PHYSTCO－CHEHMCAL STMUDES ON DUSTS：

＂THE SUPPRESSION OF ATRBORNE DUST BY AQUEOUS SPRAYS＂

by

Rajendram Varadachari GOPALAKRISHNAN，BoE。

> A thesis submitted to the University of Glasgow in fulfilment of the requirements for the degree of $\mathrm{Ph}_{\mathrm{o}} \mathrm{D}_{\text {。 }}$ in Science．

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 13849337
Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

ACKNOWLEDGEMENTIS

The author gratefully acknowledges the valuable guidance and the constant encouragement given by Professor $P_{\circ} D_{o}$ Ritchie and D_{r} ．W。Gibb during the course of this work．

Thanks are also due to Professor Go Hibberd and MroA． $\mathrm{A}_{\mathrm{o}} \mathrm{K}_{\mathrm{o}}$ Stewart of the Mining Department of the Royal College of Science and Technology for helpful discussion on the use of the Automatic Particle Counter；to Messrs．Bauchop $G_{\circ} S_{\circ}$ Deahpandes $A_{0} K$ ．and Sweeting $R_{\circ} M$ 。 for assistance in carrying out some special experiments； and to Mr。A。Clunie and Staff of the Chemical Technology Department Workshops for help in preparing various pieces of apparatus．

The author also wishes to take this opportunity for thanking the Council of Scientific and Industrial Research，Government of India，for the award of an ${ }^{0}$ Assam Oil Company ${ }^{\circ}$ Scholarship for the first two and a half years and Professor Ritchie for a maintenance grant for the remainder of the period．

COHYHETHS

Page
Summary 000000 1
Ilst of symbols and abbreviations v

1. TMYTRODOCTIOH
1.1 Definition and significance of dusts in industry 0.0 0.0 000 0.0 2
1.2 Pneumoconiosis 3
1.3 Incidence of Pneumoconiosis 4
1.4 Harmful particle size and concentration. 5
I.5 Methods of dust suppression in mines 8
1.6 Iiquid spray formation 13
1.7 Capture of duet particles by spray droplete -0. 0 。 17
1.8 Objects of Research 0.0 20
2. IITSTALITATION OF AN EXXPERTMENTPA DUST TUNNEL AND
AITTIED APPARATUS:
2.1 The wind tunnel 24
2.2 Allied equipment for the duet twnel
2.2.1 Dust-feeding machine 26
2.2.2 Dust-auppression systems Spraying unit 29
2.2.3 Instruments for dust-sampling 30
2.204 Instruments to measure air velooity 00000000 32
2.3 Proparetion of coal-duat for experimente 34
2.4 Some theoretical consideratione.o. 34
3．DISTRIBUTION OF AIR VEIOCITY AND DUST
CONCENTRATION IN THE TUNNEI．
3．1 Distribution of air velocity
3．1．1 Introduction 0.0 0．0． 000 40
3．1．2 Pitot－tube traverses 40
3．1．3 Effect of honeycomb on velocity distribution 000 000000 43
3．l．4 Effect of halfoarea mixing baffle on velocity distribution 45
3．1．5 Effect of antimapin baffle on velocity distributiono． 47
3．1．6 Effect of obstruction of tunnel outlet on the static pressure and air velocity 00 oo． 00 。 49
3.2 Distribution of dust concentration．
3．2．1 Introduction 51
3．2．2 Gravimetric sampiing 52
3．2．3 Mechaniems of dust fall－outo．o 55
3．2．4 Thermal Precipitator sampling。 57
4．A METHOD OF MEASURENENT OF PARTICLE SIZE．
4．1 Introduction 59
402 Theory of particle sizing anil counting by track seanning。 60
4．3 Description and operation of the Counter 63
404 Mounting of slides for counting 66
405 Specimen calculation of size distribution 67
Page
406 Size frequency of experimental coal－dust 69
407 Effect of change of opacity on dust－ count．••• 000 0．0．000 00 o 69
408 Analysis of variance for the Counter 71
409 Conclusions 000000 000000 73
5．A METHOD OF CORRELATITG THERMAL PRECIPITPATOR
SAMPIES VITH SAIICYLIC－AGID－FIIRFR SAMPTES．
5．1 Introduction 000 75
5．2 Effect of direction of sampling nozzle on dust collection in gravimetric sampling 75 ．
5.3 Recovery of sampled dust from gravimetric filter 000 000 77
504 Preparation of slide for counting．。 78
5．5 Discussion and method of arriving at the correlation factor $\rightarrow 0$ oo．000 80
6．MRASURFMENP OF DROPLET SIZE IN HIGH PRESSURE SFRAYS
6．1 Introduction ○。。 82
6.2 Spraying unit －0． 84
6．3 Methods of eamping air－borne droplets．。． 85
6．4 Average Droplet Sizeo．o 89
6．5 Effect of spray pressure on Droplet Size． 92
6．6 Effect of Spray pressure on Droplet Size Distribution 000 000 000000 93
6．7 Variation of Average Droplet Size with sampling distance 000000000 94
6．8 Relationship between energy supplied and energy used up in atomisation 95
6．9 Derivation of a non－dimensional relationship between the characteristios of the apray syatem and the average Droplet size 96
6.10 Summary

7. EFHECT OF HIGH PRESSURE AOUEOUS SPRAYS ON

DUST SUPRRESSION.
7.1 Introduction 0.0 0.0 100
7.2 Experiments with high pressure water sprays 101
7.3 Selection of surface active agents.o. 103
704 Experiments with surface active agent solutions 000000 108
705 Effect of ohange of throughput at constant spray pressure on dust suppression.。 110
7.6 Effect of change of air velocity at constant spray pressure on dust suppression 000 00000° 132
7.7 Disoussion of results 114
8. EPYECT OF TANDEM SPRAYING ON DUST SUPPRESSION
8.1 Introduction 00000000 127
8.2 Experiments with tandem sprays 128
8.3 Discussion of results 0. 131
9。 GENERAL DISCUSSIONS RN D CONCLUSIONS 136
Suggestions for future worko.o 158
APPENDIX I
Partiole Size Analysis of experimental duat
by Sedimentation Method $000 \quad 000$ 159
APPFADIX II
A new dust feeding machine 0.0 162
PDEARENCDS

SUMMARY

This study is concerned with the capture of airborne dust particles by sprayed liquid droplets， with particular reference to the airborne coal dust encountered in mining practice．The particle size range 0．5－5．0 microns，of physiological importance in causing occupational health hazard ${ }_{\theta}$ has been investigated．

The significance of duets and their harmful particlesize and concentration are discussed and the incidences of coalminers ${ }^{\circ}$ pneumoconiosis and existing methods of dust suppression in mines are surveyed．The general mechanism of liquid spray formation from nozzles is investigated and the theoretical probability of capture of dust particles by spray droplets is diacussed．

Experiments on dust auppression were carried out on moving dust cloude in a wind－otunnel of 45.72 cm 。（18 in ） diameter and 20 metres（ 65 ft 。）long，under controlled conditions．Dust clouds，of concentrations in the range 300 and 3000 popococog were produced using Hattersley＂s laboratoxy type dust generator．A three－throw reciprocating pump provided spray pressures up to about $210 \mathrm{~kg} / \mathrm{sq}_{\circ} \mathrm{cm}$ 。 $\left(3,000 \mathrm{p}_{\circ} \mathrm{s}_{\circ} \mathrm{i}_{\circ} \mathrm{g}_{\mathrm{o}}\right)$ and the spray nozzles were
operated at the axis of the tunnel against the flow of dust-laden air. Simultaneous dust sampling was done by two thermal precipitators located ahead of and beyond the spray nozzle。

Distribution of air velocity in the tunnel was studied and modifications in the tunnel were made to straighten out the air flow. the effect on air flow pattern of baffle plates suitably placed in the twanel is illustrated in the form of iso-velocity curves.

Distribution of dust concentration in the tunnel was studied with salicylic acid filters and the rate of decay of dust concentration with diatance along the tunnel was found to be constant. The probable mechanisms of dust fall-out are discussed.

A system for counting the thermal precipitator dust slides using a five-channel Automatic Particle Counter and Sizer was developed and an analysis of variance for the machine was made。

Simultaneous dust sampling by thermal precipitator and salicylic acid filter was carried out in the tunnel and a correlation factor was derived on the basis of proportional number percentage size frequencies in both the samples.

Heasurment of Average Droplet Size was carried out for water sprays in the range $35.15-190.16 \mathrm{~kg} / \mathrm{sq} . \mathrm{cm}$ 。 （500－2，750 pos．iogo）using a solid cone spray nozele and the relationship

$$
A_{\circ} D_{\circ} S_{0} \quad \alpha \quad P^{(-0,28)}
$$

was obtained．A functional non－dimensional relationship was also derived between the characteristics of the spray and the Average Droplet Size。

The dust suppression work was mainly concerned with small high pressure apray nozzles and the following isaues were brought to focus：The effects on the efficiency of dust suppression of
（a）hollow cone and solid cone spraying，
（b）high apray pressures，
（c）surface tension of sprayed liquid，
（d）counterfiow air velocity，and
（e）a tandem arrangement of apray noezles．
The effect of spray throughput on dust－water ratio was also studied．Solid cone spraying was found to be about 5 per cent more efficient than the hollow cone apray for the same nozzle。 Maximum dust suppression was effected at $140.6 \mathrm{kga} / \mathrm{sq}$ 。cm。in both the cases。（ 53.58 per cent and 48.5 per cent）：

Surface active agent solutions were found to give only a small increase in dust suppression efficiency, E. The wetting power of different types of surface active agents is discussed. A relationship was obtained between the efficiency, spray pressure and the surface tension of the sprayed liquid。

Tandem spraying was found to give the best dust suppression efficiencies without much increase in water throughput. The rate of increase in E with number of spray nozzles in tandem was found to be maximum (about $6 \% 5$ per cent) at $140.6 \mathrm{~kg} / \mathrm{sq}_{\mathrm{ocm}} \mathrm{cm}$ 。

An increase in air velocity resulted in a rapid decrease of E. The rapid deceleration of droplets on discharge into the gaseous medium, its lowered efficacy of impact on dust particles and the consequent reduction of the "capture cross-section" are discussed.

The dust-water ratio was calculated for all spray pressures and nozzles employed and was found to generally decrease with increase in throughput.

The sprayed droplets did not appear to be selective in suppressing any particular size-range of dust partioles.

An improved type of dust feeding machine was put into operation and is discussed in the Appendix.

IIST OF SYMBOLS AND ABBREVIATIONS

Symbols		Units
y_{0}^{2}	```= Fonda and Herne }\mp@subsup{}{}{0}\mathrm{ s dimensionless capture cross-section```	
\bar{y}_{0}^{2}	$=$ average value of capture crosssection over the range of penetration S of spray	
2	= sensitivity	micron
\bar{z}	$=$ distance from wall of tunnel	cm.
α	- angle of contact of liquid on	
	solid surface	degree
θ	$=$ spray cone angle	degree
γ	= surface tension	dyne/cmo
ρ	$=$ density	$\mathrm{gmo} / \mathrm{c}_{\circ} \mathrm{c}$ 。
η	= absolute viscosity	poise
2,1,8	```= subscripts for air, liquid and dust particle```	
σ	$=$ standard deviation	
λ	- mean free path of gas molecules	cmo
μ	= micron	

1．INTRODUCTION

1．1 Definition and Significance of dusts in Industry
The generic term＇aerosols＇was coined by Professor FoG。 Donnan ${ }^{(1)}$ towards the end of the first World War to cover all the various disperse systems in airs such as dusts，smokes，fumes and mists．Dusts，in a colloid sense， consist of solid particles，dispersed in a gaseous medium as the result of the mechanical disintegration of matter．

Dust－producing processes in industry are too numerous to mention，but some typical examples are the processes of drilling and blasting in mines，quarrying and screening of granite，sand－blasting and＂fettling＂in foundries．The sizes of dust particles range widely from the aubmioroscopic to the visible and those larger than 76 microns in diameter are defined as ${ }^{\circ}$ grits＇by the British Standards Institution ${ }^{(2)}$ 。 （1 micron $(1 \mu)=10^{-3} \mathrm{~mm}_{\mathrm{m}}$ ）。Generally settled＇dusts are above 20μ in diameter，while the lower range of ${ }^{9}$ air－borne ${ }^{\circ}$ dusts may well extend into submioroscopic region．The percentage composition of air－borne dusts is liable to differ from that of the parent substance，on account of differential disintegration and selective settling of the dispersed particles。（3）Some pathologists prefer to include ofumes： in the category of ${ }^{9}$ dusts＂＂to designate a pathological entity＂，（4）since fumes are also solid particles，mostly generated by the condensation of vapours of solid matter
after volatilization from the molten state。 Fumes， however，are usually below if in size and in contrast to dusts，they often flocculate vigorously．A general classi－ fication of aerosols is given in Table lol with particular reference to the size range of dusts and spray droplets used by the author in the work which led to this thesis． Dusts from industrial atmospheres may require to be suppressed or recovered for the following reasons：－
（1）Certain dusts，notably metallic powders and organic dusts，may cause violent explosions，if they are present in appropriate concentrations in air。（5）（6）（7） This explosion hazard owes itself to the increased rate of oxidation and chemical activity，which result from an increase of surface area per unit volume with reduction of particle size．In a coal－pit，dust concentrations greater than 50 grams／cu。m are considered dangerous．（8）
（2）Fine air－borne dusts（size less than 5μ ）contribute to unhygienic woricing conditions and are the cause of many occupational diseases，leading progressively to total disability of the worker．This disease of the lung produced by the inhalation of dust is given the general name＂Pneumoconiosis＂（9）。 Dusts，known to cause pulmonary disability are siliceous dusts such as quartz，talc，diatomaceous earth and asbestos， other inorganic dusts such as beryllium，iron and

TABLE. 1.1 CHARACTERISTICS OF AEROSOLS

(A list of symbols is given in pages \dot{v}-viii)

manganese dioxide, vegetable dusts such as cotton and bagasse, and other "organic" dusts such as graphite and coal. (4)(10)
(3) The dust may be valuable, such as potash from the blast furnace gases, puiverised coal from flue gases of industrial boiler plants, cement from the cement kiln gases, and the catalysts from the cracking plants of oil refineries.
(4) The substance may have to be manufactured in powder form such as carbon black and high-grade zinc dust.

Supression systems relating only to the fine diseaseproducing coal dusts, as encountered in mining atmospheres, are discussed in the present work.

1.2 Pneumoconiosis

This pulmonary disease due to excessive dust inhalation has been known for centuries in the various dusty industries as mason's disease, potter's rot, miner 's asthma, grinder's rot, Monday Morning fever, etc. Zenker ${ }^{(11)}$ used the term "pneumonoconiosis" (compound of two Greek words 'pneumon' and 'oonis', meaning 'Iung' and 'dust' respectively) in 1866 to describe these dust-diseases and this was shortened to 'pneumoconiosis' by Proust ${ }^{(12)}$ in 1874. Though the term denotes 'the disease of the lungs produced by the inhalation of dust', a more comprehensive definition of the term is being sought both to designate a pathological entity and to
specify an occupational disease. Haminn ${ }^{(13)}$ deacribes the term as "an all-inclusive caption for a variety of pulmonary affections.......Generically, it does not imply fibrosis, but simply 'dust' in the lung.......therefore, pneumoconiosis must include any retention of dust in the lungs, whether of industrial origin or not, and whether of toxic, irritant, proliferative or inert dust."

Various forms of pneumoconiosis are distinguishable by radiological diagnosis of the chest, aided by a knowledge of the nature of dusty occupation and the kistory of exposure to duat. E.g. (a) Classical Silicosis due to the inhalation of Silica dust, is characterised by a large number of small, firm, grey, whorled noduless (14) (b) Anthracosilicosis (15) among workers at the coal face and trinmers in the holds of ships is recognised by widespread extreme pigmentation in the lungs, where the Silica is masked by the coal; (c) Coalminers' pneumoconiosis ${ }^{(16)}$ is known by the condition of 'focal emphysema ${ }^{1}$; (d) Asbestosis ${ }^{(17)}$ lesions take the form of diffuse fibrosis; (e) Siderosis ${ }^{(18)}$ among haematite miners is characterised by diffuse-fibrosed areas of a bright briok-red colour; (f) Kaolinosis ${ }^{(17)}$ has emphysema as a marked feature and the bluish colour of the lunge is distinctive; etc.

1.3 Incidence of Pnoumoconiosis.

As long ago as 1556, Agricola ${ }^{(19)}$ observed that many women in the Carpathian mining districts married eeven
husbands, "all of whom this dreadul disease has brought to an early grave". The magnitude of this problem can best be realised by the knowledge of the incidence of the disease. The incidence of raw cases of Silicosis in the mines of Witwatersrand was 9.53 per 1000 examined during 1941-944 though it stood at 28.11 per 1000 during 1917-'20 (20) In the Kolar Gold Fields in India during 1940- 46,7653 men with five years underground service or more were examined, out of whom 3351 (43.79%) were found to have abnormal radiological appearances of the lung fielde. (21) The peroentages of cases of pneumoconiosis in a foundry, fettling shop and coreshop are $5.2,6.7$ and 3.1 respectively. (22) In Britaing there were 22,000 men certified as disabled from coal-dust between 1931 and $1948^{(23)}$ and in 1945 alone, 5224 cases of coal miner ${ }^{\circ}$ s pneumoconiosis were recorded in South Wales. (24) By 1960, 8080 men were receiving disablement benefits under the Pneumoconiosis and Byssinosis Benefit Scheme. (25) The incidence of the coal-miner ${ }^{\prime} s$ disease in Scotland is given in Fig。 1.1 for the jear 1959, ${ }^{(26)}$ and the average dust contents of coal-miner ${ }^{\text {s }}$ lung is given in Fig. 1.2 (27)
1.4 Harmful particle-size and concentration

Medical opinion is not conclusive on the physiological limits of dust particleasize retained in the deep Iungs. It was first shown by McCrae ${ }^{(28)}$ that 70 per cent of the particles in silicotic lungs were less than $I \mu$ and

FIG. I.I PNEUMOCONIOSIS RATES IN SCOTLAND -1959

FIG.1.2.DUST CONTENTS OF COAL-MINERS' LUNGS

the largest particle did not exceed 10.5μ. On the basis of this work, Mavrogrodato ${ }^{(29)}$ defined disease-producing dust as particles of 0.5 to 5μ in diameter. Gardner and Cummings ${ }^{(30)}$ showed that a much more severe reaction resulted with a given weight of 1 to 3μ quartz particles, than with an equal weight of 6 to 12μ particles ${ }_{0}$ the latter being comparatively inert. Tobbens, Schulz, and Driniker (31) found that the potency of quarte increased markedly as the particle size decreased from 3 to 0.6μ. The Committee on industrial pulmonary disease in Britain ${ }^{(32)}$ has ${ }_{8}$ as a result of extensive investigations during the years 1939-43, concluded that, in the absence of knowledge to the contrary, ell dust of a size less than 5μ should be considered as harmful. The National Coal Board has adopted the size range as 0.5 to 5μ for silica or rock and $1-5 \mu$ for coal.

$$
\text { Findeison }{ }^{(33)} \text { calculated the average air velocity }
$$ at different points in the respiratory tract, by estimating the dimensions of various parts of the lung and assuming a constant air flow of 200 cocolsec . during inhalation and exhalation. His velocities, which were later confirmed by Davies ${ }^{(34)}$, are shown in Fig. 1.3. The precipitation of particles on to the lung surfaces is considered to take place by four diatinct mechaniams, namely, inertia, sedimentation, wall effect and Brownian motion. Experiments on the retention of particles in the luags have been carried out/

OF HUMAN LUNGS

FIG.1.4. THE EFFECT OF PARTICLE SIZE ON

ALVEOLAR DUST RETENTION

by Van Wijk and Pattermon (35), by Landahl and Hermann (36) and by wileon and In Yor. (37) The dumts usod and the mothode employed by these workers varied and the resulte wore comparod independently by Brown et.al. ${ }^{(38)}$ and Davies ${ }^{(39)}$, on the basis of spherical particies of unit density. Their ourves are shown in Fig. 1.4. Brown et.al. showed that the optimum aize particles for alveolar deposition is about $I \mu$ and the probability of their being so deposited is the eame for particles smaller and larger than 1μ, while Davies indicated that a peak deposition, ranging from 50 to 60 per cent of particles, occurs at 1.5 to 2μ in diameter, and about 30% of the 5μ particles are retainod.

Ho absolute standard has yet been fixed for the maximum allowable concentration of air-borne duet and from the point of view of health, it is obvious that a gravimetric estimation of concentration of dust is of little value, unless it throwe light on the quantity of duat in the aise range whioh is of physiological significance. Arbitrary standards of 'approved oonditions' do, however, exist. For example, in ooai-mines, Bedford and Warner ${ }^{(40)}$ suggeeted that partioles < 5μ should not exceed 660 particles por cubic centivetre of air (p.p.c.c.), out of which 600 p.p.c.c. should be coal and 60 stone. The standards laid down by the Mational coal Board ${ }^{(41)}$ are (1) 650 pop.c.c. ($1-5 \mu$) for anthracite, (2) 850 pop.c.o. ($1-5 \mu$) for bituminous coal, and (3) 450 pop.c.c. (0.5 - 5μ) for stone dust. on a gravimetric
basis, Briscoe et.al. (40) comeluded that the mass come contration of dust should not exceed 10 mg 。 of coal duat and 1 mg. of 'stone' of inorgenic duet per cuomo of air and appliee ouly to particies less than 5μ.

2.5 Methods of dust earpresersion in mines

Drust found in mines may be divided into two categories: ininerent and mechanical.

Inherent dust, which is found IFing aloag the cleavage planes or 'slips' in any coal soam, is the result of attrition, which occurred during formation of those oleavage planes.
'Meohanical' dust is produced by almost every operation in the working and transport of coal, such as coaloutting, loading, drilling, shot-firing and convaying and is alwo Influenced by the standard of roof control. 8ince 1948, the introduction of organised dust-buppression has resulted in a progressive decrease of dustinese, as evidenced by the fact that the mean concontration in the woricing places has been reduced from 9500 p.p.c.c. in 1949 to 4000 p.p.c.c. in 1952 and to about 500 popoc.co ${ }^{(42)}$ by 19540

The task of the engineer in maintaining the etandards of dust-cleanliness divides itself into -
(i) control of dust at the duet-souroe, and
(1i) suppression of air-borne duats.
(i) Control methods to provent duat at soumces
(a) puised-infusion shotriping (watex-blasting),
(b) wator-infusion and wet-cutting,
(o) Dry drilling, with puah-and-pull fan rentilation and various kinds of dust traps.
(ii) Mesamres to suppress sif-borne dustes
(d) water sprays,
(e) consolidation of roadways,
(f) use of steam,
(g) filters in airways, electrical preoipitator or ultrasonic aggiomerator.

Water ia the principal agent used to suppress dust during coal-cutting, blasting, loading and transferring. At the coal-face, wet cutting and water infusion are the most widely used methods. The introduction of the "Whale" type $j 1 b$ in wet-cutting ${ }^{(8)}$, where internal jets can spray in all directions inside the out, has resulted in more effective suppression of dust. Water infusion is the procese of injection of water under pressure into a coalseam through bore-holes for the purposes of wetting preformed dust, softening the coal-seam and inoreasing its "ploughability". As the coal eubstance is impervious, water passes along the oleavage planes and hair structures, which join these cleavage planes. It is on these planes and fractures that the inherent duat is formed and it is wetted
in situ, before the coal is worked. The success of infusion in any meam depende on a ayatematic study of the factore, which condition the ponetration of water into the seam. The factore inciude ${ }^{(43)}$ poaition, epacing and depth of infusion holes, pressure, quantity and rate of flow of water, position of the seal in the infusion hole, simultaneous or battery infusing and gas emiseion. Conditions in British mines have shown that the holes should out the main cleavages or slips at an angle of from 60 to 90 degrees, the holes being between 4.5 and 5.5 cm . in diameter and 2.75 to $4.5 \mathrm{~m}_{\mathrm{o}}$ apart. The quantity of water 1s obviously influanoed by the character of coal and the associated roof and floor beds, and an average value is about 7 litres per ton of coal. The rate of flow ranges from 7 to 11 litres per minute and the infusion pressure from 7 to $35 \mathrm{Kg} / \mathrm{sq}, \mathrm{cm}$ 。 (100-500 pos.i.) on faces where the preseure for infusion is high or evaporation losses due to slow rates of advance are considerable, the use of wetting agents and waste transformer oil in the form of an emuleion gave encouraging results, with reduced quantity of water, reduced preseure and reduced evaporation losses.

The technique of blasting, known as puleed infusion, where the shot is fired under water pressure of about $28 \mathrm{Kg} / \mathrm{sq} . \mathrm{cm}$, , has proved beneficial in reducing air-borne dust during the shotfiring shift. Here the shothole is
charged with epecial explosives（44），which are capable of efficient detomation mier water presemren up to
 placed in the mouth of the shot－hole，the water is turnsed on and the shot 18 fired while under water pressure。

Water sprays are used in wet－cutting and also at loading and transier points．Spraye for wet－cutting isaue from jots about 6.5 mim。diamater and a quantity of about 14 1itres per metre of face out is required at pressures around $5 \mathrm{Kg} / \mathrm{sq}$ 。am。 The＂ficed apray＂whioh are used to suppress duet at transfor and loading pointe，vee opecially designed nossies 105 to 6 min．In diameter with the preasure－ range from 7 to $35 \mathrm{~KB} / \mathrm{Eg}$ 。cm．Three typee of Ifred aprays are clasaified，according to the feeding aystems ueeds（45）
（1）Simple omifice nossie，where the liquid is injected into the gas through a plain orifice （e．g．Morris Spray）．
（1i）Hollow cone nosele with tangential feeds the iiquid is introduced tangentially into a cyolase chamber，in which it rotates as a whirlpool with the shape of a rotating hollow cone and is ejected from the oriflice as a hollow come（eog．Porter sprays）．
（iii）Eigh capaoity swirl noszle with Iixed sorew． Here the rotation of the liquid is achieved by fixed screw or slanted channels．（e．g．Xorting apray）。

Under conditions where the use of water is preciuded (e.go high rock temperatures in the deeper levels of mines), the dry suppression methode consist of collection or damping of the cuttings, after extraction from the hole in an air stream induced by an ejector system. In some cases, the cuttings are extracted at the mouth of the hole by a dust hood; in others, they are extracted from the point of drilling through the drill rod. The Holman Dryductor and Hemborn Suction system, used in combination with the HuwoodHolman V bag filter, the Vokes dust trap and the Hemborn dust filter have been proved to suppress dangerous dust as efficiently as typical wet methods. Bit wear is also found to be less with dry drililing processes. (46)

The advent of a flameproof steam-raiser (47) based on the immersion-heater principle has now made steam available for underground dust suppression. Experiments with steam at surface mine tipplers have shown greater degree of dust suppression. Further, a very much amaller quantity of water is needed, if it is used in the form of steam.

Consolidation of roadways is effected by treating the floor first with a wetting agent and then with some hygroscopic salt, so that when trodden on, it becomes plastic. Flaked oalcium chloride is normally used and if the relative humidity is greater than 75\%, common salt oan be used, with a good reduction in cost. In Germany, it is claimed that the saltcrust treatment (48) of the roadways is more effective, due to reduced redispersion of settled dust.

1.6. İquid aprey formation

A liquid spray is generally considered to be a zone of liquid droplets projected into a gaseous medium, and spraying is the process of atomisation of a liquid jet into a multitude of these droplets. The general purposes of spraying a liquid in air are to increase the surface area of a given mass of liquid and to distribute this IIquid in air in such a way that the air volume swept by the liquid is large: Sprays in practice encompass a 10^{6}-fold range of drop sizes, a 10^{12}-fold range of drop areas and a $10^{18}-$ fold range of drop volumes. (49)

To break-up a liquid mass, it is first forced to assume an unstable free liquid configuration of large surface area: This is accomplished by imparting to it kinetic energy, which causes it to flow through some device which forms it into filaments or a liquid sheet. Beause of surface tension, the configuration of large surface area is unstable, and on undergoing disturbances, e.g. the force of gaseous friction, it breaks up into a system of droplets. While the process of break-up is resisted by the viscosity of the liquid, the process of surface formation is resisted by aurface tension and viscosity.

The break-up may happen in less than one-mililionth of a second. Some kinetic onergy imparted to the liquid mass appears as surface energy in the apray, but the major
portion of the kinetic energy ie retained by the apray drops, causing them to penetrate into the gaseove medium, into which the spray is directed.

Soon after its formation, a apray droplet takes up a terminal velocity with respect to the ambient gas, whioh is equal to its falling velocity under gravity. The terminal velocities of spheres falling freely in infinite gas volume are shown in Table 1.1. The falling velocity of drops of large size $500-5000 \mu$ is likely to be lower than rigid spheres of the same diameter, since they are affected by deformation and internal circulation. It may also be noted from the Table that drope over 100μ in diameter fall at terminal velocities greater than $30 \mathrm{~cm} / \mathrm{sec}$. and will rapidly disengage themselves from any spray moving horizontally.

The process of spray formation and the precise mechaniem of atomisation of liquid jets at high injection velocities are complex and are generally known to be dependent on three factors -
(i) the disturbances set up in the liquid flowing through the atomiser;
(ii) the properties of the medium into which the jet is discharged;
(iii)the physical properties of the discharged liquid.

Each contributes to the process; but the difficulty of separating the factors has so far prevented an assessment of the exact contribution of each to the disintegration of the liquid jet. Rayleigh ${ }^{(50)}$ offered one of the first theories of liquid jet disintegration based upon a mathematical analyais of the stability of a non-viscous jet. He considered a laminar liquid flow with a velocity potential and with the jet only under the influence of aurface tension forces, and found that a jet would be unstable and ready to disrupt, if its length were greater than its circumference, i.e. $l>2 \pi$ 。 His conclusions were utilised in the later theories of Castleman, (51) Haeniein ${ }^{(52)}$ and Weber. ${ }^{(53)}$ Some authors have atressed the fact that turbulent flow in the atomiser . aids the process of atomisations thus Mehlig ${ }^{(54)}$ and Schweitzer ${ }^{(55)}$ indicated that this turbulence produced a radial component of liquid velocity, which enabled the disintegrating jet to overcome the forces of surface tension. Thieman (56) believed that disintegration was influenced by the relative velocity between the outside of the liquid jet and the air itself. While Strashouski ${ }^{(57)}$ concluded that air resistance and high jet velocity are the main factors causing and controlling apray formation, oschatz ${ }^{(58)}$ claimed that the final atomisation of the jet was mainiy dependent on the resistance of the surrounding atmosphere.

Spray formation has been studied photographically (59) and three or even four etages of jet disruption were observed and attempts made to relate them to certain values of Reynolds Number ${ }^{(60)}$

Castleman ${ }^{(61)}$ has put forward a theory of jet disruption, assuming that the mast important factor is the effect of air friction, which causes the tearing of ligaments from the main jet core。 It is claimed that the aise of Iiquid droplets reaches a lower limit at high discharge velocitiess when this condition is reached, the ilgaments collapse, as soon as they are formed, and any further inorease in the velocity (higher. injection pressure) above 10,000-12,000 om/sec., will not produce droplets of amaller sise. This theory would seem to be justified in practice where it is found that at high atomisation pressures, the average droplet aize is reduced by an increase in the number of amall droplets rather than by a reduction in the aise of the emalleat droplets. (62)(63)

The performance of an atomiser depends upon (1) the throughput of the spray nozele, (2) the cone-angle of the spray, (3) the average droplet-size and (4) the droplet-size distribution. Utilising dimensional analysis, the relation between the properties of the liquid and the atomiser has been found to be ${ }^{(64)}$ as follows :-

$$
D_{p} \propto\left(\frac{\overline{\mathrm{MI}}}{\Delta \mathrm{p}_{0} \theta}\right)^{1 / 3}\left(\frac{\mathrm{PL}}{\rho_{\mathrm{Z}}}\right)^{1 / 6}
$$

1.7 Capture of dust particles by apray droplets

To elucidate the principles involved, the analysis can be simplified to the consideration of the action of one water drop moving through a dust cloud. Best ${ }^{(65)}$ has shown that droplets of water in air can be regarded as spherical when they are less than $1 \mathrm{mom}(1000 \mu)$ in diameter. When a water drop traverses such a cloud, it sweeps out a long cylindrical volume of apace, but not all the dust particles contained in this volume are hit by the drop. Air is displaced sideways out of the track of the drop and some of the dust particles in this air are also carried out of the path. The fraction of the duet lying in the path of the drop which collides with it and is removed from the cloud is defined as the "coilection efficiency" of the drop.

