ALKALOIDS AND OTHER ORGANIC MOLECULES BY

X RAI NETHODS

THESIS
for the Degree of
DOCTOR OF PHILOSOPHY
in the
UNIVERSITY OF GLASGOW
submitted
by
ANDREW TENNENT McPHAIL, BoSc。

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 13849345
Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

PREFACE

I wish to thank particularly Dr. GoA. Sim, and Professor J, Monteath Robertson, $C_{0} B_{0} E_{0,} F_{0} R_{0} S_{0}$, for their informative supervision throughout the period of my research.

I am grateful to Drs. J.S. Rollett and J.G. Sime for the use of the numerous programes devised by them for the DEUCE computer.

I am indebted to the Department of Scientific and Industrial Research for financial support during the first two years of my research and to the university of Glasgow for my appointment to an Assistant Lectureship during which the research was completed.

SUM期ART

The main parts of this thesis describe the determinations of the structures of derivatives of two alkaloids of the calabash-curare series, caracurine-II and macusineaA, by X-ray methods. Another two sections deal with the determination of the crystal structure of a derivative of a naturally-occurring sesquiterpenoid lactone, geigerin, and with that of a monohalogenobenzene derivative, 2-chloro-4-nitroaniline.

A considerable amount of information regarding the major portion of the chemical structure of caracurine-II was available when the analysis of this structure was begun. Nothing was known of the crystal structure or of the absolute position of the atoms in the molecule. Examinations of crystals of the isomorphous dihalide derivatives, the dimethochloride and the dimethobromide, were made but owing to difficulty in ascertaining the locations of the halide ions the work on these was abandoned at an early stage. The elucidation of the structure of caracurinewII resulted from an analysis of the dimethiodide derivative.

Similarly, the greater part of the chemical structure of macusinew was known when the Xeray anaiysis of crystals of the iodide deripative of this alkaloid was undertaken. The iodide ion was easily located and the structure was
very readily determined.
In neither the analysis of caracurine-II dimethiodide nor that of macusineaA sodide was great accuracy of the molecular parameters attempted. Consequently, the results have considerable limitations imposed upon them and the finer details of the molecular dimensions are obscured.

A structure and partial stereochemistry of geigerin had been proposed when crystals of bromogeigerin acetate were received from Professor Barton. The Xaray crystal analysis of this derivative of geigerin confirmed the proposed structure. Unfortunately the substitution of the bromine atom into geigerin acetate did not occur at the expected position but at a centre which was of stereochemical interest. The outcome of this was that the relative stereochemistry of the geigerin molecule at that site at which this substitution had taken place could not be inferred from the results of the analysis. The analysis was carried out to a fair degree of accuracy. Some interesting features which can be correlated with those observed in other molecules are evident in the structure. The work on this structure analysis was shared with Miss J.A. Hamilton who performed, as far as possible. alternate series of calculations.

The crystal analysis of 2ochlorom-nitroaniline was undertaken in order to determine the finer details of the molecule, the gross structure being entirely known. The results clearly establish that, in the solid state, the nitro group of the molecule is twisted out of the plane of the benzene ring by a small amount.

TABLE OF CONTENTS.

Preface
Summary
PARTI
Some Hethods of Xaray Crystal
Structure Analysis
Page
1.1 Introduction. 1
I. 2 Diffraction by a lateice. 3
1.3 The Atomic scattering factor. 7

1. 4 Thermal vibrations. 9
1.5 The structure factor expression. 11
1.6 Fourier series. 14
1.7 Relation between intensity and structure amplitude. 16
1.8 The phase problem and methods of solution. 19
2. Trial and error method. 19
3. Vector methods. 20
4. The heavy atom method. 22
1.9 Methods of refinement. 25
5. Fourder synthesis. 25
6. Difference synthesis. 26
7. The method of least-squaxes. 28
PART II
The Structure of Caracurine II:
X-ray Analysis of Caracurine-II Dimethiodide.
Page
2.1 Introduction. 33
2.2 Experimental. 36
2.3 Structure determination. 39
20.4 Structure refinement. 47
2.5 Results of analysis. 50
2.6 Discussion of results. 53
PARTIIT
The Structure of Macusine-A:
X ray Analysis of Macusine-A Iodide.
Page
3.1 Introduction. 60
3.2 Experimental. 62
3.3 Structure determination and refinement. 64
3.4 Results of analysis. 67
3.5 Discussion of results. 69
PARTIV
The Structure of Geigerin:
Xaray Analysis of Bromogeigerin Acetate.
Page
4.1 Introduction. 75
4.2 Experimental. 77
4.3 Structure determination and refinement. 79
4.4 Results of analysis. 83
4.5 Discussion of results. 85
PARTV
Xoray Analysis of 2-Chloro-4-nitroaniline.
Page
5.1 Introduction. 91
5.2 Experimental. 93
5.3 Structure determination and refinement.
8. The cmaxis projection. 96
9. Three-dimensional refinement. 99
5.4 Results of analysis.
10. Holecular dimensions. 103
11. Analysis of thermal motion. 105
5.5 Dascussion of resurte. 109

PARTI

Some Methods of X-ray Crystal
Structure Analysis.

:. 1 INTRODUCTIOE.

The Xorays produced when highospeed electrons hit atoms have wavelengths of the same order of magnitude as the distances between atoms. The discovery of this fact, due to Laue in 1912, opened the way, not only to the understanding of the nature of Xorays, but alse to the determination of the exact axxangement of the atoms in a crystal.

Complex and lengthy calculations are required to build up an image of the pattern of atoms in a crystal; In the early days of erystallography only elements and simple salts could be tackled with any hope of success. However: with the accumulation of knowledge, inorganic structures of evermincreasing complexity were determined. Among organic compounds progress was at firsi slow but the pace accelerated as soon as the structures of the principal fundamental types of molecules o normal paraffin chain, benzene ring, naphthalene nucleus were well established and the structures of such complex substances as carbohydrates, sterols, phthalocyanines, strychnine and vitamin B_{12} were determined.

With the advent of the electronic computer the time required for the calculations was greatly reduced, with the result that X wray analysis now plays an increasingly important gart in research and the strwotures of many
complex naturallyoocurring organic compounds have been elucidated.

1. 2 DIFFRACTION BY A LATTICE.

The simplest kind of three-dimensional pattern is a set of points, each point located at a lattice point. The angles of diffraction produced by a crystal depend only upon the lattice dimensions. Assuming that each lattice point is the site of an electron, the position of the electrons can be specified by the ends of vectors ${ }^{x}$ such that

$$
\Gamma=u_{a}+v b+W C
$$

where $\mathfrak{a}, \underline{b}$, and c are the primitive translations of the lattice and $u_{9} v_{9} w$ are integers.

When each electron is located in the path of an Xwray beam, it is forced into oscillation by the electromagnetic field of the X rays impinging on it, and, due to this, the electron in turn becomes a source of secondary radiation, It is necessary to consider the phase differences between the waves scattered in any particular direction in order to find the total effect of the combination of these secondary waves.

In the diagram A_{1} and A_{2} are two lattice points separated by a vector distance I_{0} and $A_{1} M$ and $A_{2} N$ are drawn in the incident and diffracted wave front respectively. A parallel beam of Xorays, of wayelength λ, falling on the lattice in a direction defined by the vector $s_{0}($ modulus $1 / \lambda$) is scattered in a direction defined by the vector 3 (modulus $1 / \lambda$).

The path difference between the scattered waves is

$$
\begin{aligned}
& \text { where } \mathrm{S}=\underset{\mathrm{B}}{\mathrm{~S}} \mathrm{~S}_{0}
\end{aligned}
$$

The scattered waves interfere with each other except when they happen to be in phase and in order that this condition is satisfied the path difference must be equal to an integral number $i{ }^{e}$. I.S must be an integer.

Thus (ua $+r \underline{b}+w)_{o} S$ must be integral. Since $u_{g} v_{9}$ and w change by integral values each of the products separately must be integral $i_{0} \theta_{0}$

where $h_{\text {, }} k_{g} \ell$ are integers.
These equations are known as the Laue equations and when they are simultaneously satisfied a diffracted beam of maximum intensity will be produced. It was not untin Wat- Bragg (1913) identified the integers h, k and $\&$ with the Miller indsces of the lattice planes that use
could be made of these equations to interpret Hatay spectra and to determine the structure of crystals.

Rewriting Laue *s equations as

$$
\begin{aligned}
& a / h \cdot S=1 \\
& b / k \cdot S=1 \\
& c / h \cdot S=1
\end{aligned}
$$

then, subtraction of these in pairs gives (a / h, b / k) $\mathrm{S}=0$ 。 $(a / h=c / \ell) \cdot S=0$. This means that the vector S is perpendicular to the vector $a / h=\frac{b}{a} / k$ and to the vector a/h - C / L. These are vectors in the plane of Miller indices $h k d(F i g . I)$. Thus $\$$ is perpendicular to this plane.

Since S is a rector in the direction of the bisector of the incident and diffracted beam (Fig II), this bisector is idomified with the normal to the $h k$ plane. This justifies the concept of each diffraction as a "reflection" of the rays from lattice planes.

(I)

The spacing d, the perpendicular distance of the plane from the origin, is the projection of $a / h, \frac{b}{h} / k$, or c / R on the vector S ,

$$
\text { iou. } \quad d=\frac{\underline{a} / h \cdot \underline{S}}{|S|}
$$

But, from the Laue equations $\mathfrak{a} / \mathrm{h}, \underline{S}=1$ and from Fig(II), $|S|=\frac{2 \sin \theta}{\lambda}$
so,

$$
\mathrm{d}=\frac{\lambda}{2 \sin \theta} \text { or } \lambda=2 \mathrm{~d} \sin \theta
$$

This is Bragg's Law.

1.3 THE ATOMIC SCATYERINE FACTOR.

In the above argument, the scattering units were assumed to be electrons in order that their linear dimensions could be neglected in comperison with both the spacematitice dimensions and the wavelength of inseys. Atoms in crystals cannot, however, be regarded as scattering points as the diameter of the electron cloud of an atom is of the same order of size as the distance between the centres of adjacent atoms. The consequences of this are that phase differences exist between rays scattered from different points in this volume and so the intensity of the resultant beam is reduced.

The scattering power of an atom, designated $\hat{i}_{\text {; }}$ is expressed in terms of the scattering power of a single. free electron. For small angles of diffraction the above. mentioned phase differences are small and the scattered amplitude will approach Z, the atomic number of the aton. As the angle of diffraction increases the phase differences become larger and thus the scattered beam becomes weaker'. From this it can be seen that, for a given wavelength, f is a function of the angle of scattering and of the distribution of electrons in the atom.

For many atoms the scattering powers have been deduced from the measured intensities of reflections from crystals whose structures are firmly established fames and Brindleys 1931) but it is also possible (Hartree, 1928) to calculate
the values from the electronic structures of the atons and these calculated values agree very well with the experimental values.

1,4 THERNAL YEBBATIONS:

In the deduction of the theoretical scactering factors it is assumed that the atoms are at rest. Atoms in crystals vibrate at ordinasy temperatures with frequencies much lower than those of Xorays; at any one instant some atoms are displaced from their mean positions in one direction while those in another part of the crystal are displaced in another direction. Consequentiy, diffracted Xarays which would be exactly in phase if the atoms were at rest are actually not exactly in phase and the antensity of the differacted beam is thus lower than it would be if all the atoms were at rest.

It is a very complex matter to make an accurate allowance for thexmal motion A fais approximation to this effect on the intensity of the Xosay reilections can be made by using the factor $i=s_{0} \exp \left(\frac{6 B \sin ^{2} \theta}{\lambda^{2}}\right)$ where 0 is the Bragg angle, f_{0} is the atomic scattering factor for atoms at rest, and E_{2} the Debye(1914) temperature factors is a constant. The value of B is given by $B=8 \pi^{2} \bar{u}^{2}$, where \dot{u}^{2} is the mean square displacement of the atoms from their mean positions. The use of the above expression for the scattering factor inplies that all the atoms vibrate with equal amplitues. This is not strictuy bree amd, in general. thermal vibrations must be different for every crystallographically independent atom in a unst cell sinee they depend on the surroundings of the abom as mell as on its inertia. Another assumption

Implied by the expression given above is that the thermal vibrations have the same magnitudes in all directions of the crystal. In some crystals this approximates to the truth but in organic molecules there are many examples in which the vibrations are markedly anisotropic. Both of these effects are usually ignored at the inception of a structure analysis but allowance can be made for them during the refinement stages.

I. 5 THE STRUCTURE RAGTOR EXPRESSTON.

The crystal hattice deseribed 30 far consists of atoms of finite size located with their mean positions at lattice points. In most crystals, however, a certain arrangement of atoms exists within each unit cell. Any one set of atoms in different unit cells can be regarded as lying upon a lattice. A crystal with atoms in the unit cell can be regerded as being based upon N identical interpenetrating lattices, each of which will obey the Laue and Bragg conditions, but the different lateices wilis, in general, be out of phase. The intensities of the scattered rays wil thus depend upon the atoms arsangement within the unit cell.

The position of the fin aton situated at the point
 lattice dimensions, can be represented by the vector ys where $x_{j}=x_{j}+y_{j}{ }_{j}^{b}+z_{j} e_{0}$

The path difference between the waves scattered by these atoms and those that would be scattered by a set of atoms at the points of the lattice that describes the ungt cells is $\lambda z^{\prime} j$. Thus the expression for the complete wave scattered by the th tattice contains a tean form.
 atom,
$A \operatorname{term} F=\sum_{j=1}^{N} f_{j} \exp 2 \pi i_{i} \boldsymbol{r}_{j} \cdot \underline{S}$ will therefore occur in the expression for a complete wave scattered by the crystal,

$$
\text { ie, } \begin{aligned}
F & =\sum_{i=1}^{N} f_{j} \exp 2 \pi i \quad\left(x_{j} \cdot a \cdot S+y_{j} \cdot b \cdot S+z_{j} \cdot \underline{C} S\right) \\
& =\sum_{j=1}^{N=} f_{j} \exp 2 \pi i \quad\left(h x_{j}+k y_{j}+l z_{j}\right) .
\end{aligned}
$$

The quantity F is a function of $h_{9} k$ and ℓ and is called the structure factor, It is a complex resultant, characterised both by an amplitude $|F|$ and a phase constant. α. It can be evaluated by means of the expressions:

$$
\begin{aligned}
& \mid F(\text { ha } \ell) \mid=\sqrt{A^{2}+B^{2}} \\
& \alpha(\text { bk } \ell)=\tan ^{-1 B} / A
\end{aligned}
$$

where $A=\sum_{j=1}^{N} f_{j} \cos 2 \pi\left(h x_{j}+k y_{j}+l z_{j}\right)$
and $\quad B=\sum_{j=1}^{N} f_{j} \sin 2 \pi\left(h x_{j}+k y_{j} * l z_{j}\right)$.
This is valid for all crystals, whatever their symmetry: but, whenever there is a centre of symmetry at the origin there is no need to calculate the sine terms, since in aggregate they are bound to add up to zero. The resultant therefore can be obtained by summing the cosine terms alone and the possible phase angles are thus limited to 0 or π depending upon whether the expression above for A is positive or negative.

The more general form of the structure factor can be obtained by considering separately each element of volume of the unit cell. If $\rho(x, y, z)$ is the electronedensity at the point (x, y, z) the amount of scattering matter in
the volume element $y d x d y d z$ is $p . V d x d y d s$ and the structure factor equation is

$$
\begin{array}{r}
F(h k \ell)=\int_{x=0}^{1} \int_{y=0}^{1} \int_{z=0}^{1} \nabla \rho(x, y, z) \exp 2 \pi i(h x+k y \& \ell z) \\
d x d y d z
\end{array}
$$

1.6 FOURTER SERIES

It is welloknown that a periodic function can be represented by an appropriate sum of the cosine and sine terms known as a Fourier series. Since a crystal is periodic in threeodimensions its electronedensity can neatly be represented by such a series in the general form

$$
p(x, y, z)=\sum \sum_{-\infty}^{\infty} \sum A\left(p, q_{2} x\right) \exp 2 \pi i(p x+q y+r q)
$$

p, q and r being integers and $A(p, q, r)$ the Fourier coefficient of the general forme

In order to evaluate this series and so obtain the electron -density at any point in the crystal it is necessary to calculate the coefficients $A(p, q, r)$.

Substituting this series for $\rho(x, y, z)$ in the general expression for the structure factor gives $F(h k l)=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \sum_{-\infty}^{\infty} \sum V A\left(p_{,} a_{,} r\right) \exp 2 \pi i(p x+q y+x q)$. $\exp 2 \pi i(h x+k y+2 z) 。 d x d y d z$. on integrating, every term is zero except that for which $p=-h_{2} q=-k$ and $r=-\ell_{\text {, which gives }}$

Therefore

$$
F(h k 2)=V A(h[\mathscr{U})
$$

This shows that the Fourier coefficients, Ag are directly related to the corresponding structure factors and

$$
p(x, y, y)=\sum_{h, k, \ell=-\infty}^{\infty} \sum_{i}^{\infty} \frac{F(n k \ell)}{y} \exp -2 \pi i(h x+k y+2 z)
$$

The zero term of the series is a constant

$$
F(000)=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} V \rho(x, y, z) d x d y d z=z .
$$

The Fourier series above is conveniently written

$$
\rho(x, y, z)=\sum \sum_{-\infty}^{\infty} \sum \frac{|F(h k \ell)|}{T} \cos [2 \pi h x+2 \pi k y+2 \pi 2,2
$$

where α (hi) represents the phase constant associated with the amplitude $|F(h k P)|$ which can be calculated from the observed intensities.

1.7 RELATION BETWEEN INTENSITY AND STRUCTURE AMPLITUDE.

The total energy reflected by the volume $d V$ in the course of a single pass of the crystal through the region of the Bragg reflection may be written:

$$
E=\left(\frac{I_{0} \lambda^{3} N^{2} d V}{\omega}\right)\left(\frac{e^{4}}{m^{2} c^{4}}\right) L p|F|^{2}
$$

where $e=$ the charge on the electron; $m=$ the mass of the electron; $c=$ the velocity of light; $I_{0}=$ the intensity of the incident radiation; $\lambda=$ the wavelength of the Xradiation; $N=$ the number of the unit cells per unit volume; $d V=$ the volume of the crystal; $\omega=$ the angular velocity of the crystal; $L=$ the "Lorente factor": $p=$ the polarisation factor, $\frac{1+\cos ^{2} 2 \theta}{2} ; F=$ the factor representing the resultant scattered by a singie unit cell.

This expression should only hold for minute crystals but it is found that it is applicable to many comparatively large crystals. It must be inferred that in such crystals perfect continuity of the lattice structure is only maintained over very small regions, and, that some break or slight change in orientation occurs. The crystal, in fact, behaves like a mosaic of mall blocks.

In all the usual experimental arrangements the $X a r a y$ beam is unpolarised which means that the azimuth of the alectric vector assumes all directions mith time. The effective amplitude of the radiation after it is reflected
gt the angle of 20 consists may of componembs of these 2wimuhs after rexlection. This feature has the expet of zeducing the intensity of the Xoray bean by a factor p, the polarisetion foctor, which is equal to $\frac{1-\cos ^{2} 3 \theta}{2}$ and provides the necessary averaging.

The Morente factor waries with the type of photograph. Foz the equatorial reflections on normal rocation photograph it is $\frac{8}{\sin 2 \theta}$. Expressions for rotation photographs taken with the bean not norwal to the axis of rofation are given by Tumell (1939) (fos egric inclination Weisseniverg photographs).

In addution to these factorg of simple geometric oracin for which allowance must be made in transsorating the measured energies af spectra to the square of the structure ampltude there are some further factors which can arise in a less simple fashiong vis absorption and extinction.

Xoradiation is absorbed by matter. For crystals of a natural shape completely bathed in the X mpay beam it is possible to calculate absorption corrections but the calculations are laborious. Small crystals are genemally employed in order to eliminate absorption as much as possible.

In some exysual spectmens the zegion of perfect exyotal stracture may be too large. In such eases, and paretcularty for the strong Xoray remections, estinction of the thendant Yoray bean by reflection from the surtace layers is an

Imporeant tactor, This effect is caled prinary extinetion and it is yery difficult to devise any systematc correction for it.

Secondary extinction occurs even in good mosaic crystals. It is due to the screening of the lower blocks of the crystal by the upper blocks which can reflect away an appreciable amount of the incident radiation in the case of wery strong reflections. Systematic corrections for this effect can be applied.

1. 8 THE FHASE PROBLEEK AND METHODS OF SOLUTTON.

It has been shown above that the electron iensity of a crystal can be represented by a Fourier series which requires a knowledge of the values of both |Fhkl|| and α (hk $\ell)$. Although the value $|F(h k \ell)|$ can be derived from the measured intensities, no experimental means has been found for observing the phases, This constitutes the phase problem in Xaray crystallography

1.8.1. Trial and Error Method.

In order to try to solve a crystal structure by this method it is necessary to postulate a set of atomic pasameters that conforms with the space group symetry. caleulate seructure amplitudes and compare these calculated values mith those obsexved, Violent disagreenents infer that the postulation is wrong when it is necessary to try another set of paraneters. This procedure is continued until the correct result is achieved. In order to simplify the number of possible structures use is made of the distribution of Xaray intensities, experience gained from other crystals and chemical and physical properties of the compound. It will be noted that this method could require many calculations before the correct result is obtained, A way of circumenting these calculations is to make use of the fourier transform of a set of atoms. Holes representing both the atomic positions in the projection
of a unit and the stom type are punched on a mask. The diffraction pattern in parallel light to the Fraunhofer diffraction pattern o represents the required Fourier transform which can be compared with the corresponding weighted reciprocal lattice. This permits the Eest of various possible trial structures to be performed fairly rapidly。

Whichever of these methods of comparing the results of a trial structure with the experimental results is used. great care has to be taken in their interpretation as a structure which is nearly correct may be discarded when slight shifts in the atomic positions would have achieved success.
1.6.2. Vector Miethods.

The vector representation of a crystal struceure, developed by Patterson (193ん, 1935) does not attempt to determine the phases of the structure factors. Instead of using the structure factors, the squares of the moduli of the structure factors are used as coefficients; these quantities are directly related to the observed intensittes,

Patterson defined a function

$$
P\left(u_{0}, v, w\right)=V \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \rho(x, y, z) \rho\left(x+u_{,} y+v_{s}, z+w\right) d x d y d x
$$

In this expression $p(x+u, y+y, z+w)$ gives the distribution about $\left(x_{\%} y_{\%} z\right)$ as a function of the parameters $u_{9} y_{z}$ w and $\frac{1}{2}$
represents a distribution simhlaz to $\rho\left(x_{8} y_{8} z\right)$ but displaced irom the point (x, y, z) through a distance whose
 weighted by the amount of scattering matter in the volume element at (x, y, z) viz. $\rho(x, y, z) d x d y d z$.

If the values for the electron-densities given by the Fourier series are substituted in this function then:-

$$
\begin{aligned}
& P\left(u, w_{,} w\right)=\frac{1}{V} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \sum_{h} \sum_{k} \sum_{l} \sum_{h^{\prime}} \sum_{\substack{k^{\prime} \\
\{-2 \pi i}} \sum_{l^{\prime}=-\infty}^{\infty} F(h k l) \exp (h x+k y+2(x)\} \\
& x F\left(h^{9} k^{8} \ell^{i}\right) \exp \left\{-2 \pi i\left(h^{9} x+k^{p} y+\ell^{9} z\right)\right\} \exp \\
& \left\{-2 \pi i\left(h^{8} u+k^{i} v+2^{8} w\right)\right\} \\
& \text {. } d x d y d x .
\end{aligned}
$$

The right hand side of this equation is eero unless hoh ${ }^{4}$ $k=k^{8}$ and $\ell=\ell^{\text {q }}$, when
and, since $F(h k \ell)$ and $F(h \bar{L}$ 置 $)$ are complex conjugates

$$
P(u, \nabla, w)=\frac{1}{V} \sum_{h} \sum_{k}^{\infty} \sum_{l=-\infty}|F(h k \lambda)|^{2} \exp 2 \pi i(h u+k v+2 w)
$$

The Patterson function will be finite only for values of u, v and w that represent vectors joining two atoms. This function will therefore show a superposition of all the

Interatomic vectors of the crystal. It would perhaps appear that this expression of the results would solve the structural probiem but the difficulties of the method ase quite considerable.

The number of interatomic vectors for an array of n atoms is $n(n-\lambda) / 2$ and in the general case each of these will give rise to a separate peak in the distribution function. The chance of so many peaks being resolved is extremely small so that laxge groups of peaks will tend to coalesce. However: if some of the atoms in the cell have much greater scattering powers than the others, the vectors between the "heavier" atons will stand out and the information thus gained may lead to a knowledge of the comordnates of these atoms.

Harker (1936) has show that provided the exystal has planes or axes of symmetry (or screw axes or gilide planes) it is easy to specify on which plane or along which line of the vector cell the most useful information will be found. This provides a useful aid in the solution of the Patterson function.
1.8.3. The Heavy Atom Hethod.

