X-RAY CRYSTAL ANALYSIS OF

SOME NATURAL PRODUCTS.

THESIS

PRESENTED FOR THE DEGREE

OF

DOCTOR OF PHILOSOPHY

IN THE

UNIVERSITY OF GLASGOW

BY

JEAN A. HAMILTON, B.Sc.

CHEMISTRY DEPARTMENT.

MAY, 1962.

and the second second

a state and the

-ಕ್ರಮಂತ್ರ ಚಿತ್

والأناد معقرة وركوها كاورا والثناة

ProQuest Number: 13849309

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 13849309

Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 – 1346

PREFACE.

This thesis describes research work carried out in the years 1959 - 1962 in the Chemistry Department of the University of Glasgow.

I wish to express my gratitude to my supervisor, Professor J.M. Robertson, for suggesting the topics of research, and for his guidance and constant encouragement. I would also like to thank Dr. G.A. Sim and Dr. T.A. Hamor for helpful advice on many points during this work.

I am indebted to Dr. D.C. Gilles, and the staff of the Computing Laboratory of Glasgow University for facilities on the English Electric DEUCE computer, and to Dr.J.S. Rollett, Dr. J.G. Sime and others, who devised the programmes for the extensive numerical calculations described in this thesis.

In conclusion I acknowledge the award of a Maintenance Grant from the Department of Scientific and Industrial Research.

SUMMARY.

The main part of the work described in this thesis is concerned with the determination of the structure of the alkaloid echitamine by an X-ray analysis of the methanol solvate of echitamine bromide.

Two additional sections deal with the structure determination of acetylbromogeigerin (a reduced azulene system), and of cedrelone iodoacetate (a triterpenoid). The work on the former was shared with Mr. A.T. McPhail and on the latter with Mr. I.J. Grant. As far as possible alternate structure factor calculations and Fourier syntheses were carried out by each partner. A fourth section describes the analysis of a "supposed oxepin".

In all of these structure determinations the heavy atom technique was used to overcome the phase problem. This consists of deriving approximate phases for the structure from the heavy atom and using them to calculate the electron density distribution. The method essentially converts the unmeasurable phase relationships into certain intensity relationships which can be measured directly. This technique is excellent for structure analysis of the type described in this thesis but is less suitable for the study of structural features of small molecules where accurate atomic positions are required.

In the appendix various alternative methods of structure determination are described which were used in attempts

to solve the structure of two hydrocarbons, dianthracene and circumanthracene. A note is also included on echitamine hydrobromide dihydrate for which considerable three-dimensional data were collected and preliminary investigations carried out.

a construction and a second second

e Constantino de la c

na haan selah an 'n Staatske kandel aan

1 (186**8)** - 514

.

PREFACE.

SUMMARY.

PART I.

	SOME METHODS OF CRYSTAL STRUCTURE ANALY	<u>sis</u> .	
1.	Introduction	• • • •	1.
2.	THE STRUCTURE FACTOR AND CALCULATION OF		
	ELECTRON DENSITY.		
	2.1. Diffraction from a crystal	• • • •	1.
	2.2. The atomic scattering factor	••••	4.
	2.3. Temperature factor	••••	5.
	2.4. Definition of the structure fact	or	9.
	2.5. Expression of electron density by	y	
	Fourier series		п.
	2.6. Fourier transforms	• • • •	13.
3.	THE PHASE PROBLEM AND METHODS OF SOLUTION	<u>M</u> .	
	3.1. Trial and error methods		14.
	3.2. The F ² series of Patterson		15.
	3.3. Heavy-atom techniques		16.
4.	METHODS OF STRUCTURE REFINEMENT.		
	4.1. Difference Fourier series		17.
	4.2. Least-squares refinement	•••	20.
5.	THE ACCURACY OF CRYSTAL STRUCTURE		
	DETERMINATION.	•••	23.
6.	METHODS OF COMPUTATION.		24.

PART II.

THE X-RAY STRUCTURE ANALYSIS OF ECHITAMINE

BROMIDE METHANOL SOLVATE.

1.	Intro	duction	•••	25.
2.	ECHIT	ECHITAMINE BROMIDE METHANOL SOLVATE.		
	2.1.	Crystal data	• • • •	27.
	2. 2.	Intensity data	• • • •	28.
	2.3.	Structure determination	••••	28.
	2.4.	Structure refinement		30.
	2.5.	Molecular dimensions	••••	32.
	2.6.	Discussion of results	• • • •	33.

PART III.

•

,

THE X-RAY STRUCTURE ANALYSIS OF

ACETYLBROMOGEIGERIN.

1.	Introd	Introduction		42.
2.	ACETYL	BROMOGEIGERIN		
	2.1.	Crystal data	•••	43.
	2.2.	Intensity data	••••	44.
	2.3.	Structure determination	• • • •	45.
	2.4.	Structure refinement	•••	46.
	2.5.	Results of the analysis	••••	47.
	2.6.	Discussion of results.	• • • •	48 ´ .

PART IV.

THE X-RAY STRUCTURE ANALYSIS OF CEDRELONE

IODOACETATE

1.	Intro	luction	• • • •	53.
2.	CEDRE	LONE IODOACETATE.		
	2.1.	Crystal data	• • • •	54.
	2.2.	Intensity data	• • • •	55.
	2.3.	Determination of the Iodine	position	56.
	2.4.	Structure determination	• • • •	60.
	2.5.	Structure refinement	• • • •	61.
	2.6.	Molecular dimensions	• • • •	62.
	2.7.	Discussion	• • • •	63.

PART V.

1.

THE X-RAY STRUCTURE ANALYSIS OF A SUPPOSED'				
	OXEPIN.			
Introd	uction	• • • •	6 8.	
A_'SUP	A 'SUPPOSED' OXEPIN.			
2.1.	Crystal data	• • • •	70.	
2.2.	Intensity data	• • • •	71.	
2.3.	Structure determination	• • • •	72.	
2.4.	Structure refinement	••••	73.	
2.5.	Molecular dimensions	••••	74.	
2.6.	Discussion	• • • •	74.	

APPENDIX.

REFEREN	CES	• • • •	90.
III.	CIRCUMANTHRACENE	••••	87.
II.	DIANTHRACENE	••••	83.
I.	ECHITAMINE BROMIDE DIHYDRATE	• • • •	81.

a de la compositiva d

.

٠

• • •

· · ·

1.1. INTRODUCTION.

Von Laue's discovery in 1912 of the diffraction of X-rays by crystals provided crystallographers with a powerful new tool. It became possible for them to investigate the structure of matter on the atomic scale and to determine the arrangement of atoms within molecules and crystals.

At first X-ray analyses of compounds were undertaken only when some knowledge of the atomic arrangement was available, but it has now become possible to determine structures in cases where the traditional methods of the organic chemist have failed. The recent increase in the availability of electronic computers has resulted in a vital speeding-up of hitherto lengthy and tedious calculations and further extended the choice of structures suitable for study by X-ray crystallography. This technique is now in a position to challenge strongly the method of structure determination by the degradative processes of organic chemistry.

2. THE STRUCTURE FACTOR AND CALCULATION OF ELECTRON DENSITY.

2.1. DIFFRACTION FROM A CRYSTAL.

A crystal lattice is composed of groups of atoms repeated at regular intervals, with the same orientation, in three dimensions. If it is assumed that each lattice point is the site of an electron then the positions of these electrons can be defined by the ends of a vector \underline{r} such that

$$r = ua + vb + wc$$

where $\underline{a}, \underline{b}, \underline{c}$ are primitive translations of the lattice, and u, v, w are integers. On irradiation by an X-ray beam these electrons vibrate and act as sources of secondary radiation.

Lipson and Cochran, 1952.

<u>s</u>__

In the above diagram a parallel X-ray beam, of wave length λ and direction specified by \underline{S}_{0} (modulus $\underline{+}$), falls on lattice points A_{1} and A_{2} separated by a vector distance \underline{r} . The direction of the diffracted rays is given by the vector \underline{S} (modulus $\underline{+}$). Under these conditions the path difference between the scattered waves is

$$A_{1}N - A_{2}M = \lambda(\underline{r} \cdot \underline{S} - \underline{r} \cdot \underline{S})$$
$$= \lambda \underline{r} \cdot \underline{S} \quad \text{where } \underline{S} = \underline{S} - \underline{S}$$

To ensure that the waves scattered by A_1 and A_2 are in phase, this path difference must be a whole number of wave lengths <u>i.e.r.S</u> must be an integer. Hence (ua + vb + wc). S must be integral and since u,v,w change by integral values each of the above products separately must be integral.

$$\underline{i.e.} \qquad \underline{a.S} = h$$

$$\underline{b.S} = k \qquad \dots \qquad (1)$$

$$\underline{c.S} = \ell$$

where h,k,l are integers. These equations (1) are known as the Laue equations.

These Laue equations, however, are unsuitable for direct application to diffraction problems. W.L. Bragg, (1913), showed their physical significance by relating the integers h, k, ℓ , to the Miller indices of the lattice planes. The relationship between Bragg's law and the Laue equations is shown as follows

$$\frac{a}{h} \int = 1$$

$$\frac{b}{k} \int = 1$$
Laue equations
$$\frac{c}{l} \int = 1$$

Subtraction of the first two equations gives

 $(\frac{a}{h} - \frac{b}{k}) \cdot \underline{S} = 0.$ which means that the vector \underline{S} is perpendicular to $(\frac{a}{h} - \frac{b}{k})$. It can be shown that the latter is the plane of Miller indices h, k, ℓ . Similarly \underline{S} is perpendicular to $(\frac{a}{h} - \frac{c}{\ell})$. Thus \underline{S} is perpendicular to the plane h, k, ℓ . But \underline{S} is a vector in the direction of the bisector of the incident and diffracted rays, since the moduli of \underline{S} and \underline{S}_0 are equal, and thus the bisector is identified with the normal to the plane h, k, ℓ . This argument justifies the concept of each diffraction as a reflection of the rays from the lattice planes.

If d is the spacing of the planes $hk \boldsymbol{l}$ then d is the

projection of $\frac{a}{h}_{h}$, $\frac{b}{k}$, $\frac{c}{l}_{l}$ on the vector \underline{S} i.e. $d = \frac{a}{h} \cdot \underline{S}$ But $\frac{a}{h} \cdot \underline{S} = 1$ from the Laué equations and $|S| = \frac{2 \sin \theta}{\lambda}$ from (I) $\underbrace{S \cdot 5 \cdot 5}_{l} \cdot \underbrace{S \cdot 5 \cdot 5}_{$

 $\lambda \lambda = 2d \sin \theta$

This is Bragg's law which with the Laue equations is used to interpret X-ray spectra and determine the structure of crystals.

2.2. THE ATOMIC SCATTERING FACTOR.

In 2.1. it was implied that the scattering unit in the atom is the electron. Since these electrons are assumed to be loosely held in the atom any change of phase on scattering is the same for all of them and so the amplitude scattered in the forward direction is Z times that due to a single electron, where Z is the atomic number.

On the other hand, in a direction making a finite angle with the direction of incident radiation, there will be path differences between waves scattered from electrons in different parts of the atom. These waves will interfere and produce a resultant amplitude less than Z times that due to a single The phase difference will depend on the angle of electron. scattering, the wave length, and the volume throughout which the electrons are distributed. The scattering factor f will thus approach Z for small angles of scattering and will fall away with increasing angle at a rate that, for a given wave length, is determined by the distribution of electrons within Atomic scattering factors have been calculated by the atom. James and Brindley, (1932), Thomas, (1927), Fermi, (1928), McWeeny, (1951), Berghuis et al. (1955), Tomiie and Stam, (1958), and others.

2.3 TEMPERATURE FACTOR.

In these theoretical scattering factors the atoms are assumed to be at rest, but thermal movements have an important effect in all practical cases. At all temperatures, including absolute zero, atoms have a finite amplitude of oscillation. The frequency of this oscillation is so much smaller than the frequency of the X-rays that to a train of X-ray waves the atoms would appear stationary but displaced from their true positions in the lattice. The general result is to spread the electron distribution and so decrease the intensities of

the spectra.

If X-rays are incident at an angle θ and the thermali displacement of an atom, normal to the reflection plane, is u then the path difference compared to that of an atom at rest is 2 u sin θ and the phase change is

$$\frac{2\pi}{\lambda}$$
. $2 u \sin \theta = 4\pi u \left(\frac{\sin \theta}{\lambda}\right)$.

If the scattering factor of the undisplaced atom is f_0 then the effect of thermal motion may be calculated as

$$f = f_0 \sum e^4 \pi_{i u_j} \left(\frac{\sin \theta}{\lambda} \right)$$

summed over the displacements u

If these displacements are assumed to be isotropic and hence centrosymmetric the sine terms disappear and the above expression can be written

$$f = f_0 \cos \left[4\pi \overline{u} \left(\frac{\sin \theta}{\lambda} \right) \right]$$

But $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$
 $\exp \left(-\frac{1}{2}x^2 \right) = 1 - \frac{x^2}{2} + \frac{x^4}{4!2!} - \dots$

Thus to a good approximation

$$\cos x = \exp\left(-\frac{1}{2}x^{2}\right)$$

$$-8\pi^{2}u^{2}\left(\frac{\sin^{2}\theta}{\lambda^{2}}\right)$$
and hence $f = f_{0}e^{-8\pi^{2}u^{2}}\left(\frac{\sin^{2}\theta}{\lambda^{2}}\right)$

or

or

 $= \mathbf{f}_{o}^{e} \mathbf{e}^{-B(\frac{\sin^{2}\theta}{\lambda^{2}})}$

where $B = 8\pi^2 u^2$ and \overline{u}^2 is the mean square displacement of the atom at right angles to the reflecting plane.

f

The factor B which is called the Debye temperature factor (Debye, 1914), can be treated as an empirical constant derivable from measurements of the intensities of X-ray reflections from a crystal.

In many organic crystals the molecules behave like rigid bodies. They are linked in the crystal by relatively weak Van der Waals attraction and perform oscillations which are large compared with the movements of atoms within the molecule against the much stronger covalent bonds. An anisotropic temperature factor is therefore required and this problem has been discussed by Cruickshank, (1956, a,b).

In general the thermal displacements are now different in different directions and require the assumption of an elliptical distribution instead of a sperical distribution. The mean displacement is now represented by a vector function or tensor instead of a simple vector normal to the reflecting plane. This can be a symmetrical tensor with six independent coefficients

$$\mathbf{U}^{r} \text{ sym}_{\bullet} = \begin{bmatrix} \mathbf{U}_{11} & \mathbf{U}_{12} & \mathbf{U}_{13} \\ \mathbf{U}_{12} & \mathbf{U}_{22} & \mathbf{U}_{23} \\ \mathbf{U}_{13} & \mathbf{U}_{23} & \mathbf{U}_{33} \end{bmatrix}$$

Each atom in the structure requires one such tensor U^{r} . The mean square displacement or amplitude of vibration U^{r} in a direction \mathcal{L} (components $l_{1}l_{2}l_{3}$ along x y z) is then 3 3

$$\begin{aligned} \overline{u}^{2} &= \sum \sum \overline{u}_{jj} \overline{l}_{j} l_{j} \\ i=1 \ j=1 \end{aligned}$$

$$= \overline{u}_{11} l_{1}^{2} + \overline{u}_{22} l_{2}^{2} + \overline{u}_{33} l_{3}^{2} + 2\overline{u}_{12} l_{1} l_{2} \\ + 2\overline{u}_{13} l_{1} l_{3} + 2\overline{u}_{23} l_{2} l_{3} \end{aligned}$$

 $-8\pi^{2}\overline{u}^{2}(\frac{\sin^{2}\theta}{\lambda^{2}})$

The temperature factor

 $= 8\pi^{2} \left(\sum_{i=1}^{3} U_{ij} U_{ij} U_{ij} U_{ij} \right) \frac{\sin^{2}\theta}{\times^{2}}$

now becomes

for the anistropic case.

This may be written in the form

$$T(hkl) = exp - \left[b_{11}h^{2} + b_{22}k^{2} + b_{33}ll^{2} + b_{12}hk + b_{23}kl^{2} + b_{23}kl \right]$$

where for example

$$b_{11} = 2\pi^2 a^{*2} U_{11}$$

$$b_{12} = 4\pi^2 a^{*} b^{*} U_{12}$$

$$a^{*} and b^{*} being reciprocal axes.$$

In modern refinement proceedures, convenient numerical methods have been developed for evaluating the six thermal parameters for each atom in addition to the three positional ones. The lengthy calculations for complex molecules require the use of electronic computers.

In practice the atoms in a molecule do not vibrate independently. The thermal effects in some cases may be described in terms of rigid body motions of the molecule as a unit. These motions may be resolved into vibrational and rotational components T and ω given with respect to the centre of mass (Cruickshank, 1956 c).

2.4 DEFINITION OF THE STRUCTURE FACTOR.

In a crystal atoms are distributed between the successive crystal planes thus producing a modification of the amplitude of the scattered wave.

If there are <u>N</u> atoms in the unit cell of a crystal, situated at points $x_n y_n z_n$ (the coordinates being fractions of the unit cell parameters and measured with respect to the crystallographic axes) then the position of the nth atom in the unit cell can be represented by a vector <u>r</u> where

$$\underline{\mathbf{r}}_{n} = \mathbf{x}_{n}\underline{\mathbf{a}} + \mathbf{y}_{n}\underline{\mathbf{b}} + \mathbf{z}_{n}\underline{\mathbf{c}}$$

The path difference between the waves scattered by these atoms and those that would be scattered by a set of atoms at the points of the lattice which define the unit cell is $\lambda \underline{r}_n \cdot \underline{S}$ Thus the expression for the complete wave scattered by the n^{th} unit cell contains a term

$$f_{n} \exp\left(\frac{2\pi i}{\lambda} \cdot \lambda \underline{r}_{n} \cdot \underline{S}\right)$$

or $f_{n} \exp\left(2\pi i \underline{r}_{n} \cdot \underline{S}\right)$

where f_n is the atomic scattering factor of the nthatom. Hence a term

$$F = \sum_{n=1}^{N} f_n \exp(2\pi i r_n \cdot \underline{S})$$

will occur in the expression for the complete wave scattered by a crystal. This can be written as

$$F = \sum_{n=1}^{N} f_n \exp 2\pi i (x_n \underline{a}, \underline{S} + y_n \underline{b}, \underline{S} + z_n \underline{c}, \underline{S})$$

$$= \sum_{n=1}^{N} f_n \exp 2\pi i (hx_n + ky_n + \ell z_n)$$

This quantity F is called the structure factor. It depends on the arrangement of matter in each individual crystal. It is a complex resultant which can be characterised by an amplitude |F|and a phase constant \checkmark

$$|F(hk \ell)| = \sqrt{A^2 + B^2}$$

$$\boldsymbol{\omega}(hk \ell) = \tan^{-1} \frac{B}{A}$$

where
$$\mathbf{A} = \sum_{n=1}^{R} \mathbf{f}_n \cos 2 \pi (h\mathbf{x}_n + k\mathbf{y}_n + \boldsymbol{\ell}_{\mathbf{z}_n})$$

M

N

$$B = \sum_{n=1}^{n} f_n \sin 2\pi (hx_n + ky_n + \ell z_n)$$

If the space group is known these summations can be carried out over the coordinates of the equivalent positions and this results in a simplified expression. In particular if a centre of symmetry is present and is chosen as the origin for the coordinates, the structure factor can be obtained by summing over the cosine terms alone and the possible phase angles are thus limited to 0 or π .

A more generalised form of the structure factor expression can be obtained as follows. If $\rho(xyz)$ is the electron density at the point (xyz), the amount of scattering matter in the volume element dxdydz is ρ dxdydz and the structure factor equation is

 $F(hkl) = \int_{x=0}^{l} \int_{y=0}^{l} \int_{z=0}^{l} V \rho(xyz) \exp 2\pi i (hx + ky + lz) dxdydz ...$

2.5 THE EXPRESSION OF ELECTRON DENSITY BY FOURIER SERIES.

Since a crystal is periodic in three dimensions its electron density ρ (xyz) at the point (xyz) can be represented by a three-dimensional Fourier series.

 $\rho(xyz) = \sum_{-\infty} \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} A(pqr) e^{2\pi i(px + qy + rz)}$

where p,q,r are integers and A(pqr) is the unknown coefficient of the general term. This coefficient can be evaluated by substituting the value of the electron density in expression (2) above

$$F(hkl) = \int_{0}^{1} \int_{0}^{1} \sum_{n=1}^{\infty} \sum VA(pqr)exp2\pi i(px + qy + rz)$$

 $exp2\pi i(hx + ky + lz)dxdydz$

Since the exponential functions are periodic the integral of their product is zero in general over a single complete period. It is only non-zero if h = -p, k = -q, $\ell = -r$.

This gives

$$F(hk l) = \int_{0}^{1} \int_{0}^{1} VA(pqr)dxdydz$$

Thus

$$F(hk l) = A(pqr)V$$

The electron-density distribution at every point in a crystal can be represented by the Fourier series

$$\rho(\mathbf{x}\mathbf{y}\mathbf{z}) = \frac{1}{\mathbf{v}} \sum_{-\infty} \sum_{-\infty} \sum_{\mathbf{z}} F(\mathbf{hk} \, \boldsymbol{\ell}) \exp\left[-2\pi \mathbf{i} \left(\mathbf{hx} + \mathbf{ky} + \boldsymbol{\ell}\mathbf{z}\right)\right]$$

It is convenient to write this series in the form

$$\rho(xyz) = \frac{1}{v} \sum_{-\infty}^{\infty} \sum_{-\infty}^{\infty} |F(hk \ell)| \cos \left[2\pi hx + 2\pi ky + 2\pi \ell z - d(hk \ell) \right].$$

where d(hk l) represents the phase constant associated with the amplitude |F(hkl)|. The constant term in the series F(000) is defined by $F(000) = V \int_{0}^{1} \int_{0}^{1} \rho(xyz) dxdydz = Z$.

From the observed intensities of the diffracted spectra $|\mathbb{F}(hk \ell)|$ can be calculated but no information can

be obtained concerning the relative values of the phase constants. This limitation prevents any immediate or direct application of the series to the solution of crystal structures except in special cases.

2.6. FOURIER TRANSFORMS.

The transform of a set of points related to the origin by a set of vectors \underline{r}_n is a continuous function whose value is given by

$$G(s) = \sum_{n=1}^{N} f_n \exp 2\pi i \underline{r}_n \cdot \underline{s}$$

where <u>a</u> is a vector in reciprocal space, and f_n is the weighting factor of each point. If the set of points have a centre of symmetry the equation may be reduced to N

$$G(s) = 2 \sum_{n=1}^{\frac{\pi}{2}} f_n \cos 2\pi (hx + ky + lz)$$

where x, y, z are related to arbitrary axes and h, k, ℓ , may have any value. If the set of points do not have a centre of symmetry the transform is complex and the real and imaginary parts must be computed separately.

The placing of several units in a three-dimensional array causes the Fourier transform to be observed only at the intersections of three sets of planes corresponding to the three Laue conditions. These intersections form the reciprocal lattice. Therefore the reciprocal lattice with weights attached to each point proportional to the structure factor, is a complete representation of the diffraction pattern of the crystal.

For the purposes of crystal structure determination the Fourier transform of several unit cells is derived optically by means of the optical diffractometer and compared with the weighted reciprocal lattice. Many trial structures can therefore be tested quickly and the more promising ones used to calculate structure factors in the normal manner.

3. THE PHASE PROBLEM AND METHODS OF SOLUTION.

3.1 TRIAL AND ERROR METHODS

It has been shown in the preceeding discussion that the course of a crystal structure determination cannot in general be direct, because, in the process of recording the diffraction pattern, knowledge of the phases of the various diffracted beams is lost. The first indirect methods used to overcome this problem are known as trial and error methods. These consist in general of postulating a possible structure, calculating structure factors and comparing these with the measured amplitudes. Trial and error methods vary from one crystal to another and use must be made of any evidence concerning the atomic positions which can be obtained from the physical and chemical properties of the compound or from the X-ray reflections themselves.

The method of Fourier transforms has already been

mentioned. The contents of several unit cells are punched on a mask which is placed in an optical diffractometer. The Fraunhofer diffraction pattern is then effectively the Fourier transform. This method was applied to the structure determination of dianthracene (Appendix II). It is useful in distinguishing between a possible structure and an incorrect one but provides little information which could be applied to an incorrect structure to bring it nearer the true one.

3.2 THE F² SERIES OF PATTERSON

A.L. Patterson in 1934 developed a new approach to the phase problem of crystal analysis. Attempts are no longer made to determine the unknown phases but instead use is made of the information available viz:- the structure amplitudes which are directly related to the intensities and can thus be measured. He used the squares of the moduli as Fourier coefficients to give a vector representation of the crystal structure. The Patterson function is defined as

 $P(uvw) = V \int \int \int \rho(xyz) \rho(x + u, y + v, z + w) dxdydz$

For the purposes of computing this is expressed as

$$P(uvw) = \frac{1}{v} \sum_{h \in \mathcal{L}} \sum_{h \in \mathcal{L}} \int_{F} (hk \ell)^{2} \exp 2\pi i (hu + kv + \ell w)$$

P(uvw) can clearly only have large values when both $\rho(xyz)$ and $\rho(x + u, y + v, z + w)$ are large. This occurs if there are atoms at(xyz) and (x+u, y+v, z+w) separated by a vector distance u, v, w. This method therefore can give direct evidence about relationships between atomic positions with no preliminary assumptions.

In practice the difficulties of solving any but the simplest structure by this method are formidable. For a system of N atoms there will be $\frac{N(N-1)}{2}$ distinct peaks in the vector distribution. These will tend to overlap and the Patterson peaks will therefore tend to be broad and ill-defined.

3.3 HEAVY ATOM TECHNIQUES.

In the case of a structure containing one or more relatively heavy atoms, the peaks corresponding to interatomic vectors between these atoms are prominent in the Patterson synthesis and the latter can lead directly to the crystal structure. The coordinates of the heavy atom determined from the Patterson map are used to calculate approximate phase constants and application of the Fourier method will then give a direct representation of the structure. Certain ambiguities may persist depending on the crystallographic situation of the heavy atom.

Although this method of approach leads to a correct solution of the structure, since the atomic positions of the light atoms are determined from only a small part of the structure amplitude precision data are required to ensure that their accuracy is equal to that in a structure consisting of all light atoms. This is complicated by the fact that the presence of the heavy atom means a higher absorption coefficient

and makes the initial measurements of intensities more difficult.

This difficulty is minimised in the method of isomorphous replacement. This approach is applicable if it is possible to substitute successively two different heavy atoms in a molecule so that the resulting crystal structures are isomorphous. Use is then made of the changes in structure amplitude which occur when one heavy atom is replaced by the other. The replaceable atom requires a smaller proportion of the electron content than is required for the heavy-atom method. Both of the methods described above were first applied to the structure analysis of heavy-atom derivatives of the phthalocyanines (Robertson and Woodward, 1937,).

The expression for the structure factor in the case of a crystal with one heavy atom in the unit cell is

$$F(hk l) = f_{H} \exp \left[2 \pi i (hx_{H} + ky_{H} + l z_{H}) \right]$$

n

+
$$\sum_{j=1}^{f_{j}} \exp \left[2 \pi i \left(h \mathbf{x}_{j} + k \mathbf{y}_{j} + \ell \mathbf{z}_{j} \right) \right]$$

where f_H is the scattering factor of the heavy atom whose parameters are $x_H y_H z_H$ and n is the number of light atoms.

4. METHODS OF STRUCTURE REFINEMENT.

4.1 DIFFERENCE FOURIER SERIES.

The discussion up to this point has concerned methods of determining the atomic coordinates. These initial coordinates however are seldom sufficiently accurate to give the correct phase angle associated with each structure amplitude. The process of refinement i.e. successive calculation of electron density and structure factors is carried out using the normal F_{α} synthesis.

A more efficient method is based on the calculation of a Fourier series where the residuals $(F_o - F_c)$ are used as Fourier coefficients. This has been discussed by Booth,(1948 b), and Cochran, (1951).

If the calculated coordinates $(x_c \ y_c \ z_c)$ are plotted on the difference map, the directions of steepest ascent at these points give the directions of the shifts. The magnitude of the shift can be calculated from the relation

$$\boldsymbol{\epsilon} = \mathbf{r} = \frac{\frac{d(\rho_{o} - \rho_{c})}{dr}}{2\rho_{o}(o) \boldsymbol{\rho}} \quad \text{where } \boldsymbol{\rho}_{o} \text{ is approximately}}{z(\boldsymbol{\rho}_{1}) \frac{2}{2}}.$$

ε is the magnitude of the shift
 ρ ρ c are the observed and calculated electron densities
 ρ (o) is the electron density at the atomic centre
 has an average value of 5.6.

This results from the following argument. Near the centre of an atom the electron density at a distance r from the centre is given closely by

$$\rho(\mathbf{r}) = \rho_{o} e^{-\mathbf{p}\mathbf{r}^{2}}$$

where $\rho(o)$ is the maximum density. For very small values of x

 $e^{x} \sim 1 + x$ so that for small values of r $e^{-\frac{1}{r}r^{2}} \sim 1 - \frac{1}{r}r^{2}$

A good approximation therefore if r is small is

$$\rho(\mathbf{r}) \sim \rho(\mathbf{o})(1 - \mathbf{p}\mathbf{r}^2)$$

Now the gradient of $\rho_o - \rho_c$ is the gradient of ρ_o less the gradient of ρ_c . At the peak of ρ_c its gradient is zero so that

$$\frac{d(\rho_{o} - \rho_{c})}{dr} = \frac{d(\rho_{o})}{\frac{dr}{dr}}$$

$$= \frac{d(\rho_{o}) - \rho_{o}(o) pr^{2}}{\frac{dr}{dr}}$$

$$= 2\rho_{o}(o) pr$$

$$\therefore \epsilon = r = \frac{d(\rho_{o} - \rho_{o}) pr}{\frac{dr}{dr}}$$

$$= 2\rho_{o}(o) pr$$

The value of ρ_0 is given approximately by $\rho_0 = Z \left(\frac{\dot{P}}{\pi}\right)^2$ where \dot{P} is ~5.0.