The problem of the collection efficiency of large apheres moving through a cloud of maller particles has been studied theoretically by a number of workers, notably by Langmuir and Blodgett ${ }^{(66)}$ and Fonda and Herne ${ }^{(67)}$, and experimentally by Walton and Woolcock ${ }^{(68)}$.

The theoretical investigations involve a number of simplifying assumptions and the theories are based on the physical model which comprises a sphere (the drop) of diameter D_{p} moving at a velocity v relative to a fluid (air) of density ρ_{a} and viscosity η_{a}. The fluid contains spherical dust particles of diameter dp and density ρ_{s}
initially at rest with respect to the fluid. As the sphere moves through the fluid, the latter is displaced out of its path and tends to drag the dust particles with it. The latter, however, because of their mass, are not immediately accelerated to the velocity of the fluid, but lag behind ${ }_{0}$ so that a proportion collide with the sphere; these are the captured particles。 Particles whose centres follow paths that pass within a particle radius of the sphere are assumed to make contact. The collection efficiency E is then the ratio of the number of particies hitting the sphere to the number whose centres initially lay within its track.

By the method of dimensional analysis, a theoretical relationship may be developed between the collection efficiency and the significant variables for the drop, for the fluid and for the dust thus:

$$
E=f\left(\frac{v_{0} \rho_{a} \cdot D_{p}}{2 \eta_{a}}, \frac{\nabla_{0} \rho_{B} \cdot d_{p}^{2}}{2 \eta_{a^{\circ}} D_{p}}, \frac{d_{p}}{D_{p}}\right)
$$

Studies of the trajectories of particles moving under the combined influence of inertia and viscous forces due to fluid flow round a sphere have been made by Langmuir and Blodgett ${ }^{(66)}$, Das ${ }^{(69)}$, Bosanquet ${ }^{(70)}$, Vasseur ${ }^{(71)}$ and Sello (72) Fonda and Herne ${ }^{(67)}$ gave an analytical treatment of the problem, by assuming that the flow pattern is that of a fluid around a sphere (water drop) and is undisturbed by the presence of the dust particles. If the particle is in
the path of the sphere，the two may impact，but the flow of fluid round the moving sphere applies viscous forces to the particles，which tend to remove it from the swept path of the sphere．Whether impact occurs or not depends on the balance of viscous and inertial forces acting on the particle as the sphere approaches it．

On the assumption that the viscous drag force on the dust particle is directly proportional to the vector of the relative velocity of the particle in the fluid，the magnitude of the viscous drag on the particle，taken as a sphere is $3 \pi_{\circ} d_{p} \circ \nabla_{\circ} \eta_{a}$ and therefore the particle behaviour can be completely characterised by the quantity Viscous drag force

Inertial force

$$
\text { or, } \quad \frac{3 \pi_{0} d_{p}{ }^{\circ} v_{0} \eta_{a}}{\frac{\pi}{6} \cdot d_{p}^{3}{ }_{p} \rho_{s}} \text {. }
$$

The dust particle trajectories within the fluid for purely viscous flow and for potential flow enable one to find which particles initially in the track of the drop witimately collide with it。 A laboratory investigation of the behaviour of methylene blue particles and weter spheres ${ }^{\text {（6）}}$ showed that all impacts lead to capture of the small particle by the larger sphere。 On the other hand Brown（73）suggested that bouncing can occur with a probability depending on the relative velocity and the angle of incidence of each on the other．

A basic Parameter K has been defined，which is dimensionless and whose magnitude is a measure of the ratio of inertial to viscous effects．

$$
K=\frac{\rho_{s} \circ d_{p}^{2} \cdot \nabla}{9 \eta_{a} \cdot D_{p}}
$$

The curves showing the relationship of this parameter K to the collection efficiency of particles by droplets are given in Fig。 $\mathrm{I}_{0} 5$ 。

128 Objects of research
Although a great deal of work has already been carried out in the mines on the suppression of fine dusts by sprays under widely varying conditions of wind velocity and dust concentration it was felt that research should be initiated on the suppression of air－borne dusts by sprays under carefully controlled laboratory conditions．This project， thus，became a part of the Pneumoconiosis Research programme formerly supported by the Scottish Division of the National Coal Board．

Earlier workers in this programme had been engaged in the development of apparatus，for the examination of the air－ settling characteristics of fine dust of a particlessize dangerous to health。 Glen ${ }^{(62)}$ used a dust chamber，into which the dust was injected and dispersed and which incorporated three pairs of photo－electric cells，connected in opposition

FIG.1.5 COLLECTION EFFICIENCY v PARAMETER

and to a mirror galvanometera The concentration of the dust cloud in the chamber was measured by the light extinction method. The effects of increased relative humidity and of mixing mineral dusts with silica were investigated by Massie. (74)

Hunter and others ${ }^{(63)}$ measured the effectiveness of swirl atomisers on static dust clouds and studied the use of wetting agents for dust suppression. Their investigations were carried out in a dust chamber, with sprays not exceeding an atomisation pressure of $62 \mathrm{Ibs} / \mathrm{in}^{2}\left(4.36 \mathrm{Kg} / \mathrm{sq}, \mathrm{cm}_{0}\right)$ 。 It was later envisaged that dust suppression systems should be studied in a dust tumel, where reproducible dust concentrations and air velocities could be obtained over a wide range of values and the dust suppression efficiency could be evaluated quantitatively for a wide range of atomiser characteristics and spray-fluids, by means of thermal precipitator samples of the air-borne dust taken aimultaneously before and after the dust suppression system.

Walton and Woolcock ${ }^{(68)}$ showed that the mean efficiency of dust-suppression was as great as 55% for 2μ dust and 28\% for 1μ dust for 100μ drops projected at $3000 \mathrm{~cm} / \mathrm{sec}$ 。 and concluded that the high-velocity spray from a pressure nozzle might provide a practicable way of treating concentrated clouds near the source of production or ducted therefrom.

The object of the author ${ }^{9}$ a research was accordingly to study the effectiveness of such a laboratory flow system for carrying dust-laden air streams and to measure
quantitatively the influence of high spray pressure and high wetting power of the fluid sprayed，on the efficiency of dust－suppression．

Earlier theoretical work has always aseumed that droplet－particle impact results in particle capture．If the particle is difficult to wet with the droplet liquid a proportion of the impacts may not result in capture，the particle merely bouncing off into space．Thus the addition of a wetting agent may well be crucial for the effective suppression of some dusts．

To avoid personal error in particle size analysis an automatic particle counter utilising a wide－slit scanning technique and a photo－electric device was employed。 It was necessary to ensure that the size of droplets produced at very high pressures（ 2750 pos．i。）followed the same laws as those produced at low pressures（ 60 posoio）．Thus a method of droplet size measurements using the automatic particle counter was necessary and had to be evolved and droplets sized over a suitable pressure range．

The amount of water required to suppress a given quantity of air－borne dust had already been assessed（75）． It was necessary to extend this to higher spray pressures and to evaluate it for sprays of different wetting power．

It was also decided to atudy the effect of spraying dusty air with a number of high pressure hollow cone eprays arranged in series（tandem sprays）to find the maximum possible dust suppression in such a dust tunnel and the
effect of increased water throughput at a specific pressure on the amount of water required to suppress a given quantity of dust.

APPARATUS

2．1 The Wind Tunnel

Earlier experiments on dust suppression carried out in a dust chamber，using stationary dust clouds and though by themselves informative these experiments bore no direct correlation to the actual mining conditions．A dust tunnel was therefore designed ${ }_{g}$ through which dust－laden airostreams similar to those actually encountered in mining practice could be passed and quantitative experiments on dust－suppression could be undertaken．

The experimental dust tunnel was originally constructed by Hutcheson and Sweetin ${ }^{(76)}$ and was subsequently modified from time to time by the author．A drawing of the tunnel （not to scale），as it stands now，is shown in Fig． 2.1 and a view，looking from the fan end ${ }^{2}$ is seen in Plate I_{0}

The tunnel consists of seven lengths of 16 ogauge mild － steel welded ducting，flanged at the ends and fitted with rubber gaskets．The overall length of the tunnel is about 20 metres and the outside diameter 45.72 cms 。（18n）。
 of producing an airflow of $1000 \mathrm{~cm} / \mathrm{sec}$ 。（about $2000 \mathrm{ft} / \mathrm{min}$ 。） against a back pressure of $5 \mathrm{~cm}_{\text {。 }}$ water gauge（ $\mathbf{F} \circ \mathrm{g}_{0}$ ）was fitted to the higher end of the ducting by a flexible rubber tubing．The fan was driven at $1500 \mathrm{r}_{\mathrm{o}} \mathrm{p}_{\circ} \mathrm{m}_{\mathrm{o}}$ by a $2 \mathrm{H} \circ \mathrm{P}$ 。fan－ cooled squirrelocage motor（ $400 / 440$ volts， 3 phase， 50 cycle $A C$.$) The airflow into the tunnel was made variab？e by$

PTATE I
EEXPERTMGNTLAL WIND-TUNTNET

fitting a Keith－Blackman Radial－leaf Damper to the fan inlet。 This enabled the air velocity to be set to any desired value between 50 and $1000 \mathrm{~cm} / \mathrm{sec}$ 。（ $100-2000 \mathrm{ft} / \mathrm{min}_{0}$ ）．

A 6.4 mm 。 $\left(1 / 4 \mathrm{in}_{0}\right)$ mesh honeycomb structure $\mathrm{g}_{9} 10 \mathrm{~cm}$ 。in depth，was fixed into the ducting immediately after the blower in an attempt to even out the air－flow pattern in the tunnel but this was later augmented by fitting a baffle plate of diameter $\underset{\sim}{D}\left(32.35 \mathrm{~cm}_{0}\right)$ ，concentric with the duct at a distance of about 3 metres from the fan and an anti－spin＇ baffle of length $3 D$（ 1.37 metres）along the axis of the duct ${ }_{\text {o }}$ making contact with the back of the $\underset{\sqrt{5}}{ }$ baffle and of course perpendicular to it．The significance of the baffle plates with reference to the airflow pattern in the tunnel is more fully discussed in Chapter 3.

A perspex window was provided in the centre section of the tunnel．where the dust－suppression spray－systems could be watched and carefully controlled．Holes were cut for two thermal precipitator heads on either side of the spraying section．The＂top＂thermal precipitator was about 7 metres distant from the fan on one side and is about 802 metres distant from the ${ }^{\text {obottom }}$＂thermal precipitator on the other side。

The tunnel was mounted on angle－iron and wood supports． with the bottom end 15 cm 。 Lower than the fan end，so that the water from the sprays would drain away easily．A 2.5 cm 。high catchment dam was built across the lower end of the tunnel and a 1 cm 。hole was drilled for water－drainage．This catchment
dam was found inadequate and was subsequently replaced by a 7.6 cm 。high catchment dam before the end of the fifth length of ducting and a 5 cm 。diameter hole was drilled for draining water away．

A venturi tube was positioned within the tunnel near the downstream end and calibrated against a vane anemometer． A Keith Blackman W－type viscous ofl film filter battery， comprising four trays soaked with light lubricating oil and set at 45° to the horizontal，was fitted to the lower end of the dust tunnel by flexible rubber tubing．The dust－laden airstream was thus made to pass through the oil film $_{9}$ before escaping to the atmosphere．
－The inside surface of the airduct was coated with hard gloss white paint．Angle－iron and wood supports，as also the flexible rubber tubing connecting the fan to the tunnel，kept vibrations due to the electric motor and fan to a minimum。 2．2 Allied Equipment for the dust tunnel

2．2．1 Dust－feeding Machine：A dust generator capable of producing a dust cloud with reasonably constant charac－ teristics，was fixed at the top end of the tunnel at about l． 5 metres downstream from the fan．The outlet end of the injector nozzle was placed exactly at the centre of the tumnel cross－section，facing downstream．The unit is shown in Fig。 2.2 and a $v i e w$ of the dust feeding mechanism is seen in Plate II。

FIG.2.2. THE DUST FEEDING MACHINE

PLATE II

DUST-FEEDING MACHINE

The dust generation was a modified version of the apparatus described by Hattersley et.al. and consisted essentialiy of a dust-metoring device and a means of dispersing the dust into the air stream. The dust was placed in a trumcated cone hopper, which was fastened to a vertical steel column and capable of being raised or Iowered. Under this hopper, rotated a horizontal plate with three concentric grooves cut on its surface and as the plate rotated, duat flowed from the lower edge of the hopper and was swept across the plate by a scraper oystem, filling the grooves. The compressed-air ejector, with its bottom end placed on top of a particular dust-filled groove, erucked the dust out of the groove and blew it, mixed with air, into the tumnel.

Iwo circular 18 cm 。 perepex plates had three concentric grooves cut on each of their surfaces and one or the other could be arranged to rotate under the hopper. The groove sises have been given below for the two plates:

MRTS 2. 1 Dust Piste I

Outer Groove		middle Groove		Inner Groove	
Width	Dopth	Width	Depth	Width	Dopth
9.15	1.59	12.2	1.59	12.2	1.59

Outer Groove		Middle Groove		Inner Groove	
Width m．	Depth mm．	Width mm。	Depth mm。	Width mo．	Depth mm。
5．08	1.59	4．32	1.27	4.57	1.27

These plates were driven by a small electric motor operating through a V－rope belt running on cone pulleys and a step－down gear box．With this system，it was possible to run the dust plates at 8 different speeds，$v i z .0 .420,0.520$ ， $0.568,0.700,0.705,0.885,0.940$ and 1.185 ropom。

Theoretical dust concentrations could be calculated from the linear velocities，the dust－groove dimensions and the bulk density of dust，as shown in example given in 2．4．2．

Inside the hopper was placed a wooden cone of small diameter with four scraper blades attached to its base．These blades fed the dust out through the space between the hopper and the rotating plate．A secondary scraper in the form of thin brass strip of trapezium shape was fired to a second vertical steel column to sweep the dust across the plate and to fill the grooves with dust．This scraper could be adjusted at any angle by pressing on to the rotating plate，so that the grooves were fully and evenly filled with dust．Reasonably good results were obtained by having a clearance of about 4 mm 。 between the hopper and the dust plate．This adjustment helped to fill the groove in the plate completely，with a small trickle of dust going to waste．

For dispersing the dust, the bottom end of the all-glass ejector could be set on any required groove of the duat plate, with the secondary soraper just behind it. The ejector was operated by an airblower, which provided compressed air at 4 cmowog. The suction developed at the top of the ejector was 5 mmow ogo

The concontration of the dust cloud in the dust tumol could thus be altered by:
(a) varying the air velocity at the centrifugal fan air-inlet,
(b) changing the size of the dust groove on either of the plates, and
(c) varying the eqeed of revolution of the plate used. By using combinations of these three factors, particularly the first two, a wide range of dust concentrations from 350 p.p.c.c. to about 3000 p.p.c.c. was obtained. Theoretical dust concentrations based on dimensions of the rotating plate and size analysis of the coal dust appear elsewhere in this section.

2.2.2 The Dust Suppreasion System: The Spraying Unit

This unit was the outcome of much preliminary work.
The liquid to be atomised was pumped by a three-throw reciprocating plunger pump manufactured by G。and Jo Weir (78) through an air cushion cylinder to the apras nozeles. The pressure of spray could be as high as $210 \mathrm{Kg} / \mathrm{sq}$ ocm.
(3000 pos.io) depending upon the diameter of nozzle orifice
and could be controlled easily to any desired value by varying the epeed of the motor and the setting of a by-pass valve. The characteristics of the pump and the various swirl spray noszles used are discussed in more detail in Chapters 6 and 7.
2.2.3 Instruments for dust-sampling: Standard thermal precipitators were employed to assess the air-borne dust concentration before and after the dust-Buppression unit. A gravimetric dust sampler was also used for comparison purposes.
(a) Thermal Precipitator: The thermal precipitator ${ }^{(79)}$ which is the reference instrument used in British coal minos to assess the concentration of respirable-size dust, was originally designed by Whytelaw-Gray and developed by Green and Watson ${ }^{(80)}$, making use of the Altien effect that the space surrounding a hot body is dust-free. (Fig.2.3). Fine solid particles suspended in the gas in the immediate vicinity of a hot body, are repelled from it as a result of the differential bombardment set up by the thermal gradient in the ges. The hot body thus becomes surrounded by a region of dust-free gas. The dust particies are deposited in linear streaks on thin microscope cover glasses placed on either side of a hot wire.

The instrument consisted of two main parts, the head carrying the hot wire (Pig.2.4) and the aspirator, inducing air-flow through the head by water displacement. The total

FIG 2.3. DUST-FREE SPACE ROUND A HOT BODY

FIG.2.4. THERMAL PRECIPITATOR HEAD

Volume of water diaplaced is a direct measure of the Volume of the air sample．The precipitator head takes the form of a cube．It comprises two brass blocks sorewed together，and two sets of three atrips of bakelite placed between to make a vertical slot．

A nichrome wire 0.025 cm 。in diameter and 0.965 cmo long passes between these spacers and centrally aoross the slot．One ond of the wire is conneoted to an insulated terminal，the other end to a spring，which keeps the wire taut when heated through the centre of each block。 Cylindrical holes of 19 mm 。diameter are out and cover glasses are inserted through these holes so that they rest against the spacers on either side of the wire and are then held in position by closely fitting brass plugs．The wire is heated to about $100^{\circ} \mathrm{C}$ by passing a steady current of 1.3 amp from a 405 volt battery．At this temperature the dianeter of the dust－free apace is larger than the distance separating the cover－glasses．

In operation，dusty air is drawn through a slot 0.051 cas by 0.95 ．an．in crose meotion at a reloaity of ．
 betwen $65 \mathrm{smd} 70 \mathrm{c} / \mathrm{min}$ ．The air passes between the cover glasses placed on opposite sides of the wire at a distance of 0.01 cm ． from it．The bress plugs in contact with the cover－silips， conduct the heat away from the glass and maintain a
sufficiently steep temperature gradient to ensure complete precipitation of particles．

Prewitt and Walton ${ }^{(81)}$ found it reasonable to assume that the collecting efficiency of the instrument was 100 per cent in the size range 1.0 to 5.0 microns，provided that the temperature of the hot－wire is adequate and that the rate of flow of air through the precipitation zone is controlled within the limits $6.5 \mathrm{cocos} / \mathrm{min}$ 。 and $7 \mathrm{coc} \cdot / \mathrm{min}$ ．

The volume of air to be drawn through the instrument depends on the dust concentration．For instance，with 1000 popococon a $50 c_{o} c_{0}$ sample would yield deposits adequate for accurate counting．The cover－glasses are subsequently removed from the instrument and mounted on a standard 7.6 cm 。 $\times 2.5 \mathrm{~cm}$ 。 microscope slide for particle counting and sizing．
（b）Gravimetric Sampling：Experiments using sallcylic acid filters were also carried out and simultaneous samples from these two methods of eampling are compared in detail in Chapter 5．

2．2．4 Instruments to measure air velocity in the

tunnel：Two instruments were installed to measure the velooity of air flowing in the tunnel－
（i）a Venturi meter
and（ii）a hot－wire anemometer．
（a）Venturi meter：A standard 15 cm 。 venturi tube was placed along the axis of the tunnel near the lower end of the duct at about 17 metres from the fan．（Figo6）．The
pressure difference between the upstream end of the cone and the throat（Fig．2．5）was read on an inclined manometer． The venturi was calibrated against a vane anemometer and was principally used to measure air－velocities exceeding 500 cm 。／sec．（ 1000 ft 。／min．）。
（b）Hot－mire anemometer：The instrumentation of the hot－wire anemometer，used to measure accurately low air velocities in the tunnel is shown in Fig．2．6．It consisted of a copper－constanton thermocouple with one junction directiy exposed to the air in the centre of the duct． The other junction had a heating coil of 60 ohms resistance wound round it．A steady current of 0.26 amperes was passed through this coil from an 18－volt accumulator．This accumulator was latterly replaced by a small rectifier unit， taking its supply from the $A_{0} C$ ．mains．The heated junction caused a potential difference and this was read on a milli－ Voltmeter．When the air was flowing along the tunnel，the heat received by the junction was dependent on the cooling effect of the air on the coil and thus on the air velocity． The hot－wire anemometer was calibrated against an accurate vane anemometer．

Generally the routine maintenance of the tunnel consisted of－
（a）cleaning and resetting of the Keith－Black oil film filter，
（b）periodic recalibration of the hot－wire anemometer to allow for the effect of seasonal fluctuations of ambient air temperature，

FIG.2.5. VENTURIMETER

FIG.2.6. HOT-WIRE ANEMOMETER

Hot and cold junction

（c）cleaning the precipitator head and aspirator，
（d）cleaning the air cushion cylinder of the spraying unit and
（a）cleaning and resetting the duist injection unit．

2．3 Preparation of coal－duat for experiments

About 25 kg 。 of boiler house singles coal were first air dried overnight and then passed through jaw crusher and roller mill until the product obtained was about 3 mm 。in size．This material was dried in small quantities for some hours at $110^{\circ} \mathrm{C}$ ．The dry cosl was passed through a high speed laboratory hamer mill，and subsequently ground further in batches of $40-50 \mathrm{~g}$ 。 in a mechanical agate mortar for one－ hour periods．The product obtained from the agate mortar was sieved through 300 BoS．Sieve to ensure that the particle sice of this experimental dust did not exceed 53 microns． The sise－analysis of the dust described in Chapter 4，later proved that more than 90 per cent of the air－borne particles in the duct were below 5 micron in size．

2．4 Some theoretical consideretions

2．4．1 Critical velocity for turbulent air－fiom in the

 tumnel：For flow in a tumnel of circular crose－section， the condition for turbulent flow is$$
\begin{aligned}
\mathrm{Re} & >2300 \\
\text { where } \quad \mathrm{Re} & =\frac{\rho_{y_{i}^{\circ} \cdot u_{0} \mathrm{D}}}{n_{\mathrm{a}}}
\end{aligned}
$$

Por a tumel of diameter 18 inches，the coritical velooity of flow for turbulence

$$
\begin{aligned}
\tau_{c} & =\frac{R e}{\left.P_{I^{0}}\right)^{2} \eta_{a}}=\frac{2300 \times 0.14}{18 \times 2.54} \\
& =7.04 \mathrm{~cm} / \mathrm{sec} \cdot(13.82 \mathrm{ft} / \mathrm{min})
\end{aligned}
$$

1．e．at speeds above $13.8 \mathrm{fto} / \mathrm{min}$ 。 at ambient temperatures， the air flow in the tunnel is turbulent．

In turbulent flow，the transfer of momentum takes place as a result of the movement of comparatively large groups of molecules or eddies across the section of the duct and the velocity distribution law，as formulated by Prandtl（82） is illustrated in Figo．2．7．For a range of air velocity in the duct 14 ft 。／min。 $(7 \mathrm{cmo} / \mathrm{sec}$.$) to 3 \times 10^{4} \mathrm{ft} / \mathrm{min}$ 。 （ $1.5 \times 10^{4} \mathrm{cmo} / \mathrm{sec}$. ）（when Re $=10^{7}$ ）the velocity profile over the arose－section will be between curves II and III． The experimental velocity measurements and the effect of baffle plates on velocity profile are discussed in Chapter 3.

2.402 Theoretical dust concentration in the tumpli：

Dust concentrations in the trupel could be calculated theoretically for different air velocities，from a knowledge of the dimensions of the dust－plate groove employed and also velocity of approach of groove and average particle aize of the dust．This also provided a rough guide for choosing the right combination of dust－groove and air velocity for a desired dust concentration in the tunnel．

FIG. 2.7. VELOCITY PROFILES FOR FLOW IN PIPE

'Application of laws for turbulent flow:

1. $\left(u_{z} / \bar{u}\right)=124(2 \bar{z} / D)^{1 / 7}$
:-From onset of turbulence $\operatorname{Re} \bumpeq 23 \times 10^{3}$ up to $\operatorname{Re} \bumpeq 10^{5}$
$2 \cdot\left(u_{z} / \bar{u}\right)=124(2 \bar{z} / D)^{1 / 10} \quad:-\operatorname{Circa} \operatorname{Re}=10^{7}$

An exsmple for the theoretical calculation of dust ejected from the dust machine on the basis of 100 per cent efficiency，is given belows

Specification of groover Groove No．2，Plate Io
Inner diameter of groove ．．． 13.08 cm 。
Outer diameter of groove o．． 14028 cm 。
Depth of groove
．o． 0.1589 cm 。

\therefore Volume of groove	$=\frac{\pi}{4}\left(14.28^{2}-13.08\right)^{2} \times 0.1589$
	$=3.860 .0 /$ revolution of groove

Weight of dust ejected，ameuming 100% efficiency，

$$
\begin{aligned}
& =\text { Volume } \times \text { bulk denaity } \times \text { Revo } / \text { min。 } \\
& =3.86 \times 0.0196 \times 27.68 \times 1.191 \\
& =2.465 \mathrm{go} / \mathrm{min}
\end{aligned}
$$

Fo．of particles $<6.59 \mu=w t$ of dust／min．x particles $<6.5 \mu / \mathrm{gm}$ ，

$$
\begin{aligned}
& =2.465 \times 8760 \times 10^{6} \text { (experinental) } \\
& =21.62 \times 10^{9} \text { particles/min. }
\end{aligned}
$$

At an air velocity of $250 \mathrm{ft} / \mathrm{min}$ ．in the wind twnel，volume of air in the tumel

$$
=\frac{150 \times 60}{1.987} \times \frac{\pi}{4}(18 \times 2.54)^{2}=7.505 \times 10^{6} \mathrm{c}_{\mathrm{pe}} \mathrm{c}_{0}
$$

\therefore－Iruber of particles $<6.59 \mu$ present in the tumol

$$
\begin{aligned}
& =\frac{21.62 \times 10^{9}}{7.505 \times \frac{106}{6}} \\
& =2880 \text { p.p.c.c.o. }
\end{aligned}
$$

Thus the theoretical dust－concentration was calculated at ilfferent velocities，as shown in Table 2．3．

PABTE 2.3

Theoretical dust-ooncentration in the tumel

$$
p \circ p \circ 0_{0} 0_{\circ}(<6.59 \mu)
$$

Speed of plete .o. 1.191 R.PoMo

Ho.	Tumal mean Air Velocity		Dust-concentration in popococo
	cmo/sec。	$\mathrm{ft}_{6} / \mathrm{min}$ 。	$\begin{aligned} & \text { plate I: } \\ & \text { Graoye? } \end{aligned}$
1	75	150	2880
2	125	250	1810
3	200	400	1130
4	450	900	502

2.4.3 Teo-kingtio eampling for the thermait

preoipitator: In order to obtain a mample of dumt truly representative of its concentration and sise diatribution in the air that carries it, the velocity of the dusty air entering the sampling instrument should be exactiy equal to that in the main stream. If the velooity of sampling be Iower than the air velocity, the greater inertia of the larger particles causes them to be collected preferentially. On the other hand, too high velocits of sample intake results in the rejection of some of the larger particles. It appeare e_{0} however, that this equalisation of sampling and stream velocities can never be truly attained
in mining practice，not only because air velocities in the mine vary greatly from instant to instant and from place to place，but also because sampling instruments like the thermal precipitators are designed to be most efficient within a closely－controlled rate of aampling． For instance，a thermal precipitator head sucking in dusty air through a slot 0,051 by $0,95 \mathrm{~cm}$ 。in cross－section at a controlled rate of around $7 \mathrm{c} \mathrm{c}_{\mathrm{o}} / \mathrm{min}$ 。 assumes a sampling velocity of only $2.35 \mathrm{~cm} / \mathrm{sec}$ 。（ $4.7 \mathrm{ft} / \mathrm{mln} \mathrm{n}_{0}$ ）

Withers ${ }^{(83)}$ ，however，was unable to find any appreciable change in size selection when the ratio of ambient air－velocity to sampling velocity varied from 0.6 to 2．2．

If one assumes an air velocity of $100 \mathrm{~cm}_{\mathrm{o}} / \mathrm{Bec}$ 。 （ $200 \mathrm{ft} \mathrm{t}_{0} / \mathrm{min} \mathrm{n}_{0}$ ），which is quite a normal figure in mines， and control the rate of sampling for maximum thermal precipitator efficiency at 7 c．co／minute，to obtain an isokinetic sampling，the area of thermal precipitator inlet mouthpiece must be

$$
\frac{7 \times 100}{60 \times 100}=0.1178 q_{0} \operatorname{mma}_{0}
$$

Thus if the inlet had a circular cross－section，the diameter of the mouthpiece should be

$$
\sqrt{\frac{0.117 \times 4}{\pi}}=0.386 \mathrm{~mm}
$$

or 386 miorons．
This is much too small for practioal operation．

Prom these figures, it is quite apparent thiat under mining conditions isokinetic sampling oannot be effectively carried out, and so it has become necesaary almost completely to ignore the effect of differential velocities in eampling procedures for thermal precipitators.

3．DISTTRTBUTION OF AIR－VETOCITTY AND DUST－CONCEITMRATION

IT THE TUNNET：

3．1 Distribution of air relocity

3．1．1 Introduction：Since the air flow in the tunnol was created by a centrifugal fan，capable of producing illow－ rates in the range $50-1000 \mathrm{~cm} / \mathrm{sec}$ 。，it was decided that a knowledge of the air－velocity distribution at various oross－ sections of the tunnel would be necessary．Hon－uniform velocity distribution would then be corrected by suitable baffles placed in the tunnel．An NoP．I．hemispherical head pitot tube was emplojed to measure air velocities，since it produced no appreciable pressure loss and it could be inserted through a comparatively amall hole into the tumel wall．The pitot－tube head of NoP．I．hemispherical end type is shown in Fig．3．1．The two cancentric tubes of the pitot tube were connected to the two ends of a micromanometer which measured accurately pressure differences to 0．0005 inch． or 0.00127 cm ．water gauge．

3．1．2 Pitot－tube traverses：Since this device measured the instantaneous velocity at one point，it was necessary to take a number of readings at different points to get a clear picture of velocity distribution across any section of the tumel．

A circular tumel such as this was best considered to have its cross section divided into a number of concentric rings of equal areas，as shown in Fig。3．2。 The intersection

FIG.3.2PITOT TUBE TRAVERSING POINTS IN TUNNEL

of the circle which divided each of these areas into two equal parts with a diameter determined the points at which the pitot-tube head was to be placed. Thus 10 traversing points were obtained together with the centre for any one diameter. Across any section of the duct, four diameters - vertical, horizontal and two others at 45° to those, were selected for traversing. For the five concentric rings of equal area into which the twnel crose-seotion was considered to be divided, the required distances to the oentres of the areas - $\nabla i z$. the traversing points for the pitot-tube - from the wall of the tunnel are given in the table below.

TABTE 3.I

Diameter of duct o.. 45.72 cms .(18 inches)
Eatablishment of Traversing Points

Point Mo.	Dlstance from the wall.cms.	Point No.	Distance from the wall.oms.
1	1.19	6	30.08
2	3.75	7	35.39
3	6.68	8	39.05
4	10.33	9	41.97
5	15.64	10	44.53

A hole of about 1.5 cm . diameter was made for the insertion of the pitot-tube into the duct and it was carefully plugged with a rubber bung when measurements were being made. Care was taken to ensure that the Pitottube was placed accurately pointing upstream, since it has been shown that inaccuracies to the extent of $21 / 2 \%$ in velocity could be obtained, if the tip of the tube was inclined at an angle of 20° to the air stream。 ${ }^{(81)}$ The readings of the micromanometer were taken at each of the traversing points along each of the four diameters across any section. The temperature of the air in the tunnel during the experiment was also noted. Taking the pressure of the air in the tunnel to be practically that of the atmosphere and assuming the air to be dry, the air velocity was calculated from the formula (85)

$$
\begin{aligned}
\nabla_{\mathrm{ft} / \mathrm{min}} & =174024 \sqrt{t+459.6} \cdot \sqrt{1} \\
& =K_{t} \circ \sqrt{ } \mathrm{H}
\end{aligned}
$$

For the temperature of $65^{\circ} \mathrm{F}$, this reduces to

$$
\begin{aligned}
\nabla_{\mathrm{ft} / \mathrm{min}} & =3990 \cdot \sqrt{\mathrm{H}} \\
\text { or } \quad \nabla_{\mathrm{ca}} / \text { sec. } & =2027 \cdot \sqrt{\mathrm{H}}
\end{aligned}
$$

Having determined the velocity of air at different points across any section, iso-velocity curves were drawn to represent the velocity distribution.

