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Abstract

Derivatives markets, in particular futures markets, play an important role in the or-

ganization of production in commodity markets. While commodity markets for agri-

cultural and natural resources like live cattle, soybean, oil, gas and minerals are well

established, commodity markets for marine resources are very new. Located in Bergen

(Norway), Fish Pool is a new derivatives market, where futures contracts written on

fresh farmed salmon are traded in large quantities since 2006, continuing a strong up-

wards trend. Markets for forwards and futures on fresh salmon help companies which

use fresh salmon in their production, for example, food processing companies, to hedge

their price risk and plan ahead, by fixing the price in advance. In the same way, they

help producers, i.e. salmon farmers, to reduce their selling price risk. In fact, accord-

ing to Fish Pool News Archive released on 20/03/2012, not only consumers, processors

and producers, but also speculative investors at Fish Pool play a more and more im-

portant role, which in consequence urges the issue of finding appropriate, theoretical

well-founded and sound pricing formulas for the futures contracts traded there, as well

as examining its effects on participants.

In this PhD thesis, we first discuss the valuation of futures on fresh farmed salmon

as traded on the Fish Pool exchange and then explore how information reflected in the

prices of futures contracts can be used to compute fair prices, i.e., arbitrage free prices,

for lease and ownership of fish farms. Specifically, in the first chapter, we give a general

background of the study and introduce the estimation methods adopted in the thesis,

i.e., Kalman filter combined with the maximum likelihood estimation. In Chapter

2, we connect the popular Schwartz (1997) multi-factor approach, which features a

stochastic convenience yield for the salmon spot price, with the classical literature
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on fish-farming and aquaculture. We follow first principles, starting by modeling the

aggregate salmon farming production process and modeling the demand using a Cobb-

Douglas utility function for a representative consumer. In Chapter 3, we extend the

Schwartz (1997) two-factor model by adding a seasonality feature to the mean-level

of convenience yield. All models are estimated by means of Kalman filter, using a

rich data set of contracts with different maturities traded at Fish Pool. The estimates

are also discussed in the context of other commodity markets, specifically live cattle

which acts as a substitute. Our results show that the framework presented is able to

produce an excellent fit to the actual term structure of salmon futures. A comparison

with live cattle futures traded within the same period reveals subtle difference, for

example within the level of the convenience yield, the speed of mean reversion of the

convenience yield and the convenience yield risk premium. In Chapter 4, we consider

the optimal harvesting problem for a fish farmer. We take account of the existence of

Fish Pool, which determines risk premia and other relevant variables, that influence

the fish farmer in his decision. We assess the optimal strategy, harvesting time and

value against two alternative setups. The first alternative involves simple strategies

which lack managerial flexibility, the second alternative allows for managerial flexibility

and risk aversion as modeled by a constant relative risk aversion utility function, but

without access to the salmon futures market. In both cases, the loss in project value

can be very significant, and in the second case is only negligible for extremely low levels

of risk aversion. In consequence, for a risk-averse fish farmer, the presence of a salmon

futures market as well as managerial flexibility are highly important.
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Chapter 1

Introduction

Derivatives markets, in particular futures markets, play an important role in the orga-

nization of production in commodity markets. This is well known, at least since the

fundamental work of Hirshleifer (1988). Futures contracts on commodities help produc-

ers and processors to hedge against a significant part of the price risk they are exposed

to. Although some recent claims link the activity of speculators on commodity futures

markets to high world food prices, most farmers and food processing companies would

not be able to survive without them. While commodity markets for agricultural and

natural resources like live cattle, soybean, oil, gas and minerals are well established,

commodity markets for marine resources are very new. So called seafood futures on

frozen shrimp have been traded on the Minneapolis Grain Exchange for some time

in the 1990s, but trading has ceased since. Reasons for this have been discussed in

Sanders and Manfredo (2002). These include market specific inefficiencies as well as

a general lack of knowledge regarding futures markets among the shrimp industry. In

this chapter, we first give a general background and a broad outline of this study. After

that, preliminaries of estimation techniques adopted in the thesis, i.e, Kalman filter

combined with the maximum likelihood estimation, are presented.
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Chapter 1. Introduction 1.1. General Background

1.1 General Background

Fish Pool is a new derivatives market, where futures and options on fresh farmed

salmon are traded in large quantities since 2006. Located in Bergen (Norway), con-

tract volumes traded at this market have reached 97,000 tons, equivalent to 4.3 billion

NOK (457 million Euro), during 2014, continuing a strong upwards trend. Follow-

ing its great success in the start-up phase, the Oslo Stock Exchange acquired 71% of

Fish Pool in December 2012 and currently owns 94.3%, and Nasdaq offers clearing of

salmon derivatives traded on it. Bergfjord (2007), Dalton (2005) and Bulte and Pen-

nings (1997) provide possible explanations for this trend. Bergfjord (2007) in particular

highlights the aspect of non-storability of the fresh salmon at Fish Pool, as compared

to the frozen and storable shrimp products traded previously at the Minneapolis Grain

Exchange, a fact which clearly distinguishes the new salmon futures market from the

old shrimps futures market.

Markets for forwards and futures on fresh salmon help companies which use fresh

salmon in their production, for example, food processing companies, to hedge their

price risk and plan ahead, by fixing the price in advance. In the same way, they help

producers, i.e. salmon farmers, to reduce their selling price risk. An analysis of the

welfare effects of futures markets in a rather general context is presented in Hirshleifer

(1988). He discusses a two-period model which includes consumers, processors, pro-

ducers and speculators. In fact speculative investors at Fish Pool play a more and more

important role, compare Fish Pool News Archive (2012), which in consequence urges

the issue of finding appropriate, theoretical well-founded and sound pricing formulas

for the futures and options traded there.

Markets like the Norwegian Fish Pool are also highly relevant for other countries.

Minyanville, an Emmy award winning financial media company, reports in an article

on 29/06/2010, that a US based futures market in fish is inevitable. The UK is the

third largest producer of farmed salmon in the world with all production based in

Scotland. In fact farmed salmon accounts for more than 50% of Scottish food exports.

2



Chapter 1. Introduction 1.1. General Background

It is further believed that the creation of futures and derivatives markets for ocean

resources can contribute to the conservation of ocean species, see Dalton (2005) as well

as Bulte and Pennings (1997). A consortium lead by George Sugihara from University

of California San Diego supported by the National Marine Fisheries Service of USA has

been campaigning for the creation of the Ocean Resource Exchange. Quoting Sugihara

(see Dalton (2005)) “The first derivative is likely to be a futures contract for a certain

percentage of a fisherman’s catch at an agreed price at a specified time.” The questions

here are whether financial markets where appropriately designed financial contracts

are traded can provide the incentives for fisheries to harvest marine resources in a way

that is economically and environmentally sustainable, or if in fact there is evidence

that a similar UK based market could improve the competitiveness of the UK’s salmon

industry.

Theoretical models of aquaculture and the fish farm production have been discussed

since the mid 1980’s. Early work includes important contributions by Karp, Sadeh,

and Griffin (1986), Hannesson (1986) and Bjørndal (1988) who define the problem in

its elementary form as a sequential optimal stopping problem. This is similar in nature

to the typical problem encountered in forestry, when to cut a tree and plant a new

one. Various aspects such as density dependent growth of the farmed fish population,

optimal feeding schedules and weight dependent prices have since been discussed in

Arnason (1992), Heaps (1993), Heaps (1995), Guttormsen (2008), Mistiaen and Strand

(1998) and Yu and Leung (2006). The setup in the latter articles is fully deterministic

and does not allow for any form of uncertainty. The methodology applied is determin-

istic optimal control in form of dynamic programming and the Pontryagin maximum

principle. Stochastic models are far less common. Karp et al. (1986) includes a discrete

time model which allows for uncertainty in the weight of the farmed shrimp and Rizzo

and Spagnolo (1996) allow for stochastic effects in growth and mortality. To the best

of our knowledge there do not yet exist any continuous time stochastic models which

specifically address the fish farm production process. There are however continuous

time real option models that have been applied to wild-catch fisheries by Li (1998) and

Sarkar (2009). Other important literature in the continuous time stochastic context,
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outwith the real options context, include Beddington and May (1977), May (1973),

Lande, Engen, and Saether (1995), Alvarez (1998) and Alvarez and Shepp (1998) as

well as Hanson and Ryan (1998). Finally, Ewald and Wang (2010) present a continuous

time stochastic model which includes multiple species and ecological interactions, as

well as different fishery regimes. None of the models above are addressing the aspect

of financial markets where marine resources or certain derivative contracts on them are

traded. Given the existence of the derivatives markets on salmon, i.e., Fish Pool, we

can find a proper way to connect the classical literature on fish-farming and aquacul-

ture to theoretically sound models in financial markets. Such framework will enable us

to analyse the salmon prices and further explore its implications on salmon farming, for

instance, how to make decisions regarding the price process which correctly accounts

for risk premia. As mentioned earlier, for these derivative contracts to be meaningful,

we require uncertainty in our model. In order to better blend in with the financial

literature, we are mainly focusing on continuous time stochastic models. The models

by Sarkar (2009), Li (1998), Hanson and Ryan (1998) and Alvarez and Shepp (1998)

build an excellent foundation for such purpose.
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1.2 Structures

To better organize the work in this study, we will structure it into three main chapters

which all link into each other.1 In Chapter 2, we study the futures contracts written

on fresh farmed salmon, which have been actively traded at the Fish Pool Market in

Norway since 2006, by the popular Schwartz (1997) multifactor approach. This ap-

proach features a stochastic convenience yield for the salmon spot price. We connect

this approach with the classical literature on fish-farming and aquaculture using first

principles, starting by modeling the aggregate salmon farming production process and

modeling the demand using a Cobb-Douglas utility function for a representative con-

sumer. The model is estimated by means of Kalman filter, using a rich data set of

contracts with different maturities traded at Fish Pool. The results are also discussed

in the context of other commodity markets, specifically live cattle which acts as a sub-

stitute. Our results show that the framework presented is able to produce an excellent

fit to the actual term structure of salmon futures. A comparison with live cattle futures

traded within the same period reveals subtle difference, for example within the level

of the convenience yield, the speed of mean reversion of the convenience yield and the

convenience yield risk premium.

The Chapter 2 is structured as follows. In section 2 we briefly review the Schwartz

(1997) multifactor approach, while in section 3 we discuss farmed salmon supply and

demand leading to an equilibrium price. Section 4 contains our empirical analysis, us-

ing Kalman filter to estimate the parameters within our model for different sub-samples

of our data-set. In section 5 we draw comparisons with live cattle futures and identify

subtle differences in the two markets. Our main conclusions are summarized in section

6. The appendices contain a number of figures which support the findings in the main

text.

In Chapter 3, we develop a model based on the Schwartz (1997) two-factor model by

adding a seasonality feature to the mean-level of convenience yield. To place our study

1These chapters are broadly based on three research papers co-authored with my supervisor Chris-
tian Ewald, as well as Roy Nawar and Tak-Kuen Siu.
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into the context of other commodities, we have also included the live-cattle futures

contracts traded on the Chicago Mercantile Exchange into our analysis as in Chapter

2. All models in Chapter 2 and Chapter 3 are estimated by the mean of Kalman filter.

Chapter 3 is structured as follows. In section 2, we give a description of the models.

In section 3, data and empirical study are discussed. Following that, in section 4, we

draw comparison between the futures contracts written on live-cattle and salmon. Our

conclusions are summarized in the final section. The appendices contain the derivation

of joint distribution and additional figures.

In Chapter 4, we consider the optimal harvesting problem for a fish farmer in

a model which accounts for stochastic prices featuring a Schwartz (1997) two-factor

price dynamics. We presented a methodological approach, which can be used to de-

termine the values of lease or ownership of a fish farm in a way which is consistent

with market data obtained from the Fish Pool market, where futures on fresh farmed

salmon are traded. Our approach correctly accounts for risk premia due to stochas-

tically fluctuating prices. We assess the optimal strategy, harvesting time and value

against two alternative setups. The first alternative involves simple strategies which

lack managerial flexibility, the second alternative allows for managerial flexibility and

risk aversion as modeled by a constant relative risk aversion utility function, but with-

out access to the salmon futures market. In both cases, the loss in project value can

be very significant, and in the second case is only negligible for extremely low levels of

risk aversion. In consequence, for a risk averse fish farmer, the presence of a salmon

futures market as well as managerial flexibility are highly important.

The Chapter 4 is structured as follows. In section 2, we briefly review the Schwartz

(1997) two-factor approach, while in the following section we summarize the results of

our empirical estimation of the model. The optimal harvesting and rotation problem of

an individual fish farmer and in consequence the valuation for lease and ownership of

a model fish farm are discussed in detail in the penultimate section. The final section

contains our main conclusions.
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1.3 Methods and Techniques: Preliminaries

In this section we introduce the methods and techniques involved in the estimation

procedure in this study. Specifically, how the Kalman filter technique can be combined

with the maximum likelihood method to estimate the unknown state variables and the

parameters of model. We start from the formulation of the state space model, and then

give a brief review of the Kalman filter as well as the maximum likelihood estimation.

We refer to Harvey (1990) for details.

1.3.1 State Space Form

The state space form is a powerful way to deal with situations in which the state

variables are not observable. In general, the state space form applies to an observable

multivariate time series yt. These observable variables are related to the unobservable

state variables Φt, which are known to be generated by a first-order Markov process.

We can write the state space form into two sets of equations, the measurement equation

(1.1) and the transition equation (1.2).

yt = dt + ZtΦt + εt (1.1)

Φt = ct +QtΦt−1 + ηt, (1.2)

where

• yt is an (n× 1) vector,

• dt is an (n× 1) vector,

• Zt is an (n×m) matrix,

• εt is an (n×1) vector of serially uncorrelated and normally distributed disturbance

with

E(εt) = 0, Var(εt) = Ht

Ht is an (n× n) matrix which is symmetric and positive semidefinite.
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• Φt is an (m× 1) vector,

• ct is an (m× 1) vector,

• Qt is an (m×m) matrix,

• ηt is an (m× 1) vector of serially uncorrelated and normally distributed distur-

bance with

E(ηt) = 0, Var(ηt) = Rt

Rt is an (m×m) matrix which is symmetric and positive semidefinite.

The matrices dt, Zt and Ht in the measurement equation (1.1) and the matrices

ct, Qt and Rt in the transition equation (1.2) are called the system matrices. These

system matrices may be time-variant and depend on a set of unknown parameters ψ,

i.e., dt(ψ), Zt(ψ), Ht(ψ), ct(ψ), Qt(ψ) and Rt(ψ). Given such setup, a recursion

algorithm such as Kalman filter can be applied to estimate both the unobservable

state variables Φ and the unknown parameter set ψ of the model. We will cover this

important topic in the following sections. To complete the specification of the state

space system, two further assumptions are made as follows.

i the initial state vector, Φ0 is normally distributed with2

E(Φ0) = a0, Var(Φ0) = P0

ii the disturbances εt and ηt are uncorrelated with each other in all time periods,

and uncorrelated with the initial state Φ0.

2This assumption may be relaxed and has been discussed in Harvey (1990).
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1.3.2 Kalman Filter

Once a model has been put in a state space form, Kalman filter can be applied. The

Kalman filter is an efficient data fusion algorithm, delivering the optimal estimator of

the state vector Φt, based on all the information available at time t, through a recursive

procedure. This recursive procedure can be divided into two steps in general:

i Prediction Step (Time Update): in this step, Kalman filter gives an optimal

predictor of the unobservable state variable Φt based on all information available

up to time t − 1. After that, a state vector called prior estimates at time t are

calculated.

ii Correction Step (Measurement Update): once the new observation yt becomes

available, it is used to update the prior estimates. As a result, a posterior esti-

mates can be produced.

To better illustrate this algorithm, we also provide equations involved in each step

here. We denote the starting values for the Kalman filter as a0, a vector giving the

initial value of the state variable, and P0, the corresponding covariance matrix of the

estimation error.3 Note, the system matrices as well as the a0 and P0 are assumed to

be known in all time periods. Given these initial set up, the Kalman filter can run the

following steps recursively from the starting point t0 to the ending point T , and yield

the optimal estimator based on the full information set.

i Calculate the prior estimates at|t−1 and the corresponding covariance matrix

Pt|t−1 via the prediction equations

at|t−1 = ct +Qtat−1, (1.3)

Pt|t−1 = QtPt−1Q
′
t +Rt (1.4)

ii Once the new observation yt is available, we can get the prediction errors vt and

3They may also be specified as a1|0 and P1|0.
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the corresponding covariance matrix Ft

vt = yt − Ztat|t−1 − dt, (1.5)

Ft = ZtPt|t−1Z
′
t +Ht (1.6)

iii Obtain the Kalman gain

Kt = Pt|t−1Z
′
tF
−1
t (1.7)

iv Calculate the posteriori estimates at and the corresponding covariance matrix Pt

via the updating equations

at = at|t−1 + Ktvt, (1.8)

Pt = (I−KtZt)Pt|t−1 (1.9)

Given the assumption that disturbances and initial state vector are normally dis-

tributed, the derivation of the Kalman filter shows that the recursion above can provide

an optimal estimator of Φt, in the sense that the mean of the conditional distribution

of Φt is the estimator minimizing the mean square error (MSE). When the normality

assumption is dropped, the conditional mean of the state vector is still an optimal

estimator minimizing the mean square error within the class of all linear estimators.

The derivation of Kalman filter, and the Kalman filter for non-normally distributed

disturbances or nonlinear system are beyond the scope of this work, which are omitted

here.
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1.3.3 Maximum Likelihood Estimation

As indicated by Harvey (1990), one reason for the central role of the Kalman filter

is that when the disturbances and the initial state vector are normally distributed, it

enables the likelihood function to be calculated via the prediction error decomposition,

which allows us to estimate the unknown parameters in the model. The likelihood func-

tion L of a linear state space model, in which the observations YT = (y1,y2, · · · ,yT )

are independently and identically distributed, is given by

L(YT ;ψ) =
T∏
t=1

p(yt) (1.10)

where p(yt) is the probability density function of the t − th set of observations. The

maximum likelihood estimator is found by maximizing this function with respect to the

parameter set ψ. For most time series, the observations are not independent, which

lead us to write the joint density function as

L(YT ;ψ) =
T∏
t=1

p(yt|Yt−1) (1.11)

where p(yt|Yt−1) denotes the density of yt conditional on the information set at time

t − 1 and Yt−1 = (y1,y2, · · · ,yt−1). Due to the Markovian feature of the state space

model, the future observation only depend on the value of current observation, which

gives us the reduced form as

L(YT ;ψ) =
T∏
t=1

p(yt|yt−1) (1.12)

As mentioned earlier, we use the algorithm, in which the Kalman filter is embedded

in the maximum likelihood method, to achieve the goal of parameter estimation. The

algorithm starts with an initial guess of the parameter set ψ0 and the state vector a0

as well as its covariance matrix P0. After that, the Kalman filter runs as introduced

before. Once the last observation is reached, the log-likelihood will be calculated and

a new parameter set can be selected to reach the maximum likelihood value. The re-

cursive procedure will continue until the log-likelihood value cannot be improved with
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regard to the predefined abortion criteria.

Based on all assumptions made in the Kalman filter, we can easily conclude that

the conditional distribution of yt or the density function p(yt|yt−1), is normal with

conditional mean yt|t−1 and covariance matrix Ft. For a Gaussian model, the likelihood

function can then be written as

L(YT ;ψ) =
T∏
t=1

(2π)−
n
2 |Ft|−

1
2 exp(−1

2
v′tF

−1
t vt) (1.13)

where n is the number of observations at each time point. Clearly, information needed

to calculate the likelihood function can all be obtained when running the Kalman filter.

Note, vt and Ft have been defined in (1.5) and (1.6) respectively. The logarithm of the

likelihood can be expressed immediately as

lnL(YT ;ψ) = −nT
2

log 2π − 1

2

T∑
t=1

log |Ft| −
1

2

T∑
t=1

v′tF
−1
t vt (1.14)

and the maximum likelihood estimates ψ̂ML is obtained by

ψ̂ML = arg max
ψ∈Ψ

lnL(YT ;ψ) (1.15)

where Ψ ⊂ Rn is the parameter space. Since the vt can be interpreted as a vector of

prediction errors, (1.14) is also known as the prediction error decomposition form of

the likelihood.

Another important issue, namely how to get the standard error of each parameter,

can be solved easily via three steps below.

i Calculate the information matrix (I). The information matrix can be written as

the negative expected value of the Hessian matrix. The Hessian matrix (Hess)

is defined as the matrix of second-order partial derivatives of the log-likelihood

12
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function with respect to each parameter.

I(ψ̂ML) = −E(Hess(ψ̂ML)) (1.16)

Hess(ψ̂ML) =
∂2 lnL(ψ̂ML)

∂ψ̂ML∂ψ̂
′
ML

(1.17)

ii Obtain the covariance matrix. In large samples, the inverse of the information

matrix (I−1) is the covariance matrix of the maximum likelihood estimates.

iii Once the covariance matrix is got, the asymptotic standard errors of the estimates

are the square roots of the diagonal elements of this matrix.

The Hessian matrix is generated automatically within the estimation procedure that

combines the Kalman filter and the maximum likelihood method.
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Chapter 2

The Market for Salmon Futures:

An Empirical Analysis of Fish Pool

Using the Schwartz Multifactor

Model

Abstract

Using the popular Schwartz 97 two-factor approach, we study future contracts written

on fresh farmed salmon, which have been actively traded at the Fish Pool Market

in Norway since 2006. This approach features a stochastic convenience yield for the

salmon spot price. We connect this approach with the classical literature on fish-

farming and aquaculture using first principles, starting by modeling the aggregate

salmon farming production process and modeling the demand using a Cobb-Douglas

utility function for a representative consumer. The model is estimated by means of

Kalman filter, using a rich data set of contracts with different maturities traded at

Fish Pool between 12/06/2006 and 22/03/2012. The results are then discussed in the

context of other commodity markets, specifically live cattle which acts as a substitute.

Keywords: Futures, Commodities, Aquaculture, Fisheries Economics
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2.1 Introduction

In this chapter we discuss the valuation of futures on fresh farmed salmon as traded

on the Fish Pool exchange. Our major concern is the accurate and market consistent

pricing of the futures contracts, taking into account at least some of the key-elements

describing the salmon farming process as well as the demand for farmed salmon and

combining these coherently with the methodology of arbitrage free pricing developed

in the derivatives pricing literature. More specifically we are connecting the Schwartz

(1997) multifactor approach with stochastic convenience yield to the classical litera-

ture in fish farming and aquaculture. We estimate the parameters in our model on

the basis of an extensive data set obtained from the Fish Pool market covering the

period from 12/06/2006 until 22/03/2012. Solibakke (2012) presents an approach us-

ing stochastic volatility to model the Fish Pool market. However, only front months

contracts are considered and the term structure, which can only be obtained from

contracts with longer maturities, is not accounted for. In fact, it is well known that

stochastic volatility alone cannot produce realistic term structures. While stochastic

volatility is without doubt an important feature, modeling the term structure of the

future contracts and identifying the stochastic convenience yield is generally considered

to be more important.

The classical salmon farming literature, e.g. Bjørndal (1988), Arnason (1992),

Heaps (1995), Cacho (1997), Yu and Leung (2006) as well as Guttormsen (2008) fo-

cuses on the harvesting behavior of one individual salmon farmer. In contrast to this,

our focus is on the aggregate salmon production, as the aggregate production alone will

affect the market price, which features prominently in our financial model. In order to

get there, we assume that at any given time, a constant proportion of salmon farmers

(or farming units) will harvest. This assumption accurately reflects how salmon farm-

ing companies operate world wide and salmon can be harvested at any time, reflecting

consumer demand. The demand for farmed salmon is then modeled in a rather classical

way by attaching a Cobb Douglas type utility function to a representative consumer,

who chooses between farmed salmon and an alternative consumption good. The market
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clearing price will then be used in the analysis of futures contracts within the Schwartz

(1997) framework. To place our study into context and compare the estimated param-

eters of our model with those obtained for other commodities, we have also included a

data set for live-cattle future contracts as traded on the Chicago Mercantile Exchange

into our analysis.

A problem related to pricing farmed salmon futures and options has been discussed

in Ewald (2013). The difference there, is that the population is assumed to be wild

and not farmed, and managed as an open access fishery. Further the driving dynamics,

e.g. the biomass of the wild population in the sea, is assumed to be of different type.

Ewald (2013) uses stochastic logistic growth, which is mainly motivated by the classi-

cal fishery economics as well as population ecology literature such as Beddington and

May (1977), May (1973), Lande, Engen, and Saether (1995), Alvarez (1998) as well as

Alvarez and Shepp (1998). This specification however does only allow for approximate

pricing formulas for futures and options, and hence causes problems in the calibration

of the model. A mean variance approach in the context of optimizing sustainable yields

under uncertainty in the same dynamic setup has been presented in Ewald and Wang

(2010).

The rest of the paper is structured as follows. In section 2 we will briefly review

the Schwartz (1997) multifactor approach, while in section 3 we discuss farmed salmon

supply and demand leading to an equilibrium price. Section 4 contains our empirical

analysis, using Kalman filter to estimate the parameters within our model for differ-

ent sub-samples of our data-set. In section 5 we draw comparisons with live cattle

futures and identify subtle differences in the two markets. Our main conclusions are

summarized in section 6. The appendices contain a number of tables and figures which

support our findings.
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2.2 Schwartz (1997) Multifactor Framework

Let us denote with P (t) the price of a commodity at time t. In the Schwartz (1997)

framework the state variables P (t), δ(t) and r(t) are given by

dP (t) = (µ− δ(t))P (t)dt+ σ1P (t)dZ1(t) (2.1)

dδ(t) = κ(α− δ(t))dt+ σ2dZ2(t) (2.2)

dr(t) = a(m− r(t))dt+ σ3dZ3(t) (2.3)

with constants µ, κ, α, a, m, σ1, σ2 and σ3 under the real world probability P. The

Brownian motions Z1(t), Z2(t) and Z3(t) are assumed to be correlated, according to

dZ1(t)dZ2(t) = ρ1dt, dZ2(t)dZ3(t) = ρ2dt, dZ1(t)dZ3(t) = ρ3dt. (2.4)

We assume κ, a ≥ 0. The process r(t) denotes the stochastic interest rate. Under

the assumption σ3 = 0 and a = 0, the interest rate remains constant and the model

in fact becomes a two-factor model, also known as Schwartz (1997) two-factor model.

The process δ(t) represents the stochastic convenience yield and can be recognized as

a mean reverting Ornstein-Uhlenbeck process. It reflects the utility that an agent re-

ceives when holding the commodity, or storage/maintenance costs that the agent needs

to pay. The price dynamics (2.1) has an implicit mean reversion feature. If ρ1 > 0,

then the instantaneous correlation between P (t) and δ(t) is positive. Hence P (t) is

likely to be large when δ(t) is large and in this case δ(t) is likely to be larger than µ.

