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Notations.
= Power function.

= vector of parameters i.e, B,

PP
= A subvector of F_

i.e. a vector whose elements are /st-'s

= the number of parameters

‘= P\ = allocation vector , where Z.P; =1

Pe

= noncentrality parameter

. = kronecker delta



Chapter T

Introduction

A theory of efficient design of statistical investigations
has been developed by R. A, Fisher, F. Yates and their followers
mainly in connection with agricultural experimentation. Fisher's
contributions to logic and scientific methods of experimentation of
theory of experimental designs are outstanding. These wethods,
though developed mainly to be used in sciembtific investigations of
agronomical problems are in fact general, to be applied to other
fields also.

There are four broad categories into which problems of
experimental design can be classified:

(1) The practical problem of deciding which experiments are
relevant to the vroblems under consideration.

(2) The combinatorial aspects of construction of designs and
the associated statistical analysis.

(3) The study of the optimum properties of well established
designs.

(4) Construction of optimal designs under various criteria
of optimality.

Most of the work done on design of experiments has concerned
itself with the first two aspects while the remaining two have only
recently been receiving attention. In early development of the

subject, we have tried to devise sufficiently symmetrical plans,



so that the estimat.on of the relevant parameters and the associated
tést of significance are as coumfortable as possibles Thare was
little worryins about the hest plans. Hovever, most of the well
established symmetrical designs are found to he highly efficient

in terms of the recently established optimality criteria.  Although
mich work has been done on the problem of optimal design in linear
experiments in the past decade, all of them are found to be
concentrated on establishing or denying optimum properties of well
established designs, or on supplying sufficient conditions for
designs to possess these optimﬁm properties. Computational methods
for the actual construction of optimal designs were investigated onl:
recently.

A theory of design and analysis of experiment naturally has
implications about how the experiment should be planned and performed
and how the observations should be analysed so that we may have
maximum information with minimum amount of risk and sowetimes with

minimum cost.

Formulation of the Problem.

By an experiment € we shall mean a set of random variables Y,
the joint distribution of which depends on certain unknown parameters
ﬁ’F" .. Fr’ to be denoted by the vector ﬁ . In all problems treated
below the set (T ) of possible experiments among which a choice is tc

be made is given. The purpose of the exiperimentsl investigation is



where the experiments are performed in such a way that *,x. . - .  x,

)

E

are not random variables but have predetermined fixed values. I+t ie
known that the variance of the least square estimate (which is the saie
as the maximum likelihood estimate in this case because of normality)

F of p is inversely proportional to i}xt~i)h, vhere X = Z;f, Hence,
if we can freely choose the values x,, - .- %,y in a certain domain 4,
the greatest sensitivity of the test will be achieved by choosing so
that [Z_(‘i“ifjggcomes a minimum.

We shall later consider the various measures of the efficiency of
the various designs of statistical investigations in connection with
linear hypothesis.

It was A, Wald who first developed the modern theory of optimal
statistical design by establishing a certain optimality criteria (now
known as D—optimélity) from the stand point of the power function of
analysis of variance test. Then follows a thorough study of the
subject by G. Elfving and S. Ehrenfeld of Scandinavian countries,

P, G. Hoel, P, G. Guest; J. Kiefer, J. Wolfiwitz, B. J. Williams of
United States, 8. Moriguti and lI, Masuyama of Japan and J. Aitcheson
of Great Britain. These people have, on the basis of one or another
goodness criteria, established some well known designs as optimal
and/or developed methods of deriving best plans.

This thesis will survey various recent developments in the theory
of optimal experimental designs. The primary aim of the thesis will

be to stress certain ideas =nd »rincinles which are easily set forth in



abstract

sinple situations rather than to state things in the most possible
setting and to try and apply the discussions to the more complicated
problens, We shall be concerned with developments of optimality
criteria based on the desirable properties of the desizn and methods
for verifying whether or not given designs satisfy certain optimality
criteria, the relation between them and some methods for computing

optimal designs.



Chapter II

The General Linear Hypothesis

While, in some of the papers quoted below, more general
set ups are considered, we shall in the following restrict entirely
to linear experiments i.e. experiments in which the expected values
are linear functions of the unknown parameters.

In matrix notation, the outcome of a linear experiment may be

written
‘1 = X P_ + e
where
Xy K oo x,r e,
“n F’l e.l
. X Kaa - ¢ - x;r F\ .
‘1 £ ) >.$ ® b) F— = » & o=
: e
EN Ky Ky - x,‘r FP n

denote the observation vector, a known coefficient matrixz, the elements
of which the experimentor can freely choose, the unknown parameter
vector and the error vector.

We may now list together , for easy reference, some points of

[N



notation, definitions of various sets and functions which we may
encounter in our theoretical development of the subject and some
well established results of the general linear statistical model
in connection with the estimation of the parameters and the tests

of significance.

General Problems of a Linear Model.

In general, the parameters F"s are not known and we shall have
to estimate them using the prediction equation. In order to egtimate

the F" a random sample of size n will be taken from the distribution
fCys X, p)»  The sample will be denmoted by 'P'i' =

(yJ~ ’ xt' ,vxa.z s eevscsssey Xﬂ’ ) 3 =1, 2y 3eee..m and the relations

within the system of observations can be written

y = X F_ e (29

On examining y = >_<[5_ te 4 it can be seen that we must first select

(either at random or by design) a set of x's, say x s X ’

P e

X, o and then randomly select an observation Y. from the distributicn

i
f ( 15 2=% ). We shall assume throughout that the model 4 - x B

was constructed by the sampling process above.
On the basis of the chosen matrix X and observed random variables
i i d f - We shall als
Y we shall now derive the estimators for F; and for « ., Ve shall also
study the distribution of pertinent statistics for estimation of certain

parameters and functions of parameters and for testing of hypothesis

about theme

-3



2.1 General Linear lodel of Full Rank.

nxt mxp pa nxy

Definitions— The model y . % F,_ + e will be called the

CGeneral Linear Hypothesis Model of full rank, if the
rank of X is equal to p where p ¢ n.
Two cases concerning the distribution of g will be considered.
Case A (Normal Theory Case) = e is distributed I (0, & I), where
is unkno»vn.
Case B. (Distribution un specified). ¢ is a random vector such that®
E(e) = 0 and Cov(e) = & I wheve
is unknown.
For point estimation we shall study both case A and case B, but for
interval estimation and testing of hypothesis we shall restrict our—
selves to normal theory situation only.

201.1 Point Estimation.

Under normal theory the parameters . r: and & are estimated by Maximu:

Likelihood method resulting in the following theorem.

Theo.’r.jem: 2.1 Ifys= )'SP +¢ 1is a general linea? hy‘potl}esis model
of full rank and if ¢ is distributed W(Q, & I) the

estimators
=l ]

By gnere M %%

A . L oMy
nep

have the following properiies.

(1) Consistent.

(2) Efficient.



Proof,

(3) Unbiased,
(4) Sufficient.

\

(5) B is distributed N(_C_'; 2u).
(6) Complete.

(7) Minimum variance unbiased.

(8) P f‘l is distributed X'(n-p) .

(9) F and ~* are independent.

The likelihood function of our sample, since

the error vector e is distributed (0, &I}, is

L(QSF)°‘1)= N e 20t T

Gw u~"-) T‘;

L Ch @) wm ) N !
Dﬂ L(&)Tﬁ.; ): itoal\\-?}iLojc\_L (\1_XI>?-)(!—Z/\F_>~

2 T T

Maximum likelihood estimators of [éand ~% are

now given by

2 lbg Lle; p,e™ =0
R 1 P
7,%1 Loj L(Q_:)‘rg)s“’)=°
Y ! - X% ) =0
e (% - LR -
e (L-ERCH X L,
26%

Io\q
The solutions F, and «~‘are given by

XA Bo= Xy , known as the Normal

Bauations,



and s =

- L (e R (L -%E

w
| d
B
e
®©
:
I
i
:
o~
kgl
ts
S’

has an inverse,

Booo(wx) e =1y

where M = _}_x‘ X.
Large sample properties of c_onsistency and efficiency of the estimators

follow from the max:.mum likelihood method of estimation. For

unbiasedness we have to proceed as follows.

) 1

Since L -x™M A ig idempotent and symmetric

e | - A x!
JEIO Bl (L- 2Ry

i
P

(The symbol ~ is used for Maximum Likelihood estimate and the symbol -
for unbiased estimator. )

10
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Sufficiency and completeness, Sufficiency of the estimator can be

— — ooy catty | — v - o —

proved, using the identity

A A

CL-2pY (4 %p) = xRy -5y rcb-pm (B R

in the joint density function of g,

! e
feor = e
, G ek ’i’—)tﬂ(ﬁ'_f"\
NOW, %(y(_.) - | " ur ) [- “C"’“r) ‘ / X
Gre) ™ e

A
Koopman~Pitman theorem establishes the joint sufficiency for o amd &5— :

It can be shown that the estimators ;L,/I‘\z are complete. An immediate
consequence of the completeness of a statistic is that only one function
of that statistic can have a given expected value. Thus if one function
of a statistic t is an unbiased estimator of a certain function of the
parameter r_>_ s no other function of % will be. Completeness confers a
uniqueness property upon an estimator.

In the setting of the general linear hypothesis, suppose it is desired

to find an estimator of the function ago‘,r;). Since & and f’_s_ form

a set of jointly sufficient statistics for the parameters - B and

|



since the estimators are complete, it follows ’chat; if a function
h (&, fé) can be found such that
e Lh (&, )] = g0 p)
then h (& >I]§_) is the unique minimum variance unbiased estimate of
. (s, r:_) for every sample size.
Normality of _}—__ _ _. Since ]% =¥ x'y where y is distributed Normal
and rank (9 %) = p,
]% is a p~variate normal.

Already proved is that X( l"‘;) = B

Now var QF_) =Pf||>_§,(_vox('~lﬂ?’>bj
= 6‘} ‘\;\‘ _,l)_(_ l\i—:\—\
VY

i’; is distributed N (P> D)
Digtribution of (mp) o>
PI
-1 -1
Since (™-P) - 4 (E-2™%)Y and  Swe L=% MKt g

A ~
idempotent of rank n —p, ("-p) ' is distributed as noncentral 7<1(“-F> &)

-1
B
where noncentrality & = = F‘ X' (L-AWEORE

ekl

"

But (T - %Ff\‘vs')vs o, giving $-=° and 7Q1CM’\>>S=O)reduces to central
7(1 distribution with n - p degreses of freedom.
In order to establish the last property that ~ is independently
distributed of the vector fg s We may use the theorem which states
that the p 1linear forms j@ﬁ(“i—\‘ é')*;are independent of the quadratic

A
form &~ = X)_
ooy

i

=1 .
R R N e Yy , if the

_r -

12



product of the matrix of the linear forms and that of the quadratic
form is a null matrix.
i.e, !/;, and «* are independent if (b_’jlzl)(“:' 7$“.’_\'|£')=Q s Which

is found to be true on simplification.

Egtimation of parameters uﬂder case B and Gauss-llarkoff Theorem,

Under the assumption that the random vector e has zero means
and covariance matrix o I, without any specification of the form of
the frequency function, the principle of maximum likelihood cannot be
used to obtain the egtimators of the unknown parameters. Instead we
shall use the method of least squares; that is to say, we shall find
the value of P, which minimizes the error sum of squares

1

%_C(_' = 2‘_6_: (‘i'ﬁ’é‘)'(‘l-é%>

=1

The value of ]3, that minimizes e'e is given by

A
2 (e¢'e) mo = 2%y -aXHf

the least square estimate of ’, is, therefore,

’% SMx'y ,ﬁhich is the same as the
maximum likelihood estimate, if
the distribution of e is normal.

But minimizing the sum of squares e'e does not provide us with an
estimate of ~ . However, the unbiased estimate of ~ based on the
least square estimate of ]’é is given by

av e (e XY CLXR)

'H—-Fv

13
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The frequency function of the random error vector e being
unspecified, in general it is not possible to examine the goodness of
the estimator ﬁ relative to all functions. Instead, we shall have
to limit ourselves to a subset of functions; for example, (since
is a linear function of the v.) to the set of all linear functions
of the Yo oo In the case of normality of e, %=t§ig has smaller
variance than any other unbiased estimator of F_ « For the least
square estimator we cannot have so hroad a statement, but we can
compare the goodness of the least square estimator with other linear
estimators, (i.e. estimators in the form of linear functions of
dbservations.)

Gauss-Markoff theorem asserts the goodness of the least squares
estimators in the model

§ o= XpTE
The following theorem (which is the special case of General Gauss—
Markoff theorem) is mentioned for continuity in the development of the
theory. More generalised theorem will be proved later for the general
linear hypothesis model of less than full rank.

Gauss-Markoff Theorem for the Linear Model of Full Rank.

Theorem: (2.2) Under the assumption
m KI 'h"[’ Px. m X1

N y o= % pore rank (X)=p.

E(e)=2 , E(ee) =T

the best (minimum variance) linear (1inear function

of the 3. ) unbiased estimate of F is given by least

14



squaress
i.e. /2 = "_’1—’)5'2 is the best linear unbiased estimate
of /é .

Further, the best linear unbiased estimate of any
linear combination of the /5; is the same linear
combination of the best linear estimates of the Pis
i.e. the best linear unbiased estimator of ﬂ’/é.‘

( 2 being a vector of constants) is 5'/3 where

A
/’3 is the b.l.i.estimate offé .

2.,1.2 Choice of the Design Matrix X.

We know that the elements °ch must be @o&vn before the
values are selected at random. In some cases, > values may be
picked or chosen by the experimenter in any way he wishes; in other
cases, they cannot be so controlled. If the experimenter can choose
the i values, the question of how to select them arises., In general
it would seem that the best way to pick them is so that the variance of
certain estimators will be as small as possible.

For example, in the case of the full rank model, the variance of
the estimator of Z'/é is < 2A¥2 and we might want to choose the g
that minimize A'M' 2 . e cannot do this in general for all Vectors

2, but might be able for some. We shall be discussing about the

optimal choice of these elements xj or the design matrix X,



2.1.3 Tests of Hypothesis

Likelihood Ratio tests and the General Linear Hypothesis of
full ranl:

We shall now consider some useful results assoclated with
testing of hypothesis in the general linear model of full rank under
normal theory. Through out this thesis, the symbols L and H will
be used to denote a set of fundamental or underlying assumptions and
the statement of the null hypothesis respectively. It is also
convenient to introduce the symbol

6 = Hn N
meaning the set of assumptions obtained by imposing the assumptions
of the hypothesis H on the assumptions N .
If v = (4,4, --»ﬂ‘y stands for the observations or sample then
L.C(458) where © is an r-dimensional parametervvector ia the

probability density of o (also known as the likelihood function

of 4 )

Now consider the hypothesis

H Cw; 0)
and let
L) = S L, Cy; @)
( o
and. (L)a = syp be G50
e e

The likelihood ratio test statistic », for testing W (w; o)

or more briefly H , is defined to be

16



The values of *, lie in the interval [o,1]. The likelihood ratio test
consists in rejecting H if M, < ¢ y the critical value; which is a
constant go chosen that

/ dF" S, & ew

Wy (™
W, being the critical set in E .

In order to evaluate the power of the test, the distribution must also

be known when the altermative hypothesis Hl’ is true.

2.1.4 Testing the hypothesis Pv=Pi , 21,2, - - *, with the

remaining P’S  unspecified in general linear model of full

rank under normal theory.
Lo Y = >_<[§+e with e distributed N (e, e~y rank >_<-.r Cpem)
H H FL:-FL N C:l)i) A Cvs’\)
Now in order to apply the likelihood ratio criteria we may reformulate

the model and redefine L and H as follows:

Q. & the half (p + 1) -dimensional Buclidian space for which
-0 <[’5c < +t y o L=lyag . b
H Po = F: TS (fsr)
© : the subset of O for which f. zlaf R LT
In the model \1 = 2(_!3_ +e
partition the matrix X and the vector [3_ s S0 that
E’(é;_,* ’ 52) N ri "kﬁ
then M o= X% o+ KoY. e -
We would like to test the hypothesis T\ =, ( ¢ known)

17



with no stipulation on ¥,

»

Since ‘_G = (F,, F\) L F(>l and . (F:‘) r);‘ ’ . F"‘)
this test is equivalent to testing the hypothesis l’si = F:‘ L=t 3, 7

in the model Moo= §F_ te

Our sample consists of what may be regarded at the conditional

random variable (*&C ] Xy, Ky, - uc\"’ i-l,a---’\), and the likelihood

W

of the parameters P , is given by - L, - L, (y ; P)c&) G S S

L) ep [-o, (- xp) (g - 2R

K ! - - “th.‘\\
(L)% ep [k, (4= B0 %D nh b

To find (L,), and (L), we shall work with logl.

the logarithm of the likelihood of the parameters:

Log L. = - legan - “{Lt’aﬁ"'“ . (‘i"i}é)'(‘i‘éfﬂ

The value of ( ‘“1>]1 ) that maximize log L, is given by

Under the assumption {1 these equations reduce to

cm o+ (Y %R) (4 -xp) w0

e
x' (4 - %P -2
0,,7.
A 1 A | "'Xx _ N'\"XI
giving Z('zP < %y or po- (Xx) ¥y = TRy
and ote (4 ARY (Y -XP)

18



Substituting these values in the expression for L“ we have

(L, - e amere s
™ [ xBy(y 2™
. n & here Q- (L-Rp(4-2p)
(29 Q.
the minimum value of e'e with respect to the unknown parameter i&

in the model o = XFJ(Q « Toobtain (L)), , We may proceed in

the similar manner with the restriction <,. Y. Now if we put

P
T = 4 -%71

= T kY 1.I 1 - 1.{1.
L“ nt‘)/\_ ur[?m to ZSY.)('\' X —)}

The value of Ya and « that miaximize L, are thus given by

- CRRXYR! (4 - %6

(6 = (A xa) %0 T
eﬁm(gx) - {71. L'l‘ XA %1. TT)”_I —Kmfz(fu)]

‘Substituting these values in L. , we get
"1/_“ —""‘/z
- m oo
.

O™ LT - %G1 T - %l
'h“/" En/"

Q™ (Q,+ )Y

where @, + @, - the maximum of e'e with respect to the unknown

parameter T, on the model « -_')_(P&g_ restricted by Y. =Y
Taking the ratio of these two maxima, we get the likelihood ratio

test statistic for H
A « (L. )w/ (L

H n) 0n

= ;l [T- xur..pr)][




To find the distribution of Likelihood Ratio.

X. X1 being a principal minor of the positive matrix X'X is
also positive definite i.e. it has an inverse.

21
From x'(L-%M ?S‘)

o
we obtain X (1 - X x) = o )
) = Lh
Xo (L -2M X) = ¢ %
A *
Substituting for T and T (T
@+ Q = (4-%EY[L- KT K] 4%
From (Y follows
¥ -\ \ X
@ = (4 - XL ) [T-%Mx'](y-%7)

Using the notation

1> 13
o [
3 WL
i 1
1x 1X
1X, l:ﬁ
IX

by =

=
1
X
I
m
X
€ -
X
¢
WX
o

How we shall study the identity

TT - TAT + T(A

It follows that T is distributed N [ X (B-f) L]

gince

E(TY = B (4- %% = Xp - xEr - Xp - % (%)

In (V) the identity
I = A+ (A-A) v (L-A)

is obvious.
Using (1) it can be easily verified that A , C Av- Ay 3 (L ‘&‘)

are idempotent

ak} o~

Hence 1. ;[_'@_I_ . @ is distributed as X(n ,’,) s since by (i) the

noncentrality is zero .,

20



\
2, T(A-8)T . & g gistributed as X* (,5) where

o=t o2

r= rank (A,- A and the noncentrality

s - L (e (Av- HED)]

3. @ and are indepsndent.

910

Therefore, the quantity « = (%) (n-p) is distributed as F Ce,m-py 3)
. LY <

This quantity w , being a monotonic function of *, may be used as

a test statistic.

To show that rank ( A,-4 ) =

Using the fact that A, - A is idempotent
rank (A, - 4 ) =¥ A.-4)
S{ A) - (4)
= M- (p-) - (n-p) =7

To examine § in more detail.

Substituting _JS(P - [f) for E(T) we get

PR S (F [s)x' (A -A) X (B- r=)

< [CE-EY R+ T ax][ XM x' - ZSz(élﬁz)—'xt][*:(f\'“r')*x\fj

or § =
| X K (XL X )-\ [ . s 4s T
XXy - AR (R X)) Ko X being positive definite,

and only if Yi=7¥\ i.e. if and only if W, is true.

We therefore have the following basic result concerning the

test of sub-hypothesis of the general linear hypothesis of full rank

Theorem: (2.3) Under

QR Y - )5%&5 rank X = ‘3 (<m) and

21 e s N(o,1)




to test the hypothesis H.:  fr=pl | ienan oo«

we may partition X and ¥ so that

where T, is of dimension +x\ and

Then the likelihood ratio procedure to test the null hypothesis
Ho + 4 = sl is
(1) obtain @. the minimum value of g'_é, the error sum of squares
with respect to the unknown parameter F in the model N = z<]3_ te,
(i1) obtain the minimum value of the same quantity with respect
to Ya in the restricted model Y4 = X Yo ov X Vuve
k(i.e. the model restricted by the hypothesis) , @ +Q,-
Then the quantity

we 7P

~

Q
@,

is distributed as F («,n-p ,8) , where

*
s. (L-T) 8 (V-1
7-o~7‘
XEX - A& K (xEXDT % X

and where B =
Since B is positive definite, w is distributed as F(rm-Pif

and only if Ho is true i.e. if and only if L =T,

22
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P b

2.1.5 Test of the Hypothesis f\'f z J\__.‘P f;lw - &{f X where {_\., =

[
i -

——

Consider an augmented matrix A - (4'> of rank p  such that
A

-

A-u= s . (é.,éx) where 'Al has

—

dimension I-»x ¥,

Let x A . 24 (x4, %A - (%, %) < F
and ‘/’\F: - [AR N 5’)
4.p %

Thus . we have reduced our problem to the case of testing sub-

hypothesis, for which the solution is known. This reduction is
known as parametrization which we shall be discussing when we consider

the model of less than full rank.

23



2.2. General Linear Hypothesis of less than full rank.

ﬂ: \j'nxj . Z(’hx[, FPM re ((’ < "f)

where rank (X) -k <p

Most of the models associated with various designs are of this
nature and by means of a process known as reparametrization we can
always transform this model to a model of full rank for which the
methods of analysis has been discussed already.

As in the case of the full rank model we shall consider two
cases:—

Case A, e is N(,*L): i,e., errors are independent normal variables
with mean o and variances <L .
Case B. ¢ is such that E¢e)=¢o and Cov(e) = L 3

i.e. errors are uncorrelated.

2.2.1. Point estimate of a linear combination of [%. under case B.

Least square estimates of '%_ are given by

2
°F
i.e. as the solution of the normal eguations
Since X is of less than full rank, X'X has no inverse and it is
necessary to examine the system to see whether a solution exists at all.

