NHE XGRAY STRUCTURE ANALYSES

OF TRE KATURAL PRODUCTS

CEDRELONE and CEIMONANTHINE

BEIMG A THESIS FOR THE DEGRES OF
DOCTOR OF PHILOSOPHY
IN THE ONIVERSITY OF GLASGOW
SUBMITCED BY
IAN JAMES GRANT, B. Sc.

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 13849338
Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

(i)

PREFACE

I particularly wish to thank Dr. G.A. Sim, Dr. T.A. Hamor and Professor J。 Monteath Robertson for their instructive and informative supervision over my two years in the $X-r a y$ orystallography section of this departmont.

I am alvo indebted to Glasgov Unirarsity Computine Laboratories for the use of their facilitiea and the large amounts of computer time mado arailable to mop I would also like to thank Dr. J.S. Rollett and Dr. J.G. Sime for allowing me to use the many programes thoy have mritten for the DEUCE computer.

I mast also thant Dro E. Gelles Iow his supervision of my kinetic atudies in the period 1959 - 1960, and thank Dro Q. Hancollas for his helpiul commonts and guidanco during the proparation of this work for thosis presontation.

Pinally I mish to acknowledge the recoipt of a Department of Scientific and Induatrial Research maintainance grant throughout the period of my research work.

(ii)

S OMMARI

Xaray atudies have been carried out on orystals of heavy atom derivatives of naturaliy -occurring organic compounde. Two structures have been succesefully determihed in this fashiong the triterpene codrelone $\left(\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{5}\right)$ and the alkaloid chimonanthine $\left(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NX}_{4}\right)$ 。

Information on the otruoture of cedrelone was limited to spectral considerations alone, when a crystalline ample of the iodoacetate derivative was provided by ifr. S.G. McGeachin of Glasgow. The atructure analysis was hindered initially by the iodine atom being close to a special position in the unit cell which gave riso to false symetry in the initial Fourier syntheses. The fourth Fourier synthesis, however, resulted in most of the structure being detsmined and thexgafter the complete structure was obtainsd and refined to give a discrepancy of, $\mathrm{R}=17.5 \%$ The crystal and molecular dimensions wore in agreem ment with accepted values although no attempt was made to locate atomic positions accurately.

Dr. G.F. Smith of Manchester University provided oryetals of the dihydrobromide deritative of chimonanthine an alkaloid of the calycanthaceous variety. Chemicel and spectral evidence had progressed to the stage where the atructure was probably one of two possibilitiee. The first mejor problem in this
structure analysis was the determination of the position of the bromide ions in the unit cell of the crystal. There were two bromide ions per asymmerric unit and the derivative crystallised in the tetragonal syatem; these two facts resulted in a very complex Patterson map which required much study before a solution was foud. Therearifor the major problom was minimising the extremoly lergo emounts of computer itme requirod for this analyais. The gisucture and relative stereochomiotry of chimonanthine heve boon dotermined and the atmucture was in fact one of the two structures proposed by the organic chemisto, The orystal and moleoular dimensions agree with acoepted values Within the limite of experimental accuracy and refinement of this atructure has beon carried out to give an average discrepanoy between observed and calculated structure amplitudes of 14.9%.

The final section of this thesis describes the work carried out under the supervision of Dr. E.Gelles lately of tifis Department. The copper ion catalyed hydrolysis of glycylglycine has been studied over a range of pH values and oupric ion conoentrations. It has been established that the first complex formed betwoon glyoylglycine and cupric ions ($\mathrm{Cu} \mathrm{GG}^{+}$) is the one responsible for catalysed hydrelysis and that subsequently formed complexes inhibit hydrolysis. These results are in agreement with other workers theoreticel proo -dictions.

The structure analysis of cedrelone was carried in conjunction with Dr。J.A. Hamilton of this dopartmont and the kinetic studies wera a continuation of experiments first started by Mr. J.M. Wileon lately of thi a department.

COM5 5

Praface(i)
Sumanary(ii)
PARTI I
SOXE METHODS OF CRYSTAL STRUCTURE AKALYSIB.
1.1 Introdudiion Page 1.
2.2 Derivation of Laue and Bragg Equations 2.
1.3 The Structure Factor Expression 5.
1.4 The atomic scattering factor 7.
1.5 Fourier Series 8.
1.6 The Patterson Series 10.
1.7 The Heary Atom Method 11.
1.8 Pourier Refinoment 13.
1.9 Least Squares Refinement 15.
1.10 The Acouracy of Cxystal Structure Deiermination. 18.
PART II.
YHF STRUOTURE OF CEDRELOKE: X-RAY AFALTSIS OP CEDRELORE
IODOACETATTE.
2.1 Introduction 20.
2.2 Crystal data 21.
2.3 Intenalty data 22.
2.4 Determanation of the Heavy Atom Ponition - 23.
2.5 Structure Determination 26.
2.6 Fefinement of the Structure 29.

PART I.

1. (1) INTRODUCTION

Von Laue's disoovery in 1912 of the diffraction of X-rays by orystals provided a new, powerful technique for investigating the structure of matiter on an atomic soale. This discovery was quickly given a sound theoretical basis and the determination of the atiructures of aimple compounds soon followed. The quantity of calculations required for the determination of even a relatively simiple compound is vory great and prior to the $1950^{\circ} \mathrm{g}$ most of the ofructure determinations oarried out vere tro-dimensional. With the advent of fost digital computers, threomanencional struoture áteminations are nou possible. Further, natural producis conteining uprards of twonty atoms, other then hydrogen, can nor be successfully fackled with littio prior knowledge of their atructures. The largest chemical substances to dade phose structures have been determined by X-ray crystal analysis are the proteins haemoglobin and myoglobin.

One major problem romaine, namely, that no method has yet been devised for meesuring the relative phases of the diffracted apectra. Although the magnitudes of the spectra can be measured oither photographically or by counter tochniquea the phases must be obtained by other manns. In the determination of the structures of cedselone and chimonenthine the "heavg atom" method was omployed to give an initial set of approximate phasee which nere usea in a Fourier syzthesim. Successive cyclos of atruca -ture-factor celculations and Fourier maps yere cominted, including
moxe atomic coordinates as they became available, matil the complete structure had been determined. Thereafter, refinement by Fourier and least-squares methods was employod.

1. (2) DHRIVATTON OF THE BRAGQ AND LAUE EOUAFTOES.

Cxyotals consist of a threo-dimensional periodio repetition of a basic geometric unit callad a unit cell. Alter. -natively, orystals may be considered as being made up of a large number of identioal assemblages of atoms repeating regularif in three dimensions. It is convenient to replace each such group of atoms by a point, and the threendimensional pattarn of suoh points forms the space lattioe of the orystal. If it is essumed that sach lattice point is replaced by an eleotron then the positions of these eleotrons can be defined by the ends of a rector is suoh that

$$
I=\underline{a}+v p+w \underline{O}
$$

Where go D, are the primitive translations of the lattioe and u, v, are integers. On irradiation by an X-ray beam these eleotrons ∇ ibrate and act as sources of secondary radiation. In (I): A and B are two lattice points and the inoident radiation's direotion is danoted by the veotor so, of length λ, where λ is the wavelengith of the radiation used.

The path difference between the scattered wave 日 from the two lattice point a in the direction defined by the vector equal in magnitude to so, is given by,

$$
\begin{align*}
& \text { - ㅍ. } \mathrm{S} \tag{i}\\
& \text { where } \mathbf{S} \text { - (} \mathbf{t}-\mathrm{so} \text {) }
\end{align*}
$$

For the raves scattered by A and B to bo in phase this path difference must be whole number of wavelength, i.e. I. \underline{S}
 integral and since u, v, are integers, each of the products

$$
\begin{aligned}
& \text { g. } s=h \\
& \text { be } s-k \\
& \text { c. } s=h
\end{aligned}
$$

in turn must by integral, where h, k and l are integers. These equations, (ii), are known as the Laue equations.

The Laue equations are unsuitable for direct application to differaction problems but W. H. Bragg showed their physical significance by relating the integers $h_{8} k_{0}$ \& to the Miller indices of the lattice planes. Bragg ${ }^{\prime}$ law ia related to the Lave equations and this can be shown as follows:
4.

Subtreotion of the filet two equation g gives

$$
(B / h-\underline{b} / L) \quad \underline{g}-0
$$

which meas the rector S is perpendicular to ($\mathbf{(} / \mathrm{h}-\mathrm{b} / \mathrm{z}$).
8inilarif 8 is perpendicular to $(\mathrm{m} / \mathrm{h}-\mathrm{d} / \mathrm{f})$. Thane 8 io perpendicular to the plane defined by tho interoopte $-\frac{8}{\mathrm{~h}}, \mathrm{~b} / \mathrm{k}$, Off : ice. the plane with Miller indices (h, k, ℓ). sine by definition the vector $\&$ bisects the incident and diffracted beams and is perpendicular to the lattice plane (h, k, l) a annularity to reflection exists.

If A is the spacing of the planes ($h=\ell$) then \mathbb{A} is the projection of $\stackrel{a}{4} / \mathrm{h}, \underline{b} / \mathrm{k}, \mathrm{Q} / \mathrm{h}$ on the vector S .

$$
\text { 1.e. } a \cdot(h \leq R)=\frac{2 / h \cdot s}{|s|}
$$

Bat $\quad \mathrm{m} / \mathrm{h}$ ㅇ $=1$, (from the Laue equations)
and $|8|=\frac{2 \sin \theta}{\lambda}$ from (II)
These θ is the angle of incidence of the radiation.

II

$$
\begin{array}{r}
\therefore(h k \ell)-\frac{\lambda}{2 \sin \theta} \\
\therefore \lambda=2 d \sin \theta \tag{iii}
\end{array}
$$

This is Bragg's lav and it indicates that a reflection from a lattice plano can only take place when the anglo of incidence of the X-may beam satisfies the condition given by the equation.

1. (3) THE STROGYURE EAGYOR RXPRESSIOM.

If the unit coll of a osyatol contains f atoms, the $n^{\text {th }}$ of which has oocrijnates (π_{n}, y_{n}, s_{n}) tho position of the $n{ }^{\text {th }}$ own be defined by tho vector I_{a} whore

$$
\begin{equation*}
\underline{x}_{n}=\left(x_{n} \underline{a}+y_{n} \underline{b}+z_{n} \underline{0}\right) \tag{iv}
\end{equation*}
$$

The path difference of the rave scattered by this atom relative to an atom at tine origin of the unit coll ia by (i), In_{m}. s , and the phase change is,

$$
\frac{2 \pi}{\lambda} \cdot \lambda \cdot I_{\Omega^{\prime}} \cdot \underline{s}=2 \pi \cdot \Sigma_{n} \cdot \underline{s}
$$

Thus the expression for the wave scattered by the nth atom contains the to rm,

$$
f_{n} \text { exp. }\left(2 \pi \cdot 1 \cdot \Xi_{n} \cdot S\right)
$$

Where f_{n} is the atomic somitioring feotor of the $n^{\text {th }}$ atom. The complete wave scattered by tine 1 I atom e in tho unit cell will thu contain the tex m

$$
\begin{equation*}
I=\sum_{n=1}^{N} \sum_{s a} \cdot 0 \pi p \cdot\left(2 \pi \pm \Xi_{m} \cdot S\right) \tag{v}
\end{equation*}
$$

Substituting (iv) in (v).

$$
P=\sum_{m=1}^{N} \mathbb{I}_{n} \exp _{p} 2 \pi i\left(x_{n} \text { g. } \underline{S}+y_{n} \text { g. } \underline{S}+z_{n} \text { go }\right)
$$

Hence in (ii)
$P(h k \ell)=\sum_{n=1}^{N} I_{n} \exp _{p} 2 \pi i\left(h x_{n}+k J_{n}+l \varepsilon_{n}\right)$
The quantity F is known as the structure factor and it is a complex quantity which can be represented by a modulue $|F(h k l)|$. angle known as the struature amplitude and a phaso α ($\mathrm{h} k \mathrm{l}$). The structure amplitude can be obtained from the messured intenaities, but the phase is not an observable quantity.

It is often convenient to separate the real and imaginary parts of $F(h k \ell)$, so that

$$
P(h k \ell)=A(h k \ell)+1 B(h k \ell)
$$

and $x(h k \ell)=\tan ^{-1} \frac{B(h k \ell)}{A(h k \ell)}$
where,
$A(h k l)=\sum_{m=1}^{N} f_{n} \cos 2 \pi\left(h x_{n}+k y_{n}+l \varepsilon_{n}\right)$
and $\quad B(h k l)=\sum_{n=1}^{N} f_{n} \sin 2 \pi\left(h x_{n}+k y_{n}+l z_{n}\right)$
These are the equations used in practioe and if the apsoe group is known these sumations can be carried out over the coordinates of the equivalent positions resulting in a simplified expression.

Instead of introducing point atoms, the struoture factor may be expressed in terms of electron density at a point $P\binom{x}{z}$, than

$$
F(h k \ell)=v \int_{x=0}^{1} \int_{y=0}^{1} \int_{z=0}^{1}(x y z) \exp 2 \pi_{i}(h x+k y+\ell z) \cdot d x \cdot d y \cdot d z 。
$$

1. (4). THE ATOMIC SCATPERTNG FAGTOR.

In 1 .(2) it was 1 mplied that the scattering unit in the crystal was an electron which in turn implies that to calculate structure factors the poeitions of all the eleotrons in the unit oell must be known. Sinco each atom has a number of eleotrons asbociated with it, the difficulties associated with the location of the electrons can be avoided. As these electrons are assumed to be loosely held in the atom any ohange of phase on soattering is the same for all of them and so the amplitude soattered in the forward direotion is Z times that due to a single electron, where Z is the atouic number, In a direction making a finite angle with the direction of incident radiation, there will be path differences between waves soattered from electrons in different parts of the atom. These waves will interfere and produce a resultant amplitudo loss than 2 times that due to a single electron. The phase differences depend upon the angle of scattering, the wavelength of the radiation and the volume throughout which the electrons are distributad. The soattering factor, P_{9} will approach 2 for emall angles of acattering and will pall away with increasing angle at a rate thet, for a given wavelength, is determined by the distribution of electrons in the atomo stomic scattering factors have been calculated by several porkers including James and Brindley (2), Thomas (3), Farmi (4), Mofleeny (5), Tomile

O。

and Stam (6), Berghuis ot 81 (7), etc.
The atomic soattering factors available in the literature make no allowanoe for the atom undergoing thermal motion. As this is never the case in practice, some modification of the atomic soattering factor must be made to allow for this thermal vibration. If $\bar{\mu}$ is the mean diaplacement of the atom from its mean position, then it can be ghown that for aimple isotropic motion the scattering factor f_{0} should be modified by a faotor,

$$
\exp \cdot\left(-8 \pi^{2} \bar{\mu}^{2} \sin ^{2} \theta / \lambda^{2}\right)
$$

$$
\text { 1.0. } f=f_{0} \exp \left(-B \sin ^{2} \theta / \lambda^{2}\right)
$$

where $B=8 \pi^{2} \bar{\mu}^{2}$ and is known as the Dobye (8) temperature factor. The approximato overall value of B can be found by the method described by wilbon (9).

However, if the thermal vibration of the atom is anisotropio, the soattering factor, \mathcal{L}_{0}, must be modified by a factor such as

$$
\text { exp. }-\left(b_{\left.11^{h^{2}}+b_{22} k^{2}+b_{33} l^{2}+b_{12} h k+b_{23} k \ell+b_{31} l h\right) .}\right.
$$

(Cruiokshahk (10)) where the $b_{i i}$ and $b_{i j}$ terms characterise the time averaged elipsoidal volume through which the eleotron density is distributed.

1. (5) FOURIER SERTES.

Since a orystal is periodic in three dimenbions its eleotron

9.

can be represented by a triple Fourier series.

$$
\begin{equation*}
P(x y z)=\sum_{-}^{+} \sum_{-\infty}^{\infty} \Sigma A(p q x) \text { exp }-2 \pi i(p x+q y+r z) \tag{vii}
\end{equation*}
$$

The number of electrons in the volume element $d x d y d z$ is given by $\rho(x y z) \cdot d x d y d z$. When the unit cell has a volume V, it may be shown that

$$
\begin{equation*}
P(h y \ell)=V \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \rho(x y z) \exp .2 \pi \leq(h x+k y+\ell z) d x d y d z \tag{pili}
\end{equation*}
$$

The values of the coefficients A (par) in (vii) are obtained by substituting for $\rho(x y z)$ in (viii) and obtaining,

$$
\begin{array}{r}
F(h k \ell)=\nabla \iiint_{0}^{11}\left[\sum_{-\infty}^{+\infty} \sum_{0}^{\infty} A(p q r) \exp -2 \pi i(p x+q y+r z)\right] \\
\exp \cdot 2 \pi i(h x+k y+\ell z) d x d y d z \tag{ix}
\end{array}
$$

On integrating, all terms in (ix) vanish except those for which $p=h ; q \not a$ and $x=h_{o}$ Thus $_{9}$

$$
\begin{equation*}
F(h k \ell)=V \iiint_{0} A(p q r) d x d y d z=\nabla A(p q r) \tag{x}
\end{equation*}
$$

The eleotron-density distribution at every point in the crystal
can be represented by the Fourier series;

$$
\begin{equation*}
P(x y z)=\frac{l}{\nabla} \sum_{-\infty}^{+\infty} \sum_{\infty}^{\infty} F(h k \ell) \exp (-2 \pi 1[h x+k y+l z]) \tag{xi}
\end{equation*}
$$

The constant term in the series in $F(000)$ and is defined as

$$
F(000)=\nabla \iint_{0}^{1} \int_{0}^{1} \rho(x y z) d x d y d z=z
$$

Since the value of f_{n} the scattering factor falls off with ain θ, the values of terms in this series will decrease and consequently the series will converge if sufficient data ere available 。 Equation (xi) is not suitable for summation of a Fourier series so it is
10.
more convenient to express ($x i$) in the form,
$P(x y z)=\frac{1}{\nabla} \sum_{-}^{+} \sum_{-\infty}^{\infty} \sum|F(h k l)| 0082 \pi[h x+k y+l z-\alpha(h k l)]$
whore α (kl) represents the phase constant associated with the amplitude $|P(b k 2)|$. From the observed intensities of the diffracted spectra, $|F(h k l)|$ an be calculated but no information concerning the relative value of $\alpha(h k l)$ can be obtained. This limitation precludes direct or immediate application of the series (xii) to the solution of crystal structures (except in special cases).

1. (6) THE PATTERSON SERIES.

In the last section it was stated that the course of a crystal structure analysis cannot in general be direct, because, in the process of recording the diffraction pattern, knowledge of the phases of the various spectra are lost. Trial and error methods may be used provided one can postulate a trial structure for use in phasing calculations and Fourier summations.
A.I. Patterson (II), (12) devised the series, which bears his name, as a method of obtaining information about crystal structures using the data vailable, viz; the structure amplitudes $|F(h k l)|$ e The Patterson function of an electron-density distribution

$$
f(x y z)=1 / \nabla \sum_{-\infty}^{+\infty} \sum_{-\infty} F(h k l) \exp [-2 \pi i(h x+k y+l z)]
$$

is defined as

$$
\begin{equation*}
P(u v w)=\nabla \iiint_{0} e(x y z) e\left(x+u, y+v_{p} z+\pi\right) d x d y d z \tag{xiii}
\end{equation*}
$$

which oan be defined as the Pourier series,

$$
\begin{equation*}
P(u \nabla w)=\frac{1}{\nabla} \sum_{-\infty}^{+\infty} \sum|F(h k l)|^{2} \exp [-2 \pi i(h u+k v+l w)] \tag{xiv}
\end{equation*}
$$

This expression can be directly computed unambignously since the coefficients, $|F(h k l)|^{2}$, are proportional to the observed intensities.

The function $P(u \nabla W)$ in equation (xiii) can only have a large value when both $C(x y z)$ and $C\left(x+u_{9} y+V_{g} z+w\right)$ are large. A peak in the function $P(u \nabla W)$ at ($\left.u_{1}, \nabla_{1}, W_{1}\right)$ corresponde to an interatomic distance in the cryatal defined by a vector with components $u_{1}, \nabla_{1} \otimes \forall_{1}$ and the height of the peak is proportional to the product of the scattering factors of the two atoms conoerned.

If the asymmetric unit of a structure contains N atoms, $N(\mathbb{N}-1) / 2$ distinct vector peaks will occur. If N is large the vector wap will contain very many peaka. Many of these peaks will overlap forming diffuse peaks making the vector map difficult to interpret. However, the structures of simple molecules containing relatively fer atoms have been successfully determined by the Patterson method.

1. (7) THE HEAVI ATOM METHOD.

In section 1 . (5) it was demonstrated that the eleotron density
in a orystal oan be evaluated by Fourier methods provided the structure amplitudes oan be measured, leaving the relative phases unknown. The determination of these phases oonstitume the basio problem of X-ray atructure analysis. No general method of evaluating the phases exists and the mothod used in any epeoific analysis will depend upon the circumatances.

In organic molecules containing upwards of tronty atoms other than hydrogen, the "heavy atom" method has been found to be a powerful method of solving the phese problem (13). In organic moleoules with many oarbon, oxygen and nitrogen atome the Patterson method is धeldom of use on aocount of the large number of peaks of approximately oqual weight. Ify howeverg a ohemical derivative of the compound under study can be prepared which contains one or two atoms with an atomic number much greater than those of the other atoms, the positions of the heavy atoms in the unit osll oan generaily be found by using the Patterson summation. The veotor peaks in the vector map due to these heavg atoms will be readily located on account of their high velue of P (JVF) leading to the coordinates of the heavy atoms. If these coordinates are used in a oycle of struoture-factor calculaiione a set of approzimate phase constants will be obtained. These pheses are then used in a Fourier series and an electron-density distribution approximating to the correct distribution results. At this stago some or all of the light atoms may bo distinguishod. These additional atome
are now includod in the next cy cle of atmucturefactor calculations which provides an improvad set of phase oonatantac Successive rounds of Fourier bumation and Btructure-factor oalculations sexping to reveal the positions of all the atoms in the struoture。 Complications in the above method may arise if the heavy atom ${ }^{\circ} \mathrm{B}$ position is olose to or on a spocial position in tire unit coll. This usually results in false symmetry in the eleorron-density distribution making the choice of atomic positions ambiguous. The effectiveness of a heary atom in dotermining the phases in a particular aimucture can be roughly indicated by the ratio of the square of the atomic number of the heary atom to the sum of the squares of the atomic mubere of the light atoms. This ratio should be about unity for maximan effectivenese (14) Calculations of the number of phases that should be determined Within acceptable limits for various matios of scattering factors of heavy and light atoms have been carried out by Sim (15). If the atom is so heavy that the square of the atomic number is very much greater then the sum of the squares of the atomio numbers of the light atoms undesirable effects could arise such as, diffraction ${ }^{9}$ ripples ${ }^{\circ}$, which might obliterate genuine detail, or errors in the measured structure amplitudes due to high absorption of the X-rayso

1. (8) FOURIER REFINEMBNT

After a structure has been solved it 18 usual to refine the
atructure to obtain good agreement between observed and caloulated struoture amplitudes and to approximate the oaloulated phases to the true phases. If $\left|P_{0}\right|$ Fourier mape are computed and the new atomic ooordinates used in a new oycle of phasing oalaulations only a limited amount of refinement can be achieved. This arises from the fact that a Fourier series requires an infinite number of terms and collocting dats with copper K α radiation limits the number of data that can be collected. It is quite reasonahle to to expect that for any postulated structure there will be structure factors outwith the recording limit of the radiation having quite large amplitudes. The omission of auch terms from the observed data oauses termination of series effects.

These effecta canse the atoms to be shifted from their true positions and allowance for this effect can be made by a method due to Booth (16). The final $\left|F_{0}\right|$ eyntheais is known to have its atomic peake displaced by anknown amounts from their true positions due to termination of series effects. Another Fourier synthesis is caloulated using $\left|F_{C}\right|$ data as coofficients but the same phases as the $\left|F_{0}\right|$ oynthesis. If there were no orrors due to termination of series effecte, the position of any peak in the $\left|F_{0}\right|$ map should be identical to that in the $\left|F_{0}\right|$ map, oaloulated from a modol containing all the afoms in the structure。 Honos, the deviations of the peaks from these gites ($\Delta x_{0} \Delta_{y_{0}} \Delta z$) represent the correction, with ohange of aigno to be applied
to the positions of the peaks in the $\left|F_{0}\right|$ map. This correotion is known as the baokmehift correction and is based on the assumption that no errors exist in the postulated struature, except those due to termination of eeries effects. These correotions should not be applied until straight-formard Fourier refinement oeases to be effeotive.