The drift term in (2.1) will then push P (t) downwards. The opposite happens if P (t)

is small, pushing P (t) upwards. If in fact one chooses δ(t) = κ ln(P (t)), one obtains

the dynamics of a geometric Ornstein-Uhlenbeck process in (2.1), and δ(t) defined in

this way satisfies (2.2) with ρ = 1. In this case we obtain the so called Schwartz (1997)

one-factor model. In its full generality, i.e. without any coefficient restrictions other

than κ, a ≥ 0 the model is known as Schwartz (1997) three-factor model.

A forward contract in this context is an agreement established at a time s < T to

deliver or receive the renewable resource at time T for a price K, which is specified at
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time s. In financial terms, the payoff at time of maturity T of such a forward contract

is

H = P (T )−K. (2.5)

The value K that lets this contract have a value zero under a no-arbitrage assumption

is given by

F forw
P (s, T ) =

1

B(s, T )
EQ

(
e−

∫ T
s r(t)dt · P (T )|Fs

)
, (2.6)

where B(s, T ) = EQ

(
e−

∫ T
s r(t)dt

)
denotes the prize of a zero coupon bond maturing

at time T at current time s. This is called the forward price at time s. The symbol

Fs denotes the information available at time s and we denote in the following with

F = (Fs) the associated filtration which represents the information flow.1

The expectation in (2.6) is taken with respect to the pricing measure Q, which

takes into account a market price of convenience yield risk λ, i.e.

dP (t) = (r − δ(t))P (t)dt+ σ1P (t)dZ̃1(t) (2.7)

dδ(t) = (κ(α− δ(t))− λ)dt+ σ2dZ̃2(t) (2.8)

dr(t) = a(m∗ − r(t))dt+ σ3dZ̃3(t) (2.9)

with

dZ̃1(t)dZ̃2(t) = ρ1dt, dZ̃2(t)dZ̃3(t) = ρ2dt, dZ̃1(t)dZ̃3(t) = ρ3dt. (2.10)

Here m∗ denotes the risk adjusted long-term mean interest rate.

A futures contract is basically a type of forward contract which is centrally cleared

on a daily basis. The clearing exchange then usually requires the agent to set up a

margin account, the amount held reflecting price movements in the market, protecting

buyer and seller from possible default of the other party. The mechanism of the margin

account affects the price as determined above and in fact the futures price is then

1More precisely, F = (Fs) denotes the augmented and completed filtration generated by the Brow-
nian motions Z1(s), Z2(s) and Z3(s).
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provided via

F fut
P (s, T ) = EQ (P (T )|Fs) . (2.11)

It is a direct consequence from equations (2.6) and (2.11), that if the interest rate

process r(t) and the commodity price P (t) are uncorrelated, the forward and futures

prices coincide. This is in particular the case, if the interest rate is assumed to be

deterministic, which is the case in the Schwartz (1997) two-factor model. While until

19/07/2007 contracts traded at Fish Pool had been exclusively bilateral and of forward

type, the majority of contracts traded after that date had been cleared, and in fact

close to 100% of contracts are nowadays cleared daily via Fish Pool’s link with NAS-

DAQ, hence are of futures type. This will be reflected in our empirical analysis. To

simplify the notation, we write FP (s, T ) = F fut
P (s, T ).

Let us assume initially that the interest rate is constant and equal to r, corre-

sponding to the case a = σ3 =0. As indicated above, in this case, forward prices and

futures prices coincide, and we do not need to distinguish these any further. In fact

we use the notion forwards and futures as synonymous here. We can always assume

that current time is normalized to 0 and that the time of maturity T is relative to this,

hence the same as time-to-maturity. Since our model is Markovian, we can then denote

the futures price in (2.11) as F (P, δ, T ) depending on current spot price, level of con-

venience yield and time-to-maturity T . With this notation, Schwartz (1997) refers to

Jamshidian and Fein (1990) and Bjerksund (1991) for an explicit expression for (2.11)

F (P, δ, T ) = P · exp (A(T ) + δ ·B(T )) (2.12)

with

A(T ) =

(
r − α +

λ

κ
+

1

2

σ2
2

κ2
− σ1σ2ρ

κ

)
T +

1

4
σ2

2

(
1− e−2κT

κ3

)
+

(
ακ− λ+ σ1σ2ρ−

σ2
2

κ

)(
1− e−κT

κ2

)
(2.13)

B(T ) = −1− e−κT

κ
. (2.14)
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Note, that the futures price (2.12) has a log-normal distribution, which makes the an-

alytical pricing of options in this framework possible. On the other hand note that

at least one of the state variables, the convenience yield δ(t) is unobservable. In fact

Schwartz (1997) assumes that both the commodity price P (t) and the convenience

yield δ(t) are unobservable, and only the future prices (2.12) are observable. In order

to estimate the model, Schwartz (1997) then applies Kalman filter techniques.

The case of stochastic interest rates is slightly more involved, but more of notational

means rather than mathematical complexity, as the futures prices remain log-normal.

The futures price in the Schwartz (1997) three-factor model is given as

F (P, δ, r, T ) = P · exp

(
−δ ·

(
1− e−κT

κ

)
+ r ·

(
1− e−aT

a

)
+ C(T )

)
(2.15)

with

C(T ) =
(κ(α− λ

κ
) + σ1σ2ρ1)(1− e−κT − κT )

κ2

−σ
2
2(4(1− e−κT )− (1− e−2κT )− 2κT )

4κ3

−(am∗ + σ1σ3ρ3)(1− e−aT − aT )

a2

−σ
2
3(4(1− e−aT )− (1− e−2aT )− 2aT )

4a3

+σ2σ3ρ2

(
(1− e−κT ) + (1− e−aT )− (1− e−(κ+a)T )

κa(κ+ a)

)
+

(
κ2(1− e−aT ) + a2(1− e−κT )− κa2T − aκ2T

κ2a2(κ+ a)

)
. (2.16)

The empirical analysis in section 4 predominantly focuses on the application of the two

factor model. The function of the three factor model in the context of this paper lies

mainly in assessing how robust the results from the two factor model are in light of

stochastically fluctuating interest rates, in particular when longer term contracts are

used in the analysis.
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2.3 Farmed Salmon Production

Aggregate salmon supply and demand in the context of market interactions on a global

level has been discussed in Asche, Bremnes, and Wessells (1999) and Asche, Bjørndal,

and Young (2001), but from a mostly exogenous and empirical point of view. We at-

tempt to provide a micro founded model of aggregate salmon supply and demand.

Let us look at the farmed salmon production. We follow a more or less classical

approach, which is outlined in Cacho (1997) for example, and presents a consensus of

many models that are available in the literature. The total number of salmon in all

pens contributing to the salmon production process is denoted with n(t). We assume

that mortality m(t) follows an adapted stochastic process on (Ω,P,F), and therefore

at any time before harvesting

dn(t) = −m(t) · n(t)dt. (2.17)

Note that salmon does not reproduce in the pens, and therefore the number of salmon

in each pen has to decrease over time. However, salmon gain in weight and it is assumed

that the average weight of one fish is assumed to follow the dynamic

dw(t) = (Θ− β(t))w(t)dt+ σww(t)dB(t), (2.18)

where B(t) represents a standard Brownian motion on (Ω,P,F) and β(t) an arbitrary

adapted stochastic process, such that the dynamics (2.18) is well defined. In fact β(t)

represents the weight saturation, and should be positively correlated with w(t), intro-

ducing a mean reversion feature in the weight dynamics towards the mean reversion

level Θ, which is assumed to be constant. We denote with

X(t) = n(t)w(t) (2.19)

the total biomass at time t. The dynamics of X(t) in the absence of harvesting can be
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easily derived and follows

dX(t) = (Θ−m(t)− β(t))X(t)dt+ σwX(t)dB(t). (2.20)

An individual salmon farmer would now try to optimize the time of harvest, so as to

achieve an optimal profit. The classical aquaculture literature around Bjørndal (1988),

Cacho (1997), Yu and Leung (2006), Guttormsen (2008), Heaps (1995) and Arnason

(1992) focuses on this and adopts the methodology of optimal stopping and control.

In the present context however, it is the aggregate farmed salmon production that

matters. Assuming that salmon farmers are heterogeneous and that because of limited

market demand it cannot be optimal for all salmon farmers to harvest at the same

time, no unique harvesting time can be identified.2 We assume that at each instant of

time t a proportion ν(t) of salmon farmers will harvest. Assuming that salmon farmers

own equally sized portions of the total biomass, the biomass will then evolve according

to the equation

dX(t) = (Θ− (m(t) + ν(t))− β(t))X(t)dt+ σwX(t)dB(t). (2.21)

which is of the same type as (2.20).3 The salmon supply in each infinitesimal time

interval dt will then be ν(t)X(t)dt.

Let us now look at the consumer side. We assume that a representative consumer

chooses between farmed salmon and an alternative consumption good, and that the

utility from consumption is of Cobb-Douglas type. The consumer’s problem is at each

time t to maximize utility

max
(
x(t)α(t)y(t)1−α(t)

)
(2.22)

subject to: P (t) · x(t) + y(t) = c(t), (2.23)

2The oligopolistic aquaculture harvesting problem does not seem to have been discussed in the
literature.

3Note that while individual farmers still do complete harvests rather than continuously harvesting
a proportion of the biomass, in aggregation the affect is like continuous harvesting. Even for a single
salmon farming unit consisting of multiple pens, it would be unwise to harvest all pens at once.
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where x(t) denotes the amount of farmed salmon and y(t) the amount of the alternative

consumption good consumed. The total budget of the consumer is limited to c(t) and

can vary stochastically over time, while P (t) denotes the price of farmed salmon and

the price of the alternative consumption good is normalized to one. The preference pa-

rameter α(t) is also assumed to be stochastic at this point, taking into account changes

in the consumer preferences, which are known to effect the price of salmon significantly.

The solution of the consumer problem is then given by

x(t) =
α(t)c(t)

P (t)
. (2.24)

In equilibrium we must have x(t) = ν(t)X(t) and hence we obtain the inverse demand

function

P (t) =
ε(t)

X(t)
, (2.25)

where

ε(t) =
α(t)c(t)

ν(t)
. (2.26)

This price functional will be used in the following, and interpreted as the Fish Pool

Index, which in turn corresponds to the salmon spot price.4 Without further specifying

the functional forms of α(t),c(t) and ν(t) it is however impossible to obtain any explicit

pricing formulas. However, rather than looking at each factor individually, we assume

that the various effects of α(t),c(t) and ν(t) aggregate to

dε(t) = ε(t) (γ(t)dt+ ηdW (t)) (2.27)

where W (t) is a second Brownian motion, which is correlated with B(t) according to

the relationship

dB(t)dW (t) = ρDdt, (2.28)

4The Fish Pool price index is based on a weighted weekly average of salmon categories 3-4 kg: 30
%, 4-5 kg: 40 %, 5-6 kg: 30 %, superior quality, head-on gutted. Further details are available on
http : //fishpool.asp.manamind.com/?page id = 65.
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and γ(t) is as yet unspecified.5 A simple application of the Ito-formula yields

dP (t) = P (t)
(
m(t) + ν(t) + σ2

w − ησwρD + (β(t) + γ(t))−Θ
)
dt

+P (t) (ηdW (t)− σwdB(t)) . (2.29)

Noticing that var (ηdW (t)− σwdB(t)) = (η2 + σ2
w − 2ησwρD) dt, this can be rewritten

as

dP (t) = P (t)
(
σ2
w − ησwρD −Θ− δ(t)

)
dt

+P (t)
√

(η2 + σ2
w − 2ησwρD)dZ1(t), (2.30)

where Z1(t) is a standard Brownian motion and

δ(t) = − (m(t) + ν(t) + β(t) + γ(t)) . (2.31)

Now, taking into account that δ(t) is an aggregation of four seemingly unrelated pro-

cesses of which at least some feature mean-reversion, we are led to assume that δ(t), at

least in approximation, follows an Ornstein-Uhlenbeck process, as described in (2.2).

As for the dynamics of P (t), we see that it exactly matches the dynamics (2.1), with

the following choice of parameters

µ = σ2
w − ησwρD −Θ (2.32)

σ1 = η2 + σ2
w − 2ησwρD. (2.33)

With this parametrization it is worthwhile to keep in mind, what generates the un-

certainty here: σW takes account of volatility generated by the fluctuations in weights

of individual fish, due to sources such as nutrition, weather and disease, while η takes

account of volatility generated by fluctuations in consumer income and preferences. At

most times, it will be the case that σW < η.

5As γ(t) at this point can be an arbitrary stochastic process, the only assumption made here is
that the volatility of ε(t) is proportional to its level, which is a simplifying but intuitive assumption.
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Table 2.1. Sub Data Sets

Time Period Interest Rate Observations Description
Data1 12/06/2006-1/11/2006 2.88% 103 Medium interest

regime
Data2 2/11/2006-17/12/2008 4.00% 545 High interest

regime
Data3 18/12/2008-22/03/2012 1.93% 849 Low interest

regime
Note: The whole sample period is divided into three different regimes according to the level of Norwegian interest rates.

2.4 Empirical Estimates

The data used to test the model developed so far consist of daily observations of

futures prices in Fish Pool ASA from 12/06/2006 to 22/03/2012. For the whole sample

period, complete data on the first 29 futures contracts sorted by different maturities

are available. We use a similar notation as in Schwartz (1997) and denote with F1

the contract closest to maturity (with average maturity of 0.041 year) counting up

to F29 which represents the contract farthest to maturity (with average maturity of

2.427 years). We further divide the whole sample period into three different regimes

according to the level of Norwegian interest rates as shown in Table 2.1 leading to sub-

samples Data1, Data2 and Data3.6 These have been chosen in order to take account

of interest rate movements due to the financial crisis. Under each regime, contracts

in Panel A, Panel B and Panel C are chosen as proxies for short-term, medium-term

and long-term futures contracts respectively. In each test, five contracts (i.e., N=5)

are used for the estimation. More precisely, Panel A contains F1, F3, F5, F7 and F9;

Panel B contains F12, F14, F16, F18, F20 and Panel C contains F24, F25, F26, F28

and F29. A summary statistics on the contracts being used can be found in Tables

A.1-A.3 in Appendix A. In this paper we use an approach based on Kalman filter in

order to estimate the parameters in the model. To place our empirical results better

into context we also include a comparison involving live-cattle data.

6Average interest rate r over the whole sample time period is 2.13%.
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2.4.1 Empirical Models

In our model, both the commodity price (P ) and the convenience yield (δ) are assumed

to be unobservable, and only the futures price (F ) can be observed.7 Once the model

has been cast in the state space form, model parameters can be estimated by the

Kalman filter. Let yt denote a (n × 1) vector of futures prices observed at time t

and Φt denote a (2 × 1) vector of state variables, i.e., the log spot price (X) and the

convenience yield (δ). The state space representation can be written as

yt = dt + ZtΦt + εt (2.34)

Φt+1 = ct +QtΦt + ηt, (2.35)

Unlike Schwartz (1997) uses linear approximations for estimation, we follow Erb, Lüthi,

and Otziger (2014) here. For the two-factor model, (2.34) is the measurement equation

with components

yt =


lnF (T1)

...

lnF (Tn)

 , dt =


A(T1)

...

A(Tn)

 , Zt =


1 B(T1)

...
...

1 B(Tn)

 (2.36)

and εt is a (n× 1) vector of serially uncorrelated disturbance with

E(εt) = 0, Var(εt) = H (2.37)

(2.35) is the transition equation with components

Φt =

X(t)

δ(t)

 (2.38)

ct =

(µ− 1
2σ

2
1 − α

)
∆t+ α

κ

(
1− e−κ∆t

)
α
(
1− e−κ∆t

)
 (2.39)

Qt =

1 1
κ

(
e−κ∆t − 1

)
0 e−κ∆t

 (2.40)

7As indicated by Schwartz (1997), one major difficulty in the implementation of commodity price
models arises from the indirectly observable state variables. In most cases, the spot price is quite
uncertain and the instantaneous convenience yield is hardly estimated, but the futures contracts
traded on exchanges are more attainable.
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and ηt is serially uncorrelated disturbance with

E(ηt) = 0, Var(ηt) =

 σ2
X(∆t) σXδ(∆t)

σXδ(∆t) σ2
δ (∆t)

 (2.41)

where

σ2
X =

σ2
2

κ2

{
1

2κ

(
1− e−2κt

)
− 2

κ

(
1− e−κt

)
+ t

}
+ 2

σ1σ2ρ

κ

(
1− e−κt

κ
− t
)

+ σ2
1t (2.42)

σ2
δ =

σ2
2

2κ

(
1− e−2κt

)
(2.43)

σXδ =
1

κ

[(
σ1σ2ρ−

σ2
2

κ

)(
1− e−κt

)
+
σ2

2

2κ

(
1− e−2κt

)]
(2.44)

Note, ∆t = tk+1 − tk represents the time interval and Ti denotes the given and fixed

maturity of the i-th closest-to-maturity futures contract. The functions F (·), A(·) and

B(·) are defined in (2.12), (2.13) and (2.14) respectively.

2.4.2 Data

As shown in Table 2.1, Data1 ranges from 12/06/2006 to 1/11/2006 with average in-

terest rate of 2.88%; Data2 ranges from 2/11/2006 to 17/12/2008 with average interest

rate of 4.00%; Data3 ranges from 18/12/2008 to 22/03/2012 with average interest rate

of 1.93%. Contracts used for tests in each data set are described in Tables A.1-A.3

respectively. Naturally, for each contract with a fixed maturity, the time-to-maturity

changes as time progresses. Figure A.1 shows the time-to-maturity pattern for each

contract used in Panel A of Data3, which fluctuates but remains within a narrow range

during the sample period. This pattern of time-to-maturity is representative of all the

data used in this study.

2.4.3 Empirical Results for Data1, 12/06/2006-1/11/2006

Table 2.2 shows the results for the estimation of the two-factor model based on Data1.

It can be observed that the correlation coefficient ρ = ρ1 is large;8 the speed of mean-

reversion of the convenience yield κ, the expected return on the spot commodity µ,

8In the context of the two-factor model, where there is only one relevant correlation, we omit
sub-indices and denote ρ = ρ1.
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Table 2.2. Estimation Results for Data1, 12/06/2006-1/11/2006

Parameter

Panel A Panel B Panel C

F1, F3, F5, F7, F9 F12, F14, F16, F18, F20 F24, F25, F26, F28, F29

(Short Term) (Medium Term) (Long Term)

µ 0.299 (0.446) 0.567 (0.567) 0.832 (0.345)**

κ 2.348 (0.203)*** 1.009 (0.373)*** 1.035 (0.277)***

α 0.084 (1.106) 1.311 (0.976) 1.484 (0.562)***

σ1 0.236 (0.027)*** 0.135 (0.031)*** 0.128 (0.014)***

σ2 1.444 (0.136)*** 0.185 (0.095)** 0.162 (0.047)***

ρ 0.624 (0.103)*** 0.866 (0.050)*** 0.847 (0.030)***

λ 0.097 (2.615) 1.240 (1.364) 1.507 (0.809)*

Log-Likelihood -1238 -1914.3 -2600.5
Note: Standard errors in parentheses. [***] Significant at 1% level; [**] Significant at 5% level; [*] Significant at 10% level. µ is the
expected return on the spot commodity; κ is the speed of mean-reversion of the convenience yield; α is the mean level of the convenience
yield; σ1 is the volatility of the spot price; σ2 is the volatility of the convenience yield; ρ is the correlation coefficient of spot price and
convenience yield; λ is the market price of the convenience yield risk.

the mean-level of convenience yield α and the market price of convenience yield risk λ

are all positive and reasonable. For Panel A and B however, the parameters µ, α and

λ are not significant. This changes for panel C, where all coefficients are significant,

most at the 1% level. Besides, it is also worth to note that the expected return on the

spot commodity µ increases while the speed of mean-reversion κ decreases as the term

of contracts increases. The Kalman filter based estimation is an iterative procedure.

Figures A.2 in Appendix B shows the parameter evolution for Data1 exemplary. The

convergence is good in all cases.

Figure 2.1 shows the filtered state variables, i.e. the spot price and the instantaneous

convenience yield along with a number of selected futures prices for Panel A.9 Prices of

futures contracts contained in Panel A are also included in the figure. The figure seems

to indicate strong correlation between state variables as well as a strong relationship

between futures prices and spot price. As one would expect the ability of futures

contracts to proxy spot prices becomes weaker when maturity increases. The futures

prices determined by the model are at most times within 2% of the market prices,

which presents a good fit. Figures 2.2 represents the term structure, where the left

part shows the actual term structures and the right part shows the model generated

9The figures for Panel B and C look similar, but are included in Appendix B.
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term structures. To have a better view of curves in Figure 2.2, we further show the

term structure on a randomly picked day as an example in Figure 2.3. In general, the

model makes a good prediction for the short-term panel but finds it more difficult to

capture the shapes of longer-term panels, where the actual term structure appears to

be rather unconventional, see figures A.4 and A.6 in Appendix B.10

Figure 2.1. State variables for Panel A in Data1, 12/06/2006-1/11/2006

Note: Spot and futures prices are on the top of convenience yield; F1, F3, F5, F7 and F9 correspond
to the 1st Futures, 2nd Futures, 3rd Futures, 4th Futures and Last Futures in the figure.

2.4.4 Empirical Results for Data2, 2/11/2006-17/12/2008

Table 2.3 shows the results for the two-factor model obtained from Data2. Similar

as before the correlation coefficient ρ is large; the expected return on the spot com-

modity µ, the mean-reversion level of the convenience yield α and the market price of

convenience yield risk λ are all positive and reasonable. However, the speed of mean-

reversion of the convenience yield κ for Panel A is significantly larger than before, and

volatilities σ1 and σ2 are significantly lower. For Panel A, the parameters µ, α and

λ are not significant. This changes for panel B and C though, where all coefficients

are highly significant at the 1% level. Furthermore, it is worth mentioning that the

expected return on the spot commodity µ increases while the speed of mean-reversion

10The slightly odd looking actual term structure for longer dated salmon future contracts is likely
to be caused by the rather low trading volume of these contracts.
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Figure 2.2. Term structures for Panel A in Data1: actual forward curves on the
left; model generated forward curves on the right

Note: Each colored curve is a static picture of futures prices (y-axis) against contract maturities (x-
axis), which is analogous to a plot of the term structure of interest rates. On the left side of the figure,
the solid line represents the price of the closest-to-maturity futures contract, i.e., F1 in this case;
while the dashed line consists of the actual prices of other futures contracts with different maturities
in this panel. On the right side of the figure, the solid line is the filtered spot price obtained through
the estimation procedure; while the dashed line consists of the estimated futures prices given by the
pricing formula.

Figure 2.3. Term structure on 24/07/2006: actual forward curve on the left;
model generated forward curve on the right

Note: This figure shows the term structure on a specific day. Each line corresponds to one colored
line in Figure 2.2 on the same side. The observed term structure of salmon prices is on the left; while
the estimated term structure is on the right. F1 - F9 denote the actual futures prices with different
maturities on 24/07/2006. Ŝ is the filtered spot price on that day and F̂3 - F̂9 represent the estimated
futures prices.
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Table 2.3. Estimation Results for Data2, 2/11/2006-17/12/2008

Parameter

Panel A Panel B Panel C

F1, F3, F5, F7, F9 F12, F14, F16, F18, F20 F24, F25, F26, F28, F29

(Short Term) (Medium Term) (Long Term)

µ 0.214 (0.160) 0.747 (0.177)*** 0.854 (0.122)***

κ 5.776 (0.616)*** 1.387 (0.155)*** 0.660 (0.018)***

α 0.216 (0.257) 0.951 (0.216)*** 1.356 (0.069)***

σ1 0.109 (0.006)*** 0.141 (0.003)*** 0.159 (0.023)***

σ2 0.651 (0.059)*** 0.223 (0.018)*** 0.142 (0.022)***

ρ 0.580 (0.108)*** 0.811 (0.021)*** 0.895 (0.038)***

λ 0.818 (1.402) 1.290 (0.427)*** 0.865 (0.098)***

Log-Likelihood -8279.7 -9822.6 -12745
Note: Standard errors in parentheses. [***] Significant at 1% level; [**] Significant at 5% level; [*] Significant at 10% level. µ is the
expected return on the spot commodity; κ is the speed of mean-reversion of the convenience yield; α is the mean level of the convenience
yield; σ1 is the volatility of the spot price; σ2 is the volatility of the convenience yield; ρ is the correlation coefficient of spot price and
convenience yield; λ is the market price of the convenience yield risk.

κ decreases as the terms of contracts increase. For all cases, the convergence of the

Kalman filter is very good.

Figures 2.4 shows the filtered state variables for Panel A, i.e. the spot price and

the instantaneous convenience yield, along with selected futures prices.11 As before,

we observe strong correlation between state variables as well as a close relationship

between futures price and spot price. The ability of futures contracts to proxy spot

prices becomes weaker when maturity extends. Again, the model presents a good fit,

with model prices at most times being within 2% of market prices. Figure 2.5 presents

the term structures for Panel A contracts, where once more the left part shows the real

term structures while the right part shows the model generated term structures. Term

structure on a randomly picked day is shown in Figure 2.6. In general, the model makes

a good prediction for the short-term panel but again finds it difficult to capture the

shapes of longer-term panels, which show the rather odd looking actual term structure

already observed in the first case, compare figures A.8 and A.10 in Appendix B.

11The figures for Panel B and C look similar, but are included in Appendix B.
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Figure 2.4. State variables for Panel A in Data2, 2/11/2006-17/12/2008

Note: Spot and futures prices are on the top of convenience yield; F1, F3, F5, F7 and F9 correspond
to the 1st Futures, 2nd Futures, 3rd Futures, 4th Futures and Last Futures in the figure.

Figure 2.5. Term structures for Panel A in Data2: actual forward curves on the
left; model generated forward curves on the right

Note: Each colored curve is a static picture of futures prices (y-axis) against contract maturities (x-
axis), which is analogous to a plot of the term structure of interest rates. On the left side of the figure,
the solid line represents the price of the closest-to-maturity futures contract, i.e., F1 in this case;
while the dashed line consists of the actual prices of other futures contracts with different maturities
in this panel. On the right side of the figure, the solid line is the filtered spot price obtained through
the estimation procedure; while the dashed line consists of the estimated futures prices given by the
pricing formula.

34



Chapter 2. The Market for Salmon Futures 2.4. Empirical Estimates

Figure 2.6. Term structure on 08/02/2007: actual forward curve on the left;
model generated forward curve on the right

Note: This figure shows the term structure on a specific day. Each line corresponds to one colored
line in Figure 2.5 on the same side. The observed term structure of salmon prices is on the left; while
the estimated term structure is on the right. F1 - F9 denote the actual futures prices with different
maturities on 08/02/2007. Ŝ is the filtered spot price on that day and F̂3 - F̂9 represent the estimated
futures prices.

