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PREFACE,

The thesis is divided into five chapters, The first
chapter serves as an introduction to the two problems to be
solved, The second and third chapters contain proofs of the
two results needed in order to solve the first problem, and a
solution of the first problem and some corollaries to it are
deduced in the fourth chapter. The fifth chapter contains a
solution to the second problem. The five Theorems to be
proved are stated in the first chapter; all other results to be
derived or quoted are called Lemmas, The Theorems are referred to
throughout by the numbers assigned to them in the first chapter,
but the numbering of lemmas and equations begins afresh in each
chapter,

The work in this thesis is claimed as original except in the
places where reference to another authorts work is made. In the
text of the thesis a reference is denoted by a number in sguare
brackets, and full details of the paper or book referred to in this
way are given at the end of the thesis.

The problems investigated in this thesis arose from suggestions
made to me by Professor R.A. Rankin, and I wish to express my thanks

to him for his guidance and all his valuable advice.
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CHAPTER 1,

1. Introduction.

During the development of the theory of numbers, which is
basically the study of properties of integers, much attention
has been given to the divisibility properties of integers.

If n is a positive integer, the divisor functions d(n) and cb(n)
are defined by

d(n) =a%\l’ o‘v(n) =d%\av,

where the sums are over all positive (integral) divisors of nj

thus d(n) is the number of positive divisors of n and,ob(n) is

the sum of the vth powers of the positive divisors of n.

One way of examining the divisibility properties of n is to
investigate the divisor functions d(n) and OL(n). This approach
has stimulated interest in the properties of the divisor functions
themselves. Many results about these functions have been obtained,
so that some of their properties are well known, but there remain
problems to which an answer has not yet been found. The aim of

the following chapters is to provide solutions to two of the problems

which may be raised.

2. A problem on the divisibility of o;,(n).

The first problem that we shall consider is concerned with

the function o;(n) when v itself is a positive integer.



In this case 0;(n) is a positive integer for all positive integers
n, and hence an investigation of the divisibility properties of
Cb(n) is feasible. 1In particular one may ask whether or not
o;(n) is, or is not, divisible by some given positive integer
k for almost all n., We shall now describe two related problems
which arise in this way and which lead us on to Theorem 1, one of
the two main results of this thesis.

Let N(v,k;x) denote the number of positive integers ngx
for which ob(n) is not divisible by k. Then one of the
problems arising from the above discussion is that of estimating
N(v,k;zQ when v and k are fixed positive integers independent
of x, Although we shall not be concerned primarily with this
problem, it provides the background to Theorem 1 and from this
Theorem we shall be able to deduce estimates for N(v,k;x) in some
cases, Hence we begin by describing the known results for
N(v,k;x).

In 1935 G.N. Watson published a paper {1] in which he showed

that, when v is odd,

—1/¢(k)) (1)

N(v,k;x) = ()(x(log x)
as x»», where ¢(k) is Euler's function. It follows from this
result that, when v is odd, O'v(n) is almost always divisible by k.
Two further questions are immediately suggested by this result:
What is the corresponding result when v is even' Is it
possible to improve on (1), and, in particular, can one obtain

an asymptotic equation which is satisfied by N(v,k;x)?



These questions were considered by R.A. Rankin in a paper
[2], published in 1961, in which he proved that (1) can be replaced
by an asymptotic equation when k is a prime, and consequently he
deduced that the function on the right of (1) can be replaced by
a smaller function of x in other cases too. Let q be a prime,
and write
h= Y5
(v,q-1) .
where (v,q-1) denotes the highest common factor of v and g-1.

Then, more precisely, Rankin proved that, as x—»»,

&

X if g and h are odd
g - . . .
N(v,q;x)~ Aix(log.x) /b e q is odd and h is even (2)
(0) .1§ .
Ax if g=2,
where Af R A . are positive constants depending on v and q, and

kY

where A: =3/2, When q is odd, the proof of this result in the case
when h is odd is more straightforward than in the case when h is even.
If g+2, the case when v is o0dd is always included in the second part
of Rankin's result; for this case Watson's result, given by (1),
provides an estimate, less precise than (2), for N(v,q;x).
However when v is even and q32, either the first or the second
part of Rankin's result may apply.

As a consequence of Theorem 1, given below, we shall be able
to continue this line of investigation a stage further by obtaining
in chapter 4 an asymptotic equation, to replace (1), in the case
when k=q", where q is a prime and m is a positive integer, and in

some other cases too.



We turn now to the result to be proved in the next three
chapters. Let q be a prime and m a positive integer, and assume
that both are fixed and independent of x. Define ¥ by ¢ |v
(where the notation || means that ¢ |v but ¢ fv, so that q
is the highest power of q dividing v), and write

n' = [0/(4)]
(where the square brackets indicate that the integer part is taken).
Denote by Dm(v,q;x) the number of positive integers ngx for which
& o‘v(n). Then we have
Theorem 1.

(i) If g and h are both odd, then, as x>,

iy

Dm(v;'q;x) ~ A x.

(ii) If q is odd and h is even, then, as x> = ,

Dm(v,q;x) ~ A': x(log log x) m' (log x) ~1/h,

(iii)As x>,

D (v,2;%) ~ f{: x(log log x) m—l(log‘ <) .
n

{m) {m) o

A 4, A , A

‘ . are positive constants depending only on v, q and m.

Before briefly outlining the main stages in the Aproof of this
theorem, we shall show how N(v,qm;x) may be expressed in terms of
Dr(v ,q3%) (where r<m) so that the connection between Theorem 1 and
the earlier discussion will become apparent. First of all we
observe that N(v,q;x) may be regarded as the number of positive

integers ng¢x for which ¢’ o*v(n), so that we can write

N(v,q3x) = D, (v,q3%x). -



If m»2, it follows from the definition that N(v,q?;x)/is the
number of positive integers ngx for which one of q?"c;(n),

r=0,1,2,...,m-1, holds, and hence

m-\

N(v,q 3x) = &Dr(ﬁ,q;x). (3)

We now discuss briefly the proof of Theorem 1.
Define -
a(n) = {1 it g |lo (n)
0 otherwise.
Then clearly, if we take x to be an integer (which we can do

without loss of generality),

Nx

2 (n), (2)

and hence in order to prove Theorem 1 we must obtain an estimate

Dm(‘h q;x) =

=

for the sum on the right of (4). We do this in two stages.

First of all we express the generating function

ﬁ“(s) = ii aﬁﬂn)n-s s

n=

s=0+ it being a complex variable, in terms of the Riemann zeta-
function and Dirichlet L~functions, and then we obtain the required
result from this. (This technique is a standard one for this
type of problem in the theory of numbers; however the difficulties
to be overcome at each stage will vsry according to the problem
being discussed.,) This is the approach used by Rankin to prove
(2), and it is also the method used by Watson to prove (1) except
that Watson replaced the sum representing N(v,k;x), which is a

sunm of the type appearing on the right of (4),



by one which had fewer zero terms in it.

The generating function f (s) is given by the following
result, which is proved in chapter 2.

Theorem 2.
(1) If g and h are both odd,

£ _(s) = z(s)s(s),

where £ (s) is the Riemann zeta-function and g(s) is holomorphic

for 6> and bounded for oyb+$ for any 6 >0.

(i) If q is 0dd and h is even;

£.(s) =t () (os g (e)}* 1, (s),

where each H, (s) (Ogugm') is a sum of products of Dirichlet

L-functions associated with non-principal characters, the logarithms

of such functions, and a function satisfying the conditions on

Efsz in !iz.

(11i) 1If g=2, ,
£ (s) = :Za jlogy(s)} " H(s),

where each H, (s) (O<u¢m) satisfies the conditions given in (ii).

In order to prove Theorem 1 (i) we need only use Theorem 2 (i)
and the Wiener-Ikehara Theorem (which is stated in Lemma 9 of
chapter 2). However in order to prove the rest of Theorem 1,

we shall need to prove another result. Let

1~ |
n(s) = {5(s)} *Plroge(s) ¥ H(s),
where O<Bgl, u is a non-negative integer and H(s) is a product
of powers of Dirichlet L-functions associated with non-principal

characters, non-negative powers of logarithms of such functions,



and a function holomorphic for 6>4 and bounded for Gys+§ for any

§ >0, Furthermore suppose that h(s) can be expressed in the form
n(s) = ‘Z b(n)n 75,

where b(n)30. Then, in oh;pter 3, we shall prove

Theorem 3, :
(1) If 0<B<i and udl, then

. H (1) x(log log x)* . [x(Llog log x)u-fz
’El'b‘(n) = 5 + 5 )
r(1-8) (log x) (1og %)

where I (1-B) is the Gamma-function.

(i1)  If 0<p<1 and u=0, then

x H (1) X X
Zh (n) = *

F(1-8) (ogx) ®  \(og x) TA+E)

(3ii) If p=1 and u>2, then

X
Z b (n) = Y

n=,

3
x(log log :c)u'":L O (x(log log x) %
+

log x log x

(iv)  If B=l and u=l, then

1
x(log log x) 2

! O( (10g xJ*

'3 X
Zb (n) =H()

n=y 108 b'd

(v) If f=1 and u=0, then

ib(n) = O 31,

(1og x)

In chapter 4 we shall obtain the result of Theorem 1 (ii)
and (iii) from Theorems2 and 3, and we shall deduce from

Theorem 1 some results for N(v,k;x).



5. A problem on a generalisation of d(n).

We turn now to the second problem to be considered in this
thesis, and it will be discussed fully in chapter 5. (The contents
of chapter 5 form the substance of a paper [3] already published.)
We shall be concerned with a generalisation of the divisor
function d(m); we shall replace m by a polynomial f(n)

(or, in other words, we shall restrict m to those positive integers
which can be expressed in the form m=f(n), where n is also a
positive integer), and we shall count only the divisors belonging

to a certain congruence class.

More precisely, let f(n)=an®+bn+c be an irreducible quadratic
polynomial with integer coefficients, and let D denote the
discriminant b®-4ac of f(n). We shall assume that (D,k)=1, and
that, for all positive integers n, f(n) is positive and coprime with
k, where k is a fixed integer greater than 1. We denote by d(mjh)
the number of positive divisors d of a positive integer m which
satisfy d=h(mod k). Then we shall prove

Theorem 4. If (h,k)=1, then

XZ_ a(£(n);h) = A xlog x +O(x log log x),

\

where x is a large positive integer, and A 1is a positive constant

depending on k, h and the coefficients of f.

The method used to prove this theorem may also be used to
show that
X
L a(f(n) = A, x logx + O(x log log x), (5)

n=y

where A, is a positive constant depending on the coefficients of f.
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This result is mentioned in a paper [4] by Erdds as an unpublished
result of Bellman and Shapiro.

The problem of proving a result analogous to (5), or Theorem 4,
for irreducible polynomials g(n) of degree greater than 2 appears
to be very difficult. An important step in this direction is the
paper [4] due to Erdos in which he proves that

X
Bxlogx< I d(g(n)) < B x log x,
n={
where B1 and B; are positive constants depending only on the

coefficients and degree of g, and x32.

For certain polynomials £(n) we may deduce from Theorem 4
a result, analogous to (5), for the function r(f(n)), where r(m)
denotes the number of representations of a positive integer m as
the sum of two integer squares. We:shall assume for this result
that £(n) is odd for all positive integers n and that £(n)zl(mod 4)
for at least some positive integers n; furthermore we shall assume
that D= —u *, where p is a positive integer.
Then we have

Theoren 5.

7 r(e(n)) = A x log x + 0(x log log x),

where A 1is a positive constant depending on the coefficients of f.
T3

If £(n)=5(mod 4), then it is well known that r(£(n))=0;
hence if f(n)=3(mod 4) for all positive integers n, then
élr(f(n)) = 0.
In §8 of chapter 5 we shall illustrate, by means of the example

f(n)=n®+1, how the case when f£(n) is sometimes even may be dealt with.
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CHAPTER 2,

1. Intreduction.

The object of this chapter is to prove Theorem 2, which was

stated in chapter 1, and hence we shall be considering the function
£ (s) = Z awgn)n-s.‘

Our first step will be to find the order of pv, where p is a prime,
modulo powers of g, and using this we shall be able to find the
positive integers « for which a_(p%*)=t  (see Lemma 4).
Since, as we shall see, a_(n) is not multiplicative, the next stage
is to obtain an expression, given in Lemma 7, for ay‘n) in terms
of ar(pa) (Og¢r¢m). We shall then be in a position to deduce an
expression for £ (s), given in Lemma 8, and finally we show, in
$5 to §8, that this is equivalent to an expression of the required
type.

We have alresdy mentioned that Theorem 1(i) follows
immediately from Theorem 2(i) and the Wiener-Ikehara Theorem, and

we shall give the details of this deduction in §s5.

2. Preliminary results,

If q is odd, let g be a primitive root (mod q°) for all
positive integers r. (This is possible, for if g is a primitive
s r
root (mod q) then either g or g +q is a primitive root (mod q)

for all ryl.)
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Then every prime p, p#q, satisfies a congruence relation of the

{r)

form " -
p = &% (mod q¥) where 1< <p(q")=q"(g-1), (1)

¢(q") being Euler's function. Similarly if g=2 and 133, every

odd prime p satisfies a congruence relation of the form

)

p=+5% (mod 2F) where 1gcf: \<2r-2 , (2)
the + or - sign being taken according as p = 1 or 3 (mod 4).
Throughout this section we assume that p #% q. Weite
r-1 if Q2
K = { i (3)
" -2 if  g=2;
then in either case é:’ satisfies 1¢¢ <a (g-1). Unless
otherwise stated, we shall assume that when g=2 K, 31, so that

ry3., We define £ to be the highest power of q dividing ¢,

so0 that
f-w (el
q ° " C. ’
clearly Og {: LK,
Lemma 1. If r >r
(':\ = (€A (mod. qu‘ (q:"l)) (4_)
) teyd (5)
and £, =min( £, K ). ‘
Also i?‘\ = i(: or i‘: +1, (6)

If g#2, r»2 and qu, » then

& = qe, (7)

-t o
where ¢, = ¢ . If rs2 and g |l ¢» , then

& = e . (8)



Proof. All these results are consequences of the above

definitions., If q is odd, (4) follows since

(o )
¢ 3)

p=g® =g (mwdq").
and g is a primitive root; +the case g=2 is similar. The
second result follows from the first since i(:) < k., i=1,2, and
similarly the third result follows from the second.
It follows from (5) on putting r =2 and T, =r that, if q#2
and q!c(: , then g|¢’ . On putting r =1 and r,=2 in (4), we

obtain

(%)

c, =c, +u(g-1),

where u is an integer satisfying Og<u<q. Hence if q’;c‘f s then
al(c, -utuq), so that q|(c, -u). Since |c, -ul<q, it follows

that u=c,, This proves (7).
¢ - {r-af

If ¢ =r-1, it follows from (5) that &,  =r-2, ¢ =r-3,...,

? P
(2

¢, =1, If 3¢ig¢r, we have from (4) that

e

c‘;’ = c';-” +u ql-z(q-l) where O<u, <q-1.

