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CHAPTER 1.

Introductory Remarks,

1. The Photodisintegration of the Lightest Nuclei.

The basic theory of photonuclear reactions is an application of
the quantum mechanical theory of the interacticn of charged particles
with the electromagnetic field. The validity of this theory has been
well demonstrated in calculations on the emission and absorpticn of
phetons by electrons bound in atoms.

The application of this theory to photonuclear reactions has
been made with considerable success in the photodisintegration of the
deuteren. However, since the deteiled study of the deuteron and of
the twe-nucleon scattering data has not yet yielded a satisfactory
nuclear interaction, it is of intersst to investigate further nuclear
problems involving more than two nucleons, so that the adequacy or
inadequacy of the preoposed two-body interaction for such problems may
be demonstrated.

The theory tests not only the nuclear potential but offers a test
of Siegert's theorem, i.ec. a test of whether the theory successful in
the atomic case, still applies when meson exchange is taking placee
It is known that the theory breaks down at high energies where the
effect takes place by way of the virtual production of photopions.

The study of phetonuclear reactions should give the range of validity

of Siegert's theorems



As will be seen later, the theory gives a method of exploring
nuclear wave functions without an explicit knowledge of the nuclear
force, provided that the plane wave approximation for the final state
of the reaction, is wvalid.

Apart from the study of the deuteron, the photodisintegration of

3H and 3

the three particle nuclei He is simplest to study theoretically.
However, the experimental data on these reactions is very meagre and

so the following investigation will chiefly be concerned with the

study of the photodisintegration of the a-particle and of the inverse
reaction, radiative capture.

The study of this rcaction is of considersble importance in the
aevelepment of the theory of photonuclear reactions for the following
reasons

The investigations of high-energy photoprotons and photoneutrons
emitted from nuclei have demonstrated many characteristics of photo-
nuclear reactionse. Several different models of photm-ncleon inter-
action have been proposed to explain these different phencmena. In
particular, for photon energies By> 100 liev, the experiments are
satisfactorily explained by the guasi-deuteron model {Levinger 1951).
At such high +-ray energies the wavelength is less than the inter-
nucleon distance. The Ywray will therefore prefer to interact with
only one nucleon at a time. Since a high energy photon has relatively
little momentua, its energy must be shared by at least two nucleons,

if energy and momentum are to be conserved. Hence photodisintegration

can only take place when two nucleons occur within a wavelength. The



electric dipole term is predominant in the photoeffect at high photon
energies (as will be seen later). Since the dipole moment of a pair
of protons is zero, the main contribution to the photoeffect is
found when a neutron and a proton occur in close proximity. This gives
rise to the name of the "quasi-deuteron" models

However at lower energies Yoshida (1951) has shown that the
angular distributions of photoprotons are in better agreement with
absorption in nuclear sub-units of four nucleons; i.e. an a~particle
models This model was first suggested by Levinger and Bethe (4950)
to account for the fact that the mean square displacement <r2>OO of a
nucleon in the ground state of a nucleus, does not vary greatly with
the mass number A. This is borne out by the calculations of Goldenberg
and Lepes (195h)e They find that the value of <r2>00 in the range
A =12 to A = 209 is practically constant and is of the order of that
for the a~particle. In order to develop this model further, it is

important to investigate the photodisintegration of free a-particles.

2, Multipole Radiation Theory.

The initial step in the theory involves the separation of the
electromagnetic field into the various electric and magnetic multipole
fields. This has been considered by several authors; e.g. Blatt and
Weisskopf (1952), Sachs and Austern (1951) and loskowski (1955). Here
the method of lacDonald (1955) will be followed. As there are several
misprints in that paper, some of the details will be repeated here.

It is usual to start from the Schroedinger equation for a charged

particle in an electromagnetic field. The non-relativistic Schroedinger



Hamiltonian for the interaction of a system of A nucleons with the
electromagnetic field can be written in the isotopic spin formalism,

correct to first order in the vector potential A as

A

R

.y Bios (z;) (-t,) veeeans(1)

21

Blo

o+
[Hp(% - tgi) +pN(% + tgi)] 6i. [V x A (;_i)]}

where the isotepic spin operator tg has the eigenvalues (+%) for a
neutron and (-%) for a proton. In (1), m is the nucleon mass, Ir.
the position vector of the ithnucleon, Ry 1ts momentum and._6_i the Pauli
spin vector. “p and Hy are respectively, the proton and neutron
magnetic moments.

This form of Hamiltonian is dependant explicitly on the nucleon
varisbles only. However, the exchange forces between neutron and
proton imply the existence of a current of charged pions between the
nucleons. Exact calculations should include the effects of these
pion currents.

However, it has been shown by Siegert (1937) and more geherally
by Sachs and Austern (1951) that the electric moment operators are
independent of the form of the Hamiltonian. This result implies that
the electric multipole moment operators are independent of the pion
exchange currents and is known as Siegert's theorem.

Hence predictions concerning the electric moments and electric

transition probabilities can be made safely even in the absence of a

full knowledge of the exchange effects.

- L -



It should be noticed that Siegert's theorem is only strictly
true in the "long-wavelength" approximation (Brennan and Sachs 1952).

The possibility of pion photoproduction should have a marked
influence on the nuclear photodisintegration at photon energies of the
order of 140 Mev or greater. The separation of this influence from
the "ordinary" process of photodisintegration can be accomplished only
if a reliable theoretical value for the cross-section of the "ordinary"
process is available. Any  deviation from the calculated curve can be
interpreted as an indication of effects which depend explicitly on the
pion variables.

The photoelectric cross-section for the ordinary process is
normally derived by assuwming Siegert's theorem. Brennan and Sachs
have showﬂ that the theorem is not valid at high energies; in fact,
for the deuteron it breaks down in the neighbourhood of 50 NMev.
However these authors have shown that the errors are still quite small
at 300 Mev.

Thus Siegert's theorem is only strictly true for energies less
than 50 Mev. At higher energies, the meson effects must be included
explicitly by the introduction of additional terms in the Hamiltonian(1).

For simplicity a single charged particle will be considered. Then

Hp= = ﬁg R-A - owg

I

x A) cccesse(2)

where A satisfies the gauge condition ¥ . A = 0.
The transition probability per unit time for the emission of

radiation is given by perturbation theory (Schiff 1949) as



2l
Ta-’b = T /Ha'b /ZP(E)’ ooooo.-(B)

where a,b are indices deneting the initial and final states ¢a and
¢b refpectively and p (E) is the density of final states per unit energy.
The field may be restricted to one varying periodically with time

without loss of generality

é (E t) = A (_1: -e'iwt + _éx (r) eimt ce ooe-'(L)-)
Then ,
Hab = / ¢ax _A_(z‘.) ¢b d’r 00.0000(5)

The vector potential is then expanded into a series by the use of the
vector spherical harmonics Y:)EI&L‘I (69 ) as defined by Blatt and Weisskopf
(1952)o The Y?L*l are eigenfunctions of the angular momentum operators

J2 and Jz~ where

d = L+8 _L_:—iﬁg_xz _S_=ihgkx

and 4 is the unit vector along the ’Lk- axise
Since the vector spherical harmonics form a complete set, the

vector field A (r) can be expanded as

®  +J
2@ = ) Z 4 (34 1) i)
J=0 M=-J

where

A (5,4z) = % {fm(r)x_m + Vx [3’JM(r) X_JM+ ﬂJM(r) x—m]}

ceeee (7)



with
Xn ) =YE  (e9) cecooen(8)

Haoes 1

werm A (3,M;r) in the expansion (6) is called a pure multipole
fields

In future the guantum numbers 1,m will be used instead of J,M in
the multipole expansion.

The electromagnetic multipole fields are further subdivided
into electric and magnetic multipoles. This division is made on
account of the parity of the field. It is convenient to define the
parity of a multipole field as the parity of the magnetic field
H (z)-

. In electric multipole radiation of order (1,m), the electric field
has parity -(—1)1, the magnetic field parity (-1)19 In magnetic
multipole radiation of order (1,m) the parities are exactly the
oppositee.

Hence

Parity of electric multipole (1 nO (-4)1 0.00000(9)

Parity of magnetic miltipole (1 m) = =(-1)!
Now, Maxwell's equations give:-
H(r) = curl A (z) ; E(@ = ikal(r)

where the time dependence has again been removed and where the wave

number k is given by

@
4 — LN - RN ] 10
k=3 (10)

The first term in (7) has parity (-1)1. Hence it is associated

with a magnetic field of parity -(—1)lo The term in 2§1m is therefore



a magnetic multipole field A+ The remaining terms in (7) have parity

-(-1 )l and are associlated with a magnetic field of parity (-1 )lo

Hence the terms in V x)_g lm provide an electric multipole field Age
“If Ag (x) and Ay (z) are now normalised to energy (B c k) inside

a sphere of radius a, on the surface of which A vanishes, then the

vector potentials of the multipole fields are given by
1

g = 1 () I s Y, e i)
. hck z L . |
A (Lm) = 4 = m 1 () Ylm (69)  <.o(12)

where J'l(kr) is the spherical Bessel function and Ylm (e¢) the
usual scalar spherical harmonice.

The matrix element Hab can new be written as

-1 —uf x
Hy =773 [gab.g ar u/ ¢a_6_.(2x§)¢bd'r

where

e X X
Tab —[-ZTBC_] x [¢a (R-¢b) * (p—¢a) ¢bJ
is the quantum mechanical transition current.

The generalised multipcle mements are now defined by
1+0)° a B
. _ 21+ a . X T
Electric: le = % {e j [dr rapl(kr)Ylm (9¢).J ¢a ¢b a

. }515 /,él(h) Ylm (68) £ . Jab d'l’} ceceaes(13)



1 214488 '
&lm = %mtﬁ%r LmteE j 3 () Ylm (&) aiv (4 " r x &) d‘r}

Magnetic:-

M- e e [ 0 Yo, ) e 8,7 14y 0T

e eeeaa . (13)

1 2141)8t |
m - ([ & e o e 0T g ar

-K° f 500 () (856 .z 9,) a'r}

The transition probabilities per unit time (integrated over solid

angle) are
21+1
E _ 8l(1u K 12
Tab - 1 21+1)£:]2 f /alm + lm/ Gco-oeaoo.(15)

21+
Mo 8H$1+1) K 2
T = TL(oTr)er 12 —5— /My, +My, / cocesasasal(16)

These formulae are exact in that no assumptien has been made about
the magnitude of KR where R is the nuclear . dimensione

Since for small kr

1 1+2
. _ {kr _ ékrz
Jl(kr) =21 21+3)8 2 Poome- cesoeneeca(17)

:zlm (for example) may be expanded as

O veernieeos(18)

m
where the terms correspond to the successive terms in (17).

In the "long-wavelength" approximation kR<<1,



-

tho) = e] rlYlm (9¢)¢ax¢b aT ceesoaee(19)
W - [N, @ a7

w Oy [ Y (o9) aiv (6 * g,) aT

, cesocnssses(20)
-3 / SLMCORIORS TRREY

4O

These are precisely the single particle moments of Blatt and Weisskopf
(1952).

From the above, it is seen that one quantum of multipole radiation
(1,m) carries with it, an angular momentum 1, with % component m. (both
measured in units of h). If the quantum is emitted by a nucleus going
from a state ¢a to a state ¢b’ then the fellewing selection rules are
obeyed.

Angular Momentum

fla - Jb /<1< Ja+Jdb Ja = O0—>J = C forbidden
M& "Mb = 0‘0000(21)
Parity
Electrgc Magnetic
leven I = «
a b Ha = -Hb ( )
- n = n [ E RN N3 X ¥ 22
loaa I =4l a b

It can be shown from general considerations (e.g. Blatt and Weisskopf

1952) that the emission probability of multipole quanta 1, is a rapidly



decreasing function of 1. Alse for the same multipole orderl, the
intensity of magnetic radiation is smaller than the intensity of

2
electric radiation by a factor of order‘lﬂ- For a nucleus this is of

c?
order of 0.01.
In the following, the standard notation E 1 (Ml) for electric
(magnetic)zlv pole radiation will be used.
MacDonald (1955) has estimated the effect of two types of higher
order terms which will contribute to B1 radiation. He findsi-

(0)1 ,
/ h“’) ~ 4d0™ for 100 Mev y-rays.

25 \Mcz

and

(1)
Q 2 2 -
// %_ng // ~ (?‘5) (k_a)ZF ~ 1072 for 100 Mev Y-rays.
Q .

1
Hence it is seen that the contributions of beoth Q(o) and Q(1) are
small, even at 100 Mev and may therefore be neglected.
It is sufficient to use the "long-wavelength" approximation.

The Hamiltonian (1) can be separated as follows:-

HI = HO + H1 0090001.0(23)

Azt +# (upvu) 61 (T x4 (r)] |

@;‘I«'

]

]
> e
S

T
Jo
.

=1 .....e.“.(Zlq_)
H, = L {"'z;‘é' Ei._A_(_z;i)+(up-pN)§_i,[_V_x_A(ri)]}ti
= ceoreones(25)



Ho is a scalar in isotopic spin space whilst H1 is the g component
of a vector. For an E1 transition due to Ho’ the first order term in
. . . e .
the transition operatoié}s derived from the term {'EEE L - A (gi)}ln
(24), snd is gl 2{0)
s s given by T, (ef im )o To allow for the nuclear

recoil, the, centre of mass of the nucleus is taken as the origin and

\

therefore r; = O. Hence the probability of F1 transitions induced
by Ho is zéro. Then only H1 can preduce transitions.
A For an E1 transition due to H1, the first order term is given by
2;; rs tgi5¥-0. Since H1 is the g-component of a vector in isctopic

spin space, an E1 transition must cause a fhange of one unit (vectorially)

in the isotopic spin. This leads to the selection rules

/Ta-Tb/s1 €T, + T

0000000000(26)
T =0 ~— Tb = 0 forbidden.

a

Higher order terms in the E1 transition operator can remove the
absolute ban on the Ta =0 to Tb = 0 transitiens. NlacDonald (1955)
has shown that the effect of these higher order terms is small and
that any deviation from the selection rule can be attributed to
impurity of the isotopic spin states.

The Coulomb force, being charge dependent, can mix the isotopic
spin states and cause a violation of the selection rules. This effect
has been studied by Radicati (1953) and by Wilkinson. (1953).

3, Photodisintegration of the Deuteron.

This reaction has been extensively studied both theoretically



and experimentally. The m©ross-section for the photodisintegration
shows a rescnance peak near threshold attributable to photomagnetic
transitions from the 3 S ground sitate to the virtual ‘]S state. This
theory agrees within experimental error with the measurements of the
photodisintegration near thresholde.

Above the rescnance peak cf the photomagnetic reaction, the
cross—section exhibits a peak at an energy Em’ twice the threshold
energy,E_ = Lol6 Meve. The effective range calculations of Bethe and
Longmire {1950) and of Austern (1 953) give the cross-section in good
agreement with experiments for energies up to ~ 25 H¥ev. For energies
greater than ~4 lev, the cross—-section is due almcst entirely to the
electric dipcle effect.

The ground state of the deuteron is known to be predominantly a

3 3 3

S state and Lence the most important ® 4 transiticn is the "S— 7P

transition. The transition matrix element is proportional te

I =j * gx A w1 dT s0ecsscece (27)

5 S ground state wave function, ¥y is the 5 P

where *g is the deutercn
continuum state wave function and & is the % component of the inter-
nucleon distance r.

At low energies, tnere is only a slight interaction in the 3P
state of the n-p system and therefore the wave function ¥y mBY be
3

taken as that of the “P state of the free n-p system. For small

energies, this wave function varies as r2’ s0 that at these small

- 13 =



energies, the integral I has only a small contribution from values of
r inside the nuclear force range. The only effect of the nuclear
ferce range on I is then on the normalisation of ¢g° This corresponds
to the effective range theory as used in neutron-proton and proton-
proton scattering,

Thus at moderate energies 1% can effectively be replaced by its
asymptotic forme The detailed behaviour of the wave function is
unimportante. Tensor forces cause a change in the shape of the wave
functien wg for small values of r, and thus have almost no effect on
the cross-section. They do affect the cross-section slightly since
the admixture of a 3D state in the deuteron ground state alters the
normalisation of the wave function, as well as modifying the form of
the effective range theory (Hulthen & Sugawara -1957).

At higher energies transitions become possible from the 3D state
to the 3P states by electric dipole radiation. These have been studied
theoretically by Austern (1952) but their effect on the cross-section
is found to be small.

For energies greater than 10 Mev, the 3P wave function is not zero
inside the nuclear force range and the cross-section is reduced. This
difference is more important for long-tailed than for short-tailed
potentials. Calculations have been made up to 100 Mev for several
potentials by Schiff (1950) and by Marshall and Guth (1950).

More recently de Swart and Marshak (1958) have calculated the
photodisintegration in the medium energy range (up to 80 Mev) using

the Gartenhaus wave function for the deuteron and the Gartenhaus plus



spin orbit wave functions for the final states. These results are in
good agreement with experiment and indicate that it is possible to
achieve a detailed understanding of the photodisintegration of the
deuteron in the medium energy region without renouncing Siegerts’
theorem or introducing virtual pion effects not contained in Siegerfé
theorem. It should be noticed that the Gartenhaus wave function used
in these calculations, has a larger percentage of D state probability
than is normally assumed ~7% as against 2 - L%

Bachariasen (1956) has investigated the high energy photodisinte-
gration in the range 100 - 4OC Mev. The process is viewed as proceeding
by way of the photeproduction of virtual pions followed by meson
scattering in deuterium and finally reabsorption by one of the outgoing
nucleons. Using the Chew meson theory and the impulse approximation,
#zchariasen can explain roughly the qualitative features of the cross-
section, notably the secondary resonance at ~250 kKev. Howgver the
angular distributions do not seem to be fully explained by this model.

It will be seen that the range of validity of Sieger%é‘ theorem
is still in doubt but it is reasonable to assume the theorem is valid
up to 50 Meve Further study of tuis question is being made by de Swart
and Marshake

Thus the photodisintegration of the deuteron can be explained up
to ~25 Mev without adetailed knowledge of the deuteron wave functions.
At higher energies, the details of the wave function become important,
and in fact, it is unlikely that the question of the range of validity

of Siegerf% theorem will be resolved until a detailed wave function



S

is available,

Lo Ixperimental Data.

