SOME ORGANIC CRYSTALS: AN X - RAY STUDY.

THESIS

presented for the Degree

of
Doctor of Philosophy
in the
University of GIasgow
by
JAMES GEORGE SIME, B.SC., A.R.I.C.

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 13850687
Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

Ereface:

this thesis describes the results of the research carried out in the years 1956-59 in the Chemistry Dopartment of the University of Glesgow. Fox the first two of these years I an indeb;ed tc J.Anderson \& Ge.Itd. of Faisley for a grant and to the taiversity of Glasgow for an Assistant Lectureship :or the third year.

I wish to express my sineerest thanks to Dr.S.C. Abrahans for his supervision during the first nine months of this work and for arranging the somputations on the IBM 70': and ORACLE computexs. ? am also indebted to Professor J. Fi_{R} Robertson for his advice and encouragement during the course of this wors.
I. wish to acknowledge Dr. H.H.Sznant of Duquesne Unjuerstioy, DroN.U.Cariwijght of Birmingham University and Dr.M.J.McCorkindale of Giasgow Universjey for the provision of crystals, and to thank the latier for help in the estimation of intensities for the fumagillin work and for much helpful discussion of the problem. I must aiso thank Dr.S.C.Abrahams and Mr.J.B.Findlay for the plnotographs of the diagrams.

I should like to express my gratitude to many others in the x - ray analysis group of the Chemistry Department, past and present, for much helpful discussion.

Finally, and by no means least, I must express my most sincere thanks to my wife for her helr and constant encouragement drring the last three years.

SUMMARY.

This thesis deals with the study of some organic crystal structures using the method of x-ray diffraction; it is divided inta three parts.

Part I consists of a description of some theoretical aspocts of xoray crystal analysis. The techniques described have been Iimited to those which have actually been used by the author. Xeray investigations are undertaken with one of two aims in view, either to obtain more accurate molecular dimensions for molecules of mora crystal simucture or else to determine the structure oí a molecule whose crystal, or even chemical; structure is not known. Both types of approach are described in this thesis.

Part II describes the determination of more accurate parameters fos three sulphone molecules. 4-4'-dichlorodiphenyl sulphone has been fully refined using the method of least squares. Accurate bond lengths and angles have been found and an analysis of the anisotropic thermal vibrations is given. The positions of the hydrogen atoms have been detegmined and found to be in
good agreement with the positions found in a neutron diffraction study of this compound by other workers. The other two molecules studied are 4-4'odibromodiphenyl sulphone and 4-4'odiiododiphenyl sulphone; these three sulphones are isomorphous. The analyses of these two molecules are not so complete as the previous one although they have al so been approached by the three dimensional least squares method. The molecular geometry is given although the values are not as accurate as in the case of $4-4^{8}$ dijchlorodiphenyl sulphone.

In Part III the attempts to elucidate the crystal structures of two molecules axe described. The investigations were undertaken because of the lack of conclusive chemical evidence about their molecular structures. The study of prodigiosin, a bacterial pigneni, was unsuccessful and the reasons for this are discussed. The study of a derivative or an antiblotic, fumagillin, has, however, been mare satisfactory. So far only one projection has been studied but the molecule has been located in this and a possible chemical structure for the compound is suggested. A complete analysis to determine the stereochemistry will require three - dimensional data.

$\boldsymbol{*}$

There are two appendices to this thesis, the first is composed of all the structure factor data for the compounds studied. The second appendix gives details of the programs written for the DEUCE electronic digital computer which have been used in the crystal analyses described.

CORTMEXTS.

Page.
Preface i
Summary i11
Part.I.

1. X-ray diffraction.
1.I Introduction 1
2. 2 Structure factor expression 2
1.3 Atomic scattering factors 5
1.4 Fourier series 7
1.5 Patterson's Fourier series 8
1.6 Difference Fourier series 10
1.7 Methad of least squares 13
3. 8 Anisotropic thermal vibrations 15
1.9 Methods of computation 17
Paxt II.
4. 4-4'-dihalogenadiphenyl sulphones.
1.1 Introduction 19
1.2 Historical 222. 4-4'-dichlorodiphenyl sulphane.
2.1 Unit cell data 28
2.2 Intensity data 29

Page.
2.3 Structure analysis 34
2.4 Three dimensional refinement
2.4(a) IBM 704 refinement 39
2.4(b) ORACLE refinement 42
2.4(c) Comparison of the two refinements 48
2.5 Molecular Geometry 51
2.6 Three dimensional Fourier section 54
2.7 Position of Hydrogen atoms 56
2.8 Analysis of thermal vibrations 58
2.9 Neutron diffraction study 66
2.10 Discussion 68
3. 4-4'madbromadiphenyl sulphone.
3.1 Unit cell data 72
3.2 Intensity data 73
3.3 Structure analysis 75
3.4 Least squares refinement 76
3.5 Molecular geometry 82
3.6 Discussion 85
4. 4-4'-diiododiphenyl sulphone.
4.1 Unit cell data 90
4.2 Intensity data 91
4.3 Structure analysis 93
4.4 Least squares refinement 95

Pare.

Pare.

(c) 4-4'-difadodiphenyl sulphone 125
(d) Prodigiosin 128
(e) Fumagillin 132

Appendix 2.
DEUCE programs 133

References

Part.I.

XoRay Crystal Anaiysis.

1. X-MY DITPMCTIT.

1.1 Introduction.

Although x-rays were discovered in 1895 by Roentgen, x-ray crystallography really originated with von Laue's discovery in 1912 that crystals can diffract an x-ray beam. Since then considerable advances in the subjoct have been made and today it is becoming a very powerful method of analysis, particularly in the investigation of compounds of completely unknown chemical structure. Another important use of the nethod is in determining accurately the details of the atomic arrangement of atons in molecules and crystals.

The greatest problem in the application of the mothod arises in the making of the initial observations. The measurement of the amplitudes of the diffracted x-ray beams can now be carried out with considerable accuracy particularly if electronic counting apparatus is used; no method,however, has yet been devised for the determination of the relative phases of these waves. These phases must be known before the structure can be solved. Several methods have been suggested for overcoming this problen, in particular by Patterson(1935), Harker and Kasper(1948): Karle and Hauptmann(1950) and Sayre(1952). None of these

is genopaliy applicable and oach case wnst be considered

 on its own merits. Details of some of the methods used in this thesis are given below.Firstly, if we know the positions of the atoms in the crystal we must be able to calculate structure factors from these for comparison with the observed values.
1.2 Structure factor expression.

If a primitive lattice is defined by the lattice constants $\mathfrak{a}, \underline{b}$ and c , then the two lattice points A_{1} and A_{2} (Fig.1) are related by

$$
\begin{equation*}
\underline{x}=\mathrm{u} \cdot \underline{\underline{a}}+\mathrm{v} \cdot \underline{\mathrm{~b}}+\mathrm{w} . \underline{c} \tag{i}
\end{equation*}
$$

where u, v and w are integers.

Fig, 1.
If a parallel x-ray beam of wavelength λ falls on the lattice in a direction defined by a vector so, of lengin $1 / \lambda$, then after diffraction travels in the direction of a second vector s, also of length I / λ, the path dif?enonec
of the two scattered waves as in Fig. I is given by

$$
\begin{align*}
\text { path difference } & =A_{1} \cdot N=A_{2} \cdot M \\
& =\lambda\left(\underline{r} \cdot \underline{\left.\underline{s}-\underline{r} \cdot \underline{s}_{0}\right)}\right. \\
& =\lambda \cdot \underline{\underline{I}}\left(\underline{s}-\underline{s}_{O}\right) \\
& =\lambda \cdot \underline{\underline{S}} \underline{\underline{S}} \ldots . \tag{ii}
\end{align*}
$$

where $\underline{S}=\underline{s}-\underline{S}_{0}$.
For the scattered waves to be in phase this difference must be a whole number of waves, ie. x. S_{e} must be integral. By (i), (u. $\underline{a}+v . \underline{b}+w . \underline{c}) . \underline{S}$ must be integral, and this will only be true if each term is integral since u, v, and w are integers; hence

$$
\begin{align*}
& \underline{a} \cdot \underline{s}=h \\
& \underline{b} \cdot \underline{s}=k \tag{iii}\\
& \underline{c} \cdot \underline{s}=\underline{p}
\end{align*}
$$

where h, k and \mathcal{D} are integers.
These are Laue's equations and the integers h, k and D are the Miller Indices of the diffracting plane.

If, now, we consider an atom in the unit cell with fractional coordinates $\left(x_{n}, y_{n}, z_{n}\right)$, its position will be defined by the vector

$$
\begin{equation*}
I_{n}=x_{n \cdot \underline{a}}+y_{n} \cdot \underline{b}+z_{n} \cdot \underline{c} \tag{iv}
\end{equation*}
$$

4.

and the phase change of the wave scattered by this atom with respect to a wave scattered by an atom at the origin of the cell will be

$$
\begin{equation*}
\frac{2 \pi}{\lambda} \cdot \lambda \cdot \underline{\underline{n}} \cdot \underline{\underline{s}}=2 \pi \cdot \underline{\mathrm{n}} \cdot \underline{\underline{s}} \tag{v}
\end{equation*}
$$

Thus the expression for the wave scattered by this atom is

$$
f_{n} \cdot \exp (2 \pi i \underline{x} \cdot \underline{s})
$$

where f_{n} is the atomic scattering factor of the nth atom. The complete wave scattered by all of the N atoms in the unit cell is given by

$$
\begin{equation*}
F=\sum_{n=1}^{N} \rho_{n} \cdot \exp \left(2 \pi i r_{n} \cdot \underline{s}\right) \tag{vi}
\end{equation*}
$$

where F is called the structure factor.
By substituting (iv) in (vi), we get

$$
F=\sum_{n} f_{n} \cdot \exp \left\{2 \pi i\left(x_{n} \cdot \underline{a} \cdot \underline{s}+y_{n} \cdot \underline{b} \cdot \underline{s}+z_{n} \cdot \underline{c} \cdot \underline{s}\right)\right\}
$$

and by (iii)

$$
F=\sum_{n} f_{n} \cdot \exp \left\{2 \pi_{1}\left(h x_{n}+k y_{n}+1 z_{n}\right)\right\} \ldots \text { (vii) }
$$

In general the quantity measured, the intensity, is proportional to $\left|F^{2}\right|$; the phase, however, is not measurable.

Now if $F=A+i B$, then

$$
F^{2}=F \cdot F^{*}=A^{2}+B^{2}
$$

F^{*} being the complex conjugate of F, then

$$
\begin{aligned}
& A=f_{n} \cdot \cos 2 \pi\left(h x_{n}+k y_{n}+i_{n}\right) \\
& B=\sum_{n} f_{n} \cdot \sin 2 \pi\left(h x_{n}+k y_{n}+n_{z_{n}}\right)
\end{aligned}
$$

(vili)

These are the quantities used in practice and they can be simplified for the various space-groups, eg. P_{I} where the equivalent positions are (x_{n}, y_{n}, z_{n}) and $\left(-x_{n},-y_{n},-z_{n}\right)$. Substitution in (viii) gives

$$
\begin{aligned}
& A=2 \sum_{n=1}^{N / 2} f_{n} \cdot \cos 2 \pi\left(h x_{n}+k y_{n}+L z_{n}\right) \\
& B=0
\end{aligned}
$$

and, therefore, we need unly calculate A for half of the number of atoms in the unit cell.

1.3 Atomic scattering factors.

These are numbers representing the amplitudes of the x-ray beam scattered by an atom, and for any particular atom are proportional to Z, the atomic number, and a function of θ, the Bragg angle. They are available in tabular form and heve been determined from theoretical considerations by James and Brindley(1931), McWeeny(1951), Stam and Tomije(1953) and others, and also by empirical methods, for example by Abrahams(1955).

These atomic scattering factors are determined for atoms at rest, and since in crystals atoms are undergoing thermal vibrations, the atomic seatering ractors matile
modified to allow for this. If $\overline{\mathrm{u}}$ is the mean displacement of the atom from its mean position, then by analogy with equation (v) the phase change will be

$$
2 \pi .2 \bar{u} . \underline{s}=4 \pi \bar{u} . \underline{s} \quad .\left(v^{\prime}\right)
$$

and hence for this atom

$$
\begin{aligned}
f_{n} & =f_{0} \cdot \exp (4 \pi i \bar{u} . \underline{\underline{s}}) \\
& =f_{0}\{\cos (4 \pi \bar{u} \cdot \underline{\underline{s}})+1 \cdot \sin (4 \pi \bar{u} . \underline{\underline{s}})\} .
\end{aligned}
$$

If the atomic vibration is spherically symmetric, then

Now

$$
\cos x=1-x^{2 / 2}+x^{4} / 24-
$$

and

$$
\exp \left(-\frac{1}{2} x^{2}\right)=1-x^{2} / 2+x^{4} / 8-\ldots
$$

whence

$$
\begin{equation*}
\cos x \doteqdot \exp \left(-\frac{1}{2} x^{2}\right) \tag{x}
\end{equation*}
$$

By applying (x) to equation (ix) we get

$$
\begin{aligned}
f_{n} & =f_{0} \cdot \exp -\frac{1}{2}(4 \pi u \cdot \underline{s})^{2} \\
& =f_{0} \cdot \exp \left(-8 \pi^{2} \underline{u}^{2} \underline{s}^{2}\right) .
\end{aligned}
$$

This is generally written as

$$
\begin{equation*}
\hat{r}_{n}=f_{0} \cdot \exp \left(-B \cdot s^{2}\right) \tag{xi}
\end{equation*}
$$

where $B=8 x^{2} \cdot \bar{u}^{2}$ and is generally known as the Debye temperature factor (Debye,1914).

If now we have a set of observed structure factors derived from x-ray intensity data, then we may give these the signs of the corresponding structure factors calculated from the positions of the atoms in the unit cell. These signed, observed structure factors nay then be used as coefficients in a Fourier series to detemine the electron density at any point in the unit cell.
1.4 Fourier representotion of a crystai.

If $O(x y z)$ is the electron density at the point ($x y z$) then $\rho(x y z) d x d y d z$ gives the rumbex of electrons in the volume element dx.dy.dz. When the unit cell has volume V, we get $F(h k D)=V \int_{0}^{l} \int_{o}^{l} \int_{o}^{1} p(x y z) \exp \{2 \pi i(h x+k y+z z)\} d x . d y . d z \quad \ldots(x i i)$ Now the electron density may be represonted by a threedimensional Fourier series (Bragg;1915), viz.
$p(x y z)=\sum_{-\infty}^{\infty} \sum A(p q r) \cdot \exp \{2 \pi i(p x+q y+r z)\} \quad \ldots \ldots(x i i i)$
If we now insert this in (xii) we get

$$
\begin{aligned}
F(h k D)=V \int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left\{\sum_{i=\infty}^{\infty} \Sigma\right. & A(p q r) \cdot \exp 2 \pi i(p x+q y+r z)\} \\
& \exp \{2 \pi j(h x+k y+2 z)\} d x \cdot d y \cdot d z
\end{aligned}
$$

and on integrating all terms are zoro except thet for which

$$
\mathrm{p}=-\mathrm{h} ; \mathrm{q}=-\mathrm{k} ; \quad \mathrm{T}=-\mathrm{L} \quad \text { giving }
$$

$$
\begin{aligned}
F(h k D) & =V \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} A(\overline{h k D}) d x \cdot d y \cdot d z \\
& =V \cdot A(\overline{h k l})
\end{aligned}
$$

1e. $\quad A(h k l)=1 / V \cdot F(h k i)$
and so
$\rho(x y z)=I / N \cdot \Sigma \sum_{-\infty}^{\infty} \Sigma F(h k D) \cdot \exp \{-2 \pi i(h x+k y+l z)\} \ldots(x i v)$
If $h=k=\boldsymbol{R}=0$, then we find that $F(000)=Z$, where Z
is the total number of electrons in the unit cell. Since f_{n} will fall off with $\sin \theta / \lambda$ the terms in the series will decrease and in consequence the series will converge if sufficient $F(h k \mathbb{L})$ data is available。

The disadvantage of this Fourier expression is that the signs of the coefficients, the phases, must be known, and these can only be calculated when the positions of the atoms in the crystal are, at least approximately, know. A method for overcoming this is to use F^{2} (hkl) as coefficients in the Fourier expression instead of $F(h k t)$.

1.5 Patterson's Fourier series.

Patterson (1935) showed that the Fourier series $P(u, v, w)=I / N \cdot \sum_{-\infty}^{\infty} \sum_{\infty}^{2}(h k D) \cdot \exp \{-2 \pi i(h u+k v+l w)\} \ldots(x v)$ would give a peak with coordinates (u, v, w) when two atoms of the structure are related to each other by a vector ($\underline{u}, \underline{v}, \underline{w}$), the value of $P(u, v, w)$ being proportional to the product of the electron densities of the two atome
concerned. This function has the advantage that it is real for all values of (u, v, w) since if we collect the coofficients in h, k, l and $\bar{h}, \overline{\mathrm{~K}}, \overline{\mathrm{l}}$ and put

$$
\left.F^{2}(h i z l)=F^{2} \overline{h k l}\right)
$$

then (xv) becomes

$$
\begin{aligned}
& P(u, v, w)=I / 2 V \cdot E \sum_{-\infty}^{\infty} \Sigma F^{2}(h k L)[\exp \{-2 \pi i(h u+k v+\operatorname{lw})\} \\
& +\exp \{2 \pi i(h u+L v v+8 w)\}] \\
& =1 / N \cdot \sum_{-\infty}^{0} \Sigma \mathrm{~F}^{2}(h k L) \cdot \cos 2 \pi(h u+k v+l w) \quad \ldots . .(x v i)
\end{aligned}
$$

This function has the disadvantage that jit gives rise to a large number of peaks, $n(n-1) / 2$ if there are n atoms in the unit cell. Its chief value lies in the location of 'heavy atoms', ie. ones whose atomic number is larger than the others.

This arises since the value of $P(u, v, w)$ is propotiont to the atomic number of the two atoms considered and in consequence these peaks will be better resolved.

This series, then, gives us a method for using onr observations, the $\mathrm{F}^{21} \mathrm{~s}$ in a direct attempt to determine the atomic arrangement in the cxystal. Having once determined the approximate atomic positions ve thon require some methods for impoving these values. Successive cycles of Fourier series and structure fastor calculations will accomplish this but impoved methods have been suggested.

1.6 Difference Fourier series.

In the least squares refinement process the function minimised is

$$
\phi=\sum_{n} w\left(F_{o}-F_{c}\right)^{2}
$$

If $w=1 / f_{y}$ is used the function to be minimised becomes

$$
\phi^{\prime}={\underset{n}{2}}_{z} / x_{j}\left(F_{o}-F_{c}\right)^{2}
$$

and the condition that ϕ^{\prime} should be a minimum with prospect to the coordinates of the j th atom is

$$
\frac{\partial \Phi^{\prime}}{\partial x j}=\frac{\partial \Phi^{\prime}}{\partial y j}=\frac{\partial \Phi^{\prime}}{\partial z j}=0
$$

For a centrosymmetric structure

$$
\begin{equation*}
F_{c}=2 \cdot \sum_{j=1}^{2} f_{j} \cdot \cos \theta_{j} \tag{xvii}
\end{equation*}
$$

where $\theta_{j}=2 \pi\left(h x_{j}+k y_{j}+i z_{j}\right)$.
Now

$$
\frac{\partial F c}{\partial x_{j}}=-4 \operatorname{sh} f_{j} \cdot \sin \theta_{j}
$$

and

$$
\frac{\partial \Phi^{\prime}}{\partial F_{c}}=-2 \cdot \sum_{n} I / f_{j}\left(F_{o}-F_{c}\right)
$$

and hence

$$
\frac{\partial \Phi^{\prime}}{\partial x_{j}}=\frac{\partial \Phi^{\prime}}{\partial F_{c}} \cdot \frac{\partial F c}{\partial x_{j}}=8 \pi \cdot \sum_{n} h\left(F_{o}-F_{c}\right) \sin \theta_{j} \ldots\left(x v_{111}\right)
$$

If we let $D_{j}=\left(P_{0}-P_{c}\right)_{j}=$ the difference electron density at the centre of the j th atom then

$$
D_{j}=I / N \cdot \sum_{n}\left(P_{0}-F_{c}\right) \cos \theta_{j}
$$

whence

$$
\left(\frac{\partial D}{\partial x}\right)_{j}=-\frac{2, \pi}{V} \sum_{n} h\left(F_{0}-F_{c}\right) \sin \theta_{j} \ldots \ldots(x i x)
$$

Combining (xviii) and (xix) we get

$$
\left(\frac{\partial D}{\partial x_{j}}\right)=\frac{1}{4 \hat{V}}\left(-\frac{\partial \Phi^{\prime}}{\partial x}\right)_{j}
$$

and since $\left(\partial \Phi^{\prime} / \partial x\right)=0$ minimises Φ^{\prime}, then so does
$\left(\frac{\partial D}{\partial \bar{X}}\right)_{j}=0$ and similarly $\left(\frac{\partial D}{\partial y}\right)_{j}=\left(\frac{\partial D}{\partial z_{j}}\right)=0$.
If the positions of the atoms used for the structure factor calculations are found to coincide with points of zero electron density gradient on the difference mex, then Φ ' has been minimised with respect to these coordinates. If, however, the gradient at an atonic position is nonzero, then the atom must be moved to a more positive region by an amount proportional to the gradient. the expression used to calculate the magnitude of this shift is

$$
\Delta r_{j}=-\left(\frac{\partial D}{\partial r}\right)_{j} /\left(\frac{\partial^{2} \rho}{\partial r^{2}}\right)_{j} \quad \ldots \ldots \ldots(x x)
$$

where f is the vector along the line of maximum gradient through that atom.

If we assume that the electron density near the centre of an atom can be represented (Costain.1941) by

$$
p(r)=\rho(0) \cdot \exp \left(-p r^{2}\right)
$$

Yig.2. Anisotropic thermal vibration.
The negative electron density contours are dashed. These features indicate that the temperature factor should be increased along the x - direction and decreased along the y - direction.
where p is a constant dependent on the temperature factor of the atom, then

$$
\left(\frac{\partial^{2 p}(x)}{\partial r^{2}}\right)_{I}=0=-2 p \rho(0)
$$

and hence equation (xx) becomes

$$
\Delta r_{j}=\left(\frac{\partial D}{\partial r}\right)_{j} \div 2 p p(0) \quad \ldots \ldots .(x \pi i)
$$

The constants p and $\rho(0)$ axe evaluated by plotiting log p against r^{2}, the values of ρ and r being reasured from well resolved atoms, of the same type, on the corresponding Fourier map.

Temperature paranetors can also bo improved fiom the information on these maps. If, for instance, the value of B_{j} for an atom is too high then $\operatorname{axp}\left(\cdot B_{j} s^{2}\right)$ will bo too low and correspondingly $F_{0}-F_{c}$ will be too high. In this way $\rho_{0}-\rho_{c}$ will bepositive at the corresponding atomic position; conversely, if B_{j} is too low the value of fo P_{i} will be negative. Evidence of anisotropic thermal vibrat:o. can found by features such as are shown in Fig.2. Thece allow suitable thermal paraneters of the fom

$$
B=a * \beta \cdot \sin ^{2}(\Phi-\lambda) \quad \ldots \ldots \ldots(x \times 1 i)
$$

to be chosen (Hughes, 19tI; Cochren, 1951) for tho two. dimensionel case, where a, β and I are conetants and $(2 \sin \theta, \Phi)$ are the polaz coordinates of the reciprocel Iatbice point considera.