Now consider the coefficient matrix X'X and the augmented matriz

(X%, x'y) = X (%)

rank (%X'%x ,%x'y) = ran X'(%,4) ¢ rank ¥ C- rank X'%)



+

x x4y

rank (X% | Xy) -

X

Also rank (

Thus the system of equations is consistant.
be

It can Aeasily shown that there exist no linear functions of

whatsoever that give rise to unbiased estimates of Jé i.e., there is
no L. ow.e

of F . If possible consider a matrix ¢ Cpxm)
constants such that E(G 4

E[C(Xpre)]

of

il

B identically in R
If so

C_.>_<\_

= ‘b_ identically.
t-e €K

[Ld

which is impossible since €X is at most of rank k and rank

1 =I3>L<

It is thus natural to investigate next whether there exists an

where 2

unbiased linear estimate of any linear combination of the F_ y Sy 2"/5

is a known vector of constants.
Definition.

A function of parameters is said to be linearly estimable
if there exists an unbiased linear estimate.
Theorem. 2.4 The linear combination h'l’»ﬁ«{f'is estimable if and only

if there exists a solution for +« in the equations

XX r =2,
Proof. If 2'p is estimable; there exist a vector < such that
E(c'y) = ¢ X4 < 2B identically in
i.e. ¢ X -2 or X'e = A

i.e. rank (%X = rank (%' )
Then rank  ( X'x)

1l

rank (%x'x A



Hence X'X v = 2 has a solution for <

On the other hand if X'X v -2 has a solution for v ,

we can put X ¥ = ¢ in the equation to get

1

X¢ = 2.

Theorem 2.5 . Generalized Gauss—ilarkoff Theoren

The unique b. l. u. estimate for any estimable function l'[é is
' X'y where <t  satisfies XX £=2.

Proof. Let the b. 1. u. estimate be ¢y , where ¢ =<' X' +b' where b
is any vector.
Then we have to find the vector b such that
i. E (¢dy) = 2R
ii. Voav (¢'4) is less than any other linear function of y that

satisfies (i).

1 ]
For unbiasedness, B (¢'y) = ¢ )_gF_ c (Y XK +2'X%) R - Z\‘F

X

Since X'X € =2 , we must have b&'X

I3
fle]

Next congider vax (ey)y =B ( ¢y - 2\"'2)1_

1]

B (¢ Xf +e'e -2p)

]

E (Y X'Xp+ B Xprce - 2P)

E (<e)”

i
e ]
N\
"
[¢]
m...
0N
~
n
%
Ll
Ia)
n
n
\J
n
3'4
n
n

= e (' x'+ by (X +b)

i[g.

0
9
(34
X
g8
14
+
6)
rl
W

V.o var (€'Y)  is minimum when b'b =o or b =@ which is consistent

with b'X =¢ .



1 5 . . - s -
c - 2 and the b.l.u. estimate of the esiimable Tunction

is ¥'X4-

- - - - . - . w
Though there are infinitely many solutions to the system X 7+ =

hd

when Z“jﬁz is an estimable function for X'X is not of full rank, any
solution of the system gives the same estimate of ' P. .

Proof for unigueness.

-

Consider any solution F_ to the system X% Ki <%y, Using %

and t. , any two solutionsof X x-2

Te have XX p - ¥y
and v XX Ro- o X'y
But o xX'x - ¥ - ow XX
N o § ..
_ N
Hence &“F‘ R - F‘
¥p - Xy - XR

It will be imporiant to inow how many independent linear funciions
are estimable. It will help us very much fo have ‘i;he following
definition of linearly independent estimable funcition.

Definition. The estimsble functions Xp, Hf, - - 2B are sais

to0 be linearly independent estimable functionsif there exists vectors

o, Ty -0 2 fﬁl[r a such that
¥ e = M
?—Swt - - );m.
)_‘_M)_f ‘f@- = %ﬁ,,\‘
and if the vectors A 2., - - 2, are linearly independent.

If the 2)¢ are not linearly independent but if fthe matrix



A - (2, - ) has rank t, then the set contains t linearly independent
estimable functions.
Theorem. 2.6 There are exactly Kk linearly independant estimable
functions associated with the model Y - >5re_+o: where k ig the
rank of X.
Proof. The theorem will be proved if we can show that thefe are
exactly k linearly independent vectors > for each of which the
system X'X x =2 is consistent, where k is the rank of X.

If there are 4 vectors X, A, - 2q (47K satisfying

2('>_<~_r=2\_then, since the parametric functions are estimable, there

exist ¢ vectors Yi,%, - - . Y4 such that
X'X yo = A0 Cl=n,2, o))
X% (oyta, oot = (X, 2, - o )
or X'x R - A

Where B = 'the l) x..ﬁr ‘mat‘rix’ ( ¥, , o R C I{{_)

and (AN " CAi, A, » D)
But X'X is of rank k ; so/\ must be at most of rank k ;
hence there can be at most k linearly independent estimable functions;

Now for any x. the <l row of X We can see that x [s_
is estimable for rank (Xx'x) = rank (&'51 x) , XXt =% admits
a solution ¢ . |

Hence &‘F ig estimable for 1 =1, 2, .... n.

But these x. form a set of k linearly independent vectors, and

the theorem is thus established.



A natural consequence of the above theorem is that

X{é and >_<‘>_<ra are estimable,meaning that each

element of these matrices are estimable.

Theorem. 2,7 If :\.f/’: for i=1l, 2, .. .. 5 are estimable, any
linear combination of these is estimable.

Proof. Consider a linear combination }‘i’. ac ZL'F_ of
estimable functions 2\5/2 . This function

may be estimable if there exist an ¥ ,
such that Mx < Sa ) (M= x'x)
But estimability of every X B Jjustifies the

existence of an  x¢ such that ™ xc - ¢

for i=I, 2’ oo ir .

or - My = L2 where Y = L%
and the proof is complete.
The following two simple results are useful in the study of
estimable functions.
Corollary: 2.4.]. If 1\'}’1 is estimable, then A' mst be a linear
combination of the rows of X.
i.e. A= oa'X
This -lemms: is useful in determining what functions
are estimable by inspection of the model
Corollary: 2.4.2. If A'/s_ is estimable, then there exist a vector ~

such that 2= ¢'X'x and the b.l.u. estimate of A'F_

is »'X'y .
Theorem: 2.%. he best linear unbiased estimate of a linear
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Proof:

202.2

comhination of estimable functions is given by the same linear

combination of the best unbiased estimates of the estimable

functions.
Congider _>.\'{}_ = th?}("/é_ in which each /“\"F‘ is estimable. Then
by virtue of Theorem 27 , /}'/i is estimable. B.l.vu. estimates
of Z"/é and 2&![2 (i=1, 2, ... n.) are respectively r' X'y
and ¥ X'Y where v  and ¥ are any solutions of,
M2
and M~y .2 fori=l1 .-... 5 Qe
Thus we have ™M [ aix = Sad = 2
i.e. l.ac¥xs is a solution of My =2
The b.l.u. estimafe of 2"/2 will then be
<! 75"_1 = ( Lav) X'y
© o (Zecxdy ¥ Zevwoxy
Reparametrization.

In order to utilize the theorems on the model of full rank,
we shall have to use the linear transformation known as reparametriz-
ation, i.e. we shall have to reparametirize the model of less than
full rank to a model of full rank.

Formal Definition of Reparametrization.

By a reparametrization of the model M4 = ZF_“'Q we shall mean a
transformation from the vector rg to the vector x by <« =\JF,,

where each element of X = L_IF_ is an estimable function.
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Since M = X'X is positive semidefinite of rank k, there exist

a nonsingular matrix \/_\/ (p*pP) such that

- 1 [ " ]b O
(WH XX W - ((5 (;) where B (kxk) is of rank k.
If W is partitioned into W~ = (W, W,) where W is pxk,

we get

W' B 0

XK (W) . T

W, o ©

giving w'x'xwW = B and Cowh X' W, =0,

This implies that WX' is of rank k and W, X' = Q.

Since W is nonsingular we can write the model 4 = X pre
or ) - KVS*(VJ“)"lF_’r
Partitioning (w*)” =u"into U’ = %) we get
¥ = _(v.v W) (4P re

= (X)) (Up) +<xwuu]‘=) te

= (zwx(up re swmee Xw, =0 .
Now putting XwW = Z and Up = %, the model finally assumes
the form Yy = ZTA +e where 'Z_.Mkis of rank ks hence a

full rank reparametrization.

M = L« +2% being a full rank todel ;all the theorems of model of

full rank apply. Obviously « and any other linear combination

are estimable and the unique estimates of = are given by the

normal equations (Z'z)=%x - z'y

fe know that there are exactly k linearly independent estimable
functions for a model Y - grg re with rank X = k. By the

kxi

process of reparametrization we obtain new parameters = which
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are independent linear functions of F‘ and estimable . Thus we arrive
at the following theorem.
Theorem. 2.9, If o_gk “is a vector of k 1linearly independent estimeble
functions of the parameters P in the model y =X g+ e where rank(X) = I,
then there exists a reparametrization to the full rank model

I = d«te .
Since the diagonalizing matrix _Vf of X'X dis not unique,we may have
different full rank reparametrizations,

Now consider two full renk reparametrizations

¥ = Ldote
and ¥y = Ig+eg
of the model ¥ = te o

>
BT

Then,by definition, this means that there exist matrices V and U each
of rank k and dimension k x p such that,

«x=Up ed §$=Tp .
But ,there exist a relation between U and V of the form U =A V with
A nonsingular . This means that there is a linear relationship between
full rank reparametrizations.Thus the two estimates of an estimeble function
}_\'[s_ using two different full renk reparemetrized models of y =Xf@ +¢
will be the seme giving rise to the following corrolary on the unique-
ness of the estimates.
Corrolary .2.9.l.Any full rank reparametrization gives the same estimate

of the estimsble function )' F_.
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2.2.3. Estimation of Linear Combination of lF>c under case 4.

If ¢ is W Q,¢1 ), maximizing the LF or the method of
maximum likelihood leads to the same normal eguations as the
Least—square method under case A.

If the model N :)_(r,_+e_ be reparametrized to the model of
full rank 4 -T=x+e, than, by the invariance property Of., Maxﬁimumr
Likelihood; the ML estimate of « is 02—‘('1_.‘;)";’\1 and all the
properties of the corresponding theorems of full rank model
apply to 2 .

Theorem, 2,10 In the model of less than full rank, under
case A, the maximum likelihood estimate of any
estimable function OfF has all the properties
mentioned in the corresponding full rank theorem
)
where o =;1'jk (”_]~7_.33'(‘1"é§\)
and 4= Zx +e is the reparametrized model of

rank k = rank ( X ).

=K then by the
Proof. If Y-Zx+e be a full rank —F‘H‘ ? o e

reparametrizing the model N :7_(}@_ ye o then bL'thg
invariance property of maximum-likelihood estimate
, the maximum-likelihood estimate of x 1is Py

2 (Z'ZS‘Z.\‘i and all the properties listed in Theorem
apply to Y=Zx & e.

E

1

A

If Z\'Pis estimable, the b.l.u. estimate can be shown to be by

where E is any solution to the normal ecuationsa.
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Since 2\'[’3 is estimable its b.l.u. estimate is ‘f'l("i where

14

is any solution of

X'% v o o o
% being, any solution of the normal equations (2{_' X )E = g'_};,
the best linear estimate ¢’ 2_("1 - ! (5.5)/!-2
By (1) it follows that o'x'y - b'fz

We shall now consider a similar invariance property of the
estima’cion of &
Theorem.2,11  Under A 3 = gc_];_+ e s,rank(X) =k «¢p,
1 - GRS SECEES
is Invariant for any solution fiof the normal
equations.
(2) <, (-K) is distributed X'-K) under Case E.
Proof. Using the reparametrized model of rank k,

o s (LT

iR>
12

)

where the transformations used are XW = Z and U {g =

{2

W and U being defined as in Theorem 2.9 .

Now, s L (4-TR)(4-T%)
. CTwWURY(y - TwW YR
o (1B V(4
TS NE R
-k

Since X is estimable, it follows that the best unbiased linear
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. A A A A
estimate ¥ - QF—=UF;, [ Dbeing any solution of the normal
equation i.e. whatever solution we may use for ﬁ y We always

A
get the same o>

~* o~ : P

(2) & (m-ky o« G- TEY(d-1m) L (4RI Cuexd)

Since Y : I« +e is a model of full rank, (Y- Z«)(Y-Ix)is
distributed X'(n-k) under case B.

Thus the theorem is proved.

2.2.L Testing of Hypothesis .

One of the useful test of the general linear hypothesis of less
than full rank is of the forms

H: Bospu- o < Pa ek
We shall discuss the testing of the estimable hypothesis, which is
defined below, only.
Definition: The hypothesis H s F‘=P,= - =P 1s defined

to be estimable if there exists a set of linearly

independent estimable functions, X | B{P, . BEF. such
that H is true if and only if
Z\:F - Z\},_F_ S L = ?_\s'/’e:o.
In general, if we want to test the hypothesis
(hsk)

H : PP B

in the model of less than full rank, we have to find whether there

exists a set of linearly independent estimable functions

Np oo 2p, P



such that H is true if and only 4f

ﬁP

s P

Consider (k -s) more estimable functions ey B, .- X

v gk

such that E\:P‘ X‘P) )AL b form a set of k linearly

independent estimable functions.

Now, if we let

AR
: M
1 . :
$ =(T) 2 st_ where « - :
B Bé-blp-
: b's;'t
AR .

we can reparametrize from the less than full rank model Yy

the full rank model y = T8 t+e

= Zix + L, Y +e

Now the hypothesis H is true if and only if « =o 3 tTo test H we

may use theorem 3 .

In order to use theorem 2.3 , We have to know

(1) @ = BSum of squares due to error | (Y4 -7 )‘(\1 iz

10N>
10n>

)

where § is the solution of the normal ecuations
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(2) Q = Sum of squares due to « adjusted for T = BR( 2| )
= § Z \1 - 7-,_ '\1

A
where ¥ is the solution of the normal equations

' \
£ 42 =532 %

But from the theorem on the invariance property of ~* it follows
that
(1-T8(-19) = (4-xBy(q - 2}

By the similar argument the term (4 . 1«.:{:‘)'( 4 -TL ¥) can be
obtained from the normal equations that are derived from the model
-Y = §l[§ + £ with the condition B,= P =By
Thus we have the following theorem:
Theorem: 2.11 In less than full rank model y = X B+ & to test the

bhypothesis P, = pu: .. - B, (nhs<k ), which

we assume is equivalent to testing the linearly

estimable functions é',ri - >_\',_P_ . = )\'S&

the statistic

L N & Q:Al:L T ek
% T - By
is used and is found to be distributed as F (s,n-k, s
where
Q F ]% with any solution

from the normal equations § X ﬁ_ = 2(_‘ e
and

Q +Q =(%-I,%)(1-1,Y)with any solution
from the normal equations Z 2 = 2y i.e.lke

=y ¢
2 kA
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normal equations of the reduced model derived from the model
_ e 5 . ) o i
" X Bre under the conditions, oz Pas - : Ph'

2.3 General form of analysis of the model of less than full rank.

In our formulation of the linear model of full rank, we assumed
that the number of observations n was larger than p, the number of
parameters to be estimated. Now in our model we allow any value of
n and suppose X to have rank k< p.

Our assumption is now generalised into the form

o s Xra*'% , rank X =‘<<P with any n.
We have shown already that we cannot find a linear estimator for E ,
In order to resolve this difficulty we transform the model by
reparametrization to a full rank model of the form
Yy o= Zx +2
Now we shall consider the method of augmentation (due to Plackett)
by which we found an unbiased estimator of‘& after introducing a set
of linear constraints »
c = B P where ¢ is a (P'k)x' vector of
constants, B is a (F-kj xp matriz
of rank (r-k),
. If we seek a linear estimator of the form

E’_:‘:\i ‘i'%lg

the unbiasedness condition will be

E(f)y = E (Ly + Nc) identically in.
o= Lxp +«3Bp
or ‘_[_ = L._)S + ﬂP—
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Remembering that X is of rankk , we partition X into

£ = /% X

IX

'h—k’l'( K‘m-k)’,_k

the suffixes of the matrix elements indicating the number of rows znd
colums. Without any loss of generality, we may assume that X ig
k,l

nonsingular.

Define a new matrix of order px ( p-k),

D=[X . X where L, | is the identity matrix of
ko Tk pek P
I that order.
- _P_k

Evidently, D is of rank p-k.
Then the prc;duct X D will have its first k rows of zeroes.
Since rank X = k, rénk XD <k and therefore all its rows are linearly
dependent upon its first k rows,
Hence X D consists entirely of zeroes, i.e.
XD=0.. (2.3.1)

— —

Now D=I1D=(LX+¥B)D=LXD+N¥BD = HBD.

In order to avoid contradiction we shall assume that B D is nonsingular.

To Pind a L.S. Solution Using The Augmented Model,

By of rank (p—-k), makes up the deficiency in rank of X. Regarding

¢_ as a vector of dummy random variables in the augmented model ,

<

=

(]

Y
In order to use the methods of the model of full rank; we have to see
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whether X

X| = (X% + BR) may be inverted.
)

)
This is a matrix of a non-negative quadratic form.
Consider (XX + BB)D = XXD+EBD
= 04+ 3BD, by virtue of (2.3.1)
Since B D is nonsingular, rank (B B D) = rank B
is rank (XX +BB) D= rank B = p.
= rank D
i,e, _)_(_"li_ + §_|_§ is nonsingulai'.
From the theorem of full rank follows,
Boo (X% v RBY (xYy +B')

-1

~ (X

X

PR XX (XK R 2B)

and var ( fg)
The matrix B is arbitrary, subject to the condition |3B _q] $ 0.
In fact, if for B we use U B, where U is nonsingular (p~k) x (p ~ k)

matrix, the expressions for rs: and var ( F:) are unaltered in value,

2,4 Reduction of the case where the observations have correlations and

known ratios of variances:—

We shall now consider the case when the covariance matrix Y, of the

observations y is not of the form « I but Vy is known except for a

scalar factor, i.e. V‘!

=¢ By where o is an unknown positive constant and
B is a known constant matrix; B is necessarily symmetric and positive
indefinite, and we shall assume furthermore that it is nonsingular,

This is equivalent to knowing the correlation coefficient of all pairs

of observations Y. and the ratios of their variances.
L
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Our underlying assumptions are now

Q1 : B(y) = %Xp , Vy =0B  |B| o mﬁ:wda§=ksr

This case may now be reduced to the previously considered case, where

v, L

nyn

Since B is nonsingular, there exists a nonsingular L  such that

Pep .1

Now put ﬂ'; Py + Then

=5]
~
ol
-~
it

V, P '—eEE.’E P ~ =0,

and " = s Where

We may thus arrive at the required form of assumption
O : E(y) =)_<‘|3_,\11~=‘§)rank X .k
gives every justifiqation for the assumption
n o+ B (y) =x%p  Vy-~l ramk X.k,
and there is obviously no loss of generality in this assumption

of our theoretical consideration.
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Chapter III

3.1 The General Linear Hypothesis and its Cannonical Form.

We shall now consider the problem of testing hypothesis in the
general linear model, using the cannonical form which will be used in
the study of the optimum properties of A O V test.

Q: Ny ~Zp+e  ,rankX=p | E(e) .02 | ECge L1
B : AT (a_'m <

The hypothesis imposes (<[‘) constraints, which we shall take
to0 be functionally independent so that f_\_ is of rank ~« .

If A is the first r rows of the (nxp) matrix X, our hypothesis
is concerned with the means of the first » Y Cs .

We shall develop the theory with the model of full rank. If not,
we can either use the method of augmentation or the method of repara-
metrization to get a model of full rank, under the assumption that
A B is a vector of estimable functions. |

Now consider (nxi) vector,

2= COXxV¥y . gy . cf
where C is a (nxp) matrix and B is the L S estimator of p .
Then z = ( €Mx') (Xp +¢)
= Q‘P. + C

so that Ve

i

E
and var (g) =B
E



. ot CMT ') M

= &+ C "_’\__'CI

Now we may choose C so that the components of z are uncorrelated i.e.

so that,

var (z)

g M;lé\

& oFL

1

L}
[

or if Q: C is nonsingular

ge=M=Xx

which is the condition that the

This transformation implies that

(1) C2-p)' (2o )

n

w

(A1) (2 -m)'(z -p)

Now consider the matrix

>

g

o

i=

where

T

be uncorrelated.

CemM™x'e) ( ¢M™x'e)

e ¥ M e Mx'e
ey M ke . ek (x'E)8'e

A 1 A (3)

t e E-pY T s cfep)
(‘Q_—r_»_)'g‘é (Z‘P)
(B-p) %' (E-p)
12 (A-pY T s cR-p

X
j} ! is the coefficient matrix of the hypothesis, D is

(p - r) xp matrix and FPisa (n - p)xp matrix satisfying

F.[a- Y

Since

A
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is of rank r, we can choose D so that the pxp matrix



is nonsingular, and thus C is of rank p. Then _q‘g_ will also be of

rank ki, and hence nonsingular as required above,

1>
T

Now we have, K= E(z) = Qlé =

v

a1

in which the first r 2; are precisely the L.H.S., of the statement of
the hypothesis H

Thus H is equivalent to testing

H P o= E(%) = X;F_xcu (=i,2, . ¢

a composite h;y'pothesié imposing r constraints upon the parameters.
From equation (3.) follows that the last n-p of the I“—( are zero, so
that there are rnon—zero parameters f"f s Which together with ~" maice
up a total of ( p+1 ) parameters.

We have thus reduced our problem to the following cannonical
forms

"A get of n mutually uncorrelated variates =z, with equal vari-
ances o+ , of which (n~p) have zero means and the others non-zero
means",

The hypothesis to be tested is that r of p variates have specified
means. In order to test hypothesis we need to make assumptions about
the distribution of errors or y. y is as assumed N(Xp , <L) and hence
since they are uncorrelated, independent. The z, being linear function

of y, will be normally distributed and, being uncorrelated ,independently

normally distributed.
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301.1 Connonical form of the assumptions and the Null Hypothesig.

L Z s N(/v;)rﬁll) /—1'=/3»r

l/&

r,-v

/év\-’:
with /:"'f’ =0 .

(the suffixes denoting the number of components)

When we have more than one constraint, i.e. when » 3 1 we know
that there is no common uniformly most powerful unbiased critical
region. Since there is no "optimum" test, we are tempted to use the
L.R. method to give an intutively reasonable test.