The photodisintegration of the a~particle has been studied
experimentally by several workers. When the o~particle is bombarded

with +-rays of energy greater than 28 Mev, the following five reactions

are possible:=

a) ¥+ QHe —> p+ BH, (yp) Threshold 19.8 Mev
b) —> n + JHe (yn) 20.6 Mev
c) —s 4d+4d (ya) 23.7 Mev
a) ~s p+n+d (yp n) 2549 HMev
e) —> 2p+ 2n (v, 2p 2n) 282 Mev

Centrary to the case of more complicated nuclei, it is possible in

the study of the a~particle to analyse the angular distributions fully,
and consequently to draw conclusions on the character of photon
absorption. This is due to the fact that the final state in the (yn)
and (Yp) reactions [ the fundamental photomnclear reactions in e ]

3

is a two-body system and neither 3H nor “He have excited states.

The photodisintegration was first studied by Gaerttner and Yeater
(1951) who observed the (Yp) and (yn) reactions in a cloud chamber with
a Bremsstrahlung spectrum of EY max - 100 ¥ev. Benedict and Woodward
(1951) studied the high energy protons with scintillation ccunters at
an energy of 300 Mev whilst Kikuchi (1952) used nuclear emulsions under
similar conditions. Fuller {(1954) investigated the (Yp) reaction by

observing the tracks in nuclear emmulsions. In this experiment the

plates were placed inside a target chamber containing helium gas, which



was then irradiated with Y-rays of 40 lev maximum energy. Reid,
Swinbank, and Atkinson (1956) have also studied the (Yp) reaction
using a cloud chamber and a Bremsstrahlung spectrum of maximum energy
330 ¥eve.

The (Tn) reaction has been studied at low energies (EY max = 25 lev)
by Fergusen et al (1954) and at high energies by de Saussure and
Osborne (1955). However considerable doubt has been thrown on the
results of the latter paper by the work of Bellamy et al (1957) on tre
elastic photoproduction of n° wesons in “He, All these experiments
were performed over different ranges of energy, in different experimental
arrangements, and usually in a way which allowed only one of the
reactions {a) - (e} to be observed. The results on the angular dis-
tributions and on the energy dependence of the (Yp) and (Yn) reactions
cannot therefore be reliably comparede

This has been remedied recently by the work of Gorbuncv and
Spiridonov (1958). They investigated the photodisintegration of
helium with a cloud chamber in a magnetic field of 5500 gauss. The
chamber was irradiated with a Bremsstrahlung spectrum of EY max = 175 Heve
This method using cloud chambers is the only method allowing the
simltaneous observation of all reazctions (a) - (e)e

Since the coupling between matter and the electromagnstic field
is wealk (%; <<1), the use of perturbation theory and hence of the
detailed balance theorem is Justified. Thus the resulis for the

inverse process - radiative capture, can be compared with those for

the direct process-photodisintegration.

- 47 =



The only inverse reaction to have been studied is
P+ 3H —¥ v+ hHe
This has been investigated most fully by Perry and Bame (1955) using
protons with energies up to 6 Mev.
The results on the photodisintegration can be summarised as follows.
These results are taken mainly from the paper of Gorbunov and Spiridonov.
The yields of the various possible photonuclear reactions relative

‘to the (yp) reacgion are given in Table I.

Reaction Nurber of | Yield
events relative to (yp) |
bye (yp) 3y 2835 1
T “He (yn) “He 2685 0095 + 0.0l
AHe gypn) d +
“e (v 2p 2n)a 547 0.19 + 0.01
“e (ya) a < 59 € 0.02

Within the experimental accuracy the yields for the (yp) and (yn)
reactions are the same while the yield of the (yd) reacticn does not
exceed 2% of the yield of the (yp) reaction. This is expected since
both the (yp) and (yn) reactions are allowed in a dipole transition
and have practically equal cross-sections (neglecting the slight
difference in threshold, and the Coulomb barrier). On the other
hand the (yd) reaction is forbidden in a dipole transition because

of the isotopic spin selection rules (26).

- 18 -



This is a transition from the state ("He +v ) with T = G to
“ne state (d+d), alse with T = G,
Toe cross-section for the (Yp) reactien is shown in Figure I.

It has a maximum of the order of 1.8-10-27

cmz at a photon energy
~ 27 Mev,

The integrated cross-section 6, , for the (Yp) reactiocn

of

{ve) E
bint | = [ 6 () a&

[

is given in Table Il.
| f ]
Photon Energy ‘; 400 | 470
(liev) - o
;‘ |
8.t 25.0 £ 1.8 35.8£2.6 | 37.81 2.8 |

It should be noted that the energy interval LO -170 ¥ev (i.e. the
region fer removed from the rescnshce) comiributes a considerable
fractien ~34% to the integrated cress-section.

The integrated creoss—section for photon absorption has also

been found.

170
i
6ipt = i 6(B) @& = 6, , (yp) + 6, (yn) + 6, , (ypnd)

+ 6,ny (¥ 2p 20) + 6, (v 2d)
= 881731:5‘1*'¢ e on\'chwarwe(ze}

\
s
pte]

t
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The bremsstrahlung-weighted cross-section was found to be
6 =/ é—i& dE = 201}.0:0015 mb., 00000000(29)

These values are considerably smaller than the vslues used by Rustgi
and Levinger (1957), 6int = 12/ Vev mb. and 6b = 2.7 mb. However
these authors used the high energy results of de Saussure and Osborne
which are noﬁ known to be several times too large. This is sufficient
to explain the difference.

"It is known that the ground state of 4He is predominantliy a 130
states In Table III are listed the various possible disintegrations
of the G-particle caused by E1, M1, and E2 radiation. Also given are

the angular distributions in the centre of mass system.

i ' Proten Spin | Angular
Transition ' DMultipolarity @ angular of | distribution
’ | momentum |p + Sy ’ of proton
1 1 | é i
Sé_’ So ? ¥=rays forbidden! 1 =0 S=0 | -
1g = 1, L2 5
S, P, = 1=1 S=0 | sin® ) &
= » g "o
s =% E2 1=2 S=0  sin% cos®) ©
- 2 , v ot
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1 3 N s — 1 _ H |
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| ) 5
'130—*»31)1% M1 S 1=2 S =1 i5-3cose)“‘
RV 2 1
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The angular distributions are found to be predominantly sinze showing
that the process takes place mainly by E1 absorption, leaving the
proten and triten in a singlet spin state. The experimental results

are fitted to the expression
A [sin®e + Bsin®cos 8 + ¥ 5in%® c0520] «eee. (30)

where A, B, ¥ are given in Table IV,

|
E (Mev) A ’ B 'e
IV 29 - 50 7.6 il 0;7 : 011 X 0.13 ~0.2 x 003
30 =170 | 6u1 £ 0.6 1.05 £ 0416 | 053 + 025
: f

As shewn in Table III, the term in sin%® cos’e corresponds to E2
absorption. Hence below 30 Mev, the (yp) reaction proceeds almost
completely by E1 absorpticn. There occurs a sharp change in the angular
distributions at Ey ® 30 = 35 Mev. For energies greater than this,

the maximum of the angular distributions has moved forward to an

angle of 65 - 70°, This change shows that from ~30 Mev the E2
absorption sets in and produces the interference term sin29 cos B¢

The analysis indicates that the contribution of E2 absorptien to

the (Yp) cross-section in the interval Ey = 30 - 170 Mev, is approx-
imately 10%.

As the region of the resonance,ie.By ~27 Mev, is of primary



impertance in the following calculations, enly E1 radiation need be
considered to a first approximation.

The photedisintegration of 3He has been studied recently by
Cranberg (1958) using a 22 Mev betatron, with nuclear emulsions as
detectors. Both the (yp) and (ypn) reactions are observed but it is
difficult to separate the data for the two reactionse The aoss section
for the two-body break=-up can be inferred for photon energies in
excess of 13 Meve At 13 Mev it is 1.2 10-27 cm?o The (yp) cress
section appears to have a meximum for EY'~9 Meve

The inverse reaction D(pr)aﬁe has been studied at low energies
by Fowler, Lauritsen and Tollestrup (1949) and by Griffiths and Warren
(1955)e The former authors studied the reaction with proton energies
up to 1.5 Meve. Theyradiation was found to have predominantly a

sin29 distribution. The cross-section is givenempirically from

0.5 to 1.5 Mev by

6 = 0u7% B x 1027 @®  (E in Mev) eececaseso(31)

Griffiths and Warren, using protons with energies 043 to 2.0
Mev, found similar results. They found the cress-section for 1 Mev
bombarding energy to be 3.2 + 0.3 » 1020 cm®s This is considersbly
smaller than the value found by Fowler et. ale The difference lies
in the normalisation factor, 0.74; the energy dependence is the
Same o

In additioen to the above data on photedisintegration and radiative



capture, the root-mean-square (rom.s.) radii R of the lightest nuclei
have recently been determined accurately by the electron scattering
experiments of Hofstadter (1956) and McAllister (1956). The rem.s.

radii of the proton, deuteron, and o~particle are

R, = 0.78 . 10°"% ome By = 1.96 . 10" cn.

R, = 1e61 10713 ome

It can be shown that R is related to 6b’ assuming simple symmetry
properties for the nuclear wave function. This will be considered
in detail later.

Te complete the data en the lightest nuclei the binding energies
are given belows

(%)

BE (311)

1]
]

20226 Meve BE (3He) 7.72 Meve

8olk9 Meve BE (YHe) = 28.2 Mevs

I
]

" The Coulemb energy of 3He is 0.77 Mev.
50 Electric Dipole Transitions,
The matrix element for an E1 transition in the "long-wavelength"

approximation is given by
2
© . g\ x
Yo "= ° 4 vy Y0085 #5098, ¢y AT

1=
%

Ul x
,fﬁ_ e d $ 58 4 AT cecoscnces (32)

where & is the atomic number, ‘the sum being over all protons.

In the following the matrix element Mab will be studied, where



My = Lj O B b aT covesssees (33)

and r. is the position vector of the iﬁhproton relative to the
centre of mass.

To evaluate the matrix element (33) both ¢_ and ¢, must be
available. As very little is known about the ferm of the ground:
state wave function ¢a and even less about the wave functions ¢b
of excited states, explicit assumptions must be made, as to the form
of ¢a,and ¢b°

Flowers and Mandl (1951) and Gunn and Irving (1951) have
evaluated the matrix element in the Born spproximation, and find that
they can account for the qualitative features of the (Yp) cross-section
without assuming the existence of an excited state of the G-particle.

However, the method of Levinger and Bethe (1950) can be used,
summing over all final states ¢b and applying closure to the matrix
elements. The results then depend only on the ground state wave

functioen ¢ao This sum rule method leads to expressions for the

integrated cross-section for photon absorptien.

int

6. = [6(E)@ ecocescsse (3)

and the bremsstrahlung-weighted cross-section

o<
6b = L -6——%1‘-‘1 aE cecscsscss (35)

Here 6(E) is the sum of all partial cross-sectiens for the various

nuclear reactions that may occur subsequent to electric dipole

photon absorption:= (yp), (vn), (vy 1) etce

- 24 =



Levinger and Bethe (1950) found that for a degenerate Fermi gas

model of the nucleus

s . AP ng
int m o A

(1 + 0083[) 0000900000(36)

where % is the number of protons, N the number of neutrons and A = N
+ &, % is the fraction of Majorana exchange force present in the
neutron-proton force. Hence the fraction of exchange force can be
estimated by comparing tiis result with experiment. The result

is dependant on the nuclear model assumed only through the numerical
factor 0.8 in (36).

In the Dllowing, both these approaches will be considered in
turn.

Shortly after this work was completed, a paper by Levinger and
Rustgi (1957) appeared in which similar formulae were deduced for the
integrated cross-section for phéten absorption in AHea

Before giving details of the calculations, the wave functions to
be used for the o~particle must be considered.

6. Alpha-Particle Wave Functionse

Simple analytic wave functions for the three and four particle
nuclei have been used by several authors whilst considering the
"consistency" problem of light nuclei. Briefly stated, the consistency
problem is an attempt to find a phenomenoclogical two-body potential
with suitable parameters, which yields the experimental binding energies

A2, 3. 3

of "H, "H, “He and z“He, the deuteron quadrupole moment, and which is

consistent with the low energy two-body scattering data.

- 25 =



The earliest calculations were carried out using a central
interaction. This could account for the binding energies of 2H'

5 H but gave toeo large a value for the L"He binding energy and also

and
for the Coulomb energy of 3Hew Central forces fail, also, to explain:
the deuteron gquadrupole moment.

The next stage was te consider a mixture of central and tensor

forces. In the "consistency" problem it is usual to consider a

potential of the form

= - 4 - L
V(g = Vo lr+dme - 6,013 Gy _w s 5 @)
o o 12T rq
coeacspeco (37)
where r = [/ r, =T, /s _6_1 s _6_2 are the Pauli spin operators and

S,, is the usual tensor operator

12
6 x) (62 1)
812 - L;r‘__— - (._6_1 . _6_2) toeeccecso (38)

Extensive sets of values for the parameters Vo’ £y ¥, Tys b’l‘
which satisfy the deuteren binding energy and quadrupole moment,
have been tabulated by Feshbach and Schwinger (1951). These authors

used a Yukawa well
e
JC (X) = JT (X) = cc0cocoaees (39)

for both central and tensor forces, but assumed different ranges r,

and rt,

For the three and four particle nuclei, the spatial wave

- 26 -



functions considered, have generally been functiocns of the variable

f where P is given by
A

2 ' 2
Y = > rij H r.. = r, =1
15=
i<j 0seccscscs (40)
The forms censidered so far, are

(i) Caussian 6% = exp - u%p?
Cy o . E _
(ii) Exponential ¢~ = exp Hp censecsess (41)
(1ii) Irving ¢! = exp -
P

Alse considered have been functions of the variable’given by
A

m= ) /e cecscecses (42)
L T

X
The form most eften uged is

(iv) Feshbach ¢F = exp - MM coescossco (41)

Assuming that central forces predominate the ground state of the
G-particle is an S=-state. In the second approximation, D=-states must

be introduced since the tensor force couples S- and D~ states directly
but not S= and P~ states. Irving (1953) has considered the effect

of the tensor force on the a-particle binding energy. He used the

form (AA(ii) ) for the spatial wave functions. The non-radial parts were
obtained using the operator formalism introduced by Gerjjouy and
Schwinger (1942). Only the principal D-state was considersd, but the
calculations have recently been extended by Abraham et al (1955) to

include siZ

- 27 -



D~ states. These authors find that only three of these make any
significant contribution to the binding energzy. In both these
calculations, the standard variational method was uséd to determine
the walues of the parameters;i which minimised the energy. Abraham
et al conclude: that it may be possible to satisfy the consistency
problem using the potential (37,39) with suitable parameters.

Spatial wave functions of the Feshbach type ( 41 iv ) have been
used successfully in calculations on the binding energy of the triton
by Pease and Feshbach (1951)(1952). Im fact, Irving (1953) finds that
this form gives better results for the triton than the Exponential form
(41 ii). However, for the a-particle, the only calculation using the
Peshbach form is that of Frohlich et al (1947). Their calculations
using central forces had to be carried out numerically and were
extremely tedious. Owing to this mathematical complexity, no further
use has been made of this form of wave function for the o~particle.

At this point another calculation on the binding energy of 4He
must be mentioned. Clark (1954) using a method introduced by
Morpurgo (1952), has considered the ground state as an admixture'
of an S- styte and two D- states, using the same formalism as Irving.
Clark introduced a function ¥ (p) with no adjustable parameters,
the form of the function ¥ itsell being variable. He found that<y must
satisfy a second order differential equation of the one-dimensicnal
Schroedinger type. He sclved this equation approximately to give

an snalytic form for the wave function. This wave function gave a

- 28 -



binding energy of 29.6 Mev which is slightly greater than the
experimental one (28.2 Mev).

In all these calculations, only spatially symmetric wave functions
have been used. This is justified since it is known that the ground
states of the three and four particle nuclei consist largely of
antisymmetric spin states. For example, Brown (1939) in a
variational calculation obtained a 4% admixture of symmetric spin

3

function in the case of “H. For £+He, this percentage would not be
expected to be greater and it is probably lesse.

The wave functions discussed above will be used in various
calculations on the photodisintegration of the a-particle. Since the
theory of photodisintegration is reasenably well understood, this
will serve to test the adequacy of the various wave functions and

hence of the internucleon potentials which were used to derive them.

o Previous and Present Calculationse.

Experiment has shown that photon absorption by the ®-particle is
dominantly electric dipole with a small admixture of electric gquad-
rupole, as was expected from general multipole radiation theory.

This is borne out by the explicit calculations of Flowers and
Mandl (1951). These authors find that the E1 cross section is about
one hundred times the E2 cross section in the region of the experimental
resonance. Alse they found that M2 transitions take place only
through states with antisymmetric spatial wave functions and hence

their preobability is negligible.



In previous calculations of the matrix elements, the central
force approximation has been used. Flowers and Mandl used Gaussian
type wave functions whilst Gunn and Irving (1951) used those of the
Gaussian and Irving types. Both of these calculations used the
Born approximation ie.e. the emitted nucleon is described by a plane
waves This aspproximation will be justified in the following. The
calculations are extended to include the Exponential type wave function
and also to take the effect of the tensor force into account.

The sum rule method had been applied to the G-particle .using
the wave functions discussed in the last section(gé), notably those
of Abraham et. al. and of Clark. These calculations are compared
with the work of Levinger and Rustgi (1957) who used the Exponential
form with parsmeters due to Irving (1953).

In addition to the above calculations, t:e photodisintegration
of hHe has been considered by Gamba (1951, 1952) using a group
theoretical approach. The photodisintegration of the three body
nuclei has been studied by Verde (1950) using the symmetry properties
of the nuclear wave function. However, these authors consider only
central forces and it is difficult to extend their calculations to
include the effect of the tensor force. It is unlikely that further
progress will be made using this approach and it will not be

considered further here.



