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PREFACE

This thesis describes the determination, by the methods of
X-ray diffraction, of the crystal structures of epi-limonol
iodoacetate and azulene. In the introductory chapter some of the
methods used in this work are discussed. Details are given in
Appendix 3 of some programmes devised for X-ray crystallographic
calculations for use with English Electric 'DEUCE'.

I wish to acknowledge my thanks to my supervisors,

Professor J.M. Robertson, Dr G.A. Sim and Dr H.M.M. Shearer for
the advice and criticism which they have offered throughout the
course of this work.

I am grateful also to Dr D.C. Gilles and the computing staff
of the University of Glasgow for their help with computational
problems and, in particular, to Mr D.G. Williams for his brief
synopsis of 'DEUCE' and the available programming systems included
in Appendix 3.1. To Professor R. Pepinsky and Dr V. Vand of
Pepnsylvania State University, Dr 0.S. Mills of Manchester
University, Dr R. Sparks recently at Oxford Computing Laboratory
and Mrs Peters of the National Physical Laboratory I must also
record my thanks for computations performed in their laboratories.

I wish to express my gratitude to Professor D.H.R. Barton for
the supply of crystals of epi-limonol iodoacetate and to Mr Findlay
of this department who has kindly prepared the photographs. To

Miss K. Perry of the Computing Laboratory I am also grateful for
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the typing of this thesis.

I am indebted to the Carnegie Trust for the Universities of
Scotland for a research scholarship, and later to the University
of Glasgow for appointment to an Assistant Lecturership, which
enabled me to undertake the work.

It must be recorded that, because of the magnitude of the
work, the analysis of epi-limonol iodoacetate has been a team

project and the distribution of labour may be summarised thus:-

Unit Cell Parameters and Space Group D.G. Watson and S. Arnott
Analysis of (100) Projection D.G. Watson
Analysis of (010) Projection S. Arnott

Recording and Measurement of Intensities D.G. Watson, S. Arnott
and A.W. Davie

Scaling of Data and Preparation of Punched Cards
D.G. Watson and A.W. Davie

Harker Section D.G. Watson
Re-examination of (010) Projection S. Arnott
3-D Patterson Synthesis
Minimum Function ,

D.G. Watson, S. Arnott, A.W. Davie
3~D Fourier Analysis

Refinement of Structure

At many stages throughout this work I have had consultations
with my collaborators and supervisors as to the tactics to be

employed.
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SUMMARY

The crystal structures of two organic molecules have been
determined by the methods of X-ray diffraction.

Epi~limonol iodoacetate, 028H3309I’ belongs to the monoclinic
space group P21 with four molecules per unit cell. The crystal
structure analysis has been based on the heaﬁy—atom technique.
Three-dimensional data have been used for the computations, the
chief methods used being the Patterson synthesis and corresponding
minimum function combined with Fourier syntheses. This analysis
has led to a complete determination of the molecular structure
and stereochemistry of epi-limonol iodoacetate and hence of the

parent compound, limonin, 026H The latter is of great interest

30%:"
to organic chemists and the determination of its structure may make
a significant contribution to the elucidation of other closely-
related structures.

10

molecules per unit cell. The partially refined structure,

Azulene, C H8’ is monoclinic, space group PZl/a, with two

postulated as belonging to the space group Pa, has been analysed

by the method of least-squares and found to be incapable of
refinement. Re-examination of the space group requirements has

led to a statistically disordered structure in the space group P21/a.
This structure has been exhaustively refined by three-dimensional
least-squares analysis but the results are rather unsatisfactory.

The extreme 'closeness' of pairs of atoms prohibits a very accurate
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determination of atomic coordinates. However, the transannular
C-C bond has been shown to be considerably larger than the other
bonds in the molecule in agreement with theoretical considerations.

Several programmes have been developed for use with English
Electric 'DEUCE'. These programmes, written with interpretive
coding schemes, facilitate various computations encountered in

X-ray crystallographic analysis.

P N
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CHAPTER I

SOME _METHODS OF CRYSTAL STRUCTURE _ANALYSIS




1.1 Structure Factor Formulae

For any reflection (hkf) the structure factor is a complex
function whose modulus, the stfucture amplitude, is defined as the
ratio of the amplitude of the radiation scattered in the order
h, k, £ by the contents of one unit cell to that scattered by a
single electron under the same conditions (Lonsdale, 1936). The
structure factor may be expressed analytically by

N

F(hk8) = Z:fjeq){Qwi&mj+k%j+&%)} ceeneeneens(D)

j=1

where fj are the scattering factors of the atoms j, N is the total
number of atoms in the unit cell and xj, yj, Zj’ are the atomic
coordinates expressed as fractions of the cell edges. The atomic
scattering factor, fj’ is a function of the scattering angle and
depends on the distribution of electrons in the atom. These
distributions have been calculated for various atomic species by,
among others, Hartree (1928), James and Brindley (1932),
McWeeny (1951, 1952) and Hoerni and Ibers (1954). The atomic
scattering factor is calculated for an atom at rest, but thermal
vibrations tend to make the electron distribution more diffuse
and decrease the scattering power.

If fo represents the scattering factor for an atom at rest

then the true scattering factor is given by

£ = £, exp{-B(sin O/A)z} P -3
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The constant, B, the temperature factor, is related to the mean

square displacement, u2, of the atoms from their mean positions by

the expression

B = 81° u R &)

The structure factor equations for the 230 space groups have been

conveniently listed in International Tables (1952).

1.2 Representation of Electron Density by Fourier Series

It was first suggested by Bragg (1915) that since a crystal
consists of an infinitely repeating array of unit cells the electron
density could be represented by a triple Fourier series. Thus the
electron density ()(xyz) at the point (x, y, z) can be represented

by the eguation

00 ) )
P(xyz) = Z- Zhl Zg" C(h'k'&')exp{ZT\'i(h'x+k'y+ L'z)}
- " - ceeeeees(4)

Now it can be shown that C(h k £ ) = F(hkl )/V o
: o oo 00
Thus e(xyz) = %- z-. E E F(hke) exp{—Z'n' i(hx+ky+2z)}
-00 =00 =00

cevecese(5)

Since the atomic scattering factors, fj, decrease with increasing
sin O/A » the coefficients, F(hk{ ), in the electron density

function fall off and the Fourier series is convergent. It is
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convenient to write (5) in the form

) 00
e(xyz) = % Z: E E IF(hkt)l cos{2ﬂ(hx+ky+¢z)-v((hk&)}
-0 =00 =00

o0 s 0000 (6)
where o (hkf ) is the phase constant associated with the amplitude

|P(axce )] -

Because of the great amount of computational labour involved,
triple Fourier series are generally only used where very high
accuracy is sought, or in the case of very complex molecules.

In many structure analyses, it is sufficient to consider

projections of the electron density distribution on to planes.

™HUS o (xy) = n Z\ Z{ | #(nx0) | cos § 2m(nxrky)-u(1k0)]
-00 =00

ceeesesaea(T)

represents the electron density projected on to the (x, y) plane.
This double Fourier series method was first employed by Bragg (1929)
in the solution of the diopside structure and has proved of great
use in the case of planar aromatic hydrocarbons (Robertson, 1953).
By combining the results from two or more projections the complete

structure can often be established with very great accuracy.

2.1 The Phase Problem

Thefundamental problem of X-ray crystallography lies in the
fact that, although the observed intensities of the X-ray reflections

can be used to calculate 'F(hkz,)l , the corresponding phase



constants, & (hkf ), cannot be measured. Accordingly, an
infinite number of different electron density distributions may
be derived from the 'FO‘ values by assigning arbitrary phase
constants to each structure amplitude and summing the resulting
Fourier series.

However, although there is no unique mafhematical solution
to the phase problem, it may be possible to find a unique physical

solution by consideration of the following criteria:-

a) the electron density should be everywhere positive
b) the atoms should be approximately spherically symmetrical

c) the structure should be chemically reasonable.

Many attempts have been made to solve the phase probiem,
with greater success in the case of centrosymmetrical structures
since in such systems the phase angles are restricted to O or 77 .
This corresponds to positive or negative signs of the coefficients

of the Fourier series.

Tus p(xy) = 3 Qh YR xF(uk0) cosfon(axsky)} .....(e)
-0 -00

The methods employed in the work reported in this thesis will

now be outlined.,

2.2 Trial-and-Error Method

By consideration of the chemical structure, if known, and
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the more iniense X-ray spectra a trial set of atomic coordinates
can often be postulated for which structure amplitudes may be
calculated. If the latter show reasonable agreement with the
observed values then the calculated phase constants together
with the observed amplitudes may be used to evaluate & Fourier
series which should give better atomic positions. Iterations
of this procedure can then lead to a fairly accurate structure

determination.

203 The Patterson Function

An attempt to overcome the phase problem was made by
Patterson (1935) using the squares of the moduli of the structure
factors as Fourier coefficients. These quantities are didectly
related to the observed intensities and can always be measured.

The Patterson function, P(uvw), is defined by the expression
1,1

P(uvw) = VJ j J e(xyz) (:(x+u,y+v,z+w)dxdydz eeeea(9)

0 0 0

This may be reduced, by integration, to the farm

® oo 00
Pluvw) = % ZE E 2 IF(hkﬂ), exp{ 2n 1(hu+kv+lw)}
-0 eeee..(10)

Collecting together the coefficients in pairs, hk€ and h k £,
(10) may be written
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@ 00 00
Pw) = 3 28 D8 3T |rud)| ? cosfor (usivebm].... (1)
-00 -00 -0

which is real for all values of u, v, w.

The physical meaning of P(uvw) can be understood by a
consideration of (9). P(uvw) can clearly only have large values
when both e(xyz) and ?(x+u, y+v, z+w) are large. This occurs
if there are atoms at (x, y, z) and (x+u, y+v, z+w) sepérated
by the vector distance (uvw). Thus a peak in the Patterson
function at (ul, Vs wl) corresponds to an interatomic distance
in the crystal defined by a vector whose components are Uy Vpy Wy

The interpretation of Patterson maps is generally fairly
difficult, especially in projection, for the following reasons:-
a) for a system of n atoms there will be n(n-1)/2 distinct peaks

in the vector distribution and these will tend to overlap.
b) the theory is strictly valid only for point atoms and the

peaks will tend therefore to be broad and ill-defined.

Various methods have been studied in an attempt to improve the
resolution, mainly by Patterson (1935) and Yu (1942).

However, if there is present in the unit cell a small number
of heavy atoms there is a strong possibility of interpreting the
Patterson function. In this case the vectors between the heavy
atoms, and, perhaps between the heavy and light atoms, give rise

to peaks which stand out against the background of peaks due to



the 1light atoms.

2.4 The Harker Synthesis

Harker (19%6) has developed a useful modification of the
Patterson function involving the symmetry properties of the crystal.
Consider a crystal with a 2-fold screw axis which will be taken
as coincident with the b-axis. The equivalent positions are
represented by (x, y, z) and (X, 3+y, z). The vector between
atoms at these positions has components (2x, -%, 2z) and there
will be a maximum in P(uvw) at the point (2u, -%, 2w). This
maximum lies in the plane v = -, or v = &, since P(uvw) is
centrosymmetric, and there will Be a meximum in the plane v = %

for each crystallographically different kind of atom in the crystal.

(11) may then be written in the form

o0 oo
P(u,,w) = %f ZE E Cp cos{Z'rr (hu+2w)} eeea(12)

o0 -

[0 0]
where C,, = v DF | Ee) | 2
v B |

(12) is effectively only a two-dimensional summation and there

is a good chance of resolving the vector peaks for

a) all the measured IF(hk&)' values are used
b) interatomic vectors not parallel to the plane v = & are

eliminated.

Cne difficulty lies in the fact that certain atoms not related
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by the symmetry elements may have one or two coordinates which

are identical and result in non-Harker peaks.

2.5 The Heavy-Atom Technigue

The heavy-atom technique is based on the presence of one or
more atoms in or associated with the molecule, these atoms being
of predominantly higher scattering power than the remaining atoms.
The positions of these heavy atoms can be located fairly easily
by the Patterson method as indicated above, and combination
of the observed structure amplitudes with phase angles calculated
from the parameters of the heavy atoms alone provides coefficients
for a Fourier synthesis which is a close approximation to the
complete structure. This initial Fourier summation will generally
show a number of small peaks, some genuine and some spurious.
Further Fourier refinement may remove the spurious peaks or, by
a consideration of accepted bond lengths and bond angles, peaks
corresponding to real atoms may be distinguished. The result
can be expressed analytically by writing the expression for the
structure factor in the case of a crystal with one heavy afom

in the unit cell:-

n
F(hke) = £ exp {2ni(th+kyH+2zH5}+ EE: f.j exp{Zni(hxj+kyj+1zj)}
j=1

ceeneeed(13)



where fH is the scattering factor of the heavy atom, whose
parameters are Xgr Y 2y and n is the number of "light" atoms.

n
It is inadvisable that f_ should be very much greater than E f

H
since the resulting Fourier synthesis would tend to show onlyﬁihe
heavy atom. A rough rule for application to this method is that
the sum of the squares of the atomic numbers of the heavy atoms
and of the light atoms should be approximately equal.

It should be noted that this technique is capable of being
independent of chemical information regarding the molecule and
has proved successful in the elucidation of many structures of
which may be mentioned cholesteryl iodide (Carlisle and Crowfoot,

1945), B-caryophyllene bromide (Robertson and Todd, 1953) and

lanostenol (Curtis et al, 1952).

2.6. Method of Superposition and the Minimum Function

Suppose the structure has a centre of symmetry and one heavy
atom per asymmetric unit. The coordinates of this atom may be
determined from the Patterson function, as, say, (xl, yl, zl).

