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CHAPTER I

X-RAY AITADYSIS OF CRYSTAL STRUCTURES



1.

1. Diffraction of X-Rays by Crystals

1.1 X-Ray Scattering from a Single Atom

The atomic scattering factor f represents the proportion of 

the X-ray heam which is scattered without increase in wave length 

"by the electrons of a particular atom. For small scattering angles, 

this factor approaches z, the atomic number, but the value falls off 

rapidly with increasing angle because of interference from phase 

differences in the waves scattered from each individual electron, 

and also an increase in the proportion of incoherent scattering.

The value of f for an atom is equal to the sum of the 

each electron; where f is given by

■ /IW 2 “ s 'a  «
where J is the probability that the electron is in a given

region v and L m  dv = 1 . The amplitude of f depends

on the phase difference caused by displacement of the scattering
i k s • relectrons from the atomic centre, given by e where r is a

vector representing the position of the electron with respect to 

the atomic centre, ss is a vector normal to the plane of reflection 

and k = 2 TP/A. . Scattering curves have been calculated for

various atoms and ions, first by Hartree (1928) and later by 

Pauling & Sherman (1952), McTfeeny (1952), and others.



1.2 X-Ray Scattering from an Array of Atoms

In a crystal, the atoms are arrayed in a regular three 

dimensional array.

When a monochromatic heam of X-rays strikes this array or lattice,

the heam will be scattered separately by each atom. These

scattered waves will interfere so as to cancel each other out

except when the difference in path length between different waves

is an integral multiple of the wave length. In the diagram, where

sq and ,§ are vectors of magnitude V x  representing the incident

and reflected beam from two lattice points A^ and the path

difference is A, N - A0M where A. IT - A„M = A ( r . s - r . s ) .1 2 1 2
Reinforcement would occur when (r.g - £.§L0) = integer. For

a three dimensional lattice where the distance between points, r, 

could be expressed as (ua + vb + wc), a b and c being unit 

translations along the axes, then (ua + vb + wc)(s - sq) must 

be integral as must each component of the equation.

Thus a(s - s. ) = hw  0'
Hs - ao) = k (2)
c ( s  -  a0) =  Jt



where h k and £  are integers. These are Lane's equations for

X-ray reflection. Bragg (1933) showed that these integers are

identical with the Miller indices, which are direction ratios of

normals to the crystal planes.

The vector s - represents the normal to a plane which would

reflect s into s. This is referred to as the plane of reflection, -o ■“
If the angle of incidence to the plane is 0 , the angle between s

and s is 2 0 and ~o

, 2 sin 0  z,\s - s I = --^----  (3)- I A
The spacing between planes of index h kJL is given as d, the

projection of a/h ^/k or °/j£ on j js - ŝ  | such that

(j3-s ) .fr -T*! r <L (4)
s - s 
— • — o

From this, and equations (2) and (3), it may be shown that for 

reflection to occur

A  = 2d sin Q (5)

This is Bragg's equation, which forms the basis for'the study of 

the structure of crystals by X-ray methods.



2 Structure Factors

The structure factor of a reflection obtained by impingement 

of X-rays on a given set of planes of a crystal is a measure of the 

number of electrons in the reflecting plane. This quantity would 

reach its maximum value if all the atoms were exactly on the plane, 

however interference due to phase differences from scattering by 

atoms located away from the planes causes diminution in the observed

amplitudes. The values of the structure factors observed for all

the reflecting planes thus depends on the arrangement of the atoms 

in the lattice.

The structure factor F(hk^) for a reflecting plane in a 

structure containing j atoms is related to the atomic scattering 

factor f by the equation

F(hk^) = X  f • exP [2Tri(h + k ^  + Ji (O

where /a, ^/b and /c are the coordinates of the atom with

respect to the axes a, b and c of the unit cell. This expression

is complex, showing that phase change has occurred during reflection. 

This change in phase angle cannot readily be determined, and cannot 

be measured experimentally.

The structure factor may be expressed in terms of sine and



cosine functions F A + iB where

(7)

and B = 2  f . sin 2,n,(h — + k f  + ^  — )n a b c (8)

This expression may he simplified for a particular case by the use 

of space group symmetry for a centrosymmetric structure B = 0.

Other symmetry relations may also be applied. These give rise to 

systematic absences characteristic of particular space groups. 

Expressions for all the space groups have been published 

(Lonsdale; 1930(Henry and Lonsdale; 1952).

Although the phases of structure factors are not determined 

directly, the amplitudes | F | may be derived from the observed 

integrated intensities,I,of coherent X-ray scattering from the 

crystal planes. In a perfect single crystal in which all the 

planes are correctly orientated, |Fq| is proportional to the 

intensity of the reflected beam. In practice, however, most 

crystals are of the mosaic type, that is, they contain small 

regions of perfection slightly out of alignment with one another. 

Reflections from planes In mosaic crystals -are such that | Fq | ©<

As a single crystal is rotated in the X-ray beam, the reflection 

is not instantaneous as the crystal turns through the Bragg angle



for a plane, "but due to variation in the orientation of the crystal 

planes, may occur over several seconds of arc. The integrated 

reflection from a plane, that is, the total energy reflected as 

the crystal turns through the Bragg angle, is given as E u >/Iq, 

where E is the energy reflected "by a crystal rotating with an 

angular velocity of to in a beam of intensity Iq. For a small 

crystal,

E /d + ̂
R(e)ae (9)/X0 JQ-i

where R(®) is the ratio of the power of the diffracted beam to 

the incident intensity, Q  is the Bragg angle and +_ £ the limits 

of the angle of reflection. I
The integrated intensity is related to the structure factor 

by the expression

E ,t2 *v 3 o  ̂ -i 2  ̂r\00 N A. y ui2 / e N /1+cos 2© \ ,
t  - K r  c— ) (— 2------- ) dT (10)o me

where ff is the number of atoms per unit volume, X is the wave 
length of the X-radiation, e and m are the charge and mass of one 

electron, and c is the velocity of electromagnetic radiation. 

Included in the expression is a polarization factor (l+cos 2 ©)/2 

which corrects for the fact that the incident beam is not polarized 

with the electric vector perpendicular to the plane of incidence,



1and the Lorentz factor /sin2 0 which corrects for the speed at

which the given lattice point passes through the reflecting sphere. 

These correction terms are normally combined.

5. Temperature Factor

5.1 Isotropic. Thermal Vibrations

The structure factors so far considered have been geometrical; 

that is, account has been taken of diminution of intensities due 

to phase differences in scattering from point atoms, but motions 

of the atoms themselves have not been described. At any temperature 

higher than 0°K, atoms in a crystal are not at rest, the amount of 

vibration increasing with temperature. Thus an atom which from 

crystal symmetry would be in position to scatter in phase with 

another would in fact be slightly displaced, at random, from the 

lattice point.

If the vibration is isotropic and the lattice points uncoupled, 

the diminution of diffracted intensity due to phhse change caused 

by this displacement may be given by

A = e-B sin (ii)

where Bo (12)



8.

2Here ^  is the mean square amplitude of the vibration and is

the Debye temperature factor (Debye; 1914)*

For all non-cubic crystals, the vibration is not isotropic.

The amplitude must then be expressed with respect to the axes of 

the ellipsoid of vibration.

5.2 Anisotropic Thermal Vibrations

If an atom vibrates anisotropically, the mean square amplitude 

of vibration is given by

where tj.. is a symmetric tensor and ̂  is a unit vector characterizing 

the direction of vibration (Cruickshank; 1956a). The temperature

exponent thus becomes

2 sin ® /where s is a reciprocal vector equal to /"K • This may be

written in the form

(IS)



9.

where a and h are reciprocal axes.

The atoms in a molecule do not vibrate independently. The

thermal effects may in some cases he described in terms of rigid 
body motions of the molecule as a unit. If this is the case the 

motions may be resolved into vibrational and rotational components,

T and U> , given with respect to the centre of mass (Cruickshank; 1956*0

These are represented by two 3 x 3 matrices

t2 = £  L  (17)i=l j=l 1 J
n

where t^ is the mean square, amplitude of vibration

and u» = T" F   ̂ a. a, (18)
i=l j=l 13 1 2

— 2where to is the mean square amplitude of libration about an
axis a. The values of the molecular motions T.. and u>.. are - ID
related to the atomic vibrations by the relationships:

11 = T11 + 2Z CO22 + - 2yz OJ

n 22 =  m ~22 + 2 w z u) 11 + 2X - 2xz CO

u
33 = T33 + 1—1 1—| + 2X 60 22 - 2xy co .

?12 = T12 - xyw>33 - z2o>i2 + xzu>25

U 23 = T23 - yzuill + XZU>12 - XS 3
h i = T13 - XzU>22 + yZU>12 + xyu>25

(19)
z 13 
7 “»i3

2 *** 13

where x y and z are coordinates with respect to molecular* axes.
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4. Representation of a Crystal by a Fourier Series

Any finite, continuous, periodic function may be expressed in 

terms•of a Fourier series. It was suggested by Bragg (1915) that 

the variation of electron density, , in three dimensions throughout 

a regular crystal may be considered as such a function.

The relationship may be expressed by:

o(x,y,z) = Z ZL Z G(h ,ji) exp 2*Ri(h x + k y + X z) (20)
J t t . t

h k JL = - OO
The Fourier coefficients 0 may be related to the structure factors 

by the equation:

F(h,k,^) = C(h'k'j')V (21)

where Y is the unit cell volume. The electron density may thus 

be described by
00

P(x,y, z) = “ZZZ F(h,k,2) exp -2*ni(hJ + k^ (22)
J h k JL -eo

For computational purposes, this summation is resolved into its real 

and imaginary parts, to give

Q (x,y,z) = ^  Pf(OOO) + 2Z Z Z (l cos 2 (hx + ky +jl z)
J u h k JL

+ Bq sin 2 (hx + ky +JL z )}] - (25)

where the F(000) term is equal to the total number of electrons in 

the cell.



It is only recently that the use of electronic computers has 

made practicable the evaluation of triple Fourier series.

W.L. Bragg (1929), however, showed that some structures could be 
determined by analysis of projections of electron density down each 

of the axes in turn. For the 010 projection, for instance, the 
expression simplifies to

o(x, z) = ~ Z Z  F(h0*£) exp -2T?i(hx +*£z) (24)
* A h JL

which may be readily summed.

This method is particularly applicable to the solution of 
molecules, whose atoms may be completely resolved in projections, 
but it is subject to inaccuracies if atoms overlap.

5. Methods of Structure Determination

5.1 The Phase Problem

The main concern in the solution of a crystal structure, from 
X-ray data is in the determination of the phase angles of the 

reflected waves where

A (hkJL') = |F (hk^)| cose<(hk^)
(25)

and BQ(hk-£) = |Fo(hk«^)| sino^(hk^)

Normally according to Friedels law (1913)5 it may be assumed that
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F(hkA) = ' P(h k/) ; v/hen the electron density will he

real at every point and may he expressed as

The values of o< cannot he determined experimentally.

If the structure is centrosymmetric ahout the origin, then 

sin ̂  = 0; thus ©< must he either zero or *T> , and cos^ = +1.

Some methods used for phase determination include use of sign 

relationships (Karle and Hauptmann, 1950), isomorphous replacement 

technique, Cork, (l927)» Hargreaves, (1957)> an^ by indirect means 

such as analysis of Fourier transforms or Patterson functions.

5.2 Fourier Transforms

The transform G of a set of points related to the origin hy a 

set of vectors r is a continuous function whose value is given hy:

where s_ is a vector in reciprocal space, and f is the weighting 

factor of each point. If the point set is centrosymmetric, the 

equation may he reduced to:

^  [f(ooo) +2I I I  |F(hk.£)| cos ( 2 TT(hx+ky+̂ £z) -o<(hkj0)jf|
h k JL (26)

(27)

n
2

(G(s) = 2 f cos 2Tf(hx + ky +jtz)
n=l n

(28)



where x, y and z are related to arbitrary axes and h, k and j6 may 

have any value. If the set has no centre of symmetry, the transform 

is complex, and the real and imaginary parts must he computed 

separately.

The transform of a repeating lattice of finite size is' another 

lattice in reciprocal space. When a large number of points is 

considered, then the transform will have finite values only at 

points corresponding to reciprocal spacings of the original lattice, 

‘if the repeating pattern is a unit cell, then the transform of a 

large number of cells, i.e. a crystal of finite size, would have 

finite values, corresponding to the structure factors, only at the 

reciprocal lattice points.

The use of Fourier transforms for the elucidation of crystal 

structures is largely confined to the study of molecules which may 

he resolved in projection. These have transforms of constant 

section which may he readily evaluated. The molecule is 

represented hy a vector set of point atoms whose origin is chosen, 

if possible, at a centre of symmetry. The transform of this■ 

vector set in two dimensions is a continuous function on to which 

the weighted reciprocal lattice may he fitted.

5.3 The Patterson Function

Patterson (1934) suggested a new method for the determination 

of atomic positions. If ^(x,y,z) and (x+u,y+v, z+w) are two



regions of electron density £ at points x, y, z and x+u, y+v, z+w, 

then:

i rarbf°P (u,v,w) = yl I I J(xyz)p(x+u, y+v, z+w) dxdydz (29)
*0 J o / 0

The values of P are large only when g has maxima at both 
points. A peak in P(uvw) at u^, v^, w^ corresponds to two maxima 

in £ (x,y,z) whose distance apart is given by a vector with 

components and w^. Peaks in the map therefore represent

interatomic vectors for every pair of atoms in the crystal.

Since for every vector, there will be a corresponding one of 

opposite sign, the function is necessarily centrosymmetric. The 

electron density may be expressed in terms of F(hki2), and P(uvw) 

being a periodic function may be represented by a Fourier series, 

therefore the integral may be reduced to:

P (u,v,w) = ^  lF0l2(h>k> £̂) cos 2 (h— + k̂ - +JZ.) (30)
v h k Jt 0 a D c

If the summation is on an absolute scale, then the height of

a peak P.. for a vector between two atoms of atomic number z_ and 10 1
ẑ  is given by

Z1Z2P . . Ci P x (31)13 o r* 2 . ' '

where Pq is the height of the origin peak.
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This method was first applied to projections. If atoms were 

point sources it would he possible to resolve all the vectors in 

two dimensions, however, the maxima obtained are diffuse, and the 

considerable overlap serves to make complete interpretation 

difficult. Imperfect resolution may in some cases be obviated by 

the introduction of appropriate sharpening functions. Application 

of the method to three dimensions, made possible by the use of 

computers, has aided the solution of Patterson maps of complex 

substances whose interatomic vectors could not be resolved in 

projection.