CHAPTER IT

Sum Rule Calculations

1o Xlectric Dipele Transition Operater.

It is seen from (I.33) that the electric dipele transition
operater Q, g (allowing fer the recoil of the centre of mass) is given

by

4 = ) e (z-E veenneens (1)

P
where the sum is over all protonse

The centre of mass coordinates of the nucleons, protons and

neutrons respectively are defined by
A

& N
=1y -1y -1
B, =% ), & Ep”zL?-p By =% ) %
i=1 P=1 u-ooeoenor%ﬂz)
where % is the number of protons in the nucleus, N the number of

neutrons and A = N + %, the atomic massnumber

Then the E{ transition operator is

. N 2
& "eZ_/(zp-BA) = °% L%“GA Lfn
5 .

coescccses (3)

69ec0cesces ()4.)

where R N = Bp - E-\N’ the coordinate of the centre of mass of the

protens relative to the centre of mass of the neutrcns.



Written in the form (3), gh is the sum of single particle
operators and connects wave functions differing at most by the state
of one particle. The protons have effective charge (e %{) and the
neutrons (— e -%)‘

\ A

The individual particle model for the nuclear photoeffect has
been developed particularly by Wilkinson (1956) and Rand (1957). 4An
individual nucleon in the nucleus absorbs the incoming photon, and,
for an E1 transition, is excited to the next shell of opposite
parity. Since, for reasonable shell model potentials, all possible
transitions have approximately the same energy, there should be a
peak in the absorption cross section at this energy. The finite
width of the peak arises partly because of the slight gpread in single
particle absorption energies and partly because the single particle
states decay by inelastic collisions in the nucleus (cloudy crystal
ball effect)s

Written in the form (4), g, is express;d in terms of a collective
coordinate EpN° This has led te the collective model of Goldhaber and
Teller (1948) and of various other authors, for photon absorption.

The width of the giant resonance reflects the damping of the ccllective
mode due to viscous effects arising from the relative motion of the
proton and neutron 'clouds's

It seems probable that the wave function of the state reached in
the dipole photeeffect should be thought of as a mixture of shell

model and collective model wave functions. This subject has been

- 32 -



studied very recently by Levinger (1958).

The following calculations have the merit of being model-independent
since the final state does not occur explicitly in the resultss

It is convenient, however, to use the Brm (4) for , and to

introduce the general coordinate system (1) of Appendix A.

2o Sum Rulese. General Formalism.
The electric dipole transition matrix element Mab of (I.33) is

given by

N [, *
Mab = 'K/ 7(‘.b (RPN)Z' 7La dT ®e80c060e00 (5)

for a transition between the ground state 7‘a and the final state fba

o

/dfr implies integration over all positien coordinates and summation
over all spin coordinates.
In the following the sum over all final states % will be

taken and using the closure relation for twe operators A , B

254 <alalv ><vlBla>

< a 'AB la >
B00CeQO00O0COS (6)

]

it is seen that the results will depend only on the wave function assumed

for the ground state. Here | implies a sum over the discrete levels

and integratioen over the continuum, and
Al %
<alalv> 5/ # A # aT
- b

The oscillator strength for the above transition is defined as

_33_



2

gab 52 (g -5)lu, P cecrnocrns (7)

B

The cross section for the electric dipole absorption of a photon of

energy B = Eb - Ea is provortional to the oscillator strength

e0000000COS (8)

o - g

ab ab

The method of Levinger and Bethe (1950) will be followed in

evaluating the various moments of the summed oscillator strength

%_; gab (Eb _ Ea)s cesconcoen (9)

These moments correspond te

&

/ES 6(E)aE = 6215 4 gab E -E)°

soep0c00ee0 (10)

Of greatest interest are (a) the integrated cross section

6. =j6(E)dE , S = 0

int eoesco0cese )108.)
~and (b) the bremsstrahlung - weighted cross section

coseessess (10b)

=
The Schreedinger equations for 4: anﬂ.#% are

(T + V = Ea) #a
®8 659808000 (11)

(T + V- B)Y =0



where T is the kinetic energy operator
A

B -
- - 2m Z_‘ vi 00eeesesco (12)

and V the petential energy operator
A

v = Z v(i3) secossceso (13)

Gl
ij=1
i¢j :
From the equatlons (11) for 7‘ and 7‘b it is readily seen that

(Eb-E)fb ( )57‘

=f a( Wz (T+V)7%* “7‘; (RPN)Z (V)
Hence
B -3 = B [ #Es ey A Gada e, T
F{Zba(RpN)‘Z V"T)* -7Lb* (RPN)Z Vf’a} ar

-~

'LIT+IV} ecosssenes (14)

The integral involving the kinetic energy, IT s and that involving

N5
A

the potential energy Iv will be considered separately.

I(szft (R)Ty’b fb(R)T—/
coeTesssso (15)

It is shown in Appendix A that

2 .
T = =,21—— V 2
2m /., i



(9]
Wi, 2 A 2 1y gl .
T = = s - + =V e \ <1+_> Ve 4N (‘4{,&.) Vo<
am |4 R, TR / voe ) N oy

By integraiing by parts, it is sasily siowvn that

2 x 2 ]
V T 1] - 2 i8] S
/ + ( PN) + d _/ + ( pN VE +a ar )27 :A";-“lp’zln

f. ‘*‘a(RpN)Z‘— 2+Xd1' / 1 (R, )ZVR 2+ d‘r+zj +b uP .

F
~

Hence the kinetic energy integral is

SO0 eR2Q0 e (16)

The potential energy integral IV is given by

IV:f{'*'a(RpN) V+ -1&' v_{-a}‘a'r

Peegofec e (17)

It should be noticed here that Iv is zero if the petential V coammit

with ‘B'P x* Hence contributions are to be expected only from space

exchange forces and from vc=loc1u dependent forces., Spin exchanre

forces do not contribute. A rencral hvo-bodv po‘tentn al of the exchon-e

type containing both central and tensor forces will he chitsen. Veluc

dependent forces such as the spin orbit force, will not bo considercl

The two-body potentlal can be written as (Blatt and Veisskopf p 130

Vv (i3) = (wnm Mij + BB, . o+ nM, ., B, L)V (i3) + (‘\NA‘+:7.1 Moo, V{5

ig ij 137 ¢ 1307137

A A
I i
where w, m, h, h, w ; m =are constantse

E¥S
e

©
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Mi,j is the lajorana -space exchange operator.
Bi,j is the Bartlett spin exchange operator.

si,j is the usual tensor operator.

6. r. .) .o ..,
S. . _ 3 (_1 9 !l']) (-6.3 213) - (6. . 6')
+J T, 2 - T
1J
and V_ (13) and V, (ia) are the radial forms of the central and tensor

potentials respectively..
. : 1 1
Now since (RpN)ﬁ commutes w, m, b, h, w , m , Bi,j’ and 8;

V(13) (Bgdy = (Ry)g V(1d)

~

) . - 1 s _—

E(m +h Bij) Vc(la) +m Sij VT(:LJ) } { Mij(RpN)Z - (R.). mij_j
PN’ %

From the form of RB\I (4), it is seen that if i and j both denocte

protens or both neutrons, then Mi,j and (RpN)Z commuteo

Hence

}:{v(la) Rye = Ry V(ia‘)}

L {(m +h B ) v (pn) +m Spn V, (pn)—i {. ) (Rﬁ‘l)z _ (RPN)Z M
Psn

where the sum is over all neutron-proton pairs.

In a potential of the form (18), only the space exchange terms

i.e. the Majorana and the Heisenberg terms contribute. Now,

A
-t = - - M
Mpn (RPN)Z (RPN)Z :Mpn N& (rp rn)Z Pl ceccecsece (1 9)



and hence

:__/+x t(m*hB)V(pn)+m Spn T(Pn)—g
: P’n '

gpn Mpn+a dT - 0‘}0...’00.6 (20)

where an '= (rp - rn)Z

Therefore, gathering the results together gives

- N& L X o
Mb = A [+b (RpN)Z +a AT cececcoceeos (5)

a

and

(B, -E) M, = -1%-' {IT + IVJ coeecaanee (k)

2 o
=_%/ .bx%ﬁ + ar —/+ LU(pn)Z 8 +a av
foo0OCBCSCD (21)

where

U(pn)

1
(n+h Bpn) v, (pn) + m Spn VT(pn)
doeoCcOoORROGe®O (22)

U_(pn) + Yy(pn) seovcccacs (23)

The sum rules are obtained from (5) and (21) by summing over all

final states +b and applying the closure relation (6).

(1) L 8ab / (B,E,) i’%l ZEJM . °
P
2m /N j+ ' + aT

]

1

= & ) _/+ R o) >4 ar

7/ \
®eo e e [\221}
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{Eb - E:a) Emab

o

5, - E) 1,

%IB’

It is more convenient to rewrite this in the symmetric form

I TR 57 LR PR R
@
22 B
n H&l x! a a
o e e | — 5{‘,_ E_:"" - — (a.\. )
2 4 i_ m +a L‘W?H )Z dﬁpﬁg dﬁuﬂgxnpwg’.j Fe o
: r b ~
- 1 Xy e (e I A & { %
j L [ ¥ Boeds Yo “pn T pNES . T
P
B am o e Sax oo [
= = ] 1.5, ar-= ) ., ) B, L(an)g:hl _JWL ar
i pn

wagre the square brackets denote the commwtztor, and finally, by

=Xk kil o4 {naj)

¥

; 2 PR
gab - & hzj.i,x 3 ngnlg M +a dT L R A R (4)5)

f / it opn
e jrn)
Tkis i= the most symmetricsl form for g an* However for explicit

calcuiation, it is conwvenient %o simsl Lgy this form further.

By the Pauli Ezclusion Principle, the wave funciion is antisymmetric

e S T L o o e of arvy wei ot i
cnier the . zrge of space snd spin coordimates of sny peir of like

I SO AT s s A Tpr - o o e e - o = -
mucleonse Hence the s cocuwrring in the second tern of (23 7 b
reduooed to z single terp by intercheanging the profon p wiih the proton P

tne Leutron e Hence

. - A
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It is of interest at tuls point to compare the result (25) for
the electric dipole oscillator sum with that of previcus authors.

The form (25) is the same as Equation (LB11) of Levinger and Bethe
(1950) but the centre of mass motion has been introduced in a more
natural forms Alse (25) is exact whereas, in deriving (LB11), the
assumption of similar proton and neutron wave functions, was used to
remove correlation terms (Levinger 1956). This approximation procedure
is seen to be unnecessarye.

Sachs and Austern (1951) have derived general sum rules for
electric multipole radiation from the requirements of gauge invariance.

They found

) fo -3 <+a|[[H,DIJ,D1J > e (2D)
B

where Dl is the electric 21~ pole operater and H is the Hamiltoniane.
This result can be derived from the Schroedinger equation by the
method used above without explicitly using the requirements of gauge
invariance. (See Appendix B). The properties of gauge invariance
were used by Sachs and Austern to show that D1 is independent of the
form of the interaction.

Levinger and Bethe considered only Majorana exchange forces.
This has been extended in the above derivation to include a general
exchange mixture and alsc tensor forces. This extension has also
been made by Levinger and Rustgi (1957) in a paper which appeared
after this work had been @mpleted. However, there are some errors

in their paper. These will be discussed later.



The inclusion of spin orbit forces (neglected above) and other
velocity dependent forces, has been considered by Frankel (1955) and
by Levinger, Austern, and liorrison (1957).

If the Hamiltonian in (27) is written as H = T + V, the kinetic
term involves the momenta of all the particles gquadratically and leads
to the usual Thomas - Reiche = Kuhn result for electronse.

For a nuclear system, in which the Hamiltonian contains the
coordinates and momenta of N neutrons and % protons but those of no

other particles (such as mesons), the kinetic term leads to a contribution

N& and

= (27) reduces to

__\'1
\%J g - - ‘llA% + \251631) psesoecsse (28)

The second term depends on the potential energy operator and (28)

is equivalent to (25).

y

The sum rule for %/ ‘gab / (Eb - Ea) is discussed in the

next section ,§3a

e Root Mean Square Radius. = Definition.

The root = mean = square (r.m.s.) radius of a nucleus will now
be defined.

The re.m.s. radius of the mass distribution is defined as
2 _ 1 N L X - 2 T
R =1 ) /+o (z; -t @ cooceseees (29)
-
i=1
and of the charge distribution as

2 1y | L x 2
Rc = ‘:; L/ +° (-]E-‘i "‘EA) +OdT cecscocees (30)
1=1
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where +b is the ground state wave function.

It is readily shown that

2 _ 1 [ix_.2
Rm bl A2 j +@ PA +@ dT Qo0o0eesscee (31)
where /OA? is defined as in Appendix (A.3).

A

2 N\ .2

PA = 2-1 £iJ #0090 00080 e (52)
i3=
i<

The most accurate measurements of the imean square ragius of
the charge distribution are those obtained by high energy electron
scattering (Hofstadter 1956). However, care must be exercised in
comparing the experimental results with the above definitions
since the experiments have shown that the proton has a finite charge
distribution Rp = 0.77 10-15cm.. The above definition (30) holds
only for a proton with a point charge. Following the treatment of Foldy
(1957) and others, the correction for the finite charge distribution

of the proton is made by using
2 2 2
RC (exp) = RC (theor) + Rp Roeocceco00e (33)

where RC (exp) and Rc (theor) are the experimental and theoretical
values respectively.
The bremsstrahlung - weighted cross-section is given by (10b)

and (24)

2 -
6b = E_E;EE_,E Z;Jgab/ (Eb - Ea)



s 2

ls 2 .
A S NE\ 2
- 3 hC A) < RPN >00 (2 X T E-X NN NN (3}+)

It will now be shown that 6b is closely related to R and Rce

From the definition (4) of R

pN
2 i, .2 1\ .2 1, N\ 1
> =L = = =
<RPN 0o < 2 Z_I S > ™t e T2 Tty
lnd 4 N n ni
p n P‘W_P
5 —
- N& ZJ rprn > 00
pn

Now, by the Pauli Exclusion Principley, the wave function is antisymmetric
under the exchange of the space and spin coordinates of any pair of
like nucleons. Since RD}%T does not involve the spin operators, it is
seen that <I'p2> has the same value CLp for all protons, <rn2> has the
same value %y for all neutrons, <r r 1> has the same value § __ for

PP pp
all distinct pairs of protons, <rnrn1> has the same value BNN for all

distinct pairs of neutrons, and <rprn> has the same value BpN for all

neutron proton pairs. Hence

2 1 1 & =1 -1 )
‘BN %0 T E % "W Wt TE Pt T P Pu

alccqooo'oo (35)

—
1
=i
+

g,j o 8 o _ (2a-8) (58-1),4

D AZ N AZ PP

g
AZ pN Dececdecseo (3\)

+ ngéll ﬁNN - 2§E B
A
and

P Pp

T Y r =
R oo s-1),  H@A-1, sE-1) 5
A2 A2 N A2
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N (N -4 21%
+ B\ - —— B 6000 PSR (37)
42 TN W2 o

The formulae (35) (36) (37) are exact.

For the lightest nuclei, they may be simplified further by the
use of the symmetry properties of the nuclear wave functiocn.

(1) If the ground state wave function is symmetric under the
interchange of all protons with all neutrons, then for a self-conjugate

nucleus

A .
= = = °* Q = G = O - = . -
N ] 2 5 % N 5 Bpp P B, BPN ¥

CE-F 2N NN NN (38)

It is shown easily that

2 ) .
r2 - A= o L (B-1) g 28, =R?
c A 24 A? m

o0esspeECLOS (39)
(2) If the ground state wave function is completely symmetric

in the space coerdinates of all nucleens, then

219 = & = & B = B -’—"3 '-'—'B coeseoceso 0]
. N L. o U (40)
giving
2 = & -
< RPN >®e = Ng (0‘ ﬁ) O30 eS 0RO (l-i-1)
2 _ g - A=1 a_B
Rc = Rm = N (“ ) sss0seecen (42)
Hence
2 2
. ¥ L N 2
6, = % = R soocecooen (L3)



This relation has also been derived by Foldy (1957) and his notation
has been used here.

The Jjustificaticn of the éssumption (40) will be considered
explicitly in the case of the G-particle, but first wave functions
for the G-particle must be introduced.

4o Alpha-Particle Wave Functions.

As discussed in (I§6e), the wave functions used by previous
authors for the G-particle have generally been functions of P where

P is given by' 2
Pz = I‘ijz ©se00ss e (l;l;.)
ij=
i<j

For convenience the coordinate system (A7) will be used

cseossseee (24-5)

R = z(r5+15)-2(g +x,)

31,, = %(31"'?2"'53""5‘1_}_)
where 1,2 denote neutrons and 3,4 protons.

The calculations of Abraham et al (1955) on the binding energy
of the G-particle were performed by considering the ground state as
a mixture of an S- state and six D-states. These authors found
that only three of these D=states gave any significant contribution

to the binding energy and hence only these three D-states will be

considered hereo



The a-particle wave function is taken to be of the form

t, = 2g o oy +1 +oayty a3+3

v®eeeeesva (L[.6)

where

to=N, ¢ ()] s> t, = N, ¢, (p) lay
eneceecece (468.)

ho=n s, ) la> 4 =N 40 lag>
end the spin-engle functions are obtained by the operater method

introduced by Gerjuey and Schwinger (1942).

ls> = %—{am 8(2) - B(1) a<z>}{ a(3) 8(4) - B(3) a(br)}

|d1> = l u,y>
la = (@B | wB>+ (2B) | LB > ceveorcers (46D)
ld3> = (u2'+ y2) lg,x>
with
s 2 = [3(6) (6:1) + 36 (6y0) -2 (21) (5,6 | o>

veseceoses (47)
It should be noted that +‘I ’ '{'2, +3 are not orthogonal but it is
simpler to deal with them in the above form than to attempt to
construct orthogonal wave functions.

