n(f)ﬂ QQ(f) = 1/1(f)7 Q3(7g) = g(f)7 (587)
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For our numerical calculations MATLAB ODE solver requires representation of the gov-
erning equations as a system of 6 first-order ODEs.

Now we can rewrite the governing equations and the boundary conditions in non-
dimensional form. The governing equations transform into the following system of non-

dimensional equations

o1 = 9, (5.88)
Uy = U3,
U3 = U

M Aba13104 + (875 Agiar + 27" A1) + {107 A1 + 7 Ajgi

+ 1272 Al ) + 79745 + 72 (mG — F)}s + {302 (2455131 + 743)

+ P (2485151 + T4) + 27F(mG — F) + #2(mG' — F')}go

+ (m — 2)(P2 A5, — 1275 + PE — F 4+ mAf50)61 + A813|1%J2fa?3é

+ {m(ASmu - A333|3 + A311|3) + (fA3l13|1 - ASB\I)}&J%a@G - m(A?];SB - AZﬁ)l11|3)&]2fay5 =0,
95 = e,

A313|1"z?33 + {3A313\1 + 72‘&5,13|1 - m(A813\1 + AEk>11|3 - ABBSB)}Z)?

~ ) ~ T ~ R NIV ~ R ~2
+ (2A313|1 - mA313|1)3/1 — AG1196 — AG1176 + mAG337s /7 = 0.
The boundary conditions in terms of new variables in non-dimensional form are

P23+ 270+ (m—2)j1 =0 on r=a,b, (5.89)

P Abs1310a + 72 (FAGz131 + 6A53131) 08 + P2 G315, + P75 — F (5.90)
+m(G - “483131) + 6“483131]?92 + (m — 2)“’/“33131 - "27&:/%3 + F)ih

A 54 1) moax A x A2 A oa
+ Abi3n0Falls ~ ?(A033I3 — Aj113)07405 =0 on r=a,b,

Ad g {(m = 2)in — P} + A6 =0 on r=a,b. (5.91)

In the above mentioned non-dimensional expressions we used non-dimensional param-

eter
D2
63, = Y (@) (5.92)
Ep

We calculate required electroelastic moduli for neo-Hookean electroelastic material
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(4.117):

Absi31 = Abasss = 22307 + 2D305, (5.93)
Adiziz = Adiinn = 2270,

Apizz1 = Apr122 = Aoz = 0,

2A(>§13|1 = A(>§33|3 = 4D3Q53, A(>§11|3 =0,

Aot = Agzs =205, F(r)=0.

In non-dimensional form the expressions for moduli can be rewritten as

- . . R (723A3 — a3 + A3)4/3 &2aa4
Avz131(7) = Apszss(7) = Y + fﬁA‘l ; (5.94)

- R - A 722142
Ab1313(7) = Ap1111(7) = (P A3 — a3 + A3)2/3’

A31331(f) = A31122(72) = «431133(72) =0,

o ) - . 2a? A R
2A013|1(7") = 033|3(7") T 22 011\3(” =0,
Asua(7) = Njgg(7) = 1, F(7) =0,
&(F) = —(PA —a® + A 5t 72 A2
74 A4 (723A3 — a3+ A3)2/3'

For our calcualtions we used numerical scheme described in Chapter 4, the results of
our calculations are given in Table 5.1.

Haughton & Ogden (1978) found that for neo-Hookean material axisymmetric bifurca-
tions are possible at external pressure (P < 0) only, no bifurcation solutions were found
for internally pressurized spherical shells. From the results in Table 5.1 we see that the
significant difference for the present problem of bifucation analysis of electrically sensi-
tive material is that some modes become possible for internally pressurized spherical shell
(P > 0). We note that here we used a numerical scheme described in Chapter 4. For the
purely mechanical case our calculations are very close to those reported in Haughton &
Ogden (1978); for convenience we reproduce the results from Haughton & Ogden (1978)
here in Table 5.2. We note that Haughton & Ogden (1978) used a different numerical
scheme in their work for bifurcation analysis of spherical shells. For thin shells Haughton
& Ogden (1978) reported that their method becomes increasingly sensitive.