3．1．3 Fiffect of honeycomb on velocity distribution：

Preliminary experiments indicated a most uneven distribution of air．Accordingly，a 6.4 mm 。 $\left(^{l} / 4^{n}\right)$ mesh honeycomb structure， 45.72 cm ．in diameter and 10.6 cms 。deep，was inserted in the temal immediately after the fan in an attempt to even out the air flow．（86）

The fan was set to give a velocity of about $250 \mathrm{~cm} / \mathrm{sec}$ 。 and pitot－tube traverses were carried out at the section of the tuninel in line with the mouth of the dust－injector nozele。

The velocity distribution curves showed that the honeycomb device did not make a significant contribution towards even distribution of air，since it could not exert sufficient back pressure for the purpose．The air velocity remained higher in the upper left quadrant of the tunnel（an looking downstream）and lower in the bottom right quadrant． For example，the velocity at the near end of the tunnel was more than double that at the far end．（ $300 \mathrm{~cm} / \mathrm{sec}$ 。as against $142 \mathrm{~cm} / \mathrm{csec}_{\mathrm{o}}$ ）．

The effect of overall air rate on the velocity distribution in the tranal through the honeycomb was also investigated．Pitotmotube traverses were carried out at the same section，opening the damper of fan each time to change the air velocity in gradual increments from $250 \mathrm{~cm} / \mathrm{sec}$ ．to $750 \mathrm{cmo} / \mathrm{sec}$ ．It was．found that the velocity distribution was more non－uniform at speeds higher than $400 \mathrm{~cm} / \mathrm{sec}$ ．， and as the speed increased the high－velocity air in the
upper left quadrent of the tunnel optun itself more into the bottom right quadrant.

With a view to investigate the nature of the velocity distribution along the twall with the honeycomb in position, the fan was set for $150 \mathrm{~cm} / \mathrm{sec}$ 。 and velocity measurements at various points on four traverses were made at five sections as follows :- (see Fig. 2.1)
(a) at the mouth of the dust nozzle,
(b) just in front of the thermal precipitator $I_{\text {, }}$
(c) just beyond the thermal precipitator.I,
(d) just in front of the thermal precipitator II, and (e) just beyond the thermal precipitator II.

This was repeated at speeds of 300 and $500 \mathrm{~cm} / \mathrm{sec}$. and the resulte were plotted as iso-velocity curves for each section. It was seen, as suspected, that the velocity distribution was by no means uniform and varied with the traverse selected at any one section. The air fan seemed to concentrate the maximum velocity in one quadrant of the trmel moction.

The air flow at the tunnel crossmection corresponding to the mouth of the dust nogsle was found to be very uneven. For example, for the fan set at a nominal $150 \mathrm{cmo} / \mathrm{sec}$. , the upper half of this section recorded a velocity as great as $325 \mathrm{cmo} / \mathrm{sec}$. , whereas the centre of the right hall was recording one as low as $40 \mathrm{cmo} / \mathrm{sec}$. As the fan-damper was opened more, it was found at this section that the maximum
velocity streams slowly spun around clockwise（as looking downstream），so much so that at the fan set for $500 \mathrm{~cm} / \mathrm{cmec}_{\mathrm{o}}$ ， the centre of the right half of the tumal had an air－velocity of $650 \mathrm{~cm} / \mathrm{sec}$. ，while the centre of the left half of the tornal recorded a lower velocity of $300 \mathrm{~cm} / \mathrm{sec}$. ，as may be seen in Fig。 $3.5(\mathrm{a})$ ．

The air flow pattern，however，became more uniform，as it passed along the tumel．At sections near the thermal precipitators，the velocity ranged，for three damper positions corresponding to $150,300,500 \mathrm{cmo} / \mathrm{sec}$ 。 from 125 to $185 \mathrm{cmo} / \mathrm{sec}_{0}$ ，from 200 to $320 \mathrm{~cm} / \mathrm{cm}_{\mathrm{o}}$ ，and from 425 to $600 \mathrm{~cm} / \mathrm{sec}$ 。 respectively．It was interesting to note that while at high velocity（ $500 \mathrm{~cm} / \mathrm{sec}$ 。）the point of maximum velocity was siuated near the centre of the right half of the tunnel，at lower velocities（ $150 \mathrm{~cm} / \mathrm{sec}$ ．），it moved to the left half of the tunnel，but nearer to its axis． It seemed that standing waves were being set up in the tunnel at the higher velocities．

3．1．4 Effect of Half－area mizing baffle on velocity distribution：To reduce this non－wiformity of air flow in the tumel，a half－area＂mixing＂baffle－a steel disc of diameter $D / \sqrt{2}$ ， Viz 。 $32.4 \mathrm{cms} .\left(12.75^{n}\right)$－was fitted concentric with the twail at about 3.7 metres from the fan．This had the additional advantage in that the dust sample extracted from such a system would be more representative。（87）

Even when dust sampling was carried out isokinetically as was done with a salicylic acid filter in later experiments， the sample extracted might only be representative of the material at the point of sampling and would not therefore be representative of the whole of the material in the duct， unless the dust had been adequately mixed by means of a suitable device．This mixing baffle could be expected to ensure this effect．

With the honeycomb and the mixing baffle in their positions，and the damper of the fan set for an air velocity of about $500 \mathrm{cmo} / \mathrm{sec}$. ，iso－velocity curves were obtained for five sections of the tunnel as given below：
（i）Section distant 1 D（ 45.72 cms．）beyond the baffle。
（1i）Section distant 2 D beyond the baffle．
（iii）Section distant 3 D beyond the baffle．
（iv）Section just in front of thermal precipitator I．
（ σ ）Section just in front of thermal precipitator II。
The results for sections（i），（ii）and（1ii）are shown in Pig． 3.3.

On comparison of these with the iso－velocity curves at the section corresponding to the position of the duet nozsle（Pig．3．5（a）），it was easily seen that the point of high velocity was atill at the top right quadrant of the tunnel，even at 3 tunnel－diameters beyond the mixing baffle。 There had been oniy a small increase in uniformity，but at the sections near thermal precipitators，the points of
maximum velocity were nearer the axis of the tunnel，though not on the axis．The mixing baffle was thus not causing sufficient obstruction to ensure even velocity distribution． Even at sections in front of the thermal precipitators，the velocity ranged from 400 to $550 \mathrm{~cm} / \mathrm{sec}$ 。 and the maximum velocity was not along the axis．

3．1．5 Effect of anti－spin baffle on the velocity

distribution：Obstruction of a greater cross－sectional area of the tunnel by a larger mixing baffle might have resulted in a better distribution of velocitys but it was not attempted since it would have had greater impact on the dust distribution in the tunnel，during the later experiments． Also，since the velocity distribution pattern at the mouth of the dust nozele was found to have a spin with increasing air velocities，drifting the high velocity streams from the top left quadrant at slow speed to the bottom right quadrant at higher speeds，it was felt that some device should be sought which could arrest the spin．

Accordingly，an＂anti－spin＂baffle of length 3 D（1．37 metres）and breadth D（ 45.72 cms ．），was fitted along the axis of the tumel，making contact with the back of the Half Area Mixing Baffle and，of course，perpendicular to it．The effect of this arrangement was studied by means of iso－velocity curves at the same five sections and at the same speed as was done for the $D / \sqrt{2}$ baffle alone and the results for sections（i）．（ii）and（iii）are shown in Fig．3．4，and for sections（iv）and（v）in Fig．3．5（b）and（c）。

(a) 1D behind the baffle

(b) 2D behind the baffle

(c) $3 D$ behind the baffle

fig.3.5 ISO-VELOCITY CURVES SHOWING the EFFECT OF baffles on VElocity distribution in the duct

(a) At dust-feeding nozzle

(b) At thermal precipitator I

(c) At thermal precipitator II

The movement of air and its progressive distribution along the length of the anti－spin baffle plate made an interesting study and justified the use of the baffle，for the purpose．

Comparing with the velocity distribution patterns at the mouth of the dust nozzle（Pig．3．5（a）），and at ID beyond the $\mathrm{D} / \sqrt{2}$ baffle when there was no anti－spin baffle（Fig． $3.3(\mathrm{a})$ ）， it was easily seen that even at a distance of one timpol－dismeter beyond the $D / \sqrt{2}$ baffle，the anti－spin baffle had achieved a fair measure of air－flow straightening which the $D / \sqrt{2}$ baffle by itself failed to achieve．The high velocity streams seen at the top left quadrant of Pigo 3o3（a）were found to have distributed more uniformiy into the bottom left quadrant as well in Pig．3．4（a）．It was also clear from Fig．3．4（c） that a minimum length of three twoal diameters was necessary to arreet the spin of air streams and distribute them more evenily acrose the twnel．

At the section，in front of the thermal precipitator I （Pig．3．5（b）），the whole effective section of the twomel records a velocity of $475 \pm 25 \mathrm{cmo} / \mathrm{sec}$ ．Obstructions like the thermal precipitator and the spray noszle seamed to disturb the air flow significantly，which resulted in a less satisfactory， thougi well－balanced uniform distribution of air in front of thermal precipitator II（ $500 \pm \mathrm{cm} / \mathrm{sec}$ 。）。 In both the sections，the maximum velocity occurred at the axis of the tumel and with this arrangement therefore，it was now
possible to produce better velocity distribution in the tunnel simulating standard turbulent flow of fluid in pipes. Velocities of about $500 \mathrm{cms} . / \mathrm{sec}_{0}$, at which the effects of the baffles were found, corresponded to Reynolds Number of the order of 1.6×10^{5} 。 The Prandtl velocity distribution Iam ${ }^{(82)}$.

$$
U z=1.24 \bar{\sigma}\left(\frac{2 \bar{q}}{D}\right)^{n}
$$

was found to apply. For velocity measurements for turbulent flow around $\mathrm{Re}=1.6 \times 10^{5}$ (mean velocity $. .500 \mathrm{cms} / \mathrm{sec}_{\mathrm{o}}$), a value of $1 / 6.18$ was obtained for n_{0}

$$
U_{z}=1.24 \overline{\mathrm{U}}\left(\frac{2 \overline{\mathrm{z}}}{\mathrm{D}}\right)^{1 / 6.18}
$$

This is consistent with Prandtl's values of n.
ioe. $n=1 / 7$ for $R_{e}=10^{5}$ and $n \bumpeq 1 / 10$ at $R=10^{7}$
The ratio of mean velocity to the velocity at the centre was also calculated and found to vary between 0.82 and 0.93 . The average ratio $\frac{V \text { mean }}{\bar{V} \text { centre }}$ was 0.88 , for Reynolds Number of the turbulent airflom around 1.6×10^{5}.
3.1.6 The effect of obstruction of tunnel outlet on the static pressure and air-velocity: If the viscous oil filter at the outlet end of the tumnel was kept in service for a long period, it soon became ahoked with the dust, which it was filtering from the air. The result was that the filter which had passed down the tumel, exerted a continualiy increasing back pressure and reduced the air velocity in the tumnel corresponding to a given setting of the damper. Eog. At one time, with the filter comnected
and the damper adjusted to its maximum 'open' position a maximum velocity of only $750 \mathrm{~cm} /$ /sec. was recorded. With the filter disconnected, a velocity of $1250 \mathrm{~cm} / \mathrm{csec}_{\mathrm{o}}$ was obtained. In view of the difference, it was decided to investigate the effect of this obstruction of tunnel outlet on the air velocity, since it would also enable periodic assessment of the condition of the filter to be made.

The viscous oil filter was disconnected and arrangements were made, at least 6 D in front of the tunnel outlet, to measure the static pressure by means of an inclined water manometer, and also to make a four-diameter-traverse with the Pitot-tube at a section near thermal Precipitator II. Por different settings of the damper from 'fully open' to 'fully closed', obstruction of the turnel-outlet was effected by means of a large sheet of board. The board was arranged to obstruct in turn one-sixth, one-third, one-half, twothirde, five-sixthe and finaliy the entire cross-sectional area of the tuminl. A pitot-tube traverse was carried out at each setting of the board and damper to determine the mean volocity of air in the turanel. The static pressure difference was simultaneously read on the inclined manometer. The effect of the percentage obstruction of orose-sectional area of tume outlet on the static pressure and mean air velocity are shown for each damper setting in Figs. 3.6 and 3.7 。

WITH OBSTRUCTION OF DUCT OUTLET

Position of fan damper

-1.0- of cross-sectional area at duct outlet
fig.3.7 THE CHANGE OF VELOCITY WITH BACK-PRESSURE

It could be seen from Pig. 3.6 that any obstruction to the extent of about 20% of the cross-sectional area of turmal-outiet did not cause any significant change in the mean velocity of air flowing through it, and also that with the damper fully closed (normal mean velocity about $60 \mathrm{~cm} . /$ sec.), obstruction as much as 80% did not produce appreciable change in velocity.

Prom Pigo 3.7, it is clear that the rate of ohange of velocity with increasing obstruction of outlet is proportional to the opening of the fan-damper, $\mathrm{I}_{0} 0$ 。 the greater the intake of air the greater is the reduction of air velocity by a given obstruction. The results showed that for air velocities from about 700 to $1200 \mathrm{~cm} / \mathrm{sec}$ 。there was a static pressure increase of about 0.8 cm . head of water for every 10% area obstruction at the outlet.

These results were found to be most useful in maintaining the tunnel system in order, since it made it possible to check from time to time the obstruction being produced by the filter.
2.2. Distribution of dust concontration
3.2.1 Introduction: Having obtained an even velocity distribution in the tunnel, it was now necessary to assess the uniformity of dust-concentration within it. This required dust samples to be withdrawn at various points. It was important that the method of dust sampling should not cause a large disturbance to the air-fiow velocity distribution and the
samples collected should be representative of all the dust passing through the tunnel.
3.2.2 Gravimetric Samplings The gravimetric dust sampler assembly used for the experiments is shown in Fig. 308。 A vacuum pump was employed to draw the dust-laden air into the sampling nozzle, iso-kinetic sampling being maintained by the use of a calibrated flow meter. The dust-laden air passed through a ${ }^{\text {ssoluble }}{ }^{n}$ filter-bed, consisting of pure ealicylic acid crystals, which retained the dust particles. Salicylic acid was selected as the filter medium, due to the fact that its needle-shaped crystals could be packed into a bed which removed satisfactorily dust particles down to submicron sizes. It was also important to use a sharp-edge sampling nozzle and a "slow" smooth bend to cause change of direction of the dust-laden air.

The salicylic acid crystals for use in sampling filters were prepared by making a saturated solution of salicylic acid in boiling water. The liquid was filtered hot and allowed to cool to about $50^{\circ} \mathrm{C}$, the supernatant liquor was then poured off and the cryatals retained. If allowed to cool much below $50^{\circ} \mathrm{C}$, the crystals have been found to be too large for use。 ${ }^{(88)}$

With the fan set for an air velocity of $100 \mathrm{~cm}_{\mathrm{o}} / \mathrm{sec}_{\mathrm{o}}$, and the dust-injector set to eject into the centre of the duct, the unnel filling the midale groove of the dust-plate I_{8}
FIG.3.8 THE GRAVIMETRIC DUST SAMPLER ASSEMBLY

and allowing a few minutes for conditions to beoome steady, the dust was eampled at five sections.

The aampling sections were z-
(1) Just in front of the half-area mixing baffle;
(ii) Just in front of Thermal Precipitator I_{3}
(iii) 1 metre beyond the spray nossle;
(iv) 3 metres beyond the apray nozeles
(v) Just in front of Thermal Precipitator II。

At each of these sections, simultaneous ampling of
dust was carried out for an hour at eaok of the corresponding five positions at each seotion, viz. at the oentre, 7.62 cans. either way and 15.24 ams. either wey from the oentre (dividing the horisontal diameter into six equal parta). The filter was weighed before and after the experiment.

The results are shown in Table 3.2 and are
represented graphically in Fig. 309。

TABTE 3.2

$\begin{gathered} \text { Seotion } \\ \text { Moo } \end{gathered}$	Sampling seotion in the duot	Dust Concentration mga/ou.m.				
		Distance of sampling point from				
		$1 / 6^{\text {d }}$	$1{ }^{1} / 3^{\text {D }}$	$1{ }^{1} / 2^{\text {D }}$	[/3 ${ }^{\text {D }}$	5/6 ${ }^{\text {D }}$
1	$\begin{gathered} \text { Just before } D / \sqrt{2} \\ \text { bafyle } \end{gathered}$	116.2	254.0	133.0	122.8	131.6
2	Just before T.P.1	62.9	62.5	69.2	58.8	61.0
3	$\begin{array}{\|l\|} \hline 1 \text { mo beyond sprav } \\ \text { nozanic } \end{array}$	49.8	55.5	64.6	53.1	49.2
4	$\begin{array}{\|l\|} \hline 3 \text { mo beyond spray } \\ \text { nossio } \end{array}$	48.5	55.4	61.6	49.5	48.9
5	Just before ToP. 2	45.5	50.8	58.9	44.4	44.8

FIG.3.9.DUST DISTRIBUTION IN THE TUNNEL
.. Section just before $D / \sqrt{2}$ baffle
-o- Section just before thermal precipitator I
$\rightarrow-$ Section 1 metre beyond the spray nozzle
-+ - + - Section 3 metres beyond the spray nozzle $\rightarrow \Delta$ Section just before T.P. I

Sampling position across the duct

The reaults showed relatively uniform concentration of dust across the tumei-seotions beyond the baffe plates. although there was some deorease in the concentration of dust, as it passed along the tumal towards the outlet and. The dust-distribution pattern in the trinnol alter the balfle plate was in keeping with the velocity distribution pattern, since in all the sections beyond the baffle plates, the maximum concentration of dust appears to be at the axis of the tuminel.

The large diminution in dust concentration between section 1 and section $2,1 . e$. in crossing the baffles, could be attributed to the impaction of large dust particles on the baffle and their subsequent fall-out. On average the results of table 2 show that the extent of the removal of dust by theae baffles was about 52% of the material injected. The particle sise of the material removed at this point was found to Ile between 15μ and 53μ. This was consistent with results on the efficiency of impaction on discs, shown by stairmand ${ }^{(89)}$.

Considering only dust concentration changes beyond the baffle plates (Sections 2-5) it can be seen that the dust concentration decreased by about $14 \mathrm{mg} / \mathrm{cu}_{\mathrm{m}} \mathrm{m}$. as the dust cloud travelled from Section 2 to Section 5 along the tunnel. This rate of decay of concentration of air-borne dust with distance along the tunnel is shown in Fig. 3.10 and the fall-out amounts on an average to about 3.2 per cent

of the original dust concentration per metre length of travel alang the tunnel．

At any one section，the distribution of dust oon－ centration across the tumel at the turbulent velocity of 100 omo／sec．is found to be uniform，with a etendard deviation of about 5，as shown in rable 3．3．

TABTE 3.3

Pall－out of dust along Trumel

Soction No。	Kean dust concmomg／cu。m。	Standard Deviation of duat concm．	Percentage removal of duat （ovmulative）
2	62.9	3.48	-
3	54.4	5.57	13.5
4	52.8	5.06	16.05
5	48.9	5.51	22.25

3．2．3 Mechanisme of dust fall－out：There are at

least aix transport mechaniems which could account for the removal of air－borne dust as it flows in air eupponsion along the tumnol．These are ：－
1．A thermal gradient force produced by friction at the tumel wall．This can be neglected here as Poreles（90） has shown that such deposition in turbulent flow at $100 \mathrm{cmo} / \mathrm{sec}$ ．is less than a factor of 10^{-5} of the total deposition．
2. Deposition due to eleotrical charges on the dust particles. This also can be neglected since Dawes and Slack (9X) have shown that such electrioal forces need only be considered when the particles have already been brought to within a few particle diameters of the wall by some more widespread mechanism.
3. Depoaition by the action of gravity in a turbulent airstream. Any particle travelling along the centre of the tumel is lisble to be deposited by the gravity force in turbulent stream within the length of the tumnel and this must be one of the major deposition processes, accounting for the diminution in dust concentration along the tunnel.
4. Deposition by oddy impaction. If a laminar aublayer Is postulated next to the wall, only partioles greater than 35 microns in diameter are found to be deposited by eddy impaction at an airstream velocity of $100 \mathrm{~cm} / \mathrm{sec}$. Since the partioles in the experiments were up to 53 micron in diameter, it is auggested that this mechaniem may have accommted for a comaiderable proportion of duat deposition along the trinnel.
5. Bromian deponition. This may be dieregarded, sinoe it is known to be not more than $1 / 1000^{\text {th }}$ of the total deposition for particles above 1 micron.
6. Turbulent Diffusion. This is probebly the main transport meohanisia causing the depocition of dust. The theory of dust depoeition by eddy impaction on the
basis of a conventional laminar sublayer fails to explain fully the fall-out mechanism, since turbulent motion of dust particles within this laminar sublayer has been observed by Fage and Townend (92) within 0.5μ from the wall. Hence it is possible that the transport of dust particles across the laminar sublayer (which is of the order of 1 mm 。thickness in the case of air at a mean air speed of $100 \mathrm{~cm} / \mathrm{sec}_{\mathrm{a}}$) to the wall takes place by turbulent diffusion.

On average, the dust deposition rate beyond the baffle plates was of the order of $1 \mathrm{mgm} / \mathrm{mm}$ 。 of air $/ \mathrm{metre}$ length of tunnel, viz. 3.2% fall out/metre length of tunnel.

3.2.4 Thermal Precipitator Sampling:

Simultaneous air-borne dust samples were drawn into the two thermal precipitators set in the tunnel. This experiment was carried out at three air velocities with the dust machine adjusted to give a suitable dust concentration. The number concentration of dust particles was evaluated on the automatic particle counter described later, and the results shown in Table 3.4.

TABIE 3．4

Simultaneous dust concentration at two points in tunnel as determined by Thermal Precipitator．

Air Velocity cmolsec．	Dust conc． at ToPol． popoc．c。	Dust conc． at ToP。2。 $p_{0} p_{0} c_{\circ} c_{0}$	Difference in dust conc． popococo	Removal of dust \％
75	1447	1420	27	1.87
200	1030	1020	10	0.97
450	640	628	12	1.87

It is apparent that the number concentration of dust particles as sampled by ToPo has not decreased to any great extent，unlike the weight concentration as measured by the filter．This suggests that material which has fallen－out of the air stream constitutes a relatively small number of large（and heavy）particles，and agrees with the postulated mechanism of gravity settling for this dust removal．There is also the point that the $T_{0} P_{0}$ has a very low efficiency for dust particies outside the range $0-20 \mu$ ，and that， although there is settlement of large dust particles down the length of the tumnel，from the point of view of the ToP。 which only collects particles in the sise range that concerns us，there is no significant change in dust con－ centration between the ToP。points．Since the came ToP＇s were used in the dust suppression work described later， changes in duat concentration recorded by them refer anly to changes in the size range which they sample．

4.1. Tntroduction

A recentiy developed automatic method of microscopic sise analysis based on mechanical scanning together with photoelectric detection and high-speed-pulse counting, was adopted the meanure the particle sises and to come the muber of dust particles in the samples taken by thermal preaipitator.

Visual counting of particles has always been a slow and tedious process in which the observer has contimally to make judgments about individual partioles, correot for foous, allow for edge effects and variations in opacity, and aystematically evaluate the population, remembering each particle as it is oounted. Bren when the operator has been trained for visual counting, and the sise and shape of particles are comparatively uniform, subjective errors are involved. (93)

In visual counting, moreover, measurements are carried out on a series of randomiy selected fields, taken to be representative of the whole eample.

In the automatic counting method, the principle is to use as the sole parameter, variation in light intensits falling on a photocell, in such a way that the discriminations about particle sises can be made without ambiguity. In this way the potentially high counting rate of an electronic system can be exploited.

60 。

(94,95)
Various methode of automatic sise anslysis are known, and the work of Hawkeley et.al. ${ }^{\text {i96 }}$) has resulted in the commercial manufacture of an "Automatic Particle Counter and Sizer" by Caselia (Electronics) Itd., London。 (97)

The Casella machine utilises the technique of wide traok scanning, which is said to have the following advantages 8 -
(i) Ho critical timing circuite are required to measure "intercept lengthe". The particle produces a voltage pulse, whose measured amplitude is proportional to the amount entering the scanning slit.
(ii) The instivment can be sist to suit the optioal characteristics of the material to be analysed.

4.2. Theozy of Particle Siging and Counting by track scanning.

 In this sising technique the number, length and height of pulees from intercepted particles are found and the number of particles per unit area and their sice distributions are obtained therefrom.The significance of particle interception by a track 1s chown in Pig. 4.1, where it may be observed that there are three types of intorcepts:
(a) particles, of aice x leas than the track wiath w and projection h equal to x, lying wholly within the track;
(b) particles, of axy aise x and projection h, falling partially within the track;
(c) particles, of projected sise x greater than w and projection h equal to w, lying wholly across the track.

Suppose that an illuminated field of well-separated oircular particies, of constant optical density, is scamod by a slit-shaped aperture of length w and negligible breadth. A photo-cell behind the aperture is set to record changes in light flux as the silt intercopts particles in the scanning track. The peak heights of the pulses are then proportional to the projections h, while their durations are proportional to the intercept lengthe \bar{J}. The total muber of pulses is equal to the total number of particles intercepted. If the pulses are fed to a pulse amplitude discriminator that recorde only those pulses exceeding some preset height, the reoorded number of pulses is equal to the number of projections h exceeding a value $h=E_{\text {, comperponding to the setting of the }}$ amplitude discriminator.

In counting, the mumer ill of particles per unit area is to be found from observation of the mumber ϕ of pulses per unit length of scan. The muber of intercepts $\phi(w)$, obtained by ecanning a length I of the epecimen with a alit of widh w and of sensitivity g is given by

$$
\begin{equation*}
\phi(w)=H(w-2 s+\pi) L \tag{1}
\end{equation*}
$$

where II is the number of particlea oversise s and \bar{I} is the mean sise oversise s. By sensitivity z, is meant that a partiole must enter a slit by an amount $h>8$ to be recovered (see Mig. 4.1).

w, track width ; x, projected size of particle; y, intercept length; h, projection of particle within track; 1, particles $(x<w)$ wholly intercepted; 2,particles intercepted by one edge; 3, particles ($x>w$) intercepted by both edges.

FIG.4.2.GRAPHIC REPRESENTATION OF RESULTS

The number N of particles per unit area is obtained by scanning the specimen riwice with two slits of different widths w, keeping \& constant. The equation becomes,

$$
\begin{equation*}
\mathrm{N}=\frac{\phi\left(w^{2}\right)-\phi\left(w^{2}\right)}{\left(w^{2}-w^{2}\right) I} \tag{2}
\end{equation*}
$$

A straight line graph with slope equal to Vocu, is obtained, $\quad \phi(w)$ is plotted againat w for a constant value of 8. The graphs are shown in Fig. 4.2.

In the instrument, intercepts greatior than s are not directly recorded, but instead pulses proportional to fractions of F per unit length of soan. The maximum pulse oocure when the sit w is completely obscured. An amplitude diecriminator, which can be set at any desired fraction p, is used to select the pulse heights. Where $\phi(w)$ is a count of all puisee greater than the fraction p which has been set, P $\mathbf{x}=$ = © Therefore equation (1) can be written as

$$
\begin{equation*}
\phi(w)=\Psi[w(1-2 p)+\bar{d}) I \tag{3}
\end{equation*}
$$

The aise distribution of particles in respect to their projected sises is $f(x)$, so that

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=1 \tag{4}
\end{equation*}
$$

the limits a and b are the smallest and largest particles reapectively. The eum of all the particles between the limits $a<x<b$ is N per unit of area.

The procedure is to obtain a number of 2 lines, each such that $21<\varepsilon 2<83 \ldots<815$... The classification into n size grades requires n s-lines, as shown in Fig.402. 4.3. Dascription and operation of the Countor

The 5-channel Automatic Particle Counter is shown in Plate III along with the schematic diagram of the instrument in Fig. 4.3. The console unit can be considered to be comprised of 5 blocke: (1) Left Bottom block, having the main power supplies for the amplifier and amplitude discriminators. (2) Ieft top block, having in the bottom panel the main amplifier and Amplitude Diecriminator control unit, tuning indicator and Amplitude Discriminator Dial No. 1 and in the other two panels, four other amplitude discriminators and their tuning indicators. (3) Top right block consiats of five dekatron registers for their corresponding Amplitude discriminators situated in the top left blook. (4) Bottom right block has a writing table and also houses the supply unit for the microscope lamp, and (5) Central block, which is the microscope and stage unit and atage control unit.

The filament lamp type of illumination gives a high Ligit intensity when using Kohler's system of illumination and also uniform illmination over the field of the object. The light intenaity is such that good signal to noise relationship is obtained for slit sizes below a micron in width。

As a first step, a programme data sheet is drawn up, by selecting size levels (z), track wiaths (\mathbf{w}) and disoriminator dial settings (p) over the sise distribution in question. A specimen programe aheet for counting and sizing of particles in the size range $0.5-400 \mu$ is shown in Table 4.1.

If the size levels (2) chosen stand in no particular relationship to each other and if the aame is true of the discriminator settings, then it is clear that a different setting of the track is necessary for each z, p combination. The efficiency of operation can therefore he increased, by achieving a minimum number of slit resettings, combined with a fixed series of discriminator dial settings. This is done by choosing a series of size levels (ε) standing in a geometric progression and discriminator dial settings (p) also standing in the same progression. Thus the traok width necessary for each z stands in the sample progression. In the example given, it oan be seen that, about 32 different dekatron readings pertaining to sise levels $0.5,1.0,1.4$, 2.0, 2.8, 4.0 and 5.7 microns can be obtained, with only 10 different slit settings and therefore the time coneumed in scanning is highly reduced.

Operations- The machine is awitched on and allowed to warm up for a few minutes. Then the lamp is switohed on and the current for Koher's aystem of illumination adjusted

MABLE 40 1

$\sqrt{2}$ Programme sheet for 5 channel-unit APC

Objective.。2 mm.Oil immersiong Ocular x6; Mag. x 540

[^0]to 7.8 amperes. The slide is now nounted on the reciprocating stage, which allows the acanning slit to be located on the optical axis of the microscope. The silde is fixed in position by means of two slips, and the dnet-particles in the silde are brought to foove on a smali screen, just in front of the gate and the elit, with the help of the mioroscope, utiliaing a 2 mm .011 immeraion objective. The alit width and length can be net to the desired value by operating the two miorometere which are fixed in the aystem. The pulse meter in the top left block is adjusted to read 0 with olear filter and 100 with opaque filter, by the use of "Set min." and "Set max." controle located adjacent to it. Keoping the meter reading sero, and using clear filter Hool, the optical density of a fow particles in the slide-sample is determined by bringing each of them in tuma before the silt to produce a pulse on the meter and the amplitude discrimination unit is corrected for the avarage optical density of the sample by adjusting the "set" controls.

When the stage motor is ewitched on, the etage travels away from the operator, reverees automatically after 20 scans, takes a track differing by 50 microns from the original to come forward to the starting position after 20 scans. The length of scaming is 10 mm . The slit is instantaneousiy obscured by particles and if they
produce a pulse arester than the discriminator eet value, it is recorded on the infatron wint. The procedure is repeated for different slit settings.

The overall magnification K of the optical ayetem is always measured using a stage micrometer.

4ot Mounting of glides for counting In mioroscopy the visual observer repeatediy adjusts the focus of his mioroscope to keep the particle field in sharp foous, procedure Which cannot be carried out during automatic scanning. Therefore it is very important that all the particles over the dust strip are uniformily in good focus, to obtain a correct count. That maans that the cover glass, on which the duat etrip is deposited in thermal preoipitatore, muat be laid exactiy parallel to the mioromilide, which is momented on the reciprocating stage. A method of enmuring this has now been derreloped ${ }^{(98)}$ and was used in all work reported here. Green's tisaue papers are cut to 2.5 an. square with 1.6 cim. diameter circle in the centre. A thin strip of the paper is laid Nat on the microsilide, using a dilute glue solution. When it is dxy, the dusty cover-silp is glued on to the tiasue paper, making sure that the duet atrip is at the centre of the circie. This paper ineert effectively holds the glass surface parallel.
… In order to evaluate the dust on the thermal precipitator slides, various aise-diatribution programmee
and different arrangements of objective and ocular were tried. It was finally decided to utilise a magnification of 540, produced by a 2 mom . oil imenarion objective and a x6 ocular, together with a $\sqrt{2}$ programme in the range 0.5 to 5.67 microns. To prevent the $0.1{ }^{(99)}$, used for immergion of the objective, penetrating through the tissue paper into the dust etrip, cellulose lacquer was applied to the circumerence of the cover-silp to seal the edge。

4.5 Specimen oalculation of size distribution.

A dust-atrip obtained from thermal precipitator II with the dust-machine and the air velooity adjusted to give a dustconcentration of about 1000 popococ. in the tumnel, is used in the illuatration which follows. The sice diatribution is evaluated in the aize ranges $0.5-1.0 \mu_{j} 1-2 \mu, 2-2.83 \mu$ and 2,83 -4μ.