I c‘;"' =-.qj'-2cp and q:.""lllc:t1 , it follows that u =c and c‘;' :qi-lcp .
On putting i=3,4,...,r and using (7) we obtain (8).
We recall that q' ||v, and that h=(qg-1)/(v,q-1); clearly h=l
if g=2. We define t by
Il @¥-1).

Furthermore if g=2 and p=3{mod 4), then we define t' by

28| ((=p)”-1);
thus t'=t when v is even, but t'32 and t=1 when v is odd. Clearly, whea g=2, t20

We assume now that ryt, and that ry3 when g=2; then the next

r
lemna gives us an expression for the order of p¥ (mod.q ).
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We adopt the convention that the order of pv (mod qt) is 1;
if r<t, then the order of p” (mod q*) is not defined. If r>t,

then clearly the order of p° (mod g°) must exceed 1.

Lemna 2. The order of p’ (mod g~ ) is
i)
’\9 h/(h, Co )’
where
Kr-'ﬂ-i(;) . (r)
(© q if K-8-2 30
A o i ‘
o =
1 if K~¥-£ <O

except when g=2, v is odd, p=3(mod 4) and p” = =1(mod 2Y), in which case

[(J]
., = 2.

Proof. Suppose first that g#2. We shall obtain the
result from the representation of p in the form (1). The
order of g (mod q°) is ¢(q") by the definition of a primitive root.

h o

Hence the order of g’ (mod g°), say, is given by

() - 1
B = o(d™)  _ M) {7 g-1

W,$()) O, Ha1) (v, (v,g-1)

] =
Fn e re1-¥ 30

h if  r-1-Y¥ <O.

(r)

It follows that if r-1-Y 30 the order of g %  (mod q"), that
is the order of p’ (mod q'), is equal to

- - -3
h(r\ qr 1-7 h qr--l h

()

4 ]~ —l=¥ e )
(htrB ’G(P) ) (qr 1 Kh,cp ) (qr 1 ., ) (h,CP ) (h,cp )
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provided that r-1~¥ - 5 30; we have used the fact that

) )

(
(h,e, )=(h,c, ), which follows since ¢, =c, (mod q-1) by (4)

and h|(g=1). If r-1-¥ <0,1 replaces qr-l-T everywhere, and
. (r) - _s_é”
if r-1-¥-¢, <0,1 replaces q" 1 ¢ 3 thus in either of

these cases the order of p’ (mod g°) is

h/(h’cp )'
Suppose next that g=2 and pz1 (mod 4). Then, as above, the

order of 5 (mod 2¥) is

- b - -x
22/ (v,2"F) = 7Y
{r}
and hence the order of 5”%¢ (mod 2¥), that is the order of
p’ (mod 2%), is

r)
SRR S Y Sl R

Since ryt and h=1, so that h/(h,c,)=1, the result follows.
Finally we suppose that ¢=2 and p=3(mod 4); then -p=li(mod 4).
If r>t' we have from above that ithe order of (-p)” (mod 2) is

)
r=2-% - EP

©
2 = A, >L. Thus, since Oiwz =+1, the

(9]
order of p’ (mod 2%) is A, - in this case.

If r¢t', (~p)Y=1(mod 2F), and hence p” = (~1)”(mod 2%). Vhen

v is even, this means that r=t=t' (since we assume that ryt), and
the order of p” (mod 2) is A, =1, However when v is odd,
pvs -1 (mod 2r) and the order of pv (mod 2r) is 2. This completes

the proof of the lemnma.
. e+ ) (O]
We observe that in all cases A, =q#A,  or Ao e
)
This follows in the special case mentioned for g=2 since A, =2
(E+y)
for rgt' and Ay =2,
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Otherwise the truth of the remark follows from (6); in fact
[(ZTY) (3 \C) [ (<] )

,\p =q A4 or /\P according as Ep = ép or ZP+1.

Corollary 1. If r>t, and t33 if g=2 or t31 otherwise, then

the order of p’ (mod q¥) is qr-t .

Proof. If g2, then since cf | (¥ -1) and 31,
the expression giving the order of p’ (mod qt) must equal 1, so
&
that b/(h,c, )=1, whence hlc, , and A4, =1. If =2, then since

£33, p=3(mod 4) and v odd cannot both hold; +thus the order of
p” (mod q°) s 1 end so )\(:} =1. For all q and for r>t we have
from the lemma that the order of p” (mod ¢¥) is ft: =q "7 " 5
Hence since /\(:N>1 but /\&:“’ =1, we have from the remark

(e+y)

preceding the corollary that )\p =q. Thus by the lemma

>1.

&l (1) (e+1)
Ky=¥=¢ =0 and K =¥=-¢ =Kkl -f-¢ =1, (9)
(G &)

giving £ =5 . On putting r =t+l and r =r in (5) and

= & . (e e\
noting that 29 = ¢ <K, < K_ ,we obtain ¢ =5

Hence, by (9),

CUE S K - K -t
and A =q " ¥ 2(’.—.q' t=qr .

Lorollary 2. If t=2 or t=1 and p=3(mod 8), then the order

of p” (mod 27) is 2772 , If t=1 and p=7(mod 8), then the order
(¢}

of p’ (mod 2F), that is A, , is given by

( gt
A =2 if 3<rgt!  and Ao =2 i it

p vt

Proof. If t=1 or 2, then v must be odd, so that ¥ =0;
"
for if v is even, p =1(mod 8) and t33. If t=2, so that 4 [l (p¥-1),

then p=5(mod 8), and if t=1 and p=3(mod 8), then pz =5(mod 8);
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. . > a) G)
in either case ¢ o =1, £ =0 and ).p =27 By (4)

€ 3)
¢ =c, (mod 2)
for r»3, and hence c(: is odd, so that 2‘: =0. Thus by the

lemma

A(” =9 K- — r-2

4

If t=1, then p=3(mod 4) and hence the only possibility
1
remaining is t=1 and p=7(mod 8). Since v is odd and 27 I (p”+1),

t1=2
J $ L |
gt Il (p+1), and hence pg-&z (mod gt ), giving c.(:) =2% 2 ona

(" )

€ =t'-2, By the lemma, A =2 for 3¢r¢t'. As in Corollary 1,

e
o Ex) (€'l (c) (Y

A, =2, and ¢ = { =t'-2, and also & = & =t'-2 for

r>t'., Hence by the lemma

,\k(‘ ) ret t

. =2 for r>t'.
We define ,i: to be the order of pv (mod qm't); thus, by
the previous lemma and its corollaries,
§o) h Gh . v
Ae = Ap ifp #1(mod q) and q#2
(h,c? )
r co LY
if p =i(mod q) and q#2
pf;’ = oT if g=2 and r+t>ty2 (10)
-1 9=2,
2" if /r32, t=1 and p=3(mod 8)

(e41)
if g=2, r 2, t=1 and p=7(mod 8),
(C)

where in the first case A, is given by the lemma and in the

[

Lo+

last case A is given by Corollary 2. Note that if g¢=2,
uP=pl: =2 provided t32, and if ¢>2, p, 2 always. If g=2 and

t=1, Ll(:' =2; for completeness we define p_, =2 in this case also.
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Lemma 3. (i) If g#2, and h is even then p‘:’ =2 and

{rey) ()

o = if and only if r>x+1 and p is congruent to one of

¥4l
¢(q )(v,g-1) elements of a reduced residue system (mod qrtjl.

(ii) Let g=2. If »2, then p, =2 and for all

(re)

r>l u, =2uw; . If t=1 and p=3(mod 8), then pm =2 and for

all r>2 JJ(:” =2}£: . If t=1 and p=7(mod 8), then for 2¢rg¢t'

) Py w)

B, =2 and for all ryt' =2

Proof, (1) Ve can assume that t=0; for if t»1, p_=q>2,

so that ) >2 for all r3l. Clearly if | =2, then p_ =2 and
)

A, =L, Now p_ =h/(h,c_ ), and we see that u =2 if and only if
¢, is an odd multiple of Zh; +this occurs when

c, = th(2u~-1)  where 1cu<(v,g=1),

the bounds for u following since lgcgq-1, so that %(A+()«
ug%(2(q—1)h—1+1) = (v,q=1)+%, and u is an integer. Thus there
are exactly (v,q-1) values of c, which are such that p, =2, and
hence p, =2 if and only if p is congruent to one of (v,q-1)
elements of a reduced residue system (mod q).

We now find the number of values of c:M , corresponding to

("4

(ray «;
a given value of ¢,, for which p =~ =qu  =qy, . Clearly A =q

) bt ¥

(v¥]
but )s? = )\P =...= /\P =1; thus
) (r

o~
(r#1)=1-¥=-¢ =1 and r-1-¥-¢ =0,

(rey; ~
giving ¢, = f_‘; =r=1=¥ provided r» ¥+l. By (5)
(r-Y) [t
2(’ =mi.r1( E? ,I‘-l- X )=I‘-1- X 9
(¢ar) wy (r-i) (r-%)

and hence 2(‘ = 29 = EP .l E? =] ¥ o

ry
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re1-¥

Therefore g (e} r=1-¥

r-%¥)
”GP s, and by (8) c, =q c ; thus to

each ¢, there corresponds exactly one c(r:—“ . Now by (4)

GEN (e~7) Lelemd ¥ +1

c, =c, +uq (g=1) where Ogu<q ,

so that

(ry)
-

r=i=-¥
€, =q (¢, +u(q=1)).

r-j_-X ) . .
Hence q “c-.P implies that cL/\’ (c,=u). This means that

¥
u can take any value between O and g *1-1 except
¥
C,» C, #Qy «eu 5 C, +(g=1)q,
and thus u and hence c(:w can take g ’ +1_qx=¢(q 5 *1y values
for each given value of c,.

\Cx s G

Hence p_ =qu_  =2q if and only if p is congruent to one

of ¢(q ! +1)(v,q—1) elements of a reduced residue system (mod qr+1)

provided r> ¥ +1, If r<¥ +l, we observe that p(;w =u(;) =
for all p, soc that no p satisfies the required conditionms,
(ii) This result follows immediately from the

definition of ul: . We observe that in the last case

] H
p=2® —1(mod 2% *1) ana t's3.

5, The evaluation of 7 a (s").

We have already defined (in chapter 1).
o if ¢ ko, (n)
o ) = {1 it ¢* |l oy (n)
for ryl; we also define a_ (n) by a, (n)=0 or 1 according as

1 disides o does not duside O;(r\\.

Clearly the definition implies that a_ (1)=t, a_ (1)=0 for ryi.
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In this section and the next we shall write a(n) for a (n) in
order to simplify the notation when this is convenient. The
results of this section and the next which involve only a(n),
and not a_(n) for r3l, are all proved by Rankin [2]; Lemmas 4
and 5 parts (i) and (ii), and Lemma 6 are proved in the first
part of §2 of "his paper for g2, and the corresponding result
for g=2 is mentioned in the last but one paragraph of the paper. .
We give the proofs here for the sake of completeness.

The next lemma enables us to determine the form of a when
ar(pa)=1, r30.

Lemma 4. (i) If p#q, a(p®)=l if and only if afup, =1

for any positive integer u.

(ii) a(¢®)=1 for all a.

(iii) If p+q, r3l, r+l when g=2 and 2 ll_ggg:l ,

e

and p =qu‘, , then a(p®)=1 if and only if a;gg:‘ -1

where (u,q)=1.

(iv)  If r»l and either p=q or r=1 when g=2 and

2 || (p¥-1) orjf:M =u" , then a{p?):O for all a.
Proof, We have

. 1
o (6%) = 1" Pe ™ = "' )/,

Oy < e
and q#’" (p”~1) where t30. For any r30, < |l ob(p ) implies

(“+1L1), and this occurs if and only if the order

r+t v
c) )
of p” (mod q**%), that isy, by definition, divides (a+1) but

. (rt1)
the order of p” (mod q?+t+1), that is p, , does not.
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[We recall that the order of p’ (mod qt) is 1, and we use this
convention also when t=0.]
(1) If g=2 and 2 || (p¥ -1), then a(p® )=1 if and only if
4 X (“ﬂ)-l), and this is so if a+l is odd, so that p =2 A (a+1).

Otherwise if p#q, a(p®)=1 if and only if B, N(a+1) and the result

follows,
(i) O‘V(q“)sl (mod q), and this gives the result.
(iii) If the given conditions are satisfied, then from

above af(p‘a)=1 if and only if

u:‘ |(a+1) but ptm Ya+1),

} Sat]

Since p:“ =qu_ , the result follows.

(iv) This part is an immediate consequence of the proof

(rat)

of (ii) if p=g and of (iii) if p, =p JIf g=2, r=1 and t=1,

$0 that v is odd and p=3(mod 4), the result follows if

)
4 @’ (a+1-1) for any value of a+ly but 2 {f (p"(“*'l)..i) if

)
(aﬂ-f-l) if a+l is even.

a+l is odd and 8|(p”
Lemna 5‘ (i) If .
7 ()™= (1™ )/ (™) (),

(i1) La(Ma™ = (1)

(iii) If p%q, r3l, r#l when g=2 and 2 ” (pv -1), and

()

R =q M, then

]

- () ) R oy -
5 ar(pa)p-oc‘s - (1_’P-(q-1\ K, S)P-(“" 1|s/(1_P-pPs)(1_P au, s).
hzy

(iv) If ryl and either p=q or r=1 when g=2 and

(e i)

2 | (p”-1) or B, =u, , then

Aé.ar(pa):p_as = 0.
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Proof. This lemma follows from the previous one .,

(i)I'F P#%q,

» oy =as 2 , - - o _
an.(p )% =£})-as _E‘P-(uup 1)s 1 p B, =1)s

(1-p7%)  (1p~ M ®)

= (1pe 017 (g7 ).

(11)  Ze(@™ = Zq* = (1)

(iii) I all the given conditions hold,

wy

2 @y —as _ F -(up] =)s _ s{ 5 -uuls F.-uqu, s
Le (e " = Lp e =p {Lp te®- Ip &

('uu “4}"'

N Lo o (G} - - (] - ‘\,\J-
__«_;pesggjles _p . s _(p (g=1) u, 8y, (Mo 1) s
«l

- el ) - )
1p ¥ (1p™e F)ap e F)

(iv) In this case

z a ()" = 0.

4, The generating functions.

It is well known that o‘v(n) is multiplicative, so that
o (0) = N ok,

“lln

the product being over all distinct primes dividing n. From

this it follows that a(n) is multiplicative; for q*cv(n) if

and only if qJ’O‘v(pa) for every p" |

n.



n=

Hence
a(n) = M a(x*).
Let #lin
£(s) = 7 a(o)n™S;

then we ha.ve.

