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Part I declds with the sroblem of the interaction

of the neson with the nuclecns in e nhotoproductisn of o
charred 1w mnmeson at deuteriun, This is considered as
multiple scattering of the meson at alternate nucleons,
Barlier work on this problem, and on'the rultiple seattering
correction te the impulse approximation in similar problens,
1s reviewed. To avoid having %0 use the neson-nucleon
scattering transition overator off the eanerpy shell an
approxination, taen fron the eorlier work,is useds The
meaning of this apnroxinmation isg digcussed, In the cose of
a particular model of weson-nuecleon seattering, based on a
factorable potential, an estimate is wzade of the acewracy of
this approximation. In obtoining the cross-section the
intercction of the nueleons is included vhen they are in a
final state with =0 . Qesults are presented illustrating
the behaviour of the meson enersy spectrun at a particular
angle and photon energye This has o broad peak around the
energy of the neson nroduced at the saze angle from a free
nucleon, and = narrov pecl near the navimum meson eneryy,
caused by the final state interaction of the nucleons, and
impertant only at forward angles. The rmltiple scattering
correction is -L°[ to-3° on the free nucleon peak, rising to
about —20°/, on tre interaction peak at forward anples. Tho
econclusion is reached that with the nresent experimental
accuracy the multinle scattering correction will not in general
affeet the interpretation of the exmerineatal results using

the impulse anvroxinatioin.



The study of W meson platoprodnetion and scatiering at
deuterivm is of iunterecst for two reasons. 1t may De a2 means of
obtalning information about the same processes at free neutrons,
vhich are not directly observable. On the other hand, if we
consider that meson theory gives an adequate description of the
free nucleon case we can attenpt to find how the complex nature
of the two nucleon system influences the processes. The worl:
presented here apnroaches the problem of the photoproduction of
charged W mesons from the second point of view, This section
gontains a gsunmary of the relevant work on free nucleon
processes and a revievw of earlier theoretical work on this
particular problem and the related problems of ©W meson
scattering at deuterium, and the elastic photoproduction of

neutral Tw megons at deuterium and heliume. There is also a

discussion of the experimental work on the processes,
¥ +D—> g +enan
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We consider this witin the framework of theories which
treat the nucleon as a static source distributien of a finite
sige. This is chavacterised by a source density e(r) and
the eorresponding monentum cut-off functione

e = g ei'ﬁ':e(f’) d:"

The interaction part of the lamiltonian of the system of a

meson and a nucleon is ( see Wiek(1955) ).
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In this result O, destroys, CL;‘T creates a meson of
momentum q, energy W(®) , in an isotopic epin state specified
by N . f is the coupling constant, g the meson mass and

g’ » U the spin and isotopic spin operators of the nucleon.

| A simple form of the static nucleon theory is that of

Chew (1954). He discusses meson-nucleon scattering, making use
of a variational princinle of Schwinger. We describe this
theory in some detsll, in order to introduce various concepts
and results which we shall reguire later. In particular we schall
require stationary state scattering theory in both parts of
this thesis, while in Section L of this part we shall examine
a theory similar to thut of Chew.

Let H, be the Hamiltonian of the free meson fleld and

E the total energy. Then the total Hamiltonian H is Hgh ,
In the stationary state scattering theory, as given for example
in Lippmann, Schwinger (1950), we mase use of elgenfunctions

f\gf\(E) 7{2?(5) of H . They each satisfy the equation

(Ho+W)T, (Y = E E, (6)

it with different boundary conditions, having scattered parts
which are respectively outgoing, incoming and standing waves.

These boundary conditions ere expressed by writing

J,(6) = 27k §(E-EaD .



where
(%) \ ()
, s Tt E, +ii—Hoh ta (3)
O) )
go. = %o+ Ec,\ q

where & _ 1is an eigenstate or H, with energy €.’ The

denominator £, tlt- Ho 18 defined by the formsl result
L .
T I R iy |
which is to be understood in the sense that
‘fm fﬁl = T wifle) +P gd% ;%3
xTis
the integral on the right being the principal value, We shall

denocte E.+194~H, by o . The transition operator L and the

reactance operstor K are defined by

LA M A2

—

0 _ A
@c\ = 5 +PE H, K_S.Em

and the matrix elements of these operators between Btates g,

(&)

and Ee_ are, from (3)9

{734" (EG y b 1{«.-(.*)3
(— (5)
= (igf)"‘}:qx |
1)
and K@Q=(§e>h§;>,

The probability per unit time L)g. , for trenéitfone from the
state F. %o the (different) state Tp , i8 given by

We, = 2“ §(Eu-Ee ) b (” (6)
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Fronm (3) we can write

Q2

¢, - (3= ) Ee

8o that we have

_ I

t-h-t-h-——-—-q_hh (7

which can be written
e[V Tshevion] = ko vt, sy,
V' being defined as h h . The matrix element tg between
states with one meson present is effectively (’ca Ga ?

because t, must create or absorb an odd number of mesons,

We denote these states by 199 . +t. satisfies the integral

equation
- L
ta = V-V 35S (8)
4n which YV acts as a potential. There 1s a corresponding

quantity K, satisfying a similar equation with < replaced

by its principal parte. The variational principle
(Chew (1954a) ) states that the solution of (8) on the energy
(g, ¥ 75..\)(17@,.,‘\/\9(:3) ()

(tgi'a: ¢ o A )
(e 'y Ve -4’ VAV 47D

A A
this being stationary for variatifons of iy y Yoo
A BN )
about the correct solutions ¢, , ¥ S of (3). Chew

¢ )
about the correct solutions Q_J_(Qr y ¥ S of (3)s Chew
uses the simple trial wave functions & o ? T 80 that
; (&g ,VE, N
(kg = N (10)

(e V& W—CQ%YLVI D,



6.
The equation (8) can be sevarated into equations for particular

spin and isotopic spin eigenstates, The important one is that

for spin 3/, and isotopic spin 3/~ . We have

(q||t$ i"h) (qn?»“"q"it""‘h}z + 1t RGN
3

(11)

(1 K"k = (g - vqua) 2722k (aha)
- K3

the first two factors being projection operators, The phase
shift S's's (ae) for scattering in this eigenstate is related to

t;“ and K;’ by

3
bonSyy(ae) = ~:«:C°le> % Ly, @9
LR “WEDE b, (a4 )

A‘\

Here C\E is the value of the meson momentum q on the energy
shell. The integral equation for B3 (a,391) is
4 N3 CQI';O\) 63360‘36]13

- oD
|
&33(ql\c'l) = V}j(ﬁnﬁ\j} + 2;1§:°‘C‘

WEe) -(gd + it (13)
and there is & corresponding equation for ,

b \y(q q‘>|< (e,a2)
“nc‘hﬁﬂ Vx5(qi3:) + w-x? dqc‘ 1) k3 (a3 )

) w CQEB - UOCQ)
the potential sz (9,4.) corresponds to the graph

~ —

and for our form of h it is

Tk v vian ! |

Vg3 @) - 0 vy 1

b 3t (W@l WEeY-wiq) -w(gy) (15)

using the varistional principle in (14) we have the following
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result for tanT 33’
( 2 §* 9’
mDs30de) = o 3 WEGAe (16)

T A
| — 37,2%1. ngmazquqt' w(qe)
o w3 Pl -@E) ]
vhere we have set uigd= 1 q =9 » 2 O c,>qm.

The form of (16) shows that there is a resecnance, By choosing
suitable values of { and Qpuon,  Chev was able to obtain the
width and position of the resonance in agreement with experiment.
For the purposes of our multiple scattering work we have
made use of the results of a umore recent development of static
nucleon theory, that of Chew and Low (1956a), They find it
possible to use an effective ronge result for Sz(qgd and
can select the cut-off and coupling constant to ebtain

sgreement with experiment. Their result is

q:cd"o'.s_; (qed = w¥*(a- Bw*) (17)

where w* is the sum of the meson energy w (qg) and the
nucleon kinetlc energy in the centre of mass sgystem, which is
added to make some allowance for nuecleon recoil, which is, of
course, ipgnored in the static nucleon theory. We have used
natural units ( =% =c=1). The volues of A and B
in these units are A = 8.05, B = 3,30 (Orear (1956) ).

Chew and Low (1956b) apply their theory to pion photo=-
preduction, They find that the main coatributions to the
photoproduction amplitude at a free nucleon T , and also those

most likely to remain uachanged in an improved theory, are

~ief (GTa-TaTed [pe - 20(-¥) 9.8 ] (18)
fkw@v"/‘ 2 o (q=vr* + p?
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and

e's. ‘ﬂp“ﬂn 2+ v ¢ . {%53 HE\) .
" ~ ZX.QX‘Z *\S.ZX’EXQ r3 Sm (@)

19)

Here Y , £ are the photon momentum and polarisation and g4, ,

%‘ are the nagnetic moments of the proton and neutron in wnits
of the nuclear magneton. T , § are the 1sotopic spin
operators for a nucleon and a mescn respectivelyes It is under-
 stood that qQ=9g » and we have again set W>c=> M= [ « The
isotoplc spin eperator in (18) projects out states wilth a neutral
meson, while that in (19) projects out the t=4 state of the
meson and nucleon. -§ is the renonmilsed coupling constant.

The expression (13), whieh is the same in Tirst order
perturbation theory, contains an electric dipole term and a reson
current term. (19) is a magnetle dipole term giving o final
state with spin 3/2 and is otopic spin 3/2, and enhanced by the
resonant scattering in that state. We shall use the electric
dipole and magnetic dipole terms only. In the notation of (Y.12)
and (5,14) where we use operators [3 and S , containing meson
creation operators explicitly, to give the isoteplic spin
dependence of T, the electric dipole term is

o d=pA = pTzEa (20)

vhere

Ed = ?—I"g‘{—‘ v
| §2ugyv i
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4 > 3o s iy oy oo S S e g o2
end the negnetic dinole tore i3

. - (- " - < i 3, (I
g1 708 =T M ey

with N = € {V 3,& -3\'\ e'\sn (qﬁ)ﬁv;\?)-s‘;LQE)
A gvlE ume T g

Instead of starting from meson theory and dedueing a form

for | one can use a peneral forr (see for example Gellelann
(1954) ) containing paraneters which can be adjusted to fit the
observed angular distributions of photoproduced pions. For a
particular isotopic spin state A the form of T is

) _ N
T(d)= @5 By (d) + Mg (59 (I\iﬁxi -igvxExg 3 o

—r—Md(’%)o\) Y;hifixi -+ iz'}),,x,f Xﬁyj;}ae (22)
+Eq(d)€{~}fﬁ;i -+ gr_‘ic’\v\isj;‘%’: |
which contains electric dipocle anc quadrupol;s terms, and magnetic
dipole termé giving states with total spin % and 3/ o To
some extent the experirents with deuterium can also be analvsed
in terms of this form of 1 o+ It has recently been pointed out, |
by Meravscik (1957), that with the accursey now possible in free
nuciéon experiments analysis in terms of (22) is inadequate.
This is essentially because of the second term in (18), which
containg coatributions from higher multipole transitions. Our
neglect of this term is reasonable because we are mainly
concerned with the interaction of the meson and the final state

nucleons, and are not attempting to obtain information about T

for a free nucleon.

/
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Lpltinle scatterins,

The simplest apnroach to the problems of meson photoproduction
and scattering in light nuciei is to use the impulse approxi-
mation. This was introduced by Chew (1950) in discussing the
inelastic scattering of neutrons by deuterons., The validity of
the approximation is discussed by Chew and Wick (1952) and by
Chew and Goldberger (1952)., The transition operator for the
process 1s taken to he the sum of the operators for the corres=
ponding process at each anucleon, as if it were free, and the
matrix element is evaluated between appropriate initial and
final states. The effect of nuclear binding is ignored except
in so far as it determines thc weve Tunctions for these states.
Also no attempt is mede to deal with processes involving the
intaraction of a meson with more than one nucleon. In the
gecond and third of the papers queted above the first order
correction to the impulse approximation for the scattering of

T mesons by deuterium is expressed as two separate terms,
one depending on the proton-neutron potential, the other having
the form of a double scattering of the meson, first at one
nucleon and then at the other, both nucleons taken as free, The
corresponding terms are ensily written down in the case of
photeproduction., Strictly spealing the term "impulse
appreximation' refers to the negleét of nuclear binding whether
or not the meson-nucleus interaction is ineluded in full,

(See for example the discussion after equation 21 of Chew aad
Goldberger)., lowever, it is convenient and convential to use
the term in the sense enployed here, and we shall continuve to

do s0. /




11.

Various papers have cppearoed which trent the interaction of the
meson aad the anucleus in terns of muibiple scattering at
alternate nucleons. we siwli coasider first the problem, treated
by Brueckner (1953a) and by Drell and Verlet (1955) of A wave
scattering by two heavy point sources. In this the general fornm
of the multiple scattering correction is clearly displayed. Let
the initial and final momenta be q,, ¢q , where ¢ =q- Uz 9
and let the sources be situated atwi. ,N vy oy with R=\2 - | &
Then if the phase shift ©(4z) refers to scattering at one
source we can obtain the amplitude of the scattered wave in the
form . . .