6. Methods of Structure Refinement

6.1 Difference Syntheses

For a centrosymmetric structure, the electron density determined

from summation of a Fourier series using as coefficients the signed

F^s, is subject to error from series termination as well as from

random errors of measurement. The true atomic positions may thus

not correspond to the peak maxima. More accuracy may be obtained

by choosing coordinates such that ♦ = I  if(F - F f  is minimized.o cn
For any atom i, ^  is minimized when

"&xi = 0 (32)
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If in the Fourier summation the coefficients F are replaced hyo
(p - Fq) the resulting map is 3) = (Cochran, 1951)• The

function <p is minimized with respect to the atomic coordinates when 

the slope of D at the atomic centre is zero. If f 0, the atom 

must he moved up the slope hy a distance A x , where

■  - € )  / t f e )  (33)n x n

Errors in the temperature factor B will alter the value of D 

at the atomic centre. If B is too high, at the atomic centre 

? c < £ 0> thus in the difference map the atom would lie on a peak. 

The value for the temperature factor may he improved hy applying

the formula

A(VD/fcr)
a, - — w — j-1 (34)

,s3 2Tt2£f ,~4

where A is the area of projection f^ is the atomic scattering 

factor of the ĵ *1 atom and s = 2 sin ©/X .

An atom vibrating anisotropically would appear in an Fq map 

to he extended in the direction of maximum vibration. A 

calculation of I) based on the mean isotropic temperature factor 

would show positive values where the observed vibration is greater 

than calculated, and negative where the calculated value is greater, 

The resulting map would thus exhibit a saddle (Fig.V )



whose centre coincides with the atomic centre.

6.2 Method of Least Squares

"When a number of experimental values have been obtained for 

a function, it is possible to fit a suitable equation to these 

values by minimizing the squares of the discrepancies of the points 

observed from those calculated from the equation, if there are more 

observed values than there are variables in the equation. For the 

accurate determination of a crystal structure in three dimensions 

it is necessary to obtain values for 9n+l unknowns where n is the 

number of atoms in the asymmetric unit. These comprise three 

positional and six temperature parameters, plus an overall scale 

factor. Since the number of independent reflections measured is 

generally much greater than the number of parameters sought, the 

method of least squares may be applied.
2The function minimized, is I) = w A  YikJt w îere

0 = K F - F (for the centrosymmetric case), w representingilKjfc o c

a suitable weighting function and K the scaling factor.

Considering the positional parameters, a change in the value of 

any coordinate x of an atom n by a quantity A x would change the
■aFo .calculated structure factor by ̂  ̂  - A  x^, the total change

n
accruing from shifts of all coordinates of h atoms being
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j r  'n F  \ F  n f
A F  = + 4 - £- A y +-^-£ a O  (35)

£ l  * xn n n n

Correct shifts would thus be those which cause the value of A  Fc
to accroach K F - F .o c

A number of observational equations A may be formed, as in 

equation (55) f°r the values of each reflecting plane. To find 

the best value of A F c, each observational equation A is multiplied 

in turn by the weighted coefficient of each unknown. The sum of 

the A equations, each multiplied by the coefficient of a given 

unknown yields the normal equation for that unknown. The normal 

equations are of the form

F 2 \ F  \P
J . ( P - P ) ^  = I w  R ^ )  A X. + 4<7* ' o c / c>x T“ L o x ' n 0 y„ +

lioAi=Az +£AZo(J>IcAx +VkAy +^ . Z)1 (36)
* xn B * XB B ^  ^  ^  ™

Z threpresents the sum over all but the n atom.
B

These equations are frequently simplified by exclusion of cross 

terms which may be comparatively small. In three-dimensional 

analyses, where, in an ordered structure, there should be no
7>Fc * Fcoverlap of atoms, terms of the form -w---    may be neglected.

n «XB



Terms representing interaction "between coordinates -r r—
n n

are eliminated if the axes are orthogonal, and may "be neglected 

if the angles are close to 90°• The normal equations are thus 

simplified to

I  w(K F - F ) ^  - I  w ( ^ )  A. xn (57)
A n A n

Similar expressions may "be obtained for other parameters.

Successful use of the method requires that A "be 

sufficiently small at the beginning of the refinement that the 

function (57) is linear (Hughes; 1941)• Tn practice, the 
coordinates must lie within the tru Fourier peaks. Advantages 

of the method are that termination of series errors are eliminated 

and better resolving power may be obtained in projection than is 

possible from the use of Fourier methods. Original coordinates 

must, however, be better and, ideally all the signs of structure 

factors should be correct.
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THE CRYSTAL STRUCTURES OF SORBIC AND CROTQNIC ACIDS
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Introduction

X-ray crystallography has, in the past three decades, 
developed into an increasingly powerful method for the 
investigation of organic compounds. Though the main 
emphasis at present is directed toward the solution of the 
molecular structure of large molecules, e.g. natural products, 
there are other problems confronting the chemist to which 
the X-ray method may be applied.

A certain amount of controversy exists over the question
of bond delocalization in non-aromiatic compounds. Butadiene,
CH2: CH-CHj CH2, the simplest alternant poly-unsaturated
compound has been studied in the vapour phase by eleotron
diffraction with a view to resolving the problem (Shomaker
and Pauling 1959)* The bond lengths deduced from these
studies were 1.35 ±  .022. for the double bonds and 1.4-6 + *032
for the single bond. Prom these results and from theoretical
studies these workers concluded that the observed shortening
of the formal single bond from the normal length of 1. 548.1
such as was found in the similar compound butene-2,
CH^*CH: CH«CH^, (Brockway and Cross 1956) was indicative of
conjugation. Other compounds which could admit of resonance
forms were also observed to have shortened C-C bonds.
Crotonaldelyde, CEL*CHs CH’CHO, was found to have a bond5



length of I.46 + .03X for the formal single hond adjacent 
to the carbonyl, while the methyl C-C "bond length was I.52X 
(Mackle and Sutton 1951)* These workers also found similar 
shortening in acrolein CH^s CH‘CHO.

Recent theoretical calculations (Dewar and Schmeising 1959) 
have shown that an Sp2 - sp2 carbon-carbon bond length of 1.48& 
may be a pure single bond. The presence of shorter C-C bonds 
could, however, indicate the possibility of resonance in the 
ground state.

All the above compounds were studied in the vapour phase 
by electron diffraction. It was therefore considered of 
interest to examine some similar compounds in the solid state 
by X-ray diffraction, which method allows a fuller study of 
the more complex molecules.

Trans-crotonic acid (Auwers and Wissenbach 1923) and. 
trans, trans-sorbic acid (Doebner 1890, 1900) are the first 
two members of a series of unsaturated carboxylic acids Of the 
general formula CH^*(CH: CH)^»COOH. These are the simplest 
compounds crystalline at room temperature containing systems 
in which conjugation could possibly occur. Cis-crotonic 
(isocrotonic) acid(M.P. 15°C)is known (Auwers 1923) as is 
cis, trans-sorbic (jfi.P. 35°^)(Eisner, Elvidge and Linstead 1955) 
but because of their instability and their low melting points, 
they are less suitable for X-ray investigation at room temperature.
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Trans- forms of the higher homologues have also been 
prepared for IT = 3 - 8 (Kuhn 1937)*

The investigations of sorbic and crotonio aoids 
was thus undertaken with a view to comparing the observed 
bond lengths with results obtained from electron diffraction 
and theoretical studies.
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1. Methods of Computation

Three methods were used for the summation of Fourier 
series. Hand calculations were carried out using 
Beever-Lipson strips (Beevers and Lipson 1934)• Us© 
was also made of RUFUS (Robertson 1954* 19&1)> an 
analogue computer which represents sine and cosine 
functions by systems of gears linked to revolution 
counters. All three-dimensional summations, and the 
two dimensional Fouriers for crotonic acid were carried 
out on the DEUCE computer.

The Fourier programme (Rollett 1961) is suitable 
for two and three-dimensional summations. These are 
computed at intervals of ^/240th of the cell edge or 
any desired multiple thereof. Three-dimensional 
summations are carried out in sections of constant z.

Structure factors were calculated using Facit and 
Olivetti hand calculators and later using DEUCE. The 
structure factor and least squares refinement programme 
(Rollett 1961) refines positional thermal and scale 
parameters. The thermal parameters, which may be 
inserted as isotropic values are nevertheless refined 
anisotropically for the values obtained from the 
expression
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x - B sln20 . x - ( ^ h 2 +/?22k2 +/?33/ 2 +/?23k ^ +/<?31 h/+/?12hk)

The programme is divided into two sections. The first 
calculates structure factors for each reflection included 
in the data, punching decimally the index of the reflection, 

i f i  - n?0i ,  i f . i ,  cos oc and sin o< , meanwhile accumulating 
totals for the least squares normal equations. Atoms 
included in the structure factor calculation may he omitted 
from the least squares refinement; e.g. hydrogens. The 
final totals, are punched in binary at the end of the 
structure factor calculation. These are used as input 
for a second programme which solves the normal equations.
The full matrix is not computed, a block diagonal scheme 
being employed. Thus 3 x 5 matrices are calculated for 
each atomic position, 6 x 6 matrices for each vibration 
and a 2 x 2 matrix for the scale factor. The second term 
in this matrix is Q  , an overall vibration parameter. This 
method has been shown to produce satisfactory convergence 
(usually) without undue use of machine time. The output 
consists of the new positional thermal and scale parameters 
and optionally (a) £  |FqI > XlF^ X  \Fq - Fq\ and 
the quantity which is being refined, 2! w  A   ̂where W  

is the weighting function applied to the reflection. If atoms 
are misplaced the values of exceed the available computer
storage, thus giving failures.



The full parameter shifts may he used, hut provision 
is made for the output of new parameters shifted by only 
j? or i  of the predicted value. This slows the convergence 

but admits closer control, especially at an early stage of 

the refinement.
A second optional output (b) consists of the least 

squares totals for each atom, suitable for reconstruction 
of the normal equations and for calculation of standard 

deviations.
All other calculations were carried out either with 

hand calculating machines or using programmes written for 

the DEUCE computer.
A programme for reducing intensity data to structure 

amplitudes, correcting for Lorentz, polarization and 
Tunell factors was written by J . G r .  Sime. Dr Sime also 
prepared mean plane and mean plane Fourier, bond length, 
bond angle and thermal analyses programmes*

A mean plane programme which minimizes the weighted 
squares of the distance from the plane was prepared by 
D.G. Watson.



2. Previous Work on Sorbic Acid

A preliminary study of the sorbic acid structure was 

carried out by Lonsdale, Robertson and Woodward (1941)*
Cell dimensions were obtained and intensity data collected 
for the principal zones. From the absences, and lack of 
hemi hedry, the space group was assumed to be C2/c, with 
eight molecules in the cell, linked through their carboxyl 
groups as hydrogen-bonded dimers. From the stronger Bragg 
reflections, diffuse reflections and studies of magnetic 
anisotropy it was concluded that the molecules were inclined 
at an angle of 25° to 35° to the unique Id crystal axis, 
with the chain length extended at an angle of 10° to 15° 
to the a axis. A set of structure factors was calculated 
for a trial structure based on these conclusions, using 
standard single and double bond lengths and angles for 
the molecular model. The discrepancy was 35f° 9 indicating 
that the structure as postulated was substantially correct. 
Wo further refinement of the hOJL zone was carried out, 
nor were the other zones investigated.

Laue photographs of sorbic acid showed the presence 
of both broad diffuse patches, characteristic of layer 
structures, and fine streaks characteristic of long chain 
molecules. Additional studies of the diffuse reflections
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were reported lay Lonsdale and Smith (1941-2)* Comparison 
of Laue photographs taken at room temperature and liquid 
air temperature showed that almost all the diffuse reflections 
disappear on cooling the crystals. This indicated that the 
non-Laue spots were caused hy thermal vibrations of the 
molecule rather than packing disorder.

5. Crystal data

Sorbic acid, CgHQ02, M.W. 112.12, was purified by 
steam distillation and recrystallization from water and from 
acetone to a melting point of 134° 0 (l54*5°C Heilbron and 
Bunbury 1955). For X-ray study, crystals were obtained 
as clear well formed needles by slow evaporation from 
acetone solution.

Unit cell dimensions were obtained from rotation and 
precession photographs. The crystals are monoclinic.
The values obtained compared with those found by Lonsdale, 
Robertson and Woodward (1941) are given in Table I.

Table 1

x I& + W.
a 20.01 + .02a 20.00 + .05&
b 4.020+ .005i 4.03 + .021
S 15.82 + .02& 15.83 + .03S
p  102.5° ±  .2° 102.5°



For eight molecules in the unit cell, the calculated 
density is 1.198 g./cc., compared to the observed value 
of 1.185 g./cc.

4. Space Groups

Reflections are systematically absent in the hÔ / 
zone when either h ori is odd and in 0K0 when k is 
odd. In the general case absences occur when (h+k) = 2n+l 
Since these absences are found for both C2 and C2/c, the 
space group cannot be determined unequivocally without 
some other indication of the space group symmetry. It 
was assumed in the earlier work (Lonsdale et al, 1941) 
that the structure was centrosymmetric, the space group 
being thus C2/e. This postulate was in agreement with 
the general observations on mono-carboxylic acids, which 
tend to form centrosymmetrical dimers. No further proof 
was given.

5. Intensity Lata

A crystal .15 m m x  .2 mm x 1.0 mm mounted in a thin 
walled pyrex capillary was set about the unique 1) axis.
A five-film h0^£ Weissenberg series was recorded in a 
32 hour exposure using the Robertson (1943) multiple film 
technique with Cu K eC radiation from a Phillips sealed tube 
To obtain reflections with high values of sin 0, a larger
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crystal .5 m  x .55 mm x 3 110111 also mounted in a sealed 
capillary was used for a second five-film series, exposed 
to unfiltered copper radiation for 10 hours.

Weissenberg series were also taken of crystals 

mounted about the iz and £  axes. For the HKO series a 
section cut from a long needle measuring .2 mm x .18 mm x .65 mm 

was used for a 10 hour exposure to Cu radiation.
Another crystal section .22 mm x .31 mm x .30 mm mounted 
about the a_ axis was used in a 10 hour exposure to Cu K ©< 

radiation to collect 0K^£ data.
Upper layer line data about the Jb axis were collected 

on an equi-inclination Weissenberg camera using a new crystal,
.2 mm x .25 mm x 2 mm. Two 4-film series using 1 hour and 
10 hour exposures were taken for each of the hl*£ h2-^ and 
h3-£ nets. Inclination a n g l e s f o r  these layers are 
llo20', 22°32' and 36°9' respectively. Although h4^£ 
and h5-j£ nets both fall within the copper sphere these 
were not obtained b e c a u s e b e c a m e  too large for the 
permitted angular shift of the camera.