The purely mechanical case of axisymmetric bifurcations of inflated and compressed
spherical shells was considered in a more recent work of deBotton et al. (2013). They used

the same theory as in Haughton & Ogden (1978) with different strain energy functions.
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Table 5.2: Bifurcation values A\, for neo-Hookean spherical shell with different values A/B

and mode numbers n from Haughton & Ogden (1978)

A/B | n | X\

0.95 | 7 ] 0.985
0.90 | 510971
0.85 |4 | 0.961
0.80 | 3 | 0.955
0.70 | 2 | 0.950
0.60 | 2 | 0.960

They also reported that additional solutions were found, which were not reported in liter-
ature before, for one-term Ogden material. Unlike Haughton & Ogden (1978), they used
a different numerical scheme known as matrix compound method. More details about this

numerical technique can be found in their work and in references mentioned therein.



Appendix A

Some Detalils

Here we provide some details of some non-trivial calculations.

A.1 Formula which allows to change the variable of integra-

tion from r to A\

In Section 3.2.4 we used formula (3.39), which allows us to change the variable of integra-
tion. The details for this calculation are as follows.

Since we have incompressible deformation, the volume of a cylinder remains unchanged:
m(B? — AL = 7 (b* — d?)I. (A1)
Therefore, we have

SR - A7) (A.2)

where we introduced notation \, =[/L.

We rearrange the previous expression as follows:
(1= A2 =a? - 2142 (A.3)

Differentiating (A.3) with respect to r, and taking into account that the vertical stretch

A, does not depend on r, whereas circumferetial stretch A does depend on r we have:

dA
2r(1 — A7) + r2(2x3A;1)5 = 0. (A.4)

103
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We have
d\
Z = —(NA, = DA A5
rdT ( z ) bl ( )
or
dr dA

T AL 1) (4.6)

Thus, we obtained the required relation. Using a similar reasoning a corresponding relation

for a spherical shell used in Chapter 5 can be obtained.

A.2 Expression for axial stress

Using (3.32), (3.31) and the equilibrium equation (3.36), axial stress 7., can be expressed

as

Tez = Trpr + )\zwiz (A?)
= Trr — T90 + Too + AzW),
= =AW + Tog + AWy,

= Te9 — Trr + Trr — Aw; + Azwiz
_Teo — Trr | TOO —
2 2

1
gt t 2/\cf\ — AWy + Awy,
1, dr wy N
— i(r d:” + 277«7«) — T)‘ + )\zw)\z
1
2

-
Tt T — A + AWy,

1d Aot .
[;5(7"27—7’7’)} — 2)\ + )\ZW)\Z.




Appendix B

Listing of computer programs

Here we give the MATLAB code we used for our numerical calculations in Chapter 4.
The following code will reproduce the results shown in Fig. 4.1. The other results can be
obtained with some minor modifications of this code. The code consists of 3 MATLAB
files. Discussion of this code can be found after MATLAB files, given here below.

File calculate branch.m has the following contents:

function branch=calculate_branch(par,start,delta,Nb,dir)

% Now we initialize a matrix in which we will store the calculated current
radius a.

% We take Nb steps along the branch, each step along the branch is size
delta.

branch = zeros(2, Nb);

initial_guess=start(2); %Here the intial guess for radious a.

options = optimset('Display', 'iter', 'TolFun',le—16);

%Here we find a point on the branch

[a, cond_val] = fsolve(@(a)determinant(lz,a,par), initial_guess,options);

branch(1,1)=1z;

branch(2,1)=a;

105
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%splot(branch(1,2), branch(2,2),'x"');

options = optimset('Display', 'iter', 'TolFun',le—16);

for 1 = 3:Nb

[x,fval]=fsolve(@(x) branch_fun(x, [branch(1l,i—1);branch(2,i—1)],delta)

,[2xbranch(1,i—1)-branch(1,i—2);2*branch(2,i—1)-branch(2,i—2)1,

options);

branch(1l, i) x(1);

branch(2, i) x(2);
plot(branch(1,1:i), branch(2,1:1),'—k"'); hold on;
drawnow;

end

function out=branch_fun(x,x0,d)
out=[determinant(x(1),x(2),par);
(X(1)—x0(1))"2+(x(2)—x0(2))"2—d"2;1;

end

end

File determinant.m has the following lines:

function [answer] = determinant(lz,a,par)

