#  

## ATD SAMTONTN DERTRAGTYRS

BEING A TEIESIS FOR LTER DEGREE OP DOCTOR OF PEILLOSOPTIT IN THE UNIVERSTYY OP GLASGOW SUBMITIED BY<br>JOER DAVID MLTCEELL, ASEER, B。SO。

All rights reserved

## INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.


ProQuest 13849473
Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

## PREFACE．

$I$ wist to express my thants to Dro $G_{0} A_{0} S t m$ ana Professor Jo Monteath Robertson for thetr adutee and direction thronghout thts pertod of pesearels．

The extersive oal ablatzons were parjormed on the Glasgow Untversity DEUCE comproter．I am tnasbtes to those authors who nade thetr programes for DEUCS available to me，of particular Do．JoS。Bollety and Dro JoGe Sime。

I wish to actrowledge the receipt of a Daparowner of Sctentific and Industrifal Researeh matntename grank during the first two years of this research worfos

## SGMMARI

X-ray studies have been carried out on crystals of heavy-atom derivatives of naturallymoccurring organic compounds and related photonirradiation products. Four structures have been successfully solved: the alkaloid hunterburnine, the sesquiteřpenoid santonin and its photo-irradiation product isophotoodmsantonic lactone. and the colouring material ergoflavin. Atempts to solve the structure of toxisterol $A_{2}$, a phote-irradiation product of the steroid ergosterol, have proved fruitless.

The elucidation of the structuse of hunterburnine resulted from a straightforward application of the heayy atom technique to hunterburnine methiodide and the complete structure was assigned with certainty from the fifth three-dimensional Fourier synthesis. Subsequent refinement reduced the discrepancy, $R$, to $15.4 \%$ 。 Hunterburnine represencs a new class of indole alkaloid.

The analysis of bromodihydroisophotow $\alpha$-santonic lactone acetate was undertaken to define the stereochemistry of the parent molecule. The analysis was hindered in the early stages by spurious symmetry which was eventually overcone with the aid of chemical knowledge of the structure. The structure has been refined and
the final value of $R$ is $12.9 \%$. The analysis has established the relative stereochemistry of isophoto- $\alpha$ -3antonic lactone.

The configuration of the methyl group on the lactone ring of isophoto $\alpha$-santonic lactone is opposite to that generally accepted, implying that the assignation of the stereochemistry of the corresponding methyl group in santonin itself was in error. Hence an analysis of the heavy-atom derivative 2-bromoo $\alpha$-3antonin was undertaken. In spite of spurious symmetry, the structure was solved and refined to give a discrepancy of $15.2 \%$. The analysis has confirmed the revised configuration of the contraversial methyl group in santonin.

Inter- and intra-molecular dimensions in these three structures are in reasonable agreement with accepted values.

The struccure and stereochemistry of tetramethyl ergoflavin di- $\mathbf{p}$-iodobenzoate have been established and refinement of the structure is in progress. Molecular dimensions have not been discussed, but the gross molecuiar structure is in agreement with chemical evidence with the exception of the assignment of hydroxyl and phenolic groupings. This project was studied in conjunction with A.T. McPhail and $\mathrm{J}_{0} \mathrm{~V}$. Silwerton.

The final chapter of this thesis describes an attempt to solve the structure of toxisterol $A_{2} 4$-iodoe 3-nitrobensoate which crystallises in the monoclinic system with space group $P 2_{1}$. The heavyoatom positions have been located, but it has not been possible to allocate additional atomic sites from threedimensional Fourier maps or a three-dimensional superimposed Patterson synthesis.

## CDNTRNTS

PREXPACK ..... $t$
SURHARI ..... $\$ 8$
PARP IT


1. (1) Introdretton ..... 2
2. (2) The Lave Equatione ..... 2
3. (3) Bragg ${ }^{\circ} \mathrm{E}$ Law ..... 4
4. (4) The Structive Factor ..... 7
5. (5) Temperature Fuctor ..... 20
6. (6) Foruper Semes ..... 11
7. (7) The Intenstity of an Xalay Reflectton ..... 12
8. (8) The Phase Problem and the Heavy Atom Method ..... 14
9. (9) The Patterson Minction ..... 16
10. (10) Refinement ..... 18
 
11. (1) Introduction ..... 23
12. (2) Expertmental ..... 24
13. (3) Crystal Data ..... 25
14. (4) Looatton of the Exavy Atom ..... 28
15. (5) Solution of the Structure ..... 27
2.(6) Refinememt ..... 29
16. (7) Results ..... 31
17. (8) Dtseuseton ..... 32
PABE III
TEK STRUUCTURE OF ISOPROTO SANFONTC LACTONE:  
18. (1) Introduction ..... $\$ 8$
19. (2) Experotmantal ..... 39
20. (3) Grustai Data ..... 40
21. (4) Lacction of the Reavy Atom ..... 41
22. (5) Solution of the Struetrape ..... 43
23. (6) Refinsmont ..... 46
24. (7) Restales ..... 48
25. (8) Dtsousston ..... 49

## TVFTR STPUCCIURE OF SAAEPONIN: XDRAY 

4. (2) Introductions ..... 56
5. (2) Experomenéal ..... 58
6. (3) Crustal Dot̂a ..... 58
7. (4) Lacoêton of the Eacuy Atom ..... 59
8. (5) Sosubtor of the Streature ..... 68
4.(6) Refinement ..... 62
9. (7) Besult ..... 63
10. (8) Dtseusstor ..... 64
PAPT T
THEF STRUCTURR OF ERGOFLAVIN: XGRAYBTopolodosenzonp
5.(1) Jitrodrotsora ..... 69
11. (2) Experimental ..... 69
12. (3) Grystal Data ..... 70
13. (S) Location of the Heavy Atoms ..... 71
14. (5) Solution of the Strezoture ..... 73

## 

TOXISNEREL $A_{z}$ : X XARY SIUDTE OP THE (-10D03ARITROBENZAMS
6. (1) Introdrsoticn ..... 78
6. (2) Expertmertas ..... 78
6. (3) Crystal Data ..... 78
6. (4) Logation of the Hzavy Atom ..... 79
6. (5) Attempted Solution of the Streothere ..... 60
PRETHREACES

## PABT TO

## SOXTh YHyPRODS OP CRTSYRAL STRTUCTURE

AMGLSTS

## 1. (1) INTRODUCTION.

In 1912, Friedrich and Knipping ${ }_{0}$ at the instigation of von Laue, took the first x-ray photograph. It was soon realised that the diffracted $x$ cray beams could be used to give the image of the acomic arrangement causing the scattering. Some of the theory relating the atomic pattern to the intensity of the diffracted beams and some techniques employed in elucidating the atomic arrangenent are reviewed in the course of this chapter.

Two major factors have restrained the development of the xray method of structure determination. Firstlys part of the informaition, the phases, required to give a represencation of the atoms in a crystal is lost when the experiment of recording intensicises of the diffracted beams is made. In this thesis. the "heavy-atom" method has been employed to give an initial set of approrimate phases which have been rodified by icerations of structure factor and Fourier calculations, including successively more and more atoms uncil the structure deterninacion tas complete.

Secordly, there is the practical difficulty of the immense calculacions which have 0 be performed in the course of an anolysis, Besore the advent of highospecd computing sacilicies, fuxs factor severely limited the sige ar the mincule stutce anc the degrees of accurcey and
completeness achieved.
Today, the results from $x$-ray analysis can be divided into two categories. Firstly, they can be used to give bond lengths and bond angles in the molecule under study and also, distances between acoms in neighbouring molecules. Such results are essential if adyances are to be made in the theory of chemical bonding.

Secondly they can provide a complete picture of hitherto unknown complex molecules. This thesis is concerred primarily with results of the second caregory and is an investigation of the seructure and stereow chemistry of some naturally occurring organic compounds and related photomirradiation products.

## 1. (2) THE LAUE EQUATIONS

A crysial consists of a repecitive threew dimensional array of atoms molecules or ions. If an arbitrary origin is defined, then it taill be possible to find further points in space which have an environment identical to that of the origin These points describe a lattice which can be defined in terms of three non coplanas vectors an bend chese vectors bound a volme which is called the unit cell. The lattice is important as it derermines conpletely the conditions for

structure.
If some scattering material, say an olectron, is positioned at each lattice point, the positions of these electrons can be defined by a set of vectors such that

$$
y=u g+v b+w g
$$

where $u_{0} v$ and $w$ are integers, and $a_{0} b$ and $c$ are the vectors defined above. $A$ and $B$ in Fig. 1 are two such lattice points.

A beam of x-rays of wavelength $\lambda$ is now allowed to fall on the lattice in a direction defined by a vector $s_{0}$ with magnitude $1 / \lambda$. Consideration of the phase differences between the waves scattered in any particular direction generates the Laue equations.


Fig. I。

The path difference between the scattered waves from the two lattice points in a direction defined by the vector $s$ equal in magnitude to $S_{0}$ is given by
where $R=\mathbf{s} \|_{\mathbf{o}^{\circ}}$
The condition for the waves scattered at A and B to be in phase is that the path difference $x$ R must be an integer，i。e。

$$
(u g+v b+w c) \cdot R=\text { integer。 }
$$

Since this must be true when $u_{0} v$ and $w$ change by integral values，and since $u_{0} v$ and $v$ are already integral． it follows that

$$
\begin{aligned}
& \underline{a} \cdot \mathrm{R}=\mathrm{h} \\
& \mathrm{~b} \cdot \mathrm{R}=\mathrm{k} \\
& \mathrm{c} \cdot \underline{R}=\ell
\end{aligned}
$$

where $h, k$ and $\ell$ are integers．
These equations are known as Laue＇s equations．

1．（3）BRAGGTS LAW
The form of the laue equations makes them incono venient for interpretation of experimental results．Bragg identified the relationship between the integers $h_{9} k$ and $l_{0}$ and the Miller indices，and reduced the problem to one
dimension.
The three Lave equations may be rewritten in the form

$$
\begin{aligned}
& a / h_{0} g=1 \\
& b / k \cdot R=1 \\
& g / l_{0} g=1
\end{aligned}
$$

From the first two of these equations, the followm ing relationship is obtained

$$
(a / h \circ b / k)_{0} R=0
$$

Thus the vector g is at right angles to the vector $a / h-b / k ;$ in Fig. $Z_{g} R$ is perpendicular to $P Q$, In a similar fashion it can be shown that R is perpendicular to QR and RP in turn.


Fig, 2.

Hence $\underline{R}$ is perpendicular to the plane $P Q R$ which has intercepts ( $a / h, b / k, c / l$ ) on the unit cell axes. Thus R is in the direction of the normal to the plane of Miller indices ( $\mathrm{h} k$ ) 。

In Fig. 3, $\mathrm{s}_{0}$ makes an angle $\theta$ with the plane, and since $\left|\underline{s}_{0}\right|=|\underline{s}|$ by definition, $\underline{R}$ must be the bisector of the incident and diffracted beams. Thus $\underline{s}$ must also be inclined at an angle $\theta$, and so diffraction may be regarded as a reflection from the lattice plane with Miller indices ( $n k l$ ).


Fig. 3

$$
\begin{aligned}
& \text { If us represents the vector } \boldsymbol{S}_{0} \text {, then } \\
& \begin{aligned}
|R|=S T & =2 U S \cos \left(90^{\circ}-\theta\right) \\
& =2 \sin \theta / \lambda
\end{aligned}
\end{aligned}
$$

Now d, the distance from the origin to the plane PQR, is the projection of the vector $a / h, b / k$ or $c / l$ on the vector $B$
i.e。

$$
d=g(h, B) /|R|
$$

$$
\approx \lambda / 2 \sin \theta
$$

since $a / h$. $\mathrm{R}=1$ by Laue's equations
1.e. $\quad \lambda=2 \mathrm{~d} \sin \theta$

This equation is known as Bragg's Law.

## 1. (4) THE STRUCTURE FACTOR.

In the previous sections, the scattering unit was assumed to be an electron positioned at a lattice point. In reality, the electrons surrounding the atomic nucleus scatter the xarays. The distribution of electrons round each atom, known fron asomic structure theory, enables the evaluation of the scattering factor ( $f_{0}$ ) to be made; it is the ratio of the amplitude scattered by the total number of alectrons in the atom ( 2 , say) in a given direction to the amplitude scattered by a single electron in the same direction. In atoms, electrons occupy a innite volume (the atomic yolume), and phase differences mill arise between rays gcateered by the various electrons in this Yoluns. These phase differences are dependent on the
value of $\theta$, the angle of diffraction given in Bragg's Law. If $\theta$ is small, the phase differences are small, and $f_{0}$ approaches the value $Z$. As the angle of diffraction increases, the value of $f_{0}$ falls. The curve of $f_{0}$ against $\sin \theta / \lambda$ is the scattering factor curve.

Consideration muse now be given to the mode of combination of the scattered says from each atom. A crystal with 1 atowis in the unit cell may be imagined to consist of $N$ interpenetrating latices, with all the lattice points occupied by atoms. Each lattice ill obey the Laue and Bragg conditions. but in general the waves scattered by the $N$ lattices will be out of phase.

The mean position of the $j^{\text {th }}$ atom situated at the poinc $\left(x_{j}, y_{j}{ }^{Z} Z_{j}\right)$ where $x_{j}, y_{j}$ and $z_{j}$ are fractions of the unit cell vectors, may be represented by $f_{j}$, where

$$
E_{j}=x_{j} \theta=y_{j} b+w_{j} c
$$

The path difference between the waves scattered by the $g^{\text {th }}$ atom and an atom at the origin $1 s \lambda_{I_{j}}$. $R$ and the corresponding phase difference is $2 \pi r_{j}$. R. Combining these phase differences for all the atoms in the unit cell, the expression for the complete wave scattered in the crystal would be

$$
\begin{aligned}
& F=\sum_{j=1}^{N} f_{j} \exp \cdot 2 \pi i i_{j} \cdot \underline{R}
\end{aligned}
$$

$\therefore F\left(h_{k} l\right)=\sum_{j=1}^{N} f_{j} \exp .2 \pi i\left(h x_{j}+k y_{j}+\ell_{Z_{j}}\right)$
where $i_{j}$ is the scattering factor and $F($ hit) the structure factor.

F (hug) is complex quantity and may be expressed in terms of its real and imaginary components

Since

$$
\begin{aligned}
F(h k l)= & A(h k l)+i B(h k l) \\
\exp \cdot 1 \phi= & \cos \phi+i \sin \phi \\
F(h k l)= & \sum_{j=1}^{N} f_{j} \cos 2 \pi\left(h x_{j}+k y_{j}+l z_{j}\right) \\
& +i \sum_{j=1}^{N} f_{j} \sin 2 \pi\left(h x_{j}+k y_{j}+l z_{j}\right)
\end{aligned}
$$

Equating the real and imaginary parts of the two expressions for $F$ (hi $\ell$ ) gives

$$
\begin{aligned}
& A=\sum_{j=1}^{M} f_{j} \cos 2 \pi\left(h x_{j}+k y_{j}+l z_{j}\right) \\
& B=\sum_{j=1}^{N} f_{j} \sin 2 \pi\left(h x_{j}+k y_{j}+l z_{j}\right)
\end{aligned}
$$

The modulus of the structure factor, IF (hel)|, is called the structure amplitude and is calculated from

$$
\left.|F(n k l)|=\sqrt{\left(A^{2}\right.}+g^{2}\right)
$$

The phase constant, $\alpha_{0}$ is evaluated from

$$
\alpha(h k l)=\tan ^{-1} B / A_{0}
$$

An alternative, more general, approach to the structure factor expression is to consider each element of volume of the unit cell separately. If $\rho\left(x_{y z}\right)$ is the density of scattering material at any point $x_{0} y_{0}, z$ in the unit cell, the number of electrons in the volume element dxdydz will be $\rho(x y z)$ dxdydz, For the general case, where the crystal axes, $a_{0} b$ and $c$ are inclined at any angles, the number of electrons in the volume element will be $P(x y z) \frac{V}{a b c} d x d y d z z_{0}$ where $V$ is the volume of the unit cell. The structure factor expression then becomes $F(h k \ell)=\frac{\nabla}{a b c} \iiint_{00}^{a b c} \rho(x y z) \exp .2 \pi i(h x / a+k y / b+l z / c) d x d y d z 。$

## 1. (5) TEMPERATURE FACTOR.

At all temperatures, atoms have a finite amplitude of oscillation. The thermal motion causes the atoms to scatter slightly out of phase ${ }_{\mathrm{g}}$ and scattering factors are reduced by an amount which increases with the diffraction angle $\theta$ 。 If the atcmic scattering factor discussed in the previous section has symbol $f_{00}$ then the function $f$ which is used in practice is given by

$$
P=f_{0} \exp ,\left(\sigma B \sin ^{2} \theta / \lambda^{2}\right)
$$

where $B$ is a constant called the temperature factor related to the mean-scquare amplitude of vibration $\left(\tilde{\mu}^{2}\right)$ by the
relationship $B=8 \pi^{2} \mu^{2}$. A theoretical treatment of the subject and methods of evaluating $B$ from fundamental constants and heat capacity data have been given by Debye. In general, the thermal displacement will not be isotropic, but will vary in different directions, and should be characterised by an ellipsoidal distribution. The asymmetric temperature factor assumed to describe this system (Cruikshank, 1986) is

$$
B=\exp _{0}\left(b_{11} h^{2}+b_{12^{h k}}+b_{13} h l+b_{22^{k}} k^{2}+b_{23^{k}} k+b_{33^{2}} l_{0}\right.
$$

1. (6) FOURER SRRIES

The electron density of a crystal is periodic in three dimensions and can therefore be represented by the sum of a suitable Fourier series

$$
\rho(x y z)=\sum_{p}^{+\infty} \sum_{q}^{\infty} \sum_{-\infty} A(p q u) \exp .2 \pi i(p x / a+q y / b+r z / c)
$$

where $p_{0} q$ and $r$ are integers and $A(p q r)$ the Fourier cos efficient of the general term.

This equation can be substituted in the general expression for the structure factor to give
 exp. $2 \pi j(h x / a+k y / b+h z / c) d x d y d s$. $=\frac{V}{a b c} \iint_{000}^{a b c} \sum_{p}^{+\infty} \sum_{-\infty}^{+\infty} \sum_{z} A(p g r) \exp \cdot 2 \pi s[(p+h) x / a+(q+k) y / b$
$+(r+A) z / c] d x d y d z$.

This integral has the value zero unless

$$
\begin{aligned}
& h=\Delta p_{0} \quad k=-q_{0} \quad l=\Delta r \\
& \text { when } F(h k l)=\frac{\nabla}{a b c} \iiint_{000}^{a b c} A(n \in \mathbb{l}) \text { exp. } 0 \text { dxdydz. } \\
& =V A(h k l) \\
& \text { i.e. } A(\text { hikil })=F(h k l) / V
\end{aligned}
$$

The threedimensional Fourier series can now be written

$$
\rho(x y z)=\frac{1}{V_{h}} \sum_{-\infty}^{+\infty} \sum_{k}^{\infty} \sum_{l} F(h k l) \exp .-2 \pi i(h x / a+k y / b+l z / c)
$$

The zero term of the series is a constant which may be obtained by integrating the general structure factor expression (see $l_{0}$ (4)) over the whole of the unit cell.

$$
F(000)=\frac{v^{a b c}}{a b c} \iiint_{00} \rho(x y z) d x d y d z=z
$$

where 2 is the total number of electrons in the unit cell.

1. (7) THE INTENSITI OF AN X X RAY REFLECTION.

Calculation of the electron density distribution in the unit cell requires a knowledge of structure factor values. These are not directly measurable, but by employa ing the concept of "integrated reflection" a relationship between intensity and structure amplitude can be derived.

If the crystal is rotated through the reflecting position with angular velocity ${ }_{\theta} \omega_{0}$ and the total reflected energy is $E(h k P)$, then the integrated reflection is the ratio, $E(h k l) \omega / I_{0}$, given by

$$
\left.\frac{E(h k l)_{\infty}}{I_{0}}=N^{2} \lambda^{3} \frac{e^{4}}{m^{2} c^{4}} L P \right\rvert\, F(h k \ell)^{2} d V
$$

where $d V$ is a small volume of crystal. $N$ is the number of unit cells per unit volume, $e^{4} / m^{2} c^{4}$ arises from the expression for scattering due to a single electron, and $I_{0}$ is the incensity of the incident beam。 $L_{0}$ the Lorente factor, accounts for the motion of the crystal with respect to the beam ${ }_{g}$ and $P$ is the polarisation factor which makes the necessary allowance for the random polarisarion of the incident beam.

The expressions for $L$ and $P$ depend on the kind of photograph being taken; for moving film-Weissenberg photograph $L=1 / \sin 2 \theta$ and $P=\left(1+\cos ^{2} 2 \theta\right) / 2$ 。

This formule is based on the assumption of a very small crystal, smaller in fact than the size normally used. Darwin, however, pointed out that most ordinary macroscopic crystals behave like a mosaic of small blocks; thus the formula, which Darwin himself derived, is applicable in most cases. A similar formula was later deduced independento 1y by Ewald.

The effects of primary and secondary extinction may be considerable, Peimary extinction is caused by reflection of the incident xmray beam from surface layers of crystals with lasge regions of perfect crystal structure ${ }_{\theta}$ while secondary extinction is due co "screening" of the
lower blocks of the mosaic structure from the incident beam by outer blocks.

## 1. (8) THE PHASE PROBLEM AND THE HEAVI ATOM. METHOD.

The electron density at any point in the crystal lattice can be evaluated by sumaing © Fourier series in which the coefficierts are the structure factors. The amplitude of the struceure factors can be obeained from their relationship with the insegrated intensity: the phase on the other hand canmot be detemmined experimentally. The determination of the unknom phases is the central problem of xaray structure malysis and for specific crystal, no general method of finding the phases exists.

One method of overcoming this problem is to prepare by chemical mechods compounds which contain one or more atoms of greater acomic number than the other atoms (Robertson and woodward, 1937: 2940 ) The positions of such atoms may be determined from the Patterson function and be used to caleulate a phase for each reflectiona As these atoms are heavier than the remainder, they mate major contributions to each structure factor and an approximation to the true electron density function is obtained by suming a Fourier series with the observed structure amplitudes and the calculated phases. From the electron denstyy
distribution, atomic positions of some, if not all, of the remaining atoms are found. The process of phase determination is repeated with the inclusion of the new atomic positions until a reliable set of phases is determined.

Clearly, the heavier the phase determining atom, the more accuracely are the phases determined, but it is inadisable that the scattering factor of the heavy atom should be too large compared with the scattering factors of the light atoms, otherwise the lighter atoms will be seen only with difficulty in a Fouries synthesis based on the heary atom phases alone.