To obtain correlating series a crystal .18 mm x . 2 6 m m x 3 m m  
sealed in a thin walled capillary was mounted in a precession 
camera. A PW 1010 stabilized X-ray generator with a 
molybdenum tube and zirconium fiter was used as a source 
of radiation for a series of timed exposures. With the 
camera set at a 30° precession angle and using an appropriate



layer line screen, six films were exposed for each of the
hkOhkl and hk2 zones, with graduated exposure times

2of 6= min., 20 min., 1, 3> 9 and- 27 hours. All photographs3
were taken on Ilford Industrial G X-ray film.

Intensities were estimated visually using wedge and 
standard spot techniques. Data from Weissenberg series 
were corrected for Lorentz and polarization factors? the 
upper layer lines were corrected also "by the Tunell rotation 
factor (1959)* The filni factor for the upper zones was 
increased to allow for the longer X-ray path length through 
the film (Rossmann 1956). The data from precession series 
were corrected for Lorentz and polarization factors by the 
use of charts prepared by Waser (1951) and Grenville-Wells 
and Abrahams (1952). The linear absorption coefficient for 
sorbic acid, for copper radiation is .851 mm. \  This is 
sufficiently small for errors due to absorption to be 
neglected.

The values of the structure factors obtained from the 
precession series and HKO and 0TLJ& Weissenberg series were 
used to interrelate the data from the various b-axial zones. 
When more than one series was recorded for any one zone, 
scaling of the structure factors was based on data estimable 
in both series.

An estimate of the reliability of the intensities was 
obtained by the method of Ibers (1956), suitable for small
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numbers of observations:

cr(F ) - C(F0 - 7  ) (38)
max min

where C is a constant depending on the number of independent 
observations. For two observations, C * .89o The average 
&  Fq for planes recorded more than once is

tr Fo = .067 Fq (39)

The values of Fq are listed in Appendix la.

6. Determination of Centrosymmetry

A number of statistical tests have been devised for 
the detection of symmetry. Three of these have been 
applied to sorbic acid.

6.1 N(z) Test

The N(z) test, developed by Howells, Phillips and 
Rogers (1950) compares the fraction of reflections, N(z), 
having intensities less than certain fractions z of the 
average value, with theoretical distributions for centric 
and acentric structî es. For the acentric case

N q (z) » 1 - exp(-z) (40)

while for the centric distribution

^ ( 2) = erf (z/2)^ (41)



These expressions apply for random distribution of scattering 
matter in a cell.

For sorbic acid, the corrected intensity, data were 
divided into three ranges of Sin 0; .20 - *55> *55 - *75
and .75 - *90* Reflections having values of Sin 0 below 
.20 and above .90 were discarded. The total numbers of 
reflections in each range were 385> 265 and 161. N(z)
was evaluated for each range for z *= .1 to 1.0 (see app 
The average value of N(z) for the three ranges, weighted 
according to the number of reflections in the range, is 
given in Table (il).

z - .1 .2 .5 .4 «5 .6 .7 .3 *9 1.0
N(z) = .295 .456 .555 *700 .754 .755 .785 .797 .829 .829

Comparison of these values with the theoretical curves for 
the acentric and centric cases (Fig. X ) indicates that the 
structure is centrosymmetric.

6.2 Variance Test

The variance of a set of observations is defined as 
the mean square deviation from the average value. Wilson (1951) 
observed that the variance of observed intensities may be 
used as a method for detecting centrosymmetry. For an
acentric structure, the distribution of intensities is

Table II



N(z) TEST
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4 x Sorbic Acid 
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)
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I Non centrosymmetrio 
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such that for a structure containing N atoms, of which 
the ith atom has a scattering factor f^

(1) <(I - Z 2)> - 7 2 - T. 4  (42)i=l

N
where £  = 2T f ^ f ^  exp i ^  + ©k - ©  ̂- 9̂ ) (43)

i/j

in which 0 = 2*Tr(hx + ky +>£z) and f^, f^, f^, and
represent the scattering factors of four non-identical 
atoms. The corresponding expression for the centric 
case is

(i) < u - Z ) 2> = 2 T 2 - y t  *1 (44)i=l
The second term in both equations may be neglected if N

N  A E 2is large because 9 (45)
i=l

thus the expression may be written

<(Î I f/* . T (46)
For an acentric cell V * 1; for the centric case V * 2,
As with the N(z) test, higher values may be obtained if 
there are subsidiary non crystallogrphio symmetry elements 
(Rogers and Wilson 1953).



For sorbic acid, the weighted average variance taken 
over the same ranges as the N(z) test, is 2.987 (see appendix). 
The higher value is possibly attributable to parallelism 
within the sorbic acid molecule.

6.5 The N(x) Test

A method developed by Sim (i960) utilizes the structure 
amplitudes rather than the intensities to determine a function 
N(x), which is the fraction of reflections with /P| /average \F(
less than or equal to x. For a structure containing only
light atoms, the cumulative distribution for an acentric 
structure is given by

^(x) = 1 - exp [-JlTx2} (47)

For the centric case, the expression is

j H(x) = 2 <P {2(2TT)-4 (48)

where <P represents a Gaussian distribution function.
The curves for the two cases, compared with that obtained 

from the h&£ zone of sorbic acid are shown in Fig. II.
The values obtained for sorbic acid are listed in Table III 
(Sim i960).



Table III

x = 0

N(x) = 0

.2 .4 *6 *8

.147 .275 .376 .459

1.0
.587

1.2
.670

1.4
.725

7. The (OlO) Projection.

7.1 Fourier Transform

From the axial dimensions (a ■ 20.Oil, b * 4*022, o ■ 15.822) 
it seemed probable that the sorbio acid molecules were lying in 
the unit cell roughly parallel to the (010) plane. The length 
of the b axis, which is only slightly greater than the 
carbon-carbon Tan der Waals distance of 3*42 indicates that 
there should be no overlap in a projection upon (010). Under 
these circumstances, it was thought possible to determine the 
signs of structure factors in the YiOJl zone from analysis 
of the appropriate Fourier transform.

A simplified model of the molecule dimer was constructed, 
with C - C  and C - 0 bonds taken as 1.42, and the hydrogen 
bonds linking the carboxyl groups as 2.82. (Fig. III).
A Fourier transform

T ( x Y )  = 2 21 w cos 2 7T (x*j? + ) (49)

was evaluated (Fig. IV). X* and Y* are the reciprocal
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Figure III 

Simplified Dimer for Transform
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dimensions, £ and n • non integral distances in reciprocal 
space and w the weight given to each atom. The value of w 
was taken as 100 for carbon and 120 for oxygen. The 
summation was carried out using Beevers-Lipson strips (1934)• 
The weighted reciprocal net was fitted to the transform as 
shown in Fig.IV. Signs were determined for eighty of the 
larger structure factors. Using the signs so obtained, 
with the corresponding values of the structure amplitudes 
obtained from the corrected intensities, the Fourier 
series (equation 50) for the zone was summed at
intervals of ^/60th along each of the a. and _c axes. No 
attempt was made to put the structure factors on an absolute 
scale, therefore although the positions of the peak 
maxima could be determined, the actual values of the peak 
heights were not significant.

£(hOi) = j l F  (hOi) cos2if(hx+iz) (50)

The map of the electron density showed resolution of
all the atoms except the carbon of the carboxyl group.
Atomic coordinates were chosen and structure factors 
determined, uaing an isotropic temperature factor » 5.5.
The agreement factor was 43i°» This agreement factor, R,
defined as
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R (51)

where P and P are the calculated and observed structure o c
factors and K is a suitable scaling factor, is used as a 
rough check of the accuracy of the proposed structure.

All the signs shosen from the transform were later 
proven to be correct.

7.2 Refinement of the (OIQ) Projection by Fourier Methods

Structure factors for the h0j2 zone were calculated 
from the contributions of the carbon and oxygen atoms 
using the equation:

where ^  is the scattering factor of an atom in the asymmetric 
unit. The scattering curves for carbon and oxygen were 
obtained from Hoerni and Ibers (1954). These were modified

section I. 3«l).
The signs from the first set of calculated structure

amplitudes ( |Pq[ ), which were then used as coefficients

Pc 8 ^  f. cos 2 Tt* (hx + J t z) (52)
i=l 1

by the introduction of a temperature factor « 3*5 (see

factors (F ) were applied to the observed structure c
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for a further Fourier summation. Terms for which the
calculated value was less than one-third of the observed
were omitted, as the signs of these structure factors were
most liable to change during the refinement of the atomic
coordinates. When after another cycle the agreement
factor had fallen below 30$, difference syntheses were used.
In the Fourier summation, the structure factor was replaced
by a term F - F . As shown in section I. 6.1, the atomic 

°  o c
positions may be refined by moving them up the slopes of the 
resulting difference density map. At this stage, the 
positions of the four hydrogen atoms along the unsaturated 
chain were determined geometrically. These were included in 
the structure factor calculations, using McWeeny's (1951) 
scattering curve for hydrogen.

When the agreement index had fallen to 17*5$> it was 
observed that the difference map showed marked evidence of 
thermal anisotropy (Fig. V), indicating that further 
refinement of the structure required application of 
anisotropic temperature factors. Although it was apparent 
that the terminal carbon atom had a much greater amplitude 
of vibration than the remainder of the atoms, it was 
decided, as a first approximation to treat the molecule 
as a vibrating unit.
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Sorbic Acid (010) Projection

Difference map showing anisotropic thermal motion.
2Contours at intervals of 0.2e/A ; negative contours

dashed*

Figure V



The scattering factors corrected far anisotropic 
vibrations could be expressed as

f = fQ exp + {£ sin2(<p - y)]] sin2 ©) (53)

(Sim, 1955) t where 0< and 3̂ are constants, 2 sin © and < f 

are polar coordinates of a point in the reciprocal lattice 
and IjJ  is the angle between the direction of maximum 
vibration and the £ axis. By plotting the observed 
structure factors against the calculated geometrical 
structure factors for various ranges of sin 0, a number of 
graphs were obtained. Straight lines were fitted to the 
points by the method of least squares. The slopes of the 
lines so obtained were then plotted against <P . A curve 
of the forms

BA.2 = <K + (3  sin2( < P - V O  , (54)

where B is the temperature factor, was fitted to the points 
by least squaxes methods. The curve so obtained (Fig. Yl) 
agreed with the equation:

%  2 = 1.450 + .688 sin2 ( f - 22) . (55)

i.e. the direction of maximum vibration is inclined at 22°
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from the jc axis, and is therefore approximately at right angles
to the chain length. The maximum value of Bq was 5»08, and

2the minimum 3 *45 A •
Structure factors were calculated using the values of

B-. from the graph, and including the hydrogen atoms of the y
methyl group. The introduction of anisotropic temperature 
factors improved the agreement to 15.5$* A difference map 
calculated at this stage showed that most of the anisotropic 
motion had been satisfied except for that about the terminal 
carbon atom where the gradients of the saddle were still 
steep. A similar treatment was therefore applied to Cg 
alone, the rest of the molecule remaining unchanged except 
for slight positional corrections. For the curve obtained 
(Fig. VI) satisfied the equation.

B/\ 2 = 1.262 + 1.682 sin2( 173). (56)

This gave to B^ a maximum value of 7»0 at right angles 
to the Gj. - G;̂  bond, and a minimum value of 3*0 in the 
direction of the bond. Application of these values to 
the next structure factor calculation lowered the discrepancy 
to 13.7#.



7.5 Least Squares Refinement

Further treatment of the hOJL zone was carried out 
later on the Deuce computer using a block diagonal least 
squares refinement (Rollett i960). Coordinates were 
obtained from the final differences map, and an isotropic 
temperature factor = 4*2 was introduced. This was the 
average value obtained from the graph (Fig. VI ). The 
programme has facilities for the input of isotropic or 
anisotropic temperature factors, though the actual refinement 
is anisotropic (see section II.l). A weight, w, was applied 
to each structure factor such that for reflections for which

lPol > lF*t > where lp*l - 8 lpminl ’ ^  = j f j  *
|F [

while for reflections having IfJ 4s |F*| ,\Tw '= — —  .
01 |p* I

F* was given the value of 64. The quantity minimized in the
refinement w a s ^  w  where A  is the: modulus of the 
difference between the calculated and observed structure 
factors. Half shifts were employed (see section ILl).
The positional, vibrational and scaling parameters were 
refined to an agreement factor of 10.9$ after 9 cycles, the 
time for one cycle being approximately thirty minutesx 
the final x and z coordinates are listed in Table IV.

With the signs from the final hO JL structure factor



Table IV

Final Fractional 

x/a 

.08421 

•03611 

•08923 

•15822 

•21500 

♦28415 

.33998 

.41195 

♦O3658

.15070

•22680

♦28310

♦34880

♦38190

♦42800

.45290

Coordinates - 010 Pro.ieotion 

*/c 

♦00284 

.09166 

.06539 

♦12073 

.10042 

.15591 

.13681 

.19340 

.03333 

♦18679 

.04129 

.21919

♦O7239

♦20119 

♦22819 

-.15999
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Figure X



calculation and the observed structure factors, a Fourier
synthesis was computed to show the electron density of the
sorbic acid molecule in projection on to (010) (Fig. VIII).
A difference synthesis (Fig. IX) shows no outstanding
features, indicating that reasonable values have been
obtained for all parameters. The standard deviation of
electron density, <T £, (Cruickshank 1949) is .29eX

A further set of structure factors was calculated,
including only carbon and oxygen atoms. Summation of
a Fourier series using as coefficients (F - F ) where Fo c o
was based on carbon and oxygen alone, would yield a map 
showing the positions of the hydrogens. These appear 
(Fig. IX) as diffuse positive regions with peak heights 
up to .7 electrons. The hydrogens in the methyl group 
in particular appear as a smear of electron density from 
which individual atomic positions cannot be resolved.

