
< 1 1 8  I I

JJ. MA0D0NAU3

...mm.mmsms ih mas psodugtioh of kbsghs

Submitted to the University of alaago*
1959.



ProQuest Number: 13850390

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13850390

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



Acknowledgments#

1 wish to thank Professor J#G* Gunn for M s  advice
and encouragement throughout this work* The problem ©f 
Part I was suggested by Professor Gunn*

1 also wish to thank Dr* K*D*C • Stoodley for helpful 
discussions of the multiple scattering formalism*

I am indebted to the Department of Scientific and 
Industrial Research for a maintenance grant*



twet 1«

The multiple aaetterlng eorreetteo .%* the 
impulee appx-osd-natlon far the photopreductlon ef 
ehargedaeeons at deuterium.

tZ„, U

/ .- ■‘"■■•XI Ww'h *7rlkft ■

Mry^Mx ^  >- '*■ -k

4 £ m  mm- mmMM- m m m m



Page.
Summary.
1 * Introduction. *̂

Meson scattering and photoproduction at a free nucleon* 2*
Multiple scattering.
Charged meson photoproduction at deuterium#
Comparison with experiment* ***?•

2* Formal multiple scattering theory in a two nucleon system*
3* Multiple scattering in the one pole approximation* 25*
If* Multiple scattering with a factorable transition operator* 3 *̂
5* Isotopic spin* M**
6* The cross-section*

The impulse approximation.
!Ch© multiple scattering correction*
Kinematics.

7* Results and discussion.
The impulse approximation

eCeT
The multiple scattering approximation.

Appendix A, Integrals used in the Impulse approximation 59*oress^seetlon*
Appendix B. Formulae required for the matrix element 61.when multiple scattering is included*

65.References*



of the noson with the nucleons in the photoproduction of a 
charged tr meson at deuterium# This is considered as 
multiple scattering of the meson at alternate nucleons#
Earlier work on this problem, and on‘the multiple scattering 
correction to the Impulse approximation in similar problems, 
is reviewed# To avoid having to use the meson-nucieon 
scattering transition operator off the energy shell an 
approximation, taken from the earlier work,is used# The 
meaning of this approximation is discussed# In the case of 
a particular model of roeson-nucleon scattering, based on a 
factorable potential, an estimate is made of the accuracy of 
this approximation# In obtaining the cross-section the 
interaction of the nucleons is included when 'they are in a 
final state with o • Results are presented illustrating 
the behaviour of the meson energy spectrum at a particular 
angle and photon energy# This lias a broad peak around the 
energy of the meson produced at the same angle from a free 
nucleon, and a narrow peak near the maximum meson energy, 
caused by the final state interaction of the nucleons, and 
important only at forward angles# The multiple scattering 
correction is - U-*/0 to - 2°l0on the free nucleon peak, rising to 
about -10 7# on the interaction peak at forward angles# The 
conclusion is reached that with the present experimental 
accuracy the multiple scattering correction will not in general 
affect the interpretation of the oxper ir.ie:atal results using 
the Impulse approximation#



obtaining information about the sane processes at free neutrons,
'Which are not directly observable. On the other hand, if we
consider that meson theory gives an adequate description of the
free nucleon case we can attempt to find how the complex nature
of the two nucleon system influences the processes. The work
presented here approaches the problem of the photoproduction of
charged u mesons from the second point of view. This section
contains a summary of the relevant work on free nucleon
processes and a review of earlier theoretical work on tills
particular problem and the related problems of ft meson
scattering at deuterium, and the elastic photoproduction of
neutral tc mesons at deuterium and helium* There is also a
discussion of the experimental work on the processes, 

y -+1) •— ^ tc n nr k
X -+-1 > Tv~ fa b>

Meson scattering and photo production. at a fr,ee_nucleon.
We consider tills wiMn the framework of theories which 

treat the nucleon as a static source distribution of a finite 
sise# This is characterised by a source density PC O  and 
the corresponding momentum cut-off function#

r «. p o~) cit5 vCojb - j z

The interaction part of the Hamiltonian of the system of a 
meson and a nucleon is ( see Wick(1955) )•



3.

with
w fc _ lii 1 r x i < M  vCc,') n  ,Vq .J2hC«0 ^ ~ J U/

x xi*In this result Cx̂  destroys, creates a meson of
momentum q # energy tOC<\) , in an isotopic spin state specified 
by ^  . £ is the coupling constant, the meson mass and

, T the spin and isotopic spin operators of the nucleon.
A simple form of the static nucleon theory is that of 

Chew (193U)• He discusses meson-nucleon scattering, making use 
of a variational principle of Schwinger. We describe this 
theory in some detail, in order to introduce various concepts 
and results which we shall require later. In particular we shall 
require stationary state scattering theory in both parts of 
this thesis, while in Section h of this part we shall examine 
a theory similar to that of Chew*

Let H 0 Le the Hamiltonian of the free meson field and
E the total energy. Then the total Hamiltonian W is H .

In the stationary state scattering theory, as given for example 
In Lippmann, Schwinger (1930), we mane use of eigenfunctions 
^   ̂ (E^ of H . They each satisfy the equation

( H 0 + ̂ ^   ̂ ~ ^   ̂̂
WtM with different boundary conditions, having scattered parts
which are respectively outgoing, incoming and standing waves.
These boundary conditions are expressed by writing

^(e') - 2 tvK S



where
— — 1 . -r-f -t-N

(3)
- vt

and

T (f) 
%  * Id + . _J__

E + U - H 0 *6t
“JF* -**X. Cx. p _i__ k $ (0

no
where is an eigenstate of H 0 with energy The
denominator Ea "t 11 - H D is defined by the formal result 

- zpuL % Cv) -+- p ~
which Is to be understood in the sense that

'(a * £ h l  =  ^ i r i W  + T ^
the integral on the right being the principal value* We shall 
denote Ec*ti. - H 0 by <x * The transition operator t and the 
reactance operator K are defined by

= T *  + i-1 ^
-rO'i _ -sr . p j  - K ^5?«fc ‘ ^ H e ^  ^

and the matrix elements of these operators between states Jfc <*
and f a r e ,  from (3),

^ > k f<r’ ̂

= ( ^ r > w 5 ^  (5)

and k̂ -c, * i ^ $ 1°')

ihe probability per unit time /for transitions from the
'■4' ' _

gfftte Ifos to the (different) state 3?$. # IS glreh by

2f  S ( e o- e 6 ') I t ^ J 1 (6)



From (3) we can write

s© that we have

(7)a- h
which can he written

V being defined as h £ k * The matrix element between
states with ©ne meson present is effectively f

because must create or absorb an odd number of mesons*
We denote these states by I O  , t, satisfies the integral 
equation

= v * v i  ̂  (8)

in which V acts as a potential* There is a corresponding 
quantity Ks satisfying a similar equation with replaced
by its principal part* The variational principle 
(Chew (195V&) ) states that the solution ©f (8) on the energy 
shell| that is when Ea - E , is

uses the simple trial wave functions I A , so that

( O  * ,ylL")C£ ^ > v^<T  ̂ (9)
5 Va' c+1 >v v  i v ">

t / C-t-')this being stationary for variations of » M'*
about the correct solutions vpi t ©f (3)* Chew

 ( S l . v Q * ________
- ( I ^ Y a V  2 a '>

(10)



6.

The equation (8) can be separated into equations for particular 
spin and isotopie spin eigenstates* The important one is that 
for spin and isotopic spin 3/i • We have
ft,11”  I O  = (v v  - i v  ■) ft..™ *v ^ "5

_ £ . (n)ft, I Kj’tob - ( Ri-Sv - j t.«|. <r.O
the first two factors being projection operators* The phase 
shift S (qt) for scattering in this eigenstate is related to•n
t^3 and K^1 by

*5

*Z 'IT (12)
t , - ' ^ 1 ? /  & „  fte ,q* >

Here Cye is the value of the meson momentum c| on the energy 
shell# The integral equation for 6-̂  is

00 P\

(■SifthO - uC^-toC^ + iJ ^
and there is a corresponding equation for f
I f . u a s JL o fd q q ̂  ̂3 V A

V„ft,flU 2^ ? ] ^  q c c , ^  - W C ^  (:u+)

the potential (^,/HO corresponds to the graph

and for our form of V\ it is

V (a q \ = u ______________I_________ /le=)
^  3 \k% {foĈ  W Cq^ ,A UC«|̂  - w Cq,) - W Cqv*i

using the variational principle in (lh) we have the following



result for ?
1 Ss"1’

) - „__ ___ \i^x (16)
I -

O to3 Cep £ -  U) "]
where we have set vC<$- ) t °| ̂  * * O » <=| ■>
The form of (16) shows that there Is a resonance* By choosing
suitable values of ~C and Q Chew was able to obtain theJ 'Wvcwx
width and position of the resonance in agreement with experiment, 

For the purposes of our multiple scattering work we have 
made use of the results of a more recent development of static 
nucleon theory, that of Chew and Low (1956a)# They find it 
possible to use an effective range result for and
can select the cut-off and coupling constant to obtain 
agreement with experiment* Their result is

= w *  ( 0 - 6 10* } (17)
where u>* is the sum of the meson energy to C°\^> and the 
nucleon kinetic energy in the centre of mass system, which is 
added to make some allowance for nucleon recoil, which is, of 
course, ignored in the static nucleon theory. We have used 
natural units ( - M - a- I ). The values of A and §
in these units are A = 8*05, $ » 3*80 (Orear (1956) )•

Chew and Low (1956b) apply their theory to pion photo
production* They find that the main contributions to the 
photoproduction amplitude at a free nucleon T  , and also those 
most likely to remain unchanged in an improved theory, are



and

gf
[k-wCĉ v]̂

2,+ *.£

(X9)
Here . v f £ are the photon momentum and polarisation and ,

are the magnetic moments of the proton and neutron in units 
of the nuclear magneton* "C , t are the isotopic spin 
operators for a nucleon and a meson respectively# It is under
stood that ^ v^g » &nd we have again set ^  - 1 • The
isotopic spin operator in (18) projects out states with a neutral 
meson, while that in (19) projects out the t s 1 state of the 
meson and nucleon* £ is the remmallsed coupling constant.

The expression (13), which Is the same in first order 
perturbation theory, contains an electric dipole term and a meson 
current term# (19) is a magnetic dipole term giving a final 
state with spin 3/2 and is otopic spin 3/2, and enhanced by the 
resonant scattering in that state* Vie shall use the electric 
dipole and magnetic dipole terms only. In the notation of (5*12) 
and (5*11+) where we use operators {5 and ^ , containing meson 
creation operators explicitly, to give the Isotopic spin 
dependence of T, the electric dipole term is

ot - (S fl * (ir.i Fd. (20)
■where



Instead of starting from meson theory and deducing a form 
for T  one can use a general form (see for example Gell-lann 
(195H) ) containing parameters which can be adjusted to fit the 
observed angular distributions of photoproduced pions* For a 
particular isotopic spin state the form of T  is

which contains electric dipole and quadrupole terms, and magnetic

some extent the experiments with deuterium can also be analysed 
in terms of this form of T  . It has recently been pointed out, 
by Meravscik (1957), that with the accuracy now possible in free 
nucleon experiments analysis in terms of (22) is inadequate* 
this is essentially because of the second term in (18), which 
contains contributions from higher multipole transitions* Our 
neglect of this term is reasonable because we are mainly 
concerned with the interaction of the meson and the final state 
nucleons, and are not attempting to obtain information about T  
for a free nucleon*

(22)

dipole terms giving states with total spin and 3/i • To

/



The simplest approach to the problems of meson photoproductio; 
and scattering in light nuclei is to use the impulse approxi
mation# This was introduced by Chew (1950) in discussing the 
inelastic scattering of neutrons by deuterons# The validity of 
the approximation is discussed by Chew and Wick (1952) and by 
Chew and Goldberger (1952). The transition operator for the 
process is taken to be the sum of the operators for the corres
ponding process at each nucleon, as if it were free, and the 
matrix element is evaluated between appropriate initial and 
final states. The effect of nuclear binding is ignored except 
in so far as it determines the wave functions for these states. 
Also no attempt is made to deal with processes involving the 
interaction of a meson with more than one nucleon. In the 
Second and third of the papers quoted above the first order 
correction to the impulse approximation for the scattering of 

Tt mesons by deuterium is expiressed as tv/o separate terms, 
one depending on the proton-neutron potential, the other having 
the form of a double scattering of the meson, first at one 
nucleon and then at the other, both nucleons taken as free. The 
corresponding terms are easily w i t  ten down in the case of 
photoproduction# Strictly speaking the term “impulse 
approximation” refers to the neglect of nuclear binding whether 
or not the meson-nucleus interaction is included in full.
(See for example the discussion after equation 21 of Chew and 
Goldberger). However, it is convenient and conventiai to use 
the term in the sense employed here, and we shall continue to



Various papers have appe treat the interaction of the
meson and the nucleus in terns of multiple scattering at
alternate nucleons, he shall coxisider first the problem, treated 
by Brueckner (1953&) and by Drell and Verlet (1955) of A wave 
scattering by two heavy point sources. In this the general form 
of the multiple scattering correction is clearly displayed. Let 
the Initial and final momenta be q0 f q , where - q ,
and let the sources be situated at ^  , with

source we can obtain the amplitude of the scattered wave in the 
form

and the correction consists of terms giving for example the 
effect of scattering first at i\ and finally at after the
wave has travelled times between r\ and t\ • The form
of U  depends on the form of the scattering transition operator 
at one nucleon. Drell and Verlet work with three different 
assumptions about scattering at one source* One, also used by 
Brueckner, is the approximation we shall use below under the

The second assumes that scattering takes place only on the energy 
shell, and gives U  -- t$vvv<\6R / .  he shall discuss these two 
cases in Section 3 when dealing with our own problem. The

Then if the phase shift refers to scattering at one

The impulse approximation is

name of the “one pole'* approximation. This gives U) ■* e *



third case is that of a potential which is factorable in 
configuration space. That is, in the equation for scattering at 
one source,

H t h  - M  U C t > S /'i°c C*L'>

they take UUjtlO = uftf u.CC/') so that the equation 
is replaced by the inhomogeneous one,

vhere $  ■* f u(£Oi|)(£p 
Thi* give*

i i W ' l
f V -  w i?) <4? C« uCi*^cq 

which reduces to £ / R where the potentials *u. (Vh,\ nj w
ML^L£) do not overlap.
Tlie results given by Drell and Verlet, for the particular 

case cje - 2-1 [a. , S - W  p' , backward scattering and source 
radius ^ ^  in the third model, are that the ratio of the 
cross*sections with and without multiple scattering is about 4, 
i* \ » talcing the cases in the order given above. When double 
scattering alone is considered the ratio is about •£, -$ in the 
three cases. In obtaining these results they use a deuterium 
wave function for the sources. Their results suggest that in 
a more realistic pr obi era the form of the scattering amplitude 
off the energy shell will be important, and that double 
scattering will give a considerable part of the multiple 
scattering correction.