2.4.5 Empirical Results for Data3, 18/12/2008-22/03/2012

Table 2.4 shows the results for the two-factor model obtained from Data3. As in the

other two cases, the correlation coefficient ρ is large; the expected return on the spot

commodity µ, the mean-reversion level of convenience yield α and the market price of

convenience yield risk λ are all positive and reasonable. The speed of mean-reversion

of the convenience yield κ for Panel A is significantly larger than for the other two

panels. However, α and λ are insignificant for Panel’s A and B, and µ is insignificant

for Panel B. As before, all parameters are significant at 1% level for Panel C. Further,

it is worth to mention that the expected return on the spot commodity µ increases

while the speed of mean-reversion κ decreases as the terms of the contracts increase.

As in the previous cases, the convergence of the Kalman filter is very good.

Figure 2.7 shows the filtered state variables for Panel A, i.e. the spot price and

the instantaneous convenience yield, along with selected futures prices.12 As before,

we observe strong correlation between the state variables as well as a close relationship

between futures price and spot price, which however becomes weaker as maturities

extends. Model prices are still within 2% of market prices at most times, however, in

particular for panel A, fall out of the 2% range more frequently, than for Data1 and

12The figures for Panel B and C look similar, but are included in Appendix B.
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Table 2.4. Estimation Results of Data3, 18/12/2008-22/03/2012

Parameter

Panel A Panel B Panel C

F1, F3, F5, F7, F9 F12, F14, F16, F18, F20 F24, F25, F26, F28, F29

(Short Term) (Medium Term) (Long Term)

µ 0.255 (0.113)** 0.398 (0.323) 0.917 (0.167)***

κ 3.554 (0.191)*** 0.347 (0.125)*** 0.232 (0.032)***

α 0.181 (0.134) 1.000 (1.066) 1.821 (0.261)***

σ1 0.182 (0.020)*** 0.188 (0.040)*** 0.189 (0.004)***

σ2 0.698 (0.099)*** 0.161 (0.020)*** 0.104 (0.004)***

ρ 0.740 (0.156)*** 0.905 (0.065)*** 0.908 (0.007)***

λ 0.297 (0.476) 0.351 (0.251) 0.418 (0.101)***

Log-Likelihood -9341.1 -11804 -12870
Note: Standard errors in parentheses. [***] Significant at 1% level; [**] Significant at 5% level; [*] Significant at 10% level. µ is the
expected return on the spot commodity; κ is the speed of mean-reversion of the convenience yield; α is the mean level of the convenience
yield; σ1 is the volatility of the spot price; σ2 is the volatility of the convenience yield; ρ is the correlation coefficient of spot price and
convenience yield; λ is the market price of the convenience yield risk.

Data2. Figure 2.8 and Figure 2.9 show the actual and model generated term structures

as before. Similar as in the previous two cases the model makes a good prediction for

the short-term panel but cannot capture the shapes of longer-term panels which as in

the previous cases show odd looking actual term structures, most likely to be caused

by the illiquidity of these contracts, compare Figure A.12 and Figure A.14 in Appendix

B.

2.4.6 Three-Factor Model

Accounting for stochastic interest rates and their term structure is of particular impor-

tance for longer term contracts. The longest maturity contract included in our study

has a 2 1/2 year time-to-maturity. Since we have formally linked the salmon produc-

tion process to the Schwartz (1997) two-factor approach, it is also worth evaluating

the performance of other models under this framework.13 In both cases it makes sense

to consider stochastic rates and to assess in how far this effects the results obtained

in the previous sections. We therefore consider the full three factor model represented

as in equations (2.1)-(2.3) under P and (2.7)-(2.9) under the pricing measure Q. Once

the three-factor model has been cast in state space form, the Kalman filter can be

13It is well known that the the two-factor and three-factor models clearly outperform the one-factor
model. So we will not look into the one-factor model here.
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Figure 2.7. State variables for Panel A in Data3, 18/12/2008-22/03/2012

Note: Spot and futures prices are on the top of convenience yield; F1, F3, F5, F7 and F9 correspond
to the 1st Futures, 2nd Futures, 3rd Futures, 4th Futures and Last Futures in the figure.

Figure 2.8. Term structures for Panel A in Data3: actual forward curves on the
left; model generated forward curves on the right

Note: Each colored curve is a static picture of futures prices (y-axis) against contract maturities (x-
axis), which is analogous to a plot of the term structure of interest rates. On the left side of the figure,
the solid line represents the price of the closest-to-maturity futures contract, i.e., F1 in this case;
while the dashed line consists of the actual prices of other futures contracts with different maturities
in this panel. On the right side of the figure, the solid line is the filtered spot price obtained through
the estimation procedure; while the dashed line consists of the estimated futures prices given by the
pricing formula.
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Figure 2.9. Term structure on 03/03/2010: actual forward curve on the left;
model generated forward curve on the right

Note: This figure shows the term structure on a specific day. Each line corresponds to one colored
line in Figure 2.8 on the same side. The observed term structure of salmon prices is on the left; while
the estimated term structure is on the right. F1 - F9 denote the actual futures prices with different
maturities on 03/03/2010. Ŝ is the filtered spot price on that day and F̂3 - F̂9 represent the estimated
futures prices.

applied to estimate model parameters. Although ideally parameters in all three pro-

cesses should be estimated simultaneously, here we will follow Schwartz (1997) by first

estimating the interest rate process by fitting to the term structure of interests and

then using the full three-factor model in order to determine the other two processes.

For the three-factor model, the transition equation is also (2.35) as in the two-factor

model, since we estimate the same state variables. But the measurement equation is

with components

yt =


lnF (T1)

...

lnF (Tn)

 , dt =


rt(1−e−aT1 )

a + C(T1)

...

rt(1−e−aTn )
a + C(Tn)

 , Zt =


1 B(T1)

...
...

1 B(Tn)

 (2.45)

and εt is a (n× 1) vector of serially uncorrelated disturbance with

E(εt) = 0, Var(εt) = H (2.46)

Note, Ti denotes the given and fixed maturity of the i-th closest-to-maturity futures

contract. The functions F (·), B(·) and C(·) are defined in (2.15), (2.14) and (2.16)

respectively.

In this paper, Norwegian Treasury Bill yields are used to estimate the interest rate
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process over the whole sample period. The Euler discretion of equation (2.9) can be

expressed as

r(tn+1, ψ) = r(tn, ψ) + a(m∗ − r(tn, ψ))∆t+ σ3∆Z̃3(tn), (2.47)

where ψ stands for Norwegian Treasury Bill with different maturities. We can estimate

parameters by rewriting (2.47) and solving the equation below

(â, m̂∗) = arg min
a,m∗

T−1∑
n=1

(r(tn+1, ψ)− r(tn, ψ)− am∗∆t+ ar(tn, ψ)∆t)2 (2.48)

Once we have solved (2.48), σ̂3 can also be obtained by σε√
∆t

, where σε is the standard

deviation of residuals. Since (2.9) is only capable of describing the short-term behavior,

the 3-month, 6-month, 9-month and 12-month Norwegian Treasury Bills yields during

the sample period are selected to estimate the interest rate process, accordingly only

short-term futures contracts, i.e., Panel A consisting of F1, F3, F5, F7, and F9 in each

data-set, are used to test the three-factor model. Moreover, ρ2 and ρ3 are approxi-

mated by the correlations between the 3-month Norwegian Treasury Bill yields and

the filtered state variables, i.e. spot price and convenience yield, obtained from the

corresponding two-factor model. The estimation results are displayed in Table 2.5.

As shown in Table 2.5, the estimated coefficients for the three-factor model are

very close to those obtained from using the two-factor approach. However some of the

estimates, which had been insignificant with the two-factor approach, now appear as

significant. Specifically, the coefficients µ, α and λ for Panel A Data2 now become

highly significant at the 1% level, while being insignificant before, compare Table 2.3.

Some problems however remain within the analysis of Data1. Besides insignificant µ, α

and λ, the absolute values of ρ2 and ρ3 in Data1 are close to 1, which suggests that the

three factor model used might be inappropriate to deal with this particular data-set.

Most likely, the fact that the data-set Data1 contains much fewer data points than

the other two is to blame for this. By and large, the three-factor approach confirms

the results from the two-factor approach. In other words, the results obtained are

rather robust under the two-factor and the three-factor models; the three-factor model
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Table 2.5. Estimation Results of Three Factor Model: Panel A

Parameter Data1 Data2 Data3

µ 0.102 (0.466) 0.294 (0.109)*** 0.647 (0.143)***

κ 2.520 (0.200)*** 5.950 (0.209)*** 3.429 (0.142)***

α 1.884 (1.181) 0.402 (0.121)*** 0.681 (0.164)***

σ1 0.280 (0.032)*** 0.143 (0.008)*** 0.228 (0.012)***

σ2 1.792 (0.171)*** 0.935 (0.069)*** 0.878 (0.061)***

ρ 0.843 (0.038)*** 0.857 (0.023)*** 0.901 (0.016)***

λ 4.646 (2.95) 1.978 (0.748)*** 2.046 (0.551)***

Log-Likelihood -1241.7 -8357.7 -9381.7

a 0.543 0.543 0.543

m∗ 0.027 0.027 0.027

ρ2 -0.926 0.560 0.127

ρ3 -0.961 0.031 0.277

σ3 0.017 0.017 0.017
Note: Standard errors in parentheses. [***] Significant at 1% level; [**] Significant at 5% level; [*] Significant at 10% level. µ is the
expected return on the spot commodity; κ is the speed of mean-reversion of the convenience yield; α is the mean level of the convenience
yield; σ1 is the volatility of the spot price; σ2 is the volatility of the convenience yield; ρ is the correlation coefficient of spot price and
convenience yield; λ is the market price of the convenience yield risk; a is the speed of mean-reversion of the interest rate; m∗ is the
mean level of the interest rate; ρ2 is the correlation coefficient of convenience yield and interest rate; ρ3 is the correlation coefficient
of spot price and interest rate; σ3 is the volatility of the interest rate.

only marginally outperforms the two-factor model, which is also confirmed by Schwartz

(1997). Taking the complexity and the performance of models into consideration, it is

sufficient to adopt the two-factor approach.
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2.5 Comparison Between Cattle and Salmon

How do the salmon futures compare to futures traded on other related commodities?

Live-cattle seems to reflect some of the properties of farmed salmon as a commod-

ity and futures on live-cattle are traded in high volume on the Chicago Mercantile

Exchange. Based on data availability for both the Fish Pool market and the live-

cattle futures market, we have chosen 6 live-cattle contracts covering the period from

12/06/2006 to 07/09/2010. In analogy to our previous analysis, we divide the whole

sample period into three different regimes as described in Table 2.1, but cut off at

07/09/2010. We continue to use Norwegian interest rates for the salmon contracts,

but use the corresponding 3-month U.S treasury bill rates for each of the periods, i.e.,

4.9%, 3.07% and 0.14%, for cattle contracts, which are traded in the US. Further, we

select 6 salmon contracts F2, F5, F7, F10, F13 and F16 which have similar maturities

as the live-cattle contracts. C1, C2, C3, C4, C5 and C6 are used to represent the live

cattle contracts, whose statistic features are shown in Table A.4. The average maturity

of these contracts is 0.126 years, 0.383 years, 0.554 years, 0.810 years, 1.065 years and

1.321 years respectively. The empirical results of our analysis are shown in Table 2.6.

We observe that in general, there are no significant differences between the expected

returns on the spot commodity µ of salmon and cattle contracts. More interesting per-

haps is that salmon contracts show significantly higher mean-reversion speeds κ and

mean-reversion level of the convenience yield α as compared to cattle contracts.14 In

addition, the market price of convenience yield risk in the case of salmon is notably

higher, at least for the time periods corresponding to Data2 and Data3.

As before Convergence of the Kalman filter is very good in all cases. Figures 2.10

and 2.11 show the filtered state variables, i.e. the spot price and the instantaneous

convenience yield, along with selected futures prices. The model fit is about the same,

slightly better for salmon than for live-cattle where the relative error remains within

3% for most times. Figures 2.12 and 2.14 plot the term structures for both cattle and

salmon.

14Note that for Data1 the α’s for both cattle and salmon are insignificant.
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(a) Data1

(b) Data2

(c) Data3

Figure 2.10. State variable for Panel A in cattle contracts

Note: Spot and futures prices are on the top of convenience yield; C1, C2, C3, C4, C5 and C6
correspond to the 1st Futures, 2nd Futures, 3rd Futures, 4th Futures, 5th Futures and Last Futures
in the figure.
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(a) Data1

(b) Data2

(c) Data3

Figure 2.11. State variable for Panel A in salmon contracts

Note: Spot and futures prices are on the top of convenience yield; F2, F5, F7, F10, F13 and F16
correspond to the 1st Futures, 2nd Futures, 3rd Futures, 4th Futures, 5th Futures and Last Futures
in the figure.
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(a) Data1

(b) Data2

(c) Data3

Figure 2.12. Term structures for Panel A in cattle contracts: actual forward
curves on the left; model generated forward curves on the right
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(a) Data1

(b) Data2

(c) Data3

Figure 2.13. Term structures of cattle contracts on specific days: (a) Data1; (b)
Data2; (c) Data3; actual forward curves on the left, model generated forward
curves on the right

Note: This figure shows the term structures on specific days. Each line corresponds to one colored
line in Figure 2.12 on the same side. The observed term structures of live cattle prices are on the left;
while the estimated term structures are on the right. C1 - C6 denote the actual futures prices with
different maturities of live cattle. Ŝ is the filtered spot price on that day, and Ĉ2 - Ĉ6 represent the
estimated futures prices.
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(a) Data1

(b) Data2

(c) Data3

Figure 2.14. Term structures for Panel A in salmon contracts: actual forward
curves on the left; model generated forward curves on the right
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(a) Data1

(b) Data2

(c) Data3

Figure 2.15. Term structures of salmon contracts on specific days: (a) Data1;
(b) Data2; (c) Data3; actual forward curves on the left, model generated forward
curves on the right

Note: This figure shows the term structures on specific days. Each line corresponds to one colored
line in Figure 2.14 on the same side. The observed term structures of salmon prices are on the left;
while the estimated term structures are on the right. F2 - F16 denote the actual futures prices with
different maturities of salmon. Ŝ is the filtered spot price on that day, and F̂5 - F̂16 represent the
estimated futures prices.
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Table 2.6. Estimation Results: Comparison between Cattle and Salmon

Parameter
Data1 Data2 Data3

Cattle Salmon Cattle Salmon Cattle Salmon

µ 0.224 (0.250) 0.241 (0.608) 0.108 (0.108) 0.195 (0.085)** 0.103 (0.106) 0.570 (0.121)***

κ 0.770 (0.179)*** 2.844 (0.059)*** 0.975 (0.082)*** 1.139 (0.133)*** 0.444 (0.180)*** 4.257 (0.135)***

α 1.488 (0.934) 0.209 (0.667) 0.191 (0.143) 0.289 (0.120)** 0.060 (0.232) 0.233 (0.099)**

σ1 0.145 (0.019)*** 0.292 (0.023)*** 0.149 (0.010)*** 0.116 (0.006)*** 0.136 (0.009)*** 0.152 (0.007)***

σ2 0.426 (0.054)*** 1.595 (0.085)*** 0.188 (0.018)*** 0.174 (0.017)*** 0.130 (0.018)*** 0.527 (0.032)***

ρ 0.505 (0.107)*** 0.636 (0.172)*** 0.797 (0.034)*** 0.884 (0.019)*** 0.889 (0.021)*** 0.864 (0.030)***

λ 0.819 (0.793) 0.368 (1.782) 0.113 (0.139) 0.247 (0.127)** 0.056 (0.102) 0.787 (0.419)*

Log-Likelihood -1574.8 -1806 -8112.1 -10098 -6670.9 -6642

Note: Standard errors in parentheses. [***] Significant at 1% level; [**] Significant at 5% level; [*] Significant at 10% level. µ is the
expected return on the spot commodity; κ is the speed of mean-reversion of the convenience yield; α is the mean level of the convenience
yield; σ1 is the volatility of the spot price; σ2 is the volatility of the convenience yield; ρ is the correlation coefficient of spot price and
convenience yield; λ is the market price of the convenience yield risk.

We observe from Figures 2.10 and 2.11 that the convenience yields are notably dif-

ferent in cattle than in salmon. While the convenience yield for cattle is negative almost

all of the time, the convenience yield for salmon changes signs relatively frequently and

is relatively equally balanced between positive and negative. This maybe attributed to

storage issues and costs reflecting that fresh salmon is a highly perishable good, more

so than cattle. It may also point towards liquidity issues and the fact that salmon

farming is still far less developed than cattle farming, which may affect supply. In

this case, the benefits for holding salmon in storage in the short term and hence being

able to provide liquidity are higher than for cattle. Looking at the term structures in

Figures 2.12 and Figure 2.14, it appears that the model captures the salmon contracts

much better than the cattle contracts. This fact is confirmed numerically by Tables

A.9 and A.10 in Appendix C, which show the root-mean-square errors (RMSE) and

mean-absolute errors (MAE). Term structures on some specific days are further given

as examples in Figure 2.13 and Figure 2.15.
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2.6 Conclusion

In this paper we established a link between the popular Schwartz (1997) multifactor

models used for the pricing of commodity derivatives and classical models originating

from the aquaculture/fish farming literature. Specifically we looked at future contracts

written on fresh farmed salmon, which have been actively traded at the Fish Pool

Market in Norway since 2006. The link with the fish farming literature, has been es-

tablished following first principles, starting by modeling the aggregate salmon farming

production as well as modeling salmon demand using a Cobb-Douglas utility function

for a representative consumer. We estimated our model using a rich data set of fu-

tures contracts with different maturities traded at Fish Pool between 12/06/2006 and

22/03/2012 by means of Kalman filter. Our results show that the framework presented

is able to produce an excellent fit to the actual term structure of salmon futures. A

comparison with live cattle futures traded within the same period reveals subtle differ-

ence, for example within the level of the convenience yield, the speed of mean reversion

of the convenience yield and the convenience yield risk premium. Overall, the Schwartz

(1997) multifactor approach appears to fit the salmon data better than the live cattle

data.
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Erb, P., Lüthi, D., & Otziger, S. (2014). Schwartz 1997 two-factor model technical

document.

Ewald, C.-O. (2013). Derivatives on nonstorable renewable resources: Fish futures and

options, not so fishy after all. Natural Resource Modeling , 26 (2), 215–236.

50



Chapter 2. The Market for Salmon Futures Bibliography

Ewald, C.-O., & Wang, W.-K. (2010). Sustainable yields in fisheries: Uncertainty,

risk-aversion, and mean-variance analysis. Natural Resource Modeling , 23 (3),

303–323.

Guttormsen, A. G. (2008). Faustmann in the sea: optimal rotation in aquaculture.

Marine Resource Economics , 401–410.

Heaps, T. (1995). Density dependent growth and the culling of farmed fish. Marine

Resource Economics , 285–298.

Jamshidian, F., & Fein, M. (1990). Closed-form solutions for oil futures and european

options in the gibson-schwartz model: A note. Merril Lynch Capital Markets .

Lande, R., Engen, S., & Saether, B.-E. (1995). Optimal harvesting of fluctuating

populations with a risk of extinction. American naturalist , 728–745.

May, R. M. (1973). Stability in randomly fluctuating versus deterministic environ-

ments. American Naturalist , 621–650.

Schwartz, E. S. (1997). The stochastic behavior of commodity prices: Implications for

valuation and hedging. The Journal of Finance, 52 (3), 923–973.

Solibakke, P. B. (2012). Scientific stochastic volatility models for the salmon for-

ward market: forecasting (un-) conditional moments. Aquaculture Economics &

Management , 16 (3), 222–249.

Yu, R., & Leung, P. (2006). Optimal partial harvesting schedule for aquaculture

operations. Marine Resource Economics , 301–315.

51



Chapter 2. The Market for Salmon Futures Appendices

Appendix A: Data Description

Table A.1. Contracts in Data1, 12/06/2006-1/11/2006

Contract Mean Price (Standard Deviation) Mean Maturity (Standard Deviation)

Panel A: From 12/06/2006 to 1/11/2006: 103 Daily Observations

F1 33.86 (5.32) NOK 0.040 (0.025) years

F3 31.68 (4.02) 0.212 (0.025)

F5 30.53 (2.68) 0.382 (0.025)

F7 29.82 (2.03) 0.551 (0.025)

F9 29.45 (1.51) 0.717 (0.025)

Panel B: From 12/06/2006 to 1/11/2006: 103 Daily Observations

F12 29.20 (1.25) NOK 0.968 (0.025) years

F14 29.05 (1.05) 1.141 (0.025)

F16 28.91 (0.98) 1.315 (0.025)

F18 28.74 (0.89) 1.485 (0.025)

F20 28.57 (0.79) 1.650 (0.025)

Panel C: From 12/06/2006 to 1/11/2006: 103 Daily Observations

F24 28.53 (0.80) NOK 1.984 (0.025) years

F25 28.53 (0.78) 2.072 (0.025)

F26 28.53 (0.78) 2.158 (0.025)

F28 28.53 (0.78) 2.327 (0.025)

F29 28.53 (0.78) 2.410 (0.025)
Note: We use a similar notation as in Schwartz (1997) and denote with F1 the contract closest to maturity counting up to F29 which
represents the contract farthest to maturity.
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Table A.2. Contracts in Data2, 2/11/2006-17/12/2008

Contract Mean Price (Standard Deviation) Mean Maturity (Standard Deviation)

Panel A: From 2/11/2006 to 17/12/2008: 545 Daily Observations

F1 25.96 (1.59) NOK 0.041 (0.025) year

F3 25.92 (1.42) 0.210 (0.025)

F5 25.85 (1.39) 0.378 (0.026)

F7 25.71 (1.33) 0.547 (0.026)

F9 25.53 (1.28) 0.717 (0.025)

Panel B: From 2/11/2006 to 17/12/2008: 545 Daily Observations

F12 25.30 (1.24) NOK 0.973 (0.025) years

F14 25.12 (1.18) 1.143 (0.026)

F16 25.04 (1.18) 1.312 (0.026)

F18 24.94 (1.12) 1.483 (0.026)

F20 24.90 (1.10) 1.654 (0.027)

Panel C: From 2/11/2006 to 17/12/2008: 545 Daily Observations

F24 24.89 (1.12) NOK 1.997 (0.027) years

F25 24.89 (1.12) 2.083 (0.028)

F26 24.88 (1.13) 2.169 (0.028)

F28 24.86 (1.14) 2.341 (0.029)

F29 24.86 (1.14) 2.427 (0.028)
Note: We use a similar notation as in Schwartz (1997) and denote with F1 the contract closest to maturity counting up to F29 which
represents the contract farthest to maturity.
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Table A.3. Contracts in Data3, 18/12/2008-22/03/2012

Contract Mean Price (Standard Deviation) Mean Maturity (Standard Deviation)

Panel A: From 18/12/2008 to 22/03/2012: 849 Daily Observations

F1 32.93 (6.28) NOK 0.041 (0.025) year

F3 32.47 (5.53) 0.213 (0.025)

F5 32.01 (4.99) 0.386 (0.025)

F7 31.51 (4.66) 0.558 (0.026)

F9 31.07 (4.31) 0.729 (0.026)

Panel B: From 18/12/2008 to 22/03/2012: 849 Daily Observations

F12 30.77 (3.91) NOK 0.986 (0.026) years

F14 30.45 (3.59) 1.157 (0.027)

F16 30.15 (3.16) 1.328 (0.028)

F18 30.12 (2.97) 1.498 (0.029)

F20 30.00 (2.81) 1.668 (0.031)

Panel C: From 18/12/2008 to 22/03/2012: 849 Daily Observations

F24 29.29 (2.38) NOK 2.007 (0.033) years

F25 29.17 (2.26) 2.092 (0.034)

F26 29.08 (2.15) 2.176 (0.035)

F28 28.99 (1.90) 2.345 (0.036)

F29 28.89 (1.82) 2.430 (0.037)
Note: We use a similar notation as in Schwartz (1997) and denote with F1 the contract closest to maturity counting up to F29 which
represents the contract farthest to maturity.
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Table A.4. Live-Cattle Contracts, 12/06/2006-07/09/2010

Contract Mean Price (Standard Deviation) Mean Maturity (Standard Deviation)

Data1: From 12/06/2006 to 01/11/2006: 101 Daily Observations

C1 87.16 (3.60) USD 0.101 (0.069) years

C2 88.79 (3.00) 0.333 (0.068)

C3 89.88 (1.98) 0.565 (0.067)

C4 90.22 (1.52) 0.798 (0.068)

C5 88.10 (1.91) 1.031 (0.068)

C6 85.40 (1.46) 1.268 (0.069)

Data2: From 02/11/2006 to 17/12/2008: 536 Daily Observations

C1 93.36 (4.54) USD 0.114 (0.067) years

C2 95.69 (5.41) 0.349 (0.067)

C3 97.18 (6.22) 0.583 (0.067)

C4 97.39 (7.24) 0.817 (0.067)

C5 97.79 (7.62) 1.052 (0.067)

C6 98.29 (7.13) 1.286 (0.067)

Data3: From 18/12/2008 to 07/09/2010: 433 Daily Observations

C1 87.46 (5.32) USD 0.112 (0.068) years

C2 88.23 (4.56) 0.346 (0.069)

C3 88.99 (4.19) 0.580 (0.069)

C4 89.96 (4.43) 0.814 (0.069)

C5 91.10 (4.65) 1.047 (0.069)

C6 91.58 (3.95) 1.281 (0.069)
Note: We use a similar notation as in Schwartz (1997) and denote with C1 the contract closest to maturity of live cattle, counting up
to C6 which represents the contract farthest to maturity.
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Appendix B: Additional Figures

Figure A.1. Time-to-maturity pattern: Panel A of Data3

Note: The figure shows the time-to-maturity pattern for each contract used in Panel A of Data3,
which fluctuates but remains within a narrow range during the sample period. This pattern of time-
to-maturity is representative of all the data used in this study.
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(a) Panel A

(b) Panel B

(c) Panel C

Figure A.2. Parameter evolution in Data1, 12/06/2006-1/11/2006
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Figure A.3. State variables for Panel B in Data1, 12/06/2006-1/11/2006

Note: Spot and futures prices are on the top of convenience yield; F12, F14, F16, F18 and F20
correspond to the 1st Futures, 2nd Futures, 3rd Futures, 4th Futures and Last Futures in the figure.

Figure A.4. Term structures for Panel B in Data1: actual forward curves on the
left; model generated forward curves on the right

Note: Each colored curve is a static picture of futures prices (y-axis) against contract maturities (x-
axis), which is analogous to a plot of the term structure of interest rates. On the left side of the figure,
the solid line represents the price of the closest-to-maturity futures contract, i.e., F12 in this case;
while the dashed line consists of the actual prices of other futures contracts with different maturities
in this panel. On the right side of the figure, the solid line is the filtered spot price obtained through
the estimation procedure; while the dashed line consists of the estimated futures prices given by the
pricing formula.
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Figure A.5. State variables for Panel C in Data1, 12/06/2006-1/11/2006

Note: Spot and futures prices are on the top of convenience yield; F24, F25, F26, F28 and F29
correspond to the 1st Futures, 2nd Futures, 3rd Futures, 4th Futures and Last Futures in the figure.