8. The (OOl) Projection

From the (010) projection in which the molecule 
is well resolved, it was possible to obtain accurate 
values for the x and z coordinates. From these, the 
projected bond lengths were calculated. If the molecule 
were approximately planar, then comparison of the projected
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"bond lengths with the expected values should determine 
the tilt of the molecule. In this manner, a set of 
relative Y coordinates was obtained. There were two 
possible configurations in the hkO projection, ore in 
which the bonds in the carbon chain were directed alternately 
up and down, and a second in which they were all tilted 
upward. Considering the molecules to exist in centro- 
symmetric pairs about the origin, and assuming a hydrogen 
bond distance of 2.65&» absolute Y coordinates could be 
obtained for the oxygen atoms, to which the rest of the 
molecule could be related. In the space group C 2/c, 
the origin for the hkO zone could be chosen at either 
0, 0, 0 or ^ ; j } 0 with relation to hO^ . This gave a 
total of four possibilities. Structure factor calculations 
for all four structures gave very poor agreement, the best 
being nearly 50$.

The paucity of data in this zone, however, 24 observed 
reflections out of 42 within the copper sphere, made attempts 
at refinement in projection difficult. It was therefore 
decided to collect full three dimensional data.



9. The Structure in Three Dimensions

9.1 Trial Structures

Structure factors were calculated on Deuce for the 
hi JL net, for the four possible structures examined in 
the (oOl) projection. In all cases, the R factor was 
greater than 60$. This result was not entirely unexpected. 
Because the b axis is very short (4«02&), a small aberration 
in the y coordinates of any atom would result in a comparatively 
larger shift in y, thus any error between theoretical and 
actual bond lengths would be magnified. It was thus 
apparent that the problem would have to be solved by some 
other method.

9>2 Three-Dimensional Patterson Synthesis

Since the projected atomic coordinates were known with 
some accuracy, it was possible to construct a theoretical 
Patterson map for the (010) projection (Fig.XI ). Peaks 
in this map would thus correspond to the projections of the 
interatomic vectors. In order to find the Y coordinate of 
the vector peak, it was therefore only necessary to compute 
the vector density along a line through and perpendicular to 
the projected vector peak.

Sections through the three-dimensional Patterson map 
were computed, using as coefficients the squared structure



Theoretical (010) Patterson Projection for one 
molecule of sorbic acid.

Line sections through the three-dimensional Patterson 
map were computed perpendicular to 010 through the 
points marked.

FIG. XI



amplitudes for the 837 observed terms. For better 
definition, the peaks were sharpened using the modification 
function shown in Fig. XII. This function was chosen to 
give, mild sharpening while avoiding appreciable diffraction 
ripples. The effect on a simple model structure is shown 
in Fig. XII*. Graph A represents an unsharpened Patterson 
peak for a theoretical one dimensional cell containing one 
atom at the origin. Graph B shows the modified peak.
Using the Fourier programme for the Deuce computer, line 
sections were calculated at intervals of ^/240th of the cell 
edge up the y axis. Fig. XHt.

Analysis of the positions of the peaks yielded a 
self-consistent set of Y coordinates for the carbon and oxygen 
atoms which were used for the subsequent three-dimensional 
refinement. Coordinates used are listed in table V.

Table V
Y/b coordinates from Patterson sections

°1 -.06250 °5 .10410

CMO .25720 °4 .17500

°l .16660 °5 .06670

°2 .20000 °6 .12920
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9.3 Structure Refinement

Using the Y coordinates obtained from the Patterson 
synthesis, structure factors were calculated for the hiJt

• *zone. An isotropic temperature factor was used with = 4»2f\* 
the average value obtained from the graph (Pig. VI). Agreement 
seemed good, being 23$ on the scaled structure factors. Two 
cycles of least squares refinement, however, did not lower 
the discrepancy materially, and solve failures occured when 
the temperature factors became too high (see section II. 1).

Structure factors calculated for the same coordinates
for the h3>£ zone did not give such good initial agreement
(35$), however, two least squares cycles on half shift
(see section II.1') lowered the discrepancy to 24$. Coordinates
and temperature factors from the second cycle were used,for
structure factor calculations for the h.2/ zone. The
predicted scale factor, which appeared to be too high, was
altered to a more reasonable value from comparison of 21 PQ
and ^  P for the second hjJl cycle, c

The first structure factor calculation for the h2J& 
zone gave an agreement factor of 31$» falling to 23$ after 
one cycle. Coordinates and anisotropic temperature 
factors from the h2£ cycle were then applied to a 
recalculation of the hljt zone structure factors* The



new R factor for this zone was 24*5$•
Since it was apparent from these results that the 

structure would probably refine further calculations were 
carried out on the full three-dimensional data. The 
coordinates used were those obtained from the last hl^ 
cycle. The scale factor for the second h2^ calculation 
was retained, but the hOj& zone data were rescaled before 
inclusion with the upper zones. Throughout the course 
of the refinement it was observed that the predicted scale 
factor tended to be too high. It was altered at the 
beginning of each cycle to correspond to the value found 
by comparison of and 51 F .

For the first full three-dimensional least squares 
cycle, only the observed terms were included. The overall 
agreement was 21.7$. For the next cycle, the original 
scale factor was retained but the coordinates and 
temperature factors were allowed to shift (see section II.l ). 
Half shifts were used throughout.

All the unobserved reflections in the copper sphere 
were included for the second cycle, increasing the time per 
cycle from 2 to 2-jJr hours. For these unobserved terms, the 
intensity was assumed to be half the lowest observed value.
As this meant the inclusion of 370 unobserved terms, it was 
expected that the R factor would rise slightly. This was 
indeed the case. However, after two more complete cycles,



the discrepancy fell to 18.5$. At this stage the individual 
zones were rescaled to the calculated values. The scale 
factors used are listed in Table VI.

Table VI

hO^ 1.0886
bl£ .9419
h2^ .8916

1.0420

MJt unchanged

h5 X unchanged

For scaling, h4^/ and h5^ were considered together, as both 
contain very few reflections.

The rescaled data were used as input for the sixth 
structure factor calculation. For this cycle, five of the 
eight hydrogen atoms were included. The positions of the 
hydrogen of the Carboxyl group and those joined to the 
unsaturated chain could be determined approximately as they 
were assumed to be coplanar with the carbon skeleton. The 
mean plane of the carbon atoms was calculated using the 
method of least squares. Using the x and z coordinates of 
the hydrogen atoms from the (010) projection, Y coordinates 
were found by substitution in the equation of the plane:



•50.

X + 4.8658 Y - 5.4277 Z - .6556 = 0 (57)

calculated with respect to the orthogonal axes a b, and _c'. 
In this equation X = x + z cos^  Y = y and = z si 
where x,y and z are the atomic coordinates in angstroms 
and ̂ 3 is the cell angle. The coordinates so determined 
are listed in Table VII. The methyl group hydrogens 
were not included.

Table VII

- */' a y/b Z / /°
H1 .05658 .09109 -.05552

H2 .15070 .41648 .18679

HJ .22680 -.08040 .04129

H4 .28510 .57448 .21919

H5 .54880 -.11550 .07259

The agreement factor for the sixth cycle with rescaled 
data and including five hydrogens was 1 6 . 5 As the R 
factor fell by less than one per cent in a further cycle, 
there seemed little point in continuing without the addition 
of the remainder of the hydrogen atoms.



The values of (F - F ) obtained from the seventh v o o'
cycle were used as coefficients for a three-dimensional
difference Fourier synthesis. Sections were computed
for the regions around the carboxyl group and the methyl
group. Nine sections through c were calculated parallel
to (OOl), at intervals of ^/60 of the cell edge (.26372.)

8 16from /60 to /60 inclusive. The sections were taken 
from y = 0 to ^°/30, (.134& intervals) and from x = 120
to 120 in Vl20ths (.1667&). The three hydrogens of 
the methyl group were fitted on to the contours obtained.
As expected, they were staggered with respect to the planar 
hydrogen atoms of the unsaturated chain. Four sections 
were taken through the hydrogen bond parallel to (001) 
from z = ^/60 to z = ^/60 inclusive. The summation was 
carried out over the full length of the y axis at intervals 
of ^/30th and from x = ^/l20 to ^/l20. Coordinates 
obtained from these sections were related to those of the 
parent molecule by the symmetry •§-, 0. Examination of
the hydrogen coordinates showed that the hydrogen was 
associated with 0 rather than 0^. From this, it follows 
that was doubly bonded and singly.

The coordinates obtained are listed in Table VIII.



Table VIII

X //a y/b z / 
fa

H1 -.00420 .17000 .05420

H6 .45500 .56445 .21250

H7 .44200 .29000 .16250

H8 .40200 -.05555 .25000

When these atoms were introduced into the structure 
factor calculations, very little change in discrepancy 
resulted. The R factor after the eighth cycle was 15.5 2* 
for the total data in the copper sphere and 15.9&or the 
observed reflections. At this point hydrogen coordinates 
for H_ - H_, the hydrogen atoms of the unsaturated chain,2 o
were revised using the equation of the plane for the eighth 
cycle•

X + 4.972 Y - 5.464 Z -.5980 = 0 (57)

The coordinates are listed in Table IX.



Table IX

X // a y/b z//o

H2 .17208 .27909 .19066

H3 .21344 -.07699 .06567
.28555 .37298 .21258

H5 .54780 -.10550 .09239

A calculation of standard deviation of positional 
parameters after the tenth cycle indicated that the mean 
atomic shifts were less than the standard deviations of 
the coordinates (Table X), therefore the refinement was

_  2terminated. The progressive decrease of R and ^  ? A  

during the course of the refinement is given in Table XI.
The agreement factor for the final observed structure 
factors is 15*3%* The coordinates used for this calculation 
are listed in Table XII. A Fourier projection upon (100) 
based on the final coordinates is given in Figure XIV.
The overlap and lack of detail in this projection is 
manifest.



54.
Table X

Coordinate ihift , Final Cycle

A x/a 6* x/a
--------7-----

Ay/b tf*y/b Az/° tf z/c

°1 *00004 .00012. .00056 .00007 .00004 .00014

°2 •00004 .00016 .00012 .00112 .00010 .00021

.00004 .00022 .00002 .00126 .00002 .00027

°2 0OOOO5 .00025 .00021 .00151 .00014 .00027

V ,00005 o00019 000055 .00016 .00000 .00025

C4 .00002: 000025 .00025 .00059 .00008 .00028

°5 •00007 .00025 .00080 .00155 .00001 .00050

C6 .00000 .00026

R

.00017

Table XI 

arid £  w A

.00149

2

.00005 .00035

Jycle R X . a 2 Cycle R I w A 2

1 21.7$ 124(obs. only)
6 16*3 64

2 21.5 104 7 15.7 61

5 19.5 95 (all terms)
8 15.6 58

4 18.5 84 9 15.5 58

5 17.5 75 10 15.515.8 57
obs.
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Table XII
Pinal Fractional Coordinates

x/a

.08459

.05662

.09000

.15599

.21602

.28520

.54176

*41225

. y/k 

- .06441

*25966

.12568

*21925

.11212

.19980

.07961

.16550

z/o

.00261

*09174

.06591

.1*810

.10589

*15427

.15985

.19205



a  sin p A

o 1 2 3 A

Sorbic Acid (001) Projection

Electron density map* Contours at intervals of le/A^.
Negative contours ----
Zero contours   • -

Figure XIV



10. Standard Deviation

The standard deviations of atomic positions‘were 
calculated using the expression (Dunitz and Rollett 1956):

C  Jj . w ^ 2

(n-s)2w(-||-)2

where X w  A  ̂  is the sum of the weighted discrepancies 
for each reflection, n is the number of reflections, s, 
the number of parameters to be refined and ^ is an 
atomic parameter, positional or thermal.

The values of and of the weighted derivatives
were obtained from the output of the least squares 
refinement programme (see appendix). The total number 
of reflections considered, n, was 1207. The number of 
parameters, 9a + 1, where a is the number of atoms in the 
asymmetric unit, was 75* The values obtained were increased 
by 1.025 to allow for the monoclinic angle of 102.5° 
(Templeton 1959). The standard deviations of atomic 
coordinates are listed in Table XIII. The standard 
deviation of electron density (Cruickshank 1949) is .24 e&” .̂



11. Molecular Geometry

The bond, lengths within the sorbic acid molecule, 
calculated from the orthogonal!zed coordinates (Table XIV), 
are listed in Table XV. The corresponding bond angles are 
given in Table XVI. These values are not corrected for 
errors caused by thermal oscillation of the molecule,(see 
sections I. 5*2; II. 1.4) •

12. Hydrogen Positions

The final hydrogen positions are listed in Table XVII, 
with the lengths of bonds involving hydrogen given in 
Table XVIII. The mean value of the C - H bond lengths 
is 1.065 +, .027& (Crumpler and Yoe 1940). The standard 
deviation of any single C - H bond, . 07&, may be considered 
to be due to errors in position of the hydrogen atoms, 
as these could not be located accurately.
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Table XIV

Orthogonal Coordinates (£)

°1

X
1.67886

Y
-.25892

°2 .41822 .96343

C1 1.57428 .49719

V 2.71555 .88130

°3 3.96461 ..45072

°4 5.13568 .80320

s 6.35633 .32003

C6 7.58736 .65647

Z

.04031
1.41691
1.01797
1.82404
I.6O457
2.38268
2.15966
2.96588
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Table XV 

Bond lengths ( A )

0 1 O 1,240 +.0051 °3 " °4 1.450 ±  .006

°2 " S. 1*309 + *006 C4 - C5 1*332 + .007

0 M 1 O
IV

) 1.449 + .007 C5 " C6 1.510 + .007

°2 ~ S 1*340 + .006 0 - H - 0 2.650 + .004

Table XVI 

Bond Angles

°i - C1 "°2 122.1 ± *5

°i “ CI -°2 122.5 + .5

°2 "°1 - c2 115.7 ± .5

C1 -°2 ~ h 123.9 ± .5

C2> -  c, «3 °4 126.0 + .5

°3 t 0 1 °5 124.2 + .5

°4 ~ c5 “ C6 125.3 ± .5
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Final Fractional

.Table XVII

Coordinates - Hydrogen Atoms

x/a y/b

1 - .00609 .12584

2 .17208 .27909

3 •21344 - .07699

4 •28555 .37298

5 •34780 ■• .10550

6 .42500 •28332

7 •41677 •41320

8 .40858 - .08333

Table XVIII

Bond Distances Involving Hydrogen (k)

*2 “ H1 1.116 A C ~ H_ 1.082 A
,5 5 ,

’2 - H2: 1.148
1 f
c6 - h6 1.075

!3 - H5 .966 C. - H_ 1.012:6 7

!4 - H4 1.148 C, - H 1.012 0 8
Average C - H distance I.O63 5L

z/o

•0432.5

<,19066

.06567

<,21258

•09239

•25416

.19882

.20297



15. Molecular Plane

The mean plane of the molecule was determined in 
two ways; first using a method which minimized preferentially
the X component of the deviation from the plane, A, and later
by a least squares minimization of the perpendicular distanoes 
of atoms from the plane, B, (Shomaker et. al. 1959)*
The plane A given by the first method is:

X + 4.926 Y - 5.400 Z - .7167 - 0 (59)

Plane B through the molecule is given by

.1626 X + .7950 Y - .5844 Z - .0476 * 0 (60)

The deviations from the plane B, which are listed in Table XIX
are slightly smaller than those for plane A, the root 
mean square deviations being .05462. for A and .0250& 
for B. The interplanar angle is 1.7°.

