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Abstract

Solar flares are known to accelerate electrons to high energies, resulting in the move-

ment of these particles throughout the Sun’s atmosphere. Although this has been

known since the middle of the last century, it is still unknown quite how these parti-

cles are accelerated, how they are transported and where the energization takes place.

This thesis is concerned with these key questions of solar physics, using a mixture of

analytical and numerical modelling in conjunction with the valuable diagnostic tool of

the X-rays observed by the Reuven-Ramaty High Energy Solar Spectroscopic Imager

(RHESSI). First, imaging spectroscopy with RHESSI is shown, focussing on how to

infer to the underlying electron distribution producing the X-ray photons and how this

can be used to produce more realistic models. Secondly, a model where the region in

which the electrons are accelerated, stopped and emit X-rays is the same is presented,

driven specifically by observations of such sources by RHESSI. This admits a steady-

state kappa distribution solution and it is shown that the relaxation of an originally

thermal Maxwellian population of electrons to this final state proceeds as a wavefront

in velocity space. Finally, a model which takes account of recent studies showing the

extended nature of the acceleration region within the loops of solar flares is considered.

For the first time the intrinsic spatial dependencies of acceleration and transport are

explicitly studied, showing the importance of accounting for this in future modelling

of solar flares.
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Preface

Chapter 1 provides an introduction to the pertinent topics and theory tackled in this

thesis: the particle acceleration and transport processes important in solar flares, the

interactions of these particles with the solar plasma, the production of X-ray emission

(an important diagnostic of the accelerated particle distribution) and a short review of

solar flare X-ray observations using the Reuven Ramaty High Energy Solar Spectro-

scopic Imager (RHESSI).

Chapter 2 presents the imaging spectroscopy of two flares using RHESSI, further to a

more in depth description of how RHESSI produces images and performs spectroscopy.

The events studied are chosen for different purposes. Flare 1 is an example of the

scenario modelled in Chapter 3, a coronal hard X-ray source where the ambient density

is high enough to stop the accelerated electrons in the corona, before they precipitate to

the footpoints. Studies of flares such as these have furthermore revealed the acceleration

region to be extended and within the loop itself, the effects of which are studied in

Chapter 4. The second event considered is an example of the ‘standard’ flare geometry,

with both looptop and footpoint X-ray emission. This flare is chosen due to it being on

the limb, thus enabling easy selection and examination of the separate X-ray sources.

In addition, the coronal parameters inferred here are used in the numerical model of

Chapter 4.

In Chapter 3 a model in which the acceleration of electrons and the region in which

they are stopped is essentially cospatial is considered, driven by observations of flares

with the morphology of the first flare studied in Chapter 2. This model, with no loss

of electrons, is shown to produce a steady-state kappa distribution solution. Kappa



distributions are interesting in a solar flare context as they account for the observed

spectral shape with no need for a, possibly artificial, low energy cutoff. Further to

this, the relaxation to this form is found to proceed as a ‘wavefront’ in velocity space.

These findings are corroborated by numerical simulations of the governing equation.

Of course, the particles cannot be constrained indefinitely, so the solution in the limit

of small escape is considered. It is found that this solution is approximately a kappa

distribution up to some critical escape velocity, after which escape dominates.

Chapter 4 studies the effect of including the intrinsic spatial dependencies of accel-

eration and transport when modelling solar flares. While observations have revealed

the acceleration region to be extended and within the loop itself, the effects on the

resulting electron distribution have yet to be taken account of in the modelling. For

the first time a model is presented which explicitly deals with the effects of the ex-

tended nature of the acceleration region on the acceleration and transport of electrons.

Solved numerically, the results are compared to the commonly used leaky-box Fokker-

Planck solution showing clearly the differences in resulting spectra. The importance of

including these spatial dependencies in future models is shown to be paramount.

Finally, Chapter 5 provides conclusions, discussion and final remarks of the work of

the thesis as a whole, where the results are placed in context of present solar flare

knowledge. Throughout this thesis CGS units will be used unless otherwise stated.
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Chapter 1

Introduction

1.1 The Sun’s Atmosphere and Solar Flares

1.1.1 The Solar Atmosphere

The Sun is a G2 type main sequence star. It has an effective temperature of T� =

5778 K, a mass, M� = 1.99× 1033 g, a radius, R� = 6.96× 1010 cm, and a luminosity,

L� = 3.84 × 1033 erg s−1 (see e.g. Stix, 2004). Its atmosphere extends outward from

the photosphere, through the chromosphere, lower corona, upper corona and eventually

the solar wind which extends out to the heliopause, the edge of our solar system. The

magnetic field of the Sun, created by its internal motions, controls the movement

and energetics of the solar coronal plasma, and as such is seen as the driving force of

transient phenomena such as solar flares, coronal mass ejections and filament eruptions.

Solar flares, the overall subject of this thesis, are the greatest release of energy in the

solar system, producing energies of 1031− 1033 erg (Emslie et al., 2012). Flares mostly

happen within active regions of the Sun, as here the field strength is particularly strong

and the magnetic field significantly convoluted. The global puzzle of flares is still

highly unresolved, from the large scale magnetic reconnection processes in the active

region to the plasma heating occurring, from where the particles are accelerated and

the acceleration of the particles themselves to their transport dynamics there are still

many unanswered questions. This thesis is concerned with the last two key questions,
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the acceleration and transport of solar flare electrons.

The atmosphere of the Sun can be split into three broad constituent parts, the photo-

sphere, the chromosphere and the corona, which eventually transitions into the solar

wind at ∼ 3R�. The photosphere is the ‘surface’ of the sun, that is the layer of at-

mosphere that is seen without any kind of extra filter. Its temperature ranges from

∼ 6000 K to ∼ 4000 K at what is known as the temperature minimum region, Tmin.

Number densities in the photosphere range from 1017 − 1015 cm−3. The next layer

after the temperature minimum region is the chromosphere, where the temperature

increases to ∼ 10000 K and number densities drop to ∼ 1011 cm−3 at the top boundary

with the corona, through a distance of ∼ 2000 km. Between the chromosphere and

corona is a very thin layer called the transition region where the temperature jumps 2

orders of magnitude and the density drops again. This leaves the corona, which is by

far the largest part of the Sun’s atmosphere. The corona is governed by the magnetic

field, as in general the thermal pressure is much lower than the magnetic pressure here

(a low β plasma, see Gary (2001) for a discussion on the variation of the plasma beta

in the solar atmosphere). This means that it is highly conductive and controlled by

the motions of the magnetic field. The quiet, non-active corona has a temperature of

∼ 1− 2 MK with a density of 108 − 109 cm−3, the reason for it being so much hotter

than the layers of atmosphere below is still an open question (Parnell & De Moortel,

2012). The variation of the electron temperature and density through the solar atmo-

sphere is shown in Figure 1.1. The process behind solar flares is believed to occur in

the corona, where there is a release of energy due to reconnection (Sweet, 1969).

1.1.2 Reconnection and Acceleration

Reconnection is the release of stored magnetic energy in the corona (Priest & Forbes,

2000), this results in heating, where the plasma near the reconnecting region generally

jumps by an order of magnitude compared to the quiet corona, i.e. 10 − 30 MK.

Furthermore, a portion of released energy (Lin & Hudson (1976) suggested possibly as

much as 10 - 50 %, but this is hard to correctly ascertain) results in the acceleration
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Figure 1.1: The variation of electron density, ne, hydrogen density, nH0 , and electron

temperature, Te, with height above the photosphere. Figure taken from Aschwanden (2004).

of particles to suprathermal levels, particularly electrons but also protons and heavier

ions (see Vilmer et al., 2011, for a recent review). Most flares accelerate particles to the

deka-keV range, often to the MeV range and sometimes even to the GeV range (Lin,

2006). This requires an efficient acceleration mechanism which, in a solar flare, could

involve DC electric field acceleration, shock acceleration and stochastic acceleration. A

review of these methods can be found in Holman et al. (2011). Stochastic acceleration

is the favoured method of this thesis, due to the inferred isotropy of the accelerated

electron spectrum (Kontar & Brown, 2006) and the fact that in the more realistic DC

(Aschwanden, 2002) and shock acceleration models (Jones, 1994) have similarities with

the stochastic model. An overview of the three acceleration regimes will be presented

later in this chapter (Section 1.2).

As these particles are being accelerated, they will begin to propagate through the

atmosphere. Those on open field lines propagate into interplanetary space where they

may impact upon the Earth. If the particles are in a region that is closed magnetically

then energetic enough electrons will tend make their way to the chromosphere where

they are collisionally stopped. In some cases, however, the flaring loop can have an

enhanced number density ∼ 1011 cm−3, possibly due to a process called chromospheric
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evaporation, described below. Dense solar loops can cause high energy particles to

be stopped in the corona, rather than streaming down towards the lower levels of the

solar atmosphere (Jeffrey & Kontar, 2013). This is the subject of the work presented

in Chapter 3.

1.1.3 Emission Characteristics of Solar Flares

Solar flares are broadband emitters, producing enhanced emission at wavelengths across

the electromagnetic spectrum from radio to X-rays and even gamma-rays in the most

high energy events. A flare tends to proceed through three stages, each with certain

emissions characteristic within it. First there is the preflare evolution during which

there are small scale brightenings in soft X-ray (SXR) and ultraviolet (UV) emission

some tens of minutes before the flare. The primary energy release of reconnection occurs

during the impulsive phase. This phase lasts from tens of seconds to tens of minutes

and is characterized by the emission in hard X-rays (HXRs), gamma-rays, non-thermal

(synchrotron) microwaves and white-light continuum emission which are indicative

of the strong acceleration of electrons and ions. There are further enhancements in

chromospheric line and continuum emission, UV and extreme-UV (EUV) radiation, and

bulk plasma upflows in EUV or SXRs at speeds of∼ 100 km s−1 coupled with downflows

in cooler lines such as Hα (Milligan et al., 2006). Most of this emission is concentrated

in the chromosphere. In fact, the dominant radiative energy of a flare, from both

thermal and non-thermal particles, occurs in the lower atmosphere (Hudson, 1972),

where the emission appears as ‘footpoints’ in HXR and optical continuum emission

and as ‘ribbons’ in optical line and UV emission, taken to be the chromospheric ends

of the magnetic field structure involved in the flare. This is followed by the gradual

phase, with its slowly decaying SXR and microwave signatures. Loops and loop arcades

appear in SXRs and EUV and appear to grow, filled by chromospheric plasma forced

to expand into the corona as the chromosphere is rapidly heated by particles depositing

their energy or via thermal conduction, which is known as chromospheric evaporation

(Neupert, 1968; Antonucci & Dennis, 1983). Later on, as the corona cools, the loops
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and arcades become visible in lower temperature emissions, including EUV and Hα.

The gradual phase may last for several hours.

The emission in the paragraph above all occurs within the closed magnetic fields in the

lower solar atmosphere. Solar flares also accelerate particles into the solar wind on open

field lines. There is evidence for solar energetic particles (SEPs) being accelerated at, or

near, the energy release site in flares. Specifically, solar electron events in interplanetary

space have a strong association with the metric-decimetric type III radio bursts (see e.g.

Lin, 1970) where the high density inferred from the starting frequency of the emission

implies the acceleration happens at or near the main energy release site.

The soft X-ray flux present during a flare is used to classify them, specifically that taken

by the Geostationary Orbiting Environmental Satellites (GOES) in the 1-8 Å flux at

1 AU. There are five broad classes, X-class are the largest, followed in decreasing order

by M, C, B and A class flares. There are also subdivisions within the flare classes, via

the numbers 1 to 10 (for A to M), such that an M10 class flare has a higher flux than

an M5 flare. Each letter stands for a jump in the order of magnitude of flux, an X-class

flare has a flux of of order 10−4 W m−4 (or greater), whereas an M-class flare has a

flux an order of magnitude less. X-class flares have no limit on the number associated

with them (Fletcher et al., 2011).

X-ray emission in solar flares is produced by bremsstrahlung, either free-free from elec-

trostatic collisions between suprathermal electrons and background particles in the

flaring plasma in the case of HXRs (above ∼ 10 keV) or from the interactions of par-

ticles in a thermal plasma in the case of SXRs. Although X-rays are are only a small

portion of the total radiative output during flares (Woods et al., 2006; Kretzschmar,

2011) they offer a valuable diagnostic tool on the accelerated particle distribution.

This is because the chromosphere and corona are optically thin to X-radiation and,

furthermore, because the emission mostly comes from free-free bremmstrahlung at

non-thermal energies. It is thus easier to infer the underlying electron distribution

producing the photon spectrum than at other wavelengths where there are multiple

emission and absorption mechanisms operating. The advent of spatially resolved HXR

imaging with the launch of the Reuven Ramaty High Energy Solar Spectroscopic Im-
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ager (RHESSI) in the early 21st century, together with comparison to previous results

from Yohkoh, has enabled closer inspection of the electron spectrum (See Chapter 2).

In particular, imaging of the coronal looptop source (Xu et al., 2008) has revealed that

the acceleration of electrons takes place over a finite, inhomogeneous region of space.

This is the subject of Chapter 4.

The remainder of this chapter will discuss acceleration and transport of electrons in

solar flares, as well as the emission processes pertinent in the HXR energy range.

Finishing with an overview of HXR observations of solar flares.

1.2 Acceleration Processes in Solar Flares

The main aim of this thesis is to examine how the acceleration and transport of electrons

in solar flares affects the resulting distribution, and thus photon spectrum, one would

expect to obtain. The acceleration that occurs in solar flares can be split in three

broad regimes: DC electric field acceleration (Holman, 1985), stochastic acceleration

(Petrosian, 2012; Bian et al., 2012) and shock acceleration (Somov & Kosugi, 1997;

Tsuneta & Naito, 1998).

The simplest conceptually is electric DC field acceleration but this is hard to apply

to solar flares due to the extremely dynamic nature of reconnection (see e.g. Holman,

1985). As the magnetic field during reconnection is constantly changing it would be

likely that any current sheets forming would be highly intermittent, both spatially

and temporally. Stochastic acceleration (SA) is the net gain of energy due to multiple

interactions with waves in a turbulent plasma. Shock acceleration consists of a partic-

ular geometry and inhomogeneous boundary that results in the transfer of energy to

particles interacting with the shock.

It should be said that in reality there will not be such a clear boundary between the

three regimes. The fragmented, inhomogeneous current sheets and magnetic islands of

the bursty reconnection mode (Priest, 1985; Aschwanden, 2002) approach the limit of

the turbulence required in the stochastic model. Furthermore, many shock acceleration

models require multiple crossings of the inhomogeneous boundary in order to produce
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efficient acceleration, again approaching the stochastic model due to the diffusive ele-

ment present here (Jones, 1994).

Further to this, the accelerated electron distribution appears to be isotropic in pitch-

angle (Kontar & Brown, 2006) which also favours acceleration by stochastic interac-

tions. This thesis, therefore, presents energization of electrons by stochastic processes.

The next two sections will briefly summarise the two other acceleration processes,

highlighting where the similarities to SA arise, followed by a third section on SA itself.

1.2.1 Electric DC Field Acceleration

Particle acceleration occurring due to direct current (DC) can be categorised by whether

the electric field is sub- or super-Dreicer. The Dreicer field ED = kBT/eλc, where λc

is the collisional mean free path and the other terms are as in the Table of Symbols,

being the field strength required to accelerate an electron to its thermal energy over a

distance equal to the collisional mean free path. Acceleration can also be categorised by

the temporal variability of the field or the magnetic geometry (current sheets, X-points,

O-points).

Sub-Dreicer electric field acceleration has been studied in a solar flare context by Hol-

man (1985) and Benka & Holman (1994) and has been shown to fit the velocity distri-

bution of electrons inferred from flares. However, there are problems intrinsic within

the model, the major one being the requirement for a large scale electric field the size

of the flaring loops. If there were a large Sweet-Parker current sheet (L ∼ 109 cm) this

would be unstable to the tearing mode and fragment into magnetic islands in a bursty

reconnection mode, which starts to resemble the turbulence required for stochastic

acceleration (Kliem, 1994; Miller et al., 1997; Aschwanden, 2002). Furthermore, the

observed time of flight delays do not agree with those predicted by models (Aschwan-

den, 1996). Finally, static electric fields require counter streaming return currents (e.g.

opposite to the electron beam) which limits acceleration efficiency (Brown & Melrose,

1977).

Super-Dreicer fields, on the other hand, can produce the observed HXR energies over
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much shorter distances, and so seem more suited to a solar flare context. Particles can

be accelerated to the required energies in fragmented current sheets or in coalescing

magnetic islands as they occur in a bursty reconnection mode. The compactness of the

regions in this case does agree with time of flight delays (Aschwanden, 1996). Particle

acceleration kinematics in current sheets with super-Dreicer fields can be found in

Litvinenko (1996).

DC acceleration can be further categorised by the magnetic field topology, with ac-

celeration near magnetic X-points having been discussed extensively (e.g. Petkaki &

MacKinnon, 1997; Hannah et al., 2002; Petkaki & MacKinnon, 2007), or near magnetic

O-points or magnetic islands, as discussed by Furth et al. (1963); Spicer (1977), which

form naturally due to the tearing instability although the second case would likely

require a preaccelerated seed population (possibly by a sub-Dreicer current sheet).

Particle acceleration in three-dimensional reconnecting current sheets has been studied

by Litvinenko (1996); Zharkova & Gordovskyy (2005); Wood & Neukirch (2005). Re-

cent models have furthermore used more complicated magnetic topologies, involving

more advanced MHD models of fan and spine reconnection (Priest & Titov, 1996), with

particle acceleration in the presence of spine reconnection studied in Dalla & Browning

(2005, 2006) and fan reconnection dealt with in Dalla & Browning (2008).

Of course, any model which relies on a static electric field cannot be considered a

realistic one in a solar flare due to their highly dynamic nature. During a flare, electric

DC fields are likely to be created by a number of dynamic processes. This includes: (1)

Betatron acceleration; which has been applied to solar flares by Brown & Hoyng (1975),

where the research was driven by quasiperiodic time structures in HXRs. An example

of betatron acceleration is magnetic pumping. (2) Field aligned electric potential drops;

such as the model in Tsuneta (1995), where fast reconnection outflows interact with

flare loops that are enhanced by chromospheric evaporation resulting in strong shear

flows at the interface of the soft X-ray loop and potential drops of ∼ 100 keV. (3)

Coalescence and X-point collapse; such as that in Kliem et al. (2000), demonstrating

that tearing and coalescence in the bursty reconnection mode can modulate particle

acceleration on the timescales observed in solar flares.
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1.2.2 Shock Acceleration

Ever since shocks have been shown, in a simple configuration, to produce power-law

spectra (see e.g. Cargill, 1991) they have been used to explain a variety of astrophysical

phenomena. A shock forms in the presence of a discontinuous boundary. Such bound-

aries are ubiquitous in an astrophysical context, whether at the expanding spherical

front of a supernova, the bow shocks of planetary magnetic fields or coronal mass ejec-

tions. It would seem natural for the relaxing magnetic fields after reconnection to offer

a prime opportunity for such boundaries to occur. Observations of type II radio bursts

confirm the presence of shocks in solar flares (Holman & Pesses, 1983) but the particles

producing this radiation are streaming out into the solar wind. It would make sense for

the magnetic reconnection process to cause standing fast-mode and slow-mode shocks

downwards as well as outwards, but at present there is only indirect evidence for this

type of downward shock (see e.g. Sui & Holman, 2003).

A shock is a discontinuity that travels faster than the sound (or fast/slow magneto-

sonic) speed of the ambient medium. Particle acceleration by shock waves can either

proceed via a single interaction with the shock (shock-drift acceleration, Fermi, 1949)

or by multiple interactions with the shock (diffusive shock acceleration, Anastasiadis

& Vlahos, 1991, 1994). Fermi (1949) explained the acceleration of cosmic rays by

reflections on moving magnetic clouds. This is valid when a particle encounters a

moving boundary with a higher magnetic field, as magnetic mirroring then takes effect.

If the electrons only encounter the shock once, then the energy gain is limited by the

ratio of the magnetic field up- and downstream of the shock. Higher energies can be

obtained if there exists a trapping region upstream of the shock, so that particles get

mirrored more than once gaining energy each time. Shock-drift acceleration is most

efficient in the presence of a near perpendicular shock (fast shock) but the small angle

in this case means that only a few particles (< 1%) can be accelerated (Wu, 1984). This

may be too restrictive a regime in a solar flare context, as mentioned by Miller et al.

(1997), but is well suited to acceleration in the Earth’s bow shock (Jokipii, 1966) and

radio type II bursts (Holman & Pesses, 1983). It has been shown, via recent studies by
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Warmuth et al. (2009); Park et al. (2012); Vandas & Karlický (2016), that shock-drift

acceleration in the presence of a termination shock (fast magneto-sonic shock) in solar

flares can reproduce the observed electon spectra up to ∼ 100 keV. Furthermore, if

the particles were pre-accelerated to ∼ 100 keV and injected into the shock, shock-

drift acceleration can produce gamma-ray electrons and ions with energies of 100 MeV

(Ellison & Ramaty, 1985; Mann et al., 2006).

The main problem with shock-drift acceleration is the limited energy a particle can

gain during a single interaction with the shock. If the acceleration happens in an

inhomogeneous medium, so that a particle is scattered multiple times back and forth

across the shock front this can result in a much greater energy gain during the many

interactions with the shock. The basic concept of Fermi acceleration is that in the

presence of multiple scattering centres moving in random directions where particles on

average gain more energy than they lose results in a net energy gain. A similar effect

can be seen in the presence of multiple shock fronts (Anastasiadis & Vlahos, 1991).

In fact, the mathematics governing both stochastic acceleration and diffusive shock

acceleration is very similar (as discussed in Jones, 1994). Wave particle interactions

in diffusive shocks have been studied by Decker & Vlahos (1986); Decker (1988). Two

important problems identified are that diffusive shock acceleration of electrons would

require a pre-accelerated population at around ∼ 20 keV (Guo et al., 2014), meaning

that there would need to be some other mechanism operating first to produce the non-

thermal seed particles (the so-called injection problem), and, further, it requires the

generation of resonant waves (turbulence) up- and downstream of the shock. This has

meant that although often used in studying the acceleration of interplanetary particles

it has not often been applied to solar flares (Anastasiadis, 2002). Simulations of ions

in diffusive shocks during solar flares has, however, confirmed that they can overcome

this injection problem, and produce the required resonant turbulence, meaning they

are quickly accelerated to gamma-ray energies Cargill et al. (1988).

In a solar flare context shock acceleration could occur in reconnection outflows (LaRosa

et al., 1994, 1996; Somov & Kosugi, 1997; Tsuneta & Naito, 1998; Warmuth et al., 2007,

2009; Park et al., 2012) and chromospheric evaporation fronts (Bai et al., 1983). For a
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more thorough description of shock and electric DC field acceleration see Aschwanden

(2004, Chapter 11).

1.2.3 Stochastic Acceleration

In this section the favoured acceleration process in this thesis, stochastic acceleration,

is presented. Whereas electric field acceleration is inherently a DC process, stochastic

acceleration is an AC process. Stochastic acceleration occurs via the magnetic field

component of low-frequency magneto-acoustic waves (Miller et al., 1997; Schlickeiser

& Miller, 1998; Petrosian et al., 2006; Zharkova et al., 2011), from either plasma wave

turbulence (Hamilton & Petrosian, 1992; Pryadko & Petrosian, 1997) or cascading

MHD turbulence (Miller et al., 1996). Of course, because of the AC nature of the

field, the particles can lose energy as well as gain it in their interactions with the

waves. However, some areas of the particle distribution will experience a net energy

gain, at the expense of the resonant wave energies, and stochastic acceleration occurs.

The theory of wave-particle interactions (Melrose, 1980a,b) can describe the growth of

magneto-acoustic waves by the absorption of unstable particle distribution energies and

concurrently the stochastic acceleration of particle distributions due to resonance with

these waves. As discussed above, in a solar flare context stochastic acceleration avoids

some of the large scale electrodynamic issues associated with systematic acceleration

regimes (Emslie & Henoux, 1995) with the isotropic nature of the accelerated distribu-

tion also suggesting acceleration by stochastic measures (Kontar & Brown, 2006). A

sketch of a reconnecting loop producing plasma turbulence is shown in Figure 1.2.

In order to fully describe the interaction of particles with waves in a plasma, the theory

of wave-particle interactions must be used. This consists of a pair of coupled equations

which describes the changes in the wave photon spectrum, N(k, t), due to interactions

with particles and equivalently the changes in the particle distribution function, f(v, t)

(see Table of Symbols), in reaction to the waves (see e.g. Aschwanden, 2004, Chapter

11),
∂N(k)

∂t
+ vg(k)

∂N(k)

∂r
= Γ(k, f [v])N(k)− Γcoll(k)N(k), and (1.1)
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Figure 1.2: A sketch of the stochastic model (e.g. Hamilton & Petrosian, 1992), the green

lines show a ‘reconnecting’ magnetic field and the red circles represent the turbulence. Figure

from Liu et al. (2008).

∂f(v)

∂t
+ v

∂f(v)

∂r
=

∂

∂vj

[
Dij(N [k])

∂f(v)

∂vi

]
, (1.2)

where N(k)/~ω (~ = h/2π) represents the occupation number of photons in the wave

energy range W (k) in k-space, k being the wavenumber. The position vector is r, vg

is the group velocity of the emitted waves, Γ(k, f [v]) the wave amplification growth

rate, Γcoll(k) is the wave damping rate due to collisions and Dij(N [k]) is the diffusion

tensor. The coupling between equations (1.1) and (1.2) comes from the wave spectrum

growth rate, Γ(k, f [v]), which depends upon the particle distribution and the diffusion

tensor, Dij(N [k]), which depends upon the wave spectrum.

The particle distribution (and equivalently the wave spectrum) can therefore only be

described fully by the simultaneous solution of these equations. Simultaneous numerical

solutions of the one-dimensional, quasilinear form of the above equations of can be

found in Hannah & Kontar (2011) and Ratcliffe et al. (2012). To examine the diffusion
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of electrons equation (1.1) is neglected. If the particle transport term is also ignored for

the moment, then the acceleration of particles is controlled by the quasi-linear diffusion

term which characterises the diffusion of wave-resonant particles in velocity space,

∂f(v)

∂t
=

∂

∂vj

[
Dij(N [k])

∂f(v)

∂vi

]
. (1.3)

The diffusion tensor, Dij(v), includes transitions of the photon distribution, N(k),

from momentum ~ki to ~kj. The full expression can be found in Melrose (1969).

As the particle is undergoing gyromotion the above equation is best expressed in spher-

ical polar coordinates and so, concentrating on the stochastic acceleration of particles,

the diffusion equation is expressed (Petrosian, 2012),

∂f(v, µ)

∂t
=

1

v2

∂

∂v
v2

[
Dvv

∂f(v, µ)

∂v
+Dvµ

∂f(v, µ)

∂µ

]
+

∂

∂µ

[
Dµµ

∂f(v, µ)

∂µ
+Dµv

∂f(v, v)

∂v

]
. (1.4)

This equation describes the production of energetic particles from a relatively cool

background plasma, thermal or Maxwellian. Here the mean diffusion coefficients are

Dvv, Dµµ and Dµv = Dvµ and all other terms are as in Table of Symbols. If, as observed

(Kontar & Brown, 2006), the distribution is isotropic in pitch angle, the acceleration

of electrons is purely controlled by the diffusion in velocity and so,

∂f(v)

∂t
=

1

v2

∂

∂v
v2Dvv

∂f

∂v
. (1.5)

Some form of this equation will be used as the acceleration term within this thesis.