If a relatively small number of "heavy" atoms are present in the unit cell their positions can be located, in general, fairly easily by Patterson methods. the vectors between light atoms become second order qualities
and only the heavy atom - heavy atom and heavy atom light atom vectors are significant.

The structure factor for a crystal structure with one heayy atom in the unit cell may be written
$F(h k \ell)=f_{H} \exp 2 \pi i\left(h x_{H}+k y_{H}+\ell z_{H}\right)+$

$$
\sum_{n} x_{n} \exp 2 n d\left(x_{n}+k y_{n}+d y_{n}\right)
$$

where f_{H} is the scattering factor of the heavy atom whose parameters are $x_{H}{ }^{\prime} \mathbb{H}_{H}{ }^{\delta_{H}}$. The contributions of the heavy atoms tend to dominate the phases of the structure factors except when their contribution is small or zero. Sim (1957) has performed calculations on the fraction of structure factors whose phases should be determined within specified 1 hmits by a selected atom or group of atoms. Those $F(h k l)^{\prime}$ s whose phases can be regarded as betrig approximately correct are used to carry out a first Fourier synthesis which results in a rap revealing some, or all, of the features of the structure. If only some of the light atoms are located the work generally proceeds by successive approximations as the positions of the light atoms are revealed and included in the phasing calculations until all the structural features are revealed.

There ase unfortunate consequencies in the use of this method. The major portion of the strueture amplitude being due to the heavy atom contributions all infornation concerning the positions of the light atoms in the structure must be derived from the smaller remaining part. To achieve
the same accuracy in detemanation of atomic positions as in a structure containing light atoms alone, it is therea fore necessary to measure the intensities with much greater precision, but, on the other hands the presence of the heavy atom means a higher absorption coefricient and makes the measurement of intensities more difficult; The isomorphous substitution method minimises this difficulty because after the phase determination has been completed the final analysis can be conducted on the derivative containing the lighter atom。

The determinations of the structures of the phthalocyanines. (Robertson,1935, 1936, Robertson and Woodward, 1937. 1940.) present classical cases in the use of both the heavy atom and isomorphous replacement methods of structure determination.

From the foregoing considerations it can be seen that if a heavy atom can be inserted at some point in a structure which does not already contain one then it should be possible to determine the crystal structure employing this techniques

In order to obtain better agreement between the observed and calculated structure amplitudes and to approximate the calculated to the true phases it is necessary to make adjustments to the positional and thermal parameters of the model of the structure as determined by the foregoing methods.

1.9.8 Fourier Synthesis.

The oldest method of refinement is that of successive Fourier synthesis. The structure factors and phases are calculated on the basis of the structure model. The phases so obtained are attributed to the observed structure amplitudes and, from the resulting Fourier synthesis a new sot of improved co-ordinates is obtained. Successive cycles of phasing calculations followed by Fourier synthesis are performed, each cycle taking the structure closer to the correct one.

This method suffers from the serious defect that the number of terms employed in the Fourier series is limited by experimental conditions, particularly by the waveolengeh used This results in an artificial termination of the fourier series thich, in turn, causes the diffraction ripple from one atom to add itself to the peaks of other atoms; the resultant disturbance in the peaks is particularly marked on nearest neighbouxs and is greatest sh the vicinity of heawy abomo. As a result of this seriesmemmation effect the cen
pepples of others. The effect is not easy to allow for directly, but may be estimated for by a method due to Booth (1945, 1946), then the process of refinement is complete, the last Fourier synthesis (calculated using F_{0} as coefficients) is known to have tits peok locations displaced by unknown amounts due to seriesotermination effects. Another Fourier synthesis can be computed. mploying the same phases but with F_{c} as coefficientss and it will be subject to substantially she sawe seriess termination exrors. Specific cooordinates are inserted into this F_{6} synthesis and the same coordinates should be deduced from it but on account of the sexiesotemination exrors these two sets are found to difere by $\Delta x_{j} \Delta y_{y}$ Δy_{j} for atom j_{0} This error may then be subtracted from the coordinates of the atom j as derived from the original F_{0} synthesis. This correction is known as a "backoshlfte" correction.

1.9.2 Difference Synthesis.

The difference synthesis method of refinement, using $\left(F_{0}-F_{C}\right)$ as Fourier coefficients, was first suggested by Booth (1948) and lts properties were exploited by Cochren (1951).

When the proposed model axactly matches the exystal structure the diference map is characterised by a flat topography whose only features are minor and randor
undulations caused by errors of observation the difference synthesis gives a complete picture of the discrepancies between F_{0} and F_{c} and the proposed structure must be modified in such a way as to produce a nearly featureless difference map if any such discrepancies exist. This method of refinement also allows for the series Germination errors which are substantially identical in the proposed and actual structures and therefore will vanish on subtraction.

If the calculated coordinates (x_{c}, Y_{c}, z_{c}) are marked on the difference Fourier synthesis, the directions of steepest ascent at these points give the directions of the shifts. The magnitude of the shifts (ϵ) can be estimated ${ }_{9}$ with certain assumptions by computation. Meas the empire os the atom the electronodensity at a distance f om the centre is given very closely by
$\rho(x)=\rho(0)$ exp apr where $\rho(0)$ is the maximum density. This may be reowritten $\rho(x)=\rho(0)\left(L o p s^{2}\right)$ provided x is small. The gradient $P_{\text {obs }} P_{e}$ is the gradient of ρ obs less the gradient of $\rho_{e}{ }^{2}$ but, at the peak of $\rho e^{\text {its gradient is zero, so that }}$

$$
\begin{aligned}
& \frac{d\left(\rho o b s-\rho_{c}\right)}{d x}=\frac{d \rho(0 b s}{d r}=\frac{\alpha\left(\rho(0)-\rho(0) \rho^{2}\right)}{d x} \\
& =2 \rho \underset{o b s}{(0)} p r
\end{aligned}
$$

Therefore,

$$
\epsilon=r=\frac{d\left(\rho_{o b s}{ }^{\operatorname{en}} \rho_{e}\right)}{d x} / 2 p_{\text {obs }}^{(0) p}
$$

The value of $\rho_{\text {obs }}$ is given approximately by $\rho_{\text {obs }}=4^{4}(\pi / \pi)^{3 / 2}$ where p is about 5.0. This derivation is independent of the scale of $\mathrm{P}_{\text {obs }}$ since ρ_{c} enters the derivation only in that the gradient at its peak is zero For this reason the final location of each atom should be at or near zero gradient of the difference map.

If the atom location happens to occur on a hill os depression corrections must be applied to the isotropic thermal parameters. If it appears on a small hill surrounded by a fingoshaped degression then the temperature correction has been overestimated since $\rho_{\text {obs }}>\rho_{p}$ at the peak, but, if it appears in a depression the reverse is the case, $\rho_{\text {obs }}<\rho_{c}$ at the peak.

When the thermal motion is anisotropic the observed electron distribution is dram out in the direction of maximum vibration and narrowed in a direction at right angles to it giving rise to characteristic saddle points in the difference Four ser synthesis:
1.9.3. The Method of Least Squares.

Hughes (19fi) introduced the pleastosgrases" refinement
of atomic parameters as a supplementary method to that of Forster synthesis in the final stages of crystal structure
analysts Thus mebher intreduces a woighting eactor bo the measured noefficterts as a functon of ther reliability。

The theosy of errors predicts that if the exrors in the measured F_{0} is follow the normal or Gaussian law. then the best atomic parameters are those which would gesult in a minimisation of the quantity

$$
B=\sum_{u} W_{i}(h k d)\left(\left|E_{0}(h k d)\right|-\left|F_{c}(h k d)\right|\right)^{2}
$$

where W_{1} : the weight of a particular term, should be taken inversely proportional to the square of the probabie arros of the corresponding $F_{0}{ }^{\circ} S_{0} \sum_{4}$ denotes a sum owes all independent terms. R depends not only on atomic coordinetes but also on the temperature factor. Then the walue of R is close to a minimum, systematic yinumisetion can be accomplished in the Pollowing manner.

The general relation for the computation of each structure Ractor is

$$
F_{c}=\sum_{\Gamma} f_{x} \exp 2 \pi i\left(h x_{x}+k y_{x}+d z_{P}\right)_{0}
$$

The variables are exponentials in $x_{0} y$, and $\%$ and ehese do not supply the destred linear equations wich een, howewer. be devised by using the fisst two terns in Gayloris series, In onedynension these terme give

$$
f(x+c)=f(x)+c \frac{d f(x)}{d x}
$$

Where c ts the argos which, when added to x gives the correct value, In threembmensions, partial differentials are used. The first two terms in Tayloris series give

$$
\begin{aligned}
& s \epsilon_{z} \frac{\partial g\left(x_{n} y_{z}\right)}{\partial z}
\end{aligned}
$$

while $\mathbb{f}\left(\mathrm{X}_{9} \mathrm{y}, \mathrm{z}\right) \longrightarrow \mathrm{F}_{\mathrm{c}}$.
Then $\triangle F=F_{0}-F_{c}$
 For each observed reflection there exist a an mobservationar equation ${ }^{\text {pi }}$ such as this and the number of these is usually considerably greater than the number of independent coordinate corrections to be determined. This set of Mobservational equations ${ }^{\text {th }}$ must be reduced to a set of equations called the "normal equations". The "nth of these as formed by mutthpliging both sides of each equation by $\frac{\partial F_{c}}{\sigma_{5}}$ and then adding the gertehanc sides and the Q zightohand sides to produce an equation:

where \sum_{n} denotes a sum ofer all atoms except the ${ }^{9} n^{n}$ th The next "normal equation" is formed by multiplying throughout by $\frac{\partial \bar{F}_{C}}{\partial X_{n+1}}$ before adding, and so on, The final result is a set of 3 N simultaneous equations which have to be solved for 3 N unknowns, $\epsilon_{\mathrm{X}_{\mathrm{n}}} \epsilon_{\mathrm{y}_{\mathrm{n}^{2}}} \quad \epsilon_{\mathrm{m}_{\mathrm{n}}}$ Successive applications of this procedure lead to atomic co-ordinates which minimise R e

It has been found in practice, however, that if a laxge number of equations are used, the offodiagonal texms of the "normal equations" are small and, to a first approximation, can be neglected. If so, the solutions reduce to

$$
\epsilon_{x_{n}}=\frac{\sum_{q} w\left(F_{o}-F_{c}\right) \frac{\partial F_{c}}{\partial x_{n}}}{\sum_{q} w\left(\frac{\partial F_{c}}{\partial x_{n}}\right)^{2}}
$$

IThis approximation is not valid if the atoms overlap and is therefore normally only valid for threedimensional sefinement:)

The leastosquares refitnement method has several
advantages over those already mentioned: It is free fron the serteswtermination erroxs which characterise the

Fourier methods and it is possible to include the temperature factor (isotropic or anisotropic) and scale factor in the refinement process.
 each atomic position is evaluated from a 3×3 matrix. The thermal vibrations are computed from a 6×6 matrix for each atomic vibration while a 2×2 matrix is solved for the overall scale factor.

PARTII

The Structure of Caracurine II:

Xoray Analysis of Caracurine-II Dimethiodide.

2.1 TJERODVEGTKOM.

The poweriul physiological effect o the paralysis of ซoluntary muscle of of tarious types of plant extract knovn as curare has stimulated much interest in their chemical investigation. Since the name curare is a generic tern which embraces many types of axrowchead poison prepared in South Amsrica. the curares have been conventenely Classified (Boehm, 1897) according to the type of containes used to pack the final product vis. tuber pote and calabashocurare.

The baxks of "Serychnos toxifera" and other "Strychnos" species are used in the preparation of calabashocurare which originetes in the northern pasts of the South Anerican continent and is considerably more active than either taboor poto curare, Because of their greater physiologieal activity the alkaloids of the calabash-curare have been subjected to extensive chemical investigation and an exhaustive susvey of work in this field has been published by Bernauer (1959).

An examination of the quaternary alkaloids of the bark of matychnos torifera obtained from British Guiana was reporved by Ging (1949) who isolated toxisexines Imit; Thatarerne-I chloride and boxtrarinemt had previously boen encountered by theland at a. (49月7) but the semoning ben

the calabash curare series, from Vanezuelan "Stryehnos toxisera". Some time Later, Battersby et al. (1960) having zewoxamined the baxk of British Guianian "Strychnos toxifera", isolated casacurineoll dimethochloride which they proved to be identical with toxiferine-IX.

By 9960_{3} the relationship (show in Table I) between the alkaloids caracurineov (I), caracurineovII (II)s caracurine VII methochloride (otherwise known as hemitoxiferineof or Alkaloid A8), caracurine-II and toxiferine-I (III) had been firmly escablished (Battersby and Hodson, 1960 b) . The constitution of caxacuxinesII was unknown, although it was clear that it must closely gesemble those of caracurinesf and toxiferined because of the midness of the reactions required to convert the latter Ewo alkaloids inco caracurineaIl dimethochloride.

The elucidation of the structure of caracurineoll by Xoray methods has been carried out successfully using the dimethiodide derivative, crystals of which were kindly supplied by Dr. AoR. Battersby, and the results establish structure (IV) This structure has been independently confirmed by chemical and nuclear magnetic resonance studies (Battersby, Yeowell et al., 1961 , Battersby, Hodson et al., 1961)

The nomenclature in the calabashocurare series is
 beleqed ehat all calabashocurcye alkatoids mere based an

TABLE I

INYERREIATION OF SOME

CALABASH-CURARE ALKALIODS

(I)

Cl^{-}

(II)

(IV)
$\mathrm{C}_{19}=\mathrm{C}_{21}$ unitss, In 1956, however, yon Philipsborn, Schmid and Karyer dernonstrated that in the group of alkaloids possessing high curare aceivity the molecular formula is based on a $\mathrm{C}_{38}=\mathrm{C}_{4,0}$ skeleton with two basic $=$ or quaternary nitrogens present in the molecule. In some reports of work in this field since 1956 references to caracurine-II methochloride persist where the dimethochloride is intended. In this thesis the derivatives of caracurine-II will be referred to as the dihalides.

2．2．EXPERTMENGA 4
When this Xaray study was undertaken the moleculax formula of caracurinemII was given as $\mathrm{C}_{3} 8^{H_{4}} 0^{\circ}{ }_{2} \mathrm{~N}_{4}$ but this was shortly remised to $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{~N}_{4}$ following a mass spectroscopic moleculax weight determination［M． $\mathrm{H}_{\mathrm{o}}=582$ ］ carried out by Dr．R．I．Reed of Glasgow．

Cyytal diats

Molesular Sormia
Caracurine－II
dinnethoohioride
$\mathrm{C}_{40} \mathrm{H}_{4} \mathrm{H}_{4} \mathrm{O}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$
683.7

Monoclinie
$12.62 \pm 0.03 \mathrm{~A}$
7.42 ± 0.028

2012
<1.5 s．$/$ c．c．
2
1.129 a／e．c．

OkO when $\mathrm{k}=2 \mathrm{ln}+3$ ．
${ }^{2} 2_{3}\left(c_{2}^{2}\right)$
Space group
μ ，Alasorption coenficieat for
 P（000）
Total namber of
Indepeaxemt observec situcbuce amplytures

724
2580
Absent specesa
$\sum x^{2}$ a

Caracueine－II
difmethiodide
$\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{H}_{4}^{\mathrm{J}} \mathrm{I}_{2}$ 866．6
Oreborhombic．
$18.59 \pm 0.03 \mathrm{~A}$
27.44 ± 0.048
7.52 ± 0.028
90°
$3836{ }^{3}$
1.505 䈆

4
1.502 意屏。
h00 wher h $=2 \mathrm{~m}+1$
OkO when $k=2 \mathrm{~m}+1$
OOR when $\ell=2 \mathrm{n}+1$
$P 2_{5} 2_{8} 2_{5}\left(D_{2}^{h}\right)$
$134.5 \mathrm{em} .-1$

$$
1736
$$

1285

CarocurinesII dimethobromide $\left(\mathrm{C}_{4} \mathrm{O}_{4} \mathrm{H}_{4} \mathrm{O}_{2} \mathrm{~N}_{4} \mathrm{Br}_{2}\right)_{2} \mathrm{M}_{0} \mathrm{~W}=722.6$. is isomorphous with caxacurineaII dimethochloride. The absorption coefficient for Xorays $(\lambda=1.54 .2 \stackrel{\circ}{\mathrm{~A}})$ 。 $\mu=31.2 \mathrm{~cm}^{-2} \% F(000)=796: \sum s^{2}$ "heavy" atoms $=2592$. The total number of independent observed structure amplitudes $=14140$

Rotation, oseillation, Weissenbere and precession photographs were taken with copper $\circ \mathbb{K}_{\alpha}(\lambda=1.542 \AA$ A and molybdenum $\operatorname{cok} \alpha\left(\lambda=0.7107{ }^{\circ} \mathrm{A}\right)$ radiation. The cell dimensions were obtained from rotation and precession photographs.

Two space groups of the monoclinic system, $P 2_{1}$ and P_{1} / m_{y} satisiy the condition that the OKO reflections will be absent when k is odd. For the space group of caracurine-II dimethochloride to be $\mathrm{P} 2 \mathrm{~g} / \mathrm{m}$, since there are only two molecules per unit cell but four equivalent positions; a further condition, that the molecule of caracurinem II must possess a mirror plane, is imposed. Stace this molecule is Laevorotary, $[\alpha]_{\mathrm{D}}^{26}=-232^{\circ}$ in chloroform (Schroeder et al. 1961), and therefore does not fulfil this condition, the space group of caracurine-II dimethochloride must be p_{2}.

The orthorhomble space group, $\mathrm{P}_{1} 2_{1} 2_{2}$ was determined uniquely from the systematie halvings.

Intensity data were obtained from equatorial and eguioinclination upper layer Weissenberg photographs eaken from erystals of the dimethochionide and dxmethobromide
sebated abone the bowns and frew cxystala of the dimethodide rotated about the caxis; the multiplesfila technique \{Robertson, 8983) was employed. The incensities Were estimated visually by comparisen with a calsbrated intenstity strip and were corrected for Lorentz, polartsation and rotation factors appropriate to the upper layess (Tunell, 1939). No corrections for absorption mere applied since small crystais were onployed. The rarious lagess were placed on the same scale by comparison of the observed and the calculated structure amplitudes based on the heavy atom alone. Throughout the refinement the scale was adjusted by correlation with the calculated structure amplitudes.

2．3 STRUCTURE DERERMTNATION．

The equivalent positions of the space group P_{2} （boexts unique）are $x_{9} y_{0}$, and x_{0} है $+y_{0} \tilde{z}_{\text {。 }}$ When bwo heavy atoms axe present in the asymuetric unit these equivalent positions give rise to heavy atomo heavy aton vectors in the Patterson function at $2 x_{1},-\frac{1}{2}, 2 x_{1}$ ；
 $z_{1}: z_{2}$ where $x_{2}, y_{2} s z_{2}$ and x_{2} ：$y_{2} z_{2}$ fefer to the co ordinates of the crystallographically nonoequivalent heavy atoms．Whatever the values of these co－ordinates，the Pat女erson projection along the baxis mast contain three heary atom－heavy atom wector peaks in a straight line and the fourth peak will be at a distance from the arigh of this Patterson function corresponding to the projected yector distance between the noncequisalent heavy atoms．These facts should provide a useful aid in the interpsetation of thas Patterson function．

The Patterson projection and＂sharpened＂Patterson projection along the bwaxis of caracurine－II dimethochloride are show in Figures 1 and 2 ，respectively．The function employed for＂sharpening＂the h o 2 zone data was $M(S)=(1 / \hat{S})^{2} \exp \left(-2.5 \sin ^{2} \theta / \lambda^{2}\right)$ No unique sotucion wes obtatned from these projections for the chlortide ton cooordinates so the threeodmensional＂shaxpened＂Pacterson synthess was conputed：the section at V is $\frac{8}{\text { 咅 is shown } i n}$ Figure 3．The peaks marked $A_{8} B$ in this Figure were chosern

9s pepresenting the chlorthe chloride and chioride chloride ${ }^{0}$ vectors. A Buerger (1951) minimum fanetion was deduced amploying the complete threedimensional Patterson vector distribution but it was not possible to visualise any part of a molecular frenework which could correspond to the sparse distribution of peaks which sesulted. This set of chioride ion comordinates was therefore assumed to be incorrect.

There appeared to be little hope of obtaining a satisfactory set of heavy atom comordinates for the dimethochloride derivative st the investigation was interrupted at this stage pending the arrival of a supply of the dimethiodide derivative from Dr. Battersby, Some crystals of caracurineoII dimethiodide were soon received but preliminary investigation of these indicated that although this sample was isomorphous with the dimethochleride the crystals were unsuitable for an xoray structure analysis, long exposures giving only few reflections.

GaracurineoII dimethobromide, prepared in Glasgow from the dinethochloride, proved to be both isomorphous with the latter and suitable for further investigation. The Patterson projection (Figure 4) and "sharpened" Patterson projection (Figure 5) along the boazis and the three. dimensional Patterson symbesis were compated. The sectens at $V=\frac{1}{2}$ of the threewdimensional Patterson function both
"unsharpened" and "sharpened" are shom in Figures 6 and 7, respectively, Again it was difficult to decide which set of peaks was that corresponding to the heavy atom heavy atom vectors. For various sets of bromide ion co-ordinates structure factors were calculated for the h 0 \& zone only but sufficient confidence could not be placed in any one set to make continuation of the analysis appear worthwhile。

A final attempt to locate the heavy atoms was made by computing the difference Patterson (Kartha and Ramachandran; 1955) projection along the baxis which makes use of the fact that the dimethochloride and dimethobromide derivatives are isomorphous. If $\left(\left|F_{o}\right|_{\mathrm{Br}}-\left|F_{O_{C I}}\right|^{2}\right.$ are used as coefficients only the heavy atom - heavy atom vectors should remain in the Patterson distribution function. It is necessary to have the observed structure amplitudes of both derivatives on an approximately absolute scale before subtraction and this was achieved by employing the method of Wilson (1942). The resulting Patterson projection is shown in Figure ${ }^{3} . \quad$ The peaks in this distribution which were selected as being representative of the heavy atom o heavy atom vectors are indrcated by $\mathrm{C}_{8} \mathrm{D}_{2} \mathrm{E}$ and F 。 More accurate coordinates of the bromide ions were obtained by consultation of the three dimensional Patterson synthesis of the dimethobromide derivative and when structure factors

Fig. I. Patterson projection along the \underline{b}-axis of caracurine-II dimethochloride. Contour scale arbitrary.

Fig. 3. The three-dimensional "sharpened" Patterson function of caracurine-II dimethochloride; the section at V $=\frac{1}{2}$. A and B denote the vector peaks chosen as representing the chloride-chloride and chloridet chloride vectors. (Arbitrary contour scale). c/2

Fis. 4. Patterson projection along the b-axis of caracurine-II dimethobromide. The contour scale is arbitrary.

Fig. 5. "Sharpened" Patterson projection along the b-axis of caracurine-II dimethobromide. The contour scale is arbitrary.
$c / 2$

Fig. 6. The three-dimensional Patterson function of caracurine II dimethobromide; the section at $\nabla=\frac{1}{2}$. The contour scale is arbitrary.

Fig. 7. The"sharpened"three-dimensional Patterson function of caracurine-II dimethobromide; the section at $\mathrm{V}=\frac{1}{2}$. The contour scale is arbitrary.

Fig. 8. The difference, $\left(\left|F_{o}\right|_{\mathrm{Br}}-\left.\left.\right|_{\mathrm{F}_{\mathrm{O}}}\right|_{\mathrm{Cl}}\right)^{2}$, Patterson projection along the b-axis. C, D, E, and F denote the heavy atom - heavy atom vectors. The contour scale is arbitrary.
were calculated on the basis of the bromide ions only, an isotropic temperature factor of $B=400 \AA^{2}$ being employed, the agreement index, R_{s} over all observed structure amplitudes was 0.570. (The agreement index, R_{2} is given by $R=\sum| | F_{0}|\quad| F_{c}\left|/ \sum\right| F_{0}| \rangle_{0} \quad$ This result was promising and the correct set of bromide ion co-ordinates had probably been deduced, nevertheless, since a fresh supply of crystals of the dimethiodide derivative had been received from Dr. Battersby it was decided not to pursue this course but to turn attention to the solution of the structure of caracurinem using the heavier derivative.

The crystals of caracurine-II dimethiodide employed belonced to the orthorhombic system and therefore were not isomorphous with those of the other derivatives which had been subjected to preliminary investigation. Co-ordinates of the iodide ions were determined unambiguously from the three-dimensional Patterson sections at $U=\frac{1}{2}, V=\frac{1}{2}, W=\frac{1}{2}$, show in Figures 9, 10 and 11, respectively; the iodide iodide vectors are designated $\mathrm{G}_{3} \mathrm{H} ; \mathrm{J}, \mathrm{K} ; \mathrm{L}, \mathrm{M}_{0}$; The com ordinates of the iodide ions were determined to be
x / a
y / b
2/c

I'(24)
0.0105
-0.0633
0.1957
$I^{*}\left(24^{\circ}\right)$
0.1857
0.1812
0.3778
and these were confirmed by consultation of the appropriate sections of the threewdimensional Patterson function.