In (9) LBASM-SQUARES BEFINEMENL.

The use of leasi-squares prooedures was first introduoed by Eughes (17) in the structure anelysis of melamine. It is a method of refinement which overcomes the effeots due to tormination of aertes and also provides a method of deoreasing the influenoe of ineccurate coefficients on the results.

The best values of the atomic parameters are those which minimise the function;

$$
R=\sum_{q} W(h b l)\left[\left|F_{0}\right|-\left|F_{0}\right|\right]^{2}
$$

Where q is the number of independent observations and v ($h \mathrm{k}$) is the weight of the planc ($h \mathrm{k} \ell$) and should be taken as inversely proportional to the square of the probable error in the corresponding $\left|F_{0}\right|$. The value of R is influenced by the stomic coordinates and the temperature factor. When R is near to its minimum, a small change Δy_{B} in the r-coordinate of the $n^{\text {th }}$ atom changes F_{c} by an amount,
16.

$$
\Delta F_{0}=\frac{\partial F_{c}}{\partial x_{n}} \quad \circ \Delta x_{n}
$$

If simultaneous changes to all the coordinates occur the change in F_{0} is,

$$
\begin{equation*}
\Delta F_{0}=\sum_{n=1}^{N}\left[\frac{\partial F_{0}}{\partial x_{n}} \cdot \Delta x_{n}+\frac{\partial F_{0}}{\partial y_{n}} \cdot \Delta y_{n}+\frac{\partial F_{0}}{\partial I_{n}} \cdot \Delta g_{n}\right] \tag{v}
\end{equation*}
$$

The best values of ΔI_{n} Qto, are therefore those which most nearly equate ΔF_{0} to $\left(F_{0}-F_{0}\right)$ for the q possible equations which can be set up. In order to provide accurate results, the number be of observational equations must Λ much greater than the number of unknowns. The unknowns are generally three positional and six thermal parameters per atom plus an overall scale factor or ($9 \mathrm{H}+1$) unknown where if is the number of atoms in the structure.

If only positional parameters are being refined, ΔF_{0} has the form of equation (xv). To obtain the values of Δx_{n} Qto., the q observational equations are reduced to 3 N normal equations. This is achieved by multiplying each of the q equations of ΔF_{0} by the weighted coefficient of each of the unknowns in turn. This results in $3 N$ sets of g equations, each sot is then summed to produce one normal equation. The $z^{\text {th }}$ of these normal equations is obtained by multiplying the q equations of the type,

$$
\sum_{n}^{I}{ }_{1}\left[\frac{\partial F_{0}}{\partial x_{n}} \cdot \Delta I_{n}+\frac{\partial F_{0}}{\partial I_{n}} \cdot \Delta y_{n}+\frac{\partial F_{0}}{\partial z_{n}} \cdot \Delta s_{n}\right]=\left(F_{0}-F_{0}\right)
$$

by Wo $\frac{\partial F_{0}}{\partial X_{n}}$ and adding to produce the equation;

$$
17 .
$$

$$
\begin{align*}
& \sum_{m} \pi\left[\left(\frac{\partial F_{c}}{\partial X_{n}}\right)^{2} \cdot \Delta z_{n}+\frac{\partial F_{0}}{\partial X_{n}} \cdot \frac{\partial F_{0}}{\partial J_{n}} \cdot \Delta I_{n}+\frac{\partial F_{0}}{\partial X_{n}} \cdot \frac{\partial F_{0}}{\partial I_{n}} \cdot \Delta z_{n}\right. \\
& \left.+\sum_{m} \frac{\partial F_{c}}{\partial X_{n}}\left\{\frac{\partial F_{0}}{\partial X_{m}} \cdot \Delta x_{m}+\frac{\partial \bar{F}_{0}}{\partial Y_{m}} \circ \Delta y_{m}+\frac{\partial F_{0}}{\partial z_{m}} \cdot \Delta z_{m}\right\}\right] \\
& -\sum_{q} r\left(F_{0}-F_{0}\right) \frac{\partial F_{0}}{\partial x_{n}}
\end{align*}
$$

where \sum_{m} denotes the sum over all the atoms except the $n^{\text {th. The }}$ 38 normal equations have then to be solved for the $3 \mathbb{N}$ unknowns. This equation is too complicated for convenient use thus simplifications must be made. If the atoms are well resolved it can bo show that quantities such as $\sum_{q} \frac{\partial F_{0}}{\partial X_{n}} \circ \frac{\partial F_{0}}{\partial X_{n}}$ are likely to be small compared with $\sum_{q}\left(\frac{\partial F_{c}}{\partial x_{n}}\right)^{2}$ and may be neglected. Further if the axes ace orthogonal or nearly 80 , quantities of the form, $\sum_{q} w_{\cdot} \frac{\partial F_{c}}{\partial X_{n}} \circ \frac{\partial F_{0}}{\partial J_{n}}$ can also be neglected and equation (xvi) reduces to

$$
\Delta x_{n} \sum_{q} w\left(\frac{\partial F_{0}}{\partial x_{n}}\right)^{2}=\sum_{q} w\left(F_{0}-F_{0}\right) \cdot \frac{\partial F_{0}}{\partial x_{n}}
$$

which can be more readily evaluated than (xvi)。 Similar equations can be obtained for changes in temperature factors, the variables x_{n} being replaced by each of six thermal parameters, $b_{11} b_{22} b_{33}$ $b_{23}{ }^{b_{31}}{ }^{b}{ }_{12}$ to give 6 II normal equations. The socle factor can also be refined by least-squares methods.

1. (10) THE ACCURACY OF A CRYSTPL STRUCTURE DETERMITATION.

The final results of the two structure determinations described in inis thesis were subjected to ceriain teste of accuracy. The accuracy to which the positional parametere had been found was estimated from the values of the least-squares totale in the final cycle of refinement. The formula used was,

$$
\sigma(x)=a /\left\{\frac{r^{2} \Delta^{2}}{(n-a)}\left[\sum \frac{\partial \Delta}{\partial X, B}\right]\right\} \AA
$$

where n is the number of repleotions used in the refingement and 8 is the number of parameters refined of s ($9 \mathrm{H}+1$) where N is tho number of atoms. The standard deviationg $\sigma^{\sigma}(A-B)_{9}$ of a bond betweon atom A and I was fownd from the formulas

$$
\sigma(A \sim B) \cdots /\left[\sigma^{2}(A) \div \sigma^{2}(B)\right]
$$

where $\sigma(A)$ and $\sigma(B)$ are the standead deviations of atoms A and 8 respectively. The standard deviationg $\sigma(\theta)$ in radians, for an angle (θ) is giver by the formule

$$
\sigma^{2}(\theta)=\frac{\sigma^{2}(E)}{(A B)^{2}}+\sigma^{2}(B)\left[\frac{1}{(A B)^{2}}+\frac{2 \cos \theta}{A B \cdot B C}+\frac{1}{(B C)^{2}}\right]+\frac{\sigma^{2}(B)}{(B C)^{2}}
$$

where (θ) is formed at atom (B) by atoms (B) and (C) o This formula is the one due to Cruickshank and Robertson (18).

The sigaifioance of the mann plane calculatione was teated using the X^{2} digeribution ghich hed begn celculabed and is apailo -able in takular form. Those tables five tha Irequency with wich different valuea os X^{2} ara excooded and alm the valuo of x^{2} correaponding to thece paricular froqueneier (19). The value

19.

of X^{2} vas obtainsd from the formula,

$$
X^{2}-\sum \frac{\Delta^{2}}{\sigma^{2}}
$$

whare Δ is the doviation in i of an atom from the osoluated plane and 6 is the mean standard deviation in i in the positional parameters. The probability that no etoms deviate sigaificantly from the oalculated plane oan be found from tables knowing the value of X^{2} and the number of degrees of freedom ($n-3$).

Throughout the courge of each analysis the validity of the proposed struoture (or partial structura) was gauged by the average disorepanoy H_{0} This is a rough measure of acouracy and is defined 83_{ρ}

$$
\mathrm{E}=\frac{\sum\left[\left|F_{0}\right| \propto\left|P_{0}\right|\right]}{\sum\left|F_{0}\right|}
$$

Whilat it does not contain any of the functions normally minimised during refinement it is nonetheless a useful guide.

PART II.

2. (1) IETPRODVGITON

Cedrelone, was first isolated from Cedrela Toons a tree belonging to the natural order Meliacas. This treo grows to a height of some 50 feet and is found near the Himalayas to the east of the Indus. The reddish-brom, aromatic smelling heartwood of of this tree has long been used for medicinal purposes and as a souree of a dyestuff. The tres's medicinal importance prompted Parikar and Dutt (20) to aitempt to find the activo principle. The main oryatalline product obtafnod by these rorkers was assigned the formula $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{5}$ and was statod to oontain a lactone ring, a phenolic hydroxyl group, a ketone funotion and an ethylenic double bond, further these workers called it Cedrelone. However, more recently chemical and spectral ovidence by workers in Glasgow (21), Zurich (22) andMadras (22) has led to the molecular formula $\mathrm{C}_{26} \mathrm{H}_{30} 0_{5}$ being assignsd. The molecule was stated to contain an $\alpha \beta$ - unsaturated ketone, β - substituted furan ring and an onolised α - diketone fronotion similar in enviroment to that of diosphenols in the Iimonin series (23).

This then was the informstion available to us when we undertook the analysis of the iodoacietate derivative of oedrelone.
2. (2) CRYSTAL DATA

> Cedrelone Iodoacetate $\mathrm{C}_{28^{H} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{I}}$
> Molecular Weight $=590.44$
> Melting Point $=149-150^{\circ} \mathrm{C}$
> Density Calculated $\quad 1.490 \mathrm{gm} / \mathrm{cm}^{3}$
> Density Measured $\quad 1.498 \mathrm{gm} / \mathrm{cm}^{3}$
> (By flotation using carbon tetrachloride and petroleum ether).
> The crystal is orthorhombic with

$$
\begin{aligned}
& a=6.97 \pm 0.02 \AA \\
& b=27.44 \pm 0.038 \\
& c=13.74 \pm 0.04 \AA
\end{aligned}
$$

Volume of the unit cell - $2628 A^{0}$
Number of Molecules per unit cell = 4

Absent spectres hoo when h is odd ok when k is odd col when $\&$ is add

Space group

$$
\mathrm{P}^{2} 1^{2} 1^{2} 1 \quad\left(\mathrm{D}_{2}^{4}\right)
$$

Linear absorption coefficient for X-rays (Copper Koradiation)

$$
\mu=108 \mathrm{om}^{-1}
$$

Total number of electrons per unit cell $=\mathbb{P}(000)=1200$

$$
\sum P^{2}(1 i g h t a t o m s)=1423 \quad(\sin \theta=0)
$$

$$
\left.\sum f^{2} \text { (heavy atoms) }=2809 \quad \text { : }\right)
$$

2. (3) IHTHESITY DATA

The ofystals of codrelone iodoacotate used in this analysis were in the form of small heragonal plates and were obtained from yr. S.G. MoGeachin, a member of the Organic Chemistry Research Laboratory at Glasgov University. Rotation, oscillation and moving-film photogrepha pere taken with copper Ká $(\lambda=1.542 \AA)$ radiation. The unit cell dimensions were obtained from rotation and equatorial layex-iins Heissonberg photographs. The space group was uniquely determined, from the systematic hatvings in the X-ray spectra, to be $\left.P 2_{2}^{2} y^{2} y^{(} D_{2}^{4}\right)$.

Smail arystals vere used for tho intensity messuremente and no absorption corrections wexe mada. Jising a Weissenbere equi--inclination camora the o 点 collected photographicelly using the multiple film teohnique (24). The intensities wese estimeted tisually ubing a calibreted step-wedge and were corrected Por the usual forenta, polarisation and rotation (25) factors. The various layers were put on the aame relative scall by comparison of common reflections in the two series of photographe. and the absolute scale was found at a later stage by oomparison with the caloulated structure factors, $\left|F_{0}\right|$. In all 1163 independent structure amplitudes, $\left|P_{0}\right|$, were measured and 122 unobserved refleotions were included, which were included at half the minimum $\left|F_{0}\right|$ value locally observed. The small amount of data available was a consequence of the non-appearance of spectra beyond moderate values
of $\sin \theta$ indicating a high temperature factor，B．Further the crystals slowly decomposed during the period of photography，

2．（4）DETERMTMATION OF THE HEAVY ATOM POSITIOX

For a crystal belonging to the orthorhombic system，the expression for the Patterson function $P(J, \forall, W)$ is

$$
P(0, \nabla, W)=\frac{8}{V_{c}} \sum_{0}^{\infty} \sum_{0}^{\infty} \sum_{0}^{\infty}|F(h x \Omega)|^{2} \cos 2 \pi r \pi \operatorname{coc} 2 \pi k v \text { oos } 2 \pi \in T_{0}
$$

This expression can be simply reduced to that for the Patterson

The rootorg to be expected betwean loaine atome in the space group $\left.\mathrm{Pa}_{1}{ }^{2}\right]_{2}$ ．with one molecula tha tho esymatric unity are

	\boldsymbol{x} ： $7, \pm$	$\frac{1}{2} \cos 0 \times \frac{1}{3}, \frac{1}{3} \div 2$		
	$-$	$\frac{1}{2}-2 x,-2 y, \frac{2}{3}$		
$\frac{1}{2}-x, \frac{8}{8}, \frac{1}{2}+5$	24．2x，+2 y ，$\frac{1}{2}$	$=$		$\frac{1}{2}, \frac{1}{8}+2 y,-2 z$
	$\frac{1}{2}$ ：$\frac{3}{3}+2 y,+2 z$			$\frac{1}{2}-2 x,+2 y, \frac{1}{z}$
ㅍ，妾＋y，交心	$\div 2 x, \frac{3}{3}+\frac{3}{2}+28$	$\frac{1}{2}, \frac{1}{2}-2 y,+2 z$	$\frac{1}{2}+2 x,-2 y$ ，$\frac{2}{2}$	－

The two－dimensional Patterson projections $P\left(U_{,}, V\right)$ and $P\left(V_{P} W\right)$ were computed using 259 ani 218 terma respectively end the maps are shown in Pigares II and I respectively．In the part of the P（ V, W ） projection shown there should be douole weight peaks at（ 2 y ，$\frac{1}{2}$ ）on the line，$P\left(\mathbb{T}, \frac{1}{2}\right)$ and at（ $\frac{1}{2} s \frac{1}{3}-2 z$ ）on the line $P\left(\frac{1}{2}, ~ W\right)$ with a single weight peak at（ $\frac{\pi}{2}-2 y, 2 \pi$ ）in a general position．Clearly the concentration of pectors at A in Tỉs．is（2y，$\frac{1}{2}$ ）and those at B in

Fig. I. Projection P (V,W) of the Patterson function. Contour scale arbitrary. The iodine-iodine vector peaks are marked A, B and C.
in Fig. $I_{8}\left(\frac{1}{2}, \frac{7}{2}-2 z\right)$. Finally the veotol peak marked C in Fig.I is the general peak ($\frac{1}{2}-2 y, 2 z$).

In the part of the $P(0, V)$ projection shown there should be peaks of double weight at ($2 x_{0} \frac{1}{2}$) on the line $P\left(0, \frac{1}{2}\right)$ and at ($\frac{1}{3}, \frac{1}{8}-2 y$) on the line $P\left(\frac{1}{3}, v\right)$ with a single weight peak at ($\frac{1}{2}-2 x, 2 y$) in a general position. In Fig. II, the three lirgest veotor peake (with the exoeption of the origin peak) all lio un the mirror planes which bound the part of the projection shown. Il was found that if we assume en fodine atom x - coordinate $m 0.25$ that poak D, Fig. II, musi be the peak ($2 x, \frac{1}{2}$) 。 Folloring on this peak E is the vector ($\frac{1}{2}, \frac{1}{2}-2 y$) and the general peak is $F_{0}\left(\frac{1}{2}, \cdots 2 x_{0}, 2 y\right)$.

The coordinates obtained for the he ivy atom in this way
arry $\frac{x}{a}=0.250$, $\frac{y}{y}=0.205, \frac{z}{6}=0.039$ expresced as fractions of the oell edges. As the iodine atoms heve an x^{-}- coordinate $=0.25$ a a centrosymmetrical arrangemant of the iodixe atoms in the unit cell results which aill lead to spurious planes of symmetry in electrondensity distributions which in turn will renier location of real atomic positions difficult. However, inspection of FigoII reveals that peaks D and F are elliptical. If the X - coordinate was not exactly 0.25 a but displaced slightly from this value, peak D would be elliptical due to fusion of the two actual peaks, mirrored abovt the line $a / 2$, into a aingle peais. The game considerations make F elliptical alsce Accordingly at pas decided to calculate the displace--ment: Δ from the observad x ccosdinate.

Projection $P(U, V)$ of the Patterson function. Contour scale is
arbitrary. The iodine-iodine vector peaks are marked D, E and F.

It is possible, by uaing the method of Burns (26), to caloulate the peak separation, 2Δ, of the two peake on either side of the mirror plane which merge due to lack of resolution. The value of Δ is found from,

$$
\epsilon=\sqrt{2 \beta \Delta}
$$

wheretis the eccentriaity of the elliptical peak and the value of β is derived from the Gaussian function,

$$
P(r)=P_{0} \exp \left[-p x^{2}\right]
$$

The torm P_{0} is the elootron density at the poak oentre and $P(x)$ Is the eleotron density at a distanoer from the peak oentre. A plot of log $P(y)$ against x^{2} gives a straight line of negative gradient $P / 2.303$ and intercopt P_{0}.

Two methods are available for finding the scentrioity ϵ. If the peak is drawn out acourately and the major and minor axes, a and brespotively, are measured the ecoentrexty is given by

$$
\in-\sqrt{1-b^{2} / a^{2}}
$$

The necond method is analytioal and is due to Ladell and Kats (27). In this method it is assumed that the peak resembles an elliptio parabaloid near ite maximum. Both methode were used to determine the eccentrioity of peak \mathcal{D} in Fig. II and this was used to calculate Δ. From this process, a value of $\bar{I}=0.23$, for the iodine, was found. Trial seta of structure-factor caloulations $\left|F_{0}\right|$, were computed using the (hko) zone of data and iodine x-coordinates; $\frac{x}{2}=0,24$ and 0,23 respectively. The average discrepanoies mere 61% and 55% respactively for these \leq ooordinate
values. In this way the final set of iodith coordinates:

$$
\frac{x}{a}=0.230, \quad \frac{y}{b}=0.205, \quad \frac{z}{0}=0.039
$$

was found and was used in the first set of phasing oaloulations.

2. (5) - SIRRUCTURS DETGRYITATION

The first set of structure factor calculations using only the iodine coordinates gave an approximate aet of phase constanten Jsing these phases and the observed structure amplitudes as ooefficients, a Pourier synthesis was computed. The rasults were mapped out on clase oheets (and contoured at le i^{-3} intervals) and stacked up parailel to (100) to give a three dimensional effect. A great number of areas of positive eleotron density were present but all mere diffuse and could not with any degree of certainty be asoribed to atous. The improved iodinc coordinates obtained from this map were used to oaloulato a botter set of phase oonstants and these in turn neod in a second Pourier synthesis. This synthesis was drewn out as before but this time as seotions parallel to (001) because in the first map it was believed that a six-membered ring wes located near the iodine atom but perpen--dioular to the glase sheeta. Again no treat detail was observable and this was eacribod to the spurious symmetry and the high temperature faotor which tended to make the atom peaks indistinct.

Wine of the most prominent peaks from the second Fourier map reached a height above $2 e_{A^{-3}}^{0}$ and vere ascribed to atomic positions. The coordinates of these peaks were determined by the method of Booth (28) and weighted as carbon atoms were included in a third cycle of structure-factor calculations. All atoms had the same isotropic temperatuxe factor of $B=4.5 \mathrm{~A}^{2}$. The average discrepancy B fell from 43% to 35.7%. On drawing up the results of the third Fourier synthesis, not much extra detail was observed although a general decrease in the background of mall spurious peaks had occurred. A further ten prominent peaks were selected as probably being atoms and assigned coordinates. Apart from iodine, nineteen atoms weighted as carbon were inaluded in the next oycle of phssing ($\left|F_{c}\right|$) calculations. The value of R_{3} the average discrepancy between calculated and observed structure amplitudes, fell from the previous value of 35.7% to 34.9\% The improvament was disappointingly small and it seemed that some of the peaks selected could not represent genuine atoms. The coordinates of these nineteen atoms were then plotted on the (okl) Fourier projection and those that did not fall on positive regions or lów value negative regions were omitted from the next cycle of phasing calculations. In all four atoms were omitted and inclusion of the remaining fifteen atoms (as carbon) plus iodine in a cycle of 8 tructure factor calculations resulted in \mathbb{R} being lowered to 33.9% The subsequent three-dimensional Fourier map on initial exmination shoved that apart from a further decrease

In small spurious peaks and better resolution of the lodoscotate group, little improvement had telson place. However, a more detailed examination of this map revealed that a distorted six--membered ring was not of the oyclo-hexene type but was actually a cyolopentane ring bearing a 1:2-2 epoxide. Joined to this ring, a deoalin-type ring system was observed and foined to one of these six-membered rings was the iodoacetate group. Further, a large pealk was observed to be near to the ring atom adjaoent to that to wizioh the iodoacetate was joined. From stereochemical and bond-length considerations this atom was daduoed to be a carbongl oxysen atom. The relationship of this partial etruoture (1) to limonin (23), (29) was imediately apparent and the looation

of the remaining atoms was atralghtforward,
The iodine atom, twenty-three carbon atoms and five oxygen atoms were omployed in the next caloulation of etructure faotors and phase constants and the value of R fell to 29.6%. In the subsequent three dimensional electron density distribution all the remaining atome were cleariy resolved. The oorrect chemioal type wae now assigned to each atom with the exception of the
oxygen in the furan ring where the choice was not unique. The next cycle of atructure factors calculated over all the atome gave a R value of 27.4%.

The oourse of the analysis is given in Table I. Atomic soattering values due to Berghuie ot al (30) were ueed for the carbon and oxygen atoms and those due to Thomas and Formi (31) for the iodine atom. An average isotropio temperature factor of $B=4,9 \AA^{2}$ was assumed.
2. (6) STRUCTURE REFTNEMENT

Initial refinement of the atomic coordinatos was achieved by means of both $\left|F_{0}\right|$ and $\left|F_{0}\right|$ maps. Comparison of the peak height of an atom in each map onabled individual isotropic temperature fectore to be aseigned. In all two oycles of $\left|P_{0}\right|$ and $\left|F_{0}\right|$ maps were computed to correot errors due to termination of series and the value of R fell to 20.5%. At this stege it was still impossible to distinguish the furan ring oxygen atom on the basis of the peak heighta alone.

Refinement was continued and completed by four oyoles of least-aquares caloulations using the program for DEUCE devised by Dr. J.S. Rollets (32). This program refines three positional and six thermal parameters for each atom and the following weighting scheme was useds
 where $\left|F^{*}\right|$ is a constant. It was taken equal to the average value of $\left|F_{0}\right|$ (about 30).

After the fourth oyole the shifts in the atomic parameters were negligible and a final oyole of structure-factor oaloulations with anisotropic temperature factors completed the analysis. The final value for the discrepancy, R, was 17.5% over all the observed structure amplitudes.
2. (7) RESULTS.

The final atomio coordinates are listed in Table II and the corresponding anisotropio thermal parameters in Table III, they are the values of $\mathrm{b}_{\mathrm{i} j}$ in the equation p_{0}

$$
\begin{aligned}
& +b \frac{13}{\text { he }}
\end{aligned}
$$

The final values of $\left|F_{0}\right|:\left|F_{0}\right|$ and α are given in Table IV. Table ∇ contains the interatomio distances and Table ∇I the interbond angles. Table VII lists the intra-molecular non-bonded distances $\leqslant 4.0 \AA^{\circ}$, while Table VIII gives some of the intermoleoular distances <4.0 A. Table IR gives the standard deviations of the final atomic coordinates. They were derived from the least--Equares residuals by applioation of the equation;

x

Fig.III. The final three dimensional electron density distribution for cedrelone iodoacetate. The superimposed contour sections are drawn parallel to (ool). Contour level $1_{e^{A}} A^{-3}$ except around the iodine atom where it is $5_{e} A^{0-3}$. The first contour level is omitted in both cases.