Lemma 6,

£(s) =2(s) M (1p~Fe P8/ (apHe 9,
PEq

where %(s) is the Riemann zeta-function. _In particular if g=2

£(s) = (1+427%)z(2s).

Proof. Since a(n) is multiplicative, we have by Lemma 5

(i) and (ii)

£(s) = j—;. a(n)n™® = D {J‘;ioa(lla)?-asﬁ
- (1_q-s')-1 1_p—<p,,-1)s
Y ™) ®)
=2(s) [ 1 s
pEq, -, s

1=-p
If g=2, p, =2 by definition and

£(s) = (1-275)1 Pf:ﬁ (1-p72%) b = (1427 Yg(29).

22



25

However, although a(n) is multiplicative, a (n), my1, is
not; for q" | O‘v(n) certainly does not hold if g" [lo*v(p»(I ) for
all pa ”n (unless n=p°c). Nevertheless we can obtain an
expression for a_(n) in terms of a (n,) and a'.‘_(p,a), where n_|n,
p* lln and r¢m.  In the following lemma we assume that 'p?i”n
for all i (with or without a suffix), and that two primes p with
different suffixes are distinct. Furthermore when we consider
a set of primes P, ,ioh """piu s the order in which they

are written is significant.

Lemma, 7. If myl,

a(m) = Lip*(n,...on)) ™

(LR -2
"

7 a(pt a(’s)...
P [N Pk

LIRS

b a; - =, -,
eoea (P70 almp " p ThaLp e ),
Q’ B () a &

where (1) the set n 3T, s+ .05l TUNS through all the unrestricted

partitions of m which are such that l¢r<rg...<r and k, the number

of parts, does not exceed the number of primes dividing n,

(ii) the set p. ,p ..., runs through all sets consisting
R —— L‘ LL &R

of k of the distinet primes dividing n,

and (iii) p*(x;, ceee ’IL) is defined below.

Proof.,  Since crv(n) is multiplicative, & ”o‘v(n) , 5o that
a_(n)=1, if and only if qI3 “o‘v(pff‘x ) for j=1, 2,...,k, where
T 4T, .. .41 =0, and q,l/cv(np:ah p'::a‘x ...p:fik ). If this occurs,
a, (% )=l for j=i, 2y....,k and a(np ™ pT%,.p % )<L, and
we have

, ‘ . : - =G —a.
1 = am(n) = a( (Pca‘-\ )a"~ (p?‘l )oocafl(péat:‘l)a(np(‘ t Pi 2 ..-Pch "‘)o

o

(11)
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Clearly (11) will hold for only one set Tye.s.X, satisfying

T +...+r=m; denote this set by ﬁ ,....,fk.
Define M(r, ,p, 51,0, 5...57,,p, ) =a_ (p " )a_ (p™ )...
b ‘2 ‘o ' 4 Y2 he'S
. . .
a. (prie Da(np "% p. %rv..p % ) (so that the expression
® L < iy ‘o
on the right of (11) is (%, ,p, 58D, 5....50,p, )). If we
“ ‘2 “f

use a different partition of m or a different set of primes

P. sP. s...sp dividing n or both, then we obtain an expression

&‘ a." ®

of the form

ws
.

we
e}

M(r! ,p! ;r! ,p!

2 .
l7_ \.P:

which in general is essentially different from, and not just a

rearrangement of the terms in, M(x, ,p ;T 4P 5...3% 5 P, ) ; with
. < “’\

the exception of the case discussed in the next paragraph, if

M(r ,p 3500 e..57, 2 )=1, M(x',p! 5! ,p! 5...5r) ,p' )=0. (12)

¢ 2 (S bl Y
However if the r are not all distinct, and if we rearrange
<

the set of primes p, 4,p y....sp. in such a way that
Y ‘2 ‘R

\‘ . t . e’ ' = M T T - e
M(r( ’ Pc‘ T sP,LL 5eeesT ,P,‘n) ( . ’PL| H L,P:" $eecs \l’P;k )s

the terms on the left being just a rearrangement of the terms on
the right, then we can regerd these two expressions as being
equivalent, and clearly if

e . o t . ! o . 1 =
M(r‘ P, 3T, 5P, $e-esT ’p;h) =1, M(r\ 3Pi‘ 3T, ’PlL""’rn’p; )=1.

'R r

Denote by p*(r,...,r) the number of different ordered sets of
' W
primes p! ,p' ,...p' which give rise to an expression which is
v < .‘.h

' n

equivalent to
M(r oD 3T 4D 33T 5D )3
.(‘pc\,”is 3‘)_’.%):

we shall now calculate p*{q ,...,22.
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Suppose that the set T se..T, contains T distinct elements

r* ,rf seeesTH (s0 that r¥cr¥<. . .<r¥ and 1<t<k) occurring
(%

1}

€ s t, s...5 ¢, times respectively in the set; clearly

A+ G4 4=k, Ve have M(r P, 3T, 3D 3e-e3T, 5D ) =
. 2 R
M(r* ,p 5...3TF ;b 3T* ;b 5...3T* ,p ). The set of primes
‘ t, "(‘q-\ "t‘+ ekl

P, ,pa s-+.sP, can be arranged among themselves in ﬁ". ways

13 f‘

without essentially altering M(r ,p 3eee3T 5D ), and similarly
\ N ta

\

the remaining < -1 sets of primes can each be arranged among
themselves. However interchanging two primes which are paired
off above with different values of r¥ , for example interchanging

p. andp  , will essentially alter M(r ,p. 30043% 5P, ).
i ¢ 3

L ‘-(\‘_\ 1)

Thus the whole set of primes p. ,p 4...,p can be arranged in
L (9 t.k

\ kN

exactly (!t'!...¢ ! ways without essentially altering

M(x ,p, 300037 5D ). Hence

23
pz*(r‘ 2T, 9eeesl ) = 1“,(1':...6#‘,.

It follows that, if a (n)=1,

*,

7 T Mz ,p .57 5P, )
a+~'-+€'“:m PL 1P, it ‘u
AL

N -, . -,
_ Z Z a-«_ (pzzf\ )a‘_x (Pta‘,l).. a.‘_K (P‘:‘k )a (np:a‘.p‘.t-an,_, .op: Lo )

B fre=tC = V-
.+ ks P‘_‘I ,(bah

= P*(f',‘ ,g;,oo-’;h ) = P* (:“l;;l“"n;%)ah‘&'\\|
where the set f" ,fL ,...,fk is the particular set occurring on the
right of (11), and where the conditions on the summations are

as given in the statement of the Lemna, Since the inner sum

is zero unless T, =£ s j:l,z’,,,,k, (which follows from (12)),
i i




the result of the lemma follows in the case when a_(n)=1.
If a (n)=0, a1l expressions of the type
M(r, LA IR )s
with r +r, +,..+r=m, will be zero since at least one of its terms
must be zero, and the result of the lemma follows in this case
also,

We are now in a position to find the generating function

£(s)= La(an™®

nx=y

for m31.

Lemma, 8. If v is odd and g#2 or if y is evenm,

£ (s) =£(s) Z fp*(x ,;--,rk)‘z-l T P(p,u™ 38) T P(g,u(:‘);S)---
I 14 A & *

A A
iP(p,p\:");s),
where b .o
Fhere - -
- L - -k -
L (™% (ap™e 8 (1op (AVH, 8y, D)8

P(P"Fi: ;5) ( 1) e ) ’
(1=p~ e TH S (1mp™He F)(1p W P)

where the set r ,r ,...,r, runs through all the unrestricted

partitions of m, and where the sum over p, (i=1,2,...,k) is over

{r+0) - ()

all primes except g,p 3P, geeesD and those for which p =,

If v is odd and g=2, the same result holds provided that each

sum over p satisfies the conditions above and the additionral

condition that p=1(mod 4) if r=l.
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Proof, By Lemma 7,

—

() =L L o endi T e GRG0,

, .--A\»(‘k":.vv\ Pi, e \,\
a_ (PL iw Yalnp %p T . .p tin )]n’s
R = A s “n
= ..Z_ L {p*(x, ,...,r)} a (Pa‘ )p—a s La (p )p 55,
=\ v‘A---»rh-; p.'l p(“ A

1 Y

L a (Pa‘k)p 2> a(np %p ... p % )(np ®p %, L op ) S
‘ LS &k

P h’\ LR +
= . );r {P*(I“ 9w sr)} Z bA a (Pa' )P:-a‘ s ,Z La P % )Pual s
(R nod= 2 Lt >~

o L La G070 I el (1)

d =« ‘L v
R
e SRR

where each sum over p is over all primes except the ones indicated.

By Lemmas 5(1) and 6, we have if p¥q, i=1,2,...,k,

i a(n)n™® = (;\ {sza(pa)p_as} = f(s){i\‘ {‘.Zia(P?" )P:ai 51]}—1

Nz

{n, P,—-!?h_)—,\ PED,- “'a

= £(s) 11 (1-p") (1) (1™ L sy-1 (14)

L-C

We do not need to consider the above sum with any P, equal to q;
for if p=q, avs(p:xi )=aej(qa1)=0 for all a, by Lemma 4(iv) and the
corresponding term on the right of (13) is zero.

If we now use (14) and apply Lemma 5 (iii) and (iv) to (13),
we shall obtain the result of this lemma. We note that if v is
0dd, =2, r=1 and p=3(mod 4), then 2| (p’-1), and so by Lemma 5(iv)

T a'(p“)p-asao in this case; hence if v is odd and g=2 we have

to include in each sum over p the additional condition that psl(mod 4)

if r=1,
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5. Proofs of Theorems 1(i) and 2(i).

In this section we shall assume that q and h are both odd.

It follows from (10) that B, cannot be even, so that p $3 and

hence p’' »3 for all ryl, From the definition of P(p, /": '),
we have

o +,0° =tlg=D "oy =y =1)o -
eRNEDIE (149 ) (14 ™T") (14p »O)p He \<ﬂ(o_)p-m,-1)a,

- - ) - ((3)
(1-p~ s DO (1pHe O (1p™Fs )

where (L(0), a function of o=Re s only, is obtained by using the

inequalities p32, u 33, i »3. Hence

)
L Ploss) | < Z_IP(p,u(: 38) | sﬂ(w)gprm"-ﬁcs IL(O');P'"% (15)

Lt

which is convergent for 0>%; thus the sum on the left must be
absolutely convergent for o>%.

Since p >3, the infinite product in the expression for £(s),
given in Lemma 6, is also absolutely convergent for c>%. Hence

it follows from Lemmas 6 and 8 and above that
£ (s) = 2(s)g(s),

where g(s) is holomorphic for o>4 and bounded for 6yz+s (§>0).
This completes the proof of Theorem 2(1).

We shall now show that Theorem 1(i) follows from Theorem 2(i)
and the Wiener~Ikehara Theorem which we state in

Lemma 9. If @(t) is a non-negative, non-decreasing

function in Og¢T< » such that the integral

B(s) = | ™R (vat
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converges for 6>1, and if for some constant B and some function

¢(t), where t=Im s,

1im {F(S) - _B__.} = G(«b)

-l S—1
, o

uniformly in every finite interval -ag¢t<a, then

. -
%ﬂ @(‘t)e = B,

This is given in 817 of Chapter V of Widder [5].

To deduce the result from this, let

#(s) =2 () = La (@™,
@(’t) = S(eﬁt) = fé{ am(n)’
B = g(1);

then in order to prove Theorem 1(i) we need to estimate S(x), for
x
S(x) = Za_(n) =D (v,q5%).
Nz

Clearly f _(s) is holomorphic for ¢>1, so that

£(s)= 7a (0™ =T {s(a)-s()n™ = [y %as(y)
= [[e™as(e) =5 (e Cs(Nar =5 [eT Glr)at

converges for ¢>1. Since é(s)s(s-l)—l is holomorphic for 6>0
(see Lemma | (i) of chapter 3) and g(s) is holomorphic for 6>,

it follows that ﬂ“(s)sai-g(l)(s—l)-l is holomorphic for 6>%, so that

lin {£ (s)s™t - g(1)(s=1)"1] = e(s)

o D\t
uniformly in every finite interval -agt<a. It is obvious that

@ Cf)=S(ét) is non-negative and non~decreasing in OgT< .
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Hence the conditions of Lemma 9 are satisfied and an application

of it yields
lin §(v)e” = g(1),
whence
Lin S(x)x'l = g(1).
Thus as x>«
S(x) = gi‘am(n) = D_(v,q5x)~ g(1)x,

which is Theorem | (i),

e

6, Proof of Theorem 2(ii) for m'>1,

We assume in this section that q is odd, h is even and

m'=[m/(341)]31. Then it follows from the proof of Lemma 3 (i)

that for any positive integer r there exist primes p for which

a}
¢ =2.

For such a prime p we have by the definition of P(p,/f;s)
that

O] 1- ) 1_ 1-
P(p,u, 3s) = P(p,2;s) (1=p~")(1-p ") (1-p )p

(1-p~5)(1-p2%) (1-p2%)

-2(g=1ls _=2gs
P q -p ot

; 1= P -5
1-p~298 ( 16)
Hence
L P(P,ﬁﬁﬁ 5) = Z: P-s + \1(5)’ (17)
":#ﬁ,.a,-..p‘._l i w:f: @ ¢
A q ol

where the sums on the left and the right are non-empty if and

only if r >f+1 by Lemma 3(i) and, by the arguments used at the

beginning of §5, v (s) is holomorphic for o> and bounded for

6;‘12"?8 :oi‘ ar\\J S)O.
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Lemma 10. Assume that r>¥+l, TLetb,, j=1,2,...,

Y+1 .
¢a )(v g-1), be the distinct elements of a reduced residue

system (mod qr+1)( which occur in the proof of Lemma 3(i), and

1y

let Xbe a character and ¥.the principal character (mod <

If L(s, X) is the Dirichlet L-series associated with the character

X , and G(s, X) is a function which is holomorphic for 6>;.1>: and

bounded for 63&+$ , for any $>°, then

- ¥ - -
P{; p " = (v,g=1)q * {log 4(s) + log (1-q ){
{rey t ()
? \"A: MP

4

(-

-1 g Hy,q -0

J=i

{ 7 log L(s,x)% ‘ZGLSJK)}

Xxx, X—('b.; ) 4 x(b‘,. )

where the sum over X is over all characters X (mod qr+1l except,

when indicated, X, .

Proof. By Lemma (i)
(33
@lcb )(Y/q,—(\
-3 -3
Lo L Z. " e
Lm-t)i " j=t P":'bl‘(moéi'mj
o =M,
o=,

and the b, can be determined from the proof of Lemma 3(i).