The s~-state is completely symmetric under the interchange of the
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space coordinates of all nucleons but the D-states are only
symmetric under the interchange of all protons with all neutrons, i.e.

in the notation of§3.
- = M = =
5 = state @ oy s B BNN B N

coscesesss (L48a)
D « state a = Gy Bflpf = BNN #BPN
cosscsssoe (48D)
This type of wave function has been used in other calculations
on the a-particle binding energy. Irving (1953) considered the
s - state plus the principal D-state '{‘ 4 whilst Clark (1954)
used the s-state plus two D-states +1 and o*
In the following, the spin matrix elements have been evaluated

by the method introduced by Irving (1953).

The wave functions are normalised as folléwsss=

/‘+52 d'r-_-f+12 ar =f+22 at =f+32 at= 1

60 000D OOS e (Ll—9)

2
Hence
- L
-2 2 . -2 _ I
NS = R 5 Z ZL P ¢ (P) dp 4 N1 - 11e70562 X

FE 42
L P (p).??....... (50)



L

I L
-2 _ * 16 2 Lo =2 Il
N, = 13.11.5.3?2‘.’[3 P gy (P& WU = oy X

016 ¢ 2
L*’ 5 ®) e
and

2 2 2 2. 2
/+o. dT = a *a +a, +ag + 28,8, <, [+2>+2a2a3x

<+2 l'+j>
+ 2 33a1 <+3 ! +1> =1 sceecsssss (51)
where L
Gt = wn T [y ) (o) @
11T 2 172 134114703025 OP g \P/ %y (P

4
I

_ 16 \
<t | +3’ = NN, 13.11.7.32.22./;‘: ¢, () ¢5 (p) o

oo
<, | +> = nx . j Pt 8,() 4, (p) ap

3 1 371 1341147320

]

P ¢

be Bremsstrahlung = Weighted Cross Sectione.

For the @-particle A = 2N = 2& = 4 and hence from (34)

, ,
_ L I e 2 .
6_b = -"———3 <“"’h3 <R >°° s0crecoese (53)
where
2 x 2
<®" > .—.f}—a rR® f_ aT
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= 2~’ a e <‘+i | »° 4 3 > 1,3 = 5,1,2,3.

i,J

eDeOsO OO (5&-)

The various matrix elements are readily evaluated to give:=

< | Rgfl"f'+5'>‘~=~ 9N§27 :3 0 ﬁ (p) @
G 8% 14,5 =0 = <4 1814+ > 1 =123
< | E14> = 1?1:7.,23£ EPOR
<, 1 8% 1 4,> = 7N22~n4 c[" SGRY;
T ELRERTICR

coooesescs (55)

| 2 ok
4, | 8% 4, > o of p '8¢ 2(p)ap
3 3 ’ 1701301107.2 3

N,.N Vg

214 _ 42 16
<, 2% 14> = 355,00 [9 ¢, (P) 3, () ap
=<t , 1 &4 >
L
5N2NH

- _ ™ 18
b, IR+ 5> = gt g pah | P %y (P) 45 (0) ap
O

=<+3|R21+2>



NN I%
<yl B 14y = ]

16
——— P ¢, (p) ¢, (P) ¢
ERTIAN -/o- 3 !

<, [ 814, >

6s Root Mean Square Radius. Matrix Elements.

Since, for the G-particle wave functiens

N=% § @ = & P

p = % 3 Pwo= Py
from (48), and hence
Rcz = Rmz = R2 cooco00seses (56)

the re.m.s. radius is given by (31) as

1/16 [ﬁ[’axp 2 4, ar

o
L]

n

2 L
1/16 Z L <+ilp l+j> i = 8,1,2,3

ij

otsee00200 (57)

The variocus matrix elements ares-

2 N2 e 4o 2
dleflt> = w25 | e " e @) ar

2 2 .
<+Slp l'{-i) = <+i]p l+s>= 0 i=1,2,53



N 2 no¥

C

2 _ 4 ‘ 14 , 2
<’*‘1|P|+1> = mfé Phsf’1 (P) ap
2 b
N.° I
2 _ 2 18 2
et - 13.11.5.32,28[ P gy )
2 Nz nl" oG 8
_ 4 2
d5 e 4> = '1%.‘1‘1‘.?3.2% P e (p) @
NN, mh
2 _ o2 16
<t e l4,> = -————13011'7,3.26[9 8, (°) ¢, (p)
ceess900 SRS (58)
2
= <, 1p° |4, >
| 2 NN n* = 48
<y | P2 145> = —1——13_11.7»,3'2% P "85, (o) 4, () @

= <5 1% It

2 BN, i < 46
s le” 4> = *b3.11.7=.3.25Lqp #5 (0) 9, (p) %

2
"‘ <+1 l P l +3 >
Comparing 6, with R? it is found that relation (43)

2 2
- I (e ) N& 2
6b - _3 te A=l R cesessoene (15.3)

holds only for the s-state +s’ as was expected since only for this

state is relation (40) satisfied i.e.




However, as will be shown by explicit calculation in§9, the
inclusion of the various D-states makes little or no difference to
either 6b or R°. Hence (43) can be used to ccmpare the experimental
values of 6b and Rmz.

7« Integrated Cross Sectione

The integrated cross section 6,
int

2 2,
= 2H e h L1_2§ I} ses00000eee (59)

int mc ,h

as is seen by using (26) with A = 2N = 2% = L.

is given by

Here I is given by

I= / +Cl.x U(13) 3132 M13{+0. aY = Z_/aia'j <+ 5 III +j >

*e 806 0o0 s (60)

The variocus matrix elements are:=
2 b | /
_ Xs Il 1 2 10 2 L .. 5
<+S|IH'S> —-3—-—25(m+2h)£ L F N dPLcosesm?xc

Petosd
(9

Here enly the central force gives a contribution. In the <+s l I l +D >

terms only the tensor force contributes.

L e
4 Llh > = (my, % AR

Y, 6
/ 2 cos & sinée VT Pﬁﬁé‘*_ﬁ

: ok = : |
<t | T Hy> = a 339[) ¢ (p) 8, () p Map x |



1’[’/ 3
xl 2 ces68 s:.n59 V Q—J%E—Q-) {5 sinze -6 cosZC\_; de

<t | Il45> = (—1)m1N3Ns %—;29 L b, (p) 25 () p'ap
4]/2

xL ces69 sin59 VT <9789-s—2) h} sin 9 + 6 coszs} ae

X coessoceeee (61)
The terxrms <+i l I [ +,j > i,J = 1,2,3 must now be considered.

These terms only contribute a small fraction of the sum rule since the
pereentage D-state in the a-particle is small and also since the
integrals occurring are not unduly large. Only the <+ ’ I I +1> term
has been calculated since it is the most important. Both central and

tensor forces contribute.

%
1 Tlbp, = 2 ) T2 ) ap [ Rucko sante x

v, (B..?}%Q) ae LT% sin %o -% sine cos’e + cosl'“G}

' oC
<, 1 1] 43 ”‘Nzn LP“‘ 2(p)dpl 1n%6 cos®e

VT <E_3_§ﬁ) ae x L? sin29 -6 0@329}

6.

int? 6b and R2 will now be evaluated fer the various wave functions

introduced in§i.

8. Internucleon Potential and Wave Function Parameters.

The internucleon potential is taken to be of the form




_ 1 J:“12 /r12
v(r12) = [1+d ¢ (§1,§2-1)] J (;;—- - vestT \;-T—

LR A N - (62)
with
e
Jc(x) = JT(x) = =3
Extensive sets of parameters which satisfy the duteron binding energy

and quadrupole moment, have been tabulated by Feshbach and Schwinger (1951).

The sets used in the various binding energy calculations are shown in

Table vo
TABLE V.
' |
r T v | % D-state| Effective
No _ 1 30 -3 M ° Y g in Triplet Authers
10 cm| 10 em| TV . Deuteren| Range
1] 1484 | 2.757 |59.54|0.107(0.410 2.1 1485  |Abraham et al.
2| 1.184 20120 |54o53 0.231|0.074 & 2.7 1.79 | Abraham et al.
5 1 0184 1 067 4601 0154 ‘)‘OQOOI{- II'ving
i
b| 10184 | 1658 1427 069 =0.0ik Clark
51 10184 | 4532 139049100836 =0,088 3.9 1.71 | Abrahem et ale
6 1.181{- 10379 30065 19507 -Oe256 l}--5 1@66 Abraham et al. !
; i |




The details of the xix wave functions used are as follows:-

(i) Irving, |
I I SN \ |
ta- (1+c2)® tg+ Cty }
with
cosoesssss(53)
b, (p) = e -ap ; ¢, (p) = exp-Bp
C = -0.162 2J'2'arc = 4.0 2/2Br = 6.0

This gave a binding energy of -24.3 Mev using potential 3.

(ii) Abraham Cohen & Reberts.

+a. = ZJ a; +i i= 8, 1,2,3

i

ceceecenns (64)
with
9 (P) = exp-ap ;5 6, (p) = 8, (p) =95 (p) = exp~ip

where the parameters a;, & B, are given in Table VI,

TABLE VI.
Potential x=2J5(ch y=2f2'a.rc a 2, a, 2y grléfg%
1 L..82 6¢5 00,9691 |-0.1245 [0.1086 [~0.0513| -46.6
2 LeliB 6.5 [0.9843 [=041399 041198 |-0.0821| =40.3 Q
5 3.8 52 09710 [=0.2325 |0.1787 |=0.0731| =23,5
6 340 5e2 0.9731 5—0.1595 01797 [=0.1289] =141
L ’




(iii) Clark.
a

t, = N {l s> - N, ?\ﬂﬂzld1> + 1ym ¥ | d2>}ﬂ—l*‘+ M)

ee0s00csee (65)

where

2_1%‘} s NS = M L o y2 _ &, 8
Yo =33t 5 N =5 5 N = 3 M= 3

A and M are functions of M found by minimising the energy and are given

in Figure 1 of Clark's paper.

3@
<+o'l +0-> = -2—/ ¢x¢dx
aO
1.
where x = al a = JZ%C and g = P25+ M)
1‘=1+k2+u2-41{?~u K o= 12

Te a first avproximation for ¢, Clark finds

b= (14 Be ") sinnPt  cosh™t

where t = @X , The values of the parameters to give the best fit for
the binding energy are:=

20557

30120

Q

fl

0.5 p = 40 b

3 = 1 0618 q = 600 C

n

This wave function gives a value of =29.59 lMev for the binding energy

using potential 4.



9. Nunerical Resultse.

The following matrix elements are tabulated fer the Exponential

type (I.41) wave function in Table VII.
(1) <+i | + 3 > - normelisation.

(ii) <t. | Rzz | t> - Bremstrahlung Weighted Cross
i ;
Section.

(113) <b; lp %4>

Reme.Se radius.

For the Clark Wave function.

i

<ty 14 =2 [¢"¢ an sefle®l > =2 %% an
<t | Rzzl t,> =Ln2+2 . 23[

200 QSO seq (66)



TABLE VII.

|

+f 4 1 2 ’ 2
<if » H <t Ity <k 87|+ > <tile Tt 5>
L2k : |
<s]s> Ns I Eg 2 % )2 % 22 3(- 2 |
7e50342 (Z3) e )7 55 (aa)
= 1 | !
<s|1,2,3 o] 0 0
2
<1'1> ff" L?_ z 1 1350 1
-2 -2
T 5.2 @'’ 2 (2p) , > (2p)
1
2 I
N 6
<|2> 2 ke 21 1 12.9 1
13.71.9.52128) "7 2 (29)° 3 (2p)°
i = 1
2 ok
sl N 0T LE 1, 2:9 1,
13.91.7.3 (2B) 2 (2p) > (28)
= 1
NN, B
<1le> 2 o L‘15 LN L 1 :
13511.7 3.2° (2B) - 5 (28) 2 (2p)
4
NN I E.6_ 541% 1, 129410 1
<2|3> 13.11.5.7.2°(28) / % (28) (25)
= V105/5
4
E N3N1H u-lt' @ 1. L_—QJTO— 2
sl TBats.e @)Y T35 (28) (2B>
|
= 105/,




The matrix elements for the integrated cross section using the

Exponential type wave function are as followsi=

<s |1 ]s>

<s |1 l1>

<s|1|2>

<slzlz>

<]zl

<1lrla>

H

H

i}

2 1 Hl" Vctg' A
Ny~ (m + 3h) 305 /) I (x3 3, 2, 10)
o Vo |
-N1NS m ;g WT__)13 I (&; 5,2,12)
NN, o (7——VT 15
28 n 302 r)

i-gl (23 5!3:“{—) - 3I (Z; 7:2’14)}
1 # v, L_é socessecse (67)
{61 (8; 7, 2, 14) +13 I (3; 5, 3, 14)}

2 nh. ch
N,‘ (n + h) -2-§ (W:—/:Z)JIB

{%é I (73 3,k14) = 2T (35 5,3,14) + I(y;7,2,u»)}

2 4 0¥ "Lé
N1 m -3-:28 (-—7:/-__)15

i_?x (w; 5,3,14) = 61 (w; 7,2,1u)}



where
1 .
pi %o Wy o= 20

O‘QG..OOO.. (68)
2/orps B = W2 (arp) v,

4 tp - 2 q
I (0‘; Py 9» I') =/ '—T(C:—"-'—"Etv)- dte eccecveccec (69)
©

This integral is evaluated in Appendix C.

and

For the Clark wave function, only the GSI_II S> term has

been evaluated.
1 1 1 2
<sS|I]|s> = 243.5.7 v, (m + Zh) (720)3[ x4 “(x)ax
@

{AB (x) - 24, (x) + A, (x)}' ' cececscsss (70)
where

A(x) = [1 ;’x" Par - B [1 ~e ™t e (x)]i

@ X
ceeencoeso (71)

e(x) = }ig

Using the parameters given in§8, in the above expressions lead$ to the

following results.



TABLE VIII

2 2 f
. ' R . R 6 éb
Potential _ i | b . - .
No Ty 10 26cm?é 10 26cm2 b b Wave Function
T ~ 'S-state S+3D states|S-state | S+3Dstates
1 20757 0968 ; Qs 67 0087 Qe 87 Exponential
i 2 2,120 0479 0.77 1 1.01 1,00 Exponential
| | ;
! ; ;
| | v Exponential
i 3 ?1 o~67 0099 Oe99 1 027 4 023 (Ir‘ving)
i 1258 0495 - 1.20 - Clark
5 16532 1409 1.06 | 1040 1,39 | hxponential
;
| 6 12379 175 1e66 | 2.24 | 221 | Bxponential

It is seen that the explicit inclusien of the various D~ states does
not alter either the root mean square radius or the bremsstrahlung -
weighted cross section by more than ~ 3%. Thus it is valid to use
equation (43) to relate these quantities experimentally even although
the wave function is not completely symmetric in all nucleonse.

For the & =particle

6b = 0.1281 Rmz (cpe 10"26) cosvcacese (72)
Experimentally
4
6, = 2402 0.45m R = 1.4 107 ’cn

eessecoees (73)



Using (72) and the experimental value for R gives

6b = 2°5)+ mbe cecesesese (714‘)

Thus, it is seen that, within the experimental error, the charge
distribution measured by high energy electron scattering is the same
charge distribution as gives rise to the electric dipole absorption
at moderate energies.

However, wave functions which are chosen by a variational calculation
te give the correct binaing energy, give too concentrated a nucleus. They
are consistent neither with the electron scattering experiments nor
with the photodisintegration experiments.

The integrated cross section is given by

6, 202 [, _im I}
int me L 5?

it

<s |1 |1

60 [w ?{(m—;-h) asz <s|I|s> +2 m1asa1

(n&h)a12 <1 lI l1 >c + nﬂa 2 <1 [I ]1 >T }.J

+

1

60 [‘Hm (2+C) + h($a+C) +m'B ]Mevo mb.

coscosscss (75)
where only the principal D=-state is considered. The matrix elements
have been evaluated for the wave functions introduced in§8° The

results are shown in Table IX, for ;’—:—é-‘ <|zl> .

- 62 =



Also tabulated for the five Exponential type wave functions are
the constants A, B, C which are related to the coefficients m, mﬂ, h

as shown in (75).

TABIE IX

Pet;:;tiali r, ? ‘-;% <s|1ls>! - ;-%1 <s|:c|4>g ‘-—;Eé-’ < lI]1>c; "-;‘T‘-; A|T]5,
1 ‘ 24757 % 048815 ~0,34,00 044358 0.0353
2 2.120 0,803 | -0.OL . 0.3988  0.049%9
3 | 1.67 | 0.6698 ~0.5607 0.3388 00740
| 1.58 00,5989 - - -
5 1532 05677 -0.6101 0.2891 0.0905
6 1379 é 065060 ~0.6248 ; 0.224, 1 041055

It will be seen that the <8 II lS > term is the dominant one since
its integral is of the same order of magnitude as the other terms and

since the percentage of S~state present is greater than 96.



TABLE X

Fotential A o B A+C | Crih
1 ~ 0.8678 00068 0.0847 0.8746 044407
2  0,7883 0,0079 0.1237 0.7962 0u5021 |
3 0.6527 00087 051789 0.661L | 0,335
5 0.5370 ~ | 0.0156 0.2813 005526 002841
6 0.3978 00201 0.1776 0.4479 0.2190

The values of A, B, C which are consistent with a binding energy of
28 MeV have been found by internolation from the values tazbulated.
These values are

A+ C = 0.62. ZA + C = 033 B = 0.26.

0.0.0..0e0(76)

Three standard central force exchange mixtures are:=-

TABLE XI
L
: w ' m b h 6 int ¢
- m, = ml
Rosenfeld | ~0.13 +0.93 +0.46 0026 106 hi=
0949 | mth = i
Inglis 0 +0.8 02 0 102024 | m=m'
Serber 005 0eh 0 0 084 L= nﬁ

- Oy -




The various values for the integrated cross section sre given in Colum 6,
using (75), (76) and the approximation of Colum 7 for the tensor
exchange parameterso

It is seen that the results are not inconsistent with the experi-
mental results of Gorbunev ana Spifidonov if a‘Serber'exchange force

is assumed.

