## 7月1858

## N. MACDOMALD

## TWO PROBLHE IN THE PRODUCTION OF MBSONS

Submitted to the University of Glasgen
1959.

All rights reserved

## INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.


ProQuest 13850390
Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

## Acknowledgments.

I wish to thank Professer J.C. Gunn for his advice and encouragement throughout this work. The problem of Part I was suggested by Professor Gunn.

I also wish to thank Dr. K.D.C. Stoodley for helpful discussions of the multiple scattering formalisme

I am indebted to the Department of Scientific and Industrial Research for a maintenance grant.

## Part I。

> The miltiple seattering correctuton te the impulse mpprozimation for the phetepreduetion of oharged mesons at deuterium.

T:





I. Introduction.

Meson scattering and photoproduction at a free nucleon.Multiple scattering.
Charged meson photoproduction at deuterium. ..... 15.17.
2. Formal multiple scattering theory in a two nucleon system. 20.
3. Multiple scattering in the one pole approximation. ..... 25.
4. Multiple scattering with a factorable transition operator.
5. Isotopic spin.40.6. The crossmsection.46.
The impulse approximation.51.
The multiple scattering correction.54.
Kinematics.54.7. Results and discussion.
The impulse approximation
The multiple scattering approximation.

Appendix A. Integrals used in the impulse approximation
Appendix B. Formulae required for the matrix element when multiple scattering is included.

## References.

 of the meson with the melecns in two photoproduction of a charged $\pi$ meson at denteriun. This is considered as multiple scattering of the meson at alternate nucleons. Earlier work on this problem, and on the multiple scattering correction to the impulse approximation in similar problens, is roviewed. To avoid having to use the meson-meleon scattering transtition operator of the caergy shell on approximation, teicen from the eurlier work, is used. The meaning of this apporimation is discussed. In the case of a particular model of neson-nucleon scattering, besed on a factorable potential, an estimate is made of the accuracy of this approximation. In obteining the crossmsection the Interaction of the auclons is included then they are in a final state with $\ell=0$. Results are prescated illustratine the behaviour of the meson energ spectrun at a particular angle and photon chorey. This has a broad peak around the energy of the meson produced at the save ancle fron a free nucleon, and a narrov peot noar the mavimun meson oneray, caused by the rinal state interaction of the nucleons, and important only at forvard angles. The nultiple scatterine correction is $-4 \%$ to $-8 \%$ on the free nucleon pealt, risiat to about $-20 \%$ on the interaction peak at forward ancles. Tho conclusion is reached that with the present experimental accuracy the mitiple scattering correction will not in generai arfect the interpretation of the oxperimontal results usine the impulse anroximation.

The study on a meson photoproduction and scattering at deuteron is of interest ran two reasons. It may de a means of obtaining information about the sane processes at free neutrons, which are not directly observable. On the other hand, if we consider that meson theory gives an adequate description of the free nucleon case we can attempt to find how the complex nature of the two nucleon system influences the processes. The work presented here approaches the problem of the photoproduction or charged $\pi$ mesons from the second point of view. This section contains a summary of the relevant work on free nucleon processes and a review of earlier theoretical work on this particular problem and the related problems of $\pi$ meson scattering at deuterium, and the elastic photoproduction of neutral $\pi$ mesons at deuterium and helium. There is also a discussion of the experimental work on the processes,

$$
\begin{aligned}
& \gamma+D \rightarrow \pi^{+}+n+n \\
& \gamma+D \longrightarrow \pi^{-}+p+p
\end{aligned}
$$

Meson scattering and photonroduction at a free nucleon
We consider this within the framework of theories which treat the nucleon as a static source distribution of a finite size. This is characterised by a source density $\rho(r)$ and the corresponding momentum cutoff function.

$$
v(q)=\int e^{i g \cdot r} e(r) d r
$$

The interaction part of the Hamiltonian of the system of a meson and a nucleon is (see Wick (1955)).

$$
h=\sum_{q \lambda}\left(a_{q}^{\lambda} V_{q}^{\lambda}+a_{q}^{\lambda+} V_{q}^{\lambda+}\right)
$$

with

$$
\begin{equation*}
V_{q}^{\lambda}=\sqrt{\frac{4 \pi}{2 m(q)}} \frac{f}{\mu} \tau_{\lambda} i \underset{\sim}{\sigma} \cdot q v(q) \tag{1}
\end{equation*}
$$

In this result $a_{q}^{\lambda}$ destroys, $a_{q}^{\lambda t}$ creates a meson of momentum 9 , energy $\omega(q)$, in an isotopic spin state specified by $\lambda$. $f$ is the coupling constant, $\mu$ the meson mass and $\underset{\sim}{\sigma}$. $\underset{\sim}{\tau}$ the spin and isotopic spin operators of the nucleon.

A simple form of the static nucleon theory is that of Chew (1954). He discusses meson-nucleon scattering, making use of a variational principle of Schwinger. We describe this theory in some detail, in order to introduce various concepts and results which we shall require later. In particular we shall require stationary state scattering theory in both parts of this thesis, while in Section 4 of this part we shall examine a theory similar to that of $n$ new.

Let $H_{0}$ be the Hamiltonian of the free meson field and $E$ the total energy. Then the total Hamiltonian $H$ is $H_{0}^{+h}$. In the stationary state scattering theory, as given for example In Lippmann, schwinger (1950), we make use of eigenfunction $\Psi_{a}^{( \pm)}(E), \Psi_{a}^{(1)}(E)$ of $H$. They each satisfy the equation

$$
\left(H_{0}+h\right) \Psi_{a}(E)=E \Psi_{a}(E)
$$

but with different boundary conditions, having scattered parts which are respectively outgoing, incoming and standing waves. These boundary conditions are expressed by writing

$$
\Psi_{a}(E)=2 \pi \hbar \delta\left(E-E_{a}\right) \Psi_{a}
$$

where

$$
\begin{equation*}
\Psi_{a}^{( \pm)}=\Phi_{a}+\frac{1}{E_{a} \pm i \varepsilon-H_{0}} h \Psi_{a}^{( \pm)} \tag{3}
\end{equation*}
$$

and

$$
\Psi_{a}^{(1)}=\Phi_{a}+P \frac{1}{E_{a}-H_{0}} h \Psi_{a}^{(1)}
$$

where $\Phi_{a} 1$ an eigenstate of $H_{0}$ with energy $E_{a}$. The denominator $E_{a} \pm i \varepsilon-H_{0}$ is defined by the formal result

$$
\frac{1}{x \pm i \varepsilon}=\mp \pi i \delta(x)+p \frac{1}{x}
$$

Which is to be understood in the sense that

$$
\int d x \frac{f(x)}{x \pm i \varepsilon}=\mp \pi i f(0)+P \int d x \frac{f(x)}{x}
$$

the integral on the right being the principal value. We shall denote $E_{a}+i \varepsilon-H_{0}$ by $a$. The transition operator $t$ and the reactance operator $K$ are defined by

$$
\begin{align*}
& \Psi_{a}^{(+)}=\Phi_{a}+\frac{1}{a} t \Phi_{a} \\
& \Psi_{a}^{(1)}=\Phi_{a}+P \frac{1}{E_{a}-H_{0}} K \Phi_{a} \tag{4}
\end{align*}
$$

and the matrix elements of these operators between states $\Phi_{a}$ and $\Phi p$ are, from (3),

$$
\begin{align*}
t_{b a} & =\left(\Phi_{b}, h \Psi_{a}^{(+)}\right) \\
& =\left(\Psi_{b}^{(-)}, h \Phi_{a}\right) \tag{5}
\end{align*}
$$

and $K_{b_{a}}=\left(\Phi_{b}, h \Psi_{a}^{(1)}\right)$
probability per unit time $W_{\mathrm{fa}_{a}}$, for transition from the tate Ia to the (different) state Ib, is given by

$$
\begin{equation*}
\omega_{p a}=\frac{2 \pi}{\hbar} \delta\left(E_{a}-E_{e}\right)\left|t_{b_{a}}\right|^{2} \tag{6}
\end{equation*}
$$

From (3) we can write

$$
\Psi_{a}^{(+)}=\left(1+\frac{1}{a-h} h\right) \Phi_{a}
$$

30 that we have

$$
\begin{equation*}
t=h+h \frac{1}{a-h} h \tag{7}
\end{equation*}
$$

which can be written

$$
t=\left[V+V \frac{1}{a-V} V\right]+\left[h+V \frac{1}{a-V} h\right]=t_{s}+t_{a} \text { say }
$$

$V$ being defined as $h \frac{1}{a} h$. The matrix element tea between states with one meson present is effectively $\left(t_{s}\right) \mathrm{Ga}_{a}$, because $t_{a}$ must create or absorb an odd number of mesons, We denote these states by $(\underline{q}) \cdot t_{s}$ satisfies the integral equation

$$
\begin{equation*}
t_{s}=V+V \frac{1}{a} t_{s} \tag{8}
\end{equation*}
$$

In which $V$ acts as a potential. There is a corresponding quantity $K_{s}$ satisfying a similar equation with $\frac{1}{a}$ replaced by its principal part. The variational principle
(Chew (1954a)) states that the solution of (8) on the energy

$$
\begin{equation*}
\left(t_{s}\right)_{f_{a}}=\frac{\left(\psi_{f}^{-}, \vee \Phi_{a}\right)\left(\Phi_{f}, \vee \psi_{a}^{(+)}\right)}{\left(\psi_{f}^{(-)}, \vee \psi_{a}^{(+)}\right)-\left(\psi_{f}^{(-)} \vee \frac{1}{a} \vee \psi_{a}^{(+)}\right)} \tag{9}
\end{equation*}
$$

this being stationary for variations of $\psi_{f}^{(-)}, \psi_{a}^{(+)}$ about the correct solutions $\Psi_{b}^{(-)}, \Psi_{a}^{(+)}$of (3). Chew about the correct solutions $\Psi_{b}^{(-)}, \Psi_{a}^{(+)}$of (3). Chew uses the simple trial wave functions $\Phi_{a}$, $\Phi_{e}$ so that

$$
\begin{equation*}
\left(t_{s}\right)_{G_{a}} \doteq \frac{\left(\Phi_{b}, \vee \Phi_{a}\right)^{2}}{\left(\Phi_{b}, \vee \Phi_{a}\right)-\left(\Phi_{b}, \vee \frac{1}{a} \vee \Phi_{a}\right)} \tag{10}
\end{equation*}
$$

The equation (8) can be separated into equations for particular spin and isotopic spin eigenstates. The important one is that for $\operatorname{spin} 3 / 2$ and isotopic $\operatorname{spin} 3 / 2$. We have

$$
\begin{align*}
& \left(q_{2}\left|t_{5}^{33}\right| q_{2}\right)=\left(q_{1} \cdot q_{2}-\frac{1}{3} \stackrel{\sigma \cdot q_{1}}{\sim \cdot q_{2}}\right) \frac{2+\tau \cdot l}{3} f_{33}\left(q_{1}, q_{2}\right)  \tag{11}\\
& \left(\underset{\sim}{q_{1}}\left|K_{5}^{33}\right| q_{2}\right)=\left(q_{1} \cdot q_{2}-\frac{1}{3} r \cdot q_{1}, \sigma_{-}\right) \frac{2+\frac{\tau}{3} \cdot l}{3} k_{33}\left(q_{1}, q_{2}\right)
\end{align*}
$$

the first two factors being projection operators. The phase shift $\delta_{33}\left(q_{E}\right)$ for scattering in this eigenatate is related to $t_{S}^{33}$ and $K_{S}^{33}$ by

$$
\begin{align*}
& \tan \delta_{33}\left(q_{E}\right)=\frac{-\omega\left(q_{E}\right) q_{E}^{3}}{2 \pi} k_{33}\left(q_{E}, q_{E}\right)  \tag{12}\\
& e^{\left(\delta_{33}\left(q_{E}\right)\right.} \sin \delta_{33}\left(q_{E}\right)=-\frac{\omega\left(q_{E}\right) q_{E}^{3}}{2 \pi} G_{33}\left(q_{E}, q_{E}\right)
\end{align*}
$$

Here $q_{E}$ is the value of the meson momentum $q$ on the energy shell. The integral equation for $\theta_{33}\left(q_{1}, q_{2}\right)$ is

$$
\begin{equation*}
f_{33}\left(q_{1,} q_{2}\right)=V_{33}\left(q_{1}, q_{2}\right)+\frac{1}{2 \pi^{2}} \int_{0}^{\infty} d q q^{4} \frac{V_{33}\left(q_{1, q}\right) b_{33}\left(q, q_{2}\right)}{\omega\left(q_{1}\right)-w(q)+i \varepsilon} \tag{13}
\end{equation*}
$$

and there is a corresponding equation for

$$
\begin{equation*}
k_{33}\left(q_{1}, q_{2}\right)=V_{33}\left(q_{1,92}\right)+\frac{1}{2 \pi^{2}} p \int_{0}^{\infty} d q q^{4} \frac{V_{33}\left(q_{1}, q\right) k_{33}\left(q_{1} q_{2}\right)}{\omega\left(q_{E}\right)-w(q)} \tag{14}
\end{equation*}
$$

the potential $V_{33}\left(q_{1}, q_{2}\right)$ corresponds to the graph

and for our form of $h$ it is

$$
\begin{equation*}
V_{33}\left(q_{1}, q_{2}\right)=\frac{8 \pi f^{2}}{3 \mu^{2}} \frac{v\left(q_{1}\right) v\left(q_{2}\right)}{\left\{w\left(q_{1}\right) w\left(q_{2}\right)\right\}^{1 / 2}} \frac{1}{w\left(q_{E}\right)-w\left(q_{1}\right)-w\left(q_{2}\right)} \tag{15}
\end{equation*}
$$ using the variational principle in (14) we have the following

result for $\quad \tan \delta_{33}\left(q_{E}\right)$,

$$
\begin{equation*}
\tan \delta_{33}\left(q_{E}\right)=\frac{\frac{2}{3} \frac{f^{2}}{\mu^{2}} \frac{q E^{3}}{\omega\left(q_{E}\right)}}{1-\frac{4}{3 \pi} \frac{f^{2}}{\mu^{2}} p \int_{0}^{q_{\max }} \frac{d q q^{4} \omega\left(q_{E}\right)}{\omega^{3}(q)\left[\omega\left(q_{E}\right)-\omega(q)\right]}} \tag{16}
\end{equation*}
$$

where we have set $v(q)=1, q \leqslant q_{\text {max }},=0, q>q_{\text {max }}$. The form of (16) shows that there is a resonance. By choosing suitable values of $f$ and $q_{\max }$ Chew was able to obtain the width and position of the resonance in agreement with experiment

For the purposes of our multiple scattering work we have made use of the results of a more recent development of static nucleon theory, that of Chew and Low (1956a). They find it possible to use an effective rance result for $\delta_{33}\left(q_{E}\right)$ and can select the cut-off and coupling constant to obtain agreement with experiment. Their result is

$$
\begin{equation*}
q_{E}^{3} \cot \delta_{33}\left(q_{E}\right)=\omega^{*}\left(A-B \omega^{*}\right) \tag{17}
\end{equation*}
$$

where $\omega^{*}$ is the sum of the meson energy $\omega\left(q_{E}\right)$ and the nucleon kinetic energy in the centre of mass system, which is added to make sone allowance for nucleon recoil, which is, of course, ignored in the static nucleon theory. We have used natural units ( $\mu=\hbar=c=1$ ). The values of $A$ and $B$ In these units are $A=8.05, \quad B=3.80$ (Drear (1956)).

Chew and Low (1956b) apply their theory to pion photoproduction. They find that the main contributions to the photoproduction amplitude at a free nucleon $T$, and also those most ilkely to remain unchanged in an improved theory, are
$\frac{-i e f}{\{1+\omega(q) \sim\}^{1 / 2}} \frac{\left(\tau_{3} \tau_{q}-\tau_{q} \tau_{3}\right)}{2}\left[\underset{\sim}{\sigma} \varepsilon-\frac{2 \sigma(q-\nu) q \cdot \varepsilon}{(q-\nu)^{2}+\mu^{2}}\right]$
and

$$
\begin{equation*}
\left.\frac{e f}{\{4 \omega(q) v}\right\}^{\frac{1}{2}} \frac{g_{p}-g_{n}}{4 M f^{2}} \frac{2+\tau \cdot l_{\sim}}{3}[2 \underset{\sim}{v} \cdot \underline{\sim} \times \varepsilon+i \underset{\sim}{\sigma} \underset{\sim}{v} \times \underset{\sim}{x} \times \underset{\sim}{q}] \frac{e^{i S_{33}\left(q_{E}\right)} \sin S_{33}\left(q_{E}\right)}{q_{E}^{3}} \tag{19}
\end{equation*}
$$

Here $\underset{\sim}{\nu}, \underset{\sim}{\varepsilon}$ are the photon momentum and polarisation and $g_{p}$ $g_{n}$ are the magnetic moments of the proton and neutron in units of the nuclear magneton. $\tau, \underset{\sim}{f}$ are the isotopic spin operators for a nucleon and a meson respectively. It is understood that $q=q_{E}$, and we have again set $\hbar=c=\mu=1$. The Isotopic spin operator in (18) projects out states with a neutral meson, while that in (19) projects out the $t=\frac{1}{2}$ state of the meson and nucleon. $f$ is the renomalised coupling constant.

The expression (13), which is the same in first order perturbation theory, contains an electric dipole term and a meson current term. (19) is a magnetic dipole term giving a final state with spin $3 / 2$ and is topic spin $3 / 2$, and enhanced by the resonant scattering in that state. We shall use the electric dipole and magnetic dipole terms only. In the notation of (5.12) and (5.14) where we use operators $\beta$ and $\delta$, containing meson creation operators explicitly, to give the isotopic spin dependence of $T$, the electric dipole term is

$$
\begin{equation*}
\alpha=\beta A=\beta \underset{\sim}{\sigma} \underset{\sim}{\Sigma} E_{d} \tag{20}
\end{equation*}
$$

where

$$
E_{d l}=\frac{-i e f}{\{2 \omega(9) v\}^{1 / 2}}
$$

end the regretic anole tore is

$$
\begin{equation*}
\left.\left.\underset{\sim}{\gamma} \underset{\sim}{q}=\delta C_{v} q=\delta 1_{d} \frac{3}{2}\right\} \times \underset{\sim}{q} \times \underset{\sim}{q}+i \sigma \times \varepsilon \times \underline{\sim}\right\} \frac{1}{v q_{E}} \tag{21}
\end{equation*}
$$

with $M_{d}=\frac{e f v}{\{\omega(q) \nu\}^{\frac{1}{2}}} \frac{g_{b}-g_{n}}{12 M f^{2}} \frac{e^{i \delta_{33}\left(q_{k}\right)} \sin \delta_{33}\left(q_{E}\right)}{q_{E}^{2}}$
Instead of starting from meson theory and deducing a form for $T$ one can use a general form (see for example Gell-iann (1954) ) containing parameters which can be adjusted to fit the observed angular distributions of photoproduced pions. For a particular isotopic spin state $\alpha$ the form of $T$ is

$$
\begin{align*}
T(\alpha) & =\underset{\sim}{\alpha} \cdot E_{d}(d)+M_{d}\left(\frac{1}{2}, \alpha\right)\left\{\underset{\sim}{v} \cdot \underline{q} \times \varepsilon-i \underset{\sim}{\sigma} \cdot v \times \varepsilon_{\sim} \times \underset{\sim}{q}\right\} \frac{1}{v q_{E}} \\
& +M_{\alpha}\left(\frac{\xi}{2}, \alpha\right)\{2 \underset{\sim}{v} \cdot \underline{q} \times \varepsilon+i \underset{\sim}{\sigma} \cdot \underset{\sim}{v} \times \varepsilon \times \underset{\sim}{q}\} \frac{1}{\nu q_{E}}  \tag{22}\\
& +E_{q}(\alpha)\{\underset{\sim}{\sigma} \cdot v \underset{\sim}{q} \cdot \varepsilon+\underset{\sim}{\sigma} \underset{\sim}{q} \cdot \underset{\sim}{v}\} \frac{1}{2 v q_{E}}
\end{align*}
$$

which contains electric dipole and quadrupole terms, and magnetic dipole terms giving states with total spin $\frac{1}{2}$ and $3 / 2$. To some extent the experiments with deuterium can also be analysed In terms of this form of $T$. It has recently been pointed out, by Moravscik (1957), that. with the accuracy now possible in free nucleon experiments analysis in terms of (22) is inadequate. This is essentially because of the second term in (13), which contains contributions from higher multipole transitions. Our neglect of this term is reasonable because we are mainly concerned with the interaction of the meson and the final state nucleons, and are not attempting to obtain information about $T$ for a free nucleon.

The simplest aproach to the problems of meson photoproduction and scattering in light nuciei is to use the impulse approximation. This was introduced by Chew (1950) in discussing the inelastic scattering of neutrons by deuterons. The validity of the approximation is discussed by Chew and Wick (1952) and by Chew and Goldberger (1952). The transition operator for the process is taken to be the sum of the operators for the corresponding process at each nucleon, as if it were free, and the matrix element is evaluated between appropriate initial and final states. The effect of nuciear binding is ignored except in so far as it determines the weve functions for these states. Also no attempt is mede to deal with processes involving the interaction of a meson with more than one nucleon. In the second and third of the papers quoted above the first order correction to the impulse approxination for the scattering of
$\pi$ mesons by deuterium is expressed as two separate terms, one depending on the proton-neutron potential, the other having the form of a double scattering of the meson, first at one nucleon and then at the other, both nucleons taken as free. The corresponding terms are essily writton down in the case of photoproduction. Strictly spearing the term "impulse approximation" refers to the neglect of nuclear binding whether or not the meson-nucleus interaction is included in full. (See for example the discussion after equation 21 of Chew and Goldberger). However, it is convenient and convential to use the term in the sense employed here, and we shall contime to do so.

Various papers havo mpearon min troet the interaction of the meson and the malous in toms of mutiple scattering at
alternate mucleons. be shall consider first the problem, treated by Brueckner (1953a) and by Drell and Verlet (1955) of $A$ wave scattering by two heavy point sources. In this the general form of the multiple scattering correction is clearly displayed. Let the initial and final momenta be $q_{0}, q^{\text {, where }} q_{0}=q=q_{E}$, and let the sources be situated at ${\underset{\sim}{r}}^{r_{1}}, r_{2}$, with $R=\left|N_{j}-r_{2}\right|$. Then if the phase shift $\delta\left(q_{E}\right)$ refers to scattering at one source we can obtain the anplitude of the scattered wave in the form

$$
\begin{aligned}
f(\theta)= & \left\{e^{i \delta\left(q_{E}\right)} \sin \delta\left(q_{E}\right)\left[e^{i\left(q_{\sim}-q_{\sim}\right) \cdot r_{1}}+e^{i\left(q_{0}-q_{1}\right) \cdot r_{2}}\right]\right. \\
& \left.+\sin ^{2} \delta W\left[e^{i\left(q_{0} \cdot r_{1}-q_{\sim} \cdot r_{\sim}\right)}+e^{i\left(q_{\sim} \cdot r_{2}-q_{\sim} \cdot r_{1}\right)}\right]\right\}\left\{1-\sin ^{2} \delta W^{2}\right\}^{-1}
\end{aligned}
$$

The impulse approximation is

$$
f(\theta)=e^{i \delta\left(q_{E}\right)} \sin \delta\left(q_{E}\right)\left[e^{i\left(q_{0}-q\right) \cdot r_{1}} \sim e^{i\left(q_{0}-q_{1}\right) \cdot r_{2}}\right]
$$

and the correction consists of terms giving for example the effect of scattering first at $\underset{\sim}{r}$ and finally at $\underset{\sim}{r_{2}}$ after the wave has travelled $\eta$ times between ${\underset{\sim}{r}}_{\sim}^{r}$ and $\underset{\sim}{r_{2}}$. The form of $W$ depends on the form of the scattering transition operator at one nucleon. Drell and Verlet work with three different assumptions about scattering at one source. One, also used by Brueckner, is the approximation we shall use below under the name of the "one pole" approximation. This gives $W=e^{i / q R} / R$. The second assumes that scattering takes place only on the energy shell, and gives $W=i \sin 9 E R / R$. We shall discuss these two cases in Section 3 then dealing with our ow problem. The
third case is that of a potential when is ractorable in configuration space. That is, in the equation for scattering at one source,

$$
\left(\nabla^{2}+q^{2}\right) \psi\left(\sim_{\sim}\right)=\lambda \int U\left(\underset{\sim}{p},{\underset{\sim}{n}}^{\prime}\right) \psi\left(\sim_{\sim}^{\prime}\right) d{\underset{\sim}{~}}^{\prime}
$$

they take $U(\underset{\sim}{r}, \underset{\sim}{p})=U(\underset{\sim}{\sim}) U(\underset{\sim}{\sim})$ so that the equation is replaced by the inhomogeneous one,

$$
\left(\nabla^{2}+q^{2}\right) \psi(\underset{\sim}{r})=\lambda u(\underset{\sim}{r}) \bar{\psi}
$$

Where

$$
\bar{\psi}=\int u\left(p_{\sim}^{\prime}\right) \phi\left({\underset{\sim}{n}}^{\prime}\right) d{\underset{\sim}{~}}^{\prime}
$$

This gives
which reduces to $e^{i q E^{R} / R}$ where the potentials $u_{1}(\underset{\sim}{r})$, $u_{2}(\underset{\sim}{N})$ do not overlap.
The results given by Drell and Verlet, for the particular case $q_{E}=2.2 \mu, S=45^{\circ}$, backward scattering and source radius $1 / 2 \mu$ in the third model, are that the ratio of the cross-sections with and wi thou multiple scattering is about $\frac{1}{4}$, $\frac{1}{2}, \frac{1}{3}$, taking the cases in the order given above. When double scattering alone is considered the ratio is about $\frac{1}{2}, \frac{1}{2}, \frac{1}{3}$ in the three cases. In obtaining these results they use a deuterium wave function for the sources. Their results suggest that in a more realistic problem the form of the scattering amplitude off the energy shell will be important, and that double scattering will give a considerable part of the multiple scattering correction.
 by deuterium, assutis $p$ rave scattering ot each nucleon ane ignoring spin flip. He finds a considerable reduction from the impulse approximation result. His work has been extended by Rockmore (1957) to the case of a scattering transition operator which is a function of nucleon spin. Where the results of these authors can be compered the correction is smaller in kockrore's calculation. Rockore finds that double scattering is important. Using the Born approximation for scattering at a free nucleon he estimates that for the elastic differential cross-section at meson energy 85 MeV . the contributions included and ignored in the one pole approximation are comparable.