In the method developed by Beevers and Robertson (1950) the
Patterson function is then placed with its origin at each of the
two known atomic positions (xl, ¥qs Zl) and (il, 51, El) in turn,

to give a composite Patterson function

Pz(xyz) = P(x—xl, Y=y z—zl) + P(x+xl, Y+ z+z1) eeeea(14)
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In this function the images of other atoms in each of the heavy
atoms are brought into coincidence on atomic sites. Whether the
latter can be recognised in practice depends on the relative
weights of the atoms involved.

In the general case of a non-centrosymmetrical structure in
which the positions of m atoms are known, a superposition of m
identical Patterson functions ﬁith origins at the points
(xl, ¥y zl), (XZ’ Ty 22) ceesnees (xm, Yy zm) results, on
addition, in a function

o ,
Pm(xyz) = ZE: P(x-xj, y=¥ 5 z—zj) R ¢ 1))
j=1
Buerger (1951) has shown that there are certain advantages in
forming, instead of Pm(xyz), the minimum functions Mh(xyz) which
is the lowest value of P(x-xj, Y=Y 3s z-zj) for any value of j.
There is a high probability that peaks in the functions Mﬁ(xyz),

especially if m is fairly large, will represent true atomic sites.

3.1 Methods of Refinement

Various methods have been devised for the refinement of
positional and thermal parameters in an effort to make accurate
determinations of molecular geometry and vibrations of molecules
in crystal lattices. Among the more important may be mentioned

the F, synthesis, the differential synthesis (Booth, 1946),
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the method of steepest descents (Booth, 1947, 1949; Vand, 1948,
1949, 1951; Qurashi, 1949), the (Fo-pc) synthesis (Brindley and
Wood, 1929; Crowfoot et al. 1949; Booth, 1948; Cochran, 1951) and

the method of least squares.

3.2 Method of Least Squares

Least squares analysis was first applied to crystal structure
refinement by Hughes (1941) and has since been used successfully
by many workers. In this method FO and Fc are compared and the
problem is to find the atomic parameters which will render the sum
of the squares of the discrepancies a minimum, according to

Legendre's principle. Thus the quantity to be minimised is given

by

R' =ZJT (IFOI - chl ) 2 N ¢ 1))

Since the errors in FO may vary to some extent, weighting factors
must be applied and should be inversely proportional to the square
of the probable error of the corresponding FO. The least squares
routine is based on the assumption that the shifts to be applied
aré small enough to be treated as differentials. For every
observed spectrum one can set up an observational equation of the
typ
27|

. 2
Z <Jv7 v A§i=\/-w— (IFOI - IFcl) ceeeeaa(17)
i=1
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where A§1 are the corrections to be solved for and applied to
the values of Ei used in calculating the IFC‘ values. These
observational equations are then normalised by the least squares
procedure. Reduction of the computational labour is often

achieved by making the following assumptions:-

ATl 3l
RETEY?

a) if the atoms are well-resolved, quantities Z

2
achl

K

will be small compared with Z \/w

| AlFe| 2%
b) if the axes are orthogonal, quantitiesZ,/T . ,
. I 9% 1
can be neglected.
Thus considering only the diagonal elements of the matrix of
normal equations one can represent the normal equations by
2
N a'Fc\ 2 Fc
Ak D = > vwdEl - |7 ) vee..(18)
i=1 2% 2§

hke *

9
When refinement is continued until R and z :Jw lAFl
approach constancy the parameter shifts - positional, vibrational
and scale - indicated at that stage should be only a small fraction

of the corresponding standard deviations.

3.3 Agreement Index

A useful numerical test of the agreement between Fo and Fc
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values which is generally adopted is the agreement index

R = Q. |7, -2 | / 201 RPN 6 1-)

Expressed as a percentage, 100R is the percentage discrepancy.
Although R does not correspond to the function minimised by the
Fourier or least squares method it does provide a reasonable

indication of the progress of refinement.




CHAPTER IT

THE CRYSTAL STRUCTURE OF EPI-LIMONOL TODOACETATE

AND MOLECULAR STRUCTURE OF LIMONIN
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1. Introduction

Limonin, CZGHBOOB’ the bitter principle of citrus fruits,
was first isolated in 1841 (Bernays), but has only been studied
intensively over the past ten to twenty years. Shortly after
X-ray studies were initiated on limonin and its derivatives some
information became available (Melera et al, 1957) concerning the

known chemical features of the parent molecule and can be

summarised thuss:-

Limonin contains two lactone rings, which can be opened reversibly,

a f-substituted furan ring, a ketonic oxygen atom and two ethereal
oxygen rings. Infra-red measurements reveal that both lactone

rings are § -constituted and a study of the h&drogenolysis products
indicates that the allyl oxygen of the lactone which is cleaved

is attached allylicly with respect to the furan ring. This
situation may be compared to that which exists in columbin

(Barton and Elad, 1956), the main bitter principle of Colombo root.
Hexahydrolimoninic acid, 02633608’ formed by hydrogenation of limonin,
is an abnormally strong acid and it was postulated (Melera et al, 1957)
that this could be explained by an oxygen substituent &« to the
carboxyl group. The ketone group of limonin has an I.R. frequency
corresponding to that of a six-membered (or higher) ketone. At

this stage it was possible to assign the part formula I.
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I
The molecular formula of limonin in conjunction with the
established functional groups requires that the molecule be
bicarbocyclic and since vigorous degradation of limonin (Koller
and Czerny, 1936; Brachvogel, 1952) yields 1:2:5-trimethylnaphthalene
it can be reasonably supposed that the two carbocyclic rings are

both six-membered.

2. Previous X-Ray Examination of Limonin and its Derivatives

A survey of the unit cell parameters and space groups of
limonin and several derivatives has been conducted by Arnott and
Robertson (1959) and their results for limonin and its acetic
acid solvate are similar to those reported by Jones and Palmer (1949).
Because of the size and complexity of the molecule it was decided
that the best approach would be by means of some phase-determining
heavy-atom technique (Robertson, 1935, 19363 Robertson and

Woodward, 1937, 1940). Accordingly, attention was focussed on



Table 1

Crystallographic data for epi-limonol iodoacetate

and epi-limonol chloroacetate

epi-limonol iodoacetate epi-limonol chloroacetate
Molecular formula 026H3108(COCH21) 026H3108(COCH201).H20
a(8) ©15:03 £ 0-02 1226 + 0-02
v(32) 12436 + 002 10-92 + 0+02
(%) 15°93 + 0-02 11+50 + 0°02
B 95°121 15! 93°151% 15¢
w(22) 2952+7 18364
Z 4 2
Dm(g.cm_B) 1.426 1.220
D_(g.cn™) 1441 1-228
M (cm-l
A = 0.7107 X} 1 =0
Mol. wt. 640-5 568+0
Space Group le(ci) P21(C:)
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the two esters, epi-limonol iodoacetate and epi-limonol

chloroacetate.

3. Bxperimental Details

3.1, Preparation of the Crystals, Unit Cell Parameters and Space Groups

Crystals of epi-limonol iodoacetate and chloroacetate were
grown from solutions in acetone-water, the former appearing as
plates and the latter as thin needles.

The unit cell parameters were obtained from rotation and
equatorial layer-line moving film photographs. Later more accurate
cell dimensions were determined from precession photographs, marked
with/fiducial spots, taken with molybdenum K& radiation (A=0.7107 X).
The crystallographic data for the two esters are listed in Table 1.
It should be noted that the systematic absences - (0kO) for.

k = (2n+l) - are characteristic of both le(ci) and le/m(c:..),
but the latter space gfoup was rejected as being incompatible

with the fact that both esters are optically active.

3.2, GChoice of Derivative for Structural Investigations

Since the iodoacetate and chloroacetate were found to be
not isomorphous a choice had to be made for further investigations.
Inspection of Table 1 reveals that the latter has a much smaller

linear absorption coefficient for X-rays, (m), and has a smaller

unit cell containing only two chemical molecules related
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by the screw-axis. However the choice of an origin mid-way
between the two phase-determining chlorine atoms would have the
disadvantage of introducing the ambiguity of a false symmetry
centre in the subsequent analysis and thus phase angles calculated
on the basis of the chlorine atoms alone would be O orw.
Consideration of the various factors led to the conclusion
that the iodoacetate offered a greater chance of success in spite
of the following features:-

In the space group P21(C:) the general positions are two-
fold, and hence, with four molecules in the unit cell, the
asymmetric crystal unit consists of two chemical molecules.

This is a considerable complication, because it means that the
coordinates of 76 atoms other than hydrogen atoms must be
determined from the X-ray data. However, as will be seen later,
this situation has been of considerable use in confirming our

results.

4., Two-Dimensional Analysis of Epi-limonol Iodoacetate

4.1. Recording of X-Ray Data, Measurement and Correction of Intensities

The X-ray data used in the two-dimensional survey were
obtained from equatorial layer-line moving film photographs
around the a- and b- axes, using a Weissenberg camera with CuK«

radiation. Robertson's multiple-film technique (1943) was employed
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for the correlation of strong and weak reflections and the
intensities estimated visually. Corrections for Lorentz and
polarisation factors were made assuming the usual mosaic crystal

formula:-

P> - I sin2 @ / (1 + cos® 2 9) R ¢-10))

In this way a set of |F0l values on a relative scale was obtained.

4.2. Analysis of (100) Projection

For the successful application of the heavy-atom technique
it was essential to determine the coordinates of the iodine atoms
and this was most readily achieved by making use of the Patterson
function.

Using the squares of the 158 observed structure amplitudes
as Fourier coefficients a Patterson projection on (100) was
calculated using Beevers-Lipson strips.

The resulting Patterson synthesis is shown in Fig. 1, the
function having been evaluated from y = 0, to y =2 and from |
z=01%0 2 =4%. The y- and z- coordinates of the iodine atoms

may be represented by

£.3 — 3* —_—
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Thus the following vector peaks should occur:-

¥ (1 _T= v 1
Il-Il (2’ 221) Il I2 (yl y2 29 zl+zz)
-T¢ (1
57T, (5pmyps 25m7) -1, (& 2z)

The vector peaks, denoted by crosses in Fig. 1, have maxima at
(0-500, 0-049); (0-072, 0338); (0-426, 0-398) and (0.500, 0:270).
It was decided to choose the origin to be on the b-axis mid-way
between the two iodine atoﬁs. Making this choice the coordinates

of the iodine atoms were determined to be

Atom y /
I1 0037 0-025
i, 0.037 0-365

Using these atomic coordinates the contributions of the iodine
atoms to the (Okf) structure factors were calculated. The iodine
scattering factor curve used was that due to Brindley and Wood (1931)
with a temperature factor, B = 30 32.

The phase angles calculated on the basis of the iodine atoms
were associated with the corresponding observed structure amplitudes
and an electron-density projection on (100) evaluated. The
expression used for the calculation of the electron-density

projection on (100) is



Fig, 2 Electron density distribution projected on (100).
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00 00 k=2n
g(yz) = %— F(00) + 2 Z IF(oz)l cos 2wl Z + Z‘ |F(ko)[ Co
c 2=1 k=2

cos [Zth-.l(kO)]

+ 4 Z ZlF(k!.)lcos 2nd 2 cos [21rkY-a((kt)]

{ 00 00 k=2n
k=1 £=1

00 00 k=2n+l
- Z Z |F(xt)|] sin 2ml3z sin [erkY-o((kl)]} eeeea(21)

k=1 {=1

The resulting electron-density distribution, shown in Fig. 2,
indicates quite clearly the iodine peaks but the remainder of the
distribution is unresolved and cannot be interpreted in terms of

molecular structure.

4.3. Analysis of (010) Projection

The Patterson function projected on (010) was computed using
some 241 terms i.e. 38% of the total theoretical number of
reflections for the (010) zone.

In this projection the heavy-atom positions may be designated

by
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Fig. 3 Pro»,jeétion’of Patterson function on (010).



21.

Il (xl’ zl) . I2 (x2’ z2)

* - - * - =

oy (xl, zl) I, (x2, z2)
and the corresponding vector peaks should ococur at

3* £ 3
I, -1 (2x1, Zzl) I, -1 (x1+x2, z1+z2)

o)

%
I, - I, (xl-xz, zl-zz) I, -1, (2x2, 2z2)

The Patterson projection, illustrated in Fig. 3, shows peaks which
engble the x- and z- coordinates of the iodine atoms to be
determined.

