THE EFFECTS OF FERTILIZERS ON THE YIELD AND COMPOSITION OF FORAGE CROPS WITH SPECIAL REFERENCE TO SODIUM

bу

R.G. Hemingway, M.Sc.

A thesis submitted to the University of Glasgow for the Degree of Doctor of Philosophy in the Faculty of Science.

June, 1958.

Agricultural Chemistry Department
Glasgow University.

ProQuest Number: 13850355

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 13850355

Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 – 1346

ACKNOWLEDGEMENTS

The work described in this thesis has been carried out in the Agricultural Chemistry section of the Chemistry Department in the University of Glasgow between 1954 and 1957 under the supervision of Professor J.M. Robertson, F.R.S. I should like to record my thanks to him for the many facilities provided.

The investigations would not have been possible without the ready cooperation and understanding of several farmers who have generously provided sites for the field experiments and who have undertaken the necessary cultivations.

I am grateful also for technical assistance from Mr A. Rowley in the layout and harvesting of the grass experiments and to Miss M. Perry who has typed the manuscript.

ិល្ខេស្ត្រា (១១៩៩៩) ស្រី ស៊ី១ ស៊ី (១៩

·Pineria in anti-

Introduction			1		
Analytical Methods	a North Control	. 도 의 (2015년년) 1 도 의 (2015년년)	13		
Rapid Scheme of Analysis			32		
Experiments with Kale			36		
Sampling			40	•	•
Experiment 1	e e		44	•	
Experiment 2			50		
Experiment 3			55		
Experiment 4			61		
Experiment 5			65		
Experiment 6			71		•
Summary			76		
			in it with the	etaj sej ja	*
Experiments with Turnips			89		•
Experiment 1			92		
Experiment 2			96		
Experiment 3			100		
Experiment 4			105		
Summary			111		
Experiments with Grass			120		
Experiment 1			125		
Experiment 2			137		
Experiment 3			142		
Experiment 4			151		
Summary			157		

Discussion

Crop Yields

Effects of Sodium and Potassium	Chlorides	168
Salt and Superphosphate		170
Plant Composition		
Sodium	. •	172
Potassium		177
Calcium		179
Magnesium		179
Phosphorus	**************************************	180
		300
References		182

Yields and Analyses of the Experimental Plots.

A STATE OF THE STA

- Tabulated in Separate Appendix.

INTRODUCTION.

There is a very large literature regarding the possible value of sodium as a plant nutrient. Only however in the case of a few crops has it been shown to have any consistent or economic value. Sodium tends to be regarded as a beneficial rather than an essential nutrient. The idea has long been held, and still persists, that its action on plants is indirect by virtue of its supposed effect in liberating potassium from the exchange complex of the soil, thereby increasing its availability to plants. Many workers however, hold the view that it has a direct influence on the yield of certain crops and that true sodium deficiency can occur.

In view of the similarity between sodium and potassium, much work has been done regarding comparisons of the two elements on the growth of plants and attempts have been made to classify crops according to their responses to sodium in relation to their need for potassium. One such classification by Harmer and Benne (1945) working mainly on potassium deficient peat soils, but including results of other workers, groups crops according to their responses to salt at different potassium levels. Omitting vegetable crops of minor importance, their conclusions were as follows:

- A. Benefit from sodium when potassium is deficient.
 - 1. Little or none. Maize, Potato, Rye.
 - 2. Slight to medium. Barley, Broccoli, Brussel Sprouts, Carrot, Cotton, Flax, Millet, Oats, Peas, Tomato and Wheat.

- B. Benefit from sodium when potassium is sufficient.
 - 1. Slight to medium. Cabbage, Kale, Mustard, Rape.
 - 2. Large. Mangolds, Sugar Beet, Fodder Beet, Table Beet. Celery and Turnips.

They concluded that crops would respond to sodium if they had naturally (a) a high sodium content, or (b) a narrow Na/K ratio, wide ratios indicating no response.

Lehr (1953), as a result of comparative experiments with sodium, potassium and calcium nitrates, grouped crops according to their capacity to absorb sodium in replacement of potassium.

- A. Large replacement of potassium by sodium.
 - Large benefit from sodium. Fodder Beet, Sugar
 Beet, Mangolds, Table Beet, Spinach.
 - Smaller benefit from sodium. Cabbage, Cotton,
 Kale, Cats, Turnips.
- B. Smaller replacement of potassium by sodium.

 Little benefit from sodium. Barley, Flax,

 Grass, Millet, Wheat, Rape.
- C. Little replacement of potassium by sodium.

 No benefit from sodium.

 Maize. Rye.

Comparable reviews differing only in detail have been put forward by Truog et al (1953), Kennedy et al (1953) and Larson and Pierre (1953) and others.

Although produced from different points of view and from both

field and pot experiments, these groupings are essentially similar.

A range of crops, (the Chenopodacea) including sugar and fodder beets and mangelds respond well to sodium and have been extensively studied. Some, such as rye, potatoes and maize, fail to show any yield increment from sodium. A very wide range - including the Brassica family and perhaps the cereal crops - may perhaps be increased in yield by sodium under particular circumstances.

Boyd. Garner and Haines (1957) have recently summarized the results of a comprehensive series of over 200 field experiments in Britain to investigate the value of salt as a fertilizer for sugar Salt at 5 cwt. per acre consistently increased the sugar beet. yield by a similar figure. The sodium could partially or wholly replace potassium and yield increments obtained from salt were greater and less variable from year to year than from potassium chloride. There were large negative interactions for sugar yields between salt and potassium chloride. Soil analysis for readily soluble potassium predicted the possibility of a response to salt in the same manner as it did for potassium chloride. The responses to salt were similar in all soils except those from the fens, where smaller returns were obtained. The extra response from potassium chloride when salt was also applied was scarcely enough to repay its cost, but salt increased yields very profitably even when the supply of potassium in the soil was good. Analysis of the crop (unpublished) indicated that salt did not increase the potassium uptake, indeed,

over a period of 5 years there was a slight tendency for it to be reduced.

There has not been the same urgency in Continental experiments regarding the use of salt for sugar beet, but the value of the salt in the high proportion of low grade potassium fertilizers used is well appreciated. There is thus wide-scale recognition of the value of sodium as a nutrient for sugar beet and extensive propaganda for its use. Hale, Watson and Hull (1946) and Wallace (1951) have described symptoms regarded as true sodium deficiency.

Although the published work is not so voluminous as for sugar beet, it is generally accepted that sodium is of equal value for mangolds and fodder beet and applications of salt are given as routine procedure. For example, Crowther and Benzian (1945) reported that sodium nitrate was 47% better than ammonium sulphate supplying equal nitrogen for mangolds, and the classical mangold experiment on Barnfield, Rothamsted shows consistent increments from sodium.

Apart from the above, the only other crop for which there is conclusive information that sodium may be of use generally from an economic point of view is cotton. Holt and Volk (1945), Lunt and Nelson (1950), Lancaster et al (1953), Cooper et al (1953), Appling and Giddens (1954), Eaton (1955), and Giddens et al (1956) have all reported that cotton responds to sodium when potassium is deficient. All conclude that a partial substitution of sodium for potassium up to about 50% was possible, but it is not known by the author whether

or not the practice is wide spread. Lancaster et al (1953) did however point out that in five experiments where there were significant responses to potassium, that four of them also responded significantly to salt.

5/

Almost every other agricultural and horticultural crop has been investigated for response to sodium and claims have been made either that increases in yield have been obtained or that potassium deficiency symptoms have been reduced in differing circumstances.

Virtually all the work has been concerned with substitution of sodium chloride for potassium chloride or in the comparison of sodium and calcium nitrates. Frequently the work has only been done in pot or water culture and many of the experiments have not been repeated under field conditions.

In addition to the responses already quoted, lucerne has been studied by Wallace et al (1948), York et al (1953) and Truog et al (1953) and responses obtained. Various clovers have been investigated by Marshall (1944), Cope et al (1953) and Lehr and Bussink (1954) and more recently by Whehunt et al (1957).

Oats have been shown responsive by Bower and Pierre (1944),

Cope et al (1953), Larson and Pierre (1953), Cooper et al (1953),

Truog et al (1953), Whehunt et al (1953), Lehr and Bussink (1954) and

Giddens et al (1956). Flax gave increased yields with sodium as

reported by Molchanov and Dmitrieva (1936), Milnthorpe (1943), Bower

and Pierre (1944) and Lehr and Wyhenga (1955). Barley has long been

reputed to respond to salt especially on potassium deficient chalk soils in southern England, and Truog et al (1953) have shown small yield increments. Kibe et al (1953) found increased yields of wheat in pot experiments and sodium sulphate consistently increases the yield on Broadbalk Field, Rothamsted.

Amongst a wide variety of other crops responding to sodium are carrots [Cooper et al (1953), Truog et al (1953)]: tobacco [Verona (1951), Lehr and Bussink (1954) and McEvoy (1955)], and potatoes [Verona & Benvenuti (1953), Lehr and Bussink (1954)].

These examples are by no means exhaustive and the literature is extensive. The findings have not in general been translated into agricultural practice as the effects have usually been small or absent in the presence of a reasonable potassium supply.

Work with sodium has not been entirely confined to determining its effect relative to potassium. Some investigators have been concerned with its influence on soil and plant phosphorus. As long ago as 1906 Wheeler & Hartwell reported that sodium salts increased the phosphorus contents of a variety of crops. Collings (1954) says that, "there is rather general agreement that sodium is valuable to maintain a high degree of availability of phosphorus and there appears to be some evidence that sodium in the soil may increase the availability of phosphorus that is tied up in insoluble form".

There have however been few controlled experiments to jusify this.

Herbert(1951) found that sodium nitrate extracted three times

as much phosphorus from soils than did calcium nitrate. Using the same salts at concentrations equivalent to the nitrate level in 22 Dutch soils, Lehr and Wesemael (1952) reported that sodium nitrate was superior to the extent of 80 - 90% and that sodium salts leached through the soils maintained a greater and more prolonged release of phosphorus than did calcium salts. In subsequent Neubauer tests (1956) they have found that phosphorus solubility was 64% greater and phosphorus uptake 45% higher if calcium nitrate was replaced with sodium nitrate. Tobia and Milad (1954) found that sodium and potassium carbonates applied to Egyptian alkali soils increased the concentration of water soluble phosphorus whereas calcium and magnesium salts depressed it.

Kibe et al (1953) showed that the available phosphorus in pot experiments with wheat was increased by an application of 0.2% sodium chloride. On the other hand, Scharrer and Schreiber (1944) had found that sodium chloride reduced the uptake of phosphorus by rye seedlings during early growth and McEvoy (1955) showed that both sodium and potassium depressed phosphorus uptake in tobacco. Marshall and Sturgis (1953) indicate that when sodium nitrate is the best nitrogen fertilizer for cotton that the soil is frequently low in phosphorus. More recently Nicholson and Hooper (1957) have suggested that the superiority of sodium or potassium nitrates over other nitrogen fertilizers for cabbage may be due to their effect on soil phosphorus.

Way and Nelson (1954) inhibited the formation of citrate insoluble phosphorus in NP and NPK fertilizers by the addition of 1% sodium chloride to the phosphate rock prior to acidulation. Hamamato & Kawasaki (1956) by treatment of rock phosphate with sodium chloride and steam produced a fertilizer as effective for rice as superphosphate. Butseroga (1954) found that sodium chloride applied to winter wheat and sugar beet created conditions whereby phosphorite meal became equivalent to superphosphate as a source of phosphorus. Andrews (1948) has put forward the view that sodium additions may lead to the formation of sodium fluoride which is leached from the soil, thus reducing the creation of calcium fluoride - containing apatites of low availability.

The recent observations of Boyd et al (1957) who demonstrated the presence of substantial negative interactions between sodium and phosphorus, and sodium, potassium and phosphorus in a comprehensive series of British sugar beet experiments which "were too frequent to be ignored", give added practical support to the evidence that sodium may increase the efficiency of phosphorus utilisation.

With the exception of the work with sugar beet, there has been no reported work regarding the use of sodium on agricultural crops in Britain in recent years. Until the last war, sodium nitrate supplied sodium in appreciable quantities. Its almost complete replacement by synthetic nitrogen fertilizers now makes the application of sodium as the nitrate or chloride a deliberate policy

rather than an accidental occurence. Surveys of fertilizer practice show that salt is used mainly on sugar and fodder beets and mangolds, - more recently as a constituent of compound fertilizers, and that it is occasionally used on other crops such as barley, oats and grassland. It is widely reputed to be detrimental to potatoes in view of the ill-effect of chloride.

One object of this present thesis has been to examine the effects of sodium chloride on three agricultural crops of major importance, turnips, kale and grassland. All the work has been done under field conditions.

These three crops have been chosen for a number of reasons. In the first place, two are Brassica crops and earlier work has shown that as a family they may respond to sodium under suitable conditions. Secondly, kale and grassland make excessive demands for soil potassium and sodium might perhaps usefully replace some of this need. Thirdly, the suggestions that sodium may have a beneficial influence on phosphorus uptake by plants can perhaps best be investigated further in turnips.

The second, and major object of this work has been to examine the effect of salt on the mineral composition of these crops, namely the sodium, potassium, calcium, magnesium and phosphorus uptakes.

Salt has therefore not been used in isolation in the field experiments but always in association with varying levels of nitrogen, phosphorus

and potassium and under differing conditions of soil fertility. In two of the grass experiments magnesium was also applied in conjunction with salt.

There is virtually a complete absence of data in this country regarding the sodium content of these and other crops and of the influence of increased sodium intake on the level of other mineral elements. Equally the effect of added nitrogen, phosphorus and potassium when given in association with sodium is not known. As sodium is absorbed easily by plants, there might be expected to be a number of important ion antagonisms as is the case for example between potassium and calcium, and potassium and magnesium.

Finally, the experiments with kale incidentally provide information regarding the effects of phosphatic and potassic fertilizers on yield and mineral composition. So far as can be ascertained, there are no published data on these aspects of kale nutrition although the effects of nitrogen on yield and protein content have frequently been recorded.

EFFECTS OF SODIUM ON THE UPTAKE OF OTHER CATIONS.

(a) Potassium.

Opinion seems to be equally divided as to whether sodium applications increase or decrease the potassium uptake of plants.

Any effects which have been observed have always been small. For

example, some workers who have found that sodium promotes increased plant potassium levels, are Marshall (1944) for blue grass and clover, Cooper et al (1953) for a wide variety of crops, Appling and Giddens (1954) for cotton and more recently Whehunt et al (1957) for clover. On the other hand reductions in the potassium content of plants consequent upon sodium applications have been observed, for example by Hartwell and Dawson (1919) with a variety of crops, Wallace et al (1948) and York (1949) with lucerne, Larson & Pierre (1953) with oats and Lancaster et al (1953) and Eaton (1955) with cotton.

Chambers (1953) has attributed the consistently higher yields of the continuous Broadbalk wheat experiment on the plots receiving annual dressings of sodium sulphate to the increased potassium concentration in the straw resulting from the sodium applications, but even in such extreme circumstances the difference in mean potassium contents of the straw is less than 0.2% over the many years for which the experiment has been conducted.

(b) Calcium and Magnesium.

It is generally accepted that the increased potassium content of crops resulting from applications of potassium salts have depressive effects on calcium and magnesium uptakes. There have been very few investigations as to the possibility of similar effects when sodium replaces potassium as a soil amendment. Cooper and Garman (1942) and Lancaster et al (1953) have found that sodium reduced

calcium uptake in cotton and thought this beneficial in that it created a more favourable $\frac{Ca}{K}$ or $\frac{Ca}{Na+K}$ balance. Cooper et al (1953) have later reported the possibility of a small decrease in magnesium. Iarson & Pierre (1953) reported reductions in both calcium and magnesium levels in oats resulting from sodium and potassium applications. Cope et al (1954) thought sodium and potassium had roughly equal capacities for reducing calcium and magnesium levels in a variety of crops. but Chang and Drenge (1955) working on soils containing 35% exchangeable sodium suggested that sodium was of geater impact in this respect. Lehr and Wybenga (1955) have recently associated the drooping of flax heads at high sodium and potassium levels with calcium deficiency (or alternatively, physiological drought). Reitberg (1954) attributed sugar beet failure after sea water flooding to the four-fold increase in sodium in the plant inducing calcium deficiency.

Hale et al (1946) have reported the possibility of salt-induced magnesium deficiency in sugar beet and McEvoy (1955) has recently reported reductions in both calcium and magnesium levels in tobacco resulting from the addition of sodium to water cultures.

The absence of further references compared to the most extensive potassium/magnesium bibliography is indicative of the fact that few workers have estimated elements other than sodium and potassium in experiments involving salt or sodium nitrate.

ANALYTICAL METHODS.

The main series of experiments have produced some 1,500 samples for analysis for sodium, potassium, calcium, magnesium and phosphorus. It has been necessary to devise and adapt suitable methods to enable quantative determinations to be carried out both rapidly and with reasonable degrees of accuracy. For such purposes, volumetric and gravimetric methods are generally quite unsatisfactory in view of their length and the large number of separate operations involved. All analyses have therefore been performed by either flame photometric or colorimetric methods.

ASHING PROCEDURE.

lg. samples of oven dried plant material have been ashed in silica crucibles at 450 - 500°C for several hours. At this temperature no loss of wineral matter occurs, but overheating must be avoided. After cooling, the ash is slightly moistened with water and 1 ml. of concentrated hydrochloric acid added. The preliminary addition of water is to prevent some small loss of the fine. dry ash which may occur due to the vigorous reaction between the acid and some carbonate-containing ashes. After evaporation to dryness and removal of the hydrochloric acid, the ash is dissolved in warm water and filtered into 100 ml. standard flasks. Complete solution can only be acheived by thorough rubbing of the crucible with a glass rod, and in this respect new silica crucibles are much to be preferred to older ones with slightly roughened interior surfaces.

FLAME PHOTOMETRIC DETERMINATION OF SODIUM, POTASSIUM AND CALCIUM.

The EEL flame photometer (Evans Electro selenium Ltd.)

described by Collins and Polkinhorne (1952) has been used throughout.

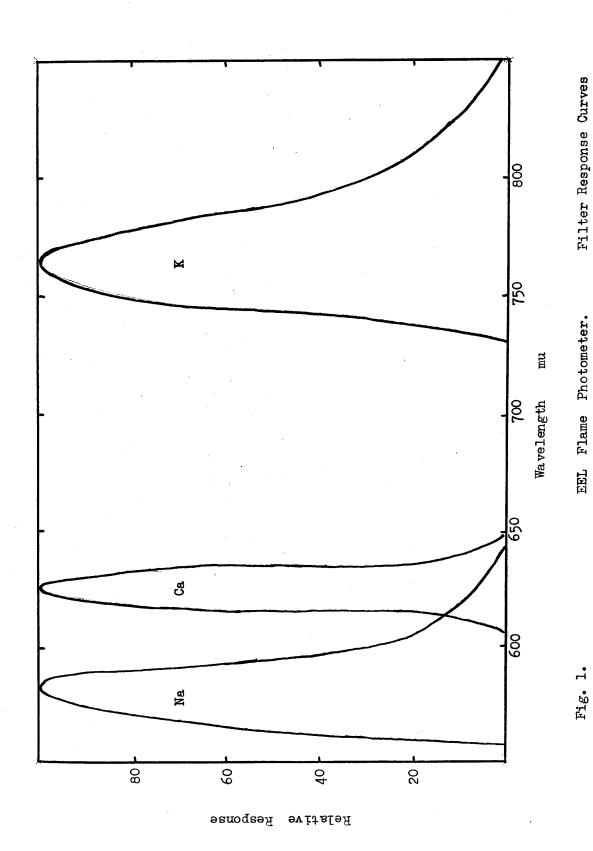
In this instrument, small quantities (about 2 ml.) of solutions

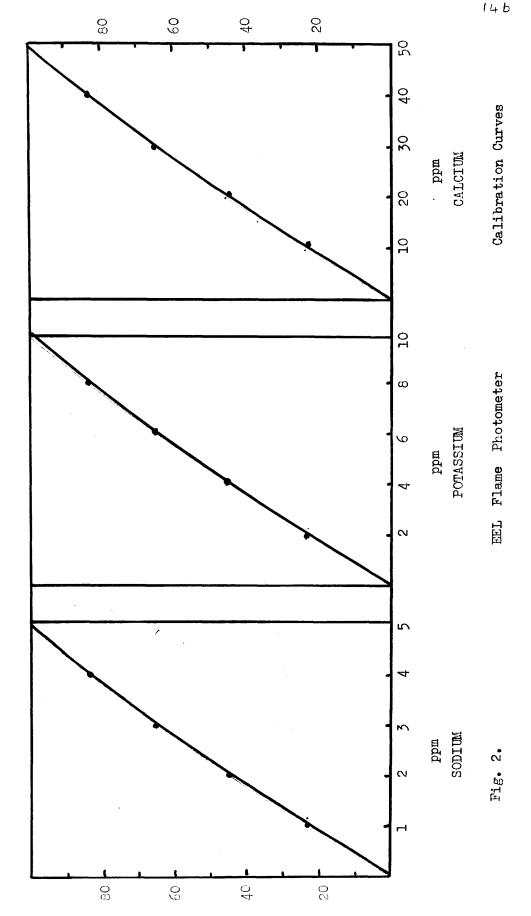
containing the elements are atomised into a coal gas/air flame.

The light emitted after passage through suitable interference filters

falls onto a barrier layer photocell which is connected through a

potentiometer to a taut-suspension galvanometer. The galvanometer


deflection is followed by means of a reflected light spot which


falls onto a scale calibrated from 0 to 100 over a length of about

5 ins.

When used at its greatest sensitivity the instrument has a working range of from 0 to 5 ppm Na, 0 - 10 ppm K and 0 - 50 ppm Ca. The coal gas/compressed air flame results in lower mutual interference effects between alkali metals than would be experienced with, for example, an oxy-acetylene burner. However, it may be more susceptible to reduced emission in the presence of some anions, particularly phosphate. Typical filter curves (supplied by Evans Electro selenium Ltd.) are shown in fig. 1. Potassium is obviously well separated from the other two, but there is some possibility of mutual interference between sodium and calcium at particular concentrations.

The instrument is simple in operation and capable of rapid use, each determination taking about 20 secs. Calibration curves are

prepared by spraying distilled water (or an appropriate "blank" solution) to give a reading of 0 and the highest concentration, say 10 ppm K, to give a reading of 100 with the appropriate filter in position.

Intermediate points are obtained using suitable dilutions and the calibration curves produced are almost linear, being similar in shape for all three elements (Fig. 2.).

A. CATIONIC INTERFERENCE

Investigations have been made to determine the mutual interfering effects of sodium, potassium and calcium when present in solution in varying amounts (Table 1.). The sodium and potassium solutions were prepared from their recrystallised chlorides. Well washed calcium carbonate dissolved in the minimum volume of hydrochloric acid was used to prepare the calcium standard. In each case, stock solutions of 1000 ppm were prepared and the appropriate dilution obtained.

Table 1. Cation Interference % Errors in Measurement.

Inte	rfering Ion	Na	K	Ca
	ppm	2.5 ppm	5 ppm	25 ppm
Na	5	_	0	0
	25	- · · · · · · · · · · · · · · · · · · ·	0	+1
	100	-	0 0 0	+9
K	5	0		0
	25	O	-	0
	100	0	-	0
Ca	5	+1	0	-
	25	+5	0	-
	100	+12	0	
$^{ m NH}_{\Lambda}$	1000	0	0	0

Potassium may thus be determined accurately without interference from either sodium or calcium at all concentrations. Equally, potassium does not in any way modify the true response of the instrument to sodium or calcium.

On the other hand, calcium and sodium are subject to mutual reinforcement in the flame due to the inherent inability of the light filters to exclude unwanted light entirely. Taken over the whole range, the errors are large, but when considered in relation to the more restricted ratio of calcium to sodium in plant material, they are quite small.

Plants contain considerably more calcium than sodium, typical $\frac{\text{Ca}}{\text{Na}}$ ratios being for a variety of crops, cereal grain 2, cereal straw 10, turnip tops 8, turnip roots 3, grass 3, clover 10, kale leaf 7, kale stem 3.

It can thus be taken that calcium determination may be made without the risk of interference from sodium, which would only cause an error of +1% even if present in equal concentration to that of calcium. There are however other factors which interfere with the determination of calcium which are discussed later.

In the determination of sodium, however, account should be taken of the presence of calcium. At a $\frac{Ca}{Na}$ ratio of 2, the error is +1% increasing to +5% at a ratio of 10. The most convenient method of making allowance for this is to include the appropriate amount of calcium in the sodium solution used to prepare the standard curve. Table 2 indicates that the effect of a given calcium addition is constant

over the whole range of sodium and that the calibration curves produced are identical. Thus, by setting the instrument at 0 with the appropriate calcium concentration to be expected and at 100 with a similar concentration plus 5 ppm Na, the same curve may be used throughout.

Table 2. Effect of Calcium Addition to the Sodium Calibration Curve

Na ppm	a ar	Flame Photometer Readings Ca. added. ppm.				
	0	5	25	100		
O	O ^ૠ	O ^X	O ^ૠ	0,34		
	22•5	23•0	23•0	23•5		
2	44.0	43•5	44.0	44.5		
3	64•0	64•0	63•5	64.0		
4	82•0	81•5	82•5	82•0		
5	100**	100 [*]	100 [#]	100 ³⁸		

Fixed instrument settings after adjustment for each vertical series.

Experience showed that in any particular field experiment with either kale, turnips or grass that the amount of calcium in the plant material was very uniform from plot to plot. For example, Table 3 shows the extreme range of calcium contents found in the first three kale experiments each of which consisted of 54 plots with different fertilizer treatments. The great majority of samples were very closely

grouped around their respective means.,

Table 3. Range of Calcium Contents Found in Each of Three Kale Experiments.

Expe	eriment		Leaf			Stem	
		Min.	Max.	Mean.	\mathtt{Min}_{ullet}	Max.	Mean.
	1	1.76	2.60	2•20	0.76	1.01	0.90
	2	1•86	2.62	2•19	0•64	0•96	0.78
•	3	2.00	2•66	2•33	0•62	0•99	0•79

It proved entirely satisfactory to add the appropriate predetermined amount of calcium corresponding to the mean calcium level of all the plots in each separate experiment to the sodium solutions used to set the flame photometer correctly, thus avoiding the necessity of a separate calibration for each sodium determination.

B. ANIONIC INTERFERENCE

1. Sodium and Potassium

Collins and Polkinhorne (1952) have shown that very high concentrations of anions are needed in order to produce interference in determinations of sodium and potassium. Their results are quoted in Table 4.

Table 4. Limiting Anionic Concentrations for Zero Interference.

Interfering Ion	Limiting conc. (ppm) for 10 ppm Na	or determination of 10 ppm K.
NO,	40,000	100,000
so	18,000	56,000
cı T	1,400	1,200
PO	600	400

These quantities are obviously so very much greater than the amounts present in plant material that their effect on the accuracy of sodium and potassium determinations can be ignored.

2. Calcium

The EEL flame photometer has the very serious drawback in that the calcium emission is reduced in the presence of certain anions. In measuring calcium at a concentration of 50 ppm, chloride and nitrate ions added as their respective acids showed no depressive effect until their strength reached about 0.1 N and sulphate did not reduce the calcium emissiom until present at 0.05 N. These quantities are so very large in relation to 50 ppm of calcium that their possible effect in the analysis of plant material is nothing.

There is however, very serious interference to the calcium emission from phosphate in solution. Table 5 shows the marked depressive effect of even traces of phosphorus. Phosphorus was added to solutions containing 50 ppm of calcium as ammonium phosphate as the ammonium ion is quite without effect on the calcium emission (see Table 1.).

Table 5.

Interference Effect of Phosphate on the Determination of 50 ppm of Calcium.

This loss in emission is due to the formation of calcium phosphate which is not excited to any degree in the coal gas/air flame. interference is not so severe in flame photometers which burn acetylene or other high temperature flames and in such instruments the phosphate interference rapidly reaches a steady maximum. In these cases, excess of phosphate can be added to the solutions under test in such quantity that further small additions from the plant material would cause no further interference. Brealey et al (1952), Sharrer and Jung (1954) and Leyton (1954), for example, have described suitable methods for a variety of flame photometers burning acetylene. This approach cannot be used for the EEL instrument as the interference due to phosphate does not reach a steady maximum. It is changing rapidly over the normal calcium/phosphorus ratios found in plants and large additions of phosphate would cause too great a loss in sensitivity.

Many methods have been advocated for the removal of small amounts of phosphate from solutions containing calcium in order that subsequent calcium determinations may be made acurately. Chen and Toribara (1953), Powell (1953) and Williams and Morgan (1953) have

precipitated calcium as the oxalate and carried out the analysis on the redissolved precipitate. Smith and McCallum (1956) have more recently removed phosphorus from solution before the EDTA method for determining calcium by precipitation with ferric chloride at a suitable pH. Some more rapid method however is needed to remove phosphorus completely in order not to cancel out the speed advantage of flame photometry.

Attempts have been made to precipitate phosphorus present at 50 ppm and under in solutions containing 50 ppm of calcium. A variety of reagents such as lead acetate and zirconium sulphate have been investigated, precipitation of the phosphate under varying conditions being followed by centrifuging. Difficulty was frequently encountered in obtaining clear solutions and in no case did the supernatant liquid give the correct calcium reading. This approach was therefore abandoned.

Investigations have been made to determine whether or not an anion exchange resin (Amberlite 1 R - 400 (CH)) could be used to separate calcium and phosphate. The resin was ground to pass the 60 mesh sieve but be retained by the 120 mesh and packed to a depth of about 5 cms. in a 7 mm. diameter tube. The resin was charged with sodium hydroxide, surplus being removed by thorough leaching with water.

25 ml. quantities of solutions containing varying quantities of calcium and phosphorus were introduced into the columns. The first 15 ml. of leachate was discarded as it was diluted with the water retained in the column after washing. The remainder of the leachate

was retained for flame photometric determination of calcium and the results compared with the original solutions (Table 6.).

Table 6. "Apparent" Calcium Concentration in the Original Solutions (A) and the Leachate (B) from Exchange Columns.

Phosphate added			Cal	.cium (ppm)	in so	olutio	on		
ppm P.	. 1 A	О В	A	20 B	A	30 B	A	40 B	A	50 B
0	10	7	20	14	30	21	40	27	50	34.5
10	5	7	8	13	145	22•5	23	27.5	32-5	34
25	4•5	8	6	13	8-5	20•5	11•5	28	12•5	34•5
50	4	7	-	-	-	-	11	28	-	-
100	4	7•5	-	-	-	-	11	26	-	-
Mean Ca recovered.	- -	7•3 73•0	- -	13·3 66·5	<u>-</u>	21•3 70•1	-	27•3 68•3	-	34•3 68•6

Increasing phosphate concentration, because of the depressive effect on calcium emission, produced steadily decreasing "apparent" calcium concentrations in the original solutions(A). The flame photometer readings in the leachate (B) were however reasonably constant over the whole range of phosphate for each vertical series. In each case some 70% of the calcium was recovered.

Experiments with larger volumes showed that phosphate retention was complete. Thus the lower levels of calcium in the leachate can only be explained on the basis that some calcium was retained on the column, most probably as calcium phosphate precipitated under the

alkaline conditions. Attempts to improve the recovery rate and its constancy by charging the column with calcium hydroxide in place of caustic soda and altering the flow rate were not successful and this method was not pursued further.

Mason (1952) has used a cation exchange resin (Zeo - Karb 215) in the form of a column to retain calcium free from phosphate, the calcium subsequently being eluted with acid for determination with EDTA. The method finally adopted has been based on this idea.

Preparation of Exchange Columns.

The cation exchange resin used was Amberlite 1R - 120 (H) which was ground to a size that passes the 60 but is retained by the 120 mesh B.S. sieve. This was packed tightly into a 35 cm. length of glass tubing, 7 mm. in diameter and previously tapered at one end. The resin is held in position by two plugs of cotton wool. suitable depth is 5 cms. The tube should then be capable of holding 10 ml. of water above the resin and this should run through in not less than 20 minutes. The resin is prepared for use by washing with 5 N nitric acid and then several times with water. A number of tubes can conveniently be held on a horizontal wooden frame with "Terry" clips spaced at $2\frac{1}{2}$ inch intervals. This allows the columns to be raised and lowered easily and gives sufficient room on the bench for standard flasks, beakers etc.

Retention and Elution of Calcium.

10 ml. of a solution containing 50 ppm of calcium (prepared by

dissolving calcium carbonate in hydrochloric acid and suitably diluting) are introduced into the top of the column and allowed to leach through the resin. The resin is then washed twice with 5 ml portions of water and all the washings are discarded. A 10 ml calibrated flask is then placed beneath the column and the calcium is eluted with 5 N nitric acid until 10 ml of eluate are obtained. Calcium is then determined in this solution by flame photometry, the calibration curve having been prepared from known amounts of calcium in 5N nitric acid. Both retention of the calcium and its subsequent elution are complete, as checked by both flame photometry and an oxalate method. Calcium is incompletely held if the solution under test is more acid than 0.25 N.

5 N nitric acid was chosen to elute the calcium in preference to either sulphuric or hydrochloric acids as it reduces the flame intensity of the calcium emission to the least degree. This is shown by the flame photometer readings for various solutions containing 50 ppm of calcium, i.e. with water as solvent, 100; with 5 N nitric acid, 82; with 5 N sulphuric acid, 67; and with 5 N hydrochloric acid, 65. The calibration curve is prepared by setting the instrument at 0 with 5 N nitric acid and at 100 with 75 ppm of calcium in 5 N nitric acid and then reading a number of intermediate concentrations.

Efficiency of Phosphate Removal.

Table 7 gives the results obtained for calcium determinations on

solutions containing various amounts of phosphate added as ammonium phosphate. In each case they were added to the column in 10 ml. of water and eluted with 10 ml. of 5N nitric acid.

Recovery of Calcium from Solutions Containing Various Table 7. Amounts of Added Phosphate

	TAKEN.	EEL FLAME	FOUND	•	RECOVERY
Ca.	P.	PHOTOMETER	Ca.		. %.
		READING.*	ppm.		, , , , , , , , , , , , , , , , , , ,
ppm	ppm	THAD ING.	ppma		
10	0	15	10.4		104
10	10	14.5	9•7		97
10	25	14.5	9•7		97
10	100	15	10.4		104
10	100	±)	10•4	•	104
20	0	29	20.4		102
20	10	29	20.4		102
20	25	28	19.8		99
20	100	28	19.8		99
		, ==			<i>.</i>
40	0	58	40.0		100
40	10	57	39•5		99
40	25	58.5	40.5		101
40	100	57	39•5		99
40	100	<i>)</i>	J/•J))
50·	0	6 9	49.0		98
50	10	69	49.0		98
50	25	70	50.0		100
50	100	72	51.0		102
	100	16	71.0		102
60	0	85.	61.0		102
60	10	84	60.5		101
60	25	83.	59•5		99
60	100	84.5	60 . 5		101
	100	U4.7	30.7		707
				mean	100.3

⁷⁵ ppm Ca in 5N nitric acid. 5N nitric acid.

Elimination of interference due to phosphate is thus complete. The small deviations from 100% recovery are mainly attributable to inability to read the position of the light spot on the scale to a greater accuracy than \pm 0.5 of a division, particularly for the higher readings.

Effect of Other Interfering Ions.

A number of cations can influence the calcium emission. The effects of these have been studied by including them in calcium solutions prior to passing through the exchange columns. The amounts added were in such quantity as may be found in plant material, and additionally, in excessively greater amounts.

Table 8 shows that interference from aluminium, iron, manganese, magnesium and sodium is in each case absent when considered in relation to their concentration relative to calcium in plants.

Ween of Contratts thrown.

Table 8. Effect of Various Interfering Ions in the Determination of Calcium in 5N nitric Acid.

Interferin	g Ion.	Calcium Taken.	Calcium found.
	ppm.	ppm.	$\mathtt{ppm}^{\mathbf{\#}}$
Aluminium	10	50 50	50 . 0 49 . 0
Iron	1 10	50 50	50.0 51.9
Manganese	1 10	50 50	50.0 50.0
Magnesium	5 10 50	50 50 50	50.0 50.0 51.5
Potassium	50 500 50 500 500	10 10 25 25 25 50 50	10.0 10.1 25.0 25.2 50.0 50.5
Sodium	2 10 50 2 25 125 10 50 250	10 10 10 25 25 25 50 50	10.0 10.1 11.0 25.0 25.2 27.5 50.0 50.5

Mean of 3 determinations.

Procedure.

A convenient aliquot (usually 2.5 ml.) of the plant ash (prepared as described from lg. of material made up to 100ml.) is transferred to the exchange column. After washing twice with 5ml. portions of water

to remove phosphate, the calcium is eluted into a standard 10ml. flask with 5N nitric acid. The calcium concentration in ppm is then found by reference to the standard curve prepared from 0 - 75 ppm of calcium. After washing well with water, the column is ready for re-use.

If x ml. of the ash solution are taken and y ppm of calcium found, then the calcium content of the sample will be $\frac{y}{10x}$ per cent. If 2.5ml of solution is used, the range covered is from 0 - 3% Ca. in the plant material.

The procedure is obviously rather lengthy for a single determination, but when done in large batches many analyses may be completed very rapidly. After the initial pipetting into the exchange column, all the operations which are involved are simple washing procedures which can run unattended until the final collection of the 10ml nitric acid leachate. Even this may be simplified by leaching with slightly less than 10ml and then making up to the mark after drainage is complete.

Table 9 shows the good agreement reached between the calcium contents of a variety of plant materials as determined by both flame photometry and the **exal**ate method described by Marsden (1941).

Table 9. Comparison Between Flame Photometric and Oxalate
Methods of Determining Calcium in Plant Material.

·		CALCIUM %		
		FLAME	OXALATE	
Turnip		•380	•372	
Barley straw		. 200	•199	
Young oats		•382	.366	
Seeds hay		•512	•522	
Sugar beet pulp		.870	.878	
Maize meal		.020	.021	
Pea straw	•	.960	•945	
Bean straw		•750	.766	
Bracken stem		.220	.220	
Potato haulm		1.375	1.370	
	Mean	•567	•566	

Data concerning the accuracy of the method as measured by repeated analysis of the same sample of plant material are presented in a later section.

This method for determining calcium has been published (Hemingway (1956)).

DETERMINATION OF MAGNESIUM

The reaction between Titan Yellow (the sodium selt of the diagoamino compound of anhydrothio-p-toluidene sulphomic acid) and magnesium in alkaline solution to produce a red-orange colloidal lake has frequently been used as a method of determining magnesium.

Cornfield and Pollard (1950) have devised a method whereby there is no necessity for the addition of a protective colloid such as starch to stabalise the dispersion with a consequent drop in sensitivity. The procedure used has been a suitable adaption of this method.

Calcium and phosphate interferein the determination by increasing the development of the dispersion and aluminium by reducing it.

These effects can be overcome by the addition of a "compensating reagent" containing these elements in such quantity that further additions from the plant material have no further effect. Manganese also has a reducing effect, but Cornfield and Pollard found that this could be eliminated by the addition of mannitol. Other ions in concentrations likely to be found in plant material have been shown not to interfere.

Procedure

The solution containing magnesium (usually 2.5ml of the ash solution prepared as described) is placed in a test tube graduated at 2lml. To this is added in turn;

- (a) 1 ml of "compensating solution". This is prepared by dissolving 13.9g anhydrous CaCl₂, 0.96g KH₂PO₄ and 0.88g of potassium alum in 1 litre of water.
- and (b) lml. of a 2.5% aqueous solution of mannitol.

The mixture is then made up to the 21ml. mark, shaken and allowed to stand for 5 minutes. 2ml. of a 0.05% solution of Titan Yellow are added followed by 2 ml. of 3N sodium hydroxide. After shaking well, the tube is allowed to stand for 10 minutes (+1 min.). During this period the colloidal lake may partially coagulate.

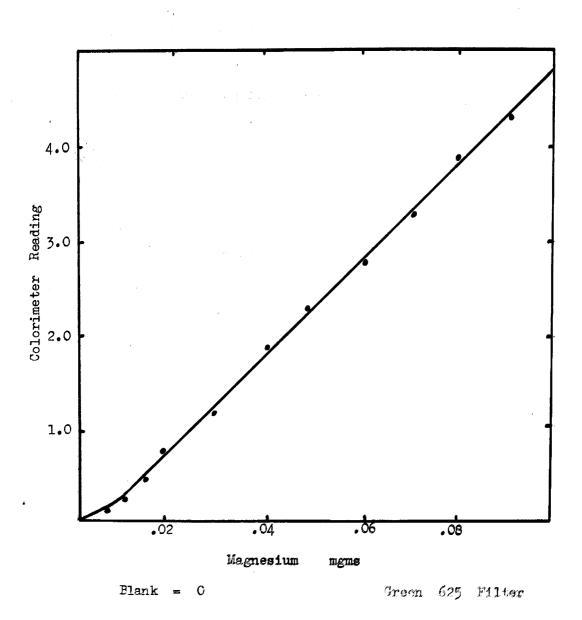


Fig. 3. Magnesium Calibration Curve

After 10 minutes the tube is vigorously reshaken to ensure complete dispersion and the contents are rapidly transferred to a colorimeter tube to be read immediately in the EEL Colorimeter using the 625 green filter, optimum transmission 540 mu.

A series of standards are prepared in the same manner using from 0 to 0.10mg. of magnesium as magnesium sulphate and a calibration curve obtained, setting the blank at 0 (Fig. 3.). If 2.5ml. of the plant ash solution is used, this corresponds to 0 - 0.40% Mg.

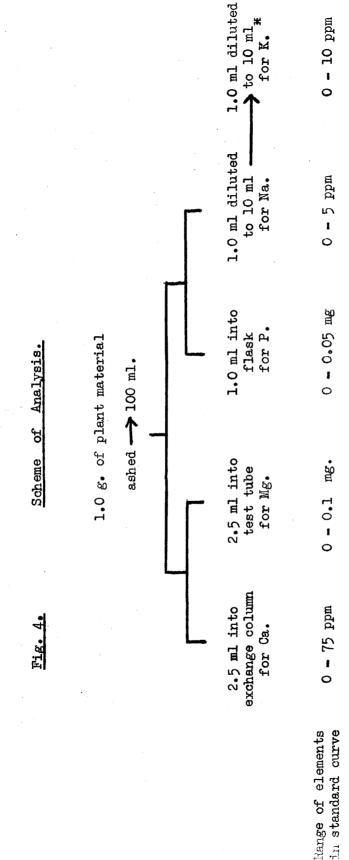
Comparison with a volumetric magnesium ammonium phosphate method (Marsden (1941)) showed very good agreement (Table 10.).

Table 10. Comparison Between Titan Yellow and
Magnesium Ammonium Phosphate Methods for the
Determination of Magnesium.

		Magnesium	1 %.
		Titan Yellow	Volumetric
Kale leaf		.0 90	•098
Kale stem		.146	.150
Grass		.124	.120
Clover		.266	. 260
Turnip tops		.210	• 204
Turnip roots		.108	.100
	4	<u></u> .	
	Mean	.157	• 155

Data concerning the errors of repeated analyses of the same sample are presented in a later section.

DETERMINATION OF PHOSPHORUS.


Phosphorus has been determined by the usual molybdenum blue reaction. Iml. of the ash extract was pipetted into a 100ml. flask and the blue colour developed after addition of the ammonium molybdate/sulphuric acid mixture and stannous chloride was measured in an EEL colorimeter. The standard curve produced covers the range 0 - 0.05 mg. P, i.e. 0 - 0.5% P.

SCHEME OF ANALYSIS

Having developed these methods, it was of the greatest importance that full advantage should be taken of their speed to determine sodium, potassium, calcium, magnesium and phosphorus in a large number of samples. To this end, a procedure has been devised to cut down the number of operations such as pipetting and the amount of apparatus to the absolute minimum.

In each case, exactly lg. of sample was weighed out for analysis to avoid the need for subsequent calculations. Samples were analysed in batches of 16 as many of the field experiments had 32 plots. A metal tray to hold this number was made to fit the muffle furnace and after ignition it was transferred to fit over a sand bath for evaporation to dryness with hydrochloric acid. The ash was dissolved in hot water and made up to 100ml. Measured volumes of this solution were taken for analysis as shown in Fig. 4.

In this manner it was possible for one person to complete the analysis of 16 samples for all five elements in a day and this number could perhaps be increased if necessary.

This diluted solution may, in addition, be used for sodium in those samples where it exceeds 0.5% of the dry matter.

0 - 10

0 - 0.5

0 - 0.5

0 - 0.4

0 - 3.0

of element in plant material

5 ml graduated The two 2.5 ml quantities for Ca. and Mg. are most conveniently delivered from a Similarly, a 2 ml pipette can be used for the 1 ml portions for P and Na. pipette.

THE ANALYTICAL ERRORS.

The accuracy of this scheme of analysis has been measured by repeated analyses of barley straw, hay and kale leaf. The method used was to weigh out lg. samples of each and perform the analysis, the process being repeated at weekly intervals over a period of 10 weeks. Table 11 gives the total error from all sources of the separate analyses as measured by expressing the standard deviations as a percentage of their respective means. In each case the mean contents have been compared with values obtained separately by standard volumetric and gravimetric methods and good agreement This scheme of analysis has therefore been adopted and used found. throughout as the errors were considered to be satisfactorily small when associated with the speed and ease of analysis.

Replicate Analyses Carried Out Over A Period.

Table 11.

												STATE OF THE STATE		- Care descriptions and I	Andreas Company of Assessment
		BAR	BARLEY STI	STRAW			HAY	Υ				KALE	E LEAF	_	
	Na Sa	×	ಲೆ	N S	Д	Na	M	Ca	60 -1	Ы	Ea.	M	Ca	53	Ċ
	.055	1.10	1190	•064	.105	.185		.305	.172	.305	.235			.112	.265
	.045	1.10	.200	.068	.115	.180		.315	.180	.300	.245			100	.275
	90.	1.15	.190	•064	.120	.180		.315	.168	.310	.245			.104	. 260
	90.	1.00	.190	.072	.120	.195	2.40	.310	.162	.315	.225	2,10	2.38	.120	.275
	.055	1.05	.190	090	.10C	.190		.300	.176	.300	.235			.116	. 265
	.055	1.10	.200	•064	.105	.185		.310	.176	.305	.240			.108	.275
	090	1.15	.190	.072	.120	.180		• 300	.168	.310	.235			.122	.275
	.055	1,05	•190	·064	100	.190		.310	.162	.310	.225			102	. 265
	.055	1.05	.195	•068	.115	.195		.295	•168	.310	.230			, 104	. 260
	090•	1.05	.195	.072	.110	.180		.310	.162	.315	.225	2,15		.116	.275
Mean	950°	1,08	.193	190.	.110	.186	2.38	.307	.169	. 308	.234	2.09	2.31	.110	. 269
S. Dev. as % of Mesn 8.17	8.17	4.44	2,18	6.27	96•1	3.32	2.47	2.21	3.83	1.94	3,31	3.53	4.59		2.44
Mean of 2 determinations by "standard" methods of analysis	090•	1.10	.195	.065	.107	.182	2.32	.320	.174	.320	. 240	2.07	2.33	.106	.275

EXPERIMENTS WITH KALE

There have been a variety of recorded results regarding the use of nitrogen on kale. Earlier work showed that 1 cwt. of ammonium sulphate produced about 1 ton of extra kale and that the response was almost linear up to 8 - 10 cwt. There were consequent reductions in the dry matter %. Within recent years opinions have been expressed that responses to nitrogen are not now so large and are more irregular from site to site. A search of the literature has revealed no records of controlled experiments with phosphorus and potassium, although compound fertilizers have been used at different rates.

There has been no systematic investigation into the effect of salt on kale, but Harmer & Benne (1945) have reported large increases in the yield of cabbage. Lehr (1953) has quoted the results of a trial in Ireland where salt reduced the yield of kale on a potassium deficient soil, but stimulated it when a suitable potassium application was also given. Pizer (1954) has summarised the available evidence regarding the solt tolerance limits of various crops on land flooded with sea water. Those withstanding 0.3% NaCl, (the highest) include kale, swedes, rape, mustard, rye, barley and rye grass. Oats and lucerne tolerate 0.2% and red and white clovers, timothy, wheat, cocksfoot, peas and beans fail at about 0.1%.

Experiments which have been made with nitrogen fertilizers have usually shown increases in the protein content of the crop, but there have been no investigations regarding the effect of fertilizers on the mineral composition of kale.

In the present work, six field experiments have been completed with kale. Four have been with marrow stem kale and two with the thousand head variety.

Two experiments (Kale 1 and Kale 2) with marrow stem kale were laid down in 1954. Each conformed to a similar design with the following treatments.

Ammonium Sulphate	0, 4 and 8 cwt./acre (NO,N1, N2)
Superphosphate	0, 3 and 6 cwt./acre (PO, P1, P2)
Potassium Chloride	0, 1 and 3 cwt./acre (KO, K1, K2)
Salt	0 and 4 cwt./acre (SO, S1)

The basic layout of each was a standard 3 x 3 x 3 design of 27 plots in 3 blocks of 9 plots with the NPK interaction confounded between blocks. Salt was applied to a random half of each of the main NPK treatments.

One further experiment of this type (Kale 3) was carried out in 1955, only with thousand-head in place of marrow stem kale.

The partition of the degrees of freedom for the analysis of variance in the above design is as follows.

Main Plots

Split Plots

The second with a second secon		d. of f.			d. of f.
Blocks		2	Main Effect	S	1
Main Effects	N	2	Interactions	ns	2
•	P	2		PS	2
	K	2		KS	2
Interactions	NP	4		NPS	4
	NK	. 4		nks	. 4
	PK	4		PKS	4
Residual		6	Residual		8
	Total	26		Total	27

The second experiment in 1955 (Kale 4) on marrow stem kale used a simpler design involving only phosphorus, potassium and salt. The treatments were;

Superphosphate	0,	3 and 6 cwt./acre	(PO,	Pl,	P2)
Potassium Chloride	0,	$1\frac{1}{2}$ and 3 cwt/acre	(KO,	Kl,	K2)
Salt	0.	3 and 6 cwt./acre	(so,	Sl,	S2)

Each plot in addition received 6 cwt. of ammonium sulphate per acre.

Two further experiments (Kale 5 and Kale 6) were laid down in 1956, the first with marrow stem and the second with thousand head kale.

The treatments were;

Ammonium Sulphate	0	and	6	cwt./acre	N.
Superphosphate	0	and	3	cwt./acre	P.
Potassium Chloride	0	and.	2	cwt./acre	K.
Salt	0	and	4	cwt./acre	S.

The various treatments were arranged in a factorial design in 4 blocks of 8 units. The NPKS interaction was confounded in each of the two complete replicates.

The analysis of variance is as follows.

	d. of f.
Replications.	1
Blocks in Reps.	2
Main Effects. (4)	4
Interactions:	
2 Factor (6)	6
3 Factor (4)	4
Residual	14
x - '	• • • • • • • • • • • • • • • • • • • •
Total	31

The kale was invariably grown on slightly ridged land, the ridges being about 27 inches apart. The fertilizers for each plot were thoroughly mixed and sown by hand to the ground after the first harrowing but before the final seed bed preparations. In this way they were well intermixed with the soil during subsequent cultivations. Normally about a week elapsed between the date of fertilizer application and the sowing of the seed.

Only half of the total ammonium sulphate dressings of 6 and 3 cwt. per acre were given in the seed bed. For these high rates, half was applied at sowing time and the remaining half top dressed at singling.

The experimental areas were in each case sited in convenient positions in fields of kale on various farms. They were cultivated, sown, singled and weeded etc. at the normal times in conjunction with the remainder of the field by the farmer. Harvesting took place in

late October and early November before the onset of serious frosts.

Plot Size.

In each experiment the plot size used has been 0.01 acre. In the first three experiments the main plots were twice this size to allow each half-plot receiving salt to be of similar area. Each plot (or half-plot) was 6 rows wide, generally the spacing being 27 ins., and about 33 ft. in length. The central four rows were harvested for yield determinations and samples for analysis were taken from this area.

Edwards (1954) and Halliday (1954) have both reported satisfactory results from using this size of plot. Halliday found that coefficients of variation in kale experiments using nitrogen were between 7 and 8% for dry matter yields.

Sampling.

The nature of the kale plant is such that fertilizers may alter the leaf/stem ratio and in view of the difference in composition of the separate parts it was decided to obtain separate samples of leaf and stem for analysis.

The kale experiments were singled as well as possible, but inevitably a few pairs or closely spaced plants were left. This naturally leads to the occurence in any one plot of a very small number of plants which are generally quite atypical from the remainder, usually being much smaller and stunted. It is obvious that such plants do not contribute to the total weight in relation to their numbers and that their composition might differ markedly from the remainder.

They must therefore be rejected in sampling and thus the samples taken will not be truly random but restricted to selection from the more normal plants in each plot. In any event, these will be the great majority and the preponderating factor in total yield.

Other workers have adopted the same attitude. Edwards (1945) took six plants per plot and rejected any obviously atypical plants in his "random" selection. Halliday (1954) recommends that a "fixed number" (unspecified) of "typical plants" be taken.

There are obvious limitations to the number of plants which can be taken to form a representative composite sample of kale in view of the bulk of material involved. Investigations have been carried out in areas adjacent to Experiments 1 and 2 to determine a suitable number of plants to be sampled for analysis.

From an area of 0.1 acre, ten groups of 12 plants were taken to represent individually the kale in that area. The plants were cut at about 3 ins. above ground level. Obviously atypical plants were rejected during the selection. The procedure them adopted was to strip the leaves from the stems. During this process three leaves from each plant were collected separately. One was taken from the top third, one from the middle portion and one from the bottom third of each plant. These 36 leaves then formed the laboratory sample for dry matter determination and subsequent analysis. During this separation, any surplus water adhering to the leaves is well shaken off.

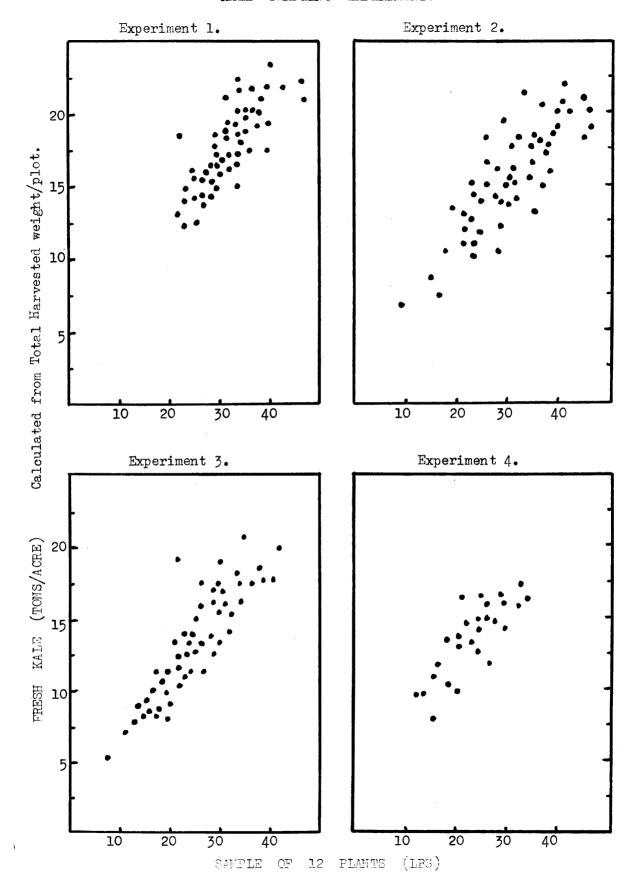
The bulked leaves and stems from each group of 12 plants were

weighed separately, the sum giving the total fresh weight. The leaf subsample was chopped, reduced in size by quartering, dried at 100° C, reweighed and finally ground. The 12 stems were treated in a similar manner.

Table 12 details the results of these investigations with respect to fresh weight, leaf/stem ratio and % D.M., and Table 13 gives the analyses of the dry matter for the separate samples from the area adjacent to Experiment 1. The analyses were carried out by the methods previously described. Expressed on a % basis, all the errors fall between 7 and 10% of their respective means, with the exception of the dry matter %s which are rather smaller. This order of magnitude is generally acceptable in this type of work and was surprisingly small.

Table 12. Investigations into Sampling Error (Sampling Unit. 12 Plants)

	EX	PERIMENT 1	•		EXPERIMENT 2.					
Sample	Fresh wt. lbs.	Leaf/stem ratio	% D LEAF	.M. STEM	Fresh wt. lbs.	Leaf/stem ratio	% i Leaf	o.m. Stem		
1 2 3 4 5 6 7 8 9	30.5 30.0 33.5 30.0 34.5 31.5 30.5 30.0 34.5 34.0	1.44 1.50 1.39 1.40 1.30 1.63 1.26 1.31 1.30 1.19	11.4 11.6 11.8 11.2 11.4 11.7 11.3 11.9	10.0 10.5 10.6 10.4 10.2 10.7 10.2 10.8 10.4	29.0 31.5 33.5 28.5 29.0 27.0 33.5 31.0 29.0	1.70 1.52 1.62 1.62 1.45 1.30 1.32 1.65 1.50	12.2 12.4 12.3 12.7 12.5 12.1 12.6 12.7 12.2	10.0 10.0 10.1 10.4 10.6 10.2 10.7 10.0 10.2		
Mean	31.9	1.37	11.5	10.5	30.3	1.50	12.4	10.3		
S. Dev. % of mea	as 6.22	9.40	2.38	2.91	7.11	10.00	1.70	2.56		


Table 13. Investigations into Sampling Error.

(Sampling Unit, 12 Plants)

% Composition of the Dry Matter.

			LEAF	ann di etti muudua (maaini inisii sii aa aka			To man sides codes TEE brown and recomme	STEM	Mandado de Caracteria de C	nga mang pendambang pagnapanggan angk
Sample	Na	K	Ca	Mg	P	Na	K	Ca	Mg	P
2 2 3 4 5 6 7 C	.300 .265 .295 .255 .270 .285	2.40 2.65 2.50 2.55 2.35 2.40 2.65	2.70 2.24 2.12 2.06 2.36 2.04 2.46	.116 .122 .142 .126 .142 .110	.275 .300 .305 .290 .265 .285 .315	•350 •305 •345 •300 •325 •300 •340	3.45 3.65 3.50 3.05 3.25 3.40 3.70	.90 .96 .96 .96 .80	.152 .138 .160 .160 .166 .132	.310 .325 .310 .275 .280 .325 .280
8 9 10	•295 •290 •235	2.80 2.30 2.10	2.04 2.12 2.20	.136 .146 .122	.300 .280 .305	•325 •340 •285	3.75 3.35 3.85	•96 •92 •84	.132 .148 .162	• 270 • 320 • 295
Mean S. Dev.		2.47	2.22	.130	.292	•322	3.50	•89	•152	•299
as % mean.	7- 74	8.22	9.63	10.15	5.38	7.02	7.14	7.61	8.62	7.22

A further check on the validity of using 12 plants as representative of each plot has been made. For each of the first four experiments, the weight of the 12 plants sampled have been plotted against the total weight of material harvested from each plot. The normal practice was to take 3 plants from each of the four harvested rows. Fig. 4 shows the good general correlation between sample weight and total harvested yield.

KALE EXPERIMENT 1. 1954.

Site Balloch, Dunbartonshire.

Soil Red sandstone drift. Freely drained.

Exchangeable Na 8.0 mgs %

1% citric sol P 5.0 mgs % Deficient

1% citric sol K 8.5 mgs % Low

pH 6.2

Previous Cropping

1953. Oats. No fertilizer except Nitro-chalk.

1952. Permanent grass.

Variety Marrow Stem.

Fertilizer Treatments and Layout.

The experiment consisted of all combinations of the following treatments;

Ammonium Sulphate 0, 4 and 8 cwt./acre (NO, N1, N2)

Superphosphate 0, 3 and 6 cwt./acre (PO, Pl, P2)

Potassium Chloride 0, 12 and 3 cwt/acre (KO, K1, K2)

Salt 0 and 4 cwt./acre (SO, S1)

The treatments were arranged in a standard 3 x 3 x 3 layout of 27 plots in 3 blocks of 9. The salt treatment was applied to a random half of each plot, giving 54 plots in all.

The crop grew well throughout and the mean yield of fresh kale was 18 tons per acre. There were large increases in yield from both ammonium sulphate and superphosphate.

Data regarding the yield and chemical composition of the crop are presented in the Appendix, Tables A 1 - A 7.

Yields of Fresh and Dry Matter. (A2)

The mean yield of fresh kale was 17.89 tons. Individual plots varied from 12.5 to 23.6 tons. The range of dry matter yields was from 1.477 to 2.628 tons, the mean being 1.989.

Salt significantly increased the yields of both fresh and dry matter by 0.87* and 0.099* tons respectively. In each case there were appreciable negative ES and PS interactions. Salt thus increased the yield by about 1.60 tons of fresh kale in the absence of either superphosphate or potassium chloride but by only about 0.20 tons in their presence. The negative PKS interactions were also considerable. Salt gave appreciably better returns in the presence of ammonium sulphate (1.34 tons fresh and .182 tons dry) than in its absence (0.16 tons and .022 tons respectively).

Ammonium sulphate had large and very significant effects on the yields of both fresh and dry matter. The increases from the 8 cwt. application were 4.29 and .278 tons respectively.

Superphosphate also increased yields significantly. The fresh weight increase was 2.85 tons and the dry matter increment .291 tons.

Potassium Chloride was almost without effect. It increased the yield of fresh kale by only 0.48 ton.

Composition of the Dry Matter.

Sodium (A3)

The mean % Na in the leaf and stem were .383 and .332. Very

large variations were found from plot to plot. The lowest values (.110 and .115 respectively) occurred in the NO PO K2 plot and the highest (.885 and .820) with the N2 PO K1 S1 treatment.

Salt had very large and significant effects, the increases in the leaf and stem being .151** and .121** % respectively. Ammonium sulphate and superphosphate had little influence on the effect of salt (although individually they had considerable influences) but potassium chloride much reduced the ability of salt to increase the sodium uptake. Thus, in the leaf, in the absence of potassium chloride salt increased the % Na by .298% but by only .079% in its presence. In the stem the increases were .222 and .053 respectively. These negative KS interactions were both very significant.

Ammonium sulphate increased the % Na by .154 in the leaf and by .210 in the stem. The increases were reduced in the presence of potassium (.103 and .164 and .164 and correspondingly greater (.251 and .377 in its absence. The negative NK interaction reached significance at the 5% level in the stem.

Superphosphate also had marked effects. The % Na was increased by $.059^{\frac{11}{2}}$ in the leaf and by $.070^{\frac{11}{2}}$ % in the stem.

Potassium chloride greatly depressed sodium uptake. In the leaf, the level fell from .539 to .279 when 3 cwt. per acre were applied. In the stem the fall was from .463 to .247. Both these reductions were highly significant.

Potassium (A4)

The mean % K in the leaf and stem were 2.44 and 3.49 respectively.

The lowest values of 1.85 and 2.90 were found in the NO PO KO S1 plot and ranged up to 3.15% in the leaf and 4.05% in the stem.

Salt reduced the % K in the leaf by 0.12 and in the stem by .03%. The effects of salt in association with other fertilizers were rather irregular but the fall in potassium level was generally less when superphosphate and potassium chloride were given with the salt and greater in the presence of ammonium sulphate. None of the effects and interactions were significant.

Ammonium sulphate depressed the % K in the leaf by $.17^{\frac{14}{3}}\%$ but increased it by a small amount (.07%) in the stem.

Superphosphate tended to reduce the potassium levels in both leaf and stem.

Potassium chloride itself significantly increased the potassium content of both leaf and stem, the rises in % K being .39 and .40 and .40 respectively. Other fertilizers did not materially influence the main potassium effect.

Calcium (A5)

There was little variation from plot to plot in the calcium contents of either leaf or stem. The mean values were 2.20 and 0.90% respectively.

Salt depressed the level in the leaf by .05% but increased it slightly in the stem by .02%. Neither effect approached significance and the influence of salt was in no way consistent.

Ammonium sulphate had no effect on calcium uptake, the increases in % Ca in leaf and stem being .02 and .04 respectively.

Superphosphate reduced the % Ca in the leaf by $0.10^{\frac{14}{8}}$ and in the stem by 0.05%.

Potassium chloride also reduced the calcium levels in leaf and stem by 0.05 and 0.04 respectively.

Magnesium (A6)

The mean % Mg in the leaf was .123 and in the stem, .152. There were no marked influences due to fertilizer treatment.

Salt depressed the level in the leaf by .005% and in the stem by .012%, but neither effect reached significance.

Ammonium sulphate was almost without effect. 8 cwt. reduced the the % Mg in the leaf by .004 and increased the amount in the stem by .002.

Superphosphate tended to depress the magnesium uptake. There were falls from .127 to .124 in the leaf and from .159 to .149 in the stem.

Potassium chloride behaved in a similar manner. There were reductions of .004 in the leaf and .003 in the stem.

Phosphorus (A7)

The mean values of % P in the leaf and stem were .289 and .320.

Salt increased the level in the leaf by .010 and in the stem by .019*%. There were quite large negative PS interactions and in the stem this reached -.043*%. Only in the absence of superphosphate did salt increase the level of phosphorus in the stem and then by as much as .040%. In the absence of both superphosphate and potassium chloride the increase was .072%.

Ammonium sulphate had the effect of increasing the % P in the leaf by .016% and in the stem by .006%.

Superphosphate itself significantly (P = .05) increased the level in the stem from .272 to .295 and in the leaf from .301 to .332.

Potassium chloride had a small depressive influence of about .008% P in both leaf and stem.

n napago bela n Name sessionel emissionel libra de la palagrapió de la colonia de la colonia de la colonia de l

KALE. EXPERIMENT 2. 1954

<u>Site</u> Balfron, Stirlingshire.

Soil Red sandstone/alluvial drift.

Deep, freely drained.

Exchangeable Na 5.0 mgs %

1% citric sol. P 10.0 mgs % Low

1% citric sol. K 9.0 mgs.% Low

pH 6.8

Previous Cropping

1953 Oats No fertilizer except Nitro-Chalk

1952 Potatoes NPK fertilizer

<u>Variety</u> Marrow stem

Fertilizer Treatments and Layout.

The treatments and design of this experiment were as for Experiment 1, namely; all combinations of 0, 4 and 8 cwt. of ammonium sulphate, 0, 3 and 6 cwt. of superphosphate and 0, $1\frac{1}{2}$ and 3 cwt. of potassium chloride in a 27 plot layout with 4 cwt. of salt applied to a random half of each plot.

The crop grew well throughout the season, the mean yield being 15 tons of fresh kale per acre. Ammonium sulphate gave large yield increments. Some damage occurred in mid-summer due to the action of rabbits and this is reflected in the rather high standard error. It did not in any way obscure the main fertilizer effects. The interior of some of the stems on the plots with the highest nitrogen treatment were hollow and slightly brown, features similar to boron deficiency,

but the crop did not seem to be adversely affected.

Tables A8 - A14 present the crop yields and analyses.

Fresh and Dry Matter Yields (A9)

The mean yields were 15.46 tons of fresh kale and 1.882 tons of dry matter. Individual plot yields varied from 6.48 tons (NO PO KO SO) to 21.56 tons (N2 P2 KO S1) primarily as the result of the nitrogen treatment.

Salt significantly increased the yield of both fresh (0.95** tons) and dry (0.099** tons) matter. In each case there were large and KS significant negative interactions; -3.00*** tons for the fresh kale and -0.331** tons for the dry matter.

Ammonium sulphate had large effects. The fresh weight increase was 6.23 tons and although there was a fall in dry matter %, the dry weight was also increased by 0.513 tons. These increases tended to be greater in the presence of superphosphate.

Superphosphate also increased the yield of fresh kale by 1.27 tons and of the dry matter by .110 tons. There were quite large negative PK interactions.

Potassium chloride had a smaller influence on yield, the increases being 0.50 tons of fresh material and 0.063 tons of dry matter.

Composition of the Dry Matter.

Sodium (A10)

The leaf had a mean content of .329% Na and that of the stem was .324%. Large variations were found from one treatment to another ranging from .090 and .110% in the leaf and stem of the NO PO KO SO

plot to .950 and .875% respectively in the N2 P2 KO S1 plot.

Salt had a large and consistent influence on sodium uptake. The amounts in both leaf and stem were raised by .164***. There were also substantial negative interactions with the other three supplied nutrients. None reached significance, but the KS interactions were almost so.

Ammonium sulphate had large and significant effects; the sodium level was raised by .297**% in the leaf and by .286***% in the stem.

These increments were even greater in the absence of potassium.

Superphosphate had a much smaller influence. The levels in the leaf and stem rose by .037 and .015 respectively and in each case the NF interaction was +.050.