The planarity of the molecule may be determined by
the X   ̂test (Fisher and Yates 1957).

where A is the deviation of an atom from the plane and 
G" £ is the standard deviation of position of the atom.



The probability of the atom lying on the plane, whioh, 
for any X  varies with the number of degrees of freedom,

X 2

The number of degrees of freedom is n - 3 where n is the 
number of atomic parameters.

For plane B through the molecule, n - 3 ° 5

2
X  = .004996/25 X 10 = 200 (62)

Another plane was calculated through the carbon atoms
alone•

.17261 X + .75538 Y - .59642 Z - .05249 - 0 (63)
2For this plane X  = 42. For n - 3 = 5 degrees

of freedom, the probability that all the carbon atoms 
are coplanar is still very low, however they appear to 
lie more closely on the plane than do the oxygen atoms.
The root mean square deviation of the carbon atoms from 
the carbon plane is .0133&* Deviations of carbons and 
oxygens are listed in Table XX. The plane of the carboxyl 
group is given by

.18680 X + 1.31885 Y - Z + .06818 = 0 (64)

The angle between the carbon plane and the carboxyl group 
is 3-6°.



Table XIX

Deviations from the Plane of the Molecule (A.)

o •
°1 + .0058 A °3 - .0182 A

CM
O + .0416 °4 - .0543

ci - .0090 C5 + .0209

CM
O - o0290 °6 + .0242

Table XX

Deviations from the Plane of the Carbon Atoms (A,)

+ .0181 A CT + .0158Ai o

0 - *0999 C + .0202:

C. - .0126 Cc - .00141 5
Cg 4 *0060 C6 - .0159



yjj*

A n electron density section evaluated in plane A is 
shown in Figure XV. This is plotted with respect to the 
axes f and g in the molecular plane (Broadley et. al 1959)•
To determine these axes the plane was recalculated with

irespect to a set of orthogonal axes a , b, c to give

.1926 x' + 4.9260 y' - 3.5558 z' - .7167 - 0 (65)

I t Iwhere X = x sin̂ /3 Y = y and Z = z + x cos^3 and
t 1 1 i t  tthe coefficients of X Y and Z are A B and C .

The angle between the b crystal axis and f is given by
1

tan 1 = -3.1° e f (66)
G

tThe angle between the a crystal axis and g is given by

1

tan-1 = -54-3° = « (67)
C

The lengths of f and g are obtained from

f = ------- - = 6.894 i (68)
cos 54*3

1a
cos 3-1

= 19.565 A (69)



The angle "between f and g is given by

cos-  ̂ £(-sin 9)(- sin </»J = Y  - 87-6° (70)

Contours are plotted at Intervals of leX” . The mean
plane Fourier map shows clearly the high degree of anisotropic 
motion of the atoms, whioh is masked in the projection by 
the fact that the molecule is fore shortened along the 
direction of maximum anisotropy.

14. Thermal Motion

It was observed from difference maps at an early 
stage of the refinement that the atoms of the sorbic 
acid molecule were vibrating anisotropically. For the
difference maps, the molecule was considered as a vibrating 
unit (see section II. 7*2), however, in the least squares 
refinement the vibration parameters of each atom were 
treated separately. Isotropic B values were assigned 
to the atoms for original input (see section II. 9*3)» 
but these were converted to the corresponding ij's 
(equations 15, 16) which were then refined in conjunction 
with the atomic coordinates.



In the refinement programme, correction is made for 
the variation in scattering factor of symmetry-related 
atoms. When an atom vibrates anisotropically, the motion 

9 may be described in terms of an ellipsoid of vibration.
If the atoms are related by a centre of symmetry 

there is no change in scattering factor as is also the 
case if the ellipsoid of vibration is directed along the 
principal axes of the crystal. For atoms related by 
two fold axes or mirror planes, however, the axes of their 
ellipsoids are not parallel, and a correction must be made.

For sorbic acid, this corresponds to a change in 
sign of the terms /^23 Davies 1955)*

The final values of the anisotropic temperature factors 
are listed in Table XXI. The standard deviations of th 
/3 ..'s, also listed in Table XXI, were calculated as in/ 10 oF*equation 58 (see appendix); the values of ('%/*— ) being 
obtained from the least squares output.

In their paper, Rollett and Davies described a method 
for the determination of the axes of the ellipsoids of 
vibration. This method was used to compute the directions 
of the axes of the ellipsoids of the atoms of sorbic acid 
with respect to the crystal axes (Table XXIl). The root 
mean square deviations, U, from the axes, with the corresponding
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Table XXI

■■2 \Anisotropic Temperature Factors (xlO )

/^22 ^33

°1 .271 + .005 10.396 + .132 .485 + .008

°2 .265 + .005 11.910 + .217 .635 ±  #009

°1 •265 + .006 7.720 + .232 .442 + .010

C2 .292 ± .008 7.56O + .236 •466 + .011

°3 .270 + .007 7.071 ±  .218 •434 ± .010

°4 .290 + .008 7.066 + .221 .466 + .011

C5 .259 + .007 9.025 + .185 .531 ±  .012

C6 ol91 ± .008 8.810 ± .273 .683 ± *016

/^12 23 ^ 1 3

°1 .150 + .055 -1.506 + .067 .137 ± *010

°2 .240 + .057 -I.696 + .079 .242 + .012

CX .338 + .071 - .227 + .090 .173 + .014

C2 .128 + .074 - .619 + .088 .136 + .015

°3 - .033 ± .069 .139 + .086 .141 ±  .013

°4 - .132 + .073 — .414 i  .090 .142 + .015

S .311 ±  .077 - .012 + .100 .137 ±  .015

C6 - .150 + .086 .191 + .115 .113 + .019
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Table XXII
Orientation of the Axes of Ellipsoids of Vibration 

with respect to Crystal Axes
a b •

°1 1. 93.6° 1. 95.3* 1. 6*4
2* 148.5 2. 58.5 2. 90.5
3. 60.5 3. 56.1 5. 71.1

°2 1. 89 *8 1. 141.5 1. 51.5
2. 145.9 2. 69.8 2. 63.9
3. 56.8 3. 70.4 3. 40.0

C1 1. 110.1 1. 135.9 1. 52.7
2. 154.3 2. 64.3 2. 89.9
3* 79.4 3. 67.9 3. 24.8

C2 1. 102,2 1. 91.1 1. 12.5
2. 139.8 2. 51.1 . 2. 98.9
3* 56.6 3. 40.9 3. 69.2

c3 1. 86.2 1. 48.0 1. 137.7y 2* 160.6 2. 73.5 2. 80.1
3* 70.6' 3. 35.4 3> 61.6

C4t 1. 65.2 1. 81. 7 1. 153.6
2. 50.1 2. 158.2 2. 79.9
3* 44.1 3. 48.2 5;. 78.3

°5 I. 15.8 1. 105.6 1. 87.9
y

2. 105.7 2. I65.8 2. 81.7
3o 77.9 3>* 84.5 3> 13.3

% 1. 98.5 1. 11.1 1. 82.9
2. 74.6 2. 80.8 2. 161.9
3* 26.1 3. 71.4 3> 72.2



Table XXIII

R.M.S. DeTdations from the Principal Axes (A)

a

°1 .457 7.9 A

°2 .492 9.2

C1 .374 5.3

C2 .384 5.6

°3 .349 4.6

°4 .323 3.9

°5 *318 3.8

Cc •426 6.9

b
* 1

e
1 B ls

•
303 3.5 A .330 4.1 A

303 3-5 .361 4.9

308 3.6 *336 4.3

319 3.8 .341 4.4

327 4.0 .331 4.2

364 5.0 *345 4* 6

397 6.0 .367 5.1

342 4.4 .386 5.6



values of B are given in Table XXIII,
The value of U is compounded from the interval normal

modes of vibration of each atom and the rigid body vibrations
of the molecule as a whole. These rigid body motions may
be resolved into vibrational and rotational components
(T + U) ) with respect to a set of molecular axes (Cruiokshank 1956)
(see section I. 3*2),

For further analysis of the molecular motions, the
atomic coordinates were transformed to moleoular axes
(Table XXIV).- These were chosen with the origin at the
centre of mass of the sorbic acid moleoule. The axis of
minimum inertia, determined by least squares, was taken as
the x axis. The molecule being planar, the x and y axes
were at right angles in the plane, with the z axis
perpendicular (Figure XVI).

It was observed by Higgs (1955) that there is a
-2linear relationship between TJ and the square of the

distance of the atom from the centre of mass. This
would, of course, hold only for atoms of one chemical
type. When this was applied to the carbon atoms of

-*2sorbic acid (Figure XVIII) U for the atoms to Cg
-2lay along a straight line, though the value of U for is 

high, indicating possibly that the centre of vibration of the 
molecule does not quite coincide with the centre of mass
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of-the monomer. The linearity of the graph does, however,
lend confirmation to the validity of application of 
Cruickshank*s treatment to the molecule.

The root mean square displacements of the atoms in 
the direction of the molecular axes are related to T and U> 
by the equations (l. 19). In the case of a planar molecule, 
coordinates may be chosen such that z = 0 The formulae 
1.19 are thus considerably simplified, and the normal 
equations which in the general case are of the twelfth 
order, may be reduced to three fourth order equations

1 0  0 
1 0 
1

2y T11

1
HP M 

__
__

__
__

__
_1

2X T22 *22
- xy T12

8S

*12
4 4 2 2 x + y + x  y tp1-33 . A u « 2U22-xyUi2_

2x -2xy

1

’ U33
2 2 3 x y -2xy ^ 1 A 33
4 3 x -2x y **22

2tt
x 33

„ 2 2 4x y _U12„ -2xytfJ5

(71)

-X

xy
xy
-J

4 2 2 3 3x +x y -xy -x y
4 2 2 y +x y

23
*13
W23
toL 13J

u,
u
25 
13
-x U25+xytJ15 
xyU25-y2U15



The values of T. . and <ii. . obtained from the solution 

of the normal equations, together with their standard 
deviations, are listed in Table XXV. The estimation 
of the accuracy of determination of T + U) was derived 
from the expression

^  2 (Ap) = Cpp_1 O ’ 2(U) (72)

where represents only T ^  or ^ is the appropriate
diagonal element of the inverse of the left hand matrices 
in equations (71), and

CT 2(u) „ £(u°ts . u°al° f  /(t - n) (73)
n

where t is the total number of observed and n the number 
of parameters to be determined. The values of xrca^° were 
obtained by the solution of the equations 1.19 using the 
predetermined T . . and tox .. The calculated and observed U. . 
are compared in Table XXVI.

From the it appears that there is no preferred 
direction of vibration, the mean displacements being .22A, 
.2lX and .262 along the x y and z molecular axes. The cross 
terms are all small, on the order of one tenth the value of 
the diagonal terms. This serves to indicate that the
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4.916*.212

110.42*14.55

Table XXV

Tij (xl0“2 A 2) 

.796 *.212 

4.554 ±.290

. (deg.2) 

17.51*̂5.51 
1.61*1.06

. .322 ±.219 

.458* .291 

6.005 *.552

1.85*4.97

.65*1.03

5.39*1.02
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Table XXVI
•*2 ® 2Atomic Vibration Amplitudes (xlO A )

n (obs.)
11

(calc.)
U11

n (obso)
22

(calc.)
22

_T(obs«)
33

jy (calc ( 
33

°i 5.140 5.232 4.182 4.882 9.879 10.036

°2 4.920 4® 994 5.100 5.475 11.466 9.789

4.927 4.921 4.823 4.776 6.351 5.941

C2 5.516 4.945 4.631 4.354 6.923 6.750

°3 5.063 4®930 5.020 4*443 5.687 6.562

C4 5.456 4.926 4.926 5.095 6.190 5®872

°5 4.958 4.954 6.331 6.095 7.129 8.976

C6 5.836 4.917 8.028 7.921 7.073 6.789

(obs.)
12

(calc.)
12

(obs.)
25

(calc.)
23

(obs.)
13

j. (calc < 
■ 13

°1 .590 .384 .605 .242 - .197 - .335

°2 1*668 1.089 .478 .423 - .772 -.413

1.093 .751 .515 .408 .041 - .318

°2 .490 .818 .049 .392 - .081 - .329

°5 .419 • 834, .346 .416 - .359 - .332

°4 .259 .707 .026 .391 - ®517 - .314

s 1.000 1.052 .559 ®737 .079 - .358

C6 .866 .749 - .199 .346 - .913 - .318



molecular axes chosen coincide closely with the principal 
axes of vibration.

The main component of molecular motion is an oscillation 
of 10.5° about the axis of minimum inertia. The oscillations
about the y and z axes, 1.27 and 2.32 are comparatively small. 
The standard deviations found for ti>22 and are sufficiently 
large that only oscillations about the long x axis need be 
considered significant with respect to alterations in bond 
lengths. The cross terms are small, indicating
that the axes of oscillation tend to coincide with the 
molecular axes. The large value of «*̂ 2 may be aooounted 
for by the fact that the atoms in the chain are all close 
to the long x axis, thus giving large standard deviations 
to the values of <*̂ 2 and (Cruickshank I956 c).
The large standard deviations may also be accounted for 
by the effects of interval vibrations of the atoms which 
cannot be resolved from the rigid body motions (Higgs 1955)*

The considerable oscillation about the long axis 
of the molecule would have the effect of shortening the 
apparent distance of the atoms from the axis 
(Cruickshank 1956 *>) (Figure XVIIl).



A

Figure XVIIIWhereas the true atomic position would he represented in
»the diagram by x, the measured coordinate would be x 

where Ox is perpendicular to the axis of rotation and
iOA and OA are the limits of oscillation. Knowing the 

amplitude of the oscillation it is thus possible to 
calculate the true coordinate. Since all the atoms in 
sorbic acid except 0^ lie close to the axis (Fig. XVI) 
the shifts are small, being for the most part within the 
limits of .accuracy of the coordinates. The 0^ bond 
is, however, considerably lengthened. The revised bond 
lengths are given in Table XXVI. The bond angles along 
the chain are all slightly decreased with the exceptions 
of C>i - Ci - Og , which is increased. The corrected 
bond angles are given in Table XXVIII. These, and the 
bond lengths are shown diagrammatically in Figures XIX 
and XX.