‘S(Q) - i QL%(qE)S\;h%(‘\E)[Q L(qs—iﬁ.i,_* QL(“'\S—E\"’: ]

s [ L 9T

The impulse approximation is

186G . Uq.-¢ ) -® 1q,-4¢) o
S(Qﬁ =R ES\M%@@{e. Q'gft ~ +eo - ~ ,"—_(J

and the correction consists of terms glving for example the
effect of scattering first at i. and finally at ::, after the
vave has travelled "\ times between ©, and . . The form

of V) depends on the form of the scattering transitlon operator
at one nucleon. Drell and Verlet work with three different
assumptions about scattering at one source. One, also used by
Brueckner, is the approxination we shall use below uader the

neme of the “one pole" approximation. This gives W - Qiﬁe Q/"R
The second assumes that scattering takes place only on the energy
shell, and gives W= lswigR /R « Ve shall discuss these two

cages in Section 3 vwhen dealing with our own problem. The

f
|




third case is that of a poteatial which is Tactorable in

configuration space. That is, in the equation for scattering at

one source, ,
(Vieq? )by = n{ U,y () ag!

they take \(¢,2) - Wy w2y so that the equation

is replaced by the inhomogeneous one,
(Vg ¢ (e} = HueH

where J = Yu(;’)d)(ﬁ/')&g'

This gives 19 le-211
e mte
(e W aza
\"I —_ _____;‘,qe-wk o —'(‘i- K
(b e (o W ugoa

which reduces to QMER/, R where the potentials  \ (p),
W, (2 do not overlap.

The results given by Drell and Verlet, for the particular
case G =22 $=45°, backward scattering and source
radius i/at* in the third model, are that the ratio of the
cross-sections with and without multiple scattering is about i,
é, J-;, taking the cases in the order given above. When double
gcattering alone is considered the ratio is about %, %, 3 in the
three cases, In obtaining these results they use a deuterium
wave function for the sources. Thelr results suggest that in
a more realistio, nroblen the form of the scattering amplitude
of f the energy shell will be important, and that double
scattering will give a considerable part of the multiple

scattering correction.
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drueckner (1953a,b) hog cisn stidicd $he scoitboriag of 1e3ols
by deuteriwm, asswnig @ veve sceotterine at each nuciecn 0al
ignoring spin flip., He finds a consideradle reduction frow the
impulse approximation result. His work has bean~exteﬂded by
Rockmore (1957) to the case of a scattering transition operator
which 1s a function of nucleon spin. Where the results of these
authors can be compared the correction is smaller in ilockriore's
caloulation. Hockmore finds that double scattering is important.
Using the Born approximation for scattering at a free nucleon
he estimates that for the elastic differential cross-section at
meson energy 89 MeV. the coantributions included and ignored in
the one pole approxiration are comparable,

An alternative approach to the problem of elastic meson
seattering at deuterium is that of Bransden and Moorhouse (1958).
They set up the meson-deuteron scattering equation, with the
assumption that scattering at individual nucleons 1s in the

(3/1,3h.3 state only, and solve it using the variational

principle used by Chew (1954). The equation is

(E-w@ 5y WP+ %=V E (5% 5 453)

(3

! | (23)
N TR PR EREICRNEL BN A

Here 1 and - are spin indices and V(Rd 1is the deuteroen
potential,
H= Kag (25 B350 « Ko (B ha54597)

H;3 being essentially our quantity ‘033 of (15). (€23) is of
' /



1.
the same Torr as (2) ai so we hove
Fo, 7,
(T, HE, - (G Ko o )
¢, ) $p being the product of the deuteren wave function and

Ee,,a =

a plane wave meson wave function. The second term in the denomine-
ator ineludes multiple scattering., These authors find that the
multiple scattering correction is less than 5% of the impulse
approximation cross-section, and they obtain agreement with exper-
iment at meson energies 85 MeV., and 140 MeV, They attribute the
disagreement between their results and those of Rockmore to his
use of the one pole approximation.

Chappelear (1955) has considered the elastic photoproduction
of neutral pions at deuterium. le finds that for photon energy
285 MeV, the cross-section is reduced, at all angles, by 40/ to
50%, His results are in asreement with the experiments of
Rosengren and Baron (1956). We present in Sections 2 and 3 a
modified form of Chappelear's method. Stoedley (1957) has
extended the treatment of multiple scattering to the case of
photoproduction at a system of more than two nucleons. Iis
result for the matrix element reduces to that of Chappelear for
deuteriun. Stoodley calculates the correction to the elastic
differential cross-section at 904, for the production of neutrai
megons at helium. Lilke Chappelear, he ipgnores spin flip scatter-
ing, and takes b wave scattering only. He also ignores
charge exchange scattering, uses a special simple wave functica,
and excludes for simplicity certain sequences of multiple

seattering. The correction is very large, and the
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experineitol resulits of Leliony ete al.e (1057) lie hetween the
impulse avproxication o0l correctod resuitse It is of sone
interest o have Uio nuitiplie scatteriag correction for an
inelastic process, for comparison with the work on elastic
scattering, and elastic T  photoproduction.wWatson (195Y4) gives
without details an estimate of 10% for the correction in the
case we examine,

As we go to systems with a higher number of nucleons A ,
multiple scattering theory gives a set of A coupled integral
equations. (Watson (1953) ). Rather than attempt to solve these
equations the method adopted is to transform the multiple
scattering problem into that of scattering by a refractive
medium. Some work has been done (Butler (1952), Laing and
Moorhouse (1957) ) on the photoproduction of mesons at complex

nuclel, using such an optical model for the meson~-nucleus

interaction.'

We now turn to the impulse approximation calculations for the

processes
B*D-—%T‘:"‘*‘,ﬁ*,’
&AD——)K*—P"\*—”-

Probably the most important aspect of these processes is the
ratio of ® to Tt ' production near threshold, because of its
connection with theawave meson-nucleon scattering and the
Panofsky ratio. (See for example Bethe and de Hoffmann (1955),

section 33, and Cassels (1957) ). lowever our work is not /



e

-t B

relevant ©o this, becoveo o confine o otitenbtion to ohrerples

.
well above $hreshold. Ve ervect  riiipie seatteriag to bHe wie
are small at low meson energies. So we shall not discuss
further the papers in which the emphasis lies en the inclusion of

the Coulomb interaction in the process

XD > i b o p

and which give results near threshold. (The most recent of
these are the papers of Peanner (1957) and Baldin (1953) ).

There are several papers dealing with higher energies. In
these the treatment of the final state is simpler. The Coulombd
interaction of the meson with the protons is ignored, while
that of the two protons is either ignored or taken into aceount
roughly by using the Coulonmb factor "ﬁﬁﬁzﬁﬁéfLT~, vhich is an
approximation for the ratio of the zi;roton wave function to
the 2 neutron wave function at R=¢ .« llere M is the
nucleon mass and Kk tihe relative momentum of the nucleons.
Chew and Lewls (1952) use closure in surming over all finol
states, ignorinr t.¢ fact that encrgy conservation resiricts
the available states, and overestimating the cross-section,
Plane wave final states 8re used by Lax and Feshbach (1952)
and by Saito et. al. (1952). This as ve shall see can rrestly
underestimate the cross-section when k is small. Saito et.al.,
also presents result for a distorted O wave final state, as
do Machida and Tamura (1951)., We use & plane wave with the
partial wave replaced by a distorkd wave of the type used by

these authors. (Compare Francis (1953) who deals with /
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inelastic ¢U° production).  uxcent ol Dovward oo ~les, o5 ue
shall see velow, the accuracy with widel the Final state is
deseribed is less iuporbuwat ia this energy rvange than near
threshold, because we deal in general with larger values of
Hagermann et. al. (1957), in the experimental work mentioned
below, state that details of the final state interaction affect
the interpretation of their results, and mentlon work by Tiemann
using good wave functions.
Gomparison with experiment,

In the papers of Saito et. al. and Machide and Tamura no
- absolute cross-sections are given. In the other two papers the
starting point 1s the form T;= K. o5 + L. for the photo-
production transition operator at nucleon 1 and the aim is
to obtain by comparison with experiment the ratio \5!:///1L|1
averaged over £ , Ian the experimental work the convenient
quantity to measure is the ratio of the cross-sections for
positive pions, at a particular angle and energy, from
deunterium and hydrogen. Because a ratio is measured the
absolute accuracy of the experiments is not important. Teitiag
as a typlcal case the work of Hagermenn et. al. (1957) the cross-
sections measured were for pions »f arouad 75 MeV, kinetic
energy, the energy spread belng 15 ieV,, from carbon,ethylene
and deuterated ethylene, the last two being corrected for the
- pions produced from carbon. 350 MeV, bremsstrahlung radiation
was used.

In comparing the experimental results with the predictions

of the impulse approximation the following difficulty arises.
| /



L.
We do ot have o oualove solotion Deteon whoton CIINPOY, eS80
energy, and meson sanle in the deutoriwr case. Also we have,
not a weaechrowatic photvon beam, but a bremsstfahluﬂg spectrum.
The impulse approximation calculation leads to an expression
for the ratilo
dzqa(@q,w(q\) sV \, j d,zﬂ"(@q)v\) ’
!
dw(q)difdiqg ; ddlq i

for a particular photon momentum v and mesen angle ®4
which determine the value of w(9) in the hydrogen case. In
the paper of White ct. ai; (1952) two methods are sugsested for
comparing this ratio with the experimental results. OUne 1s to
assune that the energy spectrum of mesons from deuterium is
very narrow, and is centred on the line spectrum of uesons
from hydrogen. Then only photons of one ener;y will contribute
to the mesons detected at a particular angle and with a
particular energy. As these authors point out, and as we shall
see in Section 7, the assumption of a narrow energy spectrun
is uasound,

The alternative method, which is generally adopted, for
example in the papers quoted above and in that of Lebow et, al.

(1952), is to integrate { e (Cgyar, v ) ] over the
dw(q‘) Oluq..a‘ P

bremsstrahlung spectrun, keeping uGC\ fixed, This pgives

the upper term of the ratio which 1s in fact observed. It is
2 2

gssumed in these papers that HS[///h—l is not stroagly

dependent on Y . The graph I shovs the results of

Hagernann ete. 2l. to indicate the accuracy of this kind of
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work. The theoroiicel voines 2F ugse are caiculated Iron
9., e PN L T v - FRE T K2 . P .

the results of Chevw wil Lewis. s consider their results

consistent with vie rorm of 1K , L derived from (22),

We can see from (22) that L must have the form A V. qxE

where A is a scalar, and so |-i™> O as the angle between
Y and 3 decreases, a result which is consistent with the

graph L.

In the case of negative mesons a method which has been
adopted (Bandtel et. als. (1958) ), involves the measurement of
the energy and the direction of one of the two recoiling protoa
as well as the meson., This has the advantage that the photon
energy can be fixed, Also they can distingulsh between the
cases of low and high energzy of relative motion of the nucleons,
It is the cagse of low relstive momentum of the nueleons which
we shall find meost interesting. We discuss in Section 7 the
pessibllity of detecting the effect of multiple scattering in

these two types of experiment.
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e rothod we vse hero is dexbred from thie methods used by
Chappelear and Stoodley, We shall point out how it differs
from these methods and why we do not make use of one or the
other of them in its original form. Ve malke use of tine-
independent scattering theory, as outlined in Section 1, to
obtain the transition operator for processes which can occur in
a system of two nucleons interacting with a meson field and

the radiation field. The Hamiltonian of the system is
BT = H, +H (1)

where H

\‘\"""" = h]“"\”z"" HI +‘~‘1 (2)

h.; is the interaction term between nucleon 1 and the meson
field, H,; 1is the term arising from the interaction of the
radiation f:!.eld with the meson and nucleon currents at nucleoni.

H, 1is the sum of the free field Hamiltonians. With a =

E- H,+¢ as before the transition operators T, for
production of a meson by a photon incident an'nucleon 1, t :
for the interaction of the nmeson field with nucleon v and T

for processes involving the whele system, a&re given by

Ty o= by e H (4 HD) ———— (R R (3)
R Ry
W I WU W)
T, = W+ h°0-—k,; h;
T= W+ Heg M <

For states with one meson present we use the approximation

L = (9% —qy) =
(i‘}\o\‘\i}) = ('2“3((;(1‘ 3}}0\@‘;\ (6)

vhere aff) = W) - W () + {9

(7)
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This veons thet we noplect the vcleon Hiaetie eler [y
that (3) and (4) refer 4o processes at a free nucleon. Ag in
Sectlon 1 we have effectively

t; =t = o

sS¢ Vi. ’ ’ (8)
with V;=h -

a-V,
.L\,\'._.

Lo

We treat Hl as a small perturbation, and write (5) to first

order in H as

T = Qa‘_h"‘“\_h“ | (9)

In terms of the T; this is

| l
Te ol (e i T4em CTLER| o )

The factors to the right of T, and T, are set equal to one,
Seme of the virtual processes represented by these factors are
vmesan exchanges in the initial state, and we expect to take
them into acecount by our deuteron wave funetion, Other

processes ignored are such as

—IT\,\\M\’

(Here and elsewhere we adept the convention that the graph
reads from right to left, to agree with the erder of operators
in the relevant formula), The possibility of such processes
makes the use af the free nucleon form of T, ineorrect. We
have ancther simllar approximation below.

We now have

T = 4? Y. Ty (11)



C ,
vhere Y. = o wh s ey
S v (A
P S A S U S AT ) L.
P SO : 4 e
\Ao-\l‘; Y‘x,a uya\) Qa h \flgq}

Vbetng V +Vy,+h, Sh, 4+ hyLh , Justas we drop

to, from <t sgo we can drop the second term of y, and

use
iTlvY = | 22y Tl v
(qt Ty (1 Z i Tely) (11"
vhere
! . 4
w, = O.;“\‘l(""ktkcay
and lVN d s {2 D are states of a deuteron and a photon of

momentum Y , and of two nucleons and a meson of momentum q .
The part of Y; vhich we leave out here contributes to deut;’mn
vhotodisintegration by way of a virtual meson which is scattered
and finally absorbed.

We make the further approximation of setting V =V, + Y,

and h 5w = V. in

4 C This implies that the oaly

'L [ ]
meson present at any stage is that produced by 1; , which
suffers a succession of scatterings at the nucleon. We ignore
absorption of 2 meson at one nucleon followed by emission of a
meson at the other nucleon. We also ignore the meson exchoiapges
which give the nuclear force. Rocimore (1957) has zade an
estinate of the effect of the nuclear force in the scattering
of mesons at deuterium. Following Chew and Goldberger (1952)
he gives a2 first order corrcction to the impulse approximation,

-

for the effect of the one meson exchange potential., lle fiads

2

that at 85 MeV meson energy the correction to the total

scattering cross-section is about - 5%. The inclusion of
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meson at a single nucleon bound in a central potential.