Combination of the results obtained by a study of the
Patterson projections on (100) and (010) yields the following

coordinates for the iodine atoms:~

Atom x y Z
I1 0.062 0-037 0-025
I2 0+133 - 0-037 0+365

The x- and z- coordinates of the iodine atoms were used to
calculate a set of structure factors for the (hOL) data. An

electron-density projection on (010) was calculated, using as



tribution projected on (010).
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Fourier coefficients the observed structure amplitudes with the
signs of the structure factors calculated on the basis of the
iodine atoms. The electron-density equation for the (010)

projection is given by

. 00 [o ok
1
p(xz) = i F(00) + 2 E F(hO) cos 2whX + 2 E F(OL) cos 2wlZ
¢ h=1 | ' L=1

+ 2 i f {F(hL) cos 2w(hX+lZ)+F(he) cos 2w(-hX+£Z)}
h=1 4=1

cereseessesseesas(22)

At a later stage this electron-density computation was repeated
using MoK« data and the resulting distribution is shown in Fig. 4.
More terms were available for the Fourier synthesis in the case

of the molybdenum data but the overall distribution is essentially
the same as that obtained from the coppér data. As with the (100)
projection the only recognisable peaks are those due to the iodine
atoms. However, the (010) electron-density distribution is not
nearly so featureless as the (ioo) distribution and it will be

of interest to reconsider the (010) projection later in the light
of the complete structure. Nevertheless, it should be noted

that with molecules of this complexity the possibility of solving
the structure by consideration of projections of the electron-
density is fairly small due to the very considerable overlap of

atoms.
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5. Three-Dimensional Analysis

5.1. Recording of X-Ray Data

For epi-limonol iodoacetate the linear absorption coefficients

for X-rays have the wvalues

96.0 em™l  for CuK« radiation (A = 1.542 &)

[

M

a = 12.0 cm™l for MoKg radiation ( A = 0.7107 %)

Accordingly, to minimise the introduction of errors due fo
absorption, MoK« X-radiation was used for all measurements.
Photographic records were obtained using an equi-inclination
Weissenberg camera and a precession camera. . In the former case
the multiple-film technique (Robertson, 1943), and in the latter
case the multiple-exposure method, were used for the correlation
of strong and weak reflections. In recording the Weissenberg
photographs, sheets of nickel foil, 0:008 in. thick, were interleaved
between films (Ilford 'Industrial-G'). Crystal specimens
measuring about 1.0 x 0.2 x 002 mm. were used and it was found
that the ratio of the strongest to the weakest intensity in any
layer was about 8000: 1. The reciprocal lattice was explored
by recording the intensities of the (hOl)-(h8f) and (Okl)-(6ké)
layers with a Weissenberg camera and the (hkO)-(hk3) layers with

a precession camera.
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5.2. Measurement and Correction of Intensities

The intensities were estimated visually by independent
observers using the 'standard-spot! and 'step-wedge' techniques.
Absorption corrections, being small, were not applied. Intensities
meagsured on the precession camera films were corrected by the
Lorentz and polarisation factors using the charts of Waser (1951)
and Grenville-Wells and Abrshams (1952). Those measured on the
. Weissenberg films were corrected by the usual Lorentz and polarisation

factors and by the Tunell (1939) rotation factor.

6., Structure Determination

6.1, Harker Section

As indicated in 2.4 of Chapter I, Harker (1936) has shown
how, if one considers the symmetry elements of the crystal, the
most useful information to be derived from a three-dimensional
Patterson function is often conceﬁtrated over a particular plane
or along a particular line. This approach reduces the computational
labour to that of a two-dimensional summation but with the use of
three~dimensional data.

Since the complete structure anglysis of epi-limonol
iodoacetate was to be based on the determined coordinates of the
iodine atoms it was decided to compute the Patterson function for
the appropriate Harker section in order to obtain as accurate

iodine coordinates as possible.



Fig. 5 Harker Section at y = 3.

X denotes a Harker peak due to the vector between two

symmetry-related iodine atoms.

4 denotes a non-Harker peak due to the vector between

two independent iodine atoms.
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The equivalent positions for the space group P2, are (x,7,2)
and (x , 3+y, z). For every pair of atoms related by the screw
axis ti:ere will be a maximum in the Patterson function at

(2x, %3 2z). Thus for the space group P2 the corresponding

l’
Harker section is y = 4. P(x,%,2) may be calculated by means

of the expression

Z Z Cpp ©08 2n(hx +4£2) R €5 )
h 4 :

P(x,%3z)

]

k 2
where Chy = Z (-1) IFhkt‘ .
k

The (hOL)-(h78) data provided 2146 ‘Fhkzl values which were
used to compute P(x,%,z), the calculation being performed on
Robertson's Universal Fourier Synthesiser (Robertson, 1954, 1955).
The resulting Harker section of the Patterson function is shown
in Fig. 5. The two peaks corresponding to vectors between the
symmetry-related iodine atoms are clearly defined and it should
be noted that there is also present a non-Harker peak of
appreciable height corresponding to the vector between the two
independent iodine atoms. The peak maxima were accurately
determined by interpolation along the two axial directions and
it was found that the iodine coordinates differed only very
slightly from those obtained by a study of the (100) and (010)
projections. The coordinates deduced from the Harker section

tzke the follcwing values
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Atom x y : z
Il 0+062 0037 0-029
12 0-133 0-037 0-366

6.2, Abortive Fourier Synthesis

With a knowledge of the positions of the iodine atoms it was
decided to attempt to solve the structure by successive Fourier
syntheses, with the phases calculated only for the iodine
contributions as a first approximation. Owing to the very large
amount of computation involved the calculations were performed
on the Ferranti 'Mercury'! computer at Manchester University.

Structure amplitudes and phase angles based on the iodine
coordinates were calculated and the discrepancy between observed
and calculated structure amplitudes was found to be about 34%.
This value is rather lower than one might have expected but it
was decided to use these phases in the computation of a three-
dimensional Fourier synthesis.  The resulting electron-density
distribution was plotted out and proved very disappointing. So
many peaks were present that it was very difficult to decide which
peaks corresponded to genuine atoms and which were spurious.

An attempt, however, was made to correlate this three-

dimensional electron-density distribution with its projection on
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(010), shown in Fig. 4. The sections of the 3-D electron-density
distribution were placed in turn on top of the (010) electron-
density projection and peaks common to both selected subject to

the following conditions:-

a) if a peak in the 3-D map corresponded to a ridge or peak of
electron-density in the (010) projection it was accepted as
genuine

b) if two or more maxima in the 3-D map possessed very similar
x~- and z- coordinates and hence overlapped in the projection

they were not accepted for the present purpose.

In total some forty peaks were selected and, assuming them to be
carbon atoms, their x- and z- coordinates used to calculate
structure factors for the (hOL) data. For each structure factor
calculation, the selected peaks were divided into groups and various
combinations examined. It was found, however, that the R-factor
showed relatively little sign of improvement on testing a series

of possible combinations of the selected peaks. The failure of
this Fourier synthesis prompted us to consider making use of the
Patterson minimum function, at least until some solution of the

electron-density problem had been achieved.

6.3, Three-Dimensional Patterson Function

As a preliminary to the study of the minimum function a
three~dimensional Patterson synthesis was computed using a programme

devised by Rollett for English Electric 'DEUCE'. Since the
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Fig. 6 Modification function used in three-dimensional Patterson

synthesis.



Fig., 7 Harker section of three-dimensional Patterson function.

O denotes a Harker peak corresponding to the vector

between two symmetry-related iodine atoms.

@ denotes a non-Harker peak corresponding to the

vector between two independent iodine atoms.
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Patfersqn function involves quantities propdrtional to f2 rather
than to f the peaks tend 1o be broader and less well-defined than
the peaks of an electron-density map. Various methods of
'sharpening' the Patterson function have been developed (Lipson
‘and Cochran, 1953) and the general principle involved is to modify
the Fourier coefficients, ‘Fth2 8o as to give more weight»to
v the middle and higher ranges of sin © and less weight to the low-
order terms, the process being roughly equivalent to the use of a
smaller temperature factor. The modification function, M, used
in the present work is shown in Fig. 6. For the minimisation
of computing time the data were arranged so that the number of
h values was lowest and the number of k values next. The three-
dimensional 'sharpened' Patterson synthesis was computed in
sections perpendicular to the b-axis at intervals of 1/48 from
y=0 to y=}/2. The interval of division along the a- and c-axes
was also_%/48, the Patterson function being calculated for the
intervals x=0 to x=1 and 2z=0 to z=1/2. The value of the
Patterson function at each point was recorded on a tracing paper
grid but the contours were not drawn since the Patterson
distribution was computed with the main purpose of deducing the
values of the minimum function. The coordinates of the iodine
atoms were confirmed and it is of interest to inspect the Harker
section at y=l/2, shown in Fig. 7. The Harker section illustrated

in Fig. 5 was computed using 2146 IF(hkL)l2 values, whereas the
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section at y=1/2 in the 5-D Patterson synthesis was calculated
with 2927 lF(hkl)‘2 values. Comparison of the two sections
shows that the inclusion of more data has resulted in a much

smaller non-Harker peak relative to the true Harker maxima.

6.4. The Patterson Minimum Function

Many attempts have been made to derive relationships between
fundamental sets and vector sets (Wrinch, 1939; Buerger,; 1950, 1951;
Beevers and Robertson, 1950; Clastre and Gay, 1950 a,b;

Garrido 1950 a,b; McLachlan, 1951). These different approaches
may be termed "superposition methods" and the chief practical
difficulty lies in the fact that the theory is strictly wvalid only
for a vector set of points and not for the Patterson function.
However, superposition of Patterson functions leading to composite
functions such as addition, product and minimum functions has been
of considerable use in the solution of crystal structures.

In the present work the method employed may be summarised
thus:-

Let (x, y, 2z) be the coordinates of 'light' atoms and (xI, Yo zI)
the coordinates of the iodine atoms. Then vectors between
'light!' atoms and I, will be represented by peaks in Patterson

space with coordinates

P -9

<
l

e
1

e
H
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A grid was drawn out representing the (x, z) plane and on it were

marked the positions of I1 and 12.~
: . 85 = &2
Now yr. o= and yp = 240

240

1 2

However, since the Patterson function had been computed in sections

at intervals of y = 5/240, it was convenient to assume that

’ -10 10
yp = /240 , yp = /240
1 2

Applying the relationships (24) to the two iodine atoms I, and

12,

. 10
y=Y+y11 y = Y- /240

D%
[l

Y4y v = Y+ %0240
2

; . 1

Thus, in preparing the superposition function for, say, y = 5/240,
the Patterson section Y = 25/240 was placed with its origin at Il
and the section Y = 5/240 placed with its origin at I,. The
superposition function was plotted for each point of the grid,
taking the minimum value of the two Patterson functions at each
grid point. In this way the minimum function, Ml’ was prepared

. . 0 120 . 5

in sections at y = /240 to y = ~°/240 at intervals of y = “/240,

In like manner the minimum function, M2, with respect to iodine atoms
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;‘ and 152‘ was prepared and finally M; and M, were directly

I
superposed to give the complete minimum function, M. There

was then a fairly high probability that peaks in the distribution,
M, corresponded to genuine atomic sites of the 'light' atoms and
it was hoped to confirm this result when the minimum function, M,

was compared with the first three-dimensional electron-density

distribution.

6.5. Three-Dimensional Fourier Analysis

Some five to six months after first receiving the 3-D
Fourier results from Manchester, and just before the completion
of the minimum function, we were informed that there had been a
subtle error in the Fourier programme, invalidating the previous
results and it was accordingly decided to repeat the Fourier
calculation using the corrected version of the programme. It
is convenient at this stage to discuss the theory of the weighting
system applied to the Fourier coefficients.

Luzzati (1953) has shown that if, with a compound containing
heavy atoms, only some of the atoms are used in computing the
phase angles then the resolution is poorer in the non-centrosymmetrical
case than in the centrosymmetrical case. Woolfson (1956) has
recently demonstrated how the resolution may be improved for
centrosymmetrical structures by computing a Fourier series with
coefficients modified according to the probability that F and FH

have the same sign, where FH is the structure factor calculated
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on the basis of only some of the atoms in the unit cell.

For the non-centrosymmetrical case a method has been developed
by Sim (1959) which leads to improved resolution and which may be
summarised thus:-

Let !FH‘ andJJH be the values of the structure amplitude and phase
angle calculated on the basis of only some of the atoms in the
unit cell,

The probability of (&-JH) lying between E and § + d§ for a
structure factor with fixed values of IF‘ s lFH‘ and.(H is

given by

p(§) af = exp(X cosf) af/2wI (X) .eovinineninn..(25)

where I, is the modified zero-order Bessel function (Watson, 1922)

and

n
2
x = 2lel lwgl/ 37 5
i=1

the summation being over the atoms not used in the evaluation of
dg.  The probability that (&-JH) lies between the limits &§

is then given by
*
P(g) = P(;)dg .l.‘..'.."l.l..(26)
Values of P(§ ) for various values of X and g have been tabulated

and it appears that the larger the value of X the more likely

'J-'lﬂl is to be small and vice-versa.
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When it is probable thatl&-{H‘ is small the weighting
factor should be large, approaching unity, and whenlJ -{Hl
is likely to be large then the weighting factor should be small.
The weighting factor should be a function of P(f) and Sim has

suggested the use of

W = 2P(90°) -1 N -1 3

Values of W as a function of X have been calculated and it has
been shown that the resolution is improved, especially in the
case where the number of atoms used in calculating (Iiis small
compared to the total number of atoms in the unit cell,

The (hk%) data were divided into groups with 2 sin O
values lying in ranges of 0:05 unit and the weighting factor
corresponding to the mid-point of the interval evaluated. The
observed structure amplitudes weighted according to the above
method and the phase angles calculated for the iodine atoms were
used to recalculate the three-dimensional electron~density
distribution. The Fourier synthesis, which shall be referred
to as Fl, was computed in sections perpendicular to the b-axis
at intervals of 1/48 fromy = 0 to y = 1/2. The interval of
division along the a- and c- axes was also 1/48 covering the
ranges x = 0 to x =1 and 2 = 0 to z = 1. The electron-density
function was thus evaluated at 55,296 points in the unit cell.
These electron-density values were transferred to sheets of

rgcing vaper and ths contours drawn. The approximate time



taken by two workers to prepare any one section was from 1% to

2 hours. The contoured sections were redrawn on sheets of
perspex which were then stacked in a metal frame, with perspex
spacers, cut to scale to approximately the correct width, placed
between the sections. The whole assembly was illuminated from
below by strips of fluorescent lighting which greatly facilitated
the examination of the electron~density distribution. Careful
scrutiny of the electron~density distribution showed that this
recalculated Fourier synthesis offered a much better chance of
success than the original, the peaks having been reduced to a
more manageable number.