Now

log L(s,X) = 7 F L XY

P*¥ w=cn pUs

(see for example equation (1) of section 2, § 14 of Hasse [6])

and hence
X (p) T 1 ox(p® -
10g1(s,x) = 228w T 7L X8 L 7xep™ a(s,x)
e P p M= p [ .

where G(s, X ) satisfies the conditions given in the statement of

the lemma.
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Thus by a well known property of characters (see for example

equation 2' of section 2, §13 of Hasse [6])

$(™) I =y 7 X() »™° = ylogL(s,X) + y (s, X)

53 b“ (rmod i:“) . X %
% (b) X(o; ) X(v, )
where the sum over X is over all characters X (mod qr+1). Since
L(s,%,) = (1=g"") 2(s) (19)

(see for example section 1, §14 of Hasse [8]), and ‘?f_")ca(bj.)=1,

L 27 ={ ¢ Mrog {(1-a) 5(s) ] + T Log Is,X)

s -(MO ray
4 b.; ch ) 74-#760 x(b )
4

+ 7 G(s, X) ,
¥ X)) (20)
This together with (18) gives the result of the lemms.
The next lemma is proved by Rankin [2](in the paragraphs
containing equations (12) to (14)).

Lemma 11, Let g be a primitive root (mod q).and let X(n)

be the character defizgewgi_ﬂp_y_

X(n) = e(p/h) for n= gB (mod q ),

where e(2)=exp(2viz). Then

£(s) = 2(s) {F(s)} ¥y (s),

where v (s) is holomorphic for o’>:l_- and bounded for 6;32-4-6 for any

$ >0, and where

B(a) = 1 {10e, ¥)/0(e,) = T (e ()™ T 2,20 100},

L1
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Proof. Suppose that pkq and h } ¢,; then u =h/(h,c,).
It follows that
(e, ,h)  if p, is odd

(cp ’Jé'h) = {

(e, ,h) if p, is even,
Hence, if ¢! =c,/(c,,h), so that (c! ,u )=1,

5 {Q—x'(p)p'l} -5 {ci—p'secog/h>) |- r’i{iu—p'secc: o/u.)) }h/“o
(1=XTp)p™®) (1=p~%e(2c, r/1)) (1-p~%e(2¢} r/p,))

rai =1 =y

If p, is odd, this last expression equals 1. However if p, is

even, this expression equals

O p~ele! o/u,d) ) Ve {(1-1@'“"3) B,

M, _ - n
‘ﬂr__“(l"'P, se(c: r/-%pP ))2 (1-p~2H 5)

It follows that

F(s) = 1 V‘\i(l- X (p)p~%) H"l _ E‘L{gl:g-%vpslz ‘ h/ur,'

Lol N}

pq (1= X" (p)p™®) (1-pHe®)
By Lemma 6,

-, -1 %), M (1p™ 5yL/k,

) MpCuen

£(s) = g(s){F(s)}l/h o, (e

1
-3, 842
0 @™ 0 ™) /s

PHq

= 2(s){F(s)} Y Py (s),

say. Since Y (s) is an infinite product of factors of the type

Mg €uEn

(1=p~*®) with u»2,y (s) is holomorphic for o>% and bounded for

0¥+ 8 .



To complete the proof of the Lemma, we observe that, since

X is a character (mod h),

F(s)

tfj\L(s'f) {“L(s x)i JL(s, )2

r4th

0 (2= -7 gyt ”L<5s" ) {h I‘(s’m%-z

by the result giving (19).
We are now able to complete the proof of Theorem 2(ii)
when ~'>1,

From (17) and Lemmas 8 and 10 we obtain

£.(s) = £(s) T ge*(r.,.n.«m":f_\i(v,q-l)qx-r‘ {log 2(s) + log (1-q7°)}

Cr- =
£ B (1eiek)

-7 - Q({“](‘, -—l) (({
+ g% (gm) T log L(s, %) + T 6(s,2) |, v.(s)

e (o, ) ¥ K% (b, b, )

:*1). and otherwise the notation is

where X* is a character (mod g
the same as before, Clearly the term on the right containing the
highest power of log Z,(s) will occur when the product contains its
maximum number of terms, so that k takes its maximum value, Now
k will be greatest when tﬁe r, are as small as possible and this
will occur when the r, are as near to the value ¥+1 as possible;
however the r, cannot all equal J+1 unless (¥ )|, Thus
the maximum value of k is

[m/(¥+1)] = n',
and in this case

IZ: K+1+I".. 9 i=1,2,aoo’m',

(21)
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where

ogr! <m-m' (¥ +1)<¥+1 and Lr! =mn'(3+).

The r! can be chosen in p(m,¥ ) ways, where p(m,¥ ) is the number
of unrestricted partitions of m-m'(¥ +1) into at most m' parts.
Hence the number of ways of choosing the r, when k takes its maximum
velue is p(m,¥ ). This means that the term on the right of (21)

which contains the highest power of logZ(s) is

£(s)p(my¥ ) (v,q1)™ ™ * ™ {logz(s)} ™ , (22)
where

p(m,¥) = I (P*(¥ #lar! , ¥4lar! 4.0, ¥ +l4r! N3,

TGl 2 e ()
the sum having p(m,¥ ) terms. The remaining terms will be of the
form

#(s)og ()} N {log L, X ™) ()] (23)

where Ogucm' , Ogve¢m' -u, and 1¢r <m=u (¥ +1), where the r, are not
necessarily all distinct, and Y is a non-principal character

(med g™ +1), and where m, (s), a function of s and the characters
occurring in (21), is holomorphic for o>% and bounded for Gys+$

for any ¢ >o. Hence from Lemma 11 and equations (21) to (23)

we obtain

fm(S) :%(S)}l«-l/h i {10g 2(s){™ H (s),

U=

where H_ (s), Ogugm', satisfies the conditions of Theorem 2(ii),

and H , (s) can be obtained from (22) and Lemma 11,
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7. Proof of Theorem 2(ii) for m*'=0.

We assume now that q is odd, h is even and m'=0. The last
condition means that m¢s , so that ¢"|v. If remeX , then by

(10) and Lemma 3(i),
M, =2 and B

cannot both hold. For if p’ #i(mod q), p:' = /\:l p,=4, for
‘r¢ v4#l. On the other hand, if p’=1(mod q), pf: =q >q>5.

Hence, as in the case when both q and h are odd,

(A
Z  Plp,u, ;s)
[75.5 X1 FETEN SN * *
(F41) )

ﬂ‘,; = ‘L/“,;
is gbsolutely convergent for 6>% when r tmby the arguments which

led to. (15).
Thus by Lemma 8
£ (s) = £(s) n(s),
where v (s) is holomorphic for 6>% and bounded for oyi+s .
Since h is even there exist primes p for which p =2, and henée
‘py Lemma 11
£ (s) = (2()] Y2 m (s),

where H_(s) satisfies the conditions of Theorem 2(ii).

8. Proof of Theorem 2(iii).

We assume now that g=2. From Lemma 3(ii) we observe that -

) [CEV] wy
o=

p =2 and p_ =2

? ? L3
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do not both hold-unless either r=1 and either v is even or v is

odd and p=i(mod 4), or r=2 , v is 0dd and p=3(mod 8), or ry3, v

r+1) .
2

is 0dd end p=2"-1(mod 2 thus for every odd prime p there

is exactly one value of r for which p:l =2 and u(:w =2pﬂ .

When g=2 and p:) =2, (16) still holds, and hence by the arguments
used in §5 and §6 it follows that
qu -
L elom, 38)= L p° +u(s)

H P

[ W YRSt
Dt (] (f‘:,f‘) 158}
Wi - “y :2)4P (24‘)
M, o= Ap 1)
v (3 . Y=
M=

where V (s) is holomorphic for o>t and 'boufxded for Oyi+s for any
$>0. We observe from Lemma 3(ii) that the sum on the left of (24)
is never empty; this is true even when the sum on the right of (24)
is empty. From the remarks at the beginning of this section it

follows that

-3 . .
Lop if v is even and r =1 (25)
%1 L
-5 . .
Z P = 0 if v is even and r >1
(£ 3
(e 1 W)
M = - .. .
T 1T CZ P if v is odd and r »1.
s, =2 P22 -1 (mod )

Suppose first that v is even, Now

Ip™® =logz(s) - L T %us -27% = logz(s) + &(s),
%2 4 w=3 up

where G(s) is holomorphic for 6>} and bounded for oyi+$ for any
§ >0 (see section 4, §12 of Hasse [6]). Hence we obtain from (24),

(25) and Lemmas 6 and 8 that
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£ (s)

1]

@2™NE (@) T ffere o)™ 106 2(s) 45(s)

=
A —an v
k

feefa £.(s)) f‘—w.xs)}

(‘i>' lj-w%i‘:.h) Loiet

"
nE

{108 2(s) " B, (s),

where H _(s)= “-:—:(1+2-S) z(2s) and where H_(s), Ogusm, satisfies
the conditions of Theorem 2(iii); in fact here each H_(s) is
holomorphic for G>% and bounded for G6y+$ and does not involve
any L-functions.

Suppose next that v is odd. Then by (20)

L p™®=27{10g4(s) + log (1-275) « 7 log L(s, %)

Pz lh—‘ (mod IF'H) x % _xe x (zr—l)

+ 7 .(ﬂf:_’_‘_l_}

= x(2f-1) (26)

where X runs through all characters (mod 2t*1) except, when indicated,

X.. Hence from (24), (25), (26) and Lemmas 6 and 8

£,(s) = (2™) z(2e) I §¢(nn ) 1206 2(5)

Ct 40 2
[N

+ log (1-27%) + log Lgszl } QSZX” X+NIM}

é'*"v“ £(2™ -1) x D% 1)

() "
where X is a character (mod 21:"'1).

The argument to be used now
is similar to that used in §6. The maximum value of k is m which
occurs when r, =r =...=r, =1, and thus the highest power of log z(s)

appearing on the right is {log Z( s)}m. Hence
£ (s) = Z_ {log é(s)}u H_ (s),
where H (s)m,,,.2 (1+2 s) z(2s) and H ( s) satisfies the conditions

of Theorem 2(iii).
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CHAPTER 3,

1. Introduction.

In chapter 1 we defined h(s) to be a function which can be

expressed both as an infinite sum of the form

B(s) = 7 b(a)n™®,

where b(n)30, and as a product of the form

n(s) = {z(s)} Plrog 5(s)}" H(s),
where 0<Bgl, u is a non-negative integer, and H(s) is a product
of powers of Dirichlet L-functions associated with non-principal
characters, non-negative powers of the logarithms of such functions,
and a function holomorphic for o>% and bounded for oyz+$ for any

¢ 50. More precisely, we can write H(s) in the form

A ) A e}
B(s) = N {log L(s, X, )| " 1 {L(s, X, ™ y(s),

L=t

where the v , i=1,2,..., A, » are non-negative integers, the

W , i=1,2,..., A , are positive integers, the w., i= A +1, A 42,
«+es A, , are negetive integers, where the 7-:.‘\ , for j=1,2 and
all i, are non-principal characters (mod k;q ), and where ~y(s)
is holomorphic for o>5 and bounded for oys+s for all § >0,

The object of this chapter is to obtain an estimate for

3Pﬂx

lb(n)y

where x is a large positive integer, in terms of x and constants.

The result to be obtained has been stated in Theorem 3 of chapter 1,
The method used to prove this theorem follows in principle

one of the methods used to prove the Prime Number Theorem (given,
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for example, in Landau [7]). Briefly, we find a certain contour
[ inside and on which h(s) is holomorphic, and we integrate
the function x°h( 5)5,2 round this contour (see $3). 1In this

way we are able to o'bta:‘_ﬁ an estimate for

1 (a)osa/n),

given in Lemma 8, and then to deduce the required estimate for

éb(n) (see §4).

2. Preliminary lemmas,

In the follqwing two lemmas ¢, 3C, 900 denote positive constants;
in Lemma 2 these constants depend on the non-principal character X
occurriﬁg in the statement of the lemma. In these lemmas, we
shall state some properties of Z(s) and of L(s, X ) which we shall
need to use in order to determine the behaviour of h(s). These
properties are all proved in Landau [7].

Lemma 1.

(1)  z(s) - (s-«l)-l is holomorphic for ¢>0,

(ii) There exists c, such that %(s)#0 for |t|33, opi-c {log [t]] —9,

and for |t|¢3, oyl-c {log 3] -,

(iii) There exists c, such that

lz(s)] < ¢, log |t
for |t]33, oyi-jlog 6]} "

l10g 2(s)| < ¢, {20z [6]]°

5 and c, such that

for |tl35, oyi-c, | log |8} .
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(iv) There exist c,,cand ¢, such that

| z(s)] <ec,  and |10g z(s)] < c,

for |tlg3, 1-c, {log 3y P Lo, L.

The properties given in parts (i), (ii) and (iii) above are
contained in §42 and{43, §46 to{48, and $64 of Landau [7]; part
(iv) follows immediately from the rest of the lemma.

Lemma 2. Let X be a non-principal character (mod k); then:

(1) L(s, X ) is holomorphic for 6>0.
(i1) There exist ¢,,c,,c,, and ¢ such that

[L(s, X} <e, log |4
for |t[33, o3~ {loglt|} ™, ana

|2(s, x)| > ¢ {Log [£{™ ana  |logL(s,x )] < oflog |t]] 7
gor  [tl33, o xi-c_{log |t} 7.

(iii) There exist ¢, sc,, and ¢ such that

0 <c < |L(s,x )] < c, end l10g L(s, x )| < ¢,

for |tled, e llog 3} ™7 coxl.

With the exception of the bound for llog L(s, X)l, theproperties
given in parts (i) and (ii) above are contained in 114 and §116 to
§117 of Landau [7]. The bound for |log L(s,X )| can be deduced
from that of [L'(s, x)/L(s, x)| (which is ¢, \log l£]Y 7, as is
given in $117 of Landau [7]) in the same way as the bound for
|10g 2(s)| is deduced from that of | Z%(s)/%(s)| (see §64 of

Landeu [71). Thus if [£[33, 1-c {log [t]} 7 <oc2,
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) 1
|10g L(s, X) - log L(2+it, x)| = < 2%,“'03 Itl} ,

[s L'(z, x) az

L(Z"X )

A+l

so that

|10g L(s, ¥ )| < 1og 2(2) + Zcmr‘llog |+] 37 3

if |t|z5, o 32,

[10g L(s, X )| = IZ x (p™)

ns
up

< Z(m®™™ = 108 2(2).

™, p

Hence for ’tle, 621"0,0{103 !t” -7 ’

|10g L(s, x)| < cq{log || 31 .

Part (iii) of thelemma follows immediately from the rest of the lemma.
We observe that the lower bound for lL(s, X )] implies that L(s, X )=0.

The next lemma is an immediate consequence of Lemmas 1 and 2
and the definition of h(s). We observe that, if oyi+s . for any $>o,
| v (s)ke, (since y(s) is bounded). For suitsble positive
constants 4, s, ,6.3 , (the actual values depending on the constants
of the previous two lemmas and the definition of h(s)), we have

Lemma 3.