Nevertheless the likelihood ratio test of the general linear
hypothesis have certain optimum properties which we shall discuss

briefly below,

3.1.2 The Derivation of L R statistic using the camnonical form.

z is N (/& , ~ 1 )
with /& = /57
/b
[Enep
where Py = 0 and

P
H: //&-r = /\S,

In order to find the likelihood ratio statistic, we may redefine

fe are unspecified

Ppee

and H as follows:

Z is distributed N(/_/_\_‘) &1 ) with =0 for (= F+|, oy,
.. the half (p + 1) - dimensional Buclidian Space
45



+®

for which - «w < /u

C=
) >
w s

lrs \ >0 .
the subget of . for which

% .
/“'L‘ =/ML [ N 2
The likelihood function of the sample

L (11.0‘3 ur { ) ‘Tdﬂ" (= ‘/‘-“:)l( = -/‘:'371
Therefore log L = -1 lo-al“ﬂ -1 Loa ~ - '&‘,1(‘5 _/s_&)'( 2 _/k:)
°9 W - ‘Qil.c? o

t

,,113

The unconditional maximum of L is obtained by solving

Noai_ I

Taer (Bpo ) <o
N =
2 logl - -m
2% °

2ot Cp A (e

+ 7_;,\,‘\ —.L.,\,l_’ .
. A kX me
Vi = %
glving ﬁr P
~r o= .';‘ L"'r E"‘_P
whence, (L, = (verey™

g g ag)h
Now under H, the likelihood function

L= (e Yo oep §-L, [(ae-pn)(zeoS) H (2

e |—;~-—/“P-Y/\ p-r b
+z z
LRl
Therefore log L m -7 Log - M “3 ;_ 1( Be —ree) (2o 7«;‘)

e Cp /o) (o o) B sy

""" /""'*‘) - L “&Zlvr L"\—P'
Therefore the values of ¢ and /‘-I" . that minimize log L afe given by
>log L
__ol-— - _O_ 7-\’ /~ -r» =2
~ /_‘:l”ﬂ u—-’- | p-
=7
2(03‘.. .o - m 1(1 _/«,)('Z. ,_,‘L:
2> e ( 3[ -> g ) ‘
& --fﬂ e Z -vﬂ," T )

ﬂ—‘, ":hﬂr J =0




and o . L [(z, ~/1_A'L)'( 7_.,-/::) + 7=Z,.r ?.h-[,]

ha

n

therefore (.i. )w" Gaare’r . l*l"- { E'n-r Bap * ilv-/"—:)'(i—r ‘/"—‘i)H k

The L. R. statistic

Ay (l’%)“, L. S
(L7.r7. A, L+ W
where u = (Z,-A%) (2e- pe)
/“//?“n—r Za-
Now u = (%Z- /«1—)‘(;,—/@ Jen of which the numerator and
En- 7‘1‘\- /e
denominator, being thg sum of squares of independent normal variates

are distributed as )( distributions with r and n-p d.f., respectively,
when Ho holds, Thus, when Ho is true, F = (n-g) w is distributed as
¥

F distribution with (r, n-p) d.f.

3.1.3 Computational aspect of the above theorem.

4\\ Aﬂ-
In the above discussion we encounter that ne* and m& are

-7

respectively the minima of (%-p@)(z-») with respect to fe under T

and Hl .

But we know from (3.0 )
(2 (z2-p - pxE-pY{eE-p)

Therefore there are the same as the minima of
1
R E RO RIS

with respect to rg .
Now consider the identity
S - e = (EP) (zx p)
(x-%p) (%P + s.
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in which the form (y_-—z_{_é)' (z_—-z(ﬁ) is independent o R
Therefore when S is minimized with respect to B, sois 5.

The minimum values of § and S occur together., To obtain B
and a* for the test statistic, we minimize e¢' e in the original model,
Example.

As a special cage of particular importance, we shall consider
the hypothesis.

H B = Q
where 8 is a subvector of p .
(i.e. a particular case of theorem )

We may now partition X and P conformably to get

R MmMRh-~

L = (5‘, Xa ) F—"' + e

F‘l,_\'

Thus when Ho is true we have

L = X &[’" te

4s explained above, we shall now consider the minima of S -ee .

As in theorem we can get the minimum under Ho and H as follows:
S I R L S N
and nds .o g L X (ZX\'\'K'}Q
The statistic
F=np ( ?\‘:: ?\‘) isA distributed as
R R(z, n-p) .

3.1.4 Power Function of the L.R. test of the linear hypothesis.

We have seen that the L.R. test is based on the statistic
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u= (1z.- s (1 -&v/
[ Zh_rl.,_r,

-

The denominator (Z:.-t 2,,) is distributed as }(‘ with (n-p) 4.f. no
Ak
matter whether H holds or not. But the distribution of the numerator

(Zv-2vY(z. - &v) depends on the H o and is distributed as a 7:(1')

a2

variate only when H is true. But it will always be distributed as a

non-central 'X varlate with r d.f. and noncentrality
non-central ;X, variate with r d.f. and noncentrality

§ = Lq_ ( Feas _//A-*—'*) (/’-— "/‘:‘:”)
_ [ ’ /
where v 18 the true mean of
2

Only when Ho is true, § equals to zero, giving a X distribution.
Now in order to evaluate the power of the L.R. test, we must know the
distribution of u (or equivalently F ) when the null hypothesis is
not true., We know that the statistic F is always distributed as the

non-central F distribution with d.f. n-p,r and noncentrality §, the

same as that of the non~-central )(ldistribution of the numerator,
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3.2 Optimum Properties of the Likelihood Ratio Test of the General

Linear Hypothesis:

We shall confine our discussion to the cannonical form:

(@R N are statistically independent .
z is N (}g_ 1;3
with P r\' where /:"'l' =0
Fpo
[=np
H : = e
/'_\'V' /_’:f

In connection with the cannonical form we shall briefly review
some concepts of the general theory of testing hypothesis (Neyman~
Pearson Theory). We shall consider (p + 1) ~dimensional space of the
parameter ( SR /«Apio) and denote any point in it by the vector
@ (f, oy, ) » Then the joint probability demsity P, (2) of z is
completely specified by the value of & , Without any danger of
confusion we may use the symbols QL and « for the sets of & corresponding
to the assumptions Q. and « , where w - % N{L the set of assumptions
obtained by imposing the conditions of H on the initial assumptions .
That is S0 denotes the (p + 1) -dimensional Buclidian half space,

Q —_f}vgl -% < /,.Lv<+(\: L Ue, e, T).Q\}O\]

known as the parameter space, while < is a subsel of the parameter

space and is of dimension p + 1 ~ X%

S O] s e e e
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Besides the parameter space, we also need to consider the n-dimensional
sample space EUO of the vector of observations 1 - (2 J Lo, 1».)’- The
choice of a test of the null hypothesis consists in the choice of a
(Borel) set W in E™. The test procedure is that if T eW | we
reject H, otherwise we accept H, W is called the critical set or
critical region of the test,

Two types of errors are recognised here:

A Type I error is committed if H is rejected when it is true, and

a type II error is committed if H is accepted when it is false.

There will be no ambiguity if, for the sake of brevity, we refer to

W as the test of Ho The power of the test, or the power of W,

defined to be the probability of rejecting H when ¢ is the true

parameter point, is a function of © and W.
PCo,W) = | py(3) 42,
w
where the integral is taken with respect to n-dimemsional Libesgue
measure.
In this expression for the power of the test rmnges over
Definition: The size of the critical region W (also is known as the
level of significance) is the quantity  Sup Ple,wW) .

. & w

Desirable properties of the tegt W:

1. W is an unbiased critical region of size ® if it bhas sizet «
and P (e, wW) for all @ ¢ () -w Where Q -« denotes the set

of all points not in @ and corresponds to the alternative hypothesis
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permitted -alternative to H.
t.e. P(W|le) ¢« ‘4@@»
and P(Wle) >« 4 ee-n,

2, Wis a similar region of size x if P(& W) =« fopr g1l ¢ cw
3. If W and W are two critical regions of size x for testing
H such that
P(we) ¢ Pwle) R
P(wWle) » Pw|a) 4 g Qe
then the critical region W is said to be uniformly more powerful
than the critical region W,

More generally W is uniformly most powerful (UMP) critical

region of a given class @ if W ¢ £ and if, for any W< £ and
© Plwle) < Pwie)

e G
, =1

© PlwWle) » P(wW @) . e eQ-o.
It is a well known fact that for hypothesis about the value of two or
more parameters (such as the above with + 2?2 ) there never exists a
UMP unbiassed critical region in cases of practical interest.
Nevertheless the L.R. test of the general linear hypothesis has certain
desirable properties which we shall now discuss.

Two possibilities are open:

1. We might be able to limit to a class € of critical regions smaller
than the class of all unbiassed regions, in thehope of finding a UMP
one in €,
2, We would demand less than ma:timum power at every point of LL-e (4s

UMPiness requires ), and settle for a critical region having some optimum
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properties in the large, as for instance maximum average power for
each of certain categories of alternative. Let us now consider the
L.R. test of general linear hypothesis in the light of the above
discussion.
The critical region of the test of H, is then given by
Wo = 3 2| (Zr- piy(ae po)x > Fepmym T

T

ep Enp Incp (3-2)

being the size of the test.

We know that the power P(8|W) of this test depends on s

only

through the intermediary

!

§2 (Y o)

In other words; P (e |W) is constant on the surface in the parameter
gpace satisfying ( /._,Y —/L«:)' ( /17 ./_.:),.z-s'where s is any non-hegative
constant.

This means that the power is constant on the surface

D, - i ole e, (o —/*:':)'Q/:\. -/‘::) - "‘S"j :

The surface Ds' is a cylinder in the (p + 1)~dimensional pa?ameter
space, whose base is a spherical cone of one nappe ( s>o ) in the
( ) ~dimensional space of P pa, o e,

The implication is that the critical region is a simi;ar region,
since under e ,e  is restricted to the surface Do"

Hsu has shown that

"Among all critical regions W of size « with property that the

power depends on e only through the intermediary of
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n

5 e o) (fae - pd)

W, is u.M P,

In order to introduce the concept of average power, we shall
define in the parameter space the (- —dimensional sphere (surfaces

of r-dimensional sphere),

SO P < ) Ll e c=-+u—--.f»sj

where the constants a,, , - - -- ,/u,'; , «,8 are chosen
at liberty with only the restriction that e'»o 6 3o .
If !34, Cfis o e ' denotes the power of a test 4

of H, then the average power is defined as

J fo (o o */“*-’r')%ds

s

in which S denotes the differential area of the surface of the sphere.

Waldts Theorem:— AOV test maximizesthe average power

/
. J Po (Mo e, o) 48
S / jds
$
' for every /u'ﬁ,, . "/";'v‘ni among all unbiassed (or similar) tests.
Ir U = i (% ~/««;)m and VY -_‘iif . unbiassedness (or
_— - U=\ trhyy

similarity) implies that the conditional probability of rejectim given

.,z and U+ V equals =  almost everywhere.

P
Hence for any given /A;+I )

ey . * ¢

/“ll’ .« and s' the average
power:: I8 maximized by rejecting when the ratio of the average density to

the density under H is larger than a suitable constant
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C (Zewy, - = ‘LI,, w+v) and hence when

7 (%,2% 4, . R M /4,) = Lur {;ﬂ(;_,./;)'(gv./,_\:) .48
> C (Zenyy - - o z,“ WV ,
é\:z?lc{s

pos e (RGO Loy L]

[}
—~~

»f°1' average density

A P -
&) j =P -5 [ 2 (Ri-p)
~ density under H S T

(nes

[ 7-—~ Z[_Z(’L—-“H)()-L—k)*(/\“/x) 45

S

(xep) (i) + 1S

I

At
S

= constant

exh —'—,_ (Er-_i)' _é_v"'-—:)'ds
N
As will be indicated below, the function g depends on z

only through u and is an increasing function of u.

Since under the hypothesis U is independent of Z.., 9 S zr and
U +V
U+ V it follows that the test is given by AOV test.
In the definition of g, Ly (2e-amv) (zv -#v) may be written as
6‘ *

(I8 G “%.where % jg the angle ( © < « <7 ) between ( Zo-xv )
and (. -/ﬁi )s Because of the symmetry of the sphere this is
unchanged if is replaced by the angle ¥ between ( M —/, ) and

an arbitrary fixed vector. i.e. g depends on the z's only through u.

For fixed fs~,« We shall denote g by h (w).

Consider S', the subset of S in which o s ¥ ¢4
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Then }\,(w) = [-U‘a.(lts‘ CosT)/r + QXT, (-TXs? Cesf.\/s_] 45

s
showing that it is an increasing function of w .
Hsu's Theorem is a corollary to Wald's Theorem: If W is any
critical region of size < , the power which depends on e only through S.

then for any &= W and Wo each has. constant power,say c and cy

on DS* and hence on each § in DS‘ . Because Ds‘ s can be expressed

as the union of spheres S for - ~ </‘«t < +o0 L=, . ,P,G‘uﬂ‘-
By Wald's theorem c ¢ c, which provesHsu's theorem.
Invariance property of F-test.
"nxi
Consider a random variable Z which takes on values =z
in a sample space Z (n-dimensional Euclidéan). We shall think

now of (2 as a family of distributions P of Z (instead of considering
) as a set in the parameter space), and assume that no two P in 0N
are the same. Similarly « reprsents a subfamily of distributions.
Let 9 be any 1 to 1 Borel-measurable transformation of % on to % .
The random variable '_Z_':a Z has a distribution P! and we write

| P! = E P, where% depends on 9
In general, 3 P will not belong to L . We shall only consider
transformations 9 for which the set of transformed distributions
fﬁPIPenjis the same as the oroginal set (1 wg may write this .3-(1-_61 .
Supposing G as a group of such transformations, we say that

(1) the problem (i.e. 0, ) is invariant under the group G, if,

for all ? ¢ G.
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(1) e - ow
(i1) § (n-w): Q.o
(2) The critical region W is invariant under G if; for all y ¢ G
(iii) @,(w) =W
(iv) g (W) = 2-W
Then the following four Broups of transformations obviously leave the

canfionical form of the General Linear Hypothesis model invarignt.

(1) z! = ex (t=1,2, - .. M, cro)

(ii) 1:~ = T+ by (C=rel, ... P ~w <b < +v)
(iii) Orthoginal transformation on $ Zper, - N
(iv)  Orthoginal transformation on $ oz, ,z,}

Let G* be the smallest group containing these four groups as sub groups.
The following two theorems (1 and 2) are due to Hunt and Stein.
Theorem 1, Of all critical regions W of size which are invariant
under G¥, W _ defined by (3. ) is UMP.
Theorem 2, W, is a most stringent test of size =< .
iees it minimizes Sup [_ F“CB.) - P(W ,e)]
gEeN-w
where F;(Q) ig defined as the maximum power obtainable

by any critical region of size « against a particular

1[4

alternative ¢ ,

Sup pCe,w)
W of size«

i.e. E((_@.)

Interpreation of Theorem 23 Given a particular alternative & ,

a measure of how good a critical region
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of size X is against that alternative is how close the
power reaches to F (8)  and thus the smaller ﬁ< L) ,
o
the better the test is against @ . Accordingly, as a measure of
how good a test is for the alternative, the quantity
Sup [ o) - B (W,0 1s.a satisforty
@ ¢ L-w r:'.( P ) —)}
one.
Two more properties of AOV test.
(1) Fd‘( is of type D in the class of tests of size «
)
(%o be proved in Chapter VIII)
(ii) Among tests of size« , F is minimax for a variety

d

of weight functions.
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Chapter IV

Some useful results in Analysis of one-way, two-way and three-way layouts.

4.1 As we have discussed in Chapter (II ) on the model of less than
full rank we are interested in the estimable bypothesis. In practical
applicatiops, we often come across the hypothesis of the form.

Ho: F.-—er- =F'=Q
where F‘ > P o » P« represent a subset of the elements of
in the model

‘_1_ = )_(_ra + e

The following theorem is often found useful.
Theorem: 4.1 If P, - - pr Tepresent a subset of the elements of

of the model

g

such that

Xpore

‘\44 n

c«p. is estimable for every set of

o

L=y

constants €l where ,(2_';%' =0 fhen the hypothesis
Ho: F‘"‘f’m'— =(5,
is an estimable hypothesis.

Proof: Since ZCCF; is estimable for all sets of < such
that J ¢ =0 , the following in particular are
estimable:

Mpfos PP
Mo pirhoths

S SRR
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. ' ! -
Obviously Z‘.fg , Z\\r_‘[;constltute a set of linearly independent
estimable functions that are all zero if and only if F" TPar = F’*'

442 Computation of Normal Equations.

In most of the models, used in experimental investigation; the
design matrix X consists entirely of O's and 1's and a method is
therefore desirable that may save some computational labour.

The normal equations are
Xt X B o= L'y s a system of p equations in
P parameters.
The procedure is to find the right-hand side of the normal equations
and take the expected value to get the left-hand side.
ie. E(X'p) =E (X @p+e)) =EEp

Consider X = (§ ¢

3 LR

g{) )s € being the ith columm of X
The model can then be written in the form
L= )sp *e
On examining €. B in which § . is a vector of only o's and 1's,
it is found that the parameter p; occurs in the nth observation of the
model if and only if the nth element of §; is equal to one.

But c4 represents the sum of the elements of y for those elements

I

of § that are equal to 1. Therefore §.y can be found by summing
the elements of y over those elements in the model that contain R °
Thus the normal equations can be obtained by finding §:,}£ for each p. ,
taking the expectation of each & y to obtain §Xp , then pubting
the sign A over each parameter. Thus we Bet

P § 4 - g’if’ IR



Now we shall discuss the application of the results we have obtained
so far on the analysis of one-way, two-way and higher-way layouts.

4.3 The One-~way Layout.

The one-way layout (or one-way classification) refers to the
comparison of the m4ans of several (univariate) population which we
gshall denote by ﬁ> SR P, » We shall assume that we have
populations normally distributed with equal variances o and that we
have independent random samples of sizes n,my, .. M, from the
respective populations,

Then the model associated with our underlying assumptions will be

Q: . = + B o+ e (i=l,1,-~»l=). sV, 2‘“\_1
Nj\d /& FL ‘J d ) ) -
, § ;) are independently W(o,¢ ).
403.1 Point estimation of /0 P - PuY

Normal equations take the form

( Replacement of a dot for a subscript letter indicates a total over
the possible values of the subscript and a bar over the letter means

the corresponding means).
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The sum of the last b equations being equal to the first; there
is at least one linear dependence. It can be easily seen that the
last b equations are linearly independent., Thus

rank (X' X )= b
and consequently thers are b linearly independent estimable
functions.
Also we know that E(yﬂ) and any linear function of E(yl.d. ) are estimable.
Also it is known that the best linear unbiased estimate of Mt Pg is
given by

A A
E(ycd ) = /" + PL' = \a# = J.

n

.
L

If Je¢=o , then ch[sc is estimable and the estimate is J g -
Suppose that ZC"F" is an estimable function. Then, some linear
combination of the left-hand side of the normal equations must yield
Z‘c‘f—*\c e This linear combination is obtained by multiplying the
(i + 1)th equation by % and adding.
¢

From the resulting equation »
AL ep t LE
we gsee that if 2 =o then ZCc‘sc is an estimable function,
From Theorem 4.\ it follows that the hypothesis
H o po= Pas o < Py
is an estimable hypothesis, since Z<«p, is estimable for all Lec=o

44 Two-way layout with unequal numbers in subclasses and no intraction.

Suppose we are interested in the D levels of the factor B and +

levels of the factor T on the outcome of an experiment. In such a
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two-factor experiment, the observations can be arranged in a two-way
layout or bxt +table by letting the rows of the table correspond o

the levels of factor B and the columns to the levels of T.

Let the number of observations in the (i, j) th cell be nﬂ' where
not all nf. = O,
If y% i denotes the kth observation in the (i,j)th cell, then
the model (with no interaction) associated wifh the design is given by
o yﬂk e + Py +T,}' ek

{ﬂ@amiﬁqmﬁwﬂyN(G@L)

L=l 2) )L’
J:‘,Q’ "t
k:. 0)\)2) ..)v\l.d‘

where k=o corresponds to no observation.
The normal equations of the model are

A A
/M-. ‘V\”/Q + -ZV\L‘_ F" + Z"n'(i -\-‘d. = Y.
pi: A A TN P
T - A + z‘ﬂ,’\. ’_a“‘..ﬁ\'\, =\a_ )d'_“)l)._{'
i AT AR B )

Theorem: 4.2 Under the assumption that the n . in the model are such

that po-pe » § Y are estimable for all ¢4 ¢!
and i i’ s then

(i) there are exactly b + t = 1 linearly independent

estimable funotidns.

(i) Y«pc and 147V are estimable if L = Ldjeo.
Proof: (i) b+ %t = 1 estimable functions

) [ ) - )F’I_Fl_—,)“'—’cll
fi- Py PP o



A

and n, /2 LDRLTR po * Z“-A' v are obviocusly linearly
independent.

Of the b + t + 1 equations in the normal equation, the first
equation represented by r equal to the sum of the b equat—
ions represented by /55 y and also equal to the sum of the %
equat:jmns represented by T

Hence, there are at most b + t ~ 1 linearly independent
estimable functions.

This, together with the fact that there are at least b+ t - 1
linearly independent estimable functions ensure that there are

excactly b + t = 1 linearly independent estimable functions.

(ii) Since every P - Fc; is estimable, every linear

4.4.1

combination of them is estimable.

b
Consider !E L Cpe- Po) (4

A=y

P - P where . = lb TR
This implies that B¢ “F- ig estimable for all i so is ZCL'((’:(—FJ _

If Te«-=o , this expression reduces to T <ip: .
The same argument applies to 24jF where .df=°c .
Solution of the normal equations for contrasts of the ]/3;5 .
From the 7 equations we obtain |
Ao -Cd‘ . % _ *l‘]‘ Loy 5 (3 = 1y 2500%)
From the r:; equations we obtain -
}‘{mﬂ (Ao tnebio= . (i =1, 2,..D)

From these two equations, we have
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I By Ay e g (e, 200

On simplification, we get
£ b
’\. - N N, 2 - . - net g
n, f’s. fz‘ %..\ 11,7‘/ /3; de.. ‘é { “3,4.’
A 3
C-¢ . ",. //3\"- - (5'.- Z “Cd. - Z. ?— 'ns-d;—ncd. {r;s : Tg

=" diys "y
f ‘ (i = l, 2, ey b)o

where 4. . oy - l“ﬁd' Té.d-.
. 3 A : a
R A Rl A I

\ s
1" s n -

This system of equations representing b eqti’ations in b unknowns

may be written in matrix form as

A
SR =9
where b x b matrix C has the elements
. o
L (1=1,2 ey )
™
b b i
g = SHERTEN ( $8,1=1, 2yeasb)
. 3 1= e
Theorem: 4.3 rank (C) =b -1 :
Proof: By theorem 4., and the assumption of the theorem

concerning the estimability of p. -pi there are (b - 1)
linearly independent estimable functions of the p.
These functions must come from |

R =9

so that rank (C) is at least b - 1.

These equations are not independent, it being easily verified

that the sum of left-hand and of right-hand side are both
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identically zero.
Therefore, C has one linearly dependent row, and its rank must be at most
b- 1.

Thus  rank (C) =1 - 1.

Now in order to obtain a unique solution of the equation

A

CE =9

Wwe may impose any nonestimable condition, the simplest one (generally)
being 1 '}3 = 0, where 1 is a vector with each element

equal to unity.