Fig.IV. The atomic arrangement corresponding to Fig.III.

$$
\sigma^{2}\left(x_{i}\right)=\sum_{j} \mu_{j}\left(\Delta F_{j}\right)^{2} /\left[(n-s) \sum_{j} \omega_{j}\left(\partial F_{j} / \partial x_{i}\right)^{2}\right]
$$

The average standard deviation of a $C-C$ bond is $0.09 \AA^{\circ}$, that of a 0.00 bond is $0.07 \mathrm{~A}_{\mathrm{A}}$, and of the C - I bond 0.06 A . The average standard deviation in a bond angle is 4°.

The final electron-density distribution over the region of one molecule is shown as suporimposed oontour sections drawn parallel to (001) in Figure III. The oorresponding atomio arrange--ment is shown in Figure IV and the atomic arrangement as viewod in projection along the a-axis is shown in Figure V. Figures VI and VII show the crystal structure of codrelone iodoacetate as Viewed in projection down the E - and $\underline{2}$ - axes respectively.
2. (8) DISCUSSIOH

The final resulte of this analysis have established the constitution and storeochemistry (apart from absolute configuration) of cedrelone to be as in (I), the iodoacetate grouping in the derifative used for this analysis being linked to carbon 6 of ring B. Independent chemicel studies at Glasgow (21), (23); Madras and Zurich (22) are in complete agreement with this atructure. From structural and stereochemical considerations, cedrelons like limonin (II) is elearly a triterpenoid of the euphol (34) (III) type and its biogenesis presumably follows the route proposed for limonin (35). This class of triterponoids is characterised by the presence of a oarbonyl function at C7, a methyl group at C 8 and an epoxide ring between Cl4 and Cl5.

By means of a prototropic shift of a hydrogen atom from C7 in a preoursor of the euphol type, a Δ 7,8 unsaturated intermediate is formed wich undergoes oxygenation at $C 7$ by means of attack on the double bond by (OH^{+}) or its equivalent. A WagnerMeerwein migration of the methyl group from Cl4 to 08 followed by loss of a proton from Clf leads as shown (IV) - (V) to a structure of the apoeuphol type (VI). Reactions have been oarried out (36) whioh provide support for this hypothesis. The furan ring is formed by loas of four oarbon atoms from the aide chain (VI) and oyclisation of the remainder C2O-C23. Further oxidation in rings A and D give rise to the remaining oxygen functions of limonin. In cedrelone ring D is not oxidised to a. δ ~ lactone unlike the other members of this olass of cmpounds. Cedrelone is also unusual in being a diosphenol of which relatively fer examples oocur naturally. It has been observed, however, (36) that-oxidatior of Iimonin and-its derivatives to diosphenole of this type is easily carried out by means of oxygen in the presence of potassium t - butoxide (VII) - (VIII) •

In the cedrelone molecule, ring C (I) is locked in boat conformation by the β - orientated epoxide group. The sterio interaction between the 28 and 29 methyl groups and the oxygon substituent at position 6 is presumably the reason for ring A adopting a half-boat conformation. Strong steric interaction occurs between the $1: 3$ - diaxial methyl groups and is reflected in the non-bonded distance of $3.04 \AA$ between C19 and C30. Measure-

Fig. V.
The arrangement of atoms in the molecule as viewed in projection along the a - axis.
-ment of this distance on a standard Dreiding model gives a distance betweon there atoms of $2.54 \AA$ A.

Buring the refirement, it was impossible at any stage to distinguish the oxygen atom in the furan ringo Consideration of the bond lengths in the ring, the intermolecular contacte involving the ring, the temperature factors of the ring atoms obtained by the least squares program, and the peak heighte from electron-density distributions led to the oxygen being assigned as in Table II and Figuse IV. The alternative assignaent of C23 as the oxygen and the oxygen as a carbon atom is also possible. In the crystal there ia possibly some disorder, the furan ring adopting at random one of other of the two conflgurationg by 180° rotation about the Cl7 - C20 single bound.

The average carbon-carbon aingle bond longth is 1.55 A in favourable agreament with the value of 1.545 A in diamond. The everage length of a similar bond in two other compounds of this type, opilimonol iodoacetate (29) and guarigaxyl iodoacetate (37), is $1.52 \AA$ and $1.55 \AA$ respectively. The carbon ($8 p^{3}$) - carkn (sp^{2}) average bond lengin of $1.55 \AA$ is also in agreement with the accepted value of $1.525 \AA^{\circ}$ 。 The average carbon-carbon double-bond length is 1.35 A and dose not differ significantly from the value of $1.334 \mathrm{~A}^{\circ}$ in ethylene (38). The average carbonyl carbonooxygen bond length of $1.20 \AA$ agrees efith the values of $1.212 \AA$ in parabanic acid

Fig. VI. The crystal structure of ceãrelone iodoacetate as viewed in projection along the \underline{c} - axis
(39) and $1.222 \AA$ in p - benzoquinone (40). Further the oarbonoxygen bond length of $1.30 \AA$ i compares favourably with the value of $1.32 \hat{\circ}$ in limonin (29). The average carbon-oxygen distance of 1.47 A in the oporide ring agrees with the values of $1.44 \AA$ in ethylene oxicio (41), 1.47 i in oyclopeniene oxide (42) and $1.49 \AA$ in clerodin bromonlactong (43)。Table X gives o comparison of the bond lengths in the furen ring with those obtained by Bak et al for furan (44) and the oomparable distances found in limonin (29) and guariganyl 1odoaoetate (37). There is no bignificant disagreement in valuen except that the oarbon-oxygen dietnace of $\overline{\mathrm{I}} 22 \mathrm{~A}$ in cedrelone iodoacetate is rathenfhort, Finally inspeciion of the bond lengthe in the iodoacetate group reveals no great disagreement with accepted values. The carbon-iodine bond length is $2.15 \AA$ and compares well with the value of 2.14 a quoted for alkfl iodides (45): (46). Therefore all the bond leagths agree within the estimated standard deviations with accepted values of comparable bonds. Further the non-bonded inter-moledular (Table VIII) distances are normal. The average angle about a ap carbon is 120.3° compared to the expected value of 120°. The average angle about $8 p^{3}$ carbon atoms is 109° compared with the accepted tetrahedral value oi $109^{\circ} 28^{\circ}$. Only one tetrahedral angle,
 value. This angle refleots the steric repubion between the $1: 3$

- diaxial methyl groups C19 and C3O in ring B.

The equation of the mean plane through the furan ring calculated by the method of Schomakir at al (47) is,

$$
0.651 X \div 0.750 Y=0.115 Z-7.238=0
$$

The deviations of the atoms from the plane are shom in Table XI. Application of the X^{2} test to these deviations suggested that they are probably significart. No reason can be put forward to explain this either chomicsily or aterically. In the orystal. as can be seen from the intermolecular contacts (Table VIII), normal van der Weals interactions hold the molectles together.
36.

0080T	$9^{\circ} 02$	$05+26 Z+I T$	${ }^{\circ} \mathrm{SCBLT}$
－	でヤて	$O S+D 6 Z+I I$	GeZt
－	$\nabla^{\circ} \mathrm{L}$	$0 S+262+T T$	S82I
－	$9^{\circ} 62$	$O S+つ$ SZ +IL	${ }^{\text {anget }}$
∞	$6^{\circ} ¢ ¢$	$2 G T+I T$	－जLてこT
－	$L^{\circ} \mathrm{G} \mathcal{L}$	$26+I T$	－asozt
$=$	$\varepsilon \downarrow$	IT	－at9IT
－	6%	IT	－${ }^{\text {a }}$ SGT
\cdots	－	$=$	－Guoţonetzer
$i^{\sqrt{\pi}}$	（\％） 4	pepatouf guost	208n 8704
			SISATVIV［0 द्रSप00

37.

5.27
0.82
$0.8 T$
$2.6 T$
T. 6τ
(क)
8

- agezt
- asbet
${ }^{0}$ açeт
${ }^{\circ} \mathrm{x5} 52 \tau$
$\overline{\text { pera }}$

TABLE II.

ATOMIC CO-ORDINATES

(Origin of co-ordinates as in "International Tables")

Atom	I B	I/b	$2 / 0$
C_{1}	-0.3157	-0.0520	0.1550
C_{2}	-0.3783	-0.0957	0.1406
c_{3}	~ 0.2634	-0.1337	0.1687
C_{4}	- 0.1512	-0.1311	0.2654
C_{5}	-0.0985	- 0.0781	0.2787
${ }^{C} 6$	-0.0131	- 0.0596	0.3679
${ }_{6}$	0.0318	-0.0086	0.3925
${ }^{C} 8$	0.0840	0.0185	0.2986
c_{9}	$\therefore 0.0852$	0.0093	0.2311
C_{10}	-0.1186	- 0.0424	0. 2944
${ }^{C} 11$	- 0.0764	0.0460	0.1412
C_{12}	- 0.1651	0.0958	0.1854
C_{13}	-0.0779	0.1067	0.2925
${ }^{\text {c }} 14$	0.0798	0.0744	0.3175
C_{15}	0.0235	0.1024	0.3824
${ }^{C} 16$	0.1063	0.1495	0.3960
C_{17}	-0.0109	0.1585	0.3085
C_{18}	- 0.2785	0.0931	0.3694
C_{19}	0.0544	$\therefore 0.0578$	0.1154

39.

FABLEII (Contimea)

Ater	x/8	2/6	$8 / 0$
0_{20}	-0.1626	0.2006	0.3251
C_{21}	-0.2756	0.2147	0.4005
C_{22}	-0.3139	0.2093	0.2532
c_{23}	-0.4079	0.2487	0.2789
C_{28}	- 0.2911	-0. 0.1504	0.3437
0_{29}	0.0410	-0.1661	0.2702
C_{30}	082710	0.0030	0.2637
C_{31}	0.3 .412	- 0.1035	0.4855
C_{32}	0.1435	-0.1425	0. 5768
0_{A}	- 0.2808	-0.1767	0.1316
0_{B}	-0.0223	-0.0932	0.4444
${ }^{0}$	0.0597	0.0047	0.4678
O_{0}	0.2559	0.0974	0.2779
0_{5}	-0.3849	0.2467	0.3740
07	0.2847	-0.0888	0.4452
I	0.2808	-0.2054	0.5353

TABLE IIT

AMISOTROPIC TKMPRRATURE - PAGTOR PARAMETERS (biy $\times 10^{5}$)

	b_{11}	\underline{b}_{22}	\underline{b}_{33}	$\underline{-12}_{12}$	b_{23}	$\stackrel{\mathrm{b}}{13}$
C_{1}	3743	243	642	597	124	- 2186
C_{2}	5176	238	558	- 282	461	0
C_{3}	8289	213	768	-1498	177	3246
${ }^{C} 4$	3464	188	729	- 166	82	- 1779
C_{5}	3791	138	730	1007	178	- 1821
C_{6}	4.980	163	523	249	359	0
C_{7}	5221	386	426	- -3494	678	- 2774
C_{8}	3979	334	389	502	567	0
C_{9}	1679	103	955	- 211	58	- 2396
${ }^{0} 10$	5893	355	658	- 243	381	1248
C_{11}	7183	240	1047	201	241	0
C_{12}	5452	140	1301	432	158	1120
${ }^{13}$	3849	277	514	652	- 196	3074
C_{14}	2400	277	439	761	-51	0
${ }^{C_{15}}$	6076	164	562	312	-82	- 1924
${ }^{C_{16}}$	6744	142	829	595	265	- 1385
${ }^{C_{17}}$	3669	170	1027	- 702	-98	1171
${ }^{\text {c }} 18$	411	182	1113	204	132	- 280
${ }^{C} 19$	2492	324	528	0	- 153	3237
C_{20}	7048	298	274	1308	749	2656

41.

SMBLB III (Contimod)

	b_{21}	$\stackrel{b}{62}^{\text {b }}$	$\stackrel{1}{3}_{3}$	b_{12}	\underline{b}_{23}	b_{13}
${ }^{\text {c }} 21$	6734	550	850	658	87	1876
${ }^{22}$	4880	257	1400	-328	- 404	- 4043
${ }^{03}$	11336	186	1.440	0	381	0
${ }^{08}$	5574	250	1065	- 440	- 102	0
${ }^{69}$	8943	266	928	379	- 443	0
c_{30}	1576	284	1012	649	308	3046
${ }^{\text {c }} 31$	3766	239	1319	- 254	-432	979
c_{32}	2258	424	925	- 350	-25	0
${ }^{\circ} \mathrm{A}$	9457	283	901	1.4	-498	660
${ }^{\circ}{ }_{B}$	4094	247	855	-575	65	- 2732
${ }^{\circ} \mathrm{C}$	6168	216	402	- 297	236	2189
${ }^{\circ} \mathrm{D}$	2497	179	941	- 419	-64	2861
${ }^{\circ} \mathrm{B}$	11733	143	1192	1981	367	1894
${ }^{\circ} \mathrm{F}$	6717	210	790	513	186	0
\pm	6717	183	983	356	- 34	- 438

43.

MOLSGOLAR DTHENSTOMS

-monnconan
TABTET
INTHAMOLECUIAR BONDED DISTAHGES

$c_{1}-c_{2}$	1.29	$c_{8}-c_{30}$	1.45
$c_{1}-c_{10}$	1.50	$c_{9}-c_{10}$	1.52
$c_{2}-c_{3}$	1.37	$c_{9}-c_{11}$	1.59
$c_{3}-c_{4}$	1.54	$c_{10}-c_{19}$	1.68
$c_{3}-o_{1}$	1.29	$c_{11}-c_{12}$	1.62
$c_{4}-c_{5}$	1.51	$c_{12}-c_{13}$	1.62
$c_{4}-c_{28}$	1.55	$c_{13}-c_{14}$	1.45
$c_{4}-c_{29}$	1.65	$c_{13}-c_{17}$	1.51
$c_{5}-c_{6}$	1.45	$c_{13}-c_{18}$	1.79
$c_{5}-c_{10}$	1.52	$c_{14}-c_{15}$	1.55
$c_{6}-c_{7}$	1.48	$c_{14}-c_{1}$	1.48
$c_{6}-c_{8}$	1.40	$c_{15}-c_{16}$	1.54
$c_{7}-c_{8}$	1.53	$c_{15}-c_{1}$	1.46
$c_{7}-o_{c}$	1.11	$c_{16}-c_{17}$	1.47
$c_{8}-c_{9}$	1.52	$c_{17}-c_{20}$	1.58
$c_{8}-c_{14}$	1.56	$c_{20}-c_{21}$	1.36

44.

TABLE Y. (Continued) $^{\text {(}}$

$c_{20}-c_{22}$	1.47	$c_{32}-o_{32}$	1.65
$c_{21}-a_{21}$	1.22	$c_{31}-o_{B}$	1.30
$c_{22}-c_{23}$	1.51	$c_{31}-o_{F}$	1.21
$c_{23}-o_{E}$	1.32	$I-c_{32}$	2.05

YABLIETI

TITRERBOMD ANGLES

$\mathrm{c}_{2} \mathrm{c}_{1} \mathrm{C}_{10}$	122	$C_{7} \mathrm{C}_{8} \mathrm{C}_{9}$	104
$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$	118	$C_{7} C_{8} C_{14}$	110
$\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}$	120	$\mathrm{C}_{7} \mathrm{O}_{8} \mathrm{O}_{30}$	110
$\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{O}_{4}$	122	$\mathrm{C}_{9} \mathrm{C}_{8} \mathrm{C}_{14}$	105
$\mathrm{C}_{4} \mathrm{C}_{3} \mathrm{O}_{4}$	115	${ }_{9} \mathrm{C}_{8} \mathrm{C}_{30}$	117
$\mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5}$	106	$\mathrm{C}_{14} \mathrm{C}_{8} \mathrm{C}_{30}$	111
$c_{3} C_{4} C_{28}$	105	$\mathrm{C}_{8} \mathrm{c}_{9} \mathrm{C}_{10}$	118
$\mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{29}$	1.5	${ }_{6} \mathrm{C}_{9} \mathrm{C}_{21}$	110
$\mathrm{C}_{5} \mathrm{C}_{4} \mathrm{C}_{28}$	314	$\mathrm{C}_{10}{ }^{C_{9}} \mathrm{C}_{12}$	110
$\mathrm{C}_{5} \mathrm{C}_{4} \mathrm{C}_{29}$	311	$\mathrm{C}_{1} \mathrm{C}_{10} \mathrm{c}_{5}$	104
${ }^{C_{28}} \mathrm{O}_{4} \mathrm{C}_{29}$	107	$\mathrm{C}_{1} \mathrm{c}_{10} \mathrm{c}_{9}$	115
$C_{4} \mathrm{C}_{5} \mathrm{C}_{6}$	123	$C_{1}{ }^{C_{10}}{ }^{C_{19}}$	112
$\mathrm{C}_{4} \mathrm{C}_{5} \mathrm{C}_{10}$	120	$c_{5} C_{10} c_{19}$	110
$\mathrm{c}_{6} \mathrm{c}_{5} \mathrm{c}_{10}$	127	$c_{5} c_{10} c_{19}$	105
$\mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{7}$	328	$\mathrm{C}_{9} \mathrm{C}_{10} \mathrm{C}_{19}$	110
$\mathrm{C}_{5} \mathrm{C}_{6} \mathrm{O}_{\mathrm{B}}$	113	$\mathrm{C}_{9} \mathrm{C}_{11} \mathrm{C}_{12}$	103
$\mathrm{C}_{7} \mathrm{C}_{6} \mathrm{O}_{\mathrm{B}}$	118	$\mathrm{C}_{11} C_{12} \mathrm{C}_{13}$	111
$\mathrm{C}_{6} \mathrm{C}_{7} \mathrm{C}_{8}$	209		113
${ }_{6}{ }^{0} 7{ }_{7}{ }_{0}$	124	$\mathrm{C}_{12} \mathrm{O}_{13} \mathrm{C}_{17}$	115
$\mathrm{C}_{8} \mathrm{c}_{6} \mathrm{O}_{\mathrm{c}}$	326	$\mathrm{C}_{12} \mathrm{C}_{3} \mathrm{C}_{18}$	102

TABLE WI (Contd.)

$C_{14} C_{13} C_{17}$	108
${ }^{C_{14}} \mathrm{C}_{13} \mathrm{C}_{18}$	109
${ }^{C_{17}} \mathrm{C}_{13} \mathrm{C}_{18}$	112
$\mathrm{c}_{8} \mathrm{c}_{14} \mathrm{O}_{13}$	125
$C_{8} 0_{14} C_{15}$	1.25
$C_{88} C_{14} O_{D}$	110
$C_{15} C_{16}{ }^{17}$	110
${ }^{c_{13}}{ }^{c_{17}}{ }^{c_{16}}$	98
$\mathrm{c}_{13} \mathrm{o}_{17} \mathrm{c}_{20}$	120
${ }^{C_{16}} \mathrm{C}_{27} \mathrm{C}_{20}$	112
${ }^{c_{17}} \mathrm{c}_{20} \mathrm{c}_{21}$	135
${ }^{17} \mathrm{C}_{20} \mathrm{c}_{22}$	120
${ }^{21} \mathrm{c}_{20} \mathrm{c}_{22}$	93
$\mathrm{C}_{20} 0_{21} \mathrm{O}_{\mathrm{E}}$	110
$\mathrm{C}_{20}{ }^{\text {22 }} \mathrm{C}_{23}$	108

$c_{13} 0_{14} c_{25}$	109
$c_{13} c_{14} a_{D}$	106
$\mathrm{C}_{25} \mathrm{C}_{14} \mathrm{O}_{\mathrm{D}}$	58
${ }^{G_{14}}{ }^{C_{15}}{ }^{(}{ }_{16}$	98
$\mathrm{C}_{14} \mathrm{C}_{15} \mathrm{O}_{\mathrm{D}}$	59
$\mathrm{c}_{16} \mathrm{C}_{15} \mathrm{O}_{\mathrm{D}}$	106
$\mathrm{C}_{22} \mathrm{c}_{23} \mathrm{O}_{5}$	100
$0_{32} c_{31} a_{8}$	119
$c_{32} 0_{31} 0_{51}$	124
$0_{3} \mathrm{C}_{31} 0_{5}$	117
$\mathrm{C}_{32} \mathrm{c}_{32} \mathrm{I}$	3.10
$0_{6} \mathrm{O}_{3} \mathrm{C}_{31}$	115
$C_{14} 0_{D} C_{15}$	63
$c_{21} 0_{E} c_{23}$	114

$c_{1}-c_{6}$	3.61	$\mathrm{C}_{1}-\mathrm{c}_{8}$	3.92
$c_{1}-c_{11}$	3.17	$C_{1}-c_{28}$	3.75
$c_{1}-0_{A}$	3.44	$\mathrm{C}_{2}-\mathrm{C}_{5}$	2.76
$\mathrm{C}_{2}-\mathrm{C}_{9}$	$3 \cdot 74$	$\mathrm{c}_{2}-\mathrm{c}_{19}$	3.21
$c_{2}-c_{28}$	3.22	$c_{2}-c_{29}$	3.93
$C_{3}-C_{6}$	3.83	$c_{3}-c_{19}$	3.23
$\mathrm{C}_{4}-\mathrm{c}_{9}$	3.91	$c_{4}-c_{19}$	3.22
$c_{4}-c_{31}$	3.72	$C_{4}-O_{B}$	2.82
$c_{5}-c_{8}$	2.95	$\mathrm{C}_{5}-\mathrm{C}_{11}$	3.90
$c_{5}-c_{30}$	3.41	$\mathrm{c}_{5}-\mathrm{c}_{31}$	3.37
$\mathrm{C}_{5}-\mathrm{O}_{4}$	3.61	$C_{5}-0_{C}$	3.62
$\mathrm{c}_{5}-\mathrm{O}_{5}$	3.53	$c_{6}-c_{14}$	3.80
$c_{6}-c_{19}$	3.50	$\mathrm{c}_{6}-\mathrm{C}_{28}$	3.17
$c_{6}-c_{29}$	3.23	$c_{6}-c_{30}$	2.99
$c_{6}-c_{32}$	3.82	$\mathrm{C}_{6}-\mathrm{O}_{\mathrm{F}}$	2.47
$C_{7}-C_{10}$	3.05	$\mathrm{C}_{7}-\mathrm{C}_{11}$	3.84
$\mathrm{C}_{7}-\mathrm{C}_{13}$	3.53	$\mathrm{C}_{7}-\mathrm{C}_{15}$	3.33
$c_{7}-c_{18}$	3.54	$\mathrm{C}_{7}-\mathrm{C}_{31}$	3.00
$C_{7}-O_{D}$	3,66	$c_{7}-0_{F}$	2.91
$\mathrm{C}_{8}-\mathrm{C}_{12}$	3.15	$\mathrm{C}_{8}-\mathrm{C}_{16}$	3.84
$C_{8}=c_{17}$	3.90	$\mathrm{C}_{8}-\mathrm{C}_{18}$	3.39
$c_{8}-C_{19}$	3.28	$C_{8}-O_{B}$	3.74
C8- O_{F}	3.83	$\mathrm{C}_{9}-\mathrm{Cl}_{15}$	3.93
$\mathrm{C}_{9}-\mathrm{Cl8}$	3.27	$\mathrm{C}_{9}-\mathrm{O}_{\mathbf{C}}$	3.41
$\mathrm{C}_{9}-\mathrm{O}_{\mathrm{D}}$	3.45	$\mathrm{C}_{10}-\mathrm{C}_{12}$	3,81
${ }^{C_{10}}{ }^{-}{ }_{14}$	3.88	$\mathrm{C}_{10}-\mathrm{C}_{28}$	3.79