6 (éxp)

in»t 88 : 7 Meve mbe

©0o0eeseces (77)
6

(theor) - 8644 lev. mb.

int
It seems probable that this agreement is fortuitous as it has already
been seen that the wave functions used here give a serious discrepancy
‘between theory and experiment in the case of the rem.s. radius.
Bransden et 21 (1956) in a calculation on the elastic scattering
of neutrons by tritons and 3He, find that a Serber exchange mixture
gives good agreement with experiment. This would imply that the Serber
exchange mixture is a good a:proximation in the four-body problem,
Assuming that the Serber force is a good avproximation then it is
seen that the constants A, B, C must be relatively insensitive to the
form of the wave function and of the potential,
The results obtained here should be compared with those of
Levinger and Rustgi in a paper which appeared after this work had heen
completed. These suthors used a potential of the form
V(ij) = (wsm Mij + b Bij + h Mij Bij) v, (ig)
ot n s e Big 4+ n | g B3V, (15) Si

ceereseess (78)
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Since
Bijs8ij = SijBij = Sij
the tenser force may be written

(G e n™) s @ ') ]« vy(a) sig
and therefore [cf (18)]

@) =w, ot en! =

Levinger and Rustgi find, for the integrated cross secticn (IR 27)

N
6 = 60 { 140.6710(m+ih) + 0.1815(m + 2h'1) + 0,0240(m+ih)

int
- 00001 (mit4n') }
eooossoocs (79)

They used potential Ne. 3 and Irving’s wave function (63). It will be
seen that the parameters m, m1 s hy h‘l occur in (79) in a different
manner than found previocusly in (75). This is due to the fact that the

relation (IR 19).

fox | x
‘,/‘l'@ Bt av =%j+o Mt dT  eccsescsos (80)
stated . to be generally true for even~even nuclei, by Levinger
and Rustgi, is valid only for the S-states. It dees not apnly for

the D~states er for the tensor force.

ﬁpéﬁrt“’from one or two small numerical differences, the results of
Levinger and Rustgi are in agreement with those calculated here.

It should be noted here that the results obtained for R2, 6b ’
and 6int using the Clark wave function are in close agreement with those

using the Exponential wave functions of Abrahasm etel.
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The Clark wave function gives a slightly larger binding energy for
the same potential, and gives a correspondingly more ccncentrated nucleuss
However it has been shown by explicit comparison of the Clark wave functicn
with the Exponential wave function giving the same binding energy, that
the two wave functions are very similar in form and magnitude and have
the same asymptotic forme This is a confirmation that the Exponential
wave function has a reasonable asymptotic form, since the method used
in deriving the Clark wave function ensures thét it has the correct
ﬁsymptotic form.

Since these wave functions are so similar and since the Exponential
form is more readily dealt with in calculations, it will be sufficient
in future werk to consider only Exponential wave functions.

10. Conclusicnse.

The results of this chapter may te summarised as follows.

For all wavefunctions which were derived to fit the uHe binding energy,
it is found that they give a very concentrated nucleus with an r.m.s.
radiﬁs about two thirds of that observed experimentally. Also, using
these wavefunctions gives a very lew value for the bremsstrahlung -
weighted cross sectione.

It has been shown that the r.m.s. radius and éb are closely related
to one another and that the experimental results are in gcod agreement
with one another. Thus the discrepancy must occur in the choice of wave
function. It is necessary to have a wave function which gives the

same binding energy but with a larger ris radius.
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As has been seen, the integrated cress section depends on the
exchange force used, as well as on the wave function. As the wave
functions considered are net completely reliable, it is unlikely that
much infermation concerning the exchange nature of the force can be
obtained at the present stage. Hewever if the results are relatively
insensitive to the nuclear wave function (as seems likely), it will be
seen that the results are consistent with a Serber exchange mixturee
This is in agreement with the work of Bransden et al (1956) who find
that the Serber exchange force gives good agreement with experiment
for the four-bedy problem.

Before proceding to investigate. this discrepancy between experimental
and theoretical results, it will be of interest te approach the problem
from a different angle, by the direct evaluation of the matrix elements

for the (Yp) reactien




CHAPTER III

Direct Evaluation of the liatrix Element M;bo

1. Intreductien.

In the preceding chapter, the closure relation (II.6) was applied
80 as to eliminate the final state wa&e functions from the matrix
elements. In this chapter, assumptions will be made as to the nature
of the final state and the matrix elements will be explicitly
evaluated.

This approach has been considered previcusly by Fleowers and Mandl
(1951) and by Gumn and Irving (1951). These authors were able to
accoeunt for the qualitative features of the observed cross section
without assuming the existence of an excited state of hHeo They
described the ejected proton by a plane wave i.e. the Born approximatiocn.
Gunn and Irving used simple analytic wave functions for 3H and hHe of
the Gaussian and Irving forms. They found that if the parameters B
and “T were determined variatienally to give the best 3H and 4He
binding energies using central forces, the calculated (Yp) cress
section exhibited a maximum at an energy much higher than that
observed.

In the following sections the effect of the final state interaction
is considered.

Gunn and Irving have suggested that better agreement with

experiment would be obtained by using wave functions derived in a
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variational calculation with a mixture of central and tensor forces,
This is alse considered in the following sections.

2. Photedisintegration Cress Section.

The probability of emission of an electric multipele quantum h w

of order 1, m is from (I.15)

141
Tg(lom) = 1%::] 2 ﬁKz | Q1 (0 |2

L X R RN NN NN ] (1)
where K = l"é the wave number of the photon.
The total cross section for the radiative capture of a preton

by a nucleus is

6 = 1 1 (1,m) | reeeenenns (2)

A
CAP v

wheére-v is the relative velocity

[

v = -—‘T Qoce0eesso (3)

with B k the momentum and M1 the reduced mass of the preton.
The oxess section feor the photedisintegratien:: B then found by
applying the detailed balance theorem for inverse reactions. This

gives for the total cress sectien

2
6DIS (1,m) = % 6CAP (1,m)
2
= -Ilz—zn % T (1,1!1) cevesconoe (ll-)



Hence the electric dipole cross section is

&
1 .
_ ket ‘ 2
631, - 3<’i22)k1€ | L/%xzi ¢ at | |
k=1 » es006sce0ees (5)

If the initial photen beam is unpolarised, the aess section must be

multiplied by the statistical weight (%) before comparison with experiment.

Hence
1.2
. 2 Me 2 '
6DIS — 3 ( ‘5’2 )m lMa‘bI Ga0oeeee e (6)
where
R :
X
Mab - Z: j ¢b zi ¢a aT L "g.;“"'" (7)
i=q o

For the reactien

z'He+Y" 3H+_p

the E1 cress section is given>by (6), (7) with & = 2 and the reduced

1 .
mass M = 3m where m is the nucleon mass.

By the conservation of energy
EY + EG = EP + E t

where By ,E_ are the binding energies of the G-particle and triton

t

respectively, and Ep is the energy of the proton in the centre of

mass systeme

2
B =§-1 ¥ 5 B =fck
P 2M
Therefore
2
= N )] e i)
Ko=go g (521 G SEE 7]

h2 cerenconss (8)



Hence finally

2,
.1 /e 2 2 2
bprs = 3 ($c> e (" %) | g |

Assuming feor the moment central forces, the ground state of the

®8eestocee (9)

G=-particle is a 189 state. Only the spatially symmetric part of the
wave functien will be considered since it is known that the ground
states of the three and four particle nuclei consist largely of
antisymmetric spin states.

The initial @-particle wave function may then be written (using

the convention that 1,2 denote protons, 3,4 neutrens)
$. = t = 4, (02,3 6 (12, 31)
IR E RN & NB NN (10)

with

e — 2
j ’L% (12, 34)} atT =1
The bar denetes symmetry with respect to the interchangé of the pair

of particles. The singlet spin function 6@ (;3, 5&) is
6, (2, 30 = 4 o) B() - B(1) o(2)]

La@)ﬁw)-ﬂﬂ)a@@

deesoO0COesS (11)

where %, B are the usual spin eigenfunctions.
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The final state, proton plus triton, may be represented by a

resonating group wave function (Wheeler 1937).

fy = 2B g (2 TD) R 6 (F, R)

cevesssess (12)

where'PJI2 is the Heisenberg exchange eﬁerater and F (1) describes the
motion of the proton relative to the triten.

s and.¢T are the symmetric spatial wave functiens for “He ana
3H respectivély.

Hence

My =4-1§-[‘{(1-P12) $r (2, 3 4) P(1) 6, (1234) }(51 + zz)

x [% (T2, 38) 6, (12 33)} atT

Ny / p (2,3°5) F(1) (8, + B,)) &, (12 34) a T,

ceeseececoe (13)
where J[(i1’123h is the integral over space coordinates only.

Intreducing the coordinate system (6) ef Appendix A

I

- - y S § = -
u = 24 25' X Fz 2 (_1:3 + El;_)' r _I_'1 1 ({'1 + I, + :E.‘})

® 088 Seepv0oO (14)

M, = i / ¢T (E [} B) ¢q,(£’§:}l-) F (E) SLI'E + % Xg }dE X du

&
N

ececeesc0e0 (15)
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It should be noted that F(1) is now a functien of r only. In the Born

approximation, the ejected proton is represented by a plane wave

F(1) = F(E) = eXp i_ls e T o0secesssc (16)

As 9, and ¢T represent S-states, the proton is €jected inte a

P~state se that

#r) = ~ f. () B, (cos 0) eacecacose (17)
T o U 1

and g“ (r)~sin (kr - '%' Il —@ 19g (2kr) +3) scosseccce (18)

and

2 2
o = 23

e

3o Interactien in the Final State.

In a calculation on the elastic scattering of neutrons by
tritons, Bransden Robertson and Swan (1956) have used the resonating
group methed teo derive integro-differential equations, for which
accurate numerical solutions were obtained with the aid of an electronic
computer. This work has recently been extended by Bransden and Robertson
(1958) to proten triton scattering.

For the (p + t) state these authors used

f (1230 = 2 (1R,,) ¢y (2, ) F (1) 6 (1234)

as (12) aboves cee0co0esss (19)



P(1) was then expanded as a sum of partial waves

F(r) = 2.Ir-1 1;]1(10 Ph (COS 9) OCesvevcses (20)
n
The gn (r) were obtained numerically subject to the beundary cenditions.
in
Since/ the photodisintegration, the proton is ejected in a P-state,
only the functien g 1 (r) is required in calculating the matrix element.

g1 (r) has been found over a range of proten energies up to 40 iieve

Bransden et al used a two body interaction eof the feorm

V(ij) = (w+ m Mij + bBij + b Mij Bij) V (ij) + tij Vc(i,j)
(EXXY X XY ¥ (21)
where Vc is the Coulonmb interaction and ti,j =1 if beth i,j denote

protens, but is zero otherwise, w,m,b,h are constants such that
m+w+b+h = 1 m+we-b-h =x

where x is the ratio of singlet and triplet interactions between
neutron and preton in an even state.
Twe particular cases of this potential were invesfigateé namely
(i) Symmetrical exchange force |

m = 2b

it

3 (1 % 3x) (228)
c0ec0s0ae e a
% (4 - 3x)

h 2w

i
n

(ii) Serber exchange force

m = W -;:(1+x)

pocoooenooe (22b)

h = b (1 -x)
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The triplet even two body interaction was chosen of the Gaussian form
with parameters consistent with an %-particle binding energy of 27 liev

and alse consistent with the deuteron binding energy.

V(r) = Vo €Xp = )&rz @oo0ceocesc (23)

Vo= =5 lev A = 0.267.102° o2 x = 0.6

The triten is represented by a Gaussian wave function with uTz = 0.0718

1 O26 cm-z.

Comparisen of the ;:alculated n- 3H and n - 3He.e scattering cross
sections with experiment suggests that (23) is a reasonable equivalent
central potential for the four body system, when a Serber exchange
factor is used.

For consistency, the initial )"He ground state wave function was
alse taken to be of the Gaussian form (I.41) and the constant My chosen
se that the maximum of the photodisintesration cross section for a
plane wave final state occurs at ~7 Mev above threshold to agree with

26

experiment. This gives Haz = 0,021.10 om.‘2 ‘2 value which leads to a

13

very large root-mean-square radius R = 2,5.10 ~“cm for the G-particles
Using these parameters, the (Yp) cross section was evaluated
in the following three cases.
(i) Born approximation. Plane wave final stateo
(ii) Using the numerical wave function f1 (r) determined with a
Serber two body interaction.
(iii) Using the numerical wave function fﬂ(r) determined with a

symuetrical twc bedy interactione
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These cross sections are compared in Figure II.

It is seen that the interaction between proton and triton in
the final state alters the detailed shape of the (Yp) cross section
but that the position of the maximum is not altered significantly.
For the Serber potential, which is consistent with the n - t scattering
data, the maximum is quite close to that given by the planc wave final
state, whilst the use of the symmetrical interaction gives a meximum
at gn energy about 2 llev higher.

Ir B is altered ‘co the value that gives the best be binding

energy for the potential (23),

T 2 0.0789 1026 cm~2 :E“ = 2647 liev.

then the position of the (yp) maximum cross section is nmch higher
( ~30 Mev above threshold)s

Gunn and Irving found that in the Born approximation, the (yp)
cross section exhibited a meximum at an energy 20 - 30 Mev above
threshold, much higher than that cbserved ~7 Mev. To obtain the
maximum at the correct energy, the size of the l*He nucleus had to be
increased considerably. This is in agreement with the very large
value of the r.m.s radius required in the above calculation to zive
the maximum at 7 keve

A rescnating group ground state wave function of the form {12)
for l"He has also been investigated. This wave function gives a binding

£own
£

energy as good as the Gaussien functicn (6“ = 26 Hev) bul has = much
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better asymptotic ferme. However, in this cese, the maximum cross
section occurs at an eneréy which is still tee high ( ~2C lev above
threshold) for both plane wave and interacting final states.

Since the introductiocn of the effect of the final state
interaction alters the position of the maximum only slightly, it
mist be concluded thet this interaction is not responsible for the
discrepancy between the calculated and experimental (Tp) cross sectioen.
This is, in effect a discrepancy between wave functions for the @-particle
that are consistent with the binding energy and those that are consistent
with the (Yp) cross section.

In invéstigating this consistency problem, it should be sufficient
to empley plene wave final states and this has been done in the following
sectioense

4e The Tensor Force.

It has been suggested by Gunn and Irving that the discrepancy
might be removed if hHe wave functions consistent with a two body
interaction contzining the tensor force, were used in calculating
the cross sectione.

As discussed in II§4., Abraham et al. (1955) have investigated

"
3H and He with twe bedy potentials containing

the binding energies of
central and tensor components, with Yukawa radial shppes. The S~ and
D-states were represented by the Exponential wave function.

In the Born aporoximation, the Exponential wave function gives

for the (gp) cross section:~—

i
~J
9]

i



2 v U
_ 1fe 2 2 (¢} T
6 ('yp) = 3({5) k5 [k + a¢] '1:-2-—-—-—2- 5 o 13
LTE + &+ 7
T X
2 2 _2
114, 9%, 7°.555 [ }2
x (%)
f
P0G OSEOES (21{-)
where
@ = 4 1 (5858% - 975 8 + 422)
§ =1
—1%97=13 (59 &% + 66 & + 8)
o/ Z
J&
- 2 (39 22 - 52 2 + 16) sin™1 1
8 JE
2 n
L (B, - Ep)
th [¢2 ET
and
2
B = ¥ 2 + x
2 2 3 2
He, +-3—- PT
A

Using the potential (5) of Table V, Abraham et al ebtained a binding
energy of 16.6 Mev using a ground state wave function corposed of an
S~state plus a 3.4% admixture of the principal D=state. This energy
was increased to 23.5 liev by the inclusion of five other D-states.

The variationally determined parameter for the S-state was found to

be My = 1134 107 cm™
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The (Yp) cross section calculated from (24) with Hy, “’I‘ = 1134 x% 1015

L}

-1

cn  is shown in Figure III1.

008 X 101 30111-1

For comparison, the cross section for Mo = “T
and H, = IJT = 0...51,'1013 c:mm‘l were calculated and are shown also in
Figure ITL It is seen that the cross section for M = 1,134 ‘IO13 cm_1
rises much too Slowly. For M,= 0.5 10" ™ the calculated cross section
attains its maximum at approximately the experimental value but this
value H,is far outside any value consistent with the L*He binding
energy.

If the tensor range is increased slightly, the calculated binding
energy can be raised to 28 llev but Mg 1s then larger, K, ~1.19 x ’1013
cm'-1 and the position of the maximum moves to an even greater energyo

5. Bffect of the D-states.

In the preceding section, the effect of the tensor force was
included implicit]ly in the value of the parameter Mg, occurring in the
S=-state wave function. In this section, the effect of the tensor
force is considered explicitly by the inclusion of the D-states.

The a=particle wave function is of the form
=
¢ _¢ s+¢D 0eesesceces (2))

where S, D, donote the S- and D= state parts of the wave function.

Similarly the final (p + t) state may be written

S

?g = 9 D vocsessacs (26)

+¢&
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The percentage of P-states present will be negligible and so
their effect may be omitted.

The matrix element is then given by

2.
‘ X
2 i={

N s, S s D
My = Z_.JL.[¢°‘51¢‘ d’l’+[¢“ gJ._«;S‘z art
1=
: D
+ ¢“ Zi

/.
2
= 2_,{ <s°'lzi | sf> +<Sa,+si | D>

i=1

2

6p° aT + / o> 8, ¢}D dr}

4+ <D aIZi | sg> +<Da lzi l D6—>} cecorsanss (27)

The term <S a]zil:sg> has been dealt with in the previous section.
The last three terms will be considered heres

The D-sfates of the G=-particle are all‘s.Do states, i.2. quintet
spin states. The final state is (p + t). Considering the ground
state of the triton to be an S-state i.e. 28%, the final state has
either S = 1 i.e. a triplet spin state or S = 0 i.e. a singlet spin
state. In either case, the final spin wave function is orthogonal
to the initial spin wave functicne. Hence, as the electric dipole
transition operator is independent cf the spins, there is no contribution

from the <D @!Zi IES&> term in (27)o



Similarly if the @=particle is in an S- state and the triton

is in a D-state, the spin wave functions are again orthozonal

and so there is no contribution from the <S a lZi( DF> term in (27).
The <D a[zil I)8> term is non=gerc but, since the D-state of

°y

AHe is at most 4% of the total ground state and the D-state of
at most G%, the contribution will be small and may be neglected since
the <5 GlEi| Sﬁ>terms are not abnermally small.