1.7 Method of least souares.

When the function

$$
\Phi=\Sigma w(h k z)\left\{\left|F_{0}\right|-\left|F_{c}\right|\right\}^{2}
$$

is near to its minimum, then a small change Δx_{j} in the x - coordinate of the jth atom will change F_{c} by an amount

$$
\Delta F_{c}=\frac{\partial F c}{\partial X_{j}} \cdot \Delta x_{j}
$$

Simultaneous changes to all the atomic coordinates will. result in a change of F_{c} of

$$
\Delta F_{c}=\sum_{j}\left(\frac{\partial F}{\partial x_{j}} \Delta x_{j}+\frac{\partial F}{\partial y_{j}} \Delta y_{j}+\frac{\partial F}{\partial z_{j}} A z_{j}\right) \ldots(x x i i i)
$$

The correct values of Δx_{j} etc. will therefore be those which most nearly equate ΔF_{c} to $F_{0}-F_{c}$ for all possible equations. For the least squares proceedure to work this number should be consideraly greater chan the number of unknown parameters to be determined - generally 3 positional and 6 thermal parameters per atom plus the scale factor. If we consider only the positional parameters for N atoms, then the observational equations will be of the type show. in equation (xxiii). To form the normal equations, each of the q observational equations, where q is the number of independent observations, must be multiplied by the weighted coefficient of each of the unlmowns in turn. The

resulting q equations in each case are then summed to

 give the $3 N$ normal equations which can be solved for ΔX_{j}, Δy_{j} and Δz_{j}. The j th of these nomad equations will be obtained by multiplying the q equations (xxiii) by w. $\partial F_{c} / d x_{j}$ and adding to producewhere k denotes all the atoms except the fth.
Solution of these q equations is frequently a very
large problem and some simplification can be made. If the atoms are well resolved it can be shown that quantities such as

$$
\sum_{q} w \frac{\partial F_{c}}{\partial X_{j}} \cdot \frac{\partial F_{c}}{\partial X_{K}}
$$

are likely to be small compared with

$$
\sum_{q} w\left(\frac{\partial F_{c}}{\partial X_{j}}\right)^{2}
$$

and can therefore be neglected. If the axes are orthogonal, or nearly so, terms of the form

$$
\sum_{q} W \frac{\partial F}{\partial x_{j}} \cdot \frac{\partial F}{\partial y_{j}}
$$

can also be neglected. This reduces equation (xxiv) to

If the temperature parameters are also being refined the problem is a much larger one and best carried out on an electronic digital computer.

In many cases it is obvious that the atoms in a crystal are not subject to isotropic thermal vibrations and analytical methods have now been developed to allow for anisotropic vibration.
1.8 Anisotropic thermal vibrations.

In section 1.3 it was shown that if the atoras were vibrating with spherical symmetry, then the scattering factors should be corrected by the expression

$$
T=\exp \left(-B s^{2}\right)
$$

where $B=8 \pi^{2} \cdot \bar{u}^{2}$. In general, however, this is not true and the vibration of the atoms is anisotropic; this con be represented by

$$
\bar{u}^{2}=\sum_{i=1}^{3} \sum_{j=1}^{3} U_{i j}^{r} \cdot x_{i} \cdot x_{j}
$$

where $U_{1 j}^{T}$ is a symmetric tensor and X_{1}, D_{2} and X_{3} are the components of the unit vector 2 along which the vibration is taking place. Fence

$$
T=\exp -8 \pi^{2}\left(\sum_{i=1}^{3} \sum_{j=I}^{3} U_{i j}^{r} \cdot x_{i} \cdot D_{j}\right) s^{2}
$$

which can conveniently be written in the form $T=\exp -\left(h^{2} b_{11}+k^{2} b_{22}+\boldsymbol{I}^{2} b_{33}+h k b_{12}+k-1 b_{23}+2 h b_{31}\right)$
where

$$
\begin{aligned}
& b_{11}=2 \pi^{2}\left(a^{*}\right)^{2} U 51 \\
& b_{22}=2 \pi^{2}\left(b^{*}\right)^{2} U_{22}^{r} \\
& b_{33}=2 \pi^{2}\left(c^{*}\right)^{2} U_{33}^{r} \\
& b_{12}=4 \pi^{2} \cdot a^{*} \cdot b^{*} \cdot U_{12}^{r} \\
& b_{23}=4 \pi^{2} \cdot b^{*} \cdot c^{*} \cdot U_{23}^{r} \\
& b_{31}=4 \pi^{2} \cdot c^{*} \cdot a^{*} \cdot U_{31}^{r}
\end{aligned}
$$

If the molecule under consideration can be assumed to be a rigid body then Cruickshank (1956a) showed that the $\mathrm{U}^{\mathfrak{r}}$ tensars for these atoms can be ropresented by two tensors $T_{i j}$ and $\omega_{i j}$. The tensor $T_{i j}$ gives the meen square amplitude of the ranslational vibrations along the molecular axes and the $\omega_{i j}$ tensor gives the mean square angular oscillation about the molecular axes.

These two tensors may be calculated by the least squares method; the nornal equations are
 where $U_{n}^{o b s}=U_{i j}^{T}$ chetained irom the $b_{i j} ; U_{n}^{\text {cale }}=U_{i j}^{T}$ calculated from T_{Sj} anc $\omega_{1 \mathrm{j}} ; \mathrm{A}_{\mathrm{q}}$ are the unknown components of $T_{i j}$ and $\omega_{i j}$ and n is the muber of independent $U_{i j}$. These are twelfth order equations and can be solved ror the twelve vaives A_{q}.

1.9 Methods of computation.

Various methods have beon used to perform some of the lengthy calculations involved in x-ray crystal analysis. Several of these have been programed by the author for the DEUCE computer; detalls of some of these programs are contained in Appendix 2.

Structure factors have bean calculated by two mothods. Firstly, hand calculations were carricd out with the hejp of tables which give values of $\sin 2 \pi$ and $\cos 2 \pi$ for values of θ where $0 \leqslant \theta \leqslant y$. The tables compiled by Buerger (194) which cootain values of $\sin 2 \pi h x$ and cas $2 \pi h x$ for values of 12 from 1 to 30 and of ir from 0 to I at intervals of 0.001 have also been used. Secondly calculations have been carxied out on DEUCE using the structure factor frogran written by Dr.J.S.Rol.lett.

Fourier summaiions lave also been carrled out in several ways. Hanc calchations were perfomed using BeeversoLipson stips (3eevers and Ifipson, 193t, 1936 a and 1936b; Beevers, 1952) and also ucing RUFUS, a fast mechanical computer designed by Prof.J.M.Robertson to perform Fourier sumations. The design of this machine has been described in tro papers (Robertson, 1954 and 1955). The machine gives values of $F \cdot \cos 2 \pi h x$ for x
18.
bectreen 0 and 1 at intervals of $1 / 3$) and for values of In from 0 to 25 . The values of F are set on the counter Which comesponds to the required value of h by means of an electric motor. This operadion simultaneously sets ap on 32 other counters the velues of F. $\cos 2 x h x$ by means of an appropisate train of gears. Values of sin 2 ohx can be obtained at the same time and summations of the form

$$
\sum_{\mathrm{m}} F_{\mathrm{m}} \cdot \cos 2 \pi h_{\mathrm{H}} x-\sum_{\mathrm{n}} F_{\mathrm{n}} \cdot \sin 2 \pi h_{\mathrm{n}} x
$$

are perfomed in one operation.
Automatic computations have also been carried out on DEUCE, again using a program written by Dr.J.S.Rollett.

Part II.
4-4'-dihalogeno-diphenyl sulphones.

1.1 Introduction.

The chemistry of sulphur has long been of interest to chemists. This is because of its ability to fom a varying number of bonds from two in compounds such as $\mathrm{H}_{2} \mathrm{~S}$ to as many as six in S. The reason for this vide variation is the expansion of the outer shell of electrons in sulphur atoms beyond the nomal octet of electrons to a decet or even a duodecet. This is accomplished by accomod.ating the extra electrons in the 3 orbitals which are normally unoccupied. The boxding amengemont in sulphrs atoms has recently been revieved by Abrahams (1956).

Particular interest in the past has been show in the sulphur - oxygen bond and there has been moch argument about its bond orcer, especially in sulphone molecules. It is now generally agreed that this bond has a high percentage of double bond character; the accepted double bond length being I. 4 tid while the single bond length is 1.60A. The sulphur - oxtgen bond length has been measurod in sulphuryl chlartde by electron dirfraction (Pamer ig30. and found to be $1 .+3 \pm 0.02 A$; this is the same value rove in dimethyl sulphone and quoted by Allen and Sution (1950). In β - isoprene suiphone the sulphur - oxygen bond has been measured by x-ray anaysis and found to be 2.435 ± 0.017 A (Jenfrey 2951). These measurements are all.
however, considerably sharter than the bond length found by Toussaint (1945) in 4-41-dibromodiphenyl sulphone of I. $54 \pm 0.05 \mathrm{~A}$ which suggests that the sutphur - oxygen bond in this molecule may only have about 60% of double bond character.

The carbon - suiphur bond has been shown in several molecules to have as much as about 40% of double bond character but in 4.4 - - dibromodiphenyl sulphone this bond is almost certainly a pure single bond, the bond length given by Toussaint bejng 1.84 ± 0.04. The accepted carbon - sulphur single bond Iength is 1.82A and the double bond length is 1. 6MA(Abrahams, 1956).

The angular distribution of the bonds in sulphone molecules is also interesting, the four bonds are approximately tetrahedrally distributed but the 0 © . 0 mgle is always significantly larger than the tetrahedral value of 109.5 . In these molecules the $\mathrm{X}-\mathrm{S}-0$ angle appears remarkably constant at about 107°; the XossX angle on the other hand varies considerably. Three measurements have been reported for the F-S-F angle in $\mathrm{F}_{2} \mathrm{SO}_{2}$, the first by Stevenson and Russell (1939) was $100 \pm 8^{\circ}$. The second, obtained by Fristron (1952) usting the microvave method was $92.8 \pm 0.5^{\circ}$, and the chird

Mann and Fristrom,1957). Electron diffraction on $\mathrm{Cl}_{2} \mathrm{SO}_{2}$ shows the Cl-S-Cl angle to be $111.2 \pm 2^{\circ}$ (Palmer,1938). This change in bond angle can be attributed to two sourcos, firstly increased steric repulsion caused by the greater size of the chlorine atom, and secondly, a change in the hybridisation of the surphur atom with a less electronegative substitreent. Lo study this second ef?ect in more detail, substitueats with vaying electronegativitios but the same effective size are requiven. Such a series of compounds are the 4 modihalogenodiphenyl sulphones in which the halogen atoms are directiy conjugated throuch the benzene ring to the sulphur atom. Any change in the electronegativity of the halogen can thus alter the hybridisation of the sulphur electrons and cause any change in the $\mathrm{X}-\mathrm{S}-\mathrm{X}$ angle without the accompanying stertc effect of the larger groups.

It has also been predicted by Koch and Moffitt (1951) that the benzene rings in diphenylsulphone should be normal to the C-s-cr plame because of the overlap of the sulphur 3d and caibon 2 orbitals. This has been foma to be the case in diphenyl sulphoxide (Abrehems,3.9y\%) where the angle between the ring planes and the C-SwCo plano is 81.9°. It has also been shown that the diphenyl sulphone and diphenyl sulphoxide moleoules are so smons
that they form a continuous series of solid solutions having the crystal structure of diphenyl sulphone in proportions up to 90% of diphenyl sulphoxide (Abyehans and Silverton, 1956). It seems likely then, that this will also be true in the substituted diphenyl sulphone molecules.

Koch and Mosfitt (.1951) al so state that the nore electronegative the groups attached to the sulphone the stronger will be the sulphur axygen bond. This appears to be true in the case of sulphuryl fluonide and sulphuxyl chlonjde where the sulphur osygen bond lengets are $1.37 \pm 0.01 \mathrm{~A}$ and 1.43 A respectively. This eefect should also be present in the dihalogenodiphenyl sulphone molecules although probably to a lesser extent. To obsexve these efrects, however, will qequire analyses of more accuracy than have so far been carried out on sulphone molecules.

1.2 Historical.

Compounds of the general hormula ($\mathrm{p}-\mathrm{R}_{-6} \mathrm{C}_{6} \mathrm{~m}_{4}$) SO_{2} have been studied by severaf workers. Table 1 gives volues of some physical constants of these molecules together with their unit cell dimensions. The data for the compound with $R=H$, viz. diphenyl sulphone, are taken from a pepory by

Table

($\left.\mathrm{p}-\mathrm{R}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{SO}_{2}$: some physical constents.

	$\mathrm{R}=\mathrm{H}$	$\underline{B}=\mathrm{F}$	$R=\mathrm{CI}$
M.wh.	218.27	254.25	287.16
M.Pt.	$122^{\circ} \mathrm{C}$	9800	18.7 .50 C
a	$12.21 \pm 0.03 \mathrm{~A}$	$10.10 \pm 0.02 \mathrm{~A}$	12.3kx
b	7.82 ± 0.02	13.05 ± 0.02	5.01
c	[11.33 ± 0.03	8.22 ± 0.02	20.5
β	$98^{\circ} 25^{\circ} \pm 10^{\circ}$	99.53 ± 0.2^{0}	$90^{\circ} 31$
Unit cell	1074 ${ }^{3}$	$1069 A^{3}$	$1263 A^{3}$
Density	1.355	1. 56	1. 52
No. of mols/cell	4	4.	4
Space group	P_{216}	$\mathcal{E}_{2 \mathrm{I} / \mathrm{a}}$	72/a
	$B=B r$	$R=I$	
Mowt.	376.08	470.09	
M.Pt.	$172^{\circ} \mathrm{C}$	$213.5{ }^{\circ} \mathrm{C}$	
a	$12.32 \pm 0.03 \mathrm{~A}$	19.67A	21.37A
b	5.04 ± 0.02	4.92	4.92
c	20.75 ± 0.03	14.37	14. 37
β	$92 \mathrm{Cb0}$	10\%.0	$116.7{ }^{\circ}$
Unit cell	12868 3	$23^{3} 9 A^{3}$	
Density	1.88	2.25 ± 0.08	
No. or	4	8	
space group		2 2	\% 2 。

Abrahams and Silverton (1956) which shows the formation of a series of solid solutjons of diphenyl sulphoxice and diphenyl sulphone. The data for the compound ($\left.\mathrm{p}-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{+}\right)_{2} \mathrm{SO}_{2}$ has been measured by Sime(1956). As can be seen in Table 1 the compounds with $R=C y, B r$ and I form an isomorphous series. The first two of these compounds have been studied by Toussaint (194.8 and 194, resp.), and the third by Keil and Plieth (1951).

So far no detailed study of the diphenyl sulphone and 4-40 difluorodiphenyl sulphone molecules have been reported. The structure of 4 m'edibromodiphenyl sulphone has been reported in three papers by Toussaint (194, IS4.5 and 1946). This worls was, however, carried out in relation to optical studies of the crystals and not to determine detailed molecular geonetry. He does, however, give the coordinates of the two heaviest atoms, bromine and sulphux, as determined from projections down the b- and ao axes. These coordinates are given in Table 2. The folloving bond lengths and angles are also given. assuming the benzene ring to be a regular hexagon of sides $1.41 \mathrm{~A} ;$

$\mathrm{Br}-\mathrm{C}=1.89 \pm 0.04 \mathrm{~A}$	$\mathrm{Br}-\mathrm{S}-\mathrm{Br}=100 \pm 0.5^{\circ}$
$\mathrm{S}-\mathrm{C}=1.79 \pm 0.04 \mathrm{~A}$	$0-\mathrm{S}-0=131 \pm 3^{\circ}$
$\mathrm{S}-0$	$=1.5^{4} \pm 0.05 \mathrm{~A}$

The $\operatorname{Br-S-Br}$ ' plane is reported to be at an angle of 90 ± 2^{0} to the benzene ring plane and at an engle of 24° to the co axis. The length of the sulphur oxygen bond agrees with the prediction of Koch (1949) that this bond should be longer than the nomal 5.0 bond length of 1.43A. He suggests that the following resonance forms are possible

(b)

(c)

Contributions from (b) and (c) indicate that C - 5 should be shorter than the nomal singie bonds and that $\leqslant-0$ should be longer than the nomal domble bond as in (a). 4-4'-dichlorodiphenyl sulphone has al so been studied by Toussaint (1948) . This analysts, again carried out in conjunction with an optical study, was only done fos the hod projection. The signs of the stacture factone ued to calculate the Fourier synthesis for this projection were obtaned by romparison with the stmoture ractors
of the isomorphous bromo - compound. Several Fourier series were calculated for this projection but no atomic coordinates are given; the following angles are reported the Cl-S.-CI' plane is at about 90° from the benzene ring plane and makes an angle of 24° with the c- axis. The Cl-S $=C I^{\prime}$ angle is $100 \pm 1^{\circ}$ 。

Two papers have been published on $44^{8-d i t o d o d i p h e n y l ~}$ sulphone by Keil and Plieth (1951 and 1955). The second of these papers is the moxe complete and contains all of the information given in the fixst. Their analysis was carried out without any reference to any of Toussaint's earlier work. The unit cell they chose is the altemative orientation of the $I_{2 / a}$ cell chosen by Toussaint and this orientation is also pecorded in Table 2.

The structure was determined from the hot zone for which a list of observed and calculated structure factors is given. The yo coordinates were obtained by assuming bond Iengths and calculating hkO structure factors based on different iodine positions. They also assumed in this calculation that the benzene ring plane was at 90° to the I-S - I' plane. A complete set of the x, y and z com ordinates for all the atoms are given and these values, transformed to the $I_{2 / a}$ orientetion for comparison purposes. are given in Table 2.

Dergmann and Tschudnowsky (1932) give the CI - S - CI' angie of $4-4$-dichiorodiphenylsulphoxide as 109°. Two papers on 44^{3} odichlorodiphenyl sulphone are now being published. The first by Sime and Abrahams (1959) is a full three dimensional study of this molecule and frosus the subject matter of part of this thesis. The second paper, by Bacon and Curry (1959) is a two dimensional neutron dirctaction study of this molecule and is commenced on in section 2.9 .
2. 4-4i-Dichlorodiphenyl sulphone.
2.1 Unit cell data.

Precession and Weissenberg camera photographs wexe taken with the crystal set about the bo axis using molybdenum K_{a} radiation ($\lambda=0.7107 \mathrm{~A}$). The axial lengeths were determined from the precession photographs and corrected for film shrinkage; the β - angle of the monoclinic cell was measured on the Weissenberg photograph. These gave the following results

$$
\begin{aligned}
& \mathrm{a}=20.204 \pm 0.010 \mathrm{~A} \\
& \mathrm{~b}=5.009 \pm 0.010 \\
& \mathrm{c}=12.259 \pm 0.010 \\
& \beta=90.57 \pm 0.25^{\circ}
\end{aligned}
$$

The values given by Toussaint (1948) were
$\mathrm{a}=12.3 \mathrm{kX}$
$\mathrm{b}=5.0 \mathrm{I}$
$c=20.5$
$\beta=90^{\circ} 31^{\prime}$
ie. the a- and c-axes have been interchanged.
The volume of the unit cell

$$
v=a \cdot b \cdot c \cdot \sin \beta
$$

is $1240.6 A^{3}$; the density determined by flotation in an aqueous solution of zinc chloride is $1.533 \mathrm{gm} / 0 . c$. which gives four molecules per unit cell and using tho formata

$$
D=\frac{1.66020 . \Sigma \mathrm{A}}{V}
$$

(Bragg, 1947) the calculated density D is $1.537 \mathrm{gm} / \mathrm{c} . \mathrm{c}_{\mathrm{c}}$. The total number of electrons per unit cell, $F(000)$ is 584.

Examination of the precession and Weissenberg photo graphs showed the absent spectra to be in
hicl when $\mathrm{h}+\mathrm{k}+\mathbb{I}$ is odd
hol when h or \mathcal{L} is odd
OkO when \& is odd
which indicates that the space group is either $c_{2 h}^{6}-I_{2 / a}$ or $c_{s}^{4}-I_{2}$ (Toussaint states $I_{2 / a}$). The centred space group $I_{2 / a}$ was assumed initially and later confirmed.

2.2 Intensity date.

(a). For the initial work on the hod zone the x-ray data were obtained using a Weissenberg canera and rotetion about the b - axis. A pack of rive films was used in the camera and the intensities estimated visually; this multiple film technique has been described by Robertson (1943). The radiation used for this was copper K_{a} ($\lambda=1.5418 \mathrm{~A}$). These intensities were corrected for forentz and polarisation factors by the usual formula

$$
F^{2}=I \cdot \sin 2 \theta /\left(I+\cos ^{2} \propto\right)
$$

giving a set of $|F|$ values on an arbitrary scale.
(b). For the three dinensional analysis all of the data were recorded using molybdenum K_{α} radiation and Inford 'Industrial G ' film. Since the linear absoxption coefficient for this radiation is $\operatorname{small}, 0.718 \mathrm{~mm}^{-1}$, sufficiently small crystals were chosen to make the errors due to absorption negligible. The crystals used were $0.5 \times 0.3 \times 0.3 \mathrm{~mm}$ and $1.0 \times 0.5 \times 0.5 \mathrm{~mm}$. the latter only being used for measuring the weakest intensities. Equi - inclination Weissenberg photographs vere taken with rotation about the b- axis of the layers hot to h 7 l using the multiple film technique and a modified Weissenberg camera based on a design of Abrahams (1954). Since, however, x-ray film does not absorb Mo_{C} radiation to the same extent as it does $C u K_{\alpha}$ radiation it was necessary to interleave the films with sheets of nickel foil 0.0008" thick. In order to detemnine the resulting intensity reduction for normal beam photographs a small portion of data was photographed four times on a four film pack with a $3: 1$ ratio in the exposure times of sucessive exposures - a stabilised x-ray output was used for this. An approximate reduction factor was then determined and the process repeated using this ratio as
the ratio of the exposure times; in this way a reduction ratio of $2.65: 1$ was derived.

For the upper layers recorded on the Weissenberg camera this factor was modified by the obliquity factor (Rossman, I956), Viz.

$$
R=\frac{I}{I} o=\frac{1}{I-C} \exp (\mu t . \sec y)
$$

Since the values of the constants given by Rossman were for $C_{0} K_{\alpha}$ radiation new values of the constants were determined. The value of μt was determined from the known Iinear absorption coefficient for nickel and the thicmess of the foil; this gave $\mu t=0.842$. By substituting this value of μt and a value of 2.65 for R when $\nu=0$, it was found that $1 /(1-C)=1.142$. A graph of R against ν was then plotted and the reduction factor determined for the individual layers. These intensities were also estimated visually and corrected by the Lorentz and polarisation factors and Tunell's rotation factor (1939), De, for the upper layer lines where

$$
D_{e}=\left(\cos ^{2} v-\cos ^{2} \theta\right)^{\frac{1}{2}} / \sin \theta
$$

where $\nu=$ equi - inclination angle $=\sin ^{-1}(n / / 2 d)$, and n is the layer being photographed, d the Iength of the rotation axis and λ the wavelength of the x-rays.