The phasedetermiaing power of the heavy atom is
 to the scattering factors of light and heavy atorns, respectively, For the centrosymetrical case the fraction of signs of the structure factors, $F$ 。 determined by the heavy atom contributions, $F_{H y}$ has been evaluated as a function of $\mathbb{f}_{\mathrm{H}}^{2} / \sum \mathrm{s}_{\mathrm{L}}^{2}$ by Sim (2957); when $\mathscr{f}_{\mathrm{H}}^{2}=\sum \mathrm{f}_{\mathrm{L}}^{2}$ about $80 \%$ of the signs given by the heary atom contributions are correct. Lipson and Cochran (2957) have suggested that when $f_{\mathbb{R}}^{2} / \Sigma x_{\mathrm{L}}^{2}=1$ the heavy atom method should work most effectively。

In the non-centrosymetrical case, there is a continuous diseribution of ergors, some large, some small
and the detailed distribution is given by $r=\left(f_{H}^{2} / \sum f_{I}^{2}\right)^{\frac{1}{2}}$ 。 For the simplest case of one heavy atom and a number of light atoms in a triclinic cell，the manner in which the fraction $N(\xi)$ of structure factors with phaseangle errors between $\$ \xi$ varies as $r$ varies can be calculated（Sim，1957）。 When $r=1,38 \%$ of the errors lie in the range $\pm 20^{\circ}$ while when $x=2.67 \%$ of the exsors ine in the same range；the error is defined as do dif were of is the true phase angle of a structure factor，and at the phase angle calculated on the basis of the heary atom．

The possibility of phase determination also occurs if two isomorphous crystals are available in which there is one replaceable heavy acomo An early example of this is the elucidation of the structure of phthalocyanine by investigation of the metal－free and nickel compounds （Robertson，1935；1936）。

1．（9）THE PATYERSON FUNCTYON
Suppose $\left(x+u_{2} y+v_{s} \& * w\right)_{\text {，}}$ the discribution of scattering material about（xyz），is a function of $u_{0} v$ and ${ }^{(x)}$ and represents a distribution stanlas to $\rho(x y z)$ but displaced from（xyz）by the parameters $u_{8}$ v and wo The
 of all the interatomic vectors in the unit cell，and will
have large values if $u_{v} v$ and ware the components of distance between two atoms in the structure.
$P(u v w)$, a measure of the degree of coincidence of the two distributions, is given by

$$
P(u v w)=\nabla \iiint_{00}^{11} \rho(x y z) \rho\left(x+u, y+v_{0} z+w\right) d x d y d z_{0}
$$

The importance of this function becomes apparent when the Pouries expression for the electron density is substifuted in the ecuation.

The integral yanishes unless $h=h_{0}^{0} s=k_{0}^{0} l=l_{0}^{0}$ when


The terms $F(h k$,$) and F(\hat{j} k \dot{j})$ are complex conjugates,

$$
\therefore P(\text { unw })=\frac{1}{V} \sum_{h} \sum_{k} \sum_{l=-\infty}^{\infty}|F(h k \Omega)|^{2} \exp _{0}\{(2 \pi i(h u+k v+\ell z)\}
$$

That the gruantity $P$ (uvw) is real for all values of $u_{0} v$ and w can be shown by collecting together the cow efficienes in pairs, hke and hefo, vie.

$$
\begin{aligned}
& +|F(n \xi \%)|^{2} \exp \cdot(2 \pi I(h u+k v \div l w)) \\
& =\frac{\pi}{2 V} \sum \sum_{\infty}^{+\infty} \sum_{\infty}^{\infty}|F(h k R)|^{2}[\exp \cdot(-2 \pi i(h u+k v+l w)) \\
& +\exp \cdot(2 \pi i(h s s \div k v+2(2))]
\end{aligned}
$$


Thus $P(u v w)=\frac{1}{V} \sum \sum \sum|F(h k \ell)|^{2} \cos 2 \pi(h u+k v+\ell w)$.
e. 00

This series, deduced by Patterson (1934; 1935), incorporates the square of the structure amplitude in place of the structure factor as Fourier coefficient.

The distribution of $P(u v a)$ has the same unit cell dimensions as the brue unit call, and has a large peak at the origin caused by the produces of all the atoms with themselves. The height of the peal at the point (uww) will be relatizely large if $u_{3}$ vand ware components of distance between heavy atoms, and the positions of the heavy atoms in the unit cell can be determined, providing a starting point in the solution of the phase problem.

1. (10) REFTHEMEST

After a struckure has been solved, it is necessary to adjust the atomic parameters for each atom to give the best agreement between observed and calculated structure amplitudes. The process of improvement is known as refinement of a structure.

This may be done in the first place using Fouriex syntheses from which new acomic positions arc calculated, and employing these in further cycles of structure factor calculation.

An infinite number of terms ought to be summed in the Fourier series, but the use of x-rays of wavelength about 0 1.5 A places a severe limitation on the amount of data which can be collected. The result of having a finite number of terms is that the peaks, although perfectly resolved, are surrounded by diffraction ripples which cause the observed peaks to be displaced from their true positions. This is known as the temaingtionmofoseries error.

The error may be rectified uaing the "backsehift" correction. Two Fourier series are computed, one using observed scructure amplitudes (FO) as coefficients; the other, calculated structure amplitudes (Fc) © If there are no errors due to terminationcofioseries effects, the positions of the peaks in the FC map will be identical with the sites from which the phases were calculated. In practice terminationoofeseries effects are present, and since the same number of cerms are employed in both sumnations, the deviations of peaks in the Fe map from the sites used to calculate the phases give a measure of the terminationoofseries errors in the Fo map. Hence the deviations of the peaks from these sites, $\Delta x, \Delta y$ and $\Delta z$, represent the correction with changes of sign, to be applied to the positions of peaks in the Fo map.

The second method of refinement used extensively in this thesis is that based on the least-squares technique derived from the theory of errors.

If the parameters defining the structure are $u_{1}, u_{2}, \ldots \ldots . ., u_{n}$, then the calculated structure factor is some function of these parameters

$$
F C=f\left(u_{1}, u_{2}, \ldots \ldots \ldots u_{n}\right)
$$

A similar expression holds for the observed structure amplitude

$$
F 0=f\left(u_{1}+\varepsilon_{1}, u_{2}+\varepsilon_{2}, \ldots \ldots, u_{n}+\varepsilon_{n}\right)
$$

where $\varepsilon_{1}$, $\varepsilon_{2}$; $\ldots \ldots, \varepsilon_{n}$, are the shifts required to give the true structural parameters.

If the initial structure is a good approximation then $\varepsilon_{1}, \varepsilon_{2}, \ldots \ldots \ldots, \varepsilon_{n}$ will all be small and the equation involving Fo can be expanded by Taylor's series.

$$
F 0=f\left(u_{1}, u_{2}, \ldots \ldots, u_{n}\right)+\sum_{i=1}^{n} \frac{\partial f\left(u_{1}, u_{2}, \ldots \ldots, u_{n}\right)}{\partial u_{1}} \varepsilon_{i}
$$

where the second and higher order differentials are neglected

$$
\text { i.e. } \begin{aligned}
F O & =F c+\sum_{i=1}^{n} \frac{\partial F c}{\partial u_{i}} \varepsilon_{i} \\
\therefore(F o-F c) & =\sum_{i=1}^{n} \frac{\partial F c}{\partial u_{i}} \varepsilon_{i}
\end{aligned}
$$

An equation of this type may be derived for all the reflections, and the theory of errors predicts that the most acceptable set of $i$ values is that which minimises the weighted sum of squares of the errors, ( $|\mathrm{Fo}|-|\mathrm{FC}|$ ),

$$
\text { i.e. } \sum_{h} \sum_{k} \sum_{\ell} \omega l|\mathrm{Fo}|=\left.|\mathrm{Fe}|\right|^{2}=\sum_{h k Q} \omega \Delta^{2}
$$

where the weighting factor $\omega$ depends on the reliability of the observed structure amplitudes.

The criterion that $\sum \omega \Delta^{2}$ should be a minimum leads to a set of simultaneous equations, the normal equations $\sum_{h_{i l} \omega} \frac{\partial F_{c}}{\partial u_{i}}=\sum_{n k l} \omega\left(\frac{\partial F_{c}}{\partial u_{i}}\right)^{2} \varepsilon_{i}+\sum_{n k l} \omega \frac{\partial F_{c}}{\partial u_{i}}\left(\sum_{j=1}^{n} \quad \frac{\partial F_{c}}{\partial u_{j}} \varepsilon_{j}\right)$

If the parameters are all referred to orthogonal axes ad there is sufficient data to resolve atoms clearly, quantities of the form

$$
\sum_{n k i} \omega \frac{\partial F c}{\partial u_{i}}\left(\sum_{j} i \frac{\partial F c}{\partial u_{j}} \varepsilon_{j}\right)
$$

are likely to be small compared with

$$
\sum_{h_{k} k} \omega\left(\frac{\partial F_{c}}{\partial u_{1}}\right) \varepsilon_{i}
$$

and may be neglected.
The solution of the equations now becomes

$$
\varepsilon_{i}=\frac{\sum_{h k R} \omega \Delta \frac{\partial F_{c}}{\partial u_{i}}}{\sum_{h k l} \omega\left(\frac{\partial F c}{\partial u_{i}}\right)^{2}}
$$

The least-squares programme available for the DEUCE computer refines three positional parameters per atom, six thermal parameters per atom, and an overall scale factor. The programe solves the normal equations using $3 \times 3$ and $6 \times 6$ block diagonal matrices for the positional and thermal paramerers respectively of each atom in turn, and a $2 \times 2$ matrix for the scale factor (Rollett, 1961)

When only the diagonal elements of the leastosquares matrix are employed, the standard deviations of the quantities $u_{i}$ can be found from the totals $\sum \omega\left(\frac{\partial F e}{\partial u_{i}}\right)^{2} v i z_{0}$

$$
\left(u_{i}\right)^{2} \equiv \frac{\sum \omega \Delta^{2}}{(N \infty S) \sum \omega \frac{\partial F c^{2}}{\partial u_{i}}}
$$

In the analyses described in this thesis, the approximate expression given above was employed to calculate standard deviations of atomic positions.

## RART II


XGRAT AMALYSTS OP BUNPERETRNTME
$\beta=$ NㅡNTTNODIDR

## 2. (1) INTRCDUCTION

During the course of an examination of Hunteria
Eburnea Pichon for substances of therapeutic value, several new alkaloids were isolated, some of which were tertiary (Bartlett and Taylor, 1960) and some quaternary bases (Bartlett, Sklar, Smith and Taylor)。

Three of the quaternary bases have been shown by classical organic methods to be indole alkaioids of the yohimbine type. Also among the quaternary bases is a group of isomeric compounds, $\mathrm{C}_{20} \mathrm{H}_{27-29} \mathrm{O}_{2} \mathrm{ClN}_{2}$, all of which contain a 5-hydroxyindole chromophore, an isolated double bond and an aliphatic hydroxyl group which is readily acetylated; paucity of material precludes any detailed structural investigation by degradative studies.

The methiodide of one of these compounds ${ }_{3}$ hunterburnine $\beta$-methiodide, $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{IN}_{2}$, was subjected to x-ray analysis. In addition to the structural features already cited, a nine membered ring adjacent to the five membered ring of the indole system was postulated, and the double bond was assumed to reside in a vinyl group.

Crystals in the shape of slender white needles wer supplied by the CIBA group in America.

## 2. (2) EXPERIMENTAL

Rotation, oscillation and Weissenberg photographs were taken using copper $-K_{\alpha}(\lambda=1.542 A)$ radiation, and precession photographs were taken with molybdenum$K_{\alpha}\left(\lambda=0.7107{ }^{\circ}\right)$ radiation. Unit cell dimensions were evaluated from precession photographs. The space group was assigned from systematic absences.

For the intensity measurements small crystals were employed completely bathed in a uniform Xoray beam, and $n 0$ corrections for absorption pere applied. Intensity data for the hk0,........hk7 reciprocal lattice nets were collected from equatorial and equioinclination upperolayer Weissenberg photographs using the multiple film techndque (Robertson, 1943), and estimated visually by comparison with a calibrated intensity scale. The film factor used to correlate the intensities on successive films of a series in nonaequatorial layers was calculated from

$$
R=1.29 \exp _{0} \quad(0.942 \text { sec. } v)
$$

where $\nu$ is the angle which the incident beam makes with the normal to the film (Rossmann ${ }^{2}$ 1956) The intensities were corrected fos Lorentz, polarization, and rotation factors for upper layers, and values of $\left|F_{0}\right|$ calculated from the mosaic-crystal formula.

The various zones were placed on the same relative scale by comparison with common reflections on the okl precession series. The absolute scale was obtained at a later stage by correlation with the final calculated structure amplitudes $\left|F_{c}\right|$. In all, 1792 independent structure amplitudes were measured, of which 170 were smaller than the least observable value.

The crystal density was determined by a flotation technique in a mixture of chloros and bromobenzene.
2. (3) CRYSTAL DATA.
$\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{IN}_{2}$
Orthorhombic

$$
\begin{aligned}
& M=454.3 \mathrm{O} \\
& \mathrm{a}=10.96 \mathrm{~A} \pm 0.02 \mathrm{~A} \\
& \mathrm{~b}=18.83 \mathrm{~A} \pm 0.03 \mathrm{~A} \\
& c=9.20 \mathrm{~A} \pm 0.03 \mathrm{~A}
\end{aligned}
$$

Volume of the unit cell $=1899 \mathrm{~A}^{3}$
For $Z=4, ~ p(c a l c u l a t e d)=1.589 \mathrm{~g} / \mathrm{ml}$. $p($ measured $)=1.602 \mathrm{~g} . / \mathrm{ml}$. $F(000)=920$

Absorption coefficient for $x$-rays $(\lambda=1.542)=136.5 \mathrm{~cm}_{\circ}^{\circ}{ }^{-1}$
Systematic absences: (h00) $=2 n+1$
$(0 \mathrm{kO})=2 n+1$
(OOR) $=2 n+1$
Space group $\mathrm{P}_{1} \mathrm{Z}_{2} 2_{1}-\mathrm{D}_{2}^{4}$ 。

## 2. (4) LOCATION OF THE HEAVY ATOM

For a crystal belonging to the orthothombic systems the expression for the Patterson function, $P(U V W)$ is $\left.P(U W W)=\frac{8}{V C} \sum_{000}^{\infty} \sum_{0}^{\infty} \right\rvert\, F\left(\left.h k l\right|^{2} \cos 2 \pi h U \cos 2 \pi k V \cos 2 \pi l W\right.$ which can be simply redueed to a twoodimensional expression for projections.

The woodimensional Patterson projections P(UV), $P(V W)$ were cemputed with 24,2 and 194 comefficients respectively; the resulting maps are shown in Figs, and 5 respectively. The space group of the Patterson function in the orthorhombic system is Pmm and the mirror planes at $U_{8} V$ and $W$ equal to $\frac{2}{2}$ obviate the computation of the whole unit cell.

In the projection down (100) the yectors expected between iodine atoms in the quadrant computed, assuming one iodine per assymetric unit, are at ( $2 \mathrm{y}_{\mathrm{I}}, \frac{1}{2}$ ), ( $\frac{1}{2}, \frac{1}{2}=2 \mathrm{z}_{\mathrm{I}}$ ) and ( $\frac{1}{2}=2 y_{I}, 2 z_{I}$ ), the first two being double weight peaks. and the latter, single weight, fFor a comprehensive scheme of vectors arising in the space group $\mathrm{P}_{1} 2_{1}{ }^{2} 1$ see Chapter 3. (4) ). These vectors are clearly distinguishable an Fig, 5: and are marked $A_{3} B$ and $C$ respectively,

In the quadrant of the $P(U V)$ projection computed, there should be peaks of double weight at ( $\frac{1}{2} ; \frac{1}{2} \cdots 2 y_{T}$ ) on
 a single weight peak ato $\frac{1}{2}-\operatorname{sig}_{\mathrm{I}}$, $2 \mathrm{y}_{\mathrm{I}}$, in a general


position. These vectors are marked D, E and F respectiveIy in Fig. 4.

The co-ordinates obtained for the heavy atom in this way, expressed as fractions of the unit cell edges are

$$
x / a=0.127 \quad y / b=0.037 \quad z / c=0.1790
$$

It was considered unnecessary to examine the three. dimensional Patterson as the iodine is unambiguously determined and does not impinge on a special position.

## 2. (5) SOLUTION OF THE STRUCTURE.

The ratio $\sum p_{H}^{2} / \sum I_{L}^{2}$ for hunterburnine $\beta$-methiodide is 2.97, indicating that the first set of phasing calculations based on the iodine atoms alone should give a reasonable approximation to the correct phases.

An isotrople temperature factor of $B_{\theta}=4.4 \AA^{0} 2$ was assumed, and for the first set of structure factors, the residual $R_{0}$ where $R=100\left(\left.\left.\left.\Sigma\right|_{0}\right|_{0} \Sigma\right|_{e} \mid\right) /\left.\Sigma\right|_{0} l_{0}$ was $32 \%_{0}$ The criterion used for selecting structure factors whose phases were approximately correct was to reject all those for which $\left|F_{0}\right|>2\left|F_{c}\right|$ 。 Thus 1632 caeficients were employed in the ixst threedimensional Fourier symesis.

The unit cell was divided inco a threedinensional
grid with intervals of $1 / 30$ along and $c_{0}$ and $1 / 60$ along $B_{0}$ correspording se hatervals 0.37 A, 0.31 A me 0.32 A along on and e respectvely. The electron denstey was
calculated at each grid point, contours mapped out on ginse for consecutive sections of the grid, and the sections stacked up perallel to (001), giving a threeadimansional effect with atoins eppearing in the unit cell as balls of high eiectron density.

A large number of positive electronadensity concentrations was present in the first Fourier map, but none could be ascribed to atoms with any degree of certainty. The nemima of the fourteen most prominent were calculated by the method due to Eooch (1945) and included as carbos atoms in a secone set of phasine calculacions: The discrepancy, $R_{\text {, }}$ aropped to $29 \%$ añ the subsequent threeadramsional Pourier synchesis furnishee the complete structure with the exception of $6(19)$ and $C(21)$ winch were pooxily resolved, and $C(14)$ for which eltemetive sites of equal pear height, affecting the stereochemistry of ring $D_{\text {s }}$ were present. Thesethree excepted, all the light atoms were included, with each atom assigned its correct chemical type, in a chird phasing calculation, when $R$ fell to 27.4 爵 $C(21)$ was clearly sesolved in the third $\mathrm{F}_{\mathrm{g}}$ symhests and included in a fourth structure sactor calculation.

The discrepancy zesulting was $24 \circ 3 g_{9}$, and a Roureh Ghreedimenstorez eleceron denctiy dtstribution based on
 The pectuor qe grta
was clearly established, but C(19) was not yet revealed, and it was noted that $C(18)$ had a very low peak height. Alternative sites for $C(18)$, and $C(19)$ attached to $C(20)$ were evident, and on calculating a further set of structure factors with the exclusion of $C(18)$ and $C(19)$, the value of $R$ fell to $20.6 \%$ Examination of the electron-density distribution of the fifth threedimensional Fourier synthesis allowed confident assignation of $C(18)$ and $C(19)$, the latter attached to $C(20)$.

This completed the determination of the structure, and its course is shown in Table 1.
2. (6) REFINEMENT

The location and contribution of hydrogen atoms were not considered at any stage of the refinement. The course of the refinement is recorded in Table 2 .

Two cycles of structure factor and Fourier calculation were carried out and back-shift corrections for errors due to termination of series were applied to the atomic coordinates. Isotropic temperature factors were assigned individually to each atom from a comparison of peak heights in the $F_{0}$ and $F_{c}$ syntheses. The value of $R$ fell to 18.22 解。

## TABLE 工

## Eniterborning $\beta$-mathiodide

## Course of the Struc:ture Determination

Operation
Atoms included
$P(\%)$


## TABLE 2.

## Eniterbarinine $\beta$ emathiodice

## Coupse of Refinement

| Operation |  |  |  | Atoms tnciuded | $\underline{R}$ (8) | $\sum x^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6th 3 (Fo | $3 D$ Fut 0 anat |  | nes\%s | $I+20(C)+2(N)+2(0)$ | 18.4 | $\infty$ |
|  | SD Pow $T_{0}$ and | sy | bests | $I+20(C)+2(N)+2(0)$ | 18.2 | $=$ |
| 1st | Least | apes | cycle | It20(C) $+2(N)+2(0)$ | 18.1 | 2457 |
| 2nd | - | * | * | $\underline{I}+20(C)+2(N)+2(0)$ | 17.2 | 14.3 |
| 3 Cd | * | $\cdots$ | 日 | $\underline{I}+20(\mathrm{C})+2(\mathrm{~N})+2(0)$ | 16.4 | 581 |
| 4th | $\cdots$ | * | \% | $\underline{T+20(C)+2(N)+2(0)}$ | 15.8 | 480 |
| 5th | * | * | $\cdots$ | $\underline{T+20}(C)+2(N)+2(0)$ | 15.5 | 459 |
| 6th | $\cdots$ | " | " | $\underline{T+20(C)+2(N)+2(0)}$ | 15.4 | 453 |
| 8th | 8 DFO | p syn | thests | $1+20(C)+2(N)+2(0)$ | 15. ${ }^{\text {A }}$ |  |

The next stage of refinement consisted of adjustment of the atomic coordinates and anisotropic temperature factors by the least squares method．Only the block diagonal elements of the matrix of normal equations were used．The weighting system used was a simple function of $F_{0}$（Rollett，1961）。

$$
\sqrt{\omega}=\left|F_{0}\right| / F^{*} \text { if }\left|F_{0}\right| \leqslant F^{*} ; \sqrt{\omega}=F^{*} /\left|F_{0}\right| \text { if } F^{*}<\left|F_{0}\right|
$$

where $F^{*}$ is a constant：in this case $F^{*}=15$ 。
Half－scale scattering factors were used to
ensure that the equations involving the iodine atom would solve．In the second cycle，however，the iodine equations failed to solve and subsequently quarter scale scattering factors were employed．Half－shift corrections were used throughout the refinement．

The reduction in $\Sigma_{\omega} \Delta^{2}$ from cycle $V$ to cycle VI was small，and refinement was terminated at that stage． The final walue of the discrepancy，$R$ ，excluding unobserved terms，was $15.4 \%$ 。

For the structure factor calculations throughout， theoretical atomic scattering factors were used：those of Berghius et al．（1935）for carbon，nitrogen and oxygen， and the ThomasoFermi values（1935）for iodine were chosen．

## 2. (7) RESULTS

Final calculated and observed structure amplitudes and phase angles are recorded in Table 3. The final positional parameters are listed in Table 4. The inal anisotropic temperature factor parameters given by the least squares refinement are shown in Table 5; they are the values of $b_{i j}$ in the equation

Intramoleculas bonded distances, intramoleculas nonem
 bond angles are compiled in Tables $6,7,8$ and 9 respectively.