$C_{10}-c_{29}$	3.72	$c_{10}-c_{30}$	3.13
$\mathrm{c}_{10}-\mathrm{O}_{\mathrm{A}}$	3.95	$\mathrm{C}_{10}-\mathrm{O}_{\mathrm{B}}$	3.76
$\mathrm{C}_{10}-\mathrm{O}_{\mathrm{C}}$	4.15	$c_{11}-c_{17}$	3.87
$\mathrm{c}_{11}-\mathrm{C}_{18}$	3.67	$c_{11}-c_{19}$	3.01
$c_{11}-c_{30}$	3.18	$c_{11}-O_{D}$	3.30
$c_{12}-c_{15}$	3.63	$c_{12}-c_{16}$	3.76
$c_{12}-c_{20}$	3.45	$c_{12}-c_{22}$	3.41
$\mathrm{C}_{12}-\mathrm{O}_{\mathrm{D}}$	3.20	$c_{13}-c_{22}$	3.31
$c_{13}-c_{21}$	3.59	$c_{13}-c_{30}$	3.76
$\mathrm{c}_{13}-\mathrm{o}_{\mathrm{c}}$	3.82	$c_{14}-c_{20}$	3.85
$\mathrm{C}_{14}=\mathrm{O}_{\mathrm{c}}$	2.82	$c_{15}-c_{18}$	3.51
$\mathrm{C}_{15}-\mathrm{C}_{20}$	3.89	$c_{15}-c_{30}$	3.20
$\mathrm{c}_{15}-\mathrm{O}_{\mathrm{c}}$	3.14	$c_{16}-c_{18}$	3.12
$\mathrm{c}_{16}-\mathrm{c}_{21}$	3.21	$\mathrm{c}_{16}-\mathrm{c}_{22}$	3.89
$c_{17}-c_{23}$	3.74	$\mathrm{c}_{17}-\mathrm{O}_{\mathrm{E}}$	3.67
$\mathrm{C}_{17}-\mathrm{O}_{\mathrm{D}}$	2.54	$\mathrm{c}_{18}-\mathrm{c}_{20}$	3.12
$\mathrm{c}_{18}-\mathrm{c}_{21}$	3.37	$\mathrm{c}_{18}-\mathrm{c}_{22}$	3.58
$\mathrm{C}_{18}-\mathrm{O}_{\mathrm{C}}$	3.64	$C_{18}-O_{D}$	3.93
$c_{19}-c_{29}$	3.65	$\mathrm{c}_{19}-\mathrm{C}_{30}$	3.04
$c_{28}-c_{31}$	3.81	$\mathrm{C}_{28}-\mathrm{O}_{\mathbf{i}}$	3.00
$\mathrm{C}_{28}-\mathrm{O}_{\mathrm{B}}$	2,81	$\mathrm{c}_{29}-\mathrm{c}_{31}$	3.49
$\mathrm{C}_{29}-\mathrm{O}_{\mathbf{A}}$	2.96	$\mathrm{c}_{29}-\mathrm{O}_{\mathrm{B}}$	3,15
$\mathrm{c}_{29}-\mathrm{O}_{\mathrm{F}}$	3.63	$\mathrm{c}_{30}-\mathrm{O}_{\mathrm{C}}$	3,17
$C_{30}-O_{D}$	2.60	$\mathrm{c}_{30}-0_{F}$	3.55
$\mathrm{c}_{31}-\mathrm{O}_{\mathrm{C}}$	3.03	$\mathrm{O}_{\mathrm{B}}-\mathrm{O}_{C}$	2,76
$O_{C}-O_{D}$	3.89	$0_{C}=0_{P}$	3.02
$I-O_{B}$	3.94	$I-O_{F}$	3.43

TABLE VIII

INTERMOLECULAR DISTANCES $(<4 \AA)$

The supersoripts refer to the following positions:

$50 s$

TABLE IX

STANDARD DEVIATIONS OF TIE FINAL ATOMIC CO-ORDINATES (i)

Atom	S(x)	S(y)	R(z)
C_{1}	0.059	0.042	0.046
O_{2}	0.058	0.045	0.044
C_{3}	0.069	0.042	0.043
${ }^{\text {c }} 4$	0.051	0.043	0,047
c_{5}	0.049	0.038	0.044
${ }^{0} 6$	0.061	0.040	0.044
${ }^{6}$	0.064	0.051	0.049
C_{8}	0.056	0.041	0,046
${ }^{6}$	0.047	0.035	0,048
C_{10}	0.072	0.050	0,048
Cl_{11}	0.068	0.049	0.055
${ }^{C} 12$	0.063	0.042	0.051
c_{13}	0.054	0.047	0,044
${ }^{C} 14$	0.053	0.047	0,041
C_{15}	0,069	0.038	0.043
${ }^{C} 16$	0.059	0.040	0.050
C_{17}	0.055	0.041	0.049
C_{18}	0.051	0.036	0.047
${ }^{1} 19$	0.053	0.048	0.050
C_{20}	0.059	0.048	0.043
${ }^{\text {c }} 21$	0.069	0.058	0.055

TABLE IX (Continued)

Atom	$\underline{\sigma}(x)$	$\sigma(y)$	$\sigma(\mathrm{g})$
C_{22}	0.050	0.046	0.053
C_{23}	0.084	0.046	0.063
C_{28}	0.067	0.046	0.051
C_{29}	0.075	0.050	0.055
C_{30}	0.063	0.045	0.044
C_{31}	0.052	0.045	0.056
C_{32}	0.057	0.058	0.051
O_{A}	0.051	0.031	0.032
O_{B}	0.037	0.028	0.030
O_{C}	0.037	0.028	0.033
O_{D}	0.033	0.024	0.027
O_{B}	0.042	0.042	0.058
O_{F}	0.004	0.026	0.028
I	0.003	0.004	

TABLE X.

Compound	Bond Jengtho (A)			$\sigma(\ell) \AA$	Referenos
	C-C	C-0	$C=C$		
Faxan	1.433	1.312	1.355	ar	(44)
Cedrelone	1.46	1.32	1.34	0.09	This Theais
Iodoacetate		1.22			
Fipjilmonal	1.44	1.42	1.25	0.08	(29)
Iodoecotato					
Guaxiganyl	1.45	1.36	1.25	0.08	(37)
Iodoacetaio		1.25			

TABLT XI

Displacements (i) of atoms from the mean plane through atoms C20 $\mathrm{C} 21 \mathrm{C} 22 \mathrm{C23} \mathrm{OB}_{\mathrm{B}}$

$C(17)$	0.020
$C(20)$	0.180
$C(21)$	0.160
$C(22)$	0.213
$C(23)$	0.130
$O(E)$	0.044

PART III.

THE STRUCTURE OF CHIMONANTHINE: X-RAY
ANALYSIS OF CHIMONANTHINE DIHYDROBROMIDE.

3. (1) INPRODUCTION

Recently Hodecn, Robinson and Smith (4.8) isolated a new alkaloid from the leavos or ghinonenthus fracrams (Lindley). a deciducus shrub growing neturally to about eight feet. This compet shrm was introanced to this country in 1766 from China and is closely related so the Calvantheceag. Rocauso 1 tra gwestasmelling flowerg eppear in Decomber, itio is commonly known as Winter Smeet.

Theee morkers named the alkeioid Chimonanthine and gave its formule as $\mathrm{C}_{22}{ }^{\mathrm{H}} 26^{\mathrm{H}} 4^{\circ}$ Chimonenthine was shown to be a diacidic base of equivalent meight 275 and from $\mathrm{V}_{0} \mathrm{~V}_{\text {. }}$ spectral evidence to contain a Phwioc-m grouping. Farther it was proved that the comporid contained two $\mathbb{N} w e t h y l$ sroups and that $N-\mathbb{Z}$ groups were present. Reduction with ginc and hydrochloric acid gave the indoline, $3-2^{3}$ - mathylaminoethylinio 18 , showing that Iike folicanthine (49) and seiyconthin (50) its akeleton is composed of two fryptanine units. It was also shown that like calyoanthine, chimonanthine had axomatic 1 ER groups and aliphatjec tertiary E-methyl groups. Eodson et 21 proposed two probaing structures for chimonanthine neither of which pag readily chemically distinguishavle from the other.

The Xoray analysis of chimonanthine was carried with crystale of ohimonanchine dihycrobromide, $\mathrm{C}_{22} \mathrm{E}_{26} 5_{4}{ }_{4}$. $2 \mathrm{HBr}_{8}$
supplied by G.F.Smith of the Department of Chemistry, the University, Manchester, The analysis to determine the molecular and crystal structure of chimonanthine was commenced shortly before the above chemical works was published.
3. (2) GRYSTAL DATA

Chimonanthin dihydrobromide $\mathrm{C}_{22} \mathrm{H}_{26}{ }^{\mathrm{N}} 4.2 \mathrm{HBr}$
Molecular Weight
Melting Point

- 508.31
- $188-189^{\circ} \mathrm{C}$

Density Calculated
$=1.311 \mathrm{gm} / \mathrm{Coc}$
Density Measurement
$=1.356$
By flotation using benzene/carbon tetrachloride).
The crystal is tetragonal with

| $a=\mathrm{b}$ | $=$ | $13.95 \pm 0.02 \AA$ |
| ---: | :--- | ---: | :--- |
| c | $=$ | $26.67 \pm 0.02 \AA$ |

Volume of the unit ceil $=5190 \AA^{3}$
Number of molecules per unit coll = 8 。
Absent spectra; 002 when $l \neq 4 m$

$$
\text { hoo when } h \neq 2 m
$$

Space group P $4_{1}{ }^{2} 1^{2}\left(D_{4}^{4}\right)$ or its enantiomorph $\mathrm{P}_{3}{ }^{2} I^{2}\left(D_{4}{ }^{8}\right)$ Linear absorption coefficient for X-rays (Copper $K \propto$ radiation) $\mu=42 \mathrm{~cm}^{\mathrm{m}}$

Total number of electrons per unit cell $F(000)=2064$
$\sum \sin ^{2}($ light atoms $)=1016(\sin \theta=0)$
$\sum \sum^{2}($ heavy atoms $)=2450\left(n^{\prime}\right)$
3. (3) I INTENSITY DATA

Rotation, oscillation and moving-1i3m photographe were taken with copper $\mathrm{K} \alpha(\lambda=1.542$) radiation. The unit cell dimensions were obtained from rotation and equationial layer line photographs of a orystal mounted about the a - axis. The space group was determined, from the systematic halvinge in the X-ray spectra, to be $\mathrm{P}_{1} \mathrm{Z}_{2} 2\left(\mathrm{D}_{4}^{4}\right)$ or its enantiomorph $\mathrm{P}_{3}{ }^{2} 1^{2}\left(D_{4}^{8}\right)$ 。

Small crystals, crystallised from dry ethyl alcohol, bathed in a uniform X-ray beam were used for the intensity measurementa, No absorption corrections were mede. Using a Weissenberg equi. inclination camera the 0kl - 9 k久 spectra were collected photo--graphically. Corrolation of strong and weak reflections was achieved by means of the multiple film technique (24) employing a calibrated step-wedge. The intensities were estimated visually and were corrected for Lorentz, polarisation and rotation (25) factors. The valuea of the structure amplitudes, \mid Fol, were obtained by the mosaic erretal formula.

As the erystal belongs to the teitegonal system most reflections have symmetrically occurring equivalent refleotions

In different zones obtained by rotati on about the same axis. The reflection ($h, g_{9} l$) equals reflection ($\mathrm{H}, \mathrm{h}, \mathrm{l}$) in intensity under theac conditions and the occurrence of auch reflection equalities was used as a besis for interzonal scaling, in general in any zone (HKI), the data used for atructure deter--mination is of the type ($\mathrm{H}_{3} \mathrm{~K} \geqslant \mathrm{H}_{2} \mathrm{~L}$) and the data used for scaling is of the type ($\mathrm{H}_{9} \mathbb{K}<\mathrm{H}_{9} \mathrm{~L}$), oogo in the zone (5 KL) calculations used ($5,5, L$) $(5,6, L),(5,7, L) \ldots$ eto. and scaling used ($5,0,5$) ($5,4,5$) 。 All zonec were put on the same relative scale in this way and the absolute soale was found at a later stage by comparison with the calculated structure faotors, $\left|F_{c}\right|$. In all 2093 independent structure
 were found whose intensity was lese than the lowest value on the steparredge used. These reflections were not included in any stage of the structure determination.
3. (4) DETERMINAYION OF THE HEAVY ATOM POSITIONS.

The Petterson function expression $P\left(\sigma_{9} \nabla, W\right)$ of a orystal having point group symmetry 422 is $_{8}$

$$
P\left(U_{0} \nabla, W\right)=\frac{8}{\nabla_{e}} \sum_{0}^{\infty} \sum_{0}^{\infty} \sum_{0}^{\infty}|F(h r \ell)|^{2} \cos 2 \pi n U \cos 2 \pi k V \cos 2 \pi \ell W .
$$

The interpretation of the map of this function alll be complicated by the high symmetry of the teiragonal system and the presence of two heavg atoms per asymotric unit. Each set of N symmetric--ally related heavy atome will give rice to H ($\mathrm{N} \omega \mathrm{l}$) basic vectorso

Thus there will be 112 bromide ion - bromide ion veotors botween symetry related bromide ions, 56 per set of symotrically related atoms. Further, there will be 128 bromide ion - bromico ion vactors betreen nonusymmetry related bromide ions. On account of the symmetry of the Pattorson function, it is only neoessary to consider six peaks due to veotors between each set of symmetrically related bromide ions and eight peaks due to vectors between nonsymmetrically related bsomide jons.

The two dimensional Patterson projection, $P(V, F)$ was computed with 319 terms. The projoction contained a great many peaks and offered no hope of providing the bromide coordinates. The three-dimensional map was accordingly computed over one eighth of the unit cell volume using 2093 tewns.

The pooks to be expected on the thzee Herker sections of the throe-dimensionel Patterson synthesis, $P\left(0, T, \frac{1}{4}\right)$ 。 $P\left(\mathbb{U}, \nabla, \frac{1}{2}\right)$ and $P\left(J_{0} \frac{1}{2}, V\right)$ are in themselves insufficient to deline fully the two sets of bromide ion coorainates. The occurrence

Fig. I. The three-dimensional Patterson function section $P\left(U, V, \frac{1}{4}\right)$. Contour levels are arbitrary. The peaks mention d in the text are shown.
could bo otuext by bromide lons having any of the coordinates 1isted above，Thus the three Harker sections will provide a set of coordinates which will be consistent for all the peaks expected on these sections but they，in all probability，will not be consistent with the peaks to be expected in general positions in the body of the Patterson function．This initial set of coordinater will be referred to as the＂basio set＂．

The section of the threo－dimensional Patterson synthesis $P\left(D_{0}, V_{9} \frac{1}{2}\right)$ ，Fig，II，should contain poaks at $2 x_{1}, 2 y_{1}$ ，$\frac{1}{3}$ and $2 x_{2}, 2 y_{2}, \frac{1}{2}$ for bromida ions at $\left(x_{1}, y_{1}, z_{1}\right), \operatorname{Br}(I)$ ，and （ $x_{2}, \mathrm{~J}_{2}, z_{2}$ ） $\operatorname{Br}(\mathrm{II})$ ，respoctively．The diagonal symmetry of this soction means it should contain peaks at $2 y_{1}$ ； $2 x_{1}$ ，妾 and $2 y_{2^{\prime}} 2 x_{2}$ ，$\frac{7}{2}$ relatea to the first two peoks。 In Fig．II the four most prominent peaks are $C_{9} C^{2}: D$ and D^{2} ．the Siret two being symetry related to the last two．Each peak was assignod coordinates in arbitrary units．The units chosen weres the 으 and b－ares vere divided into 40ths and the c－axis into 80ths．All peak coordinetes were then expressed in these units．Peak C，Fig．II，hes coordinates（ $0^{40 \text { ths }}{ }_{9} 8.6^{40 \text { ths }}{ }_{8} 40^{80 \text { ths }}$ ） and peak $C^{\text {I }}$ has coordinates（ $3^{40 \text { the }}, 6^{40 \text { the }}, 40^{80 \text { tha }}$ ）。 If we assign peak C to $B r_{0}(I)$ ，the ion then has coordinates（ $0,4.3$ ， z_{1} ）expressed in the chosen arbitrary unitso Similarly if peak C^{i} is assigned to $B r_{0}$（II），this ion has ccordinates （ $1.5,3, z_{2}$ ）P Paks D and D^{1} boing related to peaks C and C^{j}

Fig. II
The three-dimensional Patterson function section $P\left(U, V, \frac{1}{2}\right)$. Contour levels are arbitrary, the dashed contour being negative. The peaks mentioned in the text are shown.
respoctively give idential $\mathrm{z}^{\text {mo }}$ and y_{m} coordinates for the two Bromide ions.

The section of the three dimensional Patterson synthesia $P\left(J_{0}, \nabla_{9} \frac{1}{4}\right)$, Fige Io should contain four poaks at; $\frac{\pi}{2}+x_{1}-J_{1}$,
 peaks; $\frac{1}{2}-x_{1}-y_{1}, \frac{1}{2}+x_{1}-y_{1}$, $\frac{1}{4}$ and $\frac{1}{2}-x_{2}-y_{2}, \frac{1}{2}+x_{2}-y_{2}$, $\frac{1}{4}$. The section $P\left(X_{0}, V_{,} \frac{1}{4}\right)$ only contained three prominent peaks, marked $(A, B), A^{I}$ and B^{I} respectively on Fisfor, $A B$ peaty ($A B$) is the largest paak on the section and is nearly elliptical in shape it can be assumed that the tro peaks expected for one atom on this section either lie on the diagonal mirror plane or lie so close to it as to be fused into one large elliptical peak due to lack of resolution. The peak ($A B$) has coordinates ($4.3,403,20$) whilst peaks A^{1} and B^{1} have corrdinater (15.5 , 18.5, 20) and ($18.5,15.520$) xespectively From section
 $x=0$ and $y=403$ units. Peak (AB) is clearly due to Bromide ion (I) and the y - coordinate for the basic set of this atom now becomes $y=15,7$ In section $P\left(\mathbb{O}, \forall, \frac{1}{2}\right)$ the y a coordinate must really be $\frac{1}{2}$ - y o Thu $\$$ at this stage $\mathrm{Br}(\mathrm{I})$ has ooordinates ($0,15.7, z_{1}$) Calculation of the coordinaters of the poaks to be expected in section $P\left(0,7, \frac{7}{4}\right)$ due to Bromide ion (II), using the $x_{2} y$ - values obtained from $P\left(X_{9} V_{0} \frac{1}{2}\right)$ gives peak coordinates corresponding exactly to those of peaks A^{2}, end B^{1}. Thus Br (II) has still coordiabes $\left(1,5,3, z_{2}\right)$.

The section of the three dimensi onal Patterson synthesis． $P\left(0, \frac{1}{2}, W\right)$ should contain four peaks，two per non－bymmetrically
 $\frac{1}{2}-2 y_{1}$ ，$\frac{1}{2}, \frac{1}{4}+2 z_{1}$ ；and $\frac{1}{2} \sim 2 y_{2}$ ，$\frac{1}{2}, \frac{1}{4}+2 z_{2}$ ．This section $1 s$ shown in FigeIII and can be seen to contain several peaks the largest of which are letterea $E_{0} F_{0} E^{l}, P^{l}$ and G respeotively。 Peaks E and F with respective coordinates $(20,20,11)$ and（11．4， 20,29 ）are due to $\mathrm{Br}(\mathrm{I})$ ．From these peak coordinate values， $\mathrm{Br}(\mathrm{I})$ is round to hage coordinates（ $0,403,4.5$ ）。 Clearly at this stage the fo coordinate of this ion can not be unambiguously assigned．Peak \mathbb{E}^{2} and F^{1} with respective coordinates（ $17,20,33$ ） and（ $14,20,7$ ）belong to Bri（IJ）．Fron these coordinates we find that $\frac{1}{4} a z_{2}=33$ and $\frac{1}{4}+2 z_{2}=7$ thus making $z_{2}=-6.5$ 。 Thus these three yarker sections have given us our basic set of coordinates，

$$
\operatorname{Br} \operatorname{I}(0,4.3,4.5) \quad \operatorname{Br} \operatorname{II}(1.5,3,-6.5)
$$

which will be usea to locate $B r^{\circ}-$ Br $^{\circ}$ vectors in the body of the Patterson synthesis．These peaks in general positions pill decide whether or not the basic set is correct．

$\begin{aligned} & \text { Figo } \\ & \text { Ref, } \end{aligned}$	Veotor	Coord，Found（arbitrary units）			$P\left(J_{0} \nabla, W\right)$ arb, unite
A	$\frac{1}{2}-x_{1}-y_{1}, \frac{1}{2}+x_{1}-y_{1}{ }^{\frac{1}{4}}$	4．3140	4．3 40	20（80ths）	60
c	$2 x_{1}, 2 y_{1}, \frac{1}{2}$	0	B， 6	40	54
E	$\frac{1}{2}-2 x_{1}, \frac{1}{2}, \frac{1}{2}-2 z_{1}$		20	11.0	112
F	$\frac{1}{2}-2 z_{1} 9, \frac{1}{3}, \frac{1}{8}+2 z_{1}$	11.4	20	29，0	44

Fig. Ref.	Veotor	Coord, Found (Arbitrary Units)				$\begin{aligned} & (0, \sigma, W \\ & \text { rb, uni } \end{aligned}$
$\begin{aligned} & \mathrm{A}^{1} \\ & \mathrm{C}^{1} \\ & \mathrm{E}^{1} \\ & \mathbb{F}^{1} \end{aligned}$	$y_{1}+x_{2}, x_{1}+y_{1}, \frac{1}{e}+2 z_{1}$	15.7	25.7	31.0	35	
	$y_{1}-x_{1},-x_{1}+y_{1}, 2 x_{1}$	15.7	15.7	9.0	39	
		15.5	18.5	20	51	
	$2 \mathrm{x}_{2} ; 2 \mathrm{y}_{2}$, $\frac{1}{2}$	3.0	6.0	40	50	
	$\frac{1}{2}-2 x^{2}{ }^{\frac{1}{2} \theta^{4}-2 z_{2}}$	17.0	20	33.0	41	
	$\frac{1}{3}-2 y_{2} \cdot \frac{3}{2} 0 \frac{1}{4} \cdot 2 \mathrm{~m}_{2}$	14.0	20	7.0	42	
	$y_{2}+x_{2}, x_{2}+y_{2} \cdot \frac{1}{3}+2 z_{2}$	1.5	2.5	27.0	54	
		4.5	4.5	13,0	54	
G		18.5	1.3	11.0	109	
		18.5	7.3	29.0	47	
	$\mathrm{J}_{1}+x_{2}, x_{1},+y_{2} \because \frac{1}{2}-z_{1} \oplus z_{2}$	5.8	17.0	2,0	44	
	$\mathrm{x}_{2} \cdot \mathrm{y}_{1} \cap \mathrm{y}_{2}-\mathrm{x}_{2}, \mathrm{z}_{2}+\mathrm{E}_{1}$	3.0	17.0	38.0	41	
		17.2	3.0	31.0	40	
		12.7	1.5	18.0	69	
		1.5	18.7	22.0	35	
		3.0	17.2	9.0	36	

The table above iists all the vectors to be expected in the threew dimensional Patterson synthesia; the coordinates found (in arbitrary units): and the peak value of P (UWF) in arbitrary units。 The reforence letters used in FigsoI。 II and III are shown opposite
the appropriate vectors. It is seen that these are two vectors per set of symetrically related bromide ions and eight veotors between nonmaymerricelly related bromide ione in the body of the map.

Using the basic set of coordinatea for Br (I) and Bx (II) these general paeks Fere assigned coordinates then looked for in the body of the Patterson map. of the frelve vectors, only four were found in the expected positions. Clearly the basic set of coordinates was not correct. Accordingly, the whole Patterson map was gearched for vector peoks with values of P (JVW) greatex than 30 (in arbitrary units)。 These peaks were assigned ooordinetse. In all only iwenty vooiors aatisfying these conditions were found and of these, sirteen consisted of two symmetry related sets of eight vectors. One set of eight vectors ras rejected learing trelve vectors in all the number eqpected to be found o the final sots of coordinates were found by solving the trenty simultaneous equations provided by the vectors listed above to give two sets of Bromide ion coordinates which would agree with the calculated and observed positions of any given $B r^{\circ}-\mathrm{Br}^{\circ \prime \prime}$ veotor. The final sete of coordinates foumi in this manner were; $\mathrm{BI} \operatorname{I}\left(20, \mathrm{O}_{2} \mathrm{j}_{2} 4.5\right) \quad \mathrm{BE} \operatorname{II}(38.5,3,33.5)$

These coordinates were relatod to the basic set by the bymmotry of the Patterson function.

In the Harker section $P\left(D, \frac{1}{2}, W\right)$, Fig.III, there is a large vector $\{P(J, \nabla, T)=109\}$ whioh is marked G. This veotor is causod by non-symmetrically related bromide ions and is the vectors $x_{1}+x_{2} y_{1}+y_{2}, \frac{1}{2}+z_{1}-z_{2}$. The observed and celculated positions of this veotor are ($0,20,11$) and (18.5, 1.3. 11) respectively. The observed position has its $x \infty$ and y coordinates lying on the mirror planes $0=0$ and $V=\frac{1}{2}$. This veotor occurs trice in the map the other observed position being ($20,0,11$) with z - and y - coordinates on $U=\frac{1}{2}$ and $V=0$. Clearly this large peak arises from the fusion of four smaller peaks near the intersecting mirror planes due to laoir of resolution.
(5) STRUCTURE DETERMTIVATION

The ratio $\Sigma p_{H}^{2} / \Sigma \sum_{L}^{2}$ for chita ononthine dihydro-bromide is 2,41 indicating that the first set of phasing calculations based on the positions of the bromide ione alons should gite a reasonable approximation to the correct phases.