In order to place these eight layers on the same scale, five ather zones, hk0 to hkt, were photographed on a precession camera, a series of six or more photographs being taken of each Iayer with a $3: 1$ time ratio between the exposure of each. These intensities were also estimated visually and correated for the Larentz and polarisation factors by using the Waser and the Grenville - Wells and Abrahams (1952) charts. The ratio of the strongest to the weakest intensity (taken as unity) was 8,800 in hk0; 37,200 in hkl; 8,800 in hk2; 3,645 in hk3 and 3,000 in hk'. In the other layers the ratio was 37,950 in hot; 22,300 in hili 3, 905 in h2d; 646 in h3e; 374 in h4D; 315 in $h 5 \mathrm{D}$; 92 in h6D and 4 in h7e. The 351 common reflections were then used to place the resulting structure factors on the same scale; in all 1,706 structure factors were determined and are listed in Appendix 1(a). Standard deviation.

Since 351 of the reflections have been estimated twice, it was possible to obtain some indication of the accuracy of the structure factors. The method used for this was the one suggested by Abrahams (1955) based on the formula of Whittaker and Robinson (1944), viz.

$$
\sigma\left(F_{i}\right)=\left\{\sum_{1}\left(\bar{F}-F_{i}\right)^{2} \div(n-1)\right\}^{\frac{1}{2}}
$$

Fig. 3. $N(2)$ test for 4a4'-dichloradiphenyl sulphone: the crosses indicate the experimental data.
where $F=\sum_{i} F_{i} / n$.
This clearly holds for n Iarge, but although in this case $n=2$ the results may be somewhat ambiguous, $\sigma(F)$ was evaluated for each of the 351 F (hkD)'s. When this had been done it was found that the standard deviation of each was very nearly a constant percentage of the magnitude of the structure factor with

$$
\sigma\left\langle F_{i}\right\rangle \approx 0.092\left|F_{i}\right|
$$

Test for centro - symmetry.
The 1,706 structure factors were divided into five ranges of $\sin ^{2} \theta$ and the test of Hovells, Phillips and Rogers (1950) was applicd. This gave the following figures
$\begin{array}{lllllllllll}z & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 1.0\end{array}$ $\mathbb{N}(z) \% \quad 36.1$ 多4.8 50.255 .458 .861 .765 .267 .268 .470 .9 which are shown gxaphically in Fig.3. Also shown in the figure are three exrves
(i) non - centred $\mathbb{N}_{0}(z)=1-\exp (-m)$
(ii) centred $\quad N_{1}(z)=\operatorname{erf}\left(\frac{1}{2} z\right)^{\frac{t}{2}}$
(iii) the 'hyper - centred' curve of Rogers and Wilson (1953) $\quad \mathrm{N}_{2}(z)=2 / r \cdot \int_{0}^{\pi / 2} \operatorname{ers}\left(\frac{1}{2} z^{\frac{1}{2}} \cdot \sec \gamma\right) \cdot d \gamma$.

The experimental cirve is seen to lie between curves (ii) and (iii) which corfirms that the space group is in faci the centred one $C_{2}^{b}-I_{i / f}$. The justification for the
curve lying so near the hypercentred curve (iii) can be based on the structure of the molecule as indicated in the diagram

The benzene ring has a centre of symmetry and the sulphur and chlorine atoms have almost the same atomic number ($S=16, C 1=17$); in this way each sulphone molecule can be seen to have two approximate centres of symmetry which cannot coincide with any of the crystallographic centres of symmetry.

2.3 Analysis of the structure.

In the space group $72 f a$ the general position is eight fold and since there are four molecules in the mit cell the sulphur atoms must lie on special positions; this demands that the molecular symmetry is C_{2} or \bar{I}. The known bonding arrangements in sulphone groups (Abrahems, 1956) eliminate the latter possibility and require the sulphur atom to have coordinates

$$
\left(\frac{1}{2}, y, 0\right),\left(\frac{3}{4}, \frac{1}{2}+\mathrm{y}, \frac{1}{2}\right),\left(\frac{3}{4}, \bar{y}, 0\right) \text { and }\left(\frac{1}{x}, \frac{1}{6}-\mathrm{y}, \frac{1}{2}\right) \text {. }
$$

[^0]

Fig. 4. 4-4'-dichlorodiphenyl sulphone. hol Patterson map.

The 160 (hOD) reflections measured using $\mathrm{Cu} K_{a}$ radiation were used to compute the Patterson projoction along the bu axis (Fig. 4); in this projection the x - and zo coordinates of the chlorine and carbon atams are Imediately apparent. The coordinates of the oxyeen ator were obtained by assuming the $5-0$ bond length to be 1.43A and the 0-5 - $0^{\text {: }}$ bond angle to be 120°. A graph of $\ln \left\langle\mathrm{F}^{2}\right\rangle /\left\langle\mathbb{I}^{2}\right\rangle$ against $(\sin \theta / \lambda)^{2}$ indicated an overall value of the isotropic tamperture factor B, in the expression $\exp \left(-B \cdot \sin ^{2} \theta / \lambda^{2}\right) ;$ ar $3 . \% 6 A^{2}$ (Winson, 1942). By using these parameters, fogether with the atomic form factors of Mc.Weeny (1951) for carkion and oxygen and of Jemes and Brindley (1931) for sulyhur and chlorine, to calculate structure factors, an acreenent factor

$$
B=\frac{B\left(\left|F_{0} \frac{1}{2}-\left|F_{c}\right|\right)\right.}{}
$$

of 0.43 was obteinsd.
Refinement of this rrojection was effected by making use of the differeace Fcurier syncheis method which clearly indicated lerge anisotropic thermal vibrations of the chlorine ant suly hur atoms. The expression usod to
allow for this was exp $\left.\cos ^{2}\left[\operatorname{m}_{1}+\operatorname{Mos}^{2}(\omega-\beta)\right]\right\}$
 $\omega=\tan ^{-1}(\beta / \mathrm{n})$ and $\beta=$ aghe betreen the diroction of

Fig. 5. hol difference map. Contours at $0.5 \mathrm{e} / \mathrm{A}^{2}$ intervals; the dashed contours represent negative - the dot-dash zero.
maximum vibration and the a axis (Cochran,1951). After four difference syntheses, the structure factors obteined with Mo K_{d} radiation boing introduced after the first, B (max.) far chloxine $=6.40 \quad$ for sulphur $=6.00$ B (min.) for chlorine $=3.80 \quad$ for sulphur $=3.00$ and $\beta=65050^{\circ}$; tre oniginal isotropic B being used unchanged for the carbon and oxygen atoms. The value of R at this stage wes 0. IO5, the last of these diference maps is show in E (g.5. This map shows thet some shites in atomic coordinetes were still regutad pantionemy ror the chlarine stom. Temperature factor changes for oxygen and sulphux axe also indicated. The chonges to the temperature fectors were not mede but the dtomic coordinates were edjusted and the fjnal values from this map are given in Toble 3.

To obtain values for the y - coordinates of the atoms, the values of y for all the atoms relative to $y(s u l p h u r)$ taken as zero were calculated by assuming the following bond lengths

$S-C=1.43 A$	$C-C$ (aromatic)	$=1.40 \mathrm{~A}$
$S-C=1.85$	$C-C$.	
S	$=1.75$.	

A Patterson projection along the c axis wes thon computed using a charpenting function such thet
 $1 \times 1 \%$
\square

1-156-59
THE UNOASEFIED PHOTOGRAPH MUST NOT B: FEALSHEO WITHOUT PERMISSION OF DRECTOA': : ries ra wrormation division

$|F(\bmod)|^{2}=M(s) \cdot|F(h k 0)|^{2}$

$M(s)=(1 / \hat{\mathrm{S}})^{2} \exp \left(-\pi^{2} s^{2} / \mathrm{p}\right)$
where $\hat{\mathbf{f}}$ is the scettering factor per electron, $s=2 \sin \theta / \lambda$
and p is a constant, here equal to 7.25 (Lipson and Cochran, 1953). The pesulting map, Fig. 6, showed so little resolution that it was not possible to recogntse the Cl - Cl or any other vector with any certainty. Because of this the true y - coordinates vore found by calculating structure factoxs for the 020, 040, 060 and 310 planes with values of y $\$$ sulphur) ranging from 0 to 0.25 at intervals of 0.05 and then draving a graph or Fcalc. against y (sulphur) for the four planes. Only veluos of $y(s u l p h u r)$ from 0 to there considexed as values of $y(s u l p h u x)$ from $\frac{1}{6}$ to $\frac{2}{2}$ axe related to these by the glice plane at $y=\frac{1}{6}$, ard values from th it correspond to a shift of the origin fron $\mathrm{y}=0$ to $\mathrm{y}=\frac{2}{2}$, these being equivalent to each other apart from 2 passible chenge or sign. From the graphs the value of $y(s u l p h u r)$ giving the best agreement between the Fobs and Fcolc values vas chosen and hence the y - coordinates for all of the atoms determined; this value of \bar{y} (sulphur) was 0.135°. Using these coordinates the complete set of (hko) structure factors was calculated and the R - factor found to be 0.13.

One Fourier projection along the c axis showed that the high anount of ovenlap would consicerably hinder the refinement. Using the x - coordinates from the (hod) projection the best y - coordinates were obtained and a second set of structure factors calculated; these gave $R=0.344$. As a result of the overiap in this projection no further wo dimensional analysis was carried out; the second set of y - coordinates are listed in Table 3 along with the final two dimensional x end z - coordinates.

Table 3.

Final twomimensional positicnal coordinates.

Atom
Cl
S
0
C_{1}
C_{2}
C_{3}
C_{4}
C_{5}
C_{6}
0.0319
0.25
0.2250
0.1870
0.1362
0.0884
0.0903
0.1433
0.1917

Y
z
0.946
0.1592
0.135

0
0.000

$$
-0.0949
$$

0.368
$0.04+58$
0.505
-0.0245
0.697
0.0106
0.1162
0.726
0.1845
0.1497.

2.4 Three - dimencional refinement.

The method used to refine the structure fully was that of least squeres. This was carried out in two stages, initially using ar IBM 70% computer and finally the ORACIE.
2.4(a) TBM 704 refinement.

For the work on the IBM 704 computer the NY XR2 progrea
was used. This progran uses the diagonal approxination method referred to at the end of 1.7 of Part I_{9} the temperature factors, as well as the coordinates, are refined but only isotronically. The refinement was corrioc out using 1,071 observec and 4.75 unobserved stxucture factors giving $I_{2} 56$ conditional equations, the unobscreved terms being used at one half their maximum value. The weighting system used was that suggested by Abrehams (1955), viz. $w($ hiv $) \propto 10,000 /\left\{F_{m}^{2}(\operatorname{hri}) \mid\right.$ with $w($ max $)=25$ for $\mid F_{m}($ hkB $) \mid \leqslant 20$; unoliserved texms having a weight of unity. The atomic form tactors ased were those of Berghis et al (1955) for carbon and oxygen and of Vierwoll and Ögrim (1949) for silphur and chlorine. The initial parameters used were those from the final tho - dinensional work as listed in lable 3; the temperature perameters used were the original ones for oxygen and carbon. For
chlorine and sulphur the anisotropic values were replaced by the isotropic values $B=5.00 A^{2}$ for chlorine and 4.304^{2} for sulphur. The first set of stuvcture factors had an R^{8} factor of $0,4 i f$ and a value of $2 w \Delta^{2}$ of $I_{\%} 373,060$. The R^{\prime} factor differs from the normal agreement factor, R, in the treatment of the unobserved terms; in R^{\prime} the unobserved cexms are taken as one o half their maximum value and in consequences

$$
R^{n}=R+0.03
$$

After three least squares iterations in which only the x_{i}, Y_{i} and z_{i} and scale factor varied the value of R^{p} had fallen to $0.3^{4} 1$ and of $\Sigma w \Delta^{2}$ to 700,940 . In the following two cycles the individual values of B_{i} were also allowed to vary and in the next two sycles the contributions from the kydrogen atoms were included although these atomic perameters were not allowed to vary. The positions of the hydrogen atoms for this were determined by assuning that the atoms lie on the extenced lines $C_{2}-C_{5}$ and $\sigma_{3}-6$ with $C-H=1.08 A$. At this stage the value of R^{*} wes 0.269 and of $\Sigma w \Delta^{2}, 465,666$; the complete details of the course of this refinement are given in Table 4. The rether constant values of R° and $\Sigma w \Delta^{2}$ in the final cycles suggest that refinement of the

Table 4.

Course of refinement using NY XR2 program.

$$
R^{0} \quad \Sigma W \Delta^{2}
$$

Parameters obtained from
$2 D$ - refinement 0.44.6 1,373,060

1st cycle: $x_{i} y_{i} z_{i}$ variable

B_{i} constant	0.397	988,090
2nd cycle: do.	0.360	804, 880
3rd cycle: do.	0.341	700, $9^{\prime}+0$
4th cycles $x_{i} y_{i} z_{i}$ and B_{i} variable	0.306	54,5,070
5 th cycle: do.	0.293	462,31.0
6ih cycle: do.		
(hydrogen atoms inciuded in structure factors but not varied)	0.273	522,66\%
7th cycle: do.	0.269	1.65,666

structure is probably as complete as this program will permit. Comparison of the coordinate shifts ($\Delta \Delta_{i}$) with the corresponding standard deviations (σ ?), Sable 5, reveals that some sf the parameters, paxticularly the thermal ones, still have significant shifits. It was therefore decided that for any further useful refinement to be abtained the anisotropy of the themal vibrations would have to be considered. The rinal paremeters from

Table 5.

Comparison of coordinate shifts and corresponding standard deviations from 7th NY XR2 least squares cycle (x 103)

	Δx	$\underline{\sigma x}$	$\underline{y y}$	$\underline{q y}$	$\underline{\Delta z}$	$\underline{\sigma z}$	$\underline{\Delta B}$	$\underline{\sigma B}$
CI	0.05	0.20	0.10	0.92	0.29	0.32	$\underline{0.319}$	0.08
S	0	0	-0.05	0.85	0	0	-0.023	0.07
0	-0.17	0.39	0.23	1.77	-0.58	0.66	$\underline{0.192}$	0.15
C_{1}	0.16	0.48	0.80	2.00	0.71	0.79	0.10^{4}	0.36
C_{2}	0.28	0.48	1.27	2.00	0.25	0.79	0.106	0.16
C_{3}	0.04	0.48	-0.63	2.00	$\underline{0.92}$	0.79	$\underline{0.173}$	0.16
C_{4}	0.37	0.48	0.66	2.00	$\underline{1.71}$	0.79	$\underline{0.298}$	0.16
C_{5}	0.27	0.48	-0.68	2.00	$\underline{0.91}$	0.79	$\underline{0.295}$	0.16
C_{6}	0.03	0.48	1.27	2.00	$\underline{0.83}$	0.79	0.105	0.16.

the NY XR2 progrear are given in Table 6 and Fourler projections along the bu and c- axes drawn out at this stage are show in Figs. 7 and 8 resp.

2.4(b) ORACLE refinement;

The final least squares refinement of this compound was carried out using the comprehensive least squares program written by Dr.H.A.Levy and Dr.W.R.Busing for the ORACLE computer. In this program the anisotropic temperature factors are treated in the form

Table 6.				
Coordinates from IV XR2 refinerrent.				
Atom.	x	y	\underline{z}	B.
Cl	. 0328	. 9380	. 1621	6.96
s	. 25	. 1549	0	3.94
0	. 2247	. 0127	-. 0940	4.95
C_{1}	. 1871	. 3726	. $\mathrm{OH} 4+9$	3.69
c_{2}	. 1357	. 4337	-.0261	4.73
C_{3}	. 0867	. 6058	. 6087	5.39
C_{4}	. 0932	.7154	.1168	5.50
C_{5}	. 1439	. 6433	. 1.873	5.09
C6	. 1901	. 4738	. 1.490	4.38
$\mathrm{H}_{2}{ }^{\prime}$. 1320	. 3472	-. 1.049	4.60
$\mathrm{H}_{3}{ }^{\prime}$. 0476	. 6615	-. 01454	4.60
$\mathrm{H}_{5}{ }^{\text {8 }}$. 1466	. 7085	. 2629	4.60
$\mathrm{H}_{6}{ }^{\prime}$. 2289	. 4209	. 1.993	4.60

: these parameters were not refined.

$$
a \sin \beta
$$

$$
\begin{aligned}
& \text { 4-4'-dichlorodiphenyl sulphone. hk0 Fourier map. } \\
& \text { Contour interval le/ } \mathrm{A}^{2} \text { to } 4 \mathrm{e} / \mathrm{A}^{2} \text { and then at } 2 \mathrm{e} / \mathrm{A}^{2} \text { intervals. } \\
& \text { Zero contour dashed. }
\end{aligned}
$$

$$
\exp -\left(\beta_{11} h^{2}+\beta_{22^{k}} k^{2}+\beta_{33} A^{2}+2 \beta_{12} h k+2 \beta_{23} k D+2 \beta_{31} l h\right)
$$

and in the least squares process the complete set of normal equations, including off - diagonal terms, is solved.

For the general positions in the space group $I_{2 / a}$ all the symmetry related atoms have the same values of the coefficients $\beta_{i j}$ except for a sign change in β_{12} and β_{23} for atoms related by the glide plane or two - fold axis. Consequently, for the sulphur atom which lies on a special position, $\beta_{12}=\beta_{23}=0$ (Levy, 1956). The atomic form factors used for this refinement were the same as before for oxygen and carbon, but for sulphur those of Tomjie and Stam (1958) were used. For chlorine a modified Berghuis et al (1955) curve was used with $f_{C 1}$ repiacing $f_{C l}$ at values of $\sin \theta / \lambda \geqslant 0.2$. The weighting systerif was the same as for the NY YR2 refinement except thet the unobserved terms (again taken as one - half their meximum value) were now assigned a weight of 25 . The contribution of the hydrogen atoms was included in the structure factors, the coordinates being Bacon's (1957) x - and z coordinates together with the y-coordinates obtained by solving for these with the equation of the benzene ring plane determined from the coordinates from the 7th NX XR2
cycle (Table 6). The values of these coordinates are given in Table 7 together with Bacon's isotropic values of B.

Table 7.

Initial hydrogen atom coordinates (Bacon,1957).
Atam.

H_{2}	.1375	.3452	.8944	6.1
H_{3}	.0447	.6703	.9558	6.9
H_{5}	.148 C	.7183	.2708	6.9
H_{6}	$.231 c$.4152	$.2044_{4}$	6.1

The ORACLE is able to solve a determinant of order not exceeding 48. For this refinement we have 25 positional, 52 thermal and 1 scaling parameters which requires the solution of a 78th order determinant. This was accomplished ty solving two, overlapping, parts; all of the parameters for any atom being kept as a group and In general the nearest neighbours being included in each cycle. The total namber of terms used was increased to 1,706 of which 1,158 weve observed structure factors. A further requirement placed on each term rejected it fron inclusion as an observational equation if 3 . Fale $<F_{m e a s ; ~}^{\text {a }}$ these terms are inlicatcd by a dagger in Appendix l(a).

The structure Pactors based on the coordinates from the 7 th NY XR2 cycle contained 141 such terms and those besed on the final opActe coordinates contained 126; of these 76 refer to unobserved texms and need not have been rejected.

In all, six least squares iterations were carried out, the final value of R being 0.1414 and of $\mathrm{Ew} \mathrm{R}^{2}, 107,18 \%$. After the second cycle the hydrogen atom coordinates were replaced by rew values based on C. $H=1.08 \wedge$ and such that they wexe on the extended lines $C_{2}-C_{5}$ and $C_{3}-$ C $_{6}$. These values are given in Table 8.

Table 8.

Atom.	X	y	\underline{z}
H_{2}	.1321	.3557	.8943
H_{3}	.0473	.6646	.9568
H_{5}	.1463	.7257	.2685
H_{6}	.2310	.4210	$.204+2$

After the fourth cycle no significant changes in R' or ZwA ${ }^{2}$ accurred, the finel two cycles being carried out to ensure complete convergence; move significently, in the final cycles no value of Δi_{j} was greater than the corresponding $\sigma \xi_{j}$. The variations of R^{0} and $E v \Delta^{2}$ during the ORACEE refinement are shom in fable 9.

Table 10.

Final atomic coordinates for $4-4$ odichlorodiphenyl sulphone.
Atom.

Cl

5
0

C_{1}

C_{2}
C_{3}
C_{4}
C_{5}
C_{6}
Atom.
$\begin{array}{lllllll}C 1 & 0.00454 & 0.07857 & 0.01700 & 0.00883 & 0.00281 & 0.01043\end{array}$
$\begin{array}{lllllll}s & 0.00312 & 0.03686 & 0.00755 & 0 & -0.00025 & 0\end{array}$
$0 \quad 0.004 .03 \quad 0.04329 \quad 0.00926-0.00275-0.00045-0.00551$
$\begin{array}{llllllll}C_{1} & 0.00281 & 0.03571 & 0.00762 & -0.00069 & -0.00047 & 0.00373\end{array}$
$\begin{array}{lllllll}c_{2} & 0.00272 & 0.05968 & 0.00808 & -0.00053 & -0.0004 & 0.00333\end{array}$
$\begin{array}{llllllll}C_{3} & 0.00296 & 0.07263 & 0.01019 & 0.00207 & -0.00011 & 0.00680\end{array}$
$\begin{array}{lllllll}C_{4} & 0.00297 & 0.01671 & 0.01165 & 0.00190 & 0.00143 & 0.00785\end{array}$
$\begin{array}{llllllll}C_{5} & 0.00347 & 0.06119 & 0.00922 & 0.00313 & -0.00011 & 0.00051\end{array}$
$\begin{array}{llllllll}C_{6} & 0.00331 & 0.01 .502 & 0.00773 & 0.00192 & -0.00006 & 0.00073 .\end{array}$

Table 9.

Course of refinement using ORACLE program.

	R'	$\Sigma w \Delta^{2}$
Final NY XR2 coorcinates	0.2562	4.06,987
list cycle: all parameters		
variable	0.1759	183,484
2nd: do.	0.1467	116,892
3rd: dc.	0.1419	109,379
4th: do.	0.1415	107, 4 +34
5th: do.	0.141 .5	107, 52.8
6th: do.	0.14 .1 .4	107,4.81.

The final values of the atomic positional and themal. parameters are Iisted in Table 10. These correspond to a value of $R=0.108$ in, for the unobserved terms $F_{\text {meas }}$ is taken as its maximum value, ie. twice the astexisked value in Appendix $1(a)$, and \mid meas $|-| F c a l d=0$ if this value of Fmeas is greater then Frald. The actual calculated values on the structure factors are listea in Appendix I(a).

A plot of $\Delta=\left|F_{\text {meas }}\right|-\left|F_{\text {cald }}\right|$ against \mid meas \mid was made. These point were fairly widely distributed but for values of $F_{\text {meas }}$ between about 10.0 and 80.0 , it was found
that $\Delta \approx 0.104\left|F_{\text {meas }}\right|$ which is comparable with
$\sigma(F) \approx 0.092|F|$ as found earlier although no significance is attached to this because of the fairly wide spread of the Δ values.