This proceeds to change the distribution function on a timescale,

τacc(v) ∼ v2

Dvv

, (1.6)

so the timescale the acceleration within the system operates on will depend on the

exact form of Dvv. This timescale in solar flares is of the order 0.1 seconds (Miller

et al., 1997). Forms of Dvv vary depending on the acceleration method (Bian et al.,

2012). SA has a number of advantages over large scale DC electric field acceleration.

First, the acceleration occurs on a microscopic scale but averages out over large scales,
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this means that there is no problem with return current, which in the DC model require

filamentation of the acceleration region (Emslie & Henoux, 1995). Second, gamma-ray

energies are easily achieved by SA whereas due to return current losses sub-Dreicer

acceleration can only produce energies up to ∼ 100 keV (Benka & Holman, 1994).

Finally, SA can explain the observed enhancements of heavy-ion abundances in solar

flares (Miller & Reames, 1996), for which there exists no explanation in DC field

acceleration. In fact, the helical turbulence model of Fleishman & Toptygin (2013)

accounts for many of the outstanding questions about particle acceleration in flares,

such as the aforementioned ion abundance and the formation of electron beams. The

main limitation of SA is the need to presume an ad-hoc injection of the of the necessary

plasma or MHD waves (Zharkova et al., 2011).

The observational evidence for SA in flares comes from the changes in loop width

with energy, which could signal the presence of magnetic turbulence (Kontar et al.,

2011a; Bian et al., 2011). Further to this, the observed soft-hard-soft nature of many

flares (Battaglia & Benz, 2007) would naturally be accounted for via SA, where the

non-thermal population ‘grows’ out of the thermal population. In addition, the time

constant differential electron flux pivot point (which leads to the soft-hard-soft be-

haviour) has been used as evidence of SA (Grigis & Benz, 2006).

1.3 Particle Interactions and Transport in the Solar

Atmosphere

1.3.1 Coulomb Collisions

In any model of a solar flare collisions will have to play a part, as they are responsible

for the emission of HXR photons.

In a fully, or partially, ionised plasma (i.e. the corona or chromosphere) electrons and

ions interact via the Coulomb electrostatic force. A moving electron passing another

electron or ion will be deflected by an angle θD because of the electric field of the other

particle. The simplest such scenario is the Lorentz model, where an electron is moving
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through a ‘sea’ of background heavy ions, which are assumed to be stationary. The

electrons that are required for charge neutrality are neglected, as the Lorentz model

assumes a high atomic number, Z, and hence electron-ion interactions are dominant

over electron-electron interactions. The cross section, σR, for the small angle scatter

of moving electron subject to the Coulomb field of a heavy stationary ion is given by

the Rutherford formula (e.g. Lifshitz & Pitaevskii, 1981),

σR =
4πZe2

m2
ev

4

∫ bmax

bmin

db

b
, (1.7)

where v denotes the speed of an electron [cm s−1] and the other symbols are as shown

in the Table of Symbols. The encounter between electron and ion is characterised by

the parameter b (see Figure 1.3) which is the closest distance of approach between the

two particles. If the electron is not deflected then,∫ bmax

bmin

db

b
= ln

λD
bmin

= ln Λ, (1.8)

is defined as the Coulomb logarithm. The role of this is to take account of all possible

deflections from bmax = λD down to bmin where λD is the Debye length. In a solar flare

context this is taken to be ln Λ ∼ 20 for the corona (this is the value used in simulations

in Chapter 3 and 4) as the plasma here is fully ionised.

Figure 1.3: Left Panel shows an electron being deflected by an ion in the Lorentz model.

Right Panel shows the general case where both particles are deflected and there is energy

and momentum transfer. Figure taken from Jeffrey (2014).

An electron moving with speed v through a field of static heavy ions (of number density

ni [cm−3]) experiences a collisional drag force due to multiple deflections. This causes
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the electron to lose energy in the direction of travel on a timescale,

τc =
1

nivσ
=

m2
ev

3

4πneZe2 ln Λ
=
v3

Γ
, (1.9)

where,

Γ =
4πneZe

4 ln Λ

m2
e

, (1.10)

is the collisional parameter. The collisional deceleration/friction time, τc, also called

the Lorentz collisional time, is the time taken for an electron at speed v to lose all of

its energy in the direction of travel. In this model the ions are considered stationary

and so there is no exchange of energy during the ‘collision.’

The Lorentz model, however, cannot be considered accurate during a solar flare. There

will be e− e, e− i and i− i collisions. All the particles will be moving and there will

be an exchange of energy during every collision. In this case, there are two timescales

of interest:

1. The momentum loss time, τ p, and,

2. The energy exchange time, τE.

Physically these two timescales can be thought of as follows. If the background distri-

bution of particles in a solar flare is taken to be Maxwellian then: the momentum loss

time is the time taken for a particle’s pitch-angle to isotropize in relation to the thermal

equilibrium and the energy exchange timescale is the time it takes for the particle to

reach an energy equilibrium with the Maxwellian. These timescales differ depending

on which particles are interacting, so, for example,

τEee : τEii : τEei ∼ 1 :

(
mi

me

)1/2

:

(
mi

me

)
, (1.11)

where mi [g] is the mass of an ion and the subscripts denote the interaction taking

place. So the quickest equilibrium occurs for e− e interactions (Lifshitz & Pitaevskii,

1981). For e− e collisions the energy loss is,

dE

dt
= − E

τEee
= −2E

τc

= −2EΓ

v3
e

= −Kne
E

ve, (1.12)
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where K = Γm2
e/2ne. Equation (1.12) is often used to describe the energy loss of

electrons in solar physics in the collisional thick-target model (Sweet, 1969; Brown,

1971). The energy lost by an electron initially at energy E0 over a distance z is then

found by,

E2 = E2
0 − 2K

∫ z

0

n(z′)dz′, (1.13)

where the column density is defined,

N(z) =

∫ z

0

n(z′)dz′. (1.14)

Equations (1.12) and (1.13) are only valid for suprathermal velocities v � vte. If there

was a constant density, n0, within the target, then N(z) = n0z, and so a 30 keV electron

would be stopped in a distance ∆z ∼ 0.5′′ in chromospheric densities, n0 = 1013 cm−3.

In a overdense coronal loop, such as those studied in Chapter 3, the density might be

n0 ∼ 1011 cm−3 which would result in a stopping distance of ∆z = 47′′, which helps

to explain observations of HXR events with little or no footpoint emission (Xu et al.,

2008; Guo et al., 2012; Jeffrey & Kontar, 2013).

In the presence of collisions, an extra term is added to equation (1.4) that accounts for

the energy lost by particles, i.e.

∂f

∂t
∝ 1

v2

∂

∂v
v2v̇lossf, (1.15)

where v̇loss describes the velocity change rate. In addition, the other terms involving

Dvµ and Dµµ in equation (1.4) have an effect. If the distribution is assumed isotropic

in pitch-angle, and the background electrons are modelled as a heat bath at a constant

temperature, T (see Table of Symbols), an assumption valid in a solar flare context

(Jeffrey et al., 2014), then the the changes in the isotropic particle distribution, f(v, x),

are described as such,

∂f

∂t
=

1

v2

∂

∂v

Γ(x)v2
te

v

∂f

∂v
+

Γ(x)

v2

∂f

∂v
, (1.16)

where,

vte =

√
kBT

me

, (1.17)
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and Γ(x) explicitly shows the dependence of the collisional parameter on the electron

number density which may depend on space, x. Coulomb collisions have two effects

on the evolution of f . The first term after the equality sign in the above equation

describes collisional diffusion and proceeds at a timescale,

τdiff ∼
v5

Γ(x)v2
te

. (1.18)

The second effect arises from the last term, that describes collisional deceleration/friction,

and proceeds at the Lorentz time,

τc ∼
v3

Γ(x)
. (1.19)

1.3.2 Particle Transport

The transport of particles from the acceleration region to the chromosphere can be

split into two groups: scatter-free (no pitch-angle scattering) and diffusive (pitch-angle

scattering). If the process is free-streaming, the electrons are ‘tied’ to the field lines

and they experience negligible losses as they move through the tenuous corona and so

deposit most of their energy in the chromosphere. Here they emit X-rays due to e− i

bremsstrahlung and energy is lost mostly through e − e coulomb collisions. This is

the basis of the commonly adopted ‘footpoint’ dominated flare scenario (Peterson &

Winckler, 1959; Sweet, 1969; Brown, 1971; Melrose, 1980a,b).

There are many observations that support the ‘footpoint’ picture, for example Battaglia

& Kontar (2012) showed that photons of higher energies are emitted lower in the chro-

mosphere, and that the source size decreases with depth consistent with convergence

of the guiding field. Furthermore, the growth of loop length with energy as discussed

in Xu et al. (2008), Kontar et al. (2011a) and Guo et al. (2012) is consistent with a

model where accelerated electrons are streaming along a a relatively constant density

loop without significant pitch-angle scattering.

There is mounting evidence, however, that there should be at least some form of pitch-

angle scattering within the transport process: first, there is very little evidence of

anisotropy in HXR observations Kontar et al. (2011b); second, albedo diagnostics,
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such as those in Kontar & Brown (2006); Dickson & Kontar (2013), and stereoscopic

measurements (Kane et al., 1998), show little evidence of strong downward beaming;

third, the majority of stochastic acceleration models for flares require strong pitch-angle

scattering (Sturrock, 1966; Melrose, 1968; Benz & Smith, 1987; Petrosian & Donaghy,

1999; Petrosian et al., 2006; Bian et al., 2012); fourth, the accelerated electrons will

propagate in a turbulent or beam generated media.

t = 0

f(x) f(x)

xx

𝑥(𝑡) ∼ 𝑣𝑡 < 𝑥 𝑡 2 >1/2∼ 𝐷𝑥𝑥𝑡

t = 0

t = t1

t = t1

Figure 1.4: Left Panel shows scatter free transport in the case where the distribution, f ,

has constant velocity, v. The distribution is shown at t = 0 and at later time, t = t1. Right

Panel shows diffusive transport parallel to the guiding field, again at times 0 and t1.

Scatter-Free Transport

Figure 1.4 (left), shows the scatter-free transport case. For a distribution of particles

in x-space (all assumed constant velocity here) the act of free-streaming transport will

merely move the entire distribution in x-space. If the accelerating currents are field

aligned, the electron dynamics can be approximated as 1-dimensional. The acceleration

only changes the parallel component of velocity and as such the transport is described

by,
∂f(v, x, t)

∂t
= −v∂f(v, x, t)

∂x
, (1.20)

which operates on an associated timescale,

τesc = σ/v, (1.21)
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where σ [cm] is the size of the acceleration region.

Diffusive Transport

Diffusive transport is shown, for constant velocity, in Figure 1.4 (right panel). Here

the change in the distribution between t = 0 and t = t1 is purely a diffusion of the

distribution in x. In a regime with strong pitch-angle scattering the third term on the

right in equation (1.4) becomes important in a transport context. So the transport, in

the absence of Coulomb collisions, can be modelled by,

∂f(v, µ, x, t)

∂t
+ µv

∂f(v, µ, x, t)

∂x
=

∂

∂µ
Dµµ

∂f(v, µ, x, t)

∂µ
, (1.22)

where the movement of the electrons now depends not only on the parallel velocity, v,

but also on the particle’s pitch-angle, µ. The pitch-angle coefficient is given by,

Dµµ = D(C)
µµ +D(T )

µµ , (1.23)

consisting of a turbulent, (T ), and collisional, (C), part. The collisional diffusion is

given by (Karney, 1986),

D(C)
µµ =

(1 + Z̄2)Kn(x)

m2
e

1

v3
(1− µ2), (1.24)

where K is the collisional parameter discussed in the previous Section (1.3.1) and Z̄2 is

the mean square atomic number. The factor (1 + Z̄2) takes care of the fact that there

are both e− e and e− i collisions. The addition of magnetic fluctuations in the loop,

postulated by Galloway et al. (2006) to explain the observed widths of loops observed

with the Transition Region and Coronal Explorer (TRACE) and again by Kontar et al.

(2011a) and Bian et al. (2011) to explain the observed increase in the width of coronal

HXR sources with energy, introduces an extra turbulent term, D
(T )
µµ . The mean free

path, parallel to the magnetic field, of a particle undergoing pitch-angle scattering is

(e.g. Jokipii, 1966; Schlickeiser, 1989),

λ ≡ 3v

8

∫ 1

−1

(1− µ2)2

D
(T )
µµ

dµ. (1.25)
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The mean free path, λ [cm], could thus have a complicated dependence on energy

depending on the spectral energy density of the turbulence.

If pitch-angle scattering is strong enough, i.e. D
(T )
µµ � 1, then pitch-angle diffusion leads

to a flattening of the distribution in µ over time. That is, there is an isotropization

of the distribution, ∂f/∂µ → 0. In this limit, the ballistic transport term becomes a

spatial diffusion parallel to the field, i.e.

µv
∂f

∂x
→ − ∂

∂x
Dxx

∂f

∂x
, (1.26)

where Dxx is given by (Jokipii, 1966; Schlickeiser, 1989),

Dxx =
v2

8

∫ 1

−1

(1− µ2)2

D
(T )
µµ

dµ =
λ(v)v

3
. (1.27)

In a solar flare context the quantity D
(T )
µµ is essentially unknown. As such, the mean

free path cannot be accurately determined and so the above expression is derived for

a constant mean free path in Kontar et al. (2014) and will be used in Chapter 4. The

transport is now modelled by a diffusive process,

∂f(v, x, t)

∂t
=
∂f

∂x
Dxx

∂f(v, x, t)

∂x
, (1.28)

where the transport term takes account of the pitch-angle diffusion implicitly. This

term has an associated timescale,

τesc ∼
σ2

Dxx

=
3σ2

λ(v)v
, (1.29)

which describes the loss of particles from the acceleration region.

Collisional scattering does produce spatial diffusion of thermal electrons (see discussion

of τ p in Section 1.3.1) but is rather weak when it comes to the transport of non-

thermal electrons. This is due to the collisional pitch-angle scattering timescale being

approximately the same as the energy loss time (Kontar et al., 2014). So for pitch-

angle scattering to be effective it must be shorter than the Coulomb collisional timescale

(equation 1.19). The mean free-path must also be small compared to the loop length,

i.e. λ� Lloop.

The mean free path, λ, will be discussed further in Chapter 4.
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1.4 The Effects of Acceleration and Transport

It is important to note that the shape of any distribution forming subject to the above

effects, discussed in Sections 1.2, 1.3.1 and 1.3.2, will be dependent on the relative

strengths of the terms or, equivalently, the timescales they operate on: acceleration

(τacc, equation 1.6), transport (τesc, equations 1.21 and 1.29), and collisions (τdiff and

τc, equations 1.24 and 1.19 respectively).

Thus, with this framework, and with special choices of Dvv, the governing equations

can be ‘tailored’ to provide the required electron distribution. In Chapter 3 there is

further discussion on how the timescales affect the distribution and in Chapter 4 the

velocity dependence of Dvv is chosen so as to produce a power-law.

The rest of this chapter will focus on the X-ray emission processes in solar flares, the

HXR spectrum being intrinsically linked to the accelerated population of electrons.

1.5 X-ray Emission in Solar Flares

1.5.1 Bremsstrahlung

During a Coulomb collision (Section 1.3.1) there is a small amount of energy emitted

by the accelerated electron as a photon. Photons emitted this way are due to the

‘braking’ of electrons due to the Coulomb electrostatic force and as such are termed

bremmstrahlung which literally translates as ‘braking radiation.’ It is by far the greatest

contributor to the emission in X-rays during solar flares (Korchak, 1967). A combi-

nation of electron-electron and electron-ion bremmstrahlung contributes to the overall

radiation from flares but below ∼ 300 keV e− i collisions are dominant.

The bremsstrahlung originating from a single electron moving at a non-relativistic

velocity produces a total radiated power,

Prad =

(
dE

dt

)
rad

=
2e2|v̇|2

3c2
, (1.30)

where v̇ is the electron acceleration and c is the speed of light. This equation is known

as Larmor’s formula and it gives the energy loss rate of the electron. It must be added
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that Larmor’s formula is not valid for relativistic electrons. Relativistic effects are

ignored here in the interests of illustration. The energy per unit frequency, dE/dω,

emitted the during the time the electron is being accelerated can be found by Parseval’s

theorem (Longair, 1981),∫ ∞
−∞

dE

dt
dt =

∫ ∞
−∞

2e2|v̇(ω)|2

3c2
dω = 2

∫ ∞
0

2e2|v̇(ω)|2

3c2
dω, (1.31)

so,

I(ω) =
4e2

3c2
|v̇(ω)|2. (1.32)

In a solar flare this will be happening for many electrons at the same time, the general

form of the angle-averaged bremsstrahlung flux, I(ε) [photons cm−2 s−1 keV−1], at the

earth (R = 1 AU) at a specific time, t, is (Kontar et al., 2011b),

I(ε) =
1

4πR2

∫ ∞
ε

∫
V

n(r)F (E, r)Q(ε, E)dEd3r, (1.33)

where n [cm−3] is the density of the emitting region, r is the position on the Sun,

V [cm3] is the emitting volume, F (E) is the electron flux spectrum [electrons cm−2

s−1 keV−1] and the bremsstrahlung cross-section is Q(ε, E). The full form of the angle

averaged e−i bremsstrahlung cross section, Q(ε, E), is shown as equation 3BN of Koch

& Motz (1959). Two frequently used analytic approximations in solar physics are the

Kramer’s cross-section (Kontar et al., 2011b),

QK = Z2 σ0

εE
, (1.34)

and the more accurate Bethe-Heitler cross section, valid in the non-relativistic limit,

QBH = QK ln
1 +

√
1− ε/E

1−
√

1− ε/E
, (1.35)

where σ0 = (8α/3)(mec
2)r2

0 = 7.9 × 10−25 cm2 keV, α = 1/137 is the fine structure

constant and r0 = 2.82 × 10−13 cm is the classical electron radius. Equation (1.33) is

an inverse problem, the aim of HXR solar physics is to infer the form of the electron

spectrum from the observed photon spectrum. Any form of inferred F (E) is of course

dependent on the form of the cross-section used. Both Kramer’s and the Bethe-Heitler
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cross-sections have been used to infer the electron distributions present in solar flares

(Brown, 1971; Brown et al., 2002). Haug (1997) showed that it is important to take

relativistic effects into account even at energies as low as∼ 30 keV. The paper presented

an analytic form of the Koch & Motz (1959) relativistic Bethe-Heitler cross-section,

valid for semi-relativistic energies, and furthermore a more usable form for numerical

considerations. It should be noted that in the process of forward-fitting RHESSI spectra

performed in this thesis (see Chapter 2) that relativistic effects are taken into account.

The fitting routine to the non-thermal spectrum uses the approximation from Haug

(1997) together with the multiplicative Elwert correction to the Born approximation

(Elwert, 1939). Often the spectrum is sought without spatial information, in this case

the spatially integrated form of equation (1.33) can be used,

I(ε) =
1

4πR2

∫ ∞
ε

〈n̄V F̄ (E)〉Q(E, ε)dE, (1.36)

where n̄ = (1/V )
∫
V
n(r)d3r and F̄ (E) = (1/n̄V )

∫
V
n(r)F (E, r)d3r is known as the

mean electron flux spectrum [electrons cm−2 s−1 keV−1] (Brown et al., 2003) and has

also been called the X-ray emitting electron spectrum (Johns & Lin, 1992). The quan-

tity 〈n̄V F̄ (E)〉 is the density weighted mean electron flux, as n̄V is dimensionless it has

the same units as F̄ (E). A typical value of 〈n̄V F̄ (E)〉 at 20 keV would be ∼ 1055 elec-

trons s−1 cm−2 keV−1.

There are a variety of techniques used to infer 〈n̄V F̄ (E)〉 from the photon spectrum,

I(ε). A review of the effectiveness of these techniques is shown in Brown et al. (2006)

and this thesis will discuss them further in Chapter 2. Brown et al. (2003) makes the

point that 〈n̄V F̄ (E)〉 is the only quantity that can be inferred unambiguously, with no

additional model assumptions, from the integrated bremsstrahlung emission. It only

depends on the form of the bremsstrahlung cross-section chosen. As such, it is the

natural middle ground for comparing observations with numerical simulations, as long

as the bremsstrahlung cross-section used is the same for both. This thesis will show the

〈n̄V F̄ (E)〉 from two RHESSI HXR events in Chapter 2, which will be used as context

for the numerical results of Chapters 3 and 4. These expressions only apply to e − i

bremsstrahlung, which is the dominant process at energies less than ∼ 300 keV.
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Thermal Bremsstrahlung

The emission from a distribution in thermal equilibrium due to bremmstrahlung is

called thermal bremsstrahlung. In solar flares, the emission below ∼ 30 keV is often

best fit with an exponential function that is isothermal in order to obtain an aver-

age temperature, T [K], and emission measure, EM = n2V [cm−3], for the plasma

(although due to the extended, and spatially varying, nature of the X-ray sources

themselves the actual plasma is bound to have a range of temperatures). The emitting

density and volume are given by n [cm−3] and V [cm3]. The photon flux is given by,

I(ε, r) ∝ n2(r)V (r)

εT 1/2(r)
exp

(
− ε

kBT (r)

)
, (1.37)

which gives rise to a density weighted mean electron flux for the thermal population

(Brown & Emslie, 1988; Battaglia & Kontar, 2013),

〈n̄V F̄ (E)〉th = EM
23/2

(πme)1/2

E

(kBT )3/2
e−E/kBT . (1.38)

Non-Thermal Bremmstrahlung

In solar physics, the range of electrons at non-thermal energies (above ∼ 30 keV) is

often best fit by a single or broken power-law (Holman et al., 2003). So in this range

of energies the density weighted mean electron flux is also a power-law, i.e.

〈n̄V F̄ (E)〉nth ∝ Eδ ←→ I(ε) ∝ E−γ. (1.39)

In the thick-target model of Brown (1971) the spectral index differs from the injected

index as δthick = δ − 2 and the resulting photon spectrum is γ = δ + 1. This would

generally be used for dense areas of the atmosphere, i.e. the chromospheric footpoints

or an overdense coronal loop.

In this thesis thin-target bremsstrahlung will be used to fit all non-thermal sources to

avoid complication because, as mentioned above, the inferred 〈n̄V F̄ (E)〉 will be suit-

able for the comparison of simulated and observed electron spectra as long as the same

bremmstrahlung cross-section is used. In the thin-target model, electrons do not lose
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all their energy while moving through the target and γthin = δ − 1. Thus, if the chro-

mospheric footpoints are assumed to be thick-target, and the coronal looptop source is

assumed to be thin-target, the spectral index difference would be expected to be 2, if

the escaping electron distribution from the looptop is the source of the footpoint emis-

sion. Substantial variation from this value has been observed, for example by Battaglia

& Benz (2006), which could imply there is some extra trapping mechanism keeping the

accelerated electrons in the corona for a longer timescale than free streaming escape.

The thin-target density weighted mean electron flux for a single power-law is given by

(e.g. Holman et al., 2003, 2011; Simões & Kontar, 2013),

〈n̄V F̄ (E)〉nth = 〈nV F0(E)〉δ − 1

Ec

(
E

Ec

)−δ
, E > Ec, (1.40)

where 〈nV F0(E)〉 [e− cm−2 s−1] is the normalisation flux and Ec [keV] is the low energy

cutoff.

It should be noted that throughout this thesis the density weighted mean electron flux

will also be denoted 〈nV F (E)〉 without the bars across n and F (E).

1.5.2 X-ray Observations

The temporal evolution of most flares follows a similar pattern as discussed in the

introduction (Section 1.1). For X-rays in particular, during the rise, or precursor stage,

there is a gradual increase in SXRs and low energy HXRs and the plasma is heated

to tens of mega-Kelvin over timescales of minutes. This is followed by the impulsive

stage, where there is a fast increase of electrons above 20 keV. This stage only lasts 1-2

minutes and results in a large number of electrons being accelerated to suprathermal

levels, the SXR and lower energy HXRs usually peak after the impulsive HXR emission

and then start to gradually decrease. The final stage is the gradual decay stage, which

encompasses this decrease in X-ray emission and can take hours for some flares, but

can be much shorter for others. The timing of each of these phases is different in each

event.

The general form of the X- and gamma-ray spectrum encompasses 5 major parts (plus

some emission lines), and is mostly caused by bremsstrahlung emission from electron-
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ion bremsstrahlung below ∼ 300 keV and a mixture of electron-ion and electron-

electron bremsstrahlung at energies higher than this (Figure 1.5). The low energy

spectrum below ∼ 30 keV is often best fit with a single exponential function which gives

an average temperature for the flaring plasma, with typical temperatures of 20−30 MK.

Furthermore, there are two emission lines often seen in this part of the X-ray spectrum.

One is at 6.7 keV and is due to highly ionised Iron (Fe) and the other at 8.1 keV due

to highly ionised Iron and Nickel (Ni) in the corona. These lines are highly sensitive

to the temperature and abundance of Iron in the corona and thus serve as useful di-

agnostic tools (Phillips & Dennis, 2012). The next part is the HXR emission from

the non-thermal electron distribution between ∼ 25− 500 keV, this is in general best

fit by a single or broken power-law and is, for most flares, emitted mainly from the

chromosphere, although as mentioned before flares sometimes display HXR emission

purely from the coronal source (Jeffrey & Kontar, 2013). Thirdly is the albedo compo-

nent from Compton backscattered photons from the photosphere (Bai & Ramaty, 1978;

Kontar et al., 2006; Jeffrey & Kontar, 2011). Fourth, there is the gamma-ray emission

above ∼ 500 keV, this part of the spectrum is more complex, combining continuum

emission from e − e bremsstrahlung plus line emissions from nuclear reactions. Two

prominent emission lines are those at 511 keV due to electron-positron annihilation

and one at 2.223 MeV which is the neutron capture line. The fifth part is only seen

in rare cases when the spectrum can be observed up to 100 MeV when gamma-ray

emission from pion decay may be seen (Ramaty et al., 1979; Vilmer et al., 2011).

The next section will discuss the morphology of solar flares, due to particular features

being the drivers of the research in Chapters 3 and 4.

1.5.3 Solar Flare Morphology

A ‘typical’ solar flare would be expected to have X-ray sources in the corona and

chromosphere. Most of the HXR emission is produced in the chromosphere where high

energy particles impact on the dense plasma where they are collisionally stopped. For

almost all flares, these chromospheric footpoints are observed, consisting mostly of non-
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Figure 1.5: Composite RHESSI spectrum. At low energies, less than ∼ 25 keV, the superhot

flare loop dominates, this is fit in this case by the two isothermal yellow curves on the left.