Using a different colour of crayon the minimum function was
then contoured on the perspex sheets, section for section. The
complete electron-density distribution was thoroughly compared
with the minimum function and strong peaks which were well-
represented in both functions were considered to represent
genuine atoms. For tﬁe two molecules in the asymmetric unit
it proved possible to assign coordinates to 50 atoms other than
the two iodine atoms. At this stage the relative peak heights
did not justify distinction between carbon and oxygen atoms.

From this point all computational work was done in Glasgow
using the programmes developed by Rollett for English Electric
'DEUCE'.  Using the carbon scattering factor curve of
MacGillavry et al (1955) and the iodine scattering factor curve

£ 7 znd Brindlery (1951), phase zngles were calculated on the

~
(9
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Fig. 8 Part of the electron-density distribution, F2,
represented by superimposed contours and showing

the two molecules in the asymmetric unit.



@ Carbon
O Oxygen

O TIodine

Fig. 9 The arrangement of satoms in the crystal asymmetric unit.
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Fig. 10  Molecular structure of limonin.
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basis of the fifty 'carbon' atoms and two iodine atoms. The
temperature factor employed was B =30 32 for all 52 atoms.
With these phases a second Fourier synthesis, F2, was computed
and the sections drawn out on a separate stack of glass sheets.
Comparison of F1 and ¥2 showed that much of the background
detail present in F1 had been eliminated in F2. A careful survey
of F'2 enabled us to specify two, distinct, well-separated molecules,
mutually consistent in the chemical sense.  Although the presence
of two molecules in the asymmetric unit greatly complicated the
calculations in this work, the fact that the peak positions were
found to conform precisély to two chemically identical but differently
oriented molecules provided convincing evidence of the validity
of our results.

Part of the electron-density distribution, F2, is shown in
Fig. 8, by means of superimposed contours. The arrangement of
the atoms in the crystal asymmetric unit is illustrated in Fig. 9.
The structure proposed for limoﬁin on the basis of F2 is shown in
Fig. 10, the lettering and numbering having been proposed by
Professor Barton in accordance with the theories as to the
biogenesis of limonin.

On the basis of peak heights it was not possible to
distinguish beyond all doubt between oxygen and carbon atoms.
In particular, in the lactone ring A it was not possible to rule

out the possibility that 0(3) might be carbon and C(2) oxygen.




Fig. 11 Atomic positions, as determined by F2, projected on (010)

for comparisoh with Fig. 4.
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However, as will be seen later, this ambiguity is eliminated by
the chemical evidence,

At this stage the.electron-density projection on (010),
shown in Fig. 4, was compared with a sketch, drawn to the same
scale, of the atomic positions projected on (010). This sketch
is illustrated in Fig. 11 and it is of interest to note that
about 30 peaks in the electron-density projection correspond to

genuine atoms.

T. ZRefinement of Structure

Refinement of the crystal structure of epi-limonol iodoacetate
has been conducted by successive structure factor calculations and
three-dimensional Fourier syntheses. After each structure factor
calculation the discrepancies,d, equal to ( [FOI - chl ) were
examined and those with A positive and greater than or equai to
IFC‘ were omitted from the corresponding Fourier synthesis. This
criterion of selection has resulted in about 2800 structure factors
out of 2927 being used for each Fourier synthesis.

Two Fourier syntheses, F3 and F4, were computed and one cycle
of leastsquares_analysis performed, omitting the furan ring and
0(17) of one molecule from the phasing. The reason for this
procedure was that these atoms, although well-resolved, were still
fairly weak.

The succeeding Fourier synthesis, F5, used phases based on



Table 2

Atomic coordinates derived from F5 |

Molecule I

Atom X/a. y/b Z/c Atom x/a y/b Z/c
0 +135 +035 +366 38 <634 <099 - 003
2 321 160 -164 40 543 143 010
4 314 105 - 081 42 - 408 104 938
6 395 130 034 44 352 -188 - 880
8 488 104 <077 46 -628 - 485 - 085
10 =489 +165 164 48 445 -394 -252
12 581 181 <220 50 <414 -029 252
14 +581 270 281 52 173 161 216
16 495 306 304 54 <101 <105 - 240
18 429 217 <297 56 -456 013 *579
20 <413 137 215 58 312 034 561
20 351 -215 <361 60 +421 +373 427
24 *350 -318 410 62 -453 <420 -978
26 +511 +348 -397 64 -497 .121 .931
28 *570 <435 <417 66 .339 <423 .056
30 <677 <434 <417 68 276 *335 <435
32 +376 +099 -557 70 438 -145 “379
34 <490 477 <915 T2 <250 <115 - 207

36 <376 +481 +011 T4 +155 <266 -194




Atom

O =3 U1 W+

11
13
15
17
19
21
23
25
27
29
31
33
35
37

Note:-

Table 2

Atomic coordinates derived from F5.

*a /o
062 462
027 127
.101 <037
*954 <441
£999 474
-927 -052
-860 +080
+795 +166
785 +174
-880 214

1957 -164
.870 263
- 786 282
722 281
624 265
+594 +293
*553 «236
-070 .028
+941 +358

Numbering system as in Fig. 9.

Molecule II

z/c

‘972
*835
828
-217
-306
*705
630
-650
- 746
-788
<754
873
896
<757
-710
«629
<753
623
*452

Atom

39
41
43
45
47
49
51
53
55
5T
59
61
63
65
67
69
71
73
75

X/a

- 039
031
909
-812
-915
ey
-008
<099
145
+518
472
714

.893

+960
911
*769
-887
-070
-087

Y/b

+333
364
+333
*339
-273
+ 089
-245
-234

+333

+301
»252
<303
<437
<287
-288
<297
=332
+226
+150

432
327
- 223

241

<142
.788
<706
950
*971
<622
<697
+837
<417
<293
500
-976
=799
871
003
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all 76 atoms in the asymmetric unit. The resulting electron-
density distribution showed considerable improvement in the fﬁian
ring but the oxygen peak was still rather unsatisfactory. The
peak heights throughout the whole electron-density distribution
were still too high due to an error in the scale factor but the
ratio of the peak heights of carbon and oxygen atoms was correct.
The scale factor and temperature factor have been adjusted and at
the time of writing a sixth Fourief synthesis is being computed.,

It is hoped that this computation will substantially improve the
oxygen peak of the furan ring. |

The atomic coordinates obtained from F5 are listed, for the
two independent molecules of the asymmetric unit, in Table 2.
The structure factors with associated phase angles calculated on
the basis of these coordinates are compared with the observed values
in Appendix 1. " The discrepancy between these obseréed and

calculated structure factors is 19°8%.

8. Discussion of the Structure

Over the past few years three groups of organic éhemists,
in Londdn, Zarich and Harvard, have been studying the constitution
of limonin and recently the results of their work have been made
available to us. These results together with our findings have
been submitted for publication in Experientia.

At the time of our solution of the structure the mass of

chemical evidence provided conclusive proof for the presence of
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the system II which accounts for 20 of the 26 carbon atoms and T
of the 8 oxygen atoms. During recent months two possible complete
structures IIT and IV had been considered. More weight had been
attached to the latter which corresponds exactly to the structure
determined by X-ray methods. No information was available,
however, from the chemical evidence, concerning the stereochemistry
of limonin.

Biogenetically limonin may be considered to be a tetracyclic
triterpenoid of the eﬁphol type, V, (Barton et al, 1954, 19553
Arigoni et al, 1954). According to Barton (private communication)
there is a distinct possibility that the structures of several
bitter principles may be similar to that of limonin, especially
nomilin, 028H34O9’ (Emerson, 1948, 1951) and obacunone, 026H3007’
(Sondheimer et al, 1959; Dean and Geissman, 1958).

The stereochemistry of limonin is as illustrated in Fig. 10.
In epi-limonol, the hydroxyl group 0(4) at C(7) is equatorial.

This is in agreement with the experimental observation (Melera

et al, 1957; Fujita and Hirose, 1954, 1956) that limonin yields
epi-limonol on reduction with sodium amalgam, a process Which is
known to yield the more stable of a pair of stereoisomers.‘ Thus
limonol itself must be the axial isomer in agreement (Barton, 1953)
with its mode of formation. The methyl group, C(23), at ring
junction B/C is axial. In the trans-decalin system ring B has

the chair and ring C the boat conformation.
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In so far as the X-ray analysis is concerned the refinement
process should terminate fairly soon. It is intended to compute
an FC synthesis, obtain the back-corrections and finally compute

a three-dimensional FO synthesis.




CHAPTER IIT

THE CRYSTAL AND MOLECULAR STRUCTURE

OF AZULENE

-
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1. Introduction

Azulene, clOHB’ belongs to a group of compounds responsible

for the intense blue colour in certain essential oils. The
structure of the parent compound was elucidated by Pfau and

Plattner (1936) and has been generally represented by two

D

However, the above structures do not fully explain the properties

Kekule'—type formulge:-

of azulene. For instance, azulene is basic, dissolving in strong,
agueous acids and it has a dipole moment of 1:0 Debye unit. X-ray
studies of this hydrocarbon were initiated with the following aims

in view:~

a) an accurate determination of the molecular geometry.

b) a detailed picture of the electron-density distribution with
the possibility of detecting any charge-transfer effects.

¢) correlation of the results with those obtained from the

numerous theoretical studies of azulene.

2. Previous Examinations of Azulene

The earliest study of azulene was made by Misch and

van der Wyk (1937) who determined the unit cell parameters and
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suggested that the space group was either P2,(C}) or P21/m(C;L).
Later work by Gunthard et al. (1948) revealed the absence of the
(hO£) spectra for h = 2n+l in addition to the (OkO) absences for
k = 2n+l, and led these workers to propose P21/a(C:;) as the space
group. With two molecules in the unit cell this would require
that the molecule possesses a centre of symmetry, which is in
conflict with the chemical evidence. The explanation put forward
was_that the centre of symmetry might be a statistical effect due
to the random reversal of direction of the moleculesin the crystal
lattice. Later Gunthard (1949) suggested that the (hOf) and (0kO)
halvings might be attributed to pseudo-symmetry and that the true
space group was in fact P2l(Ci), Pa(C2) or even PT(C4).

More recently Takeuchi and Pepinsky (1956) reported the results
of their preliminary analysis of azulene. They considered the two

possible casesg:~

a) the random arrangement in P2l/a and
b) the space group Pa with the projection of molecules on the b-axis
symmetric about a point lying mid-way between the glide planes

and thus excluding (0kO) spectra when k is odd.

Successive structure factor calculations and Fourier projection
reduced the R-factor for the (hOL) data to less than 20% in the

space group Pa, but failed to reduce it below 24% in P2,/a.



Pable 3.

Tnit cell parameters.

a 7-884 + 0-008 &
b 5-988 + 0-008 &
c 7-840 + 0-008 &
[ 101°33" + 20"

v 362-6 2°

rohs. 1175
Sumber of molecules per umit cell = 2
?@mlc. 1-174
Lhsorption coefficiemt for Cuokd X-radiatiom

(A=1-542 8) = 606 cw *

Absent Spectras- (ho) whem b = 2mel

(0kQ) whem k = 2m+l
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2.1 Two-~Dimensional Studies

For the sake of continuity a short account is now given of
the two-dimensional refinement and collection of three-dimensional
data carried out by Robertson and Shearer (1956).

Unit cell parameters were calculated from zero-layer
Weissenberg photographs, standardised with sodium chloride powder
lines, about the a-, b-, and ¢~ axes and the values obtained are

listed in Table 3.

Determination of the Space Group

The absences quoted in Table 3 would indicate the space group
P21/a(CfL) and would require the random arrangement mentioned
earlier. In this space group the projection of the strgcture on
(010) is centrosymmetrical and to test this situation the statistical
methods of Wilson (1949) and Howells (1950) were applied to the
(hOL) spectra. The results of the N(z).test indicated with
apparently a fair degree of certainty that the b-axis projection is
non-centrosymmetrical, implying that the (0x0) absences‘are
accidental and that the space group is Pa(C: ). This deduction

is in agreement with the observation by Bernal (1956) that azulene
crystals show {001} and {110}, but in addition each crystal shows
one and only one form of the plane {100}, indicating that azulene

Dossesses no axis of symmetry.



Structure Determination

Proceeding on this assumption a trial structure was postulated,
based on the chemical formula, placing the two molecules with
respect to the glide plane in such a way that an almost exact
halving of the spectra was obtained. Refinement of the (010)
projection by difference syntheses reduced the R-factor to 11.1%.
An electron density projection of the structure on (010) is shoﬁn
in Fig. 13. It is seen that the molecular plane is steeply
inclined to (010) and this prevents perfect resolution of all

the atoms. Refinement of the (100) projection by difference
syntheses gave an R-factor for the (0k& ) data of 17-2% and
further improvement was obtained by refinement of the (h2£ ) data

using difference generalised projections.

2.2 Recording of Three-Dimensional X-Ray Data

A photographic survey of points lying within the limiting
sphere of the reciprocal lattice was made using CuK« radiation.
Reflections were obtained by rotation of crystals of fairly uniform
cross-section about the [lOO], [010], [001] and [110] axes, using
an instrument of the equi~inclination Weissenberg type. The
multiple film technique (Robertson, 1943) was used to correlate
strong and weak reflections, the intensities of strong reflections
being derived from small crystals rotated about the [lOO] and [010]

axes and previously dipped in liquid air to reduce the effects of



Table 4.

Layer lines recorded and dimensions of-g@ystals used.

Dimensions of crystal specimen (mm)
Layer lines

Cross-section x length along rotation axis

(oke) - (5k¢) 0:66 x 0°69 x 0482
(hot) - (n3L) | 0-48 x 0+51 x 0-80
(hk0) - (hk5) 0-63 x 0466 x 054
(hh8) - (h,h+5,L) 0+60 x 066 x 1-02
(okt) - (2ke) 0+16 x 0+12 x 0-51
(hot) - (n23) 0-18 x 0-18 x 0+54
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extinction. A list of the layer lines recorded, with the dimensions

of the crystal specimens employed, is given in Table 4.