Figure A.6. Term structures for Panel C in Data1: actual forward curves on the
left; model generated forward curves on the right

Note: Each colored curve is a static picture of futures prices (y-axis) against contract maturities (x-
axis), which is analogous to a plot of the term structure of interest rates. On the left side of the figure,
the solid line represents the price of the closest-to-maturity futures contract, i.e., F24 in this case;
while the dashed line consists of the actual prices of other futures contracts with different maturities
in this panel. On the right side of the figure, the solid line is the filtered spot price obtained through
the estimation procedure; while the dashed line consists of the estimated futures prices given by the
pricing formula.
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Figure A.7. State variables for Panel B in Data2, 2/11/2006-17/12/2008

Note: Spot and futures prices are on the top of convenience yield; F12, F14, F16, F18 and F20
correspond to the 1st Futures, 2nd Futures, 3rd Futures, 4th Futures and Last Futures in the figure.

Figure A.8. Term structures for Panel B in Data2: actual forward curves on the
left; model generated forward curves on the right

Note: Each colored curve is a static picture of futures prices (y-axis) against contract maturities (x-
axis), which is analogous to a plot of the term structure of interest rates. On the left side of the figure,
the solid line represents the price of the closest-to-maturity futures contract, i.e., F12 in this case;
while the dashed line consists of the actual prices of other futures contracts with different maturities
in this panel. On the right side of the figure, the solid line is the filtered spot price obtained through
the estimation procedure; while the dashed line consists of the estimated futures prices given by the
pricing formula.
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Figure A.9. State variables for Panel C in Data2, 2/11/2006-17/12/2008

Note: Spot and futures prices are on the top of convenience yield; F24, F25, F26, F28 and F29
correspond to the 1st Futures, 2nd Futures, 3rd Futures, 4th Futures and Last Futures in the figure.

Figure A.10. Term structures for Panel C in Data2: actual forward curves on the
left; model generated forward curves on the right

Note: Each colored curve is a static picture of futures prices (y-axis) against contract maturities (x-
axis), which is analogous to a plot of the term structure of interest rates. On the left side of the figure,
the solid line represents the price of the closest-to-maturity futures contract, i.e., F24 in this case;
while the dashed line consists of the actual prices of other futures contracts with different maturities
in this panel. On the right side of the figure, the solid line is the filtered spot price obtained through
the estimation procedure; while the dashed line consists of the estimated futures prices given by the
pricing formula.

61



Chapter 2. The Market for Salmon Futures Appendices

Figure A.11. State variables for Panel B in Data3, 18/12/2008-22/03/2012

Note: Spot and futures prices are on the top of convenience yield; F12, F14, F16, F18 and F20
correspond to the 1st Futures, 2nd Futures, 3rd Futures, 4th Futures and Last Futures in the figure.

Figure A.12. Term structures for Panel B in Data3: actual forward curves on the
left; model generated forward curves on the right

Note: Each colored curve is a static picture of futures prices (y-axis) against contract maturities (x-
axis), which is analogous to a plot of the term structure of interest rates. On the left side of the figure,
the solid line represents the price of the closest-to-maturity futures contract, i.e., F12 in this case;
while the dashed line consists of the actual prices of other futures contracts with different maturities
in this panel. On the right side of the figure, the solid line is the filtered spot price obtained through
the estimation procedure; while the dashed line consists of the estimated futures prices given by the
pricing formula.
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Figure A.13. State variables for Panel C in Data3, 18/12/2008-22/03/2012

Note: Spot and futures prices are on the top of convenience yield; F24, F25, F26, F28 and F29
correspond to the 1st Futures, 2nd Futures, 3rd Futures, 4th Futures and Last Futures in the figure.

Figure A.14. Term structures for Panel C in Data3: actual forward curves on the
left; model generated forward curves on the right

Note: Each colored curve is a static picture of futures prices (y-axis) against contract maturities (x-
axis), which is analogous to a plot of the term structure of interest rates. On the left side of the figure,
the solid line represents the price of the closest-to-maturity futures contract, i.e., F24 in this case;
while the dashed line consists of the actual prices of other futures contracts with different maturities
in this panel. On the right side of the figure, the solid line is the filtered spot price obtained through
the estimation procedure; while the dashed line consists of the estimated futures prices given by the
pricing formula.
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Appendix C: RMSE and MAE

Table A.5. RMSE and MAE of Log Price: Data1, 12/06/2006-01/11/2006

F1 F3 F5 F7 F9 ALL

RMSE 0.0148 0.0216 0.0095 0.0099 0.0134 0.0145

MAE 0.0100 0.0159 0.0073 0.0079 0.0097 0.0101

F12 F14 F16 F18 F20 ALL

RMSE 0.0047 0.0049 0.0032 0.0049 0.0046 0.0045

MAE 0.0040 0.0040 0.0026 0.0039 0.0041 0.0037

F24 F25 F26 F28 F29 ALL

RMSE 0.0015 0.0007 0.0005 0.0003 0.0004 0.0008

MAE 0.0006 0.0003 0.0002 0.0002 0.0004 0.0003
Note: The root-mean-square error (RMSE) and mean-absolute error (MAE) are used to evaluate the model fit.
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Table A.6. RMSE and MAE of Log Price: Data2, 02/11/2006-17/12/2008

F1 F3 F5 F7 F9 ALL

RMSE 0.0095 0.0121 0.0073 0.0065 0.0093 0.0091

MAE 0.0070 0.0102 0.0055 0.0050 0.0074 0.0070

F12 F14 F16 F18 F20 ALL

RMSE 0.0053 0.0060 0.0055 0.0041 0.0037 0.0050

MAE 0.0040 0.0043 0.0037 0.0028 0.0027 0.0035

F24 F25 F26 F28 F29 ALL

RMSE 0.0008 0.0011 0.0021 0.0011 0.0008 0.0013

MAE 0.0003 0.0004 0.0007 0.0004 0.0005 0.0005
Note: The root-mean-square error (RMSE) and mean-absolute error (MAE) are used to evaluate the model fit.

Table A.7. RMSE and MAE of Log Price: Data3, 18/12/2008-22/03/2012

F1 F3 F5 F7 F9 ALL

RMSE 0.0237 0.0288 0.0207 0.0170 0.0257 0.0235

MAE 0.0186 0.0227 0.0159 0.0129 0.0205 0.0181

F12 F14 F16 F18 F20 ALL

RMSE 0.0123 0.0154 0.0151 0.0107 0.0113 0.0131

MAE 0.0088 0.0114 0.0112 0.0078 0.0085 0.0096

F24 F25 F26 F28 F29 ALL

RMSE 0.0107 0.0105 0.0115 0.0079 0.0096 0.0101

MAE 0.0061 0.0054 0.0071 0.0050 0.0058 0.0059
Note: The root-mean-square error (RMSE) and mean-absolute error (MAE) are used to evaluate the model fit.
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Table A.8. RMSE and MAE of Log Price: Three-Factor Model (Panel A)

Contracts
Data1 Data2 Data3

RMSE MAE RMSE MAE RMSE MAE

F1 0.0146 0.0101 0.0076 0.0057 0.0221 0.0174

F3 0.0217 0.0160 0.0121 0.0102 0.0287 0.0226

F5 0.0100 0.0076 0.0074 0.0055 0.0209 0.0161

F7 0.0101 0.0082 0.0065 0.0050 0.0170 0.0130

F9 0.0131 0.0093 0.0093 0.0074 0.0258 0.0205

ALL 0.0145 0.0102 0.0088 0.0068 0.0232 0.0179
Note: The root-mean-square error (RMSE) and mean-absolute error (MAE) are used to evaluate the model fit.
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Table A.9. RMSE and MAE of Log Price: Cattle, 12/06/2006-07/09/2010

Contracts
Data1 Data2 Data3

RMSE MAE RMSE MAE RMSE MAE

C1 0.0124 0.0102 0.0150 0.0128 0.0175 0.0141

C2 0.0144 0.0123 0.0149 0.0123 0.0169 0.0141

C3 0.0054 0.0042 0.0208 0.0181 0.0196 0.0165

C4 0.0133 0.0114 0.0170 0.0139 0.0149 0.0119

C5 0.0140 0.0129 0.0144 0.0123 0.0126 0.0110

C6 0.0164 0.0134 0.0191 0.0164 0.0164 0.0137

ALL 0.0131 0.0107 0.0170 0.0143 0.0165 0.0136
Note: The root-mean-square error (RMSE) and mean-absolute error (MAE) are used to evaluate the model fit.

Table A.10. RMSE and MAE of Log Price: Salmon, 12/06/2006-07/09/2010

Contracts
Data1 Data2 Data3

RMSE MAE RMSE MAE RMSE MAE

F2 0.0043 0.0033 0.0107 0.0087 0.0174 0.0131

F5 0.0059 0.0048 0.0095 0.0073 0.0231 0.0187

F7 0.0134 0.0106 0.0104 0.0083 0.0166 0.0129

F10 0.0047 0.0036 0.0085 0.0068 0.0190 0.0135

F13 0.0051 0.0044 0.0078 0.0056 0.0177 0.0132

F16 0.0078 0.0060 0.0090 0.0072 0.0144 0.0110

ALL 0.0075 0.0054 0.0094 0.0073 0.0182 0.0137
Note: The root-mean-square error (RMSE) and mean-absolute error (MAE) are used to evaluate the model fit.

67



Chapter 3

An Analysis of the Fish Pool

Market in the Context of

Seasonality and Stochastic

Convenient Yield

Abstract

Based on the popular Schwartz 97 two-factor approach, we develop a model featuring

seasonality and study future contracts written on fresh farmed salmon, which have

been actively traded at the Fish Pool Market in Norway since 2006. The model is

estimated by means of Kalman filter, using a rich data set of contracts with different

maturities traded at Fish Pool between 01/01/2010 and 24/04/2014. The results are

then discussed in the context of other commodity markets, specifically live cattle which

acts as a substitute.

Keywords: Futures, Commodities, Seasonality, Aquaculture, Fisheries Economics,

Agricultural Economics
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3.1 Introduction

In this chapter we analyse the futures on fresh farmed salmon traded on the Fish Pool

exchange, in the context of seasonality and stochastic convenience yield. Nowadays,

about 70% of the world’s salmon production is farmed and most of the cultured salmon

comes from Norway, Chile, Scotland and Canada (Marine Harvest, 2016). According

to the Global Aquaculture Production (2015), “aquaculture is understood to mean the

farming of aquatic organisms including fish, molluscs, crustaceans and aquatic plants.

Farming implies some form of intervention in the rearing process to enhance produc-

tion, such as regular stocking, feeding, protection from predators, etc. Farming also

implies individual or corporate ownership of the stock being cultivated.” In the aqua-

culture industry, regardless of different species of fish and different farms’ technologies,

the general process is similar: the farmer releases juvenile fish (recruits) into pens or

ponds, feeds them until they reach a certain level, and then harvests for sale; after that,

pens or ponds become available for a new generation and a new rotation may begin.

These features make aquaculture share lots of common characteristics with agriculture.

Similar to many agricultural commodities, salmon prices show seasonal pattern.1

As discussed in Bjørndal, Knapp, and Lem (2003), Asche and Bjørndal (2011) and

Asche, Misund, and Oglend (2016), the seasonal behaviour of salmon spot price is due

to several factors. Generally speaking, on one hand, the availability of different weight

classes of salmon for market follows a seasonal pattern because the salmon growth can

be affected by the water temperature; on the other hand, the major social events or

holidays and changes in salmon’s quality can cause seasonal fluctuation in salmon con-

sumption. Considering the front-month futures price as a proxy of spot price, Figure

3.1 plots the average price for each month over the years 2007-2013,2 from which we

can observe that the price peaks in May and hits bottom in October and a lower peak

occurs in July. It’s also worthwhile to find out the effects of seasonality on futures

prices. We obtain the pattern of futures contracts by grouping data into expiration

1Seasonality of many agricultural commodities prices can be naturally caused by the market supply,
e.g., harvesting pattern, and demand, e.g., consumer preferences. See Brennan (1958), Fama and
French (1987), Milonas (1991), Sørensen (2002) and Richter and Sørensen (2002).

2We first transform the observed daily prices into the monthly data, then standardize the data by
the annual mean value, and finally take the average of each month over the time period.
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months,3 see Figure A.1 in Appendix B. Although patterns are similar, futures prices

(Figure A.1) fluctuate within a relatively narrow range, compared to the spot/front-

month-futures prices (Figure 3.1).

Figure 3.1. Pattern of spot price: the line is obtained by using the front-month
futures price as a proxy of spot price, Jan 2007 - Dec 2013.

How to model the seasonality of commodity prices has been addressed in several

literature. Inspired by Schwartz and Smith (2000), Sørensen (2002) include the sea-

sonality by modelling the dynamics of the spot price as the sum of a deterministic

seasonal component, a non-stationary state-variable, and a stationary state-variable.

West (2012) adopted a multifactor seasonal Nelson-Siegel model to obtain seasonal

commodity price estimates. Mirantes, Población, and Serna (2013) mainly focus on

the convenience yield and use the four-factor model proposed by Mirantes, Población,

and Serna (2012) to capture mean-reversion and stochastic seasonality of convenience

yield. In our model, the seasonality factor is embedded in the drift term of convenience

yield as a function of calendar time. Convenience yield can be understood as the bene-

fit or premium associated with holding an underlying product or physical good, rather

than the contract or derivative product. Several papers have indicated that the con-

venience yield is economically significant, e.g., Brennan (1958), Deaton and Laroque

(1992), Routledge, Seppi, and Spatt (2000), Casassus and Collin-Dufresne (2005) and

3Unlike plotting time-series data of the spot/front-month-futures prices, the seasonal pattern of
futures is investigated via term structure.
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Wei and Zhu (2006). They point out that the convenience yield arises endogenously

as a result of the interaction among supply, demand, and storage decisions. According

to the theory of storage (see Brennan (1958)), there is a negative relationship between

supply/inventories and convenience yields. Fama and French (1987) also finds reliable

seasonals in the basis for most agricultural and animal products.4 These previous stud-

ies provide some economic rationale for allowing the drift term of convenience yield to

capture the seasonality as in our model.

The rest of the paper is structured as follows. In section 2, we give a description

of models. In section 3, data and empirical study will be discussed. Following that, in

section 4, we draw a comparison between the futures contracts written on live cattle

and salmon. Our conclusions are summarised in the final section.

4As mentioned in Fama and French (1987), under the theory of storage, inventory seasonals generate
seasonals in the marginal convenience yield and in the basis.
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3.2 Models

In this section, we demonstrate a valuation model of commodity price and derive the

corresponding formula of futures price. Further, by putting the valuation model into

the state space form, the empirical model is presented.

3.2.1 Valuation Model

The valuation model is based on the Schwartz (1997) two-factor model, by adding a

seasonality feature to the mean-level of convenience yield (α). The spot price of the

commodity (P ) and the instantaneous convenience yield (δ) are assumed to follow the

joint stochastic process:

dP (t) = (µ− δ(t))P (t)dt+ σ1P (t)dZ1(t) (3.1)

dδ(t) = κ(α(t)− δ(t))dt+ σ2dZ2(t) (3.2)

where

α(t) = α0 +
N∑
k=1

(γk cos(2kπ · t) + γ∗k sin(2kπ · t)) (3.3)

Z1(t) and Z2(t) are Brownian motions under the real world probability P and dZ1(t)dZ2(t) =

ρdt. α0, γk and γ∗k are constant parameters while N determines the number of trigono-

metric coefficients. Fackler and Roberts (1999), Sørensen (2002), Richter and Sørensen

(2002), Lin and Roberts (2006) use a similar trigonometric function as (3.3) to describe

seasonality.

The stochastic convenience yield described in (3.2) reflects the benefits received by

agents who hold commodities or physical goods other than derivative contracts. It

follows a mean-reverting Ornstein-Uhlenbeck process, where α(t) represents the mean

reversion level and κ > 0 represents the mean reversion speed. The seasonality feature

embedded in the convenience yield process by a truncated Fourier series can further

influence the price dynamics, for P (t) would be positively correlated with δ(t) and have

implicit mean reversion feature if ρ > 0. Specifically, P (t) is likely to be large when
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δ(t) is large and δ(t) could be larger than µ. In this case, the drift term in (3.1) would

push P (t) downwards. The opposite happens if P (t) is small, pushing P (t) upwards.5

Under the pricing measure Q which takes the market price of convenience yield risk

(λ) into account, the dynamics are in the form of

dP (t) = (r − δ(t))P (t)dt+ σ1P (t)dZ̃1(t) (3.4)

dδ(t) = [κ(α(t)− δ(t))− λ]dt+ σ2dZ̃2(t) (3.5)

where Z̃1(t) and Z̃2(t) are Q-Brownian motions and dZ̃1(t)dZ̃2(t) = ρdt. The mean-

level of convenience yield under Q can be defined as

α̃(t) = α(t)− λ/κ (3.6)

which leads to the dynamics

dP (t) = (r − δ(t))P (t)dt+ σ1P (t)dZ̃1(t) (3.7)

dδ(t) = κ(α̃(t)− δ(t))dt+ σ2dZ̃2(t) (3.8)

(3.6) can also be expressed as

α̃(t) = ᾱ +
N∑
k=1

(γk cos(2kπ · t) + γ∗k sin(2kπ · t)) (3.9)

where

ᾱ = α0 − λ/κ (3.10)

3.2.2 Futures Price

Since the interest rate is constant in our model, so the futures and forward price

coincide. Therefore, the statements made about futures contracts also hold for forward

5Schwartz (1997) illustrates that in an equilibrium setting, supply will increase when prices are
relatively high, since higher cost producers of the commodity will enter the market putting a downward
pressure on prices and vice versa. This is known as the mean reversion in commodity prices.
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contracts and we do not distinguish between them in this paper. Let the futures price

at time t with the given and fixed expiration date of contract T be F (P, δ, t;T ). Under

the no-arbitrage condition, the futures price satisfies the partial differential equation:

1

2
σ2

1P
2FPP + σ1σ2ρPFPδ +

1

2
σ2

2Fδδ + (r − δ)PFP + (κ(α̃(t)− δ))Fδ + Ft = 0 (3.11)

subject to the terminal boundary condition F (P, δ, T ;T ) = P (T ). Note, α̃(t) in (3.11)

is the mean-level of convenience yield defined in (3.9). Let A(t;T ) = A1(t;T )+A2(t;T )

and the solution can be verified as follows:

F (P, δ, t;T ) = EQ (P (T )|Ft) . (3.12)

= P (t)eA(t;T )+B(t;T )δ(t) (3.13)

= P (t)eA1(t;T )+A2(t;T )+B(t;T )δ(t) (3.14)

with

A1(t;T ) =

(
r − α̃+

1

2

σ2
2

κ2
− σ1σ2ρ

κ

)
(T − t) +

1

4
σ2

2

1− e−2κ(T−t)

κ3

+

(
κα̃+ σ1σ2ρ−

σ2
2

κ

)
1− e−κ(T−t)

κ2
(3.15)

A2(t;T ) =

N∑
k=1

γk

(
sin (2kπ · t)− sin(2kπ · T )

2kπ
− κe−κ(T−t) cos (2kπ · t)− κ cos(2kπ · T )

κ2 + (2kπ)2

−2kπe−κ(T−t) sin (2kπ · t)− 2kπ sin(2kπ · T )

κ2 + (2kπ)2

)

+

N∑
k=1

γ∗k

(
cos(2kπ · T )− cos (2kπ · t)

2kπ
− κe−κ(T−t) sin (2kπ · t)− κ sin(2kπ · T )

κ2 + (2kπ)2

+
2kπe−κ(T−t) cos (2kπ · t)− 2kπ cos(2kπ · T )

κ2 + (2kπ)2

)
(3.16)

B(t;T ) = −1− e−κ(T−t)

κ
(3.17)

where the symbol Ft denotes the information available at time t and (T − t) is the

time-to-maturity. Without A2(t;T ), the solution is the same as the solution of classic

Schwartz (1997) two-factor model.
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3.2.3 Empirical Model

In our model, both the commodity price (P ) and the convenience yield (δ) are assumed

to be unobservable, and only the futures price (F ) can be observed.6 Once the model

has been cast in the state space form, model parameters can be estimated by the

Kalman filter. Let yt denote a (n × 1) vector of futures prices observed at time t

and Φt denote a (2 × 1) vector of state variables, i.e., the log spot price (X) and the

convenience yield (δ). The state space representation can be written as

yt = dt + ZtΦt + εt (3.18)

Φt+1 = ct +QtΦt + ηt, (3.19)

(3.18) is the measurement equation with components

yt =


lnF (t;T1)

...

lnF (t;Tn)

 , dt =


A(t;T1)

...

A(t;Tn)

 , Zt =


1 B(t;T1)

...
...

1 B(t;Tn)

 (3.20)

and εt is a (n× 1) vector of serially uncorrelated disturbance with

E(εt) = 0, Var(εt) = H (3.21)

(3.19) is the transition equation with components

Φt =

X(t)

δ(t)

 (3.22)

ct =

(µ− 1
2σ

2
1 − α0

)
∆t+ 1−e−κ∆t

κ (α0 + L(t))− (M(t+ ∆t)−M(t))

α0

(
1− e−κ∆t

)
+
(
L(t+ ∆t)− e−κ∆tL(t)

)
 (3.23)

Qt =

1 1
κ

(
e−κ∆t − 1

)
0 e−κ∆t

 (3.24)

6As indicated by Schwartz (1997), one major difficulty in the implementation of commodity price
models arises from the indirectly observable state variables. In most cases, the spot price is quite
uncertain and the instantaneous convenience yield is hardly estimated, but the futures contracts
traded on exchanges are more attainable.
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and ηt is serially uncorrelated disturbance with

E(ηt) = 0, Var(ηt) =

 σ2
X(∆t) σXδ(∆t)

σXδ(∆t) σ2
δ (∆t)

 (3.25)

where ∆t = tk+1 − tk represents the time interval and Ti denotes the given and fixed

maturity of the i-th closest-to-maturity futures contract. The functions A(·) and B(·)

are defined in (3.15) - (3.17); while L(·) and M(·) are defined in (31) and (36) respec-

tively in Appendix A. Moreover, the derivation of the joint distribution of X(t) and

δ(t) can be found in Appendix A.
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3.3 Data and Empirical Results

In this section, salmon futures prices used for the empirical test will be described and

the empirical results will be given and analysed.

3.3.1 Data

Our data set consists of 1126 daily observations of futures prices on Fish Pool ASA

from 01/01/2010 to 24/04/2014. We use a similar notation as in Schwartz (1997) and

denote with F1 the contract closest to maturity (with average maturity of 0.040 year)

counting up to F29 which represents the contract farthest to maturity (with average

maturity of 2.389 years). Table 3.1 describes the data features of sample contracts.

Unlike Ewald, Ouyang, and Siu (2016) use different combinations of contracts, i.e.,

short-term, medium-term, long-term and mixed-term, to emphasize different parts of

the forward curve, we would not consider the medium-term and long-term contracts

individually in this paper. We would expect that on top of lower liquidity of these

contracts, over the long time that it takes until these contracts mature, seasonal effects

average out and become blurred in a way, which also negatively effects the filter pro-

cess. Therefore, taking factors as liquidity and representativeness into consideration,

two panels with 5 contracts in each are considered in the empirical study.7 More pre-

cisely, Panel A consists of F1, F3, F5, F7 and F9, having relatively short and narrow

range of maturities; Panel B contains F1, F7, F14, F20, and F25, having longer and a

wider range of maturities. The last trading day of contract is chosen to represent the

expiration date, for the reason that it is actually the final day that a contract can be

traded or closed out at the market without physical delivery.8 For each contract, its

time-to-maturity fluctuates within a certain narrow range as time progress during the

sample period.

3.3.2 Empirical Results

Once the model has been cast in the state space form as introduced in Section 3.2.3,

the Kalman filter can be applied to estimate parameters in the model. We compare

7Comparison can be made between different selection of futures contracts.
8No physical delivery but only financial settlement occurs at the Fish Pool.
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Table 3.1. Contracts Features, 01/01/2010-24/04/2014

Contract Mean Price (Standard Deviation) Mean Maturity (Standard Deviation)

F1 34.67 (7.58) NOK 0.040 (0.024) year

F3 33.76 (6.27) 0.208 (0.025)

F5 33.27 (5.51) 0.376 (0.025)

F7 32.79 (5.03) 0.543 (0.025)

F9 32.49 (4.50) 0.711 (0.026)

F12 32.24 (4.14) 0.963 (0.026)

F14 31.91 (3.81) 1.131 (0.026)

F16 31.56 (3.50) 1.298 (0.026)

F18 31.38 (3.15) 1.466 (0.026)

F20 31.27 (2.95) 1.634 (0.026)

F24 30.76 (2.73) 1.969 (0.026)

F25 30.56 (2.56) 2.053 (0.026)

F26 30.40 (2.43) 2.137 (0.026)

F28 30.20 (2.19) 2.305 (0.026)

F29 30.08 (2.07) 2.389 (0.026)
Note: We use a similar notation as in Schwartz (1997) and denote with F1 the contract closest to maturity counting up to F29 which
represents the contract farthest to maturity.

the estimates with different value of N in (3.3), i.e., the number of trigonometric terms

describing seasonality in the model, and select N = 2 based on the log-likelihood ratio

test,9 which leads to

α(t) = α0 + [γ1 cos(2π · t) + γ∗1 sin(2π · t) + γ2 cos(4π · t) + γ∗2 sin(4π · t)] (3.26)

By using sample data ranging from 01/01/2010 to 24/04/2014 and choosing the av-

erage rate of 3-month Norwegian Treasury Bill as the risk-free rate r (1.81%), the

estimates are obtained as shown in Table 3.2. In each panel, parameters are all highly

significant at 1% level, except γ2 in Panel A and γ∗2 in Panel B; the correlation co-

efficient ρ is positive and large as expected; the expected return on the spot price µ,

the mean-reversion speed κ and the market price of convenience yield risk λ are all

positive and reasonable. In both cases, one of the standard deviations of the mea-

surement errors goes to zero, which is a common phenomenon in this type of analysis

(Schwartz, 1997). Due to containing contracts with relatively short term, Panel A

9The test includes a penalty that is an increasing function of the number of estimated parameters.
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has lower expected return on spot commodity µ but higher mean-reversion speed κ,

compared to Panel B. It’s also worth to note that the volatility of convenience yield

σ2 decreases as the term of contracts increases while the volatility of spot price σ1 is

relatively stable, which implies the convenience yield is more sensitive to changes in

maturities. The estimates are generally good in both panels as indicated by Table 3.3.

Particularly, F7 in Panel A and F20 in Panel B are nearly perfectly fitted by the model.