There are two prominent emission lines at 6.7 keV and 8.1 keV. The spectrum between 30 keV

to 1 MeV is dominated by bremmstrahlung non-thermal emission (green line). There is also

the albedo component (blue line) from Compton backscattered photons. Above 500 keV the

gamma-ray spectrum is more complex, with continuum emission from e− e bremmstrahlung

and extra line emissions from nuclear interactions (magenta line) and finally the emission

from pion decay (grey). Figure taken from Lin et al. (2002) and modified.

thermal emission above ∼ 20− 30 keV. The majority of flares are footpoint dominated

(Antonucci et al., 1982; Sakao et al., 1996) with most also producing coronal emission

that is a mixture of SXR and HXR emission. This is normally a mixture of thermal,

thin-target and thick-target bremsstrahlung depending on the specific properties of the

coronal flaring region. In most cases this looptop emission can only be observed above

the background to around 30 keV, and is assumed to be around the site of the energy

release. Flares have been observed with this morphology for a long time, starting

with observations from Yohkoh (Kosugi et al., 1991) and continuing with the RHESSI

satellite (discussed in Section 1.6 and Chapter 2).
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In rare cases, an extra HXR source is observed above the SXR looptop (Masuda et al.,

1994), which has been presented as the energy release site. It could be that the current

sheet from the reconnection itself is being observed here. One particularly interesting

observation of this feature is shown in Sui & Holman (2003). Sometimes the above the

looptop source can have very high energies (Krucker & Battaglia, 2014). Observations

of these events are rare, however, maybe because they are not a part of every flare’s

morphology, or perhaps because the resolution of RHESSI is not high enough.

Another rare type of solar flare is the case where the HXR emission is almost entirely

confined to the coronal source. These events are often thought of as coronal thick-

targets (Veronig & Brown, 2004; Jeffrey & Kontar, 2013) where a high density, ∼

1011 cm−3, stops the electrons in the corona before they get the chance to precipitate

to the lower atmosphere. These events are important in the context of this thesis, they

are the driving force behind the analytic approximations of Chapter 3. Flares such

as these give extra information on acceleration after reconnection (Xu et al., 2008),

showing that the emission is consistent with an extended acceleration region within

the looptop. The extended nature of the acceleration region is the subject of the work

in Chapter 4.

There is one very rare type of event for which there exists no coronal emission at

all, such as the one studied in Fleishman et al. (2011). In this event electrons are

observed above 100 keV but all the emission is confined to the footpoints with a very

low temperature. Examples of all these flare morphologies are shown in Figure 1.6.

The length of the coronal source has been shown to vary with energy consistent with a

thick-target density within the looptop with densities∼ 1011 cm−3 (Xu et al., 2008; Guo

et al., 2013; Jeffrey & Kontar, 2013). Loop widths have also been observed to increase

with energy but this is harder to explain. In a classical sense the electrons should be

bound to fieldlines and cross field transport should be negligible. Kontar et al. (2011a)

and Bian et al. (2011) suggested that this could be due to magnetic turbulence in the

loop. The presence of which is a requirement of the stochastic acceleration model.

During a solar flare, the emission travels outward in all directions, not just directly

into the line of sight. Some photons are Compton scattered when they impact on
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Figure 1.6: Top Left ; ‘Standard’ flare geometry, with low energy coronal emission and HXR

footpoints, taken from Simões & Kontar (2013). Top Right ; Flare with above the looptop

source, taken from Sui & Holman (2003). Bottom Left ; Coronal HXR source, figure taken

from Jeffrey & Kontar (2013). Bottom Right ; rare event where only HXR footpoints are

observed, figure taken from Fleishman et al. (2011).

the photosphere. This has the effect of a ‘bump’ in the photon spectrum between

∼ 30 − 50 keV called the albedo which should be taken account of, especially in full-

Sun spectra. The method to account for this is via the Green’s function approach

of Kontar et al. (2006) which is fully assimilated within the RHESSI spectral analysis

software, discussed in the next section and more fully in Chapter 2. Other effects which

may need to be accounted for are count pileup on RHESSI detectors (Holman et al.,

2011) and wave-particle interactions (Kontar et al., 2011a).
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1.6 X-ray Telescopes

Hard X-ray images of solar flares were first conducted via balloon flights such as that in

Takakura et al. (1971) via a one dimensional modulation collimator imager. This was

followed by the hard X-ray imaging spectrometer (HXIS) (van Beek et al., 1980) on

board the Solar Maximum Mission (SMM) which, for the first time, resolved images of

footpoint and looptop sources (Hoyng et al., 1981). The Hinotori rotating modulating

collimator (RMC) (Tanaka, 1983) introduced rotation modulating collimators as the

way to improve spatial resolution of HXRs. The Yohkoh hard X-ray telescope (HXT)

(Kosugi et al., 1991) then produced more spatially resolved images, at higher energies,

via its RMCs than observed before. The last two missions pioneered the technology

that enables RHESSI (Lin et al., 2002), through its nine RMCs, to provide unparalleled

resolution of hard X- and gamma-ray photons in space, time and energy.

The driving force for all the work within this thesis are the HXR observations performed

by RHESSI. Specifically, dense HXR coronal sources are the driver behind the analytic

solution of Chapter 3 and the RHESSI observations of the second flare studied in

Chapter 2 provide the input parameters and context to the numerical modelling in

Chapter 4. As such, this section is a brief summary of the RHESSI spacecraft.

1.6.1 RHESSI Instrument Overview

The Reuven-Ramaty High Energy Solar Spectroscopic Imager or RHESSI is a NASA-

led mission launched in 2002 and still operational today, It observes the full Sun from

a low Earth orbit over the energies 3 keV - ∼ 17 MeV. It was designed to improve

the resolution of X-ray and gamma-ray observations spatially and temporally and to

have good energy resolution across the entire range. It consists of 9 cooled germanium

detectors at the rear of the spacecraft. In front of these the 9 widely spaced grids at

a distance of 1.5 m apart are the RMCs which provide the imaging capabilities. The

instrument itself is shown in Figure 1.7. RHESSI has provided spatial resolution not

available before, via imaging spectroscopy, discussed in Chapter 2.
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Figure 1.7: The RHESSI instrument, taken from Hurford et al. (2002).

1.6.2 RHESSI Imaging

Due to their high energy X-rays above ∼ 1 keV and gamma rays are extraordinarily

hard to focus directly. Although the next generation of X-ray imagers, such as The

Nuclear Spectroscopic Telescope Array, NuSTAR (Harrison et al., 2013; Hannah et al.,

2016), and The Focusing Optics X-ray Solar Imager, FOXSI (Krucker et al., 2014),

are making this a possibility for X-rays below ∼ 100 keV. RHESSI, however, needs

to make its images via a different technique. It is an indirect Fourier Imager; the

spacecraft spins on its axis once every ∼ 4 s and during this photons impact upon

the RMCs (Hurford et al., 2002). Each incident photon either hits a slit or a slat at

one of the RMCs, which either allows or impedes the passage of the photon to the

germanium detector, shown in Figure 1.8. This then produces a time modulated signal

which depends on the size and position of the source on the Sun (see Chapter 2). If

this temporally modulated signal is then stacked per ‘roll bin’ (fraction of a spacecraft

rotation) this gives a set of X-ray visibilities. These visibilities are the two dimensional

fourier components of the source in uv-space, given by,

V (u, v; ε) =

∫
x

∫
y

I(u, v; ε) e2πi(xu+yv) dx dy, (1.41)

the inverse transform of which gives the X-ray image, I, at energy, ε, in the xy-plane.

The visibilities are represented in uv-space by a series of circles of constant radius
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representing the angular resolution of RMC 1-9 with the detectors with less resolution

producing smaller circles (e.g. Massone et al., 2009). RMC 1 has the finest grid and

RMC 9 has the coarsest grid, with angular resolutions of 2.26” and 183.2” respectively.

Each successive RMC has an increase in grid size by a factor
√

3. Doing a two di-

mensional fourier transform on the time modulated signal produces a back-projection

image (Mertz et al., 1986). The straight fourier transform that produces the back-

projection image is not ideal though; it gives a poor image with sidelobes. Hence, a

number of different algorithms have been developed or modified from radio astronomy

in the aim of producing better X-ray images. Some of the most used techniques are

CLEAN (Högbom, 1974; Hurford et al., 2002), the Maximum Entropy Method (MEM)

(Hurford et al., 2002; Schmahl et al., 2007), Pixon (Pina & Puetter, 1993; Metcalf

et al., 1996), uv smooth (Massone et al., 2009) and forward fitting algorithms such as

visibility forward fitting (VisFwdFit) (Hurford et al., 2002; Schmahl et al., 2007). Of

these the CLEAN algorithm is used in this thesis, in Chapter 2, chosen due to the best

trade off between speed and accuracy. We summarise the five techniques here.

The CLEAN algorithm assumes that the X-ray source is made up of many point sources.

CLEAN-ing an image is the process of iteratively finding the highest intensity pixel in

the image. At each iteration, once the highest value pixel is found, a chosen proportion

of the highest intensity, known as the clean beam width parameter, is convolved with

the point spread function (PSF), centered at the highest value pixel and subtracted

from the image. This is stopped after a chosen number of iterations, or when the peak

flux is negative. The final image is a CLEAN-ed map consisting of the position and

amplitude of each chosen pixel convolved with the PSF.

Pixon is a method that has been adapted from the Yohkoh HXT (Metcalf et al., 1996).

The algorithm tries to find the simplest model for the image consistent with the data.

To do this it uses different sized pixels, or ‘pixons’, together to try and reproduce the

observed modulation patterns and aims for the least number of pixons required to do

this. It is generally thought to provide the best photometry but is very slow (can take

& 1 hour for a 128 by 128 pixel image).

The maximum entropy method differs from Pixon and CLEAN in that it assumes each
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pixel on the image is an independent source. The algorithm iteratively searches for that

image where the flux in each pixel is constrained by the requirements that the entropy

is maximized while maintaining an acceptable χ2. That is to say that the image is

the flattest possible consistent with observations. MEM sometimes suffers from over-

resolving images, resulting in too many point-like sources and can have trouble with

extended sources (Dennis & Pernak, 2009).

The uv smooth method uses the fact that the RHESSI RMCs produce Fourier com-

ponents in a series of circles on the uv-plane. It creates an image by interpolating the

visibilities in the uv-plane, followed by reconstructing an image of the source via a fast

Fourier transform inversion and reducing the ringing effects (i.e. sidelobes) by impos-

ing a positivity constraint. The second and third steps here are repeated iteratively

until a suitable χ2 criterion is fulfilled.

VisFwdFit starts with the assumption that there are only a limited number of source

shapes. The parameters describing each source are then adjusted until the model

predicted visibilities provide an acceptable χ2 fit to the measured visibilities. This

offers a fast way of obtaining the source parameters, such as length and width (as

well as errors associated with them). Of course, as this is a forward fitting method it

relies on the fact that the number and shape of the sources matches reality in order to

provide an acceptable fit.

The process of using the CLEAN algorithm will be discussed further in Chapter 2

where the imaging spectroscopy of a flare is undertaken.

1.6.3 RHESSI Spectroscopy

The nine cooled (< 75 K) germanium detectors are what make up the RHESSI spec-

trometer. Its resolution is less than 1 keV at 3 keV and increases to 5 keV at 5 MeV

(Lin et al., 2002). Each detector itself is made up of two segments, front and rear. The

front segments can absorb photons up to 250 keV while the rear segments can absorb

up to ∼ 17 MeV. When photons hit the detectors, they produce a current, which is

registered as counts. Thus RHESSI is a count rate spectrometer, the counts are related
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Figure 1.8: How the incident photons are either blocked or allowed through at a given time,

depending on their source position. Figure taken from Hurford et al. (2002).

to the X-ray photon spectrum by,

C = B + SRM I, (1.42)

where B is the background counts, I is the incident photon rate spectrum, SRM is

the spectral response matrix and C is the count rate spectrum. The spacecraft itself

is not shielded and so any contamination from, for example, cosmic-rays needs to be

taken account of before spectroscopy is performed. The SRM takes account of the

many effects that can affect the correct detection of photons. If the effect means that

RHESSI cannot detect the photon at the photon’s energy then this will be taken into

account on the diagonal of the SRM, if the effect causes the photon to be detected

at an energy other than its own then this contributes to the off-diagonal terms (Smith

et al., 2002). Each detector has a pair of ‘shutters’ (attenuators) in front so as to

avoid saturation during high photon count events. There are thus three states: A0; no
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shutters, A1; thin-shutters only, and A3; thick and thin shutters. Once the spectrum

is obtained it can be analysed in the Object Spectral Executive, OSPEX (see Schwartz

et al. (2002) or http://hesperia.gsfc.nasa.gov/rhessidatacenter).

As already mentioned the spectroscopy of two CLEAN images will be shown in the next

Chapter (2) together with a more thorough description of imaging and spectroscopy

with RHESSI.

http://hesperia.gsfc.nasa.gov/rhessidatacenter


Chapter 2

RHESSI Imaging Spectroscopy of

Two Flares

Parts of this Chapter can be found in Stackhouse & Kontar (2017)

2.1 Introduction to the Chapter

The HXR observations undertaken by the RHESSI spacecraft from 2002 to the present

day are the driving force of the work in this thesis. As mentioned in Lin et al. (2002)

the only way to obtain sub arcsecond class images of hard X- and gamma-ray sources

is with Fourier type imaging. This was pioneered in the Hinotori rotating modulating

collimator (Tanaka, 1983) and Yohkoh Hard X-ray Telescope (HXT) Kosugi et al.

(1991). RHESSI provides angular resolutions spaced from 2.3” to & 3 arcmin allowing

sources to be imaged across a large range of spatial scales. In a spacecraft half rotation

(2 seconds) the nine RHESSI RMCs measure ∼ 1100 Fourier components for a typical

source location as compared to 32 Fourier components for the Yohkoh HXT. This

means that much more complex flare images can be resolved. Further to this, Yohkoh

images were produced with four energy bands, and only up to 100 keV. RHESSI does

not transmit a preselected subset of images, the telemetry includes all the information

about each detected photon. This means a user can have control of the temporal
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resolution, spectral range and resolution, spatial resolution and image quality based on

the precise needs of the event studied. In addition, the RHESSI spectrometers provide

energy resolution of 1 keV full width half maximum in the hard X-ray energy range

(3-100 keV) only achieved before by balloon payloads carrying germanium detectors

(Lin & Schwartz, 1987; Smith et al., 2002).

Of particular interest to this thesis are those events in which the HXR emission is

confined to the corona, so called thick-target coronal sources (Veronig & Brown, 2004;

Jeffrey & Kontar, 2013) due to the fact that the ambient density in the loop is high

enough that the electrons are stopped within the corona. This is the particular scenario

discussed in the next Chapter (3). Events with this morphology have, in addition,

revealed the extended nature of the acceleration region (Xu et al., 2008), the importance

of which is studied in Chapter 4. Furthermore, it is possible to gain model parameters

from the spectroscopy, or imaging spectroscopy, of solar flares, enabling the use of the

inferred temperature, density and acceleration region extent as ‘starting’ parameters in

a numerical model. In this chapter the imaging spectroscopy of two flares illustrating

two distinct morphologies of interest in Chapters 3 and 4 is shown.

2.1.1 Past Studies of Solar Flares via RHESSI

The RHESSI spacecraft enabled, for the first time, spatially, temporally and energeti-

cally resolved observations of the deka-keV HXR spectrum in solar flares (see Holman

et al., 2011; Kontar et al., 2011b, for recent reviews). The imaging spectroscopy capa-

bilities of RHESSI allowed new avenues of investigation, Emslie et al. (2003), Battaglia

& Benz (2006) and Petrosian & Chen (2010) used spatially resolved images of looptop

and footpoint sources to compare the electron spectrum throughout the HXR source

whereas Li & Gan (2005), Liu et al. (2009) and Jeffrey & Kontar (2013) investigated

the time dependence of the shape of the looptop sources. Of particular note was the

resolution of the acceleration region, showing that to be consistent with observations

it must be extended in space (e.g. Xu et al., 2008; Kontar et al., 2011a; Guo et al.,

2012).
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In an X-ray context the photon spectrum from the looptop has a thermal-like core and

a power-law, or broken power-law tail. The footpoint spectrum also has a thermal com-

ponent, likely with a lower temperature than the looptop source, with a non-thermal

tail having a relatively harder spectral index than the coronal spectrum (Emslie et al.,

2003; Battaglia & Benz, 2006). The electron spectrum producing this photon spectrum

can be inferred by a variety of techniques, forward-fitting (Holman et al., 2003), reg-

ularized matrix inversion (Piana et al., 2003; Kontar et al., 2004), or matrix inversion

with data-adaptive binning (Johns & Lin, 1992). The strengths and weaknesses of

these methods for reproducing features present in the electron spectrum are discussed

in Brown et al. (2006). In this thesis forward-fitting is the preferred method. Of course,

due to its nature, forward-fitting can only recover features present in the parametric

form chosen but close analysis of residuals can inform the user of features not present

in the model. The advantage of forward-fitting is that it provides a best-fit electron

(or ion) distribution to the the observed HXR spectrum. As such, using this method

promptly provides an electron distribution ‘ready made’ for comparison with numerical

and analytical models.

Interestingly, the advent of RHESSI imaging spectroscopy (Hurford et al., 2002) con-

firmed earlier work using the Yohkoh spacecraft (e.g. Petrosian et al., 2002) that the

spectral index difference between looptop and footpoint sources was not 2 as would

be expected in the thick-target model (Emslie et al., 2003; Battaglia & Benz, 2006;

Saint-Hilaire et al., 2008; Petrosian & Chen, 2010). Furthermore, Kontar et al. (2014)

found that the electron rates at the looptop were more than was required to produce

the footpoint emission. Introducing an effective turbulent mean free path, λ, parallel

to the magnetic field to account for the effect of pitch angle diffusion of particles they

found that this should be typically less than the length of a loop and approximately

the size of the acceleration region, 108 − 109 cm, to be consistent with observations

(this will be discussed further in Chapter 4).

The work of Xu et al. (2008) and Jeffrey & Kontar (2013) focussed on the shape of

the flaring coronal loops finding that both the length and width of coronal looptop

sources increase with energy. The expansion in length is found (Xu et al., 2008; Guo
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et al., 2012) to be consistent with an initial extended acceleration region within the

loop itself plus an additional length proportional to the photon energy squared. This

extra length is due to the higher energy particles moving further along the loop before

they interact with the flaring plasma. Kontar et al. (2011a) studied one particular

coronal loop, finding that not only did the length increase with energy but furthermore

there was an increase in width. The authors, and another study by Bian et al. (2011),

suggested that this may be due to magnetic field line diffusion, parallel to the direction

of the field, due to magnetic turbulence in the loop. Magnetic turbulence is, of course,

a requirement of the stochastic acceleration process studied in this thesis.

Attempts to constrain timescales in stochastic acceleration models (Miller et al., 1997,

for a review) using simplifications such as the leaky-box Fokker-Planck approximation

by applying it to inferred electron distributions has been attempted by Petrosian &

Chen (2010) and Chen & Petrosian (2013). This approximation ignores the essential

spatial dependencies of the flaring structure however, and although useful as an illus-

tration, cannot be considered the entire flare picture. The effects of ignoring spatial

dependencies on acceleration and transport are discussed in Chapter 4.

The above papers show the myriad possibilities that the spatial resolution of RHESSI

enables. The remainder of this chapter will present first a more detailed look at the

imaging concept of RHESSI, followed by how it performs spectroscopy, finishing with

the imaging spectroscopy of two flares. The events are GOES M-Class limb flares and

are chosen due to their application to the following Chapters, 3 and 4. The density

weighted mean electron flux is obtained via forward-fitting the photon spectrum and is

discussed. Further to this, the fits to the thermal part of the photon spectrum directly

provides the temperature and indirectly an estimate of the density and acceleration

region extent which are used as the starting parameters of Chapter 4. The calculation

of densities from imaging spectroscopy will be explained in this chapter.
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2.2 Introduction to RHESSI Imaging

At this point it is instructive to examine how the RHESSI spacecraft makes images, to

this end the next few subsections will discuss this before ending with a more detailed

description of the CLEAN algorithm. All of the following information can be found on

http://hesperia.gsfc.nasa.gov/rhessi3/ and in Hurford et al. (2002).

2.2.1 The RHESSI Imaging Concept

RHESSI makes observations of the X-rays and gamma-rays in space such that they

can be used to produce images by a user on the ground. The collimator pairs in

front of each detector modulate the incoming flux. To understand how, first consider

a point source that emits a constant flux. X-rays are emitted at a steady rate and

travel in straight lines in all directions, with only those travelling in the direction of

the spacecraft impacting on the grids, and maybe the detector. It is important to

note that since RHESSI is far enough away from the Sun, all incident photons can be

considered to be parallel.

Consider first a photon emitted exactly upon the spin axis of RHESSI. In this case,

the front and rear collimators would be exactly aligned and from the photon’s point of

view the rear grid would be completely obscured by the front grid. Figure 2.1 shows

this scenario, there is no reduction in the visible part of the detector to the photon

during the rotation of the spacecraft. In this case, 50% of the light incident on the grid

would be detected.

If the source is off axis, however, then the amount of transmission varies from 0% to

50% depending on how the front and rear grids are aligned. Figure 2.2 shows the case

for a source that is below the spin axis. In this particular configuration there is 50%

transmission when the slits and slats are vertical (rotation= 0) and 0% for when the

slits and slats are horizontal (rotation= π/2).

It is clear that the signal impacting upon the detector will modulate between 0% and

≤50% for any source. With the shape of the signal detected depending on the exact

position, intensity and size. This is shown in Figure 2.4.

http://hesperia.gsfc.nasa.gov/rhessi3/
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Rotation = 0 Rotation = π/2 

Figure 2.1: The view of an incident photon for the case where it has been emitted along

the spin axis of RHESSI. The front grid is shown here in blue and completely obscures the

rear grid. The germanium detector is shown as the yellow circle.

Rotation = 0 Rotation = π/2 

Figure 2.2: The view of an incident photon for the case where it has been emitted below

the spin axis of RHESSI. The front grid is shown here in blue and the rear in green. The

germanium detector is shown as the yellow circle.

Figure 2.3 shows how a photon detected at a specific point on the detector could have

come from a variety of positions. The combination of this information for all RMCs

is what enables the reconstruction of an image. Tracing the photons back to the Sun

produces a probability map where photons could, and could not, have originated from.

This map then rotates with the spacecraft.

For a single source the modulation profile is shown in Figure 2.4 (reproduced from

Hurford et al. (2002)). It shows clearly how the modulation pattern changes depending
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Figure 2.3: Showing the possible origin of a photon incident upon a specific part of a

RHESSI detector. The front and rear grids are shown in blue and green and the detector is

shown in yellow. The possible photon paths are shown as the red arrows.

on the size, position and intensity of the source. The top panel shows the pattern of a

point source, which is off axis and acts as a comparison for the successive figures. The

second panel shows a point source, in the same position, but with half the intensity,

the modulation pattern is unchanged in time but it’s amplitude is halved, this is due

to the linear response of the collimator/detector system. The third panel shows the

effect of moving the source in azimuth around the rotation axis, the profile is shifted

in time but the amplitude is the same. Panel 4 shows what happens when the source

is moved further from the spin axis, in this case the modulation cycles per rotation

increase. Increasing the size of the source while keeping the same intensity results in

a decrease in amplitude but the time modulation remains unchanged, this is shown in

panel 5. Panel 6 shows that with a further increase in size, the amplitude of the signal

is further decreased.

Of course, real flares will have more complicated shapes than simple point sources. A

modulation profile from an unknown source is shown in the last panel. The central

task of the RHESSI software is thus the inverse problem of source geometry, given the

information of the modulation profiles from the 9 RMCs.

If the background is neglected, the expected counts, C, in the i-th time bin are given
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Figure 2.4: Modulation profiles for different source size, intensity and position. Taken from

Hurford et al. (2002).

by (Hurford et al., 2002),

Ci = A
∑
m

PimFm∆ti, (2.1)

where the flux incident on RHESSI’s front grids from pixel m is Fm, Pim is the prob-

ability of that a photon originating in pixel m and incident on the front grid will be

counted in the i-th time bin during interval ∆ti by a detector with area, A. Note that

since m is the index of a two-dimensional map, Pim is really a numerical ‘cube’. Since

Pim can be calculated from the grid properties and the collimator aspect the inverse

problem can be summed up as follows; find the source map, Fm, given a measurement

of count rates in each time bin. The relationship between Pim and the transmission

probability is discussed in detail in Hurford et al. (2002) but is beyond the scope here.
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2.2.2 The Modulation Pattern

The two-dimensional modulation pattern characterizes the instantaneous response of

the collimator. This can be thought of as a probability map of where a photon observed

at a specific time originated on the Sun, it is the i-constant plane of Pim. The modu-

lation pattern is fixed in the rotating frame of the spacecraft but the cube Pim must

be calculated over the non-rotating solar map which is also drifting with respect to the

imaging axis. This would require rotating and shifting the modulation pattern at each

time before evaluating at each map pixel. If done in a straightforward way this would

be far too computationally extensive and require too much storage. Two simplifications

reduce this load: the first is that the mapping is done in polar coordinates (switched

back to cartesian before use by the user) and the second is the instrument response

is calculated in terms of ‘universal modulation parameters’, described fully in Hurford

et al. (2002). By using these techniques the Pim ‘cube’ can be evaluated efficiently and

so a map can be reconstructed by inverting the observed modulation profile (equation

2.1) by methods such as CLEAN (Högbom (1974); Hurford et al. (2002) for method,

and Battaglia & Benz (2006); Simões & Kontar (2013); Jeffrey & Kontar (2013) for

examples of the method applied to solar flares) discussed in the next subsection.

In order to use any of the commonly used imaging algorithms one must first account for

the detector livetime (Smith et al., 2002). Particularly, in order to interpret the number

of photons, Cim, incident on the detector during the i-th time bin the detector livetime,

τi, must be taken into account (livetime = observation time - deadtime, deadtime

being the period after the recording of a photon when the detector is unable to record

another) (Smith et al., 2002). After this is done the expected counts, Cim, in the i-th

time bin from a source with the photon flux, Fm, at map pixel m is given by,

Cim = AFmTiτi{1 +
∑
n

ain cos[n(Φim −Ψi
n)]}, (2.2)

where the subscript n refers to the n-th harmonic and energy dependent subcollimator

transmission, Ti, plane offsets, Ψi
n, and amplitudes, ain, are evaluated at map center.

As a result of the linearity of the detector and subcollimator response the predicted

modulation profile, Ci, for any source is just the sum over Cim for all non-zero pixels.
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This predictive principle is used by several of the RHESSI reconstruction algorithms to

assess the consistency between the reconstructed image and the observed modulation

profiles.

2.2.3 Image Reconstruction

In Chapter 1 Section 1.8 some of the methods for reconstructing images from RHESSI

data were mentioned. In this thesis the only method used is the CLEAN algorithm

due to: first, it is much faster than Pixon; second, the Maximum Entropy Method

can ‘over-resolve’, i.e. create too many point-like sources and often cannot reconstruct

extended sources; third, it is not as restrictive as VisFwdFit which relies on specific

source shapes (Gaussian, elliptical) and is limited to one or two sources, and; fourth,

uv smooth produces similar images to CLEAN and is not as widely used, making

the cross comparison of the results here more difficult. Further to this, it has been

shown that with the correct value of the CLEAN beam width parameter (Dennis &

Pernak, 2009) the method produces similar source sizes to the other algorithms. Finally,

CLEAN as an algorithm has been used for a long time in radio astronomy (Högbom,

1974) and thus is well understood. As such the CLEAN algorithm is suitable for the

analysis required here.