From the recordings of debatrons, graphs of w against $\phi(w)$ are plotted, for the $\sqrt{2}$ programme of rable 4.1 en ehon in Fig. 4.4 and the aize distribution shom in Table 4.2.

Particies oversise $z=0.5$ mioron

Ho. of particles per unit area of dust etrip on cover giass above 0.5 micron $=\frac{\phi\left(w_{2}\right)-\phi\left(w_{2}\right)}{\left(w_{2}-w_{1}\right) . I}$
Where If is the total leagth scanned (800 mmo)
Substituting, the no。 of particles per unit area

$$
=\frac{44}{11} \times \frac{1000}{2} \times \frac{1000}{800}=2,500
$$

The photompltiplier counts particles ouin within 10×2 - 20 aqumom. area on the dust-etrip of the oover glace. \therefore Iotal Ho. of particlee above $0,5 \mu=2,500 \times 20=50,000$ Hence, dust comoentration in particlec/ou.om. of air

$$
\begin{aligned}
& =\frac{\text { Moe of raptiolas }}{\text { Vol. of alr sampled }} \\
& =\frac{50.000}{45}=1112 \text { pop.c.c. }
\end{aligned}
$$

虾 ale-distribution of partioles is given in rable 4.2.
TABTE 4.2
Sise-Digtribution of Duat

ε	>0.5 μ	>1.OH	>2.04	22.84	>4004
Gradient	2500	1180	857	341	123
$\begin{gathered} \text { Particle } \\ \text { Fo. } \end{gathered}$	1712	524	381	152	55
Sise range	0.5-1.014	1-2	2-2.8 μ	2.8-4 ${ }^{\text {r }}$	>44
$\begin{gathered} \text { Partiale } \\ \text { Wo. } \end{gathered}$	588	143	229	97	55
Number Percentage	52.8	12.87	20.6	8.7	4.95

Inte the trmmel.

Several representative eamples of the duet were withdrawn iso-kinetically, througin mallcyilc aoid filtor, from the air at different sections of the trunel, mixed, and a representetive sample propared for counting under the autometic particie counter, as described in onapter 5. in average sise frequency representative of the experimental coal-dust, is given in rable 403.

MARTE 4.3
Arerage Size frequenor in the experimental Coal-Dunt

Sise Range	$0.5-1.0 \mu$	$1.0-2.5 \mu$	$2.5-5.0 \mu$	$>5 \mu$	$10 \operatorname{tal}$
Mruber Parcentage	42.96	31.46	9.40	16.15	100.0

and the cumulative Sise Prequency is shown in Pig. 5.1 .

4.7. The effect of chance of opeoity on dust-count

To investigate the effect of ohange of opacity on the dust-count. several duet strips with duet concentrations of about 1000, 1500, 2000, 2500 and 3000 partioles per cu, am. of air were prepared and counted at difforent particle oomenter "filter numbers", $i_{n} e_{\text {。 }}$ for different values of opecity.

If the dust-8trip was ccroctily paraliel to the atage, ali the particles over the dust strip would be in sharp focus and the selection of opacity value could be easily and correotiy made. On the other hand, if all the particlee could not be brought to sharp focus at the one setting, the amiler partioles were preforentially brought to foous, since the correct comming of emaller particles mattered more. In such cases, the opacity of the material might well vairy over a range, which could make necessary the random eelection of one of three filters.

In the apecimen chosen, the opacity of the material as meacured ranged from 72 to 84\% and therefore necessitated the use of one of the filters numbered 6, 7, oir 8。

The effect of variation in opacity from 65\% to 100% was otudied for different duat-strips and the resulte for one cover glase are shown in Pig. 4.5. It is apparent that the error introduced in counting by altering the filter number by one either way Irom the oorreot one, 1.e. Ho.7, is not aignificant. In this case, the average error is oniy about 30 pop.o.o. for a concentration of about 1100 p.poc.o. The dust counts, however, diverge from the truth more rapidiy; if the error in percentage opacity exceeds $\pm 6 \%$ 1.e. by more tham one pllter mumber ather way from the comrect opacity. This is well illustrated in Fig. 4.5. It

FIG.4.5 THE EFFECT OF OPACITY ON DUST-COUNT

is therefore obvious that care should be taken in selection of the proper filter to suit the opacity of the material counted.

4.8 Ansivais of Yariance for the Automatio Particie

 Gounter.Four factors could be envisaged, whioh might contribute to significantly erroneous duat-counts made by the Automatic Particle counter:
(a) The dust-strip not being exsetiy parallel to the atage, (b) errors due to the ohanging of anplitude discriminator settings, (o) errors in the placing of the slide under the microscope and (d) errors due to the change in opacity.

Since the dust-atrip is set parallel to the stage and the amplitude discriminators are set at the same values each time, factors (a) and (b) do not normally arise。

To study the interaction of factors (c) and (d) and their effect on dust-counts, a specimen slide was counted at three different opacities (one nommal and one on either side of $1 t$). The plaoing of the slide was then disturbed, placed again in position and again counted. This was repeated at four more plaoinge and the recults obtained shown in rable 4.4.

MARTEACAL
Dust Counts p.p.O.O.

Tarriance Calculation:

To calculate the variance between opacities and within samples
(1) Total arm of squares (crude)

$$
\begin{aligned}
& =1087^{2}+1112^{2}+1097^{2} \ldots 00+1021^{2} \\
& =22,135.829
\end{aligned}
$$

(ii) Crude mum of squares between opacitiea
$=\frac{(6557)^{2}+(6769)^{2}+(6613)^{2}}{6}$
$=\frac{132,545,579}{6}=22,090,896$
(iii) Comreotion dive to mean $=\frac{(19939)^{2}}{18}=22,086,873$ (iv) Total sum of squares $=(1)-(111)=48,956$
(v) Sum of squares between opacities $=(11)$ (iii) $=4023$.

2ABTE 4.5
Analysis of Variance Table

Source of variance	Degrees of Freedom	Sum of Squares	Varianse
Between opacities	2	4023	2012
Within samples	15	44,933	2996
Total	17	48,956	-

Since the variance of the "between opacities" is less than the variance of the "Within samples" the opaoity change is insignificant. Hence all the data can be regarded as random samples from a universe with mean and standard deviation estimated respectively by

$$
\frac{19.939}{18}=1108 \text { and } \sqrt{\frac{48,956}{17}}=\sqrt{2880}= \pm 53.7
$$

It would appear therefore that the error introduced in counting is $\pm 0.5 \%$ 。

4.9 Conclusion

The Automatic Particle Counter is thus found to offer many advantages over visual counting:
(a) It covers all the particles on the thermal precipitator-dust-strip and so it is more reliable and more representative of the dust-concentration at the eampling point.
(b) Human error involved in counting is insignificant. Even with the ohange of opacity amounting to $\pm 6 \%$ of the correct one, the error introduced in counting is found to be the order of $\pm 0.5 \%$.
(o) Counting is done more quiokiy, and
(d) Heavier concentrations of the order of 4000 p.p.c.o. do not present any problema. ($2,0-6.5 \times 10^{4}$ particle density).
5. A METHOD OF CORRETATITG THERMAL PRECTPITATOR DUSTM-SAMPTES HITH SATICYITC-ACID-FITAKR DUST-SAMPTES.

5.1 Introduction

In British mining practice, the atandard procedure for assessing the concentration of air-borne dust at any point involves dust sampling by thermal precipitator and expression of the dust concentration as a number of particles per $C_{0} 0_{0}$ of air. The efficiency of the thermal precipitator is claimed to be 100% for particles below 10μ in diameter and somewhat less for particles above that sise. Hence it was felt that an independent gravimetric aampling filter should be employed to eample the dust and the duet concentration by weight in the usual siee ranges mould be compared with that of the thermal precipitator dust etrip for the same experimental conditions. This assessmant by weight, calculated on the basis of the density of the duat particles, would also give a correlation factor, which might take into account the eccentricity of the particles in the thermal precipitator dust strip. The mothod of grevimetric mamiling employed for these experfmonts was discursed in more detail in Chapter 30

5.2 The Fiffect of dipeotion of Sampling Fogsie on duat

 colleotion in gravimatyic sampling.To obtain a ropresentative sample on the bed of calicylic acid crystals, it was esenential to maintain ieokinetic sampling of the dust-Iaden air-streem, by the use of
a calibrated flow \rightarrow meter．With dusty air flowing down the tunnel at an average velocity of $100 \mathrm{~cm} / \mathrm{sec}$ 。 sampling of dust was carried out simultaneously over a period of one hour on the axis of the tunnel at two sections－viz．at 1 metre beyond the spray nozzle and at 3 metres beyond the spray nozzle．At the first section the sampling nozzle was placed facing downstream and at the second section，it was placed facing upstream and the dust concentration was determined from the collected samples．A second test was carried out under identical conditions，with the sampling nozzle placed perpendicular to the air－flow，at 2 metres beyond the spray nozzle，The dust concentrations，calculated on the basis of amount of dust sampled，are shown in Table 5．1。

TABLE 5．1
The effect of direction of sampling nozzle on dust collection．

Position of sampling nozzle	Concentration of dust．mg．／cu。m。
Facing upstream	68.0
Perpendicular to the airflow	$61_{0} 8$
Facing downstream	34.4

From the figures in Table 5.1, it would appear that to collect the maximum sample and thus perhaps the most representative sample, the sampling nozele should be facing upstream. It is thus enabled to collect all the dust that might be flowing into it iso-kinetically. The nosele placed perpendicular to the air-flow is fairly euccessful in drawing the dust into the ifiter; only about 9% by weight of the particles miss the opening of the sampling tube. The nozzle facing downstream has a very low sampling efficiency, only collecting 50% of the dust drawn into the tube. when facing upstream.

In the remainder of the tests, therefore, the sampling nozele was always placed-pointing upstream on the axis of the tumel. Three runs, each lasting for an hour, were carried out, during which gravimetric and thermal precipitator aampling were simultaneously carried out. The salicylic acid filter was weighed carefully before and after the experiments and the increase in weight was taken to be equivalent to the dust sampled.
5.3 Recovery of sampled dust from the gravimetric filter

After a dust sample had been collected, the salicylic acid filter bed (see Fig. 2.8) was removed from the container and placed in a small beaker. The crystals were dissolved in ethanol and the suspension of dust particles centrifuged in an electrical centrifuge at 4,800 rop.m. for 17 minutes. This interval was calculated from Svedberg's modified

Stokes' equation ${ }^{(100)}$ to be suitable for the sedimentation of a 0.4 micron dust particle in the centrifuge tube. After centrifuging, the supernatant liquid was decanted, the tube again filled with ethanol and centrifuged a second time. The process of centrifuging, decanting and adding more ethanol was repeated six times in all, to make sure that all particlea bigger than 0.4μ had been retained in the centrifuge tubes. The collected dust was finally suapended in a small volume of othanol, the liquid washed into a email basin and evaporated to dryness in an oven. 5.4 Preparation of alice for counting under A. PoC.

A fresh suapension of the dust partioles was made in ethanol and a few representative drops of it were transferred to a microscope slide by means of a pipette. Four slides were made with one, two, three and four drops on thom ${ }^{(101)}$. The solution was allowed to evaporate for some hours and when dxy, the slides were mounted in the usual manner and the particles sised by means of the Automatic Particle Counter.

The counts at various eections of the four slides proved a nearly uniform distribution of the partioles on the slides and the mumber percentage size frequency of the dust sampled by the gravimetric filter is given in Table 5.2 . From the sice frequency data and the total weight of dust collected, the proportionate weight of the particles in the aize ranges was calculated, assuming that the particles
were apherical, that the density of the coal was $1.279 \mathrm{~g} / \mathrm{c} . \mathrm{C}$ 。 and taking a mean sise for each size range. and a maximum of 10μ for the range $>5 \mu$ (Table 5.3).

TABTE 5.2

Humber Percentage Sise Frequencr of duat samplee

Size Range	$0.5-1.0 \mu$	$1.0-2.5 \mu$	$2.5-5.0 \mu$	25μ	Total
Selicylic acid filter Dust eample	42.96	31.48	9.40	16.15	100.00
T.Po Dust sample	61.12	26.62	7.45	4.81	100.00

For the same experimental conditions, the ToP。ellde was counted and sized under the Automatic Particle Counter. The average number percentage sise frequency of the thermal precipitator dust sample is also shown in Table 5.2, and again knowing the total number of particles in each aise range and their density, the weight of dust in each aise range was calculated within the same limits. The reaulting weight distribution is shown in Table 5.40

The cumulative number sise distributions corresponding to Table 5.2 are given in Pig. 5.1.

TABTR 5.3

Salioxilc Acid Pilter Sampling

Dust concentration by weight (experimental) and proportional weights in various size ranges (caloulated).

Size Range μ	Number \% Size Frequenay	Wt.of	Dust concentrations mg o/cu.m.			
			Run 1	Run 2	Run 3	Mean
Total	100	100.0	62.3	61.7	53.9	59.3
0.5-1.0ر	42.96	0.24	0.1498	0.1481	0.1292	0.1422
1.0-2.5 ${ }^{\text {a }}$	31.48	2.93	1.202	1.19	1.04	1.144
2.5-5.0 μ	9.40	7.18	4047	4.435	3.87	4.255
< 5.0μ	83.85	9.35	5.84	5.78	5.05	5.56
> 5.0 M	16.15	90.65	56.46	55.92	48.85	53.74

TABTE 504

Tharmal Precipitator Sampling

Calculated weight concentration of duat in ToP。 slide based on the density of coal particles (1.279 go/c.0.)

$\begin{aligned} & \text { Sise } \\ & \text { Range } \\ & \mu \end{aligned}$	Number \% Size Frequency	Wt.o\%	Dust concentrations mg./cu.m.			
			Run 1	Run 2	Run 3	Mean
Total pop.c.c. se^{-}			876	1153	1315	1114
0.5-1.0p	61.12	0.79	0.1532	0.1856	0.2818	0.2065
1.0-2.5 μ	26.62	4.35	0.694	1.265	0.785	0.915
2.5-5.0.4	7.45	12.06	3.262	3.538	2.098	2.966
< 5.0μ	95.19	17.20	4.09	4.985	3.215	4.09
$>5.0 \mu$	4.81	82.80	18.25	16.095	14.15	16.165
Total	100.00	100.00	22.34	21.08	17.365	20.26

TABLE 5．5

Size Range μ	Ratio of size Prequencies （NO．\％） $\frac{\mathrm{T}_{0} \mathrm{P}_{0} \text { olide }}{\text { SAF } \operatorname{slide}}$	Duet concentration in mg ／／cu＊m。						
		Run 1		Run 2		Run 3		Mean Hypothet－ 1cal T ． \mathbf{P}° sample Wt。
		SoA。Fio Sample Wt． （Table 5．4）	$\begin{aligned} & \text { Hypotho } \\ & \text { ToP。 } \\ & \text { Sample } \\ & \text { Wt. } \end{aligned}$	SoAFo Sample Wto （Table 5.4 ）	Hypoth． ToP。 Samplo时。	SoA。F： Sample Wto （Table 5 4）	$\begin{aligned} & \text { Hypotho } \\ & \text { T. } P_{0} \\ & \text { Sample } \\ & \text { Wt. } \end{aligned}$	
0．5－1．0H	$\frac{61.12}{42.96}$	0,1498	0.2138	0．1481	0.2118	0.1292	0.185	0.1422
1．0－2． 5μ	$\frac{26,62}{31,48}$	1．202	1.019	12.19	1.05	1.04	0.881	0.969
2．5－5．0ر	$\frac{7.45}{9.4}$	4.47	3.545	4.435	3.518	3.87	3.076	3.378
\＄ 500μ			4079		40745		4.14	4055
$>5.0 \mu$	$\frac{4081}{16.15}$	56，46	16.8	55，92	16.68	48．85	14.58	16．02
Total			21.59		21．425		18.72	20.578
Calculated weight of duet in actual TP slide		22.34		21．08		27.365		20.26
Correcti	on factor	0.9672		1.016		1.081		1.0214

505 Discussion and method of arriving at the corpelation factor＇k＇

As can be seen from Table 5.2 and Fig．5．1，the thermal precipitator would appear to be more efficient in collecting particles less than 5μ in diameter．The number percentage of dust $>5 \mu$ retained by the gravimetric filter is 16．15，while the ToP。had collected oniy 4．81\％of similar dust under identical experimental conditions．

Table 5.5 is drawn up by correcting the weight percentages In the salicylic acid Iflter sample to a Mhypothetical ToPoN weight percentage，by multiplying each weight by the ratio of the appropriate number percentage of the ToP。 aample to that of the gravimetric sample．Thus the weight concentration of dust $>5 \mu$ is seen to be reduced from $53.74 \mathrm{mg} / \mathrm{m}_{\mathrm{om}} \mathrm{m}$ 。 in the actual salicylic acid eample（Table 5．3）to $16.02 \mathrm{mg} / \mathrm{ou}_{\mathrm{m}} \mathrm{m}$ 。 in the＂hypothetical ToPo＂sample。（Table 5．5），viso in the ratio 16．15 ：4．81．

This antioipated proportional weight ooncentration of duat in the ToP。dust maple，（Table 5．5），oaloulated from the malioylic－acid－Ifiter duet sample on the basis of the ratio of alse frequencies，compares well with the weight of duat in the actual moP．Elide，calculated on the basie of the muber of particles in each sise range and the denuity of the duat（rable 5．4）．It can be scen that the proportional weight of dust $<5 \mu$ in the＇hypothetioal ToPo＇slide，as extrapolated from the weight concentration of actual

FIG.5ף.SIZE FREQUENCY OF SAMPLED DUST
(Number Percentage)
-- Sample from salicylic acid filter
------ Sample from thermal precipitator

gravimetric sample was 4.55 mgo／cuomo，whereas the calculated weight of dust in the actual ToPo slide was $4.09 \mathrm{mg} / \mathrm{cu}_{\mathrm{m}} \mathrm{m}$ ．The anticipated value for the weight of actual ToP。 dust samples agreed quite well，even in the range $>5 \mu_{0}$ ioe． $16.02 \mathrm{mg} / \mathrm{cu}_{\circ} \mathrm{m}_{\circ}$ as against the actual 16.165 mg 。／ $\mathrm{cu}_{\circ} \mathrm{m}$ 。

The total weight of dust anticipated in the thermal precipitator，which was based on the actual weight of dust sampled in the gravimetric illter and the proportionate 8iseofrequencies，was $20.578 \mathrm{mg} / \mathrm{ou}_{0} \mathrm{~m}_{\circ}$ ，while the oaloulated weight of duet from the actual ToP。alide was $20.26 \mathrm{mg} / \mathrm{m}_{\mathrm{ol}} \mathrm{m}_{\text {。 }}$

The figures in Tables 5.4 and 5.5 suggeat that there is not mich eccentricity in the partioles sampled by the thermal precipitator，since the figures，calculated on their aseumption of epherical particles，agree very well with the anticipated weight．The correlation factor is woriced out in Table 5.5 to be 1．0214．

There thus appears to be a very good correlation between the dust samples obtained from salicylic acid filter and from the thermal precipitator and by the above method， it is posaible to preaict the reenite that will be given in One eampling mothod，through the use of another．

6.1 Introduction.

The purpose of spraying in dust-suppression systems is to disintegrate a continuous jet of liquid into a multitude of small droplets, so that the volume of air swept by the liquid is greatly increased. Generally, sprays drops travelling at high velocity from pressure-atomisers are known to have a higher collection efficiency for dust particles, than when falling at a lower speed under gravity.

A liquid can be atomised merely by discharging it into the atmosphere under high pressure through a small orifice. Such a device is known as a plain atomiser and has quite a small cone angle subtended by the spray cone, since little tangential velocity is imparted to the liquid. In the swirl atomiser type, turbulence is created by forcing the liquid through tangential slots or along helical grooves into a small vortex chamber from which it is discharged into the atmosphere. The spray produced in this way has a larger cone angle and consequently a lower penetrating power. It is usually hollow in the centre, but it may be 'drowned' or converted into a solid - cone spray, by having a small hole drilled through the plug of the swirl ~nozsle. The following worl was done with such a 'solid - cone' apray nozele.

Various workers ${ }^{(102)}$ have atudied the mechaniam which determines droplet aize in atomisation, in an attempt to derive a relationship between apray performance and the
variables of an injection system．The variables can be considered in terms of：（a）the type of atomiser and the nature of the flow at the orifice；（b）the physical properties of the liquid atomised；and（c）the physical properties of the atmosphere into which the liquid is discharged。

The first group of variables include（i）the diameter of the orifice，which controls the area of jet surface for a given volume of liquid，（ii）the spray cone－angle，which is a measure of the ratio of the tangential and axial components of the jet velocity，and（iii）the discharge velocity of the liquid．The second group of variables include （a）the density，（b）viscosity，and（c）surface tension of the liquid，and the third group，（a）the density and（b）the viscosity of the gaseous medium into which the liquid is discharged。

In the present work the degree of atomisation of water caused by a＂solid－cone＂nozzle was determined in the pressure range $35.2-210.9 \mathrm{Kg} / \mathrm{kq.cm}$ 。（500－3000 pos．i．g．） All the variables of the injection system except the discharge velocity of the jet were kept constant and the effect of injection pressure on droplet size and epray uniformity was studied．

602 The Spreying Unit

A threenthrow reciprocating prap was used to obtain high pressure atomisation．An air cushion cylinder was installed in the delivery line of the pump to even out the piston pulaes and enable projection of spray into the atmosphere at a constant discharge velocity．The injection pressure was controlled by manipulating the speed of the pump motor and a water by－pass valve．All the connections were made in heavy gauge 3.2 mm 。 $\left(1 / 8^{m}\right)$ I。D。copper tubing and all joints were welded or brased．

A detailed drawing of the＇solid－cone spray＇nozele used in the experiments is shown in Fig．6．1．It was similar to those used in domestic awirl atomisers for apraying insecticides．The nozgle consisted of two parts，a grooved plug sorewing into the noszle cup．Water was discharged through the annular space between them，aloug the helioal groove of the plug and out through the orifice drilled in the outer cup．In the case of the solid cone spray，the 1iquid was also disoharged through a 0.5 mim．diameter hole，which was drilled through the centre of the plug and this prevented the formation of an air－core in the spray．

The diameter of the cup，the depth and the width of the helical groove were measured by means of a travelling microscope． The characteristics of the nozzle are shown in Table 6．1 and the throughput eurve for the nozzle is shown in Pig．6．2．

FIG.6.1.THE SOLID - CONE SPRAY NOZZLE

(a) The Nozzle Cup

Orifice
0.51 mm .dial.

(b) The Grooved Plug

FIG.6.2.THROUGHPUT CURVE FOR NOZZLE 1

Solid cone spray

TABTI 607

Characteristics of＇solid－cone＇opray nossie． Diameter of the hole in the plug oo 0.5 mm ．

Fozzle Ref． No．	$\begin{aligned} & \text { Orifice } \\ & \text { Diameter } \\ & \text { Do cma. } \end{aligned}$	Orifice／Orificelongth／$/$diam．	Fiow Number Fif	Hean Coefficiont of Discharge	$\begin{aligned} & \text { Cons } \\ & \text { Angle } \end{aligned}$
1	0.0510	0.360	0.408	0.68	40°

6． 3 Methods of sampling air－borne dronlets

The following difficulties are inherent in any attempt to obtain a representative aample of airborne spray droplets
（a）The high discharge velocity of the iiquid yet．The curve relating the injeotion pressure to the discharge velocity of spray is shown in Fig． 6.3 and it oan be seen that the disoharge velocity is of the order of $5,000 \mathrm{~cm} / \mathrm{sec}_{\text {og }}$ even for an injeotion pressure of $35.2 \mathrm{Kg} / \mathrm{sq}_{\circ} \mathrm{cm}$ 。（500 po8．1。go）。
（b）The large range of aizes involved．The droplet aise may vary from＜ 20 microns to＞ 200 microns．
（c）The ohanges in droplet aise with time and distanco travel due to droplet impact，rupture，and evaporation．

A number of so－called＂direct＂methoda for the determination of the sise of spray droplets were investigated at a epray pressure of $8.5 \mathrm{Kg} / 8 \mathrm{~K}_{\circ} \mathrm{cm}$ 。

The methods considered wore s-
(1) Immeraion mothod
(ii) Gravimetric method
(iii) Impression method using:
(a) Magnesium Oxide layer, and
(b) Carbon layer.

In all cases it was found necessany to restrict the nomber of apray droplets falling on the target in order to prevent overlapping and aggregation. This was aohieved by restricting the time of spraying at the target by means of a shield, incorporating a shutter capable of a speed of 0.005 seconds. The epray had a penetration of about 4 metres and was therefore placed horisontally, while the targete were placed horisontally below the noesle at suitable ponitions. (1) Immersion Hethod:

In this method as desoribed by Humter ${ }^{(63)}$ the eamplea were collected in a shallow petipl dish (about 5 omodia.) containing the immersion 1iquid. To prevent the droplets falling to the bottom, flattening out and losing their spherical shape, the bottom of the dish was coated with a smooth layer of vaseline free from air bubbles.

Ifight korosone (density $0.0 .79 \mathrm{gmo} / \mathrm{ml}$: viscosity 0 1.32 contipoise) was chosen as the immersion 1iquid. About 80 droplets were collected in each eample and they were then measured using an optical mioroscope with a calibrated eyepiece.

This method has the advantage that the true droplet aizes are observed and meacured direotiy. Its several diaadvantages, however, include the fact that there is a time limit imposed on measuring and counting of droplate due to coalescence and evaporation. Moreover, the technique cannot be applied successfully to coarte sprays, because large droplets hitting the liquid surface oven at small distances, still possess relatively high momentum, whioh may cause them to aplit. on the whole it is a tedious and time consuming process and errore in the judgement of droplet aise tend to oreep in.
(ii) Gravimetrio Method:

The target in this case was a piece of paper of euitable texture, whioh had previously been weighed. After apraying, it was re-weighed to find the total weight of droplets which had landed on it. The droplets were then counted by means of a microscope in order to find the average droplet weight, from which the average droplet eise was caloulated.

In practice the best paper was found to be graph paper (quadrilic ruled medium oream wove - 242 ib .), as the squares in it facilitated the counting, Addition of a little of Potaseium Permanganate to colour the water droplete was also found to facilitate counting. An allowance was made for loss in weight due to evaporation of water from the paper. A series of weighinge were carried out to find out the rate of
evaporation of water from the drops on the paper and then the plot of weight versus time was extrapolated baok to zero time。

The gravimetric method had the advantage that it was not necessary to measure the sise of each droplet. Also, after the initial weighing had been done, the actual counting did not need to be hurried. The dieadvantage, however, resulting from possible failure to count all the droplets in the sample could not be diaregarded.

(iii) Impression Method:

In this method, the target, usually a miorosoope alide, is covered with a suitable coating, which must be of finegrain structure, so that even the amallest droplet impressions are distinct.
(a) Magnesium Oxide Layex: The layer was prepared by moving a buming magnesium ribbon to and fro under a mioroscope slide at a distance, such that the tip of the flame just cleared the glass. A 12 cm . length of 3 mm . ribbon gave a layer of adequate thickness.

When this target was exposed to the epray, the droplets atriking the magnesium oxide layer, penetrated it and left a well-defined circular impression, which could be Viewed under a mioroscope by strong transmitted light.

This method had the advantage of permanency and there Were no evaporation or coalesence problems to consider. May (103) found from his droplet size measurements of "very
nearly homogeneous" apraya from a spinning diak aprayer, that the ratio of true droplet sise to impression oise is constant at 0.86 for droplete $>20 \mu$ for ang liquid.
(b) Garbon Tayer: A five layer of carbon was obtained on a microscope slide by holding it over a sooty kerosine flame. The droplet sampling procedure was the same as for the magnesivm oxide method.

In this case also the ratio of impression size to the true droplet aize has been investigated, and found to be $1.05{ }^{(63)}$

604 Average Droplet Size.

The sprays under investigation were very heterogeneous, the droplets varying over a ten-fold range in diameter at higher preseures, and over a fifty-fold range at lower pressures. It was therefore necessary to introduce an avorage value which would be suitably representative of the number and diameter range of droplets. The aritnmetic average or arithmetic mean diameter was used in this work and celled the Average Droplet Sise. ($A_{o} D_{o} S_{o}$). This average is aimply $\Sigma \mathbb{N} D_{p} / \Sigma \mathrm{H}$. The introduction of this A.DoS. is equivalent to the replacement of the actual spray composed of droplets of different sises, by a fictitious apray in which all the droplets are of the same size equal to the $A_{0} D_{0} S_{\text {。 }}$

Initial experiments carried out to find the suitability of the Automatic Particle Counter for droplet sizing by the carbon layer impression method, indicated that although a greater number of impressions might be counted by AoP.C., the value of $A_{0} D_{o} S_{0}$ given by it would be in error, since the upper size limit above 90.5 miorons could not be clearly defined and assesseds and there were many droplets whose diameter was greater than 90.5 microns (the maximum size was about 220μ). The lowest magnification, which could be employed was ($x 23$) and with that, the z values were 16, 32, 45.3, 64 and 90.5 microns. Hence visual counting was resorted to for droplet size measurement in subsequent experiments.

A Beck Optical Microscope with an ejepiece Pitted with a calibrated linear scale was employed for counting and sizing of the droplets. A combination of an ocular (x 6) and either of two objectives (16 mmo and 4 mm .) made possible two magnifications of the oxder of ($x 96$) and (x 24).

Employing in turn each of the methods of droplet size measurement, the $A_{0} D_{o} S$. was obtained for sprays projeoted by a pressure of $8.5 \mathrm{Kg} / \mathrm{sq} .0 \mathrm{~m}$ 。 by aizing and/or counting 500 droplets or impressions. The results, after applying the necessary correction factors, are showi in Table 6.2.

TABLE 6.2

Average Droplet Size of Sprays.
Comparison of sampling methods.

Sampling Method	A。DoS ficrons
Immersion method	127.0
Gravimetric method Magnesium oxide Impression method	95.6
Carbon Iayer Impression method $:$	164.0

It is seen that the values of $A_{\circ} D_{o} S_{\circ}$ obtained by the immersion and gravimetric methode are much lower than those got from the impression methods. This suggests that the larger droplets hitting the liquid surface in the immersion method might have split, by virtue of their higher momentum, thus causing an increase in the number of smaller droplets and hence a lower $A_{0} D_{0} S_{\text {。 }}$. In the gravimetric method of course, failure to count all the droplets could have resulted in a lower $A_{0} D_{0} S_{0}$

The results from the two methods of impression sampling are found to agree within the limits of experimental error. of these, the carbon layer method was selected for use in subsequent experiments with high pressure sprays, since it had the important advantages over the magnesium layer method in that the carbon layer was less liable to
break up when wet，and it provided a better light contrast between the impressions and the surrounding black medium．

6.5 The effect of Spray Pressure on Droplet Size．

The spray unit，described in 6.2 was used to give a uniform injection pressure at the nozzle，which could be caried over the range $35-210 \mathrm{Kg} / \mathrm{sq} q_{0} \mathrm{~cm}$ ．（500－3，000 pos．i．g．）
Since the spray penetration was quite deep（about 4 metres）， the spray was operated horizontally and exposed to the target by means of a shutter for a short period of 0.005 seconds。

Bach target，consisting of a microscope slide covered with a fine－grained layer of carbon，was exposed to the spray for an equal amount of time in one of the same five positions at distances $0.92,1.83,2.75,3.65$ and 4.58 metres from the nozzle and in a position lying about half a metre below and parallel to the axis of the jet．

At each injection pressure，six targets were used and 80 impressions were sized on each target under the optical microscope．The $A_{0} D_{0} S_{0}$ was then obtained at each pressures by finding the arithmetic mean diameter of these 480 impressions．The results are shown in Table 6.3 and the relationship between the injection pressure，the theoretical disoharge velocity of the spray and the $A_{0} D_{0} S_{0}$ is shown in Fig。6．3．

Degree of atomisation，as characterised by $A_{0} D_{0} S_{0}$ may be seen to increase with increase in the injection pressure。 It appears that there is not a significant reduction in $A_{0} D_{0} S_{0}$

FIG.6.3.EFFECT OF SPRAY PRESSURE ON DISCHARGE VELOCITY AND A.D.S.