Fig. 10

The three-dimensional Patterson function of caracurine-II dimethiodide.
Fig. 9. The section at $U=\frac{1}{2}$. The iodide-iodide vector peaks are designated G and H.
Fig. 10. The section at $V=\frac{1}{2}$. The iodide-iodide vector peaks are marked J and K.
(The contour scale in both Figures is arbitrary).

Structure factors calculated using these coordinates and employing isotropic temperature factors of $B=4.0 A^{\circ} 2 \mathrm{had}$ an agreement index of $R=0.402$ with the observed structure amplitudes. The relatively high temperature factor was used because the data faded out rapidly above $\sin \theta=0.6$ 。 The first three-dimensional Fourier synthesis, based on theiodide ion phases, resulted in the allocation of approximate cowordinates to thirtymsix of the light atoms - $\mathrm{N}\{1) \mathrm{C}\{2) \mathrm{C}(3) \mathrm{N}(4), \mathrm{C}(5), \mathrm{C}(6), \mathrm{C}(7), \mathrm{C}(8), \mathrm{C}(9), \mathrm{C}(10), \mathrm{C}(11), \mathrm{C}(12), \mathrm{C}(13)$, $C(14), C(15), C(1.6), C(17), C(22), N\left(1^{\circ}\right), C\left(2^{\circ}\right), C\left(3^{i}\right), N\left(4^{\circ}\right), C\left(5^{\circ}\right), C\left(6^{\circ}\right), C\left(7^{\circ}\right)$, $\mathrm{C}\left(8^{\circ}\right), \mathrm{C}\left(9^{\circ}\right), \mathrm{C}\left(10^{\circ}\right), \mathrm{C}\left(11^{\circ}\right), \mathrm{C}\left(12^{8}\right), \mathrm{C}\left(13^{\circ}\right), \mathrm{C}\left(15^{\circ}\right), \mathrm{C}\left(16^{\circ}\right), \mathrm{C}\left(17^{\circ}\right), \mathrm{C}\left(21^{8}\right)$, $C\left(22^{8}\right)$ - giving rise to the partial skeleton shown (V).

(V)

This partial skeleton conforms to the structures of caracurine-V and toxiferinem with the exception of the new carbon-carbon bond $C(16)-C\left(16^{\circ}\right)$, the length of which at this stage, $1.77 \AA_{\text {, }}$ indicated that if the sites selected for these atoms were correct then such a bond was present in caracurinemII。

The thirtyosix light atoms were included, all as carbon atoms with $B=3.08$, in the second phasing calculations when the agreement index dropped to 0.328 . The remaining oxygen and carbon atoms, excepting C(18), were located from the second three-dimensional Fourier synthesis calculated employing the improved phase constants. This Fourier synthesis also indicated that the positions which had been assigned to $C(11)$ and $C(12)$ were doubtful as these gave rise to a very odd-shaped ring which, according to the structures of toxiferinem and caracurine-V, should be the benzene ring of an indoline system. These two atoms were therefore excluded from the next structure factor and phasing calculations.

On the basis of peak heights and knowledge of the structures of other members of this series it was possible to identify the heterowatoms and, for the third phasing calculations, forty-three light atoms were included as theiro appropriate chemical type. The isotropic temperature factors employed in this calculation were the same as those of the previous one, viz. $B=3.08^{2}$ for carbon, nitrogen and oxygen,
$B=4.0 \AA^{2}$ for iodide ions; the calculated structure factors had an agreement index of $R=0.312$. Sections of the third threemdimensional Fourier synthesis were computed around the positions where peaks corresponding to the sites of $C(11), C(12)$ and $C(18)$ were expected to be located.

From the sections around $\mathrm{C}(8), \mathrm{C}(9), \mathrm{C}(10)$, and $\mathrm{C}(13)$ one peak having electronodensity $1.8 \mathrm{e} / \mathrm{A}^{3}$ was in a position which approximated to that expected for $C(11)$ and between this peak and that of $C(13)$ a region of positive electron density (maximum $0.8 \mathrm{e} / \mathrm{A}^{3}$) was present The maximum of density (maximum $0.8 \mathrm{e} / \mathrm{A}^{3}$) was present ${ }^{\circ}$) the approximate site of $C(12)$ since an atom located in that position mould give rise to a fairly planar six-membered ring wich, in turn, would correspond to the expected benzene nucleus. The fact that neither of the peaks corresponding to $\mathcal{C}(11)$ or C(12) was welloresolved was not unexpected since they both lie along the lines joining pairs of iodide ions in adjacent unit cells (see Figure 14) and are probably subject to considerable diffraction effects which not only reduce their magnitude but shift them from their true position and cause them to coalesce.

The Fourier sections around $C(19)$ and $O(23)$ showed the presence of two peaks:

$$
\begin{aligned}
& x / a \quad y / b \quad \varepsilon / e \quad \Leftrightarrow / A^{3}
\end{aligned}
$$

These peaks, (i) and (ii), were similarly disposed with respect to the lodide ion $I^{(2}\left(24^{9}\right)$ at $\frac{1}{2}+x_{3} \frac{1}{2}=y_{8}$, $\frac{1}{4}$ and probably resulted, to a large extent, from diffection ripples along the direction of z_{0} From the bond lengths and angles quoted it is apparent that either of these peaks could have corresponded to the site of $C(18)$ but when the disposition of $\mathrm{C}\left(28^{\circ}\right)$ with zespect to $\mathrm{C}\left(19^{\circ}\right)_{\%} \mathrm{C}\left(20^{\circ}\right), \mathrm{C}\left(21^{\circ}\right)_{8}$ and $0\left(23^{\circ}\right)$ was considered, peak (i) was obviously the better approxination to the location of C(18).

Cooordinates were assigned to the three atoms, $\mathrm{C}(11)_{g}$ $C(12)$, and $C(18)$, and when they were included in the struccure factor calculations the agreement index dropped to 0.301. The improzed phase constants were employed in the calculation of a pourth threedimensional electronodensiby distribution in which all the atoms, except hydrogens, were fairly mell resolved.

2.4 STRUCTURE REFINENENT.

Employing the same phase constants as for the fourth threemdimensional F_{0} Fourier synthesis an F_{c} synthesis was computed and corrections for seriesetermination errors were applied to the comordinates deduced from the F_{0} synthesis. It was apparent that the isotropic thermal parameters of each atom required adjustment and in particular that those of the iodide ions needed to be greatly increased. When structure factors were calculated using the improved co-ordinates and individual thermal parameters the agreement index was reduced to 0.2740 . Two cycles of further cooordinate and temperature factor refinement were carried out by threeodimensional difference Fourier syntheses and these lowered the agreement index to 0.249 .

In the continuation of the refinement difference Fourier syntheses were used to assign improved cooordinates and isotropic temperature factors to the carbon, nitrogen and oxygen atoms while leastosquares calculations (Rollett, 1961) gave anisotropic temperature factors for the iodide ions; two cycles reduced the agreement index to 0.22%.

At fixst sight this refinement appeared to be progressing smoothly but on closer examination this wes not quate the case, The heo gone data were refining very slowly as over the last two cycles the agrement inder of this zone had dropped by only 0.015 , from 0.341 to 0.326.

The value of 0.326 for this zone was also considerably kigher than those of the upper layers which ranged frow $R=0.176$ to $R=0.230$ and could not be accounted for entirely by the face that the hk? zone is centrosymetric. During the original visual estimations of the intensities a conservative allowance for variation in the shapes and lengths of the reflections had been made and therefore it was decided that more accurate corrections should be applied: This was achieved by measuring, with a ruler, the lengths and widths of each reflection on the top photograph and multiplying the observed peak intensity of each reflection by the area. When the previous structure factor calculation was repeated the agreement index for the anended hko zone data was 0,240 . The same kind of correction was then applied to the data of the upper layers and the overall agreement; index for the "new" data was 0.211, The two part refinement was continued for two more cycles using these data.

One cycle of leastosquares adjustment of the positional parameters of the light atoms concluded the refinement. It was decided that no further refinement would prose useful as the data are neither of such quantity nor quality to permit the allocation of andsotropic thermal parameters to the light atoms. The course of analysis is provided diagramatically in table IT.

$T A B L G \quad T X_{0}$

Course of analusis.

3oD Patterson synthests

$\begin{array}{ll}\text { lst Structure factor oalculation } & R=0.402 \\ \text { lst } 3 \infty D \text { Fourler sunthesis } & \text { (l24a reflections) }\end{array}$
2na Structure factor calculation Eodide iggs 36 yightatoms $R=0.329$ $\left.\left(B=300 \mathrm{~A}^{2}\right)\right]$
2nd $\underset{\downarrow}{\downarrow}$ D Foumier synthests
(1232 peflections)
Lodide igns
$\left(B=4,0 A^{\circ}\right)$

$3 \mathrm{Cd} \underset{\text { Buld Formier symthesis }}{\downarrow}$
(2205 raflections)
4th Structure factor calculation [inclusion of 3 more $\left.\left(B=3,0 A^{2}\right)\right]$ $R=O_{0} 30 L$
s_{0} anc \vec{s}_{c} 3co Foumber symblaces
5th Structure factor caloulation (All atoms, inditidual Ssotropic thermal parameters) $\quad R=0.2 \% 4$
($F_{0}=F_{c}$) SmD Fourier sunthesis
6th Structure foetor calculation $\quad R=0.256$

$$
\left(F_{0}-F_{c}\right) 3 \infty D \text { mourter synthesis }
$$

$7 t h$ Structure factor calculation $\quad B_{0}=0.249$

$$
L_{0} s_{0} \text { refinement of sodiae tons }
$$

Bth Stracture factor calazation $\quad R=0,233$
Ioso Todide tons (antsotropic)
$1 \% g h t$ atom refinement)
9th Structure factor oaloulatson $\quad R=0.227$

TABLE II (Contaca,

Improved data

10th S $R=0.211$
$L_{0} S_{6}$ Iodide tons (anisotropic)
($F_{0}-F_{c}$) Itght atoms (isotropic)
11th Structure factor calculation $\quad R=0.192$
$L_{0} S_{0}$ Jodide ions (anisotropic)
$\left(F_{0}=F_{e}\right)$ idght atoms (isoitropio)

12th Stmpoture factor calculation $\quad R=0.186$
$L_{0} S_{0}$ Ifght atoms (isotropic)
13th Structure factor calculation $\quad R=0.181$

2.5 RESULSS OP RMAESIS.

The rinol atomic coordinates and temperature parameters are listed in Table III. The standard deviations of the coordinates, Table IV, were devived from the leastosquares residuals by application of the equation:

$$
\sigma^{2}\left(u_{j}\right)=\sum \Delta^{2} /(\operatorname{mon}) \sum w\left(\frac{\partial \Delta}{\partial u_{j}}\right)^{2}
$$

where m is the number of independent observations and n is the number of parameters to be determined.

Table 7 lists the observed and calculated structure factors, both rounded off as integers, and the values of the phase constants, α. The final agreement fncer ofer 1285 observed structure amplitudes is 0.181 . of the 265 unobserved structure amplitudes also listed in this Table there are 232 for which $\left|F_{e}\right|$ is less than $1 \frac{1}{2}\left|F_{0}\right|$ whese $\left|F_{9}\right|$ is the minimum onservable value of the structure amplitude in question.

The final threemdimensional electrondensity distribution over on molecule, calculated from the observed struetuxe amplitudes and the phase constants of Table 7 , is shown in figure 12 by means of superimposed contons sections dram paraluel to (001). The atomic arrargenent corresponting to this and to the aboolute configuration as defined for stryehntne by Peerdeman (1956)
is shown in Figure 13. It will be noted that in Figure 12 the peaks corresponding to the atoms $C(11), C(12), C(18)$, and $C(22)$ have the lowest electron-density. The reasons for this have been discussed for $C(11), C(12)$, and $C(10)$ in section 2.3. The relatively low electronedensity of $c(22)$ is undoubtedly caused by similar effects viz. diffraction ripples from $I^{2 m}(24)$ along the direction of z_{0} It was fortuitous that in the early stages of the structure determination the peak corresponding to this atom was not so badly removed from its true location nor sufficiently reduced in density to make interpretation difficult. A few other small peaks were present in the final Fourier synthesis but these are omitted from Figure 12 as they were spurious being diffraction effects of the iodide ions.

The interatomic bond lengths are listed in Table VI while the interbond angles are given in Table VII. The standard deviation σ (AB) of a bond between atoms (A) and (B) is given by the formula

$$
\sigma(A B)=\left\{\sigma^{2}(A)+\sigma^{2}(B)\right\}^{\frac{1}{2}}
$$

where $\sigma(A)$ and $\sigma(B)$ are the standard deviations of the positions of the atoms (A) and (B),

$$
\sigma^{2}(A)=\frac{1}{3}\left[\sigma^{2}\left(x_{A}\right)+\sigma^{2}\left(y_{A}\right)+\sigma^{2}\left(z_{A}\right)\right]
$$

The seandard deviation, σ (β) in radians, for an angle formed at (B) between the bonds $A B$ and $B C$ is given by the
formula

$$
\begin{aligned}
& \sigma^{2}(\beta)=\frac{\sigma^{2}(A)}{A B^{2}}+\sigma^{2}(B)\left[\frac{1}{A B^{2}}-\frac{2 \cos \beta}{A B \cdot B C}+\frac{1}{\mathrm{BC}^{2}}\right] \\
&+\frac{\sigma^{2}(C)}{\mathrm{BC}^{2}}
\end{aligned}
$$

The average estimated standard deviation for a carbon-carbon single bond is $0.10 \AA$ and for a typical tetrahedral angle is 5° 。

Some of the more important intramolecular non-bonded contacts are given in Table VIII

The packing of the molecules as viewed along the caaxis is shom in Figure 14。 The shorter intermolecular contacts are listed in Table IX.

Fig. 12. The final three-dimensional electron-density distribution for caracurine-II dimethiodide shown by means of superimposed contour sections drawn parallel to (001). The contour interval is $16 . \AA 3$ except around the iodide ions where it is $5 \mathrm{e} . \mathrm{A}^{3}$.

Fig. 13. The atomic arrangement corresponding to Fig. 12.

Fig. 14. The molecular arrangement as viewed along the c-axis. The broken lines denote the shorter $\mathrm{N}^{+} \ldots$. I- distances.

2.6 DISCUSSTON OF RESULTS.

The molecule of caracurinem II has a compact three dimensional structure consisting of 14 rings fused together and as a whole it exhibits almost exact two fold symmetry。

The bond lengths and interbond angles resulting from this analysis are not sufficiently precise to permit a discussion of apparent differences between chemically equivalent bonds. Table X lists the average bond lengens according to their type. A comparison of these with the accepted values, also listed in this Table, shows no significant differences. A similar conclusion applies to the bond angles. The average bond angle in the benzene ring, 120°, about tetrahedral carbon atoms, 110°, about $\mathrm{N}^{+}(4), 109^{\circ} \mathrm{N}(1), 112^{\circ}$; and $0(23), 112^{\circ}$, are not significantly different from the expected values.

Calculations of the best planes through several sets of atoms were carried out employing the method of Schomaker et al. (1959); the results axe summarised in Table XI. The following discussion of the molecular conformation refers to one half of the molecule only but it applies equally well to the other half and the quoted deviations from the planes have been avexaged over both.

The atoms $N(1), 6(2), C(7), C(8), C(9), C(10), 6(11), C(12)$, and $C(13)$ of the indoline system are coplanar within the limits of the standard deviations. The cyclohexane ring, E, is cis
fused to ring B and is in a "half-chair" conformation, the atoms $\mathrm{C}(2), \mathrm{C}(7), \mathrm{C}(3), \mathrm{C}(15) \mathrm{C}(16)$, being copladas while $c(14)$ is displaced by $0.93 \AA$ from the plane. with respect to this cyclohexane ring $N(1), C(6), C(17)$ are equatorial whereas $\mathbb{N}^{*}(4), C(20), C\left(16^{\circ}\right)$, and $C(\$)$ are axial.

The piperidine ring is in the "boat" conformation, $C(3), N^{+}(4), C(15)$, and $C(20)$ are coplanar whereas $C(14)$ is $0.57 \stackrel{\circ}{\mathrm{~A}}$ and $\mathrm{C}(21)$ is $0.72 \AA$ Arom the best plane through these four atoms and on the same side of it: $C(5)$ is axial with respect to this ringo

In the fivemmbered ring: C, the atoms $C(3), N^{*}(4)$, $C(5)$, and $C(7)$ are approximately coplanar while $C(6)$ is displaced 0.61 A frov the best plane through these fous atoms. The atoms of ring G exhibit the same feature ${ }_{s}$ $N(1), C(2), C(16), C\left(16^{\circ}\right)$, being approximately coplanar and the fifth atom, $C\left(17^{\circ}\right)$, is 0.59 A from the plane。 These results are in agreement with the expected "envelope" conformation of saturated fivemenbered rings.

With respect to the double bond, $\mathrm{C}(19)-\mathrm{C}(20)$, of the sevenmembered wing, F, the atoms $C(18)$ and $C(15)$ are cis. In this ring 0f23) is 0.39 A from the best plane through $C(15), C(18), C(19), C(20), C(21)$, while $C(16)$ and $C(17)$ are $1.30 \AA$ and $1.50 \stackrel{\circ}{\AA}$, respectively, from this plane and on the same side of it.

The equations of the best planes through the atons of the indoline ring systems are:

$$
\begin{array}{ll}
\text { for } A B & 0.0824 X-0.3171 X+0.9450 Z+0.5381=0 \\
\text { for } A^{\circ} B^{B} & 0.7047 X+0.3745 Y=0.6023 Z-7.833=0
\end{array}
$$

and these planes are mutually inclined at 58°.
There is considerable strain involved in the central rings G and G^{9} of caxacurineoII when it assumes this confomation and some idea of the factors efiecting this strein can be obtained from the construction of a wolecutam model on the besis of standaxd bond lengths and angles. The centomation adopted by this model differs quite
markedly from that described above. The piperidine ring assumes a distosted "boat" conformation while, In the cyclohexane ring, $C(2), C(3), C(7), C(14)$, and $C(16)$ are approximately coplanar and $C(15)$ is out of the plane defined by these atoms. the approximate values of some of the intramolecular nonmbonded contacts of this model are given in Table XII. Of these, the distances $C(14) \ldots C\left(15^{8}\right), C(14) \ldots C\left(14^{9}\right), C(15) \ldots C\left(15^{8}\right)$ are rach too short since the hydrogen atoms of $C(14)$ and $C\left(15^{\circ}\right)$ lie along the same line, as do those of $C\left(14^{\circ}\right)$ and $C(15)$. In order to reduce these interactions both halves of the molecule are rotated away from each other about the $\mathrm{C}(16)-\mathrm{C}\left(16^{\circ}\right)$ bond as axis. This rotation may be accompaniec by mutual repulsion of these halves which would cause increases in the angles $C(15)-C(16)-C\left(16^{\circ}\right)$ and $C\left(15^{\circ}\right)=$ $C\left(16^{\circ}\right)-C(16)$ but because of the low accuracy of this analys:s it is not possible to say whether this does occur. By performing this rotation the remainder of the molecule assumes approximately its true conformation and all intramolecular non-bonded distances become normal.

It is of interest to note that during the mass spectroscopic studies of Dr.R. f .Reed the caracurineoII molecule readily split into two parts of equal moleculax weights thus giving physical evidence of the strain involzed in the central ring system.

The molecular packing as riewed along the coaxis is show in Figure 44 and the intermolecular distanees iess than $4.0 \AA$ are listed in Table $7 X_{0}$ The shortest carbon....iodide ton contacts of $3.66,3.87 \% 3.89$ and $3.96 \AA$ can be taken as normal and compare favourably with the values $3.81,3.99 \AA$ reported for ($*$) deso(oxymethylene) -lycoctonine hydriodide monohydrate (Przybylska, 1961a) and 3.81 A for Nmethylgelsemicine hydriodide (Przybylskas 8962). The N^{+}ooso $I^{-\infty}$ distances of less than $5 \stackrel{\theta}{A}$ are quoted in Table IX and shom in Figure 14 by the broken lines. The shortest of these, 4.42 and 4.58 A are comparable with the values found in Hmethylgelsemicine hydriodice $4.39 \AA_{5}$ morphine hydriodide, $4.36 \AA^{\circ} \AA_{\text {, (Mackay }}$ and Hodgkin, 4955) and macusinem iodides, (this thesis po73), 4.52 A.

The two jodide ions of the asymmetric unit are in different onvironments and the comordination of each appears to account for the anisotropic thermal motion (see pable III). The electrostatic attractions between $I^{(\prime \prime}(24)$ and the three quaternary nitrogens at distances less than 5 Are concentrated in the y and zo directions. Consequently the temperature factors of this ion in these directions are relatively smaller than that in the x-direction. $T^{-}\left(24^{\circ}\right)$ has only one quaternary nitiogen in close prowimity and the electrostatic attraction lies mainly in the xo and sex directions. As a result of this the temperature factor in the yodirection is relatively greater than in the xo and zwo
directions, Since this iodide ion has electrostatie attraction to one side only with respect to the xodirection. the relative reduction in this direction is not so great as in the case of $I^{c m}(24)$. The thermal parameters of both iodide ions are rather large. This effect is possibly correlated with the lack of intensity data above moderate values of $\sin \theta$ and may be indicative of some disorder in the crystal.

In the highly active toxiferineal and dotubocusarine the distance between the two quaternary centres has been estimated as being approximately $14 \AA$ (Battersby and Hodson, 1960c). Caracurine-II possesses relatively low curarising activity and in viev of this the distance of $8.5 \AA$ between these centres in this molecule is interesting.

An unfortunate consequence of the fact that caracurinewI dimethiodide was not isomorphous with the other dihalides is that no direct use of the isomorphous replacement method was possible. It is hoped, however, that in the near future the analysis of the dimethochloride and dimethobromide derivatives will be resumed at the point indicated in section 2,3 at which it was presumed that the corxect bromide ion cowordinates had been deduced. If this analysis is successful the xefinement of the structuse wit be carried out using the dimethochloride data and much more accurate pesitional parameters will be obtaincble michs in turn, should permit a more accurate estimation of how the
strain is diseributed throughout the caracurine-II molecule and the central ring system in paxifeular.

Atom	w_{d}	$y_{b}{ }^{6}$	$\mathbb{x}_{6} c$	昭
$N(1)$	0.3496	0.3632	O, 2952	3.2
C (2)	0. 2265	0.3765	0.3216	3.0
C(3)	O. 88317	0.4650	0.2205	402
$N(4)$		0.81634	0.2702	3.6
C(5)	0. 5898	0.8480	0.4589	4.2
C(6)	0. 4856	0, 0.8885	0.5820	3.8
C(7)	0.4291	0.4293	0.3498	3.2
C(8)	0,3518	0.4380	0.3842	304
C(9)	0, 3138	0.4838	0.4519	4.6
C(10)	0,2425	0.4313	0.4592	$3_{8} 8$
C(12)	0.2068	0.4824	0.2558	5.8
c(12)	0.2366	0.3952	0.3707	5.5
C(13)	0.3125	0.8983	0.3413	$4_{4} 5$
C(14)	0.4639	0.46440	0.0288	4.3
C(25)	0.5146	0.3514	0.0538	204
C(16)	0.8693	0,3503	0.4452	8,7
C(17)	O. 5225	0.3140	0.2067	3.7
C(18)	0.6302	0.3294	0.0055	$3_{0,3}$
C(19)	0.6898	0.3795	0, 3589	为 5
C(20)	0.58892	0.402 .5	0.1028	4.2
C(21)	0.6068	0.457 \%	0.2618	$4{ }^{4} 8$
C(22)	$0_{6} 54.8$	0.6289	0.287%	6.3
O(23)	0.5777	0.2966	0.0846	38
I(24)	0.510%	0. 5683	-0. 4980	†
$N\left(2^{\circ}\right)$	0.4765	0.2736	0.2489	3%
C(20)	0.4275	0.2669	0. 1268	304
C(30)	0.4466	0.2319	$\bigcirc 0.1790$	3.8
N(40)	0.3039	0.2254	$\cdots 0_{0} 3014$	${ }_{6}{ }^{2}$
C(50)	0.3281	0.22104	20.1801	$4{ }_{3}{ }^{2}$
C(6)	0.3589	0.2890	$\bigcirc 0.0026$	3.2
C(7)	0.4305	0.2982	0.0275	
C(80)	0.4882	0.2979	0.1150	2.5
C(9\%)	0.5109	0.2518	0.1082	$5_{6} 8$
$0\left(10^{\circ}\right)$	0.5698	0.8396	0.2384	3.8
$0\left(11^{\circ}\right)$	0,5¢2\%	0.2728	0.3012	3.0
C(12)	0,5639	0.22 .35	0.3689	3.3
C(130)	0.5035	0.2274	0.2497	49
C(248)	0.3877	$0_{2} 2858$	$\therefore 0,2033$	46

ALors	x_{0}^{\prime}	${ }_{6}^{7}$	za	B6
$C\left(15^{\circ}\right)$	0.4283	0,32.22	-0.1899	24.
C(16 ${ }^{\circ}$)	0,4036	0.37%	0.0453	3.1
C(178)	0.3452	0.3500	0,0823	50.4
C(180)	0.2823	0,3791	-0. 1718	2.9
$C\left(19^{\circ}\right)$	O,2967	0,3991	-0. 2889	5.2
C(20\%)	O, 3560	0,3086	-0.2046	3.4
C(21)	0,3529	0.2713	-0.3870	3.2
C(220)	0.3980	0.1826	-0.4272	307
$0(23 \%)$	0,3292	$0.38 \% 8$	-0.0320	4.4
I(24.)	0.1849	0. 27868	-0.6785	\dagger

\dagger Anisotropic temperatme faetarc obtatmed from the leastsquares reftrement of the zodide som parameters are given below qhese are the values of bit trine equotion:

Antsotrodic tempercinve factor paraneters.

$$
\left(b_{\hat{L}_{d}}+20^{5}\right)
$$

	b_{11}	b_{22}	b_{33}	b_{12}	b_{23}	b_{13}
I (24)	1089	282	3170	-27	31	-112
I (24.)	867	502	3229	-20	73	129

Equivalent antsotropic thermal parameteps along the diprections of the erystalnaxes in the form $\exp \left({ }^{-\infty}\left\{i \sin ^{2} \theta / \lambda^{2}\right)\right.$.