The CLEAN Imaging Algorithm

CLEAN (Högbom, 1974; Hurford et al., 2002; Schmahl et al., 2007; Dennis & Pernak,

2009) is an iterative process which has been adapted for the analysis of RHESSI hard

X-rays from radio astronomy. It is based on the assumption that the source being

studied can be represented by the superposition of point sources. The basic method

postulates that the observed ‘dirty map’ is a convolution of a set of point sources

with the instrument point spread function, PSF, which can be thought of the imager’s

response of to a delta function source. That is,

D = P ⊗ Isource, (2.3)
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where P is the point spread function for one or many subcollimators and/or harmonics,

Isource is the source distribution and D is the back-projected ‘dirty’ map. The symbol

⊗ denotes the convolution.

The CLEAN algorithm proceeds iteratively, firstly an image called the residual map

is created and is initialized to the back projection map (see Hurford et al., 2002) at a

value I0. The position, (xj, yj), of the pixel with the highest flux, Fj, is found and then

saved in a ‘CLEAN component’ table. The point spread function, P , normalized to µFj

(where µ ≤ 1 is called the loop gain) is subtracted from the current residual map, In, to

yield a new one, In+1. This is repeated until one of three things is achieved: a maximum

number of iterations is reached, the residual map contains a peak of negative flux that

is greater in value than the largest peak of positive flux, or the observed modulation

profile is considered to agree with that from a CLEAN comparison as indicated by a

χ2-test.

The final residual map, Ifinal, in all probability consists mainly of noise, the image infor-

mation is actually contained in the CLEAN component table where the intensity and

position of each peak found during the iterative process are stored. These components

are convolved with the CLEAN point spread function, otherwise known as the CLEAN

beam width parameter, Pclean, which has a gaussian profile with a full width half max-

imum that reflects the effective resolution of the subcollimators used in creating the

‘dirty’ map. The final ‘CLEANed’ map is given by,

Iclean =
∑
j

P(xj, yj)µFj + Ifinal, (2.4)

which is purely the sum of the CLEAN components, convolved with the CLEAN beam

width parameter. The final residual map, Ifinal, is added which gives the user some idea

of the noise in the image, this is not the case for the other possible image reconstruction

techniques.

A summary of the other imaging techniques is included in Hurford et al. (2002);

Schmahl et al. (2007); Dennis & Pernak (2009) and in Chapter 1 Section 1.8. In

the next section a brief review of the RHESSI as a spectrometer will be given.
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2.3 Introduction to RHESSI Spectroscopy

Once an image, or alternatively a spectral file for full-Sun analysis, has been ob-

tained the underlying photon producing electron distribution can be inferred. OSPEX

(Schwartz et al., 2002) allows the selection of areas within an image file known as re-

gions of interest (ROIs) where the spectrum can then be analysed. This allows detailed

analysis of the spectrum throughout a flaring source. For a full-Sun spectrum the emis-

sion from the flare is purely energy and time dependent, with no spatial information

included. In this thesis forward-fitting (see e.g. Holman et al., 2003) is used to fit the

photon spectrum by fitting the expected emission from a specific population of particles

rather than purely by some shape of function. This is so as to tell the user something

about the particles that produce the emission, rather than purely the best-fit to the

shape of it. The rest of this section will discuss the RHESSI spectrometer, focussing

on how the photon spectrum is obtained from the observed counts. A more detailed

review can be found in Smith et al. (2002) and is summarized here.

2.3.1 The RHESSI Spectrometer

The exact make-up of the germanium detectors, how they are cooled and the spacecraft

shielding is discussed in Lin et al. (2002) and Smith et al. (2002) but is beyond the

scope here. The combination of the ultrapure, cooled, germanium detectors together

with the attenuators (discussed in Chapter 1 Section 1.8) gives RHESSI unprecedented

dynamic range across 4 order of magnitude in energy (∼ 3 keV to ∼ 17 MeV). The

resolution is limited by different effects depending on the range, at energies ≤ 200 keV

(photons detected in RHESSI’s front segments) the width of a spectral line is dominated

by noise within the spacecraft electronics and is approximately constant. At energies

higher than this there are two sources of noise: the counting statistics of electron-hole

pairs in the detector (which scales as the square root of energy) and broadening due to

holes or electrons becoming trapped in the crystal (which behaves linearly with energy)

(Smith et al., 2002).

RHESSI was not designed to be a low background instrument. The constraints of
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being a NASA small explorer mission not allowing the heavy shielding that would have

been needed. Furthermore, there was no equatorial orbit available which would have

reduced all background components apart from cosmic ray diffusion. This would be

due to minimizing cosmic rays incident on the spacecraft and eliminating exposure

to the trapped protons in the South Atlantic Anomaly (SAA), which happens several

times a day on successive orbits. Solar flares are bright sources however, and so luckily

the data is count rate limited and not statistical fluctuations from a background. The

primary sources of background are transitions through the SAA, smooth modulations

due to changes in the geomagnetic latitude and thus incident cosmic ray flux and

occasional precipitation of electrons from the outer radiation belt when RHESSI is

at its highest geomagnetic latitudes. Further to this there are instrument anomalies

that must be taken account of before the actual photon spectrum is obtained such as:

detector dropouts, individual detector anomalies, spectral artifacts and image events.

These are all discussed in detail in Smith et al. (2002).

2.3.2 Spectral Data Analysis

As mentioned before, spectral analysis with RHESSI is an inverse problem where the

data is the counts per spectrometer channel and the goal is to find the incident photon

spectrum that produced it. Figure 2.5 is a flow chart showing the data analysis process

which produces the corrected count/photon spectrum. The spectral analysis of this

data is achieved in OPSEX (Schwartz et al. (2002) and http://hesperia.gsfc.nasa.

gov/rhessidatacenter).

Gain, Livetime and Background Subtraction

The first point of call when producing RHESSI data is to account for gain drift and

deadtime. The first of these is made simpler by the linearity of the electronics and

the easily identifiable background lines. Deadtime correction starts with the livetime

counter in the electronics, corrects for double rejection of piled up events and compen-

sates for data dropouts.

http://hesperia.gsfc.nasa.gov/rhessidatacenter
http://hesperia.gsfc.nasa.gov/rhessidatacenter
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Figure 2.5: Flowchart of spectroscopic analysis with RHESSI data. The features that are

highlighted ‘advanced’ are only needed for a few flares. Where SPEX or XSPEX is shown

read as OSPEX. Taken from Smith et al. (2002).

For the case of full-Sun spectra the user then selects and subtracts a background.

With imaging spectroscopy there exists no explicit method within OSPEX to calculate

background, as the images purely consist of data and error. For full-Sun spectra the

background is usually estimated by selecting one or more time ranges before or after the

flare. This background is then subtracted from the count rate and is sufficient for most

flares. For long duration events this may not be enough as these flares can continue

for tens of minutes during which the background can change significantly. Fortunately,

OSPEX allows the selection of several intervals before and after which can be joined via

polynomial interpolation to provide a more accurate background subtraction for each

energy channel. For very few flares neither of these methods are suitable and a more

convoluted technique must be used such as, for example, subtracting the background
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exactly 1 day before (15 RHESSI orbits).

Spectral Response Matrix

The series of instrumental effects that affect the detection of flare photons on the

detectors is the spectral response and is encoded in the spectral response matrix (SRM)

created during the production of an image or lightcurve. Events that can influence the

detection are many, they include:

1. absorption in the constituent parts of the spacecraft, e.g. the grids,

2. Compton scattering into and out of the detectors,

3. Compton scattering from the Earth’s atmosphere,

4. noise originating from electronics,

5. degradation in resolution due to radiation damage, and/or,

6. the low energy cutoff imposed by the electronics.

The effects listed above can contribute to both diagonal and off-diagonal terms. As

mentioned in Chapter 1 Section 1.6.3, anything affecting the efficiency of detecting a

photon at its energy contribute to the diagonal terms of the SRM whereas off-diagonal

terms result from the photon being observed at a different energy, usually lower.

For the study of flares with no significant emission & 100 keV the diagonal terms of the

SRM can be used alone. This is because the response of the front segments below this

energy is dominated by complete absorption and not scattering. Since most spectra

are steeply falling the count rate in any energy band is dominated by photopeak (the

peak at the actual photon energy) counts up to ∼ 100 keV (Smith et al., 2002). If the

attenuators are in, and low energies are being studied, or for events with significant

emission at high energies the full SRM needs to be used. For both events studied in

this thesis the full SRM is used.

The SRM is accounted for during the fitting of the spectrum. The user specifies a

model which, as already mentioned, will most likely be the emission from a model
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electron distribution together with other corrections to the spectrum, such as pulse

pile-up (for a full description see Smith et al., 2002) and photon backscattered albedo

from the photosphere (see Figure 1.5). This model is then multiplied by the SRM

(see equation 1.42) before comparison with the observed photon spectrum to check

goodness-of-fit. This is then repeated, varying the free parameters until a best fit is

produced.

The spectral response for three different energies of photons is shown in Figure 2.6. At

50 keV the photopeak dominates but the K-shell escape peak is visible. At 350 keV

there is a strong Compton continuum, along with small K-shell fluorescence peaks from

nearby passive material, such as the tungsten grids. At 2500 keV pair production can

occur, there are two narrow lines due to positron annihilation (∼ 511 keV) and the

escape of one or two positron annihilation photons from the detector. This shows the

importance of correctly accounting for the spectral response when analysing RHESSI

spectra.

As mentioned, further discussion of the above section can be found in Lin et al. (2002)

and Smith et al. (2002).

2.3.3 Summary of Fit Functions Used

As of March 2015 there are 47 fit functions available for use in OSPEX, the full list can

be found on http://hesperia.gsfc.nasa.gov/ssw/packages/spex/idl/object_spex/

fit_model_components.txt. The 3 fit functions used in the next two sections are

summarised here:

1. vth - this fits the optically thin thermal bremsstrahlung (Chapter 1 Section 1.5.1)

from a single temperature distribution of electrons to the thermal part of the pho-

ton spectrum. The function has three fit parameters: the temperature, kT [keV],

the emission measure, EM [cm−3], and the relative abundance of iron, nickel,

calcium, sulfur and silicon compared to that in the Chianti database Del Zanna

et al. (2015). This last parameter is kept fixed at 1 throughout the fits and the

full Chianti database is used, i.e. the fit assumes the Chianti abundances are

http://hesperia.gsfc.nasa.gov/ssw/packages/spex/idl/object_spex/fit_model_components.txt
http://hesperia.gsfc.nasa.gov/ssw/packages/spex/idl/object_spex/fit_model_components.txt
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Figure 2.6: The spectral response of RHESSI for three different photon energies. From top

to bottom: 50 keV, 350 keV and 2500 keV. Taken from Smith et al. (2002).

correct. The other two parameters are kept free, in order to provide a best-fit to

the thermal part of the spectrum.

2. thin2 - this is the updated version of thin and is two to ten times faster than



2.3: Introduction to RHESSI Spectroscopy 54

the original function. It fits the thin-target emission from an isotropic electron

flux distribution, F (E) [electrons s−1 cm−2 keV−1]. The six fitting parameters

are: the normalisation flux, 〈nV F0〉 [1055 electrons cm−2 s−1] (see equation 1.40);

the power-law index below the break energy, δ1; the break energy, Eb [keV]; the

power-law index above the break, δ2; the low energy cutoff, Ec [keV], and; the

high energy cutoff, Eh [keV].

In this work a single power-law fit is used, so the break energy and high energy

cutoff are fixed at 32000 keV so they do not effect the photon spectrum at the

energies observed. The spectral index above the break is kept fixed at a higher

value than the expected δ1 to avoid any effects on the index below the break. The

low energy cutoff is set at 20 keV due to the emission being dominated by the

thermal component at low energies which does not allow the non-thermal fit to

reliably determine it. Thus there are two free parameters, the normalisation flux

and the power-law index, which will be used to find a best-fit to the non-thermal

part of the spectrum.

3. albedo - this is a pseudo function correcting for the bump in the photon spec-

trum at around ∼ 30 keV due to the Compton backscattered photons from the

photosphere (Kontar et al., 2006), as mentioned in Chapter 1 Section 1.5.2. Fit

parameters are varied during the application of the SRM (see Chapter 1 Section

1.6.3) to correct the model for albedo. The function accounts for the source posi-

tion and only has one parameter, which is the anisotropy. This ranges from 0 to

1 where 1 is isotropic. The parameter is always kept fixed and is set to 1 during

the fits that follow due the the fact the X-ray emitting electron has been shown

to most likely be isotropic (Kontar & Brown, 2006; Dickson & Kontar, 2013).

It should be noted that the emission from the footpoints is more often fit by the

thick-target bremsstrahlung emission from an electron flux spectrum. There are a few

functions in OSPEX to account for this, with the most up to date being thick2 vnorm

where most fit parameters are analogous to the parameters in thin2. Fitting through-

out with the thin2 function avoids complication however, and as long as the same
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bremsstrahlung cross-section is assumed in the numerical or analytic model the results

are suitable for comparison.

The next three sections will present the imaging spectroscopy analysis of two flares.

2.4 Chosen Events

The first flare is the well studied 2005 August 23, GOES class M3.0, flare (Xu et al.,

2008; Jeffrey & Kontar, 2013) that is unusual in the fact that most of its emission

comes from the corona with HXRs observed up to ∼ 50 keV and negligible footpoint

emission. The reason this is flare chosen is as an example of the scenario in Chapter 3

where an analytical model with cospatial acceleration and collisional losses in a regime

with no particle escape is considered. Furthermore, the analysis of this flare, and

others, in Xu et al. (2008) found that the emission from this flare was consistent with

an extended acceleration region within the loop surrounded by a halo of escaping high

energy particles, the effects of which are studied for a ‘standard’ flare morphology in

Chapter 4.

The second flare is the 2011 February 24 flare (studied by Simões & Kontar, 2013, for

example). This flare is a good example of the most commonly seen flare morphology

(see Section 1.5.3) consisting of a relatively softer and hotter coronal looptop source

and relatively cooler and harder footpoint sources. It is an M3.5 class flare and is

chosen due to the ease in identifying the looptop and footpoint sources. This flare will

provide the initial conditions for the numerical model in Chapter 4.

2.4.1 Imaging Spectroscopy of the 2005 August 23 Flare

Lightcurves

Figure 2.7 shows the corrected and uncorrected count rates per second per detector for

the 2005 August 23 flare, from 14:20:00-14:40:00 UT. At the start of the observation

the two lowest energy bands, 2-12 and 12-25 keV, are slowly increasing, reaching a peak

at around 14:30:00 UT followed by a gradual decrease until the end of the observation.
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Figure 2.7: Uncorrected (left) and corrected (right) count rate for the 2005 August 23 flare

for energy bands: 6-12 keV (magenta), 12-25 keV (green) and 25-50 keV (light blue). The

time frame of interest is bounded by the two vertical grey lines. In the uncorrected counts

the drop in count rate just after 14:23:00 UT is due to the switch to attenuator state one.

The 25-50 keV counts has repeated peaks throughout the observation. The timescale

used for imaging spectroscopy is shown by the grey dash vertical lines. This was chosen

as it was the near the peak of the soft X-ray emission, so the loop was visible most

clearly across the energy bins used for spectroscopy. Furthermore, it incorporates one

of the HXR peaks and it enables cross comparison with the work of Jeffrey & Kontar

(2013).

Imaging Spectroscopy

The CLEAN (Högbom, 1974; Hurford et al., 2002) image shown in Figure 2.8 was

created using CLEAN beam width parameter of 1.8 as in Jeffrey & Kontar (2013) to

enable direct comparison. The loop morphology is clearly seen.

The photon flux fits are shown in Figure 2.9 for each region in Figure 2.8 and for the

full-Sun spectrum. For these fits the low energy cutoff is kept fixed at Ec = 20 keV

for the reasons discussed above in Section 2.3.3. The fit function thin2 is also set

to be a single power-law. It is noted that although these fits all have an acceptable

χ2 (see Kontar et al., 2011a), there is some systematic behaviour in the residuals for

the fit to region 0 and for the full-Sun spectrum. This could perhaps be offset by

allowing the low energy cutoff to be free, allowing a broken power-law, or introducing
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Figure 2.8: CLEAN image of the 2005 August 23 flare. The dot-dash lines show the regions

of interest (ROIs) used to produce spectra, labelled 0-4. The red contours show the looptop

emission in the 10.7− 11.8 keV (30%, 50% and 75%) energy band overplotted over the clean

image in the same range.

an albedo correction component (for region 0). The reason for fixed Ec has already

been discussed, while a single power-law is chosen as there is not enough non-thermal

emission to constrain any break in the power-law form adequately. Furthermore, an

albedo component should not have a large effect on the imaging spectroscopy of an

above the limb flare.

The low energy part of the spectrum is fit with the emission from an isothermal plasma

(vth) which gives an average temperature, kBT , and emission measure, EM = n̄2V ,

for the flaring plasma. The thin2 function provides a non-thermal normalisation flux,

〈nV F0〉, and the power-law spectral index, δ. A summary of these results, where the

regions have been switched for the distance from the top of the loop (the maximum

emission in ROI 0), is shown in Figure 2.10. The spatially integrated fit gives EM =

0.28 ± 0.01 × 1049 cm−3, T = 23 MK, 〈nV F0(E)〉 = 1.28 ± 0.05 × 1055 cm−2 s−1 and

δ = 5.36 ± 0.01. The volumes used to calculate the densities for each spectral fit are
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Figure 2.9: Photon X-ray spectra for the 2005 Aug 23 flare from CLEAN image (Figure 2.8)

for: Top Left ; Region 0, Top Right ; Region 1, Middle Left ; Region 2, Middle Right ; Region

3, Bottom Left ; Region 4, Bottom Right ; full-Sun spectrum. HXR spectrum is shown as

black data points. Fitting result is shown by the magenta line and is composed of a thermal

(orange) and thin-target (green) component, with an albedo correction (blue) for the full-Sun

spectra. The range fitted for each case is shown by the vertical dashed lines.
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shown in the table below (2.1). The density is approximately constant∼ 2.5×1010 cm−3

Region Thermal Volume [cm−3]

0 6.1× 1026

1 5.5× 1026

2 5.8× 1026

3 8.6× 1026

4 5.2× 1026

total 3.1× 1027

Table 2.1: Thermal volumes, Vth, used to calculate number densities, ne.

within errors along the loop which agrees well with the density obtained from the

full-Sun spectrum, 3 × 1010 cm−3. There is a slight trend to harder spectrum with

distance along the loop but δ is approximately constant within the errors. This is

consistent with the findings of Xu et al. (2008) where there is a core acceleration

region surrounded by a volume where escaping high energy particles are stopped. This

can be seen in the CLEAN image itself (Figure 2.8), with the acceleration region

being assumed the intense radiation at the top of the loop surrounded by a more

diffuse ‘halo’ of emission produced by the escaping electrons. Interestingly, the densities

obtained here are less than those found by Jeffrey & Kontar (2013) by a factor of 1.5-

2. This could be from an overestimation of volume; due to the almost subjective

nature of area and length estimations from CLEAN images the area could quite easily

be different from that estimated by the VisFwdFit method used in Jeffrey & Kontar

(2013). Furthermore, the fits performed by Jeffrey & Kontar (2013) included the Iron

and Iron and Nickel emission lines at 6.7 and 8.1 keV, which could affect the fitted

temperature and emission measure. In addition, Jeffrey & Kontar (2013) found that

a CLEAN beam width parameter of 3 produced areas that agreed more closely with

the other imaging algorithms. As mentioned before by Dennis & Pernak (2009), some

values of the CLEAN beam width parameter produce areas inconsistent with other

imaging algorithms, this can therefore have an effect on inferred volumes and thus
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densities.

Figure 2.10: Fitting summary for the 2005 August 23 flare. From top to bottom, emis-

sion measure [cm−3], density [cm−3], temperature, kT [keV], non-thermal normalisation flux,

〈nV F0〉 [e− cm−2 s−2] and spectral index, δ.
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Density Weighted Mean Electron Flux

In Chapter 1 Section 1.5 the density weighted mean electron flux 〈nV F (E)〉 from

thermal and non-thermal populations of electrons was discussed, with equations (1.38)

and (1.40) giving the exact expressions. The importance of using the mean electron

flux when comparing numerical and observational studies is outlined in Brown et al.

(2003). The 〈nV F (E)〉 for the fitted photon spectrum are shown in Figure 2.11.

Figure 2.11: Inferred density weighted mean electron flux spectra for the 2005 Aug 23

flare: Top Left ; Region 0, Top Middle; Region 1, Top Right ; Region 2, Bottom Left ; Region

3, Bottom Middle; Region 4, Bottom Right ; full-Sun spectrum. The 〈nV F (E)〉 for the source

from 10− 50 keV is shown by the magenta line and is composed of the thermal (orange) and

thin-target (green) 〈nV F (E)〉.

It is important to note here that the discontinuity between the thermal and non-thermal

parts of the flux is likely not physical (see e.g. Kašparová & Karlický, 2009, Fig. 2).

It is due to the ‘hard’ boundary imposed by fitting with two separate populations of

electrons in the thermal and non-thermal sources. The isothermal function in OSPEX

assumes emission via CHIANTI (Dere et al., 1997; Del Zanna et al., 2015) which in-
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cludes line and continuum emission from a thermal plasma. The non-thermal spectrum

is assumed to purely originate from e− i thin-target bremsstrahlung. In reality within

the energy range where there is an overlap of thermal and non-thermal populations

there will probably be a smoother transition between the two emission processes.

2.4.2 Imaging Spectroscopy of the 2011 February 24 Flare

Lightcurves

The corrected and uncorrected count rates for the second flare are shown in Figure

2.12. The lightcurves are plotted from 07:20:00 where the counts in the lowest energy

bands (6-12 and 12-25 keV) are starting to rise. There then follows a rapid increase of

harder X-ray counts from approximately 07:27:00 followed by 2 HXR peaks between

the grey dashed lines in the figures (highlighting the limits of the imaging spectroscopy

analysis). After this there is another peak in the 25-50 and 50-100 keV bands (around

07:33:00) followed by a gradual decrease back to the background level. The reasons

for choosing the observation limits shown by the grey dash lines are twofold: one, it

encompasses the HXR double peak structure and, two, it enabled corroboration with

the work of Simões & Kontar (2013).

Imaging Spectroscopy

For the flare in question Simões & Kontar (2013) found that a CLEAN beam width of

∼ 1.9 produced the best overlap with Pixon imaging of the same flare, so this is what

is used here. Figure 2.13 shows the result, the looptop and footpoint regions being

chosen so as to avoid overlap and thus cross contamination of the respective spectra.

The looptop, footpoint and full-Sun spectra are shown in Figure 2.14. The spectrum

is fit with a single power-law from thin-target bremmstrahlung (thin2) where the low

energy cutoff is kept constant at Ec = 20 keV for all fits. The footpoint spectrum

would normally be fit with the emission from thick-target bremmstrahlung due to

the electrons losing all their energy as they impact upon the chromosphere. For the

purposes of comparing the density weighted mean electron flux however, it is only
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Figure 2.12: Uncorrected (left) and corrected (right) count rate for the 2011 February 24

flare for energy bands: 6-12 keV (magenta), 12-25 keV (green), 25-50 keV (light blue), 50-

100 keV (maroon) and 100-300 keV (purple). The time frame of interest is bounded by the

two vertical grey lines. In the uncorrected counts the drop in count rate just after 07:28:00

UT is due to the switch to attenuator state one, the sudden jump in count rate at ∼07:39:00

is due to a quick removal of shutters to check low energy counts.

important to ensure the same bremmstrahlung cross-section, as discussed in Chapter

1 Section 1.5.1. To this end, fitting the non-thermal energies with thin-target emission

throughout avoids over-complication.

The looptop source is best fit by an emission measure EM = 0.12± 0.04× 1049 cm−3

and a temperature 23 MK, shown in Figure 2.14 (left top). The flux of non-thermal

particles is 〈nV F0(E)〉LT = 0.62 ± 0.15 × 1055 cm−2 s−1 and the spectral index is

δLT = 2.91±0.43. The footpoint sources, seen in the right top panel in Figure 2.14, are

best fit by a flux of 〈nV F0(E)〉FP = 1.08± 0.06× 1055 cm−2 s−1 and a spectral index

of δFP = 2.11±0.04. The imaging spectroscopy results are consistent with the full-Sun

spectrum seen in the bottom panel in Figure 2.14 (EM = 0.20±0.01×1049 cm−3, T =

21 MK, 〈nV F0(E)〉 = 1.65± 0.02× 1055 cm−2 s−1 and δ = 2.27± 0.01). Furthermore,

the fits agree well with previous studies of the flare, such as that in Simões & Kontar

(2013).
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Figure 2.13: CLEAN image of the 2011 Feb 24 flare. The dot-dash lines show the looptop

(LT) and footpoint (FP-N, FP-S) regions used to produce spectra. The red contours show

the looptop emission in the 10.0 − 11.4 keV (30%, 50% and 75%) energy band overplotted

over the clean image in the same range. The footpoint emission at 40.8− 46.4 keV is shown

by the blue contours (30%, 50% and 75%).

Density Weighted Mean Electron Flux

The density weighted mean electron flux for the 2011 Feb 24 flare is shown in Figure

2.15. Again note the discontinuity caused by imposing a hard boundary between the

emission processes. This effect is particularly clear for the footpoint source (middle

panel) probably due to the fact that the emission here is mostly that from the non-

thermal particles escaping from the looptop and not heating.

Obtaining Solar Flare Parameters from a RHESSI CLEAN Image

The main parameters used when calculating density and volume from a CLEAN image

are shown in the sketch in Figure 2.16. The cross-sectional area of the loop is assumed

to be A = πD2/4, with diameter, D, being estimated by first identifying the maximum

emission in the lowest energy band and then finding the distance bounded by the 50%
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Figure 2.14: Photon X-ray spectra for the 2011 Feb 24 flare: Left Top; looptop spectrum,

Right Top; summed footpoint spectrum and Bottom; full-Sun spectrum. HXR spectrum is

shown as black data points. Fitting result is shown by the magenta line and is composed of

a thermal (orange) and thin-target (green) component, with an albedo correction (blue) for

the footpoint and full-Sun spectra. The range fitted for each case is shown by the vertical

dashed lines.

contours (red, solid lines) and approximately orthogonal to the loop midline (green

dash line). The lowest energy band is used as the emission measure comes from the

thermal fit. The thermal volume, Vth, is then calculated by multiplying the area by

the length of the looptop emission, L, which is obtained by approximating the length

along the loop midline and again bounded by the 50% contours, i.e. the full width half

maximum (FWHM) of the thermal emission. Furthermore, if the source is suitably

extended it is possible to split the loop into separate sections in order to examine the

emission throughout the source. For example, if the coronal source were split into 5
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Figure 2.15: Inferred electron density weighted mean electron flux spectra for the 2011 Feb

24 flare: Left ; looptop flux, Middle; summed footpoint flux and Right ; full-Sun flux. The

〈nV F (E)〉 for the source from 10 − 100 keV is shown by the magenta line and is composed

of the thermal (orange) and thin-target (green) 〈nV F (E)〉.

Figure 2.16: Sketch of the important parameters used to calculate Vth, ne and L. The

chromosphere is shown by the black solid line, with the HXR footpoints shown in blue. The

loop midline is shown by the green dashed line. The diameter, D, runs through the maximum

emission in the lowest energy band (10− 11.4 keV for the 2011 Feb 24 flare) and orthogonal

to the midline. The length, L, is the distance parallel to the loop midline and bounded by

the 50% emission in the lowest energy band, the FWHM of emission in this energy band.

equal length pieces the thermal volume of each piece would be V sect
th = A× L/5. This

being how the volumes were calculated in Section 2.4.1.