/



by deuterium, assuming jp wave scattering at each nucleon and 
ignoring spin flip. He finds a considerable reduction from the 
impulse approximation result. His work has been extended by 
Boekmore (1957) to the case of a scattering transition operator 
which is a function of nucleon spin. Where the results of these 
authors can be compared the correction is smaller in liocknore1 s 
calculation# Boekmore finds that double scattering is important 
Using the Born approximation for scattering at a free nucleon 
he estimates that for the elastic differential cross-section at 
meson energy 85 MeV. the contributions included and ignored in 
the one pole approximation are comparable.

An alternative approach to the problem of elastic meson 
scattering at deuterium is that of Brans den and Moor house (1958) 
They set up the meson-deuteron scattering equation, with the 
assumption that scattering at individual nucleons is in the 

state only, and solve it using the variational 
principle used by Chew (195**)* The equation is

<23)

Iter, i and -j are spin Indices and V(RN is the deuteron 
potential#

H ~ i ^  3^ ^ ^  3 )

being essentially our quantity of (15)* (23) is of
/



1!;-
the same .form as (2) and so we have 
L l?gr > H ;/

C2g>h£«V  (5e.Hft'h )
£«. » £<s- being the product of the deuteron wave function and 
a plane wave meson wave function* The second term In the denomin
ator Includes multiple scattering* These authors find that the 
multiple scattering correction is less than of the impulse 
approximation cross-section, and they obtain agreement with exper
iment at meson energies 35 MeV. and IlfO MeV* They attribute the 
disagreement between their results and those of Rockmore to his 
use of the one pole approximation*

Chappelear (1955) has considered the elastic photoproduction 
of neutral pions at deuterium. He finds that for photon energy 
285 MeV* the cross-section is reduced, at all angles, by l*0/o to 
50$# His results are in agreement with the experiments of 
Rosengren and Baron (1956). We present in Sections 2 and 3 a 
modified form of Chappelear*s method. Stoodley (1957) has 
extended the treatment of multiple scattering to the case of 
photoproduction at a system of more than two nucleons. His 
result for the matrix element reduces to that of Chappelear for 
deuterium. Stoodley calculates the correction to the elastic 
differential cross-section at 90>f for the production of neutral 
mesons at helium. Like Chappelear, he ignores spin flip scatter
ing, and takes (o wave scattering only. He also ignores 
charge exchange scattering, uses a special simple wave function, 
and excludes for simplicity certain sequences of multiple 
scattering. The correction is very large, and the

/



15*
experimental results of noilany et* al# (1957) lie "between the 
impulse approximation tuxcl corrected results* It is of some 
interest to have tho multiple scattering correction for an 
inelastic process, for comparison with the work on elastic 
scattering, and elastic f° photoproduction.Watson (195h) gives 
without details an estimate of 10# for the correction in the 
case we examine#

As we go to systems with a higher number of nucleons A , 
multiple scattering theory gives a set of fj coupled integral 
equations# (Watson (1953) )* Bather than attempt to solve these 
equations the method adopted is to transform the multiple 
scattering problem into that of scattering by a refractive 
medium# Some work has been done (Butler (1952), Laing and 
Moorhouse (1957) ) on the photoproduction of mesons at complex 
nuclei, using such an optical model for the meson-nucleus 
interaction#
Charged, meson Photoproduction at deuterium*.

We now turn to the impulse approximation calculations for the 
processes

^ + D — it -+(?-»-(>

$ D  — > rc -+■ n + v\

Probably the most important aspect of these processes is the 
ratio of Tv ~ to it * production near threshold, because of its 
connection with the a wav© meson-nucleon scattering and the 
Panofsky ratio* (See for example Bethe and d© Hoffmann (1955), 
section 33, and Gassels (1957) ). However our work is not /



important near threshold because ail the scattering phase shifts 
are small at low meson energies* So we shall not discuss 
further the papexs in which the emphasis lies on the inclusion of 
the Coulomb interaction in the process

£  •+ 3) if ‘ r |p r jp 
and which give results near threshold* (The most recent of 
these are the papers of Penner (1957) and Baldin (1958) )•

There are several papers dealing with higher energies* In 
these the treatment of the final state is simpler* The Coulomb 
interaction of the meson with the protons is ignored, while 
that of the two protons is either ignored or taken into account
roughly by using the Coulomb factor 2««>m7u j , which is an

€ —  *
approximation for the ratio of the 2 proton wave function to 
the 2 neutron wave function at R - o * Here Pf is the 
nucleon mass and k the relative momentum of the nucleons*
Chew and Lewis (1952) use closure in summing over all final 
states, ignoring t o  fact that energy conservation restricts 
the available states, and overestimating the cross-section*
Plane wave final states used by Lax and Feshbach (1952)
and by Salto et. al* (1952)* This as we shall see can greatly 
underestimate the cross-section when k is small• Saito et.al, 
also presents result for a distorted S wave final state, as 
do Machida and Tamura (1951). We use a plane wave with the 
partial wave replaced by a distorted wave of the typo used by 
these authors. (Compare Francis (1953) who deals with /



snail see oelow, hue accuracy with wiiieh the final state is 
described is less important in this energy range than near 
threshold, because we deal in general with larger values of 
Hagennann et. al. (1957), in the experimental work mentioned 
below, state that details of the final state interaction affect 
the interpretation of their results, and mention work by Tiemann 
using good wave functions.
Comparison with experiment.

In the papers of Salto et. al* and Machida and Tamura no
absolute cross-sections are given* In the other two papers the
starting point is the form K. ov + L  for the photo-*■»
production transition operator at nucleon i and the aim is 
to obtain by comparison with experiment the ratio 
averaged over * * In the experimental work the convenient
quantity to measure is the ratio of the cross-sections for 
positive pions, at a particular angle and energy, from 
deuterium and hydrogen. Because a ratio is measured the 
absolute accuracy of the experiments is not important* Tailing 
as a typical case the work of Hagennann et* al. (1957) the cross- 
sections measured were for pions of around 75 MeV. kinetic 
energy, the energy spread being 15 MeV*, from carbon,ethylene 
and deuterated ethylene, the last two being corrected for the 
pions produced from carbon. 350 MeV. bremsstrahlung radiation 
was used*

In comparing the experimental results with the predictions 
of the impulse approximation the following difficulty arises.



not a monochromatic photon beam, but a bremsstrahiung spectrum* 
The impulse approximation calculation leads to an expression 
fe

for a particular photon momentum V and meson angle ©  ,
which determine the value of u? C*j) in the hydrogen case* In 
the paper of White ot* al* (1952) two methods are suggested for 
comparing this ratio with the experimental results* One is to 
assume that the energy spectrim of mesons from deuterium is 
very narrow, and is centred on the line spectrum of mesons 
from hydrogen* Then only photons of one energy will contribute 
to the mesons detected at a particular angle and with a 
particular energy* As these authors point out, and as we shall 
see In Section 7, the assumption of a narrow energy spectrum 
is unsound*

The alternative method, which is generally adopted, for
example in the papers quoted above and in that of Lebow et* al*
(1952), Is to integrate f h —  over the

t d d SL , y
bremsstrahiung spectrum, keeping toG^h fixed* This gives 
the upper term of the ratio which Is in fact observed. It is 
assumed in these papers that !(<£/lu| is not strongly 
dependent on v * The graph 1 shows the results of 
Hagermann et* al. to indicate the accuracy of this hind of
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consistent wlbn the lovm of K * l derived from (22) •M *
W© can see from (22) that L must have the form G v.QXfr* *i «w
where R is a scalar, and so i M  *-> O  as the angle between 
V and decreases, a result which is consistent with theN N>

graph I •
In the case of negative mesons a method which has been 

adopted (Bandtel et* al* (1958) )f involves the measurement of 
the energy and the direction of one of the two recoiling proton 
as well as the meson* Ihis has the advantage that the photon 
energy can be fixed. Also they can distinguish between the 
cases of low and high energy of relative motion of the nucleons 
It is the case of low relative momentum of the nucleons which 
we shall find most Interesting* We discuss in Section 7 the 
possibility of detecting the effect of multiple scattering in 
these two types of experiment*



Chappelear and Stoodley* We shall point out how it differs 
from these methods and why we do not make use of one or the 
other of them.In its original form. We make use of time- 
independent scattering theory, as outlined in Section 1, to 
obtain the transition operator for processes which can occur in 
a system of two nucleons interacting with a meson field and 
the radiation field* The Hamiltonian of the system is

I-I - H e + 1 4  (1)

where “ft = H -+ H - h .+h -+- H, -+H, , ,2 ‘ a (2)
is the interaction term between nucleon i and the meson

field* is the term arising from the interaction of the
radiation field with the meson and nucleon currents at nucleon i
H0 is the sum of the free field Hamiltonians. With a =.
E  - as before the transition operators T x- for

production of a meson by a photon incident on nucleon i , t ̂
for the interaction of the meson field with nucleon i and ~T
for processes involving the whole system, are given by

T{ -  h; +Hv + (V»i-tHO —-1 — Ui-*-Hi\ (3)O” n I — H i,
t ;  = Vi -+• V; -■■■— Vi&-Ki

T  - 14 +  M  ̂  H  (5)
For states with one meson present we use the approximation

whore aC<\) - « '  10 +  ^1 (7)



that (3) and (h) refer to processes at a free nucleon. As in 
Section 1 we have effectively

with
(8)

We treat H  as a small perturbation, and write (5) to first 
order in M as

The factors to the right of T, and are set equal to one* 
Sterne of the virtual processes represented by these factors are 
meson exchanges in the initial state, and we expect to take 
them into account by our deuteron wave function# Other 
processes ignored are such as

(Here and elsewhere we adopt the convention that the graph 
reads from right to left, to agree with the order of operators 
in the relevant formula)# The possibility of such processes 
makes the use of the free nucleon form of T x- incorrect# We 
have another similar approximation below#

We now have

(9)
In terms of the T* this is

* (xo)



2 2 .

where . •=• c\ -• ‘ - a-K/')<1 t ;■ \ - X a

- a -i - e I - h. L H- - L ) -+■ c\ 1 - 'ul - U ■ 1 X' o-V ^ ‘ * ot-V v a hca'

V bting W2 ~ K; # Just as we drop
t a{, from t ̂ so v® can drop the second terra of ^  and 

use
C^It I O  ,  C1 I C - * i Ti lv;') ( u ,,

where

and t v 'b f I ̂  ̂  are states of a deuteron and a photon of 
momentum £ , and of two nucleons and a meson of momentum ^ .
The part of which we leave out here contributes to deuteron 
photodisintegration by way of a virtual meson which is scattered 
and finally absorbed#

We make the further approximation of setting V - Vi + Vz
and h Wĵ  •= V/ in * This implies that the only
meson present at any stage is that produced by T( , which 
suffers a succession of scatterings at the nucleon. We ignore 
absorption of a meson at one nucleon followed by emission of a 
meson at the other nucleon# We also ignore the meson exchanges 
which give the nuclear force. Roekmore (1957) has made an 
estimate of the effect of the nuclear force in the scattering 
of mesons at deuterium* Following Chew and Goldberger (1952) 
he gives a first order correction to the impulse approxiination, 
for the effect of the one meson exchange potential. He finds 
that at 85 MeV meson energy the correction to the total 
scattering cross-section is about - 5#* The inclusion of

/



meson at a single nucleon bound in a central potential#
We can now express in terms of t’s, and ,

since we only have V ( and \  in . The result is 
given by Stoodley in the form

T-i *----  '------- Z x- (12)

2 i = 1 _ v ti " ' (13)
Fbr ft nucleons he obtains the equation

i- f\ *v* z? •it"*’ (12*)*3* 1 _To obtain the matrix element of I he solves successively 
(13) and &21)* Ills method makes it possible to deal with 
fl >  2* | because (12*) is linear in the 2^ f but it is 
rather clumsy when ft « Z  , compared with our method which i 
to substitute (13) in (12), giving

" K 0 ~ t £a ^  (12h)

where we introduce the notation ^  2 when *'’**[/’

Therefore "X{, « £ + ( l'*'t*£tt')

^ a ' )  } T+t^~^ "J ( l + t & t a5"

« ( I-* fcsK ^  1  (lh)
We shall work from this equation. Further manipulation



In Chappelear’s paper the form

T~ S  * [ •  ~ I '[  t  + t bl i ’O ’ J ( IV )I
is derived from (10) * He then assumes that at all successive 
stages in the process the only meson present Is that produced 
by T t or T 2 # so that the matrix element of t ̂  required is 
always that between one meson states * $ow#v
C %  ^ I tsi \<HX'S) so that (Ilf1) and (IV*) are

«

identical#

i W:-. 'V K : r i-,,  ̂ . L ; - ..