3, Three-Dimensional X-Ray Analysis

3.1 Measurement and Correction of Intensities

The intensities were estimated visually by two independent
observers (Watson and Shearer), the ratio of the strongest to the
weakest intensity in any layer line being about 26,000: 1. The
reduction factor from film to film was determined by the method
. outlined by Rossmann (1956).

The values of the structure amplitudes were derived by the
usual formula for a mosaic crystal:-

F° = T sin 29/(1+cos2 20) seveeciesonss (28)

Lorentz and polarisation factors were applied, together with the
rotation factor appropriate to equi-inclination Weissenberg
photographs (Tunell, 1939). Absorption corrections to allow for
the shapes of the crystal specimens were obtained by calculating
the mean path length for the ray through the crystal as proposed
by Albrecht (1939), allowance being made in the case of upper
layer lines for the increase in path length and change in Bragg
angle for the reflections.

Structure amplitudes for planes whose reflections appeared

on different layer lines and which were derived from different
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crystal specimens were correlated by reflections common to the
different sets. The final values adopted were the average of the
different sets after correlation, but when variations occurred among
very strong reflections the highest value was generally adopted
to offset the possibilities of errors due to extinction.

It has been shown by Whittaker and Robinson (1944) that if
there are n observations of Fi, the standard deviation in any one

observation is

C(B) = [S(F-R) ) o)
where F: -:;-ZFJ:

This relation clearly holds only for large values of n and when

n equals 2, 3, 4, 5, the significance of U'(Fi) becomes rather
dubious. However, U'(Fi) was evaluated for all the |F| values
observed more than once and the standard deviation in the structure
amplitude was found to be approximately a constant percentage

of the structure amplitude, with @'(F;) = 0.07 IFil .



4. Structure Analysis

4.1 Least Squares Anslysis

The coordinates obtained from the projections studied by
Robertson and Shearer (1956) were submitted to Professor Pepinsky
and Dr Vand of Pennsylvania State University for least squares
analysis. Isotropic temperature factors of the form
exp {-B(sin e/A )2} were provided, with B = 5-58° for both
carbon and hydrogen atoms. 670 planes were employed in the
analysis and refinement was carried out only on the carbon atoms,
the hydrogen contributions being included in the structure factor
calculations. Three cycles of least squares refinement, using
an IBM 704 computer resulted in a fall of only 1% in the R-factor
from 23¢4% to 22.4%. Consideration of these results indicated
that theré was something fundamentally wrong with the structure
assigned to azulene in spite of the relatively good agreements in

the structure factors for the three main crystallographic zones.

4.2 Space Group Considerations

As indicated earlier it had been assumed that the (0kO)
halving was accidental and the azulene molecule was placed in
such a position with respect to the glide plane that an almost

exact halving of these spectra took place. There was no evidence

46.



Fig, 12 Superposition of two azulene molecules, the second having

been inverted through the symmetry cemtre.
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of disorder in the X~ray photographs but thermodynamical studies
by Gunthard (1949,1955) have shown that the entropy of solid azulene
is substantially higher than that of the isomeric naphthalene, and
Gﬁnthard has suggested that there might be a statistical disorder
effect in crystalline azulene.

The possibility was next considered that the space group might
after all be P21/a, as indicated by the spectral absences and the
structure really centrosymmetric. This implies, of course, that
the structure is disordered. The atomic céordinates deduced
previously were referred to a new origin at the centre of the
molecule which was taken to coincide with a centre of symmetry in
PZl/a, and the atoms given half-weight. This procedure postulates
the superposition of two molecules in the original orientation except
for the inversion of the second molecule through the symmetry centr?.
Physically, and according to the chemical evidence this must
correspond to a simple random reversal of direction of successgive
azulene molecules in the crystal. A view of the resulting
superposition of two molecules is shown in Fig. 12.

This disorder is of the same type as found in p-chlorobromobenzene
(Hendricks, 1933; Klug; 1947) and is also similar to that reported
in the case of 2-amino-4-methyl-6-chloropyrimidine (Clews and
Cochran, 1948), though in these cases, because of the symmetry of
the molecules, there are effectively only two atoms involved in the

disorder. The X-ray photographs of these compounds as of azulene



Table 5.

R-factors for space groups P21/ e and Pa.

le/a Pa.
Ok 14-9% 20-0%
hol 10-2% 11.5%
hkO 18-1% C 14e2%

hkg  20.4% 22+4%
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show no trace of additional layer lines and no diffuseness in the
spectra, so that the possibility of a fault structure with Dblocks
of the crystal containing molecules properly aligned in one

direction and other blocks with molecules properly aligned in the

other direction can be excluded, (Robertson et al, 1958).

5. Preliminary Refinement of Centrosymmetrical Structure

Full three-dimensional structure factors were computed for the
new centrosymmetric structﬁre at the National Physical Laboratory
and the discrepancies are listed in Table 5 for comparison with
the non-centrosymmetric values. At this stage the data was sent
to Vand and Pepinsky for three-dimensional least-squares refinement

and in the meantime some refinement of the projectionswas attempted.

5.1. Refinement of (010) Projection

This projection belongs to the plane group p2 and the electron

density equation is given by

00 ®
p(xz) = _AL F(00) +2 Z F(hO) cos 2whX + 2 z F(OL) cos 2L Z
° h=1 =1

+2 5 ST{rmL) cos 2n(nx+bz) + F(EL) cos 2n(-hx+Lz)}
r 2 > {rnr) cos en(nx+tz) + B(RL) cos 2n(- nx+22)}

h=1 g=1 :
e N & 10))



\

Fig. 13 (a) Projection of electron density on (010) for space group Pa.

(b) Projection of electron demnsity on (010) for space group P21/a.



Table 6.

Variation of R-factor with k.

Zone n* R(Pa) R(le/a.)
hoL 69 11+5% 10-2%
hlg 124 14+8% 12.1%
h2{ 128 22+ 0% 20+ 2%
h3{ 117 29.1% 26+ 2%
nat 88 38+ 5% 34+ 7%
h5 ¢ 68 36 0% 40+1%
n6L 52 42+0 45-2h
h74 25 52 676 53 2%

# n is the number of reflections, excluding non-observed terms.



78 terms were used in the Fourier summation, with the calculated
signs, and the resulting electron density map is shown in Fig. 13
together with the (010) Fourier projection for the space group Pa.
The strong similarity between the two electron distributions is
very marked and accounts for the good structure factor agreement

obtained for the non-centrosymmetric structure.

5.2 Refinement of (100) Projection

The full three-dimensional data were examined to find whether
there was any significant variation in the R-factor with k and the
results are listed in Table 6. It can be seen that as Xk increases
so does R, but it must be borne in mind that the number of spectra
observed in each zone decreases fairly rapidly with increase in k.
Nevertheless it did seem appropriate to attempt a refinement of the

y-coordinates.

The electron density projected along the a-axis is given by

' © k=2n
p(yz) = '1% [ F(oo)+2{Z F(k0O) cos 27rkY +Z F(0f)cos 2«52}
© k=2 =1
00 o k=2n oo 00 k=2n+1
+4{Z F(k8) cos 2wkY cos 2nlZ - Z Z F(ke)
k=2 ¢=1 k=1 £=1

sin 2 wkY sin 21\-12}] ceeeeees (31)

The Fourier series was summed with 59 terms and the resulting electron



C sinp

Fig. 14 Projection of electron density on (100).
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density map is shown in Fig. 14. Refinement of the (Ok&) data

was then attempted using the least squares method with unit weights
spplied.  Atom pairs A-F', B-G', C-H', I-D and J-E (see Fig. 12)
were considered to allow for the interaction between atoms and for
each pair, two simultaneous linear equations were set up, of the

" form

o Zlr) o R

F -F )
Z(O c?yA

oo (32)

]

oF \ [>F oF_ 2 oF,
o)) o ZE) - Dol

w u

It was found that, due to the "extreme closeness" of the atoms of
each pair, the two equations were almost identical and so gave
results without physical meaning. Accordingly simple equations

were used, of the form

Dy

, Z (#, F) ¢ / Z(?yA) erreeeeeeees (33)

These gave the directions of shift and correspondingly small

corrections were made to the y-coordinates resulting in a decrease



51,
in the R-factor for the (Okf) data from 14-9% to 134% and in the

(hk0) data from 18.1% to 16.8%.

An (FO-FC) syntﬁesis was‘then calculated for the (100)
projection. Because of the strong overlap of atoms in the electron
density distribution it was decided not to estimate the shifts very
accurately by the gradient method, but the directions were obtained
and approximate correction applied to the y-coordinates. These
new coordinates gave R-factors of 11:3% for the (Okf) zone and

15+7% for the (hkO) zone.

6. Further Tests of Correct Assignment of Space Group

6.1 Pyroelectric Test

When a crystal belonging to a non-centrosymmetric space group
is heated or cooled it develops electric charges, becoming positive
at one end and negative at the other. Various qualitative tests
have been developed to detect these charges (Wooster, (1949);
Robertson, (1935); Martin, (1931); Maurice, (1930).

The method adopted for azulene was to place two small crystals
on a piece of aluminium foil which was then suspended in liguid
air for three to four minutes. On removal the foil was tapped
to determine whether or not the crystals adhered to the foil.

Over a series of experiments it could be concluded that azulene

crystals did not adhere to the foil, resorcinol and sorbic acid
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being used as standards. However, the fact that crystals of azulene
showed no detectable pyroelectric effect does not constitute absolute
proof that azulene belongs to a centrosymmetrical space group because

the pyroelectric effect might be so feeble as to escape detection.

6.2 Theory of Statistical Tests

Wilson Ratio Test

Wilson (1949) has shown that the average value of the ikntensity Ih.k Py
of an X-ray reflection, taken for a sufficient range of values of

hkf , is given by

N
<Tue?7 = 2. %2 53 e (38)
j=1 ~

.th
where fj is the atomic scattering factor of the j  atom and the
summation is over all the atoms in the unit cell. The probability
P(I)aT that Ihkl. should lie between I and I+dI is given, for non-

centrosymmetrical and centrosymmetrical space groups respectively,

by the relations
-1

ZE: exp { />0 } N 613

P ()

i

(2'“'21)-% exp { -I/ZZ§(36)

P7(1)

The corresponding mean values of the structure amplitudes are



\ N
N
*

ey,

™

T exp{ -I/Z}fﬂ - 33 L.7)

> - et [ enfaar- exmt e
: 2

Thus g, = <lFl>1’ / <1p = 0:785 ceereneneneeen(39)
2

f1 = <lFl>i / L1) = 0637 ORI :16)

N(z) Distribution

Howells, Phillip and Rogers (1950) have shown that the fraction
of all the reflections (other than those systematically absent) of
which the intensities are less than or equal to z times the average

intensity,~<I> , is, for the non-centrosymmetric case
1N(Z) = l—exp (—Z) .noooo..-o-.c(41)
and for the centrosymmetric case

e/t A
TN(Z) = 2w % [ exp (-xz)dx = erf(z/2)® .......(42)

)
These functions have been tabulated and show that there is a higher

Proportion of weak reflections for the centrosymnetric case.
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N(x) Distribution

Instead of analysing the intensity values a method has been
developed by Sim (private communication) in which an entirely
analogous procedure is carried out on the structure amplitudes.

A possible advantage of this method lies in the fact that an
average value of lFO‘ y applied to all the reflections in a given
range of sin 6, will give a closer approximation to the true values
of |F| / <IF! ) than does (I for values of I/ < I in the
N(z) test because here we are concerned with the variation of f
against sin © as opposed to £2 with sin © in the N(z) test. It
cah be shown that the fraction of all the reflections of which the
lFol values are less than or equal to x times the average, <'F0|> ’

is, for the non-centrosymmetric case

F&) = 1 - exp(-T /4 x%) ceeerrneneeen e (43)

and for the centrosymmetric case

M) = 2¢ (J;_——’i‘—-) PN ¢.7.)!
where ? = -\/'?—1: exp (-x2/2)d.x.
™

Variance Test

It has been shown by Wilson (1951) that in cases where statistical

tests based on distribution functions have failed, it is often
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better to use the variance test.

The variance is the mean square deviation of I from its average.

ice. Variance = < (I1- L1Y)2) ceveeena(49)

It can be shown that, for a non-centrosymmetrical distribution

N
a-<17)2Y - <1y?. Zfi4........(46)

:'|,=|
and for a centrosymmetrical distribution
N
2 2
E-<K1%)°) - 2<10%-3 2. fi4......(47)
i:l
N
Since Z fi4 is of the order of <I> 2/N, it is negligible
az=1

if the unit cell contains an appreciable number of atoms. Thus,

for a non-centrosymmetrical distribution,

V1

<1y?

= 1 | cesneseceses(48)

and for a centrosymmetrical distribution,

1

— - 2 P (X))
<178

6.3 Application of Statistical Tests to Azulene

Wilson Ratio Test

The Wilson ratio, deduced from the (hog) data, was evaluated to

be 0.547 whereas the values corresponding to space groups Pa and
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Fig. 15 (b) N(z) test on (hOf) date (results of Watson)
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Fig. 16 Results of the N(x) test performed on the

(h0o4) data.
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Fig. 17 (a) 3-D N(z) test (method of Sim)
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Fig. 17 (bv) 3-D ¥(z) test (method of Howells et al, 1950).
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for the same reasons that the N(z) distribution proved inconclusive.