The Fourier programe devibed by Dro J.S. Rollett for the DEUCE computer cannot convenionily bo used for orystals belonging to the space group $\mathrm{PA}_{1}{ }^{2} 1^{2}$ 。 The high aymmetry of this space group requires very large computing time to celculate a full three-dimensional synthesis. It was therefore advisable to change the space group to one of lower symmetry. At the suggestion of

Dr.T.A. Hamor, it was observed that $\mathrm{PA}_{1}{ }^{2}{ }_{1}{ }^{2}$ could be transferred to the orthorhombic space group $P 2_{1} I^{2} I^{2} 1$. Thie arises on account of $\mathrm{PA}_{1}{ }^{2} 2_{2}{ }^{2}$ having 222 as a aub-point group to its point group 422。 $\mathrm{P}_{1} \mathrm{I}^{2} 1^{2}{ }^{2}$ contains four saymmetric units per unit cell whereas $\mathrm{P}_{4}{ }^{2}{ }^{2}{ }^{2}$ contains oight per unit cell. Thus, this transformation will require tro molecules of ohimonanthine dihydrobromide to comprise the ner asymmetric unito It was also necessary to include symmetrically equivalent reflections in all caloulations having $\mathrm{P}_{1}{ }^{2} 1^{2} 2_{2}$ as space group. In the three dimensional Patterson synthesis, 2093 independent terms vere used. The extra $\left|F_{0}\right|$ values for the Fourier calculations were obtained by preparing a set of $\left|F_{0}\right|$ velues from the original 2093 by interchangincs the h and k indioos but leaving the value of $\left|F_{0}\right|$ the same. These two sets of date together make up the data to be used for all future Fourier calculations. In prea oparing the extra data, reilections with indices of the type $(h, k=h$, ℓ) were not treated in this manner. This resultod in 4003 structure amplitudes for inclusion in the Fouricr calculations. If under these new conditions the origin is changed to ($\frac{1}{4}, 0$, $\frac{\pi}{6}$) the space group effectively becomes $\mathrm{P}_{1} 1^{2} 1^{2} 1^{\circ}$

The first get of phasing calculations was carried out using the coordinates of four Bromide ions. Two of these Bromide ions had coordinates assigned to them from the Patterson synthesis. The other two wore related to the first two bromide
ions by tetragonal symetry, If (x, y, z) is a bromide ion from the Patterson synthesis, then its symetry related bromidefion has coordinates ($y, x,-z$). An equal isotropic temperature factor, $B_{\theta} \times 4.5 \AA_{\AA^{2}}^{2}$, was assumed for eaoh bromide ion, The average discrepancy between observed and calculated structure factors was 39.9% A three dimensional Pourier map was computed using the phases obtained and all $4003\left|F_{0}\right|$ Falues. This map was computed over one quartex of the unit cell volume and drawn out on stecked gless sheets, parallel to (001), to give a threo-dimensional exfect. The complete struoture of the molecule could clearly be seen in this map. As axpected both moledules in the asymmetric unit were idontical in every respect as ther were related to each other by totragonal symetry. The structure found was seen to be the same as one of the tro structures proposed by Hodson et 81 (48), a fact which aided the atructure determination considerably. With the exception of four atome out of the 56 atoms (excluding hydrogen) in the asymmetric unit, all atoms had an electron density greater than $2 e_{i}^{\circ}-3$. These 52 regions of high electron density were the only ones preaent reaching such a value。 Thus the determination of the atructure at this early stage was atraight--formara.

An impzoved set of phases was obtained in the next cycle of structure faotor calculations. This cycle had the ooordinates

Fig. IV The third electron-density distribution for
chimonanthine dihydrobromide. The superimposed contour sections are drawn paralle to (OOI). Contour level le \AA^{-3} except around the bromide ions, which are shown as open circles. The first contour level has been omittedn
of all 56 atoms in the asymmetric unit included. Exoept for the four bromide ions, all other atoms were included as carbon atoms and each atom was assigned an isotropic temperature factor of $B_{\theta}=4.5 \AA^{2}$. The value of R, the discrepancy, fell from 39.9% in the previous oycle to 29.3%, A sscond Fourier synthesis was computed using the new phases and 4003 terms. On drawing up this map as bofore, it could be seen that both molecules in the asymmotric unit were now clearly resolved. Furthex very fom areas of positive electron density, other than those due to atomic locations, remaired.

From a consideration of peak heights it was now possible to determine which atoms were nitrogen atoms. Accordingly a third cycle of atructure factors wes computed including four bromide ions, eight nitrogen and forty-four carbon atoms. Each atom was aseigned an isotropio temperature factor ${ }^{B} \theta=4.0 \AA^{2}$ 。 The average discrepancy wea lovered to 23.2%. The third Fourier synthesis based on these phases by now con--tained very few areas of spurious eleotron density. This map is show in Figure IV. as superimposed contour sections drawn parallel to (001). The corresponding atomic arrangement is given in Figure V 。

3. (6) REFINEMENT.

Fig. V.
The arrangement of atoms in the mecule corresponding to Fig.
eleotronmdensity distribution, a fourth cycle of structure faotors was calculated. Once more each atom was assigned an isotropio temperature faction of $B_{\theta}=4.0 \mathrm{~A}^{2}$. The diecrepancy, R , was lowered to 21.4\%. Further refinement of the atomic coordinatea was carried out by computing both $\left|F_{0}\right|$ and $\left|F_{0}\right|$ Fourier maps. The two sete of atomic coordinates obtained fron these maps were used to correct the ocordinates used in the fourth Btructure-factor oycle, for termination-of-seriog orrors.

It was nov telt that fuxther refinement of the structure by Fourier methods gould not be very effective. Lecordingly, it was decided to reifine the posjitional and thermal parameters by the method of least squares. The space group of the crystal was changed back to $\mathrm{PA}_{2}{ }^{2} 1^{2}$ by the reverse of the process out lined in section (3.5). Two cycies of least-squares oalculations were carried out using the DEUCE programme of Dr_{o} J.S. Rollatt (32) which refines three positional and six thermal parameters. The first cycle used the coordinetes whioh had been corrected for terminationoofaseries errors. After these two cycles, the value of R stood at 17.1% 。
mafinement was completed by the calculation of a final set of structure factore, each atom having the anisotropic temperature factors calculated in the second cycle of least aquares. The final value of B, calculated over 2093 observed atructure factors was 14.9% 。

Fig. VIe
The arrangement of atoms in the molecule as viewed in projection along the a - axis.

The theoretical atomic scattering faotors employed in the structure-factor calculations were those of Berghuis at al (30) for carbon and nitrogen, and the Thomesomermi (3t) values for bromine (a bromide ion scaitering curve was not omployed). The course of the analysis is given in Tabla I. The weighting scheme used in the least-aquares refinement bas as follows; $\sqrt{W}=\left|F_{0}\right| /\left|F^{*}\right|$ is $\left|F_{0}\right|<\left|F^{*}\right| \bar{m} \sqrt{m}\left|F^{*}\right| /\left|F_{0}\right|$ if $\left.\left|F_{0}\right|\right\rangle\left|F^{*}\right|$ where $\left|F^{*}\right|$ is constant. It was token equal to the average value of $\left|F_{0}\right|$ (about 20).
3. (7) RESULIS.

The finel etomic coordinates are listed in Table II and the anisotropic temperature factors, bi j, listed in Table III。 Table IV conbelng the final values of F_{0}, F_{c} and α for the 2093 observed independent refinctions. The intere -atomic distances and ralency angles colculated from the final atomic coordinates are given in Tables V. VIII. The standard deviations of the final coordinates were estimated in the usual manner from the least equares residuals and are shown in Table IX. The average eatimated standard doviation in the coordinate of a carbon atom is $0,06 \AA_{i}^{\circ}$ of a nitrogen atom $0.045^{6} \AA^{\circ}$ and of a bromide ion 0,006 A. From these resulto the average estimated standard deviation of a carbon-carbon bond is about $0.08 \AA_{\text {, }}^{\circ}$ of a carbon-nitrogen bond is ebout $0.07 \AA$ and of a nitrogen bromide ion bond of $0.045 \mathrm{~A}_{\text {. }}$. The average estimated standard deviation of
a valpenoy angle is about 4°.
Figure VI shows the atomic arsangement as viewed in projection down the e- oris. The arrangement of the molecules in the umit cell is shown in Fisure VII as seen in projection down the - ardi. The bromido ions are ohom as large opon oircles and the nitrogon atoms as small black ofrcled. Distances between bromide ions and nitrogen atoms are printed beside the broken 3ine linking the otoma.

Shortly artar commenoing this analysie, Hodson ot al (48) on the basis of ohemical ovidonce sugesatod four structures which could be taken inio congideration for the atructure of chimonanthine (I) - (IV). fiowever, of thear (IV) wes reventiy aesigned to calyeanthine (51,52), and Hofmann docradaiion indicated that (III) was also unhselg. zisc eohydrogenmtion of oulgeanthine, which has a proiormed quinoloquinoline ekoleton, gitac celycanino (53), (V), (52) in 3% yield。 Chimonanthine on beine treatod gimilarly gave only traces of calycanine ($\leqslant 0,1 \%$) londing support to (I) or (fis) boing the cospoci struoture. Hodson ot $23(48)$ also showed that the alkeloid folicanthino (49) is almost cortainly bie - W(a) methgiohimonanthine。 Fors reoently (54) the alkaloid calyoanen thidine was proved to represent the intermediate stage in the methylation of chimonanthine to folicanthine. Chemical evidence

(I)

(iii)

(iv)

(II)

(iv)

(vi)

distinguish structures (I) and (II) but support for (I) as being the correct structure came from the mass-spectral observation that the molecule exhibits aasy halving. Folican--thine and calycanthidine were shown to beheve in a similar manner.

The final results of this atiructure analyais have eatablished the conatitution and storeochemistry (apart from absolute configuration) of chimonanthine to be as in (I), It Sollogs that calycanthidine am folicanthino nugt be (VI) and (VII) respectivoly. Chimonanthine dihydrobromide is therefore (VIII) and is given with the atomic numbering gystom used in the text and tables of resultse

The chimonanthine molecule consista of two ohemically and storeochemically identical halves of formula ($\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \cdot \mathrm{HBr}$)。 Rings C and C^{3} are fused cige to rings B and B^{1} respectively. The two halves of the molecule can in theory rotate freely about the single bond, $C(11)$ - $C\left(11^{1}\right)$. In the cryatal the molecule adopte a ciso conformation in which the benzene rings areinclined at an angle of 60°. The mean molecular plane calculated by the method of Schomaker ot al (47) through the atoms of benzene ring a hes oquations

$$
0.133 X+0.156 X+0.9722-14.105=0
$$

where $X_{y} Y_{0} Z$ are coordinates expressed in Angstrom units referred to orthogonal axes so b and Q_{0}. This ping is planar to

Within $0.013 \AA$. Similarly the mean plane through the atoms of benzene ring A^{1} is,

$$
0.352 X=0.697 Y+0.625 \mathrm{Z}=9.512=0
$$

and the ring is planar to within 0.019 A. The equation of the mean plane through atoms C1, C2, C3, C4, C5, 16, C7, C11, C12 is;

$$
0.131 X+0.199 Y+0.9712-14.097=0
$$

and is plamar 60 within $0.017 \AA$. The equation of the mean plane through atoms $C I^{1}, C 2^{1}, C 3^{1}, C 4^{1}, C 5^{1}, N 6^{1}, C 7^{1}, C 1 I^{1}, C 12^{1}$ is;

$$
0.313 X \infty 0,679 X+0,664 Z=9,810=0
$$

and is plenar to within $0,07 A^{\circ}$. The planes through the atome of rings B and B^{1} are plenar to within $0.027 \AA$ and $0.071 \AA$ respeotively. Thus it can be seen that rings A and B and rings A^{1} and B^{l} are, within experimental error plenar as one would expect. Table \bar{X} gives the deviations of atoms from various planes in the moleculo.

Honever, rings C and C^{d} can in no way be considered planar. The mean molecular planes through these ringe are only planar to within $0.162 \AA$ and $0.195 \AA$ respectively. In these ringe, atoms c9 end c9 respectively lie out of the plane sn that the rings adopt the somoalled "envelope" configuration. In chimonanthine tho adoption of this configuration is very prom onounced and is probably caused by steric repulsion between

The mean plane oalculated through atoms C13，N8，C9，ClO of ring C jes planar to within $0.057{ }^{\circ}$ ．This high degree of planarity of these atoms is unexpected，but is due to the ring having a folded appearance which when viewed from above resembles （IX）not the more usual appearance（ X ）

The angle betweon the mean plane through atoms C7， $18, \mathrm{ClO}$ $C 11$ and the plane through $C 13, \mathbb{N B}, C 9,010$ is 72° 。 In ring C^{1} the maan plane through atoms $\mathrm{Cl} \mathrm{N}^{1}$ 。 $\mathrm{NB} 8^{1}, \mathrm{C} 9^{1}, \mathrm{ClO}$ is planar to within 0.096 i and is inclined at an angle of 64° to the plane through atoms $\mathrm{C} 7^{8}, \mathrm{NB}^{1}$ ， $\mathrm{ClO}{ }^{1}$ ， Cll 。 In ring C ，as atom C 9 does not lie in the usual configuration but is forced to lie the nearer A benzene pings the methyl group at 013 is forced further away from atom in6．freasurement of a stendard Droiding model gave a 01－O9 distance of $4.45 \AA$ whorees the value found in the molecule is $4.07 \AA_{\text {A }}$ The N6－C13 distance observed is $2.91 \AA$ whilst the model gives a value oi 2.55 A．Belov is a list of non－bonded distances compared vith the correspondine distences In a standard modei，which illustsate the configuratione of ringe C and C^{1} 。
73.

Ring C	Observed	Beasured	Observed	Ring C^{1}
C1. 09	4.07	4.45	3.89	$C 1^{1}-69^{1}$
C5~C9	3.49	3.90	3.44	$65^{1}-69^{1}$
c5-013	3.99	3.60	3.80	C5 ${ }^{1}$ - $\mathrm{Cl3}^{1}$
N6-09	3.19	3.40	3.16	H6 ${ }^{2}-c 9^{1}$
N6-613	2.9 .1	2.55	2.72	$176^{1}-\mathrm{Cl} 3^{1}$
09-012	3.19	3.45	3.04	$c 9^{1}-012^{1}$
C10-c13	3.75	3.60	3.80	C10 ${ }^{\text {2 }}$ - $\mathrm{Cl} 3^{1}$
C11 - 613	3.77	5.60	3.77	C11 ${ }^{1}-\mathrm{Cl3}$

The average length of the carbon-carton aromatic bond is 1.39 A which ayrees fevourably with the length of 1.395 A in benzene. The individual values vary from $1.34 \AA$ to $1.44 \AA$ a variation which is not eignificant when the standard deviation of 0.013 A of an aromatic bond length is considered. The average carbon-carbon singlo bona length betweon spyo hybridised carbon atoms is $1.54 \AA_{9}$ in good agreenent with the accepted value in diamond of $1.545{ }^{\circ}$. The arerage carbon-carbon single bond between sp^{2} and sp ${ }^{3}$. hybridised atoms is $1.52 \AA$ again in good agreoment with the acceptea value of $1.525 \AA$ (55)。

The carbonamitrogen bond-lengths show a greater spread, varying from $1.36 \AA$ to $1.57 \AA$. Hogever, these are not all of the same type. Three types are present, carbon (ap ${ }^{2}$ hybridised) - nitrogen carbon ($n 0^{3}$ - hybridised) - nitrogen and carbon ($s p^{3}$ hybridised) $-\mathrm{H}^{+}$。 The carbon ($s p^{2}$ - hybridised) - nitrogen bond length has beon measured in acetenilide (56) as 1.33 A $_{9}$ in

2-chloro - 4-nitroentiline (57) as $1.37 \AA$, in calyoanthine dihydrobrofide dihydrate (51) as $1.40 \AA_{0}$ in echitamine bromide methenol solvate (58) as $1.38 \AA$ and in ibogaine hydrobromide (59) as 1.40 A. The average value Pound in chomonanthine of $1.43 \AA$ agrees reesonably well with most of these values. The average oarbon (ap^{3}) - nitirogen bond longth at 1.44 does not differ significently from, the accepted value of $1.47 \AA$ (55), the calycanthine (51) value or I. $44 \dot{A}$ and the echitamine (58) value at 1.43 .

In ohimonanthine there are six $C\left(\mathrm{sp}^{3}\right)-\mathrm{H}^{+}$bonde varying from 1.41 \& to 1.57 \& with an average value of 1.50 \&. This variation in length exceeds the stendard deviation of $0.075 \AA$ of this type of bond However, wide variotions in the length of this bond in molecules containing several such bonds are frequently observed. Celyosnthine (51) has six such bonds which vary Prom $1.43 \AA-1.56 \AA$ (average $1.50 \AA$) . The values $1.51 \AA$ in d 1 alphaprodine hydrochloride (60) , $1.503 \AA \mathrm{in}(t)$ - Dos (oxymethylene) - lycoctonine kydriodide monohyarate (61), $1.506 \AA$ in d - metinadone hydrobromide (62) suggest that the average value in chimonanthine is reasonably good.

The average bond angle of the tro benzene rings in ohimonenthine is 120°, equal to the expected value. Rings B and B^{1} have an average value of 107.6° whilat rings C and C^{1} have a value of 104° e The aikaloid ochitamine (58) has a ring system
almost identical to the ring syatems $A B C$ and $A^{1} B^{1} C^{1}$ in ohimonanthine. In echitamine, the equivalent of ringe B and B^{1} has an average valoncy angle of 208° and the oquivalent of rings 0 and C^{I} has an avarage valency angle of 106°. In five membered rings average valency angles conaistently smaller than tetrahodral have bsen reported, in hydroxy - L - prolino (106°), (63), isoclovene hydrochloride (105), (64), himbacine hydrobronide (105°), (65) and clerodin bromoleotiono (106°), (43). These values are consistent with the non-planariby and consequent angle defomration in cyclopentane (66). When a five-membered sing is fused to an aromatic ring (as in chimonanthine) or incorporates a double bond the averago valoncy angle is alightiy larger than in the above oxamplos. In bromogeigerin acotate (67) the average valency angle in the cyclopentenone ring is 107 ${ }^{\circ}$, in 5 - bromogriseofuivin the equivalent anglo is 108968). The value of 107.6° in ohimonanthine is consiatent with these results. The average totrahedsal bond angle in chimonanthine is 110° in favourable egreement with the accopted value of $109^{\circ} 28^{\prime}$.

In the orystel the pozitivaly charged molsoules and the bromide ions are held together both by the normal ionic forces and hydrogen bonds. The nitrogen atomobromide ion hydrogen bonds involvo the indole nitrogen atom and A^{+}atom in one half of the molecule the compeaponding nitrogen atome in the othor half of the molecule not boing bonded in this fashion. Esch of the

Fig.VII, The crystal structure of chimonanthine dihydrobromide as viewed in projection along the \underline{b} - axis.

 (I) hea combacte of 4.00 in 3.43 i with nitrogen atome of the type man and zespootively whilet bsomice (II) hat ocnteote
 zespootively. These eontacts are ghown in Pig. VII vhich ehowe the sontents of the ruit ooll in projaction down the b-axis.
 bone and is aimilar to the values of HI - Be distanoen in cohitamise bromide methanol solvate (58), oelyoanthine dibydrobrouide Cilugizate (51), ibogaino hydrobromide (59), and in aystime ditydsobromide (69). The Br (II) - 50^{1} distanco of $3.10 \AA^{\circ}$ 00mpene ponde to a hydrosion hond and ie in agreomont with the equivalent distances in codeine hydrobromide (3.17 i) (70), etryohine mydrohromide (3.17 i) (72), and ibogain hydrobromide (3.23 i) (59).

 bean lies totrahedrally along the \bar{Z}^{+}- H bond. Fho eloweot carben-bromide 10 m distance is 3.76 i betwoen CH^{1} (-id) and BE (I) a value greater then the avorago value of 3.62 A foum in atinilar compormate. Whe elarest approwh between two ehimonanthine

77.

molecules is $3,26 i$ between 04 of the reference moleoule (x, y, s) and $C 4$ of the molecule related to it by the tetregonal eymetry operation ($\mathbf{y}, x,-\boldsymbol{z}$).
77.

78.

TABLE II

ATOMIC CO-ORDINATES

(Oxigin of co-ordinates as in "International Tables")

Atom	x/a	$\underline{x / b}$	2/0
C_{1}	0.7967	0.4854	0.4351
C_{2}	0.7670	0.5813	0.4280
c_{3}	0.6668	0.6053	0.4330
C_{4}	0.6007	0.5361	0.4435
C_{5}	0.6302	0.4449	0.4527
${ }^{6}$	0.6303	0.2788	0.4689
C_{9}	0.6774	0.2363	0.3850
C_{10}	0.7690	0.2581	0.4115
c_{11}	0.7340	0.3136	0.4600
C_{12}	0.7232	0.4192	0.4479
C_{13}	0.5073	0.1977	0.4127
$\mathrm{C}_{1}{ }^{\prime}$	0.7016	0.3649	0.5779
C_{2}	0.6986	0.4311	0.6161
C_{3}	0.7823	0.4912	0.6248
$C_{4}{ }^{\text {' }}$	0.8641	0.4812	0.5988
$\mathrm{C}_{5}{ }^{\prime}$	0.8582	0.4132	0.5578
0^{7}	0.9096	0.3051	0.5048
0^{9}	0.8899	0.1697	0.5449
${ }^{C_{10}}$	0.7932	0.1830	0.5187
${ }^{\text {c }} 11{ }^{\prime}$	0.8022	0.2895	0.5057

79.

TABLE II (Continued)

Atom	x/a	X/b	8/0
$c_{12}{ }^{\prime}$	0.7815	0.3584	0.5487
$0_{13}{ }^{\prime}$	1.0587	0.2324	0.5380
H_{6}	0.5710	0.3692	0.4647
${ }_{8}^{8}$	0.6039	0.2065	0.4268
$\mathrm{K}_{6}{ }^{\prime}$	0.9423	0.3873	0.5262
188_{81}	0.9607	0.2134	0.5122
BrI	0.4868	0.1069	0.5537
BrII	0.9715	0.0758	0.4173

80.

RABLE III

TABLE III (Contd,)

	b_{11}	\underline{b}_{22}	$\stackrel{b}{33}^{3}$	b_{12}	\underline{b}_{23}	\underline{W}_{13}
${ }^{C_{13}}{ }^{1}$	266	659	123	- 26	- 18	301
H_{F}	415	593	182	-2.51	-64	155
$\dot{1}_{8}$	487	736	101	-332	- 57	396
$\mathrm{H}_{6}{ }^{1}$	639	606	135	2	81	254
$\mathrm{N}_{8} 1$	541	505	128	180	-80	119
${ }^{B r} r^{\prime}$	681	735	209	-74	-6	-89
${ }^{B r}{ }_{\text {II }}$	694	667	192	-131	-49	418

$$
m
$$

 n
w

 $\stackrel{\sim}{\sim}$
 $\%$ $\%$ \cdots

$$
\begin{array}{ll}
0 & 0 \\
\sim & \vdots
\end{array}
$$

$$
\pm
$$


```
*
```

 \(-\)
 \qquad

${ }^{-}$

 ㅍ․
 a

\rightarrow | a | 0 |
| :--- | :--- |
| a | |

a69

- annennenrere

$$
\because
$$

\div

[^0] 1

MOLECULAR DTRBENSIONS

Interatomic Distances (A) and Angles

TABLE \mathbb{Y}.