(i) The function h(s) is holomorphic for |t|>3,

o31=d {log lt]} -9, and for |t|<3, oyl-d {log 5r9 except for
a singularity at s=1,

(11) [n(s)l <a, {10g |4]}"

for l£]53, ox1-d {log l£]} -9 , where K >0, and

In(s) | < a,

for |tl¢s, o=1-a {10z 3",
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It follows from Lemmas 1 and 2 and the definition of h(s) that

we may take

K = (1-8) + 9u + E‘Ivﬂ- Ewcq- % 5w, ,
and that the constants d, a.nd- d, are pr—oducts ;?tl;he constants c.
The constant: d, must be chosen so that all parts of Lemma 1 and,
for all characters X appearing in the definition of h(s), all
parts of Lemma 2 are applicable in the corresponding regions of

Lemma 3.

Lemma 4. If |s-il¢d, {log 3} %,
n(s)s 2 -m(1)(s-1)Pt f=log (s-1)}" |

L (%)(- 208 (s} (o) g (a2t

4

= k-1
where the w. are constants, and T wjk(s -1) is convergent.
N k=t

Proof. By Lemma 1(i), (s=1) Z(s) is holomorphic for ©>0,
and

lim (s-1) z(s) = 1;

s»1
also, by Lemms 1(ii), it is certainly true that if |s-1|<d{log 3% ~°
z (s) £ 0.
Hence K(s)-f log Z(s) + log (s=1) is holomorphic when

| s=1]¢d {Log 3179, and

1im K(s) = 0. !

s-1

Now

n(s)s™2 ={z(s)} P {108 2(s)} * H(s)s2,

(1)

(2)



where H(s)s-z, being the product of a function holomorphic for
o>} and bounded for oyz+$ , powers of L-functions associated with
non-principal characters and positive powers of the logarithms
of such L-functions, is holomorphic when |s-1|<d {log 3} = vy

Lemma 2, Ve may write

n(s)s™2 = (s-1)P 1 -10g (s-1) + K(s)|™ {(s=1) 2(s)} P m(s) &2

= (s—l)ﬁ-l_jf (g)’\-log (s—l)}u_j{K(s)}j{(s-l) c‘;(s)}l—ﬁﬁ(s)s-z.

For all j, {K(s)’}j $(s=1) z_’,(s)}l"aﬁ(s)s-z is holomorphic when
Is—1|\<d.‘ {log 5}—9, and hence it can be expanded as a convergent
power series of the form

S k

kgo “)jk (S-l) :
From (1) and (2) we have that

w = 1im[§msvf{(s-1) z(s)}l“s"ﬁ(s)é’z)= 0

o Y

for all j»1, and that

o, = 1in {(s-1) 2()} P H(s)s™ = B(1).

00

s»>1

Thus we have shown that

n(s)s? = B(1)(s-1)P? {-10g (s-1)i"

+ (s-l)B-li (

J=Q

“) (- 1og (s-1)} ¥ 7 o (s-1)F,
j k= dk

and the result of the Lemma follows immediately.
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3. An estimate for [ b(n)log(x/n).

n=y

1 PN 0 if O<ygi
ys “ds =

2131 “aia

Lemma 5.

log ¥y if y»1.

This is proved in $49 of Landau [7].

Lemma 6.
x 1 Wt Lo 2
L v(n)log(x/n) = —— x°h(s)s “as.
e ZT i A~Leo
Proof,
Atlga Al
1 s -2 1 -2 5
Py Jmnx h(s)s “ds = 3T L-;a s 2;_. b(n)(x/n)%as
1 = ot s -2 S
= 73 r b(n)l (x/n)°s “ds = T b(n)log(x/n)
n=t A~ o a kgl
by Lemma 5.

Our next aim is to estimate the integral appearing on the
right in Lemma 6, To do this we cut the complex plane along
the real axis from the point s=1 to the left. Let I be the
contour “KABCDEEISEEE, where the vertices above the real axis are

defined by

A=2+ ¥, B=i-d{log@|™ + ik,

C=1=4{log 5}'9 +53i, D=1-4 {log 55'9 ,

E=1-¢
for a small, positive § (which will tend to zero later), and

where A,B,C,D,E are the complex conjugates of A,B,C,D,E;

neighbouring vertices are joined by straight lines except for
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B,C which are joined by the curve
o=1-4aflog t]™° (3¢t®),
B,C which are joined by the curve which is the image in the real

axis of the curve BC, and E,E which are joined by the circle

|s-1| =5.
€
I
B - < A
E
I
]
]
i
! S
]
'
3 i r
i
)
|
ol &L v
L]
]
1
AN
]
!
1 ~
i
1
'
)
]
i
® > A

The constant d, has been chosen so that h(s) is holomorphic in

the region bounded by I” (see Lemma 3(i)); hence by Cauchy's

Theoren
jr xsh(s)s.'zds =0,
so that
} xsh(s)s-zds = -S xsh(s)s-zds. (3)
AR ABCNEEDCRA
Lemma 7,

xsh(s)s-zds + 0 (xe_“““) )

Lotmostyn) = - gzl +

ED
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A Proof. From Lemma 6 and (3) we obtain
x ik At i
ﬂ?;\'b(n)log;(x/n) = 211‘\':'1. ([ +} +J ) x sh(s)s_2ds
2-tw Aa R4ix
2-ix 24l
=3 (0 SRS N L CCE S
-t RBCDEZDCRA 2+t ,

We now show that all the integrals on the right except those over
DE and ED are sufficiently small in absolute value to be included
in the error term of the lemma,

(i) By Lemma 3(ii),

QA+

~ g K-
xsh(s)s-zds < J leh(s)l Is-2ldt < 2 d (Log t) +~2at
x"-

xl—

2+ix”
~

< X2 j dl_b-z-i-id_t = O(xzx—2+22 ) = O(x2£ )

X

for any ¢ >0,

ii) Since |AB|<2, we have by Lemma 3(ii)

<‘x2d2 (Log :ztz)K 4 =0(:f:-'2+i )

J x°h(s) s~2as

AB

for any < »0.

(iii) On BC, o =1-d, (log t)™ and 5¢tex’; hence

I § j xsh(s)s-zds
dae

¢

ks ._9 - -
J" A4 (108 )7 10 g (10 £)%it) | | 9a (log £) 07 sifat

3 [1-a, (Log £) 7%} 2ue?

3 3
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by Lemma 3(ii). Let y=exp &(log x)l/ 10}; then

> -9
»IX & (log ) £ 24t = (

L S -9 _
] +fx )xd‘ (Log +) t 2(11:
3

300
1Y

= 0(x% (Los y)-g) + O(lx t"zdt)
‘ ¥

[}

0 (exp {-a, (log y)-glog x }) + 0(3’-1)

= pled (1o x)%}‘ +0(e-(103 x)ﬁ:)

Therefore
1

0(x(r0g x) o (Lo x)m) + 0(x(108 x) o=(Loe X)‘o)

= 0{xe_(1°g x:)”}

| L xsh(s)s_zd.s |
(4

since

. ¢ -d. (log x) . K -3 §" . ok m
lim | (log x) e _1lim | 3 e _lim{m e -0
el e ~Uog ) = o= SCHEE BERESS U

and similarly

\(1015 x) o~(108 9" }_ 0.

Lin o—(Log x)™

(iv) By Lemma 3(ii)
-9
IJ xsh(s)s-zd_sl = O(xl-d”t (lOg 5) )
(v) By Lemma 4
| L_xsh(S)s"Zasl = 0<xl+8 l(log%)ulgs-lzfrs ) - O(xhs\(logs)ulsﬂj ;
since f>0,
uin {=*% [(1086 )%[sP] =0,

and thus

1im i J xsh(s)swgds} = 0,
S0 EE
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by Lemma 3(ii). Let y=exp -\(log x)l/io}; then

. Xz - "9 - Y 2 —9
f & (tog )77, 244 - (f " )x-d‘ (log £)7° -2,
3 3y

- Q(x-d‘ (Log y)'g) . 0("; t—zdt)

]

0 (exp {-a, (log y)-glog x }) + O(Y-l)

]

08 (Log x)'LJ' N O(e-(log x)ro)'
Therefore

O( x(log x)K o (1og x)mJ + 0( x(log x)K e"(10g X)m)

| L xsh(s)s-zdsl

A
- 0(xe-(log x) )
since
. 3 -d (log xjt A | St ' ok ﬂm
lim { (log x) e _1limy 3 e _lim|{m e -0
X=Yen e _(log xT/n = "—)ﬁi e_gllu , T Do d’“u = 3

and similarly

Vloﬁ x) e"(1068 o }

= o~ (Log X"

XDeo
(iv) By Lemma 3(ii)

Ij xsh(s.)s'zdsl = O(xl-d" (log 5)_9)_

(v) By Lemma 4

| [ x®n(s)s7as| = 0(x™° [(1085)%sPP2ms) = 0<% (2085 )s®) ;
EE
since >0,

lim §x1+8 [(1og 6 )u[SB} = 0,

and thus

1im H xsh(s)s—zdss = 0.
SDo £z
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By symmetry the bounds for the integrals along curves in the
lower half plane are the same as ‘the bounds for the corresponding
integral (i), (ii), (iii) or (iv) in the upper half plane. Hence

by (4) and (i) to (v) we have

éb(n)log(X/n) = - -2-3;-1-{{ JDE+ |

[
P
]

& x°n(s)s 2as + O(xe-(log X)‘)

™m

where in the integrals along DE and ED we assume that § has tended
to zero,

Lemma 8, Let Z|(x) = ib(n)log(‘x/n).

n=y

(1) If 0<B<l and uyl, then

u u-1
T (x) = H(1) x(log log x) .. [x(log log x) )
N C(1-p) (1og x)P ( (1og x)P

(i1) If 0<p<i and u=0, then

Z(X) = Hil) X & ____3_(____ .
' ™ (1-8) (108 x)P 0<(log- X))

(iii) If B=1 and u32, then

Z‘(x) = ui(2) x(log log x)u—i + () (#(loa log x)unz)_

log x log x

(iv) If B=1 and u=l, then

Z(x) = H1) 1555 *0(%)-

(v) If p=1 and u=0, then

Z(x) =0(___35__) .

(1og x)*
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-9 :
Proof. Let 6=i~d (log 3) ~. Suppose first that B and u
satisfy the conditions of (i), (ii) or (iii). If 6¢s<l, then

by Lemma 4

|x°n(s)s™% —H(1)x® {-log (s=1)Y%(s-1)P"2|

=l=* 7 u) ”1°g(s-1)3“'3(s-1)52 (1)

J=o J
=0(x I llnoste-t)i3(e)?)| T wjk<s-1>k'1l)

JO

zO( ‘ i Hlog(s—l)‘]u-j(s-l)ﬁ‘l)

d=o

since 7. @, (S—l)k—l is convergent. When 6<s<i,
k

£

[{10(s-1){""9(s-1)P|=0(1) since B>0; hence

x° JZ; |\log(s-1)‘gu-3(s-1)3|ds = O(} x ds) = 0(x/1og x}.

\ TR SR P UL S P
\ xn(s)s %ds = }e H(1)x® {1 lst A RPN v
}; H(l)xs-{-log(s—-l)ku(s—-i)ﬁ-lds- +0(x/10g x),

where s* indicates the upper edge and s~ indicates the lower edge

. _ o T
of the cut. Now (s*-1) = (2-sT)e' ® ana (s7-1) = (s*-1)e 271

-T3
= (1—s+)e *; it follows that

U +j,-}x n(s)s 2as = H(i)j x° (1 )P 1{{ 1og(1-5*)-13}% Ti(p-1)
'3 ?

be
~{~log(1~s")+T i\ue'Ti(ﬁ-l)}ds"" + O(——ﬁlo’; -

z @3\"1%(1-5)&“"’“{(- 1) THBL) ¢ pgymmae-jfy

Mm=0

= H(1) S‘ xs‘(l-s)B-j‘{

e

+ O(g5]
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= H(l) ':Z;) (;){(-ﬂi)me“_i(ﬁ-l) _ ( 'ﬁ'i) o "'T i(B-l)’f'xs(l-s)ﬁ-l{-log(l—S)}u—mds

&

+ 0 x )
(legx (5)

on writing s for st
Assume now that the conditions of case (i) are satisfied, so

that 0<B<1 and upl, and consider the integral
' s -1 G
I=| = (1-8)P"H{- 10g(2-s)\Vis
where Ogy<u and y is an integer. On using the substitution

.___Y.\_.___; 2
s=1 Togx ° we obtain
“"9)‘9

I = x(log x)—B J 3 X—Vlog XY\B-:L {lng log x - 105\1}376.\]

[>]

- y _ U“G)'O%K - - )
= x(log x)P T ()7 (Z) (Llog log x)¥ rJ e “nB 1(log‘v\)rdr\.
cro o
Now
u-el(u1x

) ™ P (1ogn) Ty = j:e"ﬁy\ﬁ’i(log\\)rdv\ + 0((1og x)Pl+e 140)

o

for any ¢ >0 satisfying <. I-p . If r=0, the integral on the
right is T (B); for all r the integral on the right is absolutely
convergent - when r=0 this is well known and it can be proved in a

similar manner when r>0. It follows that

I = C(B)x(log Log %)Y (log x)"B + 0(x(1og log x)y-j’(log x)—B) (6)
)
unless y=0, in which case the error term is O { loz x) . Hence by

(5) we have
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i

s -2
{ go:Ls\ h( s)s “ds

(1og x)P (10g x)P

-2TiH(1) x(log log x)" . (x(log log )%t
©(1-8) (Log x)P (208 x)P
since [ (B) r(1-B)= T/sinT@ (see, for example, 3.124 of Titchmarsh [8]).
Part (i) of the .lemma now follows from Lemma 7.

Similarly in case (ii), when O<Bf<l and u=0, the integral I

is given by

I= J; xs(l‘-s)ﬁ—lds = [ (B)x(1log x)"‘3 + 0 (xe/log x).

ABE gbove it follows that

+ Sh(s.)smgds = -2 TiH(1) ....._....__
UDE Sgﬁ} i r (1~8) (10:1»:)6 "0 ( 71:& x ))

and on using Lemma 7 we obtain the result of Lemma 8(ii).
We turn now to case (iii), so that we assume that =1 and u>2.

Then (5) becomes

° 8

“a.; +f55& xsh(s.)s'z‘ds = H(1) Mi; (g\) {(-ui)m_(vi)m”‘ xs{"log(l-s)?i'mds

+ 0 (x/1og x);

We note that the term corresponding to m=0 is zero, Now T (1)=1,

and hence by (6)

I= I‘ x° {=log(1~s)}Yas = x(log log =) o+ 0 (xilog log ngy-i
) log x log x

unless y=0, in which case

H(1)r(p)2i sinm@~L =x(log log x) + O(x(lo,g log x)V

'i)
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Hence

!