We can nov express | in terms of Yy, and t_, ,
since we only have V; and V, in ¥ « The result is
given by Stoodley in the forn

1

Ay = 2y (12)
—\+Z l*’z"i.
-1 \
Z; = L= Vi = (I+tsid) (13)
For (\ nucleons he obtzins the equation

I

X = TR Ty S (12")

To obtain the matrix element of T he solves successively
(13) and @2'), is nethod makes it possible to deal with

A > 2, because (12') is linear in the 2 , but it is
rather clumsy whea R=2 , compared wlth our method which is

to substitute (13) in (12), giving
- - —_ ] - |
1ie.[-l—r(l-etsat\l'*(l*fs,;'é)l] (l+teed) (12m)

- ] .
vhere we introduce the notation 22~ = ‘i 5 when 1= &1;-

- |
Therefore i = ]._‘—'*T_ME {“( etgiaMi=tee ) + (I+tsc KD

s | 3
et g | Crtid)

-1
—tglte L]
e (1% by i) - bl bsi & )
We shall work from this equation. Iurther manipulation
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of (1v) gmives us

- L, LT ﬂ!

L
N oA Ve i
a b e Sta ¥

S|

S S r

T = Z?Qri"%:"’su o Sk 4
L

¢ Y
-

(1)

In Chappelear's paper the form
\ L Lo L LT

T= Z",&["“‘it'i o.t/f:‘:( [a-r'-"' o & aT;!] (1)

v
is derived from (10), He then assumes that at all successive
stages in the process the only meson present is that produced
by T, er T, , so that the matrix element of % . required is
always that between one meson states l% Y o Bow
(o lt519,) = (9, 1¢5; 19,) so that (14') and (14") are
identicalq ’
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Woouse e Tor (g, g a0y = a; (9,999 ¢ L.?L“"_‘i.":”‘:
~ ~ ~ o~ (1)

llere q; is the isotoplc spin projection operator vhich
ensures that scattering is only in the 1€=3, state of the
meson and nucleon 1 . We consider only P wave scattoring
which means we musi confine our attention to mesons vith
sufficient energy for the \3 wave resonance to domdinate thoe
scattering, We use for % (9e 9e) the forn given by (1.12)
using the ("/l %) phiage shift 7)33 of (1.17) bhut we
ignore in (1) the spin denondence of the scattering, |

We first obtain the matrix element of  ty; & ty; .
From (1) and (2.6), (2.7) this has the form

. 1q.R
9 ,P-..q_cﬂ‘;“) dq e,( ‘)f,( qu o o ~~

“t ‘Lt > = ‘as “'2“"‘: r\!"' ~ q‘)cl Chql |C]c’1_ )
Cl' Sia sk '%z) Az e jﬂ()nf’ wigz- ulcp-«-iiﬁ DR G

Q% ' P R -iqR
= q.a'e”(i"?"m':’) 7 a7 (L & Saq%cq,,qmq,qbﬁ(e e Y
= vy . ﬁ‘l'~gcj3’[‘ 9 i :LRO \a\)(ﬁE§—w(q\+‘:i

G

Here R = v -v. , R=IRI | Tho one pole approximation
1s that on changing the integral in (3) to the form

R
wdqq & (g, H (99 -4
\.0(‘1&)"\»3[5‘3"‘ 12

and com:leting the contour in the upper half plane, the only
contribution is from the pole at 9=9c « Thus we assume
that the product % (9,9)% (9,92) is even in q and has 1o
poles for 9 in the upper half plane. Ve can compare these

/
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conditions with the resirichious o1 the forn of O imntlicit in
the vork of Chappeleor and Stoodleye. I Chappelear's paper the
form of tgi is

VCRE AN
Ci‘lts'» &1‘3: & 99 e TN

in whieh e-i is a fu;iction of energy or in our notation
G,a.) = &) .
However for the intepgral of (3) he has the form
wdq 0, e tak
WEeN-WQ *1E

and states that he ignores poles of €. and e, e« So it
appears that he is in fact using the same form of & as we use.
In Stoodley's thesis the formof & 1s € (q,,q,) = t4.y
His method can also be employed using & (q,,Q,) but then to
solve (2,13) he has to make the one pole approximation in an
integral of the form

g"‘&q o &, 0% @Q)%) ()
WEe) - wig) + %1

o
This does not contain a factor SmQqR , because (2,13) only

invelves one nucleon, and so the approximation requlres more
restrictions on the form of & than in our treatment.

The approximation used here is referred to in various papers,
for example those of Chappelear and Rockmore, as corresponding
to the neglect of scattering off the energy shell, This is

incorrect. If we transfornm the integral in (3) into

2&5 dw LOSV.V\QR G'Cﬁu‘i\ﬂ'@\qﬂ (.51)
M Wlge ) ~w Q) +i ¢



aid use thae result

fﬂ . - ™
3 f:"/' 5 " ,4.) ‘-5_) |
(o Fly, BV . B S Py 8
v WQemwe i 0 TIE ¢ wgeh-wig)
e )~ Wi+t

then ignoring scattering off the energy shell means ignoring
the prineipal value intepral, This gives '

27w @) 9,9 Y 5@ \0) SoaqeR

vhile our approximation gives

L
— 2t L wW@le) & (q,,9e) e'CQEs%.\ Q qER.

The difference betwen these approximations 1s recognised by

Drell and Verlet (in the work mentioned in Seetlon 1), Ue have
not been able to relate the assumptions of the one pole theory

to any physical property of meson-nucleon scattering, We shall
see below that in this aprroximation we only require the energy
shell values ¢ (4¢,9g) in our final results

Continuing from (3) we have

(altsiktg; (1) = ajay o.b(%vig "W 59:-(‘:,“\5.\ Q'(“]F.s‘h.\g{(m Wh 3@’,(1}‘5 ‘1}5§

where ©

L9gR
_ w@ed L (e H )
$RY = 2w RdR R

and  g(R) = &&L—R-RR\.

7)

2
We shall alse use the notation h(RD>= ?Uﬂ"'ﬂ(“ﬁ » From
(2,14) we have

. a 3 . G oy 8
Ci\}l‘h ‘3,) = (2%) S(‘?\!-tl,) “+o, ?r(q”qg 9 @ Li" i % .

a(qy)
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+ Vs~ v a(q N - e & QQ(R i 12"’3“{\)0‘ q,R
1

—
—

QY $(9-0Y + ag 6,9 PRPRLISN

a@y -
v o %t .
¢ w3 Ql;(miz §O QR (9 cjay 8(q,a (2
alqy —
where S qu f.._ (qs IMIQB%(‘],C]:?‘] e L‘l‘} (Q>

We now solve the equation for

S: (9> which fellows from
(8), (9),

i) = {32, @ 8@ara) ~ i @ g.a ¢ iq-a>.
o va) ~ o~

[ e('?.

iq.ﬁ} -1 bv r
to * Blae® frmarg0aR R Y. Si(g) a0 LA
_ag_q\__fryﬂ\i-rg 71 ‘\x A:]C(q 15392

(i0)
Making the same appreximation in the integral,

_iq"‘ai
Sicm\l = %(‘Tn%vﬁj ¢ v

-1, %
+ Gk%fqme)%(ﬂeﬁe\'g{mﬁj"‘ﬁm‘ﬁf? PR
(i
£ 80 | £ 516 + g [n R+ f]S )RR Y aja;

Taking the scalar product with R ,

Si(‘{ﬂfﬂv = q. R ?r(q”ﬁg) ( ‘1 ~ ¥ 0y Ql.q. fe(qe‘qr_\h(ﬂ\]

x [ 1= &7a,a WRY ajay ]



and hence we obtain

20.
" . ¢ . . "‘:"-'{é .
S = [3fhne e MY ras iR bnnae T
T 9 RR €43 64690 3R (ap ™ I L (f0) +hR)T 8 e qe) X
G2)
-1 g% "i"h",i , 2 *ovacas -‘o~a' l)—‘
<*e ~etage 69 “«(R‘)- )("f &'(%31:“‘;‘{;‘ qth ) ey
X 0 m,;,q;\g ® o;a, 1 e i) s
The matrix element of T ,
From (2,11%) we have iz
- ag;
(qitlyy = 5 (% (a1 %19:M(a, [ T:19)
~ i v (e} Tl (13)
{Tlv) '
We take qu e

in the form

\ (-9, 1
fai@i«gx@ng, § e 2%
~ ~ i

(1)
of; and \{ ; are functions of the meson and photon energies,

the photon polarisation and nucleon spin, and also contain
isotopiec spin operators.

(See Section 5).
T; we have

With this form of

a1 - N L\J f' (-Jq;, /
Ac‘h\“:i VY

‘ -iq,,
SFRTRAL A, Al N4 v e e
L ¥ -~ “ / - b -~

. 1,

We write <, (a,

>y \{}' (3, 1in the form di %9, Yo x (4.
and define quantities P; and Q; by

/
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-

.y Cdq, 00
@) = (%% (alvilay e~ CIX (15)
Cgt (%.) = Lf_j" (i,wdiﬂ e %y (3,) 2
so that
_ _ LV R — ~
(cl,lnlg\ = 25‘ e ~~ [‘Pcoﬂc +CQ;.2(,;1 (26)

We find Py and Q@ 4in terms of S and use (12) to obtain the
final form of (?li TIV> , From (8) and (15) we have

-1g.7; —ila.t-
PCC@ = [Q R ACEN 1o, &(aga2) ;(&'}%;ﬂ PR P
(17)
+{ +Qeae) § (RIW(RY S; @).R aa, _3::( (aed
and
Q@ = S:@) ¥4@e 18)
N YT R (gead

where we have written ¢= 9. , since ¢, is the final
momentum of the meson. )
It will be noticed here that the first terms of P and X
(from (12) ) give the impulse approximation when put into (16).
We have used the one pole approximation in the integrals (15),
with consequent restrictions on the forms of « (q,) and x(9> .
Our final result for the rmatrix element is of the form
(41T = (4 1Tz012) T T < RS DR

v 9! b

(19)
in which the impulse approximation matrix element, and the

corrections for multiple scattering an odd or an even /



number of times, are displayed separately. The full
expression is

2 tv-q). "‘
@ITIVY = @iTplvy + Z, 2 77 A% 9y
. 2 2 2 _
i L\m\&frzh‘,—i Re: 4 £ R ¥ q(RE(RY O™ 2
1= aja WG ~ - a;a; § (R4 ~ - a@iLRES ~n "
gy (RIE> " SRYbe aml'_c(m—ekcnﬂkcme
(- WRbe ~~ l-ai« gwmes Ralrerr (A Ry bm?
RN (VTR Y o (R ' 4
+ ZQXR”" ﬁ‘jzi'q & 3\.{’5 Sd‘t' ~+ -GCM'Q'E
ey v 1 [- &y b (RG> [~ aa, §7R) Le*
ar Qe

o 3 “3[§€fl)+ktm‘] hRyd e’

.1 N~ LT PP Y
l~amg §*RIBE I-a;a; (are [-aiae WIR)G >

where we use the abbreviation OS¢ = £(q9¢,9¢). When we use
the results of Section 5 and the notation A , g; glven there
for the parts of d; , ¥y which are independent of isotopic
spin, we have for positive (negative) mesons the results

iv-g,).9 C t(" ‘In\)"' A C
- (* (i‘l’r‘!.) = e~~~ ri - ._} *e S +C‘J—il]
t(g-q.\v’. [ Le@ne- 1R@c -7 R crR ]
+ e ~ Qx. ~~ 7

+ ' (21)
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1v-9) .7 1 - 1 R R
4o T AT G - ERR MR v REG ] D RR |

R i

+€’.

o~

l(vﬂ.—ql") 1 | E 1 o
g AT q.[ﬁﬂf“?“xf -1 R0G - R0 qre |

-~

wheraij R now stands for v - i«; ' and the functions F(R)
are defined by |

. e kS
= Beh®) Fo(@ = W@ f5e
FL & f be “ I- WMR) &2
2 1
F(ry = Pef(RIF(R) = 5 (f) b _
| I- PR e, (22
Fey = g(RR™ L HRTBe”
(- £ RBE™X 1- (D &g
FolrY) = §@ R* (1 + hR)y£(=) e )6,

| O-£@0e* Y- W (R e™D
To illustrate the behaviour of these functions we show in
graphs 1 and T the roal and imaginary parts of an "even
scattering® function F, (R) and an "odd scattering" function

Fs (RY o All the odd scattering functions are zero at R=0 ,
and sore of them are appreciable for larger values of R than
any of the even scatterins Muetioass. If we evaluate ouvr
integrals using the anrroxiration of aeplectiay scatteri: off

the ener~y shell we ret »nrecisely the sae form of result but
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we have 1Sm9eR in piace of &
:;,R in this approximation are also shown in graphs
Ii. + The third set of curves shown in these graphs is

explained in Section L.
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It 1g of sore Interest $o emorize Sho ruldds nde goathorine
correction for a particular form of %-Gm,qz) which allows us
to evaluate the interral (3.3 exnctly, rather than in the one
pole approximation. In Seetion 3 thig approximation is used ©o
that in our final result we only need to know the values of

e(qe\qg\ » 0((%\ and g(qg, s &12¢ 80 that we can reduce
the solutlon of our problem to the solution of the equation
(3.,10) for ‘§j « We can retain these features of our nethod
if we use the forn  €(q,,%m) = ¢(@)A(q,)) , although ve must
again use the one pole aprroximation in the integrals (3.15)
vhich involve «(q,) and y(9,> + Ve make use of the work of
Velibelkov and Meshcheryalov (1955) who use a factorable
potential