The standard deviations of the atomic coordinates in Table 10 are given in Table 11.

Table 11.

Standard deviations in the final positional coordinates

> (aII xIo3)

Atom.	P	-	-2
Cl	0.10	0.43	0.18
S	0	0.35	0
0	0.20	0.76	0.32
C_{1}	0.24	0.91	0.38
C_{2}	0.26	1.23	0.43
C_{3}	0.29	1.42	0.51
C_{4}	0.28	1.23	0.53
C_{5}	0.29	1.31	0.49
C_{6}	0.27	1.08	0.42

These have been obtained from the variance - covariance matrix derived from the least squares process; the standerd deviation in a function f is given by

$$
\left[\Sigma_{i} \Sigma\left(\frac{\partial f}{\partial p_{i}}\right)\left(\frac{\partial f}{\partial q_{j}}\right) c_{i j}+\Sigma_{i}\left(\frac{\partial f}{\partial q_{i}}\right)^{2} \sigma_{i}^{2}\right]^{\frac{2}{2}}
$$

where p_{i}, p_{j} are the least squares parameters, $C_{i j}$ is the corresponding variance - covariance matrix element, qi_{i} are the cell parameters and σ_{1} their standard deviations.
2.4(e) Comparison of the tuo refinements.

During the course ait the ImM 704 refinement the value of R^{0} fell from 0.446 to 0,269 and of $\Sigma w \Delta^{2}$ from $1,373,060$ to 465,666 ; ie. $\Sigma w A^{2}$ has been reduced by a factox of 1/2.95. At this stage the refinement was almost complete as can be seen by examining Tables 4 and 5: only for 9 of the 34 parameters being refined does $\Delta\}$ exceed $\sigma\}$ (chese values have been underlined in Table 5).

In the ORACLE program where the full 78 th order matrix was solved, the value of R sell to 0.1414 and $\sum w \Delta^{2}$ to 107,481 ; ie. a further reduction in $\Sigma w \Delta^{2}$ by a factor of $1 / 4.33$. It is clear then, that considerable improvement has been achieved by using the complete determinent and by allowing for andsotropy in the therwal parameters instead of using the diagonal approximation with isotropic thermal parameters.

A comparison of the results of the two merhods is
given in three tables. In Table 12 the values of $\frac{\xi \text { (ORACLE) }-\xi(\text { NY XR2) }}{\sigma \text { (ORACLE })}$
are given. If the value given is less than unity then no signiricant improvement in this coordjnate has been achieved; if, however, the value is greater than unity then the change in this coordinate is greater than its standard deviation and it can be considered significant.

$$
\text { FabIe } 12 .
$$

Ratio of ξ (ORACLE) - ξ (NY XR2) to $\sigma \xi($ ORACLE $)$.
Atom.
X X
$\underline{2}$

CI	1.0	0.3	0
s	0	0.8	0

0	1.5	0.3	2.6
C_{1}	1.1	2.5	1.5
C_{2}	1.8	2.4	4.5
C_{3}	3.7	4.8	5.4
C_{4}	2.2	1.5	0.9
C_{5}	2.9	1.2	1.3
C_{6}	3.3	0.4	2.6.

Only eight of the twenty - seven values given in the table are less than unity.

In Table 13 the vaiues of the isotropic values B_{1}

Table 14.

Comparison of bond lengths obtained from the NY XR2 and ORACLE programs.

Bond.	NY XR2.	ORACLE.
$C 1-a_{4}$	1.731 A	1.736 A
$C_{1}-C_{2}$	1.389	1.382
$C_{2}-C_{3}$	1.380	1.373
$C_{3}-C_{4}$	1.436	1.395
$C_{4}-C_{5}$	1.400	1.378
$C_{5}-C_{6}$	1.345	1.367
$C_{6}-\sigma_{1}$	1.371	1.386
$C-C_{\text {mean }}$	1.387	1.380
$C_{1}-S$	1.762	1.765
$S-0$	1.446	1.432.

from the NY XR2 program are compared with the $B_{i j}$ values from the ORACLE program. The relationship between the $B_{i j}$'s in the table and the $\beta_{1 j}$'s obtained by ORACLE are $B_{I I}=4 \beta_{11} /\left(a^{*}\right)^{2} ; B_{22}=4 \beta_{22} /\left(b^{*}\right)^{2} ; B_{33}=4 \beta 33 /\left(c^{*}\right)^{2} ;$ $B_{12}=4 \beta_{12} / a^{*} \cdot b^{*} ; \quad B_{23}=4 \beta_{23} / b^{*} \cdot c^{*} ; \quad B_{31}=4 \beta 31 / c^{*} \cdot a^{*}$.

Mable 13.

Comparison of NY XRC B_{i} and ORACID $B_{i j}$.
Atom. B1 B11 B22 B33 Bij B12 B23 B3I
$\begin{array}{llllllllll}\text { CI } & 6.96 & 7.41 & 7.89 & 10.19 & 8.50 & 3.57 & 2.56 & 2.78\end{array}$
$\begin{array}{lllllllll}s & 3.94 & 5.09 & 3.70 & 4.53 & 4.44 & 0 & 0 & -0.24\end{array}$
$\begin{array}{lllllllllllll}0 & 4.95 & 6.58 & 4.33 & 5.55 & 5.49 & -1.11 & -1.35 & -0.44\end{array}$
$c_{1} \quad 3.69 \quad 4.58 \quad 3.58 \quad 4.56 \quad 4.24-0.28 \quad 0.91 \quad-0.46$
$\begin{array}{lllllllllllllllll}C_{2} & 4.73 & 4.44 & 5.99 & 4.84 & 5.09 & -0.21 & 0.81 & -0.47\end{array}$
$\begin{array}{lllllllll}C_{3} & 5.39 & 4.83 & 7.29 & 6.11 & 6.08 & 0.84 & 1.67 & -0.10\end{array}$
$\begin{array}{lllllllll}C_{4} & 5.50 & 4.84 & 5.69 & 6.98 & 5.84 & 0.77 & 1.92 & 1.42\end{array}$
$\begin{array}{llllllllll}C_{5} & 5.09 & 5.66 & 6.14 & 5.52 & 5.77 & 1.26 & 0.12 & -0.10\end{array}$
$\begin{array}{llllllllll}C_{6} & 4.38 & 5.41 & 4.52 & 4.63 & 4.85 & 0.77 & 0.18 & =0.06 .\end{array}$
Note. $B_{11}=\left(B_{1 I}+B_{22}+B_{33}\right) / 3$.
These values jllustrate the very marked anisotropiz
vibration of the etoms.
In Table 14 tre bond lengths obtained from the two refinement prograns are compared.

Table 15.

Molecular Dimensions.

$$
\begin{aligned}
& C_{1}-C_{2}=1.382 \pm 0.007 \mathrm{~A} \\
& C_{6}-C_{1}-C_{2}=121.1 \pm 0.52^{\circ} \\
& c_{2}-c_{3}=1.373 \pm 0.009 \\
& C_{1}-C_{2}-C_{3}=119.2 \pm 0.53 \\
& C_{3}-C_{4}=1.395 \pm 0.009 \\
& a_{4}-c_{5}=1.378 \pm 0.009 \\
& C_{5} C_{6}=1.367 \pm 0.008 \\
& C_{6}{ }^{-} C_{I}=1.386 \pm 0.007 \\
& c_{2}-6_{6}^{9}=3.854 \pm 0.01 I \\
& \mathrm{Cl}-\mathrm{a}_{4}=1.736 \pm 0.007 \\
& S-C_{1}=1.765 \pm 0.006 \\
& s-0=1.432 \pm 0.005 \\
& c_{2}-c_{3} c_{4}=119.2 \pm 0.55 \\
& c_{3}-C_{4}-c_{5}=121.8 \pm 0.54 \\
& a_{4}-c_{5}-c_{6}=118.9 \pm 0.56 \\
& C_{5}-C_{6}-C_{1}=120.1 \pm 0.52 \\
& c_{3}-a_{4}-c e=119.7 \pm 0.49 \\
& C_{5} C_{4}-\mathrm{Cl}=118.7 \pm 0.52 \\
& s-C_{1}-C_{2}=119.8 \pm 0.47 \\
& s-C_{1}-C_{6}=179.1 \pm 0.40 \\
& c_{1}-s-0=107.3 \pm 0.29 \\
& C_{j}^{\prime}-S-0=208.0 \pm 0.28 \\
& C_{1}-s-C_{1}^{\prime}=104.8 \pm 0.40 \\
& C \ell-\mathrm{S}-\mathrm{Ce}=101.8 \pm 0.25 \\
& 0-S-0=120.4 \pm 0.42 \text {. }
\end{aligned}
$$

2.5 Kolecular Geometyy.

The coordinates given in Table 10 were used to calculate the bond lengths and angles given in Table 15s The mean of the axometic carbon - carbon bond lengths is $1.380 \pm 0.003 \mathrm{~A}$ and the sum of the internal angles of the benzene ring is $719.9 \pm 0.4 \%$. The shaptest contact between the two benzene rings is $C_{2}-C_{6}$ which ws $3.854 \pm 0.011 \mathrm{~A}$. Wre intermolecular distances less then 4 are given in Table $16 ;$ these were obtained by an exhaustive progran writien by Dr. Busing for the ORACLE.

Yable 16.

Intermolecular distances less than 4.

$C_{6} \ldots .0=3.211 \pm 0.009 \mathrm{~A}$	$C_{1} \ldots 0=3.721 \pm 0.013 \mathrm{~A}$
$C_{5} \ldots .0=3.243 \pm 0.010$	$c_{1} \ldots .0=3.729 \pm 0.013$
$c_{6} \ldots .0=3.272 \pm 0.011$	$c_{4} \cdot \cdots=3.996 \pm 0.011$
$C_{5} \ldots .0=3.455 \pm C .010$	$C_{4} \ldots . . C I=3.981 \pm 0.010$
$c_{2} \ldots .0=3.508 \pm 0.012$	$C_{2} . .0 \mathrm{CI}=3.976 \pm 0.010$
$C_{3} \ldots .0=3.654 \pm C .010$	Cl. . Cl $=3.564 \pm 0.009$.

Three of the carbon oxygen contacts, 3.211, 3.243 and 3.272 A are sherter than the sum of the accepted ven der Waal's radii, viz. 3.3 A , the remainder are ajl longer than this value. The Cl ... Cl distance of $3.564 \pm 0.009 \mathrm{~A}$
GGOOKHAVEN NATIONAL LABORATORY
T- SHEX MIHOUT PERMISSAON OF DUSECTOR'E

agrees with the van der Waal's Cl...Ce distance of 3.60A.
A general view of the whole structure is given in Figure 9; it consists of colurns of molecules stackod along the two - fold axes, the alternate colums 'pointing' in oppcsite directions.

After transfosming the coordinates to orthogonal axes derined by

$$
\begin{aligned}
& x^{8}=x+z \cdot \cos \beta \\
& y^{B}=y \\
& z^{B}=z \cdot \sin \beta
\end{aligned}
$$

the least squares plane of the benzene ring, the sulphur and the chlortne etors ves detemined. In fomaing the equation of this plane the sulphus and chlowine atoms were given three thes the wetght of the carbon atoms since the standaxd devtitions of thetr conrdinates is about one - third of that of the carbon atons. The equation of this plane, deremmined on the DBUCE computer (see Appendix 2) is

$$
\begin{equation*}
x^{0}+1.4^{4}+22 y^{\prime}-0.6327 z^{9}-6.1304=0 \tag{a}
\end{equation*}
$$

The least squares derived equation of the plane of the carbon atoms ainone is

$$
\begin{equation*}
x^{8}+1.4208 y^{9}-0.63272^{9}-6.0373=0 \tag{b}
\end{equation*}
$$

The distances of the atoms from the se plames are given in Table 17. None of the carbon atcins lies significantly

out of plane 'b' but three or thera, C_{1}, C_{2} and C_{5} Ile out of plane ' a^{\prime}. The suiphuy atom is very significantly out of plane 'b' and both the sulphur axd chlorine atoms are firther from plane ' a ' then might have been expected. The following angles have also been calculated -

2.6 Three dimenstonal Fomilor section.

The electron censity in plane 'b' has been evaluated using omly the 1,158 observed noneequivalent structure factors on an IBM 70's computer. The program used was one specially written (Treuting and Abrahams, I959) to compute a three dimenstonal Fourier seyies on a general plene in
a crystal of monoclinic or higher symmetry. The meihod used is to select a grid of points x, y in fractions of the unit cell edge and to solve these against the equation of plane 'b'. The resulting values of 2 are then rounded off to the nearest $1 / 3600$ th; this means that the error in z is less than e/7200 or 0.0017 A wich is less than the distance of all of the atoms except C_{3} from the plane. The syntheris was then performed at each of the resulting points for values of x from 0 to $1200 / 3600$ at intervals of $30 / 3600$ and y from 0 to $3960 / 3600$ at intervals of $90 / 3600$. The resulting array of electron

$$
\begin{aligned}
& 1014
\end{aligned}
$$

$$
\begin{aligned}
& 7-148-59
\end{aligned}
$$

ITE URILASSIFIEO PHOTOGRAFH MUST NOT B:
PTPISHIS EITHOUT PERMSSION OF DIRECTOR'S
\because Fis -a LFORMATION DIVISION

Scale

en

Fig. 10.
Electron density of 4, 4' - dichlorodiphenylsulfone in the plane

$$
x+1.4239 y-0.6320 z-6.0393=0
$$

(Fmeas Fourier coefficients). The broken line represents $0.5 \mathrm{R}^{-3}$ and the first solid line $1 e^{R^{-3}}$. Contours thereafter are at $1 e^{R^{-3}}$ intervals for the oxygen and carbon atoms; for sulfur the contours above $2 e^{\AA^{-3}}$ are at $5 e^{-3}$ and for chlorine above $6 e^{R^{-3}}$ at $2 e^{R^{-3}}$ intervals.
densities was drawn out with the projected axes a^{\prime} and b^{\prime}, where $a^{2}=11.22$ and $b^{2}=10.31 \mathrm{~A}$ with $\gamma^{\prime}=39^{\circ} 50^{\circ}$; this is shown in Fig. 10.

This map shows several interesting features, firstly the positional parameters show good agreement with the earlier least squares values, and secondly, the marked ellipticity of the chlorsne atom offers confirmation of the anisotropic therma!: vibration found in the least squares refinement. The third feature is the line shape of the $0.5 \mathrm{e} / \mathrm{A}^{3}$ contour in the region of the atoms C_{2}, C_{3}, C_{5}, and C_{6} which suggests the presence of hydrogen atoms. This third feature prompted the calculation of a difference synthesis in the same plane using structure factors evaluated using the final atomic parameters for all of the atoms except the hydrogens which were omitted. These $F(c a l c)$'s were then subtracted from the F (meas) values of Appendix $1(a)$ and the difrerence ejectron density in plane 'b' computed; this is show in Fig.11.

This map shows the expected maxima which are distinctly above the average beckground ($0.45-0.65 \mathrm{e} / \mathrm{A}^{3}$) and in the correct location to be hydrogen atoms. The remaining atoms, except sulphur, are also seen to bs in
 ?TC,
-...anの \quad anmb
n mive mo.

TiS UHOL ABSFIED FHOTOCRAPH MUST HOT BE
 \therefore BTOSMATION DNISION

Fig. 11.
1)ifference electron density of 4, 4' - dichlorodiphenylsulfone in the plane

$$
x+1.4239 y-0.6320 z-6.0393=0
$$

(Fmeas - Fcalc Fourier coefficients). Contours are at $0.1 \mathrm{R}^{-3}$ intervals. The dotdash line represents $0 \mathbb{R}^{-3}$, the solid lines are positive and the broken lines negative densities.
regions of very small slope and small absolute height which gives further confirmation of the least squares derived parameters.

2.7 Position os hydrosen atoms.

The positional coordinates of the hydrogen atoms were then independently determined by computing the electron density along lines parallel to the crystal axes and through the expected centres of the hydrogen atoms. This was then repeated toking new lines corresponding to any appanent changes in the positions of the centres of gravity of the atoms; the coordinates obtaincd in this way are listed in Table 18.

Mable 18.

Fourier derived hydrogen atom coordinates.

Atom.	\underline{I}	Ψ	\underline{Z}
H_{2}	0.144	0.400	-0.104
H_{3}	0.048	0.663	-0.037
H_{5}	0.134	0.721	0.273
H_{6}	0.222	0.386	0.198.

Using these coordinates structure factors ware calculated based on the hydrogen atoms alone with Bacon
and Curry's (1959) temperature factors and McWeeny's (1951) atomic scattering factor. These structure factors were then subtracted from the F (meas) - F (calc) values used in evaluating Fig. 11 and the resulting residuals taken as coefficients ta calculate F (error) syntheses around the hydrogen and sulphur atoms. These syntheses were performed to confirm that the electron density peaks in the region of the hydrogen atoms were caused by scattering from the hydrogen atoms and nat by errars in the observed structure factors. The residual electron density around the sulphur atom was calculated in this case to investigate the relatively large electron density aroum the sulphur atom in Fig.II. Table 19 gives the

Table 19.

Maximum electron densities.

Atom.	Density (a).	Density (b).
	$0.45 \mathrm{e} / \mathrm{A}^{3}$	$0.09 \mathrm{e} / \mathrm{A}^{3}$
H_{3}	0.62	0.25
H_{5}	0.41	0.04
H_{6}	0.54	0.13
S	0.64	0.64.

Table 20.
Carbon - hydragen bond lengths.
$\mathrm{C}_{2}-\mathrm{H}_{2}$
1.02 A
$\mathrm{C}_{3}-\mathrm{H}_{3}$
1.02
$\mathrm{C}_{5}-\mathrm{H}_{5}$
1.14
$\mathrm{C}_{6}-\mathrm{H}_{6}$
0.96.

Table 21.

Out-af-plane distances.

Atam	Plane 'a'	Plane 'b'
H_{2}	-	0.262 A
H_{3}	-0.043	0.289 A
H_{5}	-0.196	-0.033
H_{6}	-0.223	-0.187
		-0.197.

58.

maximum electron density values at all of these atoms in both syntheses for comparison. Density (a) is that based on F (meas) - $F(S, C \ell, 0, C)$ and density (b) is based on $F($ meas $)-F(S, C l, O, C, H)$.

AII of the 'hydrogen' atom peals can be seen to have been significantly reduced although that for H_{3} is still about double the background density. The 'sulphur' peak is clearly unaffected by the hydrogen atoms, the maximun change in electron density in the neighbourhood of this atom being less than $0.05 \mathrm{e} / \mathrm{A}^{3}$.

The coordinates of the hydrogen atoms were used to evaluate carbon - hydrogen bond lengths and these are given in Table 20; the mean of these values is 1.04A. The distance of the hydrogen atoms from planes 'a' and 'b' has also been evaluated and these are given in Table 21.

2.8 Analysis of thermal yibrations.

The anisotropic motion of an atom in a crystal can be completely described by its ellipsoid of vibration. The ellipsoid is uniquely determined by the thermal parameters $b_{i j}$ in the expression (xxvii) of Part $I_{\text {; }}$ where
in this case $b_{i f}=\beta_{i i}, b_{i j}=2 \beta_{i j}$. Rollett and Davies (1955) describe a method for obtaining the principal axes of the ellipsoid in terms of orthogonal reciprocal axes. Waser (1955) and Busing and Levy (1958) describe a similar method but using direct lattice vectors, the latter method being more suitable for autonatic computation. Calculation of the principal axes has been carried out independently by both methods, the first methad being used in a hand calculation and the second on ORACLE. The results of these calculations are identical, apart from exrors in rounding off; the ORACLE results are given in Table 22 since the standard deviations were also determined in this calculation. The first past of the table gives values of $\mu(r)$ $\mu(5)$, the root mean square displacement of the atom along the rth principal axis; the second part gives $\varphi(r, i)$ in degrees, the angles made by the r th principal axis with the direct lattice vectors.

It is, however, easier to visualise the thermal motions of the atoms if these are given with respect to some fixed molecular axes. A natural choice of axes is that given by

Table 22.

The principal axes; R.M.S. displacements and orientations.

Atom.	μ (I) A	μ (2) 1	μ (3) A
Cl	0.427 ± 0.003	0.227 ± 0.002	0.297 ± 0.002
s	0.257 ± 0.002	0.217 ± 0.002	0.236 ± 0.002
0	0.197 ± 0.004	0.299 ± 0.004	0.284 ± 0.004
$C_{\text {I }}$	0.264 ± 0.005	0.196 ± 0.005	0.231 ± 0.005
c_{2}	0.287 ± 0.006	0.226 ± 0.006	0.245 ± 0.006
C_{3}	0.329 ± 0.007	0.231 ± 0.006	0.263 ± 0.006
C_{4}	0.336 ± 0.007	0.228 ± 0.006	0.237 ± 0.006
C_{5}	0.302 ± 0.007	0.241 ± 0.006	0.266 ± 0.006
${ }_{6} 6$	0.272 ± 0.006	0.225 ± 0.006	0.244 ± 0.006
Atom r	$\varphi(r, a)^{0}$	$\varphi(r, b)^{\text {a }}$	$\varphi(r, c)^{0}$
CP 1	58.5 ± 0.52	57.2 ± 0.59	49.2 ± 0.75
2	1388.6 ± 0.78	48.8 ± 0.85	86.5 ± 0.92
3	66.1 ± 1.05	58.6 ± 1.00	139.0 ± 0.76
S I	157.2 ± 3.83	90.0	66.7 ± 3.83
2	90.0	180.0	90.0
3	112.8 ± 3.82	90.0	156.7 ± 3.83

60.

$\overrightarrow{\mathrm{y}} \propto \overrightarrow{\mathrm{C}_{5}-\mathrm{C}_{3}}+\overrightarrow{\mathrm{C}_{6}-\mathrm{C}_{2}}$
$\overrightarrow{\mathbf{z}} \propto \overrightarrow{\mathbf{x}}_{\mathbf{y}} \overrightarrow{\mathbf{y}}$
The amplitudes of the thermal vibration of the atoms along these axes, $u(m)$ were obtained from the values of $\mu(r)$ and $\varphi(r, i)$ given in Table 22 using the known angles between the principal axes and the molecular ares. These values of $u(m)$ are given in Table 23.

Fable 23.

R.M.S. displacements along the molecular axes.

Atom.
unI) A
u(2) A
ul) A
Ce
0.239 ± 0.002
0.395 ± 0.002
0.330 ± 0.002
s
0.242 ± 0.001
$0.236 \pm 0.002 \quad 0.233 \pm 0.001$
0.281 ± 0.004
$0.255 \pm 0.004 \quad 0.254 \pm 0.004$
C_{1}
C_{2}
0.253 ± 0.005
0.232 ± 0.005
0.209 ± 0.005
$0.273 \pm 0.006 \quad 0.237 \pm 0.006 \quad 0.252 \pm 0.006$
C_{3}
0.274 ± 0.007
0.275 ± 0.007
0.283 ± 0.007
c_{4}
0.249 ± 0.006
$0.316 \pm 0.007 \quad 0.244 \pm 0.006$
C_{5}
0.247 ± 0.006
0.264 ± 0.006
0.297 ± 0.007
C_{6}
$0.236 \pm 0.006 \quad 0.246 \pm 0.005 \quad 0.261 \pm 0.006$.
It is interesting to note that the vibrations $u(1)$ are
essentially constant ranging from 0.236 A to 0.274 A for atorns in the plane of the benzene ring whilst the values of $u(2)$ vary from 0.236 A at sulphus to 0.395 A at chlorine. In view of this it was considered that the atoms $C_{1}-6$ and chtosine could be considered as a rigid body and the mothod or Cruickshank (1956a) appijed. Since the seven: atoms considered Iie in the plane $z=0$, the twelfth order determinant can be pedused to three fourth order ones. The molecular axes defined alove were used and the oxigin taken to be at the sulphur atom, the resulting equations being solved for the components of the symmetric tensors $\mathrm{T}_{1 j}$ and $\omega_{i j}$. These equations are

Table 24 .