Variance Test

This test was carried out using the three-dimensional data, the
spectra being divided into five intervals with a 2 sin © range of
0+2 unit. The results obtained are listéd in Table 7. The
experimental specific variance is slightly higher than the
theoretical value, 2+0, for a centrosymmetric structure but this
can be attributed to the errors in the intensities and to the
error in assuming 2%; fi2 as the mean value of I. However,

i=

this test appears to indicate fairly strongly that azulene belongs

to a centrosymmetrical space group.

Three-Dimensional N(z) Test

A variation of the N(z) test has been applied to the azulene data

by Sim (private communication). Firstly, the N(z) distribution

was evaluated in the usual way for some 423 spectra divided into

five ranges according to their 2 sin © values. "Theoretical"

N(z) functions were then calculated for the two possible space

groups Pa and P21/a using the respective Fc2 values as "intensities".

The average standard deviation in a value of N(z) for the calculated

distributions is 0-014. The results are shown in Fig. 17.
Combination of the results of this test and the variance test

lead us to feel that the assignment of the centrosymmetric space

group P21/a is correct.



Table 8

Course of refinement of isotropic diagonal

Cycle

oN U S~ LW

@ =3

least-squares analysis.

91+ 0%
21-q%
17-0%
15+3%
14-3%
13+7%
13-&%
13-5%

Z.a?
18921
2035
1351
1148
1034
990
983
976




Table 9

Parameter shifts indicated by isotropic

diagonal least-squares analysis.

Initial average Final average Final maximum
Shift Shift . Shift
A x(R) 0-013 0003 0-007
AyR) 0+029 0004 0:012
A z(R) 0-011 0+002 0-005

A3(82) 0-265 . 0091 - 0+190
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7. Three-Dimensional Réfinement of Centrosymmetric Structure.

T.1l. Isotropic Diagonal Least-Squares Refinement

7.1.1. Computational Details

Least-squares refinement of the disordered structure was performed
for us by Professor R. Pepinsky using the IBM 704 programme NY XR1.
This programme does not compute inter-atom cross terms in the least-
squares matrix énd thus is not ideally suited for the azulene
structure where there is considerable overlap of atoms.

Unobserved reflections were excluded from the analysis, with
the result that 670 observational equations were available for the
formation of the matrix of normal equations. Hydrogen contributions
were included in the structure factor calculations but refinement

of the positional parameters was carried out only for the carbon
atoms, Refinement of individual isotropic temperature factors

and of the scale factor was also performed. Eight cycles of
least-squares refinement reduced the discrepancy between observed
and calculated structure factors from 21.0% to 13+5%. The
course of refinement is governed by the change in Z A 2 where
A= (kIF | - IP_| ) and this is illustrated by Table 8 .

The very large R-factor gquoted for Cycle 1 can be accounted for
by the fact that full atoms were used instead of half-atoms in
the first cycle. The magnitudes of the shifts indicated by the
least-squares procedure are listed in Table 9.  Since A 2
was still fairly large it was decided to refine the structure

further taking account of the anisotropic thermal motion. It




Table 10

Atomic coordinates and temperature factors obtained

from isotropic diagonal least-squares analysis.

0+140

-0.

-0-

-0

-—O-

*163
- 068
=053
-037

139
168
111

009

045

Y/

(@

-0

-0e

-0

-0

037
+202

<116
«229
«152

034

200
237
096
145

0-327
0-207

+050
«110
<268
+321
«213
+032
-084

267

0-587
0.963

0-460
0589
0-127
-0+589
-0.988
~-0-828
-0-202

-0+067

0.223
1-210

0694
1-374
0-908
-0+205
~1°199
~1.421
-0-577
-0-868

2-514
1-.590

0-384
-0-842
-2.060
~2.466
-1-635
-0+248

0-644

2:055

6+219
5730

4+536
5+235
5931
6+284
5757
5362
4+698
5925



Table 13

Deviations of carbon atoms from the mean molecular plane

Y = 1-81329X' - O~34526Z' + 0.:00225.

Atom Deviation (R)
A -0.012
B -0+005
c +0+005
D -0-006
E +0°+017

P -0:014
G -0.012
H +0+003
I -0+005
J

+0:019




should be noted that at the end of the refinement process the

average shifts in the positional parameters were fairly small.

Tele2. Coordinates and Mole cular Dimensions

The final coordinates and temperature factors of the carbon
atoms after isotropic refinement are given in Table 10. The
coordinates */a, Y/b, ?/c are referred to the monoclinic axes with

t !
the centre of symmetry as origin, and the coordinates X , Y , 2

t t
to orthogonal axes a, b and ¢ , ¢ being taken perpendicular to
the g ard b crystal axes, so that

t
X = X+Zcosp, Y = y, Z = ZSinﬁ 50000'0(50)

o " .
The se orthogonal coordinates are expressed in Angstrom units.

It was found that the atomic coordinates could be fitted to

an equation of the form
1 1
Y = AX + BZ + C o-oao--noo.o(sl)

the parameters A, B, C being determined by the method of least-

squares to have the values 1-81329, -0-34526 and 0-00225

respectively.
The perpendicular distances of the atoms from this mean

molecular plane are given in Table 11. The mean deviation is

0+009 2 and the maximum deviation is 0-019 2. It may safely be

assumed that these deviations from strict planarity are not



Fig. 18 Bond lengths obtained from isotropic diagonal

least-squares analysis.
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significant and that the molecule is essentially planar.

Bond lengths corresponding to the coordinates given in Table 10
were calculated and are shown in Fig. 18, It will be convenient
to discuss the molecular dimensions at a later stage. However,
it is appropriate to note at this stage that the interatomic
distances shown in Fig. 18 cannot be considered very accurate for

two reasons:-

a) anisotropic thermal vibration of the atoms was not considered
in the least-squares procedure |

b) interactions between strongly overlapped-atoms has been neglected
by using only the diagonal elements of the matrix of normal

equations.

T+2. Anisotropic Diagonal Least-Squares Refinement

T.2.1. Computational Details

It was decided to refine the structure further using Rollett's
programme for the English Electric "DEUCE". This programme
neglects the off-diagonal terms of the matrix of normal equations
but it possesses the additional facility, not available with NY XR1,
of refining anisotropic thermal vibrations.

The atomic and thermal parameters listed in Table 10 were
used as input data and in this refinement 70 unobserved terms were
included. The latter were given values of one-half the value

of their upper bound. Hydrogen contributions to the structure
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factors were included but refinement was carried out only for

the carbon atoms. The weighting system employed was as follows:=-

17|
* 0
r |F | < |7 , v, = =
..'..I.'l.l.(52)

it |F.| > |F¥ [, = ||

0 ’ 2 T ¥,
where |Fxl = 8 IF . | .

min.

The scale factor refinement is liable to become unstable if
|| is too small and Rollett suggests that |F¥| = 8 lFmin.l is
a fairly safe value.

Theoretically it would be better to assign a separate weighting
sysfem to the unobserved reflections but since they represent only
19% of the total data it was decided to apply the same weighting
syétem to them.

The programme calculates a temperature factor, T, for each

atom where

2 2 2
- Book“+Bzz 4 +B]12hk+Bozkf+Bz1£h)
T = exp(-B, sine/ A%) X 2 (By1h"+Book +B338 +51 23%E+531

ll..l.....l.l.(53)
The normal equations are solved in terms of the following sections:-

a) a (3 x 3) matrix for each atomic position
b) a (6 x 6) matrix for each atomic vibration

) a (2 x 2) matrix for the scale factor.



Table 12

Course of refinement of anisotropic diagonal

least-squares analysis

Cycle  R-factor Cycle R-factor
1 30. 4% 7 10-4%
2 32.8% 8 - 9-5%
3 12-0% 9 9-5%
4 10:9% 10 10:7% -
5 . 10.6% 11 10.1%

6  10-4% 12 9.3%
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The atomic form factors used in the structure factor calculations
were those of MacGillavry (1955) for carbon and of McWeeny (1952)
for hydrdgen. The refinement proved fairly slow, one of the
reasons being that Z-shifts only were applied at each stage.

The course of refinement is shown in Table 12. The large
R-factors indicated in cycles 1 and 2 are due to errors in the

scale factor. After the Tth cycle it was decided to test

a) the effect of excluding the non-observed terms
b) the effect of using the weighting system Jﬁi, subject to

the conditions:-

I
]

it 7| £ 171, w
..0.0.0'.0.(54)

it Bl > |F] , v = (7] /15

where ’Fxl = 8 lFminJ

It appears that the weighting systems ﬁl and ‘/'v'v'2 are equally
applicable. At this stage the bond lengths were examined using
the coordinates derived in Cycle 7. These proved to be most
irregular and it was decided to apply shifts to atoms H and J
in an effort to improve the bond lengths. The coordinates from
Cycle 7, with these shifts applied, were then further refined

s
and the final values correspond to an R-factor of 9-3%.

T.2.2. Coordinates and Molecular Dimensions

)
The carbon coordinates corresponding to an R-factor of 9.3%



Table 13

Atomic coordinates of carbon atoms as determined

from anisotropic diagonal least-squares analysis.

Atom

X/g
0:140
0-163
0-068
0052

-0-038

-0+139

-0+166

-0-110

-0-008

0045

Y o

0.037
0.203
0-115
0-228
0-.152
-0+034
-0+200
-0+236
-0-098

-0-145

z/c'
0328
0-208
0+050
-0-108
-0+270
~0+322
-0-213
-0-034

0-084

0-265




Table 1.

Thermal parameters of csrbon atoms as determirned from

anisotropic diasszonal least-sguares snalysis.

Atom Bll B22 ]B33 312 sz Bﬂ.

A 035 0-065 0-034 0-001 -0-002 C-017
B 0.028 0-054 0-041 -0-005 -0-026 0-015
C 0-025 0-039 0-030 0-000 -0-002 Q-015
D 0+027 ©0<050 0-038 0-008 0-000 0-022
iy 0~032 0-063 0-033 0+006 0004 0-020
¥ Q~03% ©0-069 0032 0-001 -C-002 0-Q13
G J-28 0Q-0h4 0-041 -0.-005 -0-022 Q-013
B Q-028 ©-052 0-Q39 0-003 -0-004 0-~020
I Q-026 ©-Q41 ©-030 0-009 0-008 0-011

J Q-033 0-060 0©-033 Q-011 0-010 0-020




Table 15

Parameter shifts indicated by anisotropic diagonal

least-squares analysis

Average initial Average fin;

shift shift

A x(i) 0*0095 0*0008

Ay (i) 0*0102 0*0006

flz(!) 0*0055 0%0024
A bu (12) 0*00555 0*00011
A b22(22) 0*00962 0*00029
AbJ3(22) 0*00455 0*%00027
Abl2@2) 0*00684 0*00001
A B2J (£2) 0*00471 0*00054

Ab31(12) 0*00153 0*00001



Table 16

Coordinates of carbon atoms referred to

orthogonal axes

aom X (R) 1(2) z' (8)

A 0-586 0+220 2.518
B 0-957 1-213 1.595
c 0-456 0-691 0+383
D  0-583 1:365 -0:830
E 04123 0-907 -2.072
F -~ =0+589 -0-201 -2.476
G -0-977 21-200  -1-640
H -0:811 -1+411 -0:258
I -0+198 -0-564 o 0647

J -0+059 -0-866 2.034




Table 17

Deviations of carbon atoms from the mean molecular plane

Y = 1*836X< - 0*550Zt - 0*005
Atom Deviation (2)

A -0*013

B -0*007

c 0*004

D -0*004

1 0*019

F -0*009

G -0*011

H 0*004

I -0*004

J 0*020



1*406

1*457
1*570 1*594 ’
1*408 1*401
1*579
Fig. 19 Bond lengths obtained from anisotropic diagonal

least-squares analysis.
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are listed in Tablel} and the anisotropic thermal parameters in

Table 14. The initial and final parameter shifts are indicated

in Tgble 15 The atomic coordinates‘were orthogonalised by the
transformation quoted in 7.1, using a programme written for

"DEUCE" (see Appendix 3). The results are listed in Table 16 .

These orthogonal coordinates were used to compute, by the usual
least-squares method, the equation of the mean molecular plane

and the deviations of the carbon atoms from this plane (see Appendix 3).

The equation of the mean molecular plane is given by

Y = 1-836% - 0-3502 - 0-003 Ceteenenaan .(55)
The perpendicular distances of the atoms from this plane are given
in Table 17, the average perpendicular distance being 0.0108.
Bond lengths corresponding to the coordinates quoted in

Table 16 are shown in Fig. 19.

T+3. Anisotropic Full Matrix Least-Squares Refinement

Te3.1. Computational Details

Recently a programme has become available, for use with the
Oxford University "Mercury" computer, for refinement by least-squares
using the full matrix of normal equations. Dr.Sparks has very
kindly processed the azulene data using this programme. Eight

Cycles of least-squares have been performed with the following

characteristics:-

2 i le factor
2) Minimisation of Z W [iFOI- ¢lrl ] ? where ¢ is a scale factor,




Table 18

Course of refinement of full matrix least-squares analysis

Cycle R ZNAZ
1 12-8% 404
2 11-1% 25-7
3 6-9% 7-29
4 6-2% 5-76
5 6-2% | 5-67
(3 » 6-2% 5-60
™ | T-6% 808
8E 6-5% 556
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and w FO/ 4Fmin. for FO £ 4Fmi:n.

w = AF . /FO for Fo 7 4F

min. min.

b) Carbon scattering factors - McGillavry (1955)
Hydrogen scattering factors - McWeeny (1952)
¢) Temperature factor of the form

2

2 2
exp { -(B  h"+B,,k +333£ +B, ,hk+B, h£+B23kt)] .