Intramolecular bonded Distancos

$\mathrm{c}_{1}-\mathrm{c}_{2}$	1.41	$C_{1}{ }^{\prime}-C_{2}{ }^{\prime}$	1.38
$c_{2}-c_{3}$	1.44	$c_{2}{ }^{\prime}-O_{3}!$	1.44
$C_{3}-C_{4}$	1.36	$\mathrm{C}_{3}{ }^{\prime}-\mathrm{C}_{4}{ }^{\prime}$	1.34
$\mathrm{c}_{4}-\mathrm{c}_{5}$	1.35	$\mathrm{C}_{4}{ }^{\prime}-\mathrm{O}_{5}{ }^{\prime}$	1.45
$c_{5}-c_{12}$	1.35	$\mathrm{C}_{5}{ }^{\prime}-\mathrm{C}_{12}{ }^{\prime}$	1,34
$\mathrm{C}_{12}-\mathrm{C}_{1}$	1.42	$\mathrm{C}_{12}{ }^{\prime}-\mathrm{C}_{1}{ }^{\prime}$	1.36
$\mathrm{C}_{5}-\mathrm{N}_{6}$	1,38	$\mathrm{C}_{5}{ }^{\prime} \cdots \mathrm{IV}_{6}{ }^{\prime}$	1.49
$\mathrm{H}_{6}-\mathrm{C}_{7}$	1.51	$\mathrm{N}_{6}{ }^{\prime}-\mathrm{C}_{7}{ }^{\prime}$	1.36
$c_{7}-c_{11}$	1.54	$c_{7}{ }^{\prime}-c_{11}{ }^{\prime}$	1.51
$\mathrm{c}_{11}-\mathrm{c}_{12}$	1.52	$\mathrm{C}_{12}{ }^{\prime}-\mathrm{C}_{12}{ }^{\prime}$	1.52
$\mathrm{C}_{7}-\mathrm{H}_{8}$	1.55	$\mathrm{C}_{7}{ }^{1}-\mathrm{N}_{8^{\prime}}$	1.48
$\mathrm{N}_{8}-\mathrm{C}_{9}$	1.57	$\mathrm{H}_{8^{\prime}}-\mathrm{C}_{9}{ }^{\prime}$	1.45
$\mathrm{c}_{9}-\mathrm{C}_{10}$	1.49	$C_{9}{ }^{\prime}-C_{10}{ }^{\text {d }}$	1.53
$c_{10}-c_{11}$	1.58	$\mathrm{C}_{10^{\prime}}-\mathrm{C}_{11}{ }^{\prime}$	1.53
$\mathrm{H}_{8}-\mathrm{C}_{13}$	1.41	$\mathrm{K}_{8^{\prime}}-\mathrm{C}_{13}{ }^{1}$	1.55
		1.58	

85.

TABLE VI

INTERBOND AMGLES.

TABLT VI (Conta.)

$C_{4}-C_{5}-N_{6}$	125
$\mathbb{N}_{6}-C_{7}-N_{8}$	111
$C_{12}-C_{11}-C_{11}$	116
$C_{10}-C_{11}-C_{11}{ }^{\prime}$	110
$C_{7}-C_{11}-C_{11}$	112
$C_{12}-C_{11}-C_{10}$	109

TABLB YII

ITTRAMONECDLAR HON - BOMDED DISTANCES <4.0 A

C1- 116	3.62	$01^{1}-116^{1}$	3.64
01-07	3.81	$C 1^{1}-C 7^{1}$	3.59
01-09	4.07	$02^{1}-09^{1}$	3.89
01-010	3.26	c1 ${ }^{1}-010^{2}$	3.25
02-011	3.85	$02^{1}-011^{1}$	3.83
C3-156	3.65	$03^{2}-146^{1}$	3.74
C4-67	3.68	$04^{1}-07^{1}$	3.57
64-011	3.64	04 ${ }^{2}$ - 011 ${ }^{1}$	3.75
05-N8	3.042	C5 ${ }^{2}$ - mec^{2}	3.36
c5-49	3.49	$\mathrm{c5} 5^{1}-\mathrm{c9}$	3.44
C5-C10	3.43	C5 ${ }^{1}-010^{1}$	3.49
C5-013	3.99	C5 ${ }^{1}-\mathrm{Cl} 3^{1}$	3.80
\$6-09	3.19	H6 ${ }^{1}-09^{1}$	3.16
H6-010	3.47	E6 ${ }^{2}-610^{2}$	3.53
116-033	2.91	H6 ${ }^{2}$ - $013{ }^{2}$	2,72
188-612	3.45	$1888^{1}-6122^{1}$	3.36
09-01.2	3.12	$09^{1}-\mathrm{Cl2}$	3.04
010-013	3.75	$010^{3}-013^{1}$	3,80
011-013	3.77	cli ${ }^{2}-013^{2}$	3.77
01-05 ${ }^{1}$	3.53	c9-C11 ${ }^{1}$	3.74
01-1 H^{1}	3.45	010- Tr^{1}	3.84
c1- $\mathrm{cl}^{\text {I }}$	3.50	c10- $\mathrm{Cl}^{\text {² }}$	3.24

TABLE VII (Conta.)

01-011 ${ }^{2}$	3.32	c10- 010^{1}	3.06
01-012 ${ }^{1}$	3.51	010-C12 ${ }^{1}$	3.92
C5- $01{ }^{1}$	3.66	011- $\mathbf{C l}^{1}$	3.26
05-011 ${ }^{1}$	3.53	C11-C5 ${ }^{1}$	3.42
c5-C12 ${ }^{1}$	3.53	C11 - K^{2}	3.55
N6- Cl^{1}	3.53	C11- HB^{1}	3.73
N6-C11 ${ }^{1}$	3.58	C11-C9 ${ }^{1}$	3.73
116-C12 ${ }^{1}$	3.70	C12 - Cl^{1}	3.56
c7- $01{ }^{1}$	3.30	012-051	3.48
c7-010 ${ }^{1}$	2.95	012- HW^{1}	'3.73
c7- $\mathrm{Cl2}^{\text {l }}$	3.19	c12-07 ${ }^{\text {1 }}$	3.41
N8-010 ${ }^{1}$	3.62	c12- 010^{1}	3.92
H8 - C12 ${ }^{2}$	3.66	cl2- $\mathbf{C 1 2}{ }^{2}$	2.93
c9- clO^{1}	3.99		

PABLE VIIT

IMPEREONTCULAR DISTAAMCES 4.0%

The figures in parentheses reier to the following equivalent positione.
(i) $J, I,-7$.
(ii) $y+1, x, w z$

(v) $\frac{1}{2}+\frac{1}{y}, 1$| 1 |
| :--- |

(vi) 1

TABLS IX

STANDARD DEVIATIONS OF THE FIHAL ATMSOIC CO-ORDITATES (A)

Atom	$\sigma(x)$	$\sigma(5)$	$\sigma(z)$
c_{1}	0.053	0.057	0.067
C_{2}	0.060	0.059	0.061
c_{3}	0.053	0.052	0.057
c_{4}	0.058	0.053	0.059
C_{5}	0.052	0.056	0.067
${ }^{0} 7$	0.054	0.053	0.062
C_{9}	0.056	0.061	0.066
C_{10}	0.052	0.052	0.054
C_{12}	0.049	0.046	0.056
C_{12}	0.043	0.042	0.059
${ }^{C} 13$	0.053	0.056	0.070
Cl^{\prime}	0.048	0.050	0.064
$C_{2}{ }^{\prime}$	0.055	0.056	0.066
${ }^{C_{3}}$	0っ059	0.057	0.071
${ }^{0} 4$	0.056	0,064	0.065
$\mathrm{C}_{5}{ }^{\prime}$	0.044	0.041	0.053
$0_{7}{ }^{\prime}$	0.049	0.047	0.060
${ }^{6} 9^{\prime}$	0,059	0.058	0,060
${ }^{6} 101$	0.053	0.054	0.061
$\mathrm{C}_{11}{ }^{1}$	0.050	0,043	0,057

TABLE IX (Continued)

STANDARD DEVIATIONS OF THE FIMAL ATY:OIO CO-ORDINATES (i)

Atom	$\sigma(x)$	$\sigma(y)$	$\sigma(\mathrm{s})$
$0_{12}{ }^{\prime}$	0.052	0.051	0.057
$\mathrm{C}_{13}{ }^{\prime}$	0.061	0.063	0.077
${ }^{18} 6$	0.039	0.040	0.049
H_{8}	0.047	0.044	0.052
$\mathrm{N}_{6}{ }^{\prime}$	0.040	0.044	0.055
$\mathrm{N}_{8}{ }^{\prime}$	0.041	0.041	0.051
BrI	0.006	0.006	0.007
BrII	0.006	0.006	0.007

TABLB X

DRUTATTOMS (A) OF THE ATOMS PROM VARTOUS PLANESS.

\& Plane through bonzene ring atiome C2, C2, 03, C4, C5,012
b Plane through beneene ring atome $\mathrm{Cl}^{1}, \mathrm{C2}^{1}, 03^{\mathrm{d}}, 04^{1}, \mathrm{C5}^{1}, \mathrm{C12}{ }^{1}$.

- Plana through atome C1, C2, C3, ©4, C5, N6, C7, 011, 012.
d Plane through atoms $C 1^{1}, C 2^{1}, C 5^{2}, C 4^{1}, C 5^{1}, ~ W 6^{1}, C 7^{2}, 011^{1}, 012^{1}$.

REFEBRSNCES PART I, II AND III

(1) W.I. Brasg, Froc. Camb. Phil.Soc., 17, 43 (1913)
(2) Jamen and Brixadley, Phil。 Hag., 12, 81 (1931)
(3) Thomas, I. H_{H}, Proc.Camb. Phil.Soc., 23, 542 (1927)
(4) Fermi, 50, Z.Physik, 48, 73 (1928)
(5) WeWeony, R., Acto Crystio, 40 513 (1951)
(6) Tomile and Stam, Aota Gryat., 11, 126 (1958)
(7) Berghuie, Hsanappel, Pottors; Loopstra, Mactillavry, and Veenenaacl, Acte Crybt. - 日, 478 (1955)
(8) Debye, P_{0}, Ann. Physik, 43, 49 (1914)
(9) Wilson, A.J.C., Neturo, 150, 151 (1942)
(10) Cruicleshank, D.W.J., Acta C.xyot., 2, 747 (1956)
(11) Pattorson, A.I.s. Phys, Rev., 46, 372 (1934)
(12) Petterson, A. I., Z.Tribi., 90, 517 (2935)
(13) Robertson and moodmard; J. Chem. Soc., 36, 207 (1940)
(14) Lipson and Cochrang 1953 "Ihe Determination of Crystal Stimuctures", P.207, GoBell and Sons, Ltd., London.
(15) Sim, GoAos Acta Oxysto, 20, 377 (1957)
(16) Boorh, A.D.0 Proo. 2og. Soc.g (1946) A, 188, 77
(17) Hughos, F.T., Jo Amer. Ohern, Soc. 63,1737 (1941)
(18) Oxuickshank and Roberison, Aota Oxysto, 6, 698 (1953)
(19) Kisher and Yates, Sanatistical Tables, 1957, Oliver and Boyd, Edinblargh.
(20) Parihar and Dutt, Jo Indian Chem, Soc., 27, 77 (1950)
(21) Grant, Hamilton, Hamor, Hodgea, MoGeachin, Raphael, Robertson and Sim, Proc. Chom. Soo., (1961), 444.
(22) Gopinath, Govindachari, Parthasarathy, Veawanathan, Axigont and Wildman, Proc. Chomo Soo., 1961, 446.
(23) Barton, Pradhan, Sternhell and Templeton, J. Chem. Soc.. 1961, 225.

Barion, Coray, and Jeger in oollaboration with Cagliatti, Dev, Forini, Glazier, Melara, Pradhan, Scheffner, Stornhell, Tomploton and Tobinaga, Experianatia, (1960), 16, 41
(24) Roberteon, J. Soi. Inetrey 20, 175, (1943)
(25) Tuno11, Amer. Main., 24, 448, (1939)
(26) Burns, DoM., Lote Crysto, © 516 (1955)
(27) Ladell and Katr, Acta Oryst., 1, 460 (1954)
(28) Booth, A. D_{4}, "rourier Technique in X-ray Organio Gryatal Analysis": pa6A Cambridge Jnivereity Presso
(29) Arnott, Davia, Robertson, Sim end Fetsong Jo Cheme Soo.g 1961, 4183: Experipentia, 16, 49, (1960)
(30) Bexghuis, Haeneppex, Potters, Loopatra, KacGillavry and Veenerdeal: Actis. Cxyati, B, 478, (1955)
(31) "Intornationale Tabellen zur Sestimmong von Xristallatrukturon". Bomtreogez, Berlinng 1935, Vol.II, p.572。
(32) Rolleitin, "Computing Mothodo and tho Phats Problem in X-ray Orystal Anelysis", Gd. Popinksy, Robertson and Speakman, Porgamon Prese, Oxfora, 1961, po87
(33) Hodgem, MaoGeachin and Raphsel; (unpublished results)
(34) Barton, McQhie, Pradhan and Knight, Chemo and Ind.. 1954, 1325; Jo Chem Soco, 1955, 676
(35) Barton, Pradhan, Sternhell and Templeton; J. Chom. Soc., 1961, 255.
(36) Laurie, Hamilton, Spring and Wateons J. Ohem. Soc., 1956, 3272.
(37) S.A. Sutherland (unpublishod results)
(38) Bartell and Bonham; Jo Chem. Phys., 27. 1414, (1957)
（39）Davies and Blum；Acta Cxyst．，8，129，（1955）
（40）Wrotter；Acta Cryst．，13，86，（1960）
（41）Gunniugham，Boyd，Kivars，Grinn and Le Van，J．Ohemo Phys．，12，676，（1991）
（42）Brlandeson；Arlsiv．Fysik．，2，341，（1955）
（43）Paul，Sim，Hamor and Roberison，（unpublished results）．
（44）Bak Hensen，and RastrupoAndersens Discuss．Far．Soc．， 290 30，（1955）
（45）Millex，Aamodt，Dousmanis，Tomnes，and Kraitchman，Jochem。 Physog 20，1112，（1952）
（46）Lister and Sutions Mrane．Far．Soc．o 37．393，（1941）
（47）Shomaker，Wreer，IGarsh and Bergwan；Aota Orysto，12， 600 （1959）．
（48）Hodson，Robinson and Smithy Proc．Chem．Soc．，1961， 465.
（49）Hodson and Smiths Jo Chem．Soc．，1957， 1877
（50）Robinson， H_{0} and Toubex，Chemo and Ind．，1954， 783
（51）Hamor，Robertson，Shrivasteva and Silverion；Proo，Chemo Soc．，1960，78．
Hamor and Robertson，J．Chen．Soc．，2960，76．
（52）Hoodward；Yeng，Katw，Clark，Harley－pleson，Ingleby and Sheppard，Proc．Chem．Soce，1960，76．
（53）Mangite，R．H．F．，Canad．J．Nes．，1938，16，B，432。 Barger， Madineveitia and Sireulis Jo Chom．Socog 1939，510．
（54）Sexton，Bardsley and Smitin Proo。Chom．Soc．，1962， 148
（55）nrables of Interatomic Distances and Conpiguration in Molecules and Ions＂，1958．The Chemioal Society，Burlington House，London．
（56）Brown and Corberidges acta Cryat．，7， 711 （1954）
（57）McPhail and Simg（unpubliohed results）．
96.
(58) Hamilton, Hamor, Robertson and Sim, (unpublished results)
(59) Arai, Coprola and Jeffrey; Aota Cryat., 13, 553 (1960) Acta Cryst.,
(60) Karthe, Ahmod and Bernes, I. 460, (1954)
(61) Frzyoylalea, सo, Aota Cxyeto, 14, 424, (1961)
(62) Hanson and Ahmods Aota Cryat. 11, 724, (1958)
(63) Donahue and Trueblood, Acta Crysiv, 50 419, (1952)
(64) Clunic and Robertsong Jo Chom., Soce, 1961, 4382.
(65) Friarichsons ana ikthioson, Aote Cryst., 15, 119 (1962)
(66) \#itzor and Donach, Jo Aner. Chom. Soc., 81, 3213, (1959)
(67) Eamilton, Maothail and Sim, Jo Chem. Soc., 1962, 708.
(68) Brown and Sim, (mapublished rosults).
(69) Poterson, Stoinrauf and Jonsen, Aota Cryst., 13, 104 (1960)
(70) Kartha, Ahmed and Barnes, Nota Cryst., 15, 326 (1962)
(71) Robertson, J.II., and Beevors, Acta Cryst., 4, 270 (1951)

PART IV.

THE CUPRIC ION CATALYSED

HYDROLYSIS OF GLYCYLGLYCINE.

4. (1) ITFRRODUGTION

In lif ological systems, metal iong play a significant role in many processes. Appreciation of the variety of biological reactions which depend upon the presence of a metel ion in greater or lesser amount has erom steadily in rocont yoars. The part played by metal ions in onzymatic processes depends on the ability of suoh ions to form chelate compounds with a wide variety of organio materials. The metal ion can apparently act in one of two rather different mays. Firstiy the enzyme or protein molecule atc. may be so tightly bound to the metal ion that it is oniy removed by vigorous chomicel attack and examples of such atrong binding are chlorophyll and the blood proteins. Secondy, the metal ion can zot in 2 manner aimilas to that in whioh it catelysea a non wenzymatic deaction in which osse it is readily split from the enzymo or aubetraton Generally the ion is not specific and different metal ions will be assooiated $\begin{aligned} & \text { ith } \\ & \text { different degrees of reactivity. Enaymes inoluded }\end{aligned}$ in this group include the phosphatases and peptideses.

The peptidases are enzymes of low metal ion spocificity but although several metal ions assist their catalytic effeots, individual ions have very different efficiencies. To explain catalysis by this form of loose association between enzyme and motal ion Hellerman (1) has postulated interaction betveen onzyme, subtrate and metal ion forming a species in which the subtrate will undergo some type of chemical change. This theory has had wide acoeptance but little work has been done to correlate enzymatic
reaction ratea with the formation of the suggested complexes.
The dipeptidase of glycylglycina is apparently catalyeed by several met̃al ions incluaing cobaltous ($\mathrm{Co}^{\mathrm{II}}$). Smith (2) from speotroscopic work decided that cobaltous ions formed exceptionally stable complexes with glycylglycine. The order of stabilities of the glycylglycine chelates follows tho normal Ir Ving and Williams (3) series,

$$
\mathrm{Co}^{I I}<\mathrm{Mi}^{I I}<\mathrm{Cu}^{I I}>\mathrm{Zn}^{I I}
$$

Williams (4) suggested that Smith 0 oomplex was cobaltic (Co ${ }^{\text {III }}$) Which did not hydrolyse in the presence or absence of an enzyme. On this basis Williams postulated structures (I) and (II) for the cobaltous and cobaltic complexes respectivelys

(I)

Although the stabilities of many amino acid metel ion complexes have been determined only a few peptide complexes, notably dipeptides such as glycylglycine of glycylsarcosine have been closely studied (5) - (14) , Bjerrums method based on the theory of atepaise complex formation has usuelly been used for the calculation of stability constants. Datta and Rabin (10) have shown that cobaltous ($C o^{I I}$) and manganous ($\mathrm{Hn}^{\text {II }}$) complezes
of dipeptides form in a manner similar to that for amino acids and that a stepwise formation process appears to oceur but peptida complexes with coppsr, however, sppear to be more complicated, Datta and Rabin (10) also Dobbie and Kormaok (13) discovered that if an equimolar mixture of cupric ohloride and glyoflglycine mas titrated with alkelii throe oquivalents of baso were required io neutraliso all acid specieo produced. If stopmise complex fomation occurred;

$$
\begin{array}{ll}
\mathrm{Cu}^{2+}+G G^{\circ} & \mathrm{Cu} G G^{+} \\
\mathrm{Cu} G G^{+} & \mathrm{OG} \\
\mathrm{Cu} G G_{2}
\end{array}
$$

Where $G G^{\infty}$ ropresents the anionic form of glycylglyoine. Thereforo: for an oquimolar mirture only one equivalent of alkelf should be required for complete ifitration. Rabin (11) and Dobbie and Kermack (13) offered similar explanations to accuunt for the two additional acid dissociations from this 1 : 1 dipeptide - metal complex.

The first ionisation with $p \mathbb{Y} \doteqdot 4.5$ is absent in glyoylbar -cosine - copper 1:1-complexes. In glycylsarcosine (III) itself the peptide hydrogen atom of glycylglyeine (IV) is replaced by a methyl group,

$$
\begin{array}{cc}
\mathrm{NH}_{2}-\mathrm{CH}_{2}-\underset{\mathrm{H}}{\mathrm{C}}-\mathrm{H}_{\mathrm{H}}^{\mathrm{H}}-\mathrm{CH}_{2}-\mathrm{CO}_{2} \mathrm{H} & \mathrm{HH}_{2}-\mathrm{CH}_{2}-\underset{\mathrm{N}}{\mathrm{C}}-\underset{1}{\mathrm{H}}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H} \\
\mathrm{O} \mathrm{CH}_{3} & 0 \\
\text { (III) } & \text { (IV) }
\end{array}
$$

and it is reasoneble to assums that this dissociation is probably
due to ionisation of the peptide hydrogen. The seoond dissociation, $\mathrm{pz} \div 9$, oan equally well be ascribed to ionisation of a hydrogen ion from a wator molecule comordinated to the complax or to uptake of a hydrozyl ion. The ioniastion of this peptido has only been definitely shown to oocur from copper chelates. Thus, exiremely powerful interactions must occur between the copper ion and the peptide bond. Whether the pepitide carbonyl or nitrogen is involved is not immediately apparent. Rabin considere that onygen atoms rather than nitrogea atoms are involved, at least prior to the ocourrence of any additional acid dissooiabions. Intergction with the peptide nitrogen would lead to ebolition of the resonance in the peptide bond since any interaction would have to take place with the lone pair of electrons on the nitrogen, whioh is energeticelly unfevourable. Examinaition of severel similar compounde, includ--ing glycindmide, glycylglycine, triglycine and glyoine eithyl ester shows that a linear rolationship exists betweon the stability constant of the complex and the pK of the amido group. If such a relationship holds, only features common to all the compounds can be involved in complexing with metal ions. All the compounds possess the structure (V),

(V)

(VI)
and therefore (VI) ie the most likely struature for the complex. If co-ordination to the carbonyl group tooly place then guch a linear relationship would not be anticipatod. The evidence suggests that no interaction occurs with the peptide nitrogen in the initial complex but thia does not preclude such interaction following on the ionisation of the peptide hydrogen. Indeed Rabin supports just such a change in co-ordination site since, accordw -ing to Rartell (15), copper has a great preference for nitrogen rather than oxygen co-ordination.

To summarise, Eabin (11) represents complex formation for the coppermglycylglycine systom as shown infigure I (cannonical forms of complezes A and B are shown to indicate that resonfance stabilisation occurs) and it is interesting to compare theso structures with those proposed by Williams for the cobaltous and cobaltic complexes, (III) and (IV) respectively.

The aydrolysis of peptides depends upon the reactivity of the carbonyl group at the peptide bond and if this oan be polarised, susceptibility of the carbon atom to attack by nuoleaphilic speoies occurs (VII).

Carbongl reactivity is almost absent in peptides due to compenaat--ing electron displacement from the peptide nitrogen (VIII).

Complex A.

Complex B.

Complex C.

Co-ordination of the peptide nitrogen to an electrophilic species however, such as a metal atom, M, will induce carbonyl activity towards nucleophilic attack (IX).

(IX)

Further, such co-ordination will favour scission of the peptide bond and departure of the residue oontaining the peptide nitrogen following nucleophilic attack at the oarbonyl group. Co-ordination to the peptide nitrogen mill favour hydrolysis but if electron withdrawai at this nitrogen leads to ionisetion of the peptide hydrogen, thon the resulting complex will, according to Rabin (2i), be inactivo.

Kinetic studies of the hydrolysis of giyoylglycino have usually been conducted at low pll Lawrence and Moo're (16) have carried out rate measurements in concentrated hydroohloric aeid and Martin (17) has studied the reaction in perchloric - acetio acid mixtures. It is genexaliy oonsidered that these reactions involve the protonated intermediate (X)

Lewrence and Hoore (16) observed an inorease in the rate of hydrolysis on the addition of cobaltous ion but they did not attempt to identify any complex species formed. Rabin, however, has suggeated a possible structure (XI).

At the low pH used by these workers only trases of such a complex could oxist but Rebin believes that sufficient will form to oatalyse hydrolysis.

Hore recently Baman, Haas and Trapman (18) have atudied the metal ion catalysed hydrolysis of peptides in alkaline solntion, A large number of metel ions were studied prinoipal among whioh were transition and lanthanide metal ions, further, these workers noted that cuprio ions in alkaline solution at $70^{\circ} \mathrm{C}$ gave a detectable catalytic effect. The main part of this work was devoted to a study of how thet the catalysed hydrolysis of the peptide bond varied with the structure of the amino acids constituting the dipeptide.