An alternative approach to the problem of elastic meson scattering at deuterium is that of Branden and Moorhouse (1958). They set up the meson-douteron scattering equation, with the assumption that scattering at individual nucleons is in the
$(3 / 2,3 / 2)$ state only, and solve it using the variational principle used by Chew (1954). The equation is
$\left\{E-\omega(q)+\frac{1}{2 M} \nabla_{1}^{2}+\frac{1}{2 M} \nabla_{2}^{2}-V(R)\right\} \Psi\left(r_{\sim}, p_{2} ; i, \underset{\sim}{q}\right)$
$=\int \frac{d g^{\prime}}{(2 \pi)^{3}} H\left(\underset{\sim}{r}, r_{2}^{\prime}, r_{2} ; i, \underset{\sim}{q} ; j, \underline{q}^{\prime}\right) \Psi\left(r_{\sim}^{\prime}, r_{2} ; j, \underset{\sim}{q}\right)$
Here $i$ and $j$ are spin indices and $V(R)$ ia the deuteron potential.

$$
H=K_{33}\left(\underset{\sim}{\sim} ; i, q ; j, q^{\prime}\right)+K_{33}\left(\underset{\sim}{r_{2}} ; i, q ; j, q^{\prime}\right)
$$

$K_{33}$ being essentially our quantity $V_{33}$ of (15). (23) is of
the same rom as (2) an so we hove

$$
t_{f_{a}}=\frac{\left(\Phi_{b}, H \Phi_{a}\right)^{2}}{\left(\Phi_{\rho}, H \Phi_{a}\right)-\left(\Phi_{e,} H \frac{1}{a} H \Phi_{a}\right)}
$$

$\Phi_{a}, \Phi_{b}$ being the product of the deuteron wave function and a plane wave meson wave function. The second term in the denominator includes multiple scattering. These authors find that the multiple scattering correction is less than $5 \%$ of the impulse approximation cross-section, and they obtain agreement with experAment at meson energies 35 MeV . and 140 MeV . They attribute the disagreement between their results and those of Rockmore to his use of the one pole approximation.

Chappelear (1955) has considered the elastic photoproduction of neutral pions at deuterium. He finds that for photon energy 285 MeV . the cross-section is reduced, at all angles, by $40 \%$ to $50 \%$. His results are in agreement with the experiments of Rosengren and Baron (1956). We present in Sections 2 and 3 a modified form of Chappelear's method. Stoodley (1957) has extended the treatment of multiple scattering to the case of photoproduction at a system of more than two nucleons. His result for the matrix element reduces to that of Chappelear for deuterium. Stoodley calculates the correction to the elastic differential cross-section at $90 \%$, for the production of neutral mesons at helium. Like Chappelear, he ignores spin flip scattering, and takes $p$ wave scattering only. He also ignores charge exchange scattering, uses a special simple wave function, and excludes for simplicity certain sequences of multiple scattering. The correction is very large, and the
experimenta posuts on whang et. aj. (205) ine betweon the Hapuise appoxination ma comeoted resuts. It is on some interest to have tio mutiphe scattering correction for an inelastic process, for comparison with the work on elastic scattering, and elastic $\pi^{\circ}$ photoproduction. Watson (1954) gives without details an estimate of $10 \%$ for the correction in the case we examine.

As we go to systens with a higher number of nucleons $A$, multiple scattering theory gives a set of $A$ coupled integral equations. (Watson (1953)). Rather than attempt to solve these equations the method adopted is to transform the multiple scattering problem into that of scattering by a refractive mediun. Some work has been done (Butler (1952), Laing and Moorhouse (1957) ) on the photoproduction of mesons at complex nuclei, using such an optical model for the mesonmucleus interaction.

## Chareed meson photoproduction at deuterium.

We now turn to the impulse approximation calculations for the processes

$$
\begin{aligned}
& \gamma+D \rightarrow \pi^{-}+p+p \\
& \gamma \rightarrow D \rightarrow \pi^{+}+n+n
\end{aligned}
$$

Probably the most important aspect of these processes is the ratio of $\pi^{-}$to $\pi^{+}$production near threshold, because of its connection with theswave meson-nucleon scattering and the Panofsky ratio. (See for example Bethe and de lloffmann (1955), section 33, and Cassels (1957)). Ilowever our work is not
 well above treshola ve opect whate scattoring to be unimportant near threshold because all the scattering phase shists are small at low meson energies. So we shall not discuss further the papers in which the emphasis lies on the inclusion of the Coulomb interaction in the process

$$
\gamma+D>\pi>p<p
$$

and which give results near threshold. (The most recent of these are the papers of Penner (1957) and Baldin (1953)).

There are several papers dealing with higher energies. In these the treatment of the final state is simpler. The Covlomb Interaction of the meson with the protons is ignored, while that of the two protons is either ignored or taken into account roughly by using the Coulomb factor $\frac{2 \pi e^{2} M / k}{e^{2 \pi e^{2} M / k}-1}$, which is an approximation for the ratio of the 2 proton wave function to the 2 neutron wave function at $R=0$. liere $M$ is the nucleon mass and $k$ the relative momentun of the nucieons. Chew and Lewls (1952) use closure in sumang over all fincl states, ignorine te fact that encrey conservation restricts the available states, and overestimating the cross-section. Plane wave final states are used by Lax and Feshbach (1952) and by Gaito et. al. (1952). This as we shall see can creaty underestimate the cross-section when $k$ is small. Saito et.al. also presents result for a distorted $S$ wave final state, as do Machida and Tamura (1951). We use a plane wave with the partial wave replaced by a distort wave of the type used by these authors. (Compare Francis (1953) who deels vith
inelastie ( $T^{\circ}$ produchon). moept at romad anlos, as we shall see belon, the acousacy whempon the final state is described is less importunt in this encrgy raage than near threshold, because we deal in feneral with larger values of Hagermann et. 21. (1957), in the experinental work mentioned below, state that details of the final state interaction affect the interpretation of their results, and mention work by Tiemann using good wave functions. Comparison with experiment.

In the papers of Saito et. al. and Machida and Tanura no absolute cross-sections are given. In the other two papers the starting point is the form $T_{i}=\underset{\sim}{K} \sigma_{i}+L \quad$ for the photoproduction transition operator at nucleon $i$ and the aim is to obtain by comparison with experinent the ratio $|\underset{\sim}{k}|^{2} /|L|^{2}$ averaged over ${\underset{\sim}{c}}_{\varepsilon}^{\sim}$. In the experimental work the convenient quantity to measure is the ratio of the cross-sections for positive pions, at a particular angle and energy, from deuterium and hydrogen. Because a ratio is measured the absolute accuracy of the experiments is not important. Priving as a typical case the work of Hagermenn et. al. (1957) the crosssections measured were for pions of around 75 MeV . kinetic energy, the energy spread beinc 15 heV. , from carbon, ethylene and deuterated ethylene, the last two being corrected for the pions produced from carbon. 350 MeV . bremsstrahlung radiation was used.

In comparing the experinental results with the predictions of the impulse approximation the following difficulty arises.
 enersy, and meson arde tu the hentomiw case. Also tre have, not a monochromatic photon beam, but a bremsstrahiung spectrum. The impulse approximation calculation leads to an expression for the ratio

$$
\left\{\frac{\left.d^{2} \sigma(\Omega)_{q} \omega(q), \nu\right\rangle}{d \omega(q) d \Omega q}\right\}_{D} /\left\{\frac{\left.d^{2} \sigma(\Omega)_{q} \nu\right)}{d \Omega \Omega_{q}}\right\}_{H}
$$

for a particular photon momentum $\nu$ and meson angle $\Theta q$, which determine the value of $\omega(q)$ in the hydrogen case. In the paper of White et. al. (1952) two rethods are sucgested for comparing this ratio with the experinental results. One is to assume that the energy spectrum of nesons from deuteriun is very narrow, and is centred on the line spectrum of mesons from hydrogen. Then only photons of one chers will contributo to the mesons detected at a pariticular angle and with a particular energy. As these authors point out, and as we shali see in Section 7, the assumption of a narrow energy spectrum is unsound.

The alternative nethod, which is generally adopted, for example in the papers quoted above and in that of Lebow et. al. (1952), is to integrate $\left\{\frac{d^{2} \sigma\left(\omega_{q}, \omega(q), \nu\right)}{d \omega(q) d \Omega q}\right\}_{D}$ over the bromsstrahlung spectrum, keeping $\omega(q)$ fixed. This gives the upper term of the ratio which is in fact observed. It is assumed in these papers that $|\underset{\sim}{K}|^{2} /|L|^{2}$ is not strongly dependent on $r$. The graph $I$ shows the results of Hagerman et. al. to indicate the accuracy of this kind of


$$
X=\frac{d^{2} \sigma(D)}{d \omega(q) d \Omega q} \div \frac{d^{2} \sigma(H)}{d \omega(q) d \Omega q}
$$

work. The theorothed rabes they wse aro calculated fron the remutu of Cov wh Lovis. mor consider thoir mesults consistent with the fora of is $L$ derived fron (22). We can see from (22) that $L$ must have the form $A \underset{\sim}{\sim} . \underset{\sim}{q} \times \underset{\sim}{\varepsilon}$ where $A$ is a scalar, and so $\mid L^{2} \rightarrow 0$ as the angle between $\underset{\sim}{\nu}$ and 9 decreases, a result which is consistent with the graph I.

In the case of negative mesons a method which has been adopted (Bandtel ot. al. (1958)), involves the measurement of the energy and the direction of one of the two recoiling proton: as well as the meson. This has the advantage that the photon energy can be fixed. Also they can distinguish between the cases of low and high energy of relative notion of the nucleons, It is the case of low relative momentum of the nucleons which we shall find most interesting. We discuss in Section 7 the pessibility of detecting the effect of multiple scattering in these two types of experiment.

The method we use were is dated rom tho methods used by Chappelear and Stoodley. We shall point out how it alters from these methods and why we do not make use of one or the other of them in its original form. We make use of tineIndependent scattering theory, as outlined in Section 1 , to obtain the transition operator for processes which can occur in a system of two nucleons interacting with a meson field and the radiation field. The Hamiltonian of the system is

$$
\begin{equation*}
F I=H_{0}+\oiint \tag{1}
\end{equation*}
$$

where $\quad H=h+H=h_{1}+h_{2}+H_{1}+H_{2}$
$h_{i}$ is the interaction term between nucleon $i$ and the meson field. $H_{i}$ is the term arising from the interaction of the radiation field with the meson and nucleon currents at nucleon $i$ $H_{0}$ is the sum of the free field Hamiltonians. With $a=$
$E-H_{0}+i \varepsilon$ as before the transition operators $T_{i}$ for production of a meson by a photon incident on nucleon $i, t_{i}$ for the interaction of the meson field with nucleon $i$ and $T$ for processes involving the whole system, are given by

$$
\begin{align*}
& T_{i}=h_{i}+H_{i}+\left(h_{i}+H_{i}\right) \frac{1}{a-h_{i}-H_{i}}\left(h_{i}+H_{i}\right)  \tag{3}\\
& t_{i}=h_{i}+h_{i} \frac{1}{a-h_{i}} h_{i}  \tag{4}\\
& T=1 q+1 d \frac{1}{a-1 q} \nRightarrow \tag{5}
\end{align*}
$$

For states with one meson present we use the approximation

$$
\begin{equation*}
\left({\underset{\sim}{q}}\left|\frac{1}{a}\right|{\underset{\sim}{q}}_{2}\right)=(2 \pi)^{3} \delta\left({\underset{\sim}{q}}^{\sim}-\underline{q}_{2}\right) \frac{1}{a\left(q_{2}\right)} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
a(q)=\omega(q E)-\omega(q)+i \varepsilon \tag{7}
\end{equation*}
$$

This mons that we moplect the melon thetic emory, an that (3) and (4) regor to processes at a free nucleon. As in Section 1 we have effectively

$$
\begin{equation*}
t_{i}=t_{s i}=a \frac{1}{a-v_{i}} v_{i} \tag{8}
\end{equation*}
$$

with $V_{i}=h_{i} \frac{1}{a} h_{i}$.
We treat $H$ as a small perturbation, and write (5) to first order in $H$ as

$$
\begin{equation*}
T \doteq a \frac{1}{a-h} H \frac{1}{a-h} a \tag{9}
\end{equation*}
$$

In terms of the $T_{i}$ this is
$T=a \frac{1}{a-h}\left\{\left(a-h_{1}\right) \frac{1}{a} T_{1} \frac{1}{a}\left(a-h_{1}\right)+\left(a-h_{2}\right) \frac{1}{a} T_{2} \frac{1}{a}\left(a-h_{2}\right)\right\} \frac{1}{a-h} a$
The factors to the right of $T_{1}$ and $T_{2}$ are set equal to one. Some of the virtual processes represented by these factors are meson exchanges in the initial state, and we expect to take them into account by our deuteron wave function. Other processes ignored are such as

(Here and elsewhere we adopt the convention that the graph reads from right to left, to agree with the order of operators In the relevant formula). The possibility of such processes makes the use of the free nucleon form of $T_{i}$ incorrect. We have another similar approximation below. We now have

$$
\begin{equation*}
T=\sum_{i} y_{i} T_{i} \tag{11}
\end{equation*}
$$

where $y_{i}=a-1 \cdot\left(\alpha-h_{i}\right) \frac{1}{a}$

$$
=a \frac{1}{a-V}\left(\cdots h_{a} \frac{1}{a} h_{i} \frac{1}{a}\right)+a \frac{1}{a-\bar{V}}\left(h_{a}-h_{i} \frac{1}{a}\right)
$$

$V$ being $V_{1}+V_{2}+h_{1} \frac{1}{a} h_{2}+h_{2} \frac{1}{a} h_{1}$. Just as we drop $t_{a i}$ from $t_{i}$ so we can drop the second term of $y_{i}$ and use

$$
\begin{equation*}
(\underset{\sim}{g}|T| \underset{\sim}{v})=\left(\underset{\sim}{q}\left|\sum_{i} x_{i} T_{i}\right| \underset{\sim}{v}\right) \tag{11'}
\end{equation*}
$$

where

$$
x_{i}=a \frac{1}{a-v}\left(1-h \frac{1}{a} h_{i} \frac{1}{a}\right)
$$

and $(\underset{\sim}{\nu}),(\underset{\sim}{q})$ are states of a deuteron and a photon of momentum $\underset{\sim}{\nu}$, and of two nucleons and a meson of momentum $\underset{\sim}{q}$ The part of $y_{i}$ which we leave out here contributes to deuteron photodisintegration by way of a virtual meson which is scattered and finally absorbed.

We make the further approximation of setting $\quad V=V_{1}+V_{2}$ and $h \frac{1}{a} h_{i}=V_{i}$ in $x_{i}$. This implies that the only meson present at any stage is that produced by $T_{i}$, which suffers a succession of scatterings at the nucleon. We ignore aiosorption of a meson at one nucleon followed by emission of a meson at the other nucleon. We also ignore the meson exchanges Which give the nuclear force. Rocimore (1957) has made an estimate of the effect of the nuclear force in the scattering of mesons at deuterium. Following Chew and Goldberg (I952) he gives a first order correction to the impulse approximation, for the effect of the one meson exchange potential. He finds that at 35 MeV meson energy the correction to the total scattering cross-section is about - 5\%. The inclusion of

 meson at a single nucleon bound in a central potential.

We can now express $x_{i}$ in terms of $t_{s 1}$ and $t_{52}$, since we only have $V_{1}$ and $V_{2}$ in $x_{i}$. The result is given by Stoodley in the form

$$
\begin{align*}
& x_{i}=\frac{1}{-1+z_{1}+z_{2}} z_{i}  \tag{12}\\
& z_{i}=1-v_{i} \frac{1}{a}=\left(1+t_{s i} \frac{1}{a}\right)^{-1} \tag{13}
\end{align*}
$$

For $A$ nucleons he obtains the equation

$$
\begin{equation*}
x_{i}=\frac{1}{1-A+\sum_{j} z_{j}} z_{i} \tag{12'}
\end{equation*}
$$

To obtain the matrix element of $T$ he solves successively (13) and Q2'). His method makes it possible to deal with $A>2$, because ( $12^{\prime}$ ) is In near in the $z_{j}$, but it is rather clumsy when $A=2$, compared with our method which is to substitute (13) in (12), giving

$$
\begin{equation*}
x_{i}=\left[-1+\left(1+t_{s i} \frac{1}{a}\right)^{-1}+\left(1+t_{s i} \frac{1}{a}\right)^{-1}\right]^{-1}\left(1+t_{s i} \frac{1}{a}\right)^{-1} \tag{12"}
\end{equation*}
$$

where we introduce the notation $\dot{x}=\left\{\begin{array}{l}1 \\ 2\end{array}\right.$ when $i=\left\{\begin{array}{l}2 \\ 1\end{array}\right.$
Therefore $x_{i}=\left[\frac{1}{1+t_{s i} \frac{1}{a}}\left\{-\left(1+t_{s i \frac{1}{a}}\right)\left(1+t_{s i} \frac{1}{a}\right)+\left(1+t_{s i} \frac{1}{a}\right)\right.\right.$

$$
\begin{align*}
& \left.\left.+\left(1+t_{s \dot{x}} \frac{1}{a}\right)\right\} \frac{1}{1+t_{s i} \frac{1}{a}}\right]^{-1}\left(1+t_{s i} \frac{1}{a}\right)^{-1} \\
& =\left(1+t_{s \dot{x}} \frac{1}{a}\right)\left[1-t_{s i} \frac{1}{a} t_{s i} \frac{1}{a}\right]^{-1} \tag{4}
\end{align*}
$$

We shall work from this equation. Further manipulation
of (11) gives us

$$
T=\sum_{i} a\left[1-\frac{1}{a} t_{s i} t^{t} \operatorname{si} T^{-1}\left[\frac{1}{a} T_{i}+\frac{1}{a} t_{s i} \frac{1}{a} T_{\dot{k}}\right]\right.
$$

In Chappelear's paper the form

$$
T=\sum_{i} a\left[1-\frac{1}{a} t_{i} \frac{1}{a} t_{\dot{x}}\right]^{-1}\left[\frac{1}{a} T_{i}+\frac{1}{a} t_{i} \frac{1}{a} T_{\dot{x}}\right]
$$

is derived from (10). He then assumes that at all successive stages in the process the only meson present is that produced by $T_{1}$ or $T_{2}$, so that the matrix element of $t_{i}$ required is always that between one meson states $(\underline{q})$. Now $\left(\underline{q}_{1}\left|t_{i}\right| q_{2}\right)=\left(\underline{q}_{1}\left|t_{s_{i}}\right| q_{2}\right)$ so that (14 ${ }^{\text {i }}$ ) and ( $14^{n}$ ) are identical.


We use the rove $\left(q_{1} 1 t_{s i} \mid q_{2}\right)=a_{i} b\left(q_{1}, q_{2}\right) q_{1} \cdot q_{2} e^{i q_{2}-q_{1}} \tilde{\sim}_{i}$
Here $\quad a_{i}$ is the isotopic spin projection operator mick ensures that scattering is only in the $t=3 / 2$ state of the meson and nucleon $i$. We consider only $p$ wave scattering which means we must confine our attention to mesons with sufficient energy for the $p$ wave resonance to dominate the scattering. We use for $G\left(q_{E}, q_{E}\right)$ the form given by (1.12) using the $(3 / 2,3 / 2)$ phase shift $\delta_{33}$ of (1.17) but we ignore in (1) the spin dependence of the scattering.

We first obtain the matrix element of $t_{s i} \frac{1}{a} t_{s i}$ From (1) and (2.6), (2.7) this has the form

$\left.=-a_{i} a_{i} e^{i\left(q_{2} \cdot p_{i}\right.}-\underset{\sim}{q_{1}} \cdot r_{i}\right){\underset{q}{1}}^{q_{R}} \nabla_{R} q_{2} \cdot \nabla_{R}\left(\frac{1}{2 \pi}\right)^{2} \frac{1}{i R} \int_{0}^{\infty} \frac{d q}{\infty} \frac{\left(q_{1}, q\right) b\left(q_{1} q_{2}\right) q\left(e^{i q R}-e^{-i q R}\right)}{\omega\left(q_{E}\right)-\omega(q)+i \varepsilon}$

Here $\underset{\sim}{R}=\underset{\sim}{\sim}{\underset{\sim}{i}}^{-\sim_{i}}, \quad R=|\underset{\sim}{\mid}|$, The one pole approximation is that on changing the integral in (3) to the form

$$
\int_{-\infty}^{\infty} \frac{d q q b\left(q_{11} q\right) b\left(q, q_{2}\right) e^{i q R}}{\omega\left(q_{E}\right)-\omega(q)+i \varepsilon}
$$

and completing the contour in the upper half plane, the only contribution is from the pole at $q=q_{E}$. Thus we assume that the product $f\left(q_{1}, q\right) f\left(9, q_{2}\right)$ is even in $q$ and has no poles for 9 in the upper half plane. We con compare those
conditions with the rotations on wo rom of $G$ implicit in the work of Chappelear and stoodiey. In Chappelear's paper the form of $t_{s i}$ is

$$
\left(q_{1}\left|t_{s i}\right| q_{2}\right)=p_{i} \cdot q_{i} \cdot q_{2} e^{i\left(q_{2}-q_{1}\right) \cdot r_{i}}
$$

In which $G_{i}$ is a function of energy or in our notation

$$
G\left(q_{1}, q_{2}\right)=G\left(q_{E}\right)
$$

However for the integral of (3) he has the form

$$
\int_{-\infty}^{\infty} \frac{d q b_{1} b_{2} e^{i q R}}{\omega\left(q_{E}\right)-\omega(q)+i \varepsilon}
$$

and states that he ignores poles of $G_{1}$ and $G_{2}$. So it appears that he is in fact using the same form of $G$ as we use. In Stoodley's thesis the form of $f$ is $f\left(q_{1}, q_{2}\right)=f\left(q_{2}\right)$ His method can also be employed using $f\left(q_{1}, q_{2}\right)$ but then to solve (2.13) he has to make the one pole approximation in an integral of the form

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d q q^{4} b(q, q) b\left(q, q_{2}\right)}{w(q E)-w(q)+i \varepsilon} \tag{4}
\end{equation*}
$$

This does not contain a factor sing, because (2.13) only involves one nucleon, and so the approximation requires more restrictions on the form of $f$ than in our treatment.