Potassium chloride markedly and very significantly depressed sodium uptake. The % Na in the leaf fell from .471 to .295 with the $1\frac{1}{2}$ cwt. application and to .221 with the 3 cwt. dressing. In the stem the fall was from .460 to .303 to .208% Na. In both leaf and stem there were large and significant (P = .01) negative NK interactions of $-.267^{\text{MM}}$ and $-.223^{\text{MM}}$ respectively. These led to much greater reductions in the % Na from potassium when high nitrogen applications were given, e.g. In the leaf the mean for the N2 KO treatments had .731% Na, but for the N2 K2 treatments the level was .277% Na.

Potassium (All)

The mean % K in the leaf and stem was 1.64 and 3.18 respectively. Individual plots varied from 1.10 to 2.40% K in the leaf and from 2.25 to 4.55% in the stem, primarily due to the effect of potassium

chloride.

Salt had no influence. It raised the % K in the leaf by .03 and reduced it in the stem by .07%. There was a tendency for the depressive effect to be greater in the presence of superphosphate.

Ammonium sulphate reduced the % K in the leaf by 0.07% but increased it by 0.38% in the stem.

Superphosphate raised the % K in the leaf by 0.17% and in the stem by 0.08%.

Potassium chloride itself had larger and more significant incremental effects. The rise in the leaf was from 1.52 to 1.89 (sig. at 5% level) and in the stem from 3.06 to 3.48. In the leaf the PK interaction (+0.37%) was also significant.

Calcium (A12)

There was little variation in the calcium figures. The mean % Ca of the leaf was 2.19 and of the stem, 0.78%.

Salt depressed the calcium level in the leaf by 0.03% but was without influence on the stem. There were quite large negative KS and PS interactions in the leaf.

Ammonium sulphate reduced the % Ca in the leaf by 0.15 and in the stem by 0.01%. The positive NP interaction of 0.06 in the stem was significant (P = .05) but there was a negative one of -0.17% in the leaf.

Superphosphate reduced the % Ca in the leaf by 0.04 and in the stem by 0.05*%.

Potassium chloride had a similar effect to superphosphate, a fall

of 0.07% in the leaf and of 0.07% in the stem. The negative NK interaction in the stem of -0.05% was significant (P = .05).

Magnesium (Al3)

The leaf had a mean Mg % of .089 and that of the stem was .133%.

Salt had no overall effect on the magnesium content. It did however tend to increase the % Mg on plots without potassium chloride but to decrease it when given in association with potassium. It also increased the % Mg in the absence of ammonium sulphate, but decreased it in its presence.

Ammonium sulphate increased the % Mg in the leaf from .086 to .095 which was almost significant and in the stem from .126 to .141 which did reach significance at the 5% level.

Superphosphate was without effect.

Potassium chloride reduced the % Mg in the leaf by .012% and in the stem by .010 $^{18}\%$.

Phosphorus (Al4)

The mean values for % P in the leaf and stem were .310 and .360 respectively. There was considerable variation from plot to plot and ammonium sulphate, superphosphate and salt increased the levels.

Salt increased the % P in the leaf by $.014^{\frac{1}{12}}\%$ and in the stem by .010%. In the leaf there was a negative NS interaction of -.017 and a negative KS interaction of $-.027^{\frac{1}{12}}\%$.

Ammonium sulphate increased the level of phosphorus but only in the leaf. The rise was $.040^{\frac{1}{2}}$.

Superphosphate itself raised the % P in both the leaf and the stem

by .039 and .035 mespectively. In each case there were negative NK and PK interactions.

Potassium chloride did not influence phosphorus uptake.

KALE EXPERIMENT 3.

Site

Cochno, Dumbartonshire.

Soil

Heavy loam. Poorly drained.

Exchangeable Na 6.0 mgs %

1% citric sol. P 12.5 mgs % Satisfactory.

1% citric sol. K 12.5 mgs % Satisfactory.

pH 6.8

Previous Cropping

1954

Potatoes

Poor crop, manuring unknown.

1953

Oats

manuring unknown.

Variety

Thousand head

Fertilizer Treatments and Layout.

The design of the experiment was as for Experiments 1 and 2. Three levels of nitrogen, phosphorus and potassium as before were arranged in a 27 plot layout with the salt treatment applied to a random half of each plot, giving a total of 54 plots.

The crop yielded 13.5 tons of fresh kale per acre and ammonium sulphate gave very large increases.

Information regarding the yield and composition of the crop are given in Tables Al5 - A21.

Yields of Fresh and Dry Matter. (A16)

The mean yields of fresh and dry kale were 13.6 and 1.87 tons respectively. Ammonium sulphate had a large influence on yield and the fresh weight of individual plots varied from 5.2 to 20.8 tons in consequence.

Salt had significant effects on yield, the fresh weight was increased by 0.97 tons and the dry matter by 0.107 tons. In each case there were negative KS interactions of -0.39 and -0.076 tons respectively, but neither reached significance. There was also a large negative PS interaction for dry matter yields.

Ammonium sulphate increased the yield of fresh kale from 9.44 to 14.19 tons when applied at the 4 cwt. rate and to 17.19 tons at the 8 cwt. level. The increases in dry matter were from 1.446 to 1.972 to 2.193 tons. All the increases were significant. There were small positive NK interactions.

Superphosphate had only a slight effect on yield: fresh and dry

matter increases being only 0.34 and 0.096 tons respectively.

Potassium chloride also had little influence. 3 cwt. increased the yield of fresh kale from 13.27 to 13.69 tons and of dry

matter from 1.863 to 1.884 tons.

Composition of the Dry Matter.

Sodium (A17)

There were large variations in the % Na resulting from applications of ammonium sulphate, potassium chloride and salt. The mean values for leaf and stem were .270 and .223, but the extreme contents of the leaf varied from .030 (NO PO K1 SO) to .825 (N2 PO KO S1). The corresponding values for the stem were .025 and .800%.

Salt had large and significant effects. In the leaf, the % Na was increased by .064 and in the stem by .073 here were considerable interactions with other fertilizers. The NS, KS and PS interactions were all large and negative: salt itself thus increased the % Na considerably more in the absence of other fertilizers.

Ammonium sulphate progressively and very significantly increased the % Na from .125 to .252 to .434% in the leaf and from .116 to .171 to .382 in the stem. The increases were much greater in each case in the absence of potassium chloride and the negative NK interactions of -.256*% in the stem and -.232***% in the leaf were both significant.

Superphosphate had little influence on sodium uptake. It reduced the level in the leaf by .016 and in the stem by .041%.

Potassium chloride in increasing quantity progressively reduced

the level of sodium in the leaf from .434 to .253 to .124% and in the stem from .376 to .210 to .084%. These effects were significant at the 1% level.

Potassium (Al8)

The mean % K in the leaf was 2.63 and in the stem 2.84. There were large variations resulting from the application of potassium chloride.

Salt increased the % K in both leaf and stem by 0.10%. Larger increases occurred in the presence of potassium chloride than in its absence.

Ammonium sulphate tended to reduce the potassium level in the leaf, but to increase it in the stem, but the effects were small.

Superphosphate had no effect on potassium uptake.

Potassium chloride itself had large and very significant influences on the % K. From a level of 2.19% in the leaf it was raised to 2.60 by $1\frac{1}{2}$ cwt. and to 3.16 by 3 cwt. In the stem the increases were from 2.36 to 2.88 to 3.28%.

Calcium (A19)

The mean % Ca of the leaf and stem were 2.33 and 0.79 respectively.

Salt reduced the level in the leaf by .02 and in the stem by

.05 %. In each case the fall in the calcium level was greatest when salt and potassium chloride were applied together. In the stem, salt reduced the % Ca by .086 in the absence of superphosphate, which was almost significant.

Ammonium sulphate had no appreciable effect on the calcium level

in the leaf, but increased it in the stem by .08% which almost reached significance.

Superphosphate did not influence the calcium uptake,

Potassium chloride depressed the calcium level in the stem by .010*% but had no effect in the leaf.

Magnesium (A20)

The magnesium content of the leaf was .152% and of the stem .161%. Potassium chloride and superphosphate tended to reduce the levels and ammonium sulphate to increase them, all by significant amounts.

Salt reduced the % Mg in the leaf and the stem by .011 and .009 respectively. Salt had a greater depressive effect when applied without potassium chloride and the KS interaction of +.027 in the stem was almost significant. Equally, in the stem there was an almost significant PS interaction of -.026; salt only depressed the % Mg in the presence of superphosphate.

Ammonium sulphate increased the % Mg in the leaf from .139 to .160 (sig. at 5% level) but did not affect the level in the stem.

Superphosphate reduced the level in the leaf from .162 to .136 (sig. at 5% level) but did not alter the stem content.

Potassium chloride also reduced uptake in the leaf by .034 and was without effect on the stem.

Phosphorus (A21)

The mean % P in the leaf was .180 and in the stem, .210. Variations from plot to plot in leaf P were from .125 to .245 and in stem P from .170 to .280.

Salt depressed the uptake by .008 in the leaf and by .021 in the stem. In the leaf there was a marked positive PS interaction of .021 .001 in the absence of superphosphate was salt important in reducing phosphorus uptake.

Ammonium sulphate did not alter the phosphorus levels.

Superphosphate itself significantly increased the % P in the leaf by .015 $^{34}\%$ and raised it in the stem by .008%.

Potassium chloride also enhanced the phosphorus contents of both leaf and stem. In the former the increase from a 3 cwt. dressing was from .175 to .186 (sig. P = .05) and in the stem from .200 to .227%.

The substitute of the state of

KALE EXPERIMENT 4. 1955.

Site Balloch, Dumbartonshire.

Soil Red sandstone drift. Medium loam, freely drained.

Exchangeable Na 45.0 mgs. %

1% citric sol. P 4.5 mgs. % Deficient.

1% citric sol. K 11.0 mgs. % Low.

pH 6.0

Previous Croppings

1954 Oats 2 cwt. Ammonium Sulphate

1953 Permanent grass

Variety Marrow stem.

Fertilizer Treatments and Layout

The treatments were as follows;

Superphosphate 0, 3 and 6 cwt. (PO,P1,P2)

Potassium chloride $0, 1\frac{1}{2}$ and 3 cwt (KO,K1,K2)

Salt 0, 3 and 6 cwt. (S0,S1,S2)

These were arranged in a standard 3 x 3 x 3 layout of 27 plots in 3 blocks of 9. In addition, each plot received 6 cwt. of ammonium sulphate.

The crop yielded 13.5 tons per acre, superphosphate giving noticeable increases.

Tables A22 - A28 present the yield and composition of the separate treatments.

Yields of Fresh and Dry Matter (A23)

The total mean yield of fresh kale was 13.56 tons and that of dry matter, 1.693 tons. Superphosphate had a large effect on yield.

Salt at 6 cwt. per acre increased the yield of fresh kale by 1.27 tons and of dry matter by .085 tons. There were no marked interactions between salt and other fertilizers except a negative KS interaction of .208 tons of dry matter.

Superphosphate greatly increased both the fresh and dry weight at both rates of application, the former by 4.71 tons and the latter by 0.578 tons. There were appreciable, but non-significant negative PK interactions.

Potassium chloride had only a small effect on yield. 3 cwt. increased the fresh weight by 0.83 tons and the dry matter by only .020 tons.

Composition of the Dry Matter

Sodium (A24)

The mean % Na in the leaf was .477 and in the stem, .582. Very large variations were found from plot to plot, the range in the leaf was from .095 to 1.270% and in the stem from .110 to 1.520%.

Salt had large and significant effects on sodium uptake, The mean % Na of the untreated plots was .249 in the leaf and .300 in the stem. Salt at the double rate increased the levels to .651 and .780% respectively. Both these differences and the smaller ones resulting from the 3 cwt. application were highly significant. There were large and significant negative KS interactions. These resulted in

salt exerting a greater influence on the sodium level when applied without potassium chloride. In the leaf the mean % Na rose from .282 to 1.062 in the absence of potassium but from .247 to only .317 in its presence.

Superphosphate had no overall influence on sodium uptake.

Potassium chloride had a large and very significant depressive influence on the sodium % in both leaf and stem. In the leaf the % Na fell from .654 to .318% as increasing amounts of potassium were given. There was a similar fall in the stem from .793 to .332%.

Potassium (A25)

The mean content of potassium was 2.62% in the leaf and 4.14% in the stem. Individual plots varied in analysis from 1.75 to 3.75% in the leaf and from 2.65 to 5.50% in the stem, principally due to the influence of potassium chloride.

Salt generally depressed the potassium content of both leaf and stem by about 0.3% when given at 6 cwt. per acre. This was just significant in the leaf, but not in the stem.

Superphosphate also reduced the potassium by similar amounts.

Potassium chloride itself markedly increased the potassium status. The % K in the leaf rose from 2.18 to 2.66 and 3.03% with increasing levels of applied potassium. In the stem the increases were from 3.70 to 4.31 to 4.41% K.

<u>Calcium</u> (A26)

The mean % Ca in the leaf and stem wwere 2.65 and 0.91 respectively. Variations from plot to plot were small.

Salt tended to reduce the % Ca in the leaf but by only 0.16% and was without effect in the stem.

Superphosphate did not influence the calcium content of the leaf, but reduced that in the stem by $0.14^{\frac{34}{10}}$ % when applied at 6 cwt. per acre.

Potassium chloride reduced the % Ca in the leaf by $0.25^{\frac{\pi}{8}}$ % but was without effect on the stem.

Magnesium (A27)

Both the leaf and the stem had mean magnesium contents of .163%. Variation from plot to plot was not very great. Occasional values as low as .100 and as high as .200% were recorded, but there were no significant trends.

Salt had little effect, the tendency being to reduce the % Mg by less than .010%.

Superphosphate stimulated magnesium uptake in the leaf, the rise from the 6 cwt. application being from .148 to .172% but there was a corresponding reduction in the stem from .168 to .157%.

Potassium chloride reduced the % Mg in the leaf from .172 to .156 but this change reversed in the stem, the increase being from .159 to .168%.

Phosphorus (A28)

The mean % P in the leaf and stem were .212 and .264 respectively. Salt did not influence the phosphorus uptake.

Superphosphate itself increased the level in the leaf by $.024^{\frac{14}{8}}$ % and in the stem by $.063^{\frac{14}{8}}$ % when applied at 6 cwt. per acre.

Potassium increased the % P slightly in the leaf and reduced it similarly in the stem.

KALE EXPERIMENT 5. 1956.

Site

Eaglesham, Renfrewshire.

Soil

Heavy clay loam. Poorly drained.

Ashgrove series.

Exchangeable Na

1% citric sol. P 3.5 mgs. % Deficient.

1% citric sol. K

5.5 mgs. % Low.

3.5 mgs. %

ри 6.4

Previous Cropping

Permanent grass. Rather poor.

Variety

Marrow stem

Fertilizer Treatments and Layout

The fertilizers used were

Ammonium Sulphate 0 and 6 cwt.

Superphosphate 0 and 3 cwt. P

Potassium Chloride 0 and 2 cwt. K

Salt 0 and 4 cwt. S

The treatments were arranged in 4 blocks, each of 8 plots. There were thus two replicates of 16 plots and the NPKS interaction was confounded 5 tween each of them.

The mean yield of fresh kale was 14.7 tons per acre. There was a large response to superphosphate and smaller ones to ammonium sulphate and potassium chloride.

The effects of the fertilizers on the yield and composition of the crop are given in Tables A29 - A35.

Fresh and Dry Matter Yields (A30)

The mean yields of fresh and dry kale were 14.70 and 1.793 tons respectively. All fertilizers with the exception of salt had significant effects on yield and in consequence the yields of kale varied from 9.12 to 23.80 tons with different treatments.

Salt had small effect on yield. It increased the weight of fresh kale by 1.06 tons and of dry matter by .149 tons. Rather larger increases were found when salt was applied in the absence of rather than together with other fertilizers, particularly potassium chloride.

Ammonium sulphate increased fresh and dry yield by 1.93** and .179** tons respectively. There were marked positive NP interactions of 1.69** and .144 tons but the NS and NK interactions were both negative and ammonium sulphate only gave significant yield increases in the absence of either salt or potassium chloride.

Superphosphate had very marked effects on yield. The fresh yield was increased by as much as 7.11 tons and the dry matter by .814 tons. In addition to the positive NP interaction there were also PK interactions of 1.82 tons for the fresh and .173 tons for the dry matter yields.

Potassium chloride also had significant effects on yield; the weight of fresh kale rose by 3.40 tons and of dry matter by .332 tons.

Composition of the Dry Matter.

Sodium (A31)

The mean % Na in the leaf and stem were very similar, .348 and .349

respectively. Targe variations occurred from plot to plot. e.g. In the leaf, .065% in an NK plot and 1.070 with the PS treatment. In the stem the amounts were .105 and .850 respectively.

Salt had large and very significant effects on the sodium uptake. The mean increase in the leaf was .269 and in the stem, .199 .

In both cases the increments were larger in the presence of superphosphate (.349 and .259 and in the absence of potassium chloride.(.408 and .309 the negative KS interactions of -.139 in the leaf and -.266 in the stem were very large.

Ammonium sulphate had a small but significant depressive effect on the sodium content. The % Na in the leaf fell by .065 % and in the stem the reduction was .060 %. Rather larger depressions in the stem content were found on plots from which salt or superphosphate had been omitted.

Superphosphate enhanced the sodium uptake by mean amounts of .124 ***% in the leaf and .115 ***% in the stem. Only small and non-significant increases were found from superphosphate when salt was not applied, but they were correspondingly larger when both fertilizers were applied together. Superphosphate also increased the % Na more in the absence of potassium chloride.

Potassium chloride markedly reduced the Na in the leaf by
-.292***% and in the stem by -.266***%. On plots where salt was also
given, the depressions were as high as -.431***% in the leaf and
-.376*** % in the stem, but there were no marked interactions with
other fertilizers.

Potassium (A32)

The mean potassium content of the leaf was 2.19% and that of the stem, 3.91%. Considerable variation was found from plot to plot. Levels as low as 1.20% and as high as 2.90% were found in the leaf and in the stem the variation was from 2.60 to 4.80%.

Salt was entirely without influence on the potassium uptake, the mean increases in leaf and stem being only .06 and .12% respectively.

Ammonium sulphate increased the % K in the leaf by .24 and by greater amounts in the absence of either superphosphate or potassium chloride. The level in the stem was raised by 0.57 K and again larger increases were obtained in the absence of superphosphate and potassium chloride. The negative NP and NK interactions for the stem were both significant.

Superphosphate markedly reduced the potassium levels. The mean falls in % K were -.41**% in the leaf and -.25**% in the stem. Rather larger depressions (-.65** and -.47**%) were found on plots to which ammonium sulphate was also given.

Potassium chloride itself greatly enhanced the potassium uptake. Increases of .88**% in the leaf and 1.12**% in the stem were found. In the absence of nitrogen, even greater stimulation was recorded.

Calcium (A33)

The mean % Ca in the leaf was 2.95% and in the stem, 1.07%.

Salt reduced the calcium content of the leaf significantly

(-.27*****/***) and even larger reductions were found in the absence of ammonium sulphate or potassium chloride or in the presence of

superphosphate. Salt had a smaller and more consistent depressive

influence on the % Ca in the stem.

Ammonium sulphate increased the calcium levels of both leaf and stem by .10 and .07% respectively. There were rather larger increases in leaf calcium from ammonium sulphate given in the presence of salt or in the absence of potassium chloride.

Superphosphate increased the % Ca in the leaf by $0.26^{\frac{888}{10}}$ %, but was without effect on the stem. There was a significant PS interaction of $-.17^{\frac{8}{10}}$ % in the leaf.

Potassium chloride did not alter the overall calcium level in the stem, but there was a significant negative PK interaction of -.17***.

It reduced the amount of calcium in the leaf by -.16***. In the absence of salt the fall was -.39****, in the absence of superphosphate, -.25***, and in the presence of ammonium sulphate, -.39***.

Magnesium (A34)

The mean % Mg in the leaf and stem were .140 and .200 respectively. There was very little variation from one treatment to another.

Salt reduced the % Mg in the leaf by .008 and in the stem by .012. A significant decrease of .025 was found in the leaf where salt and ammonium sulphate were applied together.

Ammonium sulphate had little overall effect on the magnesium content of the leaf, but there was a negative NS interaction of .017. It increased the % Mg in the stem by .015 and a larger increase of .026 was found when ammonium sulphate was applied in the absence of potassium chloride.

Superphosphate raised the mean % Mg by .012 in the leaf and by

and by .004 in the stem. Again, in the leaf the increase was larger $(.022^{\frac{\pi}{2}})$ in the absence of potassium chloride.

Potassium chloride increased the % Mg in the leaf by .004, but reduced it by a similar quantity in the stem.

Phosphorus (A35)

The leaf had a mean content of .234% P and of the stem was .280. There was little variation from plot to plot.

Salt generally depressed the uptake of phosphorus. In the leaf the fall was .003% and in the stem, .022%. There was a significant negative NS interaction of $-.025^{36}$ % in the leaf.

Ammonium sulphate also reduced the phosphorus uptake, by .008 in the leaf and .011 in the stem. The NP interaction of -.022% was significant (P = .05).

Superphosphate itself had small incremental effects on both leaf and stem (.004 and .018% respectively). Larger increases of .037** and .048*% were found in the stem in the absence of salt and potassium chloride respectively.

Potassium chloride had no overall influence on the phosphorus uptake; there were reductions of .008% in the leaf and .006% in the stem.

KALE EXPERIMENT 6. 1956.

Site Cochno, Dumbartonshire.

Soil Heavy loam, deep. freely drained.

Exchangeable Na 8.5 mgs. %

1% citric sol. P 7.5 mgs. % Low.

1% citric sol. K 18.5 mgs. % Satisfactory.

Previous Cropping

1955 Oats N.P.K. fertilizer.

1954 Grass

Variety Thousand head.

Fertilizer Treatments and Layout

The treatments were as for Experiment 5, i.e. a 32 plot layout in 4 blocks of 8 including all combinations of the presence and absence of ammonium sulphate (6 cwt.), superphosphate (3 cwt.), potassium chloride (2 cwt.) and salt (4 cwt.). The NPKS interaction was confounded between each of the two complete replicates.

The crop yielded 19.6 tons/acre. Ammonium sulphate and superphosphate both gave small increases in yield.

Appendix Tables A 36 - A42 detail the effects of fertilizers on crop yield and composition.

Fresh and Dry Matter Yields (A37)

The mean yields of fresh and dry kale were 19.60 and 2.443 tons respectively. Ammonium sulphate and superphosphate had small but significant effects on yield.

Salt generally depressed the yield, the reduction in fresh weight

being 0.35 tons.

Ammonium sulphate significantly increased the yield of fresh (2.02*** tons) and dry (.210*** tons) kale. It increased the yield more in the absence of salt or potassium chloride. There was a significant positive NP interaction of 1.36*** tons for the fresh kale.

Superphosphate also increased the yield of fresh kale significantly by 1.28 tons but the drop in D.M.% resulted in a correspondingly smaller and non-significant dry weight increase. Superphosphate was most effective in the absence of salt or potassium chloride and when given in association with ammonium sulphate.

Potassium chloride had small overall incremental effects on fresh (0.62) and dry (.019) matter. Larger increases were found in the presence of salt or in the absence of either ammonium sulphate or superphosphate.

Composition of the Dry Matter

Sodium (A38)

The mean sodium content of the leaf was .130 and of the stem,
.106. Individual plots differed greatly from each other. The
minimum values in the leaf and stem respectively were .040 and .025
for a PK plot and the maximum amounts were .405 and .285 for an NS plot.

Salt greatly increased the % Na in both leaf and stem, the respective increments being .048*** and .040***.

Ammonium sulphate had even greater effects. The rise in leaf sodium was $.082^{\frac{1}{12}}\%$ and in stem sodium $.056^{\frac{1}{12}}\%$.

Superphosphate did not influence the sodium uptake.

Potassium chloride markedly depressed the sodium levels; the reductions in leaf and stem were .043** and .037** respectively. In the leaf, the reduction was greater (-.057**%) on plots without superphosphate and in the stem the decrease was greater (-.056**%) in the absence of salt.

Potessium (A39)

The mean % K in the leaf was 3.17 and in the stem, 2.88. The plot to plot variation was from 2.50 to 3.90 in the leaf and from 1.95 to 3.35 in the stem.

Salt did not affect the % K in the leaf but significantly increased the level in the stem by 0.22%. In the stem, there was a marked KS negative interaction of -0.16 % which led to a much greater increase (0.38 KK) on plots to which no potassium chloride had been given.

Ammonium sulphate did not alter potassium uptake. There was a small increase of 0.01% in the stem and a small reduction of 0.05% in the leaf.

Superphosphate depressed the potassium content of both leaf and stem, particularly in the absence of nitrogen. In the leaf the reduction was -0.14% and in the stem it reached significance at -0.27***%.

Potassium chloride itself had a marked influence on potassium uptake. The increase in the leaf was 0.25^{3} and in the stem 0.16%. These rises were much greater $(0.40^{3}$ and 0.32^{3} respectively) when no salt was applied.

Calcium (A40)

The mean % Ca of the leaf and stem were 2.76 and 0.84% respectively.

Fertilizers in general had only small effects on calcium uptake.

Salt increased the calcium content of the leaf by .06 and of the stem by .04%.

Ammonium sulphate tended to reduce the calcium level in the leaf but raised the content of the stem by .08 MR. In the stem, the greatest increases were in the absence of salt (0.11 MR) and in the absence of potassium chloride (0.14 MR). The negative NK interaction was significant.

Superphosphate increased the % Ca in both the leaf and the stem by .07 and .04% respectively. In the leaf there was a large negative PK interaction of -.18%. Superphosphate thus increased the calcium level of the leaf in the absence of potassium chloride, but when both were applied together there was a fall in the calcium status. In the stem however, the highest levels of calcium were found on the plots receiving superphosphate and potassium chloride together.

Potassium chloride reduced the % Ca in the leaf by a mean amount of -.07%. The effect was much more marked (-.25%) in the presence of superphosphate. Potassium chloride application did not alter the calcium level in the stem.

Magnesium (A41)

The mean % Mg was .113 in the leaf and .119 in the stem.

Salt had no effect on the magnesium content of either leaf or stem.

Ammonium sulphate increased the % Mg in the leaf by .009 and in the stem by .004.

Superphosphate did not alter the magnesium content of the stem

but reduced that of the leaf by .007%.

Potassium chloride reduced both leaf and stem potassium, the former by .007 and the latter by .004%.

Phosphorus (A42)

The mean phosphorus content of the leaf was .288% and of the stems, .388%. Fertilizers had only small effects.

Salt increased the levels in the leaf and stem by .033 and .017*/
respectively. In each case the increases were greater in the presence
of superphosphate or potassium chloride. There was a significant
negative NS interaction of -.036** in the stem.

Ammonium sulphate also increased the phosphorus level to a greater extent in the leaf(.030%) than in the stem (.011%). In addition to the negative NS interaction there was also a significant NP interaction in the stem of $.016^{\frac{18}{1000}}$.

Superphosphate itself had only a very small influence on phosphorus uptake, increases of .014 and .011 being found in the leaf and stem respectively. In the leaf, larger increments were found in the presence of either salt or potassium chloride.

Potassium chloride increased the % P in the leaf by a mean value of .018% but reduced it by a similar amount in the stem.

KALE EXPERIMENTS SUMMARY

Effects on Total Yield.

Table 14 details the main effects and interactions of all six experiments for the yields of fresh and dry matter.

Table 14.

Yields of Fresh and Dry Matter of Kale (tons).

Main Effects and Interactions.

Experiment		1	2	3	4	5	6
Mean Y	ield Fresh Dry	17.89 1.989	15.46 1.882	13.61 1.870	13.56 1.693	14.70 1.793	19.60 2.443
Respon N P K S	se to Fresh Dry Fresh Dry Fresh Dry Fresh Dry Fresh Dry	4.29*** 278** 2.85** 2.91* 0.48 0.95 0.87* 0.99	6.23*** .510** 1.27 .110 0.50 .063 0.95* .099**	7.75*** .747*** 0.34 .096 0.42 .021 0.97* .107**	- 4.71*** .578** 0.63 .020 1.27 .085	1.93 *** .179 *** 7.11 *** .814 *** 3.40 *** .332 *** 1.06 .149	2.02*** .210** 1.28*** .115 0.62 .019 -0.35 016
	ctions Fresh Dry Fresh	0.43 .011 -0.24	1.79 .140 -0.87	0.64 .050 1.20	-	1.69 ^{**} .144 -1.04	1.36 ^{**} .056 -0.30
ns Pk	Dry Fresh Dry Fresh	064 1.18 .160 -0.07	055 -0.29 .018 -2.51	.206 0.20 020 -0.77	- - -2.06	054 -0.22 084 1.82	079 -0.56 031 -0.77
PS KS	Dry Fresh Dry Fresh	.028 -1.37 093	315 0.29 .100 -3.00**	099 0.20 074 -0.39	329 0.05 054 0.62	.173 -0.15 009 -0.32	061 -0.55 114 0.26
V ₂	Dry	-1.45 177	331 ^{**}	076	208	088	.015

Salt.

Five of the six experiments gave increases in yield of approximately 1.0 tons of fresh kale. Three were significant and there were comparable increases in the dry matter. Only one of the sites (Expt. 5.) was on a soil markedly deficient in readily soluble potassium and only that one gave a large and significant response to potassium chloride. The remaining experiment (No. 6) showed a small loss in crop of 0.35 tons. This soil had the highest readily soluble potassium content.

It would therefore appear that dressings of salt in the order of 4 cwt. per acre can produce an extra ton of fresh kale except on soils which are very well supplied with potassium. In only one case (Expt. 5) did the extra yield from 2 cwt. of potassium chloride exceed that from 4 cwt. of salt, this being the single experiment where there was a large and significant response to added potassium. In general, the responses from potassium chloride were about half those from salt.

Salt and potassium chloride normally interacted negatively with each other as might be expected. The size of the interactions was not related to the separate responses to salt or potassium chloride. In experiment 2 the interaction was as large as -3.00 *** tons.

Ammonium Sulphate.

In each experiment there were very significant returns from ammonium sulphate. They did, however, vary from an increase of 1.93** tons from a 6 cwt. dressing (Expt. 5) to 7.75** tons from an 8 cwt. one (Expt. 3). The fresh yield increments were all highly significant (P = 0.01) but as there was a consequent drop in dry matter %, the dry

weight increases were frequently significant at the 5% level only.

Rather surprisingly, there were no marked NK interactions. Indeed, they were usually negative. In view of the high level of potassium in the dry matter of kale and the total to be removed per acre, it might have been expected that the NK interactions would have been as marked as, for example, is frequently the case with potatoes. Equally, in view of the returns from salt, there might have been some consistency in the NS interactions.

There were however, two significant NP interactions. These were in Experiments 5 and 6 where the responses to nitrogen were small and where both had significant increases due to superphosphate.

Superphosphate.

The four soils with the lowest and most deficient readily soluble phosphorus levels gave significant responses to superphosphate. The two with the highest, (but still quite low) contents gave smaller and non-significant increases. There was a reasonable correlation between soil analysis and the responses to 6 cwt. of superphosphate.

Experiment		ric Sol P gs.%)	Extra Kale (tons)
5 ^X	3•5	Deficient	7.11***
4	4.5	Deficient	4.71**
1	5 . 0.	Deficient	2.85 ^{***}
$\epsilon_{\mathbf{X}}$	7.5	Low	1.28***
2	10.0	Low	1.27
3	12.5	Satisfactory	0.34

X 3 cwt. superphosphate only.

There were no regular PS interactions.

Potassium Chloride.

Coly in Experiment 5 on the most deficient soil was a large and significant response (3.4 tons) obtained. The other increases ranged from 0.42 to 0.83 tons although none of the soils could be considered well supplied with readily soluble potassium.

There was no real correlation between citric soluble potassium and response in terms of extra kale to 3 cwt. of potassium chloride from this limited number of experiments.

Experiment	•	c Sol. K	Extra Kale (tons)		
5 ^X	5•5	Low	3.40 ^{***}		
4	11.0	Low	0.83		
6 ^X	18.5	Satisfactory	0.62		
2	9 .0	Low	0.50		
1	8.5	Low	0.48		
3	12.5	Satisfactory	0.42		

X 2 cwt. potassium chloride only.

Only in Experiment 5 where there were the largest responses to both potassium chloride and superphosphate was there a significant PK interaction (+1.82** tons). This was in fact the only positive one and all the others were negative.

Effects on Plant Composition.

Sodium

Table 15 summarises the effects of fertilizers on the sodium content of kala.

Table 15.

Dry Matter Composition of Kale. % Na. Main Effects and
Interactions.

Experi	ment	1	2	3	4	5.	6
Mean C	ontent Leaf Stem	•383 •332	•329 •324	•270 •223	•477 •582	• 348 • 34 9	.130 .106
Respon N P K	se to Leaf Stem Leaf Stem Leaf Stem Leaf Stem Leaf Stem	.154** .210** .059* .070** 260** 216** .151** .121	.297** .286** .037 .015 250** 252** .164** .164	.309*** .266***026041304***292 .064***	- •008 -•017 -•336*** -•461*** •402*** •480**	065*060*124**115**292**266**269**199**	.082*** .056*** 001 008 043** 037** .048** .040
Intera NP	Leaf	.007	.050	•044 ••020	-	027 027	.006 .018
NK	Stem Leaf Stem	.005 074 106**	.050 267*** 223***	256 [±] 232 ^{±±}	_ _ _	028 020	005 003
ns	Leaf Stem	002 065	065 064	039 057	-	.007 .053	.007 007
PK	Leaf Stem	004 017	019 016	.026 .018	•035 ••025	052 016	.014 .002
PS	Leaf Stem	003	045 025	036 051	.003 .079	•080 [≇]	011 017
KS	Leaf Stem	218*** 169***	081 102	069 095**	355*** 222***	139 ^{***} 266	.007 .019

Salt has consistently increased the sodium level in the crop, both leaf and stem being equally affected. The increments varied from about .050% Na to about .450% Na from one experiment to another. The smallest increases were generally associated with the lowest mean sodium levels. In each case the increments were highly significant and at least 50% of the mean contents.

Ammonium sulphate increased the sodium level in four out of five experiments by large and significant amounts, usually in the same order as those produced by salt. The magnitude of the separate increases showed some correlation with the yield response resulting from the ammonium sulphate treatment.

Experiment	Yield Increase (tons) from Ammonium Sulphate.	Increase in % Na			
		Leaf	Stem.		
5	1.93	065 [#]	060 ³⁴		
6	2.02	+.082 ^{**}	+.056**		
1	4.29	+•154***	+.210 ^{MM}		
2	6.23	+•297 ^{**}	+.286***		
3	7•75	+•309 ^{XX}	+•266***		

The increase in the sodium level resulting from the use of ammonium sulphate can therefore be associated with its effects on promoting growth.

Superphosphate had variable effects on the sodium uptake. Two experiments (Nos. 1 and 5) resulted in significant increases, and both these were crops which responded well in yield to superphosphate. On the other hand, there was a good yield increment in Experiment 4 but no consequent increase in % Na. There was little effect from superphosphate on sodium uptake where there was no marked response in yield.

Potassium chloride consistently and very significantly reduced the level of sodium. The depressions were generally in the order of .275%. Only in Experiment 6 was it much less (.040%), this also

being the site where the yield response to salt was negative. As potassium chloride invariably increases the amount of potassium in the plant, it can be concluded that this presents an obstacle to the entry of sodium.

The negative KS interactions were the most important. With the exception of Experiment 6 they were all large and highly significant. Salt has a greatly reduced effect in raising the sodium level when applied in the presence of potassium chloride.

There were also large and significant negative NK interactions in the first three experiments and smaller ones in the remaining two. The % Na in the plant was increased by nitrogen to a far greater degree when potassium chloride was not given.

The other interactions showed no consistent trends and were generally quite small.

Potassium

Table 16 summarises the main effects and interactions with regard to the potassium content of kale.

Salt has had no real effect on the potassium uptake of kale.

There have been rises and falls of about 0.1% K or less. In

Experiment 4 where there were the largest increases in % Na from salt, there were the greatest reductions in % K amounting to -0.3% in both leaf and stem. There was also one isolated increase of 0.22*% in the stem for Experiment 6.

Table 16.

Dry Matter Composition of Kale. % K.

Main Effects and Interactions.

Experi	ment	1	2	3	4	5	6
Mean C	ontent		an daire d'implement poir son découver, n'il 1 de l'implement de l	and the second second Control Second Executive Second	and the resident the resident to develop the territory	emboration of to re-of up the of Page	Products of design from the control of
	Leaf	2.44	1.64	2.63	2.62	2.19	3.17
	Stem	3•49	3.18	2.84	4.14	3.91	2.88
Respon	se to						
N	Leaf	17**	07	21	_	• 24**	05
	Stem	.07	•38	•15	_	•57***	07
P	Leaf	04	.17	.07	25	41**	14
	Stem	16	•08		35	25***	
K	Leaf	16 .39***	•37 ³⁸	.01 1.02	-•35 •85 •71	-•41 -•25*** •88***	.25 *
	Stem	.40***	•42	•92***	.71 *	1.12***	.16
S	Leaf	12	•03	.10	-•30 [#]	.06	.01
	Stem	03	07	.10	31	.12	•22 [¥]
Intera	ctions						
NP	Leaf	07	05	.10	_	14 _x	.20
	Stem	•15	15	05	_	22**	.12
NK	Leaf	13	15	.80	-	20	08
	Stem	02	03	.62	–	-•23 [¥]	01
NS	Leaf	06	03	21	<u> </u>	03	•05
	Stem	08	07	26	_	07	02
PK	Leaf	•09	•37	•07	•38	.08_	.13
	Stem	03	.16	.01	-51	20 [*]	01
PS	Leaf	.05	14	14	.2 8	•01	.00
	Stem	•05	09	•09	• 33	•02	•02
KS	Leaf	.03	.01	•19	•43	05	15
	Stem	•04	03	•32	43	02	16

Ammonium sulphate also has had no regular effect. In Experiment 5, the only one to give a significant yield increase from potassium chloride, it enhanced potassium uptake, but generally the influence was small. There was however a tendency for ammonium sulphate to depress the % K in the leaf yet to increase it in the stem.

Superphosphate had small and irregular effects. In four experiments (Nos. 1, 4, 5 and 6) where it increased yields, it reduced the % K, the greatest decreases being associated with the largest yield response to superphosphate. In the remaining two experiments the effect was reversed.

Potassium chloride itself significantly increased uptakes by amounts ranging from 0.2 to 1.0% K.

There were no marked or consistent trends in the various interactions.

Calcium

A summary of the effects of fertilizers on the calcium content of kale is given in Table 17.

Salt has had little influence on the calcium content of kale, the general tendency being to depress it by about .05%. In Experiment 5, the fall in % Ca reached -.27**% in the leaf.

Ammonium sulphate had no regular effect; there were both rises and falls from the mean in the order of .05 to .10%.

Superphosphate also reacted irregularly. It had a marked influence (+ 0.26 % Ca) on the leaf in Experiment 5 which responded the most in yield to superphosphate, but elsewhere the effects were much smaller.

Potassium chloride consistently reduced calcium uptake by amounts ranging up to about 0.15% throughout the plant. These reductions are no doubt associated with the rise in % K due to potassium chloride applications, but they do not seem to be proportionately related.

Table 17. $\label{eq:Dry Matter Composition of Kale. \% Ca. }$ Main Effects and Interactions.

	**************************************		****				
Experime	ent	1 .	2	3	4	5	6
Mean Con	tent	na II v santrina miniti v filologog y magyap pin gyayanan yan yansasan apinnapan a					
I	eaf	2.20	2.19	2.33	2.65	2.95	2.76
S	tem	.90	.78	•79	•91	1.07	•84
Response	to	L Company					
NI	eaf	.02	15	02_	-	.10	01
S	tem	•04 ••10	01	.09 [*]	-	.07	.03 80.
PI	eaf	10 ^m	04_	.01	.07	.07 .26 * ≭	.07
S	tem	05	04 05	.01	14 ⁿ	•02_	.04
KI	eaf	05	07 07 ^{±±}	01 .10**	.07 14 [*] 25	•02 ••16 [≇]	07
S	tem	04	07***	.10 ^m	02	_ 01	.01
SI	eaf	 05	03	02	16	27***	•06
S	tem	. 02	•00	 05 [¥]	•02	09	•04
Interact	ions		,				
NP I	eaf	.11	17 .06**	10	-	05	05 ^{**}
s	tem	~. 04	.06**	.02	-	.06 21***	•00
NK I	eaf	.11	ו ה	.07	-	21 ⁿⁿ	•04 ••06 [≆]
S	tem	01	05 ^{**}	05	-	•04	06 ^m
NS I	eaf	11	.10	•03	-	.11	.02
S	tem	.0 6	03	04	-	•02	02
PK I	eaf	01	18	03	•05	.0 9	18
S	tem	02	03	.01	.00	17 17**	•03
,	eaf	02	19	.02	36		•00
S	tem	01	.01	•08	03	.01 _{ww}	 02
KS I	eaf	.11	18	14	.01	.21***	•03
S	tem	04	•00	03	.0 8	•03	01

There were no marked interaction effects.

Magnesium

The effects of fertilizers on the magnesium content of kale are shown in Table 18.

Table 18.

Dry Matter Composition of Kale. % Mg.

Main Effects and Interactions.

Experimen	nt	, 1	2	3	4	5	6
Mean Con	tent						And the second of the second o
	eaf	.123	.089	.152	.163	.140	.113
	tem	.152	•133	.161	.163	.200	.119
Response	to						
NL	eaf	004	.011_	.021 [*]	_	.002_	•009
S	tem	•002	.015**	.001	_	.015**	.004
P L	eaf	003	•000	026 [₩]	.024	.012	007
S	tem	010	003	000	011	.004	.001
KL	eaf	004	012_	034**	016	004	007
s	tem	003	010 ^{**}	.003	.011	.004	004
S L	eaf	005	.001	011	003	008	002
S	tem	012	.000	009	011	012	.002
Interact	ions						
NP L	eaf	.001	.001	007	-	004	003
S	tem	.008	•006	016	_	003	.006
NK L	eaf	.001	.003	018	-	001	003
S.	tem	.014	•003	012	-	011	.002
ns l	eaf	•009	005	012	-	017	•003
S	tem	.001	014	001	-	•003	003
PK L	eaf	001	.009	•002	017	010	•004
S.	tem	•007	•007	.002	007	001	002
PS L	eaf	•009	.014	.006	007	008	003
	tem	012	002	026	•003	.002	•001
KS L	eaf	006	008	.012	01 9	.000	•004
S	tem	019	010	.027	02 8	•005	•006

Salt consistently depressed the magnesium content of both leaf and stem, but by small and non-significant amounts. Reductions over the combined leaf and stem ranged up to about .010% and were frequently much less.

Ammonium sulphate increased magnesium uptake, in three cases to a significant degree. Rises of up to .015% taken over the whole plant were found.

Superphosphate was without general effect. There were small irregular increases and decreases.

Potassium chloride depressed the % Mg in all six experiments. When leaf and stem were combined the decreases ranged up to about .017%. Only in two experiments were the reductions significant.

There were no large or consistent interactions.

Phosphorus.

The effects of fertilizers on the phosphorus content of kale are summarised in Table 19.

Salt had no regular effect on phosphorus uptake. Averaging leaf and stem, there were increases and decreases ranging up to + .020% occurring with equal regularity.

Ammonium sulphate also had effects which differed from one experiment to another. In three experiments where it increased the % P, the rise was greater in the leaf than in the stem.

Superphosphate invariably increased the % P in both leaf and stem.

Over the whole plant the increments ranged from about .010 to about

.040% P and in four experiments were significant. The increases

did not appear to be related to the responses in yield from superphosphate.

Potassium chloride had small and irregular effects. Increases and decreases over the whole plant ranging up to about \pm .010% were found.

There were no consistent interactions involving phosphorus although there were isolated significant ones.

Table 19. Dry Matter Composition of Kale. % P.

Main Effects and Interactions.

Experiment	1	2	3	4	5	6
Mean Content				again, jagyarinak ji jorkakala attaukuda titilga kalayyana.		
Leaf	•289	.310	.180	.212	• 234	.288
Stem	.320	•360	.210	. 264	•280	•388
Response to		ar.				
N Leaf	.018	.040 ^{**}	003	-	008	.030
Stem	.006 .023	•000_	003 .015**	- _x	011	.011
P Leaf	.023	.039 *		.024**	•044	.014
Stem	.031**	.035**	.008 **	•063 ^ж	.018	.011
K L eaf	009	•002	•011	.014	008	.018
\mathtt{Stem}	007	.003 .014**	•027 ••008 [*]	009	006	016
S Leaf	.010,		008 ²	008	003	.033 .017
Stem	.019**	.010	021***	007	022	.017
Interactions			3 F		34	· • • • • • • • • • • • • • • • • • • •
NP Leaf	005	.007	.018 [#]	-	022 [*]	.000
Stem	.007	.011	018	-	•003	.016
NK Leaf	.010	018	.0 08	-	011	.014
Stem	003	032	012	-	004 025 [*]	004
NS Leaf	012	017	.007	-		.002 036**
Stem	002	.004	.013	-	.003	
PK Leaf	016	018	.006	.002	.009 030**	.018
\mathtt{Stem}	.030	022	002	003		.001
PS Leaf	020_	004	.021*	•025	003	.021
Stem	043 [¥]	010	•002	•029	019	.006
KS Leaf	003	027 [₩]	002	022	012	•034
Stem	.012	.001	001	009	019	.012

EXPERIMENTS WITH TURNIPS.

There have been a number of previous investigations regarding the effect of sodium on the growth of turnips and swedes. As early as 1914 Bolin reported the results of 10 experiments in Sweden where, on average, 5.5 tons of extra swedes were produced from an application of 9cwt. of salt. Crowther & Bengian (1945) have summarised the results of a number of experiments where ammonium sulphate and sodium nitrate have been compared as a source of nitrogen and they concluded that the latter was 20 - 25% superior. Harmer & Benne (1941) working on a potassium deficient peat soil reported an increase in the yield of turnips of almost 3 tons from an application of 5 cwt. of Holt & Volk (1945) found in pot experiments that sodium increased the yield of turnips and that 30% of a full crop could be obtained when potassium was entirely replaced by sodium. Lehr & Bussink (1954) have also reported improved yields of turnips when sodium nitrate and calcium nitrate were compared.

On the other hand, Jacob (1930), as a result of sand culture experiments, concluded that sodium had no effect on swedes.

Dorph-Petersen & Steenbjerg (1950) have found increases in the yield of swedes of only 0.1 ton as an average of 9 experiments comparing sodium and calcium nitrates, but in one experiment on a potassium deficient soil an increment of almost 1.0 tons was obtained from sodium.

Four field experiments have been completed with turnips.

The first two were laid down in 1955. Each conformed to a 27 plot layout in 3 blocks of 9 plots to investigate all combinations of the following treatments.

Superphosphate	٥,	3	and	6	cwt.	(PO,	Pl,	P2)
Potassium Chloride	0,	1	and	2	cwt.	(KO,	Kl,	K2)
Salt	0,	3	and	6	cwt.	(SO,	S1,	S2)

Each plot in addition had a basal dressing of 2 cwt. of ammonium sulphate.

In 1956 two further experiments were carried out, but to a different design. The treatments were the presence and absence of

Ammonium Sulphate	2	cwt.	(N.)
Superphosphate	3	cwt.	(P.)
Potassium Chloride	2	cwt.	(K.)
Salt	4	cwt.	(s.)

The layout of each experiment was the usual one for a $2 \times 2 \times 2 \times 2$ factorial trial of 32 plots in 4 blocks of 8. The NPKS interaction was confounded between each of the two complete replicates.

The analyses of variance of these two designs were as for the similar kale experiments.

The turnips were grown on slightly raised ridges about 27 ins.

apart. All the fertilizers were applied by hand before the final seed bed preparations and were well intermixed with the soil during subsequent cultivations. Singling, weeding etc., were carried out as necessary by the farmer in conjunction with the remainder of the field.

Plot Size.

The experiments have been carried out on 0.01 acre plots. Each was 6 rows wide, normally 27 ins. apart, and about 33 ft. in length. The central four rows were harvested for yield determinations and samples were taken from this area for analysis.

Sampling.

Harvesting was generally carried out in November before frost seriously damaged the tops. In each case the crop was topped by hand and the roots in each case had very little soil adhering to them. The entire produce (roots and tops) from each plot was weighed on a spring balance in the field.

The roots were sampled by means of a corer, a diagonal section being taken from each of about 40 roots. This is the generally accepted practice and it was not considered necessary to test the validity of the method. The cores from each plot were placed in polythene bags, tied and removed to the laboratory. They were then weighed, dried at 100°C, reweighed and finally ground.

The tops were sampled by taking 15 tops at random from each plot. These were chopped, subsampled by quartering and weighed fresh. After drying at 100°C they were reweighed and then ground.

TURNIPS. EXPERIMENT 1. 1955.

Site Cochno. Dumbartonshire.

Soil Heavy loam. poorly drained.

Exchangeable Na 6.5 mgs. %

1% citric sol. P 13.0 mgs. % Satisfactory.

1% citric sol. K 13.5 mgs. % Satisfactory.

pH 6.7

This experiment was laid down in another portion of the same field as Experiment 3 with kale and the analyses are therefore similar.

Previous Cropping

1954 Potatoes Manuring unknown.

1953 Oats Manuring unknown.

Fertilizer Treatments and Layout

All 27 combinations of the following treatments were arranged in the usual $3 \times 3 \times 3$ layout with no replication.

Superphosphate 0, 3 and 6 cwt. (PO, P1, P2)

Potassium Chloride 0, 1 and 2 cwt. (KO, K1, K2)

Salt 0, 3 and 6 cwt. (S0, S1, S2)

Each plot in addition, had a seedbed application of 2cwt. of ammonium sulphate.

The crop grew well throughout and the mean yield of roots was 18.4 tons. There were no substantial yield increments from fertilizers.

Tables A43 - A50 contain the information regarding the effects of fertilizers on crop yield and composition.

Yields of Fresh and Dry Matter (A44 & A45)

The mean yields of fresh and dry roots were 18.36 and 1.566 tons respectively. Individual plots varied in yield from 13.5 to 21.3 tons but the general effect of fertilizers was small. The fresh tops had a mean yield of 3.73 tons and the weight of dry matter was .474 tons.

Salt increased both fresh and dry yields of roots, the former by 2.88 and the latter by .280 tons when applied at the 6 cwt. rate. Neither effect was significant and salt had no influence on the yield of tops.

Superphosphate at 6 cwt. per acre reduced the weight of fresh roots by 0.67 tons, but did not affect the dry matter. It also reduced the fresh and dry yields of tops by 0.44 and .050 tons respectively.

Potassium chloride tended to reduce the fresh weight of roots but, by increasing the D.M.%, to increase the dry matter yield by .116 tons. It significantly reduced the fresh weight of tops by $0.76^{\frac{14}{5}}$ tons and the dry yield by $.078^{\frac{14}{5}}$ tons.

Composition of the Dry Matter

Sodium (A46)

The mean % Na of the roots was .120. There was considerable variation according to the fertilizer treatment, i.e. .030 on the POK2SO plot to .200 on the POKOS2 plot. The mean content of the

tops was .171% and the range was from .077 (POK2SO) to .315 (P1KOS2).

Salt had large and very significant effects on sodium uptake. The mean % Na of the untreated plots was .084 in the roots rising to .139 with 6 cwt. of salt. In the tops the level was raised to .173 from .119 by 3cwt. of salt and to .221 with the 6 cwt. application.

Superphosphate reduced the sodium level in the roots from .138 to .114 which was almost significant and in the tops from .197 to .151 (Sig. at 5% level).

Potassium chloride had very significant effects in reducing the sodium content of both roots and tops. In the roots the level fell from .156 to .126 with the 1 cwt. application and to .077 with the 2 cwt. rate. Similar reductions from .202 to .168 to .142% were found in the tops.

Potassium (A47)

The mean % K in the roots was 3.06 and in the tops, 3.17. There was little variation from plot to plot in the roots, but the range of values in the tops was from 2.25% (P2KOSO) to 5.10% (P2K2S1).

Salt did not influence the potassium content of either roots or tops.

Superphosphate reduced the % K in the roots by 0.14% and increased it by 0.29% in the tops.

Potassium chloride itself had very little influence on the potassium content of the roots, the 2 cwt. dressing raising the level from 2.95 to 3.12%. It did however increase the % K in the tops significantly from 2.85 to 3.48%.

Calcium (A48)

The mean calcium content of the roots was .657 and of the tops 2.31%. There was little variation from plot to plot and none of the fertilizers affected the calcium levels by more than \pm .007%.

Magnesium (A49)

The amount of magnesium in the roots was .103% and .204% in the tops. Fertilizers had little effect, but in general they tended to depress the magnesium levels by about .007% in each case.

Phosphorus (A50)

The roots had a mean % P of .291 whilst that in the tops was .163. In the roots the range was from .225 to .350% and in the tops from .095 to .260%.

Salt enhanced the %P in the roots from .274 to .298 and this was almost significant, but it had no influence on the level of the tops.

Superphosphate itself increased the % P in the roots from .278 to .299 (almost significant) and the increase from .138% to .194% in the tops from the 6 cwt. dressing did reach significance at the 5% level.

Potassium chloride at 2 cwt. per acre significantly reduced the phosphorus uptake in the roots from .309 to .276%. The negative PK interaction was also significant. On the other hand the phosphorus content of the tops was raised from .137 to .179%.

TURNIPS. EXPERIMENT 2. 1955.

Site Balloch. Dumbartonshire.

Soil Red sandstone drift.

Medium loam, freely drained.

Exchangeable Na 43.5 mgs. %

1% citric sol. P 4.0 mgs. % Deficient.

1% citric sol. K 11.0 mgs. % Low.

pH 6.1

This experiment was sited immediately adjacent to Experiment 4 with kale and the soil analyses are virtually the same.

Prvious Cropping.

1954 Oats 2 cwt. Ammonium Sulphate 1953 Permanent Grass.

Fertilizer Treatments and Layout.

The design of the experiment was the same as that for Experiment 1 namely, a 27 plot layout to test all combinations of 0,3 and 6 cwt. of Superphosphate, 0, 1 and 2 cwt. of Potassium Chloride and 0, 3 and 6 cwt. of Salt. Each plot in addition had a basal dressing of 2 cwt. of Ammonium Sulphate.

There were substantial yield increments from superphosphate.

The yields and plant analyses are given in Tables A51 - A58.

Yields of Fresh and Dry Matter (A52 & A53)

The mean yields of roots and tops were 17.76 and 2.96 tons respectively. The root yield varied from 10.3 (POK2SO) to 24.1 tons (P2K1S1) and that of the tops from 1.20 (POK1S2) to 4.32 tons (P2KOS1).

The mean yields of dry matter were 1.556 and .325 tons.

Salt increased the yield of fresh roots by 2.22 tons and the dry matter by .162 tons. Its effect on the tops was quite small, fresh and dry weight increments being .06 and .01 tons respectively.

Superphosphate had large and very significant effects on the yield of roots. 6 cwt. raised the fresh yield from 13.50 to 20.67 tons and the dry matter from 1.211 to 1.802 tons. The increase in the yield of tops was quite small and non-significant.

Potassium chloride at 2 cwt. per acre raised the yield of fresh roots by only 0.47 tons and the dry matter by .037 tons. It reduced the weight of fresh and dry tops by 0.34 and .015 tons respectively.

Composition of Dry Matter

Sodium (A54)

In the tops the range was from .055 (P1K1SO) to .265(P2KOS2) % Na, with a mean of .146%. The mean content of the tops was .332% and the range .100 (P1K1SO) to .900 (P2KOS2).

Salt produced large and highly significant increases in the sodium content of both roots and tops. 3 cwt. of salt raised the mean % Na of the roots from .093 to .154 and 6 cwt. increased it further to .192%. The corresponding increments for the tops were from .201 to .296 to .499%. Each progressive increase was significant at the 1% level.

Superphosphate had only small effects. The increases in % Na from 6 cwt. were .015 and .028 respectively for roots and tops.

Potassium chloride reduced the sodium uptake. 2 cwt. per acre

reduced the level from .165 to .133% in the roots and from .367 to .282% (sig. at 5% level) in the tops.

Potassium (A55)

The mean potassium contents of the roots and tops were 2.60 and 3.36% respectively.

Salt at 6 cwt. per acre increased the % K from 2.52 to 2.79 in the roots and from 3.26 to 3.39% in the tops, but neither was significant.

Superphosphate also increased the potassium uptake slightly, by 0.10% in the roots and by 0.25% in the tops.

Potassium chloride itself increased the % K in the tops from 3.18 to 3.55 (which was not significant) but the effect on the roots was negligible.

Calcium (A56)

The mean calcium content of the roots was .397 and the extreme values were .315 and .480%. In the tops the range was from 1.68 to 2.50% with a mean of 2.02% Ca.

Salt increased the % Ca in the roots by .054 which was almost significant. It had the reverse effect on the tops when the decrease from 2.09 to 1.97% was just significant at the 5% level.

Superphosphate raised the % Ca in the roots by $.065^{\text{H}}$ % and in the tops by 0.13^{H} %.

Potassium chloride had no effect on root calcium but depressed the amount in the tops significantly from 2.11 to 1.97%.

Magnesium (A57)

The roots had a mean % Mg of .082 and the tops contained .208%. Salt had very little influence. It reduced the level in the roots by .004% but increased it in the tops by .007%.

Superphosphate had no effect on magnesium uptake.

Potassium chloride reduced the magnesium in the tops by about .020% but had no influence on the roots.

Superphosphate (A58)

The mean % P in roots and tops were .157 and .135 respectively. Salt significantly increased the uptake in both roots and tops. With the 6 cwt. application the increments were .038 and .030 and .030 respectively.

Superphosphate itself greatly increased the phosphorus content. Root phosphorus was raised by .067 and that of the tops by .049 %.

Potassium chloride reduced the % P in the roots from .179 to .140% (sig. at P = .05) and from .139 to .126% in the tops.

TURNIPS. EXPERIMENT 3. 1956

Site Cochno. Dumbartonshire.

Soil Heavy loam. Deep, freely drained.

Exchangeable Na 9.5 mgs. %

1% Citric Sol. P 9.5 mgs. % Low

1% Citric Sol. K 12.5 mgs. % Satisfactory.

рН 6.7

This experiment was sited in the same field as Experiment 6 with kale. It was however some 150 yards away and the soil analyses differ in that this area for the turnips was rather higher in readily soluble phosphorus and lower in potassium.

Previous Cropping.

1955 Oats NPK fertilizer 1954 Grass Unknown manuring.

Fertilizer Treatments and Layout

The experiment tested all combinations of the following treatments;

O and 2 cwt. Ammonium Sulphate N

O and 3 cwt. Superphosphate P

O and 2 cwt. Potassium Chloride K

O and 4 cwt. Salt

Two complete replicates were laid out by arranging the plots in 4 groups of 8 with the NPKS interaction confounded between the replicates.

The mean yield was 16.06 tons of roots per acre. There were

small but significant responses from both superphosphate and potassium chloride. The site was badly infested with the weed, redshank. This was kept under control by hand weeding and thus did not seriously impair the yield.

Appendix Tables A59 - A65 detail the effects of the fertilizers on crop yield and composition.

Yields of Fresh and Dry Matter (A60)

The mean fresh yields of roots and tops were 16.06 and 3.39 tons. The respective dry matter weights were 1.30 and .419 tons.

Salt slightly increased the yield of roots (0.73 tons) and of tops (0.11 tons). Salt had a larger and more significant effect in the absence of superphosphate, the increment being 2.12*** tons.

Ammonium sulphate increased the mean yield of fresh tops by 0.22* tons but the effect was non-significant for the dry weight. It depressed the yield of fresh roots by 0.28 tons.

Superphosphate also increased the fresh yield of tops by 0.22**

tons, the dry matter increment being non-significant at .024 tons.

The fresh weight of roots was increased by 1.37*** tons and by greater amounts in the absence of salt (1.95***) and ammonium sulphate

(1.84***). As the D.M.% was reduced, only the mean dry weight increase and that in the absence of salt were significant.

Potassium chloride increased the fresh yields of roots and tops by 1.17 and 0.42 tons respectively. There were comparable and significant increments in the dry weights.

Composition of the Dry Matter

Sodium (A61)

The mean % Na was .226 in the tops and .175 in the roots. Very large variations occurred from plot to plot e.g. In the tops the range was from .095% in and NK plot to .462 in an NPS plot. The corresponding figures for the roots were .045 and .255%.

Salt caused large and significant increases in the sodium level of both roots (.044***%) and tops (.098***%). Salt given in association with either ammonium sulphate or superphosphate had even greater effects.

Ammonium sulphate had little influence. It raised the sodium content of the roots by .018 and of the tops by .025%.

Superphosphate raised the % Na in the tops by .050*. Greater increments were found in the presence of salt (.082*%) and of potassium (.080*). A mean increase of .025*% was found in the roots. The joint presence of salt increased this to .042*%.

Potassium chloride had large and significant depressive effects on sodium uptake. The mean content of the tops fell by .074**% and of the roots by .035**%. In the tops the decrease was particularly large in the absence of superphosphate and ammonium sulphate.

Potassium (A62)

The mean potassium contents of the roots and tops were 2.05 and 2.41 respectively. Fertilizers did not cause appreciable variations.

Salt depressed the % K in the roots by .08 and in the tops by .03. In each case there were negative KS interactions and this reached

significance at -0.23 in the case of the tops. Salt thus increased the potassium level in the tops by .20% when given in the absence of potassium chloride, but depressed it by .26% when both were applied together.

Ammonium sulphate did not influence the potassium status.

Superphosphate significantly reduced the % K in the tops. The mean decrease was $.23^{14}\%$ but this was increased to $-0.40^{14}\%$ in the presence of salt and to $-.37^{14}$ and $-.34^{14}\%$ in the absence of ammonium sulphate and potassium chloride respectively.

Potassium chloride itself increased the % K in the tops by 0.18% and in the roots by 0.24%. Much greater increases were found in the absence of salt (0.41%) and 0.35% respectively).

Calcium (A63)

The mean calcium content of the tops was 1.80% and that of the roots 0.384%.

Salt increased the % Ca in the tops by .029% and reduced it by .017% in the roots.

Ammonium sulphate did not influence the calcium content of the roots but depressed it significantly by .145**% in the tops. Much larger depressions from ammonium sulphate were found in the presence of other fertilizers.

Superphosphate was also without effect on the roots and decreased the % Ca in the tops by .055%.

Potassium chloride reduced the calcium reduced the calcium level in both tops (-.045) and roots (-.026%). Larger depressions were

found in the absence of superphosphate for both parts and in the roots when salt was omitted.

Magnesium (A64)

The tops had a mean magnesium content of .132% and the level in the roots was .081%.

All the fertilizers supplied had very small depressive effects on the magnesium contents of both roots and tops. Only in the cases of salt and potassium chloride did they reach significance. Even then they were in the order of -.006 % and in the roots only.

Phosphorus (A65)

The mean % P of the roots was .210 and that of the tops .189. Fertilizers had only small effects on phosphorus uptake.

Salt tended to increase the % P in both roots and tops but by mean amounts of only .015 and .008 respectively.

Ammonium sulphate had little effect on the tops but depressed the phosphorus content of the roots by .019%.

Superphosphate increased the levels in each case by about .016%. In the tops the increments were in the order of .028*% in the presence of either salt or potassium chloride.

Potassium chloride raised the % P in the tops by .020 %. It increased the level by smaller amounts when given in association with other fertilizers. It also increased the mean phosphorus content of the roots by .016%.

TURNIPS EXPERIMENT 4. 1956.

Site Balloch. Dumbartonshire

Soil Sandy loam, deep, freely drained.

High in organic matter.

Exchangeable Na 5.0 mgs %

1% Citric Sol P 3.5 mgs % Deficient

1% Citric Sol K 8.5 mgs % Low

pH 5.4

Previous Cropping

Permanent grass. Very poor, no manuring.

Fertilizer Treatments and Layout

The treatments and design of the experiment were as for Experiment3.

All combinations of the following applications were tested in a

2 x 2 x 2 x 2 layout of 32 plots in 4 blocks of 8.

O and 2 cwt. Ammonium Sulphate N

O and 3 cwt. Superphosphate P

O and 2 cwt. Potassium Chloride K

O and 4 cwt. Salt

In spite of the marked acidity and the large response to superphosphate, the mean yield was as high at 21.5 tons of roots per acre. There was a small significant increase from salt.

Data concerning the effects of the fertilizers on plant yield and composition are given in Tables A66 - A72.

Yields of Fresh and Dry Matter (A67)

The mean fresh yields of roots and tops were 21.47 and 5.08 tons respectively. The comparable dry matter weights were 1.94 and .664 tons. The fresh yield of roots ranged from 14.44 tons on a nil plot to 27.78 tons with a PK treatment.

Salt significantly increased the fresh yield of roots by 1.87* tons and the dry matter by .14* tons. There were large and very significant PS interactions in each case. These resulted in salt increasing the fresh and dry weights by 4.46** and 0.33** tons respectively when given without superphosphate. In the roots there were also significant negative KS interactions, salt being of little benefit if applied together with potassium chloride. Salt tended to reduce the yield of tops. Again there was a significant negative PS interaction and a small KS one.

Ammonium sulphate had only minor effects. The fresh yields of roots and tops were increased by .56 and .14 tons respectively.

Superphosphate had a marked influence on yield. The fresh weight increments were 5.02*** tons of roots and .97*** tons of tops. The very significant negative PS interactions in each case resulted in the increases being 7.56*** and 2.60*** tons respectively in the absence of salt.

Potassium chloride had only small effects. The mean fresh weight of roots was increased by .90 tons (2.52** in the absence of salt) and the fresh yield of tops fell by .10 ton.

Composition of Dry Matter.

Sodium (A68)

The mean sodium content of the tops was .402% and that of the roots .134%. Large variations were found from plot to plot. The lowest level in the tops was .200% in a nil plot and the highest .700% on an N plot. In the roots the range was from .280% (NPS) down to .050% with the NK treatment.

Salt had large and significant effects, the mean increase in % Na being .237** for the tops and .064** for the roots. There were no marked interactions involving salt.

Ammonium sulphate did not influence sodium uptake.

Superphosphate slightly raised the sodium level by mean amounts of .042% in the tops and .020% in the roots. A larger increase of .103³⁴% was found in the tops on those plots which in addition had potassium chloride.

Potassium chloride had significant effects in reducing the sodium uptake by $.078^{\frac{34}{10}}\%$ in the tops and by $.033^{\frac{344}{10}}\%$ in the roots. In the roots the depression reached $.072^{\frac{344}{10}}\%$ on plots which did not receive salt and there was a large fall of $.138^{\frac{344}{10}}\%$ for the tops on plots without superphosphate.

Potassium (A69)

The tops contained 1.98% K and the roots 1.68%. Variation from plot to plot was mainly due to the presence and absence of potassium chloride.

Salt had a small depressive effect of -.03% on the tops and a

larger incremental one of .13 for the roots. Salt increased the potassium content of the roots most when potassium chloride was also applied.

Ammonium sulphate had no overall influence on the root potassium but depressed the amount in the tops by .12% and by double that on plots which also had potassium chloride.

Superphosphate depressed the % K in both roots and tops by .19 and .07 respectively. There were significant decreases in the tops in the absence of potassium chloride (-.50****/**) and salt (-.30***/**/**).

Potassium chloride itself enhanced the potassium uptake by large and significant (P = 0.01) amounts, $.49^{\frac{1}{12}}$ in the tops and $.31^{\frac{1}{12}}$ % in the roots. There was a significant PK interaction of $0.31^{\frac{1}{12}}$ % in the tops and an NK one of $-.14^{\frac{1}{12}}$ % in the roots.

Calcium (A70)

The mean % Ca in the tops was 1.713 and .355 in the roots. Fertilizers generally reduced the uptake.

Salt reduced the calcium level in the tops by .056% and in the roots by .015%. Larger depressions were found in the absence of ammonium sulphate.

Ammonium sulphate had rather greater effects. The reduction in the calcium content of the tops was .083% and in the roots, .028 %. In the tops the effect was more pronounced in the absence of salt and superphosphate.

Superphosphate reduced the % Ca in the tops by .114% but was without influence on the roots.

Potassium chloride caused only small reductions in the calcium uptake.

Magnesium (A71)

The mean contents of magnesium were .135% in the tops and .075% in the roots.

Salt and ammonium sulphate had very little effect.

Superphosphate enhanced the mean % Mg in the tops by .013 and by .024 on plots which received no salt.