These two equations together may be written in the form

€ 41 E it
i 0 0 0 (4.3)
Theorem: 4.4 Under the assumptions of theorem
rank (C*) = b+ 1
c 1
where C% =
1o
Proof: We will show that the unigque solution exist for
SR = 9 (4.4)
A F = 0
Consider the equations C ]'9_ = g oy
1'' g = O
E | X
where C F g represent any b - 1 equations of C P‘ = qr
B 1 i . =

The determinent of the coefficient, ' %'l
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is found to be nonsingular by adding all the columms %o the first column
and using the fact that any (b - 1) x (b - 1) submatrix of Cis
nqnsingular.
i.e. The unique solution exists for ( 44 )
Therefore the unique solution exists for ( 4 ¢ )

or rank C¥ =D+ 1 u

The solution of ( 43 ) may now be written

A

S - R
0 0
bxb bxy
31\ i, _CY
B'Ll ~ah o
or B =34

As a.result of the imposition of the chosen condition, any i?’c is
the estimate in fact of ( pi- P ). This procedure is useful in that
it produces as a by-product the variances and covariances of the '\’1 y
for cov(f) =3B, &

To understand these facts more in detail, we shall prove the following
theorem,
Theorem: 4.5 If _C_—;(- |8, B,

-l AN

then (i) 3. (and .3.‘1) has all its elements equal to t
(1) B, = 0
(1) 3, 8B, -3,

(iv) CB  is idempotent of rank b - 1, with

diagonal elements each equal to (b—ll)'b
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and with off-diagonal elements each equal to ~ 1.

b
(v) The rows of B, add to zero.
Proof: From the relation Cx Cx =1
we get c 1 . B I 0
2, 32, 2 L
1 o] |3 B ) 0 1)
2 22 -
or ¢ B o+ 13 =1L (=)
i B = 9 (b)
¥z -1 (<)
kX
¢ B + 1 B = 0 (a)
&% - = -
It is also known that
e = 0 (e)
11 - b (2)

(1) Multiplying (a) by 1* , we have
ir¢c B+l B =1

Using (e) and (f), this gives

b B = 1t
or 3 - (_1.) L
al 'b

(2) Multiplying (d) by 1t andusingd) and (f) will give the
required result .

(3) Multiply (a) by B, ‘to get
3 ¢ B + 3.1 B = B

-

in which B 1 = 0 by(b)

la

e
]
[s2)

Thus B

-y
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(4) PFrom (a) we get _(_)__]3.“

I

s

|

i

:

10

2

i1

Thus the diagonal elements are all equal tob -1, and

the off-diagonal elements are equal to

(5) From (b) it follows that the rows of B

4,5 To find the values of E ( £ ) and Gov (
T

- 1.

b
add to zero.

We shall first consider E ( ]?—’- )

Since C E— = o 1is obtained by linear comhinations of the normal

equations
E(g) =E ¢
E(p) =3,C
-{2-2
b
b

i.e. ith element of E ( ,‘5

B = CE (R ) = Cp
F
_.];.:!-.‘)[5_
1 p.
y=B( p) = Py
- p-F
= Cov (B, §)

We shall now consider Cov ( f‘-: )

E

B[ Busg - B CpJ [y B CH

B

(B -E([%—)“F—‘ C‘(F.)]'

By -feplla -l

Let A = Cov(g) = B[g-E][q-EP) 3 then

Q = var (‘V')

o



2
i
=
H
~
al
™
e
al
~

) <
=var (Y, ) +var Z.“q 7”“ §
IR !
-2 COV ( L *\tl \"j 3?(..\) “
o
= 'hL o~ Z.“‘ —-lu\l Z 'n\,a "
JSIRY I e >
e :
= (mm L Nye :
. &‘—l h-d' “
Now, for the off diagonal element of A4, !
i
Qs = Cov(qﬁ,‘irs) ( TTS) : ’
3 _ IS _ ‘
= Cov | (y,. - ‘Z;“vd' 140y, kL sl J4)
2 (.
= 0V (s d) - S (g 2 i)
3 b
o G o S e
=\ [- L- =1
= 0- & Z; “SJ_"_’vd - e ; Msp vy re Z_ "‘sd “YJ’
| "y B " R
b ¢ ! i
2 " "
= -6 Z_ SJ \’d
Jr"l .h.d. I
Thus, we have seen that A = C &2
S0, GOV(fi—)=§,, c B & 1
=B &

4,6 Bose's Information matrixs-—

We have seen now the role of the matrix C,known as Bose's

information matrix, in the reduced normal equation

SR o=«

in the one-way heterogeniéty setting or two-way classification

analysis of variance. In block designs, we have t treatments to be

planted in b blocks, each block aontaining the same number k, of plots, ‘
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one "planting" to be allowed per plot. Then the total number of
observations will be bk. Let nL.&- be the number of appearances of
treatment i in block j.

Then the mlements of C will be

C(.'t‘ - 'H" - Z_ ts [:_l)l).. ‘:

S=L|— k
< = BT
S=) k
and those of P will be
LR R
where T, = sum of all y's corresponding to treatment i and

Bd' = sumfp of all y's arising from block j.

In the setting of two-way hetrogeniety, we have t treatments and
k x k, arrays of plots, and the model for the observation
corresponding to treatment i in row j and column h is

Tgwt = 4 B e B R g

Let ng) and nf?) be the number of times treatment i appears
in row j and in column h respectively. Let T be as before and
Bf) and B:) be the sum corresponding to the jth row and hth column
respectively., Then following the same algebraic procedure as in the

case of two-way classification, we finally arrive at the reduced normal

equation

C v =

where  C has elements 2 @ ) (2)
n(‘) Z“ﬁz LIt (L) (211&5__)
< = L - s % k k
y s k k, NERAY

Tl



< = - LM WE L Me st oy LM T WE
kz k. k, k,
and

. 0w W Q) O —

oot Ty Py mh Byr s s
. x kz k‘ S l(| l(z

) :
N.B. Z; h?: ® Z_“t: = the number of replications of
S S

treatment i.
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Chapter Vv

Admiscibility and Complete Class Theorems.

When a set of possible designs is very extensive, we would like
to have means for ruling out experiments (or designs) which are
inferior for any purpose. If a design 4 is better than another design
d*fgr a.collection of problems Tl then we say that

d is better (M) than @ or d: dominates (W) d, If d is
such that no d dominates () d, then we say that d is admissible .
A class of designs 4 is complete (M) (or essentially complete
(m ) if for any d‘not in A +there is a d in 4 which is better (T)
than (or as good (T) as) d.  If no proper subset of A has
this property, & is said to be minimal complete (M), Similar
definition may be given for minimal essentially complete (T).

Definition:—= A class of design, 4 for the linear hypothesis

with F_ e <EP and T ’

when the experimenter is restricted to choosing the

vectors x,c A G E may be defined as follows,
! ; )
4, (4) = {d‘_}_(_d = &) withxz A < ¥
’ i=l, 2, e oo M

x! and P § N.
We shall now suppose the problem space A to be a set A €E .
A point (M, 3, ... A)=2elnay be interpreted as the problem of
estimating }\'F,_ .

In the design matrix -}—{d’ some of the g_:_j’_s might be the sax‘ne°

13



If ')'c'l’ oY) =, are r different vectors, the experiment may be
interpreted as the one in which y corresponding x, is observed n. times.
1

The design matrix may also be described in the form (nl, Eps Doy Xy g

/ .
n.‘, ’ &)o ‘
Thus if M (d) represents the information matrix associated with

the design d,

w(a) = Jomu (a)
where Mi(d) = ;iz'i

Let the variance of the least square estimate (which is the same as
‘maximum
the likelihood estimate under normal theory) of -~ (‘A'ri) when the design

d is used, be denoted by V, [é'rg] .
Ve know that p +2'p is estimable with respect to d, only when
ua) ¢ = A (5.1)

has solutions for

The variance of the ewbimate, V [é'r’é] :r}fﬂ(d) [ where
is any solution of (5.1)
When M(d) is of full rank, ~ is always estimable and
v, [z_\'}%] = & Xu (a)
Definition: ~ Ah(A() where A < A is said to be essentially complete
with respect to 4. (4) if and only if for any
d e AH(A) and any unknown p ¢ B there exists d¢ B, (4).
such that
v, [g'fi_‘] <V, Lz\’ﬁ_] for all 2 e,

14



a point A ¢ E’§$) being interpreted as the vproblem of
estimating 5‘? .

In the above definition we use V, [ Z\'F_] as the measure of error.
Other measures of error viz: E [(é"P)IE (@..P)] (L being same
positive definite) and sup v, (5'%} may also be used.

Ae\

The fdllowing lemma, which we shall prove in order to simplify
later proofs and to take care of estimability considerations may be
true for these measures of errors. (Elfving).

Lemma 5.1 If M and M are pxp non-negative definite (symmetric)

matrices such that

(5.1) A'M2 A2 for all ) e €T

then

(5.2) (a) if, for any given ) , there exists f such that
g = 2

then there exists (‘ such that
M f‘ - )\ and

(503) (b) (‘M [” < i‘ M (s

The statistical significance of the lemma is as follows:

If M(d) > M(d), d" is at least as good ( T ) asd, T
being the class of all prbblems of point
estimation of any linear parametric function

ji.e. under the conditions of the lemma, any linear parametric

function which is estimable under d is estimable under d and its best

15



*
inear estimate i .
linear estimate under d has a variance no greater than the varirnce

of the best linear estimator under 4 .

Proof . (a) Let Vand Y be the vector spaces spanned by the column

N

»

vectors of M and M ,respectively, Since I and il are
syrmetric matrices ,the spaces spanned by the colum vectors
are the same as the spaces spanned by the row vectors.

Then part (a) of the lemma states that U 2 V.

Let us suppose ,on the contrary,that there exist 2 € ¢ and

*

X orthogonal to V ,

A

Then M 2= 0,and therefore Al

-

A =0,
From (5.1) consequently, it follows that
) DN > 0
and thus AM X = ©.
» camnot be zero nor orthogonal to M ,since it is a

linear combination of the colums of Y .

1>1

Therefore MA= 0,
i.e. z_is orthogonal to M ,which is a contradiction.
(b) Since M and M are non-negative definite, there exist

a nonsingular matrix D ,such that

A B 1 0
D'_I_@D =" | ’ Q'MD = .
I I B Q0 0

—

Tt can be seen that A is positive definite since ( 5.1)

becomes
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where A= (A AD

Furthermore there exist orthogonal matrices @ and P such that

@ AQ=%, B CR =(10

- o)

so that ’
0| [AB|(Q 0 £EBg
or|lzcllo® |zz0
€00

We can easily verify that G = 0, for any submatrix of the form

. .
ﬁ\d
gsemi C}cj 0
is positive definite and thus
>('L. ih. ) . -
d P -f}%’ 20 t-tﬂcw =0 .
‘q‘i} )

Thus without any loss of generality, we may restrict our

discussion to the matrices M and M of the form

*EQ 100
Mx = | E'IO asd M = | 000
009 000
where
Xl
Q
Y
0
K\!
We can see that
*x E
B I




is positive definite, since from (5.1) we can get

(z', ) (1 E\(i')_ > (= z))

2 E? I/ Xy

and (0, X' )(E' 5(")

SN

I
0

From the above consideration we can see that, only . is relevant and we

may derive )

Thus f“‘_ﬁ‘ <N (¥ - Eﬁf)-ll\»
Relation (5.2) now becomes ) -
N(%=-EE') D ¢ AN for all )
The last relation is equivalent to
N(% - EB') & - a2' % 0 forall X
ieee (X = I = BE'E) is non-negative definite,

From the assumption of the lemma

X B 0) IQ0Q -1 E Q
E'I O - Q Q0 = E I O
°0 0 0/ Q Q0 - 0 0
is non-negative definite and further
-1 E) is positive definite.
B L

(because X is diagonal and A'%) > 2'2 )
Thus R, is positive definite, where R is defined by

-1
R, B\, (%I B
R 3,) Bl

20
R| = K —;—EE_'»
-n

The positive definiteness of B, yields the desired result.

In order to proceed to the next theorem, we shall define a new set R(4).

18



Definition: Given a compact set A S E’ ., Ifx ¢ 4 and x
# o, then there exists v(x) » 1 such that v(x)xeh,
and if Y, >v(g), then v x ?l A, With this notation
we define R(A) < A as R(4) = i»(_}_:_)gjgc_;é 0 3 _}_r_eA.}.
Theorems 5.1 |
If A is a compact set in ET”  then A, (R(4)) is essentially
complete (A) with respect to  4,(4) for all n and all A s e
Proof:
Consider any design d € A,‘(A), with the associated information
matrix )
u(a) = Z n. ¥; (a)
where  M(d) = (z, =)
next consider _i_{; v(z,) =z, e R(A). in the definition of R(A).
Then the information ma‘brii of the design d“ with & ¢ R(A)
will be |
wa) = ] n ()
(z, %)
= (g ) z x)
- V@ ()
= v (xi) M, (a)

Then the condition of the lemma (5.1) that X Ma ) ) - A MA) A 2o

]

where Mi( a)

for all A & 5P s satisfied, for
Yua)r - ayma) o= x(me) - ua) A
=Zni ( V(_:_{i)——l)bmi(d) A

1
0

A4

19



in consequence of

»(z;) > 1 and XMi (@) = [Z N~ l'%,o :
Hence AH(R(A)) is essentially comple’cel (Mywith respect to A, (4).
Theorem: 5¢2

If A is convex body in E ¢ with a total of m extreme

points ¥, , %, - . «x,then 4 (2.4, ...« ig
essentially complete (A) with respect to 4,(4) for all
nand a1l A < &g

Proof:

Let the design matrix X, where d e AE(A) be

(nl s X9 5 Do X5 5 g B, ’25,.) and Xd

where 4 ¢ AM_M (%, %ay - y Zm) Dbe
(ﬁ'»f‘-'5;‘1’5‘3 S R, %)

with [ =71 ¢nm and £ 0 for j=1,2, - - .-, m

Let the information matrices associated with designs d
and & be M(d) and M(d ) respectively.
We shall now show that there exist®,, - .- - ,f#_ such

that &, £ 0 and
yu(a’)r - ¥m(d)r » Oforall rc BV,

so that the proof of the theorem follows from 5ela

Since Z; ¢ Aand A is a convex set generated by X, - - - 5 ¥m
m
i.e, A= f Z)\igg,_‘ ;N 3o, {=t,2, -+ ™ and Zhiﬂ}
(=1 ‘
We have
5 m)\ i< 1,2 "
= . . ) 2 o0 =1 , < N N
-x-i Z_ >\Ll KJ Y LJ o ) - l 1
,'-l 1= {-= o2, ~



Now

Wa) - JR Moy Zﬁfﬁus}

('.-.n

= xP« where & = (%, «., Ko
and P = [ \
A, 2
|
RN
* i ‘
and M(d) = Z_ n, M, (a) = L n, X X
o < . |
L= = Lz-nl(iic)(:_éu)
, . '
= AN
Z_ni x (...3.‘) =
}

IR
[ £
Iz

It is known from matrix theory that there exists a nonsingular

matrix @ such that

X = Q%
. ) \
with Q5@ - 0 and QPQ = Tn
o
1
™
s Xy, - *,. being the characteristic roots of
Therefore we have
wa) =2 Q'8 @8 = Eix, |
0 ,
= Z n, :(_.‘“ Z: 7(“‘

L

and N[(d) = Z;‘(Lr;.l
Obviously each ¥, -EJ being a Gram matrix is non-negative definite
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A M =M ]

This can be done by choosing #, , -

haal

L=1

,ﬁmcan be chosen so that |x| ¢! yor Lyl o™

C=-m) g__(; &£

2

% 80 that the colum sums of § P

are less than or equal fo one, since a matrix that has all positive

elements, and whose column sums are less than or equal to one, has

all characteristic roots {x, | ¢ 1.

-l \
; = L DY : P
Consider SP ( = Zm Mw u») in which A 0 , B

so that each and every element of §1’-l

et AL (4 - ST

The column sums are

Now Z A, <! when
w
value of N,
‘l‘hus, <= L;“ £Mmi+m
v

This completes the proof.

Corollary. 5.2

and

Aoy =

e

.
Ny

is positive.

z_h‘. >‘L'u. >\[0' .

My ';lf Ln M} +#1 whexne [N} means

and

- o.
R t

the integral

(p)
Let A be a compact set in B M cuch that R(A) has the

property that the convex closure of R(A) is generated

by m vectors «x,, x, ,

Lo

in R(4)3

then,

A Ls‘,.--«_“}is essentially icompl'et'ef(f\) ‘with respect to
Ny

(4) for all n and all A <

82
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Proof . By Theorem 5.2 AML"S', ©+ ¥w]is essentislly complete with
respect to A“LR(}&)J and by theorem 5,1 A“[R(ﬁ)l is
essentially complete (N\) with respect to A“(A) .

The following theorem due to de la Garza about polynomial regression ,

which we shall prove in the chapter on polynomial regression, is

mentioned here for continuity.

Theorem +5.3. Let A be the set of positive vectors

X =+ (1 ,%,%, cerene ,x"") (x, <x< x)

Then , to.any design comprising more then p different observations

there exists a p-observation design yielding the same information

matrix.

Thus , in any design associcted with polynomial regression,
for any specified estimation problem , the number of"levels"™ x needs
never exceed the degree of the polynomial.

Since we are mainly concerned with designs in which the
number of observations is small , we shall not study the asymtotic
coupleteness in this thesis. Ehrenfeld has studied the subject quite
thoroughly.

Example . Consider the model

E(Yi) =X F; %, Pa*
with the set 4 =i(xil s xiz) T0<axx, $ b

The set R(4) is the boundery outlined

0

A

a < X. <B}CE
XX =

Lz Py P,
A in heavy lines in the figure viz .Pl}?2
a ? and P2P3 .
e —
Q, b
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Then theorem 5.1 states that for any n obgservations in the set A,
there exist n obscrvations in R(A) which do as well for estimating
any linear combination X,/s, * >\sz .

Corollary 5.2 states that for any n observations in the set J
there exist r observations (. r < n+3 ) at the points F ,E, P, that
are as efficient for estimating sny linear combination z\,’s‘ + A, f’l.

It can sometimes happen that we are interested only in a subclass 2

T of problems in T which are concerned with a fixed , proper subset
of p paremeters,say .

Let ¥ (a) u.(a)

M(a) =

¥'(a)  ui(a)

i (a) zg"(d)}

¥ (a) M (a)
where M (d) is a ( s xs ) matrix,

Then the partial information matrix for the relevant parameters

F' , e [s‘ may be defined as f

1w'(a) = (u'(@) ) = u,(a) - 1 (@ (@ (a) (5.0 w

which is still semipositive definite. :

When M(d) is singular, M (4) has to be redefined to serve the pmc-poseéZ

i
¥

purpose of the present theory.If ,Mn(d), % 0,(54) may be used as a i

il
!
|

definition. i
Otherwise, M:(d.) I\L‘I“(d) has to be replaced by any solution,
by
alweys existing,of the matrix equation
N, (2) X = ¥, (0);
it is known that the resulting M (&) is still uniquely determined

and non-negative definite.
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Uniqueness of ;_;‘(d) .

Let _)_(I and X . be two different solutions of

¥ X = y(a)
ice. u(a)x = ¥(a)
Mn(d) X = I—ﬂu(d) (5.5)

Then the corresponding values of _1@_1“(6.) will be
i(a) -u(a)x
" v =1

and i (a) - u(a) x.

M _I_(_ and 1»_1 g(_z are both symmetric for their transposes are respectively
j

equal to X' = X'M (a) X end XU = X'M (d)x .
2 T

\ b St )

Now from (5.5) again

xu (a) = XUX
{ 24 2
and XM (@) = XMX .
™ T2 TR 2
Since the left hand sides are symmetric,so are the right hand sides.
Therefore X' (a) = ;_c'_lgm(a)
Rt 3 2
or u(ax = m(ax ,
M2 ] 12 2

establishing the uniqueness of the partial information matrix M (a) .

Now Lemma 5,1 may be generalized as follows ,

Lemma 5,1 . 1If 1_;(5) > U () , d is at least as good ( T)as a,
W: being the class of all problems of point estimation
of any linear parsmetric function of a subset of parameters.
* * Ll * - = _—\ a5 (A
ice. Given I (4) - i (4) I (a) L_Ih(d) >u(d) - ILL‘_‘(C}.) i (a) i (a)

then we have to show
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(a) if, for any given ) , there exists £ such that
®
d(@p =2

-

then there exist ¢ such that

-

M (d) p =2 and

\ x <

oo s PM(Dp .

t

Ivf (

(%)

1o

Let the relevant parameters be I&, s e and the linear parametric
function be Y = b'lé where X\ = [, and P:/ B,
: |
Y | Ps
\ o i an
0 |
Then, if T is estimable under 4 , h’
¥ (a) p = X\ has a solution.
i.e. ¥ (a) M (a)J p \
v 9 -1 — “t
y(a) m(aly¢ o
wu kXN -
e ulag + ylay =
I (d + M \d = 0
1 (g i (a) 3 0
From these two . equations,we have
o= - (a)u (d)p
by 8 22 2 -l
wd (,(&) - ¥ (O (25 (@) )= X
ice. 1 (d)p = ), has a solution.
0 i 2

From lemma 5,1 we know that under the condition i (a) > u (a)

I\'Ia(d)p = gl' has a solution
- -1
impli 1 (d = tione
implies that M (c‘i)gl A, has a soluti

i.es ¥ is estimable under 4. .



Proof for the second pert is the same as in lema 5el.

If ve can show that var( g ) = pli (d)p Zvhere o is a solution of
il ! -1

i (a)p = A, the lemma is proved,

- =l

Since 4 is estimable ,

=
~
&
o
il
>/

or M (d)

1
I;° hgo ]
u )
e ——
©
==

or 'IE‘I ( d) 'b';ll( d) MU At
() u(@|,/ |o
N LY A% -
o ulap+u (@, =y
l'e.
B (g e X =0
Therefore var n~p =var ( Xp )

~ (g, pJuca)
.
(g ,p) (4, u(d)

n

E.)
.

¥ (a) u(a)
2 1t
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Chapter VI_.

6.1 Optimum Allocation in Polynomial Regressions

In fitting a polynomial of degree r in a variable x to a

dependent variable y we are interested in estimating the coeffic-

i

If the n observations on x can be

ients lai of x; ’ settingfpnfiden_cfh intervals on the
and testing its significance.
located at within given limits (which may be taken as* 1), we may
so allocate them to get maximum precision to the estimates of these

coefficientss If the allocation is restricted for example,*to

equally spaced points, we shall have to consider the restricted optimum

i.e, optimum allocation under the restriction.
Our basic problem is how best to estimate the I%;’s .