The approximation used here is referred to in various papers, for example those of Chappelear and Rochmore, as corresponding to the neglect of scattering off the energy shell. This is incorrect. If we transform the interval in (3) into

$$
2 i \int_{\mu}^{\infty} d \omega \frac{\omega \sin q R f(q, q) b\left(q, q_{2}\right)}{\omega(q E)-\omega(q)+i \varepsilon}
$$

and use the result

$$
\begin{equation*}
\int \frac{d w F(q)}{w(q E)-w(q)+i i}=-\pi: F(f)+p \int \frac{\alpha) F^{-}(q)}{w(q E)-w(q)} \tag{5}
\end{equation*}
$$

then ignoring scattering off the energy shell means ignoring the principal value integral. This gives

$$
2 \pi \omega\left(q_{E}\right) b\left(q_{1}, q_{E}\right) b\left(q_{E}, q_{2}\right) \sin q_{E} R
$$

while our approximation gives

$$
-2 \pi i \omega\left(q_{E}\right) \theta\left(q_{1}, q_{E}\right) b\left(q_{E}, q_{2}\right) e^{i q_{E} R}
$$

The difference betwen these approximations is recognised by Drell and Verlet (in the work mentioned in Section 1). We have not been able to relate the assumptions of the one pole theory to any physical property of meson-nucleon scattering. We shall see below that in this approximation we only require the energy shell values $G\left(q_{E}, q_{E}\right)$ in our final result e
Continuing from (3) we have

$$
\begin{equation*}
\left(\underset{\sim}{q_{1}}\left|t_{s i} \frac{1}{a} t_{5 \dot{x}}\right|{\underset{\sim}{q}}^{q_{2}}\right)=a_{i} a_{i} e^{i\left(q_{2} \cdot r_{i}-q_{1} \cdot r_{i}\right)} \underset{\sim}{f}\left(q_{1, q_{E}}\right) f\left(q_{E}, q_{2}\right)\left\{f(R){\underset{\sim}{q}}_{\sim} \cdot q_{2}+g(R) \underset{\sim}{q_{1}} \cdot R_{\sim}^{q_{2}} \cdot R\right\} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
f(R)=\frac{\omega\left(q_{E}\right)}{2 \pi} \frac{1}{R} \frac{d}{d R}\left(\frac{e^{i q_{E} R}}{R}\right) \tag{7}
\end{equation*}
$$

and $\quad g(R)=\frac{1}{R} \frac{d}{d R} f(R)$.
We shall also use the notation $h(R)=f(R)+g(R) R^{2}$. From (2.14) we have

$$
\left(q_{1} \mid x_{i} \cdot \underline{q}_{2}\right)=(2 \pi)^{3} \delta\left(q_{1}-q_{2}\right)+a_{i} \frac{b\left(q_{1}, q_{2}\right)}{a\left(q_{2}\right)}{\underset{\sim}{q}}_{1} \cdot q_{2} e^{i\left(q_{2}-q_{1}\right) \cdot r_{i}}+
$$

$$
\begin{align*}
& =(2 \pi)^{3} \delta\left({\underset{\sim}{1}}^{q_{1}-q_{2}}\right)+a_{i} \frac{f\left(q_{1}, q_{2}\right)}{a\left(q_{2}\right)}{\underset{\sim}{q}}_{\underline{\sim}} \cdot q_{2} e^{i\left(q_{2}-q_{1}\right)} \cdot \dot{\sim}_{\dot{\sim}} \\
& +e \underset{\sim}{i q_{2} \cdot r} \underset{\sim}{\sim}\left\{f(R) \underset{\sim}{q_{2}}+g(R) \underset{\sim}{q_{2}} \underset{\sim}{R} \underset{\sim}{R}\right\} \cdot \underset{\sim}{S_{i}}\left(q_{1}\right) a_{i} a_{i} \frac{f\left(q_{E}, q_{2}\right)}{a\left(q_{2}\right)} \tag{8}
\end{align*}
$$

where ${\underset{\sim}{S}}_{i}\left(q_{\sim}\right)=\int \frac{d q}{(\overline{2 \pi})^{3}}\left(q_{1}\left|x_{i}\right| \underset{\sim}{q}\right) f\left(q, q_{E}\right) \underset{\sim}{q} e^{-i q_{\sim} \cdot r_{i}}$
We now solve the equation for ${\underset{\sim}{i}}_{i}\left(q_{1}\right)$ which follows from (8), (9),

$$
\begin{align*}
& \underset{\sim}{S_{i}} \underset{\sim}{\left(q_{1}\right)}=\int_{(2 \pi)^{2}}^{d(2 \pi)^{3} \delta\left(q_{i}-q\right)}+a_{i} \frac{b-\left(q_{1}, q\right)}{a(q)}{\underset{\sim}{1}}^{q_{\sim} \cdot q} e^{i\left(q-q_{1}\right) \cdot r_{i}} \\
& \left.+e^{i q q_{\sim} \cdot \dot{\sim}_{\dot{x}}} \frac{f\left(q_{E}, q\right)}{a(q)}\{f(R) \underset{\sim}{q}+g(R) \underset{\sim}{q} \cdot R \underset{\sim}{R}\} \cdot \underset{\sim}{S_{i}} \underset{\sim}{\left(q_{1}\right)} a_{i} a_{\dot{x}}\right] f\left(q, q_{E}\right) \underset{\sim}{q} e^{-i q \cdot r_{i}} \tag{10}
\end{align*}
$$

Making the same approximation in the integral,

$$
\begin{align*}
& \underset{\sim}{S_{i}}\left(q_{N}\right)=f\left(q_{1}, q_{E}\right) \underset{\sim}{q_{i}} e^{-i q_{1} \cdot r_{i}} \sim \\
& +a_{\dot{x}} f\left(q_{1}, q_{E}\right) f\left(q_{E}, q_{E}\right)\left\{f(R) q_{\sim}+g(R) \underset{\sim}{q}, \underset{\sim}{\sim} R\right\} e^{-i q_{\sim}} \underset{\sim}{\sim}  \tag{11}\\
& +f^{2}\left(q_{E}, q_{E}\right)\left\{f^{2}(R) \underset{\sim}{S} \underset{\sim}{i}\left(q_{i}\right)+g(R)[h(R)+f(R)] \underset{\sim}{S_{i}}\left(q_{i}\right) \cdot \underset{\sim}{R} R\right\} a_{i} a_{i}
\end{align*}
$$

Taking the solar product with $\underset{\sim}{R}$,

$$
\left.\left.\begin{array}{rl}
{\underset{\sim}{i}}^{\left(q_{\sim}\right)} \cdot \underset{\sim}{R}= & \underset{\sim}{q_{1}} \cdot R \\
& X\left(q_{1}, q_{E}\right)\left[e^{-i q_{1} \cdot r_{i}}+a_{i} e^{-i q_{i}} \cdot r_{i}\right.
\end{array} f\left(q_{E}, q_{E}\right) h(R)\right]\right]\left[1-f^{2}\left(q_{E}, q_{E}\right) h^{2}(R) a_{i} a_{i}\right]^{-1}
$$

and hence we obtain

$$
\begin{align*}
& +q_{i} \cdot R R G\left(q_{1}, q_{E}\right) f\left(q_{E}, q_{E}\right) g(R)\left\{a_{i} e^{-i q_{r_{\sim}^{N}}^{N}}+[f(R)+b(R)] b\left(q_{E}, q_{E}\right) X\right.  \tag{12}\\
& \left.\left(e^{-i q_{i} \cdot r_{i}}+a_{i} e^{-i q_{j} \cdot r_{i}} f\left(q_{\left.E, q_{E}\right)} h(R)\right)\left(1-f^{2}\left(q_{k, ~}, E\right) h^{2}(R) a_{i} a_{i}\right)^{-1} a_{i} a_{\dot{k}}\right\}\right] \\
& X\left[1-f^{2}\left(q_{k}, q_{k}\right) f^{2}(R) a_{i} a_{i}\right]^{-1}
\end{align*}
$$

The matrix element of $T$.
From (2.11) we have

We take $\left(\underset{\sim}{q_{2}}\left|T_{i}\right| \underset{\sim}{v}\right)$ in the form

$$
\begin{equation*}
\left\{\alpha_{i}\left(q_{1}\right)+\gamma_{i}\left(q_{2}\right) \cdot q_{2}\right\} e^{i\left(v-q_{i}\right) \cdot q_{i}} \tag{14}
\end{equation*}
$$

$\alpha_{i}$ and $\gamma_{i}$ are functions of the meson and photon energies, the photon polarisation and nucleon spin, and also contain isotopic spin operators. (See Section 5). With this form of $T_{i}$ we have

We write $\alpha_{i}\left(q_{2}\right),{\underset{\sim}{\gamma}}_{\gamma_{i}}\left(q_{2}\right)$ in the form $\bar{\alpha}_{i} \alpha\left(q_{2}\right), \bar{\gamma}_{i} \gamma\left(q_{2}\right)$ and define quantities $P_{i}$ and $Q_{i}$ by

$$
\begin{align*}
& P_{i}\left(q_{1}\right)=\int_{\alpha \pi)^{3}}^{\alpha q_{i}}\left(q_{1}\left|x_{i}\right| q_{2}\right) e^{-i q_{2} p_{i}} \times\left(q_{2}\right) \\
& \underset{\sim}{Q_{i}}\left(\underset{\sim}{q_{1}}\right)=\int \underset{(2 i)^{3}}{d q_{2}}\left(\underset{\sim}{q_{1}}\left|x_{i}\right| q_{2}\right) e^{-i \underline{q}_{2} \cdot r_{i}}{\underset{\sim}{q}}^{q_{2}} \gamma\left(q_{2}\right) \tag{15}
\end{align*}
$$

so that

$$
\begin{equation*}
\left(\underset{\sim}{q_{1}}|T| \underset{\sim}{v}\right)=\sum_{i} e^{i \underset{\sim}{v} \cdot \dot{\beta}_{i}}\left[p_{i} \bar{\alpha}_{i}+\underline{Q}_{i} \cdot{\underset{\sim}{\gamma}}_{i}\right] \tag{16}
\end{equation*}
$$

We find $P_{i}$ and $Q_{i}$ in terms of $S_{i}$ and use (12) to obtain the final form of $\left(q_{i}|T| \nu_{\sim}\right)$. From (8) and (15) we have

$$
\begin{align*}
P_{i}\left(q_{1}\right)= & {\left[e^{-i q_{i} \cdot r_{i}}+i a_{i} f\left(q_{E}, q_{E}\right) f(R) q_{1} \cdot R e^{-i q_{i} \cdot r_{i}}\right.}  \tag{17}\\
& \left.+i f\left(q_{E, q_{E}}\right) f(R) h(R) S_{i}\left(q_{1}\right) \cdot R a_{i} a_{i}\right] \alpha\left(q_{E}\right)
\end{align*}
$$

and

$$
\begin{equation*}
\underset{\sim}{Q_{i}}\left(q_{i}\right)=S_{i} \underset{\sim}{\left(q_{1}\right)} \frac{\gamma\left(q_{E}\right)}{f\left(q_{\left.E, q_{E}\right)}\right.} \tag{18}
\end{equation*}
$$

where we have written $q_{1}=q_{E}$, since $q_{1}$ is the final momentum of the meson.

It will be noticed here that the first terms of $P_{i}$ and ${\underset{\sim}{~}}_{i}$ (from (12)) give the impulse approximation when put into (16). We have used the one pole approximation in the integrals (15), with consequent restrictions on the forms of $\alpha\left(q_{2}\right)$ and $\gamma\left(q_{2}\right)$. Our final result for the matrix element is of the form

$$
\begin{equation*}
\left(\underset{\sim}{q_{1}}|T| \underset{\sim}{\nu}\right)=\left(\underset{\sim}{q_{1}}\left|T_{I \cdot A}\right| \underline{\nu}\right)+\sum_{i=1}^{2} \sum_{j=1}^{2} e^{i\left(\nu \cdot r_{i} \cdots q_{1} \cdot N_{i}\right)} X_{i j} \tag{19}
\end{equation*}
$$

in which the impulse approximation matrix element, and the corrections for multiple scattering an odd or an even
number of times, are displayed separately. The full expression is

$$
\begin{aligned}
& \left(\underset{\sim}{q_{1}}|T| \underset{\sim}{v}\right)=\left(q_{1}\left|T_{I A}\right| v\right)+\sum_{i=1}^{2} e^{i(\nu-q)} \cdot{\underset{\sim}{r}}_{i} a_{i} a_{i}{\underset{\sim}{q}}_{1} . \\
& {\left[-\frac{i h(R) f(R) b_{E}^{2}}{1-a_{i} a_{i} h^{2}(R) b_{E}^{2}} \underset{\sim}{R} \alpha_{i}+\frac{f^{2}(R) b_{E}^{2}}{1-a_{i} a_{i} f^{2}(R) b_{E}^{2}} \gamma_{i}+\frac{g(R) f(R) b_{E}^{2}}{1-a_{i} a_{i} f^{2}(R) b_{E}^{2}}{\underset{i}{i}}^{\gamma} R \Omega\right.} \\
& \left.+\frac{g(R) h(R) b_{E}^{2}}{1-a_{i} a_{k} h^{2}(R) b_{E}^{2}} \gamma_{i} R R+\frac{f(R) b_{E}}{1-a_{i} a_{j} f^{2}(R) e_{E}^{2}} a_{i} a_{\dot{k}} \frac{g(R)[f(R)+h(R)] h(R) b_{E}^{3}}{1-a_{i} a_{k} h^{2}(R) b_{E}^{2}}\right] \\
& +\sum_{i=1}^{2} e^{i\left(\gamma \cdot r_{i}-q_{1} \cdot r_{i}\right)} a_{i} q_{i} \cdot\left[-\frac{i f(R) \ell_{E}}{1-a_{i} a_{i} h^{2}(R) b_{E} N_{2}} R \alpha_{i}+\frac{f(R) b_{E}}{1-a_{i} a_{k} f^{2}(R) b_{E}^{2}} \gamma_{i}\right. \\
& \left.+\frac{g(R) b_{E}}{1-a_{i} a_{i} f^{2}(R) b_{E}^{2}} \forall_{i} \cdot R R+\frac{1}{1-a_{i} a_{i} f^{2}(R) b_{E}^{2}} a_{i} a_{i} \frac{g(R)[f(R)+h(R)] h(R) b_{E}^{3}}{1-a_{i} a_{i} h^{2}(R) b_{E}^{2}}\right]
\end{aligned}
$$

where we use the abbreviation $\quad b_{E}=f\left(q_{E}, q_{E}\right)$. When we use the results of Section 5 and the notation $A_{i},{\underset{\sim}{i}}$ given there for the parts of $\alpha_{i}, \underset{\sim}{\gamma} i \quad$ which are independent of isotopic spin, we have for positive (negative) mesons the results

$$
\begin{aligned}
& -(+)\left(\underset{\sim}{q_{1}}|T| \underset{\sim}{v}\right)=e^{i\left(\nu-q_{1}\right) \cdot \nu_{1}}-\left[-\frac{A_{1}}{\sqrt{2}}-\frac{q_{1} c_{1}}{2}\right]+e^{i\left(\nu-q_{1}\right) \cdot N_{2}} \cdot\left[\frac{{\underset{\sim}{2}}^{\sqrt{2}}}{\sqrt{2}}+\frac{q_{1} \cdot c_{2}}{2}\right] \\
& +e^{i\left(\underset{\sim}{V}-\underline{q}_{1}\right) \underset{\sim}{\sim}} \underset{\sim}{{\underset{N}{1}}^{q_{1}}} \cdot\left[-\frac{1}{\sqrt{2}} F_{1}(R) A_{1} \underset{\sim}{R}-\frac{1}{2} F_{2}(R) \underset{\sim}{C}-\frac{1}{2} \frac{F_{3}(R)}{R^{2}} C_{1} \cdot R \underset{\sim}{\sim}\right]
\end{aligned}
$$

$$
\begin{aligned}
& +e^{i\left(\nu-q_{1}\right) \cdot r_{2}} \underset{\sim}{q_{1} \cdot\left[-\frac{1}{\sqrt{2}} F_{1}(R) A_{2} R+\frac{1}{2} F_{2}(R) C_{2}+\frac{1}{2} \frac{F_{3}(R)}{R^{2}}{\underset{\sim}{2}}_{2} \cdot R R\right]} \\
& +e^{i\left(\nu \cdot r_{1}-q_{1} \cdot r_{2}\right)} \underset{\sim}{q_{1} \cdot\left[\frac{1}{\sqrt{2}} F_{4}(R) A_{1} R+\frac{1}{2} F_{5}(R) C_{1}+\frac{1}{2} \frac{F_{6}(R)}{R^{2}} C_{1} \cdot R R\right]} \\
& \left.+e^{i\left(v \cdot r_{2}-q_{1} \cdot r_{1}\right)} \underset{\sim}{q_{1} \cdot\left[\frac{1}{\sqrt{2}} F_{4}(R) A_{2} R\right.}-\frac{1}{2} F_{5}(R) C_{2}-\frac{1}{2} \frac{F_{6}(R)}{R^{2}} C_{2} \cdot R R\right]
\end{aligned}
$$

where $R$ now stands for ${\underset{\sim}{r}}^{\sim}-r_{2}$, and the functions $F(R)$ are defined by

$$
\begin{align*}
& F_{1}(R)=G_{E} h(R) F_{4}(R)=\frac{i h(R) f(R) b_{E}^{2}}{1-h^{2}(R) b_{E}^{2}} \\
& F_{2}(R)=b_{E} f(R) F_{5}(R)=\frac{f^{2}(R) b_{E}^{2}}{1-f^{2}(R) b_{E}^{2}}  \tag{22}\\
& F_{3}(R)=\frac{g(R) R^{2}[f(R)+h(R)] b_{E}^{2}}{\left(1-f^{2}(R) b_{E}^{2}\right)\left(1-h^{2}(R) b_{E}^{2}\right.} \\
& F_{U}(R)=\frac{g(R) R^{2}\left(1+h(R) f(R) b_{E}^{2}\right) b_{E}}{\left(1-f^{2}(R) b_{E}^{2}\right)\left(1-h^{2}(R) b_{E}^{2}\right)}
\end{align*}
$$

To illustrate the behaviour of these functions we show in graphs II and III the real and imaginary parts of an "oven scattering" function $F_{2}(R)$ and an "odd scattering" function $F_{5}(R)$. All the odd scattering functions are zero at $R=0$, and some of them are appreciable for larger values of $R$ than any of the even scattering functions. If vo evaluate our Laterals using the ompoximation of neglecting scattering on f the emery shell we get precisely the save form of result but


we have isinger in place of $e^{\hat{\operatorname{lin}} R}$ in (7). $F_{2}(R)$ and $F_{5}(R)$ in this approximation are also shown in graphs in and III. The third set of curves shown in these graphs is explained in Section 4.




 waters

$$
x_{3},\left(a_{0}\right)=\cdots x+\operatorname{ta}
$$




 74



 correction for a particular form of $b\left(q_{1}, q_{2}\right)$ which allows us to evaluate the integral (3.3) erectiy, rather than in the one pole approxination. In Section 3 tha approxination is used so that in our final result we only need to know the values of $f\left(q_{E}, q_{E}\right)$, $\alpha\left(q_{E}\right)$ and $\gamma\left(q_{E}\right)$, and so that we can reduce the solution of our problen to the solution of the oquation (3.10) for ${\underset{\sim}{N}}_{i}$. We can retain these features of our method if we use the form $b\left(q_{1}, q_{2}\right)=c\left(q_{1}\right) d\left(q_{2}\right)$, although ve must again use the one pole aproximation in the integrals (3.15) Which involve $\alpha\left(q_{2}\right)$ and $\gamma\left(q_{2}\right)$. We make use of the voris of Velibelrov and Meshcheryalkov (1955) who use a factorable potential

$$
\begin{equation*}
V_{33}\left(q_{1}, q_{2}\right)=-\frac{\lambda v\left(q_{1}\right) v\left(q_{2}\right)}{w\left(q_{1}\right) w\left(q_{2}\right)} \tag{1}
\end{equation*}
$$

in (1.14) the equation for meson scattering at a free mucleon, and obtain reasonable volues of $\tan \delta_{33}\left(q_{E}\right)$. The fact that these authors obtain the correct behaviour of scattering on the energy shell does not imply that their form of $b\left(q_{1}, q_{2}\right)$ is reliable off the eneary shell. For this reason, and because we still have to use the one pole approximation in (3.15) ve do not use this version on mitiple scattering theory in our detailed calculations. We shall tate the calculation to the stage of showing thet the rosnzes of unine this form or f( $\left.q_{1}, q_{2}\right)$ are closer to those of the ane pole aproximation then to those obtained wea we negloct scattering off the enerey shell.

With tho potential (1) Wo equation (1.24) has the exact solution

$$
\begin{equation*}
k_{33}=\frac{V_{33}\left(9,9_{2}\right)}{1-\lambda I(E)} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
I(E)=p \int_{0}^{\infty} \frac{d q q^{4} v^{2}(q)}{\omega^{2}(q)[\psi(q E)-\omega(q)]} \tag{3}
\end{equation*}
$$

Velibekov and Memheheryakov introduce new coupling constant

$$
\begin{equation*}
\bar{\lambda}=\frac{\lambda}{1-\lambda I(\mu)} \tag{4}
\end{equation*}
$$

so that

$$
\begin{equation*}
k_{33}\left(q_{E}, q_{E}\right)=-\frac{\bar{\lambda} v^{2}\left(q_{E}\right)}{\omega^{2}\left(q_{E}\right)}\{1-\bar{\lambda}[I(E)-I(\mu)]\}^{-1} \tag{5}
\end{equation*}
$$

When $v(q)$ is replaced by a cutoff at $q_{\text {max }}$ this gives

$$
\begin{equation*}
\tan S_{33}\left(q_{E}\right)=\frac{\bar{\lambda} q_{E}^{3}}{2 \pi \omega\left(q_{E}\right)}\left\{1+\bar{\lambda}\left[\omega\left(q_{E}\right)-\mu\right] p \int_{0}^{\int_{\nu^{2}(q)}^{q_{\text {max }}}} \frac{1}{\omega\left(q_{E}\right)-\omega(q)} \frac{1}{\mu-\omega(q)}\right\}^{-1} \tag{6}
\end{equation*}
$$

By suitable choice of $\bar{\lambda}$ and $q_{\text {max }}$ these authors are able to fit the experimental phase shifts fairly well. In this theory we have

$$
\begin{equation*}
f\left(q_{1}, q_{2}\right)=-\frac{\bar{\lambda} v\left(q_{1}\right) v\left(q_{2}\right)}{w\left(q_{1}\right) w\left(q_{2}\right)}\left\{1-\bar{\lambda}\left[I^{\prime}(E)-I^{\prime}(\mu)\right]\right\}^{-1} \tag{7}
\end{equation*}
$$

where the integral $I^{\prime}(E)$ is

$$
I(E)=\int_{v^{2}}^{\infty} \frac{d g q^{4} v^{2}(q)}{r^{2}(G) r}
$$

th the result for $f\left(q_{1}, q_{2} ;\right.$ we ne

$$
\begin{equation*}
\theta\left(q_{1}, q_{2}\right)=\frac{G\left(q_{E}, q_{E}\right) \omega^{2}\left(q_{E}\right)}{w\left(q_{1}\right) w\left(q_{2}\right)} \tag{6}
\end{equation*}
$$

We shall use this form of $f\left(q_{1}, q_{2}\right)$ taking $f\left(q_{E}, q_{E}\right)$ as given by ( 1.12 ) and (1.17). Thus the behaviour of $f\left(q_{1}, q_{2}\right)$ off the energy shell is very simple to deal with. The integral in (3.3) is now

$$
\begin{align*}
& f\left(q_{1}, q_{2}\right) \int_{0}^{q_{\max }} \frac{d q\left(e^{i q R}-e^{-i q R}\right) f(q, q)}{\omega\left(q_{E}\right)-\omega(q)+i \varepsilon} \\
= & f\left(q_{1}, q_{2}\right) b\left(q_{E}, q_{E}\right) \omega^{2}\left(q_{E}\right) \int_{-q_{\max }}^{q_{\max }^{2}(q)\left[\omega\left(q_{E}\right)-\omega(q)+i \varepsilon\right]} \tag{9}
\end{align*}
$$

The poles of the integral contribute, on closing the contour round a semicircle in the upper half plane,

$$
\begin{equation*}
-2 \pi i \omega\left(q_{E}\right) \theta\left(q_{i}, q_{2}\right) \theta\left(q_{\left.E, q_{E}\right)}\left\{e^{i q_{E} R}-\frac{1}{2} e^{-\mu R}\right\}\right. \tag{10}
\end{equation*}
$$

The integral round the semicircular part of the contour is

$$
\begin{equation*}
i q_{\max }^{2} \theta_{E} b\left(q_{1} q_{2}\right) \omega^{2}\left(q_{\pi}\right) \int_{0}^{\pi} \frac{d \theta\left(\cos ^{2} \theta+i \sin 2 \theta\right) \exp \left\{i q_{\max } R(\cos \theta+i \sin \theta)\right.}{\left[q_{\max }^{2}\left(\cos ^{2} 2 \theta+i \sin 2 \theta\right)+\mu^{2}\right]\left\{\left[q_{\max }^{2}(\cos 2 \theta+i \sin 2 \theta)+\mu^{2}\right]^{1 / 2}-\omega\left(q_{E}\right)\right\}} \tag{11}
\end{equation*}
$$

How for consistency we use the large cutoff, $9_{\max }=11 \mu$, of Velibetrov and weshcheryalrov. It is easily seen that we can neglect (11) in comparison with (10).

We, therefore, have the result that to a good approximation
the matrix element of $\quad t_{s i} \frac{1}{a} t_{s \%}$ is
where

$$
\begin{align*}
& \hat{f}(R)=\frac{\omega\left(q_{E}\right)}{2 \pi R} \frac{d}{d R}\left\{\frac{1}{R}\left(e^{i q_{E} R_{1}} \frac{1}{2} e^{-\mu R}\right)\right\} \\
& \hat{g}(R)=\frac{1}{R} \frac{d}{d R} \hat{f}(R) \tag{13}
\end{align*}
$$

We shall also use the notation $\hat{h}(R)=\hat{f}(R)+R^{2} \hat{g}(R)$. For $R \gtrsim 2 \mu^{-1} \quad \hat{f}(R)$ and $\hat{g}(R)$ are almost exactly $f(R)$ and $g(R)$. There is a certain resemblance to the third model of Drell and Verlet, discussed in Section 1. They use a potential which is factorable in configuration space, and obtain a result which tends to the result of the one pole approximation as $R$ increases. Using (12) and (13) we can now derive the matrix element of $T$ as in Section 3, obtaining a very similar form. From the result (12) for ( $q_{1}\left|t_{s i} \frac{1}{a} t_{s i}\right| q_{2}$ ) we obtain

$$
\begin{align*}
& \left(q_{\sim}\left|x_{i}\right| q_{2}\right)=(2 \pi)^{3} \delta\left(q_{\sim}-q_{2}\right)+a_{i} \frac{f\left(q_{1}, q_{2}\right)}{a\left(q_{2}\right)} q_{1} \cdot q_{2} e^{i\left(q_{2}-q_{1}\right)} \sim_{\sim}^{\sim}  \tag{14}\\
& +e^{i q_{2} \cdot \stackrel{r}{x}_{x}} \frac{d\left(q_{2}\right)}{a\left(q_{2}\right)} b_{E}\{\hat{f}(R) \underset{\sim}{q_{2}}+\hat{g}(R) q_{2} \cdot R \sim \sim \underbrace{\hat{S}_{i}}_{\sim}\left(q_{1}\right) a_{i} a_{x} \\
& \text { where }
\end{align*}
$$

$$
\begin{equation*}
\hat{S}_{i}\left(q_{i}\right)=\int_{\left(\frac{d q}{(2)^{3}}\right.}^{\underset{\sim}{q}}\left(q_{i}\left|x_{i}\right| q\right) q_{\sim} e^{-i \underline{q} \cdot r_{i}} c(q) \tag{15}
\end{equation*}
$$

In the same way as before we obtain for $\hat{S}_{\sim} i$ the result

$$
\begin{align*}
& \hat{S}_{i}\left(q_{i}\right)=\left[q _ { \sim } c \left(q_{i} ;\left\{e^{-i q_{1} \cdot \cdot_{i}}+a_{i} b_{E} \hat{f}(R) e^{-i q_{1} \cdot r_{i}}\right\}+\right.\right. \\
& {\underset{\sim}{1}}_{q_{\sim}} R R c\left(q_{1}\right) b_{E} \hat{g}(R)\left\{a_{i} e^{-i q_{2} \cdot r_{i}}+b_{E}[\hat{f}(R)+\hat{h}(R)] x\right. \\
& \left.\left.\left(e^{-i q_{i} \cdot r_{i}}+a_{i} e^{-i q_{\sim} \cdot r_{i}} G_{E} \hat{h}(R)\right)\left(1-\hat{h}^{2}(R) b_{E}^{2} a_{i} a_{i}\right)^{-1} a_{i} a_{i}\right\}\right] \frac{1}{1-b_{E}^{2} \hat{f}^{2}(R) a_{i} a_{i}} \tag{16}
\end{align*}
$$

We define $P_{i}$ and $Q_{i}$ as before and evaluate (3.15) using the one pole approximation, with the result that our expression for $(\underset{\sim}{q}|T| \underset{\sim}{ })$ contains $f(R), g(R)$ as well as $\hat{f}(R), \hat{g}(R)$ We readily obtain the matrix element in the form (3.21) but with the functions $F(R)$ of (3.22) replaced by similarly numbered functions $\hat{F}(R)$, where

$$
\begin{aligned}
& \hat{F}_{1}(R)=\hat{h}(R) f_{E} \hat{F}_{L}(R)=\frac{i \hat{h}(R) f(R) b_{E}^{2}}{1-\hat{h}^{2}(R) b_{E}^{2}} \\
& \hat{F}_{2}(R)=\hat{f}(R) b_{E} \hat{F}_{S}(R)=\frac{\hat{f}(R) f(R) b_{E}^{2}}{1-\hat{f}^{2}(R) b_{E}^{2}} \\
& \hat{F}_{3}(R)=R^{2} b_{E}^{2}\left[\hat{g} h+\hat{f} g+\left(\hat{f} \hat{g} \hat{h} h-\hat{h}^{2} \hat{f} g\right) t_{E}^{2}\right] \\
& \left(1-\hat{f}^{2}(R) t_{E}^{2} x \mid-\hat{h}^{2}(R) l_{E^{2}}^{2}\right) \\
& \hat{F}_{b}(R)=\frac{R^{2} g(R) b_{E}}{1-\hat{f}^{2}(R) t_{E}^{2}}+\frac{h(R) \hat{g}(R)[\hat{f}(R)+\hat{h}(R)] l_{E}^{3}}{\left(1-\hat{f}^{2}(R) l_{E}^{2}\left(1-\hat{h}^{2}(R) l_{E}^{2}\right)\right.}
\end{aligned}
$$

In the graphs II and III we compare $\hat{F}_{2}(R)$ and $\hat{F}_{5}(R)$ with $F_{2}(R)$ and $F_{5}(R)$ calculated in the one pole approximation and in the approximation of neglecting scattering off the energy shell. It is clear that the first of these aproximations is the better.