	B_{12}	B_{29}	B_{23}
I (24)	10.4	$E_{0} 9$	$5_{0} 0$
I (24)	B_{03}	20.5	$5_{0} 1$

TAPE TV
Standard devtations of the final atomic comordinates (A).

Atom	$\sigma(x)$	$\sigma(u)$	$\sigma(2)$
$N(1)$	0.0.01	0.049	0.058
C (2)	0.066	0.060	0.075
C(3)	0.073	0.067	0.079
$N(4)$	0. 056	0.052	0.061
C (5)	0.074	0.070	0.079
$c(6)$	0,072	0. 068	0.074
C (7)	0.065	0.061	0.069
C (8)	0.065	0.06\%	0.075
C(9)	0.082	0.073	0.080
C(10)	0.073	0.065	0.078
C(11)	0.080	0.083	0.090
O(12)	0.084	0.078	0.097
C(13)	0.078	0.068	0.079
C(14)	0.073	0.075	0.084
C(15)	0.065	0.058	0.064
C(16)	0.069	0.066	0.077
C(17)	0.067	0.068	0.077
C(18)	0.074	0.070	0.080
C(19)	0.072	0.070	0.080
C(20)	0.072	0.068	0.085
C(21)	0.074	0.068	0.084
C(22)	0.088	0.083	0.103
O(23)	0.044	0.042	0.050
I(24)	0.008	0.007	0.007
$\left.N(1)^{\circ}\right)$	0.055	0.051	0.059
C(2')	0.069	0,063	0.076
C(30)	0.067	0.062	0.078
$N\left(4^{\circ}\right)$	0.059	0.053	0.067
$C\left(5{ }^{\circ}\right.$)	0.076	0.069	0.090
C(6)	$0_{4} 066$	0.065	0, 074
C (7°)	0.073	0.066	0.081
C(8)	0, 064	0.056	0.066
C(90)	0.081	0.077	0.092
$C\left(10^{\circ}\right)$	0.072	0.065	0.075
C(110)	0.064	0.082	0.069
C(120)	0,068	0.062	0.075
C(13*)	0.082	0.070	0.081
C(189)	0.073	0.063	0.084
$C\left(15{ }^{\circ}\right)$	0.059	0.057	O, 066
$C(16 \%)$	0.064	0,066	0.070
C(178)	0.082	0,080	0.093
O(28 ${ }^{\circ}$	0.064	0.062	0.07\%

Atomb
$C\left(19^{\circ}\right)$
$C\left(20^{\circ}\right)$ C(21") C(220) $O\left(23^{\circ}\right)$
$I\left(24^{\circ}\right)$
0 (0. $)$
0.078
0.070
0.068
0.069
0.050
0.009
$0(3)$
0.075
0.063
0.064
0.068
0.047
0.008
σ (3)
0.093
0.073
0.078
0.084
0.053
0.008

$N(1)$	c(2)	\$0.50	$\left.N(1)^{\circ}\right)=$	C(2)	${ }^{3} 5$
$N(1) \sim$	C(13)	1.28	$N(1)=$	C(13 ${ }^{\circ}$	2.36
$N(1) \sim$	c(173)	2.50	$N\left(1{ }^{\circ}\right) \infty$	C(17)	$1{ }^{2} 88$
C(2)	C(7)	2.88	C(2)	C(7)	1.30
$C(2)=$	C(10)	2.65	C(2)	$0\left(16^{9}\right)$	1.82
c (3)	$N(4)$	5.31	$0\left(3^{\circ}\right)=$	$N\left(a^{\circ}\right)$	1.49
C(3)	$0(7)$	2,69	C(3)	C(78)	2.51
$c(3) \sim$	C(12)	259	$C\left(3^{\circ}\right) \cdots$	C(145)	1.60
$M(8) \sim$	C(5)	4049	$M(8)=$	C(5)	$3{ }^{3} 8$
$\pi(4)=$	O(2)	2.39	$M(20)=$	C(290)	253
$N(4) \infty$	C(22)	2.58	M(40) $=$	C(22 ${ }^{\circ}$	${ }^{6} 51$
$C(5)-$	C 68	4827	$\left.0(5)^{\circ}\right)=$	c(6)	8.57
C (6)	C(7)	2.70	$0\left(6{ }^{\circ}\right)$	C(7)	2.878
c(\%)	cre	H.48	$C\left(\mathrm{P}^{\circ}\right)=$	C(8)	2.86
$C(8)$	$0(9)$	4,52	C (8)	C(9)	3037
$C(8) \cdots$	0(12)	7.35	$0\left(8^{\circ}\right) \mathrm{c}$	C(23)	2033
$C(9)$	C(20)	2.83	$c(9)^{\circ}=$	$0\left(10^{\circ}\right)$	2. A4t
$C(10)$	C(1)	3.38	C(208)	c(al)	7.30
$C(12)=$	C(12)	2 Z 42	$\left.0(17)^{\circ}\right)=$	6(123)	2.24
$C(12)=$	O(13)	3.48	$\left.0(2)^{\circ}\right)=$	O(39)	2, 49
$C(24)$ -	C(35)	2873	$c(78)^{\circ}=$	C(150)	E\% E\%
$C(15) \cdots$	C(12)	2.64	$0\left(25^{\circ}\right)=$	c(46)	4668
$C(35)$ -	C(20)	2.50	$C(359)=$	$0\left(80^{\circ}\right)$	2042
$C(16)$ w	C(17)	3045	$0(160)=$	C(279)	1.52
$C(16)=$	C(16)	2.63			
$C(17)=$	O(23)	$3_{5} 48$	$c\left(18^{\circ}\right)=$	$0\left(23^{\circ}\right)$	1.38
$C(18)$	C(19)	1.53	$C\left(18^{\circ}\right)-$	C(198)	1.40
$C(18)$ -	O(23)	2, 32	$C\left(18^{\circ}\right)=$	$0\left(23{ }^{\circ}\right.$	1038
$C(19)=$	c(20)	7024	$c\left(19^{\circ}\right) \cdots$	C(20)	1.48
C(20)	C(21)	1,63	$C\left(20^{\circ}\right)$	C(21)	1.33

	$\%_{6}, 98$
	306
	3,5y
	3.50
	$3{ }^{6} 42$
	3.13
C(35	80
$C\left(28^{\circ}\right.$	
	3.48
	3.28
	3076
	3.59
0)	
33)	3.95
	3038
(25 ${ }^{3}$)	3.85
(23)	30.48
	3064
(3)	3.75
9)	3684
C(27 ${ }^{7}$	4.28
	3.80
$0(25)$	
0	50.3
	3.66
	${ }^{3} 56$
	3.58
	3080
	3042
,	$33_{0} 80$
	304480
(23)	366
	3.89
	3.96
	3079
	3.86
	3.35
	3015
	3.84
	3870
	3078
	3.58
\%	3.67
G(2)	3.46

gAOLE WTY (CombO),

C(7)	$000000(168)$	30.35	$\left.0(7)^{3}\right)$		
$c(7)$	000000 (17)	3.35	C(78)	(1)	3.49 3.29
$c(7)$	$000000(237)$	3.60	C(79)	0000 0(23)	3.30
C(8)	$00000 C(14)$	3.39	$0\left(8{ }^{\circ}\right.$	$080000\left(14{ }^{\text {a }}\right.$)	3, 44
c(8)	$00000(16)$	3. 72	c(8\%)	0000 (109)	3.62
C(8)	00000 C(170)	3.35	C (88)	C	3.34
6(8)	$000000\left(23^{\circ}\right)$	3.46	C(80)	- 0 (23)	3.19
C(12)	$0000000(178)$	3.21	$C(120)$	\therefore C(37)	3.14
C(12)	$\because 0.000\left(23^{\circ}\right)$	3.49	C(12\%)	- 0(23)	3.13
C(13)	$\because 0000(18)$	3.87	C(13)	- 0 (19)	$3_{0} 84$
C(13)	$\therefore 0000(76)$	3.58	C(\%97)	\therefore - $0(160)$	3.30
C(13)	$=0000 C\left(10^{3}\right)$	3, 68	C(19\%)	-0(16)	3.52
C(13)	0000 C(188)	3.80	C(137)	- c(18)	3084
C(13)	-000, $0\left(22^{3}\right)$	2088	C(130)	O(23)	2.65
C(14)	50030 C(Iz)	3.98	C(280)	- $C\left(\begin{array}{l} \\ 7\end{array}\right)$	3.74
C(14)	50:00 © (3)	3,98	C(14)	$\therefore C\left(190^{\circ}\right)$	3.82
C(24)	-1200 C(2a)	8.38	$C(149)$	C(29 ${ }^{\text {(}}$)	3.65
C(la)	$0030006\left(35^{8}\right)$	3.75	C(149)	O(75)	30.6
C(14)	-000e C(109)	3.63	C(149)	- 0 (16)	3.20
C(24)	$000000\left(27^{\circ}\right)$	3.85	c(12)	- C(2F)	3.38
C(14)	$\left.3050000^{(130}\right)$	4838	$C(240)$	- C(28)	3.88
C (14)	\%0000 0(23)	2.97	C(14)	O(23)	2,90
C(15)	=nese $0\left(25^{\circ}\right)$	3.03			
C(15)	$080000(278)$	3 3,39	C(159)	- C(17)	3.43
C(15)	$080000\left(23^{\circ}\right)$	3.48	$C\left(25^{1}\right)$	- 0(23)	3.59
C(16)	$400000(21)$	3.89	C(16 ${ }^{\circ}$	- $C(218)$	3.64
C(16)	Onceo C(20 ${ }^{\circ}$)	3098	$C\left(16^{\circ}\right)$	C(20)	4.09
C(16)	$\because \square 口 0\left(23^{\circ}\right)$	3.20	C(16\%)	- 0(23)	3.20
$C(17)$ $C(18)$		3, 54			
C(18)	$0000 C(21)$	3.60 3.75	$C\left(18^{\circ}\right)$ $C\left(20^{\circ}\right)$	-C(219)	3.58 3.67
c(20)	00000 (22)	3.75	C(20)	0000 C(22.)	3067

TABIE Ma°

Intermolecusco dtstances $\leq, 0$
$I(20) 0000(18)_{V V} \quad 3006(50) 00000(28)_{I L T} 3090$

0 (231) $0000(10)_{I} \quad 3.83 \quad C(119) 000 C(12)_{V I} \quad 3.95$
$C(22) 0000 C\left(10^{\circ}\right)_{I I} 3.84 \quad I(24) 0000 C\left(9^{\circ}\right)_{I V} \quad 3.96$
I (24) $0000 C\left(22^{\circ}\right)_{I V} 3.87 \quad C(9) 0000 C(10)_{I} \quad 3097$ I (24') $0000 \mathrm{C}(19)_{I I I} 3_{0} 89$

Closest approcehes of ${N^{+}}_{0.0000} I^{-}$

$N(4) 00000 I(24)$	4042
$N(4) 0000 I(24)$	4058
$N(4) 00000 I(24)$	4081
$N(4.8) 00000 I(24)_{I V}$	4086

Tiue subscripts rejer to the following equibalent posittons.

Borg NO. Of Borcis

Recerence.

Carbon ($s p^{3}$)
carbon ($3 p^{2}$) $6 \quad 1047 \quad 1.53$
Carbon $\left(s p^{3}\right)=$ aromatic carbon

2
Carbon $\left(s p^{3}\right) \infty$
$\begin{array}{llll}N^{+}(4) & 8 & 1046 & 1.479\end{array}$
Carbon $\left(\mathrm{sp}^{3}\right)$ as
$N(1)$
Aromatic carbon

- N (l)

4

Carbon $\left(s p^{3}\right)=04$

1. 53
2. 525
2.47

10472
$1.32 \quad 1.37$
1.39 I. 43
(2). (3)
$1.38 \quad 1.395$

1. 544
2. 337

References (1) Tables of Interatomic Distances and Configuration in MoIecules and Ions. (1958).
(2) $K_{0} N_{0} T r a e b l o o d_{,} E_{0}$ Goldish and J_{0} Donohrse (1961). Acta Cryst 14, 1009.
(3) Go M_{0} Brown and $R_{0} E_{0}$ Harsh (2960) Aota Crust. $13,103 \%$

FRELS $X T$

Devzations frombest glanes thromag sobs or abors | Atoms | 0 |
| :---: | :---: |
| included | (A) |
| $N(1)$ | 00.13 |
| $C(2)$ | 0.13 |
| $C(7)$ | -0.05 |
| $C(8)$ | 0.00 |
| $C(9)$ | 0.02 |
| $C(10)$ | 00.02 |
| $C(11)$ | 00.03 |
| $C(12)$ | 0.10 |
| $C(13)$ | $\infty 0.02$ |

C (3)	0.00	C(14)	0673	C(3)	-0.05	c(148)	0.77
$N(4)$	0.00	C(22)	0663	$N\left(42^{2}\right)$	0.05	C(21)	0.50
C(15)	0.00			C(15 ${ }^{\circ}$)	0.05		
C(20)	0.00			C(20\%)	$\cdots 0_{0} 05$		
C(2)	O, O2	C(14)	2.02	C(2)	0.02	O(3) ${ }^{\text {a }}$)	0.83
C (7)	- 0.02			C(7)	-0.05		
C(3)	0.01			C(3)	0.03		
C(15)	- -0.01			C(15 ${ }^{\circ}$	-0,02		
c(16)	0.00			$C\left(10^{\circ}\right)$	0,02		
	-0.07	c(6)	=0.46			C(6)	$=0.76$
$N(4)$	0.077			$N\left(4^{\circ}\right)$	0.02		
C(5)	- 0.024			C(5°)	-0.02		
C(7)	0.04			C(7\%)	0.05		

$N(1)$	-0.04	$C\left(17^{\circ}\right)$	-0.66	$N(1)$	-0.01	$C\left(17^{\circ}\right)=0.51$
C (2)	0.05	(a)		C(20)	0.01	
C(16)	$\cdots 0.05$			$C\left(16^{3}\right)$	-0.01	
$C\left(10^{\circ}\right)$	0.03			C(16)	0.01	
C(15)	-. $0_{0} 03$	C(16)	-1.31	c(15 ${ }^{\circ}$	0.05	$C\left(16^{8}\right)=2.28$
C(18)	0.06	C(17)	-2. 3 \%	$C\left(18^{\text {f }}\right.$)	- 0.06	$C\left(17^{3}\right)-1043$
C(19)	-0.10	O(23)	~ 0.45	C(19\%)	0.11	O(23 ${ }^{8}$) $0_{3} 33$
C(20)	0.08		O_{3}	C(20\%)	-0.12	
C(21)	0.04			C(21)	O,00	

PAELS XX

Comparison op some tntramolecular nonsonodec contacts.

Moleaniar model.

Average calcalateg

$N(1) 000000$	$N(1)$	3.7	3.42
$N(1) 000000$	C(2)	3.5	3.07
C(3) 900000	C(15)	3.7	4.90
C(7) 000000	$0\left(23^{\circ}\right)$	3.8	3045
$C(1.1) 00000$	O(230)	2.8	3.31
C(12) 00000	$C\left(18^{\circ}\right)$	3.7	4.09
C(13) 00000	O(23)	2.5	2.75
$C(14) 0000$	$C\left(15^{\circ}\right)$	206	3. 61
$C(14)=0000$	$C\left(14{ }^{8}\right)$	2.8	4.70
$C(14) 02000$	$C\left(16^{\circ}\right)$	3.0	3.42
C(14) .0000	$C\left(17^{\circ}\right)$	3.6	3.37
C(14) 00000	O(23')	3.8	2.94
C(15) 00000	$C\left(15^{\circ}\right)$	2.8	3.03
C(15) 00000	$c\left(17^{8}\right)$	3.7	3.40
$C(15) 00000$	O(23)	4.3	3.53
C(25) 90000	$C\left(2^{\circ}\right)$	3.6	$3{ }^{1} 93$
C(16) 00000	$o\left(23^{\circ}\right)$	3.5	3.15

PARTIII

The Structure of macusine-A:
X-ray Analysis of Macusine-A Iodide.

3.1 INTRODUCTITON.

During their researches on the cotal alkaloid content of the bark of British Guianian "Strychnos toxifera" Schomb. Battersby et al. (1960) isolated, in small quantity, three new quaternary alkaloids, hemitoxiferinem I_{2} macusinem A and macusinem. The latter two alkaloids were named after the Macusi tribe of Indians who are reported (bacIntyre ${ }_{2}$ 1947) to have carried out the first investigations on "Strychnos toxifera". The isolation of hemitoxiferineot had been briefly recorded earlier (Battersby and Hodson, 1958) and its structure and stereochemistry had been discussed in a later report (Battersby and Hodson. 1960 a) but the structures of the macusines were unknown.

From the infeared and ultraviolet spectra (Battersby et al., 1960) it was apparent that macusineaA and $-B$ were closely related, Both were found to have ultraviolet spectra characteristic of 2,3 - disubstituted indoles; the infrared spectrum of macusine $-A$ showed the presence of hydroxyl, imino and ester groups whereas that of macusinemb showed the presence of hydroxyl and imino groups but no ester group.

Chemical studies conducted by Battersby and Yeowell (1961) established the constitution of macusineaB (I) and these vorkers determined its absolute configuration. with the exception of the configuration of the ethylidene system. by independent correlation with ajmaline (II) and

sarpagine (IIT) for both of which the relative and absolute stercochomstry were knowa Bartlett, Schlittler et alos 1960, Bartlett, Sklar and Taylor, 1960 , Bartlett et alo, 1962). Having this knowledge of the constitution of macusinem B several plausible structures could be postulated for macusineهA from biosynthetic considerations. Since macusine $-A$ had been isolated in smaller yield than macusineob only limited researches could be carried out to confirm which
 provided cxystals of the iodide derivative for an x oxay crystal structure determination。

The results of the Karay investigation establish the structure (IV) for macusineaA and chemical studies which alone do not establish it (Battersby, Hodson and Yeowell. 1960) are fully consistent with this constitution. The absolute stereochemistry of macusineaA has been determined by correlation with macusine B (Battersby, 1962) and is represented by (IV).

3.2 EXPERIMENTAL

Crystal data：MacusineoA iodide， $\mathrm{C}_{22} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{I}_{0}$ $M=494.40 \quad m_{0} p_{0} 274^{\circ} \mathrm{C}$（decompo）Orthorhombic，
$a=13.82 \pm 0.03, b=9.06 \pm 0.03, c=17.43 \pm 0.04 \AA$ ． $U=2182 \AA^{3} \quad D_{\text {obs }}$ ．（flotation in aqueous ZnCl_{2} solution） $=1.503 \mathrm{gocc}{ }^{01} \mathrm{Z}=40 \quad D_{c}=1.505 \mathrm{~g}, \mathrm{cc}^{\text {co］}}$ ．Absent spectra：$h 00$ when $h=2 n+1$ ，OkO when $k=2 n+1,002$ when $\ell=2 n+1$ 。 Space group $P 2_{8} 2_{0} 2_{3}\left(D_{2}^{4}\right)$ ．Absorption coefficient for Xorays（ $\lambda=1.542 \%$ ），$\mu=119.6 \mathrm{em}^{-1}$ 。 Total number of electrons per unit cell $=F(000)=1096$ ． Total number of independent observed structure amplitudes $=1145 . \quad \sum f^{2}$＂heavy＂atoms $=2916, \sum f^{2}$ might＂atoms $=1096$ 。

Rotation，oscillation and movingefilm photographic methods were used and copper $-K_{\alpha} \quad(\lambda=1.542 \AA)$ radiation employed．The cell dimensions were determined from rotation and equatorial layer line Weissenberg photographs and the space group was determined uniquely from the systematic halvings．Intensity data were obtained iroza equatorial and equieinclination upperolayer multhpleaflm Weissenberg photographs taken froa crystals rotated about the needle axis（accrystal axis）．The intensities were estimated fisuelly and corrected for Lorentw，polarisetion and the rotation factors appropriate to the upper layers （Tunell，1939），The various layers（ck $-6 k k^{2}$ ）were
placed on the same scale by comparison of $\sum\left|F_{0}\right|$ and $\sum \mid F_{d}$ based on the iodide ion alone and adjusted throughout the refinement to ensure that $\sum|F|=\sum\left|F_{d}\right|$ 。

3.3 STRUCTURE DETERMINATION AND BEFTNEMENT

The cocordinates of the iodide ton were obtained from the Patterson projection along the a-axis (Figure 1) and that section of the threemdimensional Patterson function at $W=\frac{1}{2}$ (Figure 2). The peaks corresponding to the iodide - iodide vectoss are denoted by $A_{\%} B_{8} C$ in Figure 1 and by D in Figure 2. The iodide ion cooordinates were determined from these to be $x / a=0.4504, y / b=0.6574$ $z / c=0.5707$.

The first phasing calculations based on these coo ordinates and employing an isotropic temperature factor, B_{3} of $4.0 \AA^{\circ}$ because of the rapid fall off in data above $\sin \theta=0.6$, led to an agreement index of 0.316 . From the first threemdimensional Fourier synthesiss for which the observed structure amplitudes and phase constants appropriate to the lodide ion alone were employed, approximate comordinates were assigned to N(1)C(2)C(3)N(4), $\mathrm{C}(5), \mathrm{C}(6), \mathrm{C}(7), \mathrm{C}(8), \mathrm{C}(9), \mathrm{C}(10), \mathrm{C}(11), \mathrm{C}(12), \mathrm{C}(13), \mathrm{C}(14), \mathrm{C}(15) \mathrm{C}(16), \mathrm{C}(19)$, $C(20), C(21), C(22), C(23), 0(25)$. (Comparison of the complete structure of macusinemA (IV) with that of macusinemB (I) will show that this partial skeleton is common) These twentytwo light atoms were included, all as caxbon atoms with an isotropic cemperature factor, B_{2} of $3.0 \AA^{2}$, in the next phesing calculabions: the volue of the agyeement indes at this stage was 0.27%;

The second theoedinensional Fourier synthesis for $_{2}$
which the improved phase constants were used in conjunction

Fig. 1. Patterson projection along the a-axis. The contour scale is arbitrary. The iodide-iodide vector peaks are designated A, B and C.

Fig. 2. The three-dimensional Patterson function; the section at $W=\frac{3}{2}$. The iodide-iodide vector peak is marked D. The contour scale is arbitrary.
with the observed structure amplitudes permitted the remaining carbon and oxygen atons to be located. On the basis of peak heights, interatomic distances and knowledge of the structure of macusine $-B$, identification of the hetero-atoms wes possible. Calculation of a further set of structure factors, with each atom included as its appropriate chemical type and employing isotropic temperature factors of $B=3.0 \mathrm{~A}^{2}$ for carbon, nitrogen and oxygen, and $B=4.0 \AA^{\circ}$ for the iodide ion, reduced the R value to $0_{0} 213$. The subsequent three dimensional F_{0} Fourier synthesis showed all the atoms (except hydrogens) clearly resolved. Corrections for seriesetermination errors were applied to the atomic cooordinates by calculating "backoshift" corrections from a threedimensional F_{c} Fourier synthesis computed using the same phase constants. By comparison of the peak heights of both of these Fourier syntheses adjustments were made to the individual isotropic thermal parameters. Refinement of the co-ordinates and isotropic thermal parameters was continued by this method for another two cycles and resulted in a reduction of the agreement index to 0.167 .