The standard deyiations of the final atomic co: ordinates were derived from the least-squares residuals by application of the equation

$$
\sigma^{2}\left(x_{i}\right)=\sum_{j} \omega_{j}\left(\Delta \xi_{j}\right) /\left((N S) \sum_{j} \omega_{j}\left(\partial F_{j} / \partial x_{i}\right)^{2)}\right.
$$

The results appear in Table 10.
The standere deviation $\sigma(A \cdot B)$, of a bond between atoms (A) and (B) is given by the formula

$$
\sigma(A \sim B)^{2}=\sigma_{A}^{2}+\sigma_{B}^{2}
$$

where $\sigma(A)$ and $\sigma(B)$ are the standard deviations in atomic comordinates of the atong A and $B$. The standard deviations, $\sigma(\beta)$, for an angle ( $\beta$ ) formed at aton (B) between two bonds $A B$ and $B C$ is evaluated (Cruickshank and Robertson 0 1953)
fron

$$
\sigma^{2}(\beta)=\frac{\sigma^{2(A)}}{(A B)^{2}}+\sigma^{2}(D)\left[\frac{1}{A B)^{2}}=\frac{2 \cos \beta}{A B \cdot E C}+\frac{1}{(B C)^{2}}\right]+\frac{\sigma^{2}(\alpha)}{(B)^{2}}
$$

## Table 3. Hunterburnine $\beta$-mathiodide.

Final meamured and calculated values of the structure factorn. Unobserved reflections have been omitted.






 $\rightarrow$ ?



 $\geq \quad \cong$
 प

$\because:$




 $!!!$ $\stackrel{2}{\vdots}$多

 $\overrightarrow{\text { b }}$
 $\stackrel{+}{4}$
$\stackrel{\rightharpoonup}{7}$
$\qquad$

## PABLE 4.

## Finterignguine $\beta$-mathiocicia

## mani Atomio Coordinates

| Atom | 2/9. | $\underline{W}$ | E/8 |
| :---: | :---: | :---: | :---: |
| $N(1)$ | 0.8259 | 00.0522 | 0.1763 |
| $C(2)$ | 0.7180 | -0.0311 | 0.1392 |
| C(3) | 0.6798 | 0.0541 | 0.1397 |
| $N(4)$ | 0.5446 | 0.0560 | 0.1726 |
| C(5) | 0.4756 | 0.0107 | 0.0587 |
| c(6) | 0.4951 | -0.0678 | 0.0867 |
| C(7) | 0.6347 | -0.0776 | 0.1195 |
| $c(8)$ | 0.7008 | -0. 2499 | 0.1148 |
| c(9) | 0,6679 | -0.2153 | 0.1034 |
| C(10) | 0.7605 | -0.2675 | 0.1277 |
| $C(11)$ | 0.8765 | -0.2466 | 0.1508 |
| c(12) | 0.9158 | -0. 1793 | 0.1878 |
| $C(13)$ | 0.8274 | . 0.1312 | 0.1623 |
| $C(14)$ | 0.7663 | 0.1085 | 0.2492 |
| $c(15)$ | 0.7237 | 0.1764 | 0.2116 |
| $c(16)$ | 0.5833 | 0. 1809 | 0.2387 |
| C(17) | 0.5051 | 0.1360 | 0. 1667 |
| $c(18)$ | 0.7490 | 0.3298 | 0.1722 |
| c(19) | 0.7482 | 0.2923 | 0.0660 |
| C(20) | 0.7679 | 0,2065 | 0.0582 |
| $c(21)$ | 0,906.1 | 0.1945 | 0. 2938 |
| c (22) | 0.5176 | 0.0317 | 0.3401 |
| O(23) | 0,9134 | 0.1184 | -0.0264 |
| 0(24) | 0.7213 | $\bigcirc 0.3397$ | 0.1020 |
| $I$ | 041278 | 0. 0357 | 0.1841 |

## TABLE 5.

Enteribunins $\beta$ methethodide.
Final Antsotroptc Thermal Parameters $\left(b_{t, y} \times 10^{-5}\right)$


| Atom | $b_{12}$ | ${ }^{b_{22}}$ | ${ }^{b_{33}}$ | $\mathrm{b}_{12}$ | ${ }^{b_{23}}$ | ${ }^{b_{13}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C(14) | 1759 | 317 | 1143 | -132 | 936 | -1716 |
| C(15) | 2596 | 287 | 824 | 436 | 2045 | -40 |
| C(16) | 2847 | 361 | 1133 | 877 | 1261 | -1284 |
| C(17) | 1948 | 322 | 1825 | 529 | 368 | 550 |
| c(18) | 2995 | 628 | 793 | -238 | -1375 | 448 |
| $C(29)$ | 1800 | 607 | 4071 | 237 | 686 | -2778 |
| C(20) | 788 | 151 | 2570 | 113 | 279 | 941 |
| C(21) | 2402 | 337 | 1832 | 452 | -378 | 1693 |
| C(22) | 1835 | 748 | 222 | 42 | -482 | 1217 |
| . 0 (23) | 2607 | 892 | 1760 | 354 | 1397 | 2067 |
| .0(24) | 1649 | 296 | 4086 | -289 | -81 | ¢616 |
| $I$ | 1119 | 418 | 1887 | -25 | -237 | -54 |

$(B=5 A) \quad 1501 \quad 508 \quad 2130$

## Ennterburnine $\beta$-mathfodide

Intramolecular Binded Dtstances (A)

| $N(1)-C(2)$ | 1.29 | $C(8)=C(10)$ | 1.43 |
| :--- | :--- | :--- | :--- |
| $N(1)-C(13)$ | 1.49 | $C(10)=C(11)$ | 1.35 |
| $C(2)-C(3)$ | 1.68 | $C(10)=C(24)$ | 1.45 |
| $C(2)=C(7)$ | 1.28 | $C(11)=C(12)$ | 1.38 |
| $C(3)=N(4)$ | 1.51 | $C(12)=C(13)$ | 1.35 |
| $C(3)=C(14)$ | 1.65 | $C(14)=C(15)$ | 1.53 |
| $N(4)=C(5)$ | 1.54 | $C(15)=C(16)$ | 1.56 |
| $N(4)=C(17)$ | 1.57 | $C(15)=C(20)$ | 1.60 |
| $N(4)-C(22)$ | 1.64 | $C(16)=C(17)$ | 1.37 |
| $C(5)=C(6)$ | 1.51 | $C(18)=C(19)$ | 1.21 |
| $C(6)-C(7)$ | 1.57 | $C(19)=C(20)$ | 1.63 |
| $C(7)=C(8)$ | 1.54 | $C(20)=C(21)$ | 1.56 |
| $C(8)=C(9)$ | 1.29 | $C(21)=O(23)$ | 1.51 |
| $C(8)=C(13)$ | 1.50 |  |  |

## TABLE \%.

## Enrtienompatwo $\beta$-mathlodice

## Intrampl ecmine Normbonded Distanaes <4A.

| $N(1)-N(4)$ | 3.70 | $c(6)-c(13)$ | 3.90 |
| :---: | :---: | :---: | :---: |
| $N(1)-C(6)$ | 3.73 | $c(6) \sim C(17)$ | 3.90 |
| $N(1)-c(9)$ | 3.59 | $c(6)-c(22)$ | 3.00 |
| $N(1)-C(11)$ | 3.71 | $c(7)=c(10)$ | 3.89 |
| $N(1)-C(14)$ | 3.04 | $c(7)=c(12)$ | 3.68 |
| $N(1)-O(23)$ | 3.84 | $C(7) \propto C(14)$ | 3. 86 |
| $C(2)-C(5)$ | 2.87 | $C(7)-C(22)$ | 3.16 |
| $c(2)-c(9)$ | 3.55 | $c(8) \propto C(11)$ | 2.67 |
| $C(2)-C(12)$ | 3.56 | $C(8)-0(24)$ | 3.58 |
| $c(2)-c(15)$ | 3.97 | $C(3)-C(12)$ | 2.91 |
| $C(2)=C(17)$ | 3.92 | $C(10)-C(13)$ | 2.69 |
| $c(3)-c(22)$ | 3.11 | $0(12)-0(24)$ | 3.78 |
| $c(2)=0(23)$ | 3.85 | $C(14)-C(17)$ | 3.05 |
| $c(3)-C(6)$ | 3.10 | $C(14) * C(19)$ | 3.97 |
| $C(3)-C(8)$ | 3.86 | $C(14)=C(21)$ | 3.12 |
| $c(3)-c(13)$ | 3.85 | $C(14) \sim C(22)$ | 3.14 |
| $C(3)=C(16)$ | 2.76 | $C(14)-O(23)$ | 3.02 |
| $c(3)-C(20)$ | 3.72 | $C(15) \cdots C(18)$ | 2.92 |
| $c(3)-c(21)$ | 3.78 | $C(25)-C(22)$ | 3.73 |
| $c(3)-0(23)$ | 3022 | $c(15)-0(23)$ | 3.21 |
| $N(4)-C(7)$ | 2.75 | $C(16)-C(18)$ | 3.40 |
| $N(4)=C(15)$ | 3.02 | $c(16)-c(19)$ | 3.18 |
| $N(4)-C(20)$ | 3.89 | $C(16)-C(22)$ | 3. 05 |
| $c(5)-c(8)$ | 3.94 | $c(17)-C(20)$ | 3.32 |
| $c(5)-c(16)$ | 9.79 | $c(18) \infty c(21)$ | 3.37 |
| $c(\theta)=c(\theta)$ | 3.37 | $c(19)=0(23)$ | 3.84 |

## Funterbaratns pumethtodide

Inteprolecular Dtstances $\leq 4 A$.

| $c(22) .000{ }^{(23)}{ }_{\text {tit }}$ | 3.17 | $C(6) 0000(23)_{141}$ | 3.82 |
| :---: | :---: | :---: | :---: |
| $C(17) \ldots O(24)_{v t}$ | 3.34 | $C(14) 00 C(2)_{14 t}$ | 3. 83 |
| $C(7) 0000(23)_{i t i}$ | 3.39 | $C(15) \ldots C(8)_{t i t}$ | 3.84 |
| O(23) $00 . I_{6}$ | 3.42 | $C(21) \therefore C(19)_{t v}$ | 3.85 |
| $I \quad \ldots O(24)_{v t}$ | 3.48 | $C(15)=C(9)_{84 t}$ | 3.87 |
| $C(14) \ldots c(8)_{i 86}$ | 3.50 | $O(24) \therefore C(6)_{v}$ | 3. 88 |
| $C(22) \ldots N(1)_{i \downarrow t}$ | 3.56 | $C(21) \therefore C(16)_{t v}$ | 3.89 |
| $C(8) \ldots 0(23){ }_{\text {\% }}$ | 3.58 | $C(22) \cdots C(13)+14$ | 3. 90 |
| $C(14)$ sos $C(7)_{i 4 t}$ | 3.61 | $C(13) \therefore O(23){ }_{i t i}$ | 3.90 |
| $C(22) \ldots O(24)_{v i}$ | 3.61 | $C(17) \therefore C(10)_{0 t}$ | 3.95 |
| $C(16) \cdots O(24) v i$ | 3.67 | $C(14) \therefore C(9)_{i t i}$ | $3.9 \%$ |
| $C(16) 000 C(9)_{v t}$ | 3.68 | $O(9) \ldots O(23)_{i i t}$ | 3, 97 |
| $N(1) \ldots I_{i}$ | 3.70 | $C(9) \ldots 0(21)_{t t t}$ | 3.97 |
| $I \quad \because \operatorname{Oc} C(5)_{i t}$ | 3.74 | $C(18) \ldots O(24)_{i t i}$ | 3,97 |
| $C(19) \cdots C(17)_{t v}$ | 3.76 | $C(18) \ldots C(6){ }_{v t}$ | 3.98 |
| $C(22) \ldots I_{i t}$ | 3.77 | $C(14) \ldots C(13)_{t t i}$ | 3.98 |
| $C(21) \ldots c(17)_{i v}$ | 3.77 | $I \quad \therefore C(6)_{i t}$ | 3.99 |
| $C(2)$ onc 0 (23) ${ }_{\text {itit }}$ | 3.78 | $N(1) 0000(23)_{t \& t}$ | 3, 99 |

The subscripts refer to the following positions:


## gRABLE 9.

Funterburnins_ $\beta=$ methtodide

## Interbond Angles.

| $c(2) N(1) c(13)$ | $107{ }^{\circ}$ | $c(8) c(9) c(10)$ | $117^{\circ}$ |
| :---: | :---: | :---: | :---: |
| $N(1) c(2) c(3)$ | 122 | $c(9) c(10) c(11)$ | 120 |
| $N(1) C(2) c(7)$ | 119 | $C(9) C(10) 0(24)$ | 118 |
| $c(3) c(2) c(7)$ | 119 | C(11) C(10) O(24) | 126 |
| $C(2) C(3) N(4)$ | 106 | $c(10) C(11) C(12)$ | 127 |
| $c(2) c(3) c(14)$ | 115 | C(11) C(12) C(13) | 110 |
| $N(4) C(3) C(14)$ | 112 | $N(1) C(13) C(8)$ | 104 |
| $C(3) N(4) C(5)$ | 109 | $N(1) C(13) C(12)$ | 131 |
| $C(3) N(4) C(17)$ | 106 | $c(8) c(13) c(12)$ | 124 |
| $C(3) N(4) C(22)$ | 111 | $c(3) c(14) c(15)$ | 101 |
| $C(5) N(4) C(17)$ | 110 | C(14) C(15) C(16) | 108 |
| $C(5) N(4) C(22)$ | 113 | $c(14) c(15) c(20)$ | 116 |
| C(17) N(4) C(22) | 107 | $c(16) C(15) c(20)$ | 115 |
| $N(4) C(5) c(6)$ | 111 | c(15) C(16) C(17) | 119 |
| $c(5) c(6) c(7)$ | 107 | $N(4) C(17) C(16)$ | 112 |
| $c(2) c(7) c(6)$ | 130 | $c(18) c(19) c(20)$ | 128 |
| $C(2) c(7) c(8)$ | 106 | $C(15) C(20) C(19)$ | 106 |
| $C(6) C(7) C(8)$ | 124 | $c(15) c(20) c(21)$ | 115 |
| $c(7) c(8) c(9)$ | 135 | $c(19) C(20) C(21)$ | 106 |
| $c(7) c(8) c(13)$ | 103 | $c(20) c(21) ~ O(23)$ | 205 |
| C(9) C(8) C(13) | 121 |  |  |

TABLE 20
登ntermentine Bemethtodicie
Stondind Deviations of tha Ptnal Atonta Coordinates (A)

| Aton | $\sigma(0)$ | $\sigma(w)$ | $\sigma(\%)$ |
| :--- | :--- | :--- | :--- |
| $N(1)$ | 0.031 | 0.034 | 0.030 |
| $C(2)$ | 0.029 | 0.025 | 0.034 |
| $C(3)$ | 0.024 | 0.026 | 0.037 |
| $M(4)$ | 0.023 | 0.025 | 0.034 |
| $C(5)$ | 0.037 | 0.039 | 0.042 |
| $C(6)$ | 0.032 | 0.028 | 0.041 |
| $C(7)$ | 0.048 | 0.045 | 0.057 |
| $C(8)$ | 0.043 | 0.038 | 0.037 |
| $C(9)$ | 0.034 | 0.032 | 0.044 |
| $C(10)$ | 0.038 | 0.042 | 0.042 |
| $C(11)$ | 0.037 | 0.032 | 0.034 |
| $C(12)$ | 0.041 | 0.043 | 0.048 |
| $C(13)$ | 0.041 | 0.034 | 0.045 |
| $C(14)$ | 0.029 | 0.036 | 0.033 |
| $C(15)$ | 0.038 | 0.029 | 0.037 |
| $C(16)$ | 0.044 | 0.031 | 0.034 |
| $C(17)$ | 0.033 | 0.033 | 0.041 |
| $C(18)$ | 0.030 | 0.039 | 0.036 |
| $C(19)$ | 0.048 | 0.038 | 0.038 |
| $C(20)$ | 0.038 | 0.046 | 0.033 |
| $C(21)$ | 0.040 | 0.034 | 0.034 |
| $C(22)$ | 0.045 | 0.033 | 0.037 |
| $O(23)$ | 0.044 | 0.036 | 0.041 |
| $C(24)$ | 0.042 | 0.038 | 0.040 |
| $I$ | 0.009 | 0.002 | 0.003 |



$\xrightarrow{x 4}$


## Yise8. Huntarburnine $\beta$-mathiodide.

Projection of part of the structure down (100) showing the packing of the ions in the orystal.


In hunterburnine $\beta$-methiodide, the average estimated standard deviation of a distance between two light atoms (carbon, nitrogen or oxygen) is about $0.05 \mathrm{~A}_{\mathrm{A}}$, and that of a C-I bond about 0.03 A. The average standard deviation of a bond angle is about $3^{\circ}$.

On the basis of the final phase constants, an eighth and final threeadimensional Fourier synthesis was evaluated, and the electron-density distribution over one molecule is delineated by means of superimposed contour sections drawn parallel to (001) in Fig. 6, and the corresponding atomic arrangement is drawn in Fig. 7o Fig. 8 shows the crystal structure of hunterburnine $\beta$ omethiodide as viewed in projection down the (100) axis.

## 2. (8) DISCUSSION

The final results of the analysis establish the constitution and stereochemistry (apart irom absolute stereochemistry) of hunterburnine $\beta$ omethiodide to be as in (I)


The assignment of the double bond between $\mathrm{C}(18)$ and $\mathrm{C}(19)$ was based on examination of bond lengths and planarity of the $C$ (18), $C$ (19) and $C(20)$ system, and was confirmed by nuclear magnetic resonance studies by the CIBA group. The methyl group on $N(4)$ is $\beta$-orientated and the adjacent six-membered rings are transfused. The six-membered ring $C(3), N(4), C(14), C(15), C(20)$ and $C(21)$ adopts the chair conformation.

Hunterburnine $\beta$ methiodide is the first recogahsed representative of a new class of indole alkaloid. The biogenetic relationship to other indole alkaloids becomes clear when it is realised that the skeleton of hunterburnine $\beta$-methiodide cen be derived from that of dihydrocorynantheol methochloride (II) - alco isolated from Hunteria Eburnes by an appropriate seission and recyelisation as indicated by the numbering in the formula. The absolute stereochemistry indicated in (I) is based on the assumption that the rule of uniform absolute stereochemistry of the $C$ (15) equivalenc of yohimbine $-\mathrm{C}(15)$ in (I) and (II) - is valid in this case. (Wenkert and Bringi, 1959). $\psi$ cakuammicine is the only known exception to the rule (Edwards and Smith, 1960).

The erystal-structure analysis of hunterburnine co methiodide which is the $\mathbb{N}(\mathrm{B})$-epimer of (I) has recently been carried out (Scott ${ }_{\text {g }}$ Sim and Robertson, 1962), Though
synthetic $N(b)$-epimeric yohimbine methiodides are known (Witkop and Goodwin, 1953), it is noteworthy that hunterburnine $\alpha$-methiodide and hunterburnine $\beta$-methiodide constitute the first recognised pair of naturally occurring $N(b)$-epimeric quaternary alkaloids. There is an interesting pharmacological difference between the compounds, the $\alpha$-methiodide inducing a marked lowering of blood pressure in the anaesthetized dog. (Taylor, 1962).

The molecular dimensions calculated from the final atomic coordinates (see Table 4) are not very precise. The presence of the iodine atoms, and the consequent absorptions is probably in large measure responsible for this.

The average lengths of the aromatic carbonacarbon bonds and carbon-carbon single bonds are $1.38{ }^{\circ}$ and $1.56 \AA$ in reasonable agreenent with the accepted values of 1.397 A and $1.545 \AA$ respectively (Sutton ot al. 1958). The $C(2)-C(7)$ double bond length, 1.28 A, is not sigaificantly shorter than the value of 1.334 A attributed to ethylene (Sutton et al. 1958). The $C(18)=C(19)$ double bond length of 1.21 a appears to be nignificantiy short, but examination of the bond lengths in the vinyl group shows that the $C(19) C(20)$ single bond is rather long, $1,63 A_{0}$ while the $C(18)=C(19)$ douhle bond is short and it is likely that C(19) has been misplaced by the leastesquares procedure.

The carbon-nitrogen bonds fall into two categories: $\mathrm{C}\left(\mathrm{sp}{ }^{2}\right)-\mathrm{N}$ and $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{N}^{+}$. The average $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{N}$ bond length $\circ$ of 1.39 A agrees well with values reported for such bonds of 1.37 A in p-nitroaniline (Trueblood, Goldish and Donohue, 1961), 1.395 A in ibogaine hydrobromide (Arai, Coppola and Jeffrey, 1960) and $1.40 \AA$ in calycanthine dihydrobromide dihydrate (Hamor and Robertson ${ }_{0}$ 1962). The average $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{N}^{*}$ bond length is $1.57 \mathrm{~A}_{\mathrm{A}}^{\circ}$. The results of a number of x-ray measurements of such bonds in alkaloids indicate that long $C\left(s p^{3}\right)-N^{*}$ bonds are a common feature. Thus the average value in ibogaine hydrobromide is $1.53 \mathrm{~A}_{0}^{\circ}$ in ( 4 ) demethanolaconinone hydriodide trihydrate 1.54 A (Przybylska, 1961), in echitamine bromide methanol solwate, 1.55 A (Hamilitoa, Hamor, Robereson and Sim, 1962) and in codeine hydrobromide dihydrate, $1.53 \AA$ (Lindsay and Barnes, 1955).

The means of the valency angles of the bensene and five-membered rings are $120^{\circ}$ and $108^{\circ}$ respectively, the values anticipated for planar rings. The average valency angle in ring C (see Fig.7) is $114^{\circ}$, larger than tetrahedral due to the presence of the $\mathrm{C}(2)-\mathrm{C}(7)$ double bond. The average yalue for the corresponding ring in macusineaA is $114^{\circ}$ (McPhail, Robertson and Sim, 1963)。 In ring $D$, the average valency angle is $110^{\circ}$ 。

The equation of the mean plane through the indole system, calculated by the method of Schomaker et al. (1959)
is $0.242 X+0.071 Y-0.9682-5.643=0$, where $X, I$ and $Z$ are coordinates expressed in Angstrom units referred to orthogonal axes $\underline{a}, \underline{b}$ and $\underline{c}$. The deviations from the plane are listed in Table II, Application of the $\chi^{2}$ test indicates that they are possibly significant. No chemical or steric considerations provide any reason for this.

