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in this thesis we conelder the ¢ ransient response of
aystens satisfying linsnr cilferential ¢ quations with counstant
coedlicients, Simple anthematical criteria for optlamising the
response are given in teras of

© o0 2
L = Jgﬁﬁ"t and Ly = J‘( %% y éx
] [+

where ¢ is the errury at time ¢, Jupressiocns are obialued ior
both L and L‘ iu terns of (1) tue roots of tae ¢ haracteristic
equation, (11} the ceoeiidclents of Yae coarncteristic equatica
and {111) the froqusucy response speotruw of the systesm, 4% ig
shown how the respunse due 0 (1) a step function disturbvence,
(41) an initial impulse, (111) a constant velocity input, and
{(1v] & coustant aveelerasion input ean be simply related o ine

response in the free wotion, Phe response Iollowla, an arbitos:;
disturbance is nlso considered.

The response ol a linesy sysien naving ong degrot i Ireeaer
is considered for (1) o sorv-displacementesrror aystes, (11} 8
£ZOYQevelocitywerior systen and {111} n zervenccelerntlionesrIuy
system, By considoring the respounse to a stepefunciion
disturbanes iy 1o found that systens making - a minloum nave s
dightly damped wovililatory vespone. the owmiler Iy du,tne
"gmovther” is tue reosponse., Values ave obialned lor the
eoefficients of tus coarscteristic equation of apy srder asking L
8 minipuw, 4n approximate mebthod iz given Lor correcting these
evefficients 40 cuable the ryesponse 0 be dmproved o give egquad
damping in the loast dasped woder ol ce¢iidation, 'Oy the 2erie
valosity=error sud zsero-acccleration-errsr mystess fhe metowd Lo
extended v0 ailow for the veguirement oL & werO~digplocens b= ooy
in tae f&nmlsit@a&y state,



Poe metoed 1o sxvended G0 liaesy aystess wo bk oany uwaber ol
Gagrass vi Ireeden, The response of a ldnesr Jired osder faxy:ax:%:x«rzrz
with $we degrees of freedon is considered iz dedail, Hwo oversl
regpobste fubeticons U oand X 4 melsg delioed 1o 2 sladliny ssiney 40
Laud ag o0 A% 0B sucwn Lot ln Yhe opllaun &fales, There s i
eoupling) the demping in emch mode is the aame, 2 first order
aysten with integrnl coutrol is eleo considered) ia this case
the binomial reaponse 1z the optimum,



PREZFACE,

This thesis is an extension of the work of

Mack (reference 6) on the calculation of optimum
parameters for a following system. The method of
normalizing the equation of motion for a zero-
displacement-error system (chapter 2) is based on
that given in reference 7, The laplace transform

© methed of solving linear equations with many
degrees of freedom {chapter 3) is given in
‘reference 17.




INTRODUCTI N,

“hen considerang tne performance of a system (e.g. a
dynamical system or servomechanism) we are interested in the
accuracy with whien the output of the system tfollows the input,
More precise elaboraticn of thuis general statement depends upon
tue particular appliicotion, the crder ot wcecuracy -nd the
sensitivity of the owystem varylug grestly with different
applications., The cyntens coneilered m-y be mech:nical, electrical,
hydraulic or aercdyvoonic, In the texd > terms used (e.z. forces,
equations of moticn) nre musiuly bused on mechinical =vetesns, but
the znalysis is, of course, periectly genrral,

Ve snall ia graeral be concerned wita stable systems i.e,
systems which vhen vubjectesd to any disturbunce ucting for
finite time uitiu tely return to taeir initial stute., Yhe
pertormance cf auch i syostes is intultively measured by such
factérs as its overshoed whon subjected 0 3 siep disturbance, the
oscillatory nzture srmping in tnat case (the transient motion)
and also by the amplitude of tue mobion and tie rescnance peal and
frequency when the ﬁyfie* ‘s rubjected (o ¢ steady sinuscidal
dieturbing foree (fthe frequency resvounse ol tone motion). Oiten
the decigner hns [reedom to choose the value of nany ol tue
paraneters of the systenm (é.g degree ol dan:lug, spring stiffness),
The prroblem of OLblUlwﬁtluL is %he gelection of suen valuesg of
these vurizbles “q;t the respounse of the system 1s "“the Lest" or,
more often, the wc:t sntinfactory for tie gorbiculqr apnlic
The optimum values will de.end on the pul fieular 1nbuu iz Arh 0CE
Thus a2t the sturt we are confreated with the choice of turn: our
nalysig eitier on the LTransient behaviour of the system cor on i
e wi
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frequency response, The asture of tnie Tundamentsl cncic
depend on whichi iz the most likely type of input the
have to denl with, Wortunately many systens nuving 8
dtransient also nave satieluctory frequency reswuvonse,

surprising since the vesponse of =2 system to any disturbance is
governed by the dilferentizl equation ot motion of the system, In
fact the trausient —id Jrequency restunse cnn be ccrrelnted by o
Fourier trunsicruction {see chmpter I). Tmpirical relatione are
often msed, bused for exanple on tiie relstionship between the penk
oversh %?wni the rescmrnce peak, or between the resonrsnt frequency
and the troneisnt ocseillatory freguency, or between the resonant
frequency =~nd the 2 of responce (s=e reference 1),

We shall cadeasvour to give simple mutrnemuticul eriteria for
optimising the trancient response, WNMany such criterisa hnve been
used in recent yecrs, mainly lfor sysiems subjocted fto input steg
disturbuances, In references 2 2nd 3
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11 = J edt and 12 = TedT
o o]

(where e is the error) are minimised, These criteria break down
when the response is oscillatory, since an overshdi decreases the
value of I, and I, . In references 4 and 5 the criterion for
optimisatidn is that
2
13 = J e"dt
o

should be a minimum, This critericn is widely used and can be
readily handled, é¢ither analytically or by computing machine,
However in general it leads to a slightly underdamped response
often with a large undewirable overshdlt. To overcome this, in
reference 6, @

{
14 = j 12e2d¢
0

is considered, The system making I, a minimum gives a very
satisfactory performance, However tThe formula for 14 ig often
troublesome to evaluate,

In reference 7,

15 = j T
O

fhe integral of tiue-multiplied absolute-value of error (ITAE),is
minimised, Tne ITAE critericn works very well for response of
zero-dispiazacement—-error systems to a step input, but noct se well
for zero-velocity-error systems. It may indeed be thought to be
over gelective in its choice c¢f optimum, distinguisning toc sharrply
between the optimum and systems near the optimum., From the form
of the integral it allows sizeable errors for small values of 1 §
this is seen especinily in its choeice of optinum response for
zero-velocity—error and zero-acceleration-error systems, “hile I,
is easy to czleul te, it is difficult to handle analytically, and”
this it is hard (if act impossible) to extend results oif the ITAE
criterion to high order ditfferential equations,

In references 8 and 9, optimisation of the trunsient is scugnt
for by medifying the cloeed loop {regquency srectrum(or attenuation
diagr:zm) of the system, avoiding resonance peaks by nuking the
anyplitude frequency curve as flab ae poseible for small freguencies

(see/
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/ (see zleo chupter 2). 1t i:x noted that the methcl of reference o
gives the cawe responce us the Butterwerth filters (refercnce 1C)
when applied to o zerc- aﬂ~1lwceuent-error system, The responne,
although cliore t¢ zu iatuitive ugtl aun, temiw to aave botn an over-
shoot und a zubsequent undersicov (coe 0 cuapter 2) for uerv-—
velocity—-error systems the nroalyvsis of refernnre 8 is bosed on tae
maximum overshoot, Lo the mutouor 1t seems iaconsistent to chcose
one metinod for cptimising zerov-displucenent-error systens and
ancther for zero-velocity-error eystems, The methods of refercnce !
cannct be extended %o high order linear diirerential equaticns wit:
any degree of confidence, since they ure essentially erpirical.

,,;

¥e shall consider the variaticn of
(% “

(7 2
12 i de
= { & = P at
L = J edt and L1 J i d’j dv

with the parameters oi the gysten Ag stated above a system bused
on minimising L often has an unae31rmble overshoot. e Often L
has a rather flst minimum, which is relatively iusensitive to snall
chaenges in some of the parcmeters, Ye shall indicate how tae
parameters c=n be varied from this "mean sguare" optisum to give a
more satisfactory sclution, Tae gystem ancving the mout 2at Jf (¢ oY,
performsnce is impoecible to define precinely in muthematicul terus
For a system with & lurge overshoot de will be lurge »% some tine
an
and thus I, will be correspondingly large, Cur zim will be to
investigaté the p@fLOPM~ﬂ&P of s=ysatewms for wioich L is nesr its
minimum vslue while I, is considerably lower than its value at
These esystens will be of 2 less oscilistory n fure tack thos
g?&gn by the mean squsre cptimam, 1L and L, are very sinmple to
handle both snalytically or by a compiting wmichine, Beiag
analytic:1l the [crmulue cun immedlutu¢y bb extended to systeus
based on high order diifferentizl equaticic,.

we shall ulso couside ne frecuency respous: cnsructeri.tics
of these soluticns upf1m1~ation +ecdniques buced on freguency
respouse CHJTaCu&T,atICu have relied u11n¢y cn gsravnic=l metiiods GO

modify the locus ol the transfer functiun (1w especially in the
neighbourhcod of %he point (-1+Ci) (see refefenceb 1,11,12 wnd 13).
This is mainly Jdue %o the num rical Iabour of cazlculuting traonslient
response curves for syastenms witn nign order diifereutial equulicus,
As etated above thers 1o 2 car i correlsation between the transien
and the frequency recpouce, Tuis ig scown very clearly in
relerence 14 in wiicn =ttenusticn diprems uwre drawn for various
positicns of tne roobs of the chanricteristic equaticay, using tae
roct-locus metncd of reference 15, In cunpter 2 we suall saow how

a chonge in the rocts of the cu.r cterietic eguation =lfects boin
the transient and frequency response.




4.

Chopber 1,

Cptimunm Counditions of esponse o6 Linesr Svstems with

Constant Coeificients naving Cne Degree of Freedon,

de consider 2 asystem for which the eguation of motion is
Pow L2
ax a1x d” “x dx

g, == 4 & + a, . R + a.x = £(t) (1)
n 4.0 n-1 mn—-‘i n-2 g D= 1 dv o

where By » 84 5 85 9 see B

- p 4re constants and £f(x) is =n arbitrary

known function,
The initial conditions nre given by

n-1 n-1
@ . Y e d X d X
X = X k=x_ . x=x_, ete, = (— at v =0 ,
0! (] 0 ! d,‘n-"t d'r.n"1 o

Using the classicul metisds of reference 16 or the operztional
methods of rsf-rence 17, the solution of (1) for the given initial
conditicns is

n n 8 =1 A n T
X = 2 S »Tox, Tsr e>r1+ E. P eer . xryf(y)dy (2)
r=1 s=1 A r=1 *

where \r(ramﬁ. to n) are the roots of the equation

F(N) = anxn + a An-1 an__zx -2 ., .48 =0 (3)

n-1 (¢]

P, =

1 - 1 (4)
2Ny, PO
2n TT ( r s ) r
=1
S§T
and Asr ig the cofactor of the sth row and the rth column in the
determinant A

N Ve S W O (5)
>‘1 >‘2 .>n r=1 ton
)? )g L. i s=1 ton
L] o [ ] L) [ ] L ] . [ ] - L] L +
Yim? > Tieef Ti=-1 > °
>‘-§ T .>‘n i




Agp

An alternative expression for is
A M
ST _p . (=1)2 Zproduct of roots (excluding A_) teken (n-s)
A rs at the time (6)
& i ()\ - )
s=1 8
sty
Difterentiating (2) we have ) ‘ 0
n n g1 41
D X A ¢ >~ ¢ —) ¥ o iy :
Dx = Z 2 0 r ar e r + ? )rPre Tr f e ré( ) (r(*)
r=1 s=1 A r=1 g }d}
n n .s-1_ ) n- >‘ T _\
D x A =Wy
™ x=2 2 e + ? ) Watl 3 J e Tf(y)dy
r=1 g=1 A r=1 o
(8)

The Problem of Cptimisation,

e shall be concerned primarily with stable systems for which
21l the roots of the characteristic equation (3) are negative or
have negative real parts. Then as < - ® trom (2), (7) and (v8),

T
X o~ E B e>\"’t f.,e ;ry f(y)dy

-0

, _
Dx ~ Z >‘r P, Jr"f e ryf(y)dy

7
=1y ~ Z)”""P erxj e)ryf(y)dy

¢]

. Considerims a forcing function #f which tends to a finite
limit f, as 7 tends to infinity. Then as 1>,

P f
e I A S | (9)

as/




/as can be scen from (1) =2nd Dx , ... Dn°1x-—; Ge
1

“If there were no lag in the system x would equa¥e = £f(1) at

all times, The error e is given by °

€ = input - putput = %~ f(v) - x. (10)
o)
As stated above we shall ‘derive formulae for
o0 2
2 1 2
I = e“dt = [x-—a-f('c)] = n (11)
| 0 o - °
and we shall also consider values of
] 2 Lod
la [ax Loyl 8
L, = J-a{’-: it = L%-ﬁ---ji—f('s) av (12)
o ~ ) °

- in the neighbourncod of the ninimum value of L,

We shall now consider various forms of the functions f(x)
and the corresponding formuluze for the response coefficients L
and L.'.