Temperature motion has the effect of spreading the electrons of an atom over a large volume. If the temperature correction has been underestimated $\rho_o < \rho_c$ at the peak and the atom location appears in a difference synthesis in a depression surrounded by a raised ring (Fig. 1) Alternatively if the temperature correction has been over-estimated then $\rho_o > \rho_c$ at the peak and the opposite

situation occurs.

If the thermal motion is anisotropic then the observed electron distribution is drawn out in the direction of maximum vibration and narrowed in a direction at right angles to it (Fig.2.).

4.2 LEAST-SQUARES REFINEMENT.

The method of least-squares introduced by Hughes, (1941), in the structure analysis of melamine is another method of refinement which like the difference synthesis overcomes the effects due to termination of series and also provides a method of decreasing the influence of inaccurate coefficients on the results. This method, however, suffers certain disadvantages in comparison with the Fourier method. The main ones are that an absolute scale must be established and scattering factors f_c are used to calculate both the structure factors and $\frac{\partial F}{\partial x_c}$ etc. Errors in either scale or scattering factors are bound to influence the results.

The object of the process is to find the most probable values for the atomic parameters i.e. those which result in a minimisation of the quantity

$$\mathbf{R} = \sum \mathbf{w}_{\mathbf{i}} (\mathrm{hk} \boldsymbol{l}) \left[|\mathbf{F}_{0}(\mathrm{hk} \boldsymbol{l})| - |\mathbf{F}_{0}(\mathrm{hk} \boldsymbol{l})| \right]^{2}$$

where the weight w_1 of a particular term should be taken as inversely proportional to the square of the probable error of the corresponding F_0 . The value of R is influenced by the atomic coordinates and the temperature factor. In order to start a series of successive approximations of this type the trial parameters must be reasonably good.

Each structure factor is computed by a relation which is in general

 $\mathbf{F}_{c} = \sum_{n}^{2\pi i} (hx_{n} + ky_{n} + \ell z_{n})$

The variables in this expression are exponentials and do not supply the desired linear equations. These, however, can be devised by using the first two terms of Taylor's expansion. If the unrefined coordinates of the nth atom are $x_n y_n z_n$ the correct position can be defined by $x_n + \epsilon x_n$, $y_n + \epsilon y_n$, $z_n + \epsilon z_n$ $f(x_n + \epsilon x_n, y_n + \epsilon y_n, z_n + \epsilon z_n) \longrightarrow F_0$ $f(x_n y_n z_n) \longrightarrow F_0$

By Taylor's expansion

$$\Delta \mathbf{F} = \mathbf{F}_{o} - \mathbf{F}_{c} = \mathbf{F}_{c} + \sum_{n} (\epsilon \mathbf{x}_{n} \frac{\partial \mathbf{F}_{c}}{\partial \mathbf{x}_{n}} + \epsilon \mathbf{y}_{n} \frac{\partial \mathbf{F}_{c}}{\partial \mathbf{y}_{n}} + \epsilon \mathbf{z}_{n} \frac{\partial \mathbf{F}_{c}}{\partial \mathbf{z}_{n}}) - \mathbf{F}_{o}$$

$$\therefore \quad \Delta \mathbf{F} = \sum_{n} (\epsilon \mathbf{x}_{n} \frac{\partial \mathbf{F}_{c}}{\partial \mathbf{x}_{n}} + \epsilon \mathbf{y}_{n} \frac{\partial \mathbf{F}_{c}}{\partial \mathbf{y}_{n}} + \epsilon \mathbf{z}_{n} \frac{\partial \mathbf{F}_{c}}{\partial \mathbf{z}_{n}})$$

An equation of this type can be set up for all the measured structure amplitudes and these equations usually greatly outnumber the unknowns. These observational equations are reduced to 3N normal equations (N is the number of atoms) the nth of these, for instance, being obtained by multiplying both sides of each of the observational equations by $w \frac{\partial F_c}{\partial x_n}$

and adding the q left hand sides and q right hand sides separately, w being the weighting function for the summation over all the terms within the limiting sphere.

$$\sum_{q} (\Delta F) \frac{\partial F_{c}}{\partial x_{n}} = \sum_{n} w \left[\left(\frac{\partial F_{c}}{\partial x_{n}} \right)^{2} \epsilon x_{n} + \left(\frac{\partial F_{c}}{\partial x_{n}} \right) \left(\frac{\partial F_{c}}{\partial y_{n}} \epsilon y_{n} + \left(\frac{\partial F_{c}}{\partial x_{n}} \right) \left(\frac{\partial F_{c}}{\partial z_{n}} \right) \epsilon x_{n} \right] + \sum_{m} \frac{\partial F_{c}}{\partial x_{n}} \left(\frac{\partial F_{c}}{\partial x_{n}} \epsilon x_{m} + \frac{\partial F_{c}}{\partial y_{m}} \epsilon y_{m} + \frac{\partial F_{c}}{\partial z_{m}} \epsilon x_{m} \right)$$

where \leq_{m} denotes a sum over all the terms except the n^{th} .

If the atoms are well resolved such terms as

$$\sum_{q} \frac{\partial F_{c}}{\partial x_{n}} \frac{\partial F_{c}}{\partial x_{m}} \quad \text{are likely to be small compared with} \sum_{q} \frac{\partial F_{c}}{\partial x_{n}} \right)^{2}.$$

Also if the axes are orthogonal or nearly so $\sum_{q}^{w} \frac{\partial^{r} c}{\partial x_{n}} \frac{\partial^{r} c}{\partial y_{n}}$

can be neglected and the above normal equation reduces to

$$\epsilon_{\mathbf{x}_{n}} \sum_{\mathbf{q}}^{\mathbf{q}} \mathbf{w} \left(\frac{\partial_{\mathbf{F}_{c}}}{\partial \mathbf{x}_{n}}\right)^{2} = \sum_{\mathbf{q}}^{\mathbf{q}} \mathbf{w} \left(\Delta_{\mathbf{F}}\right) \frac{\partial_{\mathbf{F}_{c}}}{\partial \mathbf{x}_{n}}$$

The normal equations can now be solved by ordinary methods. Similar equations can be obtained for changes in temperature factors, the variables x_n being replaced by each of the six thermal parameters $b_{11} b_{22} b_{33} b_{23} b_{31} b_{12}$ to give 6 N normal equations. The scale factor can also be refined by the least-squares method. The least-squares programme of Dr. J.S. Rollett, (1961), computes a 3×3 matrix for each atomic position, a 6×6 matrix for each atomic vibration and a 2×2 matrix for the overall scale factor. The choice of weighting system used in the programme can be varied depending on the structure being refined.

5. THE ACCURACY OF CRYSTAL STRUCTURE DETERMINATION.

Certain tests of accuracy were applied to the results of the structure determinations in this thesis. The accuracy of the positional parameters was estimated from the values of the least-squares totals in the final cycle of refinement, using the formula

$$\sigma(\mathbf{x}) = \mathbf{a} \sqrt{\left\{\sum \frac{\mathbf{w} \Delta}{(\mathbf{n}-\mathbf{s})} \left[\sum \mathbf{w} \left(\frac{\partial \Delta}{\partial \frac{\mathbf{x}}{\mathbf{a}}}\right)^2\right]\right\}} \mathbf{A}$$

where n is the total number of reflections used in the refinement and s is the number of degrees of freedom. The standard deviations in bond angles were calculated using the formula of Cruickshank & Robertson, (1953).

The significance of the mean plane calculations was tested using the χ^2 distribution. This distribution has been worked out and tables are available showing the frequency with which different values of χ^2 are exceeded and also the value of χ^2 corresponding to these particular frequencies (Fisher and Yates, 1957.)

The quantity χ^2 can be regarded as the sum of the

squares of n variable which vary normally and independently about zero

$$\chi^2 = \sum \frac{\Delta^2}{\sigma^2}$$

where \triangle is the deviation in A of an atom from the calculated plane and σ is the mean standard deviation in A in the positional parameters.

The probability that no atoms deviate significantly from the calculated plane can be found from tables knowing the value of χ^2 and the number of degrees of freedom (n - 3).

The discrepancy factor R is a rough measure of the accuracy of the structure determination. It is defined by

$$R = \frac{\sum ||F_{o}| - |F_{c}||}{\sum |F_{o}|}$$

Although it does not contain any of the functions normally minimised during refinement it is nevertheless a fairly reliable estimate of the accuracy.

6. METHODS OF COMPUTATION.

The calculations for the work included in this thesis were performed for the most part on the English Electric DEUCE computer. The majority of the programmes used were prepared by Dr. J.G. Sime and Dr. J.S. Rollett. The Computing Department of Glasgow University do not provide a computing service. Instruction is given in programming and efficient use of the machine to enable users to carry out their own computing. 24,

PART II.

THE X-RAY STRUCTURE ANALYSIS OF ECHITAMINE BROMIDE METHANOL SOLVATE.

ECHITAMINE BROMIDE METHANOL SOLVATE.

1. INTRODUCTION.

Since the Seventeenth Century, the bark of the tree <u>Alstonia scholaris</u>, R. Br. (<u>Echites scholaris</u>, L.) found in India, China and the Phillipines has been used as an antimalarial drug. Gorup - Besanez, (1875), Hesse, (1875-1880) and Harnack, (1878, 1880), independently isolated echitamine, the **ch**ief alkaloidal constituent of this bark, as the **chloride**. Hesse assigned to it the formula $C_{22}H_{29}N_2O_4CI$. Goodson and Henry in 1925 confirmed this formula, extended the earlier investigations and isolated echitamine from various other <u>Alstonia</u> species.

In 1957 Birch, Hodson and Smith suggested the partial structure (I) for echitamine. Conroy <u>et al.</u>, (1960), proposed structure (II). Structure (III) was due to Chakravarti <u>et al.</u> (1960 a,b,c). A series of publications by Chatterjee <u>et al.</u> (1960 a,b) and Ghosal and Majumdar, (1960), led to structure (IV).

Birch <u>et al</u>. (1960) reviewed these proposed structures and the chemical and spectroscopic evidence in support of them. Their conclusions indicated that none of the formulae were entirely satisfactory. The evidence did establish however that echitamine is an indole alkaloid containing a methyl ester, an ethylidene and two hydroxyl groups, and one N-methyl group in which the nitrogen atom is quaternary. Professor Birch in

a private communication suggested structure (V) for echitamine. This is rather similar to (VI) which is the structure of echitamine deduced from the X-ray crystal analysis of echitamine bromide methanol solvate. This summarises the existing knowledge available from chemical and spectroscopic sources at the time at which the X-ray structure determination was undertaken.

A sample of echitamine bromide was supplied by Professor A.J. Birch. Slow recrystallisation from water to obtain a specimen suitable for X-ray diffraction purposes yielded orthorhombic crystals of the dihydrate. Inspection of the Patterson projections however showed that the position of the bromide ion in the crystal lattice was such as to give rise to false symmetry in the course of phase determination based on the bromide ion.

Orthorhombic crystals of a methanol solvate were obtained by recrystallisation from methanol and since for these crystals the bromide ions were found to occupy quite general positions in the lattice they were used for the structure determination.

2.1 CRYSTAL DATA.

ECHITAMINE BROMIDE METHANOL SOLVATE $C_{22}H_{29}Br N_2O_4 \cdot CH_3OH$ Molecular weight 497.43 Density calculated = 1.430 gm/cm³ Density measured = 1.416 gm/cm³ (By flotation using carbon tetrachloride/petroleum ether).

The crystal is orthorhombic with

 $\frac{a}{b} = 14.72 \pm 0.04 \text{ Å}$ $\frac{b}{c} = 14.17 \pm 0.02 \text{ Å}$ $\frac{c}{c} = 11.09 \pm 0.02 \text{ Å}$

Volume of the unit cell = $2312 \stackrel{\circ}{A}^3$ Number of molecules per unit cell = 4

Absent spectra

oko when k is odd ool when l is odd hoo when h is odd

Space group $P2_1^2 2_1^2 (D_2^4)$

Absorption coefficient for X-rays (Cuk_{α} radiation) $\mu = 29$ cm⁻¹ Total number of electrons per unit cell = F(000) = 1040

$$\sum f^{2}(\text{light atoms}) = 1279$$
$$\sum f^{2}(\text{heavy atoms}) = 1296$$

Well formed prisms elongated along <u>a</u> were obtained by slow crystallisation from methanol.

2.2 INTENSITY DATA.

The unit cell parameters were determined from oscillation and rotation films taken about the three crystallographic axes. The space group $P2_12_12_1(D_2^4)$ was uniquely determined from the systematic absences observed on moving film photographs. The intensity data, which consisted of the layer lines okl - 12klhol and hko, were collected by means of equi-inclination Weissenberg exposures and estimated visually using the multiple-film technique (J.M. Robertson, 1943,). Lorentz and polarisation corrections and appropriate rotation factors (Tunell, 1939.), were applied to these intensities and in all 2,115 independent structure amplitudes were evaluated.

Relative scaling factors were found by comparison of common reflections and the structure amplitudes were later placed on the absolute scale by comparison with the calculated values. No absorption corrections were applied, the crystals being cut so that the cross-section perpendicular to the rotation axis was approximately $0.2 \text{ mm} \times 0.2 \text{ mm}$. CuK_{ot} radiation was used for all photography.

2.3 STRUCTURE DETERMINATION.

Preliminary coordinates for the bromide ion were determined from the two-dimensional Patterson maps shown in Figs.1 and 2. The bromide-bromide vector peaks are marked A,B,C and D,E,F. A three-dimensional Patterson synthesis was computed and more

Fig. 1. Patterson projection along the <u>a</u> axis. The bromide-bromide vector peaks are marked A,B and C. The contour scale is arbitrary.

Fig. 2. Patterson projection along the <u>c</u> axis D,E and F denote the bromide-bromide vector peaks. The contour scale is arbitrary.

accurate coordinates for the bromide ions were calculated from the Harker sections. Approximate phase constants for the structure were computed using these coordinates. Since $\sum f^2$ bromide ion is 1.269 and $\sum f^2$ 'light' atoms is 1,279, it is reasonable to assume that the majority of the phases determined by the bromide ion will be good approximations, so that a three-dimensional Fourier map computed on the basis of these phases will contain information about the positions of the 'light' atoms in the structure. In fact significant peaks, which could be attributed to twelve of the thirty carbon, nitrogen and oxygen atoms of echitamine bromide, were located from the first such threedimensional Fourier map. Coordinates assigned to these peaks were included in the calculation of a more accurate set of structure amplitudes and phase angles. An over-all isotropic temperature factor of $B = 4.0 \text{ Å}^2$ was assumed. The value of R, the average discrepancy between the observed and calculated structure amplitudes, was 33.6%.

A second Fourier synthesis based on the improved phase angles enabled a further nine atoms to be placed with certainty. These atoms were included in the next cycle of calculations to further refine the phases and in the resulting Fourier map peaks could be assigned to all the atoms except the hydrogens. In the subsequent cycle of phasing calculations with the atoms weighted as carbon the value of R fell to 26.2%.

The nitrogen and oxygen atoms were distinguished from

carbon firstly by consideration of the peak heights in the previous electron-density distributions, secondly by consideration of the extra-molecular contacts and thirdly by taking into account the available information concerning the functional groups known to be present. Assignment of the correct weight to the atoms in the phasing calculations decreased the value of R to 19.0%

2.4 STRUCTURE REFINEMENT.

Up to this stage in the analysis the methanol molecule of solvation had been omitted. Its position and confirmation of the choice of hetero atoms were obtained by evaluating a three-dimensional Fourier difference synthesis using as coefficients $(F_o - F_c)$ where F_c had been calculated on the basis of an all-carbon structure for the echitamine molecule and the methanol molecule had been omitted. It was observed that the atoms which had been designated as oxygen and nitrogen fell on peaks of positive electron density while the remaining atoms did not. The methanol molecule showed up clearly. Calculation of a further set of structure factors, with each atom of the echitamine and methanol molecules assigned its correct chemical type, gave a value of 17% for R.

A second difference synthesis showed that the temperature factors of many of the atoms of the echitamine molecule required small adjustments and that, for the methanol molecule, a

considerably larger value of B was required. It was evident that in the case of the bromide ion there was marked anisotropic thermal motion. These adjustments lowered the value of R to 15.8%.

The analysis was completed by means of two cycles of least-squares refinement of the positional and temperature parameters. The least-squares programme which was devised by Dr. J.S. Rollett (1961), refines six vibrational parameters for each atom, the anisotropic temperature factor being of the form

$$t = 2^{-(b_{11}h^2 + b_{22}k^2 + b_{33}l^2 + b_{23}kl + b_{31}l + b_{12}hk)}$$

It was felt that for the light atoms the anisotropic parameters had little significance and an average isotropic temperature factor B was evaluated for each atom (Rossmann,1959). These B values are in general agreement with the earlier deductions based on the second Fourier difference synthesis, as is the anisotropic temperature factor derived from the bromide ion. The atomic coordinates and temperature factors are listed in Table I. The course of the analysis is outlined in Table II.

The weighting scheme used for the least-squares refinement was

$$\sqrt{\mathbf{w}} = \frac{|\mathbf{F}_0|}{|\mathbf{F}^*|} \quad \text{if} \quad |\mathbf{F}_0| < |\mathbf{F}^*|$$
$$\sqrt{\mathbf{w}} = \frac{|\mathbf{F}^*|}{|\mathbf{F}_0|} \quad \text{if} \quad |\mathbf{F}_0| > |\mathbf{F}^*|$$

TABLE I.

Ator	nic coordinat	tes and tem	perature facto	ors.
(Origin	of coordinat	es as in ":	International	Tables.")
Atom	<u>x/a</u>	y/b	z/c	В
Nl	0.5876	0.1239	0.5122	4•4
c ₂	0.5415	0.2121	0.4991	3.7
°3	0.4380	0.1945	0.4552	3.7
N ₄	0.5436	0.2654	0.6198	4.1
с ₅	0.6429	0_3038	0.6294	4.0
c ₆	0.6591	0.3385	0.4973	3.7
°7	0.6010	0.2752	0.4138	3.3
с ₈	0.6631	0,2000	0.3520	4.2
c ₉	0.7243	0.2050	0.2567	4.6
с ₁₀	0.7719	0.1212	0.2259	4.9
cul	0.7576	0.0388	0.2869	4.6
с ₁₂	0.6952	0. 0275	0.3829	4.4
с ₁₃	0.6462	0.1137	0.4161	4.1
C ₁₄	0.3919	0.2857	0.4113	4.2
с ₁₅	0.4533	0.3694	0.3972	3.8
c ₁₆	0.5437	0.3388	0.3286	3.8
с ₁₇	0.5159	0.2833	0.2102	4.2
с ₁₈	0 。 4400	0.5835	0.4707	5.9
с ₁₉	0,4624	0.5027	0.5545	4.4
с ₂₀	0.4725	0.4103	0.5218	3.8

TABLE I (contd)

Atom	<u>x/a</u>	y/b	<u>z/c</u>	B
C ₂₁	0.4756	0,3480	0.6288	4.1
с ₂₂	0.5943	0.4293	0.2892	4.5
с ₂₃	0.7364	0.4877	0.2118	5.5
с ₂₄	0.5279	0.2038	0.7322	4.9
0 ₂₅	0.3880	0.1507	0.5446	4.7
⁰ 26	0.4519	0.3344	0.1411	4.8
0 ₂₇	0•5579	0.5053	0.2729	5.6
0 ₂₈	0.6778	0.4071	0.2568	4.7
•c ₂₉	0.2691	0.2068	0.0492	10.8
*0 ₃₀	0.2667	0.2787	0.1324	11.6
Br	0.5520	0.4354	-0.0769	+

Denotes the atoms of the methanol molecule

For the bromide ion an anisotropic temperature factor was employed. This was of the form

 $t = 2^{-(\underline{b}_{11}\underline{h}^2 + \underline{b}_{22}\underline{k}^2 + \underline{b}_{33}\underline{\ell}^2 + \underline{b}_{23}\underline{k}\underline{\ell} + \underline{b}_{13}\underline{h}\underline{\ell} + \underline{b}_{12}\underline{h}\underline{k})$

with parameters.

+

<u>b</u> 11	=	0.00930	<u>b</u> 22	=	0.00850	<u>b</u> 33	=	0.01373
<u>b</u> 23	=	-0.00130	<u>b</u> 13	=	0.00137	<u>b</u> 12	=	-0.00160

TABLE II

Course of analysis.

$\sum w \Delta^2$	ł	1	1	1	1	I	I	t	3440	2720	I.
R(%)	I	1	40.6	33.6	26•2	20.8	1 9. 0	17 . 0	15 . 8	13.8	13.4
Atoms included	ļ	1	l Br	1 Br + 12 C	1 Br + 21 C	1 Br + 28 C	1 Br + 28 C	Br + 23 C + 2 N + 50	Br + 23 C + 2 N + 50	Br + 23 C + 2 N + 50	Br + 23 C + 2 N + 50
Data used	ok l and hko reflections	2115 Fo	1997 F _o	2032 F ₀	2115 F ₀	2115 Fo	2115 F ₀	2115 Fo 1	2115 Fo 1 1	2115 F 1	
Operation	Patterson syntheses	Patterson synthesis	3D F ₀ "	-	=		3D Fo-Fc "	1	Least-squares cycle	=	3D F ₀ synthesits
	59	R	lst	2 nd	3 rd	$^{\rm th}$	lst	2 nd	lst	2 nd	5^{th}

where $|F^*|$ is a constant. It was taken as eight times the minimum value of F_{a} .

In all the above calculations the atomic scattering factors of Berghuis <u>et al.</u> (1955), were used for carbon, oxygen and nitrogen and those of Thomas and Fermi, (1935), for bromine.

2.5 MOLECULAR DIMENSIONS.

The structure factors calculated from the final atomic parameters (Table I) are listed in Table III. The discrepancy R over the 2,115 observed reflections is 13.4%. Of 234 unobserved reflections only 54 calculate > $l_2^1 |F_{min}|$, $|F_{min}|$ being the minimum observable value of the structure amplitude. The final three-dimensional electron-density distribution evaluated on the basis of the phase constants in Table III is shown in Fig.3 by means of superimposed contour sections drawn parallel to the (001). The corresponding atomic arrangement is explained in Fig. 4. Fig. 5 shows the atomic arrangement in the molecule as seen in projection along the <u>b</u> axis.

The standard deviations of the final atomic coordinates were derived from the least-squares residuals by application of the equation

$$\sigma(\mathbf{x}) = \mathbf{a} \sqrt{\left\{ \sum_{n=s}^{w} \Delta^2 \left[\sum_{m=s}^{w} \left(\frac{\partial \Delta}{\partial \frac{\mathbf{x}}{\mathbf{a}}} \right)^2 \right] \right\}} \mathbf{a}$$

where $\underline{n} = \text{total}$ number of reflections used in the refinement and $\underline{s} = \text{number}$ of degrees of freedom. The results are listed in Table IV.

Table III. Measured and calculated values of the structure factors.

				_	, Ę	urs∙.		<u> </u>			r		
· • • •	al ial -	• •	* 14 14	•	•••	* 16	H «	 ··	4.8	I N 4	· · ·	1 16	N ×
**		1.		and a		1		ľ			•••		77
	1111 · · · · · · · · · · · · · · · · ·	ľ.,		SEPers.		12122	1.1.1				••	100	12
	10 10 10			£4.	! ` `			,.					
			122117	2-282				Ľ	1				
	1.1.1		11111	18285		1	1917			1917	- "		1
	14 14 14 14 14 14 14 14 14 14 14 14 14 1		537	NHER.	l. ,	1455	16221					2	12.2
10	1111	۱,		1.54		1	1112				• 11	11 7	177
H.						10 11	151			14 AU 14 AU		12.5	3.9EB
	17 18 18 18 18 18 18 18 18 18 18 18 18 18			(All has	''		- and	, ,			4 18		1948 1948 1948
	i i i	1 4		1788		1			1.1.1	12212			
0 4 5	11 1 10 40 10 10 10 10			1111		11.12	1912		1		• 13		1
	1.212			10.0				• ••	19192	1111			
1	10 110	۰,		170 333						124	• 24	10,10,10	19.17
. 1	1 10 100 110 100 110 100			198010			1	,	11.1	1		1 1	
				1193		THE A				1111	4 15		
10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	۱.				i li	10.11		1.11.11				
c + 1	1 = 90 11 = 90 22 = 110 10 = 100			12. F. F.	9 10	1	12.22	ب ب		#5 #70	• •	12	
4	2. 55. 5. 56. 5. 56. 5. 56.		144	2014		1111	Surge Street			**************************************	* 17		
	1 1 1	19		22228	• "	1997	1923°	, ,,	1	197	۰.		2.2E
ст ^В	12 12 14 19 19 19 19 19 19 19 19 19 19 19 19 19			÷.,		1	1.12					11	- 11 - 1
	10 11 12 10 10 10 10 10 10 10 10 10 10 10 10 10						115	3 14	<		, ,		3.3.
	11227. 1.1071.			1000	["							1 Street	1416
	1212			Non-		711	2255	, 15	7 7 7 7			1	
	1011	111		1255254	• •	10.14	1.1.1		-	New .	, .		Tere.
	3365. 2385		12225	1225		2.1		3 14					1000
		1.18		CZEST.	••		1.52	, 17	12.0	PALS.		18	
	1912			1175		1.1.1	1.11 26 Pe				, ,	1	
			19 19	18 13 13	. 15	-	1.31		10352	3.828 3.858		516	
	1.1.1		1	1			1953			1470 22			
• 11 1	10 - 11 - 12 - 12 - 12 - 12 - 12 - 12 -			10315	• V		1 10	• 1		88.m. 18858	•••	1.22.21	in the second
1	1. 1. 1.	1.14		813.95	. 17	1			1	12275		1212	
0 11 10	00010			101013			12.2		e 7 8 9 10 13	14225			
	1111	1."		122181	ļ, .	- B	124 128 12	••	10111		, ,	1.11	122222
	19.19	1.16		55.2		aser.	35351		17281			1211	
·"]•	10.00	1 17		28259		**************************************	3.32		10.00				1000
	19388			1000	ļ.,		574	• •	1885.	10. C.	`	Name -	
0 14 0 1 3	1.1.1		11/200	12.5					1 10	113.1 2 115.1		2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	17 180 17 180 17 180		1222	90 140 170		17.12	1.12		11 A A		, ,	10 11 7 7 7 7	
• 15	6 7 14 9C		1.022	70 50	ļ, .	121-1-1			1000	EC28		19992	
1	10 11 17		1	100		1000	Beasi Beggie		1000	in the second		1.1.1	10.00
			lawin .	111111			L. N.	• •		1375F	` ·	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	N. 5
0 17 1 0 18 0				1000	, ,	1.11	Cost.		1 1 1 1	12855 12855 12855			
	1985 -		11 17 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	1917		Santa -	1933			1925	· •	10-11	
	1919 - 19			1000		10822	r 2881 Jair		1000	100		1111	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1			444	in the second	••	10-10-	222%. E2385		*	1.225	5 20	1	HE
				100			-201		1111	14.12			5.4
		ľ'		2222		12271	L.E.		121222	13211 20.85			
				Sales and	' '	74.44Z	1242		17.172		5.11	113	.222 58233
	1923		1,123	12-12 12-12		19232	Test.			Bare.			1997 I.
		· ·			.,					rufilit	5.18	141	
10				***	11.								

Table III

(contd.)