Vy, (9,9.) = =~2AVQIVGD | (1)

in (1.,14) the equation for rmeson scattering at a free nucleon,
and obtain reasonable volues of M_S—;; () e The fact that
these authors obtain the correct behaviour of scattering on the
energy shell does not imply that their form of €(q,9.) is
reliable off the eaersy shell. For this reason, and hecause
we still have to use the one pole approxiration in (3.15) we do
not use this version of multiple scuttering theory iu our
detalled caleulations, e shall talze the ealculation to the
stage of shoving that e rosults of uslay this fornm of &{q,m)
are closerio those of the one pole apfgtaroxizf:atian thea to those

obtained when ve neclect seattering off the enerpy shell,

/

|
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178 8.0 = - gt . y . . N
With the noteatial (1) thre cquation (L.1L) has tho evoel

solution
g = aw I 7
- WI(E) o |
vhere -
- .9 4
ICE} K~ ? w"(@[“(‘ié’ _w(q)j (3)

Velibekov ané Heshoheryakov intreduce a new eocupling constant

d = t—>)>ff(y:> | (v)
g0 that
- _ -~ .
o, (4ga0) = _%}?g% - sz -3 ) ?1 S

When v(q) 4is replaced by a cutéerf at q, .  this gives

-z _ Y N
{TIMSB(%FB = i‘i[fm_ {|+),[wlq@-p] 'PLqilf I B ]3 6)
) Zivwged -iu"ltp ag)-wly) BK-w@)

By suitable cholce of » and Q... these authors are able to
£it the experimental phase shifts falrly well. In this theory

we have

- -Aavayv@d (S TTEy T 7] (7)

where the integral T/(E) is

.00
KdQQ“ v (9)
Tt e

THEY =

oy
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vigh thio result for 6 {q,,9., we nve

Va0 = frigg,9e) W @e )
Wqyu (41>
We shall use this form of (9,4, taking € (9e,9e) as
given by (1.12) and (1.17)s Thus the behaviour of ©(q,,9.)
off the energy shell is very simplé to deal with, The integral
in (343) is now |
Yrvorn

o ch
, Q)’(‘(u‘h\ S MQ ) %(q,c‘ﬂ
N P u(o,} ~if

%( 33"\ 3 (4 By olq c.e-thz‘
- AR W
W% R ® W@ [u@e-w@)+ig)

W\M

- (9)

The peles taf the integral corztribute, on closing the contour
rmmd a semicircle in the upper half plana,

=2 wEe) 8@,9.) 8454z oW 1or 2) (10)

The integral round the sericiroular part of the contour is

.-

LqM% 6@ "(q@j«i@(wlg F i) e«b{mqu( (eort+isud)) (11)
[q (LD 40 $1n 20 )+ U ‘ls’[q ¥ (A LOH W 20) 4_‘4;-] Ih W(‘ls\}

low for consistency we use the large cut=off, Qmax=I[lp , of
Velibelkov and Heshcheryaltov. It 13 easily seen thet we can
neglect (11) in conparisoa with (10).

We,therefore, have the rosult thot to o good anvroxination

/
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the matrix element of by + Tey 1is

.\ " AL :‘{\;‘) - 'JL>
Q;Q,gﬁﬁuﬂn@eg q‘ g“‘/ 31}:/“11'1" %imi)e LR (12)
vhere
{R)- 20 & (/bR pRY |
§ 2R dR{R\ 2 )
A . Lod ”/ N (13)
g (0= 5 RN

We shall also use the notation ;(R\ §(R\ + R g(R\ .
For R X 2am £® ang q(R) are almost exactly ((R>
and %CR\) » There is a certain resemblance to the third
model of Drell and Verlet, discussed in Section 1. They use a
potential which is factorable in configvraﬁion space, and
obtain a result which tends to the result of the one pole
approxinmation as R inereases. Using (12) and (13) we can
now derive the matrix element of T as in Section 3, obtaining
a very similar form. From the result (12) for CfH t%,afxx\qL,
we obtain

uq z.-ih\ "':;é

(q.‘ A \ql\‘) = (2«) s(‘h—qﬂ +C| Qr(cl“‘h.\ qu\. ~

C 3 ™ I~
> (1)

q A
e 77 a0 b floa+ 0 arR]. S @) .

a(\
where e

2 oy - [ -iq.%; .
S @ - y@:x (alwladae 1L eq) (15)

In the same way as before we obtaln for

UM

¢ the result
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A -qu.ff'

a £ &
5‘:‘{\%) [q| C(q,,% (1 w +a e_eg’\g)a n o h +

I o
R R (@8R fa; e T2 4 g [ f+h(NIX

. B | (16)
-1q,.% -(q.7;
(¥ a0 a2 ‘e km)(\ L aa, S ﬂm%

Ve define ©P; and R,

~ b

as before and evaluate (3.,15) using the
one pole approximation, with the result that our expression for
(g‘,\’rlg) contains {(R), Q(R) as well as f(RxJ , é\(‘?\j ‘
We readily cobtain the matrix element in the form (3.21) but witt
the functions F(R) of (3,22) replaced by similarly numbered
functions F(R) s Where

’ - WHRY be?
Ey- §®EeFs (D = RE® e
| I~ TR &
F,(R) - % [_g_h §3 (4 ah [ (334.5 3 )

(l*-‘: (R)'er X l-— WLz

2 (@) = R'q@be + h®G(D [T (0 (R be
Fo I- %z(m{,* (-2 e - ’ts‘m/(’(r*)

o N
In the graphs L and 11 we compare F(RY and F (R}
with F(R) and F5(R) calculated in the one pole approxi-

mation and in the approxination of neglecting scattering off
the energy shell. It is clear that the first of thesec ap;roxi-

mations is the better.
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5e ,jg;s‘»,}%;q*r}j,c 30971,

e wort with renrosentolions of 42 lgotonic spla siubos
vhich are consistent with the use of the form of Clebsch~
Gordan coefficients given in Condon and Shortley (1951), Ve

y -y,
define VY, /: as the one proten state and Y.,: as the one
neutron state, and the operator T by

$ o o—
[¥

-(T\'G,'Cu,-o—"c_ . 1:'(_,_-—\_,

vhere
m -~
—cal- y_‘_ = %M)—JS. x_
> > . e i .
- o o

— -
Yy s Sas Y

m ~
T Xi = 2&\ Y"i

States of one positive, neutral or negative meson, denoted

respectively by V' , V. %, y," can be represented in the

form

{ o L]

() 9 | b o

o ° ]
When regarded as operating on these column matrices the operator
 1s

[0 -L 0 o
L. .
YR - (2




}-!la
The meson creatlon operators ¢ act on the vacuum state lo)

as follows,

Qlod = oY
Q¥ o> - {’yl—' |  (3)
@y10> = y,°

and ve define

- Jileeen chl\]_(ceqm

We must fix o and O to be consistent with our choice of

Ty (’; by requiring that the total isotopic spin ¥ - §§«rg
commutes with the Kemmer (1938) operator  C = Z_:'.C?t- T

We have
{;"‘(C )’l = C (t YJ.

. -1 - -_& L
and t(c'yl»>= C(t Y_i )::‘O
2 b :
Hence o=~/ and t=1.
The isotepic spin eigenstates of the system of one nucleon

M
HI

and ene meson are,in this representation,

3 L |
K;/; = Y{. \/|

xE o= JEYRY BV ) o
X;i = J——YL Y¢ J—_‘_;Y.;iy

<
\—“'—
i
<,
wid
<
v (
Pl
g
I
wi=-
<
"
x
o
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while the elgenstates of o two nucleon system are
| 1 ¢
AT 71‘{*)‘ \/ ()
|° = f SY‘ (') >’| 1(1.) + \/Lz(l)y (’L) H
K= Yﬁ(t) A o) (5)
] L L

s T Y e - iy ey )

For the system of two nucleons and one meson we only have to

deal with states of unit charge. There are two convenient sets
of states. The natural set for describing our final state 1s
> = X'y~ , thatis T +2p

1> = X% V,° , thatis 7+ triplet np state “
> = X,V , thatis TF e 2 |
lu> = ¥X,° V,° , thatis TW°+ ginglet np state,

For dealing with multiple scattering in which each scattering
i1s in a 3/ state of the isotopic spin of the meson and one
nueleon it is more convenient to use eigenstates of ¥ and Tz o

The appropriate states are i
Ly = {& Qs +212> +13>) |
l2) = J'E Ly —13>]

13y = [3 (1> = > «13>) (7
= 14>

So for any operater A we havd

wvhere <9) t-'\) is




0 T % 1 L.
A REE S 3

‘I'hq smnd representation is essentially that used by
Chappelear.,
Consider the operator &j »2~Ti.-¢ wnich appears in t
i‘- I o e e e,
Libalqad = 12 1 o
; o . |
o ~! [« T T § ‘ )
and (10)

vy e ]

) . - t2 1 0
(‘uvl a 14 = - o=t e
: AL e - TR LT .

(n u,l !’\3 ._ loto-R" -

od | | (11)

o
()ﬂq,_l‘-«')’: 600 00

In the form of 1 given by (1.18), (1.19) the operator for

wave photoproduction is obtained vhen ¢V T.d  1a the reson-

nucleon interaction ilamiltonlan for a pseudoscalar meson and a
/




bl
static nucleon, is made gaupe invariant. This gives
Cw Ran. £+ - - ‘
"t‘ﬁ‘ﬂt = [Q G, — Ay Jﬁ'-i&d (12)
In our notation the effect of (3; on the deuteren wave function

is given by
ty XDO = -12)

by % = 1) - v

The > wave part of the photoproduction operator, (1.19), must
produce a state with t=73/, , Its isotopic spin part,therefore,

is

Si= Bla*t gt ] + % e
Writing  y; - Oy (i ve have
Q& = [3_: [2!.3&5 + L% VX ixq ) (15)
We have
B2 ¥ = X1 w1 o

We can now see the advantage of using the states |d) rather
than <> . We can take the operater Q; &s effectively

(Oladp)d = (}. f]

- (11"
rlapd = [{‘_‘:]

Any state reached during the multiple scattering 1s a linear
combination of 12) and (&) and for the amplitude for

production of positive (negative) mesons we pick out —j—{ (Fz Y
/




L5,
tines the coeffliciont of |1z, i3 tio states obtoined from
by the various parts of (3.20). “his leads to (3.21). iotice
that any difference in the behaviour of positive and negative
mesen crosgs-sections must come from the space wave functions,
that is 4t ean enly come from the effeat of the Coulomb inter-

actions in the system of two protons and & negative meson.

B BLPIGR



6. The cross—section.

The impulse apnroxiration cross-section for a plane wave
final state is corrected for the nuclear interaction in the S
state, and for multiple scattering when the nucleons are
finally in an S or P state. The multiple scattering
functions have short ranges so that we can reasonably neglect

this correction for €>. e The cross-section has the fornm

&3¢ AT
W(even) + AT (0dd) =
——‘fi——{ Impulse approximationj even part of plane wave}
dqekle aD
W ( Impulse approximationg C= O partial wave.g
&¢
———— Ay th multiple scattering; distorted C=o partial
4 "'i‘- *D wave
(1)
3
¢ QZmpulse approximationj odd part of plane wave}

dq dledd

—-——~————-——-{Impulse approximationj %=1 partial wave %
d.q d\c o

3
-—d—"——a{ With multiple scatterings; = partial wave{
aq exle kD

Each of these cross-sections has the form

3 2 ~
ae __ ='zﬁ\dz\16(wl.q\*\;-e2 «—eb—w\,\ (2)
¢ alodd M LM |



,-5—'7'
; A
:2?\&\18\.”‘:‘{"“{;‘\}

Here q, k, D are the momenta of the meson, the nucleon
relative motion and the nucleon centre of mass motion
respectively. ¢, 1s the deuteron binding energy, =2.23 ieV.,
and M 1s the nucleon mass, IR\ = [<EITIES|" gor o final
state |{> appropriate to the particular cross-section
considered, The effect of averaging over £ and the veipht
associated with the final state spin are implicit in IXi“
T as written in (3.21) already takes account of the isotopic
spin parts of 1i> and 1{> so we have for our initial state
1> = ZX. wi(RY
where “Kw 13 the triplet spin state and we use the Hulthen
deuteron wave function

h_ar _pR
w RY = ,[dﬁcd-vm] et
w (-

(¢ , ~4R -gR
ECQ —L 3

R (3)

VA
with o= [Mli&) and p given by € - J-Tp,”’lﬁ '

-13 |
¢, being the triplet nk effective range, ( @ 1.704x10  cm.

-1

13
o = 42316 x 10 em,
¢ = L3y x10 ° emd

Our final states have the form, for even and odd spacc parts,
' -3 iD.¢P
(2\7 u.gg_ (":i‘Z} e =~ 7 X e

/v

(2 -3 u{(} (553 e'\b,_,-f’., \xq

Here 'X, 1s the singlet spin funetion, and %, = (% +’. .