The model we are referring to can be written

P
% . .
a0 bRyt R A
1’-.1,2,
or Y = )_(PH’:
where 3 Vox xl:
! \ | X P
. X s Xa b X
3" = .
Y PRy % =y
n
v - &
- and & = | .
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Now consider the determinant of any (r+.) x (la+l) subsmatrix
of the coefficient matrix X. Without any loss of generality we may

consider the matrix of the first (p + 1) rows, with determinant

o=
L(‘

which is very well known as the alternant of Vandwmonde and has the
value :[r (% -x) « Therefore the determinant vanishes when and
only wherf LS (any i and j)e We shall be considering at
least p + 1 different values of xl.’s o Consequently our square
submatrix of order (p + 1) ¥ (p + 1) is nonsingular and X is of
full rank. Thus all the theorems of full rank model will apnly to
the polynomial regression problem.
Two aspects of theestimation problem. in polynomial region are
(1) To determine the best method for using the information given
by a set of observations Yoo 4, » dy
(2) To determine the best method for choosing the x values at
which to take observations.
The first aspect of the problem has been studied throroughly,
though considerably very much less has been done on the second.
We shall be concerned here with the latter aspect of the problem.
Very recently, De La Garza (359 was able to show that jus?t

as much information is obtained from observations made at certain
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(p + 1) points in the interior of an interval as from n (> p+1)
points on that interval; the weasure of information being the

variance=covariance matrix of the estimated polynomial coefficients.

6.2 Formulation of the problem:

Q: Y. &Fw; with rank (X) =p+1, E(ey=0o

and B(e¢') = V, i.e. there are at least (p + 1) distinct observed

variates x; . By Gauss-lMarkoff theorem, the best linear unbiased

minimum variance estimate is given by ( )_('\/;')Q'l X' \J: 4 .

Thus the generalized variance of the estimates or |var ("i_)\
= eV XV var ) VX (V] )

| OV, XYV %) (6 Vg )]

;]

"

VR RRY
We shall therefore use the generalized variance |x%' \[; )_(["' as a
measure of efficiency and an optimum solution will be based on this
generalized variance.
Now we shall show (De La Garza) that the same information matrix

-1
X Vx X, and hence the same value of the G.V. can be obtained by

replacing a given set of n observations at the points =x,x, -~ %,
by a total of n observations made at (p + 1) properly selected points
in the interval from x, to  x .

The problem is to show that givén a spacing of observations

at x| iar,q, - nyom 2 pe , these being at least

(p + 1) distinct x, Wwith the infommation matrix M it is always possible
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to respace the observations at (p + 1) distinct locations
in such a manner that minimum x; ¢ TY < maximam x;
i = 1, 2iieeseeen
J = 1y 2iceveenp + 1
and X' \[: X =R \I-‘& where 8' \I—; R is the information matrix of the
respacing.
The problem is solved by prescribing a method for finding the

required Vtand R which determine»the spacing of the observations.

Some useful relations:

Prior to investigating the problem as outlined above, several
relations needed latter will be developed.
Consider the polynomial

P()S) = @IF_ = (\,x,xl).... x”) ?‘

: :
= ?oi-lg'x.,..A.. +FP)<|. P

Choose (p + 1) distinct numbers z

From Lagrange interpolation is follows that

PO = z)(x-2) - - - - (-Tpe) P2
(T-I-'L,)('Z.-T.S) o (z'_zf"")

4 (-2 ) (%) - (A—-LPH) P(ry+ - -+ (x-2) -+ o (x-Ty) P z"‘,,ﬂ)-

() (arty - (e 1"*0 ("bi-\' ) U’[’ff"-p)

With an obvious notation
pe

P . L F(x ) PO
‘=—\

Now congider
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(P - Z(z,) s F° * iz P’z‘? N ‘ﬁ-z'
D .
T p
1\»+> Fo + h ZP“* +Fp1'p+l
[} Z, 2, l‘: Fo
s Y 7': 7-.{’ F‘
2
] zl"" -LI”" P‘"

The matrix Z is nonsingular, since its determinant is a Vondermonde

determinant not equal to zero due to the 2; being different.  Thus
poo= T'(Pe) and for any
5"; = X Zhl (Peay) where X' = (1,x,x*, . . Py
But P(on = (Fx2)) (P@)
where (P (o)) = [Feum
F(%2)
P,
Thus x' Zﬂ (Pw) = (Fex,2))' (Pay)
Equality for any % implies
x' z—' - (6.1)

(F Lx,'z.))
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6.3 Investigation of the problem:

Using the appropriate transformations (i.es x« <~ A )

(x‘-x
. . P/
it may be shown that without any loss of generality the range of the

variable x may be limited to minimum x; = =1 and maximum x; = +I .
Suppose now that some of the x; are not distinct; -say x, = *.- =X
with the corresponding variances of Y - T G SR S
Therefore the variance of the mean Yy
= Var ( Z‘j%() =

Such a group, may be made for all x; not distinct, thereby reducing
the problem to considering only distinet x; . Finally for m=p+i |
there is no problem since the spacing is already at (p + 1) locations.

Now we have reduced the problem to a mathematically conveanient

form: Given a total of n observations at n distinct locations

T ,ﬂ>(|w) with minimum x; = -1 and maximum x; = +l

s it is always possible to respace the observations at
(p + 1) distinct locations ~r|. » d:l,a o P in such a manner

e
that -1 ¢ v; ¢ * , and XV, X« RV R .

{
Suppose now that R exists, then

-\ n
Voo (x RV, (xR

< - %

a0 =
(KR
From (6.1) it follows that the off diagonal elements of (% RV, (KR)

are proportional to

g Z \wu LT Cemd ] (41m
zu [T o) e

Since \t is required to be dlagonal, we must have all these equal to
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zero for 9 ¥ b
This requirement is satisfied if the Y are determined such that
T =0, Z.oi x =0, NP AE J:."w “where ¢, J\“(x,m
For reasons that will be discussed later, we shall further constrain e

the v by

AR L | (<)
By direct expansion,
CP. e X, FeGLR R + ‘*P-\-\ XE + ‘t"’ ' (/“'g>
Hence ~¥; are the p + 1 roots of the polynomial
P (I’) = ot x,si-l \’P +YI,H e
Substituting (6.4) in (6.4) and (6.3) there results
*o +‘ . ,.h_lfr «, fpm
{'\ “"\_ e ‘{"1 #r{-l L 4N f-‘).\"}
+ = 0 (4 ~7)
{—P—l h’ o hl"ltf’* {-
“I‘ f'ﬁ-\ : o +sl-;-| {BP '(P“ "\"”
with +¥ = Z(QL*# ) 4—‘“)‘1 2, >r+',_EEEﬂ£

is a system of (p + 1) equations in (p + 1) unknowns.
-l

The square matrix is obviously X' V, X which is nonsingular and

‘hence (¢ ) has a unique solution; % . This solution is not

trivial, since it is readily seen that some h . pr ¢k ¢ Al

t s td ,
! ~ ve X
is not zero, because %k = Jeit 0 for positi ;e

The corresponding i are then given by (6.6).

Thus, a method of determining the I that satisfy (6.3) and (6.4)

i 6.2) as
has been prescribed. Accordingly these " make ch\ zero in ( )

Sy
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required. It will now be shown that they are real distinct and lie
between ~1 and +1.

To show that the ¥y are real and distinct:

Since the roots of a polynomial occur in conjugate pairs, let a
pair of complex Y if possible, be v,= b+rb, and + .b-ib  with
L,x f" ) the nature of the remaining roots being unspecified. Since
in (6.2) ¢,  is then zero, it follows that

(6.8) Jowoo [Ow-b™+ b7 (xmeyr (=) =) eo
All factors in each term being non-negative, equality to zero implies
that all terms must be zero.

But [ (x-5)* +b5 with b o mnever vanishes; and (x-v)*...

(x; -~ can vanish for at most (p - 1) distinctx, . Since there

per’
are at least (p + 2) distinct x, it follows that (6.8) camnot be
zero, and hence v, and v, are not complex. By the same argument
for any other pair of roots, all the v are real;
To show that they are distinct, we may suppose A S 5,
and again from ¢, , which is now given by (6.8) with b, =0,
Following the same line of argument, the terms can now vanish for at
most P distinct x,; but since there are at least p + 1 distinct x.,
(6.8) cannot be zero with b -o. Hence, all the v, are distinct.
Now, since the v are distinct, it follows that the matrix R
is nonsingular and that <4k being zero in  (6.2) implies that

- -l - -| =] .
(R Vy (#R")-\is a diagonal matriz. Both X'V,X and R being

-l
nonsingular, it follows that no diagonal element of V, is zero.

5



-1
Diagonal elements of V\: are obtained by referring to (6. 1)

“y Z “Tr (ot (¢9)

L e

-\
and therefore all the w,_ are positive, Thus; with \, given by (¢-4)
T Yoo
X Ve Xo- RVER
Finally, we shall have to show that -i ¢ M o¢T . Suppose
that the Y,' are such that two or more of the ‘r‘~ are not in the closed

interval ( -1, 1). Say that v and -+, are such values. Since

in (6.2) must be zero, it follows that

L w, (%%, (% =T2) Cxp=vy)™ - - - - - (";““\a)l("t'*pﬂf“’ (69
Consider that Ll( K~ (*~¥y) never equals gero and always must have
the same algebraic sign for -1 ¢ *c ¢+ ,  Furthermore
(xe-s) - (*e—\“r,)‘c*r‘*rhf vo cen

‘Hence equality to zero in (6.10) implies that all terms must be zero.
But
(xi=0) (re- %)

can never vanish, and (6.11) can vanish for at most (p - 1) distinct

Since there are at least (p + 2) distinet x¢, all terms
in (6.10) cannot vanish. Thus, two or more of the V) cannot be
excluded from the closed interval { -1, 1], and hence, it has been
shown that p of the v; are in the closed interval (-1, 1].

Consider now the polynomial in (6.6) whose roots are the vy -

In determinant form by using Cramer's rule, this polynomial may be

shown to be
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(¢ )

\ ¥ " J« Js.H
@(r) . Q_-'l)}) + {'0 +| Aff’ LP"*‘
A
‘h’“ ﬁ-}s‘ﬂ . I fn{,. f\’rx-ﬂ
whore 4 - 1%V, ]
Evaluate ® (" at  r=- and r= « It will be seen that;
for T =~
-7 - - —
-h +| h ! kN fl‘!- 4 f #
-7 1 -
Py - g—l-:H i .0k I, - ]LP;‘J{_PH
A
(6-13)
ﬁs ) Tfrﬂ h\ﬁ T‘Fw‘ o flp- ‘Tt-rﬂ

Using the definition of

fL’ the elements of the indicated

3 ] T L
determinant | ;} in the expression of @ (J) are of the form Z‘\"i Colad >,

I-l = O, l,.-oooc

which shows that
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where Ij is the n x n diagonal matrix with diagonal elements (l - Jx )
Since min x;= -1 and max x, =1 , it follows that 21_1 always has one
diagonal element equal to zero ,all others being positive.
Hence from (6.1L),it follows that
H =X'VX ,
R formed
where V. is the (n-1) x (n -1) matrix by striking out the rou
and column corresponding to min x. for J =1 and mex x; for
J = +l,and EI is the (n -1) x (p +1) matrix formed from X by
striking out the row corresponding to min x, for J = =1 and
mex x, for J =l.
Since there are at least (p +2) distinct x sX has rank (p » 1).
Also,since Y‘T is diagonal with nonzero diagonal elel;lents "V:T is non-
singular.
Obviously B o= XX = gg;zf; Lr;gj ,
where _V:; = a diagonal matrix with elements equal to the
square root of the corresponding elements of _YI .
H =(Y;}_(})'(_\['I_}§J) swhich being a Gram matrix is always
positive semi-definite.
Since V' is full rank , y;gz_l is of renk p + 1 equal to the number of
its columns.
Therefore (X_{T}_g?'(zrgc_? is positive definite.
It follows that E] is positive definite and hence \HIl > 0.

Now since A > 0 ,(obtained on the seme line of argunent as above ), the
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following conclusion may novw be made concerning P(J ).
P(+1) >0 enda P(w) > o.
03('“1) >0 ond P(w) > 0 for odd m . (6e15)
C(-1) <0 and P(-w) < O for evenm .

- It was previously shown that p of the roots r. are in closed
interval [-1 s 1_) . (6.15) shows that -1 and 1 cannot be roots , end
hence , it may be stated that p of the roots are in the open interval
( -1,1) . Furthermore, knowing the sign of P(r) for r = -1, 1 and for
sufficiently large values of lrf s 1t may be reasoned that =1l r; ere in
the open interval ( -1, 1) ,for one exterior root would imply another.

In conclusion, it has been shown that for n > (p + 1) s =1 < rj <1.
As obtained in the earlier discussion , for n=p +1 , =1 < ry s L

Hence -1 < r. <1 holds for all cases , and the solution of the problem

J
is complete,

6.5 Some remarks about . the constraints .

Returning to (6.2) , it may be noted that the constraints (6.3) are
sufficient to meke _\Z':I“ a diagonal matrix ., The added constraint (6.1)
is sufficient to 1oca;e all r; in the closed interval [-l, 1] .To see
this, we may consider the situation in which (_6_.2;.) is not imposed . This
is equivalent to striking out the last row of g'j;czg in (6.7), leaving
a system of p linear equations in ( p + 1) unknowns. The rank of the
coefficient matrix of this system is p , and hence el can be chosen at

. = - . )
will, Now , the diagonality of Y. demands that p of the r,  Dbein the

closed interval {-1 R l] . Accordingly, since
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&A’“J’*‘: 'Z‘]" by choosing ng + ll sufficiently 1arge; a root can
always be obtained exterior to [-1, 1].
Application.
In interpolation problem, we have to estimate the coefficients
in the model
¥ = gr_, + ¢ (the polynomial regression(model).
or o= P FPxt - BN ote,i=1,2, ..n
where E (g) =0 and E (g &') =V, ,
so that the fitted polynomial P(x) doés not differ very much from the
theoretical model in the sense of a certain goodness criteris.
Using the results of the full rank model, the L.S. estimate of P and
P(x) are given respectively by
B= (XK 2V, z
or G’A(x) = &f'%_
Also we know
var (R) = (2'V,%)

and var P/zx)

"

1A
var X'p

A
xt var p X

!

z (EV,D = .
For simplicity we shall consider an internal interpolation problenm
for the quadratic.
Problem., Given n independent observations on a model
Yoo PR TR T

to be taken in the specified interval — x_ ¢ *¢ $ xy o
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of equal variances ~* s to find the spacing of the n observations
that will miniwize the maximum variance Y( & ) for x. ¢ & s x4,
where Y( 5 ) is the L.S. estimator of @ (g),
Solution.
The variance of Y( £ ) have been found to be
Ty 5\(.}.(.' v s
Now, whatever be the optimum spacing, it will give rise to some matrix

X'V X; let this be (X' Vgt)

From the above theory, it follows that there exists a matrix R , where
- -1
R! Vzlfi = (.&' \/529'

Since p = 2

e n, ° o \
| «, N
-1
N o] L
R= l AR “: and \If_ = ° 2 —
) 1-3 r;‘ Q (o] ’n3
ioplying n; observations at r; satisfying . ¢ ¥ ¢ , and

4
Inj =my §=1,2 3
Hence, three locations suffix to establish the desired optimum spacing.
Let y; be'the ayerage of n observations at 1:‘ s let ! be the column
vector (yl' ) ¥ y: ) .
Let a be the vector satisfying the normal equations

B',E a=R'V " -

Since R and Vi are nonsingular, Ra ="

But R = | TOD

Y
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-2

i.e. Y($) passes through yd.* at § = r‘~
Hence Y(3) may be written in the Lagrange form,

YY) = (5-r)(5-m) yoow (57708 -m) *

Crm e Co- 0 (=) (e vy)

+ (3""’1)(3""1) \a"
(- 06 - %) ’

2

& = f'-", = f'z
Now A 5‘*4'3 ,ad /"\d
For any such spacing, let ¢  be the maximum variance of Y($) in

the interval. Then

o~ < o~
. max
"t
and thus,
2 3 2
(.:- Z J;y-" 5 rlvy\o\‘(
3 \ ]
3
. L . ) E. 2
Therefore min € J & ¢ min &, . (E-2)
ER

3
But the minimum value of Z 4. is constrained by I~/ =n.

The Lagrangian function

\

3 3
L = Z'Jﬁd + A (2‘_1\(’- -n)

Therefore L = -L + A =o0
o n*
d : (each bel ositive)
s L - + [ each n elng p
v\d-
l.e4 L = = AL ov MEM e My = 1\-3 .
"> nr V\;'

»

3
Thus the constrained minimum of /] ‘;l
. a%\

718

Hence from (E 2),

. X
$ m™Min 6 o -

wl‘,’,

a,

) n
. 2

(E3) e 3«:;‘ € omin A

From (E.1) we can see that e )increases as £ departs from the smallest
V(s
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and the lar cst rj in the direction of leaving the interval x_, %,
L7 .

How locate n observations at x and x . Then s*;m being quadratic in

3 L H
§ , has one differential maximum occurring in the interior of the

interval. From symmetry of the form of r’;(w s this differential
maximum then occurs at*L + *H s at which we may now locate the

remaining n observations.

3

(B

Hence the maximum value of o, for the spacing r = I, T = (x_L + xH) /2,

T = XH’ n =n is obtained at =xL o XH and its maximum value max “17(5\
2 -2/

w

= 3%
"

The inequality ( € '3) assures that this particular spacing gives
the desired minimum of the maximum variance, and this value of 2 {_‘l
is attained with our spacing. Thus our spacing is optimal in the sense
of minimax variance and also in the sense of the minimum possible number
of allocations in the same or shorter interval.

This result is directly applicable for n divisible by 3. For
large n, not divisible by S, we may use the approxima’éing integral values
without much error. But for small n, not divisible by 3, a fine struc-

ture study, using 3¢ as basis for comparison will indicate an acceptable
n

spacing with little increase in variance.

6.6  Spacing of observations (Minimax variance)

For we have discussed only the possibility of a distribution
of n obgservations on a polynomial regression of degree p at (p + 1)

y -y
points for which the information matrix (determined by Z Ve X)

103



were the same. In the example above we considered how these (p+ 1)
points should be spaced and the observations allocated so that the
maximum variance of the fitted value in the range of interpolation should
be minimized in the particular case of quadratic regression. Now we
shall consider the distribution of the points of observations in the
ninimax variance case for the general polynomial regression of degree p.
In this approach we shall use the simple regression polynomial
curve to estimate the ordinate of the theoretical regression polynomial
curve and find these values of v, | | S T that minimize

the maximum variance of a single estimated ordinate.

Spacing for minimax variance.

l‘) .
The fitted value is given by @ (~) = . F(r, T, )@ (rj)
3=
where F (I:\“-) is the lagrangean coefficient corresponding to the point
of observation z; and ® (rd~ ) = y; , the mean of the observed values

at this point. Then

s ’ x
® = S F(r, T. var D

var (rd) Z (zy 1) (YA,

=0

at a point of observation. ¢

We know that the largest value of var (yZ) will be minimized when n

observations are equally divided among the p + 1 points.

When this is done

var @ (ra ) = Vvar (y;) = (P + 1) K”i
P A
and var® (z) = JF (z, ) (+2) 5
=0
Since this is a polynomial of degree ’

var ® (v ) <(p + 1) < in the range -1 to +1 i.e.
n.

the minimax variance - conditions are obtained
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when the maxima of var ® (v) are at the p - 1 internal points Vi

the end points x, and xr being +1 and -1,

The minimax variance conditions are thus

F(TJ').”O ’ ‘l"‘l’-'--,P—l. (c.ue)
Now if b
| L ('f) = Tr (-f-'v-,-)
t:O
then
F ( 'f)*") =\ LS ¥ ! _|_:l"£
(‘f—*“\ L-(’f&‘)
and so
(= VYPF (v, = L/,
d ( d) C )/L('fl")

l(v..va.) F"(v,rd-) + 2 F'(x—,fn 2 L“(ﬂ/L'(rd-)

L't = O Flonep 1 Fee ey ] Lo
The minimax variance condition ( ¢-'¢ ) is thus equivalent to

L' () =0 , =121 (e1y)

The function L (~ ) will be of the form « ( ~ =1) d?‘, o (*) where
the polynomial ¢ p-1(*) of degree p-1 is determined by the (p-1)
equations ( ¢.17)... The polynomial which satisfies these equations
may be verified to be the derivative P;, (*) of the Legendre polynomial
using the Legendre differential equation,
(1) Ly v ardy (2 1)y=0

dv

Which is equivalent %o

a {(#-1)91)} = plp+1)y
d~ dr
Now consider

L(«) = «(<-1) pl; (r)
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then

L ()

2 .
4 T ()
= % p(p+l)l’p(*)

and L(*) = «p(p+1) B ()
and so L (*) vanishes at the interval points L (r) = 0, The points of

observation for minimax variance are then to be located at +1, ~1

and the roots of P;) ().

6.7 Bstimation Problem (minimum generalized variance),

When a number of parameters are to be estimated simultaneously
the volume of the ellipsoid of concentration of the estimates ig often
used as a measure of the efficiency of the estimates. Since the équare
of the volume of the ellipsoid of concentratim is poportional) to the
generalized variance of the estimates one can see the justification of
the use of G.V. as a measure of efficiency. G.V. of the L.S. estimates
fg has been found to be 2(_' \l;I _}S)-'. The advantages of these L.S.
estimates lies in the fact that among 21l linear estimates of the y
the estimates given by this formula possess a minimum generalized
variance, Thus if one restricts himself to linear estimates these
are optimum estimates in the sense of minimum gene?alized variance.
Now we have shown that the same information matrix, and hence the same
value of G,V. can be ob't%xined by replacing a given set of observations
| x, by a total of n observations made at

at the points X,

2

P *+1 properly selected points in the interval frgm % to i“ .

AT

If the number of observations mad# at + is m, , then  » 1; = e

~.
n
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In terms of these substitute observations, the matrices in the
¢,V. are all square matrices and therefore the determinant of these

products can be obtained by taking the product of these determinants.

As a result |
\ ! 1 e %’;I T .*b
<'| \l T ARt f)-,..n ‘ﬁ‘ Q \ . Y.IP
2 p
P P
™
1 \ \ *
pr
- \’\ '("_ « '\‘r’ﬂ ne
- ape
: (‘.zl
'fl‘, »cr *‘P‘;‘
pﬂ P'H
= L (~ _\'")2 "
. 1P+1 ot ¢
P .
Lca L=
[-:H TH
Since“ U n, , subject to the condition ,_vMZ_“i =wn 1is
L=l oot
weXimized when m, = n = - =h,, g = D it follows that the

P+l

generalized variance will be minimized for a fixed set of values when

the same mumber of observations is taken at each of the values. This

allocation assumes that n will be chosen to be a miltiple of (p + 1).
Next we shall consider the maximization of HJ.’( A )y

subject to the restriction that x, ¢ MW ¢ X, (=1, 2eccecen * 1).

We have shown alrcady that m can be transfommed linearly so that this
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restriction assumes the form -1 g G ¢ 1, { =1, 2,..0.eD + 1, then it

ks

can be shown that the set of t values that maximize T (ti - tJ. )

2

is given by the zeros of a polynomial (1- t ) P; (E) in which P;) (t) is

the derivative of one of the Legendre polynomials as follows. These

zeros may be obtained from the proper tables,

6.Ts1 To show that the values of t's, =1l¢t ¢ 1 , i =1, 2ieeeap + 1

-ﬂ- 2
for which the function 4 = | ‘(ti - t&. ) is a maximum are the zeros
L<d .
I
of the polynomial P (t) = (1-t") P_(t) , P (t) being the
p+l P P

derivative of a Legendre polynomial of degree p.