Potassium chloride reduced the magnesium level by .021% in the tops and by .006% in the roots. Potassium chloride given in the absence of either ammonium sulphate or superphosphate caused decreases in the order of .030%.

Phosphorus (A72)

Phosphorus uptake was enhanced by all fertilizers. The mean % P was .194 in the tops and .161 in the roots.

Salt increased the amount in the tops by .024 and in the roots by .005%. Iarger and more significant increments were found in the absence of other fertilizers, especially superphosphate. The negative PS interactions in each case were significant and resulted in increases of .048 and .019 in tops and roots from salt when no superphosphate was applied. When both salt and superphosphate were given together there was no stimulation of phosphorus uptake from salt.

Ammonium sulphate also raised the % P by .025% in the tops, but had no influence on the roots.

Superphosphate itself increased the phosphorus content of the tops by $.051^{***}\%$ and of the roots by $.030^{**}\%$. In each case the increments were markedly greater in the absence of salt and ammonium sulphate.

thinks in the second se

Karani. Tina Derak

Rain Count

i de de la compania de la compaña de la La compania de la compaña d

September 1988

Potassium chloride had only small effects on phosphorus uptake.

TURNIPS EXPERIMENTS. SUMMARY.

Effects on Yield

Table 20 gives the main effects and interactions for the four experiments with regard to fresh and dry yields of roots and tops.

Table 20. Yields of Fresh and Dry Matter of Turnips (tons).

Main Effects and Interactions.

	energine en transcence entrette dischio	THE THE PERSON OF THE PERSON OF	FRESH	YIELD		DRY MATTER			
EXPERI	MEHT	1	2	3	4	1	2	3	4
Mean y									
	Tops	3.73		3.39	-	•474			•664
	Roots	18.36	17.76	16.06	21.47	1.566	1.556	1.30	1.94
Respon	se to								
S	Tops	.14	•06	.11	34 1.87 ^ж	.001	.010		056
	Roots	2.88	2.22	•73,		.280	.162	•03	.14**
N	Tops	-	-	•22 ^m	•14	-	-	.025	•039
70	Roots	-		 28	•58	-050	-00=	06	•04
P	Tops	44	.67 7.17***	•22 [*]	•58 •97*** • 5•02***	050	•095 • 59 1	•024 • 00**	.119*** .46***
K	Roots	67 76 [≭]	(•⊥(1.37*** •42**	* 1 0	.028 078**	025	* .08**	• 46 • -• 032
IV.	Tops Roots	-• /o •23	32 .47	1.17**	•90	.116	•037	.053*** .11***	032 .07
	1100 05	• 2)	•41	∓• +1	• 50	• 110	• • • • • •	• 4.4.	•01
Intera	ctions	r Called Street							
ИP	Tops	_	-	.01	 25	-	-	004	032
	Roots	-		.20	-1.21	-	-	•01	011
NK	Tops	-	-	.14	•32	-	-	.018	•039
	Roots	_		.13		-	-	.01	03
ns	Tops	-	-	•06	•05	-		•009	013
	Roots	- <u>-</u>	-	•44 29	-•78 ===	-		01	08
PK	Tops	39	 39		•59**	042	057	041***	•059
DC.	Roots	-2.10	•48	.09	1.12 -1.62***	.006	005	.03 .009	.10 205
PS	Tops	50	.66	•09	-2.61 ***	058 .021	.052 .063	 05	19***
KS	Roots	69	1.65 .00	-•57 •03	53 [±]	.037	002	.007	050
CAA	Tops Roots	•18 ••99	-1 - 92	01	-1.63 [#]	015	0 28	04	21 EX
	1100 03	-• >>							CONTRACTOR OF THE CONTRACTOR O

Salt increased the fresh and dry yield of roots in each experiment. The only significant increase of 1.87* tons of fresh and 0.14* tons of dry matter was in Experiment 4 which was the site lowest in readily soluble potassium. On the other hand the smallest increase of 0.73 tons was on the only soil where a significant response to potassium chloride occurred. (Expt. 3.) Rather larger increases of about 2.5 tons of fresh roots were found in the first two experiments. There is therefore little correlation between response to potassium chloride and response to salt. Salt had nagligible effects on the yield of tops.

Ammonium sulphate did not alter the yield of roots in the two experiments in which it was used. It did however increase the yield of tops to a significant extent in Experiment 3 (+.22** tons).

Superphosphate had significant incremental effects in all experiments except the first. The increases were broadly related to the readily soluble phosphorus level in the soil.

Experiment		cwt.	Response to		Superphosphate	1% Citric Sol P			
			Roots		Tops	m	g s %.		
	2	6	7.17***		0.67	4.0	Deficient		
	4	3	5 .0 2 ^{₩Ж}		0.97 ^{**}	3.5	Deficient		
	3	3	1.37***		0.22 ^{**}	9•5	Low		
	1	6	-0.67		-0. 44	13.0	Satisfactory		

There were negative PS interactions in the fresh weight yields for three experiments in the case of the roots and in two for the yield of tops. They were particularly large and highly significant in Experiment 4. There is thus a tendency for salt to give higher yields in the absence of superphosphate and vice-versa.

Potassium chloride raised the yields of roots and tops to a significant degree in Experiment 3 only. Otherwise it tended to reduce the weight of tops. The increases in yield from 2 cwt. of potassium chloride were not related to the readily soluble potassium content of the soil.

Experiment	Response to I	otassium Chloride	1% Ci	tric Sol. K
•	Roots	'Tops	m	gs. %
3	1.17 [*]	0.42**	12.5	Satisfactory
4	0.90	-0.10	8.5	Low
2	0.47	-0.32	11.0	Low
1	0.23	- 0.76 [¥]	13.5	Satisfactory

In all four experiments there were negative KS interactions for the yields of fresh and dry roots. In only Experiment 4 was it significant and on this site there was also a negative interaction for the yield of tops.

Effects on Dry Matter Composition

Sodium

The effects of fertilizers on the sodium uptake of turnips are summarised in Table 21.

Salt had very marked and highly significant effects on the sodium level in all four experiments. The increases have ranged from .044 to .099 in the roots and from .098 to .298 in the tops. These increments were generally at least 50% of the mean sodium

levels in each case. These results are directly comparable with the effects of salt on kale.

Table 21. Dry Matter Composition of Turnips. % Na.

Main Effects and Interactions.

And you will not all all all the streets and controlled a controlled controlled and controlled a	T		T		T			
	Expt.	1.	Expt	. 2.	Expt	• 3•	Expt	• 4•
	Tops	Roots	Tops	Roots	Tops	Roots	Tops	Roots
Mean	.171	.120	•332	•146	.226	•175	.402	•134
Response to S N P K	.102*** - 046* 060***	_	١ _	_	.025_	വെള	•237*** •011 •042 ••078*	015
Interactions NP NK NS PK PS KS	- - 016 033 008	- - 030 032 015	- - 107 .074 017	- - 008 .029 .015	012 040 .013 .030 .032 .005	013 011 .010 002 .020 005	018 005 .003 .062* 032 002	.011 006 .003 001 .004 .039*

Ammonium sulphate had little effect on the sodium levels in the two experiments in which it was used. This was in contrast to the results with kale, but the effects on yield were quite different for the two crops.

Superphosphate increased the % Na in both roots and tops in the last three experiments by amounts ranging from .015 to .050%. Only in one case was the increment significant, and that in the tops only. The uptake of sodium was reduced throughout the plant in Experiment 1, which was also the only one where superphosphate did not increase the

yield. Broadly similar results were found with kale.

Potassium chloride, as with kale, consistently and very significantly reduced the sodium uptake in both roots and tops. In the tops the depression varied between .060** and .084**% and in the roots between .032 and .079***%.

There were no marked or consistent interactions.

Potassium

Table 22 summarises the effect of fertilizers on the potassium content of turnips.

Table 22. Dry Matter Composition of Turnips. % K. Main Effects and Interactions.

	Exp	t. 1.	Exp	t. 2.	Expt	• 3•	Expt.	4.
	Tops	Roots	Tops	Roots	Tops	Roots	Tops	Roots
Mean	3.17	3.06	3.36	2.60	2.41	2.05	1.98	1.68
Response to			,				İ	
s	02	.08	.13	. 27	03	0 8	03	•13 [*]
N	-	-	-	-	01 _x		12	•00
P	•29 •63 [¥]	14 .17	•25	- .11	23**	05,	19 .49	07 .31***
K	.63₹	.17	•37	.08	.18	•24 ^x	•49	•31 TA
Interactions				,				
NP	-	-	-	-	•14		09	01 14***
NK	-		-	-	.09	.07	12	
NS	-	***	-	-	.06	.08	11 _{sr}	•03
PK	•45	20	•45	27	11	16	.31**	05
PS	-28	.13	.70	•50	17_	02	.11	.00
KS	18	 02	47	07	23**	11	.00	•06

Salt had variable effects on potassium uptake. It generally reduced it slightly (.03%) in the tops but increased it rather more in the roots.

Ammonium sulphate had negligible effects in Experiment 3 and depressed the % K in the tops by .12% in Experiment 4.

Superphosphate also had no consistent influence. There were increases and decreases in the order of .25%K in the tops and .10% K in the roots.

Potassium chloride always increased potassium uptake. The increments were generally greater in the tops than in the roots and ranged up to 0.63** and 0.31**% respectively. They did not seem to be related to the yield response to potassium chloride.

The KS interactions were generally negative.

Calcium

The effects of fertilizers on the calcium content of turnips for the four experiments are shown in Table 23.

Table 23. Dry Matter Composition of Turnips. % Ca.

Main Effects and Interactions.

	Expt	. 1.	Exp.	t. 2.	Exp	t. 3.	Exp	t. 4.
	Tops	Roots	Tops	Roots	Tops	Roots	Tops	Roots
Mean	2.31	.657	2.02	•397	1.80	•384	1.71	•355
Main Effects S N P K		007 - 006 .015	12 - .13* 13*	.054 - .065** 004	.03 14 06 05	017 006 008 026*	06 08 11 02	015 028* .001 012
Interactions NP NK NS PK PS KS	- - - -19 13 22	- - 005 011 028	- - 04 20	- - .003 .015 005	12** 01	.011 .018 018	•	007 015 .017 .016 018

Salt had irregular effects on calcium uptake. They were all small and non-significant.

Ammonium sulphate depressed calcium levels in the two experiments in which it was used. In Experiment 4 the decrease of $.028^{\frac{34}{5}}\%$ was significant.

Superphosphate stimulated calcium uptake in the tops and roots in only one experiment. It was generally without effect in the others but tended to depress the calcium content of the tops in Experiment 3 and 4.

Potassium chloride normally reduced the % Ca in both roots and tops. In the roots the falls ranged up to .026 and in the tops to .13%.

Magnesium

None of the fertilizers appreciably altered the magnesium level. Table 24 summarises the results.

Salt generally reduced the magnesium contents by amounts ranging up to .007%.

Ammonium sulphate and superphosphate had very small and irregular effects.

Potassium chloride consistently reduced the % Mg. Root magnesium fell by amounts of up to .007%. The level in the tops was decreased by between .007 and .021%.

The KS interactions were generally positive indicating that salt and potassium chloride reinforce each other in reducing magnesium uptake.

Table 24. Dry Matter Composition of Turnips. % Mg.

Main Effects and Interactions.

	Exp	t. 1.	Exp	t. 2.	Exp	t. 3.	Exp	t. 4.
	Tops	Roots	Tops	Roots	Tops	Roots	Tops	Roots
Mean	•204	.103	.20 8	.082	.132	.081	.135	.075
Response to								
S	007	006	.007	004	.000	006 [₩]	004	.003
N	-	***	-	-	002	003	.004	.004
P	.002	009 [*]	.002	003	.002		.013_	.001
K	007	005	015	002	008	007 [*]	021*	006
Interactions				1				
NP	-	-	_	-	002	001	.001	.002
NK	-	-	-	-	001	•002	.010	.000
NS	-	-	-	-	001	003	.008	•004
PK	.007	003	008	•004	•005		•009	•005
PS	.004	007	008	.002	•004	.001	011	003
KS	.008	•004	008	•003	•006	.008 ^{**}	002	.001

Phosphorus

Table 25 presents the data regarding the effects of fertilizers on the phosphorus content of turnips.

Salt has increased the % P in each experiment. The increases ranged up to $.038^{\frac{14}{5}}\%$ in the roots and to .030% in the tops.

Ammonium sulphate had irregular effects in the two experiments in which it was used.

Superphosphate consistently increased the % P in both roots and tops. The increments were large and significant, ranging up to .067**% in the roots and .056**% in the tops.

Table 25. Dry Matter Composition of Turnips. % P.

Main Effects and Interactions.

and the Committee of the Same and Committee of the Commit	Expt	. 1.	Expt. 2.		Exp	t. 3.	Expt	• 4•
	Tops	Roots	Tops	Roots	Tops	Roots	Tops	Roots
Mean	.163	•291	•135	.157	.189	.210	.194	.161
Response to S N P K	004 - .056** .042*	.024 - .011 033**	.030 - .049***	.038 [#] - .067 ^{##} 039 [#]	.008 .004 .016 .020**	.015 019 .017 .014	.024** .025** .051**	.005 .000 .030***
Interactions NP NK NS PK PS KS	- - - .027 .018	- - 053** 003 .009		- - - .000 .013 .023	006 006 011 013 .011 021**	002 .005 008	014 005 009 .011 024***	013 ^{***} 001003005016*** .002

Potassium chloride had variable effects. There were both significant increases and decreases.

In Experiment 4 there were large and significant negative PS interactions in both roots and tops, but the remaining interactions were generally small and irregular.

EXPERIMENTS WITH GRASS

Salt has been used for many years on grass by some farmers in those areas adjacent to the sources of production in Cheshire and Staffordshire. In addition to the possible effects on yield it is reported to preserve the freshness of the vegetation in dry weather and to increase the palatability of older and coarser material. There have been no recorded experiments in this country.

Reports from New Zealand however have indicated that salt may be of benefit to grass (which presumably includes clover). Inynch (1954) has shown from the results of 15 trials with salt on potassium deficient soils that it may be of considerable benefit. On sandy soils grass responded to salt only if no potassium chloride was given. On "ash" soils small returns were found even if given in combination with added potassium. Salt did not improve yields on basalt soils. The clover (wild white) grew better and there was more uniform and closer grazing. There was an improved potassium uptake resulting from the salt applications.

Bell(1955) and During (1957) also in New Zealand have reported that salt may be of benefit to grass under potassium deficient conditions.

Gammon (1953) found in pot experiments that pangola grass (which has a very high potassium requirement) could have two-thirds of this need replaced by sodium without loss of crop. There was no direct benefit with other grasses with lower potassium requirements.

Clover made poorer growth as sodium was substituted for potassium.

Reference has already been made (p.5) to the effect that a number of workers have reported that lucerne particularly and various clovers are responsive to salt, more especially under potassium deficient conditions.

Four experiments to investigate the effect of salt in association with other fertilizers on the growth and composition of grass have been completed. In each case the fertilizers were applied to established swards. There were two experiments in 1956 and two in 1957 and in each year one was sited on a sward high in clover and the other on almost exclusively grass species.

In 1956, the treatments investigated were

0	and	3	cwt. Ammonium Sulphate	N
0	and	3	cwt.Superphosphate	P
0	and	2	cwt.Potassium Chloride	K
O	and	1	cwt. Salt	S

The layouts were in standard 2 x 2 x 2 x 2 factorial designs of 4 blocks of 8 plots, the NPKS interaction being confounded between the two complete replicates in each experiment.

At one site, (Experiment 1) eight additional plots were laid down to investigate the effect of higher levels of fertilizer application, namely

6 cwt Ammonium Sulphate

in all combinations.

4 cwt Potassium chloride

8 cwt Salt

All the fertilizers were applied in the spring in a single application, and in each case two cuts of herbage were taken for yield determinations, but sampling for analysis was done more frequently.

In 1957 two further experiments were commenced. The treatments were as follows.

O and 3 cwt. Ammonium Sulphate

In addition, dressings of 3 cwt of ammonium sulphate were given after each of the several cuts taken.

O and 3 cwt. Superphosphate P

O and 2 cwt. Potassium Chloride K

O and 4 cwt. Salt

O and 2 cwt. Magnesium Sulphate (Hydrated) Magnesium Sulphate

The plots were laid out in standard 2⁵ layouts in 4 blocks of 8. The SMP, SNK, and MNPK interactions were confounded between blocks. The analysis of variance was as follows.

		Degrees	of	freedom
Main Effects			5	
Interactions	2 factor		10	
	3 factor (excl. SMP & SNK)		8	
	4 factor (excl. MNPK)		4	
	5 factor		1	
Blocks	(SMP. SNK. MNPK)		3	
	TO!	TAL	31	

It was hoped that the repeated nitrogen top-dressings would establish serious potassium deficiency and these experiments will be continued at least into 1958 with this object in mind.

Plot Size

In each experiment, plots of .005 acre have been used as is the usual practice. These were laid down in narrow plots each 4 ft. wide and $54\frac{1}{2}$ ft. long. After marking the boundaries with string the mixed fertilizers were applied by hand.

Harvesting and Sampling

The herbage was cut at appropriate times by means of an Allen Autoscythe. This was employed to take a 3 ft. cut from the centre and running the entire length of each plot.

Samples were taken by bulking 25 handfuls of the cut herbage obtained at random from the whole length. The autoscythe leaves a tidy swath and the samples represent the entire cut material without loss of leaf. The samples were transported to the laboratory in polythene bags.

Sample Treatment

In view of the large difference in mineral composition between grasses and clovers and the effects of fertilizers on the botanical composition of the sward, it was decided to separate the grasses and clovers and to analyse them separately.

Each sample, weighing generally over 1 Kg. was spread on a table and separated into grasses and clovers. They were then weighed

fresh, dried at 100°C, reweighed and ground. Inevitably some small loss of water occurs during the division and this was kept to the minimum by working in a cool room. Some respiration also takes place in the samples which of necessity have to wait a few hours before separation. This has been kept to the minimum by storing the samples in a refrigerator. In any event the water loss was small and all samples were dealt with on the day of cutting.

and provide the control of the support of the control of the contr

O HAR I HAR THE HOUSE ENTER A COMMENTAL OF THE COMMENT OF THE COME

The first of the Relationship with the pro-

in and go in a new results of the state of t

The old will grow and their of the training of the state of the second of the second

THE RESERVE A COMP. PARTY I

Divine Bulling and Bees received the little of the control of the

GRASS EXPERIMENT 1. 1956

Site Cochno. Dumbartonshire.

Soil Heavy loam, well drained.

Exchangeable Na 7.5 mgs. %

1 % Citric Sol. P 12.5 mgs. % Satisfactory

1 % Citric Sol. K 12.5 mgs. % Satisfactory

pH 6.5

Sward Composition

The sward consisted predominately of perennial ryegrass with red and wild white clovers. It had been sown under oats in the previous year.

Fertilizer Treatments and Layout

All combinations of the following treatments were investigated in a 2^4 factorial design of 32 plots in 4 blocks of 8, the NPKS interaction being confounded between replicates.

O and 3 cwt Ammonium Sulphate N

O and 3 cwt Superphosphate P

P and 2 cwt Potassium Chloride K

O and 4 cwt Salt

To eight further plots immediately adjacent to the above were applied all combinations of the following higher rates of N, K and S.

O and 6 cwt Ammonium Sulphate N2

O and 4 cwt Potassium Chloride K2

O and 8 cwt Salt

In each case the whole of the fertilizers were applied as one single treatment on April 5th. Although that day was overcast, no rain fell for almost three weeks and there were severe scorching effects on the clover from salt at both the 4 and 8 cwt rates. To some extent the effects were more pronounced with the combined salt and potassium chloride dressings. This was entirely due to retention on the clover leaves. The scorching tended to be rather irregular and the rather high standard errors in this experiment for yields of clover can be attributed to this.

As a result of the reduced clover, supplementary nitrogen was not applied later in the year in order not to eliminate it entirely from the sward.

The herbage was sampled four times during the year, namely;

- A. May 5th, at the grazing stage.
- B. May 30th, at the early hay stage, when the first cut was taken.
- C. July 21st, when the grass had re-grown to the silage stage and the second cut was taken.
- D. August 21st, at the subsequent aftermath grazing stage.

Salt adversely affected clover yields and ammonium sulphate greatly increased the growth of herbage up to the first cut. Thereafter it had little net effect as it further depressed the clover but at the same time increased the grass.

Tables A73 - A87 give the effects of the various treatments on the yield and composition of the grass and clover.

Yields of Dry Matter (A76 & A77)

The mean yield of total dry matter at the first cut was 21.64 cwt of which 16.41 was grass and 5.23 clover. At the second cut the total yield was 23.04 cwt, 15.00 being grass and 8.04 being clover.

Salt generally depressed the yields of total dry matter by reason of its adverse effect on the clover. At each cut the clover was decreased by a mean value of about 2.3 cwt and this was significant at the 5% level. Greater damage occured to the clover on plots receiving phosphorus and/or potassium in addition to the salt. Salt slightly increased the yield of grass. This may not be entirely attributable to a direct nutritional effect but perhaps to the reduced competition from clover.

Ammonium sulphate greatly increased the total dry matter at the first cut by 11.93 cwt. The main effect was to increase the grass by 14.50 cwt and to depress the clover by 2.58 cwt. The residual effect of the single dressing of ammonium sulphate was very small and at the second cut the increase in total dry matter was only 1.35 cwt. There were however marked differences between grass and clover. The grass increased by 7.84 cwt and the clover yield fell by 6.51 cwt. Again, the clover depression was greater in the absence of potassium.

Superphosphate had only a small influence on the yield of total dry matter, increases of 1.21 cwt being recorded at each cut. Grass and clover contributed equally to this.

Potassium chloride depressed the yield of total dry matter by about 1.5 cwt at each cut, the majority of the fall being due to the

reduction in clover. One particularly large decrease of 4.42* cwt was found in the second cut for the total dry matter on plots which also received no nitrogen.

These effects were all accentuated in the additional plots where higher rates of ammonium sulphate, potassium chloride and salt were applied.

Salt at 8 cwt/acre greatly reduced yields at both cuts by its almost catastrophic effect on the clover. Clover was almost entirely eliminated by the initial scorching particularly when ammonium sulphate and/or potassium chloride were also applied.

Ammonium sulphate at 6 cwt increased yields to a markedly greater extent than the 3 cwt application. Again, its effect was to increase the grass at the expense of the clover.

The 4 cwt application of potassium chloride reduced the yield relative to the control plot at the first cut, but when given in association with ammonium sulphate produced the largest yield of total dry matter at both cuts, but the clover was still adversely affected and the dry matter was almost entirely grass.

Composition of the Dry Matter

Sodium (A78 & A79)

The mean % Na in the grass was .266 at the first sampling and fell steadily to .062% at the fourth. In the clover a more or less steady value of about .100% was maintained throughout. Very large variations were recorded from one treatment to another. In the grass the range was from .022% on a K plot at the fourth sampling

to .800% on an NS plot at the first. In clover the highest sodium content was .332 on a PS plot in the first sample and the lowest was .025% on a PK plot at the fourth.

Salt consistently increased the % Na in grass and clover at all times by large and significant amounts. In grass, the increases were much the greatest at the first two samplings (.167** and .134**% respectively) than in the third and fourth (.053** and .022*%).

For the A and B samples salt increased the % Na most in the presence of ammonium sulphate. This was however reversed in the C and D samples. The effect of salt on the clover was rather more uniform, increases falling from .102**% at the first to .033**% at the fourth sampling. Salt at the 8 cwt rate on the additional plots increased the sodium level to an even greater degree. Amounts as high as .900 and .480% were found in the grass and clover respectively.

Ammonium sulphate increased the sodium level of grass in the A and B samples as much as did salt, the mean increments being .148 and .179 respectively. When nitrogen was no longer increasing yields at the C and D samplings its influence on raising the % Na was much reduced and was only .006% in the last sample. In the first two samples the effect of nitrogen was greater in the presence of salt. There were also very large and significant negative NK interactions and thus ammonium sulphate had a much reduced influence on sodium uptake when applied in association with potassium chloride. For example, in the first sample ammonium sulphate alone increased the % Na by .254 but by only .042 when

given with potassium chloride. The influence on clover was very much smaller and non-significant. There was either no effect or an increase or decrease of .030%. The small reductions at the A and B samplings may be associated with the decrease in clover yield. At the higher rate of 6 cwt/acre on the additional plots, the sodium level of grass was increased more and the effect was more prolonged. Even this high rate of nitrogen however was not able to increase the % Na in the presence of potassium chloride and a low level of as little as .010% Na was found at the fourth sampling on the plot receiving 4 cwt of potassium chloride. As in the main experiment there was no increase in the sodium level of the clover.

Superphosphate had the general effect of depressing sodium uptake in both grass and clover. In grass, the largest reductions were in the early part of the season, but in the clover the C and D samples were showing the greater falls. In each case the decreases were significantly greater where nitrogen was also given.

Potassium chloride had outstanding effects in reducing sodium uptake. In the grass the mean reduction fell from -.105** in the A sample to -.047** in the last. In clover the effect was reversed in that the first sample showed a depression of .017% and the fourth a reduction of .056**. In neither case were the KS interactions of importance, but there were large and significant negative NK interactions throughout. Potassium thus depressed the % Na most when given together with ammonium sulphate. Potassium chloride at 4 cwt per acre on the additional plots had correspondingly

greater effects. e.g. In the B sample the % Na in the grass was .275 in the N plot, .055 in the NK, .900 in the NS and .395 for the NKS treatment. Similar trends were found in the clover.

Potassium (A80 & A81)

The potassium contents of the grass and clover were highest in the first sample being 3.36 and 3.12% respectively. In clover the amount fell steadily to 1.86% and the trend in the grass was similar but more irregular. There was considerable variation in the % K in different plots. Thus in the grass the range was from 4.80% in the A sample of an NPK plot to 1.30% in an NP plot at the third sampling. In clover, 4.0% was reached in the NPK plot in the first sample and 0.95% in the C sample of the NP plot.

Were small increases, especially in the presence of nitrogen for the A and B samples followed by small depressions in subsequent samples. For the first two samples there were large and significant negative KS interactions which led to salt increasing the % K when no potassium chloride was given but reducing it when the two were applied together. Similar trends, including the significant negative KS interactions were found in the clover, but the overall effect was rather more irregular than with grass. The additional plots receiving 8 cwt of salt also showed much the same effects on potassium uptake.

Ammonium sulphate increased the potassium uptake of grass

markedly at the first two samplings but the increase in weight of crop removed was reflected in lower subsequent uptakes. In the A sample the mean effect was as high as +0.74 had and the depressions in the C and D samples were -0.46 had -0.28 had respectively.

There were large and significant positive NK interactions resulting in much increased potassium uptakes when ammonium sulphate and potassium chloride were given together, being as high as 1.21 had in the A sample. Similar trends in the overall effect of ammonium sulphate were found in the clover and again there were large and significant positive NK interactions. In the absence of potassium chloride, ammonium sulphate consistently reduced the % K of clover. On the plots which had 4 cwt of potassium chloride higher potassium values were obtained and salt at the 8 cwt rate tended to reduce the increases in both grass and clover.

Superphosphate increased the mean content of potassium in both grass and clover by amounts ranging up to 0.3%. In the grass, the effect was much reduced after the first sample but was much more prolonged in clover. The absence of salt and the presence of ammonium sulphate also resulted in large increments in the % K of clover from superphosphate.

Potassium chloride itself caused large and significant increments in the potassium contents of both grass and clover at all stages.

The increases ranged from .2 to .5% and were all significant at the 1% level. In the grass there were large and significant (P = .01) negative KS interactions which resulted in potassium chloride

increasing the % K by very large amounts but only in the absence of salt. When salt was applied the increases were smaller and non-significant. In grass also there were large and highly significant positive NK interactions and this resulted in potassium chloride having no effect on potassium uptake in the absence of ammonium sulphate. There were also large negative KS and positive NK interactions for the clover. Potassium chloride applied at 4 cwt per acre on the additional plots only increased the % K when given in association with ammonium sulphate.

Calcium (A82 & A83)

The mean calcium content of the clover remained fairly steady at about 2.0% throughout, but in the grass the level fluctuated between .48 and .63%.

Salt depressed the % Ca in the A sample of grass by .049 but thereafter had no influence. In clover there were small reductions of about .05% in the first two samples and corresponding increments in the last two. The additional plots which had 8 cwt of salt showed similar trends, calcium being reduced in the early grass samples and clover reacting in an irregular manner.

Ammonium sulphate tended to decrease the mean % Ca of the grass by amounts in the order of .017% in all except the B sample. The first sample showed significant reductions of .057** and .036**% in the presence of superphosphate and potassium chloride respectively. There was also a large negative NP interaction at the fourth sampling. Ammonium sulphate markedly reduced the calcium content

of the clover by .22** and .32** at the first two samplings, but increased the uptake slightly thereafter. On the additional plots at 6 cwt per acre it generally reduced the calcium in the A sample but increased it in the last one.

Superphosphate stimulated the calcium uptake of the grass at all but the third sampling, that of .023% at the first being almost significant. There were large negative NP and PS interactions also in the A sample. It had almost no effect on the clover.

Potassium chloride consistently depressed the % Ca in the grass by amounts ranging from .010 to $.026^{\frac{18}{8}}$ %. There was little influence on the clover and when given at 4 cwt per acre on the additional plots there was no appreciable further influence.

Magnesium (A84 & A85)

The mean % Mg in the grass was .115 in the A sample falling to about .095 at the B and C, and rising to .129 in the final sample.

In the clover the level dropped steadily from .260 to .218%.

Salt had little effect on the grass at the first two samplings but depressed the uptake by .008^{**} and .017^{**}% at the third and fourth. The decrease was much the largest on these later samples on plots which had nitrogen (-.029^{***}) or in the absence of phosphorus (-.020^{***}) or potassium (-.030^{***}). In clover the largest reduction was in the A sample and again the fall was greatest in the presence of nitrogen and the absence of phosphorus or potassium. On the additional plots with 8 cwt of salt the magnesium level in the grass fell even more, e.g. at the first cut salt reduced the

% Mg from .114 to .074, but there was no further influence on the clover.

Ammonium sulphate significantly increased the % Mg of grass at the first (.030 and second (.015 samplings, but thereafter was without effect. Increases were also found in the clover at all except the second sampling. Where 6 cwt of ammonium sulphate was applied the magnesium was increased most in the clover, e.g. the % Mg on the nil plot was .216, .230, .176 and .198 as the season progressed and .284, .216, .234 and .250 on the N plot.

Superphosphate depressed the % Mg in grass throughout by amounts ranging up to .010 in the first sample. Greater reductions were found when superphosphate and ammonium sulphate were applied together. It also reduced the uptake in clover by amounts ranging up to .020 in and again the decreases were much greater in the presence of ammonium sulphate.

Potassium chloride reduced the **%Mg** in both grass and clover by up to .010% but the effects were not significant. When given at 4 cwt per acre on the additional plots it tended to reduce the uptake particularly when applied alone or in association with salt.

Phosphorus (A86 & A87)

The mean % P of the grass remained fairly steady at about .27% except in the C sample when it fell to about .22%. In the clover the level was much the highest in the first sample (.320) falling to .222 in the second, .137 at the third and .163 at the fourth.

Salt had little influence on the % P in grass except in the D

sample when it increased the level by .021%. It tended to reduce the content of the clover by amounts ranging up to .016%. The dressing of 8 cwt per acre on the additional plots also had no influence on the grass but markedly reduced the level in the clover, e.g. in the A sample there was .245% P in the nil plot and .120% in the S plot and in the D sample, .200 and .085 respectively. This no doubt reflects the severe injury by scorching to the clover in the early stages.

Ammonium sulphate did not alter the phosphorus uptake of the early grass samples but markedly reduced it in the later two by about .040***. These were much reduced in the presence of salt and greatly increased where superphosphate was also given, e.g. to -.074*** in the D sample. Ammonium sulphate significantly increased the % P in clover at the first and second samplings by .027** and .032** respectively but there were subsequent reductions of .025** and .027***. In each case there were large and significant negative NP interactions and in the A sample the phosphorus level was markedly increased in the absence of salt. When given at 6 cwt per acre, ammonium sulphate further depressed the uptake of phosphorus by both grass and clover.

Superphosphate itself increased the % P in the grass by about .022% at the first two samplings and reduced it by a similar amount at the fourth. Very comparable results were found in the clover.

Potassium chloride generally decreased phosphorus levels in both grass and clover by amounts ranging up to .015%. It very markedly reduced the amount in clover when given at 4 cwt per acre.

GRASS EXPERIMENT 2. 1956.

Site Balloch. Dumbartonshire.

Soil Red sandstone drift.

Light loam, freely drained.

Exchangeable Na 3.5 mgs. %

1% Citric Sol. P 7.5 mgs. % Low

1% Citric Sol. K 8.0 mgs. % Low

Sward Predominately perennial ryegrass, no clover.

Reseeded under oats in 1954.

Fertilizer Treatments and Layout

The experiment investigated the presence and

absence of

3 cwt Ammonium Sulphate N
3 cwt Superphosphate P
2 cwt Potassium Chloride K
4 cwt Salt S

The treatments were arranged in 4 blocks of 8 plots, with the NPKS interaction confounded between the two complete replicates.

The fertilizers were applied on April 4th and there was an outstanding response to ammonium sulphate at the first cut, but not thereafter.

The crop was sampled three times.

- A May 15th at the silage stage.
- B June 20th at the hay stage when the first cut was taken. Mean D.M. yield 16.9 cwt.
- C August 24th when the subsequent regrowth had reached the silage stage and the second cut was taken. Mean D.M. yield 8.0 cwt.

Tables A88 - A94 present the effects of the fertilizers on the yield and composition.

Yields of Dry Matter (A89)

The mean yields at the first (B) and second (C) cuts were 16.91 and 7.98 cwt respectively. There were substantial yield increments from ammonium sulphate, but at the first cut only.

Salt increased the mean yield at the first cut by 1.39 cwt and by 2.33** cwt in the absence of potassium chloride. The mean yield increment was smaller, but significant at 0.46** cwt at the second cut and it was again greater in the absence of potassium chloride.

Ammonium sulphate increased the mean yield at the first cut by 7.84 cwt. There was an appreciable NK interaction of 0.88 cwt. The mean yield of the second cut was unaffected by ammonium sulphate.

Superphosphate had only small effects on yield. There was an increase of 0.49 cwt at the first cut and a decrease of -0.26 cwt at the second.

Potassium chloride significantly increased yields at the first (2.18* cwt) and the second (0.37* cwt) cuts. There was a large negative KS interaction of -0.94 cwt which resulted in there being an increase of 3.12* cwt of dry matter in the absence of salt and only 1.24 cwt in its presence.

Composition of Dry Matter

Sodium (A90)

There were very large variations in the sodium content. The

mean value fell from .290% at the first sampling to .217% at the second and .073% at the third. Considerable differences occured from plot to plot at each stage, i.e. .750% on an NS plot and .075% on a K plot at the first sampling and much lower values (.215% on an NP plot and .015% on an NPK plot) at the third.

Salt had a very significant influence on sodium uptake, the mean increases being .132*** and .116***% in the A and B samples. The effect was however much reduced in the third sample being only .015%. In the first two samples there were large positive NS and negative PS interactions.

Ammonium sulphate exerted an even greater influence. The increases were .268 in the A, .239 in the B and only .035 in the C samples. There were large and significant negative NK interactions and ammonium sulphate had much greater incremental effects in the absence of potassium chloride.

Superphosphate had little influence on sodium uptake apart from the negative PS interaction.

Potassium chloride very markedly reduced the mean % Na by .143***, .091** and .054**% in the first, second and third samples. There were much reduced and non-significant depressions on those plots which did not receive ammonium sulphate.

Potassium (A91)

The mean % K fell from 2.23% in the first sample to 1.55% in the second and rose to 1.76% in the third. There were considerable variations according to the fertilizer treatment e.g. 1.40% for an

NP plot and 3.15% for an NPK plot in the A samples. These differences were primarily associated with the potassium chloride application.

Salt did not have much overall influence on potassium uptake. There was a mean increase of .12% in the A sample and a decrease of .08% in the C sample. There were appreciable negative KS interactions throughout which resulted in salt increasing the % K in the absence of potassium chloride but depressing it in its presence.

Ammonium sulphate increased the % K in the A and B samples but reduced it in the last cut. The NK interactions were positive and in the A sample there was an increase of $.71^{\frac{88}{7}}$ K when ammonium sulphate and potassium chloride were given together.

Superphosphate did not influence the potassium content.

Potassium chloride itself greatly increased the % K by .56*** at the first sampling, .33** at the second and .21** at the third. The increases were much greater in the absence of salt (.79***, .57*** and .33***% respectively) and in the presence of ammonium sulphate (.94****, .42** and .36***%).

Calcium (A92)

The mean calcium contents were .416, .325 and .405 respectively and fertilizers in general had small effects.

Salt reduced the % Ca throughout, by about .016% in the A and B samples and by .043*% in the third. There were negative PS interactions throughout.

Ammonium sulphate increased the uptake at the first two samplings by .027 and .048 $^{4}\%$ but reduced it in the third by .044 $^{4}\%$.

Superphosphate itself increased the mean % P by amounts ranging up to .026%. The presence of ammonium sulphate caused larger increases, indeed superphosphate in the absence of nitrogen had little effect.

Potassium chloride had only minor and irregular effects.

GRASS EXPERIMENT 3. 1956.

<u>Site</u> Cochno. Dumbartonshire.

Soil Heavy loam. Well drained

Exchangeable Na 9.0 mgs %

1% Citric Sol. P 13.0 mgs % Satisfactory

1% Citric Sol. K 12.5 mgs % Satisfactory.

Sward Perennial ryegrass, wild white clover. Smaller amounts of cocksfoot, timothy and red clover. Reseeded in 1955.

Fertilizer Treatments and Layout

The experiment was a 32 plot layout to investigate all combinations of the following treatments

O and 3 cwt Ammonium Sulphate (N)

(Further 3 cwt dressings were given after each cut making a total of 12 cwt for the year.)

- 0 and 3 cwt Superphosphate (P)
- O and 2 cwt Potassium chloride (K)
- O and 4 cwt Salt (S)
- O and 2 cwt Magnesium Sulphate
 (Hydrated) (M)

The plots were arranged in 4 blocks of 8 with the SMP, SNK and MNPK interactions confounded.

The fertilizers were applied by hand in damp weather on March 15th.

Rain followed almost at once and there were no initial adverse effects

on the clover due to scorching. Top dressings of ammonium sulphate

were applied immediately after each cut, the dates of which were;

- A 3rd June. Early hay stage.
- B 16th July. Silage stage. White clover in full flower.
- C 18th August. Silage stage.
- D 24th September. Aftermath grazing.

The respective mean yields were 32.2, 12.5, 14.0 and 6.1 cwt D.M. respectively. Ammonium sulphate consistently increased yields and markedly depressed the contribution of clover to the sward.

It is intended to continue this experiment with the same treatments in 1958.

Tables A95 - AllO present the effects of the various fertilizers on yield and composition.

Dry Matter Yields (A98, A99 & A100)

The initial growth was good and the first cut yielded 32.2 cwt of dry matter. This was followed by a long spell of dry weather and the mean yield of the second cut was 12.5 cwt. At the third and fourth cuts the yields were 14.0 and 6.1 cwt respectively under rather wetter than average conditions.

Salt generally depressed the yields at each cut reaching a total of 1.86 cwt at the first cut but only 0.1 to 0.2 cwt thereafter.

Both grass and clover were reduced equally. The SK interactions were generally negative and salt reduced the yields most in the presence of potassium chloride. In the third and fourth cuts salt actually increased the yield of grass in the absence of potassium.

Magnesium sulphate had no regular or real effect on yield; there were small and irregular increments and reductions in dry matter yields. There was an isolated significant negative MP interaction of -0.78* cwt for the second cut of clover.

Ammonium sulphate produced large and significant increases in total dry matter yields and consistently reduced the % D.M. The large stimulation of grass yields resulted in the normal reductions in clover. In each case the total and grass yield increments were significant (P = 0.01) as were the clover reductions. Rather surprisingly, there were no marked NK interactions.

Superphosphate was ineffective in increasing the yields of either

grass or clover. There was an initial increase of 1.56 cwt in the first sample - principally from the grass.

Fotassium chloride had no overall effect on yield for the first two cuts but caused small increases of 0.90 and 0.71 cwts at the third and fourth. Grass and clover both contributed to the increase. There were however important negative KS interactions. In all cuts except the second, potassium chloride increased the grass and total yields most when no salt was applied. Clover behaved rather differently in that for the later cuts better yields were obtained from salt and potassium chloride together.

Composition of the Dry Matter

Sodium (A101 & A102)

In the grass, the mean % Na increased steadily throughout the year from .144 at the first cut to .446 at the fourth. The level in the clover was about .250% throughout. Very substantial variations were found in both grass and clover according to the fertilizer treatment. The lowest content in the grass was .045% on the K plot at the first cut and the highest .990% on the N and SNP plots in the last cut. The amount in the clover varied from .125% (K plot, 1st cut) to .455% (N plot, 4th cut)

Salt increased the % Na by large and highly significant amounts in the order of .100% (P = .01) in all except the last cut of grass when it was much smaller at .035%. In the first sample of clover the increase was as much as $.196^{\text{KM}}\%$. In general, greater increments

were found when salt was applied with other fertilizers and the NS interactions were positive and significant for both grass and clover for the second and third cuts. The notable exception was with potassium chloride. Greater increases in sodium uptake were found in the presence of potassium chloride for grass, but in its absence in the case of clover.

Magnesium sulphate depressed the % Na in both grass and clover throughout. In the grass the reduction became greater as the season progressed and reached -.068% at the fourth cut. In the clover the reduction in the magnesium content was more irregular and varied between -.012 and -.027%.

Ammonium sulphate increased the sodium uptake in both grass and clover by significant amounts at each cut. In the grass the increments became progressively greater with each cut and reached about .400% at the fourth. There were large positive NS interactions in the second and third samples, and very significant negative NK interactions at all except the first cut. Thus ammonium sulphate increased the % Na most in the presence of salt or in the absence of potassium chloride. There were also progressive increases in the sodium level of the clover and there were marked positive NS interactions.

Superphosphate had no real effect on the sodium content of either grass or clover. It reduced the sodium level of the grass by about .020% and tended to increase that in the clover very slightly.

Potassium chloride substantially reduced the % Na in both grass and clover. The depressions became greater as the season progressed and reached -.160**% in the grass and -.114**% in the clover and were highly significant at all stages. For the grass, the reduction was greater in the absence of salt and magnesium and in the presence of ammonium sulphate. In clover, the SK interactions were negative and thus the depressive effect of potassium chloride was more marked in the presence of salt.

Potassium (A103 & A104)

The potassium content of the clover remained fairly steady at a level between 1.6 and 1.9% throughout. The amount in grass rose from 1.63% at the first to 2.43% at the third cut and then fell to 2.09%.

Salt had no real effect on either grass or clover, in each case the % K was altered by less than .06%.

Magnesium sulphate was also without influence. There were irregular increases and decreases of under 0.1% in both grass and clover.

Ammonium sulphate after the first cut markedly reduced the potassium uptake by .15 % at the second rising to .75 % at the third and .71 % at the fourth. In each case greater reductions were found on plots to which no potassium chloride has been given. Similar results were found for the clover but the depressions were smaller at about .20 %. It tended to be a little greater where salt was also applied.

Superphosphate had no effect on the % K in either grass or clover.

Potassium chloride itself substantially increased the potassium The increase rose steadily in the grass from .24 *** to Salt given in association with potassium had no further effect but the increases were substantially greater on plots which which had ammonium sulphate. The increase in the % K of the clover was more consistent at between .44 and .55 throughout the season and was not affected by the presence of other fertilizers.

Calcium (A105 & A106)

The calcium content of the grass increased from .450% at the first cut to .738% at the fourth. The level in the clover was more constant at about 1.7 to 2.0% Ca.

Salt had no real or consistent effect on calcium uptake by either grass or clover. There were large positive SP interactions for the grass at the second and fourth cuts.

Magnesium sulphate was almost without effect on the clover, the tendency being to reduce the level. It generally depressed the uptake by the grass by amounts which reached significance at .066 *** at the second cut.

Ammonium sulphate increased the % Ca in grass in all except the third cut. These were significant for the first (+.035 *%) and fourth (+.082**%) cuts and were greater in the absence of salt or magnesium sulphate. Ammonium sulphate did not affect the calcium content of the clover.

Superphosphate had no general influence on the uptakes by either grass or clover.

Potassium chloride also had little overall effect but there were significant reductions for the first cut of grass of $.049^{34}$ and $.047^{34}$ when salt and ammonium sulphate were also given.

Magnesium (AlO7 & AlO8)

The mean amount of magnesium in the clover remained at about 6.225% throughout the year but that in the clover increased steadily from .090 to .180%.

Salt generally depressed the % Mg in both grass and clover. Significant (P = .05) reductions of about .012% were found in the second cut of clover and the fourth cut of grass but otherwise the effects were small. There were several significant positive KS interactions and salt reduced the magnesium level most in the absence of potassium chloride.

Magnesium sulphate itself had remarkably little influence, indeed it generally reduced the % Mg in grass by about .005%. It did increase the levels significantly in the first and last cuts of clover (.017 and .005 respectively). In clover too, the increases tended to be greater if potassium chloride was also applied and if ammonium sulphate was omitted.

Ammonium sulphate increased the magnesium uptake of both grass and clover significantly. In the grass it reached .043 **% at the last cut and there was one exceptional reduction of .021 **% for the first cut of clover.

Superphosphate had negligible effects. It tended to reduce the % Mg in both grass and clover by about .002 to .005%.

Potassium chloride significantly reduced the levels in both grass and clover at all stages by amounts ranging up to .024 **. It had an even greater influence in the absence of salt.

Phosphorus (Al09 & Al10)

The % P in both grass and clover rose steadily as the season progressed from about .170 to .230 in each case.

Salt generally increased the concentration in the grass by about .010% but it reduced the uptake significantly in the first $(-.020^{\text{MH}}\%)$ and third $(-.025^{\text{M}}\%)$ cuts of clover.

Magnesium sulphate tended to depress the % P in grass but by less than .010% and had similar effects in clover apart from a reduction of .021% in the third cut.

Ammonium sulphate had very significant effects in lowering the %P in grass at the third (-.071**) and fourth (-.051***) cuts. Its influence on clover was quite small after a decrease of .018**% for the first cut.

Superphosphate itself had quite small effects. It consistently increased the levels in grass and clover by about .010% but only reached significance in the first clover sample. The largest increases in grass were on plots receiving both superphosphate and salt.

Potassium chloride was without effect on the phosphorus content of the grass but generally enhanced that of the clover particularly in the last cut when the increase reached .035***.

GRASS EXPERIMENT 4. 1957.

Site Eaglesham. Renfrewshire.

Soil Poor, heavy loam, badly drained.

Ashgrove Series.

Exchangeable Na 10.0 mgs %

1% Citric Sol. P 7.5 mgs % Low

1% Citric Sol. K 9.0 mgs % Low

pH 5.7

Sward Perennial ryegrass. no clover.

Sown in 1954.

Fertilizer Treatments and Layout

The treatments were as for Experiment 3, namely

O and 3 cwt Ammonium Sulphate (N)

(Repeated after each cut)

O and 3 cwt Superphosphate (P)

O and 2 cwt Potassium Chloride (K)

O and 4 cwt Salt (S)

O and 2 cwt Magnesium Sulphate
(Hydrated) (M)

The plots were laid out in a 2⁵ factorial design of 4 blocks of 8 plots with the SMP, SNK and MNPK interactions confounded.

The fertilizers were applied on March 18th and cuts were taken as follows:

- A May 30th. Early hay stage.
- B July 20th. Silage stage.
- C August 25th. Aftermath grazing.

The mean dry matter yields were 12.1, 10.2 and 8.7 cwts respectively. Growth was very slow throughout the year and there were substantial increments from ammonium sulphate. Those plots without nitrogen gave exceptionally low yields.

Tables All1-All8 summarise the effects of the fertilizers on yield and composition.

Yields of Dry Matter (All3)

The mean dry matter yields were 12.11, 10.23 and 8.68 cwts for the three cuts. There were very substantial increments from ammonium sulphate at all stages and smaller ones from potassium chloride.

Salt did not influence the yield of the first cut, but increased it significantly by 1.24 cwts at the second and by 0.38 cwts at the third. There were clear negative KS interactions throughout and these reached significance at the 1% level for the second (2.66 cwts) and third (1.10 cwts) when the soil was becoming progressively more deficient in readily soluble potassium. Salt did not increase yields when potassium chloride was given.

Magnesium sulphate had very little effect on the first two cuts, but raised the yield by $0.52^{\frac{14}{5}}$ cwts at the third.

Ammonium sulphate produced large and significant dry matter increments. Yields with nitrogen were generally three times greater than those without. After the first cut, ammonium sulphate did not exert its full influence unless potassium chloride was also given and the NK interactions were significantly positive.

Superphosphate had very small effects considering the low level of readily soluble phosphorus in the soil.

Potassium chloride consistently enhanced yields by amounts increasing from 1.0 cwts at the first cut to 3.28 cwts at the third. Much greater increments were recorded on plots which did not have salt and both the negative KS and positive NK interactions were significant.

Composition of the Dry Matter

Sodium (All4)

The mean % Na rose from .181 at the first to .182 at the second and to .252 at the third cut. There were large and very marked variations between treatments. e.g. In the first cut the range was from .040% (K plot) to .387% (NS plot). At the third cut the corresponding amounts were .035 and .725%.

Salt increased the % Na more at the first cut (.083**%) than subsequently. The increases were generally greater in the presence of magnesium sulphate and ammonium sulphate and in the absence of potassium chloride.

Magnesium sulphate did not affect sodium uptake at any stage.

Ammonium sulphate produced large and significant increments,
.146**% at the first, .257**% at the second and .352**% at the third.
There were large and significant negative NK interactions and thus ammonium sulphate increased the % Na much more in the absence of potassium chloride, - by as much as .531**% at the third cut, but by only .173**% in the presence of potassium chloride.

Superphosphate had little influence on sodium uptake, increases of between .015 and .035% being found. It had rather larger effects in the absence of salt or in the presence of ammonium sulphate.

Potassium chloride depressed the % Na by large and significant amounts at all stages. The reductions were in the same order as the increases due to ammonium sulphate and much greater than those due to salt itself. It generally reduced the levels most when salt was also given and by greatly increased amounts in the presence of ammonium sulphate.

Potassium (A115)

The soil was not well supplied with readily soluble potassium and the amount in the grass was about 1.05% at each of the three cuts. The range was from 0.60 to 1.40% K depending on whether or not potassium chloride was given.

Salt did not affect the first cut but increased the mean % K by .03 and .06 at the second and third. These amounts were well below the level for significance, but an increase of 0.20 was found at the third cut for plots without potassium chloride, the SK interaction being -0.14 %.

Magnesium sulphate had little effect.

Ammonium sulphate depressed the % K by .09 in the first cut but thereafter had no overall effect. There were however substantial and significant with NK interactions which resulted in ammonium sulphate having large depressive effects in the absence of potassium chloride, but in increasing the % K when given together.

Superphosphate tended to reduce the uptake of potassium.

Potassium chloride itself increased the % K at all three cuts by about .40 %. There were greater increases in the absence of salt and in the presence of ammonium sulphate.

Calcium (All6)

The mean % Ca rose from .361 at the first to .458 at the second and to .620 at the third cut. Fertilizer effects were quite small.

Salt depressed the uptake by $.037^{11}\%$ at the first cut and by $.052^{11}\%$ at the second.

Magnesium sulphate had no influence.

Ammonium sulphate markedly increased the uptake of calcium by $.088^{11}\%$ at the second cut but otherwise had no marked effect.

Superphosphate increased the % Ca by .01 to .02% at each cut. Potassium chloride also had no real or consistent effect.

Magnesium (All7)

The amounts of magnesium in each of the three cuts were rather low being .091, .119 and .135% respectively. There was considerable variation from plot to plot e.g, .062% in the SK plot at the first cut and .236% on the MN plot at the third.

Salt consistently depressed the magnesium levels. By the third cut it had reached -.026*% and was much greater on plots to which potassium chloride was applied. The largest reduction (-.042**%) was in the third cut for ammonium sulphate treated plots.

Magnesium sulphate itself enhanced the uptake significantly by steadily increasing amounts with each cut, .013 hat the first, .014 h

at the second and .025 % at the third. There were larger increases on potassium chloride treated plots.

Ammonium sulphate significantly increased the magnesium uptakes at the second and third cuts by .038** and .048** respectively. The increases were considerably greater in the absence of salt, potassium chloride and superphosphate.

Superphosphate tended to depress the % Mg by amounts ranging up to .007%.

Potassium chloride consistently reduced the magnesium uptake by amounts which increased to .030 % at the third cut. The reduction was much greater in the presence of salt, ammonium sulphate and superphosphate.

Phosphorus (Alla)

The phosphorus content of grass varied very little from one cut to another around a level of about .165%.

Salt slightly increased the % P but by less than .010.

Magnesium sulphate was without effect.

Ammonium sulphate also had little influence.

Superphosphate itself enhanced the phosphorus levels consistently by $.013^{\frac{1}{10}}\%$ at the first cut, by $.026^{\frac{1}{100}}\%$ at the second and by $.019^{\frac{1}{100}}\%$ at the third.

Potassium chloride had no general overall effect.

GRASS EXPERIMENTS SUMMARY

Dry Matter Yields (Table 26.)

Salt has increased the yield of grass in Experiments 2 and 4.

These swards contained no clover and both gave significant increases in yield from potassium chloride. In Experiment 1 the clover was severely scorched by the salt and the yield suffered in consequence.

There were only small increments in the weight of grass. In Experiment 3 where there was no response to potassium chloride until the third and fourth cuts, salt tended to reduce the yields of both grass and clover slightly. The KS interactions were generally negative indicating that salt is of greater benefit in the absence of potassium chloride.

Ammonium sulphate consistently increased yields by large amounts. The effect was a net one as clover was consistently depressed and the grass increased. In the first two experiments where there was only one application of ammonium sulphate there was little residual effect on total yield after the first cut. There were frequent positive NK interactions, ammonium sulphate thus being of greater value when given in association with potassium chloride.

Superphosphate had little influence on yield although the soils were generally low in readily soluble phosphorus.

Potassium chloride had significant incremental effects in Experiments 2 and 4 which were the soils least well supplied with readily soluble potassium. It markedly depressed the clover in Experiment 1 due to leaf scorch at the time of application.

Table 26.

Grass Experiments

Yields of Dry Matter (cwts)

Burgerer von Colle Bij e Sagendoffen en	Chambridge Carlot of Michigan Chambridge Carlot	en tres esta trades de abes	TENNEN TERREN IN BENEVE (AT LONG AT	CHARLESTO MENTENS, AND BASE	Differential Responses								Consi	Consistent Interactions			
EXPERI	a/ cotm	Mean Yield		Sodium		Magnesium		Nitro	trogen Phosphorus		Pota	ssium	K	S	N	K	
BM DICT	INTURA T	Grass	Clover	Grass	Clover	Grass	Clover	Grass	Clover	Grass	Clove	Grass	Clover	Grass	Clover	Grass	Clover
1.	A B C D	16.41 15.00	- 5•23 8•04 -	- 0.54 0.19	-2.26** -2.36**		- - -	- 14.50 ³⁶³ 7.84 ³⁶³		- 0.76 0.54		-0.15 -0.12 -	-1.22 -1.04	0.98 -0.18	-0.92 -1.21	-0.67 0.84	_
2.	А . В С	- 16.91 7.98	- - -	- 1.39 0.46	- -	- - -	- - -	7.84*** 0.09	€ _ _ _	- 0.49 -0.26		2.18 [*] 0.37 [*]		- 0. 94 - 0. 24	- - -	0.88 0.02	
3•	A B C D	27.84 8.53 10.58 5.29	4.31 3.97 3.46 0.80	-1.16 -0.01 -0.16 -0.09	-0.70 -0.15 -0.11 -0.04	-0.19 0.46	-0.06 0.38 0.21 -0.01	15.08 9.17 11.86 4.08 4.08	-2.14** -4.48** -4.89** -1.08**	1.36 -0.09 0.66 0.07	0.24 -0.06 -0.06 0.02	0.04	0.16 -0.24 0.18 0.20*	-0.66 0.14 -0.98 -0.72*	-0.03	0.09	0.50 0.09
4•	А В С	12.11 10.23 8.68	<u>-</u>	-0.08 1.24** 0.38	- - -	0.70 0.06 0.52		15.39*** 9.95*** 6.00***	٠ _	0.05 0.81 0.34	***	1.00 2.08 3.28	ж <u>-</u>	-0.25 -1.42 -0.72	# — — — — — — — — — — — — — — — — — — —	-0.29 1.17 1.08	E _

In Experiment 3 only after repeated cuts following stimulation with ammonium sulphate did potassium chloride significantly increase yield.

Magnesium sulphate had little effect in the two experiments in which it was used. It did seem to be of some small benefit in Experiment 4.

Composition of the Dry Matter

Sodium

Table 27 summarises the main effects and principal interactions of the fertilizers on the sodium uptakes.

Salt had large and very significant incremental effects on the % Na of both grass and clover in each experiment. Frequently the increases were more than 50% of the mean sodium level. In the first two experiments with only a single ammonium sulphate application, the mean % Na and the increases from salt fell off rapidly after the first sampling. In the remaining two with repeated nitrogen dressings, the sodium level steadily increased and the increments from salt were more irregular.

Ammonium sulphate consistently increased the % Na. In the first experiment the increase was found in grass only and at the first two samplings, i.e. whilst its yield promoting effect lasted. There was no increase in the clover which was reduced in yield. Experiment 2 on a sward devoid of clover showed a similar trend. In Experiment 3 the% Na in grass increased due to ammonium sulphate at each sampling. There was also an increase in sodium in the clover although there was a reduction in clover yield. This could perhaps be explained on the basis that although the clover yield was reduced,

Table 27.

Grass Experiments

Dry Matter Composition. % N

							Diffe	rential	Response	s	-			Cons	sistent I	n terac ti	ons
EXPERI	TWEEN O	Mean %		Sodium		Magnesium		Nitr	Nitrogen Phosphorus		Potas	sium	N	S	N	K	
TAVE THE	TATTAL T	Grass (Clover	Grass	Clover	Grass	Clover	Grass	Clover	Grass	Clover	Grass	Clover	Grass	Clover	Grass	Clover
1.	A B C D	.266 .177 .076 .062	.101 .064 .093 .092	.167*** .134*** .053** .022*	.102*** .069*** .083*** .033**			.148*** .179*** .039***	030 007 .030 .000	055**046017 .003	005 009 029 022**	105*** 075*** 040*** 047***	017 019** 059* 056	.044 .063* 008	006 011 .019 020**	106 ^{**} 048 [*] 025 [*] 007	013 015 [#] 037 033
2.	A B C	.290 .217 .073	- -	.132** .116** .020	 		- - 1	•268** •239** •035*	- - -	.023 009 001	-	143*** 091** 054**	<u>-</u> -	.030 .063**	- - -	101 ^{**} 045 ^{**} 028	- - -
3.	A B C D	•144 •224 •371 •446	.273 .265 .231 .248	.070*** .105*** .136***	.196*** .108*** .112***	006 042 050 068	012 *027 013 *027	.087*** .248*** .432*** .392**	.065** .066** .111** .088**	021 016	.004 .002 .024 010	062** 097** 163** 158**	029 082*** 094*** 114	.001 .059** .047 001	.020 * .032* .048* .028	.000 058*** 077*** 118	.026 .018 009 003
4•	А В С	.181 .182 .252		.083*** .027 .041*	- -	.007 .009 001	- - -	•146** •257** •352**	- - -	.015 .028 .034	- - -	159*** 090** 217	- - -	.023 .008 .001	-	089*** 069***	-

individual surviving plants grew to a greater size.

Superphosphate had little effect on sodium uptake, there being a small tendency to reduce the level in three of the experiments.

Potassium chloride consistently and very significantly depressed the % Na in both grass and clover. Reductions in the order of .100 to .200% were quite frequent.

Magnesium sulphate also reduced sodium uptake in one of the two experiments in which it was used.

Potassium

The effects of fertilizers on the potassium uptake of grass and clover are shown in Table 28. Salt had no consistent effect on potassium uptake. Within each experiment there were both small rises and falls in % K. With the exception of the clover in Experiment 1, no effect was greater than ± 0.13%.

Ammonium sulphate had variable effects, primarily concerned with the time of sampling. It generally increased the % K in the early stages and subsequently reduced it - primarily because of the extra drain on soil potassium caused by the increase in yield.

Superphosphate stimulated potassium uptake in Experiment 1, but had either no influence or a slight depressive one in the other three.

Potassium chloride itself increased the % K in both grass and clover at each cut in all experiments by between 0.25^{MM} and $0.55^{\text{MM}}\%$.

Most of the increments were quite consistent at about 0.45^{MM} to $0.55^{\text{MM}}\%$. There were regular interactions involving potassium.

Table 28.

Grass Experiments

Dry Matter Composition

% K.

							Diff	erentia	l Respons	ses					Consi	stent I	nteractio	ns	
EXPERIMENT		Mea	n %	Sodium		Magnesium		Nitrogen		Phosphorus Potassium		ssium	K S	and 6 Mer announce are a role (der)	l n	N K		K	
THETAKE	TALLEY T.	Grass	Clover	Grass	Clover	Grass	${\tt Clover}$	Grass	Clover	Grass	Clover	Grass	Clover	Grass	Clover	Grass	Clover	Grass	Clover
1.	A B C D	3.36 2.25 1.87 2.40	3.12 2.85 1.90 1.86	.13 .11 11* 02	.10 38* 16 .17	-	-	•74*** •22** •46*** -•28	•19*** -•13 -•22* -•25	•19	•27** •24 •32** •14	•48** •40** •20** •29	•37** •51** •33** •42	42*** 25*** 09 09	30*** 30*** 07	•51*** •52*** •21***	• 25*** • 30*** • 03 • 20*	.08 .11 .01 .04	.05 .08 .04 .18
2.	А В С	2.23 1.55 1.76	- - -	.12 .00 08	- - -		- - -	•33 •17 -•1 5	- - -	01 .02 .05	- - -	•58*** •33** •21*	-	23 24 12	- - -	•38** •09 •15	- - -	.07 09 .02	<u>-</u> -
3•	А В С D	1.63 1.96 2.43 2.09	1.65 1.86	.01 .02 04 04	.06 .02 .05	01 .05 04 .09	07 .11 .08 .11	.06 15* 75** 71**	.08 05 22 20	13 03 .04 11	05 05 .01	• 24 *** • 24 *** • 59 *** • 53	•53*** •44** •55** •47**	07 13** 01	.00 10 .11 03	.06 .21** .13	14 03 .00 09	.03 .02 .11 02	.07 .04 .06
4•	A B C	1.09 1.05 1.03	- - -	01 .03 .06	- - -	.03 .06 01	 	09 ^{**} .04 .00	- - -	06 [#] 0203		•44** •38** •41**		03 03 14	- - -	.22*** .18** .11**	- -	.00 .05 .02	-

The KS interactions were negative and frequently significant.

Potassium chloride thus has a greater effect in the absence of salt and vice versa. The NK interactions were quite large and positive and there were smaller PK interactions.

Magnesium sulphate did not influence potassium uptake.

Calcium

Table 29 summarises the data on the calcium contents of grass and clover.

Table 29. Grass Experiments. Dry Matter Composition % Ca.

1	-	1	dan - s menus en emangranue suprama emerca	·		
			Differ	ential Res	ponses	
	Mean %	Salt		Nitrogen		s Potassium
Expt	Grass	Grass	Grass	Grass Clover	Grass	Grass
В С	.634 2.03 .510 1.82 .487 1.85	04906 00704 .000 .06 .007 .08		01822	.02302 .00301 -013 .01	02606 018 .00 027 .06 01003
В	•416 - •325 - •405 -	016 - 017 - 043 -		1 32	.026 - .022 - .017 -	002 - .005 - 026 -
В С	•450 2.03 •628 1.70 •687 1.85 •738 1.83	00512 .04106 00101 038 .03	056 .00 036 .05	.03103 00302	.016 .04	.033 .01 03806
В	.361 - .458 - .620 -	057 - 052 - .009 -	003 - .012 - .000 -	.018 - .088 - .017 -	.011 -	010 - .007 - 012 -

There were no consistent interactions.

Salt generally reduced the % Ca in both grass and clover by amounts ranging up to about .040%.

Ammonium sulphate had no regular influence. There were both increases and decreases within each experiment.

Superphosphate also had little effect.

Potassium chloride reduced calcium uptake, but by amounts which did not reach significance.

Magnesium sulphate appeared to depress the % Ca in Experiment 3 but to have little effect on the clover.

Magnesium

A summary of the results for magnesium is given in Table 30. The % Mg in the grass increased as the season progressed but fell slightly in the clover.

Salt consistently depressed magnesium uptake. In the grass it reached significance in all experiments at the third or fourth sampling by amounts in the order of -.015 to -.020%.

Ammonium sulphate invariably increased the % Mg in both grass and clover. There were significant increases in the order of .020 to .040% in all experiments. In Experiments 1 and 2 there were increases only in the early samples where ammonium sulphate increased the yield of grass.

Superphosphate normally reduced the magnesium uptake by about .005%.

Potassium chloride also reduced the % Mg in a similar manner to salt, the amounts being about .020% lower. Generally the effect was

Table 30.

Grass Experiments.

Dry Matter Composition % Mg.

					Charlet (1973) - etterhillet waterbeste wom etwe even e twent	n de la company de la comp	Diff	erential	Respons	es.		National (1888) (1884) (1884) (1884) (1884)			Consis	stent I	n ter ac t	tions.	
EXPERI	IVEN T	Mea	n % Clover	Sodi		Magne		Nitr	THE CONTRACT OF THE PARTY OF TH	Phosp		CONTRACTOR OF STATE OF COLUMN A	ssium	the last of the same of the same of	S	The second section of the second	K	M. Sacr. Lack College	K
1.	A B C D	.115 .092 .097 .129	.260	003 .001 008 017	028 006 .003 005	- - -	-	.030** .015** 003	.025 002 .020 .017	010 [#] 008 [#] 007 [#]	003 020 014 019	005 001	 006	.006 002 .004 .013	.010 .006 .012 .017	016 [#] .004 .000002	.004 004 007	.005 .002	007 006 019 007
2.	А В С	.095 .078 .105		006 009 013***	- - -	-		.028 ^{##} .015 [#] 004	- - -	.007 .002 .003	- - -	.000 004 008*	- - -	002 009 .002	_	011 [*] 002 008 [*]	-	005 .002 001	- - -
3.	A B C D	.090 .154 .180 .177	.221 .229 .259 .207	006 005 005 013	007 012 [#] .003 001	008 003	006	.002 .016 [*] .015 [*] .043	.014**	002 007 002	002 005 006 002	004 023** 023** 019**	014* *019** *024** *010	.008 .009 .022 .011	.001 .012* .025* 004	.004 .007 006	007	.004 001 016**	010 003
4.	A B C	.091 .119 .135	_	003 013 026	- - -	.013 ³	€ - € -	.001 .038*** .048**	- - -	007 002 006		003 009 030**	- - -	005 023 004	= _ - -	001 012* 024**	_	005 006 010	-

most pronounced in the later cuts. There were marked and regular KS interactions which were usually positive, indicating that the depressive influences of salt and potassium chloride are additive. There were also frequent significant negative NK interactions and smaller PK ones.

Magnesium sulphate itself markedly increased the % Mg in Experiment 4 but only increased the level in the clover of Experiment $3 \cdot$

Phosphorus

The results for phosphorus are summarised in Table 31.

Salt had little effect on phosphorus uptake. It tended to increase the % P in the grass by under .010% and to reduce it in the clover.

Ammonium sulphate had irregular effects. There were significant increments and reductions from one experiment to another. Phosphorus levels fell very significantly in Experiments 1 and 3 at the third and fourth samplings.

Superphosphate normally increased phosphorus uptake in both grass and clover by amounts in the order of .020% P.

Potassium chloride showed no consistent trend.

Magnesium sulphate reduced phosphorus uptake slightly in the two experiments in which it was used.