×	4 8			•	×	4 N	2	1	1	1 Ni		n 12	4 14	N	4	•			10	N 4
18			17	,	1	1 1	553 JE:		,	1		; if	141	-	22F		٠	ł	27.0	
	- -		25255			3158X	1222				and.		4	1111	19 <u>1</u>			1	1	
.,			18.8.1				12 m 1	8	6	10 10	17.52	, 1		1012	525	น	\$	10	197	1
	1	6 10	877 1777	,		10 10	19161				13458 [][EEs				10.0	
14	1		90 19 195				10983 R 983				2222 22223	9 13		ļ	1222	11		1910	ļ	2 234 2 234 2 127 2 240
	4		1000			1 1			,		16	1		1	1252			-	77-1871	
15	-		90 118 70	7	,	101100	20 274 20 275 20 2			100	11.00	9 14			20.1		,	6710	22	8 5 2 8
16		1	157			1 1	1212			1 W 1				10070	33535				8	E F
17		4 1 9 1	140			10 H	10 197				2011 2011 2011 2011 2011 2011 2011 2011	9 15			525			7 7 7 0	a a a a a a a a a a a a a a a a a a a	
•	-		133	ľ	•	2 10	2222		•	11111	17173	10 0		3280	3 535:				19479	142
		10191	90 180 270			× 855	1025				11723			10,227	. 5.3.				1	
	204		270 270 100	,	5	10 4 1	4 316 9 198 9 198 9 196 198			1 < 1 2 < 1 2 < 6	6 175 3 389 7 280 4 147			104	53.8			-	1000	
1	1		90 150 180 274			111	12625	8	10	14.7	19.11	10 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19211	3233.	n	70	10187	1	35×55
	2	25.22	347			7 10 14 10 13	13 150 10 175 17 95 18 155			1107	10 144 1 190 3 138		1.1	1025	£8343			121	10044	
	204		12,211	,	٨		A 118 3 170 37 121		11	1	111	10 🗲	10 11	11,000	5883	"	11			1 171 1 171
•	10127		1111			2222	1.45%				1122		KERK?	1223.	Buch	n	18		10.00 1	
	1	59511	12.22			**************************************	10 19	•	u	1 11	1212				15212	11	IJ			18162
	10	, 1 1 1 1	11176	'	7	10100	1750			14	12828	10 3		12223	122		•			in the second
• •	12		150			187.53	122283 25022	•	13		25°55		12.1	17817	1187	11 11	34 0			1223
•			344 119 108	1	n	4138	1910			144	12222	10 4	12.21	.1.5.	5828°			-	*192*	6 870 81 180 870 81 870 81 870
		10				200	11 19 19 19 19 19 19 19 19 19 19 19 19 1	ľ	14	4	7 180		17 10 2	10.1.7	1				ł	50 S of
•				١.		9 11 10 10 11 1	199 1975 1975 1975				1415	10 -	1010 N	1,77,73	1222	1	·		1221	1111 1111
	2		4	ľ	·	1 10	22°-2				1222			1	hasie				ł	
,	101					7 11 10		,	•		1222			1	155.	18	•	10	17	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	1		IN I	7	10	1011	1111				17 180 19 180 17 180	10 4		222				1	12.00	J'r re
	10	19 19 19 19						١.		1.24	10 100		1 1 1 1	17.7	1223		,	••2••	1	13. 13. 13.
	-	16,7,17	1632	١,	11		3 194 3 196 3 197	ľ	•		1.4	10 7	1	19792	181			-	14	1.1
	~			ľ			1181. 1181.			207.00	N1271		1 10	87 10 11 9	121212			100	ij	
4 7	10					14		,		12.1.10	1100	10 e	A STATE	23.000	5.253			-	1211	
	1		104	1	18		12 12 14				100			1107	12.2.2	18	,			14.
	100	9 1 16 1	1 319 5 190 9 133				7 181 11 N1 15 169			· · · · · · · · · · · · · · · · · · ·	197 - 98 197 - 97 197	10 9		- and -	1. T.			1	19161	Ser.
* •			7 100 7 100 7 137 7 137 7 137	1	13	° < 4	1 90 # 100 11 183 7 100	,	,	11 6			1 20 20 20 20 20 20 20 20 20 20 20 20 20	11111	225°	11	6		1777	
				Ι.		1 1	1 40			1	10 140	10 10	10101	201100	5.33				8	a final d
6 9			ise alt	1		14	STATE I	_		10 14 5	1.2223			11000	71 191 10 10			7 8 9 10	97944	
	ļ		32	,	15	~	¥2828	['	•	117772	770 106 770 106 770 106 770 106 770 106 770 106 1070 1070	10 11			1263	ו	'	1	10.00	an share
6 10	10 ×	1 1		١.	14		155 5 151 5 167			10,79,11	173 Bala 91		<		117			WALL ST OF		ENR
			150 H	ľ			7 103	,	,	A AA	1000	10 12	< 11 m	117193	#7 #91 180 148 #00	"	•			sist.
			「いい」	ľ	•	1-0-14	5 247 73 180 25 90 34 180			123	11 NO 4			1108-	12222			ž	1120	SSEE
6 11	1010	1011	110.41			191539 191539 19157	16 270 00			7 15 7 4 7	12112	10 13	~ ~ ~	10404	00 H 1	[,		7007	Parts.
	~~~~	16 1				AAA	3 90	١,	6	110°17	128967	10 14	•	-	180	14	10			121 C
6 12	NA.	1	(H. 80)	ľ	• •	1000	19225			1111	N 10 14 68	10 15		70708	EST SE		11		10751	12163
	N.	5 I				5478	101	_		< 12 × 12 × 12 × 12 × 12 × 12 × 12 × 12	10 117 10 117 1 117	11 °	19 19 19	10275	270 270 160	Ĩ		TANK T	- 0-1-1-1-	
f 13	1	10.1	6 307 6 0 5 200 9 343 1 105	ŀ		*****	12552	ľ	1	ALC: N			× 1119	1222	1858.	11	u	1701		F11
a ,							*****			1 12	173 173 175 175 175 175 175 175 175 175 175 175	11 1		Lat2	12231	"	17	AA AA		12:25
14		70 1	15525	1		AA	31855	,	•		STER.			-12.2	<u>Esa.</u>	ace ace	ŗ		14033	
<b>6</b> )4	1700	11.1	1071281	ŀ	,	10187	77 538				12-12-1	<b>.</b>	24 N		-TEFFE	12222			le L'Jel	it 133
7		-	TANK I			1519	and a second			14.15	11111			2221-1	Solar.	1 333	;		12132	1277 C
6 26		1	19836			107 C	10 22 20 20 20 20 20 20 20 20 20 20 20 20	ľ	•	1111	7 10 20 20 20 20 20 20 20 20 20 20 20 20 20	,	and a start	1000 M	33282	12222	11117		#=E1	
7 O				ľ	•	1225	122	,	10	19-18-1	35.05 2828			ALCA	14-18-18-14-14-14-14-14-14-14-14-14-14-14-14-14-	TREEP	82581	:	1.51-4	H. F.
		<b>n</b> 1				11					112.2.2.3.		A 8 4	19-12-11	SHR.	****	-	Ĭ		121
	ii.	ni a la la la l		ŀ	, ,	H< 1	6 76 4 166 87 180			1		11 4	1	ij	ÿ	193	į	:	ĩ	قير أ



Fig. 3. Final three-dimensional electron-density distribution for echitamine bromide methanol solvate shown by means of superimposed contour sections parallel to (001). The contours are at unit intervals beginning at the 2 e  $A^{-3}$  level. The bromide ion, which lies beyond the field of this diagram, has been omitted.





Fig. 5. The molecule of echitamine bromide methanol solvate as seen in projection along the  $\underline{b}$  axis.



## TABLE IV

Standard	deviations of	the final	atomic coordinates (A).
Atom	<u> σ(x</u> )	<b>5</b> (y)	<u><b>σ</b>(z</u> )
Nl	0.016	0.015	0.016
c ₂	0.020	0.016	0.017
с _з	0.019	0.016	0.016
N ₄	0.016	0.014	0.014
c ₅	0.019	0.018	0.018
° ₆	0.019	0.018	0.019
°7	0.017	0.016	0.018
с ₈	0.019	0.019	0,020
с ₉	0.020	0.019	0.020
Clo	0.020	0.019	0,020
c _{ll}	0.020	0.018	0.019
с ₁₂	0.019	0.018	0.019
с ₁₃	0.018	0.017	0.020
C174	0.018	0.017	0.019
с ₁₅	0.019	0.015	0.016
c ₁₆	0.020	0.016	0.017
с ₁₇	• 0 <b>.</b> 018	0.018	0.018
с ₁₈	0.023	0.020	0.020
с ₁₉	0.020	0.018	0.018
C ₂₀	0.017	0.017	0_018

ο

TABLE IV. (contd.)

Atom	<u> (x</u> )	<u><b>σ</b>(y</u> )	<u> (z)</u>
с ₂₁	0.018	0.018	0.018
с ₂₂	0.020	0.021	0.020
C ₂₃	0.023	0.021	0.020
C ₂₄	0.019	0,019	0.021
0 ₂₅	0.013	0.012	0.012
⁰ 26	0.014	0.012	0.013
0 ₂₇	0.015	0.013	0.013
028	0.013	0.012	0.014
C ₂₉	0.033	0.031	0.033
0 ₃₀	0.022	0.021	0,022
Br	0,002	0,002	0.002



The final bond lengths calculated from the atomic coordinates in Table I are listed in Table V. The intramolecular non-bonded distances are given in Table VI and the more interesting intermolecular contacts in Table VII. Table VIII contains the interbond angles. For bonds between the light atoms (carbon, nitrogen and oxygen) the standard deviation in length is 0.03 Å and for bond angles  $1.5^{\circ}$ . For distances between the light atoms and the bromide ion the standard deviation is about 0.02 Å.

### 2.6 DISCUSSION OF RESULTS.

The echitamine molecule has a compact three-dimensional structure (VI.)



(VI).

# MOLECULAR DIMENSIONS. o INTERATOMIC DISTANCES (A) AND ANGLES

.

TABLE V.

-----

Intramolecular bonded distances.

Nl	- c ₂	1.43	c ₁₀ - c ₁₁	1.37
Nl	- c ₁₃	1,38	c ₁₁ - c ₁₂	1.42
с ₂	- c ₃	1.62	C ₁₂ - C ₁₃	1.47
с ₂	– N ₄	1.54	c ₁₄ - c ₁₅	1.50
с ₂	- c ₇	1,57	^C 15 - ^C 16	1.59
c3	- c _{1/4}	1.54	^C 15 - ^C 20	1.52
c3	- 0 ₂₅	1.38	c ₁₆ - c ₁₇	1.59
N ₄	- c ₅	1.56	C ₁₆ - C ₂₂	1.55
N4	- c ₂₁	1.54	° ₁₇ - ° ₂₆	1.41
^N 4	– C ₂₄	1.54	c ₁₈ - c ₁₉	1.51
с ₅	- c ₆	1.56	c ₁₉ - c ₂₀	1.37
с ₆	- c ₇	1.55	c ₂₀ - c ₂₁	1.48
с ₇	– c ₈	1.56	c ₂₂ - 0 ₂₇	1.22
с ₇	- c ₁₆	1.55	c ₂₂ - 0 ₂₈	1.32
с ₈	- c ₉	1.39	c ₂₃ - 0 ₂₈	1.52
с ₈	- ^C 13	1.44	c ₂₉ - 0 ₃₀	1.38 (methanol)
с ₉	- C ₁₀	1.42		

	11161	amorecurar non-bor	ueu uistances.	
Nl	••• °6	3.22	° ₃ ° ₂₀	3.19
Nl	c ₉	3.66	с ₃ с ₂₁	2.96
Nl	c ₁₁	3.74	с ₃ с ₂₄	3.35
Nl	c ₁₄	3.85	N ₄ C ₈	3.57
Nl	c ₁₆	3.72	N ₄ C ₁₃	3.46
Nl	c ₂₁	3.81	N ₄ C ₁₄	3.23
Nl	c ₂₄	2.83	N ₄ ··· ^C 15	3.17
Nl	0 ₂₅	2.99	N ₄ C ₁₆	3.39
c ₂	c ₉	3.80	N ₄ C ₁₉	3.64
c ₂	c ₁₂	3.69	N ₄ 0 ₂₅	2.93
c ₂	c ₁₅	2.82	с ₅ с ₈	3.42
с ₂	c ₁₇	3.38	° ₅ ° ₁₃	3.59
c ₂	••• ^C 20	3.00	° ₅ ° ₁₅	3.91
с ₂	c ₂₂	3.94	° ₅ ••• ° ₁₆	3.68
c ₃	••• °5	3.9 <b>9</b>	c ₅ c ₁₉	3.96
с _з	•••• ^C 6	3.87	c ₅ c ₂₀	3.16
c ₃	•••• C ₈	3.51	с ₆ с ₉	3.41
°3	c ₁₃	3.30	с ₆ с ₁₃	3.32
c ₃	•••• ^C 16	2.93	c ₆ c ₁₅	3.26
Ċż	c ₁₇	3.21	° ₆ ° ₁₇	3.90

## TABLE VI.

- 2

٦...

2-

3 32

с ₆	c ₁₉	3.77	^c 8 ••• ^c 17	2 <b>.93</b>
^с 6	c ₂₀	2.94	c ₈ c ₂₂	3.48
^с 6	••• C ₂₁	3.07	с ₈ о ₂₈	3.13
°6	••• C ₂₂	2.81	° ₉ ··· ° ₁₆	3.36
с ₆	c ₂₃	3•97	° ₉ ··· ° ₁₇	3.30
с ₆	c ₂₄	3.76	с ₉ с ₂₂	3.73
с ₆	··· ⁰ 27	3.74	° ₉ ··· ° ₂₈	2 <b>.9</b> 4
°6	••• ⁰ 28	2.85	^C 13 ··· ^C 16	3.66
с ₇	c ₁₀	3.93	c ₁₃ ••• c ₁₇	3.83
с ₇	c ₁₂ .	3.79	c ₁₄ c ₁₇	2.88
с ₇	•••• C ₁₄	3.08	° ₁₄ ° ₁₉	3.61
с ₇	••• °17	2,59	c ₁₄ c ₂₁	2.85
с ₇	c ₂₀	2.95	c ₁₄ c ₂₂	3.85
с ₇	c ₂₁	3.19	c ₁₄ 0 ₂₆	3.20
с ₇	c ₂₄	3.83	°15 ··· °17	2.58
с ₇	0 ₂₅	3.88	c ₁₅ c ₁₈	3.15
с ₇	··· ⁰ 26	3.83	°15 ··· °25	3.63
с ₇	••• 027	3.67	^C 15 ··· ⁰ 26	2.88
с ₇	•••• ⁰ 28	2.79	° ₁₅ ••• ° ₂₇	2.82
с ₈	c ₁₅	3.94	^C 15 ··· ⁰ 28	3.69

3.62	c ₂₀ c ₂₂	3.15
3.48	с ₂₀ с ₂₄	3.83
3.77	c ₂₀ 0 ₂₅	3.89
3.95	C ₂₀ 0 ₂₇	3.32
3.28	° ₂₁ ° ₂₅	3.22
3.01	c ₂₂ 0 ₂₆	2 <b>.9</b> 8
3.81	C ₂₃ 0 ₂₇	2.73
3.74	° ₂₄ ° ₂₅	3.02
3.01	° ₂₆ ••• ° ₂₇	3.22
3.68	° ₂₆ ••• ° ₂₈	3.71
3.42		
	3.62 3.48 3.77 3.95 3.28 3.01 3.81 3.74 3.01 3.68 3.42	$3.62$ $C_{20} \cdots C_{22}$ $3.48$ $C_{20} \cdots C_{24}$ $3.77$ $C_{20} \cdots C_{25}$ $3.95$ $C_{20} \cdots O_{27}$ $3.28$ $C_{21} \cdots O_{25}$ $3.01$ $C_{22} \cdots O_{26}$ $3.81$ $C_{23} \cdots O_{27}$ $3.74$ $C_{24} \cdots O_{25}$ $3.01$ $O_{26} \cdots O_{27}$ $3.68$ $O_{26} \cdots O_{28}$ $3.42$ $C_{20} \cdots O_{28}$

### TABLE VII

The	shorter	intermolecular c	ontacts ( $<4$ A) a	nd
		some associated	angles.	
0 ₂₆	••• ⁰ 30	2.84	⁰ ₃₀ c ₁₂ ^I	3.58
⁰ 26	Br	3.17	c ₁₄ ••• 0 ₃₀	3.60
Br	••• ⁰ 25	3.20	Br C ₂₁	3.67
0 ₂₆	•••• ^C 29	3.40	° ₉ •••• ° ^{VI} ₂₉	3.68
с ₆	••• 025	II 3.40	c ₃ 0 ₂₇ III	3.69
°5	••• 030	II <b>3.</b> 42	C ₁₉ C ₂₄ VII	3.71
°10	••• °21	II 3.43	c ₁₁ c ₂₁ ^{II}	3.71
Br	••• N ₁ ^I	3.45	c ₁₈ c ₂₄ VII	3.74
с ₁₂	••• 026	III 3 <b>.</b> 50	c ₆ c ₂₃ IV	3.75
c ₁₈	••• ^C 17	I 3.53	^c ₁₇ ⁰ 30	3.77
с ₁₁	••• ^C 19	II 3.54	C ₂₉ Br ^{VIII}	3•79
с ₅	••• C ₂₃	IV 3.57	0 ₃₀ c ₁₁ I	3.81

4

TABLE VII. (contd.)

c ₂₄ 0 ₃₀ II	3.83	c ₁₀ ••• c ₂₉ VI	3.91
c ₁₈ c ₁₀ I	3.84	Br C ₂₄	3.92
c ₉ 0 ₂₅ ^{II}	3.85	Br C ₃ ^I	3.92
c ₁₁ c ₂₀ ^{II}	3.88	⁰ 27 c ₁₃ ^I	3 <b>•9</b> 7
^C 17 Br	3.88	c ₆ c ₁₄ II	3 <b>.9</b> 8
0 ₂₈ 0 ₂₅ ^{II}	3.89	c ₉ c ₂₁ ^{II}	3.98
c ₁₈ c ₉ ^I	3.90	0 ₂₈ c ₂₉ VI	3.99
c ₅ c ₁₄ II	3.90	Br $\ldots c_5^{v}$	3.99

Nl	${}^{\mathrm{Br}}$ III	0 ₂₅	53 ⁰
⁰ 25	${}^{\mathrm{Br}}{}_{\mathrm{III}}$	⁰ 26 _{III}	118
.c ₂	Nl	${}^{\mathrm{Br}}$ III	115
C ₁₃	Nl	${}^{\mathrm{Br}}$ III	117
°3	0 ₂₅	${}^{\mathrm{Br}}$ III	111
с ₁₇	⁰ 26	Br	110
с ₃₀	0 ₂₆	Br	123
с ₂₉	⁰ 30	⁰ 26	102
0 ₃₀	0 ₂₆	с ₁₇	121
Nı	${}^{\mathrm{Br}}$ III	0 ₂₆	85

## TABLE VII (contd.)

#### The subscripts used in the preceeding table refer to the following positions: ¹/₂ + y, Ι $\frac{1}{2} - Z$ . 1 - x, 1<u>2</u> - y, $\frac{1}{2} + x$ , II 1 - z. $-\frac{1}{2} + y$ , III 1 - x, $\frac{1}{2} - Z$ . $l_{2}^{1} - x$ , 1 - y, $\frac{1}{2} + 2.$ IV V У, z - 1. x , 1. C. 2 $\frac{1}{2} + x$ , $\frac{1}{2} - y_{,}$ VI -z• $\frac{1}{2} + y$ , $1\frac{1}{2} - z$ . VII 1 - x, $\lim_{n\to\infty} z^n \to$ 1 - y, $-\frac{1}{2} \pm x_{,}$ VIII 7 an An 10.3 ેલું 1000 1000 1000 i s 107 16 - A iy es de Uti $\mathcal{T} \in \mathcal{T}$ 主任 S. Las ê. 2.4

## TABLE VIII.

Interbond angles.

c ₂	Nl	C ₁₃	108°	с ₈	°7	с ₁₆	117°
Nl	с ₂	°3	110	°7	с ₈	°9	133
Nl	с ₂	N ₄	109	с ₇	с ₈	с ₁₃	105
Nl	с ₂	с ₇	107	с ₉	с ₈	с ₁₃	122
c ₃	с ₂	N4	111	с ₈	с ₉	clo	117
c ₃	°2	°7	116	°9	Clo	c ₁₁	121
N ₄	с ₂	°7	104	Clo	c _{ll}	с ₁₂	125
с ₂	c3	C ₁₄	112	c _{ll}	с ₁₂	с ₁₃	115
с ₂	^с з	0 ₂₅	111	. N _l	с ₁₃	с ₈	114
с ₁₄	°3	⁰ 25	112	Nl	с ₁₃	с ₁₂	126
с ₂	N ₄	°5	104	с ₈	с ₁₃	с ₁₂	120
c ₂	N ₄	c ₂₄	115	с ₃	с ₁₄	с ₁₅	116
с ₅	N ₄	C21	110	с ₁₄	C ₁₅	°16	110
c ₂₁	N ₄	с ₂₄	106	с ₁₄	с ₁₅	с ₂₀	109
N ₄ .	с ₅	°6	101	°16	°15	с ₂₀	112
с ₅	°6	°7	107	с ₇	с ₁₆	с ₁₅	109
°2	°7	°6	106	°7	°16	°17	111
c ₂	°7	с ₈	102	с ₇	с ₁₆	с ₂₂	113
°2	°7	с ₁₆	113	с ₁₅	°16	с ₁₇	108
^с 6	с ₇	°16	109	^С 15	°16	C ₂₂	108

### TABLE VIII.

### Interbond angles.

°17	с ₁₆	с ₂₂	108°	N ₄	с ₂₁	C ₂₀	115°
°16	с ₁₇	0 ₂₆	112	c ₁₆	с ₂₂	0 ₂₇	124
с ₁₈	с ₁₉	с ₂₀	126	°16	с ₂₂	0 ₂₈	109
°15	с ₂₀	с ₁₉	126	0 ₂₇	с ₂₂	0 ₂₈	126
°15	C ₂₀	с ₂₁	120	C ₂₂	028	с ₂₃	116
с ₁₉	с ₂₀	C ₂₁	111				

(1) A set of the se

the products of privalphia firstion of private the sta

CHECH ç.4

The two five-membered rings are fused <u>cis</u> and the six-membered ring  $C_2 C_3 C_7 C_{14} C_{15} C_{16}$  is in the boat form. Apart from the benzene ring there also result three other interlocking rings, two seven-membered (one of which  $C_2 C_3 C_{14} C_{15} C_{20} C_{21} N_4$  is in the boat form) and an eight-membered ring.

These results, however, do not imply any particular absolute configuration. This is shown for echitamine in structure (VI) and was deduced by application of Bijvoet's method (1951), to echitamine iodide by Manohar and Ramaseshan, (1961). It is in accordance with the rule of uniform absolute stereochemistry at  $C_{15}$  in the various indole alkaloids.

The structure of echitamine is supported by the available chemical and spectroscopic evidence. From structural and stereochemical considerations it is closely related to such indole alkaloids as macusine-A (VII) and geissoschizine (VIII), one of the products of hydrolytic fission of geissospermine.



(VII).

(VIII).

A biogenetic route to echitamine from a precursor of the geissoschizine type has been proposed by Smith, (1961).

Although this analysis determines without doubt the structure of the quaternary salt there still remains some difference of opinion as to the nature of the echitamine base  $C_{22}H_{28}N_2O_4$  and two structures (IX) and (X) have been suggested.



(IX).

(X).

COOME

The equation of the mean molecular plane calculated through the atoms of the benzene ring by the method of Schomaker <u>et al</u>, (1959), is

 $0.724 \times + 0.237 \times + 0.648 \times - 10.261 = 0.60$ where X, Y, Z, are coordinates expressed in Angstrom units and referred to orthogonal axes <u>a</u>, <u>b</u>, and <u>c</u>. The ring is planar to within 0.008 Å, the adjacent atoms  $C_{T}$  and  $N_{1}$  being displaced by 0.01 Å and 0.04 Å respectively from it.

The average length of the carbon-carbon aromatic bond is 0 1.42 A, not significantly different from the length of 1.395 A in benzene and none of the individual bonds differ significantly from this value. The average of the carbon-carbon single-bond lengths between  $sp^3$ -hybridised atoms is 1.56 Å and between  $sp^2$ and  $sp^3$ -hybridised atoms 1.52 Å. There are in agreement with the accepted values of 1.545 Å and 1.525 Å respectively. (Tables of Interatomic Distances, 1958). Again none of the individual lengths differ significantly from the accepted values. The length of the double bond in the ethylidene group  $(C_{19} - C_{20})$ at 1.37 Å is in reasonable agreement with that of 1.334 Å found in ethylene (Bartell and Bonham, 1957).

The dimensions of the methyl ester group compare favourably with those found in the structure of dimethyl oxalate (Dougill and Jeffrey, 1953), and for the ester and lactone groups in acetylbromogeigerin (This thesis page 51). and epilimonol iodoacetate (Arnott <u>et al.</u> 1961). As in dimethyl oxalate the methyl group  $C_{23}$  is trans to the bond  $C_{16} - C_{22}$ . The five atoms  $C_{16}$ ,  $C_{22}$ ,  $C_{23}$ ,  $C_{27}$ ,  $C_{28}$ , lie on a plane with equation

0.270X + 0.219Y + 0.938Z - 6.642 = 0None of the atoms deviate significantly from the plane.

The carbon-oxygen single bonds  $C_3 - O_{25}$  1.38 Å,  $C_{17} - O_{26}$  1.41 Å and  $C_{29} - O_{30}$  1.38 Å, appear to be rather short, but within the limits of experimental error agree with the accepted value of 1.43 Å. (Tables of Interatomic Distances, 1958).

The carbon-nitrogen bond lengths vary in magnitude from 1.38A Three different types of carbon-nitrogen single bonds are to 1.56A. involved, carbon(sp²-hybridised)-nitrogen, carbon(sp³-hybridised)nitrogen and carbon(sp³-hybridised)-N⁺. The length of the  $carbon(\underline{sp}^2-hybridised)-nitrogen bond C_{13} - N_1 is 1.38A which agrees$ reasonably with values reported for acetanilide 1.33A (Brown and Corbridge, 1954), 2-chloro-4-nitroaniline 1.37A (McPhail and Sim, unpublished results) and ibogaine hydrobromide 1.39A and 1.40A (Arai <u>et al.</u> 1960). The carbon( $\underline{sp}^3$ )-nitrogen bond  $C_2 - N_1$  at 1.43Å does not differ significantly from the accepted value of 1.47A (Tables of Interatomic Distances, 1958). Three of the bonds to the positively charged nitrogen atom  $N_4$  are 1.54A and the fourth is 1.56A giving an average length of 1.54A for  $carbon(\underline{sp}^2)-N^+$ . The occurrence of long carbon( $\underline{sp}^{3}$ )-N⁺ bonds in amino acids has been discussed by Hahn, (1957). He lists the results of a large number of investigations and finds a mean value of 1.503A. However, some recent more accurate measurements suggest that this Wright and Marsh, (1962), report values value is rather high. of 1.480A and 1.484  $\pm$  0.006A for the carbon(sp³)-N⁺ bonds in  $\ell$ -lysine monohydrochloride dihydrate, and Marsh (1958), finds a value of 1.474 ± 0.003A for a similar bond in glycine. In Table IX are collected the results of a number of X-ray measurements of carbon $(\underline{sp}^{\mathcal{I}})$ -N⁺ bonds in alkaloidal structures. The weighted mean of the more accurate results (estimated standard deviation  $\leq$  0.05A) is 1.52A, possibly even

	TABLE IX.		
Comparison of Carbo	m(sp ³ ) - N ⁺ bond lengths ir	n alkaloids	
Compound	o Bond Length (A)	e.s.d.	o (A) <u>Reference</u> .
Tbogaine hydrobromide	1.49, 1.51, 1.58	0.03	Arai <u>et</u> a <u>l.</u> 1960.
Calycanthine dihydro- bromide dihydrate	1.43, 1.49, 1.56 1.50, 1.49, 1.53	0.03	Hamor <u>et al</u> . 1960. Further work,1962.
dl Alphaprodine hydrochloride	1.50, 1.50, 1.53	10.0	<u>Kartha et al</u> . 1960.
d - Methadone hydro- bromide	1.55, 1.49, 1.48	0°03	Hanson & Ahmed 1958.
(+) - Demethanolaconinone hydriodide trihydrate	1.54, 1.57, 1.52	0° 0†	Przybylska 1961
Hunterburnine methiodide	1.51, 1.54, 1.57, 1.64	0.05	Asher <u>et al</u> . 1962 and further un- published results
Macusine - A iodide	1.46, 1,66, 1.36, 1.50	<b>0</b> •06	McPhail & Sim 1961 and further unpub- lished resul <b>ts</b> .
Codeine hydrobromide dihydrate	1.51, 1.52, 1.56	0 <b>•</b> 06	Lindsey & Barnes 1955
Przybylska 1961 Reference. Beevers 1951. Robertson &  $\mathbb{A}$ e.s.d. (contd. 1.51, 1.51, 1.49 1.55, 1.44, 1.59 0 Bond Length TABLE IX. lycoctonine hydriodide (oxymethylene) Strychnine hydrobromide monohydrate dihydrate - Des -Compound Ŧ

larger than the value found for amino acids. The mean  $\operatorname{carbon}(\underline{\operatorname{sp}}^3)-\mathbb{N}^+$ bond length in echitamine 1.542 Å is rather greater than this but not significantly so.

A model of the echitamine molecule constructed on the basis of standard bond lengths and angles indicates that the distance between the carbonyl carbon atom of the ester group  $C_{22}$  and the terminal carbon  $C_{18}$  of the ethylidene group is about 2.5 Å. However the results of the analysis show that these atoms are actually 3.74 Å apart and this increased separation appears to be brought about by the ethylidene group bending out of its ideal position away from the ester group. Thus the angle  $N_4 C_{21} C_{20}$ at 115° is distorted from the tetrahedral value and the angles  $C_{15} C_{20} C_{19}$  and  $C_{21} C_{20} C_{19}$  which might have been expected to be equal have values of 126° and 111° respectively. Also  $C_{20}C_{19}C_{18}$ is 126° instead of the expected 120°.

The mean of the bond angles of the five-membered ring  $C_2 C_7 C_6 C_5 N_4$  is 106°, possibly significantly smaller than tetrahedral but in agreement with the mean value of 105° found for the angles of the five-membered ring in isoclovene hydrochloride (Clunie and Robertson, 1961), and 106° for those in clerodin bromolactone (Sim <u>et al</u>. 1961, and further unpublished work). The average bond angle of the benzene ring is 120°, individual angles varying from 115° to 125°.

In the crystal the positively charged molecules and the bromide ions form a three-dimensional network held together

both by the normal ionic forces and by a system of hydrogen bonds involving the two hydroxyl groups  $O_{25} O_{26}$ , the indole nitrogen atom N₁ and the bromide ion. The hydrogen atoms on  $O_{25} O_{26}$  and N₁ are presumably directed towards the bromide ion. This pattern is illustrated in Figs 7 and 8 which show the contents of the unit cell in projection on the (OOl) and (OlO) respectively. The hydrogen bonded distances 0 - H .... Br of 3.17 and 3.20 Å and N - H ....Br of 3.45 Å are similar to those found in the structures of **L**-cystine dihydrobromide (Peterson <u>et al.1960</u>), and calycanthine dihydrobromide dihydrate (Hamor <u>et al.1960</u>, 1962).

The molecule of methanol of solvation is hydrogen bonded to the hydroxyl group 0(26), the distance 0(26).... H - 0(30) being 2.84Å. The angles C - OH .... Br, C - NH .... Br and C - OH .... O are all within 8° of the expected tetrahedral value. The positively charged nitrogen atom forms no particularly close contacts to the bromide ions in the unit cell, the four values of  $d(N_{4} - Br)$  being 4.14Å, 4.91Å, 7.63Å and 8.10Å.

The closest contact between a carbon atom and a bromide ion o is 3.67 Å, rather similar to the minimum carbon - Br distances found in the structures of d-methadone hydrobromide 3.62 Å (Hanson and Ahmed, 1958), calycanthine dihydrobromide dihydrate 3.60 Å (Hamor <u>et al.</u> 1960, 1962), and ibogaine hydrobromide 3.59 Å (Arai <u>et al.</u> 1960.).



Fig. 7. The arrangement of molecules in the crystal as viewed in projection along the <u>c</u> axis. A few of the more interesting non-bonded distances and hydrogen bond lengths are shown.



Fig. 8. The packing of the molecules in the unit cell as seen in projection along the <u>b</u> axis. The lengths of a few of the more interesting non-bonded distances and hydrogen bonds are given.

The distance of closest approach between two echitamine molecules is 3.40 Å and occurs between  $C_6$  of the reference molecule and  $O_{25}$  of the one related to it by a two-fold screw axis parallel to <u>a</u>. Between these molecules there occurs another short contact  $C_{11} - C_{15} - C_{15$ 

The final isotropic temperature factors for the atoms: of the echitamine molecule are shown in Fig 6. It is observed that the atoms of the ring system have on the whole a lower temperature factor than those of the peripheral groups. Also those atoms of the peripheral groups which take part in hydrogen bonding viz:-  $0_{25}$  and  $C_{20}$   $0_{26}$ , have smaller temperature factors than the methyl ester, ethylidene and methyl groups which are much less tightly bound.