0 Zo

}xsh( 5)s™2ds = ~2riud(1)x(log log x)* 7 + () [x(log log x)"~2)
log x log x /’

and the result of part (iii) follows from Lemma 7.
If B=1 and u=l, so that we are considering case (iv), then by

Lemma 4 we have that when 6¢s<l

|xsh(s)s-2‘ - H(vl)xs { -log(s-1)} |

H]

|xs(s-1){{-log( s-1)‘3§_ w (s=1)¥1 4 i c.a'k( s-1)k-1} |

lez

=0 (xsls—ll { \=Llog(s=1)| + 1})

since the two infiinite sums are convergent. On putting s=1-13 /log x,

we have
{ W-8loex o
5 x> [s=1| ds = x J Ve ndy = O( x
° (log x)* ° (log x)?
and
{ s (i~} oq x -1
| *1(s-1){ -log(s-1) } las = x e '5|log log x - log(-y)|dn
° (log x)* o

i

0 ( x log log X )
(log x)?

from above and since

(l*e)‘o:ix . _
e 'mlogm dn[= 0(1).

©

Hence

1 2 7800 = [ m)e (ton(s™)) o

[
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j‘ H(l)xs [ =log(s™=1)} as™ + O(_:_c_l_og log x
& (Log x)z)

H(1) J; xS+S (~log(1-s")- 11)~-(-1log(1-s¥)+T 1)} as®

+ O X log log x)
( (log x)?

-27 iH(1) J, x°ds + D /xlog log x
® (1og x)? )

1]

~27iH(1) :_L_g:ét__; + 0 ('X_%{oﬁgliﬁ x>’
Part (iv) of the lemma now follows from Lemma 7.

If B=1 and u=0, so that we are considering part (v) of the
lemma, h(s)=H(s). Hence h(s) is holomorphic inside the contour
KABCDﬁEiK, where the complex plane is no longer cut so that 5=D,
and where the rest of the contour is the same shape as the corresponding
paxrt of [ , Integrating round this contour using the results of

Lemma 7, we obtain

x -'!l_
z b(n)log(x/n) = O(xe-(log x) ) = 0 (x/(log x)z),
which is part {v) of the lemma, This completes the proof of

Lemma, 8.

4, Proof of Theorenm 3.

Lemma 9. Suppose that

£ b(n)log(s/n) = Bx*(log log x) + ¢ /=*(tog 10551") ,‘
- (Log x)B'

log <)P
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where b(n)>0, B>0, a>0, B,a,B,} sB» ¥, are non-negative constants,

and where ¥ <¥ and B<P<B+2 or 6,3¥ and fep, Lpek. Then

ib(n') = Bax*(log log x)  + O [=%(log Llog 1)12'(‘*7‘) |
) (Log x)P (Log x)‘%@"‘ﬁ.\

X
Proof. We have already defined Z(x)= L b(n)log(x/n);

X
let Zl(x)= Zb(n). By hypothesis

Az

Z(x) = Bx" (log log :C)K + 0 <xa£108 log X)x)
(1og x)P (108 x)* /(7)

Let 6= 6 (x)=0(1) be a positive function of x to be chosen later,
Then

T (x(1+5)) = Bx"(145)*(log log x(1+s))x + 0 ( (145 )%(log log x(1+5);')_
~ (Log x(1+5))P (Log x(1+5))P

Now log x(1+%) = log x+0(5%), and

log log x(1+6) = log 1ogx+log§1 +105,§1+S§§ = log log x + 0( ) ) .

log x log x |’
Hence
' ¥
T(x(14$)) = B(1+8)*x*(Log Log x) { 1+ 0( 3 ) + ( < )%
A (1og X)B log x log log x | log -x

+ () (xa(log log xi)
(10g x)*

Bx*(1log log :'c)B {1 + a6 +0(8°) + O( s )S
(1og x)B log x

+ 0 (xa(log log x)x')‘
(10g x)P (8)
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where b(n)>0, B>0, a>0, B,a,B, sBs ¥, are non-negative constants,

and where ¥ <Y and B<B<P+2 or¥3Y¥ end prp Lpen. Then

£b<n.) = Bacx“(log log X)K + 0 Xa(log log X)JZ(H'YJ |
) (1og x)® (Log x)2B+8)
Proof. We have already defined I (x)= Zx;b(n)log,(x/n);

L3
let Z"(x)z Zb(n). By hypothesis

LEX

Z(x) = Bx" (log log x)x * 0 (2‘2(.1_5_0 log J'C*):} .
(Log x)P (208 ) /(7)

Let 6= § (x)=0(1) be a positive function of x to be chosen later.
Then

T (x(1+46)) = Bx"(1+5)*(Log log _:g§1+6))x + 0 ( X (1+6)%(Log log x(1+s))v').
 (log x(l-x-é;))B (Log x(1+s))B‘

Now log x(1+%) = log x+0(5), and

log log x(1+6) = log logx-&-log%i +lo§,§1+825 = log log x + O( S ) .

log x logx | ?
Hence
3
T(x(146)) = B(1+8)%x*(log log ‘x){ 1+ 0( 3 } T )11
) log x log log x | log-x

(10g x)P

+ 0 (xa(log log ;il)
(1og x)®

= Bx*(1log log 1':)3 Ili +as +0(8°) + (O ( 5 )S
(Log :‘c)‘3 log x

+ (x“CLOg log x)z')‘
(rog x) /| (8)
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By definition,

I (x(1+8)) - X (x)

X(f\ b(n)log x( 1+ 5) i b(n)log x

n

xC(+g)

log (1+§) i b(n) + I b(n)log xfl-t-SZ

noy L)

» log (1+5) T (x) (9)

since the second sum is not negative. Similarly

Z (x(1+8)) - Z(x) = 1og(1+s) Z b(n) + Z b(n)log x

NzxX+t

< log(1+s) Z (x(1+5)) (10)
since the second sum is not positive.
By (7), (8) and (9),

2(x) ¢ Z(x(1+5)) = Z.(x)
Coh log (1+5)

= Bx (log log x)x {aS +0(3) + O( $ )
(log x)B log x

+ 0<“J£§ log x) ) ﬁ.og(i-a-s)) -1
(Log :::)B e
= Bx"(log log x)a ia +0(8) + 0 ((log x)-l)-t- ( og log xH‘/
(Log :\c)‘3 ‘o(log x)ﬁ B 11)

By (7)’ (8) ana (10),

Z(x(148)) > Z(x(1+8)) - Z.(x)

Tog(1+5)

= Bx (log log x) S( a +0(8) +O((log x)_l)

(log x)ﬁ .ot
+ () {(1og log x) ﬁ , '
5 (log X\B B (12)
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If we replace x by x/(1+s) in (12), we obtain

Z(x) Bx (loglogx) 1+0( S ) {a+0(s)+0((logx) )
(log x)B log x -

( 1+6;a“’ + 0((105 log x) );

§ (log x) B8

= Bx (log log ;c)x {a + 0(s) + 0((loé x)-l) + 0((103 log x)z,—Y .
(Log x)P § (10g x)FP } (15)

We now choose § so that all the error terms of (11) and (13) are
of a smaller order of magnitude than the first term; since
B<B<B+2, we can take § = x.l[x%'], where
(s 1B~ -
= { (1og 1og x)Z( ) (1log x)z(ﬁ‘ ﬁ)} 1,

and then the error terms of (11) and (13) are

0 (x“(log log X)x (log log x?%(r‘ -%) - 0(& (Log log £)20+2) '
(Log x)ﬁ (1og x)’z"(ﬂ.‘ﬁ) (1og x)z(B-i-ﬁ, )

Hence by (11) and (13)

Bax*(1log log x)x + O(x“(log logjx)%(“z{') ) < 7 (x)
(10g x)P (1og x)2\P*B.) S

1 ¥ z'
< Bax*(log log x) + 0 (xa(log log x)i( +2) ),

) (1og x)° (Log x)Z(B+B.)

s0 that

%,(x) = Bex(1og log S 0 (xa(loe; logjx)%(“m : ) 1
(1og x)P (1og x)2(P*B. )

which is the result of the lemma.,

We observe that if @>B+2, the result of the lemma holds

provided that we replace the error term by

0 (x*(10g 1og x)x /(Log X)B+1).
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Corollary. If é‘b(n)log(:;/n) :0(:;/(108 x)?), then
Zo(n) = 0(x/(108 )°) .

Proof. From (9) and (10) we have

Z(x) ¢ _Z(x(1+%)) = Z.(x) <« 7Z.(x(1+6)),
log(1+§) *

and by hypothesis T (x(15)) - Z.(x) = O(x(log x)"25 =Y
log(1+s) ‘

Hence as sbove

0(x(108 x)25 ™) ¢ 7. (x) < 0(x(10g x)2¢71) ,
giving
Zl(x) = 0 (x(log x)-zé —1) = O(x(log x)-%)

if we choose § =x “[x5] and § =(log x)—%
We can now deduce the result of Theorem 3 from lLemmas 8 and 9.
If we take
(1) a=1, ¥=upl, .¥ =u-1, B =p<l
(ii) a=1, 3¥= ¥ =u=0, B<B, =1
(iii) a=1, Y¥=u-i3l, ¥ =u-2, B= =1
(iv) a=1, ¥=u-1=0, 3 =1, B=1, B,=2
in Lemma 9 and use the correspon&ing part of Lemma 8 for the estimate
for 7 (x), then we obtain, in turn, the first four parts of Theorem 3;

thus we have:

(1) f; b(n) = H(1) x(log log x)* + 0 (x(log log x)u—%
o r(1-g) (Llog x)ﬂ (Log x)B

when 0<f<1 and uxl.



59

(ii) x;b(n) = H(1) x + x
nE r(l—B—)— (log X)B ((108 X)Jz'(l@)

when O<B<1 and u=0,

(iii) i b(n) = uH(1) =x(log log x)u-l + 0 ( x(log log x)u-% )
h= log x X log x

when B=1 and u2.

() I

1]

H(1) x + 0 (x(log log x)% )

3,
log x (log ) a
when /S =1 and u=l.

Finally from Lemma 8(v) and the corollary to Lemma 9, we obtain

(v) ib(n) = 0( x )
(

n=\ 3
log x)

when P=1 and u=0, This completes the proof of Theorem 3.




60

CHAPTER 4.

1, Proof of Theorem 1 (ii) and (iii).

If g is odd and h is even, then by Theorem 2(ii),

£ (s) = 2 YE T frog 2(s)f 1 (s),
where each Hu( s) (Ogugm') is a sum of functions satisfying the
conditions imposed on H (s) in Theorem 3, Hence, if m'>l, we

have from Theorem 3(i) and (ii) (with P=1/h<1) that

" r1=0 (20g ™ (log x)"

where the constant H (1) is given by (22) and Lemma 11 of §86,

D.(v,5%x) = La(n)="u (1) (10g 10g =)™ .0 (x(log; log x)m'-%>

chapter 2. Similarly, if m'=0, we have from Theorem 3(ii) that
H, (1) x . 0 x

-t i e N
r (1 h) (10g x)’ <(108 x)2(1+ “- ) )

where H_(1) may be obtained from §7 and Lemma 11 of §6, chapter 2.

D (v,q;x) =

The result of Theorem 1(ii) now follows.

If q=2, then, by Theorem 2(iii),

£,(s) = I {1ogz(s)}" H(s),

U=0o

where each Hu( s) (Ogugn) is a sum of functions satisfying the
conditions imposed on H( s) in Theorem 3. Hence, if m»2, we

have from Theorem 3(iii), (iv) and (v) that

3
D (v,2;3%) = mH (1) x(log log x)m-l + O /x(log log x)™ * )
m log x log x

and, if m=1l, we have from Theorem 3 (iv) and (v) that

1
D (v,2:x) =H (1) _x_ 0 %x(log log x)2 .
- ' log x iz ?
(Log x)



in either case

»

(142 )g(2) = T

T if v is even

AL

E (1)

1 -1 2
- (1427 )2(2) = '7;?1""'
2 m! 2 m!

The result of Theorem 1(iii) now follows.

if v is odd,

2. An asymptotic expression for N(v,qm;g.

We have already seen ((3) of chapter 1) that

m -t
N(”’q ;x) = L D‘_ (V’q.ix)’
Y0

where D_(v,q;x)=N(v,q;x) is given by (2) of chapter 1. Our first
corollary follows from this and Theorem 1. Assume that m>2;
then we have

Corollary 1. As x=> »

2

B:m‘x if g and h are both odd

N(v,d";x)~ { B."k(log log X)[‘“] (

61

(1)

log x) ° if g is odd and h is even

B;m;c(log log x)m"z(log %)t

where
B ”‘i‘ A\r)’ B '"i A(r)’ plm ptm=D
' rzo ' * \“:[aﬂ(\‘«\ ? 3 ’
Proof.

If g=2, or if q is odd, h is even and gfv (so that

¥ =0), then, from (1) and Theorem 1(ii) and (iii), we obtain

N(V’q_mix)’" D m—t (”"Hx),

and the result follows in these cases,
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If g and h are both odd, the result follows immediately from
(1) and Theorem 1(i).

Finally suppose that q is odd, h is even and g}v (so that

¥31). Then, by (1) and Theorem 1(ii),
n )[i’-;-l]
Nv,q%x) = T 4'"k(log log $ Of—=
~ (Log =)™

[&:4] ;
™ 7: (log log x)
(log x) = =

+ () X
((10g x)_2—(1+k) ) (2)

on using the estimates for the error terms given in the previous
section; we observe that the sum in the first error term is
non-empty only if m» ¥ +2, and that, if this is so, [m] 21 for
, at least one value of r satisfying Og¢r<m~1, The highest po'wer
of log log x appearing on the right of (2) is (log log x)

r

Now [;;—,1 =[;—";’—;‘] when [_%;'1 (¥+ygr¢m=1,  Hence

m-1

~me-t 'S&t

~m -
= I-E—“](“* (\

This completes the proof of the corollary.

N(v,q ;%) ~ i A(lr\ } x(log log x )

(log x)"

%, Some results for N(v,k;x).

In +this section we shall deduce some estimates for N(v,k;x)
when k is divisible by at least two distinct primes. Some results
in this direction have already been obtained by Rankin in §4 of his
paper [2], and these results are improvements on Watson's estimate

for N(v,k;x) {see (1) of chapter 1).