This is to be expected, since deviations from energy conservation an be important for an intermediate state of short duration.

$$
\begin{aligned}
& \frac{6}{8} \frac{6}{2}
\end{aligned}
$$

,




霜要

-
5. Isotopic sin
 which are consistent with the use of the form of ClebschGordian coefficients given in Condo and Shortley (1951). We define $Y_{1 / 2}^{1 / 2}$ as the one proton state and $Y_{1 / 2}^{-1 / 2}$ as the one neutron state, and the operator $\tau$ by

$$
\bar{c}_{1}=\tau_{+}+\tau_{-}, i \tau_{2}=\tau_{+}-\tau_{-}
$$

where

$$
\begin{align*}
& \tau+Y_{\frac{1}{2}}^{m}=S_{m,-\frac{1}{2}} Y_{\frac{1}{2}}^{-m} \\
& \tau-Y_{\frac{1}{2}}^{m}=\delta_{m, \frac{1}{2}} Y_{\frac{1}{2}}^{-m} \tag{1}
\end{align*}
$$

and

$$
\tau_{3} Y_{\frac{1}{2}}^{m}=2 m Y_{\frac{1}{2}}^{m}
$$

States of one positive, neutral or negative meson, denoted respectively by $Y_{1}^{\prime}, Y_{1}^{\circ}, Y_{1}^{-1}$ can be represented in the form

$$
\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

When regarded as operating on these column matrices the operator

$$
\begin{align*}
& l=1 s \\
& l_{1}=\sqrt{\frac{1}{2}}\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \\
& e_{2}=\sqrt{\frac{1}{2}}\left[\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right]  \tag{2}\\
& l_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right]
\end{align*}
$$

The meson creation operators $\varphi$ act on the vacuum state 10$\rangle$ as follows,

$$
\begin{align*}
& \varphi|0\rangle=a y_{1}^{\prime} \\
& \varphi^{*}|0\rangle=b y_{1}^{-1}  \tag{3}\\
& \varphi_{3}|0\rangle=y_{1}^{0}
\end{align*}
$$

and we define

$$
\varphi_{1}=\sqrt{\frac{1}{2}}\left(\varphi+\varphi^{*}\right), i \varphi_{2}=\sqrt{\frac{1}{2}}\left(\varphi-\varphi^{*}\right)
$$

We must fix $a$ and $b$ to be consistent with our choice of $\underset{\sim}{\tau}, \underset{\sim}{e}$ by requiring that the total isotopic spin $\underset{\sim}{t}=\frac{1}{2} \tau \sim \underset{\sim}{e}$ commutes with the Kemmer (1938) operator $\quad C=\sum_{i} \varphi_{i} \tau_{i}$. We have

$$
t^{+}\left(c y_{\frac{1}{2}}^{\frac{1}{2}}\right)=c\left(t^{+} y_{\frac{1}{2}}^{\frac{1}{2}}\right) \equiv 0
$$

and $t^{-}\left(C y_{\frac{1}{2}}^{-\frac{1}{2}}\right)=C\left(t^{-} y_{\frac{1}{2}}^{-\frac{1}{2}}\right) \equiv 0$
Hence $a=-1$ and $b=1$.
The isotopic spin eigenstates of the system of one nucleon and one meson are, in this representation,

$$
\begin{align*}
& x_{3 / 2}^{\frac{3}{2}}=Y_{\frac{1}{2}}^{\frac{1}{2}} Y_{1}^{1} \\
& x_{3 / 2}^{\frac{-1}{2}}=\sqrt{\frac{1}{3}} Y_{\frac{1}{2}}^{-\frac{1}{2}} Y_{1}^{1}+\sqrt{\frac{2}{3}} Y_{\frac{1}{2}}^{\frac{1}{2}} Y_{1}^{0}  \tag{4}\\
& x_{3 / 2}^{-\frac{1}{2}}=\sqrt{\frac{2}{3}} Y_{\frac{1}{2}}^{-\frac{1}{2}} Y_{1}^{0}+\sqrt{\frac{1}{3}} Y_{\frac{1}{2}}^{\frac{1}{2}} Y_{1}^{-1} \\
& x_{3 / 2}^{-3 / 2}=Y_{\frac{1}{2}}^{-\frac{1}{2}} Y_{1}^{-1} \\
& x_{\frac{1}{2}}^{\frac{1}{2}}=\sqrt{\frac{2}{3}} Y_{\frac{1}{2}}^{-\frac{1}{2}} Y_{1}^{1}-\sqrt{\frac{1}{3}} Y_{\frac{1}{2}}^{\frac{1}{2}} Y_{1}^{0} \\
& x_{\frac{1}{2}}^{-\frac{1}{2}}=\sqrt{\frac{1}{3}} Y_{\frac{1}{2}}^{-\frac{1}{2}} Y_{1}^{0}-\sqrt{\frac{2}{3}} Y_{\frac{1}{2}}^{\frac{1}{2}} Y_{1}^{-1}
\end{align*}
$$

while the eigenstates of a two nucleon system are

$$
\begin{align*}
& x_{1}^{\prime}=Y_{\frac{1}{2}}^{\frac{1}{2}}(1) Y_{\frac{1}{2}}^{\frac{1}{2}}(2) \\
& X_{1}^{0}=\sqrt{\frac{1}{2}}\left\{y_{\frac{1}{2}}^{\frac{1}{2}}(1) y_{\frac{1}{2}}^{-\frac{1}{2}}(2)+Y_{\frac{1}{2}}^{-\frac{1}{2}}(1) y_{\frac{1}{2}}^{\frac{1}{2}}(2)\right\} \\
& X_{1}^{-1}=Y_{\frac{1}{2}}^{-\frac{1}{2}}(1) y_{\frac{1}{2}}^{-\frac{1}{2}}(2)  \tag{5}\\
& X_{0}^{0}=\sqrt{\frac{1}{2}}\left\{y_{\frac{1}{2}}^{\frac{1}{2}}(1) y_{\frac{1}{2}}^{-\frac{1}{2}}(2)-Y_{\frac{1}{2}}^{-\frac{1}{2}}(1) y_{\frac{1}{2}}^{\frac{1}{2}}(2)\right\}
\end{align*}
$$

For the system of two nucleons and one meson we only have to deal with states of unit charge. There are two convenient sets of states. The natural set for describing our final state is
$|1\rangle=X_{1}{ }^{\prime} Y_{1}^{-1}$, that is $\pi^{-}+2 p$
$|2\rangle=X_{1}{ }^{0} y_{1}{ }^{0}$, that is $\pi^{0}+$ triplet $n p$ state
$|3\rangle=X_{1}^{-1} Y_{1}^{1}$, that is $\pi^{+}+2 n$
$|4\rangle=X_{0}^{0} Y_{1}^{0}$, that is $\pi^{0}+$ singlet $n p$ state.
For dealing with multiple scattering in which each scattering is in a $3 / 2$ state of the isotopic spin of the meson and one nucleon it is more convenient to use eigenstates of $t$ and $t_{3}$. The appropriate states are

$$
\begin{align*}
& |1|=\sqrt{\frac{1}{6}}\{|1\rangle+2|2\rangle+|3\rangle\} \\
& |2\rangle=\sqrt{\frac{1}{2}}\{|1\rangle-|3\rangle\} \\
& |3|=\sqrt{\frac{1}{3}}\{|1\rangle-|2\rangle+|3\rangle\}  \tag{7}\\
& |4\rangle=|4\rangle
\end{align*}
$$

So for any operator $A$ we have

$$
\begin{equation*}
(\lambda|A| \mu)=\sum_{i j}(\lambda|i\rangle\langle i| A|j\rangle\langle j| \mu) \tag{8}
\end{equation*}
$$

where $\langle j \mid \mu\rangle$ is

$$
\left[\begin{array}{cccc}
\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{3}} & 0 \\
\sqrt{\frac{2}{3}} & 0 & -\sqrt{\frac{1}{3}} & 0 \\
\sqrt{\frac{1}{6}} & -\sqrt{\frac{1}{2}} & \sqrt{\frac{1}{3}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The second representation is essentially that used by Chappelear.

Consider the operator $\quad a_{i}=2+\tau_{i} \cdot \underset{\sim}{l}$ which appears in $t_{s i}$.

$$
\langle i| a_{1}|j\rangle=\left[\begin{array}{cccc}
1 & 1 & 0 & -1  \tag{10}\\
1 & 2 & 1 & 0 \\
0 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2
\end{array}\right]
$$

and

$$
\langle i| a_{2}|j\rangle=\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 \\
0 & 1 & 1 \\
1 & -1 & -1 \\
2
\end{array}\right]
$$

while

$$
(\lambda|a,| \mu)=\left[\begin{array}{cccc}
3 & 0 & 0 & 0  \tag{5}\\
0 & 1 & 0 & -\sqrt{2} \\
0 & 0 & 0 & 0 \\
0 & -\sqrt{2} & 0 & 2
\end{array}\right]
$$

and

$$
\left(\lambda\left|a_{2}\right| \mu\right)=\left[\begin{array}{cccc}
3 & 0 & 0 & 0  \tag{11}\\
0 & 1 & 0 & \sqrt{2} \\
0 & 0 & 0 & 0 \\
0 & \sqrt{2} & 0 & 2
\end{array}\right]
$$

In the form of $T_{i}$ given by (1.13), (1.19) the operator for wave photoproduction is obtained when $\underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{\nabla} \underset{\sim}{\tau} \underset{\sim}{\varphi}$ in the mesonnucleon interaction ilamiltonian for a pseudoscalar meson and a
static nucleon, is made gauge invariant. This gives

$$
\begin{equation*}
\alpha_{i}=\beta_{i} A_{i}=\left[\varphi^{*} \tau_{i}^{+}-\varphi \tau_{i}^{-}\right] \sigma_{i}, \varepsilon E_{d} \tag{12}
\end{equation*}
$$

In our notation the effect of $\beta_{i}$ on the deuteron wave function is given by

$$
\begin{align*}
& \beta_{1} X_{0}^{0}=-(2) \\
& \left.\beta_{2} X_{0}^{0}=12\right) \tag{13}
\end{align*}
$$

The $p$ wave part of the photoproduction operator, (1.29), must produce a state with $t=3 / 2$. Its isotopic spin part, therefore, is

$$
\begin{equation*}
\delta_{i}=\sqrt{\frac{1}{2}}\left[\varphi^{*} \tau_{i}^{+}-\varphi \tau_{i}^{-}\right]+\varphi_{3} \tag{4}
\end{equation*}
$$

Writing $\quad \underset{\sim}{\gamma}=\delta_{i}{\underset{\sim}{c}}_{i}$ we have

$$
\begin{equation*}
\underset{\sim}{q \cdot} \cdot c_{i}=\frac{M_{d}}{v q}\left[2 v . q \times \varepsilon+i \sigma_{i} \cdot v \times \underline{v} \times \underline{q}\right] \tag{15}
\end{equation*}
$$

We have

$$
\begin{align*}
& \left.\delta_{1} x_{0}^{0}=-\sqrt{\frac{1}{2}}(2)+14\right) \\
& \delta_{2} x_{0}^{0}=\sqrt{\frac{1}{2}}(2)+(4) \tag{16}
\end{align*}
$$

We can now see the advantage of using the states $\mid \lambda)$ rather than $|i\rangle$. We can take the operator $a_{i}$ as effectively

$$
\begin{align*}
& \left(\lambda\left|a_{1}\right| \mu\right)=\left[\begin{array}{cc}
1 & -\sqrt{2} \\
-\sqrt{2} & 2
\end{array}\right] \\
& \left(\lambda\left|a_{2}\right| \mu\right)=\left[\begin{array}{cc}
1 & \sqrt{2} \\
\sqrt{2} & 2
\end{array}\right]
\end{align*}
$$

Any state reached during the multiple scattering is a linear combination of 12 ) and 14 ) and for the amplitude for production of positive (negative) mesons we pick out $-\sqrt{\frac{1}{2}}\left(\sqrt{\frac{1}{2}}\right)$
times the coefficiont of 12 in tho states ontaned from by the various parts of (3.20). This leads to (3.21). Hotice that any difference in the behaviour of positive and negative meson cross-sections must come from the space wave functions, that is it can only come from the effeot of the Coulomb interactions in the system of two protons and a negative meson.
6. The cross-section.

The impulse aprovimation cross-section for a plane wave final state is corrected for the nuclear interaction in the $S$ state, and for multiple scattering when the nucleons are finally in an $S$ or $P$ state. The multiple scattering functions have short ranges so that we can reasonably neglect this correction for $l>1$. The cross-section has the form

$$
\begin{align*}
& \frac{d^{3} \sigma}{d g d \underset{\sim}{k} d \underset{\sim}{D}}(\text { even })+\frac{\alpha^{3} \sigma}{\alpha q d \underset{\sim}{k} d \underset{\sim}{D}}(\text { odd })= \\
& \frac{d^{3} \sigma}{d q d l_{\sim} d D}\{\text { Impulse approximation; even part of plane wave }\} \\
& \frac{d^{3} \sigma}{d \underset{\sim}{d} d \underset{\sim}{k}}\{\text { Impulse approximation; } l=0 \text { partial wave }\} \\
& \frac{d^{3} \sigma}{\underset{\sim}{d g} d \underset{\sim}{c} d D}\{\text { With multiple scattering; distorted } l=0 \underset{\text { wave }}{ } \quad \underset{\sim}{\text { partial }}\} \\
& \left.\frac{d^{3} \sigma}{d q} \underset{\sim}{d k} d D \text { Impulse approximation; odd part of plane wave }\right\}  \tag{1}\\
& \frac{d^{3} \sigma}{d \underset{\sim}{d} d \underset{\sim}{l} d \eta}\left\{\text { Impulse approximation; } l_{=}=1 \text { partial wave }\right\} \\
& \frac{d^{3} r}{\underset{\sim}{d g} \underset{\sim}{d D}}\{\text { With multiple scattering; } l=1 \text { partial wave }\}
\end{align*}
$$

Each of these cross-sections has the form

$$
\begin{equation*}
\frac{d^{3} \sigma}{d \underset{\sim}{q d} \underset{\sim}{d D}}=2 \pi|Q|^{2} \delta\left(\omega(q)+\frac{k^{2}}{M}+\frac{D^{2}}{4 M}-\epsilon_{D}-\omega_{\nu}\right) \tag{2}
\end{equation*}
$$

$$
=2 \pi|a|^{2} \delta\left(\frac{k^{2}}{M}-\frac{k_{0}^{2}}{M}\right)
$$

Here $\underset{v}{q}, \underset{\sim}{k}, \underset{\sim}{D}$ are the momenta of the meson, the nucleon relative motion and the nucleon centre of mass motion respectively. $\epsilon_{D}$ is the deuteron binding energy, $-2.23 \mathrm{MeV} .$, and $M$ is the nucleon mass. $\left.|Q|^{2}=|\langle\mathcal{F}| T| i\right\rangle\left.\right|^{2}$ for a final state $|f\rangle$ appropriate to the particular cross-section considered. The effect of averaging over $\underset{\sim}{\mathcal{J}}$ and the weight associated with the final state spin are implicit in $101^{2}$. $T$ as written in (3.21) already takes account of the isotopic spin parts of $|i\rangle$ and $|f\rangle$ so we have for our initial state

$$
|i\rangle={ }^{3} X_{m} u_{i}(R)
$$

where ${ }^{3} \chi_{m}$ is the triplet spin state and we use the Hulthén deuteron wave function

$$
\begin{equation*}
u_{i}(R)=\left[\frac{\alpha \beta(\alpha+\beta)}{2 \pi(\alpha-\beta)^{2}}\right]^{1 / 2} \frac{e^{-\alpha R}-e^{-\beta R}}{R}=\frac{K}{R}\left(e^{-\alpha R}-e^{-\beta R}\right) \tag{3}
\end{equation*}
$$

with $\alpha=\sqrt{M\left|\epsilon_{\gamma}\right|}$ and $\beta$ given by $\rho_{1}=\frac{4}{\alpha+\beta}-\frac{1}{\beta}$, $\rho_{1}$ being the triplet $n p$ effective range, $\rho_{1}=1.704 \times 10^{-13} \mathrm{~cm}$.

$$
\begin{aligned}
& \alpha=.2316 \times 10^{i 3} \mathrm{~cm}^{-1} \\
& \beta=1.434 \times 10^{13} \mathrm{~cm}^{-1}
\end{aligned}
$$

Our final states have the form, for even and odd space parts,

$$
\begin{aligned}
& (2 \pi)^{-3 / 2} u_{f_{e}}(k \cdot R) e^{i D \cdot R} 3 X_{m} \\
& (2 \pi)^{-3 / 2} u_{f_{0}}(\underline{k} \cdot R) e^{i D \cdot R}{ }^{1} \chi_{0}
\end{aligned}
$$

Here ${ }^{\prime} \chi_{0}$ is the singlet spin function, and $\underset{\sim}{r}=\frac{1}{2}\left(\mu_{\sim}+\gamma_{2}\right)$. The space wave functions we use are, in the order in which
the cross-sections occur in (1),

$$
\begin{aligned}
& u_{f e}(k \cdot R)=(2 \pi)^{-3 / 2} \cos \underset{\sim}{k} \cdot R \\
& u_{f e}(k \cdot R)=(2 \pi)^{-3 / 2} \frac{\sin k R}{k R} \\
& u_{f e}(k \cdot R)=(2 \pi)^{-3 / 2} e^{-i \delta_{0}} \frac{1}{k R}\left[\sin \left(k R+\delta_{0}\right)-e^{-\eta R} \sin \delta_{0}\right] \\
&=(2 \pi)^{-3 / 2} \frac{u(k R)}{k R} \\
& u_{f_{0}}(k \cdot R)=(2 \pi)^{-3 / 2} \sin k \cdot R \\
& u_{\sim} \\
& u_{0}(\underset{\sim}{k} \cdot R)=(2 \pi)^{-3 / 2} j_{1}(k R) 3 i\left(\frac{\underset{\sim}{k}}{\frac{k R}{k R}}\right)
\end{aligned}
$$

the last applying to the last two cross-sections in (1). The form given for $u(k R)$ is one frequently used for this purpose. (See for example Salto et. al. (1952)). $\delta_{0}$, the nucleon nucleon scattering phase shift for $\ell=0$, and $\eta$ are chosen to int the effective range $r_{e}$ and the scattering length a which give the non-Coulomb proton-proton scattering in the triplet state, at low energies. The connection between $\mathrm{T}_{\mathrm{e}}$, $a$, and $\eta$ is obtained following the method of Bethe (1949). We introduce the following auxiliary functions,

$$
\begin{aligned}
& u(k R) \rightarrow \omega(k R) \text { as } R \rightarrow \infty \\
& u(k R) \rightarrow u_{0}(R) \text { as } k \rightarrow 0 \\
& u_{0}(R) \rightarrow \omega_{0}(R) \text { as } R \rightarrow \infty
\end{aligned}
$$

It $1 s$ convenient to uso the boundary conditions

$$
\begin{aligned}
& u(0)=u_{0}(0)=0 \\
& w(0)=w_{0}(0)=1
\end{aligned}
$$

so we work in Pact with

$$
u(k R)=\frac{\sin \left(k R+\delta_{0}\right)}{\sin \delta_{0}}-e^{-\eta R}
$$

We then have

$$
\begin{aligned}
& \omega\left(k R=\frac{\sin \left(k R+\delta_{0}\right)}{\sin \delta_{0}}\right. \\
& u_{0}(R)=1-\frac{R}{a}-e^{-\eta R} \\
& \omega_{0}(R)=1-\frac{R}{a}
\end{aligned}
$$

The effective range is given by

$$
r_{e}=2 \int_{0}^{\infty}\left(w_{0}^{2}-u_{0}^{2}\right) d R
$$

Using $a=-7.7 \times 10^{-13} \quad 0 \quad r_{e}=2,65 \times 10^{-13} \mathrm{om}$, we obtain

$$
\eta=1.28 \times 10^{13} \mathrm{~cm}^{-1}
$$

Because we must deal separately with odd and even final states we define $Q_{0}$ and $Q_{e}$ Where

$$
\begin{align*}
& \left.Q_{e}=\left.\int \frac{d R \alpha_{\sim}^{R}}{(2 \pi)^{3 / 2}} u_{f_{e}}^{*}(k . R) u_{i}(R) e^{-i D_{n}^{N}}\left\langle{ }^{3} X_{m}\right| T\right|^{3} X_{m}\right\rangle \tag{5}
\end{align*}
$$

The rom of $T \ln (3.2$.$) ann be expressed, recalling the definition$ of $A_{i}$ and $C_{i}$, as

$$
T=e^{i(\nu-q) \cdot \tilde{\sim}} T^{\prime}
$$

$$
\begin{align*}
& \left.+e^{-\frac{i}{2}(\nu-q) \cdot R}\left(\underset{\sim}{\sim} K_{22} \cdot \sigma_{2}+L_{22}\right)+e^{-i(\nu+q) \cdot R}\left(\underset{\sim}{K_{21} \cdot \sigma_{2}}+L_{21}\right)\right] \tag{6}
\end{align*}
$$

So

$$
\begin{align*}
& \left.Q_{0}=\left.(2 \pi)^{3 / 2} \delta(D-\nu+q) \int d R u_{\sim}^{*} u_{0}^{*}\left(k_{\sim} \cdot R\right) u_{i}(R)\left\langle{ }^{1} X_{0}\right| T^{\prime}\right|^{3} X_{m}\right\rangle \\
& \left.Q_{e}=\left.(2 \pi)^{3 / 2} \delta(D-\nu+q) \int d R R_{\sim} u_{e}^{*}\left(k_{\sim} R\right) u_{i}(R)\left\langle^{3} X_{m}\right| T^{\prime}\right|^{3} X_{m}\right\rangle \tag{7}
\end{align*}
$$

Now write

$$
\begin{equation*}
T^{\prime}=\left(\sigma_{1}+\sigma_{2}\right) \cdot T^{+}+\left(\sigma_{1}-\sigma_{2}\right) \cdot T_{\sim}^{-}+T^{0} \tag{3}
\end{equation*}
$$

and define the integrals

$$
\begin{align*}
& I_{\sim}^{+}=(2 \pi)^{3 / 2} \int d R u_{\sim}^{*} u_{0}^{*}(k \cdot R) u_{i}(R) I_{\sim}^{+} \\
& I^{-}=(2 \pi)^{3 / 2} \int d R u_{f_{e}}^{*}(k \cdot R) u_{i}(R) T^{-}  \tag{9}\\
& I=(2 \pi)^{3 / 2} \int d R u_{\sim} u_{0}^{*}\left(k_{\sim} \cdot R\right) u_{i}(R) T^{0}
\end{align*}
$$