		1	د			*** *** ***	¥	re gardinaluse d'al dissemble à a l'activité d'appetitionne
	A 10 C C C C C C C C C C C C C C C C C C	sium	Clover	016	000.	1 1 1	.009 003 .010	1 1 1
% P.		Potassium	Grass	1	005	008 004 011		.006
position	And the second s	orus	Clover	.038*** .017	.000* 016*	1 1 1	.013**.009	1 1 1
Dry Matter Composition	38.	Phosphorus	Grass	.022**	ı	.026 .025* .011	.013 .010 .014 .009	.015** .026*** .019***
Dry Ma	Differential Responses.	gen	Clover		025***	1 1 1	018*** 001 006	SECT SI PP 2M DERICALEMAN.
	rential	Nitrogen	Grass	.000 .005	049	.046** .037**	.000 012 071## 051	.005
nts	Diffe	sium	Clover	l I	1 1	1 1 1	005 021#	1 1 1
Grass Experiments		Magnesium	Grass	1 1	1 I	1 1 1	007	007
Grass E		Sodium	Clover	016	006 014**	F 1 I	020*** .000 025	1 1 1
		So	Grass	.002	.005	.008 001	.000 .008 .012	.007 .008 .004
3 1.		*5%	Grass Clover	.320	.157	1 1 1	.162 .188 .194	* **
Table 31.		Wean %	Grass	.280	.264	.272 .171 .183	.175 .193 .246	.160
			EXPERIMENT	₽	υA	4 A D	4 H D D	A B
			HE CYCE	-1		· · · · · · · · · · · · · · · · · · ·	· M.	5

There were no marked or consistent interactions.

DISCUSSION

CROP YIELDS

(a) Comparative Effects of Sodium and Potassium Chlorides.

It has not been possible to find soils which were markedly deficient in readily soluble potassium in the vicinity of Glasgow for these experiments. Kale is normally grown close to the farmstead to facilitate winter feeding and such fields are normally more fertile than the remainder of the farm. Nevertheless, in spite of this limitation, responses to salt have been found in kale, turnips and grass under normal soil conditions. Table 32 summarises the responses obtained from sodium and potassium chlorides in each case.

Five of the six kale experiments and three of the four with turnips have given positive responses to salt even although only one in each group responded significantly to potassium chloride. In four of the kale experiments the responses to salt were some 100% greater than those from potassium chloride and in two of the turnip trials salt was outstandingly better than potassium chloride.

In the grass experiments, salt did not increase yields as much as did potassium chloride and there was severe scorch damage to the clover in one case. Nevertheless, in the two experiments which responded well to potassium there were signs of smaller returns from salt. It will be of interest to follow the yields of herbage in Experiments 3 and 4 during their continuation under the same treatments as potassium deficiency progressively affects growth.

Table 32. Responses to Sodium and Potassium Chlorides.

The second of th	Colombia and Salaman Market	The state of the s	the reserved of the party of the state of th	The state of the s	the same and the same same same same same same same sam
EXPERIMENT		Respo	onse to	K S	Potassium
	Walley of the same	Sodium	Potassium	Interaction	Status
KALE (tons)	1 2 3 4 5 6	0.87* 0.95* 0.97* 1.27 1.06 -0.35	0.48 0.50 0.42 0.83 3.40	-1.43 -3.00*** -0.39 0.62 -0.32 0.28	Low Low Satisfactory Low Low Satisfactory
TURNIPS (tons) Roots	1 2 3 4	2.88 2.22 0.73 -0.35	0.23 0.47 1.17* 0.90	-0.99 -1.92 -0.01 -1.63**	Satisfactory Low Satisfactory Low
HERBAGE (cwt)	1B 1C	-1.73 -2.16	-1.37 -1.56	0.06 -1.40	Satisfactory Satisfactory
Total D.M.	2B 20	1.39 0.46*	2.18 [#] 0.37 [#]	-0•94 -0•24	Low Low
KSAMLABAC, ARRESTRONG POSTABLEMENT	3A 3B 3C 3D	-1.86 -0.16 -0.27 -0.13	0.02 -0.28 0.90 0.71*	-0.89 0.11 -0.72 -0.66*	Satisfactory
The state of the s	4A 4B 4C	-0.08 1.24 [*] 0.38	1.00 2.08 ^{жж} 3.28	-0.25 -1.42** -0.72**	Low

The general similarity between sodium and potassium for these three crops is further shown by the consistent negative KS interactions. These were found in four of the six kale experiments, all four of those with turnips and in thirteen of the fifteen grass cuts. In each case they were quite large in relation to the salt and potassium chloride responses. In the first two kale experiments

they were of such size that salt reduced yields in the presence of potassium chloride.

These experiments therefore show that salt has some value as a fertilizer for the three crops investigated even although the soils were not acutely deficient in readily soluble potassium. In almost every case the salt was much more effective in the absence of potassium chloride and there is thus reason for supposing that considerably greater responses may be obtained when the soil is very deficient in potassium.

(b) Salt and Superphosphate

Table 33 summarises the responses from salt and superphosphate on kale and turnips. There were no responses to superphosphate in the grass experiments.

Although the experiments were generally sited on soils where there were significant responses to superphosphate, there was no pronounced trend to show negative PS interactions such as would be expected if salt enabled the plant to make better use of soil phosphorus.

The PS interactions for kale were quite small and only in Experiment 1 where it reached -1.37 tons does it seem important.

Negative interactions were found in three of the four turnip experiments, the remaining one being +1.65 tons. Experiment 4 with a negative PS interaction of -2.61** tons and a large response to superphosphate did enable the effects of salt in the absence of

superphosphate to be seen clearly in the field. Equally, the response here to superphosphate was increased greatly in the absence of salt (+7.63*** tons compared with its effect in association with salt of +2.41*** tons).

Table 33. Responses to Salt and Superphosphate (tons).

EXPERIME	TAT (TI	Re	sponse to	P S	Phosphorus
BAT BILLING		Salt	Superphosphate	Interaction	Status
KALE	1 2 3 4 5 6	0.87* 0.95* 0.97* 1.27 1.06	2.85 [#] 1.27 0.34 4.71 ^{##} 7.11 ^{##} 1.28	-1.37 0.29 0.20 0.05 -0.15 -0.55	Deficient Low Satisfactory Deficient Deficient Low
TURN IPS	1 2 3 4	2.68 2.22 0.73 -0.35	-0.67 7.17** 1.37** 5.02**	-0.69 1.65 -0.65 -2.61***	Satisfactory Deficient Low Deficient

Examinations were made of the soils from the individual plots of this experiment at the end of the season. Extraction of phosphorus by both citric and acetic acids did not reveal any greater content of available phosphorus on the plots with salt.

There is thus no consistent trend to show that salt enables the plant to make better use of phosphate, although two individual experiments did show large negative PS interactions.

EFFECTS ON PLANT COMPOSITION

(a) SODIUM

The sodium content of the three crops investigated has been the temost variable of the mineral consituents. Salt, ammonium sulphate and frequently superphosphate have enhanced the uptake whilst potassium chloride has seriously depressed it. All parts of the plant are affected in the same manner and very wide differences in the sodium level may be found in the one experiment resulting from the different treatments.

Table 34. Extreme Sodium Contents of Individual Plots.

Na. %

EXPERIMENT		1	2	3	4	5	6
KALE Leaf	Min. Max.	.110 .885	.090 .950	.030 .825	.095 1.270	.065 1.070	.040 .405
Stem	Min. Max.	.115 .820	.110 .875	•025 •800	.110 1.520	.105 .850	•025 •2 0 5
TURN IPS Tops	Min. Max.	.077 .315	•055 •265	•095 •462	.200 .700	-	-
Roots	Min. Max.	.030 .200	•332 •900	•045 •255	.050 .280		-
HERBAGE Grass	Min. Max.	.022 .800	.015 .750	•045 •990	.035 •725	as ex	tremes
Clove	r Min. Max.	.025 .332	-	•125 •455	•	of al	l cuts.

These variations (Table 34) are very large when considered in relation to the changes in composition such as may occur with other

elements. Even under exceptional conditions of deficiency and adequacy it is rare to find the % K, Ca, Mg, P and other elements in plants varying by more than a fctor of 3 or 4 and usually by very much less. The sodium minima and maxima vary between a factor of 8 and 30 for kale, between 20 and 60 for grass, 3 and 16 for clover and 3 and 17 for turnips. The higher values for the first two are associated with the effects which nitrogen have on sodium uptake for responsive crops compared with its small influence on turnips and clover.

Salt and potassium chloride have directly opposite effects on sodium uptake for all three crops. Reference to Tables 15, 21 and 27 show that in every experiment the positive influence of salt and the negative effect of potassium chloride on the % Na have been very large and significant (P = 0.01). In each case amounts in the order of 0.1 or 0.2% Na or more have been involved which are generally in the order of at least 50% of the mean. In the kale experiments, 3 cwt of potassium chloride normally reduced sodium uptake by a greater amount than the increase from 4 cwt of salt. In the turnip and grass experiments, 2 cwt of potassium chloride and 4 cwt of salt had broadly equal effects. There were frequent and large negative KS interactions for the kale experiments but not for the other crops.

It is thus apparent that sodium from sodium chloride can enter the plant readily in greatly increased quantity provided that it is not in competition with potassium chloride. When given together, the net effect on sodium uptake is small as potassium is the preferred element.

There would not appear to be a great deal of practical significance in the depressive effect on % Ha brought about by potassium chloride for these crops. Potassium chloride itself invariably increases the % K and this is no doubt partly at the Crowther (1945) has however reported that small expense of sodium. reductions between 0.1 and 0.2 cwt. of sugar per acre were found as a mean of 28 experiments with potassium chloride on sugar beet where the soil potassium status was already good (> 16 mgs. % K₂0 soluble in 1% citric acid). This should be compared with a gain of 1.2 cwt. of sugar as a mean for 23 soils with analyses between 12 and 16 mgms.% (Superphosphate applied to soils high in readily soluble phosphate increased yields by almost 1 cwt of sugar which was substantially the same as those with medium phosphate contents.) Pizer (1952) has also reported reductions in the yield of sugar beet from applications of potassium chloride to soils of high potassium It is not unreasonable to suppose that under such circumstances that the supply of sodium (which is an important nutrient for sugar beet) is severely restricted by competition from potassium.

Magnesium sulphate in the two grass experiments in which it was used has also reduced sodium levels to a small extent.

The sodium content of the three crops has also been controlled by the supply of ammonium sulphate, and to a less extent by superphosphate. So long as these fertilizers increase growth, there is an accompanying increase in the sodium uptake. Table 35 shows the main effects of ammonium sulphate and superphosphate on the yield and sodium contents.

Table 35. Effects of Ammonium Sulphate and Superphosphate on Yield and Sodium Uptake.

		and the second s	Nit	rogen	Phos	phorus	1		Nitro	ළen	Phos	phorus
		n - constitut - Marinosassassas so,	tons	%Na	tons	%Na	1	***************************************	cwt D.M.	%Na	cwt D.M.	%Na
KALE	1	Leaf Stem	4:29	·154	2.85	·055 ·070	GRASS	la B	14.50 7.54	.1 7 9	1 .	046 017
	2	Leaf Stem	6 . 25	· 297	1.27	.037	CLOVER	C 1B	nil.	.006	-	009
•	3	Leaf Stem	7.赞	• 3 09 • 266	0.34	026 041		C	-6.5	.030	,	029
	4	Leaf Stem		-	4 . 7±	.008 041	GRASS	2B C	7. 8 4 0.69	• 2 5 5 • 03等		009 001
	5	Leaf Stem	1.劈	065 060	7. #	·127	GRASS	3A	15 .8	·0 5 7		005
	6	Leaf Stem	2.02	.0数 .056	1.28	001 008		B C D	9. <u>17</u> 11.86 4.08	248	-0.09 0.66	021 016 039
TURNIF	S 1	Tops Roots			-0. 44 -0. 67	04 8 024	C LO V ER		-2. ** -4.48	•06 5	0.24	•004 •002
	2	Tops Roots	-	-	0.67 7.17	.028 .015		C	-4.89 -1.08	32.72	-0.06	.024 010
	3	Tops Roots	0.22 -0.28	.025 .018	0.22	.05 0	GRASS		15 . 39	.128	0.05	.015
	4	Tops Roots	0.14		0.赞	.042		B	9.劈	· 257	0.81	.028 .034

Ammonium sulphate markedly increased the % Na in all the kale experiments except No. 5, and the increases were greater where the yield increment was most. It had no effect on yield in the turnip experiments and it consequently had little influence on the sodium uptake. It increased the % Na in all the grass experiments in every case where it increased yields. The anomolous results for clover may perhaps be explained on the basis that whereas nitrogen depressed

the clover yield, individual surviving plants made better growth.

The increases in sodium uptake resulting from ammonium sulphate were comparable in size to those from salt.

In the grass, the NK interactions were generally negative and the NS ones positive for the % Na. Four of the five NK interactions with kale were also negative.

The effect of superphosphate on sodium uptake has been less pronounced and more irregular. It increased the % Na most in the two kale experiments where it had the greatest effect on yield.

There were only small increments in the turnip experiments and no effect on the grass which did not respond in yield.

There is thus evidence to suggest that the sodium level is enhanced when some other factor, especially nitrogen, and with less certainty phosphate, increases yield. This may be due to a definite need of the plant, or perhaps, in a sense, be accidental. Increased growth is normally associated with reduced dry matter contents and greater water uptake and theremay be secondary influences on root size and permeability.

Scharrer and Jung (1957) have recently published the results of pot experiments with maize to investigate the effects on mineral composition of sodium, potassium and calcium supplied as different anions, - the nitrates, sulphates, bicarbonates, phosphates and chlorides. They found that anions important in plant nutrition such as nitrate and phosphate promote the penetration into plants of cations (e.g. Na) for which there is normally a small requirement,

but the uptake of potassium, due to its essential nature, was unaffected by the anion.

These experiments therefore indicate that data regarding the uptake of sodium supplied as sodium nitrate should be interpreted with caution as some large portion may be due to the nitrate.

It is difficult to follow the arguments of Frens (1955) who blames the scouring of cattle consuming young luscious grass on inadequate amounts of sodium (and perhaps copper) in the diet which leads to water resorptive difficulties. tHart (1956) has also suggested that heavy nitrogen fertilization of grass may induce grass tetany by (amongst other things) depressing the sodium uptake of the herbage.

The present experiments and those of Stewart and Holmes (1953) conclusively show that intensively manured grass has a much higher sodium content than similar herbage grown without nitrogen.

(B) POTASSIUM

Reference to Tables 16, 22 and 28 shows that potassium chloride has been universally effective in increasing the % K in kale, turnips, grass and clover by large and significant (P = 0.01) amounts. The increments in grass and clover have normally been in the order of 0.25 to 0.60% K at all stages. There have been increments ranging between 0.25 and 1.0% K in the kale and from about 0.1 to 0.5% in turnips. Potassium clearly enters the plant easily and in increased amounts with additional supplies.

Salt has had very little influence on potassium uptake. In kale and turnips there has been an almost equal division between small increases and reductions in the order of 0.1% K or less. Only rarely was this amount exceeded. Similar, but perhaps smaller, effects were observed in grass.

In view of the great depressive effects of potassium chloride on sodium uptake, it is not at all unexpected to find that salt has such a small influence on potassium uptake. On the other hand, it might have been the case that salt should reduce the % K as it so greatly increases the sodium content of the dry matter. In the grass and clover and turnips, but not with kale, there were generally negative KS interactions indicating that salt has a tendency to increase the % K when no potassium chloride is given, but to depress it when both are applied together.

The influence of salt on potassium uptake is therefore exceedingly small compared with the influence of potassium on the sodium content of crops.

Ammonium sulphate has had little consistent effect on the potassium contents of either kale or turnips. It might perhaps have been expected to reduce it in view of the large increase in sodium uptake. The effect is also hard to follow in grass as the yield stimulus in the early cuts increases the % K but is followed by a reduction in potassium consequent upon the removal of large amounts from the soil compared with the untreated plots.

There were frequent positive and significant NK interactions for the grass experiments, but these tended to be negative and much smaller in kale.

(C) CALCIUM

Throughout all the experiments, the calcium contents have been remarkable for the small variations caused by fertilizer applications.

Reference to Tables 17, 23 and 29 shows that salt and potassium chloride have normally reduced calcium uptakes. Only rarely however have the decreases been significant and they have generally been considerably less than -0.05% Ca. Ammonium sulphate had irregular effects in the order of ±0.05% or less.

There is thus little expectation that application of sodium and NP fertilizers have a serious adverse effect on the calcium content of these three crops which provide the bulk of the food of animals on many farms, but naturally the calcium content of herbage falls considerably as the clover content is reduced.

(D) MAGNESIUM

Fertilizers have not greatly affected the magnesium content of the three crops (Tables 18, 24 and 30).

Salt has noramally reduced magnesium uptakes by amounts in the order of -.005% Mg. Only rarely has this level been exceeded and then to the greatest extent in the later grass cuts when the reductions reached significance at about -.013*% to -.025*%.

Potassium chloride behaved in a similar manner. It reduced magnesium levels in turnips and kale by about .005 to .010% and

in the grass experiments by amounts of up to .030%. Significant reductions were found in each of the grass experiments, but only infrequently in the other crops.

The fall in magnesium uptake resulting from potassium chloride is well known and these experiments show that salt has similar antagonistic effects.

Ammonium sulphate and superphosphate have had very small and irregular effects in turnips and kale, with the exception that nitrogen generally increased the uptake of magnesium by kale.

Ammonium sulphate invariably increased the % Mg in grass, frequently by significant amounts in the order of .015 to .045%.

(E) PHOSPHORUS

Tables 19, 25 and 31 summarise the effects of fertilizers on the uptake of phosphorus.

Superphosphate has normally increased the % P in all crops. In the case of grass and clover only small effects in the order of .010 to .025% P were observed and in only one experiment were the increases significant at each cut. In kale there have been significant increments of about .030% in four of the six experiments and in turnips the uptakes have been enhanced by amounts ranging up to .050% in the tops and .067% in the roots.

Salt has had little effect on the phosphorus content of grass, rises of up to about .010% being generally found and it normally

reduced the level in clover by up to -.025%, perhaps because of its adverse influence on yield. Salt had irregular effects on kale; there were increments and reductions in the order of $\pm .020\%$ which frequently reached significance.

Salt did however increase the % P in all four turnip experiments and in Experiment 4 there were particularly large and significant negative PS interactions for both roots and tops as there were for yield. This led to the following increases in phosphorus content.

% P. Increments.

	Mean	Superpho No Salt	sphate Salt	1	alt te Superphosphate
Tops	•194	.075**	.027	.048**	.000
Roots	.161	.041**	.018 ^{**}	.019**	008

There is thus a clear effect of salt on increasing the phosphorus uptake as well as the yield in the absence of superphosphate in this experiment; but other sites which were equally phosphorus deficient did not show similar trends, the PS interactions being very small.

There is thus little support for the view that salt generally enhances phosphorus uptake.

References

Andrews, W.B. (1948), Farm for Victory and Victory Farm Forum, p 14.

Appling, E.D. and Giddens, J. (1954), Soil Sci. 78 199.

Bell, J.D. (1955), N.Z.J. Agric. 90, 81.

Bolin, P. (1914) Jordbruksavdelingen No. 27.

Bower, C.A. and Pierre, W.H. (1944) J. Amer. Soc. Agron. 36, 608.

Boyd, D.A., Garner, H.V., and Haines, W.B. (1957) J. Agric. Sci. 48, 464.

Brealey, L., Garrett, D.C., and Proctor, K.A. (1952) J. Pharm. Pharmacol. 4, 717

Butseroga, M.M. (1954) Mast. mineral. Udobr. ukrain. SSR. 1, 100.

Chambers, W.E. (1953) J. Agric. Sci. 37, 236.

Chang, C.W., and Drenge, H.E. (1955) Proc. Soil Sci. Soc. Amer. 19, 29.

Chen, P.S. jun, and Toribara, T.Y. (1953) Anal. Chem. 25, 1642.

Collins, G.C., and Polkinhorne, H. (1952) Analyst 77, 430.

Collings, S.H. (1954) Commercial Fertilizers. MacGraw Hill. New York p366.

Cooper, H.P., Paden, W.R. and Phillippe, M.M. (1953) Soil Sci. 76, 19.

Cooper, H.P., and Garman, W.H. (1942) Proc. Soil Sci. Soc. Amer. 7, 331.

Cope, J.T. jr., Bradfield, R and Peech, M. (1953) Proc. Soil Sci. Soc. Amer. 76, 65.

Cornfield, A.H. and Pollard, A.G. (1950) J. Sci. Food Agric. 1, 357.

Crowther, E.M. (1945) Bath and West and Southern Counties Soc. Pam 13. p30.

Crowther, E.M. and Benzian, B. (1945) Rothamsted Paper. E.M.C. 19.1.45.

Dorphpetersen, K, and Steenbjerg, F. (1950) Plant and Soil. 2, 283.

Eaton, F.M. (1955) Annu. Rev. Pl. Physiol. <u>6</u>, 309.

During, C. (1957) N.Z.J. Agric. 94, 129.

Edwards, G.H.A. (1954), Private Communication.

Gammon, N. Jr. (1953) Soil Sci. 76, 81.

Giddens, J.E., Wehunt, R.L., Stelley, M. et al. (1956) Georgia Agric. Exp. Sta. Tech. Bull. No. 6.

Hale, J.B., Watson, M.A., and Hull, R. (1946) Ann. appl. Biol. 33, 13.

Halliday, D.J. (1954) Personal Communication.

Hamamato, M. and Kawasaki, T. (1956) J. Soil Sci. Tokyo. 26, 505.

Harmer, P.M. and Benne, E.J. (1941) J. Amer. Soc. Agric. 33, 952.

Harmer, P.M. and Benne, E.J. (1945), Soil Sci. 60, 135.

t Hart. - (1956) Reported in Farmers Weekly. Nov. 30. p.69.

Hartwell, B.L. and Dawson, A.B. (1919) Rhode Island Exp. Sta. Bull. 177.

Herbert, J. (1951) Ann. inst. natl. recherche. agric. Ser. A. Ann. Agric. 2, 334.

Hemingway, R.G. (1956) Analyst. 81, 164.

Holt, M.E., and Volk, N.J. (1945) J. Amer. Soc. Agron. 37, 821.

Jacob, H. (1930) Z. PflErnahr. Dung. A.17. 366.

Kennedy, J.C., Truog, E., and Berger, K.C. (1953) Agron. J. 45, 444.

Kibe, M.M., Perur, N.G. and Narayana, N. (1953) Poona Agric. Coll. Mag. 44, 49.

Lancaster, J.D., Andrews, W.B. and Jones, S. (1953) Soil Sci. 76, 29.

Larson, W.E., and Pierre, W.H. (1953) Soil Sci. 76, 51.

Lehr, J.J. (1953), J. Sci. Food Agric. 4, 460.

Lehr, J.J. and Bussink, A.T. (1954) Landbouuvorlichting 11, 527.

Lehr, J.J. and Wesemael, J.C. van (1952) J. Soil Sci. 3, 125.

Lehr, J.J. and Wesemael, J.C., van (1956) J. Soil Sci. 7, 148.

Leyton, L (1954) Analyst 79, 497.

Lehr, J.J. and Wybenga, J. (1955) Plant and Soil, 6, 251.

Lunt and Nelson (1950) Proc. Soil Sci. Soc. Amer. 14, 195.

Lynch, P.B. (1954) N.Z.J. Agric. 89, 25.

Marsden, A.W. (1941) J. Soc. chem. Ind. 60, 20.

Marshall, C.E. (1944) Missouri Agr. Expt. Sta. Res. Bull. 385.

Marshall, J.G., and Sturgis, M.B. (1953) Soil Sci. 76, 75.

Mason, A.C. (1952) Analyst. 77, 529.

Molchanov, S.P., and Dmitrieva, N.A., (1936) Chemisation Socialistic.

Agr. U.S.S.R. 11, 5.

McEvoy, E.F. (1955) Canad. J. Agric. Sci. 35, 294.

Milnthorpe, F.L. (1943) J. Aust. Inst. Agric. Sci. 9, 72.

Nicholson, M.N. and Hooper, L.J. (1957) Expt. Husbandry No. 2. 18

Pizer, N.H. (1952) Inter. Soc. Soil. Sci. Trans. 2. Dublin. 369.

Pizer. N.H. (1954) Agric. Progr. 29, 34.

Powell, F.J.N. (1953) J. Clin. Path. <u>6</u>, 286.

Reitberg, H. (1954) Proc. Amer. Soc. Sugar Beet Tech. 8, 168.

Scharrer, K and Jung, J. Z. PflErnahr. Dung. 67, 240.(1954)

Scharrer, K. and Jung, J. (1957) Plant & Soil. 2, 49.

Scharrer, K and Scheiber, R. (1944) Bodenk. PflErnahr 34, 310

Smith, A.M. and McCallum, E.S.R. (1956) Analyst 81, 160

Stewart, A.B. and Holmes, W. (1953) J. Sci. Food. Agric. 4, 401.

Tobia, S.K. and Milad, N.E. (1954) J. Sci. Food. Agric. 5, 156.

Truog, E., Berger, K.C., and Attoe, O.J., (1953), Soil Sci, 76, 41.

Verona, 0. (1951) Agric. Ital. (Pisa) 6, 47.

Verona, O, and Benvenuti, A. (1953) Plant and Soil. 4. 298.

Wallace, A, Tooth, S.J. and Bear, F.E. (1948) Soil Sci. 65, 477

Wallace, T. (1951) The diagnosis of mineral deficiencies in plants by visual sumptons. p71. London H.M.S.O.

Way, R.W. and Nelson, E.L. (1954) J. Agric. and Food. Chem. 2, 624.

Wheeler, H.J. and Hartwell, B.L. (1906) Rhode Island Sta. Rpt. 186.

Whehunt, R.A. and Collings, W.O. (1953) Soil Sci. 76, 91.

Whehunt, R.L., Stelley, M. and Collins, W.O. (1957) Soil Sci. 83, 175.

Williams, T.R. and Morgan, R.R.T. (1953) Chem. and Ind. 970

York, E.T. (1949) Unpublished Thesis. Cornell Univ. New York.

York, E.J., Bradfield, R. and Peech, M. (1954) Soil Sci. 77 53.

THE EFFECTS OF FERTILIZERS ON THE YIELD AND COMPOSITION OF FORAGE CROPS WITH SPECIAL REFERENCE TO SODIUM

bу

R.G. Hemingway, M.Sc.

Appendix

H

	Д	300	335	.365	290	300.	257.	300	・ これなっ たなか	300	340	.275	340	200	360	250 250 250	1000	380		285	9350 250 250 250 250	.335	307	335	320	.340	.249 240	.305	375	370	2330	375	280	. 250 276	360	305	32.50	325
.M.	ES ES	166	160	.166	1.40	.166	1.52 1.32	164	1.96 1.33	156	981.	150	.156	140 140	.150	160 132	166	.150	140	.174	•138 100	158	,166	170	.208	.140	130	150	134	.130	.154	.198	3.1.	170	.162	156	11.62	130
.β. □	ပ်အ	•		•		•			•		5.°°	•	•		•	96°0		•	0 0 0 0 0		•	1.16	•	1.98	• •	76.0	• •	•	• •	939		96.0	• •	•	0.00 82,00 82,00 83,00 80 80 80 80 80 80 80 80 80 80 80 80 8	36.0	1.00	0.90
STEM.	M	3,40	Sa	10 H	3.2	3.30	, , , , ,	3.05	7. 12.02 13.03 14.03 15.	3.50	3.40	, e. 51.	3.75	28	3,10	9,6	99.	3.50	, w	3.80	3.70	9	(CO)	w w w w	· C.	C1 -	4 1	3.15	# 60	2.95	2 2 2 2 2 2 3 3 3 3	2.00 5.40 7.40	30.	ر ا ا ا ا ا ا	300	2.50 55.50	3.50	90.00
	Ma	235	. 260	360	150	.530	240	.290	340	150	.145	370	.250	04.4. 04.4.	000	. 245 245	225	.340	280	.270	305	445	.330	525	135	.235	325	.325	.215	425	220	.245 7245	350	230	386	310	295	,8 ,0 ,0 ,0 ,0 ,0
	P4	300	325	300	300	285	212	300	300	275	.270	320	300	35	305	222	325	290	345	530	300	260	350	315	305	345	230	290	260	255	235	240	275	300	275	285 285	260	280
% D.M	Mg	110	011.	.136	980	126	130	140	150	130	118	140	126	11.6	124	142	146	138	126	.146	120	150	130	140	.126	11.4	30	120	060.	0110	146	122	100	060.	106	132	102	060
AF.	Ça	0.5	# C₹	•	J.	4 (25.00	•	2,20	2.00	1.76	2.06	2.42	2,14 2,52	2,00	2,22	7.30 30 30 30 30 30 30 30 30 30 30 30 30 3	•	いっている。	•	26°-1		C_{i}			•		2,32		•	1.72 2.40	20	• •	% % %	2,16	2,42	2,12	1.86
目	M	25.20	1 0	•	$\tilde{\mathcal{V}}$	•		2.65			3.15			2.30	2.25	2.25 2.25 2.25	9.6	2.65	2 % 8 %	3.60	2°05 2°05 2°05	• •	•			•		1.85		•		1.85	55,2	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	2.55	2 %	2.25	2.10
OP-DACE SANATAN	Na	240	355	.450	2002	. 555	805 245	.265	.375	.125	.285	.625	.355	25. 25. 54.	.775	365	330	.455	350	.345	395	440	455	.125	.185	.265	345	450	.245	450	225	.395	265	220	040	375	370	885
M.	Stem	12.0	12.5	•	7.7	10.2	0.6	10.7	90.01	72.7	22.21	11.2	10.2	70.01	11.2	₩ ₩ ₩	0.1	11.4	10 4. 6.	11.7	27.00	79.01	_			•		0.01	•	0.01	12.1	12.0	9.11	0.00	1000	5.0E	10.6	9.0[
D %	Leaf ;	2.		11.3		10.2	• •	10.0	0,11	11.7	11.7	11.7	7.01	3.H	10.8	11.5	11.2	10.9	10 10 20 20	•	6,01		0.11	ス に に に に に に に に に に に に に に に に に に に	•		25	2.11.2	12.1	11.2	12.2	L1 0	•	~ - - - -	• •	• •	11.2	11.3
ons	Stem	682	908	.770	676	666	986.	813	.349 700	1.014	118.	605	\$007	788	\$33	168.		1.037	27.7	.654	785	769	874	855	890	.794	7,00	L.074	845	\$67	733	.552	000	. 768 908	894	600.1	990	9886
TTER t	eaf	194		•		•	•		2,6	. <mark>.</mark>	.159	-1 ec	ů.	.v. 0,	CV	•	539	382	• •	0	726.	. U	0		0	.256	ピー	.962	N CO	•	V TO	.12		2004 2046		• •	• •	.354
M	tal L	376	323	228	0T0		425	933	796	1707	1 076		152	721	690	000		419		667	756		874	1 216.	986	050	949	036		883			477		137 1	273	213	342]
ns DRY	em To	- -		N.					-10	ν α	<u> </u>	-1	<i>C</i> 20	N 1-1	_C;	CS C	ર ભ	C,	100	<u>-</u>	- r		<u> </u>		 -	C1 C	garage carrier	ω. 	e en un un un	-10	∀ ⊢	<u> </u>			100	<i>Y X</i>	\$ \$ 2 1	2
D. ton	დ ჯ	2	· 0	<u>'</u>	् च	10	0,0	<u>_</u>	☼ ₽	∞	9	ە 10	<u></u>	2,5	~	<u>.</u> .	6	0,1	÷ 6	10	ં પ	ં	2.	v, 5	~	6	2 2	9,0	<u>~</u>	<u>.</u> .	9	4 2	0 1		- to t	50	∞ 00	6
TIEID	Leaf																																				9.50	
FRESH	Total																																				20.44	
The same of the sa		NIPOKOSO	TS TATALATION	S	NOPOKISO	NZPZKOSO	S1 N2POK2SO	;	NIPZKISO	NOPZKZSO	4	SOLUTION	NZPIKISO	ST M2POKOSO		NOP2KOSO	N1P2K2S0	i	NZFIKZO S1	NOPIKISO	SI	5 1	NIPIKOSO	ST NOPOK2SO		NZPZK	OSCALTIC	ST OSCALGON		NIPZKOSO S1	NOPOKOSO	S1 NOP2K1SO		NATION SOL	N2P2K2S0	N2POK1SO	S1 N2P1KOSO	31
L		٦	2	. (4	ν	`	9	7	ť	0	0	2			12	, ,	<u>.</u>	14	۲.		16	17	· •	⇔ -I	19	2	2 .	21	22	23	Č	イ イ ー	25	26	27	

Main N. P. K. Effects.

Responses to Salt.

					T			T	1		· · · · · · · · · · · · · · · · · · ·				
CWT/ACRE		SUI	PERPHOSPHA	TE	РОТ	ASSIUM CHL	ORIDE	MEAN	st	JPERPHOSPH.	ATE	POT	ASSIUM CHLO	RIDE	MEAN
		0	3	6	0	11/2	3	+0.50	0	.3	6	0	11/2	3	
				(±0.8	6						(<u>+</u> 1.	.13)	.		± 0.65
Ammonium Sulphate	0 4 8	14. 50 16.01 18.45	15.41 18.48 20.10	16.83 19.62 21.35	16.19 17.23 19.86	14.81 17.43 20.81	16.04 19.44 19.23	15. 68 18.03 19.97	+ 0.63 + 2.33 + 1.80	+ 0.41 + 0.39 + 1.59	+ 0.55 + 0.57 + 0.64	+ 1.73 + 1.12 + 2.01	- 0.51 + 1.78 + 1.10	- 0.73 + 0.39 + 0.91	+ 0.10 + 1.10 + 1.30
Superphosphate	0 3 6				15.62 17.82 19.84	17.30 18.22 17.53	16.34 17.95 20.42	16.42 18.00 19.27				+ 2.03 + 1.23 + 1.59	+ 0.95 + 0.81 + 0.62	+ 1.78 + 0.35 - 1.55	+ 1.59 + 0.80 + 0.22
Mean		16.42	18.00	19.27	17.76	17.68	18.24	17.89	+ 1.59	+ 0.80	+ 0.22	+ 1.62	+ 0.79	+ 0.19	+ 0.8'
		S.E. per plot.	1.49 S	g. Diff. means.	Central. Marginal.	5% 5%	2.97 1% 1.73 1%	4.50 2.62	S.E. per]	L.96	Sig. Diff. of means.	Central. Marginal	. 5	% 3.68 19 % 2.12 19	5.36 3.08
		Interactions		NP + 0.4	13 NK –	0.24	PK - 0	.07	Interaction	s	NPS + (0.01 NKS	+ 0.68	PKS -	1.44 1.37
							TOTAL DRY	MATTER YI	ELD. (tons	3)					
		SUI	PERPHOSPHA	TE	PO	TASSIUM CH	ILORIDE		sur	PERPHOSPHA	TE	POT	ASSIUM CHLC	RIDE	
CWT/ACRE		0	3	6	0	11/2	3	MEAN	0	3	6	0	11/4	3	MEAN
			<u> </u>	(± 0.1	.08)	<u> </u>		+0.062		1	(<u>+</u> •]	25)		<u> </u>	±.072
Ammonium Sulphate	0 4 8	1.755 1.786 1.993	1.785 2.055 2.121	1.989 2.170 2.248	1.909 1.949 2.132	1.697 1.907 2.213	1.922 2.154 2.018	1.843 2.003 2.121	+ .101 + .228 + .153	+ .034 + .012 + .162	071 + .078 + .198	+ .193 + .089 + .290	064 + .237 + .108	065 007 + .115	+ .022 + .106 + .182
Superphosphate	0 3 6				1.807 1.990 2.193	1.902 1.968 1.947	1.825 2.002 2.267	1.845 1.987 2.136				+ .189 + .145 + .237	+ .133 + .090 + .058	+ .161 028 090	+ .161 + .069 + .068
Mean		1.845	1.987	2.136	1.997	1.939	2.092	1.989	+ .161	+ .069	+ .068	+ .191	+ .094	+ .014	+ .099
		S.E. per plot.	0.186	Sig. Diff. of means.	Cent Marg	ral. inal.	5% •374 5% •215	1% • 566 1% • 325	S.E. per plo	217	Sig. Diff.	Central. Marginal		5% •391 5% •225	1% • 568 1% • 327
• .	. 1	Interactions		NP + 0.03]] NK_	0.064	PK + 0	.0 2 8	Interaction	IS	NPS + .] NS + .]	LOS NKS	+ .041 177	PKS -	.150 .093

NKS - .113 KS - .169^{HH}

NPS - .026 NS - .065

PKS + .002 PS - .016

CWT/ACRE		st	JPERPHOSPHA	ATE	РОТ	CASSIUM CHLC	DRIDE	MEAN	su	PERPHOSPHA	TE 1	РОТ	ASSIUM CHLO	RIDE	MEA
		0	3	6	0	11/4	3	± .016	0	. 3	6	0	11/2	3	
				(± .c	128)			010			(±.0	40)			±. 023
Ammonium Sulphate	0 4 8	•234 •363 •412	•337 •464 •456	•287 •448 •451	•409 •547 •660	•253 •387 •360	.196 .341 .299	.286 .425 .440	+ .085 + .225 + .123	+ .170 + .157 + .175	+ .167 + .125 + .130	+ .235 + .328 + .330	+ .068 + .100 + .057	+ .118 + .078 + .042	+ .
Superphosphate	0 3 6				•471 •580 •565	.311 .381 .308	.227 .296 .313	.336 .419 .395	- 1-2	4	•	+ .345 + .332 + .217	+ .052 + .065 + .108	+ .037 + .105 + .097	+ .
		•336	•419	•395	•539	•333	•279	.383	+ .144	+ .167	+ .141	+ .298	+ .075	+ .079	+ .
Mean .		S.E. per plot.		ig. Diff. f means. NP + .C	Central. Marginal.				S.E. per plot.	0	ig. Diff. f means. NPS NS	Central. Marginal	59 5085	_	* .10° + .09
Mean		Interactions	•	f means. NP + .C	Marginal.	074	.055 1% PK _	.084	plot. Interaction	0	NPS	Marginal	59 5085 5218	PKS + PS _	* .10° + .09°
Mean CWT/ACRE		Interactions		f means. NP + .C	Marginal.	5%	.055 1% PK _	.084 .004 <u>% Na. ST</u> MEAN	plot. Interaction	0	NPS	Marginal	5%	PKS + PS _	* .109 + .094 001
		Interactions	O UPERPHOSPHA	NP + .C	Marginal.	5%074 OTASSIUM CHI	.055 1% PK	.084 .004 <u>% Na. ST</u>	plot. Interaction	s PERPHOSPHAT	NPS NS	Marginal 037 NKS 002 KS	59 5085 5218***	PKS + PS _	* .109 + .094 001
		Interactions	O UPERPHOSPHA	NP + .C	Marginal. O7 NK -	5%074 DTASSIUM CHI	.055 1% PK	.084 .004 <u>% Na. ST</u> MEAN	plot. Interaction	s PERPHOSPHAT	NPS NS	Marginal	59 5085 5218***	PKS + PS _	+ .09 00
CWT/ACRE	0 4	Interactions o .165 .327	3 •250 •354	f means. NP + .0 ATE 6 (± .0 .232 .387	Marginal. 07 NK -	5%074 DTASSIUM CHI 11/2 .222 .330	PK	.084 .004 % Na. ST MEAN +.013	plot. Interaction SUE	PERPHOSPHAT 3 + .093 + .098	NPS NPS NPS 1 + .120 + .113	Marginal 037 NKS 002 KS por 0 152 + .105 + .245	085 218*** ASSIUM CHLO 11/4 + .092 + .080	PKS + PS	* .109 + .094 001

PK - .017

Interactions

NP + .005

Interactions

		l													
OFFIT / A CIDE		su	PERPHOSPHA	TE	РОТ	ASSIUM CHLO	RIDE	10711	su	JPERPHOSPHA	TE	POTA	ASSIUM CHLO	RIDE	
CWT/ACRE		0	3	6	o	11/2	3	MEAN _+0.05	0	. 3	6	0	11/2	3	ME 0.
				(± 0,	.08)	-		_			(± 0.	.10)			-
Ammonium Sulphate	0 4 8	2.56 2.39 2.48	2.56 2.30 2.36	2.59 2.35 2.37	2.24 2.19 2.34	2.70 2.28 2.24	2.77 2.57 2.62	2.57 2.35 2.40	25 02 18	+ .05 37 15	+ .02 20 12	12 12 22	+ .03 23 08	10 20 05	-
Superphosphate	0 3 6				2.24 2.29 2.24	2.56 2.41 2.26	2.63 2.52 2.81	2.48 2.41 2.44				28 12 15	05 08 18	12 17 07	-
Mean		2.48	2.41	2.44	2.26	2.41	2.65	2.44	15	12	10	15	11	12	-
							.16 1%	0.25	plot.	0.	f means.	Marginal		6.32 19 6.19 19	• .2
		Interactions		NP - 0.0)7 NK -	- 0.13	PK + (Interaction		NPS	10 NKS	+ .07	PKS _	.04
		Interactions		NP - 0.0)7 NK -	- 0.13		0.09			NPS	10 NKS	+ .07	PKS _	.04 .05
CWT/ACPF	1		репрноѕрна	***************************************		- 0.13	PK + (0.09 & K. ST	Interaction		NPS NS	10 NKS 06 KS	+ .07	PKS - PS +	.04
CWT/ACRE			PERPHOSPHA	***************************************			PK + (K. ST	Interaction	s	NPS NS	10 NKS 06 KS	+ .07 + .03	PKS - PS +	.04
CWT/ACRE	1	su	1	TE 	PO 0	TASSIUM CHI	PK + (0.09 & K. ST	Interaction E4.	S PERPHOSPHAT	NPS NS	10 NKS 06 KS	+ .07 + .03	PKS - PS +	.04
CWT/ACRE Ammonium Sulphate	0 4 8	su	1	TE 6	PO 0	TASSIUM CHI	PK + (K. ST	Interaction E4.	S PERPHOSPHAT	NPS NS	10 NKS 06 KS	+ .07 + .03	PKS - PS +	.04
	0 4	3.59 3.61	3.44 3.48	(± 0. 3.31 3.41	3.08 3.42	3.57 3.64	PK + 6	MEAN ± 0.09 3.45 3.50	Interaction EM. SUI 0 + .08 05	perphosphan 3 + .1232	NPS TE 6 (± 0 0202	10 NKS 06 KS	+ .07 + .03 ASSIUM CHLON	PKS - + + + + 3 + .2215	.04 .05

S.E. per plot. 0.26	Sig. Diff. of means.	Central. Marginal.	5% 0.52 1% 0.79 5% 0.31 1% 0.47	S.E. per plot. 0.30	Sig. Diff. of means.	Central. Marginal.	5% 0.55 1% 0.81 5% 0.32 1% 0.47
Interactions	NP + 0.15	NK - 0.02	PK - 0.03	Interactions	NPS+ .16	NKS10 KS + 04	PKS22 PS + .05

Main N P K Effects.

NP - .04

Interactions

NK - .01

Responses to Salt.

NKS + .07 KS - .04

NPS + .13 NS + .06 PKS - .04 PS - .01

CWT/ACRE		. នប	PERPHOSPHA'	re .	POT	ASSIUM CHLO	RIDE	MEAN	su	PERPHOSPHA	TE	POTA	ASSIUM CHLO	RIDE	MEA
CWITACKE		. 0	3	6	0	11/2	3		0	3	6	0	11/2	3	
				(± 0.0	05)			± 0.03			(± ₀ .	14)	•		± 0.0
Ammonium Sulphate	0 4 8	2.35 2.21 2.23	2.1J 2.28 2.16	2.12 2.14 2.23	2.30 2.20 2.15	2.15 2.14 2.27	2.13 2.18 2.20	2.19 2.21 2.21	07 + .04 23	+ .04 + .11 03	+ .06 32 04	01 + .06 39	07 + .07 11	+ .11 31 + .20	+ .
Superphosphate	0 3 6				2.32 2.14 2.19	2.25 2.20 2.22	2.22 2.21 2.07	2.26 2.19 2.16				+ .03 10 27	15 14 + .19	14 + .36 22	+ .
Mean		2.26	2.19	2.16	2.22	2.22	2.17	2.20	 08	+ .04	10	11	10	.00	
										24 Si	- D:#	C1		z // 1%	66
		S.E. per plot.		g. Diff. means. NP + 0.	Central. Marginal.	5% O. 5% O.	17 1% 10 1% PK- 0	0.10	S.E. per() plot. Interaction	of	NPS + .0	Central. Marginal	+ .22	PKS +	.66 .38 11 02
		nteractions	of	means. NP + 0.	Marginal.	5% O.	10 1% PK- 0.	0.16	Interaction	of s	NPS + .0	Marginal 03 NKS 11 KS	+ .22	PKS +	11
CWT/ACRE		nteractions		means. NP + 0.	Marginal.	^{5%} 0.	10 1% PK- 0.	0.16	Interaction	of	NPS + .0	Marginal 03 NKS 11 KS	+ .22 + .11	PKS +	11
CWT/ACRE		nteractions SU	of PERPHOSPHA	means. NP + 0.	Marginal. 11. NK +	TASSIUM CHL	10 1% PK- 0	0.16 .01 % Ca. Si	Interaction	of s PERPHOSPHAT	NPS + .(NS	Marginal 03 NKS 11 KS	+ .22 + .11	PKS + PS _	11
CWT/ACRE		nteractions SU 0	of PERPHOSPHA	means. NP + 0.	Marginal. 11. NK +	TASSIUM CHL	10 1% PK- 0	0.16 .01 & Ca. Si	Interaction	of s PERPHOSPHAT	NPS + .(NS	Marginal 03 NKS 11 KS	+ .22 + .11	PKS + PS _	11 02
	O 4	su 0	•85 •86	re 6 (± .09	PO .90 .90	11/2 -87	10 1% PK- 0	0.16 .01 6 Ca. S. MEAN + .03	Interaction Sur	PERPHOSPHAT 3 + .0902	NPS + .0 NS10 08 + .06	Marginal 03 NKS 11 KS POT. 0 1 + .0402	+ .22 + .11 ASSIUM CHLO 11/4 + .06 + .03	PKS PS -	11 02 06

PK - .02

Interactions

KALE. E									1						
CWT/ACRE		su	PERPHOSPHA	TE	РОТ	ASSIUM CHLC	RIDE	MEAN	. su	JPERPHOSPHA	TE	РОТ	ASSIUM CHLO	RIDE	
C#1,116K2		0	3	6	0	11/2	3	± .003	0	. 3	6	0	11/2	3	MEAN 008
				(± .0	06)						(<u>+</u> .	.014)			-
Ammonium Sulphate	0 4 8	.132 .123 .124	.117 .121 .120	.123 .133 .116	.131 .130 .128	.118 .125 .120	.123 .122 .122	.124 .126 .120	039 + .013 011	007 + .022 018	009 002 + .002	+ .003 + .026 019	039 007 008	+ .014	+ .0
Superphosphate	0 3				.127 .124 .128	.129 .118 .119	.127 .116 .125	.127 .119 .124				+ .007 001 + .003	037 005 008		0
Mean		.127	.119	.124	.126	.121	.122	.123	012	001	003	+ .003	017	003	0
	:	S.E. per plot.		g. Diff. means.	Central. Marginal.	5% .(020 1% 010 1%	.032 .016	S.E. per . plot.	024 s	ig. Diff. f means.	Central. Marginal	5: 5:	% .046 1% % .026 1%	.066 .038
											***** - C	nos	+ 023	PKS +	.003
	I	nteractions		NP + .00	1 NK+	.001	PK _	.001	Interaction	.8	NPSC NS + .C	09 KS	5 + .023 5006	PS +	.009
	I	nteractions		NP + .00	l NK+	.001		.001 Mg. STE		8	NS + .0	09 KS	006	PS +	.009
CWT/ACRE	I		JPERPHOSPHA	······································		.001	9/s	Mg. STE	м.	PERPHOSPHA	NS + .C		ASSIUM CHLO	PS +	.009
CWT/ACRE	I			TE 6			9/s	Mg. STE	м.		NS + .C			PS +	.009
CWT/ACRE	I	. su	PERPHOSPHA	TE 6	РО	TASSIUM CHI	.ORIDE	Mg. STE	M . su	PERPHOSPHA'	NS + .0	POT	ASSIUM CHLO	PS +	.009
CWT/ACRE Ammonium Sulphate	0 4 8	. su	PERPHOSPHA	TE 6	PO 0	TASSIUM CHI	.ORIDE	Mg. STE	M . su	PERPHOSPHA'	NS + .0	POT 0	ASSIUM CHLO	PS +	.009
	0 4	.158 .167	.145 .157	6 (± .142 .153) 09 .157 .158	143 1143 1151 1160	.138 ,159	Mg. STE MEAN + .005	o 014 + .005	3 009 + .010	NS + .0 FE 6 (± .0027022	POT 0 17 + .011 + .009	037	PS + ORIDE 3 023013021	010 010 010 000 000
Ammonium Sulphate	0 4 8	.158 .167	.145 .157	6 (± .142 .153) 09 .157 .158 .147 .164 .153	.151 .160 .147 .157 .148	.138 ,159 .156 .155	Mg. STE MEAN + .005 .148 .159 .150 .159 .150	o 014 + .005	3 009 + .010	NS + .0 FE 6 (± .0027022	POT 17 + .011 + .009019 + .021006	037 003 007 016 011	PS + ORIDE 3 023013021030003	.009 MEA 010 01

S.E. per plot026	Sig. Diff. of means.	Central. Marginal.	5% .052 1% .079 5% .030 1% .045	S.E. per plot031	Sig. Diff. of means.	Central. Marginal.	5% .055 1% .081 5% .033 1% .047
Interactions	NP + .007	NK003	PK + .030	Interactions	NPS01 NS00		.004 PKS + .018 .012 PS043*

Š

EXPERIMENT

	ы	3360	36,	350	215°	370	008	350	4, 0 4, 0	329	2	300	4LC 400	4000	300	400	260 360	350	976. Ook	380	380	410	350	365	410	345 000	285	375	350	380	360	330	390	330	365 360	375
D.H.	Mg	.130	140	128	.146	170	162	128	- 286-	140	150.	140	.150	: 55.	126	726	325	.126	112	134	71.6	118	152	110	144	114	138	132	132	# # # # # # # # # # # # # # # # # # #	100	1000	128	132	1140	168
STEM. %	Ça	•	0.82		•	• •	•		96.0	25.00	2.0 0.78	68.0	0.082	0.75	0 to	0.64	0.76 0.76	29°0	0 0 8		0.00 0.00 0.00	3.55	0.68	•	•	0.74	0.82	0.88	• •	00000000000000000000000000000000000000	0.64	99.0	92.0	0.76	08.0 08.0 09.0	98.0
ស្ត	M	3.30	9.6	3.25	3,30	2.8	3,50	3.52	8° c	, w. c.	۳, س 5 گ	3,10	3,8	3.55	2 2 2 2 3 3 3	4,10	3.70 4.55	4.15	2,50 9,50	2°.8 8°.8	22 52 52 53 54 55	3.05	50 5	유	57.	182	38	15	18	• •		25.00	200	2.40 2.85 2.85	3.10	3.50
	Щa	.125	110	195	240	475	.260	270	•625 201	250	435	·670	.310 .310	.520	\$ 50° 50° 50° 50° 50° 50° 50° 50° 50° 50°	.140	1.50	.240	,095 010	.240	125	325	\$20 \$20	100	305.	195	225	•260 400	.215	.170	155	220	.270	.290	.400	.825
	임	300	300	305 240	270	235	345	365	350	, v . v . v . v . v . v . v . v . v . v	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	.350	55°	27.5	, m , m	285	202 205	280	- 555 300 300	300	300	325	a'v., ,, a day a serigh f	No. of Assessment	and a material is	252			Le sursi e i	Antonio Pierro III.				~ O	345	315
D.M.	Mg	960.	102	104	120	120	960.	070	120	501	97.	0110	96°.	980.	907.	090	585	076	940.	120	.070 116	920	130	082	120 078	990	990	060	870	100 070	050	090		10%	960	092
.p.5	ပအ	\$	20°C	H (3	2.60	. Ci	<i>C</i> 3 C	2,22 2,22	2.42	20.0	2.40 2.40	2,02	3.10	7.96 1.96	5. 6. 8. 6.	2,00	-i -i	2.00	2.42 42.75 7.75	2.56	2,00	2,30	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5	2.56	2.74 5.50	22.52		•	2.08	0.00	U. C	>	•	200.	2,12	2.00
LEAF	M	r.	25.50	w 4	F- 7	10	•	• •	1.55 75 75	183	1.30	1.20	11.22	1.50	3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	2.65	7.4. 2.5.	2.30	1 1 1 1	1.20	1.6		1.30	•	1.15	1.35	1.75	ri o	1.45	<u>ო</u> დ	2	2 20	4.	1.55	2.40	2.20
Water Carlo	Ma	071.	105	250	195	500	.200	205. 205.	400	2002	400	.775	30%.	100 A	275°	.220	- 135 251	.270	085 200	300	510														.350	068.
M.	Stem	•	20.0		•	• •	11.11	9.H	2.0	20.0	۳.01 10.01	900	20.01 20.01	7.11		4	7.7	12,0	13.0	72.00	다. 이 8.	12,7	7. 1. 2. 1.	50	0.0	22.00	10,	0 Z	1.1	13.5	5	7 C	77	10.2	2.00.2	10.4
D 8%	Leaf	α (177 C	d a	m c	11.7	12.0	12.2	0.00		12.2	4.0	0.0	20,00	7. 7.	12.0	7. 7.		13.7	12.9	이 이	13.0	72.0	3.5		13.5	14.7	0.0	11.7	13.7	14.0	ر ا ا ا ا	14.0		. 25.51 . 0.51	× 1
tons	Stem	106.	648	500	368	926	372	1.168	1.249	1,150	1.156	1.027	1,288	0.018	\$55 572	\$45	920	617	5 43 3 43 3 43 3 43 3 43 3 43 3 43 3 43	1.065	1.033	.737	987	855	.226	385	14,	000 833	786	941	\$62	741	329	942	906.	1.050
MATTER.	Leaf	382	617	657	619	.028	.127	.013	239	\$35 50 50 50 50 50 50 50 50 50 50 50 50 50	955 855	010	380	494	766.	.920	0/1° 082	123	7777	916	966	879	.106 .128 1	900	127 1 974	.010	69	.798 .895	668	.245 .900	992-	900	.14.1	.323	366	0
DRY MA	otal	78	911 265	24 12	487	004 1	439 I) <u> </u>	43	0.005	85	93	397 L	514 1	549 849	765	+ 906 206	040 I	426 635	186	9999 051 1.	999	093 1 232 1	755	353 T 720	910 1	0.00 0.00 0.00 0.00	398 728	685	186 <u>1</u> 516	628	000 641 641	970 1	265 1	056 1 309 1	T 167
E .	em Tc				L (100	CS C			400	N 01	CS C	N 64	C. L	-11		-	CV I	-1 -		H CX	<u> </u>	તાં તાં	ri (ાં ન	H C		નં ⊢ં	٦.	∾ ⊢	н с	v ⊢i	Нг	-l (X	ત્યું ત્યું ત	V
D.ton	S t																																		88. 40. 40.	
YIELD	Leaf	7.00	4.90	4.97	4.52	8.79	8.76	0.00 0.00	10.41 8.63	7.32	2.57 7.63 7.63	5.75 to	11,50	11.00		7.67	20,00	10,12	6.15	7.10	7.81	6.76													9.30	2
FRESH	Total	10,1	10.30	oj o	HV	. Z	00	o to	-15		00 00	O\r	-11	05 -	1 10	515		~	in c	3	15.90	13.26	16.68	13,10	13.60	14.00	7.00	14.18	14.76	11.12	11.72	12.84	15.00	20.54	18.08 20.52	40°00
		N1PIK2S0	NOPZKZSO	S1 MOPIKOSO	אָרָ מי	S	M2POK2SO	TE NIPSKISO	SI OBLMODOM	ဥကဋ	यु छ	M2P2K0S0	ST N2P2EJSO	15 CBOMOTOR	513.18	N1P2K2S0	M2PIK250	מ ניי	0717170 81	HIPOKISO	NOPOKZSO	υ Ω (ട്ട വ	NOFZKOSO	NIPOKZSO	SINOPOKOSO	M S	TS ST	N2POK1SO	NOPZK150	SI OBCALGOM	į Ož	NIPIKISO	NZPZKZSO	NZPIKOSO FP	2
		Н	C\	æ	. 5	ţ;	r)	9	Ľ	~ *	x	6	9	5	-	2	<u>C)</u>	,	7:	7	16	Į	7.7	to H	19	8		7.	? <u>;</u>	23	24	H 2	25	36	27	

S.E. per plot. o .378 1% .351 of means. Marginal. 5%,240 5% 0.436 1% 0.660 of means. Marginal. NPS - 0.174 NKS+ 0.111_ PKS - 0.064NP + 0.140NK - 0.055PK - 0.315Interactions Interactions NS + 0.018 KS- 0.331 PS + 0.100

5% 0.754 1% 1.142

Sig. Diff.

Central.

S.E. per plot. 0.222 Sig. Diff.

Central.

Responses to Salt.

					1				i						
CWT/ACRE		su	PERPHOSPHA	re	РОТ	ASSIUM CHLO	RIDE	MEAN	su	PERPHOSPHA	TE	POT	ASSIUM CHLO	RIDE	MEA
		0	3	6	0	11/2	3	± 015	0	.3	6	0	11/2	3	
				(± .0)25)			015			(± .0	51)	<u> </u>	<u> </u>	.03
Ammonium Sulphate	0 4 8	.171 .327 .428	.162 .392 .439	.183 .316 .540	.167 .469 .778	.162 .356 .366	.187 .311 .264	.172 .345 .469	+ .112 + .192 + .270	+ .117 + .212 + .133	+ .145 + .130 + .163	+ .143 + .208 + .227	+ .080 + .243 + .235	+ .150 + .082 + .105	+ . + .
Superphosphate	0 3 6				.417 .508 .488	•300 •275 •309	.209 .211 .242	.309 .331 .346				+.222 + .127 + .230	+ .217 + .200 + .142	+ .135 + .135 + .067	+ .
Mean		.309	.331	•34 6	•471	•295	.221	•329	+ .191	+ .154	+ .146	+ .193	+ .186	+ .112	+ .
		S.E. per plot.		g. Diff. means. NP + .0	Central. Marginal.	5% .08 5% .05 .267***	57 1% 52 1% PK -	.131 .078 .019	S.E. per plot.	of	ig. Diff. i means. NPS(Central. Marginal	5%	% .166 1% % .098 1% PKS -	.038
				means.	Marginal.			.019	plot.	of	means.	Marginal	5065 081	* .098 ¹ *	.142
CWT/ACRE		Interactions	of PERPHOSPHA	means. NP + .0	Marginal. 50 NK-	.267*** TASSIUM CHL	PK	.019	plot.	e of	NPS(NS(Marginal	59065081	N .098 1% PKS - PS -	.038
CWT/ACRE		Interactions	of	means. NP + .0	Marginal. 50 NK-	•267 ^{***}	PK	.019 Ja. STEM.	plot.	s	NPS(Marginal	59 5065 5081	% .098 1% PKS - PS _	.142 .038 .045
CWT/ACRE		Interactions . Su	of PERPHOSPHA	means. NP + .0	Marginal. 50 NK- PO	.267*** TASSIUM CHL	PK	.019 Na. STEM.	plot.	e of	NPS(Marginal 070 NKS 065 KS	59065081	N .098 1% PKS - PS -	.142 .038 .045
Ammonium Sulphate		Interactions . Su	of PERPHOSPHA	means. NP + .0	Marginal. 50 NK- PO	.267*** TASSIUM CHL	PK	.019 Ja. STEM.	plot.	e of	NPS(Marginal 070 NKS 065 KS	59065081	N .098 1% PKS - PS -	.142 .038 .045
	0 4.	o 190	•167	means. NP + .0 re 6 (± .0) .163 .314	Marginal. 50 NK- Po 36) .186 .463	.267 ^{HH} TASSIUM CHL 11/4	PK % 1 ORIDE .179 .169	.019 Va. STEM. MEAN + .021 .173 .339	plot. Interaction: sur	PERPHOSPHAT 3 + .112 + .217	NPS(NS(+ .112 + .182	Marginal 070 NKS 065 KS POT 0 140 + .140 + .205	065 081 ASSIUM CHLON 11/4 + .102 + .247 + .212	PKS - PS - 3 + .135 + .078 + .093	.142 .038 .045 + .1 + .1 + .1

5% .202 1% .294 5% .117 1% .171 5% .124 1% .189 5% .072 1% .110 Sig. Diff. of means. Central. Marginal. S.E. per plot. .108 Sig. Diff. of means. S.E. per plot. Central. .064 Marginal. NPS - .020 NS - .064 NKS - .085 KS - .102 NK - .223*** PKS + .001 PK - .016 Interactions Interactions NP + .050PS _ .025

2.

Main N P K Effects.

A 11. KALE. Responses to Salt. SUPERPHOSPHATE POTASSIUM CHLORIDE SUPERPHOSPHATE POTASSIUM CHLORIDE CWT/ACRE MEAN MEAN 3 0 0 14 士 0.11 ± 0.08 (± 0.18) $(\pm_{0.14})$ Ammonium Sulphate 0 1.52 1.84 1.67 1.51 1.55 1.97 1.68 + 0.25 + 0.10 -0.20+ 0.05 -0.03+ 0.13 + 0.05 4 1.52 1.52 1.85 1.42 1.56 1.91 1.63 + 0.02 + 0.27 ÷ 0.23 + 0.05 + 0.22 -0.22+ 0.02 8 1.44 1.92 1.48 1.63 1.43 1.78 1.61 - 0.05 + 0.03 + 0.08 - 0.02 -0.12+ 0.20 + 0.02 0 1.54 1.53 1.42 1.50 +0.05 + 0.17 -0.15+ 0.02 Superphosphate 36 1.67 1.55 2.05 1.76 - 0.02 + 0.20 + 0.37+ 0.18 1.34 1.57 2.08 1.67 + 0.05 - 0.30 - 0.10 -0.121.50 1.76 1.67 1.52 1.51 1.89 1.64 + 0.02 + 0.18 - 0.12 + 0.03 + 0.02 + 0.04 + 0.03 Mean 5% 0.62 1% 0.94 S.E. per 0.25 5% 0.46 1% 0.66 S.E. per plot-0.32 Sig. Diff. Central. Sig. Diff. Central. 5% 0.26 1% 0.38 Marginal. 5% 0.38 1% 0.58 plot. of means. Marginal. of means. NKS + 0.07NPS + 0.22PKS + 0.03NP = 0.05Interactions NK- 0.15 PK + 0.37Interactions NS - 0.03KS + 0.01PS = 0.14% K. STEM. POTASSIUM CHLORIDE SUPERPHOSPHATE POTASSIUM CHLORIDE SUPERPHOSPHATE MEAN CWT/ACRE MEAN 3 0 3 11/4 0 11/2 3 世0.14 ± 0.13 (± 0.25) (± 0.23) Ammonium Sulphate - 0.07 -0.05 + 0.01 .000 -0.27+ 0.13+ 0.28 0 2.89 3.10 2.95 2.93 2.72 3.29 2.98 -0.23- 0.08 - 0.18 -0.17- 0.10 - 0.22 3.56 - 0.18 4 3.09 3.07 3.39 2.95 3.04 3.18 - 0.06 + 0.12 -0.17+ 0.12 -0.13- 0.10 3.27 3.70 3.12 3.28 3.23 3.58 3.36 - 0.20 Superphosphate -0.03+ 0.08 -0.02-0.170 3.12 2.91 3.23 3.08 - 0.07 - 0.07 + 0.03 -0.173 3.05 3.05 3.77 3.29 - 0.18 -0.12-0.03-0.153.16 3.03 3.00 3.44 - 0.07 - 0.01 - 0.12 - 0.07 -0.12- 0.09 3.08 3.29 3.16 3.06 3.00 3.48 3.18 - 0.03 Mean 5% 0.82 1% 1.19 5% 0.80 1% 1.21 S.E. per plot. 0.43 Sig. Diff. Central. Central.

Sig. Diff. S.E. per plot. 0.40 5% 0.46 ^{1%} 0.66 of means. Marginal. 5% 0.45 1% 0.68 of means. Marginal. NKS + 0.11PKS - 0.15 NPS + 0.44Interactions PK + 0.16Interactions NP - 0.15NK = 0.03NS = 0.07KS = 0.03**PS** - 0.09

KALE. EXPERIMENT 2. Main N P K Effects.

Response to Salt.

CWT/ACRE		su	PERPHOSPHAT	E	POTA	ASSIUM CHLOF	RIDE	MEAN	St	PERPHOSPHA	TE	РОТА	ASSIUM CHLOR	RIDE	MEAN
,		0	3	6	0	11/2	3	± 0.07	0	. 3	6	0	11/4	3	+ .07
				(± 0.	13)			- 0.07			(± .1	3)			07
Ammonium Sulphate	0 4 8	2.07 2.36 2.07	2.33 2.09 2.18	2.35 2.16 2.00	2.30 2.31 2.03	2.26 2.22 2.19	2.25 2.08 2.09	2.27 2.20 2.12	17 40 + .12	.00 01 + .07	+ .01 + .18 05	+ .19 .00 + .03	05 15 + .03	30 07 + .08	05 08 + .05
Superphosphate	0 3 6				2.13 2.26 2.25	2.17 2.34 2.17	2.33 2.00 2.09	2.21 2.20 2.17				+ .01 + .05 + .16	33 + .09 + .07	13 07 08	15 + .02 + .04
Mean		2.21	2.20	2.17	2.21	2.22	2.14	2.19	15	+ .02	+ .04	+ .08	06	10	03
		S.E. per plot.	of i	y. Diff. neans. NP - 0.	Central. Marginal.	5% 0. 5% 0. 0.06	45 1% 24 1% PK 0	0.68 0.37 .18	S.E. per plot. Interaction	o	ig. Diff. f means. NPS - 0 NS + 0	Central. Marginal .06 NKS .10 KS	5%	* .42 1% * .23 1% PKS - PS -	
		SU	PERPHOSPHAT	E	POT	rassium Chlo	ORIDE		SU	PERPHOSPHAT	re	POT	ASSIUM CHLOR	RIDE	1
CWT/ACRE		0	1	6	0	11/2	1	1	1						
		1	3	٥	1	172	3	MEAN	0	3	6	0	11/2	3	MEAN
	•		3	(± .0:	<u> </u>	172	3	+.008	0	3	6 (± .00	<u> </u>	11/2	ŀ	# .05
Ammonium Sulphate	0 4 8	. 8 6 .82 .77	•73 •73 •81		<u> </u>	•78 •79 •80	.78 .72 .73		+ .02	+ .05 + .04 09		<u> </u>	+ .03 + .12 17	ŀ	+
Ammonium Sulphate Superphosphate	4	. 8 6	•73	(± .0)	.81 .78	•78 •79	•78 •72	008 -79 -76	+ .02	+ .05	(± .00	9)	+ .03 + .12	+ .02	01 + .04

S.E. per plot. .023 Sig. Diff. of means. Sig. Diff.

Main N P K Effects.

Responses to Salt.

Ammonium Sulphate O 4. 8 Superphosphate O 3. 6	.078 .090 .089	.092 .099 .084	.088 .070 .101	.095 .100 .097	.077 .083 .095	.086 .077 .093	.086	008 024	+ .013	6 (±.0 +.007	+ .014	+ .005	007	008 + .00
Superphosphate O 4 8	.090 .089	•099	.088 .070	.095 .100 .097	.083	.077	.086			+ .007	+ .014		1	
Superphosphate O 3 6	.090 .089	•099	.070	.100 .097	.083	.077							1	+ .0
3 6	.086			.092	L.	•090	.095	+ .011	+ .003	+ .020 005	009 + .005	+ .008	+ .001	
Mean	-086	1		.113	.086 .090 .079	.079 .083 .093	.086 .095 .086				+ .011 007 + .006	006 + .013 + .007	025 .000 + .009	+ .0
	1 .000	.095	.086	.097	.085	.085	.089	007	+ .002	+ .007	+ .003	+ .004	005	+ .0
	Interactions		NP + .00	1 NK +	003	226 1% 214 1% PK + .	.021 .009 % Mg.	Interaction	s .	NPS0 NS0	15 NKS 05 KS	+ .003		.038 + .019 + .014
CWT/ACRE	su	PERPHOSPHAT	re .	PO	TASSIUM CHL	ORIDE		SUI	PERPHOSPHAT	E	POTA	ASSIUM CHLO	RIDE	MEA
CW1/ACRE	0	3	6	o	11/2	3	MEAN	0	3	6	. 0	11/4	3	+
			(± .00	06)			.003			(± .0	14			008
Ammonium Sulphate 0 4 8 Superphosphate 0 3	.128 .134 .136	.127 .139 .144	.123 .122 .143	.136 .139 .144 .142 .148	.119 .129 .142 .125 .134	.123 .128 .137 .130	.126 .132 .141 .132 .137	+ .008 001 019	+ .014 + .006 + .007	+ .001 013 006	+ .014 005 + .007 + .005	+ .006 003 007 007 + .005	+ .003 001 017 011 + .014	+ .00 00 00 + .00
Mean.	.132	.137	.129	.128	.131	.129	.129	004	+ .009	006		001 001	018 005	00

5% .046 1% .066 5% .026 1% .038 5%.02l 1%.03l 5%.010 1%.016 S.E. per plot. .025 S.E. per plot. .010 Sig. Diff. Central. Marginal. Sig. Diff. of means. Central. Marginal. PKS - .002 PS - .002 NPS + .010 NS - .014 NKS + .010 KS - .010 PK + .007 Interactions NK + .003NP + .006 Interactions

PKS - .032 PS - .010

NP + .011

Interactions

NK - .032

Responses	to	Salt.