FPree Motion, f(z) = O,

Derivation of formulae for response functions in terms of the
roots of the characteristic eguation, :

= s g=1 )‘r" s >‘r'°
Prom (2) and (6) x= 2 2 P, _D0°'x T =3 afd’ (13)
r=1 8=1 =1
_If the motion is stable x-»0 as T -» @ ,
i Y
From (13) -L = Z 2 X (14)
| ’ f=1 E=1  AroiR

|

2 & |
1?51 121 Arhlen i
T—T () *’>S )

s=1 ton
S=1 ton

S;;s

where M

]

and/




Te

Jand M, =M8/(h, +x) (15)
Now M= 2%, N, wu Ao R, DBy )
(o 0N +x) el )

N AN (16)

a symmetrical expression in the Ng of degree .YL(A'*_U. which can

2
therefore be e xpressed in terms of By 9 84 ees @ the

n ,
coetfficients of the powers of A in (3).
The expression 2 2 A AM .. is synmetrical in both the A's and
the M s being of the second degree in the A's and of degree

(m~2)én~1) in the )\ s.

Now the free motion is determined uniquely when the initial
conditions are specified., Thus L is determined by the initial
conditions,

We have from (13),

2 b = %
S hphy = X, = Dxg
— 2 e ) 2
S\, = x, = D%
r'r o o (17)
S \ 31, .=‘ ;daqx) = PPy

Then. Z 2 Arwra =ﬂ11(z Ar)z + “1 2(2 Ar) (Z > rAr)
+ a13(2 AL) (2)§Ar)+. vt Oy n(iAr) (2)?"1 A,

T G2 Sal B L (18)

where/




% I8

: ; . L . . ! -
/where dbq ig a symietrical expression in tne \ 8 01 aeygree
n+2) { n=-1
(o %( L~ (p+a-2) (#,q = 1 to n)

and cun thereflore be expressed in terms of g 3 849 ese B, Tne

precise numericul form of the a's can be found by equatiygn
coefticients of powers of 4, on both sides ot (1), ‘“when @he deyrec

cf‘F()') is not too high (aqy 4 or less) it is a relutively simple
matter to determine uhe a's,

Hence

p1x

= od 2
L= "M[xo (u.ﬁxo + 0.12on + 0.13]3 ot ese Gyp o)

|
|
+* eee * Dxn““(u..‘ x * see + O Dn.1xo)] (10’) }‘

|

Ve see that L is a second degree expression in the initial cami"LL:Lon.1

From (13),

-..L1 =

n o a \\ |
2 2 XTRA“AR (26) |

r=4 R=1 Ar + AR

We smee that L1 is obtained from L by replacing Ar,AR tw'\rﬁt">ﬁAﬂ
i.e. by replacing x, by Dx ’ Dx by sz s eees @tc., in (19).

Thus L,’ = »g[Dx (a.H‘Dx + 0,12D2x + a.133193 teeot Oy D& X, )
+ eee + D xo(m1npxo teeet “nnpnxo) ] (21)

where from (1), since f = 0 ,

Mk + a i1

an 0 n-i s

Ky teset 8y on + 8 X, = O .

We thus aee thnat Yor given initial conditions the problem of
optimisaticn involves oniy upq and M, Ve note tnat the

particular values of these parsmeters defining an optimum system
will depend on the initial conditions,
Free Noticn f{x) = C.

Terivation of formulaze fTor responce ivnetions in terms of the
coerlicients L tne onorec-oteristic equation,

“e write the equation ¢f notion in the form

wOdiu A 'Y



9e

an}’)nx + an_1Dn°1x + an_zl)n"gx Yoot a,.Dx * agx = 0 C(22)

a ;
where D = T |
Now if p »q >0, |

® 00 % ‘
j])px %% a¢ = {Dp % qu] - | pP-1x p¥*ly ag
o 0 \
r®
= - Dp'1x° quo - |pP=1x p9*1x 4 (23)

O¢

since for the free motion of a stable system Dmx-y 0 as T-P»0°
for m > 0,

¥ 5
We write 1L = jx as

0
o
Jiee1?
LS= [Dxl ax
o)

Mul;;iplying (22) by x and integrating from O to® , using (23),
24

(24)

aoL - a2L1 + a4L2 - a6L3 + oo

= x4 (§a1xo + a2on + a3D2x° + a4D3xo + ’... )

- Dx (ﬁaBon + a.4D2xo + a5D3x° + a.6D4xo + ees )

+ Dgxo (§a51}2x0 + a5D3x0 + &1.-1.1)"’1:€> + aaszo + oees )

D3x° (§a7D3x0 + a5D4xo + ansxo + aMDGxo  ene ) 4 eee

8, (25)

——
-

Similarly/



1C.

/3imilarly multiplying (22) by Dx and integrating trom O to &0 ,

E e

a1L1 - a3L2 <+ a5L3 - ese

= gaoxg + Dx, (4a,Dx, + 33D2xo + a4D3x° + eee 5
- szo (%a4D2xo + a5D3xo + a6D4x0 4+ een )
+ D3x0 (%a6D3x° + a7D4xo + agszo + aee ) = aee
= B, \ | (26)

Similarly multiplying (22) by D@ and integrating trom O to®
e a0L1 + &2L2 - a4L3 + 36L4 - s e

= Dx (8, x, + # 2,Dx;) + D2xo(%a3D2x0+a4D3xo+a5D4xo + eee )

- D3xo(%a5D3xo+a6D4xo+a7D5xo + eee )

+ D4x°(%a7D4xo+agD5xo+agD6xo + aee )= se.{27
= 63

Similarly multiplying (22) by D3x and integrating from O to ®%
2 2

o * D°x, (aoxo +a,Dx, + 5= D xo)

+ D3X° (%a4D3x° + a5D4Xo + a6D5x0 + oo )

- D4x° (§a6D4xo + a7D5xo + 38D6x° + eee )

= - ﬁaODx

+ szo (%aSDSXO + a9D6xo + a.loDs‘?co ¥ oaee ) ™ ees (28)

-

Ba

Proceeding in this way (multiplying by D4x ’ sz s ese Dn’1x and
integrating) we obitain n aimultaggpus linear equations for L,L1,...
Ln—1 in terms of X, on, cee D X, - The equations simplify

considerably in the particular case where the initial values of all
except one ﬂhx are zero, In the general case we have

conta,



1l,

L 8o By 84 Bg ees =] By B, 8, | g eees (29)
0 a, a3 ass... -8, 2y ay By eees
O 8y 8 84 ... ﬁj 8y 8y 85 eees
.0 0 a, a3 cee ~S4 0 8y By eeee
and L, [a, &, 8, 85.../=| B8, a, 8, &g ... (3C)
¢ a, aj as P ~62 0 8y a5 sene
0 8, By 8y eee 83 0 8y 84 eees
0 0 By a3 eee -84 0 a, B3 e

where the determinants in (29) and (30) are ot the nth order,

L and L, cnan be expressed more simply in terms of the n test functions .

of the cnaracteristic eguation (3).
As shown in references 18 and 19, the test funotiona can be written
in determinantal form,

T = a

1 n=-1 (31;
TZ = an~1 an,3 | (32)
n &he2
Ty = fnet 2pe3 %n-5 (33)
" 8n  8pe2 Zpeg
& -1 B‘n-3
Ty = | 24 2p-3 Bpes Bpo7 - (34)
87 2n.2 %p.4 Bpneg
0 8, 4 an»} Bps
0; @n 8p.p an~4

n~i/




/Tn-1 =\ fn-1 ©&
a, a

0 a

il Bt I

a, a5

0 a,

0 a,

Tp = 85 Tpny

n-5 ¢
n-4 ¢
n-3 ’

a7 .
a6 .
&5 s
34 .

Themth test function Tm is a determinant of

From (29),e=d (30) and (35),

L = 1
a T
and L —Tl"“
1 *n-1

a, a4
a a3y
& s
0 a,
aj; &g
a8y, a,
8, ay
™ 85

LI

L B

LI

L N ]

LI IR AN

order m,

12,

(35)

(36)

(37)

(38)

As shown in references 20 and 21 for stability (with a,> ©)

all the test functions must be positive, or using (36),

contd,




pooom I an -
l,‘ v o 9 ses Lo o4 10d 24

must be positive., As suown in refsrence 22 the critical stability
oriteria are Tn-i > 0 and ay > Co

¥hen ag vanishes,the characteristi ¢ equution (3) nus 2 zero roob

and the system iz neutrally stable., VWhen Tn 1 vanishes,the
system has a pxir*pf equal and opposite roots. Thus when (3) has
a pair of roots = iw where w is real {corresponding to a
ginuscidal oscillation) Tn~1 is zero, In voth of these casgses the

systen i!" dispinced {rom its c¢riginal position would never return
to and rems:in in that positionj=waé thus L is inlinite if eitner
a, or T _, vanish as shown by (37).

We caneasily obtsin exprescions for the o's of equation (19)
in determinantal Torm ucing (25) - (28) and (37). Wow as s hown in
references 20 and 21 the product of the rocts of the chsracteristic
equation taken two »t the time is

ngn-12

2 T
n-1
(-1) T
n
n %o
and the product of the roots taken one at the time is (=1)" =
: n
. a, n n(a+1)
.*e from (16), (ﬁ—) M = (~1) T a,T 4 (39)
Comparing the coetficients of xg,xoon,...Dggz..'in (19) and (37)
and writing n24n-2
6 = 2°7'(.1) 2 (40)
n
Bn
we find -
agy = 0| a, a, &8, &g ... (41)
-ao a1 a3 35 cese
0 a, 8, Bg eeee
G O a,’ a3 L2 I NN

consd,
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14,

(42)

(43)

(44)

(45)

(46)

(47)

(48)

contd.




15,

G3n = %n3 08 8y By Bp By eees (43)
8y 83 85 87 ...
0 a, a3 ~a5 sace
0 2, 8, Bg  eoee
. S = 08, By B4 B By eses (50}

8y 8y 85 8y ...
8y 8B, 84 B eees

By a3 By eess

The determinunts on the right hand sides of equations (41) - (43),
(45),(46) 2nd (48) are of order n, while tiose for Ayp o

G on the rignt hahd sides of equations (44), (47) (49) and (5C)
aPB of order n-1, In general to write down all the elements of the

determinants for a differential equation of the nth order we need %o
know the equations flor 34 . 32 soew Bn'

to evoluate the necosgary
than that of using symmetric functions of the roots,

243!