A suitable conclusion of the refinement process was attained following two cycles of anisotropic least-squares (Rollett, 1961) adjustment of the positional and therwal paraneters of the atoms. The course of analysis is presented diagramatically in Table I

Theoretical scattering factors were employed for the structure factor calculations: those of Berghuis at al. (1955) for carbon, nitrogen and oxygen and the ThomasFermi (1935) values for iodine were chosen, The weighting system used in the least-squares refinement was

$$
\begin{array}{ll}
\text { if } \quad\left|F_{0}\right| \leqslant 40,00 & \sqrt{W}(h k \ell)=1 \\
\text { if } \quad\left|F_{0}\right|>40.00 & \sqrt{W}(h k \ell)=40.00 /\left|F_{0}(h k \ell)\right| .
\end{array}
$$

gABLE I

Compose of AnaIusis.
$2 \sim D_{0}$ and 3 won Patterson functions

1st Structure factor calculation

$$
R=0.316
$$

list $\underset{\downarrow}{ } \mathbf{\downarrow}=\mathrm{D}$ Fourier synthesis (all observed reflections)
and Structure factor calculation Iodide ion $B=4,0 \mathrm{~A}$ ($)$ 22 Itght atoms) $R=$
as carbon $=3$
atoms $B=3,0 A$
and 3 mD Fourier synthesis Iodide ion $B=0$ (0)
Sra Structure factor calculation nitrogen 3
oxygen atoms
$B=3.0$)
Sra ${ }^{\downarrow}-D$ Fourier syntheses (F_{0} and F_{C})
th Structure factor calculation (individual isotropic thermal parameters) $F=0.18 \%$

3-D F_{0} and F_{c} Fourier syntheses
fth Structure factor calculation

$$
R=0.173
$$

$3 \sim D F_{0}$ and F_{c} Fourier syntheses
Eth Structure factor calculation

$$
R=0_{0} 167
$$

Anisotropic leastosquares
Fth Structure factor calouiation

$$
A=0_{0} 157
$$

Anisotropic leastmsquares
eth Structure factor calculation

$$
R=0_{0} .145
$$

3.4 RESULTS OF AMALISIS.

The final atomic coordinates and anisotropie temperature factor parameters given by the leastosquares refinement are listed in Tables II and III, respeceively, The standard deviations of the final cooordinates, Table IV, were derived from the least-squares totals in the normal manner.

The observed and calculated structure amplitudes, both rounded off as integers, and the values of the phase constants, α, are listed in Table \forall. The final agreement index over 1145 independent observed structure ampiitudes is 0.145. Of 266 unobserved reflections also included in Table V there are 254 for which $\mid F_{c}$ (hith $\|$ is less than I各 $\left|F_{0}(\mathrm{hk} \mathcal{R})\right|$, where $\left|F_{0}(h k \ell)\right|$ is the minimum observable value of the reflection in question.

Employing the observed structure amplitudes and phase constants of Table V a final threeodimensional electrono density distribution was calculated and this is shown ins Figure 3 by means of superimposed contour sections d rawn parallel to (010). Cther peaks which appeared in this three-dimensional Fourier synthesis, but which are not included in this Figure, occurred in the direction of x along the line joining iodide ions of adjacent unit cells. These peaks were spaced at intervals of about $1.6 \AA$ and decreased in magnitude the more distant they were from the Lodide ions. They were undoubtedly spurious peaks and were
attributed to serieschermination effects which would be expected to axise $i x$ whe dixection of x since the date were collected about the amaxis only.

The atomic axrangement corresponding to figure 3 and to the absolute configuration of macusineoA as determined by Battersby (1962) is showh in Figure 40 The distances of the carbon, nitrogen and oxygen acoms of the macusine $-A$ molecule from the best plane through the atoms of the indole system are also given in this Figure.

The intramolecular bond lengths and interbond angkes axe listed in Tables VI and VIIs respectively. The average estimated standard deviation of a casbonmearbon single bond length is 0.07 A and of a tetrahedral angle is 4°. Some of the mose important intramolecular nonbonded contacts are given in Table VIII.

The arrangement of molecules as viewed along the boaxis is shown in Figure 5 where the system of possible hydrogen bonds is denoted by the broken lines. Table IX lists the shorter intermolecular contacts.

Fig. 3. The final three-dimensional electron-density distribution for macusine-A iodide shown by means of superimposed contour sections drawn farallel to (010). The contour interval is le/ ${ }^{3}$ except around the iodide ion where it is $5 e / A_{0}^{3}$

Fig. 4. Atomic arrangement corrgsponding to Fig. 3. Figures give height in A above or below the indole plane. A right-handed set of axes has been chosen.

Fig. 5. The arrangement of molecules as viewed along the b-axis. The broken lines denote the system of possible hydrogen bonds.

3.5 DISCUSSION OF RESULTS.

As in the structuxe determination of caracurineoII (part II of this thesis) the bond lengths and interbond angles are not determined with sufficient precision to permit a discussion of apparent differences between chemically equivalent bonds ${ }_{e}$

The average carbon-carbon bond length in the indole system, $1.4{ }^{2} \stackrel{A}{A}_{2}$ is in agreement with the expected value of 1.395 A for a bond between aromatic carbon acoins. The average of the carbon-carbon single bond lengths between $s p^{3}$ o hybridised catbon atoms is $1.57 \AA$ and between sp ${ }^{3}$ and $s p^{2}$ hybridised carbon atoms is 1.51 A. These do not differ significantiy from the accepted values of $1.544 \AA$ and $1.51 . \AA_{\text {a }}$ respectively. The length of the carbonacarbon double bond of the ethylidene system, $C(19)-C(20), 1.31 \AA_{3}$ is compaxable with that of $1.33 \AA$ reported for ethylene (Bartell and Bonham, 1957). The values of the $5 p^{3}=$ hybridised carbonequaternary nitrogen, $N^{+}(4)$, bond lengths vary from 1.36 to $1.66{ }^{\circ} \mathrm{A}$; the average of these, $1.49{ }^{\circ} \mathrm{A}$, is compatible with the accepted value of $1.49{ }_{\mathrm{A}}^{\mathrm{A}}$. The accepted values cited for the bond lengths are those given in Tables of Interatomic Distances (1958).

The mean length of the pyrrole carbononitrogers. $N(1)$, bonds, 1.33 A, as not sherituencly dieferent Sron whe values for aromatic carbonmitrogen bonds found in pwitroantitne. 1,37 A (Trueblood et al, 1961), 2-aninow 3 -methylbenzoic
acid, 1.37 A (Brown and Marsh, 1960) and 2mehlorou4 nitroaniline, $1.39 \AA$ (chis thesis p.109).

The average interbond angle in the benzene ring is 120° and in the pyrrole ring is 108°; both of these agree with the expected values (Tables of Interatomic Distances. 1958). Within the limits of the standard deviations the atoms of the indole rings, $N(1), C(2), C(3), C(8), C(9), C(10), C(11)$, $C(12), C(13)$, and the adjacent substituent atoms, $C(3)$ and $C(6)$, are coplanar. The equation of the best plane through these eleven atoms, calculated by the method of Schomaker et al.(1959), is

$$
0.0446 x+0.9714 y-0.2312 z-1.6459=0
$$

and the distances of the carbon. nitrogen and oxygen atoms of the macusine molecule from this plane are given in Figure 4.

About $s p^{3}$ mybridised carbon atoms the average bond angle is 110° and about the quaternary nitrogen it is 109°. These results are in agreement with the expected yalue of $109^{\circ} 28^{\prime}$ for the tetrahedral angle.

The dimensions of the methyl ester group are comparable with those found in methyl acetate (0'Gorman et al og 950), dimethyl oxal ate (Dougill and Jeffrey, 1953) and methyl formate (Curl, 1959). The atoms $C(24), 0(25), C(22), 0(26), C(16)$, are coplanar within the Ilmits of the standard deviacions. the equation of the best plane through these atoms being

$$
0.6646 \mathrm{X}+0.5249 \mathrm{X}+0.5316 \mathrm{Z} \div 11.657=0
$$

and the ind \&vidual deviations are given in Table X. The reasons for this preferred planar conformation and the difference in carbon-oxygen single bond lengths are discussed for bromogeigerin acetate in section 4.5 of this thesis.

The quinuclidine system is in the expected "boat" conformation with the bonds $C(5)-C(16), C(3)-C(14)$ and $C(20)-C(21)$ approximately parallel to one another while $\mathrm{N}^{+}(4)$ and $\mathrm{C}(15)$ are on the same side of the planes formed by taking these bonds in pairs and the displacements of the atoms from these planes are given in Table XI.

The equation of the best plane through the atoms of the ethylidene system, $C(18), C(19), C(20), C(21)$, and $C(15)$, is

$$
0.9819 \mathrm{X}=0.0395 \mathrm{Y}=0.1839 \mathrm{Z}-8.031=0
$$

The deviations of these five atoms from this plane are given in Table XII; none of these deviations is significant.

The configuration of the ethylidene system in macusine-A, and hence in other related alkaloids, is established unequivocally by this analysis. The absolute stereochemistry at $C(15)$ is the same as that at the corresponding carbon of all α - and β oindole alkaloids (Bose et al., 1956, Wenkert et al., 1957) with the sole exception of $\psi=$ akuamacine (Edwards and Smich, 1960) and. With respect to the $C(19)-C(20)$ double bond, $C(18)$ is cis to $C(15)$. The same configuration of the ethylidene systen
has recently been found in akuamidine (Silvers and Tulinsky, 1962), the methiodide of which is isomerie with macusine $\propto A$ iodide and differs only in the sterochemistry at $\mathrm{C}(16)$. Moreover, in echitamine (Hamilton et alos 1961; Birch et al., 1961), which possesses features similar to macusine $-A_{3}$ the stereochemistry of the ethylidene system is the same as that in macusinem.

Intermolecular contacts less than to 0 A are listed un Table IX. Although no direct determination of the positions of the hydrogen atoms was attempted because of the presence of the iodide tong two of these intermolecular contacts strongly suggest the presence of hydrogen bonding in the crystal. The angle $C(2)-N(1)=0(26)$ is 109° and $N(1)$ is only 2.98 \AA from the caxbonyl oxygens $O(26)$, of an adjacent macusine molecule. Comparison of this distance with some values reported for $\mathrm{Fm} . \mathrm{H} .0 .0$ hydrogen bonds is favourable eog. 2.85 A in diketopiperazine (Degeilh and Marsh, 1959), $2.86,2.89$ A in glycyl-L tryptophan dihydrate (Pasternak. 1956), 2.86, 2.92, 2.94, Å in Laglutamic acid (Hirokawa, 1955). Another elose contact exists between the iodide ion and the oxygen of the hydroxyl group, o(27), of an adjacent molecule. This distance is $3.43 \stackrel{\circ}{\AA}$, which, when considered along with the value of 107° for the angle $C(17)=0(27)-1$, is indicative of an $0 \omega H_{0} . \mathrm{T}^{(}$hydrogen bond and it is comparable with that of 3.57 A in muscarine iodide fJellwer, 1957
and with those of $3.52-3.62$ in $(*)$-demethenolaconinowe hydriodide trihydrate (Przybylska, 1961b).

The shortest carbon-iodide ion contacts of 3.93. 3.95. 4.00 \& can be taken as normal and compare favourably with those found in DL-isocryptopleurine methiodide, $3.96 \AA_{8}$ (Fridrichsons and Mathieson, 1955) and in (t) deso (oxymethylene)-lycoctonine hydriodide monohydrate, 3.81. 3.99 A (Przybyiska, 1961a).

The closest approach of $\mathrm{N}^{*}(4) \ldots \mathrm{I}^{-\infty}$ is $4.52 \AA_{\text {. }}^{\circ}$ comparable with the reported distances of $4.39 \AA$ in (a) Nomethyl-gelsemicine hydriodide (Przybylska, 1962) and $4042,4.58 \AA$ in caracurinew II dimethiodide (this thesis p.57),

The system of possible hydrogen bonds is represented by broken lines in Figure 5. Adjacent macusinema molecules at $-\frac{1}{2} \diamond x_{0} \frac{1}{2}-y_{9}, \operatorname{l-2}$ and $x_{0}, y_{9} z_{9}$ and at $x_{3} y_{8}, 2$ and $\frac{1}{2}+x_{0}$ $\frac{1}{2}-y_{,}$loz are joined by Noh....O hydrogen bonds along the

 joined in a simlar manner. MacusineoA molecules are also linked by an electrostatic attraction between the iodide ion
 and by an $I^{\text {con }} \ldots$. $\mathrm{H}_{\mathrm{t}} 0$ hydrogen bond between this iodide ion and the mydroryl group of an adjacent molecule at K_{3} Itys z_{0} This fodide ion is further involved in a weaker electrostathe attraction with a cuaternary nitrogen of the adjacent molecule
 and the nitrogen is on the opposite side of the iodide ion, with respect to the x-direction, from the other quaternary nitrogen mentioned. In the direction of z the molecules are held together by van der Waals forces.

TABLE ITO
Atomis cowntibates.

Ators	x	ψ_{b}	8
T	0.8499	0,8976	0.5713
$N(1)$	0.7927	$0_{6} 2613$	0, 3229
O(2)	0.7402	0.298.	0.3830
$c(3)$	0.7777	O.3322	0.4615
$N(4)$	0.7120	0.4285	0.5038
c(5)	0.6077	0,3385	0.4993
c(6)	0.5674	0.3277	0,4224
C(7)	0.6398	0.3016	0,3646
c(8)	0.6364	0.2588	0,2858
C(9)	O, 5600	0.2436	0,2323
C(10)	0.5774	0.2139	0.1622
C(12)	0.6782	0.1862	0.1342
C(12)	0.7558	0,2075	0.1824
c (13)	0.7394	0.2386	0.2594
C(14)	0.8075	0.1829	0, 5082
C(15)	0.7328	0.1785	0.5779
C (26)	0.6190	$0.18 \% 2$	0, 5468
c(17)	0.6080	0.0505	0,5008
C(18)	0.77758	0.7808	0.7551
C (19)	0.7633	0.3155	0.7018
C(20)	0.7890	0.3122	0.6263
C (21)	0.7405	0.4539	$0.577{ }^{4}$
C(22)	O.5622	0.1778	0.6138
C(23)	0,6873	0.5701	0.4638
c(24)	0.5208	0,0388	0.7220
O(25)	0.5808	0.0598	0.6571
O(20)	0. 4999	0.2575	0.6303
O(8\%)	0,5096	0. 0256	0.4856

WAETE $E X$.

Anisotrovio terroerature iqutor paraneters ($0_{\text {ty }} x 10^{5}$).

Alom	b_{17}	${ }^{b_{32}}$	${ }^{6} 3^{39}$	${ }^{3}{ }_{3}$	b_{23}	b_{73}
I	842	1964	609	-1	66	-145
$N(1)$	438	1540	504	114	- ${ }^{\text {d }}$	-2
C(2)	325	2770	586	314	95	37
c(3)	144	2676	935	-6888	-356	682
$N(4)$	996	1549	608	-304	-8	20
$c(5)$	992	2397	797	278	84	791
$c(6)$	319	2068	602	-1019	228	379
C (7)	918	2049	699	-460	735	-151
$c(8)$	1033	1226	508	2026	4.19	112
C (3)	352	1496	729	- 709	3	~ 935
C(10)	463	1625	524	-293	-82	~ 68
C(11)	1243	1489	828	$\cdots 678$	60	-263
C (12)	1647	1349	677	132	497	-559
C(13)	528	1243	60%	322	188	113
C(14)	707	2673	924	723	617	- 313
C(15)	244	285%	680	456	-230	-494
C(16)	3329	1128	784	3431	- 356	263
C(17)	38\%	230%	808	-506	-684	338
c(18)	915	2044	787	46	-63	303
C(19)	406	2424	856	-977	-249	92
C(20)	66%	2121	588	214	-358	63
$c(21)$	1129	2700	652	629	244	290
c(22)	192	16797	$7{ }_{7} 8$	- 2689	${ }_{0} 65$	165
C(23)	265	1371	1033	74	1086	-88
C(24)	2465	2033	476	-185	-128	- 1226
O(25)	336	2138	825	242	79	149
$0(26)$	298	1697	889	-370	-22	107
O(27)	398	2082	976		3	280

Atom	O(x)	σ (u)	$\sigma(z)$
\underline{T}	0.004	0.004	0.003
$N(1)$	0.042	0.032	0.034
C (2)	0.045	0.048	0.040
C (3)	0,057	0.053	0.053
$N(4)$	0.046	0.037	0.037
C(5)	0.061	0.054	0.052
c(6)	0.045	0.040	0.041
$c(7)$	0.058	0.052	0.044
C(8)	0.058	0.040	0.043
C (9)	0.053	0.037	0.045
C(10)	0.049	0.040	0.037
c(11)	0.055	0.050	0.047
$c(12)$	0.061	0.045	0.045
c(13)	0,053	0.038	0.043
c(14)	0.056	0.053	0.048
$c(15)$	0.049	0.047	0.048
c(16)	0.060	0.045	0.046
C(17)	0.069	0.048	0.056
C(18)	0.057	0.048	0.048
c(19)	0.055	0.054	0.050
c(20)	0.053	0.051	0.043
C(21)	0.058	0.049	0,051
c(22)	0.054	0.044	0,042
c(23)	0,069	0.088	0.056
C(24)	0,070	0.051	0.043
0 (25)	0.032	0.032	0.030
0 (26)	0.033	0.031	0.034
O(27)	0.035	0.033	0.036

"
 $\xrightarrow{2}$

Intranolecziar bonded cistonoes (9).

$N(1)$	- C(2)	1032	C(10)	$-C(11)$	1.50
$N(1)$	$\cdots C(13)$.1,35	C(11)	- C (12)	1.38
c(2)	- C (3)	2.50	C(12)	$-c(13)$	1.39
c(2)	- C(\%)	2.82	C(14)	$=6(15)$	2.59
c(3)	- $N(4)$	1.86	C(15)	$\sim c(16)$	1.66
c(3)	$=C(14)$	2.64	O(15)	$=c(20)$	1.50
$N(4)$	$-C(5)$	2.66	C(16)	- C(27)	1.49
$N(4)$	- C(21)	. 3.36	C(16)	- 6 (22)	1042
$N(4)$	- C(23)	2.50	C(27)	- 0(27)	1.40
$C(5)$	- $C(6)$	3.26	c(18)	- C(29)	18.55
$c(5)$	- C (16)	2.61	C(19)	$-c(20)$	233
c(6)	- θ (7)	1048	c(20)	- c(22)	1855
c(7)	- $c(8)$	2.48	C(22)	- 0(25)	2.33
$C(8)$	- $0(9)$	2.83	C(28)	- o(26)	1.26
$c(8)$	- c(13)	1. 50	C(24)	- 0(25)	1.43
c(9)	- c(10)	$1{ }_{0} 28$			

Thteropm amates (o)

Sone intromo yeoz, Iop nonebovied atstances (A)

N(1)	$\because N(4)$	3.69	C(7)	0	(a)	3. 35
N(1)	$\therefore 0$ C(6)	3.60	O(P)		O(17)	3.31
$N(1)$	$\therefore C(9)$	3.59	C(7)		c(23)	3.08
N(7)	0000 C(12)	387	0 (7)		O(27)	3.75
$N(1)$	$\cdots 0$ C(12)	3.33	O(14)		C(17)	3.08
$N(2)$	$\because 0.0(23)$	8.00	c(14)		$0(19)$	3, 61
C C(2)	$\because 0.0(9)$	3.65	c(18)		C(22)	3.85
C C(2)	- O(12)	3.60	C(28)		C(23)	3.96
C(2)	C(15)	3, 57	(125)		C(18)	3.25
C C 2	C(16)	3.45	C(15)		0(25)	$2{ }^{2}$
C(2)	- C(17)	3.54	c(15)		0(26)	3.42
C(2)	- C(2])	3.67	E(25)		0(87)	3.78
C(2)	- 0(23)	2.93	C(36)		6(29)	3.55
C(3)	\% $0(8)$	3.70	O(16)		C(23)	3087
6 (3)	- C(2)	3.68	c(26)		C(28)	3.6
O(3)	- O(ar)	3.53	C(E7)		C(30)	$3_{3} 78$
$N(A)$	0(27)	8.89	C(27)		O(25)	2.76
N(4)	C(29)	3.66	C(7a)		0(26)	3.30
$\cdots(4)$	C(22)	8.62	C(38)		C(2)	2.89
$N(4)$	O(56)	3.98	C(28)		C(28)	3.85
C(5)	C C(8)	2,89	C(28)		C(2A)	3.83
$0(5)$	O(25)	3.75	c(1a)		O(25)	3.36
$0(5)$	O(26)	288	$0(29)$		C(28)	3.40
C(5)	$\because 0(27)$	3.85	0(39)		O(25)	3,52
C (6)	- C(9)	3.80	c(19)		O(26)	3.88
C (6)	C(13)	3.79	C(20)		C(22)	2.86
C(6)	O C(18)	3.87	C(20)		c(23)	3.78
C (6)	-0. C(15)	3.79	C(20)		O(25)	3.30
C(6)	- C(17)	2.92	C(20)		O(26)	3.48
$C(6)$	C(21)	3.79	O(2I)		C(22)	3.57
C (6)	C(22)	3.60	$C(21)$		O(26)	3.88
C(6)	C(23)	2.85	C(22)		O(27)	2.72
C(0)	O(26)	380	C(24)		O(26)	2.63
C(6)	O(27)	3.08	$0(25)$		O(27)	3.16
$c(7)$	-0 C(10)	3.78	O(26)		O(27)	3.28
0 (7)	S00 C(12)	3.86				
C(\%)	-0G C(14)	$3{ }^{3} 59$	7	0	c(23)	3.95

TABLE $X X$

Intermolecuzar distances $(\leqslant$ q A $)$.

$N(1) 00000$	$0(26) I$	2.38	$C(14)$	$C(6)_{I}$	3.79
O(25) 0000	$C(12)_{I I}$	3.34	c(18)	$C(13)$ II	3.82
$I \quad 0$	$0(27) \mathrm{V}$	3.43	C(24) 00000	$C(12)$ II	3.82
C (3) 00000	$0(26){ }_{I}$	3.56	$C(15) 00000$	$0(27)_{I}$	3.85
O(26) 0000	C(24) IV	3.57	C(21) 00000	$0(27)_{I}$	388
C (21) 0000	$C(12)$ III	3.57	$N(1) 00000$	$c(22)$ I	3.92
$C(3) 00000$	O(27)	3.57	$I \quad 00$	C(24) IV	3.93
$C(21) 0000$	$C(12)$ III	3.59	C(15) 00000	$c(12)$ IT	3.95
C(2) 00000	$0(26)$ I	3. 63	C(18) 00000	$C(12)_{\text {II }}$	3.99
C (14) 0000	$0(26)_{I}$	3.64	C(18) 00000	$C(9) I$	3.99
$C(15)$	$C(11)_{I I}$	3.66	C(14) 00000	$C(11)_{\text {II }}$	4.00
$N(1)$.0.00	$C(24) I$	3.76	$I 00$	$C(11)$ HI	4.00
C(18) .o.	C(12) II	3.79			

The subscripts refer to the following equivalent posttions:

$$
\begin{aligned}
& \text { III. } \quad I_{\frac{1}{2}}-x_{8} 1-y_{8} \frac{1}{2}+z
\end{aligned}
$$

$$
\begin{aligned}
& \nabla \quad x_{9} \quad 1+y_{0} \quad \underset{ }{\boldsymbol{V}} \\
& \text { VI } \quad 1-x_{0} \frac{1}{2}+y_{0} \frac{2}{z}=2
\end{aligned}
$$

$C(16)$	0.01	$C(2)$	0.05	$0(26)$	0.00
$C(22)$	0.04	$0(25)$	0.05		

TABLR XI.

Deviations (A) from the best planes through sets of atoms of the gutnucitidime rings.

Atoms inoluded

Atoms omitted

$\begin{array}{ll}N(A) & =0.76 \\ C(15) & =0.56\end{array}$
$M(4) \quad 0_{0} 65$
$C(15) \quad 0.77$

TABLE XII.

Deoiations (A) from the best plane throrgh
$C(15), C(18) c(19), C(20)$, and $C(21)$.
$\begin{array}{llllll}C(15) & 0,01 & C(19) & 0.03 & C(21) & 0.01 \\ C(18) & 0.02 & C(20) & 0.02 & & \end{array}$

PARTIV

The Structure of Geigerin:
X-ray Analysis of Bromogeigerin Acetate.

4.1 INTRODUCTION.

The bitter principle geigerin, a sesquiterpenoid lactone, occurs in the vomiting bush which is represented by various "Geigeria aspera" and which grows abundantly in South Africa. Rimingtion and Roets (1936), who first isolated geigerin, $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$, from "Geigeria aspera" Hary ${ }^{\text {g }}$ showed that it was a ketonic lactone and made a preliminary study of its chemistry.

Perold (1955,1957) who made important contributions to the chemistry of geigerin, proved that it was a guanolide (Čekan, Herout and Sॅorm, 1954) and, on the basis of his researches, proposed structure (I). Having obtained evidence in contradiction of this constitution, viz. that geigerin contained a secondary, not tertiary, hydroxyl group, Barton and Levisalles proposed the alternative structure (II) (see Earton and De Mayo, 1957)。

The investigations on the constitution were extended by Barton and Levisalles (1958) who firmily established that structure (III) was representative of geigerin. These workers also elucidaced the structure of allogeigeric acid (IV) and, on the basis of the constitution of this acid and other facts, partly defined the stereochemistry of geigerin to be as in (V).