Proof: A is a continuous function, and the region -1 ¢ t: ¢ +\ defines
a closed region G; hence there exist in G certain points at
which A attains its maximum value.

At any such point the t, (% = 1,.....p.+ 1) are all distinct,

and since A is symmetriczl we can assume

Jfl<Jc7.< <+Iv+|

For p = l, A <4 andequality is attained only when x, = -1,
X = 1,
kS

For p»>1l, we have for 1 <t <p + 1

-1 <h < +

Also P+ 1‘
?_4 = 2 - = 0 (Lf )
a 33, } k) 4
Consider
*(t)gj(t_t')(t-t:)""""(t"‘tp_'_l)
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foby - 10

i

(b-£)
then
b1 'k
Z& | - {—L() = O for E-_l‘t PN (Cw‘@)
J:n (k-t") h-d-) o
From f( E) = (t-&) fi(l:)

FOEY = (t-t) £ () g b
fE)

And since {( ) |possesses exactly (p = 1) zeros, it follows

]

2 1—:_( t) =0 by virtue of ( ¢:%)

that t, = «1 , tp b1 = Lle

Hence (t* -1) {Kt) is devisible by f(t), and (considering the

degree of polynomials)

=D fnch = C “h s C; being a constant C
may be determined by comparing leading coefficients on both sides.
Thus

CED ¢y = (peiyp (B o (en9)
Ve can see that  {(t) = « (+*-1) PP' () satisfies the above equation
( ¢19), where Pp(t) is the Legendre polynomial of degree p.

It can be clearly seen from inspecting the function ﬂ"(Ef_%ql
that the end points of the interval will always be chosen as two of
the t values. It is also clear that the greate%hgange of n values
the smaller will be the generalized variance.

In view of the results we have obtained so fary it follows that

the optimum linear estimates of the coefficients of polynomial regression

are obtained by using the L.S, estimates, choosing as a large range of n
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values as possible, taking observations at the p + 1 points in this
range given by means of the zeros of a polynomial (derivative of a Legendre
polynomial) and the end points.

| The preceding optimum manner of choosing n values assume that the
GeV, of the estimates ﬁ_is the proper measure of the efficiency to use.
Now shall study the situation when the sample regression curve is used
for estimating the ordinates of the theoretical regression curve as we
have done before in the minimax variance case and develop a measure of
efficiency based on the variances and covariances of such estimated
values,

From this point of view, let ~ .. . | E?fi'l denote arbitrary

points chosen in the given interval. Further,vlet y , and y denote

the ordinate and its estimate, of the polynomial regression curve at r .

Thus
/\ﬁ‘_ = F“-r P‘-(‘-. + - 'i"r-’PTLP)L-_- l.’ 204-oop+1
or y = R B
A A A A P
n.a‘ = F° t+ |¥| Yoot + FP Y
A A
or y = RBp

E@A-Bp) (BF - 2})
E(ER-p(E-p]E
Bvar (B) B

var (Y= E-PI-P

i

G.Ve of ﬁ = |var ()] = l_@_var(ﬁ) _R_'!

= | RI| var (R)I| R

=V (B) . |R]
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P
=GV, (13_) H}(ft--f&.)L .
Thig result shows that the generalized variance of the estimates
of the ordinates of a polynomial regression curve at p + 1 arbitrary
points will be minimized when the generalized variance of the
estimates of the coefficients of the polynomial regression curve is
minimized.,

But we have seen that the set of values,r ,..:..rb which give
the minimax variance estimates of a single ordinaté%ﬁyen by meangs of
the zeros of the derivatives of the Legendre polynomial. It has been
found that this set of values is the same set which minimizes the
generaliged variance., Thus, we have found that in polynomial regression,
whether one is interested in efficient estimation of the regression

coefficients, or in efficient ordinate estimation, either at one point

or (p + 1) points the optimum choice is the same.
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Chapter VII

Optimum Allocation Theory

Introduction: If for the estimation of the parameters {p},P., -

..1%}or functions of them, diﬁferent obgervations (sources) of form

"J‘. = Z_XL'd' Fa T oe. (L':\)}) . ,A.")

are potentially available, edloh of them repeatable as mahy times as we
please, the question arises which of them the experimenter should
utilize and in what proportions. With appropriete optimality criteria
we shall try and solve this problem of optimum allocation in the
following section, first for the estimation of a single parametric
function and second for the simultaneocus estimation of all the

parasmeterse.

T.1 Estimation of a single parameter and a single parasmetric function

of the'form“P;lﬁ.

Suppose we want to determine each of the unknown parameters
or a parametric form j):NF, based on a certain number r of

different potential observations, the outcome of which are of the form
¢

qo Z.Xq F} re (Vb3 ) (19
where ixﬂj are the know;‘coefficients and
e is a random variable with mean zero and variance = .
We shall assume furthermore, that the experimenter may perform each of
the observations as many times as possible, or not at all, all actual
observations being uncorrelated. If he has decided upon a certain

total n of actual observations, he is faced with the problem which of

the potential ones should be performed and in what proportion.
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In order to distinguish between the potential and the actual
observations, we shall refer to the former as sources (of information)
and to the latter as observations. Since a source as well as an
observation are described by the coefficient vector (x, ,%., - - &P)'=5¢
we will briefly speak of the source x' and the observation % without
any ambiguity.

The following normalization and idealization of our problem is
mathematically convenient:

Let the experiment & consists of the observations x', xi, ... X,
repeated independently =, ,n,, .- n, 4 times respectively, with §m, = n
i.e. the required number of observations on the source x is »n;

If we put e =mp; g then the p’s are obviously miltiples of |
fulfilling the conditions
P‘. 30 ) Z.I"L':‘ (1.2)

We shall refer to % = (%, - - %) as the spectrum and to = Cpos - Pvf

as the allocation of € .

Now the mean of the observations on the source x will satisfy

the model

4

* % + ¢ - . .. + R 1"%: (a2 7)
(R S SR SR
where e: has variance <, . If a certain p: is zero, the corres-
ponding equation has to be left out of the system. For large n, the

Fﬁs may be varied practically continuously over the range (7.2).

Idealizing this feature we get a large-sample problem, which is

essentially independent of e and n. For simplicity, we may finally
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assume 2? =l; in order to restore full generallity we have only

to reintroduce this factor in all variance and covariance formula below.
We now finally arrive at the normalized form of the problem.
Given a planned set of observations of the form

I3 ' . YKP px
lg(_ = 7:,, [é_ + . oY ‘\1 - )—S F—’. +

with E( e ) =Oandvar ( e ) =1

- B
15708,

and with the weights pe at our disposal, subject to
Zpe =1 and pyo .
What are the optimal f’t‘" ?

The solution of the problem obviously presupposes a specification
of the word "optimal". Depending on the purpose of the experiment,
various criteria for goodness may be used. We shall now discuss several
such criteria all of them, however, based on the variance of one or
more least-squares estimators, the desirable properties of which we
have studied already (Gauss-Mlarkoff Theorem). An allocation (or
design) is considered optimal if it minimizes the variange of the
least—squares estimators .\"}, of a parametric function }oe

Tel.l The Estimation Problem.

In this section we shall deal with the case where the interest of

the experiment is centered upon a linear combination of the parameters.

v AR

"

Partidularly we may have ~ F‘ , C=ty2, .« P

Now congider linear unbiased estimate ¢'y*of ~p |

Jea ]
P
in
L
A
f

so that N o= yr,_ identically in [ -

¥) = p
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feee  g'X = X or Lea =¥
x L=t
Since X 'is full rank, if r> p, there are infinitely many
vectors ¢ satisfying this condition. Among the corresponding
estimates gj* y for any fixed set of P",S s one with least variance is
obtained using Gauss-Markoff Theorem, by substituting the least~squares
estimate [3 of the parameters in the expression for ~ .
The value of [3: is the one which minimiges the weighted error sumn
squares
Zrt CY0 -0 pom xapas xp Ppd7
The value of this estimate '\/\\) ié of course a function of pl s Dy Do
We would like to find those weights P which yield the smallest minimum
variance. |
For this purpose we first notice that the smallest minimum variance
by definition equals
'vm';n mim  Var 3 «1'1] , < and p being subject to
| ) e X = X
and Ip =1,
Changing the order of minimization, we may calculate, to begin

with, the minimum with respect to the p.s for a fixed c.

Consider min Var §¢ «i“} = min ¢ {\/cw «1“} c .
~

P P .
= min Z_ . subject to ZPL‘ = 1.
F =1 P‘.

From the Lagrangian function |

LzZ‘T

L
=
{=t |

v (ZF;—-Q s
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i — L=t b] 2 3 -
Dhy o
rll’li = Cf/
L
,7‘ B 'Cl.,/rt_ (". r‘. >,D>
From Zru = 1 follows that 'Ji_t'__l_ =1
L
or T = Zl<J
e lcil
b //Z leg]
ThusZgﬁ = ( Lt )
B
Therefore m'i’n var § ¢ \{} . min Z %‘ = k: where k = ) el
1 . -
The minimizing p; values are P, = leg| . #)

PREN!

Now in order to minimize i min var ( €'y )ﬁwith respect to the cs,

Subject to the condition

ot = ) which we may write in the form

él i < é’g = '& Z. P‘. Sl‘a'n < >5_'t = l(,’ 2‘.: (say) 7.9

(a1

[1}

We may proceed to find the solution of the problem using convex sets.

x,_A‘ éfA‘ : A

The factor k, being a positive scalor, the vectors ). and )
are in the same direction. The weights p  being nonnegative, with the
Cv'

L

sum one, it can be clearly seen that the end point of the vectors A,
lies on¢ or within the convex polyhedron spanned by the vectors t x, , T x.
.- . tx Since by (J.5) k, is the ratio of the lengths of the

vectors A and A , it is obvious that (7.4) reaches its minimum when
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the endpoint A coincides with the intersection A° of the vector A
(or its ex’cension) with the polyhedron in the p-dimensional space.

Illustrative example.

Consider the linear regression equation of y and x; where the
potential observations are of the form
¥ =e¢+x;l; re; X <X ¢ <X, . A
Here the polygon is a parallelogram spammed by the vectors (1, x‘) y .
(1, x‘_) and their opposite vectors. In thig type of problem we are
usually interested in the estimation of a single parameter.

Egtimation of ¢ alone.

Here A= (0, 1) and A = (0, 1) as shom
in the figure and the ratio of the
optimum weights is given by A A = 1.

A AY

2
This means that, if the experimentor

is interested in the estimation of 2

alone, it is seen that he has to use culy

the extreme sources x, and x.and

observations of them have to be equal in number.

Estimation of = alone.

Here > = (1, O) and A = B of the figure and the ratio of the

optimum weights i8 given by A,B = X, . i.e. if « alone is to be
A B® Xe

estimated and if allx/shave the same sigs, the extreme one should again
be used, this time in proportion x.: x, « If the x’s include both

positive and negative numbers, then the values of the p's are arbitrary
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with the sole condition that the weighted average Z‘"*“° . Since

in practice the p's have to be multiples of l/h, n being the number of
observations, it is usually impossible to arrange the p's so that the

condition mentioned is exactly fulfilled. In such circumstances, one
can still make a useful choice between different approximations.

If there were three parameters in the model, we can still solve
the problem geometrically. Since we can visualize the convex polyhedron
with triangle side planes. For any estimatiﬁn problem concerned with
a single linear combination of the parameters we shall in general need
three relevant sources,

for

In p parameters model,’ any estimation problem concerned with a
linear combination of the parameters,there will In general be r
relevant sources, For more than two parameters we cannot solve the
problem geometrically and algebraic procedure, which is in the form of
programming must replace this geometrical method.

Now we may put the results of the last section in.the form of
a theorem.

The method of performing an experiment to estimate a parametric

. A A
function 1H=XP so as to minimize the variance = var () = Avarpa,

allowing, as possible experiments all convex combination of any finite
number of sources X 5 X_ gecevceccecX (which belongs to a symmetric
closed, and bounded set R), depends on the following theorem.
Theorem: 7.1 In order that the allocation (p , ;g,.,..pf.) be

optimal with regard to an experiment Qg 3 X geeceeX 5D 5 P siisD )

it is necessary and sufficient that the vector ), - Lopexe
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be
(1) proportional to A

and (i1) a boundary vector of the convex hull R of R.

T.2. Estimation of Several parameters.

For a set of actual observations, i.e. for fixed P, P, ,
the least-squares techniques yields minimum variance estimates of each
of the parameters as well as all linear combinations of them; nothing
in gained in the accuracy of some estimates by giving up accuracy in
another. In the present setup, where the weights p, are available,
some information about the relative accuracy of different estimates is
desirable. One natural way is to choose a nommegative definite form
in the estimation errors, say

©w = ('F_"M'\:(fﬁ-[ﬁ) : Zc_ﬁlu'x([?;-(&g)(ﬁd‘-m)
and minimize E(« ) with respect to the design (i.e. allocation).
If the rank of L is s ¢p, then L can be wrriten in the form

\

L = 11, 4+ - . .. #1131

| e | s

where__l_‘,.}_1 . _ls are linearly independent p-vectors.

b

Using the linear +transformation

“¥j= .l; R (j =1, 24....8), we have
s |
- ] v (7.6)

which is the sum of the variances of certain linear functions of the
parameters. If s = 1 we are back in the situation of the previous

A
section. The above consideration suggests that the min Z;var ( a7 ).

119



seems to be a reasonable optimality criteria for a design.

T.2.1 Two parameters case.

Under the assumption that the model is of full rank, the covariance

A
matrix of El s Pa in the model of the form (7.3) is the inverse of

the information matrix

¥ = X\nx}. z_\""‘"*h- z Z."‘é" <

Z_I"i"u*n. 7_{\;7(:;

To do the optimum allocation of observations in the sense of least
variance sum, we need to minimize the guantity a, » the trace of the
inverse of this matrix M with respect to p 's satisfying (7.2)

Consider a point p = (p' g ,pr) in (7.2) in which 5 reaches

3

its minimum. If i and j are two relevant sources, that is, if pe vo

h. >0 any differential variation

dp, = -8 dp; = s dp, =0 (n#1,])

of the coordinates leads to another point in (7.,) « ~Now in order

that p be a minimum point, we must have

(2% - 3__?)530 for all §-

oppPh |
i.e. we must have 29 = °F for any two relevant

'B‘sd- 'b!,(-

gources 1 and j.

If, on the other hand, i is relevant and j is irrevalent (i.e.

Byo 9 By = 0)  than pj oan be varied in the positive direction,
¢
and we must, by the same argument as above, have

(g - ?_fy‘)g 30 for any positive § .

il.e. %j/ 2 z_i"
l’1‘20 P
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In conclusion, we come to know that corresponding to any solution of

our minimization problem, there exists a constant -k* such that

;ﬁ' = -Kk" for all relevant sources ( 77 )
P
where as 29 3 -k* for all irrelevant sources.

EF(

As far as relevant sources are concerned , «" is the ordinary Lagrange's
miltiplier in the minimization process.

But 4, is a homogeneous function of order -1, of p|,

AR

2
{ b

- P,y for

-\

™M

-1
=-M

and therefore (which is Buler's

Py identity)
Algo from (7:7) it follows that
LPe2y o Epeos o
2 . =
L3y P‘
We may now conclude from Euler's identity that k" the minimum value

of ﬂf .

This also establishes the sign of ~~ as positive, as

already anticipated in the
In order to find the wvalue

=\

1X

notation.
of 24 we may ﬁse the relation
Sh

-1 r.t -
= -M 2M M

= P‘, -]
= - l\_/' KXo A ‘Y.\

‘34‘-\’ M a -‘l’—r i (_ (\j‘ X¢ 5: M—)
DPC

S CNTRY
- e 3 0d'(d' 6]

.- M
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wherel\_h_l" x| denotes the length" of the vector U™ X, -

Since |lyf'gg“1 is a positive definite gquadratic fom in the components
of X, the equation H§f g”1 = constant represents an ellipse centred
at the origin. Thus we finally arrive at the following result:

"Po any set f[ﬁ} that minimize the function 4, the variance
sum, there corresponds an ellipse, centred at the origin, such
that all pointsizzl representing relevant sources lie on the
ellipse and none of the points representing irrelrant sources lie
outside it".

Since, three points determine a coni¢ .centred at the origin, we can see
that, in general, there are at most three relevant sources. Even in

the case where four or more source.. points happen to lie on the same ellinse
and the rest inside it, it may be shown that three relevant sources are

enough for the minimization of q °

Te2+.3 Generalization.

The preceeding arguments apply to an arbitrary s of parameters,
the ellipse being replaced by an (s = 1) = dimensional hyper#llipsoid

in RS o Hence there will be at most & s(s + 1) relevant sources.

T.3. Allocation problem of many observations experiment.

We shall next consider allocation problems associated with many
observations experiments. As in the case of one observation experiment,
each of the potential experiments (sources) may be repeated any number

of times or not performed at all.
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In the present situation each experiment consists in observing

a vector variable y in which may be expressed as X r;_-l— &

vector of observations in the ith experiment is

or

bl
in which the coefficient x‘: ,

X {5_ +e
w [&

X *t‘z\)

@) 2

X "L’z)

o) W)

L Xl-_‘ o

W
XL", [%‘

. ~
—

wd

~ploV P

are known numbers.

Thus the

(7.7)

o
e

Q}L!)

w,

‘.

The following table may help us to visualize the set-up pof

potential as well as actual observations.

Experiment | Coefficient Replication Actual Coefft.
No. Matrix Allocation No. Observations | matrix
! o - ) |
|
I >_<.| n,
n, [ I )
X
\ (D - )
¥ X e
Y“‘ (SR N * (vr\
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The horizontal matrices of the right~hand side of the table may be
empty for one or more experiments viz. for those which are not performsd
at alle If an experiment consist of a single observation, the
corresponding X matrix is a row vector. If, on the other hand v >1,
we are concerned with the joint information. The matrix X is the
coefficient of all observations actually carried out, it consists of
n, matrices X , n, matrices §2 , etc.

For any given allocation, X is completely determined. X may be
agsumed to be nonsingular and thus all the theorems and results of full
rank model apply.

If we denote
-2 X , theni =(ZX)n

n
Except for the factor 6%" ’ yf‘ is the covariance matrix of F; .

=£.‘_2{.( ’

1=

-

Obviously _}Sl?.{.. = ) w z.ic b

=

=Z%‘2{_ X = Z.Fthj‘ where P = %
(7.8)

We shall consider the optimal allocation for the estimation of one or
more of the parameters, say Bs B and Pa etc., based on the criteria
of minimum variance sum: 1i.e. allocation will be hased on the
quantities

§ =W ’ = m' 4+ m'* etc. where m'* is the
ith diagonal element of _L_E_d .

Geometrical consgideration.

As we have done before we shall drop the restriction that P, mist
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vary through multiples of ‘;x « Hle may regard the s simply as functions

of the elements m, . of M. This  symmetric matrix is determined by
% p (p + 1) elements; hence we may represent M by a vector in 5 p (p + 1)

M_ . According to (7.%) , the

space, and similarly ¥ , M, ... | M_

former vector varies over the convex polyhedron spanned by the latter

vectors,

No matter whether we consider q as a function of » . .. p,
under the restrictionp. » 0, J7p, =1 (which represents a
barycentric simplex geometrically) or of m, m . om the

1y hr’

elements of ¥ , our aim is to minimize this function on a convex set.

As an illustration we shall consider the case p = 2, the situation

being explained by fig. T.le Since the matrix M is always non-negative

PR (S
definite, and hence m m -m- ¥ O m 3 0, all M-vectors must
" R kN "

lie on or within the rectangular cone Vo’ Supposing there are five

potential experiments, then the convex polyhedron C is spammed by five

points gs_a{ ’ each representing one experiment.

M’i?.
N, \\\
fot
P \
Yoo M ) N
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If we are interested only in one parameter say F" we want to

minimize Y, s ( = var F. ") i.e. to maximize
Ao 4 2 M Mat™e ok Cr-9)
0V| w\u m’l_’L
The level surfaces of this function have equations
2
(m " - k ) m22 - m, =0
Thue, these surfaces are cones Vk obtained from VO by translation

along the m, axis. Hence it follows that (719 ) atiains its
maximug on C in the point T where the cone Vk, when moving towards the
origin, hgs its first contact with C. This will clearly happen eithexr
in a corner or an edge gf C (possibly at the same time in interior
points of a side plane)s Hence, we see that, in the case k = 2, only
one or two different experiments will be required for an optimal desi m.

When we are interested in the estimation of both parameters the
level surfaces of A, (which‘is relevant to the problem! turn out tc e
hyproboloids of two sheets, only one of which matters. In this case
the minimum point may be either a corner, an edge point, or an interior
point of a side ﬁlane. Accordingly, there will be required one, two
or three experiments for an optimal design.

The above results‘are special cases of Elfving—Chirﬁoff‘s
theorem('l-z)

"ihen s out of p parameters are to be estimated, the optimum
allocation need comprise at‘most

p+(@-1+ . +(p=-s+1)

experiments",

The general result we infer in (7.2.3) 1s in fact the special
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case of this theorem for p = s and s = s when all experiments
consist of a single observation.

To throw more light on Chérnoff-Elfving theorem, we chall consider
the following simple proof, which does not cover the rather intricate
case where M is singular. (Chernoff studied this case thoroughly).

It may be noted that, if all M, are nonsingular, then g, is continuous
on C, and there is certainly a regular minimum point.

Congider an arbitrary differntiable function q = <V(m) which
attains its min;mum on C in a non-singular point Mb We regard M as a
function of p , ..., P, and denote by p° = (p? y p° ) aset
of barycentric coordinates of the point Mo. As in the previous case
one or more of the p? will be positive, the rest zero, the corresponding
experiments being referred to as relevant or irrelevant respectively.

Then we know, at the minimum point, ?jr have a common value for
all relevant experiments, and equal or 1aré:rcvalue for the irrelevant cnes.

By differentiaying the matrix identity ILL{—.IE_ =1

~1

2 . M2 o L MM
-'a_"t. BPL‘
In the one parameter case, the derivativesof - 9,9 are
-t | T < ) Iz
29, = (dup), = Limg T
?PL' ‘LL)‘L '
= WGy, (sey)
where mf:) are the elements of M. and m denotes the vector
) {
(m' ’ mf 9, P )e . ’
Now, if p? >0 fori=1, ... /x s then we have by the
3
RO )
preceeding arguments, H ()= .. .. =g (' )s
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These are (x — 1) relations between p — 1 variable, viz., the
ratios of the m's and cannot in general be fulfilled unless X pP.
There are exceptional setsﬁﬂi} admitting miminum points with more than
P relevant experiments (the cone, in the case p = 2, being tangent to
g side plane of the polyhedron C); but in such casesit is seen by a
continuity‘a?gument that there also exists a minimum point with p (or fewer)
positive p:s.