The temperature factor derived from the carbon  $(B = 10.8 \text{ \AA}^{\circ}^2)$  and oxygen  $(B = 11.2 \text{ \AA}^{\circ}^2)$  atoms of the methanol molecule are exceptionally high. This suggests that there is only partial occupancy of the methanol sites in the crystal Inspection of the various Fourier syntheses showed that the peak heights of the atoms of the methanol molecule were much lower than for the echitamine molecule. This is shown in Fig. 3.



ţ

Fig. 6. Diagram showing the final isotropic temperature factors  $(A^2)$  for the echitamine molecule.

If it is assumed that the difference between <u>d</u> calculated  $(1.430 \text{ gm/cm}^3)$  and <u>d</u> measured  $(1.416 \text{ gm/cm}^3)$  is due to partial occupancy of the methanol sites, then on the average only 85% of the methanol sites are occupied. Electron counts on the final Fourier synthesis support this, indicating 79% occupancy of the sites.

If the methanol molecules were missing in a regular pattern there should be some evidence for larger repeat distances than those observed. An effect of this kind has been observed by Cant, (1956), in the structure of cyclohexaglycyl hydrate. However no spots additional to those already indexed were visible on the diffraction photographs of echitamine bromide methanol solvate and it was therefore concluded that the methanol molecules present were distributed in some statistical fashion over the available sites. No precautions were taken to avoid methanol loss during the X-ray exposures. A variable solvent content has been reported in the crystal study of biuret hydrate (Hughes <u>et al</u>. 1961), caffeine hydrate (Sutor, 1958.) and thymine monohydrate (Gerdil, 1961).

PART III.

THE X-RAY STRUCTURE ANALYSIS OF

ACETYLBROMOGEIGERIN.

#### ACETYLBROMOGEIGERIN.

#### 1. INTRODUCTION.

The bitter principle geigerin occurs in the vermeerbos (vomiting bush) represented by various <u>Geigeria spp</u>. which grow abundantly in many areas of South Africa. It has been reported by Rimington and Roets, (1936), to be associated in the plant with the suspected poisonous principle vermeeric acid with which it is apparently closely related chemically.

The sesquiterpenoid lactone geigerin was first isolated by the above authors from <u>Geigeria aspera</u> Harv. They showed that geigerin,  $C_{15}H_{20}O_4$ , was a ketonic lactone and made a preliminary study of its chemistry. Perold (1955, 1957), extended these investigations, showed that geigerin possessed a reduced azulene system and proposed structure (I) for it.

Barton and De Mayo (1957), recorded that evidence was found which contradicted Perold's results viz:- that geigerin was readily acetylated to the mono-acetate and hence the hydroxyl group must be primary instead of secondary. They proposed structure (II) for geigerin. However, later investigations did not confirm structure (II) but led them to structure (III) (Barton and Levisalles, 1958), which is confirmed by the X-ray analysis of acetylbromogeigerin.

Barton and Levisalles also elucidated the structure of allogeiric acid (IV). Since this acid does not lactonise readily they concluded that the hydroxyl group and the group at position 7 must be trans to one another. Also since allogeiric acid reverts to geigerin and not to the isomeric trans-lactone engaging the 6 hydroxyl group it is reasonable to expect that the lactone ring of geigerin is <u>cis</u>. They assumed the 7 side chain to be in the customary  $\beta$  position. Rotatory dispersion measurements showed that the hydrogen at  $C_1$  is  $\beta$ -oriented. Thus on the basis of this evidence Barton and Levisalles defined a partial stereochemistry for geigerin (V).

Crystals of the derivative acetylbromogeigerin in which the bromine atom was considered to be in the 2-position were supplied by Professor Barton and an X-ray crystal structure analysis was undertaken to extend and verify the stereochemistry.

2.1 CRYSTAL DATA.

ACETYLBROMOGEIGERIN	^C 17 ^H 21 ⁰ 5 ^{Br}
Molecular weight	385.25
Melting point	147 - 153 [°] C(decomposition)
Density calculated =	1.505 gm/cm ³
Density measured a (By flotation using z	1.512 gm/cm ³ inc chloride/water).

The crystal is orthorhombic with

				0
a	=	8.11	±	0.02 A
				0
<u>b</u>	=	13.77	±	0.03 A
				0
c	=	15.24	±	0.03 A

Volume of the unit cell =  $1702 \text{ \AA}^{\circ} 3$ Number of molecules per unit cell = 4 Absent spectra oko when k is odd ool when l is odd

hoo when h is odd

Space group  $P2_12_12_1(D_2^4)$ 

Linear absorption coefficient for X-rays (Cuk_{$\alpha$} radiation)  $\mu = 37$  cm⁻¹ Total number of electrons per unit cell = F(000) = 792

 $\sum f^2 (\text{light atoms}) = 953$  $\sum f^2 (\text{heavy atoms}) = 1225$ 

#### 2.2 INTENSITY DATA

Rotation, oscillation and moving film photographs showed that the crystals are orthorhombic with cell parameters

 $\underline{a} = 8.11 \pm 0.02 \text{ Å}$   $\underline{b} = 13.77 \pm 0.03 \text{ Å}$   $\underline{c} = 15.24 \pm 0.03 \text{ Å}$ 

The systematic absences determined from Weissenberg photographs proved to be oko when k is odd, ool when l is odd, hoo when h is odd, thus determining the space group  $P2_12_12_1 - D_2^4$  unambiguously.

The intensity data used in the analysis were obtained from photographs of the  $ok\ell$  -  $6k\ell$  reciprocal lattice nets.

In all 1,625 independent structure amplitudes were obtained from visual estimates of the intensities using the multiple-film technique (J.M. Robertson, 1943). The crystals were well-formed prismatic needles with uniform cross-section perpendicular to the axis of rotation. The linear absorption coefficient for CuK $_{\infty}$  radiation is  $37 \mathrm{cm}^{-1}$  and no absorption corrections were applied. The intensities were corrected for Lorentz, polarisation and Tunell factors (1939) and put on the same absolute scale at a later stage by comparing  $\sum F_{0}$  and  $\sum F_{c}$  for each layer.

#### 2.3 STRUCTURE DETERMINATION.

The Patterson projections, calculated from the ok l and hko data, are shown in Figs. 1 and 2 respectively. The peaks marked A,B,C, and D,E,F, correspond to the bromine-bromine vectors and on this basis the coordinates of the bromine atom were evaluated.

A three-dimensional Fourier synthesis was computed using the phases determined by the heavy atom. This enabled peaks to be assigned to sixteen of the light atoms. Coordinates calculated for these sixteen atoms were included in the next structure factor computation allowing more accurate phase constants to be determined. A second three-dimensional Fourier map calculated using these improved phases enabled the positions of another five atoms to be determined. Two peaks in the Fourier map were possible sites for the remaining atom attached



Fig. 1 Patterson projection on (100). Contour scale arbitrary. The bromine-bromine vector peaks are marked A, B and C.



Fig. 2. Patterson projection on (001). Contour scale arbitrary. The bromine-bromine vector peaks are denoted by D, E and F.

to the cyclopentanone ring, i.e.  $C_{14}$ . The peak heights were 5e  $\stackrel{\circ}{A}^{-3}(A)$  and 2e  $\stackrel{\circ}{A}^{-3}(B)$ . A third cycle of phasing calculations were performed using the bromine and twenty-one other atoms. These twenty-one atoms were given their correct chemical type except for the oxygen atom of the acetyl group  $O_4$ . The phase constants obtained were used to compute the section of the three-dimensional Fourier map containing  $C_{14}$ . An increase in the height of peak B was observed and a large decrease in the peak height of A. Feak B was therefore assumed to correspond to the site of  $C_{14}$  and atomic coordinates were assigned accordingly. All twenty-three atoms were now entered in the structure factor calculations and the subsequent Fourier map revealed all the atoms clearly resolved.

The course of the analysis is shown in Table I. The value of R at this stage was 20.6%. An overall isotropic temperature factor  $B = 3.0 \text{ A}^2$  was assumed. The atomic form factors employed in the calculations were those of Berghuis <u>et al.</u> (1955), for carbon and oxygen and Thomas and Fermi for bromine (1935).

#### 2.4 STRUCTURE REFINEMENT.

The initial refinement of the atomic coordinates was carried out by comparison of the peak positions on  $F_o$  and  $F_c$ maps. These maps also enabled the choice of hetero atoms to be confirmed and, on the basis of peak heights, variable isotropic temperature factors to be assigned to the various TABLE I.

Course of analysis.

້ - <u>-</u> N				•								
	1=1	n an		1	1 1 2	•		<b>I</b>	l	I	2624	r
D(\$			l	28	23	20.6		19 <b>•</b> 5	19.1	16 <b>.</b> 8	15•5	13•5
Atoms indef	A count structure	1	<b>1</b> Br	1 Br + 16 C	1 Br + 40 + 17 C	1 Br + 50 + 17 C		1 Br + 50 + 17 C	1 Br + 50 + 17 C	1 Br + 50 + 17 C	1 Br + 50 + 17 C	1 Br + 50 + 17 C
. 2000	Data used	ok ${\cal l}$ and hko reflections	1576 P.	1587	1597 F _o	1599 F ₀		1625	1625 F ₀	1625 Fo	1625 F ₀	1625 [₽] 0
	ODEFRICIO	Patterson syntheses	3D Fo synthesis	3D Fo	-	E	າ ກ end	Эр _Р с "	Least-squares cycle	2	r r	. 3D F ₀ map
		R	1 st	2 nd	3 rd	4 th	$5^{\mathrm{th}}$	1st	1 st	2 nd	3 rd	Final

atoms. The atomic coordinates obtained from the  $F_0$ ,  $F_c$  maps with their appropriate temperature factors were used in further refinement by the method of least squares. When three cycles of such refinement had been completed the value of R was 13.5%. The magnitude of  $\sum w\Delta^2$  is listed for the final cycle.

The totals for the two previous cycles are not valid for comparison because of scaling errors in certain reflections which were corrected in the penultimate cycle of refinement. The observed structure amplitudes are listed with the final values of the calculated phase constants in Table II. The weighting system used in the least squares refinement was

$$\sqrt{\mathbf{w}} = \frac{\left|\frac{\mathbf{F}_{0}}{\mathbf{F}^{*}}\right|}{\left|\frac{\mathbf{F}^{*}}{\mathbf{F}^{*}}\right|} \text{ if } \left|\mathbf{F}_{0}\right| < \left|\mathbf{F}^{*}\right|$$

$$\sqrt{\mathbf{w}} = \frac{\left|\frac{\mathbf{F}^{*}}{\mathbf{F}^{*}}\right|}{\left|\mathbf{F}_{0}\right|} \text{ if } \left|\mathbf{F}_{0}\right| > \left|\mathbf{F}^{*}\right|$$

where  $|F^*| = 8 |F \min_{i}|$ 

#### 2.5 RESULTS OF THE ANALYSIS.

The final electron-density distribution over the molecule, as superimposed contour sections parallel to the (001), is shown on Fig. 3. The stereochemistry is explained in Fig. 4. The coordinates obtained from the final least-squares refinement cycle are given in Table III. The anisotropic temperature parameters are listed in Table IV. Tables V and VI contain the bond lengths and angles of the molecule defined by the final coordinates. Some of the shorter intramolecular

ble	II.	Mea	sured a	nd c	alcu	lated	values	of	the	structur
			factors	•	ACRIVILIT MORI DES	ix				
- * c c	4 1 41 100 4 15 21 100 4 15 21 100 5 15 21 100 5 15 21 100 5 10 100 5 100 5 10 100 5 1000 5 100 5 100 5 100 5 100	2 x 2 x 233x4z to 233x4z to 233888 to		H 25555	R 4 h k 23 241 3 3 33 843 45 34 14 267 15 269	4 10 10 4 2 34 31 75 3 71 54 109 4 67 33 209 4 7 15 356 7 87 45 27	h k <b>8 (N) N 4</b> 7 4 0 14 13 13 0 16 4 4770 17 7 0 150 17 7 0 130 4 1 0 79 43 150 4 1 0 79 43 150 1 1 4 553 700	15 8 18 15 8 18 14 19 14 19 16 9 4 9	H d h k 13 45 5 13 14 149 4 171 10 290 5 10 5 14	Itil         Itil <td< th=""></td<>
e 1	22 54 56 100 19 54 56 100 1 19 7 6 9 270 1 77 61 90 1 77 61 90 1 78 77 61 90 1 90 970 1 90 970 1 14 90 1 90 970 1 90 970 1 19 77 61 1 90 1 90	7 21 21 21 200 7 1 21 21 200 9 1 4 1 1 200 9 1 4 1 1 200 11 1 1 1 200 11 1 1 2 1 1 200 11 1 1 2 1 1 200 12 1 1 1 2 1 1 200 2 1 1 1 2 1 1 2 1 1 200 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	2 323 325 325 325 325 325 325 325 325 32	9 10 10 27 6 90 11 19 114 15 7 119 114 15 7 117 118 15 7 118 15 7 10 118 15 7 10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 106 R6 1300 8 330 16 179 17 173 10 69 7 26 2 36 2 36 2 36 2 36 37 0 37 36 37 4 55 129 3 4	1 3 45 145 9 17 20 35 11 29 31 225 13 27 20 32 13 27 20 45 14 22 13 27 25 15 8 6 15 8 7 27 15 8 7 17 4 7 147 10 71 99 90 1 73 94 6	2 55 44 195 3 54 45 12 4 54 55 12 4 54 55 12 4 54 55 12 4 7 11 17 15 12 7 11 17 15 12 11 17 15 12 11 17 15 12 11 15 12 12 15 12 13 15 15 14 10 15 12 15 12 16 91 15 12 16 91 15 12 16 91 16 91	197965888781591 197197458781591	- 188 - 188 - 13 - 33 - 9 204 - 9 20 - 9	
c 2	11 27 15 90 17 4 4 90 13 4 4 90 13 19 0 19 90 13 10 19 70 14 10 19 70 15 10 18 70 16 10 90 18 14 16 90 19 9 10 77 10 18 77 10 18 77 10 18 77 10 19 9 10 77 180 10 19 10 10 10 19 0 10 10 10 0 10 0 0 10 10 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 10 0 0 0 10 0 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0	1000-1000-1000-1000-1000-1000-1000-100	3 4 5 4 5 7 8 9 9 5 12 1 9 5 15 1 5 5 15 5 15 5 15 5	10 PP6 46 290 45 75 22 72 24 251 39 240 29 145 29 52 21 145 29 52 21 145 29 52 21 145 20 52 21 145 20 52 21 145 20 52 21 145 20 52 21 145 21 145 2111 21 145 21 145	2 45 40 209 4 56 40 209 4 56 50 209 5 4 56 50 209 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	15 13 17 241 16 7 122 295 4 2 C 649 47 0 1 2 77 49 102 4 3 4 3 40 300 4 4 44 90 7 12 19 20 4 4 44 90 7 12 19 20 7 12 19 20 7 12 19 20 1 4 19 49 1 27 17 10 1 4 19 10 1 27 17 1 28 17 1 27 17 1 28 17 1 29 10 1 10	11111111111111111111111111111111111111	7 30 9 101 7 270 11 00 11 00 11 00 15 0 7 270 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15	9 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
		0 1 1 1 1 1 1 1 1 1 1 1 1 1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	2 1372 1 2 7 4 5 7 7 5 9 10 11 12 1 1 2 7 4 5 7 7 5 9 10 11 12 1 12 1 12 1 12 1 12 1	11111111111111111111111111111111111111	4	12 21 25 14 14 2 4 7 196 14 10 15 35 50 14 10 15 35 50 11 4 10 15 30 11 4 10 10 10 10 10 10	7 + 9717 9717 111 274 - 711 127 14 - 711 127 14 - 711 127 14 - 717 2 - 1 277	P: 47 1: 21 2:	1 4 7 7 190 1 4 17 19 4 13 12 140 7 10 12 141 7 10 12 141 7 10 13 12 140 7 10 13 12 140 9 112 9 11 140 11 9 11 12 9 11 19 13 9 11 14 19 15 11 1 16 19 17 140 17 140 1
	10 / 10 0 10 / 10 0	9999301 	1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 4 17 19 4 17 19 1 17 19 1 2 9 1 2 15 2 9 2 2 15 1 19 1 2 15 1 19 1 2 15 1 19 1 1 19 1 1 1 19 1 1 19 1 1 1 19 1 1 1 19 1 1 1 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				トキトイ アドラいいほけほしげ	22 194 49 19 6 8 20 44 4 21 20 19 17 20 1 17 20 1 17 20 1 17 21 1 17 21 1 17 21 1 17 21 1 19 11 19 11 19 11 19 11 19 11 19 11 19 11 19 12 19 11 19 11 11 11 11 11 11 11 11 11 11 11 11 11	15 0 18 174 6 7 100 0 4 7 100 1 8 80 1 114 1 8 80 1 1 114 1 8 80 1 1 114 1 9 51 7 11 18 150 7 11 18 150 7 11 18 150 7 11 18 150 10 14 15 00 10
~ .			1 1 1 1 1 1 1 1 1 1 1 1 1 1	90 111 111 111 111 111 111 111 111 111 1	23 129 7 157 1 167 1 2801 1 2990 1 25 325 1 29 90 25 325 1 195 1 2 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10	7 94 90 970 90 970 974 90 979 974 11 97 99 970 11 97 99 970 11 97 99 970 13 97 99 970 14 97 99 970 15 15 14 907 15 15 15 15 15 15 15 15 15		17 - 1 97 - 1 19 19 19 19 19 19 19 19 19 19 19 19 1	11 100 11 100	10
		1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 17 9 18 9 17 10 17 11 14 17 17 14 19 14	14 20 15 200 16 200 14 200 14 200 14 200 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 15 15 17 37		4		72 01 1 7 7 7 1 800 1 800 1 9 77 1 1 1 801 1 9 77 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 20 20 20 20 20 20 20 20 20 20 20 20 20
	17772871911111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	28222222222222222222222222222222222222			17 - 57 17 100 17 - 12 77 10 100 17 - 12 77 10 100 10 11 107 10 100 10 11 107 10 100 10 10 10 10 100 10 100	1010 1010 1010 1010 1010 1010 1010 101	10 pr 1 11 10 12 7 14 5 14 5 14 14 5 14 5 14 14 14 5 14 14 5 14 14 14 5 14 14 14 5 14 14 5 14 14 14 5 14 14 14 5 14 14 5 14 14 14 5 14 14 14 5 14 14 14 14 14 14 14 14 14 14 14 14 14	11 110 1 12 200 1 12 200 1 1 200 1	
• *	11.0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.			• 21 • 21 • 2 • 20 • 20 • 20 • 20 • 20 • 19 • 10 • 19 • 11 • 19 • 11 • 19 • 11 • 19 • 11 • 10 • 11 •	19 47 14 244 14 244 14 100 1 9 14 199 14 199 14 199 14 199 14 199 14 190 15 180 19 180 19 180 19 180	······································	1900 1900 1900 1900 1900 1900 1900 1900	- # 9 #0 10 0 11 11 11 21 1 11 21 1 11 21 1 11 11 11 11	117 177 177 177 177 177 177 177	r - 1999 - 199 - 1999 -
6 7		1994 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975 1975	11111111111111111111111111111111111111	2 12 4 12 5 10 7 14 10 9 27 10 4 12 11 1 1 1 1 1 1 1 1 1 1 1 1	1 9 11 19 19 19 19 19 19 19 19 19 19 19	10 4 7 7 77 11 11 12 22 1 11 12 22 22 14 1 2 2 22 15 1 2 2 15 1 2 2		- 228 - 2.58 - 7.28 - 1 - 9.11 - 129 - 15 - 5 - 5 - 7 - 0 - 129 - 15 - 5 - 7 - 1 - 228 - 1 - 7 - 1 - 1 - 7 - 1 - 7 - 1 - 7 - 1 - 7 - 1 - 7 - 1 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	1 17 1 17 1 17 1 17 1 17 1 17 1 27 1 27 1 17 1 27 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	44 49 15 4 4 5 20 4 5 5 10 80 5 10 80 10
۰.		T 1 1 1 5 221 9 22 24 27 220 10 24 27 220 11 24 27 220 11 24 27 220 11 25 24 27 220 11 25 26 27 2 11 15 10 25 27 17 7 7 2 220 10 5 22 20 10 5 22 20 10 5 20	* 51 54 57 19 51 54 57 19 10 10 19 19 19 19 10 10 19 19 19 19 10 10 19 19 19 10 10 19 19 10 1	₹ 19 5 ≪ 0 7 5 10 4 11 10 2 15 0 7 1 14 2 15 0 7 5 12 5 12 5 12 5 12 5 12 5 12 5 12 5 12	20 203 20 203 20 35 20 35 20 35 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30	100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 <td></td> <td></td> <td>#         1           9         64           9         64           9         10           9         10           1         14           1         17           1         14           7         114           1         70           270         7           1         70</td> <td>4 10 30 44 5 7 94 4 4 2 11 1 1 1 1 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 5 1 1 1 5 1 1 5 1 1 1 1 5 1 1 1 1 5 1 1 1 1 5 1 1 1 1 1 5 1 1 1 1 1 5 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>			#         1           9         64           9         64           9         10           9         10           1         14           1         17           1         14           7         114           1         70           270         7           1         70	4 10 30 44 5 7 94 4 4 2 11 1 1 1 1 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 5 1 1 1 5 1 1 5 1 1 1 1 5 1 1 1 1 5 1 1 1 1 5 1 1 1 1 1 5 1 1 1 1 1 5 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		1 274207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 74207 7407 74			10 101 17 17 9 10 101 17 17 9 1 100 1 22 1 100 1 10 14 10 14 10 14 10 14 10 14 12 10 14 12 13 10 12 13 13 13 13 14 12 12 12 12 12 12 12 12 13 14 12 12 12 13 14 15 10 12 14 15 16 17 17 16 17 17 16 17 17 16 17 17 16 17 17 16 17 17 16 17 17 16 17 17 17 17 17 17 17 17 17 17	7 11 9 45 7 11 9 45 8 10 21 11 15 15 15 15 11 15 15 15 11 15 11 15 11 15 15	- 200 (0.154 - 101 11 12 200 - 4 - 1170 - 4 - 1170 - 11 12 200 - 11 12 - 11 12 200 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11 12 - 11		7 177 2 00 7 122 1 22 1 22 1 22 1 3 22 1 3 22 1 3 1 2 1 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	1         4         6         70           4         8         70         70           5         17         70           7         7         18         70           7         7         18         70           7         7         18         17           7         7         19         7           7         7         19         7           7         7         19         7           7         7         19         7           7         7         19         7           7         7         19         14           7         7         19         14           7         7         19         14           7         7         19         15           7         7         19         14           9         19         14         14
		17.17.05.15.19.79.79.79.79.79.79.79.79.79.79.79.79.79	1911 11 11 11 11 11 11 11 11 11 11 11 11		147 14 265 45 140 45 140 15 140 16 140 17 10 10 10 100 10			9 0 14 3 3 10 1 3 10 1 4 2* 1 7 1* 1 7 4 7 9 19 1 10 9 1 10 9 1 10 9 1 11 9 14 9 10 9 1 18 9 14 1 18 9 14 1 18 9 14 1 19 1 1	1 90 9 274 9 274 0 245 9 274 0 245 1 35 1 35 1 35 1 35 1 35 1 35 1 35 1 3	1 21 26 307 7 10 12 4 4 5 11 4 5 11 5 20 15 28 4 7 6 11 5 20 15 28 4 7 6 11 5 20 15 28 4 7 6 1 10 16 20 1 10 10 10 1 10 10 10 10 10 1 10 10 10 1 10 10 10 10 10
° 1°	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	14 14 14 14 14 14 14 14 14 14 14 14 14 1		17 000 14 17 000 14 18 10 000 14 11 18 907 1	2 +	4 4 4 10 9 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	14 4 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 6 6 7 270 12 45 13 17 14 75 14 202 13 180 19 19 19 19 19 19 19 19 19 19 19 10 19 10 19 10 19 10 19 10 10 10 10 10 10 10 10 10 10 10 10 10 1	4 11 11 74 4 11 13 74 17 20 20 20 15 27 4 15 27 4 15 27 4 15 27 4 16 27 4 17 3 5 20 10 4 5 20 10 4 5 20 10 5
· 11	100025625828253528251	- ************************************	**************************************	T # 47 91111 25115 1112 25115 111	7 45 821 7 59 105 7 4 59 7 4 59 15 15 15 15 15 15 15 15 15 15 15 15 15 15 17 751 17 11 11 17 1		1	13 9 1 1 1 8 17 1 1 17 17 1 1 17 17 1 1 17 17 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 911 9 90 2 914 7 27' 4 12 4 81 1 199 7 27' 7 27' 1 295 7 295 7 27' 1 295 7 295	0 4 3         3         3         3           9         9         10         14           0 10         10         14         1           0 13         17         18         1           14         3         17         144           3         17         740         144           5         17         17         7677           10         13         17         7677           10         13         77         19           7         10         17         7677           10         13         77         19           7         10         17         7677           10         13         77         19           11         13         7677         14           10         13         77         19           11         17         7677         14           10         13         79         1           11         17         7677         1           11         17         77         1           12         17         791         1           13         17