TABTIF 6.3
Effect of Bpray prossure on Discharge Velocity and $A_{0} D_{0} S$. Carbon Iayer Impression Method - Optical Microscope Sizing

Spray Pressure		Theoretical Discharge Velocity cmo/sec.	$\begin{gathered} A_{0} D_{0} S_{0} \\ \mu \end{gathered}$	Log P	Iog ADS
pos.1.g.	kg/sq.cm				
500	35.15	5,640	98.5	1.5459	1.9934
600	42.18	6,180	93.0	1.6250	1.9685
750	49.56	6,900	88.5	1.7220	1.9469
1000	70.3	7,970	82.9	1.8470	1.9186
1200	84.36	8,740	77.5	1.9261	1.8893
1600	112.48	10,090	68.5	2.051	1.8357
2100	147.63	11,560	64.0	2.1691	1.8060
2400	168.72	12,380	64.4	2.2272	1.8089
2500	175.75	12,620	62.1	2.2448	1.7931
2750	190.16	13,260	63.3	2.2862	1.8014

A relationship connecting Log P and Log AoDoS．is shown in Pig．6．4，and it is evident that the logarithm of the injection pressure of apray is inversely proportional to the logarithm of $A_{0} D_{0} S$ ．The best straight line linking the experimental points has a gradient of (-0.28) ．Thus one relationship between the characteristics of apray and and the variables of the injection system can be given as

$$
A_{0} D_{0} S_{\circ}=K_{0} P^{-0.28}
$$

The relationship data has been discussed in detail in 6．9．

6．6 The effect of sprey pressure on Dropiet Size Distribution．

A number of tests were made to determine at various pressures the uniformity of the spray and the droplet size distribution．The technique was as already described． Droplet impressions were counted and sised over a wide range．The pressures investigated were $35.15,70.3$ and $147.63 \mathrm{Kg} . / \mathrm{sq}$ 。cm。 $(500,1000$ and 2100 p．s．i．g．）。 The results are given in Table 6.4 and the size distribution curves are drawn for the three pressures in Fig．6．5．

It can be seen from the curves that an increase in injection pressure results in a greater epray uniformity，by the reduction of the number per cent of bigger droplets， particularly sizes＞ 100μ ．It can also be inferred by comparison with Fig．6．3，that the improvement in atomisation with increased injection pressures is not only due to the decrease in the size of the smallest droplets，but is also
FIG.6.4. EFFECT OF SPRAY PRESSURE ON AVERAGE DROPLET SIZE

TABLE 6.4

Droplet Size Distribution in High Pressure Sprays.

Pressure p.soiogo :kgo/sq.cms -	$\begin{gathered} 500 \\ 35.15 \end{gathered}$	$\begin{aligned} & 1000 \\ & 70.3 \end{aligned}$	$\begin{gathered} 2100 \\ 147.63 \end{gathered}$
Mean aize of droplet. μ	Percentage by number of each mean sise		
14.3	2.7	5.5	6.1
28.6	6.1	10.7	15.0
42.9	7.5	13.1	20.3
57.2	10.5	24.1	18.5
71.5	11.6	12.1	12.7
85.8	12.1	10.3	8.3
100.1	11.5	8.1	6.2
114.4	9.5	5.8	4.3
128.7	7.0	4.5	3.1
143.0	5.3	3.3	2.0
157.3	4.0	3.0	1.2
171.6	3.3	2.6	1.0
185.9	3.1	2.4	0.6
200,2	2.9	2.2	0.3
21405	2.8	2.1	0.4
$\boldsymbol{\Sigma N} \mathrm{D}_{\mathrm{p}}$	9850.1	8284.6	6396.6
$\Sigma \mathrm{I}$	100	100	100
$\begin{aligned} & A_{0} D_{0} S_{0}= \\ & \Sigma_{10}= \end{aligned}$	98.5	82.9	64.0

SPRAYS

NOIInalylsio

accounted for，by an increase in the number of small droplets （ $<100 \mu$ ）and by a decrease in the number of large droplets （ $>100 \mu$ ）．The sprays are generally found to be very heterogeneous in character，especially at pressures lower than $70.3 \mathrm{Kg} . / \mathrm{sq} . \mathrm{cm}$ 。（ $1000 \mathrm{p}_{0} \mathrm{~B}_{0} i_{0}$ ）．This heterogeneity may be attributable partly to the mode of atomisation in the apray cone．

6．7 The effect of sampling distance on $A, D . S$ ．
To determine whether there was a change in the AoD．S． with length of spray path；the spray was operated horizontally at a pressure of 70.3 kg 。／sq． $\mathrm{cm}_{0}\left(1000 \mathrm{p}_{0} \mathrm{~s}_{0} \mathrm{I}_{\circ} \mathrm{g}_{0}\right)$ and targets were suitably placed at a number of distances from the nozele in the path of the flying droplets．

An assessment of $A_{o} D_{0} S_{0}$ at the asmpling positions indicated that there was no significant change in the value of $A_{0} D_{0} S_{\text {。 }}$ along the length of apray up to about 2.7 metres from the nozele and at a greater distance there was a slight progressive decrease in $A_{0} D_{0} S$ ．up to the total penetrat－ ion of the droplets of 3.7 metres．The mean $A_{0} D_{0} S_{0}$ up to 2.7 metres was about 80 microns．At 3.7 metres the A．D．S． has dropped to about 60 microns．This may be attributed to evaporation of the droplets．

Since when used in the dust tunnel，as explained later， the water droplets traverse a relatively short distance before impacting on the wall it may be considered that the droplets
suffer little change in diameter during their dust collecting flight。

6．8．Relationship between energy supplied and energy used

 up in atomisation．Hunter ${ }^{(63)}$ caloulated the energy supplied for atomisation for spray pressures up to about $5 \mathrm{Kg} / \mathrm{Kq}_{0} \mathrm{~cm}$ 。 and compared it within the minimum energy required for atomisation．The study of the relationship was extended for spray pressures
 and Table 6.5 gives the summary of the calculations for energies in high－pressure sprays．

It may be easily seen that with increase of spray pressure，the ratio of minimum energy required for atomisation and the pressure energy supplied decreased．Thus，at higher pressures，most of the pressure energy was converted to the kinetic energy，thus enabling the droplets to acquire more penetrative power．

The relationship between logarithm of Ep and logarithm of Ea may be easily seen to be linear，since Ep is direotly proportional to the epray pressure P and Ea is inversely proportional to the average droplet size A。Dos．The graph connecting Iog P and Iog AoD．S．gave a atraight line with a gradient of (-0.28) ．

TABTS 6.5
Fomery for atomisation

Pressure		$\underset{\mathrm{Em}}{\mathrm{Em}} \times 10^{3} \mathrm{ergs} / \mathrm{om} .$	$\begin{gathered} \mathrm{Ea} \\ \times 10^{3} \text { ergs } / \mathrm{cm} \\ \hline \end{gathered}$	$\frac{100 \mathrm{Ea}}{\mathrm{Ep}}$
pos.iogo	${ }^{\text {P }} \mathrm{kg} / \mathrm{sq.cm}$.			
500	35,15	34,500	44.40	0.129
600	42.18	41,400	46.98	0.114
750	49.56	51.750	49.42	0.0954
1000	70.3	69,000	52.75	0.0764
1200	84.36	82,800	56.42	0.068
1600	112.48	110,400	63.8	0.0578
2100	147.63	144,900	68.2	0.047
2400	168.72	165,600	67.9	0.041
2500	175.75	172,500	70.4	0.0408
2750	190.16	189,750	69.0	0.0364

6．2 Determination of a functional non－dimensional relationship between the characteristics of the spray system and the Average Droplet Size．

The method of dimensional analysis has been used by several investicators to establish the relationship between the different variables of an injection system and the characteristics of sprays produced．Fraser，Eisenklam and Dombrowski ${ }^{(104)}$ found the following relations between the properties of the liquid and the atomiser to hold ：

$$
D_{p} \alpha\left(\frac{\text { 陘 } \gamma}{P_{0} \theta}\right)^{1 / 3}\left(\frac{\rho}{\rho_{a}}\right)^{1 / 6}
$$

If this is applied to a particular orifice and a particular liquid sprayed into air，it reduces to

$$
D_{p} \propto K . \cdot P^{(-1 / 3)} \text { or } D_{p}=K_{0} P(-0.33)
$$

A general formula of the nature $D_{p}=K_{o} P^{-n}$ had also been established by many other workers in this field． Needham ${ }^{(105)}$ found the index n to have a value of -0.275 ， while Joyce ${ }^{(106)}$ obtained a value of -0.35 。 Both were derived from results of experiments with swirl atomisere and with continuous injection and using the method of substitute liquids for droplet size measurement．Molten wax of viscosity about 2.5 centistokes was used as a substitute liquid．

Muraszew(107) analysed data regarding swirl and plain atomisers discharging different liquids into the atmosphere and found the value of n to be 0.42 . He included plain atomisers in the determination of this value.

Another important factor which may account for these slight discrepancies is the variety of methods of droplet measurement. Nevertheless, our relationship would seem to be in agreement with the relationships obtained by the other workers.

$$
D_{p}=K_{o} P^{(-0.28)}
$$

The lower value of the index n may also be attributable to the fact that the apray obtained from the solid-cone spray was somewhat coarser than that given by the corresponding hollow-cone spray and henoe the $A_{0} D_{0} S_{\text {o }}$ is larger.

A relationship could be sought between the average droplet size of the spray and the Reynolds Number of the issuing liquid jet, when spraying water at room temperature. Now Re $=\nabla_{I_{e}} D_{D_{0}} \rho_{I}$
${ }^{7}$

$$
\begin{align*}
& =k I \circ \nabla_{I} \\
& =k 2 \circ P^{I / 2} \\
\text { or } P & =k 30 \operatorname{Re}^{2} \tag{I}
\end{align*}
$$

We have already established from experimental results that

$$
\begin{align*}
& A_{0} D_{0} S_{0}=k_{0} P^{(-0.28)} \\
& \text { or } P=k_{4^{\circ}}\left(A_{0} D_{0} S_{0}\right) \tag{2}
\end{align*}
$$

From (1) and (2)

$$
\begin{aligned}
P & =k_{4}\left(A_{0} D_{0} S_{0}\right)^{-\frac{1}{0.28}}=k_{3} \operatorname{Re}^{2} \\
\text { Hence } A_{\circ} D_{0} S_{0} \quad & =K_{0} \operatorname{Re}(-2 \times 0.28) \\
& =K \cdot \operatorname{Re}(-0.56)
\end{aligned}
$$

A graph connecting Logarithm of Re and Logarithm of $A \circ D_{0} S$. will give a straight line with a gradient of 0.56 。 Thus this non-dimensional relationship

$$
A_{\circ} D_{0} S_{\circ} \quad=K_{0} \operatorname{Re}^{(-0.56)}
$$

could be very useful in predicting the average aize of droplets from sprays.

6.10 Summary.

Droplet size measurements were carried out successfully at high pressure ranges ($35.15-210 \mathrm{Kg} / \mathrm{sq}_{\circ} \mathrm{cm}$) by the carbon layer impression method and the following relationship was found to hold good

$$
D_{p}=K \cdot P^{(-0.28)}
$$

An increase in the injection pressure resulted in a decrease of average droplet size of spray（more pronounced at pressures below $140.6 \mathrm{Kg} / \mathrm{sq}$ 。cm。）and in an increase of spray uniformity，which was brought about by reduction in the number of larger droplets in the spray．

The Automatic particle Counter was found not very suitable for such measurement，since droplet size ranges over 90.5 could not be definitely grouped．

A functional non－dimensional relationship was established，to enable prediction of average droplet size for a given orifice diameter and a given injection pressure。

$$
A_{0} D_{0} S_{\circ}=K_{0} \cdot \operatorname{Re}(-0.56)
$$

SUPPRESSION。

1．1 Introduction．
Having studied the particle size distribution of the airmborne dust in the tunnel and the droplet size distribution of the high pressure spray，a quantitative determination was made of the effect of the high pressure spray on the knock－ down of the aix－borne dust particles．

Earlier workers ${ }^{(62)}$ had sprayed air－borne dust with aqueous solutions of several wetting agents and found that at； pressures up to $4.4 \mathrm{~kg} / \mathrm{sq}_{\circ} \mathrm{cm}$ 。an improvement in the dust－ suppression efficiency did not appear to result。 It was necessaxy to extend the tests to higher pressures，since the results would also indicate whether the lowering of the interfacial tension and increased wettability had any significant effect at such higher spray pressures on the capture of dust pariiclea．Effect of change of throughput of liquid at constant pressure and effect of the relative velocity between the dust particles and the spray droplets， on dust suppression efficiency could be assessed，and it would be helpful to correlate the characteriatics of the sprays and the dust suppression efficiency．From a practical point of $\begin{aligned} & \text { iew，} \\ & \text { ，the amount of water required to suppress a }\end{aligned}$ known amount of air－borne dust would be of some aignificance．

I2 2 Initial experiments with high pressure water sprays.
 The first series of experiments were carried out in

 the wind-tunnel. in order to compare, for the same spray nozele, the effectiveness of hollow cone spraying with that of solidecone spraying on the dust suppression efficiency. The nozzle chosen was that already used for the droplet-aize measurements。 (Nozzle No.1 : see Table 7.6)。The testa were made in the tunnel ${ }_{n}$ with the air velocity set at about $100 \mathrm{~cm} / \mathrm{sec}_{0}$ and the dust machine adjusted to produce an afroborne dust cloud at a concentration of about 1500 popococ. Water was sprayed through the hollow cone spray nozzle 1 upstream on the axis of the tunnel against the dust-laden air stream. The effect of spray pressure on dust suppression efficiency was studied quantitatively at 8 different atomisation pressures. At each pressure e $^{\text {when }}$ conditions in the tunnel and the spraying unit became steady, simultaneous dust sampling was done by means of thermal precipitators before and aiter the spraying unit. The $T_{0} P_{0}$ dust amples were then counted under the Automatic Particle Counter and the results obtained are shown in Table 7.1.

Similar teate were then carried out with the same nozzle and at the same spray pressures this time using a "drowned" spray (Plug I in Nozzle 1) and the reeults
Table 7.1
Biffect of sprav pressure on dust suppression efficiency

Spray pressure		HOITOW-CONE SPRAY					SOITD CONE SPRAY				
	$\begin{gathered} \mathrm{P} \\ \mathbf{K g}_{\circ} / \\ \mathrm{sq}_{0} \mathrm{Om}_{0} \end{gathered}$	$\begin{aligned} & \text { Phrough } \\ & \text {-put } \\ & l_{0} / \text { min } \end{aligned}$	$\begin{gathered} \text { Dust-concentration } \\ D_{0} \mathrm{D}_{0} \mathrm{C}_{0} \end{gathered}$			$\begin{gathered} \text { Effic- } \\ \text { iency } \\ \text { E } \% \end{gathered}$	$\begin{gathered} \text { Through } \\ \Rightarrow \text { put } \\ 1 . / m i n . \end{gathered}$	Dust concentration $\mathrm{p}_{\mathrm{n}}^{\mathrm{n}} \mathrm{Cl}$			$\begin{aligned} & \text { Effic- } \\ & \text { iency } \\ & \text { E\% } \end{aligned}$
pobores			\qquad	$\begin{gathered} \text { Beyond } \\ \text { the } \\ \text { epray } \end{gathered}$	Difference			$\begin{aligned} & \text { Before } \\ & \text { the } \\ & \text { gpray } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Beyond } \\ \text { thae } \\ \text { ep.cey } \end{gathered}$	Difference	
60	4.21	0.170	1400	1229	171	12.18	0.254	1322	1148	274	13.17
250	17.59	0.335	1324	1070	254	19.15	0.504	1247	973	274	22.00
500	35.15	0.474	1514.	1128	386	25.48	0.680	1548	1116	432	27.96
1000	70.3	0.655	1455	970	485	33.36	0.964	1748	1083	665	38.02
2500	105.45	0.804	1595	921	674	42.20	1.168	1780	1001	779	43.77
2000	140.6	0.913	1617	833	784	48.50	1.381	1513	702	811	53.58
2500	175.75	1.039	1497	798	699	46.67	1.596	1658	808	850	51.25
3000	210.9	1.121	1402	761	641	45.71	1.709	1517	753	764	50.41

FIG.7.1. EFFECT OF HOLLOW CONE AND SOLID CONE SPRAYS ON DUST SUPPRESSION

showing again the percentage of dust particles knocked downs are also tabulated in Table 7．1。

It may be seen from the table，that the efficiency of dust suppression increased with iacrease in spray pressure and，in general，the efficiency was found to be higher for the nozzle employing a drowned spray than for the same nozzle giving a hollow cone spray．Both types of spray showed similar gradation in the increase of dust suppression efficiency with the increase of spray pressure。

Also it appeared that the maximum dust suppression was effected at a spray pressure of about $140.6 \mathrm{~kg} / \mathrm{sq}_{\mathrm{o}} \mathrm{cm}$ 。 （ $200 \mathrm{p}_{\circ} \mathrm{B}_{\circ} \mathrm{i}_{\circ} \mathrm{g}_{0}$ ）with both nozzles，the efficiency being 48.5 per cent in the case of the hollow－cone spray and about five per cent higher for the solid－cone spray．

It is important to note that this higher dust suppression efficiency in the case of the solid－cone spray was achieved at the cost of a higher water uage。 This is well illustrated in Fig。 7.1_{8} in which the dust suppression efficiency is plotted against throughput for each nozzle．Comparison of the curves enables one to see the effect of throughput at constant pressure on the dust suppression。

It may be seen from Fig． 7.1 that the increase in duet suppression efficiency obtained with solid cone sprays
is relatively insignificant, considering the increase in water usage. It is interesting to note that maximun efficiency seems to have been achieved with both hollow cone and solid cone sprays at $140.6 \mathrm{~kg} / \mathrm{sq}_{\circ} \mathrm{cm}_{\circ}$, at which spray pressure ${ }_{8}$ the solid cone spray was found to be only five per cent more effective ${ }_{0}$ even though its throughput was about fifty per cent more than that of the hollow cone sprays.

Comparison of dust suppression efficiencies obtained with those found by Deshpande (75) using the same nozale indicate that although the maximum dust suppression efficiency was achieved at the asme spray pressure $\left(140.6 \mathrm{~kg}\right.$ 。 $/ \mathrm{Eq}_{\mathrm{o}} \mathrm{cm}_{\mathrm{o}}$) , his values were generally somewhat higher. This may be due to the lower velocity of the duptladen air-stream ${ }_{9}$ at which he carried out his experiments, ($60 \mathrm{~cm} / \mathrm{cm}_{\mathrm{o}} \mathrm{gec}_{\mathrm{o}}$, as is evidenced from the author's results on the effect of air velocity on dust suppressiong discussed in 7.6 and 7.7.

7.3 Selection of Surface Active Agents.

It is generally agreed that the dust suppressing ability of a spray is dependent not only on the degree of atomisation achieved but also on the "wettability"of the dust to be suppressed.

Hunter ${ }^{(63)}$ showed that above a certain value of applied pressure the degree of atomisation achleved by usjing solutions of low surface tension was similar to that obtained using water. Only at very low pressures ($<2 \mathrm{~kg} / \mathrm{sq}_{\mathrm{o}} \mathrm{cm}_{\mathrm{e}}$) was any improvement gained by lowering the liquid surface tenaion. Glen ${ }^{(62)}$ found that the inclusion of surface active agents in the epray solution did not result in an improvement in the dust aupproseion efficiency when the liquid was sprayed at pressures lower than $4.3 \mathrm{~kg} / \mathrm{sq}_{0} \mathrm{~cm}$ 。 It was therefore decided to investigate at higher pressures the effect of aqueous colutions of low surface tension on dust auppression. It was already known from Hunter ${ }^{9}$ a work that no improvement in atomisation should result, thus any improvement found must be due to increased wetting power.

The molecule of a wetting agent is relatively large and is composed essentially of two parts : one is
 water and is called the polar or "hydrophilic" group; the other part has a strong affinity for oil or water-insoluble organic substances $\theta_{\text {g }}$ and consequentiy $_{9}$ is known as the non-polar or ${ }^{\text {ohydrophobic }}{ }^{\text {g group. In the wetting agent }}$ solution, it is clained that these molecules orient
themelves with the hydrophilic end of the molecules in the interior of the droplet and hydrophobic end at the suriace. One wetting agent within each of the three generally recognised classes was selected for the subsequent experiments on dust-suppression. They were as follows (107) :-
(i) Nonoionic Type: Lissapol N_{θ} which is an aqueous solution of nonylphenol ethylene oxide condensates containing a polyethylene glycol chain and is represented by $\mathrm{R}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{4}\left(-\mathrm{OC}_{2} \mathrm{H}_{4}-\right)_{\mathrm{n}} \mathrm{OH}$
(ii) Anionic Type: Calsolene 0il HS, which is an aqueous solution of the sodium salt of a highly sulphated oil ; and
(iii) Cationic Type: Fixanol C_{8} which is anhydrous cetyl Pyridinium Bromide

$$
\left[\mathrm{C}_{16} \mathrm{H}_{33}-\sqrt[N]{\square}\right]^{+} \mathrm{Br}^{-}
$$

(i) and (ii), which were liquids, were readily soluble in cold water, while (iii), which was a brown soft solid, dissolved more quickly in hot water than in cold.

It was decided to produce eprays from aqueous solutions of these surface active agents，having otatio surface tension values of 60,50 and 40 dynes $/ \mathrm{cm}_{\circ}$ and compare their dust euppression efficiency with that of pure water．The variation of atatic aurface tension with conoentration of a particular aurface agent in water was determined by means of the du Muoy tensiometer．（108）

This instrument measured the static surface tension by finding the force neceasary to detach a platinum－iridium ring， 4 cm 。 in oircumference，from the iiquid surface． The ring was auspended from an arm ifred to the middie of a torsion wire．The front end of the wire was linked to a vernier pointer whioh moved over a scale calibrated directly in dynes／am。

The results showing the lowering of auriace tension obtained with increasing concentration of the agent in water are plotted in Fig．7．2．From these ourves the concentrations of the euriace active agente to give arface tensions of 60,50 and 40 dynes／am。are tabulated in Table 7．2．

FIG.7.2. EFFECT OF CONCENTRATION OF SURFACE -

ACTIVE-AGENTS ON STATIC SURFACE TENSION

TABIE 7.2

Surface Tension of Surface active agent solutions

Type	Surface active agent solution	Concentration in gms／100 coco		
Surface Tension（dynes／cm．）：		60	50	40
Non－ionic	Lissapol \mathbb{N}	0.00066	0.0016	0.0085
Anionic	Calsolene 011 HS	0.00133	0．0094	0.08
Cationic	Fixanol C	0.0004	0．001	0，0415

It may be seen from the curves that concentrations of surface active agent less than 0.1% by weight，were sufficient to lower the surface tension from 72.8 dynes／cm。 to values lower than 40 dynes／cm．It is also worthy of note that the rate of change of surface tension below 40 dynes／cm。with larger addition of the surface active agent was quite small，indicating the economic die－ advantages in using higher concentrations of these surface active agents．

Te4 Teats with surface active agent solutions at higher atomisation pressures．

The effect of spray pressures on the dust suppression efficiency was studied for the surface active agent：apray solutions $\theta_{\text {g }}$ at the same values of applied pressure as before．Three different concentrations of each type of surface active agent were used to give the required surface tensions of 60 ， 50 and 40 dynes $/ \mathrm{cm}$ ． respectively to the sprayed solution．

Air velocity in the wind tunnel was set at about $100 \mathrm{~cm} / \mathrm{sec}$ 。 and the dust concentration was about 1500 popococo The same nozzle（Plug l Nozzle 1 solid－ cone spray）${ }_{0}$ as used for experiments with water sprays， was used and when conditions were steady in the tunnel and in the spraying unit，dust sampling was carried out before and after the apray by thermal precipitators． The dust samples were then counted under the Automatic Particle Counter and the results obtained are shown in Tables 7．3，7．4 and 7．5．

It may be seen from the tables that the increase In spray pressure up to $140.6 \mathrm{~kg} / \mathrm{sq}, \mathrm{cm}$ 。 increases the dust－suppression efficiency，for all the types of solutions sprayed．Comparison with the efficiencies using water（Table 7．1）indicates that efficiency has
Table 7.3
Fffact of Spray pressure on dust Buppression efficiencr

$$
\begin{aligned}
& \text { Hozsle used } 8 \text { Solid-cone plug } 1 \text { - Nozzle lo } \\
& \text { Dust concentration .o.c. } 1500 \text { popococo }
\end{aligned}
$$

shown signe of increase with lowering of surface tension， the dust suppression efficiency in fact reaches the highest value，when a solution of surface tension of 40 dynes／cm。is sprayed．

Among the types of aurface active agents，the cationic type Fixanol C showed higher values of dust suppression efficiency，than the other types．A maximum of 59.05 per cent was obtained for Pixanol 0 solution of eurface tension 40 dynes／cmog as against 53.6 per cent for water at $140.6 \mathrm{~kg} / \mathrm{sq}_{\circ} \mathrm{cm}$ 。

Pixanol C would appear to have better wetting power than the others．This was evidenced also by an experiment made to teat the relative wetting power of these aurface active agente．A 50 c．c．（ 40 dynes／cmo）solution in water of each of the three surface active agents was prepared，and placed in a glass graduated cylinder． 50 o．c．of water was placed in a fourth cylinder． 2 gms． of experimental coal dust were placed on each liquid／air interface in the cylinder．It was found that the dust particles were wetted first by and aank first to the bottom of the cylinder of the Picanol 0 solution．The relative wetting power，judged in this semi－quantitative way was found to be in the decreasing order of magnitude as follows ：Fixanol C_{9} Calsolene oil HS，Lissapol N and water．

In view of the above results it was decided to use Fixanol C solution as the spray liquid in further experiments to determine the effect of change of throughput at constant spray pressure and the effect of change of air velocity at constant spray pressure on dust suppression efficiency．
7Ω Effect of change of throughput at constant pressure on dust suppression efficiency ：－

The water throughput of sprays can be saried at constant spray pressure by either of the two ways 8 （i）by changing the orifice diameter of the nozzle，in the case of hollow－cone sprays g $_{\text {and }}$（ii）by keeping the aame orifice diameter and changing the diameter of the hole in the plug，in the case of solid－cone sprays．Both the methods were utilised to find the effect of change of throughput at $240.6 \mathrm{~kg} / \mathrm{sq}_{\circ} \mathrm{cm}$ 。 on the dust suppression efficiency。

For hollow－cone spraying，six nozzles wére tested， including Nozele 2 used in previous experiments．For solid－cone spraying，four plugs were tried in Hozzle I_{0} including plug 1 used for droplet size measurements。 The characteristics of the hollow cone nozzles and solid－cone apray plugs are given in Tables 7.6 （i）and（ii）and the throughput curves are shown in Figs． 7.3 and $7.4 \circ$

Table 7.6 (i)

Nozzle characteristics for hollow-cone sprays

| Nozzle |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Refo | | Orifice |
| :---: |
| Diameter
 D_{0} cmo | | Orifice
 length
 diamice |
| :---: |
| 1 |

Table 7.6 (ii)
Plug characteristics for solid-cone sprays
Nozzle $\mathrm{NO}_{\mathrm{ol}}$

Plug Refo	Dia of hole in pluGocm	Flow No。 FIN	C_{d}	Cone angle degrees.
2	0.05	0.408	0.68	40
2	0.062	0.461	0.766	37
3	0.078	0.6	0.995	33
4	0.085	0.636	1.05	18

FIG.7.3.THROUGHPUT OF HOLLOW CONE NOZZLES

FIG.7.4.THROUGHPUT OF SOLID CONE NOZZLE 1

Fixanol C solution of surface tension 40 dynes／cmo was sprayed at a pressure of $140.6 \mathrm{~kg} / \mathrm{sq} \mathrm{cm}_{\circ} \mathrm{cm}_{0}$ the spray nozzle facing upstream along the axis of the tunnelo The airovelocity in the tunnel was adjusted to $100 \mathrm{cmo} / \mathrm{sec}$ 。 and the concentration of dust was set for about 1500 p．p．c．c。 When conditions became steady dust sampling was carried out before and after the spray and dust suppression efficiency calculated from the difference in the dust counts．Four solid cone plugs with Nozzle 1 and six hollow cone spray nozzles were tried in turn at the spray pressure of $240.6 \mathrm{~kg} / \mathrm{sq}_{\circ} \mathrm{cm}_{\circ}$ and the results obtained are shown in Tables 7．7（i）and（ii）．

As may be seen from the table，the dust suppression efficiency is found to increase with increase in throughput at constant pressure．The rate of increase in efficiency is seen to be higher for the solid cone sprays than for the hollow cone sprays at the same range of throughput． This may be attributable to the fact that in the former case a significant number of water droplets are initially injected parallel to the axis of the tunnel。

For example，for nearly the same throughput of about 2．85 litres／min。 from hollow cone Nozzle 4 and solid cone Nozzle 1 Plug 4；the dust suppression efficiency was higher for the solid cone（ 67 per cent）than for the hollow cone（ 60.5 per cent）．
Table 707 (i)
Effect of change of throughput on dust suppression at a constant
Air Velocity oo $100 \mathrm{~cm} / \mathrm{sec}$ 。g Liquid sprayed \circ Pixanol C eolution (40 dynes/cmo) (1) HOLIOW CONE SPRAYS.

H0z8	$1{ }^{\text {defo }}$	1	2	3	4	5	6
$\begin{array}{r} \text { Thr } \\ 1 \end{array}$	ughput min.	0.913	1.070	1.242	1.954	2.515	2.812
	Before the Spray	1480	1658	1559	1440	1212	1764
	After the Spray	689	733	575	569	437	622
	Difference	791	925	984	871	775	1142
Efficienoy E\%		53.5	55.8	56.7	60.5	63.9	6409

Table 7.7 (1i)
Fffect of change of throughput on dust suppression at almost
Air Velocity o. $100 \mathrm{~cm} / \mathrm{sec} ;$ Liquid sprayed oo Pixanol colution (40 dynes/cm.) (i1) Solid-cone spravs. (Nozzle No.1)

Plug Ref。	Spray Pressure		Through -put 1\%/min.	Dust Concentration popococo			$\begin{aligned} & \text { Effici- } \\ & \text { ongy } \\ & \text { E } \% \end{aligned}$
	Posoiag	$\frac{\mathrm{P}}{\mathrm{Kg} / \mathrm{sq.0m}}$		Before the Spray	After the Spray	Difference	
1	2000	140.6	1.388	2470	602	868	59.0
2	2000	140.6	2.271	1620	568	2052	65.0
3	1850	130	2.770	1878	448	1310	69.8
4	1750	123	2.882	$168{ }^{2}$	553	1129	67.0

FIG.7.5.EFFECT OF CHANGE OF THROUGHPUT ON DUST SUPPRESSION at constant spray pressure of $140.6 \mathrm{~kg} / \mathrm{sq} . \mathrm{cm}$.
Air Velocity ... $100 \mathrm{~cm} / \mathrm{sec}$; Liquid sprayed... Fixanol C aq. (40 dynes $/ \mathrm{cm}$.)
cone nozzle 1 with plugs $1-4$

A graph connecting the throughput and the efficiency is shown in Fig．7．5．There seems to exist a Iinear relationship between the throughput and the efficiency，for any particular nozzle and nature of spray． On comparison with Fig． 7.1 ，it is evident that the rate of increase in dust suppression efficiency is more pronounced with increasing spray pressures up to $140.6 \mathrm{~kg} / \mathrm{sq}_{\circ} \mathrm{cm}_{0}$ using the smaller nozzles，than with higher throughputs at 140.6 kg 。／sq．cm。obtained with bigger nozzles．It appears therefore that the spray pressure playes a more important part in dust suppression，than the amount of water sprayed．This is discussed in more detail in 7.7 ． 1.6 Effect of change of air velocity at constant apray pressure．

Theoretically，an increase in the velocity of the air in the tunnel would increase the relative velocity between the dust particle，which is assumed to follow the velocity and flow pattern oif air and the liquid droplet issuing against the dust leden air atream from the spray nozele。 To investigates by quantitative measurement，the effect of change of air velocity at constant spray pressure，the following experiment was carried out．

The velocity of aix in the tunnel was first set at $50 \mathrm{~cm} / \mathrm{sec}$ 。 and the dust machine was adjusted to give
Table 78
Effect of air velocity on dust suppression
Hollom Cone Nozzie No.2; Spray pressure oo 140.6 kgo/sq.cmo
Ifquid sprayed oo Fixanol colution (40 dynes/cm.)