With this approximation to the volume it is possible to obtain an estimate of the mean

target proton density, n̄, and thus the number density of electrons in the corona, ne
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(assuming nprotons = ne, reasonable for the corona). The thermal fit to the looptop

then provides an emission measure, EM = n̄2V , thus giving n̄ ∼ ne. This technique

is similar to that in Simões & Kontar (2013), except that here the cross sectional

area is assumed to be circular and the emission measure from the looptop region is

used, not that from the full-Sun spectra. Of course, this calculation assumes that all

the plasma within the volume is emitting, i.e. the filling factor is 1. If the filling

factor was less than one the inferred density would increase and so any result can be

considered a lower limit. The spatial extent of the acceleration region is assumed to

be the standard deviation of the full width half maximum as in Xu et al. (2008) and

is given by σ = L/2.35.

The thermal volume is calculated to be Vth = 6.14 × 1026 cm−3 which gives a loop-

top electron density, ne =
√
EM/V = 4.42 × 1010 cm−3. The spatial extent of the

acceleration region was calculated to be σ = 5.3× 108 cm.

2.5 Summary

This Chapter has presented the imaging spectroscopic results of two flares with mor-

phologies applicable to the work of the next two chapters. The results are summarised

here:

• 2005 August 23 ; the fitted electron distribution changes little throughout the

extended source. The looptop density is ∼constant with a value of ∼ 2.5 ×

1010 cm−3. This agrees well with the inferred density from the full-Sun spectrum

(3×1010 cm−3) but is a factor of ∼ 2 less than that obtained in Jeffrey & Kontar

(2013). This could be due to a different estimate of area, the nature of estimating

this from CLEAN being inherently more subjective than the same calculations

with VisFwdFit. Fitting with a single isothermal function at low energies could

also affect the inferred emission measure when compared to the fit in Jeffrey

& Kontar (2013) using both emission lines at 6.7 and 8.1 keV. The power-law

spectral index is also constant within errors along the length of the loop. There
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appears to be a slight trend towards harder spectra at greater distances however,

which would be consistent with a core extended acceleration region surrounded

by a ‘halo’ of emission where the escaping high energy particles are collisionally

stopped, as postulated by Xu et al. (2008) and Guo et al. (2012).

• 2011 February 24 : This flare has the most commonly observed coronal loop

with HXR footpoint morphology. It displays a looptop photon spectrum that

is relatively hotter and softer than that from the footpoint. The fits performed

are consistent with the full-Sun spectrum and agree well with those in Simões &

Kontar (2013). It shows the same behaviour observed in Yohkoh flares (Petrosian

et al., 2002) and consequently with RHESSI (see e.g. Emslie et al., 2003; Battaglia

& Benz, 2006) where the looptop spectrum is not softer by a factor of 2 which

would be expected in the thick-target model (Brown, 1971). This implies some

kind of extra trapping during the transport of electrons which would seem to

corroborate the work of Kontar et al. (2014) who found the electron rates at the

looptop were higher than that needed to explain the observed footpoint emission.

This could be due to magnetic turbulence, inferred to explain the scaling of loop

widths with energy by Kontar et al. (2011a) and Bian et al. (2011). This causes

efficient pitch-angle scattering resulting in electrons being confined to the looptop

region for longer.

The fits to this flare provide initial conditions for the numerical modelling of

Chapter 4 by creating a model corona of temperature 23 MK and density, ne =

4.42× 1010 cm−3, with an acceleration region extent defined as σ = 5.3× 108 cm.

In the next chapter the subject of kappa distributions in solar flares will be studied.

Specific conditions, like those seen in the 2005 August 23 flare, can create a scenario

where a stochastic acceleration model admits a kappa distribution. These distributions

are interesting in a solar flare context due to their shape approximating that observed

in the HXR range in flares with no need for two separate populations of electrons, or

(possibly) artificial low energy cutoffs.



Chapter 3

Kappa Distributions in Solar Flares

This work is part of a collaboration published in Bian et al. (2014), my unique contri-

bution being the numerical modelling

3.1 Introduction to the Chapter

RHESSI has revealed hard X-ray sources, such as the 2005 August 23 flare studied in

the previous chapter (Section 2.4.1), where the ambient density within the coronal loop

is high enough such that the electrons are collisionally stopped within the loop and

the emission is confined to the corona with negligible numbers of electrons escaping

to the lower solar atmosphere (Jeffrey & Kontar, 2013). They are seen to have a

core acceleration region surrounded by a ‘halo’ of escaping particles, as discussed by

Xu et al. (2008). A major objective of contemporary high-energy solar physics is to

understand not just the propagation of particles but also the physics of the acceleration.

Events such as that studied in this chapter are particularly interesting in this respect

as the coincidence of the acceleration of electrons together with the emission of hard

X-ray photons means that they are ideal for determining the length of, and the density

within, the acceleration region (Kontar et al., 2011b; Guo et al., 2013). Knowledge of

these values can be used to obtain the specific acceleration rate, γ = Ṅ/N [e− s−1 per

ambient e−] (Emslie et al., 2008; Guo et al., 2013), where N is the number of particles
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and Ṅ is the derivative with respect to time. This quantity determines the efficiency

of the acceleration process.

As already mentioned, there is growing observational evidence that the accelerated elec-

tron distribution is almost isotropic in pitch-angle (Kontar & Brown, 2006). RHESSI

imaging spectroscopy also suggests the presence of turbulence, possibly due to fluc-

tuations in the magnetic field, as discussed in Kontar et al. (2011a). This leads to

pitch-angle scattering (Kontar et al., 2014) and cross field transport (Bian et al., 2011)

of high energy electrons. Further to this, acceleration by DC fields, whether super- or

sub-Dreicer, faces serious challenges in terms of the properties of the source in order to

avoid large unidirectional currents (Holman, 1985; Emslie & Henoux, 1995). Consid-

eration of the above points would seem to favour a stochastic acceleration process (see

Chapter 1 Section 1.2 and Miller et al. (1997); Petrosian (2012); Bian et al. (2012) for

reviews). Stochastic acceleration has been applied to flares (Parker & Tidman, 1958;

Ramaty, 1979; Miller et al., 1996; Petrosian & Chen, 2010) where the models often

share the property that they can be described by the turbulent diffusion coefficient,

Dvv.

In this chapter, driven by the discussion above, a stochastic model where the acceler-

ation is controlled by a turbulent diffusion coefficient, Dvv, in a regime with coulomb

collisional effects in an acceleration region that is essentially a coronal thick-target is

studied. The shape of any eventual distribution will be governed by the balance of

timescales within this system. Each term within the model (the evolution of which

is controlled by a Fokker-Planck equation) has an associated timescale over which it

has an effect. Within the system put forward here, there are four: the acceleration

timescale, τacc(v), the collisional deceleration/friction timescale, τc(v), the collisional

diffusion timescale, τdiff(v), and the escape timescale, τesc(v). In the range of velocity

where the acceleration region can be considered a thick-target, escape will have no ef-

fect and the shape of the distribution will converge to a steady-state solution governed

by the balance of acceleration and collisional effects. If the diffusion coefficient be-

haves inversely proportional to v, i.e. Dvv ∼ 1/v, then the resulting steady-state form

is that of a kappa distribution, transitioning smoothly from a low energy Maxwellian
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core to a high energy power-law tail (Tsytovich, 1966; Benz, 1977; Leubner, 2004).

Kappa distributions are encouraging in a solar flare context as they approximate the

shape of the inferred electron distribution (e.g. Holman et al., 2003) without the need

for two populations of electrons and a (possibly artificial) low-energy cutoff. Kappa

distributions related to solar flares have been discussed by other authors, for example

Kašparová & Karlický (2009); Oka et al. (2013).

The chapter is split as follows: the general acceleration model is described in the next

Section (3.2). Section 3.3 shows the steady-state solution when Dvv ∼ 1/v. The

solution taking the form of a kappa-distribution which is characterized by a typical

velocity scale (e.g. the thermal velocity associated with the Maxwellian core) and the

dimensionless ratio of the acceleration and collisional timescales. The evolution to this

final, steady state is discussed in Section 3.4, where the acceleration proceeds as a

‘wavefront’ in velocity space with τacc ∼ E3/2. The approximations used to examine

this evolution are corroborated by the numerical results of Section 3.5. The solution

in the limit of small escape where the looptop acceleration region is essentially thick-

target is shown in Section 3.6. In Section 3.7 a simple model involving the acceleration

via large scale coherent electric fields is shown. In the presence of efficient pitch angle

scattering leading to the isotropization of the distribution function this acceleration

produces an effect akin to stochastic acceleration. The conditions for Dvv ∼ 1/v are

discussed and this imposes constraints on the strength of the accelerating electric field.

The chapter is summarized in Section 3.8.

3.2 The Model

The aim here was to develop a model for the three-dimensional (in velocity), isotropic

(in pitch angle), electron distribution, f(v, t) (normalized such that nκ =
∫
f4πv2dv [cm−3]),

within a thick-target coronal looptop source. A Fokker-Planck equation is used that

includes turbulent acceleration and coulomb collisions within in a dense solar atmo-
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sphere,
∂f

∂t
=

1

v2

∂

∂v

{
v2

[(
Γ v2

te

2v3
+Dturb(v)

)
∂f

∂v
+

Γ

v2
f

]}
, (3.1)

where the parameters are as defined in Table of Symbols and Dturb(v) ≡ Dvv is the

diffusion coefficient in velocity space with dependence not yet defined, vte is the ther-

mal velocity of background electrons (equation 1.17) and Γ = 4πe4ne ln Λ/m2
e is the

collisional parameter (equation 1.10 with Z = 1 for the corona). It should be noted

a simplified version of the collisional operator, valid for the solar flare situation, has

been used here (Jeffrey et al., 2014). The electrons are modelled as being in contact

with a heat bath at a constant temperature, T . In Chapter 1 there is discussion of the

timescales that acceleration, collisions and transport operate on. Following this, the

three timescales intrinsic within the above equation are:

• the acceleration time, τacc, which can be obtained by approximating ∂v ∼ v,

1

v2

∂

∂v

{
v2

[
Dturb(v)

∂f

∂v

]}
' 1

v2

1

v
v2Dturb(v)

f

v
=

f

τacc(v)
, (3.2)

where,

τacc(v) =
v2

Dturb(v)
; (3.3)

• the collisional deceleration/friction time, τc, defined by,

Γ

v2

∂f

∂v
' f

τc(v)
; τc(v) ' v3

Γ
, and; (3.4)

• the collisional diffusion time, τdiff , defined by,

1

v2

∂

∂v

{
v2

[
Γv2

te

2v3

∂f

∂v

]}
' f

τdiff(v)
; τdiff(v) ' 2v5

Γv2
te

. (3.5)

The balance between these three timescales controls the shape of any accelerated elec-

tron distribution, as mentioned in Chapter 1 Section 1.4.

Equation (3.1) is recast in the form of Chavanis & Lemou (2005) as it provides a clearer

insight into the properties of the distribution,

∂f

∂t
=

1

v2

∂

∂v

[
v2D(v)

(
∂f

∂v
+ fU ′(v)

)]
, (3.6)
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where grouping together the diffusive terms,

D(v) =
Γv2

te

2v3
+Dturb(v), (3.7)

and,

U ′(v) =
Γ

v2D(v)
=

(
v2

te

2v
+
v2Dturb(v)

Γ

)−1

. (3.8)

Observations of solar flares are generally limited by the instrument temporal resolution.

For RHESSI this is the time it takes to create a full set of spatial Fourier components

of the source (see Chapter 1 Section 1.6.2, Chapter 2 Section 2.2 and Kontar et al.

2011b) which is at least 1 rotation, ∼ 4 s. Since typical timescales for acceleration,

collisions and escape are less than a second in a typical coronal HXR source (Guo et al.,

2013) this means that a steady-state solution to equation (3.6) is pertinent here. The

solution to equation (3.6) when ∂/∂t = 0 is (Chavanis & Lemou, 2005),

f(v) = A e−U(v) . (3.9)

This solution is general enough to find the energetic particle distribution, f(v), in a

collisional plasma. The exact shape of this distribution will depend on the choice of

Dturb(v) or equivalently the function U(v).

3.3 The Kappa Distribution Stationary Solution

Observations of solar flares show that the distribution of particles producing the X-ray

spectrum is generally best fit as a thermal core with a power-law (or broken power-

law) tail (Lin et al., 1981; Holman et al., 2003; Battaglia & Benz, 2006; Kontar et al.,

2011b; Simões & Kontar, 2013). In order to satisfy this constraint on the accelerated

electron distribution the turbulent diffusion coefficient is chosen so as to be inversely

proportional to v, i.e.

Dturb =
D0

v
, (3.10)

where D0 is a constant approximating the level of turbulence. With this choice of

diffusion coefficient the model (equation 3.6) will be shown to produce a kappa dis-

tribution steady-state solution, which has the form of a thermal core and power-law
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tail. Of course, due to the fact that Dturb is inversely proportional to v, this expression

diverges for small velocities and as such it may be less accurate for low speeds. It

results in an acceleration timescale (equation 3.3),

τacc =
v3

D0

. (3.11)

This is important as it means that at high enough energies both the acceleration

timescale and the collisional timescale scale as v3, meaning that there is no dominant

process in the system. Hence, at these energies the distribution is governed by the

balance between acceleration and collisions and this is what enables the power-law tail

to form. The choice of Dturb above allows the definition of the dimensionless constant,

κ =
τacc

2τc

=
Γ

2D0

, (3.12)

(the reasoning for the factor 2 will become clear). This means that the function U ′(v)

(equation 3.8) can be rewritten,

U ′(v) =

(
v2

te

2v
+
v2

Γ

D0

v

)−1

,

=

(
v2

te

2v
+

2D0

Γ

v

2

)−1

,

=

(
v2

te

2v
+

1

κ

v

2

)−1

,

=

[
v2

te

2v

(
1 +

1

κ

v2

v2
te

)]−1

,

finally leading to,

U ′(v) =
2v

v2
te

(
1 +

1

κ

v2

v2
te

)−1

. (3.13)

To obtain U(v) the above expression is integrated over v, so,

U(v) =

∫ v2/κv2te

0

2v

v2
te

(
1 +

1

κ

v2

v2
te

)−1

dv. (3.14)

Making the change of variables v2/κv2
te = g =⇒ (2v/κv2

te)dv = dg and thus κdg =

(2v/v2
te)dv, giving the integral,

U(g) =

∫ g

0

κ (1 + g)−1 dg. (3.15)
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This is a standard integral, which means,

U(g) = κ ln(1 + g). (3.16)

Now, changing variables back to v gives,

U(v) = κ ln

(
1 +

v2

κv2
te

)
. (3.17)

Equation (3.17) can be inserted into equation (3.9) giving, with appropriate choice of

normalising factor,

fκ(v) =
nκ

π3/2v3
teκ

3/2

Γ(κ)

Γ(κ− 3/2)

(
1 +

v2

κv2
te

)−κ
. (3.18)

This distribution is in the form of what is known as a κ distribution of the first kind

in the terminology of Livadiotis & McComas (2009) (their equation 9). Kašparová &

Karlický (2009) and Oka et al. (2013) study a κ distribution of the second kind (again

using nomenclature of Livadiotis & McComas (2009)), it is easily seen that with the

simple change of variables,

κ̃ = κ− 1; θ =

√
κ

κ− 1
vte, (3.19)

the κ distribution of the first kind becomes a κ distribution of the second kind, that is,

fκ̃(v) =
nκ̃

π3/2θ3κ̃3/2

Γ(κ̃+ 1)

Γ(κ̃− 1/2)

(
1 +

v2

κ̃θ2

)−(κ̃+1)

, (3.20)

which is equation (10) in Livadiotis & McComas (2009). In Bian et al. (2014) it is

argued that the kappa distribution of the first kind is more pertinent in a solar flare

context. This is due to the physical nature of the κ obtained. It is the dimension-

less ratio of the stochastic acceleration timescale, τacc, to the collisional deceleration

timescale, τc, or equivalently the collisional parameter, Γ, and the diffusion coefficient,

D0.

Figure 3.1 shows how the kappa distribution, equation (3.18), behaves with different

values of κ. If κ has a large value the identity,

lim
κ→∞

(
1 +

x

κ

)−κ
= exp(−x), (3.21)
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Figure 3.1: The stationary solution kappa distribution, fκ, for different values of κ, all

normalized to a density nκ = 1. Solid blue line; κ = 1.6, dotted orange line; κ = 3, dashed

green line; κ = 5, dot-dashed red line; κ = 10, dot-dot-dot-dashed purple line; κ = 30. For

small values of κ the distribution function has a Maxwellian core and a non-thermal power-law

tail, while for large values of κ the distribution is almost indistinguishable from a Maxwellian.

means that the kappa distribution in equation (3.18) approaches the form,

fκ(v) ∼ exp

(
− v

2

v2
te

)
, (3.22)

which is a Maxwellian (see κ = 30 in figure 3.1).

At low velocities, v �
√
κvte, the collisional diffusion term, f/τdiff ∼ v−5, is dominant

over the turbulent and collisional terms, f/τacc ∼ f/τc ∼ v−3, which results in the

distribution relaxing through diffusion to a Maxwellian form. In this low velocity

regime the term in brackets in equation (3.18) can be approximated as,(
1 +

v2

κv2
te

)−κ
∼
(

1− κv2

κv2
te

)
∼
(

1− v2

v2
te

)
. (3.23)

So the kappa distribution itself approaches the form,

f(v) ∼
(

1− v2

v2
te

)
as v → 0, (3.24)
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which is the low energy limit of the Maxwellian distribution. In the high velocity

limit, v �
√
κvte, the collisional diffusion timescale, τdiff (equation 3.5), is much longer

than either the turbulent timescale, τacc (equation 3.3), or the collisional deceleration

time, τc (equation 3.4). As such, at high velocities, the collisional diffusion term is

unimportant. Furthermore, because both τacc and τc have the same dependence on

velocity (v3) there is no longer a characteristic velocity scale in the system. Equation

(3.18) again confirms that in the high velocity limit,

f ∼
(

1 +
v2

κv2
te

)−κ
∼ v−2κ as v →∞, (3.25)

the stationary solution approaches a power-law.

Thus, at low velocities the distribution has a Maxwellian core and at high velocities

the distribution approaches a power-law so the whole particle distribution is kappa

in form. Kappa distributions are interesting in a solar flare context as they account

for the observed spectral shape, the Maxwellian core and power-law tail, without the

need for a (possibly artificial) low energy cutoff, instead smoothly transitioning from

the Maxwellian core to the high energy power-law tail. It should be noted that in

general a single kappa distribution cannot satisfactorily fit the spatially integrated full-

Sun spectra observed by RHESSI as mentioned by Kašparová & Karlický (2009). The

authors did find that some coronal sources could be adequately fit by the thin-target

emission from a kappa distribution however.

The electron velocity distribution, f(v), used here is related to the mean electron flux,

F̄ (E) [e− cm−2 s−1 per unit energy], by the simple relation vf(v)d3v = F̄ (E)dE.

For typical photon HXR energies studied here (≤ 100 keV) it can be assumed that

E = mev
2/2 holds as an approximation. Although strictly, as discussed in Chapter 1

Section 1.5.1, relativistic effects should be taken account at energies as low as 30 keV.

Now, vd3v ∼ v3dv and so f(v)v3dv ∼ F̄ (E)dE which means f(v)Evdv ∼ F̄ (E)vdv (as

dE = mevdv) which finally leads to the relation f(v) ∼ F̄ (E)/E. The mean electron

flux is thus F̄ (E) ∼ E−δ, with δ = κ− 1.

Analysis of the non-thermal spectrum above 20 keV in solar flares has shown that in

many cases the photon spectrum is approximately a power-law (Holman et al., 2003),
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I(ε) ∼ ε−γ [photons cm−2 s−1 keV−1], where ε [keV] is the photon energy and γ is

the photon spectral index, typically ' 5. The hard X-ray spectrum was discussed in

Chapter 1 and at earth is given by (Brown et al., 2003; Kontar et al., 2011b),

I(ε) =
nV

4πR2

∫ ∞
ε

F̄ (E)Q(ε, E)dE, (3.26)

where V is the source volume, R is the distance from the source, i.e. 1 A.U. and Q(ε, E)

is the bremmstrahlung cross section [cm2 keV−1] which is differential in photon energy.

The simple non-relativistic Kramer’s cross section (equation 1.34) can be used as an

illustration,

Q(ε, E) ∼ 1

εE
. (3.27)

So, substituting in the power law forms and equation (3.27) into equation (3.26) gives,

ε−γ ∼
∫ ∞
ε

E−δ

εE
dE, (3.28)

which integrated gives,

ε−γ ∼ ε−(δ+1). (3.29)

The relationship between the photon spectral index and the electron spectrum slope is

thus δ = γ− 1. Of course, integrating a non-relativistic cross section to infinite energy

is unrealistic but the argument above also holds for more complicated cross-sections,

such as the Bethe-Heitler cross-section used in Brown (1971) and shown in Chapter 1

(equation 1.35). This is due to the fact that Q(ε, E) is still proportional to 1/εE in

this case.

From the discussion above δ = κ − 1 = γ − 1, i.e. the index in the stationary kappa

distribution and the photon spectral index are equal,

κ = γ, (3.30)

and as such, in a solar flare context a typical value for κ would be 5. Furthermore, the

definition of the parameter κ (equation 3.12) provides the relative magnitude of two of

the timescales in the system,

τacc = 10τc. (3.31)
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So in a coronal hard X-ray source, conducive to producing a kappa distribution, the

acceleration timescale would be expected to be approximately an order of magnitude

larger than the collisional deceleration/friction time.

Due to the dependence of κ on the acceleration timescale, τacc, this means that a time

dependent hardening or softening of the accelerated electron spectrum could be the

result of a variation of the turbulent diffusion coefficient, D0, over a timescale much

longer than the relaxation to the steady state. This has been mentioned before by

Benz (1977); Grigis & Benz (2006) in order to explain the observed soft-hard-soft, or

soft-hard-harder, behaviour of observations of the X-ray spectrum during solar flares.

3.4 Evolution Toward the Steady-State Distribu-

tion

To study the evolution towards the final steady state, fκ(v), the function,

u(v, t) =
f(v, t)

fκ(v)
, (3.32)

is introduced. By substituting this into equation (3.6) the evolution of the dimension-

less function u(v, t) can be examined,

∂(u(v, t)fκ(v))

∂t
=

1

v2

∂

∂v

[
v2D(v)

(
∂(u(v, t)fκ(v))

∂v
+ u(v, t)fκ(v)U ′(v)

)]
. (3.33)

The evolution of u(v, t) can thus be described as,

∂u

∂t
=

1

v2

∂

∂v

(
v2D(v)

∂u

∂v

)
−D(v)U ′(v)

∂u

∂v
. (3.34)

The velocity space variable, η, is now introduced via (Chavanis & Lemou, 2005),

dη =
dv√
D(v)

, (3.35)

thus,
∂

∂v
=

∂

∂η

∂η

∂v
=

1√
D(v)

∂

∂η
. (3.36)
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So, changing partial derivatives from ∂v to ∂η in equation (3.34) gives,

∂u

∂t
=

1

v2
√
D(v)

∂

∂η

(
v2
√
D(v)

∂u

∂η

)
−
√
D(v)U ′(v)

∂u

∂η
. (3.37)

Differentiating (with respect to η) by the chain rule,

∂u

∂t
=

1

v2
√
D(v)

[
2v
∂v

∂η

√
D(v)

∂u

∂η
+ v2D(v)−1/2

2

∂v

∂η

∂D(v)

∂v

∂u

∂η

+ v2
√
D(v)

∂2u

∂η2

]
−
√
D(v)U ′(v)

∂u

∂η
. (3.38)

Now with some rearranging,

∂u

∂t
=

2

v

√
D(v)

∂u

∂η
+

1

2

√
D(v)

D(v)

∂D(v)

∂v

∂u

∂η
+
∂2u

∂η2
−
√
D(v)U ′(v)

∂u

∂η
. (3.39)

Grouping the first order derivatives,

∂u

∂t
=
∂2u

∂η2
+
√
D(v)

[
2

v
+

1

2

1

D(v)

∂D(v)

∂v
− U ′(v)

]
∂u

∂η
. (3.40)

This means that the equation (3.34) can be recast as an advection-diffusion equation

in velocity space,
∂u

∂t
+ V (v)

∂u

∂η
=
∂2u

∂η2
, (3.41)

where the advection speed is given by the expression,

V (v) =
√
D(v)

[
U ′(v)− 2

v
− 1

2

d lnD(v)

dv

]
, (3.42)

the logarithmic term coming from the second term within the brackets in equation

(3.40). The left hand side of equation (3.41) corresponds to an advection by a velocity

field, V (v), and the right hand side corresponds to a diffusion. The acceleration of

particles is dependent on the advection speed, and as such those at lower energies will

be accelerated first. That is, the relaxation to the final steady-state kappa distribution,

fκ, proceeds such that lower energies approach the asymptotic form first, with the

higher energies later. This can be characterised as a ‘front’ with position vf(t) moving

towards higher energies in velocity space (MacDonald et al., 1957; Chavanis & Lemou,

2005). In order to estimate the position of this front, the diffusive term in equation

(3.41) is neglected, thus,
∂u

∂t
+ V (vf)

∂u

∂η
= 0. (3.43)
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To find the approximate location of the ‘front’ u (= f/fκ) is set to a constant value

(arbitrarily choose u = 0.7 in Section 3.5). So, the total derivative,

du

dt
≡ ∂u

∂t
+
dη

dt

∂u

∂η
= 0. (3.44)

It follows that,

V (vf) =
dη

dt
=

1√
D(vf)

dvf

dt
, (3.45)

from equation (3.35). The expression for V (vf) can now be written explicitly (equation

3.42) so,
dvf

dt
= D(vf)

[
U ′(vf)−

2

vf

− 1

2vf

d lnD(vf)

d ln vf

]
, (3.46)

where switching from dvf to d ln vf results in the requirement of the extra factor vf

in the last term. In the high velocity regime D(v) ∼ Dturb(v) = D0/v so that

d lnD(vf)/d ln vf ∼ −1. Furthermore, from equation (3.17),

U ′(v) ∼ 2v(κ−1v2)−1 =
2κ

v
. (3.47)

So for v � vte equation (3.46) becomes,

dvf

dt
= D(vf)

[
2κ

vf

− 2

vf

+
1

2vf

]
, (3.48)

which is, when taking out the common factor 1/vf ,

dvf

dt
=
D(vf)

vf

[
2κ− 3

2

]
. (3.49)

Now, using equation (3.12) and the fact that in the high velocity regime D(vf) ∼ D0/vf

this gives,

dvf

dt
=
D0

v2
f

[
Γ

D0

− 3

2

]
,

=
Γ

v2
f

[
1− 3D0

2Γ

]
and so,

dvf

dt
= Γ

[
1− 3

4κ

]
1

v2
f

. (3.50)

This is a separable differential equation which means,∫
v2

f dvf =

∫
Γ

[
1− 3

4κ

]
dt. (3.51)
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If it is assumed that vf(t = 0) = 0, this leads to,

vf =

[
1− 3

4κ

]1/3

(3Γt)1/3. (3.52)

Of course, as this is a long time approximation, to talk about the front speed at t = 0

may seem incongruous. The front structure will not have formed at this time however,

and as such can be assumed to be at zero velocity. If τ th
c = v3

te/Γ is now defined as the

collisional timescale of a thermal electron this means,

vf ' vte

(
t

τ th
c

)1/3

. (3.53)

Now, the thermal collisional timescale can be expressed as,

τ th
c =

v3
te

Γ
=

(2kbT )3/2m
1/2
e

4πe4n ln Λ
' 4× 10−3T

3/2

n
. (3.54)

If typical values for a dense flaring loop are T = 2× 107 K and n = 1× 1011 cm−3 then

τ th
c ' 3 ms. A typical hard X-ray producing electron has energy, E = 30 keV, which

is about 15 times the thermal energy in the corona, so from equation (3.53),

t = τ th
c

(
vf

vte

)3

= τ th
c

(
Ef

Ete

)3/2

, (3.55)

where Ef is the position of the front in energy space and Ete is the thermal energy.