NPS + .001 NS + .004 NKS + .011 KS + .001

CWT/ACRE		ຮບ	PERPHOSPHA	TE	POTA	ASSIUM CHLO	RIDE	MEAN	su	PERPHOSPHA	TE .	РОТ	ASSIUM CHLOR	RID E	
- W - / 33-331		0	3	6	0	11/2	3	1,	0	. 3	6	0	11/2	3	MEAN
				(± .0:	1.7)			010			(<u>+</u> •0	ر ري			• .006
Ammonium Sulphate	0 4 8	.283 .283 .312	.271 .331 .320	•322 •306 •365	.272 .300 .333	.303 .333 .337	.300 .285 .326	.292 .306 .332	+ .037 005 + .010	+ .027 + .028 .000	+ .010 + .008 + .012	+ .022 + .030 + .020	+ .043 + .003 + .015	+ .008 002 013	+ .02 + .01 + .00
Superphosphate	0 3 6				.282 .302 .322	.297 .318 .359	.298 .301 .312	.292 .307 .331		e de la constante de la consta		+ .003 + .030 + .038	+ .025 + .045 008	+ .013 020 .000	+ .0: + .0: + .0:
Mean		.292	.307	.331	.302	.325	.304	.310	+ .014	+ .018	+ .010	+ .024	+ .021	003	+ .0]
		S.E. per plot.	•029 Si	g. Diff. means.	Central. Marginal.	5% • 5% •	059 1% 035 1%	.089 .052	S.E. per .(ig. Diff. I means.	Central. Marginal	5% • 5%	.036 1%	.052 .028
		Interactions		NP+ .007	NK .	018	PK _	.018	Interaction	s	NPS +	.015 NKS	010	PKS -	.023
								-			NS -	.017 KS	 027	PS -	.004
									EM.		NS -	.017 KS	027 [#]	PS _	.004
		su	PERPHOSPHA'	TE	POT	rassium Chl	ORIDE		-	PERPHOSPHAT			027		
CWT/ACRE		su 0	PERPHOSPHA'	TE 6	PO7	CASSIUM CHL	ORIDE 3		-	PERPHOSPHÁT					MEAI
CWT/ACRE			1	6	0	1	1	% P. ST	SUI	1	re 	РОТ.	ASSIUM CHLO	RIDE	
CWT/ACRE Ammonium Sulphate	O 4 8		1	6	0	1	1	% P. ST	SUI	1	`E 6	РОТ.	ASSIUM CHLO	RIDE	* .011 + .00 + .00 + .00
	0 4	•341 •350	•365 •366	.369 .377	•334 •372	•360 •366	•381 •355	% P. ST MEAN + .010 .358 .364	+ .015 + .023	.000	(±.01 +.008 +.005	POT. 0 18) + .002 + .033	+ .020 015	+ .002 + .013	+ .011 + .02 + .03 + .02 00
Ammonium Sulphate	0 4 8	•341 •350 •332	•365 •366	.369 .377	• 334 • 372 • 360 • 316 • 364	.360 .366 .370 .360 .370	.381 .355 .343 .347 .363	% P. ST MEAN + .010 .358 .364 .358 .341 .363	+ .015 + .023	.000	(±.01 +.008 +.005	+ .002 + .003 + .002 + .005 + .002	+ .020 015 + .010 + .013 + .003	+ .002 + .013 + .025 + .043 007	MEAN

PK - .022

Interactions

STEM. % D.M. Na K Ca Mg P	2.60 .990 .185 .	800 2,30 ,920 ,190 ,205 300 2,10 ,920 ,182 ,230	2.30 .850 .174	3.05 .745 .156 .	2.40.620.110	3.50 .620 .164	2.90 .780 .182	2.75 .720 .190	2,70 .680 .140 .	4.70 320 164	3.45 .640 .156	3.65.620.110	3.50 720 1.56	.20 .835 .160	2,40 ,920 ,140 ,	2.35 .800 .100	2.80 .920 .164 .	2.60 880 1.84 1.70 920 148	1.65 .880 .164 .1	3.30 .750 .156 .2 3.30 .640 .186 .2	3.65.735.156.2	3.40 .700 .158 .	3.00 .850 .206	045 2.85 .700 .156 .260 .050 2.60 .770 .160 .200	135 2.80 .890 .182	2.85 840 104 2.05 850 166	2.15 .950 .156	1.90 .750 .144 2.50 .835 .150	60 .850 .182 .70 .80 .186 .	2.70 .720 .156	2.85.750.168. 2.85.785.156.	3.15 .640 .176	2.70 .835 .186 .25	2.90 .620 .174 .17	2.40 .820 .152 .19 3.60 .925 .180 .23	3.15.920.168.22	3.60 .720 .168 .26	
LEAF. % D.M. Na K Ca Mg P	1.70 2.26 .230	75 2.66 90 2.42	2,10 2,36 ,198	2.85 2.34 .134 .	2.25.2.66.130	3.55 2.00 .120	2.45 2.20 .170 .	3.15 2.34 .130	2.80 2.32 .126 .	2,10 %. K8 . 1.50 . 2 kg o 30 10 kg o	3.10 2.56 152	3.00 2.34 .130	3.55 2.28 178	1.60 2.20	2.45 2.10 .170	2.40 2.50 .186	2.30 2.36 .175	2.15 2.46 .18U . 1.25 2.46 .220	1.40 2.52 .176	3.20 2.50 .150 . 2 60 2 00 136	3.95 2.26 .134	3.60 2.22 .114 .	2.95 2.38 .170	લું લું	2.45 2.54 .150	$2.40 \ 2.76 \ 146$.675 1.70 2.10 .170	190 2.20 2.00 .104	.05 2.20 1144 .	2.80 2.22 .134	2.85 2.46	3.20 2.20 .114	2.85 2.40 .110 .	2.40 2.40 184	2.85 2.20 140	3.00 2.20 .160	3.40 2.26 .122	
% D.M. Leaf Stem	2.2 1	3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2.5 16	4.1 1d	4 m	4.3 16	5,0 0,0 1,0	7	L - 6	乳のいっ	10,	ري دي در	17.7.14.2	2.2 13	14.7 18.0	4,3 17	2.5 14	12.2 14.5		4.0	0 to	0,0	3.1 16	15.7 17.1	4.2 16	0 0 0	2 14	27 75	113	1 T	0,0	0	4 19	0,1		6.4	7.7	
DRY MATTER tons Total Leaf Stem	129 1.583	174 1.758 968 1.521	202 1.626	726 1,222 .	784 1.427 330 1.038	590 1.236	363 1.871 .	546 1.152	466 1,183	0.70 1.515 . 877 1.551	272 1.733	320 1.844	139 1.707 529 2.012	240 1,604	. 0.78 T.4.74	742 1.178	734 1.328	723 1.292	632 1.298	509 1 072	493 1.978	303 1.794	761 1.309	1.268 0.970 .298 1.452 1.113 .339	260 1.778	530 1.827 041. 1.580	207 1.724	388 1.019	780 1.3	859 0.646	244 0.941 933 1.391	852 1.375	115 0 864 404 1 098	712 1 299	790 1.384	166 1.690	518 1.940	
FRESH YIELDtons Total Leaf Stem	88 12.98 3.	52 13 22 3 76 11 02 2	52 13.01 3.	12 8,67 3,	84 7,16 1	80 8,64 2.	32 14.85 3. 88 16 71 4	60 7.58 2.	84 7.35 1.	6 70.01 SI	76 14.09 3.	52 13,97 3,	54 17 20 3	76 13.15 4	00 14.45 4.	48 8,24 3	52 10,62 2,	24 10 47 7 56 10 59 2	32 11,65 3	44 9.04 2	88 15,45 3	64 14.95 3	80 9.99 2	7.92 6.18 1.74 9.16 7.42 1.74	15.48 12.52 2	17.76 13.42 4	17.56 14.13 3	9.00 6.84.2	11.32 9.10 2	5.24 4.17 1	7.84 6.27 I 13.48 10.23 3	12.64 9.82 2	6.88 5.61 1 8.93 7.32 1	11.36 8.90 2	13.80 10.90 2	16.76 13.41 3	19.32 15.52 3	
MANAGEMENT CONTRACTOR	1 N2POKOSO	S1 2 MIPIKOSO	S S	3 HOPTATSO	2.1 4 MOPOK250	(2)	5 112P2K1S0	6 NOPZKOSO	10 10 10 11 11 11 11 11 11 11 11 11 11 11		S M2PIK2SO	מי ניי	OSTROLTH S	10 M2POKISO	TS NOPOWOSO		SLXIGIN SI	13 N2PIKOSO	02	14 NOPIK2SO	15 N2P2K2SO	IS OPCAUGIN 91	51	17 NOPZKISO SI	18 NIPZKOSO	ST 19 NZPZKOSO	- C12	SUMPLIANCE OF	21 NIPZKISO	22 NOPOKISO	SI 23 NIPIK2SO	Č	24 NOFZKZ50	25 NIPOKOSO	26 N2PIXISO	IS Obchodon 70	S	

CWT/ACRE		su	PERPHOSPHA	TE.	РОТ	ASSIUM CHLC	DRIDE	MEAN	st	JPERPHOSPHA	TE	POT	ASSIUM CHLO	RIDE	
0,1,1,0,1,0,1,0		0	3	6	0	11/2	3	± 0.68	0	.3	6	0	11/2	3	ME
				(±1.	18)						(±]	.00)			+0.5
Ammonium Sulphate	0 4. 8	8.88 14.16 17.41	10.88 13.86 15.79	8.56 14.55 18.37	9.69 14.17 15.96	9.09 15.13 17.37	9.57 13.27 18.23	9.44 14.19 17.19	+ 2.31 + 0.85 + 0.23	+ 0.69 + 0.55 + 1.49	+ 0.84 + 1.81 + 1.32	+ 0.16 + 1.27 + 1.04	+ 1.27 + 2.20 + 1.48	+ 1.03 - 0.25 + 0.52	+ C +] +]
Superphosphate	0 3 6				12.58 13.05 14.19	14.27 13.59 13.70	13.61 13.89 13.58	13.48 13.51 13.82				+ 0.29 + 1.13 + 1.05	+ 1.71 +0 .88 + 2.36	+ 1.40 - 0.66 + 0.56	+ 1 + C + 1
Mean		13.48	13.51	13.82	13.27	13.85	13.69	13.61	+ 1.13	+ 0.45	+ 1.33	+ 0.82	+ 1.65	+ 0.43	+ (
		S.E. per plot.	2.04 S	ig. Diff.	Central.	5% ∠1	LOS 1%	6.18	S.E. per	7.79 5	ig. Ditt.	Central.		5 3.26 L7	6 4 7
		S.E. per plot.	2.04 S	f means.	Marginal.	5% 4 5% 2 + 1.20	PK - C).77	S.E. per plot. Interaction	о		Marginal	1. 5% 5 - 0.70	1.85 1%	0.80
		Interactions	of	f means. NP + 0	Marginal.	+ 1,20	PK - C	3.50	Interaction (tons)	s	NPS + I	Marginal	57 5 - 0.70 5 - 0.39	PKS - PS +	0.80
CWT/ACRE		Interactions	PERPHOSPHA	f means. NP + 0	Marginal.	3 % 2	PK - C).77	Interaction (tons)	о	NPS + I	Marginal	1. 5% 5 - 0.70	PKS - PS +	0.80
		Interactions	of PERPHOSPHA	f means. NP + 0	Marginal64 NK	+ 1.20	PK - C TOTAL LORIDE	DRY MATTER	Interaction (tons)	PERPHOSPHAT	f means. NPS + 1 NS + (Marginal 1.28 NKS 0.20 KS	5% - 0.70 - 0.39	PKS - PS +	0.80 0.20
		Interactions	of PERPHOSPHA	f means. NP + 0	Marginal64 NK	+ 1.20	PK - C TOTAL LORIDE	DRY MATTER	Interaction (tons)	PERPHOSPHAT	f means. NPS + 1 NS + (Marginal 1.28 NKS 0.20 KS	5% - 0.70 - 0.39	PKS - PS +	
CWT/ACRE	O 4	Interactions su 1.359 1.927	3 1.603 1.908	f means. NP + 0 TE 6 (± 0.: 1.375 2.080	Marginal64 NK PO 131 1.511 2.061	+ 1.20 TASSIUM CHI 11/4 1.389 1.993	PK - C TOTAL LORIDE 3 1.436 1.861	DRY MATTER MEAN + 0.075 1.446 1.972	tons) + •333 + •131	рекрнозрнат 3085 + .066	MPS + 1 NS + 6 (± + .131 + .083	Marginal 1.28 NKS 0.20 KS 0.20 KS 132 + .041 + .160	1. 5% 5 - 0.70 6 - 0.39 ASSIUM CHLOR 11/4 + .209 + .216	PKS - PS + 129102	0.80 0.20

PK - 0.099

NP+0.050

Interactions

NK + 0.206

Interactions

NPS + .116 NS - .020

NKS - .074 KS - .076

PKS - .120 PS - .074

KALE.	EXPERI	MENT 3.		Main	N P K Eft	ects.		/3 INR . I	1	Res	ponses to	Salt.		A 1'	/•
CWT/ACRE		su	PERPHOSPHA'	re 	РОТ	ASSIUM CHLO	PRIDE	MEAN	st	JPERPHOSPH	ATE	POT	ASSIUM CHLO	RIDE	MEAN
		0	3	6	0	11/2	3	+ .032	0	. 3	6	0	11/2	3	
			1	(± .05	55			032			(+	039)		1	±. 023
Ammonium Sulphate	0 4 8	.151 .171 .431	.156 .385 .435	.068 .199 .437	•195 •319 •784	.095 .305 .360	.082 .131 .159	.125 .252 .434	+.106 + .057 + .093	+ .072 + .070 + .032	+ .052 + .108 013	+ .146 + .103 + .050	+ .050 + .073 + .062	+ .034 + .058 .000	+ .076 + .078 + .037
Superphosphate	0 3 6				•396 •508 •363	.252 .291 .317	.105 .144 .1.24	.251 .325 .235				+ .157 + .112 + .031	+ .060 + .062 + .063	+ .039 .000 + .053	+ .085 + .058 + .049
Mean		.251	•325	•235	•434	.253	.124	.270	+ .085	+ .058	+ .049	+ .100	+ .062	+ .031	+ .064
	Ī	Interactions		means. NP + .04	Marginal.	5% .1 256 [#]	PK +	.168 .026 % Na.	Interaction		NPS(Marginal 026 NKS 039 KS	; + .031 5069	% .075 19 PKS + PS -	
		SU	PERPHOSPHA?	re	PO	TASSIUM CHL	ORIDE		sui	PERPHOSPHA	TE	POT	ASSIUM CHLC	RIDE	
CWT/ACRE		0	3	6	0	11/2	3	MEAN	o	3	6	0	11/4	3	MEAN
				(± .04	4)			± .025			(± .()49		<u> </u>	.028
Ammonium Sulphate	0 4 8	.121 .107 .439	.157 .249 .359	.070 .124 .348	.199 .220 .708	.095 .199 .336	.055 .095 .101	.116 .171 .382	+ .106 + .037 + .130	+ .013 + : 108 + .128	+ .013 + .072 + .045	+ .093 + .090 + .183	+ .016 + .087 + .112	+ .023 + .050 + .008	+ .044 + .076 + .101
Superphosphate	0 3 6				•347 •471 •309	.242 .231 .156	.078 .097 .077	.222 .266 .181				+ .120 + .182 + .045	+ .101 + .062 + .052	+ .042 + .007 + .033	+ .094 + .083 + .043
Mean .		.222	.266	.181	.376	.210	.084	.223	+ .094	+ .083	+ .043	+ .122	+ .071	+ .027	+ .073
		S.E. per plot.	.076	Sig. Diff.	Centi Margi	ral.		1% •230 1% •131	S.E. per plo	085	Sig. Diff.	Central, Marginal		5%.160 5%.091	1% •232 1% •133

Interactions NP _ .020 NK _ .232 PK + .018 Interactions NPS + .004 NKS - .102 PKS + .033 NS - .057 KS - .095 PS = .051

CWT/ACRE		su	PERPHOSPHA	TE	POT	ASSIUM CHLO	RIDE	MEAN	8	BUPERPHOSPH	ATE	POT	rassium chlo	RIDE	
		0	3	6	0	11/2	3	الدا	0	. 3	6	0	11/2	3	M
				(± 0,	.25			- 0.14			(<u>+</u> 0	.20			=0.
Ammonium Sulphate	0	2.73	2.62	2.81	2.60	2.65	2.89	2.72	+ .43	53	12	27	23	+ .28	_
	4	2.88	2.42	2.73	2.28	2.61	3.14	2.68	+ .18	+ .12	+ .38	+ .05	+ .25	+ .38	+
	8	2.40	2.43	2.69	1.54	2.54	3.44	2.51	+ .22	+ .07	+ .15	+ .15	+ •45	17	+
Superphosphate	0				2.19	2.71	3.10	2.67			·	.00	+ .42	+ .42	+
	3 6				1.91	2.57 2.52	3 .00 3.38	2.49 2.74				02 05	20 + .25	13 + .22	-
	O				~•JJ		2.00					00	7 • 2)	T . ZZ	
lean .		2.67	2.49	2.74	2.14	2.60	3.16	2.63	+ .28.	12	+ .14	02	+ .16	+ .17	+
		S.E. per plot.		ig. Diff. means. NP + (Central. Marginal.		.87 1% .48 1% PK + 0	1.31 0.73 0.07	S.E. per plot.		Sig. Diff. of means. NPS + 0 NS + 0	Central Margine .24 NK .21 K	s - 0.44 s + 0.19	0.66 15 0.36 PKS - PS -	[%] 0. - 0.
		Interactions	of	means.	Marginal.	5% 0 + 0.80	.48 ^{1%}	0.73	Interaction	ns	NPS + 0 NS + 0	Margina .24 NK .21 K	s - 0.44 s + 0.19	PKS - PS _	%0. -0.
CWT/ACRE		Interactions	of PERPHOSPHA	means. NP + (Marginal. O.10 NK	5% O	.48 1% PK + 0	0.73	Interaction		NPS + 0 NS + 0	Margina .24 NK .21 K	al. 5 s - 0.44	PKS - PS _	%0. -0.
CWT/ACRE		Interactions	of	means. NP + C	Marginal. O.10 NK	5% 0 + 0.80	.48 ^{1%}	0.73 0.07 % K.	Interaction STEM.	ONS OUPERPHOSPHA	NPS + 0 NS + 0	Margina .24 NK .21 K	S - 0.44 S + 0.19	PKS - PS - PS -	% O.
		Interactions	of PERPHOSPHA	means. NP + (Marginal. O.10 NK	5% O	.48 1% PK + 0	0.73 0.07 % K.	Interaction STEM.	ONS OUPERPHOSPHA	NPS + 0 NS + 0	Margine •24 NK •21 K	S - 0.44 S + 0.19	PKS - PS - PS -	%0., - 0.(
CWT/ACRE Ammonium Sulphate	0	su 0	of DPERPHOSPHA 3 2.83	TE 6 (± 0.	Marginal. 0.10 NK -	5% 0 + 0.80 TASSIUM CHL	.48 1% PK + 0	0.73 0.07 % K. MEAN +0.12	STEM.	DPERPHOSPHA 3 + .15	NPS + 0 NS + 0	Margine .24 NK .21 K	S - 0.44 S + 0.19	PKS - PS -	* O O + (
		Interactions SU	of OPERPHOSPHA 3	TE 6	Marginal. 0.10 NK -	5% 0 + 0.80	.48 1% PK + 0	0.73 0.07 % K. MEAN +0.12	STEM.	UPERPHOSPHA	of means. NPS + 0 NS + 0	Margine .24 NK .21 K	al. 5 S - 0.44 S + 0.19 TASSIUM CHL	PKS - PS _	*0.
	0 4 8	o 2.70 3.05	2.83 2.63	TE 6 (± 0. 2.79 3.01	Marginal. 0.10 NK 4 0.20) 2.77 2.56 2.07	5% 0 + 0.80 TASSIUM CHL 11/4 2.83 2.93 2.89	PK + 0 ORIDE 3 3.06 3.21 3.59	0.73 0.07 % K. MEAN +-0.12 2.77 2.90 2.85	STEM. strong of the strong of	# .15 + .10	of means. NPS + 0 NS + 0 ATE 6 (± (+ .05 + .52	Margine .24 NK .21 K Por .0 .23) + .170808	Al. 5 S - 0.44 S + 0.19 FASSIUM CHLC 11/4 08 + .0202	PKS - PS - PS5207	+ (+ + -
Ammonium Sulphate	0 4 8 0 3	o 2.70 3.05	2.83 2.63	TE 6 (± 0. 2.79 3.01	Marginal. 0.10 NK 0.20) 2.77 2.56 2.07 2.49 2.03	5% 0 + 0.80 TASSIUM CHL	.48 1% PK + 0	0.73 0.07 % K. MEAN +0.12 2.77 2.90	STEM. strong of the strong of	# .15 + .10	of means. NPS + 0 NS + 0 ATE 6 (± (+ .05 + .52	Margina .24 NK .21 K Por .0 .23) + .17080828 + .25	TASSIUM CHLC 11/4 08 + .0202 + .2527	PKS - PS - O.36 PKS - PS - ORIDE 3 + .52 + .5207 + .27 + .17	* 0 · · · · · · · · · · · · · · · · · ·
Ammonium Sulphate	0 4 8	o 2.70 3.05	2.83 2.63	TE 6 (± 0. 2.79 3.01	Marginal. 0.10 NK 4 0.20) 2.77 2.56 2.07	5% 0 + 0.80 TASSIUM CHL 11/2 2.83 2.93 2.89 2.88	.48 1% PK + 0 ORIDE 3 3.06 3.21 3.59 3.24	0.73 0.07 % K. MEAN +-0.12 2.77 2.90 2.85 2.87	STEM. strong of the strong of	# .15 + .10	of means. NPS + 0 NS + 0 ATE 6 (± (+ .05 + .52	Margine .24 NK .21 K Por .00 .23) + .17080828	S - 0.44 S + 0.19 FASSIUM CHLC 11/4 08 + .0202 + .25	PKS - PS - O.36 PKS - PS - ORIDE 3 + .52 + .5207 + .27	* 0. - 0. + (

S.E. per plot.	0.35	Sig. Diff. of means.	Central. Marginal.	5% 0.70 1% 1.05 5% 0.42 1% 0.63	S.E. per plot. (), 40	Sig. Diff. of means.	Central. Marginal.	5%0.42 1% 0.62	
Interactions		NP - 0.05	NK + 0.62	PK + 0.01	Interactions	NPS + 0.14 NS - 0.26	NKS - 0.17 KS + 0.32	PKS - 0.02 PS + 0.09	

Main N P K Effects.

Responses to Salt.

		 													
CWT/ACRE		su	PERPHOSPHA	TE	РОТ	ASSIUM CHLO	RIDE	MEAN	S	UPERPHOSPH#	ATE	POT	ASSIUM CHLO	RIDE	MEAN
		0	3	6	0	11/2	3	1	0	. 3	6	0	11/2	3	
				(± 0	.08)			± 0.05			(<u>+</u>	.14)	<u>, •</u>	. L	.08
Ammonium Sulphate	0 4 8	2.32 2.28 2.34	2.29 2.36 2.38	2.38 2.40 2.21	2.26 2.42 2.38	2.37 2.30 2.21	2.36 2.33 2.34	2.33 2.34 2.31	01 11 + .11	19 04 05	+ .06 + .09 08	+ .02 07 + .09	+ .17 + .09 + .03	32 08 13	04 02 01
Superphosphate	0 3 6				2.32 2.35 2.39	2.27 2.36 2.25	2.35 2.33 2.35	2.32 2.34 2.33				+ .14 11 .00	+ .13 + .12 + .03	28 29 + .04	.00 09 + .02
Mean		2.32	2.34	2.33	2.35	2.29	2.34	2.33	.00	09	+ .02	01	+ .09	13	02
		S.E. per plot.		g. Diff. means.	Central. Marginal. NK	5% 0. 5% 0. - 0.07	28 1% 17 ^{1%} PK <u>-</u>	0.42 0.26 0.03	S.E. per plot.	· · · · · o	NPS3	Central. Marginal	s + .06	% .26 19	23
				means.	Marginal.	5% O.	17 ^{1%}	0.26	plot.	· · · · · o	f means.	Marginal	s + .06	% .26 19	* .3 8
		Interactions		MP - 0.1	Marginal.	5% O.	17 ^{1%}	0.26 0.03 <u>% Ca.</u>	Interaction	· · · · · o	NPSI	Marginal	s + .06	% .26 19	* .38 23 02
CWT/ACRE		Interactions	of	MP - 0.1	Marginal.	5% 0. - 0.07	17 ^{1%}	0.26 0.03 % Ca.	Interaction	ns	NPSI	Marginal	S + .06 S14	% .26 19	* •38 - •23
CWT/ACRE		Interactions Su	of PERPHOSPHA	MP - 0.1	Marginal. O NK .	5% 0.	PK	0.26 0.03 <u>% Ca.</u>	plot. Interaction	PERPHOSPHA	NPS NS + .(Marginal 13 NKS	S + .06 S14	% .26 19 PKS + PS +	* .38 23 02
CWT/ACRE Ammonium Sulphate		Interactions Su	of PERPHOSPHA	means. NP - 0.10	Marginal. O NK .	5% 0.	PK	0.26 0.03 % Ca.	plot. Interaction	PERPHOSPHA	NPS NS + .(Marginal NKS 3 KS	S + .06 S14	% .26 19 PKS + PS +	.38 23 02
	O 4	Interactions su 738 755	•750 •833	means. NP = 0.10 TE 6 (± .00 .731 .843	Marginal. O NK . Po 0 47 .784 .823	5% 0 0.07 TASSIUM CHL 11/4 .744 .825	PK ORIDE .691 .783	0.26 0.03 <u>% Ca.</u> MEAN + .027 .739 .810	STEM . su 0	рекрноярна 3 + .003 085	NPS NPS + TE 6 (±042 + .007	Marginal 13 NKS 03 KS POT 0 149 025107	S + .06 S14 CASSIUM CHLO 11/4 + .045 + .003	PKS + PS +	* .382302 MEAN + .028023043

5%.160 1%.232 5%.091 1%.133 5% .162 ^{1%} .246 .093 ^{1%} .141 Central. Marginal. S.E. per plot. .085 Sig. Diff. S.E. per plot. .082 Sig. Diff. Central. of means. of means. Marginal. PKS - .051 PS + .078 NPS + .101 NKS - .021 KS - .029 NK - .045 PK + .006 Interactions NP - .024Interactions

Mean

Main N P K Effectes. Responses to Salt. EXPERIMENT 3. SUPERPHOSPHATE POTASSIUM CHLORIDE SUPERPHOSPHATE POTASSIUM CHLORIDE CWT/ACRE MEAN MEAN 6 11/2 3 3 3 11/4 ± .006 **+ .009** .010) (± (±.016) Ammonium Sulphate + .009 - .008 - .007 .140 .139 + .006 - .029 + .003 - .021 0 .148 .127 .149 .139 .126 + .014 - .011 - .008 - .002 - .019 - .016 - .007 .165 .145 .158 .163 .168 .142 .163 4 + .002 - .016 - .016 - .041 - .022 - .019 - .028 8 .176 .163 .140 .193 .153 .133 .160 + .012 - .011 - .033 - .012 0 .178 .165 .143 .162 Superphosphate .157 + .009 - .025 - .018 .154 .139 - .038 3 .178 - .005 - .009 + .010 - .029 .152 .136 .122 .136 - .027 + .008 - .015 - .011 .135 .152 - .011 - .018 - .005 .162 .157 .136 .169 .152 Mean S.E. per plot. .018 S.E. per .027 1% .052 5% .035 5% .052 1% .076 .029 1% .043 Sig. Diff. Central. Sig. Diff. Central. 5% .027 1% .031 plot. of means. Marginal. of means. Marginal. NPS + .007 NKS + .003PKS - .020 PK + .002 Interactions NP _ .007 NK _ .018 Interactions PS + .006 NS -.012 KS +.012% Mg. STEM. SUPERPHOSPHATE POTASSIUM CHLORIDE POTASSIUM CHLORIDE SUPERPHOSPHATE MEAN CWT/ACRE MEAN 3 11/2 11/2 3 0 ± .007 .010 $(\pm .017)$ (± .012) Ammonium Sulphate + .010 - .010 - .008 - .019 - .045 + .004 .159 - .003 0 .148 .161 .168 .153 .161 .163 + .003 + .017 - .005 - .003 - .029 - .036 .164 + .017 4 .163 .173 .156 .161 .157 .174 - .025 - .014 - .011 - .014 - .019 + .005 8 .160 .152 .160 .000 .169 .154 .157 .167 Superphosphate + .024 + .003 - .034 + .018 .167 .160 .164 .148 0 + .005 - .006 - .019 - .007 .163 .161 .170 .157 3 - .023 - .046 + .002 -.024.160 .156 .160 .164 - .009 - .007 - .025 - .004 + .002 .161 + .003 - .023 .160 .163 .160 .160 .159 .163

S.E. per plot020	Sig. Diff. of means.	Central. Marginal.	5% .042 _{1%} .063 5% .024 1% .037	S.E. per plot. •030	Sig. Diff. of means.	Central. Marginal.		% .081 % .047
Interactions	NP016	NK012	PK + .002	Interactions	NPS _ NS _	.004 NKS034 .007 KS + .027	PKS PS	

CWT/ACRE		su	PERPHOSPH#	ATE	РОТ	ASSIUM CHLC	RIDE	1677.437	su	PERPHOSPHA	TE	POT	ASSIUM CHLO	RIDE	
CW1/ NCK2		0	3	6	0	11/4	3	MEAN	0	. 3	6	0	11/4	3	MEA
				(± .00	05)			003		•	(± .(009)		<u> </u>	*.00
Ammonium Sulphate	0 4 8	.189 .182 .172	.175 .157 .166	.175 .214 .194	.184 .173 .169	.184 .168 .189	.171 .213 .173	.180 .184 .177	+ .002 042 028	008 003 + .015	015 005 + .013	003 012 + .012	033 017 008	+ .015 022 003	
Superphosphate	0 3 6				.182 .159 .185	.177 .166 .198	.185 .172 .200	.181 .166 .194				013 + .015 005	038 018 002	017 + .007	- · + ·
Mean		.181	.166	.194	.175	.180	.186	.180	023	+ .001	002	001	019	003	
		S.E. per plot.		ig. Diff. f means. NP + .018	Central. Marginal.	5% 5%	017 1% 010 1%	.026 .016	S.E. per plot.		g. Diff. means. NPS + .(NS + .(Central. Marginal 29 [#] NKS	5%	029 19 016 19 PKS + PS +	.024
		•		f means.	Marginal.			.016	plot.				5%	· .016 19	.024
CWT/ACRE		Interactions Su	o: PERPHOSPHA	f means. NP + .018	Marginal.	.008	PK + .	.016	Interaction STEM.	S PERPHOSPHAT	NPS + .(029 ^{**} NKS 007 KS	. 5%012002002	PKS + PS +	.024 .004 .021
CWT/ACRE		Interactions	0	NP + .Ols	Marginal. NK +	.008	PK + .	.016 .006 % P.	Interaction	S	NPS + .(029 [#] NKS	. 5% :012 :002	PKS + PS +	.024
CWT/ACRE Ammonium Sulphate		Interactions Su	PERPHOSPHA	f means. NP + .018	Marginal. NK +	.008	PK + .	.016 .006 % P.	Interaction STEM.	S PERPHOSPHAT	NPS + .(029 ^{**} NKS 007 KS POT.	. 5%012002002	PKS + PS +	.024 .004 .021
	0 4	su 0	219 .203	MP + .018 TE 6 (± .01	Marginal. 8 NK + PO 15) 197 196	.008 TASSIUM CHI	PK + .	.016 .006 % P. MEAN +.009	plot. Interaction STEM. sur 027023	3022 008	NPS + .0 NS + .0 042 017	029** NKS 007 KS 0011) 011)037017	012 002 ASSIUM CHLON	PKS + PS +	.024 .004 .021

5% .036 1% .052 5% .019 1% .028 5% .052 1% .079 5% .031 1% .047 S.E. per plot. .019 Sig. Diff. of means. Central. Marginal. Central. Marginal. Sig. Diff. S.E. per plot. of means. NPS + .015 NS + .013 NKS - .015 KS - .001 PKS + .018 PS + .002 NK - .012 PK _ .002 NP - .018 Interactions Interactions

		KAJE.	experiment	nt 4.									₩	. 22	_	
		FRESH YIELDtons	DRY MATT	83	tons	% D.M.	made of the controlling and the total	LEAF	H. %	D.M.		Activities (Mr. Landers) (1981)	STEM	50	D.M.	
		Total Leaf Stem	Tota1	Leaf	Stem	Leaf Stem	Na	M	Ca]	Mg	ы	Na	×	Ca	Mg	H
<u></u>	K	12.92 6.20 6.		812	•71.9	3.1 10.	.625	85	88	16.	195	.675	4.30]	1.14	124	210
CZ.	PO K1 S2	9.88 4.97 4.91	ri —	999•	609•	13.4 12.4	.445	2.80 3	æ.	190	1,30			•	184	170
m	K2 8	12.52 6.19 6.	r i	.755	.721	2.2 11.	.245	8	.50	ξ.	200		200		142	210
ず	K2 G	16.44 8.03 8.	H	.923	1,026	1.5 12.	.330	75.	8	44.	220		15	_•	136	275
2	KO S	7.44 4.22 3.	•	.557	.403	3.2 12.	.175	2	8	₽ Q:	210			٠	142	185
9	K2 8	13.36 6.22 7.	ri -	•833 •	008.	3.4 11.	.280	55	· 96.	62.	165		•95	•	174	225
~	KO M	14.78 7.40 7.	d	.925	\$06.	2,5	999.	75	20	•	225		.65		, 166	300
∞	K1 8	12.27 5.15 7.	۲	.741	.883	4.4 12.	.375	20	. 64	•	240		•	•	1.50	2.50
0	S1 S1	15.34 8.31 7.	1.773		.759	2 10.	.810	\$85	.42	•	220			26.0	150	.320
Q	KO	16.93 8.88 8.	2.249		•	3.0 13.	.210	8	.14.	•	220		3.20 0	•	150	340
	KT C	15.89 8.03 7.	2,300	.084	1,116	Ŋ	\$60.	96	00.	172 .	180		3.70 0	. 63	142	265
Ω;	K2 9	13.21 6.44 6.	H	.837	900.	3.0 13.	.210	2	52.	•	210			. \$4.	142	31.5
5	I	9.92 5.30 4.	rĪ	. 684	649.	9 14.	.720	8	•	•	230 1	.320		. 76.	1.84	250
7	M	16.50 8.28 8,	CI.	1,060	. 954	ಹ	815	96	99	•	5-200	.050		82	134	340
5	KO	14.04 7.04 7	٦	806	.917	7 13.	475	00	72.	•	235		•		,158	330
91	0	10.91 5.70 5.	٦.	.667	.563	ĊŌ	1.270	0.5	.92	•	220 1	520	•	. 82	188	265
17	K2	16.06 7.67 8	H	• 905	906.	8 10.	.475	20	52	•	265		•		174	320
∞	K2 (10.48 5.48 5.	H	.652	.565	9 11.	300	00	25	•	265		•	•	, 208	285
13	II2 :	16.28 8.16 8	H	966•	950	N	.455	65	32	•	255		•	.85	244	31.5
င္လ	ΙI	14,42 7,20 7	H.	98.	.851	5	.460	8	.58	•	200		•	66.0	,166	265
7	I	11.71 5.71 6	H	.765	909•	4.	.185	65	25	•	245		•	•	.192	305
22	12	13.63 7.41 6	<u>-</u> i	-	•728	2 11.	.160	00	. 56	•	235		.65	•	,160	265
33	0 2 2	16.26 8.01 8	α		1,031	1 12.	1,100	0.5	.21	•	210[1	.525	•	•	,162,	230
24	IJ	16.25 8.25 8	α	1.064	.952	16.	415	•	84	162.	195	495	4.00 C	89*(184	270
52	0 1	14.74 8.64 7	<u>-</u>	-	998.	0 12.	• 460	9	.52	•	165		•	.72	174	275
36	122	14.92 7.49 7	H	.981	•936	2 12.	.410	8	8	٠	160		3.60 0	O,	134	155
27	Ω Ω	9.01 5.01 4	-	989.	.524	13.7 13.1	.720	35	.42	108	140 1	020	3.95 C	. 85	140	200

Total Fresh Yield. (tons)

					T			
		POTAS	SIUM CHLO			SALT		
CWT./ACRE		0	1분	3	0	3	6	MEAN
	;			± 0.	.87)			± 0.50
Superphosphate	0 3 6 *	9.12 14.71 15.99	10.50 14.41 15.01	12.64 14.28 15.38	9.88 14.66 14.28	10.48 14.41 15.69	11.90 14.32 16.40	10.75 14.47 15.46
Potassium chloride	0 1½ 3				13.03 13.29 12.49	12.61 13.03 14.95	14.17 13.60 14.86	13.27 13.31 14.10
Mean		13.27	13.31	14.10	12.94	•3•53	14.21	13.56
S.E. per plot 1.5	51	Sig. Diff.		Centr Margi	-		% 3.01 % 1.73	
Interactions			2.06	PS	+0.06		s +0.6	2
		To	tal Dry	Matter.	(tons	·)		
		POTAS	SIUM CHLO $1\frac{1}{2}$	oride 3	0	salt 3	6	MEAN
CWT./ACRE			~	(± (0.106)			± 0.061
Superphosphate	0 3 6	1.133 1.862 2.054	1.336 1.861 1.885	1.537 1.772 1.801	1.183 1.974 1.835	1.359 1.767 1.887	1.474 1.754 2.018	1.335 1.832 1.913
Potassium chloride	0 1½ 3				1.733 1.765 1.494	1.623 1.637 1.744	1.694 1.680 1.871	1.683 1.694 1.703
Mean		1.683	1.694	1.703	1.664	1.667	1.749	1.693
S.E. per plot 0.18	34	Sig. Diff.		Central Margina	-		% 0.367 % 0.211	
Interactions		PK -	0.329	PS	- 0.054		KS - 0	.208

% Na. LEAF.

f	T			[
	1	SIUM CHLC			SALT		
CWT./ACRE	0	ᆙ	3	0	3	6	MEAN
			œ .0	24)			± .014
Superphosphate 0 3 6	.723 .582 .657	•450 •393 •535	.318 .315 .322	.220 .278 .248	.562 .518 .517	.710 .493 .748	•497 •430 •505
Potassium chloride 0 $1\frac{1}{2}$ 3				.282 .218 .247	.618 .587 .392	1.062 .573 .317	.654 .459 .318
Mean	.654	•459	.318	.249	•532	.651	•477
S.E. per plot .043	Sig. Diff.		Centr Margi			% .083 % .048	
Interactions	PK +	.035		+.003	į	K s 3	55 ^{**}
		9/	Na. S	TEM			1
		,	Na. U	1 111.1			
	POTAS	SIUM CHLO		11111	SALT		
CWT /ACDT	POTAS O			0	salt 3	6	MEAN
CWT./ACRE		SIUM CHLO	DRIDE	0		6	mean ± .034
CWT./ACRE O Superphosphate 3 6		SIUM CHLO	PRIDE 3	0		.786 .563 .990	
Superphosphate 3	.915 .550	1½ 661 .545	3 (± .0	0 60) •279 •299	.893 .514	•786 •563	± .034 .653 .459
Superphosphate 3 6	.915 .550	1½ 661 .545	3 (± .0	0 60) •279 •299 •323 •327 •272	.893 .514 .594 .802 .830	.786 .563 .990 1.248 .767	± .034 .653 .459 .636 .793 .623
Superphosphate 0 6 Potassium chloride 0 $1\frac{1}{2}$ 3	.915 .550 .913	.661 .545 .623	3 (± .0 .382 .282 .332	0 60) •279 •299 •323 •327 •272 •302	.893 .514 .594 .802 .830 .369	.786 .563 .990 1.248 .767 .324	± .034 .653 .459 .636 .793 .623 .332

% K. LEAF.

	POTAS	SIUM CHLO	RIDE		SALT		
CWT./ACRE	0	11/2	3	0	3	6	MEAN
			<u>+</u> 0.	14)			<u>+</u> 0.08
Superphosphate 0 3 6	2.37 2.15 2.03	3.12 2.58 2.28	3.00 2.62 3.42	3.12 2.67 2.50	2.76 2.50 2.67	2.62 2.18 2.57	2.83 2.45 2.58
Potassium chloride 0 1½ 3				2.53 2.92 2.83	2.03 2.83 3.05	1.98 2.23 3.15	2.18 2.66 3.03
Mean	2.18	2.66	3.03	2.76	2.64	2.46	2.62
S.E. per plot 0.24	Sig. Diff.		Centr Margi			% 0.4 % 0.2	
Interactions	PK .	• 0 . 38	PS	+ 0.28	K	s + 0	•43
			% K.	STEM.			
	POTAS	SIUM CHLO	RIDE		SALT		
	0	$1\frac{1}{2}$	3	0	3	6	MEAN
CWT./ACRE			(<u>+</u> 0.	27)			± 0.15
Superphosphate 0 3 6	4.02 3.83 3.25	4.73 3.98 4.22	4.35 4.28 4.60	4.85 3.92 4.22	4.32 4.03 3.88	3.93 4.15 3.97	4.37 4.03 4.02
Superphosphate 3	3.83	3.98	4.28	3.92	4.03	4.15	4.03
Potassium chloride	3.83	3.98	4.28	3.92 4.22 3.73 4.67	4.03 3.88 3.30 4.33	4.15 3.97 4.07 3.93	4.03 4.02 3.70 4.31
Potassium chloride	3.83 3.25	3.98 4.22 4.31	4.28 4.60	3.92 4.22 3.73 4.67 4.58 4.33	4.03 3.88 3.30 4.33 4.60 4.09	4.15 3.97 4.07 3.93 4.05	4.03 4.02 3.70 4.31 4.41 4.14

% Ca. LEAF.

	POTAS	SIUM CHLO	RIDE		SALT		
CWT./ACRE	0	12	3	0	3	6	MEAN
			<u>(+</u> 0.1	.3)			± 0.07
Superphosphate 0 3 6	2.78 2.55	2.75 2.82	2.25 2.77	2.50	2.51	2.77	2.59
6	2.85	2.69	2.43	2.83 2.78	2.81 2.85	2.51 2.34	2.71 2.66
Potassium chloride O				2.89 2.63	2.78 2.77	2.52 2.86	2.73 2.75
1½ 3				2.59	2.61	2.24	2.48
Mean	2.73	2.75	2.48	2.70	2.72	2.54	2.65
S.E. per plot 0.22	Sig. Diff.		Centr Margi			% 0.45 % 0.24	
Interactions	PK +	0.05		- 0.36	, K	is • 0	.01
	T						
	POTAS	SIUM CHLO $1\frac{1}{2}$	3	0	salt 3	6	MEAN
CWT./ACRE			(±	0.07)			± 0.04
Superphosphate 0 3 6	•99 •84 •88	.99 1.02 .79	•91 •95 •79	•95 •94 •81	•92 •94 •84	1.01 •93 •81	•96 •94 •82
Potassium chloride 0 $1\frac{1}{2}$ 3				.98 .84 .88	•88 •93 •89	.84 1.03 .88	•90 •93 •88
Mean	•90	•93	•88	•90	•90	•92	•91
E. per plot 0.12	Sig. Diff.		Central Margina			% 0.24 % 0.14	1% 0.37 1% 0.21

PS - 0.03

0.00

PK

Interactions

KS + 0.08

% Mg. LEAF.

	T						
	POTASS	NUM CHLO	RIDE		SALT	ı	
CWT./ACRE	0	1호	3	0	3	6	MEAN
			± .01	7,			± .010
Superphosphate 3 6	.147 .177 .191	.157 .158 .173	.142 .171 .153	•159 •165 •168	.126 .176 .193	.161 .166 .157	.148 .168 .172
Potassium chloride 0 $1\frac{1}{2}$ 3				.163 .169 .159	.183 .133 .179	.170 .185 .128	.172 .162 .156
Mean	.172	.162	.156	•164	.165	.161	.163
S.E. per plot .030	Sig. Diff.		Centr Margi		_	% .059 % .035	
Interactions	PK -	017	PS	007	K	.s	019
		%	Mg. ST	EM			
	POTAS O	sium chlo	RIDE 3	0	salt 3	6	MEAN
CWT./ACRE			(± •	016,			± ·009
Superphosphate 3 6	.157 .161 .159	.187 .144 .156	.161 .187 .157	.181 .163 .153	.165 .175 .175	.169 .153 .144	.168 .164 .157
Potassium chloride 0 1½ 3				.155 .161 .181	.155 .164 .187	.167 .161 .137	.159 .162 .168
Mean	.159	.162	.168	.166	.168	.155	.163
S.E. per plot .027	Sig. Diff.		Central			.055	
Por Prov	of means		Margina	al.		.031	1% .047

% P. LEAF

1							
CWT./ACRE	POTAS	SIUM CHLO $1\frac{1}{2}$	RIDE 3	0	SALT 3	6	MEAN
			± . 0:	13)			± .007
Superphosphate 0 3 6	.190 .207 .218	.215 .192 .227	.208 .210 .240	.240 .170 .232	.190 .228 .228	.183 .210 .225	.204 .202 .228
Potassium chloride 0 $1\frac{1}{2}$ 3				.198 .222 .222	.200 .210 .240	.217 .205 .197	.205 .211 .219
Mean	.205	.211	.219	.214	.216	•206	.212
S.E. per plot •022	Sig. Diff.		Centr Margi		-	% .04 ₉	
Interactions	PK + .	0 2 2	PS	+ .025 STEM.	K	s – .0	022
	POTAS	SIUM CHLO	ORIDE		SALT		
	0	12					
GETT / 4 GTT	1	- 2	3	0	3	6	MEAN
CWT./ACRE		12	(± .0)		3	6	MEAN ± .014
Superphosphate 0 3 6	.217 .308 .290	.242 .247 .287			.220 .285 .297	.197 .300 .282	
Superphosphate 0	.217 .308	.242 .247	(± .02	.258 .255	.220 .285	.197	± .014 .225 .280
Superphosphate 0 3 6 Potassium chloride 0	.217 .308	.242 .247	(± .02	.258 .255 .285 .267 .273	.220 .285 .297 .277 .243	.197 .300 .282 .272	.225 .280 .288 .272 .258
Superphosphate $\begin{bmatrix} 0\\3\\6 \end{bmatrix}$ Potassium chloride $\begin{bmatrix} 0\\1\frac{1}{2}\\3 \end{bmatrix}$.217 .308 .290	.242 .247 .287	(± .02 .217 .285 .287	.258 .255 .285 .267 .273 .258 .266	.220 .285 .297 .277 .243 .282	.197 .300 .282 .272 .258 .248	± .014 .225 .280 .288 .272 .258 .263 .264

And the second s	F4	235	330	096	080	<u>0</u> 었	330	320	265	993	093	320	255	068	063	275	568	350	063	300	255	35	330	093	093	093	066	00	063	083	275	Q.
D.M.	Mg	210 .210	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	٠	•	•	•	•
23	Ca	95	.75	88 84	00•	.11.	.25	.25	.10	.10	.14	.32	96.	88	.95	.18	.27	.25	• 90•	.02	.10	.25	.25	.25	.95	.95	18	90	10.	88	2/2	96
STEM	M	3.70 0	9	99	9	ස	8	25	2	20	2	45	8	05	6	99	8	15	9	000	9	2	15	65	65	8	8	20	9	25	20	2
	Na	260 3																													405 4	ž
	P4	2,00	260	300	255	215	255	250	21.5	- 560 -	275	210 .	245	245	2002	230		290	280	210	220	 90 90	560	. 992	210	210	190	220	235	210	235	21.0
D.M.	Mg		• ත	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• }
23	Ca	3.25		4.	o	9	7	6	7.	0	4	C.	4	5	J	3	CA.	Ž.	200	-	~	~	੍ਰ	0	0	0	3	9	7	cv	2.92	5
LEAF	M	2,45	40	8	S	8	50	.55	.55	8	8	50	55.	9	8	22	99	.55	.35	67.	8	32	• 50	80	50	8	\$85	20.	.55	•05	36.	85
	Na	270	_																													ŧ
tons	tem	466	099	511	784	414	438	559	.454	818	422	670	.585	.680	797	. 488	469	.367	.533	.420	411	• 468	.861	.650	.369	.795	.424	.795	.552	.743	.420	.670
MAT TER	Leaf S	\$03 954	•	.753	999•	096.	996.	.363	.734	•	•	•	•	•	•	•	•	.978	•	096•	.765	• 786	•		.742	-	.931	•	•	•	•	- 1
DRY MA	otal	1,269								754		871	602	505	199	550	677						810					150	602	1961		190
	tem T	60	H	C.	0.	రం		0.0	1.2	3.2	9.6		9.6	3.5	3.2	3.7	3.4	3.6	3.2	±0 23	3.7	ᅼ	0	3.0	ر ا ا	3.2	3.7	3.2	3.6	3.5	3.6	3.4
% D.M	Leaf S	11.9 13	, a	n	0	O	0	∞	α	0	0	N	9	3	0	₩	3	N	0	Q	3	S	Q	Q.	S	∞	9	$\mathcal{O}_{\overline{i}}$	3	Q	Ø	N
suc	tem	3.35	04.	9	80	8	56	8	ನ	8	임	04	200	₩0,	04	56	50	8	70,	0.4	8	32	24	8	9	20	10	020	90	5	60	00
YIELDtons	Leaf S	6.75 3	24	12	23	8	2	55	02	9	12	72	55	500	8	8	20	02	80	8	12	44	24	90	80	10	82	2	8	20	12	S
FRESH Y	Total	10.10	8	72	36	9	8	35	23	8	22	92	85	32	70	56	8	72	12	04	12	92	48	9	89	12	92	12	12	8	27	음
			ري 			rs.		ໝ		ы В				a areastur	. 22 er	erec.	Proceedings		ഗ				M			တ မ						a . Co. o company and but company and
		RM	M L	ഗ	Д Ж	NK				浑:		Zi	M	ρ.,	Ц	×					Ø	zi	M	Z		Z	Z	z	۲4	₽⊣	S N	M
i i		, H (3	(M)	4	Ŋ	9	7	₩	6	2		12	13	14	1.5	16	17	임	19	8	27	22	33	24	25	98	27	28	23	8	31	32

3

(tons)	SSIUM	PRES.
ory Yields	POTASSIUM	ABS.
DIFFERENTIAL RESPONSES Fresh and Dry Yields. (tons)	PHOSPHORUS	PRES.
RESPONSES	ASOHA	ABS.
DIFFERENTIAL	NITROGEN	PRES.
"	NITE	ABS.
	ОМ	PRES.
	SODIUM	ABS.
	MEAN	RESPONSE
		CWT./ACRE

	MEAN	MUIGOS	UM	NITR	NITROGEN	PHOSP	РНОЅРНОКОЅ	POTASSIUM	SSIUM
CWT./ACRE	 RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.

+ 8.92*** + .987***

1 1

+ 6.96*** + 805***

+ 7.26*** + .823

+ 7.11**

Fresh Dry

Superphosphate

ı

+ 1.58 + .159

+ 2.35#

+ 4.45**

+ 3.08 *** + .244 **

+ 3.72*** + .420***

+ 3.40*** + .332***

Fresh Dry

3

Potassium Chloride

Md

NK

X X

ďZ

S

RESPONSE

DIFFRENTL. RESPONSE

SINGLE PLOT

MEAN

MEAN

STANDARD ERRORS+

INTERACTIONS

- 1.04 - .054

- 0.32 - .088

+ 1.69# + .144

- 0.15

- 0.22 - .084

0.63 .086

0.89

1.78

14.70

Fresh Dry

+ 0.89

+ 0.24 + .035

1

1

+ 1.71 + .095

+ 2.15## + .263#

Fresh Dry

Ammonium Sulphate 3 + 3 T.D.

+ 0.74

+ 0.91 + .140

+ 0.84

1 1

+ 1.06 + .149

Fresh Dry

4.

Salt

DIFFERENTIAL RESPONSES

					Ã	DIFFERENTIAL	RESPONSES	% Na.		
		MEAN	SODIUM	Ж	NITR	NITROGEN	PHOSPHORUS	нокиз	POTASSIUM	SSIUM
CWT./ACRE		RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.
Salt 4.	Jear Stem	+ 269## +.199	1 1	1 1	+ .262## + .146##	+ .276## + .252	+ .189## + .139	+ .349## + .259	+ .408*** + .309***	+ .130*** + .089*
Ammonium Sulphate 3 + 3 T.D.	Leaf Stem	065	072 113**	.058	1 1	1 1 .	038 120**	*000°		093** 040
Superphosphate 3.	Leaf Stem	+ .124*** + .115	+ .044	+ .204*** + .175**	+ .151*** + .142***	#260° +	1 1	1 1	+ .176# + .131##	+ .072 + .099**
Potassium 3. Chloride	Leaf St e m	- 292 *** - 266***	153## 156##	431 *** 376 ***	264*** 286***	320 ^{##} 246 ^{##}	240*** 250***	- 344 ## - 282 ##	1 1	8 3
	WAAM	STAND	STANDARD ERRORS+	<u>.</u> . 1		TNI	INTERACTIONS			
		SINGLE PLOT	DIFFRENTL. RESPONSE	MEAN RESPONSE	NS	PS	NP	ĸ	NK	PK
Leaf Stem	. 348 .349	.081	.038	.028	+ .007	090°+	027	139 [%] 266	.028	052

					T	DIFFERENTIAL	RESPONSES	% K.		
		MEAN	SODIUM	IM	NITROGEN	OGEN	PHOSPHORUS	новиѕ	POTASSIUM	SSIUM
CWT./ACRE		RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.
Salt 4.	Leaf Stem	+ 0.06	1 1	1 1	+ 0.09	+ 0.03	+ 0.05	+ 0.07	+ 0.11 + 0.14	+ 0.01
Ammonium Sulphate 3 + 3 T.D.	Leaf Stem	+ 0.24** + 0.57***	+ 0.27 + 0.64	+ 0.21 + 0.50***	1 1	1 1	+ 0.35*	+ 0.10	+ 0.44* + 0.80***	+ 0.04 + 0.34
Superphosphate 3	Leaf Stem	- 0.41 ***	- 0.42# - 0.27#	- 0.40* - 0.23	- 0.27	- 0.65** - 0.47	1 1	1 1	- 0.49** - 0.05	- 0.33** - 0.45***
Potassium 3 Chloride	Leaf Stem	+ 0.88*** + 1.12***	+ 0. 9 3*** + 1.14***	+ 0.83*** + 1.10***	+ 1.08**** + 1.35****	+ 0.68 +	+ 0.80** + 1.32**	+ 0.96*** + 0.92***	1 1	1 1
	N A A	STANDARD	JARD ERRORS+			TNI	INTERACTIONS			
	No.	SINGLE	DIFFRENTL. RESPONSE	MEAN RESPONSE	SN	PS	NP	ĸ	'nĸ	PK
Leaf Stem	2.19 3.91	0.30	0.15	0.11 0.08	- 0.03	+ 0.01	- 0.14 - 0.22**	0.05	-0.20 - 0.23#	+ 0.08 - 0.20

33.

				,	ā	FFERENTIAL	DIFFERENTIAL RESPONSES % Ca.	% Ca.		
		MEAN	MUIGOS	ОМ	NITR	NITROGEN	asoha	PHOSPHORUS	POTA	POTASSIUM
CWT./ACRE		RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.
Salt 4.	Leaf Stem	- 0.27 ^{##}	1 1	1 1	- 0.38 ^{KM} - 0.16 - 0.11 - 0.07	- 0.16	- 0,10 - 0,10	- 0.44***	- 0.48	90.0
Ammonium Sulphate	Leaf Stem	+ 0.10	- 0.01 + 0.05	+ 0.21* + 0.09	1 1	1 1	+ 0.15 + 0.01	+ 0.05 + 0.13	+ 0.31*** + 0.03	- 0.11 + 0.11

+ 0.09

- 0.21*** + 0.04

+ 0.21

+ 0.05

- 0.17* + 0.01

+ 0.11 + 0.02

0.07

0.10

0.20

2.95

Leaf Stem

PK

NK

XX

ď

SZ

RESPONSE

MEAN

DIFFRENTL. RESPONSE

SINGLE

MEAN

STANDARD ERRORS+

INTERACTIONS

li

1 1

- 0.07 - 0.18***

- 0.25# + 0.16#

+ 0.03

+ 0.05 - 0.05

+ 0.05

- 0.39*** - 0.04

- 0.16* - 0.01

Leaf Stem

3

Potassium Chloride

+ 0.17 + 0.19**

1 1

1 1

+ 0.21**

+ 0.31# - 0.04

+ 0.09

+ 0.43*** + 0.01

+ 0.26***

Leaf Stem

Superphosphate 3.

Ammonium Sulphate 3 + 3 T.D.

	POTASSIUM	PRES,
	POTA	, ABS.
% Mg.	PHOSPHORUS	PRES.
RESPONSES	вноя	ABS.
DIFFERENTIAL RESPONSES	NITROGEN	PRES.
	NITR	ABS,
	ОМ	PRES.
	SODIUM	ABS.
	MEAN	RESPONSE
		CWT,/ACRE

						DIFFERENTIAL RESPONSES	RESPONSES	% Mg.		
		MEAN	SODIUM	IM	NITR	NITROGEN	PHOSP	PHOSPHORUS	POTASSIUM	SSTUM
CWT./ACRE		RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.
Salt 4.	Leaf Stem	008	1 1	1 1	+ .009	025* 009	.000	016	008	
Ammonium Salphate 3 + 3 T.D.	Leaf Stem	+ .002 + .015	+ .019	015	1 1	1 1	+ .006	002	+ .003 + .026#	+ .001
Superphosphate 3.	Leaf	+ .012 + .004	+ .020	+ .004	+ .016	+ .008 + .001	1 1	1 1	+ .022* + .005	+ .003
Potassium 3. Chloride	Lead	• • • • • • • • • • • • • • • • • • •	004	004 + .009	003 + .015	005	900. +	014 + .003	1 1	1 1

- .010

100. -

.000 + .005

- .004 - .003

- .017 + .003

.007 .007

010

.021

140

Leaf Stem

ρK

Z

KS

ď

PS

SZ

RESPONSE

MEAN

DIFFRENTL. RESPONSE

SINGLE PLOT

MEAN

STANDARD ERRORS+

INTERACTIONS

KALE.

35.

4

				A	DIFFERENTIAL RESPONSES	RESPONSES	% P.		
	MEAN	SODIUM	ОМ	NITR	NITROGEN	PHOSPHORUS	IORUS	POTA	POTASSIUM
CWT./ACRE	 RESPONSE	ABS	ር የ	ABS	PRES.	ABS.	PRES.	ABS.	PRES

								اره ۲۰		
		MEAN	SODIUM	ОМ	NITR	NITROGEN	PHOSPHORUS	HORIJS	POTA	POT ASSIUM
CWT./ACRE		RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.
Salt 4.	Leaf Stem	003	1 1	1 1	+ .022	028*	.000	006 041*	+ .003 + .003	015 041
Ammonium Sulphate 3 + 3 T.D.	Leaf Stem	008 011	+ .017	033#	1 1	1 1	+ .014	#030. 1.0008	+ .003	014
Superphosphate 3.	Leaf Stem	+ .004	+ .007 + .037#	+ .001	+ .026 + .015	018 + .021	1 1	1 1	005 + .048#	+ .013
Potassium 3. Chloride	Leaf Stem	900	+ .004 + .013	020 025	+ .003	019	017	+ .001 036**	1 1	1 1
	wyan	STANI	STANDARD ERRORS +	41		TNI	INTERACTIONS			
	Name of the last o	SINGLE PLOT	DIFFRENTL. RESPONSE	MEAN RESPONSE	SN	PS	NP	KS	N.K	рК
Leaf Stem	.234	.023	.012 .014	.009	025# + .003	003	022# + .003	.012	- 011 - 004	+ 000 +

36.

Ą.

•

EXPERIMENT

KALE.

	KALE.	EXPERIMENT	• •		a	Differential	RESPONSES	Fresh and	A 37. Fresh and Dry Yields (tons)	37. s (tons)
		MEAN	SODIUM	Mī	NITR	NITROGEN	PHOSP	PHOSPHORUS	POTA	POTASSTUM
CWT./ACRE		RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.
Salt 4.	Fresh. Dry	- 0.35	1 1	1 1	+ 0.21 + .015	- 0.91 047	+ 0.20	- 0.90 130	- 0.63 031	- 0.07
Ammonium Sulphate	Fresh Dry	+ 2.02 *** + .210 **	+ 2,58 44 + ,241	+ 1.46# + .179	1 1	1 1	+ 0.66	+ 3.38*** + .266*	+ 2,32*** + .289*	+ 1,72* + ,131
Superphosphate 3.	Fresh Dry	+ 1.28*** + .115	+ 1.83** + .229*	+ 0.73	- 0.08 + .059	+ 2.64** + .171	1 1	1 1	+ 2.05*** + .176	+ 0.51 + .054
Potassium 3 Chloride	Fresh Dry	+ 0.62	+ 0.34	+ 0.90	+ 0.92 + .098	+ 0.32	+ 1.39** + .080	- 0.15 042	1 1	1 1
	24	STANDARD	ARD ERRORS +	. 1 %		INI	INTERACTIONS			
		SINGLE PLOT	DIFFRENTL. RESPONSE	MEAN RESPONSE	NS	PS	ĀN	KS	NK	ЪК
Fresh Dry	19.60	1.14	0.57	0.40	- 0.56	- 0.55 114	+ 1.36*** + .056	+ 0.28	- 0.30	- 0.77

.054** .059** .059*** + .013 PRES. 1 1 POTASSIUM + .041*** |+ .021 - .015 ABS. 1 1 .037*** .088*** .075*** .028 .034 Na. PRES. PHOSPHORUS ı 20 + .058*** DIFFERENTIAL RESPONSES ABS. 1 1 + .055*** + .005 .033 PRES. 1 1 NITROGEN - .007 ABS. 1 1 - .036*** - .012 - .024 PRES. .018 ı SODIUM .049*** .056*** + • 010 + + ABS. + .082*** + .056*** RESPONSE **-** .008 MEAN **-.**001 ı Leaf Stem Leaf Stem Leaf Stem Leaf Stem Ammonium Sulphate 'n 3 + 3 T.D. CWT./ACRE Superphosphate Potassium Chloride Salt

+ .002

+ .003 - .005

.019 4 °007

900•+ + .018

.017 110. -

.007 **4**00.4

ı

.009

.012

.025

.130

Leaf Stem

+ .014

PK

NK

X

ď

PS

SZ

RESPONSE

MEAN

DIFFRENTL. RESPONSE

SINGLE

MEAN

STANDARD ERRORS+

INTERACTIONS

	KAL	KALE. EXPERIMEN	RIMENT 6	· •	DIFFERENTIAL	DIFFERENTIAL RESPONSES % K.	A 39	
		MEAN	MUIGOS	IOM	NITROGEN	PHOSPHORUS	POTASSIUM	
CWT./ACRE								

					1	TUI VENEU IUN	Cash Onses	• u •/		
		MEAN	MUIDOS	М	MTR	NITROGEN	PHOSP	PHOSPHORUS	POTA	POTASSIUM
CWT./ACRE		RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.
Salt 4.	Leaf Stem	+ •01 + •22**	i i	1 1	04 + .24	+ .06 + .20***	+ .01 + .20***	+ .01 + .24	+ .16 + .38***	+ • 14 • 06
Ammonium Sulphate 3 + 3 T.D.	Leaf Stem	05 + .01	- 10 + .03	00.	1 1	1 1	25	+ .10	 	- 13
Superphosphate 3.	Leaf Stem	27	14 29	14 25	1.34**	+ .06	1 1	1 1	- 27	01 28***
Potassium 3. Chloride	Leaf Stem	+ .25# + .16	+ .40# + .32##	+ .10 .00	+ •33 + •17	+ .17	+ .12	+ •38#	1 1	1 1
	N A A	STANI	STANDARD ERRORS+			TNI	INTERACTIONS			
	No.	SINGLE PLOT	DIFFRENTL. RESPONSE	MEAN RESPONSE	SN	PS	NP	KS	NK	Жф
Leaf Stem	3.17	.30	.15	.11	+ .05	• • • • • • • • • • • • • • • • • • • •	+ .20	15#	.08	+ .13

)	
1	
ĺ	
į	

					Ω	DIFFERENTIAL	RESPONSES	% Ca.		
		MEAN	SODIUM	м	MTR	NITROGEN	PHOSPHORUS	нокиѕ	POTA	POTASSIUM
CWT./ACRE		RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS,	PRES.
Salt 4.	Leaf Stem	960. +	1 1	1 1	+ .040	+ .079	+ .064	+ .055	+ .030 + .045	+ .089
Ammonium Sulphate 3 + 3 T.D.	Leaf Stem	013 + .084	032 + .106	+ .006 + .063	1 1	1 1	+ .033		060 + .144	+ .033
Superphosphate 3.	Leaf Stem	+ .073	+ .077	+ .069	+ .120 + .041	+ .026	1 1	1 1	+ .252* + .007	106 + .071
Potassium 3. Chloride	Leaf Stem	067 + .006	096	037	114 + .065**	020	+ .113 026	246* + .039	ž į	t I
	7.4 W	STANDARD	ARD ERRORS +			INI	INTERACTIONS			
	N CONTRACTOR OF THE CONTRACTOR	SINGLE PLOT	DIFFRENTL. RESPONSE	MEAN RESPONSE	SN	PS	NP	KS	NK	ЪК
Leaf Stem	2.760 .842	.186	.093 .028	020	+ .019 021	004	047* 002	+ .029	+ .047* 059*	179* + .032

	-			=	DIFFERENTIAL RESPONSES	RESPONSES	•88 %		
	MEAN	SODIUM	UM	ATIN	NITROGEN	PHOSP	PHOSPHORUS	ATO4	POTASSIUM
CWT./ACRE	RESPONSE	ABS.	PRES	*SEV	PRES.	ABS.	PRES.	ABS.	PRES.

					.	DIFFERENTIAL	KESPONSES	• 8™ %		
		MEAN	WILIGOS	ПM	NITR	NITROGEN	PHOSP	PHOSPHORUS	POTA	POTASSIUM
CWT./ACRE		RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.
Salt 4.	Leaf Stem	001 + .002	1 1	1 1	004	+ .002	.002 + +	+ .003	.005	+ + 003
Ammonium Sulphate 3 + 3 T.D.	Leaf Stem	+ .009	900. +	+ .012 + .001	1 1	1 1	+ .012 002	+ .010	+ .012	900° +
Superphosphate 3.	Leaf Stem	007	004 + .001	010	004 005	010	1 1	1 1	.001	002
Potassium 3. Chloride	Leaf Stem	007	011	.003	.010	004	100	002	1 1	1 1
	24 P	STAN	STANDARD ERRORS+	41		INI	INTERACTIONS			
		SINGLE PLOT	DIFFRENTL. RESPONSE	MEAN RESPONSE	SN	PS	NP	KS	NK	PK
Leaf Stem	911.	.015	\$00° 200°	.005 .005	+ .003	003	003 + .006	+ .004 + .006	003	+ .004 002

DIFFERENTIA	
•9	
EXPERIMENT	
KALE.	

42.