Free Motion f(w) = O, |
Derivation of integral formulae for response functions in terms of
the frequency response spectrum of the system,

Ag stated in Lne iatroduction the transient =znd the freguency
rezponge ¢ n be correl:uted by a Fourier transformatiop. It ig of
intereat to relite the raesponse functions to the amplitude mnd phage
of the frequency respouse charmcteristics ¢f the systen,

is shown in reference 17, by Fourier s integral theorem ir

e

I

(o) = Je 10T y(x)ax (51)

then x(z) = %;‘3 ei®? g(w)dw (52)
] -0
providedAthat ; x{t)dt is absoclutely convergent,.
3

We shall consider only the sprcinl cuse in whien x(<) = O for
T < O¢
Trom,/

iy

Con v %3n

It is then a simple mutter
determinants, This method 1 muen yuicker




16 .
2
(\_ £

rrom (13), G(w) = J -—im;‘Z; @ 2 T S
' V)

provided the system is stable,
Now we c-n write

F()) = an\n + an__1>n'1 +ta, 5 \n-z 4+ eee + 8
= O =M A N2

Equuting coeftficients =nd solving for the b s,

rPpq = 8y

0

rPn-2 *oees + pbg)e

rPn-p = 8pq ¢ » r %n >
2
r’n-3 = 8ppt \r Bp-1 * Ty 3n (53)
b o2 \ n~1 8o/
ro = a1*>‘r&2*""")‘r an-1"‘>r ep == Ar
n =% 8
2 An by (iw)
.l. G' m = r='1 S:Q
u( ) Fliw)
i,e. using (17) and (53),
ne1 .
N5 =1 8
R ﬁz Eas+1 o * Bay2 on Feeet By D xo} (iw)
8=0
G(w) = P(iw)
(ie) (10)2 (10)2
80 <+ g" W + $2 iw +oo ot 811-1 iw) (54)
8, + a1(iw) + a,a,(i.m)‘?-r...-ra.n(:i.m)n
n~8-1 i}
where g, = &g , X, + &g, Dx +eee+ 8 D/ Xy o (55)
(az0 k& ’h-»r)

From Pasrseval's theorem, for stable systeus,

contda,
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e P
= s, = Jxm: ar
v o
-p
or since x{x) is real,
%
s a2 I
% J [G(w)j dow = J x°(x) d=
) 0

«"s in the free motion,

R R
L = J x“4t =

o
; f fg ~g2m2+g - ...1 + 0l g —g 024 ...3 :
i.e. I = i"J r 5 4 | Jd 2( 1 3 73 5 dw (56)
. o | Bgmapragw’ - 3 + 0la,-a,0% ...3

where g, is given by (55), 8 =0 ton-1,

In {56) L is given completely in terms of *thne coefficients a, of
the char:icteristic équation and the initial conditions S S on ’
.« s o Dn'1xo. It is seen that (56) is an extension of the formula

given in reference 6, It is in foct identical with thnt given iu
reference 9, For sufticiently lurge values of w the integr:bddtends

to gn_14?nw)2. Thus the integrul converges like 1/w .
The integrnl for 11 is obtained f rom L 28 above by replucing X, by

on ’ on by szo s «.e etc., in tne formulse (55) for &y -

Now the dencminztor of the integrabdin equation (56) is

Pliw)F(-iw) = 2 TT (w +>'2) (57)

r=1

and the integrand can essily be expressed as a sum of terms such as

r
o0
Then J‘ —Gw - Lt
J a2, )2 2 A,

contd,
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Albernstively using toe cneliysisc of references 3 und 23 we
again arrive ~t the results given in equations (29) and (3G).

How from equation (52) we see that |, G(w)| represenss tae

frequency spectrum of tne given system., Thus if the géven systen
is given a pericdic disturbance a e , we find from (1)
aoexmm
x = a, + a,iv - a2w2 - a31w3 teee (58)

The amplitude (or dynamic magnification) M and phase advance N ure
given by

2 , 2
L Y I - 4_ 20 o o .
P-P m g_i Z‘l-“"o ""2‘” "‘34’“’ see ] +40 L a1 8.3w ‘oo j } (Sg)
v 0
3 5
&, W=D, T A M -y,
and N = -t*an"1 1 % 2 (60)

Ye see thut the expressions on the right hand sides of equztions (59)
and (60) ure precisely tihose thit occur in the denominator of )
Large mmyrlitudes will occur when the dumpiug is smull zcnd the
forcing frequency i» clozse to one of the naturzl {requencies of
system. In frequency respoase unslysis we wre oi'ten wainly

inte ested in the mugnificztion at frequencies neur the nuturzl
frequency of the system, a8 shown in reference 11 both thae
magnification and phuse relotions of the response need to be taxen
into account in the design of tae moat satisfuctory syvstem, From
(58) ir the dynumic magnificution is lurge over a range o.
freguencies, the iutegrand in (56) would be expected to be
correspondingly lorge, ~nd well away from the optimum,

1
o

How in tne wusw.l terminology cf servomechanisms, the ratic of
the input to the output icr a periodic response is

eim&

X

= 1+ K6™V(diw) = X + 1Y | (61)

B
o

diwt
X

2

4 3
= g (8,+a,i0-a,0%-a i0 +oue)

8

Now from {(s58) ,

Thus/




1G.

/Thus 1 _
X = E; (ao—a2m2+a4w4 - ves ) ) o)
62
Y = ¢ 3aw’ .\{
= 5;- a,w=a W rage” — ... )

From eguations (61) and (62) we see that when the coefficients of
the characteristic equation are known we can easily construct the

KB‘1 or the KG locus, enabling us for exapple to compare the
optimum (or most satisfactory)response ba¥d on analysis of the
transient motion with graphical optimum frequency response systems,
These points will be discussed further in chapter 2.

Response of a system with no initial displacement,

Ve consider & system with initisl conditiouns,
n-1

- - Ney = = -
X, =Dx, =D, = =D x, = 0 (63)

the system satisfying the equation of motion (1)

Step function disturbance.

f = 0 for = f; o £ = £, for = > 0

when f0 is s constant,

From (2) the motion is given by

S t 7 -) y 2 p A T
x=fi Pe ¥ Jerd = f 2 r.(er-1) (64)
°r=1 r o y % r=1 X;

where we are oniy considering stable systems,
P
Now X = 1--
:Z X; a

Thus the motion is given by

£ P, R |
0 r "r
X E e o T e (65)
ag ¢>:E e
: b 4
and as T -» o  for stable systems x—PEP-
o

From (65)

conta,




2QC.

1
Al Pt | — r
From (65) Dx = £ 2 Pre
L] . [ ] L] L ] L ] (66)
n-1 _ n-2 >'rT
D"k = £, T NP pe

v
Alternaqgly writing

b 4
1 o
X = X -z

We see from (1) that the response of the system following a step
dusturbance is identical in form with that in a free motion with
f

o
= e e £
X and Dxc ,

o
o
two responses are the same at any given time, We see that the
given system ultimstely has no static error since x'~» 0, Such a
system is sometimes called a "zero-displucement-error system" (see
references 1, 7 :nd 8)

2 w 2
1) L = J ST d =j. 1 d (67;
rom (11) J [x 5 (1)1 T p [x} 1

and px! = Dx

sz1 = sz

szo yeoe Dn°1x zero, The errors in the

Thus the response functions of the given system following a step
function disturbznce are the s%me as those of the given system in

a free motion with and Dx , D°x S ~1x ZeTro,
o = ao o 0

e from (19) ang (67), L = -%dﬂ (68)

SDIH:
onjomrn o

a,q end ¥ being given in determinantal form by equations (39) -
(41).
The corresponding integral formula to (56) is derived directly by

the same substitution for x on, oo Dn"1x

o ! o °*

We find L = %-fg Lj}(m) de (69)
o

where/




21,
g‘L anll, Q)A‘Fa ‘1”4 ]Q-i' (l)z [3, L’ e 3 4 1
Sk D A S-S A
2
r 2 4 2 2 4
o{_ao 82w +a4w X J + @ La1“a3w +a5w .OQ_J j

This iz the sawme formuls as in reference 6 allowing for differences
in notntioun,

2

nhere }t {(w) =

(70}

Similarly L, is found from (21), remembering that ano4= c ,
1 n_ .2
I.o1 = "Mdnn (D xO)

" Now in the equivalent free motion

an ano = =-a,X, = fo
: %o -
¢ I-A,‘ = “"ﬁ Q:nn ;‘2‘ (71)
n .
L 4 ;
Alternztively L, = % fg ;J ___dw (72)
4 Fiw)F(-iw)

From the above annlysis it folluwa that the gystem having the mos
gatisfactory response to & stepr sunction has the most satiszdctery
response in the frese moticn.,

Response 4¢ an initicl unit impulse,

§
FRor unit impulse S f{v)dsx = 1
0

where o is infinitely swall =nd t(x) is zero tor all other <,

n >15
e from (2}, x = ZE Pre - (73)
r=1

Comparing (73) end (65) we see that just as fthe unit step function
is the 1nte@ra1 of the unit impulse so the response to a unit step
disturbance is the integrasl of the response to a unit impulse.

Alternttively, integrsting (1) over the interval (O, §) we see
that the moticon is the some 33 that of the free motion w1th initial

conditions = = = = =
Xo DX s e D 0 O ] D xo a .

This/ 1




/This also follows from (2) since

Anr

A Tt
A the respounse functions are as for the equivalent free motion.
They can be obtained directly from the response functions for a
step function disturbance as noted above, We find

L, (unit impulse) = I, (unit step disturbance) (74)

where I’o = L
Then from (71), (72), L = - -—-17‘_5- Spn (75)
Man
2
- [ %n-1 & n-1
Ly = - Ma§ [e'n-‘i,nd - 20’n,n—-1 a8, * %a,n a2 (76)
n n

Note! 1in this case we have to define L by the equation
o
_linm J 2
L = 530 8x dz

Constant velocity input,

f=0fort SO f==£f +£7fors>0 (77)

1

where fo and 1‘1 are constants,

When the transient has died away, the steady motion is given

by
X=at + Db . (18)
where from (1), £, = 8,8
j (79)
and f:‘1 = a,a + aob
Writing ‘x = x-e8v-0

we see from (1) the=t the response of the given system is identicel
in form with thet in a free motion with x = ~b , Dx_da, and
D%x , pi-1y The errors in the®two responfes are the

o L2 I ]

seme/

o Zero,




_ " ¥
/eame at any given time, In puarticular when Eg = Ei , b =0 and
, o} 1
. . f 0 2 L4
the equivealent free gystem has on = - and Xy D xo,...D X,

zero, ‘e szee that such 2 system ultimutegy nas no static error
(3 ‘ 3 3 3 - .
since x -» 0 and there is no position error with coustant velocity |
inpat (since b = 0)., Such a system is sometimes called a "zero-
velocity-error gsystem", (see re§er§nces 1,7 and 8),

From (19) and (67), L = - g a,, 2% (80)
o :
Constant acceleration input. ,
£ =0for €0 ;£ =fyf, T + 32,3° for 1> 0 (81)
where fo, f1 and f2 are constants,
When the transient has died away, the steady motion is given

R X = 81° + bt + © (82)
where from (1), £, = 2a.a

£, = 2a,8 + ab (83)

f2 = 2a2a + a,b + a,c

As avove we see that the response of the given system is identical
in form with that in a free motion with

2 a 3 N1
X, = =C , on = -b , D Xog = =5 » and D Xy seee D X, 2€Tro,
In particular when ¢ £ £
o _ 41 _ 72
anii e Y
a, 2, a,
2 o
b =¢ = 0 and the e quivalent free system has D X, = = g and
o

Dn—1

X, s on , D3x X, Zero. Such a gsystem ultimately has no

o g0
static error and no position errcor with counstant velocity or coustant
acceleration input., Such a system is sometiries called a "zero-

accelepation-error system" (see references 1, 7 and 8).

2
F und 1 f
rom (19) snd (67), ; _ _ & o33 _% (84)
a
o

cortd,



Response 4 ~un  roitr.ry disturbance,

fg 1o well xnown the recsponse of n linesr systen to wn
arbitr ry Jisturboncs con be sinply relsted to its reopouse to unit
impulsrs,

n >r1 ’
If x = aft) = 2 Fe (38)
r=1

is the responsec of the gsystem initially at rest to u unit impulse
and £({0) is the arbitrary disturbance input at time 6( C) then tne
d%s loecament of the system ot time 1t due to the arbitrary disturbunce
£(6) is

4]

x = J w(5-8)£(8)ds ( 56)

o

When the input can be expressed as a Fourier integral the
response functions c:n be found by an extension c¢f the metnod given
above (e.g, if the input is 2 square wave f = const. from 6 = G to
® = T and zero outside this range).

o0
%“e msoume that ~f f(x)dv is absolutely convergent.

-%
0
Let ft(x) = %E ‘f [H(m) + iK(m)J e19% g4 (87)
~c0 0
Then H(w) + iK(w) = {e"’im £(x)as (88)
~
-

Now the response of the system to an input 019" ig from {1)

el
x(%) = Frew)

Thus since the system is linear the response to an arbitrary input
given by (87) is

¥
1 Hfw) + iK{w iwt
x(t) = = J -K;%ngy—gnl e dw (89)

-

¥ a - Fliw) |
£ 1 \ o __ iwt 3
e X - 5;. = Jr [H(w) + iK(w)J a_F(i0) e do  (90)

[ ]

«*s comparing (52) a2nd (90) and using Parseval s theorem

CCuLl g,
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;( (x - ---) d = -:!2—- ffHQ(w)+ Kz(w):j y(w)w dw (91)

0

s‘%[[ ao-a2m2+a4w4 .o J 2 v? [a1 -a3w2+35w4. . .] j

[a - F(Iw) 7f - r(-
where ?(m)» = = g 1mﬂ
ag F(iw) F(—1w) 0°
‘ 2 2
2 .4 2 2 2 4
G, =8 W +8,. 0 ... + 07 [a5=8,0+8,0' ...