The space wave functions we use arc,in the order in which

/




the cross-sections oceur in (1),
I
UCe (5-33 = (2%)  e’k.R

sule
kR

=3N
)

USle CEB\ = (2%

N =1, ¥ S 1
U (L) = (20) € L[snbR+ 8, -5, ] )

ULRY = 27) ss;‘lf‘.g

g
R

l

:)

UG, (R = (zw'\”‘;s‘(ka\‘ﬁ(

*

the last applying to the last two cross-sectiens in (1). The
form given for W(kR) 1s one frequently used for this purpose.‘
(See for example Saito et. al. (1952) ).  §, , the nucleon -
nucleon scattering phase shift for E=nr g and 1 are chosen
to fit the effective range ¢ and the scattering length o«
which give the non-Coulonmb proton-proton scattering in the
triplet state, at low energies. The connection between ¢,
o , and 1 is obtained following the method of Bethe (1949).
We introduce the following auxiliary funetions,

W(kR) —> W (kRY as R—> =

w (kR —> W (RY as l—= o

W (RY —> WRY 88 R—>eo
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It 1o convenient to usc the hpoundary conditions
U (o) =usle) = 0
Wlo) = Welo) = |
80 We work in fset with

_ IR
S\\-Sa '
wlkR = sk~ 3 S O A
- Sde
%, (R = I-R - .Q.'?R
o
Wy RY = {— ‘3_

The effsctive renge is given by
[- )
fo = zg (wi-uy ) dR
o
-13
Using a = =7,7 2 10 '

-13

Ciley o = 2,65 x 10 om, we obtain
vz 1.28 x 10" cu’

= @

Necange we must deal separately with odd and even finsl
states we define &R, and R, where

@, Ytl = uc(km L (RY R

aRae L2 3 TI3.D (5)
Q- [ ZE, vt ui®e T CL AT ©

The form of T in(3.2. jocan be expresced, recall.‘mg the definition
of A ena C; , as

gha x4 <‘K,,l TR

L-a) .7
AR

—

= @
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Uv-9). ¢ [ o {(g—q\ R { (V+4).R
= e ~ . -~ ~

~Kes, L)+t (Kipw+L )

L . (6)
-%(v-q).R ~5(ea).R
+e T (g e e R Y (g < L,) ]

S0 -
@, = (29 5-vep) {ar ue R W) <6 1T/ 13K
| ¥ : X : 3 "3
Qe = 25 18(2'2*:‘3&‘«%“@ (‘:@ wiRY AT X )
Now write
T,'= (f;"‘q‘z.\‘z‘t—_“"(«t”ﬁ)'z—*j-g (3)
and define the integrals

T°- (Q_K\T’h SdR “{: (Em W (RY :l"+
T7 - (2%)3{” S‘dK us;f(‘i@ 'u'LCR)I" | | (9)

T - @3 (ag ull (kR we@ T°
Then - ’- ‘
Q1" = [S@v+ad] <2t ~\T1" )

¢

@l = (sl BT, (10

the symbol < 2,, indiecating the average over £ , Putting

this form inte (2) and integrating over D we get the partial

cross-sections for a particular meson momentum G and any
~F
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compatible k ag

ae C7.~3 dk :_“o> <'_:-i >M_

aq Py (?-r}"

a ' (11)
o _ ey (e g (<-t ) T \T
M - 'kc a_)‘; ™ ™~ ) < 3 ~ ‘ >HU—

for one of the even or odd cross-sections as the case may be.

From (11) we have the results,

-ty
Xy _ 205 quiMk, afy It _
dﬁ(ﬁ}d\,ﬂ&, = Ihe g\ ‘(<~ >F~0')l<-'<o
-5 (12)
e G0 e (g, (BITHTN)
dw(@) dddq b e Aoy le=leg

for these cross-sections,

 We now give the form of (12) in the impulse approximation
case, with the nuclear interaction included in the final

state. From the first part of (3.21)
% (VAR ; yix
i(ih—tk\\.’a3= Q" T q J— Eeﬂ‘gf~lNd(3)[2w|x -t-LT q]‘s

+ o 18 (564 %8 +3M B2V it Gvxexg) 3(13)
It 1s convenient to use the abbreviations
E = Ea W2 W

(1y)
MaiN = Mal3d™
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From equations (1,20) and (L.21) we have

E = ef
(L) vy >

W34 . (15)
M+iN= Eme’ 50006 Casb*)
Here we write m, = (%h-ﬂn\‘g;/'sz " and include p vhich was
previously set equal to unity, To average over £ we use the

following results, in which ®, 1s the angle q makes with v

~

<(zx3 x:m">ﬁu, = V_’.'i?{1(1+ T o @.,3

(OXIXD.E3 = V9 ws®q (16)

YAt v
COned™Day = Y O
Thus we obtalin the results

‘I + t,m' - Kz {é(‘*‘&ﬁ‘@c‘}c{q}:)‘ rklz'si«"‘g

ey (gymsinSens 41 Je(90) an
TP = KETET) 3 smT @AY msi

o t
The form of 3 depends on the particular cross~-section we

consider, For the even and odd parts of the plane wave we have
respeetivoly

- e +_ — —
1 = Tart1an ana §7%: T, - lay ¢ Where

o< [aR(eRe TR R 4, (RUk+iv-9))
o o )

ren= [ AR(S ST Ry (RIL- $0m0)



53

The value of 3 Por the '{* vove with no interaction is

4= 2T, 5«« R PRy SR o, (R'ER) (19)

while for the distorted wave we have
R By ed c R fv-q1
$ =e'5°%IQ=Q s (R €YW) 4, (R'E2Y) (5
< o
In the impulse approximation we do not need to consider the
£=1 wvave separately. If we define th- fdﬂl‘ciau Flax,
we have from (1) and (2)
w wey k- L:' LK™ -+
dr _ @D fuks(E- ) (e~ 2
aq Ac

- (11Y)
4w (CT+20*) em (M3 2MT+ T M0 }

vhere

E- = X~ =+ L%.’E(”et"fs‘)

EYT = X7

NT - ge:c«-bm‘-@a,\c’v) i

M® = %E+ SM‘G%LVE;%) sitd
and from (12),

o . 21<‘e’“£"i‘1boq{ e C e MM
Toana = * IESv Ry B C e, 1(‘;2\:)0

o8 _ K ™™ Ml, q T(etmC *m»p\"}..sm’fiw.ﬂ;
dngay = TSR v o ‘ ek,
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Lo
The integrals X°* » Le and U are piven in Appendix A,
equations 1 to 3.
The multiple scattering correction,

The forms of E* and so on required vhen the correction is
included are rcadily derived from the results of Appendix B,
The inteprals over K are evaluated nunerically, The fact that

we only calculate the correction for states with C=n or

€=1 simplifies the integration over angles.
Kinematics,

If we specify Y and @; s the magnitude but not the
direction of ¥k is determined. The two nucleons will have
quite different momenta relative to the meson which is scattered
at them, while our result for & in Part 1 ( (1.12 and (1.17))
is given in the ceatre of mass system of the meson and aucieon.
We treat the nucleons as stationary whea dealing with the
multiple scattering. We may expect errors caused by this to
be partielly compensated for when we integrate dli over all
angles relative to q . We fix our value of &k with the
energy ?S— functio; in the laboratory system, for given
and a and then convert VY, and 9 to the centre of mass
system of a photon and a free nucleon and do the calculation in
this systemn. We present results in this system, referred to
in Section 7 as the centre of mass system because our choice ol
values of i is determined mainly by considerations of
convenience in the calculation, and because we are not comparing

our results with the data {rom a particular experiment.
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We are only concerned with general features of the cross-
scetion in the irpulse apuroxirations In the graphs {V and ©
we shov the cross-gsections at 90° and 30° in the centre of noss
system of a photon and 2 free nucleon, for 300 lMeV. photons.
The neson energy spectrum has a peak contred on the eicrsy of
the meson produced at this angle from a free nucleon, Tor the
same photon energy. As ue o to forvard angles this neak
becomes narrower and its nosition is nearer the maximu rmeson
energy, (In graph "i this pealr 13 only seen on tho curve
vhich corresponds to a non=interzcting final state).

There 1s a second peak near the maximun reson enersy, caused by
the finol state nucleon interaction for low values of k , as
can be seen from the curves In Y . At.90° this second peal: is
unimportant but it dominates the spectrum at forwvard anrles. Ve
refer to the two peals as the "free nuclieon' pealr and the
#interactioa" peak respectively.

m nl rdnc roCL

The rosults hore refer to the one pole approximation. lhe
magnitude of the correction is different for the free nucleon
and the interaction péaks of the impulse approximation meson
energy spectrum. Ve have ccleulated the cross-sectlon for the
followihg cases

1, Wi = F3lpe* ,  ©a= 0°

2. w(@) = sipe™,  @q= 120

30 L= bdpet;,  ®q= 30°
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e wlqh=i06% pe* y @q= 90"
5. &)(ﬁ‘) = lb% ‘—LCQ" ) ‘::‘)% = H;f)o.
74 P‘“—I ;) 4 = 30°.

o

6. W(q)
The numbers on the graphs W and Y correspond to the 90° and
and 30 cases, In table I we show the results of cases 1 to 5,
which lie on the free nucleon peak. In the columrs giving E =
and so on ( see (6.21) for the notation) the corrected values
lie below the impulse aprroximation values, The units for thesc
quantities are 107 em, The last colwm gives A, the
percentage correction to the cross-section. It will be scean
that the correction can have different signs for terms associatac
with even and odd space parts of the final state. This, as well
as the fact that [\ is small, maltes this process less suitable
than the process y+ D —> W°+D for studying the multiple
scattering correction. Fron table T we see that on the free
nucleon peak the correction is about « 4% to - 8%. This will
not @ffect any conclusions drawn from the interpretation of
results such as trose of graph T in terms of the impulse
approximation.

In table T we arrange the cases 1 to 5 in order of
increasing value of the parameter B®+k , where k is the
nucleon relative momentum and B=4(2-9ql . This parareter
decreases as we go towards low values of k and forward angles,

that is towards the situation in which the interaction peal 1is

jmportant. The corrections A (even), A (odd) and A , to
Y

LT * 7 (0dd) and -+7-— respectively
aw(q) ddly (even), dw (q) dflq dw(dlg ’

are given in table T . The rain feature of this teble is the

/
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increase in O (even) as &+\ deerenscs. dow ia ease 6 (see
graph nv) L= A (even), so we ecalculate [ (even) for tids
case, and find it is - 22%, It should be noted that the 30°
case 1s an extreme one as far as comparison with experiments
detecting the meson is concerned. It corresponds to laboratory
angle 24°, while the furthest forward angle used in the
experiments compared by Hagermann et. al. (1957) is 26°. We
conclude that while the correction is in general less than 10w
it can rise to 20/ in the interaction peak at forward angles.
This seens reasonsble if we recall that for elastic pion
production the correcticn is large, as described in our account
of Chappelear's work in Section 1, while the case of small k ig
our nearest approach to an elastic process,

The question arises whether the correction to the iateractio:
peak can affect the interpretation of the experimental results.
In the work of Hagermann et. al. we notice first that the meson
energy resolution is 15 lieV, Assuming that this would he the
same at the meson cnergies we consider, it covers in our 30°
results the range of corrections =4% (case 3) to =224 (case 6),
This will have the effect of reducing the cross-section, aéfwill
the fact that a bremsstrahluag photon spectrum is used. iiesons
coming from the interaction peak for some photon evergies, and
from well off it for other photon energies, will be detected
together. Since the peak is high at forward angles the
correction may still approach 20/ 1n an experiment detecting
mesons with the enerpgies we consider, at 30%, The interpretatio:

of such an experiment in terms of the impulse approxination



would, therefore, have to he corrected, but the effect would

not be worth looking for as o vay of examining the muitiple
scattering process, In the other kind of experiment mentioncd

in Section 1, in which the energy of one photon is measured, 1t
would be possible in principle to examine low k values separately
However, in the work of Bandtel et, al. (1958) the accuracy is
low, and besides they find it necessary to work with mesons
produced at a large angle,

We may remark at this stage that the integrals (see
Appendix B) which contain the functions F,(R) and F.(R' are
increased by about 50% when these functions are replaced by

l':\;(R"\ and f,,. @) o vhich are defined in Section
L. We have not carried out a full calculation with the F(R)
for reasons given in Section Y4, but mention this result because
it differs from the results of Drell & Verlet (1955) whose model
with a factorable notential gives a smaller correction than the
one pole approximation. (See Section 1). Another difference
from their results concerns the importance of the double
scattering, which gives a major part of their nultiple scatter-
ing effect. This corresponds in our case to photoproduction
followed by one scattering. Wwe cannot evaluate, in our
formalism, the effect of this process alone but if it were
dominant the contribution to (3.19) from an odd number of
scatterings would give the greater part of the correction, We
have evaluated N (even) in case 3 including only the integrals
involving the "odd scattering" functions FulR’, FgiR, and

F (R . (See Appendix B). We find that the even and odd

scatterings are of comparable irportance.
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Apvendix A, o . ; . -
end A, Intesrals use:c?. 12 the irpulse apnroximation
croggo=soction.