-......  ‘ 1 *-'-ATev-

, 5 ,  ~  - . t %  "" ^  . f . ^  1 .■ * '  - 4 * n r-v ^ ■■ -*

fiis P$Fr
| .db.■%  ̂ 1

: -  ~ -  - - - • • v .



Here is the iso topic spin projection operator which 
ensures that scattering is only in the *t - state of the 
meson and nucleon i * We consider only \> wave scattering 
which means we must confine our attention to mesons with 
sufficient energy for the )p wave resonance to dominate trio 
scattering* We use for the form given by (1*12)
using the { \  ^ / x ) phase shift S_, of (1.17) but we 
ignore in (1) the spin dependence of the scattering*

We first obtain the matrix element of ^*1 *a *

from (1) and (2*6)f (2*7) this has the form

J 0 nru(‘igvuto + i[ ^

' ) fdq °l(* 1,1 - ^
/ V  / > — LO +  L ̂  o

CO

Here ft » t5* - t R I ft I # The one pole approximation<m iv * <*«
is that on changing the integral in (3) to the form

- «0 it
and completing the contour in the upper half plane, the only 
contribution is from the pole at ^  %  • !Ehus we assume 
that the product ^  (ch ^ 3.N> is even in cj and has no
poles for <\ in the upper half plane. VJ© can compare these



2 6 .

conditions with the restrictions on the fori;; of 6* inpiicit i:i 
the work of Chappelear and Stoodley. In Chappelear1 s paper the 
form of tsC is

. , v 0^  ~ ~ ~
* w  <■>

in which 6- is a function of energy or in our notation
*

However for the integral of (3) he has the form
r “ d,

and states that he ignores poles of 6\ and 67 * So it
appears that he is in fact using the same form of as we use*
In Stoodley’s thesis the form of & is 6* 6^**0 ** •
His method can also be employed using &- but then to
solve (2*13) he has to make the one pole approximation in an 
integral of the form

dQj <\* ^  C *0
0 - u>C <\) + ii

This does not contain a factor SvUc^R f because (2.I3) only 
involves on© nucleon, and so the approximation requires more 
restrictions on the form of 6- than in our treatment*

The approximation used here is referred to in various papers, 
for example those of Chappelear and Hockmore, as corresponding 
to the neglect of scattering off the energy shell* This is
incorrect* If we transform the integral in (3) into

«o
2 -f duo toŝ wqft &0\{ fr
1 J|UV, w^ c') ' W +ic

/

eO
«



27#
and use the result

fd'-oFCc,; _ . „ P \ i:±^±±- '5 )
I <*(*»-wiV^i ~ M e  i uCcjeV-^^i

then ignoring scattering off the energy shell means Ignoring 
the principal value Integral# This gives 

2nru> 6)e^ Ĉ i ĵ e h

while our approximation gives

— 2 ?r i u) 6~ fr (̂ E) Q. ^

The difference betwen these approximations is recognised by 
Drell and Verlet (in the work mentioned in Section 1)# We have 
not been able to relate the assumptions of the one pole theory 
to any physical property of xneson-nueleon scattering# We shall 
see below that in this approximation we only require the energy 
shell values in our final result#
Continuing from (3) we have

Cl, I *svk**i I’d  - aLa* ^ * 3 ° ^  V *  S
where

r ,0s _  L  <L (e Ct>ieg )
^ lii R dR V R j ^

. 3C*> •

We shell also use the notation hCR'i — g £ O R  # Erom
(2.1̂ ) ve have

Cq.KvIO - (2sf S ^ , - ^  -+a^ q..q vV l 0 '^' .
V  IV <v ’ ■ I I I  I<X(<fe> ~ ~



2 3 .

f (cte> 'h> “ 1 ̂ i r  , .
CA Ĉ  ->, «, '“* "'' ~*

C2it?  ^%-v> -f q^ 6-fo0<H~) ^  ̂  € 1'(ll"1;>'-̂ v
<A (<},> ~ ~

+ —  fat* y  v «  g j. s , . ai ̂  U ^ xc ^  Ci)

ol'Cw
where S{ Op = Cq, l*i h  ̂ q e ' 11$  («,)

V*̂* / 'V
We now solve the equation for S t- (q,'* which fellows from 
(8), (9),
ScC^ = yd3 [wo’S f v ^  - fr*»■>*»\*

 ̂̂  D / ̂ _\ #* * . .  ̂  ̂ . *7 M #v
(lo)

sJ) r  gtOi-R » \ . Sj Oi .* j  e(,t̂ 3 .-

Making the same approximation in the integral,

SiC^ - e “ "l»V> N> ^

oo

Taking the scalar product with R t

StC^.R •= qr R 6r C<\n<\e) [ *  l “' -l+ a^.nx^ J
+* »v * *  IV» rJ

X [l - & vfqe,<te'> QiAk 1

? 70



29*
and hence- we obtain

S;Cv 1 ̂  1'~ r a« j~ j,*

+ V J U  ^[jfou S ^ g l  X
C'i)

C»’l~~ + t<ite,w)W«'s)(i- S'0*'** ̂

X f

the matrix element of T  . 
From (2.11f) we hare

i t  1 ^  = t \ I \i J U*i ~ "v \X3*

w« take (hi i Tjl Z  ' in the form

^ <*i &ui -<- ire (qiX'ij, \ e v' ~ 2l''-' du)■'"v *

«̂{ and Xi are fractions of the meson and photon energies,m
the photon polarisation and nucleon spin, and also contain 
isotopic spin operators* (See Section ?)# With this form of 
Tt we have

- 1 A  ^  ‘
iV'O'hhi)"'frt'to •<). V  ~■j*)* ^\\-t-T:;n f"S h -<?x

We write »<{ , Xi in the form ^  a ^  X
and define quantities Fa* and (&£ by /



»W|

k?t)
*•

Cfc CV ^ C ^  C v » i h O  «. " 1V -' K , (l?)
•V ** J (PjjT #v '* V ^
so that

to, m o  - Z 1 «. t- ~ [?v <v- +  <$,• . 3  (i6)

W« find ?i and <$t- in terms of S; and usa (12) to obtain the-v
final form of 0?, I T I O  . From (8) and (15) ve have 

PjGp * [ft't1-1 + U *  V ^ e )  4CrH - *  *
(17)

■r I V 4 (R)W(R) S: (<),). f£ q ; ~ ^ c <
ftnr)

(18)

where we have written cj - c)E f since c|f is the final
• a

momentum of the meson.
It will be noticed here that the first terms of P%* and &  V»v
(from (12) ) give the impulse approximation when put into (16) • 
We have used the one pole approximation in the integrals (15), 
with consequent restrictions on the forms of of and & f<}2h • 

Our final result for the matrix element is of the form

% 'l Uv.rV - a.. t> ■ \
(1,ITW)-- Cl, ) T-p V * ~~ - - XL. (19)<•* <■* ~ v“ *  ̂ *
in which the impulse approximation matrix element, and the
corrections for multiple scattering an odd or an even /



number of times, are displayed separately* The full 
expression is

^.iTtv-) =  6 iITxJ w >  +  S ®  ~  ~

Qu , Tzrrt £ v + *
I- aja* ipcitf-tg ~ il:". .. y*.R*■V« o a- ~

£fRHe__ Q a . ̂ ('eiffRH^CR'TiWeHg
l-W vfaMe’' ~  ~ 1 ‘
q Cil̂ C R ^ e^

+ . . ->. &-B£ ■*•

a i(v.i»l-_«î ')
+ *i<\,l-l

1- C (£Rf> "te 
I - & hv(R)(j/=

0 -fCfO-fcE- £ *{ -h __-_______   K:
> I - a c-Aj$-Vfc) te a

S’ ~ ~ ̂  1- Oi** [- <\ ick̂  ^ R )  & -■»-

where we use the abbreviation 6 g - 6 (<t6; ̂  * When we use 
the results of Section 5 ana the notation Pi , C c given there 
for the parts of <*; , Ki which are independent of iso topic
spin, we have for positive (negative) mesons the results

•*''» rt V  **, r o>. a  C.~1 t(V-9,,)y%



£

+■ e

~ r J- ft. {? _ J F.-to c, - i g

vhere £ a w  stands f#r * and tho functions F(t£)M n  ^
are defined by

p lRi , a (ft) R 1 CjftWVW] Sg^
(i-^va6E1'JKi-wvrtKg'1

Fi>m * gtg> 8* C 1 -*• 1»? )fcg
( I t e 1 X  I -  vfn r H s 1 ^

To illustrate the behaviour of these function# v# show in
graphs I  and HE the real and imaginary parts of an "even
scattering” function f%» CR) and an "odd scattering" function
F$ £ # A H  the odd scattering functions are zero at R D f 

and some of them are appreciable for larger values of ft than 
any of the even scattering fuuc olL 0.~ xO # If vc evaluate our 
integrals using the approximation of neglecting scattering off
the energy shell ve get precisely the sane form of result but

h Vi\a>6-e

/
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R/loilcvAci. l^cv^Jv^cvnj ^  Fj.CR.’)  ̂ U$Cc)') ~ I* 6 7 fj.c

- - - -- OWt |o<rto a|pjpr̂vvvN<xtMfK
—  _   r%̂  * wJW. iJVv̂  .
 .
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33#
we have iSvvi^R ±n place of 4 ^ in (7)« and
RilR^ in this approximation are also shown in graphs AL and 
iiC * the third set of curves shown in these graphs is 
explained in Section If*

. ... . ... . .... . . - ;

■■'■■■■ -i -hi i v . ni-ii ii 'ten- m
-.1 ,-t fan ‘a . li £i~ . - in .nx,
m  wn m m  tm  i m m  -- ] $ m-lamm
mmm mm %m fAs lit iisf̂ gralt
m'dsM & m  m( i t  ; * v* in la  & m  o f i i

m m  r M m A m ^ k m r  C lf f i )  ife© vnm n  ftszvjtoa

m r n m m A '

Hi C % H U  ■= -'i.-n, i  i . '
■'. ̂ ; n (i-.n

in (1*^) tt# t m  mmm. m, a
.n-i ;>to:%s,t-;f. m i  t  ' kv; * iH i

c. „ ' \ ; ' • - . -m- innv̂ ftl umv*:-' •• t ~V;-i
mm-mf i!i#lX isihf mat. teim

- * til t-ui v:-i::n'v;:, nil
'•* .. - , * - ' - ---• s 1



It is of some interest to examine too multiple scattering 
correction for a particular form of qj.b which alloi/s us
to evaluate the integral (3*3) exactly, rather than in the one 
pole approximation# In Section 3 this approximation is used so 
that in our final result we only need to know the values of

and ^ 9 ailĉ 30 that we can reduce
the solution of our problem to the solution of the equation 
(3*10) for S v* # We can retain these features of our method<v
if we us© the form & (q, jqfb ® d/qO f although we must 
again us© the one pole approximation in the integrals (3*15) 
which involve o((fqv\ and • We make use of the work of
Velibekov and Keshcheryakov (1955) who use a factorable 
potential

V-JJ j •= - > v T > if Gy- ̂ (!)
iOO*,)u)fqLb

in (l*llf) the equation for meson scattering at a free nucleon, 
and obtain reasonable values of §?? Ofe') • The fact that 
these authors obtain the correct behaviour of scattering 0:1 the 
energy shell does not imply that their form of is
reliable off the energy shell* For this reason, and because 
w© still have to use the one pole approximation in (3#15) we do 
not use this version of multiple scattering theory in our 
detailed calculations# We shall take the calculation to the 
stage of showing that the results of using this form of 
are closerto those of the one polo approximation than to those 
obtained when we neglect scattering off the energy shell*
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kith the potential (1) the equation (l.lif) has the exact 
solution