Table XXVII

Revised Bond Lengths (k)

°1 - C1 . 1.260 I C - C ! 3 4 1.454 k

°2 - °1 1.318 V S 1.339

Cl - ° 2 1.454 °5 ” C6 1.513

c2 i 83 1.546

Table XXVIII

Revised Bond Angles

°1 - °1 - °2 122.9*' ( °2 - °5 " °4. 125.5

°1 - °1 - °2 122.4* °3 “ °4 “ °5 125.8

0 •s> 1 0 H 1 O ro 115.0’ C4 - °5 “ °6 124.8'

C1 - °2 - °3 125.5°



15. Intermoleoular Contacts

The closest approaches to neighbouring molecules 
are listed in increasing order of length up to a distanoe 
of 4 1 (Table XXIX). The equivalent positions of the 
molecules concerned are: molecule 0; x, y, z;
molecule 1; x y z ; molecule 2; x, 1+y, z ; 
molecule 5; -|--x i-y -z $ molecule 4; x, 1-y, -zj 
molecule 5> ir-x, i+Jy and molecule 6; 1-x, y, i-z.
These intermoleoular contacts are also shown diagrammatioally 
in Figures XXI and XXII.

The shortest distanoe is the hydrogen bond between
0 of molecule 0 and 0n of molecule 1, related to the2 1
first by a centre of symmetry. Of the non-hydrogen 
bonded contacts, the shortest is that between 0  ̂of 
molecule 0 and 0^ of molecule 4* This is 3.36&, which 
is greater than the sum of the Van der Waals radii for 
oxygen, 2.8X. The carbon carbon distances are all 
greater than



Table XXIX
oIntermoleoular Distanoes less than 4A

°2 m 0^ 2.65 A

°2 1 o 5-56

°1 3*40

C1 3.41

•• 0?1 3.43

°2 -<4 3.47

°1 3.49

°2 - o 12 3.53

°1 - f 1 5.54

°2 - o f 33.54

°2 nIV 3.62

°4 ~ c I]C5 33.75

°2

1 0 3.76 A

0 -  c j  
2 6 33.76

°2
-  cIV  

3
5.81

°1
-  c11 5.88

°2 -<? 3 .9 0

°4 - ■ ?
53.93

°6
-  c71 

6 3.96

C6,
- c 11

5 3.97

°5
o111
° 1

3 .98

°5
- C 111

3
3 .98

C3
- c 111

3
3 .98

° 2
V

• ° 6
3 .98
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16, Analysis of Molecular Dimensions

The lengths of the carbon-oxygen "bonds in the 
carboxyl group confirm the earlier conclusion (see 
section 7*3) that the hydrogen is associated with 0^f 
C^-Og being considerably longer than the doubly-bonded 

. The carbon-oxygen bond lengths are within the 
normal limits for single and double bonds as found in 
free acids (Table XXX), though they vary slightly from 
the average values.

Table XXX

°r°i cr°2

Sorbic Acid 1.256 A 1.518A

A- Ionylidene 
Crotonic

Succinic

1.244

1.249

Average value s 1.25

1.525 (Eiohhorn and
MacGillavry 1959)

1.511 (Broadley et al 1959)

1.56 (Tables 1958)

It is noteworthy that the carbon-oxygen double bond is 
not ^tallel to the carbon-carbon double bonds as might 
have been expected. Other conjugated acids also show 
this effect (Crotonic,^-Ionylidene crotonic), which may



be explained by the steric effect of the hydrogen on C_5
whose presence would cause slight overcrowding if the
hydroxyl group which has a smaller C - C - 0 angle was
directed on the same side of the molecule.

The double bonds Cn - CL and C. - CL are of normald y 4 5
length, averaging 1.342&. This compares with the normal
ethylenic bond length of 1 • 5372. (Tables 1958)*

The C - C bond of the terminal methyl group appears 
to be a pure single bond, however the and
bonds are significantly shorter than normal single bonds.
Dewar and Schmeising (1959) give a minimum value of

2 21.479 for an Sp - Sp hybrid single bond, whereas the 
lengths of both bonds in sorbic acid are 1.454&. This 
could indicate some degree of conjugation both with the 
carbon-carbon double bonds and with the doubly-bonded 
oxygen of the carboxyl group. The near-planarity of 
the entire molecule (section 13) lends support to the 
possibility of such conjugation throughout the molecule.

The bond angles along the carbon chain are all slightly 
larger than the theoretical Sp^ bond angle of 120°, the 
average value being 124*4°• Crotonic acid and 
^  -Ionylidene crotonic acid also have bond angles slightly 
greater than 120°. This is probably due to the steric
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effect of the hydrogen atoms along the ohain which would 
tend to force the carbon atoms apart by increasing the 
bond angles. The sum of the Yein der Waals distances 
for two hydrogens is 2.4& (Pauling i960) compared with 
the values of 2.46 - 2.49& for the hydrogen-hydrogen 
distances along the planar chain. Slight deviations 
from planarity would also serve to increase the distanoe 
somewhat.



lib Crotonic Acid

1. Crystal Data

Crotonic acid C^HgOg, m.p. 71 - 72°, was crystallized 
by slow evaporation from aqueous solution as thick clear 
needles. Unit cell dimensions were determined from 
measurements of rotation and Weissenberg photographs 
corrected for film shrinkage.

Crotonic acid is monoclinic.

Table XXXI

a 15.32 _+ .02 %

b 4.021+ .005 
£ 16.17 + .02

fi 107.6 + .1°

It may be noted that in the axial system chosen, £  is 
longer than a,, whereas it is custumary in monoclinic 
systems to consider a to be the longer of the two 
non-unique axes. The choice was made in order to preserve 
the analogy with the structure of sorbic acid. It was 
immediately apparent from the Weissenberg photographs 
of the h04 zone that the structure of the two acids



were very similar. In sorbic acid, the unique axis 

is 4»02& and the ĉ axis is 15.82$., both comparable 
to the _b and c_ axes of crotonic acid. The & axis is
longer, 20.01& as compared to I5.32X, corresponding to 
the greater chain length of sorbic acid.

2. Space Group

From Weissenberg photographs of the hOJ and hl.£ 
nets of crotonic acid, it was apparent that all odd 
reflections with indices were absent from the hOjt zone, 
whereas for the upper layer absences ocoured when 
h + k  = 2 n + l .  A precession photograph of the hkO
zone indicated that OkO reflections were absent for odd 
values of k. These absences correspond to either of the
space groups 0o or C / . From consideration of the cell

'7X '2f/°
dimensions it was apparent that there were eight molecules 
per unit cell, corresponding to a density of 1.204 g/cc 
(found 1*192 g/cc at 22°c). If the structure were non- 
centrosymmetric then the asymmetric unit would contain two 
m o l e c u l e s h a s  only four equivalent positions. From 
the close resemblance of the structure to sorbic acid it 
was highly probable that^_^^c was the correct choice.



This was confirmed after the collection of the three- 
dimensional data by the application of statistical tests.

3. Intensity Data

A large clear needle of crotonic aoid which showed 
good extinction when examined under polarized light was 
cut to a size suitable for X-ray examination. As the 
substance had a high vapour pressure, the crystal section,
.2 mm. x *4 mm. x 2 mm., was sealed in a thin-walled pyrex 
capillary.

Using four-film packs (Robertson 1943)> in a Nonius 
camera, equi-inclination Weissenberg series were taken 
about the short b axis using GuKod radiation. Three hQjt 
series were recorded, with 1 hr., 6 hr. and 24 hr. exposures; 
two of each of hl^ and h.2*£ ; exposed for 3 hrs. and 24 hr s. 
respectively; and one h3^ series with a 48 hr. exposure.
The h4*/ net was not obtained because the equi-inclination 
angle was too large for the camera.

The intensities were estimated visually using a step 
wedge. The film factor for the hO-̂  series was 3*3•
This was increased for the upper layers to compensate for 
the longer path length through the film (Rossmann 1956).
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The data were corrected by the application of Lorentz and 
polarization factors, and, for the upper layers, the 
Tunell" factor (1939)•

4* Statistical Tests

4.1 Variance

The corrected h0.£ hli and h2 Ji intensity data were 
divided into three ranges of sin 9j .20 .55> *55 * *75
and .75 - *90. Any reflections lying outside the scope 
of these ranges were discarded. The total number of 
reflections considered in each range was 149» 194> and 288.

The weighted average variance calculated over the
three ranges is 2.43*

4.2 N(z) Test

N(z) was evaluated for each range for z ** .l(.1)1.0.
The weighted average values for the three ranges are listed 
in Table XXVI.

Table XXXII

z = .1 .2 .3 *4 -5 *6 .7 .8 .9 1.0
N(z) = .232 .425 .497 -598 .653 .692 .723 .756 .780 .780

As both tests indicate that the structure is centrosymmetric 
the space group was confirmed



5. The 010 Projection

By analogy with sorhic acid, crotonic acid was assumed 
to have the eight molecules in the unit cell arranged as 
four pairs linked through their carboxyl group as hydrogen 
bonded dimers, the centre of the dimer coinciding with a 
crystallographic centre of symmetry. A set of coordinates 
was chosen, based on the final sorbic acid parameters, but 
altered slightly to compensate for the difference in the 

monoclinic angle. A temperature factor of Bq = 5 was 
applied for the calculation of a set of structure factors, 
whose discrepancy between observed and calculated values 
was 66fo. Although this value was not encouraging, the 
signs of 54 terms were combined with the corresponding 
observed structure factors for an (010) Fourier projection. 
Calculations were carried out on the Deuce computer, requiring 
five minutes for the 90 structure factors and 44" minutes for 
a 30 x 30 h O /  Fourier. The atoms, apart from the terminal 
carbon atom were poorly resolved in the first Fourier projection, 
however, it was possible to obtain a new set of coordinates.

Structure factors calculated from coordinates obtained 
from the Fourier projection gave a discrepancy of 57$. When 
a third structure factor calculation failed to better the 
agreement (this was later discovered to be caused by a 
computer failure), an error synthesis was computed.



The coefficients (F - F ) for the 96 observed reflections,o c
were used for the Fourier summation. The resulting error 
map indicated, as expected, that there was no gross 
misplacement of the atoms, although certain large shifts 
were indicated, particularly for Ĉ . The carbon atoms of 
the double bond, 0o and C,, were shifted so as to decrease 
the angle between the double bond and the single bond of 
the methyl group. A further set of structure factors gave 
an agreement of 41$  for the observed terms.

A second error synthesis was computed to examine the 
effects of the coordinate shifts. The second map was 
similar to the first indicating that the shifts, though in 
the right direction, were not large enough. A further 
cycle indicated that shifts were again too small, and 
examination of the third error synthesis showed that the 
angle of the molecule to the a axis must be increased. 
Accordingly, the values of the z coordinates for Ĉ , C^ 
and were increased by up to ,2%, Smaller shifts were 
applied to the atoms of the carboxyl group.

After the sixth structure factor calculation, the 
discrepancy had fallen to 25$. Further refinement of the 
projection was carried out by least squares procedures. 
Coordinates taken from the fifth difference map, combined 
with an initial isotropic temperature factor of 4*5 were 
used as input to the least squares programme. The initial



R factor, with the lowered value of Bq was 22$. After 
three cycles on half shift the discrepancy had fallen to 14.6$,

At this stage, the positions of the six hydrogen atoms 
were calculated from their probable location with respect 
to the carbon and oxygen atoms. Introduction of these 
hydrogens increased the time for a structure factor calculation 
from eight to fifteen minutes. After five more cycles, in 
which the R factor and IsEwA2 (see section Ila 1.) fell 
increasingly slowly, the refinement was terminated at a 
discrepancy of 12.9$. The final coordinates are listed 
in Table XXXIII.

The signs obtained from the last structure factor
calculation were assigned to the corresponding observed
structure amplitudes for the computation of the final eleotron
density map Fig. XXIII. Contours are plotted at intervals
of le/X^. This shows good resolution of the carbon and
oxygen atoms. The differences between observed and
calculated values of the signed structure factors were
used as coefficients for a second Fourier summation to show
the residual errors (Fig. XXIV). A further set of structure
factors was calculated, based on the coordinates of the carbon
and oxygen atoms alone. The values of Fq - F^ resulting from
this calculation, when used as Fourier coefficients, yielded a
map showing the hydrogen positions (Fig. XXV). Contours on
both F - F maps are at intervals of . 2e/A with negative o c



Table XXXIII

Final Fractional Coordinates - 010 Projection 

x/a

.11049

*05456

.12565 

.21146 

.28952 

.58709 

- .00654 

.20900 

.29400 

.59800 

.41800 

.46IOO

z/o

.00716

.09598

.07262

.15491

.12517

.18248

.05679

.19759

.06179

.25249

.25699

.15449



a/2

i_L

Crotonic Acid (010) Projection.

Electron density map. Contours at intervals of
2le/A ; zero contour broken.

Figure XXIII



o

a/2

0 1 2 3 A

Crotonic Acid (010) Projection

2(F - F ) map. Contours at intervals of 0.2e/A .
Negative contours ----
Zero contours ------

Figure $CIV



a/2

0 1 2 • 3 A

Crotonic Acid C010) Projection

Hydrogen map. Carbon and oxygen contributions
2subtracted out. Contours at intervals of 0.2e/A •

Negative contours --- -
Zero contours ------

Figure XXV



contours dashed. The hydrogen atoms appear as diffuse 
regions of electron density superimposed on the residual 
errors. These are relatively small, indicating that the 
majority of parameters have been successfully determined.

6. The Structure in Three Dimensions

It had already been determined by comparison of the 
hOjZ zone structure factors that the structures of sorbic and crotohic 
acids were closely allied. Upper layer reflections also 
showed this similarity. The biaxial lengths of both 
compounds being virtually identical, a set of Y coordinates 
were chosen based on the sorbic acid coordinates (Table XXVIIl).