This means the average time taken to accelerate an electron to this energy is t ∼

153/2τ th
c ' 0.2 s. This is comparable to the hard X-ray rise and decay during solar

flare observations. Note that this is not the acceleration timescale as discussed before

(equation 3.3), this is the time taken for the ‘front’ discussed above to reach a typical

HXR producing energy. This can be used as an approximation for the average time

taken for the model to produce an electron of this energy. Equation (3.3), on the other

hand, is the timescale on which the acceleration term effects changes to the particle

distribution. The natural question here is whether the electrons can be confined to the

acceleration region for long enough to produce the asymptotic steady state distribution,

which will be tackled in Section 3.6. Finally, it is again noted that this is a long

time approximation, the assumptions above require that enough particles have been

accelerated to non-thermal energies to be valid.
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3.5 Numerical Solutions

Figure 3.2: Temporal evolution of the electron distribution function, f(v, t), for κ (≡

Γ/2D0) = 5. The solid blue line shows the initial Maxwellian and then, from left to right,

f(v, t) at t/τ th
c = 1 (orange dotted line), t/τ th

c = 10 (green dashed line), t/τ th
c = 100 (red

dot-dashed line), and t/τ th
c = 1000 (purple triple dot-dashed line).

A number of numerical solutions of the Fokker-Planck equation (3.1) were performed

in order to confirm the analytic expressions obtained in Section 3.4. Using a finite

difference code (Kontar, 2001), the evolution of f(v, t) from an originally thermal,

Maxwellian distribution was examined with the turbulent diffusion coefficient defined

as in equation (3.10). A value of κ = 5 is chosen as this agrees well with solar flare

observations (see discussion in Section 3.3). The choice of kappa will affect the shape

of the final distribution but the results will be similar to those here, the parameter

κ basically being the relative strength of the acceleration and collisional processes

(equation 3.12). The simulations were run until a steady state was reached. In order to

ensure the validity of the numerical results two checks were performed: first, as particle
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Figure 3.3: Evolution of the normalized distribution, f/fκ, with time for κ (≡ Γ/2D0) = 5

as before. The solid blue line shows the injected Maxwellian divided by the final steady state

fκ and then, from left to right: f(v, t)/fκ at t/τ th
c = 10 (orange dotted line), t/τ th

c = 100

(green dashed line), and t/τ th
c = 300 (red dot-dashed line).

loss is not included within the model (equation 3.1) it is imperative that particles were

not lost from the numerical system and so particle number was checked at each data

output, staying constant for the duration of the simulations and; second, the solution

to the steady state equation (see Section 3.3) is known and so the final steady state of

the numerical simulations was compared to the kappa stationary solution, fκ, agreeing

well within numerical errors. The distribution is decided to be steady state when it is

no longer changing between timesteps. This is tested by subtracting the distribution

at the previous timestep from the distribution at the present time. When this is zero

for all velocities, the evolution is assumed to have ceased, i.e. a steady state has been

reached.

Figure 3.2 shows the evolution of an originally thermal population of electrons towards

a final steady state which agrees well with the shape of a kappa distribution (see
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Figure 3.4: Location, vf , of the front in velocity space (in units of the thermal speed vte)

versus time (in units of the thermal collisional time τ th
c ). The analytic approximation for

front speed, vf(t) (equation 3.46), is shown by the orange dashed line. The blue line shows

the location of the numerical velocity front where f/fκ = 0.7.

Figure 3.1). Note that at t = 100τ th
c (the red dot-dash lines) the figure shows that the

distribution is close to the final kappa distribution up to around 5vte, which corresponds

to 4 orders of magnitude of the distribution, f(v, t). Therefore for a significant number

of particles this distribution is close to a kappa distribution.

The evolution of the normalized distribution, f/fκ, is shown in Figure 3.3. It is clear

there is a ‘wavefront’ moving towards higher velocity with time, as expected from the

advection-diffusion nature of equation (3.41). The normalised distribution is not shown

after it has reached a steady-state (at around t/τ th
c ∼ 1000), as it is constant across the

domain. This figure confirms that the distribution is indeed close to the final kappa

distribution up to ' 5vte for t = 100τ th
c . Furthermore, it shows that at t = 300τ th

c the

distribution is indistinguishable from a kappa distribution up to ' 7vte.

Equation (3.46) showed that the location of the velocity front in space should approx-
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imately be vf(t) ∼ t1/3. To assess the validity of this result a value of u(v, t) = 0.7

is chosen to approximate the position of the simulation front seen in Figure 3.3. The

plot of simulated vf versus t is shown in Figure 3.4 where the analytic solution is also

shown. There is little agreement before t ∼ 10τ th
c , due to the fact that this is a long

time approximation, t� τ th
c , only holding when a significant portion of particles have

been accelerated to non-thermal energies. There is also disagreement at t & 700τ th
c

due to the simulations reaching the upper velocity limit in the numerical box. There

is, however, excellent agreement in between these two limits, clearly both numerical

and analytical solutions have the same time dependence, that is the power law slope

d ln vf/d ln t = 1/3. Of course, the analytic model implies that the front position would

continue moving toward greater and greater velocity. In reality, because this is a rela-

tively slow process, there will be a limit on how long the particles can be confined in

the acceleration region and as such there will be a maximum energy (front position)

at which the acceleration stops and particles begin to escape (see next section). Note

that in Bian et al. (2014) the value of u(v, t) was chosen to be 0.5 as it seemed the most

natural choice. There was an offset between the two solutions that was unimportant,

merely coming from the subjective nature of choosing u(v, t) = 0.5 as an approxima-

tion to the position of the front in the simulations. Equally, here it is shown that

choosing the value to be 0.7 creates a better overlap, but again the choice is subjective,

and purely illustrates that instead of a sharp edge to the front as predicted by the

analytic approximation there is, in reality, a smoother drop off to the front, caused by

the re-introduction of the diffusive term in the numerics (Chavanis & Lemou, 2005).

In summation, the numerical results show that the velocity space front scenario de-

scribed in Section 3.4 provides a generally good description of the way particles are

accelerated from an originally thermal population of electrons to the kappa distribution.

3.6 Spatial Transport and Escape

The acceleration model considered in this chapter assumes that the electron distribution

is close to isotropic in pitch-angle, as it requires efficient pitch-angle scattering within
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the acceleration region. In the limit of strong pitch-angle scattering the transport of

particles can be thought of as the spatial diffusion parallel to the magnetic field (see

e.g. Kontar et al., 2014) over length scales much greater than the electron’s mean free

path due to turbulence λ(v) (equation 1.25).

If the spatial extent of the acceleration region is σ (see e.g. Xu et al., 2008) then the

escape of particles can be modelled via a ‘leaky-box’ model in which case equation

(3.1) becomes,

∂f

∂t
=

1

v2

∂

∂v

{
v2

[(
Γv2

te

2v3
+Dturb(v)

)
∂f

∂v
+

Γ

v2
f

]}
− f

τesc

, (3.56)

where the escape timescale has been defined,

τesc =
3σ2

λ(v)v
=

(
3σ

λ(v)

)(σ
v

)
, (3.57)

taking account of the diffusive nature of the transport (see Chapter 1 Section 1.3.2).

The escape term acts to deplete the number of particles within the acceleration region

with a characteristic timescale, τesc. It is easily seen from equation (3.57) that the

escape timescale becomes approximately the free-streaming escape time, σ/v (Chapter

1 Section 1.3.2), only when the mean free path due to turbulence, λ ∼ σ. Unless

some extra source term is introduced to replenish the acceleration region (such as the

final term in equation (13) of Petrosian (2012)) the number of particles within it will

continuously decrease through time. This would, of course, result in fluctuations in

plasma temperature but this is offset by the heat bath assumption mentioned earlier.

Equation (3.56) now has four terms describing: acceleration, collisional deceleration,

collisional diffusion and escape, each with their respective timescales (equations 3.3-3.5

and 3.57). Figure 3.5 shows these timescales plotted against velocity. Ignoring, for now,

the red dash-dot lines showing escape timescales parameterized by λ/σ, the balance of

timescales resulting in the kappa distribution becomes clear. At low velocities τdiff ∼ v5

is the shortest timescale in the system meaning it is dominant over the acceleration

timescale, τacc. This results in the collisionally dominated thermal core seen for v <

κvte in Figure 3.1. At higher velocities, v > κvte, the collisional diffusion timescale,

τdiff , becomes longer than both τacc, the acceleration timescale, and the collisional
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deceleration timescale, τc. The shape of distribution at these energies is thus controlled

by the balance of τacc and τc but since both scale as v3 this means there is no dominant

process here, resulting in a high energy power-law tail with spectral index κ = τacc/2τc.

The turbulent mean free path, λ(v), of a particle in the flaring, dense solar corona

would be expected to be either constant or increasing with energy. This would mean

that the escape timescale, τesc, would be a decreasing function of energy, easily seen

in equation (3.57). Therefore, at high enough velocities τesc will become the dominant

timescale in the system (as the other three are increasing functions of v). An escape

timescale, vesc, can be defined as the point, in velocity space, where the ‘front’ from

Section 3.4 reaches a velocity vf = vesc, i.e. from equation (3.54) and (3.55) at a time,

t =
v3

te

3Γ

(
vesc

vte

)3

=
v3

esc

3Γ
. (3.58)

Equating this to the escape timescale (equation 3.57) gives the expression,

v3
esc

3Γ
=

3σ2

λ(vesc) vesc

. (3.59)

For a general turbulent mean free path, λ = λ0(v/v0)α, the explicit solution for the

escape velocity becomes,

vesc =

(
9Γσ2vα0
λ0

)1/(4+α)

. (3.60)

In Figure 3.5 τesc is shown for different values of the dimensionless ratio λ/σ (setting the

turbulent mean free path, λ, to be constant), a parameter that quantifies the ‘strength’

of the scattering within the acceleration region. It is obvious that for an acceleration

region of the same length a decrease in λ results in a longer escape timescale, resulting

in an intersection with τacc at a higher energy. As an example, consider the case for

λ/σ = 0.2, the escape timescale intersects τacc at a velocity where it is yet to intersect,

and is comparable to, the collisional diffusion timescale, τdiff . As such, particle escape

would mean the power-law tail would not form and an asymptotic kappa distribution

would not result in this case. Alternatively, in the case of λ/σ = 0.0001, the escape

timescale intercepts at a much higher velocity. In this case a distribution approaching

the asymptotic kappa would form for v � vesc with a significant divergence only at

high energies, v & vesc.
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Figure 3.5: Characteristic timescales of the system. The solid blue line represents the

collisional diffusion timescale, τdiff ∝ v5 (equation 3.5), the purple triple-dot-dash line the

acceleration timescale, τacc ∝ v3 (equations 3.3 and 3.10), the green dashed line the collisional

deceleration timescale, τc ∝ v3 (equation 3.4), and the red dot-dashed lines the escape time,

τesc ∝ v−1 (equation 3.57), for, from bottom to top, λ/σ = 0.2, 0.01 and 0.001.

The ‘leaky-box’ formulation (equation 3.56) can be solved by considering the situation

to be analogous to the pitch-angle loss cone in a magnetic trap. In this case there is

a critical pitch-angle below which electrons escape and above which they remain fully

trapped. By analogy, electrons that are at velocities less than vesc can be considered

trapped and those at energies above the escape velocity can escape. The Fokker-Planck

can then be written without the explicit escape term,

∂f

∂t
=

1

v2

∂

∂v

{
v2

[(
Γv2

te

2v3
+Dturb(v)

)
∂f

∂v
+

Γ

v2
f

]}
, (3.61)

together with a boundary condition that assumes all particles above the escape velocity

leave the acceleration region,

f(vesc, t) = 0. (3.62)

This approximation is valid in the case where the electron escape rate is small and
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the acceleration region can be considered to be essentially thick-target. The time-

dependent solution can be found by perturbation analysis. A solution of the form,

f(v, t) = A eνt g(v), (3.63)

(where ν < 0 is the decay rate) to the Fokker-Planck (equation 3.6) is sought (subject

to the boundary condition above). So,

A eνt νg(v) =
1

v2

∂

∂v

[
v2D(v)

(
A eνt

dg(v)

dv
+ A eνt g(v)U ′(v)

)]
, (3.64)

which becomes, after cancelling like terms,

νg(v) =
1

v2

∂

∂v

[
v2D(v)

(
dg(v)

dv
+ g(v)

dU(v)

dv

)]
. (3.65)

By moving the v2 term to the left hand side the first integral of this expression (with

respect to v) can be found,

ν

∫ v

0

w2g(w) dw = v2D(v)

(
dg(v)

dv
+ g(v)

dU(v)

dv

)
, (3.66)

where w is just a dummy velocity variable introduced for clarity. This can be rearranged

as,
dg(v)

dv
+ g(v)

dU(v)

dv
=

ν

v2D(v)

∫ v

0

w2g(w) dw. (3.67)

The solution to this equation can be written as an expansion of the decay rate ν (King,

1965; Lemou & Chavanis, 2010),

g(v) = g0(v) + νg1(v) + . . . . (3.68)

It is okay to consider only the zeroth and first order terms here as the escape rate is

for the limit of small escape. It is again noted that the particles escape above some

critical velocity, vesc, and under this they stay trapped. If the kappa distribution (or

equivalently the HXR producing electron spectrum) itself is considered it is easy to see

that with the small number of particles at higher energies for a typical value of κ = 5

(Figure 3.1) that the distribution is dominated by lower energies. Consider setting the

escape speed at vesc = 5vte, the number of particles here is ∼ 5 orders of magnitude less
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than at the low energy core. Thus the number of particles escaping is low compared to

the distribution as a whole, so the decay rate |ν| � 1 and the assumption above holds.

The zero order equation is,

dg0(v)

dv
+ g0(v)

dU(v)

dv
= 0. (3.69)

This has the same general solution as equation (3.9) repeated here,

g0(v) = A e−U(v), (3.70)

where A is a normalization factor. The first order equation is,

dg1(v)

dv
+ g1(v)

dU(v)

dv
=

A

v2D(v)

∫ v

0

w2 e−U(w) dw. (3.71)

Multiplying through by integrating factor eU(v) this gives,

eU(v) dg1(v)

dv
+ eU(v) g1(v)

dU(v)

dv
=
A eU(v)

v2D(v)

∫ v

0

w2 e−U(w) dw. (3.72)

Now defining,

χ′(v) =
eU(v)

v2D(v)

∫ v

0

w2 e−U(w) dw, (3.73)

equation (3.72) becomes,
d

dv

[
eU(v) g1(v)

]
= Aχ′(v), (3.74)

which integrated gives the final expression for g1(v),

g1(v) = A e−U(v) χ(v). (3.75)

Substituting equations (3.70) and (3.75) into equation (3.68) gives the distribution to

the first order in ν,

f(v, t) = A e−U(v) eνt [1 + νχ(v)] . (3.76)

Subbing in the boundary condition (3.62) then,

f(vesc, t) = 0 = A e−U(vesc) eνt [1 + νχ(vesc)] , (3.77)

which in turn gives the decay rate,

ν = − 1

χ(vesc)
. (3.78)
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This is the escape rate in the limit of high escape velocity. Setting Dturb = D0/v again

(equation 3.10),

D(v) =
Γv2

te

v3
+
D0

v
, (3.79)

means that (equation 3.17),

U(v) = κ ln

(
1 +

v2

κv2
te

)
. (3.80)

So, substituting equations (3.78) and (3.80) into (3.76) gives the solution in the limit

of high escape velocity,

f(v, t) =
n e−t/χ(vesc)

π3/2v3
teκ

3/2

Γ(κ)

Γ(κ− 3/2)

(
1 +

v2

κv2
te

)−κ [
1− χ(v)

χ(vesc)

]
, (3.81)

where the final term here describes the deviation of this distribution from the kappa

distribution (equation 3.18). The loss of particles from the system is accounted for by

the term,

n(t) = n e−t/χ(vesc), (3.82)

which can be thought of as the number of particles in the system at a time, t. These

terms arise from allowing escape in the system. Both equation (3.82) and the final term

in the brackets of equation (3.81) depend on the function χ(v) which is determined from

equations (3.10), (3.17) and (3.73),

χ′(v) =
exp

{
κ ln

(
1 + v2

κv2te

)}
v2
(

Γv2te
v3

+ D0

v

) ∫ v

0

w2 exp

{
−κ ln

(
1 +

w2

κv2
te

)}
dw, (3.83)

which becomes,

χ′(v) =

(
1 + v2

κv2te

)κ
v2 v

2
teD0

v3

(
Γ

2D0
+ v2

v2te

) ∫ v

0

w2

(
1 +

w2

κv2
te

)−κ
dw. (3.84)

Now, remembering the definition of the dimensionless parameter κ (equation 3.12) and

with some more algebraic manipulation this becomes,

χ′(v) =
v

κv2
teD0

×

(
1 + v2

κv2te

)κ(
1 + v2

κv2te

) ∫ v

0

w2

(
1 +

w2

κv2
te

)−κ
dw, (3.85)
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which is of course,

χ′(v) =
v

κv2
teD0

(
1 +

v2

κv2
te

)κ−1 ∫ v

0

w2

(
1 +

w2

κv2
te

)−κ
dw. (3.86)

It is pertinent here to remember that the solution (equation 3.81) is only valid in the

case where escape velocity is sufficiently high and the decay rate |ν| � 1, i.e. where

the acceleration region is essentially thick target. Benz (1977) found the stationary

solution of a similar leaky-box equation where they had no collisional diffusion but did

have a source term of particles.

3.7 Stochastic Acceleration by a Large-scale Elec-

tric Field with Strong Pitch-angle Scattering

As mentioned before, the main energy release mechanism in solar flares involves the

reconnection of magnetic fields resulting in the formation of electric fields. Various

authors have tackled this problem, either with large scale sub-Dreicer (Benka & Hol-

man, 1994) or super-Dreicer (Litvinenko, 1996) electric fields. How does the role of

pitch-angle scattering affect the analysis of large scale coherent electric fields? A main

objective of the work in the final section of Bian et al. (2014) was to highlight that

efficient pitch-angle scattering of particles in a region of constant electric field could

result in an effect resembling stochastic acceleration. The interest of this chapter is

the formation of kappa distributions, so the requirements for the diffusion coefficient

Dturb ∼ 1/v are discussed.

In the presence of an acceleration region with an electric field of constant magnitude,

E|| [statvolt cm−1], parallel to the ambient magnetic field, B (aligned along x), in a

regime with efficient pitch angle scattering operating on a turbulent mean free path,

λ(v), the evolution of the electron distribution, f(x, µ, v, t), can be described by the

one-dimensional form of the Fokker-Planck equation,

∂f

∂t
+ vµ

∂f

∂x
+
eE||
me

µ
∂f

∂v
+
eE||
me

(1− µ2)

v

∂f

∂µ
=

v

λ(v)

∂

∂µ

[
(1− µ2)

∂f

∂µ

]
, (3.87)
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where all other parameters are listed in the Table of Symbols. This is the same form

as the model studied in Kruskal & Bernstein (1964) but in their case λ ∼ v4. The

final term on the right hand side describes the pitch-angle diffusion within the system.

In general, this acts to isotropize the distribution on a pitch-angle diffusion timescale

given by,

τpa =
λ(v)

v
, (3.88)

where in most cases the turbulent mean free path could be expected to be a function

of v (See Kontar et al., 2014, Appendix).

The acceleration within the system is controlled by the coefficient in front of the ∂f/∂v

term, i.e.
∂v

∂t
=
eE||
me

µ, (3.89)

which shows that v and µ are interlinked in this formalism. The isotropizing effect of

the pitch-angle scattering comes into effect whenever τpa is a decreasing function of v.

In fact, if λ ∼ vα then τpa ∼ vα−1 and it can be shown that for α < 1 the particle dis-

tribution is close to isotropic even in the presence of a constant electric force (Piasecki,

1981; Chernov & Dolgopyat, 2007). In these cases there is no runaway acceleration of

particles, the runaway phenomenon being the uninhibited growth in particle velocities

as t → ∞ (Benka & Holman, 1994). The combined effects of efficient pitch-angle dif-

fusion and a constant electric field produces an isotropic diffusive acceleration and an

unlimited growth in their kinetic energy in the absence of collisional energy losses. The

turbulent diffusion coefficient can be calculated from the Taylor (1922) formula,

Dturb(v) =
e2E2

||

m2
e

∫ ∞
0

〈µ(0)µ(t)〉dt =
e2E2

||

m2
e

λ(v)

v
. (3.90)

For the case where there is a constant turbulent mean free path then,

Dturb(v) =
D0

v
, (3.91)

with,

D0 =
e2E2

||λ

m2
e

. (3.92)
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In Section 3.4 it was shown that in the case where the turbulent diffusion coefficient

∝ 1/v, as above in equation (3.91), results in an acceleration timescale, τacc ∼ v3/D0

(equation 3.3), meaning that it has the same velocity dependence as the collisional

deceleration/friction time, τc (equation 3.4). Now, since Dturb ∝ λ/v ∼ 1/v and (from

equation 3.3),

τacc =
v2

Dturb(v)
, (3.93)

the acceleration of a particle at speed v can be expressed,

dv

dt
∼ v

τacc

∼ 1

v2
, (3.94)

which means that,
dE

dt
≡ mev

dv

dt
∼ 1

v
∼ E−1/2. (3.95)

This expression can be integrated leading to E3/2 ∼ t, and thus,

E ∝ t2/3, (3.96)

(see also equation 3.52). The role of collisions is to allow the slow convergence to

the final steady state kappa distribution given in equation (3.18) due to the balance

between turbulent acceleration and collisional friction.

There are a few drawbacks to the above model. In reality there is a maximum energy

gain available, bounded by the finite electric potential drop due to the finite size of the

acceleration region, which is ignored here. Furthermore, the approximation of escape in

Section 3.6 is not valid for the case of a stationary electric field. The maximum energy

gained from a temporally varying electric field in a finite acceleration region depends

on the escape timescale, whereas the maximum energy gained when in the presence

of a constant electric field is independent of the confinement time. Moreover, only

particles travelling parallel to the applied electromotive force, eE||, gain energy here.

Particles moving in the opposite direction will in fact lose energy. This means that

there is a spatial asymmetry in the model, even with the strong isotropization of the

particle distribution. This is undesirable in a solar flare context due to, for example,

the presence of at least two HXR footpoints in almost all flares. Therefore, this model
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requires fragmentation of the electric field, such as opposite electric fields on different

magnetic field lines (Holman, 1985; Emslie & Henoux, 1995; Bian & Browning, 2008;

Cargill et al., 2012; Gordovskyy et al., 2013) to be invoked.

The parameter κ, given by equation (3.12), is the ratio between Γ and D0. Therefore

in a model in which the acceleration results from a direct electric field studied here, it

relates the ambient density, ne, to the square of the accelerating electric field, E||. The

shape of any resulting distribution will thus constrain either one, or both, of ne and

E||.

Using equations (3.12) and (3.92) means κ can be expressed as,

κ =
3

2

m2
e

e2E2
||λ

Γ. (3.97)

Now, defining the collisional mean free path,

λc =
(kBT )2

4πnee4 ln Λ
, (3.98)

and the Dreicer-field (the field strength required to accelerate an electron to the thermal

energy over a distance equal to its collisional mean free path),

ED =
kBT

eλc

, (3.99)

means that κ becomes,

κ =
3

2

(
λc

λ

)(
ED

E||

)2

. (3.100)

As discussed previously in this chapter, the typical value for κ in a solar flare context

is ∼ 5 and so,

E|| =

(
3

10

λc

λ

)1/2

ED. (3.101)

Furthermore, due to the normalization factor in equation (3.18) there is the additional

constraint that κ > 3/2 and therefore,

E|| <

(
λc

λ

)1/2

ED. (3.102)

For a typical dense hard X-ray coronal source, a density, ne ∼ 1011 cm−3, and tem-

perature, T ∼ 2 × 107 K, may be expected. This would produce a collisional mean
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free path, λc = 5× 106 cm, and a dreicer field, ED = 3× 10−4 V cm−1. Furthermore,

Kontar et al. (2014) show that in order to be consistent with the observed variation in

source size with energy, the turbulent mean free path must be in the range 108 − 109

cm. The above analysis shows that even the simple model outlined above could provide

constraints on the accelerating electric field strength, E||, depending on the spectral

index, κ, obtained.

3.8 Conclusions to the Chapter

Driven by RHESSI observations of coronal hard X-ray sources where there is little or

no footpoint emission, a model in which there is cospatial acceleration, collisional decel-

eration, thermalization and HXR bremsstrahlung emission was considered. Choosing

the diffusion coefficient to be inversely proportional to velocity and with no particle

escape, the electron distribution was shown to approach an asymptotic kappa form.

The reason for this particular choice of diffusive coefficient is clear when considering

the standard fitting method for RHESSI observations, the kappa distribution giving a

smooth transition between a thermal like core and a power-law tail with no need for

a (possibly artificial) low energy cutoff. Here the main results from the chapter are

summarized:

• Unlike previous studies of kappa distributions in solar flares (Kašparová & Kar-

lický, 2009; Oka et al., 2013) the parameter κ obtained in this chapter has an

immediate physical significance. It is the dimensionless ratio between the ac-

celeration timescale, τacc, and the collisional deceleration/friction time, τc, or,

equivalently, the collisional parameter, Γ, to the turbulent diffusion coefficient

parameter, D0. This means that the index of the kappa distribution obtained

from this model provides information on the relative strength of these two effects

within the system.

• The approach toward the final steady state kappa distribution (from an originally

thermal, Maxwellian distribution) has been shown to proceed as a ‘wavefront’ in
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velocity space with position given by vf(t) ∼ t1/3. This can be thought of as the

distribution relaxing to the final steady state kappa distribution at low velocities

first followed by higher velocities later. This is corroborated by the numerical

results of Section 3.5.

• At high velocities, the time taken to approach the final stationary state kappa is

long enough that escape will have an effect. The solution in the limit of small

escape where the acceleration region is essentially thick-target is shown in Section

3.6 where the shape of the distribution with respect to the timescales involved is

discussed.

The quality of the HXR observations from RHESSI enables the determination of the

X-ray emitting electron spectrum to a high accuracy. With analysis of coronal HXR

sources the model could be tested; quantitative analysis of where the observed spectrum

agrees/disagrees with the asymptotic, escape free, kappa distribution could provide

information on physical parameters, such as the acceleration region length, σ, and the

diffusion coefficient parameter, D0. If the acceleration is by a direct electric field this

further reveals something about the accelerating electric field, E||, as D0 ∝ E2
||.