!<* - (2)
I- Mce)where

06
-r p ̂ — fol °\* ^  ^

WaCep[«(qê -Û '] ^

Velibekcv m i  Meafeeheryakov introduce ft new coupling constant

?> - — ^---- . (u)
l-

so that

= s ^ <5) 

Whan vrC<p is replaced by a cut-off at tMs gives

- *5 ^  ~ *
fev,s,,M - -hi—  f i + x M ^ d p f e - ! — — 1_  \ <«

2»«<*eP  Jou ̂  W - * "  * *

By suitable choice of >s and <3*̂ ** these authors are able to 
fit the experimental phase shifts fairly well. In this theory 
we have

e . ^  ̂  - E n a C v — >T [Vc*n -t'(k>] ]' <7)u)Cq̂ »o(qO t 
where the integral l 7(eb is



1th this result for we have

u>x0\e > (&)

W® shall us© this form of taking as
given by (1*12) and (1*17)* Thus the behaviour of 
off the energy shell is very simple to deal ’With# The integral 
in (3#3) is now

U v i ^  (£0 U> 0̂ e 'j -t- Li

< W
= (9)

The poles of the integral contributef on closing the contour 
round a semicircle in the upper half plane,

-2fi. wC«\6't ^ ,.■)€.«= 0 ^ eR- i-e- ^ (10>

The integral round the semicircular part of the contour is 
r*r

if W  a . w ^ U e c ^ o ♦ ̂ i t » > (i d

Now for consistency we use the large cut-off , 9w>ox * Ilf*- , of
Velibekov sx!?!icl 1’A© ©sisilĵ  seen, is ̂ 7̂0 Oci~ -
neglect (11) in comparison with (10)*

W©ftherefore, have the result that to a good appropriation
/
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the

(12)
where

(13)

We shall also use the notation
A

For R. ^  IfA. 1 (̂R') and are almost exactly -f-(R)
and (̂R̂ ) • There is a certain resemblance to the third
model of Drell and Verlet, discussed in Section 1. They use 
potential which is factorable in configuration space, and 
obtain a result which tends to the result of the one pole 
approximation as R increases* Using (12) and (13) we can
now derive the matrix element of T  as in Section 3* obtain! 
a very similar form* From the result (12) for (^f It*- \% )

<«v
we obtain

(11+)

(15)

In the same way as before we obtain for the result
/
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■* f 3i cĈ ,'̂  «. + <1* ) 4 ~~ J "*■•V *- *v

i.RBcck3 e 6 i w ‘J<v;t‘^  +  ̂ E r ^ r t + ^ R̂ x«M#-» ^

. .  . . /.i l. ' ll I 06)
(e”l' - V % <f1 ~ e 6 u to )(i - ̂  °ici*>o;<*vi j T ^ v S o ^ ;

w« define Pi and © t' as before and evaluate (3*1?) using the 
on® pole approximationf with the result that our expression for/V
C J It |v ) contains f as well as v  R
W« readily obtain the matrix element in the form (3# 21) but witi: 
the functions F(R') of (3# 22) replaced by similarly numbered

A
functions FfR") f where

1 l-'C.Vs.) ie*
E lift , Jf lR) 6-e Fs ̂

i-~poo e,/

f.cr’) - rH« C s ̂   ̂*3 -*- C-t a ̂  — K { 3^ 6 1 ov)
^ O - f  *C«H£ X I- X m ts‘l  ~ U 7

p  ta\ = sypfc _ +  c f t o ^ R ' n  ̂*~b P j ^ ^ g 1 (l-^aUev)0 -tV^e,<=y>
In the graphs Tl and HI we compare F2 and F^(k) 
with F^flO and F$($0 calculated in the one pole approxi
mation and In the approximation of neglecting scattering off
the energy shell* It is clear that the first of these approxi
mations is the better.

/
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this is to be expected, since deviations from energy 
conservation can be important for an intermediate state 
of short duration#

fa " * .t

.ftv
I n ’

ts'v,i 2*-. Vv
i.

r=M #f 'one .peait&ve* or m

e c t i x B i f  ' Y , '  -f  v .  c f  Y "  M

* : ■ r *
; - e r f  '

L®J ■ »j f !
m-a rertifci an zp&P?\S*ig .on

m
r- f ̂  1 0
it r £ ° 5* . L-f>. */

X %  ~*i a 1



'which are consistent with the us© of the for® of Clebsch- 
Gord&n coefficients given in Condon and Shortley (1951) • We

i/i -yt
define y, as the one proton state and y,A as the one 
neutron State* and the operator Y  by

t * - T •+ **■■ T - ^

where
, *n

t+y, ' — i y r

T - y ^  * *h X
**hn

Y lX

(i)

t. y f  - 2 vk

States of one positive* neutral or negative meson* denoted 
respectively by y/ * y  ° * y~' can be represented in the 
form

~ i “ “ 0 1 " 0 '
6 *

1 ’ 0
0 ° 1 1W J L J •> tm

When regarded as operating on these column matrices the operator 
6 is



The meson creation operators qp act on the vacuum state io> 
as follows,

lo> = X'

^  - H ' 1 (3)
<?}io> -- y,°

and we define
Cpt - J\ (<? + <?*) , ief,' >

We must fix a and & to be consistent with our choice of
"t | t by requiring that the total iso topic spin t
commutes with the Kmmer (1938) operator C “ Z? <=£• .c
We have

v c ( r y (' }  ~ o 

« *  f U Y : ‘) '  C l t ' i ^ o
X X

Hence a - H  and fr * I *
The isotopic spin eigenstates of the system of one nucleon 

and one meson are,in this representation*



while the eigenstates of a two nucleon system are

x,1 ~ y A o V t o
i- i

k - J i  ‘i yM )lk fo + y'M \

- y i n o  y r ^  <5)

x; -- ( yh^ y/V)- y ^ m  y h ^  \
For the system of two nucleons and one meson we only have to 
deal with states of unit charge. There are two convenient sets 
of states* The natural set for describing our final state is

i<A

x, v r 9 that is Jx ~ -+■ 2 jp
n >  •* X.6 Y.° 9 that is Tl0*- triplet njp state
ii> = v,' 9 that is *"-+• 2a-i
1U> - 9 that is singlet state*

For dealing with multiple scattering in which each scattering 
is in a 3/2 state of the isotopic spin of the meson and one 
nucleon it is more convenient to use eigenstates of t and %  •
The appropriate states are
I'Y - Jt ^  
iu -- jt

r 1 *> ~ 1 "* ,r> ^
n*b -=*
So for any operator A we have
C M A i r h - -  P  ( X U ^ C  I f t l - j X - j l K b  {3)

where ^  is



The second representation is essentially that used by 
Chappelear*

Consider the operator <X{ •£ which appears in tsL

and

<i l *> ' i > ’

t I O-l
i 2 I o
o i i ■ 1 „ -« o 1 2

I I o I
I z i o
O I • - 1 
I O - i.

(10)

vhila

C M  “(■
*■* o o o
O I o - jz 
0 o o  ©

and

C M  Ail f O  -
*1 O 0 o
0 t o 4z 
C o o o 
o 4"* o 2

A,, XUsA. -.vr.

A-_

a nt&mm ■ i a ; 
; m i fisffe«tl.

(11)

In the form of T{ given by (1*13)# (1*19) the operator for 
wave photoproduction is obtained when In the neson-
nucleon interaction Hamiltonian for a pseudoscalar meson and a



Ijlf*
static nucleon, is made gauge invariant. This gives

*  P i f l ;  =  c f t i  1  z* ( 1 2 )
In otar notation the effect of (\ on the deuteron wave function 
is given by

p , v  = -i*>

Pi V  - I'O (13)
The |p wave part of the photoproduction operatort (1*19), must 
produce a state with t- • Its isotopic spin part,therefore,
is

Si - - «s (1^

Writing Vv ■* we *****

~ ^  [ 7 v.<ix£ -* i«i. v> i  * 1  (15)
yCt rv >n *''•

We have
% , * 0° - ^

S z  v  • n  a 6 )
We can now see the advantage of using the states I b } rather 
than I * We can take the operator Cti as effectively

c ! > i » , f . ; t ]

o L v i t o  ’ [ ; ^ l
(11*)

Any state reached during the multiple scattering is a linear 
combination of I and I O  and for the amplitude for 
production of positive (negative) mesons we pick out -JJ

/



by the various parts of (3*20)* This leads to (3.21)• Notice 
that any difference in the behaviour ©f positive and negative 
meson cross-sections must come from the space wave functions, 
that is it can only come from the effect of the Coulomb inter
actions in the system of two protons and a negative meson*

tv f ■

- — 1 1 ^ ' l i  mw^xmslmrn." t ~ o m m■ - ■ "
r -

■ h V  -f auitigle t-r

aV  T :
 ~ ~ s f  -$Xm&pBi iffX ' ■

T~
* £'* ' *Pr- a * partial vpvX, hk - ' ' .

  ̂ ; t ' r » . r ' ~ 1 pisvtifl rx
y{\ Ait I



6* The cross-sectlon.“J ■- 1 «WE1WWIWHII

The impulse approximation! cross-section for a plane wave 
final state is corrected for the nuclear interaction in the S  
state| and for multiple scattering when the nucleons are 
finally in an S or ^ state* The multiple scattering 
functions have short ranges so that w© can reasonably neglect 
this correction for t > i # The cross-section has the form

01 r (even) + f ̂  (odd) «dt<f dj< dL<| olj< efT)

-5^ ^ - [impulse approximation, even part of plane wave}

^Impulse approximation; t - O partial wave^
rw ** —

— ^ ^ j ^ ^ t h  multiple scattering; distorted £-o partial! 
,v r « wave j

(1)
 Impulse approximation; odd part of plane wave \dU do 1 Jd -1

 — {impulse approximation; I partial wave {ciU etf) ^^ r- **•

 —  [with multiple scattering, ^ - I partial wave \
dta clU eft) I

Each of these cross-sections has the form



= 2 rr 5

Her# q , \< , T> are the momenta of the meson, the nucleon 
relative motion and the nucleon centre of mass motion 
respectively, 6^ is the deuteron binding energy, -2# 23 KeV#,
and M  is the nucleon mass* 10? I* a I^^IT |t>[ f0r a final
state appropriate to the particular cross-section
considered# The effect of averaging over £ and the weight 
associated with the final state spin are implicit in  ̂ •
T  as written in (3#21) already takes account of the isotopic 
spin parts of U  )> and 1 f ̂  so we have for our Initial state

U >  *
where is the triplet spin state and we use the Hulthen
deuteron wave function

—  [ ^ 4 ^  *  «

r--- 4 \with °< -- J MI ̂ d \ and p given by f, ■* *ITp ~ p ,
-15

f, being the triplet effective range, fj « 1#7^x10 cm*
1 5 - 1°t « #2316 x 10 cm%

p « l#if3if x 10 *"* cmi1 
Our final states have the form, for even and odd space parts,

u 4 /x

U r r ^  ‘X 0

Here 'X,, is the singlet spin function, and $ * { (<\ +*•>■ ) .
The space wave functions i;e use arc,in the order in which

/



the cross-sections occur in (l)t

-*5/l

urc ci<.̂  •= ^-1 -1 ~ ~ WR

nreCW.rt = (!*)
) IW IS

ur0(k.R̂  •= H'kS
V  *, N  < N  ~N>

the last applying to the last two cross-sections in (1)* The 
form given for iiCkR) is on© frequently used for this purpose. 
(See for example Saito .et* al. (1952) ). bd 9 the nucleon - 
nucleon scattering phase shift for t- o # and 9 are chosen 
to fit the effective range and the scattering length a
which give the non-Coulomb proton-proton scattering in the 
triplet state, at low energies. The connection between ,
a f and is obtained following the method of Be the (19b-9)«
We introduce the following auxiliary functions,

—-> uiCkR"} as R *°
u C t W  — ^  u„ (a'i as U — =» o
u  o CrO — => as R— =s> «>



k9.

It is convenient to uao the boundary conditions 
u  (o') * u6(o> « O
^ Co) - l0,(o) ^ |

so we work in fact with

n. CkR) * _ e'0R
SVwS o

We then haw#
r, 0 sMUR**uo CUR - _______—

U. (R) = I- R - W*?R
CL

tioCR'i = i — B.©V
19xe ©ffective range is given by

f«, - 2 S#* W -  } A R
-\3 %  ̂ -W5Using a « -7*7 x 10 ora** ** * 2*65 x 10 cm., we obtain

Y)- 1*28 x 10 13 eraT'
Because we must deal separately with odd and even final 

state© we define Q e and Q 4 where
a> * f t l *  u r ‘ ( W K ( R H ' 1 "  < 1X0I T H X . >^ 0 J (In)*'*- *e

< S ? . f 5 l ^  u / C l c R ^ u ^ e * 1^  < ?X . l r | U . >  (5)  
e ^

Utie farm of T  ia(3* 2*)oaa be expressed, recalling the definition 
of &C ©ad C(_ , as

i(v-<0 . »•
T  - e ~ T 1



5 0 .