In order to confirm the constitution (III) and exterd the stereochemistry (V), a crystalostructure analysis of a bromoderivative of geigerin acetate was undertaken;

(I)

(III)

(II)

(IV)

(v)

Professor Barton and Dr. Pinhey had prepared this derivative by bromination of geigerin acetate with Nobromossuccinimide in carbon tetrachloride.
4.2 EXPERIMENTAL．

Crystal data

Bromogeigerin acetate， $\mathrm{C}_{17} 7_{21} \mathrm{BrO}_{5}$ ． $\mathrm{M}=385.3$ ． mop． $147-153^{\circ} \mathrm{C}$（decomp）$\quad$ Orthorhombic；$a=8.11 \pm 0.02$ ， $b=13.77 \pm 0.03, c=15.24 \pm 0.03 \AA$ 。U $=1702 \AA^{\circ}{ }^{3}$ ．Dobs （flotation in ZnCl_{2} solution）$=1.512 \mathrm{~g}_{\mathrm{occ}}{ }^{-1} \mathrm{Z}=4$ 。 $D_{c}=1.505 \mathrm{~g}, \mathrm{cc}_{0}=1 \quad$ Absent spectra：hoo when $\mathrm{h}=2 \mathrm{n}+\mathrm{I}_{\mathrm{g}}$ OkO when $k=2 n+1,002$ when $\ell=2 n+1$ ．Space group $P 2_{1} 2_{1} 2_{1}\left(D_{2}^{4}\right)$ o Absorption coefficient for Xarays
（ $\lambda=1.542 \mathrm{O}$ ），$\mu=38.2 \mathrm{~cm}^{-1}$ ．Total number of electrons per unit cell $=F(000)=792$ ．Total number of independent observed structure amplitudes a 1625 ．

$$
\sum f^{2} \text { "heavy" atoms }=1225 . \quad \sum f^{2} \text { "light" atoms }=953 .
$$

Rotation，oscillation，Weissenberg and precession photographs were taken with coppermK os $(\lambda=1.542 \%)$ and molybdenum $\omega_{c}(\lambda=0.710 \% \AA$ ）radiation。 From rotation and precession photographs the cell dimensions were obtained and，from the systematically absent reflections the space group was determined uniquely．

The intensity data were obtained from equatorial Weissenberg photographs taken from crystals rotated about the awand cocrystal axes and from equi－inclination uppere layer Weissenberg photographs taken from a cyystal rotated about the acerystal axis：the multipse inim teehnique with visual estimation was employed．Lorente，polazisation and Tunell（1939）corrections were applied but no correction
was made for absorption. The various layers were put on to the same relative scale by comparison of common reflections on different photographs, the absolute scaling being obtained at a later stage by correlation with the final calculated structure amplitudes, $\left|F_{c}\right|$.
4.3 STRUCTURE DETERMINATION AND REFINENENT.

The Patterson projections along the an and coaxes are show in Figures 1 and 2 respectively. The peaks denoted A, B, C in Figure 1 and D, E, F in Figure 2 correspond to the brominesbromine vectors. The coordinates of the bromine atom determined from these projections were $x / a=0.4638, \quad y / b=-0.0902,2 / c=0.7930$. and these were confirmed by a study of the appropriate sections of the threewdimensional Patterson function. Structure factors calculated employing these coordinates and an isotropic temperature factor, $B=3.0 \AA^{\circ}$, led to an agreement index of 0.350 .

The first threecdimensional Fourier synthesis was computed employing the observed structure amplitudes and the phase constants appropriate to the bromine atom alone. From the resulting electronedensity distribution it was possible to assien approximate cosordinates to C(1), C(2), $C(3), C(4), C(5), C(6), C(7), C(\delta), C(9), C(10), C(16), 0(1), 0(2), 0(4), 0(5)$. These atoms were included (all as carbon atoms) in the second structure factor and phasing calculations for which an overall isotropic temperature factor, $B=3.0{ }^{\circ}{ }_{A}^{2}$, was employed; the resulting agreement index was 0.280 .

Employment of the improved phase constants for the calculation of the second three-dimensional Fourier synthesis resulted in the unequivocal location of the remaining carbon and oxygen atoms, other than $C\left(14_{4}\right)$ Ambiguity in the location of this carbon atom arose because

Fig. 1. Patterson projection along the a-axis. Contour scale arbitrary. The bromine-bromine vector peaks are marked A, B and C.

Fig. 2. Patterson projection along the c-axis. Contour scale arbitrary. D, E, and F denote the bromine-bromine vector peaks.
of the presence of two peaks in this electrondensity distribution:

	x / a	y / b	$2 / \mathrm{c}$	$\mathrm{e} / \mathrm{A}^{3}$
peak G	0.450	-0.084	0.516	5.9
peak H	0.798	-0.024	0.529	2.0

Of these, the peak H_{s} being in close proximity to the cyclopentenone ring at $C(4)$, corresponded to the expected position of $C(14)$ from the chemical evidence. Peak G_{8} on the other hand, was situated directly in line with bromine atoms of adjacent unit cells in the direction of z and could have been spurious, nevertheless, an atom located at this site would have been in a reasonable position for attachment to the cycloheptane ring at $C(6)$. Although this would have been contrary to the chemical evidence, this site could not be ignored at this stage in the analysis as a possible location of $C(14)$.

For the third structure factor and phasing calculations the twenty-one light atoms whose approximate locations had been determined unambiguously were included as their appropriate chemical type, with the exception that 0(5) which could not be differentiated from C(17) was still included as a carbon atom. The value of the agreement index was 0.230.

The third threeadimensional Fourier synthesis resolved the ambiguity regarding the location of $C(14)$ and permitted.
on the basis of peak heights and interatomic distances differentiation between $O(5)$ and $C(17)$ of the acetate grouping. In this electronedensity distribution the peak H had increased in density to $3 \mathrm{e} / \mathrm{A}^{3}$ while peak G had decreased to $1 \mathrm{e} / \mathrm{A}^{3}$; the former peak therefore corresponded; as expected from the chemical evidence, to the site of $\mathrm{C}(14)$ and co-ordinates were assigned accordingly.

All of the atoms, except hydrogens, were included in the fourth structure factor calculation as their appropriate chemical type and, in the subsequent electron-density distribution, calculated employing the observed structure amplitudes and the improved phase constants, all of these atoms were clearly resolved. Using the same phase constants a three-dimensional F_{c} Fourier synthesis was computed and, by applying "back-shift" corrections, the atomic co-ordinates were corrected for series-termination errors. Comparison of the electron-densities of these F_{o} and F_{c} Fourier syntheses confirmed the choice of heteromatoms and enabled improved isotropic temperature factors to be assigned. The agreement index of the subsequent structure factor calculation was 0.191.

Refinement of the positional and thermal parameters was continued by the method of least-squares, three cycles of which were employed. A diagramatic representation of the course of analysis is provided in Table I.
(Intital errors in the film-tomflm scaling of the intensitios corresponding to some of the larger observed
structure amplitudes were not discovered until a late stage in the refinement process and were corrected immediately preceding the penultimate refinement cycle. A consequence of this was that, compared with the previous cycle, the final refinement cycle led to a greater reduction in the agreement index.)

The weighting system used in the leastosquares refinement was

$$
\begin{aligned}
& \sqrt{w}(h k \ell)=\frac{\left|F_{0}(h k \ell)\right|}{16,00} \text { if }\left|F_{0}(h k l)\right| \leqslant 16,00 \\
& \sqrt{w}(h k \ell)=\frac{16,00}{\left|F_{0}(h k l)\right|} \text { if }\left|F_{0}(h k \ell)\right|>16,00 .
\end{aligned}
$$

Theoretical atomic scattering factors were employed for the structure factor calculations; those of Berghuis et al. (1955) for carbon and oxygen and the Thomas-Fermi (1935) values for bromine were chosen.

SABED I

Cormse of Analusers.

$2 \infty D$ and 3 coD Patterson symbeses

1st stैuctrree factor calculation

$$
\begin{aligned}
& \left(B=3_{.} 04\right) \\
& R=0.351
\end{aligned}
$$

1st $3 \pm$ Fourier synthesis (1576 observed structure anpli itraes)

2nd Striscture factor calculation
Eromine +16 "IIght" atoms as carbornatoms
$\left(B=3,0 R^{2}\right) R=0_{0} 280$
2nd 3mD Fourier synthesis (1587 obserued structrree amplitrodes)
3rid Structure factor calculation Bromine +17 carbon
44 onugen atoms
$(B=3,0 A E) R=0,230$
3rd 3~D Fourier synthesis (159% observed structero ampittades)
\&th Structure factor calcuzotion Bromine +17 carbon

* 5 oxuger atoms
$\left(B=3,02{ }^{2}\right) R=0,206$
4th 3
$3=-D$

5th Structure factor calculations

All atoms individucy isotropic thermul
parameters $B_{0}=0,191$

Anisotropic leastosquapes
6th Structure factor calculatzon

$$
R=0_{0} .168
$$

Antsotropic least-squares
7th Structure factor calculation $R=0.255$
Antsotropic leastmsquares
sth structure factor calculation
4.4 RESULTS OF ANALYSIS.

The final atomic cowordinases and anisotropic thermal parameters provided by the least-squares refinement are listed in Tables II and III, respectively. The standard deviations of the cooordinates, Table IV, were derived from the least-squares residuals.

The observed and calculated structure factors, both rounded off as integers, and the values of the phase constants $\alpha_{s} \alpha_{2}$ are listed in Table V. The final agreement index over 1625 independent observed structure amplitudes is 0.135. Of 122 unobserved structure amplitudes also listed in Table \forall there are 105 for which $\mid F_{c}($ hk $)| |$ is less than $1 \frac{1}{2}\left|F_{0}(h k \Omega)\right|=\left|F_{0}(h k P)\right|$ being the minimum observable value of the structure amplitude in question.

The final threeadimensional electronodensity distribution over one molecule calculated employing the observed structure amplitudes and phase constants of Table $I V_{,}$is shown in Figure 3 by means of superimposed contour sections drawn parallel to (001). In the final threemdimensional Fourier synthesis, along the line in the direction of x joining bromine atoms of adjacent unit cells there were several elongated peaks which have been omitted from pigure 3 since they were modoubtedy due, as in the case of macustneoA iodide (section 3.4), to terminationw ofoseries effects, Figure 4 shows the atomic arrangement corresponding to Figure 3.

The intramolecular bonded distances are listed in Table VI; the average estimated standard deviation of a carbon-carbon and of a carbon-oxygen bond is $0.03 \AA$ and of the carbon-bromine bond is 0.02%. Table VII lists the interbond angles; the average estimated standard deviation of a valency angle is about 2°.

Some of the more important intramolecular non-bonded distances are listed in Table VIII.

The arrangement of the molecules in the crystal as viewed along the aeaxis is shown in Figure 5 while Table IX lists the shorter intermolecular contacts.

Fig. 3. Final three-dimensional electron-density distribution for bromogeigerin acetate shown by means of superimposed contour sections ${ }_{3}$ drawn parallel to (001). The contour interval isi le/ A^{3} except around the bromine atom where it is $5 \mathrm{e} / \mathrm{A}$?

Fig. 4. Atomic arrangement corresponding to Fig. 3.

Fig. 5. The arrangement of molecules in the crystal as viewed along the a-axis.

4.5 DISCUSSION OF RESULTS.

The constitution and relative stereochemistry of bromogeigerin acetate as determined by this analysis ate shown in (VI). A better representation of the stereochemistry is (VII). This constitution and the relative stereochemistry at positions 6, 7 and 8 are in agreement with those proposed by Barton and Levisalles (1958). The absolute configurations of geigerin and hence of this dexivative (VI) have been defined except at position 1) by a chemical correlation with artemisin (Barton and Pinkey, 1960)。

(VI)

Br

An unfortunate consequence of the fact that substitution of the bromine atom into geigerin acetate occurred at position 1 and not, as had been expected, at position 2, is that the configuxation of geigerin at position 1 cannot be inferred from this analysis. Rotary dispersion studies, however, which have been conducted by Djerassi et al. (1957) give evidence of a β cohydrogen configuration at position 1 in geigerin.

The average carbon-carbon single bond length between sp ${ }^{3}$ nybridised carbon atoms is $1.56 \AA$ and between spo ${ }^{3}$ and $s p^{2}$ hybridised carbon atoms is $1.51 \AA$; neither of these is significantly different from the accepted values of $1.545 \AA$ and $1.53 \AA^{\circ}$, respectively (Tables of Interatomic Distances, 1958). The length of the carbonocarbon double bond in the cyclopentenone ring, $1.31 \AA_{8}$ is in agreement with that of 1.33 A reported for ethylene (Bartell and Bonham, 1957).

In the cycloheptane ring, which has a "chair" conformation, the angles are consistently greater than tetrahedral, the average being 116°. These increases in bond angles are comparable with those found in the seven membered rings of isoclovene hydrochloride (Clunie and Robertson. 1961) and bromodibydroisophoto α msantonic lactone acetace (Asher and \sin 1962a, 1963a). Stmilar increases in bond angles have been reported for the largere caxbocyclic rings of cyclononylamine hydrobromide
(Bryan and Dunitz, 1960) and 1, 6mtranswdiaminocyclodecane dihydrochloride (HubercBuser and Dunitz, 1960).

In the γ-lactone ring and acetate grouping two classes of carbon-oxygen single bonds are present; those adjacent to a carbon oxygen double bond have a mean length of 1.29 A whereas those not adjacent to this bond have a mean length of 1.46 A. Similar differences in carbono oxygen single bond lengths have been reported for methyl. acetate (0^{8} Gorman et al. 1950), methyl formate (Curl, 1959) : dimethyl oxalate (Dougill and Jeffrey, 1953) and indicate that the resonance structure (IX) makes an important contribution in esters just as it does in carboxylic acids (Cochran, 1953, Cox et alo, 1952, Ahmed and Cruickshank. 1953) 。

(VIII)
(IX)

The rocharacter of the Co carbonyl bond is further exhibited in the planarity of the system $C(a), O(b), C(c) O(d), C(e)$,
of these esters and this feature is present in both the acetate and γ olactone groupings of bromogeigerin acetace. The equation of the best plane through the atoms $C(6), 0(4), C(16), 0(5), C(17)$, of the acetate grouping is

$$
0.5134 X=0.0337 \mathrm{X}+0.8576 \mathrm{Z}-8.9961=0 .
$$

The individual deyiations of these atoms are listed in Table XI; no deviation is significant.

The results of the calculations of the best planes through sets of atoms of the γ olactone ring are summarised in Table X. Application of the x^{2} west (Fisher and Yates, 8957) indicates that for all but one of these planes the atoms cannot be regarded as coplanar; this plane is that through $C(8), 0(2), C(12), 0(3), G(11)$, the equation belng.

$$
0.6198 \mathrm{X}+0.5353 \mathrm{X}+0.5738 \mathrm{Z}-7.1158 \approx 0 .
$$

The deviations of these five atoms and of $C(7)$ from this plane are listed in Table X 。

The analyses of himbacine hydrobromide fridrichsons and Mathieson, 1962) and of 2mbromo- α-santonin (Asher and Sim. 1962b, 1963b, provide other examples of struceures containing y olactone rings fith which these conclusions may be compared. Employing the results of these analyses. identical mean plane calculations were performed for the atoms of the y-lactone rings of these structures. The results of these calculations, listed in Table X_{8} compare very fayourably with those of the present analysis and
indicate that in γ-lactone rings, just as in esters, due to the contribution of the resonance form (IX), the atoms $C(a), 0(b), C(c), 0(d), C(e)$, can be regarded as being coplanar.

Of the carbonyl carbon-oxygen double bonds $\mathrm{C}(3)$. $O(1), 1.21 \AA$ is shorter than either $C(16) \sim O(5)$ or C(12)-0(3). This is not unreasonable since the latter two are involved in resonance of the type described above and hence have some single bond character associated with them.

The cyclopentenone ring is non-planar. The equation of the plane through the atoms $C(1), C(3), C(4), C(5), C(6)$, and $\mathrm{C}(14)$ is

$$
0.6010 X-0.9412 X+0.3316 z-3.4432=0 .
$$

The individual displacements of the atoms of the cyclopentenone system from this plane are listed in Table XII. The displacement of $\mathrm{c}(2), 0.32 \AA$, is extremely significant. The method employed for the calculations of the best planes was that of Schomaker et al.(1959)。

The average value of carbonwbromine bond lengths found in various alkyl bromides is $1.94 \AA^{\circ}$ (Tables of Interatomic Distances, 1958). Application of the Cruickshank and Robertson (1953) criteria to the carbon-bromine bond length of 1.99 A found from the present analysis indicates that the difference between this length and $1.94{ }_{A}^{\circ}$ lies in the
"possibly significane" region. Since there is no analysis of a structure containing a carbonobromine bond in a similar environment with which to compare this result it would not be pertinent to draw any significant conclusion from the difference in bond length.

The arrangement of bromogeigerin acetate molecules as viewed along the amaxis is shown in Figure 5. In the crystal the molecules are held together by van der Waals forces. The shorter intermolecular contacts, of which none appears to be abnormal, are listed in Table IX_{0}

TAP要 IT
Finci Atomic Co-ordinates.
(Origin of cocordinates as in "International Tables" Vol。I. I_{0})

Aton	2×10	y 4 b	8/0
C(1)	0,4872	0.0270	0.7184
$C(2)$	0.6497	0.0768	0.752.
C(3)	0.7761	0.0384	0.69 .18
$c(4)$	0.6912	-0.0003	0,6112
c(5)	0.5324	-0,0008	$0_{0} 6259$
$c(6)$	0.4028	-0.0286	0, 5596
$c(7)$	0.3199	0.0541	0.5122
c(8)	0,2282	0.2304	0.5715
$c(9)$	0.3139	0.1670	0.6549
C(10)	0.3270	0.0855	$0_{0} 7275$
C(11)	0.4371	0.1212	0.4602
C(12)	0,3236	0.2107	O, 45ic
C(13)	0.4978	0.0759	0,3690
$c(14)$	0.7864	-0.038\%	0,5336
C(15)	0,3148	0.1397	0.8209
C(16)	0.2632	-0.1804	0. 5999
$c(17)$	0.1111	-0. 2225	0.6449
0 (1)	0.9248	0.0396	0.7015
O(2)	0.2166	0.2117	0.51 .14
O(3)	0.3318	0.2710	0. 3928
$0(4)$	$0_{0} 2658$	$\cdots 0_{0} 0830$	0.5994
O(5)	0,3794	-0.2248	0.5587
$B \mathrm{r}$	0.4646	00.0914	0.7919

Anisotropic temperature factor parameters.
$\left(b_{i j} x 10^{5}\right)_{0}$

TABLE TVO

Standapd devfations of the final atomic comordinates. (2)

Atom	$\sigma(x)$	$\sigma(y)$	$\sigma(8)$
$C(1)$	0.024	0.018	0.019
$C(2)$	0.025	0.020	0.020
$C(3)$	0.024	0.017	0.019
$C(4)$	0.024	0.020	0.020
$C(5)$	0.025	0.017	0.017
$C(6)$	0.023	0.020	0.028
$C(7)$	0.025	0.020	0.020
$C(8)$	0.024	0.020	0.021
$C(9)$	0.026	0.020	0.020
$C(10)$	0.023	0.019	0.017
$C(11)$	0.024	0.018	0.019
$C(12)$	0.026	0.020	0.020
$C(13)$	0.022	0.020	0.020
$C(14)$	0.0277	0.022	0.021
$C(15)$	0.027	0.023	0.021
$C(16)$	0.024	0.019	0.021
$C(17)$	0.026	0.020	0.022
$O(1)$	0.016	0.014	0.015
$O(2)$	0.016	0.013	0.013
$O(3)$	0.018	0.015	0.016
$O(4)$	0.016	0.013	0.014
$O(5)$	0.019	0.015	0.017
$B r 0$	0.003	0.002	0.002

Intramolecylar bonded distances (A).

$c(1)$	\pm	$C(2)$	1.57	$C(7)$	-	C(11)	1.54
$c(1)$	-	C(5)	1.51	C(8)	-	c(2)	1.53
c(1)	-	$c(10)$	1.53	c(8)	-	O(2)	1.45
$c(1)$	\cdots	$B r$	1.99	$c(9)$	\sim	$c(10)$	1.58
c(2)	\cdots	C(3)	1.47	$c(10)$	\bullet	c(15)	2.62
$c(3)$	\pm	$C(4)$	1. 51	C(11)	-	c(12)	185\%
$c(3)$	∞	O(2)	Io 21	C(11)	-	c(13)	1.60
C(4)	\cdots	$C(5)$	2.31	C(12)	\cdots	$0(2)$	2.25
$C(4)$	\cdots	O(14)	1.48	C(22)	-	0 (3)	2.24
C(5)	-	$c(6)$	1.51	$C(16)$	-	$c(17)$	I. 53
C (6)	-	C(7)	$10_{6} 51$	$C(16)$	-	$0(4)$	1.34
c(6)	-	O(4)	1.47	C (16)	-	$0(5)$	1.29
$c(7)$	-	c(8)	1.57				

Titerabora anoles (o).

$$
\begin{aligned}
& C(2) \propto C(1) \propto C(5) \quad 102 \quad C(6) \propto C(7) \propto C(11) 115 \\
& C(2)=C(1)=C(10) 117 C(8)=C(8)=C(11) 108 \\
& C(2)-C(1)=B r \quad 105 C(\eta)-C(8)=C(3)-119 \\
& C(5)-C(1)-C(10) 115 C(7) \propto C(8) \propto 0(2) \quad 108 \\
& C(5)-C(1)=B p \quad 110 C(9) \& C(8)=0(2) 107 \\
& C(10)-C(1) \propto E P \quad 108 C(8) \propto C(0)-C(10) \text { I2 } \\
& C(1)-C(2)-C(3) 103 C(1)=c(10)-c(9) \quad 2 B 2 \\
& C(2)=C(3)=C(4) 108 C(1)=C(10)=C(15) \quad 112 \\
& C(2)-C(3) \therefore O(1) \quad 228 C(9)=C(10)=C(25) 108 \\
& C(4)=C(3)=0(2) 22 \& \quad c(\gamma)=c(11)=c(12) \quad 99 \\
& C(3)=C(4) \propto C(5) \quad 108 \quad C(7)-C(12)=C(23) 124 \\
& C(3)=C(4)=0(14) 122 \quad C(12)-C(11) \sim C(13) 215 \\
& C(5)=C(4) \approx C(14) 130 \quad C(11)=C(12)=O(2) \quad 32 \\
& C(1)-C(5) \propto C(2) \quad 144 C(12) \propto C(22)-O(3) 124 \\
& C(1)=C(5)=C(6) 225 \quad O(2)-C(12)=0(3) 124 \\
& C(4)=C(5)=C(6) 125 \quad C(17)=C(16)=O(4) 113 \\
& C(5)=C(6)=C(7) 116 \quad C(17)=C(10)=0(5) 129 \\
& C(5)=C(6)-O(4) 1120(4)-C(16)-0(5) 117 \\
& C(7)-C(6)-O(4) 104 C(8)-O(2)-C(12) 114 \\
& c(6)-C(7)-C(8) 116 c(6)-0(4)-c(16) 122
\end{aligned}
$$

GALE WTE

Tntromo 1 gcular nonobonded destanees $\left(\leqslant S_{0} 0 A\right)$

$0(1)$	$000006(7)$	$33_{0} 44$	C(6) 00000	C(17)	3880
$0(1)$	$000000(8)$	3.38	C(6) 00000	0 (2)	3.79
C(l)	- 0000 C(12)	3.81	C(6) 00000	O(5)	2.78
$C(1)$	00000 C(16)	3.88	C(7) 00000	C(10)	3.31
C(I)	$000000(3)$	3.56	C (f) 00000	C(14)	3.88
C(I)	00000 (4)	2.97	C(P) 00000	C(26)	3.53
O(2)	$00000 \mathrm{C}(6)$	3.88	C(P) 00000	0(3)	98.50
C(2)	000000 G(2)	3.34	C(\%) 00000	$0(5)$	9.98
c(2)	00000 C(EA)	3.89	C(3)	C(33)	3.88
C(2)	\%0000 C(ES)	3.09	C(B) 03000	C(15)	3. 3^{9}
C(9)	-8300 C(5)	3.75	C(8) 0000	0 (3)	2.45
$C(3)$	-000s C(7)	3.7雰	C(B) 00000	0(4)	208
$\mathrm{CO}_{6}(8)$	00000008	3.45	6(9) 00000	c(1)	3.38
C(4)	$00000 \mathrm{O}(9)$	3.89	C(0) 00000	O(2)	3,18
C(A)	-0000 G(70)	3.68	C(9) 00000	O(8)	2. 5i
C C	Cosos C(E)	3.52	C(10) 0000	O(2)	3.85
C(8)	05000 (ta)	3.68	C(10)	0 (4)	3,0\%
C(5)	-000 Cos)	30 29	C(22) 0000	c(E])	3.72
C(5)	- 020 C C(8)	2.85	C(2]) 0000	0 (4)	3.99
$6(5)$	$00080 \mathrm{C}(22)$	3.13	C(33) 0000	O(2)	3.56
C (5)	50000 C(15)	3.96	c(13) 000	$0(3)$	3.05
C(5)	$00000.0(86)$	3.38	O(13) 0000	C(19)	3.74
C(5)	$00.000(1)$	3.43	C(18) 000	$0(1)$	$\underbrace{}_{0} 97$
C C 5	50000 O(5)	3.48	Brosooso	C(3)	3.45
c(6)	$08000.6(9)$	3.14	Br 0000	C(A)	3. 54
C C 8	00080 C(10)	3.06	$B \mathrm{~F}$	C(6)	$3_{1} 68$
C(6)	00800 C(12)	3.73	Br 0000	O(35)	3, 63
C(6)	00000 C(13)	3.33	Br oncos	O(16)	3, 5 ?
c(6)	20000 C(14)	3, 14	Br onooo	0 (4)	$3{ }^{6} 35$

The subscripts refer to the following equivalent postitions:

$$
\begin{aligned}
& \boldsymbol{x} \quad \frac{1}{2}+x_{B} \quad \frac{7}{2}=y_{9} \quad 1=\boldsymbol{z} \\
& \text { II } \quad \frac{1}{2}+x_{9}-\frac{1}{2}-y_{9} \quad 1-\infty \\
& \text { IIT } \quad \frac{7}{2}-x_{3} \quad-y_{3} \quad \frac{1}{2}+2 \\
& I V=x,-\frac{3}{3}+y_{9} \quad \text { I歪- }-\mathbb{Z}
\end{aligned}
$$

MASET X

 QE Eqney

Brorageigerin

goetate nome	1903	876	0.8
10-4) C(a)	34883	356	0.1
O(b)	1878	468	0.2
C(e)	1880	480	0.1
O(d)	2498	370	0.1
C(e)	488	112	0.1
C(f)	8.5	8.8	$25>P>5$
Himbacine hycrobbronide			
C(a)	3382	158	0.2
O(b)	8796	222	0.2
c(0)	1790	224	0.2
0 (8)	1.580	189	0.8
C(8)	288	35	0.2
C(8)	$33_{8} 7$	82	>5
2π ROM $=\alpha-$ sのntorsin $\left(\sigma^{2}=4210^{-4}\right)$ none			
(${ }^{(a)}$	1400	359	0.1
$0(0)$	1859	863	O, 1
C(e)	1865	466	0.1
0 (d)	1860	365	0.2
C(e)	59	135	0.1
C(8)	2, \%	0043	$95>8>5$

F P gises a numerocas zalue to the probubility that the ctoms isider comstderation afe coguancio
f DisplqQerents (A) fros, the Best jlare.
Bromgaes qeraty

$\frac{\text { 3-Bromia } \alpha=}{\text { 3QRtonta }}$
$-0.0106(8)$
$0.0050(8)$
0.029
$=0.0150(3)$
$=0.0026(12)$
$=0.630 c(7)$
$=0.029$
0.036
0.028
0.002
0.020
$=0.632$

$$
\begin{array}{r}
-0_{0} 007 \\
0_{0} 007 \\
0_{0} 006 \\
00_{0} 007 \\
0_{0} 008 \\
-0_{0} 622
\end{array}
$$

Dewiations (A) of the atoms of the acetate grousping C(6) o(A)C(16),0(5)C(27), from the best plame through these atoms.