Aix Veloouty	0nolseco	50	100	175	250	375	500
	Beforg the spray	2348	1878	1266	1628	1708	1378
	After the epray	506	846	726	1005	1342	1252
	Difference	842	1032	540	623	367	126
Erficiency Ex		62.5	55.0	42.3	38.3	21.5	9.24

Hollow cone Nozzle 2 ; Spray pressure $140.6 \mathrm{Kg} / \mathrm{sq} . \mathrm{cm}$

a dust concentration of about 1500 popoc．c．Fixanol C solution of surface tension 40 dynes／cm．was sprayed at a pressure of $1.40 .6 \mathrm{~kg} / \mathrm{sq} . \mathrm{cm}$ 。through Nozale No． 2 （Hollow Cone），against the air stream．After ateady conditions were reahced，dust sampling was carried out before and after the spray and from the dust counts obtained from the Automatic Particle Counter，the dust suppression efficiency was calculated．The test was repeated under the same conditions，but by changing the air velocity in turn to $100,175,250,375$ and $500 \mathrm{~cm} / \mathrm{mec}$ 。 The results obtained are shown in Table 7o8．

From the results，it is surprising to note that the efficiency decreased rapidly，with increase in air velocity． The dust suppression efficiency dropped fram 62.5 per cent at $50 \mathrm{cmo} / \mathrm{sec}_{\text {。 }}$ to about 10 per cent at $500 \mathrm{~cm} / \mathrm{sec}$ ．

In practice with spraying in the tunnel，it was found on inspection that the apray cloud was considerably deformed and the spray cone reduced in size at higher air velocities．Thus the initial penetration of the greater number of the droplets was reduced and a proportion of the dusty air could bypass the spray．This effect is illustrated in Fig。 7 olO。

The graph connecting the dust－suppression efficiency and the air velocity in the tunnel seems to indicate a

Iinear relationship（Fig。7．6）and it appears that there is a drop of efficiency of about 1.8 per cent for every $10 \mathrm{~cm} / \mathrm{sec}$ ．increase of air velocity．

207 Discussion of results．

It was found in generalg that these small high pressure sprays were able to remove a considerable proportion of＜ 10μ air－borne coal dust from the air in the wind tunnel（up to a maximum of about 70 per cent， depending upon the apray liquid，nature of spray，epray nozzle and spray pressure employed and the velocity of air－borne dust in the tunnel）．The results are best considered under their appropriate sub－section headings． Effect of spray pressure：（Tables 7．7．7．3．7．4 apd 7．5；PLE．7．1）

As might be expected，increase in spray pressure generally causes an increase in dust suppression efficiency． Irrespective of the solution sprayed，all the experiments showed a gradual increase in the dust suppression efficiency． With increase of spray pressure up to $140.6 \mathrm{~kg} / \mathrm{sq}$ 。cmo The maximum efficiency seems to have been reached at a spray pressure of about $140 \mathrm{~kg} / \mathrm{sq} \mathrm{ocm}_{\text {。 }}$ and there appears to be a slight reduction in the efficiency beyond this apray pressure．

When all the results for the Tabies 2 and 5（c）are plotted together，an approximate proportionality appears to exist between the dust suppression efficiency of the particular nozele and the logarithm of the liquid apray pressure（Fig。 7．7）．It is evident Prom the tables and graph that there is not much to be gained，in increasing the spray pressure above $140.6 \mathrm{~kg} / \mathrm{sq}$ 。 cm 。 It was already shown in Chapter 6.8 ，that the amount of energy required to produce the spray at higher pressures is very high and hence，it is not commensurate with the return in duet suppression．It is also worthy of note，that increase in the spray pressure is accompanied by an increase in the throughput of the spray and hence reduces the dust－water ratio．As is shown later，there appears to be an optimum spray pressure of about $140 \mathrm{~kg} / \mathrm{sq}_{0} \mathrm{~cm}_{0}$ ，beyond which the additional throughput of sprayed liquid does not contribute towards any significant increase in dust suppression efficiency．on the contrary，it only helps to reduce the dust－water ratio。

The spray variables that are dependent on the pressure at which the spray liquid is applied to a given orifice are ：－
（i）the angle which the spray cone aubtends at the orifice（the cone angle）：
$\frac{\text { FIG.7.7. EFFECT OF SPRAY PRESSURE ON DUST SUPPRESSION EFFICIENCY }}{\text { Nozzle } 1}$
Solid cone (plug), water spray

(ii) the liquid flow-rate, which increases as the square root of the sproy pressure;
(iii) the initial velocity and penetration of the spray droplet. The latter will, in practical cases, depend on the velocity of the oncoming dust-laden air stream, and
(iv) the average droplet aize produced by the spray.

It has been shown ${ }^{(62)}$ that for the nozzles employed in these tests, the cone is fully developed at a pressure of about 100 pos. $_{0} f_{\circ} g_{0}$ and the cone angle does not ohange greatly at higher pressures. In practice, moreover, a certain amount of deformation of the spray cone takes place, especially at higher air velocities and this makes the difference between the oone angles of the nozzles employed, insignificant for all practical purposes.

If the increased dust suppression efficiency at increased spray pressures were merely due to the increased flow rate and consequently to the rate of increase of liquid droplets ejecting out of the spray nozzle, one might expect the dust suppression efficiency to vary approximately as the equare root of the applied spray pressure. In Pigo 7a8, the logarithms of all pressure variation results for nosele 1 (hollow cone and solld cone water sprays, and

Fixanol C sprays）are plotted against the logarithm of the dust euppreseion efficiency and in all the cases atraight lines with gradients of 0.385 can be drawn through the points，thus giving a general relationship between the apray pressure and dust suppression efficiency．

$$
\begin{equation*}
E \quad \alpha \quad(P) 0.385 \tag{1}
\end{equation*}
$$

which is somewhat lower than the efficiency obtainable from the relationahip $E \propto P^{0.5}$ 。

The increased initial velooity and penstration at higher spray pressures should have a positive influence on the dust euppressing efficiency．But howeverg sinoe the spray nozsle is placed facing the dust－laden air strerm， the liquid droplet emerging from the nozzle will decelerate rapidly to zero velocity and，if it has not reached the tunnel wall，will then be accelerated down－stream with the air．Thus only for quite a mall proportion of its life， will it have a velocity controlled by the spray pressure。

Again，from our experiments described in Chapter 6 ． it was shown that the logarithm of the average droplet eise in high pressure sprays is inversely proportional to the logarithm of the apray preasure．viz．

$$
A_{0} D_{0} S_{0}=k_{0}(P)^{-0.28}
$$

If one may take，as a measure of the number of ilquid
droplets produced per minute, the ratio
Volvas flow rate/Average Droplet Sise and since volume flow rate a $p^{(0.5)}$ and average droplet sise $\quad \alpha \quad \mathrm{P}^{(-0.28)}$
then Number of droplets per minute $=k . p(0.5+0.28)$

$$
=k \cdot P^{(0.78)}
$$

Thus if the dust suppression efficiency were dependent on the number of droplets produced per minute, It should increase as the $(0.78)^{\text {th }}$ power of the epray pressure. This is quite high in comparison with the experimental results which show that the efficiency increases only as the $(0.385)^{\text {th }}$ power of the Spray pressure (Fig. 7.8) 。

This tends to confiril the already well recognised fact that "number of dropletg" alone is not the oontroling factor in dust suppression. Hot all droplete have an equal chance of capturing a duat particle.

The smaller the droplet size, the more difficult does it become for it to make a auccessful capture of a dust particle owing to the nature of the flow pattern of the air around the droplet. It has been shown in Chapter 6, that a decrease in the average droplet aize at higher
spray pressures was brought about by an increase in the number of smaller sised droplets rather than by a decrease in the smalleat size. This would mean that at higher spray pressures, the number of amailer sise droplets being greater, chances of collision and consequent capture of the dust particles by these droplets is less, and this could explain the lower dust suppression efficiency obtained. This subject will be dealt with more fully Iater in this thesis. It is of interest to note that it has been auggested (109) that there may be a decrease in the efficiency of atomiaation of spray nogsles at very high pressures due to pressure deformation of the orifice.

Effect of solid-cone spraying : (7.2; Table 7.1; Fig.7.1)
Comparison is made between hollow-cone spraying and solid-cone spraying in Table 7.1 and FHg . 7.1. Using the same nozrle (NO. 1) and spraying water; it is seen that the dust suppression efficiency for the solid-cone spray shows nearly the same gradation as that for the hollow cone spray, and a maximum efficiency of 53.58 per cent was recorded for solid-cone spray at the spray preseure of $140.6 \mathrm{~kg} / \mathrm{sq}_{\mathrm{o}} \mathrm{cmog}$ while it was 48.5 for the hollow come spray.

The graphs showing the relationship between the logarithm of spray-pressure and the logarithm of efficiency
are shown in Fig. 7.8 and it may be seen that the nature of apraying devices does not significantly affect the relationship, even though the efficiency values for the solid cone spraye are higher than those of hollow cone spraye.

It was to be expected that the solid-cone spray would give a better dust suppression efficiency, beoause for the same spray pressure, the solid cone spray nossie had a throughput about 1.5 times that of the hollow cone nozzle. The increase, however, in dust suppression efficiency with the solid-cone opray, does not greatly Justify the large increase of throughput of the spray. Whereas the increase in throughput is about 50%, the increase in dust suppression efficiency is only of the order of 10 per cent of the efficiency obtained by hollowcone aprays. As may also be seen from the dust-water ratios calculated later in this chapter, the number of particles of dust knocked down per coco of liquid sprayed is actually lower for the solid-cone spray, than for the hollow-cone spray. (Figs。7.12 and 7.13)。

Fifect of surface aotive agents : (7.4; Tables 7.3.7.4.7.5)
The results shown in Tables $7,3,704$ and 7.5 seem to indicate that in general the wetting agents give a small inorease in dust suppression efficiency. The increase in
efficiency with spray pressure，seems to show a similar gradation to that of pure water sprays and the maximum efficiency was again reached at about 140.6 kg 。／8q．om。 Of the three surface active agents，the cationic type－Fixanol C－gave better results than the other two。 At the spray pressure of $140.6 \mathrm{~kg} / \mathrm{sq}_{0} \mathrm{~cm}_{0}$ ，however，the dust suppression obtained by using Fixanol C solution of surface tension 40 dynes／omop was only about 6 per cent higher than that obtained by using water alone。 With calsolene oil HS_{8} the increase in dust suppression was only about 4 per cent and with Lissapol N about 3 per cent． It would seem that the use of surface active agents is not very advantageous from an economic point of view．

These results suggest that measurement of the air－ solution surface tension alone does not indicate the utility of a wetting agent．Adhesion tension is necessary to cause the solution to adhere to the dust particles．Coal has a high adsorptive power for air and hence to wet extremely fine particles of coal dust，the adhesion tension for the sprayed liquid must be strong enough to work through the film of air on the surface of the coal dust。 The wetting power of the spray solution is enhanced，if the power of the wetting agent in question for contact wetting，

FIG.7.9.EFFECT OF SURFACE TENSION OF SPRAYED

LIQUID ON DUST SUPPRESSION

Nozzle 1 solid cone (plug 1); Spray pressure... $140 \cdot 6 \mathrm{~kg} / \mathrm{sqcm}$ -

immersional wetting and spreading wetting is high (110). The results in Tables $703,704 \& 7.5$ seem to indicate that the wetting power for coal of the cationic type of wetting agent - Pixanol $C \infty$ is higher than that of the other two. A graph connecting the logarithm of surface tension and logarithm of dust suppression efficiency with these wetting agent solutions at a spray pressure of $140.6 \mathrm{~kg} / \mathrm{sq}_{\circ} \mathrm{cm}_{\circ}$ is shown in Fig. 7.9 and there seems to be a general relationship between the surface tension of sprayed liquid and dust suppression efficiency, as given by

$$
\begin{equation*}
\mathrm{E} \quad \alpha \quad \gamma_{l}(-n) \tag{2}
\end{equation*}
$$

where $n=0.165$ for cationic surface active agent, $n=0.118$ for anionic surface active agent, and $n=0.074$ for non-ionic surface active agent. Hence combining (1) and (2), E $\alpha(P)^{0.385}{ }_{\circ}\left(\gamma_{l}\right)^{(-n)}$

The increase in dust suppression can be attributable only to the greater wetting power of the solutions sprayed, since it has already been shown ${ }^{(63)}$ that at higher apray pressures, reduced eurface tension does not produce any eignificant effect on atomisation.

Effect of change of throughput at constant

pressure：（7．5；Table 7．7；Fig．7．5）
As might be expected，there is an increase in dust suppression with increase of liquid throughput（Table 7．7：Pig。 7．5）．It is interesting to note that the rate of increase in dust suppression efficiency is higher for the solid cone（with the increase of diameter of hole in the plug）， than for the hollow cone nozzles．

It may be seen from the figure that the rate of increase of dust suppression efficiency with throughput was nearly constant at constant spray pressure。 The figures were about 6 per cent increase for every additional litre／minute throughput for the solid cone nozzles and about 3.7 per cent increase per litre／min。for the hollow cone nozzles．

The greater efficiency in the case of solid cone nozzles may be due to the deeper penetration of droplete by virtue of the higher axial velocity of a high proportion of the droplets in the issuing jeto Consequently，there would be less deformation of the spray pattern by the counter current air flow。

Effect of air velocity in the tunnel： 7.6 ；
Table 7．8，Fig。7．6．
With the liquid sprayed upstream，one would expeot that increase in air velocity should contribute to an increase in the dust suppression efficiency，as the relative velocity between the liquid droplet and dust particle is thereby increased．The results in Table 7．8 show that in the wind tunnel this did not in fact happen． From Fig．7．6，it may be seen that there was a ateady drop in the dust suppression efficiency with increase of eir velocity in the tunnel．The efficiency which stood at 62.5 per cent with the air velocity of $50 \mathrm{~cm} / \mathrm{sec}$ 。dropped down to 9.14 per cent，when the air velocity was increased to $500 \mathrm{~cm}_{\mathrm{o}} / \mathrm{sec}_{\mathrm{o}}, i_{\mathrm{o}} \mathrm{e}_{\mathrm{o}}$ a decrease of about $1_{0} 8$ per cent for every $10 \mathrm{~cm} / \mathrm{sec}$ 。increase of air velocity。

Inspection of the effect of the flowing air on the spray cone provided a clue to this unexpeoted variation It could be seen that the deformation of the spray cone chortened the forward travel of the droplet，$s 0$ that the overall elze of the cone was reduced．This effect is sketohed in Fig．7．10．Owing to this deformation，dusty air was able to bypass the droplets．
(a) Low air velocity

(b) Medium air velocity

(c) High air velocity

Effect of spraying on size distribution of

residual dust?
As can be seen from Fig . 7.11, the residual duet was; like the initial dust, counted under the Automatio Partiole Counter in five size ranges - 0.5-1.0 0 , $1.0-2,0 \mu, 2.0 \div 2.83 \mu, 2.83-400 \mu$ and $400-5.66 \mu$ 。 In general, about 75 per cent of the particles greater than 5.66 microns in diameter were removed and about 65 per cent of the particles of size $0.5-5.66$ microns. The comparative hiatograms shown, indicate that the aprays. irreapective of the nature of the spray device, apray pressures, throughputs, and air velocities, do not appear to be partioularly selective in suppressing any one size range of dust over the ranges counted.

Dustomater Ratio.

A knowledge of the volume of water required to remove a certain amount of dust from air is of value, when apray capacities have to be decided upon the when taking into consideration the nuisance created by wet condition in a particular mining operation. The volume of water required may be assessed by calculating a dust-water ratio. The ratio chosen in this work was the number of particles of coal dust knocked dom per c.c. of atomised water.

This seeming inconsistence of units may be tolerated， since use of any larger，more practical volume unita such as the litre or galion results in a very large number for the final ratio value．If a density is selected for the coal substance together with an average particle diameter，one may calculate the weight of coal dust removed from air suspension per litre of liquid sprayed．

The dust－water ratio calculations are tabulated in Table 7.9 and the effect of throughput on duet－water ratio is 11lustrated in Figs。 7.12 and 7．13．It is worthy of note that the dustowater ratio is higher for a hoilow－cone spray than for a solid cone spray and the rate of decrease of the ratio with increase of throughput is more or less the same，irrespective of the nature of the apray device and the liquid sprayed．

This would appear to underine the fact that increased throughput does not result in a corresponding increase in dust auppression and that there is little to be gained（from the point of view of duat－water ratio）by increasing the orifice diameter of the nozele to obtain． high throughput at high presaure。

Spray Pressure		Tinroughput intres/min.		Hollaw conemater spray		Solid cone Plug 1 - water		Solid cone Plug ? Fixanol Co 40 dynestm	
posold	$\begin{gathered} p \\ \mathrm{~kg} / \mathrm{sq} \circ \mathrm{~cm} \end{gathered}$	Hollow cone	Solid cone	Particles removed per minute $\times 10^{6}$	Duato water ratさo $\times 10^{6}$	Particlea removed per minute $\times 10^{6}$	Dusto pater ratio $\times 10^{6}$	Particles removed per minute $x 10^{6}$	Duste water ratio $\times 10^{6}$
60	4021	0.17	0.2536	18,030	106.2	19.920	77.0	21.650	85.5
250	17.59	0.335	0.504	288250	84.5	32,520	64.5	37.380	70.4
500	35.15	0.474	0.68	37.780	79.7	41.350	60.7	47.500	69。8
1000	70.3	0.655	0.964	49,300	75.2	56,300	58.4	60,600	62.9
1500	105.45	0.804	1.168	62,450	77.7	64.700	55.4	72,350	61.9
2000	140.6	0.913	1.381	71,800	78.6	798200	57.3	87.350	63.1
2500	275.75	1.039	1.57	68,980	66.4	75,600	48.2	85,200	5402
3000	210.9	1.121	1.72	67,600	60.2	74,500	4304	84,700	49.2

Dust=water ratio $=$ Number of dust particles removed/1 coo. of ilquid sprayed.
RATIO
DUST-WATER
THROUGHPUT AND

8. EFFECT OF TANDEM SPRAYING ON DUST SUPPRESSION.

 8.1 Introduction.In the process of spraying through a single nozzle along the axis of the tunnel counter to the dust-laden air stream it had been found that even at an air velocity of about $100 \mathrm{~cm} / \mathrm{sec}$ 。 there was some deformation of the spray cone. It was thought that the bad effects of this deformation could be reduced somewhat by placing a second spray cone behind the first ${ }_{\beta} i_{\circ} e_{\circ}$ a two stage spraying system. From this idea grew the conception of "tandem" spraying, $i_{0} e_{0}$ the arrangements of a number of equally spaced nozzies all set on the axis of the tunnel, one behind the other and all spraying counter current to the dusty air flow. When the distance between nozzles was fixed the largest number of nozzles that could be used at one time would be controlled by the water output of the pump at a particular pressure and the length of the dust tunnel. It was hoped that such an arrangement might furnish a significant increase in the dust suppression efficiency. A comparison of the dustomater ratios for tandem sparying would also indicate whether any increase in dust suppression efficiency gained by tandem spraying was gained at the price of excessive water usage。

8．2 Experiments with tandem sprays．
Owing to the limited capacity of the pump the nozzle with the amallest orifice diameter，Nozele 1，wag chosen for the tests．Even with that nozsle，tandem spraying with six nozeles was found to be limited to a presaure maximum of about $140.6 \mathrm{~kg} / \mathrm{sq}_{0} \mathrm{~cm}$ 。（ $2000 \mathrm{p} \mathrm{p}_{\circ} \mathrm{oi}_{\circ} \mathrm{g}_{\circ}$ ）

The throughput of aprays，from one to air nossles in tandem was measured during the experiments and are shown in Table 8.1 and Fig．8．1．It was found that with two identical nozeles in tandem，the spray throughput at any constant pressure was not twice that for a single nosele。 This was confirmed for tandem apraying with 3，4， 5 or 6 noszles．It may be sean from Table 801 that the tandem spraying（with identical nozzies）was aocompanied by a neariy constant increase per nozsle in the relative overall flow number（i．e．caloulated by setting the flow number of one nozzle $=100$ ）for each additionsl nossle in tandem（about 0．35）。

Experiments with single nowele have been decoribed earlier（7．2）。 Preliminary tests with two nossles in series indicated that the second spray could effectively operate without interfering with the first apray，if the second noszie was placed behind the pirst nozzle，at a
Table 8.1
Throughput of Tandem Sprays

Number of nozzles in tandem	Single	Two	Three	Foux	Pive	Six
Spray pressure	Throughput Iitres/min.					
pos.1.g。 $\mathrm{P} \mathbf{k g} / \mathrm{sq}$ 。cm						
$500 \quad 35.15$	0.474	0.625	0.780	0.951	1.130	1.320
$1000 \quad 70.3$	0.655	0.901	1.089	1.350	1.560	1.800
1500 105.45	0.804	1.100	1.352	1.669	1.941	$=$
2000 140.6	0.913	1.280	1.550	1.912	∞	-
$2500 \quad 275.75$	2.039	1.451	1.770	2.181	$=$	-
Overall Flow No.	0.2725	0.361	0.457	0.560	0.642	0.740
How Nooper nozzle	0.2725	0.181	0.152	0.140	0.128	0.123
Relative overall FN	1.0	1.325	1.680	2.054	2.355	2.720
Increase in Relative overall FN	∞	0.325	0.355	0.374	0.301	0.365

FIG.8.1. THROUGHPUT OF TANDEM SPRAYS
distance not less than 15 cms ．Since the noszles could not be too near the second dust sampling point，it was decided to set the distance between any two adjacent nozzles at 15 cms．The arrangement of nozeles for tandom spraying is shown in Figo 8．2．The stams oarrying the nozzles could be easily corrected for orientation and were easily detachable from the main water feed pipe。

In the first instance two nozzles were placed in tandem facing up－stream．The air velocity was set to 100 cmo／sec．and the duet concentration in the wind tunnel was about 3000 popococo Water was sprayed through the tandem sprays at a constant pressure of $35.15 \mathrm{~kg} / \mathrm{sq}$ ocm。 When conditions in the tunnel and spraying unit became steady， simultaneous dust sampling was carried out before and after the spray，by means of thermal precipitators．The dust samples were then counted under the Automatic Partiole Counter．The testa were repeated at a number of higher pressures．

Such tests were repeated for arrangements of three， four，five and aix nozzies in turn and at similar valued of applied pressure．A summary of the effect of spray pressure and the effect of number of noseles in tandom on dust suppression efficiency is given in Table 8．2。 Tables 8．3（a），（b），（c）and（d）give detailed accounts
FIG.8.2. DIAGRAM ILLUSTRATING TANDEM SPRAYING IN WIND TUNNEL

Table 8．2
Effect of Tandem Spraying on dust suppression

Summary							
Type of nozzle used s Nozzle 1 Hollow Cone s Inquid Sprayed oo Water							
Air Velocity		$100 \mathrm{~cm} / \mathrm{sec}$ 。		Dust concentration		$\bigcirc C_{0} 3000 p_{\circ} p_{\circ} c_{0} c_{0}$	
Spray pr	ssure	Dust－Suppression Efficiency E\％with no。 of nozzles in tandem					
pos．iog。	$\mathrm{P}_{\mathrm{kg} / \mathrm{sq}}^{\text {ocm }}$	Single	two	three	four	five	81x
500	35.15	25．48	30.20	33.80	40．60	43．60	48．80
1000	70.3	33.36	37.80	41．30	46.60	50.20	56.10
1500	$105: 45$	42.20	47．95	55.20	60.10	66．00	－
2000	140.6	48.50	53.70	59．80	68．00	∞	－
2500	175.75	46.67	53.45	57.50	67.20	∞	－

Table 8.3 (e)
sflegt of Tanden erparing on duat mupresolon
Two Foxgle Spraying

$$
\text { c. } 3000 \text { pop.c.c. }
$$

$\begin{aligned} & 8 \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \cdots \\ & \cdots \\ & \end{aligned}$	$\begin{gathered} \text { O } \\ \text { N } \end{gathered}$	+	N	$\begin{aligned} & \text { n } \\ & \text { in } \\ & \text { ni } \end{aligned}$
8	$\begin{aligned} & 0 \\ & \dot{0} \\ & \dot{H} \end{aligned}$	$\begin{aligned} & \dot{N} \\ & \dot{N} \end{aligned}$	¢	¢	$\begin{aligned} & \text { o } \\ & \text { n } \\ & \text { in } \end{aligned}$

Table 8.3 (b)
Fiffeot of Tandem apraying on duat ouppreasion
Three Hossle Spraving

			Cone Dus	Hquid 8p acentrat		$\begin{aligned} & \text { ter } \\ & 0 \text { p.p.o. } \end{aligned}$
Spray Preseure	9.8.1.8.	500	1000	1500	2000	2500
	lagolsqocs	35.15	70.3	105.45	140.6	175.75
Dust Concentration popococo	Before the epray	3182	3590	3634	3392	3242
	After the apray	2105	2110	1626	1367	1377
	Difference	1077	1480	2008	2025	1865
Sefyolenos Ix		33.8 :	41.3	55.20	59.80	57.50

Table 8.3 (c)
Effect of Tandem spraying on dust suppression
Tour Hozele Spraying

Spray presaure	posoi.go	500	1000	1500	2000	2500
	kg/aq. am.	35.15	70.3	105.45	140.6	175.75
Duat Concentra- tion p.p.c.c.	Before the Spray	3131	3786	3590	3463	3684
	After the Spray	1855	2023	1431	1107	1204
	Difference	1276	1763	2159	2356	2480
Efficioncy Es		40.6	46.6	60.1	68.0	67.2

Tabia 8.3(a)
Effect of randem anzering on dust eupnresaion
Five and Six nogele grating

cos	$8^{\circ} 8$	$0^{\circ} 99$	$7^{\circ} 05$	$9^{\circ} \mathrm{Ct}$	82	Sonototezt
6T8L	2LLT	2865	\$OLT	99\&T	-0世ExeJ5FU	$0^{\circ} 0^{\circ}{ }^{\circ} \cdot \mathrm{d}$ पOF78xquoomoo fenc
cotL	298T	E20T	889 T	bSLT	$\begin{aligned} & \text { Aexdis } \\ & \text { eq7 Leqyy } \end{aligned}$	
2才2¢	4E98	5008	26EE	O2TE	Aexde oq4 0x0jeg	
$2^{\circ} \mathrm{OL}$	St: SE	$5 \%^{\circ} \mathrm{SOT}$	$\mathrm{C}^{\circ} 02$	$S L^{\circ} \mathrm{SE}$	$\bigcirc \mathrm{mo}^{\circ} \mathrm{bs} / 0.84$	$\begin{aligned} & \text { ounasord } \\ & \text { Aaxdis } \end{aligned}$
000T	005	00ST	000T	005	${ }^{0} 8^{\circ} 5^{\circ} 8^{\circ} \mathrm{d}$	
258		QATH				

of the data obtained for two nozzle，three－nozzle。 four－nozzle，five－nozzle and six－nozzle arrangements． As may be seen from Table 802 ，there is a significant increase in dust suppression efficiency，with increase in the number of nozzies in tandem。 It is intereating to note that the increase in dust suppression efficiency with increase of apray pressure shows a similar gradation for any number of nozzles in tandem。 The maximum dust－ suppression efficiency ffor the tandem spraye up to 4 nozzles in tandem）appeared to have been effected at about $140.6 \mathrm{~kg} / \mathrm{sq}_{0} \mathrm{~cm}$ 。 Owing to the limited capacity of the pump at higher pressures it was not possible to test this point more fully．

In general ${ }_{0}$ the rate of increase in dust－auppression with number of nozzies in tandem is much higher for any apray pressure than that produced by increasing throughput at constant pressure in one nozzle through increase of orifice diameter．For example，at $240_{0} 6 \mathrm{~kg} / \mathrm{sq}_{\circ} \mathrm{cm}$ 。 epray pressures a single spray nozzle gives an efficiency of 48.5 per cent（ 7.5 ）as against 68 per centg given by 4 spray nozzles in tandem．The increase in throughput， as may be seen from Table $80 I_{0}$ is oniy 1 Iitra／mino Thus the rate of increase in dust suppression is about $\frac{68-48.5}{3}=6.5$ per cent for each additional nozzle or
19.5 per cent per an increase of 1 IItre／min。throughput。 This is quite high，compared with about 4 per cent increase obtained（chapter 7.6 ）by changing the throughput at constant pressure by varying the nozzle diameter．This would indicate that an inorease in throughput by having a number of small diameter nozzles in tandem is much more effective and advantageous，than employing a single nozzle of greater diameter．

Q． 3 Discusaion of Results．

The results are best considered under the following headings ：－

Effect of spray pressure and number of nozalies in tandem on dust suppression：（Tables $802,803(a),(b),(c),(d):$ Pige。8．3 and 8．4）

A graph connecting the logarithm of apray pressure and the logarithm of dust suppression efficiency is shown in Fig．8．3 for the tandem sprays and it may be seen that a Iinear relationship of about the same gradient is obtained for any number of nozzles in tandem．Between the apray pressures of 35.15 and $240.6 \mathrm{~kg} / \mathrm{sq}$ 。 am 。 the following relationship seems to hold good for tandem spraye，

$$
E \quad \propto \quad(P)^{0.455}
$$

Por a single nozele，it was shown in Chapter 7
（Fig．7．8）that an approximate relationship of the type

$$
E \quad \propto \quad(P)^{0.385}
$$

FIG. 8.3.EFFECT OF SPRAY PRESSURE ON DUST SUPPRESSION WITH TANDEM SPRAYS
Nozzle 1 hollow cone
was found to exist for the whole range of pressures． The value of index $(0,455)$ for tandem sprays is much nearer to（ 0.5 ），which would tend to confirm the hypothesis that the increased dust suppression at increased pressures was mainly due to the inoreased water flow rate and hence one should expect the dust suppressing effloienoy to vary as the equare root of the applied pressure．

The relationship between the Overall Flow Number of the tandem sprays and the number of nozzles used in tandem was shown in Table 8．1 to be approximately linear．The Flow Fumber increased by about 0.094 for every additional nozzle（ $\mathrm{NO} O \mathrm{I}$ ）in tandem．The effect of the number of noseles in series on dust suppression effioiency is illustrated in Fig．8．40 It is interesting to note that the rate of increase in dust suppression efficiency with additional number of nozzles in tandem was higher for pressures above $70.3 \mathrm{~kg} / \mathrm{sq}_{\mathrm{o}}$ am。than for pressure lower $^{\text {o }}$ than $70.3 \mathrm{~kg} / \mathrm{sq} \mathrm{com}_{\mathrm{m}}$ ．As was the vase with the single nosele，the maximum duat suppression efficiency was seemingly effected at about $140.6 \mathrm{~kg} / \mathrm{sq}$ 。cm．（ $2000 \mathrm{posol} \mathrm{og}_{0}$ ） whatever the number of noszies in tandem．

Erpothetion maximum dust suppreasion efficiencr

with tandem aprays：It was clear from the foregoing discusetion that there was a significant inorease in dust euppreseion efficiency with small nossien in tandem，without

FIG. 8.4.EFFECTS OF SPRAY PRESSURE AND NUMBER

OF NOZZLES IN TANDEM ON DUST SUPPRESSION

excessive water usage．Fig． 804 also indicated that the maximum dust suppression was effected at $140.6 \mathrm{~kg} / \mathrm{sq}_{\mathrm{o}} \mathrm{cm}$ 。 and the rate of increase of dust suppression for every additional identical nozzle（nozzle 1 Hollow cone）in series was about 6.5 per cent．

Now a graph conmecting the throughput of these tandem sprays at $140.6 \mathrm{~kg} / \mathrm{sq} . \mathrm{cm}$ 。 and the dust－auppression efficiency showed an approximately linear relationship for the range of up to four nozeles in tandem（Pigo8．5）． Unfortunately the capacity of the water pump prevented more than four nozeles being tested at this preseure．If and when a large pump becomes available this atudy should be extended to a larger number of nozzles to see how far this linearity extends．Were it to extend right up to a 100 per cent efficiency of duet suppression for sprays at $140.6 \mathrm{~kg} / \mathrm{sq}_{0} 0 \mathrm{~m}_{\mathrm{og}}$ as is shown by the dotted portion of the line in Pig．8．5，a total throughput of 3.58 litres／ minute of water sprayed through ten identical noseles （noszle 1）in tandem at $140.6 \mathrm{~kg} / \mathrm{sq}_{\circ} \mathrm{cm}$ 。would be required to achieve 100 per cent dust suppression。 Since it is quite possible that the linearity does not extend to 100 per cont dust suppression，a larger number of nossies may well be required in practice。 Further experiment is required to test this point．
TANDEM SPRAYING AT $140.6 \mathrm{Kg} \cdot / \mathrm{sq} \cdot \mathrm{cm}$.
Water spray; Hollow cone Nozzle 1; Airvelocity. $100 \mathrm{~cm} / \mathrm{sec}$.