63
Using Theorem 1 and Rankin's methods we can obtain further
improvements.

Let

where 9,59 s--»q, are primes and 2=q°<q‘<q1<...<q_t, and where
m >0 and m>1 for 1gr¢t; we are assuming that k is divisible by
at least two distinct primes, so that t31 if m_>0 and t»2 if n_=0.
If qlil" lcrv(n) for some r satisfying Ogr<t, it does not necessarily
follow that k|0'v(n), but if klo*v(n) then q‘fflcv(n) for all r
satisfying Og¢r¢t, It follows that (see (19) and (21) of [2}).
max N(v,qlf'f;x) < N(v,k;x) < r_io N(v,q?' 3%)3 (3)
Og<rg<t
if the term N(v,2° ;x) occurs, we take its value to be 0, We

observe that

N(v,2" 5x) = o(N(v,q " 35x))
for r=1,2,...,t and gll possible values of m_ and m,.
For 1grgt, define h_ =(q¢-1)/(v,q?-1) and ¥. by ch’ s

if all the h_, are even, define

A= mex h  and p= max [mg‘-rl]_
1<ret 1<ret
h = A 3.+l

Then we have

Corollary 2. (i) If h, is odd when r=i, for exactly one

value of i satisfying 1<ict, and h _is even otherwise, then,

as x>-,

N(y,k;x) ~ Bl(m‘)x.
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(i) If all the h_are even, and if the relations h_=4A and

(M?[“":;:] =p hold simultaneously when r=i, for exactly one value of i

satisfying 1<ict, and not otherwise, then, as X Do

N(v,k;x) ~ Bfm‘) x(log log J::)l“1 .
(1og x)/'\

Proof, These results follow immediately from (3) and

Corollary 1 since, under the conditions stated,

&
T . :
LN, %) ~ Ny, g t5x) = mex N(v,q.5x).

O<rg<t
) {m .
The constants B, and B1 ) are given by Corollary 1.
Corol 3. (1) If h, is odd for at least two integers r

satisfying l1<r¢t, then

C < lim x 1W(v,k;x) < c.

XDea

where G1 and C are positive constants and C1 :f:Cz.
- :

(i) If all the h are even, and if the relations h =A and

i%{]m hold simultaneously for at least two integers r satisfying

1grgt, then

C < lim {x—l(log log x) H(1log %) N(v,kx) | < C_»
o

XDw

where C and C  are positive constants and C, #C_ .
3

Proof,
() Suppose that h_ is odd when r=r_, i=1,2,...,J, where

j satisfies 2¢j<t, and h_ is even otherwise. Then, by Corollary 1,

- as X e ,

t J ’\"
T N(v,q" 3x) ~ ZZ B‘(m"i) S x = C %,

Yo
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say, and

max N(v,qlf" $X) ~ {max Bl(m3:\} x =C1 X,

Ogrgt 1gigd
say; clearly Ci =I=Cz. The result now follows from (3).

~m

(i1) In this case we suppose that h = A and [ "‘]:-.p hold

Bt

simultaneously only when r=e , i=1,2,...,J, where j satisfies 2¢jgt.

By Corollary 1, as x . ,

+ _‘ “
I N(v,q" ;x) ~{ A BEm,)& %(log log x)* = C.x(log log x)V'
f=zo v Lot

(10g %)™ (10g x)”

say, and

(‘h ° .
nax N(v,ql:l" $X) ~ {max B(m‘;‘) } x(log log x)* = c, x(log log x)* ,

™
{, [
Ogret 1<icd (Log )" (log x) A

say; clearly G #C . The result now follows from (3).
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CHAPTER 5.

1. Introduction,

The object of this chapter is to prove Theorem 4, and hence
to deduce'Theorem 5; both these theorems are stated in chapter 1.
We are assuming that £(n)=an®+bn+c is an irreducible polynomial
with integer coefficients, and that, for all positive integers n,
£(n) is positive and coprime with the fixed positive integer k.

The discriminant b®-4ac of f(n) is denoted by D, and (D,k)=1.
We denote by d(m;h) the number of positive divisors d of a positive
integer m which satisfy dzh(mod k), and we assume that (h,k)=1.

The proof of Theorem 4 will depend ultimately on estimating
a multiple sum involving the Jacobi symbol (a¥®D|t) (see Lemma 4).
It will be convenient to assume that (a,2k)=1 and (D,2)=1, although
these conditions are not at all essentialj they merely simplify
the notation to be used. The proof of the theorem remains valid
even if 2wr||D for some positive integer T , and a and k are both
even, provided that we replace D by 27D and a by 2~° a, where
2P||a, in the working; we shall justify this remark in §3 and
we shall gssume the truth of it when deducing the corollary
given in § 8,

Throughout this chapter A1 ,A2 ,As... denote positive constants,
and they and the constants implied by the O-notation depend at
most on k and h and the coefficients of f,

The error terms obtained in Theorems4 and 5 are certainly

not the best possible. In fact, by the method of this chapter,



67
one may show that the error terms are 0 (xL"(x)), where L . (x)

is defined by
L (x) = log x, L (x) = log | LR_‘(x)‘, for i»2, 1)

and where M is a positive integer independent of x; we shall

indicate how this may be done in §2.

[over
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2. The large divisors of f(n).

We shall consider first the large divisors of £(n); by a
large divisor (corresponding to a given x) we mean a divisor greater

than X, where X is defined to be the least positive integer such that
f(n)c X* for 1tn Lo x, (2)
Clearly there exist positive constants Ci and Cg such that
L X & .
Cix X C‘z x (3)

If 4 x(m;h) denotes the number of positive divisors d of a positive

integer m which satisfy d = h(mod k) and 4 & X, then we may write

a(£(n) 3 n) =4 (f(n) h) + T 1. (#)
) x d[f—(v\)
d>X
4El\(mddk)

The sum on the right contains what we have called the large divisors
of £(n). Tt may be empty (which is certainly the case if f(n) £ X).
If it is not empty, then consider a typical large divisor d of f(n)

giving rise to one term of this sum. We have that f(n) = 4§, where
by (2)

6=f(n)/d - ¥ /X=X and a8 = h§ = £(n)(mod k). (5)
We define h1 by the congruence hh1 = 1{mod k); since (h,k) = 1,
h:u. is unique modulo k and (h1 ,k) = 1. The congruence in (5) may

now be written in the form 6 = hif(n)(mod k); we observe that,

since (f(n),k) = 1, (6,k) =1,
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We now see that to every large divisor d of f(n), with 4 = h(mod k),
there corresponds a unique divisor € with 6§ « X and
& = hif(n) (mod k). The correspondence is not one-one,
for clearly it is possible for both & and f(n)/s to be less

than X, However we may rewrite (4) in the form

a(£(n) 3h) = ¢ _(£(n) ;h)+d (£(n) ;h £(n))- P 1,
p 4 X 1 51 £(n)
L/x ek
80 that 6§32 h, fin) (modic)

3

:‘7;" a(£(n) ;h) = z {dx(f(n) ;h)+d.:x‘(f(n) ;hlf(n))} - A, (6)

A=y

where

A= T Z i

n= 81 $tny
‘ HAfxLeLx (7)

§ 3 h, £la) (mod k)
We observe that the expression on the right of (4) does not contain
any large divisors,
Let y = [x/log x]; then there exists a positive constant Ca

such that.
f(n) > C y¥ for ytn & =x
3

From (¥) it follows that

3 kL8 "
. a(e(n) ;he(n)) + L 1
Ot A £ '\E‘ x( ( ) " ( )) n= Yy 5%"“
vyegeX

§ 2 h, &) (med le)

"

;5 4, (£(n)sh, £(n))+ 7’5‘ {8, (2(n)sh £(m))-a (£(n)sn £(a))} ,

(8)

where Y =[C ¥ X-i].
3
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[We may improve the upper bound for & by splitting up the sum
on the right of (7) into more than two parts in the following way.
Write y, =0, y_  =xandy =[x/Lm(x)] for 1 £ ~ ¢« M - 1, where
M and Lm(x) are defined at the end of §1; put Y =0, and
T = [cém)y’:\ X;..‘ ] for 1 twme M =1, where cs(m) is a positive

constant such that £(n) > C(m) y’; forn > y. Then A
3

satisfies
M Mm - S
0oy 2 )a 1t Tfa (£(n);h £(n))-d (£(n)sh £(n)) ) .
M=y v\-,u_k-;ﬂ ISTIN meyasy x 1 b 1
Youos LEEX
820 H (medid)

Using this estimate for O instead of (g), we can obtain the
improvement of the error terms of Theorems 4 and 5 mentioned in §1.]
We now put n = mk + 4, where 0 ¢ ¢ k, Then we may regard

£(n) = f(uk +¢) as a polynomial in m with coefficients depending
on ¢, k and the coefficients of £(n), so that we may write f£(n) = F, (m),
say. We observe that the discriminant of F, (m) is ¥*D, and that

F, (n) = £(¢)(mod k), We now have that

T a(e() snrm) = T Lo @) 5m2(0), @)

a=y i

where in the summation over m, m runs through the integers of the
interval 0 cwm & (x=)/k and where m40 if €= 0; there are

corresponding expressions for the other sums of (&) and (8). Hence
in order to find an estimate for the right side of (6), our main task

must be to consider sums of the type
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IaE @ ;mn), (10)

where (h , k) = 1.
2

3. Preliminary results,

This section contains some definitions and lemmas which will
be used in estimating the sum (o).

Let p(q) denote the number of solutions in ~ of the congruence
F((m) =0 (mod q), 1 &t~ & q.

Then, if p denotes a prime, ¢ any positive integer and C, a positive
constant depending only on k and D, p(q) has the following properties:
Lemma 1. (i) pla, g, ) =pla Jdela, ) if (g ,q ) =1.

(31) pe" ) =p() e 2 if p J ¥ D

(i11) p(™) = p@**' ) i »* ||¥D amd <> 2¢ .

]

(iv) p(¥) & ¢, always.

It is well known that (i) holds, and a proof of this result
may be found in $8-2 of [9]; it is ea.siiy shown that the
inequality p(p)¢2 in (ii) is va.lid.v The rest of (ii), and (iii)
are proved by Nagell in [10], pp 346-349, and (iv) follows immediately
from (ii) and (iii); Nagell deduces from his result that (iv) holds
with c, =2(®D)*.

In several places we shall need to consider separately from other
possibilities the case when 4 I k and D = -y, where p is a positive

integer,



72
We shall refer to this as condition T : we shall use p only in
this context.,

We define X(t) by

(21D | t), t odd
k(1) =1, x(t) =
o, t even
. ¥ <
where (aK®D’ | t) is the Jacobi symbol, (If a=2 a and D=t D,

where &, and D are odd, then, when t is odd,

x (t) = (22¥¥D]t) = (a® ¥ D [4).
Hence we can replace a and D by a, and D, respectively during
the rest of the proof of Theorem 4; this justifies the remark
made in §1., During the rest of the proof of Theorem 4 we shall
assume that a and D are odd,) We have the following result:

Lemma 2, If M is the lowest common multiple of 4 and | a.kDI,

"
L %x(t) =0
tst

t'ik,,(maik)

except when condition I holds.

Proof. Put

K(D) if D = 1(mod 4),

K(a?¥*D)

4x( a2 1?p)

where K(m) denotes the squarefree kernel of m., Then g is the

4k(p) if D # i(mod 4),

leader of the Jacobi symbol (a®X®D|t)([6,p129). Hence

x(£) = X (8 X (%)
for all t, where xs is a character modulc g and X, is the principal

character modulo M; X is therefore a character modulo M, since g ! M,
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If ¥ runs over all characters modulo k, we have

™Mz

¢(k)

t=y [T
eika(MoA k)

W

x(#) = T 2(+) T v®) 3 () =I5m) 2 x(t) y @),
) 3 W 3 €=

where ¢ (k) is FEuler's function. Now Xy -is a character modulo M
and hence the inner sum on the right will equal 0, so that the
required result will follow, if we show that, for all characters

YV modulo k, XV # X, except when D = = and 4|k. But Xxvy=%,
implies that X () = X (t) Y (t) for all t. It follows that

glk; since (D,k) = 1, this means that | K(D) | = 1 so that B = 2.
(since f is irreducible, D 4 p®). Hence D # 1 (mod 4), which implies
thet 4 | g, so that 4 | X, Thus Xy =%, only if condition I holds.

Lemma. 3.

HZZu 1=470+0(1),
(“,'L;kﬁ):t
Wih, (mod &)

where (hk,k) =1, ¢

Proof., We observe that the condition (u,k) = 1 is automatically
satisfied since % = h, (mod k) and (hq_,k) =1, In particular it
follows that u is odd if k is even,

e
Put 6 = 0 or 1 according as k is even or odd, Then ¢(2 a | D |)

of the integers

ge+n, (0= gc2” a| D [)

are coprime with 29 aI D l. Thus

]
I 1=¢(2a D), (n)
w2
(H,"\.‘c’in):)
"‘.:_HQ (Mcv\((—\)
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whence
L]
m} 1 = %.?;’&J.P__Ll U + o(1).
(H.L:kh):l 2 a l D I k
ws ‘\‘r(.mod(c)
4, Transformation of the sum 7 dx(F< (m);hz).
N . et
The sum T dx(F¢ (m) 3h ) is the number of solutioms in m
mz 3 2

and q of the congruence
F, (m) = 0(mod q)s lemez, 1eqe X, qg-hz(mod k).
Let pi (q) denote the number of solutions in m of

F () = 0 (mod q) (1 emez );

then P‘L(q) = p(q) and e, (q) satisfies

(2/alp(a) ¢ p (@) = ([#/ql+1)p(a).

~

It follows that

I a0, () -

I
.\-QM

Pﬁ(q)

I
)
M

X
e/t 0 Z pla) (1)
%S?\;(modk\

In order to find an estimate for the right side of (rz) s We shall

need to consider first the sum

{‘ p(a).

=t

4 2k, madi)
Each integer g may be written as a product rs where (s,2akD) = 1,

and where each prime dividing r also divides 2akD, Then, by Lemma,

1(i), we have that
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X
I e@= I ox 1 ol
L se Xlr
9.2 h,mod i} s h, (mod Iy

Since (rs,k) = (‘h2 sk) = 1, the condition rs = h (mod k) may be
2

rewritten in the form s

11}

rh =h (mod k), say, where r is an
1 2 5 1
integer, unique modulo k, satisfying rr = 1(mod k), and where h,
1

depends on r and (h5 k) = 1.

Consider now the inner sum on the right of (13)., If

e 0-1. g ) 3 3
s=p' p .eeD, where P P see-es D are distinet

primes (not dividing 2akD), we have, from Lemmas 1(i) and (ii), that

p(s) =p( 6" o & Doeep( 2 d=pCp dpC o )erop(e,).

Furthermore ([6],p.140)
p(p) = 1 + (a¥*Dlp),
and hence

p(s) =M {1+ (&¥dlp)y = L  x(¢)
. pis t\s%
ts:tuc-rc <<

We observe that for the special case D = —p?, if (p,2aku) = 1,

then

ip-9
(22¥Dp) = (-2 | p) = (-1) .
Thus, if p = 3(mod 4), p(p) = 0, and it follows that p(s) =0
if s = 3(mod 4).