For sufficiently large values of w , } (w) tends to ——-12—-2—-

a

[«
€

o
.

For sutficiently small values of o , # (w) tends to

o
]

This is the same formula as thut given in reference 6 allowing for
the difference in notation,

Differentiating (90),
o
a -F(iw)
dx 1 4f _ 1 .
r: ;é-o— T T ox f[ﬁ((ﬂ)-ﬁ-lK(w)J —-—-F'(——'—)— iw e
-

provided the latter integral is bounded for the range (-~ , +» ),

+". using Parseval's theorem,

0 ¥
_ !l fax 1 af 2 2 4
L, = j - .5_ 1:] JA[H (w)+K (m)J #(w)dw (93)
] o
and similarly for L .
Response functions for a finite square wave disturbsnce,

f(x) = fo for

-

< 'c°< 1< T, f{(x) is zero at all other

times . ,
* if -
From (88), H(w)+ iK(w) = __6_9,[3“1“"‘1 - e i"”‘_]
2f T _+7T w(t,-t)
e i T g M7




o
O
L ]

(95)

These integrals can be evaluated by contour integration (see
references 24 and 25),

We consider ‘
J[l - em(fco""oz]y- (w)dw

round = contour consisting of s large semicircle radius p centre

the crigin above tne resl uxis together with the resl uxis., e then
let o200 ., The only pcles inside the contour are at the points

@ = - i r where T is a reot of the chirecteristic equation,

the aystem being stuble,

;F,’_e)r(’ﬁq*'fo)_-{[ac__la(_ xrﬂ

n
L= D 2 =
Then L £2 2;1 00 T N2

If the system has rapid dusnping i.e. X l large or if (1. - ) is

large (but finite) we see thut the exponental terms in (96) become
negligible and from (9%),

-2;1 j}(m)aw | (97)

Comparing (69) =nd (97) we see that L is double the value for a
step funotion disturbance, This can easily be seen from figure 1, 1,

(96)

i

X

FIGURE 1,l1.

RESPONSE OF A HIGHLY DAMPED SYSTEM TO A FINITE SQUARE WAVE
DISTURBANCE.



For the finite square wave,
2
_ | (4x
L, = J (35) dv
. )

Differentiating (89) and remembering the x{s) is re=l we
have »

2 2
L %*Lf H2(0) + ¥2(0) 4200
- -0

1 P(i0) Friw)

i.e. using (69),

2 ¥ (
4f w(t, =t _)
- 1 2 1 "o dw
L, = ,( sin® — T(1o)F(=1w) (98)
o

n )_(T -3 )
As above we find L, = =2f2 :2 1-e T 1 © (99)

1 Yorst FTORA)

!
If the system has rapid demping i.e. §XIJ large or if (11‘1 ) is
large {but finite), ' °

2 7
L = 2y dew (100)
1 T = Flio)H-iw)
0

Comparing (72) and (100) we see that L, is double the value for s
step function disturbsnce, A4is above this cun easily be seen from
figure l.lo

Regsponse functions for unstable systems,

The response functions defined above apply only to stable
systems, It sometimes huprens that the system possesses oune
slightly unstable mode (e.g. an aircraft with spiral instebility).
In this case we are primarily interested in the behaviour of the
system shortly after the disturbance takes place, The above
regsponse functicns can be used to give a measure of the respouse
of the system the upper limits of the inte rals for L, L1, ete.,
being taken to be some convenient finite time,




gha ter

Sxomples of Cptimwn fesponse ol Line.r Systens
wita Lounstent Coelilcients navin, Une Leqpree
01 rreedom,

i the previocus cnnpter we obtsined formulze (or the recponse
coefficienta L ~nd L, in terms of (1) the roots of the cn.r.cterist-
ie equution, {11) the coefficients of %he charuscteristic equation
anﬁ (ﬁ11) the freguency response spectrum, Ye s:w t00 how the

response oi ﬁero~¢1vp1fcement~error «vatems, zero-velocity-—errcr
systens nnd -~ero-azcceleration-error svotems could be simply rel-ted

to the r=zsponge in the ree motivn, “e =nell now consizer tae
respenze of these three avstems in &rw»ter detail sncwing how the

optimum renyonze i svater con be cbbrined, e shs 11 suow toe
relation betveen the trousient responsne, the [reguerncy recponce wid
he Toots o7 the i r oheristic eguation for the optinmum systeum,

As 1n cnvpter 1 we consider v syotem for which the equition of
motion is

n i1 -J.~2 ,

ax ad ~ a X dx -
“ *An 4 Tt fpep RSB Y oeer By T ¢ %% = £ (1)
n dmn N1 d,‘;n i =g dmn 2 1 d=x 0

where 2., 2,, 25, s.. 8, are constants zad an:p 0.

Response of zero-=displucement-error aystems to step funetion
digturbance {constant displscement input).

In this case f =0 for 1L 0 5 f =1, forv>C, (2)

where fo is & coustant,.
t g in reference 7 we shall find it convenient to normalize (1),
Let:wo be the undosmped nstural frequency of the system,

. n \
m d = &
Then ao wy dn (3}
%e define a new time scale by the relation
= T 4
u W, (4)

From (1), (2), (3), (4), the normalized equation of motion is

dn dn"‘1 dn—'z _ fo .
E;%"qnﬂ'é?i%*qn-z_”‘“?*‘“* q13‘*x“-§;(~c>c) (%)
_ a
where 4p = rn_r {r=0 to n) (5)
anmo

Now/
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/Now the m2gnitude of the yesponse x is proportional to fQ,
but the nature of the response( /o oversnoot, damping time) is
independent of fo‘ We shall take

fo =a (1)

Thus we shall determine the response of the system given by (5) to
a unit step function disturbunce, 4As shown in chapter £1% the _
response is identicsl in form with that in a free motion with 1051

2 Dn~-1 h

and on , D°x X, Zero,

o;on- o

- Ve note thot equation (4) merely alters the time sc:le of the
demping but does not zffect the ~/o oversheot or the general form
of the resronse which =re functions of qr(r=1 to n-1). For a

. nx s afx
zero-displacement-errvr system the coefficients of x and —5 are
du

unity in the equztioun of motion. This does not affect the
determination of the optimum (since a, = 0 is net an optimum
solution in this case).

Second order zero displacement error system,
From Chapter 1, (19), (39) and (41), with Xq
S 2
4 a, | = 8y+ a,8, (8)

= -1, on=0,

2Laoa1 = a

or in terms of the norgaldzed coefficient q, given by (6),

q1&1
2Lw, = p (9)
; = al
Similarly 2L,a@, = &, &, 8y - (10)
..aQ o
2L ,
‘”o Q1 ‘

Now for stability with a2>0 -
a, ” 0 and a,> 0
.6 94> 0.,
He/
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/He see thut for u system with u given undamped nutural
frequency w,, L and L1 are both functions of qy (which fcr a

mechanical system iz proportional to the damping). The mirnimun
volue of 4 occurs for qQy = 1.

: >
i1.e, 8-,1 = a°a2
Then Lpin = 211?‘ (12)
0 .

and for this value of Qy

-

L,

(]

%wo (13)

This corresponds to an oscill:=tory motion with overswing of 16 per
cent (see Figure 2.1). We shall see that this tendency for the
oscillatory motion to be rather lightly dumped is a characteristic

of systems based on L . . This overswing is lessened by selecting
& higher value of q, {or 31) as is seen from the following table,

Table I,

Variation of response functions and overshoot with the
demping coefficient for a second order gero displacement
error systen,

Qy = 1 Lmo L1 °/o&overshoot.
q/ 8.082 Z::
0.6 1.13 0.83 38
0.8 1.03 0.63 26
1.0 1.00 0.50 16
1.2 1.02 0.42 9
1.4 1.06 0.36 5
1.6 1,11 0.31 2
1.8 1.18 0.28 0
2,0 1.25 0.25 o)

We see that the minimum of 1 is fairly flat] the value of 1 is
not/more than 10%/0 greater than the minimum for values of qQq from
C.7
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/0.7 to 1.5, This flat minimum has lead other writers to adopt
other criterin for optimisation as shown in the introduction,
However we sge frem the above tauble thnat there is good correlation
between the /o overshoot o2nd the vzlues of L as would be expected
from the definition of L The smaller L ~,?t,ne- "gsmoother" ig the
response, the responce bBCOmlh legs oscillatory in nature,
Frecisely what volue of q, is chosen for the most satisf ctory systen
%s a m tter for individual choice, depending upon the acceptable

/o overshecot. PFrom the above table we see thut to keep both L and
L1 ag sm2ll as possible, 14 should be grenter than 1. HNow if q, is

greater thrvn 2 the rocts of the cherncteristic equation will both be
rerl =nd negative,one rocot decrensing, the cther increasing, 2as q,
increzses; the mot cn will then be compozed ¢f two subsidences :nd,
in the terminélogy of servomechsonism sanslysis, would be considered
to be overdsumped. Vhen g, = 2, the system is ssid to be criftically
drmped. e sre therefcore lexd to the criteria
~ g r
1.0 5 a4 & 2.0 (14)
for satisfzctory performsnce for a second order zero displucement

error system. This is in good agreement with current practice with
servomech=nisms for which 0.8 & a & 2.0

is taken as "a good artin: point in adjusting the transient
response of & yoteu“ (reference 11, p.54).

In the above unalysis we have considered tne effect on tne
regspouse functiocns ol v.rying Qe Tais 1s equivalent tc keeping
a, and a5 fized wnd varying og. Seonsideriag now the eifect of

varying 2, (keeping &, and 2o iixed) we see that the minimum value

of L occurs for isrge (infinite) a,; then I,'ws large, This

corresponds to 2 s stem witn a lorge (undesirable) overswing but
having a very rapid response, Considering finnlly the effect of
varying a, (keep*né a, and ag tixed) we see that the minimum value

‘of L (for st=ble systems) occurs for ap= 0; L, ie independent of
P 3mr 11 velues of a, correspond to very highly danmped systens.

Some genersl conclusions cnn be drzwn ifrom the =bove
discussion, %e see tart o sutisfretory range of velues of the
demping coefficient g, for a second order zero displiucement error

system is given by (;A) The choice of o, will depeund on the

desired speed oi respcnse of the systenm) the nigher the value of o

0
the sooner will the system reach its steady state. Changing 0
merely/
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/mergly elters the time scnle o the dumping but does not «fflect
the /0 overshoot ¢r the genernl rorm of the response,
Zhe roots ¢ the chnracteristic eguaticn for Lmin(q1=1) are
. - + : -
- C.5 = L,87 1

while tacte for q,=2 arve =1,-1, (dee Piguve Pel).

The third diasgram in Figure Z.1. i3 an altenuation phase
diagram for the twe c ases qq=t and q1=2 plotted on a logarithmic

scule agminst the non dixeusional frequsncy m/wo. PTois is tourd
from chepter 1,(59) =nd (6C). Ve plot the gain in decibels (see
references 1, 11 and 26), If ¥ is the dynamic magnification,

~

the gain = 20 1og10 M decibels.

Vie see tnat the system making L a minimum {q1 = 1) has a
maximum magnification Mmax of 1.1% at a Irequency 0.71@0 s Whereas
for the system with Gq = 2 {scemetimes known as a binomial filter)

the magnification deceases uuiiomily with increacsing Irequency .

Thus ror the rance 1.0% g, 4 2.0, ¥ does not exceed 1.15.