Hence it is seen frrom the results of this section and of the
preceding cne, that the effect of the tensor force in the photodisinte~
gration of hHe need only bve taken into account implicitly through the
ﬁalue of the parameter By e It need not be considered explicitly by the
introduction of the D-state wave functions.

In contrast, the introduction of the tensor force is known to
affect the binding energy appreciably and the D-state wave functions
must be introduced explicitly. This is due to the fact that the binding
energy is the difference of twe large but approximately equal terms,
the kinetic and the potential energies.

6o Conclusion.

Gunn and Irving have calculated the (Yp) cress section in the
Born approximatien using Gaussian (I.#1.i) and Irving (Lulsd) type wave
functions with various sets of parameters Mo, s “Ta

To summsrise these results and those of§4) with the Exponential
wave functions, the variation of the position of the maximua of the

. . s 2 .
cross section with the mean square radius R, of the ®-particle
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is shown in Figure IV. For these three types of wave function the

remesSe radil R, are given by

, 21 = :
Soavss = B "me T 2 [F¢

QT: j—

u
a2l N

Rrpy

91: j~

eosasssaee (28)
where only fhe S-states have been considered. It has been shown
previously (II§9) that the addition of D-states does net alter R
appreciably.

In all these calculations, the approximation;ﬁx =11T has been
made but the (yp) cross section is relatively insensitive to the value
ef}JT. In the case of the Gaussian wave functien, “T eccurs in the
cross section only in a normalisation factor and therefore a change in
MT leaves the position of the maximum unaltered.

It is clear from the figure that, for wave functions which are
functions of @:; the position of the maximun depends sensitively on the
r.mes radius R but is not very depmndent on the shape of the wave
function. Wave functions which are chosen to fit the binding energy
give too small a value of R, and a very large value for the position
of the maximun of the cross seciion.

7« Photodisintegration of the Lightest Nuclei.,

At this point it is of interest to compare the results on the
photodisintegration of the three and four body nuclei with that of the

deuteron. It was noted in the introduction (I§3.) that the low energy
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photodisintegration of the deuteron could be explained by the effective
range theory. The nuclear potential can be described by two parameters,
the well depth and range whilst the deuteron wave function can effectively
be replaced by its asymptotic form.

This theory explains the position of the maximum of the cross
section at 4.46 Mev above threshold, and the cross section up to about
25 lieve However, the deuteron is a very weakly bound nucleus and has
a correspondingly large r.m.s radius Ry = 1096.10-130mo The two
nucleons spend most of théir time outside the range of the nuclear force
and so it is to be expected that the low energy data is independent
off the detailed form of the nuclear potential i.e. that the effective
range theory is sufficient te describe the data.

In the case of the three and four body nuclei, the nucleons are
mich more tightly bound and the r.m.s radii are correspondingly smaller
than for the deuteron. Thus it is to be expected that the properties
of these nuclei will be more sensitive to the detailed shape of the
potential. It has been seen that even when a wave function with a good
asymptotic form is chosen for the %-particle, the photodisintegratiocn
cross section caﬁnot be explgined. When a wave function is chosen with
a good asymptotic form e.g. the Clark wave function or the resonating
group wave function of the form (12), the position of the maximum cross
section occurs at 30 - 4O Wev above threshold.

These wave functions have been derived to give the correct G-particle

binding energy using a potential consistent with the two body data.
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Thus it is seen that the effective range theory is not sufficient to
describe the three and four body datae
Possible reasens for the discrepancies are discussed in the

following Chaptere




CHAPTER IV

Discussion of Resultse

When considering the sum rules in Chapter II, it was found that
the wave functions used gave too concentrated an %particle and
censequently toe smallavalue for the bremsstrahlung weighted cress section.
This is explained by the results on the direct evaluation of the
matrix elements in Chapter III. It is seen that,’for a wave function
which gives the correct binding energy the position of the maximum
occurs at ~30 liev above threshold and that the cross section rises
very slowly to the maximum.

Since the (Yp) cross section has been shown experimentally to
be the same as the (Yn) cross section (neglecting the slight difference
in the threshold region) and since these two reactions make up
approximately ninety per cent of the total photen abserption, it is
reascnable te assume that the cross section for photen absorption is
of the same form as the (Yp) cross section. As the bremsstrahlung-

weighted cross section is given by
6(E
6 = | LB a

it is seen that 6b will be smaller for the theoretical cross section
than for the experimentel one which rises rapidly to a maximum at
7 Mev above thresholde

Using both approaches,sum rules and evaluation of the matrix

elements, it has been found that, to obtain agreement between theory



and experiment it is necessary to increase the size of the G-particle
as given by the theoretical wave functions. This will have the effect
of giving agreement for the bremsstrahlung-weighted cross section
since it is closely related to the ro.mes radius and since the experi-
mental results are consistent. It is also expected that this increase
will reduce the value of the position of the maximum of the (yp) cross
section towards the experimental result.

Thus to resolve the discrepancy, a wave function must be found
for the a=-particle which gives the same binding energy as those used
previously but has a root mean square radius about BQ% greater.

It has been shown that the position of the maximum is not very
sensitive to the type of waven,function used but that the maximum
occurs earlier for the Irving type wave function than for the
Gaussian and Exponential types with the same r.m.s radiuse.

For all wave functions which are functions of p, it has been
found that te obtain the cerrect binding energy, a very concentrated
nucleus must be usedos This discrepancy may be due to the fact that

the assumptien

., =1, @)

is poor. However, a similar discrepancy has arisen in the consideration
of the three-body nuclei.

If two body central forces are used with depths and ranges
adjusted to it the two body scattering data, the theoretical binding

3

energy of “H is too large, as also is the Coulomb energy of jﬂeo
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Pease and Feshbach (1951, 1952) have taken the tensor force into
account and using a reasonable range for the tensor force so as to
give the experimental binding energy of 3 Hy; they find that the
Coulonb energy still remains too large ( ~33%) .b

As the Coulomb energy is given by

2 [ yx 1
ECOUL = e / +|-r—1_2.l +dT

it is seen that by increasing the size of the nucleus, the Coulonmb
energy would be reducede

Thus 1t is seen that, for both the three and four particle
nuclei, wave functions derived to fit the binding energy by means of
the consistency problem, give teoo concentrated nuclei. As this is
true in the three bedy case for several different forms of trial
wave function, and not enly for those which are functions of /o, it
would seem that the discrepancy is due not to the form of the wave
function but to the form of the internucleen potential.

The potential used in the previeus calculations was of the form

V(ry) = -V, [”ég (6,6, 1) j Io @) = Vo 542 Ip (ﬁT)

with

-x
Jc(x) = JT(X) = 9—}-{-—



This form of potential (with appropriate parameters) is consistent
with all the low energy data. However this interaction fails when
high energy data (E »50 liev) are considered. There are two main
approaches to the problem of finding an internucleon potential to fit
the experimental data at high energies (up to <300 Mev); the
meson~theoretic approach and the phenomenologicél approache.

Several meson theoretical pqtentials give a reasonable fit to the
low energy data, in particular those of Levy (1952) and Gartenhaus (1955).
However, these potentials fail conspicuously when an attempt is madeto
fit the unpslarised and polarised scattering at 100 and 150 Mev,
Signell and idarshak (1957, 1958) find that this data can be fitted
reasonably well by adding a phenomenological short range attractive
spin-orbit potential to the Gartenhaus potential, (which already
contains central and tensor components). These meson-theoretic
potentials all become strongly repulsive at short distances.

Gammel and Thaler (1957) have made an extensive search for a
phenomenological potential to fit the data up to 150 kev. They
locked for a potential of the Yukawa shape consisting of central,
tensor and spin-orbit terms. They allowed different ranges, depths,
and cut-offs in the various terms zs well as in the different spin and
isotopic spin states. They were able to find a set of parameters
which give reasonable agreement with experiment. The central force
terms considered contained an infinite repulsive core.

These alterations were made to the internucleon potential to



explain the high energy data, but meson thecry indicates that one
might expect the potential between two nucleons to become strongly
repulsive for low energies alsoc.

The effect of the repulsive core in the low energy region (where
a potential description of nuclear forces is at least appropriate) has
been studied extensively by Preston and co-workers (1955, 1956, 1957,
1958). As one of their conclusions, they find that calculations with
infinite repulsive cores give results in close agreement with those
for any reasonably strong repulsion. The core radius is, of course
different in the two cases.

If a repulsive core potential were used in the "consistency"
problem, it seems likely that the size of the three and four particle
muclei would be increased whilst the binding energy remains the same.
This would help to remeve the discrepancies occurring in the theoretical

He and the maximm of the (yp)

values for the Coulomb energy of
cross section for aﬂe,

Kilkuta Morita and Yamada (1956, 1957) have already considered the

3H and 3Hee Using

effect of a hard core on the binding energies of
two body central forces with an infinite repulsive core, they found
that the hard core interaction pushes out the wave function so that the
Coulomb energy decreases to the experimental value.

In the following chapters, the effect of the hard core interaction

on the a-particle wave function will be considered in gn attempt to

resolve some of the discrepancies discowered in the previcus worke

- 9 =



Preliminary calculations will be performed on the two and three body

nucleie
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CHAPTER V

Binding Energy Calculation.

1. General Formalism,

In this chapter, a repulsive core potential will be chosen to
fit the deuteron properties and the two body scattering datae. This
potential will then be used in a standard variational calculation
to find analytical wave functions for the lightest nuclei consistent
with their binding energies., This is the usual approach toc the
"consistency" problem mentioned inI§6.

An arbitrary wave function + can be expanded in erms of the
energy eigenvalues

+ = Z_/ a;u;

1

Hui =Eiui 00ceseeceo (1)

i

where the uy form a complete orthonormal:set. The expectation

value of H for the function + is then given by

<> = /’P‘H{—d‘r =%J Ei[ailz
> B_ ; | o, [2 - ng#‘*{- AT eereccecess (2)

where Eo is the lowest energy eigenvalue.
11 x
] T
jieee EQ < ‘i—fm— 4v0ceceeco (3)
| ¥ 1T
The variational method consists of evaluating the integrals using a

trial wave function + that depends on a number of parameters, and



varying these parameters until the expectation value of the energy is
a minimume The result is then an upper limit for the ground state
energy of the system, which is. likely to be close to the experimental
value if the form of trial wave function resembles that of the eigen-
function u .

The choice of the internucleon potential and of the trial nuclear
wave function must now be discussed.

2o Choice of Potential and Wave Function.

To obtain a coherent view of the situation, it seems desirable to

3H and hHe using the same approach. The

find wave functions for both
method of calculation is considerably restricted by the difficulties
encountered in the four-body problems

The previous calculations on the triton by Kikuta et al. (1956)
and by Feshbach and Rubinow (1955) have used a potential with an
infinite repulsive core. However in the case of hHe, this form gives
rise to considerable computational difficulties. Since it has been
shown by Preston (1955) that any infinite repulsive core potential
is equivalent to a potential with a strongly repulsive core, it will
be convenient to choose an analytical form which tends to a karge finite
value as the interparticle distance tends to zero. Such a potential
is

2
- A -
V(I‘) = Ae * - Be Hr c0enecseee (L[..)

with

A >>B s A>>



In the preliminary calculations discussed in this chapter only
central forces will be used.

The parameters in the potential (4) will be chosen to fit the
deuteron binding energy and the low energy scattering data.

Since the potential is strongly repulsive at short distances,
the nuclear wave function will be considerably reduced inside the "core"
but it is not necessarily zero as in the case of an infinite core.

For an infinite core, Jastrow (1955) has suggested that the
binding energy of a system of particles should be calculated by the

variatienal method using a trial wave functien of the form
+= F . S Peevevece (5)

where S is the Slater determinant of plane wave functions, spin and

isotepic spin functionse.  F is defined by

R
F. - LT ﬁ(rij) | cereecssos (6)

iXj
the product being taken over all pairs of particles. This approach
has been considered by Emery (1958) and he finds that it is necessary

to restrict the form of the correlation function {?(rad). Two

suitable forms which have been used are:-

1}
(@]
e ]
A
H

ORI 6> .

) Iwamoto and Yamada (1957)
g(rﬁ = =g M(r—rc) rzr %

L IR N R ] (7)



I

(2 f@ =0 ez

N~

Dabrowski (1958)

2 2
5(1') = 1"3_“(1' ..rc) r3 T,
[ EX I RN N NN (8)

It is convenient in the present problem to use a similar approach.

The trial wave function is chosen of the form

+ = F ¢z seeosceosse (9)

where ¢ is one of the spatial wave functions used in the previous
calculations (without the repulsive core) and Z'is the spin wave function.
As neither of the above forms (7,8) of correlation function are

readily deelt with, the function
g(r) = I‘z sseses00e (10)

will be usede This tends to zero gs the twe nucleons came close
together.

The complete trial wave function will be taken of the form

+ = { 2fal ¢(P-i)+F };bj ¢(uj)}l = @(P)Z’

sesesseses (11)
where the ass bi’ Mi are the variable parameters.
Since the potential has been chosen of the form (4) it will
be consistent to choose $ of the Gaussian forme This will help to

simplify the calculations.

2
A

A
cesceeanel (IL)

¢ (M) = exp - HP

n~— 95 -



The Gaussian wave functions (12) nnd potential (i) were chosen
primarily because of the ease in manipulation. However, in the earliest
calculations on the consistency problem, it was found that a single term
Gaussian wave function gave a poor result for the binding energy. It
was considered that by using a sum of Gaussian terms, a reasonably
accurate value for the binding energy cculd be obtained. This
assumption has recently been verified by the work of Burke and Robertson
(1957) on the low energy elastic scattering of neutrons by deuterons.

These authors found that a deuteron wave function of the form

+(r) = exp - arz + C exp - Brz Gosececces (13)

and a Gaussian central potential, gave approximately 90% of the
experimental binding energye.

3. Binding Bnergy Calculation. Definitionses

The calculations will be performed for the two, three and four
particle nuclei.

The coordinate systems (4), (5), and (7) of AppendixAwill
be used.

In the three cases only symmetric spatial wave functions are

considered. The corresponding spin functions are:~-

2 - Y = a(1) e (2)

B e Y= Loa3)| e ()6 (2) -ﬁ(ﬂa(z)}
> “O L ‘
1l
1= /i a(1) B (2) - B(ﬂa(z)j

L.
~ll-

{au) B (W) - B(3)a () !;
3

LN NN RN N 2 (1



where 1, 2 denote like nucleons(as alsoc do 3, AJ

It is assumed that the potential is of the general exchange types

v (12) = v, (wim My, + BB, + R M12312) v(12)
[ E A AR NN R NN (15)
withw+m+bD+h = 1 H w+me=b=h = x
where x is the ratio of singlet teo triplet-interaction between

proten and neutron in an even state.

The Hamiltonian H can be written

;2 A | e
em ) L”“‘“L“?‘i-
: ij =1 ij=1 J

1<J i‘j Sesseneece (16)

where M =1 if 1,J are both protons, M = O otherwise.
It is readily shown that, after performing the integrations

over spin coerdinatese.

- - x 'hz
‘/‘P‘H’{r aT =/§ {“TE T+NV(ij)} ¢ aT +E_

ecseacsoee (17)

where T and N are given in Table XII and Ec is the Coulomb energy.

oul
In the following, the Coulomb energy will be treated as a perturbetion.

TABIE XTI
Number
of 2 3 4
Nucleons
2 2 3g 2 2 2 19 2
T Vu Vu+4vr Vu+Vy+2VR




TABLE XTI. (cont.)

Number 1
ef .2 3 4
Nucleons
S (14 .
N v, 3 (1+x)V° 3 (1+x) LA

Using the wave function (11) the kinetic energy term is given

by
X 3 - \
f@ T ar _ZJ {aiaa. 11 (uil ij) + ai'bjIz( uJ lui)
+ ab Iy (b [uj) + BT, ( b, | uj)}
evec0decns (18)
Where

I, ( ul k) =/¢ )T (e &7
L, (ny ey .-.f[ F¢(Pi)} *Té(w) ar

| I, (uil. k) =[ #* (1) T{ F #( ) } aT

]

1, (el = U”’“*Q}x T[ Po (4) } aT

XXX EE XY (19)




It is readily shewn that
I( uil b)) = I ( lui) ceeneeeees (20)

The potential energy term is given by two terms of the form

[fbx’v(K)iar = Z{ 1351(u | uh) + Zab J(u l ull)
ij
+ oy I wy lujl 2) } creorecons (21)
where

5 (u Iulk) jﬂu)v(aw(u) av

3, (b lujl \) =f{ F $(u,) ] “v () ¢ (v aT
3, (g eyl

3y (el wd n) o [ ¢<ui>}xv<x){é(uj) v} ar

O 1))

V(A = exp=hri? . vesseseses (23)

F:Lnally the normslisation terms are given by

[+ *4ar = f & 84T veeeennnes (24)
LL a13J1(ululo +2abJ(ululo)+bbx
it 5 (ol 0)}

since V(0) = 1.



The Coulomb energy term is given by

E

coul er 2 xl%l @ aT

13 o td

Glu 4 k) } cocersescs (25)
where

C1( Hil Llj) | =[¢;x(p,i) -3-1¢ (“‘j) av s
. (;(uil ;) =/{F¢ (u,) T%{F #(u) }d‘T

TR -[{m o) TAe ) aT= Gyl w

seg0p0000 G (26)
The expression for the romes. radius will be required later so

it is given here for completeness.