Then

$$
\begin{align*}
& \left.\left|Q_{0}\right|^{2}=[\delta(D-\nu+q)]^{2}\left\langle\frac{\delta}{3}\right| \frac{I}{\sim}+\left.\right|^{2}+|I|^{2}\right\rangle_{A v} \\
& \left.\left|Q_{e}\right|^{2}=\left.[\delta(\underset{\sim}{D-\nu}+\underset{\sim}{q})]^{2} \frac{4}{3}\langle | I_{\sim}^{-}\right|^{2}\right\rangle_{A v} \tag{10}
\end{align*}
$$

the symbol $<>_{\text {or }}$ indicating the average over $\approx$. Putting this form into (2) and integrating over $D$ we get the partial cross-sections for a particular meson momentum $\underset{\sim}{9}$ and any
compatible $k$ as

$$
\begin{align*}
& \left.\frac{d \sigma}{d q}=\left.\frac{(2 \pi)^{-2}}{\hbar c} \int \frac{d k}{(2 \pi)^{3}} \delta\left(\frac{k^{2}}{M}-\frac{k_{0}^{2}}{M}\right) \frac{4}{3}\langle | \frac{T}{\sim}\right|^{-}\right\rangle_{A v} \\
& \left.\frac{d \sigma}{d q}=\frac{(2 \pi)^{-2}}{\hbar c} \int \frac{d k}{(2 \pi)^{3}} \delta\left(\frac{k^{2}}{M}-\frac{k_{0}^{2}}{M}\right)\left\langle\frac{\delta}{3}\right| \frac{I}{\sim}+\left.\right|^{2}+|I|^{2}\right\rangle_{A v} \tag{11}
\end{align*}
$$

for one of the even or odd cross-sections as the case may be. From (11) we have the results,

$$
\begin{aligned}
& \left.\frac{d \sigma}{d \omega(q) d \Omega_{q}}=\frac{2(2 \pi)^{-5} q \omega(q) M k_{0}}{3 \hbar c} \int d \Omega_{k}\langle | I_{\sim}^{I}-\left.\right|^{2}\right\rangle_{A v}, k=k_{0} \\
& \left.\frac{d \sigma}{d \omega(q) d \Omega_{q}}=\frac{(2 \pi)^{-i} q \omega(q) M k_{0}}{6 \hbar c} \int d \Omega_{k}\langle 8| \underset{\sim}{I}+\left.\right|^{2}+3|I|^{2}\right\rangle_{A_{0}, k}=k_{0}
\end{aligned}
$$

for these cross-sections.
The impulse approximation.
We now give the form of (12) in the impulse approximation case, with the nuclear interaction included in the final state. From the first part of (3.21)

$$
\begin{align*}
& +e^{-\frac{i}{2}(\nu-q) \cdot R} \sim\left\{\sqrt{\frac{1}{2}} E_{d} \sigma_{\sim} \cdot \varepsilon+\frac{1}{2} M_{d}\left(\frac{3}{2}\right)[2 V \cdot q \times \varepsilon+i \underset{\sim}{\sigma} \cdot \nu \times \varepsilon \times q]\right\} \tag{13}
\end{align*}
$$

It is convenient to use the abbreviations

$$
\begin{align*}
& E=E_{d} i \sqrt{2} \pi \\
& M+i N=M_{d}\left(\frac{3}{2}\right) \pi \tag{4}
\end{align*}
$$

From equations (1.20) and (1.21) we have

$$
\begin{align*}
& E=\frac{e f}{(\omega(q) v)^{1 / 2}} \\
& M+i N=E m_{1} e^{i \delta_{33}(q E)} \sin \delta_{33}(q E)\left(\frac{\nu \mu}{q^{2}}\right) \tag{15}
\end{align*}
$$

Here we write $m_{1}=\left(g_{n}-g_{n}\right) / 12 M f^{2}$ and include $\mu$ which was previously set equal to unity. To average over $£$ we use the following results, in which $凶_{q}$ is the angle $\underset{\sim}{q}$ makes with $\cup$

$$
\begin{align*}
& \left\langle(\underset{\sim}{\nu} \times \underline{\sim} \times q)^{2}\right\rangle_{A v}=\frac{\nu^{2} q^{2}}{2}\left(1+\cos ^{2}\left(\omega_{q}\right)\right. \\
& \langle(\underset{\sim}{\nu} \times \varepsilon \times q) \cdot \underset{\sim}{\varepsilon}\rangle_{A v}=\nu q \cos \left(\omega_{q}\right.  \tag{16}\\
& \left\langle(\underset{\sim}{\nu} \times \varepsilon \cdot q)^{2}\right\rangle_{A v}=\nu_{\sim}^{2} q^{2} \sin ^{2} \omega_{q}
\end{align*}
$$

Thus we obtain the results

$$
\begin{align*}
\left|I_{\sim}^{I}\right|^{2}= & K^{2}\left[\frac{1}{2}\left(1+\cos ^{2} \Theta_{q}\right)\left(\frac{\nu \mu}{q^{2}}\right)^{2} m_{1}^{2} \sin ^{2} \delta\right. \\
& \left.-2 \cos \omega_{q}\left(\frac{\nu \mu}{q^{2}}\right) m_{1} \sin \delta \cos \delta+1\right] E^{2}(g \pm)^{2}  \tag{17}\\
|I|^{2}= & K^{2} E^{2}\left(G^{+}\right)^{2} 8 \sin ^{2} \Theta_{q}\left(\frac{\nu \mu}{q^{2}}\right)^{2} m_{1}^{2} \sin ^{2} \delta
\end{align*}
$$

The form of $\xi^{ \pm}$depends on the particular cross-section we consider. For the even and odd parts of the plane wave we have respectively

$$
\begin{align*}
& g^{-}=I_{a_{1}}+I_{a_{2}} \text { and } g^{+}=I_{a_{1}}-I_{a_{2}} \text {, where } \\
& I_{a_{1}}=\int_{0}^{\infty} d R\left(e^{-\alpha R}-e^{-\beta R}\right) R j_{0}\left(R\left|K_{\sim}+\frac{1}{2}(\nu-q)\right|\right)  \tag{10}\\
& I_{a_{2}}=\int_{1}^{\infty} d R\left(e^{-\alpha R}-e^{-\beta R}\right) R j_{0}\left(R\left|K_{\sim}^{k}-\frac{1}{2}(\underset{\sim}{\sim}-q)\right|\right)
\end{align*}
$$

The value of $\mathcal{G}^{-}$for the $G$ wave with no interaction is

$$
\begin{equation*}
g^{-}=\frac{2}{k} I_{s}=\frac{2}{k} \int_{0}^{\infty} d R\left(e^{-\alpha R}-e^{-\beta R}\right) \sin k R j_{0}\left(R \frac{|v-9|}{2}\right) \tag{19}
\end{equation*}
$$

while for the distorted wave we have

$$
\begin{equation*}
g^{-}=e^{i X_{0}} \frac{2}{k} I_{e}=e^{i S_{0}} \frac{2}{k} \int_{0}^{\infty} a R\left(e^{-\alpha R}-e^{-\beta R}\right) u(k R) j_{0}\left(R^{\frac{|k-g|}{2}}\right) \tag{20}
\end{equation*}
$$

In the impulse approximation we do not need to consider the $l=1$ wave separately. If we define $X^{ \pm}=\int d \Omega_{k}\left(I_{a_{1}} \mp I_{a_{2}}\right)$ we have from (1) and (2)

$$
\begin{align*}
\frac{d r}{d q} & =\frac{(2 \pi)^{-2}}{\hbar c} \int d k k^{2} \delta\left(\frac{k^{2}}{M-}-\frac{k_{0}^{2}}{M}\right) \frac{4 k^{2} E^{2}}{3}\left\{E^{-}+2 E^{+}\right. \\
& \left.+m_{1}\left(c^{-}+2 c^{+}\right)+m_{1}^{2}\left(M^{-}+2 M^{+}+\frac{3}{4} M^{0}\right)\right\} \tag{11'}
\end{align*}
$$

where

$$
\begin{aligned}
& E^{-}=X^{-}+\frac{16 \pi}{k^{2}}\left(I_{e}^{2}-I_{s}^{2}\right) \\
& E^{+}=X^{+} \\
& M^{\mp}=\frac{1}{2} E^{\mp}\left(1+\cos ^{2} \Theta_{q}\right)\left(\frac{\nu \mu}{q^{2}}\right)^{2} \sin ^{2} S \\
& C^{\mp}=-2 E^{\mp} \cos \Theta_{9}\left(\frac{v \mu}{9^{2}}\right) \sin \delta \cos \delta \\
& M^{\circ}=8 E^{+} \sin ^{2} \Theta_{9}\left(\frac{\nu \mu}{q^{2}}\right)^{2} \sin ^{2} \delta
\end{aligned}
$$

and from (12),

$$
\begin{aligned}
& \frac{d \sigma}{d \omega(q) d \Omega_{q}}(e v e n)=\frac{2 k^{2} e^{2} f^{2} M k_{0} q}{3(2 \pi)^{5} \hbar c \nu}\left[E^{-}+m_{1} C^{-}+m_{1}^{2} M^{-}\right]_{k=k_{0}} \\
& \frac{d \sigma}{d \omega(q) d \Omega_{q}}(o d d)=\frac{K^{2} e^{2} f^{2} M k_{0} q}{6(2 \pi)^{5} \hbar c \nu}\left[8\left(E^{+}+m_{1} c^{+}+m_{1}^{2}\left|M^{+}+3 m_{1}^{2}\right| M^{0}\right]_{k=k_{0}}\right.
\end{aligned}
$$

The integrals $X^{ \pm}, I_{e}$ and $I_{s}$ are given in Appendix $A$, equations 1 to 3 .

## The multiple scattering correction.

The forms of $E^{ \pm}$and so on required when the correction is included are readily derived from the results of Appendix $B$. The integrals over $R$ are evaluated numerically. The fact that we only calculate the correction for states with $C=0$ or
$l=i$ simplifies the integration over angles.

## Kinematics.

If we specify $\underset{\sim}{\sim}$ and $\underset{\sim}{q}$, the magnitude but not the direction of $k$ is determined. The two nucleons will have quite different momenta relative to the meson which is scattered at them, while our result for $t_{\text {si }}$ in Part I ( (1.12 and (1.17)) is given in the centre of mass system of the meson and nacieon. We treat the nucleons as stationary when dealing with the multiple scattering. We may expect errors caused by this to be partially compensated for when we integrate $\Omega_{k}$ over all angles relative to $\underset{\sim}{q}$. We fix our value of $k$ with the energy $\delta$ - function in the laboratory system, for given and $\underset{\sim}{q}$, and then convert $\underset{\sim}{\sim}$ and $\underset{\sim}{q}$ to the centre of mass system of a photon and a free nucleon an do the calculation in this system. We present results in this system, referred to In Section 7 as the centre of mass system because our choice of values of $\underset{\sim}{q}$ is determined mainly by considerations of convenience in the calculation, and because we are not comparing our results with the data from a particular experiment.

## 

We are only concerned with general features of the crosssection in the impulse proximation. In the graphs IV and I wo show the cross-sections at $90^{\circ}$ and $30^{\circ}$ in the centre of mas system of a photon and a free nucleon, for 300 MeV . photons. The meson energy spectrum has a peak centred on tie enorey of the meson produced at this angle from a free nucleon, for the same photon energy. hs vo yo to forward angles this peak becomes narrower and its position is nearer the maximum meson energy. (In graph $\overline{\underline{V}}$ this peals is only seen on the curve which corresponds to a non-interactine final state).

There is a second peak near the maximum meson energy, consed by the flan state nucleon interaction for low values of $k$, as cen be seen from the curves in $\bar{V}$. At $90^{\circ}$ this second peal is unimportant but it dominates the spectrum at forward aneles. We refer to the two peals as the "free nucleon" peal and the "interaction" peak respectively.

## The multiple scattering correction.

The results here refer to the one pole approximation. The magnitude of the correction is different for the free nucleon and the interaction peaks of the impulse approximation meson energy spectrum. He have calculated the cross-section for the following cases

1. $\omega(q)=1.81 \mu c^{2}, \quad O_{q}=90^{\circ}$.
2. $\omega(q)=1.81 \mu c^{2}, \quad \omega_{q}=120^{\circ}$.
3. $\omega(q)=1.68 \mu c^{2}, \quad \omega_{q}=30^{\circ}$.


The I. A. cron-seclion fro $\Theta_{q}=90^{\circ}$. Yhe corso-section is in arhitrany units.

$$
\cdots \cdot \frac{d^{2} \sigma}{d w(q) d \Omega_{q}} \quad \cdots \cdots-\frac{d^{2} \sigma}{d w(q) d \Omega_{q}} \text { (even) }
$$



The I.A. cron-rection for $O_{q}=30^{\circ}$. Units twice those of IV. -.-. Sum of consecution for odd and even final states. —Con-section for even final state. ........ The same, inthout the nude interaction.

$$
\begin{aligned}
& \text { 4. } \omega(q)=1.68 \mu c^{2}, \omega \omega_{q}=90^{\circ} . \\
& \text { 5. } \left.\omega(q)=1.68 \mu c^{2}, \omega\right)_{q}=150^{\circ} . \\
& \text { 6. } \omega(q)=1.74 \mu c^{2}, \omega_{q}=30^{\circ} .
\end{aligned}
$$

 and $30^{\circ}$ cases. In table $I$ we show the results of cases 1 to 5 which lie on the free nucleon peak. In the column g giving $E^{ \pm}$ and so on (see ( 6.21 ) for the notation) the corrected values lie below the impulse approximation values. The units for these quantities are $10^{-26} \mathrm{~cm}$. The last column gives $\Delta$, the percentage correction to the cross-section. It will be sea that the correction can have different signs for terms associate with even and odd space parts of the final state. This, as well as the fact that $\Delta$ is small, makes this process less suitable than the process $\gamma+D \rightarrow \pi^{\circ}+D$ for studying the multiple scattering correction. From table $I$ we see that on the free nucleon peak the correction is about - $4 \%$ to $-8 \%$. This will not effect any conclusions drawn from the interpretation of results such as those of graph I in terms of the impulse approximation.

In table II we arrange the cases 1 to 5 in order of increasing value of the parameter $B+k$, where $k$ is the nucleon relative momentum and $B=\frac{1}{2}|\underset{\sim}{v}-q|$. This parameter. decreases as we go towards low values of $k$ and forward angles, that is towards the situation in which the interaction peak is important. The corrections $\Delta$ (even), $\Delta$ (odd) and $\Delta$, to $\frac{d^{2} \sigma}{d \omega(q) d \Omega_{q}}$ (even), $\frac{d^{2} \sigma}{d \omega(q) d \Omega_{q}}$ (odd) and $\frac{d^{2} \sigma}{d \omega(q) d l_{q}}$ respectively, are given in table I. The main feature of this table is the

| $\leqslant$ | $\frac{0}{\dot{\infty}}$ | $\begin{gathered} - \\ 0 \\ i \\ i n \\ 1 \end{gathered}$ | $0$ <br> r 1 | $\begin{aligned} & 0^{5} \\ & 6 \\ & i+ \\ & 1 \end{aligned}$ | $\begin{gathered} c \\ i s \\ 1 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\sum$ | $\begin{array}{ll}N & \infty \\ \sigma & N \\ \dot{H} & \dot{J}\end{array}$ | $n$ $M$ <br> $N$ $M$ <br> - $i$ | $\begin{array}{ll}m & \\ n & N \\ j & N \\ N & M\end{array}$ | $\begin{array}{ll}N & \Gamma \\ \cdots & \sim \\ i & i \\ \sim & i\end{array}$ | $\begin{array}{ll} \Omega & \pm \\ 0 & \beta \\ 0 & \beta \end{array}$ |
| $\pm$ | $\begin{array}{ll}0 & = \\ 0 & = \\ \dot{N} & \dot{N}\end{array}$ | $\begin{array}{ll}0 & \square \\ \cdots & \vdots \\ \cdots & \cdots\end{array}$ | $\begin{array}{cc}\infty & \infty \\ \pm & 0\end{array}$ | $\begin{array}{ll} \infty & n \\ c & 0 \\ \dot{N} & \dot{0} \\ \sim & N \end{array}$ | $\begin{array}{cc} - & \infty \\ 3 & 0 \\ 0 & n \\ i & -3 \end{array}$ |
| $t$ | $0 \quad \frac{18}{6}$ | $\begin{array}{ll} \pm & b \\ \therefore & \pm \\ \infty & j\end{array}$ | 0 0 <br> $-\cdots$ 0 <br> $\vdots$ $\frac{0}{1}$ | C $\quad \stackrel{\infty}{0}$ | $\begin{array}{cc}5 & 5 \\ 5 & \infty \\ 0 & \pm\end{array}$ |
| $\pm$ | $\begin{array}{ll}0 & \pm \\ \operatorname{N} & 0 \\ \dot{N} & \pm\end{array}$ | $\begin{array}{ll}\square \\ \sim & 6 \\ \sim & n \\ N\end{array}$ | $\begin{array}{ll}\infty & - \\ \sim & - \\ \sim\end{array}$ | $\begin{array}{cc}\Gamma & \infty \\ 0 & 0 \\ N & 0 \\ \sim & 0\end{array}$ | $\begin{array}{cc}-0 & - \\ \infty & 亠 \\ \infty & -\infty\end{array}$ |
| $\frac{1}{5}$ | $\begin{array}{ll} \pm & 0 \\ \dot{\sigma} & \dot{j}\end{array}$ | $\begin{array}{ll}- & + \\ = & +\end{array}$ | 0 $\Gamma$ <br> $I$ $\Gamma$ <br> -1 0 | $\begin{array}{ll} \infty & \infty \\ \vdots & \infty \\ + & \infty \end{array}$ | $\begin{array}{cc} c & + \\ 0 & \vdots \\ i & \dot{n} \\ j & i \end{array}$ |
| $\begin{aligned} & 1 \\ & e \end{aligned}$ | $\bigcirc \quad \begin{gathered}0 \\ 0 \\ \sim\end{gathered}$ |  | $\square$ 0 <br> 0 $j$ <br> $M$ $\dot{N}$ <br> 1 1 | $\cdots \quad \overline{0}$ | $\begin{array}{ll}n & 0 \\ 0 & 0 \\ 0 & i\end{array}$ |
| $\begin{aligned} & 1 \\ & 111 \end{aligned}$ | $\begin{array}{ll}0 & \dot{O} \\ \dot{\circ} & \dot{0} \\ + & N\end{array}$ | $\begin{array}{ll}0 & = \\ \cdots & \vdots \\ \pm & \pm\end{array}$ | $\begin{array}{ll}\infty & 0 \\ 0 & 0 \\ 0 & i n \\ + & N\end{array}$ | $\begin{array}{ll}N & \bar{N} \\ \therefore & \dot{N} \\ \cdots & \infty\end{array}$ | $\begin{array}{cc} \pm & + \\ 0 & 10 \\ 0 & 0\end{array}$ |
| $\underset{\sim}{\underset{\sim}{w}}$ | - | $\checkmark$ | N | - | 10 |


| CASE | 3 | 1 | 4 | 2 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $B+K\left(10^{13} \mathrm{~cm}\right.$ | 0.89 | 1.30 | 1.34 | 1.74 | 2.13 |
| $\Delta$ (EVEN) | $-19.7 \%$ | $-10.7 \%$ | $-0.3 \%$ | $6.2 \%$ | $-2.4 \%$ |
| $\Delta$ (ODD) | $5.1 \%$ | $-5.7 \%$ | $-6.2 \%$ | $-12 \%$ | $-6.9 \%$ |
| $\Delta$ | $-3.6 \%$ | $-8.1 \%$ | $-4.8 \%$ | $-5.7 \%$ | $-5.6 \%$ |

increase in $\Delta$ (even) as $B+k$ docreuses. Wov in casc 6 (see graph $\vec{V}$ ) $\Delta \fallingdotseq \Delta$ (even), so we calculato $1 A$ (evon) for thas case, and find it is - $22 \%$. It should be noted that the $30^{\circ}$ case is an extreme one as far as comparison with experiments detecting the meson is concerned. It corresponds to laboratory angle $24^{\circ}$, while the furthest forward angle used in the experinents compared by Hagermann et. al. (1957) is $26^{\circ}$. We conclude that while the correction is in general less than 10\% it can rise to $20 \%$ in the interaction peak at forward ancles. This seems reasonable if we recall that for elastic pion production the correction is large, as described in our account of Chappelear's work in Section 1, while the case of small $k$ is our nearest approach to an elastic process.

The question arises whether the correction to the interactio peak can affect the interpretation of the experimental results. In the work of Hagermann et. al. we notice first that the meson energy resolution is 15 leV . Assuming that this would be the same at the meson energies we consider, it covers in our $30^{\circ}$ results the range of corrections $-4 \%$ (case 3) to $-22 \%$ (case 6). This will have the effect of reducing the cross-section, as will the fact that a bremsstrahluag photon spectrum is used. hesons coming from the interaction peak for some photon energies, and from well off it for other photon energies, will be detected together. Since the pear is high at forward angles the correction may still approach $20 \%$ in on experinent detecting mesons with the energies we consider, at $30^{\circ}$. The interpretatio of such an experinent in terms of the impulse approxination
would, therefore, have to be comected, but the eifect would not be worth looking for as a vay of examins the mitepie scattering process. In the other wind of experiment mentioned in Section 1, in which the energy of one photon is measured, it would be possible in principle to exarnine low $k$ values separately However, in the work of Bandtel et. al. (1958) the accuracy is low, and besides they find it necessary to work with mesons produced at a large angle.

We may remark at this stage that the integrals (see Appendix B) which contain the functions $F_{2}(R)$ and $F_{5}(R)$ are increased by about $50 \%$ when these functions are replaced by $\hat{F}_{2}(R)$ and $\hat{F}_{5}(R)$, which are defined in Section 4. We have not carried out a full calculation with the $\hat{F}(R)$ for reasons given in Section 4, but mention this result because it differs from the results of Drell $\hat{a}$ Verlet (1955) whose model with a factorable potential gives a smaller correction than the one pole approximation. (See Section 1). Another dirference from their results concerns the importance of the double scattering, which gives a major part of their nultiple scatterIng effect. This corresponds in our case to photoproduction followed by one scattering. We camot evaluate, in our formalism, the effect of this process alone but if it were dominant the contribution to (3.19) from an odd number of scatterings would eive the greater part of the correction. We have evaluated $\Delta$ (even) in case 3 including only the integrals involving the "odd scattering" functions $F_{4}(R), F_{5}(R)$ and $F_{0}(R)$. (See Appendix B). We find that the even and odd scattorines ore of comparable importance.