In this chapter, spatially independent acceleration and transport has been examined

due to the cospatial nature of the acceleration and energy loss in the regime considered.

As well as being the driving force of the work here, coronal HXR sources such as the

2005 August 23 flare (Chapter 2 Section 2.4.1) have also revealed that the acceleration

of particles in solar flares is consistent with an extended acceleration region within the

loop which is spatially inhomogeneous (e.g. Xu et al., 2008). The effects of this on the

acceleration and transport of electrons in solar flares is discussed in the next chapter.



Chapter 4

Spatially Inhomogeneous

Acceleration of Electrons in Solar

Flares

The work in this Chapter can be found in Stackhouse & Kontar (2017)

4.1 Introduction to the Chapter

In the previous chapter a model in which spatial dependence is neglected was studied.

In this chapter the effects of the intrinsic spatial variation within solar flares is fully

taken into account. This work was driven by the observations of Xu et al. (2008),

Kontar et al. (2011a) and Guo et al. (2012) showing that the acceleration region must

be extended and within the looptop region to be consistent with observations.

As discussed in Chapter 1 Section 1.2, acceleration in the coronal plasma can be split

into two broad regimes; whether the process behind it is systematic or stochastic in

nature. Observational evidence (Kontar & Brown, 2006) points toward an accelerated

electron population that is isotropic, favouring a stochastic acceleration mechanism.

Furthermore, systematic acceleration regimes often have large scale electrodynamic

issues intrinsic within them (Emslie & Henoux, 1995). Stochastic acceleration has
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also been shown to produce acceleration efficiencies consistent with HXR observations

(Emslie et al., 2008). The actual process of stochastically accelerating electrons can

happen in a variety of ways (Bian et al., 2012) but the acceleration itself is most

often well described by a turbulent velocity diffusion coefficient, Dvv (see discussion in

Chapter 1 Section 1.2.3).

Transporting electrons of tens of keV in solar flares could be expected to fall into one

of two categories, scatter-free (no pitch-angle scattering) or diffusive (efficient pitch-

angle scattering). If the transport is scatter-free in nature the accelerated electrons

experience negligible pitch-angle scattering and hence for sufficiently high velocities

deposit most of their energy in the dense chromospheric footpoints. As discussed in

Chapter 1 Section 1.3.2, there is mounting evidence that the transport of electrons

should involve scattering: firstly, there is a lack of anisotropy evident from hard X-ray

observations (Kontar et al., 2011b, as a review); secondly, albedo diagnostics (Kontar

& Brown, 2006; Dickson & Kontar, 2013), as well as stereoscopic measurements (Kane

et al., 1998), are inconsistent with strong downward beaming below ∼ 100 keV; thirdly,

the majority of stochastic acceleration models developed for solar flares require strong

pitch-angle scattering (Sturrock, 1966; Melrose, 1968; Benz & Smith, 1987; Petrosian

& Donaghy, 1999); finally, the accelerated electrons will propagate in a turbulent or

beam-generated turbulent media.

As already mentioned, RHESSI imaging spectroscopy has revealed that the accelera-

tion region in the hard X-ray coronal sources occupy a noticeable fraction of the loop

(Xu et al., 2008). So far however, the modelling and comparison with observations

has been limited to spatially averaged or single-point acceleration/injection. Current

modelling, for example the leaky-box approximation, accounts for transport implicitly

by introducing an escape term (Chen & Petrosian, 2013). This allows the study of

the acceleration term without complications arising from transport. While the energy

distribution can be studied, the spatial distribution observed in flares cannot. An al-

ternative simplifying approach is to inject an already accelerated power-law electron

distribution and examine transport effects (Bai, 1982; Emslie, 1983; McTiernan & Pet-

rosian, 1990; Ryan & Lee, 1991; Jeffrey et al., 2014), but this does not account for
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the effects of acceleration on the transport process. Evidently, such a split between

acceleration and transport is not justified and inadequate to model recent RHESSI

observations.

In this chapter a model is presented that accounts simultaneously for transport and

acceleration of electrons in an extended acceleration region of solar corona. The effects

of a spatially varying, extended acceleration region are examined during the evolution

of the electron spectrum from an initial Maxwellian distribution. The introduction of

an extended, inhomogeneous, acceleration region results in a softer spectrum for both

scatter-free and diffusive transport when comparing to the spectral index expected

from the analytic leaky-box solution. The work shows spatial effects should be taken

account of explicitly when modelling acceleration and transport in solar flares.

Section 4.2 introduces the model describing the acceleration and parallel transport in

solar flares as well as showing the simplified analytic leaky-box model not dependent

on space. Chapter 2 Section 2.4.2 discussed how to infer model parameters from the

2011 February 24 flare. These input parameters are used in the numerical solution of

the model in Section 4.4. The results of the numerical simulations are compared to

the leaky-box solution with the imaging spectroscopy results also shown for context.

Section 4.5 discusses the implications of this work.

4.2 Acceleration and Transport of Energetic Elec-

trons in Solar Flares

The evolution of the electron distribution, f(v, x, t) (one-dimensional in velocity space)

or f(v, x, t) (three-dimensional in velocity space), parallel to the magnetic field, B0

(aligned in the x-direction), can be described by the Fokker-Planck equation.

In the next two subsections the two transport regimes considered are outlined.
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4.2.1 Scatter-free transport

If the electric field accelerating electrons is parallel to the background magnetic field,

then the electron dynamics can be approximated as one-dimensional. In this case

stochastic acceleration will only act to accelerate electrons parallel to the field and so

the evolution of the electron distribution, f(v, x, t), is described by the one-dimensional

Fokker-Planck equation,

∂f

∂t
+ v

∂f

∂x
=

∂

∂v

[
D(v, x) +

Γ(x)v2
te

v3

]
∂f

∂v
+ Γ(x)

∂

∂v

(
f

v2

)
, (4.1)

where the collisional parameter is Γ = 4πe4 ln Λn(x)/m2
e (equation 1.10 with Z = 1),

n(x) [cm−3] is the density and all other terms are listed in the Table of Symbols. The

distribution is normalised so that ne =
∫
fdv. The second term on the left hand side of

equation (4.1) describes the scatter-free transport in the system, while the second term

inside the brackets on the right is the diffusion due to collisions and the final term on

the right hand side describes the energy loss due to Coulomb collisions. D(v, x) [cm2

s−3] is the 1-dimensional turbulent diffusion coefficient discussed in Section 4.2.3.

4.2.2 Diffusive Transport

In the case of strong pitch-angle scattering, where the mean free path due to scat-

tering is less than characteristic acceleration region length, the angle averaged three-

dimensional (in velocity space) form of the Fokker-Planck equation, assuming an isotropic

pitch-angle distribution, can be used. The evolution of the electron distribution,

f(v, x, t), is then,

∂f

∂t
−Dxx

∂2f

∂x2
=

1

v2

∂

∂v

[
v2D(v, x) +

Γ(x)v2
te

v

]
∂f

∂v
+

Γ(x)

v2

∂f

∂v
, (4.2)

where terms are analogous to those in equation (4.1), but the distribution is now

normalized as ne =
∫
f4πv2dv (this is of course assuming the electrons are still ‘tied’

to the field, i.e. there is negligible cross field diffusion of particles). The spatial diffusion

coefficient is as discussed in Chapter 1, and is given by equation (1.27), Dxx = λ(v)v/3.

Note that as Dxx is independent of x it can be taken outside the partial derivative here.
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In Chapter 1 Section 1.3.2 diffusive transport was introduced. In this chapter one case

is examined; λ constant for all velocities. For this case λ = 5 × 108 cm was taken, as

it is the midpoint in the limits found for 30 keV electrons in Kontar et al. (2014).

As an aside, the mean free path may be expected to be velocity dependent in reality.

In this case λ(v) can be obtained from integrating over µ in equation (1.25) to obtain

(see Appendix in Kontar et al., 2014),

λ(v) =
3v

8

(
2

b

[
1− a2

b2

]
ln

[
a+ b

b

]
− b− 2a

b2

)
. (4.3)

The quantities a and b are defined as,

a =
(1 + Z̄2)Kn(x)

m2
ev

3
and b =

1

2

(
δB

B0

)2
v

λB

, (4.4)

where Z̄2 is the mean square atomic number, K = 2πe4 ln Λ is the collisional param-

eter, δB/B0 is the strength of magnetic field fluctuations and λB [cm] is the parallel

correlation length for magnetic field fluctuations. The quantities a and b parameterize

the strength of the collisional and non-collisional scattering respectively. If both these

effects operated on similar scales then a ∼ b. The expression for strong non-collisional

scattering (b � a) is found in Kontar et al. (2014, Appendix). Equation (4.3) can be

re-written in terms of a scattering timescale, τ(v), so,

λ(v) =
3v

8
τ(v). (4.5)

To obtain an order of magnitude estimate for the scattering timescale, the limits ob-

tained in Kontar et al. (2014) can be used. Setting λ = 5×108 cm at 30 keV this gives

a scattering timescale of τ ' 0.18 s.

As velocity dependence of the mean free path might be expected in reality this will

hopefully be examined in future. The numerical solutions to equations (4.1) and (4.2)

are shown in Section 4.4.

4.2.3 Spatially Dependent Diffusion Coefficient

As already mentioned, imaging spectroscopy with RHESSI has revealed the extended

nature of the acceleration region in the HXR looptop source (e.g. Xu et al., 2008;
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Guo et al., 2012). In order to examine the effects of a spatially dependent, extended

acceleration region in a regime with simultaneous transport a spatially non-uniform

velocity diffusion coefficient is introduced,

D(v, x) =
v2

te

τacc

(
v

vte

)α
e−x

2/2σ2

, (4.6)

where τacc [s] is the acceleration timescale (assumed to be constant in velocity in this

study), σ [cm] is the spatial extent of the acceleration region and α is a constant

that controls the strength of the velocity dependance. It is easy to see that with

this choice, the acceleration is confined to a region in space, akin to an extended

looptop acceleration region. It is assumed that the acceleration efficiency within this

region is most effective at x = 0, the top of the loop, and that there is a drop off

with distance that is gaussian in nature, the exponential term above. A gaussian

distribution is chosen due to the structure noted in Xu et al. (2008) and Jeffrey &

Kontar (2013) implying a more efficient acceleration mechanism in a core with a halo of

escaping particles (as discussed in Chapter 2). The method to obtain the length of the

acceleration region, the density and temperature from RHESSI imaging spectroscopy

has been discussed in Chapter 2 Section 2.4.2. The diffusion coefficient is shown in

Figure 4.1 for a specific choice of acceleration timescale, spatial extent, σ, and thermal

velocity, vte, obtained from imaging spectroscopy. It is easy to see that there is a drop

off in D(v, x), and hence efficiency of acceleration, the further a particle is from the

apex of the loop.

4.2.4 The Leaky-Box Fokker-Planck Approximation

At this point it is instructive to examine the leaky-box Fokker-Planck approximation

(e.g. Chen & Petrosian, 2013). The equation for the spatially-averaged distribution

function, 〈f(v, t)〉, is,
∂〈f〉
∂t

=
∂

∂v
〈D(v)〉∂〈f〉

∂v
− 〈f〉
τesc(v)

. (4.7)
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Figure 4.1: Diffusion coefficient versus velocity for τacc = 10τ th
c for three different points

in space: Red, solid line; D(v, x = 0), Blue, dot line; D(v, x = σ) and Orange, dash line;

D(v, x = 2σ).

Where 〈. . .〉 denotes spatial averaging over the FWHM, L = 2.35σ. It should be noted

here that while averaging it is assumed that,〈
∂

∂v
D(v)

∂f

∂v

〉
' ∂

∂v
〈D(v)〉∂〈f〉

∂v
. (4.8)

The spatially averaged diffusion coefficient is the average of equation (4.6), i.e.

〈D(v)〉 =
1√

2πL2

∫ L

−L
D(v, x) =

1√
2πL2

∫ L

−L

v2
te

τacc

(
v

vte

)α
e−x

2/2σ2

. (4.9)

Now the expression (1/
√

2πL2)
∫ L
−L e−x

2/2σ2 ' 1 and so the spatially averaged diffusion

coefficient is found to be,

〈D(v)〉 =
v2

te

τacc

(
v

vte

)α
. (4.10)

It is also important to note that, as with acceleration, the spatial dependence of trans-

port in equation (4.1) is also neglected, i.e.

v
∂f

∂x
→ 〈f〉

τesc

, (4.11)
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where the exact form of τesc depends on the transport regime being studied.

Equation (4.7) is instructive and simple to use, but ignores the essential spatial depen-

dencies in acceleration and transport. The stationary solution as t→∞ can be readily

obtained from the following equation,

0 =
∂

∂v
〈D(v)〉∂〈f〉

∂v
− 〈f〉
τesc(v)

. (4.12)

Since the X-ray producing electron spectrum is close to a power-law (Holman et al.,

2003), a stationary solution of equation (4.12) in the form 〈f〉 ∼ v−δ1 is assumed.

Substituting the power-law solution of 〈f〉 gives,

∂

∂v

v2
te

τacc

(
v

vte

)α
∂v−δ1

∂v
− v−δ1

τesc(v)
= 0. (4.13)

Differentiating this expression and rearranging,

δ2
1 + (1− α)δ1 −

τacc

τesc(v)

(vte

v

)α−2

= 0. (4.14)

Using the quadratic formula and taking the root required to be consistent with δ > 0

(the spectral index inferred for solar flares is positive) means,

δ1 =
1

2

[
α− 1 +

(
(1− α)2 + 4

τacc

τesc(v)

(vte

v

)α−2
)1/2

]
, (4.15)

obtaining a spectral index which is dependent upon τacc and τesc.

For scatter-free transport the escape timescale is equal to the free streaming timescale,

τesc = σ/v. Therefore, the spectral index is,

δ1 =
1

2

[
α− 1 +

(
(1− α)2 + 4

τaccv
α−2
te

σ
v3−α

)1/2
]
, (4.16)

and it is easily seen that a spectral index independent of v can be obtained only for

α = 3, e.g.

δ1 =
1

2

[
2 +

(
4 + 4

vte

σ
τacc

)1/2
]
, (4.17)

where δ1 must be independent of v for the differentiation above between equations

(4.13) and (4.14) to be valid. Of course, in order to put the results here, and those

of the numerical simulations, in the context of the imaging spectroscopy results of the
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2011 February 24 flare (Chapter 2) the index actually needed is that of the density

weighted mean electron flux 〈nV F (E)〉 [electrons cm−2 s−1 keV−1]. Using the fact

that 〈nV F (E)〉 ∼ 〈f〉/me in one dimension this means that,

〈nV F (E)〉1d
LT ∼ v−δ1 ∼ E−δ1/2, (4.18)

where the superscript makes clear this is the one-dimensional scatter-free expression

and the subscript shows that this is the expected 〈nV F (E)〉 from the looptop.

Similarly, the three-dimensional Fokker-Planck (equation 4.2) gives the power law in-

dex,

δ2 =
1

2

[
α + 1 +

(
(α + 1)2 + 4

τacc

τesc

(vte

v

)α−2
)1/2

]
, (4.19)

where τesc = 3σ2/λ(v)v (e.g. Bian et al., 2014) and λ is the mean free path of an

electron due to pitch angle scattering. For constant λ, velocity independence again

requires α = 3,

δ2 =
1

2

[
4 +

(
16 + 4

λvte

3σ2
τacc

)1/2
]
. (4.20)

Again, for comparison, the energy index of 〈nV F (E)〉 is needed and so, as before, but

for the three-dimensional case, 〈nV F (E)〉 ∼ v2f(v)/me and,

〈nV F (E)〉3d
LT ∼ Ef(v) = Evδ2 = E−δ2/2+1, (4.21)

where the superscript illustrates that this is the looptop spectrum for the three-

dimensional Fokker-Planck.

So, the above arguments give the looptop spectral index predicted by the leaky-box

Fokker-Planck solution, 〈nV F (E)〉1d
LT ∼ E−δ1/2 or 〈nV F (E)〉3d

LT ∼ E−δ2/2+1, depending

on whether there is negligible or strong pitch-angle scattering respectively. In order to

find the footpoint spectrum predicted in both cases, one needs the electron precipitation

rate escaping from the looptop source, Ṅ(E) [e− s−1 per unit energy]. The number of

particles per second per unit speed, Ṅ(v) [e− s−1 (cm s−1)−1], is the flux multiplied by

the volume, i.e.

Ṅ(v) =
〈f〉LT

τesc

V. (4.22)
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For the 1-dimensional Fokker-Planck the total number is ne =
∫
fdv, this means that

Ṅ(E) dE = Ṅ(v) dv and so,

Ṅ1d(E) =
1

mev

〈f〉LT
τesc

V. (4.23)

For the three-dimensional case the total number is ne =
∫
f4πv2dv, so Ṅ(E) dE =

Ṅ(v) 4πv2dv and,

Ṅ3d(E) =
4πv

me

〈f〉LT
τesc

V. (4.24)

The density weighted mean electron flux at the footpoint is given by (see e.g. Kontar

et al., 2011b),

〈nV F (E)〉FP =
E

K

∫ ∞
E

Ṅ(E)dE. (4.25)

For the scatter-free case this gives,

〈nV F (E)〉1d
FP =

V

meKσ
E

∫ ∞
E

1

v
〈f〉LTvdE, (4.26)

which means,

〈nV F (E)〉1d
FP ∝ E

∫ ∞
E

E−δ1/2dE ∼ E−δ1/2+2. (4.27)

A similar argument leads to,

〈nV F (E)〉3d
FP ∝ E−δ2/2+3, (4.28)

for the three-dimensional case.

In both cases the power-law spectral index depends on the value of τacc. If there was

point like acceleration at the apex of the loop with this configuration, one might expect

a spectral index close to δ1 or δ2 to form. However, the spatial non-uniformity of the

acceleration region will result local acceleration times given by,

τeff(x) = τacc exp

(
x2

2σ2

)
, (4.29)

due to x dependency of D(x, v) (Equation 4.6), and hence a different local electron

distribution function. Therefore, a spatially dependent acceleration region will create

different spectral indices at each point in space. The resulting distribution function

from the entire acceleration region is controlled by the transport between various spatial
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locations. The resulting spectral index (if a power-law forms) could be different from

that predicted by the leaky-box solution.

These results are compared to numerical simulations with spatially inhomogeneous

acceleration and transport. They show the importance of including the spatial depen-

dence clearly in Sections 4.4.1 and 4.4.2.

4.3 Solar Flare Parameters from RHESSI

In Chapter 2 the method for obtaining electron density, ne, and acceleration region

extent, σ, from a solar flare looptop source was discussed. For reference, the results

are stated again here; a density of ne = 4.42× 1010 cm−3 was inferred within a coronal

looptop with an acceleration region of spatial extent σ = 5.3 × 108 cm. Allied to the

temperature obtained directly from the thermal fit (T = 23 MK) and the fact that α

has to equal 3 to enable comparison with the results of the forgoing section, this leaves

one free parameter in the models (equations 4.1 and 4.2), the acceleration timescale,

τacc.

4.4 Numerical Solutions of the Fokker-Planck Equa-

tion

A model corona with an originally Maxwellian distribution of particles at temperature,

T , was created,

f =

√
1

2πv2
te

exp

(
− v2

2v2
te

)
. (4.30)

The density, n(x), increases exponentially at the chromosphere with scale height, H =

220 km, following a hydrostatic model consistent with RHESSI observations (Battaglia

& Kontar, 2012),

n(x) =

ne; −5′′ ≤ x < 15′′

nfinal exp
(
− |x−xmax|

H

)
+ ne; 15′′ ≤ x ≤ 20′′

, (4.31)
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where xmax is the end of the numerical box (20′′ in this case) and nfinal is chosen so

as the ‘footpoint’ resembles a thick-target. The density profile is shown in Figure

4.2. The acceleration is controlled by the term D(v, x) (equation 4.6), into which

the σ obtained from observations is substituted and α is set to 3 for the reasons dis-

cussed in Section 4.2.4. The parameter τacc and how it affects the mean spectral

index resulting from the simulations is examined. The mean index is used because

of the fact that equations (4.1) and (4.2) will never produce a pure power-law. This

is due to the extended, and spatially varying, nature of the acceleration region, there

can be no balance between τacc and τesc as in the leaky-box formulation of Section

4.2.4. The simulated looptop and footpoint indices are compared to those predicted

by the leaky-box solution (equations 4.18, 4.21, 4.27 and 4.28) valid for each transport

regime to see how the introduction of a spatially varying, extended acceleration re-

gion affects the distribution of the energized particles. The timescales examined were

τacc = 10, 15, 20, 30, 40, 50, 100, 180, 270, 360, 540, 720, 900 τ th
c , where τ th

c = v3
te/Γ is the

collisional timescale of a thermal electron, approximately 0.01 s for the event in ques-

tion (Γ = 4πe4 ln Λne/m
2
e is the coronal collisional parameter here, independent of x).

The Fokker-Planck equations were solved numerically by the method of finite differ-

ences (Kontar, 2001). The code itself is the same as that used in Chapter 3, the only

difference being the introduction of spatial effects, and as such the tests discussed in

Chapter 3 Section 3.5 still apply. The footpoint was tested by comparison to the thick-

target model (Brown, 1971) and was found to agree with the analytic result within

numerical errors. The results are discussed in the subsequent Sections, 4.4.1 and 4.4.2,

but first the rest of this section will describe how to obtain 〈nV F (E)〉, and specifically

the power law index, δ, from the simulations.

The electron velocity distribution, f(v, x), used in the simulations is directly related

to the observed mean flux spectrum, so that the electron flux spectrum is F (E) =

f(v)/me [electrons cm−2 s−1 keV−1] in the one-dimensional case and F (E) = v2f(v)/me

for the three-dimensional velocity distribution of electrons. The density weighted mean
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Figure 4.2: The density of the simulated corona, n(x)/ne, as a function of height above the

photosphere in arcseconds. With vertical lines showing the spatial extent of the acceleration

region, σ, and the start of the footpoint.

electron flux is,

〈nV F (E)〉 =

∫
V

F (E, x)n(x)dV. (4.32)

So,

〈nV F (E)CS〉 = ALTne

∫ 15′′

−5′′
F (E, x)dx, (4.33)

where ALT is the cross-sectional area of the loop (found during the calculation of

volume, V , in Chapter 2). The limits are the estimation of the distance from the

maximum emission in 10 − 11.4 keV to one of the footpoints, calculated from the

CLEAN image (Figure 2.13). The footpoint has a steeply increasing density (Figure

4.2) over the last 5 arcseconds of the simulation domain and so the density weighted

mean electron flux from the model footpoint is,

〈nV F (E)FP〉 = ALT

∫ 20′′

15′′
F (E, x)n(x)dx. (4.34)

The power-law index of either the simulated looptop or footpoint source can then be
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found as,

δ(E) = −d ln〈nV F (E)〉
d lnE

, (4.35)

where the E dependence of δ is to make clear that the simulated spectral index will

not be constant with E. The mean value of δ(E) for the energy range 20 − 100 keV

(∼ average range fitted for non-thermal electrons in a RHESSI spectrum) for each τacc

will be compared to the equivalent leaky-box solution with differences highlighted.

4.4.1 Scatter-free Transport

Figure 4.3 shows the simulated density weighted mean electron flux, 〈nV F (E)〉. This

graph clearly shows the dependence of both the spectral index, and non-thermal flux,

on the acceleration timescale, τacc. The longer the acceleration timescale, the less

particles are accelerated to non-thermal energies and the steeper the spectrum.

The simulated spectral index is shown in Figure 4.4. The fitted spectral index, with

confidence bands, is overplotted for context and the leaky-box Fokker-Planck solution

(equations 4.18 and 4.27) is shown by the blue diamonds. There is a clear difference

between the spatially independent leaky-box solution and the spatially inhomogeneous

model given by equation (4.1). For the looptop and footpoint sources both the nu-

merical and leaky-box solutions display a similar behaviour with τacc with the greatest

difference between the two models at longer times. Furthermore, the spatially depen-

dent model produces, for the most part, a softer spectral index for all acceleration

timescales than that predicted by the leaky-box solution for both the footpoint and

looptop sources. For the footpoint source the larger difference at short acceleration

times (≤ 200τ th
c ) can be considered non-physical due to the leaky-box solution pre-

dicting negative spectral indices here. This is a result of the simulated footpoint index

‘saturating’ at these short acceleration timescales, the reasoning for which is unclear

(see discussion below).

The introduction of spatially inhomogeneous acceleration and transport therefore re-

duces the acceleration efficiency compared to the spatially independent leaky-box for-

mulation. As a result, any acceleration timescale inferred from the latter could be an



4.4: Numerical Solutions of the Fokker-Planck Equation 113

overestimate of the actual acceleration timescale in the flare. As an example, consider

the simulated looptop spectral index at τacc = 360τ th
c , this produces a δ that is closer

in value to that predicted at τacc = 720τ th
c by the leaky-box solution.

The spectral index difference, δLT − δFP, between the simulated looptop and footpoint

sources is shown in Figure 4.5. Superficially, it appears that scatter-free transport

can produce spectral indices less than 2, as observed often in solar flares. However,

comparing with Figures 4.3 and 4.4 it is easy to see that this decrease in difference is

somewhat artificial. It appears that for short acceleration timescales (≤ 100τ th
c ) that

the simulated model footpoint saturates, meaning that it will not produce negative

spectral indices and as such while the analytic leaky-box Fokker-Planck formulation

continues to get harder, the simulated footpoint spectrum becomes almost constant

around zero. This has the effect of decreasing the spectral index difference but for

timescales ≥ 200τ th
c the spectral index difference returns to around 2, which would be

expected here, due to the model footpoint being designed as a thick-target (Brown,

1971). The ‘saturation’ can be thought of as a test for the validity of the footpoint

in the code; there is no reason why the model (equation 4.1) should not produce

negative indices. In fact, as the footpoint is designed as a thick-target the spectral

index difference should remain 2. The reason why the code will not produce negative

indices is unclear (the footpoint still stops the non-thermal particles here), but it is

important to note that the spectral indices produced are unphysical in any case. As

mentioned in Chapter 3, a standard value of γ for a coronal looptop source may be

∼ 5 which for thin-target bremmstrahlung would require an electron spectrum with

δLT = 4. The looptop spectral index is not above 4 until τacc = 900τ th
c at which point

the spectral index difference is ∼ 2 again. Furthermore, footpoint indices are rarely

observed with indices δFP < 2, which again the code doesn’t predict until a similar

acceleration time. The legitimacy of the footpoint in the code does not affect the

analysis of the looptop spectrum either, which can be assumed valid across the domain.

A study of longer acceleration times, and thus more realistic δ, will be undertaken in

Stackhouse & Kontar (2017).
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Figure 4.3: Simulated 〈nV F (E)〉 for the scatter-free transport case for coronal source

(left) and footpoint source (right) for acceleration timescales: τacc = 10τ th
c (grey dash line),

τacc = 100τ th
c (purple triple dot-dash line), τacc = 180τ th

c (black solid line), τacc = 270τ th
c

(blue dot line), τacc = 360τ th
c (maroon dash line), τacc = 540τ th

c (orange dash-dot line),

τacc = 720τ th
c (green dash-triple dot line) and τacc = 900τ th

c (yellow long dash line).