c 12	12 1 1 2 90 1 1 1 2 90 1 1 1 2 90 1 1 1 2 90 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 5 50 67 4 7 50 67 4 7 50 19 10 87 5 7 50 19 19 10 5 7 7 19 19 10 5 7 7 19 19 10 10 7 7 1 10 8277 10 7 1 10 8277 10 7 1 10 8277 11 7 1 28 28 292 12 7 6 14 14 25 7 6 14 15 8 28 292		4 7 72 4 7 72 4 7 72 7 4 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	173 111 173 111 173 115 173 115 174 174 115 174 115	2 4 5 7 100 3 6 11 4 11 11 4 5 7 11 5 7 11 7 1 5 7 5 7 5 7 10 7 1 5 7 5 7 5 7 7 1 5 7 10 7 1 7 7 10 7 1 7 7 10 7 1 7 7		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 90 4 13 7 107 107 7 127 107 1 127 10 1 171 1 1 171	0 14 17 140 1 4 7 180 1 4 7 180 1 4 7 180 1 4 7 180 1 4 7 190 1 4 7 190 1 4 7 190 1 4 7 10 11 1 6 10 11 1 6 7 1 6 7 1 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		16 17 19 19 17 4 7 197 1 9 0 14 14 10 1 187 1/ 187	2 6 0 57 60 100 1 70 77 94 2 77 94	, , ii , ii	11 102 37 26	10 53 50 E 11 15 17 90 12 27 84 190	5 6 290 9 10 23 15 0 10 10 10 1 10 10 10 1 10 11 115		# 105 3 6 0 157 4 0 1 187 6 0	6 21 14 6

e Tal

٢



Fig. 3. Final three-dimensional electron-density distribution for acetylbromogeigerin. The superimposed contour sections are drawn parallel to (001). The contour interval is  $1 e A^{-3}$  except around the bromine atom where it is  $5 e A^{-3}$ .





### TABLE III.

# Atomic Coordinates.

(Origin of coordinates as in "International Tables.")

Atom	x/a	<u>y/b</u>	<u>z/c</u>
cl	0.4872	0.0270	0.7184
c ₂	0.6497	0.0768	0.7521
с ₃	0.7761	0.0384	0 <b>.6919</b>
c ₄	0.6912	-0.0003	0.6112
с ₅	0.5324	-0.0008	0.6259
c ₆	<b>0</b> •4028	-0.0286	0 <b>.5596</b>
с ₇	0.3199	0.0541	0.5122
с ₈	0.2282	0.1304	0 <b>.</b> 57 <b>15</b>
°9	0.3139	0.1670	0.6549
c _{lo}	0.3270	0.0855	0 <b>.</b> 72 <b>75</b>
c _{ll}	0.4371	0.1211	0.4602
с ₁₂	0.3236	0.2107	0.4526
°13	0.4978	0.0759	0.3690
с ₁₄	0.7864	-0.0327	0 <b>.</b> 53 <b>36</b>
с ₁₅	0.3148	0.1397	0.8209
C ₁₆	0.2631	-0.1804	0 <b>.</b> 59999
с ₁₇	0.1111	-0.2225	0.6449
ol	0.9248	0.0396	0.7015
0 ₂	0.2166	0.2117	0.5114
03	0.3318	0.2710	0.3928
0 ₂₄	0.2658	-0.0830	0•5994

x/a <u>y/b</u> <u>z/c</u> Atom 0.3794 -0.2248 0.5587 0₅ 0.4646 0.7919 Br -0.0914 · · · • general start 457 600 . 346 -186 1316 Ś 22.77 582 6 4.76 3310 183 4.63. 44.9 . 274 . 223 1565 14.1 - 20 52  $\approx 3.5\%$ US7 the state of the second s 461 · 127 mig BO 22.00 100 1 702. 582 . 42 34.5 ng na) San b Sept. 7 590 . 512 134 - 2 201 *** 1417 765 2.5 1.2 1 1. 1993 5 / <u>2</u> 1943 ... ni, Sere en sere Sere e -3.675  $\lesssim 100$ 1252 274 Hard Tor

÷. 34

TABLE	IV

Ī	<u>Inisotropic</u>	temperat	ure-facto	or parame	ters (b _{ij}	¥ 10 ⁵ )
	<u>b</u> 11	<u>b</u> 22	<u>b</u> 33	<u>b</u> 12	<u>b</u> 23	<u>b</u> 13
C ₇	1854	509	505	219	165	638
c_2	1986	635	401	-461	162	1
с ₃	2206	352	459	274	424	-176
c,	864	599	609	637	- 55	-215
с ₅	1282	323	496	178	30	-358
с ₆	1067	496	658	242	-191	9
с ₇	2029	557	391	178	212	-132
с ₈	1318	437	<b>60</b> 0	346	-186	3
с ₉	2177	582	476	310	183	-341
cl	0 1566	461	449	274	223	227
c,	1257 l	499	441	- 20	52	-207
cl	2 2280	461	437	-460	<del>-</del> 79	-213
cl	3 1417	702	582	42	311	17
c _l	4 1617	754	590	512	207	-131
cı	5 1828	766	526	26	26	128
cl	6 1643	430	590	-183	6	32
c _l	7 1733	494	766	-243	14	-242
0 ₁	1351	821	692	-65	270	-477
⁰ 2	1215	603	532	278	307	<b>-</b> 74
⁰ 3	2128	705	750	-36	341	-417
0 ₄	1954	44.3	596	-130	354	449
0 ₅	2785	5 <b>5</b> 2	920	180	-272	490
Br	1594	599	542	4	308	187

•

### MOLECULAR DIMENSIONS.

INTERATOMIC DISTANCES (A) AND ANGLES

### TABLE V.

Intramolecular bonded distances.

c ₁	~	c ₂	1.57	с ₇	-	c _{ll}	1.54
cl	-	с ₅	1.51	с ₈		с ₉	1.53
cl	-	clo	1.54	с ₈		0 ₂	1.45
cl	-	Br	1.99	و ^c		с ₁₀	1.58
с ₂	-	c ₃	1.47	Clo	-	с ₁₅	1.61
c3	-	c ₄	1.51	c _{ll}		с ₁₂	1.54
°3		ol	1.22	с ₁₁	-	с ₁₃	1.60
с ₄	-	с ₅	1.31	°12	-	0 ₂	1.25
с ₄	-	с ₁₄	1.48	с ₁₂	-	°3	1.24
с ₅	-	°6	1.51	°16	-	°17	1.53
°6	-	cl	1.51	с ₁₆		0 ₄	1.34
°6	-	о ₁₄	1.47	c ₁₆		05	1.29
с ₇	-	с ₈	1.57				:

TAF	<b>3LE</b>	V	Ι.
_		_	_

cl	••• ^c 7	3.44	с ₅	••• ^C 15	3.96
cl	••• C ₈	3.38	с ₅	c ₁₆	3.32
cl	••• ^C 14	3.81	с ₅	••• 01	3.43
cl	••• ^C 16	3.84	с ₅	••• 05	3.48
cl	••• 01	3.56	^с 6	••• °9	3.14
cl	••• ° ₄	2.97	c ₆	c ₁₀	3.06
c ₂	•••• °6	3.84	с ₆	c ₁₂	3.73
с ₂	•••• ^C 9	3.34	°6	••• ^C 13	3.33
с ₂	•••• ° ₁₄	3.82	с ₆	c ₁₄	3.14
°2	••• ^C 15	3.04	с ₆	c ₁₇	3.80
c ₃	•••• °6	3.75	°6	•••• ⁰ 2	3.71
c ₃	•••• ^C 10	3.74	с ₆	••• °5	2.71
c ₄	•••• °7	3.45	°7	•••• c ₁₀	3.31
с ₄	••• °9	3.89	°7	••• ° ₁₄	3.98
с ₄	••• ^C 10	3.64	°7	••• ^C 16	3.53
c ₄	••• °11	3.51	°7	••• 03	3.50
c ₄	•••• ⁰ 4	3.64	^C 7	••• ⁰ 5	3.93
с ₅	••• ^C 8	3.17	с ₈	••• ^c 13	3.86
с ₅	•••• C ₉	2.95	с ₈	•••• ^C 15	3.87
c ₅	••• C ₁₁	3.13	c ₈	••• ⁰ 3	3.45

Intramolecular non-bonded distances.

TABLE VI.

c ₈ 0 ₄	2.99	° ₁₃ ••• ° ₃	3.03
c ₉ c ₁₁	3.19	° ₁₄ ° ₁	2 <b>.9</b> 7
c ₉ c ₁₂	3.14	Br C ₃	3.45
° ₉ ••• ° ₄	3.57	Br C ₄	3.54
c ₁₀ ••• ⁰ 2	3.83	Br C ₆	3.68
c ₁₀ ••• 0 ₄	3.07	Br ••• ^C 15	3.44
с ₁₁ с ₁₄	3.71	Br ••• ^C 16	3.57
c ₁₁ 0 ₄	3.79	Br 04	3.35
c ₁₃ ••• c ₁₄	3.74		
$C_{12} \cdots O_{2}$	3.66		

45

recommendation for ESA

See a sea of the last

ten a contrar a contrar anterior a contrar a contra A contrar a A contrar a

distances are listed in Table VII and a few of the more interesting intermolecular approach distances ( $\leq 4$  Å) in Table VIII. The standard deviations in positional parameters, calculated from the least-squares normal – equation totals are listed in Table IX. The estimated standard deviations in bond lengths obtained from these values are carbon-carbon 0.040 Å, carbon-oxygen 0.035 Å and carbon-bromine 0.022 Å. The standard deviation in bond angle calculated by the method of Cruickshank and Robertson (1953), is 2°.

The best plane through atoms  $C_1$ ,  $C_3$ ,  $C_4$ ,  $C_5$ ,  $C_6$  and  $C_{14}$  was calculated by the method of Schomaker <u>et al.</u> (1959), and the deviations of the atoms from this plane are listed in Table X. The displacement of  $C_2 = 0.32$  Å is highly significant. The equation of the plane is

0.060X + 0.942Y - 0.338Z - 4.628 = 0

#### 2.6 DISCUSSION OF RESULTS.

The structure of acetylbromogeigerin and the relative stereochemistry determined from the results of the X-ray analysis are shown in (VI). The stereochemistry can be better represented by (VII).

# TABLE VII.

## Interbond angles.

Br	cl	c ₂	105 ⁰	° ₆	°7	c ₁₁	115°
Br	cl	с ₅	110	c ₈	°7	c ₁₁	101
Br	cl	C ₁₀	108	с ₇	с ₈	°9	119
c ₂	cl	с ₅	102	°7	с ₈	0 ₂	101
с ₂	cl	c _{l0}	117	°9	с ₈	0 ₂	107
с ₅	cl	°10	115	c ₈	с ₉	C ₁₀	112
cl	°2	с ₃	103	cl	C ₁₀	°9	112
с ₂	с ₃	с ₄	109	cl	C ₁₀	с ₁₅	112
с ₂	°3	ol	128	°9	C ₁₀	с ₁₅	107
с ₄	с ₃	٥	124	°7	c ₁₁	с ₁₂	99
°3	с ₄	с ₅	108	с ₇	c _{ll}	с ₁₃	114
°3	с ₄	c ₁₄	121	C ₁₂	c ₁₁	с ₁₃	<b>1</b> 15
°5	c ₄	с ₁₄	131	c _{ll}	c ₁₂	0 ₂	112
cl	с ₅	с ₄	114	c _{ll}	с ₁₂	°3	124
cl	с ₅	°6	122	0 ₂	C ₁₂	°3	124
c ₄	°5	с ₆	125	°17	с ₁₆	0 ₄	113
с ₅	с ₆	с ₇	116	C ₁₇	°16	°5	129
с ₅	с ₆	0 ₂₄	112	0 ₂₄	°16	°5	117
с ₇	с ₆	о ₄	104	с ₈	°2	с ₁₂	114
°6	°7	c ₈	116	^с 6	0 ₄	°16	122

### TABLE VIII.

		Intermol	lecular dista	ances	$s (\leq 4 \underline{\mathbb{A}}).$	
c ₃	•••	o ₃ I	2.96	Br	c ₁₂ ^{III}	3.76
ol	•••	o ₃ I	3.07	Br	•••• 0 ₃ ^{III}	3.78
с ₁₁	•••	o ₂ ^I	3.26	с ₁₄	•••• 0 ₃ ^I	3.79
c ₄	•••	o ₃ ^I	3.36	с ₁₇	•••• 0 ₃ ^{III}	3.86
с ₂	•••	o ₃ I	3.38	с ₁₃	o ₂ ^I	3.88
C ₁₂	•••	0 ₂ ^I	3.41	Br	c ₁₃ III	3.94
°3	•••	o_I	3.45	C ₁₂	•••• c ₈ ^I	3.96
0 ₃	•••	c ₈ ^I	3.53	с ₁₅	••• c III 13	3.97
0 ₅	•••	c_II	3.70	с ₁₇	c IV 15	3.98
c ₁₄	•••	0, ^{II}	3.70	с ₅	•••• 0 ₃ ^I	4.00

The superscripts refer to the following positions:

. •

I	$\frac{1}{2} + x$ ,	½ <b>-</b> y,	l - z.
II	$\frac{1}{2} + x$ ,	- <u>1</u> - y,	1 - z.
III	$\frac{1}{2} - x$ ,	-y ,	$\frac{1}{2}$ + Z.
IV	-x ,	$-\frac{1}{2} + y,$	$1\frac{1}{2} - z$ .

	Standard de	viations of the fir	nal atomic coor	dinates (A)
	Atom	<u> (x</u> )	<u> (y</u> )	O(z)
	Br	0.003	0.002	0 <b>.00</b> 2
	cl	0.024	0.018	0.019
	c ₂	0.025	0.021	0.020
	с ₃	0.024	0.017	0.019
	C ₄	0.024	0.020	0.020
	°5	0.025	0.017	0.018
	°6	0.023	0,020	0.022
	с ₇	0.025	0.020	0.020
	c ₈	0.024	0.020	0.021
	с ₉	0.026	0.020	0.020
	Clo	0.023	0.019	0.017
·	c11	0.024	0.018	0.019
	с ₁₂	0.026	0.020	0.020
	C ₁₃	0.022	0.020	0.020
	c _{1/4}	0.027	0.023	0.021
	с ₁₆	0.024	0.019	0.021
	с ₁₇	0.026	0.020	0.022
	01	0.017	0.014	0.015
	02	0.016	0.013	0.014
	03	0.018	0.015	0.016
	0 ₄	0.016	0.013	0.014
	0 ₅	0.020	0.015	0.017

### TABLE X.

Displacements (A) of the atoms of the cyclopentenone system from the mean plane through  $C_1$ ,  $C_3$ ,  $C_4$ ,  $C_5$ ,  $C_6$  and  $C_{14}$ .

cl	0.076
c ₂	-0.321
с ₃	-0.066
c ₄	-0.014
с ₅	-0.010
с ₆	-0.048
с ₁₄	0.061
0 ₁	0.040



This agrees at positions 6, 7 and 8 with that proposed for geigerin by Barton and Levisalles. The cycloheptane ring has a chair conformation.

Barton and Pinhey, (1960), determined the absolute configuration at C₇ for geigerin from chemical and spectroscopic evidence and also by stereochemical correlation with artemisin (Cocker and McMurry, 1960).

Hence using the relative stereochemistry shown in (VI) the absolute configuration can be determined at all centres except  $C_1$  where evidence of a  $\beta$  - H configuration depends on rotatory dispersion studies (Djerassi <u>et al</u>. 1957). Bromination of scetylgeigerin occurred at position 1 and not at the expected position 2. Hence the configuration of geigerin at position 1 could not be inferred from the results of the crystal analysis.

The average length of a carbon-carbon single bond between

 $\underline{sp}^{3}$ -hybridised carbon atoms is 1.56 Å which agrees within experimental error with the value of 1.545 Å for the carboncarbon distances in diamond. The average length of a carbon( $\underline{sp}^{2}$ )carbon( $\underline{sp}^{3}$ ) bond is 1.51 Å, not significantly different from the value of 1.525 Å given in Tables of Interatomic Distances,(1958). The length of the carbon-carbon double bond is 1.31 Å which is in agreement within the standard deviation with that of 1.334 Å found in ethylene (Bartell and Bonham, 1957).

The average value of the carbon( $sp^3$ ) - carbon( $sp^3$ ) distance in the seven-membered ring is 1.54 A and this can be compared with that of 1.57 ± 0.04 A found for the average bond length in the seven-membered ring of isoclovene hydrochloride (Clunie and Robertson, 1961). The average value for the sevenmembered ring in bromodihydroisophotosantonic lactone, a similar compound to acetylbromogeigerin is 1.52 ± 0.045 A (Asher and Sim, 1962). In acetylbromogeigerin the average bond angle for the seven-membered ring is  $116 \pm 2^{\circ}$  which agrees with the value of 117  $\pm 2^{\circ}$  in isoclovene hydrochloride and 116° in bromodihydroisophotosantonic lactone. The seven-membered rings in isoclovene hydrochloride, acetylbromogeigerin and bromodihydroisophotosantonic lactone are in the chair form. It is obvious however that all three are distorted since all the angles are consistently greater than tetrahedral. The increase in bond angles may be compared to those observed in cyclononylamine hydrobromide (Bryan and Dunitz, 1960),

and 1,6 trans-diaminocyclodecane dihydrochloride (Huber-Buser and Dunitz,1960), where similar large values for the ring angles have been found.

The average  $\operatorname{carbon}(\underline{\operatorname{sp}}^3)$  - oxygen distance is 1.47 Å which is not significantly different from the value of 1.50 Å in bromodihydroisophotosantonic lactone and that of 1.48 Å in clerodin bromolactone (Sim <u>et al.</u> 1961, and further unpublished work). The length of a similar bond in epilimonol iodoacetate is 1.49 Å (Arnott <u>et al.</u> 1961). The carbon-oxygen single-bond distance in the system - 0 -  $\bigcirc$  - is 1.30 Å. This distance compares favourably with that of 1.32 Å in epilimonol iodoacetate, 1.34 Å in bromodihydroisophotosantonic lactone and 1.34 Å in clerodin bromolactone.

In the carbonyl groups the average carbon-oxygen distance o is 1.25 A. The length of a similar bond in the last three compounds mentioned is 1.28 A, 1.23 A and 1.20 A respectively. These values are similar to those found in the carboxylic acids.

The carbon-bromine distance of 1.975 A is in agreement with the average value of 1.937 ± 0.003 Å found in bromo derivatives of the paraffins such as bromoform (Williams <u>et al</u>. 1952). None of the individual bond lengths in acetylbromogeigerin differs significantly from the accepted value.

A short intermolecular contact between  $0_1$  of the standard molecule and  $0_3$  of the molecule defined by

 $\frac{1}{2} + x$ ,  $\frac{1}{2} - y$ , 1 - z has a value of 3.07 Å. This is similar to a non-bonded oxygen-oxygen distance of 2.95 Å in the substituted cyclopentadiene structure described in Part V of this thesis.

In the crystal the molecules are held together by Van der Waals contacts. The arrangement of the molecules as seen in projection on the <u>a</u> axis is shown in Fig 5. Fig. 6 shows the molecule of acetylbromogeigern in projection on the (100).




Fig. 5. The arrangement of molecules in the crystal as viewed in projection along the  $\underline{a}$  axis.





Fig. 6. The molecule of acetylbromogeigerin as seen in projection on the (100).

(a) A set of the s

(a) a second a substance providence of the second second substance substance and the second s second se

# The provide the **PART** of **IV.** The provide the second sec

THE X-RAY STRUCTURE ANALYSIS OF CEDRELONE IODOACETATE

terre and the training and training and the training and tra

The objects of second and the second of the second se

#### CEDRELONE IODOACETATE.

#### 1. INTRODUCTION.

<u>Cedrela Toona</u>, a tree belonging to the natural order of Meliaceae, is found in abundance in the sub-Himalayan tract from the Indus eastwards. It grows to a height of 50 - 60 feet. The wood, which is brownish red with a faint aromatic odour, mainly due to the presence of a golden coloured essential oil, is used for medicinal purposes. It is also a source of dyestuff.

In view of the medicinal importance of the plant an investigation was undertaken by Parihar and Dutt, (1950), to study the active principles present. From the wood they isolated a 'supposed' lactone in 40% yield and an essential oil. Apart from an investigation of this essential oil no systematic work on the wood of the plant had been previously described. Parihar and Dutt stated that the lactone, which they named cedrelone, had a molecular formula  $C_{25}H_{30}O_5$  and contained an ethylenic double-bond, one phenolic hydroxyl group, a ketonic group and a lactone ring. These data have since been proved to be inaccurate (Grant et al. 1961, Copinath <u>et al</u>. 1961).

The study of cedrelone was continued in the Chemistry Department of Glasgow University (Hodges <u>et al.</u>) and in Zurich (Copinath <u>et al.</u>). These workers showed that cedrelone has the formula  $C_{26}H_{30}O_5$  and contains (from spectral evidence) a hydroxyl group, an  $\alpha\beta$  - unsaturated ketone and a furan ring Spectral considerations also suggested the presence of a second enone function. No information was available however concerning the ring system of the compound when the X-ray structure analysis of the iodoacetate derivative was undertaken.

2.1 CRYSTAL DATA.

CEDRELONE IODOACETATE	3	с ₂₈ н ₃₁ 06 <b>г</b>
Molecular weight		590-448
Melting point		149 <b>- 1</b> 50 ⁰ C
Density calculated	=	1.490 gm/cm ³
Density measured	=	1.498 gm/cm ³
(By flotation using	car	bon tetrachlori

(By flotation using carbon tetrachloride and petroleum ether.)

The crystal is orthorhombic with

 $\underline{a} = 6.97 \pm 0.02 \text{ Å}$  $\underline{b} = 27.44 \pm 0.03 \text{ Å}$  $\underline{c} = 13.74 \pm 0.04 \text{ Å}$ Volume of the unit cell = 2628  $\text{\AA}^3$ 

Number of molecules per unit cell = 4

Absent spectra

hoo	when	h	is odd
oko	when	k	is odd
00 l	when	L	is odd

Space group  $P2_{1}2_{1}2_{1}(D_{2}^{4})$ 

54.

Linear absorption coefficient for X-rays (Cuk_e, radiation)  $\mu = 108 \text{ cm}^{-1}$ Total number of electrons per unit cell = F(000) = 1200  $\sum_{f^2(\text{light atoms})} = 1423$  $\sum_{f^2(\text{heavy atoms})} = 2809$ 

### 2.2 INTENSITY DATA.

Crystals of cedrelone iodoacetate in the form of small hexagonal plates were obtained from Mr. S.G. McGeachin, of the organic section of the Chemistry Department of Glasgow University. The crystal system was found from oscillation photographs to be orthorhombic and the unit cell parameters were determined from rotation and moving film photographs. The reciprocal lattice was explored by recording the intensities of the okl - 5kland hko - hk6 layers with a Weissenberg camera. Intensities were estimated visually using the step-wedge technique and after the normal Lorentz, polarisation and Tunell factors had been applied 1163 structure amplitudes were evaluated. CuK_{ed} radiation was used for all photography.

The space group  $P2_12_12_1(D_2^{4})$  was determined unambiguously from the systematic absences. It was noted that the data faded out rapidly on the photographs about both the <u>a</u> and <u>c</u> axes indicating a high temperature factor for the structure. Also the crystals were rather unstable and decomposed gradually during the period of photography. This must result in certain inaccuracies in the observed structure amplitudes. No absorption corrections were applied.

### 2.3 DETERMINATION OF THE IODINE POSITION.

The two-dimensional Patterson maps, computed using the data from the ok l and hko equatorial layers, are shown in Figs. 1 and 2. The iodine - iodine vector peaks are labelled A,B,C and D,E,F. Calculation of the iodine coordinates using these peak positions indicated that the fractional x coordinate of the iodine atom was 0.25. However since peaks A and B are elliptical the coordinate is obviously not exactly 0.25 but displaced slightly from it. It was decided to calculate this displacement since a fractional coordinate of 0.25 for the iodine atom would introduce spurious symmetry complications in the initial stages of a structure analysis using the heavy-atom phase-determining method.

The eccentricity of peak A was calculated since it is possible to relate this (Burns, 1955), to the separation of two peaks  $(2 \Delta)$ , one on either side of the axis, which merge due to lack of resolution.

If the constituent peaks are situated at the points  $P_1$ and  $P_2$  giving rise to a resultant at  $P_0$ , the mid-point of the line joining  $P_1$  and  $P_2$ , and if the coordinates of  $P_0$ ,  $P_1$ ,  $P_2$ are  $(x_0y_0)$ ,  $(x_1y_1)$  and  $(x_2y_2)$  respectively, referred to rectangular axes, then, since each of the constituent peaks can be adequately represented by a Gaussian function 56.



Fig. 1. Projection of Patterson function along the <u>a</u> axis. Contour scale arbitrary. The iodine-iodine vector peaks are marked A,B and C.



.



$$\rho(\mathbf{r}) = \rho_{o} \exp(-pr^{2})$$

the resultant electron density at the point (x,y) is given by  $\rho(xy) = \rho_0 \exp\left[-p\left\{(x-x_1)^2 + (y-y_1)^2\right\}\right] + \rho_0 \exp\left[-p\left\{(x-x_2)^2 + (y-y_2)^2\right\}\right]$ If the separation of the constituent peaks is  $2 \Delta$  then

$$x_1 = x_0 + \Delta_x$$
  $y_1 = y_0 + \Delta_y$ 

$$x_2 = x_0 - \Delta_x$$
  $y_2 = y_0 - \Delta_y$ 

where  $\Delta_x$ ,  $\Delta_y$  are the components of  $\Delta$ . Hence the expression for the electron density becomes

$$(\mathbf{x},\mathbf{y}) = 2 \operatorname{o}_{o} \exp \left[ -p \left\{ (\mathbf{x}-\mathbf{x}_{o})^{2} + (\mathbf{y}-\mathbf{y}_{o})^{2} + \Delta^{2} \right\} \right]$$
$$\left[ \cosh 2p \left\{ (\mathbf{x}-\mathbf{x}_{o}) \Delta_{\mathbf{x}} + (\mathbf{y}-\mathbf{y}_{o}) \Delta_{\mathbf{y}} \right\} \right]$$

If the logarithms of both sides are taken and only the first term of the expression  $l_n \cosh u = \frac{u^2}{2} - \frac{u^4}{12} + \dots$  retained then  $l_n \rho(x,y) = \text{const} -p (1 - 2p \Delta_x^2)(x - x_0)^2$   $-p(1 - 2p \Delta_y^2)(y - y_0)^2$  $+ 4p^2 \Delta_x \Delta_y (x - x_0)(y - y_0)$ 

It can be seen from the above expressions that the electron density approximates to a series of ellipses with centre  $P_0(x_0y_0)$ . The eccentricity of the ellipses is given by the expression

$$\epsilon = \sqrt{2p} \Delta$$

The value of p is derived from the Gaussian function

$$\rho(\mathbf{r}) = \rho_{o} \exp(-pr^2)$$

It can be determined from a plot of log.  $\rho(\mathbf{r})$  against  $\mathbf{r}^2$ . This is a straight line with negative gradient  $\frac{\mathbf{p}}{2.303}$  and  $\frac{1}{2.303}$  intercept  $\rho_0$ .

Two methods are available for finding the eccentricity  $\epsilon$ . The first involves drawing the elliptical vector peak of the iodine accurately and measuring the major and minor axes, whereupon the eccentricity is given by

$$\epsilon = \sqrt{1 - \frac{b^2}{a^2}}$$
 where a, b are the major and minor axes respectively.

The second method is analytical and due to Ladell and Katz,(1954). In this method it is assumed that the peak resembles an elliptic paraboloid near the maximum. The value of the Patterson function at each point  $(x^ly^l)$  of the net is designated by  $Z(x^ly^l)$ . If the highest value of  $Z(x^ly^l)$  is Z(0,0) then the true maximum will be close to Z(0,0). A good approximation to its true location can be determined from the value of Z(0,0) and the values of the eight surrounding points. These nine values of the Patterson function are used to obtain the coefficients of the equation of the elliptic paraboloid.

 $Z(x,y) = Ax^2 + By^2 + Cxy + Dx + Ey + F$ If K is the ratio of the repeat distances of the net then the values of the coefficients for the orthorhombic case are

$$F = Z(0,0)$$

$$A = \frac{1}{2} [Z(1,0) - Z(\overline{1},0)] - F$$

$$B = \frac{1}{2} [Z(1,0) - Z(\overline{1},0)]$$

$$E = \frac{1}{2} [Z(0,1) - Z(0,\overline{1})_{K}]$$

$$C = \frac{1}{4} [(g/K)]$$

$$D = \frac{1}{2} [Z(0,1) + \underline{g}(0,\overline{1}) - 2F/K^{2}]$$
where  $g = Z(1,1) + Z(\overline{1},\overline{1}) - Z(\overline{1},1) - Z(1,\overline{1})$ 

The eccentricity of the ellipse is then given by

$$\mathbf{\epsilon} = \sqrt{1 - \frac{b^2}{a^2}} \quad \text{where}$$

$$\frac{b}{a} = \frac{A^1}{B^1}$$

A¹ being 
$$\frac{1}{2}A \left[1 + \frac{(A - B)}{\Psi}\right] + \frac{1}{2}B \left[1 - \frac{(A - B)}{\Psi}\right] + \frac{1}{2}\frac{C^2}{\Psi}$$
 and  
B¹ being  $\frac{1}{2}A \left[1 - \frac{(A - B)}{\Psi}\right] + \frac{1}{2}B \left[1 + \frac{(A - B)}{\Psi}\right] - \frac{1}{2}\frac{C^2}{\Psi}$   
where  $\Psi = \sqrt{\left[(A - B)^2 + C^2\right]}$ 