The values, in A^{2}, have been maltiplied by 100.

Atom.	$U_{1 I}^{\text {abs }}$	$\mathrm{u}_{11}^{\text {calc }}$	$\mathrm{U}_{22}^{\text {obs }}$	$\mathrm{U}_{22}^{\mathrm{calc}}$	$\mathrm{U}_{33}^{\mathrm{obs}}$	$\mathrm{v}_{33}^{\text {calc }}$
ce	5.646	6.162	15.653	15.101	10.879	10.446
C_{1}	6.389	6.163	5.418	4.895	4.368	3.775
c_{2}	7.421	6.606	5.646	5.699	6.319	6.444
c_{3}	7.525	6.602	7.603	8.146	7.989	7.877
C_{4}	6.149	6.163	10.056	9.773	5.944	6.962
C_{5}	6.113	6.558	7.038	8.169	8.827	8.713
c_{6}	5.567	6.556	6.094	5.723	6.795	6.909

Atom.	$U_{12}^{a b s}$	$U_{12}^{c a I c}$	$U_{23}^{0 b s}$	$U_{23}^{c a l c}$	$U_{31}^{o b s}$	$U_{31}^{c a l c}$
ce	$-2.372-1.213$	3.944	3.850	-0.540	-0.165	
C_{1}	$-0.815-1.239$	0.368	0.111	0.766	-0.189	
C_{2}	-1.063	-2.085	0.327	0.490	-0.723	-0.591
C_{3}	-2.157	-2.568	1.430	1.520	-1.114	-0.770
Q_{4}	$-1.642-1.240$	1.766	1.903	-0.851	-0.186	
C_{5}	-0.540	0.061	0.762	1.142	0.097	0.191
C_{6}	-0.096	-0.400	0.732	0.310	0.688	0.035.

63.

$$
\left[\begin{array}{cccc}
1 & 0 & -x^{2} & x y \\
& 1 & x y & -y^{2} \\
& & x^{4}+x^{2} y^{2} & -x y^{3}-x^{3} y \\
& & & y^{4}+x^{2} y^{2}
\end{array}\right]\left[\begin{array}{c}
T_{23} \\
T_{13} \\
\omega_{23} \\
\omega_{13}
\end{array}\right]=\left[\begin{array}{c}
U_{23} \\
U_{13} \\
-x^{2} U_{23}+x y_{13} \\
x y U_{23}-y^{2} U_{13}
\end{array}\right]
$$

where the 4×4 matrices are symmetric and, together with the right-hand side vector elements, are summed over all the atoms. The $U_{i j}^{T}$ are obtained from the $b_{i j}$ by the relations (xxviii) of Part I and these are then transformed to the $U_{i j}$ with respect to molecular axes by the rule for transforming second order tensor components. The transformed $U_{i j}$'s are given under $U_{i j}^{o b s}$ in Table 24; the values of $U_{i i^{\frac{\lambda}{2}}}$ correspond to the values of $u(m)$ in Table 23. Solution of the above equations gives

$$
\begin{aligned}
& T_{i j}=\left(\begin{array}{rrr}
6.162 \pm 0.248 & -1.221 \pm 0.248 & -0.172 \pm 0.257 \\
& 4.011 \pm 0.398 & -0.221 \pm 0.398 \\
& & 3.197 \pm 0.633
\end{array}\right) \times 10^{-2 A^{2}} \\
& \omega_{i j}=\left(\begin{array}{rrr}
53.371 \pm 12.624 & 1.718 \pm 1.390 & 1.901 \pm 2.696 \\
& 6.132 \pm 0.806 & -3.447 \pm 0.695 \\
& & 9.381 \pm 0.694
\end{array}\right) \text { deg. }^{2}
\end{aligned}
$$

The values of $\mathrm{O}_{1 \mathrm{f}}^{\text {cal }}$ given in Table 24 are obtained from: the equations

$$
\begin{aligned}
& \mathrm{U}_{11}=T_{11}+y^{2} \omega_{33} \\
& \mathrm{U}_{22}=T_{22}+x^{2} \omega_{33} \\
& \mathrm{U}_{33}=T_{33}+y^{2} \omega_{11}+x^{2} \omega_{22}-2 x y \omega_{12} \\
& U_{12}=T_{12}-x y \omega_{33} \\
& U_{23}=T_{23}-x^{2} \omega_{23}+x y \omega_{13} \\
& U_{13}=T_{13}-y^{2} \omega_{13}+x \omega_{23}
\end{aligned}
$$

The root mean square value of the $\Delta U_{i j}=U_{i j}^{0 b s}-U_{i j}^{a a l c}$ is $0.607 \times 10^{-2} \mathrm{~A}^{2}$. These tensors correspond to vibrations of the ring of $0.248,0.200$ and 0.179 A along these axes and oscillations of 7.31, 2.48 and 3.06° about them.

When the DEUCE computer became available it was condidered to be of interest to repeat this analysis using all 17 atoms in the molecule (except hydrogen). This required choosing a new set of molecular axes since the previous set referred only to the plane of one ring of the molecule. In the new system

$$
\begin{aligned}
& \vec{x} \propto \overrightarrow{C Z-C Q} \\
& \vec{y} \propto b-a x i s \\
& \vec{z} \propto \vec{z} \cdot \vec{y}
\end{aligned}
$$

The new origin was chosen to be the centre of mas of the

Table 25.

The values, in A^{2}, have been multiplied by 130. Atom. $\mathrm{U}_{11}^{\mathrm{abs}} \mathrm{U}_{11}^{\mathrm{calc}}$
CR $\quad 7.280 \quad 6.987$
C $\quad 6.292 \quad 6.185$
$c_{2} \quad 6.208 \quad 6.625$
$\begin{array}{ll}C_{3} & 6.534\end{array} 6.598$
$\mathrm{U}_{22}^{\mathrm{obs}} \mathrm{U}_{22}^{\text {calc }}$
$\mathrm{U}_{33}^{\text {obs }} \quad \mathrm{U}_{33}^{\text {calc }}$
$9.987 \quad 10.458$
$14.910 \quad 14.738$
$5.344 \quad 5.152$
$5.593 \quad 5.673$

+ 5.2326 .209
$a_{4} \quad 5.232 \quad 6.209$
$\begin{array}{lll}C_{5} & 7.284 & 6.608\end{array}$
$C_{6} \quad 6.765 \quad 6.556$
$0 \quad 8.586 \quad 8.262$
$s \quad 6.601 \quad 6.905$
Atom. U Wh $\mathrm{U}_{12}^{\text {calc }}$
$\begin{array}{lrr}C \in & 2.767 & 2.34 .9 \\ C_{I} & -0.809 & -0.289\end{array}$
$\mathrm{U}_{23}^{\text {obs }} \quad \mathrm{J}_{23}^{\text {calc }} \quad \mathrm{U}_{31}^{0 b s} \quad \mathrm{U}_{31}^{\mathrm{calc}}$

4.803	2.455	0.914	0.553
0.908	-0.305	-0.398	-0.298
0.829	-0.561	-0.607	-1.305
2.356	0.510	-0.727	-1.814
2.617	0.801	0.114	-0.277
0.803	0.082	-0.054	0.897
0.610	0.036	0.291	0.372
-2.135	-1.615	0.092	1.286
0	0	0.041	0.464

molecule and has coordinates ($0.25,0.5378,0$). The complete calculation was then carried out using the second program described in Appendix 2; this gave

$$
I_{1 j}=\left(\begin{array}{ccc}
6.013 \pm 0.216 & 0 & -0.470 \pm 0.219 \\
& 4.796 \pm 0.295 & 0 \\
& & 4.076 \pm 0.329
\end{array}\right) \times 10^{-2 A^{2}}
$$

$$
\omega_{i j}=\left(\begin{array}{rcc}
16.244 \pm 2.570 & 0 & -8.317 \pm 1.133 \\
& 12.167 \pm 0.932 & 0 \\
& & 7.952 \pm 0.839
\end{array}\right) \mathrm{deg} .^{2}
$$

The corresponding values of $U_{i j}^{a b s}$ and $U_{i j}^{c a l c}$ for these ares are given in Table 25 , values for the symmetry related atoms are the same except for a sign change in U_{12} and U_{23}. The root mean square value of the $\Delta U_{i j}$ is $0.891 \times 10^{-2} \mathrm{~A}^{2}$. These tensars correspond to Iibrations of the centre of mass of $0.245,0.219$ and 0.202 A and to oscillations of $4.03,3.49$ and 2.82° respectively about the axes x, y and z. These two analyses show by the relatively goad agreement of the $U_{i j}^{g h}$ and $U_{i j}^{c a l c}$ vaIues that the molecule can reasonably be considered to be Fibrating as a rigid body.

The method of Cruickshank (1956b) has been used to
determine any errors in bond length due to the angular oscillations of the molecule. If we assume that the sulphur atom only undergoes translational vibrations then we find that the resultant displacement of the atoms towards the sulphur atom is 0.003 A for $C_{1}, 0.009 \mathrm{~A}$ for C_{4} and 0.012 A for chlorine. The resulting apparent reduction in the bond lengths is thus less than their standard deviations and has consequently been ignored.

2.9 Neutron dififraction study.

Concurrently with the present study a two dimensional neutron difiraction study of 4-4'-dichlorodiphenyl sulphone has been carried out by Bacon and Curry (1959). Data for the hol zone were used and structure factors calculated using the chlorine coordinates obtained from the x-ray Patterson map (Fig. 4 of this thesis), together with coordinates for the remaining atoms estimated from Keil and Plieth's (1955) paper on the diiodo compound. This gave an R-factor of 0.51 . Refinement was carried out using Fourier and difference Pourier syntheses and finally four cycles of 'Ieast squares'. This reduced the R- factor to 0.08.

Table 26.

Final x-ray and neutron diffraction parameters.

			\underline{z}	X	N
	X	N	$X \quad \mathrm{~N}$	$\mathrm{B}_{11} \mathrm{~B}_{33}$	$\mathrm{B}_{\text {min }} \mathrm{B}_{\text {max }}$
Ce	. 0327	. 0343	.1621.1636	7.410 .2	5.210 .6
S	. 25	. 25	00	5.14 .5	2.76 .2
0	. 2244	. 2233^{4}	. 9073.9064	6.1	5.2
$\mathrm{C}_{\text {E }}$. 1868	. 1883	.04556 .0456	4.6	4.1
c_{2}	. 1352	. 1345	.9760 .9738	4.6	4.4
C_{3}	. 0877	. 0867	.0112 .0114	5.5	5.6
C_{4}	. 0926	. 0923	. 1164.1164	4.87 .0	4.36 .8
C_{5}	.1431	. 1420	.1867 .1874	5.6	5.0
C_{6}	. 1910	. 1919	.1503 .1509	5.0	4.3
H_{2}	. 144	. 1356	-. 104 -. 1021	-	3.7 10.0
H_{3}	.0248	. 0462	$-.037-.0424$	-	6.410 .6
H_{5}	$.15{ }^{4}$. 1465	.273 .2685	\cdots	6.39 .9
H_{6}	. 222	. 2308	.198 .2020	-	$5.2 \quad 7.5$

X denotes x-ray results
N denated neutron diffraction resuits.

The x - and z - coordinates for all of the atoms including hydrogen atoms are given in Table 26 together with the final x-ray x - and z - coordinates for comparison. Also compared in this table are the final temperature parameters from the two analyses; in the neutron data anisatropic values have only been considered for s , CQ , C_{4} and the hydrogen atoms and consequently the x-ray values, B_{11} and B_{33}, have been averaged for easy comparison. With the exception of the hydrogen atoms, the parameters of all the atoms agree (within the limits of their standard deviations) except for the value of B_{11} far the sulphur atom. The reason for the discrepancy in this parameter may well have arisen in the x-ray data by using an atoric form factor which has small deviations from the true value. The gaod agreement of the other parameters is oif great importance in illustrating that the two types of diffraction do in fact produce the same results.

The only bond lengths given by Bacon and Curry are those of carbon - hydrogen, these are

$$
\begin{aligned}
& C_{2}-H_{2}=1.02 \mathrm{~A} \\
& C_{3}-H_{3}=1.08 \\
& C_{5}-H_{5}=1.06 \\
& C_{6}-H_{6}=1.04
\end{aligned}
$$

These values were obtained by taking the x-ray equation for the plane of the benzene ring and assuming that the hydrogen atoms lie in it. This gave y-coordinates for the atoms which were then used in the band length calculation. The mean value of these is 1.05 A which compares with $1.0^{4}+A$ found in the x-ray study.

2.10 Discussion.

As was expected, the bond arrangement in this molecule is not that of a regular tetrahedron. The 0-S-0' angle of $120.4 \pm 0.42^{\circ}$ is very significantly greater than the tetrahedral value of 109.5° : the C-SuCl and C-S-0 angles are less than the tetrahedral value, althaugh to a lesser extent, and again this difference is significant. The sulphur - oxygen bond length is, as expected, very close to the double bond length of 1.43A; the carbon - sulphur bond length of $1.755 \pm 0.006 \mathrm{~A}$ on the other hand, is very significantly shorter than the accepted single bond

leagth of 1.82A, a fact which agrees with measurements

 on this bond in comparable molecules, eg. 1.76A in diphenylsulphoxide (Abrahams, 1957).The slight but significant deviation of several of the atoms from the least squares derived planes is very interesting. A similar exfect has been found in another aromatic molecule, paradichlorobenzene, by Housty and Clastre (1957) who find that the carbon atoms are 0.0 O A from the mean plane. The only close contacts of the chlorine atoms in this sulphane molecule are distances of CI ... CI, 3.56A and CI ... C_{4}, 3.98A which are no shorter than the van der Waal's distances of about 3.6A. Three of the C ... O contacts are shorter than the usual van der Waal's distance of 3.3A viz. 3.2上, 3.24 and 3.27 A but there are no angular relations involving these distences to suggest that they are any other type of bond. Many cases of $C \ldots 0$ contacts between 3.14 and 3.25 A can now be found in the literature, eg. $3.1+\mathrm{A}$ in furoje acid (Goodvin and Thomson, 1954) and 3.2tA in nicotinamide (Wright and King, 1954), which suggests that the van der Waal's C ... O distance should probably be shortened to to about 3.2A.

The thermal vibration of this molecule has also proved rather interesting. The r.m.s. atomic displacements along the length of the molecule are reasonably constant at about 0.25 A whilst normal to the plane of the ring they increase from 0.23 at the centre to 0.33 A at the periphery. Normal to both of these directions the displacements increase even more rapidily from 0.24 to 0.40A. Two sets of molecular axes have been chosen and to which the thermal parameters have been referred. In both ceses an attempt has been made to represent these as translations of the molecule as a rigid body coupled with ascillations of this rigid body about the axes. Both sets of axes scen reasonably gaod for this purpose tut the rirst set, viz. the axes of the aromatic ring, appear to be slightiy better in that the off-diagonal terms in the T and ω tensors are smalles and the e.s.d. of the $U_{i j}$ is smaller, $0.0067 \mathrm{~A}^{2}$ compared with $0.0087 \mathrm{~A}^{2}$ for the case of the complete molecule.

Simaltaneously with this study a neutron dixirraction study has been carried out by Bacon and Curry (1959) and the results of this study and the x-ray one have alreery been compared (Table 26). That the paremeters agree so
well is valuable in showing that the methods da in fact give identical results within the experimental errors of each. The largest discrepancy which occurs is in the sulphur thermal parameters and whereas the suggestion made earlier may account for chiss it must be remembered that x-ray diffraction locates the electron cloud associated with the atom while the neutron diffraction methad locates the mucleus of the atom. It may well be then, that while the mucleus of the sulphur atom exhibits an anisotropic vibration, that of the electron cloud may be essentially isotropic.
3. 4-4i-dibromadipheny1 sulphone.
3.1 Unit cell data.

Precession camera and Weissenberg camera photographs were taken with the crystal set abcut the b- axis using molybaemun Ka radiation ($\lambda=0.7100_{i} A$). The axial lengths were determined from precession phctographs and corrected for film shrinkage, the β - angle of the monoclinic cell was determined from a Weissenberg fhotograph. These gave the following

$$
\begin{aligned}
& a=20.752 \pm 0.010 A \\
& b=5.031 \pm 0.010 \\
& c=12.359 \pm 0.010 \\
& \beta=92.62 \pm 0.250
\end{aligned}
$$

and the values given by Touseaint (1945) were
$a=12.32 \pm 0.03 A$
$b=5.04 \pm 0.02$
$c=20.75 \pm 0.03$
$\theta=92040$
ie. with the a- and c-axes interchanged.
The volume of the unit coll obtained Irom the formia $V=a . b . c . s i n f$, wes 1209.00^{3}. 8ince the denstiy given by

In the unit cell and the calculated density is $1.938 \mathrm{gm} / \mathrm{c} . \mathrm{c}$. . The total number of electrans in the unit cell $F(000)$ is therefore 728.

Examination of the precession and Weissenberg camera photographs showed the absent spectra to be in
hke when $h+k+\ell$ is odd
hoe when h or l is odd
OkO when k is add.
The space group is therefore either $c_{s}^{4}-I_{a}$ ar $c_{2 h}^{6}-I_{2 / a}$: the latter has been adopted because this compound is isomorphous with the chloro- compaund.

3.2 Intensity data.

Data for the hoe zone were obtained using the modjifled Weissenberg camera (Abrahams, 1954) with $0.0008^{\prime \prime}$ thick nickel foils intejleaved between five films. The data for the hk0, hkI, hk2, hk3 and hk layers were collected on a precession camera using a stabilised x-ray source, a series of six films, with a time ratio of three to one between the exposure of each, being taken for each zone. All of the intensities vere estinated visually, the ratia of the strongest to the veakest
intensity (taken as unity) for each zone was 33,598 in hok, 2,970 in hko, 7,380 in hkI, 2,100 in hk2, 1,680 in hk3 and 591 in hki.

Since for these crystals the linear absorption coefficient for nolybdenum Ka Xarays is $7.17 \mathrm{man}^{-1}$, it was decided that absorption corrections should be appited. The size of the crystal used for the colleation of the data was $0.44 \times 0.27 \times 0.25 \mathrm{~mm}$. . Carrections were only applied to the hol zone since no method was ayailable for correcting precessian camera data. The method used to correct the hot data was to appraximate the cross section of the crystal to a cytindex and use the data fabrijated by Bond (1959). The value of the xadtus of the crystal used was 0.155 mm , and hence $\mu \mathrm{R}$ was 1. II: the coxrections were applied using a program writion for the DRUCE computer (Appendix 2). The initial refinement vas, however, carried out belore this program had been witten and so the hol data at that stage were not corrected for absorption. Both sets of hol data (ie, with and without absorption corrections) were corrected with the usual. Lorentz and polarisation factors. The precession cmera

Fig. 12. 4-4'-dibromodiphenyl sulphone.
hkO Patterson map; contours arbitrary, dashed contour is zero.
data were corrected for these factors using the charts of Waser (1951) and Grenville-Wells and Abrahams (1952).

The values of these structure factors are listed in Appendix $1(b)$ under F (meas). No unobserved terms are given, since, although they were included in eariy calculations they were later removed. In all there are 459 of these observed values.

3.3 Structure Analysis.

Work on this structure was started with the hiro zone at the stage when the y - coordinates for tho chlorocompound were beirg sought. It had been hoped that the increase in atomic rumber of the bromine atom (over chlorine) would allow the $\mathrm{Br}-\mathrm{Br}$ vector peaks to be resolved on the hio Patterson map. This, however, did not prove to be the cese as can be seen in Fig. 12. The hio data for this wory was approximately sealed using the method of Wilson (1942): no sharpening function was applied.

Values of $\left|F_{0}\right|$ were then obtained from the scaled p^{2} values and signs cbtained for these by comparison with the hk0 zone of the isomorphous chlorow compound which had by this time, been fully reminsd. These signed
structure factors were then used to compute an hko Fourier synthesis from which coordinates for the bromine, sulphur and oxygen atoms were obtained. These coordinates together with coordinates for the carbon atoms in the chloro- compound were then used, together with an isotropie temperature fastor of $E=4.00 A^{2}$ for all of the atoms, to calculate a set of hro structure factors. The atomic scattering factors used were those of McNeony (1951) for carbon and oxygen and oi Janes and Brindley (1931) for sulphur and bromins. This gave an R- factor of 0.65 . Two further Fourier syitheses and a difference Fourier synthesis reduced this to $R=0.28$; only changes in the coordinates were made.

3.4 Least squeres refincment.

The program usod for this least squares process was that written by Dr.J.S. Hollett for the DEUCE computer.

This pragram refinas nine parameters per atom, three pasitional and six thersal, together with the overall scale factor; no provision has been made to prevent refinement of any of these, fe. refinement of isotropic temperature factors is not passible. The program uses the
diagonal approximation method as discussed in Part I. Three welighting systems are possible, firstly if $\left|F_{0}\right| \leqslant\left|F^{*}\right|$ then $W^{\frac{1}{2}}=1$, and if
$\left|F_{0}\right|>\left|F^{*}\right|$ then $w^{\frac{1}{2}}=\left|F^{*}\right| /\left|F_{0}\right|$
where $\left|P^{*}\right|$ is a suitable, preselected, value of $\left|F_{0}\right|$; secondly, if
$\left|F_{0}\right| \leqslant\left|F^{*}\right|$ then $w^{\frac{1}{2}}=\left|F_{0}\right| /\left|F^{*}\right|$, and if
$\left|F_{0}\right|>\left|F^{*}\right|$ then $w^{\frac{1}{2}}=\left|F^{*}\right| /\left|F_{0}\right|$;
and thirdly, the weight for each reflection is allocated manually and punched on the input card for that reflection. The second method as been used throughout. Provision has also been made for applying full, half or quarter of the calculated shifts to the new input parameters. In this work 'quarter shifts' were used in the early stages and 'half shifts' when the structure seemed to be refining reasonably.

The atomic scatiering factors used in these structure factor calculations were those of Berghuis et al. (1955) for carbon and oxygen, and of James and Brindley (I93I) for sulphur and bromine. The vaiues of these at the intervals required by the program, were deternined using a short program for DEUCE which performs the calculation
using the method suggested by Forsyth and Wells (1959). They approximate the atomic scattering factor to an expression

$$
f(s)=A \cdot \exp \left(-a s^{2}\right)+B \cdot \exp \left(-b s^{2}\right)+C
$$

and list values of A, a, B, b and C for the atoms up to uranium.