3

d) Refinement of carbon parameters and scale factor, i.e. 91
parameters.

e) Inmitial parameters were those obtained by the isotropic least-

squares analysis (see Table 10).

After six cycles of refinement the hydrogen positions were changed
to make the carbon-hydrogen bond distances equal to 1-083, the
A - B - H(B) angle equal to the C - B - H(B) angle and H(B) was
placed in the ABC plane, where H(B), etc. is the hydrogen atom
attached to carbon atom B, etc. The course of refinement is
indicated in Table 18 and shows a final R-factor of 6-5%. The
refinement would have been terminated at Cycle 4 but for the fact
that the positional parameters were still showing large shifts -

as large as 0-022%.

Te3.2. Coordinates and Molecular Dimensions

The final atomic coordinates, fractional and transformed with




Atom

Table 19

Coordinates of carbon atoms as determined from

full matrix least-squares analysis.

X/,
0-144
0.161
0.068
0.052

-0.030

-0+134

-0170

-0.110

-0.008

0.052

Y/b

0-053
04204
0-118
0.230
0+153
-0.018
-0-199
-0+236
-0+100

-0-146

26
0-330
0-204
0050

~0+108

-0-263

-0+321

-0.216

-0-033
0.086

0.271

%' (2)
0-616
0-947
0-459
0-583
0-173
-0-555
-0.998
-0+813
-0+196

-0+015

1(2)

-319

<219

+ 706

378

-918

«110

+194

‘414

596

875

1
Z

@)

.535
+566
+384
+83%2
018
-467
.661
+250
-657

‘078




Table 20

Coordinates of hydrogen atoms as determined from

full matrix least-squares analysis

Atom */a Y /v %/e

H(a) 0-199 0-078 0-464
H(B) 0-213 0-360 0-221
H(D) 0-111 0:392 -0-105
H(E) -0+005 0-259 -0-370
H(F) -0+195 -0-023 -0+459
H(q) -0-254 -0-328 -0-283
E(H). -0+150 -0-390 0-018

H(J)  0.013 ~0-293 0340




Table 21

Thermal parameters of carbon atoms as determined from

Atom

full matrix least-squares analysis

B11

0+0189
0-0204
0.0149
0.0198
0.0199
040286
0-0178
0-0182
0-0164

0.0205

22
00490
0.0265
0.0229
0-0268
0-0607
0+0504
0.0574
0.0271
0.0256

0.0332

B33

0+0290

0.0296v
0.0224
0+0250
0-0244
0.0172
0:0218
00288
0.0220

0.0204

12
-0-0074
-0-0069
-0+0009

00004

0+00%2

0:0209

0-0018
-0-0011

0.0019

0:0114

23
-0-0158
-0-0109

0-0002
0+0060
0+0097
-0-0010
-0-0222
~0-0046
0-0027

0-0081

13

0-0121

0.0058

0-0108

0-0147

0-0121

0-0039

0-0070

0.0120

0-0119

0-0088




Fig. 20 Final bond lengths and bond angles.
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respect to orthogonal axes, are given, for carbon atoms, in Tablé 19, -
and for hydrogen atoms in Table 20. The anisotropic temperéture
parameters for the carbon atoms are presented in Table 21. The
analysis of the latter in terms of rigid-body vibrations will be
discussed later. The bond lengths and bond angles for the
azulene molecule are shown in Fig. 20, these dimensions having
been computed from the atomic coordinates listed in Table 19.

By the usual least-squares method the equation of the mean

molecular plane was determined to be
! !
Y = 1.835X - 0-351%Z - 0°002 R G159

The perpendicular distances of the carbon atoms from this plane
are listed in Table 22, in the column headed 'Deviation (a)'.
The average deviation of the atoms from the mean molecular plane
is 0-0221%.

Recently another method of determining the 'best' plane
through a set of atoms has been developed (Schomaker et al, 1959).
In this case the weighted sum of the squares of the distances of
the atoms from the plane is minimised. This problem reduces to
that of finding the eigenvalues of a matrix of order 3. The

A1) « a(2) ¢« A(3)’

characteristic equation has roots,
corresponding to the 'best' plane, an intermediate plane, and a
'worst' plane, all at right angles to one another. Because of

1
the smallness of the eigenvalue 7\(1), the value of A( ) can be
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conveniently determined by the iterative method of matrix powering
(Frazer et al, 1938). A programme has been written for this
computation and details are given in Appendix 3. The deviations
of the carbon atoms, determined by Schomaker's method, are listed
in Table 22, in the column headed 'Deviation (b)'. The mean
deviation in this case has a value of O-OBOX, The final values

of FO and Fc’ corresponding to Cycle 8H, are listed in Appendix 2.

8. Analysis of Thermal Motion

8.1. Theory

In many organic crystals the molecular vibrations are large
compared with the atomic movements, due to the relatively wesk
van der Waals attraction. Accordingly the thermal motion can
be described in terms of rigid-body vibrations of the molecule
as a whole. A detailed treatment of the problem has been given
by Cruikshank (1956) in which the thermal displacements are
expressed in terms of an ellipsoidal distribution.

The vibrations of an atom in an anisotropic harmonic

potential field may be represented by a symmetric tensor, U, of

the form
= o0 00000t oo 7
U = U1 Upo U)3 y ©T)
Uo Uso Upz
Uiz oz Uss

The mean square amplitude of vibration u2 in the direction of
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. -
a unit vector 1 , with components ‘ti’ is then

3 3

;‘5 = Z Z Uij'('i Lj

i=1  j=1

N $15))

It is convenient to consider the system referred to a set of
molecular axes, the transformation from the orthogonal set to the

molecular set being effected by the relation

- %11 812 %13 x5
T = 2,1 8y, 2,3 Y5 eeeo(59)
% 85 23 833 %5

where the aij are the direction-cosines of the molecular axes with

respect to the orthogonal axes. The anisotropic temperature
parameters, Bij’ may be transformed from monoclinic crystal axes
to orthogonal axes as shown by Rollett and Davies (1955), and
finally transformed, by the usual tensor rules (Nye, 1957) to

molecular axes, using the expression

= ® 9 0 8 0 60 60 0608000005880 000> 60
Ui 211%5P1 (60)
where the bij are the values of the Bij transformed with respect

to orthogonal axes. In terms of rigid-body vibrations, the

motion of the molecule can be expressed as two symmetric tensors

T and W , each with six independent components. T represents
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the translational vibrations of the mass centre and. w . the angular
oscillations about the centre.

By a least-squares procedure it is possible to express the
Tij andcoij in terms of Uij' Conversely, the U tensors for each
atom may bé calculated from the T and w tensors.

The accuracy of the determination of the Tij andtoij is
estimated by the formula

2 -1 2
A = C 0- U esesensscsrenrcssncs o 61
) - ¢ ol (6)
where ¢2(A ) is the variance of one of the T, orw, ., C T
b 1J 1J 194

the appropriate diagonal element of the inverse matrix and

¢2(U) is given by

c?u) - Z(Uff’s -U§a1°)2/t cereeenneeeas(62)

where t is the difference between the total number of Uzgs and

the number of parameters determined.

8.2. Application to Azulene

For azulene, molecular axes were chosen as in Fig. 21, with

0Z_ perpendicular to both OX_ and OY .
m _ m m




Table 23

Observed and Calculated Uj j.

(Values in 10°2 8%)

U3 Uso Uss
Atom Obs. Calc. Obs. Calc. Obs. Calc.
A 859 654 8-12 10.42 5.70 6419
B 8+44 T-78 5:16 743 6:14  5.57
c 6+95 7-02 389  4.81 3:68 379
D 8:07 8:76 439 483 461  4-83
E 7-88 T-84 9.3%2 746 620 5-50
F 5.46 654 10-94  9-98 6:64 5-97
G 6-26 774 10°56 774 5:16  5-71
H 8:70  T-75 4-99  4-82 44T 425
I 7:00 699 442 4-82 3-78 375
3 | 6:57  T-66 6:45  TeT4 4-70  5-53




Atom

Table 24

Observed and Calculated Uﬁj.

(Values in 1072 22)

U1o
Obs. Calc.
1-65  0:35
1-78  2-01
0-12  0:46
0-69  0:65
146 182
1-18  0-10
1-70  2.07
0-75 0+67
; 0-35 0-21
129 177

0+41
2464
1-11
172
0-21
0-40

. 027

23

Calc.

0-90
0-46
036
0:45
0-84
0-90
0-51
0-34
042

0-80

Obs.

0:90

0-21

0-27

0-44

0-22

0-57

1-07

0+39

033

0-18

13

Calc.
0:54
0-56
0-47
0-21
0-22
0-43
0-54
0-43
0-41

0-16




Table 25

Values of T.. and w .
ij i

3°

(Vvalues of T

in 1072 82 and of wij in degaz)

ij
T = 6:53  0+12 048 w= [17.10 045 2.46
457 037 13.40 2.63
337 2783
Table 26

Values of & (Tij) and @ (wij).

(Values of ¢ (‘l‘ij in 1072 82 and of ¢ (“’ij) in deg.?)

¢(r). = /036 0.34 0-40 c(w) = [410 1.94 2.57
0+48 0448 2-32 1-99'

0-96 1-95
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The values of the six independent Uij's for each carbon atom are
shown in Tables 23 and 24, in the columns headed 'obs.'. The T
and w tensors for azulene are shown in Table 25. Taking square
roots of the diagonal terms we find that the root mean square
amplitudes of translational vibration in the direction of the

molecular axes are:-

along  OX_ 026
along OY_ 0-21 &
along 0Z_ 0-18 &

and the corresponding root mean square amplitudes of angular

oscillation are:=-




T0.

about  OX 4-1°
m
bout OY 3.7°
a m
0
about  0Z_ 5.3

From the T and « tensors, the U tensors for each atom have been
calculated and the values of Uij are listed in Tables 23 and 24,
in the columns headed 'Calc.'. The root mean square difference

between the Uigbs‘ and the Uigalc' is 0.0105 82, corresponding to

an estimated standard deviation for the Uigbs.

of 0-0107 %2,
The corresponding e.s.d.'s of the Tij and “’ij are shown in
Table 26.

The values of the T and w tensors are rather similar to those
for naphthalene and it is seen that the greatest amplitude of
translational vibration is along the long axis of the molecule
as is the case with naphthalene (Cruickshank, 1957a) and
anthracene (Cruickshank, 1957b). It is interesting to note that
in the case of naphthalene the corresponding root mean square
applitudes of translational vibration are 0-22, 0.20, 0-19 &
and of the angular oscillation 4-4°, 3:7° and 4.2°. Unfortunately

no Raman data for azulene are available for comparison with the

amplitudes of angular oscillation.

9. Discussion of Results

In the past the accuracy of an X-ray structure analysis was

generally estimated by consideration of the consistency of the




Table 27

Bond lengths and standard deviations corresponding to Fig. 20.

Bond Bond Length (&) s.d. (R)
AB 1-363 0-027
BC | | 1-378 0-019
cD 1+395 0-005
cI 1:483 0-004
DE 1-337 0-034
EF | 1337 0-035
FG 1:422 0.026
GH 14440 | 0-021
HI 1-369 0-007
o | 14459 | 0-024
JA | 1+425 0-032
P | | 0-228 6-652
- 0-111  0-042

EJ 0-175 0-064




1-391 (-021)

1-413 (-015)

1-383 (-004)

D

1-401 (-018)

1-385 (-021)

Fig. 22 Weighted average bond lengths for equivalent bonds,

‘with standard deviations in parentheses.



1.

results or by the effect of variation of the parameters on the

agreement index. More recently a quantitative theory of accuracy

has been developed, based on the standard deviations of atomic

positions (Cruickshank, 1949, 19543 Cruickshank and Rollett, 1953).
A rigorous discussion of the accuracy with which the bond

lengths of azulene have been determined is very difficult since,

due to the disordered structure, the overlap of atoms is very marked.

The actual distances of separation for the atom-psirs are as follows:-

A-TF 0-228 &
B-@ 0-111 &
C-H 0-803 %
D-1I 0-890 &
E-J 0-175 &

Sparks' programme for full matrix least-squares analysis evaluates
the standard deviations of the bond lengths, using the full inverse
matrix and including all variances and covariances. The standard
deviations of the bond lengths shown in Fig. 20 are listed in

Table 27. Assuming that equivalent bond lengths are uncorrelated,
weighted averages for the equivalent bonds have been evaluated and
are illustrated, with standard deviations in parentheses, in Fig. 22.
These appear to conform roughly to the usual benzenoid-type bond

lengths with the transannular C-C bond much longer than the other




Fig. 2 Bond lengths calculated by the method of molecular

orbitals (R.D. Brown, 1948).
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bonds in the molecule. However, it is significant that the X 2

value for the weighted set corresponds, with five degrees of

freedom, to a probability value of less than 0¢0l. Recently

results have become available of X-ray work done on heterocyclic

azulenes (Sasada, 1958, 1959; Tamura et al, 1958) and the only

results which can reasonably be compared with those of azulene

are the bond lengths of 2-amino azulene (Takaki et al, 1959).

In this compound the central C-C bond has a length of 152 2 and

the other C-C bond lengths range from 1-37 R to 141 %.
Theoretical studies of the azulene molecule by the method

of molecular orbitals have been made by, among others, Estelles

and Alonso (1952) and Brown (1948). The results obtained by

the latter are shown in Fig. 23. These results are in agreement

with the values to be expected on the basis of the contributing

(O CR

(a) (v) (e)

Kekulé structures.