Table JXXXIV 

Y-coordinates for three-dimensional refinement

yA yA

°1 -.06421 C2 .23000

°2 .23688 C3 .07500

°1 .10424 °4 .21500

These, combined with x and z values from the 010 projection 
were used for the calculation of structure factors for the 
137 observed h2^ reflections. The agreement was 39$*



Following a method described by Rossmann, (Rossmann et. al. 1959) 
a few rapid least squares cycles were computed (time ̂  8 min./cycle). 
This method is useful for structures in which most of the atoms 
are close to their correct positions, particularly when two 
of the positional parameters for each atom are known. The 
magnitude of the shifts in the thermal parameters indicates 
which atoms are misplaced. The coordinates of these atoms 
may then be altered by hand from consideration of bond lengths.
Three cycles of refinement on the h2^ zone lowered the 
discrepancy to 29$• None of the atoms were showing the large 
shifts of thermal parameters characteristic of wrongly placed 
atoms, however an isotropic temperature factor of « 4*5 
was reintroduced and three more cycles completed to bring 
the agreement for h2^ to 24$ and lower the value o f X w A ^  
from 51 to 18. The coordinates so obtained were used for 
a calculation of the YilJt reflections, for which R = 27$•
A second calculation gave R = 23*5$* After a single 
calculation of the net structure factors for scaling
purposes, all the observed data were included in a structure 
factor calculation using coordinates from the final hl^ 
cycle. The overall agreement was 33*6$. This fell
slowly on refinement to a value of 20$. At this point, 
twelve of the strongest low order reflections whose 
calculated values were consistently higher than the observed,



were removed from the refinement. The planes removed were 
those which would most likely suffer from extinction.
Hydrogen atoms were included. The refinement then proceeded 
without incident to a discrepancy of 13*4$ for the observed 
reflections. The progress of the three dimensional 
refinement is shown in Table XXXV. Refinement was terminated 
at 13*4$ at which point the mean atomic shifts were less than 
the standard deviation of atomic position (Table XXXVT). The 
final coordinates are listed in Table XXX.¥II.

6a. Standard Deviation

The standard deviations were calculated from the least 
squares output by the method described in section Ila 1 
(see appendix II). The final value of for crotonic
acid was 42. The total number of reflections inoluded was 
043, therefore (n-s), the number of reflections less the 
number of parameters was 793a The standard deviation of 
atomic positions is given in Table XXX.VIH* The values 
obtained from the least squares output were multiplied by 
1.05 to allow for the monoclinic angle (Templeton 1959)*
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Table XXXV

R and 2.wAI r ' 2

Cycle R Z wA Cycle X Z  wA
1 33.6/o 197 7 21*9 77

2 51.8 191 8 21.3 66

5 29.1 161 9 20*9 63 :

4 26*6 134 10 18.9 45

5 26.3 122 11 18*7 42:
13.9 obs •

6 23.8 104

corr.

Table XXXVI

Coordinate Shift Final Cycle

Z1 x/a <3~x/a Ay/b <Ty/b A z/c v>

°i .00615 .00025 .00005 .00115 .00012 .00023
CM

O .00000 .00024 .00014 .00111 .00007 .00024

C1 .00014 .00034 .00003 .00013 .00000 .00032

O
ro

.00018 .00038 .00012 .00134 .00003 .00033

°3 .00044 .00038 .00025 .00137 .00004 .00322

°4 .00018 .00038 .00010 .00157 .00006 .00039



Table XXXVIII 
Final Fractional Coordinates

x/a

•11113

•05270

.11960

•21103

•28855

•38281

y/b 

- .07010 

.21225 

•09379 

.I7I4O 

•06175 

•13052

z/c

.00703

•09833

.07375

•13465
.12416

.18348
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Table XXXVIII 

Standard Deviation of Atomic Position CO

X cr x y * V z %

°1 1.7025 .0038 - .2819 .0042 .1137 .0039

CM
O .8073 .0039 .8535 0O047 1.5900 .0042

°1 1.8523 .OO56 .3771 .0057 1.1922 .0057

CM
O 3.2330 .0062 .6892 .0057 2.1773 .0055

°3 4.4206 .0061 .2483 .0058 2.0077 .0055

°4 5.8646 .0061 «5248 0OO67 2.9669 ♦0065

Table XXXIX 

Orthogonal Coordinates (A)

X Y Z

°1 1.6682 «•» .2819 .1084

°2 ..3280 .8535 1.5160

°1 1.4729 .3771 1.1368

°2 2.5766 .6892 2.0760

°3 3.8153 .2483 1.9143

°4 4.9703 .5248 2.8289



7. Molecular Geometry

The uncorrected bond lengths for crotonio acid, calculated 
from the orthogonalized coordinates (Table XXXIX) are listed 
in Table XL. These, and the bond angles given in Table XLI,
are, even more than the dimensions of the sorbic acid molecule, 
subject to correction to allow for thermal motion (see 
section Ila 14)* The standard deviation of bond length 0~cL, 
calculated from the expression

? 2 i<Td = (CTA* + CTBp (74)

where 0“ A^ and (T 3^ are the mean standard deviations of 
position of two atoms, are given in Table XXXIV. The standard 
deviation of bond angles (<5"0) was calculated from the expression

where O" A ,0*3 and 0*0 are the mean standard deviations of 
position of three atoms and d is the distance between two 
atoms (Cruickshank and Robertson 1953)* The values obtained 
are listed in Table XXXV.

) BC
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Table XL 

Bond lengths (1)

Ox - 01 1.237 ±  «006 A C2 -

02 - 1.297 ± *007 C5 - C4
C1 - C2 1.482 ±  .008 0 - H - 0

Table XLI"i  ...
Bond Angles

° x - C 1

CM
O1 124.4 ±  O ’

° ° 1

1 o -°2 121.4 +  .5*

°2 f4
o1 1 o

IV
) 113.2 i .5°

I o
l\3

I o vx 123.3 ±  .5*

C 2

t o 01 125.8 +  . 6 *

1 0 2 5  ±  .008 A 

1.498 +  .009  

2.635 + .006



1.250

1.498

1.502

CROTCH IC ACID 
BOND LENGTHS (J?)

121.7

122.9

125.4

CROTCH IC ACID 
BCND ANGLES (DBG.)

PIG. XXVIII FIG. XXIX



8. Hydrogen Positions

Hydrogens oould not be located with accuracy. The 
final positions are listed in Table XLII., The bond . 
lengths involving hydrogen, given in Table XLIII are thus 
subject to considerable error, the standard deviation of 
each individual C-H bond being .13$L The mean value of 
the C-H bond distance is 1.06& _+ .05 (Crumpler and Yoe 1940).

9. Molecular Plane

Planes were calculated (Shomaker et al. 1959) through 
the molecule as a whole, and also separately through the 
carbon atoms and the carboxyl group. Application of the 
test (sectn. I3al5) to the plane through the molecule yielded 
a value of

X 2 = £ *  2/<r(x)2 = 59 (76)

For 6 atoms, for which the number of degrees of freedom is 
6 - 3  = 3, the probability that the atoms lie strictly on 
a plane is thus very low (Fisher and Yates 1957)* For 
deviations of the four carbon atoms from the carbon plane, 
however, X  2 = .059 for 4-3 = 1 degree of freedom. This 
corresponds to a probability of QOfo that the carbon atoms



- Final

Table XIII 

Fractional Coordinates - Hydrogen Atoms

x/a. y/b z/o

- *00657 .15354 .05676

H2 ♦20910 .35784 .18461

E* .28533 - .01134 .07172

H4 .42815 .14799 .13238

H5 *38581 .39669 .19401

H6 .42574 - .03104 .22713

Table X1III

Bond Distances Involving Hydrogen (a )

°2 - Hl • 981 A C - H ,  1.231 I 4 4

C2 “ H2 1.109 C, - Hc 1.082 4 5

C3 “ H3 *884 C, -H, 1.0354 6
9Average C - H  distance 1.06A



X U ?  •

are coplanar. The equation of the plane of the carbon atoms
fwith respect to the orthogonal axes a b q is given by:

.22424X - .81360Y - .53645Z - .02463 - 0 (77)

where X = x + z cos^ $ Y = y and Z « z sin^? . The deviations 
of carbons and oxygens from this plane are listed in Table 'XLIV.

Table XLIV 

Deviations from the carbon plane (2)

0-ĵ +.0291 I o2 +.0006
o2 -.0400 +.0007
c1 -.0007 -.0007

The plane of the carboxyl group with respect to the 
same axial system is

.36301x + 1.66836y - z - .02694 = 0 (78)

This forms an angle of 5*75° with the carbon plane.
The electron density was determined in the plane of the 

carbon atoms (Fig. XXV). This is plotted with respect to 
the axes f + g in the plane (Broadley et al 1959). ^be 
plane was recalculated in terms of another set of orthogonal

1axes a b c
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Crotonio Acid

Electron density map in the plane of the molecule* 
Contours at intervals of le/A^j one electron 
contour dashed*

Figure XXVI



.05151X1 + .81360Y 1 - .579152* - .02465 - 0 (79)

’ • t rwhere X = x sin4 Y = y and Z = z + x cos/$ and A B and
»

C are the coefficients. The angle between the £ crystal
axis and f, tan  ̂a/C is 54° 33 • The angle between a and
g, tan "*■ B/o' is 5° 5 • The lengths of f and g are 6.955 a 

0and 14«660Arespectively. The angle between f and g is 
cos~1(sin 54° 53* sin 5° 5*) = 85° 52'.

This map reveals an even higher degree of anisotropy 
than was displayed in sorbic acid (Fig. XV). This is in 
agreement with the results of calculations on thermal motion.

10. Thermal Motion

The values of the anisotropic temperature factors 
obtained from the least squares refinement, with their 
standard deviations (see section lib .6) are given in Table XLV. 
The axes of the ellipsoids of vibration of the atoms of 
crotonic acid were determined by the method of Rollett 
and Davies (1955) (Table XLVl). The root mean square 
amplitudes of vibrations along these axes are listed in 
Table XLVII. The eccentricities of the ellipsoids so described 
are slightly greater than those for sorbic acid (Table XXIII) 
though the lengths of the major axes are comparable.

If, as a first approximation, the molecule may be
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Table XIV

Anisotropic Temperature Factors (xl0~^ ),

i/311 /^22 /*33 ;

°1 .553 ±  .012 6,967 +.021 .580 + .012

°2 .475 ±  .013 9.983 + .025 .667 + .014

•442 + *018 2.910 + .026 .521 + .018

c2 .649 + .021 3.526 + ,029 ,467 + .017

C3 .708 + .021 3.905 ± .029 .505 + .018

°4 .431 ±  .020 6.653 + .039 .751 + .024

12 /^23 /^13

°1 • 574 + .010 -1.946 + .008 .526 + .018

°2 .620 + .011 -2.533 ± .010 .424 + .021

C1 - .376 + .013 ..130 + .014 .214 + .030

°2 .578 + .014 .001 + .012 .464 + .029

°3 •634 + .015 .613 + .013 .638 + .030

C4 - .302 + .016 .521 + .018 .065 + .039
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Table XL VI

Orientation of the Axes of Ellipsoids of Vibration 
, with respect to Crystal Axes

a

°1 1. 110.3° 1. 83.8° 1. 21.3
2. 47.2 2. 131.0 2* 70.8
3. 59.2 3. 41.8 3. 64.7

°2 1. 90*3 1. 118.8 1. 28.8
2* 136.4 2. 52.7 2. 70.8
3* 49.0 % 62*7 3. 53.2

C1 1. 102.0 1. 98.7 1. 14.8
2. 167.2 2* 83.7 2. 101.1
3* 89.4 3. 26*9 3. 63.1

1. 102*1 1. 16.4 1. 100.92;
2:. 15.1 2* 88.0 2. 101.2
3. 85.2 3. 59.9 3. 30.6

c3 1* 27.1 L. 83.1 1. 116.0
J 77.8 2. 164.3 2* 80.3

3. 49.3 3. 74.5 3. 44.8

1. 101.2 1. 17.9 1. 76.34 2* ̂ 7 8*0 2. ‘74.0 2* 159.8
3* 31.2 3. 65.6 3* 71.8
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Table XLVII

R.M.S. Deviations from the Principal Axes (A)

* <3„ b Zxx , •

°1 .140 . 51.1.6 A .309 7.5 A* .255 5.1 A

°2 .352 9.8 .167 2.2 .242 4.6

°1 .149 123; .258 5.2 .220 3.8

°2 .163 2.1 .270 5.8 .225 4.0

°3 .292 6.7 .170 2.3 .216 3.5

°4 -324 8.3 .209 3.5 .230 4.2

Table XLVIII

X

°i - .98571

°2 -1.77257

°1 - .82300

°2 .53256

°3 1.64572

C4 3.04138

.1.32162 
.78418 

. .09641 

.50391 

. .21476 

.33246

Z

.04799 

-.06673 

-o 00127

.00125

.00150

-.00092



assumed to move as a rigid body, the vibrations of the 
atoms may be resolved into translational and rotational 
motion of the molecule as a whole (Cruickshank 1956a).
The positions of the atoms were calculated with respect to 
molecular axes whose origin was taken at the moleoular 
centre of mass (Table XLVIII). The x axis is directed along 
the long axis of the molecule, with the y axis at right angles 
in the plane and the z axis perpendicular (Fig. XXVIl).