= e - z ~ ~ ~ -Ck1 r,-t-Ofv r\ " ^ ^ I *

-^Cv-iYR n - U o-k^.r (6>
"f « ~ ~ " C K ^ ^ U ^ J

So

Q o — ('2r/tS(’i)"V+p|'clR u ^ ^ C t . R ' )  û CR'l ^  *Xo 1 I 1 ^ 0  

Now write

T  ' - ( < r / , ^ < r 1 ' ) . T ' t ‘ - t 6 f ' , - ' 3 ' x )  " i " ' - < - T ' a  ( 8 )
— ’ - V  ^  ^  * w  *>*

and define the integrals

i + - c r * ? 1 H

J~ - Unf1- [ d £  u £ < * C W . R ' )  u . i C R ' ) T  ( 9 )

1  •= (7n'fl J'dR U.i(R') \

Then

t e . r  - [ u > ; - 2 i l '  I  <■ I (l0)

the symbol < indicating the average over £ . Putting
this form into (2) and integrating over T> we get the partial 
cross-sections for a particular meson momentum q and any /
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compatible k ag

C'isr'S’̂ f a~ S ( £  - -I \ I (  It* P V  
^  - h T  W H n  m ^ s V I - I A cfO

_  ̂ (11) 
sr - <J!> ? t £ -  ) < 1  i r f -  m '>B(rtic J(i*r nKy

rv>

for one of the even or odd cross-sections as the case may be. 
From (11) we have the results,

— ci£—  , ^ ^ 3 ^ r d f l f c < i x - i % ,

dff
(12)

_  _ (2 kV r.n /<fciT-*-r-*mi‘-> . .
diSLoi bt;c 0 ^ ftd)U*=ko

for these cross-sections*
The impulse approximation.

We now give the form of (12) In the impulse approximation 
case, with the nuclear interaction included in the final 
state* From the first part of (3*21)
ihli£,.ll1- t ic&M t-J?

- e' ] (13)

It is convenient to use the abbreviations 

E  - ta. v-Tl tT
(lh)

M
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from equations (1.20) and (1.21) we have 

E =
(uĜ l v')l/v

M  +  l M  -  E , ,  < 1 5 >

Here we write m v = !2>Mf and include pi which was
previously set equal to unity* To average over c we use the 
following results, in which is the angle <\ makes with v

<N)

<(vxiX3 V->ftvj. *  con3-

/(vxi VV") • £ X . , - v q oja© o, *16)
X  ^  r. B J  »

< (X K.£ u ^  ^  ̂  V 0 41

Thus we obtain the results

j x t p  . l < " [ i C l W © , X V̂ | r K , ls ^

- 2c^®b, -II U7)

iif1- - k i e '(;r ) x ^

The form of I- depends on the particular cross-section we 
consider* Fbr the even and odd parts of the plane wave we have 
respectively 
i To, + la 7 and 5 += T a, - Ion > ^ere

T _ f d R U " ^ - ^ )  R io ic-"3^0J-ou - Jo J (1Q)

- f  J «c<■•*-*- r - i:  ( * 11 -  t o - n )
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Ihe value of 3 for the o wave vith no interaction is 

3 ~ = I Ts " ^ ^R) sO<R -la CR ) (19)

while for the distorted wave we have

r  - e5° 1 Ie- a 5,f  i O  U4 '  ) (20)K U <5
In the impulse approximation we do not need to consider the 
i-1 wave separately* If we define X * ~ j'dJlkC-ia,1*- IA3L ; 

we have from (1) and (2)
[ e  -

di J
+  ^ ( CC--.2C-) -eM,1 C M  + R l ' W + V w ' )  \ (11')

vhere
e " - x" -  l-prCTf - r f )1C

e + - x +

M + - \ E  ̂  C

c *  - Ort (So, v-wSortS

h* -  ^ E ^ s u W ^ l l f f T
and from (12),

_ ^ L _ (ewn) « n j f f £ M k ^ j “E^vv,(c - ^ h M - l .  ud u x ^ d ^ 0™ "  5(75)* Rev I ‘ 1 ^ ksU°(12')
rT7TTir(oM) - [ X e - W W i Vdw^xioi^ b C 2-*) fcc v L

X olrOV
k--L



5»*.
The integrals X~ ? and i $ are given in Appendix A, 
equations 1 to 3*
The multiple scattering correction*

The forms of E ” and so on required when the correction is
included are readily derived from the results of Appendix B*
The integrals over R are evaluated numerically# The fact that 
we only calculate the correction for states with or
t~ 1 simplifies the integration over angles#

Kinematics*
If we specify V and ci , the magnitude but not the 

direction of I* is determined# The two nucleons will have4*4

quite different momenta relative to the meson which is scattered 
at them, while our result for in Part 1 ( (1.12 and (1#17) ) 
is given in the centre of mass system of the meson and nucleon. 
We treat the nucleons as stationary when dealing with the 
multiple scattering# We may expect errors caused by this to
be partially compensated for when we integrate over all
angles relative to q # We fix our value of * with thef-V
energy S* function in the laboratory system, for given )l 
and q , and then convert v and q to the centre of mass 
system of a photon and a free nucleon and do the calculation in 
this system# We present results in this system, referred to 
in Section 7 as the centre of mass system because our choice of 
values of q is determined mainly by considerations of

-j

convenience in the calculation, and because we are not comparing 
our results with the data from a particular experiment.



We are only concerned with general features of the cross- 
section in the impulse approximation# In the graphs IV and X 
w© show the cross-sections at 90® and 30° in the centre of mass 
system of a photon and a free nucleon, for 300 MeV* photons.
The meson energy spectrum has a peak centred on the energy of 
the meson produced at this angle from a free nucleon, for the 
same photon energy* As we go to forward angles this peal: 
becomes narrower and its position is nearer the. maximum meson 
energy* (In graph V. this peak is only seen on the curve 
which corresponds to a non-interacting final state)*
There Is a second peak near the maximum meson energy, caused by 
the final state nucleon interaction for low values of 1< , as 
can b© seen from the curves In V • At 90° this second peal: is 
unimportant but it dominates the spectrum at forward angles* V© 
refer to the two peaks as the "free nucleon11 peal: and the 
"interaction” peak respectively.
The multiple scattering goirsfitifla*.

the results here refer to the one pole approximation. The 
magnitude of the correction is different for the free nucleon 
and the interaction peaks of the impulse approximation meson 
energy spectrum* We have calculated the cross-section for the 
following cases

1. W O O  * »•*! ¥■<■* > * C}0#-
a. ul«p ' I © 1 ' 11©*.
3. u(c|) " ©<j = 30°.
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AuĈelJlc, dio£<pdJlej



I
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^  ^ 9ft0*
5* - !•(>% ̂ .cx 5 0 n » no*.
6# Uty - 1-7 ^ fic' , <2)^30*.

The numbers on the graphs T£ and "J correspond to the 90° and
and 3<jP cases* In table X we show the results of cases 1 to J,
which lie on the free nucleon peak* In the columns giving £ ~
and so on ( see (6*21) for the notation) the corrected values
lie below the impulse approximation values* The units fox* these

-ibquantities are 10 cm. The last column gives A. , the
percentage correction to the cross-section* It will he seen
that the correction can have different signs for terms associates 
with even and odd space parts of the final state* This, as well 
as the fact that A  is small, maizes this process less suitable 
than the process X — *» TT° -*-!> for studying the multiple 
scattering correction. From table X we see that on the free 
nucleon peak the correction is about <* b% to - 8$* This will 
not affect any conclusions drawn from the interpretation of 
results such as those of graph X  in terms of the impulse 
approxima ti on•

In table J we arrange the cases 1 to 5 in order of
increasing value of the parameter , where k is the
nucleon relative momentum and q I • This parameter
decreases as we go towards low values of k and forward angles, 
that is towards the situation in which the interaction peal: Is 
important. The corrections A (even), A (odd) and A , to

—  (even), — — —  (odd) and respectively,
are given in table -jr • The main feature of this table is the

/
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increase in &  (even) as k decreases* how in case 6 (see 
graph A  (even), so we calculate (even) for this
case, and find it is - 22>* It should be noted that the 3O0 
ease is an extreme one as far as comparison with experiments 
detecting the meson is concerned* It corresponds to laboratory 
angle 21*.°, while the furthest forward angle used in the 
experiments compared by Hagermann ©t* al. (1957) is 26°* We 
conclude that While the correction is in general less than 10^ 
it can rise to 20fr in the interaction peak at forward angles* 
This seems reasonable if we recall that for elastic pion 
production the correction is large, as described in our account 
of Chappelear1s work in Section 1, while the case of snail W is 
our nearest approach to an elastic process*

The question arises whether the correction to the internetio 
peak can affect the interpretation of the experimental results* 
In the work of Hagermann et* al* we notice first that the meson 
energy resolution is 15 MeV. Assuming that this would be the 
same at the meson energies we consider, it covers in our 3O0 
results the range of corrections (case 3) to **22> (case 6)* 
This will have the effect of reducing the cross-section, as will 
the fact that a bremsstrahlung photon spectrum is used* I-iesons 
coming from the interaction peak for some photon energies, and 
from well off it for other photon energies, will be detected 
together* Since the peak is high at forward angles the 
correction may still approach 2G>a in an experiment detecting 
mesons with the energies we consider, at 3O0* The interpretstio 
of such an experiment in terms of the impulse approximation

/
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would,therefore, have to be corrected, hut the effect would 
not be worth looking for as a way of examining the multiple 
scattering process* In the other kind of experiment mentioned 
in Section 1, in which the energy of one photon is measured, it 
would be possible in principle to examine low Ic values separately 
However, in the work of Band tel et# al* (1953) the accuracy is 
low, and besides they find it necessary to work with mesons 
produced at a large angle#

We may remark at this stage that the integrals (see 
Appendix B) which contain the functions Fx(fO and (R> are 
increased by about $0% when these functions are replaced by

A  K
Fj.0^ and , which are defined in Section

ah. We have not carried out a full calculation with the FC&) 
for reasons given in Section h, but mention this result because 
it differs from the results of Dr ell <1 Verlet (1955) whose model 
with a factorable potential gives a smaller correction than the 
one pole approximation# (See Section 1)* Another difference 
from their results concerns the importance of the double 
scattering, which gives a major part of their multiple scatter
ing effect# This corresponds in our case to photoproduction 
followed by one scattering. We cannot evaluate, in our 
formalism, the effect of this process alone but if it were 
dominant the contribution to (3.19) from an odd number of 
scatterings would give the greater part of the correction. We 
have evaluated h  (even) in case 3 including only the integral:; 
involving the "odd scattering" functions Fw(R; , F,;(R, and
F U O  • (See Appendix 3). We find that the even and odd 

scatterings aro of comparable importance.



Mmm&ix Ar the inpuj.se approximation
cross-section.

We give the values of the integrals X~ , 1 S and i c 
which appear in Section 6, in the functions defined by (6*21). 
Writing I  - \ (v - O  we have

x ' ' 4lt *t ^  >

+ Rk________  f_ f «VcB+U^ fC+C***? I
B(r+ (lazu^iiiO * i ^ + (B-ur j&%* cb-u)1 I

2U C f u1* (6-»-kr <i%* |

u t, I ~  u

(i>

, 4m ( s+a-*̂  jL^dll \
u>3 « I «i’--*(g-k'f (iv-*- ^  J

t o

I £ - is L * £0

-br* - t*r' Id* + 2 1 W  3- - -3
-jT P P"*?

W© also give here the integral which appears in the £ “ 1
impulse approximation cross-*section* This has only to be used
when multiple scattering is included. For this cross-section

*â**

the function 3 of C6.17) is
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vhere ^  are the angles k aot* 6 sake vitfc v  a:i<2

-J*

VaV * *W l
W V r %—k )

"1
,%

,».- .,#■'■* - ■' -•—". ' ■■ ■•
-H ‘ ..■:■■ . E v*
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x  p f e ~ M  .wto*

We give the results vhieh are ts he usee in (6*11) to 
obtain the cross-section including the correction. The general 
forms of 3T - f I  defined by (6.9) are

-f
T “  -  L, “  v  X £ XQ -+• L "  £ -4“ ^ X f x L "  “ • ** i j n  - '■v

T  - ^ ' [ u v x r - i  -=• VX £ . L."** JA u ^ ^

(X)

In the impulse approximation t ~ ° « a® can be seen from
(6«X3) • frm  (X) ve obtain the averages over £ ,

^ Gtf 1 + <1

«+ "i_ -£/ "± \ ^
+  lL i! +  v L ^ . ( L a ) ♦ complex conjugate

♦ V  Li  ̂ ♦ complex conjugate

♦ V 1 [ 1 ̂  i ̂  ^  \ (L~\ ) ♦ complex conjugate

< n r > « \ \c\> 1

♦ V v (ck'*x'+ W '-1 ) + conplex conjugate j

If we denote t U * ' ?  *  5 * «*• * » « •  the
following results in which we have used tno distorted ^  wavo 
or the P wave final state wave functions as the case ray be.



where T* la given by (A, 3) and

u£k(}’) F S-(R")
” o

,  rtR(4“^ « /,BWC|cR^Fa C R ) ^ f R B )

L - ^ *!1? [i-I*4 o s f e v © ^  Xj8 - a *  (<3v<3><OXjPi J

Wtl«T«

L “-= —  + 2 ^ r nii --*» ■ "5 U -1
where .

x,fi u  f & b - * ' '-***)*(*) K v y / c ™
XWft J o  Jl

T<*  U  f a f U ^ - ^ V ^ W ^XnS 0
ttflll >*rinffi'i - - 2.sA-<<2>plCjaS C®^-©^ -«• Cert (£> nî ,

n^Cft)- o
n^tFrt •= ~2oort©ft <u^(£k.-'@pt) - 

with a similar fora for #

(rft
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where Xy» is given by (A*k) and
00

= £«&■•*£*<*") R - j A ^  KiWl.CiW'b,0

J 68 » [ d R f e X a ^ )  R^, ( W )  R.CR) i> (RR> .
6

L^= - k E f b o ^ C © ^ ^  nij ( t W l cf  cMX^-^jnidf* - <*(■£> T ^ b

where
J = «  J =  j d R C a r * ' ! * - < * )  R ^ , C u f t  F *  <K) 

? c < 5  1 T d R f  a - * V p b  R v i . a a ^  R O O
J 0

and
Cf f t )  -  W rt(© « f © ft) C M C © ^ )  ■+ Svv,C©c,-®ft) <»vUfi5u )  Cos( £ n ^

dCg - - 2 CaH CG^-G^oos^-©^ c-a5^(?w -Fft ̂
with similar forms for cOO and d(a) * Finally

L +  =  ^  C M - I N ' )  C v i C o ) T h f t -  k C e - Y E w ,  - e C f i ) T € f l  -  { f a )  T « _  )*»* «~v <\ *«v ru> — *-v »* J
where r

1  *  f c ^ R C r ^ i ’ ^ R ^ i C k ^  F ( , ( ^ j  .