$c(8)$	0.007	$0(5)$	00.011
$0(4)$	-0.017	$C(17)$	00.002
$c(16)$	0.023		

TABLE XIT.
Displacements (A) of the atoms of the cyelopentenone system from the mean plane throough $C(1) C(3), C(4) C(5), C(6)$ and C(14).

$C(1)$	0.076	$C(5)$	0.010
$C(2)$	0.321	$C(6)$	0.048
$C(3)$	0.066	$C(14)$	0.061
$C(4)$	00.014	$O(1)$	0.040

PARTV

Xaray Analysis of 2-Chloro-4-nitroaniline.

5.1 InPRODUCTION.

It is a well-established fact that repulsion between non-bonded atoms of aromatic systems can lead to observable deformations from regular forms. Molecules exhibiting such deformations are classed "overcrowded" and descriptions of the structures of a number of these molecules have been published.

In the case of "overcrowded" aromatic hydrocarbons the details of the distortion in the overcrowded regions are difficult to study by means of Xwray analysis because the positions of the hydrogen atoms must be determined. Polyhalogenobenzene derivatives present a similar difficulty since in these molecules the locations of the lighter atoms in the presence of the halogen atoms may not determined with suffieient accuracy to permit a detailed description of the structure.

In view of these considerations the Xway structure analyses of monohalogenobenzene derivatives subject to sterte effects because of the close proximity of the halogen atom to a neighbouring group offer a more promising prospect in the study of moleculat overcrowding since the lighter atoms can be more accurately located than in the polyhalogenobenzene derivatives. Examples of the kind of results that may be obtained from the accurate Xaray analyses of molecules in this class are provided by the series of investigations by

Ferguan and Sim on the structures of some "overcrowded" benzoic acids. These workers have studied oochloroc (1961) and ombromobenzoic acids (1962a), 2ochloro-50 nitrobenzoic acid (1962b) and 40 ch 10 ro-3-nitrobenzoic acid (Ferguson, 1961). The results of these analyses show that, in the solid state, measurable in-theobenzenee plane and outcofotheobenzeneoplane displacements of adjacent substituents occur.

The preliminary results of the analysis of the molecular structuee of ponitroaniline Ponohue and Trueblood.
 there were no significant deviations of the substituents from the benzene plane, it appeared that the investlgation of a halogen derivative of this ammobenzene would be worthwhile and, in 1959, an investigation of the molecular
 seemed possible that, owing to a relayed steric effect in this molecule, the nitro group would be rotated out of the plane of the benzene ring.

A recent account of the results of the more accurate analysis of the structure of ponitroaniline (Trueblood et al., 1961) has provided evidence that, in the solid state, there are small but significant devtations of the substituents from the benzene plane even in this molecule.

Crystal data

Systematic absences
hoo when $h=2 n+1$; OkO when $k=2 n+1$, 00ℓ when $l=2 n+1:$ ho l when $h=2 n+1$, $0 k \ell$ when $k+\ell=2 n+1$

Space group $\mathrm{Pnaz}_{1}-\mathrm{C}_{2 v}^{9} \quad \mathrm{Pna2}_{1}-\mathrm{C}_{2 v}^{9}$

Absorption coefficient
for Xarays $(\lambda=1.542 \mathrm{~A})^{2} / 42.6 \mathrm{~cm}^{-1}$
$77.9 \mathrm{~cm}^{-1}$

Total number of
independent observed structure amplitudes

64
447
289

245 (hmo zone only) 447

1225

Crystallisation of both derivatives of panitroaniline from aqueous ethanol provided erystals in the shape of thin narrow laths elongated along the direction of the c-crystal axis.

Rotation, oscillation, Weissenberg and precession photographs were taken with copperak $\alpha(\lambda=1.542 \AA)$ and molybdenum $-K_{c r}(\lambda=0.7107$ A) radiation. The cell dimensions were determincd from rotation and equatorial layer-line Heissenberg photographs.

The systematic absences are consistent with two space groups, Pna2y and Pnam. Since there are only fous molecules in the unit cell, the centrosymetric space group requires two mirror planes $\frac{1}{2} c$ apart, each plane containing two molecules flat within it. The caaxis projection has plane group pgg for either space group and examination of this projection clearly indicated that the molecular plane did not coincide with the fool) direction. The space group is therefore Prad, 1 and this choice is justified by the results of the analysis.

Intensity data were obtained from equatorial and, for 2-chlorow-nitroaniline, from equi-inclination multiplewfin Weissenberg photographs of the hkI and hk2 layers. The intensities were estimated visually and were corrected for Lorentz, polarisation and the rotation factors appropretabe to the upper layers (rumell, 1939). No correetions were made for absorption.

Subsequent to refinement of the atomic parameqers in twoodimensions ${ }_{\hat{t}}$ the various layers (hroohk2) were placed on approximately the same scale by comparison of the observed and calculated structure amplitudes for a threedimensional model. The scaling factors were adjusted throughout the threedimensional refinement to ensure that $\sum\left|F_{0}\right|=\sum\left|F_{c}\right|$ for each layer.

5.3 STRUCTURE DETERMINATION AND RETINEMENT.

5.3.1 The cwaxis projection.

Examination of the distribution of the vector peaks present in the Patterson projection along the c-axis of 2-chloro-4-nitroaniline (Figure 1) provided three possible solutions to the location of the chlorine atom. The peaks designated $A_{9} B_{8} C ; B_{8} D_{8} E_{i}$ and $D_{8} F_{8} G$ in Figure 1 correspond to the vector sets giving rise to the three different positions, In order to resolve this ambiguity before attempting to utilise the heavy atom method, structure factors were calculated employing, in turn, each of these chlorine comordinates and led to agreement factors of $0,64,0,70$ and 0.76 , respectively. It was reasonable to assume that the true chlorine comordinates were those which gave rise to the best agreement between the observed and calculated structure amplitudes and they were assigned accordingly.

The signs of the structure factors calculated employing the chlorine comordinates were attributed to the observed structure amplitudes of which 45% were employed for the calculation of a two-dimensional Fourier synthesis, When it was discovered that this Fourier synthesis did not yield any information about the positions of the light atoms an attempt was made to extract further information concerning the orientation of the benzene ring and its substituents from the vector distribution of the $P(U, W)$

Fig. 1. The Patterson projection along the c-axis of 2-chioro-4-nitroaniline. The contour scale is arbitrary. A, B, C, D, E, F, and G are the vector peaks which give rise to the three vector sets referred to in the text. A, B and C denote the peaks corresponding to the true chlorine-chlorine vectors.

Fig. 2. The Patterson projection along the $\mathbf{c}^{-a x i s}$ of 2-bromo-4-nitroaniline. The contour scale is arbitrary.

Patterson function. That peak mich was approximabely 1.5 A from the origin was assumed to correspond to the chlorinewcarbon (2) rector and, from this starting point, approximate conordinates of the remaining carbon, mitrogen and oxygen atoms were readily determined. Holes corresponding to several unit cells containing this postulated atomic axrangement were punched on a masle which was placed in the pptical diffractometer and, when the obseryed optical transform showed a good agreement with the weighted reciprocal lattice, it appeared that the postulated arrangement was sound. Attempts to refine the atomic coordinates by means of conventional twoodimensional fourier syntheses and structuse factor calculations failed, implytag that either the patterson projection had been misofnterpreted in terms of chlorineolight atom vectors or that the orientation of the 1 jght atoms with respect to the chlorine atom was correct but the wrong chlorine comordinates bad been employed.

In order to confirm the choice of chlorine coordinates isomorphous 2 obromodmnitroaniline was prepased according to the method of Kosolapoff (1953). The cowordinates of the bromine atom, determined from the Patterson projection along the coaxis (Figuse 2), were alnost identical with those which had already been assigned to the chlorine a that those of the latter were correct but that the deducea orientation of the benwene ring and its substitaents with
respect to this chlosine was wrong.
Employing 90% of the observed structure amplitudes of 2 bromo-4mintroaniline and the signs appropriate to the bromine alone, an hko Fourier projection was calculated. This Fourier synthesis showed all of the light atoms, excepting hydrogens, clearly resolved. The error in the interpretation of the $P\left(U_{2} V\right)$ Patterson function of the 2-chloro derivative was then apparent ofull use had not been made of the symmetry of this Patterson function with the result that the chlorineolight atom vectors deduced, although correct in magnitude were wrong in direction. Further, for the calculation of the twomimensional Fourier synthesis the employment of only 45% of the observed structure amplitudes and the signs appropriate to the chlorine atom alone had been based on much too rigorous a selection rule (only those reflections for which $\left|F_{c}(h k \&)\right|>F_{0}(h k \&) \mid$ had been included) and, in retrospect, 74% ought to have been used. Since this was the first structure analysis being attempted by the author and all calculations up to this point had been performed with the aid of a desk calculating machine and Beeversalipson strips these elementaxy errors can be attributed to overcaution and inexperience.

The light atom positions having been thus determined they were included along with those of the chlorine atom in a structure factor calculation for which an overall isotropic temperature factor of $B=3.0 \mathrm{~A}^{2}$ was assumed; the agreement
factor obtained was 0.410 . Two cycles of twomimensional Fourier syntheses and structure factor calculations reduced the agrement factor to 0.276 and subsequent refinement in two dimensions by means of an anisotropic temperature. factor least-squares programme (Rollett, 1961) resulted in a further reduction to 0.142 .

5.3.2. Three dimensional refinement.

There being no fixed origin in the zodirection of the space group Pna2 1_{1}, the $2 \times$ coordinate of the chlorine atom was arbit raxily chosen and, since the x and $y-c o o r d i n a t e s$ of the remaining atoms and the tilt of the molecule were known from the results of the twoodimensional refinement, the zoco-ordinates of the carbons nitrogen and oxygen atoms were calculated assuming a completely planar structure. These atomic co-ordinates and an overall isotropic temperature factor, B, of $4,0 \AA^{2}$ were employed for the calculation of the hkl and hk2 structure factors and resulted in agreement factors of 0.206 and 0.272 , respectively. The agreement factor over the 614 observed structure amplitudes, 0.207, indicated that the co-ordinates were sufficiently accurate to warrant proceeding to a leastmsquares refinement of both the positional and the anisotropic temperature factors for all of these atoms. After five cycles of calculations the parameter chifts becane very small and the values of the agrement factors were reduced to 0.137 for hk $0,0.107$ for hkl, and 0.097 for hk2, the overall value belng 0.115 .

At this stage it was decided to make allowance for the hydrogen atoms of the benzene fring. Cowordinates for these three hydrogens were calculated assuming that these atoms are located radially at a distance of $1.08 \AA$ from the carbon atoms to which they are covalently bonded. The isotropic temperature factor of the hydrogen atoms was assumed to be $4,2 \mathrm{~A}^{2}$. Three further cycles of leasto squares refinement of the parameters of all atoms, excepting hydrogens, reduced the overall agreement factor to 0.105 $\left(\sum w \Delta^{2}=113\right)$

Calculation of structure factors, F_{c}, omitting the hydrogen atoms resulted in an agreement factor of 0.111 $\left(\sum w \Delta^{2}=125\right)$. A threemdimensional Fourier synthesis with coefficients ($F_{o}{ }^{w} \mathrm{~F}_{\mathrm{c}}$) was then eqaluated (see Figure 3). Small peaks of about $0,30004 e / A^{3}$ appeared in the positions expected for hydrogen atoms of the benzene ring and for one of the hydrogen atoms of the amino group. Ho peak corresponding to the remaining hydrogen atom was evident in this Fourier synthesis owing to the fact that there was some residual anisotropic themal motion of the chlorine atom which produced a peak of 0.3 e/ A^{3} near to the expected location of this hydrogen atom. Hence, cooordinates for four of the hydrogen atoms could have been determined using the axpertmental results but since these would have beent extrenely inaccurate $1 t$ mas decided that it would be betser to calculate positions for all five hydrogen atoms and

Fig. 3. The three-dimensional ($\mathrm{F}_{0}-\mathrm{F}_{\mathrm{c}}$) Fourier synthesis through the centres of the hydrogen atoms shown by means of contour sections draw ${ }_{3}$ parallel to (001). Contour levels are $0.1 e / A$? The zero level is given by the broken lines.
include these in a final structure factor calculation, The assumptions made for the calculation of the co-ordinates of the hydrogen atoms of the benzene ring have already been indicated. The co-ordinates of the hydrogen atoms of the amino group were calculated assuming a completely planar conformation at the nitrogen atom, an $\mathrm{N}=\mathrm{H}$ bond length of $1.0 \stackrel{\ominus}{A}$ and, furthers, that one of the hydrogen atoms lay along the line joining the nitrogen atom, $N(1)$, and the oxygen atom, $O(2)$, of an adjacent molecule in the direction of y_{0} The latter assumption was not unseasonable since the relative positions of these nitrogen and oxygen atoms when considered along with the interatomic distance of $3.05 \AA$ implies the presence of an $\mathrm{N}=\mathrm{H}_{0.0} \mathrm{O}$ hydrogen bond and the true location of this hydrogen atom will lie close to the presumed direction.

The inclusion of all five hydrogen atoms in the final structure factor calculation reduced the agreement factor over all the observed reflections to $0.103\left(\sum w \Delta^{2}=104\right.$). For the leastasquares refinement the following weighting system was employed:

$$
\begin{array}{ll}
\text { if }\left|F_{0}\right| \leqslant 9.00 & \sqrt{w}(h k l)=1 \\
\text { if }\left|F_{0}\right|>9.00 & \sqrt{w}(h k l)=9.00 /\left|F_{0}\right|
\end{array}
$$

The theoretical atomic scattexing factore used in the structure factor calculations were those of Berghuis et al.
(1955) for carbon, nitrogen and oxygen, those of Meweeny (1951) for hydrogen, and those of Tomile and Stam (195\%) for chlorine.

5 R 4 ESULTS OF ANALXSIS.
 5.4 .1 Molecular dimensions.

The final comordinates of the carbon, nitrogen, oxygen and chlorine atoms and the final anisotropic temperature factor parameters provided by the least-squares refinement are listed in Tables I and II, respectively. The standard deviations of the positional parameters, derived from the least-squares residuals in the normal manners are given in Table III。

The final calculated and observed structure amplitudes. both rounded off as integers, and the values of the phase constants $\alpha_{,}$are presented in Table IV. 59 unobserved reflections have also been included in this Table and for none of these is the calculated structure amplitude greater than one and a half times the minimum observable value.

Employing the obsexved structure amplitudes and phase angles of Table IV a threedimensional Fourier synthesis was calculated. The result is shown in Figure 4 by means of superimposed contour sections drawn parallel to (001) and covering the region of one molecule.

The bond lengths and valency angles of the molecule. calculated from the comordinates of Table I, are listed in Tables V and $V I$, respectively. The estinated standard deviations of the bond lengths are also given in Table V. The estimated standard deviation of a bond angle is about 1°.

The arrangement of molequies as viewed along the coaxis is shown in Figure 5 in which the hydrogen bonds are represented by broken lines. The shorter inter. molecular contacts are listed in Table VII,

The atomic comordinates of Table I were used for the calculation of the mean planes through various groups of atoms. These planes were evaluated by the method of Schomaker et al.(1959).

The best plane through the chlorine, carbon, nitrogen and oxygen atoms of the molecule has equation

$$
0.4573 X+0.0503 X=0.8786 z-0.9920=0 .
$$

The displacements of the atoms from this plane (Table VIII) indicate that the molecule cannot be considered planar for $\sum \Delta^{2}=1.23 \times 10^{-2}$ and $x^{2}=\sum \Delta^{2} / \sigma^{2}=59$ (Fisher and Yates, 1957).

When the oxygen atoms are omitted from the calculation of the mean molecular plane, the equation of the resulting plane is

$$
0.4641 X+0.0495 X-0.8845 Z-0.9523=0 .
$$

The individual deviations of the atoms from this plane (Table VIII) are still large, $\sum \Delta^{2}=4.1 \times 10^{-3}$ and $\chi^{2}=20$, and consequently must still be considered significant. Since the nttrogen, $N(2)$, of the nitro group had the greatest dertation from this plane it was omicted along with $O(1)$ and $O(2)$ from a subsequent mean plane
calculation through the carbon atoms, Cl and $\mathrm{N}(1)$. The equation of the plane through these eight atoms is

$$
0.4578 X+0.0564 Y-0.8874 Z-0.9866=0 .
$$

and the deviations of these atoms from this plane (Table VIII) are small enough to be considered insignificant,

$$
\sum \Delta^{2}=1.1 \times 10^{-3} \text { and } \chi^{2}=50
$$

The atoms of the nitro group, $N(2), O(1), O(2)$, and carbon atom $C(4)$ of the benzene ring are coplanar, the equation of the mean plane through these atoms being

$$
0.5238 X+0.0564 Y-0.8500-1.2789=0 .
$$

The deviations of these four atoms from this plane are given in Table VIII. The angle between this plane and that through $\mathrm{C}(1) \ldots \mathrm{C}(6), \mathrm{Cl}, \mathrm{N}(1)$ is $4^{\circ} 20^{\circ}$
5.4.2. Analysis of thermal motion.

Cruickshank (1956a) has shown that, in terms of rigideo body vibrations, the motion of a molecule may be expressed as two symmetric tensors T and ω, each with six independent components. The first step in the determination of T and ω is the geometrical transformation of the atomic co-ordinates and orthonormal tensor transformation of the $\mathrm{U}_{i f}$ from the crystallographic to the molecular axes. The centre of mass, excluding the hydrogen atoms and assuming a completely planar molecule, was chosen as origin. Molecular axes were chosen such that $O Q$, in the plane of
this molecule, corresponded to the direction of minimum inertia of an isolated molecule and $O R$, chosen parallel to the plane normal corresponded to the direction of maximum inertia. $O P$ was chosen at right angles to both $O Q$ and $O R$. The direction cosines of these molecular axes, referred to the orthogonal crystal axes are given in Table IX while the axes are show in Figure 6.

The values of the six independent $U_{i j}$ is for each atom, derived from the $b_{i j}$ of Table II and referred to the molecular axes are given in Table X in the columns headed "obs". Employing the U tensors of all the atoms, T and ω tensors were determined and from the values of these, U tensors for each atom were calculated; the resulting values of the $U_{i j}{ }^{i} s$ are given in Table X in the columns headed "calc(i)". The signs of the discrepancies between the $U_{11}{ }^{\text {Pobs" }}$ and U_{11} "calc(i)" of this Table indicated that. retaining the same molecular axes, the centre of oscillation of the molecule required to be moved by an amount $\triangle Q$ along the Quaxis towards the amino group, A similar shift of the centre of oscillation away from the centre of mass was required in the interpretation of the thermal motion of monofluoroacetamide (Hughes and Small, 1962) where it was found necessary to consider the molecules not to be vibrating as independent entities but as part of a complex bydrogen bonded arrangement.

Several calculations of the values of T, ω and $U_{i j}{ }^{0}$ s were carried out employing different values of ΔQ. All of the results of these calculations are not reproduced here but those given in Table XI serve to show: that a minimum value of $\sum\left|U_{i j}{ }^{n}{ }^{\circ}{ }^{n} s^{n}-U_{i j}{ }^{n c a l c}{ }^{n}\right|$ is obtained when the shift, ΔQ, is about $1_{0} 2 \stackrel{\circ}{\AA} . \quad$ The T and ω tensors obtained when the origin of the molecular axes was shifted by $1.2 \AA^{\circ}$, to 0^{\prime}, are given in Table XII. The root-mean-square amplitudes of rigid-body translational motion in the directions of the molecular axes $O^{\circ} P, O^{\circ} Q$, $0^{\prime} R_{\text {, }}$ obtained from the square roots of the diagonal elements of T are $0.22,0.21$ and $0.13 \AA^{\circ}$, respectively, The corresponding root-rneanosquare amplitudes of rigid-body angular oscillation about the molecular axes are $2.9,3.7$ and 3.5°.

From the T and ω tensors of Table XI the value of the U tensor for each atom was calculated. The values of the $U_{i j}$ so derived are listed in Table X in the columns headed "calc(ii)". The root-meanosquare difference between the $U_{i j}$ "obs" and $U_{i j}{ }^{\text {"calc(ii }) " ~ v a l u e s ~ i s ~} 0.0066 \AA^{\circ}{ }^{2}{ }_{9}$, corresponding to an estimated standard deviation for the $U_{i j}$ "obs" of $0,0073 \AA^{2}$. The estimated standard deviations of the $T_{i . j}$ and $\omega_{i . j}$ are shom in Table XIII in positions corresponding to those of the elements in Table XII.

The values of the T and ω tensors resulting from this analysis are similar to those obtained for naphthalene
(Cxuickshank ${ }_{\bar{y}}$ 1957) where the corresponding rootmeansquare amplitudes of translational vibration in the direction of the molecular axes are $0,20,0.22,0.19 \AA$ and the corresponding root-mean-square amplitudes of angular oscillation about the molecular axes are 3.7,4.4 and 4.2°. For 2-chloro-4-nitroaniline the translational motion in the molecular plane can be considered to be isotropic and is greater than normal to it.

Due to the rotational oscillation of the molecules errors in the atomic positions are introduced (Cruickshank 1956b, 1961). Approximate corrections ($\Delta P, \Delta Q, \Delta R$) to be applied to the atomic co-ordinates (referred to the molecular axes with centre of oscillations 0^{\prime}, as origin) can be obtained from the relationships

$$
\begin{aligned}
& -\Delta P=\frac{1}{2} P\left(\omega_{22}^{2}+\omega_{3}{ }^{2}\right) \\
& -\Delta Q=\frac{1}{2} Q\left(\omega_{11}^{2}+\omega_{3} \frac{2}{3}\right) \\
& -\Delta R=\frac{1}{2} R\left(\omega_{11}^{2}+\omega_{2}^{2}\right)
\end{aligned}
$$

where the $\omega_{i}{ }_{i}^{2}$ values are in $(\text { radians })^{2}$. Using these expressions and the ω values of Table XII the necessary corrections to the atomic co-ordinates were evaluated and the rotation-corrected bond lengths are given in Table V in the column headed "corrected".

Fig. 4. Final three-dimensional electron-density distribution for 2-chloro-4-nitroaniline shown by means of superimposed contour sections drawn parallel to (001). The contour interval is le/ A^{3} except around the chlorine atom where it is $2 e / A$?

Fig. 5. The arrangement of molecules in the crystal as viewed along the c-axis. The hydrogen bonds are indicated by the broken lines.