Figure XVII

From the observed root mean square displacements
of the atoms with respect to the molecular axes, least
squares normal equations may be derived (sections I 5*5.and. Ila 14)
for the determination of T + <£>, the translational and rotational
components of the molecular motion. The values of T + W so
obtained, with their standard deviations are listed in Table XLIX..
Using these values, the equations (I (19)) were then solved
for U, .. The observed and calculated values of U. . are 

±3
compared in Table L.  ̂ The fair , correlation of these 
values indicate that the treatment of the crotonic acid 
molecule as a vibrating unit is probably valid.
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5.087

,186*3

Table XLIX

Tij (xl0~2 A2)

•440 1.830 +.435

2.941 ±.579

CO± . (deg.2)

27.0 44*5 ±  9*0

18.9 ±  5*1

.704 *474

.925 ±  *584 

2.121 +.780

1.0 + 13.5 

1.1 + 4*6

18.0 + 4*4



Table L

mmO 9Atomic Vibration Amplitudes (xlO A )
TT(obso)
11

n (calc.)
11

TT(obs.) 
22

n (calc.)
22

TT(obs.)
33

n (calo.)
33

°1 5*068 6*056 2.126 3.493 8.795 9.074

°2 4064O 5.433 2.956 4.691 11.855 11.178

C1 4.724 5.093 5.100 3.315 3.085 2.350

°2 6.078 5.228 3.567 5.098 3.627 3.000

°3 6*267 5.H3 4.412 4.434 2.797 4.900

°4 5.294 5.149 8.909 8.039 5.695 5.352

(obs*) 
12

(calc.)
12

(obs.) 
25

(calc.)
23

(obs.)
13

(calc.)
13

°1 2.699 I.IO5 - .908 - .622 -1.101 - .771

°2 2.502 2.595 ~ .755 - .619 -1.036 - .910

.458 1.786 -1.480 - *945 - .892 - .702

°2 1.925 1.682 - *716 - .929 - .219 - .712

°3 2.859 2.024 - .084 -I.024 - .712 - .719

°4 .059 1.272 -I.410 -1.214 - ,515 - .671



The cross terms of the T 's are small with respect toX J

the diagonal terms, indicating that the molecular axes 
chosen are closely coincident to the true axes of vibration 
of the molecule. The values of 4 ^  are larger
because the atoms are close to the x axis, resulting in a 
large error for these terms (Cruickshank 1956c). The 
effects of internal vibrations, which cannot be determined 
accurately, also contribute to the error (Lonsdale 1961)

The vibrational movements are fairly uniform, though, 
as expected, slightly larger along the chain length. The 
mean displacements are , 22I, .181 and . 13& in the x,y and z 
molecular directions respectively. The oscillations about 
the x axis are exceptionally large; approximately 13»5°» 
which would have considerable effect on the bond lengths 
(Cruickshank 1956b). Oscillations about the other axes 
are 4»1° and 4*2° respectively. The molecular dimensions 
were, revised to include the effects of oscillation about the 
molecular axes. (Cruickshank 1956b). The values obtained 
for bond lengths and angles are given in Tables LI and LII*. 
These are shown diagrammatically in Figures XXVIII and XXIX.



Table LI 

Revised Bond Lengths (L)

°1 - C1 1.250 A

°2 -Cl 1.303

C1 - C2 1.498

°2 - c3 1.327

°3 tm C4 1*502

Table LIT 

Revised Bond Angles

°1 1 0 -°2 125.3

°1 - ci " C2 121.7°

°2 - ci - C2 113.1°

C 1 l " C2 “ c3 122.9°

CM
0

°3 1 O 125*4°



11. Intermoleoular Contacts

The closest approaches to the surrounding molecules 
are given in Table LIV. \ They are listed in increasing

positions of the molecules included are listed in Table LIII

Table LIII

Equivalent positions of neighbouring molecules

The closest approaches are shown diagrammatioally in 
Figures XXX and XXXI.

The shortest distance between neighbouring molecules 
occurs in the hydrogen bonded carboxyl groupj between 0̂  

of molecule 0 and 0  ̂of molecule 1 which is related to 
molecule 0 by a centre of symmetry. The distance between 
C1 of molecule 0 and 0^ of molecule 1 is 3.38&* This is 
slightly greater than the sum of the Van der Waals radii 
for carbon and oxygen (3»I^ Pauling i960).

order of length up to a distance of 4.0SL The equivalent

Molecule 0 
Molecule 1 
Molecule 2 
Molecule 3 
Molecule 4 
Molecule 5 
Molecule 6

x , y , 2 
x, y, z 
x, 1+y, z 
4-x, 4-y, z 
x, 1-y, z 
2-x, 4+y, i-z 
1-x, y , i-z



Table LIII
oIntermolecular Distances less than 4- A

V 2.63 A illV  °r 3.61 A

°1- oj 3*38 v « ? 3*74

° r 3-39 3*74

° r 3.43 V
V C4 3*76

V o f 3*48 V  °l 3*79

° r of 3.52 V  0? 3*79

V 3*54 IV0 - 0 2 2 3*87

V VIcvx4 3.56 TIC - CI 3*98

v oF 3*58
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12. Analysis of Mote oular Dimensions

The revised "bond lengths found for the carboxyl group 
of crotonic acid ( Table LI ) are not inconsistent with 
those found for other carboxylic acids. The shortening of 
the single carbon-oxygen bond (I.303A) from the average 
value of I.36X and corresponding slight lengthening of the 
double bond (l.250li , average 1.23&) possibly indicate that a 
certain degree of hybridization occurs, or that a fraction 
of the dimers is packed with carboxyl groups arranged in the 
opposite sense. The latter would, however, tend to be 
prevented by the steric effect of the hydrogen atom on •

The length of 1.498& found for the bond, which
2 2corresponds to the normal Sp - sp single bond distance, 

coupled with the value of 1*327^ found for the double bond 
seems to indicate that conjugation does not play a large 
part in the determination of the molecular dimensions. The 
oxygens of the carboxyl group are not, of course, coplanar with 
the carbon skeleton, though the angle of tilt, 5*7 > is 
sufficiently small that some orbital overlap could 
still occur.

The revised bond angles found for crotonic acid (Table TjII), 
ere consistent with those obtained for sorbic acid and 

ionylidene crotonic acid, both around the carboxyl 
group and along the carbon chain.



IIo Discussion

1. Bond Length

The bond lengths of the two acids. studied compare 
favourably with each other and with those found for 
other similar carboxylic acids. The main point of 
difference occurs in the C^ - C^ bond; that is, the 
carbon-carbon bond to the carboxyl group. The value 
obtained for sorbic acid is 1.452 while that for crotonic 
is I.50SL As the standard deviations of these bonds is 
less than ,0l2, these differences are possibly significant# 
The sorbic acid molecule has a longer double bond system 
which may result in some conjugation along the chain.

A survey of a number of unsaturated acids shows that, 
in general, the C^ - C b o n d  is shortened (Table LY). ^

Table LV

Ci - C2 Bond length of some unsaturated acids 
Bond length (2.)

Maleic

Tiglic acid ' 1.44 (Porte and Robertson 1959) 
Chlorocrotonic 1*44 (Mammi et. al. i960)
Maleic 1*44 (Shahat 1952)
Sorbic 1.45
Salicylic I.458 (Cochran 1955)



Acrylic I.46 (Nitta i960)
^-Ionylidene crotonic I.46 (Eichhorn and MacGillavry 1959)

Furoic 1.47 (Goodwin and Thompson 1954)
Benzoic I.48 (Sim et. al. 1955)
Crotonic 1*50

This shortening may he sufficient to indicate a certain 
amount of hybridization in some of these compounds, particularly 
in those molecules with a bond length less than 1.45&*
It must be noted, however, that for cyolooctatetraene which 
is sufficiently non planar to preclude overlap of the 
orbitals, electron diffraction studies show a C - C bond 
distance of I.462 + .00l£ (Bastiansen et. al. 1957)• This 
distance, though shorter than Dewar’s (1959) calculated value
of I.479& must thus be included as a lower limiting value

2 2for pure Sp - Sp single bonds. Thus in crotonic acid,
as in the other instances in which the bond has been
found to be greater than I.46& resonance must play a limited role.

2. Molecular Motion

Most of the organic structures investigated by X-ray 
analysis are studied at room temperature, that is, relatively 
close to their melting points. Sorbic and crotonic acids 
present two interesting examples of structures with



relatively loose intermolecular forces and correspondingly 
great freedom of motion for the individual molecule. Crotonic 
and sorbic acids melt at 72°C and 134°C respectively, thus 
crotonic acid in particular would be expected to show a 
high degree of thermal motion. This has been confirmed. 
Crotonic acid has been found to have an oscillation of 
amplitude 13*5° about the long axis of the molecule, compared 
with the smaller but still considerable value of 10.5° for the 
higher melting point of sorbic acid. These results are 
consistent with those obtained for -Succinic acid which 
is a dibasic acid melting at 189~90°C* This acid crystallizes 
in infinite chains linked by hydrogen bonding through the 
carboxyl groups at each end of the molecule. This structure, 
which would still have little resistance to rotation about 
the chain axis has been found to have an oscillation about 
this axis of approximately 9° (Broadley et al 1959)* Though 
the values of the individual temperature factors obtained 
from the refinement of crotonic and sorbic acids may be 
subject to error (Lonsdale 196l), nevertheless the syntheses 
of these values in the determination of the motion of the 
molecule as a whole should yield a result whose order 
of magnitude, at least, is significant. The correlation 
of the values obtained for these three acids with their 
molecular size and melting point appears to confirm this



conclusion. Some of the observed effects of oscillation about 
the long axis may be accounted for by internal twisting 
vibrations however these should have a comparatively small 
influence at room temperature (Cruickshank i960).

These results also agree with those predicted from 
observation of the thermal diffuse reflections for sorbio 
acid (Lonsdale et. al. 194l)» Laue photographs of sorbic
acid exhibit a pattern of broad diffuse reflections corresponding 
to planes parallel to the chain length, and thin diffuse streaks 
in directions perpendicular to the chain.

These streaks indicate the existence of transverse waves 
travelling through the crystal normal to the chain direction, 
resulting in a movement of chain against chain (Amor^s and Canut 1957)* 
The observed oscillation of the molecules about the chain axis 
appears to confirm this.

The apparent slight deviation from planarity may result 
from these thermal vibrations of the molecule. Aliens, 
butatriene and dimethylacetylene which would be expected to be 
strictly linear have been observed in investigations by 
electron diffraction to exhibit slight bending due to thermal 
motion (Bastiansen and Traetteberg 1960).
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Appendix la

Structure Factors for Sorbic Acid
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Structure Factors for Crotonic Acid
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APPENDIX II

Some Programmes Written for the Deuce Computer

Deuce is a binary digital electronic computer containing 
both fast access and slow access information stores. The 
fast stores consist of 21 mercury delay lines capable of 
holding 1, 2, 4 or 32 32-digit binary numbers, having an 
access time of 32 to 1024 microseoonds. The slow store 
comprises a magnetic drum holding 8192 32-digit binary 
numbers, having access time of 13 to 48 milliseconds.

Input and output can be in the form of punched cards 
or punched tape.

Programmes may be written in basic machine language 
or may utilize a simplified coding scheme such as STAC 
or Alphacode. STAC (Storage Allocation and Coding) 
translates decimally punched instructions to basic machine 
language. The STAC control also includes instructions 
which facilitate the testing and development of a 
programme•



Programme I

This programme, using the STAC control system calculates
pthe variance (v )  of modified intensities ( F ) and alsoo

computes values for the N(z) test.

Input
The input, on punched cards, consists of*

1. The values of R.. for the cell
U

22. The limits of the desired ranges of sin 9 into which
2the F data should be divided > four ranges are o

allowed
3. The modified intensities
4. A "last card"

Output

1. The values of V for each range
2. The number of reflections included in each range
3. The values of N(z) for z = 0(.l)l.0 for each range

Time
Thirty reflections per minute 

Method
2The programme calculates sin 0 for each reflection
2as-1 it is read, and assigns the Fq to the appropriate



storage. When all the intensities have been read, one 
range at a time is recalled to the fast store, and £  I 
and 2. 1^ are accumulated. For the variance, the 
function computed is

The second part of the programme, which may be omitted, 
computes the proportion of intensities N(z) in each 
range less than a given fraction of the average intensity 
for that range. Unobserved terms must be included.



Flow diagram for Program™** T

Reads binary R ^ 's

Reads sin 0 range limits
~  I -------------------------

Reads 1 card with hkj£ and I
   I

Is this last card? 
| No

Yes

Yes

Yes 
sendS" to
appropriate
store

Calculates sin ©I
Is sin^Q less than minimum?

Is sin 0 within range 
limits?

No

Calls range in sequence from store

Is range empty Yes stops}single shot for 
next range

Cumulates Z. I i I
  l

Is this I last in range 
" 4* Yes

No

Calculates variance (V)

Punche s (AvI) 2 Av I2j V

No Is this last range?



134.

Calls range in sequence from store

Tests magmitod© vitfe respect to s ranges

Counts mp> in appropriate coomtex JFos. I to JL

lo

Finds progressive sum of eoomters I to X

Pmnciies 1 cards number of I*s in range

Wo Is tMs last range

Beads I fro® range

Poaches 10 cards with W(z)

Calculates (fraction of average l) = (s)

STOPS



Programmes II and III

These programmes, written in basic DEUCE language, 
were designed as supplements to the least squares refinement 
programme. Input and output are on punched cards.

Programme II calculates the standard deviation of 
positional and thermal parameters.

Input
- g

1. The number of degrees of freedom, (n-s); J.wA
and cell dimensions

2. Optional output (b) from least squares programme
containing the appropriate derivatives (see section II.l).

Output

Pour cards per atom
1. <*" x/a <r y/b 0- z/0
2. O’ x or y cr z

5- <T/*U CVlOJb

<r 1̂ 53
4* p  23 9  fin cr/^12

Time
Approximately 10 seconds per atom.



13 6.
Method

The programme calculates the expression

ZT irA'
(n-s)

for each parameter, then computes O' x}CTy and O ” z by 
multiplying by the appropriate cell parameter (no correction 
is made for nonoblique axes).

I I vitiate? i ";r,
j t'T W.,*vjs*Z ye? am* w r *

t ? •'vr"h* n j

n* r # « "  [
f. ■■■■■....■ . . I
I or sr , '& , *

' >v.„- V ' |



Flow Diagram for Programme n

Output from Least 
Squares Programme

Reads cell dimensions

Reads ^  w a n d  n-s

Calculates standard deviation of 
coordinates

Reads 15 cards with Least 
Squares totals for 1 atom

Calculates standard deviation 
of thermal parameters

Punches 2 cards with 
tr x/a W  y/b O' */,
cr X a~ y z

Punches 2 cards with

cr $22
^23 /̂ 13 /̂ 12
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Programme III calculates the standard deviation of electron 
density.

Input
1. Complete structure factor output from structure factor

programme (including unobserved terms)
2. The appropriate volume or area (for projections)

Output

er( f )

Time
200 reflections per minute. (This is the limit of 

card reading time for DEUCE).

Method
2Forms progressive sum of (Fq - FQ) then calculates

<r 9 - $ ( Z ( * 0 - V 2)



Flow Diagram for Programme III

Yes
No

Is this last card

Punches <3T J

Calculates <T p

Reads fractional volume 
of cell from last card

Cumulates ( F

Reads one card of output 
from structure factor programme



's- . feu.;;, SfT U ;

v"2'-«S /"’?.' *■;■ /:'.£!. •>■ >•■ ■ " -- •-

. •- -■ --a... • - ,t -  -1. ■ -./;.;' .

- • ' * ' ‘-. • ' I : '.; ;. .•
■ - ' <\ '■ - Hv '

*  • ';.

. ... - :. ^
■ ... ; -■■ ■ •:■■■

u  , ■ -
:...m, 'r'j&i & *4 'i ■- -■ § 1, * k  ■ ? ■ t;; :• -
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