The first structure factors were calculated for the hol,hkO, hk2 and hkit zones. These had been placed on a common, approximately absolute, seale using the reflections in the hol zone coamon to the other three zones; the hiko data were used to give the approximately correct value of the scale factor. The initial coordinates used vere the final two dimeasionel ones together with the $z=00-$ ordinates for the ahlore- compound, and an isotropic temperature of $B=4.00$ for all of the atoms. The value of R resulting fron this was 0.502 but the program which solves for the new paraneters failed to converge to a limit with the bronine farameters. The value of F^{*} used In this calculatiox and in the subsequent ones was 50.0 , the second of the seighting systems being employed.

The 'solve routine' was then repeated using only the hko data for which $R=0.309$ (Including unobserved terms at half their maxizum value). The nery coordinates
produced were then used for a second least squares cycle which gave $R=0.313$ and again failed to produce new bromine parameters.

At this stage the hoe structure factors were calculated using the new x-coordinates and the z - coordinates froin the chloro- compornd; this gave $R=0.289$ which fell with two further least squares to 0.266. A further cycle, however, gave $R=0.4$ accompanted by the previaus failure to produce new brcmine parameters. Several further least squares cycles were then carried out with various trial sets of coordinates and temperature factors; the same pattern of events was, however, found repeatedly, viz. decrease in R and $\Sigma w A^{2}$ for one or two cycles followed by rapid increases ir. the values of these, and fallure to produce fresh bronine parameters.

By this time the program for applying the absorption corrections had bcen writiten (see Appendix 2) and consequently the hol data were corrected as described above. At the same time the unobserved terms were removed from the structure factor calculations in case the bad agreement of some of these was contributing to the fallures to solve for new bromine parameters. An hot Fourier was
then drawn out using the structure factors for which $R=0.266$. From the coordinates metsured from this map an R-factor of 0.248 was obtained and the value of $\mathrm{Zw} \Delta^{2}$ was355. Six further least squares cycles on this zone reduced R to 0.176 and $\Sigma w \Delta^{2}$ to 98.

Two further cycIes including he 0 , hke and hk 4 data again resulted in an increase in tke R-factor and consequently the complete set of structure factors were calculated and used as coefficients for e series of Itne Pourfer syntheses parallel to the y - axis through the expected atomic centres. From these a aew sft of y-coordinates were obtained which, together with the previous x - and $z-$ coordinates gave $R=0.236$ and $\delta w \Delta^{2}=I, 085$ for the complete data; one cycle of refinerent using these parameters resulted in $R=0.287$ and $\Sigma \mathrm{w} \Delta^{2}=1,442$.

It was then decided to carry refinement of the two projections to a more complete state before trying three dimensional refinement again. Four cycles were then carried out on the hof zone with the following results

Table 27.

Final parameters for 4-4i-dibromodiphenyl sulphone。

x
Z
\underline{z}
Br
0.0371
0.9536
0.1655

S
0.25
0.1606

0
0
0.2248
0.0264
-0.0876
CI
c_{2}
0.1909
0.3694
0.0398
0.1396
$0.44+23$
-0.0202
c_{3}
0.0945
0.6433
0.0187
c_{4}
0.1020
0.6922
0.1204
C_{5}
0.1532
0.6666
0.1853
C_{6}
0.1970
0.4815
0.1447

Atom. $b_{11} \quad b_{22} \quad b_{33} \quad b_{12} \quad b_{23} \quad b_{31}$
$\begin{array}{llllllll}\mathrm{Br} & 0.0049 & 0.0825 & 0.0186 & 0.0082 & 0.0046 & 0.005^{\text {th }}\end{array}$
$\begin{array}{lllllll}\text { s } & 0.0041 & 0.058 \mathrm{C} & 0.0110 & 0 & 0 & 0.0003\end{array}$
$\begin{array}{lllllll}0 & 0.0062 & 0.0971 & 0.0215 & -0.0038 & 0.0232 & 0.0002\end{array}$
$C_{\text {T }} \quad 0.0022 \quad 0.062$ i $\quad 0.0109-0.0035-0.0088-0.0006$
$\begin{array}{llllllllll}C_{2} & 0.0049 & 0.0702 & 0.0592 & -0.0052 & 0.0441 & -0.0010\end{array}$
$c_{3} \quad 0.003^{4} \quad 0.1334 \quad 0.0240-0.0139 \quad 0.0051-0.0087$
$a_{4} \quad 0.0044 \quad 0.0556 \quad 0.0107-0.0128-0.0361 \quad 0.0027$
$\begin{array}{llllllllll}C_{5} & 0.0047 & 0.1187 & 0.0080 & 0.0089 & \cdots .0 .0405 & -0.0091\end{array}$
$\begin{array}{llllllll}c_{6} & 0.0055 & 0.053 & 0.0259 & -0.0063 & 0.0387 & 0.005\end{array}$.

$$
R \quad Z w \Delta^{2}
$$

(a)	0.169	92
(b)	.161	80
(c)	.158	80
(d)	.153	74
(e)	.151	77

This was followed by one cycle of refinament on the hko zone which reduced the A - factor for this zone from 0.173 to. 0.133 .

The parameters from these refinement cycles were then used to calculate the structure factors for the complete data giving $R=0.220$; iailure to solve for the nev bromine parameters again resulted. The new coordinates for all of the atons except bromine were then used ton gether with the previous ones lor bromine and another set of structure factors was calculated, for these $R=0.208$ but the shints for the lyomine atom were again not produced. At this stage the refinoment ves temminoted, the final set of structure factors being listed in App. I(b) under $F(c a l c)$. The paraneters used for the calculation af these are giver in Tible 27.

Fig. 13. 4-4'-dibromodiphenyl sulphone. hol Fourier map. Contours at $1 \mathrm{e} / \mathrm{A}^{2}$ intervals up to 8 , thereafter at $2 e / A^{2}$ on bromine and sulphur. Zero contour dashed. This corresponds to $R=0.151$.

Fig. 14. 4-4'-dibromodiphenyl sulphone. hkO Fourier map. Contours: at I e/A A^{2} intervals up to 10 , thereafter at $2 \mathrm{e} / \mathrm{A}^{2}$ on sulphur and $5 \mathrm{e} / \mathrm{A}^{2}$ on bromine. Zero contour dashed.

This corresponds to $R=0.133$.

3.5 Molecular Geometry.

The coordinates given in Table 27 have been used to evaluate the bond lengths within the molecule and these are given in Table 28.

Table 28.

Bond Lengths.

$$
\begin{aligned}
& C_{1}-C_{2} \quad 1.32 A \\
& c_{2}-C_{3} \\
& 1.47 \\
& c_{3}-a_{4} \\
& a_{4}-c_{5} \\
& 1.28 \\
& 1.31 \\
& c_{5}-c_{6} \\
& 1.41 \\
& c_{6}-c_{2} \\
& \text { 1. } 38 \\
& \text { Mean C - C } \\
& 1.36 \\
& \mathrm{C}_{4}-\mathrm{Br} \\
& 1.98 \\
& c_{1}-\mathrm{s} \\
& 1.71 \\
& \text { S-0 } \\
& 1.36 .
\end{aligned}
$$

The sulphur - oxygen bond length is rather shorter than expected (1.43A) and the carbon - bromine bond is slightly longer (1.90 A) but these are probably not significant. Only two angles hove bean worked out,

$$
\begin{array}{r}
\mathrm{Br}_{2}-\mathrm{S}-\mathrm{BX}^{\prime}=102.3^{\circ} \\
0-6-0^{\circ}=120.5^{\circ}
\end{array}
$$

The equation of the mean plane of the aromatic ring and sulphur and bromine atoms has been calculated with respect to the orthoganal axes defined in Appendix 2. The sulphur atom was given three times and the bromine atom five times the weight of a carban atom in the least squares process, and the equation determined on DEUCE as

$$
x^{\prime}+1.4635 y^{\prime}-0.6503 z^{\prime}-6.3741=0
$$

The distances of all of the atoms from this plane are given in Table 29.

	Table 22.
	Out-af-plane distances.
Atom.	Distance.
Br_{5}	-0.0024 A
S	-0.0021
C_{7}	-0.0188
C_{2}	-0.0248
C_{3}	0.0859
C_{4}	-0.1033
C_{5}	0.0642
C_{6}	0.0083.

In order to examine the temperature parameters for

Table 30.

R.M.S. atomic vibrations along molecular axes.

Atom.	\bar{u}_{I}	\bar{u}_{2}	\bar{u}_{3}
Br	0.276 A	0.402 A	0.333 A
S	0.288	0.293	0.283
$C_{\text {I }}$	0.278	0.280	0.234
C_{2}	0.390	0.373	0.233
C_{3}	0.439	0.334	0.368
C_{4}	0.285	0.296	0.279
C_{5}	0.319	0.131	0.456
C_{6}	0.353	0.392	0.166
0	0.400	0.401	0.323

84.

the atoms, the r.m.s. vibration of each atom has been computed along a set of molecular axes defined as for the chlorom compound, viz.

$$
\begin{aligned}
& \vec{x} \propto \overrightarrow{S-B_{r}} \\
& \vec{y} \propto \overrightarrow{C_{5}-C_{3}}+\overrightarrow{C_{6}-C_{2}} \\
& \vec{z} \propto \vec{x} \cdot \vec{y}
\end{aligned}
$$

The components of the $b_{i j}$ along these axes were determined on DEUCE using the first section of the second program described in Appendix 2. The values of the r.m.s. vibrations along these axes are given in Table 30. It can be seen that the type of vibration found in the chloro compound is not apparent at this stage, but this is probably due to incomplete refinement. Some atoms, particularly C_{5} and C_{6} show vibrations \bar{u}_{2} and \bar{u}_{3} which are very different from those for neighbouring atoms and these anomalies have probably arisen by refining the anisotropic temperature parameters at too early a stage in the least squares process.

3.6 Discussion.

The refinement of this structure has been most disappointing; it had been expected that this would follow a similar course to that of tine chloro- compound. Various reasons for the trouble in refinjng the bromine parameters have been suggested and alternative proceedures tried, but all were unsuccessful. The reason for the failures has, at last, been found; to understand it the methad of storling aumbers in DEUCE must first be underm stood.

DEUCE stores nambers in 'chinese binary', ie. the binary pattern of the number is writien so that the most significant digits come ait the right-hand end of the number as opposed to the lextmand end in the decirey system. Each number has thirty two binary digits which allows numbers to oe stered which are Iess than 2^{31} in magnitude. The conrention used in DEUCE for a negative number is that the thirty-second digit, denoted P32, should be present. If now we start to accumulate a positive number in DEUCE, the binary pattern will busla up, from the left-iand end, until the number exceeds 2^{31}
at which stage a 832 will be added to the number and the positive number will be treated as 'negative'. What this really means is that we have exceeded the capacity of the number store.

Now, in the least squares process numbers such as $\Sigma w\left(\partial F / \partial ~_{j}\right)^{2}$, which must be positive, are accumulated. Since these terns include f_{j}, the atomic scattering factor, they will be correspondingly larger if the atom is a 'heavy' one, for example a bromine atom. The cause of the failures to solve for new bromine parameters has been causedthen, by these numbers being so large that they have become nagative. Further, in such a number is much larger than 2^{31} it is quite likely that it has become so large that the P32 is absent and that the number is positive again but considerably too sinall: this vill cause the proluction of too great 'shifts' for the parameter and result in the rapid increases in R - factor which were sometimes experienced.

Standard deviations for the atoms and bond lengths are not given here in any detail as the refinement is not complete. These have, however, been estimated from the formula

$$
\sigma^{2}(\xi)=\frac{\Sigma W A^{2}}{(n-u) \cdot \Sigma w(\partial F / \partial \xi)^{2}}
$$

where $\}$ is the parameter being considered, n is the number of indepencent reflections included in the refinement and u is the total number of parameters being refined. The standard deviations in the positional coordinates are 0.006A for bromine and sulphur, 0.05 A for the carbon atoms and 0.04 A for the oxygen. Some of the com ardinate shifts from the last refinement cycle are greater than these values, particularly for the yo coardinates, and refinement is thus not complete. The largest deviations are probably to be found in the yo coordinates because a considerable amount of refinment has been done on the overlapped hk0 zone gjving incorrect shifts for some of the badly overlapped carbon atoms. The deviations of the band lengths found, from the expected values are thus not significant. The mean distance of the carbon atoms from the Ieast squares derived plane is 0.05 A and so none of these atoms are lying significantly out of it.

No real conclusions can be drawn about the thermal
vibration af the molecule until the refinement process is complete because errors in positional parameters frequently cause even larger errors in the thermal parameters in the early stages of refinement.

The $\mathrm{Br} \sim \mathrm{S}-\mathrm{Br} \mathrm{I}^{\prime}$ angle is larger (102.30) than the value found by Toussaint (1945), viz. $100 \pm 0.5^{\circ}$; a greater difference is, however, found in the $0-S-0^{\prime}$ angles where Toussaint found $I 3 I \pm 3^{0}$ the new value is 120.5° which is in better agreement with the angle in the chlorom sulphone. The angle made with the aromatic ring plane and the $\mathrm{Br}-\mathrm{S}-\mathrm{Br}^{\circ}$ plane is also Iess than that given by Toussaint, 84.5° as opposed to $90 \pm \mathbb{I}^{0}$, this again being in better agreement with the chloro- sulphone. The bromine - caxbon bond length of I.98A is longer than Toussaint's value of $1.89 \pm 0.04 \mathrm{~A}$ although as indicated above this bond will probably decrease in length on further refinement. The sulphur - carbon bond length found is I. 71 A which is sharter than Toussaint's value of $1.79 \pm 0.04 \mathrm{~A}$ but to increase its length in the present study is consistent with shortening the carbon - bromine
89.
bond. The sulphur -o oxygen bond length of 1.36A is significantly shorter than Toussaint's value of..
$1.54 \pm 0.05 \mathrm{~A}$ but is probably not significantly different from the expected value of 1.43 A .

4. 4-4i-dilodadiphenyl sulphone.

4.1 Unit cell data.

Precession camera photographs were taken with the crystal set about the b^{*} - and a^{*} - axes using molybdenum Ka radiation $(\lambda=0.7107 \mathrm{~A})$. the dimensions of the monoclinic cell were determined from these photographs and corrected for film shrinkage; they were

$$
\begin{aligned}
& a=19.715 \pm 0.010 A \\
& b=4.946 \pm 0.010 \\
& c=14.448 \pm 0.010 \\
& \beta=103.25 \pm 0.25^{\circ}
\end{aligned}
$$

These dimensions correspond to the first values given by Keil and Plieth (1955) viz.

$$
\begin{aligned}
& a=19.67 \mathrm{~A} \\
& \mathrm{~b}=4.92 \\
& \mathrm{c}=14.37 \\
& \beta=104^{\circ}
\end{aligned}
$$

The volume of the unit cell is thus 1,371.4 A^{3}; Keil and Plieth give the density of the crystals as 2.25 ± 0.01 gm/c.c. at $20^{\circ} \mathrm{C}$ and hence there are four molecules in the unit cell. The calculated density is $2.276 \mathrm{gm} / \mathrm{c} . \mathrm{c}$. and $F(000)=952$.

From precession photographs of hko, hkl, hoe and Oke the absent spectra were found to be in
hk ℓ when $h+k+\ell$ is odd
hol when h or l is odd
0 kO when k is odd.
These absences correspond to the space groups $\mathrm{C}_{\mathrm{s}}^{4}-\mathrm{I}_{a}$ and $c_{2 h}^{6}-I_{2 / a}$.

4.2 Intensity date.

Apart from the data for the hko zone which were collected on a precession camera, the complete three dimensional data were collected on the modified Weissenberg camera of Abrahams (195t). Molybdenum Ka x-rays were used throughout with the multiple film pack technique and Inford 'Industrial G' itim. The size of the ciystal used for collecting these datia was $0.36 \times 0.22 \times 0.20 \mathrm{~mm} .$. All of the intensities vere estimated visually, allowance being made for the obIfquity factor of Rossman (1956) modified as in 2.2. The ratio of the strongest to the veakest intensity (taken as unity) for each zone was 11,244 for hkO; 20,950 for hol; 30,585 \{or hle; 4,330 for h2t; 8,740 for h3t; 628 for h4l; 430 for h5t and 55 for hoe.

Since the linear absarption catificient for these crystals is $5.10 \mathrm{~mm}^{-7}$ it was decided to apply absorption corrections to the intensity data. This was done by the same method as with the bromom compound. The radius of the cylinder was taken as 0.13 m . and hence $\mathrm{R}=0.66$. For upper layers taken on an aqui-inelination Weissenberg camera the tabie given by Bond (1959) of θ Vs. A^{*} (where A^{*} is the absorption correction) is entered with $Y / 2$ instead of θ, where

$$
\cos (Y / 2)=\cos \theta / \cos \nu
$$

and where ν is the equi-inclination angle. In place of μR the value used is μ. secy and the resultant value of A^{*} is multiplied by cos ν. This calculabion and the subsequent one to correct for the lorentz and polarisation factors and Tunnell's rotation factor was carried out on the DEUCE computer using the pragrams described in Appendix 2. The resultiag, scaled, structure factors are listed under $F(m e a s)$ in Appendix $I(c)$. In all there are 1,609 of these which were used in the following analysis, no unobserved terms have so far been includad.

Pig. 15. 4-4'-diiododiphenyl sulphone.
hkO Patterson map, zero contour dashed.

Fig. 16. 4-4'-diiododiphenyl sulphone. hol Fourier map. Contours at $1 \mathrm{e} / \mathrm{A}^{2}$ intervals except on sulphur and iodine. After $4 \mathrm{e} / \mathrm{A}^{2}$ the interval is $2 \mathrm{e} / \mathrm{A}^{2}$ on sulphur and $5 \mathrm{e} / \mathrm{A}^{2}$ on iodine.

Fig. 17. 4-4'-diiododiphenyl sulphone. hk0 Fourier map. Contour interval $1 \mathrm{e} / \mathrm{A}^{2}$ except on iodine. The iodine contours are $1,2, \ldots 8,10,15,20 \ldots$

Zero contour dashed.
4.4 Least squares refinement.

At this stage it was decided to try refining by the methad af least squares using the program of J.S.Rollett as used in 3.4. The weighting system used was the same as Sos the bromon compound with $F^{*}=50.0$. Inftially three cycles of refinement were carmied out on the hko zone, only half of the shifts calcuiated actually being used. This gave

	(1)	(2)	(3)
R	0.222	0.206	0.205
$\Sigma W \Delta^{2}$	289	98	92

from which it seems that useful refinement has ended. It was also considered inadvisable to reffe this projection too far because of the overlap prabably Ieading to wrong coordinates as appears to have occurred with the bromocompound. The coordinates used for this third cyele were consequently also used to calculate the complete three dimensional set of structure factors in order to scale the observed values more accurately; each zone was scaled to the corresponding calculated set.

New coordinates for the next calcuilation were obtained

Table 31.

Pinal parameters for 4-4'aditidodiphenyI sulphone. Atam.
x
ע
2

I	0.0473	0.9360	0.1823
s	0.25	0.1405	0
0	0.2110	-0.0232	-0.0769
C_{1}	0.1982	0.3511	0.0404
C_{2}	0.1334	0.4208	-0.0135
c_{3}	0.0966	0.6192	0.0342
C_{4}	0.1123	0.6864	0.1258
c_{5}	0.1666	0.6090	0.1722
c_{6}	0.1922	0.4266	0.1325

Atom. $\mathrm{b}_{11} \quad \mathrm{~b}_{22} \quad \mathrm{~b}_{33} \quad \mathrm{~b}_{12} \quad \mathrm{~b}_{23} \quad \mathrm{~b}_{31}$
$\begin{array}{lllllll}I & 0.0073 & 0.1166 & 0.013 I & 0.0018 & 0.0003 & 0.0052\end{array}$
s
0.0044
0.0907
$\begin{array}{llll}0.0082 & 0 & 0 & 0.0050\end{array}$
0
$0.10170 .0097-0.010^{4} 4-0.0137 \quad 0.0015$
O_{I}
0.0057
$0.05070 .0098 \quad 0.04150 .00620 .0057$
$\begin{array}{llllllll}C_{2} & 00.0046 & 0.1551 & 0.0070 & 0.012 & 0.0005 & 0.0085\end{array}$
$\begin{array}{llllllll}C_{3} & 0.0015 & 0.0825 & 0.02153 & -0.00 \% 6 & 0.0068 & 0.0063\end{array}$
$\begin{array}{lllllllll}a_{4} & 0.0001 & 0.0950 & 0.0100 & 0.0209 & 0.0069 & 0.0016\end{array}$
$\begin{array}{lllllll}C_{5} & 0.0 I I I & 0.0588 & 0.0 .82 & 0.0125 & -0.0033 & 0.0060\end{array}$
$\dot{c}_{6} \quad 0.0145 \quad 0.033 ; \quad 0.0268 \quad 0.0114 \quad 0.0301-0.0028$.
from the hir0 and hoe data onily. Again onily half of the calculated shifts in parameters were applied except for the iodine atiom which was kept fixed because of possible overshifting as occurred repeatedly with the bromine atom in the bramo- compound. Two cycles of refinenent on the complete data were then performed and the value of R fell from 0.326 to 0.3 II while that af $8 w \Delta^{2}$ fell from 5,832 to 4,920. The parameters used for the second cycle are Iisted in Table 31 and the corresponding values of $F(c a l e)$ are in Appendix $I(c)$.

None of the stendard deviations have been calculated at this stage because of the incorapleteness of the reffinement process; the positions of the iodine and suliphur atoms will, however, be the most accurate.

4. 5 Mo1ecula ar geometry.

Axthough this analysis is incomplete some of the geometry has been evaluated at this stage. The band lengths are given in Table 32, the only angles which have been evaluated are

$$
\begin{aligned}
& I-S-I^{\prime}=106.5^{\circ} \\
& 0-S-O^{\circ}=111.9^{\circ}
\end{aligned}
$$

Table 32.

Fond lengths.

$$
c_{1}-c_{2}
$$

$$
1.38 \mathrm{~A}
$$

$$
c_{2}-c_{3}
$$

$$
1.48
$$

$$
c_{3}-c_{4}
$$

$$
1.33
$$

$$
a_{4}-c_{5}
$$

1.I9

$$
c_{5}-c_{6} \quad 1.24
$$

$$
c_{6}-c_{I}
$$

$$
1.37
$$

Mean C - C

1.39

$$
G_{4}-I \quad 2.08
$$

$$
s-c_{1} \quad 1.66
$$

$$
s-0
$$

$$
1.45
$$

The equation of the ring plane has also been computed, the sulphur atom keing given three times the weight of the carbon atoms and the fodine atom five times. The equation determined with respect to the oxthogonal axes defined in Appendix 2 is

$$
x^{\prime}+1.4205 y^{\prime}-0.3967 z-5.8888=0
$$

and the distances of the atoms from it are listed in Table 33. Some of the atams appear to be at relatively large distances from this plane but these are probably
not significeant at this stage in the analysis.

	Rable 33.
	Ort-at-plane distances.
Atom.	Distance. 2
I	-0.0008 A
S	0.0150
C_{1}	0.0709
C_{2}	-0.1029
C_{3}	0.0354
C_{4}	0.0167
C_{5}	0.0808
C_{6}	-0.1569.