Both the graphical and analytical methods were used to determine the eccentricity of peak A in the case of cedrelone iodoacetate and from the values of  $\Delta$  obtained a preliminary fractional coordinate of x = 0.23 was assigned to the iodine atom. Trial sets of structure factors computed with the two-dimensional data gave discrepancies of 61% and 55% when the fractional coordinates of the iodine atom in the <u>x</u> direction was 0.24 and 0.23 respectively.

0

#### 2.4 STRUCTURE DETERMINATION.

Approximate phase constants were determined from a structure factor calculation based on the iodine coordinates. Using these phases a Fourier map was computed as sections parallel to (100). No information about the structure could be deduced from this map. The iodine coordinates obtained from the map were used to calculate better phase constants and a second Fourier map was calculated as sections parallel to (001) [ to show more clearly the effects of the spurious symmetry.] However, no details of the structure could be determined from this map either. The difficulties encountered in attemps to solve the early electron density maps were due to the spurious symmetry and the high temperature factor which tended to make the atom peaks indistinct.

Nine of the most prominent peaks were chosen from the second Fourier synthesis and on the assumption that they were likely to be genuine, coordinates were assigned to them, and they were included in the third cycle of phasing calculations. The value of R dropped from 43% to 35.7%.

A third Fourier map was computed and coordinates were assigned to a further ten of the largest peaks. The coordinates of these nineteen peaks were entered with those of the iodine atom in the fourth structure factor calculation. However, the value of R merely dropped from 35.7% to 34.9%. The coordinates were then plotted on a two-dimensional Fourier map and those which did not fall on peaks were dropped from the fifth cycle of phasing calculations. In all five atoms were omitted. Inclusion of the remaining fifteen atoms lowered the discrepancy to 33.9% for the fifth cycle. The structure was solved from the subsequent Fourier map. Once the similarity of cedrelone iodoacetate to epilimonol iodoacetate (Arnott <u>et al.</u> 1961), had been realised a complete structure could be postulated.

Those atoms whose positions were certain were used to calculate the sixth set of structure factors and the fifth Fourier map revealed all the atoms clearly resolved. The correct chemical type was assigned to all the atoms except the oxygen in the furan ring and the seventh cycle of structure factors calculated over all the atoms gave a discrepancy of 27.4%.

The course of the analysis is shown in Table I. Atomic acattering values of Berghuis <u>et al.</u> (1955), were used for the light atoms and those of Thomas and Fermi (1935), for iodine, modified for anomalous dispersion as suggested by Dauben and Templeton, (1955). An average isotropic temperature factor of  $B = 4.9 \text{ Å}^{2}$  was assumed.

### 2.5 STRUCTURE REFINEMENT

The atomic coordinates were refined initially by means of an  $F_{o}$  and  $F_{c}$  map. This also allowed the value of the overall isotropic temperature factor to be adjusted from consideration of the peak heights. A second set of  $F_{o}$ ,  $F_{c}$  TABLE I

Course of analysis.

	Oper	ation	Data used	Atoms included	R(%)	$\sum w \Delta^2$
ଶ	Patterson	syntheses	okland hkoreflections		Ì	I.
lst	3D FO	synthesis	1158 F ₀	l I	49	I
2 nd	z	=	1164 F ₀	l I	43	1
3 rd	=	E	1205 F ₀	1 I + 9 C	35.7	1
⁺ th	Ŧ	<b>z</b>	1227 F ₀	1 I + 15 C	33.9	I
$5^{\mathrm{th}}$	=	=	× 1285 F	1 I + 23 C + 50	29.6	1
$\mathbf{6^{th}}$	ŧ	Ŧ	)			
lst	and 3D F _C	=	1285	1 I + 29 C + 50	27.4	1
$7^{\mathrm{th}}$	3D Po	ŧ				
2 ^{nd⁸}	und 3D Fic	E	1285	1 I + 29 C + 50	24.2	1
lst	Least-sque	ares cycle	1285 F _o	l I + 29 C + 50	20•5	10800
2 nd	E	2	1285 F ₀	1 I + 29 C + 50	19.1	9800

.

	$\sum w \Delta^2$	8300	27700	• • • • • •			
	R(%)	18.4	18.0	17.5	jns,		
•	icluded.	c + 50	• C + 50	0 C + 50	calculatic	an se an	n an Eilen a Chair an Anna 19 - Anna Anna 19 - Anna Anna 19 - Anna Anna
. (contd	Atoms in	1 I + 29	<b>1</b> I + 29	1 I + 29	he phasing		Sector de la
TARLE I	ed		0		b used in t	serveq.	an a
	Data us	1285 F	1285 F	1285 F	tudes were	Mere unoc	
	tion	es: cycle	Ŧ	nthesis	ure amplit	OI THESE	
	Opera	east-squar		D Fo sy	285 struct	D IAGT LZZ	an a
en en se		3 rd L	4 th "	8 th 3	H H	<b>-</b>	n - An <u>ian</u> San San Ania Anian Anian Anian Anian Anian

·

maps enabled different isotropic temperature factors to be assigned to the atoms. It was impossible from either of these cycles to distinguish the oxygen atom in the furan ring on the basis of peak heights.

Refinement was completed by four cycles of least-squares computation using anisotropic temperature factors for all atoms. After the fourth cycle the shifts in the atomic parameters were negligible. The discrepancy over the final set of structure factors was 17.5%. The course of analysis is shown in Table I.

### 2.6 MOLECULAR DIMENSIONS.

The final atomic coordinates are listed in Table II and the corresponding anisotropic thermal parameters in Table III. The final set of observed and calculated structure amplitudes is given in Table IV. The final electron density distribution over the molecule is shown in Fig 3 with the corresponding atomic arrangement in Fig. 4. A diagram of the molecule in projection along the a axis is given in Fig 5.

The bond lengths and interbond angles calculated from the coordinates listed in Table II are given in Tables V and VI respectively. The shorter intramolecular contacts are listed in Table VII and the intermolecular approach distances ( $\stackrel{\circ}{\prec} 4A$ ) in Table VIII. The standard deviations in positional parameters calculated from the least-squares totals are shown in Table IX. The average standard deviation of a carbon-carbon bond

### TABLE II.

## Atomic Coordinates.

(Origin of coordinates as in "International Tables.")

Atom	<u>x/a</u>	<u>y/b</u>	z/c
cl	-0.3157	<b>-0.</b> 0520	0 <b>.1550</b>
c ₂	-0.3783	-0.0957	0.1406
°3	<b>-0.</b> 2634	-0.1337	0.1687
C ₄	-0.1512	-0,1311	0.2654
с ₅	<b>-0</b> ,0985	-0.0781	0.2787
°6	-0.0131	-0.0596	0 <b>.</b> 36 <b>79</b>
°7	<b>0.</b> 0318	-0_0086	0.3925
с ₈	0.0840	0.0185	0.2986
с ₉	-0.0851	0.0093	0.2311
с ₁₀	-0.1186	-0.0424	0.1949
с ₁₁	<b>-0</b> •0764	0.0460	0.1412
C ₁₂	-0,1651	0.0958	0.1854
°13	<b>-0.</b> 0779	0.1067	0.2925
с ₁₄	0.0798	0.0744	0.3175
с ₁₅	0.0235	0.1024	0.3824
°16	0.1063	0.1495	0 <b>.3960</b>

TABLE II. (contd.)

Atom	<u>x/a</u>	<u>y/b</u>	z/c
с ₁₇	-0.0109	0,1585	0.3085
c ₁₈	-0.2785	0.0931	0•3694
C ₁₉	0.0544	<b>-</b> 0 _• 0578	0.1154
^C 20	-0.1626	0,2006	0.3251
°21.	-0.2756	0.2147	0.4005
C ₂₂ .	-0.3139	0.2093	0.2532
C ₂₃	-0.4079	0,2487	0.2789
с ₂₈	-0.2911	-0,1504	0.3437
с ₂₉	0.0410	-0.1661	0.2702
^C 30	0.2710	0.0030	0.2637
C ₃₁	0.1412	-0,1035	0.4855
с ₃₂	0.1435	<b>-0</b> ,1425	0.5768
0 _A	-0.2808	-0.1767	0.1316
٥ _B	-0.0223	-0.0932	0 <b></b>
°c	0.0597	0.0047	0.4678
о _D	0.2559	0.0974	0.2779
0 _E	<b>-</b> 0.3849	0,2467	0.3740
0 _F	0.2847	-0.0888	0 <b>.4452</b>
I	0,2808	-0.2054	0.5353

TABLE	III.

Anisotropic temperature-factor parameters  $(\underline{b}_{ij} \times 10^5)$ .

	<u> ^b11</u>	<u>b</u> 22	<u>b</u> 33	<u>b</u> 12	<u>b</u> 23	<u>b</u> 13
cl	3743	243	642	597	124	-2186
с ₂	5176	238	558	-282	461	0
с _з	8289	213	768	-1498	177	3246
c ₄	3464	188	729	-166	82	-1779
с ₅	3791	138	730	1007	178	-1821
с ₆	4980	163	523	249	359	0
°7	5221	386	426	-1494	678	-2774
c ₈	3979	134	389	502	567	0
c ₉	1678	103	955	-211	58	-2396
c ₁₀	5893	315	658	-243	381	1248
c ₁₁	7183	240	1047	201	241	0
с ₁₂	5452	140	1301	432	158	1120
с ₁₃	3849	277	514	652	-196	3074
с ₁₄	2400	<b>27</b> 7	439	761	- 51	0
с ₁₅	6076	164	562	312	- 82	-1924
с ₁₆	6744	142	82 <b>9</b>	595	265	-1385
с ₁₇	3669	170	1017	-702	- 98	1171
с ₁₈	411	181	1113	204	132	- 280
с ₁₉	24 <b>9</b> 2	324	528	0	-153	3237

TABLE III (contd.)

	<u>b</u> 11	<u>b</u> 22	<u>b</u> 33	<u>b</u> 12	<u>b</u> 23	<u>b</u> 13
с ₂₀	7048	2 <del>9</del> 8	274	1308	749	2656
°21	6734	550	850	658	87	1876
с ₂₂	4880	257	12400	-328	-404	-4043
с ₂₃	11336	186	1/1/40	0	381	0
с ₂₈	55 <b>7</b> 4	250	1065	-440	-102	0
с ₂₉	8943	266	928	379	-443	0
с ₃₀	1576	284	1012	649	304	3046
с ₃₁	3786	239	1319	-254	-431	979
с ₃₂	2258	424	925	- 350	- 25	0
° _A	9457	283	901	14	-498	660
0 _B	4094	247	85 <b>5</b>	-575	65	-2712
°c	6168	21 <b>6</b>	402	-297	236	2189
Ъ	2497	179	941	-419	- 64	2861
0 _E	11733	143	<b>1</b> 192	1981	367	1894
0 _F	6717	210	790	513	186	0
I	6717	183	983	356	- 34	-438

T			14	1 14	1 4	Γ.		1	141	-		k	4 10	a Pa	-	h k	1	P4 P4	1		1	P4 P4 .			14 14	ब		4 1	1111	]
ł					180	t.	10	7	20	34 0	1.			a (4 )	<b>"</b> †	2 6	,		,	1 1	,	47 43 91	t.,	• 1	15 16 1	78	, ,	•	19 19 999	1
			4	1		Ľ		1.	12			-	] ]		7	-	1			-	Ĩ			1		£ [		2		
	0	1	40	4	100	ľ	19	ļ	1	64				1 1			18 a		<u> </u>		ış.	124	33		ų ų		• •	1		
			1	I				ł,	i i	ផ្លូកផ្ល	1.		1			• '	į	1 2	g		ţ	5 <b>5 1</b>	1		8 B.	2		12	184	
					90	١.	80	20	100	26 96 26 96			ł				ź	1958	2		Ì	1) 11 11 10 11 11 10 11 11		Ŧ		2		12	117	
		, i			170	1		1	ŝ	30 180			7	100 7	<b></b> (11)		7		8					74	1 7	20		11 ×	114	
	·		16		180			í	10	61 100	1.	13	1 1	7 15 2			10	17 1	ឆ្ល	, ,	1	11.12	1	1 0			• •			
			-		7 100			1	39 15	49 180			1			-	1	101 104 10 13 104 10	2		3			-		,,,		-		
		2	4		1 0	l °	81	i	61 14 30	51 90 11 870 53 90			<b>ç</b> ∡	5 10 3	22		-	49 27 1 34 27 1			7			4		ŝ		1	1 10 107	
	۰	<b>،</b> ۱			1 160			2	591415	17 aro		4	241	, <del>,</del> ,	45 88 90		, 9 9	49 58 1 49 20 1 43 44 1	SI ,		100	29 24 239 18 15 215 7 20 90		• }	17 31 3 14 30 1 10 31 1		5 6	1		
			1	14	10	•	82	70 1	25	19 90 46 180 87 180			1	3 67 a 9 29	19 07 28	<b>2</b> 9	10	20 20 1 30 26	57 01		1	57 57 50 57 57 50 57 57 50		1	4 26 1 6 37 10 30 1			1	173	
			2		270			1	523	40 180 86 0 39 180					3		1	50 50 10 50 70 10			i.	21 10 19 N		74	10 10 1 10 10 1	1		1		
		ŀ	4	1	90 270 4 90			1	15	15 180	1	15	0 10		# 20		27	512	61					, ?			s 7	10 1		
	0	•				ľ	*)	-	1554	15 90	1		; ;	5 26 3	78		9 10	20 20 1	22	5	ĩ	17 31 170		5						
			1	7 1	1	•	24	2	22	21 270 58 0	1		24	7 36 2	16		Ĩ	1000			2	10 59 151		2		ñ.		1		
				0 9	6 0			i,	12	1 0	1	16	0 1	5 89 1	20 99 94		1		15		1	19 81 870 88 18 851		944			5 8			
	•	, ì		3 1 0 2 6 1	1 180	•	25	1	12	37 90 10 90 33 90					76 48 97		7	23 21 3		6	10	N 23 130 12 23 93 63 70 270								
				4 9 7 3 3 12	1 90 5 90 1 90	0	26	4 0 1 4	55	27 90 52 180 10 180	1.	17	2 X 1	6 13 7 7 8 5 89 8	<b>R</b>	<b>2</b> 11	0 1 2	11 11 14 60 54 8 31 44 1			1	92 108 J 59 55 299 65 48 330			6 31 P 6 43 5 6 81 F	2		12		
			14	913	9 270 9 90 1 90		27	3	14	14 180 16 180 7 870			141	5 15 1 0 91 2 2 19 1	88		1	86 93 8 20 89 8	2010		2	10 19 10a 40 19 350 47 44 355		24	90 89 9 89 90 8 17 15 9	S		841		
		i	24	5 1	90 870 90	8	28 29	. 1.	11	17 270	1.	18	24	15 E			644	9 6 2 10 2 2	50		24	11 15 179	1	1	1 50			14		
	0	6 1		1	6 270 5 180 6 180	0	30	014	16	15 90 19 0 11 180			;		ä	\$ 12	9 1	10 19 1 51 54 5		1 7	10	51 51 19 96 107 90 57 51 1		1	177 177 177				8 17 87 8 18 18	
				5 6	3 180	8	31 92	101	16	17 160	1	19	10	1 10 1	51 20		4744	19 68	07 46		1	81 57 36 57 36		7 1		,	5 10	1		
			< 1 7 1	0 11	7 160		22	1	ij	19 180			5	9 22	51 96		167	15 18 3	Ĩ		1	11 14 112	•	6 64		0		1	2 15 16	
		;			180		2	ľ	12	8 180 29 0	1 1	20	2	5 20	22	<b>2</b> 13	24	10 10 1			10	3 3 91		4		Ĭ.		12	7 74 9 140	
	0	7		195	9 90 9 270	i i	6	i	172	10 180			; ;		17		į	3.5			i	4 59 103 4 41 110 76 70 157		1		5	5 11			
			10	9 9	4 270 5 90 1 270			1	155 60 94	59 90 96 180		81		5 30 1 6 85 8	41 58 70		į,	16 15 1	50		2	28 26 119 30 29 120 42 35 167	•	· 24	0 20 21 0 14 1 24 14			; ]	2 11 201 3 16 215 2 18 215	
			7 1		4 90 0 270 3 90			7 9 4	2715	40 90 67 180 4 90			141	6 6 1 7 15 1 5 57 1	5	2 14	24	10 17 14 14 1	17		Т В 9	40 37 74 37 39 835 37 87						1		
	0	, ¹		2	9 270 13 270 0 180		1	10	22	37 180 38 90 87 90				6 11 1 6 47 2 6 27 2	3		1	46 53 1	1	9	104	80 81 270 28 37 164	1.	, ,	4 40 1					
				0 9	6 180 4 0			1	139	10 10 105 279	1			7 14 3	37		2	29 47 10 39 47 10 39 37 10			1	2 2 2 2				;	118	14		
				101	1.50			ş	97	85 865 40 849			1		ä	. 15	890	20 N 1			1	23 81 154 81 83 887		14		Ĩ.		1		
		,		7 4	5 0				152		1	3	14	7 31	76	• .,	ł	3.5	ni l	10	104	11 11 197		, 2 i				į		
	0	, ⁱ	1 1	10.14	4 0 8 270 1 270	1		11	20 14 12	29 275 17 90 185 141	1		24	6 37 1 8 12 1 5 45	16		í	N 55 H			į				11 96 87 19 40 18 14 31 20			14		
					8 170 4 90 3 270			1	100.0	37 77 77 77	1''	24	14		33		7 8 9	16 79 1 77 45 1 16 12 1			2	22 A 12 A		2		2,	14	74		
			7		A 90			ş	158	202				8 28 1 8 25 1	1	2 16	1	26 49 11 11 11	5			13 44 4 16 83 850	1 * "		2 2 1	5				
		. 1	ا د ا		5 90			10	845	41 0	1.		14	8 13 X	50		1	40 47 M		11	10							14		
				0 1	0 180	1	,	101	12		Ι.		2				7 8	10 12 1			2	10.00	4 11	Ŏ	, <u>, ,</u>	ĩ,	15	0 1	20 90 21 91	
					1 180			1	111	74 119			1		ŝ	8 17			10		5	5.43		-	0 86 8 4 88 37 5 10 6				81 990 10 195 15 311	
			7 I 8 I 9 I		9 180			8	192	18 347 90 104 30 120					242			9 10 3 42 51 10 10 19 1		1.8	18	16 84 76 18 24 9 29 24 270	4 11		6 7 M 4 19 18 4 31 10			14	4 55	
	•	., ¹	1 1	5 1	2 180			10 11	47 12	49 73 18 81 19 80	1	19		4 41 7	51 90 10		6 7 8	48 61 10 10 5 35 18 31 9			1	33 27 25			1 98 19 5 23 12 5 19 14	, ,	16	1041		
				, 1 1	7 270		•	1	168 101	55 FT0	1	30	14	3 30 1	89 97 77	\$ 18	1		ĥ		-	40 51 199 73 77 73 51 50 166	4 13					1	10 11	
			1		90			1	192 82	11 17 61 17 61 77	1	31	141	4 17 2 7 9 2 5 18 2			ľ	6 4 5 5 F	H.		-		[	; ;		Ĭ		1	11 22	
		ł	22	N 1	2 270			78	C RC	21 110 36 167	1.	Č	1 1	106 1	88	. 19	7	11 X 12		.,	Ĩ	10 10 47	4 14	0 9	1 16 17			10 × 1	11 307	
	°	18		20.1	50 180 56 180	SI .		104	17 31 94	16 190 33 164 13 90			į٠,	8 40 1 6 13 4 4 24 1	80 90 80		i	54 92 10 57 51 51 55 59 10	16		2	16 16 180 17 17 17 16 17 19	4 15			;	17		11 870 31 101 5 837	
			1		2 100 0 100			1	128	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			144	2 2 2	<b>5</b>		2	45 46 20 14 30 14 43 48 8			24		١.,		19 6			1	12 101	
			14		14 180			207	3554	55 years		, '		0 11 H	i i	z 20	802	10.00			Ĭ,	42 35 17	] [ ],		5 10 27 6 23 11 5 11 18	3		Į.	12	
	۰	.,			4 180			18.	216 30	10 160			3 13	6 52 2 5 13 5	20		1	N 10 10	10		-	31 30 16 11 10 240 43 44 35	4 10		5 ) 17 4 19 <b>3</b> 0 13	1	16	141	10 270	
					10 270 N 270	i   1	6	10	121	19 103			567		91 04 46	2 21	Å.	10 9 10	3	15	101		1 19		10 10 1 11 11 1 11 19			144	19 200	
			6 7∠	50 1	18 270 16 270			1	16.21	71 190 51 100		1			16		14	172		,		19 X 19 X		1	7 17 17			IN STREET	6 279	
			9<	lí i	6 270			1	128	19 19 19	2	2		6 181 3 60 X		1 12	1018	37 28 18 17 27		16	670	12 13 358 18 21 130 24 22 270	11		7 19 18 22 27	5	19	0 17 1 9 2 13	18 90 10 N 10 50	
	l°	14	1					9 10 11	16 N 56	26 29			3 3	7 42 3 2 42 3	3		345	23 19 27 28 27 10 14 22		-	1	60 60 4 46 44 243 11 26 16		1 2 2	19 27 24 ¥			14	17 m	
			1		5		7	1	63 134	97 270 70 204 36 261			1<1	7 38 M 8 13 M 5 13 M	97 95	8 83	14	50 41 50 74 1	ŝ		ŝ	8 8 50 8 8 50 8 8 7 50	1."			i۱۰	\$0	°4 10	1 20	
			14		19 10				853.	1022	1.	. 1	1011	5 18 19 0 18 19 0 19 7	50 50	• • •	142	10 10 11	, ,	17	1	47 47 50	' °		10 10 10 10 10 10 10 10 10 10 10 10 10 1			1.4		
	١.	15	й ц с	15 I	19 180 6 180			7	1222	55	1	,	1 1	101	12		14	10 17 1	Ĩ.,	14	1	10 M 10 00 00 00 00 00 00 00 00 00 00 00 00		643	319	Ι,	<b>2</b> 1	7 4 6 7 4 6	12	
	l			20	6 96			10	, E	30 103 16 177			1 1		89 44	8 26	i.				1	42 45 154 17 86 105 50 49 182		10 4	10 18 6 9			24	-	
			14	10	10 90		-	-	19 19 19	150 348 100 353				8 18 1 7 46 1 9 31 3	8	2 27	14	81 13 34 10 7 3	3	19	1	44 46 270 12 21 186 18 15 846	5 1	1	10		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	14	3	
	١.	16	2 2		16 17 90 16 17 90			2	SETC:	20 1 77 27		•			8	2 20	-	14 17 18 10 3 10 18 21 21	3	20	No.			1	2216			1	11 317 7 49 5 90	
	Ĺ		i,	12.0	36 180 17 180			19910	1422	22			-	12.52			14	10 2 8		n	1	15.25			19 19 81 86 15 18		-	14	1111	
			14	12	7 18	1	9	ij	11	50 107 10 109 11 190			1 11			: 31	04	10 17 10 18 15 28	ř,		1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	ļ.,	10° 1		,	24	14	122	
			1	14	56 190 11 0 12 180			-	1223	8 4 1 M		,	8 3	7 45 1 9 41 H	ni l	* 33	14	10 11 11 15	3	*	14	25 19 9 26 15 270 12 11 180		1 1 1 1		Ι,	85	1	5	
	٩	17	12					Ĩ	2.82	H I		, [;]	1 1	6 N H	1 0 77	2 34	1	16 20 10 13 16 19 20 9 9		••	1				Land Land	.	24	<u>ال</u> 2	럜뿗	
			1-	61 JU		Ĭ.		20	16 53 17	:? 경 성 레			1		6	, 0	1	***** ****	š  '	47	Ĭ		l		22	6			86 186 18 0 19 186	
			74	14 46 15		;   '		1	111	16 JU			1				ş	10 11 17 50 11 17	3	렰	0	10 M C	l , ,	1	11 10		1	1	4	
	•	18	1	12	51 87 17 18 17 18			í	67 <b>68 6</b> 8	1000			ړ <b>۔</b> ا		67 63					<b>8</b> 6	1				1.22		1		3.100	
			1	55 19	1 10			ļ.	40 66		•	6			źł	, 1	1		<u> </u> ]	#7 ==	1			12	1 1	ļţ	1	1	1	
	L		ł a	ជ	° 10	۲   i	11	î	22	<b>H</b> 197			11	1 13	-		2	ន្លដដ	(ľ'		•	.r #1 90		/ < 4	0 143	11	· .			

Table IV. Measured and calculated values of the structure factors.



Fig. 3 The final three-dimensional electron-density distribution for cedrelone iodoacetate. The superimposed contour sections are drawn parallel to (00I). Contour level l e  $A^{-3}$  except around the bromine atom where it is 5 e  $A^{-3}$ . The first contour level is omitted in both cases.







•

Fig. 5. The arrangement of atoms in the molecule as viewed in projection along the <u>a</u> axis.

# MOLECULAR DIMENSIONS.

O INTERATOMIC DISTANCES (A) AND ANGLES

## TABLE V.

### Intramolecular bonded distances.

cl	- (	2	1.29	°8	-	с ₃₀	1.45
cl	- 0	, 10	1.50	с ₉	-	Clo	1.52
c ₂	- (	3	1.37	°9	-	с ¹¹	1.59
c3	- (	2 ₄	1.54	C ₁₀	-	°19	1.68
°3	- (	D _A	1.29	c _{ll}	-	°12	1.62
с ₄	- (	⁵ 5	1.51	с ₁₂	-	C ₁₃	1.62
с ₄	- (	2 ₂₈	1.55	с ₁₃	-	с _ц	1.45
с ₄	- (	⁵ 29	1.65	с ₁₃	-	с ₁₇	1.51
°5	- (	² 6	1.45	с ₁₃	-	с ₁₈	1.79
с ₅ ;	- (	10	1.52	с ₁₄	-	с ₁₅	1.55
^с 6	- (	2 ₇	1.48	с ₁₄		Ъ	1.48
с ₆	- (	o _B	1.40	с ₁₅	-	c ₁₆	1.54
°7	- ` C	5 ₈	1.53	с ₁₅	-	Ъ	1.46
°7	- (	о <mark>с</mark>	1.11	с ₁₆	-	с ₁₇	1.47
c ₈	- (	°9	1.52	°17	-	с ₂₀	1.58
с ₈	<b>_</b> ` (	2 ₁₄	1.56	с ₂₀	-	C ₂₁	1.36

TABLE V. (contd.)

с₂₀ с₂₂ с₃₁ с₃₂ 1.47 1.65 c₂₁ 0_E 1.22 с₃₁ OB) 1.30 с₂₂ с₂₃ с₃₁ 1.31 0_F 1.21 с₂₃ 1.32 oE I с₃₂ 2.05

en el Alter ä. ew Nillion Sing 1113 С_р (÷ )?'. تر شق a. G₁₂ a pila Ċ. . ] 19 ille Vinite Vinite ⁶10 ---and de la compañía d La compañía de la comp Ç,  $3_{10}$ 120 3 i és i 3 n. Mg 122  $\mathcal{L}_{d}$ 23 4 - 0, - 1 4 - 2, 19 . . . 113 ri F ي. و و د نمر و ه و Š. 012 

TABLE	VI.
the second	

			Interbond	angles.			
с ₂	cl	с ₁₀	122	с ₇	с ₈	°9	104
c,	с ₂	c3	118	с ₇	с ₈	с ₁₄	110
c ₂	c3	c ₄	120	°7	с ₈	с ₃₀	110
c ₂	°3	0 _A	122	с ₉	с ₈	с ₁₄	105
c ₄	C ₃	0 _A	115	°9	с ₈	с ₃₀	117
C3	с ₄	с ₅	106	с ₁₄	с ₈	с ₃₀	111
C ₃	c ₄	с ₂₈	105	c ₈	°9	с ₁₀	118
c ₃	C4	с ₂₉	115	c ₈	°9	c _{ll}	110
с ₅	C ₄	с ₂₈	114	clo	°9	с ^{л1}	110
с ₅	с ₄	с ₂₉	111	cl	Clo	с ₅	104
c ₂₈	C ₄	с ₂₉	107	cl	C ₁₀	°9	115
c ₄	с ₅	с ₆	123	cl	Clo	с ₁₉	<u>112</u>
с ₄	c ₅	c _{l0}	120	с ₅	Clo	°c ₉	110
с ₆	с ₅	c ₁₀	117	с ₅	°10	с ₁₉	105
с ₅	^с 6	^с 7	128	°9	с ₁₀	с ₁₉	110
с ₅	с ₆	0 _B	113	°9	c _{ll}	°12	103
^с 7	°6	٥ _в	118	c ₁₁	с ₁₂	с ₁₃	111
с ₆	°7 .	c ₈	109	с ₁₂	с ₁₃	с ₁₄	113
с ₆	°7	°c	124	с ₁₂	с ₁₃	с ₁₇	115
с ₈	с ₇	°C	126	с ₁₂	с ₁₃	с ₁₈	102

TABLE VI. (c

(contd.)

с ₁₄	с ₁₃	с ₁₇	108	с ₁₃	с ₁₄	C ₁₅	109
с ₁₄	с ₁₃	c ₁₈	109	c ₁₃	с ₁₄	с Р	106
с ₁₇	с ₁₃	с ₁₈	111	C ₁₅	C ₁₄	с Д	58
с ₈	с ₁₄	с ₁₃	125	C ₁₄	C ₁₅	с ₁₆	98
с ₈	с ₁₄	с ₁₅	125	C _{1/4}	с ₁₅	<u>д</u>	59
с ₈	с ₁₄	Ъ	110		<b></b>	-	

and a second and a second ter and the second second in side *** **** 4.4.4 19 · ···· An An 5. **3**. 15.

## TABLE VII.

Intramolecular non-bonded distances.

cl	••• C ₄	2 <b>.</b> 8 <b>9</b>	с ₅	•••• ⁰ Å	3.61
cl	c ₁₁	3.17	с ₅	••• ⁰ C	3.62
C _l	••• ^c 28	3.75	с ₅	•••• 0 _F	3.53
cl	••• ⁰ A	3.44	с ₆	••• °9	2.71
с ₂	c ₅	2.76	^с 6	••• ^C 19	3.50
с ₂	c ₉	3.74	°6	c ₂₈	3.17
с ₂	••• ^C 19	3.21	^с 6	•••• C ₂₉	3.24
°2	•••• c ₂₈	3.23	°6	••• ^C 30	2.99
с ₂	••• c ₂₉	3.93	^с 6	•••• ^C 32	3.82
°3	••• ° ₆	3.83	с ₆	••• ⁰ F	2.47
c ₃	••• ^C 10	2.72	с ₇	••• ^c 10	3.06
c ₃	••• °19	3.13	°7	••• °11	3.84
с ₄	••• ^C 9	3.91	°7	••• ^C 13	3.53
с ₄	•••• ^C 19	3.22	°7	••• ^C 15	3.33
с ₄	••• ° ₃₁	3.72	°7	•••• ^C 18	3.54
c ₄	••• 0 _B	2.82	°7	••• ^C 31	3.00
с ₅	••• C ₈	2.95	с ₇	••• 0	3.66
с ₅	••• ° ₁₁	3.90	°7	••• 0 _F	2.91
с ₅	••• ^C 30	3.41	с ₈	•••• ^C 12	3.15
с ₅	••• ^C 31	3.37	с ₈	••• ^C 16	3.84

TABLE VII. (contd.) c₈ ... c₁₇ 3.90 c₂₉ ••• c₃₁ 3.49 c₈ ... c₁₈ °29 ••• °A 3.39 2.96 c₁₈ ... c₂₀ c₂₉ ... o_B 3.12 3.15 c₁₈ ... c₂₁ 3.37 c₂₉ ••• 0_F 3.63 c₁₈ ... c₂₂ 3.58 °₃₀ ••• °_c 3.17 °₁₈ ... °_C 3.64 °30 ••• °D 2.60 °₁₈ ... °_D 3.93 °30 ••• °F 3.55 c₁₉ ... c₂₉ 3.65 °31 ··· °c 3.03 c₁₉ ... c₃₀ °_B ... °_C 3.04 2.76 c₂₈ ... c₃₁ 3.81 °c ••• °g. 3.89 c₂₈ ... o_A 3.00 3.02 0_C ... 0_F 2.81 c₂₈ ... o_B

#### TABLE VIII.

	Intermole	cular dist	tances ( $< 4$ Å).	
<u> </u>	o I	7 7 7	I	
^C 32	••• 5		^C 15 ••• ^C 19	3.76
$O_{E}$		3.14	$c_{32} \cdots c_{22}$	3.81
с ₂₃	•••• 0 _A ^{IV}	3.23	c ₂₃ ••• c ₂₈	3.86
°C	•••• c ₁ ^{II}	3.35	$c_{32} \cdots c_{12}^{II}$	3.87
C ₂₁	•••• °A	3.36	c ₁₈ c ₂ ¹¹	3.88
с ₂₃	••• c ₂₉	3.53	$C_E \cdots C_{29}^{111}$	3.92
0 _F	•••• C ₁₁	3.57	C ₂₂ ••• C ₂₉	3.93
°c	···· c ₁₉	3.67	0 _B ••• C ₁₂	3.96
°c	•••• °2 ^{II}	3.67	c ₂₀ c ₂₉	3.98

The superscripts refer to the following

positions:

. ·

1. S.

15

$\frac{1}{2} - x$ ,	-у,	$\frac{1}{2} + Z$
$-\frac{1}{2} - x$ ,	-у,	$\frac{1}{2}$ - Z
-x ,	½ + y,	$\frac{1}{2} - Z$ .
-1 - x,	$\frac{1}{2}$ + y,	$\frac{1}{2} - Z$
	$\frac{1}{2} - x,$ $-\frac{1}{2} - x,$ -x, -1 - x,	$\frac{1}{2} - x, -y ,$ $-\frac{1}{2} - x, -y ,$ $-x , \frac{1}{2} + y,$ $-1 - x, \frac{1}{2} + y,$

# TABLE IX.

Standard de	viations of t	the final ator	o nic coordinates (A)
Atom	<u>σ(x</u> )	<u>σ(y</u> )	<u>σ(z</u> )
cl	0.059	0.042	0.046
с ₂	0.058	0.045	0.044
с ₃	0.069	0.042	0.043
с ₄	0.051	0.043	0.047
с ₅	0.049	0.038	0.044
с ₆	0.061	0.040	0_044
с ₇	0.064	0.051	0.049
с ₈	0.056	0.041	0.046
C ₉	0.047	0.035	0.048
clo	<b>0.</b> 072	0.050	0.048
c _{ll}	0.068	0.049	0.055
C ₁₂	0.063	0.042	0.051
C13	0.054	0.047	0.044
с ₁₄	0.053	0.047	0.041
°15	0.069	0.038	0_043
^С 16	0.059	0.040	0.050
с ₁₇	0.055	0.041	0.049
C ₁₈	0.051	0.036	0.047

. . .

	<u>T</u>	ABLE IX. (con	td.)
Atom	<u>(x</u> )	<u>o (y</u> )	<u> </u>
°19	0.053	0.048	0.050
с ₂₀	0.059	0.048	0.043
c ₂₁	0.069	0.058	0.055
c ₂₂	0.050	0.046	0 <u>.</u> 053
с ₂₃	0.084	0.046	0.063
с ₂₈	0.067	0.046	0.051
с ₂₉	0.075	0 <b>.050</b>	0.055
с ₃₀	0.063	0.045	0.044
с ₃₁	0.052	0.045	0.056
с ₃₂	0.057	0.058	0,051
° _A	0.051	0.031	0.032
0 _B	0.037	0.028	0.030
°c	0.037	0.028	0.033
Ъ	0.033	0.024	0.027
0 _E	0.078	0.042	0.058
O _F	0.042	0.026	0_028
I	0.004	0.003	0.004

•

•









is 0.09 Å, that of a carbon-oxygen bond 0.07 Å and of the carboniodine bond 0.06 Å. The standard deviation in bond angle is  $4^{\circ}$ 