Xtfi i 0 I'ta

X  |__ f3 W

and
K-xCĝ  - Co%(®u~®0 {Sswv®^ + Oofi»®̂  Shaf^q-tS)^ }

+ s^C©u-<SO c«CSie-¥p,) ce*(G>.,-1@0 
h u ( f t )  -  S v V > ( ® w - © * )  s ^ ? k - 5 « ^  arsC<2>or &f,)o *"**

J V « >
l-J*WO
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= OrtC©t- 3c*S tersC©^- g)^ - S K ^ S ^ & i - e ^  J 

-+ ^Crt(^|t - 3 0  SM^(©,, - 2 & 0

-  S' O *  C<S?«- ©  ^ SW, t^*(0 |t- & ft')(N) ««0 ’

= h*((V} - 1) w ( ® r g  ') Ĉ rS © ft C ^ ( © ,  _Q) ^,'\) r\s I rr lc rr

vith similar forms for H W  and tCr^ « Using these results*>*«•* ■
th * evaluation o f pU & i^  I T * l v̂ w  and £<*J2u < iri'">p iu. 
from (1) is  straightforward.

^h^.; *'■■*'*•* ':̂vy.:S¥' ŝ?v* .̂.// .■» *
* > * - ?  J * " - * * " . ' r --r >  "r  '

O :/•;, -XQl^Vf& UO:Kv>';,

M j  f % m .  m M ,  i r -  •-« - r ^ v - S ,  ^ T . £- ^ V ' ^ '  ■^■■■>*:- - •■-

s=- k-: I?®?'; »■■'■:r--*. r\i FvîV*. '«*'•* „:S2r . ' - •
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67.
SjJhkAR Y . Part U  is devoted to the process jp-*- A c+. K*
near threshold. The relevant earlier work is reviewed. Two
models are presented, one of which treats the interaction of 
the K meson with the two baryons as a small perturbation, 
while giving a phenomenological treatment of the interaction of 
the pion field with the baryons. The other uses the formul
ation of meson theory in terms of physical states. Both are 
extensions of methods used by other authors for the problem of 
TX meson production. The models give different descriptions 
of the initial state, and the interpretation of these 
descriptions is a doubtful point in this work. In each model 
the final state consists of a free l< meson and a proton and 
A* whose interaction is described by a potential. The operator 
inducing transitions from the initial to the final state is 
the interaction Hamiltonian for a nucleon and a pseudoscalar

ftA  +  K system, in a static source theory. For the 
calculations this is generalised to allow for nucleon recoil.
The calculation of the cross-section is based on an approximate 
description of proton-proton scattering in the appropriate 
energy region, in which the elastic part of the scattering is 
entirely diffraction scattering associated with the inelastic 
part. kith this approximation the second model has a plane 
wave initial state. The potential in the initial state in the , 
first model is complex. The cross-sections obtained with the j 
two models differ greatly. A feature of both models i s  the 
importance of 5 wave mesons associated with the nucleon recoil 
term/
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term in the transition operator* Direct comparison with expert 
ment is not possible at present*
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Introduction.
In the study of heavy mesons and hyperons considerable 

progress has been made in the last few years* The main factors 
contributing to this have been, on the experimental side, the 
construction of high energy machines producing these particles 
In large quantities, and in the theory the recognition of the 
importance of the strangeness quantum number. (Gel1-1 ann(1955) ) 
This made it possible to fit the qualitative features of the 
production and decay these particles into a simple scheme*
The two main lines of theoretical enquiry have been on the one 
hand attempts to find symmetries underlying the Gell-Eann scheme 
(see for example d'Espagnat and Prentki (1953) ), and on the 
other the use in this new field of the techniques developed in 
pion physics, decent work of this nature includes weak coupling
and Tamm- Bancoff calculations of the scattering of K mesons by 
nucleons (Ceolln and Taffara 1957 afb), applications of
dispersion relations (for example Matthews and Salam (1956) ),
and the study of hyperoa-nueleon forces by methods developed for
nudeon-nucleon forces (idchtenberg and loss (1957,1953) )•

Vie shall be concerned with the production of K mesons in 
proton-proton collisions, which has been studied experimentally 
at Berkeley and Brookhaven. (Gee for example Baumel et.al.
(1957) and hea et. al. (1953). ) By conservation of charge and 
strangeness a proton-proton collision can lead to these final 
states,

K+ + A V | ,



K  ° + Z L j *  K ***•+■ 2  a

the threshold in the first case being 1.58 BeV, and in the 
other three 1.78 BeV. There are no other final states possible 
Containing one K meson and two baryons. V e intend to confine 
our attention to the energy region in which only the first 
process can occur. This is too near threshold for comparison 
with experiment to be possible at present. The lowest energy 
for which a result is available is 1.95 BeV. (iiea et.al.(1958) ) 
and that result is based on one event. However, experience with 
plons suggests that experiments near threshold will be necessary 
before we can learn much about the production process.

The previously published theoretical work on K meson 
production in nucleon-nucleon collisions falls into three {-roups. 
Several papers have appeared which study, well above threshold, 
the relative abundance of various K meson and pion production 
modes, using the statistical methods of Fermi (195$) and 
Landau (1953). deferences to this work will be found in the 
paper of Barashenkov et.al.(1953). Then there are papers by 
Henley (1957), Costa and Feld (1958), and Feldman and Hatthews
(1958) which deal with the region near threshold, and discuss 
features of the process which are not affected by detailed 
assumptions concerning the mechanism of production* They obtain ; 
relations between the cross-sections for different isotopic spin ; 
states, examine the behaviour to be expected for different-- i
assignments of the parity of the strange particles, and study I 
the effect ofthe final state interaction of the hyperon and !

'ithe/



the nucleon. They do not attempt to derive absolute values of 
the cross-sections. We shall discuss below various points 
treated in these papers.

Thirdly there are papers by Barshay (1956) and Peaslee 
(1957) giving models which are intended to reproduce the marked 
forward-backward peaking of the K  meson angular distribution in 
the centre of mass system of the two protons, which was a feature 
of the early experimental work (0sher(1956) )• It should be 
noted that this marked anisotropy is not apparent in more recent 
experiments. ( See the discussion in Section 5*) In Peaslee*s 
model one nucleon Is considered as dissociated into a K  meson- 
hyperon system, the K neson being removed in a ’’pick-up** 
process by a pion in the cloud of the other nucleon. It is a 
rough phenomenological treatment, while Barshay gives a field 
theoretical (weak coupling) treatment of a similar process. The 
graph corresponding to this is

 1

X  K- 
»

Barshay has also studied the process of K meson production 
w h e n m ..is incident on a nucleon, for example in the process



This will have a forward peak In the K meson angular 
distribution, which Is in contradiction to the observed behaviour 
(Dalitz(1957), page 187)* In addition to the disagreement with 
experiment there is a theoretical argument against Barshay1s 
approach. The absorption of a pi on by a K meson depends on the 
existence of two types of l< mesons with different parity, S 
and say, so that we can have 0 < — >  x  *+* "if • lather 
than having such a parity doublet the K meson is now considered 
to have a definite parity. he have looked for a process which 
does not involve this absorption process, and which might be 
suitable for calculating the absolute value of the cross-section 
near threshold* If we examine the work which has been done on 
pion production in proton-proton collisions we find that one of 
the most successful methods has been the phenomenological one 
(Geffen(1955) and Lichtenberg(1955) ) in which we take the 
matrix element Cfl U I i ̂  of an operator U , which creates 
one meson, between initial and final states I O  , I ^ of 
two nucleons scattered in appropriate potentials. Much of the 
success of the method has, of course, been due to its lending ■ 
Itself to the inclusion of the scattering of the meson by one of , 
the nucleons. This turns out to be the dominating feature of the 
process, because of the resonance in tt meson nucleon scattering. 
(See Li chtenber g (1957), Burney (195 6) and iiandens tam (19 5 8) ). -
The corresponding scattering of the K meson by the final state I 
proton/
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proton should not bo so i i,„por ta.it5 siaeo K meson seat lmi..).;: by
/nucleons corresponds to a weak repulsive i liter aotion Vba.j.1tz(lvp-')

section U*5 ) * la general repulsive interactions in final
states have less effect on the behaviour of cross-sections than
attractive interactions of the sane strength* (Watson(1952) )

If we look for a similar model in our problem we require 
data on proton-pro ton elastic and inelastic scattering in this

energy region, in order to obtain a potential for our initial
state* The fullest treatment available is the analysis by
Fowler et*al. (1956) of their experiraental results at 0.8 BeV* ,1*5

Belt and 2*75 BeV*. They use a geometrical optical model of an absorb-
-13lag (and al?nost black) sphere, of radius 0*93 x 10 cm at all

energies, and with absorption coefficient K (see Section 3)
13 -1 „ 13 -1 with the value U*3 x 10 cm at 0*8 BeV*, 3*7 x 10 cm at
13 -I1*5 BeV*, and 2*7 x ,10 cm at 2*75 BeV* They fit the elastic 

and inelastic total nross-sections, and the differential elastic 
cross-section, fairly well. In this model the distinction 
between scattering with and without spin flip is lost* A 
difficulty in the description of the initial state is the small 
amount of information available and the possibility of making 
quite different analysis of the experimental data. (See for 
example Ito et*al* (1958) )• We find in fact that the 
description of the initial state is the main source of difficulty 
and ambiguity in this approach to our problem.



of the strange particles, which are in agreement with their 
observed behaviour* See for example Dalitz(1957), talker(1958)* 
The K  mesons have spin 0, the hyperons spin Because of the 
associated production of a l< meson together with a hyperon the 
parity which is defined is that of the system A° K  or K 
relative to a nucleon, which we take to be negative* V-e adopt 
the convention that the hyperons have positive parity relative 
to a nucleon, and refer to the K meson as pseudoscalar. In 
laotopic spin space the A° is a scalar, the nucleon, K  meson

nand are spinors,

and the pion and S  are vectors

¥, . . . .  *• '

1C ~ ** «l z  -ro

%■ 4

+  —    » ^ _  77Here for example *u - &» -v l > »v - u 3 •
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>e use tho 11m  litoniaa H  = H 0 + W K -*• V\ (< , or

H „ +  +V>«CfA) +

+ KnteS') +• l,K (NA) WCAkI )  + (N £ ) +KK(fw')

+ kK CfiS> ♦ Kk (2 A) + U K C £ S W U K l £ Z ' i
Her© for example N destroys and N creates a nucleon. The 
free field Hamiltonian H 6 is the sum of the kinetic energy T  of 
the baryons and the energy of the hi© son fields,

H, * ! +  2  ajffl̂ coC(*} +  2  ^ r 6«j (2)
f* ^

Here ajT creates (destroys) a pion of momentum \> , and
£<^ (i<|̂  a K meson of momentum q • The parts of V\,r and liK 
which we shall finally require are

Hk < m O * W n a >  - 2 2  L % f S  u J n - ^ N U ^ A ^ )

where

« a  - / « ;  «
V 2«c^ ~3 -

end

fĉ NtO - 2 S 2  CoffiV̂ N +4rNVi?N')
* f

.her.