; ¢l o sl - < .-
We give the values of the integrals X y Lg and .Lg¢

which appear in Section 6, in the functions defined by (6.21).
Writing B = {(v-4) wye have

+ _ 2 | |
X - l*k g (*;*k-tt-ﬁz)t— l(»k"’%" -+ Cp'a*kx*%x)m_&kx‘gx %

?‘3 { o (B kY R+ (B+k ) }
Blae [3 w2+ 28%) x (Bl B (B=k) 0

2L a2e Bk B (B
B B(p™ 4™ %3 5 o2 (B-k)* p @ k)™ }
| +U } fS - (6+|<
of @B e 5 pre SC@ E..)%E (B~ k)-,_}

- I
T R () g Bk

x

k) BT B-EY ’) | )
IS = ]’3:'.3 {"’3 S 0("*@3"“31 (3‘4- [R+k)*

T, s [l Bzt v 8k

Ie = Mio i (3)

S PU A i 8-k 426 B - 2tem B3]
3y ¢ 7 X +h
We also give here the integral which appears in the €=

impulse approximation cross-section., This has only to be used

when multiple scattering is included. For this cross-section

+
the function 9 of (6,17) is
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obtaln the cross-section including the correction. The general

forns of I, I defined by (6.9) are

-+ t - -+
t _ : ¥ vx £ x[ -

(1)
1o wlUiyxeq cyxe 7]

~

In the impulse approximation l:,t = 0 , as can be seen fron

(6¢13)s Frem (1) we obtain the averages over £ ,

-+, 1 “+/ + 2z
UL o vhadedy s pu1 ey QI L J
, |

: +, 2 =+ =+ *
+ v“,"'[ + VL}(Lq_S + complex conjugate

%
t =+
+ 9V L; (L,_ ) + complex conjugate

-

t * t\¥
* VLHLI qf")‘l_‘-g‘?;;"""c q"g(LIS + complex conjugate
Qe . o ) o (I IS
' (¥

*
e V5 ("‘lu‘“:* 13\‘; KLT\ + complex conjugate K

If ve denote %L(v+«qd , 1(v-9) by A, B ve have the
following results in which we have used the distorted S wave

or the P wave final state wave functions as the case ray be.
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L, = 2k MY T, + i -7 i
{ “N M)%J.Q Lia LQB

<

vhere T, 18 given by (A,3) and

I(-A = S‘:‘?z(ed*R"Q-ﬁR) ’LL(MQ) Fs'(R) doLRF’B

T = (aR(RTNUURIF, (R4, (RB)
6 v
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T = faR(e* R FIRUIRY F LRI (RB)
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where L, 1is given by (AJL) and

S'dR( ~¢R -ﬁR) ijO‘RB F‘S(R\:M(QRB)

Tog = § AR R 5 R, (kRY F(RY 41 (BR)

L':= - 1<E[bm(®k—®%)I,, *ig (cC@ " NLp+A®Y Tyg — AT cta\ ]

where (AR
I *z I~ R Jo
(g -0 (R) F (R { .
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L (RRY

MY R R FRY |
} yd«( mjcmm{&cm

and
@z rOF D) AB®) + 5 (O @) 5, -®, ) cot( B - €, O

()= - 2 cot (B-Bcos®,-0,) +5w@5 @I 5 ©,-0,) o5 () -8
with similar forms for c(R) and A(R) .+ Finally

= S 01wt [ (N Ta- h(BTT, g +B(RITeq -~ B(R) T Teq }
~ 5— o o~ N o~ —
where

1, ( AR)
R |
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Teon ° -
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The Z: [d?(Q R R4 (R) F5(R) {1 (RR)
168 °
and

h(8) = e’ (®-),) (351;\'\6‘33 R(@-®,) +cA®, sm(@y®,) }
+ 5 (Op-0p) ex(Fj, -F,) M(®ﬁ-2®ﬁ§
hjﬁfﬁ = Spe (@ - ®nd sl T 83 o (®Bq~®4p )
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ha(@) = cot(@- ®,) 308 @, tos(®4- ©,) — simEh siml@h- @) |

+ s (-0 wot(F -8 sonl(@4-26,)

B ®) = hy® =5 02 (@q- @) s @ e3(O1-63)

(@) = ha(®) - 5t (@4-0,) w3 ©p (O -®, )

with similar forms for bfi%) and f(m) . Using these results
the evaluation of Sdﬂu(li!:_;—‘ (Das and fdJlu AT,
from (2) s straightforvard, |
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SULARY.  Part T is cevoted to the process b+ e A% <t
near threshold. The relevant esrliier work is revieved. Tvo

models are presented, one of vhich treats th» interaction of
the K meson with the two baryons as a small perturbation,
while giving a phenomenologicai treatment of the interaction of
the pion fleld with the baryons. The other uses the forrule
ation of meson theory in terms of physical states, DBoth are
extensions of methods used by other authors for the vwroblem of
tf meson production, ihe models give different descrintions
of the initial state, and the interpretation of these
descrintions is a doubiful point 11 this worke. In esch model
the final state consists of a free K meson and a proton and

A whose interaction is described by a potential. fThe operator
inducing transitions from the initisl to the final state is
the Interaction lardiltonlan for a nucleon and a pseudcescalsar

N + l(ﬂv systen, in a static source theory. For the

calculations this is generalised to allow for nucleon recoil,
The calculation of the cross-section is based on an annroxirate
description of proton-proton scatterling in the aprropriate
energy region, in which the elastic part of the scattering is
entirely diffraction scattering associated with the inelostic
part, With this approximation the second model has a plane
wave initial state. Thc potential in the 1nitial state in the
firast model is complex. The crossesections obtained with the '
two models differ sreatly. & feuture of both models is the H
importance of & wave mesons associated with the nuecleon r&eoiy

ternm/
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term in the transition operator. Direct comparison with experi-

rent is not possible at present,
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l. Introdugction.

In the study of heavy mesons and hyperons considerable
progress hzcs been made in the last few years, The main f-ctors
contributing to this have been, on the experimental side, the
construction of hiph enerry machines producing these particles
in larre quantities, and in the theory the recornition of the
importance of the strangeness quaatum nurber, (Gell-rann(1955) )

This made it possible to fit the qualitative features of the
production and decay °f these particles into o simple schene.

The two maina lines of theoretical enquiry have been on the one
hand attemnts to find symmetries underlying the Gell-iann schene
(see for exauple d'lispagnat and Preatki (1958) ), and on the
other t:e use in this aew fleld of the techniques developed in
plon physics. Hecent work of this nature includes weal coupling

and Tamrmebancoff calculations of the scattering of K mesons by
nucleons (Ceolin and Taffara 1957 a,b), appiications of

dispersion relations (for example latthews and Salam (1952) ),
and the study of hyperon-nucleon forces by nethods develoned for
nucleon-nucleon forces (suichtenberg and :loss (1957,1953) ).

We shall be concerned with the production of K mesoas in
proton=-proton coliisions, which has been studied experirentalily
at Berkeley and BDrookhaven. (iee for example Baumel et.ale
(1957) and iea et. al. (1958). ) By conservation of charre and

strangeness a proton-proton coilision ean lead to these final

states,

KY + A%+ > K*'«2° + p



Ko_"z‘-f'_‘_# K++2‘\"+ n 7

the threshold in the first case belag 1.59 eV, and in the

other three 1,70 BeV., YThere sre no other final states nossitic
odntaining one K meson and two baryons. e intend to coafine
our attention to the enerpy region in which only the first
process can occur. This is too near threshold for corparison
with experiment to bhe possible ot present. The lovest encrey
for which a result is available is 1,95 BeV, f{wea et.al.(1958) )
and that result is based on one event. dowever, experience with
plons suggests that experiments near threshold will be necessary
before ve can learn much about the production process.

The previously published theoretical worlk on K meson
préduetion in nucleon-nucleon collisions fzlls intc three proups.
Several napers have appeared which study, well above threshclﬂ,
the relative abundance of various K neson and pilon production
modes, using the statistical nethods of Fermi (1950) and
Landau (1953). leferences to this work will he fouad in the
peper of Barashenkov et.al.(1958). Then there arc papers by
Henley (1957), Costa and Feld (1958), and Feldman and latthevs
(1958) wvhich deal with the region aeer threshold, and discuss
features of the process vhich are not azffected by detailed
assumpfions conceraiang the mechanlsm of production. Thery obtain
relations between the cross-sections for different isotopic spin
statesé examine the behaviour to be expected for different
assignﬁents of the parity of the strange particles, and study
the effect ofthe final strte interaction of the hyperon and

the/
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the aucleon. They 4o aot ottenpt to derive absolute voines of
the cross-sections. %“e sholl discuss below various poinis
treated in these papers.

~ Thirdly there are papers by Barshay (1956) and Peasice
(1957) giving models which are intended to reproduce the nmarked
forward-backward peaking of the I meson anegular distribution in
the centre of mass systenm of the two protons, which wes = feature
of the early experimental work (Gsher(1956) ). It shoul’ be
noted that this marled anisotropy is not aprarent in nmore recent
experiments. ( See the discussion in Section 5.) In Peaslee's
model one nucleon is considered as dissociated into a IK nesone
hyperon system, the K neson being removed in a "pick-up"
prdcess by a pion in the cloud of the other nucleon. It is a
rough phenomenological treatment, while Barshay gives a field
tﬁédreﬁical (veak coupling) treatment of a similar process. The
graph corresponding to this is ‘

P
7
P
K" - ’
— ==
N.K*

RBarshay has also studied the process of K meson preduction

yhen & pion 18 ineident on a nucleon, for example in the process |

AT T e 1R TR D aT e 4 D e e




This will have a forward peak in the K meson angular
distribution, which is in contradiction to the observed behaviour
(Dalitz(1957), page 137), 1In addition to the disagreement vith
experiment there is a theoretical argument against Barshay's
approach. The absorption of o nion by a K meson depends on the
existence of two types of K mesons with different parity, ©
and T 3say, so that we can have D<c—> T+ W o ather
than having such a parity doublet the K meson is now considered
to have a definite parity. ‘e have looked for a proecess whnich
does not involve this absorption process, axl which might be
suitable for calculating the absolute value of the cross~section
near threshold. If we examine the work wvhich has been done on
plon production in proton-nproton collisions we find that one of
the most successful methods has been the phenomenological oune
(Gefren(1955) and Lichtenberg(1955) ) in which we take the
matrix element C§1 U 1LY of an operator VU y Which creates

one meson, between initial and final states 1D , | §D or

two nucleons scattered in apnropriate potentialse. HMuch of the
success of the method has, of course, been due to its lending
itself to the inclusion of the scattering of the meson by one of
the nuecleons. This turns out to be the dominating feature of the :
process, because of the resonance in T meson nucleon scatt@rinﬁi

(See lichtenberg(1957), burney(l958) and handenstam(i953) ). ;

The correspoading scattering of the KK meson by the final state f

proton/



proton shiould ant b so lvportant, sinee K eson seabboria
nucleons correspoads to a wealr repulsive iﬂt@fﬁﬁtiﬁﬁ(ﬁﬁLiﬁﬁ(lV:fj
section 4.5 ) o In general repulsive interactions in final
states have less effeet on the behaviour of creoss-sections than
attractive interactions of the same strength. (watson(l952) )

If we look for a similar model in our problem we require
data on proton-proton elastic and inelastic scattering in thie
energy recion, in order to obtaln a potential for our initial
states The fullest treétment available is the analysiz hy
Fowler ets.al. (1956) of their experimental results at 0,83 3eV,,1,5

Bélagd 2475 BeVes They use a geometrical optical rodel of on absorbe
ing (and almost black) sphere, of radius 0.93 x 10.13¢m at all
energles, and with absorption coefficient K (see Section 3)
with the value L.3 x 1013 cmtl at 0. DeVe, 347 x 1013 cm-l at
1,5 BeV,, and 2.7 X,EGIB cm‘i at 2,75 DeV, They fit the elastic
and inelastic totlal <ross-sectlons, aad the differential elastic
eross-section, fairly well. In this model the distinction
between scattering with and without spin flip is lost, A
difficulty in the descrintion of the initial state is the small
amount of information available and the possibility of making
quite different analysis of the experimental data. (See for

example Ito et.al. (1958) )« Ve find in fact that the

description of the initial state is the main source of difficulty

and ambiguity in this approach to our problem,

e 4 e wnc e S n e e L o ae
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2e gdels for Lho nrocess.

we make the following asswwmitions dhout €0 eoln i ity
of the strange particles, which are in agreement with their
observed behaviour. ©See for exarple Dalitz(l957), walker(1993).
The K wesons have spin 0, the hyperons spin #. Because of the
asséciated production of a K meson together with a hyperon the
parity vhich is defined is that of the system N K or Z K
relative to a aucleon, vhich we take to be negative, Ve adont
the convention that the hyperons have positive parity relative

to & nucleon, and refer to the K meson as pseudoscalar, In
isotopic spin space the A° 1s a scalar, the nucleon, K meson

NN
and ., are spinors,

NG K (K“ - (=
: © -
am’lthe pion and S are vectors
T\'-\ i Z'-
" = =
R T, b = =)
3 ZsJ
. + L _ % - -0 _ -
Here for example TT = B+l 5 0 = ibg,

i Smateen e e e T,
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“e use the tariltonian H= H, + h et h

or
Hot h(AN) + ho{RZ) + g (TA) + ho(T2)
+hy (E2) + he (RA) + h (AN) + hy (RT) +h (EN)
+he (R2Y + b (EA) +h (EB) + 1 (22)

-~

Here for example N destroys and N creates a nucleon. The

(L

free field Hamiltonian H, is the sum of the kinetic energy T of

the baryons and the energy of the meson fields,

Hy =T + f ap apw(p) + & 6T 8q o9 (2)

Here 'Qg (ap creates (destroys) a pion of momentum p , and
cc“f () a K meson of momentum q « The parts of h; andh,
which we shall finslly require are

b (R +hd@n) = 25 (69 N UGN ~BqN U A

3 9
vhere
. ’ : ) - . ° i 'P'
T 150y \"gA U.Cﬁ3 1 4
= [h=_ .9 <
B SR et . 1 (3)
and '

-..0 -~ ‘T
Chp@n) = Z 28 (o NN + TN Vi N
"= P 4

vhere

T Rt R 2 NS 5
Vi j2u)¢s§ e Ty Sa-b e

e e S e A e A o aimm Do TR I L LT T s e e senm s n e s

S a7 .
B i e e el



:"35 is the position of nreleon 4 g Crooave o onain

)

and 180’&0‘”}10 S‘-')i"l ')hqarq-ﬂ-( 7 of S .

e aQucleoa J . XA y -+ uare the
unrenorrali sed coupling constants, (A g and M. the meson masses,
‘and Q) , V(P are mormentun cut-off functions. The other torns

of the interaction Hamiltonian have sirdilar forrms, with

appropriate changes for the different behaviour of the fields in
isotopic spin space., In (3) we use static source theory for h
and hg . Ve can expect this %o be less useful for hy than for
hr Dbecause of the greater mass of the K meson, Ve cefine
Viq A Vipx @s being the same asUj:, \I,J:x but with the renorual-
i1sed coupling coastants §, , | replacing §° §° . & static
source treatment of the pion and K meson fieids is discussed by
Amati and Vitald1957).