Table 3.2. Results of Whole Sample, Avg. Rate 1.81%, 01/01/2010-24/04/2014

Parameter
Panel A Panel B

F1, F3, F5, F7, F9 F1, F7, F14, F20, F25

µ 0.419 (0.150)*** 0.528 (0.173)***

κ 2.885 (0.128)*** 0.958 (0.046)***

α0 0.801 (0.257)*** 0.742 (0.217)***

σ1 0.299 (0.019)*** 0.236 (0.016)***

σ2 1.228 (0.094)*** 0.290 (0.023)***

ρ 0.855 (0.026)*** 0.908 (0.020)***

λ 1.286 (0.620)** 0.676 (0.222)***

γ1 0.332 (0.128)*** 0.837 (0.121)***

γ2 -0.215 (0.133) -1.024 (0.180)***

γ∗1 -0.586 (0.218)*** -0.425 (0.054)***

γ∗2 -0.562 (0.179)*** 0.143 (0.137)

ξ1 0.009 (0.001)*** 0.009 (0.001)***

ξ2 0.057 (0.001)*** 0.082 (0.002)***

ξ3 0.049 (0.001)*** 0.033 (0.001)***

ξ4 0 0

ξ5 0.055 (0.001)*** 0.039 (0.001)***

Log-Likelihood -11409.86 -12452.29
Note: Standard errors in parentheses. [***] Significant at 1% level; [**] Significant at 5% level; [*] Significant at 10% level. µ is the
expected return on the spot commodity; κ is the speed of mean-reversion of the convenience yield; α0 is the constant term in the mean
level of the convenience yield; σ1 is the volatility of the spot price; σ2 is the volatility of the convenience yield; ρ is the correlation
coefficient of spot price and convenience yield; λ is the market price of the convenience yield risk; γ1, γ2, γ∗1 and γ∗2 are the coefficients
of trigonometric terms in the mean level of the convenience yield; ξ1 - ξ5 are the measurement errors.

Figure 3.2 depicts the state variables, i.e., spot price (P ) and convenience yield

(δ), filtered by the model, from which we can observe a strong positive correlation
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Table 3.3. RMSE and MAE of Log Price: Salmon, 01/01/2010-24/04/2014

Panel A

F1 F3 F5 F7 F9 ALL

RMSE 0.0046 0.0575 0.0496 0.0000 0.0552 0.0420

MAE 0.0020 0.0458 0.0375 0.0000 0.0400 0.0251

Panel B

F1 F7 F14 F20 F25 ALL

RMSE 0.0050 0.0817 0.0336 0.0000 0.0410 0.0436

MAE 0.0021 0.0664 0.0248 0.0000 0.0294 0.0246
Note: The root-mean-square error (RMSE) and mean-absolute error (MAE) are used to evaluate the model fit.

not only between state variables but also between spot price and futures price. As we

could expected, the ability of futures contracts to proxy spot prices becomes weaker

when maturity increases. It is also clear to see a seasonal pattern of each variable,

which is consistent with the pattern shown in Figure 3.1 and Figure A.1. Moreover,

as shown in Figure 3.3 and Figure 3.4, the spot prices filtered from Panel A and Panel

B are almost the same; while the filtered convenience yields share similar pattern but

have different bounds due to different selection of futures contracts. Figure 3.5 shows

the term structures for each panel, where in each sub-figure, the left part displays the

actual term structures and the right part displays the model generated term structures.

Moreover, Figure 3.6 displays the term structures on a randomly picked day under both

panels. Overall, the model makes a good prediction for each panel, namely the model

generated forward curves match the actual forward curves and the filtered spot price

is near the price of closest-to-maturity futures. It is obvious that term structures of

Panel A and Panel B are different, for they consist of different futures contracts, but

as mentioned before, the plots of filtered spot price are nearly the same. Since Kalman

filter based estimation is an iterative procedure, we also include the figure of parameter

evolution in Appendix B. Figure A.2 shows that the convergence is good in all cases.
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(a) Panel A

(b) Panel B

Figure 3.2. State variables: (a) Panel A; (b) Panel B

Note: In each plot, spot and futures prices are on the top of convenience yield. In Panel A, F1, F3,
F5, F7 and F9 correspond to the 1st Futures, 2nd Futures, 3rd Futures, 4th Futures and Last Futures
in the figure; while in Panel B, F1, F7, F14, F20 and F25 correspond to the 1st Futures, 2nd Futures,
3rd Futures, 4th Futures and Last Futures in the figure.
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Figure 3.3. Filtered spot prices: Panel A and Panel B

Figure 3.4. Filtered convenience yields: Panel A and Panel B
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(a) Panel A

(b) Panel B

Figure 3.5. Term structures: (a) Panel A; (b) Panel B; actual forward curves on
the left, model generated forward curves on the right

Note: Each colored curve is a static picture of futures prices (y-axis) against contract maturities (x-
axis), which is analogous to a plot of the term structure of interest rates. On the left side of the figure,
the solid line represents the price of the closest-to-maturity futures contract, i.e., F1 in this case;
while the dashed line consists of the actual prices of other futures contracts with different maturities
in this panel. On the right side of the figure, the solid line is the filtered spot price obtained through
the estimation procedure; while the dashed line consists of the estimated futures prices given by the
pricing formula.
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(a) Panel A

(b) Panel B

Figure 3.6. Term structures on 18/03/2010: (a) Panel A; (b) Panel B; actual
forward curves on the left, model generated forward curves on the right

Note: This figure shows the term structures on a specific day. Each line corresponds to one colored
line in Figure 3.5 on the same side of same panel. The observed term structure of salmon prices is
on the left; while the estimated term structure is on the right. F1 - F25 denote the actual futures
prices with different maturities on 18/03/2010. Ŝ is the filtered spot price on that day and F̂3 - F̂25
represent the estimated futures prices.
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3.4 Comparison between Cattle and Salmon

How do the salmon futures compare to futures traded on other related commodities?

Live cattle seems to reflect some of the properties of farmed salmon as a commodity.

Futures on live cattle are the first livestock contracts traded at the Chicago Mercantile

Exchange (CME) and have been traded in high volume since 1964. As before, we con-

sider the front-month futures price as a proxy of spot price and check the price pattern

of the live cattle. Figure 3.7 plots the average price for each month over the years

2007-2013,10 from which we can observe that the price peaks in September and hits

bottom in June and a lower peak occurs in April. Similar to salmon, the seasonal be-

haviour of cattle prices is mainly caused by the biological processes and the consumer’s

demand for beef, which can be largely affected by weather and disease. Based on data

availability for both the Fish Pool market and the live-cattle futures market, we have

chosen 6 cattle contracts covering almost the same period as for the salmon contracts,

i.e., from 04/01/2010 to 24/04/2014. With regard to the risk-free rate, we use the

average rate of 3-month Norwegian Treasury Bill rates and 3-month U.S. Treasury Bill

rates during the sample period for the salmon and cattle contracts accordingly, i.e.,

1.81% and 0.08%, based on the place they traded. Six salmon contracts S2, S4, S6,

S8, S10 and S12 11 as listed in Table 3.1 are chosen for they have similar maturities as

the first six cattle contracts, where the closest-to-maturity contract is referred to as C1

and the farthest-to-maturity contract as C6. Table 3.4 illustrates some data features

of the cattle contracts. The empirical results of our analysis are shown in Table 3.5.

We observe that in general, cattle has higher expected returns on the spot commodity

µ and mean-reversion speed κ, but lower volatilities of both spot price and convenience

yield, compared to salmon. In addition, the market price of convenience yield risk in

the case of cattle is notably higher during the sample period. Some parameters related

to seasonality, as γ2 and γ∗2 for the cattle and γ1 and γ∗1 for the salmon, are not statis-

tically significant.

10We first transform the observed daily prices into the monthly data, then standardize the data by
the annual mean value, and finally take the average of each month over the time period.

11S- instead of F- is used as the prefix to represent the salmon futures contract in this section. The
average maturities of these contracts are 0.124 year, 0.292 year, 0.460 year, 0.627 year, 0.795 year and
0.963 year respectively.
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Table 3.4. Contracts Features: Live Cattle, 01/01/2010-24/04/2014

Contract Mean Price (Standard Deviation) Mean Maturity (Standard Deviation)

C1 116.73 (14.55) USD 0.081 (0.048) year

C2 117.68 (14.22) 0.249 (0.048)

C3 118.95 (13.97) 0.416 (0.048)

C4 120.31 (13.96) 0.583 (0.048)

C5 121.05 (13.82) 0.751 (0.048)

C6 121.33 (13.89) 0.918 (0.048)
Note: We use a similar notation as in Schwartz (1997) and denote with C1 the contract closest to maturity of live cattle, counting up
to C6 which represents the contract farthest to maturity.

Figure 3.7. Spot price pattern of cattle: the line is obtained by using the front-
month futures price as a proxy of spot price, Jan 2007 - Dec 2013.
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Table 3.5. Estimation Results: Comparison between Live Cattle and Salmon,
01/01/2010-24/04/2014

Parameter
Live Cattle Salmon

C1, C2, C3, C4, C5, C6 S2, S4, S6, S8, S10, S12

µ 0.992 (0.106)*** 0.447 (0.141)***

κ 1.988 (0.120)*** 1.000 (0.131)***

α0 1.058 (0.117)*** 0.988 (0.291)***

σ1 0.162 (0.006)*** 0.258 (0.016)***

σ2 0.347 (0.020)*** 0.582 (0.054)***

ρ 0.784 (0.021)*** 0.902 (0.015)***

λ 2.211 (0.251)*** 1.037 (0.333)***

γ1 0.025 (0.009)*** -0.007 (0.036)

γ2 -0.010 (0.033) -0.175 (0.083)**

γ∗1 -0.126 (0.013)*** 0.041 (0.036)

γ∗2 0.028 (0.020) 0.244 (0.111)**

ξ1 0.003 (0.000)*** 0.078 (0.002)***

ξ2 0.022 (0.000)*** 0.003 (0.000)***

ξ3 0.028 (0.001)*** 0.043 (0.001)***

ξ4 0.018 (0.000)*** 0.044 (0.001)***

ξ5 0.002 (0.000)*** 0.001 (0.001)**

ξ6 0.019 (0.000)*** 0.053 (0.001)***

Log-Likelihood -18153.09 -14243.34
Note: Standard errors in parentheses. [***] Significant at 1% level; [**] Significant at 5% level; [*] Significant at 10% level. µ is the
expected return on the spot commodity; κ is the speed of mean-reversion of the convenience yield; α0 is the constant term in the mean
level of the convenience yield; σ1 is the volatility of the spot price; σ2 is the volatility of the convenience yield; ρ is the correlation
coefficient of spot price and convenience yield; λ is the market price of the convenience yield risk; γ1, γ2, γ∗1 and γ∗2 are the coefficients
of trigonometric terms in the mean level of the convenience yield; ξ1 - ξ6 are the measurement errors.

Figure 3.8 shows the filtered state variables, i.e. the spot price and the instantaneous

convenience yield, along with selected futures prices. We observe from Figure 3.8 that

the convenience yields are notably different in cattle than in salmon. To have a better

view of the results, we also plot the filtered spot prices and convenience yields separately

in Figure 3.9 and Figure 3.10. Not surprisingly, the spot price and convenience yield

obtained from the live cattle and salmon are quite different. While the convenience

yield for cattle fluctuates in a relatively narrow range than salmon, see Figure 3.10.

This may be attributed to storage issues and costs reflecting that fresh salmon is a

highly perishable good, more so than cattle. It may also point towards liquidity issues

and the fact that salmon farming is still far less developed than cattle farming, which
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Table 3.6. RMSE and MAE of Log Price: Cattle and Salmon, 01/01/2010-
24/04/2014

Live Cattle

C1 C2 C3 C4 C5 C6 ALL

RMSE 0.0010 0.0232 0.0269 0.01789 0.0009 0.0182 0.0179

MAE 0.0007 0.0199 0.0214 0.01357 0.0006 0.0139 0.0117

Salmon

S2 S4 S6 S8 S10 S12 ALL

RMSE 0.0754 0.0010 0.0438 0.0448 0.0002 0.0529 0.0455

MAE 0.0589 0.0005 0.0332 0.0320 0.0001 0.0406 0.0276
Note: The root-mean-square error (RMSE) and mean-absolute error (MAE) are used to evaluate the model fit.

may affect supply. In this case, the benefits for holding salmon in storage in the short

term and hence being able to provide liquidity are higher than for cattle. Looking

at the term structures in Figure 3.11 as well as root-mean-square-errors (RMSE) and

mean-absolute-errors (MAE) in Table 3.6, it appears that the model captures both the

salmon and the cattle contracts well but slightly better for the cattle. Term structures

of both cattle and salmon on a randomly picked day are shown in Figure 3.12.
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(a) Live Cattle

(b) Salmon

Figure 3.8. State variables: (a) live cattle; (b) salmon

Note: In each plot, spot and futures prices are on the top of convenience yield. In the plot of Cattle,
C1, C2, C3, C4, C5 and C6 correspond to the 1st Futures, 2nd Futures, 3rd Futures, 4th Futures,
5th Futures and Last Futures in the figure; while in the plot of Salmon, S2, S4, S6, S8, S10 and S12
correspond to the 1st Futures, 2nd Futures, 3rd Futures, 4th Futures, 5th Futures and Last Futures
in the figure.
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Figure 3.9. Filtered spot prices: live cattle and salmon

Figure 3.10. Filtered convenience yields: live cattle and salmon
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(a) Live Cattle

(b) Salmon

Figure 3.11. Term structures: (a) live cattle; (b) salmon; actual forward curves
on the left, model generated forward curves on the right

Note: Each colored curve is a static picture of futures prices (y-axis) against contract maturities
(x-axis), which is analogous to a plot of the term structure of interest rates. On the left side of the
figure, the solid line represents the price of the closest-to-maturity futures contract, i.e., C1 and S2 in
this case; while the dashed line consists of the actual prices of other futures contracts with different
maturities in this panel. On the right side of the figure, the solid line is the filtered spot price obtained
through the estimation procedure; while the dashed line consists of the estimated futures prices given
by the pricing formula.

91



Chapter 3. An Analysis of Seasonality 3.4. Compare to Live Cattle

(a) Live Cattle

(b) Salmon

Figure 3.12. Term structures on 11/05/2011: (a) live cattle; (b) salmon; actual
forward curves on the left; model generated forward curves on the right

Note: This figure shows the term structures on a specific day. Each line corresponds to one colored
line in Figure 3.11 on the same side. The observed term structures of live cattle and salmon prices
are on the left; while the estimated term structures are on the right. C1 - C6 and S2 - S12 denote the
actual futures prices with different maturities of live cattle and salmon on 11/05/2011 respectively. Ŝ
is the filtered spot price on that day, and Ĉ2 - Ĉ6 as well as Ŝ4 - Ŝ12 represent the estimated futures
prices.
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3.5 Conclusion

In this paper we set up a valuation model of commodity based on the Schwartz (1997)

two-factor model, featuring a seasonality to the convenience yield, and estimate the

model using salmon futures prices. Specifically, we add the seasonality factor as a

truncated Fourier series to the mean-level of convenience yield (αt) and derive a formula

of the futures price. The empirical analysis is based on futures contracts of salmon with

different maturities traded at Fish Pool between 01/01/2010 and 24/04/2014 and the

means of Kalman filter. Our results show that the model proposed in this paper can

describe the behavior of salmon prices well.
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Appendix A:

Derivation of the Joint Distribution

The derivation follows the idea proposed by Erb, Lüthi, and Otziger (2014). The joint

dynamics of the commodity log-price Xt = ln (Pt) and the spot convenience yield δt

can be expressed as 12

dXt =

(
µ− δt −

1

2
σ2

1

)
dt+ σ1

√
1− ρ2dZ1

t + σ1ρdZ
2
t (27)

dδt = κ(αt − δt)dt+ σ2dZ
2
t , (28)

By using the substitution δ̃t = eκtδt and Itô’s lemma, (28) can be solved

δt = e−κtδ0 + κe−κt
∫ t

0

eκuαudu+ σ2e
−κt
∫ t

0

eκudZ2
u (29)

with

κe−κt
∫ t

0

eκuαudu = α0(1− e−κt) + Lt (30)

where

Lt =
N∑
k=1

κ

κ2 + (2kπ)2

{
γk
[
κ cos(2kπ · t) + 2kπ sin(2kπ · t)− κe−κt

]
+γ∗k

[
κ sin(2kπ · t)− 2kπ cos(2kπ · t) + 2kπe−κt

]}
(31)

Plugging (29) into (27) gives

Xt = X0 +

∫ t

0
dXu (32)

= X0 +

(
µ− 1

2
σ2

1

)
t−

∫ t

0
δudu+

∫ t

0
σ1

√
1− ρ2dZ1

u +

∫ t

0
σ1ρdZ

2
u. (33)

12We indicate time dependence via sub-indices here, e.g. Pt = P (t), which is common in literature.

96



Chapter 3. An Analysis of Seasonality Appendices

where

∫ t

0

δudu =

∫ t

0

e−κuδ0du+

∫ t

0

(
α0(1− e−κu) + Lu

)
du+

∫ t

0

σ2e
−κu
(∫ u

0

eκsdZ2
s

)
du

(34)

With regards to the integral
∫ t

0
(α0(1− e−κu) + Lu) du, we have

∫ t

0

(
α0(1− e−κu) + Lu

)
du = α0

(
t− 1− e−κt

κ

)
+Mt (35)

where

Mt =

N∑
k=1

κ

κ2 + (2kπ)2

{
γk

[
κ sin(2kπ · t)

2kπ
− cos(2kπ · t) + e−κt

]

−γ∗k
[
κ cos(2kπ · t)

2kπ
+ sin(2kπ · t)− κ

2kπ
− 2kπ (1− e−κt)

κ

]}
(36)

According to Fubini’s theorem, the order of integration of
∫ t

0
e−κu

(∫ u
0
eκsdZ2

s

)
du can

be interchanged as

∫ t

0

(∫ u

0

e−κueκsdZ2
s

)
du =

∫ t

0

(∫ t

s

e−κueκsdu

)
dZ2

s (37)

=

∫ t

0

1

κ

(
1− e−κ(t−s)) dZ2

s (38)

Plugging (35) and (38) into (34) and solving the integrals yields

∫ t

0

δudu =
δ0

κ

(
1− e−κt

)
+ α0

(
t− 1− e−κt

κ

)
+Mt + σ2

∫ t

0

1

κ

(
1− e−κ(t−s)) dZ2

s .

(39)

Therefore, Xt can be further expressed as:

Xt = X0 +

(
µ− 1

2
σ2

1 − α0

)
t+ (α0 − δ0)

1− e−κt

κ
−Mt

+

∫ t

0

σ1

√
1− ρ2dZ1

u +

∫ t

0

{
σ1ρ+

σ2

κ

(
e−κ(t−u) − 1

)}
dZ2

u. (40)
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The log-price Xt and the convenience yield δt are jointly normally distributed with

expectations

E(Xt) = µX = X0 +

(
µ− 1

2
σ2

1 − α0

)
t+ (α0 − δ0)

1− e−κt

κ
−Mt (41)

E(δt) = µδ = e−κtδ0 + α0

(
1− e−κt

)
+ Lt. (42)

and variances can be obtained by using expectation rules for Itô integrals and the Itô

isometry.

Var(Xt) = σ2
X =

σ2
2

κ2

{
1

2κ

(
1− e−2κt

)
− 2

κ

(
1− e−κt

)
+ t

}
+ 2

σ1σ2ρ

κ

(
1− e−κt

κ
− t
)

+ σ2
1t (43)

Var(δt) = σ2
δ =

σ2
2

2κ

(
1− e−2κt

)
(44)

Cov(Xt, δt) = σXδ =
1

κ

[(
σ1σ2ρ−

σ2
2

κ

)(
1− e−κt

)
+
σ2

2

2κ

(
1− e−2κt

)]
(45)

The mean-parameters given in (41) and (42) refer to the P-dynamics. To obtain

the parameters under Q we can simply replace µ by r and α0 by ᾱ defined in (3.10).
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Appendix B: Additional Figures

Figure A.1 plots the pattern of futures prices by grouping contracts into expiration

months during the sample period, from which we can observe a similar pattern as shown

in Figure 3.1 and due to the narrower range of maturity, red line has relatively wider

bounds than blue line. Figure A.2 and Figure A.3 shows the parameter evolution, due

to space limits, not all parameters are included. We can observe that the convergence

of parameter is generally good.

Figure A.1. Price pattern: futures price

Note: Blue line is obtained by grouping all available futures contracts into expiration months; red
line is obtained by grouping futures contracts spanned no longer than 2 years into expiration months.
The data ranges from Jan 2007 to Dec 2013.
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(a) Panel A

(b) Panel B

Figure A.2. Parameter evolution: (a) Panel A; (b) Panel B
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(a) Live Cattle

(b) Salmon

Figure A.3. Parameter evolution: (a) live cattle; (b) salmon
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Chapter 4

On the Market Consistent

Valuation of Fish Farms: Using the

Real Option Approach and Salmon

Futures

Abstract

We consider the optimal harvesting problem for a fish farmer in a model which accounts

for stochastic prices featuring a Schwartz (1997) two-factor price dynamics. Unlike any

other literature in this context, we take account of the existence of a newly established

market in salmon futures, which determines risk premia and other relevant variables,

that influence the fish farmer in his decision. We consider the cases of single and

infinite rotations. The value function of the harvesting problem determined in our

arbitrage free setup constitutes the fair values of lease and ownership of the fish farm

when correctly accounting for price risk. The data set used for this analysis contains a

large set of futures contracts with different maturities traded at the Fish Pool market

between 12/06/2006 and 22/03/2012. We assess the optimal strategy, harvesting time

and value against two alternative setups. The first alternative involves simple strategies

which lack managerial flexibility, the second alternative allows for managerial flexibility

and risk aversion as modeled by a constant relative risk aversion utility function, but

without access to the salmon futures market. In both cases, the loss in project value
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can be very significant, and in the second case is only negligible for extremely low levels

of risk aversion. In consequence, for a risk averse fish farmer, the presence of a salmon

futures market as well as managerial flexibility are highly important.

Keywords: Futures, Commodities, Aquaculture, Fisheries Economics, Renewable

Resources, Real Option, Risk Management
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4.1 Introduction

In this chapter we discuss how information reflected in the prices of contracts traded

at a market such a Fish Pool can be used to compute fair (i.e. arbitrage free) prices

for lease and ownership of fish farms. One of the most crucial elements in this pro-

cess is to correctly account for risk premia persisting in the stochastically fluctuating

salmon spot price and how these affect the harvesting decision of salmon farmers. The

value function attached to the harvesting problem, obtained within a generally arbi-

trage free setting, will then provide the fair value of the salmon farm, either in terms

of lease, when single rotation is considered, or in terms of ownership, when infinite

rotation is considered. More specifically we are using the Schwartz (1997) two-factor

approach to model the stochastic dynamics of the spot price. This approach features

a stochastic convenience yield and is considered to be a benchmark in the pricing of

commodity futures. It generally provides a good fit to various shapes of the forward

curve corresponding to the associated futures prices and can realistically describe clas-

sical conditions such as market backwardation or contango.1

The salmon farming component of our model is constructed along the line of the

classical models discussed in Cacho (1997), Yu and Leung (2006), Guttormsen (2008),

Heaps (1995), Bjørndal (1988) and Arnason (1992) but with the added complexity

of price uncertainty. Price uncertainty and the effect on harvesting behavior in the

salmon context has been discussed in Forsberg and Guttormsen (2006), but in a very

simplistic framework, one which is not able to realistically account for market data,

such as provided by the Fish Pool market. The latter is also too disconnected from the

existing financial literature on asset pricing. In contrast to this, our article is strongly

linked to the Schwartz (1997) framework, which is considered to be a benchmark for

commodity futures pricing. We estimate the parameters in our model on the basis of

1Solibakke (2012) presents an approach using stochastic volatility to model the Fish Pool market.
However, only front months contracts are considered and the term structure, which can only be
obtained from contracts with longer maturities, is not accounted for. In fact, it is well known that
stochastic volatility alone cannot produce realistic term structures. While Solibakke (2012) makes
excellent contributions to the understanding of the dynamics of short term contracts at the Fish Pool
market, our analysis, which looks at the valuation of lease and ownership of fish farms, looks further
ahead into the future and requires information from contracts with longer maturities and the forward
curves in particular. We recognize that stochastic volatility on top of stochastic convenience yield
would be a desirable feature, but this would lead to a model too complex to handle efficiently.
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an extensive data-set obtained from the Fish Pool market covering the period from

12/06/2006 until 22/03/2012. Then, by looking at the optimal stopping problem of

an individual fish farmer, we use real option theory to determine the monetary values

for lease and ownership for a model fish farm. A related approach has been used to

price forestry resources by Chen, Insley, and Wirjanto (2011) based on lumber futures

traded on the Chicago Mercantile Exchange. However these authors use a simplifica-

tion of the Schwartz (1997) two-factor model, the so called ”long-term model”, which

only features one stochastic state variable (a combination of spot price and stochastic

convenience yield). This model leads to good approximations of the results that would

be produced by the actual two-factor model if rotation periods are sufficiently long. In

reality the rotation periods and harvesting cycles in salmon farming are however signif-

icantly shorter than for forestry resources, which is why we used the actual two-factor

model from Schwartz (1997). We solve this more complex problem by appropriately ad-

justing the Longstaff and Schwartz (2001) least squares Monte Carlo approach, rather

than using the long term approximation.

The existing literature on the economics of salmon farming and aquaculture can

broadly be classified into two categories. The first category focuses on models, where

salmon prices are assumed to be deterministic. Representative examples are Bjørndal

(1988), Arnason (1992), Cacho (1997) who also provides a good survey about general

work that falls in this category, Yu and Leung (2006) as well as Guttormsen (2008).

Some of these outputs emphasize additional important issues such as optimal feeding

schedules or partial harvesting plans. The second category involves models where prices

are assumed to follow a stochastic process. Forsberg and Guttormsen (2006) present

a simplistic framework in discrete time, where the price process is specified without

reflection on actual market prices. The harvesting decision is made on the basis of

the agents subjective assessment on the distribution of prices without accounting for

risk aversion. More sophisticated models have been developed in the related context of

forestry management. Insley (2002) and Insley and Rollins (2003) present continuous

time models, with general stochastic price dynamics, emphasizing the effect of mean
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reversion.2 Here, the specification of the dynamic model is informed by historical data

on timber prices (no derivatives). The harvesting decision is then based on the expected

profits under the empirical distribution of prices. This approach ignores relevant risk

premia that reflect the risk aversion of a representative agent. This shortcoming has

been corrected in Chen et al. (2011) to which we will refer further below. In general,

while adding the important feature of price uncertainty, the literature in the second

category is still too disconnected from the existing financial literature on asset pric-

ing. In contrast to this literature, our article is strongly linked to the Schwartz (1997)

framework, which is considered to be a benchmark for commodity futures pricing. We

estimate the parameters in our model on the basis of an extensive data-set of futures

prices obtained from the Fish Pool market, covering the period from 12/06/2006 until

22/03/2012. Futures prices, as opposed to spot prices, allow us to determine the market

measure that is used to price contingent claims. They are also far more abundant, spot

prices are often only published irregularly and infrequently. By looking at the optimal

stopping problem of an individual fish farmer, we then use real option theory to deter-

mine the monetary values for lease and ownership for a model fish farm. This analysis

is undertaken under the market measure and hence reflects relevant risk premia and

the risk aversion of a representative agent who is able to hedge risk exposure through

salmon futures.3 A related approach has been used to price forestry resources by Chen

et al. (2011) based on lumber futures traded on the Chicago Mercantile Exchange.