Appendix A. Intervals used in the impulse approximation cross-section.
We give the values of the integrals $X^{ \pm}$, $I_{s}$ and ic which appear in Section 6, in the functions defined by (6.21). Writing $\quad \underset{\sim}{B}=\frac{1}{2}(\underset{\sim}{v}-\underset{\sim}{q})$ we have

$$
\begin{align*}
& x \pm=4 k^{2}\left\{\frac{1}{\left(\alpha^{2}+k^{2}+B^{2}\right)^{2}-4 k^{2} B^{2}}+\frac{1}{\left(\beta^{2}+k^{2}+B^{2}\right)^{2}-4 k^{2} B^{2}}\right\} \\
& \pm \frac{2 k}{B\left(\alpha^{2}+\beta^{2}+2 k^{2}+2 \beta^{2}\right)} \log \left\{\frac{\alpha^{2}+(B+k)^{2}}{\alpha^{2}+(B-k)^{2}} \quad \frac{\beta^{2}+(B+k)^{2}}{\beta^{2}+(B-k)^{2}}\right\} \\
& -\frac{2 k}{B\left(\beta^{2}-\alpha^{2}\right)} \log \left\{\frac{\alpha^{2}+(B+k)^{2}}{\alpha^{2}+(B-k)^{2}} \frac{\beta^{2}+(B-k)^{2}}{\beta^{2}+(B+k)^{2}}\right\} \\
& \mp \frac{k}{B\left(\alpha^{2}+B^{2}+k^{2}\right)} \log \left\{\frac{\alpha^{2}+(B+k)^{2}}{\alpha^{2}+(B-k)^{2}}\right\} \mp \frac{1}{B\left(\beta^{2}+B^{2}+k^{2}\right)} \log \left\{\frac{\beta^{2}+(B+k)^{2}}{\beta^{2}+(B-k)^{2}}\right\} \\
& I_{S}=\frac{1}{4 B} \log \left\{\frac{\alpha^{2}+(B+k)^{2}}{\alpha^{2}+(B-k)^{2}} \frac{\beta^{2}+(B-k)^{2}}{\beta^{2}+(B+k)^{2}}\right\}  \tag{2}\\
& I_{e}=\cos \delta_{0} I_{s}+\frac{\sin \delta_{0}}{2 B}\left[\tan ^{-1} \frac{B+k}{\alpha}+\tan ^{-1} \frac{B-k}{\alpha}\right.  \tag{3}\\
& \left.-\tan ^{-1} \frac{\beta+k}{\beta}-\tan ^{-1} \frac{\beta-k}{\beta}+2 \tan ^{-1} \frac{\beta}{\beta+7}-2 \tan ^{-1} \frac{\beta}{\alpha+7}\right]
\end{align*}
$$

$$
e=1
$$

We also give here the integral which appears in the $\ell=1$ impulse approximation cross-section. This has only to be used When multiple scattering is included. For this cross-section the function $\mathrm{g}^{+}$of (6.17) is

$$
g^{+}=6 \cos \left(\Theta_{k} \cdots \Theta_{B}\right) k I_{p}
$$



$$
\begin{aligned}
I_{p} & =\int_{0}^{\infty} d R R j_{1}(k R) j_{n} B R \cdot \theta^{-k k^{2}} e^{-\beta R} \\
& =\frac{1}{8 k^{2} B^{2}}\left[\left(\alpha^{2}+B^{2}+k^{2}\right) \log \frac{\alpha^{2}+(B+k)^{2}}{\alpha^{2}+(B-k)^{2}}-\left(\beta^{2}+\beta^{2}+k^{2}\right) \log \frac{\beta^{2}+(B+k)^{2}}{\beta^{2}+(B-k)^{2}}\right]
\end{aligned}
$$

 mut:

We give the results ratoon mo to be use in (6.11) to obtain the cross-section including the correction. The general forms of ${\underset{\sim}{2}}^{ \pm}$. I defined by (6.9) are

$$
\begin{align*}
& I=4 i\left[L_{1}{ }^{ \pm} \underset{\sim}{\nu} \times \underset{\sim}{\varepsilon} \cdot \underset{\sim}{q}+\underset{\sim}{\mathcal{V}} \times \underset{\sim}{\varepsilon} \cdot{\underset{\sim}{L}}^{+}\right] \tag{1}
\end{align*}
$$

In the impulse approximation $L \pm=0$, as can be seen from (6.13). From (1) we obtain the averages over

$$
\begin{aligned}
& \left.\left.\langle | I_{\sim}^{ \pm}\right|^{2}\right\rangle_{A S}=\nu^{2}\left\{\frac{1}{2} q_{x}^{2}+\frac{1}{2} q_{y}^{2}+q_{z}^{2}\right\}\left|L_{l}^{ \pm}\right|^{2}+\nu^{2}\left\{\frac{1}{2}\left|L_{x}^{ \pm}\right|^{2}+\frac{1}{2}\left|L_{y} \pm\left.\right|^{2}+\left|L_{z} \pm\right|^{2}\right\}\right. \\
& +\left|L_{2}^{ \pm}\right|^{2}+\nu L_{z}^{ \pm}\left(L_{2}^{ \pm}\right)^{*} \\
& \text { + complex conjugate } \\
& \text { - } q_{t} v L_{1}^{ \pm}\left(L_{2}^{ \pm}\right)^{*} \quad \text { + complex conjugate } \\
& +V^{2}\left\{\frac{1}{2} L_{x}^{ \pm} q_{x}+\frac{1}{2} L_{y}^{ \pm} q_{y}+L_{z}^{ \pm} q_{z}\right\}\left(L_{1}^{ \pm}\right)^{*}+\text { complex conjugate } \\
& \left.\left.\langle | I\right|^{2}\right\rangle_{A_{v}}=8 \int\left|L_{1}^{+}\right|^{2} \nu^{2}\left(q_{x}^{2}+q_{y}^{2}\right)+\nu^{2}\left(\left|L_{x}^{+}\right|^{2}+\left|L_{y}^{+}\right|^{2}\right) \\
& \text { + } \left.\nu^{2}\left(q_{x} L_{x}^{+}+q_{y} L_{y}^{+}\right)\left(L_{1}^{+}\right)^{*}+\text { complex conjugate }\right)
\end{aligned}
$$

If we denote $\frac{1}{2}(\underset{\sim}{v}+\underline{\sim}), \frac{1}{2}(\underset{\sim}{v}-\underline{\sim})$ by $\underset{\sim}{A}, \underset{\sim}{B}$ we have the following results in which we have used tin distorted $S$ wave or the $P$ wave final state wave functions as the case may be.

$$
L_{1}^{-}=\frac{2 K}{k}(N-i M)\left(I_{e}+I_{f A}-I_{f_{B}}\right) e^{i \delta_{0}}
$$

where $I_{e}$ is given by ( $A_{0}$ ) and

$$
\begin{aligned}
& I_{f A}=\int_{0}^{\infty} d R\left(e^{-\alpha R}-e^{-\beta R}\right) u(k R) F_{5}(R) j_{0}(R A) \\
& I_{f B}=\int_{0}^{\infty} d R\left(e^{-\alpha R}-e^{-\beta R}\right) u(k R) F_{2}(R) j_{0}(R B) \\
& L_{2}^{-}=\frac{2 k E}{k}\left[i I_{e}+\cos \left(\omega_{q}-\Theta_{B}\right) I_{g} B-\cos \left(\Theta_{q}-\Theta_{A}\right) I_{g A}\right] e^{i \delta_{0}}
\end{aligned}
$$

where

$$
\begin{aligned}
& I_{g A}=\int_{0}^{\infty} d R\left(e^{-\alpha R}-e^{-\beta R}\right) R u(k R) F_{4}(R) j_{1}(R A) \\
& I_{g B}=\int_{0}^{\infty} d R\left(e^{-\alpha R}-e^{-\beta R}\right) R u(k R) F_{1}(R) j_{1}(R B) \\
& L_{\sim}^{-}=\frac{2 k}{3 k}(N-i M)\left[q\left(I_{q B}-I_{q A}\right)+\underset{\sim}{n}(B) q I_{n B}-\underset{\sim}{\sim}(A) q I_{n A}\right] e^{i \delta_{0}}
\end{aligned}
$$

where

$$
\begin{aligned}
& \left.\begin{array}{l}
I_{q A} \\
I_{n A}
\end{array}\right\}=\int_{0}^{\infty} \alpha R\left(e^{-\alpha R}-e^{-\beta R}\right) u(K R) F_{G}(R)\left[\begin{array}{l}
j_{0}(R A) \\
j_{2}(R A)
\end{array}\right. \\
& \left.\begin{array}{l}
I_{q B} \\
I_{n} B
\end{array}\right\}=\int_{0}^{\infty} d R\left(e^{-\alpha R}-e^{-\beta R}\right) u(k R) F_{3}(R)\left\{\begin{array}{l}
j_{0}(R B) \\
j_{2}(R B)
\end{array}\right.
\end{aligned}
$$

and

$$
\begin{aligned}
& n_{x}(A)=-2 \sin \Theta_{A} \cos \left(\omega_{q}-\omega_{A}\right)+\cos \Theta_{A} \sin \left(\Theta_{q}-\Theta_{A}\right) \\
& n_{y}(\underset{\sim}{A})=0 \\
& n_{Z}(\underset{\sim}{A})=-2 \cos \left(\omega_{A} \cos \left(\Theta_{q}-\Theta_{A}\right)-\sin \Theta_{A} \sin \left(\Theta_{q}-\Theta_{A}\right)\right.
\end{aligned}
$$

with a similar form for $n(\beta)$.

$$
L_{1}^{+}=6(M+i N) K\left\{\cos \left(\Theta_{1}-\Theta_{B}\right)\left(I_{p}+I_{B B}\right)-\cos \left(\Theta_{1}-\Theta_{A}\right) I_{G A}\right.
$$

where $I_{p}$ is given by ( $A .4$ ) and

$$
\begin{aligned}
& I_{f A}=\int_{0}^{\infty} d R\left(e^{-\alpha R}-e^{-\beta R}\right) R_{j_{1}}(k R) F_{j}(R) j_{1}(A R), \\
& I_{B B}=\int_{0}^{\infty} d R\left(e^{-\alpha R}-e^{-\beta R}\right) R_{j_{1}}(k R) F_{2}(R) j_{1}(B R) . \\
& L_{2}^{+}=-k E\left[b \cos \left(\Theta_{k}-\Theta_{B}\right) I_{b}+i q\left(c(B) I_{c B}-c(A) I_{c A}+\alpha(\beta) I_{d R}-\alpha\left(R_{\sim}\right) I_{d A}\right)\right]
\end{aligned}
$$

where

$$
\left.\left.\begin{array}{l}
I_{C A} \\
I_{d A}
\end{array}\right\}=\int_{0}^{\infty} d R\left(e^{-\alpha R}-e^{-\beta R}\right) R^{2} j_{1}(1 \in R) F_{4}(R)\left\{\begin{array}{l}
j_{0}(A R) \\
j_{2}(A R)
\end{array}\right] \begin{array}{l}
I_{C B} \\
I_{d B}
\end{array}\right\}=\int_{0}^{\infty} d R\left(e^{-\alpha R}-e^{-\beta R}\right) R^{2} j_{1}(k R) F_{1}(R)\left\{\begin{array}{l}
j_{0}(B R) \\
j_{2}(B R)
\end{array}\right) .
$$

and

$$
\begin{aligned}
& c(A)=\cos \left(\Theta_{q}-\Theta_{A}\right) \cos \left(\Theta_{k}-\Theta_{A}\right)+\sin \left(\Theta_{q}-\Theta_{A}\right) \sin \left(\Theta_{k}-\Theta_{A}\right) \cos \left(\Phi_{k}-\Phi_{A}\right) \\
& \alpha(A)=-2 \cos \left(\Theta_{q}-\Theta_{A}\right) \cos \left(\Theta_{k}-\Theta_{A}\right)+\sin \left(\Theta_{Q}-\Theta_{A}\right) \sin \left(\Theta_{k}-\Theta_{A}\right) \cos \left(\Phi_{k}-\Phi_{A}\right)
\end{aligned}
$$

with similar forms for $c(\beta)$ and $d(\beta)$. Finally

$$
L^{+}=\frac{6 K_{g}}{5}(M+i N)\left\{h(A) I_{h A}-h(B) I_{h B}+\underline{P}(A) I_{e_{A}}-\underset{\sim}{l}(B) I_{e B}\right\}
$$

$$
\left.\begin{array}{l}
\text { where } \\
I_{\text {lA }}
\end{array}\right\}=\int_{0}^{\infty} d R\left(e^{-\alpha R}-e^{-\beta R}\right) R j_{1}(k R) F_{0}(R)\left\{\begin{array}{l}
j_{1}(A R) \\
j_{3}(A R)
\end{array} \begin{array}{l}
I_{n B} \\
I_{R B}
\end{array}\right\}=\int_{0}^{\infty} d R\left(e^{-\alpha R}-e^{-\beta R}\right) R j_{1}(k R) F_{3}(R)\left\{\begin{array}{l}
j_{1}(B R) \\
j_{3}(B R)
\end{array}\right.
$$

and

$$
\begin{aligned}
h_{x}(A) & =\cos \left(\omega_{k}-\omega_{A}\right)\left\{3 \sin \omega_{A} \cos \left(\Theta_{q}-\omega_{A}\right)+\cos \Theta_{A} \sin \left(\omega_{q}-\omega_{A}\right)\right\} \\
& +\sin \left(\omega_{k}-\omega_{A}\right) \cos \left(\Phi_{i_{c}}-\Phi_{A}\right) \cos \left(\omega_{q}-2\left(\omega_{A}\right)\right. \\
h_{y}(A) & =\sin \left(\omega_{k}-\omega_{A}\right) \sin \left(\Phi_{k}-\Phi_{A}\right) \cos \left(\omega_{q}-\omega_{A}\right)
\end{aligned}
$$

$$
\begin{aligned}
& h_{z}(A)=\cos \left(\omega_{k}-\omega_{A}\right)\left\{3 \cos \omega_{A} \cos \left(\omega_{q}-\omega_{A}\right)-\sin \omega_{A} \sin \left(\omega_{q}-\omega_{A}\right)\right\}^{64} \\
& +\sin \left(\hbar_{k}-\hbar_{A}\right) \cos \left(\Phi_{k}-\Phi_{A}\right) \sin \left(\xi_{q}-2 \varpi_{A}\right) \\
& l_{x}(A)=h_{X}(A)-5 \cos \left(\Theta_{\sim}-\Theta_{A}\right) \sin \Theta_{A} \cos \left(\Theta_{l_{C}}-\Theta_{A}\right) \\
& l_{y}(A)=h_{y}(A) \\
& l_{z}(A)=h_{Z}(A)-5 \cos (\Theta)_{q}-\left(\Theta_{A}\right) \cos (\Omega)_{A} \cos \left(\Theta_{I_{c}}-(A)_{A}\right)
\end{aligned}
$$

with similar forms for $h(\beta)$ and $l(B)$. Using these results the evaluation of $\int d \Omega_{k}\left\langle\mid I \neq I^{2}\right\rangle_{A v}$ and $\left.\left.\int d \Omega_{k}\langle | I\right|^{2}\right\rangle_{A v}$ from (2) is straightforward.







References.
A.M. Baldin, Il Nuovo Cimento 3, 569 (1953).
K.C. Bandtel, W.J. Frank and R. Madey. Phys.iev. 109,2117 (1950).
E.H. Bellamy, P. Palit and R.W.P. McWhirter, Proc.Phys. Soc. 70A, 763 (1957.
H.A. Bethe, Phys. Rev. 76,18 (1949).
H.A. Bethe and F. De Hoffmann. Mesons and FLelds Vol. 2 (1955). B.H. Bransden and R.G. Moorhouse. Nuclear Physics 6,310 (1953). K.A. Brueckner, Phys. Rev. 39,834 (1953a).

Phys. Rev. 90,715 (1953b).
K.A. Brueckner and K.M. Watson. Phys. Rev.92,1023 (1953).
S.T. Butler. Phys. Rev. 87,1117 (1952).
J.M. Cassels. Proceedings of the 7th Rochester Conference, $\begin{array}{r}\text { Part } 2 \text { (1957). }\end{array}$
J. Chappelear. Phys. Rev. 99,254 (1955).
G.F. Chew. Phys. Rev. 80,196 (1950).

Phys. Rev. 93,341 (1954a).
Phys. Rev. 94,1755 (1954b).
G.F. Chew and H.W. Lewis. Phys. Rev. 84,779 (1952).
G.F.Chew and F.E. Low. Phys. Rev. 101,1570 (1956a).

Phys. Rev. 101,1579 (1956b).
G.F. Chew and M.L. Goldberger. Phys. Rev. 87,778 (1952).
G.F. Chew and G. - C. Wick. Phys. hev. 85,636 (1952).
E.U. Condon and G.H. Shortley. Theory of Atomic Spectra, p. 71
S.D. Drell and L. Verlet. Phys. Rev. 99,849 (1955).
N.C. Francis. Phys. Rev. 89,766 (1953).
M. Gell - Mann and K.M. Watson. Annual Reviews of IUclear Science 4,219 (1954).
D.C. Hagermom, K.M. Crowe and R. W. Friedman. Phys. Rev. 106,018 (2957).
N. Kemmer, Proc. Camb. Phil. Soc. 34,354. (1938).
M. Lax and H. Feshbach. Phys. Hev. 83,509 (1952).
E.W. Laing. Proc. Phys. Soc. 71,932 (1958).
E.W. Laing and R.G. Moorhouse. Proc. Phys.Soc. 70A,629 (1957).
I.L. Lebow, B.T. Feld, D.F. Frisch and L.S. Osborne. Phys. Rev.
B. Lippmann and J. Schvinger. Phys.Rev. 79,469 (1950).
S. Machida and T. Tamura. Prog. Theor. Phys. 6,572 (1951).
J. Moravscik. Phys.Rev. 104,1451 (1957).
J. Orear, Phys.Rev. 100,280 (1956).
S. Penner. Phys.Rev. 105,1113 (1957).
R.M. Rockmore. Phys.Rev. 105,256 (1957).
J.W. Rosengren and N. Baron. Phys.Rev. 101,4,10 (1956).
Y. Saito, Y. Watanabe and Y. Yamaguchi. Prog. Theor. Phys.7,103
K.D.C. Stoodley. Ph.D. Thesis, Glasgow (1957).
V.R. Velibekov and V.A. Meshcheryakov. Doklady Akad. Nauk S.S.S.R. 105,941 (1955).
K.M. Watson. Phys.Rev. 39,575 (1953). Phys.Rev. 95,228 (1954).
R.S. White, M.J. Jacobsohn and A.G. Schultz. Phys.Rev. 83,836

G - C. Wiek. Rev. Mod. Phys. 27,339 (1955).

## Part $1 x_{0}$

The production of $K$ mesons in proton-proton
collisions near threshold.


Contrintla

Summary.

1. Introduction. Page 69.
2. Two models for the process. ..... 74.
3. The potentials and wave functions for the ..... 86. initial and final atates.
4. The matrix element and crossmsection. ..... 94.
5. Results and discussion. ..... 102.
References ..... 105.


SUYARY. Part II is Gevoted to the process $p+p \rightarrow p+\Lambda^{c}+K^{+}$ near threshold. The relevant entier wort is reviened. Tvo models are presented, one of when treats the interaction of the $K$ meson with the two baryons as a small perturbation, while giving a phenomenological treatment of the interaction of the pion field with the baryons. The other uses the formulation of meson theory in terms of physical states. Both are extensions of methods used by other authors for the problem of $\pi$ meson production. the models give different descriptions of the initial state, and the interpretation of these descriptions is a dondful point in this work. In each model the final state consists of a free $K$ meson and a proton and $\Lambda^{\circ}$ whose interaction is described by a potential. The operator Inducing transitions from the initial to the final state is the interaction Lamiltonian for a nucleon and a pseudoscalar $\Lambda^{0}+K^{+}$system, in a static source theory. For the calculations this is generalised to allow for nucleon recoil. The calculation of the cross-section is based on an approximate description of proton-proton scatterine in the appropriate energy region, in which the elastic part of the scattering is entirely diffraction scattering associated with the inelestic part. With this approximation the second model has a plane wave initial state. Tho potential in the initial state in the first model is complex. The cross-sections obtained with the two models differ rreatly. A feature of both wodels is the importance of $S$ wave mesons associated with the nucieon recoil term/

## term in the transition operator. Direct comparison with experinent is not possible at present.

```
%
```





















## 1. Introduction.

In the study of heavy mesons and hyperons considerable progress has been made in the last few years. The main foctors contributing to this have been, on the experimental side, the construction of hirh enerry machines producing these particies In lare quantities, and in the theory the reconntion of the Importance of the strangeness quantwn number. (Gell-12mn(1955)) This made it possibie to fit the qualitative features of the production and decay of these particles into a simple schere. The two main lines of theoretical enquiry have been on the one hand attempts to find symotries underlying the Gellmann scheme (see for example dMspagnat and Prentki (1958)), and on the other the use in this new field of the techniques developed in pion physics. Recent work of this neture includes weak coupling and Tam-Dancoff calculations of the scattering of $K$ mesons by nucleons (Ceolin and Taffara $1957 \mathrm{a}, \mathrm{b}$ ), applications of dispersion relations (for example hathews and Salan (195)), and the study of hyperon-nucleon forces by methods developed for nucleon-nucleon forces (wichtenberg and ioss (1957,1953)).

We shall be concerned with the production of $K$ mesons in proton-proton colilisions, which has been studied experimentaily at Berkeley and Brookhaven. (See for example Baumel et.al. (1957) and Lea et. al. (1958). ) By conservation of charse and strangeness a proton-proton coilision can lead to these final states,

$$
K^{+}+\Lambda^{0}+1 \quad K^{+}+\Sigma^{0}+p
$$

$$
K^{0}+\Sigma^{+}+p \quad K^{+}+\Sigma^{+}+n
$$

the threshold in the first case being 1.5 Bey, and in the other three 1.70 BeV . There are no other final states poscific containing one $K$ meson and two baryons. e intend to confine our attention to the energy region in which only the first process can occur. This is too near threshold for comparison with experiment to be possible at present. The lowest energy for which a result is available is 1.95 BeV . (Lea et.ai.(1958) ) and that result is based on one event. However, experience with pions suggests that experiments near threshold will be necessary before we can learn much about the production process.

The previously published theoretical work on $K$ meson production in nucleon-nucleon collisions falls into three groups. Several papers have appeared which study, well above threshold, the relative abundance of various $K$ meson and pion production modes, using the statistical methods of Fermi (1950) and Landau (1953). References to this work will be found in the paper of Barashenkov et.al. (1958). Then there are papers by Henley (1957), Costa and Pele (1953), and Feldman and iatthevs (1958) whit h deal with the region acer threshold, and discuss features of the process which are not affected by detailed assumptions concerning the mechanism of production. They obtain relations between the cross-sections for different isotopic spin states, examine the behaviour to be expected for different assignments of the parity of the strange particles, and study the effect of the final state interaction of the hyperon and the/
the nucieon. They do not ettempt to derive absolute venoes of the cross-sections. wo shall discuss below various points treated in these papers.

Thirdly there are papers by Barshay (1956) and Peasiee (1957) giving models which are intended to reproduce the marked forward-backward peaking or the $K$ meson angular distribution in the centre of mass system of the two protons, which was a feature of the early experimental work (Osher(1956)). It shoule be noted that this rarled anisotropy is not apparent in more recent experiments. ( See the discussion in Section 5.) In peaslee's model one mucleon is considered as dissociated into a $K$ mesonhyperon system, the $K$ neson being removed in a "pick-up" process by a pion in the cloud of the other mucleon. It is a rough phenomenological treatment, while Barshay gives a field theoretical (weak coupling) treatment of a similar process. The graph corresponding to this is


Baphay has also studied the process of $K$ meson production When apion is incident on a nucleon, for example in the process


This will have a forward peak in the $K$ meson angular distribution, which is in contradiction to the observed behaviour (Dalitz(1957), page 187). In addition to the disagreament with experiment there is a theoretical argument against Barshay's approach. The absorption of a pion by a $K$ meson depends on the existence of two types of $K$ mesons with difforent parity, $\theta$ and $\tau$ say, so that we can have $\theta \longrightarrow \tau+\pi$. Hather than having such a paxity doublet the $K$ neson is now considered to have a definite parity. we have looked for a process which does not involve this absorption process, ad which nirgt be suitable for calculating the absolute value of the cross-section near threshold. If we examine the work wich has been done on pion production in proton-proton collisions we find that one of the most successful nethods has been the phenomenological one (Geffen(1955) and Lichtenberg(1955)) in which we take the niatrix element ( $f|\cup| i$ ) of an opator $U$, which creates one meson, between initial and final states $|i\rangle,|f\rangle$ of two nucleons scattered in appropriate potentials. Much of the success of the method has, of course, been due to its leading itself to the inclusion of the scattering of the meson by one of the nucleons. This turns out to be the dominating feature of the process, because of the resonance in $\pi$ meson nucleon scatterine. (See Lichtenberg(1957), burney(1958) and handenstam(1953)). The corresponding scattering of the $K$ meson by the rinal state proton/
proton shonia not bo so inportant, shaee $K$ eson seatranat nucleons correspones to a veair populsive inderaetion(bequeg section 4.5 ) . In general repulsive interactions in final states have less effect on the behaviour of cross-sections than attractive interactions of the same strength. (Vatson(1952))

If we look for a similar model in our problem ve require data on proton-proton elastic and inelastic scattering in this
energy region, in order to obtain a poteatial for our initial state. The frullest treatment aveilable is the analysis by Fowler et.al. (1956) of their experinental results at $0.3 \mathrm{BeV} ., 1.5$ BeVand 2.75 BeV.. They use a geometrical optical model of an absorbing (and almost black) sphore, of radius $0.93 \times 10^{-13}$ cn at all energies, and with absorption coefficient $K$ (see Bection 3) with the value $4.3 \times 10^{13} \mathrm{~cm}^{-1}$ at $0.6 \mathrm{BeV} .3 .7 \times 10^{13} \mathrm{~cm}^{-1}$ at 1.5 BeV ., and $2.7 \times 20^{-1} \mathrm{~cm}$ at 2.75 BeV . They fit the elastic and Inelastic total fross-sections, and the differential elestic cross-section, fairly vell. In this model the distinction between scattering with and without spin flip is lost. A difficulty in the description of the initial state is the small amount of information available and the possibility of moting quite different analysis of the experimentai data. (See for example Ito et.al. (1958)). We find in fact that the description of the initial state is the main source of difficulty and ambiguity in this approach to our problem.

## 2. Two models for the process.

 of the strange particles, which are in agreement with their observed behaviour. See for example Dalitz(1957), Walker (1958). The $K$ inesons have spin 0 , the hyperons spin t. Because of the associated production of a $K$ meson together with a hyperon the parity which is defined is that of the system $\lambda^{\circ} K$ or $\sum K$ relative to a nucleon, which we take to be negative. be adopt the convention that the hyperons have positive parity relative to nucleon, and refer to the $K$ meson as psendoscalar. In isotopic spin space the $\Lambda^{\circ}$ is a scalar, the nucleon, $K$ meson and $\square$ are spinors,

$$
N=\binom{n}{p} \quad K=\binom{K^{+}}{K^{0}} \quad \because=\binom{\Xi^{0}}{\Xi^{-}}
$$

and the pion and $\sum$ are vectors

$$
\vec{\pi}=\left[\begin{array}{l}
\pi_{1} \\
\pi_{2} \\
\pi_{3}
\end{array}\right] \quad \sum_{\sim}=\left[\begin{array}{l}
\Sigma_{1} \\
\Sigma_{2} \\
\Sigma_{3}
\end{array}\right]
$$

49
Here for example $\pi^{ \pm}=\bar{u}_{1} \mp i \pi_{2}, \pi^{0}=\pi_{3}$.

We use the hamiltonian $H=H_{0}+h_{\pi}+h_{k}$, or

$$
\begin{align*}
& H_{0}+h_{\pi}(\bar{N} N)+h_{\pi}(\bar{\Lambda} \Sigma)+h_{\pi}(\bar{\Sigma} \Lambda)+h_{\pi}(\bar{\Sigma} \Sigma)  \tag{1}\\
& +h_{\pi}(\bar{\Sigma} \Xi)+h_{k}(\bar{N} \Lambda)+h_{k}(\bar{\Lambda} N)+h_{k}(\bar{N} \Sigma)+h_{k}(\bar{\Sigma} N) \\
& +h_{k}(\bar{\Lambda} \Xi)+h_{k}(\bar{\Xi} \Lambda)+h_{k}(\bar{\Sigma} \Xi)+h_{k}(\bar{\Sigma} \Sigma)
\end{align*}
$$

Here for example $N$ destroys and $\bar{N}$ creates a nucleon. The free field hamiltonian $M_{0}$ is the sum of the kinetic energy $T$ of the baryons and the energy of the meson fields,

$$
\begin{equation*}
H_{0}=T+\sum_{p} a_{p}^{+} a_{p} w(p)+\sum_{q} p_{q}^{+} b_{q} L o(q) \tag{2}
\end{equation*}
$$

Here $a_{p}^{\dagger}\left(a_{p}\right)$ creates (destroys) a pion of momentum $p$, and $f_{q}{ }^{+}\left(f_{q}\right)$ a $K$ meson of momentum $q$. The parts of $h_{1}$ and $h_{k}$ which we shall finally require are

$$
h_{k}(\bar{\Lambda} N)+h_{k}(\bar{N} \Lambda)=\sum_{j} \sum_{q}\left(b_{q}^{\dagger} \bar{\Lambda} U_{j q}^{\circ t} N+b_{q} \bar{N} U_{j q}^{0} \Lambda\right)
$$

where

$$
\begin{equation*}
U_{j q}^{0}=\sqrt{\frac{4 \pi}{2 \omega(q)}} \frac{i f_{\Lambda}^{0} u(q)}{\mu_{k}} \sigma_{j} \cdot q e^{i \underline{q} \cdot p_{j j}} \tag{3}
\end{equation*}
$$

and

$$
h_{\pi}(\bar{N} N)=\sum_{\lambda} \sum_{p} \sum_{j}\left(a_{p}^{\lambda} \bar{N} V_{j p \lambda}^{0} N+a_{p}^{\lambda} \dagger \bar{N} V_{j p \lambda}^{\bullet} \dagger N\right)
$$

where

$$
V_{j p \lambda}^{0}=\sqrt{\frac{4 \pi}{2 \omega(p)}} \frac{i f^{0} v(p)}{\mu_{\pi}} \tau_{j \lambda} \underset{\sim}{\sigma}{ }_{j} \cdot \underset{\sim}{p} e^{i p_{\sim} \cdot \sim_{j}}
$$

$\sim_{j}^{2}$ is the position of moleon $j$ and 1 sotovic spin operetors of moleon $j$ - $f_{\Lambda}^{\prime}, f^{*}$ are the unrenormalised coupline constants, $\mu_{k}$ and $\mu_{\pi}$ the meson masses, and $u(q)$, $v(p)$ are momentum cut-off functions. The other torms of the interaction liamiltonian have sivilar forms, with
appropriate changes for the different behaviour of the fields in isotopic spin space. In (3) we use static source theory for $h_{k}$ and $h_{\pi}$. We can expect this to be less useful for $h_{K}$ thean for $h_{\pi}$ because of the ereater mass of the $K$ meson. we define $U_{j q}, V_{j p \lambda}$ as being the same as $U_{j q}^{0}, V_{j p \lambda}^{0}$ but with the renomalised coupling constants $f_{n}, f$ replacing $f_{n}^{0}, f^{0}$, A static source treatment of the pion and $K$ meson fields is discussed by Amati and Vitale(1957).