This is well within the curreut praciice with servomechanisms,

"systems ror which quz dces not exceed about 1.4 provably having

a transient performance acceptable ifor most applications”
{(reference 11, p.109). As snown in Chapter 1 the KG locus can
easily be obtained {rom the attenuvation~phnase diagram,

Third oraer zerc displacenent error system,

Prom chaiter 1, (19),(39) and (41}, with x = -1, Dx,= D°x, = O,
2la J a, a3 1 = a, a, 0 Z ”
0 8, @,

| 2 2
i.e. 2la, (a1a2 - aoaj) = a5 &y ~ 8,8,8; + 8,85
or in tems of the normalized coefficients qq, ap given by (6),

2
% 3 - U+ 5

o T Tquap -1

2Lw (16)

Similarly/
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/Similarly 2L,e 8y 83 = 85 8, 0

170 o
8, 8, -8, O 8y (17)
C 0 a,
2L qQ
. 1 2
i.e — Z ——— {(18)
¢ Wy q1q2~1 :

Now for stability with a3> o,

a,> 0, 8,8, - a°a3> O and a,> 0

ie.2, q2>0 and Q95 = 1 >0

The nminimum vslue of L is found from

oL  _ 8L _ 4

Jay ~ Jq,
Then ay = 2, g, = 1. (19)
i.e, af = § ag ay

ag = aoa§

We see that when the test functions are written in terms of the q s.
at Lyspy v

T! = T ] = "l‘ = 1 {20)
W%y af 3 3 ufaj
Then  Igyn = Zay (21)

(22)

This corresponds to a moticn composed of a subsidence and a rather
lightly dawmped oscillation, the first overswing for a unit step
disturbance being 6 per cent followgd by a subsequent underswing of
15 per cent (see figure 2.2). From {16§ and (18) we see that L and
L, are fguctions oi both Q4 and doe The variation of the response
functions/
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Jfuacticas wita Ay and 4 is shown in Figure ~,3. The curves
L = const are oval ehnaped, while thcese for L1 = const, are a

family oi rectangular nyperbolas, As 94 and Q, are varied tae roots

of the characteristic equativn will also vary, Now for Ay anc q., in
the neighbourhood of Lmin the characteristic equation has one real

negative roct and one complex pair of roots with negative real part,
representing respectively a subsidence and a damped oscillation, the

subsidence being more highly damped than the oscillation. For the
characteristic equation

)j+q2>;2+q1> +1 = 0
to have all its roots with equal negative real part (i.e, equal
damping in all modes),
2 2 3
q, = = g5+ 2
1 Q 2 45

The curve of equal damping is shown in Pigure 2.3. To the left of
thig curve the subsidence is more hignly damped, tu the right the
oscillatory motion is more highly damped,

To find a system with a more satisfactory transient response
than that for Lmin we ahall choose Q and Q, 80 that L1 is
decreased considerably while L is only increased slightly., e see
that these values of Q4 and d lie close to the line

a4 =1+Q.2
which is the normal to the rectangular hyperbola LQ = const which
passes through the point (2,1). 1L and L, are insensitive %o small
displacementsnormal to this line,

Consider the system given by

Qq = 2+ 6
4 = 14+ 90

Then 9 = 1+,
bhree
From Figure 2,3 we see that for 6 = 0,5 the POO*S'Vf'*ﬂe'ﬁ¢‘ 4f9“
characteristic equation q?il equal negative real ?:Exe. For such =a
system Ve ‘
L“)O = Ldu)o = 1 . 66

the /
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/the suffix d denoting that the roots are equally damped.
Then Ll a 0.273 £

Thus is 12 per cent greater than while has

decreased, by 45 per cent. The response to a step function is shown
in figure 2*2. W see that there is no overswing for this third
order system. As would bo expected the response for the system
with equal damping (denoted by Ld) is much "smoother** than that

for Bwvin* the response increasing practically monotonically to its

final value. However the time for the system to reach zero error
(momentarily) is much smaller for The corresponding roots or

the characteristic equation for the two systems are given in the
following table (and in Figure 2,2),

Table 2.

Hoots of the characteristic equation for a
third oraer zero displacement error system.

System
[ain - °*57 7 - 0.215 1 1.311

La - 050 4 =050 - 1.321

We see that while the damping of the two systems is different,
the frequency of tne oscillatory mode is practically unchanged.
We note too that the damping of the subsidence is only decreased
by 12 per cent while that of the oscillatory mode is more than
doubled.

We have arbitrarily considered the case © = 0.5. The response
as shown in Figure 2,2 might well be considered by many to be
overdamped. By choosing 0 to be rather smaller, 3ay © = 0.3, the
form of the response would be intermediate between that for

and Ld. As 0 is increased tne damping of the subsidence increases.

By analogy with the second order system © = 0.5 may be said to
correspond to critical damping, precisely what value of 0 is
chosen for the mo3t satisfactory system is again a matter for
individual choice depending upon the acceptable per cent overshoot.

We are therefore hec£ to téni: cmria

“Here Q — 24 0 L

al = 140 (23)

for/
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/for satisfactory performance for a third order zero displacement
error system. As for a second order system the higher the value of
to the sooner will the system reach its steady state.

The third diagram of Figure 2,2 is an attenuation phase
diagram for the two cases n and L*. W see tnat the system

making L a minimum has a maximum magnification of 1*29 at a

frequency 1.26toQ , whereas for the system the magnification

decreases monotonieally with increasing frequency. Thus for the
A >k

range 0 £ O 0.5, N%‘naii does notLe@gAeed 1.29%* We note that at

the frequency , the gain is zeroF while for lower frequencies

there is a small negative gain.

Higher order zero displacement error systems.

The analysis given above caneasily be extended to higher
order systems. From Chapter 1, (19)»(39) and (41), with

et -1 X =
-1, on ) DZXO — t Dn o 0 f
e, al a3 45 a7 °°° * al a2 a4 a6 (24)
ao a2 a4 a6 7’ ~ao al a3 a5 "’
0 al a3 a5 o®* 0 ao0 a2 a4 000
0 e e o O 0 000
ao a2 a4 al a3
I o
. terms of the normalized coeft’icients Q4,9 #qn-1
(6) . Y
2LfC)O h *5 q7 990 ql AD q4 CI6 000 ( )
1 q6 0 00 ‘10 ql q3 q5 00 0
9 0 0 1 0 0 0
0 w1 h g5 O
0 1 9_2 q4 90 0 ql q3 0 00

where the determinants on the ldft hand side of (24) and (25) are
of order n— and those on the right hand 3ide are of order n.
A1SO ¢ as 1.

contd.
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S‘ 'l l 2L LN ]
imilarly I M g5 B M ' <4 oo
0 : ]2 0*4 A6 eee -1 0 41 °
0 ol q3 @ *eo o 0 0 42 14 o oo
0 1 g2 *ue 0 0 N
(26)
“« q o< i tF
.1 *3 45 LN
(12 44

the filial determinant on the righthand side of (:26¢) being of order
n~2. Equation (26) can be written in a simpler form in terms of the
test functions of the characteristic equation. W find

L =~ (27)
A s I

Now as stated in Chapter 1, for stability with ar 0 all
the test functions must be positive.

The minimum value of L is found from

dl dl dl
A\ 113

= = e = av.7 u
The values of Im*n and the corresponding values of

% t cdj t Q- j *++ <dn are given in the following table*

contd.
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TABLE 3.

Valuer of Bmin and the normalized coefficients gqm for

n 2Lm.mw0 1
1 1 1 1 92
2 2 1 1 LU
3 3 1 2 1 1 q4
4 4 1 2 3 1 1 i
q5
5 5 1 3 3 4 1 1 q6
6 6 1 3 6 A 5 1 1
q7

7 7 1 4 6 10 5 &« 1 q8
8 8 1 4 10 10 15 6 7 1 1

Erom the above table we see that

n
mm x> (27)

It can 3> seen that the numbers in the diagonals sloping up to
the right are the binominal coefficients. We find that the
coefficient gm for an nth order system is equal to , the

binomical coefficient, where

(P
p m
m jo—¢
and _ m;rn if mtn is even )(28)
or mn-1 if mtn is odd

Thus the above table can easily be extended to any order n.

We find too that,when the test functions are written in terms
of the ¢*s with the above coefficients at L ..

T. T3 T ! T. .
W a n- ' =T sArT - I (29)
on >-1] Q-
woan O n “A n

where/
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/where s[rj E sum of the first r integers *

From (27) and (29) when L is a minimum,

L « —N * £ (30)
2“0 an 2
Thus Proportional to the order n of the system but the
corresponding value of is independent of the order of the system.

The motion for this system is composed of a number of damped
oscillations and possibly a subsidence (if n is odd), as shown in
the following table.

TABLE 4.

Roots of the characteristic equation for a zero dis-
placement error Imin system of order n.

n Root3.

2 -0.5 - 0.87i1

3 -0,57,-0.215 - 1.311

4 -0.395 - 0.5051, -0.105 + 1.571

5 -0.41, -0.235 1 0.881, -0.06 - 1.701

6 -0.315 - 0.3621, -0.155 - 1.51 ,
-0.03 - 1.781

7 -0.33, -0.22 - 0.6651, -0.09 1 1.35i
-0.025 + 1.83i

6 -0.27 - 0.2831,“0.15 - 0.911 ,

-0.068 1 1.501 ,-0.013 - 1.861 ,

For a system of given order the modes of low frequency are more
highly damped. As n increases, the damping in all the modes decreases
and the corresponding frequencies increase. The mene with the least
damping is an oscillatory mode of relatively short period. As would
he expected this gives a system with rather a wavy response, due to
the terms of high frequency, with a certain amount of hunting (usually
of small amplitude compared with the input motion). This is shown in
Figures 2.4 and 2.5 for a fourth and filth order 3y3tem, the first
overawing for a unit step disturbance being 9 per cent for the fourth

of/8r anci 10 Per cent for the fifth order one. Tlje amplitudes



+V
X o
4**
0 ~ D £ 0
WON ucrfiw  as
30
"I
%
Won  ZinfrfttNfa Attt yewey
ftCv&t  3*4*
£oufTh z<£fo VtSMbtMarf
£2&* sysrfM

S PSS P N T -

Hi



FtSt m

#VEV



45,

/ot the corresponding motions at wom=10 are 6 and 11 per cent
respectively,

As with the gecond and third order systems we shall endeavour
to find a system with s more satisfactory response than that for
pmin s Choousing the g's 8o that Lyis decreased considerably while
L is only increasedslightly,

TABLE Be
Values of L and L1 for a fourth order gzero
displacement error sw tem,

a, a5 a3 Lo Li/we Minimumdamping factor,
2 3 1 24,00 G450
1 3 1 3.00 1,00
2 4 1 2417 P33
2 3 2 2e25 0.50
2 3.38 1.38 2.12 0.39

From Table 5 we see that for a fourth order system L is least
sensitive to small changes in 4o and g+, I1n general we shall proceed
as for the third order syetem, “dikwsing values of the q's which are
on the pnormal to the surface L, = 0.5w0 at the point corresponding
%0 I, . At this point we find

6L1
r-roi 0 r=1 1%t n-3 i
¥ b (31)
oL, | ?
aqr 0 .
Thus for a fourth order system points on the normel are given by

q.‘ = 2
b = 3+ 80 (32)
a3 = 1+8 '

where, for L, to be less than its value at L ;. ,® must be positive,
Thig is recognised to be an approximete procedure, We should really
determine the locus of points at which the surfaces L = const and

Ly = const touch one another., This is equivalent to constructing

a/
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/a graph of digension (n-1) corresponding to the variables
Qg 9 o 9 coees Gy g However we shall be mainly interested in

points close to Lmin and the present approximate procedure shculd

not be too far from the truth in that region, The exact values of
the gq's for a fourth ordexr system are given below,

As © increases the roots of the characteristic equation vary,
the damping oI tie lightly damped oscillation being increased while
that of the other modes is either unchanged or slightly decreased.
#e note that since dpq increases as O increases the "total" damping

of the system will increase, As above we counsider the smallest
positive value of © for which the characteristic equation has at
least three (usually four) roots with equal negative real jarts.
For such a system L ig denoted by L, « The values of the normalized

coefficients and the roots of the characteristic equation are given

in Tables 6 and 7, obtained by the approximate procedure outlined
above,

TABLE 6,
Values of the normalized spefficients for zero

displacement error systems of order n with equal
damping (Ld system)
{obtained by approximate method)

n 99 Q4 45 Q.3

3 1 245 1.5 i Gy

4 1 2 3.38 1,38 1 a5

5 1 3 3 4,17 147 1 4g

6 1 3 6 4 5.07 1,07 1 Qq

1 1 4 6 10 5 6,03 1.03 1 ag
8 1 4 10 10 15 6 T.014 1,044 14

contd,
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TABLE 7.
Roots of the characteristic eguation for a zero
displacement error Ld system 0f order n,
n Roots,.
3 ~0.50 , =0,50 = 1,321
4 ~0.345 2 0,531 , = 0,345 ¥ 1,544
5 - =0.41, =0,19 I 0.90i, ~0.19 4,701
6 ~0,315 % 0,3471 , =0,105 * 4,174 ,
-0.105 = 1,774
T ~0.33 , -0.22 £ 0,701 , =0,065 % 1,361 , !
-0.065 X 1.831
8 ~0,27 L 0,2831 , ~0.15 = 0,911 ,
-0,0425 £ 1,501 , -0.0425 ¥ 1,861

. We see that,as the order of the system increases, the value of
® for equal damping decreases, and the system approaches that of
gmin‘ Here again it must be emphasised that the above tables are

based on the approximate procedure outlined above, The exact
values of the q’s for a fourta order system with equal dampling are

q,1 = 2.3 ’33.2 = 308 q_3 = 1.4

the oorrésponding values of the roots of the characteristic equation
being + . +
"0.35 - 0.4‘61 . - 00‘35 -~ 1‘705.