1 2 1 [ .x 2
=—Az[+pr+dT = -;2/4’ py- 2 aT
=31, Zi'aa.R(HlH’A)+2ab.R(HlHlA)+bb.R(uluIA)}
N
19 | covessonne (27)
where |

R Cilugle) <[ 2o ar

moT

R, (&, Ju, la) = §'F¢(ui) T2l )
371073 L A J
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Ry(my u s 1a) =/ {F¢(ui)} P ® (W) aT =g, (e Loy Ta)

DeENOCOOICE OIS (28)

When the Gaussian form

$ (by) = exp -LipAz cevroecees (12)

is used then

2 N
T
A2 e 1] A d/’a

Bn (| u | a) =f e

where 'Pi,j = Myt l)-a. s n = 1,2,3; and

b2
A 471

-

J (pi lp.ﬁj lo) = /Fn-1 e

n

Therefore

d 15Pa e

3, 3 (g luylo)

J
ij

it

‘--[Fn"1 PAZ e

"Rn ( ]J'i l“'j IA) ceso0O0oeesCE (29)

Thus the rem.s radius integrals may be derived directly from those
for the normalisation.

L4s Derivation of Potential.

In these preliminary calculations, only central forces are to be
considered. The central potential is to be chosen te give the correct

deuteron binding energy and to fit the two body scattering datas
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The Schroedinger equation for the deuteron ground state wave

function is

2
- % V2+ + V()4 =4 eeesssccea (30)

As a result of the assumption of central symmetry, the solutions may

be separated according te

fodm = &ﬂ (r) 1," (0 ¢) crevoscsce (31)

The solution of interest corresponds to the lowest energy eigenvalue
i.e. to the s-state for g central potential l=e,

Writing

gw (r) = ¥z  seeesevess (32)

r

the Schroedinger equation can be reduced te

a%y 2 ' '
'é'-z" -ku = U(r) u(r) 2800600080 (35)
T
2 _m m . s o
where k“.= =, E. , U(r) = =V (r) end E, is the binding
w® a b d

energy of the deuteren.
The ferm of the potential chosen is

2 2
- A -
A e ¥ - Be Br ceo0ceensaec (l{.)

]

V(r)

2 2
Be - Ur {X e nr —4} 0ceseo00sce0 <3}+)

where B is positive. The value of X has been chosen arbitrarily to be

25, This ensures that the core is strongly repulsive.
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The core radius r, is defined by

V(rc) = O ‘ 4 : "0 e0000QCO (35)

Several values of the core radius have been chosen. The value of
N is defined by the choice of X and of e The péirs of values used

are shown in Table XIII.

TABLE XTII.

r 10 cm | o} 0.2 1 0ot | 0.6 | 0.8

n o« 80 20 9 5

It is now necessary to solve the equation (33) for a potential with
a given core radius r, and a given range M; so as to find the
eigenvalue for the depth B consistent with the deuteron binding energy.

The equation (33) is subject to the boundary conditions

-kr

U(O) = O » U.(I‘) ~ e es0sscesce (56)

Twe methods have been used to solve this eigenvalue preblem.
The first method involves a step=by-step integration of the
equation from r =< to r = Co The parameter - B is chosen arbitrarily

and starting from the asymptotic form at some finite but very lar e

distance, the numerical integration can be carried in to the origin.
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The method VII of the paper by Fox and Goodwin (1949) was used.
Since the parameter B has been chosen arbitrarily, the value of u(0)
will not satisfy the boundary condition (36). After intelligent
observation of the calculated value of u(G), a new choice of B is
made (for the same M) and the procedure is repeated. A number of
repetitions determines the value of B, for a given K, which satisfies
the boundary condition u(C) = 0 to the desired approximation.

This method is rather tediocus and it is useful to consider a
second method. The equétion (35) may be transformed to an integral

equation incorporating the boundary conditions (36).

Writing U(r) = B'W(x) , B =§2 B,
2 2 ’
Wr) = e br (Xe—'nr “t)
then
B1 - : T
w(r) = = {\ sinh kr‘/ exp(—k}) W ('{) u(‘f) a7

EX r |
exp (-kr)/ sirh ky W (3) u (3) a1}

socescosse (37)
This integral equation is then most readily solved by an iteration
processo
A series of iterated functions is constructed from a properly

chosen trial wave function uo(r) using

1 .
L (r) = EEE L sinh kr‘/ i exp (-kT)} W (]) u (}) a3 =

- 104 =~




- exp (-kr)l T sinh k3 W (y) u ) d}}
seesvconce (38)
Then since u(r) ~ exp ~kr, it is easily shown that the nth
approximation to‘the eigenvalue is
B L - -k A
L sinh kr W(z) u, (r) ar

A 1))

n

It was found that the best procedure in the present problem, was
to use a combination of the above two methods. Using é suitable
trial solution, the iteration method is applied to find an approximate
value of the eigenvalue B, This value of B is then used as a first
approximation in the step-by-step integration methbd

The eigenvalue problem has been sclved for a range of values of
i for each core radius. The résults are shown in Figure V.

For each set of values (B, P,ré), the triplet scattering

length a, has been calculated by integrating the zero energy equation

t
2= = BW (r)u(s) " seesscscess (40)

outwards from the origin. The intércept on the r-axis gives the
value of aye The values of 2y accurate to approximately 2% are given
in Figure VI.

As the binding energy calculations depend on the exchange nature

of the force only through the parameter x, it will be sufficient

at this stage simply to calculate this parameter, the ratio of the
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singlet and triplet interactions between proton and neutron in an
even state. x is then chosen as the parameter required in the zero

energy equation for the singlet state

d?u
"a'—' = BXW(I'> u(r) eesoccesosc (-’-}-1)
r

to give the experimental value for the singlet scattering length a e

=

However it is found that x is not very sensitive to the potential shape,
and its value has been chosen as 0.6 in all the present calculations.
It should he noted here that the experimentel values for the

triplet and singlet scattering lengths are
a, = 5o58x10_13cm ' a_ = ~23.7x10_13cm
seescesoes ()—4.2)

- 3
In future all lengths will be given in units of 10 13 cms.

t

5« Evaluation of the Integrals.

The various integrals defined in§3, have been evaluated for the
two, three and four particle nuclei using the Gaussian wave functions
and the Gaussian type potential introduced in the previous section

i.e.  the integrals have been evaluated with
2 2
¢ (u) = exp-wp, 5 V(A = exp - M

The results for the two and three particle nuclel are tabulated

below., Those for the four body case are given in Appendix D.



Kinetic Energy Integrals.

a1 (le) I, (#yl b)) I, (vl
! 4 u 31 3/2 v .(2 H"‘}P’i) 3H3/2 [6;1 2*3@,. VRN
2 it J _«:7)/ 1] 9/ 1l
w, 72 M3 2 s 5) 2
iJ
3 _ &2 | 2
; =617 py Mg 25 075 (umy) 3510 5_11913- =5 B
4 7 10
ﬁ “ij 3\/:77- “ij 9\/5- “ij

Where/«ij :/ui+/uj.

Potential Energy Integrals.

000G O0O s eN (43)

Alay G lugl V) P CH LY Iy Cugl wyl )
-4 3n Y2 151 3
n 3 5/ U
13 2 Znij 2 14-"'&3- 2
3 n’ 15 10 1 105 17 1
N :
(2u;5m5072 | 55 (2, .>3f “135/5 ;210 (20, )3 ) 13775

seDLOSODC S (Zg}—}->
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where nij = “i + Hj + A for A =2
veocesccoo (45)
= g (B, + B.) +2 for A =3
J
-
4 : z
and X = L 2 + = + }
My 42 ij 43 et s

Normalisation Integralse.

Ay, ledoy g, (il edoy) o, wlelo)
H 5575 24, 55 by 7/,
5 1 3 25, n’ 19:72: n’
7 9
3372 “135 372 2“136 203 2”1;;9“

Seeseecsoco (11-6)



Mean Sguare Radius Integrals.

1 1 3 .
5 3 33/2/ 15 Hj”z 105 II3/2
. 5 7/ 9
8 uij 2 15“13' 2 32uij 2‘ | -
sSenseesvece }-|-7
1 25 119 3
3 B S 19,705 11
5 K7 -———7§i-—-

Coulomb Energy Integrals.

£ ’ 6nsocessec 14—8
5 V2 1Y 61/n 5, 15089/11 5/2/ (48)
5/ 3 .5 5.9 17
Suyg 2 37,272 By 11/% 57272 py 2

6, Variaticnal Calculation,

Using the integrals given in the previcus section the
variational calculations for the binding energy of the lightest nucleil

were. performed. To test the method the case of the deuteron was considered

firste



(a) Deuteron Calculation.

Whilst deriving the potential for the two body problem(§k) s
the deuteron wave function was found corresponding tc each
potential considered. This wave function could be fitted
approximately by a two term function of the form (11). This
analytical wave function should then be used as a trial wave
function in the variatienal calculation.

So that the effect of introducing the repulsive core may
be fully appreciatéd, a large core radius r, = 046 was choseno
The deuteron wave functions in this case fall alimwost to zero at
the origin and hence the modified Gaussian wave function may be
tested with this choice of core redius.

The first calculations were performed using a very deep well
which corresponds to a triplet scattering length a, = 563,
slightly less than the experimental value. The parameters used

are given by

2 2
BT - B TP (xe™™ ) eeieinns (09)

B = 7.275 B=1.0 N=90 X=25 a =53

It was found that the function

— 2 2<
¢2° (r) = rz{_e-mr +ce BI‘J eeccccesss (50)



with

c = 01 @=1,5 B = 0.25
gave an approximate fit to the exact numerical wave function.
Using this function as a first trial function, the variational
calculation was performed minimising with respect to c. It
was found that with the parameters ( @Bc) = (1.5, 0.25,0.1),
the energy was a minimum, being + 3.10 LieVe Thus with this
wave function, the deuteron is unbound.

The vaiues of ( G,B) were then altered and the calculation
repeateds This was carried out several times until the energy‘
was minimised with respect to the variation of a2ll three
parameters ( @,8,c)s The final minimum was found with the set
of parameters (6,8,c) = (1.1, 0,22, 0s1)s This corresponds
to an energy of + 1417 MeVe Hence with a trial wave function
of the form (§0) it is impossible to find a set of parameters
which gives a bound deuteron for the chosen potential,

It should be noted here that the variation in the energy
is relatively much less sensitive to the variation of ¢ than to
the veriation of @ and B,

The wave function (50) giving the minimum energy is
compared in Figure VII with the exact numerical wave function
found whilst deriving the potentiale. It is seen that the cxact

wave function rises more rapidly to the maximum but then falls

i
-
-
-
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off much more slowly at large values of r. The trial wave
function was fitted approximately for the smaller values of r
(r<3) and the resultant variational wave function is a
compromise between the correct form at small r (effect of the
cere) and the correct asymptotic forme. This deficiency may
be rémedied, at least in part, by adding a third term to the

wave function (50) i.ee
. ' m _a - 2 - :
¢3D (r) = rzLe T sce Pr +de L

cascsocecs (51)

As a first trial, the function ¢ 5 was used with (¢ Bc)
chosen as those values which gave the minimum energy for ¢ o°
A value for ¥ was then chosen and the variational calculation
was carvied out minimising with respect to de The minimun
énergy was found for (¥d) = (0.04, 0.0045) being =1.01 HeVe
Thus the three term wave function (51) gives a bound deuteron
2 considerable improvement on (50)s

The effect of varying ¢ and d simultaneously was
investigated keeping (a,B ,Y) censtant, and a minimum was found
for {c,d) = (0,091, 0.00L4) giving an energy of —1.02 iieV. As
this is a negligible improvement on the previcus value, it wiidl
be sufficient in future to fix ¢ as the value which winimises

the energy given by ¢., and then to minimise with respect to de
[
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To find the minimum value of the energy corresponding to
the wave function ?3, it is necessary to vary all five parameters
(G;B,Y} c d) simultaneously, This entails a very considerable
amount of computation and has only been done approximately using
a desk machine. To do the minimisation completely, the calculation
should be programmed for an electronic computer. The approximate
minimum was found with the set: of parameters (afy cd) = (1.2,
0.25, 0.05, 0.108, 0.,006). The minimum energy was - 1.21 MeV.

This deuteron wave function giving the best vinding energy
is shown in Figure VII where it is compared with the best ¢2 and
the exact numerical wave function. This wave function gives a
better fit than ¢2 for large r but makes little chanse near the
origin.

It should be noted that the addition of a third ferm te
the wave function causes the values of both & and B to increase
slightly, shifting the maximum of the wave function to smaller
r as is required to fit the numerical wave function.

Burke and Robertson (1957) in deriving deuteron wave functions
for a calculation on the low energy elastic scattering of neutrons
by deuterons, used a Gaussian potential

V(r) = -Be ur” voosorense (52)

and a wave function of the form

2 2
¢D(r) = e— GT + C e—ﬁr s00eee000S (5_7))




They find that the minimum energy obtained in their variational
calculation increases as the well depth increases. The maximum
well depth of the potential used in the present calculations is
150 MeV i.eo a very deep well, and it is therefore in agreement
with the work of Burke and Robertson, that the two term wave
function ¢2 gives a poor value of the binding energy.

It would be desirable for comleteness to perform the
variational calculation for the deuteron using the trial wave
function ¢3 for a set of different potentials with various
ranges and core radii. However as was seen above, this entails
an almost insuperable amount of calculating for desk computation.
In all probability a fourth term will be needed in the trial wave
function. Since the main object of this investigation is to
find wave functions for the triton and for the alpha-particle,
the deuteron problem will be left at this stage and the triton
problem considered.

(b) Triton Calculation.

In 2ll earlier calculations on the triton using central forces,
it has been found that, if the potentiel is chosen to fit the
deuteron binding energy and the two body scattering data, then
the binding energy of the triton is in excess of the experimental
value. In the present calculation, the triton binding energy is

found first for a series of Gaussian potentials (52) with no core.
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A trial wave function of the form
2
¢2T (p) = e ﬁpz eceescescs (54)

was chosen and the variational calculation was performed for the
trifon assuming the ratio of singlet to triplet interaction to be
x = Qa6

As a first choice c was chosen to be zero. A minimuw energy
of =6.79 MeV was found for M= 0.3 B = 51.54 leV and o= 0,085,
This energy is decreased to =7.97 MeV by the addition of a second
-term in the wave function:. The corresponding set of parameters
is @B c) = (0,09, 0.03, C.09). By the addition of further terms
in the wave function it will be possible to increase the binding
energy to the experimental value of 8.3 MeV. The potential
corresponds to a triplet scattering length ay = 546. In the
celculations using repulsive core potentials, the interaction will
be chosen to fit the deuteron binding energy and also this triplet
scattering length (rather than the experimental one). This gives
a suitable equivalent central potential for the study of the
tritone.

Preliminary calculations were carried out with the repulsive
core potentials with r, = 0e2 and r, = 0.4 corresponding %o
a, = 5.6« It was found that these potentials change the binding
energy insignificantly as compared with the zero core cose, and
leave the wave function almost unaltered. Attention will there-
fore be concentrated on the ccre wradius r, = Cobe 'fhe veguired

-
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potential is given by (49) with the parameters

B 22,6 0 = 0.5 N= 9.0 X = 25 a. = 5.6

(55)
vececceceeo o0

Using a trial wavefunction of the form

2 2
¢ T(P) =e P + cFe BP esosccooso (56)

it was found that the triton was just bound with an energy of
-0.13 MeV for the Gaussian'wave function (@c) = (0.04,0). With
the two term wave function (56) the minimum energy was found by
a similar trial-and-error procedure to that used in the two-body
case. The minimum energy was found to be =3.0 eV with the set
of parameters (afc) = (0.05, 0.5, 2.11). To improve on this
energy, a three term wave function is required.

The calculations were repeated for a second potential, that
consistent with the experimental scattering length 2, = Delie

The corresponding parameters are
B =475 =075 M=9.0 X=25  a =5

cessoscres (57)
With a two term trial wave function of the form (56) it was
found iupossible to obtain a bound triton. This may be explained
as follows.

The decrease in the scattering length from 5.6 to 5.4 entails

]
—
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a considerable increase in the depth of the potential and also
doubles the height of the core. This implies that the wave
function is greatly reduced inside the core. A more satisfactory
trial wave function for this potential (57) would then be of the
form

. 2
@) ar [F 4 o] ()
(e) Discussion.

In the deuteron and triton calculations it has been seen
that to obtain spproximately the correct binding energy, it will
be necessary to use a minimum of three terms in the trial wave
function. For the potential considered in the deuteron problem,
a three term wave function zave only 53% of the binding energy.

To perform the variational calculation, the minimisation
has to be performed with respect to at least five parsmeters.
The energy 1ls fairly sensitive to the parameters occurrins in
the exponential but is relatively insensitive to the linear
param;tersu In addition, the coﬂbinationrof terms in the trial
wave function depends on the magnifude of the core. 4s the
integrals involved are complicated, the minimisation co.not be
done by an analytical method but can only be carried fhiouch by
a trial-snd-error search. This search can only be made satis-—
factorily using an electrenic computer since it is desirmvle to

. S, P
ClLInl T Ly o 3elils

repest the varictional calculation severnl
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of potentials with various ran es and core radii, for each of the

three nuclei considered.

Because of these complexities, no calculations have yet
been performed on the alpha-particle.

Before discussing the relative advantages and disadvantages
of this approach to the problem of finding suitable analytic
wave functions for the lightest nuclei, the application of +the
repulsive core wave functions (11) to the study of the photo-
disintegration cross section will be considered.

3

7« Fhotodisintegration of “H and 3He.

The photodisintegration cross section was derived in (III (6))

N 2 (1™ e, 12 cee (59)
6diS = '3 <—:£é—') kK N(a-b f0evceesos 59
where
g
= ‘\ x T 00veseesceo
Mo = L’ j¢b B ¢, 4 (60)
i=1

For the reaction 3H33(7n)zﬂhe electric dipole cross section is
1 _2
then given by (59), (60) with & = 2 and the reduced mass M = Zm

where m is the nucleon masse

The coordinate system (5) of Appendix A will be used throughout
= - = -+ e00eccecese 61
u = 1, -I r=r;-7 (g +x) (61)

where 1 denotes the proton, 2, 7 the neutrons. Then
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X
1\110 :—j¢b (% u%‘*‘%rg) ¢a d’r feococesseo e (62)

The initial triton wave function ¢a may be written

b, = = 97(123) 6, (123) cocrsenes (63)

If the wave function is chosen to be spatially symmetric in =11 three
nucleons, the spin wave function must be antisymmetric in the neutrons

2,3 =nd hence

6T = 2a(1) | o(2) B (3) - 8(2) @ (3) }
L V‘2'
¢eacesanve (6’4-)
The final state, deuteron plus neutroen, may be represented by a

resonating group wave function

¢_b = l (1—P23) ¢D(12) F(B) 61‘-"(‘123) cecsswoern (65)

V2

where

F

a(3) [a(1) (2) + B(1) a(2) 12 B(3) a(1) a(2) }

coecoessce (66)

1

6.(123) = =

F Ve

¢T and @D are the symmetric spatial wave functions for the triton
and deuteron respectively.