In the crystal, the positively charged hunterburnine molecules and iodide ions form a threedimensional network held together by normal ionic forces, Van der Waals forces. and a system of hydrogen bads involving the two oxygen atoms $O(23)$ and $O(24)$, the indole nitrogen atom $N(1)$ and the iodide ion.

In the case of the oxygen atoms, the angles $C(2)$ $O(23) I^{1}$ and $C(10)^{2} O(24)^{2} I_{\text {, where superseripts } 1} 1$ and 2 refer to positions $x+1, y_{2} z$ and $\bar{x}+I_{2} \frac{1}{2}+y_{8} \frac{1}{2}-\mathbf{z}$ respectively $y_{9}$ are $107^{\circ}$ and $114^{\circ}$, close to the tetrahedral value, The $\mathrm{OH} \ldots \mathrm{I}$ distances (3,42 A and $3,48{ }^{\circ} \mathrm{A}$ )are similar to the hydrogen bonded distances of $3.57 \AA$ in muscarine iodide (Jellinek, 1957), $3,43{ }^{\circ} \mathrm{A}$ in macusine $\propto$ A lodide (McPhail. Robertson and Sim, 1963) and 3,52 - 3,62 A in (t) des= (oxymethylene) olycoctonine hydriodide monohydrate (Przybylska, 1961).,

It is probable that the hydrogen atom on the indole nitrogen $N(1)$, also takes part in hydrogen bonding, The

## TABLE 21.

## fynterburnine $\beta$-mathiodids.

Displacements (A) of the Atoms ${ }^{0}$ amsthtodides sustem from the
 c(12) c(13) and 0 (2s).

| $N(1)$ | -0.023 | $C(9)$ | -0.008 |
| :--- | ---: | ---: | ---: |
| $C(2)$ | 0.050 | $c(10)$ | -0.049 |
| $C(3)$ | 0.058 | $c(11)$ | 0.078 |
| $C(6)$ | -0.120 | $c(12)$ | -0.057 |
| $C(7)$ | -0.056 | $C(13)$ | 0.001 |
| $C(8)$ | 0.065 | $O(24)$ | -0.020 |

$$
\begin{array}{rlr}
\sum w \Delta^{2}=2.24 \times 10^{-2} & X^{2}=16,54 \\
\sigma^{2}=13.5 \times 10^{-4} & P=1 \%
\end{array}
$$

angles $C(2) N(1) I^{1}$ and $C(13) N(1) I^{1}$ are $133^{\circ}$ and $116^{\circ}$ respectively while the NH ...I distance of 3.70 A is close to that of $3.84 \AA$ in ( + )-des-(oxymethylene)-lycoctonine hydriodide monohydrate (Przybylska, 1961) and $3.5 \AA^{\circ}$ in $2^{\prime}$ : $3^{\prime}$-isopropylidene, 3: $5^{\prime}$ eycloadenosine iodide (Zussman, 1953).

The closest confacts between an iodide ion and carbon atoms, $3.74 \AA^{\circ}, 3.77{ }^{\circ} \AA^{\circ}$, and $3.99{ }^{\circ} \mathrm{A}$ are similar to the minimum $C \ldots .$. I distances of $3.93 \AA$ and $3.95 \AA$ in the erystal structure of macusine-A lodide (MePhail, Robertson and Sim, 1963), $3.81 \AA$ in ( $*$ ) odeso(oxymethylene)-1ycoctonine hydriodide monohydrate (Pryybylska, 2961) and 3.96 A in isocryptopieurine methiodide (Fridrichsons and Mathieson, 1955)

Of the carbonocarbon intermolecular distances. sixteen are below $4 \AA$ A pranging froail $3.50 \AA$ to $3.98 \AA$. There are three short van der Waals contacts between carbon and oxygen of $3.17 \AA_{0}^{\circ}, 3.34 \AA$ and $3.39 \AA$ (Table 7) and this appears to be a normal occurrence for C..... 0 contacts in alkaloids, as is evidenced by values of 3.18 A in calycanthine dibrooide dihydrate (Hamor and Robertson, 1962) $3.2 \AA$ in ( + )-demethanolaconinone (Przybylska, 1961) and $3.2 \AA$ in (-)-aspisdospermine $N(b)$ methiodide (Mills and Nyburg, 1960)。 All other C.... 0 approaches are greater than $3.6{ }^{\circ}$.

## PABT III.

# TYF STEPTCTURE OF TSOPFOTOSANTONTC <br> IACHONT: X B RAY ANALYSIS OF <br> BROMODTHYROISOPETOR - $\alpha$ - SAMHOMIC 

LACTONF ACETATRE

## 3 (1) INTRODUCTION

Homoannular cyclohexadienones are in general subject to rapid photochemical change, and the action of light on santonin (see Chapter 4. (1)) has been the subject of considerable study for some time, One of the irradiation products, isophoto- $\alpha$-santonic lactone, was first isolated in Italy (Villavecchia, 1885) but its constitution was only recently established (Barton, de Mayo and Shafia, 1957). Much of the stereochemistry, however has not yet been elucidated.

The rearrangement has been found to be a general one in sesguiterpenoids, and an example has been encountered in the steroid series (Barton and Taylor, 1958).

There are five asymmerric centres in isophotomod santonic lactone: $C(1), C(6), C(7), C(10)$ and $C(11)$. None of the bonds attached to $C(6), C(7)$ and $C(11)$ in orsantonin confers any absorption in the $300 \mathrm{~m} \mu$ region of the ultraviolet spectrum (Barton, Levisalles and Pinhey; 1962). These bonds therefore cannot be altered in the rearrangement, and the stereochemistry of santonin at $C(6), C(7)$ and $C(11)$ defines the stereochemistry of isophotoodesantomic lactone at these centres.

The asymuerric centres at $C(1)$ and $C(10)$ are more difficult to define Some chemical evidence formulates the
methyl group at $C(10)$ as $\beta$ (Barton, 1958) and assigns the $\alpha$ conformation to the hydrogen at $C(1)$ (Barton, Levisalles and Pinhey, 1962). Conflicting evidence suggests that the hydrogen on $C(1)$ and the hydroxyl on $C(10)$ are cis and $\beta$ (Huffman, 1960). Opeical rotatory dispersion measurements Indicate that the hydrogen on C(1) is $\beta$ (Djerassi, Osiecki and Herz, 1957). Clearly some definitive evidence is needed.

A heavy atom derivative, bromodihydroisophotoodo santonic lactone acetate, was prepared (Barton, Levisalles and Pinhey, 1962). This compound crystallised well and was suitable for x-ray structure analysis.

## 3. (2) EXPERIMENTAL

Rotation, oscillation, precession and moving film photographs were taken from a crystal rotated about the crystallographic axis C。 Copper- $K_{\alpha}$ and Molybdenum- $K_{\alpha}$ radiation were employed, and cell dimensions were measured from these photographs. The space group was determined uniquely from the systematic halvings in the reflections.

The incensity data, consisting of the layer lines hkO....hk4, were collected by means of equi-inclination Weissenberg exposures, the multiple film technique beling used to correlate strong and weak reflections (Robertson, 1943). For upper layer data, the film to film correlation factors given by Rossman (1956) were employed. A small
crystal was used, completely bathed in a uniform xaray beam, and no corrections for absorption were applied. The intensities were corrected for Lorentz, polarization, and the rotation factors appropriate to upper layers (Tunell, 1939). The various layers were placed on the same relative scale by comparison with common reflections on Okl and hOL precession photographs. The absolute scale was obtained at a later stage by correlation with the final calculated structure amplitudes. 1022 reflections were indexed and 865 intensities measured.

The calculated density, assuming four molecules in the unit cell, is $1.526 \mathrm{~g} / \mathrm{ml}$. This is a typical value for chis kind of compound, and the analysis proceeded on the basis of $Z=40$ It was impracticable at a later date to measure the density, as the crystals had decomposed to a black resinous gum. This may be due to loss of bromine and subsequent polymerization.
3. (3) CRYSTAL DATA

$$
\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{Br} \quad M=387.3
$$

Orthorhombic

$$
\begin{aligned}
& a=11.05 \mathrm{~A} \pm 0,02 \mathrm{~A} \\
& \mathrm{~b}=19.23 \mathrm{~A} \pm 0,02 \mathrm{~A} \\
& \mathbf{c}=7.93 \mathrm{~A} \pm 0,03 \mathrm{~A}
\end{aligned}
$$

Volume of the unit cell $=1685 \mathrm{~A}^{\circ}$
For $Z=4, p$ (calculated $)=1.526 \mathrm{~g} / \mathrm{ml}$ 。

$$
F(000)=800
$$

Absorption coefficient for $x$-rays $(\lambda=1.542)=38.7 \mathrm{~cm}{ }^{-1}$ Systematic absences: (hOO) $=2 \mathrm{n}+1$ (ONO) $=2 n+1$ (00\&) $=2 n+1$
Space group $\mathrm{PR}_{1}{ }^{2} 1_{1}{ }^{2}-D_{2}^{4}$.

## 3. (4) LOCATION OF THE HEAVY ATOM

The heavy-atom vectors expected in the space group $P_{1} 1^{2} l^{2} 1$ where $Z=4$ and there is one heavy atom in the asymmetric unit are listed below in tabular form


The two dimensional Patterson projections $P(U V)$ and P(VW) were computed using 224 and 112 coefficients respectively; the resulting maps are shown in Figs. 9 and 10 respectively. Since the space group of the Patterson function in the orthorhombic system is Pan, it was not necessary to compute complete sections.

In the section projected down (001), there should be double weight peaks at $2 \mathrm{X}_{\mathrm{Br}}$ 。 ${ }^{\frac{1}{2}}$ on the line $\left(\mathrm{U}_{0} \frac{1}{2}\right)$ and $a \hat{6}$ $\frac{1}{2}, \frac{1}{2}-2 y_{\mathrm{Br}}$ on the line ( $\left.\frac{1}{2}, V\right)$ with a single weight peak at



$\frac{1}{2}-2 x_{\mathrm{Br}}, 2 \mathrm{y}_{\mathrm{Br}}$ in a general position．These vectors were clearly resolved，and are marked $A_{0} B$ and $C$ respectively in Fig．9．

Similarly，the vectors marked $D_{0} E$ and $F$ in Fig． $10_{0}$ the section projected down（100），correspond to the anticipated double weight peaks at $2 y_{B r}$ o $\frac{1}{2}$ on the line （ $V_{\theta} \frac{1}{2}$ ）and at $\frac{1}{2}, \frac{1}{2}-2 z_{B r}$ on the line $\left(\frac{1}{2}, W\right)_{\text {，}}$ and the single weight peak at ${ }^{\frac{1}{2}}-2 y_{B r} \% 2 z_{B r}$ in the general position respectively．Peaks $A$ and $E_{0} B$ and $F_{0}$ and $C$ and $D$ pertain to common vectors．

The coordinates of the bromine atom，calculated from these projections are $x / a=7.45 / 30, y / b=9.18 / 60$ ， $z / c=7.25 / 30$ ．In view of the proximity of the $x$ and $z$ coordinates to the screw axes at $x=\frac{1}{4}$ and $z=\frac{1}{4}$ ，the three Hacker sections of the threemdimensional Patterson synthesis at（ $\frac{1}{2} V W$ ），（ $U \frac{\lambda}{2} W$ ）and（ $W V \frac{1}{2}$ ）were computed，

The section at（ $\frac{1}{2}$ WW）contained the expected vector at $\frac{1}{2}, \frac{1}{2}-2 y_{B r}{ }^{2} 2 z_{B r}$ and a further vector at $2 x_{B r}$ 这，$\frac{1}{2}-2 z_{B r}$ arising from the value of $x_{B r}=\sim \frac{1}{6}$ 。 These are marked $P$ and $Q$ respectively in Fig．11．The corresponding vectors at $\frac{1}{2}-2 x_{B r}{ }^{0} 2 y_{B r}{ }^{\frac{1}{2}}$ ，and $\frac{1}{2}, \frac{2}{2}-2 y_{B r}{ }^{0} 2 z_{B r}$ in the section at （ $\mathrm{UV}_{\frac{1}{2}}$ ）are marked R and S respectively in Fig．12．The Hacker section at（U㲁）contained only the vector $2 x_{B r}{ }^{\frac{1}{2}}{ }^{\frac{1}{2}-2 z_{B r}}$ marked $T$ in Fig 。13．






Location of the bromine atom exactly on the special positions at $x=\frac{1}{4}$ and $z=\frac{1}{4}$ would result in completely spherical peaks centred on the mirror planes of the Harker sections. The elliptical nature of the peaks at $P$ and $Q$ showing elongation in the $W$ direction and at $R$ and $S$ in the $U$ direction confirmed that $\mathcal{H}_{\mathrm{Br}}$ and $\mathrm{a}_{\mathrm{Br}}$ were not exactly at $t_{0}$ Furthermore, in the Harker section at (UTh), the major axis of the ellipse at (TFig. 13) is in the $W$ direction indicating that $z_{B r}$ is further away from $z=\frac{1}{4}$ than $x_{B r}$ from $x=\frac{1}{2}$.

All the vectors in both Patterson and Harker
sections are consistent with one set of values for $x_{B r}, y_{B r}$ and $z_{B r}$. and the coordinates obtained for the bromine atoza were:-

$$
x / a=0.242 \quad y / b=0.152 \quad z / c=0.233
$$

## 3. (5) SOLUTION OF THE STRUCTURE

The first set of structure factors, based on the heavy atom alone, gave a discrepancy of $45.1 \%$. 159 structure factors with uncertain phase were rejected, and 863 coefficients included in the first threedimensional Fourier synthesis.

The heavy atoms in the crystal are related to one another by highes symmetry than are the molecules as a whole.

In this case two centres of symmetry. The phases deduced by their contributions alone, in turn, introduce this symetry into the calculated structure. Consequently, although peaks appeared in the Fourier synthesis at approximately the correct positions, they also occurred at additional positions, related to the first by two spurious mirror planes.

It appeared to be impossible to unravel the structure from its three interpenetrating "ghosts", and recourse was taken to assigning coordinates on the basis of peak heights of alternative sites related by spurious symmetry; three were adjudged to predominate significantly over their respective "ghosts", and were included in a second cycle of structure factor and Fourier calculation. This approach was pursued for five cyeles in all, and the resuits are shown in tabular form in Table 12.

No sensible chemical structure or fragment of structure could be seen after the fifth cycle and it was obvious that the approach was unprofitable.

The $x$ coordinate of the bromine acom had moved slightly further away from the screw axis, and it was decided to compute a sixth Fourier with phases determined solely by the bromine atom in its new position, with a view firstly, to checking the positions to which atoms

## Bromodithudrotsophoto ade Santonto Laotone Aoctate

## Course of the Structupe Determination

Operation
Atoms included
$R(\%)$

2D Patterson syntheses
3D Earker syntheses

| 1st | $3 D$ | pourier | synthests | Bro | 45.1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2nd | $\square$ | " | " | $\mathrm{Br}+3$ (C) | 42.0 |
| 3ra | $\cdots$ | $\cdots$ | ${ }^{\prime \prime}$ | $B r+8(C)$ | 38.9 |
| 4th | $\cdots$ | $\cdots$ | n | $B r+11$ (C) | 37.7 |
| 5th | $\cdots$ | " | $\cdots$ | $B r+13$ (C) | 36.9 |
| 6th | 0 | " | $\cdots$ | $B r$ | 43.7 |
| 7th | " | " | " | $B r+5$ (C) | 40.5 |
| 8th | $\cdots$ | * | * | $B r+12$ (c) | 36.6 |
| 9th | $\cdots$ | $\cdots$ | $\cdots$ | $\mathrm{Br}+14(\mathrm{C})+3(0)$ | 32. 3 |
| 10th | " | $\cdots$ | " | $\mathrm{Br}+16(\mathrm{C})+4(0)$ | 29.2 |
| 12th | " | " | $\cdots$ | $\mathrm{Br}+16(\mathrm{C})+5(0)$ | 24.8 |

had been allocated, and secondly, perhaps, to disclose new


The residual of $43.7 \%$ showed a drop of $1.4 \%$ compared with the first structure factor calculation, but more important was the appearance, in the Fourier map in an unambiguous position, of the atom in the five membered carbocyclic ring which is covalently bonded to the bronine atom. The presence of chis atom made it possible to disentengle the five membered carbocyclic ring with sone confidence, since peaks chosen were consistently higher than their "ghosts". Where an option had been present, comparisoss with sites determined previousiy showed that a different choice was made in some cases.

Shese five carbon atoms were incluaded in a seventh structure factor calculation and the electrondensity map revealed the seven-membered carbocyclic ring and its two substituents at $C(20)$. The lactone ring was also nebulously defined, but no sites were sufficiently well resolved in this latter ring to permit inclusion of any of its constituent atoms in the eighth structure factor calculation.

Successive cycles of structure factor and Fourier calculations progressively revealed more and more atoms until the tenth Fourier map disclosed the complete structure. The course of the structure determination appears in Table 12.

Correspondence with Professor Barton at this stage Indicated that the stereochemistry assigned at all the asymmetric centres was acceptable with the exception of the conformation of the methyl group $C(13)$ at $C(11)$. The controversial $C(13)$ was omitted in an eleventh structure factor calculation, and the atom reappeared in exactly the same position in the resulting Fourier map. Very few areas of spurious electron density appeared on the map and the structure was judged to be firmly established.

## 3. (6) REFINEMENT

Refinement was carried out by $F_{0}$ and $F_{c}$ syntheses in the initial period ${ }_{5}$ and was initiated at the stage of the tenth cycle of structure factor and Fourier calculation. The back-shift corrections, compensating for termination of series effects were applied to the coordinates from the Fo synthesis, giving an improved structure. Isotropic temperature factors were assigned individually; in general. there was a slight increase in $B_{0}$.

This method of refinenent was pursued for four cycles and was accompanied by a drop in the discrepancy to $20.3 \%$ from $29.24 \%$. The small improvement due to the foupth cycle indicated that reifinement of atomic coordinates by this method was practically complete. The course of the refinement appears in Table 13.

## TABLE 33

## 

## Conirss af Refinament

| Operation |  |  | Atoms included | B(8) | $\underline{\sum \omega}{ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10th 3D Pourter sumthests ( $F_{0}$ and $F_{0}$ ) |  |  |  | 29.2 | - |
| 21th | $\cdots{ }^{\prime \prime}$ | * | $B r+26(0)+5(0)$ | 24.8 | $\infty$ |
| 12th | $\cdots$ | $\cdots$ | $B r+27(C)+5(0)$ | 21.1 | $\infty$ |
| 13th | * $\quad$ - | $\cdots$ | $B p+17(C)+5(0)$ | 20.3 | - |
| $18 t$ | Least squares | cyele | $B r+17(C)+5(0)$ | 20.2 | 250 |
| 2nd | " | " | $B r+17(C)+5(0)$ | 17.2 | 152 |
| 3 rad | $\cdots \quad \cdots$ | " | $\mathrm{Br}+17(\mathrm{C})+5(0)$ | 15.8 | 125 |
| 4th | $\cdots$ | " | $B r+17(C)+5(0)$ | 15.1 | 110 |
| 5th | " | - | $B r+17(C)+5(0)$ | 14.6 | 104 |
| 6th | $\cdots$ | * | $B r+17(C)+5(0)$ | 21.4 | 596 |
| 7th | " | " | $B r+17(C)+5(0)$ | 16.4 | 322 |
| 8th | " | " | $B r+17(C)+5(0)$ | 15.0 | 298 |
| 9th | $\cdots$ | " | $B r+17(C)+5(0)$ | 14.8 | 224 |
| 10th | $\cdots$ | * | $B r^{2}+17(C)+5(0)$ | 14.0 | 203 |
| 11th | $\cdots \cdots$ | " | $B r+2 r(C)+5(0)$ | 14.3 | 295 |
| 12th | $\cdots \quad 1$ | " | $\mathrm{Br}+17(\mathrm{C})+5(0)$ | 13.7 | 224 |
| $13 t h$ | $\cdots \quad *$ | $\cdots$ | $\mathrm{Br}+17(\mathrm{C})+5(0)$ | 12.9 | 218 |
|  |  |  |  | 12.9 | - |

Refinement was continued by the method of least squares, again only employing the block diagonal elements of the matrix of normal equations. The weighting systen was the one used in refining hunterburnine $\beta$-methiodide (see Chapter 2. (6)) and the value of $\mathrm{F}^{*}$ for cycles one to five was 15 , and 32 for the remainder. Half-scale scattering factors were used for all atoms and halfoshirt corrections were employed throughout. The location and contribution of hydrogen atoms were not considered.

After five eycles, bond length $C(7)-C(21)$ was shorter than that predicted by theory and $C(10)-0(21)$ abnormally long. Positional parameters of all four atoms were adjusted to give more reasonable bond lengths. Using the relationships $\beta_{11}=a^{*} B_{11} / 4$ and $b_{11}=1.4427 \beta_{11}$ (Rossman, Jacobson, Hirshfield and Lipscomb, 1959), values of $B_{11}$ $B_{22}$ and $B_{33}$, the chermal parameters parallel to each principal axis were obtained for all the atoms in the structure. These were averaged for each atom, and the resulting isotropic temperature factors employed in the sixth cycle of least squares. The rise in discrepancy of $6.8 \%$ is a measure of the degree of anisotropy of the structure

After a further four cycles of least squares had been completed, the $C(7)=C(11)$ bond length was again uncommoniy short. After readjustment of the positional parameters of $C(7)$ and $C(11)$, reilinement was continued usixes
the anisotropic thermal parameters obtained from the previous cycle.

Refinement was terminated after a further three cycles. The final value of $R$ was $12.85 \%$ and this was increased to $13.83 \%$ on the inclusion of unobserved reflections.

Throughout the analysis, theoretical atomic scattering factors due to Berghius et al. (1935) for carbon and oxygen were used, and those due to Thomas and Fermi (1935) for bromine.

## 3. (7) RESULTS

On the basis of the final phases, a final three-s dimensional Fourier map was computed and is represented in Fig. 14 by means of superimposed contoux sections drawn parallel to (001). The corresponding atomic arrangenent appears in Fig. 15. The arrangenent of the molecules in the crystal as viewed in projection along the a axis is shown in Fig. 16 and along the $c$ axis in Fig. 17.

The final values of $\left|F_{o}\right|_{p} \mid$ and $\alpha$ are given in Table 14. final positional paramecers in Table 15, and final anisotropic thermal parameters in Table 16. Table 17 contains intramolecular bonded distances and Table 18 the interbond angles. Intramolecular non-bonded distances < 4 A are recorded in Table 19 and inter-molecular contacts <4 A





ELs.16. Bromodihydroisophoto-a-santonic lactone acetate. Projection of part of the structure down (100) showing the packing of the molecules in the orystal.