We shall describe two ways of dealing with the problem of th associated production of a $K$ meson and a $\Lambda^{\circ}$, one of wich leads to the natrix element $\sum_{j=1}^{2}\left(\psi_{f}^{(-)}, U_{j 9}^{\circ \top} \psi_{i}^{(+)}\right)$the other to $\left.\sum_{i=1}^{2}\left(\psi_{f}^{(-)}\right) U_{19}^{\top} \psi_{i}^{(+)}\right)$.
The final state $\psi_{f}^{(-)}$is dealt with in the same way in the two methods, but the initial stites are quite different. The first method treats the interaction term $h_{k}$ as a small perturbation, while giving a phenomenological treatment of the interaction of the baryons with the pion field. We introduce as in Section 1 of Part $I$ the wave function $\Psi^{(+)}$which satisfies

$$
\begin{equation*}
\Psi^{(+)}=\left(1+\frac{1}{a} T\right) \Phi=\left\{1+\frac{1}{a-h_{\pi}-h_{k}}\left(h_{\pi}+h_{k}\right)\right\} \Phi \tag{1}
\end{equation*}
$$

$\Phi$ being an elscratute ot $H_{n}$, an $a=t-H_{0}+i z$ g es define the matrix $\Omega$ by $54=\Psi^{*}$, so that notiveen different eigenstates $\Phi_{a}, \Phi_{b}$ we have

$$
\begin{equation*}
\Omega=\frac{1}{a} T \tag{5}
\end{equation*}
$$

We take $\Phi$ as a state of two protons, and examine the part of $\Omega$ which can lead to states containing one $K$ meson and two baryons, but no pion. We use the notation $D_{n} \Omega, D_{k} \Omega$ and $D_{K}^{+} \Omega \quad$ for the parts of $\Omega$ leading from $\Phi$ to states having no pions, no $K$ mesons, and one $K$ meson respectively. We thus require

$$
D_{\pi} D_{K}^{+} \Omega
$$

- From (4)

$$
\begin{equation*}
\Omega=1+\frac{1}{a-h_{\pi}-V_{k}}\left\{h_{k}+V_{k}+h_{\pi}+h_{k} \frac{1}{a-h_{\pi}} h_{\pi}\right\} \tag{6}
\end{equation*}
$$

where $V_{K}=h_{k} \frac{1}{a-h_{\pi}} h_{K}$. Therefore

$$
\begin{align*}
D_{\pi} D_{K}^{+} \Omega & =D_{\pi} D_{K}^{+}\left\{\frac{1}{a-h_{\pi}-V_{K}} h_{K}\left(1+\frac{1}{a-h_{\pi}} h_{\pi}\right)\right\}  \tag{7}\\
& =D_{\pi}\left\{\left(D_{K} \frac{1}{a-h_{\pi}-V_{K}}\right) h_{K}\left(1+\frac{1}{a-h_{\pi}} h_{\pi}\right)\right\}
\end{align*}
$$

that we are taking $h_{k}$ as a shall perturbation. When we do this we ca. wite $h_{k}=h_{k}(\bar{\Lambda} N)+h_{k}(\overline{\Sigma N})$. There are two kinds of process described by the operator

$$
D_{\pi}\left\{\frac{1}{a-h_{\pi}}\left(h_{k}\left(\bar{\Lambda}_{N}\right)+h_{k}(\overline{\Sigma N})\right)\left(1+\frac{1}{a-h_{\pi}} h_{\pi}\right)\right\}
$$

One kind are described by the part

$$
\begin{equation*}
\left(D_{\pi} \frac{1}{a-h_{\pi}}\right)\left(h_{K}(\overline{\lambda N})+h_{K}(\overline{\Sigma N})\right) D_{\pi}\left(1+\frac{1}{a-h \pi} h_{F}\right) \tag{8}
\end{equation*}
$$

This operator can be reduced by the method of Brueciener and Watson (1953) to a form containing the "potentials" $v_{i}$ and $U_{f}$,

$$
\begin{equation*}
\frac{1}{a-v_{f}}\left(h_{K}(\bar{\Lambda} N)+h_{K}(\bar{\Sigma} N)\right)\left(1+\frac{1}{a-v_{i}} v_{i}\right) \tag{9}
\end{equation*}
$$

$$
\frac{1}{a}\left(1+v_{f} \frac{1}{a-v_{f}}\right)\left(h_{K}(\bar{a} N)+h_{K}(\bar{\Sigma} N)\right)\left(1+\frac{1}{a-v_{i}} v_{i}\right)
$$

if we consider only (8) we have, from (5),

$$
\begin{align*}
T_{f i} & \left.=\left(\Phi_{f}\right)\left(1+v_{f} \frac{1}{a-v_{f}}\right)\left(h_{k}(\bar{\wedge} N)+h_{K}(\bar{\Sigma} N)\right)\left(1+\frac{1}{a-v_{i}} v_{i}\right) \Phi_{i}\right) \\
& =\left(\psi_{f}^{(-)},\left[h_{K}(\overline{\Lambda N})+h_{K}(\bar{\Sigma} N)\right] \psi_{i}^{(+)}\right) \tag{10}
\end{align*}
$$

where $\psi_{i}^{(+)}\left(\psi_{f}^{(-)}\right)$is scattered by $V_{i}\left(V_{f}\right)$ and has outgoing (incoming) scattered part.
logical potential for two protons, and a proton-hyperon systems, respectively. The latter vil correspond to pion exchanges only, and will allow for such a process as

$$
\begin{equation*}
\Lambda^{0}+p \rightarrow \Sigma^{0}+p \tag{11}
\end{equation*}
$$

Lichtenberg and Ross (1957) give such a potential. Feicman and Matthews (1958) emphasise the importance of the coupling of $\Lambda^{\circ} \beta$ and $\sum N$ states. Lichtenberg and Mos give an effective range and scattering length based on the solution of a pair of couple equations for $\Lambda^{\circ} p$ scattering, which allow for virtual transitions to a $\Sigma N$ state, below threshold for the real process (11). By using their result we caa allow for the coupling of the $\Lambda^{0} p$ and $\Sigma N$ systems, but not for the production off the energy sheji of a $\Sigma$, which is scattered and transformed to a $\Lambda^{\circ}$. However. we notice that the potentials $V_{\Lambda \Sigma}$ of inchtenberg and hos for the process (11) are much less than those for simple $\Lambda^{\circ} p$ scattering. It is thus consistent with the use of their data to approximate to (10) by the form

$$
\begin{equation*}
\left(\psi_{f}^{(-)}, h_{K}(\overline{\Lambda N}) \psi_{i}^{(+)}\right) \tag{10}
\end{equation*}
$$

In which $\psi_{f}^{(-)}$is a $\Lambda^{0} p$ state. The/
 Well above the threchola for the poduetion of reel plonso so
$V_{i}$ can not be iacutipiea mith da ordinary potential. Vi as construoted by tho mothod of Bruechnes and ebson is Mermitis only when a real pion cannot be produced. re ideatiey $V_{i}$ With a complex potentlal which will meproduce the elestio scattering and inelamtic suattering, the latter being almost entirely pion production neve the $K$ meson threshold. The Inedagtio sonttering in this mocel is a result of absorption Dy the imaginais pert of the potential. The protone not aboozood an give rise to $K$ meaons.

The other type of oontribution to $\quad D_{\pi} D_{k}+S_{2}$ corresponding to such graphs as

on not be dealt with in this method, altnough we might hope to include the second bype by penommalising the coupling conatant. whe aftuation nere is rather lise that of section 2 in Part $I$, In whioh we suore such proceases as

and taise the interaction with the radiation field, $H_{r}$, as a manll pertuxbetion. Triking the pirst order in $h$ is of cource mach Loan ILsely to be a good approximetion then in the cene of $H_{r}$.

A Pomelly similar treatment of pion production (Aitken ct. a. (2954) ) leads to

$$
\begin{aligned}
D_{\pi}^{+} \Omega & =\left(D_{\pi} \frac{1}{a-V_{\pi}}\right)_{h_{\pi}} \\
& =\frac{1}{a-v} h_{\pi}
\end{aligned}
$$

with similar notation to that used above. There is no ractor to the right of $h_{1}$ because only the pion field is consideret. $V$ can be separoted into a part giving the nucleon-mucleon potential and a part giving the interaction of the plons with the nucleons. This is treated by considering only the graphs whion contribute to resonance scattering, the simplest of which is


Muitipie dottexing is not considered. As pointed out in Sectior 1 we have no similar reason for pleaing out ony perticuls set of graphs. It will do noticed that this treatment of pion
protudion does not Ia g to the phenonenologich method，which hae a nucleon－wacheon interaction in the initial abate．
 formulation of memnon theory in tomas of physio 1 atateg． （Wick（1955））．The method is that used by Ifohtenberg（1955） to introduce the phenomenological theory of pion productions and aims at avoiding the trouble caused in the first method by the processes not indued in（7）．It is convenient to calculate the matrix element for the reverse process．

$$
\Lambda^{0}+k^{+}+p \rightarrow p+p
$$

Let $\Psi^{(+)}$be the physical state of a proton and $\Lambda^{0}$ with energy $E=T+\Delta M$ ，$\Delta M$ being $M_{\Lambda}-M_{p}$ ，satisfying the condition that ito scattered part is outgoing．$\Psi_{q}^{(+)}$satisfies the same condition and represents the physical state of a proton and a $\Lambda^{\circ}$ with the same energy，together with a $K$ meson of momentum $q$ ，at infinity．we define $\Psi_{S}$ by

$$
\begin{equation*}
\Psi_{q}^{(+)}=\epsilon_{q}^{t} \Psi^{(+)}+\Psi_{s} \tag{12}
\end{equation*}
$$

together 明th the boundary conditions on $\Psi^{(+)}$and $\Psi_{9}^{(+)}$． We have

$$
\begin{equation*}
H\left(e_{q}^{\top} \Psi^{(+)}+\Psi_{s}\right)=(E+\omega(q))\left(e_{q}^{\dagger} \Psi^{(t)}+\Psi_{s}\right) \tag{23}
\end{equation*}
$$

New

$$
\begin{align*}
& H P_{q}^{+} \Psi^{(+)}=b_{q}^{+} H \Psi^{(+)}+\left[H, \ell_{q}^{+}\right] \Psi^{(+)} \\
& =b_{q}^{+} E \Psi^{(t)}+b_{q}^{+} w(q) \Psi^{(+)}+\left(U_{1 q}^{0}+U_{2 q}^{0}\right) \Psi^{(t)} \tag{14}
\end{align*}
$$

It is gean at this stage that we encounter no complications caused by the presence of the pion field, since $\mathrm{G}_{\mathrm{q}}{ }^{\dagger}$ commutes with $a_{p}$ and $a_{p}^{\dagger}$. From (13) and (14) we have $\left(U_{19}^{0}+U_{2 q}^{0}\right) \Psi^{(+)}+H \Psi_{s}=(E+\omega(q)) \Psi_{S}$ or recall) ing the boundary conditions

$$
\begin{equation*}
\Psi_{s}=\frac{1}{E+w(q)-H+i \varepsilon}\left(U_{1 q}^{0}+U_{2 q}^{0}\right) \Psi^{(+)} \tag{15}
\end{equation*}
$$

Wow expand the fight hond side of (15) in tomas of the amplete eft of functions $\Psi_{n}^{(-)}$with incoming scattered parts.

$$
\Psi_{s}=\sum_{n} \Psi_{n}^{(-)} \frac{\left.\left(\Psi_{n}^{(-)}\right)\left(U_{19}^{0}+U_{2 q}^{0}\right) \Psi^{(+)}\right)}{E-\omega(q)-E_{n}+i \varepsilon}
$$

It in particaler $\Psi_{m}^{(-)}$is the tate of two protons we have the matrix element for the process $K^{+}+\Lambda^{0}+p \rightarrow p+p$ in the tom

$$
\begin{equation*}
T=\left(\Psi_{m}^{(-)},\left(U_{19}^{0}+U_{2 q}^{0}\right) \Psi^{(+)}\right) \tag{16}
\end{equation*}
$$

We go fron tha to the following form for the drect process

$$
\begin{equation*}
T=\left(\psi_{f}^{(-)},\left(U_{19}^{\top}+U_{2 q}^{+}\right) \psi_{i}^{(+)}\right) \tag{17}
\end{equation*}
$$

In which $\psi_{i}^{(+)} \psi_{f}^{(-)}$repronent respectively a bare two proton state and a bure $\Lambda^{0}+$ proton state. Here me asaune thet the traneltion trom phyeleal two particle states to bore states 19 mede by renomainsation an for singie paitiole states, togethon mith the une or a phenonenokogicel potontial for the initiol and tinal statos.

The potentic 2 an the final state has to conpegpond to the effeot of the exdnage of pione and $K$ mesons betwecn the $\Lambda^{\circ}$ and the proton. Hohtenberg and sose (1557) are able to obtain adequete agreenent win the deta on hyperragents (nucleas synteme with a $\Lambda^{0}$ bound to severgl nuclcons) by using only the pion exchenges. Thelr later results (Lichten berg and isoes (2958)) whon they thelude $K$ mebon orchanger, are consistent with the ascumption that these are less important than pion exchangen, te thererore to the sene potential for the innl state as in our flatet model. Beanse of the fact that tie creation and amshilution
operators for the tho friends commie, we have for pion production tho result

$$
T^{\lambda}=\left(\psi_{2 N}^{-\theta},\left(V_{1 p \lambda}^{+}+V_{2 p \lambda}^{+}\right) \psi_{i}^{(+)}\right)
$$

In which $\psi_{i}^{(t)}$ is the same state as before. The description of the initial state is than quite different from that of the Fret model, in which we cannot have transitions from $\psi_{i}{ }^{(t)}$ to states containing a pion. We suggest the the way to obtain a suitable potential for the initial state in the second model wald be, if this were possible, to separate from the proton-proton elastic scattering the part which is not diffraction scattering corresponding to the inelastic scattering, and look for a potential giving this part. This cannot be done from tho date of Fowler et. al. (1956. An exceptional cause which can be treated is that in which all the elastic scattering is diffraction scattering and $\psi_{i}{ }^{(+)}$an be taken as a plane move. If we could make a reasonable attempt to find $\Psi_{i}^{(t)}$ in a more general case it is clear that the second model of this section mould be preferable to the siret.
3. The potential on d wave functions for initial una sine state

To adopt tho 11 mot mol of cotton 2 , and mate use of the recant of yow nor ot. m. as mentioned in the intrometion. Calculating the phase shifts for the three lowest values of from the optical model we look for complex melts which mill give the same phase shifts. A different well must be found for encl value of $l$. In section 4 we give our recons for only using; $e=0,1,2$. The radius $R$ of the absorbing sphere of Fowler et.el. is taken as the mean radius of the potential. while interpolation of their values of $K$ gives $K=3.6 \times 10$ at 1.75 BeV. , the energy at which we work. The phase shift is given by

$$
\begin{equation*}
\delta_{e}=\frac{1}{2} i K s_{e}=\frac{1}{2} i K\left(k_{0}^{2} R^{2}-\left(\ell+\frac{1}{2}\right)^{2}\right)^{1 / 2} K_{0}^{-1} \tag{1}
\end{equation*}
$$

for momentum $k_{0}$. (See Fermbach et.al. (1949).) We find that for the first three partial waver $\eta_{e}=e^{2 i \delta_{e}}=e^{-K s_{e}}$ is small enough to let us approximate by taking $\eta_{e}=0$. The error In doing this is less than the effect of taring wells of different napes which give the sene phase shifts. Correspond ing to this simplified age of model 1 of section 2 , we have the apodal ane e of model 2, brady described, ta winch the initial abate is a plane wave. Te cen expect the assumption that $\eta_{e}=0$ to be more misleading in model 2 than in model 1.

15 data on elacibe and inelastic sextenting were available at tho exact energy required it mould bo better not to use the absorbing sphere mode but to deter nine the (complex phase shift rom the dato end find wells which will give these phase shifts. The wort of anita (1956) for 1 Bed. suggests that the phase shift analysis bond not give a unique result. The use of schrodinger's equation with a potential $V(N)$ at such high energies is of doubtful value in any cage, so refinement in dotemaniag the well are probably wasted.

The condition $\eta_{e}=0$ can be satisfied by a variety of potentials. For $\quad l=0$ we have examined the effect os using afferent forms of potential. We have also looked at approximate methods mich would permit us to use a well with a diffuse boundary row any - Te require an analyticel solution of the wave equation for each $l$ because we hove to find the well by trial and error. The methods are given by Femiroviki (1956). The for of the potential is taken to be

$$
V(\nu)=-V_{0}(\rho+i) f(\nu)
$$

where

$$
\begin{aligned}
f(r) & =1 \quad r \leqslant r_{0} \\
& =f\left[\alpha\left(\mu-r_{0}\right)\right] \quad r>r_{0} \\
& \rightarrow 0 \text { as } r \rightarrow \infty
\end{aligned}
$$

Tho internal and extemal solutions are fitted at $P=r_{0}$.

$$
\begin{equation*}
\left.\frac{1}{r} \frac{d x_{i n}}{d r}\right|_{r=r_{0}}=\left.\frac{1}{r} \frac{d x_{\operatorname{ext}}}{d r}\right|_{r=r_{0}} \tag{2}
\end{equation*}
$$

The form of the external solution is

$$
x_{e}=p^{-1 / 2} u_{e}(r) H_{l+\frac{1}{2}}^{(2)}\left(k_{0} r\right)
$$

(nth $u_{e}(r) \rightarrow 1$ as $r \rightarrow \infty$. Here $H_{e+\frac{1}{2}}^{(2)}\left(k_{0}\right)$ is Hanker's function of the third kind, with asymptotic for
$\left(k_{0} r\right)^{-1 / 2} \exp \left\{-i\left(k_{1} r-e_{\pi} / 2\right)\right\}$. The Schrodinger equation Leads to this equation for le $(N)$

$$
\begin{equation*}
\frac{d^{2} u e}{d x^{2}}+\frac{2 \frac{d}{d x}\left\{x^{1 / 2} H_{l+\frac{1}{2}}^{(2)}(x)\right\}}{x^{1 / 2} H_{e+\frac{1}{2}}^{(2)}(x)} \frac{d u e}{d x}+\frac{V_{0}}{k_{0}^{2}} f\left(\frac{x_{\alpha}}{k_{0}}\right)(\rho+i) u_{e}=0 \tag{3}
\end{equation*}
$$

in which we wite $x=k_{0} r$. One of the approximate methods is a quasi-claseleal one which requires for its validity that $V_{0}<k_{0}^{2}$. Wen we use this method however we obtain a value $>k_{0}^{2}$. In the second method (3) 13 solved by a succession of approximations, the first of which consists of setting $u e=1$ in the third term. The parameter detombintag the convergence of the roes is $k_{0} / \alpha$ end our value of $k_{0} \quad$ is so large that be require a large $\alpha$, and therefore a well which in abbot square, so for geneses $l$ we have simply used a square
well. We have compered the square well result with e rounded well preadult for $C=0$, an analytic solution of Schrodinger equation being readily obtained in that case. For the square well $v_{0}$ and the mean radius $R$ are the some.

$$
\begin{aligned}
V & =-V_{0}(\rho+i) \quad r \leqslant R \\
& =-x_{0}^{2} k_{0}^{2}(e+i) \\
V & =0, \quad r>R
\end{aligned}
$$

have the internal solution fe $(r x)$ here $x=X_{1}+i X_{2}$,

$$
\begin{aligned}
& x_{1}^{2}-x_{2}^{2}=\left(1+x_{0}^{2} \rho^{2}\right) k_{0}^{2} \\
& 2 x_{1} x_{2}=x_{0}^{2} k_{0}^{2}
\end{aligned}
$$

The boundary condition (2) $1 s$ equivalent to $f_{e}(i n t)=f_{e}$ (ext) where

$$
f_{e}(i n t)=1+\frac{X R j_{e}^{\prime}(X R)}{j_{e}(X R)}
$$

and for $\eta_{\rho}=0$,

$$
f_{e}(e x t)=1+\frac{k_{0} R h_{e}^{(2)^{\prime}}\left(k_{0} R\right)}{h_{e}^{(2)}\left(k_{0} R\right)}
$$

$j e^{(2)}$ is the boierical Bench function of the first ind and $h_{e}^{(2)}\left(l_{0} r\right)$ the spherical Handel function corresponding to $H_{e+k_{2}}^{(2)}\left(k_{0} r\right)$. For $f_{e}(\dot{m} t)$ ne have the results (Feshbach et. al. (1954))

$$
\begin{aligned}
& f_{0}=X R \cot (X R) \\
& f_{l}=\frac{X^{2} R^{2}}{l-f_{l-1}}-l
\end{aligned}
$$

Waling the ae results we find the values of $x_{0}$ and $P$ which satisfy $f_{e}(i n t)=f_{e}(e x t)$. At incident proton anergy 2.75 BeV , these parameters axe found to be

$$
\begin{array}{lll}
l=0 & x_{0}=.73 & e=.66 \\
l=1 & x_{0}=.65 & e=-.61 \\
l=2 & x_{0}=.74 & \rho=.25
\end{array}
$$

The imaginary parts of the potentials are similar but the real
 ( 1.58 BeV .) which are

$$
\begin{array}{lll}
l=0 & x_{0}=.76 & \rho=.85 \\
l=1 & x_{0}=.70 & \rho=-.4 \\
l=2 & x_{0}=.75 & \rho=.5
\end{array}
$$

wo oe that the variation with energy $1 s$ mall for the imaginary part but large for the real part.

For a wooded well we take the form (scott (2954)

$$
V(r)=-\frac{V_{0}}{2}(\rho+i)\left\{1-\tanh \frac{r-R}{2 b}\right\}
$$

Where we $R=10^{-13} \mathrm{~cm}, G=k_{0}^{-1}$, and again write

$$
V_{0}=x_{0}^{2} k_{0}^{2} \quad \text { - The wave number tends to } k_{0}
$$

as $r \rightarrow \infty$ and as $\quad v \rightarrow 0$ it approaches $X=x k_{0}=$ $k_{0} \sqrt{\frac{E+V_{0}}{E}}$ for sufficient iv Large $G$. Schrodinger's -quation 4 a

$$
\frac{d^{2} x_{0}}{d r^{2}}+k_{0}^{2}\left\{\frac{x^{2}+1}{2}-\frac{x^{2}-1}{2} \tanh \frac{(r-1)}{2} k_{0}\right\} X_{0}=0
$$

Where we have taken $10^{-13} \mathrm{~cm}$ as unit length. Let $Z=\exp (r-1) k_{0}$. The equation is equivalent to this equation for $F=z^{-a} \chi$. a being a complex consent,

$$
(1+z) z \frac{d^{2} F}{d z^{2}}+(1+2 a)(1+z) \frac{d F}{d z}+\left[\left(a^{2}+1\right)+\frac{a^{2}+x^{2}}{z}\right] F=0
$$

By netting $a^{2}+x^{2}=0$, we have a hypergeometric equation. This has two pairs of solutions (Thittalser and matron (1952))

$$
\vec{\chi}_{\text {int }}=z^{i x} F(i x+i, i x-i ; 1+2 i x ;-z)
$$

$$
\stackrel{\rightharpoonup}{x}_{i n t}=z^{-i k} F(-i x+i,-i x-i ; 1-2 i x ;-z)
$$

which tend, as $r \rightarrow 0$, to $\exp ( \pm i \times(r-1))$ and

$$
\begin{aligned}
& \vec{x}_{\text {ext }}=z^{i} F\left(i x-i ;-i x-i ; 1-2 i ;-\frac{1}{z}\right) \\
& {\underset{x}{x}}_{\text {ext }}=z^{-i} F\left(-i x+i, i x+i ; 1+2 i ;-\frac{1}{z}\right)
\end{aligned}
$$

which tend, as $\Gamma \rightarrow \infty$, to $\exp \left( \pm i k_{0}\left(r_{-1}\right)\right)$. Using formulae Inking thee two pairs of solutions we fit ${\underset{\chi}{\chi}}^{-}$ext to $\vec{x}_{\text {int }}-\dot{x}_{\text {int }}$. Having found $x_{0}$ and $p$ in this way we obtain the wave function by numerical integration, using method VII of Fox and Gooditin (1949), of the coupled equations for $R{ }^{2} X$ and In $X$ obtained from (4). The values of $x_{0}$ and $\rho$ are $x_{0}=1.235, \rho=.705$.