Thus thne damping is practically the same as that given by the
approximate metuod wiile the frequencies differ by between 1C and
15 per cent from those given in Table 7,

Couparing tables 4 and 7 we see that in going from L , . %o L,

" the damping of the least damped oscillation is increased about

three times, the frequencies of the various modes being practically
unchanged, Thus as shown in Figures 2.4 and 2.5 the response of tae
syster to a unit step disturbance is of a much smoother naturc., Tae
peak overshoot has incremased slightly to 13 per cent for both
aystens,

Spmparinb the regponse curves of Figures 2.4 and 2.5 with taose
based
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/based un tue I1TAY criterion {reference 7) and the Hutterworbh
Lilters (reference 10}, we sce that Ltihe overshoet is greater and
the damping ds le ss tnan witin the IUAE curves, Jhe oversioot is
about the sase as wita tae Iutterwortn f{ilters, the damping is
slightly ldess. The time Jor tue errcr first to become zero
{(mementarily)} is smaller than for either the ITAL curves or tae
Butterwortn filters (fur a given value of v ). The advantage oI

the above determiunation over that of the ITAL methoa 1s tunat the
coefricients siven in ZTable & can be readily extendeu to sys tems of
any order Weing based on an analytic formula., The response curves
of the systens Ld anG Lmin form a family of curves as tac oraer oi
the system is increased, Inus itae ﬂustification of t.e use of tue
L criteria must depend on the final fTorm of the response curves, s
upon the comparative ease with waicn the criteria can be calculated
especially when the approximate method is used.s It is nod
surprising that tne general saape of some 0f the response curves
for Ld is not unlike tonat with the Dutterwortn {ilters., Cther

investigators have arrived at similar results (sege the discussion
of reference T},

The third diagram of Figures 2.4 and 2,5 is an altenuation

diag for the two ¢ ase P ) 2 : S
phage diagram for the two ¢ ases Lmln and Ld . The ;mln systens

have very pronounced rescnance peaks for freguencies 16530, and
1.68wo respectively, corresponding to e lightly damped high
frequency os&dllatiogésnown in Table 4, These peaks are absent in

N
’

the L, systems ,which8 less pronouncec peak at G.47m0 and 0.87u,
respectively, the corresponding values of the maximum magnification
being 1,19 and 1.43.

Regponse of zerc-velocity-error systems to step function
digsturbance (constant velocity input).

As shown in Chapter 1, in this case £ = 0 for v < 0 §

4
f = f1 + fom for v > 0 (33)
where fo and f1 are constants such that
f f
0 1
L o 2 (34)
a, a, .

As sbove we snall find it convenient to normalize the
equation of motion (1), but in a different menner from that for

the zero-displacement-error system.
Let/
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/ let w, be a frequency delined by
n-1
&, = i & (35)
Thus W, would be the undamped nmtural frequency of a system with
By = C.

We define a new time scale by the relation
Uy = 0,7 (36)

From (1), (33) - (36), the normalized equation of motion is

D L 2
%?+rn_1§;;ﬁ+rn~2§;§;%+ ”2.3;?4,%1 ' ryx
*y
a0, (1 + rou) (x>0)  (37)
8n
where Ty = o (m = 0 to n) (38)
a8,

As above we gee that the magnitude of the response x is
proportional to f£,, but the nature of the response is independent of
f1 . We shall take

4 = 31 (39)

Pgus we shall determine the response of the system given by (37) to
a constant Velocity disturbance. ed—bire~iowm

Luh—aaﬁql

As shown in Chapter I the response is ident%cal ianorm witn Eh§t in
‘ D 'k

f

Eziofree motion with Dxe = -1 , and Xy s D Xo o Xy 1 see o
[ ]

From (37) we see taat for a zero-velocity-error system the
coefficients of %% and a%k are unity in the equation of motiocn,
i 1 n

du

1
This does not aftect the determination of the optimum (since ay = 0
is not an cptimum solution in this case).

For a zero-velocity-error sys tem weé are usually interested
(in servomechanism theory) with the velocity respouse at a given
time, We ghall therefore consider values of

contd.
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I .a & .
L, = JQ(E%) = jfv as (40)
(V) )
and the variation of L2 where
w 2 w2
d2x dv ‘ »
La = (E:i) dt = (-a-;é-) an ‘ (41)
o 2}
in the heighbourhooﬁ’of aminimum values of L1 .
where v = %% (42)

Second order gero velocity error system.
From Chapter 1, (38), with on éﬂgﬁ@ y X, =0 ,

[+
2L,0, = a8 '
11 2 1 | (43)
ie€s . L1 = 'éa-;
Similarly from Chapter 1, (27),
A .
8, + 8. .8 )
1 o2
2L,a, = 5 (44)

or in terms of the normaliged coefficient r, given by (38),

2L,
-r-----—-m1 = 1 + ro (45)

We see that for a system with a given value of w, (i.e. for a
second order system, with a given damping factor}, L, 'is a constant

-and L2 is a function of r, (which for a mechanical system is
proportional to the undamped natural frequency). L2 is decreased
by decreasing r, . Now for stability r, > 0. Consider the case
r, = 0. FEquation (37) beconmes

.2 ax  _ 1
o] ?2{ + -&-a'“ = v, ("57 0)
du

1
or/
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Jor %% + Vo= 4
1

This is a first order differential equation shewing that v tends
monotonically to unity as u,—> & as shown in Figure 2.6,

Thus the systen ry, = 0O 1is admissable anc is the optimum
system if we are ouly interested in the requnse in velocity. For
such a system the displacement x tends %o = (u1 - 1) 1l.e.
m1(xdf)fﬁ> -1 giving a displacement lag in the fcllowing of a

velocity input as shown in Figure 2.5,
In the above analysis we nave coasidered the effect on the
response functions of varying Ty . Tnig is equivalent to keeping
o . n .
ay and a, fized and varying X, . Consider now the effect of
varying ay (keeping a, and a. fixed)., Tais is equivalent to
varying w, . ltrom (43) we see Lhr: the wminimum value of L, {zero)
‘occurs fory large (infinite)value@ ol &, ; %hen L, is la
“

1
corresponds o a system with instantaneous response,

. B )
g2e Tais

i

In a given system it may be either physically impossibie or
& P D

undesirable for ro 1o be zerc,., e have seen above thnat when r, i

zero there is a constant position error(at large times) between the
output and the input, This is often undesirable; iundeed some would
say that such a system would be a regulator and not a servomebhanism

(see reference 11). As sauwn above,as r, increases L'remaina

congtant but Ll increasea. As with tne analysis of zero-displacemen

exrror systems we snall ¢noose a value of rg(:ﬁ/d} ge that the
charascteristic equation corresponding to (37) has equal roots. The
velocity response and the ailsplacement lag are shown in 'ig.cded
plotted asainst the non-dimensional time U, we see that the
velocity regponse nas an overshoot of 14 per cent. The maximum
displacement lag m1(1ﬂn) is 0.74, the lag becoming less than 0,10
whenk W, iz 9 or more. Oystems having smaller (non-zero) values
of T, would have a smaller overshoot in veloecity but & higher
maximum displacement lag. Considering the velocity response we are
therefore led to the criteria

OL Ce25

<
o\

for satisfacsory perform@nce for a gecond order zero velocity errcr
system,/
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/system, the precise choice of T, being governed by the maximum
acceptable lag at any time,

Third order zero velocity error system,

From Chapter I, (3%), with on = =1 , X, = D2x =0 ,

(] o
Ay ey ey = ey ey
8o a‘2‘ i--a1 ag\
deee - 2L, (aga, - aga;) = a5+ a8
e 1 \*1%2 0>3 2 123
or in terms of the nommalized coefficients r, , T, given by (38),
' L rg + 1 ' (46)
2L, w 2 S —— :
N To ~ T |

Similarly from Chapter I, (27) ,

2L2 8, a3 { = 8, “8,
8y &, k 8, By
s EEE . 1 + ToTo (47)
*€e ® T =T
1 270

Now for stability with a3 > 0,
a, 2 0, 8,8, - 8aga; > 0 and a°,> 0
i.ee 1, D r°> 0]

From {46) we see that L1 decreases a8 To decreases to zero,
- ‘ oL 24
From (47) , 2 =2 = 22— 2
~Hron v wg 3T, T (T, - 1)

and thus L2 also decreases as ro decreages t0 =mero, Therefore as
above we consider the case r, = C.

Then 2L,w, = —S— (48)

an@/
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T (49

We see that if L1 ’ L2‘r2 and w, are replaced by L, Lq,q1 and o,
equations {48) and (49) become identical with (9) and (11). This
follows immediately from the equation of motion (37) which with

r, = 0 becomes a second order equation in v (for a third order

system), The system can therefore be treated in a precisely similar
manner to a second order zero displacement system, The velocity
response for the L and L1d systems is shown in Figure 2.7

v 1min
together with the displacement lag., In both cases the displacement
lag tends to a definite non-zero limit (1 for Lymin SYStems and 2
for L,; systems),

As with the second order zero velocity error system it may be
either physically impossible or undesirable for Ty to be zero., How

the characteristic eqyation for the L1d system is

Mea®s)h = e+ 0\= 0

We replace the factor \ by X +1 and normalize the resulting
equation {with T, =|#)! the characteristic equation is then

V’* 17332 4 Y +0.19 = (W +0.58)3 =0

This corresponds to a system with r_ = 0,19 and r? = 1,73, having
three equally damped modes of motion., Tne velociiy response and the
displacement lag for this system (denoted by L1e) are shown in

Pigure 2.7. The velocity response has an overghoot of 25 per cent.
The maximum displecement lag is 1,45, the lag becoming less than

0.10 when wyT is 12 or more, Values of L, and L for the three
systems are given in the following table,
TABLE 8,
Val ues of bhe L1 and L2 for a tiiird order zero velocity error
system,
System r, r, Lo, L2/'w1
L1min 0 1 1,00 0.50
L1d : 0 2 1425 0.25
Lye 0.19 1.73 1430 0.43

e/
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/e see tuat in tahe L1e system tihe gerey displacement error has beuk
obtained nmainly at tne expense of L, 7 tais is reflected in tae

[
increased overshoot, As above, systems navin, emailer (non-zer.)
values of T, would in general have a smaller overshoot but a hi_oer
displacencnt layg and a longer "tail" to the velocity response,
corresponding to a swmall negative root of the characteristic
equation.

Hizher order zero velocity error systemse.

The above analysis can easily be extended to higher order
systemns, The formulae fLor L1 and L, can be derived immediately
from chapter I. ‘e find tnat for stable sysitems of any order
n( > 2) both L1 and Lz decrease as v tends to zero, Ihe gysten

0

with r = 0 becomes equivalent t¢ a {n=1)th order system in v, z2nd
(4} 1 2 14

the velocity vesponse fur ine L1min and L1d sygtems can be deduccda

from the preceding ansl ysis (2.g. Tables 3,4,% and 6 and Figures
2.4 and 2,5). The displacement layg w1(¢-x§ tends to r2(4= Cle

To derive the Lﬁe system we replace the zero root of the

" characteristic equation by a real rvot having the gsame damping 2s
the second most ligatly damped mode, and normalize the resulting
equation (with r, = 1Y, The valucs of the normalized coefficient

and the corresponding roots of tne characteristic equationare  iven
in Tables 9 and 10,
Table 9,

Values of the normalized coefficients Tm for zero velocity

error gsystems 0+ order n having three modes with eqgual
damping (L1e SYSTENS ) o

n Ty ry Ty Ty

3 0.19 4 1473 1 Ty

4 0.17 1 1.89 1.53 1 rg

5 0.18 1 2.14 2.97 1.52 1 Te
6 0,11 1 355 2,90 3.66 1.24 1

contd,



Table 10,

Roots of the characteristic equaticn for a zero velocity
error L1e gsystem of order n,

Hoots,
=0,58 , ~0.58 , ~0.58
~0.38 , 0,38 , =0.,38 £ 1,044
~0,30 . ~0,30 2 0,471 , -0.30 3 1,351
~0.37 , =047 , =0.,17 ¥ 1,531 , =0.17 = .b2i