However these authors use a simplification of the Schwartz (1997) two-factor model,

the so called “long-term model”, which only features one stochastic state variable (a

combination of spot price and stochastic convenience yield). This model leads to good

approximations of the results that would be produced by the actual two-factor model

if rotation periods are sufficiently long. In reality the rotation periods and harvesting

2The models presented in Insley (2002) and Insley and Rollins (2003) are single-factor models and
hence feature significantly reduced mathematical complexity as compared to the model discussed in
our article.

3This is the only way to price the fish farm in a market consistent way, so as to not introduce
arbitrage. Application of the CAPM to price the fish farm is problematic from a number of aspects.
As Dusak (1973), Carter, Rausser, and Schmitz (1983) and Baxter, Conine, and Tamarkin (1985)
highlight, zero net-supply of futures contract (there is a long position for every short position) make
it difficult to account for these assets in the market portfolio. Additionally, as Ewald and Salehi
(2015) have demonstrated, correlation from returns in futures position with the returns of the market
portfolio is close to zero. Further note that Bessembinder (1992) as well as Xu and Malkiel (2004)
confirmed that idiosyncratic risk is priced in agricultural futures markets.

106



Chapter 4. Valuation of Fish Farm 4.1. Introduction

cycles in salmon farming are however significantly shorter than for forestry resources,

which is why we used the actual two-factor model from Schwartz (1997). We solve this

more complex problem by appropriately adjusting the Longstaff and Schwartz (2001)

least squares Monte Carlo approach, rather than using the long term approximation.

The methodology presented is applied to determine value of lease and ownership of

a model fish farm. It is important to emphasize that this is for illustrative purposes,

as some of the relevant costs are implicit or omitted. Our analysis has been guided

by a number of practitioners from salmon farming businesses in Norway and Scotland

and we would like to thank those involved for their contributions. Real option the-

ory is applied in aquaculture management, but the financial models currently used do

not seem to go beyond Black (1976), which is obtained from our set-up by fixing the

convenience yield to a constant level. To further investigate the value of managerial

flexibility, we assessed our harvesting strategy against simple ones, taking a similar line

as in Mcdonald (2000). We show that our harvesting strategy adds approximately an

extra 10% to the farm’s value.

Finally, but perhaps most importantly, we look at the impact that the existence of

a salmon futures market has on the harvesting decision of an individual fish farmer,

depending on the level of risk aversion that this fish farmer exhibits. In order to do

this, we assume that the fish farmer’s preferences are modeled by a constant relative

risk aversion (CRRA) utility function and that the fish farmer does not have access to

the salmon futures market. We observe that the loss due to no access to the salmon

futures market is only negligible for extremely low levels of risk aversion, but can be

very substantial (more than 10%) for reasonable levels of risk aversion. We further

observe that the average harvesting time is decreasing with the level of risk aversion,

but can be higher or lower without access to the salmon futures market than it is with

access. As such our conclusion is that the salmon futures market provides a highly

valuable service for risk averse fish farmers. These results are also relevant and re-

lated to literature in the context of real options under risk aversion, which includes

Hugonnier and Morellec (2007), Henderson (2007) and Ewald and Yang (2008).
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The rest of the chapter is structured as follows. In the next section we will briefly

review the Schwartz (1997) two-factor approach, while in the following section we

summarize the results of our empirical estimation of the model. The optimal harvesting

and rotation problem of an individual fish farmer and in consequence the valuation for

lease and ownership of a model fish farm are discussed in detail in the penultimate

section. The final section contains our main conclusions.
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4.2 The Schwartz (1997) Two-Factor Model

Although we have introduced the Schwartz (1997) multifactor framework in Chapter

2, it is worthwhile to have a review of the two-factor model here. Let us denote with

P (t) the salmon spot price at time t. This can be identified with the Fish Pool Index

against which future contracts are settled at the Fish Pool market. In the Schwartz

(1997) two-factor framework the dynamics of P (t) is given by

dP (t) = (µ− δ(t))P (t)dt+ σ1P (t)dZ1(t) (4.1)

dδ(t) = κ(α− δ(t))dt+ σ2dZ2(t), (4.2)

with constants µ, κ, α, σ1 and σ2 under the real world probability P. The two Brownian

motions Z1(t) and Z2(t) are assumed to be correlated, i.e.

dZ1(t)dZ2(t) = ρdt. (4.3)

The process δ(t) represents the stochastic convenience yield and can be recognized as

a mean reverting Ornstein Uhlenbeck process, where α represents the mean reversion

level and κ > 0 the mean reversion speed. It reflects the benefits and costs that an

agent receives when holding the salmon, such as liquidity and storage/maintenance

costs. The price dynamics (4.1) has an implicit mean reversion feature. If ρ > 0, then

the instantaneous correlation between P (t) and δ(t) is positive. Hence P (t) is likely

to be large when δ(t) is large and in this case δ(t) is likely to be larger than µ. The

drift term in (4.1) will then push P (t) downwards. The opposite happens if P (t) is

small, pushing P (t) upwards. If in fact one chooses δ(t) = κ ln(P (t)), one obtains the

dynamics of a geometric Ornstein-Uhlenbeck process in (4.1), and δ(t) defined in this

way satisfies (4.2) with ρ = 1. In this case we obtain the so called Schwartz (1997)

one-factor model.

A forward contract in this context is an agreement established at a time s < T to

deliver or receive the salmon at time T for a price K, which is specified at time s. In
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financial terms, the payoff at time of maturity T of such a forward contract is

H = P (T )−K. (4.4)

We assume here and in the following that the interest rate r is constant. The value K

that makes this contract have a value of zero under a no-arbitrage assumption is then

given by

FP (s, T ) = EQ (P (T )|Fs) . (4.5)

This is called the forward price at time s. The symbol Fs denotes the information

available at time s and we denote in the following with F = (Fs) the associated filtration

which represents the information flow.4 The expectation in (4.5) is taken with respect

to the pricing measure Q, which takes into account a market price of convenience yield

risk λ, i.e.

dP (t) = (r − δ(t))P (t)dt+ σ1P (t)dZ̃1(t) (4.6)

dδ(t) = (κ(α− δ(t))− λ)dt+ σ2dZ̃2(t), (4.7)

with Z̃1(t) and Z̃2(t) Brownian motions under Q and dZ̃1(t)dZ̃2(t) = ρdt. We assume

here and in the following that the interest rate is constant and equal to r. In this case,

we do not need to distinguish between forwards and futures.5

For convenience, we can always assume that current time is normalized to 0 and

that the time of maturity T is relative to this, hence the same as the time to ma-

turity. Since our model is Markovian, we can then denote the futures price in (4.5)

as F (P, δ, T ) depending on current spot price, level of convenience yield and time-to-

maturity T . With this notation, Schwartz (1997) refers to Jamshidian and Fein (1990)

4More precisely, F = (Fs) denotes the augmented and completed filtration generated by the Brow-
nian motions Z1(s) and Z2(s).

5The difference between futures and forwards is that the former are exchange traded, while the
latter are mostly traded over the counter (OTC). The exchange usually requires the agent to set up
a margin account, the amount held reflecting price movements in the market, protecting buyer and
seller from possible default of the other party. The mechanism of the margin account can in principle
affect the futures price, but under the assumption of constant rates, it is well known that both futures
and forward price coincide.
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and Bjerksund (1991) for an explicit expression for (4.5):

F (P, δ, T ) = P · exp

(
−δ ·

(
1− e−κT

κ

)
+ A(T )

)
(4.8)

A(T ) =

(
r − α +

λ

κ
+

1

2

σ2
2

κ2
− σ1σ2ρ

κ

)
T +

1

4
σ2

2

(
1− e−2κT

κ3

)
(4.9)

+

(
ακ− λ+ σ1σ2ρ−

σ2
2

κ

)(
1− e−κT

κ2

)
.

Note, that the futures price (4.8) has a log-normal distribution, which makes the an-

alytical pricing of options in this framework possible. On the other hand note that

at least one of the state variables, the convenience yield δ(t) is unobservable. In fact

Schwartz (1997) assumes in general that both the commodity price P (t) and the con-

venience yield δ(t) are unobservable, and only the future prices (4.8) are observable.

In order to estimate the model, Schwartz (1997) then applies Kalman filter techniques.
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4.3 Data and Empirical Estimates

Our data set consists of 1496 daily observations of futures prices on Fish Pool ASA

from 12/06/2006 to 22/03/2012. For the whole sample period, complete data on the

first 29 futures contracts sorted by different maturities are available. We use a similar

notation as in Schwartz (1997) and denote with F1 the contract closest to maturity

(with average maturity of 0.040 year) counting up to F29 which represents the contract

farthest to maturity (with average maturity of 2.382 years).6 Despite of dividing the

whole sample into a number of sub-panels in Chapter 2, we use the whole sample data

to do estimation. Contracts in Panel A, Panel B, Panel C and Panel D are chosen as

proxies for short-term, medium-term, long-term and mixed-term futures contracts re-

spectively.7 In each panel, five contracts (i.e., N=5) are used for the estimation. More

precisely, Panel A contains F1, F3, F5, F7 and F9; Panel B contains F12, F14, F16,

F18, F20; Panel C contains F24, F25, F26, F28 and F29 and Panel D contains F1,

F7, F14, F20, F25. Note that Panel D is a combination of two short-term contracts,

two medium-term contracts and one long-term contract. Table 4.1 describes the data

features.8

In this article we use an approach proposed by Schwartz (1997), which is based on

Kalman filter, to estimate the parameters in the model. The estimates are shown in

Table 4.2, and the root-mean-square deviation (RMSE) and the mean-absolute error

(MAE) of each panel are shown in Table 4.3. The risk-free rate r (3.03%) is chosen as

the average Norwegian interest rate over the sample period. It can be observed that

for each panel, all coefficients are significant at the 1% level; the correlation coefficient

ρ is large; the speed of mean-reversion of the convenience yield κ, the expected re-

turn on the spot commodity µ, the mean-level of convenience yield α and the market

6Contracts expire at the end of each months and over the course of the month time-to-maturity
decreases before rollover at the end of the month. F1 is a contract with a notional one month maturity,
but because of the time-to-maturity decreasing over the month, the average maturity is just about
half a month, which is 0.040 year. In the same way, F2 is a contract which has an average maturity
of one and a half month and so on.

7The Schwartz (1997) model is able to capture a variety of shapes for the forward curves, but not
all. Different time horizons and combinations of contracts in the different panel emphasize different
parts of the forward curve. The nature and in particular the time horizon of the problem motivate
the choice of a specific panel.

8Panel D is a combination of contracts from the other panels and is therefore not displayed in
Table 4.1.
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Table 4.1. Contracts Features, 12/06/2006 - 22/03/2012

Contract Mean Price (Standard Deviation) Mean Maturity (Standard Deviation)

Panel A

F1 30.55 (6.14) NOK 0.040 (0.024) year

F3 30.08 (5.42) 0.207 (0.024)

F5 29.71 (4.92) 0.374 (0.024)

F7 29.33 (4.59) 0.542 (0.024)

F9 28.97 (4.29) 0.709 (0.024)

Panel B

F12 28.71 (4.03) NOK 0.960 (0.024) years

F14 28.45 (3.81) 1.127 (0.024)

F16 28.23 (3.51) 1.295 (0.024)

F18 28.15 (3.40) 1.462 (0.024)

F20 28.07 (3.29) 1.629 (0.024)

Panel C

F24 27.67 (2.88) NOK 1.964 (0.024) years

F25 27.59 (2.77) 2.047 (0.024)

F26 27.53 (2.68) 2.131 (0.024)

F28 27.47 (2.56) 2.299 (0.025)

F29 27.42 (2.49) 2.382 (0.025)
Note: We use a similar notation as in Schwartz (1997) and denote with F1 the contract closest to maturity counting up to F29 which
represents the contract farthest to maturity.
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price of convenience yield risk λ are all positive and reasonable. The volatility of the

spot price σ1 is relatively stable compared to the volatility of the convenience yield σ2.

Besides, it is also worth to note that the expected return on the spot commodity µ

increases while the speed of mean-reversion κ decreases as the term of the contracts

increases. The parameters obtained from Panel D seem to reflect and moderate the

corresponding parameters from Panels A, B and C. This is intuitive as Panel D is

a mixture of contracts from these panels. According to Table 4.3, the estimates are

generally good. In addition we have assessed the parameter estimates against possible

seasonal effects and found that seasonality only marginally affects the fish farm valua-

tion problem discussed in the later sections. These results are available in Appendix A.

Table 4.2. Estimation Results for Whole Sample, Avg. Rate 3.03%, 12/06/2006-
22/03/2012

Parameter

Panel A Panel B Panel C Panel D

F1, F3, F5, F7, F9 F12, F14, F16, F18, F20 F24, F25, F26, F28, F29 F1, F7, F14, F20, F25

(Short Term) (Medium Term) (Long Term) (Mixed Term)

µ 0.364 (0.102)*** 0.692 (0.078)*** 0.818 (0.136)*** 0.520 (0.108)***

κ 4.342 (0.110)*** 1.092 (0.058)*** 0.495 (0.045)*** 1.664 (0.054)***

α 0.493 (0.126)*** 1.034 (0.117)*** 1.286 (0.178)*** 0.460 (0.143)***

σ1 0.236 (0.009)*** 0.158 (0.001)*** 0.219 (0.003)*** 0.214 (0.011)***

σ2 1.270 (0.062)*** 0.221 (0.006)*** 0.163 (0.008)*** 0.448 (0.026)***

ρ 0.892 (0.011)*** 0.803 (0.014)*** 0.921 (0.005)*** 0.806 (0.029)***

λ 1.799 (0.554)*** 1.131 (0.172)*** 0.630 (0.132)*** 0.690 (0.230)***

Log-Likelihood -17344.3 -22184.1 -24116.7 -15995
Note: Standard errors in parentheses. [***] Significant at 1% level; [**] Significant at 5% level; [*] Significant at 10% level. µ is the
expected return on the spot commodity; κ is the speed of mean-reversion of the convenience yield; α is the mean level of the convenience
yield; σ1 is the volatility of the spot price; σ2 is the volatility of the convenience yield; ρ is the correlation coefficient of spot price and
convenience yield; λ is the market price of the convenience yield risk.

Figure 4.1 below displays the term structure (real and model generated) for Panel

A, where the left part shows the actual term structures and the right part shows the

model generated term structures, showing that both contango and backwardation are

present in the market at different times. Besides, Figure 4.2 gives a view of the term

structures on one single day. Term structures for Panel B, Panel C and Panel D

are included in Appendix B. In general, the model makes a good prediction for the

short-term panel (filtered spot is near closest to maturity future and model generated

forward curves match the shape of the actual forward curves) but finds it more difficult

to capture the shapes of the forward curves corresponding to longer-term panels, where

the actual term structure appears to be rather unconventional, see Figure A.5 - Figure
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Table 4.3. RMSE and MAE of Log Prices: Salmon, 12/06/2006-22/03/2012

Panel A

F1 F3 F5 F7 F9 ALL

RMSE 0.0177 0.0269 0.0173 0.0140 0.0228 0.0203

MAE 0.0131 0.0208 0.0125 0.0098 0.0168 0.0146

Panel B

F12 F14 F16 F18 F20 ALL

RMSE 0.0097 0.0128 0.0116 0.0088 0.0094 0.0106

MAE 0.0072 0.0088 0.0078 0.0059 0.0064 0.0072

Panel C

F24 F25 F26 F28 F29 ALL

RMSE 0.0085 0.0085 0.0090 0.0061 0.0076 0.0080

MAE 0.0040 0.0035 0.0043 0.0033 0.0039 0.0038

Panel D

F1 F7 F14 F20 F25 ALL

RMSE 0.0198 0.0350 0.0220 0.0152 0.0265 0.0246

MAE 0.0150 0.0280 0.0158 0.0105 0.0167 0.0172
Note: The root-mean-square error (RMSE) and mean-absolute error (MAE) are used to evaluate the model fit.
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A.7 in Appendix B.9 A more detailed analysis of these data, which also includes an

implementation of the Schwartz three-factor model, featuring a stochastic interest rate,

is presented in Chapter 2.

Figure 4.1. Term structures for Panel A: actual forward curves on the left; model
generated forward curves on the right

Note: Each colored curve is a static picture of futures prices (y-axis) against contract maturities (x-
axis), which is analogous to a plot of the term structure of interest rates. On the left side of the figure,
the solid line represents the price of the closest-to-maturity futures contract, i.e., F1 in this case;
while the dashed line consists of the actual prices of other futures contracts with different maturities
in this panel. On the right side of the figure, the solid line is the filtered spot price obtained through
the estimation procedure; while the dashed line consists of the estimated futures prices given by the
pricing formula.

9The slightly odd looking actual term structure for longer dated salmon futures contracts is likely
to be caused by the rather low trading volume of these contracts.
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Figure 4.2. Term structure on 30/07/2007: actual forward curve on the left;
model generated forward curve on the right

Note: This figure shows the term structure on a specific day. Each line corresponds to one colored
line in Figure 4.1 on the same side. The observed term structure of salmon prices is on the left; while
the estimated term structure is on the right. F1 - F9 denote the actual futures prices with different
maturities on 30/07/2007. Ŝ is the filtered spot price on that day and F̂3 - F̂9 represent the estimated
futures prices.
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4.4 Optimal Harvesting Decision for an individual

Fish Farmer and Valuation of the Fish Farm

In this section we discuss the problem of optimal fish farming in the context of the

previous sections. We consider a model fish farm, whose manager can decide when to

harvest the fish. In this context and in the following we use the word Manager and

Fish Farmer synonymously. Both, the case of a single rotation as well as the case of

sequential harvesting (infinite number of rotations), will be investigated. We assume

that the manager of the fish farm acts rationally and chooses the harvesting time(s)

in order to maximize benefits. The so determined value corresponds to the value of a

lease (single rotation) respectively ownership (infinite number of rotations) of the fish

farm. The methodology applied in this section is usually referred to as the real option

approach and shares similarities with the valuation of financial option type derivatives,

specifically those of American type, see Dixit and Pindyck (1994) for an overview.

Generally speaking, the fish farmer faces two major uncertainties, i.e., biological

and economic uncertainties, which are generated from the stochastic growth and the

highly volatile price of fish. Essentially the fish farmer’s problem at each point in time

is to decide whether it is better to postpone harvest, let the biomass in the pond grow

and hope for beneficial movements in the salmon spot price while paying the costs for

feeding and maintenance, or harvest the fish and cash in the revenue from selling on

the spot market while paying a one time cost for harvesting. In the case of an infinite

number of rotations, the salmon farmer will after harvest be able to start a new har-

vesting cycle.

In his decision whether to harvest now or postpone harvest, the fish farmer weighs

up current benefits against expected future benefits. In the absence of the futures

market discussed in the earlier sections, this expectation about future benefits would

be based on the fish farmer’s subjective beliefs, under which the price dynamics and

convenience yield follow the dynamics (4.1) and (4.2). This is the standard approach

taken in the aquaculture literature. However, the presence of the salmon futures allow
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the fish farmer to efficiently hegde the idiosyncratic risk in the salmon spot price.10

This has the effect, that the rational decision making process of the salmon farmer has

to be based on the beliefs expressed by the measure Q which is used for pricing the

salmon future contracts and which has been introduced previously. In fact, only by

following this approach, risk premia are correctly accounted for. The fish farmer fol-

lows a harvesting strategy which maximizes the financial value of the fish farm, which

is an appropriate objective in the corporate setting that fish farms operate nowadays

in the real world. This is in line with Schwartz (1997) for crude oil exploration, Chen

et al. (2011) for lumber and many other studies.

The model discussed in this article is more complex than most of the models consid-

ered in the existing fish farming and aquaculture literature. Next to the two stochastic

state variables, spot price and convenience yield, which we introduced in the previ-

ous sections, we now include a third state variable into our model which represents

the biomass. For simplicity we assume that the average weight w(t) of one individual

fish during the harvesting cycle follows a deterministic dynamics represented by a von

Bertalanffy’s growth function, i.e.

w(t) = w∞
(
a− be−ct

)3
. (4.10)

Here w∞ is the asymptotic weight. This growth function has been widely applied in

the aquaculture literature. We assume that the total number of fish n(t) at the fish

farm unit during the harvesting cycle follows the dynamics

dn(t) = −m(t) · n(t)dt, (4.11)

where m(t) denotes the mortality rate.11 Note that salmon does not reproduce in the

10Note that the fish farmer can use an appropriate number of futures contracts to eliminate entirely
the risk attached to selling a fixed quantity at a pre-determined time in the future. However in the
optimal stopping context discussed here, the fish farmer does not know in advance the time when
he will harvest nor the quantity. The assumption here is that the fish farmer could run a dynamic
portfolio of futures contract to hedge the idiosyncratic risk.

11At this point we may well assume that the mortlity rate m(t) is stochastic. In fact this is assumed
in Ewald, Nawar, Ouyang, and Siu (2016) and it is shown there how a stochastic mortality rate feeds
into the stochastic convenience yield, as it adds to the the cost of storage. In the examples discussed
later we assume for simplicity that the mortality rate is constant deterministic.
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pens, and therefore the number of salmon in each pen has to decrease over time. The

total biomass at the fish farm unit is then given as

X(t) = n(t)w(t). (4.12)

4.4.1 Single-Rotation Fish Farming

Let us first consider the case of a single rotation. In this case the manager earns revenue

from operating the fish farm but returns the fish farm to its owner when one harvesting

cycle has been completed. The value determined in that way will correspond to the

lease over the period of one harvesting cycle. We assume that to begin with, the fish

farm is equipped with a fixed population of smolt12 and hence initial release costs will

not be explicitly accounted for in the single rotation problem. At the time of harvest,

the fish farmer will make a profit of P (t)X(t)−CH(t), where P (t)X(t) constitutes the

revenue and CH(t) the harvesting costs. This potential profit needs to be evaluated

against the option to defer harvest to a later time, and in the mean time pay for certain

costs, e.g. feeding the fish. These costs are denoted as CF (t). The optimal harvesting

time is the stopping time τ , which is the solution of

max
τ

EQ

(
e−rτ (P (τ)X(τ)− CH(τ))−

∫ τ

0

e−rtCF (t)dt

)
. (4.13)

It is not possible to obtain analytic solutions for an optimal stopping problem of such

complexity. For this reason we revert to a numerical approach pioneered by Longstaff

and Schwartz (2001) as well as Cortazar, Gravet, and Urzua (2008). This approach is

widely known as Longstaff-Schwartz or Least Square Monte Carlo approach.

Longstaff-Schwartz Approach

Following the Longstaff-Schwartz approach we proceed in steps as follows:

Step 1. Path Simulation

A number M of simulated paths over the time horizon T with time-discretization

12Infant salmon is commonly referred to as smolt.
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∆t = T
N−1

for the two-factor model presented in the second section are obtained by

discretization of (4.6) and (4.7):

Pm(tn+1) = Pm(tn) + (r − δm(tn))Pm(tn)∆t+ σ1Pm(tn)∆Z̃1(tn) (4.14)

δm(tn+1) = δm(tn) + (κ(α− δm(tn))− λ)∆t+ σ2∆Z̃2(tn) (4.15)

with

Pm(t0) = P0,

δm(t0) = δ0,

∆Z̃1(tn) =
√

∆tε1(tn),

∆Z̃2(tn) = ρ∆Z̃1(tn) +
√

1− ρ2
√

∆tε2(tn),

where P0 and δ0 denote the initial values, ε1(tn) ∼ N (0, 1), ε2(tn) ∼ N (0, 1), m =

1, 2, . . . ,M indicates the number of the path that is being generated and n = 0, 1, . . . , (N-1).

Step 2. Valuation Procedure

Similar as in the valuation and exercising of an American option, the fish farmer

makes a decision by comparing the immediate harvesting value (VH ) with the expected

continuation value (VC ) at each point in time. The harvesting value VH originates

from sale revenue minus the harvesting cost (CH ) while VC accounts for all possible

discounted expected future rewards attached to waiting as well as costs for feeding

(CF ). Suppose the fish farmer makes decisions at K discrete points in time 0 < t1 ≤

t2 ≤ t3 · · · ≤ tK = T. Let xtn = [Ptn , δtn ]′ denote the two combined stochastic state

variables and as before Xtn the biomass of fish based at the farm, while the σ-algebra

Ftn represents the information available at time tn.13 Then the optimal stopping time

can be obtained from solving the following Bellman equation:

V (tn, xtn) = max{PtnXtn − CHtn , (4.16)

−CFtn∆t+ e−r∆tEQ[V (tn+1, xtn+1)|Ftn ]}
13In the time discretized setup, we indicate time dependence via sub-indices, i.e. Ptn = P (tn),

which is common in the literature.
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where V (t, x) denotes the value function of the problem at time t and state x = [P, δ]′.14

Expressing the harvesting value VH and the continuation value VC as

V H(tn, xtn) = PtnXtn − CHtn (4.17)

V C(tn, xtn) = −CFtn∆t+ e−r∆tEQ[V (tn+1, xtn+1)|Ftn ] (4.18)

the procedure of determining the optimal harvesting time τ proceeds backwards from

time T and harvesting occurs when

V C(τ, xτ ) < VH(τ, xτ ); (4.19)

i.e. when the harvesting value is greater than the continuation value.

Step 3. Estimation of the Continuation Value

At each point in time, the harvesting value VH can be readily obtained as a function

of the state variables. However the expected continuation valueVC is unknown, except

at the terminal time T when V CT = 0 as the real option has then expired and fish

must be harvested.

However, no-arbitrage pricing dictates that the value of the un-exercised option at

time tn is equal to the sum of the expected remaining future cash flows until expiration,

where the expectation is computed under the pricing measure Q. Let Ctk denote the

cash-flow generated at time tk, then the continuation value at time tn is given as

V C(tn, xtn) = EQ

[
τ∑

k=n+1

e−r(tk−tn)Ctk

∣∣∣∣∣Ftn
]
, (4.20)

with

Ctk =


−CFtk∆t+ V Htk if τ = tk

−CFtk∆t otherwise.