(a) and (b) are the most important structures contributing to
the azulene hybrid, with a small contribution from the dipolar

fom(c) to account for the dipole moment, M =10 D, observed




T3
by Wheland and Mann (1949). Thus it is to be expected that all

bonds will have approximately double-bond character except the
bond common to both rings which will have predominantly single-
bond character. In a recent Chemical Society symposium
(Chemical Society Symposia, 1958) Dewar has predicted that the
central bond should have a length of 1:47 + 0-01 &, the value
to be expected for a single bond between sp2 hybridised carbon
atoms. As noted earlier, atoms C and I have been determined
with the greatest accuracy in our analysis and thus we feel
certain that the predictions regarding the length of the trans-
annular bond are correct. Intermolecular distances have been
célculated and the values are those which would be expected,
ranging from 3.6 to 3-8 K.

In view of the inaccuracies inherent in this structure
determination no significance can be placed on the deviations of
the atoms from strict planarity. Nevertheless, it is of interest
to note that the deviations of atoms C, D, H, I are fairly smsall,
these being the atoms involving least overlap and hence most
accurately determined. It should be noted, however, that all
theoretical studies have been based on the assumption that the
azulene molecule is planar.

The highly unsymmetrical nature found for the molecule has
led us to consider possible alternative solutions to the azulene

structure. In spite of the fact that the R-factor at the final
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stage is 6+5%, the coordinate shifts amount to as much as 0:02 1.
One possibility is that there is no exact symmetry between
the two possible positions and that the sites are equally occupied.
This would imply that the (OkO) absences are indeed accidental
and that the molecules are free to move independently relative

to one another in the space group Pa.

Alternatively, but less likely, the above situation could
hold with the modification that the sites are unequally occupied,
i.e. with a greater proportion of the molecules pointing, say,
'north! than pointing ‘'south'.

Under the present circumstances it is important to bear in
mind the observation by Bernal (1956) that the morphology of
azulene crystals grown by sublimation does not indicate a two-
fold axis. In addition the results of Takeuchi and Pepinsky (1956)
might be re-examined, preferably with full three-dimensional data.
Unfortunately it is not known by which process they obtained the
azulene crystals.

At the moment work is being done (Ross, private communication)
on azulene with reference to crystal field spectral splittings.
Measurements at 4°K on sublimation flakes appear to yield
incompatible results. Visible absorption studies indicate disorder
in the crystal whereas the polarised infra-red spectrum apparently
indicates an ordered crystal. This work, however, isstill in-

complete and it will be interesting to learn the results when more




accurate measurements have been made.

Thus it would appear that the structure of azulene is in
rather an uncertain position at the moﬁent. However, we feel
that our results must be a fairly good approximation to the
truth and it is hoped to complete these studies in terms of

the electron density distribution in the near future.
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Appendix 1

Observe& and calculatéd structure
factors for epi-limonol iodoacetate.

Unobserved terms are omitted.
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Appendix 2.

Observed and calculated structure
factors for azulene,

Unobserved terms are omitted.
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Appendix 3

3,1. Synopsis of 'DEUCE!

DEUCE is a serial machine with numbers and instructions
consisting of 32 binary digits; the digit rate is 1 million per
- second., Punched cards form the input-output medium. The store

comprises

(1) 402 words in mercury delay lines (access time, 32-1024
nicroseconds)

and (2) 8192 words on the magnetic drum (access time, approx.
13-48 milliseconds)

Programming Aids

There are a number of "automatic programming" aids. Using
these, it is possible to write programmes in a language more
sophisticated than the basic machine language and 'closer!' to
accepted mathematical usage. A number of programmes are available
which translate from a variety of these subject languages to the
object language viz, the basic machine language. The following

interpretive programmes have been used:-

1. G.I.P. (gpneral Interpretive Programme). This programme is
used principally as a matrix interpretive programme, being well
adapted to the handling of large-scale calculations on arrays of

numbers.
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This programme handles protracted calculations

2. Alphacode.

involving single variables; it is best used on so-called "one-off"

jobs e.g., exploratory calculations in research studies.
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3.2. Programme for Transformation of Atomic Coordinates

Description

The programme transforms atomic coordinates referred

to monoclinic crystal axes to coordinates referred to a set of

orthogonal

axes.
Input The input consists of

(1)
(11)

(iii)

the number of atoms, v ( v < 100)
a, by, ¢, cosP, sinf

v sets of */a, Y/b, %/c.

OQutput The atomic coordinates X', Y, Z' and x, ¥y, Z.

Time Approximately 2 minutes for 25 atoms.

System Alphacode Mark I.

Method Let the cryste:l axes be a, b, ¢ and the orthogonal axes

| 1 ]
a, band ¢, ¢ being taken perpendicular to the a and b crystal

axes. If

the coordinates (in R) referred to the monoclinic axes

are denoted by x, y, z and those with respect to the orthogonal

1
axes by X ,

.
Y, Z , then

X' = x+a cosp

\ .

Y = Yy ) ) -to‘ooo’oo'bo'oo'o(63)
' .

Z = z sinf




Flow Diagram

Read Input Data

Convert (*/a, Y/v, ?/c) to (x, y, 2)

1 1
Transform (x, y, z) to (X , ¥, Z )

1 1
Punch X , ¥, 2, x, ¥y, 2
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3+43. Programme for Calculation of the Equation of the Mean Molecular

Plane and the Deviations of the Atoms from this Plane.

Description This programme calculates the equation of the 'best!
plane through the atoms of a molecule which is assumed to be almost

planar and computes the perpendicular distance of each atom from

this plane.

Input (i) The number of atoms, v (» £ 100)
(ii) The atomic coordinates referred to orthogonal

axes (output from Appendix 3.2.)

Output (1) Least-squares totals
(ii) Values of determinants used in solving the
normal equations
(iii) Coefficients of the equation of the mean

molecular plane

(iv) Perpendicular distances of atoms from the plane.
Time ‘Approximately 2 minutes for 30 atoms.
System Alphacode Mark I
Method Let the equation of the mean molecular plane be
y = Ax + Bz + C teeeessassse..(64)

y observational equations may be set up which, by the standard

least-squares procedure, reduce to 3 normal equations
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A212+Bsz+Cny 2 xy
Asz+BZz2+CZz = Nyz serseeesd(69)
A2x +B2)z + wC 2y

it

Solution of these equations is effected by evaluation of the

four determinants

D, = 2 xy 7. Xz 2 x D, = - o xy X Zx
S yz Z‘zz S 2.9z Sxy Sz
Zy 2z Y 2y Xx Y
])3= Z xy sz 2. xz D4 = sz Zixz Zx
Z vz X xz Zz2 > xz 222 >z
Sy Zx Zs Zx 2z Y
D D D
Then 4 = 1/1)4 , B = 2/])4 and € = 3/:D4 .

The perpendicular distance from a point (xl, ¥1» 2;) to the plane

1)
Ay -y

TN

+le+C

y = Ax + Bz + C is given by




Flow Diagram

Read Input Data

Calculates and punches least-

squares totals

Calculates and punches

D;s Dy Dy D,

Calculates and punches

A, B, C

Calculates and punches

deviations of atoms from plane

98.
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3¢4. Programme for Conversion of Isotropic Temperature Factors

to Pseudo-Anisotropic Temperature Factors.

Description The programme converts isotropic temperature factors

to pseudo-anisotropic temperature factors for monoclinic systems.

Input (i) The number of atoms, v.
(ii) v isotropic temperature factors, By.
(iii) a, b, c, cos B, sinfl . {
Qutput y sets of pseudo-anisotropic temperature factors, Bll’ |
i
Byys Byzs By |
Time Approximately 2 minutes for 50 atoms. i
System Alphacode Mark I. !
Method For monoclinic systems let :
, 2 2 - 2 2 2 }
exp (-Bg sin® ¢/ 2°) = exp{ - (Bllh +B,k +B33£ +1313he) ..(66)
R__B B R.,B i
Then By, = RyyBy, By, = RypByy Byg = 33857 Byz = ByzBg o ..........(67) 3
1 1 1
where R.. =—05"—%5, R,, =—F%, R, =—F%~—— ,
2 2 2
U 422?22 p 3 4e® sin’p

R o ——cosf

13 2ac sinzﬂ




100.

Flow Diagram

Read Input Data

Calculate R.., R

11’ “22? RB}’ R13

Calculate and punch

Bi1 Bop Bsz By
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345, Programme for Calculation of Electron Density peak maxima

Description The programme calculates, according to the least-
squares method described by Shoemaker et al (1950), the electron
density peak maxima of a Fourier synthesis, assuming that the
peak shapes can be fitted to a three-dimensional 10-parameter

Gaussian function.

Input Positional matrix A in decimal form (see below)

Matrix h'in decimal form (see below)

Output Coordinate corrections to be applied to approximate

peak maxima.

Time Approximately 5 minutes per atom.
System Sections 1, 3, 4 - Basic Standard Library Programmes

Sec‘bion 2 - G.ICP‘

Method The shape of the electron demnsity peak is represented

by the Gaussian function

P = exp (p - ; x° - ; y2 - g 2% & ux + vy + wz + Lyz + mxy + nxy)
...-......‘..'(68)
2 2 2 .
Thus 2 log @ = 2p - X = sy - tz" + 2ux + 2vy + 2wz + 2Lyz

+ 2mXzZ + 2nXy R (3
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27 points are chosen in a (3 x 3 x 3) parallelopiped as close as
possible to the peak maximum and the central point of the 27 is
taken as origin. Then, for each atom, using (69), 27 observational

equations may be set up and can be represented in matrix notation

by
A § = h B (4D

The corresponding normal equations may then be represented by

1

A, A § = A h .-o.oo.o-ooouon-c--(?l)

where A' is the transpose of A.

Solution of the normal equations yields the 10 parameters
p, r, s, etc. The conditions for a peak maximum are that the
partial derivatives of ¢ (or better for computation, of logep )
with respect to x, y, z should be zero, Solution of the 3 equations
of condition lead to the corrections which must be applied to the

approximate coordinates chosen for the peak maximum,



FlowbDiagram

Section 1

Section 2

Section 3

Section 4

Read decimal matrix A

1
and decimal matrix h

Punches binary matrix A

'
and binary matrix h

Reads binary matrix A

|

Forms A‘
I
Forms A'A
il

1
Reads binary matrix h

Forms [A'AIA'h]

Punches normal equations

as compound binary matrix

Reads compound binary matrix

Punches p,r,s,t,u,v,w,£,myn

Reads decimal matrix of

equations of condition

Punches corrections to be applied

to approximate coordingtes

103.
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%3.6. Programme for the evaluation of the 'best' mean moleculaxr

plane through a set of atoms and the deviations of the atoms

from this plane.

Description The programme calculates, by the method of least-
squares, the eguation of the 'best' plane through a set of point
atoms subject to the condition that the weighted sum of the squares
of the deviations, Dk’ of points k from the plane be a minimum.

The deviations are also evaluated by this programme.

Theory For the appropriate theory see Acta Cryst. (1959), 12, 600.

Practical Procedure

3

l. List the fractional coordinates xl, xz, x” and evaluate

—— o

1 .2 3

x", x, x7 according to the relationship

-x—i = Z:WXI/ ZWy

where w are the weighting factors.

2. Transform the atomic coordinates by the transformation
= x-x .

3. Form the symmetric matrix A, where aij = E xlxa.,

4., PForm the matrix ﬁ, the adjoint matrix of A.
5 Form the matrix ﬁA = lAl I. The diagonal elements of KA
should be identical and equal to lA‘.(The off-diagonal elements

should be zero).
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12.

13.

14.

15.
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-
Evaluate the reciprocal unit cell translations bt
Porm the symmetric matrix g, where glJ = b .b?

: A
Form the matrix B = Ag.

Select the largest column vector of B and call it m(o).
Perform the iterative process Bm(o) = o)
Bm = m ete,
(1) (2)

until the ratios of corresponding terms of m(n) and m(n—l)

are constant. The final ratio will be referred to as the

limiting ratio.

(1) _ |4l
Calculate A T limiting ratio

Assuming that m(n) represents the final column matrix,
evaluate gm(n).

1

V () ()

Evaluate the normalisation factor

where E(n) is the transpose of m(n).

(n)

- Evaluate m = normalisation factor x m(n).

Evaluate the origin-to-plane distance

d = E(n) xi, where ﬁ(n) is the transpose of m(n>.



16. Evaluate Dk = ngn) xd - d, for each atom.

17. Evaluate 5 = ZWDi.
. k,

For strict coplanarity, S = >\(1) = 0,

Input for Part I

(i) Yumber of atoms, ¥ (v £20).
(ii) v sets of */a, Y/b, ?/ec.
(iii) v values of w.

(iv) a, b, c, cospx.

Qutput from Part I

(1)

(ii) Elements of A.

(iii) Elements of i.

(iv) Elements of A
-

(v) b,

(vi) Elements of g.

(vii) Elements of B.

Inout for Part II

(1) Input data (i) - (iii) for Part I,

(ii) Xiy lA‘ y &

(iii) B, SOR

106.
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Cutput from Part IT

(1) Mgy

(ii) limiting ratios and average value.
(111) A (1)

(iv) normalisation factor.

(v) origin-to-plane distance, d.

(vi) deviations, D,
(vii) 8.

Time  Approximately 5 minutes for 20 atoms,

' System  Alphacode Mark I,




Flow Diagram

Part I

Read input data

Calculates
Caiculates
Calculates

Calculates

and

and

and

and

punches x*
punches A

punches

Calculates

Calculates

Calculates

and

and

and

A
A
~n
punches AA

ot

punches bt

punches g

punches B
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Part IT

Reads Input data

Performs iterative process and

punches m(

3)

Calculates and punches ratios at

each stage and the limiting ratio

Calculates and punches )(l)

Calculates and punches gm(s)

Calculates and punches the

normalisation factor

(3)

Calculates and punches m
Calculates and punches d
Calculates and punches Dk

Calculates and punches S
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