We shall describe two ways of dealing with the problem of th
assoclated production of a \< meson and a N° , one of which

) ()
leads to t’ﬂe ratrix element Z L\\’ ,U;ﬁT . ) the other to

Z:(- _(?) 10‘ q}(ﬂ'))

The final state qf& is dealt with in the same way in the

two methods, bhut the initlal stites are quite different. The
first method treats the interaction term hy as a small
perturbation, while giving a phenomenologicél treatment of the
interaction of the haryons with the pion field. We introduce

as in Section 1 of Part T the wave function @m vhich satisfies '

Pl iTYF - (e (h,,*h@} g

a-hg .kK
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[ beliag an elgc.stote of W, g nul &= B o-Hy L g
define the ratrixdl by J. § = Q’;_*’:) s S0 Lhal vetwee:

different eigenstates & , & we have

L = L7 (5)

We take & as a state of two protons, and examine the part of
L which can lead to states éontaining one K meson and two
baryons, but no plon., We use the notation EVJ'I. y D¢ SL and

D‘f L for the parts of J4 leading from & to states

having no pions, no K mesons, and one K meson respectively.

We thus require D ;\-E.:._Q._ e  From (4)
SL = |+ ! {hK+VK+hﬁ+ hi ! kﬁ (6)
a- hw -V a—hw
= het_he . Therefor
vhere  V (et erefore

T K Q

. ! v A
D D A = 3«3.: {mkhk (l »aj'huh'?.)'} -

(7)

oo e (- )
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that we are taking kK as a gnall perturbation. Vvhen we do
this we ca. write hyg = h(ANY + W (EN) | fnepre arc
two kinds of process deseribed by the operator
[
3 { L - (e ow)*h,‘cm))( . I\r) z
One kind are described bty the part
(8)

(3” — )(me @+, G ) D (1 - b

This operator can be reduced by the method of Brueckner and
Watson (1953) to a form containing the "potentials" U, and

U | ~
§ 0 | (hK(&N)-rhK(fN))(t.._ ;EE.GQX
U S (9)

+-—'-—lS;\)

-
£ (1o 05 2, Yo r-heE) 1+

P

8¢ if we consider only (8) we have, from (5),

T& = (I,; ; (l+U¢;‘;3*3(hg(&~)+h,<(f~))( I+ &5.0) ;)
= (\Lg-) ) [hK(A‘N) 'Q"’\K(EN)] 4’5‘-3 > L\O)

where . ™ (U.{‘) 1s scattered by Ui ( Ug ) and has

outgoing (incoming) scattered part.
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logical poteatial for two protons, and & proton-hyperon systexn,
respectively. The latter will correspond to pion exchaazes

only, and will allow for such a process as

[\Q-\-Y) —_ Z°+t§ (1D

Idcntenberg and Ross (1957) give such a potential, Ieidran and
Matthews (1953) emphasise the irmportance of the coupling of N°p
and ZN states. idichtenberg and Ross give an eifective range
af;d scattering length based on the solution of a pair of coupico
equations for f\°|5 scattering, vhich allow for virtual traasitions
to 2 ZN state, below threshold for the real »rocess (1l). Ly
using tiielr result we can allow for the coupling of the N b
and ZN systems, but not for the pécﬁucti:m off the enerpy shell
of a 2 , which is scattered and transformed to a N o Howeves
ve notice that the potentials Y , of lichtenberg and ioss for
the ;ﬁrocess (11) arc nueh less than those for simple f\°\=
scattering, It is thus conslistent with the use of their data

to approximate to (10) by the form

(\&;’ , hi (AN) ) (10 )
in which ‘\\«é-) isa NP state.

The/
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29 potestlal vy ds more diriicult to uvead witle @ are

well above the threshold Tor the oroducticon of sesl nlons, 6o

ﬁ& can not be ldeatilied with wn ordincey potenticl, ‘E&
as constructed Hy the methed of Brueckner and “estocin is llermitis
only vhen a real pion cannot be produced. e ideatify \ft
_yith e complex potential which will reproduce the elastic
scattering and lnelastic scattering, the lattér being almost
entirely pion production near the K meson threshold. The
inelastic sopttering in this model 1s & result of absorptiom
by the imaginacsy pert of the poteantiel. The protons not ghsorved
ean zive rise to K mesons,
| The other type of contribution to D07
gorresponding to such graphs as

\\
NI} “
o A A 7 \\\
A 7 > P L~ \,
7 7
K s’

‘¢an not be dealt with in this method, elthough we might hone to
inoclude the second type by renormalising the coupling constant.
The situstion hers is rather like that of Section 2 in Part 1,

in which we ignore such processes as




end take the intersction with the radistion field, H. , ao
a omall perturbation. Talking the first order in h is of
courae mch les: llkely to be a good approximetion then in the
gone of He o

A fTormelly similer treatment of pion production (Aitken ot.
al. (1954) ) leads to

n
Q-

70 < (o5 - ¥

i
>
2

with similar notstion to thot used above, There is no factor
$¢ the riéht of hy ©because only the pion field is considercd.
“\J een be separcted into & part giving the nucleon-nucleon
potential and e port giving the interaction of the pions with
the nuclsons, This ie treated by considering only the graphs
which contribute to resonance scattering, the simplest of which
is

>
-
P
R~
7
< P
Ve
“~ K

Multiple sesttering is not considered. As pointed out in Sectior
1 we have no similar reason for pleiting out any perticulcy set

of graphs, It will be noticed that this trectment of pion



prodnction doen not loerd Lo the phenosenologlenl method, which
hae & nueleon-nucicon interaction in the initliol oiate.

Ouyr other 2aoneonch meles use ol the Chew- Low - dick
formmlation o menon theory in terms of physic: 1 states,
(wick (1955)). The method is that used by Lichtenberg (1955
to introduce the phenomenologlcal theory of plon sroduction,
and aims at aveolding the trouble ocaused in the firct method
by the procesces not included in (7)e It is convenient to

ealoulate the matrlx element for the reverse procese,
° +
{\ + K -+t7 —_— }: -+ \-)

Let §™ be the physical state of a proton and A° with

energy £ =T+AM , AM being M, -M, , satisfying the

(+)
q

ﬁhe segme condltion and represents the physlcel state of a

@ondition that its scattered part is outgoing. satisfies ‘

proton snd a A° with the same enecrgy, together with a K
meson of momentum ¢ , at infinity. We define . by

) _ T 1
T = B L (12)

$ogether with the boundary conditions on IM and I:) .

We have

HETET,) =~ (Evu@Xb 9« T,) (13)



Kow
8T E® = Brng™ +lwef ] g
= 84 EE¥ 8T (05 - 02) T (1)

xt ie seen at this etage thot we encounter no compiicati s
oaused by the presence of the pion field, since Gaf commites
with Qp and 0*,1' ¢« From (13) and (14) we heave
[
(] \ i ’ .
(Ulq.,.u:q){fz +H._,PS—(E+0(1))§'S or recnlling the boundary conditions

_ | o ° -+ ‘
&, = E+w(-H+ i< (U'ﬁ +U‘lﬁ) ¥ (15)

Row expand the right hond side of (15) in terms of the gomplete
pet of functions ¥ with incoming scattered ports.

5. 7 3o (B0 01 B)
" E-w(g) ~ En + it

3 in partioular 5{2:’ is the state of two protons we have
she matrix element for the process K t/\°+|~, - rs +‘~. in the

form



{40

T (B0, * 00 TO) ()

?a go from this to the Tollowing form for the dlrect procesc

ST = () e+ U; Y4 (17)

in which ‘bé*\', \\» _;') repreaent resnectively a bare two
proton state and a bure A® + proton state. Here we aomune
fﬁat the trencition from ohysicel two particle stales o bare
é‘tatas is made by reacormslilisation, an for single purticle
ntams, togethor wlth the use of a nhenoumenoiogicel peotential
for the initial snd Tinal statos. |
R The potentisl in the final situte has to correspond to the
effeot of the cxchange of pione and WK  mesoas betwewm the
N end the nroton. Lichtenberg and wose (1957 aprc wbie to
obtaln adequete agrecment with thoe data on hyperfregaents
' (nnclea1* systens with a N bound to scversl nucleonn; by
t._taing enly the plon exchonges. Thelr leter results (Lichten-
berg and ioss (19581 when they include K meson exchanges,
are consistent with the assumption that these are less
imoortaent then plon excheagen. e therefore tve the sone
potential Tor the finel state so In our flret model,

Regenne oF the faet thol the creatlon and eunihllrtion



operators for the tic flelds commite, we have for pion

production the result

Th - (\\,2\;*) w)-{-\]l\,\)\h(-ﬂ)

in which \H:") is the came stutc as before. The description
of the initial state ig thus quite different from that of the
firet model, in which we cennot have transitions from ¢,
to states conteining s pion. We ouggest thet the way
%o obtaln a sultable potential for the initisl etute in the
second model would be, if this were poscsible, to separate
‘from the proton-proton clastic scattering the part which is
not diffraction scattering corvesvonding to the incliotic
scattering, and look for & potcatinl giving this omrt. Thio
cunnot be done from the date of Wowler eteal. (1956, An
exceptional cuse which can be treated is thet in which ell the
elostic scattering is diffraction scattering snd \\l((‘n CGanl
.be token a8 a plane weve, If we could rmake s reasonable
attemnt to £ind &P 4n a more general cese it is clear thit
ﬁm second model of this section would be prefersble to the
ﬂmt.



Je The potentinls and wnve functiona for initiol nnd finel atolceo

Yo odopt the first model of tcetloa 2, and muke use of the
recultn of Yowler et.nl. 28 mentioned in the introducticon.
Unlculating tho phase ohifts for the threc lowest velues of
from the opticel model we look for comnlex wells which will give
the some phace chifto, A different well rmst be found Tor each
value of E « In Section i we give our reccons for oaly using

=0 s ls 2 e The rodius R of the absoribing sphere
of Fowler et.el. is taken an the meen radius of the potential,
while interpolation of their values of K gives K = 3,6 x lé3v
8t 1.75 BeV,, the energy at which we worke The phese shift is
given by

' " h !
5, - 4iKs, = LK (KR-@)"

¢ ¢
(1)
for momentum k., » (ee Fernbach et.als (1949).) We find thet
for the first three portinl waves 1 = ezasf = e Kse is small

u;m:,gh to let us approximete by taking Ne =0 » The error
in doing thie is less than the effect of taking wells of
difrferent shapes which give the came phase shifts. vorrespond-
ing to this simplified cacse of model 1 of Section 2, we hove
the saeceinl cace of model 2, olroecdy described, 1ln waich the
initicl stnte 1o a plaone wave, e crn expect the assunption
that % = @) to be more misleading ia model 2 thon in

model 1.



i data on eluctle aad ilnelustic scuttering vere avoilablo
at the exact enerpgy requirved 1t would be bettor not to use tho
abaorbiag esphere model bHut to detecnine the (complex) phase
shifts rom the dato cad find wells walch will give these ohase
shifts, The wori of dearita (1956) for 1 BeV. suggests that the
phase shift anslysis would not give a unigue result. The use
of Schrodinger's equation with a potential N (P at such
high energies is of doubtful veluc in any cuse, 30 refinemento
in determining the well are nrobably weoted,

The condition Y ¢ can be satislfied by a variety of
potentials. Jor L= 0 we have examined the effect of using
dirferent forms of potential, Ve heve aleo looked at
aporoximate methods which would peprmit us to use a well with
8 diffuse boundury for sny » We require an enalyticel
solution of the wave equation for each € beceuse we have to
find the well by triel and error. The metheds are given by
Nemirovskii (1956)s The form of the potentiel ie taken to be

V() = Vo (@+i) (™

: ‘.(;(r’)'== | P <,

o CGERY P >0,

—> 0 o P> oo
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The internal and external solutions are fitted at © =0, .

oL'X

a—

1
Y 4

e
Z:
I

L
P

B
~——

1":("0 f’=r’. (A

The form of the externs)l nolution ie
- Q)
xe = ¥/ We (¥ Hl U‘o"q

with Ue() > 1| a@as P> oo .« Here H(?"'L u<°f’)
P
is Hankel's function of the third kind, with asymptotic form

(s ) %\5& Llae- P.»/,_\} The Schrodinger eguation leads to
this equation for wue (&)

Aup o 2“(”'/ H (xﬂ_; due No g(w)(\on)u =0 (3)

Ax? N H C’*’ L OO ax L ko

in which we write X = l,® . One of the approximate
methode is e quasi-clascical one which reguires for its
?alidity that N, < L: « hen we vse this method
however we obtain & value \<: « In the second method (3}
is solved by a succession of approximations, the first of

- which consists of setting WUe = | 4in the third term. The

paraseter deteriining the convergence of the nHrocess is

ko / o and our velve of K is so lerge that we
require a large X s ond therefore a well which 1o glmogt

aquare, oo lor gonegral e we hove simply used o sguore



wells. ‘e have compared the sguare well result with o rounded

well result for E€=0 » &80 analytic solution of ichrodinger's

eguation deing readily obtained in that casec. Yoy the
square well V¥,  end the mean redius R are the
gome,

NV = Vo (p+i) PSR
= fxg-\‘:' Ce-ﬂ) |
\l’= o ,° >R |

mhm éw"#ntaml m:.@:» e (¢X) mu X =}X,+L)(,_ ’

._x|,-,,x,z =, (l_._\(o-:.e\-)tol
' 2X|Xz = 'Y:'k:

The boundery condition (2) 1s equivalent to Se(m-) - {:{ (oxt)
oo - |

oGl = LHXRGORY
- Je (XRD

and for qe-_—. O »
1 o+ kR ' (kR
he . ( LoR)

g e (ot



o (1)

e

is the sphericol Sescel function of the first iind.

and hemﬁ\@me spherical Hanizel function correnponding
(»y
to He_:g,z (\Co‘f) . For

Qe (mb) ve have the results
{Feshbvach et.nl, (1954))

v'go = XR et (XR)

fo

C" gﬁ-‘ _
Using these results we find the values of ),

which satisfy § e (kY = g e (ent) « At incident proton
energy 1l.75 BeV. these parameters are found te be

-0

end P

Xo= ‘7% e = ‘bl
‘Q-" | Yo = .bg 6 = -l
€=2 o * T e = $25

The imeginery perts of the potentials are similar but the real

perts are very different, If we compare the velues at threshoid
(1,58 BeV,) which are |

C-:o Ao = 76 f’ = -+ 39
£-1 Yo = ‘70 e —k
£-2 Y = T8



wo cee that the variation with esergy is amall for the imoginory
part but large for the roal part.