Molecular axes have been chosen for the hatf-molecule as in the case of the chloro- compound, viz.

$$
\begin{aligned}
& \vec{x} \propto \overrightarrow{s-1} \\
& \vec{y} \propto \overrightarrow{C_{5}-C_{3}}+\overrightarrow{C_{6} \propto C_{2}} \\
& \vec{z} \propto \vec{x} \cdot \vec{y}
\end{aligned}
$$

and the thermal parameters have beer transiarred to these axes. These are given in Table 34 as root mean square vibrations along the molecular axes and are comparable vith Tables 23 and 30 for the chloro- and bromo- compouncs
respectively. They were calcutated using one of the programs in Appondix 2.

Pable 34.

R.M.S. atomic tibrations aliong molecular axes.

Atom.	\bar{u}_{I}	\bar{u}_{2}	$\overline{u_{3}}$
I	0.339 A	0.380 A	0.367 A
S	0.260	0.313	0.296
C_{L}	0.208	0.332	0.291
C_{2}	0.205	0.318	0.399
C_{3}	0.243	0.384	0.211
C_{4}	0.328	0.293	0.147
C_{5}	0.327	0.442	0.327
C_{6}	0.477	0.386	0.385
0	0.345	0.324	0.325.

The values or $\bar{u}_{\text {in }}$ for C_{4} and c_{6} are the only ones which: appear at this stage to be significantly 'out of Iine' with the others but this is probabiy caused by positional errors for these atoms.

100.

4.6 Discussion.

The same comments as were made about the least squares refinement of the bromo- compound (3.6) also apply to the refinement of this compound. Here the least squares totals will be even larger since the atomic number of iodine is still higher than that of bromine, and further, there are considerably nore data to be refined; this will consequently increase the likelyhood of the totals becoming 'negative'.

The accuracy of the parameters at this stage is similar to that of the parameters in the bromo- compound; although the final R- ractor and $2 \mathrm{f} \Delta^{2}$ values are higher there are more data being refined and consequontly in in the expression for $\sigma^{2}(\eta)$ will be Jarger. The stancard deviation of the pasition of the iodine and sulphur atons Is thus about 0.007A and about 0.06A for the carbon and oxygen atoms.

The high value of these standard deviations mean thet no significance can be attached to the deviations of the bond Iengths, particularly carbon - carbon, from the expected values. The atcms do, however, appear to be
101.
planar within the limits of the present accuracy. As with the bromo-compound no conclusions about the thermal Vibrations can be drawn at this stage because possible errors in the positional parameters may be causing anomalous values of the temperature parameters.

Comparison of these results with those of Kelli and Plieth (1955) is not possible since most of their bond lengths and angles were assumed to obtain the y - coordEnates. The twa angles they give, are however, in good agreement with the values found here, viz
and $\quad C-S-C^{1}=106.3 \pm 2^{0}$
which agree with the present values of
and

$$
\begin{aligned}
& 0-S-0^{\prime}=111 \pm 4^{0} \\
& C-S-C^{\prime}=106.3 \pm 2^{0}
\end{aligned}
$$

$$
0-s-0^{\prime}=111.9^{\circ}
$$

$$
I-S-I^{\prime}=106.5^{\circ}
$$

5. Final Discussion.

AIthough the accuracy of analysis almed at has not yet been achieved for the structures af 4-4'-dibromodiphenyl sulphone and $4^{4^{\prime}}$-dilododiphenyl suiphone, it is fortunate that the highest accuracy which has so far been attained is in those details of the molecular geametry which are of most interest. In particular, since the halogen and sulphur atoms are those most accurately determined, the X - S - X' angie will be sufficiently well determined that the values are not expected to change significantly with further refinement. Examination of Table li2 shows that the positions of the chlorine and sulphur atoms did nat change significantily during the ORACLE refinement. These values are

$$
\begin{aligned}
C l-S-C P^{\prime} & =101.8^{\circ} \\
B r-S-B I^{\prime} & =102.3^{\circ} \\
I-S-I^{\prime} & =106.5^{\circ} .
\end{aligned}
$$

This shows that the increase in this $X-S-X^{\prime}$ angle is in fact present as suggested in Section 1.1. The relativo aly large increase in this angle from $X=\operatorname{Br}$ ta $X=I$ is somewhat surprising but is thought to be genuine. Since
the molecules are lying on two - fold axes parallel to the b axis the decrease in the length of this axis reflects the increase in this angle. The lengths of the b- axis in these crystals are

$$
\begin{array}{ll}
X=C \ell & 5.009 A \\
X=B r & 5.031 \\
X=I & 4.946
\end{array}
$$

The increase in gaing from the chtora- io the bromocompound is most likely caused by the increased size of the halagen atom; the decrease on going to the lodom compound mast then result from an inerease in the $X-S-X$ angle. To allow for the increased size of the iodine atom the molecule in the iodom compound is incilimed at a greater angle to the am axis, resulting in a longer cm axts and a greater β - angle. The angles made by all three molecules with their a- axes and the lengths of their caxes are

X	Angle with a- axis.	Length of co axis.
Ce	24.3^{0}	12.259 A
Br	24.4°	12.359 A
I	29.1^{0}	14.448 A.

104.

The bond lengths have nat yet been determined with sufficient accuracy to allow any reasonable comparisons to be made. More accurate values for the $C_{4}-X$ bond Iength when $X=B I$ and I can, however, be found. Since, in these last two compounds the positions of the sulphur and halogen atoms are the most accurately determined, the S - X distances will be the most accurate. These are

$$
\begin{aligned}
& S-C Q=6.229 A \\
& S-B r=6.360 \\
& S-I=6.574
\end{aligned}
$$

and if from these we subtract the value for $S-C_{4}$ as measured in the chlorom compound, viz. 4.493A, we obtain the following bond lengins

$$
\begin{aligned}
& C-C l=1.736 \mathrm{~A} \\
& C-B r=I .87 \\
& C-I=2.08
\end{aligned}
$$

The value for cartion sodine found in this way is in fact the same as that obtained by direct calculation and agrees with the (assumed) value of Keil and Plieth (1955) of 2.10A. The carbon - bromine distance is, however, considerably shorter then the directiy calculated
distance of I.98A and is in narch better agreement with the value of Toussaint (1945) of I. 89A.

The suitphar - oxygen bond lengths are again not sufflicientIy well determined for accurate comparison but their values

$$
\text { in } \begin{aligned}
X & =C e_{,} \quad S-0=1.432 \mathrm{~A} \\
X & =\operatorname{Br}, \quad S-0=1.36 \mathrm{~A} \\
X & =I, \quad S-0=1.45 \mathrm{~A}
\end{aligned}
$$

definitely confinF that this bond in suilphome molecules is essentially a pure double bond.

As predicted by Koch and Mofilitt (1951), the plane of the aromatic rings is aimost at right angles to the X-S - X' plane, the actual angles being

$$
\begin{array}{ll}
X=C l & 84.6^{\circ} \\
X=B r & 84.5^{\circ} \\
X=I & 85.4^{\circ}
\end{array}
$$

These values are also remarkably constant. The dihedral angles made by the nommals to the two aromatic rings are also fairly constant, the deviation in the lodo- compound sot being considered significant; these values are

$$
\begin{array}{ll}
X=C l & 78.7^{\circ} \\
X=B_{\mathbf{I}} & 78.4^{\circ} \\
X=I & 74.3^{\circ}
\end{array}
$$

Pabie 35.

Comparison of mean $\mathrm{B}_{1: 1}$ 。

ALom.	ChIora	Bromo	Iodo-
Hal.	$10.19 A^{2}$	$9.33 A^{2}$	$9.63 A^{2}$
S	4.53	6.54	6.50
0	5.55	11.18	7.73
C_{1}	4.56	5.57	6.02
C_{2}	4.84	9.06	8.52
C_{3}	6.11	11.31	6.02
C_{4}	6.98	6.57	4.84
C_{5}	5.52	8.31	5.51
C_{6}	4.63	8.21	5.70.

which are in good agreement with the values found in other molecules eg. 75.8° in diphongl suitphoxide (Abrahams, 1957).

As with the positional parameters, the thermal parameters have not yet been found sufficiently accurately to allow detailed comparisons. The mean values of the principal components $\mathrm{B}_{11}, \mathrm{~B}_{22}$ and B_{33} have been determined for all the atoms in the three compounds and these are compared, as Debye temperature factors, in Table 35. Some interesting features are apparent in these figures; apart fron C_{3} and 0 in the bromom compound the temperature factors for the halogen atoms are the highest in each molecule and suggests that all three molecules probably exhibit a similar type of vibration. One interesting feature of all of these molecuies is that the temperature fastors for all the atoms on one side of the molecule are consistently higher than on the other, Viz. the values of B for C_{2} are higher than those for C_{6}^{-} and for C_{3} are higher than for C_{5}. The reason for this has not been investigated at this stage because of the fincompleteness of the refinement of two of the structures but the affect appears to be gemuine.

Part III.

Other Compounds Studied.

1. Prodigiosin.

1.1 Introduction.

Prodigiosin is a bacterial pignent and forms crystals in the form of very thin plates. These are very dark brownish red in colour with a greonish lustre. The chemo istry of this pigment has been discussed in a series of papers by Wrede and Rotheas (1932,1933a,1933b and 193\%). They state that the crystals have no definite melting point but sinter at $70 \ldots 80^{\circ} \mathrm{C}$ and have a molecular weigint of 323. Mass spectrometria evidence (Snedden, 1957) coninams this value. The molecular formula for the compound is then $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{ON}_{3}$ and the structure suggested is

108.

It is believed that this formulation is reasonably near the truth but confirmation of it is very desirable. An x-ray study of these crystals was thus undertaken using material supplied by Dr.N.J.Cartwright.

Since the prodigiosin molecule has no atom with atomic number higher than 8, attempts were made to introduce one of higher value. Crystals of the 'perchlorate' had been provided by Dr.Cartwright but these were in the form of extremely fine needies and unsuitable for an x-ray study; it was also found to be impossible to grow larger crystals. The preparation of a 'zinc salt' has been described by Wrede and Rothaas(1932) but several attempts to repeat this preparation failed. As prodigiosin has two \N-H groups it was thought Ifre?y that a hydrobromice should be formed but the preparation was also unsuccessfuJ.

Finally recrystallisation of prodigiosin from various organic solvents, particulaxly petrofeum ether and methanol, was tried but the crystals formed were no larger than the oxiginal ones. The x-ray study was therefore carried out with the largest crystal that could be found.

1.2 Unt Coll Data.

Precession camera photographs were taken with the crystal set about the a - axis using molybdenum K_{a}. radiation $(\lambda=0.7107 A)$. The axial dimensions were determined from these photographs and corrected for film shrinkage; the monoclinic cell had the dimensions

$$
\begin{aligned}
& \mathrm{a}=19.22 \pm 0.01 \mathrm{~A} \\
& \mathrm{~b}=20.55 \pm 0.01 \\
& \mathrm{c}=9.66 \pm 0.01 \\
& \beta=94.88 \pm 0.25^{\circ}
\end{aligned}
$$

The volume of the unit cell (a.b.c.sing) is therefore 3,800A3. The density of the crystals was detemmined by flatation in aqueous potassium iodide solution and was found to be $1.127 \mathrm{gm} / \mathrm{c} . \mathrm{co}$. This gives the number of molecules per unit cell as 8 and the calculated density as $1.129 \mathrm{gm} / \mathrm{c} . \mathrm{c}_{\mathrm{o}}$. The total number of electrons per unit cell, $F(000)$ is 1,392 .

Examination of photographs of the hol, hkO and hki zones showed that the absent spectra were in hke when $h+k+\ell$ is odd hoe when h or $\&$ is odd OkO when k is odd.
This indicates thet the space group is either the

Fige 18. $N(z)$ test Lor Pradigiosin: the erosses indicate the experimental data.
centrosywmetric $c_{2 h}^{6}-I_{2} / a$, or the non-centrosymmetric $C_{s}^{4}-I_{a}$.

1.3 Intensity data.

Since the c-axis is the shortest, hkO data were collected as a series of timed exposures, using a precession camera and molybdenum K_{α} radiation from a stabilised x-ray generator. The intensities vere estimated visually and corrected with Lorentz and polarisation factors obtained using the charts of Grenvjille - Wells and Abrahams(I952). The xatio of the strongest to the weakest intensity was 8,748 ta 1.

As the space group $2 / 2$ a is centrosymmotris in all of its projectionsand I_{a} has no centrosymetrie projections, a test for centrosymmeery on any zone of intensities should indicate which of the two possible space groups is correct. Consecquentry, the $N(z)$ test ar Hovells,
Phillips and Rogers(1950) was appIjed to the hkO data. This gave the following result which is show graphieatity in Fig.I8.

$$
\begin{array}{lllllllllll}
2 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 1.0
\end{array}
$$

$\mathbb{N}(z) \% 27.029 .538 .347 .750 .0 \quad 56.159 .561 .565 .266 .2$
From this information the correct space group

Fig. I9. Prodigiosin - hkO Patterson map. Contours arbitrary.
appoars to be the centrotymetric $\left(\frac{6}{2}-I_{2} / a\right.$.
I. i+ Patierson synthesis.

Using the structure factars for the hro zone the Patterson projection down the c- aris was computed. This map is shown in Fig. 9 . It cal be seen that this has rolatively fov Eeatures and has preved to be uninterpretable. This was not entirely wexpected because of the comparizively long c- axis (9.66A)s which means that there will be considexable overlap of the atoms in this projection. The absence of any 'heevy atom" also means that no vector pealss will be suffictently well resolved to indicate the molecular orientation.

1. 5 GoncIusions.

In order to solve the structure of the prodigiosin molecule one of two proceedures will have to be adopted: both of these invalve preparing more suitable crystals.

Prabably the simpler would be to prepare a derivative containing a heavy atom which would then give the possibility of a two - dimensional analysis if the derivative had a short axis. The second method is to
112.
obtain larger crystals of prodigiosin which would be suitable for the collection of three - dimensional data. This method demands computing facilities which were not available when this study was carried out.

113.

2. Fumagillin.

2.1 Introduction.

The discovery of fumagillin followed observations of its activity against bacteriophage (Elbe and Hanson, 1951; Asheshov, Strelitz and Hall,1952). Fumagillin, is a metabolite of Aspergillus Fumigatus and has recently aroused some interest as an anticancer agent. This tagether with its other blological properties make the elucidation of its structure a matter of particular interest.

Chemical approach has proved very difficulit owing to the tendancy of the molecule to undergo complex rearrangements and as yet the final structure has not been dotermined. It has been shown (Schenck, Hargie, Tarbell and Hoffmen, 1953; Brown and Landquist, 1953) that fumagillin, $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{7}$, is rapidiy hydrolysed by cold 0.1 N sodium hydroxide solution giving an alcohol, $\mathrm{C}_{1} 6 \mathrm{HI}_{2} 6 \%$, and designated alcohol - Is and octa-1:3:5:7-tetraensol:8dicarboxylic acid. Alcohol - 1 has been the subject of most of the investigation so far, and has been atimitutef the following features
(i) a carbacyclic ring with a secondary hydroxyl on it,
(ii) a side chain

(iii) an ether ring
(iv) a methoxyl gyoup.

Alcohol - 1 may also be reduced to another alcohol known as tetrahydroalcohol - Iab in which itiis assumed that the double bond in the side chain has been saturated and the epoxide ring has been hydrogenolysad. Treatment of the latter alechol with p-bxomobenzenesulphonyl chloride in pyridine has resulted in a crystalline compound of formia $\mathrm{C}_{2} 2 \mathrm{H} 3206 \mathrm{SBy}_{1}$, molecular weight 505.5, In which the 'brosyl' group is presumably attached to the secondary hydroxyl of the asbocyclic ring. These cxystals take the form of laxge colourlass prisms minch have a melting point os $103-104^{\circ} \mathrm{C}$ and mere used nor the x-ray study. They have the disadvantage of being sensitive to heat, decomposition accuring even on stando ing for 24 hours in a wam room. Forfunately they did not prove too unstable in an xoray beam provided that the room was kept as cold as possible. The chamical study has been the subject of a series of papers, see cross and Tarbell (1958) anc earlier papers.

A previous xolay stuay has been made on the perent
115. compound, fumagililin, by Brown and Landquist (1953) to detarmine its molecular weight. They found that the unit cell of this compound was monaclinic with

$$
\begin{aligned}
& \mathrm{a}=15.62 \mathrm{~A} \\
& \mathrm{~b}=13.68 \\
& \mathrm{c}=6.05 \\
& \beta=92.2^{\circ}
\end{aligned}
$$

The space group is P_{2} and there are two molecules in the unit cell. whence the nolecular weight is 4.58 .

2.2 Unit celI dats.

Precession cancea photographs were talren of a cyrstal of the brosyl dextvative of tetrahydrolcoholalab set about the bo axise Molytadenm K_{a} radtation $(\lambda=0.710 \% \Lambda)$ was used, and photographs were taken of the hito and okl zones. The axial lengths were measured syom these photographs and corrected for filn shrinkage; the monoolinic cell had the dimensions

$$
\begin{aligned}
& \mathrm{a}=16.80 \pm 0.01 \mathrm{~A} \\
& \mathrm{~b}=6.12 \pm 0.01 \\
& \mathbf{c}=11.77 \pm 0.01 \\
& \beta=97.25 \pm 0.2^{\circ}
\end{aligned}
$$

The β - angle was measurea ftom an hol Weissonberg photograph. The volume of the unit cell (a.b.c.sinp) is
thus 1199A3. The density of the crystals was determined by flotation in equeous potassium iodide solution and found to be $1.38 \mathrm{gm} / \mathrm{c} . \mathrm{c}$. . This gives the number of molecules per unit cell as fwo and a calculated density of $1.40 \mathrm{gm} / \mathrm{c} . \mathrm{c}$. . The total number of electrons in the unit cell is then $F(000)=526$.

Examination of photographs of the hkO, Oke, hot and hlt zones showed that the only absent spectra were in OkO when k is odd. The space group is therefore either $C_{2}^{2}-P_{21}$ or $C_{2 h}^{2}$ - P_{21} / m. The second of these can be eliminated as it demands four equivalent positions; with onily two molecules in the cell this infers some molecular symmetry which is not present without disorder.

2.3 Intensity data.

An hof series was taken on the modifled Welssenberg camera of Abrahams (1954) design using molybdenum K_{a} sadiation. The multiple film pack technique was used for this with Ilford Industrial o G film interleaved with $0.0008^{\prime \prime}$ njeltell foils. The ratio of the strongest to the weakest of the visualiy estimated intensities was 31,579 to 1. Lorentz and polaxisation correction factors were applied to this data by the program written for the DEUCE
117.
computer (Appendix 2). The 518 structure factors resulting from this are listed in Appendix $1(\theta)$ scaled to the last set of calculated structure factors.

2.4 Structure anazysts.

Since the molecule contains two relatively heavy atoms, bromine and sulphri, it was hoped that the 'heavy atom' method would be very likely to yield a solution to the structure. If the sum of the squares of the atomic numbers of the heavy atoms is greater than the sum of the squares of the atomic numbers of the light atows, and if the positions of the heavy atoms are known, the structure factors calculated for these atoms should have suffictent of the phases correct to give a Fourier synthesje which will show the positions of at least some of the other atoms (Lipson and Cochran, 1953). For this compound Σx^{2} (heavy atoms) $=1,42 I$ and $\Sigma \hat{I}^{2}$ (light atoms) $=1,209$ and so if the bromine and sulphur atoms can be located the Fourier synthesis based on these should lead to the solution of the structure.

As there are only two bromine atoms in the unit cell It was hoped that a Patierson projection onto the centrosymmetric hot zone would reveal the position of

Fig. 20. h0l Patterson map of Fumagillin (derivative). Contour interval arbitrary.

118.

the $\mathrm{Br}-\mathrm{Br}$ vector. Accordingly the F^{2} data for the hoe zone, an an arbitrary scale, was used to compute a Patterson synthesis; this is shown in Pig. 20.

The Br - Br vector is marked on this map uith a cross. Since the bo axis is relakively ghowt it was concicered that the $\mathrm{Br}-\mathrm{S}$ tector which is actually 6.36 A long voutd. be about 5 A long in this projection. Accordingly a vector peak was sought at this distance tron the origin, it was found at 5.7 A and is marked in Fig. 20 with an asterisk. The coordinates of the bromine and sulphur atoms from this are

	\underline{z}	\underline{z}
Br	0.627	0.438
S	0.372	0.100.

The structure factors based on these positions with a temperature factor of $B=3.6 A^{2}$ gave an R - factor of 0.6I. Anter rejocting about $1 / 5$ th of the structure factors for which $|F(c a l e)|$ was small, an hol Fourier synthesis was computed. This map shoved the bromine and suilphur atoms in the expected places and about 20 other peaks. Using the coordinates for these peaks together with new bromine and sulphur positions a new set of

Fig. 21. hol Fourier map. Contours at $1 \mathrm{e} / \mathrm{A}^{2}$ except on sulphur and bromine. After $4 \mathrm{e} / \mathrm{A}^{2}$ the interval is $2 e / A^{2}$ on sulphur and $5 \mathrm{e} / \mathrm{A}^{2}$ on bromine. Zero contour is dashed.

219.

structure factors was calculated; these gave $R=0.51$. Four further Fourier series and structure factor calculations were then performed resulting in an R- fastor of 0.36 for the 26 atoms included. The last Fourier synthesis computed from these structure factors is shown in Fig. 21. An outline of the postulated structure is shown on this .the atomic positions marked with a square are those not included in the final structure factor calculation. The numbering system corresponding to this structure is shown in Fig. 22 and the final coordinates for all of the atoms are given in Table 36. The structure factors calculated from these are listed in Appendix $1(e)$.

In order to confirm the positions of these atoms and Find the others not included in the last set of structure factors an error synthesis was computed at this stage using $F_{o}-F_{c}$ as coefficients for the Fourier sertes. This map is shown in Fig. 23; it shows where the errors in the atomic positions are and none of the atoms appear to be completely wrong, except for one of the sulphone oxygen atorns. The positive peak on the sulphur atom position and the negative area where the two oxygen atoms have been placed suggests that the two oxygen atoms are not so close

Table 36.

Two dimensional coordinates.

Atam.			Atom.		
Br	. 3701	. 5642	${ }^{\text {c }} 8$. 3320	.3438
s	. 3700	. 0971	${ }_{9}{ }_{9}$. 1172	. 3620
$\mathrm{O}_{\mathbf{I}}$. 2827	. 1510	${ }^{\text {c }}$. 1348	. $44+8$
O_{2}	.0447	. 1353	a_{12}	.1141	. 5642
0_{3}	. 2859	. 3446	C_{12}	. 2055	. 6256
a_{4}	. 11146	. 4312	Cl_{13}	. 2009	. 7487
0_{5}	. 3535	. 9850	C_{24}	. 1440	. 7800
06	. 3700	. 9775	Cl_{5}	. 2893	. 7770
$\mathrm{C}_{\text {I }}$. 1818	. 0352	c_{16}	. 0460	. 3746
c_{2}	. 1167	. 0583	C_{17}	. 4515	. 1811
C_{3}	. 0731	. 1436	$\mathrm{C}_{5} 8$. 4.843	. 1342
a_{4}	. 1554	. 2635	C_{19}	. 4631	. 7744
C_{5}	. 2137	. 24778	c_{20}	. 4505	. 6683
C_{6}	. 2285	. 1250	C_{21}	. 4816	. 6229
c_{7}	. 0227	. 1633	c_{22}	. 4653	. 3088

- not incIuded in Iast set of structure factors.