Introducing the wave functions ¢  and ¢, into ¥, (60) zives

after suvuming over the spins

1 <
(_2- uz+%r) L

3 g‘l

i, = T3 #5029 912) 1) .

PR
2T
e t0bccRC O N/

i
-
-
0

1
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In the Porn approximation, the outroing neutron will be represented

g

by a plane wave,
F(3) = K ¥4 .......;a; (68)
For the reaction ~He (Yp)zﬁ-the matrix element is
. =[ by (B, + )¢, aT cevosscnos (69)

where 2,3 denote the protons and 1 the neutren, The electric dipole

operator is then-
32 + 33 = %Tg + %UZ = - Zﬁ gesoaewsoo (70)

Hence the matrix element for this reaction is identical with that for
the 3H("{'n)ZH reaction when the Coulomb repulsion is ignored.

The wave functions discussed in the previous few sections will
be used to evaluate the matrix element M, in (67)

The deuteron wave function used is

5@ =) a Pl ¢ P o P (u)
_ i 3

 Beeexscos0 (71)

whilst the triton wave function is

e.(p) = Zji ¢T(?~i) + FTLG.J. ¢T(7»i) ceevonoacs (72)
i J

where

~ ~
) 1 N . 2 2 1 2 N2
= U =77 t u o+ Sugr + 16u Tt - 16 u (yex) j



2
$P (W) = exp” Hu ¢ N = exp P

vossecceas (73)

and
p2 - 21'2""% u2

The matrix element consists of a sum of terms of the form

' 2 ' 2
M, ( el = / em F o” s Ty el XoX du dr
‘ 2 2
- - N 3
M, (v 12) = [ e M P ry © ez du dr
2
M3 (B b) = / e FU T 7\3 Ty et SE du dx

]

&
cecoogenes (74}

2 2 o
M]+ (b IK) [ FDFT e Hu e’hp T ellc'°£7'd3 dx

with the corresponding integrals I\In (u 17\) with Ty replaced by Uy e
‘It is egsily shown that
N, (u My = o no=1,2,3,ke crcscences (75)
It is convenient to introduce the integral
J(lmn ;o B) :f et Ko 21 2m (y.ag)zn e CL“chemﬁrz r, du dc

ececesoocee (7\/)

This integral is required for n = 0,1.



J(1ne;) =yt kr(%-té) (-)" & E(ﬁ)

where (B) N és/z exp - k2/2§.6 tevsesancn (77)

and

J(1,my1 5 aB) =3 J (141, m, O; ap)

Using this integral, the values of Mn (U|A) can be readily obtaineds

In the previous section, a variational calculation was described,
which w.s used to find analytical wave functions for the deutcron and
the triton. Once: these wave functions have been obtained, it is
a very straight-forward celculation to evaluate the matrix element
Moy using the integrals Mn (p'l) and J(1 mn ; oB) and hence to
evaluate the photodisintegration cross secticn.

No numerical results have yet been obtained since it was found
impossible by desk calculation to find a deuteron and a triton wave
function giving the correct binding energies. Until these wate
functions have been calculated by a computer, it would serve no
worthwhile purpose to calculate the cross section.

This consideration of the photodisintegration cress section

can be extended to the case of the alpha particley althouzh the

calculation increases greatly in c.mclexity.

i
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SHAPTER VI.

Final Conclusionse

At-this point, it is advisable to summarise the results of
Chapter V. It has been found that the amount of computation involved
in the present approach is enough to warrant machine calculation. Sincc
this approach was intended primarily as a preliminary calculation, it
is necessary tc re-assessthe position before embarking on a large
scale machine calculation.

The main object of this investigation was to find a wave function
for the alpha-particle which could be used to calculate the photo-
disintegration cross section, This requirement has cornsiderably
restricted the cholice of potential and wave function employed. Horeover,
even with the simple Gaussidn and modified Gaussien forms used, the
amount of calculation required in the study of the bindin~ snerzy and
of the photodisintegration is already very considerable. The algebra
involved in the derivation of the (¥p) cross section for the alphsa
particle will be extremely long and tedious.

The Gaussian wave functicns used, have a poor asymptotic form.

This has been shown clearly in the binding energy calculaticns on the
deuteron. There it is seen that the variational colculation has lcd
to a wave function which males o compromise between two efflecis, onc

at small r due to the core, the other adjusting the wave function to
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the proper asymptetic form at larce r. Tt is therefore dcsirable to
choose a wave function with the correct asymptotic form, for then all
bimprOVements in the form of the wave function will be at small r in

the region of the repulsive core. This requiremenf would be met in

the case of the deuteron if the Exponential form wave function, was
chiosens This form would alsc be an improvement in the cazse of the
three and four body nuclei as it has alresdy been shown that the
Exponential wave function has a reasonable asymptotic form for these
nuclei.

If this medification was made to the calculation, it is prdeBIe
that the number of terms required in the wave function to give the
experimental binding energy would be reduced. However, the algebra
occurring in the binding energy calculation would become considerably
more complex, necessitating the numerical evaluation of the integrals
in the variational calculation.

The choice of potential was alsc restricted because it was desired
that the alpha particle be studieds If the calculations had been
restricted to the three body nuclei, it would have been possible to
evaluate the integrals using a potential with an infinite repulsive
core. Extensive sets of parameters for such potentisls are availeblce
The most important of these are the set of parameters given by Gammel
and Thaler (1957) which fit the two body data up to 310 leV, and the
sets given by Biedenharn, Kalos and Blatt (1958) which fit the low

enercy two body data. These potentials include both centrel and tenscr
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components and in the case of the Gammel-Thaler potential a spin-orbit
term as well,

In the present calculations, the effect of the tensor force has
been introduced only by using an equivalent central potential. This
is a rather unsatisfactory approach which is only reasonable if the
calculations can be done for a purely central force with a great
reduction in the computation, enabling the physical picture to be seen
more clearly.- Iﬁ the case of internucleon potentials with no repulsive
core, it is known that the addition of a tensor component alters the
binding energies of the triton and the alpha particle obtained in
variational calculations guite appreciably. Since an electronic
computer is required to perform the central force calculations for
beth the deuteron and the triton, it seems:more logical to find ways
of modifying the approach so that the tenser force can be introduced
from the beginning. If this could be done, then a large scale
numerical calculation would be very worthwhile.

Since this work was completed, Blatt and Derrick (1958) have
published a report on seme calculations on repulsive core forces in
the triton which cast doubt on the validity of the equivalent tentral
. potential.

Writing the wave equation as
(T+M) ¢= E¢

they derived a variational expression which gives an upper bound for
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the lowest eigenvalue Ao Two sets of potentials were considerede
(a) The set of potentials given by Biedenhayn, Kalos and Blatte
These potentials ;ﬂé; an infinite repulsive core and both central
end tensor components. Only the central part is used in the
calculations.
(b) The set of equivalent central potentials of Kikuta et al
which fit the deuteroﬁ binding energy and the two body scattering
data but deo not, of course, give the deuteron gquadrupole momente
The minimum' value of A is found for both sets of potentials with
various core radii. If M is less than unity, the corresponding
potential gives too much binding. For the set (a) it is found that A
is always greater than unity, the remainder of the binding being
contributed by the tensor coimponent. Also the force strength A decreases
with increasing core radius r, for a given triplet central well deptho
This means that for the actual potential, the binding energy increases
with increasing core radius T e The opposite result is fcund for
the set (b). This time A increases with increasing core radius.
Also for small ros A is less than unity indicating that the potential
is unacceptable. This is the well-known result that a central force
of zero core radius which binds the deuteron properly, gives tco much
binding for the triton. Because of this contradiction between the
results given by thc sets (a), (), the concept of an equivalent

central potential must be viewed with suspicion.



This investigation of the wave functions of the lightest nuclei
has shown that a wave function which gives a good fit to the binding
energy using the variational approach, need not necessarily be a good
approximation to the wave function. It was not until the size of the
alpha particle was determined by the electron scattering experiments
at Stenford, that it was realised that the variationally derived
wave functions gave much too concentrated an alpha particle. This
fact had lain latent for some time, in the fact that the Coulomb
energy of 3He as'fqund in the variational calculations, was considerably
larger than the experimental value. Thus, it is seen that the binding
energy is notva good criterion in itself for choosing a wave function,
but this must be coupled with some other property such as the root
mean square radius or the Coulomb energy. The insufficiency of the
binding energy as a criterion is partly due to the fact that the
binding energy is the difference between two large energies ( ~50 V),
the kinetic and potential energies.

Since meny of the difficulties encountered in the present calcul-
ations are due to necessity of choosing simple analytical forms in
any calculations on the alpha particle, it is logical to restrict
future calculations to the case of the thiee body nuclei, when a
better choice of potential and wave function mey be made.

However, there is a considerable lack of experimental data and

additiocnal experiments would be of great assistance in guiding the
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theoretical approach. The experiments of Cranberg (1958) on the
photodisintegration of 3He should be extended and improved, particularly
with regards distinguishing the two and threée body break-up processes.
This could probably be done best by obtaining the cross section for

the 3He@{p)zﬂ.reaction by studying the inverse reaction 2H(pwﬁ3He.

The cross sections could then be compared by the use of the detailed
balance theorems This is only possible because there are no excited

3

states in “Hee A knowledge of the r.me.s radius is also desirable.
This can be obtained either directly by electron scattering or
indirectly from the bremsstrahlung-weighted cross section.

The ideal calculatien to perform to clear up the discrepancy
between the size of the lightest nuclei as obtained experimentally
and theoretically, is a variational calculation on the binding energy
of 3H and jﬁe using a fully realistic potential with central and
tensor components. Its aim should be to fit both the binding energy
of 3H and the Coulonb energy of 3He. Since the calculations would be
restricted to the three body nuclei, it would be possible to use
infinite repulsive cores in the potential and also to ensure that
the wave function has a reasonable asymptotic form.

This type of calculation has been performed by Kikuta et al
using central forces. As has already been mentioned, it is desirable
to extend this to include the effect of the tensor force. The

potentials of Gammel and Thaler and of Biedenharn et a1l could be used.
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The triton wave function will be most readily dealt with if

written in the form

,+T

H

fw  fiyy (1o nler vilas |
i< BRITIITITIE (1)

where

=v}
i}

r + I

23

+ I

12 b1

The p and d stete are introduced in the Schwinger-Gerjuoy operator
formalism as was done by Hu and Hsu (1951). The correlation function
can then be suitably chosen. + (R) can then be found either by
using the equivalent two body method (af. Feshbach and Rubinow1955)
or else by the variational method as used by Kikuta et ale These
last authors used a trial wave function of the form ('1) but with the

S state only

3 Py
+ II { e l'l(ri.j“ I'0? -e—v(rij— re)} - r,, #r

iJ=A » Tij o
i<j

- - - A
I e Ll(rij ro) H{ 1 -e (rij'-ro)}',v = M4 A

3
+ = + (R) ijg“‘ g(rlJ)

i<

- -
with g(rij) = 1 -e (rij T,
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It is hoped that this form of calculation will clear up the
discrepancy in the size of the lightest nuclei as found experimentally
and theoretically. If this approach fails, ether factors will have

to be introduced such as the spin-orbit force, and three-body forces.
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Appendix A,

Coordinate Systems

In calculations on the lightest nuclei, it is found convenient
to separate out the motion of the centre of mass by a change in the
coerdinate system.

A system of A particles of equal mass is considered with x; the
position vector of the 1ﬂ‘ particle. It is convenient to sparate the
particles into two groups containing N and % particlese This
notation is used since fhe groups will usually be of N neutrons and
% protons respectively.

The following general coordinate system separates out the centre

of mass motion.

A z A
R, = = ) e 4 .
A T A =i Ry = % 21 TN I
i=t i=% 1=2e1
Bp T L4 Bin = Zgyp = Igy
- _ 1 - T
» 0-’.0._0.0. ('1)
k Bk
= r 2 r N
'BkP k1 ok ZJ"':L B = Zza % é x
l=1 =%+
B &+
' Loy - L
EZ—'I sP = s TR =5 B’I\I—‘I ,n LzoN ~ N Z_/E:i
i=1 i=%+1

This transforms the A coordinates Iy X, "X, into the A cccrdinates
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& A R O e - - 1 - e o gt
EA, B =p’ RZ-'I sP» *1n? N-1 ,n.

It is easily shown that

4 &= ' N=1

v2 _ 1y 2_4 g 2 () 2 ad 2
2_, i "% R "W Ry * (1) VRk * ZJ(”'E) R
i= k=1 P k=1 n

ceossvssse (2)

The kinetic energy operator for a system of A nucleons is
N .

2 =
-5 )W
2m i

i=t
The transformation (1) splits up the kinetic energy operator into

the following parts:-

2, 2
5 I VR - Kinetic energy of centre of mass.
A
.h2 2

v =~ Kinetic energy of centre of mass of
protons relative to centre of mass of

neutrons.

2 Uy ‘
- %I_n 2‘4(1%) VRk - Kinetic energy of relative motion of
p protons.
$2 | 1 2
- :2'5 Z_, (‘“T,') ka - Kinetic energy of relative motion of
k n

neutronse
The various coordinate systems used in considering the two
three and four body systiems, are listed below. They are all special

cases of (’&)o



In addition, the expression is given for

A
2 | 2
P.A. - L 'I':ij ©e000eO0Rer (3)
Y=
Two Body <3
. & = NN = 1
2 ' 1
¥ ==z ; B = 2z +z,)
(i 2 .
v2 . o v2,1 7 2
i u 2 R
2
1 i=
P 2 = u2 aoaoaa’éonb (ll-)
2 .
Three Bedy

ﬁnggi)
Four Body (1) & = 3 N =1
2 =g ; E£=r; -2z v 5)
u
L=z -l METRE D GRS S
)
1




Ny _o,v2,2v2 Lky2, sy 2
1u iy 3:{ Rli
i=4
972—2u2+§ r2+3X2
L1 3

sesaGesETESE (6)
Four Body (2) N=2=2

2 b 2 LTy o, 2FL "X
}_1 * ) X - l .‘j__ - - -1_ »
- R = 2(£3+£4) 2(51+_:_c_2) y R4 4(}‘_1+£2+£3+.I.4
— ,gb»l
1 13 A v 2 _ v 2 v 2 v2_ 1V 2
2_41'2u+23’+R+4R4
i=
pL;ZZ =2 uz + 2y2°+ 113.2

ioq-qnoqut (7)
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Appendix B, Generalised Sum Rule.

The electric 21-pole operator Dl does not ékpend explicitly on
the nuclear interaction (Siegert 1937, Sachs and Austern 1951).

The generalised oscillator strength 6lab is defined by

gabl =§§l} (B, ~5,) | (Dl)a'blz

‘ *
The Schroedinger equations for +a and +b are

B, - Ea+ ; H+b*=Eb+b*

a

Hence

* ~ 3
['Fb {Hbl-nlﬂ}fa at

[‘Fb* (g,p] + aT

(Eb - Ea)f +'b*' Dl +a at

1}

iceo (B - Ea)(Dl)ab = [H, D, ]ab

o
]
%
i
iy
7
1
t=
[\
s
L)
lw]
[
p
o’
o
P
o]
[._l
p—
2

~

=B (o), (B - E) (D), - (B -E) (D), (D)4
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Hence summing over all final states b and applying the closure relation

(II.6) gives the generalised sum rule

e 1 g m. ,.;}
L gab = "'h'z[ (8, o], D:L,_j sa
b T
- -5 <+ . L[ [u, Dl], DJ l t >



Appendix C. Evaluation of I (a; » q ¥)

In Chapter I1§9 (69) the integrals

r1 P - 2\q .
I(a; pqr) =/ LY tr At  seascessee (1)
A (a+t)

were introduced. This integral is a particular case of the integral

given by Grobner and Hofreiter (1950) Vole II p. 175

K= A=
/b (x=a) (b=x) ! )™ ax
K+h+n
N (ex+d)
n v
E- S . T
(™ BEsvaensy) ™R (o) ()
(bc+d) (ac+d) (bc+d)v (ac+d.)n-V p.Zi +
(ac+d) . (bc+d) > 0 A >0 msn myn = 0,4,2,--.
K0

ceosesases (2)

Then I (a; p g r) is the particular case of (2) where

a=0 =1 c=1 d=a y=1
K=p+t A =g+ m=q n = r-p-q-2

Hence on simplification

I(a;paqr)
4 Hing
S o+ _1_ B(p+v+1 7»+n—ﬂ qC n=q C u
fa,,+1 5 acp’] (a.+1) - o
p=0 V=
n = r..P..q,.z 9voescoeco (;‘)

with a> 0 p+1>0 g+1>0 T 2 p+2g+2



The integral I (@; p q r) is given in Table C1 for various

values of p q r in the form

: Ika; par) = % 11 -(_17)-’“ f(a) vesosecace (4)
a a+
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Appendix D. Alpha Particle Tntegrals.

The integrals defined in V43 have been evaluated for the four-body
case and are giveh as follows.,

Usirig the definitions

B,., = B, + W H Mm,, =28, .+ A
ij i J 1] £
then the kinetic energy integrals ares=-
Y2 .
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S e A/,
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The Dotentlal energy integrals are
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, = Hig 7 g
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The normalisation integrals are
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Y [1< [" rﬂ&%)

The Tem.s. radius integrals can be obtained using

d

o 293127

Ry Gyl ey) = - £y J (uil ks 10) n = 1,2,
Finally the Coulemb energy integrals are
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