#### 2.7 DISCUSSION.

The establishing of the structure of cedrelone iodoacetate was the primary objective of this analysis. From structural and stereochemical considerations cedrelone (I) like limonin (II) is clearly a triterpenoid of the euphol type (III). This class of triterpenoids is characterised by the presence of a carbonyl function at  $C_7$ , a methyl at  $C_8$  and an epoxide ring between  $C_{14}$ and  $C_{15}$ . Barton <u>et al</u> (1961), have proposed a biogenetic route to limonin, and cedrelone can be assumed to occur in a similar fashion.

By means of a prototropic shift of a hydrogen atom from  $C_7$  in a precursor of the euphol type, a  $\triangle^{7,8}$  unsaturated intermediate is formed which undergoes oxygenation at  $C_7$  by means of attack of the double bond by  $(OH^+)$  or its equivalent. A Wagner-Meerwein migration of the methyl group from  $C_{14}$  to  $C_8$ followed by a loss of a proton from  $C_{15}$  leads as shown (IV - V) to a structure of the apoeuphol type (VI). Reactions carried out by various workers in the field support this hypothesis (Lawrie <u>et al</u>. 1956). Loss of four carbon atoms from the side chain with cyclisation of the remainder  $C_{20} - C_{23}$  affords the furan ring. Further oxidation in rings A and D give rise to the remaining oxygen functions of limonin.

In cedrelone ring D is not oxydised to a  $\delta$  - lactone
It is the only member of this class of compounds so far isolated in which this is so. It is also unusual in being a diosphenol of which relatively few examples occur naturally. However it has been observed (Lawrie <u>et al.</u> 1956), that oxidation of limonin and its derivatives to diosphenols of this type is easily carried out by means of oxygen in the presence of potassium t - butoxide(VII - VIII).

In cedrelone ring C adopts a boat conformation and ring A a half-boat confirmation. The latter stereochemical feature is presumably due to steric interaction between the 28 and 29 methyl groups and the oxygen substituent at position 6. From measurements on a standard model the  $O_A - C_{28}$  distance is 2.7 Å whereas that of the  $O_A - C_{29}$  distance is 3.4 Å. From Table VII it can be seen that  $O_A - C_{28}$  is 2.96 Å and  $O_A - C_{29}$ is 3.00 Å. The stereochemistry shown in (I) is only the relative stereochemistry. No absolute configuration has yet been determined.

It was impossible at any stage of the refinement to distinguish the oxygen atom of the furan ring from consideration either of temperature factors or peak heights. It is possible that the furan ring which is normally free to rotate adopts a different configuration in different positions in the crystal structure. This would account for the difficulties encountered. The bond lengths in the ring, Table V, show some evidence for the configuration shown in (I). As was inferred from the initial photographs, the temperature

factors are all high and markedly anisotropic (Table III). The elliptical nature of the atoms can be seen in the diagram of the final electron density distribution over the molecule Fig. 3.

The average single-bond length between  $\operatorname{carbon}(\operatorname{sp}^3)$  atoms is 1.55 A which is not significantly different from the value of 1.545 A in diamond. The length of a similar bond in two other compounds of this type epilimonol iodoacetate (Arnott et al 1961), and guarigenyl iodoacetate (Sutherland, unpublished papers), is 1.52 A and 1.55 A respectively. None of the individual carbon-carbon single-bond lengths can be regarded as significantly different from the standard value. The distance  $\operatorname{carbon}(\operatorname{sp}^3)$  -  $\operatorname{carbon}(\operatorname{sp}^2)$  is also 1.55 Å. However, this is not significantly different from the accepted value of The average carbon-carbon double-bond length is 1.525 A. 1.35 A which compares reasonably with that of 1.337 ± 0.006 given in Tables of Interatomic Distances, 1958.

In the two carbonyl groups the average carbon-oxygen of distance is 1.20 Å which agrees with the value of 1.22  $\pm$  0.02 Å for the carbonyl distance in acraldehyde (CH₂ = CH.CHO). (Tables of Interatomic Distances, 1958). The carbon-oxygen single-bond distance 1.30 Å in the grouping - 0 - C - C - I compares well with the value of 1.32 Å in epilimonol iodoacetate and in general with the values in carboxylic acids.

In the epoxide ring the average carbon-oxygen distance

is 1.47 Å which is similar to values of 1.436 Å and 1.472 Å quoted for ethylene oxide (Erlandsson, 1955), and cyclopentene oxide (Cunningham <u>et al</u>. 1951), measured from micro-wave spectra. The value for the carbon-oxygen distance in the epoxide ring of epilimonol iodoacetate is  $1.53 \pm 0.08$  Å, for guarigenyl iodoacetate 1.40 ± 0.08 Å and 1.49 Å for clerodin bromolactone

Comparison of the bond lengths within the furan ring with those given for furan itself viz:- carbon-oxygen 1.372 Å, carbon-carbon double-bond length 1.355 Å and carbon-carbon 1.433 Å (Bak <u>et al.</u> 1955) shows that there is no significant deviation from the expected values although the carbon-oxygen distance of 1.22 Å is rather short. Table X shows a comparison of the distances in the furan ring for epilimonol iodoacetate and guarigenyl iodoacetate.

In the iodoacetate group the distances are normal and o the carbon-iodine bond length of 2.15 Å compares favourably with the value of 2.12 Å for epilimonol iodoacetate, 2.10 Å for guarigenyl iodoacetate and the value of 2.14 Å quoted for alkyl iodides (Miller, 1952., Lister, 1941). In general the molecular dimensions agree within the estimated standard deviation with those in epilimonol iodoacetate, guarigenyl iodoacetate and with accepted values.

One interesting intramolecular non-bonded distance is that between  $C_{19}$  and  $C_{30}$ . From measurements on a standard model this distance is 2.6 Å. The length calculated from the

Compa	rison of t	he bond ]	lengths i	n some fur	an rings.
Compound	BO	nd lengt	shs	<u> ح(ل)</u>	Reference.
	ບ ເວ ບ	0 ₽ 0 ₽	ບ ⊯ ୦ ⊄ ບ	0 <b>4</b>	
Turan	1.433	1.372	1.355	1	Bak <u>et al</u> . 1955.
Cedrelone Iodoacetate	1.46	1.32 1.22	<b>1.</b> 34	60*0	This thesis
Epilimonol "	1.44	1.42	1 <b>.</b> 25	0,08	Arnott <u>et al.</u> 1961.
Guarigeny1 "	1.45	1.36 1.25	1•25	0.08	Sutherland (unpublished results.)

TABLE X.

• .

final coordinates is 3.04 A. This steric repulsion between the 1,3 axial methyl groups is reflected in the angle  $C_8 C_9 C_{10}$  in ring C which at 119° is greater than the expected tetrahedral value. All other non-bonded intramolecular distances and intermolecular distances are normal.

The equation of the mean plane through the furan ring is

67.

0.651X + 0.750Y - 0.115Z - 7.238 = 0.The deviations of the atoms from the plane are shown in Table XI. Application of the  $\chi^2$  - test to these deviations suggested that they are possibly significant. It is difficult, however, to see any chemical reason for non-planarity.

The contents of the unit cell are shown in projection along the <u>c</u> axis in Fig. 6 and along the <u>a</u> axis in Fig. 7. In the crystal the molecules are held together by Van der Waals contacts.

0

# TABLE XI.

Displacements (A) of atoms from the mean plane through

C ₂₀ C ₂₁	C ₂₂ C ₂₃ O _E .
°17	0.020
с ₂₀	0.180
c ₂₁	-0.160
c ₂₂	-0.213
C ₂₃	0.130
0 _F	0.044

÷



The crystal structure of cedrelone iodoacetate as viewed in projection along the  $\underline{c}$  axis. Fig. 6.



The crystal structure of cedrelone iodoacetate as viewed in projection along the  $\underline{a}$  axis. PART V.

THE X-RAY STRUCTURE ANALYSIS OF A

'SUPPOSED OXEPIN'.









(III).



(V).

(IV).

#### A 'SUPPOSED' OXEPIN.

1

#### INTRODUCTION.

Simple heterocyclic compounds such as oxepin (I) are of considerable theoretical interest to organic chemists since they bear the same electronic relationship to cyclooctatetraene (II) as furan and pyrrole do to benzene. This comparison is especially intriguing since models reveal that the seven-membered heterocycles in contrast to cyclooctatetraene can attain planarity with a relatively small amount of steric strain.

Several workers (Braunholtz and Mann, 1957, Dimroth and Freyschlag, 1957), investigated the chemistry of benzoderivatives of exepin, when it became known that the alkaloid cularine (III) involved a dibenzdihydro-oxepin skeleton (Manske, 1950). Syntheses of two tetrahydro derivatives of oxepin have also been reported (IV) and (V). [Olsen and Bredoch, 1958, Meinwald and Nozaki, 1958.]

Until 1959 however, in spite of efforts of many investigators, no one had published a synthesis of the parent oxepin or a derivative containing a single oxepin ring. It was all the more surprising, therefore, when Gunnel Westŏŏ (1959), described a one-step reaction between an alkaline solution of acetonyl acetone and cyanoacetamide leading to the formation of 2-amino-4, 7- dimethyl -3-carbonamide oxepin (VI) according to the equation:-



(VI).

Measurements of infra-red spectra are quoted in support of this structure and a few reactions are described. No concrete structural evidence is offered.

Dr. G. Buchanan of the Chemistry Department of Glasgow University expressed doubt as to the validity of this structure. He performed the above reaction from the given method and obtained a sample of the compound which agreed with the infra-red spectra and other evidence given. However, all attempts to confirm the structure by degradation either failed to have any effect or

completely destroyed the compound. He prepared a salt derivative by reaction of the compound with cold acqueous hydrobromic acid. It is unlikely that the latter affects the rest of the structure since crystals of the hydrobromide were obtained immediately on mixing.

### 2.1 CRYSTAL DATA

MOLECULAR FORMULA. C

 $^{C}9^{H}13^{N}2^{O}2^{Br}4^{H}2^{O}$ 

0

Molecular weight 279.026

Melting point 230 - 260°C (decomposition)

Density calculated =  $1.589 \text{ gm/cm}^3$ 

Density measured =  $1.588 \text{ gm/cm}^3$ 

(By flotation using carbon tetrachloride and petroleum ether 80 - 100)

The crystal is monoclinic with

		a	' <b>=</b>	8.44	±	0.01 A
		<u>b</u>	=	7•45	Ŧ	0.02 A
		င	=	19.05	±	0.01 A
		β	=	102 <b>.</b> 9 ⁰	±	15
Volume	of	the	unit	cell	=	1167 A ³
Number	of	mole	cules	5.		

per unit cell = 4

Absent spectra

	ho <b>l</b>	when	l	is	odd
	oko	when .	k	is	odd
Space	group		P2 ₁ /	/c	(c ⁵ _{2h} )

Linear absorption coefficient for X-rays (Cuk  $\alpha$  radiation)  $\mu = 49 \text{ cm}^{-1}$ Total number of electrons per unit cell = F(000) = 564

$$\sum f^{2}(\text{light atoms}) = 629$$
$$\sum f^{2}(\text{heavy atoms}) = 1296$$

### 2.2 INTENSITY DATA.

Crystals of the hydrobromide of the 'supposed' oxepin were obtained in the form of prismatic needles. Singlecrystal oscillation and rotation photographs were taken about the three crystallographic axes using  $CuK_{cc}$  radiation. Weissenberg photographs were taken of the holl - h5l and okl reciprocal lattice nets. The monoclinic cell parameters obtained from rotation and moving film photographs are

				0
a	=	8.44	±	0.01 A
-		- 15	+	0
b	=	(•45	-	0.02 A 0
<u>c</u>	=	19.05	±	0.01 A
β	=	102.9 ⁰	±	15'

Inspection of the Weissenberg photographs showed that the

#### systematic absences are

hol when l is odd

oko when k is odd

These conditions determine the space group to be  $P2_1/C$ .

Intensities were estimated visually from the Weissenberg series using a standard step-wedge technique. The total number of structure amplitudes evaluated after normal Lorentz, polarisation and Tunell factors had been applied was 1,640. Small crystals of uniform cross-section perpendicular to the rotation axis were employed and no corrections for absorption were made. The linear absorption coefficient for X-rays of wave length 1.542 Å is  $47 \text{cm}^{-1}$ . The absolute scale was determined during refinement by comparison of  $\Sigma F_o$  and  $\Sigma F_c$ for each layer.

### 2.3 STRUCTURE DETERMINATION.

The Patterson maps computed from the hol and okl data are shown in Figs. 1 and 2. The bromine-bromine vector peaks are labelled A,B,C and D. Calculation of the bromine atomic coordinates from these peaks indicated that the fractional xcoordinate was zero. The actual value was determined by Booth's method (Booth, 1948), and confirmed by calculation of a three-dimensional Patterson map.

Using these bromine coordinates a structure factor calculation was carried out. The discrepancy was 47.4% at

72



Fig. 1. The Patterson projection along the <u>b</u> axis. The contour scale is arbitrary. The bromide-bromide vector peak is marked D.



Fig. 2. The Patterson projection along the <u>a</u> axis. The contour scale is arbitrary. The bromide-bromide vector peaks are marked A,B and C.

this stage. A first Fourier map calculated from the structure factors revealed the complete molecule. The bromine atom and fourteen other atoms weighted as carbon were used to compute more accurate structure factors. The value of R dropped to 20.0%. A subsequent Fourier map enabled the hetero atoms to be distinguished on the basis of peak height and intermolecular contacts. A third cycle of structure factor calculations with the atoms given the correct chemical type reduced the R factor to 17.3%.

### 2.4 STRUCTURE REFINEMENT.

Individual isotropic temperature factors were assigned to the atoms from a comparison of the peak heights on  $F_o$  and  $F_c$  maps. The atomic coordinates and temperature factors obtained from these maps were used in further refinement by the least-squares method. After three cycles of such refinement the R factor dropped to 15.8% and shifts in the atomic parameters were negligible. The final value of R was 15.5%. A mean individual isotropic temperature factor was calculated for each cycle of the least-squares refinement.

The course of the analysis is described in Table I. Superimposed contour sections illustrating the final threedimensional electron density distribution over one molecule are shown in Fig. 3. Figs 4 and 5 illustrate the molecule projected along the a and <u>b</u> axes.

TABLE I.

Course of analysis

•	$\Sigma^{W} \Delta^2$			-					406	860	836	
	<u>R(%)</u>		ļ	<b>₩</b> 7•4	20•0			17.3	16 <b>.</b> 9	16.5	15 <b>.</b> 8	15•5
-	Atoms included			1 Br	1 Br + 14 C		ů.	1 Br + 30 + 2 N + 9 C	1 Br + 30 + 2 N + 9 C	1 Br + 30 + 2 N + 9 C	1 Br + 30 + 2 N + 9 C	1 Br + 30 + 2 N + 9 C
	Data used	ho $l$ and $okl$ reflections	1643 F ₀	1435 Fo	1578 F	)	÷	1643	1643 Fo	1643 Fo	1643 Fo	1643 F ₀
	Operation	Pattierson syntheses	" synthesis	3D Po	11	8	and	3D Fig	Least-squares cycle	2 1 2 2 2 2 2 2 2	E E	<b>2</b> 2
		ଶ	R	1 st	2 nd	2 rd	Ň	lat	1.84	2 nd	3 rd	4th



Fig. 3. The final three-dimensional electron-density distribution for the substituted cyclopentadiene shown by means of superimposed contour sections parallel to (010). The bromide ion and oxygen atom of the water molecule are included. Contour interval i e  $A^{-3}$  except round the bromide ion where it is  $5 e A^{-3}$ . The first contour level is omitted in both cases.



# Fig. 4. Diagram showing the atomic arrangement as seen in projection along the <u>a</u> axis.



Fig. 5. Diagram showing the arrangement of atoms in the molecule corresponding to Fig. 3.

### 2.5 MOLECULAR DIMENSIONS.

The final atomic coordinates and isotropic temperature factors are listed in Table II. Bond lengths and interbond angles calculated from the coordinates are given in Tables III and IV respectively. The shorter intramolecular contacts are shown in Table V and intermolecular approach distances ( $\leq 4$  Å) in Table VI. Some of the more interesting angles between interatomic vectors are listed in Table VII.

The estimated standard deviations in atomic parameters are given in Table VIII. The average standard deviation of a carbon-carbon bond is 0.03 Å, of a carbon-oxygen bond 0.02 Å and of a carbon-nitrogen bond 0.02 Å. The standard deviation in bond angle is  $1.6^{\circ}$ . The final structure factors are listed in Table IX.

### 2.6 DISCUSSION.

The results of the X-ray analysis show that the compound is in fact the hydrobromide of a tetra-substituted cyclopentadiene. The fact that it does not exist as a dimer as does cyclopentadiene is probably due to resonance stabilisation of the structure.

The original substance before salt formation (VI) has contributions from the resonance structure (VII).





# TABLE II.

# Atomic coordinates and temperature factors.

The fractional coordinates are referred to the monoclinic axes. Coordinates X' Y Z' are expressed in A units and are referred to orthogonal axes <u>a</u>, <u>b</u> and <u>c'</u>, <u>c'</u> being taken perpendicular to the <u>a</u> and <u>b</u> crystal axes.

Atom	<u>x/a</u>	y/b	z/c	<u></u> X'	<u> </u>	<u>Z†</u>	B
Br	0.0029	0.6464	0.8224	-3.474	4.819	15.271	3.5
cl	0.7102	0.5603	0.4621	4.028	4.176	8.580	2.7
c ₂	0.6402	0.3806	0.4617	3.438	2.837	8.573	3.0
с ₃	0.5184	0.3531	0.3968	2.687	2.632	7.367	2.9
c ₄	0.5114	0.4993	0.3551	2.805	3.722	6.595	3.0
с ₅	0.6321	0.6424	0,3896	3.677	4.788	7.234	3.5
°6	0.8311	0.6310	0.5156	4.837	4.703	9.500	2.6
с ₇	0.8951	0.8091	0.5058	5.402	6.031	9.392	3.8
с ₈	0.4009	0.5491	0.2797	2.193	4.093	5.195	4•9
с ₉	0.4189	0.1827	0.3821	1.910	1.362	7.096	3.0
0 <u>1</u>	0,8882	0.5408	0.5713	5.064	4.031	10.609	3.6
02	0.4612	0.0575	0.4241	2.089	0.429	7.874	3.9
03	0.1023	0.7088	0.6691	-1.983	5.283	12.424	4.4
Nl	0.6748	0.2641	0.5155	3.501	1.969	9•573	3.0
N ₂	0.2920	0.1784	0.3277	1.071	1.330	6.084	4 <b>.</b> 1

# MOLECULAR DIMENSIONS. o INTERATOMIC DISTANCES (A) AND ANGLES

### TABLE III.

Intramolecular bonded distances.

C ₁	-	с ₂	1.46
cl	-	с ₅	1.52
cl		°6	1.33
с ₂	-	с ₃	1.44
c ₂	-	Nl	1.33
C ₃		c ₄	1.34
Ċ ₃	-	с ₉	1.51
c ₄	-	с ₅	1.52
c ₄	-	с ₈	1.57
с ₆	-	с ₇	1.45
^с 6	-	٥ _٦	1.32
c ₉	-	02	1.23
с ₉		N ₂	1.32

-	<u> </u>		<u>•</u>
Ī	nterbo	nd angl	es.
c ₂	cl	°5	106°
с ₂	cl	° ₆	128
с ₅	cl	°6	126
cl	с ₂	°c3	110
cl	c ₂	Nl	125
c ₃	°2	Nl	124
c ₂	c ₃	c ₄	109
°2	°3	°9	123
с ₄	°3	°9	129
c ₃	c ₄	°5	112
°3	C ₄	с ₈	132
°5	c ₄	с ₈ ,	116
c ₄	°C ₅	Cl	103
cl	с ₆	°7	123
cl	°6	٥ ₁	119
°7	°°6	٥ ₁	118
c3	°9	02	117
c ₃	°9	N ₂	119
02	.c ₉	N ₂	124

• .

### TABLE II.

# Atomic coordinates and temperature factors.

The fractional coordinates are referred to the monoclinic axes. Coordinates X' Y Z' are expressed in A units and are referred to orthogonal axes <u>a</u>, <u>b</u> and <u>c'</u>, <u>c'</u> being taken perpendicular to the <u>a</u> and <u>b</u> crystal axes.

Atom	<u>x/a</u>	_у/ъ	z/c	<u>X'</u>	<u> </u>	<u></u> *	B
Br	0.0029	0.6464	0.8224	-3.474	4.819	15.271	3.5
cl	0.7102	0.5603	0.4621	4.028	4.176	8.580	2.7
c ₂	0.6402	0.3806	0.4617	3.438	2.837	8.573	3.0
c ₃	0.5184	0.3531	0.3968	2.687	2.632	7.367	2.9
c ₄	0.5114	0.4993	0.3551	2.805	3.722	6.595	3.0
с ₅	0.6321	0.6424	0,3896	3.677	4.788	7.234	3.5
с ₆	0.8311	0.6310	0.5156	4.837	4.703	9.500	2.6
°7	0.8951	0.8091	0.5058	5.402	6.031	9.392	3.8
с ₈	0.4009	0.5491	0.2797	2.193	4.093	5.195	4.9
с ₉	0.4189	0.1827	0.3821	1.910	1.362	7.096	3.0
ol	0.8882	0.5408	0.5713	5.064	4.031	10.609	3.6
02	0.4612	0.0575	0.4241	2.089	0.429	7.874	3.9
03	0.1023	0.7088	0.6691	-1.983	5.283	12,424	4.04
Nl	0.6748	0.2641	0.5155	3.501	1.969	9•573	3.0
N ₂	0.2920	0.1784	0.3277	1.071	1,330	6.084	4.1

## MOLECULAR DIMENSIONS.

O INTERATOMIC DISTANCES (A) AND ANGLES

## TABLE III.

Intramolecular bonded distances.

cl		с ₂	1.46
c _l	-	с ₅	1.52
cl		°6	1.33
с ₂		с ₃	1.44
c ₂		Nl	1.33
C ₃		c ₄	1.34
c3	-	с ₉	1.51
с ₄	-	с ₅	1.52
c ₄	-	с ₈	1.57
°6	-	с ₇	1.45
^с 6	-	ol	1.32
с ₉	-	0 ₂	1.23
с ₉	_	N ₂	1.32

	TA	BLE IV	<u> </u>
ī	nterbo	ond angl	es.
c ₂	cl	с ₅	106 ⁰
с ₂	cl	с ₆	128
с ₅	cl	°6	126
cl	с ₂	°3	110
c _l	с ₂	Nl	125
C ₃	с ₂	Nl	124
с ₂	c3	c ₄	109
с ₂	с _з	°9	123
c ₄	°3	°9	129
c ₃	c ₄	°5	112
°3	C ₄	с ₈	132
°5	c ₄	, C ₈ ,	116
с ₄	с ₅	cl	103
cl	°6	с ₇	123
cl	°6	0 ₁	119
°7	°6	٥ _٦	118
°3	°9	02	117
c ₃	с ₉	N ₂	a <b>119</b>
02	с ₉	N ₂	124

# TABLE V.

Intromologia Tom	man lines I - I	
THOT SHOTCOUTST.	nonennnen	n dtonaga
		VILO GOULESNA

cl	•••	с ₈	3.85
cl	•••	с ₉	3.82
с ₂	•••	с ₇	3.84
с ₂	•••	с ₈	3.81
с ₂	•••	0 ₁	2.87
с ₂	• • •	0 ₂	2.85
с ₂	•••	^N 2	3.75
°3	•••	° ₆	3.67
с ₄	•••	^с 6	3.68
с ₄	•••	0 ₂	3.61
c ₄		Nl	3.53
с ₄	•••	^N 2	3.00
с ₅	•••	с ₇	3.03
с ₅	•••	°9	3.86
с ₅	•••	0 ₁	3.73
с ₅	•••	Nl	3.67
с ₆		Nl	3.04
с ₈	•••	с ₉	3.34
с ₈	• • •	^N 2	3.11
c ₉	•••	Nl	3.01
ol	•••	Nl	2.79
⁰ 2	•••	Nl	2 <b>.69</b>

		TABLE VI	•	
	Intermo	lecular dis	$\frac{\circ}{(< 4 \text{ A})}$	
ol	•••• 0 ₃ ^I	2.61	c ₃ 0 ^{VI}	3.70
0 ₂	•••• 0 ₂ ^{II}	2.95	C ₃ O ₃ ^{VI}	3.72
0 ₂	··· N ₁ ^{II}	3.00	c ₆ N ₂ ^{VI}	3.73
Br	••• 03	3.25	°4 °3 VI	3.73
с ₇	•••0 ₃ ^I	3.30	N ₁ Br ^{VI}	3.74
03	Br ^{III}	3.39	c ₃ c ₆ ^{VI}	3.75
c ₆	•••• °3 ^I	3.39	°7 °9 ^{VI}	3.76
ol	··· N ₂ VI	3.42	$c_8 \cdots N_2^{VII}$	3.77
03	••• N ₂	3.45	.c ₅ 0 ₃ ^{VI}	3•77
с ₆	•••• c ₉ ^{VI}	3.52	° ₆ °2 ^{VI}	3.79
с ₂	••• c ₂ VI	3.53	c ₁ o ₃ ^{VI}	3.81
с ₅	••• N _l VI	<b>3</b> .54	c ₂ c ₃ ^{VI}	3.82
وc	•••• 0 ₁ ^{VI}	3.57	Br $\ldots c_8^V$	3.82
ol	••• Br ^{IV}	3.57	$C_2 \cdots N_1^{VI}$	3.84
^N 2	Br ^V	3.59	c ₃ N _l ^{VI}	3.85
с ₂	···· c _l VI	3.60	$c_7 \cdots N_2^{VI}$	3.85
cl	••• N _l VI	3.62	c ₈ c ₉ ^{VII}	3.86
c ₄	••• N _l VI	3.66	$c_1 \cdots c_9^{VI}$	3.89
°7	•••• 02 ^{VI}	3.69	C ₄ 0 ^{VI}	3.94
c3	··· c _l VI	3.70		

# The superscripts used in the preceeding table refer to the following positions:-

	5 5	2.
II l - x,	-у,	l — z,
III -x,	$\frac{1}{2}$ + y,	$l_{2}^{1} - z$
IV l - x,	$-\frac{1}{2} + y,$	$l\frac{1}{2} - z.$
<b>∀ -x</b> ,	1 - y,	1 - z.
VI 1-x,	1 - y,	1- z.
VII l-x,	$\frac{1}{2} + y_{9}$	<u>1</u> - Z.

The supersoniets raise to the following positions -

- **9**40

# TABLE VII.

Some of the more interesting angles associated with the bromide ions and water molecules.

с ₆	°1	03 ^I	116 ⁰
ol	o ₃ ^I	$Br^{I}$	107
٥ _٦	0 ^I ₃	${}_{\mathrm{Br}}{}^{\mathtt{II}}$	110
$\operatorname{Br}^{I}$	0 ₃ ^I	$\operatorname{Br}^{\operatorname{II}}$	88
oj ^I	Br ^I	03 ^{II}	90
03 ^{II}	${}_{\mathrm{Br}}^{\mathtt{II}}$	ojI	108
c ₂	Nl	$Br^{III}$	142
$Br^{I}$	ojII	Br ^{II}	74
с ₆	ol	Nl	88
c ₂	Nl	°1	80
с ₂	Nl	02	83
C ₉	02	NL	<b>9</b> 2

The superscripts refer to the following positions:-

1	l + x,	у,	Z, g
II	1 - x,	1/2 + y,	$1\frac{1}{2} - 2$ .
III	l - x.	$-\frac{1}{2} + y$ ,	$1\frac{1}{2} - 2$ .

### TABLE VIII.

Standard deviations of the final atomic coordinates (A)

Atom	$O(\mathbf{x})$	<u>o(y</u> )	$\underline{O(z)}$
cl	0.017	0.017	0.020
с ₂	0.017	0.016	0.021
°3	0.016	0.015	0.024
c ₄	0.017	0.017	0.020
с ₅	0.017	0.017	0.024
с ₆	0.015	0.015	0.022
с ₇	0.020	0.019	0.022
с ₈	0.022	0.021	0.025
с ₉	0.017	0.017	0.020
°ı	0.012	0.012	0.015
02	0.013	0.013	0.015
03	0.014	0.013	0.015
Nl	0.014	0.014	0.017
N ₂	0.016	0.015	0.019
Br	0.002	0.002	0.003