Figure 4.4: Simulated δ shown for looptop (left) and footpoint (right). The magenta line

shows the observed δobs with the grey confidence strip showing the possible range of δobs for

the fit (δobs
LT = 2.91± 0.43 and δobs

FP = 2.11± 0.04). Orange triangles are mean simulated δ for

20− 100 keV with error bars showing the maximum and minimum δ within that range. The

blue diamonds show the predicted spectral index from the leaky-box approximation.

4.4.2 Diffusive Transport with λ = 5× 108 cm

Figure 4.6 shows the 〈nV F (E)〉 for diffusive transport with a constant mean free path.

Like Figure 4.3 it is clear to see the relationship between the flux of non-thermal
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Figure 4.5: For the scatter-free transport case, mean simulated spectral index difference

between the looptop and the footpoint across the energy range studied.

particles, the spectral index and the acceleration timescale.

The simulated spectral index is compared to that predicted from the leaky-box Fokker-

Planck approximation (equations 4.21 and 4.28) and the imaging spectroscopy results

from the 2011 February 24 flare in Figure 4.7. There is again a similar behaviour

with both the spatially independent and inhomogeneous models with respect to the

acceleration timescale. Concentrating solely on the looptop spectrum, as the leaky-

box approximation to the footpoint (equation 4.28) predicts negative indices for all

the timescales covered, while the numerical code again produces ‘saturation’ around

zero across the domain, it is clear that the introduction of spatially inhomogeneous

acceleration results in a softer spectral index than spatially independent acceleration

and transport, with the largest discrepancy at longer times.

Again it is easily seen that using the spatially independent leaky-box Fokker-Planck

approximation could result in the overestimation of the acceleration timescale when

modelling stochastic acceleration in solar flares.

The simulated spectral index difference is shown in Figure 4.8. For the acceleration

timescales studied the fact that this is less than 2 can be attributed to the same reason

as the scatter-free transport case. The fact that the difference between the looptop

and footpoint indices is not two can again be thought of as a validity check for the

simulated footpoint spectrum.
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Figure 4.6: Same as Figure 4.3 but for diffusive transport with constant mean free path in

velocity, λ = 5× 108 cm.

Figure 4.7: Same as Figure 4.4 but for diffusive transport with constant mean free path in

velocity, λ = 5× 108 cm.

4.5 Conclusions

In this chapter a model accounting for the intrinsic spatial variation in solar flares (Xu

et al., 2008; Kontar et al., 2011a; Guo et al., 2012) was studied. By using the imaging

spectroscopy of the 2011 February 24 flare (Chapter 2) the density, temperature and

spatial extent of the acceleration were inferred and used as input parameters to the

model. This was solved numerically, and compared to the spatially invariant leaky-box

approximation, commonly used when studying stochastic acceleration in solar flares.

The results are summarized as follows:
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Figure 4.8: Same as Figure 4.5 but for diffusive transport with constant mean free path in

velocity, λ = 5× 108 cm.

• Scatter-free transport ; the introduction of a spatially inhomogeneous acceleration

region while explicitly accounting for transport results in acceleration that is less

efficient than the spatially independent leaky-box formulation. The resulting

spectral index, for both looptop and footpoint sources, is softer than that when

spatial effects are not taken into account.

• Diffusive transport with λ = 5 × 108 cm; the same behaviour is seen for the

diffusive transport case; the introduction of a spatially extended, inhomogeneous,

acceleration region results in a softer spectrum than that predicted by the leaky-

box solution.

Overall, for both transport regimes studied it is clear that the intrinsic spatial depen-

dency evident in solar flares (Xu et al., 2008; Guo et al., 2012) changes the electron

spectrum when compared to the spatially independent leaky-box Fokker-Planck ap-

proximation (Chen & Petrosian, 2013). It acts to reduce the acceleration efficiency

and thus produces a softer spectrum. This means that the acceleration timescales in-

ferred when using a leaky-box model applied to a solar flare may be an overestimation.

These timescales can thus be considered an upper limit of the time taken to produce

an observed spectral index. Thus, the intrinsic spatial dependence should be taken

into account when modelling stochastic acceleration in solar flares.
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In the next chapter, the work of this thesis is summarised and placed in the context of

present and future work.



Chapter 5

Conclusions

The overarching theme of this thesis has been to examine the effects of acceleration

and transport of electrons in solar flares and the resulting influence on the hard X-ray

spectrum they produce. The work has been achieved by a mixture of analytical and

numerical modelling, together with observations from RHESSI.

Chapter 2 introduced the two distinct flare morphologies that informed the models

studied in the rest of the thesis. The first event studied was an example of what is

known as a coronal thick-target source (Veronig & Brown, 2004; Jeffrey & Kontar, 2013)

where the ambient density of the loop is high enough that electrons are collisionally

stopped in the corona before they precipitate to the chromosphere. Sources such as

these are very interesting in the sense that they enable detailed examination of the

coronal source with minimal contamination from the footpoints. Studies of the spatial

properties of these HXR events (Xu et al., 2008; Guo et al., 2012) has shown that the

increase in loop length with energy is consistent with an initial acceleration occurring in

an extended region within the loop plus an additional length proportional to the photon

energy squared. This extra length being due to the higher energy electrons moving

further through the loop before being stopped. This extended region was the subject

of the work in Chapter 4. Further to this increase in length, Kontar et al. (2011a) found

that coronal thick-target loops exhibited an increase in width with energy as well. This



120

is harder to explain, due to the fact that particles should be tied to field lines. The

authors, and another study by Bian et al. (2011), suggested that this increase in width

was due to magnetic turbulence, which is a prerequisite of the stochastic acceleration

studied in this thesis. The analysis of this flare focussed on it being an example of the

scenario considered in Chapter 3, and furthermore, to show the capabilities of imaging

spectroscopy with RHESSI. The looptop structure was split into five parts, to enable

examination of the spectral changes with distance from the looptop. The results are

consistent with the analysis of Jeffrey & Kontar (2013) with a constant density along

the loop, and the trend toward slightly harder spectra with distance consistent with an

extended acceleration region with a halo of escaping particles shown in Xu et al. (2008)

and Guo et al. (2012). Most solar flares do not have just a coronal source however,

displaying X-ray sources in both the corona and the chromosphere. Generally in these

cases most of the hard X-ray emission comes from the footpoints, due to the enhanced

density compared to the corona, with the looptop emission a combination of thermal,

soft and hard X-ray emission depending on the precise properties of the loop. The

2011 February 24 flare (the work on which will be published in Stackhouse & Kontar

2017) was chosen due to it being a limb flare, and thus enabling easy selection of the

looptop and footpoint sources. This flare was previously studied by Simões & Kontar

(2013), where the electron rates at the looptop were found to be less than was required

to explain the footpoint emission. In Kontar et al. (2014) they showed that this could

be explained by introducing a turbulent mean free path, λ, in a diffusive transport

regime, which was studied in Chapter 4. The fits to the looptop and footpoint spectra

are consistent with those in Simões & Kontar (2013), and using a technique similar

to that study the electron density, ne, was obtained. Together with an estimate of

acceleration region extent from the CLEAN image and the temperature from the fit,

these were used as the starting parameters of the model in Chapter 4.

Coronal thick-target sources enable the examination of the acceleration region in solar

flares, allowing the precise measurement of the density and length of the region (Xu
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et al., 2008) and thus the specific acceleration rate (Emslie et al., 2008; Guo et al.,

2013), a quantity that describes the efficiency of the acceleration process. In Chapter

3, and in Bian et al. (2014), a model was shown in which the stochastic acceleration,

collisional stopping, thermalisation and hard X-ray emission are all included in a repre-

sentation of a coronal thick-target source. With a specific choice of turbulent diffusion

coefficient, Dturb = D0/v, the model was shown to admit a steady-state kappa dis-

tribution solution. Kappa distributions are interesting in a solar flare context due to

the fact that they reproduce the observed spectral shape, thermal core and power-law

tail (Holman et al., 2003), without the need for two separate populations of electrons

or, possibly artificial, low energy cutoffs. They transition smoothly from a Maxwellian

form at low energies to a power-law with index κ at high energies. Kappa distribu-

tions in solar flares have been discussed by Kašparová & Karlický (2009) and Oka

et al. (2013) showing that for most flares the emission from a single kappa distribu-

tion cannot reproduce the whole spectrum. Kašparová & Karlický (2009) however,

found that the thin-target emission from a kappa distribution of electrons could pro-

vide an adequate fit to some looptop sources. The difference between these models and

the one studied in Chapter 3 is the immediate physical significance of the parameter

κ (= τacc/2τc = Γ/2D0), meaning that the spectral index fitted could provide informa-

tion on the relative strength of acceleration to collisions. It follows that a temporal

hardening/softening of the photon distribution in solar flares could be accounted for by

a decrease/increase in the acceleration timescale respectively. This has been discussed

before by Benz (1977) and Grigis & Benz (2006) to explain the observed soft-hard-soft

and soft-hard-harder behaviour of the X-ray spectrum in solar flares. The evolution of

an originally thermal distribution of electrons to this final steady-state kappa distribu-

tion was studied. It was found that this takes the form of a wavefront in velocity space,

with position vf(t), meaning that the distribution approximates the final, asymptotic

form at low energies first. Numerical simulations were performed to establish the va-

lidity of of these analytic approximations showing clearly the wavefront as expected,

with a front position given by vf ∼ t1/3. Due to the slow convergence towards the final

steady-state solution, the natural question was whether the electrons could be confined
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long enough within the acceleration region for a kappa distribution to form. Solving

the governing equations in the limit of small escape it was found that the model would

still approximate a kappa distribution up to some critical escape velocity whereafter

escape would dominate. The exact value of the escape velocity was shown to depend on

the dimensionless ratio between the turbulent mean free path, λ, and the acceleration

region spatial extent, σ. In the final section of Chapter 3 a model with a constant

electric field and efficient pitch angle scattering was examined focussing on the require-

ments for a kappa distribution to form. The turbulent diffusion coefficient was found

to depend on the square of the accelerating field, D0 ∝ E2
||. As such, in this situation,

the spectral index, κ, could reveal information about the accelerating electric field.

The quality of the hard X-ray observations from RHESSI enables close examination

of the underlying electron distribution producing the bremmstrahlung emission. Com-

paring the emission from the steady-state kappa electron distribution to the photon

spectrum would reveal information about the acceleration region. Difference and agree-

ment between the spectra allowing one to infer the length of the region and strength

of the accelerating field. It would be possible, and useful, to integrate the steady-state

kappa distribution solution into OSPEX (Schwartz et al., 2002) in order to undertake

a systematic analysis of coronal thick-target sources. However, the lack of events with

this specific morphology, especially since the launch of SDO/AIA for comparison im-

ages, means that a large scale study may be difficult with the present X-ray images.

The advent of more spatially resolved X-ray imaging in future will hopefully allow the

application of the model to such sources on a greater scale.

Of course, the application of a model which is spatially independent is only possible

due to the fact that the electrons are accelerated and stopped in the same volume.

In reality, solar flares are spatially inhomogeneous. As mentioned before, the obser-

vations of Xu et al. (2008) and Guo et al. (2012) showed that to be consistent with

observations the acceleration region must be extended and within the loop. Current

modelling, for example the leaky-box Fokker-Planck approximation, deals with trans-
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port implicitly, via an escape timescale (Chen & Petrosian, 2013). This allows the

examination of the acceleration term without complications arising from transport.

Another simplifying approximation is to inject an already accelerated distribution and

study transport effects (e.g. Petrosian & Donaghy, 1999), but this does not account

for the effects of acceleration on transport. Evidently such a split between acceleration

and transport is not justified in light of these recent observations. In Chapter 4, and

Stackhouse & Kontar (2017), a model which introduces an inhomogeneous extended

acceleration region and explicitly accounts for the effects on acceleration and transport

was presented. Two transport regimes were studied: scatter-free, where the particles

experience no pitch-angle scattering, and diffusive transport, with a turbulent mean

free path λ = 5 × 108 cm accounting for the effects of pitch-angle diffusion. The spa-

tially dependent diffusion coefficient was chosen to have a gaussian profile in space, with

spatial extent σ found as in Chapter 2. This was due to the structure noted in Xu et al.

(2008) and Jeffrey & Kontar (2013) of a core acceleration region surrounded by a halo of

escaping particles. The governing equations were solved numerically by the method of

finite differences and the spectral index obtained was compared to that found from the

spatially independent leaky-box solution to the same model. For scatter-free transport

there was a clear difference in the spectral index obtained. Explicitly accounting for the

spatial effects on acceleration and transport resulted in a spectral index that was softer

than that produced by the spatially independent leaky-box solution. That is to say

that the introduction of a spatially inhomogeneous acceleration region resulted in the

less efficient acceleration of electrons. This could result in the acceleration timescales

found via the leaky box model (e.g. Chen & Petrosian, 2013) being an overestimation

of the actual acceleration time required to produce the observed spectral index. For the

diffusive transport case the same behaviour was found, taking account of the spatial

effects explicitly resulted in a softer spectral index than the leaky-box solution. There-

fore, in both cases, the introduction of a spatially dependent, extended acceleration

region while accounting for the effects of this on acceleration and transport explicitly

results in a less efficient acceleration than that in the spatially independent leaky-box

solution. As such, an acceleration timescale obtained via the leaky-box method should
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be considered an upper limit of the timescale actually required to produce the observed

spectrum. It is suggested that the intrinsic spatial dependencies of solar flares are taken

into account explicitly in future modelling. Further to the simulations shown here, it

is intended that another scenario of interest will be examined in future; the case where

the turbulent mean free path is velocity dependent, as mentioned briefly in Chapter

4. This would affect the α (velocity dependence of the diffusion coefficient) required

by the leaky-box solution and the simulations would need to be re-run for the new

D(v, x). It would seem logical for some form of velocity dependence to exist in reality.

It is important to note that the numerical simulations in Chapters 3 and 4 do not

account for all the effects on the electron distribution in a flare. In particular, there

is no feedback to the surrounding plasma, such as an increase in temperature as the

particles lose energy during collisions. There is also no creation of langmuir waves

as the electrons move through the plasma. However, the code could relatively easily

be updated to include these effects, and any others a user might want to add to the

governing Fokker-Planck. In the interests of transparency, a copy of the finite difference

code used is included in the Appendix A.

All of the work presented in this thesis has been driven by the excellent imaging spec-

troscopy of RHESSI. However, as mentioned, there is a paucity of observations of

certain types of flares, such as coronal thick-targets. The next generation of solar

instruments such as Solar Orbiter (mission: http://sci.esa.int/solar-orbiter/,

instruments: http://sci.esa.int/solar-orbiter/51217-instruments/) and So-

lar Probe Plus (mission: http://solarprobe.gsfc.nasa.gov/ instruments: http:

//solarprobe.jhuapl.edu/spacecraft/instruments.php) will observe solar flares

from closer to the Sun than ever before. Of particular interest will be the observations

of in-situ energetic particles and magnetic fields at a distance of ∼ 3R� by Solar Probe

Plus, which will provide information on the acceleration mechanisms present in the

corona. The X-ray spectrometer (STIX) onboard Solar Orbiter will provide detailed

http://sci.esa.int/solar-orbiter/
http://sci.esa.int/solar-orbiter/51217-instruments/
http://solarprobe.gsfc.nasa.gov/
http://solarprobe.jhuapl.edu/spacecraft/instruments.php
http://solarprobe.jhuapl.edu/spacecraft/instruments.php
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spectral, temporal and spatial information on solar flares. It is hoped that better spa-

tial resolution of X-ray imaging will be achieved and that it will provide new insight.

Specifically, it will help to constrain the parameters of the acceleration region, and also

shed light on the structure within it. Moreover, it is hoped that the work of this thesis

can help the development of future solar X-ray imagers, as well as the analysis of the

data obtained by them.
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Vandas, M., & Karlický, M. 2016, Astronomy and Astrophysics, 591, A127

Veronig, A. M., & Brown, J. C. 2004, Astrophysical Journal, Letters, 603, L117

Vilmer, N., MacKinnon, A. L., & Hurford, G. J. 2011, Space Science Reviews, 159, 167

Warmuth, A., Mann, G., & Aurass, H. 2007, Central European Astrophysical Bulletin,

31

—. 2009, Astronomy and Astrophysics, 494, 677

Wood, P., & Neukirch, T. 2005, Solar Physics, 226, 73

Woods, T. N., Kopp, G., & Chamberlin, P. C. 2006, Journal of Geophysical Research

(Space Physics), 111, A10S14

Wu, C. S. 1984, Journal of Geophysics Research, 89, 8857

Xu, Y., Emslie, A. G., & Hurford, G. J. 2008, Astrophysical Journal, 673, 576

Zharkova, V. V., & Gordovskyy, M. 2005, Space Science Reviews, 121, 165

Zharkova, V. V., Arzner, K., Benz, A. O., et al. 2011, Space Science Reviews, 159, 357



Appendix A

Finite Difference Code for the

Isotropic Fokker-Planck with

Diffusive Transport

There is a problem with the repeatability of results in science in general, especially

computational work done with code written from scratch. As such, the finite difference

code for the isotropic Fokker-Planck with diffusive transport stated above in Chapter

4 equation (4.2) is included. It is also my intention to upload all the codes, including

analysis files, used for this thesis onto an online repository https://github.com/

duncanstackhouse/Physics that is open access.

First, the normalisation of equation (4.2) is described. This is needed so that the code

does not have to deal with excessively large or small numbers which tends to cause

problems. Thus, if anyone does wish to use the code below they can retrieve the actual

values of the parameters.

The time, t, velocity, v, and space, x, are normalised as so,

t̃ =
t

τ th
c

; ṽ =
v

vte

; x̃ =
x

d
, (A.1)

where τ th
c and vte are as defined in the main text and d = 7.25× 107 cm (1 arcsecond).

The electron phase space distribution is normalised as
∫
f̃d3ṽ = 1. Equation 4.2 then

https://github.com/duncanstackhouse/Physics
https://github.com/duncanstackhouse/Physics
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becomes,

1

τ th
c

∂f̃

∂t̃
− λvte

3d2
ṽ
∂2f̃

∂x̃2
=

1

ṽ2v3
te

∂

∂ṽ

[
ṽ2 v

4
te

τacc

ṽα e−x
2/2σ2

+
Γ̃(x)Γv2

te

ṽvte

]
∂f̃

∂ṽ

1

vte

+
Γ̃(x)Γ

ṽ2v3
te

∂f̃

∂ṽ
, (A.2)

having expressed Dxx and D(v, x) explicitly and defined Γ̃(x) = Γ(x)/Γ, where Γ =

4πe4 ln Λne/m
2
e is the coronal collisional parameter. This is further simplified by re-

alising that Γ̃(x) = n(x)/ne = ñ(x). With some more manipulation this eventually

becomes,

∂f̃

∂t̃
− λv4

te

3Γd2
ṽ
∂2f̃

∂x̃2
=

1

ṽ2

∂

∂ṽ

[
ṽ2 ṽ

α

τacc

e−x
2/2σ2

+
ñ(x)

ṽ

]
∂f̃

∂ṽ
+
ñ(x)

ṽ2

∂f̃

∂ṽ
. (A.3)

The factor in front of the spatial term is dimensionless and is the parameter B below.

This is the equation solved by the method of finite differences (Kontar, 2001) in the

code.

pro best_idl_accel

;

; Name: best_idl_accel.pro

; Author: Duncan James Stackhouse

; Date: 11 Nov 2015

;

; Description: Explicit Finite difference code to solve the isotropic

; Fokker-Planck with spatially dependent diffusion

; coefficient and diffusive transport.

;

; Universal Constants
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kb = 1.38d-16

; Boltzmann’s constant, erg K^-1

kb_keV = 8.62d-8

; Boltzmann’s constant, keV K^-1

m_e = 9.1d-28

; Electron mass, g

charge = 4.8d-10

; Electron charge, ergs

lnlambda = 20.

; coulomb logarithm, standard for solar flares

d_norm = 7.25d7

; Spatial normalisation, 1 arcsec (cm)

keV = 1.6d-9

; Conversion from keV to erg

scale_height = 2.2d7

; Density scaleheight for the footpoint, cm (Battaglia+Kontar 2012)

scaleheight = scale_height/d_norm

; Normalised for the code

mfp = 5.0d8

; Mean free path (cm), Kontar et. al. 2014
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norm_mfp = mfp/d_norm

; Normalised mean free path

save, kb, kb_keV, m_e, charge, lnlambda, d_norm, $

keV, scale_height, scaleheight, mfp, $

filename=’universal_parameters.sav’

; Parameters from Imaging, looptop values in ROI2, temperature

; density, and acceleration region extent, L, (see diffusion

; coefficient) can be input by hand if preferred.

restore,’volumes.sav’

restore,’fitting_params_bestfit.sav’

restore,’densities.sav’

Temp = kt2/kb_keV ; Temp in kelvin, from kt in OSPEX

n_cor = n_real[0] ; Density in cm^-3

; Constants obtained from Image parameters

vte=sqrt(kb*Temp/m_e)

; Thermal Velocity cm s^-1

Gamma_cor = 4*!pi*charge*charge/m_e*charge*charge/$

m_e*n_cor*lnlambda

; Collision parameter

B = vte*vte*vte*vte/Gamma_cor*mfp/d_norm/d_norm/3.

; Constant in front of the spatial diffusion term
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Tau_c = vte*vte*vte/Gamma_cor

; Collisional time of a thermal electron

; Print the standard parameters to check

print, ’ vte = ’,vte,’ Gamma = ’, Gamma_cor,’ B = ’,B

print, ’ Tau_c = ’, Tau_c,’ T = ’, Temp

print, ’ n_cor = ’, n_cor,’ delta = ’, delta

print, ’ mfp = ’, norm_mfp

; Initialise time

t=0.

; Number of velocity and space points

nv = 51

nx = 101

; Make velocity array and add a small amount so we don’t divide

; by zero, v from 0-15vte as this gives more than enough

; coverage for the energy range of interest (20-100keV)

v = dindgen(nv)*15./nv

deltaV = v[1]-v[0]

v = v+deltaV

minv=v[0]

maxv=v[nv-1]

; Make a 2d array for finite differencing, this
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; is purely so we can use matrix operations and

; avoid for loops in finite differences

vv = dblarr(nv,nx)

for j=0,nx-1 do begin

vv[*,j] = v

end

; Make the x array, from -5 so acceleration region

; is fully accounted for.

deltax = 0.25

x = -5. + dindgen(nx)*deltax

xmin=x[0]

xmax=x[nx-1]

; Define our normalised density, ne=1

fp_start = 15.

; We define the start of our footpoint at 15d

n_final = 200000.

; Final density to make sure fp resembles thick-target

n=dblarr(nx)+1.

nn=dblarr(nv,nx)+1.

n[where(x gt fp_start, /null)] = n_final$

*exp(-abs(x[where(x gt fp_start, /null)]$

-xmax)/scaleheight)+1.

; Density model from Battaglia + Kontar 2012
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; A 2d array for finite differencing, same reason as v

for i=0,nv-1 do begin

nn[i,*] = n

end

; We want an originally maxwellian distribution of particles

; in velocity space

Finj = dblarr(nv,nx)

for i = 0, nv-1 ,1 do begin

for j=0, nx-1, 1 do begin

Finj[i,j] = sqrt(1.0/2./!pi)$

*exp(-v[i]*v[i]/2.)

endfor

endfor

; Now we define our diffusive elements,

; acceleration and collisional

alpha = 3.

; Turbulent diffusion velocity index

L = L2/d_norm/2.35

; Spatial width of the acceleration region

; from I.S. but can define by hand if wanted

tau_acc=10.
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; Acceleration timescale

DT = v^alpha/Tau_acc

; Turbulent diffusion coefficient, controls

; the strength of the acceleration

D = dblarr(nv,nx) ; Empty array for D

for i = 0, nv-1, 1 do begin

for j = 0, nx-1, 1 do begin

D[i,j] = v[i]^2 * DT[i] $

* exp(-abs(x[j]^2/(2. * L^2)))$

+ n[i]/v[i]

endfor

endfor

; Here we have joined turbulent and coll

; diffusion together to make finite difference

; easier.

; Save starting parameters for use in plotting

save, x, v, vv, temp, n_cor, Finj, n, $

vte, Gamma_cor, Tau_c, tau_acc, L, $

alpha, filename=’starting_parameters.sav’

; Set F to it’s initial condition

F = Finj

Fnew = F

; service variable for finite differencing
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; Set our final time

t_final = 1000.

; Time to print the results and save counters

tprint = 0.01

lastprint = 0.0

screenprint = 0.1

timeprint = 0.0

sav_file_counter=0

; stability condition for timestep

deltaT = deltav * min(v)^2. /max(n)/1.1

print, ’deltaT = ’, deltaT

;print to check sensible

; Set up the Finite difference service variables

v_sq_inv = 1./(v^2)

vv_sq_inv = 1./(vv^2)

dt_ov_dv = deltaT/deltaV

dt_ov_dvsq = deltaT/deltav/deltav

dt_ov_dxsq = deltaT/deltax/deltax

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;; FINITE DIFFERENCE LOOP ;;;;;;;;;;;;;;
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

while (t lt t_final) do begin

Fdiff2=F

; the fact it’s called Fdiff2 is just a relic, could

; be called anything

; Velocity finite differencing, coulomb collisions

; and diffusive terms

; 1/v^2 d/dv(f)...

Fdiff2[0:nv-2,*]=Fdiff2[0:nv-2,*] + dt_ov_dv * nn[0:nv-2,*] $

* ( Fdiff2[1:nv-1,*] - Fdiff2[0:nv-2,*])$

*vv_sq_inv[0:nv-2,*]

; 1/v^2 d/dv D df/dv

Fdiff2[1:nv-2,*] = Fdiff2[1:nv-2,*] + dt_ov_dvsq * $

( D[1:nv-2,*] * ( Fdiff2[2:nv-1,*] $

- Fdiff2[1:nv-2,*])-D[0:nv-3,*] * $

( Fdiff2[1:nv-2,*] - Fdiff2[0:nv-3,*]))$

* vv_sq_inv[1:nv-2,*]

; Assimilate this before movement

Fnew = Fdiff2
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; Now for the spatial term

Fnew[*,1:nx-2] = Fnew[*,1:nx-2]+B*vv[*,1:nx-2]*( F[*,2:nx-1]$

- 2*F[*,1:nx-2] + F[*,0:nx-3])*dt_ov_dxsq

; Boundary condition, keep LH boundary same through time

Fnew[*,0] = Finj[*,0]

Fnew[0,*] = Finj[0,*]

F = Fnew

; Saving f and t, use your favourite plotting routine to check

; progress here...

if((t-lastprint) ge tprint) then begin

lastprint = 1.5*tprint*FLOOR(t/tprint)

; so we don’t save every timestep, logarthmically to

; base 1.5

print, ’next print = ’, lastprint

;print to see when the next save is

save, F, t, filename =’F_’+string(sav_file_counter, $

format=’(I5.5)’)+’.sav’

;save the file

print, ’counter @’, sav_file_counter

; print save counter
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sav_file_counter = sav_file_counter+1

; update counter

end

if((t-timeprint) ge screenprint) then begin

print, ’t = ’, t,’ collisional times’

timeprint = screenprint*FLOOR(t/screenprint)

;print at each value of screenprint to see time

end

t=t+deltaT

end

end
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