I+ -

LoaTAS I R VE R o

AB the order of the system increaseg the damping of the leash
damped mode decreases, LN becomes smaller on the whole as n

increases; the /o overshoot in velocity increasesas does the

maximum displacement lag.
Table 11,

Values of the normalized coefficients qp for zero velocity
error aystems of order n havin: three modes with equal
damping (L1e aystems),

n 4, Q4 49 q3

31 3 3 1 a

4 1 3.8 4,6 244 1 g

5 1 4.0 6.0 5.9 2.4 1 %
6 1 642 10.8 8.7 Teb 1.8 1

In Table 11 the zoefiiclenis of the characteristic equation arxe
normalized to make unity,as with the zero displacement error
gayastem, This enablgg a comparison to be made with the results ol
Whiteley in reference 8, ‘hiteley's corxsspiniing coe fricients are
ruch larzer than tinose shown in Table 11, giving modes with very small
damping and hence & velocity response with a long "tail", This is
closely connected with the fact that aniteley's calculations are
based on 10 per cent maximum velocity overshoot. No curves of dige
placement lags are given in reference 8 but these would be
" correspondingly large. Comparing the above results with the ITAL

curves (reference 7% the velocity response of the ITAK system ig
rather more oscillatory than the L

of about the sane order, The L

1e curves with a maximum overshoct

1e curveg are not unlike those based

on binomial filters and are generally thougnt to be a reasonable
compromise between whiteley's curves and the ITAB ones,

contd,



58,

Responge of gero-acceleration-error systems to step function
disturvance (constant acceleration input).

| The analysis is carried out in a precisely similar manner to
the above, We find it convenient to normalise the equation of

. 2 -
motion (1) in such a way that the coefficients of %u—% and u g
are unity where z du2
U, = 0,1 (50}
n=2
and | | a, = @ ‘ay (51)

From (1), (50) - (51), the normalized equation of motion is

aPx a1y 4Py a3x a°x dx
—— — 4 B + + 8 + + 8 + 8 X
n Oeq o Ded N2 L. hOm2 T "t 3.3 2 1 du 0
du2 du2 dua duz du2 2
| = %2 (1+ s,u + 8 U2) (t > 0) (52}
a wﬁ 1727 Te 2 “
214
®m -
. where 8, = —mim (m = 0 to n) (53)
&p®s
| We take f2 = a,

The response of the system to a constant unit acceleration ‘
disturbance is identical in form with that in the free motion with

sza = -1 and Xy 0 on ' D3xo ene Dn’”1x° zero,
We consider values of : '
o ) o0
L, = (9—%’2‘-) v = alax (54)
o 9% o
and the variation of L3 where
o o
2 2
63x J da -
L3 = j (m) dt = (a;c’) as (5/)
0 [}

in the neigiabourhooﬁ of minimum values of L2

where/
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/where a = QE% (56)
d '

By a similar analysis 0 that given above we find that both

L, and L3 decrease as z% and M, tend to zero, Considering the

case &, z,ﬂ1 = 0 we find that the relations for L, angd Ly become

-~

identical with those for L and L1 ifor a zerc displacement error

system of order n-2 when g, and W, are replaced by e and Wy .
For systems with,40 u,d% = U, the displacement and velocity
lags both tend to non zero limits as v % & , This can be
remedied as wit. the zerc velocity ervor systems by replacing the
two zero roots oi the characteristic eguation by two real roots
having the same danmping as tne remaining most lightly damped moae
and normalizing the resulving eguation {with 85 =#), The valucs

of the normalized coelficlents and the corresponding roots of the
characteristic equation are given in Jables 12 and 13.
Table 12,
Values of the normalized coefficicuts Sp for zero

acceleration error systems of order n having four
modes with equal damping sz systems).,

n Bo S,' 52 SB

3 0.037 ©.33 1 1 54

4 0,028 0,27 1 1.63 1 85

5 0,026 0,27 1 172 1,59 4 8¢
6 0,026 0,27 1 2.08 2,67 1.61 1

Note: the third order system in the above table has, of course,
only three equally damped modes,

contd.,
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table 13,

Roots of tue characteristic eguation for a zero
acceleration error Lgf system of order n.

n Roots

3 -0e33 , ~0433 , -~ C.33 .

4 0,41 , = 0,41 , = C,41 , = 0.41 ,

5 ~0.32 , =0,32 , =0,32 , -0,32 £ 0,841

6 0,27 , =0.27 , =0.27 £ 0,431 , =0.27 ¥ 3+89% /-20¢

As the order of the system increases (for n s> 4) the damping
of the lgaat damped mode cecreaes, s. and s, only decrease slightly,
and the ~/o overshcot in accelervatio increéses.

Table 14.

Values of the normalized coc fiicients gqm for zero
acceleration error systems o0f order n having four modes

with equal damping (L, systems).

n g, a a5 a3

3 1 3 3 1 94

4 1 4 6 4 1 ds

5 1 5.0 8.9 Ted 33 1 g
6 1 5.6 115  13.1 9.1 3.0 1

Note: the third oraer system in the above table has, of coursce,
only three equally damped modes,

In the above table the coefficients for both third and fourth order
systems are binomial coe fiicients,; this follows immediately from the
condition of equal damping. Whiteley's corresponding coefficients
{reference 8) are much larger than thoein Table 14, As stated
above this leads to modes with much smaller damping than those

shown in Table 13 (allowing for the different time scale). The

L,, curves are not unlike those based on the binomial filters, wiich
agg generally thougnt to be a suitable compromise between oversicoi
and damping.
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Chapter 3.

Optimum Conditions of Response of linear systems with
Constant Cocefliclents having many Lesrees ol rreedol,

In the previous chapters we nave investigsated the properties of
some simple respouse coefiicients L and L_ for linear systems witih
one degree of freedom, Ve shall now exteRd the metincd to linear
gystems with a number of degrees of freedom, Ve snall at first
consider only a system of n first order equations., Tnis is quite
general since a system oI higher order can be reduced to a first
order system by substitution.

‘We consider a system for which the eguations of motion are

€ 4%y + €oX5 + wus + O X = fr(m) {r = 1 to n) (1)
where g = Byg D+ brs
> - &
rs * Pprs B8T€ constants and £.(e) (r=1 %0 n)} are arbitrary

known functions,
The initial conditions are given by
Rf t 0
Xp = Xpg (B =1tn) atx =0,

Using the laplace transform method (reference 17) the
subsidiary equations are

n n
fZ X, = ZZ a_.x + £.(p) (s=1 to n)
oo P%s 8 &y Trsso T

where‘ ﬁ%a = 8,.P + hrs
. n ['n
- ] ! -
A X |/ — P ; a X + I 4
B A xé‘l s LaZA re 80 r(P) (2)

Pqq Peg ¢ o » + Pyp (3)

and/
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. N ey " b . o . )
/and Prs ig the cofactor of ‘f”&rs in the determinant /:5 .

We shall be concerned primarily with stable systems Tfor which
all the roots of the characteristic equation (3) are negative or
have negative real parts,

0
Let P
—gﬁ = f e~ P* Upglt) a1 (4)
0
) <
n n n
Then x, = 2 Qu( 2 apx. )+ 2 ) Qepedndy (5)
=1 =4 r=q °
{s=1 to n)
Differentiating(s),
n n n
1
Bx, = r?ﬂ Qre (sgd 8re¥g0) * rz*l Apglo) £1(%)
n T |
] J Qg (=¥} £ .(y)dy (s=1 to n) (6)
r=1
)
From (3) we see that D is of the nth degree in p and we can
write '
A = A(P “)1)(}’ "}2) I (p")n) (7)

where A = il 311 312 « o o @ 313 | (8)
| 8g4 8Bpp ¢ ¢+ By

. L 4 L4 L » » -

i abn1 an 2 t ] [ ] » ® am
We assume that A 5 O.

Kow - Py En :rs (>‘m) (9)
A met T (=) (o)
rém
- n
Hence Qg = 2 Pg“g <>m) 2&1 (10}
m=1 AT‘T (xm-)r)

=1
m

For/
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P

/For large valuefs of p, —éﬁ -5 K—% (11)
where A is the cofactor of a, in (8).
Arg
o’ Qg = pr— +C4% + . . . higher powers of 1 (12)
Ars
From (12) we see that at v = O, Qrs(c) = (13)

Criteria for Optimisation,

As in €rheyter I we shall derive formulae for {the response
coefficients in terms of the square of the r.m.,s. error,

From (1) we see that the values of Xy » X5 ees X, which would

correspond to a position of equilibrium at time v are given by

By Xy + Do Xy + aee + b, X = fr(fc) ‘(r=1 to n)

. n
i.e, Xg = %Z Brsfr('c) = gs(-t) (14)

r=1

by Bpp e v e Doy

bn‘l bnz bnn

and Brs is the cofactor of brs in this. determinant,
We agsume that B# 0.

Thus if there were no lag in the system Xy would equal gs('t)

at all times, The error e, 1is given by

e. = (input - output)s = gg(v) - x

We shall derive formulae for response coefficients I‘r and L
given by

o ¥ 2
L. = J e;_d'c = j[xr = gr(’t)J ds (r=1 to n) (16)
0

o

ir

and/
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- [ /de - (? 2
/end L, = J {mﬁ)m = J  Dx, - g1r(fc)J dv {(r=1 to n)  (17)
o °

As in the previous secticon we shall consider values of L1r and Lr
in the neighbourhcod of a minimum value of a particular I"s‘ We

see that we shall have 2n response ccefficients corresponding to the
n degrees of freedom., In any paysical problem some of the response
coefficients may be much more important than others and thus the
problem may be considerably simplified,

Free Motion fr(*c) =0, r=1 to n,

Derivation of formulae for response functions in terms of the roots
of the characteristic equation.

n n n
%
. m
From (5) and (10), Xy = £1 qrs(sz1 8 Xso) = qu Cmse (18)
n n
~ P__(M)
where Cpg = Z nrs m (i 8. X5o) (19)
) r=4 e ) > s=1
fTp ko
ngm

If the motion is stable, all the roots of the characteristic equation
(7) must be negative or have negative real parts and
xs—>0(sg1ton)as Ty 0

The derivation of the formulae for the response functions is
precisely analogous to that with one degree of freedom, We find

n n
e, = L2 c Gy MM (20)
where ¥ o= (>s+xs) \
s=1 ton
S=1 ton
S>, 8 \
and Moy = \— (21)
P m*; M
Now/ f 7 M—1 I R n( 4+ d)‘: 1+ 5)-..1‘ T+ n)
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/Now = n“}\ >\2 ...> (§1+ ),)(% X’ﬂ...(& & n)
o O, }.3)()«2+ )-4)...(> +3~ o)

Ca (Mw)'n) (22)

This is precisely the same as equation (16) of chapter 1,

Now the free motionis determined uniquely when the initial
conditions are specified, Thus L is determined by the initial
conditions,

We have from (18), :Z
C = X
ms 80 7
i*m Cms = X

:z)‘mzcms = ;

80 1 (23)
v o5 e Tlew
n~1 %
jr)‘m Cps = -1 )
dt -
. Then
A n-1
Ly, = = T _Xso (311 Xgo * ®qo DX o+ eos + @y, D xso)
h 1 Tie4
+aes + Dx (&1n $°+... ""Gvnn D Xso)] (24)

This formula is identical with equetion (19) of chapter 1 and the
a's are identical with thosefor the linear system of order n with
one deygree of freedom, We note that L is given in terms of X0 °
sté y ses Xso by (24) i.e. ir terms of the initial values of
Xg and its derivatives only. This follows immediately ge Irom

(1) since on eliminating X, , Xog see Xg g4 » Kg g 9 see Xy and

el
their first derivatigga te‘differential equation for Xg is, for the
free/
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/free motion,

dnxa : dn‘""xs dx, ‘
An'é',?ﬁ“"’“m1 W-ﬁ...-f-&‘a;*-bb‘oxe = 0 (25)

where A is the coefficienty of pr in the characteristic equation

(1 r

* from (3), (8} and (15) we note that
A : = A ’
N .{ (263
o L)
, | ‘ P v
To fi;nd valueg of ﬂxao s ses D X530 in terms of X4ot****pno
we use (18) writing n
U, = 2 8.y Xgo . {(27)
8=1 n
Then in the free motion
Xa = 121 Ur Qg

By successive differentiation we find

Dx, = 2 ouro Qg (0) .
* 2 3 e ¢ e (28)
X30 = 2 Uy Dn“Qrs (o)
where from (10) .
. om0,
Qg (0) = . B
=ty éﬁ (A=)
Ch e Ty
Dnﬂ"qra(o) = 21 )ﬁn rs
} o
ACZ ()Q-Xr)
rm

anﬁ

(29)

Alternatively/
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/Alternatively writing

2
N A C,% ,
QTB = Xx":?“”c.‘ 4"’%"“* TE) (30)
ghen Dx_, =7 U, C,
» ¢ @ . (31)
*s0 = Z.Ur C et

whéfe the constantyC will of course be different for every FP., .

We gee that the initial conditione enter the above eguation
in the U terms only,.

pi~1

Ve can immedimtely derive the formula for L1 s where
00 2
L1s &= CDxaj dx
o

by replacing x, by Dx Dx , by Dgxso y «ee €tc., in (24).