Dust－water ratios：The dust－water ratio，which is expressed as the number of dust particles removed per one coc．of water sprayed，was calculated for all the tandem sprays and for all the spray pressure ranges and the ratio was plotted against the water throughput，as shown in Pig。8．6。

As was the case with the single nozzie spraying，a straight line with a negative gradient can be drawn through these points．The dust－water ratios are always found higher for lower pressures and throughputs and the ratio ateadily decreases with increase in spray presaure and water throughput．This indicates that whatever be the nature of spray，there is always at higher apray preseures， a sacrifice of the dust－water ratio to achieve greater dust suppression efficiency．

It is also possible that a higher dust－water ratio at lower pressure may be attributable to the larger number of relatively larger droplets being produced by the sprays under these conditions，which would increase the probability of collision with dust particles．Consideration，however， of the line drawn in Fig． 8.6 will show that it is virtually a line of constant water pressure covering the range of nozzles used．This would auggest that the phenomenon of reduced dust－water ratio at elevated water presaure is primarily a throughput effect．Extra water droplets are being produced which are not as efficiently utilised aince
Dustamater Ratio = Mumber of duet pertioles/1 coco of Ilquid sprayed.
Table 8.4(b)
Dust-water Ratios for Tandem Spraying

$$
\begin{aligned}
& \begin{array}{l}
0 \text { water } \\
3000 p_{\circ} p_{\circ} c_{0}
\end{array} \\
& \text { Irquid eprayed } \\
& \text { : } \\
& \text { Dust concentration } \\
& 00100 \mathrm{~cm} / \mathrm{sec} \text {. } \\
& \text { - Nowsle } 1 \text { Hollow cone } \\
& \begin{array}{l}
\text { Nozele used } \\
\text { Air Velocity }
\end{array}
\end{aligned}
$$

Nuo of Fozzles in Tanden oo Pour					Five			S15		
Sjpray P	Presaure	Through	Tetal No. of	Irust-	Through	Total No:	Dust=	Tinrough	Trotal No。	IUsta
prosilog		-put So/min	$\begin{gathered} \text { pexticles } \\ \text { removed } \\ \text { mino } \\ \times 10^{6} \\ \hline \end{gathered}$	water Ratio $\times 10^{6}$	$\begin{aligned} & \text {-put } \\ & \text { 2o/min } \end{aligned}$	$\begin{aligned} & \text { partioles } \\ & \text { removed/ } \\ & \text { mino } \\ & \equiv 10^{6} \\ & \hline \end{aligned}$	water Ratio $=10^{6}$	$\begin{aligned} & \infty \text { put } \\ & 1 ; / m i n \end{aligned}$	$\begin{gathered} \text { particles } \\ \text { removed } \\ \text { min } \\ \times 10^{6} \\ \hline \end{gathered}$	water Hatio I: 10^{6}
500	35.15	0.951	120,000	126.2	1.130	128,900	11400	1.320	144,100	109.2
1000	70.3	1.350	137,600	102.0	1.560	148,300	95.1	1.800	166:000	92.2
1500	105.45	1.669	177,900	106.4	1.941	195,000	100.5	-	-	-
2000	140.6	2.912	201,000	105.2	-	$=$	-	\because	-	∞
2500	175.75	2.181	198,500	90.7	-	-	-	-	-	-

FIG.8.6. DUST-WATER RATIOS FOR TANDEM SPRAYS

they pass through a path already partly cleared of dust particles.

Comparison with the dust water ratios resulting from increasing throughput through increase in nozzle diameter indicates that water is being more efficiently utilised in the tandem spraying technique.

2. GENERAI DISCUSSION AND CONCLUSIONS

The precise mechanism of suppression of airborne dust by spray droplets is somewhat complicated. It is generally postulated that the liquid droplets strike the dust particles and actually wet them, thus enabling the particle to penetrate into the droplets. This wetting action would cause the "captured" dust particles to settle rapidly, by virtue of the increased size and weight。 Terrel (iil) suggeated that the dust suppression may also be attributable to the mechanical sweeping action of the descending droplets which might bring down particles of size, too small to be efficiently wetted.

In the case of particulate matter difficult to wet, such as the coal dust used in our experimentas the capability of the droplet to capture the particle is reduced, because of the high interfacial tension between the droplet and the dust particies the entry of the particle into the drop being resisted by aurface tension forces.

Considering the impact and penetration of a liquid droplet by a spherical non-wettable dust particle, the minimum velocity of the droplet required for penetration can be theoretically calculated, neglecting any induced mass effects associated with the impact and assuming that
the deformed surface of the drop conforms exactly to the shape of the embedded surface of the particle。

As penetration proceeds，work ic done against the surface tension force，at the expense of the kinetic energy of the partiole．The particle can thus enter the drop，only if its incident kinetic energy is suffioient to allow it to penetrate to such a depth that the drop is able to close behind it，viz。

Kinetic energy \＆work required to be done by the （ $\mathrm{K}, \mathrm{E}_{\mathrm{o}}$ ） particle against surface tension

$$
\begin{equation*}
\nleftarrow \frac{2}{3} \pi \alpha_{p}{ }^{2} \gamma_{1} \tag{1}
\end{equation*}
$$

Pemberton ${ }^{(112)}$ deduced that the particle will be assumed to be captured and retained by the droplet，when the velocity of impact is suoh that its component normal to the surface of the drop is greater than the value， given by

$$
\left(\frac{8 \gamma_{I}}{\rho_{8} \circ d_{p}}\right)^{1 / 2}
$$

The velocity required for penetration will，no doubt， increase with the angle of incidence of the particle with the droplet and also with the approach to equality of the masses of particle and drop．

The average droplet size of high pressure sprays (30-200 kgo/ $\mathrm{sq}_{\mathrm{o}} \mathrm{cm}_{0}$) ranged from 60 to 100 microns in our experiments. The average diameter of t he particies In the experimental cone dust was found to be 1.57 microns, as sampled by the thermal precipitators and 2; 43 microns, as sampled by the salicylic acid filtera A value of 2 microns for the particle diameter was taken to oalculate the minimum velocity required for the penetration of droplet by dust particle, considering in turn water (of surface tension .o 72.75 dynes/omo and other surface active agent solutions of surface tension 60, 50 and 40 dynes/ $\mathrm{cm}_{\text {。 }}$ The val ues are tabulated in Table 901.

Table 281

Theoretical minimum velocity of droplet for penetration

Surface tension of liquid sprayed dynes/omo	72.75	60	50	40
Minimum velocity of droplet. cmo/sec.	1509	1370	1250	1119

It is thus seen that a reduced surface tension of the liquid sprayed (provided the droplets from the liquid also have the same surface tension values at equilibrium) requires lower penetration velocities for impact and capture of similar dust particles.

Comparison of this table with Table 6.3 will show that much larger values of theoretical initial discharge velocities of water droplets were available， even at a low pressure of $35.15 \mathrm{~kg} / \mathrm{sq}_{\mathrm{o}} \mathrm{cm}_{\circ \mathrm{o}}$ with the solid cone Nozzle $l_{\text {。 }}$ For example at $35.15 \mathrm{~kg} / \mathrm{sq}_{\circ}$ om。 the theoretical initial axial velocity of the water droplets is $5,640 \mathrm{~cm} / \mathrm{sec}_{\circ}$ and this is aimost four times the theoretical minimum velocity of droplets required for penetration and capture of dust particles． Thus it is evident from theoretical consideration，that the initial velocity of the droplets at the highopressure ranges at which our experiments were carried out，far exceeded the minimum velocity required for penetration of water droplet by the duat particle。 Owing to the decelerating effect of the air on the water droplet this high intial value is of course only maintained over a relatively short portion of the droplet flight and the low values of dust suppression obtained in practice indicate pariny that the disoharge velocity must drop very rapidly．There may also be a considerable amount of bouncing off the dust particlea after impaction due to the graging angle of incidence of the droplet with the dust particle．

Adhesion tension is another important factor in the complete wetting and capture of coal dust particles．This force of attraction between the molecules of the dust and those of aprayed liquid，is required to be high to cause the droplets to adhere to the dust particles and to cause flocculation，thereby increasing the mase of the combined particles and causing them to fall．In adhesion tension， there are three forces to be considered－the air surface tension of the solid，the air surface tension of the liquid and the interfacial tension between solid and liquid；When the droplet is placed in contact with the solid particie， it spreads until it reaches equilibrium。Any point at the edge of the droplet in then subjected to these three forces and the adhesion tension of the liquid on the solid is given by the difference between the surface tension of the solid and of the interfacial tension of the solid and liquid． 1．e。

$$
\mathrm{Sa}=\gamma_{\mathrm{s}}-\gamma_{i}=\gamma_{1} \cdot \operatorname{Cos} \alpha
$$

and thus reduction of the surface tension of the sprayed liquid should provide an increase in adhesion tension between the droplet and the particle and hence increase ＂wettability＂。

In practice，as was seen in 704，there was generally
only a slight（often insignificant）increase in duet
suppression efficiency produced by spraying surface active agent solutions. With Fixanol C of surface tension 40 dynes/omo, the efficiency increased by a maximum of about 6 per cent, as compared with water sprays (59.05% and 53.58\%). It is perhaps worth noting, however, that the solution of Pixanol C which gave a surface tension of 40 dynes/cmog was very dilute, having a concentration of only about 0.04 gm o of surface active agent per 100 ml 。 of water.

The ultimate action in wetting is to achieve rapid spreading over the surface of the dust partiole。 Three types of wetting have to be considered in the estimation of wetting power - "contact" wetting, "immersional" wetting and "spreading" wetting. The tendencies of coal particles to be wet by and adhere to liquid droplets have been discussed by owings. (110)

The mall increase of dust suppression efficiency when spraying surface active agent solutions of low surface tension may only be attributable to spreading or creeping wetting. The change in free surface energy in spreading is equal to the sum of the solid-1iquid interfacial tension and the surface tension of the liquid minus the surface tension of the solid. vie.

$$
\gamma_{1}+\gamma_{1}-\gamma_{0}=\gamma_{1}-s a
$$

and the $108 s$ in free energy is

$$
\operatorname{sa}-\gamma_{1}=\gamma_{1}(\cos \alpha-1)
$$

The added wetting agent reduces the surface tension of the Iiquid and hence the angle of oontact of the droplet. The maller contact angle, the greater is the spreading rate. The results in Tables 7.3, 7.4 and 7.5 indicate the rate of epreading, as characterised by the dust auppression efficiency, and as influenced by the nature or type of aurface aotive agent. It would appear that a cationic wetting agent may apread more quickly over the muriface of the dust particle than the anionic type and the non-ionic type. This last would appear to be only elightly better in wetting power than pure water.

The efficienoy of duat muppression obtainod in actunl practice, by spraying eurface active agent solutions, is not as high as might be expeoted because of one or more of the following reasons, for which quantitative measurements could not be easily mades
(i) Ioss of "contaot wetting" and "inmersional or capiliary wetting" powere of the aprayed Iiquid, due to its Lowered aurface teneion. The tendency to wet by contact is measured by γ_{1} (Cos $a+1$) and honce, addition of eurpiace active agente to water would tond to deorease the comtactwetting power of the ilquid, aince the contaot angle ie Iowered.

Immersional wetting becomes important in $_{\mathrm{p}}$ inppressing porous particulete matter such as coal. by eprays. Cosl has a high adsorptive power for airg as the ratio of the surface area to the mass of the partiole increanes, the greater is the adsorption. Therefore, to wet extremely fins particles of coal dust, the adhesion tension for water must be sufficiently great to work through the film of air on the surface of coal dust. The tendency of immersional watting to ocour is measured by γ_{1} 。 Cos α. Lowering of the surface tension of the ilquid would thus appear to reduce immersional wetting.
(i1) Higher value of "dynamic" surface tonsion of Iiquid sprayed. It was shown by Hunter ${ }^{(63)}$ that reduced surface tension of the spray solution was not effeotive in inoreasing the 'atomisation' of aprays at higher pressures. This apparent failure to produce finer sprays of lower Average Droplet size by eurface active agents might posaibly indscate that a value of eynamic eurface tension, interyediate between the valuer at the inwtant of formation of the new surface and at equilibrivin adsorption of surface aotive agent, may be operative for the sprays. The new murfacea are formed too quiciciy for adeorption of the surface active agent to be complete and hence the static aurface toneion of the eprayed droplet is not ectually to be taken as the surface tension of the solution.
(iii) Besides these characteristics of spray solutions, other factors in the actual collision process between the liquid droplets and the dust particles; such as the deformation of spray oone; may also contribute towards the low increase in dust suppression efficienoy obtained by apraying surface active agent solutions.

Another useful theoretical attack on the problem of dust suppression by water aprays may be made through a study of the fundamental dymamics of the collision process between the dust and the sprayed droplets.

For convenience in such a theoretical treatmont of the hydrodynamic capture of particulate matter, an idealieam tion of a system of amall aqueous droplets encountering a cloud of smaller dust particles is made by considering the relative motion of only a single liquid dxoplet and a single dust partiole in air. Both the bodies are aseumed to be spherical and the water droplet is considered to be appreciably larger than the dust particle, so that the flow pattern under consideration is that of the air and the dust partiole axound the water droplet. [For the range of our experiments carried out at high apray preseures, the average droplet oise can be taken as 80 microns, and the average particle diameter of dust in the wind-tumel can be taken as 2 microns]。

The dust particle, in this ideal systemg is assumed to be so amall that it does not affect the flow pattern of the
stream. It is also asswned that the apparent weight of the partiole is negligible compared with the viscous force. Since the Rejnolds number of such a particle is very low (less than unity), the drag of the fluid on it is given by Stokes ' law. The water droplet has a motion relative to the dust-laden air, by virtue of being sprayed from a pressure nozelef but it is convenient to reduce the relative motion of the dust particle and the droplet to the motion of the particle in the air atream flowiag around a stationary droplet.

In the apraying process, the ejected droplet will sweep out through the air a tube of orosa-section equal to its diameter and in so doing may captureg eweep against, or sweep just past the dust particle. Theoretically, it is assumed that each impact results in a capture, but in praotice, bownoing aan ocour with a probability depending on the relative velocity and the angle of incidence of eaoh on the other.

The probability of capture of the particle by the droplet depends upon the balance of viscous and inertial Forcen aoting on the particle as the droplet approaches it. If Fiscous forces are neglected and only inertial forces are considered, collision leading to capture will occur if the dust particle lies within the tube swept out by the water droplet. If the dust partiale is given an
effective diameter (the value of which may be taken as 2 microns in our case), the diameter of the tube has to be increased to allow for the diameter of the particle, vizo an impact will ocour, if the minimum distance of the trajectory of the particle from the droplet surface is equal to or less than the effective radius of the dust particle, on the other hand, if viscous forces only are operative, the dust particle will tend to get campied away from the awept path of the droplet, along with the devisted streams of iluid. In practice, the impact and capture of dust particles is influenced by both viscous and inertial forces and collision efficiencies ile between zero and 100 per cent.

A sketoh illustrating the graging trajeotory of a emall duat particle for capture by a liquid droplet in an idealised system is shown in Figo 9.1. It is asaumed that the particle and the droplet will just collide, when the particle trajectory's nearest approach to the droplet surface is half the effective partiole diameter, i.e. dp/2.

If the fluid forces on the dust particle oan be taken to follow Stoken' Law and thus the magnitude of the viscous drag on the particle to be linearly proportional to the relative velocity of the particle in the 17uid, the
DROPLET
AND LIQUID
DUST PARTICLE
OF
FIG.9.1. GRAZING TRAJECTORY

equations of motion can be written in terms of the fluid flow pattern around the droplet and the equations of motion are shown, by dimensional analysis, to depend on one aharaoteristic dimensioniess group, known as the "particle parameter" X.

$$
\begin{aligned}
\text { where } K & =\frac{2}{9}\left(\frac{d p}{D_{p}}\right)^{2} \circ \frac{\rho_{g}}{\rho_{2}} \circ R^{R}(d r o p l e t) \\
\text { or } & =\left(\rho_{s} \circ d_{p}^{2} \circ \nabla_{p}\right) /\left(9 \eta_{a} \circ D_{p}\right)
\end{aligned}
$$

Since the velooity of the fluid due to the flow pattern rownd the droplet is non-linear, the equations of motion of the partiole are non-ilnear and hence their solution involves step-by-step plotting of each possible trajeotory of the dust partiole, as it approaches and tende to be swept rown the larger aphere.

The trajectory, which corresponds to a gresing collision, is found by trial and error. This is the grasing trajectory, whose distance of nearest approach to the droplet surifice is $a_{p} / 2$ and whose dietance from the line through the contre of the droplet when etill at larger distances from the droplet is $D_{p o} / 2$. The oircular area correaponding to the distance $D_{p o} / 2$ Irom the centre line of the droplet is known as the "capture crosemecotion" y_{0}^{2} o or, eltesnatively, as the Noollection effloiency" $\mathrm{E}_{0}{ }^{(67)}$ which is definod an

$$
\begin{aligned}
E_{0} & =\pi\left({ }^{D_{p o} / 2}+d_{p / 2}\right)^{2} \mu\left({ }^{D_{p} / 2}\right)^{2} \\
& =\left(D_{p 0}+a_{p}\right)^{2} / D_{p}^{2}
\end{aligned}
$$

It is the ratio of the number of particles etriking the droplet, to the mumber which would etrike it, if the etream lines were not defleoted around the droplet.

A number of workers $(66)(67)(68)(69)(70)(71)(72)_{\text {have }}$ computed values of E_{C} in terms of E_{p} notable among them being Langmuir and Blodgett ${ }^{(66)}$ and Fonda and Herne ${ }^{(67)}$, Who have evaluated particle trajectories and colliaion efficiencies in viscous and in potential flow pattern around droplets. Employing the diameter of the droplet as the unit of length, Fonda and Herne derived by a computer technique a dimensionless capture orosesection (y_{0}^{2}) and plotted curves relating various neareat distances of approach ($r_{m_{m}}$) of the trajeotory to the centre of the droplet for both viscous and potential flow. Colision will take place where

$$
x_{\mathrm{m}}=\left(d_{p}+D_{p}\right) / D_{D}
$$

The Ruid flow pattorn, which is assumed to be oharacterised by the flow of dust laden Inuid round the droplet, has a significant influence on the collection efficienoy. The latter is generalis maller for viscous
than for potential flow at equal values of K_{g} because in the former case，the fluid streamines pass further from the sphere due to the stagnation of the iluid at the aurface． In practice，the potential flow pattern is approcimately valid in front of the droplet，when the Reynolds liumber of the sphere is very large and the viscous flow pattern is appropriate when this Re is very omall．The analysis of potential and viscous flow patterns around a sphere is given by Iemb。（113）The Niow pattern is abaracterised by the Reynolds Number for the droplet，which is itself a measure of the relative importance of inertial and visoous Porces within the fluid。

It is of interest to determine the range of capture orose－section covered in the high preseure aqueous spray work described here．The high pressure sprays（35．15－ $190.16 \mathrm{~kg} / \mathrm{sq}_{\circ} \mathrm{cm}_{\circ}$ ）projected against the dust－1aden air stream from the solid cone Nozele 1 Plug 1 （Chapter 7．2） are considered for this treatment and using the data provided by Fonda and Herne，the range of capture croas－ section is calculated for the whole range of spray pressures employed；making use of the experimental values of average droplet sise at each spray pressure and taking a mean effective particle diameter of 2 miorons．The reeults of these calculations are shown in Table 9．2．

Table 9.2

Ramge of Particle Parameter K and theoretical collection
efficiencies for droplets from high pressure spray nogsles (Plug 1 Nozzle 1)

Range of epray pressure $\quad 00035.15-190.16 \mathrm{~kg} / \mathrm{sq} .0 \mathrm{~m}$.
Range of calculated theoretical
initial discharge velocity
of spraye
Counter-flow air velocity 000100 omo/sec.
Range of Renolds Fumber of droplets in air:

| for $D_{p}=60$ microns | 000 | $243.5-566.0$ |
| :--- | :--- | :--- | :--- |
| for $D_{p}=80$ microns | 000 | $323.0-752.5$ |
| for $D_{p}=100$ microns | 000 | $404.0-940.5$ |

Range of Partiole Parameter (d_{p} mean -2 microns)
for $D_{p}=60$ microns $\quad 00029.65-68.95$
for $D_{p}=80$ mikorons $\quad 000 \quad 22.25-51 \div 85$
for $D_{D}=100$ microns $\quad 000$ 17.85-41.45
Theoretical Capture Cross-section $y_{0}{ }^{2}$

for mim $=1.033$	000	$1.0318-1.0520$
10r $\mathrm{rm}=1.025$		1.0030-1.0297
for $\mathrm{rm}=1.020$	00	0.98A8-1.0145

Theoretical Collection Effiaiency Ec\%

for D_{p}	60 miorons	Potential flow Fisanus flor	
		96.5-98.5	83.0-90.0
for D_{D}	80 microns	96.0-98.0	79.0-88.0
Or D_{p}	100 miarons	94.0-97.5	75.0-86.0

It may be noted from the table that the experimental wind tunnel had a very efficient capture crossasection and therefore dust－suppression efficiencies，as high as the theoretioal collection efficiencies（ 75.0 － 90.0 per cent for viscous flow and 94．0－98．5 per cent for potential flow fluid patterns）ehould have been achieved by the sprays， in the pressuremrange employed．The values calculated， however，correspond to the initial projection velocity of the spray droplets．On diecharge against the air stream， the droplets decelerate rapidly due to the resistance of the aif and come to a halt，before getting carried away downstream with air．Under these conditions，the capture crosemseotion decreases rapidiy and a caloulation of the capture crose－section for a 80 micron droplet brought to momentary rest in a counter flow of air moving at $100 \mathrm{cmo} / \mathrm{sec} \mathrm{o}_{0}$ gives its value as low as 0.225 ．The mean capture oross section will then lie somewhere between the maximum values given in Table 9.2 and this minimum value。

Walton and Woolcook ${ }^{(68)}$ made experimental measure－ ments of the collection efficiency of water droplets for airborne dust particles of methylene blue over the range $D_{p} 0.5 \mathrm{~mm}$ 。 to $2 \mathrm{~mm} ., d_{p} 2.5 \mu$ to 5.0μ and droplet velocity $200 \mathrm{~cm} / \mathrm{lsec}$ ．to $670 \mathrm{~cm} / \mathrm{sec}$ 。 and compared it with theoretioal predictions given by Fonda and Herne．Their reasoning has been adopted and modified to suit our experimental conditions to enable the calculation of dust ouppresaion efficiencies
resulting from the continuous spraying of a moving dust cloud in the cylindrical wind tunnel.

If a small interval of time Δt is considered during which water is aprayed in droplets of effective diameter D_{p} (equivalent to the Average Droplet Sise at each spray pressure), at a total volume throughput rate of Q_{w} and the penetration of the droplets is S, the number of droplets produced will be equal to

$$
\left(Q_{w} \Delta t\right) /\left(\frac{\pi}{6} D_{p}{ }^{3}\right)
$$

If $\overline{\mathrm{y}}_{0}^{2}$ is the average capture oross-seotion over the range of spray $S_{\text {p }}$

Effeotive volume of air denuded of dust will be
$=\left(Q_{w} \Delta t / \frac{\pi}{6} D_{p}^{3}\right) \overline{\bar{y}}_{0}^{2}\left(\pi D_{p}^{2} / 4\right) \mathrm{s}$
$=3 Q_{w} \cdot \bar{Y}_{0}^{2} \Delta \Delta t_{0} S / 2 D_{p}$
Iet the volume of air flowing through the tunnel in the same time Δt be $Q_{a} \Delta t$

Thus fraction of the total dust removed

$$
=\left(3 Q_{w} \circ \bar{y}_{0}^{2} \cdot \Delta t_{0} S\right) /\left(2 D_{p} \circ Q_{a} \cdot \Delta t\right)
$$

If Δn is the ohange in dust concentration effeoted by apraying, the above relationohip beoomes

$$
\frac{\Delta n}{n}=\left(3 Q_{\pi} \circ \bar{y}_{0}^{2} \circ \Delta t_{0} s\right) /\left(2 D_{p} \circ Q_{Q} \cdot \Delta t\right)
$$

Thus for a logarithmic diminution in dust concentration,

$$
n_{1}=n_{0} \circ \exp \left[\left(-3 Q_{\infty} \circ \bar{y}_{0}^{2} \circ s\right) /\left(2 D_{p} \circ Q_{a}\right)\right]
$$

where n_{0} and n_{1} are the duat concentrations before and after the spray respectively

$$
\begin{aligned}
& \text { Hence } \log _{\theta}\left(n_{1} / n_{0}\right)=\left(-3 Q_{w} \circ \bar{Y}_{0}^{2} \circ S\right) /\left(2 D_{p} \circ Q_{Q}\right) \\
& \text { or } \quad \log _{10}\left(n_{1} / n_{0}\right)=\left(-1.5 Q_{w} \circ \bar{Y}_{0}^{2} \circ S\right) /\left(2.3 D_{p} Q_{Q}\right)
\end{aligned}
$$

and nozele efficiency $E=\frac{n_{0}-n_{1}}{n_{0}} 100$

$$
=\left[1-\left(n_{1} / n_{0}\right)\right] 100
$$

Brom the experimental values of dust suppression efficiencies; it is then possible to oalculate the velue of the actual effeotive capture oross-section $\overline{\bar{y}}_{0}^{2}$ in the wind tunnel and this can be compared with the value, obtained from the particle parameter K using Fonda and Herme ${ }^{0}$ s data (see Table 9.2)。

The solid cone spray from Hozzle 1 Plug 1 at a spray pressure of $140.6 \mathrm{~kg} / \mathrm{sq}_{\mathrm{ol}} \mathrm{cm}$ 。 has been chosen to illustrate the oalculations and the data appear in Table 9.3.

The value for \bar{y}_{0}^{2} was also caloulated for the water droplet of 65 micron diameter under the same conditions using Fonda and Heme's data. A value of 5402 was obtained for the particle parameter K, reeulting in a value of 1.041 for the capture cross-section (y_{0}^{2}). It is important to note that this value has been calculated from the initial discharge velocity of apray droplets, whereas the value of

Example for the calculation of Average Capture Crose－Section
in Wind－tumnel
Nozzle 1 Plug 1 Solid come Water spray
Water pr．P＝ $140.6 \mathrm{kgo} / \mathrm{sq} .0 \mathrm{~m}$ 。
Water throughput $=0.964$ iitres／min．（Fig．6．2）
Average Droplet Size $=65.0$ microns（Table 6．3）
Air Velocity $=100 \mathrm{~cm} / \mathrm{sec}$ 。
Initial dust concentration（ n_{0} ）＝ $1513 p_{0} p_{0} 0_{0} 0_{0}$（Table 7.1 ）
Final dust concentration $\left(n_{1}\right)=702$ pop．0．0．
Dust suppression Bfficienoy（E）$=\frac{n_{0}-n_{2}}{n_{0}}=53.58$
Spray cone angle $=40^{\circ}$
$Q_{\text {w }}=$ water flow rate $=\frac{964}{60}=16.070_{0} c_{0} / \mathrm{sec} c_{0}$
$Q_{a}=$ air flow rate $=\frac{\pi}{4} \times(18)^{2} \times 604516 \times 100$
$=16409 \times 10^{3} \quad$ o．colsec。
$S=$ penetration $=9 \times 2.54 / \sin 20^{\circ}=\frac{22086}{0.3420}$
$=66.9 \mathrm{cms}$ 。

$$
\therefore \log _{10}(702 / 1513)
$$

$$
=\left(-1.05 \times 16.07 \times \overline{7}_{0}^{2} \times 66.9\right) /\left(2.5 \times 65 \times 10^{-4} \times 16.49\right)
$$

Eoe． $\log _{10} 0.4642=\left(-0.654 \overline{\bar{J}}_{0}^{2}\right)$

$$
\begin{aligned}
\therefore\left(-\bar{y}_{0}^{2}\right) & =(-0.3333) /(0.654) \\
\text { or } \overline{\bar{y}}_{0}^{2} & =0.51
\end{aligned}
$$

$y_{0}{ }^{2}$ oalculated from the experimental value of dust suppression efficiency is an overall average effective value of capture oross-section in the wind tunnel. It oan be shown that the value of $y_{0}{ }^{2}$ drop to 0.3 , when a 65 mioron droplet ($A_{0} D_{0} S_{0}$ at a spray pressure of $140.6 \mathrm{~kg} / \mathrm{sq}_{\circ} \mathrm{cm}_{0}$) comes to rest with respeot to the tunnel. Hence, if an average value for $y_{0}{ }^{2}$ is taken over the range S, the resulting figure for the effective capture cross-seotion is $\frac{1.042}{2}=Q_{e} 5205$, which is very close to the value calculated from the experimental results on dust suppression (0.51) 。

Thus it is seen that the experimental results of dust suppression oompare well with the theoretioal collection efficiency oaloulation.

The experiments with tandem sprays, desoribed in Chapter 8, provide an attractive rate of increase in the dust euppression efficiency, as compared with single sprays. The best system for optimum officiency was found by experiment to be four-nozzle tandem spraying at $140.6 \mathrm{kgo} / \mathrm{sq}$, om. The efficiency was found to inorease by almost 20 per cent, (48 to 68\%) by the addition of three more nosgles in tandom and with a throughput of only about twice that of the single spray.

CONCIDSIONS：
The average droplet aise of high presaure sprays （in the range $35.15-210.6 \mathrm{~kg} / \mathrm{sq} \mathrm{ocm}_{\circ}$ ）varied inversely as the $(0.28)^{\text {th }}$ power of the spray pressure and hence a non－dimensional relationship connecting the average droplet size and the Reynolds Number of the issuing jet was established as follows ：

$$
A_{0} D_{0} S_{0} \quad \dot{\alpha} \cdot e^{(-0.56)}
$$

This would enaiole predictions to be made of average droplet size，for a particular orifice and a particular apray pressure。

Generally，the dust suppression efficiencies obtained in practice were not as high as might be expected．This would indicate that the cepture crosesection for the droplets in the tunnel was considerably reduced，by the rapid deceleration of the droplets and by the deformation of the spray cone due to the resistance of oncoming dust－ laden air streams．Taking an average capture oross－section at nearly one half the value makes the theoretioal predio－ tions comparable．

The solid cone sprays gave about five per cent higher efficiencies than hollow cone eprays from the aame nossie．Naximum dust suppression seems to have been effected at about $140.6 \mathrm{~kg} / \mathrm{sq}$ 。cm．for all noseles and types of liquids sprayed，thereby suggesting an optimum value of opray preseure for the best dust suppression
efficiency with a minimin reduction in the dust－water ratios．The duat－water ratios in general decrease with increased water throughput and hence，a balance was necessary to be otruck between the values of epray pressure and dustirater ratios，for an optimum dust euppression efficiency．

The surface active agents in epray solution generally effected a emall increase in dust euppression efficienoy． The cationic type－Pixanol C－of surface tension 40 dymes／om。gave the maximum efficiency of 59.05 per cent with Nozsle 1 Plug 1 solid cone－about 6 per cent higher than that for water aprays with the same nozzle。 The anionic and non－ionic types were in deoreasing order of merit，though all three gave generaliy silghtiy higher IIgures for duat euppreseion than pure water．Fevertheless， the utility of these agents，to effect just about 6 per cent inorease in dust euppression effioiency，is questionable on economic considerations．

The duvt ouppression efficiency was found in practice to decrease rapidly with inorease in air velocity．One shoudi theoretically expect an increase in dust euppression， since increase in air velocity increaces in tum the relative velocity betweon the water droplet and the dust particle and also the turbulence．However，due to the deformation and reduction of apray cone at highor air velooitien，this deoreace in efficiency is mandy attributable
to the failure of the droplets to impact on the dust particle and hence to the by-passing of a proportion of the dust particles past the spray without colliding with the droplets.