	SSIUM	PRES.	
	POTASSIUM	ABS.	
% P.	PHOSPHORUS	PRES.	
DIFFERENTIAL RESPONSES $\%$	dsoнd	ABS,	
of Ferential	NITROGEN	PRES.	
н .	NITE	ABS.	
	ОМ	PRES.	
	SODIUM	ABS.	
	MEAN	RESPONSE	

							,			
		MEAN	SODIUM	ДW	NITR	NITROGEN	PHOSPHORUS	нокиз	POTASSIUM	SIUM
CWT./ACRE		RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES
4.	Leaf Stem	+ .033 + .017*	1 1	1 1	+ .031 + .035 + .053***	+ .035	+ .013	+ .054# + .023#	+ .005 +	+ .067

NITROGEN	PRI)· + I
NITR	ABS.	031 053***

Salt

+ .032 + .011

- .004 + .010

1 1

1 1

+ .014 - .006

.034

- .007

014

Leaf Stem

'n

Superphosphate

+ .044 + .007

+ .016 + .015

.030

1 1

1 1

.030

Leaf Stem

Ammonium Sulphate 3 + 3 T.D.

+ .018

+ .014 - .004

+ .012 + .034

+ •016*

900. + .021

+ .002

.017

.024

.048 .020

.288 .388

Leaf Stem

000

PK

NK

KS

ď

bS

SZ

RESPONSE

MEAN

DIFFRENTL. RESPONSE

SINGLE

MEAN

STANDARD ERRORS +

INTERACTIONS

1 1

1 1

+ .036

.000

+ .032

+ .004

+ .052***** - .004

+ .016 - .028

+ .018 - .016

Leaf Stem

å

Chloride Potassium

T00° +

	щ	.150	.175	.140	• 260	.150	.220	.220	.155	100	•160	97.	.175	.220	.165	.130	.130	.135	.140	.160	.170	.230	.240	.115	130	.095	.155	.115
M	Mg	,188	.180	.228	•176	.180	.240	,220	.220	.170	961.	.216	.220	.220	,224	.210	.188	961.	.212	133	.188	.192	.212	.212	204	.230	.230	.192
D V	රි	2.24	2.12	2.50	2,70		•	•	•				•	•	•	•	•	•		•	•	•	•	•		•	•	2,46
TOPS	м				3.25				Ċ	તં	'n	c,	4	'n	4	ςį.	W	w,	w	W	W	'n	ĸ	O.	9,0	2,5	2,2	
	Na	900	.200	.175	•065	011.	.180	.140	.175	.180	• 360	.310	.140	.175	060.	.120	.180	.225	9100	.110	.195	•220	.125	.225	.180	.305	.150	.077
	д	.350	.320	.345	.225	.245	.255	.330	.280	.285	.305	.310	•300	.270	.225	.215	.310	.260	.275	.295	.340	•300	300	.270	.295	300	.330	•300
M.	Mg	980	.110	100	100	.100	.11.4	0110	.0 92	011.	.104	100	100	.084	.092	.11.6	100	960•	100	110	.110	•10 4	.092	.104	011.	.114		
0 %.	රින	.630	089•	•630	•630	• 700	•630	.630	.595	099•	089•	•720	.620	.700	.700	.700	.620	089	099•	.640	.630	.620	.665	.630	.680	.620	.735	999.
ROOTS	M	3.05	3.40	2.90	2.80	3.45	3.40	5. 60	60	_	A	Ci	úĴ	3.05	0,	0,	w	٧,	T.	CA	O.	4,	੍ਰ	_	U,	3.00	2.90	3,10
A STANSON OF THE STAN	Na	.175	.155	.077	.035	.130	.155	.105	060	.185	.125	.215	.125	.077	030	090.	.140	.155	017.	.077	.170	.140	• 065	.180	.045	.200	.180	.030
s)	%DM.				13.9																						13.6	
.(tons	Dry ,	.469	.473	.510	.433	.348	.464	452	.525	.700	.498	.430	.351	.336	.390	.439	.670	.502	.465	.483	.439	.361	435	•619	.580	.467	.515	•436
TOPS	Fresh	3.88	3.69	4.08	3,11	2.72	3.49	3.59	4.17	5.78	4.08	3.49	2.91	2.53	2.91	3.30	5.32	4.08	4.01	3.88	3.39	2.91	3.20	4.36	4.56	3.98	3.78	3.49
18)	%DM.	8.4	7.8	8	9.6	8.2	7.6	9.5	9.3	0.8	7.3	8.4	0.00	8.6	6.6	9.2	₩ ₩	 ∞	7.4	∞.7	0.6	⊙	9.6	6.6	6.6	7.5	7.6	7.9
3. (tons	Dry %	715	300	.465	.490	.430	.135	.185	.050	.340	.495	.665	.580	.435	.340	420	520	669•	540	435	245	755	-,945	.150	. 390	.550	.435	089•1
ROOTS.	resh	4	55 1	65 1	15.52 1	43 1	92 1	8	8	78]	55	82]	78]	62]	58	55.	35	20	 [8]	47	\$3	8	252	8	01	2	82	31
	14	SS	EX CO	99	30	 	000	87	32	Sl	ES.	32	SI	32	20	20	디	82	30	20	Ę,	32	2	SI	S2	82	20	80
		8	K3	8	P2 K2	K2	Image: Control of the	KI	M	MOM	K2	KO	LI	K2	22	<u>Ж</u>	M 0 1 1	I	\Box		VO V		CV		K	MC	M	Σ
<u>i.</u>		} }-	1-1			إسام	1-4	1-4	P-4-4			,			• •													_

Fresh Yield. Roots. (tons)

							
	POTAS	SIUM CHLO	RIDE		SALT		
CWT./ACRE	0	1	2	0	3	6	MEAN
			<u>+</u> 1.	93)			± 1.11
Superphosphate 0	17.68 16.77 19.19	19.41 19.35 18.57	19.49 18.04 16.59	17.26 15.57 18.38	20.03 17.02 17.17	19.28 21.57 19.01	18.86 18.05 18.19
	19.19	10.57	10.59	10.50	1/•1/	19.01	10.19
Potassium chloride 0 1 2				17.01 17.40 16.80	16.33 18.49 19.39	20.31 21.43 18.12	17.88 19.11 18.11
. Mean	17.88	1 9.11	18.11	17.07	18.07	19.95	18.36
S.E. per plot 3.34	Sig. Diff.		Centr Margi			% 6.55 % 3.85	
Interactions	PK _	2.10	PS	- 0.69	, K	.s _	0.99
	Fres	h Yield.	Tops.	(tons)		
	POTAS	SIUM CHLO	RIDE		SALT		
CWT./ACRE	0		2	0	3	6	MEAN
			(± 0	.17)			± 0.29
Superphosphate 0 3 6	4.35 3.65 4.33	3.98 3.65 3.50	3.75 3.39 2.95	3.43 3.62 3.63	4.74 3.01 4.04	3.92 4.07 3.11	4.03 3.57 3.59
Potassium chloride ₀ 1 2				3.72 3.76 3.17	4.83 3.62 3.33	3.78 3.72 3.59	4.12 3.71 3.36
Mean	4.12	3.71	3.36	3.56	3.93	3.70	3.73
S.E. per plot 0.50	Sig. Diff.		Central, Margina			% 1.00 % 0.59	1% 1.52 1% 0.89
Interactions	PK _	0.39	PS	- 0.50	5	KS + 0.	.18

Dry Matter Yield. Roots. (tons)

				<u> </u>			
	0	SIUM CHLO	2	0	SALT 3	6	MEAN
CWT./ACRE	 		 	<u> </u>	ر_	-	± 0.099
			(± 0.]	L72)			_ •••//
Superphosphate 0	1.437	1.662	1.492	1.412	1.662	1.517	1.530
Superphosphate 0 3	1.458	1.688	1.687	1.413	1.418	2.002	1.611
6	1.557	1.493	1.623	1.488	1.550	1.635	1.558
Potassium chloride O				1.440	1.368	1.643	1.484
1				1.370	1.638		1.614
2				1.503	1.623	1.675	1.600
Mean	1.484	1.614	1.600	1.438	1.543	1.718	1.566
S.E. per plot 0.298	Sig. Diff.		Centr Margi			% 0.59 % 0.34	
Interactions	PK + Dry Mat	0.006 ter Yie		0.021 os. (ton		as – 0	.015
	POTAS	SIUM CHLO	ORIDE		SALT		
	0	1	2	0	3	6	MEAN
CWT./ACRE			(<u>+</u> .0	35)			± .020
		F00	4/0		(00		
Superphosphate 0	•535 •459	.528 .453	•469 •439	•446 •461	.603 .379	.481 .512	.511 .451
6	•551	.426	.401	.471	•519	•312	•451 •461
Potassium chloride							
1				•485 •471	•603	•455	.515
1 2				•4/1 •419	•474 •427	•463 •463	.469 .437
	.515	. 469	.437	.459	.501	.460	•474
Mean	• //	1 /	- /	* *//	* >	•=	● 工 / 工

S.E. per plot .060

Sig. Diff. of means.

Central. Marginal. 5% .120 5% .069 1% .181 1% .105

Interactions

PK - 0.042

PS - 0.058

KS + 0.037

% Na. Roots.

	POTAS	SIUM CHLO	RIDE		SALT		
CWT./ACRE	0	lı	2	0	3	6	MEAN
			<u>(</u> .0	14)			± .008
Superphosphate 0 3 6	.148 .154 .165	.163 .097 .118	.103 .068 .059	.082 .061 .108	.163 .142 .103	.170 .117 .131	.138 .106 .114
Potassium chloride 0 1 2	·			.106 .114 .032	.165 .137 .106	.197 .128 .092	.156 .126 .077
Mean	.156	.126	.077	.084	.136	.139	.120
S.E. per plot .024	Sig. Diff.		Centr Margi			% .048 % .028	A/0 -
Interactions	PK _	.030	PS	 032	K	:s	015
		% N	la. Top	s.			
		SIUM CHLO	PRIDE		SALT 3	l 6	MEAN
CWT./ACRE	POTAS O	<u>'</u>		0	salt 3	6	MEAN ± .010
CWT./ACRE Superphosphate 0 3 6		SIUM CHLO	PRIDE 2	0		.243 .222 .198	27.2
Superphosphate 0 3	.202 .227	.210 .142	2 (±.01	0 7) •126 •125	.222 .148	•243 •222	.1010 .197 .165

% K. ROOTS.

					· · · · · · · · · · · · · · · · · · ·			<u> </u>
		POTAS	SIUM CHLO	RIDE		SALT		
CWT./ACRE		0	1	2	0	3	6	MEAN
				<u>(+</u> 0.1)	3)			± 0.08
Superphosphate	0 3 6	2.88 3.03 2.93	3.18 3.15 3.07	3.30 3.10 2.95	3.13 3.03 2.93	3.08 3.23 2.82	3.15 2.98 3.20	3.12 3.08 2.98
Potassium chloride	0 1 2	-			2.90 3.2 5 2.95	2.85 3.00 3.28	3.10 3.12 3.12	2.95 3.12 3.12
Mean		2.95	3.12	3.12	3.03	3.04	3.11	3.06
S.E. per plot 0.2	3	Sig. Diff.		Centr Margi			% 0.45 % 0.28	
Interactions		PK _	0.20	PS	+ 0.13	, K	s _ 0	.02
				% K. T	OPS.			
		POTAS	sium chlo	oride 2	0	salt 3	6	MEAN
CWT./ACRE				(± 0.	30)			± 0.17
Superphosphate	0 3 6	2.70 3.03 2.78	3.20 3.33 3.03	2.98 3.52 3.95	3.05 3.32 2.87	2.90 3.62 3.60	2.93 2.95 3.30	2.96 3.30 3.25
Potassium chloride	0 1 2				2.67 3.17 3.40	3.05 3.18 3.88	2.80 3.22 3.17	2.85 3.19 3.48
Mean		2.85	3.19	3.48	3.08	3.37	3.06	3.17
i.E. per plot 0.51		Sig. Diff.	·	Central Margina	-		5% 1.03 5% 0.59	

PS + 0.28

PK + 0.45

Interactions

KS

- 0.18

% Ca. ROOTS.

				1	· 		
	ŀ	SIUM CHLC	ı		SALT	1.	MEAN
CWT./ACRE	0	1	2	0	3	6	
	ļ		± .0	46)	ļ	<u> </u>	± .026
Superphosphate 0 3 6	.660 .662	.647 .618 .637	.673 .693 .665	.663 .657 .675	•657 •650 •638	.660 .665 .650	.660 .657 .654
Potassium chloride 0 1 2				.688 .643 .663	.637 .627 .682	.657 .632 .687	.661 .634 .677
. Mean	.661	•634	.677	.665	.648	.658	.657
S.E. per plot •079	Sig. Diff.		Centi Margi			5% .159 5% .090	1% .241 1% .136
Interactions	PK -	.005	PS	011		ks 0	28
		% C	a. TOF	s			
	POTAS	SIUM CHLO	RIDE		SALT		
	0	1	2	0	3	6	MEAN
CWT./ACRE			(± 0.	24)	Į		1
			\ _	24 /			± 0.14
Superphosphate 0 3 6	2.51 2.24 2.33	2.31 2.21 2.28	2.29 2.10 2.49	2.39 2.34 2.49	2.29 1.91 2.37	2.42 2.30 2.25	2.37 2.18 2.37
3	2.24	2.21	2.29 2.10	2.39 2.34	1.91	2.30	2.37 2.18
Potassium chloride O	2.24	2.21	2.29 2.10	2.39 2.34 2.49 2.47 2.14	1.91 2.37 2.14 2.31	2.30 2.25 2.47 2.34	2.37 2.18 2.37 2.36 2.27
Potassium chloride 0	2.24 2.33	2.21 2.28	2.29 2.10 2.49	2.39 2.34 2.49 2.47 2.14 2.60 2.40	1.91 2.37 2.14 2.31 2.11	2.30 2.25 2.47 2.34 2.17	2.37 2.18 2.37 2.36 2.27 2.29

% Mg. ROOTS.

	Τ		 	· ·			1
	O	sium chlo l	RIDE 2	0	SALT 3	1 6	
CWT./ACRE		<u> </u>	<u> </u>	<u> </u>			MEAN
			<u>(+ .0</u>	05,			± .003
Superphosphate 0	.111	.105	.108	.111	.106	.107	.108
3	.103	.101	.101	.101	.103	.101	.101
6	.101	.105	.092	.105	.101	.092	.099
Potassium chloride 0	-		,	.108	.107	.101	.105
1			İ	.108	.105	.097	.103
2				.101	.102	.101	.100
Mean	.105	.103	.100	.106	.103	.100	.103
S.E. per plot .008	Sig. Diff.		Centr Margi			% .016 % .009	1% .024 1% .014
Interactions	PK -	• .003	PS	007	. 3	(S + .(604
		%	Mg. T	OPS.			_
	POTAS	SIUM CHLO	RIDE		SALT		
	0	1	2	0	3	6	MEAN
CWT./ACRE			(± .0	15)			± .009
Superphosphate 0	.203	.214	.189	.214	•193	.200	•202
Superphosphate 0 3	.211	.209	.203	.213	.196	.213	.207
6	.202	.208	.203	.206	.207	.200	.204
Potassium chloride				•223	.182	.211	·205
Potassium chloride 0				x.213	.217	.201	.210
2				.197	.196	.201	.198
		-7.0	700	077	300	.204	204
Mean	.205	.210	.198	.211	.198	•∠U4	.204

S.E. per plot

.026

Sig. Diff. of means.

Central. Marginal. 5% .052 5% .031 1% .079 1% .047

Interactions

PK + .007

PS + .004

KS + .008

% P. ROOTS.

				T			
	POTA	SSIUM CHL	ORIDE		SALT		
CWT./ACRE	0	1	2	0	3	6	MEAN
			(± •0	13)			± .008
Superphosphate 0	.332	•262 •292 •302	.308 .255 .265	•257 •288 •277	.287 .297 .313	•293 •295 •307	.278 .293 .299
Potassium chloride 0 1 2				•293 •275 •250	.312 .300 .283	.320 .280 .295	.309 .285 .276
Mean	•309	.285	.276	.274	.298	.298	•291
S.E. per plot •023	Sig. Dif		Centi Margi			.045 .028	1% •068 1% •042
Interactions	PK .	053 [#]	PS _	003	. 1	κs + •C	009
			% P. TO	PS.			
				PS.			
		ASSIUM CHL	ORIDE		SALT 3		MEAN
CWT./ACRE	Р ОТА			0	SALT 3	6	mean
CWT./ACRE Superphosphate 0 3 6		ASSIUM CHL	ORIDE 2	0		.133 .148 .200	
S 0	.108 .157	.157	ORIDE 2 (± .00 .150 .148	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.125 .165	.133 .148	± .011
Superphosphate 0 3 6 Potassium chloride 0 1	.108 .157	.157	ORIDE 2 (± .00 .150 .148	0 .155 .155 .185 .142 .173	.125 .165 .197 .133	.133 .148 .200	± .011 .138 .156 .194 .137 .172
Superphosphate 0 3 6 Potassium chloride 0 1 2	.108 .157 .145	.157 .163 .197	ORIDE 2 (± .00 .150 .148 .240	0 .155 .155 .185 .142 .173 .180 .165	.125 .165 .197 .133 .170 .183	.133 .148 .200 .135 .173 .175	± .011 .138 .156 .194 .137 .172 .179

ŝ
EXPERIMENT
TURNIPS.

ROC		OOTE	-	tons)	TOPS	(tor			ROOTS			-	1	TOPS.	₩. D.M	M.	
resh Dry %DM. Fresh	resh Dry %DM. Fresh	Dry %DM. Fresh	DM. Fresh	esh	. 1	Dry %DM	Ţ.	Na	M	င္မအ	Mg	വ	Na	M	ದ್ದ	Mg	A
7.68 1.574 8.9 3.	17.68 1.574 8.9 3.	1.574 8.9 3.	6.			.365 12.	_	.135		430	\$80.	.210	.160		•	200	150
KO SO 16.92 1.64	16.92 1.641 9.7 3.	1.641 9.7 3.	.7	•	•		9	.055	2,10	•400	.074	.165	.135	2.70	2.50	.216	.155
K2 S0 10.32 0.918 8.9 2.	10.32 0.918 8.9 2.	0.918 8.9 2.	• o	•		.293 11.		090	•	.315	.072	•085	.110		•	.204	.125
K1 S0 12.88 1.172 9.1 1.	12.88 1.172 9.1 1.	1,172 9.1 1.		•		• •		.055	•	.380	960•	.165	100	•	4	.145	.120
KI S2 19.08 1.660 8.7 3.	19.08 1.660 8.7 3.	1,660 8.7 3.	.7 3.	•				.185	•	.400	090	.220	.430		1.39	,160	.250
EL SI 15.68 1.427 9.1 3.	15.68 1.427 9.1 3.	1.427 9.1 3.	7.	•		.402 10.		• 165	•	.415	.068	.155	.420	3.8	2.06	.216	.145
KO SI 20.16 1.734 8.6	20.16 1.734 8.6 2.	1.734 8.6 2.	% %	•				.215	•	.430	•068	.235	.355	2,50	•	.280	31.5
KO S2 12.88 1.108 8.6 2.	12.88 1.108 8.6 2.	1.108 8.6 2.	• • •	2.56				.155		.350	7 60 •	175	.355	٠,	1.98	.208	.110
K2 52 20.72 1.886 9.1 3.	20.72 1.886 9.1 3.	1.886 9.1 3.	9.1	•			- LHATE	.170		.400	\$90•	.255	.510	4.30	1.98	.208	.170
K2 S2 12.64 1.150 9.1 2.	12.64 1.150 9.1 2.	1.150 9.1 2.	9.1	٠				.185	•	.350	.084	105	.500		2112	.216	.125
Kl SO 15.92 1.544 9.7 3.	15.92 1.544 9.7 3.	1.544 9.7 3.	9.7 . 3.	•				.075	•	.315	080•	.140	.275	3.60	2.09	.216	.075
KO SO 17.28 1.417	17.28 1.417 8.2 3.	1.417 8.2 3.	8.2	•		.377 10.	ب م	.155	•	.315	•088 •	160	.235		2.12	.216	.150
KO S2 23.96 2.132 8.9 3.	23.96 2.132 8.9 3.	2,132 8,9 3.	8.9	3.76	-		· · · · · · ·	.265	•	. 500	•076	.265	900	3.80	2.12	,274	.175
17 81 24.08 1.999	24.08 1.999 8.3 2.	1.999 8.3 2.	8.3	, 38 2		.311 10.	nder andersen.	.175	•	•460	. 083	170	.375		1.85	,240	.210
KO SI 12.00 1.164 9.7 1.	12.00 1.164 9.7 1.	1,164 9.7 1.	9.7 1.	1.60				•1.15		365	.072	, 580.	.225	3.40	1,98	.200	.140
K2 S1 15.28 1.314 8.6 2.	15.28 1.314 8.6 2.	1.314 8.6 2.	8.6 2.	2,40				•095	•	.365	.092	105	.195	•	1.83	.200	.150
K1 52 23.64 2.103 8.9 3.	23.64 2,103 8.9 3.	2,103 8,9 3.	8.9	3.84				.175	•	.480	.084	.200	400	2,70	1.92	.138	.120
K2 S0 24.56 2.137	24.56 2.137 8.7 2.	2.137 8.7 2.	8.7 2.	2,92		.310 10.	ساند م	.085	2.30	.365	.072	135	.175	3.60	2.42	,224	.140
K1 32 11.96 1.064 8.9 1.	11.96 1.064 8.9 1.	1.064 8.9 1.	8.9	•			**************************************	.185		.415	·034	\$80.	. 500	•	2.12	.236	.120
K1 S1 18.48 1.515 8.2 2.	18,48 1,515 8,2 2,	1.515 8.2 2.	8°5	•			K# +-0	.140	•	.415	·094	105	.310	4.05	1.94	.188	060
KI SO 16.76 1.659 9.9 3.	16.76 1.659 9.9 3.	1.659 9.9 3.	9.9	•				.11.5	•	•470	.076	.225	.315	•	2.12	.224	130
K2 S1 16.80 1.462 8.7 2.	16.80 1.462 8.7 2.	1,462 8.7 2.	8.7 2.	•				.170		.380	080.	100	300	•	1.77	.212	\$60.
K2 S2 23.04 1.820 7.9 3.	23.04 1.820 7.9 3.	1.820 7.9 3.	7.9 3.	3.20				.215	•	.485	920.	170	.420	•	1.98	$\overline{}$.095
KO SO 13.28 1.062 8.0 3.	13,28 1,062 8,0 3.	1,062 8,0 3.	0	3.12			 O	.155	•	.365	960.	170	• 360	•	5.09	.200	.085
KO S2 22.00 1.914 8.7 3.	22.00 1.914 8.7 3.	14 8.7 3.	.7	3.70		.377 10.		.195		400	.092	130	.480	덕	1.68	.230	170
K2 S0 21.60 1.836	21.60 1.836 8.5 3.	36 8.5 3.	٠,٠ س	3,20		-	* ***	.085	2,80	.415	860	•095	.175	3.35	1.81	·ω	580
KO 31 19.92 1.594 8.	19.92 1.594 8.	948.		4.32	-	475 11.	 Q	.175	•	400	880	145	.325	۲	2,38	.176	150
					1			The same of the same of the same of	-	THE PERSON NAMED IN	Commence of the second second	Committee of the last	Parket Williams				

Fresh Yield. Roots. (tons)

		1			,			}
			SIUM CHLO			SALT		
CWT./ACRE		0	1	2	0	3	6	MEAN
				± 2.€)3)			± 1.17
Superphosphate	0 3 6	12.72 19.81 20.27	14.52 18.33 19.97	13.25 19.20 21.76	13.17 17.25 19.41	14.83 17.97 20.56	12.49 22.12 22.03	13.50 19.11 20.67
Potassium chloride	0 1 2				15.83 15.19 18.83	17.36 19.41 16.59	19.61 18.23 18.80	17.60 17.61 18.07
Mean		17.60	17.61	18.07	16.61	17.79	18.83	17.76
S.E. per plot 3.5	2	Sig. Diff.		Centr Margi			% 7.02 % 4.04	
Interactions		PK •	▶ 0.48	PS	+ 1.65	K	s - 1.	92
		Fre	esh Yie	ld. Top	s. (to	ns)		
		POTAS O	sium chlo	ORIDE 2	0	salt 3	6	MEAN
CWT./ACRE		-		(±0.5	4)			± 0.31
Superphosphate	036	2.43 3.41 3.71	2.79 2.77 3.03	2.55 2.93 3.05	3.01 2.87 2.99	2.65 2.67 3.41	2.09 3.58 3.39	2.59 3.04 3.26
Potassium chloride	0 1 2				3.24 2.76 2.87	2.96 3.08 2.69	3.34 2.76 2.97	3.18 2.86 2.84
Mean		3.18	2.86	2.84	2.96	2.91	3.02	2.96
S.E. per plot 0.93	·	Sig. Diff.		Central Margina	-	-	5% 1.8' 5% 1.0'	
Interactions		PK -	0.39	PS	+ 0.66		KS 0.0	00

POTASSIUM CHLORIDE

KS - .002

Dry Matter Yields. Roots. (tons)

SALT

CWT./ACRE	0	1	2	0	3	6	MEAN
			<u>t</u> 0.	171)			± 0.098
Superphosphate 0 3 6	1.111 1.688 1.789	1.345 1.597 1.773	1.177 1.679 1.844	1.175 1.475 1.842	1.351 1.521 1.723	1.107 1.968 1.871	1.211 1.655 1.802
Potassium chloride 0 1 2				1.373 1.458 1.630	1.497 1.647 1.450	1.718 1.609 1.619	1.530 1.572 1.557
Mean	1.530	1.572	1.567	1.487	1.531	1.649	1.556
S.E. per plot 0.295	Sig. Diff.		Centr Margi		_	% 0.592 % 0.339	
Interactions	PK - (0.005	PS +	0.063	K	s - 0.	028
	Dry	· Yields	. (ton	s)			
	POTAS	SIUM CHLO	ORIDE SALT				
CWT./ACRE	0	1	2	0	3	6	MEAN
OWIN ACRE			(± .0	60)			±.031
Superphosphate 0 3 6	.246 .353 .416	•293 •324 •351	•277 •333 •334	.316 .315 .325	.278 .285 .316	•221 •410 •335	.272 .337 .367
Potassium chloride 0 1 2				•347 •309 •319	•315 •336 •295	•353 •322 •329	•339 •323 •314
Mean	•339	.323	.314	•325	.316	•335	•325
S.E. per plot .103	Sig. Diff.		Central Margina			.208 .107	1% .314 1% .162

PK - .057 PS + .052

interactions

% Na. ROOTS.

	T			T			
	N	SIUM CHL			SALT		
CWT./ACRE	0	1	2	0	3	6	MEAN
			<u>(±</u> •0]	17,			2 .010
Superphosphate 0	.142	.142 .158	.138 .145	.097 .098	.150 .150	.175 .180	.141
6	.165	.158	.145	.085	.161	.222	•156
Potassium chloride 0 1 2				.122 .082 .077	.168 .160 .133	.205 .182 .190	.165 .141 .133
Mean	.165	.141	.133	.093	.154	•192	.146
S.E. per plot .030	Sig. Diff.		Centi Margi			% .058 % .035	1% .089 1% .052
Interactions	PK -	.008	PS	+ .029	K	KS + .	.015
,							
		,	% Na.	TOPS.			
	POTAS O	ssium chic		TOPS.	salt 3	6	MEAN
CWT./ACRE		SSIUM CHL	DRIDE 2			6	mean ± .020
CWT./ACRE Superphosphate 0 3 6		SSIUM CHL	DRIDE 2	0		.452 .463 .583	
Superphosphate 0	.290 .357	.398 .270	(± .0	0)34) •225 •170	.315 .287	•452 •463	± .020
Superphosphate 0 3 6 Potassium chloride 0	.290 .357	.398 .270	(± .0	0 034) •225 •170 •208 •220 •230	.315 .287 .287 .302 .368	.452 .463 .583	± .020 .331 .307 .359 .367 .346
Superphosphate 0 3 6 Potassium chloride 0 1 2	.290 .357 .453	.398 .270 .373	.303 .293 .253	0 034) .225 .170 .208 .220 .230 .153 .201	.315 .287 .287 .302 .368 .218	.452 .463 .583 .578 .443 .477	± .020 .331 .307 .359 .367 .346 .283 .332

% K. ROOTS.

				·			4
		SIUM CHLO	ORIDE		SALT		
CWT./ACRE	0	1	2	0	3	6	MEAN
			<u>t</u> 0.	2])			±0.12
Superphosphate 0 3 6	2.52 2.48 2.72	2.28 2.78 2.67	2.65 2.90 2.40	2.67 2.62 2.28	2.40 2.55 2.50	2.38 3.00 3.00	2.48 2.72 2.59
Potassium chloride 0 1 2				2.48 2.42 2.67	2.45 2.53 2.47	2.78 2.78 2.82	2.57 2.58 2.65
Mean	2.57	2.58	2.65	2.52	2.48	2.79	2.60
S.E. per plot 0.36	Sig. Diff. of means		Centr Margi		5	% 0.73 % 0.42	1% 1.10 1% 0.63
Interactions	PK - (27	PS	+ 0.50	, K	s - 0	.07
		%	. к. то	PS			
	POTAS	sium chlo	oride 2	0	salt 3	6	MEAN
CWT./ACRE			(± 0.	25)			± 0.14
Superphosphate 0 3 6	3.57 2.77 3.20	3.03 3.40 3.62	3.15 3.82 3.68	3.47 3.17 3.13	3.42 3.45 3.43	2.87 3.37 3.93	3.25 3.33 3.50
Potassium chloride 0 1 2				2.90 3.38 3.48	3.00 3.40 3.90	3.63 3.27 3.27	3.18 3.35 3.55
Mean	3.18	3.35	3.55	3.26	3.43	3.39	3 . 36
S.E. per plot 0.43	Sig. Diff.		Central Margina			% 0. 8 6 % 0.48	1% 1.31 1% 0.73

Interactions

% Ca. ROOTS.

	POTAS	SIUM CHLC	PRIDE		SALT		
CWT./ACRE	0	1	2	0	3	6	MEAN
			± . 0	32)			± .018
Superphosphate 0 3 6	.360 .382 .433	.382 .425 .423	•348 •393 •427	•332 •370 •392	•387 •403 •430	.372 .427 .462	•363 •400 •428
Potassium chloride 0				•360 •368 •365	•398 •430 •392	.417 .432 .412	•392 •410 •388
Mean	•392	.410	•388	•364	.407	.420	•397
S.E. per plot •055	Sig. Diff.		Centr Margi			% .1]1 % .063	
Interactions	PK + •	.003	PS ·	• .015	K	(9 0) 5	
		%	Ca. To	OPS.			
	POTAS	SIUM CHLC	RIDE		SALT		
CWT./ACRE	0	1	2	0	3	6	MEAN
OWIN ACKE			(± 0.0	06)			± 0.04
Superphosphate 0 3 6	2.02 1.98 2.33	2.09 1.89 1.95	1.91 1.87 2.13	2.01 1.91 2.35	1.94 1.98 2.07	2.07 1.82 2.00	2.01 1.92 2.14
Potassium chloride () 1 2				2.24 2.01 2.03	2.17 1.95 1.86	1.93 1.98 2.03	2.11 1.98 1.97
Mean	2.11	1.98	1.97	2.09	2.00	1.97	2.02
S.E. per plot 0.11	Sig. Diff.	<u></u>	Central.		5	% 0.21	1% 0.32 1% 0.31

PK - 0.04 PS - 0.20 KS + 0.15

% Mg. Roots.

	7			,			
		SIUM CHLO			SALT		
CWT./ACRE	0	1 1	2	0	3	6	MEAN
			. 0	03)			± .002
Superphosphate 0 3 6	.087 .083 .079	.077 .091 .075	.078 .086 .079	.083 .094 .074	.073 .085 .088	.087 .081 .071	.081 .087 .078
Potassium chloride 0 1 2			·	.086 .084 .081	.076 .083 .087	.087 .076 .076	.083 .081 .081
Mean	.083	.081	.081	.084	.082	.080	.082
S.E. per plot .005	Sig. Diff.		Centr Margi			% .010 % .007	1% .015 1% .010
Interactions	PK + .004 PS + .002			ŀ	KS + .(003	
		6! /°	Mg. T	ops.			
	POTAS	SIUM CHLO	RIDE		SALT		
CWT./ACRE	0	1	2	0	3	6	MEAN
CW1.7 ACRE			(± .0	19)			± .011
Superphosphate 0 3 6	.203 .242 .222	.223 .157 .208	.211 .195 .213	.207 .182 .221	.209 .223 .205	.220 .192 .217	.212 .199 .214
Potassium chloride _O 1 2				.211 .195 .204	.219 .215 .204	.237 .178 .213	.222 .196 .207
Mean	•222	.196	.207	.203	.212	.210	.208
S.E. per plot .033	Sig. Diff.		Central Margina	-		.066 .038	1% .099 1% .058

Interactions

PK _ .008

PS - .008

KS - .008

% P. ROOTS.

	7	· · · · · · · · · · · · · · · · · · ·		Г			1
		SIUM CHLC	•		SALT		
CWT./ACRE	0	1	2	0	3	6	MEAN
			<u>(+</u> .0	14 ,			± .008
Superphosphate 0	.143 .175 .218	.127 .157 .178	.097 .152 .172	.132 .140 .148	.113 .148 .202	.122 .195 .218	.122 .161 .189
Potassium chloride 0 1 2				.165 .150 .105	.182 .143 .138	.190 .168 .177	•179 •154 •140
Mean	.179	.154	.140	.140	.154	.178	.157
S.E. per plot .024	Sig. Diff.		Centr Margi		5 5	% .048 % .027	1% .073 1% .041
Interactions	PK .()0 0	PS TOP	+ .01	3 K	(S +	.023
	,	/°	P. 10F	· · · · · · · · · · · · · · · · · · ·		,	
	POTAS	BIUM CHLO	RIDE 2	0	salt 3	6	Mean
CWT./ACRE			(± .0	14)			± .008
Superphosphate 0 3 6	.112 .145 .160	.113 .110 .197	.115 .135 .128	.095 .118 .142	.123 .118 .170	.118 .153 .173	.113 .130 .162
Potassium chloride O 1 2				.130 .108 .117	.135 .148 .132	.152 .163 .130	.139 .140 .126
Mean	.139	.140	.126	.118	.138	.148	.135
S.E. per plot .025	Sig. Diff.		Central	-	_	% .048	
par prot •OZ)	of means.		Margina	1.	2	.027	1% .041

3	
EXPERIMENT	
TURNIES.	

1-											-	e ukan-	mar ar	-	10 15 MAY	cava in	property free	******	in consumer	alaban Laur	en merer a	ent were		1779 s 1898	EN IPS N	STAR AL A V	er Swaller er				,	e	.comercials	موريون والمارية و
		д	.195	.170	.180	.240	.240	.165	.190	.220	.200	.250	.240	.210	.220	.215	.220	.225	.260	.165	.180	.275	.240	.220	.235	.220	.215	.130	.225	.200	.160	.200	.210	220
	•M•	ال الآث	960•	\$90.	.072	.084	090•	.092	•076	•068	.084	•076	.084	\$80.	920.	.084	960•	.084	960•	•092	.084	.068	.072	.072	. 068	880.	920.	.092	920.	920.	.084	.084	.092	078
ļ	E E	Ça	420	.370	.390	.375	.330	.385	.340	.345	400	365	.360	.360	.430	.350	.420	.395	.375	.395	.320	.380	.330	.345	.380	• 430	360	.460	.400	415	.365	• 400	• 440	460
	ROOTS.	И	•	ಝ	w	Q,	w	9	<u>_</u>	1.65	0,	0	w.	0,	0	O	0	φ	w	7	9	100	਼	0,	ú	्	4	∞	4	to	3	C\f	C.I	2,20
	Æ	Na																															•045	
		Д	180	210	180	190	180	175	190	180	185	500	265	165	195	210	140	230	180	130	235	250	190	500	140	180	175	130	195	.185	205	500	200	180
	•	Mg	150	146	,108	142	1.24	160	116	142	146	,138	108	134	130	142	142	.134	977	.136	120	$\mathcal{C}_{\mathcal{C}}$	$\mathcal{C}_{\mathcal{C}}$	α	116	-	w	S	S	7	142	4	130	140
	% D.M	Ga	•	•	•	•	•	•		2.20		•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1.94
STATE OF STREET	TOPS.	M	05	8	8	.75	•65	8	8.	50	.25	3	• 50	20	67.	•05	40	20	.85	8	8,	8	8	35	• 65	50	45	.35	8	252	\$85	8,	2,80	• ;
APP // LAG - SAMPLE DAVISOR SE	_ ,	Na Na	\circ	01	0	$\overline{\bigcirc}$	\circ	0	0	0	\circ	٠,	ıΩ	25	3	0	0	3	3	3	0	0	O	O	0	3	0	2	2	3	3	0	.105	2
-	(8	5	8	25	43	42	27	-94	36	.34	.28	40	• 56	8	.24	8	.36	.52	12	.12	.29	.48	.18	.51	.37	8	• 26	.32	.31	.29	18	.35	1.33	55
Andrew or Benefits The	(tons	%DM																															7.7	
	ROOLS	esh	3.0	6,9	0.6	₩.7	0	1.4	7.4	15,94	0.0	6.3	5.7	6.5	4.4	5.4	5.4	0	4.4	0,	T,	φ.	0	41	16.74	0,	0.1	U.	7	7	<i>C</i> (<i>t</i>	4,	17.30	12,24
	(F	Dry Fr																		.387				.434	.454	.453	.486	.360	.482	.421	.436	.425	.403	.458
an manufestand and indication	(tons	%DM. I		_	_	_	-	_	•		•	•			•	•		•		•	•	•	•		•	•	•		•	•	•	•	12.0	• ;
Andrew Comment	TOPS.	ah Bh	42	44	72	12	99	86	82	72	8	2	82	44	88	14	56	12	86	12	2	99	40	50	72	9	98	82	05	24	.52	48	3.36	58
- de-		<u>F-i</u>														S	Rai, at Passa			***************************************						pura.c	Oltry at fine	AANTAMET	v2				* 10 10 1	
1					×				S N		۵.	~ 4	⊳ 4	70	ro	엄	ı	Ø						엄			ທ	1	M	ഗ	M	හ	Д	M
To company case			Н		P Z			Ħ		ഗ								ρ ₄	ഗ	z	M					Н							×	- 1
:			Н	N	n	4	2	9	7	₩	0	01	디	12	13	14.	15	16	17	133	<u>1</u> 3	ଟ୍ଷ	21	22	23	24	25	36	27	33	3	8	31	32

	TI.	RNIPS. 1	TURNIPS. EXPERIMENT 3.	6	Д	of Ferential .	RESPONSES	Fresh and	A 60. Differential responses Fresh and Dry Yields. (tons)	• (tons)
		MEAN	MUIDOS	M	NITR	NITROGEN	ASOHA	PHOSPHORUS	POTASSIUM	SSTUM
CWT./ACRE		RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.
Ħ	ops Fresh	+ 0.11	ı	ı	+ 0.04	+ 0.17	+ 0.10 + 0.11	+ 0.11	+ 0.07	+ 0.14
cwt.	Dry + 0.009	600.0 +	ı	ı	00000	+ 0.018	0000	+ 0.018	+ 0.002	+ 0.016
곱	oots Fresh	+ 0.73	. 1.	1	+ 1.17	+ 0.28	+ 2.12***	+ 2.12** - 0.68	+ 0.73	+ 0.73

+ 0.28	ı	1
+ 1.17 +0.04	ı	1

0.28

0.16

0.22#

+ +11

Fresh

Tops

ı

. 1. 1

+ 0.73

Dry

Salt

0.034 0.73 0.07

0.16

0.025

Dry Fresh

Ammonium Sulphate Ropts

Dry

0.016

-124	
2.12	0.21 0.029 0.48
+ +	+ + 1 1

+ 0.36

+ 0.73 0.0

+ 0.73

0.08

0.21 0.029 0.48 0.07

+	+	ı	ı	
.21		.48	20.	

1 1

0.08	•	0.51
+ + 1	ı	+ +

0	
- 0.07	121-1-1
ı	+ 0.23 ** + 0.03 ** + 0.092 + 0.09

ر.	•		
1	<u> </u>	 	
'n	~		
4	.07		

05	_	

¥	\$	
7.	0	Ñ
0	Ö	Н

	o
ı	1

0.043 0.15 0.05	0.08
+ 1 1	1 1 -
	••-

O	•	•	•
l			
`. S			

	ı	1	+
	*		

•	•	ŵ	•	
0	0	-	0	
ı	1	+	+	

0.11	1	1	,	ı

7				
Š	ı	ı	1	ı
+				

1

0.012

+ 0.094

+ 0.56 mm + 0.071 mm + 1.30 + 0.12 mm

+ 0.035

+ 0.46 *** + 0.060 ***

0.39***

0.42##

Fresh

Tops

+ 1.03 + 0.10**

+ 1.17

0.15**

0.11**

Dry

2 cwt.

1.17

+

+

Fresh

Roots

Potassium Chloride

Dry -

0.028 1.84# 0.07

0.033

0.015

0.024 1.37*** 0.22*

+

Dry Fresh

Robts

Superphosphate 3 cwt.

Fresh

Tops

* 0.08

Dry

0.31*

0.13

1.27

+ 0.08 + 1.07

INTERACTIONS

PK	***
Ω,	•

ZX

×S

ΝP

PS

SZ

RESPONSE

MEAN

DIFFRENTL. RESPONSE

SINGLE PLOT

MEAN

STANDARD ERRORS+

	PK	2.29**	
l		0	

1	181
	* -
	0,4
×	NO
Ω,	•
	00

	PK	0.29**	0.041	60.0
ı			ı	+

ъК	0.29** 0.041**

+ 0.018 + 0.14

+ 0.03 + 0.007

+ 0.0**!** - 0.004

+ 0.09 + 0.009

0.06 0.009 0.44

0.08 0.013 0.46 0.03

0.11 0.019 0.65 0.04

0.21

0.419 16.06 1.30

Dry Fresh Fresh

Roots

Dry

3.39

Tops

+ 0.13 + 0.01

0.04

ı

- 0.01

+ 0.20 + 0.01

- 0.57 - 0.05

0.01

+ 0.03

					Ω	DIFFERENTIAL	RESPONSES	% Na.		
		MEAN	WILLIGOS	лм	MTR	NTROGEN	PHOSP	PHOSPHORUS	POTA	POTASSIUM
CWT./ACRE		RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.
Salt 4.	Tops Roots	+ .098*** + .044***	1 1	1 1	+ .086# +.034 #	+ 111 **** + 054 ***	+ .049 + .024	+ 148 *** + 064 ***	+ .093 FEF	+ 104*** + 037**
Ammonium Sulphate 2.	Tops Roots	+ .025 + .018	+ .013	+ .037	1 1	1 1		+ .058 + .037#	015 + .029	+ .064
Superphosphate 3.	Tops Roots	+ .050 * + .023	+ .018	+ .082# + .042#	+ .062	+ .038	1 1	1 1	+ .019 + .025	* 080 + 080
Potassium Chloride 2.	Tops Roots	074 ^{KH}	*080* -	069# 040#	115## 024	034 046	105 ³⁶⁴	044 038	i I	1 1
	ie v div	STANDARD	DARD ERRORS+			INI	INTERACTIONS			
	MEAN	SINGLE	DIFFRENTL. RESPONSE	MEAN RESPONSE	SN	PS	ďΝ	KS	NK	PK
Tops Roots	0.226 0.175	.031	.031	.022	+ .013	+ .032	012 013	+ .005	.040	+ .030

	TURNIES.		EXPERIMENT	3.					A	62.
					A	DIFFERENTIAL RESPONSES	RESPONSES	% K	-	
		MEAN	MUIGOS	JIM	NITR	NITROGEN	AHOSP	PHOSPHORUS	POTA	POTASSIUM
CWT./ACRE		RESPONSE	ABS.	PRES.	ABS,	PRES.	ABS.	PRES.	ABS.	PRES.
Salt 4.	Tops Roots	03 08	1 1	1 1	09 16	00.0	+ .14 16	- 19	+ +	. 26
Ammonium Sulphate2.	Tops Roots	.01	- 00.	+ .05	1 t	1 1	- 15	+ .13	60° 80°	90.
Superphosphate 3.	Tops Roots	1 . 23 *	90. 1	40*	37**	- + - 00 - 40	1 1	1 1	- 34 * + .11	12
Potassium 2.	Tops Roots	+ .18 + .24**	+ 41 HH + 35 HH	05	+ .09	+ .27 + .31*	+ .40***	+ .29# + .08	1 1	1 1
	2482	STANI	STANDARD ERRORS+			INI	INTERACTIONS			
	N Tale									

M M

NK

X

ďN

PS

SZ

MEAN RESPONSE

DIFFRENTL. RESPONSE

SINGLE

+ + 09

+ •14 + •09

..17

90° + 90° +

9. 88

4.1

27

2.41 2.05

Tops Roots

7

•	ф С
Š	٩
	RESPONSES
	DIFFERENTIAL

		MEAN	MUIdos	J.W	NITR	NITROGEN	PHOSP	PHOSPHORUS	POTASSIUM	SSIUM
CWT./ACRE		RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.
Salt 4.	Tops Roots	+ .029	1 1	1 1	+ .129 .028	070. I 000. I	+ .085	024 034	+ .088	028
Ammonium Sulphate 2.	Tops Roots	145*** 006	045 017	244*** + .006	1 1	1 1	075 + .007	215***	087	202***
Superphosphate 3.	Tops Roots	+ .008	042	690.	014	. 125	1 1	1 1	172* 010	+ .061 + .026
Potassium 2. Chloride 2.	Tops Roots	045 026*	+ .012 051	104	+ .011	103	162# 045	+ .072	1 1	1 1
	2482	STANE	STANDARD ERRORS+	.1.3		INI	INTERACTIONS			
		SINGLE	DIFFRENTL. RESPONSE	MEAN RESPONSE	SN	PS	ďN	KS	NK	PK
Tops Roots	1.800 0.384	.135	.016	.048 .011	.099	013 018	069	058	056	- 1117* + 018

		,			A	DIFFERENTIAL	RESPONSES	% Mg•		
		MEAN	MDIGOS	M.C	NITR	NITROGEN	dsohd	PHOSPHORUS	POTA	POTASSIUM
CWI./ACRE		RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.
Salt 4.	Tops Roots	*900° -	1 1	1 1	+ .001	010*	002	+ .001	006	+ .006 013*
Ammonium Sulphate 2.	Tops Roots	003	.000	004	1 1	1 1	0000	004 .004	001	003
Superphosphate 3.	Tops Roots	+ · 003 - 003	003	+ .005	. 003		1 1	1 1	003	900° -
Potassium 2. Chloride	Tops Roots	±200. −	014 → .015¥	002 + .001	007 *	008	013	003	1 1	1 1
	N S	STANI	STANDARD ERRORS+			INI	INTERACTIONS			
		SINGLE	DIFFRENTL. RESPONSE	MEAN RESPONSE	NS	PS	NP	ĸs	NK	ЪК

+ .005

- .001

900°+

- .002

+ .004

- .001 - .003

.004

.006

.013

.132

Tops Roots

			1	T						
7	•	POTASSIUM	PRES.	013	002	+ .029* + .021	1 1		PK	013
<	t	POTA	ABS.	+ .027* + .024	+ .009	+ .003	1 1		NK	006
	% P	PHOSPHORUS	PRES.	+ .018 + .007	002	1 1	+ .007		ĸs	* .021 009
	RESPONSES	dsoна	ABS.	003	+ .009 026	t 1	+ .033** + .009	INTERACTIONS	ĄN	→ I
	DIFFERENTIAL	NITROGEN	PRES.	003 + .013	1 1	. 011 + .011	+ .014	INI	PS	+ .011 08
	н	HTIN	ABS.	+ .018	i I	+ .022	+ .026* + .016		NS	011
	, ,	ОМ	PRES.	1 [007	+ .027* + .009	001		MEAN RESPONSE	.010
	EXFERIMENT	SODIUM	ABS.	1 1	+ .014	+ .024	+ .041*** + .023	ARD ERRORS +	DIFFRENTL. RESPONSE	.013
	TUKNIKS.	MEAN	RESPONSE	+ .008	+ .004	+ .016	+ .020# + .014	STANDARD	SINGLE PLOT	.025
				Tops Roots	Tops Roots	Tops Roots	Tops Roots	2487		.189
			CWT./ACRE	Salt 4.	Ammonium Sulphate2.	Superphosphate 3.	Potassium 2. Chloride			Tops Roots
				v ₂	₹	S	ры (

4.
EXPERIMENT
TURNIPS.

		2020	. 20	0	0	0	50	0		150	0	0	0 () C	0	0	0	O 4	70	0	2	5	0	2	Š	~	<u>ئ</u>	
	₽4	175	•	•	•	•	•	•	•	• •	•	•	.140	•	• •	•	•	•	160	•	•	•	•	•	•	•	•	•
D.M.	$M_{\mathcal{G}}$	084	.076	.064	.084	.088	260.	\$00°	2008	999	090	.092	•076	2000 2000 2000 2000	076	990	•076	070.	0.04	.084	090	990•	.068	990•	•092	.084	•076	.092
6	င်အ	330	.365	.365	330	365	330	68.5	330	315	4.20	430	365	417 7 18	460	.330	.330	330	330	.330	315	•400	.330	365	.400	400	.330	.330
ROOTS	M	88	•	6.	, 10	•	. 65	24.	; 0,0	• •	•	•		3.6	• •	•	. 55	•		•	40	•	•		•	•	. 50	.35
	Na	1.60 1					195]	1.277	105 L	165	060			ひろう			130 1	2887 140 1	190]		185 1			175 2			230]	125]
		205												Auditoria de la compansión de la compans	· · · · · · · · · · · · · · · · · · ·	E / 1 - 141	* * .	210	and to a								250	
on a series of the series of t	P4	• •	•	•	•	•	•	•	•	• •	•	•	•	•	• •	•	•	•	• •	•	•	•	•	•	•	•	•	•
D.M.	$\mathbb{A}_{\mathcal{D}}$	124	•	•	•	•	•	•	120	• •	•	•	•	, LL2	• •	•	.124	•	• •		•1.50							
26	ပ္မွ	1.62	1.75	1.81	1.89	1.98	% 00°	1.72	1.01	1.39	1.43	1.58	1,94	00 € 1 -	1.98	2,24	1.63	1.68	1.25	1.43	1.58	1.98	•	2,02	1.46	1.75	1,85	1,62
TOPS	X	1.70	•	•		•	•	•	•	25.15		1.70	•	2,0	• •	2.55	1.70	1.75 2.01	• •	1.85	1.90	•	•	2.60	1.45	1.30	1.40	1145
an-enter centrality	Na	500	.270	•400	.355	.270	. 525	.240	7.4.C.	510	.250	.462	.275	・ ひん ひん	445	.225	500	.600	009	.290	• 700	• 750	.225	.410	.200	.400	.650	.330
(8	%DM.	9.2		•	•		•	•						•		•					•	•	•	•	•	•		•
(tons	ry	2.14	•	•	•	•	2,00	•	77.5°	90.3	3.36	1.81	1.36	7. 2.8	1.66	•	1.75	•	2,14	•	•	•	•	•	•	•	2.06	•
S					-					,				• •				• • •		• •	• •	• •	٠.		•	• •	•	• •
TOO		220	00	89	89	5₫	C2 1	& & (7 to	2,2	9	90	44	*	32	48	26	34	3,5	36	34	20	40	26	24	28	.92	96
ROOTS.	Fresh I		00	25.68	22.68	23.54	23.22	24.88	22.02	22.70		•	14.44				•	•	23.50	•	•	•		•			•	•
dage) reporter of management of the property of the pro-	JDM. Fresh	13.5 23.22 16.6 16.00	2.9 16.50	1.6 25.	2.7 22.	2.8 23.	2.1 23.	3.2 24.	3.1 22.	6 22	1 25.	1 20.	7 14.	4. 2	5 19	.5 16.	2 19.	22.	53 53	.1 26.	.7 21.	.0 23	.9 16.	0 19.	.6 14.	.8 27.	4 23	.25.
(tons) ROOT	JDM. Fresh	13.5 23.22 16.6 16.00	12.9 16.50	11.6 25.	12.7 22.	12.8 23.	.708 12.1 23.	020 13.2 24.	13.1 222.	6 22	12.1 25.	14.1 20.	11.7 14.	13.4 18.	14.5 19	13.5 16.	14.2 19.	11.8 22.	53 53	13.1 26.	12.7 21.	12.0 23.	13.9 16.	14.0 19.	12.6 14.	12.8 27.	4 23	14.2 25.
dage) reporter of management of the property of the pro-	Dry %DM. Fresh	.547 13.5 23.22 .480 16.6 16.00	12 .402 12.9 16.50	20 .603 11.6 25.	22 .790 12.7 22.	41 ,820 12,8 23,	85 .708 12.1 23.	73 1.020 13.2 24.	93 .5.15 .13.1 22.	05 510 12.6 22.	.55 .672 12.1 25.	42 .764 14.1 20.	15 .486 11.7 14.	25 57/0 13.4 118. of 635 12 8 119.	15 892 14.5 19	45 .466 13.5 16.	50 .639 14.2 19.	25 .756 11.8 22.	32 665 12.5 23	.40 .969 13.1 26.	83 .740 12.7 21.	65 558 12.0 23	36 .467 13.9 16.	48 487 14.0 19.	.65 .586 12.6 14.	65 .979 1.2.8 .27.	80 .719 12.4 23.	.18 .736 14.2 25.
(tons)	Dry %DM. Fresh	.547 13.5 23.22 .480 16.6 16.00	12 .402 12.9 16.50	20 .603 11.6 25.	22 .790 12.7 22.	41 ,820 12,8 23,	85 .708 12.1 23.	73 1.020 13.2 24.	93 .5.15 .13.1 22.	05 510 12.6 22.	.55 .672 12.1 25.	42 .764 14.1 20.	15 .486 11.7 14.	25 570 13.4 18. of 635 12 8 19	15 892 14.5 19	45 .466 13.5 16.	50 .639 14.2 19.	25 .756 11.8 22.	32 665 12.5 23	.40 .969 13.1 26.	5.83 .740 12.7 21.	65 558 12.0 23	36 .467 13.9 16.	48 487 14.0 19.	.65 .586 12.6 14.	65 .979 1.2.8 .27.	80 .719 12.4 23.	.18 .736 14.2 25.
(tons)	Dry %DM. Fresh	\$ 4.05 .547 13.5 23.22 2.89 .480 16.6 16.00	12 .402 12.9 16.50	s 5.20 .603 11.6 25.	\$ 6.22 .790 12.7 22.	41 ,820 12,8 23,	5.85 .708 12.1 23.	K 7.73 1.020 13.2 24.	3.93 .5.15 .13.1 22. 7.93 .5.15 .13.1 22.	K S 4.05 .510 12.6 22.	5.55 .672 12.1 25.	5.42 .764 14.1 20.	4.15 .486 11.7 114.	4.25 .57/0 13.4 1.83.	6.15 .892 14.5 19.	45 .466 13.5 16.	4.50 .639 14.2 19.	S 6.25 .756 II.8 22.	32 665 12.5 23	K 7.40 .969 13.1 26.	5.83 .740 12.7 21.	KS 4.65 .558 12.0 23.	3.36 .467 13.9 16.	3.48 .487 14.0 19.	4.65 .586 12.6 14.	7.65 .979 1.2.8 .27.	80 .719 12.4 23.	5.18 .736 14.2 25.
(tons)	Dry %DM. Fresh	4.05 .547 13.5 23.22 2.89 .480 16.6 16.00	K 3.12 .402 12.9 16.50	PKS 5.20 .603 11.6 25.	N K S 6.22 .790 12.7 22.	P 6.41 .820 12.8 23.	5.85 .708 12.1 23.	MP K 7.73 1.020 13.2 24.	FS 3.93 .5.15 L3.1 22.	N P K S 4.05 .510 12.6 22.	P K 5.55 .672 12.1 25.	NS 5.42 .764 14.1 20.	4.15 .486 11.7 114.	N S 4.25 .570 13.4 1.83. N K A OK 63.4 C 73.4 1.00.	P 6.15 .892 14.5 19.	K 3.45 .466 13.5 16.	N 4.50 .639 14.2 19.	N P S 6.25 .756 11.8 22.	PKS 5.32 .665 12.5 23.	NPK 7.40 .969 13.1 26.	5.83 .740 12.7 21.	N P K S 4.65 .558 12.0 23.	N K 3.36 .467 13.9 16.	K S 3.48 .487 14.0 19.	- 4.65 .586 12.6 14.	PK 7.65 .979 12.8 27.	NS 5.80 .719 12.4 23.	N P 5.18 .736 14.2 25.

T 67 NITROGEN SODIUM MEAN

FERENTIAL	RESPONSES) :	•
		Fresh and	Fresh and Dry Yields (tons	ds (tons)
EN	dsohd	PHOSPHORUS	POTA	POTASSIUM
PRES.	ABS.	PRES.	ABS.	PRES.

- 0.87* 0.106

0.20

0.24 0.07

0.35

ı +

3.48

0.261** 1.96**

ı

0.149** 1.29**

ı

+

0.05

ı

1

4.46 0.33

0.069

0.043 2.64# 0.22#

ı 1

1

0.14*

+

Dry

0.056

Dry Fresh

Rootk

4 cwt

Salt

0.34

Fresh

Tops

ı +

1

0.39

ABS.

PRES.

ABS.

RESPONSE

CWT./ACRE

90.0

0.078

00000

0.37

0.75

+ 4

0.007 0.65 0.07

ı

ı

+

0.39 0.071 1.77 0.15

1 1 1

1 1 1

0.026

0.052 60.0

0.039

Fresh Dry Fresh

0.14

+

Tops

0.18

0.04

ı

1.34

0.56

Dry

+

Ammonium Sulphaseootis

2 cwt

+

+

0.22

+ + +

i

0.44

0.18

ı

0.178## 6.15## 0.56##

3.91

1 1 1

1 1

3.82

0.237

6.24

+

0.086 2.45*** 0.27***

+ +

7.56*** 0.65***

5.02

+

Fresh Dry

Roots

Superphosphate 3/cwt

Dry

0.57

0.72

+

0.65

ł

2.60**

+

+

Fresh

Tops

0.119举+ 0.97

0.39

0.36

ı

ı ı

.02# # 2#

-0.03 INTERACTIONS

+ 0.027

+ 0.49

- 0.69 **→** 0.22

+ 0.007

170.0 -

-0.41

- 0.64 - 0.082

0.43

0.10

ı i +

Fresh

Tops

Potassium Chloride 2 cwt

+ 0.22

0.71

+

+ 1.09

0.73

ı

0.018

0.032

%.0

Fresh

Roots

Dry

0.14

+ 0.28#

0.07

Dry

MEAN

STANDARD ERRORS +

9.10

+ 0.59**

0.32

0.53**

- 0.25 -0.032

1.62***

- 0.013

+ 0.05

0.243 0.041

0.342

0.685

0.664

Dry

5.08

Fresh

Tops

M d

XX

X X

O.

PS

SZ

RESPONSE

MEAN

DIFFRENTL.

SINGLE PLOT

RESPONSE

+ 0.059 + 1.12 0.10

+ 0.039

- 0.050

-0.19

1.63**

ı

- 1.21 - 0.11

2.61***

ı

0.78

i ı

0.633

0.894 80.0

1.798

1.94

Dry

21.47

Fresh

Roots

0.08

+

- 0.03

		•			i	DIFFERENTIAL	RESPONSES	% Na.		manage opposition and the control of
		MEAN	Sobium	IM	NITE	NITROGEN	PHOSPHORUS	1011118	POTASSIUM	высм
CWT./ACRE		RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	र हा इ.	ABS.	PRES.
Salt 4.	Tops Roots	+ .237 7# + .064	1 1	1 1	+ .234## + .061	+ 241##	+ 269## + 060##	+ .206*** + .068***	+ ,240 %% + ,025	+ .235## + .103##
Ammonium Sulphate 2.	Tops	+ .011 015	+ .007 • .018	+ .014	1 1	1 1	+ .029	007	+ .015 009	+ .006
Superphosphate 3.	Tops Roots	+ .042 + .020	+ .074 + .016	+ .011 + .024	+ .061 + .009	+ .024	1 1	1 1	.019	+ 103 + + 019
Potassium 2. Chloride	Tops Roots	078# 033	075	080	1.082		138*** 032	1 .016	1 1	3 8
	3	STANDARD	MARD ERRORS+			INT	INTERACTIONS			
	MEAN	SINGLE	DIFFRENTL. RESPONSE	MEAN	e N	S d	ďN	KS	¥Z	ъ
Tops Roots	.402	150.	.039 .015	.028	£00° +	032 + .004	+ .01.8	+ .002 + .039	1 .005	+ .062#

A 69.	FOTABBUN	PRES.		. 24 14**	**************************************	l t		H	.12 + .31* .14***05
		AB6,	1 +	+	A 1	· (Z	1 1
K.	вноврнокия	PRES.	+ + 80. E.I.	01	1 1	* * + +		Z	00° • • •
RESPONSES	вона	ABB,	₹6. 1.+	+ + 03	1 1	# 36. * +	INTERACTIONS	ğχ	1 1 0.0. 10.
DI P F ERENTI AL	NITROGEN	PREB.	1 + 41.	: 1	1 I	+ 37*	IN.	ez .	* .11 .00
n.e.	MTN	ABB,	₩ 90°° + ÷	1 1	1.0°	+ .45 ***		42	+ .03
(T 4.	JW	PRES.	1 1	1 + %0.	80°.	+ 49***	an eu	MKAN RESPONSE	0.09 0.05
REPERTMENT	MUIGOS	AB8.	11	 	*06. 1	÷ +	STANDARD ERRORS	DI PPRENTL. RESPONSE	0.14
TURNI 198.	MEAN	RESPONSE	0. + 6.1.	1200.	. 19	+ . 4.00 + + . 3.1 ×	BTAN	BINGLE PLOT	0.28 0.13
			Tops Roots	Tone Roote	Tops Roots	Tops Roots	2 4 6	100 day 141	1.98 1.68
-		CWT./ACRE	Salt 4.	Ammonium Sulphate 2.	Superphosphate 3.	Potassium 2. Chloride		THE RESIDENCE OF THE PROPERTY	Tops Roots

•	
8%	
RESPONSES	
DIFFERENTIAL RESPONSES	
:	

!		
	Ca.	
	٦	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	ONSES	

6.		
Ą		
	Ca.	
	Ö	
	20	
	e) S	-

	POTASSIUM
AL RESPONSES % Ca.	4d
DIFFERENTIAL RESPONSES	NITROGEN
	SODIUM

ABS.

PRES.

ABS.

PRES.

ABS.

RESPONSE

MEAN

CWT./ACRE

Ca. POTASSIUM ES. ABS.
CE OS

.042

- .070

.031

.013

+ + • 003

121.

1 1

1 1

1 1

.056

Tops Roots

4

Salt

- .215 + .018

- .013 - .016

1 1

1 1

- .049

.179

.016

1 1

- .070 + .018

11. 00.

Tops Roots

'n

Superphosphate

- .087 - .013

.017

- .148 - .021

1 1

1 1

- .017 - .011

- .148 - .045

Tops Roots

2. Ammonium Sulphate

- .101 + .**0**16

+ .005

+ .014

+ .065

.044

+ .065

.096

.136

.272

1.713

Tops Roots

ρK

XX

ХS

ďN

PS

SZ

RESPONSE

MEAN

DIFFRENTL. RESPONSE

SINGLE

MEAN

STANDARD ERRORS+

INTERACTIONS

1 1

1 1

- .125 + .005

.028

- .019

- .029 + .003

00° 00°

- .038

.024

1.1

Tops Roots

å

Potassium Chloride

					03.70				
77.	POTASSIUM	PRES.	+ .001	+ .014	+ .002 + .006	1 1		ዝፈ	500° +
A 7.	FOT	ABS.	+ .005	- + - 000¢	+ .004	1 1		NK	000.
% Mg•	PHOSPHORUS	PRES.	008	900° + +	1 1	012 001		ĸs	002 + .001
RESPONSES	asoha	ABS.	+ .014 001	+ .002	1 1	030** 011	INTERACTIONS	NP	+ • 005
DIFFERENTIAL	NITROGEN	PRES,	110. +	1 1	+ .014	011 006	TNI	PS	110
ч	NITR	ABS,		1 1	+ .012	031 [₩] 006		SN	+ .008 + .004
4.	UM	PRES.	1 1	+ .013	+.002	023 006		MEAN RESPONSE	•008 •004
EXPERIMENT	SODIUM	ABS.	l I	- 0004 000	+ .024**	019	ARD ERRORS +	DIFFRENTL. RESPONSE	.005
turnips.	MEAN	RESPONSE	+ .003 .004	+ + .004 4	+ .013 + .001	021* 006	STANDARD	SINGLE PLOT	.022
			Tops Roots	Tops Roots	Tops Roots	Tops Roots	NA SA		.135
		CWT./ACRE	Salt 4.	2.	Superphosphate 3.	Potassium 2. Chloride			Tops Roots
		CWT./A	Salt	Ammonium Su	Superphosphe	Potassium Chloride			E₁

.015

.033 .003

000

+ .015

.033 .009

1 1

1 1

+ .024 + .005

Tops Roots

4.

Salt

CWT./ACRE

+ .020

+ .030# + .001

+ .011

. .

+ .016

+ .034**

.025# .000

Tops Roots

Ammonium Sulphate

.041***

1 1

1 1

.066*******

+ .027*** + .018***

.075## .041

.051

Tops Roots

'n

Superphosphate

110. + - .005

- .005 100. -

600. -+ .002

-.014

- .024₩ - .016***

.010

.014

.027

194

Tops Roots

- .013***

ρK

X

ĶS

ďΝ

PS

SZ

RESPONSE

MEAN

DIFFRENTL. RESPONSE

SINGLE PLOT

MEAN

STANDARD ERRORS+

INTERACTIONS

- 1

1 1

+ .024 + .001

+ .002

+ .008

.018

+ +

+ • 004 + • 008

.022

+ .013

Tops Roots

3

Potassium Chloride

WIFS.	EXPERIMENT	4.					4	72.
			Q	DIFFERENTIAL RESPONSES	RESPONSES	% P•		
MEAN		SODIUM	NITR	NITROGEN	ASOHA	PHOSPHORUS	POT.	POTASSIUM
RESPONSE	SE ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.

programme and the second secon	DRY MATTER	YIELD. CWT	/ ACRE.	% DRY	MATTER.
•	Total	Grass	Clover	Grass	Clover
The state of the s	B C	В С	B C	B C	B C
1 M K S 2 M K S 3 K S S 6 N P K 7 S P S K K S 12 N P K S 13 N P K S 14 N P K S 15 P K S 16 P S S S 18 N P S 18 N P S 20 N P S 21 N P S 22 P K S 23 N P S 24 S S S 26 N P S 27 N P S 28 K P S 29 N P S 30 P S 31 P S 32 N S 32 N S 32 N S 33 P K S	19.3 25.9 21.2 26.9	8.7 7.4 27.2 19.2 23.9 14.5 8.5 10.0 24.0 19.0 10.4 10.4 12.1 18.8 26.1 18.7 32.5 22.3 10.9 10.5 32.6 20.1 9.7 9.9 10.8 12.8	3.3 3.4 6.3 10.2 7.8 10.6 2.5 11.1 3.4 4.5 6.2 15.3 2.9 5.7 1.6 3.1 9.7 21.0 4.8 13.0 3.4 4.5 1.8 13.0 3.1 8.7 1.7 2.7	19.3 22.4 18.8 22.4 13.6 25.0 14.9 21.7 17.6 23.6 18.4 21.8 20.7 24.8 15.4 24.7 15.0 26.7 16.5 26.5 18.9 25.3 14.4 25.8 19.0 23.7 19.4 23.0 20.9 24.6 20.4 23.3 16.9 24.6 20.4 23.3 16.9 24.6 20.4 23.3 19.3 21.1 16.7 23.7 17.4 20.8 17.6 26.8 14.0 25.9 21.6 25.4 16.5 26.2 18.0 23.1 17.8 22.0	10.3 17.6 11.8 17.1 12.0 17.1 11.7 15.5 10.6 17.5 10.8 15.6 12.1 15.8 12.2 15.7 13.7 17.4 10.6 17.0 10.8 19.5 11.8 19.6 12.2 17.4 10.8 18.4 11.8 16.4 12.7 17.2 13.5 16.9 11.2 16.1 12.8 16.6 12.6 16.9 11.7 18.7 11.6 16.8 11.0 17.0 11.5 15.3 11.1 17.7 10.1 15.4 11.6 18.9 14.1 17.9 10.0 17.1 11.8 16.2 11.4 15.9 11.2 17.4
Additional P	lots.				AA A-AACKEE
33 N2 S2 34 S2 35 K2 S2 36 N2 37 K2 38 N2 K2 S2 39 N2 K2 40 -	11.8 13.9 11.5 11.4 34.2 26.5 19.9 22.6	29.6 29.7 10.2 11.0 11.0 9.6 3211 21.4 13.7 14.0 30.1 32.6 38.2 31.5 12.7 12.5	1.6 2.9 0.5 1.8 2.1 5.1 6.2 8.6 .02 1.4 3.5 3.0	13.5 18.8 18.0 24.4 19.7 24.8 14.0 17.8 19.6 24.6 14.2 18.0 14.5 18.2 18.3 24.7	10.6 14.3 13.2 17.2 13.0 17.8 10.7 14.5 12.5 17.0 10.4 16.2 10.6 16.0 12.8 17.4

74.