For a rovnded vell we take the form (Scott (1054

N() = -\_‘f(f’-rl)[l— Lo fz:é }

~-13 -
where we use R =10 e, & = kg » and again write

N, = %o ko « The wave number tends to |,
as Y- <0 end 8 Y —> o0 it epproaches X = xl, =
“°J€§F for sufficiently large €& . Schrodinger's
equation is

a*X, _,_“ {'x.-t-l _"’L“‘Mk(t"—l)lc, } Y. =0

ar? °

. -13
where we have taken 10‘0:11« es unit length, Let Z=M<¢(“"’)“o s
The equation 16 equivalent to this eguation for =z “ X ,

& helng a complex constant,

U*Z)Ed F +(|+2q3(|+z)df= (e )+ Q»ﬂ»}F - o
d=® =

By setting o'+ x =0 ', we have a hypergeometric sguation.

me heg two pairs of solutions (Whittaker and Watcon (1952))

- -
Lt = =™ Fliv+l jix=i; I+2ix;-2)



<-

X

-ix coL e
it = 2 F (“LI*L y~Lw=t g l=2iwy -2)

min tead, 88 P> 0 o e (ERKO-D)  am

Aot = 2 F(ixgmtact g 203 7%)

Lo .
-t » S B .

which tend, as P> o , toosp(tilk,(-D), Using formilae
iini*:ing these two pelrs of solutions we it ;’[A«t to

{:«, - ‘{,;_\{. o llaving fommd Wy and € 1in this way
we obtain the wave function by numerical integration, using
method VU of Fox und Goodwin (1949, of the coupled
equations for QX mad TmX obtained from (4)e The values
of Ay, and @ are =113, @ =-70%.

iriting Yo (ko) 5 X (k) Ly (kor)  for the three

wave functions obtained uelny the sguere wells, we hove the

initial state wave fuactlon ia the Torm

(L Uerd =5 Lol B ot (ko) TX +30 X, (koW L) X7



it
L

< PN

in which o and X, are the singlet and triplet soin
functions, Huw conzlider the final otate, in which we use the
results of Lichienberg and Loss as discussed in Jection 2.
They have en attractive interaction between the N\ end
the proton, stronger in the 'S, state then in the 35S,
stote. We shall sec below thet we only require the 3,
state, Their potentials heove repulsive cores but they gilve an
equivalent effective range snd scattering length. lie have

siicrefore ignored the core and used the wave function

[EOUR——

l(t° kf‘
where the parcmeters are obtained in the weay described in
Part T, Section Gy Here Lk  is the relative momentum

-~

-9 - ~
wllesd " [smu<a+%>w"”sw%j (6)

of the A° and the nucleon.



4. Ihe matrix element and cross section

We confine our attention to S states of the A” b
system, and s and | states of the K meson. When we make

the spin and parity assignments of Section 2 the possible
‘transitions are | '

3P, —» 3g,¢
Bp, —> g, s
’So%-? ‘Ssp |
D, —> 35, b

e

For the transition operator W we use the form {Geffen(1935) )

2 _L '.fo‘ -‘ 'p‘
U= 2 legp e INapl 1T g
a'—'l ~ . e
Here <«  and [ ere complex parameters, This is a

generalisation of the form

Y 3 (1)

.
~

Vs

.

_— +
.:]"

W =



-

ohtrined from the theory of Section 2, which corres onds teo

wx fu@
20 py

The term with coefficlent (3 is intended to allow us o take

> (3 = 0 (2?.“

account of the nucleon recoil. The form of /’9 given in the
wors of Chew et.el. (1952) on pion production is B = V‘%?f
M‘, being the proton mass, This suggeste thet we use

B = o Pi /M. or = «/2 « To illustrate
the ‘effect of nltering (3 we give results with 3= Yy My T o
With the operntor (1} the transition 3P, 'S, s  cannot
ocours So with the final state interaction which we use onliy
the less atrengly interucting N b state is involved.
Eith n scslar meson the 'S, > !S,s transition could occur.
Writing R = 41(%~") [0 =7-0 and retoining
only the first twe temns in the expansion of ¢ i'fl‘,.":; in

pertial waves we have

~iq.R
s e P [lal@nd) g £ ()4 (DR Y (5

+3epj.(ﬂ£)§;§ (- Y ]

Here the second term gives en S meson, the first term
eontributes to the transition 'S, —> 35, b , and the last

to both the transitions giving P mes ons.



The initial state 18 ziven by (3.5) and the finel state
by eiE'g w(ke) /|<{° , where 1< 18 the momentum
of the baryon centre of mass, and wke) gg given by (3.6},
We therefore have

CFI01d = $(K+9) (R ~@e)
where |

f(zm? Xl \_l_(_“_"} o{(Q", f\.) c")a(ﬁ")*gtﬁo‘ 3\(6" )(Q;.Q; \/

100D -5 Pl T X0

t :

o ke o (@) et s "
ka S\(ﬂ).'s X( % Ck )10( )(S(ﬁ fy‘y S ﬁ;:r X‘(‘Coﬂ)]xl

Hance when we sum and average over spins and evaluate the

angular integrations we have
(2" [ 51010 = [skead) () Calpl i

B

(4)

-t-l 0(313*‘ FE?IO.‘ Pl—x(xq“-« 'dqn-{'?.? q%)



Here X 4y =2
L~

-~ o~

direction
that of the Incident proton, and the integrels T are
defined aa

are unlt veghtors with 2

T, = feeutedd (%) Lolhe)

‘ Sd.v w(ke) Py, (Ch.) Yo (ko)

-
o
il

(5)
T = (or w0 @ (aN ) P Xl

- S; w Cler) ﬁ.(‘iii)ﬁ Y (k) ~ "% X (ke ﬁ

The relative importance of the verious terms in (L can be
dllustrated by the form of the integrals (5) for e plsne wave
initiel states Then o (ko) = 2 4, (koD

and we have

I, - zgc;..;uCkw)Qﬁj}s(qJ:)’l’o (ko) = I'/‘%

(6)
e 2L [aulg ()4 (k) = -T

| - - .
Now Lk, is large ( ko= 4k'39 Xioo om. &t |75 Bev. ) so we
mey ea:pam: the result to be domineted by the °S(s final state,
if ¢ is anpreciable,.

It is convenlient o define the ‘unciion SCC‘]) by

Lot (= (&) 1® [$(¢s3>T" S (9 -



e @) fe-Ep B SW@)

d!f)dﬂ By M W)
Here \U 1is the velocity of the incident proton. In performing
the integration over Ak we treat the final state aon-relativ-
istically and use the Kinetic energies T. and T, as variables.
et T,.. denote the maximum energy available in the centre
of mass system, that is the total energy in the centre of mass
system at 1,79 BeV, less the corrcsponding quantity ai threshold.

Ton = 61,5 VeV, The energy of the meson and the ceatre of

nass of the baryons is

| &l-r Mic } T, = 2T
“l-a"‘"l\

30 we have

e Q20§ 2(m¢4.a‘§a&.‘u,§@>'u T § (1.7, ke
2 — "tk
A Tq dulyq vk Pk et Ty

M 1s the reduced mass, w = 1M\ ., When we
- Hp =M
integrate over |, we obtain the differentlal cross-section

in the form

1

3 .
de _ k0N L mmp) (PR ®)
A, vhoM
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and the total cross-ssction

kY

-9

2

=

( I (P+LR)
xroh P M e b

ﬂ:hiah; uﬂ”iﬁg' the coupling ccﬁstant gA instead of ﬁ s 18

M 3h
. %/
pe 2 gr(PegR) Mp ke (9)
[V} Cmb*ﬂh\"h

In view of our crude approximations in the initial state
we on}..v loock for approximate values of :‘;Q and e *
8o we evaluate the quantities |- and W in the following mamme:
{see Watson {1952) and Henley (1957))which is strictly
dnconsistent with the form of potential (with a repulsive corec;
on which our finel state data are based., We evaluste % Q. for
e particular ¢ = 9, « We use the value corresponding to g

= 4O MeV, From (4) S(q,) has the form

$(30) = A (g, a* @) +B (g, cor'@)q, + C(q, ) %1 (10)



LOC,

whorever din (4, we heve wa integral Lo with a factor 4 =
we write it es  q, (T /q,) » the factor <. represent-

ing the behaviour of f fq.!; yas v->c¢ , Thus (10) is replaced by

S(qo) = alg) + [%‘(qo‘) P A SEACIN q N

° (11)
Then defining \'R'Q (b}q) to be the value of the A°p wave
function at¢ © O for the value of K corresponding

to o , ena F(%) to be the ratio W (oa) /dc(e,q)
we assume that the form of the meson energy spectrum is

reasontbly well represented by

S = (atae) + [ (e ~et"Gc I § F (9D (12)

The integral over Tq is

Tw /26
[ amy ‘a"’ (T 125 5 )
0 M9
and from (M) we cbtain

P=a(g)d T +~ &QNT

R = ¢@> 7

 Tm /i
T = j‘d‘rc"f;[”('r—lzu‘r;') FOgYy--

]

ke Ta (13)






R
da b

end

2 T /L2 . W
IT- = S- Ay Tﬁ”" (To-t267) F(73)

‘AK ° —
[ T

In the graph we show the form of the energy spectrum of <
mesons (the integrend in I ) with and without the final state
interaction. In the neper of Costa and Feld (1953 this
problem ls trcoted so 1€ the distribution was much rore strongly
peaked, in fuct ce i Tq = T /l2k . Tais is
oleorly unreslistic for the final  3S,5 state, Finolly 1t
should be emphosised that our arude approximations in the final
steto could rendlly Lo improved 1f 1t were worth while, by
taiking wave functions coasistent with a repulsive core, using
relativistic kinenatice, snd evaluating < (q) for

various q to get the cnergy spectrum. Alsc as imowledge

of the A°p and Kp interactions increases further
improvement will be possible., On the other hend beccuse of the
very high energies involved the description of the initiel state |
By a potential may de inherently misleading.



He mosulbs snd discussioi.

The values of the integrals (4.5) for our square wells,

at 1.75 BeV incident proton kinetic energy snd Tiq = 40 MeV,.,

are
To=  -0q3 +i0T56 (6 om.
Is * 0-272 +10k53 0" em.
T, = -L-blk + L4142 15" cam.

. ~I%
L = 0-1994 + 1 2-06! (6 Cm.

These results confirm the predominsnce of the term involving
T, .

For the rounded well we have

-9

Ty = 0560 +{ 0:bl% (0 v

' R
There is a factor 2 between the values of I‘I3| in the two

¢ases, which indicates that the results will be sensitive to

#hafqhoice of the shape of the well. For the case of an

incident plane wave, in which (4.6) holds, we have

.

- 15
(oXN- ] ‘0 Cvm .

o
i

' -5
T, = =0474 1D om.

R ‘ ;
8o if we use the approximation of Section 3 for the proton- :

proton scattering thc two models of Sectlon 2 give very

different results, From (4.1) and (4.7), remembering that

B/ is taken to he real, = hd
have

say, we



S = ()7 ant 1Tt VTl Rt (G
+([+3w8® ) n* IT1™ +24n REGTM)

+ 203080) & R(LTH) +20-300°0) r R (T,

_For the cpmplex well the values of  S(q,) are

n= 'n 2.27% = 0423 wd ' ®
1 - . 3 ( -|?
n= /& 0650 - 010% wr*® (0
n= O 0072 |

When we integrate over Iq 4in the approximation desaribed
in ;Seétion 4 we obtain the values of P , R and ¢ 1in
the tsble, which also shows tlw results for model 2. The unito
of P aend R are(l@ﬁw om ) WeV,, end T 1is in mill ibarmx.
The value of T isobtained ueing the value 3: = .2 of !
Ceolin and Taffara (1957b). Other estimates of 3‘,’\ , for |
example those of Barshay (1958; and Matthews and Selam (1958
are also of the oxder of 3 or L.

A expleined in the introduction no direct comparison
with experiment is pomaihle at vrescnts The wori of “aumel

et,al, (1957) at 3 BeV, resulte in an estimete of G, 2 mb for
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0.25  0.971
4] 0e O78

Hodel 2 (plane wave initial state).
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023 00470
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estimnie the crogs—-section for our orocess at 3 DBeV,, we have
two difficulties. e heve to decide whet is the ratio of owr
process to the procens p+p-» KT+ Z°%p ., mhis tavolves
%: / ‘j,-: s avallable eatimates of wnich range frou

3 (Ceolin end Taffare {(1957a)) to 10 (Barshay (1958}, Also

we are above threshold for the processes

t)*k: _ N+AN + KT+
k-r{o > N+gz+K'+®
beb — b<b~ KTeKT

If we take 2mb. as an upper limit for our process at 3 BeV.,
and teke v"o(T;, a rather cuicker increase with T,; then ise
implied by our result (4.135) for $ mesons, we get o<
0e 025 mbe 8% 175 BeV,
One feature of our resulte is the presciace of & strong

S meson cantribution Tor sooreclaile volues of i? .
As mentioned in the latroduction early experimeatal work
suggaested o very anlsotrople cross-section, However Orear
{1957 gsve an estimete of ot ® for the angular dependence
of the cyaliznle experiventul dets ot thet tine, while &t the
Geneva confercnce (1958 work was  geported by stelnberger
inGicating the proeschce of an npprecliavle < meHon

contribution.
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