Pig.17. Bromodihydroisophoto-a-mantonin lactone acetate. Prejection of part of the structure down (001) showing the packing of the molecules in the crymtal.


Table 14. Bromodihydroisophoto-a-santonic lactone acetate. Pinal manaured and calculated values of the etructure factors. Unobserved terms have been omitted.
$\begin{array}{ll}0 & 1 \\ 0 & 2\end{array}$ 1
2

 ニ凶゙
 ～～～



> - ． OHNMTOHNMTOHNMOHNMーOHNTOHNMーOHNMーOHNMーOHNMーO シーズラ





 $\stackrel{\infty}{\infty} \stackrel{\infty}{\omega} \dot{\sim}$









TABLE 75.
Bromodthydroisophoto mas Santontc Laotone Aostate Final Atomio Coordinates

| Atou | 218 | Leb | 210 |
| :---: | :---: | :---: | :---: |
| C(1) | -0.1819 | 0.2011 | 0.2631 |
| c(2) | -0. 2895 | 0.2463 | 0.2763 |
| C(3) | -0.3729 | 0.2225 | 0.1280 |
| $c(4)$ | -0.3373 | 0.1510 | 0.0764 |
| C(5) | -0.2003 | 0.1538 | 0.1048 |
| c(6) | -0.1416 | 0.0812 | 0.0943 |
| $C(7)$ | -0.0084 | 0.0781 | 0.1596 |
| C(8) | 0.0001 | 0.0731 | 0.3521 |
| C(9) | -0.0316 | 0.1378 | 0.4447 |
| $c(10)$ | -0.1662 | 0.1855 | 0.4252 |
| c(11) | 0.0378 | 0.0155 | 0.0842 |
| c(12) | -0.0810 | 0.0175 | -0.0866 |
| c(13) | 0.1728 | 0.0094 | 0.0556 |
| c(14) | -0.3852 | 0.1280 | -0.0883 |
| $c(15)$ | -0.2572 | 0.1115 | 0.4872 |
| c(16) | -0.1140 | 0.2754 | -0.4104 |
| $c(17)$ | -0.1712 | 0.3240 | -0.2675 |
| O(18) | -0.4549 | 0.2587 | 0.0461 |
| O(19) | -0.1291 | 0.0605 | -0.0723 |
| O(20) | -0.0061 | 0.0056 | -0.2318 |
| 0(21) | -0.1841 | 0.2188 | -0.4292 |
| O(22) | -0.0242 | 0.2911 | -0.4832 |
| Bror | -0.2576 | 0.3462 | 0,2386 |

## TARLE 16

Bromodihydrotsophoto -d-Sontorio Laotone aostate Pnal Anisotropic Themal Parameters $\left(b_{i, j} \times 10^{5}\right)$.

| Atom | $b_{11}$ | $b_{22}$ | $b_{33}$ | $b_{12}$ | $b_{33}$ | $b_{13}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| $C(1)$ | 1130 | 286 | 1820 | -168 | 423 | -2019 |
| $C(2)$ | 1308 | 308 | 3305 | 68 | 444 | -1423 |
| $C(3)$ | 1483 | 450 | 3070 | 423 | -704 | -271 |
| $C(4)$ | 1001 | 499 | 3208 | 425 | -630 | -862 |
| $C(5)$ | 1268 | 397 | 4381 | -48 | 191 | 878 |
| $C(6)$ | 1954 | 452 | 2016 | -619 | 243 | 1256 |
| $C(7)$ | 1436 | 350 | 3689 | 127 | 146 | 82 |
| $C(8)$ | 1655 | 461 | 2272 | 410 | -822 | 29 |
| $C(9)$ | 1271 | 398 | 7279 | 265 | 122 | -821 |
| $C(10)$ | 1228 | 412 | 1965 | 152 | 844 | 486 |
| $C(11)$ | 1831 | 373 | 2447 | -37 | -62 | -181 |
| $C(12)$ | 2286 | 421 | 2613 | 159 | 479 | 1127 |
| $C(13)$ | 1313 | 562 | 4398 | 438 | 1535 | 1489 |
| $C(14)$ | 1908 | 714 | 4754 | 23 | -622 | -2856 |
| $C(15)$ | 1441 | 422 | 2328 | -143 | -75 | 1805 |
| $C(16)$ | 1308 | 606 | 2316 | 7 | -154 | -1030 |
| $C(17)$ | 1508 | 642 | 3944 | 604 | -562 | 988 |
| $O(18)$ | 1824 | 604 | 3799 | 530 | 302 | -1392 |
| $O(19)$ | 1437 | 437 | 4157 | 150 | 258 | 601 |
| $O(20)$ | 2556 | 668 | 1756 | 613 | 200 | 1523 |
| $O(21)$ | 1646 | 300 | 5036 | 67 | -70 | -83 |
| $O(22)$ | 1194 | 615 | 5869 | -191 | -547 | -208 |
| $B r$ | 1945 | 329 | 5460 | 70 | 161 | -378 |
| $(102$ |  |  |  |  |  |  |

RABTE $17 \%$

## Bromadihydicotsophoto me Santenis Lootons Lostate

 Intramileonlar Bonged_Dratances (A)| $c(2)=c(2)$ | 1.48 | $c(7)=c(11)$ | 1.44 |
| :---: | :---: | :---: | :---: |
| $c(1)-c(5)$ | 2.57 | $c(8)-c(9)$ | 2.49 |
| $c(1)=C(10)$ | 1.47 | $c(9)-c(10)$ | 1.59 |
| $c(2)-B r$ | 1.98 | $c(10)-C(15)$ | 1.53 |
| $c(2)+c(3)$ | 1.56 | $c(10)-0(21)$ | 1.56 |
| $c(3)-c(4)$ | 1.49 | $c(11)-c(12)$ | 1.55 |
| $c(3)-0(18)$ | 1.31 | $c(11)-c(13)$ | 1.51 |
| $c(4)-c(5)$ | 2.53 | $c(12)-0(19)$ | 2.37 |
| $c(4)-c(14)$ | 1.48 | $c(12)-0(20)$ | 1.26 |
| $c(5)-c(6)$ | 1. 53 | $c(16)-C(17)$ | 1.60 |
| $c(6)=c(7)$ | 1.56 | $c(16)-0(21)$ | 1.34 |
| $c(6)-0(19)$ | 1. 39 | $c(26) \sim 0(22)$ | 1.19 |
| $c(7)-c(8)$ | 1.53 |  |  |

## TABLE 18.

Brospdithejpotsophoto me Santanto Laotone Aoetate

## Interibond Angles

| $c(2) c(1) c(5)$ | 1080 | $c(8) c(7) c(11)$ | $210^{\circ}$ |
| :---: | :---: | :---: | :---: |
| $c(2) c(1) c(10)$ | $\underline{.108}$ | $c(7) c(8) c(8)$ | 115 |
| $c(5) c(1) c(10)$ | 2.16 | $C(8) c(9) c(10)$ | 117 |
| $C(1) C(2) B r$ | 1.5 | $c(1) c(10) c(9)$ | 111 |
| $C(1) c(2) c(3)$ | 105 | c(1) $6(10) 0(21)$ | 109 |
| $C(3) C(2) B r$ | 106 | C(9)C(10)0(21) | 108 |
| $c(2) c(3) c(4)$ | 109 | $c(15) c(10) c(1)$ | 121 |
| $c(2) c(3) 0$ (18) | 129 | $c(15) C(10) c(9)$ | 111 |
| $C$ (4) 6 (3) $0(18)$ | 123 | $c(15) c(10) 0$ (21) | 114 |
| $c(3) c(4) c(5)$ | 101 | $c(7) c(11) c(12)$ | 100 |
| $c(3) c(4) c(14)$ | 115 | G(7)C(11) C(13) | 219 |
| $C(5) C(4) C(14)$ | 120 | $c(12) c(11) c(15)$ | 211 |
| $C(1) C(5) C(4)$ | 105 | C(11) 0 (12) 0 (19) | 209 |
| c(1) $0(5) c(6)$ | 121 | $C(11) C(12) O(20)$ | 333 |
| $c(4) c(5) C(6)$ | 113 | O(19) $0(12) 0(20)$ | 118 |
| $c(5) c(6) c(7)$ | 115 | $c(17) c(16) 0$ (22) | 122 |
| c(5)c(6)O(19) | 111 | $0(21) c(16) c(17)$ | 109 |
| $C(7) C(6) 0(19)$ | 102 | O(21) C(16)0(22) | 129 |
| $c(6) c(7) c(8)$ | 113 | $c(6) 0(19) c(12)$ | 109 |
| $C(6) c(7) c(11)$ | 103 | $c(10) 0(21) c(16)$ | 123 |

## TABLE 19.

## Bromodihydrot sophoto ede Sentonto Lactone A.ostate

Intramoleoular NonmBonded Dtstances < $\stackrel{\circ}{\circ}$

| $c(1)-C(7)$ | 3.15 | $c(6)-c(9)$ | 3.22 |
| :---: | :---: | :---: | :---: |
| $c(1)=c(8)$ | 3. 26 | $c(6)-C(10)$ | 3.10 |
| c(1)-c(14) | 3.85 | $c(6)=C(13)$ | 3.75 |
| c(1) ${ }^{100} C(16)$ | 3.05 | $C(6)=c(14)$ | 3.19 |
| $c(1)=0(18)$ | 3.65 | C(6) 0 C(15) | 3.42 |
| $c(1)-0(19)$ | 3.84 | $c(6)=C(20)$ | 3.42 |
| C(1)00(22) | 3.17 | $c(7)-6(10)$ | 3.21 |
| $c(2)-C(6)$ | 3.85 | $c(7)-C(15)$ | 3.84 |
| $c(2)-C(9)$ | 3.78 | $C(7)=0(20)$ | 3.50 |
| $c(2)-C(14)$ | 3.83 | $c(8)-c(12)$ | 3.66 |
| c(2)-c(15) | 3.11 | $c(3)=c(15)$ | 3.13 |
| $c(2)-C(16)$ | 3.20 | c(3)-0(19) | 3.66 |
| $c(2)=0(21)$ | 2.66 | C(8) $00.0(21)$ | 3.87 |
| c(2)-0(22) | 3,60 | $c(0)=c(11)$ | 3.78 |
| $c(3)=0(6)$ | 3.72 | c(9)-c(16) | 3.03 |
| $c(3)=c(10)$ | 3.46 | $C(0)=0(22)$ | 3,00 |
| $c(3)-C(15)$ | 3.78 | $C(10)-B r$ | 3.91 |
| $c(4)-C(7)$ | 3.95 | $C(10)=C(17)$ | 3.90 |
| $c(4)-c(10)$ | 3.36 | $c(10)=0(22)$ | 2.97 |
| $c(4)-C(15)$ | 3.46 | $C(13)-0(19)$ | 3.62 |
| $C(4)=0(19)$ | 3.12 | $C(14)-0(19)$ | 3.12 |
| $C(5)-B r$ | 3.91 | C(15)-C(16) | 3.62 |
| $c(5)-C(8)$ | 3,34 | $C(16)-B r$ | 3.48 |
| $c(5)-C(9)$ | 3.29 | $O(18)-B r$ | 3.15 |
| $c(5)-c(11)$ | 3.74 | O(19) -0(20) | 2.25 |
| $c(5)=C(12)$ | 3.55 | $0(21)=B r$ | 3,69 |
| $c(5)-c(15)$ | 3,20 | O(21)-O(22) | 2.29 |
| c(5) 00 (18) | 3.50 | O(22)-Bro | 3. 56 |
| c(5)-0(21) | 3. 91 |  |  |

## 

$$
\text { Intermoleoular Distanaes }<\frac{0}{A}
$$



The subsertpts refer to the followtng postitions: $t \quad x_{0} \quad V_{0} \quad z+1 \quad$ to $x-\frac{1}{2},-y+\frac{1}{8}-2$ $t i \quad-x-\frac{1}{2},-y, \quad z+\frac{1}{z} \quad v \quad x+\frac{1}{2},-y+\frac{1}{b},-x+1$


## TABLE 21.

Bromodihudrot sophoto -as Santoric Laotons Acstate Standard Deviations of the Final Atomto Coordinates (A)

| Atom | $0(5)$ | $\sigma(1)$ | $0(8)$ |
| :--- | :--- | :--- | :--- |
| $C(1)$ | 0.020 | 0.018 | 0.030 |
| $C(2)$ | 0.021 | 0.021 | 0.033 |
| $C(3)$ | 0.025 | 0.026 | 0.035 |
| $C(4)$ | 0.024 | 0.024 | 0.032 |
| $C(5)$ | 0.025 | 0.024 | 0.038 |
| $C(6)$ | 0.027 | 0.024 | 0.031 |
| $C(7)$ | 0.025 | 0.023 | 0.033 |
| $C(8)$ | 0.026 | 0.025 | 0.032 |
| $C(9)$ | 0.026 | 0.025 | 0.031 |
| $C(10)$ | 0.024 | 0.023 | 0.032 |
| $C(11)$ | 0.027 | 0.024 | 0.032 |
| $C(12)$ | 0.028 | 0.025 | 0.034 |
| $C(13)$ | 0.026 | 0.026 | 0.036 |
| $C(14)$ | 0.031 | 0.032 | 0.040 |
| $C(15)$ | 0.026 | 0.022 | 0.030 |
| $C(16)$ | 0.023 | 0.028 | 0.031 |
| $C(17)$ | 0.026 | 0.028 | 0.040 |
| $O(18)$ | 0.019 | 0.018 | 0.024 |
| $O(19)$ | 0.017 | 0.017 | 0.023 |
| $O(20)$ | 0.020 | 0.018 | 0.022 |
| $O(21)$ | 0.018 | 0.015 | 0.053 |
| $O(22)$ | 0.017 | 0.018 | 0.027 |
| $B 7$ | 0.003 | 0.002 | 0.005 |

in Table 20. Standard deviations of the positional parameters were estimated from the least squares residuals in the usual way, and are listed in Table 21. The average standard deviation of a C-C bond is $0.04{ }^{\circ}$, that of a $C-0$ bond $0.03 \stackrel{\circ}{A}_{8}$ and of a CaBr bond $0.02 \mathrm{~A}_{\mathrm{A}}^{\circ}$. The average standard deviation in a bond angle is $2^{\circ}$.

## 3. (8) DISCUSSION

The analysis has established the structure and relative stereochemistry of bromodihydroisophoto- $\alpha$-santonic lactone acetate as (III); it follows therefore, that the stereochemistry of isophotood asanconic lactone is as in (IV), the absolute stereochemistry shown being firmly established chemically.


(III)

As predicted by Barton, $O(19)$ in the lactone ring is $\alpha$ and $C(11) \beta$. The methyl group in the lactone ring, however, has the opposite configuration (d) to that expected ( $\beta$ ) and this casts doubt on the generaliy accepted configuration ( $\beta$ ) of the corresponding methyl group in (-)- - osantonin itself. Full discussion on this subject appeass in Chapter 4 of this thesis.

The sterechemistry of the ring junction of the five and seven-membered ring is clearly defined. The rings are cis fused through equatorial bonds. The methyl group, $C(15)$, has the $\beta$ and the $C(10)$-acetoxy substituent the of configuration.

De Mayo and Reid (1961) have suggested a nechanism for the transformation, but as yet there is no evidence fors their postulated intermediate.

In bromodihydroisophotom $\alpha$-santonic lactome acerate, the average carbonocarbon singlembond length is 1.523 A which appears to be rather short ${ }_{g}$ bur within the limits of experimental error cannot be said to differ significantly from the standard value of $1.545^{\circ} \mathrm{A}$ in diamond.

The carboncoxygen single bonds fall into two categories: those adjacent to a carbon oxygen double bond have a mean value of $1.35 \AA$ whereas the others have an average value of 1.47 A 。

## Caiculated distinnc: $\because s$ for the carbon-oxygen bond can

 be obtained from the method due to Pauling (1960) from covalent bond radii and electronegativity differences in bonding atoms. The carbon oxygen double and single bond lengths are theoretically predicted as $1.21{ }^{\circ} \mathrm{A}$ and 1.43 A respectively. In the completely ionised carboxylate group the character and length of the carbon oxygen bond is midway between these two extremes, and so the difference in carbon oxygen bond lengths found in the present structure would seem to indicate that in lactone and ester groupings, as in carboxylic acids ${ }_{9}$ the rescnance structure shown in Fig。 18 (b) makes a significant contribution.

0
(a)

(b)

Fig. 18 Resonance forms present in the ester and lactone grot
This effect is closely paralleled in other lactones and esters, eg, a-bromopicrotoxinin (Craven, 1962) elencatn bromolactone (Paul, Sin, Hamer and Robertson, 1962) and bromogetgerin acetate (Hamiton. MoPhail and Sim, I96e) have
vaiues of $1.37 \AA_{\AA}^{\circ}, 1.34 \AA, 1.29 \AA$ and $1.47 \AA_{\AA}^{\circ}, 1.47 \AA_{\circ}^{\circ}, 1.46 \AA$ for the short and long carbon-oxygen bonds respectively. Furthermore the angles about $\mathrm{C}(12)$ and $\mathrm{C}(16)$ conform to a pattern observed in carboxylic acids (Ahmed and Cruickshank, 1953; Ferguson and Sim, 1961); the angles C(11) C(12) $O$ (19) and $C(17) C(16) O(21)$ are $109^{\frac{1}{2}}$ and $109^{\circ}$ respectively. approximately tetrahedrai, whereas the average of the angles $C(11) C(12) O(20), 0(19) C(12) O(20), C(17) C(16) O(22)$ and $O(21) C(16) O(22)$ exceeds $120^{\circ}$. The effect may be due to repulsion by the lone pairs of electrons on the atoms $0(20)$ and $O(22)$ 。

The average carbon-oxygen double bond length $1.25{\stackrel{\circ}{A_{8}}}_{0}$ is not significantly longer than the theoretically predicted value of 1.21 A (Pauling 1960). The carbon-bromine bond length of $1.98{ }^{\circ} \mathrm{A}$ appears to be slightly longer than the average value of 1.94 A reported for various alkyl bromides (Sutton et al., 1958), but is comparable with the values of 1.98 A reported in dobromopicrotoxinin (Craven, 1962) and o in 1.99 A in bromogeigerin acetate (Hamilton, McPhail and Sim. 1962)。

The cycloheptane ring adopis a chair conformation but is somewhat flattened, for the valency angles are consistently greater than tetrahedral, the mean value being 115 $\frac{1}{2}^{\circ}{ }^{\circ}$. Similar large values for the valency angles in seven
and higher membered rings have been noted: $116.5^{\circ}$ in isoclovene hydrochloride (Clunie and Robertson, 1961), 116.5 in cyciononylamine hydrobroaide (Bryan and Dunitz, 1960).

In the fivemembered rings the average valency angle
is $105^{\circ}$. Average valency angles consistently smaller than tetrahedral have been reporeed, incer alia, for the five membered rings in hydroxyoloproline, $105^{\circ}$, (Danehue and Trueblood, 1952., ssoclovene hydrochioride, $105^{\circ}{ }_{\text {, }}$ (Clunie and Robertsons 1961) and in the Pivemenbered ring which is not adjacent to the benzene ring in echitamine bromide methanol solvate, $106^{\circ}$ (Hamiltom, Hamor, Robertson and Sim, 1962). These values are consistent with nono planarity and consequens angle deformations in cyclopentane (Pitzer and Donath, 1959)。

The mean piane through the atoms $C(1)_{0} C(2)_{1} C(3)$ ane C(5) of the five-merbered carbocyclic ring was calculated by the method of Shomaker ef al. (1959). The equation of the plane $130.4294+0.686 \%-0.3877-0.579=0$, and the deviations from the plane are $C(1)=0.012, C(2)+0.012$, $C(3)=0.007$ and $C(5) \div 0.008$. The displacement of 0.541 A of C(4) is highly sigaificant and establishes the presence of the envelope conformation as defined by Brutcher, Roberts, Barr and Pearson (1959).

In himbacine hydrobromide Fridrichsons and Mathieson (1962) have reported that the $\gamma$-lactone system (b) (c), (d) and (e) (Fig. 19),

(b)
(d)

## Fig. 12. $\gamma$-lactone system

corresponding to $C(11), C(12), O(19)$ and $O(20)$ in bromodinydreisophob ond -santonic lactone acetate, is planar and nearly coplanar with (a) while (i) lies markedly out of the plane of the ring. MePhail (1963) considers that the partial double bond character of the (b) (c) bond should lead to planariby of atoms (a), (b), (c), (d) and (e) and has established the weildity of his proposal in bromogeigerin acetate and also in the lactone seng of himbacine hydrobromide by applying the $\chi^{2}$ test fisher and Yates, 1957). For bromogeigerin acetate $\chi^{2}=2.1$ and ior himbacine hydrobromide $X^{2}=4.2$ : these values mean thas there is no significant deviation of (a), (b), (c), (d) or (e) from the planes.

For bromodihydroisophoto ${ }^{-1}$ esantonic lactone acetate, the equation of the mean plane through (a), (b), (c), (d) and (e) is $0.530 X+0.816 Y-0.2302-0.292=0$. The
displacement, $0.60{ }^{\circ}$, of $(i), C(7)$ is significant and demonstrates the envelope conformation of the ring.
$X^{2}=5.1$ and this shows that bromodihydroisophoto- $\alpha$-santomic lactone acetate conforms to the pattern predicted by MePhail. The results of the mean plane calculations through the atoms of the $\gamma$-lactone rings discussed, and also the $\gamma$-lactone ring in $2 \pi B r-\alpha$ santonin, are compiled in Table 22.

The distance between $C(6)$ and $C(15)$ in a model with standard bond lengths and angles is $2.1 \stackrel{A}{A}_{0}$, shorter than that found $3.41 \stackrel{\circ}{A}_{8}$ in the crystal, and indicates considerable Porces pushing these atoms apart. The five membered carbocyclic ring incurs considerable strain in adopting the envelope conformation where $C(4)$ is out of the plane of the ring.

Of the incermolecular distances (Tabie 20), the C.... O contacts are the shortest the lowest values being $3.15{ }^{\circ} \mathrm{A}, 3.28 \mathrm{~A}$ and $3.37{ }^{\circ} \mathrm{A}, \mathrm{G}, \ldots 0$ contacts of comparable lengths were quoted for several alkaloids in Chapter 2. (8), and values of 2.96 A and 3.07 A have been reported in bromogeigerin acetave (Hamilton, McFhail and Sim, 1962)。 The shortest $C \ldots . C$ contact is 3.46 A ; none of the contacts appears to be abnormal.