Fig. 22. Numbering system in Fumagililn (dexivative) Oxygen atoms numbered in italics.

Fig. 23. h0l difference map. Contours at $1 \mathrm{e} / \mathrm{A}^{2}$ intervals. Zero contour is dot-dashed, negative dashed.
121.
in projection, but that one of them lies directly above (or below) the sulphur atom. The map does, however, show that some of the atoms require to be maved slightly, in particular the bromine atom.
2.5 Discussion.

While the structure of this compound has not been determined completely unambiguously, it is felt that the structure shown is probably reasonably correct - the error synthesis seems to confirm this. So far it has not been possible, and probably will not be in projection, to distinguish between

and

In the side chain, the latter being the one shown because of more recent chemical evidence (McCorkindale, 1959). It is also now thought thet the 'ether' ring mentioned in 2. 1 is in fact the epoxide in the side chain and the epoxide which has been opened by the reduction of alcohol - I is in fact on the six membered ring. This carbam cyelic ring is consequently shown with a terifary hydroxyl group.

122.

To distinguish betweeil these possibilities and determine the other stereochemstry of the molecule it is clear that a three dimensional study must be undertaken. This should not prove too difficult since once the data has been collected, the phases of the structure amplitudes can be immediately calculated without rizetiy computing a three dinensional Patterson synthesis. This is possibie because the arigin of the unit cell can be chosen anywhere along the two - fold screal axis: it may therefore be chosen so as to make the yo coordinate of the bromine atom equal to zero. If this atom alone were included in the structure factor calculation a false centre of symetry would be induced in the structure resulting in the superposition on the structure af its mirras image. This difficulty may be overcome by including the coordinates of the suIphur atom and of the atoms of the benzene ring whose y - coordinates may be calculated using the known dimensions of the p-bromobenzene sulphonyl group (see Part II). The phase angles based on these coordinates should lead to a rapid solution of this structure in three dimensional space.

APPESDICES.

APPENDIX 1.

Structure Factor Data.

```
I(a). 4-4'-dichlorodiphenyl sulphone.
```


I(b). 4-4'-dibromodiphenyl sulphone.

I(c). 4-4'-diiododiphenyl sulphone.

-.

 ******** *-v******

 \rightarrow ,

[^1]128.
(d) Prodigiosin Structure Factors.

129.

h	k	t	5	6	\mathbf{x}	t	P_{0}
17	5	0	3.5	15	7	0	<0.9
15	5	0	<0.8	13	7	0	1.7
13	5	0	5.2	11	7	0	<0.8
11	5	0	<0.8	9	7	0	<0.8
9	5	0	3.2	7	7	0	4.4
7	5	0	4.3	5	7	0	6.6
5	5	0	4.1	3	7	0	12.1
3	5	0	13.3	1	7	0	12.7
1	5	0	25.0				
				18	8	0	1.6
14	6	0	3.8	16	8	0	1.8
12	6	0	1.8	14	8	0	3.1
10	6	0	1.1	12	8	0	3.4
8	6	0	2.5	10	8	0	0.8
6	6	0	5.8	8	8	0	1.1
4	6	0	3.8	6	8	0	1.8
2	6	0	10.3	4	8	0	6.7
0	6	0	4.1	2	8	0	2.3
				0	8	0	19.7

$\begin{array}{llll}17 & 7 & 0 & 2.3\end{array}$

h	k	ℓ	F_{0}	n	$\underline{1}$	ℓ	Fo
15	9	0	2.9	7	11	0	< 0.8
13	9	0	<0.9	5	II	0	<0.8
II	9	0	4.2	3	11	0	2.6
9	9	0	<0.8	1	11	0	3.3
7.	9	0	<0.8				
5	9	0	5.1	16	12	0	0.9
3	9	0	2.8	14	12	0	0.9
1	9	0	2.6	12	12	0	<0.9
				10	12	0	1.3
14	10	0	3.5	8	12	0	0.9
12	10	0	<0.9	6	12	0	2.7
10	10	0	3.0	4	12	0	3.6
8	10	0	<0.8	2	12	0	2.4
6	10	0	2.8	0	12	0	7.9
4	10	0	<0.8				
2	10	0	2.7	13	13	0	0.9
0	10	0	<0.8	11	13	0	<0.9
				9	13	0	<0.9
11.	11	0	1.3	7	13	0	<0.9
9	11	0	<0.9	5	13	0	3.2

131.

whest

APPENDIX 2.

DEUCE Programs.

\qquad

This appendix contains details of a number of

 programs which have been written for the electronic digital computer, DEUCE, situated in the Computing Laboratory of the University of Glasgow.
Brief description.

DEUCE is a serial machine with numbers and instruct ions consisting of 32 binary digits; the digit rate is one million per second. Punched cards form the input o output medium. The store comprises
(1) 402 wards in mercury delay lines (access time, 32 o 1024 microseconds) and
(ii) 8192 words on the nagnetic drum (access time, apparox. 13-48miliseconds).

Programming Aids.

There are a number of "automatic programing" aids. Using these it is possible to write programs in a language more sophisticated than the basic machine language and 'closex to accepted mathematical usage. A mamber of programs are available which translate from a varlety of these subject languages to the abject languare Viz, the basic machine language. The following interpretive program has been used.

Alohacode.

This program handles protractec calculations involving single variables; it is best used on somcalled "onemoff" jobs e.g., exploratory calculations in research studies.

In this case, simplicity of programing is achieved at the expense of the speed of the subsequent operation. Far repetitive or standard caiculations it may be better to reverse the emphasis and spend time in producing a fast program, making efficjent use of the machine facilities. The burden of this optimum coding' is reduced considerably by a special translation program, STAC.

STAC. (Storage Allocation and Coding Pragram).
This program translates instructions from a semisymbolic form to the fundamental form required by the control circuits of DEUCE.

Program 1.

Description.

This program evaluates the least squares plane through a mumber of atoms; each atam can be given a different weighting factor. The distances of all the atoms from the plane are also determined.

Imput.

This consists of the unit cell dimensions (monoclinic: cell) and sets of fractional coordinates and weighting factors.

Output.

The arthogonal coordinates in Angstroms for each atom; the equation of the plane; the distances of all of the atoms from it and the mean and root mean square of these distances.

Time.

Approximately 2 minutes for 9 atoms.

System.

Alphacode.
Method.
The coordinates are first converted to orthogonal coordir nates by

Fiow ijagam.

$$
\begin{aligned}
& x_{j}=a \cdot x_{j}^{0}+c \cdot z_{j}^{0} \cdot \cos \beta \\
& y_{j}=b \cdot y_{j}^{o} \\
& z_{j}=c \cdot z_{j}^{0} \cdot \sin \beta
\end{aligned}
$$

If the plane has equation

$$
a . x+b . y+c . z+d=0
$$

then the normal equations are
a. $\Sigma w_{j} x_{j}^{2}$
b. $\Sigma_{w_{j}} X_{j} \nabla_{j}+$
c. $\sum w_{j} x_{j} z_{j}+d . \delta w_{j} x_{j}$ 0
a. $\Sigma w_{j} x_{j} y_{j}+b . \Sigma w_{j} y_{j}^{2}+c . \Sigma w_{j} y_{j} z_{j}+d . \Sigma w_{j} y_{j}=0$
$a \cdot \Sigma w_{j} x_{j} z_{j}+b \cdot \Sigma_{w_{j}} y_{j} z_{j}+c . \Sigma w_{j} z_{j}^{2}+d . \Sigma w_{j} z_{j}=0$
where the summations are over all of the j atoms. These equations are solved for b, c, and d by putting $a=1$. The distance of the j th atom from the plane is then

$$
d_{j}=\frac{a \cdot x_{j}+b_{\cdot} y_{j}+c_{0} z_{j}+d}{\left(a^{2}+b^{2}+c^{2}\right)^{\frac{1}{2}}}
$$

Program 2

Description.

This program calculates the T and ω tensors of Cruickshank (1956a). The program is in five sections.

Input.

The monoclinic cell dimensions, fractional coordinates, temperature parameters from the expression $\exp -\left(\beta_{11} h^{2}+\beta_{22^{k}}{ }^{2}+\beta_{33} t^{2}+\beta_{12} 2^{h k}+\beta_{23} k t+\beta_{31} t h\right)$, and the dicection cosines and origin of the molecular axes.

Output.
$0_{i j}^{o b s}$ and $0_{i j}^{\text {calc. with respect to the molecular axes, the }}$ companents of $\mathbb{T}_{j, j}, \omega_{j . j}, \sigma\left(T_{i j}\right)$ and $\sigma\left(\omega_{i j}\right)$.

Time.

Approximately 10 minutes for sections 1 and 2 with ninc atoms. Section 3 takes about I $\frac{2}{\text { b }}$ minutes and section 410 minutes. The Iast section requires about 5 minutes. These sections cannot all be run consentively as the output and input forms of the data are incompatible.

Systom.

Sections I,2 and 5 are alphacode.
138.

Section 3 is LEOI - salve n simultaneous linear equations where $\mathrm{n} \leqslant 14$.
Section 4 is LVOI - invert nth order matrix with $n \leqslant 83$. . These last two sections are DEUCE library programs.

Method.

The coordinates are transformed to orthogonal axes as defined in program 1, the origin is then changed and they are converted to molecular axes by

$$
\left(\begin{array}{l}
x_{m} \\
y_{m} \\
z_{m}
\end{array}\right)=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) .\left(\begin{array}{l}
x_{j} \\
y_{j} \\
z_{j}
\end{array}\right)
$$

where the $a_{i j}$ are the direction cosines of the molecular axes with respect to the orthogonal axes.
The temperature parameters are then transformed to the same orthogonal axes by

$$
\begin{aligned}
& b_{1 I}=a^{2} \beta_{1 I}+c^{2} \beta_{33} \cos ^{2} \beta+2 c a \beta_{3 I} \cos \beta \\
& b_{22}=b^{2} \beta_{22} \\
& b_{33}=c^{2} \beta_{33} \sin ^{2} \beta \\
& b_{12}=a b_{12}+b_{12} \beta_{23} \cos \beta \\
& b_{23}=b_{s} \beta_{23} \sin \beta \\
& b_{13}=c^{2} \beta_{33} \sin \beta \cdot \cos \beta+c \beta_{13} \sin \beta \\
& \text { (collet \& Davies; 1955). }
\end{aligned}
$$

The $b_{i j}$ are then transformed to molecular axes by

$$
U_{i j}=a_{i k} \cdot a_{k j} \cdot b_{i j}
$$

(Nye, 1957).
The method then follows that described by Cruickshank. Flow Diagram.

$$
\begin{array}{cl}
\text { Section } 1 \text { is blocks } 1-10 \\
2 & 11,12 \\
3 & 13,14 \\
4 & 15 \\
5 & 16-18
\end{array}
$$

(continued overleal).

141.

Program 3.

Description.

The program coryects intensity values for equi - inclin. . acion Weissenberg cameras with Lorentz and polarisation and Tunnell factors. A test is included to ensure that no value of $\sin ^{2} \theta$ is greater than unity.

Input.

Unit cell dimensions (triclinic cell), wavelength of the x-rays and the cosine of the equi - inclination angle for each zone. The intensity data has h, k, l and I punched on one card for each reflection.

Qutput.
$R_{i j}$ in binary to 31 binary places as required for input data by Rolleti's structure programs for DEUCE. This is followed by h, k, l and $|F|$ punched on one card per reflection.

Time.
Approximately $2 n+1$ minutes, where n is the number of reflections in hundreds.

System.
Stac.

142.

Method.

$$
\sin ^{2} \theta=h^{2} R_{1 I}+k^{2} R_{22}+l^{2} R_{33}+h k R_{12}+k \ell R_{23}+h \ell R_{I 3}
$$

where
$R_{\text {II }}=\frac{1}{3} \lambda^{2}\left(a^{*}\right)^{2}$
$R_{12}=\frac{1}{2} \lambda^{2} a^{*} b^{*} \cos \gamma^{*}$
$R_{22}=\frac{1}{4} \lambda^{2}\left(b^{*}\right)^{2}$
$R_{23}=\frac{1}{2} \lambda^{2} b^{*} c^{*} \cos a^{*}$
$\mathrm{R}_{33}=\frac{1}{4} \lambda^{2}\left(c^{*}\right)^{2}$
$R_{13}=\frac{1}{2} \lambda^{2} c^{*} a^{*} \cos \beta^{*}$
where $a^{*}, b^{*}, c^{*}, a^{*}, \beta^{*}$ and r^{*} are the usual reciprocal
coordinates. The Lorentz and polarisation factor is

$$
\operatorname{Lp}^{-1}=\frac{\sin 2 \theta}{1+\cos ^{2} 2 \theta},
$$

and Tunnelled rotation factor is

$$
D_{e}=\frac{\left(\cos ^{2} \nu-\cos ^{2} \theta\right)^{\frac{1}{2}}}{\sin ^{2} \theta}
$$

where ν is the equi - inclination angle.
Then

$$
|F|=\left(I \times L^{-I} \times D_{e}\right)^{\frac{1}{2}}
$$

Program 4.

Description.

This program has been developed from the preceding one to calculate absorption corrections for a crystal by assuming it to be of cylindrical cross section. The data used are those given by Bond (1959).

Input.

As in the previous program plus the appropriate absorption curve for the value of μ R.secv under consideration. Output.

One card per reflection punched h, k, \mathcal{e} and I (corrected). Time.

Approximately $2 \frac{2}{2} n+1$ ming., where n is the number of reflections to be corrected in hundreds.

System.

Star.

Method.

$\sin ^{2} \theta$ is calculated as before and then

$$
Y / 2=\cos ^{-1}\left\{\left(1-\sin ^{2} \theta\right)^{\frac{1}{2}} / \cos \nu\right\}
$$

This value of $\mathrm{T} / 2$ is used to interpolate, linearly, in the table of A^{*} values and then

$$
I \text { (corrected) }=I \text { (obs.) } x A^{*} \times \cos v .
$$

FToy Diagram.

EHz DAagam.

Program 5.

Deseription.
This program will read data from program 2 and convert $|F|$ to F^{2}.

Input.

- Data cards punched with h, k, ℓ, and $|F|$.

Output.
Cards punched with h, k, t and F^{2}.
Time.
1妾 $+\frac{1}{2}$ minutes tif there are n hundred cards.
System.
Stac.
Method.
The reader and puarth are allowed to run continuously
since this is faster than reading and punching acard alternately. Up to 1,500 cards may be read in at one time.

Program 6.

Description.

This program will calculate the distance between each . pair of up to 32 points. The range of distances required is selected and only values in this range are punched out. Input.

Monoclinic cell dimensions, maximum and minimum requited distances and fractional coordinates for each point.

Output.
One card per distance containing the numbers of the two points concerned and the actual distance.

Tame.

About 3 minutes for 20 atoms.
System.
stac.
Method.
The coordinates are read in for a monoclinic cell and are first converted to an orthogonal set using the equations in program 2. The distances are then calculated from

$$
d_{i j}=\left\{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}+\left(z_{i}-z_{j}\right)^{2}\right\}^{\frac{1}{2}}
$$

FIon Diagram.

Program 7.

Description.

This program will read and scale observed structure factors to the calculated ones - the agreement factor R is also determined.

Input.
Usually the output from Rollett's structure factor proproms.

Output.
$\Sigma\left|k F_{0}\right|, \Sigma\left|F_{c}\right|, \Sigma|\Delta|, k$ and R. Optional output is the input data with F_{o} values on scale and Δ 's with correct signed.

Time.
Approximately $\frac{1}{2} n+1$ minutes for n hundred data
len +1 minutes for n hundred data if the optional output is also required.

System.
stac.
Method.
The program first finds

$$
F_{o}=\Delta+F_{c}
$$

249.

and then evaluates

$$
k=\Sigma\left|F_{c}\right| \div \Sigma\left|E_{a}\right|
$$

The F_{0} values are then scaled by this factar and

$$
\Delta^{\prime}=K F_{0}-F_{c} \quad\left(\operatorname{not} \| F_{0} d-I F_{c}!\right)
$$

is found. The agreement factor R is then determined from $R=\frac{\sum_{i}\left\|\Delta^{2}\right\|}{\delta \| \frac{1}{2}}$.

FIor Diagram.

Warab para

Abrahams,S.C. (I954). Acta Cryst. Z. 423.
Abrahams,S.C. (1955). Acta Cryst. 8, 66I.
Abrahams, S.C. (I956). Quart. Rev. Chem. Soc. Lond. 10, 407.' Abrahams, S.C. and Silvertong.V. (1956). Acta Cryst. 2, 283. Abrahams,S.C. (1957). Acta Cryst. 10, 417.

Allen,P.W. and Sutton, L.E. (1950). Acta Cryst. 3, 46. Asheshov, I.N.,Strelitz,F. and Hall, E.A. (1952). Antiobotics and Chemotherapy 2, 361.

Bacon, G.E. (1957). Private communication.
Bacon,G.E. and Curry,N.A. (1959). Acta Cryst. in press.
Berghuis,J. et al. (1955). Acta Cryst. 8, 478.
Bergmann,E. and Tschudnowsky,M. (1932). Ber. 65, 457. Beevers, C.A. and Lipson,H. (1934). Phil. Mag. 12, 855.

Beevers,C.A. and Lipson, H. (1936a). Nature 11, 825.
Beevers,C.A. and Lipson,H. (1936b). Proc. Phys. Soc. (Lond)
48, 772.
Beevers,C.A. (1952). Acta Cryst. 5, 670.
Bond,W.I. (1959). Acte Csyst. 12, 375.
Bragg,W.H. (I915). Trans, Roye Soc. (Landon) A215, 253.
Bragg,W.L. (1977)。J. Sct. Instr. 24, 27.
Brown,C.J. and Lancquist,J.K. (1953). Chem. and Ind. 973.
Eurerger, M.J. (1941). Geal. Soc. of Amer, Special Paper Ho. 33.

Busing,W.R. and Levy, H.A. (1958). Acta Cryst. 11, 450. Cachran, W. (1951). Acta Cryst. 4, 408. Castain,W. (1941). Ph.D. Thesis - University of Birmingham. Cross,A.D. and Tarbell,D.S. (I958). J. Amer. Chem. Soc. 80, 3682.
Cruickshank,D.W.J. (1956a). Acta Cryst. 2, 754 .
Cruickshank, D.W.J. (1956b). Acta Cryst. 2, 757.
Debye, P. (1914). Ann. Physik 43, 49.
EIbe,T.E. and Hanson, F.R. (I951). Antibiotics and Chemotherapy 1, 54.
Forsyth,J.B. and Wells,M. (1959). Acta Cryst. 12, 4:12. Fristrom,R.M. (1952). J. Chem. Phys. 20, 1.
Goadwin,T.H. and Thomson,C.M. (1954). Acta Cryst. Z2 I66. Grenville-Wells,H.J. and Abrahams,S.C. (1952). Rev. Sci. Instrum. 23, 328.
Housty, J. and Clastre,J. (1957). Acta Cryst. 10, 695. Harker, D. and Kasper, J.S. (1948). Acta Cryst. 1, 70. Howells, E.R., Phillips,D.G. and Rogers,D. (1950).

Acta Gxyst. 3, 210.
James,R.W. and Brindley, G.W. (193I). 2. Kristajlogr. 28, $\mathrm{i}_{17} 70$. Jeffrey,G.A. (1951). Acta Cryst. 4, 58.
Kaxle, J. and Hauptmann, H. (1950). Acta Cryst. 3, 436.
153.

Keil，C．and Plieth，K．（1951）．Naturwissenschaften 38，5146． Keil，C．and PIIeth，K．（I955）．Z．Kristallogr．106， 388. Kach，H．P．（1949）．J．Chem．Soc． 408. Koch，H．P．and Moffitt，W．E．（195I）．Trans．Farad．Soc．42．7． Leonhard，N．J．and Sutton，L．E．（I948）．J．Amer．Chem．Soe．

$$
70,1564
$$

Levy，H．A．（1956）．Acta Cryst．2，679．
Lide，D．R．；Mann，D．E．and Fristrom，R．M．（1957）．J．Chern．
Phys．26，734．
Lipson，H．and Cochren，W．（I953）．＇The Crystalline State＇，

> VoI. 3, London: Bell.

McCorkindale，N．J．（1959）．Personal communication．
McWeeny ${ }_{g}$ R．（1951）．Acta Cryst．先， 513.
Nye，J．F．（1957）．＇Physical Properties of Crystals＂：Oxiord． Palmex，K．J．（1938）．J．Aner．Chem．Soc．60， 2360.
Patterson，A．I．（1935）。2．Kristallogr．20， 517.
Robertson，J．M．（1943）．J．Sci．Instr．20，176．
Robertsan，J．M。（1954）．Acta Cryst．2， 817.
Robertson，J．M．（1955）．Acta Cryst．8， 286.
Rogers，D．and Wilson，A．J．C．（1953）．Acta Cryst．6， 439.
Rollett，J．S．and Davies，D．R．（1955）．Acta Cryst，8，I25． Rassmann，M．G．（1956）．Acta Cryst．2，819．

Sayre,D.M. (1952). Acta Cryst. 5, 60.
Schenck,J.R., Hargie,M,P., Tarbell,D.S. and Hoffiman, P. (1953). J. Aner. Chem. Soc. 75, 2274.

Sime,J.G.(1956). B.Sc. Thesis - University of Glasgow. Sime,J.G. and Abrahams, S.C. (1959). Acta Cryst. in press. Snedden,W. (1957). Personal cammication. Stevenson, D.P. and Russein, H. (1939). J. Amer. Chem, Sotis

$$
6 I, 3264 .
$$

Tomile, Y. and Stam, C.H. (I958). Acta Cryst. IT, I26. Toussaint,J. (1944). Buli. Soc. Ray. Sci. (Ifege) 13, I63. Toussaint, J. (1945). Bull. Sot. Chim. BeIges 5t. 319. Toussaint, J. (1946). Bull. Soc. Roy. Eci. (Liege) I5, 86. Toussaint, J. (194.8). BulI. Soc. Ray. Sci. (Fiege) no. $4,1.5 \%$. Treuting, R.G. and Abrahans, S.C. (1959). In press.
Tunell, G. (1939). Amer. Min. $24,448$.
Viervoll, H. and Ögrim,0. (1949). Acta Cryst。 28 277.
Waser, J. (1951). Rev. Sci. Instrum. 22, 567.
Waser,J. (1955). Acta Cryst. 8, 73I.
Whittaker,E.T. and Robinson,G. (1934). 'The Calculus of Observations', 4th. ed. Glasgow: Blaclife. Wil son,A.J.C. (1942). Hature, Landon 150, 151.
155.

Wrede, F. and Ratthaas,A. (1932). Z. Physiol. Chem. 210, 125. Wrede, F. and Ratthaas,A. (1933a).z. Physiol. Chem. 219, 267. Wrede,F. and Rotthaas,A. (I933b).Z. Physiol. Chem. 222, 203. Wrede, F. and Rothaas, A. (1934). Z. Physiol. Chem. 226, 95. Wright,W.B. and King,G.S.D. (1.954). Acta Cryst. Z, 283.

[^0]:

[^1]:
 ＂下ォ