In conclusion, we heve sttempted to show how the reaults
of Dobbie and Kermaok (23) and Rabin (21) have sucgested that of the first two I_{l} copper-glyoylglycino complexes ohly one will be hydroiyeable. Rabin suggested that the first complex formed between oupric ions and ghyoylglyoine prior to ionisation of the peptide hydrogen ehould undergo hydrolysis vhilat the second complex should be unreactive. Therefore, at pH velues significantly greater than 4.5 hydrolysis of the peptide should be inhibited. It was therefore deoided to study the reaction Of copper-glycylglycine complemes over a wide range of pH values and a range of cupric ion concontration.

(2) EXPRGTMGYTAA

Althouth it was hoped to study the reaction at $50^{\circ} \mathrm{C}$ it became obvious that it vas too slow at this temperature. According--Iy it was decided to use a temperature of $85^{\circ} \mathrm{C}$ at whioh reactions In sealed pyrex tubes indioated sppreciably faster reactions than those at $50^{\circ} \mathrm{C}$. Temperature of the oil-filled thermostat was initially achieved by means of a 'Variac' bimetallic strip ($85 \pm 0.5^{\circ} \mathrm{C}$) latterly a meroury regulator and ' ${ }^{\circ}$ (Invio' oirouit relay awitch were used giving $85 \pm 0.1^{\circ} \mathrm{C}$.

Reactions were carried out in sealed pyrex tubes and eeoh kinetio mun consisted of about elght suoh tubes containing approximately 4 to 5 m .1 . of reaction mixture. The tubes were supported in copper racks fitted with lids and were then suppended in the thermostat. At guitable time intervals they were romoved
and their contents analysed, The pH was maintained constant by the use of buffered reaction mixtures, ohloracetio acid buffers between $\mathrm{pH}=3.0$ and 3.75 , acotic acid buffers betwon $\mathrm{pH}=3.75$ and 5.5 and 0.1 molar hydrochlorio acid used to meintain a $\mathrm{pH}=$ 1.0. One experiment was made at $\mathrm{pH}=6.7$ in which the solution was unbuffered and wes adjusted to the required pH by addition of alkali。 All reaction mixtures mere 0.2 molar in the buffer acid anion since soparate experiments established that was sufficient to give the required plicontrol. Since metal ions rere present, it was impossible to use thermodynamio means to calculate the buffer ratios, and these were determined ompirically by measuring the pH of trial solutions with a Cambridge pH meter and glass and cabmel electrodes. The pH metor was standardised daily with two buffer solutions made from Burroughs and Wellcome pH $=4.01$ and 6.99 buffer tablets.

It was first necessary to devise an analytical process for the analyais of glyoylgiycine/glycino solution mixturea. The complexes of ninhydrin with peptides and amino acids have long been known as colourimetric tests Por such materiale. Lately Temm and Cooking (19) have succoeded in making the reaction quantitative thus giving a useful method for eatimating amino eoids and peptides. The mbhod depends upon the formation of colour vhen ninhydrin (triketo hydrindene hydrate) is treated Vith a substance containing a primary amino group. Glyoylgiyaine

106.

conteins one such group and the hydrolysis products (two molecules of glycine) give rise to two such groups. Therefore, the course of the reaction can be followed by measuring the increase in optical density of samples of the reaction mixture.

Hydrolysis reactions were followed in presenco of copper ions of concentrations $0.01,0.02,0.033,0.066,0.1,0.3$ and 0.0 molar and the reaction mixtures vere prepared in 50 mol graduated flesks in the following manner. The correot weight of glycylslycine to give a concentration of $\mathrm{O}_{n} 01$ Kolar was added then, the required quantitiee of acetic acid and sodium acetate solutions to give the chosen pHy and finally an acourately measured volume of a concentrated standard $\mathrm{CuCl} \mathrm{I}_{2}$ bolution to give the chosen copper ion concentration. The flaek was then filled with distilled waier, shaken, and then chocked for pH to onsure the chosen value had been obtained. About 5 mel . of the reaction mixture was then placed in the eight tubes comprising the experiment and the tubes then drawn out and sealed. The remain--der of the reaction mixture was analysed to give the zero time optical density. In oxder to make an analysis the mixture had first to be freed of oupric ions by precipitating as copper sulphide vith hydrogen sulphide under pressure and then filtering under slight suction through a hard filter paper (Whatman's Ho.48). Two mol, of the copper free solution were made up to 20 mel , in a
graduated flagk with an 0.2 F oitrate buffet ($\mathrm{pH}=5.5$) and one $m_{8} l_{\text {e }}$ of this diluted mixture was then analysed by the method of Yemm and Cooking (19) in the following manner. The one m. 1. of diluted reaction mixture wes placed in a test tube and to it were added 0.5 mol . of citrate buffer ($\mathrm{pH}=5.5$), 0.2 m .1 . of a $5 \% \mathrm{~F} / \mathrm{V}$ ninhydrin - methyl oellosolve solution and then 1 moln of a potassium cyanide - methyl cellosolve solution. The teat tube was then placed in a boiling water bath for 40 minutes to develop the complex (excessive evaporational losses were prevented by placing glass marbles on top of the test tubes). Whan the now deep parple solution had cooled to room temperatures 10 mol. of a 60% by volume othanol - weter solution was added and the mix--ture stirred thoroughly. The optical density of thie golution was determined by a Hilger and Watts Uvispek apectrophotometer at wavelengih $570 \mathrm{~m} \mu$ using l com. matchen, quartz, stoppered cells. Calibration curves using 0.001 molar glycine and glycylglycine solutions revealed that the ratjo of optical densities of glycine to glycylglycine for a given concentration was about 1.25. All future celoulations of degree of hydrolysis had to allow for this.

The oupric ohloriee, sodium acetate, chloracetic acid, potassium cyanide, citric acid and ninhydrin used were akalas. reagents and the glyoine and glyoylglyoine (B.D.F. "Laboratory Reagent") were Pound to be chromatographically pure. The purity
of the glycylglycine was confirmed by formol titration (20). Throughout only grade $1 A$ ' volumetric apparstus was used.

(3) RESULTS.

Thirty kinetic runs were made and many of these had to be repeated because of precipitation of copper acetate and irregulerities in the analyses (reproducibility was only 15%). Table I gives a surmary of all the experiments and each one is given a number under which it is listed in Tables II - IX. Each run is defined by its pH and oupric ion concentration and Tables II - IX list the experimental quantities; time in hours, corrected optical density, and percentage reaction. The ninhydrin reagent was found to deteriorate through time giving progressively lomer results and as a result a oheck solution of 0.001 molar glyaine pas employed. If we let the optical density of this solution measured at $t=0$ be $=D_{G}^{0}$ and opticel density measured after a time $=t$, be D_{G}^{i}. Then if the optical denaity of the reaction mixture at time t is multiplied by D_{G}^{0} / D_{G}^{t} it will be scaled to allow for any variations in the reagent which may exist at time tio

The values of percentage reaction quoted for each reaction were calculated as followe;

If $x=$ fraction of glycylglycine reacted after time t giving an optical density D_{i} and $D_{0}=$ optical density when $t=0 ;$
109.

$$
\begin{gathered}
D t=D_{0}-x D_{0}+2 X_{G} D_{G}^{O} \\
\therefore D t-D_{0}=x\left(2 D_{G}^{O}-D_{0}\right) \\
\therefore x=\frac{\left(D t-D_{0}\right)}{\left(2 D_{G}^{O}-D_{0}\right)}
\end{gathered}
$$

and Percentage Reaction $=\frac{100\left(D_{t}-D_{0}\right)}{\alpha} \cdots \cdots(a)$

$$
\text { where } \alpha=\left(2 D_{G}^{0}-D o\right)
$$

For 100% reaction, all the glycylglycine will be converted to glycine which should result in a doubling of the optical density n However, the optical density of an 0.001 M glycine solution is about 1.25 times that of an 0.001 K giycylglyoine solution and the final optical density should be 2.5 Do. If instead of this numerical factor of 1.25 we used D_{G}^{0} then at complete reaction $D t=$ $2 D_{G}^{0}$ substituting in equation (a),

Percentage Reaction $=\frac{100\left(2 \mathrm{D}_{\mathrm{C}}{ }^{\circ}-\mathrm{DO}_{0}\right)}{\left(2 \mathrm{D}_{0}^{0}-\mathrm{D}_{0}\right)}=100 \%$
α is a constant for each reaction as D_{G}^{0} and Do themselves are constants for any given reaction and these values of α are given for each reaction in Table I. The runs marked ((x) in Table I are due to J.M. Wilson sometime of this Department and of these; runs 1, 2, 3, 4, 5, 6, 26 and 28 have no α value. In the calculation of the extent of reaction of these experiments no reagent correction was employed and the equation,

$$
\text { Percentage Reaction }=\frac{100(\mathrm{Dt}-\mathrm{DO})}{2.5 \mathrm{DO}-\mathrm{DO}}
$$

TABLE I

SUMMARY OP GXPERTMEXYAS IN TABLRS II - IX.

HO, $\mathrm{pH} \mathrm{Cu}^{2 \%} \mathrm{y}$. α

$1 *$	1.0	0	-	16	4.0	0.01	2.02
$2 *$	3.0	0	-	$17 *$	4.3	0.033	2.01
$3 *$	3.5	0	-	18	4.3	0.02	2.02
$4 *$	1.0	0.033	-	19	4.3	0.01	1.90
$5 *$	1.0	0.30			$20 * 4.6$	0.033	1.97
$6 *$	3.0	0.30		21	4.6	0.02	2.03
7	3.5	0.10	1.99	22	4.6	0.01	1.91
8	3.75	0.033	1.91	23	5.0	0.02	1.96
9	3.75	0.033	1.90	24	5.0	0.01	1.96
10	3.75	0.02	1.95	25	6.0	0.01	2.04
11	3.75	0.02	1.95	$26 * 6.67$	0.01	0	
12	4.0	0.10	1.98	$27 * 5.5$	0.033	2.03	
13	4.0	0.066	2.01	$28 * 5.5$	$0.1\left(z_{n}^{2+}\right)$	0	
14	4.0	0.033	2.02	29	5.5	0.02	1.96
15	4.0	0.02	1.96	30	5.5	0.01	1.95

* These runs due to J.M. Wileon.

TABLE II

Experiment 1.

Mime	Dt	\% Rn	ILme	Dt	\% Rn
0	1.39	0	0	1.39	0
24	1.67	13.0	24	1.46	3.0
72	2.09	33.3	72	1.62	10.5
100	2.18	37.3	120	1.73	16.5
120	2.29	42.6	310	2.36	46.0
316	2.76	65.0	408	2.56	55.5
744	3.52	100.0	840	3.18	85.0

Experimant 3s

Mime	Dt	\% In
0	1.41	0
32	1.37	0
408	2.10	33
864	2.58	56.5
1392	3.10	82

TABLE III

EXPREIMENT 40

	EXPERIMEXT	
4.		
Time	Dt	\% Bn
0	1.39	0
5	1.48	4.0
24	1.69	14.0
48	1.89	23.3
196	2.62	58.0
456	3.14	83.3

EXPERTMENT? 6.

Time	Dt	\% Rn
	1.25	0
5	1.35	4.0
10	1.44	9.5
24	1.48	12.0
48	1.55	15.2
77	1.76	28.0
120	1.92	35.0
168	2.13	48.0
290	2.41	61.0
312	2.39	63.0
456	2.66	78.0

EXPRRTMGXYT 5

Time	Dt	\% Bn
0	1.25	0
24	1.62	19.0
48	1.73	26.7
68	2.04	30.6
120	2.20	50.0
164	2.19	48.4
290	2.42	62.0
729	3.08	97.0

EXPERTMENT 7.
Tinge

0	1.37	0
14	1.54	8.5
24	1.59	11.0
38	1.68	15.6
63	1.74	21.9
96	1.93	27.5
143	2.21	41.0
244	2.61	60.5
355	2.91	77.3
455	2.98	79.6
1238	3.13	88.2

FIG. IV

TABLB IT

EXPERTMENTS 8

Mime	Dt	of Bn
0	1.43	0
12	1.57	7.3
18	1.65	11.3
24	1.68	13.2
37	1.69	13.6
48	1.73	15.9
61	1.75	17.0
90	1.86	23.7
115	1.92	26.6

EXPERIMFNT 10
ACEMATE BOFEES

Time	Dt	右. Fn
0	1.41	0
6	1.47	2.9
24	1.56	7.3
30	1.58	6.4
43	1.60	9.4
75	1.65	12.1
98	1.69	14.3
115	1.74	16.7

Timo	EXPERIMETY 9	
	CHIORACETATE	BUPFPER
	Dt	\% Pm
0	1.44	0
12	1.58	7.3
18	1.66	11.5
24	1.69	13.4
37	1.71	14.0
48	1.81	19.8
61	1.83	20.9
90	2.97	29.2
115	2.02	31.8

EXPERTMEST 11

CHLORACETATE BUTFFM

Time	Di	\% En
0	1.41	0
6	1.47	2.9
24	1.58	8.4
30	1.64	11.5
43	1.66	12.9
75	1.70	14.9
98	1.75	17.4
115	1.80	20.2

TABLE Y.

EXPERTMGIN 12

EXPERTIETAT 13

Time	Dt	of Rn	Time	Dt	\% m_{4}
0	1.42	0	0	1.425	0
15	2.86	22	14	1.74	15.5
23.5	1.99	29	24	1.95	21.0
38	2.23	42	40	2.23	35.0
47	2.28	46	65.5	2.52	54.5
95	2.89	78	134	2.96	75.5
168	3.01	84.5			
240	3.14	87	EXPERTMETT 15.		
EXPERIMEXT			\$ime	Dt	\% R8
		140	0	1.435	0
Time	Dt	$\% \mathrm{Rn}$	5	1.54	5.5
			23	1.66	11.5
0	1.425	0.	63	1.90	24.0
14	1.63	10.0	100	2.01	29.0
24	1.80	18.5	133	2.13	35.0
37	1.91	24.0			
85	2.24	42.5	EXPERTMENT 16		
122	2.32	47.5	94me	${ }^{2} t$	\% Bn
190	2.81	68.5	0	1.42	0
215.5	2.74	65.0	14	1.54	5.60
291	2.91	74.5	38	1.70	13.80
528	3.07	81.0	65	1.82	19.50
			134	1.99	28.0

115.

TABLE VI

EXPERTMEAN 17

Time	Dt	\& 姐 n	Time	Dt	\% Rn
0	1.44	0	0	1.46	0
14	1.72	14	5	1.54	4.3
22	1.78	17	12	1.68	11.2
31	1.86	21	24	1.79	17.0
44.5	2.16	36	29	1.84	19.8
86	2.35	45	60	2.00	30.5
91.5	2.45	51	77	2.13	35.0
162	2.64	60	101	2.18	40.5
163	2.80	68	172	2.43	51.0
408	3.12	83			

EXPERTMENT 28

T1mo	$D t$	名 Bn
0	1.425	0
21	1.75	16
31.5	1.86	22
44.5	1.97	27
103	2.32	44
117	2.39	48
143	2.47	52
309	2.82	70
622	3.08	83

FIG. VII

116.

TABLS TIT

EXPERTMEXT 20

Time	Dt	\% Rn	Time	Dt	\% Rn
0	1.42	0	0	2.42	0
14	1.64	11	21	1.67	12
24	1.76	18	31.5	1.82	20
42	1.92	26	44.5	1.86	22
86,5	2.26	44	103	2.17	37
122	2.52	61	117	2.26	41
190	2.98	73	143	2.33	45
288	3.06	77	309	2.59	58
528	3.24	87	622	2.79	69

EXPERTMEXYY 22.

Time	Dt	\% 助
0	1.45	0
5	1.51	3.0
12	1.64	9.5
24	1.69	12.5
29	1.73	14.5
60	1.91	25.0
77	2.04	30.5
101	2.09	35.0
172	2.27	43.0

FIG. VIII

TABLD VIIT

EXPERTMENT 23

Pimo	Dt	of Bn
0	1.46	0
12	1.70	12
20	1.76	15
32	1.79	17
44	1.83	20
49	1.88	22
67	1.99	28
146	2.22	39

EXPERTMENTH 25

Time	Dt	\% Rn
0	1.46	0
4.5	1.53	3.5
11	1.55	4.5
27	1.61	7.5
35	1.67	11.0
54	1.73	14.0
72	1.79	16.5
168	1.92	24.0
192	1.94	24.5

FIG. IX
$P H=5.0$
=xPTI23)

M日BLI TK

EXPERTITET 27

Pime	Dt	\% In	Trim	功	\% m
0	1.40	0	0	1.40	0
5	1.40	0	5	1.48	4
24	1.51	5.6	10	1.57	8
52	1.68	14.2	24	1.77	18
96	1.84	21.8	52	2.06	33
216	1.94	26.1	96	2.62	59
1560	3.05	81.2	840	3.29	92

RXPGRTMEXTH 22

Stime	D\%	\% Em
0	1.44	0
25	1.62	9.1
48	1.74	15.7
72	1.83	20.0
96	1.91	24.3
144	2.98	28.5
168	2.01	30.4

THime	Dt	\$ Rn
0	1.47	0
12	1.51	2.4
22	1.55	4.3
36	1.63	8.3
49	1.68	12.2
61	1.70	13.2
67	1.76	15.4
85	1.80	17.0

FIG. \mathbf{X}

FIG. XI

$$
\begin{equation*}
\therefore \% R_{n}=\frac{100\left(D_{t}-D_{0}\right)}{1.5 D_{0}} \tag{b}
\end{equation*}
$$

wes used,
Plotr of percentage reaction vorsus time for each kinetic run are givon in Figures II - XI and each run is referred to by its Table I numbero There possible all experiments made at one pH are given in the same fighre。 Experimente 1,2 and 3 were oarried out with no copper ion present and all others had copper present except sun 28 mhich had 0.14 sinc iona instead. Runs 9 and 11 were carried with chloracotic acid buffer at the same pH and metal ion concontrations as 8 and 10 respectivaly.

(4) DISCUSSIOH

Although errors in the analyses lead to the experiments beingsemiqquantitative, several interesting features emerge. Fron FigeII it is seen that the presence of copper ions in the concentration
 These experiments have (within experimential exros) the bame rate and are all acid catolysed. At thie low pH value very little complexing takes place betreen copper ions and glycylglycine. As the pH is raised the rate of the purely acid catalysed reaction decreases until at $\mathrm{pH}=4.0$ no reaction was observed after 1,300 hours. This observation of decreasing rate with decreasing hydrogen ion concen--tration is in accord with other examples of this typo of catalysis,
eag. esters. After 100 hours the extent of reaction (interpolated from Fig. II, III and IV) for the unoatalysed reaotions at pH values 1.0, 3.0 and 3.5 are 39, 25 and 10% respectively.

The increase in catailytic offect in the presence of copper ions as the pH is increased from 3.0 to 3.5 is moet readily seen In Figs, III and IV when it is clear that the catalytio offoct is greater at the higher $p H$. The ortent of reaction after 100 hours is the same for each run (within experimental orror) despite the concentration of copper ions being one chird of that at the lower $\mathrm{pH}(-3,0)$, At tilis atage, oopper-glyoylgiyoine complexing has commenced and it mould appear that that catalysis proceeds via a complex.

Rabin (11), believes that Compler A (Fig, I) vill undergo hydrolysis and that Complex B will be inactive. The formation conetant of Complex A is defined ass

where [CuGG+] and [GG ${ }^{\circ}$] aro the concentrations of complex i and the anionic form of glycylglycine sespectively. Joss of the peptide hydrogen from CuGG gives Complex B whose stability constant is defined ass
$\mathrm{Kc}=\frac{[\mathrm{CuGG}]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CuGG}^{+}\right]}$
where [CuGG] is the concentration of ComplerB. Clearly the formation and subsequent decomposition of Complex B will depend-upon the pH
121.
of the solution. In order to determine which cmplexes are effective in increasing the rate of reaction it is necessary to calculate the relative concentrations of complexes a and B in solution.

In the pH range $3.0-6.0$, the total concentration of glycylglycine, [GG $]$ is given by

$$
\begin{equation*}
\left[G G_{0}\right]=\left[\mathrm{CuGG}^{+}\right] \div[\mathrm{GuGG}]+2\left[\mathrm{CuGG}_{2}^{-}\right]+\left[\mathrm{GG}^{++}\right]+\left[\mathrm{GG}^{+}\right]+\left[G G^{-}\right] \tag{i}
\end{equation*}
$$

where $\left[\mathrm{Cu} \mathrm{GG}_{2}{ }^{-}\right]$is the concentration of Complex $D(F i g n I)$ and $\left[\mathrm{GG}^{+}\right]$ and [GG $\left.{ }^{\text { }}\right]$ are the cationic and zwitterionic forms of glyoylgiycine respectively, Similarly, the total concentration of cupric ions, $\left[\mathrm{Cu}_{0}^{2+}\right]$, is given by

$$
\begin{equation*}
\left[\mathrm{Cu}_{0}^{2+}\right]=\left[\mathrm{Cu}^{2+}\right]+[\mathrm{CuGG}]+[\mathrm{cyG}]+\left[\operatorname{cuG} \theta_{2}^{\infty}\right] \tag{ii}
\end{equation*}
$$

The formation constant of Complex D is defined as;

$$
\mathrm{K}_{2}=\frac{\left[\mathrm{Cu} \mathrm{GG}_{2}^{-}\right]}{[\mathrm{CuGG}] \cdot\left[G G^{-}\right]}
$$

also for glycylglycine,
and

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\frac{\left[G G^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[G G^{-}\right]} \\
& \mathrm{K}_{\mathrm{b}}=\frac{\left[G G^{-}\right]\left[H^{+}\right]}{\left[G G^{+}\right]}
\end{aligned}
$$

Substituting these constants in equation (i) we gets

$$
\begin{gathered}
{\left[\mathrm{GG}_{0}\right]=\left[\mathrm{CuGO}^{+}\right]+\frac{\left[\mathrm{CuGG}^{+}\right] \cdot \mathrm{K}_{\mathrm{a}}}{\left[\mathrm{H}^{+}\right]}+\frac{\left[\mathrm{CuGG}^{+}\right]\left[\mathrm{H}^{+}\right]}{\mathrm{K}_{\mathrm{a} \cdot} \mathrm{~K}_{1} \cdot\left[\mathrm{Cu}^{2}+\right]\left(\frac{\left[\mathrm{H}^{+}\right]}{\mathrm{K}_{\mathrm{b}}}+1\right)+\frac{\left[\mathrm{CuGG}^{+}\right]}{\mathrm{K}_{1} \cdot\left[\mathrm{Cu}^{2+}\right]}}} \\
\therefore \quad \div \frac{2 \cdot \mathrm{~K}_{2^{K} \mathrm{~K}_{\mathrm{c}} \cdot\left[\mathrm{CuGG}^{+}\right]^{2}}^{2}}{\mathrm{~K}_{1} \cdot\left[\mathrm{H}^{+}\right] \cdot\left[\mathrm{Cu}^{2+}\right]}
\end{gathered}
$$

and on rearrangement equation (i) becomes;

$$
\begin{align*}
& {\left[\mathrm{CuGG}^{+}\right]=\left[\mathrm{GG}_{0}\right]} \\
& 1+\frac{K_{c}}{\left[H^{+}\right]}+\frac{2 . K_{2} \cdot K_{C} \cdot\left[G G^{\infty}\right]}{\left[E^{+}\right]}+\frac{\left[H^{+}\right]}{K_{a} \cdot K_{1} \cdot\left[\mathrm{Cu}^{2+}\right]}\left(\frac{H^{+}}{K_{b}}+1\right) \\
& +\frac{1}{\mathrm{H}_{1} \cdot\left[\mathrm{Cu}^{2+}\right]} \tag{iii}
\end{align*}
$$

Similarly equation (i) can be oxpressed in terms of [cugGe]giving;

Equations (iiii) and (iv) assume constant ionic strength; and activity coefficieats were assumed constant, furiher copper - buffer acid complexing was omittod.