The exystal packing diagram projected down (001) demonstrates clearly the stereochemistry of the methyl group on the lactone ring (Fig. 17).
$\frac{\text { Mean Plane Calculations for some }}{\left(\text { See } \operatorname{sig} g_{2} \text { XIX). }\right.}$

| Bromodihydrotsophoto $-\alpha$ santonto lactore acetate | $\frac{\text { Atoms }}{\text { omttted }} \sum \omega \Delta^{8} 10^{-4}$ |  | $\chi^{2}$ Ps |
| :---: | :---: | :---: | :---: |
|  | None | 1851 | $272<0,1$ |
|  | $c(a)$ | 1234 | $181<0.1$ |
| $\sigma^{2}=6.8 \times 10^{-4}$ | O(b) | 1804 | $265<0.1$ |
|  | $c(c)$ | 1789 | $263<0.1$ |
|  | O(d) | 1510 | $222<0.1$ |
|  | $c(e)$ | 720 | $106<0.1$ |
|  | $c(f)$ | 35 | $5.1>5$ |
| Bromogetgerin aceta$\sigma^{2} \stackrel{\partial}{=} 4 \times 10^{-4}$ | None | 1903 | $876<0.1$ |
|  | $c$ (a) | 1442 | $356<0.1$ |
|  | O(b) | 1872 | $468<0.2$ |
|  | $c(a)$ | 1880 | $470<0 \cdot 1$ |
|  | $O(d)$ | 1496 | $370<0.1$ |
|  | c(e) | 485 | $111<0.1$ |
|  | $c(f)$ | 8.5 | $2.195>P>5$ |
| Etmbscine hydrobromide | None | 1794 | $224<0.1$ |
| $\sigma^{2}=8 \times 10^{\infty 4}$ | $c$ (a) | 1362 | $158<0.1$ |
|  | $o(b)$ | 1776 | $222<0{ }_{0}$ |
|  | $c$ (c) | 1790 | $224<0.1$ |
|  | O(d) | 1510 | $189<0.1$ |
|  | $c(e)$ | 283 | $35<0.1$ |
|  | $c(f)$ | 33.7 | $4.2>5$ |
| 2-Br - 2 -santontn | None | 1808 | $188<0.1$ |
| $\sigma^{2}=9.6 \times 10^{-4}$ | $c(a)$ | 1255 | $131<0.2$ |
|  | 0 (b) | 1787 | $186<0.1$ |
|  | $c(c)$ | 1722 | $179<0.2$ |
|  | $o(a)$ | 1542 | $162<0.2$ |
|  | $C(2)$ | 523 | $54<0,2$ |
|  | C(8) | 0.8 | $0.01>29$ |

## 

## Bimondthydyefeophote <br> =terisour icator $\operatorname{con} \pi n$

| $C(a)$ | -0.018 | -0.010 |
| :--- | ---: | ---: |
| $O(b)$ | 0.038 | 0.005 |
| $C(a)$ | -0.041 | 0.022 |
| O(d) | 0.006 | -0.015 |
| $C(8)$ | 0.020 | -0.002 |
| $C(f)$ | 0.595 | -0.030 |

Fimbaotns hydrobromtde
$2-B r-\alpha-\operatorname{santontn}$

| -0.029 | -0.004 |
| ---: | ---: |
| -0.035 | 0.003 |
| -0.038 | 0.006 |
| 0.002 | -0.005 |
| +0.020 | -0.002 |
| -0.612 | 0.614 |

## PART IT:

## TEIF STRTUCTURE OP SANEOMFN : XeRAT AMAESSIS OP 2 - BROYO $\propto d$ SAMMONIT

Santonin ( $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}$ ) is a colourless, crystalline lactone, obtained from the unexpanded flowerheads of Artemesia cina and other species of Artemesia growing in Cashmere, Mexico Turkestan and Western Tibet. It is a valuable anthelmincie and is cultivated for medicinal. purposes particularly in Turkestan。

Santonin is one of the eudesmane group of sesquiterpenes and classical chemical methods have been omployed to establish 2 es structure (Clemo, Haworth and Walton. 1929; 1930. C1eno and Haworth, 1930) and stereochemistry (see Cocker and Mclurray, 1960, for a sumary).

Examination of the literature shows that two viewpoints have beer presented concerning the configuration of the methyl group at $C(11)$ in naturally occurring eantonins. Miki (1955) assumed the quasi-equatorial orientation of the methyl group at $C(11)$ in (--)wos-santonin because complete stereomspecificity was observed in decarboxylation of 11-carboxysantonin and its stereoisomers. Conformation of this assignation was made by Abe, Miki, Sumi and Toga (1956) who converted $(a)-c i o s a n t o n i n ~ t o ~ 11-n o r e u s a n t o n a n-11-01$ and compared its molecular rotation to that of atrolactic acid.

Corey (1955) assigned the $\beta$-position to the methyl group at $C(11)$ in ( - ) od -antionin on the basis of the fact the
$\beta$ desmotroposantonins are more stable than the $\alpha$-isomers in an acidic medium, while Woodward and Yates (1954) and Cocker and MeMurray (1955) have reached the same conclusion.

It is clear that doubt exists about the stereochemistry at $C(11)$ and one consequence of this is that the possibility of epimerisation at $C$ (11) during the phototransformation to isophotosantonic lactone cannot be ruied out.

Transparent needle shapet crystals of 2-bromo-d-santonin supplied by Professor Barton were used in the x-ray structure analysis. Preliminary work - crystal data and Patterson projections was carried out by A. C. MacDonald (1962) during BoSc. thesis work.

At an early stage in the analysis, Nakasaki and Arawaka (1962) published work supporting the choice of configuration made by Miki (1955), but the x-ray analysis continued in an attempt to furnish independent evidence.

## 4. (2) EXPERTMENTAL

Rotation, oscillation and precession photographs were taken about the needle (c) axis for unit cell data. The density of the crystal was found by a flotation technique in aqueous potassium iodide solution, and agreed well with the calculated density.

Intensity data for the hk0......hk6 layer lines were collected with a Heissenberg equi-inclination camera using the multiple-film technique of Robertson (1934) and estimated visually employing a calibrated step wedge. Film factors were determined by the method of Rossman (1956), and the intensities corrected for Lorentz, polarization, and rotation factors for upper layers. The resulting structure amplitudes were scaled by comparison with a precession photograph of the Okl zone, and later placed on an absolute scale by reference to the calculated structure amplitudes $\mid \mathrm{Fc\mid}$. In all 14.34 independent intensities were estimated, and of these, 157 were smaller than the least observable value.

The space group was uniquely determined from systematic halvings in the x-ray spectra. A small crystal was used for the intensity survey and no absorption corrections were made.
4. (3) CRISTAL DATA
$\mathrm{C}_{15}{ }^{\mathrm{H}}{ }_{17}{ }^{0} 3^{\mathrm{Br}}$ $M=325.2$

Orthorhombic

Volume of the unit cell $=1418 \quad A^{3}$

$$
\begin{aligned}
\text { For } Z=4, ~ & \begin{aligned}
& \mathrm{g} \\
&\text { (calculated })=1.522 \mathrm{go} / \mathrm{ml} \\
&\rho \text { (measured })=1.525 \mathrm{~g} / \mathrm{ml}
\end{aligned} .
\end{aligned}
$$

$$
\rho(\text { measured })>0)=664
$$

Absorption coefficient for $x$ mays $(\lambda=1.542)=43.7 \mathrm{~cm}^{-1}$
Systematic absences; (h00) $=\mathbf{2 n}+\mathbf{1}$
$(0 \mathrm{kO})=2 n+1$
$(002)=2 n+1$
Space group $\mathrm{P}_{1}{ }^{2} 1_{1}{ }^{2} 1-D_{2}^{4}$.

## 4. (4) LOCATION OF THE HEAVY ATOM

The determination of the heavy atom position in 2-bromo-d-santonin paralleled closely that in bromodihydroisophoto- $\alpha$-santonic lactone acetate as the space group is the some and there is only one heavy atom in each of the equivalent positions.

The two-dimensional Patterson projections, $P(W W)$ and $P(U W)$, were computed using 215 and 200 terms respectively and are shown in Figs. 20 and 21. Peaks $A, B$ and $C$ in Fig. 20 correspond to the vectors $2 y_{B r}$ o $\frac{1}{2}$; $\frac{1}{2}, \frac{1}{3}-2 z_{B r}$ and $\frac{1}{2}-2 y_{B r}, 2 z_{B r}$ respectively.

The projection down (001) in Fig. 21 could be interpreted in two ways. Peaks D, E, F and D, M, N are both concordane with the vectors $2 x_{\mathrm{Br}^{s}} \frac{1}{2} ; \frac{1}{2}, \frac{1}{2}-2 y_{\mathrm{Br}}$ and $\frac{1}{2}-2 x_{B r}: 2 y_{B r}$, but the former set gave the same value of $\mathbf{y}_{\mathrm{Br}}$ as the projection down (100) whereas the latter set yielded a different value. Solution of the Harker sections which were subsecuently computed accorded with the solution based on the vectors at $D, E$ and $F$. Closer examination of


the peaks at M and N showed that they were more diffuse than those at $E$ and $F$ ，and could possibly be accounted for by the presence of a planar ring at $x=\frac{1}{4}$ and perpendicular to（001）． The solution of the Patterson projections indicated that both the $x$ and $z$ coordinates of the heavy atom are close to screw axes．

The three Harker sections at（ $\frac{1}{2} V W$ ），（ $U \frac{1}{2} W$ ）and（ $U \frac{1}{2}$ ） were computed using all the threeodimensional data．The section at（ $\frac{1}{2} v\left(v_{i}\right)$ contained the normally expected vector at $\frac{1}{2}, \frac{1}{2}-2 y_{\mathrm{Br}} ; 2 z_{\mathrm{Br}}$ and a further vector at $2 x_{\mathrm{Br}}$ 。 $\frac{1}{2}, \frac{1}{2}-2 z_{\mathrm{Br}}$ arising from the value $x_{B r}=\sim \frac{1}{4}$ ．These are marked $P$ and $Q$ respectively in Fig．22．The corresponding vectors at $\frac{1}{2}-2 \mathrm{x}_{\mathrm{Br}}, 2 \mathrm{y}_{\mathrm{Br}}$ 。 ${ }^{\frac{1}{2}}$ and $\frac{1}{2}, \frac{1}{2}-2 \mathrm{y}_{\mathrm{Br}}, 2 \mathrm{z}_{\mathrm{Br}}$ in the section at（UV交） are marked $R$ and $S$ respectively in Fig。23．The Harker section at（ $U \frac{1}{2} w$ ）contained the vector $\left.2 x_{B r}\right)^{\frac{1}{2}}, \frac{1}{2}-2 \mathbf{z}_{\mathrm{Br}}$ marked T in Fig。 24 ，

Graphs were drawn to determine as accurately as possible the positions of the peak maxima．These established that the $x$ coordinate of the bromine atom was closer to the value of than the $z$ coordinate．

The vectors were consistent with the fundamental set

$$
x / a=0.233 \quad y / b=0.139 \quad z / c=0.230
$$





 synthosie. Sentours are as ogus. cnd
corbitmary 2 asturvala. The Broly wenter


The proximity of $\mathrm{x}_{\mathrm{Br}}$ and $\mathrm{z}_{\mathrm{Br}}$ to screw axes introduces centres of symmetry into any Fourier map whose phases are based on the bromine atom alone. The spurious symmetry will be attenuated if the bromine is moved to a more general position, and thus small adjustments were made to the coordinates and structure factors calculated for each resultant heavy atom position. The lowest discrepancy, $43.6 \%$, arose from the coordinates $x / a=0.233, y / b=0.139$ and $z / c=0.217$.

Combining the phases from the calculated structure factors with the observed structure amplitudes, a threem dimensional Fourier synthesis was calculated. In spite of spurious mirror planes, the position and orientation of the molecule in the unit cell was defined by the general trend of electron denstty, and the appearance in an unequivocable position on a mirror plane of the carbon aton bonded to the bromine atom provided confirwation. The cyclohexadienone ring system lay in the bc plane and along with its methyl and carbonyl constituents was disentangled from its ghosts. This ring was responsible for the appearance of peaks $M$ and $N$ in the Patterson projection down (001) (Fig. 21). Knowledge of the structure and stereochemistry of the molecule allowed all the atoms to be located with the exception of the
controversial methyl group on the lactone ring. Realisation of the fact that the molecule as it appeared in the Fourier map was the mirror inage of that which appears in the iiterature was important in solving the structure.

Coordinates were assigned to the atoms, each of which was allotted its correct chemical types and they were Included in the calculation of a second set of structure factors. The discrepancy fell to $39.1 \%$ and the improved phases were employed in the computation of a second threes dimensional electronodensîy map. A pealr of just under $2 e / A^{3}$ which may have represented the disputed methyl group was evident. Aromic coordinates were adjusted and a third cycle of structure factors ( $\mathrm{R}=34.5 \%$ ) and Pourier synthesis calculated. $C(13)$ was now prozainenc at $>3 e / /^{0}{ }^{3}$ and with the inclusion of all the aroms of the structure the value of $R$ fell to $30.4 \%$ in the fourth round of structure factor calculation, and fell to $29.1 \%$ in the fifth.

The progress of the analysis is sumarised in Table 23

## 4. (6) REF INEMENT

The phases from the fifth set of calculated structure factors were employed in computing both $F_{0}$ and $F_{c}$ Fourier maps and backoshift corrections for errors due to termination of series applied. Individual isotropic temperature factors

## TARER 28. <br> 3-Bromone Santonts correse of the Stmoture Datermination

| Operation | Atoms tueluger | R(C) |
| :---: | :---: | :---: |
| 2 Petterson symtheees |  |  |
| 3D EFarker Symtheser |  |  |
| 1et 3D Fourier syntheats | Bro | 43.6 |
| 2na * * | $B r+14(0)+3(0)$ | 89.1 |
|  | $B p+14(C)+3(0)$ | 34.5 |
| Ath * * | $B p+15(C)+3(0)$ | 30.4 |

TABLP 200

## 2-Bromp ade sartoria

## Conpar of Reftromant


were assigned. Four such rounds of calculations reduced the value of $R$ to $23.7 \%$,

The next stage of refinement consisted of adjustment of positional and anisotropic thermal parameters by means of Dr。J.S.Rollett's least-squares programme (1961). Halfscale scattering factors and half-shift corrections were employed. Five cycles were carried out and the final discrepancy, with unobserved terms excluded, was $15.2 \%$,

The course of refinement is set down in Table 24. The rise of $\sigma \omega \Delta^{2}$ in cycle IV was associated with an increase from 10 to 16 in the value of $\mathrm{F}^{*}$ in the weighting system which was identical with that used in the refinement of hunterburnine $\beta$ omethiodide (Chapter 2.(6)). The rather large drop in $R$ in cycle $V$ was a consequence of the reo estimation of some forty intensities.

On the basis of the final phase constants a final threedimensional Fourier was computed.

## 4. (7) RESULTS

The final positional parameters are recorded in Table 25 and the standard deviations, estimated from the least-squares residuals in the usual manner, are shown in Table 26. The average estimated standard deviation of a C-C bond is about $0.05 \AA^{\circ}$, of a $C-0$ bond, about $0.04 \AA$ and

## TABLE <br> 25.

## 2 - Bramo ade Santonin

Fing Atomio Gopmifntas

| Atos | $x<a$ | 2/b | \% $/ 0$ |
| :---: | :---: | :---: | :---: |
| C(2) | 0.2283 | O,2590 | 0.2818 |
| C(2) | 0.2292 | 0.2188 | 0.2920 |
| c(3) | 0.2309 | 0.2332 | 0.4720 |
| C(4) | 0.2326 | 0.2944 | 0.5048 |
| C(5) | 0.2391 | 0.3349 | 0.3928 |
| C(6) | 0,2868 | 0,3980 | 0, 4132 |
| C(7) | 0,4852 | 0.1146 | O. 3800 |
| C(8) | 0. 4485 | 0.4087 | 0.1568 |
| C(9) | 0.4087 | 0.3444 | 0. 1238 |
| C(10) | O. 2322 | 0, 3191 | 0. 2098 |
| C(11) | O 4672 | O. 4930 | 0.4175 |
| C(12) | 0.39숑 | 0. 4633 | 0. 5779 |
| c(13) | 0.6763 | 0.4866 | 0.4267 |
| C(14) | 0.2214 | 0.3045 | 0.6881 |
| C(15) | 0.0552 | 0,3468 | 0.1346 |
| O(16) | 0.2234 | 0.1986 | O. 5682 |
| O(17) | 0.2712 | 0.4196 | 0.5775 |
| O(18) | 0.4389 | 0.4876 | 0.7097 |
| $B r$ | 0.2255 | 0. 1381 | 0.2453 |

## 2 - Bromo - $\alpha$ - Santonin

Standard Deviations of the Minal Atomic Coordinates $\left(\begin{array}{l}0 \\ (A)\end{array}\right.$

| Atom | $\underline{(x)}$ | $\sigma(\nu)$ | $\underline{(z)}$ |
| :---: | :---: | :---: | :---: |
| C(1) | 0.034 | 0.030 | 0.031 |
| C(2) | 0.029 | 0.021 | 0.028 |
| C(3) | 0.031 | 0.025 | 0.033 |
| C(4) | 0.030 | 0.025 | 0.030 |
| c(5) | 0.031 | 0.028 | 0.030 |
| c(6) | 0.032 | 0.024 | 0,032 |
| C(7) | 0.037 | 0.029 | 0.035 |
| C(8) | 0.038 | 0.032 | 0.034 |
| C(9) | 0.033 | 0.029 | 0.039 |
| C(10) | 0. 029 | 0.025 | 0.030 |
| C(11) | 0.035 | 0.030 | 0,043 |
| $c(12)$ | 0.032 | 0.026 | 0.038 |
| C(13) | 0.043 | 0.041 | 0.049 |
| C(14) | 0.038 | 0.030 | 0.029 |
| C(15) | 0.033 | 0. 029 | 0.036 |
| O(16) | 0.028 | 0.019 | 0.023 |
| O(17) | 0,024 | 0.020 | 0.021 |
| 0 (18) | 0.023 | 0.022 | 0.026 |
| $B r$ | 0.003 | 0.003 | 0.002 |

## TABLE 27.

## 2 - Bromo - $\alpha$ - Santontn

Intramolecular Bonded Distanoes (A)

| $C(1)=C(2)$ | 1.31 | $C(6)=C(17)$ | 1.45 |
| :--- | :--- | :--- | :--- |
| $C(1)-C(10)$ | 1.42 | $C(7)=C(8)$ | 1.53 |
| $C(2)-B r$ | 1.92 | $C(7)-C(11)$ | 1.51 |
| $C(2)=C(3)$ | 1.53 | $C(8)-C(9)$ | 1.51 |
| $C(3)=C(4)$ | 1.45 | $C(9)-C(10)$ | 1.59 |
| $C(3)-O(16)$ | 1.14 | $C(10)=C(15)$ | 1.58 |
| $C(4)-C(5)$ | 1.32 | $C(11)=C(12)$ | 1.45 |
| $C(4)-C(14)$ | 1.54 | $C(11)-C(13)$ | 1.63 |
| $C(5)-C(6)$ | 1.50 | $C(12)=O(17)$ | 1.34 |
| $C(5)-C(10)$ | 1.56 | $C(12)-O(18)$ | 1.24 |

## TABLE 28.

## 2 a Bromo - x Santonin

Intramolecuiar Nonmbonded Distances < $\stackrel{i}{A}_{\circ}^{\circ}$

| $c(1)-c(4)$ | 2.80 | $c(6)-C(13)$ | 3.79 |
| :---: | :---: | :---: | :---: |
| $c(1)-c(6)$ | 3.78 | $c(6)-C(14)$ | 3,17 |
| $c(1) \ldots c(8)$ | 3.81 | $c(6)=C(15)$ | 3.03 |
| $C(1)-O(16)$ | 3.50 | $C(6)-0(18)$ | 3.42 |
| $c(2)-C(5)$ | 2.84 | $c(7)-C(10)$ | 2.93 |
| $c(2)-c(9)$ | 3. 50 | $C(7)-C(15)$ | 3.69 |
| $C(2)-C(14)$ | 3. 84 | $c(7) \sim O(18)$ | 3.51 |
| $C(2)-C(15)$ | 3.50 | $c(8)=c(12)$ | 3.75 |
| $C(3)-C(6)$ | 3.89 | c(8) - $C$ (13) | 3.49 |
| $C(3)-C(10)$ | 2.95 | $C(8)-C(15)$ | 3.21 |
| $c(4)-c(7)$ | 3.49 | $C(8)-0(17)$ | 3.72 |
| $C(4)-C(9)$ | 3.60 | $c(9)-c(1.1)$ | 3.89 |
| $c(4)-c(15)$ | 3.54 | $C(10)-C(14)$ | 3.98 |
| $C(4)-O(17)$ | 3.00 | $C(10)-O(17)$ | 3.86 |
| $c(5)-c(8)$ | 3.00 | $c(13)-O(17)$ | 3.66 |
| $c(5)-c(11)$ | 3.64 | $c(13)-O(18)$ | 3,02 |
| $C(5)-c(12)$ | 3.56 | $C(14)-O(17)$ | 2.87 |
| $c(5)=0(16)$ | 3.50 | $0(16)-B r$ | 3.02 |
| $c(6)-c(9)$ | 2.90 |  |  |

## TABLE 29.

## 2 - Bromo - 2 Sontonin

## Intermolecular Distances $<\stackrel{0}{4}$.



The suffortpts refer to the following posttions:


## TARLB 30.

## 2 - Bromo - $\alpha$ - Santonis

## Interbond Anales

| $c(2) c(1) c(10)$ | $126^{\circ}$ | $c(6) C(7) c(11)$ | $89^{\circ}$ |
| :---: | :---: | :---: | :---: |
| $C(1) C(2) B r$ | 124 | $C(8) C(7) C(11)$ | 122 |
| $C(3) C(2) B r$ | 114 | $c(7) c(8) c(9)$ | 108 |
| $c(1) c(2) c(3)$ | 122 | $c(8) C(9) c(10)$ | 116 |
| $C(2) c(3) c(4)$ | 113 | $c(1) c(10) C(5)$ | 113 |
| $c(2) c(3) O(16)$ | 122 | $c(1) c(10) c(9)$ | 108 |
| $C(4) C(3) O(16)$ | 125 | $c(1) c(10) c(15)$ | 109 |
| $c(3) c(4) c(5)$ | 125 | $C(5) c(10) C(9)$ | 109 |
| $C(3) C(4) c(14)$ | 109 | $c(5) C(10) \cdot C(15)$ | 108 |
| $c(5) C(4) C(14)$ | 128 | $c(9) c(10) c(15)$ | 110 |
| $C(4) C(5) C(6)$ | 129 | $c(7) c(11) c(12)$ | 102 |
| $c(4) C(5) c(10)$ | 121 | $c(7) c(11) c(13)$ | 215 |
| $C(6) C(5) C(10)$ | 110 | $c(12) c(11) c(13)$ | 111 |
| $c(5) c(6) c(7)$ | 109 | $c(11) c(12) o(17)$ | 105 |
| $c(5) c(6) O(17)$ | 117 | $c(11) c(12) ~ O(18)$ | 133 |
| $c(7) c(6) O(17)$ | 104 | $0(17) c(12) o(18)$ | 116 |
| $c(6) c(7) c(8)$ | 113 | $c(6) \quad 0(17) c(12)$ | 108 |

## TABLE 3

## 2 - Bromo e $\alpha$ - Santontn

Final Anisotropic Thermal Parameters $\left(b_{i, j} \times 10^{5}\right)$

| Atom | ${ }^{b_{12}}$ | $\mathrm{b}_{22}$ | $b_{33}$ | $b_{12}$ | ${ }^{b_{23}}$ | $b_{13}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C(1) | 4001 | 298 | 2694 | 0.162 | 181 | 157 |
| C(2) | 2845 | 164 | 2323 | -368 | 238 | 615 |
| c(3) | 1805 | 240 | 3239 | - 75 | -169 | 1165 |
| C(4) | $193 ?$ | 240 | 2246 | -240 | 2094 | 418 |
| C(5) | 1640 | 346 | 1911 | 105 | - 128 | -1272 |
| C(6) | 2122 | 224 | 2306 | 30 | -196 | -707 |
| $C(7)$ | 3567 | 201 | 2356 | - 123 | 177 | $-536$ |
| C(8) | 4234 | 358 | 958 | 476 | - 10 | 287 |
| c(8) | 3197 | 245 | 2989 | 92 | -132 | 912 |
| C(10) | 2375 | 280 | 2492 | -367 | 462 | -508 |
| C(11) | 2873 | 220 | 3682 | 45 | 69 | 465 |
| $c(12)$ | 2624 | 155 | 2960 | 384 | -732 | -794 |
| $C$ (13) | 4636 | 539 | 4527 | $\sim 905$ | -205 | 452 |
| C(14) | 4642 | 3.30 | 1814 | -98 | 179 | -613 |
| $C(15)$ | 2963 | 275 | 2273 | 945 | $-202$ | -927 |
| O(16) | 5884 | 270 | 2951 | -605 | 218 | -601 |
| O(17) | 31.19 | 358 | 2173 | -32 | -478 | 530 |
| O(18) | 3476 | 380 | 5819 | 26 | -865 | 583 |
| Bro | 3629 | 2484 | 3173 | -182 | - 0154 | 267 |
| $\left(B-3 A^{02}\right)$ | 2752 | 264 | 2099 | - | $=$ | $\cdots$ |

Table 32. 2-Bromo-a-santonin.
Final measured and calculated values of the Btructure factors. Unobserved terms have been omitted.