% Specifying the initial geometry

al=par.a0;
bO=par.bo;
L=par.L;

s=par.s;
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% sigma denoted here as s is an electrical parameter

alpha = pi*a0/(lzxL);

% Specifying the deformation

b = sqrt(a”2 + (b0"2 — a0"2)/1z);

% Specifying the radii in non—dimensional form

ra = a/a0;

rb = b/a0;

% Solving the IVP

Tspan = [ra,rb];

options = odeset('Mass', @MASS, 'RelTol',RelTol, 'MStateDependence', 'none');

[~,Y1] = odel5s(@ode, Tspan, [1 0 0 0 0 O],options);
[~,Y2] = odel5s(@ode, Tspan, [0 1 0 0 0 O],options);
[~,Y3] = odel5s(@ode, Tspan, [0 0 1 0 0 0],options);
[~,Y4] = odel5s(@ode, Tspan, [0 0 06 1 0 0],options);
[~,Y5] = odel5s(@ode, Tspan, [0 06 0 0 1 O],options);
[~,Y6] = odel5s(@ode, Tspan, [0 0 0 0 @ 1],options);

function dydx = ode(r,y)
dydx = [y(2);
y(3);
y(4);
—(2xr~4xder_a03232(r)+2+xr"3+xa03232(r) ) xy(4)—(r"3*(3xder_a03232(r
)+rxder2_a03232(r))—3xr"2*xa03232(r)—alpha™2*xr~4*(a®3333(r)+
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a02222(r)) ) *y(3)—(r"*3+«der2_a03232(r)—3xr"2xder_a03232(r)+3*r
*a03232(r)+alpha™2*r"3x(—rxder_a03333(r)—a03333(r)—a02222(r)
))*y(2)—(3x(rxder_a03232(r)—a03232(r) )—r"2xder2_a03232(r)+
alpha™2xr™2*(r*2+«der2_p(r)+a0l1111(r)+a02222(r))+alpha™4*r~4x
a02323(r))xy(1l)—s"2*xalpha”™2xr"3*x(a0232(r)—a0333(r))*xy(6)+s
~2xalpha”2*r~3+xder_a0333(r)*xy(5);

y(6);

—alpha”™2*xr™2x(a0333(r)—a0232(r))*xy(2)+alpha™2*r"2xder_a0232(r)*y
(1)—a022(r)*y(6)—alpha™2xr*al33(r)*y(5)1;

% defining the ODE

end

function ret = MASS(r,y)
ret =[10000 0;
1000 0;
0100 0;
0 0 r"4xa03232(r) 0 0;
00010;

© © o o o

000 0 —ab22(r)*rl;

% Mass matrix of the ODE

end

o°

mll

bcl(ra,Y1(1,:));
ml2 = bcl(ra,Y2(1,:));
ml3 = bcl(ra,Y3(1,:));
ml4 = bcl(ra,Y4(1,:));
ml5 = bcl(ra,Y5(1,:));
ml6 = bcl(ra,Y6(1,:));

o°

m21 = bc3(ra,Y1(1,:));
m22 = bc3(ra,Y2(1,:));
m23 = bc3(ra,Y3(1,:));
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m24
m25
m26

o°

m51
m52
m53
m54
m55

m56

o°

o°

m31
m32
m33
m34
m35
m36

o°

o°

m41
m42
m43
m44
m45
m46

o°

m61
m62
m63
m64
m65
m66

bc3(ra,Y4(1,:));

bc3(ra,Y5(1,:));

bc3(ra,Y6(1,:));

bc2(ra,Y1(1,:));

bc2(ra,Y2(1,:));

bc2(ra,Y3(1,:));

bc2(ra,Y4(1,:));

bc2(ra,Y5(1,:));

bc2(ra,Y6(1,:));

bcl(rb,Y1l(end,:
bcl(rb,Y2(end,:
bcl(rb,Y3(end,:
bcl(rb,Y4(end,:
bcl(rb,Y5(end,:
bcl(rb,Y6(end,:

bc3(rb,Y1l(end,:
bc3(rb,Y2(end,:
bc3(rb,Y3(end,:
bc3(rb,Y4(end,:
bc3(rb,Y5(end,:
bc3(rb,Y6(end,:

bc2(rb,Y1(end,:
bc2(rb,Y2(end,:
bc2(rb,Y3(end,:
bc2(rb,Y4(end,:
bc2(rb,Y5(end,:
bc2(rb,Y6(end, :
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matr = [m11l m12 ml13 ml14 ml5 ml6; m21 m22 m23 m24 m25 m26; m31 m32 m33 m34

m35 m36; md4l m42 m43 m44 m45 m46; m51 m52 m53 m54 m55 m56; m61 m62 m63

m64 m65 m66];
answer = 1/(cond(matr));
% Boundary conditions

function ret = bcl(r,y)

ret = r"2xy(3)+rxy(2)+(alpha™2xr*2—1)*y(1);

end

function ret = bc2(r,y)
% The electrical boundary condition

ret = alpha”™2xrxa0232(r)x*y(1)+a022(r)*y(6);

end

function ret = bc3(r,y)
ret = a03232(r)*xr"3xy(4)+r"2x(rxder_a03232(r)+2*xa03232(r) ) xy(3)+((r=

der_a03232(r)—a03232(r))*r—alpha™2*r"3%(a03333(r)+a02222(r)+

tau_3(r)))xy(2)+(a03232(r)—rxder_a03232(r)+alpha”™2xr™2x(r*

der_a03232(r)—rxder_tau33(r)+a03232(r)—tau_3(r)—a02222(r)))*y(1)
—alpha™2#r"2*a0333(r)*s”2xy(5);

end
% Moduli

function ret = a03131(r)

ret = (1z°(=1)x(r"2*xa0™2—a"2)+1z"(—2)*ad"2+s"2xa"2)/(r"2*xabd"2);

end

function ret = a03232(r)
(127 (—1)*(r"2xa0™2—a"2)+1z"(—2)*ad"2+s"2*a"2) / (r"2+abd"2) ;

ret =
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end
function ret = a03333(r)
ret = (1z°(—1)*(r"2xa0™2—a"2)+1z"(—2)*a0"2+s"2*xa"2)/(r"2*xab®"2);
end
function ret = a02222(r)
ret = 1z272;
end
function ret = a02323(r)
ret = 1z272;
end
function ret = a01111(r)
ret = r*2xa0”2/(lzx(r~2*xa0"2—a"2)+abd"2);
end
function ret = a0333(r)
ret = 2xa/(rxa0);
end
function ret = der_a0333(r) % first derivative of a0333(r) with respect
to r
ret = (—=2*a)/(r"2+al);
end
function ret = a0232(r)
ret = a/(r*a0);
end
function ret = der_a0232(r) % first derivative of a0232(r) with respect
to r
ret = —a/(r"2*a0);
end

function ret

a022(r)
ret = 1;

end

function ret = a033(r)
ret = 1;

end
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function ret = tau_3(r)
ret = a03131(r);

end

function ret = der_a03131(r) %first derivative of a03131(r) with respect
tor
ret = 2x(lzxa"2—a0"2—s"2*a”2x1z"2)/(r"3+x1z"2%ab0"2);

end

function ret = der_a03333(r) % first derivative of a03333(r) with
respect to r
ret = 2x(1lzxa”2—a0"2—s"2xa™2x1z"2)/(r"3x1z"2*xab"2);

end

function ret = der2_a03131(r) %second derivative of a03131(r) with
respect to r
ret = —6x(1z*a™2—ab0"2—s"2xa”2x1z"2)/(r*4xa0"2x1z"2);

end

function ret = der_a01313(r)
ret = 2xa0"2xrx(a0™2—a"2x1z)/(a0"2+(a0"2xr"2—a"2)*1z)"2;

end

function ret = a01313(r)
ret = r*2xa0"2/(lzx(r*2xa®"2—a"2)+abd"2);

end

function ret = der2_p(r) % second derivative of Lagrange multiplier p(r)
with respect to r. It can be expressed interms of electroelastic
moduli.
ret = der2_a03131(r)—(a03131(r)—a01313(r))/r*2+(der_a03131(r)—

der_a01313(r))/r;

end

function ret = der_tau33(r) % derivative of stress component tau_33(r);
it can be expressed in terms of electroelastic moduli.
ret = (a01313(r)—a03131(r))/r;

end

function ret = der_a03232(r) % first derivative of a03232(r) with

respect to r
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ret = 2x(lzxa™2—a0™2—s"2xa”2x1z"2)/(r"3x1z"2%ab0"2);

end

function ret = der2_a03232(r) % second derivative of a03232(r) with
respect to r
ret = —6x(lzxa"2—a0"2—s"2xa"2x1z"2)/(r"4xad"2x1z"2);

end

end

File experiment experimentl.m has the contents:

% Experiment 1

parl.a0=1;
parl.b0=1/.85;
parl.L=10/0.85;

parl.s=0;

branchl=calculate_branch(parl,[0.25,0.71],0.01,450,1);

axis equal;

% Experiment 2

par2.a0=1;

par2.b0=1/.85;

par2.L=10/0.85;

par2.s=0.75;

branch2=calculate_branch(par2,[0.25,0.71],0.01,450,1);

axis equal;

% Experiment 3

par3.a0=1;
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par3.b0=1/.85;
par3.L=10/0.85;

par3.s=1.1;

branch3=calculate_branch(par3,[0.25,0.71],0.01,450,1);

axis equal;

% Experiment 4

par4.a0=1;
par4.b0=1/.85;
par4.L=10/0.85;

pard.s=1.5;

branch4=calculate_branch(par4,[0.25,0.71],0.01,450,1);

axis equal;

The file experimentl.m should be run in order to start the calculation.

Some comments about this code follow here. According to the numerical scheme dis-
cussed in Chapter 4 we need to find pairs of A\, and \,' such that the matrix comprised
of coefficients ¢, mentioned after relation (4.132) becomes singular, i.e. the determinant
of this matrix becomes zero. In file determinant.m in line 103 instead of a direct calcu-
lation of determinant of this matrix we used another test for singularity which involves
a condition number of a matrix. The condition number is a measure how close a matrix
to being singular. A very large condition number suggests that matrix is almost singular.
The inverse of a condition number for the singular matrix is zero. We found that the
test for singularity which involves a condition number works better here, because in some
cases the code which involved a calculation of a determinant as a test of singularity could
not reproduce some parts of the branches correctly for purely elastic material which were
obtained by Haughton & Ogden (1979).

Lines 20 — 34 in file calculate branch.m the program calculates pairs A, and a such

'This code actually calculates pairs A, and internal deformed radius a, because A\, = a/A and we set

here in the code A =1
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(Xi—1,Vi-1)
(Xi—2,¥Vi-2)

v

Figure B.1: Solution points which constitute a bifurcation curve.

that the following system of equations is satisfied

f(AZv CL) =0,
(As = A2)? + (a —a")? = A%,

(B.1)

where function f is the inverse of the condition number of the matrix which depends on
A, and a, A\ and a° are the known values from the previous step of calculation, A? is the
length of the step between the previous and the current points on the bifurcation curve.

The second equation of (B.1) represents the equation of a circle with the centre at
(\2,a%) and radius A. Standard mathematical solution of this system can normally give
2 solutions on the curve, but MATLAB solver fsolve looks for the one nearest solution
near the initial guess, which is updated in the code for each step. This ensures a correct
progressing along the curve. Formulation (B.1) is advantageous, because it allows to find
bifurcation curves even when they start turning back, for example, when there are 2 or
more values of a for each A, in some region of ()., a)- plane.

The solver fsolve in the loop of the file calculation branch.m has the initial guess which
is updated at each step. It can be calculated in this way. Let us assume that we know
two points with coordinates (z;_2,y;—2) and (z;_1,y;—1) from calculations for the previous
steps. Now we want to find the coordinates of the initial guess point where the solver fsolve
has to start looking. Tangent unit vector to the curve between the two points (x;—2,y;—2)

and (x;_1,y;—1) can be calculated approximately as

b, = (iL‘z‘—l — Xi—2,Yi—1 — yz'—2) _ (iEz’—l — Ti—2,Yi—1 — yi—2)‘ (B.2)

V(@ic1 — xi22)2 + (yi—1 — Yi—2)? A

2Tn the code it is denoted as delta and d
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Therefore, the coordinates for the initial guess can be found as

(%‘71, yzel) + At = (l‘i—l, yi—l) + ($ifl — Ti—2,Yi—1 — yze2) (B-3)

= (2xi—1 — Ti—2,2Yi—1 — Yi—2).

This result is used in the line 22 of calculate branch.m file.
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