If we defing \mathbb{N} as the average number of ligand molecules bound by each copper at any atege in the procoss of complex formation (JoBjerrum (21)) then using the equations of Dobblo and Kermack (13) for the value in at eny pH at which it 1 is oxpected to be less than one, we have:

$$
\frac{(1-\stackrel{I}{n})(X-\tilde{n})}{\ddot{n}} \quad=\frac{\infty}{\pi_{1} \cdot\left[\operatorname{cu}_{0}^{2}+\right]\left(2+E_{c} /\left[H^{+}\right]\right)}
$$

where $\mathrm{X}=\left[\mathrm{OG}_{0}\right] /\left[\mathrm{Cu}_{0}^{2+}\right]$ and

$$
\alpha_{0}: 1+\left[\mathrm{H}^{+} / \mathrm{z}_{\mathrm{a}}+\left[\mathrm{H}^{+}\right]^{2} / \mathrm{E}_{\mathrm{a}^{:}} \mathrm{R}_{\mathrm{i}}\right.
$$

Having obtained $\mathrm{n}_{9}\left[G 0^{\circ}\right]$ may be obtained frcm_{0}

$$
\begin{equation*}
\left[G G^{2}\right]=\frac{\left[G_{0}\right]-\ddot{Z} \cdot\left[\mathrm{Cu}_{0}^{2+}\right]}{\alpha} \tag{1}
\end{equation*}
$$

Rewriting equation (ii) in terms of $\left[\mathrm{Cu}^{2+}\right]$ 。

$$
\left[\mathrm{Cu}^{2+}\right]=\frac{\left[\mathrm{Cu}_{0}^{2+}\right]}{1+\mathrm{K}_{3} \cdot\left[\mathrm{GG}^{\circ}\right]+\frac{\mathbb{K}_{1} \cdot \mathrm{~K}_{\mathrm{c}}\left[\mathrm{GG}^{-}\right]}{\left[\mathrm{H}^{+}\right]}+\frac{\mathbb{K}_{1} \cdot \mathrm{Z}_{2} \cdot \mathrm{E}_{0} \cdot\left[\mathrm{GQ}^{-}\right]^{2}}{\left[\mathrm{H}^{+}\right]}}
$$

Thus by consecutive use of equations (v), (vi) and (vii) we can find the values of $\left[G G^{\circ}\right]$ and $\left[\mathrm{Cu}^{2+}\right]$ the unknown quantities in equations (iii) and (iv).

Using constant valines; $K_{1}=10^{5,88}, K_{2}=10^{3,26}, K_{c}=10^{04,25}$ $K_{a}=10^{m 8.37}$ and $K_{b}=10^{-30.32}$, (13), and taking values of $\left[G G_{0}\right]=0.02$ molar and $\left[\mathrm{Cu}^{2+}\right]=0,01$ and 0,02 molar, were calculated in the prance 3 to 7 and are shown in Table X_{n} Figure XII shown [cu GG"] versus $p H$ the upper curve corresponding to $\left[\mathrm{cu}_{0}^{2+}\right]=0,02$ molar and the lower to $\left[\mathrm{Cu}_{0}^{2+1}\right]=0.01$ molar. As can be seen, both curves have a maximum at $\mathrm{pH}=4.2$. For a comparison of Pig. xII, the extent of reaction after 100 hours for experiments with $\left[\mathrm{Cu}^{2+}\right]=0,08$ molar is plotted against pH_{9} Figoxili, and the results given in rabble XI 。 It is ween that as the pH is varied from 4.0 to 7.0 the extent of reaction passes through a maximum at $\mathrm{pH}=4.2$. Experiments with $\left[\mathrm{Cu}^{2+}\right]=0.02$ molar and 0.033 molar treated similarly give the other two curves on FigoXIII. Maxima again occur at about $p=4.2$. It is clear that these curves are

TABLIR.

pH	GG ${ }^{\circ}=0.03 \mathrm{M}, \mathrm{Cu}^{2+}=0.03 \mathrm{M}$		$\begin{aligned} & \text { GGO }=0.01 \mathrm{~K} \\ & \mathrm{Cu}_{\mathrm{O}}^{2+}=0.021 \mathrm{X} \end{aligned}$
	CuGG ${ }^{+} \times 10^{5} \mathrm{~m}$	CnCG $\times 10^{5} \mathrm{z}$	Cuact ${ }^{+}$= $10^{5} \mathrm{~m}$
3.0	23.3	1.3	43.9
3.5	97.1	\sim	154.1
4.0	215.0	105.0	301.0.
4.3	241.9	"	311.0
4.5	226.6	-	276.0
5.0	125.7	556.0	145.0
5.5	44.7	\cdots	45.3
$6 ; 0$	17.0	161.0	17.4
7,0	1.8	53.3	1.8
8.0	0.2	5.6	0.2

TABLE XI
EXTENS OF REACTION AFTER 100 HOURS

pH	$\mathrm{Cu}^{2 \%}=0.01 \mathrm{M}$	$\mathrm{Cu}^{2+}=0.02 \mathrm{M}$	$\mathrm{Cu}^{2+}=0.033 \mathrm{M}$
3.75	0	15.0	25.0
4.0	19.5	31.0	46.5
4.3	40.5	46.5	52.0
4.6	34.5	37.5	50.5
5.0	27.0	34.0	0
5.5	19.0	22.0	24.5
6.0	18.5	-	\cdots
6.67	11.5	-	-

FIG. XII

FIG. XIII

125.
closely parallel and that the marima correarind olosely to the maximum in concentration of $\mathrm{Cu} \mathrm{GG}^{+}$(Fig. XII). It is
likely therefore that at physiological pH's; hydrolysis of glycylglycine proceeds vic Complex A. (XII) 。

(XII)

This result is in complete agreement with Rabin'g (11) postulate that, the first complex Pormed between cupric ions and glycylglycine should undergo hydrolysis. He further stated that ionisation of the peptide bydrogon from the first complex shall reault in a complex resiatant to hyarolysis. It is seen in Trale X that CuGg has a concentration maximum at pH $\div 5.25$ (in reasonable agreament with Dobbie and Kexmack ${ }^{\circ}$ (23) value of $\mathrm{pH}=5.5$) and that at physiological pH^{9} CuGG is present in greater quantities than CuGG*。

It has been observed that the loss of the glycylglycine peptide hydrogen to form the inactive comples occurs only when oupric ions are present. With no hydrolysisoinhibiting complex present therefores one would expect aith metal ions such as Ni^{2+}, Zn^{2+}, etc. thet eppreciable hydrolysio couid be achieved even
at $\mathrm{pH}=7.0$. Orie experiment to teat this hypothesis wan made at $\mathrm{pH}=5.0$ and $\mathrm{Zn}^{2+}=0_{0} 10$ molar (experiment 28). Aftor. 100 hours the extent of reaction was 59% compared with 24.5% at the same pH but a cupric ion concentration of 0.02 molar (experiment 29). Making the reasonable assumption, sinc does not complax so strongiy to glycylgiycine as copper, this result lends support for Rabin's (11) conclusions.

In calculating the oxtent of complexing in solution, no account was tarc3n of copperabuffer complexing. It is clear that this is present and influences the reaction rate directly. Experiments 8 and 10 in acetate buffer were exactly similar to experiments 9 and 11 in chloracetate buffer. It can be seen (Figov) that in the presence of chioracetic acid the hydrolysis rate is Paster. Percentages of reaction after 100 houre are as follows:

Experiment 3 ; 30.5% Experiment 10; 18.5\%
Experiment 9; 25.0\% Experiment 11\% 15.0\%
The corresponding stability constants for copperaecetate copper chloracetate complexes at $25^{\circ} \mathrm{C}$ are;
acetic seids Log $\mathrm{K}_{\mathrm{y}}=2.24$
Chloracetic acid; Log $\mathrm{K}_{3}=1.61$ (Liloyd at al (22))
respectively. The atronger complex of cupric lons with acetate ion results in less copper being available for copper a glycylglycine complex formation. Thus oxperiments 8 and 10 are slower than the corresponding chloreceiate buffered experimenits 9 and 1.1.

Since the results are only semi-quantitative in nature it is not possible to formulate the kinetics of this reaction From $\mathrm{pH}=3.5-6.67$ in presence of cupric ion the reactions were only first oxder for about 5 hours and linearity of first order plots only occurred during this period. Increasing deviation took place as the reaction proceeded and is probably due to the copper complexing with the reaction product, glyaine. Two complexes are formed in copper-glycine solution, CuL^{+}and CuL_{2}, whose formation can be represented asz

$$
\begin{array}{lll}
\mathrm{Cu}^{2+}+\mathrm{I}^{\infty} & \stackrel{\mathrm{K}_{1}}{\mathbb{K}_{2}} & \mathrm{CuI}_{2}^{+} \\
\mathrm{CuI}^{+}+\mathrm{L}^{\infty} & \mathrm{CuH}_{2}
\end{array}
$$

 corresponding glycylglycine complex has $\mathrm{fP}_{1}=5.88$ (13). Thue glycine by complex somnation removes increasing quantities of cupric ions in the solution。 This results in a complicated system, where the active complex, CuGG ${ }^{\dagger}$, at any given pH will docrease in concentration as hydrolysis proceeds causing the reaction rate to fall and the reaction to doviato from Pirst order kinetics.

Although the results are necossarily gemi-quantitititive in nature, the mork has led to some interesting conclusions. It has not been possible to study the correlation betweon rate of hydrolysis and cupric ion concentration, although a non-linear relationship would eppear to hold. Fuclear magnetic resonance atudies over a wider range of pH and Cfl^{2+} values would probably complete the study of this reaction.
4. (5) REFERENCES
(1) Hellerman ot al: Jo Biol Chom., $\frac{112,179,(1935)}{125} 771,(1938)$
(2) EL,Smith; J. Biol. Chemo, 173, 571, (1948) Proc. Nat. Acad. Sci. Wash, 35, 80, (1949)
(3) Irving and Williames J.C.S., 1953, 3192.
(4) RoJ.P. Williama; Biolo Rev., 28, (1953)
(5) Ii and Doody; JoA.C.S.g 76, 221. (1954)
(6) Li. Doody and Whites J.A.C.S., 72, 5859, (1957)
(7) Li and Chens J.A.C.S., 80, 5678, (1958)
(8) C.B. Monk Frans. Fex. Soc., 470 285, (1951)
(9) Monk and Evens; Trens. Far. Soo.o 21, 1244, (1955)
(10) Datta and Rebin; Transo Fisr. Socoy 52, 11170. (1956)
(11) B,R, Rabin; Trans. Far. Soc., 52, 1130, (1956)
(12) Dobbie, Kermack and Lees; Bioch。Jo 52, 240 (1955)
(13) Dobbie and Kermack; Bioch. Jo, 59, 246, (1955)
(14) Datta and Rabin; Nature, 183, 745, (1959)
(15) Maitoll, Maryals and Kurphys Arch. Biochoma, 59, 373 (1955)
(16) Larence and Moore; J.A.C.S., 13, 3973. (1951)
(17) RoJ. Mariting Rature, 1" 771 , (1955)
(18) Baman, Haas and Trapmannz Arch. Pharme, 294, 569, (1961)
(19) Yemm and Ccokings Analyat, 80, 209, (1955)
(20) Dunn and Loehakoffis Jo Bioi. Chemo, 113, 359, (1936)
(21) Jo Bjerrum; "Wetal Amine Formation in Aqueous Solution". Copenhagen; Hasse and Son.
(22) Lloyd, Wicherley and Konk; J.C.S., 1951, 1786.

THE STRUCTURE OF CEDRELONE

BY
I. G. GRANT, Miss J. A. HAMILTON, T. A. HAMOR, R. HODGES, S. G. McGEACHIN, R. A. RAPHAEL, J. MONTEATH ROBERTSON, and G. A. SIM

Reprinted from Proceedings of the Chemical Society December, 1961, page 444

The Structure of Cedrelone

By I. G. Grant, Miss J. A. Hamilton, T. A. Hamor, R. Hodges, S. G. McGeachin, R. A. Raphael, J. Monteath Robertson, and G. A. Sim (Chemistry Department, The University, Glasgow, W.2)

The molecular structure of cedrelone, ${ }^{1}$ the principal constituent of Cedrela toona, Roxb., has been elucidated by both detailed X-ray analysis and chemical investigation. Our results define the constitution and stereochemistry (apart from absolute configuration) of cedrelone as ($\mathrm{I} ; \mathrm{R}=\mathrm{H}$).

Elemental analysis and an accurate mass-spectrometric determination of the molecular weight of cedrelone gave the formula $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{5}$. Cedrelone has the following spectral properties, $\nu_{\text {max. }} 3400(\mathrm{OH})$, 1674 ($\alpha \beta$-unsaturated $\mathbf{C}=0$), 3100, 1505, 878 (furan ring) $\mathrm{cm} . .^{-1}, \lambda_{\text {max. }} 217(\epsilon 11,800), 279(\epsilon 9100)$, and in base $\lambda_{\text {max. }} 327 \mathrm{~m} \mu$ ($\epsilon 5530$). Acetylation under mild conditions afforded a monoacetate, the spectral properties of which [$\nu_{\text {max. }} 1770$ (enol OAc), 1702 ($\alpha \beta$-unsaturated $\mathbf{C}=0$) $\mathrm{cm} .^{-1} ; \lambda_{\text {max. }} 222(\epsilon 16,400$), shoulder at 245 (ϵ ca. 8000), $320 \mathrm{~m} \mu(\epsilon 170)$], combined with those of cedrelone, suggested the presence of an enolised α-diketone function similar in environment to that of diosphenols in the limonin series. ${ }^{2}$ That cedrelone possessed a second enone function in a six-membered ring was suggested by the appearance, on mild catalytic hydrogenation, of a band at $1705 \mathrm{~cm} .^{-1}$ (cyclohexanone) in addition to
the diosphenol carbonyl band at $1670 \mathrm{~cm}^{-1}$. This was confirmed by epoxidation of cedrelone, which gave a monoepoxide $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{6}, \nu_{\text {max. }} 1720$ (α-oxygenated cyclohexanone), 1680 (diosphenol) cm^{-1}, $\lambda_{\text {max. }} 201(\epsilon 7200), 276 \mathrm{~m} \mu(\epsilon 10,700)$, whose ultraviolet absorption curve on subtraction from that of cedrelone gave $\lambda_{\text {max. }} 225 \mathrm{~m} \mu(\epsilon 7300)$. Cedrelone, recovered from base-catalysed deuteration, showed no C-D absorption in the infrared region, which is in agreement with structure (I).

The nature of the remaining oxygen atom was indicated by the ready conversion of cedrelone acetate by the boron trifluoride-ether complex into an isomer, isocedrelone acetate, $\nu_{\max .} 3400$ $(\mathrm{OH}), 1765$ (enol OAc), 1695 (diosphenol), 1665 (cyclohexenone), 1060 (C-O stretch of hydroxyl) $\mathrm{cm} .^{-1}, \lambda_{\text {max. }} 210(\epsilon 23,100)$, $238 \mathrm{~m} \mu(\epsilon 26,300)$. Subtraction of the ultraviolet absorption curve of the acetate ($\mathbf{I} ; \mathrm{R}=\mathrm{Ac}$) from that of isocedrelone acetate gave $\lambda_{\text {max. }} 242 m \mu(\epsilon 13,200)$. By analogy with similar rearrangements in the limonin series, ${ }^{2}$ the structure (II) is postulated for isocedrelone acetate.

Prolonged treatment of either cedrelone or isocedrelone acetate with hot aqueous-methanolic

[^1]potassium hydroxide gave a carboxylic acid, $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{6}, \nu_{\text {max. }} 3450,3250(\mathrm{OH}), 1705\left(\mathrm{CO}_{2} \mathrm{H}\right)$, 1670 (cyclohexenone), $\lambda_{\text {max. }} 235 \mathrm{~m} \mu(\epsilon 20,000)$, which readily gave a monomethyl ester. Since the acid no longer possessed the diosphenol function the most probable structure is (III), formed by benzilic acid rearrangement. The ultraviolet absorption is consistent with the presence of both the enone in ring a and the vinylfuran chromophore.

The X-ray study was carried out with cedrelone iodoacetate, the crystals of which belong to the

(IV)

orthorhombic system with cell dimensions $a=6.97$, $b=27 \cdot 44, c=13.74 \AA$. There are four molecules in the unit cell and the space group is $P 2_{1} 2_{1} 2_{1}$. Threedimensional intensity data were recorded on Weissenberg photographs and were estimated visually; in all, 1285 structure amplitudes were evaluated.

The co-ordinates of the iodine atom were obtained initially from Patterson syntheses. The z-co-ordinate is close to zero, so that spurious symmetry in the early stages of the analysis made the location of atomic sites rather more difficult than usual. After three rounds of structure-factor calculation and Fourier synthesis, the carbocyclic rings \mathbf{B}, \mathbf{c}, and \mathbf{D} and the epoxide group were firmly established and
the biogenetic relationship to limonin ${ }^{2,3}$ (IV) was evident. Thereafter the elucidation of the structure of cedrelone iodoacetate as ($\mathrm{I} ; \mathrm{R}=\mathrm{CO} \cdot \mathrm{CH}_{2} \mathrm{I}$) was straightforward.

The sixth three-dimensional electron-density distribution over the molecule of cedrelone iodoacetate shown by means of superimposed contour sections parallel to (001).

The average discrepancy between measured and calculated structure amplitudes at the present stage is 21%. Further refinement is proceeding. Superimposed contour sections illustrating the sixth threedimensional electron-density distribution over the molecule are shown in the Figure.

Cedrelone, like limonin, is clearly a triterpenoid of the euphol (V) type ${ }^{4}$ from which four carbon atoms of the side chain have been lost and carbons $\mathrm{C}_{(20)}$ to $\mathrm{C}_{(23)}$ converted into a furan ring. Ring c adopts a boat conformation and ring a a half-boat conformation. The latter stereochemical feature is presumably partly due to steric interaction between the 28 - and 29 -methyl groups and the oxygen substituent at position 6.

The calculations were carried out on the Glasgow University DEUCE computer, by using programmes devised by Drs. J. S. Rollett and J. G. Sime. We thank the Department of Scientific and Industrial Research for maintenance grants (to I.G.G., J.A.H., and S.G.McG.), the University of Glasgow for an I.C.I. Research Fellowship (to T.A.H.), the Tropical Products Institute for supplies of Cedrela toona, and Mr. J. H. Beynon (Imperial Chemical Industries Limited) for the mass-spectrometric measurement.
(Received, August 8th, 1961.)

[^2]
THE STRUCTURE OF CHIMONANTHINE

BY

I. J. GRANT, T. A. HAMOR, J. MONTEATH ROBERTSON, and G. A. SIM

The Structure of Chimonanthine

By I. J. Grant, T. A. Hamor, J. Monteath Robertson, and G. A. Sim
 (Chemistry Department, The University, Glasgow, W.2)

Hodson, Robinson, and Smith recently reported ${ }^{1}$ the isolation from Chimonanthus fragrans of a new alkaloid, chimonanthine, $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{4}$, isomeric with calycanthine (I). ${ }^{2}$ By considering chemical and spectroscopic evidence they narrowed the structural possibilities to two formulæ (II; $\mathbf{R}=\mathbf{R}^{\prime}=\mathbf{H}$) and (III). We have now carried out a detailed X-ray analysis of chimonanthine dihydrobromide, which was kindly supplied by Dr. G. F. Smith, and find that the correct structure for this alkaloid is (II; $\mathbf{R}=\mathbf{R}^{\prime}=\mathbf{H}$).

Two other naturally occurring alkaloids, calycanthidine and folicanthine, have now been shown ${ }^{3}$ to represent successive further stages of methylation of chimonanthine; it follows that calycanthidine must be formulated as (II; $\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Me}$) and folicanthine as (II; $\mathbf{R}=\mathbf{R}^{\prime}=\mathrm{Me}$).

Crystals of chimonanthine dihydrobromide (from dry ethanol) belong to the tetragonal system with cell dimensions $a=b=13.95, c=26.67 \AA$. There are eight molecules in the unit cell and the space group is $P 4_{1} 2_{1}$ (or the enantiomorphous $P 4_{3} 2_{1}$ 2). 2083 independent structure amplitudes were evaluated.
Fourier methods were used for the structure

The third three-dimensional electron-density distribution for chimonanthine dihydrobromide shown by means of superimposed contour sections drawn parallel to (001).
analysis. The third electron-density synthesis is shown in the Figure by means of superimposed contour sections drawn parallel to (001) and covering the region of one molecule. It will be seen that in the crystal the molecule adopts the cis-conformation.

The average discrepancy between measured and calculated structure amplitudes at the present stage is 21%. Refinement is continuing.

The extensive calculations were carried out on the Glasgow University DEUCE computer with programmes devised by Dr. J. S. Rollett and Dr. J. G. Sime. We thank the University of Glasgow for an I.C.I. Fellowship (to T.A.H.), and the Department of Scientific and Industrial Research for a maintenance grant (to I.J.G.).
(Received, March 7th, 1962.)

[^3]
SOHMART

X-ray studies have been carried out on orystals of heavy atom derivatives of naturally oocurring organic compounds. Two structures have been successfully determihed in this fashion; the triterpene codrelone $\left(\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{5}\right)$ and the alkaloid ohimonanthine $\left(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{4}\right)$ 。

Information on the structure of cedrelone was limited to speotral considerations alone, when a crystalline sample of the iodoacetate derivative was provided by Mr. S.G. McGeachin of Glasgow. The structure analysis was hindered initially by the Loding atom being close to a special position in the unit, cell which gave riso to falso symmetry in the initial Fouriex synthesea. The fourth Fourier synthesie, however, resulted it most of the structure being detemined and thereafter the complato structure was obrained and refined to give a discrepancy of B $=17.5 \%$ The erystal and molecular dimansions were in agreow ment with accepted values althougin no attompt was made to localoc atomic positions acouratolyo

Dro GoF. Smith of Manchester University provided orystals of the dihydrobromide dorivative of chimonanthine on alkaloid of the calycanthaceous variety. Chemical and spectral ovidence had progressed to the stage where the structure was probably one of two possibilities. The first major problem in this
structure analysis was the determination of the position of the bromide ions in the unit cell of the arystal．There were two bromide ions per seymotric unit and the dexivative exystallised in the tetragonal syotem；these two facts resulted in a very complex Patterson map which required much study before a solution was found．Thereafter the major problom was minimising the extremely large amounts of computer time required for this analyeis．The structure and relative stereochemiatry of ohimonanthine have been determined and the atructure was in fact one of the two structures proposed by the organic ohemista． The orystal and moleoular dimensions agree with acoepted values within the limits of experimental accuracy and refinement of this atructure has been carried out to give an average disoxepenoy between observed and calculated structure amplitude日 of 14.9% ．

The final seotion of this thesis deseribes the work carried out under the supervision of Dr。 EoGelles lately of tilis Departmente The copper ion catalyged hydrolyais of glycylglycixe has been studied over a range of pH values and cupric ion conoentrations．It has been established that the Pirst complex formed between glycylglycine and oupric Lons （ $\mathrm{Cu} G \mathrm{G}^{+}$）is the one responsible for catalysed hydrolysis and that subsequently formed complexes inhibit hydrolysis．These results are in agreement with other workers theoreticel pred －dictions。

(iv)

The struoture analysis of cedrelone was cerried in conjunction with Dr。JoAs Hamilton of this dopartment and the kinetic studies were a continuation of experiments pirst started by Mr. JoM. Wilson lately of this department.

[^0]:

[^1]: ${ }^{1}$ Dutt and Parihar, J. Indian Chem. Soc., 1950, 27, 77.
 ${ }^{2}$ Barton, Pradhan, Sternhell, and Templeton, J., 1961, 255; Arigoni, Barton, Corey, and Jeger, in collaboration with Cagliotti, Dev, Ferini, Glazier, Melera, Pradhan, Schaffner, Sternhell, Templeton, and Tobinaga, Experientia, 1960. 16, 41.

[^2]: ${ }^{8}$ Arnott, Davie, Robertson, Sim, and Watson, Experientia, 1960, 16, 49; J., 1961, 4183.
 ${ }^{4}$ Barton, McGie, Pradhan, and Knight, Chem. and Ind., 1954, 1325; J., 1955, 876.

[^3]: ${ }^{1}$ Hodson, B. Robinson, and Smith, Proc. Chem. Soc., 1961, 465.
 ${ }^{2}$ Sir R. Robinson and Teuber, Chem. and Ind., 1954, 783; Hamor, Robertson, Shrivastava, and Silverton, Proc. Chem. Soc., 1960, 78; Woodward, Yang, Katz, Clark, Harley-Mason, Ingleby, and Sheppard, Proc. Chem. Soc., 1960, 76.
 ${ }_{3}$ Saxton, Bardsley, and Smith, Proc. Chem. Soc., 1962, preceding communication.