Similarly, when two parameters are estimated we have

-\ - - -
.= @rE) o+ (i)
ZP"_ U..) — T A
" W
.= Hl“_ (m ’ e e e ) m P )
!
Since m = m s the number of variables in this quadratic form

is p + (p - 1) and the theorem is thus found to hold for s = 2,

The conclusion may easily be extended tos =2, ....., 8 = D

T.4 Optimal selection problem in non-~repeatable observations.

Another aspect of allocatibn problem is concerned with non-
repeatable observations (very common in psychological experimentations).
The problem may be formulated as followss
"A finite set of potential observations is available each of them of tae
form",

yL = _z_c_;F_ + e, i=l,2'~-n(7'!0)
when, the e's are uncorrelated error terms with zero expectation and
(for convenience) variance 1 and x /s are known coefficient vectors.
The experimentor is allowed to perform m < n of the observations ( 710 )

each of them only once. The design problem, then, is to select a set
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©w = (:‘LI s im) from out of the subscript i =1, 2 ...  n soas
to minimize the variance of the least-square estimator & = Z\‘]% .

For any particular selection « of subscripts, the estimatory
properties of the corresponding set of observations are essentially
descri‘bed by the information matrix

L_ E (10 )
We shall assume that for any set @ of n observations, the matrix M
is nonsingular. This will in :zeneral be the case when the coefficient
vectors X are empirically determineds The variance of the least-
square estimator \?» corresponding to is then, known to be
Vo=var (§) =xE»

We shall now introduce the continuization device which greatly
facilitates the solution of our selection problem, wi‘bh_ou’c, as we shall
see later, impairing its practical apdlicability. For this purpose we
shall consider, instead of the matrix ( 7w )  the generalized
information matrix

u = Z_p X, X, ( 712)
where the allocation vector p_ (p . 131) is subject to the
restriction ’
O¢p.¢1 Z_p{ = m ( 71)
Obviously, the set of matrices “(g1 7.4 ) is a subset of the set of

matrices ( 7.12 ) For a given p , we shall say that a sou:ce is totally

selected, partially selected or excluded according as p; = 1,<1 or = C
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e shall see soon that the optimal allocation (when properly chosen)
will contain at most p fractionally selected sources., Since the
corresponding p's can total at most p-1, there will be from m-p+ 1 to
mtotally selected sources. If in practice, one may round off the
fractional pfs to 1's, i.e. select the corresponding sources on equal
basis with the rest. Then at the expense of making at most (p - 1)
more observations than originally planned, and will be sure to have a
variance Y¢ not exceeding the smallest one that would be obtained for
any selection of n,

Interpretation of the fractional p's:i-~ We may imagine that the

observation (7" ) be independently repeated each of them at most r times
The information matrix of the resulting experiment may then be written
Zz.p X when p; varies from O to 1, through the mltiple

of £ . The factor + inlf is obviously irrelevant for the minimization
problem. If, in particular, we take m = 1 and v very large, we will
be concerned with the allocation problem of the repeatable observations
we have discussed earlier; +this problem then appears as a special case
of the present one.

The following theorem is due to Elfving:

-t

12
>

Theorem: 7.3 The variance of A‘ﬁ = VQ = A is minimum

on the set A ,
‘ n .
0¢p 1, Jpo=m

(=)
if and on ly if the allocation satisfies the conditions
<
-_-_o
. ¢ Lo,1] when = h

i
=2\ >
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where h is a certain non-negative constant.

The geometrical implication of this theorem is roughly that the

"selection region" consists of that part of the p- space which lies outside

the twin-hyperplans

Proof: Since M = ZEL X is non—-singular for any choice w of m
. ‘ =y ’ _
sources, under the assumption, it follows that I = 2“—,( AeXe
is nonsingular on ( T-'3 ).

Now if p, denotes the smallest positive P,y We may write

M=p ) wu ) (pempo mex
pe>o pc7o

Thev first form consists of at least w ferms and, hence, is
non-singulare This property is not destroyed by adjoining the second
sum whose forms are non-negative definite. It follows that Na X hjl
im continuous on set ( 7.13) and hence attains its greatest lower bound
Neccesity. Let p be the allocation vector for which the minimum of

ig attained and let i and j be two sources such that
P';)o ’ Pi ¢ 1, respectively.

Then, for any small enough §p , the variations

d‘r.‘= §p and 8p; = 6p, dp = O (k e, i) is

¢ k
admissible with regard to ( 7-13 ).Since p was assumed

to makeVa minitﬁum, the corresponding differential,

dY .2V dp o+ 2V dp o (SN TR
.EFL‘ F‘ 'ah b }PL. -bh./
must be non-negative, and hence
- >\l > - °>\I (f’ 50 t’ < '>
_,a——‘ z '3-—-- L ) l
Pt P}
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If o<pe,pj <! ,iand j are interchangeable in ( 7% ) and it

follows that - ?;_Y. = h* (say) for all fractionally selected

items, if any (the non-negativity of -':_V to be proved below)
e
Applying ( 7.14 ) to a fractionally selected item, combined with a

totally selected or excluded one, we have
-2V 3y h? for the former
’bp;
and ¢ b for the latter type .
Finally, if f’ contains no pe with o< poct there will according to
( 74) exist a number h' (not .uniquély. - determined) which is smaller
than every - °Y with p, = 1 and larger than every -2V with pj = C,

2[”( Bh
Thus in any case

o]
D, = whenever -2V ¢kt (78)
¢ 1 7[’[
To find the value of -'gj/ t—
P :
For a variation dp, of p, alone,
SdV o A AN s A M M M
= é' 'j‘ LY ’i: dl—;" Pj—‘)_\
= l >\l M-\Z‘_L!Id"’t
and therefore
VMo (11¢)
'blﬁi

(7.5) and (7-1¢) together gives the necessary conditiomn.
Sufficiency: Consider the allocation vector ;:_)o, together with a number h o
satisfying the conditions of the theorem. Let p'
be another vector in ( T'5) and consider the convex
combination p (©) = (i-¢) _‘p_o + o p (also in (71:3) ). Corresponding
information matrix will then be
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= Zpi(e) _z_:ﬂ__:_c;_ =(1- e);gg +e}g‘

-9
and varisnces V(O) = A 3‘_.;—; A .
In order to prove that Z(O) » the variance corresponding to p_o is less
than or equal to (1) , the variance corresponding to Rl , Ve

shell show that 2V| >0 , and 2V >0dn 0<6 <1 .

o6 60 282
Now consider '
—BV = \ i 4 - M ‘i—l >\
=, <K ) (7.17)

Thus

1

\ _" 1 - (o] 1 =l
NPy - ey Jxmln

1 w

Replacing the second factor in this sum by h2 will, according to the

conditions of the theorem , increase the sum ; because in those terms

where |X ¥'x| >h , the first factor will be p:!' - 1 <0 , and thosc
S == i =

terms where lg‘m‘ '_:_gi\ £ h , the first factor will be pg ~0>0 .

Hence -V _<_h22(p3; —pg) = hz(m—m) =0 .
26 |6-0

or 2] 2 0 .
28 lg-o0

Differentiating (7.17) once more , we have
B-‘\/ = ! F—l J e M i I = ‘\:| A
=2 M (M- ) i, (M-M)U X
=\ - -\
= 1 = ; I L A .
2 [Cag-w NN, [ (- 0
Since M _, and hence M' , is positive definite for 0 <® <1 , it
- e
follows that 2V >0 .

, e
7.5 Number of fractionally selected items .

s

-1
Since in general the (p-1 )=dimensional boundary plane X Mx=rh
will contain at most p source points (opposite points + x; being alwors
counted as equivalent ) , and hence in general there will always be at

most p
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fractionally selected items. But it can happen that the boundary plane
contains more than p source points, with the implication that there may

well be optimal allocations with more ’chanp fractional pL' s. However,

the following theorem énsures that one can always f£ind an equivalent

allocation with at most p weights p, between O and 1,

Theorem: T.4 The function v = A M a
when M = Z Pe % X
{=y "

and oS post Ipi=m.
(=
can always be minimized by means of an allocation

vector p with at most p fractional pL' S

Proof: Corresponding to the given set {xJ . of source points
consider a sequence of sets iz‘.} (v =1, ..., n)
(3 =1, -~ ) such that

(1)51 = as o ow
and (ii) for each j, no p + 1 points 5{- lie in the same (p - 1,
dimensional hyperplane.
The sequence . {if} . may be comstructed by choosing an
arbitrary set § 5:} (¢ =1, n) with property ('),
forming X, N = (1-X) & + dx.  and taking 5{ - >_\‘(>\p
for a sequence X A, . - 0.
In order for @) to hold, we must choose >\a' so that all

(p+ 1) x (p + 1) determinants of type

EXCREE
G i

»
|

o CT18)

N
xR x.CQ |
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do not vanigh for A= kd‘ +» Now, each of these determinants
is a polynomial 'm AJ. and cannot be identically zero, since in that
case the set § z:}, to which {51} reduces for A = 1 would not have
property i) , To make sure that (i) holds for all {5‘;"] , we only

have to choose >‘j different from finitely many roots of all pclynomial

( T-1¢ )

Now with each set % 5‘3 (3 = i, 2 - ) (Mand m belng fixed oncc
and for all) there exists an allccation vector p = (p s p )
in (713 ) and a corresponding information matrix Ig Z (»L &b
such that ) g&-_}'g is a minimum; moreover, there exists e:number k 2

such that the hyperplane é‘h_fdfé =th‘:? separate the totally selected
and the excluded source points, and contain all 5{ for which o < [vt <t o,
But, by construction of the sequence iz&i'] , there are at most p points Qf
in any hyperplane for each j and hence at most p fractionally clected
sources,

Since there are only finitely many ways to subdivide elements into
three classes i.e. @ (totally selected), «,(fractionally selected) and w.
(excluded), at least one such partition must repeat itself for infinitely
many j's. We may now exclude all other j's, thus obtaining fixed sets

w, , @, @ of selected, excluded, and fractionally selected d's,
the last group containing at most r elements.

Thus we have constructed a new subsequence ( j) such that on this
sequence H converge to a limiting allocation vector p. .This is still

in ( 7-!3), and the subscrint of its fractional components, if any, still



belongs to «, . If i denote the information watrix corresponding to D o,
we have .1.£J"I~L_ s also }\;i—lexis‘cs and _I;ZB - EA swhich iwplies that
I E;_): | s bounded.
Since I-_J_-{il have a common bound and since h’j_glg\‘y{j_zgi\ for some i , we
conclude that the ha. are bounded . One can easily see that h. =-h
follows from the selection procedure we have adopted.

For the sets {hi} constructed in this way we have, by the necessit; o
part of the theorem
J %0

_ A s
P; =11 whenever |NI x5 h

J (7:19)

lleaning of the limiting p, h ¢

on
|

-, e~

. ! 5\ > bJ- s
hence by ( 7.19) P':?L =1cnd p; = lim pg_ = 1; similarly, if for some L ,

[t}

If for some subscript i ,|)M x| > b ,then for some JNE

[NM x| <h ,we conclude that p; =0 .
~l

The sufficiency part of the theorem ensures that p minimizes A ) on

( 7.3) .Since p has at most v fractional components , the proof of

the theorem is complete,

136



Chapter VIII

Optimality Criteria & Optimality of Basic Designs.

Introduction:

Various classes of designs are now in use in experi-

mental sciences of which very well known are
randomized block, latin square, incomplete block designs of different
type. In comparing the efficiencies of these designs the usual procedure
is to relate some sort of an average of the variances associated with
different estimates obtained from any particular design to a similar
quantity for the corresponding randomized block design, the latter
being considered as the most efficient (Yates, 1936). It seems to be,
however, more desirable to start with a reasonable definition of
efficiency of any experimental arrangement and to.deduce the optimum
character of randomized block, latin square and other design in terms
of the optimality criteria so defined. It is from the latter point of
view that Wald (1943) first proved the optimality of the latin square
arrangement. We shall now study various optimality criteria and the
optimum character of basic experimental designs on the basis of these
criteria. After studying the desirable properties of the designs, we
shall also derive sufficient conditions for designs to possess these
optimum properties. Computation methods for the aotual construction
of optimal designs _ are : considered in chapter VI & VII |

8.1 Definition of optimality

Wald's development of D—optimalityje

It is well known that the analysis of a design involve either tests
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of linear hypothesis or estimation problems. S0 we shall firet revisw
some results we have obtained earlier in general linear hypothesis.

Consider the general linear model of full rank. (without any loss of

generality)

L= Xp+e

with ¢ distributed N(0 1)
The p column vectors in zi_’will be denoted by § & = . . . gp .
(and n row vectors by g_: y gc__'L ,......._J_C_'h ). In some cases the

experimentor has some amount of freedom in the choice of p vectors in
the n dimensional Buclidian space.

We shall suppose further that, for fixed e(, Fa . represents the
)%

critical value of the F test whatever design d (which correspond to
the design matrix X) is chosen -
Consider the partitioned model of full rank

L=XYsrXY+2

A
where Y, is of dimension (rxl)
@ may be assumed to be distributed (o, <L)

Null hypothesis H: T, =0

Then, as we have obtained earlier, the test statistic.

F =pn-p (¥ x -x_ (X)) % )Y

—, =), .3

(L- X'y Y

is distributed as F* (r, n-p, § ), where

§ = AHiB¥Y
26 .
| t - 1
with B=XX - XX (X X ) X X

B being positive definite, F is distributed as F(r,n-p) if and only
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if H is true i.e. if and only if ¥,= OQ.

It is known that the power function of the criticzl resion of the
design d of size « given by F > I‘;) 4 is a monotonic increasing
function of § ,which depends on B , the elements of which are funcii-ns of
of the vectors §; of the design matrix X .

Generally the conditions of the problem are such that the only
factors under control are the values of §'sand hence arises the problem
of efficient designing i.e.ch&osing the g;; S0 as to render the test
procedure most sensitive to deviations from the null hypothesis H.
Since the power of the F-test involved here is a monotonic increczing
function of § , it would be enough so to choose §js as to meximize & for
all values Fi(i =1,2, ceesTe)e

To facilitate the argument simpler,we may write

2 b..
?.m" Z‘ Z-‘ F' %J
{2y \-.-l
where b,. is the element of B (which is actually the inverse of the
matrix I\_Q") where @_I" is made up of the elements of the first r ro.s =nd
r colums of ;[g—‘ .

%
When r =1 , the expression reduces to L. _ b, By -

L

Hence if r =1 ,ve may maximize § by meximizing b, or miniimi-
zing m ,the pivotsl element of IVI-‘ .

From var(f: ) = M e+ ,we obtain vs:c'( o is v;,r([s) being the (1,1)+h
element of @’ .Thus when m is minimized so is Var( [s,).

Now if r =1 , we can say that we obtain the powerfull test tnd
the best estimate by minimizing m or we would equally well say that
minimum
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variance of ﬁ; ensures the most powerful test.
But, when r >1, the difficulty arises that no set of values §;
can be found for which ¢ becomes a maximum irrespective of the values
of the unknown parameters.
Wald then suggested a compromise solution which is now known as
E-optimality which Ehrenfield studied later thoroughly and developed
a satisfactory working rule to find the sufficient conditions for this
optimality. However Wald succeeded in developing a goodness criteria
which is now known as D—optimality.
Wald first considered a unit hypersphere
T T <1i.e. e pre o £ BT a e
in the space of the parameters Fly‘ . > Pe and mentioned the following
well known result:
The smallest and the greatest characteristic roots of the eguation
& -x1ll =0
are respectively the minimum and maximum values of &5 on the unit
sphere ( €1 ). Though he mentioned the compromise solution of maximizing
the smallest root of
! B .%1l| =0
as a reasonable goodness criteria (which Erhenfeld exploited thoroughly
later on), he approached the problem from a different angle. He
proposed to maximize the product of r roots of the equation. Since the
product of T roots of our equation is equal to the determinant [B] we
have to maximize [@}.
aut  [B] = ﬁ: |
Hence B will be maximized when Mt is minimized. The generalized
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variance of the set of variates ﬁ, C ,ﬁ . is equal to the product
of &7 and the determinant M} .
Thus, the optimum choice of the values of §. is that for which

. . A . s
the generalized variance of P (i =1, 2ys0e0esr.) becomes a minimum,

Now we have the following definition of D-optimality.
Definition: -~ In a possible class of designs 4 , let A' <A represents
a subclass of designs for which \ﬂ are estimable. Let
Ed be the covariance matrix of best linear estimators of the y for a
din A",
Then a design d is said to be D-optimum in A if d°¢ A'  and

det V.» = min det V

d de A d

8.1.2 Ehrenfeld's development of E—optimality.

We shall consider first an inequality which will lead to the proder
understanding of E-optimality and later a theorem about quadratic forms
which, the the aid of other considerations, will motivaté a criteria:
for the optimality of a design.

A useful inequality. Suppose we have a real pxp symmetric semi-—

positive matrix M -(X X) of rank r ¢p. Let X be a column vector of »

components, not all zero, such that Er = ) has solutions for ¢ .  Then

we have the following theorem. .

Theorem 8.1 If p is any solution of My = ) , then we have

Lo 'ME ¢ L

M’max A

n-

D) mim
wheren and x . ar e the maximum and the minimum of
max min
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the nonzero characteristic roots of I
Proof: Since II is semipositive definite and of rank r there exisis an
|
orthogonal matrix P such that P U P = (v 5,.) s Where (1 = 1, 2yeeel)

t t

are the nonzero characteristic roots of M.

Therefore 'f = [BRPUPR'f
=) @uep @)
- (@ u e

0
™
2
R
—
E

Since My =) , we also have A') = ' M' I

= =fPPMREPHER
- @) @Eup @1)

1
L3
P
I
=
&,
™~

Thus, putting 7, = I, [, , We have
!'1' -3_
My = Zt_nt f: _ S 2,
- .
‘A 2 %t Z_xt- z
. A2 Zi_x‘. rt
Since
T
LI S ’z e < \
omax ity i

Han Y " nion

using t = E—‘A )

-—
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For the most part we shall restrict ourselves to the case where

U has full rank i.c. U has an inverse and { = ¥ XA . Vhen i is not

of full rank,we can cither reparametrized the model so that the corres—
ponding M is of full rank or proceed in a mamner very similar tc the cauc
of full rank., DBefore we apply the above inequality, we shall reconsider

the estimation problem and the power of the F—test of the hypothesis

He - FI=F2:" ’ pr=0.

The best unbiased estimate of \ = NY,, in the sense of minimum

variance is provided by Gauss-Markoff theorem as ({/ = Z X (2(» Y :?. ’
. L=y

A
where Y, , is the Least Square estimate of Y, . Also it is known that

the variance of <p is *XM A . If )is such thatl, = A lhas

solution for { , we know that ~ = XY, is estimable. ‘hen I is of

full rank, the variance of ~ is« ¢'M; where ; is the solution of

M, =2 ., (Infactvar & = (l,& even when M is not full rank.
RefizChapter 1v. ).
Next we shall consider the power function of the F-test associated with
the null hypothesis H.

Consider now the similarly partitioned matrices of M and _1‘_&'_4 ’

=n _'I’)_.

M = with M = U

M I\L Il XN 21
2l L
n %
.}; ' (_ - 1t 2l
and M = with M =M
ul LN
i U

" .
where M ~and M are rxr matrices.
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The usual F-test for the mull hypothesis F, = ]5, = .. =p:0or X =0

has a power function depending monotonically on 8 , given by

§ = I_'z__e—’_;_f_' = 0 (’-/‘nlz}-l 1 in our notation abovc.

[ 1 !

\ °! - -t i

Since (M" ) = M~¥ UL = (X x -xz (xzx )z x) |
- THho T T T -r =l Tttt mp 2ty :

\ ) -1

> = Yu v - @ on)u, W% )

26 ‘

|

Confidence interval for ~y with confidence coefficient 1- x is
A ”~ A A ’
'\V"k"‘\"*‘ $ smyﬂ-k‘r\f
where k < is an appropriate constant, being estimated by
A -l A
“:F = &AW ) , vhere « is the usual estimate of &
If we let L equal to the length of the confidence interval, we have
2 , ' '
(B(L) ) =4 NU ) , where A is independent of « .

Using the above inequality, we have the bounds for var ( 4}/ )

. et
Since %MM ¢ 2 _I‘_K_ %& ¢ %W\f"\
2N
LA & VAU B 74

m ™in ‘
or A\ ¢ var (< ¢ A ( 8.3 )
/KWW\X (Y) T Tnin ‘ 1
Similarly we get the bounds for the expectation of the confidence interval |
*
A e"X 2 ¢ (B(1)) ¢ A <20 (8.4)
Am«zx %("miv\

The noncentrality parameter of the power function of the F-test of the j

null hypothegis H is 4 ;

8 = Tll @Yi

2t
Now consider TWBY, = Y P'P B _I_’: P (P being an orthogonal matrix) !
T TEET, |
! x x .2 ‘ E
s M3 L= L such that x are the |
I S [ : i
¥ LN Y . . - !
T L B characteristic roots of 3. !

(=2
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v 2

w B
therefore minx, & & ) PL § max
E Pt
or minx ¢ Wi 'éf_ $ max %,
T—I
-l )
Therefore  wiv, o S s P VR o (8.5)
2er e o 208"

It is to be noted that all these bounds can be attained.

In equalrble.a (8.1), (8.2) ana (8. 3) suggest that it would be
desirable to make ™, .as large as possible.

-~
But B= Vg where Vd is the covariance matrix of ¥, .

I}

Since l_]§ - x;_l O is equivalent to

0

<3
i

i+
1

the characterstic roots of Vd are the reciprocals of theose of B.

Consequently maximizing ®oin (_B_) is the same as minimizing Mo (—Jd%
Now we shall formally define E optimality.
Definitions— Let A'cA represents a subclass of designs for which

are estimable in a class of possible designs and let ‘-/’d

be the covariance matrix of the best linear estimates
of the ~y for a design of d in A'

t
Then a design d"is said to be E optimum in A if de A

d . Vi) = i v
an ax ( d) n:llenA. “max ( d)

where (Vd) = the maximm eigen value of V,
: max . o

8.1.3 The meaning of D~ and E-optimality from the power function standpoint.

In ordervto see the interpretation of D-optimality in terms of power
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properties for hypothesis testing, we shall consider the notion of tyve &

(or type D) test: Let the distribution of y depend on the parameters

W

( X % ;e ). Then a test ¢ of the hypothesis H: Y\ = X is

said to be locally strictly unbiased if for each ( Y., ¢ ).