0

During salt formation addition of a proton to (VII) gives rise to (VIII) which can be stabilised by contribution from the resonance form (IX).



Similar addition of a proton to (VI) results in (X) which has no resonance forms. Therefore the more likely product of salt formation is (XI).



(X) (XI). That (XI) is in fact the correct structure is confirmed by inspection of the inter- and intramolecular distances. The oxygen atom of the water molecule  $(0_3)$  forms two close contacts of 3.25 Å and 3.38 Å to the bromide ions and a third of 2.61 Å to  $0_1$ . If it is assumed that the hydrogen atoms of the water molecule are directed towards the bromide ions then  $0_1$  must
provide the hydrogen atom in its bond to the water molecule.

The  $\underline{sp}^2$  - hybridised nitrogen atom N₁ forms two short intramolecular contacts N⁺ - O₁ 2.79 Å and N⁺ - O₂ 2.69 Å and a long contact to the bromide ion 3.74 Å.

The bond lengths within the molecule are also consistent with structure (XI). The  $C_6 - O_1$  distance of 1.32 Å is longer than a normal carbon-oxygen double bond in conjugated systems <u>c.f.</u> that of acraldehyde ( $CH_2 = CH.CHO$ ) which is  $1.22 \pm 0.02$  Å (Mackle and Sutton, 1951). Also the bond  $C_1 - C_6$  at 1.33 Å is shorter than the corresponding length of 1.46  $\pm$  0.03 Å in acraldehyde and the distance  $C_1 - C_2$  of 1.46 Å is longer than the corresponding carbon-carbon double-bond distance in acraldehyde (1.36  $\pm$  0.02 Å). Finally the  $C_2 - N^+$  distance is 1.33 Å which is shorter than the carbon( $sp^2$ ) - nitrogen distance in p - nitroaniline 1.371  $\pm$  0.007 Å (Trueblood, Goldish and Donohue, 1961). The distances  $C_1 - C_5$  and  $C_4 - C_5$  at 1.52 Å compare favourably with the carbon( $sp^3$ ) - carbon ( $sp^3$ ) single-bond length of 1.545 Å in diamond.

In the amide group the carbon-nitrogen length is 1.32 A o and the carbon-oxygen length is 1.23 A. Amide groups like carboxylic acid groups can have contributions from resonance forms <u>e.g</u>:-



This phenomenon has been reported in the study of many compounds containing this grouping. The carbon-nitrogen bonds are found to have considerable double-bond character and the carbon-oxygen bonds are considerably longer than pure double bonds. The average carbon-nitrogen and carbon-oxygen bond lengths from compounds of this type are shown in Table X. A survey of the bond lengths and angles in these and related molecules has been published by Davies and Pasternak, (1956).

The average values of the carbon-nitrogen and carbonoxygen bonds compare well with those found in this analysis  $(1.32 \pm 0.02 \text{ Å}, 1.23 \pm 0.02 \text{ Å} respectively})$ . The value of the nitrogen-carbon-oxygen angle of  $122.8^{\circ}$  agrees reasonably with that of  $124^{\circ}$  for the amide group in the substituted cyclopentadiene. However, the carbon-carbon-nitrogen and carboncarbon-oxygen angles of  $119.1^{\circ}$  and  $116.7^{\circ}$  are slightly different from the above average of  $116.0^{\circ}$  and  $121.2^{\circ}$  respectively. The contraction in the angle  $C_3 - C_9 - O_2$  and corresponding increase in  $C_3 - C_9 - N_2$  is probably due to the formation of the intramolecular hydrogen bond  $O_2....H - N^+$ . All other bond lengths and interbond angles in the compound are normal.

On the basis of structure (XI) the atoms adjacent to the partial double bonds  $C_1 - C_6$  and  $C_2 - N^+$  should be planar. This is in fact true. The equation of the plane through  $C_1 C_2 C_5 C_6 C_7 O_1$  is

0.814X' - 0.395Y - 0.427Z' + 8.868 = 0

			IANT	·X 闭			
	Compound	Bond C - O	Length C = N	o(r)	Bond C - C - N	Angle C = C = 0	ם יו ע
नि	Oxamide	1,243	1.315	0•004	114.8	119 <b>•</b> 5	125.7
5	Succinamide	1•238	1.333	0,002	115.6	122.4	122.0
3	Urea	<b>1.</b> 262	1 <b>.</b> 335	0,002	0.811	121.0	121.0
<b>(†</b>	Biuret (a) (b)	1.255 1.246	1.332 1.361	0 <b>•</b> 024 0•024	113 <b>.</b> 8 117 <b>.</b> 8	125.0 117.2	120 <b>.</b> 9 124.9
2	Benzamide	1.24	1.31	<u>710.0</u>	0,911	122.0	122.0
	Average	1,25	1.33		116.0	121.2	122.8

References

- Averst and Duke 1954.
- Davies and Pasternak
- 1956. 1952. Vaughan and Donohue (1) (2) (2) (2) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5)
- Hughes, Yakel and Freeman 1961.
- Penfold and White 1959.

# TABLE XI.

Displacements	(Å) or C ₁ C ₂	f atoms C ₅ C ₆ C	from 7 ⁰ 1	the	mean	plane	through
	c _l	-0.0	)39				
	c ₂	0.(	013				
	с ₅	0.0	009				
	°6	0.0	019				
·	с ₇	0,0	001				
	ol	-0.0	004				

TABLE XII.

# TABLE XIII.

Displacements  $\stackrel{o}{(A)}$  of atoms from the mean plane through  $\frac{C_1 C_2 C_3 C_4 C_5}{C_1 -0.023}$   $\frac{C_1 0.023}{C_2 0.019}$ 

TABLE XIII. (contd.) C3 -0.006 с₄ -0.009 0.019 C₅

- Cateria de

and the state of the

12

ાં સામંદ્ર

12 4 1

and the second second

a, televilen int rej to 5444

see the start and the transformed of the strength on the plane,

and the deviations of the atoms from the plane are given in Table XI. X, Y, Z are coordinates expressed in Angstrom units and referred to orthogonal axes <u>a</u>, <u>b</u> and <u>c</u>. The plane through  $C_1 C_2 C_3 N_1$  has equation

0.823 X' - 0.384 Y - 0.420 Z' + 8.834 = 0and the deviations of the atoms from the plane are shown in Table XII.

The equation of the plane through the cyclopentadiene ring is

 $0.819 \times - 0.390 \times - 0.422 \times + 8.843 = 0$ Table XIII shows the deviations of the atoms from this plane.

The formation of the parent compound of the salt from acetonyl acetone and cyanoacetamide can be explained by the following reaction mechanism.

NH2 · CO . CH2· CN ---- NH2· CO. CH. CN







This reaction product can explain equally well the evidence given by Westőő. It also agrees with evidence from infra-red spectra which contrary to the claims of Westőő indicate two carbonyl bands at  $1660 \text{ cm}^{-1}$  and  $1643 \text{ cm}^{-1}$  and not one at  $1670 \text{ cm}^{-1}$ . These bands would be consistent with an amide group attached to an unsaturated system ( $1643 \text{ cm}^{-1}$ ) and a  $\text{CH}_{5}$ CO unsaturated ring group ( $1660 \text{ cm}^{-1}$ ).

The packing of the molecules in the unit cell is shown in Figs. 6 and 7. The molecules are held together in the crystal by means of hydrogen bonds involving the water molecules and the bromide ions. Large tunnels run through the structure in the <u>a</u> and <u>b</u> directions. In these tunnels, connected to the molecules on either side by weak hydrogen bonds, are situated the water molecules and the bromide ions. The values of the more interesting intermolecular contacts are marked on Figs. 6 and 7. A short Van der Waals contact of



The arrangement of molecules in the unit cell as viewed in projection The lengths of a few of the more interesting nonalong the  $\overline{\mathbf{b}}$  axis. The lengths of a few of th bonded distances and hydrogen bonds are shown.



 $^{\circ}$  2.95 Å occurs between  $0_2$  of the standard molecule and  $0_2$  of the molecule related to it by a centre of symmetry.

22 16 CTYSTALS OF SUBSTRATE AND A STRATEGICS

APS DIA 1.

totained at the first of mendal by show representing the tree waves. Single correctal second and corrector films see and show here these correctables mass to war the medation. That the site approximate second permittions over themit to a

# APPENDICES

A the second of the second second



Fig. 1. Patterson projection along the <u>b</u> axis. The bromidebromide vector peaks are marked A,B and C. The contour scale is arbitrary.



Fig. 2. Patterson projection along the <u>a</u> axis. The bromide-bromide vector peaks are marked D,E and F. The contour scale is arbitrary. Intensity data were collected from the series ok l - 4k lby visual estimation and the complete data were sent to Dr. J.S. Rollett at Oxford to be used in testing a new automatic heavyatom programme for the DEUCE computer.

1.1. Hugh That has a management of according

contenting of the full stands to be break discourse

- And sheat of the states and states of the states of the states

Echerory 1995, who received the Jetrices fate formetter

leicestert duese the prime reaction is asserted to be

The second states

A. A. Sta

STATE LANDER STOR

### APPENDIX II.

### DIANTHRACENE

The stable form of anthracene is the monomer. When solutions of the monomer are exposed to ultra-violet radiation the unstable dimer is produced. In solution the reaction reverses in the dark until at equilibrium the solute consists almost exclusively of monomer.

u.v. radiation  

$$2C_{14}H_{10} \xrightarrow{C_{28}H_{20}} C_{28}H_{20}$$

The concentration of the dimer in the photostationary state and the influence of such factors as temperature, concentration and solvent have been studied (Luther and Weigert, 1905).

The mechanism of photodimerisation has been discussed by Schönberg (1936), who assumed the intermediate formation of a biradical i.e. the primary reaction is assumed to be



Two radicals formed thus may then combine to give



A quantity of dianthracene was prepared by ultra-violet irradiation of a very pure solution of anthracene intoluene. Crystals were obtained in the form of white hexagonal plates. Dianthracene is insoluble in most ordinary solvents <u>e.g</u>:hexane, cyclohexane, alcohol, glacial acetic acid, benzene, chloroform and acetone. It is, however, soluble in nitrobenzene and attempts were made to recrystallise it from this solvent. However, the crystals obtained were not good enough for X-ray studies. The very thin laminae showed a tendency to form aggregates and those which did crystallise as single plates were frequently distorted. Finally the crystals prepared directly from the ultra-violet irradiation were used, care being taken to ensure maximum purity of the materials used in the preparation.

The object of the X-Ray study was to confirm and amplify the work done on dianthracene by Hengstenberg and Palacios (1932). The main interest in the study of the molecule is in the type of bonding involved in dimerisation.

The dimensions of the orthorhombic cell which had already been determined in the previous work were confirmed from oscillation and rotation photographs taken about the three crystallographic axes using  $CuK_{\infty}$  radiation. A comparison of the results is shown in Table I. The space group was confirmed to be  $Pbca(D_{2h}^{15})$ . The number of equivalent positions allowed for this space group is four. The density

d calculated =  $1.28 \text{ gm/cm}^3$ d measured =  $1.24 \text{ gm/cm}^3$ 

determines that there are eight anthracene molecules in the unit cell. It follows that dianthracene is in fact a dimer of anthracene and that the molecule of dianthracene has a centre of symmetry.

On the assumption that the structure of dianthracene consists of two anthracene flaps joined by cross links in the 9,9' and 10,10' positions, attempts were made to solve the crystal structure using the Fourier transform method. The contents of several unit cells for a trial structure were punched on a mask. The Fourier transform was observed in the optical diffractometer and compared with the okl weighted reciprocal lattice. Better comparisons were obtained when the dianthracene molecule was placed along the <u>b</u> axis. However no postulated structure could be found which gave reasonable agreement between the observed and calculated structure amplitudes.

The normal methods of structure analysis such as Patterson synthesis could not be used due to the complexity introduced by the overlapping flaps of the dianthracene molecule.

Diamagnetic susceptibility measurements carried out by Farquarson and Sastri(1940) and Bhatnagar, Kapur and Gurbaksh Kaur (1939) confirm that the anthracene molecules are joined in the 9 and 10 positions with the formation of an eight-membered puckered ring as shown by the thick lines.





contrast study of the crystals was certical at by

the base long the, Refinement proved difficult and to a

## APPENDIX III.

(

CIRCUMANTHRACENE C40 H16

Circumanthracene (I) is obtained along with

di(3':1'-2:9)(3":1"-6:10) pyrene anthracene by treating 1:9-5:10 diperinaphthylene anthracene with maleic anhydride and decarboxylating the adduct (Clar, Kelly, Robertson and Rossmann, 1956). It was crystallised by sublimation at 400°C and was obtained in the form of fine black needles.





An X-ray study of the crystals was carried out by Robertson and Rossmann, the main interest in the structure being in the bond lengths. Refinement proved difficult due to a rapid decrease in the intensities of high order reflections, which appeared to be due to an unusually high temperature factor (B = 10  $\mathring{A}^2$ ). Better crystals have since been obtained from Dr. Clar and an effort has been made to collect further data. These new crystals, however, proved to have a different crystalline form from those used in the earlier analysis and showed differences in the axial lengths. This phenomenon is common in the case of hydrocarbons (McIntosh <u>et al.</u> 1954, Harnik <u>et al.</u> 1954).

### COMPARISON OF CRYSTAL DATA.

Robertson and Rossmann						New crystals		
					0			0
a	=	23.776	±	0 <b>.005</b>	A	<u>a</u>	<b>#</b> .	9.4 A
					0			0
<u>b</u>	=	4.59	±	0.02	A	<u>b</u>	#	28 <b>.</b> 1 🛦
					0			0
<u>c</u>	=	9.981	±	0.005	A	C	#	3.86 A
β	=	99 ⁰ 54	<b>• •</b>	: 30				

Crystal system monoclinicThe crystal systemSpace group P21/aappears to be orthorhombic.

The hko projection has plane group pgg.

In contrast to the findings of Robertson and Rossmann, in the case of the new crystals the projection down the short axis shows symmetry. The plane group for this projection is pgg. However data for these new crystals are difficult to obtain and indicate a very high temperature factor as for the previous analysis. Several possible structures have been postulated on the basis of packing considerations, molecular dimensions and the calculated tilt of the molecule. None of these has yet proved satisfactory. It is hoped to collect further data from precession photographs.

5 and and the set the set and the set of the set of the set Berry L. S. S. and De Mario, F. 1997, Junet, Rever, IL, 1 berton, the and levieslies, J.L.S. 1912 July due, 1. 43. 6 . Perturn Think and Photon, J. 1969 Proc. and . Soc. 38. Freedom, 3.1. Štarbali, 5. a. – Predom, 3.1. Štarbali, 5. a. – Predom, 5. 1641 – J. Dom, 169, pp. 535. Patrianie, .... Beanappell, I.M., Pottern, M., Loosense, R.G. Backliferter, C.R. and Vermenkael, J.J. 193 bener d.c., sayar (Kast Kar, G. 1939) Boos, a.s. ( S.L. <u>19</u>34) Alta (S.L. ( 14 Jacob, M. L., Freedoman, A.F. and via Baser, 1. J. 1991 Inter Sugar 212.

### REFERENCES.

- Arai, G., Coppola, J. and Jeffrey, G.A. 1960 Acta Cryst. <u>13</u>, 553.
- Arnott, S., Davie, A.W., Robertson, J.M., Sim, G.A. and Watson, D.G. 1961 J. Chem. Soc. pg. 4183.
- Asher, J.D.M. and Sim, G.A. 1962 Proc. Chem. Soc. pg. 111.
- Asher, J.D.M., Robertson, J.M., Sim, G.A., Bartlett M.F. Sklar, R and Taylor, W.I. 1962 Proc. Chem. Soc. pg. 72.
- Ayerst, E.M. and Duke, J.R.C. 1954 Acta Cryst. 7, 588.
- Bak, B., Hansen, L. and Rastrup-Andersen, J. 1955 Discuss. Far. Soc. 19, 30.
- Bartell, L.S. and Bonham, R.A. 1957 J. Chem. Phys. 27, 1414.
- Barton, D.H.R. and De Mayo, P. 1957 Quart. Revs. 11, 189.
- Barton, D.H.R. and Levisalles, J.E.D. 1958 J.Chem. Soc. <u>4</u>, 4518.
- Barton, D.H.R and Pinhey, J.T. 1960 Proc. Chem. Soc. pg. 279.
- Barton, D.H.R., Pradhan, S.K. Sternhell, S. and Templeton, J.F 1961 J. Chem. Soc. pg. 255.
- Berghuis, J., Haanappel, I.M., Potters, M., Loopstra, B.O., MacGillavry, C.H. and Veenendaal, A.L. 1955 Acta Cryst. <u>8</u>, 478
- Bhatnagar, S.S., Kapur, P. and Kaur, G. 1939 Proc. Ind. Acad. Sci. <u>10A</u>, 468.
- Bijvoet, J.M., Peerdeman, A.F. and van Bommel, A.J. 1951 Nature <u>168</u>, 271.
- Birch, A.J., Hodson, H.F. and Smith, G.F. 1957 Resumee des, Communications, Tome II, pg. 207, XVIth Internat. Congr. Pure and Appl. Chem.
- Birch, A.J., Hodson, H.F., Moore, B., Potts, H. and Smith, G.F. 1960 Tetrahedron Letters No. <u>19</u>, 36.

Booth, A.D. 1948a Fourier Technique in X-Ray Organic Crystal Analysis, pg. 64 Cambridge University Press, England. Booth, A.D. 1948b Nature <u>161</u>, 765. Bragg, W.L. 1913 Proc. Camb. Phil. Soc. 17, 43 Braunholtz, J.T. and Mann, F.G. 1957 J. Chem. Soc. pg. 4174. Brown, C.J. and Corbridge, D.E.C. 1954 Acta Cryst. 7, 711. Bryan, R.F. and Dunitz, J.D. 1960 Helv. Chim. Acta 43, 3. Burns, D.M. 1955 Acta Cryst. 8, 516. Cant, E.M. 1956 Acta Cryst. 2, 681. Chakravarti, D., Chakravarti, R.N., Ghose, R. and Sir Robert Robinson 1960 Tetrahedron Letters Nos. 10, 10a 11, 25b 12, 33c. Chatterjee, A., Ghosal S. and Majumdar, S.G. 1960a Chem. and Ind. pg. 265. Chatterjee, A. and Ghosal, S. 1960b Naturwiss 47, 234. Clar, E., Kelly, W., Robertson, J.M. and Rossmann, M.G. 1956. J. Chem. Soc. pg. 3878. Clunie, J.S. and Robertson, J.M. 1961 J. Chem. Soc. pg. 4382. Cochran, W. 1951 Acta Cryst 4, 408. Cocker, W. and McMurry, T.B.H. 1960 Tetrahedron 8, 181. Conroy, H., Bernasconi, R., Brook, P.R., Ikan, R., Kurtz, R. and Robinson, K.W. 1960 Tetrahedron Letters 6, 1. Copinath, K.W., Govindachari, T.R., Parthasarathy, P.C., Veswanathan, N., Arigoni, D. and Wildman, W.C. 1961 Proc. Chem. Soc. pg. 446. Cruickshank, D.W.J. 1956a Acta Cryst. 2, 747. - 11 11 2, 754. 1956b 11 1956c 11 9, 915. Cruickshank, D.W.J. and Robertson, A.O. 1953 Acta Cryst. <u>6</u>, pg. 698. Cunningham, G.L., Boyd, A.W., Myers, R.J., Gwinn, W.D. and Le Van, W.I. 1951 J. Chem. Phys. 19, 676

Davies, D.R. and Pasternak, R.A. 1956 Acta Cryst. 2, 334.

Debye, P. 1914 Ann. Physik <u>43</u>, 49.

Dimroth, K. and Freyschlag, H. 1957 Chem. Ber. <u>90</u>, 1628. Djerassi, C., Osiecki, J. and Hertz, W. 1957 J. Org. Chem. <u>22</u>, 1361.

Dougill, M.W. and Jeffrey, G.A. 1953 Acta Cryst <u>6</u>, 831 Erlandsson, G. 1955 Arkiv. Fysik <u>9</u>, 341. Farquarson, and Sastri, 1940 Curr. Sci <u>9</u>, 135 Fermi, E. 1928 Z. Physik <u>48</u>, 73

Fisher, R.A. and Yates, F. 1957 Statistical Tables, Oliver and Boyd, Edinburgh.

Gerdil, R. 1961 Acta Cryst <u>14</u>, 333.

Ghosal, S. and Majumdar, S.G. 1960 Chem. and Ind. pg. 19.

Goodson, J.A. and Henry, T.A. 1925 J. Chem. Soc. pg. 1640.

Gorup-Besanez, V. 1875 Annalen 176, 88.

Grant, I.G., Hamilton, J.A., Hamor, T.A, Hodges, R., McGeachin, S.G. and Raphael, R.A., Robertson, J.M. and Sim.G.A. 1961 Proc. Chem. Soc. pg. 444.

Hahn, T., 1957 Z. Kristallogr., 109, 438.

Hanson, A.W. and Ahmed, F.R. 1958 Acta Cryst. 11, 724.

Hamor, T.A., Robertson, J.M., Shrivastava, H.N. and Silverton, J.V. 1960 Proc. Chem. Soc. pg. 78.

Hamor, T.A. and Robertson, J.M. 1962 J. Chem. Soc. in press. Harnik, E., Herbstein, F.H., Schmidt, G.M.J., Hirschfeld, F.L. J.C.S. 1954. Harnak, E. 1878 Chem. Ber. <u>11</u>, 2004 pg. 3288. 1880 Chem. Ber. <u>13</u>, 1648.

Hengstenberg, J. and Palacios, J. 1932 An. Soc. esp Fis y Quim 30, 5

Hesse, 0. 1875 Annalen <u>176</u>, 326 1878 Chem. Ber. <u>11</u>, 1546 1880a Annalen <u>203</u>, 144 1880b Chem. Ber. <u>13</u>, 1841.

Hesse, O and Jobst, J. 1875 Annalen <u>178</u>, 49 Huber - Buser, E. and Dunitz, J.D. 1960 Helv. Chim. Acta <u>43</u>, 760

Hughes, E.W. 1941 J. Amer. Chem. Soc. 63, 1737. Hughes, E.W., Yakel, H.L. and Freeman, H.C. 1961 Acta Cryst. 14, 345. James, R.W. and Brindley, G.W. 1931 Phil. Mag. 12, 81. Kartha, G., Ahmed, F.R. and Barnes, W.H. 1960 Acta Cryst. 13, 525. Ladell, J. and Natz, J.L. 1954 Acta Cryst. 7, 460. Lawrie, W., Hamilton, W., Spring, F.S. and Watson, H.S. 1956 J. Chem. Soc. pg. 3272. Lindsay, J.M. and Barnes, W.H. 1955 Acta Cryst. 8, 227. Lipson, H. and Cochran, W. 1953 The Determination of Crystal Structures, G. Bell & Sons Ltd., London. Lister, M.W. and Sutton, L.E. 1941 Trans. Far. Soc. 37, 393. Luther, R. and Weigert, F. 1905 Z Physik Chem. 51, 297. Mackle, H. and Sutton, L.E. 1951 Transactions Far. Soc. 47, 691. Manohar, H. and Ramaseshan, S. 1961 Tetrahedron Letters 22, 814. Manske, R.H.F. 1950 J. Amer. Chem. Soc. 72, 55. Marsh, R.E. 1958 Acta Cryst. <u>11</u>, 654. Meinwald, J. and Nozaki, H. 1958 J. Amer. Chem. Soc. 80, pg 3132. McIntosh, A.O., Robertson, J.M. and Vand V. 1954 J. Chem. Soc. pg. 1661. McPhail, A.T., Robertson, J.M., Sim, G.A., Battersby, A.R., Hodson, H.F. and Yeowell, D.A. 1961 Proc. Chem. Soc. pg. 223 and further unpublished results. McWeeny, R. 1951 Acta Cryst. 4, 513. Miller, S.L., Aamodt, L.C., Dousmanis, G., Townes, C.H. and Kraitchman J. 1952 J. Chem. Phys. 20, 1112. Olsen, S. and Bredoch, R. 1958 Chem. Ber. <u>91</u>, pg. 1589. Parihar, D.B. and Dutt, S. 1950 J. Ind. Chem. Soc. 27, 77. Patterson, A.L. 1934 Phys. Rev. 46, 372. 90, 517. 1935 Z. Cryst. Penfold, B.R. and White, J.C.B. 1959 Acta Cryst. 12, 130.

- Perold, G.W. 1955 J. S. Afr. Chem. Inst. 8, 12. 1957 J. Chem. Soc. pg. 47.
- Peterson, J., Steinrauf, L.K. and Jensen, L.H. 1960 Acta Cryst. <u>13</u>,104.
- Przybylska, M., 1961, Acta Cryst. 14, 424.
- Robertson, J.M. 1943 J. Sci. Instr. 20, 175.
- Robertson, J.M., and Woodward, I.J. 1937 J. Chem. Soc. pg. 219.
- Robertson, J.H. and Beevers, C.A. 1951 Acta Cryst. 4, 270.
- Rollett, J.S. 1961 in 'Computing Methods and the Phase Problem in X-Ray Crystal Analysis! ed. Pepinsky, Robertson and Speakman, Pergamon Press, Oxford. pg. 87.
- Rossmann, M.G., Jacobson, R.A., Hirshfeld, F.L. and Lipscomb, W.N. 1959 Acta Cryst. <u>12</u>, 530.
- Rimington, C. and Roets, G.C.S. 1936 Onderstepoort J. Vet. Sci. and Animal Ind. 7, 485.
- Schomaker, V., Waser, J., Marsh, R.E. and Bergman G. 1959 Acta Cryst. <u>12</u>, 600.
- Schonberg, A. 1936 Trans. Far. Soc. 32, 514.
- Sim, G.A., Hamor, T.A., Paul, I.C. and Robertson, J.M. 1961 Proc. Chem. Soc. pg. 75 and further unpublished work.
- Smith, G.F. 1961 Chem. and Ind. pg. 1121.
- Sutor, D.J. 1958 Acta Cryst. 11, 453.
- Tables of Interatomic Distances and Configuration in Molecules and Ions 1958. The Chemical Society, Burlington House, London.
- Thomas, L.H. 1927 Proc. Camb. Phil. Soc. 23, 542.
- Thomas, L.H. and Fermi, E. 1935 Internationale Tabellen zur Bestimnung von Kristallstruckturen Borntraeger, Berlin Vol. II, pg. 572.
- Tomiie, Y. and Stam, C.H. 1958 Acta Cryst, 11, 126.
- Trueblood, K.N., Goldish, E and Donohue, J.D. 1961 Acta Cryst. 14, 1009.

Tunell, G. 1939 Amer. Min. 24, 448.

Vaughan, P. and Donohue, J. 1952 Acta Cryst. 5, 530.

Westoo, G. 1959 Acta Chem Scand. 13, 604.

Williams, Q., Cox, J.T. and Gordy, W. 1952 J. Chem. Phys. <u>20</u>, 1524.

Wright, D.A. and Marsh, R.E. 1962 Acta Cryst. 15, 54.