0 I Ur ' v f  «*((»■> —i L tl>*,4

(3)

it - , I Ur ' vA .
^  4 2 ^  — -----  xi* *pTT



>1 '.'I^  is the position of n u c l e o n  ^ 0 n; , v; are t\-
and Isotopic spin operators of nucleon 3 . ^ r f ^  are the 
unrenormalised coupling constants, ^ ^ and the rieson masses, 
and UC^ y vfC^ are momentum cut-off functions. The other terms 
of the interaction Hamiltonian have similar forms, with

appropriate changes for the different behaviour of the fields in 
isotopic spin space. In (3) we use static source theory for hK 
and hir • We can expect this to be less useful for hK than for
Viff because of the greater mass of the K meson. We define
V* as being the same as U , ^ut the renormal

ised coupling constants replacing $; • v  • A static
source treatment of the pion and K  meson fields is discussed by 
Arnati and Vita3«(1957)«

We shall describe two ways of dealing with the problem of th
associated production of a k meson and a A° , one of which
leads to the matrix element 2  Ok. V: ) ̂  the other to

The final state is dealt with in the same way in the
two methods, but the Initial states are quite different. The
first method treats the interaction term h|< as a small
perturbation, while giving a phenomenological treatment of the
interaction of the baryons with the pion field. We introduce

Op)as in Section 1 of Part T the wave function which satisfies

0 +  £ - 0 7  - (L'}
a-hir-hj< ^



//•

5  being an eigenstate of 9 arxd a  * t -- H0 * L * s 
define the matrix &  by J 4, $ ~ , so that between
different eigenstates ~Eu , X^ we have

iXL ** *£• l ^cx
take I  a s a  state of two protons, and examine the part of 

i-TL* which can lead to states containing one K  meson and two 
baryons, but no pion. We us© the notation , 3 > ^ S L  and
3>if ̂  for the parts of S2* leading from 3F to states 

having no plons, no K  mesons, and on© l< meson respectively. 
We thus require • From (î)

&L - | +• —    f *h,7 «*• — L-—  kfi ]
a-ta-Vl a~ h* J

where V* - h|< —  h*
K a-Kir N

• Therefore

(6)

a- htr

(7)

ii



that we are taking kK as a small perturbation* VJhen we do 
this we ca.t write k ̂ •*= k K C m There arc
two kinds of process described by the operator

5*  {  ^  -  ±;^) }
On© kind are described by the part

(** t h z  ) >  ( i *  <8)

mis operator can be reduced by the method of Brueckner and 
Watson (1953) to a form containing the ^potentials** \5̂  and

cc-VJ
mt (9)

a

So If wo consider only (8) we have, from (5),

Tj. = ( (  I*'Uf 5 ^ 0 ^  + hK(fwh(I •*■ )

~ > [bK (AM) UK Ĉ c#P"3 ^1

where 4\(V> C ) is scattered by Uc ( \5jf ) and has 
outgoing (incoming) scattered part*



logical potential for tvo protons, and a pro ton-hyperon system, 
respectively* The latter will correspond to pion exchanges 
only, ana will a 1 *1.ow for such a process as

I&chtenberg and Hoss (1957) give such a potential* Feldman and 
Matthews (195$) emphasise the importance of the coupling of A°f* 
and Z N  states* hichtenberg and Hoss give an effective range 
and scattering length based on the solution of a pair of c o u p le r  

equations for /\°(» scattering, which allow for virtual transitions 
to a Z N  state, below threshold for the real process (11)* By 
using their result we can allow for the coupling of the A* jp 
and Z N  systems, but not for the production off the energy shell 
of a Z1 , which is scattered and transformed to a A0 * However 
v® notice that the potentials VA1 of Li chtenber g and Hoss for 
the process (11) are much less than those for simple A° 
scattering* It is thus consistent with the use of their data 
to approximate to (10) by the form

(11)

CIO >

in which  ̂ is a A0 f» state
The/



Tae potential xe more uirilouit to ucu.L with. we ore
well above the threshold for the production of reel pions, so 

\S» can not be id Citified with an ordinary potential* IT*
as constructed hy the method of Brueckner and .Vet son is Hermitis 
only vfam a real pion cannot be produced, to identify 
With a comply potential which will reproduce the elastic 
scattering and Inelastic scattering* the latter being almost 
entirely pion production near the K meson threshold. The 
inelastic scattering in this model is a result of absorption 
hy th© imaginary part of th® potential. The protons not absorbet 
can give rise to K mesons*

a ®  other type of contribution to j) jr i)^ J1 
.corresponding to such graphs as

- —  -> ------------------- t*
ito ---

s '
Can not be dealt with in this method, although we might hope to 
include the second type by rsnormalisiag the coupling constant* 
the situation here is rather like that of section 2 in Part 19 
in which we ignore such processes as

/•
//

«r ^



©nd take the interaction with the radiation field9 Hr* ? an 
a email perturbation* Talcing the first order in h is of 
course much 100a likely to be a good approximation than in the 
cane of •

A formally similar treatment of pion production (Aitken et. 
«1# (195&) ) leads to

V J i  '

with similar notation to that used above. There is no factor 
to the right of Kir because only th© pion field is considered.

can be separated into a part giving the nucleon-nucleon 
potential and a part giving the interaction of th© pious with 
the nucleons* This is treated by consider lag only the graphs 
which contribute to resonance scattering* the simplest of which 
is

Multiple scattering is not considered. As pointed out In Sectlor 
1 w© have no similar reason for picking out any particular set 
of graphs* it will be noticed that this treatment of pion

(D -  “  V
cx-vk

a-VT
Wr



production does not lead to the pheuomenologieal method, which 
h&o a aueleon-uucleon interaction in the initial o snte*

Our other c.o^oach mrkes use of the Chew- bow - v:.;iek 
formulation of menon. theory in terms of physic.? 1 states*
(Wick (1955))* The method is that used by Lichtenberg (1953) 
to introduce the phenomenological theory of pion product ion, 
and alms at avoiding the trouble caused in the first method 
by the processes not included in (7)* It is convenient to 
calculate.the matrix element for the reverse process,

A° + K 1 = ^

Let >jj  ̂ be the physical state of a proton and A 0 with
energy E = TVhtl , A M  being , satisfying th©
condition that it© scattered part is outgoing* satisfies»
the same cand it ion and represents the physical state of a 
proton and a A° with the same energy, together with a K 
meson of momentum cj , at infinity* We define by

? w .  (12)

together with the boundary conditions on J ^  and *
te have



It 1® seaa at this a tag® that we eta counter no eooplicati one 
caused by the presence o f the pion field, since 6^ commutes 
fith Qja and Q|J ♦ From (13) and (XU) we have
( u £ + i O x  + H 5 *  or recalling the boundary conditions

x =  L _  (u,» + u £ ' ) $ w** E+ wC<j>- H ♦ It 1 n * <15>
Stow expand the right hand side of (13) in terms of the complete
set o f functions 5i  ̂ with incoming scattered ports*

If in psrfci salsa? \Cc“) is the eta to of two protons we have
m e  matrix element for the process \< )"> ^  [» *** the
form



Lj-Of

t -  s w ) <i6'

m  go from this to the following form for the direct process

( W

in which 4*^ represeat respectively a hare two
proton state and a bare A° + proton state* Here we assume 
that the transition t&cm physical two particle states to hare 
States is made by renorrsal is&tion, as for single particle 
States, together with the use of a ollenoiaeaological potential 
for the initial and final states.

the potential in the final state has to correspond to the 
effect of the exchange of pions and K  mesons between the 

A° end the proton* Llohtehberg and hose (1957) are able to 
obtain adequate agreement witli the data on hyperfragp.ents

H O{nuclear systems with a A bound to several nucleoao;• by 
using only the pion exchanges* Their later results (hiehten™ 
berg end Boss (1958)} when they include K meson exchanges* 
are consistent with the assumption that these are less 
important then pion exchanges. fd@ therefore te;-r© the some 
potential for* the final state as in our first model.

Because of the fact that the creation and annihilation



operators for the two fle3.de commute* we have for pion 
production the remit

In which 'k*Ĉ  is the same state as before* The description 
of the initial state la thus quite different from that of the 
first model* in which we cannot have transitions from 
t© states containing a pion. We suggest that the way
to obtain a suitable potential for the initial state in the 
second model would he* if this were possible* to separate 
from the proton-proton elastic scattering the part which is 
aot diffraction scattering corresponding to the inelastic 
scattering* and look for a potential giving this part* This 
cannot be done from the data of Fowler ©t*ol. (193&)* An 
exceptional ease which can be treated is that in which ©11 the 
elastic scattering is diffraction scattering and can
be taken as a plane wave* If we- could make a reasonable 
attempt to find 'bff* in a more general case it 1© clear that 
the second model of this section would be preferable to the 
first#



3. iifcQ potentlaln and wave ftuaetlono for Initial and final ste. toe
We adopt the first model of boot ion 2, and make use of the

results of Fowler et*oi, as mentioned in the introduction*
Calculating the phase shifts for the three lowest valuer of
from the optical model we look for complex wells which will give
the sain© phase shifts, A different well must he found for each
value of t • In Section h we give our reasons for only using
6 -== O   ̂ I ^ *2* # f̂ le radius of the absorbing sphere

Of Fowler at*el. Is taken as the mean radius of the notentlal*
i3 ■while interpolation of their values of K gives K 55 3.6 x 10 or: 

at l.?5 BeV, 9 the energy at which we work. The phase shift is 
glvrn by

\  - i iKsc * ^ k C C r - c M ^ 1 k ‘
(i)

for momentum k0 ♦ ( >ee Ferabach ©t. al, (1949)*) We find that 
for the first three partial wave© -e v f « e s< is small 
enough to let us approximate by taking Te ~ ° * •Kie erro~
in doing this is less than the effect of taking wells of 
different shapes which give the same phase shifts, Correspond- 
lug to thie simplified case of model 1 of Section 2, we have 
the special case of model 2f already described, in which the 
initial state Is a plane wave, h© can expect the assumption 
that <j€ -a O  to be more mislead lag in model 2 than in 
modal 1#



Xr data oa e lactic and inelastic scattering were available 
at the exact energy required it would b© better not to use the 
abaorbi/ig sphere model but to deterir&ne the (complex) phase 
shifts from the data and find wells which will give these phase 
Shifts* The work of Harita (1956) for 1 BeV, suggests that the 
phase shift analysis would not give a unique result* The use
of ftchrodinger * a equation with a potential VC*0') at such
high energies is of doubtful value in any ease* so refinements 
in determining the well are probably wasted*

The condition ^  - D can be satisfied by a variety of
potentials* For 0 we have examined the effect of using
different forms of potential* We have also looked at 
approximate methods which would permit us to use a well with 
a diffuse boundary for any * We require on analytical 
solution of the wave equation for each 6 because we hove to 
find the well by trial end error* The methods are given by 
Jfemlrovskii (1956)* The form of the potential is taken to be

vCcp « -Vo +

where
-  | i* S f .

-  £  C* (■’’-^1

— ^  O cvs r* — >  00



file internal and external solutions are fitted at t3 - rl.

(2)

fhe form of th© external solution is

xt = v 'A u< O') Hĉ a v O

»lth "U ( CO -*> I as t> -> oo , Here Ct/)
Is Henkel1 s function of the third kind* with asymptotic form

(Wo*1) 1 (.!<*<•-l*/x) ]. fhe Sohrodinger equation leads to
this equation for

<*I*e + 2 He*l^ il pf# $ ( * ? )  (f+ 0 (3)
cU' V a H £+). (V> dx C  k°
in which we write X - l<0r* • One of the approximate
methods is a «uasi~alas?; leal on© which requires for its

. X
validity that Nf0 <T w'o * $hen we use this method

i ^however we obtain a value > l<0 * In the second method (3)
is solved by a succession of approximations, the first of 
Which consists of setting He « I in the third term* The 
parameter determining the convergence of the process is

lc0 / and our value of l*0 is so large that we
require a large oC , and therefore a well which is olraoo 
square* So for general 6 we have simply used a square



well* We have compared the square well result with a founded 
well, result for 6*̂  O  f an analytic solution of Sehrodinger*e 
equation being readily obtained in that case* For tlx?
square well t̂0 and the mean radius R  are the 
same*

V '■= -vlo (p -*• 0  t3  ̂R

V •= o > <° > R

W* have the Internal solution G*X) whs*# X = y, + l X 2 ,

x,'- x :  *

2 X | X i  * U0V

Sh« boundary condition (2) la aaulvalent to ^

£. Cî>ir) ■* I 4- X R -je
C K O

and for •!« - O >



* to■3 £ is the spherical Vessel function of the first hind 
and \ \£ XX\<f)th® spherical H&ahel function corresponding 
to Ct0r) « For ^  we have th© results
(Feshhaoh (195k))

•£0 - XR coKxiO

^  - - £ 2 1  p e- ft„ "
tfslng these results we find the values of Xo ^  P 
which satisfy U kV'S “ £ e incident proton
energy 1*73 B©V* these parameters ere found to he

C * o X o  -  -7  3 f -  * b b

t *  1 \ o  ** * bHT e
*  - b i

e * i X o  ■* * 7 V e ** * 2 *D

the imaginary parts of th© potentials are similar hut th© real 
gUrte are very different* If we compare the values at threshold 
(1*58 Be?#) which are

C ’ O -x0 , -7b f>  ̂ • $$
£-•’• 1 \ 0 ■« *7o p — • U-

t’ 2 x 0 ** -75 ^ r= •*>
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we see that the variation with energy is small for the imaginary 
part hut large for the real part.