## 




Pis.27. 2-Bromo-a-gantonin.
Projection of part of the etructure down (100) mewing the packing of the moleoules in the orystal.

of a CaBr bond about $0.03 \stackrel{\circ}{\mathrm{~A}}$. The estimated standard deviation of a valency angle is about $3^{\circ}$. Intramolecular bonded distances, intramolecular non-bonded distances $<4{ }_{4}^{\circ}$, intermolecular distances $<4 \mathrm{~A}$ and interbond angles are compiled in Tables 27, 28, 29 and 30 respectively. Final anistropic temperature factors $\mathrm{b} \mathrm{A}_{\mathrm{j}}$, appear in Table 31. The final calculated and observed structure amplitudes and phase angles for all reflexions observed are listed in Table 32.

The final electron-density distribution over one molecule is shown by means of superimposed contour sections drawn parallel to (100) in Fig. 25, and the corresponding atomic arrangement is shown in Fig. 26.

The arrangement of the molecules in the crystal as Fiewed in projection along the a axis is shown in Fig. 27.
4. (8) DISCUSSION

The final results of the analysis have established the constitution and stereochemistry (apart from absolute configuration) of 2-bromo- $\alpha$-santonin to be as shown below (V)


The stereochemistry is that proposed by Miki (1955) and differs from that proposed by Cocker and MeMurray (1960) in the configuration at $C(11)$. The methyl group on the lactone ring at $\mathrm{C}(11)$ is firmly established as $\alpha$ 。

Huffman (1963) has suggested a possible explanation to account for the incorrece assignation of the stereochemistry at $C$ (11) deduced from reactions in the desmotroposantonins. He has shown from equilibration studies in alkali that $\alpha$-desmotroposantonin is more stable than the $\beta$ epimer, in contrast to assumptions made by earlier workers (see Cocker and McMurray, 1960) and suggests that the acid catalysed conversion to the less stable $\beta$ epimer was the cause of the incorrect assignation of configusation at $\mathrm{C}(11)$; conditions of acid catalysed rearrangements irom $\alpha$ to $\beta$-desmotroposantionin are such that the product precipitates during the course of the reaction, and thus acid catalysed rearrangement is rendered irreversible by low solubility in the acid employed, dilute sulphuric acid.

The cyclohexane ring adopts the chair conformation. Steric interaction occurs between $C(14)$ and $O(17)$ and is reflected in the non-bonded distance of $2.87{ }^{\circ}$ ( (Table 29). The distance in a standard Dreiding model is $2.5 \AA_{0}^{\circ}$ and Fig. 25 shows how they have been pushed apart in the plane of the molecule.

In common with bromodihydroisophoto $\alpha$-santonic lactone acetate, 2 -bromo- $\alpha$ wsantonin has a $\gamma$-lactone ring. The equation of the mean plane through atoms $C(6), C(11)$, $C(12), O(17)$ and $O(18)$ is $0.749 X-0.632 Y+0.1962+3.731=0$. Application of the $\chi^{2}$ test to these atoms gives $X^{2}=0.091$. This denotes that there are no significant deviations of the atoms from the plane, and strengthens McPhail's conclusions. The deviations of the atoms, and $C(7)$, from the plane are listed in Table 22. The displacement, $0.61 A_{\%}$ of $C(7)$ Irom the plane is significant showing the ring to have the envelope conformation.

The design of the lactone ring conforms to the pattern established in Chapter 3. (7) with respect to carbon-oxygen single bond lengths, and angles about the sp ${ }^{2}$ carbon atom. The bond $C(12) \ldots 0(17)$ adjacent to the carbon. oxygen double bond has a length of $1.34 . \hat{A}$, whereas the bond $c(6)-0(17)$ which is not adjacent to the carbon-oxygen double bond has a leagth of $1.455^{\circ}$ showing partial double bond character in the $C(12)=0(17)$ bond. The angle $C(11) C(12)$ $O$ (17) is approximately tetrahedral ( $110.8^{\circ}$ ) while the average exocyclic angle at $C(12)$ is $125^{\circ}$.

Molecular dimensions are in accordance with normally accepted values. Thus the average carbon ( $s p^{3}$ )-carbon ( $s p^{3}$ ) single bond length of 1.55 A is in favourable agreement with
the value of 1.545 A in diamond．The average carbon （sp ${ }^{3}$ ）－carbon（ $\mathrm{sp}^{2}$ ）single bond length of $1.49 \AA_{2}^{\circ}$ agrees well with the value of 1.507 A predicted by Dewar and Schmeising（1959）and the value of $1.49{ }^{\circ}$ A reported in 5－bromogriseofulvin（Brown and Sim，1963）．The average carbon（ $s p^{2}$ ）－earbon（ $s p^{2}$ ）single bond lengtin of $1.49{ }^{\circ}$ is close to the value of 1.479 A proposed by Dewar and Schmeising （1959）and thet of 1.48 A pound in benzose acid（Sim Robertson and Goodwin．1955）．The average carboncarbon double bond length． $1.32 \AA$ A corapares favourably with the values of 1.33 A and 1．32 A reported for ethylene（Bartell and Bonham，1957） and para－benzoquinone（Srotcer ：1960）respectively．

The avegrage carborsoxygen double bond length has a value of $1.19 \stackrel{\ominus}{\mathrm{~A}}$ ，which is not stgaficanely shorter than they of 1.21 A predicted by Pauling（1960）os that of $1.22 \stackrel{\circ}{\AA}$ fourd in para－benzoquinone（Trotter，1960）．The carbon（sp ${ }^{2}$ ） bromine distance of 1.92 A is not significantiy different from the average value oi 1.89 A reported fos various olefinic bromides（Sution et ala 1958）。

In the cyclohexadienegne ring system the average bond angle is $120^{\circ}$ which is the value expected for a planar strain free system．The equation of the mean plane $C(1), C(2), C(3), C(4), C(5)$ and $C(10)$ is $0.999 \mathrm{X}-0.020 \mathrm{Y}-0.010 \mathrm{z}-1.546=0$ ．The displacements of the atoms from the plame ase $C(1)=0.006, C(2)+0.010$,
$C(3)+0.001, C(4)-0.017, C(5)+0.020$ and $C(10)-0.008$. Application of the $\chi^{2}$ test to these six atoms, where $\chi^{2}=0.96_{0}$ shows no significant deviation from planarity.

The average bond angle in the cyclohexane ring is $111^{\circ}$ which is close to the tetrahedral value. In common with the Pivemembered rings discussed in Chapter 3.(8) the average bond angle $\left(105^{\circ}\right)$ is smaller than tetrahedral,

The intermolecular contacts (Table 29) are all greater than 3.4 A and correspond to normal van der Waals interactions; the shortest separations involve oxygen atoms.

## PABT VO

## THFF STRTUGIURR OR ERGOFIAVIN : XGRAT

ANALYSIS OF TGYTRAKEYTHYLERGOFLAVIN

$$
D I-p-\text { IODOBENZOAPE }
$$

5. (1) INTRODUCTION

Ergot, the scierotia produced by the fuggus Claviceps purpurea when grown on rye, contains 1-2\% of colouring matter (Eglinton, G., King, F.E., Lloyd, G., Loder, J. $W_{0,}$ Marshall, J. Ro, Robertson, A. and Whalley, W. B. (1958)) 。

In general, the structures of the compounds have not been elucidated. One, ergoflavin, was first isolatet by Freeborn (1912) and has been the subject of investigations by Eglinton et al. (1958) who have suggested the moleculas formula $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{O}_{14}$ and the presence of a diphenyl nucleus. fous phenolic and two alconolie hydroxyl groups, two $y$-lactone ringe and two carbonyl groups. It is further suggested that the molecule is symmetrical being prociuced in nature by oxidative coupling of idencical $C_{15}$ Pragments.

The diopara-iodobenzoate of tetramethyl ergoilavin was prepared by Professor Whalley for the x-ray structure analysis.

## 5. (2) EXPERTMENTAL

The collection of crystal data followed a similas course to that in the previous structures analysed.

Cell dimensions were measured from precession oscillation and rotation photographs, and the intensities
of the hkO.... 7 layers estimated visually from moving film photographs. The 2963 independent intensities were reduced to structure amplitudes in the usual fashion. No absorption corrections were applied.

The space group was assigned from systematically absent spectra, and the crystal density was measured using a flotation technioue in an aqueous solution of zine chloride.
5. (3) GRYSTAL DATA
$\mathrm{C}_{48^{\mathrm{H}_{40}} \mathrm{O}_{16} \mathrm{I}_{2}}$
Orthorhombic

$$
\begin{aligned}
& M=1127 \\
& a=13.23{ }^{\circ} \pm 0.03{ }^{\circ}+ \\
& B=38.70{ }^{\circ}+0.08 A^{\circ} \\
& c=9.37 \AA \pm 0.03 \AA
\end{aligned}
$$ $\stackrel{1}{4}^{-3}$

Volume of the unit cell $=4797 \mathrm{~A}$

$$
\text { For } \begin{aligned}
2=4, \begin{aligned}
\rho(\text { calculated }) & =1.561 \mathrm{go} / \mathrm{ml} \\
\rho(\text { measured }) & =1.539 \mathrm{go} / \mathrm{ml} \\
F(000) & =2248
\end{aligned} .
\end{aligned}
$$

Absorption coefficient for x-rays $(\lambda=1.542)=111.2 \mathrm{~cm}^{-1}$
Systematic absences: $(\mathrm{hOO})=2 \mathrm{n}+1$ $\left(O_{k} 0\right)=2 n+1$ $(00 \ell)=2 n+1$
Space group $\mathrm{PR}_{1} \mathbf{Z}_{1} \mathbf{Z}_{1}-\mathrm{D}_{2}^{4}$.

5．（4）LOCATION OF THE HEAVI ATOMS
The asymmetric unit in tetramethyl ergoflavin di－para－ iodobenzoate has two iodine atoms，and two classes of vector are present in the Patterson syntheses．The first class embraces the two sets of vectors arising from each of the symmetrically related heavy atoms（see Chapter 3．（4））and the second class results from vectors between non－symmetrically related iodine atoms．

In this analysis，the heavy atom coordinates were derived from the Patterson projection down（001），Harker sections $P\left(U W \frac{1}{2}\right)_{\%} P\left(U \frac{1}{2} W\right)$ ，and line sections parallel to（001）．

In the two－dimensional Patterson map，at $X=\frac{1}{2}$ ， $Y=18.46 / 120=\frac{1}{2}-2 y_{1}$ and $y_{1}=20.77 / 120 ;$ also $Y=27.76 / 120=\frac{1}{2}-2 y_{2}$ ，and $y_{2}=-16.13 / 120$ ．These peaks are marked $A$ and $B$ respectively in Fig．28．At the peak marked $C_{0} I=\frac{1}{2}, X=7,63 / 40=\sim 2 x_{1}=\sim 2 x_{2}$（the two vectors are superimposed）and $x_{1}=\sim x_{2}=\sim 3.81 / 40$ ．At the general peak marked $D_{0} U=\frac{1}{2}-2 x_{1}, V=2 y_{1}$ whence $x_{1}=4.03 / 40$ and $y_{1}=20.74 / 120$ ，and at $E_{0} U=\frac{1}{2}-2 x_{2}, V=-2 y_{2}$ whance $x_{2}=$ $3.12 / 40$ and $y_{2}=-16.17 / 120$ 。

The vectors between $I_{1}$ and $I_{2}$ are marked $F_{0} G_{8} H$ and $J_{0}$ At $F_{0} U=x_{1}-x_{2}$ and $V=y_{1}-y_{2}$ ，at $G, U=-\frac{1}{2}+x_{1}+x_{2}$ and $V=y_{1}+y_{2}$ ，at $H_{0} U=x_{1}+x_{2}$ and $V=-\frac{1}{2}+y_{1}-y_{20}$ and at $J_{2} U=-\frac{2}{2}+x_{1}=x_{2}$ and $V=-\frac{1}{2}+y_{1}+y_{2}$ 。


The values of $x_{1}, y_{1}, x_{2}$ and $y_{2}$ reduced from these vectors concord with the values derived from the vectors between symmetrically related atoms．

The Harker section $P\left(U V \frac{1}{2}\right)$ confirmed the values of the $x$ and $y$ parameters of the iodine atoms deduced from the Patterson projection．At the general peak between symmetrically related heavy atoms marked K in Fig。29， $U=\frac{1}{2}-2 x_{1}=11.9 / 40$ and $V=2 y_{1}=41.62 / 120$ while at $L_{\text {，}}$ the other general peak between symmetrically related iodine atoms， $\mathrm{U}=\frac{1}{2} a 2 \mathrm{x}_{2}=13.44 / 40$ and $\mathrm{V}=-2 \mathrm{y}_{2}=32.26 / 120$ 。 These vectors yield values of $x_{1}=4.01 / 40_{0} y_{1}=20.81 / 120_{0}$ $x_{2}=3.23 / 40$ and $y_{2}=-16.13 / 120$ in good agreement with the values from the Patterson projection．The averages of the several values obtained are $x_{1} / a=0.101, y_{1} / b=0.173$ 。 $x_{2} / a=0.079, y_{2} / b=-0.135$ 。

The Harker section at（ $U \frac{1}{2} W$ ）gave four alternative values for each of the $z$ coordinates of the iodine atoms． At the peak marked $M$ in Fig． $30, U=2 x_{1}=8.24 / 40$ and $W= \pm \frac{1}{2} \pm 2 z_{1}=11.95 / 30$ from which $z_{1}= \pm 1.52 / 30$ or $\pm 13,48 / 30$ ，while at $N_{9} U=2 x_{2}=6,40 / 40$ and $W= \pm \frac{1}{2} \pm 2 x_{2}=$ $5.11 / 30$ from which $z_{2}= \pm 4.94 / 30$ or $\pm 10,06 / 30$ 。

Line sections parallel to $W$ were computed through the following vectors between nonosymmetrically related iodine atoms：




$x_{1}-x_{2}, y_{1}-y_{2} ; z_{1}-z_{2} ;-\frac{1}{2}+x_{1}-x_{2}-\frac{1}{2}+y_{1}+y_{2} 0$ $z_{1}+z_{2} ;-\frac{1}{2}+x_{1}+x_{2}, y_{1}+y_{2} ;-\frac{1}{2}+z_{1}-z_{2} ; x_{1}+x_{2} \theta$ $-\frac{1}{2}+y_{1}-y_{2},-\frac{1}{2}+z_{1}+z_{2}$. Maxima occurred at $W=68 / 240_{5}$ 93/240, $52 / 240$ and $27 / 240$ respectively. These values are consistent with values of $1.52 / 30$ for $z_{1}$ and $10.06 / 30$ for $z_{2}$ 。

Thus an unambiguous solution of the vector maps was accomplished. The coordinates of the heavy atoms are:

| $I_{1}$ | $x / a=0.101$ | $y / b=0.173$ | $z / c=0.051$ |
| :--- | :--- | :--- | :--- |
| $I_{2}$ | $x / a=0.079$ | $y / b=0.135$ | $z / c=0.335$ |

5. (4) SOLUTION OF THE STRUCTURE

The structure was solved directly from the first three dimensional Fourier synthesis which was based on the phases of the iodine atoms. Assuming a temperature factor of $B_{\theta}=3.5 \mathrm{~A}^{\circ}$, the overall discrepancy of the structure factors was $33 \%$ and all the atoms of the structure were clearly resolved.

In a second structure factor calculation, which included all the light atoms (except hydrogen) as carbon atoms, the discrepancy fell to $23.1 \%$ and the resulting threedimensional Fourier map showed very little spurious electron density.

A third structure factor calculation in which the atoms were assigned their correct chemical type, reduced the

R value to $20.7 \%$ ．The superimposed contour sections of the second electron－density map，drawn parallel to（001）is shown in Fig． 31.

The reaults have established the structure and relative stereochemistry of tetramethyl ergoflavin di－para－iodobenzoate and it follows，that the stiructure and stereochemistry of ergoflavin is as in（VI）

（VI）

The absolute stereochemistry has been established both chemically；by oxidation of ergoflavin to（ $\infty$ ）methyl succinnic acid（Whalley，1963）and by $x$ cray methods，employing the anomolous disporsion technique of Bijvoef（McPhail，1963）．

Esgoflavin（VI）consists of two identical fragments， each having three six－membered and a five－membered ring． Each fragment consists of a $\gamma$－pyrone ring flanked on one side by a bonzene ring，and on the other side by a cyclohexane ring




## TABLE 33.

## Tetramethyl Ergoflavin Di - peiodobenzoate

Atomio Coordinates from the Second 3D Fovriter Sunthesis

| Atom | $3 / 0$ | $\underline{L} / \boldsymbol{b}$ | : 10 |
| :---: | :---: | :---: | :---: |
| C(1) | 0.8136 | 0.1122 | 0.0931 |
| $c(2)$ | 0,8464 | 0.1443 | 0.0692 |
| $c(3)$ | 0.8010 | 0.1663 | -0.0375 |
| c(4) | 0.7345 | 0.1474 | -0.1411 |
| c(5) | 0.7027 | 0.1149 | $\ldots 0.0992$ |
| c(6) | 0.7651 | 0.0970 | 0, 022\% |
| $c(7)$ | 0.8017 | 0.2028 | -0,0429 |
| G(8) | 0.7570 | 0.2189 | -0,1612 |
| c(8) | 0.7314 | 0.2945 | -0.2787 |
| C(10) | 0.6621 | 0.2082 | -0.4079 |
| $C$ (11) | 0.6987 | 0.2473 | -0.4553 |
| C(12) | 0.7505 | 0.2661 | -0,3535 |
| c(13) | 0.8123 | 0. 2491 | -0.2378 |
| $c(14)$ | 0.6133 | O, 2649 | -0. 5521 |
| c(15) | 0. 8293 | 0.1948 | -0.3426 |
| C(16) | 0.5969 | 0.2175 | $\bigcirc 0.0114$ |
| C(17) | 0.9024 | 0.1737 | 0.3017 |
| C(18) | 0.4986 | 0.1894 | -0.4179 |
| c(19) | 0.4055 | 0.1864 | -0.3301 |
| $c(20)$ | 0.3410 | 0.1578 | -0.3610 |
| $c(21)$ | O. 2558 | 0.1595 | -0,3232 |


| Atom | 2/a | 1/b | $2 / 9$ |
| :---: | :---: | :---: | :---: |
| C(22) | 0, 2287 | 0.1780 | -0.185\% |
| C(23) | 0.2988 | 0,2046 | -0. 1579 |
| C(24) | 0.3925 | 0.2086 | -0.2339 |
| $c(1)^{\prime}$ | 088777 | 0,0935 | 0.2182 |
| $C(2)^{\prime}$ | 0.8281 | 0.0799 | 0.3323 |
| $C(3)^{\circ}$ | 0.8714 | 0.0597 | 0.4444 |
| $C(4)^{\circ}$ | 0.9662 | 0,0508 | 0.4161 |
| $C(5):$ | 1.0242 | 0.0645 | 0,3017 |
| $c(6)^{\prime \prime}$ | 0.9662 | 0.0842 | 0.2910 |
| $C(7)^{\circ}$ | 0.8163 | 0.0529 | 0. 5686 |
| c(8) | 0.8991 | 0,0364 | 0.6951 |
| c(9) ${ }^{\prime}$ | 0. 9757 | 0.0153 | 0.6268 |
| $C(10)^{\prime}$ | 1.0510 | -0.0013 | 0.7287 |
| $C(11)$ ' | 0.9903 | $-0.0263$ | 0.8182 |
| C(12) | 0,8988 | -0.0184 | 0.7536 |
| $c(13)^{\prime}$ | 0.8350 | 0.0085 | 0.7628 |
| $C(14)^{\prime}$ | 1.0605 | -0.0406 | 0.9314 |
| $c(15)^{\prime}$ | 0.9000 | -0,0153 | 0,5421 |
| $C(16)^{\prime}$ | 0.9786 | 0.0909 | 0.7593 |
| $c(17)^{\prime}$ | 0,6781 | 0.1156 | 0,3923 |
| $C(18)^{\prime}$ | 1.2168 | 0,0240 | 0.7666 |
| $C(19)$ | 1,2577 | 0.0494 | 0.8712 |
| $c(20)^{\prime \prime}$ | 1.3522 | 0.0604 | 0,8447 |


| Atom | z/8 | $4 / 8$ | $8 / 0$ |
| :---: | :---: | :---: | :---: |
| $c(21)$ | 1.4058 | 0,0811 | 0.9235 |
| $C(22)^{\prime}$ | 1.3578 | 0,0988 | 1.0166 |
| c(23) | 1.2488 | 0,0912 | 1.0469 |
| $C(24)^{\prime \prime}$ | 1.2030 | 0.0649 | 0,9550 |
| O(1) | 0, 8244 | 0.1612 | 0.1560 |
| O(2) | 0.6930 | 0.1640 | $\approx 0.2590$ |
| O(3) | 0,8680 | 0.2228 | 0.0300 |
| O(4) | 0.6665 | 0.2389 | $\bigcirc 0.1152$ |
| O(5) | 0,8900 | 0.2255 | -0,3216 |
| O(6) | 0.8789 | 0.1686 | -0,4039 |
| $0(7)$ | O. 5653 | 0.2110 | - 0.3510 |
| O(8) | O.5142 | 0.1735 | -0,5417 |
| $o(1)^{\circ}$ | 0.7248 | 0,0853 | 0,3314 |
| $O(2)^{\circ}$ | I. 0288 | 0.0322 | 0.5095 |
| $O(3)^{\circ}$ | 0.79890 | 0.0653 | 0,6166 |
| O(4) ${ }^{\circ}$ | 0.9292 | 0.0596 | 0,7988 |
| $0(5)^{\prime \prime}$ | 0.8198 | -0,0159 | 0.6521 |
| $0(6)^{\prime}$ | 0.9164 | -0,02977 | 0.4417 |
| $0(7)^{2}$ | 0.1120 | 0.0207 | 0.7892 |
| $O(8)^{\prime \prime}$ | 4.2606 | 0.0012 | 0.6888 |
| $I$ | 0. 2006 | 0.1734 | 00,0508 |
| $I^{0}$ | 1.4211 | 0. 1347 | 1.1681 |

Teble 34, Tetramehylergofiavin di-para-iodobengegte. Maasured and calculated values of the third est structure factore.
$\stackrel{+}{n}$


 $\underset{\sim}{2}$ яมผ

 - aur turgaun


 a
的


$\qquad$




bridged at $C(9)$ and $C(13)$ by a $\gamma$-lactone system: the bensene rings are joined to form the diphenyl nucleus.