A.

Grass Composition.

		-				o argument for the view was		-	1					,			ţ		
	Na	6€			X X				ದ್ದ	ક્રેલ્ડ જ			ლ Ж	ક [ુ]			^ह ् भ		
A	В	O	Д	ď	В	ပ	О	4	മ	ပ	А	Ą	щ	ပ	А	♥	Д	Ö	А
Z Z	CV	0.120	090.	3.95	•	50.	3.35	.570	540	540	640	126	102	104	130	305	.275	.215	.330
$\sum_{i \in I} \alpha_i$	•	•		2.15	L.03	2,30	2,70	200	500	2000	630 630	4. COL		1, 00 L	187 146	25.0	57.5	2000 000	000 000 000 000
1 53					•	252	2.85	009	575	525	,620		092	108	124	315	300	245	345
~~	a,	•		•	•	•05	2.60	.620	.555	490	.460			060.	860.	.320	.315	.135	.220
·~	0	-			•	93	3.15	009	.575	, 067	009			060	.118	• 290	.260	.260	.230
m.	-	_		•	•	50	2.45	.630	.575	.490	480			960	860.	.275	,240	.260	.265
	္	-		•	•	40	3.00	.720	. 555	, 560	,540			.110	.136	.280	.260	.285	.315
	-			•	•	•05	2.30	.540	. 500	.420	466			960	124	.255	.235	.230	.230
	Γ,	-		•	•	80	2.50	089	. 500	.490	.540			104	130	.250	.250	.190	.210
	41			•	•	35	2.00	.570	.460	460	,540			.108	124	.275	.240	.185	200
٧.	CV	-		•	•	8.	1.85	.700	. 550	.450	460			,001.	130	.295	.275	.170	.180
· ×	٠,			•	•	•05	2.70	.640	, 520	490	430			,108	126	.275	.250	.215	200
٧,	•	-		•	•	06•	2.35	009	, 500	,450	,520			080.	102	.260	.230	.185	170
. 1	٠ .			•	•	.55	2.80	099•	480	450	,430			. 260.	.102	.270	.210	.225	180
	-			•	•	29	2.50	.640	,520	.720	720			.112	124	.265	.250	.330	400
	-			•	•	8	2.50	.099	500	460	,620			, 96 0 .	158	• 390	300	.250	.275
٠,١	4			•	•	99.	2.15	089.	.520	,460	,620			. 260.	130	.265	.210	.210	290
~	٠,			•	•	.95	2.30	099.	.460	. 500	620			960	124	.225	.200	.235	330
- "	•			•	•	.45	1.60	099•	. 520	.575	,620			.118	142	.245	.210	200	.260
- '	4 1			•	•	•30	2,10	.540	. 500	400	,550			, 970.	118	.270	.250	.165	.220
	•			•		01.	2.30	820	. 500	. 520	089			.118	182	305	.290	.235	275
	٠,			•	•	08°	2.40	089.	. 520	430	,540			960	130	.310	.290	190	230
	•			•	•	•10	2.75	.680	.575	. 500	.570			, 301,	128	.270	.250	.250	315
* *	_			•	•	45	1.95	.630	400,	385	.700			. 880.	140	.290	.270	275	ω
- 1	-1			•	•	0 89•	2,35	009	.460	430	009			.088	150	.225	.200	175	220
- •	•			•	•	.35	1.80	•640	. 500	.445	640			.092	158	.275	.260	170	240
- 4	•			•		2	2.35	. 560	430	.460	520			920	124	240	210	061	230
•	7			•	•	.50	2,10	. 560	430	430	08			9/10	102	300	260	175	240
$\overline{}$	90. 070,			•	•	\$35	2.55	.560	.480	.445	570			.084	124	305	.250	180	220
~	•			•	•	•05	2.60	099•	.520	.480.	540			.070.	120	315	.255	195	220
	.,			•	•	• 40	2.00	.680	. 520	. 500	9029			.084	110	.320	.315	200	330

Additional Plots.

Composition. Glover

		N	1			% M				Ca	80	-		Mg %				P-	199	
	4		CO	Д	A		ပ	А	4	щ	ςυ H		₽	-	Ö	А	⋖		ړی	О
L	.120	9	.075	.075	•	. •	.85		86	.75	98	<u> </u>	48	25	1	280	.355	.235	.140	200
N N	.052	090.	080	130	2.60	1.90	1.25	1.05	1.85	1.62]	1.81 2.	28	300	. 962	312	296	.340	.275	.190	,235
; 1 124	•050	٠,	.055	•075	•		40	•	12	80,	• 78	•	• 99	සූ	-	506	300	.235	.185	.215
다. 보	.155	.	•075	.085	•		5	•	9	\$	7 6•	•	43	2		214	.325	.180	.190	.185
	•065	٠	140	060	•		8,	•	.72	•46	.54		42.	90	_	1.78	.295	.195	100	.140
a Z	.025	੍ਰ	.022	.01.5	•		•65		\$6	.75	.72	•	56.	14,		174	.410	.295	.150	.185
	•170		.082	.085			• 50	•	₹6•	68.	•78	•	04.	14	-	182	.290	.170	.180	.190
Q.	040	٠	.085	.040	•		20		90•	.73	8	•	32	90	•	908	.325	.220	.195	.190
14	.275	-	.135	.130	•	•	01.	•	68° €	.62	•75		23	200	•	222	.220	.120	.110	.175
	.035	٠	0.00	.070	•	•	2.	•	₹6•	•46	90.	•	. 09	30	_	238	.310	.185	.140	1.00
12	.190		•360	.155	•		.95	•	• 98	·43	87		34.	42	-	256	.215	.210	070.	.105
Z	.030	٠	.105	.100		•	8.		• 78	• 58	81	1 4 - 1	92.	33	•	214	.370	.250	.085	.095
ı		•	•065	.077	•	•	සි	•	60•	86.	.72		90	44.	•	230	305	56T.	.105	,185
N P N	3.100	਼	.105	.075		•	6,		£8.	•65	₹6•		56.	پو	•	214	.260	.190	\$60.	.140
P4	.082	•	.025	•030	•	•	.45		•16	76.	.75	2	20.	33	•	158	.250	.200	.155	.180
ഗ വ	.335	•	.165	.175	٠	•	00°	•	• 50	50	₹6 •	·	23	93	•	190	.370	.220	.195	.210
۱ بد	120	•	590.	007	•	•	9		35	•16	• 7%	e Luktovin	38	77	-	198	.315	.250	.140	.190
역 조 (.085	•	.120	090	•		50	•	£	.72	•062	e Z union	32	0	•	238	.350	.275	.150	.190
	.055	٠,	.050	•075	•	•	%	•	50	50	.75	es reco	54.	. 92	•	182	.260	.195	.155	.185
ا 2 :	50.00	ا ب	560.	0110	•		20	•	.24	. 94	ध्र	•	90	0	•	214	.340	.230	.155	.165
	.215	•	.125	185	•	•	2,		\$0.	• 5 3	96.	•	54.	• 9	•	230	.355	.230	.075	100
구 4 분	090	•	030	0110	•	•	9	•	42	12	89		ල	14	•	230	.320	.275	170	.175
4 27 27 27 27 27 27 27 27 27 27 27 27 27	- - - - - - - -	•	7.TO.	0%0	•	•	35		68	200	င္တွဲ်	22.	• 000 1000 1000 1000 1000 1000 1000 100	22		238	•390	.230	.140	.175
v t	. LL5	۱ .	9.50°	.105 1105	•	•	•75	•	20	ණ ද	<u>%</u>		32	22	•	230	.355	.220	.155	1.90
ן גרנ	27.	•	07.T.	.140	•	•	45	•	91.	<u>ئ</u> وي	98	2007.90	06	ထ	•	264	.390	.250	1.50	0.11.
Z4 :	0.40	•	.025	。 045 5.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.	•	•	င္တ		6%	• 46	\$ \$		• ೮	77	•	238	.325	.215	.100	120
=	.040	•	.045	•135	•	٠	2		02	889	° 03	• •	8	• &	•	214	360	.220	011.	130
: 1		•	001.	.077	•	•	\$20	•	98	.20	86,		• 53 53	90	•	214	.235	.150	100	150
석 노 르	5.135 0.75	•	0,000	090	•	•	\$0.	•	8	.53	76.		48 •	22	•	230	.340	.260	.125	.125
I	0,000	•	.025	.045	•	•	\$35	•	35	60.	•65		ස	4	•	908	.295	.190	080	150
71 F K	. 105	•	.030	.025	•	•	2	•	90•	98	\$85	C\	2 .2	•		82	.340	.220	120	150
=	• T55		•300	.240	•	•	• 50	•	90.	<u>ئ</u>	\$50	-	. 9/	4.	•	506	.315	.315	170	195

Additional Plots.

33 N2 S2	.295	.285	.480	.305	12.60	2.90		1.05	1.81	1.29	9 2.09	9 2.1	<u> </u>	•	-	•		-		
	.280	.140	.115	.185	2,30	2.55	1.75	1.80	1.98	1.78	1.94	1.94	_	•	٠	•		-		
35 K2 S2	.195	.055	•065	.055	2.9	2.90	2.15	2.40	2.20	0 2.12 2	2 2.02	2 2.12	2 .216	6 .238	8 .202	2 .206				
	.050	.035	•065	.140	2.30	2.00	0.85	0.90	2.04	1.1.6	2 2.24	1 2.2		•	•	•				
	.035	.025	.035	.045	3.25	3.25	2,10	2.50	2,28	3 2.05	9 2.0€	5 2.0		•	-	•				
		.100	090•	.030	3.05	2.9	2.40	2.85	1.98	3 2.3	0 2.06	5 2.2		•	·	•				
Z N	.040	.017	•005	.017	3.40	3.70	3.05	2.55	1.81	1.6	2 1,89	9 2.2		•	•	•				
40	•040	•022	•015	•030	3.25	3.00	2.25	2.50	2.02	2.3	5 1.84	5 2.1		•	•	•	8 .245	5 .290	0 .185	5 .200
	A STANSFORM THE PROPERTY.	and the Company of the Company		A CONTRACTOR OF THE PERSON NAMED IN	1															

	CBASS.	FXPERTMENT	L L							Ě
		1		Cut. (Sample B.)	Ħ	DIFFERENTIAL	RESPONSES	Dry Matter	r. Yield.	(cwt)
		MEAN	SODIUM	MD	NITR	NITROGEN	PHOSPHORUS	HORUS	POTA	POTASSIUM
CWT./ACRE		RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.
Salt 4.	Grass Clover Total	+ 0.54 - 2.26 - 1.73	1 1 1	1 1 1	+ 0.38 - 2.92# - 2.56	+ 0.70 - 1.60 - 0.90	+ 0.40 - 1.70 - 1.34	+ 0.68 - 2.78* - 2.13	- 0.44 - 1.35 - 1.79	+ 1.51 - 3.19# - 1.68
Ammonium Sulphate 3 •	Grass Clover Total	+ 14.50**+ - 2.58*** + 11.93**+	+ 14.40*** - 3.26*** + 11.12**	+ 14.60** - 1.92 + 12.72**	1 1 1	111	+ 15.10** - 1.92 + 13.20	+ 14.02*** - 3.26*** + 10.70***	+ 15.25 - 3.90 + 11.35	+ 12.75** - 1.27 + 12.50
Superphosphate 3	Grass Clover Total	+ 0.76 + 0.44 + 1.21	+ 0.63 + 0.97 + 1.60	+ 0.90	+ 1.30 + 1.11 + 2.41	+ 0.22	1 1 1	1 1 1	+ 0.76 - 0.75 + 0.01	+ 0.76 + 1.64 + 2.40
Potassium 2.	Grass Clover Total	- 0.15 - 1.22 - 1.37	- 1.12 - 0.30 - 1.43	+ 0.82 - 2.14 - 1.32	+ 0.52 - 2.54 - 2.02	- 0.82 + 0.10 - 0.73	- 0.15 - 2.48 - 2.56	- 0.15 - 0.03 - 0.18	1-1-1	1 1 1
	M	STANI	STANDARD ERRORS+	.		INI	INTERACTIONS			
		SINGLE PLOT	DIFFRENTL. RESPONSE	MEAN RESPONSE	NS	PS	NP	KS	NK	PK
Grass Clover Total	16.41 5.23 21.64	2.58 2.46 2.72	1.29 1.28 1.36	0.96 0.91 0.95	+ 0.16 + 0.66 + 0.84	+ 0.14	- 0.54 - 0.66 - 1.21	+ 0.98	- 0.67 + 1.31 + 0.64	0.00 + 1.20 + 1.21

	GRASS.	• EXPERIM	IMENT 1.						4	77.
		C 2	2nd Cut. (Cut. (Sample C.)		DIFFERENTIAL RESPONSES		y Matter	Dry Matter Yield. (cwt)	cwt)
		MEAN	SODIUM	UM	NITR	NITROGEN	PHOSPHORUS	ORUS	POTA	POTASSIUM
CWT./ACRE		RESPONSE	ABS.	PRES.	ABS,	PRES.	ABS.	PRES.	ABS.	PRES.

		¥	zna cut. (Sample C.)	Sample C.)			-	Dry Matter Yield. (cwt)	Yield.	cwt)
		MEAN	SODIUM	UM	NITE	NITROGEN	PHOSE	PHOSPHORUS	POTASSIUM	SSIUM
ACRE		RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRE
4.	Grass Clover Total	+ 0.19 - 2.36 - 2.16	111	111	+ 0.64 - 1.79 - 1.15	- 0.25 - 2.93 - 3.16	+ 0.50	- 0.11 - 3.35 - 3.48	+ 0.36 - 1.15 - 0.76	+ 1 1 0 w w

- 3.35	
1.35	#
- 2.93 - 3.16	·····
1.79	
1 1	
1 1	発展し、 だ 、 発送して ひ 丁 発送して
	業が

+	ı	1
+ 6.61***	- 6.80**	+ 0.03
+ 9.00 ## + 6.61 ##	- 6.26	+ 2.67
	1	
1	ı	ì
+ 7.41***	- 7.08	+ 0.34
58 + 7.84 km + 8.30 km + 7.41 km	- 5.92***	+ 2,36
+ 7.84	- 6.51	+ 1.35
 Ω Ω	Ver	Te Te

+ +	+ + +
+ 7.01 + 8. - 8.51 + 4. - 1.52 + 4.	+ 0.37 + 0.15 + 0.56
+ 6.61 *** - 6.80 ** + 0.03	111
+ 9.00*** - 6.26** + 2.67	1 1 1
111.	- 0.63 + 0.43 - 0.18
1 1 1	+ 1.72 + 0.94 + 2.62
+ 7.41 + 7.08 + 0.34	+ 0.24
+ 8.30 + 5.92 + 2.36	+ 0.85 + 1.69 + 2.54
+ 7.84** - 6.51 + 1.35	+ 0.54 + 0.68 + 1.21
Grass Clover Total	Grass Clover Total

+ 1.72	-1.37 + 0.32 - 0.63 - 0.41 -3.06 + 0.97 -1.58 - 0.51 -4.42* + 1.30 - 2.20 - 0.93
	
+ 0.24 + + 0.09	1 2.25

+ 4.42	+ 0.65 + 1.21 + 1.86	111
+ 4.4% + 4.4% + 4.4%	+ 0.37 + 0.15 + 0.56	1 1 1
60°0 +	1 1 1	- 0.41 - 0.51 - 0.93
/O•× .	1 1 1	- 0.63 - 1.58 - 2.20
!	- 0.63 + 0.43 - 0.18	+ 0.32 + 0.97 + 1.30
l	+ 1.72 + 0.94 + 2.62	- 1.37 - 3.06 - 4.42

+ 0.11 + 0.53 + 0.64

+ 0.84 + 2.01 + 2.86

- 0.18 - 1.21 - 1.40

- 1.14 - 0.26 - 1.40

- 0.31 - 1.01 - 1.31

- 0.44 - 0.57 - 1.01

0.87

1.24

2.47 3.35 3.35

15.00 8.05 23.04

Clover Total

Grass

Мd

ZX

κS

ď

PS

SZ

MEAN RESPONSE

DIFFRENTL. RESPONSE

SINGLE

MEAN

STANDARD ERRORS+

- 0.52 - 1.04 - 1.56

Grass Clover Total

å

Potassium Chloride

Superphosphate 3.

Ammonium Sulphate3.

Salt

INTERACTIONS

1 3.58	+ 8.70 ***
3.58	- 4.50 ***
1 3.58	+ 4.42 *
+ 0.36	+ 7.01 ##
- 1.15	- 8.51 ##
- 0.76	= 1.52
- 0.11	+ 6.61***
- 3.35	- 6.80***
- 3.48	+ 0.03
+ 0.50	+ 9.00***
- 1.35	- 6.26**
- 0.85	+ 2.67
- 0.25 - 2.93 - 3.16	1 1 1
-# - 10	

	GRASS.	EXPERIMENT	ENT 1.							A 78.	
				GRASS.		DIFFERENTIAL RESPONSES % NG.	RESPONSES	% Na.			
		MEAN	SODIUM	UM	NITR	NITROGEN	PHOSP	PHOSPHORUS	POTA	POTASSIUM	
CWT./ACRE		RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	

A 78.	SSIUM	PRES.	168*** 144*** 046*** 000*** 1000***
	POTASSIUM	ABS.	++++
% Na.	РНОЅРНОКОЅ	PRES.	+ .146## + .127## + .049## + .011
RESPONSES	PHOSP	ABS.	+ .190 ## + .141 ## + .057 ## + .033 ##
differential responses % Na.	NITROGEN	Pres.	+ 212** + 197** + 045** + 011
	MITR	ABS.	+ 1.23** + 071* + 061** + 033***
GRASS.	DIM	PRES.	1 1 1 1
ent l.	MDIGOS	ABS.	1 1 1 1
EXPERIMENT	MEAN	RESPONSE	+ 167** + 134** + 053** + 022*
GRASS.			4 ₩ ₩ ₽ • • • • • • • • • • • • • • • • •

.042 .131 .014

254*** 227*** 064***

*

¥ ¥

.021**

.057

+

1 1 1 1

.192 ## .241 ## .031 ##

.047***

D. B.

Ammonium Sulphate 3.

4.

Salt

.017

900.

ı

.013

.015

.052 .062 .011

.058 .030 .022

ı 1 1

.099# .085# .034

\$00 .001

053

.039 .013

ı

.046 .017

1 1

DCBA

'n

Superphosphate

ı

\$00.

.014

60

ı i

ı

ı

ı ı ı .01

.017

.102##

.108

.211**

ı

.001 .026

105***

045***

.059*** .030***

124*** 064*** 054***

1

015

ŧ

033

.046 ***090

.065

i

ı ı

DOBA

'n

Potassium Chloride

.040 .047##

i

105

ı

INTERACTIONS

ı

1 + ı

11

.005 •016

.007

.003

106

8

.054

048**

.009

038 018*** 021

1 ı

022 007 004

ı

+ + ı 1

.011

ı

.063 .008 .011

024 023 006 008

034 003 008 011

.069 .064 .017 .022

286 177 076 062

A C C C

PK

XX

KS.

ď

S

SZ

RESPONSE

MEAN

DIFFRENTL.

SINGLE

MEAN

RESPONSE

STANDARD ERRORS+

GRASS.	grass. experiment	ENT T.						4	A 79.
		Clover	er.	Q	DIFFERENTIAL RESPONSES	RESPONSES	% Na.		
	MEAN	MUIGOS	UM	NITR	MTROGEN	PHOSP	PHOSPHORUS	POTA	POTASSIUM
	RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.

EXPERIMENT	ENT 1.						⋖	A 79.
	Clover.	er.	u °	DIFFERENTIAL RESPONSES	RESPONSES	% Na.		
MEAN	MUIGOS	IUM	MITR	NITROGEN	PHOSP	PHOSPHORUS	POTA	POTASSIUM
RESPONSE	ABS.	PRES.	ABS,	PRES.	ABS.	PRES.	ABS.	PRES
+ 102*** + 069***	1 1	1 1	+ 108 ***	+ .096*** + .057	##690° +	+ .108 + .096 + .096 + .099 + .069 + .069 + .079 + .079 + .058	+ 123 *** + 079 ***	+ .081

. 79.	POTASSIUM	PRES.	+ .081 *** + .058 *** + .054 + .025
ਾ	*TO4	ABS.	+ 123*** + 079*** + 113** + 041
% Na.	PHOSPHORUS	PRES.	+ .105## + .069## + .067# + .028
RESPONSES	PHOSP	ABS,	+ .099*** + .069*** + .100***
DIFFERENTIAL	NITROGEN	PRES.	+ .096*** + .057*** + .102*** + .013
a	MITR	ABS.	108 *** 080 *** 065 **

.62	POTASSIUM	PRES.	+ .081 *** + .058 *** + .054 + .025
4	POTA	ABS.	+ .123 *** + .079 *** + .113 *** + .041 **
% Na.	PHOSPHORUS	PRES.	+ 105## + 069## + 067# + 028
ESPONSES	PHOSP	ABS,	099*** 069*** 100*** 038

002 014 030

008 004 028 009

012 010 064**

0022 005 005 005

600

ı

002 009 013 017

00.5 00.9 02.9

DOBA

m

Superphosphate

ı

ı

ı 1

- .005

- .013 - .015 - .037

0.030

001

ı

ı

000 .005

010. 019. 020.

018 005 020 027

026 008 029 026

052 017 058 024

101 064 993 992

A M O A

.021

.017

. 003

900•

1 1 + 1

.013

.003

PK

Z

×

ď

PS

SZ

MEAN RESPONSE

DIFFRENTL. RESPONSE

SINGLE

MEAN

STANDARD ERRORS+

INTERACTIONS

1 1

090°

.014 .058 .043

030 034 096 089

00.00 400.00 600.00 600.00

038 030 088 064

1 ı

.030 .030 .048

019 059 056

1 ı

A C C C

3

Potassium Chloride

ı

.004

.017

1

ı

ı

.014

.043 .022

.008

.013

ı ı +

900

800

.004

i

.065 .065 .005

1 1

.049 .020

+

ı

024 004 012 020

030

4 m 0 A

Ammonium Sulphate3.

1 1

033

A E C A

Salt

CWT./ACRE

1

GRASS.

SODIUM

NITROGEN	PR	
	ABS,	

PRES.

ABS.

RESPONSE

MEAN

CWT./ACRE

1 1 1

Auou.

÷

Salt

PRES.

ABS.

PRES.

ABS.

PRES.

1 1

60.

.13

1

31. 41. 40. 60.

200 H

POTABSTUM

PHOSPHORUS

×

8

DIFFERENTIAL RESPONSES

80

, 61.00 , 60.00

80.0

.22******

+

39**

21. .07

,33***

30 ×

1 1 1

1 1 1

48# 50# 26## 33#

14.

24.

85.118

200.00 20

A B C B

ċ

Potassium Chloride

4 20 T

+

.29**

99 ## 91 ## 41 ## 55

1 1 1 +

.04 .05

90.

90.

ı

.16

. 50.

₹⊞0A

e,

Superphosphate

÷

ಣ

88.

52 22 36 36

42***

1 1 1

+

60,

8.8

6,2,3

9.01

10.

8485

2428

8.5.7.9. 8.5.7.9.6.

4000

+ +

1 1 1

М

×

Š

Š

ьs

ŝ

RESPONSE

MEAN

DIFFRENTL.

PLOT

MEAN

RESPONSE

STANDARD ERRORS

INTERACTIONS

+1.21## + 73## - 21##

***89°

83 35 49 39

+ +

.10 .44***

i

1 1

1 1

1 1 1

81.8 40.40

> 40. 53. 42.

> > 2,4 % 2,6 % 1,4 %

A H O A

Ammonium Sulphate 3.

1

.67**,53**

74

.02

.02

	GRASS.	EXPERIMENT	NT T.						4	81.
		-)	CLOVER.	Q	DIFFERENTIAL	RESPONSES	% K.		
		MEAN	SODIUM	МГ	NITR	NITROGEN	dsoнd	PHOSPHORUS	POTA	POTASSIUM
CWT./ACRE		RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.
Salt 4.	A W O D	+ .10 + .38# + .16 + .17#	1111	1111	02 67*** + .03	+ .22# 09## 25## + .31	+ 18# - 44# - 000 + 30##	+ .02	+ .40*** 08 09** + .34**	- 20# - 68# - 23#
Ammonium Sulphate 3.	4 m o o	+ 19# - 13 - 22# - 25	+ .07 42 13	+ .29# + .16# 31#	: : : :	1 1 1 1	04 35 55***	+ .42 *** + .09 + .11 + .10	06 43** 25***	+ .44** + .17* 19*
Superphosphate 3	4 m o o	+ .27 + .24 + .32 + .14	+ 35 ## + 18 + 48 + 27	* + + + + 19 * 16 * 10 * 01	+ + .04 02 01 *:21	+ .50*** + .48** + .55** + .49***	1 1 1	1111	+ + .22 + + .16 + .28	+ .27** + .32** + .36** + .35**
Potassium 2. Chloride	4 M O O	+ 37 ## + 51 ## + 33 ## + 42 ##	+ .67## + .81## + .40## + .59##	+ .07 + .21 + .26	+ .12 + .21 + .30	+ + + .36 ##	+ + + 20 ## + + 20 ## + 24 ##	+ .42*** + .59*** + .37 *** + .60**	1 1 1 1	1111
	24 97	STAND	STANDARD ERRORS+			INI	INTERACTIONS			
	NEW	SINGLE	DIFFRENTL. RESPONSE	MEAN RESPONSE	SN	PS	NP	KS	NK	PK
4 ⊞ ∪ ∩	3.12 2.85 1.90 1.86	.16 .39 .23	.08 .19 .12	.13 .08 .07	+ + + + + + + + + + + + + + + + + + +	+ .08 + .06 + .16	+ .23 ** + .33 ** 33 **	- 30## - 30## - 07	+ 25 *** + 30 *** + 03 *** + 20 ***	+ + + +

	GRA	GRASS.	EX PERIMENT						7	A 82.
			5	GRASS.	Д	DIFFERENTIAL RESPONSES	RESPONSES	% Ca.	•.	,
		MEAN	MUIGOS	IUM	NITR	NITROGEN	PHOSI	PHOSPHORUS	POTASSIUM	SSIUM
CWT./ACRE		RESPONSE	'SBV	PRES.	ABS,	PRES.	ABS.	PRES.	ABS.	PRES.
		₩ 6₹0° -	1	1	052 HR	1	610• -	₩¥64.0° -	048##	050 **
4.		200	i	ı	\$00° +	1	+ .013	027	012	002
	ပ်	000•	i	ı	4 .007	200	020	+ 020	+ .005	002
		4 .007	ı	ı	+ .025	011	014	+ 030	+ .016	002
	Α.	018	021	015	1	1	+ .021	₩¥¥450° -	000	036第
	· m	800. +	+ .023	200	1	ı	900* +	+ .01.0	900•+	+ .010
ent.		018	110	025	ı	i	+ .024	090	023	013
onium Sulphate 3.		910	+ .002	034	ı	1	+ .043	0777	043	+ .011

(TO: +	020	014	
ッツつ・	- 0007	1.10.	
0000	4 .007	+ .025	
	ı		
ı	ı	1	
200.	000•	4 .007	
		•	

Salt

9	•030	057	010	090	7770.
	+	1	+	1	1
	014	120. +	900* +		
- 200	1.01.	ı	1	i	1
	+ .025	ı	1	ı	ı
1	i	015	200. -	025	034
)	1	120	+ .023	110	+ .002
•	200.	.018	800.	.018	910.

	.013	.021	.015	.035	1	ļ
	+	+	ı	ı		
	+ .033	= .018	1.00	+ .043	ı	1
·	ì	ı	ı	1	#9£0·-	+ 003
)	1	1	1	ı	016	1030
	016	+ .005	055	057	044#	9[0]
	+ .061***	+ .001.	+ .029	+ .065	\$00.	020
	200.	.017	200.	.027	.027	- 9 [0]

.023 .033 .017

.004

.023 .003 .013

A H O A

<u>ښ</u>

Superphosphate

Ammonium Sulphate 3.

015	1111	
011 + .043	1111	
1 1	+ .036 + .003 02 4	
1 1	016 039* + .025	
055	044# 016 022 + .017	
+ .029 + .065	008 020 033 037	
+ .007	027 016 033 019	

ı	ı	1	ı	
ı	1	1	ı	
* 960	+ .003	620	670	
016	. 650	025	+ . 029	
044#	970	022	+ •017	

- .010 - .002 - .002 - .039

.018 .002 .005

001 005 005 009

+ .002 - .042 - .061

030 020 020

003 015 007 018

010 010 029 018

016 015 040 025

032 030 030 050

634 510 487 567

4 m o h

ı ı

.039***

ρK

XX

XS

ďN

PS

SZ

RESPONSE

MEAN

DIFFRENTL. RESPONSE

SINGLE

MEAN

STANDARD ERRORS+

025 023 022 001

.026 .018 .027

A C C C

ż

Potassium Chloride

1 1 INTERACTIONS

	GRASS.	EXPERIMENT	. T. I.						4	<u>8</u>
			Ö	CLOVER.	ដ	DIFFERENTIAL	RESPONSES	% Ca.		
		MEAN	SODIUM	UM	NITR	NITROGEN	PHOSP	PHOSPHORUS	POTA	POTASSIUM
CWT./ACRE		RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.
Salt 4.	₽ m c c c c c c c c c c c c c c c c c c	+ + 40. + + 50. + 80. **	1111	1111		- 04 - 03 + 02 + 17**	1 1 + + 0.0.4 40.03	03 03 + .04 + .13**	+ + 1 1	03 00 + .09 + .14
Ammonium Sulphate 3.	A. G.	22# 34# + .07# + .13#	- 24*** - 35 *** + 11	- 20 HH - 33 HH + .03	1 1 1 1	1 1 1 1	- 11 - 36*** + 14 + 10*	- 33 *** - 32 *** + 16 ***	- 16## - 33## + 03 + 11#	- 28## - 35## + 12## + 15
Superphosphate 3.	A G G G G	70.00	++11	+ + + + 0.01 0.00 1.001 1.11	+ + + +	# 1.02 # 002 + 009	1111	1111	1 1 + +	+ + + + + .03
Potassium 2. Chloride	A. B. C.		- 005 - 004 - 004 - 004	+ + + + 03	1 + + 1		- + - 20. 41. 10.	+ .02 + .02 01	111	1111
-	ZE AZ	STANDARD	JARD ERRORS +	<u>.1.1</u>		INI	INTERACTIONS		-	
		SINGLE PLOT	DIFFRENTL. RESPONSE	MEAN RESPONSE	SN	PS	đN	KS	NK	PK
A CO.	2.03 1.82 1.85 2.19	.11. .16 .09	.06 .08 .04	04 0. 04 03	+ + .02 + -01 + .04 + .09	+ .03 + .01 + .02 + .05	- 11** - 02 - 07 + 03	+ + + +	+ - + + 0.2 4 4 .0 5 .0 4 .0 5 .0 5 .0 5 .0 5 .0 5	+ + - 0.05

	GRASS.
٦.	
EXPERIMENT	
GRASS.	

84.

Ą

				GRASS.		DIFFERENTIAL	RESPONSES	% Mg.	e c	
		MEAN	SODIUM	ОМ	ILIN	NITROGEN	PHOSP	PHOSPHORUS	POTA	POTASSIUM
CWI./ACRE		RESPONSE	ABS.	PRES.	ABS,	PRES.	ABS.	PRES.	ABS.	PRES.
Salt 4.		003 + .001 008# 017#		1111	003 008 005	003 006 014***	004 + .006 011	002 004 005	009 + .003 013***	+ .003 001 003
Ammonium Sulphate 3.	4 M O A	+ .030## + .015## 003	+ .030*** + .022** + .003 010	.+ .030*** + .008 009	1 1 1 1		+ .034 *** + .022 *** + .006 + .013	+ .026*** + .008 012***	+ .046*** + .011* 003	+ .014* + .019*** 003
Superphosphate 3.	₹ ₩0.0	# 0008 # 0008 1 0007	011 003 010* 006	009 013 004	006	004 015*** 016***	1111		015** 010 006 + .007	005 006 008
Potassium 2.	åπ°. c	005 001 009	011 + .001 013		+ .011 005 009* + .001	021 + .003 009 003	- 010 - 003 + 009 + 009	.000 + .001 010*	1111	1111
	7 A A	STANDARD	JARD ERRORS +			INI	INTERACTIONS			
	No.	SINGLE PLOT	DIFFRENTL. RESPONSE	MEAN RESPONSE	SN	PS	ďN	KS	NK	PK
4 E O O	205. 092 097 129	.012 .011 .007	.006 .005 .004 .008	.003 .003 .006	.000 007 012	+ .003 + .003 + .003	004 007 008 015	+ .006 + .002 + .004 * .013	+ .004	+ .005 + .002 001

EXPERIMENT 1. GRASS.

				CLOVER.		DIFFERENTIAL	RESPONSES	% Mg.		
		MEAN	SODIUM	ОМ	ILIN	NITROGEN	PHOSP	PHOSPHORUS	POTA	POTASSIUM
CWT./ACRE		RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.
Salt 4.		- 028 - 006 - 003 - 005	1 1 1 1	1 1 1 1	022 + .004 + .016 + .002	034 008 010 012	039 017 001 010	017 + .004 + .006 .000	038 012 009 022	018 .000 + .015 + .012
Ammonium Sulphate 3	∳ m o A	+ .025 + .002 + .020	+ .031 + .033 + .033	+ .019 004 + .007 + .010	1111	1111	+ .034 + .007 + .035 + .035	+ + .016	+ .021 + .003 + .027 + .004	+ .029 + .006 + .013 + .030
Superphosphate 3.	√ m o o	003 020 014 019	014 031	+ .008 009 011	+ .006 011 000 004	- 012 - 029 - 028 - 034	1111	1 1 1 1	+ .004 + .014 + .005	011 026 034 026
Potassium 2. Chloride	A W O U		.019 007 018 018	+ .001 + .005 + .006 + .016	013 + .003 + .001 014	005 005 013 + .012	002 + .005 + .014 + .006	016 007 026 008	1111	111
	N O O	STANDARD	DARD ERRORS +	ال		LNI	INTERACTIONS			
		SINGLE	DIFFRENTL. RESPONSE	MEAN RESPONSE	SZ	PS	dN	KS	NK	PK

- .007 - .006 - .019

+ .004 - .004 - .007 + .013

+ .010 + .006 + .012 + .017

- .009 - .015 - .015

+ .011 + .011 + .003 + .005

- .006 - .003 - .013

013 005 010

019 007 014 015

038 013 028 031

260 227 229 229 218

H C H P

86. 4

	GRASS.	EXPERIMENT	TENT 15						A 86.	•
		·		GRASS.	u	DIFFERENTIAL RESPONSES	RESPONSES	P. P.		
		MEAN	WNIGOS	ОМ	NITR	NITROGEN	PHOSP	PHOSPHORUS	POTA	POTASSIUM
CWT./ACRE		RESPONSE	ABS.	PRES.	ABS,	PRES.	ABS.	PRES.	ABS.	PRES.
	A.	+ .002	1	1	010	+ .014	900* -	010* +	200* -	900. +
Salt	B.	4 .007	1	1	4 .007	200. +	900* +	\$00.+	+ .005	+ .010
	ن	+ .005	ı	1	+ .020#	010	+ .024**	014	+ .019	600
	ė.	+ .021	1	ı	+ .032	+ .010	000	+ .042**	+ .030	+ .012
	Α.	000	1	+	ı	ı	800	\$00° +	• 001	100
	B.	+ .005	+ .005	+	1	i	018	+ .029	+ .012	001
Ammonium Sulphate 3	ပံ	049	1	i	ı	1	030	890	1	055
• ``	ė	<u>- 039</u>	028	050	1	1	000•	840	ı	037

005 015 010 005

018 019 014 058

+ .026 + .027 + .022

030 024 009 022

014 022 000 040

022 023 004 019

A a o a

Superphosphate 3.

.007 .008 .010 .036

- 0224 - 0000 + 012

023 010 010

- 011 - 009 - 020*

016 014 019 021

- .014 - .018 + .009 - .003

.010 .016 .005 .005

G B A

'n

Potassium Chloride

+ .017 + .008 - .006 - .024

+ .004 + .002 - .014 - .009

- .005 - .018 - .039

+ .008 + .002 + .005 + .005

000 000 015 015

010 013 007 013

013 017 009 019

027 034 019 037

280 256 219 264

A B O A

ı

- .004

PK

NK

KS

ďΧ

SZ

MEAN RESPONSE

DIFFRENTL. RESPONSE

SINGLE

MEAN

STANDARD ERRORS+

INTERACTIONS

87.		POTASSIUM	PRES.
₹		POTA	ABS.
	% P	PHOSPHORUS	PRES.
	RESPONSES	HOHA	ABS.
	DIFFERENTIAL RESPONSES	NITROGEN	PRES.
	1	NITE	ABS,
	CLOVER.	ОМ	PRES.
MENT 1.		SODIUM	ABS.
GRASS. EXPERIMENT		MEAN	RESPONSE
GRASS.			
			CWT./ACRE

		1 4					
A		POTAS	ABS.	600	900	+ .001	022**
	64 64	PHOSPHORUS	PRES.	014	710	800.	022#
	RESPONSES	PHOSP	ABS.	\$10° (003	004	900
	DIFFERENTIAL RESPONSES	NITROGEN	PRES.	₩ 945	† •001	- ,019	012
	Д	NITR	ABS.	+ .013	.021	4 °007	910
	CLOVER.	ОМ	PRES.	1	1	ı	1
MENT 1.		SODIUM	ABS.	1	1	1	1
EXPERIMENT		MEAN	ESPONSE	910.	010	900	.014m

A 87.		POTASSIUM	
	e.		
	28	RUS	
	S	юзрнокиз	_

.062## .054

\$00

ı

018

+ + +

> ı 1 1

002 043 038

012

.025#

DOB⊅.

Ammonium Sulphate 3

+

+ ı

- .014 - .013

900•

i

ı

G B.

Salt

.016 .035***

.034 .034 .019

055#

.005 .004

.027 .00.

.041*

+ + ı

003 019

#**6**80.

042*****

.010 .002 .024

.036 .024 .002 .008

000 016

4 m o h

Superphosphate 3,

038

+

.010 .010 .003

.035 .022 .009

- .007 - .004 - .007

002 007 008 008

- .029** - .011

110 110 600 600 600

015 016 012 008

029 033 024 016

320 222 137 163

4 m o h

800

.023*** - .031* *920. *026

> .002 013

> > +

PK

X

KS

ď

PS

SZ

RESPONSE

MEAN

DIFFRENTL. RESPONSE

SINGLE

MEAN

STANDARD ERRORS +

INTERACTIONS

005

+

+ .007

051 036* 009 015

ı

023 019 007 015

000

.016 .015

DOB'

ຂໍ

Potassium Chloride

ı ı . 00

.007

.004

.019

- .013 - .024 - .003

+.019

809

	GRASS	ຫ	EXPERIMENT	ENT	છ ં										Ą	•	88		
	Dry M.	· (cwt)) Dry M.%	<i>F</i> ³		Na %			₩ %			Ca 🎋			Mg %			10°C	
en fili a La Lea de Cara de Ca	В	ပ	C	To the second	B	Д	Ö	A	Д	ပ	A	М	ပ	A	щ	ပ	₽;	tc;	ပ
	•	7.6	.5 23	9	35	•	090	•	1.20	•	.480	.365	.540	,	980	.116	.245	190	.190
	*		2.7 24	- 1	بر. •	•	,025	•	40	•	415	233	415		084	.102	.245	.150	.230
(CO	╮; ,		2.1 23	· [1	္ ဂ	•	,077	•	1.20	٠	.350	3300	415		020	0,00	.250	180	.225
	· .		% 23 1 23		• e	•	770,	•	1.75	•	.430	400	380		860	960.	.315	.230	•230 170
4 A 2 Z	•		ころん	0 00	Σ κ 	•	200	•	5.4	•	. 086. CAR	300	365		2 00	000.	27.5	2000	2 00 7 -
	14.0	6.2	21.9 23	0	200	135	040	1.95	1.25	1.55	88	360	38	060	.056	102	195	110	180
N	~		9.9 23	5.	လ	•	140	•	1,00	•	.430	300	.365		960.	.130	.265	.175	.195
Φ.	œ.		2.3 24	<u>.</u>	72.	165	110	•	1.25	•	.415	.330	.365		070.	901.	•245	.170	.170
z	ດໍ		3.1 23	2	တ္တဲ့	175	,040	•	1.70	1.80	.430	.365	300.		080.	001.	.255	.140	.135
M	<u>.</u>		2.4 24		5.	105.	,045	•	1,40	1.60	•380	.315	400		.062	011.	.215	.150	•190
22 E4	~		2.6 24	<u>.</u> سر	ලූ	040	017	•	1.65	06.1	.415	.315	•460		.062	130	.250	.140	.180
<u>~</u>	$\vec{\sim}$		3.9 24	<u>.</u>	52	400	.065	•	1.90	1.75	415	.365	.365		360°	•106	• 290	.210	.175
Ď.			2.7 23	9	ري دي	060	090	•	1.25	1.70	.365	.300	.400		080.	102	.215	130	.150
ا ا			3.2 23	ರು	72	535	.135	•	1,30	1.45	.380	.345	.330		080.	960•	.230	.150	.160
ы В 9	Ċ		9.6 23	<u>.</u> 0`	52	205	.115	•	1.40	1.50	• 500	400	• 460		• 089	.124	.340	.230	. 220
= : ~ :	<u>.</u>		9.6 23	<u></u>	22:	150	015	•	2,30	1.75	.500	400	.415		011.	960.	.295	.240	.185
to (ં.		1.5 23	٠.	5.	, 180	900.	•	1.45	1.95	415	.280	44.5		080	960	.295	.140	.195
ρ.; Ο\ :	.		2.6 23	4	Q	, 560,	040		1.10	8	365	315	.500		090	011.	.235	.150	190
ى د د	_i ,		9.0 22 7.0 22	<u>.</u> ح`ر	ر د ت	.335 .335 .336	.075	•	္က (၁	T. 73	400	.340	.340			960	.240	180	.165
대 23 년 - H (٠,		7.7.72	ည်း	5.5	. 245	86	•	L.40	•	365	. 330 082.	400		•07%	011.	.280	.150	.150
22 N F S			2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	 	ر بز چ	365	0777	200	3.5	9,6	084.	94.00	400		201.	880.	.350	235	. 190 1.00
4 P	ໍ້ຕ		サン	 -) TO		0C.4	•	004	2007	· ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・		000	707.		107	. L50
1 N N	` <		よってではなっている	 v 0		130	0.55	•	5,0	•	47.5	2000	430			200	222	C#T.	007.
. A.	ĺm		2.7 23	· <u>r</u> ~	5.	085	,045				430	280	400		090	108	280	145	225
7	Ö		2.5 22		3	0.070	.035	•	1.15	1,90	415	.260	.460	•	. 990	124	.220	150	180
× ×	0,		9.6	<u></u>	000	455	.215	•	1.10	1.10	.445	315	.415		.092	114	.330	.150	180
29 P K	$\vec{\alpha}$		1.7 23	9	გ	, 090,	.030	•	1.75	•	.415	.330	.445		960.	.118	.260	.180	.180
0 M	ď		2.5 23	π,	5.	060	.077	2.50	1.70	5°00	.385	300	.415		990.	960•	.265	.150	.140
z T	-(!		9.7 23	7	გ	,365.	. 660	•	2.80	•	• 400	.340	365		.052	020	.370	.195	200
≱; α			5.5	6	50	,575	.210	2.00	1.35	1.45	.460	340	430		.092	901.	.375	210	.220
											The second secon							Contraction of the second	Charles a separation of

						IFFERENTIAL	RESPONSES	DIFFERENTIAL RESPONSES Dry Matter Wields (cwt)	Yields (swt)
!		MEAN	SODIUM	UM	NITR	NITROGEN	PHOSE	PHOSPHORUS	POT.	POTASSTUM
CWT./ ACRE		RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.
4.	lst CUT.B.	+ 1.39 + 0.46#	1 1	1 1	+ 1.42 + 1.36 + 0.63 + 0.29	+ 1,36	+ 0.97	+ 0.97 + 1.81 + 2.33* + 0.40 + 0.52* + 0.70*	+ 2,33#	+ 0.45

+ 1.39 + 0.46	1 1	1 1	+ 1,42 + 0,63**	+ 1.36 + 0.29	+ 0.97	+ 1.81 + 0.52**
+ 7.84 + + 0.09	+ 7.87*** + 0.26	+ 7.81*** - 0.08	. 1 1	1 1	+ 8.26*** + 7.42*** + 0.31 - 0.13	+ 7.42

+ 6.96*** + 0.07

+ 0.47 - 0.19

+ 0.51

1 1

i 1

+ 0.91 - 0.48

+ 0.07

+ 0.91

+ 0.07

+ 0.49

1st CUT.B.

Superphosphate 3.

Lat Cur.B.

Ammonium Sulphate

Salt

- 0.02 + 0.07

+ 0.88 + 0.02

- 0.94 - 0.24

+ 0.42

+ 0.42 + 0.06

- 0.03

0.79

1.11

2.21

16.91

Ist Cut. B. 2nd Cut. C.

PK

NK

X

ď

PS

SZ

RESPONSE

MEAN

DIFFRENTL. RESPONSE

SINGLE

MEAN

STANDARD ERRORS+

INTERACTIONS

1 1

1 1

+ 2.16 + 0.44

+ 2.20

+ 3.06*

+ 1.30 + 0.35

+ 1.24 + 0.13

+ 2.18# + 0.37#

1st CUT.B.

3

Potassium Chloride

0 O + +
+ 2,33* + 0,70
+ 1.81 + 0.52
+ 0.97
+ 1.36 + 0.29
+ 1.42 + 0.63
1 1

•	0 O + +
	+ 2.33*
	+ 1.81 + 0.52*
	+ 0.97
	+ 1.36 + 0.29
	32:

+ 0.45 + 0.22
+ 2.33# + 0.70#

·	+ 0.45
	+ 2.33# + 0.70#

GRASS.	grass. experiment	fent 2.		Q	HFERENTIAL	DIFFERENTIAL RESPONSES % Na.	% Na.	Ą	A 90.
	MEAN	SODIUM	им	NITR	NITROGEN	PHOSP	PHOSPHORUS	POTA	POTASSTUM
	RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.
4 ⊞ ບ	+ .132*** + .116*** + .020	l lek	1 1 1	+ .103* + .052 + .013	+ 162" + 180" + 027	162*** + 185*** + 078 180*** + 145*** + 087* 027 + 038 + 002	+ .078 + .087 + .000	+ 141 XX + 101 XX + 022	+ 123** + 131** + 018

CWT./ACRE

•	+	+	
	1	ı	+.298***
			* \$

Salt

 * * *
\$ 0.4 \(\alpha\)
80.00

+ + +	
162 180 027	
11119	
+ + +	

.262	.252	.046
+	+	+

282

.024

1 1 1

ı

.028

GBA

Ammonium Sulphate 3.

045 018 003

93,03

1 1

1 1

.029 .022 .012

010

.029 .038 .019

ı

.075 .019

.023 .009 .001

G B A

'n

Superphosphate

.017

1 1 1

ı 1

064

.118 .058

1 100 1

136

- .**6**41 - .047 - .026

105

143*** 091*** 054***

S H S

ຂ່

Potassium Chloride

ı 1 .022 .004

- 101 *** - 045 *** - 028

1 +

.006 .013 .0110

1 +

.053 .029 .018

ı

. 007

027

.038 .026 .019

.075 .051 .038

290

₩ E

ı

.002 .009

Мď

X

KS

ď

S

SZ

MEAN RESPONSE

DIFFRENTL. RESPONSE

SINGLE PLOT

MEAN

STANDARD ERRORS+

INTERACTIONS

ABS.	+ .141 *** + .101 *** + .022

요.

	POTASSIUM	PRES.
	POTA	ABS.
•ч %	PHOSPHORUS	PRES.
RESPONSES	SOHA	ABS.
DIFFERENTIAL RESPONSES	NITROGEN	PRES.
-	NIT'S	ABS.
	ОМ	PRES.
	SODIUM	ABS.
	MEAN	RESPONSE

NITROGEN	
PRES.	ABS.
	1

1 1 1

1 1 1

99,50

A m o

4.

Salt

CWT./ACRE

NSSTUM	PRI	111
POT/	ABS.	+ .35
новиѕ	PRES.	+ .17
NITROGEN PHOSPHORUS POTASSIUM	ABS,	+ .07 + .08 15
OGEN	PRES.	+ .08 + .05
	ABS,	+ 1.6 + 0.5 - 1.6
	ES.	

POTASSIUM	PRES.	- 11 - 24 - 20
POTA	ABS.	+ .35
PHOSPHORUS	PRES.	+ .17
PHOSP	ABS.	+ .07 + .08 15
NITROGEN	PRES.	+ .08
NITR		

71. 26 00

+ +

05 08 08 08 08

15

+ + 1

33

1 1 1

1 1 1

2123

33

A m o

Ammonium Sulphate 3.

+ +

+ +

0.00

81.6

+

1 1 1

1 1 1

00.00

10. 40.

48.21

828

0.020°

S B B

e,

Superphosphate

1 +

1 +

1 +

t

1 +

93

.38 .09 .15

23 24 12

828

ı

0.05 0.05 0.7

0.0 0.0 0.0 0.0

1 1 +

15 12 08

23

8.55 25.45

2.23

A E C

1 +

1 1 ı

1 + +

P

X

KS.

ď

PS

SS

RESPONSE

MEAN

DIFFRENTL. RESPONSE

SINGLE PLOT

MEAN

STANDARD ERRORS+

INTERACTIONS

1 1 1

1 1 1

42... 36...

18 24 06

+

66.6

.79 .57 .33

S B A

å

Potassium Chloride

• 56 MM

+ +

				H	DIFFERENTIAL RESPONSES	RESPONSES	% Ca.		
	MEAN	SODIUM	UM	NITE	NITROGEN	PHOSPHORUS	HORUS	POTA	POTASSIUM
CWT./ACRE	RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.

			•	A	DIFFERENTIAL RESPONSES	RESPONSES	% Ca.		
	MEAN	SODIUM	. MD:	NITR	NITROGEN	PHOSP	PHOSPHORUS	POTA	POTASSIUM
ACRE	RESPONSE	ABS.	PRES.	ABS,	PRES.	ABS.	PRES.	ABS.	PRES.

	POTASSIUM
% Ca.	мыстомы // Са.
RESPONSES	PHOSP
FERENTIAL	GEN

PO.	ABS.	003 002 049
PHOSPHORUS	PRES.	029 039
PHOSP	ABS.	003 + .005 009

032

020 010 025

.012

1

1 1

1 1

1 1

.016 .017 .043*

A m o

Salt

.044

.026 .038 .044

+

025 038 054

1 1

1 1 1

0.23

.043 .062

048 **

A M O

Ammonium Sulphate

.034

.013 .013 .009

.039 .031

114

022

024 012 007

013

.039 .044 .051

.026 .022 .017

C B A

3

Superphosphate

.013 .009 .008

010

+ +

.009 .015 .006

.002 .010

.013 .022 .034

ı

.004 .005 .018

1 + +

016 016 017

022 022 024

043 043 047

416 325 405

C.B.

PK

NK

X.

ď

PS

SZ

RESPONSE

MEAN

DIFFRENTL. RESPONSE

SINGLE

MEAN

STANDARD ERRORS+

INTERACTIONS

1 1

1 1

.015 .004 .034

1

.014

001 015 026

+

003

ı

150.00

1 ı

.020 .007

.002 .005 .005

S H O

તં

Potassium Chloride

1 + 1

ı

8

		GRASS. ED	EXPERIMENT	2.	Д	Differential responses	RESPONSES	% Mg.	A	93.
		MEAN	SODIUM	дW	NITR	NITROGEN	PHOSP	PHOSPHORUS	POTASSIUM	SSTUM
CWT./ACRE		RESPONSE	ABS.	PRES.	ABS,	PRES.	ABS.	PRES.	ABS.	PRES.
Salt 4.	Ф. С.	006 009 013***	1 1 1	111	005 010 013	007 008 013	.000 004 012	012 014 014	004 .000 015	008 018 011
Ammonium Sulphate 3.	od m o	◆ .028*** + .015* 004	+ .029 ^{36#} + .014 004	+ .027*** + .016* 004	1 1 1	111	+ .020** + .010 + .001	+ .036## + .020 + + .009	+ .039*** + .017* + .004	+ .017* + .013 012*
Superphosphate 3.	4 ₩ O	+ + .002	+ .013* + .007 + .004	+ .001		+ .015# + .007 002	1 1 1	1 1 1	+ .012 .000 + .004	+ + +
Potassium 2. Chloride	A. C.	.000 .004 .008	+ .002 + .005 010	002 013 006	+ .011 002 000	00.1 006***	+ .005	- 005 - + 002 - 009	111	1 1 ¹

- .005

- .011** - .002 - .008**

1 1 +

+ + + 0005

- 0005

- + - 000 - 000

004 005 004

900. 900. 900.

01.5

.095 .078 .105

C B A

N.

K.S

ďΝ

PS

SZ

MEAN RESPONSE

DIFFRENTL. RESPONSE

SINGLE PLOT

MEAN

STANDARD ERRORS+

INTERACTIONS

	GRAS	GRASS. EXPERIM	IMENT 2.		•	TA PT NO GRADI	DIEPEDEN'TAI DECEDINGE	,	₽,	A 94.
		-					and the second	P. 80		
		MEAN	SODIUM	UM	NITR	NITROGEN	PHOSP	PHOSPHORUS	POTASSIUM	STUM
CWI./ACKE		RESPONSE	ABS.	PRES.	ABS,	PRES.	ABS.	PRES.	ABS.	PRES.

		MEAN	MUIGOS	ОМ	ATIN	NITROGEN	PHOSP	PHOSPHORUS	POTA	POTASSIUM
WT./ACRE		RESPONSE	ABS.	PRES.	ABS,	PRES.	ABS.	PRES.	ABS.	PF
4.	ъ. В.	+ - 00°	1 1	1 1	+ .016	000.+	+ .013	+ .003	+ .021	0,0

	• •
+ .003	+ .064*** + .060*** + .010
+ .013 + .008 + .011	+ .028 + .014 008
.000 + .006	1 1 1
+ .016 008 + .003	1 1 1
1 1 1	+ .038 + .044***
111	+ .054 + .030* + .040
.000 .000	.046## .037 ^{##} .001

.031 .029 .014

.021 .021 .008

1 1 1

.044 .048***

000 007 007 007

027 016 000

.022

.026 .025

4 m v

3

Superphosphate

C B A

Ammonium Sulphate 3.

Salt

.005 .003 .003

- .013 - .017 - .014

+ + 0023

- .005

.008 .007 .003

010

021 014 013

041 028 026

272 171 183

A m o

1 +

PK

NK

ĸs

ďΝ

PS

SZ

RESPONSE

MEAN

DIFFRENTL. RESPONSE

SINGLE

MEAN

STANDARD ERRORS+

INTERACTIONS

- .003 + .014

- .013 + .008

000

003 809 809

- 021 - 021 - 003

.005 .013 .025

008 004 011

S B S

તં

Potassium Chloride

900

.051# .033# .004

PRES.		005	\ \tau	070	014	
ABS.		+ .021	4.076	040	+ .014	
PRES.		+ .003	100) i	011	
ABS.		+ .013	+ .008)	+ .011	
PRES.		000	900* +)	003	
'SBV		+ .016	800)	+ .003	
 PRES.		ı	ı		1	
ABS.		1	1		1	
RESPONSE		\$ 00. +	100.1	(((000.	
		A.	B.	(.	

	Grass. D.M. (cwt)	Clover.DIM.(cwt)	Tòtal.D.M.(cwt)	Grass. % DM	Clover. %DM
_	A B C D	A B G D	A B C D	ပ	B C I
The second secon	3.9 3.0 4.0 2	5.3 6.2 5.6 1.	9.2 9.2 9.63.	1.4 23.3 16.6 17.	2.3 18.8 13.7 1
M M	28.1 13.6 16.7 7.6	3.2 2.0 I.	5.6 18.	4.4]	6.2 10.4 14.
Z	8.2 4.6 5.63.	5.6 6.9 7.5 1.	3.8 11.5 13.1 4.	9.4 24.4 16.3 17.	1.6 17.8 13.2 15.
S S	4.1 4.8 5.53.	4.0 8,377.4 1.	8.1 13.1 12.9 4.	9.9 23.1 15.6 16.	1.4 17.3 13.8 15.
დ 	3.1 14.0 15.3 7.	3.8 1.8 1.0 0.	6.9 15.8 16.3 7.	9.0 20.2 13.1 14.	1.2 15.0 12.2 15.
S M	3.8 13.4 16.0 8.	2.3 2.0 1.2 0.	6.1 15.4 17.2 8.	7.7 19.8 14.0 16.	0.0 15.8 11.4 16.
ഗ	6.4 4.8 3.93.	5.0 6.8 6.0 1.	1.4 11.6 9.95.	9.5 23.9 15.3 18.	1,3 18,6 12,8 17,
M	0.0 13.1 16.9 6.	4.6 3.2 1.8 0.	4.6 16.3 18.7 7.	9.1 21.3 14.5 15.	1.8 16.2 11:1 14.
	8.7 5.4 3.53.	6.6 6.7 5.8 1.	5.3 12.1 9.3 4.	9.9 24.7 16.3 17.	2.3 18.3 14.2 16.
	2.4 12.4 19.1 7.	2.9 1.9 0.8 0.	5.3 14.3 19.9 8.	7.8 21.3 14.6 15.	1,1 16,7 10,6 17,
	1.3 3.6 2.43.	6.6 7.4 6.2 1.	7.9 11.0 8.6 5.	0.1 25.6 16.0 17.	2.0 18.4 13.1 15.
Z	0.2 13.3 20.3 9.	3.2 1.6 1.1 0.	3.4 14.9 21.4 9.	8.2 20.2 14.9 15.	1.1 14.5 11.2 14.
N P	7.5 12.4 15.2 9.	4.0 2.0 1.7 0.	1.5 14.4 16.9 9.	7.7 20.7 15.4 15.	3.4 16.3 12.0 14.
ഗ	5.9 12.7 16.0 7.	3.4 1.1 0.7 0.	9.3 13.8 16.7 7.	7.2 19.5 14.1 15.	1.0 16.1 11.1 14.
Ŋ	0.2 3.7 4.0 2.	4.4 4.5 5.8 1.	4.6 8.2 9.8 4.	9.2 24.2 16.2 17.	1.2 18.6 12.8 15.
	2.3 2.8 3.9 2.	5.1 4.4 6.6 1.	7.4 7.2 10.5 4.	9.4 23.4 15.6 16.	1.8 19.0 13.4 15.
呂	0.4 12.7 13.7 6.	4.0 1.7 1.3 0.	4.4 14.4 15.0 6.	1.4 18.0 12.6 15.	2,9 13,8 11,1 14,
Ø	2.0 13.3 15.2 7.	4.1 1.4 0.8 0.	6.1 14.7 16.0 7.	7.3 16.4 11.5 15.	0.4 12.6 9.5 17.
Z	7.0 13.8 16.0 5.	3.4 2.0 0.7 0.	0.4 15.8 16.7 6.	9.0 17.9 12.5 15.	1.0 14.0 11.0 14.
Ŋ	8.0 4.4 3.33.	4.7 7.0 5.3 1.	2.7 11.4 8.6 4.	0.6 19.4 12.7 16.	2.7 14.9 12.1 15.
U2	0.4 3.5 5.4 2.	4.7 6.2 4.5 0.	5.1 9.7 9.93.	0.4 20.6 13.8 17.	1.9 15.8 12.0 15.
	1.9 4.0 4.4 4.	5.4 6.9 5.3 1.	7.3 10.9 9.7 5.	1.0 19.5 13.4 17.	2.8 15.6 12.1 14.
Ŋ	35.1 15.4 16.1 7.	3.9 1.0 0.5 0.	9.0 16.4 16.6 7.	9.0 16.8 11.4 15.	1.5 12.3 10.0 14.
д	6.4 4.0 5.93.	5.0 6.7 5.9 1.	1.4 10.7 11.8 5.	0.7 17.9 14.5 16.	1.4 14.8 11.7 14.
	3.9 15.6 16.2 6.	1.7 0.7 0.8 0.	5.6 16.3 17.0 6.	8.8 16.9 11.9 15.	.6 10.9 9.8 16.
Ø	2.1 12.8 14.6 6.	2.7 2.8 1.2 0.	4.8 15.6 15.8 6.	8.8 16.0 11.3 15.	.9 12.9 9.9 15.
ഗ	3.3 3.7 4.43.	5.4 6.2 5.9 1.	8.7 9.9 10.3 4.	0.8 22.0 14.4 18.	2.8 15.6 12.8 15.
S M	4.4 3.7 5.53.	4.8 6.0 6.1 1.	9.2 9.7 11.6 4.	0.9 18.8 13.7 17.	.8 14.9 11.9 15.
	0.9 4.5 6.5 4.	6.2 4.7 5.0 1.	7.1 9.2 11.5 6.	0.5 19.8 14.4 17.	1.5 14.5 11.0 16.
	4.4 2.6 6.22.	7.3 4.4 5.6 1.	1.7 7.0 11.8 4.	0,2 19,3 13,7 16,	3,3 14,9 12,3 17,
MNP	1.9 10.3 17.1 7.	2.5 1.6 0.5 0.	4.4 11.9 17.6 7.	8.7 17.2 12.4 16.	0 14.5 11.0 16.
S N	2.7 11.0 19.8 7.	2.2 0.9 0.7 0.	4.9 11.9 20.5 7.	8.6 15.0 12.5 16.	3.8 13.0 9.5 16.
The same and the same statement of the same					

Kathers 29 and 30 are in someone ordar.

	GR	GRASS.	H	EXPERIMENT	MENT	8								·				A. 96	٠,٠	
							Grass	Com	Oomposition.	ion.										
	B	Na B	S)	D	Ą	B	رم رم	Ð	Ą	Ca B	P% 0	Ð	4	M B) jo 2	А	4	e e	65 CO	D
;	.077	÷095	130	230		•	.75	•	200	770	630	785	114	194	200	186	.185	•170	305	295
	7.00	57.0	٠ ا ا	-	1.65 45	•	2.50 H	00 c	240 260 260	2, 2, 2, 2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	735	785	960	164		212	190 204	175 185	240	260
. ⊠ : Ω	0.45		105		• •	• •	3	• •	430	630	575	9.99	060	144	166	156	145	1961	305	270
S N	.140		.725	-	•	•	\$3	•	460	630	889	.785	940	160		218	.175	.195	245	225
O (.310		.675	-	•	•	500	•	500	. 540	260	029	980	.148		184	.165	\$305	195	210
A F	0.45		140	******	•	•	o c	•	430	540	640	720	282	120		140	198	205	260 260	295
4	0.03	140	140	200	1.40	1.75	2,75	18	540	200	000	979		152	272	172	175	220 220	745 245	270
	.205		\$00	.700	1.60			1.65	430	595	.620	.720	. 070.	152		130	175	210	195	220
¥.	050		•085	.150	•	•	20	•	460	. 540	. 640	999	960•	.144		156	160	205	365	240
∑ !	.077		.150	.320	•	•	2.85 2	2.75	430	.540	260	0000	. 970.	.120		176	145	190	175	165
면 : 본 :	125		.320	500	1.85	•	0,	•	480	. 595	• 620	.850	.082	.134		184	.155	.185	165	,200
က (.225		009	000	1.65	•	1.96.1	1.65	480	089•	. 720	785	0.78	.152		190	.135	.175	175	190
20 t	077		130	130	1,50	•	2,98	•	460	.720	. 620	099•	, 906 90	.126		132	130	.195	.220	.250
	135		• 125	160	1.78	•	20, 2	2.65	460	.750	.735	.750	,036 .55	.134		164	210	185	320	370
Ξť	CCT.		0000	00%	70°-1	•	ڻ د)) (.480.	200	, 0220 683 683 683 683 683 683 683 683 683 683	0,750	• 104 105	, 202°.		, 230	190	.165	210	225
2 P	. 207. 77.		067.	0000	ア・ドゥ	•	ン・ この。 この。) 02.4	35	00%	0220	7,50	00[.	. 06T.		067	2225	180	220	215
Z (7)	177		220	275	1.47 1.40	•	L. 40. L	200	720	000.	, 700 100 100 100 100 100 100 100 100 100	200	• 1.44 100 1	、ソロス・		7.T.S.	21.7. 7.1.7.	185.	220	230
o o	155	1.55	240	140	2.5	• •	2,50	2 10	44.5	200	777	2000	07.0	150	707	1001	24. P. P.		2,75 2,05 2,05 2,05 2,05 2,05 2,05 2,05 2,0	505 250
	.055		.140	100	1.75	•	20	2.60	430	640	640	750	100	148		166	270	185	305	270
n I			.650	.750	1.70	•	2,20]	. 30	330	.640	. 089.	.720	960•	.152		,1921	180	190	215	195
գ;	045		060	.350	1.75	•	3.40 2	3.50	330	089•	099	700	, 970.	134		,146	. 190	.215	,260	215
; z,	286		576.	990	1.45	•	O 1	•	430	. 640	.099	785	060	.164		,1961,	185	165	.200	190
20 (. 195		6/,0.	520	2,	•	2,25 6		44.5	. 595	92	720	960•	.148		, 168 ,	155	210	195	200
	2770		· 242.	550	•	•	S. ;	27.15	41.5	,620	735	089	960•	138		168	145	.225	275	215
n Þ	2002	4.107 020	000 000 000 000 000 000 000	77.0	•	•	2. 55. 70. 70. 70. 70. 70. 70. 70. 70. 70. 70	•	400	.540	089.	 000 100 100 100 100 100 100 100 100	060	152	.136	,136;	140	210	205	210
α 4 :	7 6		000	770	•	•	•		74FC		200	07.	, 27.0.	. 25.	. 22T	7.40	1.25	2002	265	240
u z		•	56.5		•	•	、ひない	() 4 () 4 () 4 () 1	24. 25. 26. 26.	. 089. 100. 100.	25.	027	.104.	104.	. 1778 100	120	3 3 5 5 5 5 5	195	220	215
	245	505	550	235	1.85	1.95	2,60	65	200	7.50	640	0000	960	163 163	178	0.00 0.00	225	0 0 0 0 0		195 260
The state of the s	1				· 1	١,							2/2			2		204	3	20°

A. 97.		29	A B C
			А
		25	ပ
		Mg	Щ
			4
			А
	•uo	25	ပ
	Composition	Ca	Ф
	Comp	- VIII 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	₹
	Clover		А
3.	CJ	K % Ca G	ပ
ENT		K	щ
ERIM			A
EXP		AND STREET, ST	А
•		હ્ય	Ö
GRASS.		Na	М
			♥

And the second s		Na 9	%	The Real Property lies and the Real Property lie	A 'Alpend The 'Alberta'	6 X	%	A CONTRACTOR OF THE PARTY OF TH	Cydles de cardinales	Ca	60		-	Mg	F-3			E1		
	₩		Ö	А	Ą		ပ	А	₩	Ф	Ö	А	₽;	ф	Ö	А	A		ల	Ð
9	.165	.210	.135	.180		-	r.	} •	4		} •	C.	.250	.256	.276	.212	175	.175	220	240
M	.200	.205	.200	.200	ત્ય	-i	H	•	C.	•	•	cι	.238	.244	.254	210	.145	.150	.220	.260
요 조	.185	.200	.195	.200	Ļ	H	r-i	•	A.	•	•		.286	.270	,270	.214	.140	.195	240	.220
დ დ	.295	.200	100	.160	C_{i}	ς,	7		C.	•	•	r-i	.238	.240	.240	• 206	.175	.175	200	190
S S	•450	.405	.510	485	r-i	r-i	H	•	O,	•	•	ςį	.220	.236	.240	.214	.195	061.	190	210
S Z	.520	.430	.380	.375	r-i	. i			0	•	•	ς.	•20g	.232	.268	.210	.130	.180	155	.200
S P K	.195	.180	.120	.150	તં	r-i	C.	•	C\s	•	•	H	.200	.210	.236	.180	.150	.205	185	.245
	.175	.240	.1.40	.160	U;	1.70	1.85	07.1	3.06	1.68	1.72	1.75	.218	.216	.250	.206	.1.55	.195	.145	.245
P4	.175	• 260	.175	.215	r-i	r—i	-	•	C.I	•	•	Ļ	.220	.210	• 290	.200	190	.205	170	200
	.425	.410	• 400	.325	r-i	<u></u> i	H	•	0	•	•	r.	.210	.232	.270	.276	190	.165	115	,220
Z	.155	130	.115	.175	r i	-	4	•	0	•	•	r.	.230	.216	.236	.210	160	.190	195	200
Z	.160	.155	100	.135	ૡ૽	Ċ	Ċ	•	-	•	•	<u></u> i	• 200	• 306	.226	.206	.115	.210	155	230
വ ജ	.135	.195	.140	.205	જં	r-i	ςį	•	0,	•	•	ıi	. 194	.200	.220	190	130	.165	175	235
W	.405	.365	.340	.445	r-i	r-i	H.	•	t0	•	•	,	• 20g	.240	• 398	210	120	.195	100	200
ಣ 	.230	.195	.195	.120	જં	 i	ςį	•	0,	•	•	r-i	• 308	.186	• 360	170	190	130	,185	230
Ŋ	.195	.175	.125	.140	જં	ςį	ςį	•	w.	•		۲.	.246	• 200	.232	188	. 205	.175	175	295
e E	.135	.280	.225	300	r i	r-i	H	•	ᅻ		•	αį	.250	.232	.340	210	100	500	235	215
ഗ	.445	.365	.310	.320	તં	r i	C\	•	-	•	•	H	.202	.244	294	.214	.155	190	300	.280
Zí.	.285	.280	.250	.220	r i	r.	H	•	್ಕ	•	•	r-i	•20g	.280	.272	220	.165	180	290	210
က ်	.405	425	.270	.310	r-i	r-i		•	਼	•	•	r-i	.340	.228	.264	220	175	195	230	240
တ '	.480	.355	.315	405		r-i	r—i	•	100	٠	•	r-i	.270	,216	.288	216	140	165	245	215
K	.185	.220	.155	. 205	r i		Ç.		0	•	•	N.	.240	,232	.254	216	190	165	.196	220
	.355	.335	• 430	.310	-	r-i	H	•	o.	•	•		.194	.232	. 238	.216	195	200	180	205
<u>ц</u> ;	•115	.195	135	.135	o.	.	C.	•	<u>٠</u>	•	•	<u>-</u> i	183	.216	.220	194	190	220	21.5	250
; ; ;;	.250	305	.355	.455	<u>-</u> i	 i	<u></u> i	•	٠ <u>.</u>	•	•	r-i	• 200	• 266	. 290	212	175	175	130	160
	•250	.270	.240	.240	-i	<u></u>	Ŕ	•	to	•	•		.210	.232	. 376	212	145	215	195	230
က္ :	.425	.355	.245	300		ď	H	•	0,	•	•	H	.220	.210	.246	214	140	210	165	185
ഗ	•405	.270	• 290	.290	-	į.	-i	•		•	•	<u></u> !	.216	.224	. 236	210	165	170	170	205
×	.125	.150	.100	.140	o.	r-i	3	•	-	•	•	r-i	.212	.232	.210	204	175	.185	195	230
	.115	.140	.140	.140	C.	$\mathbf{c}_{\mathbf{i}}$	C.	•	to.	•	•	ڹ	.244	.212	. 236	.210	170	205	165	240
M N N	.235	.165	245	195	r-İ	ri.	r-i	•		•	•	r-i	.212	.276	.280	210	,160	205	170	170
න න	• 455	.365	.320	300	ત્યું .	r-i	ณ์	1.40	<u>-</u> -	1.76	1.75	r-i	194	.210	. 260	210	180	190	300	270
							***************************************	The state of the s		***************************************	The state of the s	AND ASSESSMENT OF THE PARTY OF	Charles of the Incremental	Christian or company (1771-17).		ACTION TO THE POST OF THE POST			The state of the s	Maria Service

A 98.