Iogarithmio relationships were found to exiet between the spray pressure and dust suppressing efficienoy and also between the surface tension and dust suppressing effioiency at the high pressure range ($35.15-210.6 \mathrm{~kg} / \mathrm{sq} \mathrm{om}_{\mathrm{om}}$) The dust suppression efficienoy under these experimental conditions, could be represented as a function of the apray pressure and surface tension of sprayed liquid as follows :-

$$
E=k_{0}(p)^{0.455} \circ\left(\gamma_{1}\right)^{-0.12}
$$

It was also found from experiments with different nossles, that the spray pressure played a more important part in effeating dust euppression than the amount of water sprayed.

The results also indicated that high presemre eprays did not appear to be selective in suppressing any particular sisempange of the dust particles from the airo the aize distribution of the dust particles remaining in the air was found almost the same as that determined before apraying.

In genersl, the dust suppressing efficiency wee found to increase linearly with increase in the water throughput of the spray and this is evident from results quoted in 7.5.

Tandem sprays showed a greater dust suppression efficiency with little increase in throughput of spray． The maximum dust suppression efficiency was seen to be effected at a spray pressure of $140.6 \mathrm{~kg} / \mathrm{sq}_{\circ} \mathrm{cm}_{\circ}$ and at this pressure was found the best rate of increase of dust suppression efficiency with number of nozzies added in tandem and hence with increase in throughput．As compared with a single spray at $140.6 \mathrm{~kg} / \mathrm{sq}_{\circ} \mathrm{cm}_{0}$ y 4 nozzle tandem spray required only twice the throughput at a gain of about 20 per cent in dust suppression efficiency．

This amounted to a rate of increase of about 6.0 per cent in dust suppreseion efficiency with one of every additional nozzle in tandem spray．

The trend of dust suppression effected at $140.6 \mathrm{~kg} / \mathrm{sq}$ 。cm． with tandem sprays suggested that almost 100 per cent dust suppression in the tunnel may be possible with a tandem apray system at $140.6 \mathrm{~kg} / \mathrm{sq}_{\mathrm{o}} \mathrm{cm} \mathrm{m}_{\mathrm{g}}$ and utilising about 10 nozzles （Nozzle 1 Hollow cone）in tandem at a minimum throughput rate of 3.58 Iitres／min。 This hypotheticsil value is of great interest，in that such values of dust suppression efficiencies cannot be effected by a single spray nozzle，due to the reduced capture cross－section of droplets as the air resistance decelerates them．It also underlines the fact that better dust suppression could be effected by a series of small diameter nozzies in tandem，rather than by a singie larger diameter nozzle。

Suggestions for future work.

(a) The effect of aqueous sprays of constant droplet size on moving dust clouds of constant partiole size should be studied. This would ensble one to find the optimum value of dropiet size, if any, for the most efficient capture of dust particles of a particular size. The constant droplet size could be achieved by a rotary cup atomiser.
(b) Experimental investigations should be made of the velooity of water droplets within a spray over the range from initial ejection to the limit of experimental penetration. This would enable suitable practioal values of average capture orossmeotion to be obtained.
(c) The new dust-feeder, described in Apprendix 2, could be developed more fully, with instrumentation for measurement of pressures, so that a more accurately reproducible range of dust concentrations could be studied in the tunnel.
(d) Radial sprays, projecting a thin screen of spray-Iiquid-barrier across the section of the tunnel, oould be studied.
(e) Other arrangements of multiple sprays should be studied in the tumel.

APPHNDIX I

PARTICIE SIZE ANATYSIS OR EXPERIMENIAT DUST BY

SEPTMETITATION METHOD．

Air－borme dust flowing in the wind tunnol had been sampled；simultaneously，through gravimetric alicylic acid filters and by thermal precipitators and their duat－ counts compared in Chapter 5．It was lelt that an independent cheok should be made of particle aise of dust fed to the dust－machine hopper and this was done uaing the $I_{\circ} C_{o} I_{c}$ sedimentation apparatus，which is a modified form of Andreason Sedimentation pipette。（See Pig。A．I．1）． The Sedimentation pipette consisted of two glase tubee equipped at the top with atop cooks and encased in a water jacket to prevent temperature variation．There was an outlet at the foot of one of the tubes and a side anm above this led off to the foot of the other glaes tube。

A 2% Sodium oitrate solution was used to completely fill the clear water reservoir and fill two－thirds the sedimentation tube．About 0.3 gm of the sample of experimentel dust was then accurately weighed out， moistened with a little giycerol and dispersed in about 10 ml 。 of the oitrate solution．A pipette was used to place this suspension in the settling tube and an aix ourrent introduced to obtain even dietribution and prevent eticicing to the wall of the tube．

FIG.A.I.I.I.C.I. SEDIMENTATION APPARATUS

By manipulating the taps on the top of the tubes, clear liquid was passed from the reservoir to the sedimentation tube via the side arm and after a final air injeotion to restore uniformity, the test was etarted.

During the run the tap on top of the eedimentation tube remained closed, while that on the olear 1iquid reservoir remained open. Thus when a aample was taken by releasing the spring olip at the outlet, the liquid ilowed from the reservoir via the outlet, carrying with it the particles which had settied out with the minimum of disturbance to the iiquid in the cedimentation tube.

Inoremental samples were taken at oalculated intervale and the results oomputed asevming hydrodynamio similarity of dust paxtioles and obedience to 8tokes' Iew.

$$
\nabla_{t}=h^{\prime} / t=g_{0} d_{p}^{2}\left(p_{s}-p_{1}\right) / 18 \eta
$$

This equation was used to caloulate the timo of settlement of a particular range of particlec, and in appropriate units, it reduced to

$$
t=\frac{n^{\prime} n 10^{7}}{5045\left(p_{1}-p_{1}\right) a_{p}}
$$

For thie determination, the mean particie diametere were arranged in a $\sqrt{2}: 2$ starting from 89 microme (76-106) . so that the sampling times would beome oomvenient multiples of 't'。 t was foum to heve a value of 302 secomas, at the and of which the mempie withelemin world have a ohsracterietic mean dianeter of 89 miorome

Table Aolol

Sige* - distribution of experimental coal dupt by Sedimentation method。

Sise range miorons	Mean 81se microns	Wt. of inorement gme。	True wto of cample 8 ms .	$\begin{aligned} & \text { Hoo of } \\ & \text { partifolen } \\ & \times 10^{6} \end{aligned}$	
106-76	89.0	0.2444	0.1577	0.33	0.010
75.99-253	63.0	0.0867	0.1183	0.71	0.021
52.99-37.5	44.5	0.0551	0.0543	0.953	0.028
57.49-26.5	32.5	0.0559	0.0804	4.03	0.120
26.49-18.8	22.2	0.0314	0.0428	5.59	0.166
18.79-13.2	25.7	0.0200	0.0197	7.14	0.211
13.19-9.4	21.1	0.0203	0.0281	31.5	0.934
9.39-6.6	7.9	0.0125	0.01118	28.0	0.83
6.59-4.69	5.6	0.0034	-	-	-
4068-3.3	3.79	0.008	0.0118	286.0	8.48
3.29-2.4	2.86	0.0042	-	-	-
<2.39	-	0.017	0.0254	3010.0	88.40

[^1]and then samples were colje cted at intervals of $2 t, 4 t$, 8t, etc. These were collected in numbered tubes and the weight of coal particles present was found by contrifuging and drying to constant weight. The relationship between the true weights of dust samples in particular sise ranges and the measures had been derived by Stairmand (114)

The results are shown in Table A.I.l and the summary is given in Table A. 1.2 .

Table A\&1. 2

Sumpary of Size Analysis of experimental dust by Sodimentation

Size range microns	$<3.29 \mu$	$3.29-6.59 \mu$	$>6.59 \mu$	Total
Humber percentage Size Irequency	88.40	8.48	3.12	100.00

These reaults should be compared with the dust sizecounts of aamples actually taken from the dust-laden air streams in the wind tumel by means of thermal preoipitator and salicylic acid filter. (Table 502). The number percentage in all size ranges seem to agree quite closely, giving allowance for exrors in sampling.

APPENDIX II

A INEX DUST PEEDING DEVICE

It was found in practice that the dust feeding machine used in our experiments for injecting dust into the tunnel（see 2.2 .1 ）was not very effective in achieving exactly repeatable dust concentrations，since its action depended on the dust groove being completely filied with dust，by the scapers．The position of the soraper and the clearance between the dust－disc and the hopper were also found to have an influence on the filling of the duat－groove and consequentiy on the dust concentration in the tronel． Hence a new dust feeding machine was developed，which would give more prediatable dust concentrations and which depend less on manual adjustments of the apparatus．

The new machine，built of glass，is shown in Fig．A． 2.1 and was found to give a more repeatable dust concentration， which could be varied over a wide range．It is in fact a modified form of the apparatus described by Shale。（115）

The feeder was of the counterflow puleating type，which injected dust into the gas stream．The dust－bed was kept 20 ams．high，while the air－inlet and dust－outlet nozeles were 400 mm 。 and 2.5 min。in diameter reapectively．The pulsating air supply was obtained from the exhaust of a vacura prap，which maintained a pressure of 15 cmowog ．A constant frequency of 800 impulses of air per minute was

FIG.A2.1.A NEW DUST FEEDER

employed during the experiments．It is possible that a variation in impulse－frequency would affect the dust feed rate。

The pulsating air was admitted to the feeder at a controlled rate through the orifice just above the level of dust－outiet nozele；In practice，it was found necessary to include a filter or oil－trap in the pasaage of the puleating airg to remove any oil droplets that might be carried with the air from the pump．

At each impulee peak，a small quantity of the carrier air flowed up through the duat－outlet nossle and the duat bed and escaped through a bleed－air tube above the duet bed． At the low－pressure point in each impulee，the air flow through the nomele reversed and a small increment of dust was entrained by the pulaating carrier－air stream into the tunnel－axis．Thus there was an intermittent disoharge of dust from the outlet nozele．Since the inorements of dust were smail，the diepersion was virtualiy continuous．As this injected dust was oarried forward along the length of tunnel by the turbuient air atream from the contrifugel fan， the dust was well diepersed．

The new dust feeder was set in position，to inject dust along the axis of the tumel and teat runs were carried out，to find the dust comoentration along the length of the tumel，at ais velooities of 100， 250 and $500 \mathrm{~cm} / \mathrm{sec}$ 。 Allowing same time to reach steady conditions in the trumelo

FIG.A2.2.NEW DUST FEEDER: EFFECT OF AIR VELOCITY
ON DUST CONCENTRATION IN TUNNEL

simultaneous duat sampling was carried out at each of these three air velocities by means of thermal preoipitators． The dust concentrations obtained are shown in Table A．2．1．

> Table Ao2el

Duat concentration in the tunnel from the new dust

feeder

Air Velocity		Dust concentration popoc。c。		
ft／min。	$\mathrm{cm} / \mathrm{sec} \cdot$	At T。P。1	At ToP。2	Differonce
200	100	1602	1638	36
500	250	1250	1272	22
100	500	582	583	1

This would indicate a linear relationship between the air velooity and the dust concentration in the tumnel，for this particular dust feeder．This is illustrated in Pigo A．2．2．Hence it is possible to predict the dust concentra－ tion in the tunnel for any particular dust feeder employed．

Dust－feed rates would however be increased，by reducing bleed－air rates or increasing operating preseures． Iarger orifices in the air－inlet and dust outlet nozsles and shallower dust－beds would also increase the dust－feed rates． Calibrations for different set of nozzles and opecating conditions would prove highly useful，in selecting the dust－feeding apparatus，for any required dust－concentration range。

REFERENCES

1．Green，HoL．，and Lane，WoE：${ }^{\text {P Particulate }}$ cloudes Dust，Smokes and Mists＇，E．and FoN．Spon Itd．，London， 1957，40

2．BoS．S．No．410，British Standarde Inetitution， 1943.
3．Jones，WoRo：Silicotic luags：the minerals they contain， Jo HyEog 33：307，1933．

4．Middleton，E．I．：The etiology and pathogenesis of Pneumoconiosis，Proc．conf．of experts on Pneumoconiosis， I。IoO．，1，300，1950．

5．Gibbs，WoEo：Clouds and Smokes，J．and A．Churchill， Iondon，1924．

6．Hartmann，Io，Nagy，Jo，and Brown，HoRo：＂Inflammability and explosibility of metal powders＂，UoS．BuroMines， Rept．Invest．3722， 1943.

7．Hartmann I_{0} Copper A_{0} ，and Jacobson，Mo：Recent studies on the explosibility of cornstarch；U．S．Bur． Mines，ReptoInves．4725，1950。

8．Thorp，P_{0} ：Dust suppression in coal－mines，Iron and Coal Trades Review，176，553，1958。

9．International Labour Organisation：Pneumoconiosis，a list of references，studies and reports；Series F． （Ind。Hygiene）No．15， 1932.

10．Greenburg，Lo：The classification of duste which cause pulmonary disability，Proc．conf，of experts on pneumoconiosis，I．I．O．，2，64，1950．
11．Zenker，FoA。，Deuatch，ArchoklinoMed．，116，2，1866．
12．Proust，A．，BulloAcadoMedo，Paris，Sero2，3，624．
13．Hamin，LoE．Journal of the American Medical Association， Chicago，1949，139：14i 909－912．

14．King，E．J．：＇Recent Reaearch in Pneumoconiosis＇，Repo of Symp．On Pneumoconiosis，The Chest and Heart Assoc． $\mathrm{I}_{\text {1 }}$ 1959．

15．Gough，Jos JoPatho and Bacto，86，4，1947．
16．Heppleston，A．G．：JoPatho and Bact．0：51，67，1954。

17．Boyd，W：Pathology for the physician，Henry Kimpton， London，1958，225－232．

19．Agricola，Go（1494－1555），De Re Metallica，Translated from Latin Ed． 1556 by $\mathrm{H}_{\circ} \mathrm{C}_{\text {。 }}$ and $\mathrm{I}_{0} \mathrm{C}_{\text {。 Hoover，Mining }}$ and Scientific Press，San Francisco：1912。

20．Smith，JoMo：＂A review of the work of the Silicosis Medical Bureau，Johannesburg＂，Proc．Conf。 on Silicosis，Insto of MinoEngo and InstoMinoMet．o 1947，po88．

21．Caplan，A．：Dust prevention in Kolar Gold Fielde， ibid． 33.

22．Macbain，Go：The working Foundryman and his chest， Report on Sympo on pneu．，Chest and Heart Assoc．， 1960．

23．Fletcher，CoM．and Gough，Jos＂Coal－miner＇s Pneumoconiosis＂，BritoMedoBull．7：42（1950）．

24：Warner，C．G．：Air－borne dust problem in coal－mines， The Iron and Coal Trades Review，174，911， 1957.

25．Digest of Pneumoconiosis Statistics，Ministry of power，1961，po10．

26．Gooding，C．G．Pneumoconiosis Field Work in the Scottish Coalfield，Rep．on Symp．on Pneum．， Glasgow 1960，pol06．

27．S．M．R．E．Annual Report No．51，1958．
28．McCrae，Jos The Ash of Silicotic Iungs，South African Institute of Medical Research，Johannesburg， 1913．

29．Mavrogordato，A_{0} ：Value of the Konimeter，being an investigation into the methods and results of dust－ sampling as practised in the mines of Witwatersrand， South African Inst．of Med．Res．，1923．

30．Gardner，$L_{0} U_{0}$ and Cummings，$D_{\circ} E_{0}$ ：The reaction to fine and medium sized quartz and aluminium oxide particles．AmoJ。Patho．9．751．1933．
31．Tebbens，$B_{0} D_{0,}$ Schulz，$R_{0} Z_{\circ g}$ and Drinker，$P_{\circ}:$ The potency of Silica particles of different size， J。Indust．Hyg．and Toxicolo，27：199，1945．

32．Whronic Pulmonary Disease in South Wales Coal－minors： I－Medical Studies，and II－onviromental studiee＂． Spec．Rep．Ser．Med．Res．Couno，Iondon；Nos．243（1942）； 244（1943）。

33．Finderson，Wos Pfingere Arch．，236．367，1935．
34．Davien，C．EV：Inhaiation riak and partiole sise in dunt and miet；Brit．J．Industro Modo，6，245：1949。
35．Van Tifk，Aomo，and Pattersom，HoSos JoIndustr，Erge， 22．31．1940。

36．Iandaht，HoD。 and Black，S．JoIrduntro Hyg．， 29．269． 1947.

57．Wilson，$I_{0} B_{0}$ and Ia Mar，$V_{0} K_{0}$ JoIndumtrotige． 30．265．1948。

38．Brown，JoHo，Cook，KoMo，Hey，PoGo，and Hatoh，Tos Influence of particle aise upm the retention of particulate matter in the huwan lumg Amo Jo Pub．Hoaltho 40：450，1950．

39．Davies，Collos Dust Sampling and lung diseases BritoJ．Industroked．g 9，120．1952。
40．Oited by Graham，JoIo and Jones，T．D．\＆The Suppreasicm of duat in coal－mines of Great Britain，Proc．of Conf． on Pnoumoconiosis．Insto of Mino Engrise and In and Metal1． 10 Iondon，1947，121．

42．National Coal Board，Report and Accounta Por 2949， HoMoSoO．，29。

4．Tayior，Goto，Discuasion on Evans WoD．＇s paper ＂Properties of air－borne duats in relation to pneumoconi oaisn，Trans．Instominolfotallo，Iondon， 25．65p 1955－56。

430．Borle，To，How Britain Controis Dust，Coal Ages F66．1957，Po87．
44．magge，Colo，Approench to dustiees mining，Iron aph Coni Trades Reviene 313，174e 1957．
45．Richmond．Jo Report on the reduotion of air－borne dupt conoontration at loading points by appilioation of water epreve，FOB SOI．Dept．
46．NoO．Bo info Bull．55／144，1955．
47．Wood．Wolo，Steam Ior midergroumd duat upprecaiono．The Iron and Coel traden Review，315，277，1958．

48．Invacre，EoT．g The selt－crust method of roadway treatment，BoMoRoE．，Rep．No．94，1954．

49．Keyer，WoEo and Rans，WoEo，＇Spraya＇，Encyo．chomo Tech．12，703，1954．
50．Rayleigh，（Iord）：On the instability of jetw＇： Iondon Hathematical Society Proc．，10，4，1878－i79。
51．Castieman，A．：The resistance to the ateady motion of emali spheres in fluid＇，NoA．C．A．Teoh． Note，No． 231.

52．Haenlein，Aos＇On the dismuption of a liquid jet＇， Forsoho Geb．Ingenieuxwesens，A，2，4，139，1931．

53．Weber， Co_{B}＇ign the diaruption of a ilquid jet＇， Zeitsohrift fur angewande Mathematik und Fechanike 11，2，136，1931。
540 Tehlig，Ho z＇On the physics of fuels sprays in aiesel eaginea＇，Automobiltechnisohe Zeit． 37，16，411，19340
55．Schweitzer，PoH．：Mechanism of disintegration of 1iquid jets，Jour，of Applophy．，8，513， 1937.
56．Thiemann，A。E。 8 ＇The viscosity of air is more important than its density for fuel aprays＇， Automobiltechnische Zeit．37，16，400，1934＊
57．Strachewaki， $\mathrm{I}_{0}:$ 唯he spray range of liquid fuels in an opposing air－flow＇，Teohno Phys．UoSoSoRog 4，6，438，1937。

58．Oschats，Wo：An investigation on atomisation and eprays＇，Forsch。Geb。Ingenieurwiesens B．， 11．5．296，1940．
59．Irkiyama，S ．and Tanassava，Yo：${ }^{\circ} A n$ experiment on the atomisation of liquid by means of air stream＇s Socomecho Fngreo Japan，Trans．， 4，86，238， 1938 and 5，63，68，1939．
60．Ohnesorge，Wovo 8 NThe formation of drops from nossles and the disruption of a stream of ilquidn， Verein Deutscher Ingenieure Zeitschrift，81，16，220，1937．
61．Castleman，RoA。Jnros The Lechanim of atomisation of Iiquide＇，Bureau of standarde．Jowr．Res．UoSo Depto of Commerce，6，281，1931．

62．Gleng Wo：PhoD。Thesia，University of Glaegow，1954。
63．Hunter：Go ：PhoD。Thesis，University of Glasgow，1959。
64．Praser，RoP．，Eisenklam，Po and Dombroweki，No： Ifquid atomisation in chemioal engineering， Brit．Chemo Fing．o Oct．1957。

65．Best，AoC．g Quart．JoR。Met．Soc．，76，302，1950．
66．Iangmuir，I。 and Blodgett， $\mathrm{K}_{0} \mathrm{Bo}_{0} ;$ Army Air Forces Technical Report，5418，Washington，1946．

67．Fonda，A。 and Herne，H．：Hydrodynamic Capture of particles by spheres＇，MinoResoEat．Report No．2608， 1957。

68．Walton，WoHo and Woolcook，A．：The suppression of air－borne dust by water spray＇，MinoResoEst． Rep．Ho．2163，1960。

69．Das，PoK．Ind。JoMet．Geophye，1，137，1950．
70．Bosanquet，C．H． 8 ＂Impingement of particles on obstacles in a stream＂，TransoInstoChemoFhgo， 28，136，1950。

71．Vasseur，Mo，Reoh。Aero，9，1，1949。
72．Sell，Wo，Forschungsh．Ver．Dtsch．Ingo，347，1931。
73．Brown，DoJ．，NoCoBo，CoRoE。Rep．1265， 1955.
74．Massie，W．Ho，Ph。D。Thesis，University of Glasgow，1951．
75．Deahpande，A．K．，PhoD。 Thesis，University of Glasgow， 1961．

76．Hutcheson，R．J．and Sweetin，RoM．Research Report INo．11，Dust Research Group，Royal College of Science and Technology，1958，12．

77．Battorsley，R．，Maguire，BoAo and Tye，Do工． 8 A Laboratory dust cloud producer，SIMRE Res．Rep．Ho．103， 1954。

78．Weir，Go，Homogenisers，Publication No。 7011，Go and Jo Weir Itd．，Glasgow．

79．Casella，C．F．and Co．Itd o，Thermal Precipitator， Instruction Ieaflet No．3019／RD，Iondon。

80．Green，Ho工．and Watmon，HoHos Physical methods for the estimation of the dust hasard in industry， Medical Res．Coun．SpoRep．Ser．No．199，1935， Iondon，HoM．S．O．

81．Prewitt，W．C．and Falton，WoH．；The efficienoy of the thermal precipitator for sampling large partioles of unit density，M．O．S．Porton Teohnical paper No．63，1948．

82．Dawes，JoG．Jotes on Physics of Dust diaperfion， SMIRE 3．1958．

83．Withery，A．Gos＂Gravimetric mampling techarique＂， Colio Gvare 1946，172，627－32，661－4．

84．FIow Measurement．BS．1042：BoS．I．，18， 1943.
85．Eartin，G． 8 A treatice on Ohom。 Fngineerings 3，6。
86．Honeyoomb manuifaatured by Hasers．Dufaylite Devel opments Itd．，Eseex Road，Borehamwood，Herte．， made of etandard 5／1000 Resinated kraft paper．

87．Stairmand，C．J．$:$ Sampling of dust－Iaden gasees Trens．Inst．Chom。 Fingel 29，1，16， 1951.

88．Staimmand，O．J．s Selicylio－acid crystals for sampling iliters s Private Commuaicstion， 1960.

89．Stairmand，C．J．：Aorodynamic capture of particleas Proo．Conf．B．C．U．R．A．，1960，p．53．

90：perelen，s．G．，The theory of dünt deposition froin a turbuient airatream by several meohanieme， BoM．R．E．Res．Rep．Ho．144，1958，po90

91．Daves，J．G．and slack，$A_{0}:$ Depoaition of Air－borye duet in a wind twonel，SMRE Res．Rep．RO．105，1954．

92．Fage，A．and Townond，H．C．H．：＇An axamination of twibulant Aow with an ultramioromoope＇，Proo．Ros． 800．，A，135，656， 1932.

93．Bigge，Roq and Macmillan，Ro工o JoClinoPatho：
94．The Physios of Particie Size Analyaie，Brito $\mathrm{J}_{0} A p \mathrm{~L}$ Phye．，Supp．3，1954。
95．Herdan，Go：Small particie Statistion， Butterworths，1960，340．

96．Hawkeley，PoGoFo，Blackett，J．H．，Koyex，EoFo：and
 of a photoeleotronic coanning maohine for misins miarosogpio particlee＇，Britieh Jouro Appl．Phyo． Paper 66． 8165°

97．Automatio Partiole Oovnter and Siser，Camella （meotronion）Itdo．Ieaflet NO．872，now morged with Cooke，Troughton and Simms Itd．

98．Stewart，AoWoKo of the Miving Departmont，Royal Colloge of Science and Teahnologs．Private Cominuication．

99．Ton－drying Immereion oil AIP 1，eupplied by Cooke， Troughton and Simms Itd．，Yoric，ID $=1.524$ at 20° 。

100．Cadle，RoD．，Partiole Sise Determination， Intereaience Pub．Inc．，Few York，1955．
101．Potter，NoM．：Micro and semi－micro methode for investigation of air－borne duet，Colliosy quardene 173．245－249，179－185，1946．

102．Giffen，Es and Murascew，Ao ：Atomisation of IIquia fuele，Chapman and Hall，London，19－26， 1953.

103．May，$X_{\circ} R_{0}:$ The measurement of aix－borne dropiete． by the Magnesium Oxide Method＇Joumn．Soient． Instruments，27，123，1950。
104．Fraser eto al．IHquid Atomisation in Onomionl Bagineering，Beitochomoringo October， 1957.
105．Cited by Griffen， F_{0} and Huraceew，A。 \＆Atomieation of Ilquid Fuels，Chapman and Hail，Iondon，192． 1953.

106．Joyce，JoR．${ }^{9}$ The atomisation of Iiquid fuels for Combustion＇，JoureInstoFuel，22，150，1949．

107．＇Surface active agents＇，Publication No。30， IoC．I．Dyestuffs Division，1959。

108．Harmsen，GoTog van Schooten Jog and Overbeck，JoTho G， Je Colloid Scio，8，64， 72 （1953）。

209．Retel，Ro，Contribution to the study of injection in Diesel engines，Publications Scientifiques et Techniques due Ministere de $l^{\circ} \mathrm{Air}, \mathrm{Bo}_{0} \mathrm{~S}_{\mathrm{o}} \mathrm{T}_{0}$ ， No．81，1938。

110．Owings，Cot．，Control of airborne dust in bituminous－ coal mines in $\mathrm{U}_{0} \mathrm{~S}_{\mathrm{o}}$ ：Proc．Fifth intern。Conf。 of Diro of Mine Safety Research，Bureau of Mines Bull． 489，183－192，1950。

111．Terrel，Iron and Coal Trade Review，149，871．
112．Pemberton，$C_{0} S_{0}$ ，＂Scavenging action of rain on non－ wettable particulate matter suspended in the atmosphere＂，Proc．Conf．on＇Aerodynamic Capture of Particles ${ }^{\circ}$ ，Pergamon Press，168，1960．
113．Lamb，Ho，Hydrodynamics，6th edition（Cambridge）1932．
114。 Stairmand，CoJo，Symposium on particle size analysis， Inst．Chemo Engrso，58，1947．

115．Shale，CoCof＇Iaboratory dust feeder＇，Chemical Engineering，Nov。1959。

SUMMARY

This study is concerned with the capture of airborne dust particles by sprayed liquid droplets ${ }_{6}$ with particular reference to the airborne coal dust encountered in mining practice。 The particle size range 0.5 … 5.0 microns, of physiological importance in causing occupational health harg.rd ${ }^{\circ}$ has been investigated.

The significance of dustis and their harmful particle-size and concentration are discussed and the incidences of coal-miners " pneumoconiosis and exiating methods of dust suppression in mines are aurveyed, The general mechanism of liquid spray formation from nozzle: is invesitgated and the theoretical probability of capture of dust particles by spray droplets is discussed.

Experimenta on dust auppreasion were carried out on moving duat cloude in a wind-tunnel of $45,72 \mathrm{~cm}$ 。(18 in) diameter and 20 metres ($65 \mathrm{ft}_{\mathrm{o}}$) long, under controlled conditions. Dust cloudsg of concentrations in the range 300 and 3000 popococos were produced uaing Hattersley "s laboratory type duat generator. A three-throw reciprocating pump provided spray pressures up to about $210 \mathrm{~kg} \circ / \mathrm{sq} \mathrm{ocm}_{\circ}\left(3_{8} 000 \mathrm{p}_{\circ} \mathrm{B}_{\circ} \mathrm{i}_{\circ} \mathrm{g}_{\circ}\right)$ and the spray nozzies were
operated at the axis of the tunnel against the flow of dust-laden air. Simultaneous dust sampling was done by two thermal precipitators located ahead of and beyond the apray nozele.

Distribution of air velocity in the tunnel was studied and modifications in the tunnel were made to straighten out the air flow. The effect on air flow pattern of baffic plates suitably placed in the twnel is illuatrated in the form of isomvelocity curves.

Distribution of dust concentration in the tunnel was studied with aalicylic acid filters and the rate of decay of dust concentration with distance along the tunnel was found to be constant. The probable mechanisms of dust fall-out are discussed.

A system for counting the thermal precipitator dust sildes using a five-channel Automatic Particle Counter and Sizer was developed and an analysis of variance for the machine was made。

Simultaneous dust sampling by thermal precipitator and salicylic acid filter was carried out in the tumel and a correlation factor was derived on the basis of proportional number percentage size frequencies in both the samples.

Measurment of Average Droplet Size was carried out for water sprays in the range $35.15-190.16 \mathrm{~kg} / \mathrm{sq} . \mathrm{cm}$ 。 （500－2，750 posoi．go）using a solid cone spray nozsle and the relationship

$$
\text { A.D.S. } \quad \alpha \quad P^{(-0.28)}
$$

was obtained．A functional non－dimensional relationship was also derived between the characteristics of the spray and the Average Droplet Size。

The dust suppression work was mainly concerned with amall high pressure spray nozzles and the following iseues were brought to focus：The effects on the efficiency of dust suppression of，
（a）hollow cone and solid cone spraying．
（b）high spray pressures，
（c）surface tension of sprayed liquid，
（d）counterflow air velocity，and
（e）a tandem arrangement of apray nozelea．
The effect of spray throughput on dust－water ratio was also studied．Solid cone apraying was found to be about 5 per cent more efficient than the hollow cone apray for the same nozzle．Maximum dust ouppression was effected at $140.6 \mathrm{~kg} / \mathrm{sq}_{\mathrm{o}} \mathrm{cm}$ 。in both the cases。（ 53.58 per cent and 48.5 per cent）．

Surface active agent solutions were found to give onif a small increase in dust suppression efficiencyo $\mathrm{E}_{\text {o }}$ The wetting power of different types of surface active agents is discussed. A relationship was obtained between the efficiency, spray pressure and the ourface tension of the sprayed liquid.

Tandem spraying was found to give the best duat suppression efficiencies without much increase in water throughput. The rate of inorease in E with number of spray noasles in tandem was found to be marimum (about 6.5 per oont) at $140.6 \mathrm{~kg} / \mathrm{sq} . \mathrm{om}_{\mathrm{m}}$ 。

An increase in air velooity resulted in a rapid decrease of E. The rapid deceleration of droplets on discharge into the gaseous medium, its lowered efficacy of impact on dust particles and the consequent reduction of the "capture crose-section" are discussed.

The dust-water ratio was calculated for all spray pressures and nozsles employed and was found to generally deorease with inorease in throughput。

The aprayed droplets did not appear to be eoleotive in suppressing any partioular sise-range of duet partioles.

An improved type of dust feeding machise wan put into operation and is discussed in the Appendiz.

[^0]: Slide Reference:- ripa

[^1]: * "Sise" in hydrodynamio similarity refers to the diameter of a aphere having the same deneity and Stokee' Iaw terminal velocity as the particle.