The Longstaff-Schwartz approach provides an easy and efficient way to estimate the

14Note that since the biomass X(t) is deterministic, it does not need to be accounted for explicitly
as a state variable, but will instead be reflected by the time dependency of the value function.
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expected continuation value. The unknown functional form of V C(tn, xtn) in (4.20) can

be expressed as a linear combination of a countable set of measurable basis functions

Lj. Assuming the first J <∞ basis functions are used, the continuation value can be

approximated as

V CJ(tn, xtn) =
J∑
j=0

ajLj(tn, xtn). (4.21)

In this article, we choose a class of quadratic functions for this purpose. As mentioned

earlier, state x = [P, δ]′. Let x1 and x2 denote the spot price (P ) and the convenience

yield (δ) respectively. The estimated continuation value at tn for M simulated paths

can then be calculated as,

V̂ Ctn = â1x1
2 + â2x2

2 + â3x1 + â4x2 + â5x1x2 + â6, (4.22)

where the estimated coefficients âj are obtained from regressing the discounted val-

ues of future cash flows introduced in (4.20), i.e.,
∑τ

k=n+1 e
−r(tk−tn)Ctk , onto the basis

functions for all simulated paths. Moreover Longstaff and Schwartz (2001) suggest that

it is more efficient to only use in-the-money paths in the estimation, as the exercise

decision is only relevant when the option is in the money. We follow this advice and

use only paths with positive harvesting value to run the regression.

Step 4. The Lease Value of the Fish Farm and Harvesting Policy

In the Longstaff-Schwartz approach, harvesting decisions along each path are decoded

in matrix form, where rows correspond to different simulated paths, and a 0 resp. 1 ma-

trix entry corresponds to continuation resp. harvesting. Once V̂ Ctn has been obtained,

it is compared to the immediate harvesting value V Htn for each in-the-money path. If

the immediate harvesting value is greater than the estimated continuation value, then

it is optimal to harvest at tn and all entries after tn along that path would be zero,

for the fish can only be harvested once. If the continuation value is greater than the

immediate harvesting value at tn, then it is better to wait and the corresponding entry

will be set to 0. The procedure starts at T −∆t and will be repeated backwards until

harvesting decisions at each time point along each path have been determined. More
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specifically, let Flagm(tn) denote the element in this decision matrix at time tn for the

m-th path, then

a) if V Hm(tn) > V̂ Cm(tn),


Flagm(tn) = 1

Flagm(ti) = 0 for tn < ti ≤ T

b) if V Hm(tn) ≤ V̂ Cm(tn), Flagm(tn) = 0.

The so obtained matrix is then complemented by adding the cost of feeding in each row

from left to right, i.e. for each path, up to the “1” entry and replacing the “1” entry

with the harvesting value. In this way, each row of the matrix represents the cash

flows according to the optimal harvesting decision and the corresponding simulated

path. We can then compute the real option value by discounting the realized cash-

flows along each path to t0, and taking the average over all paths. Furthermore, the

average harvesting time can be computed by averaging the harvesting times across all

simulated paths.

Results

We apply the Longstaff-Schwartz approach presented as above to the fish farming prob-

lem, using our estimated parameters for the two-factor model in Table 4.2 reflecting the

values of futures contracts traded at the fish pool market during the sample period. A

number of other parameters which are relevant to the fish farming process but can (and

should) not be inferred explicitly from the salmon futures contracts are listed in Table

4.4. These parameters include elements relevant to feeding costs, mortality and weight

function15 and have been obtained from Asche and Bjorndal (2011), pages 182 and

183. Plots of growth and biomass functions can be found in Appendix B. To calculate

the feeding cost, a conversion ratio is used to measure the relationship between feeding

quantity and growth/weight of the fish. We use the method of antithetic variates in

15The von Bertalanffy’s growth function is derived from the polynomial function provided in the
book via w(t) = w∞ (a− be−ct)3

, where w∞=6, a=1.113, b=1.097, c=1.43.
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order to improve the performance of the Longstaff-Schwartz method. In this article,

25, 000 paths and corresponding 25, 000 antithetic paths are simulated for 72 exercise

points over 3 years. In other words, we assume that the fish farmer can make a decision

about harvesting twice a month.

Table 4.4. Relevant Parameters for Fish Farming

Parameters Value

Mortality Rate 10%

Conversion Rate 1.1

Number of Recruits 10000

Time Horizon (years) 3

Asymptotic Weight (kg) 6

Variable Harvesting Cost per kg (NOK ) 3

Variable Feeding Cost per kg per year (NOK ) 7
Note: Parameters which are relevant to the fish farming process but can not be inferred explicitly from the
salmon futures contracts are obtained from Asche and Bjorndal (2011).

When should the fish farmer harvest? In the corresponding continuous time model

where harvesting can occur at every instantaneous point in time, the optimal har-

vesting time can be characterized as the first time when V C(t, xt) = V H(t, xt) with

xt = [Pt, δt]
′. This condition describes a two dimensional surface in the (t, P, δ) space,

or equivalently for each time t a one-dimensional boundary which splits the (P, δ) space

into two regions. In the first region it is optimal to postpone harvesting, while in the

second region it is optimal to harvest. This boundary changes over time. In the par-

tial differential equation formulation of the Bellman equation, the so called Hamilton-

Jacobi-Bellman equation, this corresponds to the so called free boundary. The original

work by Longstaff and Schwartz (2001) as well subsequent work is less conclusive as

to how to obtain such a boundary. While under sufficient regularity assumption, in

theory the free boundary is a smooth curve in the (P, δ) space which changes shape

over time, the time discretization as well as the Monte Carlo/regression element in the

Longstaff-Schwartz approach lead to a discrete set of combinations of (Pm(tn), δm(tn))

where harvesting occurs. These combinations are affected by various estimation and
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discretization errors. In this article the free boundary/exercise threshold is obtained

by non-linear least squares curve fitting for a class of functions, which we chose to be

of the form f(x) = axb + c. This has been carried out for all scenarios introduced pre-

viously. Figure 4.3 shows the result for Panel A while figures for Panel B, Panel C and

Panel D are included in Appendix B. Blue spots in the figure represent combinations

of P and δ where harvesting occurred. In consequence of the random nature of the

problem as well as discretization error, these points do not all lie on the single fitted

(thick red) line in the middle. For this reason we also present the boundaries of the

80% confidence intervals above and below the fitted line. These boundaries can also

be interpreted as more or less conservative exercise thresholds.16 The upward sloping

concave shape of the curves is characteristic and has been observed in Schwartz (1997)

(Table XX and page 970) as well as Chen et al. (2011) Figure 15. For smaller δ the

threshold price which triggers harvesting is lower than for larger δ. As Schwartz (1997)

page 970 explains, the intuition behind this is that when δ is low at current, because

of the mean reversion feature it is likely to be higher in the next period. This will

decrease the expected option value (which is decreasing in the convenience yield), and

a lower P at current will suffice to make the harvesting payoff larger than the expected

option value in the next period, which triggers harvesting. Further, from the dynamics

of P , if delta is expected to go up, the growth rate of P is expected to decrease, and

as the expected option value is also tied to the expected growth rate, this additionally

contributes to decreasing the expected option value and hence lowering the threshold.

Table 4.5 shows for each panel, the lease value of the fish farm over one harvesting

cycle and the average harvesting time, that is the average length of the harvesting cycle

under the optimal harvesting rule along the different trajectories in the simulation. It

can be observed that with the parameter settings obtained from the Fish Pool data as

well as Asche and Bjorndal (2011), the average harvesting times are around 2 years,

which is a realistic value. The lease values vary between 1.1142 million NOK (0.1186

million EUR) and 1.6467 million NOK (0.1752 million EUR ).17

16Alternative simple harvesting rules are discussed in a later section of this article.
17These are realistic values. A comparison with actual prices paid for the acquisition of fish farms

is however difficult for the reason that some of the data are confidential. In December 2014, Marine
Harvest acquired the assets of Acuinova, a former Chilean salmon farming company, for a total of 125
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(a)

(b)

Figure 4.3. Threshold for Panel A: (a) threshold at one time; (b) threshold at
different times

Note: S and cv denote spot price and convenience yield respectively. Blue spots in (a) represent com-
binations of S and cv where harvesting occurred at time point 45. The boundaries of 80% confidence
intervals above and below the fitted (thick red) line are also presented and can be interpreted as more
or less conservative exercise thresholds. Thresholds at time point 40, 45 and 50 are shown as red, blue
and black line accordingly in (b).
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Table 4.5. Lease Value of Fish Farm and Harvesting Time

Contracts Avg. Harvesting Time (year) Pond Value (NOK ) Pond Value (EUR)

PanelA 2.0715 1.5124e+06 1.6092e+5

PanelB 2.4043 1.2220e+06 1.3002e+5

PanelC 2.3550 1.1142e+06 1.1855e+5

PanelD 2.2347 1.6467e+06 1.7521e+5
Note: The table shows for each panel, the lease value of the fish farm over one harvesting cycle and the average harvesting time, that is the

average length of the harvesting cycle under the optimal harvesting rule along the different trajectories in the simulation. Exchange rate
used here is 1 NOK = 0.1064 EUR, http://www.xe.com/ [last access: 02/10/2015].

The impact of the level of mean reversion in the price process on the harvesting

decision in the forestry management context has been discussed in Insley (2002) and

Insley and Rollins (2003). Specifically, Insley (2002) demonstrates that in the context

of their one factor model, a lower level of mean reversion leads to later harvests. The

situation in our two factor model is slightly more complex, as the mean reversion is only

generated implicitly through the correlation between spot price and convenience yield,

as explained previously. An analogue case can be made on the following basis though.

By increasing the mean reversion speed κ in the convenience yield, the mean reversion

feature in the spot price will be diminished as the convenience yield will become more

and more like a constant convenience yield. In the extreme case, κ =∞, the spot price

will be a geometric Brownian motion which in average grows at the rate of µ−α, which

is negative for Panels A, B and C, but positive for Panel D. Panels A and D show a

significant larger estimate for κ than Panels B and C, hence the level of mean reversion

in prices is less for Panels A and D, than it is for Panels B and D. The corresponding

exercise boundaries in Figure 4.3 and Figure A.8 - Figure A.10 indicate that for the

same level of convenience yield harvesting occurs at lower prices in Panels A and D

than in Panels B and C. We may conclude from this that lower mean reversion in prices

leads to earlier harvesting at lower prices. This finding is also supported by Table 4.5,

which shows average harvesting times for the four different panels. The result appears

to be inverse to the result obtained in Insley (2002) however, this may be explained

million USD. Included in this deal are a hatchery, smolt facility, 36 seawater licenses and primary
and secondary processing facilities. The expected harvest volume of this unit lies above 15,000 metric
tons in 2015, according to Seafoodsource (2014). The relationship between Fish Pool salmon futures
and the share prices of Marine Harvest and The Scottish Salmon Company has been investigated in
Ewald and Salehi (2015).
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by the different sign in the asymptotic drift term, where in our case µ − α tends to

be negative, while in Insley (2002) and Insley and Rollins (2003) the drift term, at

least in the geometric Brownian motion case, is positive. Overall, an exact comparison

between the two models is very difficult as the mean reversion feature in our model is

far more complex and depending on the combination of a number of parameters.

4.4.2 Infinite-Rotation Fish Farming

We now consider the situation, when the fish farmer/manager initiates a new harvesting

cycle, each time the previous harvesting cycle has been completed. This means, that

at the time of harvest, the fish farmer not only receives revenue from selling the fish,

but in addition obtains the value of the fish farm in its initial state, i.e. harvestable

biomass zero, but with smolt released and current values for state variables Pt and

δt. In addition to the harvesting costs, costs for releasing new smolts into the empty

pen accrue at the end of the harvesting cycle. This enables the fish farmer to start a

new harvesting cycle, and this procedure continues ad infinitum. As such this problem

reflects ownership of the fish farm and its value will hence correspond to the value of

ownership. Intuitively, the prospect of starting a new harvesting cycle after completing

a previous harvesting cycle provides an incentive for the fish farmer to harvest earlier.

It also presents an additional value, i.e. ownership costs more than a lease. For this

reason we expect the average harvesting time to decrease and the value to increase.

This is confirmed by our technical analysis. Methodologically, this problem is more

difficult to solve than the single rotation problem as the value function will now also

appear in the harvesting value V H on the right hand side of the Bellman equation.18

To solve this problem we use a combination of the Longstaff-Schwartz approach with

value function iteration.

Analysis

All assumptions and methods adopted in the analysis of single rotation farming are

valid for the infinite rotation farming as well. Additionally, since harvesting allows

the farmer to start a new cycle, the harvesting value (VH ) consists of two parts: the

18It always appears in the continuation value V C.
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first part is attached to the harvesting itself, namely the sales revenue of fish minus

the harvesting cost; the second part is attached to releasing new salmon smolts, where

releasing costs (CR), feeding costs and all possible future rewards need to be considered.

The latter are implicitly known as the value of the fish farm, in its original state, but

under present state variables i.e. V0 = V (t0, Pt, δt).
19 We continue to use the notation

xtn = [Ptn , δtn ]′. To take account of this, the Bellman equation (4.16) needs to be

adjusted in the following way:

V (tn, xtn) = max {PtnXtn − CHtn − CRt0 + V0, (4.23)

−CFtn∆t+ e−r∆tEQ[V (tn+1, xtn+1)|Ftn ]
}
.

This equation takes into account that the smolt has to be fed in the periods after

release.

As indicated before, the algorithm used to solve equation (4.23) is an extension

of the algorithm used for the single rotation problem, which now however also entails

value function iteration. We proceed in steps as follows:

Step 1. Obtain the farm value V0
1 as an initial approximation with harvesting value

function V H(tn, xtn) = PtnXtn − CHtn − CRt0 .

Step 2. Decode the value function in matrix form, set domain and choose grid

points for price and convenience yield. If n prices and m convenience yield values are

selected, we obtain the n×m values for the matrix by running the Longstaff-Schwartz

algorithm as in the previous section with all combinations for price and convenience

yield.

Step 3. Obtain the updated farm value (as a matrix) V0
2 with V H(tn, xtn) =

PtnXtn − CHtn − CRt0 + V0
1.20

19The time t0 is just a reference time at which the biomass is in its initial state. It can be assumed
as t0 = 0 if convenient.

20In order to efficiently evaluate the value function on non-grid points, which arise in the Monte Carlo
part of the Longstaff-Schwartz approach, an interpolant for the data set that supports interpolation
within the grid is created in each iteration. In this article, the method of linear interpolation is
selected.
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Step 4. If the termination condition is satisfied, V0
2 would be chosen as the value

matrix. If not, we update the value matrix V0
3 with V H(tn, xtn) = PtnXtn − CHtn −

CRt0 +V0
2 and check whether the termination condition is met. We operate iteratively

until the termination condition is reached. The termination condition itself measures

the relative distance (in matrix norm) between two consecutive value matrices, i.e.

‖V k+1
0 −V k0 ‖
‖V k0 ‖

. The algorithm terminates if this value falls below a certain threshold.

Results

Once the value function V0 has been obtained, we can obtain other relevant results,

such as the average harvesting time and thresholds for the infinite rotation fish farm-

ing problem. In this part of the article, we consider Panel B over the whole sample

period 12/06/2006-22/03/2012 as an example to illustrate the results for the infinite

rotation case.21 We adopt the average 10-year Norwegian bond rate as the proxy of

infinite interest rate, i.e., 3.93%, during the sample period and estimates are shown in

Table 4.6. This rate suites the time-frame of the problem best. Nevertheless, to get

a sense about the robustness of our results, we have considered the other panels as

well as three appropriate sub-periods corresponding to three different regimes in the

Norwegian base rate. These results are summarized in Chapter 2.

For technical reasons (we rely on a finite set of grid points) we have to disqualify

paths in the Monte-Carlo part of the Longstaff-Schwartz method, which leave the grid

space. In our particular application we chose these limits to be Pt ∈ [10, 100] and

δt ∈ [−1.5, 1.5]. In theory, this presents an alteration of the Schwartz (1997) two-factor

model, however in reality, prices outside the grid space have not been observed since

the fish pool market has been created in 2006 and would in fact be highly questionable.

The same holds for the convenience yields. As such, we expect that this feature of our

analysis actually leads to better and more realistic results. Taking both accuracy and

21Panel B represents the medium-term contracts and covers an appropriate mix of maturities, suited
to the nature and time frame of the problem. Contracts in panel B are also among the most liquid
contracts and hence the price information obtained from these contracts is likely to be the most
reliable. Contracts with longer maturities than those present in panel B are far less liquid and hence
less reliable for our purpose.
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Table 4.6. Estimation Results for Panel B, Avg. Rate 3.93%, 12/06/2006-
22/03/2012

Parameter
Medium-term Contract

(F12, F14, F16, F18, F20)

µ 0.654 (0.103)***

κ 1.012 (0.096)***

α 1.135 (0.193)***

σ1 0.153 (0.002)***

σ2 0.206 (0.014)***

ρ 0.736 (0.037)***

λ 1.142 (0.293)***

Log-Likelihood -22101.70
Note: Standard errors in parentheses. [***] significant at 1% level; [**]

significant at 5% level; [*] significant at 10% level. µ is the expected
return on the spot commodity; κ is the speed of mean-reversion of the
convenience yield; α is the mean level of the convenience yield; σ1 is the
volatility of the spot price; σ2 is the volatility of the convenience yield; ρ
is the correlation coefficient of spot price and convenience yield; λ is the
market price of the convenience yield risk.

efficiency into consideration, 7 × 7 grid points are chosen, equidistant in each state

variable. The termination criterion reflects the average matrix norm (L1-norm) and

termination occurs when this norm falls below 1%. Overall, we observe good conver-

gence of our scheme.

Figure 4.4 below shows the plot of the value function V0 as a function of the two-state

variables P and δ. This function represents the value for ownership of the fish-farm. It

can be clearly observed that the convenience yield has a negative impact on the value

of the fish farm, while the salmon spot price obviously has a positive impact. The

former can be explained as follows: As discussed previously, ownership of the fish-farm

has similar characteristics as holding an option contract on the commodity, but not

the commodity itself. As the convenience yield benefits the commodity holder but not

the option holder, an increase in the convenience yield will decrease the value of the

fish-farm.22

22This can also be observed for options on dividend paying equity in the classical Black-Scholes
framework, where the continuously paid dividend replaces the convenience yield.
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Figure 4.4. Value of ownership of the fish farm for parameters obtained from
Panel B, 12/06/2006-22/03/2012

Note: The ownership value of the fish-farm V0 is expressed as a function of the two-state variables,
i.e., price and convenience yield. It can be clearly observed that the convenience yield has a negative
impact on the value of the fish farm, while the salmon spot price has a positive impact.

Figure 4.5 shows the thresholds (free boundary for harvesting) for the infinite rota-

tion problem. These have been obtained by appropriately adjusting the methods from

the previous section. Compared to single-rotation fish farming, the average harvesting

time in the infinite rotation fish farming problem reduces significantly from 2.4251 years

to 2.1396 years. As indicated earlier, this is expected, as the prospect of starting a new

harvesting cycle provides an incentive for earlier harvesting. The value for ownership

of the fish-farm based on the estimates obtained from panel B has been computed as

20.6410 million NOK (2.1962 million EUR) while the lease value is 1.2324 million

NOK (0.1311 million EUR). This value is about 17 times larger than the lease value,

which is realistic as well.23

23Note that with the computed average harvesting time of 2.1396 years in the infinite rotation case,
ownership entitles to roughly 23 harvesting cycles in 50 years, which considering discounting makes
this value seem realistic as well.
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(a)

(b)

Figure 4.5. Infinite rotation fish farming, threshold for Panel B: (a) threshold at
one time; (b) threshold at different times

Note: S and cv denote spot price and convenience yield respectively. Blue spots in (a) represent com-
binations of S and cv where harvesting occurred at time point 45. The boundaries of 80% confidence
intervals above and below the fitted (thick red) line are also presented and can be interpreted as more
or less conservative exercise thresholds. Thresholds at time point 40, 45 and 50 are shown as red, blue
and black line accordingly in (b).
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4.4.3 Is it worth it ? The value of managerial flexibility.

Mcdonald (2000) assessed in a general context optimal exercise rules obtained from a

real option approach against simple rules of thumbs, including exercise at an optimal

predetermined time. In this way he captured the value of managerial flexibility as well

as the usefulness of the real option approach. In this section, we do a similar comparison

within the context of the model presented here, which is of higher complexity than

the one considered in Mcdonald (2000). As such we assess the real option approach

discussed in the previous sections against a scenario where the manager sets a fixed

harvesting date at the beginning of the harvesting cycle, disregarding any information

updates over the harvesting cycle. The manager aims at setting this harvesting date

optimally. The valuation problem corresponding to this setup is similar to the valuation

of a a European option. Taking Panel A as an illustration, with P0 = 40.4 and δ0 = 0,

adopting the real option policy, the true lease value is computed as 1.5124 million NOK

(approx. 0.1609 million EUR). Table 4.7 shows the values, fractions of optimal value

covered and absolute difference between real option policy and fixed date strategies for

various harvesting dates. We apply the calculation to each panel, including the case

of infinite rotation, and find that these suboptimal policies can cover up to 90% of the

optimal value on average if the fixed harvesting date is set at about 2 years. While this

is substantial, it also means that following any of the suboptimal strategies, the fish

farm would voluntarily give up 10% of its value, when additional computational costs

attached to the real option approach are only marginally higher than those attached

to the fixed date strategies. As such we think, yes, the real option approach for the

valuation of fish farms is worth it.24

24Using different combination of initial values for price and convenience yield, i.e., P0 ∈ (35, 40.4, 45)
and δ0 ∈ (−0.5, 0, 0.5), in addition to Table 4.7, eight additional cases have been considered and the
results are presented in Appendix C. While absolute values such as the optimal value and subopti-
mal value do vary with different initial values, the fractions of value captured by the corresponding
suboptimal policies are relatively stable, with the highest values all occurring at the 2nd year.
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Table 4.7. Optimal Policy vs. Suboptimal Policy: Panel A with
(P0 = 40.4, δ0 = 0)

Fixed Harvesting Date Suboptimal Value NOK (EUR) Suboptimal Value/Optimal Value Optimal Value - Suboptimal Value NOK(EUR)

1.0 year 0.8931e+6 (0.9503e+5) 59.05% 6.1935e+5 (0.6590e+5)

1.5 years 1.2291e+6 (1.3078e+5) 81.27% 2.8333e+5 (0.3015e+5)

2.0 years 1.3172e+6 (1.4015e+5) 87.09% 1.9522e+5 (0.2077e+5)

2.5 years 1.2647e+6 (1.3456e+5) 83.62% 2.4773e+5 (0.2636e+5)

3.0 years 1.1511e+6 (1.2248e+5) 76.11% 3.6133e+5 (0.3845e+5)
Note: The suboptimal value is produced under the scenario where the manager sets a fixed harvesting date at the beginning of the
harvesting cycle, disregarding any information updates over the harvesting cycle; while the optimal value is obtained via the real option
policy, which is computed as 1.5124 million NOK (approx. 0.1609 million EUR) in this case. Exchange rate used here is 1 NOK =
0.1064 EUR, http://www.xe.com/ [last access: 02/10/2015].
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4.5 Risk Aversion: What is the Impact of Having

a Salmon Futures Market ?

As we indicated earlier, in the presence of a complete salmon futures market, the fish

farmer is able to efficiently hedge idiosyncratic risk in the salmon spot price. Individ-

ual risk preferences are aggregated in the market measure and its pricing kernel is in

fact determined by marginal utilities. The specific level of risk aversion of one partic-

ular fish farmer who uses salmon futures appropriately hence has no effect on this fish

farmer’s harvesting decision, the optimal harvesting time is independent of the level of

risk aversion. But what if the fish farmer does not use the futures market, or what if

there were no salmon futures market ? In this section, we assume that the fish farmer

does not have access to the salmon futures market and hence is unable to hedge price

risk. We further assume that the fish farmer is risk averse and that preferences are

characterized by a CRRA utility function U(x) = x1−γ

1−γ , where γ represents the level of

risk aversion.

Real options have been studied in the context of risk aversion with no or partial

spanning in Hugonnier and Morellec (2007), Henderson (2007) and Ewald and Yang

(2008). Hugonnier and Morellec (2007) assume that the project generates an instan-

taneous cash flow given by a geometric Brownian motion. They show that under the

assumption of CRRA, the investment threshold is increasing with the level of risk

aversion and the level of volatility. Investment is henceforth delayed and the difference

in project value between firm- and utility maximizing policies can reach up to 20%

for reasonable parameter values. A disadvantage of the the modelling framework in

Hugonnier and Morellec (2007) is that it cannot cope with negative cash flows, at least

for the CRRA case. Additionally, the assumption that instantaneous cash flows follow

a geometric Brownian motion is limiting, given that the presence of mean reversion

can significantly alter investment behavior. Henderson (2007) uses a different setup,

where the payoff of the investment project is given by a geometric Brownian motion

(which is similar to Hugonnier and Morellec (2007)), but utility is of exponential type.

In addition it is assumed that a partial spanning asset exist. However, the case of
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no spanning asset is included by setting the relevant correlation ρ = 0. In this setup

Henderson (2007) observes that increased volatility can in fact speed up investment

behavior. Extending the setup in Henderson (2007) and including a mean reversion

feature in the project’s payoff, Ewald and Yang (2008) in fact demonstrate that the in-

vestment threshold can be decreasing with the level of risk aversion (with and without

mean reversion). There is hence no clear indication as to how the level of risk aversion

would in general affect investment behavior.

Let us now assume that in the context of the single-rotation fish farming model

discussed earlier, the fish farmer’s preferences are given by a CRRA utility function

and that the fish farmer does not have access to the salmon futures market. To account

for negative cash flows prior to harvest, e.g. feeding costs, we assume that these are

made from bank loans which are redeemed at the time of harvest, when profits are

made. This is a necessary assumption as CRRA utility U(x) = x1−γ

1−γ is not defined

for negative values of x, but it is also a very realistic assumption. We only consider

the single rotation case. The previous analysis to obtain the optimal harvesting time

is then repeated, but under the real world measure (which reflects the fish farmer’s

subjective believes) and computing utilities for both harvesting and continuation value.

We perform this analysis for varying levels of risk aversion γ and observe that for all

panels the averaging harvesting time is decreasing with the level of risk aversion. Table

4.8 shows this for Panel D as an example. In this particular case the average harvesting

time ranges from 2.5232 years with γ = 0 to 1.1979 years with γ = 50. The average

harvesting time for the same panel with salmon futures is 2.2347 years (compare Table

4.5). Perhaps more important than the average harvesting time is the relative loss in

value, defined as in Hugonnier and Morellec (2007) as the relative difference in project

value between firm- and utility maximizing policies. Table 4.8 shows that the relative

loss in value can be significant, but crucially depends on the level of risk aversion. For

very low risk aversion γ ∈ [0, 1], the losses are only around 1.5%, but start to become

more noticeable at γ = 2.6 where losses exceed 5% and become very large for high level

of risk aversion at γ = 8, where they exceed 20% and reach a similar level as those

reported in Hugonnier and Morellec (2007). The corresponding results for Panels A,
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B and C are similar and contained in Appendix D. In consequence, the salmon futures

market provides a valuable service, in particular to those fish farmers which exhibit a

high degree of risk aversion.