(i) F¢ (‘f‘& ) Ya ) ‘J) = «

(ii) there exists a Y- neighbourhood of Y, in which

*

Fq>(~€':f7-35‘1> > % for Li=T .

supposing that the first and second derivative

3 cy &
F (f}. N 6\1‘) = '_3_ ( T, N A8 3 5‘1'7‘ and FJ :E—,F?l‘
j T P e
exist for all tests ¢ and all (% ), then one can easily see that a

>

s ’ ‘.' ™
is that - . Fq,(“f\-,r-ﬁ) =0 for all i and ( Y, 5 © ) and that the matriz
( Bl (7,e) is positive definite for all ( )
F? (f.,eY)) is positive definite for a e ).
Definitions A test of H is said to be of type E (tyve D if there is no
nuisance parameters i.e. Y| -F or no Bs ). if it is

locally strictly unbiased and among all tests with this

(This

property maximizes the determinant |( P;d )
determinant under the stated conditions turns out to be
the Gaussian curvature of the power surface at Y, %),
Then:the F test for testing the general linear univariate hypo-
thesis is of type E.
Wald's theorem can now be stated as
"Analysis of variance test has the property of maximizing the

surface integral

j [F? (6,0 &%) -x] dS.
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among all similar (and hence locally unbiased) tests where S is the
surface % LR G IS ) =r1r3§

letting " tend to zero and utilizing the conditions

¢

Po (Tse™ = 0
{S PO CR-F) 45 =0fori¢j,
[ Cp-po s, =k ()
PRy !

one can show that F maximizes Z,F? (s ) among all locally

unbiased tests as follows:

(6, Ty &M -x].dS & { (5,6 5 - T, Ty eD] ds
[ “] [gemmse g ]
- [ L= g Cn ey + Crion)d VR, T ) (-1 w e ]S
S
where DB, = (F;b)
e, o= (pd
Phy = (B

| and > 0 when ¢ — O,
=S/ (-1 By (n-x) ds e /Sas.
= k ([ ~) + ¢ (Surface Area)
Thus Wald's theorem ensures that F test maximizes i_i )B;: (e o)
among all locally unbiased tests. ‘
I\Tow; since ( rs;‘f (*u; o) ) is positive definite
} (F’:{\)’ < ﬂ'r,; (i.e. the determinant of
a positive definite matrix
is no greater than the
product of its diagonal

elements).
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Using the inequality of the geometric and arithmetic means, we

obtain

DL« TEy ¢ [ LB

may assume that the components of Yi are such that 1}\ (the D.l.e.
of ) haye ~" times the identity for their covariance matrix.
Thus [ zi E;}* . LIT ﬁ?
(=) ¥ o

-] Y|
Thus the AOV test of the General Linear Hypothesis is of type E.
Obviously under F test ICov ( ¥ )l = I ?('&.;r)(l so that
maximizing IP{ T e ﬂ amounts to minimizing |Cov ( 4 )L
Now we can see that for a-D~optimum design, F-test of the general linear
hypothesis is of type E, if it is suitable.

In the derivation of E—optimalitj, we have discussed, it is assumed
that F~test is used in the 1gsting of hypothesis. We know also that
the power function of F test is a monotonic increasing function of the
noncentrality parameter § . Then a design wh@ch maximizes the minimum
power on ( T -'S‘j 513-Yr) = f’simultaneously for all ¢ is precisely one
which maximizes tﬁ; minimum of § subject to (T -% ) (W-%) =7

6\1
From (%~5) it follows that mgximizing minimum power means

1]

\ -
N . . i g \I g = A
maximizing min 5 N, % (V)

\
£'g =
i.e. minimizing max = (V) which is precisely I-optimality.
-1
To summarize, D-optimality, although local properties seems more

reagonable criteria than EB-optimality, which is itied to the ad Hoc
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assumption that F test should alwgys be used.

8.2.  Before we study other optimality criteria and their meaning we twould
review some results we have obtained in the analysis of less than full

rank model. The prediction equation based on the design d may now be

written in the form
I = }—Id P +e (&6 )
If there is an additional assumption of the form
Cp =¢
whexe [' and ¢ are known g x p and g x .1 matrices, then it can be
abso;‘bed in (%) . We shall suppose that this has been done, without
any loss of generality.
Also a hypothesis H_ will be of the form /_\F_ = O where /\ is a specificd
rxp matrix (r §p) which we can take to be of rank r. We may think of
the class H of alternatives as being all [é for which J_\l"e_ 4 0.
A hypothesis of the form /_\_I’g = { can be transformed to ’ghe above form
by using any solution b of AP =1 and replace y by y* = y — Ed_@ and
[5_“ = [‘a ~b. It may or may not be that r elements of J}fi are
estimable when a given design d is used.
Suppose that there are s linearly independent linear combinations of the
elements of Al}_ which have unbiased estimators when d is used, but not
8 + 1 such oombinatiocms..” Then there exist an s x r matrix g such that

all components of @ j_\_rg are estimable. Let '\A{)‘oe the s-vector of

gsuch estimators with minimum variance. We shall use #\_/‘\to denote the
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covariance of -(} o Ve know that, if rank 2{13 is b, then there are b

linearly independent estimable functions of the components of [’e_ .
Of this, we can take s of them to be the elements of -Q'Af’— 5 thus
there exists a (b - s) x p matrix R of rank (b - s) whose rows are
orthogonal to those of Q‘A and such that all components of _Ii._ls_ have
unbiased estimates.
Forony test CE; associated with d, let F‘I’d (f2,e*) be the power function
of q>4 . For o<« <1 we shall denote by Hd( « ) the class of
all ¢ of size « i.e. all <&, for which

‘ F4’4 (R, ") ¢« wherever R po=20 (8.6)
and by Hy* (=), the class of similar tests ofl size x i.e. those for
which (8.6) holds with the inequality sign replaced by equality.

Finally, let F denote the usual F test of Ho of size x with s and n - b

d,«

degreesof freedom, based on ‘:}_’

-l A
NG A, where &'is the unbiased
d S
estimator of & . (1 ~" is know, this is to be replaced by the
. ‘
appropriate?( test).
In practical applications, we have to consider two cases of null hypo-
thesis: _ ‘
Case I Po=fa - = b= B, =0
Case IT BEpPe = e

The corresponding A matrices in A p o= O will be l\l for Case I where _231

is the (r x r) identity matrix followed by p - T colume of zeros and R,

for Cage II where 311 isa (r -1) x r matrix gvfollowed by p - r columns

of zeros, P Being made up of the last (r ~ 1) rows of a r x r orthogonal
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matrix 0 whose first rov{v elements are all I.?c o In Case II, as
discussed in Chapter I1V. , it is often convenient to write the normal
equations in the form

% =%
where C is an (r x r) matrix of rank (r - 1), % a r=vector of linear forus
in y with covariance matrix C « . For any solution T, of these equations
one obtains the best linear estimator of any contrast /. <oy
with 2<% =0 by forming L%_‘C; TB; « Clearly, _P_:f_, , is the best
linear estimate of Rll B (% is the interested components of f Ve
We shall assume that & is full rank.
The last (r — 1) rows of the equation _Q_Q__Q_@_ = 09 are thus

PCP( _Iil) =P 9 (the first row and

colum of 5 C G

are zero).
so that PN =(_EQ.2‘5 2 g
@, p)-(@cE) 2%
Cov (&,.p) =(?_£_I:)_| P Cov &P (BCZ)
=(RCcE)

v ool
That the matrix (B C P ) is a multiple of the identity follows from

the following lemma.

Lemma 8.,1. If C is a r x r matrix with diagonal elements a and off

diagonal elements ¢, then
a+ (r-1)c o
0co =
0 (a - c) I_1
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Proof: (i,3)ith element of 0 C 0 = 2L ot €y o
. ) - P os
For i = j = 1, we have Zt_é"ubcts°ls= Zcé Lo, &
= L XL o<

L (rar xc_f:-o [E-D «+e])
= a+(r-1)c
This pivotal element vanishes when the row and column sums of C are zero.
For i = j ( 1), we have

(a

Z ?_ Ok ks Cus

-
i

C) + C 7_Li_ ok O
' - s

tv S
= (a=-c)+c (7o)
-
= (a — C) ( ZoL‘l" = O)
For i ¢ j, Zl- é O b o5 = (37 -c é%ous +c ZL:?;‘H— s

)
(a - ¢)

L
t
( Tea)™ + o(Zet) (L)
= o0
Now the properties of the matrix Cd (Bose's information matrix)
of the reduced normal equations _(}a :\_f_‘; = S'd for the varieties in a block
design setting (r< k) suggests the different optimality criteria of
various designs. We know that g_qd _Pj_lis proportional to the inverse of
the covariance matrix \-/A of the best linear estimators of contrast
o= tg‘i <P with e =0 of the treatment effects Yu=(p, -~ e
Su;lpose a design d* 1ig such that Qd* has the properties discussed
sbove (i.e. Qd* has all diagonal elements equal, row and column sums equal
to zero, and is of rank (r - 1))and has maximum possible trace. Then

by Lemma ( &1 ) @ Cax 0 has the same positive constant for each of the

last (r -~ 1) diagonal elements, and is gzero elsevhere. Since the lower
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right-hand (r - 1) x [r -~ 1) submatrix of 0 Qd* Q(= g,gd E}

L4 2 b A
18 Just tae

reciprocal of the covariance matrix Yﬂ) for the b.l.els of the contrasts

s - <}y Wwe have the following theorem,

-

Theorem: 8.2 If Cyqy bas maximum possible trace, all diagonal elemens s

-1
equal and all off-diagonal elements equal, then Yd‘has
maximum possible trace and is a multiple of the identit:.

Proof: 0 QdQ has the upper left-hand element equal to zero.

Since tr ( !: ) =t (0 QdQ\) = tr (Qd),
tr ( Y:“) is a maximm .

Now consider det V s Tuy

—4*
From this theorem we can deduce that any design d* with the above

properties is optimum according to a wide variety of optimality criteria
considered separately by various authors.

8.21, Various ontimality criteria:~

Suppose we are interested in s given linearly independent
parametric functions ﬂ? = 1£3Xﬁ Poo,tspes ‘Let A" be the
class of designs in 8 for which all «n.are estimable, and let Y, « be
the covariance matrix of the b.l.e's of the ﬁ% foradin A . Then
a design d* is said to be

(1) D-optimum in A if d% ¢ A and
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det \_{d» = min det Y,
ded

ig. minimizing the generalized variance (Wald)
(ii) E-optimum in A if d% <4  and

K(\Q» =min' % ( \’!g )
e

where w is the maximum eigen value of Yd'
Also called the minimaxity with respect to all standard parametrié
forms:minimiziné the largest eigen value of V, (Wald & Ehrenfeld)
(iii) A —optimum in A if dxc ' and

trace Yd = min "trace \_fd

* ded

i.e; minimizing the average variance (E1fving & Charnoff)

(iv) Minimax with respect to single parameters
ie.e. minimizing the maximum diagonal element of Vs (Elfving)

(v) Minimum avemage efficiency i.e. minimizing the average of the ,.
variances of the best linear estimators of B - Fi this
average being proved easily to be proportional to tr Vd.

(vi) L-optimum : maximizing under the assumption of normality

the minimum power on spheres r\_{f'fj_x =e- @S C =0
, —
for testing hypothesis
i.e. for ax e &'

lim [P
cC =0

= |

)C,"() -“‘]/[ Su’r F(c"c,.(') .Kl

where 'fs(d, c,%X) is the sup of fnq; (&) over all ¢ of

glze < , F‘# (<) Dbeing the informum of the power function
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of the test ¢ over all alternatives for which o'~ =

0\1
Another optimality criterion, first considered by K. Smith and studied

thoroughly in the most general setting by P. G. Guest is
(vii) Ge-optimality = minimizing the maximum variance of the
estimated regression function
. . A
ice. gﬁ:d max var | L CBe-pd) foa]
We have seen that G—optimum allocation and D—optimum allocation in
polynomial regression are the same. Ip fact this result represents
a special case of the following theorem. |
Keifer-Wolfowitz Theorem:  If ¥ is a compact space on which the fi are
continuous and linearly independent, then
the allocation p is D-optimym for R if and
only if it is G-optimum,

8.2.2 Relations between various optimality criteria.

Having stated a relationship between G- aﬁd D-optimality, we may
now turn to the question of relationships among the other criteria. In
general, the remaining optimality criteria are unrelated. However, in
certain situations such as those where balanced block designs, Latin
SQuares and YouXdon Squares are employed, it happens that their criteria
are related, due to the symmetry of the design.

Lemmas 8.2 Suppose b, is constant for d in A", If d° is D-
optimum and YJ‘ is a multiple of the identity then d¥ is
E-optimum, A-optimum, minimax with respect to a single

parameter and L-optimum.
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Proof: All optimality criteria except L-optimality is obvious from
the nature of ¥V a

If d"were not L-optimum, since F has property of

d,x

maximizing average power (Wald) , for ‘some other design

there would be an associated test cpcl in HdL'Q

with
) ' { & . ‘3{‘ .
l‘h{- (T‘t @1) v D C ¥, y =)
Ya ) e ! P:P‘{ ‘ F F o

If CFd is replaced by Fd,“ we have the equality.
This yields the contradiction that det Y, < det Yy«
Next we shall consider some theorems useful in many
applicatipns.
Theorem: 8.3 If i‘?%c , the product of the diagonal elements of C a is

a maximum for d = a and if C., has all diagonal elements

d

equal and all off-diagonal elements equal , row and column

. -\ x
sums equal to zero, then dét \/dl is a maximum for d = 4 .

The proof of the above theorem depends on the following Lemma.
Lemma: 8.3 For r >1 if O is orthogonal rxr, D is diagonal rxr, C

is symmetric non-negative definite rxr with row and column

sums zero, and 3 1_36’l = Q, then
-\ ~
d -t < '\T Sl
(= Tr u) L (8.7)
for j.<£ . . .
Proofs Assume that 4, = o <4, otherwise the result is trivial,

Since the row and columm sums of Carezero,

-\ -\

o = g_ }: o z_ 0 ous OJS dgs = Q. s (i"x's)l (8.8)

I & (=) }=) S=) S=1 (=4
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Thus Z‘Ois = 0 for 8=1,2, tveveneea, r=1 ,

=)
i.e, the first r - 1  colunns of are orthogonal to the vector of
ones . We may thus take o, =1 ( J=1,2, vevesa, ) .

Jr V-
r
Let the coordinates of a point € in r(r - 1)=-dimensional Euclidean

e’

space be denoted by (151,2, civene, T 33=1,2, coeey =1

and. let R be the set of points e in this space for which all

€55 20 for which Je;; = ' (r-1)/r for all i ,and for which
| i B
Zeij =1 for all j .Then we shall prove below that € in R implies
+ ’l:_r - r -\ :r_
€,.d.. > p. D R 8.
L=\( t'z;\ 1J JJ) - ( ") (H(dll> ( 9)

Since the left hand side of ( 8.9) with eij = oij gives the right
hand side of (8. 7) and since the restriction on the eij in R nwust
be satisfied by the oij , (8,9) implies (8.7) . .

Now consider the left hand side of (8,9) , £f(e) = LW‘.( E\ei,jdjj )y .
We can verify that -log £(e) 4is convex in € on r(x -J..B\-space, and.

hence on R . Moreover , R is a convex body in r(r -1)-space sand any

extreme point of R is either

o SRR i"_:.;! o o
o o o
«
. ( 8.10%
) o *:;r.'
G” L isw J; 4:_ _)..’(

or is obtéined by permuting the rows of the matrix on the right side of
(8. 10) . Since a, convex function on a convex set attains its maximun

at an extreme point, we conclude that the minimum of £ is attained
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at one of these extreme points . But £ has the same value ot any of

these extreme points, namely

~-| -1
min £(e) = (L{‘. iii T 4. (8.11)

But from the well known inequality between geometric and arithmetic

means, we have

h g3

T : = -
( 0= 343 ) s i'cz:. 33
Y-l ke ;‘L—.I b

- - vy

.vl'—:l el -
2 (Mo )M a,) < o L3 ) (T waa,)
ot}

. «
t=)

\ -1 Lo - -
Yo - . -
(=) (Edii) 5?(z‘é\dii)(l[:7\dii)
~ ¥ay - )
“f‘:_! _;_ .
(=) (Wa, )™ 5 minf(e) <T ey, .

L=y L=y

Proof of theorem 8.3,

In order to conform to the previous notation we may use lemma 8.3

with product on the left hand side of (8.7) ‘going from 2 to r .In

~

this form, with O = O ,it follows from lemma 8.1 +that the left and
right sides of (8.7) are equal for —qd = Q-d’ .

~-|
Hence, by lemma 8.3 T[v,. is a maximm for 4 = d .

(9 -l
-

Since det V., is non-negative definite TTV_‘ > det V. with equality
-a‘ l::\ 11 - —'d

only for the diagonal matrix _Wf:f .The proof of the theorem is thus

complete.

-
Theorem 8.4 For r >1 , if ’1(_\/:&) is the minimum eigen value of

Xd s then

—-l . -
(T s e )
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the equality holding only if all diagonal elements of C g are equal
and all off-diagonal elements are equal.
Proof ., Let &, be the r-vector with ith element one and 2ll other
elements zero . Let §_( =P &; .
Clearly _]_g._' §, has unit length .

1
& ga_ g; -

Hence C..
ii

= t 0 0 O
(De;)(3g,8) (3¢,
= &Y 6 -
-1
= Y- min a'V.a .
Taacl ©

i n

Y-
L (Y.

8o 3 Optimality of certain basic designs in common use .

8e3.1. Optimality of Balanced Block Desisns . In the setting of one

way heterogeneity, suppose we have b blocks of size k and +
varieties without the assumption that k < t (which is true in incom-
plete block designs ). Generalizing the notion of a balanced incomplete
block design, we define a design d in the above setting to be a
balanced block design ( B B D ) if (&) the nusber of times D3 that
variety i appears in block Jj 1is X/t Aif this is an integer, and
ia one of the two closest integers otherwise ; (b) the number ? nij

of replications of veriety i is the same for all i , and (c) for

each pair i , :'L2 with 11%- i, Z ni‘ jnizj is the same.

Theorem 8,5 . If a BB D d exists, then it is D-optimum, E-optinumn,
A-optimum, minimax with respect to single parameters and

L-optimum .
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Proof . In the setting of one way heterogeneity , Bose's informatipn

matrix , C. is of the form ,

d
= $. -
k
so that tr(C) =bk-22n2. .
=d t s _is

The expression for tr(C d.) is a meximum for d = 4 .,
The result follows from theorem 8,2 and lemma 8.2 .

8¢ 3.2, Optimality of Youdon Sqguares .

In the setting of two way heterogeneity with k rows ,:k col-

ums and t treatments , suppose there exist a design d such that

(a) z n;:; ( = 3 n;_zs’ ) , the number of replications of treatment i

is the same for all i (b) z n; Sn:(.:)s is the same for each pair

. . . . . W _(2)
i ,i, with ik i, (e) 5 ny sy
1 2

with J £ J, (a) al1 n;‘j) are equal to k%'/t if kq,/t is an integer

is the seame for each pair J , jz
and are either of the two integers closest to kw/t otherwise ( ¢ =1, 2 )
Thus , a  is a BB D when the rows or columns are considered to be the
blocks . Such a design d isknown esa Y S if k <4 ( and k /t is
an integer ). Without this condition, such a design 4 shall be called
a Generalized Youdon Square (¢gys).
Theorem 8.6, If k/t or k /t is an integer and if 2G ¥ S 4d exist,
| then 4 is D-optimum, E-optomum, A-optimum, L—-optimum
and minimax with respect to single parameters.
Proof ., If we can show that {2 Tis is a meximum for 4 = a sthen
theorem 8,2 yields the desired result.
tie shall use the notation [x] for the greatest integer < % .

k

. 2
The expression & mJ. “is minimized
1 * 2
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subject to the restrictions that

(1) a11 m"j.s are integers ,
k

(2) ?mj =n ,
by teking k - n +k [n/k] of the m, tobe [mk] , and n - kln/k]
of them to be [q/k]+ 1 , the corresponding minimum of. I mg being
n.+(2n-k)[n/k] -'-k[n,/k]= W n,k ) (say ).

Assuming that k,/f is an integer , we have for any design 4 , from

Bose's information matrix ,

— ) W I e '6)
Phs T RETe Ll - ipore e Lpnd pad)
kz l, k, kl
m?* = .
= i(, I‘:. - Z_ Z_ '“t‘s) - Z s "‘\f':) + Z (Z "% y*
: t s — [ ] T t s
2 ! k| l‘z

' [‘z (l(‘l(‘l-_ Ci¢ = Lf)l + 'n"l w(f) z
“ Lead =k ZLon KDL A0 (L)

% Z; { k, h (Zs:m,qs)")\(,) +kz‘~(Zs.~n(~?,kl) ~(}’§n((‘1)13
(8.12)

with equality in the case of a G Y S
Qur theorem will be proved if we can show that the right hand side of
the above inequality atbtains its minimum for 4 = 4 . Now h(n, k) >
n/k, the latter being the minimum of I m; subject to I m, = n w7ith-
out the restriction that the mj be integers . Hence ,the first and
the third sums of the right hand side togather is at least zero. lloreover,

this lower bound is achieved by this sum when d = a s Since I ng;ﬁ—

=k /t is an integer . ( Por kk /2 ng; =t ).
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We shall show that, subject to 2 z, =c sthe expression

1=l

m 2
A 2 585 ceenennyz )= 5 (22 -1) z,) -[z‘_.]}(8013>

is a minimum when all z, are equal; putting z = [§ n;’g/k 1 s

we can see that this will yield the desired conclusion regar‘ding the last

sum of (8,12).

Proof regarding @.13) is by induction.

Assuming the conclusion to be true for m =M in proving the case

m=1M+1 ,wemyput z =3z =......= z,=sand z, =c-Iis.

in (8.13) . The resulting expression is continuous in s and, except

on a discrete set , has a derivative with respect to s which is

equal to 21( [s] - [c - us] ) . The latter is <O if s < o/(il+ 1)

and is 3 i Ts]s > ¢/(11 + 1) sothat s = ¢/(11 + 1) yields a minimum,

The proof we have considered depends on the asswption that k, /t or

‘ k, /t is an integer , otherwise the proof fails .

Analysis of other designs .

lany other design settings may be analysed in a similar manner .
Though many authors have suggested different methods of establishing
various optimum properties of well known designs , only J. Keifer

has succeeded in presenting a wnified theory .
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Dicussion .,

Most of the papers on optimum design of experiments are mainly
concerned with establishing well known designs optimal or non-optimal
in the sense of several optimality criteria we have discussed so far.
Many more optimality criteria are suggested by different authors.Until
very recently , few computational methods , mostly geometrical (main
contribution by G.Elfving ), for the actusl construction of optimal
designs are considered.The methods of construction of designs, optimal in
some acceptable sense, are in the process of developement. Important aims
in experimental designs are to estimate the relevant parameters with
maximum precision for a given total number of experimental units, or total
cost and to perform a test of the null hypothesis with maximum sensitivity.
Wiith these considerations in mind, we should construct a design which
satisfies our specific need, i,e.which criteria should be adopted in the
construction of the design depends on our aim in conducting the experiment .

For polynomial regression, P.G.Guest , P.G.,Hoel , J.Keifer and
JJiolfowitz have constructed optimal designs under various criteria of
optimality. Very recently , game~theorectic nature of the construction
of optimum designs has been discovered , sand recent papers by Leifer and
Wolfowitz and J.Aitcheson show.: the possibility of constructing optimum
designs by appealing to gemes. theory.

Though & thorough study has been made on admissibility in the cese

of partial estimation using minimum variance goodness criteria in this
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thesis mainly on the line of J.Keifer, H.Erhenfeld and G.Elfving , a

systematic exploration is still needed in that direction.
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