The imner sum on the right of (13) is given by

Lemma 4.

r - L pls)=az+0(z")
' (5,1::'::)-—!
z (ot k-
.5

unless condition I holds and h. = 3(mod 4), in which case 7 =

(13)

()
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[The exponent } may be replaced by any number 4 satisfying
z<a<1.]
Proof, We suppose first that condition I does not hold. By

(14), and since the Mobius function p(t) satisfies

[p) | = 2 plv),

wle

7 x(t) | pls) | L 1

i

.= L 5 x(t)

stz c2Zle
(9:16.l‘°)=‘ b2 u . =
$3h tmed £) Eoquarchrre (;Ltﬂi\l:nt"n:a:( )
= I ulv) I xw T, (1s)
ve [Z Wef,n w
(\l,hluﬂ):(

where gﬁ stands for the summation over all positive integers u
satisfying the conditions wu %&£ Z/v?w,(u,2akD) = 1 and
u’w = b (mod k). We split the sum over w into two parts so that,

with the above meaning for 7 s

“

2 xmZ1i= T xmMITi1+ 7 xwWZi1=73+7, ()

w2 fe™ - wi (z(\m'” e (2t cwg 2047

say.
In the sun Z, , we may suppose that (w, k) = 1, since otherwise
% (W) = 0 and the congruence w*w = h_ (mod k), with (h.,k) =1,
cannot be satisfied, Then the congruence uv®w = h . (mod k) is
equivalent to a congruence of the form u = h, (mod k), where
(hﬁ,k) =1 and h_ is unique modulo k for fixed v and w. Fron

Lemma 3 and since
W
[ 2 x| = o)

for any positive integers W1 and W2 satisfying W1 < Wz, we obtain

7 -4k z xln) 0,z \x(wﬂ)

.
) YR welan? we (21"



X{w)
—~5

N)(l‘u")“a

v

In order to estimate the sum 7. %(w) Wl , We write

so that |T(w)ko(1)

X (w)

w

w(2fM) 2

It follows that
L

N
where L(Xx) = f
W=y

w> (2l

Z x(3),

saew

T(W) =

for all w from above, and then we have

B

L

w2 (e )'/3

T (w) =T (w-1) ‘
w

([ z/v*)"

n

z

<
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)+ o((z/v) " ).

:_L.-_
w

w(zlet)'2 w+l

(w) (

) -

)" 0 (&) ")

[(z/+*)" J+1

1

wlw+l 5

0 ( )y
w2 (2(*) 3

0 ((z/+*) ).

A L)z + 02/ ),

o

(17)

X (w)/w + 0, the series being convergent ([6],p.222).

In order to estimate Z,s , we change the order of summation
so that
Z, = T x (w).

“e (2’{”‘.)1’3 (z.‘v‘)“’ Lwk 7.Ig*“

(“;‘L&X‘I.O):! uv 3 “f‘m“‘ )
The congruence uv"w = h5 (mod k) is equivalent to one of the form -
wz=h (mod k), where (h_,k) = 1 and h, is unique modulo k for fixed
u and v, Hence, by Lemma 2,

Z, = o((z/v Y.

(18)
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From equations (I15) to (18) we obtain

L= I w0 { ALY« o(@/)7 )}

(v, 2ald) =1

AL(x)z T plv)
TRV (TR o

+ 0 (z ) LM Z’"3 i

v i3 v

(19)

i

kgl

The error term on the right is 0(z™® ); the sum in the main ternm

on the right is given by

Z B . {1+ pl ™2 + ule )~ ool
(v,lq;o)u v Phatd
= N @-p={z0) N @-pHT"
P Ledcd plaaled

0

-24=1
£ n 1=-»9 = 4, ,
w* plwkd

say. This, together with (.’H), gives the result of the Lemma, with
A, = A AL(X), provided condition I does not hold,

In order to complete the proof of the lemma, we have to consider
the case which we have so far omitted; +thus we now suppose that
D=-® and k = 2k , where (k ,2) =1 and v » 2. Ve recall that,

in the paragraph before Lemma 4, we observed that, when D = - T

p(s) = 0 if s = 5(nod 4) and (s,2akp) = 1.  Since 4|k, itfollows

that, if h, = 3(mod 4),

Z = SZ__;_ p(s) = 0. (20)
‘;"Q?f;f‘liim

If h = 1(mod 4), then h, +2K = 3(mod 4), so thgt (ic) holds with

h, replaced by h, + 21{1 B
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Hence

Z = Loe(s) = Lo o)+ z p(s) = Z, + 2,
(SIM“'/"z \ , 14?/(_ - , A Cpa )=
5 2hglmod(g g :h ﬁm‘i AN &:lf;fa)n, (‘Ma:(lu\

say. The method of the first part of Lemma 4 can now be applied
to the sum 2, + Z: provided that we use the following fact
instead of Lemma 2. (Lemma. 2 cannot be used in this case because

1(mod 4) and T is any

i

condition I holds). If (h k) = 1, h,

positive odd integer, then

I 1 =¢(ap)-¢(an) =0

Z xX(w) + 3 x(w) = T o1

“‘”“L; ) wLa/.dt. weaulc \oLa,uk
W hg(modle WEYN ' | w,aml =t (W, am)=t
“8 ? AT (mad c) “(”; : /?mdk,; wihgd 1{“?(”‘04,&;

by (). The constant A, obtained for this case equals 28 AéL(;c ).

o

-1
5. The sum'_v*%_ggg)r .
We now complete the evaluation of the right side of (13). If

condition I does not hold, then from (13) and Lemma 4 we obtain

e X

Toe@=ax T e e Q" T e1c™), (0

9=
9 Eh, (medld
where r runs through the integers divisible only by primes dividing

2eD and satisfying (r,k) = 1. Similarly if 4|k and D = - i,

X . N i
2 ela) = A X 2 p(r)r e 0 (X : Ex elr)v 8 ),‘ (22)
1 ;‘4:3»:.4 ) ¢ ’-J\:_(ioc‘ &l r3h, (mod g}

the extra condition r = h (mod 4) arises from the fact that the inner
2

sum on the right of (13 ) is non-zero only if s = 1(mod 4).
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€, £ g, ' . £,
Let 2° al D | =27 p™ ,..p% ph euD , where
« " 4

Ly

the p (1 ¢ v ¢ J) are @istinct odd primes, p | a but p, ¥ D for

< j) are positive integers

~

1¢vei,p | Dfori<vg i, s, (L

and £, =0 or 1 according as k is even or odd. Each integer r

fa Yo V"' V:

may be written in the form r = 2 P vesD. s Where the o
[ 4
(0 ¢ v < j) are non-negative integers. Then by Lemma 1 (i) and (iv),
A n " i
p(r) = p(2 o Decple’ Vs (C ) (23)

We put p, = 2 and define the integers m, (o £ v« j) by

P:\y s X < :\y+l (1((_)
Then we have that
Y 34 4 Ny -2
Lotlr™ o @)Y A{Z 7] =ow,
(“"’)’_‘ ¢ Vzo U’;:.o y
so that the error terms of (i) and (%1) are 0(X'° ).
In order to estimate the main terms of (2.) and (2%), we have
Lemma 5,
- - 1+t
1) 7, = T el =a+o (ogx)” )
fex
(r»f")’\ - - g
(11) 7, = T ()t =4+ 0 H(log X)),
(:,t?:\
where p*(r) = p(r) sin :.‘é"_ , and k is even.
Proof. (1) Suppose first that k is odd. Then
J Ny -, -1
ZB.-..- ul iz p(P"y )pv } +O(Z p(r)r),
VTo =0 v Kcrgf (1-5)
where X' » A p“” . By (23) and (14) the error term on the right is
Vo v

34 - 3 - Yt
o((c Yooy n *\,) = 00X (10g X’ ).
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Let

n, - _
Sv = z P(P Y )P " 2

G’"y:o Y v
and suppose first that O < v ¢ i, so that p | 2a but p, & D.
Then by Lemma 1(ii),

T

S, =1+p() T 27 =1+p()/ (-0

Ty=t

E, + O(X—l):

]

say.
Suppose next that i < v < j, so that p | D. Then by Lemma 1(iii),
‘ by -, ’ 28, 4+ Y -,
s, = Z e Jp,7 +ple" ) I p
T)'t,O 0;":11”4-/
2¢y o -0, Le,+ g, -1
= 2 pl®™ o o+l ™ )p, 7 (p, 1)}
Ty EX Y
+ o(x™1)
-1
=B, +0(x),
3
say. The result now follows from (25) with A, = T B provided
. A

th‘%‘b k is odd,

If k is-even, we omit the factor involving p_ ( = 2) in the above,

and we obtain the required result with A = ffl E .

v
Vo

.(ii) We are assuming thatk is even, so that r is always odd,

Then

7 3 My
T Z o6 snleE) )+ (L, e bin £1)

Y= f
XLregr

The method used to prove (i) can now be applied to Z_ , and this gives

1

3
the required result with A = m E, , where

VET!
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Ey i'f PV Ei(mod 4),

E = l-p(py)/(pv-l-l) if p = 3(mod 4) and 1 < v < i,

N
ag,

E el ) -1p v - o ™" ) {P‘jiv (p, + 1)} T

D = 3(mod 4) and i <v< j.

If condition I does not hold, we obtain, from (1)) and Lemma: 5(i),

,, |
I o) = A h X 0™ ). (20)
=

‘L?‘\‘(mdu

Suppose now ithat condition I does hold. Then by Lemma 5(i) and (ii),

‘ A4 4 EA G}
L ot e in, ™

Lr.h):( 2(h }

£z h, (ned &) ath ! = j
by e & = £ {8,+(<1) At #(x (208 X)9)

"

A, (n )+ 0(x (208 x)%),
say., Hence, if 4|k and D = - p®, we havely (21) that

X
L pla) =aga, (v x0@E™). (23
q=3

‘LE‘\;(Modk)

6, Proof of Theorem 4,

In this section we shall complete the proof of Theorem 4,
We suppose first that condition I does not hold and we deduce from
(26) an® estimate for the right side of (12). We write

®e)= 1 plw), 1(0)=o0.

w=y
we ‘\xtmd ‘l-)
Then we have

X
. p(ad/g

=t

93 k’(moc‘k)

1}

AR LOSICE VLR Ol CEb S TIOVERS
4= =

Hi

X x & ;
A z (q+1)—1+0 ( z 13 (g.40 ‘ ) +0(1)
° 9= q=t



0
R

= A, log X+0(1), (28)

¢

by (24), where A =A_A.

From (11),(26) and (28) we obtain

E dx(Fc (m);ha) = A 2 log X+0(= +X), (29)

M=y

and therefore (9) becomes

®

I a(e(a)sn r(m)

by A_[(x=¢)/k]10g X+0(x)

L=0

l

A, x log x + 0(x) (30)

on using (3). From (8 ), (49) and (29), the estimate of A is

A \<A‘°{ylogX+xlogX-xlogYﬁ+O(y+Y+x)

= 0(x log (X/Y)) = 0( > log log ).

Hence from ( 6 ) and (30) we obtain

X
T a(f(n) ; b) = 24 x logx + O(x log log x ),

ney

which gives the result of the theorem with A = 2A provided

condition I does not hold, More precisely the constant A1 is given by

x
A= 2 A LG) N ——") e
‘e ] plaad (P*‘ plic (P’““‘ ’
@)=

where A is the constant of Lemma 5(4).
If condition I holds so that 4[1{ and D = - pz’ we use (17) instead
of (ab), and the required result follows in a similar way with A1

given by

-t

A =a (n)=Afs, (n)™ P Y ACO0% T B S 1D

1
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we recall that h satisfies hh1 = 1 (mod k) and that A_(h ) depends
2

on the value of h2 (mod 4). This completes the proof of Theorem 4,

7. Proof of Theorem 5,

In order to prove Theorem 5, we use a well known property of
r(m ), and we apply Theorem 4 with k =4 and h = 1 and 3, We
assune for this theorem that D = = p®.

It is well known ({9}, § 1614) that

r(m) =4:{d( m ;1) - d(m ;5)} H

hence by Theorem 4,

T r(f(n)) = 42 {a(e(n);1) - a(e(n);3)}

= 4§ A (:L)—A1 (3)} x log x + 0(x log log x),

where A (1) and A (3) are given by (31) with k = 4; this is the
required result with A = 4:{1&1 (1) - A (3)} . [If D is not of the
3

form - p?, A 1) = A (3) = A , and it follows that

3 r(£(n)) = 0(x log log x).]

We cen find the value of A as a product of several terms
3
depending on a and p., We have
3
A (1)-2 (3)=a {A, (1)-4, (:f>)+—;£z=‘_o Pa (e(e))-s (50 (INT .
Since £(n) is always odd and £(n) = 1 (mod 4) for at least some

integers n, there are two cases to consider: (i) £(¢) = 1 (mod 4)

for ¢ = 0,1, 2, 33 (i) £(¢) = 1 (mod 4) for exactly two of
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1=0,1,2, 3and £(¢) = 3 (mod 4) for the remaining two of £ = 0,
1, 2, 3.

In the case (i) we have

A (1)-,A1 (3)

24 {4, (1)-4,(3)} ,
and in case (ii)

A (1)-A1 (3)

A s, (1), (3)) .

From the definition of the constants Aw" .y A_ we have that

afa -2 Gh= & 16) N (-—P-)

T p*(x)r T,
Plaay \ pl

P

where the summation over r runs over all positive integers which are
divisible only by odd primes dividing ap.

Hence the constant A
3
of Theorem 5 is given by
%’;‘% L) N [—E—\ T p*@)r in case (i),
Mrlapm {p + 1 "
A o=
3
24

(32)
= L(x) O <"“P“"

5 p*(r)r-l in case (ii).
pliapw \P + 1 i

8. A corollary to Theorem 5,

Our last result is concerned with the polynomial £(n) = n®+l.
From Theorem 5 we shall deduce the

Corollary.
X 8
7 r(n®+1) = = x logx + O (x log log x).

Proof. As it stands, the polynomial n’+1 does not satisfy

all the conditions of Theorem 5, for it is not always odd.

However
we may write
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F(2m) = 4m? +1 = fi(m)

and P(2m +1) = 2(2m2 + 2m + 1) = 2F (m);
2

then the discriminants of f1 and f2 are - 16 and - 4 respectively.
For all positive integers m , fi(m) = 1 (mod 4) and fz(m) =1

(mod 4), and hence both f1 and £ satisfy all the conditions of

case (i) of Theorem 5. Thus, since for both these polynomials,

L(x) =27 and I p*(r)r_l =1,

o

T r(f (=) = 2 yilogy + 0(y log 1og y)
and

Y

MZ_ r(fz_(m)) = = ylogy+ o(y log log y).

Since r('2f9(m)) = :r‘(f'2 (m)), we obtain from above

Berad {oe-ura]
PA

I r(e(n) (g (m)) + 2 w(s, (w)

g

% x log = + 0(x log log x),

which is the Gorollary.
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