80 ?
Thus

1 2
Lig = = ﬁ[pxao(“'ﬁ Dot @qp D7Xgobees + O4p anao)

18
n n p
4+ eas t D XSO (G..‘n sto“‘o-c“‘ “nn D xSO)J (32)

where from (28),(29), DPx = Ur Dan (o)

80
n
an Qg (o) mZM m zs m (33)
AT T g
Bm

or from (32), anso - U, C,
. We see that for given initiel conditions xro(raﬂto n) we

first have to find Dx szso v ess anao(sn‘l to n} for which-

?
ever/ 80
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/ever variables are impoxtamt in the physical problem, The
‘response ‘functions L, and L,, can then be found from (24) and (32)

once M and the a's are know n. We note that M and the o's depend
only on the coefficients of the characteristic equation and the
formulae for these parameters can be obtained from thosein
Chapter I by replacing By 9 By 3 eee By by Ay s A1 s oeee A

Free lNotion fr(m) =0 (r=1 to n)

Derivation of formulae for response functions in terms of the

foefficients Brg o brs of the equations of motion,

We define the following integrals
0
Ers = j Xy Xg az

Dx,, x_ dz (34)

All these integrals are convergentk for the free motion of stable
ystams. We note that

E.s = By o (35)
Grg = Cap | | (36)
Fre = = *rp %so ~ Tar (37
FEy, = -3 x5 | (38)
e e } (39)
Lig = Ggs

Multiplying (1) by x, and integrating from O to o , using (34),
in the free motion,

8nqFyg + bpqByg + 8poFog * Puofing + eee v 8L Fip + DLE N

=0 (r,s =1 to n) (40)

Equations/
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.y . Y - £ a 4 X z 2 L o
/Equations (35),{(37),{(39) and (40) provide 2n° equaticns f{or the
2n2 variablescﬁrs ’ Frs « In pariicular we can solve for Ls

By using tihe relation (38) before solving for Ly We can reduce the
order of the resulting determinpants to 2n2~n , while by
gubstituting (35);(3%& anﬁ&&38) in (40) before solving,the order of
I . deds . o

the resulting determinantsjito n?, These last two Forms are more
suitable for manalysis and for csleulation respectively.

Similarly multiplying (4) by Dx, and integrating from O to»®
uging (34),1in tae free motion,

BryGgy + DryToy + 8ol + DioFoorenat By Goy + PrpFey = 0

{r,8 = 1 to n} (41)

Bquations (36),(37),(35) anrd (41) provide 2n? equations for the

2n® variables E}S » G, and can be simplified and solved for L,
as above,

Thus for a first order system with two degrees of freedom

4(13 = ¥ a11x$0 by, 0 0 240 0 (42)
8% Dy O O 8y O
8y9%50 O by Byp O 244
Rpp%50 O by Pyp O 3y,
0 -1 1+ 0 0 0
] 2x1°x20 0 0 0 1. 1

contd,
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contde.
( , 2
2
LPYE T 8y, O 0 By, O
) ,
by 2%50 C  ayy 8y O by,
2 -
boo%50 0 8y By O Dy
- 0 -1 4 0 0 0
2x10x20 O 0 0 1 1
Y F |
vhere Al = b, b, c 0 L ) (44)
byy Py O 0 my
0 byy By O ay,
0 O by By, 0 ey
0 -1 1 0 0 0
0 o 06 o0 1 1
-
and Al = 8y 8, O O b, O (45)
321 85 0 0 b22 0
0 O ayy 234 0 Dby
0 O ey 8y O By
0 -1 1 0 0 0
0 o 0 0 114

In general we see that for a first order system with n degrees of

freedom,
g Al = flay, by } (46)

{
Aa‘ = f(bpq y ars)

contd,
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Also if A L, = g(apq, b_.) ]
TN ‘I (47)
The determinant 45( is of degree n? in the b's and of degree
2

n“~n in the a's. From (24) and (32) we see that Ikand L,g are
both inversely proportional to M where from Chapter I, (39), 2

A D ’n!n*12
TG n = (1) Ay T

© "n~1

nfn*12

- 2 n B
i.e, M o= (1) 2 N Tpe1 (48)
. 1
We find that N = BT _,
(49)
f '
By = AT, o

Thus to aveid large values of LS and L1s' all three of A,B and M

should not be small, From the above analysis we see that, when the
response functions are expressed in terms of the initial dis-
placements Xgo? they involve not merely the coefficients of the
characteristic equation but alsc the individual elements B brs
of the determinant {5 e 1t is thus possible to have two systems
which have the same characteristic equation but differ greatly in
their response characteristics (see reference 273,

As can be seen from the equations of motion (1), the coupling

terms between tie motiongin X, and X, are a,., 8,.; brs and bsr’ ‘

Thus the smaller these coupling coefficients the smaller will be
the corresponding response coefficients, This is seen from (42},
(43) where for a displacement Xog With X, = 0, L, and L,, are both

proportional to the determinant

u
Cip = oy, P2
[ 822 byo i

|
We note that for the system to be uncoupled it is novt necessary that

all the coupling terms (e.g. &,,, b,,, etc) vanish) it is necessar
that/ 120 "2 3 y



/taat all determinants such as ¢y, Vanish,

This can also be seen by transforming the equations of
motion (1), Multiplying the tirst equation by %’, the second by
B2r’ the third by B3r’ ete., and aduaing, we arrive at n equations of
the form

L] * L]

Crq X4 + Cpo X5 + ses + Cpp X + BX,, = 0 (50)
wherg_ Crg = 551 Bor ®me (r,8 = 1 to n) (51)

The terms ¢, (r# s) represent the coupling terms. Ve see
that we have reduced the number of parameters in the equations of

motion to n2 terms Crg and B,

We could of murse have reduced the equations to the form

A X, + d

T R

r2 x2+ -.o+drn n = O

The form (50) is more convenient iﬁ showing the close relation
between response following an initial displacement to that
following a step aisturvance,

The analysis is further simplified by noting that if in two
systems the coefficients Chg BTE related by equations of the form

Crg = crs as/er (rys = 1 to n) (52)

where are any non zero constants (positive or negative),
the corrgspoﬁdlng anplitudes of response are related by the
equations

x1 X1 X1
5‘1"' = é—z'i = see = a‘n'i_' (53)
1%4 272 nn

The corresponding formulae for the response functions followk
immediately,

The characteristic equation corresponding to (50) is given
by/



T3

/oy ‘ .
n = -
\ B e11¢B> Cyp- 43+« » Cqp 0 (84)
} 1
€24 "22“gx C23 + *+ * %o
. L 2 - ] L ] . [ ] “1
®n4 Cn2 ®n3 °nn*B&

Now (7) and (54) must have the same Toots,

Let

C = Cyy Cyo Cy43 ¢+ + + Cyp (55)

Coq  Cop Coz ¢ = » Cop

nj ° *° ®an

Comparing the coefficients of )‘n and the constant coefficientsin
(7) and (54) we see that
0 = ap™ (56)

Consider the motion resulting from an initial displacement ;
Xpe With all x_, zero (s#m). From (50) we see that if every c, is

zero (r=1 to n) except c, there will be no displacement at any time

%u the rth coordinate following an initial displacement x .
hen
L = L

r ir
If all the coupling bterms are zero the equations of motion become

= 0,

Cpp Xp + B X, =0 (r=1 to n)
with the corresponding modes - §—7.1
Cer
pr = Xpe®

where for stability with B > 0, Crp must be positive,
The corresponding response functions are

c
- rr _2
Ly = 25 %o
B 2 . (57)
L1r = X

Sa ro
2°rr
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The ratios crr/B define the damping of the system, the

greater their values the more rapid the damping. The motion in
every mode corresponds to a subsidence if the system is stable.
For the system to have equal damping in all modes

% 1 n1
see = C = C zAnB n (58)

¢ nn

= C

11 22 = ©33

Changing the ratios crr/B merely changes the time scale of the
response.

Another important special case of the general system (50) is
that in waich one or more of the equations reduce to the form

/ 1
X, = Xg (TF8]
iie, ‘ OI‘S = = B
Cop = O (m;hs)
It follows immediately that _
L, = I | (59)

Free Motion fr(T) =0 (r=1 to n)

Derivation of formulae for response functioms in terms of the
frequency response spectrum of the system,

Using Fourier's integral theorem and Parseval’s theorem we can
derive integral formulae for Ls and L1S in terms of &ns identical

in form with equation (5€)} of Chapter I.

- 2 2 &

We have ® . F ; =
o2 4 T, o2 2 |

L 1 J fgo - é‘;zsw +g48w - ees | V&ls 838‘9 + aeo J dw (60

s y 7 w21 2 Py ;

0 A - A2w + A4w - 20 P! _A" - A3C0 + .‘V.J w/

where A = Ay p® o+ An’1pn’1 t oees + A (61) |

and _ n-mn-1
» 8na = Aniq Xoo * Apep DXgo * eee + Ap D b'e (62)

L
?@»\ 3 A' K»j

The integral for Lés is obtained from Ls as above by replacing

Xy bY Dxj, , Dx_, by Dx ees €tc, 1in the formula (62) for

émsg -

s8¢ ?

contd.,
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Response ©i a system witn ne ianitial displacement,

%e consider a sybtem wita initial conditions

Xpg = O (r=1 to n) (63)

the system satisfying the equations of motion (1).

Step function disturbances,

f.=0 for +< 0 | f.=F, for ©>0 (r=1 to n)

where F, 4s constant.

Prom (5) and (10) the motion is given by

n T ‘ n )_ -
X = Z F f Q  (v=y) dy = 2 Gpg © n (64)
8 yug T 5 rs n=g
n
F_B
| r “rs
where G@S m r%.‘ -5
n (65)
: PP (M)
and G = f I xS )m (m=1 to n)

= A )‘m fj; ()m-»-)r)
im

wham B = b11 b12 . [ 'y b,‘n
Pa4 Pz v+ Ppp
bm bnz ¢ - bnn
and Bm igs the cofactor of bra in this determinant, We assume

that neither A nor B is zero, and that we are only considering
stable systems,

From (14) and (65) we see that

Gog = &g (a constant). (66)

As/
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/hs 1 =D o0 ; for stable systems X, - g, .
n \ v
From (64), (65}, Dx, = ;g‘-; Gms>‘ n & m z
\ (67)
n n
35 S Fx':E}J:':a(m) ;mT j
=TT AN
A v -
- r=1 nor
r$m
Alternatively writing
'
Xp = Xy = &p = Xp = Gy, (68)

We see from (1) that the response of the system following a step
disturbance is identical in form with that in a free motion with
Xpo = = &p (r=1 to n) since from (65},

o
§
b & = F .
) rs s r

The errors in the t.0 responses are the same at any giveg time,
The given system ultimately has no static error since x, - 0.
Such a system correspondz %o a zero-displacement-error system with
n degrees of freedom, ‘

From (16)

|

‘ .
Lp = Jf.xr - gr] dv = ;xx"] dv (69)

0 o
tt Db > Dy
Thus the response functions of the given system following

atep function disturbances are the same as those of the given system
in a free motion with

n
F_DB
{
Xgg == 85 = = 3;1 ~2§—5§ (s=1 to n) (70)

The response functions are then found from (24) and (28) or, more
directly, in determinantel form from (40) and (41). We see that

Bx szso y ves Dn'1xso wusee are unchanged by (68}, The

so’
corresponding integral formula is derived directly by the same

substitution for x . . Similarly for L1a .



e

Le above we can tramsform the egquations (1) by multiplying the
first equation by B?t’ the second by Bdr’ the third by B3r’ etc.,

and adding., #e cbtain n equations of the form

L] * .

Cpq X4 * Cpp Xp + eee + Cpp Xy + Bxy, = Dg, (71)

On using (68}, (71) reduces to the furm of ($0) and can be treated
in like maunner,

For disturbances such that all the F vanish except one Fs’ it

ig often more convenient to keep the eqaatlons of motion in their
original form (1), or possibly to apply a transformation similar to
the above to the remaining n-1 equations, The system could thus be
reduced %o o get vf n equations of the form

aB1X1 + bs1x1 -+ agzxz + b52x2 +tooet asnxn + bsnxn = Fs
{ o t * r ® 0 (72)

' . t
ar1x1 + br,‘x1 +* arzxz + ar3x3 +oest arnxn + Bx =

(r=1 to n, rzs)

. In this case we nav§ reduced the vnumber of parameters te the
equations of motion to n° terms a (and agm), n terms b, and B,

Prom (5) we see that if all the F, vanish exce