Fig. 6. The molecular axes. $O R$ is perpendicular
to $O P$ and $O Q$.

5.5 DISCUSSION OF RESULTS.

The carbonearbon bond lengths vary from 1.392 to $1.425 \AA_{\text {A }}$, the average being $1.403 \AA_{\text {A. This is slightly }}^{\circ}$ longer than the average of $1.393 \AA$ reported for the carbon-carbon bond distance in panitroaniline (Trueblood et al., 1961) and in crystalline benzene (Cox et al., 1958) but the difference between these average values is probably not significant. In view of the magnitude of the estimated standard deviations in the bond lengths it is not worthwhile attempting an interpretation of the individual carbonmearbon distances in terms of the different valence bond forms which can be written for the 2achloro-4-nitroaniline molecule.

The carbonoamino nitrogen, $N(1)$, distance of $1,386 \%$ is in good agreement with the only two precise values of aromatic carbononitrogen bond lengths available at present. viz. $1.367 \pm 0.003 \stackrel{\circ}{\AA}$, without correction for librational $^{\text {, }}$ effects, in 2-amino-3-methylbenzoic acid (Brown and Marsh. 1960) and $1.371 \pm 0,007 \AA$ in penitroaniline。 Truter (1960) has suggested that the distance between a trigonal carbon and a trigonal nitrogen should be $1.32-1.33 \AA_{\text {A. This }}^{\circ}$ distance has been found in many amides and related species but that resulting from the present analysis is more comparable with those actually found in the indole rings of many alkaloids and with the trigonal carbon-trigonal nitrogen single bond length of $1.41 \pm 0.02 \AA$ as estimated
by Trueblond et al. (1961).
The length of the carbononitrogen $N(2)$, bond leading to the nitro group at $1.471 \AA$ is in very good agreement with those found in many nitroohydrocarbons studied by Trotter (1960), the average of which is $1.48^{\circ} \AA^{\circ}$, and is not significantly different from that of $1.460 \AA$ found in panitroaniline. In the nitro group the nitrogenooxygen bond lengths, $1.240{ }_{\mathrm{A}}^{\mathrm{A}}$, are also in good agreement with those found in the nitroohydrocarbons studied by Trotter and with those in penitroaniline, 1.246 ± 0.007 A. The angles about the nitrogen aton of this group conform to the expected pattern in that the angle $0-N_{\infty} 0$ exceeds 120° whereas the CoN-O angles are less than 120°. These angular variations are similar to those which are found in carboxyl groups and may be qualitatively interpreted in terms of interaelectron repulsions decreasing in the order non-bond-non-bond pairs, non-bond-bond pairs, and bond-bond pairs.

The nitrogen atom of the nitro group is displaced by $0.077 \AA$ from the mean plane through $C(1) \ldots C(6), C 1, N(1)$ (see Table VIII), implying an outwofoplane deflection of the $C(4)-N(2)$ bond of about 3° while the nitro group is itself twisted $4^{\circ} 20^{\circ}$ out of the plane of the benzene ring. The magnitudes of these displacements are only slightly greater than those found in ponttroaniline for which the reported values are 0.4° and 1.9°, respectively. This result
traplies that any sterit effect on the nitro group due to the chlorine gtom must be yery small.

The carbon-chlorine distance of $1.766 \AA$ is
significantly longer than the value of $1.70 \pm 0.01 \stackrel{\circ}{\mathrm{~A}}$ quoted in "Tables of Intexatomic Distances and Configuration in Ions and Nolecules" (1958) for such a bond, but is more comparable with the more recently reported aromatic carbon-chlorine bond lengths which are given in Table XIV. Nevertheless, since the mean carbonchlorine distance in halogenated aliphatic compounds is $1.767 \AA$ (Tables of Interatomic Distances, 1958) there appears to be little, if any, double-bond character associated with the carbon-halogen bond of 2 -chlorow nitroaniline.

The closest intermolecular approach occurs between one of the oxygen atoms of the nitro group, $O(2)$, and the amino nitrogen atom of an adjacent molecule in the direction of y, the distance between these atoms being $3.05 \AA_{\text {A. This }}^{\circ}$ distance is normal for the type of hydrogen bonding expected and is comparable with those found $_{\text {g }}$ for examples in p-nitroaniline of $3.07 \AA$ and $3.14 \AA$, so that although the hydrogen atom involved in this bond could not be located (section 5.3) from a threedimensional ($\mathrm{F}_{0}-\mathrm{F}_{\mathrm{c}^{\prime}}$) Fourier synthesis there is undoubtedly hydrogen bonding present 2long the yadirection of the crystal. All other intermolecular approach distances correspond to normax van der Waals interactions.

Finay otomise cooprinates.
(Origin as zn"Internattonal Tables" Vol。I)

Atom	xf_{6}	ψ_{b}	$2 / \mathrm{c}$
C(1)	0. 2849	0.4534	0.1159
c(2)	0.2989	0.46A1	0,2762
c(3)	0.3676	0.4014	0.3793
$c(4)$	0,3295	0,3248	0, 2942
C(5)	0.22177	O, 3095	0.13339
C(6)	0. 1513	0,3740	0.0414
$N(1)$	0.1101	0.5147	0.0218
$N(2)$	0.4019	0,2573	0.4090
O(1)	0.4937	0, 2774	0,5727
O(2)	0.3707	0.1895	0,3287
CI	0,3396	O, 5614	0.3790

TAPER MR T

Ant sotropic temperature factors $\left(B_{i, j} x 10^{5}\right)$ t

t These are the values of $b_{i_{j}}$ in the equation,
$\exp \left(-B \sin ^{2} \theta / \lambda^{2}\right)=2^{-\left(b_{11} h^{2}+b_{22^{2}} h^{2}+b_{33^{2}} l^{2} b_{12^{h f}}+b_{23^{75} h+b_{3}} h 2\right)}$

TARLE TII

Standarg deviations of the finaz atomic comoritnates (A).

Atom	$\sigma(x)$	σ (u)	σ (8)
$C(1)$	0.008	0.009	0. 017
C (2)	0.009	0.008	0.013
$c(3)$	0,009	0.009	0.013
C(4)	0.008	0,008	0.017
$C(5)$	0.010	0.008	0,016
c(6)	0.008	0.009	0,015
$N(1)$	0.008	0,008	0.012
$N(2)$	0.008	0.007	0.016
$0(1)$	0.009	0.008	0.012
O(2)	0.009	0.007	0.019
c1	0.002	0,002	0.007

TABIE IV. Messured and calculated values of the structure factors.

Atoms	Uncorreeted	Corrected	
$c(1)=0(2)$	2.394	I. 400	0.084
$C(2)=C(3)$	18396	1.408	0.012
$C(3)-C(4)$	48.82	I, 807	0.018
$C(4)-C(5)$	1.387	1.392	0.015
$C(5)=C(6)$	1.398	1.395	0.013
$C(6)-C(1)$	1.420	1.425	0.013
$C(1)-N(1)$	1.382	1,386	0.012
$C(2)-C I$	1.760	1.766	0, 008
$C(4)-N(2)$	1.466	1.471	0.023
$N(2)-0(1)$	1.235	1.240	0.015
$N(2)=0(2)$	1.236	1.240	0.011

TABLE TI

Interbond angles (0)

Thternazecyos esonanees $\leqslant 32$ gi A．

O（2） $0000 \mathrm{M}(3)_{\text {ISI }}$	3，08\％	$C(2) \ldots m(z){ }_{5}$	3.658
$N(1) 0000 N(3)_{V}$	3．188	O（1） $0000 \mathrm{Cl} \mathrm{SI}^{\text {a }}$	3，656
O（y） $0000 \mathrm{C}(5)^{5}$	3.385	CI 0000 Ml$)^{2}$	36675
$0(1)$ ，0．es $N(2)^{2}$	3.406	C（3） 5000 Cl$)^{2}$	38681
$O(1)$	3.466	c（2） $0000 C(6)^{T}$	3.699
$C(4) 0000 C(5)^{1}$	3.478	M（2） $0000 \mathrm{C}(8)^{1}$	3.700
$C(2) 0000 \cdot 6(1)_{I}$	30 48.	$C(1) 0000 \mathrm{~N}(1)^{2}$	3．718
$0(2) 0000 C(6)_{I S}$	3．584	$C(3) \ldots 00 c(2){ }_{T}$	3．720
$0(1)$	3.529	C（g） $0.000 \mathrm{Md}(\mathrm{L})^{2}$	3.958
$0(2) 0000 C(6)^{15}$	3，526	M（2） 0.000 O（2）${ }_{\text {I }}$	3．9\％5
$C(3) 2000 C(6)_{I}$	3，564	$C(5)_{0000} C(6)^{2}$	$3.78{ }^{\text {\％}}$
$N(2) 0000 C(5)^{\prime}$	3，572	$C(3) 0000 C(4)_{I}$	3， 980
$O(1) 6000 \mathrm{Cl}_{\mathrm{VIL}}$	3.58%	CI $00006(1)_{L}$	$3_{3} 80{ }^{\text {a }}$
C（4）0000 $C(6)_{I}$	3.625	$0(2) 6000 C(5)^{2}$	3，80\％
$C(3) 0000(3)^{2}$	3862.	$C(1)$	3.882
$O(1)$ ouso $C(5)_{I V}$	3.627	$N(2) \ldots C(6)_{I S}$	3，846
C1 0000 O（2） VI $^{\text {r }}$	3.645	O（2） $0008 \mathrm{Cl}_{\text {ITI }}$	$33_{0} 86$

The subscripts refer to the following equivolent positions：

I	x_{9}	y_{8}	$2+2$
II	$\frac{7}{3}+x_{0}$	$\frac{2}{3}-y^{2}$	8
III	妾－x_{9}	$-\frac{8}{3}+y_{s}$	童 + z
IV	$\frac{3}{2}+x$	䙲－y	$2-2$
V	${ }_{5}$	$\sum-y^{\prime}$	交 +8
VT		$\frac{3}{3}+y_{3}$	$\frac{3}{2}+2$
VII	I $0 x_{3}$	I－ \boldsymbol{H}_{5}	$\frac{8}{z}+z$

Deviations (A) of the atoms from various nlones.
(a) Plane through C(1)C(2)C(3)C(4)C(5)C(6)N(1)N(2)O(1)O(2),Cl.
(b) Plane througn C(1)C(2)C(3)C(4)C(5)C(6)N(1)N(2), C1。
(a) Plane throagh C(1)C(2)C(3)C(4)C(5)C(6)N(1), C1.
(d) Plane through $C(4) N(2), 0(1), 0(2)$.

Atom	(a)	(b)	(e)	(a)
C(1)	-0.013	-0.005	-0,001	∞
C(2)	0.038	0.028	0, 024	\cdots
C(3)	0.023	0.004	-0.015	0.00
C (4)	0.048	0.032	0.008	0.003
C (5)	0.000	0.005	-0.011	0
C(6)	$\bigcirc 0.007$	0.008	0,006	∞
WV(I)	-0.082	-0.023	-0.005	
N(2)	$\cdots 0.016$	-0.039	-0.077	-0.012
$0(1)$	-0. 070	-0.108	~ 0.153	0.008
0 (2)	O. 032	0.016	-0.026	0.008
Cl	0.010	-0.009	-0.006	-

Dipection oosines of motectiar ores (OP OQ OR) wish prespect to orthogoral orustallographio axes.

Axis	\underline{Q}	\dot{D}	\mathcal{C}
$O P$	0.8255	0.3436	0.4477
$O Q$	-0.3302	0.9374	-0.1107
$O R$	0.4577	0.0564	-0.8873

Coordinates of the centre of mass O_{0} and the centre ofoscillation. O°

$\begin{array}{llll}0 & 0.3082 & 0.3942 & 0.2839 \\ 00 & 0.2730 & 0.4610 & 0.2499\end{array}$

Ators	Obso	${ }^{\theta_{21}} \cos ^{2}(i)$	Cato (eg)	Obs.		$\operatorname{Case}(\mathrm{it})$
C(1)	4.94	6.29	\%90	* 95	4.83	4.92
C(2)	4.66	5.83	4086	$4{ }^{\circ} \mathrm{O}$	4.29	20.50
C(3)	5.75	5.18	5.55	4.63	2.53	869
C C(4)	6.25	5.85	6.97	4.32	$4_{6} 26$	4848
C (5)	6.78	5.68	6.60	5.28	5.42	5.37
C(6)	5.83	5.25	5.13	5.68	6.26	5.95
N(1)	6.00	8.88	5.77	5.25	5.48	5.48
$N(2)$	10.282	8.48	10.21	4.37	4.29	4.50
O(1)	11.57	8.97	10.83	6.06	5.35	5.32
O(2)	.12.51	12.08	13.07	4.83	4039	48.57
CI	4889	8.16	5.49	5.15	5.21	$5{ }^{\text {¢ }}$ 2\%
Atom	Obs.		Cate (3i)	Obs.	$\frac{T_{12}}{\operatorname{cose}(i)}$	$\operatorname{cose~(\% g)~}$
C(3)	2.46	2.96	2.30	0.38	0.52	0.00
C(2)	2.876	2.42	\% 8 I	$\cdots{ }^{0} 5$	$\cdots 0.42$	-0, 98
0 (3)	292	\% 88	2.52	O. ${ }^{182}$	00.22	0, 28
C(9)	2.32	2.48	3.28	0.19	-0. 37	00.28
C(5)	2.16	2,6I	3.94	- $0^{10} 28$	00.98	- ${ }^{2} .36$
C(6)	3.79	2048	3.59	-0,78	0.09	$\cdots 0.78$
$N(2)$	4029	5.69	3.52	0.98	\$.84	0.82
$N(2)$	8.02	4886	5.56	$0_{0} 85$	0.10	0.30
$0(1)$	6.67	5.65	6.95	2.50	d. 85	2.14
0 (2)	9.34	7.52	\% $\%^{2}$ 6\%	$\cdots{ }^{-189}$	cole 25	-10.38
CI	3660	$55_{6} \mathrm{O}$	3.02	$\cdots]_{0} 63$	-2.05	$00_{5} 9$
Atom	Obs,	U89 celem	Cate (E2)	Obs:	$\begin{array}{r} 0_{13} \\ \text { Caise (i) } \end{array}$	Caie (si)
C(1)	$\bigcirc 0.72$	-0. 0.55	~ 0.55	0.64	0.82	$0_{6} 69$
C(2)	0.13	-0.65	-0,68	0,68	$0_{6} 67$	0.65
C(3)	-2, 6.84	$\cdots 0_{9} 60$	$\cdots 0.62$	0.29	0.80	0.78
C (4)	-1.00	-0.64	-0.69	4.57	0.69	0.86
C(5)	-0.76	-0.47	-0. 48	3.22	0.58	0.36
C(6)	0.00	-0.36	-0.32	-0, 29	0.78	0.50
$N(1)$	$=0.91$	$=0.45$	$\cdots 0_{0}{ }^{2} 2$	0.05	1.00	0.92
$N(2)$	-1. 12	-0. 93	-0.95	$=0.69$	0.78	0.90
O(1)	$=0.13$	-0.69	-0.58	2.51	2.02	${ }_{6} 8_{68} 8$
0 (2)	$=0.90$	-0.66	c0. 982	0.58	0.55	0.59
C. 1	0.78	-0.049	$\cdots 0.51$	$l_{0} 89$	0883	0.89

TABLE XI.
The vilues of $\triangle Q(A)$, the shift along $O Q$ of the centre of oscillation from the centre of mass, and the corresponding $\sum \mid \Delta U_{i j} /$'s(in units of 10^{-2} ge).

$$
\begin{array}{ccccccc}
\Delta Q & \text { (A) } & 0.0 & 0.2 & 0.4 & 0.6 & 0.8 \\
\sum\left|\Delta U_{i, j}\right| & 50.56 & 45.01 & 39.26 & 35.85 & 34.34
\end{array}
$$

$$
\left.\begin{array}{cccccc}
\Delta Q & (A) & 1.0 & 1.2 & 1.4 & 1.6
\end{array}\right] 1.80
$$

TABER XTS

$$
T=\left[\begin{array}{ccc}
4_{0} 87 & -0.11 & 0_{0} 66 \\
& 4,47 & -0_{0} 69 \\
& & 1.78
\end{array}\right] \quad \omega=\left[\begin{array}{rrr}
8.64 & 0.29 & -0_{0} 27 \\
& 13_{0} 63 & 03_{0} 26 \\
& 12_{0} 23
\end{array}\right]
$$

TABLE XIII.

$$
\sigma(T)=\left[\begin{array}{lll}
0.29 & 0_{0} 22 & 0_{0} 29 \\
& 0_{0} 23 & 0_{0} 25 \\
& & 0_{0} 44
\end{array}\right] \sigma(\omega)=\left[\begin{array}{lll}
1.08 & 1.49 & 0.97 \\
& 6.03 & 2.62 \\
& & 0.95
\end{array}\right]
$$

Molecrise
 $\operatorname{Cach}(\stackrel{\ominus}{A})$
 Estimated standarus devtation.

 4. Chis, $S_{5} S_{0} C_{0}$ defjrey, $G_{0} A_{0}$ and Sakyrais To (1962). ACEC Cryst. $15.66 E_{0}$
 12, 126.

7. Sakuroî To (1962) Acta Cryst. 15.413.

Abrchams $S_{8} C_{0}$ and Robertson. J. M. (29e8). Acta Cryet. 18 252.

Ahmed, $F_{0} M_{0}$ and Cruickshanks $D_{0} W_{0} T_{0}$ (1953). Acta Crust. 6 385.

Asher, $J_{0} D_{0} M_{0}$ and Sims $G_{0} A_{0}$ (1962a) Proc.Chemo Soce pollo (1962b). Proc. Chema Soc. po 335. (1963a). Pepsonal communication. (1963b). Personal commertcation.
 39, 1983.

Bartell, $L_{0} S_{0}$ and Bonham, $R_{0} A_{9}(1957)$ o do Chem. Phys. 29.944.
 $R_{0} L_{0} S_{0}$ and wenkert, $E_{0}(1960)$. J.Amer, Chemo Soc. 8a? 379\%
 Soc. 82, 3790.

 Wentert $E_{0}(1962)$ - © Amere Chem。 S00. 24.622°

Bartong $D_{0} H_{0} R_{\mathrm{s}}$ and De Mayos $P_{0}(1957)_{0}$ Quarto Rewo IIs 289_{0} Barton, $D_{0} H_{0} R_{0}$ and Levisallesger $E_{0} D_{0}(1958) J_{0}$ Chemb Soco $D_{0} 4518$.

Battersby $A_{0} R_{0}(1962)$. Personal commanicatbon.
Battersby $A_{9} R_{0}$, Binks A_{0}, Hodson $H_{9} F_{s}$ and Yeowell $D_{0} A_{0}$ (1960). J. Chems Soce p_{6} 18\&8.

 (1960b) J J.Chemo Soc. por86. (1960c). ezzert. Revo 14. 77.
 （1961）© Proc，Chems Soc．po 412.

Battersby，$A_{0} R_{0, g}$ Hodso $n_{9} H_{0} F_{0}$ and Yeowe11，$D_{0} A_{0}(1961)$ 。
Proc．Chemo Soc．p_{0} 22S．

 Hesse，M_{0} ，Hillebrand，H_{0} ，von Philipsborn，H_{0} ，Sohmid，H_{0}

 MacGlilitary $\mathrm{C}_{0} H_{0}$ and Veenerdaal $A_{0} L_{5}(1955)$ Acta Crysta B，A？
Bernauer，K_{0}（1959），FortschroChemo org。 Natwostoffy 17 184．
 Proc．Chems Soc． $\mathrm{p}_{0} 63$.
Boehms $R_{0}(189 \%)$ Arch．Phapmo 235，660．

（1948）．Nature， $262,765_{0}^{\circ}$
Bose，$A_{0} R_{0}$ ，Chatteridee，$B_{0} G_{0}$ and Iyer，$R_{0} S_{0}(1956)$ o Indian J_{0} Pharm。 $18,185_{0}$

Brown，$G_{0} M_{0}$ and Marsh $h_{9} P_{0} E_{0}(1960)$ ．Acta Cryst。 133_{5} 1037．

Buerger，$M_{0} \mathcal{J}_{0}$（1951）。Acta Cryst。 Is 531．

$C h u_{9} S_{s} S_{0} C_{0}$, Jeffrey $G_{0} A_{0}$ and Saknrat，$T_{0}(1962)$ ．Acta Crysto 35．661．

 Proc．Royo Soc．A 2A8，I．
 J_{0} Chem $_{9}$ Soc．$p_{0} 4854$.

Cruickshank，$D_{0} W_{0} J_{0}(1956 a)$ s seta Crust。 9，754．
（1956b）Acta Cryst． （1957）．Acta Cryst． 10.01 504． （1961）－Acta Cryst．140 896．

Cruickshant $x_{0} D_{0} W_{0} J_{0}$ and Robertsons $A_{0} P_{0}(1953)$ ．Acta Cryst。 6． 698.

 22.1361.

 Edwards，$P_{0} N_{0}$ and Smith $A_{0} F_{0}(1960)_{0}$ Proc．Chem Soc．$p_{0} 215$ ． FergusongG．（1961）。PhoD．Thesis：University of Glasgow。 Ferguson，G_{0} and Sims $_{8} G_{0}$（1961）Acta Crusto 14.1262. （1962b）J．Chemosoc．po 1767.

Fisher，$R_{0} A_{0}$ and Yates F_{0}（1957）Statistical Tables， Oliver and Boyd．Edinburgh．
frassong E_{0} ，Garbuglio，C_{0} and Bezetiso（1959）．Acta Cryst： 12．226．

Fridrichsons，J_{0} and Matheson，$A_{0} M O L_{0}$（1955）Acta Grysto B9862
（1962）．Acte Gquet． 15． 139.

Gadner G_{9} and Herbstein $B_{0} H_{0}$（1962）Acta Gryst．15．1081．
 （1961）．Proc．Chemo soc．pi63．

 Hipokawn，$S_{0}(1955)$ ．Acta Cryst． 8 ．63\％．
 43，760。

＂International Tables for Xoray Grystallographyng Volol （1952）．Birmingham：Kynoch Press．

Lavse，Mo von（1913）。Physiro Z。12 1075。
MocIntyre $A_{0} A_{0}$（198\％）＂Curare，Its Natural History and Clinical Use＂，Univensity of Chicago Press，Chicago．

Mackay H_{0} and Hodghin $D_{0} D_{0}$（1955）o JoChemo Soc．$p_{0} 3261_{0}$
McWeeny R_{0}（1951）．Acta Cryst．量 513．
Milledge，$H_{0} J_{0}$ and Pant，$L_{0} M_{0}(1960)$ ．Acta Crysto 13 ，285．
O^{9} Gorman，$J_{0} H_{0}$ Shand W_{0} and Schomaker V_{0}（1950）． J．Anero Chemasoc． 22 4222．

Pasternak，$R_{0} A_{0}$（1956）．Acta Cryst̀ 9，3al．
 （1935）：ZoKrisín 90 517．

Peerdeman $A_{9} A_{0}$（1956）Acta Cryst．2，82A．

geedivino (1961). Fepsoral commsnigationo
 Ver. Sci: ard Artmal Inde 2985.
Robertson, $\mathcal{J}_{0} M_{0}(1935)_{0} J_{0}$ Chems Soc. $p_{0} 615$. (1936) Jo Chema Soc $p_{\mathrm{B}} 1195$.

Robertson $J_{0} M_{0}$ and Woodward $I_{2} P_{0}(1937)_{0} J_{0}$ Chemo $S_{0} 0_{0} 29_{0}$

Bolletto $J_{0} S_{\circ}(1961)$ 。 ${ }^{10}$ Compating Methods and the Bhese Problem in Xotoy Crystal Analysis", Paper gi $p_{0} 8$. Editors: R_{0} Pepinshy, $J_{0} H_{0}$ Robertison cind $J_{0} C_{0}$ Speapmano Neforici: Peprgamor Press.

 AC60 Crusto 32 600.

Silvers, S_{0} and Tulnshy, (1962). Tetrahedron Letters. Q. 339.

Simege G_{0} and Abrahans $S_{9} S_{0}(1960)$, Acta Crust。 3. 2.
Simonsen, $S_{0} H_{0}$ Pfengerp $C_{0} E_{0}$ once thomsong $C_{0} M_{0}$ (3961) Acta Cryst. 18 2690
Probles of Interatonic Distances and Configuration in Molecules and Tonsis (1958) Chem. Soco Spec. Rubl. No. 3.

Thomas, $L_{0} H_{3}$ and Fermb, $E_{0}(1935)$. Interpational Tabellen zur Bestimmang worktistallstruzkturent Bormerager

Cryst. 14 1009.

Trizter, $M_{0}(1960)$ e fochem Soc. DO 997_{0}

Ueda, Io (1961) J J Bhys, Soc. Japan, 16, 1185c
von Philipsborn, W_{0}, Schmid H_{0} and Karrer. P_{0} (1956)。
Helv, Chime Acta, 39, 813.
Wentert, $E_{0}, B o b b_{\theta} E_{0} W_{0}$ and $B r i n g i_{\theta} N_{0} V_{0}(2957)_{0} J_{0} A m e r_{0}$ Chemosoc. 79, 6570.