Writing $x_{0}\left(k_{0} r\right), x_{1}\left(k_{0} r\right), x_{2}\left(k_{0} r\right)$ for the three wave functions obtained using the square wells, we have the initial state nave function ta the form

$$
\left[X_{0}\left(k_{0} r\right)-5 \chi_{2}\left(k_{0} r\right) P_{2}\left(k_{0} i^{2} / k_{0} \mu\right)\right] X_{0}^{0}+3_{i} X_{1}\left(k_{0} r\right)\left(k_{0}{ }^{\sim} / k_{0} r\right) X_{1}^{m}
$$

In With $X_{0}^{e}$ and $X_{1}{ }^{\circ}$ are the singlet and triplet pin fractions. Now wenches the final state, in when we uso the results of hichtenberg and hoes as diseased in lection 2. They have an athautive interaction between time $\Lambda^{\circ}$ and the proton, stronger in the ${ }^{1} S$. state than in the ${ }^{3} S_{1}$ state. We shall see below that we only require the 3 S , state. Their potentials hove repulsive cores but they give an equivalent effective range and scattering length. we have therefore ignored the core and used the wave function

$$
\begin{equation*}
\frac{u(k r)}{k r}=\frac{e^{-i \delta}}{k r}\left[\sin (k r+\delta)-e^{-\eta r} \sin \delta\right] \tag{6}
\end{equation*}
$$

where the parameters are obtained in the way described in Part I, section G. Here $\underset{\sim}{k}$ is the relative momentum of the $\Lambda^{0}$ and the nucleon.
4. The matrix element and cross section

We confine our attention to $S$ states of the $\Lambda^{0} p$ system, and $s$ and $p$ states of the $K$ meson. When we make the spin and parity assignments of Section 2 the possible transitions are

$$
\begin{aligned}
& 3 P_{1} \rightarrow{ }^{3} S_{1} s \\
& { }^{3} P_{0} \rightarrow S_{0} s \\
& S_{0} \rightarrow{ }^{3} S_{1} p \\
& D_{2} \rightarrow{ }^{3} S_{1} p
\end{aligned}
$$

For the transition operator $U$ we use the form (Geffe n(1935))

$$
\begin{equation*}
U=\sum_{j=1}^{2}\left\{\alpha \underset{\sim}{\sigma_{j}} \cdot \nabla_{j} e^{-i g \cdot N_{j}^{j}}+\beta e^{-i \underline{q} \cdot \nabla_{j}} \sigma_{j} \cdot \nabla_{j}\right\} \tag{1}
\end{equation*}
$$

Here $\alpha$ and $\beta$ are complex parameters. This is a generalisation of the form

$$
u=\sum_{j=1}^{2} U_{j q}^{\dagger}
$$

obtelned from the theory of section 2, which scores jonas to

$$
\begin{equation*}
\alpha=\sqrt{\frac{4 \pi}{2 \omega(q)}} \frac{f_{\Lambda} u(q)}{\mu_{K}}, \beta=0 \tag{2}
\end{equation*}
$$

The term with coefficient $\beta$ is intended to allow us to take account of the nucleon recoil. The form of $\beta$ given in the work of Thew eta. (1952) on pion production is $\beta=\frac{\alpha \omega(q)}{M_{p}}$
$M_{p}$ being the proton mess. This suggests that wi use

$$
\beta=\alpha \mu_{k} / M_{p} \quad \text { or } \quad \beta \doteq \alpha / 2 \quad \text {. To 111ustrate }
$$

the affect of altering $\beta$ we give results with $\beta=\alpha / 2, \alpha / 4, C$.胃ith the operator (1) the transition $3 P_{0} \rightarrow{ }^{\prime} S_{0} s$ cannot occur. So with the final state interaction which we use only the Less atrengly interacting $\quad \Lambda^{0} p$ state is involved. With a scalar meson the $' S_{0} \rightarrow$ ' $S_{0} s$ transition could occur. Writing

$$
\underset{\sim}{R}=\frac{1}{2}\left(\Gamma_{1}+r_{2}\right), \underset{\sim}{N}=r_{1}-r_{2}
$$

and retaining only the first two terms in the expansion of $e^{-i g \cdot j_{j}}$ in partial waves we have

$$
\begin{align*}
u & =e^{-i q \cdot \frac{R}{r}}\left[i \alpha\left(\sigma_{1}-\sigma_{2}\right) \cdot q j_{0}\left(q \frac{N}{2}\right)-\beta j_{0}\left(q_{2}^{2}\right)\left(\sigma_{1}+\sigma_{2}\right) \cdot \nabla\right.  \tag{3}\\
& \left.+3 i \beta j_{1}\left(q \frac{\rho}{2}\right) \frac{q \cdot \tilde{\sigma}}{q}\left(\sigma_{1}-\sigma_{2}\right) \cdot \nabla\right]
\end{align*}
$$

Here the second term gives en $S$ meson, the first term contributes to the transition ${ }^{\prime} S_{0} \rightarrow 3 S_{1} p$, and the last to both the transitions giving $p$ mesons.

She initial state is giver by (3.5) sac the final state by $e^{i K \cdot R} u(k r) / K r$, where $\underline{\leq}$ is the momentum of the baryon centre of mas, and $u(k r)$ is given by (3.6). We therefore have

$$
(f|U| i)=\delta(K+q)\left(Q_{s}+Q_{t}\right)
$$

where

$$
\begin{aligned}
& Q_{S}=\int \frac{d_{0}}{(2 \pi)^{3}} X_{1}^{m} \frac{u(k r)}{k r}\left[i \alpha\left(\sigma_{1}-r_{2}\right) \cdot q j_{0}\left(q_{2}\right)+3 i \beta \frac{q \cdot}{q} j_{1}\left(q \frac{N}{2}\right)\left(\sigma_{1}-\sigma_{2}\right) V\right. \\
& \quad \times\left[X_{0}\left(k_{0}\right)-5 \chi_{2}\left(k_{0} r\right) P_{2}\left(k_{0} \cdot \sim / k_{0} r\right)\right] X_{0}^{0}
\end{aligned}
$$

ain

$$
Q_{t}=\int \frac{w_{j}}{(2 \pi)^{3}} X_{1}^{m} \frac{u(k r)}{(k r)} \dot{j}_{0}\left(\frac{q}{2} \frac{\beta}{2}\right) \beta\left(\sigma_{1}+\sigma_{2}\right) . \nabla\left[3 i \frac{k_{0} \cdot}{k_{0} r} X_{1}\left(k_{0} r\right)\right] X_{1}^{m}
$$

Hence when we gur and average over aping and evaluate the angular integrations we have

$$
\begin{align*}
& (2 \pi)^{6}|(f|u| i)|^{2}=[\delta(k+q)]^{2}\left(\frac{4 \pi}{k}\right)^{2}\left\{2|\beta|^{2}\left|I_{1}\right|^{2}\right.  \tag{4}\\
+ & \left.\left|\alpha \underset{\sim}{q} I_{0}+\frac{\beta \underset{\sim}{q}}{q} I_{0}^{\prime}-\frac{\beta I_{2}}{q}\left(\underset{\sim}{x} q_{x}+\underset{\sim}{y} q_{y}+2 z \underset{\sim}{q} q_{z}\right)\right|^{2}\right\}
\end{align*}
$$

Here $x \underset{\sim}{y} z \quad$ are unit vectors with $z \quad$ advection that of the indigent proton and the integrals I axe defined ae

$$
\begin{align*}
& I_{0}=\int_{0}^{\infty} d r u(k r) j_{0}\left(\frac{q^{r}}{2}\right) X_{0}\left(k_{0} r\right) \\
& I_{0}^{\prime}=\int_{0}^{\infty} d r u(k r) r j_{1}\left(q \frac{p}{2}\right) \frac{d}{d r} X_{0}\left(k_{0} r\right)  \tag{5}\\
& I_{1}=\int_{0}^{\infty} d r u(k r) j_{0}\left(q^{p}\right)\left\{2 X_{1}\left(k_{0} r\right)+r \frac{d}{d r} X_{1}\left(k_{0} r\right)\right\} \\
& I_{2}=\int_{0}^{\infty} d r u(k r) j_{1}\left(q^{p}\right)\left\{3 X_{2}\left(k_{0} r\right)+r \frac{d}{d r} X_{2}\left(k_{0} r\right)\right\}
\end{align*}
$$

The relative importance of the various terms in (4) can be Illustrated by the for of the integrals (5) for a plane wave initial tate. Then $x_{e}\left(k_{0} r\right)=2 j e\left(k_{0} r\right)$ and we have

$$
\begin{align*}
& I_{0}=2 \int_{0}^{\infty} d r u(k r) r j_{0}\left(q \frac{q^{2}}{2}\right) j_{0}\left(k_{0} r\right)=I_{1} / k_{0} \\
& I_{0}^{\prime}=-2 k_{0} \int_{0}^{\infty} d r u(k r) r j\left(q \frac{N}{2}\right) j_{1}\left(k_{0} r\right)=-I_{2} \tag{6}
\end{align*}
$$

Now $k_{0}$ is Large $\left(k_{0}=4.59 \times 10^{13} \mathrm{~cm}^{-1}\right.$ at 1.75 BeV.$\left.\right)$ so we my expect the result to be dominated by the ${ }^{3} S_{1} s$ final state. if $\beta$ is appreciable.

It is convenient to define the function $S(q)$ by

$$
\begin{equation*}
|(f|\cup| i)|^{2}=\left(\frac{1}{2 i i}\right)^{6}|\alpha|^{2}[\delta(k+q)]^{2} S(q) \tag{7}
\end{equation*}
$$

$$
\frac{d^{2} \sigma}{d \underset{\sim}{k} d q}=\frac{\left(2_{i}\right)^{-4}}{\hbar v} \delta\left(E_{i}-E_{f}\right) \frac{f_{n}^{2}}{\mu_{k}^{2}} \frac{S(q)}{\omega(q)}
$$

Here $v$ is the velocity of tho incident proton. In performing the integration over dk we treat the Anal state non-relativisticaily and use the Kinetic energies $T_{q}$ and $T_{k}$ as variables. Let Tm denote the maximum energy available in the centre of mass system, that is the total energy in the centre of mass system at 1.75 BeV . less the corresponding quantity at threshold. $T_{m}=61.5 \mathrm{MeV}$. The energy of the meson and the centre of mass of the baryons is

$$
\left\{1+\frac{\mu_{k}}{M_{10}+M_{1}}\right\} T_{q}=1.24 T_{q}
$$

So we have

$$
\frac{d^{2} \sigma}{d T_{q} d \Omega a q}=\frac{(2 \pi)^{-4}}{v \hbar} \frac{f_{1}^{2}}{\mu_{k}^{2}} 2\left(m \mu_{k}\right)^{3 / 2} \int d{Q_{k} d T_{k} S(q) \frac{T_{k} / 2 T_{q}}{\mu_{k}+T_{q}} \delta\left(T_{m}-T_{k}-124 q\right)(8)}_{\mu_{k}}^{v}
$$

$m$ is the reduced mass, $m=\frac{M p M \Lambda}{M p+M \Lambda}$. When we integrate over $T_{q}$ we obtain the differential cross-section in the form

$$
\frac{d \sigma}{d \Omega_{q}}=\frac{4(2 \pi)^{-3}}{v \hbar} \frac{f_{1}^{2}}{\mu_{k}^{2}}\left(m \mu_{k}\right)^{3 / 2}\left(P+R \cos ^{2} \Theta\right)
$$

and the total aross-section

$$
\sigma=\frac{2}{\pi^{2} v \hbar} \frac{\xi^{2}}{\mu_{k}^{2}}\left(m \mu_{k}\right)^{3 / 2}\left(P+\frac{1}{3} R\right)
$$

which, using the coupling constant $g_{\wedge}$ instead of $f_{\lambda}$, is

$$
\begin{equation*}
\sigma=\frac{2}{\pi^{2} U \hbar} g_{\Lambda}^{2}\left(P+\frac{1}{3} R\right) \frac{M_{p}^{3 / 4} M_{\Lambda}^{3 / 2} M_{k}^{3 / 2}}{\left(M_{p}+M_{\Lambda}\right)^{3 / 2}} \tag{9}
\end{equation*}
$$

In view of our crude approximations in the initial state we only look for approximate values of af and So we evaluate the quantities $F$ and $S$ in the following mane (see Watson (1952) and Henley (1957) )which is strictly Inconsistent with the form of potential (with a repulsive core) on which our final state data are based. We evaluate $\mathrm{C} / \mathrm{g}$ for a particular $q=q_{0}$. We use the value corresponding to $T_{f}$ $=40 \mathrm{MeV}$. From (4) $S\left(q_{0}\right)$ has the form

$$
\begin{equation*}
S\left(q_{0}\right)=A\left(q_{0} \cos ^{2} \Theta\right)+B\left(q_{0}, \cos ^{2} \theta\right) q_{0}+C\left(q_{0}\right) q_{0}^{2} \tag{10}
\end{equation*}
$$

forever in (4) we have un integral 1 . with a factor 5 . We write it as $q_{0}(T, 9)$, the factor $q_{0}$ represent Ing the behaviour of $f\left(90^{2}\right)$ as $r$. Thus (10) is replaced by

$$
\begin{equation*}
S\left(q_{0}\right)=a\left(q_{0}\right) \cdot\left[G\left(q_{0}\right)+\cos \theta c\left(q_{0}\right) q_{0}\right. \tag{11}
\end{equation*}
$$

Then defining $\psi_{f}(0,9)$ to be the value of the $n^{\circ} p$ wave function at $r^{\prime}=0$ for the value of $k$ corresponding to $q$, and $F\left(T_{q}\right)$ to be the ratio $\psi_{f}(0,9) / \psi_{f}\left(0,9_{0}\right)$ we assume that the form of the meson energy spectrum is reasonably well represented by

$$
\begin{equation*}
S(q)=\left\{a\left(q_{0}\right)+\left[b\left(q_{0}\right)+\cos ^{2} \Leftrightarrow c\left(q_{0}\right)\right] q^{2}\right\} F\left(T_{q}\right) \tag{12}
\end{equation*}
$$

The integral over $T_{9}$ is

$$
\int_{0}^{T_{m} / 1.24} a T_{q} T_{q}^{1 / 2} \frac{\left(T_{m}-1.24 T_{q}\right)^{1 / 2}}{\mu_{k}+T_{q}} S(q)
$$

and from (12) we obtain

$$
\begin{aligned}
& P=a\left(q_{0}\right) I+G\left(q_{0}\right) J \\
& R=c\left(q_{0}\right) J
\end{aligned}
$$

Where

$$
\begin{equation*}
I=\int_{0}^{T_{m} / 1-24} T_{q} T_{q}^{1 / 2} \frac{\left(T_{m}-1 \cdot 24 T_{q}\right)^{1 / 2} F\left(T_{q}\right)}{\mu_{k}+T_{q}} \tag{13}
\end{equation*}
$$


and

$$
J=\frac{2}{\mu_{k}} \int_{0}^{T_{m} / 1 \cdot 24} d T_{q} T_{q}^{3 / L} \frac{\left(T_{m}-1 \cdot 24 T_{q}\right)^{1 / 2}}{\mu_{k}+T_{q}} F\left(T_{q}\right)
$$

In the graph wo ahow the form or the energy spectrum of $S$ mesona (the integiand in $I$ ) with and without the final atate interaction. In the paper or Costa and Feld (1953) tha problen is treaten to if the diatribution wes mach nore strongly peaked, in fict co is $T_{q}=T_{m} / 1 \cdot 24$. Thas is alearly unrealistio fox the sinal $3 S_{1} s$ state. Fineily it should be amphasised that our arude approximations in the inat. steto conld rendily be improved if it were worth while, by taiking wave functiona canoistent with a repalsive core, using melativistic sincmetios, and evalueting $S(q)$ sor various 9 to get the energy spectrum Also as movledge of the $\Lambda^{0} p$ and $K p$ interections increases further improvement will be posaible. On the other hend becase of the very high energies involved the description of the initial state by a potential may be inherentiy misleading.
5. Resutbonadajscussion.

The values of the integrals (4.5) for our square wells, at 1.75 BeV incident proton kinetic energy and $T_{9}=40 \mathrm{MeV}$. are

$$
\begin{aligned}
& I_{0}=-0.913+i 0.756 \quad 10^{-15} \mathrm{~cm} \\
& I_{0}^{\prime}=0.272+i 0.45310^{-15} \mathrm{~cm} \\
& I_{1}=-4.644+i 4.19210^{-15} \mathrm{~cm} \\
& I_{2}= \\
&
\end{aligned}
$$

These results confirm the predominance of the term involving $I_{1}$ - For the rounded well we have

$$
I_{0}=0.560+i 0.615 \quad 10^{-15} \mathrm{~cm}
$$

There is a factor 2 between the values of $\left|I_{0}\right|^{2}$ in the two cases, which indicates that the results will be sensitive to the choice of the shape of the well. For the case of an incident plane wave, in which (4.6) holds, we have

$$
\begin{aligned}
& I_{0}=0.31210^{-15} \mathrm{~cm} \\
& I_{0}^{\prime}=-0.17410^{-15} \mathrm{~cm}
\end{aligned}
$$

So if we use the approximation of section 3 for the protonproton scattering the two models of section 2 give very different results. From (4.4) and (4.7), remembering that $\beta / \alpha \quad$ is taken to be real, $\quad \beta=n \alpha$ say, we have

$$
\begin{aligned}
& s(y)=\left(\frac{1}{k}\right)^{2}\left\{\alpha n^{2}\left|I_{1}\right|^{2}+q-\left|I_{0}\right|^{2}+n^{2}\left|I_{0}^{\prime}\right|^{2}\right. \\
& +\left(1+3 \cos ^{2}(0) n^{2}\left|I_{2}\right|^{2}+2 q n \operatorname{Re}\left(I_{0} I_{0}^{\prime *}\right)\right. \\
& +2\left(1-3 \cos ^{2}(\Omega) n^{2} \operatorname{Re}\left(I_{0}^{\prime} I_{2}^{*}\right)+2\left(1-3 \cos ^{2}(\Theta) q n \operatorname{Re}\left(I_{0} I_{2}^{*}\right)\right\}\right.
\end{aligned}
$$

For the complex well the values of $S(90)$ are

$$
\begin{array}{ll}
n=1 / 2 & 2.278-0.123 \cos ^{2} \Theta \\
n=1 / 4 & 0.650-0.105 \cos ^{2} \Theta \\
n=0 & 0.072
\end{array}
$$

When we integrate over $T_{q}$ in the approximation described In section 4 we obtain the values of $P, R$ and $\sigma$ in the table, which also shows the results for model 2. The unto of $P$ and $R$ are $\left(10^{-13} \mathrm{~cm}\right)^{4} \mathrm{HeV}$., and $\sigma$ is in millibaras, The value of $\sigma$ is obtained using the value $g_{n}^{2}=4.2$ of Colin and Taffara (2957b). Other estimates of $g_{n}^{2}$, for example those of harchay (1958) and bat thews and scam (1953) are also of the order of 3 or 4 .

Ae expletive in the introduction no direct comparison with experiment is possible at preacnt. The work of gomel et. al. (1957) et 3 Bey. results in an estimate of 0.2 mb for

## Hodek 1

| $\pi=0.5$ | 3.537 | -0.133 | $2.74 \times 10^{-2}$ |
| :---: | :---: | :---: | :---: |
| 0.25 | 0.972 | -0.213 | $7.32 \times 10^{-3}$ |
| 0 | 0.078 | 0 | $6.1 \times 10^{-4}$ |

Medel 2 (plane wave Anitial state).

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| 0.5 | $P$ | $R$ |  |
| 0.25 | 0.0470 | -0.0045 | $3.57 \times 10^{-4}$ |
| 0 | 0.0054 | 0 | $4.2 \times 10^{-3}$ |


estimate the crossmection for our process at 3 mev. we have two dipmoutics. We have to decide what is the nation of our process to the process $p+p \rightarrow k^{+}+\Sigma^{0}+p$. This involves $g_{n}^{2} / g_{\Sigma}^{2}$, available estimates of min in range fro u 3 (Colin and tafeare (1957a)) to 10 (Barehay (1958)). Also we are above threshold for the processes

$$
\begin{aligned}
& p+p \rightarrow N+\Lambda^{0}+k^{+}+\pi \\
& p+p \rightarrow N+\Sigma+k^{+}+\pi \\
& p+p \rightarrow p+p+k^{+}+k^{-}
\end{aligned}
$$

If we tare mb. as an upper limit for our process at 3 BeV . and take $\sigma \alpha T_{m}$, a rather quicker increase with $T_{m}$ than 16 implied by our result (4.13) for $S$ mesons, we get $\sigma \leqslant$ $0.025 \mathrm{mb}_{\mathrm{*}}$ t. 2.75 BeV .

One feature of our results is the prentice of a strong $S$ meson contribution for appreciable values of $\beta$ As mentioned in the introduction early experimental works suggested a very anisotropic oross-section. However orear (1957) gave an estimate of $\cos ^{2} \omega$ for the angular dependence of the avalisble experimental data at that tine, wile tit the Geneva conference ( 195 ) wore was reported by tefneerger indicating the preached of en oppredeble $S$ meson contribution.

K. W. Watson. Phys. Rev. 93, 1349 (1954).
D. Amati and 3. Vitale. Il Nuovo Cimento 6, 1013 (1957)

II Nuovo cimento 6, $1<82$ (1957).
S. Barshay. Phys. kev. 104, 853 (1956). Phys. Rev. 110, 743 (1958).
V. S. Barashenhov, B. M. Marashov, E. G. Bubelov and
V. M. Maximenixo. Nuclear Physics 5, 17 (1958).
P. Baumel, G. Harris, J. Orear and S. Taylor. Phys.Rev. 108, 1322 (1957).
K. A. Brueckner and K. M. Watson. Thys.Rev. 90, 699 (1953).
a. Ceolin and T. Taffara. Il Nuovo Cimento 5, 453 (1957a).

Proceedings of Padua-Venice Conference (1957b).
G. F. Chew, M. L. Goldberger, I. M. Steinberger and C. N. Yang. Phys, Rev. 84, 581 (1952).
(6. Costa and B. Feld. Phys.Rev. 109, 606 (1958).

R*H. Dalitz. Reports on Progress in Physics 20, 163 (1957).
B. Durney. Proc. Phys. Soc. 71, 654 (1958).
B. d'Espagnat and J. Prentiki. Progress in Elementary Particle and Cosmic Ray Physics 4 (1958).
G. Feldman and P.T. Mathews. Phys.Rev. 109, 546 (1958).
E. Fermi. Prog. Theor. Phys. 5, 570 (1950).
S. Fernbach, R. Gerwer and T. B. T. Taylor. Phys. Rev. 75,1352
H. Feshbach, C.E. Porter and V.F. Meisskopf. Phys. $\underset{(1954)}{(96.48}$

V.T. Vocconi, E. Hart, H. H. Bloct, E. M. Harth,
E. C. Fowler, J. D. Garrison and T.f. Horris.

Phys.Rev. 105, 1489 (1956).
L. Fox and E.T. Goodwin. Proc. Camb. Phil. Soc. 45, 373 (1949).
D.A. Geffen. Phys.Rev. 99, 1534 (1955).
M. Gell-Mann. Phys.Rev. 92, 833 (1953).
E. M. Henley. Phys. Rev. 106, 1083 (1957).
D. Ito, S. Minami and H. Tanaka. II Nuovo Oimento 8, 135 (1958).
L. D. Lendau, Izv. Akad. Nauk ©. B. S. R. 17, 571 (1953).
R. Lea, F. C. Fowler and n. L. Kraybill. Phys.Rev. 110, 748 (1958;
D. B. Lichtenverg. Phys.Rev. 100, 303 (1955).

Phys. Rev. 105, 1034 (1957).
D. B. Lichtenberg and M. Ross. Phys. Rev. 107. 1715 (1957). Phys.Rev. 109, 2163 (1958).
S. Mandelstam. Proc. Roy. Soc. A244, 491 (1958).
P. T. Matthews and A. Salam. Phys. Rev. 110, 565 (1958). Phys. Rev. 110, 569 (1958).
P. E. Nemirovskil. Soviet Physics (J. I. T. P.) 3, 484 (1956).
J. Orear. Proceedings of the 7th Rochester Conference, part 5 (1957).
J. Osher. U. C. R. L. report 3449 (1956). (Guoted in Barshay (1956) D. O. Peaslee. Phys. Rev. 105, 1034 (1957).
W. Rarita. Phys.Rev. 104, 221 (1956).
J. M. O. Scott. Phil. Mag. 45, 441 (1954).
 Physics, 4(1958).
Z. M. Watson. Phys.Rev. 88, 1163 (1952).
E. Whittaxer and G.N. Watson. Modern Analysis (4th Edition), 289, (1952).
Q-C. Wick. Rev*Mod* Phys, 27, 339 (1955).