Table 4.8. Lease Value of Fish Farm and Harvesting Time Under CRRA: Panel
D

γ Harvesting Time (years) Pond Value (million) Percentage Loss

0 2.5232 1.6199 NOK 0.1724 EUR 1.63%

0.1 2.5198 1.6207 0.1724 1.58%

0.3 2.5090 1.6220 0.1726 1.50%

0.5 2.4969 1.6224 0.1726 1.48%

0.9 2.4635 1.6208 0.1725 1.57%

1.1 2.4424 1.6179 0.1721 1.75%

2 2.3252 1.5885 0.1690 3.53%

5 2.0057 1.4510 0.1544 11.88%

8 1.7075 1.2558 0.1336 23.74%

18 1.5840 1.1675 0.1242 29.10%

33 1.4131 1.0538 0.1121 36.01%

50 1.1979 0.9559 0.1017 41.95%
Note: γ measures the level of risk aversion. Percentage Loss = relative difference in project value between firm- and utility

maximising policies, which reflects the percentage loss due to not having access to the futures market at different levels of risk
aversion. Exchange rate used here is 1 NOK = 0.1064 EUR, http://www.xe.com/ [last access: 02/10/2015].
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4.6 Conclusions

In this article we presented a methodological approach, which can be used to determine

the values of lease or ownership of a fish farm in a way which is consistent with market

data obtained from the fish pool market, a recently established exchange in Bergen

(Norway), where futures on fresh farmed salmon are traded. Our approach correctly

accounts for risk premia due to stochastically fluctuating prices. Specifically, we con-

sidered the optimal harvesting problem for a fish farmer in a model where the price

dynamics is determined by a Schwartz (1997) two-factor model. We looked at both

cases of single and infinite rotations. The arbitrage-free value of lease and ownership of

the fish farm have then been obtained from the value function of the harvesting prob-

lem with single and infinite rotation respectively. The data set used for this analysis

contains a large set of futures contracts with different maturities traded at the Fish

Pool market between 12/06/2006 and 22/03/2012. In the calibration of our model we

adopted the Kalman filter approach, while our numerical approach to solve the opti-

mal stopping problem embedded in the harvesting decision of the fish farmer made use

of the Least Square Monte Carlo and function iteration methods. We found this ap-

proach to be numerically stable and obtained very realistic results for a model fish farm.

We assessed the optimal strategy, harvesting time and value against the alternatives

where the fish farmer has either no managerial flexibility or no access to the salmon

futures market but exhibits risk aversion as modeled by a CRRA utility function. We

observed that in both cases, the loss in project value can be very significant, and in

the second case is only negligible for extremely low levels of risk aversion. As such

we have established that the presence of a salmon future market as well as managerial

flexibility are of high importance to risk-averse fish farmers.

Our approach is of practical interest to companies in the fish farming business and

can guide their decision process in the context of the acquisition of fish farm units.

There are a number of ways how this study can be extended. One way is the inclusion

of a stochastic mortality rate, possibly in a regime switching framework, where a high
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mortality regime corresponds to periods with disease outbreak such as fish lice or

salmon anemia. It would be very interesting to understand how markets price the risk

of disease outbreak and how this effects the valuation of fish farms. Stochastic growth

as well as stochastic feed costs would be other interesting lines of research to pursue.
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Appendix A:

Seasonality Model Estimation

Considering N = 2 as an example, i.e., γ1, γ∗1 , γ2 and γ∗2 are included in the model, by

using the sample data ranging from 12/06/2006 to 22/03/2012, we obtain the following

estimates as shown in Table A.1. Compared to Table 4.2 in the main article, estimates

obtained from Panel A, B and D are slightly modified but the figures produced, such

as term structures, are quite similar. The results obtained from the longer maturi-

ties contracts, Panel C, are rather poor. The reason for this is likely that on top of

lower liquidity of these contracts, over the long time that it takes until these contracts

mature, seasonal effects average out and become blurred in a way, that it negatively

effects the filter process. Therefore, we won’t include Panel C in the following analysis.

Table A.1. Estimation Results of Whole Sample with Seasonality Model, Avg.
Rate 3.03%, 12/06/2006-22/03/2012

Parameter

Panel A Panel B Panel C Panel D

F1, F3, F5, F7, F9 F12, F14, F16, F18, F20 F24, F25, F26, F28, F29 F1, F7, F14, F20, F25

(Short Term) (Medium Term) (Long Term) (Mixed Term)

µ 0.327 (0.076)*** 0.524 (0.068)*** 6.643 (0.847)*** 0.291 (0.087)***

κ 3.044 (0.129)*** 1.274 (0.077)*** 1.123 (0.095)*** 1.220 (0.036)***

α 1.438 (0.181)*** 0.563 (0.079)*** -0.065 (1.949) 0.634 (0.137)***

σ1 0.163 (0.005)*** 0.121 (0.002)*** 0.850 (0.246)*** 0.168 (0.005)***

σ2 0.662 (0.031)*** 0.202 (0.009)*** 0.941 (0.274)*** 0.271 (0.013)***

ρ 0.671 (0.032)*** 0.690 (0.045)*** 0.840 (0.086)*** 0.889 (0.012)***

λ 0.908 (0.342)*** 0.670 (0.127)*** 0.272 (1.927) 0.746 (0.162)***

γ1 1.000 (0.140)*** -0.231 (0.032)*** -0.072 (0.205) -0.310 (0.063)***

γ2 -0.861 (0.124)*** -0.143 (0.023)*** 1.018 (0.100)*** -1.005 (0.103)***

γ∗1 -1.764 (0.250)*** -0.116 (0.022)*** 0.738 (0.108)*** 0.116 (0.034)***

γ∗2 -1.437 (0.204)*** 0.685 (0.083)*** -0.400 (0.180)** 1.986 (0.213)***

Log-Likelihood -17065.9 -21934 -21883.8 -16120.2
Note: Standard errors in parentheses. [***] Significant at 1% level; [**] Significant at 5% level; [*] Significant at 10% level. µ is the
expected return on the spot commodity; κ is the speed of mean-reversion of the convenience yield; α0 is the constant term in the mean
level of the convenience yield; σ1 is the volatility of the spot price; σ2 is the volatility of the convenience yield; ρ is the correlation
coefficient of spot price and convenience yield; λ is the market price of the convenience yield risk; γ1, γ2, γ∗1 and γ∗2 are the coefficients
of trigonometric terms in the mean level of the convenience yield.
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Figure A.1. Term structures for Panel A (seasonality model): actual forward
curves on the left; model generated forward curves on the right

Note: Each colored curve is a static picture of futures prices (y-axis) against contract maturities (x-
axis), which is analogous to a plot of the term structure of interest rates. On the left side of the figure,
the solid line represents the price of the closest-to-maturity futures contract, i.e., F1 in this case;
while the dashed line consists of the actual prices of other futures contracts with different maturities
in this panel. On the right side of the figure, the solid line is the filtered spot price obtained through
the estimation procedure; while the dashed line consists of the estimated futures prices given by the
pricing formula.
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Figure A.2. Term structures for Panel B (seasonality model): actual forward
curves on the left; model generated forward curves on the right

Note: Each colored curve is a static picture of futures prices (y-axis) against contract maturities (x-
axis), which is analogous to a plot of the term structure of interest rates. On the left side of the figure,
the solid line represents the price of the closest-to-maturity futures contract, i.e., F12 in this case;
while the dashed line consists of the actual prices of other futures contracts with different maturities
in this panel. On the right side of the figure, the solid line is the filtered spot price obtained through
the estimation procedure; while the dashed line consists of the estimated futures prices given by the
pricing formula.
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Figure A.3. Term structures for Panel D (seasonality model): actual forward
curves on the left; model generated forward curves on the right

Note: Each colored curve is a static picture of futures prices (y-axis) against contract maturities (x-
axis), which is analogous to a plot of the term structure of interest rates. On the left side of the figure,
the solid line represents the price of the closest-to-maturity futures contract, i.e., F1 in this case;
while the dashed line consists of the actual prices of other futures contracts with different maturities
in this panel. On the right side of the figure, the solid line is the filtered spot price obtained through
the estimation procedure; while the dashed line consists of the estimated futures prices given by the
pricing formula.
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Table A.2. RMSE and MAE of Log Price with Seasonality Model

Panel A

F1 F3 F5 F7 F9 ALL

RMSE 0.0221 0.0270 0.0180 0.0140 0.0224 0.0212

MAE 0.0166 0.0209 0.0131 0.0096 0.0167 0.0154

Panel B

F12 F14 F16 F18 F20 ALL

RMSE 0.0102 0.0136 0.0118 0.0093 0.0102 0.0111

MAE 0.0075 0.0096 0.0088 0.0062 0.0068 0.0078

Panel D

F1 F7 F14 F20 F25 ALL

RMSE 0.0240 0.0365 0.0212 0.0155 0.0240 0.0252

MAE 0.0187 0.0293 0.0147 0.0109 0.0163 0.0180
Note: The root-mean-square error (RMSE) and mean-absolute error (MAE) are used to evaluate the model fit.
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Appendix B: Additional Figures

Figure A.4 depicts the growth/weight and biomass of fish.

Figure A.4. Growth and biomass functions plotted by using relevant parameters
in Asche and Bjorndal (2011)

Figure A.5 - Figure A.7 show the term structures for Panel B, Panel C, Panel D

respectively. The graphs show the proxies for the spot (closest future on the left and

filtered spot on the right) as the solid continuing line from 2006 until 2012, and at-

tached at each date the forward curve originating from that date (actual forward curve

on the left and model generated forward curve on the right). It can be observed that

both contango and backwardation are present in the market at different times.

Figure A.8 - Figure A.10 show the thresholds for each panel accordingly.
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Figure A.5. Term structures for Panel B: actual forward curves on the left; model
generated forward curves on the right

Note: Each colored curve is a static picture of futures prices (y-axis) against contract maturities (x-
axis), which is analogous to a plot of the term structure of interest rates. On the left side of the figure,
the solid line represents the price of the closest-to-maturity futures contract, i.e., F12 in this case;
while the dashed line consists of the actual prices of other futures contracts with different maturities
in this panel. On the right side of the figure, the solid line is the filtered spot price obtained through
the estimation procedure; while the dashed line consists of the estimated futures prices given by the
pricing formula.

151



Chapter 4. Valuation of Fish Farm Appendices

Figure A.6. Term structures for Panel C: actual forward curves on the left; model
generated forward curves on the right

Note: Each colored curve is a static picture of futures prices (y-axis) against contract maturities (x-
axis), which is analogous to a plot of the term structure of interest rates. On the left side of the figure,
the solid line represents the price of the closest-to-maturity futures contract, i.e., F24 in this case;
while the dashed line consists of the actual prices of other futures contracts with different maturities
in this panel. On the right side of the figure, the solid line is the filtered spot price obtained through
the estimation procedure; while the dashed line consists of the estimated futures prices given by the
pricing formula.
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Figure A.7. Term structures for Panel D: actual forward curves on the left, model
generated forward curves on the right

Note: Each colored curve is a static picture of futures prices (y-axis) against contract maturities (x-
axis), which is analogous to a plot of the term structure of interest rates. On the left side of the figure,
the solid line represents the price of the closest-to-maturity futures contract, i.e., F1 in this case;
while the dashed line consists of the actual prices of other futures contracts with different maturities
in this panel. On the right side of the figure, the solid line is the filtered spot price obtained through
the estimation procedure; while the dashed line consists of the estimated futures prices given by the
pricing formula.

153



Chapter 4. Valuation of Fish Farm Appendices

(a)

(b)

Figure A.8. Threshold for Panel B: (a) threshold at one time; (b) threshold at
different times

Note: S and cv denote spot price and convenience yield respectively. Blue spots in (a) represent com-
binations of S and cv where harvesting occurred at time point 45. The boundaries of 80% confidence
intervals above and below the fitted (thick red) line are also presented and can be interpreted as more
or less conservative exercise thresholds. Thresholds at time point 40, 45 and 50 are shown as red, blue
and black line accordingly in (b).
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(a)

(b)

Figure A.9. Threshold for Panel C: (a) threshold at one time; (b) threshold at
different times

Note: S and cv denote spot price and convenience yield respectively. Blue spots in (a) represent com-
binations of S and cv where harvesting occurred at time point 45. The boundaries of 80% confidence
intervals above and below the fitted (thick red) line are also presented and can be interpreted as more
or less conservative exercise thresholds. Thresholds at time point 40, 45 and 50 are shown as red, blue
and black line accordingly in (b).
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(a)

(b)

Figure A.10. Threshold for Panel D: (a) threshold at one time; (b) threshold at
different times

Note: S and cv denote spot price and convenience yield respectively. Blue spots in (a) represent com-
binations of S and cv where harvesting occurred at time point 45. The boundaries of 80% confidence
intervals above and below the fitted (thick red) line are also presented and can be interpreted as more
or less conservative exercise thresholds. Thresholds at time point 40, 45 and 50 are shown as red, blue
and black line accordingly in (b).
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Appendix C:

Optimal Policy vs. Suboptimal Policy

Using different combination of initial values for price and convenience yield, i.e., P0 ∈

(35, 40.4, 45) and δ0 ∈ (−0.5, 0, 0.5), in addition to Table 4.7 in the main article, eight

additional cases have been considered.

Table A.3. Optimal Policy vs. Suboptimal Policy: Panel A

Case 1: (P0 = 40.4, δ0 = 0), V 1
optimal=1.5124e+6 NOK (1.6092e+5 EUR)

Fixed Harvesting Date Suboptimal Value NOK (EUR) Suboptimal Value/Optimal Value Optimal Value - Suboptimal Value NOK(EUR)

1.0 year 0.8931e+6 (0.9503e+5) 59.05% 6.1935e+5 (0.6590e+5)

1.5 years 1.2291e+6 (1.3078e+5) 81.27% 2.8333e+5 (0.3015e+5)

2.0 years 1.3172e+6 (1.4015e+5) 87.09% 1.9522e+5 (0.2077e+5)

2.5 years 1.2647e+6 (1.3456e+5) 83.62% 2.4773e+5 (0.2636e+5)

3.0 years 1.1511e+6 (1.2248e+5) 76.11% 3.6133e+5 (0.3845e+5)

Case 2: (P0 = 40.4, δ0 = 0.5), V 2
optimal=1.2787e+6 NOK (1.3605e+5 EUR)

Fixed Harvesting Date Suboptimal Value NOK (EUR) Suboptimal Value/Optimal Value Optimal Value - Suboptimal Value NOK(EUR)

1.0 year 0.7570e+6 (0.8504e+5) 59.20% 5.2164e+5 (0.5550e+5)

1.5 years 1.0359e+6 (1.1022e+5) 81.01% 2.4279e+5 (0.2583e+5)

2.0 years 1.1039e+6 (1.1745e+5) 86.33% 1.7479e+5 (0.1860e+5)

2.5 years 1.0525e+6 (1.1199e+5) 82.31% 2.2613e+5 (0.2406e+5)

3.0 years 0.9498e+6 (1.0106e+5) 74.28% 3.2888e+5 (0.3499e+5)

Case 3: (P0 = 40.4, δ0 = −0.5), V 3
optimal=1.7723e+6 NOK (1.8857e+5 EUR)

Fixed Harvesting Date Suboptimal Value NOK (EUR) Suboptimal Value/Optimal Value Optimal Value - Suboptimal Value NOK(EUR)

1.0 year 1.0438e+6 (1.1106e+5) 58.90% 7.2841e+5 (0.7750e+5)

1.5 years 1.4434e+6 (1.5358e+5) 81.45% 3.2883e+5 (0.3499e+5)

2.0 years 1.5539e+6 (1.6533e+5) 87.68% 2.1840e+5 (0.2324e+5)

2.5 years 1.5001e+6 (1.5961e+5) 84.64% 2.7219e+5 (0.2896e+5)

3.0 years 1.3744e+6 (1.4624e+5) 77.55% 3.9784e+5 (0.4233e+5)

Case 4: (P0 = 35, δ0 = 0), V 4
optimal=1.2273e+6 NOK (1.3058e+5 EUR)

Fixed Harvesting Date Suboptimal Value NOK (EUR) Suboptimal Value/Optimal Value Optimal Value - Suboptimal Value NOK(EUR)

1.0 year 0.7258e+6 (0.7723e+5) 59.14% 5.0153e+5 (0.5336e+5)

1.5 years 0.9932e+6 (1.0568e+5) 80.93% 2.3410e+5 (0.2491e+5)

2.0 years 1.0569e+6 (1.1245e+5) 86.12% 1.7038e+5 (0.1813e+5)

2.5 years 1.0058e+6 (1.0702e+5) 81.96% 2.2145e+5 (0.2356e+5)

3.0 years 0.9055e+6 (0.9635e+5) 73.78% 3.2181e+5 (0.3424e+5)

Case 5: (P0 = 35, δ0 = 0.5), V 5
optimal=1.0254e+6 NOK (1.0910e+5 EUR)

Fixed Harvesting Date Suboptimal Value NOK (EUR) Suboptimal Value/Optimal Value Optimal Value - Suboptimal Value NOK(EUR)

1.0 year 0.6079e+6 (0.6468e+5) 59.28% 4.1748e+5 (0.4442e+5)

1.5 years 0.8258e+6 (0.8787e+5) 80.54% 1.9958e+5 (0.2124e+5)

2.0 years 0.8721e+6 (0.9279e+5) 85.05% 1.5328e+5 (0.1631e+5)

2.5 years 0.8220e+6 (0.8746e+5) 80.17% 2.0335e+5 (0.2164e+5)

3.0 years 0.7311e+6 (0.7779e+5) 71.30% 2.9430e+5 (0.3131e+5)

Case 6: (P0 = 35, δ0 = −0.5), V 6
optimal=1.4519e+6 NOK (1.5448e+5 EUR)

Fixed Harvesting Date Suboptimal Value NOK (EUR) Suboptimal Value/Optimal Value Optimal Value - Suboptimal Value NOK(EUR)

1.0 year 0.8564e+6 (0.9112e+5) 58.99% 5.9547e+5 (0.6336e+5)

1.5 years 1.1789e+6 (1.2543e+5) 81.20% 2.7298e+5 (0.2905e+5)

2.0 years 1.2620e+6 (1.3428e+5) 86.92% 1.8991e+5 (0.2021e+5)

2.5 years 1.2098e+6 (1.2872e+5) 83.32% 2.4210e+5 (0.2576e+5)

3.0 years 1.0990e+6 (1.1693e+5) 75.69% 3.5289e+5 (0.3755e+5)
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Table A.3. continued

Case 7: (P0 = 45, δ0 = 0), V 7
optimal=1.7560e+6 NOK (1.8684e+5 EUR)

Fixed Harvesting Date Suboptimal Value NOK (EUR) Suboptimal Value/Optimal Value Optimal Value - Suboptimal Value NOK(EUR)

1.0 year 1.0356e+6 (1.1019e+5) 58.97% 7.2041e+5 (0.7665e+5)

1.5 years 1.4300e+6 (1.5215e+5) 81.44% 3.2595e+5 (0.3468e+5)

2.0 years 1.5389e+6 (1.6374e+5) 87.64% 2.1707e+5 (0.2310e+5)

2.5 years 1.4852e+6 (1.5803e+5) 84.58% 2.7079e+5 (0.2881e+5)

3.0 years 1.3603e+6 (1.4474e+5) 77.47% 3.9568e+5 (0.4210e+5)

Case 8: (P0 = 45, δ0 = 0.5), V 8
optimal=1.4951e+6 NOK (1.5908e+5 EUR)

Fixed Harvesting Date Suboptimal Value NOK (EUR) Suboptimal Value/Optimal Value Optimal Value - Suboptimal Value NOK(EUR)

1.0 year 0.8840e+6 (0.9406e+5) 59.13% 6.1107e+5 (0.6502e+5)

1.5 years 1.2148e+6 (1.2925e+5) 81.25% 2.8028e+5 (0.2982e+5)

2.0 years 1.3013e+6 (1.3846e+5) 87.04% 1.9380e+5 (0.2062e+5)

2.5 years 1.2489e+6 (1.3288e+5) 83.53% 2.4623e+5 (0.2620e+5)

3.0 years 1.1361e+6 (1.2088e+5) 75.99% 3.5903e+5 (0.3820e+5)

Case 9: (P0 = 45, δ0 = −0.5), V 9
optimal=2.0450e+6 NOK (2.1759e+5 EUR)

Fixed Harvesting Date Suboptimal Value NOK (EUR) Suboptimal Value/Optimal Value Optimal Value - Suboptimal Value NOK(EUR)

1.0 year 1.2035e+6 (1.2805e+5) 58.85% 8.4148e+5 (0.8953e+5)

1.5 years 1.6688e+6 (1.7756e+5) 81.60% 3.7623e+5 (0.4003e+5)

2.0 years 1.8025e+6 (1.9179e+5) 88.14% 2.4248e+5 (0.2580e+5)

2.5 years 1.7474e+6 (1.8592e+5) 85.45% 2.9763e+5 (0.3167e+5)

3.0 years 1.6091e+6 (1.7121e+5) 78.68% 4.3594e+5 (0.4638e+5)
Note: The suboptimal value is produced under the scenario where the manager sets a fixed harvesting date at the beginning of the
harvesting cycle, disregarding any information updates over the harvesting cycle; while the optimal value is obtained via the real option
policy. Exchange rate used here is 1 NOK = 0.1064 EUR, http://www.xe.com/ [last access: 02/10/2015].
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Appendix D:

Additional Tables for Risk Aversion and No Access

to Salmon Futures Market

Table A.4. Lease Value of Fish Farm and Harvesting Time Under CRRA: Panel
A

γ Harvesting Time (years) Pond Value (millon)

0 1.8351 1.4895 NOK 0.1585 EUR

0.1 1.8313 1.4885 0.1584

0.3 1.8224 1.4863 0.1581

0.5 1.8113 1.4821 0.1577

0.9 1.7869 1.4683 0.1562

1.1 1.7666 1.4542 0.1547

2 1.6109 1.3251 0.1410

5 1.4503 1.0663 0.1135

8 1.3435 0.9325 0.0992

18 1.1383 0.7737 0.0823

33 1.0501 0.7315 0.0778

50 0.9956 0.7046 0.0750
Note: γ measures the level of risk aversion. Exchange rate used here is 1 NOK = 0.1064 EUR,

http://www.xe.com/ [last access: 02/10/2015].
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Table A.5. Lease Value of Fish Farm and Harvesting Time Under CRRA: Panel
B

γ Harvesting Time (years) Pond Value (million)

0 1.6701 1.0819 NOK 0.1151 EUR

0.1 1.6686 1.0812 0.1150

0.3 1.6642 1.0797 0.1149

0.5 1.6583 1.0771 0.1146

0.9 1.6468 1.0721 0.1141

1.1 1.6407 1.0693 0.1138

2 1.6018 1.0479 0.1115

5 1.3975 0.9334 0.0993

8 1.4398 0.9339 0.0994

18 1.2194 0.8101 0.0862

33 1.0857 0.7189 0.0765

50 0.9900 0.6415 0.0683
Note: γ measures the level of risk aversion. Exchange rate used here is 1 NOK = 0.1064 EUR,

http://www.xe.com/ [last access: 02/10/2015].
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Table A.6. Lease Value of Fish Farm and Harvesting Time Under CRRA: Panel
C

γ Harvesting Time (years) Pond Value (million)

0 2.2301 1.1041 NOK 0.1175 EUR

0.1 2.2252 1.1039 0.1175

0.3 2.2110 1.1021 0.1173

0.5 2.1955 1.1001 0.1171

0.9 2.1442 1.0905 0.1160

1.1 2.1199 1.0858 0.1155

2 2.0011 1.0518 0.1119

5 1.7770 0.9462 0.1007

8 1.6375 0.8778 0.0934

18 1.4362 0.7666 0.0816

33 1.3860 0.7494 0.0797

50 1.3195 0.7210 0.0767
Note: γ measures the level of risk aversion. Exchange rate used here is 1 NOK = 0.1064 EUR,

http://www.xe.com/ [last access: 02/10/2015].
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Conclusion

In this PhD thesis, we first discuss the valuation of futures on fresh farmed salmon as

traded on the Fish Pool exchange and then explore how information reflected in the

prices of futures contracts can be used to compute arbitrage free prices for lease and

ownership of fish farms.

We established a link between the popular Schwartz (1997) multifactor model used

for the pricing of commodity derivatives and classical models originating in the aqua-

culture/fish farming literature. Specifically we looked at future contracts written on

fresh farmed salmon, which have been actively traded at the Fish Pool Market in Nor-

way since 2006. The link with the fish farming literature, has been established following

first principles, starting by modeling the aggregate salmon farming production as well

as modeling salmon demand using a Cobb-Douglas utility function for a representative

consumer. We further extended the Schwartz (1997) two-factor model by adding a

seasonality feature to the mean-level of convenience yield. We estimated all models

using a rich data set of futures contracts with different maturities traded at Fish Pool

by means of Kalman filter. Our results show that the framework presented is able to

produce an excellent fit to the actual term structure of salmon futures. The results

are then discussed in the context of other commodity markets, specifically live cattle

which acts as a substitute. The comparison with live cattle futures traded within the

same period reveals subtle difference, for example within the level of the convenience

yield, the speed of mean reversion of the convenience yield and the convenience yield
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risk premium.

Thereafter, the implications in the decision process of an individual fish-farmer

have been investigated in the associated and accordingly calibrated model using a real

option approach adopting the Longstaff-Schwartz-Method in the context of multiple

state variables. Monetary values for lease and ownership of a model fish farm as well

as the expected duration of harvesting cycles in the infinite and single rotation cases

are determined. The values so determined take correctly account of the fish farmer’s

ability to efficiently diversify idiosyncratic risk contained in the salmon spot price by

trading in the Fish Pool market. We assess the optimal strategy, harvesting time and

value against two alternative setups. The first alternative involves simple strategies

which lack managerial flexibility, the second alternative allows for managerial flexibil-

ity and risk aversion as modeled by a constant relative risk aversion utility function,

but without access to the salmon futures market. In both cases, the loss in project

value can be very significant, and in the second case is only negligible for extremely

low levels of risk aversion. In consequence, for a risk averse fish farmer, the presence

of a salmon futures market as well as managerial flexibility are highly important. Our

approach is of practical interest to companies in the fish farming business and can

guide their decision process in the context of the acquisition of fish farm units.

This study can be extended in several ways. One way is to investigate how markets

price the risk of disease outbreak, such as fish lice or salmon anemia, and how this

effects the valuation of fish farms. Moreover, stochastic factors like stochastic growth

as well as stochastic feeding costs could be considered in the model. One can also

examine the hedging effects of salmon futures. Other interesting research topics could

be the possibility of creating financial markets for similar products, and introducing

financial derivatives other than futures, e.g., swaps and options, to such markets.
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