Differential Responses. Total Dry Matter Yield. (cwt)

CWT./ACRE			MEAN	SOD	LUM	, MAGN	ESIUM	NIT	ROGEN	рноя	SPHORUS	POT	ASSIU M
	· ·	<u> </u>	RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS,	PRES.	ABS.	PRE
Salt	4.	A. B. C. D.	- 1.86 - 0.16 - 0.27 - 0.13	- - -	- - -	- 1.48 - 0.47 - 0.39 + 0.24	- 2.24 + 0.15 - 0.15 - 0.50	- 2.09 - 0.10 - 0.24 - 0.34	- 1.65 - 0.22 - 0.30 + 0.08	- 2.31 + 0.33 - 0.33 - 0.09	- 1.41 - 0.65 - 0.21 - 0.17	- 0.96 - 0.27 + 0.45 + 0.53	- 2.76 - 0.09 - 0.99 - 0.79
Magnesium Sulphate	2.	A. B. C. D.	- 0.82 + 0.19 + 0.67 + 0.07	- 0.44 - 0.12 + 0.55 + 0.44	- 1.20 + 0.50 + 0.79 - 0.30	- - -	- - -	+ 0.11 + 0.43 + 0.84 + 0.04	- 1.75 - 0.0 5 + 0.50 + 0.10	+ 0.08 + 1.06 + 0.58 + 0.41	- 1.72 - 0.68 + 0.76 - 0.27	- 0.24 - 0.81 + 1.05 + 0.25	- 1.40 + 1.19 + 0.29 - 0.11
Ammonium Sulphate 3 + 3	+ 3 + 3.	A. B. C. D.	+12.94 ^{HH} + 4.69 ^{HH} + 6.96 ^{HH} + 3.00 ^{HH}	+12.73*** + 4.75*** + 6.99*** + 2.79	+ 4.63***	+13.87** + 4.74** + 7.13** + 2.97**	+12.01** + 4.64** + 6.79** + 3.03**	1	- - -	+12.53*** + 5.02*** + 6.82*** + 3.02***	+13.35*** + 4.36** + 7.12** + 2.98**	+13.80 ^{HH} + 4.15 ^{HH} + 6.93 ^{HH} + 2.98 ^{HH}	+12.08 + 5.23 + 7.01 + 3.02
Superphosphate 3	•	A. B. C. D.	+ 1.59 - 0.15 + 0.58 + 0.09	+ 0.97 + 0.34 + 0.52 + 0.13	+ 2.23 - 0.64 + 0.64 + 0.05	+ 2.50 + 0.72 + 0.49 + 0.43	+ 0.70 - 1.02 + 0.67 - 0.25	+ 1.19 + 0.16 + 0.44 + 0.11	+ 2.01 - 0.48 + 0.72 + 0.03	- - -	- - -	+ 0.70 - 0.02 + 1.09 - 0.05	+ 2.5 - 0.2 + 0.0 + 0.2
Potassium Chloride 2	•	A. B. C. D.	+ 0.02 - 0.28 + 0.90 + 0.71*	+ 0. 92 - 0.39 + 1.62 + 1.37	- 0.88 - 0.17 + 0.18 + 0.05	+ 0.60 - 1.28 + 1.28 + 0.89**	- 0.56 + 0.72 + 0.52 + 0.53	+ 0.88 - 0.82 + 0.86 + 0.69	- 0.86 + 0.26 + 0.94 + 0.73	- 0.88 - 0.15 + 1.41 + 0.56	+ 0.92 - 0.41 + 0.39 + 0.86*	- - -	- - -

		STAI	NDARD ERROR	Rs ±					INTERAC	CTIONS				
	MEAN	SINGLE PLOT	Diffrntl. Response	Mean Response	SM	SN	MN	SP	мР	NP	sk	MK	NK	PK
A. B. C. D.	32.15 12.50 14.04 6.09	3.42 1.50 1.84 0.71	1.71 0.75 0.92 0.36	1.21 0.53 0.65 0.25	- 0.38 + 0.31 + 0.12 - 0.37	+ 0.21 - 0.06 - 0.03 + 0.21	- 0.93 • 0.05 - 0.17 + 0.03	+ 0.63 - 0.48 + 0.06 - 0.04	- 0.91 - 0.87 + 0.09 - 0.34	+ 0.41 - 0.33 + 0.14 - 0.02	- 0.89 + 0.11 + 0.72 - 0.66	- 0.58 + 1.00 - 0.38 - 0.18	- 0.87 + 0.54 + 0.04 + 0.02	+ 0.91 - 0.13 - 0.51 + 0.14

A 99

GRASS. EXPERIMENT 3.

Differential Responses. CRASS. Dry Matter. (cwt.)

						01010203	. Responses	· dicaso.	Dry Macc	er. Cwu,			
CWT./ACRE			MEAN	son	LUM	MAGN	ESIUM	NITI	ROGEN	PHOS	PHORUS	POT	A SSIU M
CW1.7 ACRE			RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.
Salt	4.	A. B. C. D.	- 1.16 - 0.01 - 0.16 - 0.09	- - -		- 1.04 - 0.35 - 0.22 + 0.18	- 1.28 + 0.33 - 0.10 - 0.36	- 0.83 - 0.04 - 0.32 - 0.29	- 1.49 + 0.02 .00 + 0.01	- 1.70 + 0.05 - 0.47 - 0.01	- 0.62 - 0.07 + 0.15 - 0.17	- 0.50 - 0.15 + 0.82 + 0.63	- 1.82 + 0.13 - 1.14 - 0.81
Magnesium Sulphate	2.	A. B. C. D.	- 0.76 - 0.19 + 0.46 + 0.08	- 0.64 - 0.53 + 0.40 + 0.35	- 0.88 + 0.15 + 0.52 - 0.19	-	-	+ 0.27 - 0.04 + 0.50 + 0.11	- 1.79 - 0.34 + 0.42 + 0.05	+ 0.22 - 0.10 + 0.10 + 0.46	- 1.74 - 0.28 + 0.82 - 0.30	- 0.13 - 1.05 + 0.76 + 0.22	- 1.39 + 0.67 + 0.16 - 0.06
Ammonium Sulphate 3 +	3 + 3 + 3	A. B. C. D.	+15.08 HH + 9.17 HH +11.86 HH + 4.08 HH	+15.41*** + 9.14** +11.70** + 3.88**	+14.75*** + 9.20*** +12.02*** + 4.28**	+16.11 + 9.32 + +11.90 + 4.11	+14.05 ^{NH} + 9.02 ^{NH} +11.82 ^{NH} + 4.05 ^{NH}	-		+14.77*** + 9.70** +11.67** + 4.10**	+15.39*** + 8.64** +12.05** + 4.06**	+16.27*** + 9.13*** +11.9a*** + 3.96**	+14.89 + 9.21 + 11.81 + 4.20 + 4.20
Superphosphate	3.	A. B. C. D.	+ 1.36 - 0.09 + 0.66 + 0.02	+ 0.82 - 0.03 + 0.35 + 0.15	+ 1.90 - 0.15 + 0.97 - 0.01	+ 2.34 .00 + 0.30 + 0.45	+ 0.38 - 0.18 + 1.02 - 0.31	+ 1.05 + 0.44 + 0.47 + 0.09	+ 1.67 - 0.62 + 0.85 + 0.05	1 1 1	- - - -	+ 0.43 - 0.17 + 1.16 .000	+ 2.29 - 0.01 + 0.16 + 0.14
Potassium Chloride	2.	A. B. C. D.	- 0.14 - 0.04 + 0.73 + 0.51	+ 0.52 - 0.18 + 1.71 + 1.23#	- 0.80 + 0.10 - 0.25 - 0.21	+ 0.49 - 0.90 + 1.03 + 0.65	- 0.77 + 0.82 + 0.43 + 0.37	+ 1.05 - 0.08 + 0.78 + 0.39	- 1.33 .00 + 0.68 + 0.63	- 1.07 - 0.12 + 1.23 + 0.43	+ 0.79 + 0.04 + 0.23 + 0.58	- - - -	- - -

		STA	NDARD ERROR	es ±					INTERAC	TIONS				
	MEAN	SINGLE PLOT	Diffratl. Response	Mean Response	SM	SN	MN	SP	MP	NP	sĸ	мк	NK	PK
A. B. C. D.	27.84 8.53 10.58 5.49	3.77 1.28 1.78 0.72	1.89 0.64 0.89 0.36	1.34 0.45 0.63 0.25	- 0.12 + 0.34 + 0.06 - 0.27	- 0.33 + 0.03 + 0.16 + 0.20	- 1.03 - 0.15 - 0.04 - 0.03	+ 0.54 - 0.06 + 0.31 - 0.08	- 0.98 - 0.09 + 0.36 - 0.38	+ 0.31 - 0.53 + 0.19 - 0.02	- 0.66 + 0.14 = 0.98 - 0.72	- 0.63 + 0.86 + 0.30 - 0.14	- 1.19 + 0.04 + 0.09 + 0.12	+ 0.93 + 0.08 - 0.50 + 0.07

Differential Responses.

CLOVER. Dry Matter. (cwt)

MEAN SODIUM MAGNESIUM NITROGEN PHOSPHORUS P OT ASSIU M CWT./ACRE RESPONSE ABS. PRES. ABS. PRES. ABS. PRES. ABS. PRES. ABS. PRES. - 1.26** A. - 0.70 -0.44- 0.96 - 0.16 -0.61- 0.79 -0.94-0.46В. -0.15-0.12- 0.18 - 0.06 - 0.24 + 0.28 - 0.58 -0.12- 0.18 Salt 4. - 0.11 C. -0.17- 0.05 + 0.08 - 0.30 -0.37+ 0.15-0.37+ 0.15D. - 0.04 + 0.06 - 0.14 - 0.05 - 0.03 - 0.08 .00 - 0.10 + 0.02 A. - 0.06 + 0.20 - 0.32 -0.16+ 0.04 -0.14+ 0.02 **⊕** 0.11 - 0.01 + 1.16** + 0.38 В. + 0.41 + 0.35 + 0.47+ 0.29 - 0.40 + 0.24 + 0.52 C. + 0.21 + 0.15+ 0.27 + 0.34 + 0.08 + 0.48 - 0.06 + 0.29 + 0.13 Magnesium Sulphate 2. D. - 0.01 + 0.09 - O.LL - 0.07 + 0.05 - 0.05 + 0.03 + 0.03 - 0.05 - 1.60***
- 4.57**
- 5.08**
- 1.07** -.2.24** - 4.58** - 4.76** - 1.14** - 2.14 HX - 4.48 HX - 4.89 HX - 2.68*** - 4.39*** - 4.70*** - 2.04***
- 4.38***
- 5.02***
- 1.02*** - 2.47** - 2.24*** - 4.68*** - 2.04 HH - 4.28 HH - 1.81*** - 3.98*** A. - 4.98 ***
- 4.98 *** B. - 4.80 HH - 4.85^{HH} - 1.08^{HH} - 4.93 *** - 1.08 *** C. Ammonium Sulphate 3 + 3 + 3 + 3 - 1.08*** - 1.09 HH - 0.98## - 1.18^{##} D. + 0.24 + 0.33 + 0.32 - 0.84** Α. + 0.15+ 0.16 + 0.14 + 0.34 + 0.27 + 0.21 В. - 0.06 + 0.37 - 0.49 + 0.72 - 0.26 + 0.14 + 0.15- 0.27 - 0.06 C. + 0.20 - 0.32 + 0.21 -0.33- 0 .02 - 0.10 -0.07- 0.05 Superphosphate 3. D. + 0.02 - 0.02 + 0.06 - 0.02 + 0.06 + 0.02 + 0.02 - 0.05 + 0.09 + 0.16 + 0.40 Α. - 0.08 + 0.11 + 0.21 -0.17+ 0.47 + 0.19+ 0.13 - 0.74** В. -0.24- 0.21 -0.27- 0.38 - 0.10 + 0.26 -0.03-0.45+ 0.18 + 0.20** - 0.08 + 0.26 + 0.24 C. + 0.44 + 0.10 + 0.09 + 0.27 + 0.17+ 0.19 Potassium Chloride 2. + 0.30*** + 0.27** + 0.26 + 0.14 D. + 0.16 + 0.10 + 0.13

		STAI	NDARD ERROR	es ±					INTERAC	TIONS				
	MEAN	SINGLE PLOT	Diffratl. Response	Mean Response	SM	SN	MN	SP	мр	NP	sĸ	MK	NK	PK
A. B. C. D.	4.31 3.97 3.46 0.80	0.96 0.80 0.62 0.20	0.48 0.40 0.31 0.10	0.34 0.28 0.22 0.07	- 0.26 - 0.03 + 0.06 - 0.10	+ 0.54 - 0.09 - 0.19 + 0.01	+ 0.10 + 0.10 - 0.13 + 0.06	+ 0.09. - 0.43 - 0.26 + 0.04	+ 0.08 - 0.78 ^H - 0.27 + 0.04	+ 0.10 + 0.20 - 0.04 0.00	- 0.24 - 0.03 + 0.26 + 0.06	+ 0.05 + 0.14 - 0.08 - 0.04	+ 0.33 + 0.50 + 0.09 - 0.10	- 0.03 - 0.21 + 0.01 + 0.07

A 101.

Differential Responses.

GRASS.

% Na. MEAN SODIUM MAGNESIUM NITROGEN **PHOSPHORUS** POTASSIUM CWT./ACRE RESPONSE ABS. PRES. ABS. PRES. ABS. PRES. ABS. PRES. ABS. PRES. + .084^{***} + .152^{***} + .202^{***} + .093*** + .056[#] + .058[#] +.070 HENT + .071 + .164 + .183 + .183 + .066^H + .125^{HH} + .074[±] + .085^{±±} + .196 + .069³⁴ + .047 A. +.070 +.105*** +.136*** + .116 + .129* + .094*** + .046 В. + .143*** Salt + .070 + .089 4 C. + .076 - .006 - .013 + .041 + .034 + .076 + .083 D. + .035 + .029 + .036 - .013 - .026 + .008 - .002 - .062 - .020 A . - .006 - .010 + .001 + .014 - .042# - .059³¹ - .077 - .025 - .057 - .022 - .007 - .027 B. - .110°# - .011 - .080 + .010 - .089 - .020 - .074 - .026 - .050 C. - .135 TH Magnesium Sulphate - .068³⁴ - .067 **-** .113 - .023 - .001 - .079 - .057 D. - .069 + .087 HH + .306 HH + .509 HH + .510 + .087*** + .087 HH + .248 HH + .432 HH + .392 + .088** + .307** + .479** + .391** + .094** + .283** + .471** + .347 + .103 KH + .273 KH + .437 KH + .446 + .071 + .086*** + .189*** + .080. A. + .190 + .223*** + .213*** + .393*** В. + .428*** + •190 + •355 + •274 + .189 + .385 + .393 C. + .338*** Ammonium Sulphate 3 + 3 + 3 + 3 + .437 D. + .003 - .013 - .005 + .018 - .028 - .025 + .015 + .011 - .021 A. - .048 4 .006 - .010 - .036 - .006 + .004 - .046 В. - .021 - .032 - .014 - .046 - .106** + .014 - .021 - .018 - .016 - .023 - .011 - .009 C. 3. - .093** Superphosphate - .056 - .022 + .015 - Q 039 - .080 + .002 + .028 D. - .070^{₩₩} - .076*** - .144** - .229** - .110* - .076***
- .114**
- .187**
- .167** - .062**
- .155**
- .240**
- .276** - .062***
- .097**
- .163**
- .158** - .054[#] - .048 - .080[#] - .139[#] - .062³⁴ - .048 A. - .070 - .124 - .161 - .175 - .070 HH - .050 - .039 В. - .165^{HH} - .141^{HH} - .086 - .097 C. - .149*** Potassium Chloride - .206*** 2. - .040 D.

		STAI	NDARD ERROR	s ±					INTERAC	TIONS				
	MEAN	SINGLE PLOT	Diffratl. Response	Mean Response	SM	SN	MN	SP	МР	NP	sĸ	MK	NK	PK
A. B. C. D.	.144 .224 .371 .446	.049 .054 .096 .082	.025 .027 .048 .041	.018 .019 .034 .029	+ .004 020 + .060 + .006	+ .001 + .059*** + .047 001	007 035 039 + .045	023 011 + .007 + .041	+ .020 + .015 + .030 + .067	016 025 005 054	+ .014 + .047* + .066 048	+ .014 + .017 + .024 + .009	.000 058 077* 118***	+ .008 + .027 002 + .017

A 102. CLOVER. % Na. GRASS. EXPERIMENT 3. Differential Responses. NITROGEN PHOSPHORUS MEAN SODLUM MAGNESIUM POTASSIUM CWT./ACRE RESPONSE ABS. PRES. ABS. PRES. ABS. PRES. ABS. PRES. ABS. PRES. + .241 + .151** + .176^{HH} + .076^{HH} + .064^H + .060^H + .216^{HM} + .140^{HM} + .160^{HM} + .116 + .197 + .102 + .093 + .058 + .197 + .195^{HH} + .107^{HH} + .103^{HH} + .095 + .197^{HH} + .109^{HH} + .121_{HH} + .196*** + .108*** + .151 + .074 + .092 + .052 A. + .114** + .142** + .142** + .132** + .126 В. + .131*** + .112*** Salt 4. + .118*** C. + .081** + .088 D. - .021 - .009 - .003 + .022 - .046 - .015 - .011 A. - .012 - .013 - .014 - .040 - .023 - .027 - .029 - .025 - .028 В. - .027 - .026 - .011 - .015 - .033 - .038 + .012 + .007 C. - .013 - .022 - .004 2. Magnesium Sulphate - .074^{**} - .011 - .043 - .037 - .017 + .020 - .027 - .020 - .034 D. + .091 + .099[#] + .064^{##} + .131^{##} + .135 + .079[#] + .065^H + .066^{HH} + .111^{HH} + .085 + .051 + .039 + .031 + .045 + .091 + .084** + .102** + .085** A. + .048** + .065 + .099 + .111 + .068*** + .067** + .098*** + .034 В. + .120** + .123 + .091*** + .159^{##} + .063* + .060* Ammonium Sulphate 3 + 3 + 3 + 3C. + .065** + .091** + .116 + .088 + .041 D. - .019 + .027 - .010 + .018 + .007 A. + .004 + .005 + .003 + .001 - .004 + .008 + .001 + .003 + .002 + .002 - .004 + .008 + .002 В. + .029 + .019 + .012 + .036 - .001 + .049 + .024 + .005 + .043 C. Superphosphate 3. - .023 + .003 - .000 + .013 - .033 - .020 D. - .010 - .040 + .020 - .074[#] - .038 - .095 *** - .092 *** - .098 *** - .052 + .016 - .048# - .074# - .078 - .055_ - .006 - .029 - .082*** - .094*** - .114 .003 - .020_ A. - .064*** - .103*** - .117** - .116*** - .069^{HH} - .096^{HH} - .130^{HH} - .100^{3/3} - .076 - .088^{HH} В. - .099*** - .089 - .114*** - .150*** - .085^{NM} - .111 C. • .127 1 - .101 2. Potassium Chloride D.

		STAR	NDARD ERROR	es ±					INTERAC	TIONS				
	MEAN	SINGLE PLOT	Diffrati. Response	Mean Response	SM	sn	MN	SP	мР	NP	SK	мк	NK	PK
A. B. C. D.	.273 .265 .231 .248	.068 .042 .055 .051	.034 .021 .028 .025	.024 .015 .021 .018	+ .001 + .001 + .009 007	+ .020 + .032* + .048* + .028	034 + .002 020 047	001 + .006 + .019 + .030	+ .003 .000 + .025 + .010	+ .014 + .001 + .012 023	045 034* 020 036	009 013 + .002 + .016	+ .026 + .018 009 003	023 + .006 005 + .013

A 103.

Differential Responses. GRASS. % K.

GRASS. EXPERIMENT 3.

OWN 44677		MEAN	SOD	LUM	MAGN	ESIUM	NITE	ROGEN	PHOS	PHORUS	POT	ASSIU M
CWT./ACRE		RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.
Salt 4.	A. B. C. D.	+ .01 + .02 04 04	<u>-</u> - -	-	+ .05 01 07 + .01	03 + .05 01 09	02 + .09 05 01	+ .04 05 03 07	06 06 + .05 02	+ .08 + .10 13 06	+ .08 + .15 03 14	06 11 05 + .06
Magnesium Sulphate 2.	A. B. C. D.	01 + .05 04 + .09	+ .03 + .02 07 + .14	05 + .08 01 + .04	- - -	 - -	+ .03 + .07 01 + .04	05 + .03 07 + .14	06 + .02 + .07 + .08	+ .04 + .08 15 + .16	+ .03 + .09 05 + .02	05 + .01 03 + .16
Ammonium Sulphate 3 + 3 + 3 + 3	A. B. G. D.	+ .06 15 ^H 75 _{HH} 71	+ .03 08 76*** 68***	+ .09 22 74 74	+ .10 13 72 ^{MH} 76 ^{MM}	+ .02 17 78 66	- - -	- - -	+ .10 22 [#] 74 ^{***} 74	+ .02 08 76 68	.00 36*** 88*** 80	+ .12 + .06 62*** 62***
Superphosphate 3.	A. B. C. D.	13 03 + .04 11	20 11 + .13 09	06 + .05 05 13	18 06 + .15 12	08 .00 07 10	09 10 + .05 14	17 + .04 + .03 08	-	- - -	16 05 07 09	10 01 + .15 13
Potassium Chloride 2.	A. B. C. D.	+ .24** + .24** + .24** + .59** + .53**	+ .31 HH + .37 HH + .60 HH + .43	+ .17 ^{**} + .11 + .58 ^{***} + .63 ^{***}	+ .28 ^{HH} + .28 ^{HH} + .58 ^{HH} + .46 ^{HH}	+ .20 ^H + .20 ^H + .60 ^{HH} + .60 ^{HH}	+ .18 ^H + .03 + .46 ^{HH} + .44	+ .30 HH + .45 HH + .72 HH + .62	+ .21 ^H + .22 ^H + .48 ^{HH} + .55 ^{HH}	+ .27** + .26** + .70** + .51**	- - -	- - -

		STAN	NDARD ERROR	es ±					INTERAC	TIONS				
	MEAN	SINGLE PLOT	Diffratl. Response	Mean Response	SM	SN	MN	SP	мР	NP	sk	MK	NK .	PK
A. B. C. D.	1.63 1.96 2.43 2.09	0.16 0.16 0.28 0.24	0.08 0.08 0.14 0.12	0.06 0.06 0.10 0.08	04 + .03 + .03 05	+ .03 07 + .01 03	04 02 03 + .05	+ .07 + .08 09 02	+ .05 + .03 11 + .01	04 + .07 01 + .03	07 13 [#] 01 + .10	04 04 + .01 + .07	+ .06 + .21*** + .13 + .09	+ .03 + .02 + .11 02

A 104.

GRASS. EXPERIMENT 3.

Differential Responses.

CLOVER.

% K.

			MEAN	sor	LUM	MAGN	IESIUM	NITI	ROGEN	PHOS	PHORUS	POT	ASSIU M
CWT./ACRE		<u>.</u>	RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRE
Salt	4.	A. B. C. D.	+ .06 + .02 + .05 + .01	- - -	- - -	+ .09 + .05 + .08 01	+ .03 01 + .02 + .03	+ .17 + .03 + .07 + .09	05 + .01 + .03 07	+ .02 01 + .11 + .10	+ .10 + .05 01 08	+ .06 03 06 + .04	+ .0 + .0 + .1 0
Magnesium Sulphate	2.	A. B. C. D.	07 + .11 + .08 + .11	04 + .14 + .11 + .09	10 + .08 + .05 + .13	- - -	- - -	05 + .13 + .12 + .10	09 + .09 + .04 + .12	07 + .17 + .18 + .15	07 + .05 02 + .07	+ .01 + .08 + .10 + .08	1 + .1 + .0 + .1
Ammonium Sulphate 3	+ 3 + 3 + 3	A. B. C. D.	+ .08 05 22 20	+ .19 04 20 12	03 06 24* 28*	+ .10 07 18 21	+ .06 03 26 19	- - -	- - -	+ .03 .00 22 28	+ .13 10 22 12	+ .22 02 22 [#] 11	0 0 2 2
Superphosphate	3 ,	A. B. C. D.	05 05 + .01 .00	09 08 + .07 + .09	01 02 05 09	05 + .01 + .11 + .04	05 11 09 04	10 .00 + .01 08	0010 + .01 + .08		- - -	12 09 05 04	+ .0 0 + .0 + .0
Potassium Chloride	2.	A. B. C. D.	+ •53*** + •44** + •55*** + •47**	+ •53*** + •54** + •45** + •50***	+ .53*** + .34** + .65** + .44	+ .61 HH + .41 HH + .57 HH + .44	+ .45 ^{HH} + .47 ^{HH} + .53 ^{HH} + .50 ^{HH}	+ .67** + .47* + .55** + .56	+ •39 ^{KH} + •41 + •55 ^{KH} + •38	+ .46** + .40** + .49** + .43**	+ .48	- - -	-
	STAI	NDARD ERRO	Rs ±		<u> </u>			INTERAC	rions				
MEAN		Diffrntl.	Mean	SM	SN	MN	SP	мр	NP	SK	MK	NK	

		STAN	NDARD ERROR	es ±					INTERAC	TIONS				
<u>.</u>	MEAN	SINGLE PLOT	Diffrntl. Response	Mean Response	SM	SN	MN	SP	МР	NP	SK	MK	NK	PK
A. B. C. D.	1.85 1.65 1.86 1.55	.22 .22 .21 .20	.11 .11 .10 .10	.07 .07 .07 .07	03 03 03 + .02	11 01 02 08	02 02 04 + .01	+ .04 + .03 06 09	.00 06 10 04	+ .05 05 .00 + .08	.00 10 + .11 03	08 + .03 02 + .03	14 03 .00 09	+ .07 + .04 + .06 + .04

A 105.

CRASS. EXPERIMENT 3. Differential Responses. GRASS.

% Ca.

OWD / 1 0 = =			MEAN	son	LUM	MAGN	ESIUM	NITE	ROGEN	PHOS	PHORUS	POT	A SSIU M
CWT./ACRE		·	RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES
Salt	4.	A. B. C. D.	005 + .041 001 038	- - -	- - -	.000 + .006 + .004 018	010 + .076 [#] 006 058	+ .002 + .063 + .014 013	012 + .019 016 063	+ .005 025 + .012 084*	015 + .107*** 014 + .008	032 + .016 018 041	+ .02 + .06 + .01 03
Magnesium Sulphate	2.	A. B. C. D.	018 066*** 036 012	013 101*** 031 + .008	023 031 041 032	- - -	- - -	+ .006 046 + .015 004	042 086** 087* 020	013 126 064 013	023 006 008 011	021 075 [#] 050 + .006	01 05' 02; 030
Ammonium Sulphate 3 +	3 + 3 + 3.	A. B. C. D.	+ .035* + .031 003 + .082***	+ .042 [#] + .053 + .012 + .107 ^{##}	+ .028 + .009 018 + .057	+ .059 ^H + .051 + .048 + .090 ^{HH}	+ .011 + .011 054 + .074	- - -	- - -	+ .045* + .009 + .036 + .081*	+ .025 + .053 042 + .083	+ .010 + .015 + .007 + .107	+ .06 + .04 01 + .05
Superphosphate	3.	A. B. C. D.	006 020 + .016 006	+ .004 086*** + .029 052	016 + .046 + .003 + .040	001 080 [#] 012 007	011 + .040 + .044 005	+ .004 042 + .055 007	016 + .002 023 005	<u>-</u> -	- - -	+ .002 029 + .033 028	01 01 00 + .01
Potassium Chloride	2.	A. B. C. D.	022 + .033 038 + .003	049 [#] + .008055 .000	+ .005 + .058 021 + .006	025 + .024 052 + .021	019 + .042 024 015	047** + .017 028 + .028	+ .003 + .049 048 022	014 + .024 021 019	030 + .042 055 + .025	- - -	- - -

		STA	NDARD ERROR	s ±					INTERACT	TIONS				
	MEAN	SINGLE PLOT	Diffrntl. Response	Mean Response	SM	SN	MN	SP	MP	NP	SK	MK	NK	PK
A. B. C. D.	.450 .628 .687 .738	.044 .056 .080 .061	.022 .028 .040 .030	.016 .020 .028 .021	005 + .035 005 020	007 022 015 025	024 020 051 008	010 + .066** 013 + .046*		010 + .022 039 + .001	+ .027 + .025 + .017 + .003	+ .003 + .009 + .014 018	+ .025 + .016 010 025	008 + .009 017 + .022

106. A

GRASS. EXPERIMENT

В.

C.

D.

2.

Potassium Chloride

+ .01

- .06

- .07

.00

- .13

- .05

+ .02

+ .01

- .09

3. Differential Responses. % Ca. CLOVER. MEAN SODIUM MAGNESIUM NITROGEN PHOSPHORUS POTASSIUM CWT./ACRE RESPONSE ABS. PRES. ABS. PRES. ABS. PRES. ABS. PRES. ABS. PRES. A. - .12 - .18 - .06 - .10 - .14 - .21 - .03 - .27 + .03 - .06 В. - .07 - .08 - .05 - .04 - .05 - .07 - .07 - .05 Salt 4. C. - .01 - .06 + .01 + .04 - .03 + .01 + .06 - .01 - .08 D. + .03 + .01 + .05 + .01 + .05 - .09 + .15 + .05 + .01 A00 - .06 + .06 - .06 + .06 - .01 + .01 - .06 + .06 В. .00 + .01 + .01 - .01 - .01 - .03 + .03 - .04 + .04 Magnesium Sulphate 2. + .05 C. .00 + .10 + .05 + .05 + .10 .00 + .04 + .06 D. - .01 - .03 + .01 - .02 .00 + .06 - .08 - .06 + .04 A. - .14 - .12 - .16 - .20 - .08 - .11 - .17 - .16 - .12 - .05 В. - .03 - .01 - .02 - .04 - .04 - .02 - .07 + .01 Ammonium Sulphate 3 + 3 + 3 + 3. C. - .04 .00 - .02 - .02 - .02 + .01 - .05 - .01 - .03 D. + .04 + .02 + .04 + .03 + .05 .00 + .08 + .08 .00 A. - .02 - .11 + .07 - .03 - .01 + .01 - .05 - .01 - .03 В. + .01 .00 - .01 - .03 + .03 - .01 + .01 + .04 - .04 C. 3. + .04 + ..04 - .01 + .07 Superphosphate + .04 + .09 + .01 + .05 + .03 D. - .17 - .05 + .07 + .02 - .12 - .09 - .01 - .08 - .02 A. + .01 - .14 + .16 - .05 + .07 + .02 - .01 + .03 .00

		STA	NDARD ERROR	es ±					INTERA	CTIONS				
	MEAN	SINGLE PLOT	Diffrntl. Response	Mean Response	SM	SN	MN	SP	МР	NP	sk	мк	NK	PK
A. B. C. D.	2 .03 1.70 1.85 1.83	.20 .11 .09 .18	.10 .06 .05 .09	.07 .04 .03 .06	+ .06 01 + .05 + .02	02 + .02 + .02 + .02	+ .06 01 .00 + .01	+ .09 01 .00 + .12	+ .01 + .03 05 07	03 + .01 03 + .04	+ .15 + .01 + .07 0 ₂	+ .06 + .04 + .01 + .05	+ .02 + .04 01 04	01 04 01 + .03

- .03

- .07

- .12

+ .05

- .05

- .02

- .03

- .05

- .03

+ .05

- .07

- .11

+ .05

- .05

- .10

- .03

- .07

- .04

A 107.

GRASS. EXPERIMENT 3.

Differential Responses.

GRASS. % Mg.

MEAN NITROGEN PHOSPHORUS SODIUM MAGNESIUM POTASSIUM CWT./ACRE RESPONSE ABS. PRES. ABS. PRES. ABS. PRES. ABS. PRES. ABS. PRES. - .007 + .002 A. - .006 - .007 - .005 -.014- .005 - .005 - .007 - .004 - .014 + .004 - .006 В. - .005 - .005 - .005 - .003 - .007 - .028^{*} - .005_ - .005 - .007 - .003 + .018 4. C. - .005 - .017 + .007 Salt - .024 HT - .017³⁴ - .013** - .018[#] - .008 - .018^{**} - .002 D. - .009 - .008 - .006 \$000. + + .003 - .001 + .003 - .001 + .001 + .002 A . . .000 - .014 - .007 - .009 - .002 - .010 В. - .008 - .008 - .008 - .006 Magnesium Sulphate - .013 - .003 + .006 - .012 - .003 - .003 .000 - .006 + .007 C. + .001 + .002 + .002 - .004 - .004 D. - .001 + .003 - .005 - .003 + .002 + .016^H + .015^H + .043^{HH} + .005 + .025** + .006 - .001 - .002 + .003 + .001 + .004 .000 A. + .009 + .021** + .023** + .007 + .029 + .018 + .014 + 1018 + .014 В. + .027*** Ammonium Sulphate 3 + 3 + 3 + 3. + .003 + .018 + .012 + .001 + .009 C. + .043 + .043*** + .045 + .046** + .038*** + .041 *** + .040 + .048*** D. - .006 + .002 + .001 - .004 - .005 - .002 - .001 - .003 .000 A. - .006 - .008 - .006 - .001 - .016 + .002 - .008 - .013 В. - .007 + .014 - .018 Superphosphate + .008 + .012 - .016 3. C. - .002 - .004 .000 - .012 + .014 .000 + .002 + .012 + .004 + .010 + .004 + .010 + .007 D. - .012 - .032 - .046 - .030 + .003 - .024 - .032 *** - .016 ** - .008 - .030*** - .008 - .004 - .023*** - .023*** .000 .000 + .004 - .011 A. .024 - .022**-- .022[#] - .016 - .014 В. - .029** - .019* - .017 - .007 .039 Potassium Chloride + .014 .000 C. - .019 HH - .022 - .019** - .026 - .012 - .008 D.

		STAN	NDARD ERROR	s ±					INTERAC	TIONS				
	MEAN	SINGLE PLOT	Diffratl. Response	Mean Response	SM	sn	MN	SP	МР	NP	sk	MK	NK	PK
A. B. C. D.	.090 .154 .180 .177	.012 .018 .018 .015	.006 .009 .009 .008	.004 .006 .006 .005	001 .000 .000 004	001 002 + .012 005	002 002 003 002	001 001 + .002 + .005	002 + .006 + .010 + .003	+ .003 + .009 014 + .003	+ .008 + .009 + .023 + .011	+ .007 001 009 + .003	+ .004 + .007 006 .000	+ .004 001 016 [#] 007

A 108

GRASS	<u>.</u> E	XPERIMENT	3.		 		1	Different	ial Respon	ses. Cl	LOVER. %	Mg.	A. :	10 8
C	WT./ACRE	· B		MEAN RESPONSE	L _	DIUM	MAG	NESIUM	NIT	ROGEN	РНО	SPHORUS	POT	ASSIUM
				A SOLONO	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRE
Salt		4.	A. B. C. D.	007 012# + .003 001		- - -	003 017 + .005 001	011 007 + .001 001	004 016 + .002 007	010 008 + .004 + .005	012 007 + .003 003	002 017* + .003 + .001	008 024 022 + .003	00 .00 + .02 00
Magnesium S	Sulphate	2.	A. B. C. D.	+ .017 ¹⁰⁴ .000 + .006 + .005 ³⁴	+ .021 ^H 005 + .008 + .005	+ .013 + .005 + .004 + .005	- - -		+ .029 + .008002 + .010 + .010	+ .005 008 + .014 .000	+ .004 010 005 + .003	+ .030 + .010 + .017 + .007 +	004	+ .00 + .00 + .00 + .01
Ammonium S	ulphate 3	* 3 + 3 +	A. B. C; D.	021 *** + .014 ** + .019 ** + .006 **	018 ^H + .010 + .018 .000	024 + .018 + .020 + .012 + .012	009 + .022 + .011 + .011	033 ²⁵⁵ + .006 + .027 ²⁵⁵ + .001	1	- - -	014 + .010 + .030 + .004	028*** + .018** + .008 + .008*	027*** + .021** + .015 .000	+ .00 + .00 + .00
Superphospha	ate	3.	A. B. C. D.	002 005 006 002	007 .000 006 004	+ .003 010 006 .000	015 015* 017 004	+ .011 + .005 + .005 -000	+ .005 009 + .005 004	009 001 017 .000	- - -	- - -	+ .005 + .005 + .003 + .001	00 00 00
Potassium C	Chloride	2.	A. B. C. D.	014*019-**024*024*010**	015 031 049*** 006	013 007 + .001 016	016 023** 024* 016	012 015 024 004	020 [#] 012028 ^{##} 016 ^{##}	008 026*** 020* 004	007 009 021 007	021# 029## 027## 013##	-	-
		STA	NDARD ERROI	es ±					INTERAC	TIONS				
]	MEAN	SINGLE PLOT	Diffrntl. Response	Mean Response	SM	SN	MN	SP	МР	NP	sk	MK	NK	PK
B. C.	.221 .229 .259 .207	.016 .013 .018 .007	.008 .006 .009 .004	.006 .004 .007	004 + .005 002 .000	003 + .004 + .001 + .006	012 [#] 008 + .008005	+ .005 005 .000 + .002	+ .013 [#] + .010 [#] + .011 + .002	007 + .004 011 + .002	+ .001 + .012* + .025* 004	+ .002 + .004 .000 + .006	+ .006 007 + .004 + .006	00 01 00 00

A 109.

GRASS. EXPERIMENT 3. GRASS. % P. Differential Responses. MEAN SODLUM MAGNESIUM NITROGEN PHOSPHORUS POTASSIUM CWT./ACRE RESPONSE ABS. PRES. ABS. PRES. ABS. PRES. ABS. PRES. ABS. PRES. A. .000 + .003 - .003 - .008 + .008 - .010 + .010 -. .013 + .013 В. + .008 + .003 + .013 + .004 + .012 + .012 + .004 + .015 + .001 Salt 4. C. + .012 + .018 + .006 + .036** - .012 + .010 + .014 - .003 + .027 D. + .009 + .007 + .011 + .014 + .004 - .004 + .022 - .016 + .034 A. - .007 - .004 - .010 + .011 - .025 - .010 - .004 - .009 - .005 В. + .003 - .002 + .008 - .007 + .013 + .014 - .008 + .010 - .004 Magnesium Sulphate 2. C. - .001 + .005 - .007 - .020 .018 - .015 + .013 + .030 - .032 - :006 D. - .008 - .004 + .005 - .017 - .020 + .008 - .008 - .004 • .018 - .022** - .052*** - .040*** A. .000 - .008 + .008 - .018 + .009 - .009 - .007 + .007 - .012 - .071 - .051 - .016 - .002 - .090*** - .009 - .076 В. - .008 - .014 - .015 - .010 - .073^{HH} - .046^{HH} - .069*** - .066*** - .049*** Ammonium Sulphate 3 + 3 + 3 + 3. - .057 - .051 - .085*** - .051*** C. - .056*** - .053^{HH} - .062**** A. + .013 + .003 + .023 + .010 + .016 + .022 + .004 + .005 + .021 В. + .010 + .014 + .006 + .021 - .001 + .013 + .007 + .020 .000 + .038** Superphosphate 3. C. + .014 - .010 .000 + .028 + .009 + .019 + .020 + .008 D. + .009 - .004 + .022 - .005 + .023 + .007 + .011 + .006 + .012 + .002 A. - .011 + .015 .000 + .004 - .005 + .009 - .006 + .010 - .005 + .002 - .012 + .002 - .003 + .005 В. - .012 - .007 - .015 Potassium Chloride 2. C. - .003 - .018 + .012 - .034 + .003 + .028 - .017 + .011 - .009 + .004 - .021 + .029 + .004 D. + .006 + .004 + .001 + .007 + .002

		STAI	NDARD ERROR	s ±					INTERAC	CTIONS				
	MEAN	SINGLE PLOT	Diffratl. Response	Mean Response	SM	SN	MN	SP	МР	NP	SK	мк	NK	PK
A. B. C. D.	.175 .193 .246 .238	.028 .020 .034 .038	.014 .010 .017 .019	.010 .007 .012 .013	003 + .005 006 + .002	+ .008 + .004 + .002 005	018 + .010 019 011	+ .010 004 + .024 + .013	+ .003 011 + .014 + .014	009 003 + .005 + .002	+ .013 007 + .015 + .025	+ .002 007 + .031* + .002	+ .007 + .002 + .014 .000	+ .008 010 006 + .003

A 110.

Differential Responses.

CLOVER.

% P.

CWT./ACRE		MEAN	SOD	LUM	MAGNI	SIUM	NITR	OGEN	PHOSE	PHORUS	РОТА	A SSIU M
OWIT, ACKE		RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.
Salt 4.	A. B. C. D.	020 HH .000 025 H + .006	1 1 1	1 1 1	033*** + .014 018 + .009	007 014 032* + .003	030 ^{***} 007 028 ^{**} + .001	010 + .007 022 + .011	021 [#] 006025 + .003	019** + .006025 + .009	026*** 007 061** + .004	014 + .007 + .008 + .008
Magnesium Sulphate 2.	A. B. C. D.	005 .000 021** 009	018 [#] + .014014006	+ .008 014 028* 012	- - - -	- - -	006 007 + .002 004	004 + .007 044** 014	018 [#] + .008010019	+ .008 008 032 + .001	019 [#] 007 + .004 .000	+ .009 + .007 046 018
Ammonium Sulphate3 + 3 4	A. B. C. D.	018 ^{***} 001 006 004	028008009009	008 + .006 003 + .001	019 [#] 019 + .017 + .001	017** + .017** 029** 009	- - -	- - -	041 + .010013 + .003	+ .005 012 + .001 011	007 002 031 [#] 015	029*** .000 + .019 + .007
Superphosphate 3.	A. B. C. D.	+ .013 ³⁴ + .009 + .003 + .005	+ .012 + .003 + .003 + .002	+ .014 + .015 + .003 + .008	.000 + .017 + .014 005	+ .026 + .001 008 + .015	010 + .020 004 + .012	+ .036*** 002 + .010 002		- - -	+ .015 + .005 + .019 004	+ .011 + .013 013 + .014
Potassium Chloride 2.	A. B. C. D.	+ .009 003 + .010 + .035	+ .003 010 023 + .033**	+ .015 + .004 + .043*** + .037*	005 010 + .035 + .044	+ .023 + .004 + .015 + .026	+ .020 ^m 004015 + .024	+ .002 002 + .035*** + .046***	+ .01.1 007 + .026 + .026	+ .007 + .001 006 + .044***	- - -	- - -
		<u> </u>										

		STA	NDARD ERROR	s ±					INTERAC	TIONS				
	MEAN	SINGLE PLOT	Diffratl. Response	Mean Response	SM	sn	MN	SP	мР	NP	SK	MK	NK	PK
A. B. C. D.	.162 .188 .194 .223	.015 .020 .026 .028	.068 .010 .013 .014	.005 .007 .009 .010	+ .013 ³⁴ 014007003	+ .010 + .007 + .003 + .005	+ .001 + .018 [#] 023 [#] 005	+ .001 + .006 .000 + .003	+ .013 [#] 008011 + .010	+ .023*** 011 + .007 007	+ .006 + .007 + .033 + .002	+ .014 [#] + .007 025 [#] 009	→ ∩∩1	002 + .004 016 + .009

												-			and beauty		- toque	-		-					-	-	-		-	~	-		-	-	
2			၁	.150	.140	,165	170	.165	170	150	.165	160	.185	140	140	210	.185	150	175	145	140	.185	160	.175	.165	170	.150	.175	160	150	170	180	.165	130	.170
A 112		100 C	n	165	185	195	185	170	135	185	190	160	205	135	195	190	215	145	210	150	160	165	145	190	205	190	165	165	19	155	175	195	210	175	165
-			H.	165	1.85	180	185	150	175	175	140	155	~	125	170	175	140	135	160	135	155	155	: 유	165.	170.	185.	175	140.	175 .	140	165.	180	170.	. 061	140
						•	-				•	-	•	-		•	•	*****	•	***************************************			-	•	•	•		-		Adding to	· 10 .000	• • • • • •	•	re	
			כ	.112	.176	.184	080	,124	860	.166	.196	.216	901.	.082	960.	.156	.120	.152	110	.102	.112	.110	.236	980.	960.	,116	• 206	.150	960.	.102	.136	.106	.192	.26	.134
		Mg t	מ	.108	160	.126	960	148	960	140	170	162	100	108	060	164	082	.140	114	060	116	110	.162	860	102	.128	162	116	.082	860	920	860	122	16 .1	.132
			E E	125	901	960	070	980	092	.092	880	.092	920.								130	126	, 126°	, 97.0	980	104 ,	960•	960	062	078	082	060	, 088	Ξ.	060
				e daderno.				F 201-094.		nat de leer aan		H-O-PM	~~ ~~			rı, geleğeli	en en en en en	grafings (2)				Lev all days	eracero, a							٠			•••	<u>_</u>	
	LION	c	S	.625	.63	.640	999.	.605	.594	.67	.620	•	•	•	.610	.624	.610	.634	8	.645	.630	.625	.610	.545	53,	.595	999	.67	•	•	•	•	. 620	.610	.525
	COMPOSITION	Ca √% L	n	.430	.575	.550	.400	909	•430°	9009	.520	.540	.400	400	.330	•460	.400	430	.520	.500	445	.400	.540	• 460	•445	. 500	575	• 460	.340	415	.280	.365	400	• 500	445
	COM		A	365	440	440	365	385	.385	415	.345	.315	.330	.385	.260	.315	280	.330	.385	365	385	400	385	385	365	365	400	365	.345	.345	5,50	•330	400	365	365
	TER			 O	ب	3	0	2	<u>س</u>		0	0	2	٠ <u>٠</u>	5	2	- 양	95	<u>-</u>	0	30	٠.	9	χ.	0 (₽; —	9 :	2		<u> </u>	 000	<u>-</u>	بر ر 	 O	
	MATTER	c	اد	1.20	r-i	ં	H	Ļ.	ં	o	o	1.30	o	ਂ	-i	ं	H	o	r-i	r-i	r-i	Ö	o	<u>, </u>	٠į.	-	٠ •	-	۲. ۲.	r-İ	o	7.7	7.0.	7-1	0 0.75
4.	DRY	M M	n	1.15	•	0.85	•	1.30	•	o 8€	•	•	9.0	•	•	0.70		0.90		7,0	•	•	%	7	2.5	T.72	0.75	٦, ا ا	•	1.05	•	•	0.65	-1 ~	0.80
I.		<	H.	1.40	52	•	•	•	1.05	•	•	•	•	1.10	•	•	Ċ.	•	•	•		•	•	ج ا ا	•	٠	0.5	•	•	•	•	1.30	9	•	0.70
EXPERIMENT			+								 	5	5	5.	<u> </u>	3	35	5	 .C	- 52	 و	 23	<u> </u>	195	5.5	ر ر	ئ ئ	5:	53	₹. ;	5	23	 € (200	585
EXPE		ر د	١	270. 0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0 .125	•	•	•	•	•	•	•	•	•	•	•	•	•	•	98
	The state of the s	Na %		0	ri.	•	0	w	0	₹.	₽•	ς	0	٠	਼	7	਼	₽•	ςį	0	0	0	()	CI C	. (, c	J. (• ·) ()	,	ن د	57.5	Y.	کر ا
SS.	Property and Control of the Control	<	7	80.	670	.100	.085	.085	.110	•400	• 420	.075	.120	0110	011.	.535	.125	.387	•095	.175	.055	•165	285	081.	7.40°	01. 01.	200.	いせつ・	. TO.	3.0	00% r	7.00	52.5	2 -	•310
GRASS	ويست ومعددا						 					POPPER AND														4									
	بدخاها والواسانية		į.	М			M			Д,					i	4 ; 2 ;	7		M					∠ 	Þ	4 4	4		١.	•	¢		¥ ≅ ₽	4	
	. في دي المقالتان في			⊠ ;	Z	\mathbb{Z}	Ø	Σ	1	က	(D	Σ		Z (Ω :	n	χ :		Z (co ;	Z (Ω;	Z (40	2 =	= >	ដូប	4 C	4 U	2 0	ב מ		> =	
				r-l (~	W	4	ν,	9 i	<u>~</u>	₩ (6	9		7 :	<u>-</u>	14 :	15	9 ;	17	χ. Σ	5	₹ 5	7 6	ν ς ν ς	ું દ	り ん れ ス	3 6	3 5	- ¢	0 0	<i>y</i> 6	₹ 🏳	; ₹.∈ ह	7

A 113

GRASS. EXPERIMENT 4.

Differential Responses.

Dry Matter Yields (cwt)

CWT./ACRE		MEAN RESPONSE	SOD	DLUM	MAGN	ESIUM	NITE	ROGEN	PHOS	PHORUS	POT	A SSIU M
	<u> </u>	RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES
Salt	4. A. B. C.	- 0.08 + 1.24* + 0.38	- -	-	- 0.25 + 1.17 + 0.39	+ 0.07 + 1.31 + 0.37	+ 0.21 + 0.98 + 0.12	- 0.37 + 1.50* + 0.64*	- 2.19 + 2.14** + 0.25	+ 2.03 + 0.34 + 0. \$ 1	+ 0.17 + 2.66 + 1.10	- 0.33 - 0.18 - 0.36
Magnesium Sulphate	A. B. C.	+ 0.70 + 0.06 + 0.52**	+ 0.55 - 0.01 + 0.53	+ 0.85 + 0.13 + 0.51	- -	- - -	+ 0.89 + 0.52 + 0.61*	+ 0.51 - 0.40 + 0.43	+ 0.93 + 0.57 + 0.34	+ 0.47 - 0.45 + 0.70	- 0.10 + 0.24 + 0.52	+ 1.50 - 0.12 + 0.52
Ammonium Sulphate 3 •	3 + 3 B. 6.	+15.39*** + 9.95*** + 6.00***	+15.68 ^{HH} + 9.69 ^{HH} + 5.74 ^{HH}	+15.10 ^{HH} +10.21 ^{HH} + 6.26 ^{HH}	+ 15.58 ^{HH} +10.41 ^{HH} + 6.09 ^{HH}	+15.20 + 9.49 + 5.91	- - -	- - -	+15.05 ^{HH} + 9.61 ^{HH} + 6.03 ^{HH}	+15.73** +10.29** + 5.97**	+15.68*** + 8.78** + 4.92**	+15.10 ¹ +11.12 ¹ + 7.08 ¹
Superphosphate	3. A. B. C.	+ 0.05 + 0.81 + 0.34	- 2.06 + 1.71* + 0.21	+ 2.16 - 0.09 + 0.47	+ 0.28 + 1.32 + 0.16	- 0.18 + 0.30 + 0.52	- 0.29 + 0.47 + 0.37	+ 0.39 + 1.15 + 0.31	1 1 1	- - -	- 0.73 + 0.89 + 0.50	+ 0.78 + 0.73 + 0.08
Potassium Chloride	A. B. C.	+ 1.00 + 2.08*** + 3.28***	+ 1.25 + 3.50 HH + 4.00 HH	+ 0.75 + 0.66 + 2.56***	+ 0.20 + 2.26*** + 3.28***	+ 1.80 + 1.90	+ 1.29 + 0.91 + 2.20***	+ 1.71 + 3.25 + 4.36	+ 0.22 + 2.16 + 3.54	+ 1.78 + 2.00 + 3.02	- - -	- - -

		STAI	NDARD ERROR	es ±					INTERA	CTIONS				
	MEAN	SINGLE PLOT	Diffrntl. Response	Mean Response	SM	sn	MN	SP	мР	NP	SK	мк	NK	PK
A. B. C.	12.11 10.23 8.68	2.06 1.26 0.56	1.03 0.63 0.28	0.73 0.45 0.20	+ 0.15 + 0.07 - 0.01	- 0.29 + 0.26 + 0.26	- 0.19 - 0.46 - 0.09	+ 2.11 - 0.90 + 0.13	- 0.23 - 0.51 + 0.18	+ 0.34 + 0.34 - 0.03	- 0.25 - 1.42 - 0.72	+ 0.80	- 0.29 + 1.17* + 1.08***	+ 0.78 - 0.08 - 0.26

											1			
CWT./	ACRE			MEAN RESPONSE	sor	DIUM	MAGN	TESIUM	NIT	ROGEN	РНО	SPHORUS	POT	ASSIU M
· · · · · · · · · · · · · · · · · · ·			<u>.</u>		ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRE
Salt		4.	A. B. C.	+ .083*** + .027 + .041*	- - -		+ .066*** + .019 + .026	+ .100*** + .034 + .056**	+ .060*** + .019 + .040	+ .106 + .034 + .042	+ .083** + .031 + .077**	+ .083*** + .023 + .005	+ .091 ^{HH} + .039 + .069 ^{HH}	+ .075 + .015 + .013
Magnesium Sulph	ate	2.	A. B. C.	+ .007 + .009 011	010 + .001 026	+ .024 + .017 + .004	- - -	- - -	+ .003 + .004 + .011	+ .011 + .014 033	+ .001 + .012 018	+ .013 + .006 004	+ .013 + .012 040	+ .00 + .00 + .01
Ammonium Sulpha	ate 3	+ 3 + 3	A. B. C.	+ .146*** + .257** + .352**	+ .123*** + .249** + .351**	+ .169*** + .265** + .353***	+ .142 ^{HX} + .252 ^{HX} + .374	+ .150 ^{HH} + .262 ^{HH} + .330 ^{HH}	-	-	+ .137** + .237** + .327**	+ .165*** + .277** + .379**	+ .235 ^{HH} + .326 ^{HH} + .531 ^{HH}	+ .06 + .18 + .17
Superphosphate		3.	A. B. C.	+ .015 + .028 + .034	+ .015 + .032 + .050**	+ .015 + .024 002	+ .009 + .031 + .027	+ .021 + .027 + .041	004 + .008 + .009	+ .034 [#] + .048 + .059 [#]	- - -	- - -	+ .022 + .028 + .041	+ .00% + .03% + .02°
Potassium Chlori	ide	2.	A. B. C.	159*** 090*** 217***	151***078***189***	167*** 102*** 245***	153*** 087** 248***	165 ^{KK} 093 ^{KK} 188 ^{KK}	070021 038	248*** 159*** 396***	152*** 098*** 210***	165*** 082*** 224**	- - -	- - -
.		STA	NDARD ERROI	RS ±					INTERAC	TIONS				
MEA		SINGLE PLOT	Diffrntl. Response	Mean Response	SM	SN	MN	SP	мР	NP	SK	мк	NK	PK
.18		.026 .048	.013 .024	.009	+ .017 + .008	+ .023 [#] + .008	+ .004 + .005	.000 004 036**	+ .006 - .003	+ .019 + .020	008 012 028	006 003 + .029	089 ^{HH} 069 ^{HH} 179 ^{HH}	00 + .00 00

A. 115

	GRASS.	EXPERIM	ENT 4.	 		· · · · · · · · · · · · · · · · · · ·	Differen	tial Respor	nses	% K.			
CWT./ACRE			MEAN	soi	DLUM	MAGN	IESIUM	NITI	ROGEN	PHOS	PHORUS	POT	ASSIU M
			RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.
Salt	4.	A. B. C.	01 + .03 + .06	- - -	-	.00 + .04 + .09	02 + .02 + .03	04 02 + .05	+ .02 + .08 + .07	02 + .03 + .03	.00 + .03 + .09	+ .02 + .06 + .20 ^{HH}	04 .00 08
Magnesium Sulphate	2.	A. B. C.	+ .03 + .06 01	+ .04 + .07 + .02	+ .02 + .05 04	- - -	- - -	.+ .04 + .04 02	+ .02 + .08 .00	+ .02 + .06 03	+ .04 + .06 + .01	.00	+ .06 + .13* + .06
Ammonium Sulphate 3	+ 3 + 3.	A. B. C.	09 ^{HH} + .04 .00	12*** 01 01	06 + .09 + .01	08 [#] + .02 01	10 [#] + .06 + .01	-	-	07# + .08 04	11 ^{***} .00 + .04	31*** 14** 11	+ .13 ^{NM} + .22 + .11
Superphosphate	3/•	A. B. C.	06 [#] 0203	07 02 06	05 02 .00	07 02 05	05 02 01	04 + .02 07	08 06 + .01	<u>-</u> -		06 + .01 05	06 05 01
Potassium Chloride	2.	A. B. C.	+ .44** + .38** + .41**	+ .47*** + .41** + .56**	+ .41 *** + .35 *** + .27	+ .41 *** + .31 *** + .34 ***	+ .47 HH + .45 HH + .48 HH	+ .22 ^{HH} + .20 ^{HH} + .30 ^{HH}	+ .66 ^{HH} + .56 ^{HH} + .52 ^{HH}	+ •44** + •33** + •39**	+ .44*** + .43*** + .43	- - -	- - -
	STA	NDARD ERROR	es ±					INTERAC	TIONS				
MEAN		Diffeet1.	Mean		CN	MN		147		C.V.	W	NE	DV

		STAI	NDARD ERROR	s <u>+</u>					INTERAC	CTIONS				
	MEAN	SINGLE PLOT	Diffrntl. Response	Mean Response	SM	sn	MN	SP	мР	NP	SK	MK	NK	PK
A. B. C.	1.09 1.05 1.03	.07 .09 .13	.04 .05 .07	.03 .03 .05	01 01 03	+ .03 + e05 + .01	01 + .02 + .01	+ .01 .00 + .03	+ .01 .00 + .02	02 04 + .04	03 03 14	+ .03 + .07* + .07	+ .22** + .18** + .11*	.00 + .05 + .02

A 116.

GRASS. EXPERIMENT 4.

Differential Responses.

% Ca.

CWT./ACRE			MEAN	son	DLUM	MAGN	ESIUM	NITE	ROGEN	Рноs	PHORUS	POT	ASSIU M
			RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES
Salt	4.	A. B. C.	037*** 052* + .009	- - -	- -	028 048 + .017	046 ^{***} 056 ^{**} + .001	045 ^{HH} 059 ^H + .009	029 045 + .009	042 [#] 043 + .019	032 [#] 061 [#] 001	040 [#] 027 + .027	034 ¹ 079 ¹ 009
Magnesium Sulphate	2.	A. B. C.	003 + .012 .000	+ .006 + .016 + .008	012 + .008 008	* - (3 - -	- -	+ .015 + .013 + .009	021 + .011 009	008 + .008 + .013	+ .002 + .016 013	.000 022 008	006 + .044 + .008
Ammonium Sulphate 3	+ 3 + 3	A. B. C.	+ .018 + .088	+ .010 + .081** 017	+ .026 + .095*** 017	+ .036 [*] + .089 ^{***} 008	.000 + .087 ^{***} 026	* .=3 = =	* . = 33	+ .023 + .098*** 023	+ .013 + .078*** 011	+ .006 + .084007	+ .03 + .09 02
Superphosphate	3.	A. B. C.	+ .013 + .011 + .023	+ .008 + .020 + .033	+ .018 + .002 + .013	+ .008 + .007 + .036	+ .018 + .015 + .010	+ .018 + .021 + .017	+ .008 + .001 + .029	- - -	- - -	+ .028 + .023 + .036	00: 00: + .01:
Potassium Chloride	2.	A. B. C.	010 + .007 012	-=.013 + .033 + .006	007 018 030	007 027 020	013 + .041 004	022 + .003 002	+ .002 + ,011 022	+ .005 + .019 + .001	025 005 025	- - -	-

		STAI	NDARD ERROR	s ±					INTERAC	TIONS				
	MEAN	SINGLE PLOT	Diffratl. Response	Mean Response	SM	SN	MN	SP	МР	NP	sk	мк	NK	PK
A. B. C.	.361 .458 .620	.031 .052 .034	.015 .026 .017	.011 .018 .012	009 004 008	+ .008 + .047 .000	018 001 009	+ .005 009 010	+ .005 + .004 013	005 010 + .006	+ .003 025 018	003 + .034 + .008	+ .012 + .004 010	015 012 013

A 117.

GRASS. EXPERIMENT 4.

Differential Responses. % Mg.

CWT./ACRE			MEAN	SOD	IUM	MAGN	IESIUM	NITE	ROGEN	PHOS	PHORUS	POT	ASSIU M
CW1./ACRE			RESPONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.
Salt	4.	A. B. C.	003 015# 026	- - -	-	005 016 [#] 024	001 014 028	001 016* 010	005 014 042	007 019 [#] 025	+ .001 011 027	+ .002 + .008 022	008 038*** 030**
Magnesium Sulphate	2.	A. B. C.	+ .013 [#] + .014 [#] + .025 [#]	+ .011 + .013 + .041**	+ .015 + .015* + .009	- - -	- - -	+ .017 + .011 + .029	+ .009 + .017* + .021	+ .012 + .015 [#] + .026	+ .014 + .013 + .024	+ .007 + .012 + .022	+ .019 [#] + .016 [#] + .029
Ammonium Sulphate	3 + 3 + 3	A. B. C.	+ .001 + .038*** + .048***	+ .003 + .037 + .064	001 + .039*** + .032**	+ .005 + .035** + .052***	003 + .041 + .044	-	- - -	003 + .044** + .067**	+ .005 + .032*** + .029	+ .002 + .050 + .072	.000 + .026 + .024
Superphosphate	3.	A. B. C.	007 002 006	011 006 005	003 + .002 007	008 001 004	006 003 008	011 + .004 + .013	003 008 025	- · - -	- - -	002 + .004 + .004	012 008 016
Potassium Chloride	2.	A. B. C.	003 009 030**	+ .002 + .014 026	008 032** 034*	009 011 033**	+ .003 007 027	002 + .003 006	004 021*** 054***	+ .002 003 020	008 015** 040*	- -	- - -

		STAR	NDARD ERROF	es ±					INTERAC	CTIONS				
	MEAN	SINGLE PLOT	Diffratl. Response	Mean Response	SM	SN	MN	SP	МР	NP	SK	MK	NK	PK
A. B. C.	.091 .119 .135	.017 .014 .028	.008 .007 .014	.006 .005 .010	+ .002 + .001 002	002 + .001 016	004 + .003 004	+ .004 + .004 001	+ .001 001 002	+ .004 006 019	005 023*** 004	+ .006 + .002 + .003	001 012* 024*	005 006 010

118.

	GRAS	EAP.	ERIMENT 4	•		1	Differ	ential Res	sponses.	% P.			
CWT./ACRE			MEAN RESPONSE	son	LUM	MAGN	ESIUM	NITI	ROGEN	РНО	SPHORUS	POT	A SSIU M
			RESP ONSE	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	PRES.	ABS.	P RES.
Salt	4.	A. B. C.	+ .007 + .008 + .004	- - -		002 + .001 004	+ .016 + .015 + .012	+ .003 + .010 + .002	+ .011 + .006 + .006	+ .009 + .018 .000	+ .005 002 + .008	.000 + .004 + .004	+ .01 + .01 + .00
Magnesium Sulphate	2.	A. B. C.	007 003 + .004	016 010 004	+ .002 + .004 + .012	- - -	- -	010 005 + .003	004 001 + .005	005 001 003	009 005 + .011	006 + .009 + .010	003 01 003
Ammonium Sulphate 3	+ 3 + 3.	A. B. C.	+ .005 + .005 + .001	+ .001 + .007 001	+ .009 + .003 + .003	+ .002 + .003 .000	+ .008 + .007 + .002	-	- - -	+ .001 + .011 + .005	+ .009 001 003	006 + .006 .000	+ .01 + .00 + .00
Superphosphate	3.	A. B. C.	+ .013 [#] + .026 ^{##} + .019 ^{###}	+ .D15** + .036*** + .015	+ .011 + .016 + .023**	+ .015 ^H + .028 ^{HH} + .012	+ .011 + .024 + .026	+ .009 + .032*** + .023**-	+ .017** + .020* + .015			+ .030*** + .033*** + .013	00 + .01 + .02
Potassium Chloride	2.	A. B. C.	+ .006 + .011 004	001 + .007 004	+ .013 + .015 004	+ .007 + .023* + .002	+ .005 001 010	005 + .012 005	+ .017 + .010 003	+ .023 [#] + .018 010	011 + .004 + .002	- - -	-
		·											
MEAN	STA	NDARD ERRO	RS ±					INTERACT	LIONS		,		

١		100.43	STAN	NDARD ERROR	s ±					INTERAC	CTIONS	<u> </u>			
-		MEAN	SINGLE PLOT	Diffratl. Response	Mean Response	SM	SN	MN	SP	MP	NP	SK	MK	NK	PK
	A. B. C.	.160 .177 .163	.014 .019 .017	.007 .009 .008	.005 .007 .006	+ .009 + .007 + .008	+ .004 002 + .002	+ .003 + .002 + .001	002 010 + .004	002 002 + .007	+ .004 006 004	+ .007 + ,004 .000	001 012 006	+ .011 001 + .001	017*** 007 + .006