For a rounded well we take the form (Scott (195k))

NO*) |
2e-

«X3
Where we us© R * 10 m * 9 & - I*"1 , and again writ©

Ve - Xo* * Th© wave number tends to l<0
as V  -=*> 06 and as ^ —>  o it approaches X - x lb -
lc0J for sufficiently large 6* • Sohrodlnger’s
equation is

L»r-Th  _ f=J b»«wC^nk 1 ^ * 0  
^  ° i  * 1  *■ 3<it>

where we have taken 10* ora* as unit length* Let z?--t*f>(r'~Ok • 
The equation is equivalent to this equation for F ** Z X, <? 
<x being a complex constant^

(UE)Z<Cf +• Cl+2*W*+*)4f JCdVi >  a W  ] F - o

By setting a V  ~ O  ' 9 we have a hypergeoraetrie equation. 
This has two pairs of solutions (Whittaker and ‘Wat a on (1952j)

Zvn*- » F (.tx + L > ix~t ; I +-2c * $ -E )



( ' • O.V

which tend, as r3-*> o » to ^ * ®**3

X«*t ~ 'H > F ( ; i \ - i  >-U-L y I-**- > ~ z )

•6—
■* Z F (-l/t-fi ̂ (\ -n j I + 21 i ~ ^  ̂

which tend, m  r3-^ *> , to # Using formulae1 v~
linking these two pairs of solutions we fit X ^ t 
X^f ~ X  * Having found x 0 m d  p in this way

we obtain the wave function by numerical integration, using 
method 7TT of Fox and Ooodwin (I9h9 ?, of the coupled 
equation* for 6a X and 1v*> X  obtained from (k)• The values 
Of -Xo and f  are - 113*, £ - *~70$ .

Writing ( W  , X, ( Ver) 9 for the three
wave functions obtained using the square wells, we have the 
initial state wave function in the form

Cx0ckP-'D't1( ^ p lc ^ / u P ] x ;  x 7



In which X 0 and X t are the singlet and triplet spin 
functions# How consider the final state, in which we use the 
results of ilohtenberg and hoss an discussed in Section 2.
They have an attractive interaction between the A° and 
the proton, stronger in the 'S* state than in the 
state* We Shall see below that we mly require the ^Sj 
state* Their potentials have repulsive cores but they give an 
equivalent effective range and scattering length* We have 
therefore ignored th© core and used th© wave function

'ibid .= ( (6)
k<* Uf* J

where th© parameters are obtained in th© way described in 
fart T  , Section 6# Here L is the relative momentum 
©f the l\° and the nucleon*



b» matrix element and cross section
We confine our* attention to S states of the A° f* 

system, and £ and \> states of the K  meson* When we make 
the spin and parity assignments of Section 2 the possible 
transitions are

3 f , -ss, s 

*P0 — *» 'ScS

'S0 — ^  ^

T>x — > -5S, ).
-,v: • ' "
lor -&*© transition operator U  we use the form (0effen(1935) )

u -  i f-s.7, r 3 - ^ ^ r t 5  s .v0.} a>
Here << and p are complex parameters# Shis is a 
generalisation of the fora

U -  £  u /^



obtained from the theory of Section 2, which corresponds to

{ Hr JA ,

{2>

the term with coefficient jl is intended to allow us to take 
account of the nucleon recoil. The form of jl given in the 
work of Chew et.&l* (1952) on pi on production is jl - *

tipbeing the proton mass* This suggests that we use 
jl •= c/ (*«. / or (S =  c^/i .To illustrate

the 'effect of altering p we give results with p - ^  ^  } c
With the operator (1) the transition 3 p0 —> ‘so s cannot 
occur* So with the, final state interaction which we use only 
the less strongly interacting /\° (̂> state is involved* 
With a scalar meson the ‘S* 'Ses transition could occur. 
Writing G - 1  ̂ ^  - Jx and retaining

— J a |J'only the first two terns in the expans ion of € 3 ̂  in
partial waves we have

c s - ^ - r  1

Her© the second term gives an S meson, the first term 
contributes to the transition kS* —^ 3S, » and the last 
to both the transitions giving mesons.



: 'U  i

l‘he initial state Is given by (3*5) end the final state 
by e ~ a (k«0 / U<° » where K  is th© momentum
of the baryon centre of maesf ana u ( V ) i e  given by (3*6)*
We therefore have

C-flOlO*** ^ CK-h ̂  *3 (CR s^  fs.

there

$sT- X r ^  [ v ^ ^ v . 3 i C ^ V ^ c ^ ^ ) c v 5 X v

X t X . C W - 5 1 J W P x C W t . ^ 1  x :

Benoe when we sum ana average over spine and evaluate th©
angular integrations we have

(2*f Ic-fioioT falpf ir,/*
(u) 

I oll x » + P 3 ( x < u « - ««*, + *■?.<?*) I \



Bare y il are unit vectors with is direction♦%/ ^
that of the tool dent proton* and the integrals X  are 
defined as

I 0 ^  j'deu.aO-i. (fl£) loClfo'*')o
T  ' - y dc» VJtCkr) jj“, Xo

o (3)

X( „ j i  u C W ^ C ^ C a X i t i ^ W & ^ A ^ l

Jo
ffee relative lE^ortanee of the various tarsia in (h) can b© 
Illustrated by the form of the integral© (3) for a plane wave 
initial state* T b m  X {  O ^ r } -  2 ^  and we have

T 0 - 2 £ cb* u. Cfcc-V-J© (Vi ) 1o ̂ o**) ~ X| / (<q

(6)

T 0; - -2 kofj^uIUViJ (SVi)-i\ (to^ ~ ““ V̂.

Bow L0 is large ( l<0 - /*-• Xlo5ora* at l-lVBeV,) so we
m y  ttpsot the result to be dominated by the *S ( s final state*
if Is appreciable*

It is convenient to define the Ponetion by

(jiff) S(^)



<*V m  S(e..c p  K  S ^ }
dUclg tsy h,<

Here VT is the velocity of the incident proton* In performing 
th© integration over &U we treat the final state non-relativ- 
IstioaXly and use the Kinetic energies TI, and \  as variables, 
iet T X  denote the maximum energy available in the centre 
of mass system, that is the total energy in the centre of raass 
system at 1*75 BeV. less the corresponding quantity at threshold, 

a 61*5 HeV* The energy of the meson and the centre of 
mass of the haryons is

t*K . X X  « llkT,
I rv^rtv J

Sa we have

£* ) lh% 8Yr-r-«*ft8)
clT^aJl.̂  vrfc {*£ fv+T,

m  is th© reduced mass, ” Nfr Mf\ # When we
integrate over I*, we obtain the differential cross-section 
in th© form

d. V _ 4 (%A 3 (vn (.? ■+• R ccrf1 ©  ^
dtJL, “ Kt
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and th© total cross-section

* v* r̂ K

which* using the coupling constant instead of f Is

3/u Vi. Vv
»** fTTt, ^  (9)

In view of our crude approximations in the Initial state
we only look for approximate values of ^  and c' •a * n ̂
So we evaluate the quantities f- and *< in the following marine: 
(#©e Watson (1952) and Henley (I957)>hieh is strictly 
inconsistent with the form of potential (with a repulsive core; 
on which our final state data are based* We evaluate fas?
& particular - %  * We use th© value corresponding to 
w to MeV* From (h) S ( O  has the form

SC%) - A (%)^ ©W  + CCt}0'i q
•a.
o (10)



v-hcrever in (n> we have an integral with a factor *j, *l,
we write it as ^  (. h t ̂ 0s> f the factor represent
ing the behaviour of i ̂ *T) as . Thus (10) is replaced by

S C ^  ~ r l^u) «^^c(vj0 ; j C|o* (11)

Then defining to be the value of the /Y ̂  wave
function at f* ~ O for the value of U corresponding 
to Cj f and F CV^) to be the ratio 4^ (o/O / ^  9

we assume that the form of the meson energy spectrum is 
reasonably well represented by

SG,Y= ( « C O  ■* i F f T ^  (12)

The Integral over Tĉ  is
fTm/^u __ „w
 ̂ arq ( i »>- \-v* h  ) s & p
o __h ? ?r ’

and from (12) we obtain
P - a Cc^ X  -*• 5*^6^ ^

K  -  7

where



/

dT̂ /

 mtftCfccJtLjJVx
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I© 2o So Ut
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In the graph w© show the form of the energy spectrum of s 
mesons (the integrand in X j with and without the final state 
interaction* In the paper of Costa and Feld (1933) this 
Problem is treated as if the distribution was much r.iore strongly 
peaked, in fact as if TC] ^  / 1 • M o  is
dearly unrealieti© for th© final ^S,s state* Finally it 
should be emphasised that our crude approximations in the final 
state could readily be improved if it were worth while, by 
taking wave functions consistent with a repulsive core, using 
relativistic kinematics, and evaluating ) for
various to get the energy spectrum* Also as l-mowledge
of the A0 \> end K  |=> interactions increases farther 
Improvement will be possible* On the other hand because of the 
very high energies involved the description of the initial state 
by a potential may be inherently misleading*



3• *ie suits and discu&sion»
The values of the integrals (4*5) for our square wells, 

at 1*73 BeV incident proton kinetic energy and » 40 MeV.
are

X 0 *= “ 0^13 + i 0 ‘lft 1 0 cvw .
-1*3

X* - 0171  + i O'WS 1> 10 C/VV'*

X, - -4*b44 ^ t  ̂ 10

-r , -l£ ̂
Xjl- 0 1^ 4* l2'0bl 10 Cvn.

fhes© results confirm the predominance of the term involving 
Xj * For the rounded well we have

X o  ~ O-SbC 4 i 0-blb io

There is a factor 2 between the values of I X el in the two 
eases, which indicates that the results will be sensitive to 
Ate choice of the shape of the well. For the case of an 
incident plane wave, in which (4*6) holds, we have

T 0 ^ 'o Ow*.

-  t*rX 0 - “ O i 7 k  lo

So if we use the approximation of Section 3 for the proton- 
proton scattering the two models of Section 2 give very 
different results* From (4*4) and (4* 7), remembering that 

p> / is taken to be real, (I ~ h ©C say, we
have



^ +  cjMloV*' f

+  Cl+3 u * 1© ) y vv lX1.»'1 -* -2 « p

+  2 ( h - 3 t ^ ^  k ' hlTo'T*) * 1 C l - * ! * * © )  2 « .(T o T x *)  J

Forth# complex well the values of S f ^  are 

a - *  W M 7 t  -  o • i * ' *  cur%^®

’/ *  O ' f j O  - 0 1 0 * 5  cere1-©  ( l o ' U

n -  o  0 0 7 1  i

When we Integrate over 7^ In the approximation described
in Section k  we obtain the values of P  9 R  and r  In ;
the table* which also shows the results for model 2. The units ̂

/ -13 >of P ©ad R ar@(̂ 10 cm ) MeV*» and <T is in milllbarno,
the value of is obtained using the value ^  « k* 2 of \

Oeolin and faffera (1957b). Other estimates of ^  p for 
example those of Barohay (1955) and Matthews and halom (1958j •

are also of the order of 3 or is-. j
As explained in the introduction no direct comparison 

with experiment is possible at present. The work of Baurael I
et.al# (1957) at 3 BeV* results in an estimate of 0.2 mb for



Measl 1
— -V ■: V.yr, .  . , :,* ■- .

a  •  <kf 3»337 -0.133 8.74 *  10'1

0.25 0.971 -0.113 7.38 x 1 0 '5

0 0.078 0 6.1 x 10'“

Hodal S (plane wave initial state).
P 8

a *. 0 .5  0.1717 -0,0053

0,85 0.01+70 -0.001+5

© ' '  0.0031+ '0

i .

s r-- ‘ ‘ ‘
i. - . ' - • • ' : '

1.33 *  1 0 °  

3,57 x 10' “
-5

k*2 X 10



estimate the croaBisection for our process at 3 BeV„ t. we have
two difficulties* fe have to decide what is the ratio of our
process to the process (d ̂  |< 2. • This involves

~x ( "x<̂ ^ / ^ x f available estimates of whidi rang© from 
3 (Oeolin and faffara (1957a)) to 10 (Barshay (1953)}. Also 
W« are above threshold for the processes

|p ■* ̂  N) -r A° -*- K  -v 7T

Id + I* - v> N + I  +  !<■"■-<■ TC 

— ==• |p -f (» ■»■ K +,* K

If w@ take 2mb. aa an upper limit for our process at 3 BeV. 9 
and take a rather quicker increase with Î  than Is
implied by our result (4# 13) for S mesons, we get & <
0*025 nfc, at 1*75 BeV.

One feature of our results is the presence of a strong 
S meson contribution for appreciable values of p •

As mentioned in the introduction early experimental work 
suggested a very anisotropic cross-section. However Orear 
(1957) gave an estimate of (bo**© for the angular dependence 
of the available experimental data at that time, while at the 
deneva conference (193b) work was reported by bteinherger 
indicating the presence of on appreciable S  meson
contribution.
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