Two phenolic and four alcoholic hydroxyl groups are present in place of the four phenolic and two alcoholic hydroxyl groups expected. The phenolic character of the alcoholic OH groups may be accounted for by steric interaction between the alcoholic hydroxy groups at $C(8)$ and $C(10)$ and perhaps hydrogen bonding involving $O(3)$ and $O(4)$.

Refinement of the structure is now in progress.

## PART VI.

## TOXISTEEROL $A_{2}:$ X-RAY SYUDY OF THEB

```
4-IODO - 3 - NITRO-BENZOANE
```


## 6. (1) INTRODUCTION

Irradiation of ergosterol (VII) with ultraviolet light gives the fat-soluble vitamin $D_{2}$ or calciferol (VIII); the structures and chemistry of the intermediates are well characterised (Fieser and Fieser, 1959)。



One of the products of over-irradiation of ergosterol is toxisterol $A_{2}$ whose constitution is entirely unknown. A further product of overoirradiation is suprasterol II which has been assigned an interesting spirocyclic structure both by chemical methods (Dauben, and Baumann, 1961) and by an $x$ ray analysis of the 4-iodo-5-nitrobenzoate (Saunderson and Hodgkin 1961).

X-ray methods have also been employed in the elucidation of the structure of calciferol (Crowfoot Hodgkin

Webster and Dunits．2957）and lumisterol，the 10 epimer of exgosterol（Crowfoot Hodgkin and Sayre，1952），and due to the small amount of foxisterol $A_{2}$ available，an $x$－ray study of the 4－iodo－3mitrobenadate derivative，prepared by Professor Barton，was undertaken．

## Details of the crystal data were investigated

 during the course of his B．Sc．thesis work by A．C．MacDonald （1962）．
## 6．（2）EXPERTMENTAL

Unit cell daca were measured from precession photographs，and the space group determinated from systematically absent spectra；$\quad \mathrm{P}_{1} /$ min must be rejected because the compound is optically active．The density of the crystal was found by a flotation technique in aqueous potassium iodide solution．The moleculas weight of toxisterol $A_{2}$ has not been determined，and the value of 396．the molecular weight of exgosterol．calciferol and suprasterol II mas assumed．

Small crystals were used for incensity data collection，and no absorption corrections were made．The Okl ．．． 4 tkl data were estimated in the usual visual fashion from Weissenberg photographs．mitial difficulty in indexing the reflections was overcome by comparison with
hol and hkO precession photographs.
Structure amplitudes were obtained from intensities using the mosaic crystal formula, the normal corrections for Lorentz, polarization, and rotation fectors for upper layers being made. The exposure times for the individual layers were approximately similar, and it was assumed that the layers were 211 on the same relative scale.

In all, 1436 independent structure amplitudes were measured, of which 157 were smaller than the least observable value.

## 6. (3) CRYSTAL DATA

$$
\begin{aligned}
& \mathrm{C}_{35} \mathrm{H}_{4} \mathrm{CO}_{4} \mathrm{NI} \\
& \text { Monoclinic, } \in \text { unique } \\
& M=671.7 \\
& a=6.38{ }^{\circ} \mathrm{A} \pm 0.02 \stackrel{\circ}{A}^{\circ} \\
& b=11.35 \hat{A}^{\circ}+0.02{ }^{\circ} \\
& c=24.36{ }^{\circ} \mathrm{A} \pm 0.02{ }^{\circ} \mathrm{A} \\
& \gamma=105^{\circ} 10^{\prime} \\
& \text { Volume of the unit cell }=1706.3 \mathrm{~A}^{\circ} \\
& \text { For } Z=2, \rho \text { (calculated) }=1.308 \mathrm{go} / \mathrm{ml} \text { 。 } \\
& \rho \text { (measured) }=1.300 \mathrm{go} / \mathrm{ml} \text {. } \\
& \mathrm{F}(000)=696
\end{aligned}
$$

Absorption coefficient for $x-r a y s(\lambda=1,542)=78.1 \mathrm{~cm}^{-1}$
Systematic absences: (00R) $=2 n+1$
Space group $\mathrm{PR}_{1}-\mathrm{C}_{2}^{2}$.
6. (4) LOCATION OF THE HEAVY ATOM

The expression for the Patterson function for a crystal belonging to the monoclinic system with $C$ unique is $P(U V W)=4 \sum^{\infty} \sum^{\infty} \sum^{\infty} \prod_{P(h k \ell)} H^{2} \cos 2 \pi(h U+k V)$

$$
P(U W W)=\frac{4}{V_{c}} \sum_{0}^{\infty} \sum_{0}^{\infty} \sum_{0}^{\infty}\left[\mid F\left(h k \ell H^{2} \cos 2 \pi(h U+k V)\right.\right.
$$ ana unis 15 samply reauced to une corresponaing twodimensional expression for projections,

The equivalent positions in the space group $\mathrm{PR}_{1}$ are $x_{y} y_{, ~ z}$ and $\bar{x}_{y} \bar{Y}_{3} \frac{1}{2} * z$ and consequentiy the iodineiodine vector occurs at $U=2 x, V=2 y, W=\frac{1}{2}$, The $z$ parameter of the iodine atom in the structure may be assigned arbitrarily.

The $y$ coordinate of the iodine atom was found from the twoodimensional Patterson synthesis projected along (100) using 197 coefficients. The peak marked A In Fig. 32 indicates clearly the vector expected at $\boldsymbol{V}=2 \mathrm{y}$, $\boldsymbol{m}=\frac{1}{2}$ and leads to a value for the iodine atom of $y=N O_{\text {, }}$ although the elongation of the peak along $V$ Indicates that the $y$ coordinate should exceed zero slightly.

The Harker section of the full threedimensional Patterson synthesis at $W=\frac{1}{2}$ showed one outstanding peak marked B in Fig. 33, and this corresponds with the yector $U=2 x_{9} y=2 y$ and verifies the value assigned to the $y$



coordinate from the Patterson projection. The value of the $x$ coordinate is 0.125 . Confirmation of these values was obtained by computing the section of the threedimensional Patterson at $U=\frac{h}{h}$, when the expected vector at $V=0$ and $W=\frac{2}{2}$ materialised.

The solution of the vector maps is consistent with iodine coordinates of

$$
x / a=0.125 \quad y / b=0.010 \quad z / c=0.250
$$

6. (5) ATTERPTED SOLUTION OF THE STRUCTURE

The steroids cholesterol (Carlisle and Crowfoot Hodgkin, 1945) and lumisterol (Crowfoot Hodgkin and Sayre. 1952) were successfully solved through the centrosymmetric projection about the short, unicue, b axis (space group P2 ${ }_{1}$ ) using the heavy atow technique. The projection down the unique, $24 A_{8}$ axis in toxisterol $A_{2}-4$-iodom-nitrobenzoate would be difficult to solve due to superimposition of atomic sites, and recourse was taken to threedimensional methods.

Several sets of trial structures were computed varying the $x$ and $y$ coordinates of the iodine atom. The iodine atom position giving the lowest discrepancy was $x / a=0.133, y / b=0.000, z / c=0.250$. $\quad F_{c}$ equalled zero when $h=0, ~ \ell=2 n+1$, and due to the proximity of $x / a$
to the value of $0.125, F c$ approached zero when $h=2$, $2=2 n$, and $h=4, ~ h=2 n+1$. Thus the discrepancies for layers $h=0,1 \ldots, 4$ were $65 \%, 43 \%, 56 \%, 46 \%$ and $50 \%$ respectively. The trend in magnitude of the structure factors paralleled exactly that in the intensities, substantiating the correctness of indexing of the latter.

The phase angles from the iodine contribution were 0 and $\pi$, and consequently the first chreedimensional electron density map had a spurious centre of symmetry. In addition to any real atom at $P_{p}$ which occurged at the positions (1) $x_{0} y_{2} z ;(2) \bar{x}_{3} \bar{Y}_{0} \frac{1}{2} \& 2$ in the unit cell, the calculated patcern showed evidence of additional unreal acoms (3) $\bar{x}_{3} \Psi_{9} \bar{x}_{9}^{\prime}(4) x_{0} y_{\xi} \frac{1}{2} \rightarrow 2$ produced by the operation of the centre of symmetry, of these, atoms (1) and (4). and (2) and (3) are related to one another by mirror planes of symmetry at $z=\frac{1}{6}$ and $\frac{3}{4}$.

Concentrations of peaks on the mirros planes were prominent, but the only structural feature winich could be resolved from the map was a six membered cycloherane ring. Several large peaks near the iodine atom were present, but none defined the position of the benzene ring.

The six atoms forming the cyclohexane ring were included in a second round of structure factor calculation. The discrepancy fell by three per cent, although it was
realized that $R$ would probably drop even if atoms were wrongly placed because so many reflections calculated zero or approximately zero when the calculations were based on the iodine atom alone;

Pseudoasymmetry persisted in the resulting electrondensity map as did the concentrations of peaks on the mirror planes. The section at $z=\frac{\pi}{h_{0}}$ drawn up to give a cleares view of this electron density concentration, yielded no iniormation.

Since no progress was made from the second Fourieg synthesis, an attempt was made to gauge the validity of possible atomic sites. Several sets of structure factors for the $h=1$ layer were calculated: iodine and the cyclohexane ring: iodine, with the ring and its mirror image both at half weight; iodine, with the eight largest peaks and mirror images all at half weight; iodine and a very unlikely benzene ring on the mirror plane; and iodine with the two largest peaks on the mirror plane. In all cases the discrepancy rose.

A two dimensional Fourier synthesis projected down the short axis was computed. The trend of electron density indicated that the only likely orientation of the benzene ring was in the a plane, but previous attempts to locate the ring in this plane from the threedimensional Fourier
synthesis were unsuccessful.
Attention was noxt focussed on an attempt to locate light atoms from the threedimensional Patterson synthesis using superposition methods. The method used was essentially the one employed in the structural determination of strychnine hydrogen bromide (Robertson and Beevers, 1951). The Patterson function was set down with its origin at each of the known atomic positions of the iodine atom, so that the vectors of each of the lighter atoms wich the heavy atoms were brought into coincidence on atomic sites. Where overlap occurred, the validity of the possible atomic sites was determined by the minimum vaiue of the Patterson funceion at the point of concurrence. The first threedimensional Fourier map was also superimposed on the Patterson functions and the positions of coincident peaks marked.

Thirty six possible atomic sites mere located and these were arranged in nine groups in order of estimaced correctness. Structure factors of each of the nine groups in turn were calculated over the 360 reflections for which $h=1$. The discrepancy rose in each case,

In trying to account for the fallure of the superposition method where knowledge of phases is not necessary and all the data is ewployed, several factors must be taken into account. Firscly, the presence of iodine
acoms resuits in considerable absorption. Secondiy, the data fades out at low sin $\theta$ values, and thirdly, there are nearly 1000 interatomic vectors in the unit cell excluding hydrogen atoms. A large measure of coincidence is certain and resolution must be restricted. Consequently it is probable that many atomic sites were inaccurately or wrongly assigned.

The likeliest route to solving the structure appears to lie in the preparation of a further derivative in which the heavy atom assumes a general position, and the space group has no ambiguous symmetry.

Table 35. Toxisterol A2 4-10do-3-nitrobensoate
Observed veluee of the strueture mplituden. The values are on the same relative seale.

 $\qquad$




$95-40^{\circ}$
$\times \quad 9$

 i in in in er

$\stackrel{\rightharpoonup}{a} \stackrel{ }{*}$ $\stackrel{4}{4-2}$
Bargron
+



ABE，$Y_{0}$, MIKI，$T_{0}, S U M I, M_{0}$ and TOGA，To（1956）．Chem。 －Ind 953.
 6． 385.
ARAI，Go，COPPOLA $J_{0}$ and JEFPREY，G．A．（1960）．Aota Crystog 13． 553.
BABTELL，$L_{0} S_{0}$ and BONBAM，$R_{0} A_{0}$（1957）。 Jo Chem Physo，27． 1414．
 Unprublished wow．
BARTLETT，$M_{0} F_{9}$ and TAYIOR．WoI．（1960）。J．Jmsro Chem， Soc． 82.594.
 BABTON，$D_{0} H_{a} B_{0}$ and GILHAM，$P_{0} T_{0}$（1960）Jo Chems Soo．
 Jo Chemo Soc．3472．
 Soc．\＆229．
 2500．
 NacGILLAVRY，$C_{0} \boldsymbol{H}_{0}$ and VEENENDAAL，$A_{0} L_{0}$（2955）AQt！ Crystag 8，478．
BOOTH，A。D．（1948）。 Fourier Techrifore in X－Ray Orgario Strescture Aralusts page 63．Cambricage Untuersity Press：Erglard．
$B R O W N_{5} W_{0} A_{9} C_{0}$ and $S I M_{0} G_{0} A_{0}$（1963），Jo Chemo Soc． 1050.
 （1959）J．Amer．Chomo Soc． $81,4915$.
 CARLISLE $C_{0} E_{0}$ and CROWFOOT，$D_{0}$（1995）．Proci Royo SOO． A184． 64.
 CLEMO，$G_{0} R_{0}$ ，$H A W O R T H_{9} \mathcal{B}_{0} D_{0}$ GIRS WRLTONS $E_{0}$（ 3929$)_{0} J_{0}$ Chams Socos 23， 2368.
CLEMO $G_{0} R_{0}$ REAFDRTH，$B_{0} D_{0}$ and WALTON $E_{0}$（1930）o J．Chens Socos， $1110_{0}$
CLUNIE，$J_{0} S_{0}$ and ROBEHTSON Jo Mo（1961）Jo Chems Socog In 4382.
 4430.

COCKER $_{3} W_{0}$ and MoMURRAX，$T_{0} B_{0} H_{0}$（1960）．Teto，B，181．
 CRAVEN Bo Mo（1962）．Aota Cryet．15．387． CROWFOOT HODOKIN $D_{0}$ and SAXRE $_{8} D_{0}$（1952）。 Jo Chemo Soc．e
 Cheme Indo 1148．

CRUICKSHANK $D_{0} W_{0} J_{0}$ and ROBMRTSON $A_{0} P_{0}$（1953）．Aota Crystor DADUT C．698．
DARUINN Co Go（1914）PhtI．Mago，27， 315 and 675．
DAUBEN，Wo Gond BAUMANN，Po（1961）Tet．Leto 16．565． DEBYE ${ }^{\circ} P_{0}$（1914）Anm。 Phystio．43 49．
$D E M A Y O P_{0}$ and REID $S_{\circ} T_{\circ}$（1961）Quart．Revo XV，NO．4．412． $D E W A R_{0} M_{0} J_{0} S_{0}$ and SCHMEISINE，$H_{0} N_{0}$（1959）．Teto，5，166。
DJERASSI，Co OSLEFKKI，Jo and BEKRZ，$W_{0}$（1957）．Jo Org．Clemo，

$$
\text { 22. } 1361 .
$$

DONOFUE，$J_{0}$ and TRJKBLOOD，$K_{0} N_{0}$（1952）．Aote Cryat．，5．419． EDWARDS $P_{0} W_{0}$ and SAITH，$G_{0} P_{0}(1960)$ Proc．Chemo Soco 215． EOLINTONG Go，KING，P $\mathcal{F}_{0}$, LLOYD，$G_{o}$ ，LODBR,$J_{0} V_{o}$ ，MARSEALL， $J_{0} R_{\circ}{ }^{9}$ ROBERTSON，$A_{\circ}$ and WHALLEY WoB。（1958）J J． Chamo Soco， $2,1833_{0}$
 EWALD，$P_{0} P_{\circ}$（ 1917 ）．Ann。Phystico，54， 519 and 55\％． FEERGUSON G and SIM，$G_{0} A_{0}$（1961）O Acta Crysto， 14 1262． KIESER $\mathcal{L}_{0} F_{0}$ and RIESERA，$M_{e}$（1959）．Sterotas．Betnhold

Fizbltshtng Corporation：New work． FISHRER，$R_{0} A_{0}$ and XATES $F_{0}$（1957）Statisttcal Tables． Oltver and Boyd：Edinburgh．
FIREEBORN．（191：）© Pharmo Jo，88，568。
FRIDITCESONS，Io and MATHEESON，$\Lambda_{0}$ ．HoL．（1955）．Acta Cryst．． 8 861．
 15.119 ．
 and SIM，$G_{0} A_{0}(1963)$ ．$J_{0}$ Chems Soo．2506．
 （1962）．$J_{0}$ Chem．Soo 506．
EAMILTON，Jo $A_{0}$ ，NoPBAIL，$A_{0} \mathscr{F}_{q}$ ，and $S I M_{9} G_{0} A_{0}$（1962）．Jo Chenso SOO． $700^{\circ}$
 HUFFMAN J．$W_{0}$（1960）Expertentta，16，120．
BUFFPMAN Jo（ 1963 ），J．Orgo Chem 28，601．
INTERNAYIONAL TARLES FOO X RAY CRYSTALLOGRA PHY（1952），
Vo．I Kynool Pross：Bernilighamo
JELLINEK，FO（195\％）．Acta Cryyst．10，27\％．

LINDSEXT, JoMo and BARNFS, WoE. (1955) Aota Gysto 8, 28\% LIPSON, Hi and COCHRAN, Fo (295\%). The GMystal18ne Statio VoI. IIIo page 207. G. Bell and Sons. Ltc. : Londono NOODONALD, $A_{0} C_{0}(1962)$ B $B_{0} S a_{0}$ Thests. Glasgow MoPEAIL, $A_{0} T_{0}$ (1963). Personnel Gommatootton. NOPGIL, Ao To, ROBERISON, $J_{0} M_{0}$ and SIM, $G_{0} A_{0}$ (1063). $J$. Ghems $S 00_{0}$ = 123\%.
MIKI, To (1955) Jo Pharmo Soo. Japang 75. 416. WILIS $J_{0} F_{0} D_{0}$ and NYBURG $S_{0} C$. (1960). J. Chemo Soon 1458.



 J. Chem Soc. $4133_{0}$

PAULTNG, Lo (1960), The Rature of the Cherioal Bond 3rot Edition. CornslI iniversety Prese: NVw Lor/s.
 81 3273.
 PRZYBYLAKA. Fo (1961). Aat人 Cryst. ]1 429. ROBERTSON, J. $H_{0}$ and BEEVERS, CoA. (1951). Acta Crysto \& 270.

ROBERTSON, J.M. (1943). J. Sct. Instro. 20, 175. ROBERTSON J. $\mathcal{M}_{0}$ and WOODWARD, Io (1937), Jo Chems Soo. I. 219.

ROBERTSON, JoMe and WOODWARD, Io (1940), J. Chem. Soc. to 36.

ROLLETY, JoS. (f96l). Gompriting Methods and the Phase Problem tn Xoray Crustal Analusts page 8\%. Pergamen Press : Oaford.
ROSSMANN, $M_{0}$ O. (1956). Aota Cryst. Q $_{0}$ 819.
ROSSMLNN, $H_{0} O_{0}$, JACOBSON, $R_{0} A_{0}$, BIRSHMMLD, $F_{0} L_{\text {a }}$ and LIFSCOMB, $W_{0} N_{0}$ (1959). Aota Crust., 12, 530.
SAUNDERSON, C. P. and CROWFOOT HODGKIN, D. (1961). Tet Let., 16. $5733^{\text {a }}$

SCOTM, C.C., SIM, GoA. and ROBERTSON, J.M, (1962). Proc. Chemo SOO. 355.
 Acta cryst, $12,600$.
SIM, GoA. (1957). Aata Crust. 10, 177 and 537.
SIM, GOAO ROBLKRTSON JoM. and GOODHEN To Ho (1955). Aota Cryst. 8, 157.
SUTTON, $L_{0} E_{0}$ et ala (1958) , Tables of Interatomic Dtstances and Conmouration in Molecules and Ions. The Chomioal Societu: Londons.
TAYLOR, W.I. (1983) Onprzblished Woris.
 Tabid1en wan Best (1935) 010 II, page sti a Qebrevies

Bornstraeger : Berlin.
TROTIER Jo (1960) Aata Cryst. 13, 86.

Acta Crusto 14 1009
TVAELL G. (2939). Amero MEn, 2A, As8。
VILIAVECCEHA (1885) Ber 28 28. 286.
 $500_{0} 82.1475^{\circ}$


SOGO 75. $3377_{0}^{\circ}$


