

Al Khanjari, Sharifa (2017) Advanced managment techniques for many-
core communication systems. PhD thesis.

http://theses.gla.ac.uk/7952/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior
permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining
permission in writing from the author

The content must not be changed in any way or sold commercially in any format or
medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given

Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

http://theses.gla.ac.uk/7952/
http://theses.gla.ac.uk/
http://theses.gla.ac.uk/
mailto:theses@gla.ac.uk

ADVANCED MANAGEMENT TECHNIQUES
FOR MANY-CORE COMMUNICATION

SYSTEMS

SHARIFA AL KHANJARI

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

SCHOOL OF COMPUTING SCIENCE

COLLEGE OF SCIENCE AND ENGINEERING

UNIVERSITY OF GLASGOW

SEPTEMBER 2016

c© SHARIFA AL KHANJARI

Abstract

The way computer processors are built is changing. Nowadays, computer processor per-
formance is increased by adding more processing cores on a single chip instead of making
processors larger and faster. The traditional approach is no longer viable, due to limits in
transistor scaling. Both industry and academia agree that scaling the number of processing
cores to hundreds or thousands on a single chip is the only way to scale computer proces-
sor performance from now on. Consequently, the performance of these future many-core
systems with thousands of cores will heavily depend on the Network-on-Chip (NoC) archi-
tecture to provide scalable communication. Therefore, as the number of cores increases the
locality will only become more important. Communication locality is essential to reduce
latency and increase performance. Many-core systems should be designed such that cores
communicate mainly to the neighbouring cores, in order to minimise the communication
cost.

We investigate the network performance of different topologies using the ITRS physical data
for the year 2023. For this reason, we propose abstract synthetic traffic generation models to
explore the locality behaviour in many-core NoC systems. Using the synthetic traffic models
—group clustering model and ring clustering model —traffic distance metrics may be ad-
justed with locality parameters. We choose two many-core NoC architectures —distributed
memory architecture and shared memory architecture —to examine whether enforcing lo-
cality on different architectures may have a diverse effect on the network performance of
different topologies.

Distributed memory architecture uses the message passing method of communication to
communicate between cores. Our results show that the degree of locality and the clustering
model strongly affect the performance of the network. Scale-invariant topologies, such as
the fat quadtree, perform worse than flat ones because the reduced hop count is outweighed
by the longer wire delays.

In shared memory architecture, threads communicate with each other by storing data in
shared cache lines. We design a hierarchical cache model that benefits from communica-
tion locality because many-core cache hierarchy that fails to exploit locality may end up

having more cores delayed, thereby decreasing the network performance. Our results show
that the locality model of thread placement and the distance of placing them significantly
affect the NoC performance. Furthermore, they show that scale-invariant topologies perform
better than flat topologies. Then, we demonstrate that implementing directory-based cache
coherency has only a small overhead on the cache size. Using cache coherency protocol in
our proposed hierarchical cache model, we show that network performance decreases only
slightly. Hence, cache coherency scales, and it is possible to have shared memory architec-
ture with thousands of cores.

Acknowledgements

I would like to take this opportunity to express my deepest thanks to my first supervisor,
Dr. Wim Vanderbauwhede, for his patient and excellent advice throughout this study and
for his encouragement, guidance, and support over the past four years, which enabled me
to be a better researcher. I would also like to extend my gratitude to my second supervisor,
Dr. Lewis Mackenzie, for his unwavering belief in me and his support and understanding
throughout my PhD study.

I would like to acknowledge and thank His Majesty Sultan Qaboos and the government of
Sultanate Oman for funding this research. I would like to acknowledge the German Univer-
sity of Technology in Oman for giving me a study leave to do this research. I would like to
express my appreciation to all staff at the School of Computing Science for their help and
support during these years.

I take this opportunity to express my profound gratitude to my beloved parents, wonderful
siblings, and sincere friends for their love, moral support, and patience during my study.
Lastly, I offer my regards and blessings to all of those who supported me in any aspect
during these years.

To my beloved family and wonderful friends.

Table of Contents

1 Introduction 1

1.1 The Shift Towards Many-Core Systems 1

1.2 Motivation and Objectives . 2

1.3 Thesis Statement . 3

1.4 Thesis Contributions . 3

1.5 Overview of the Thesis . 4

2 Background and Related Work 7

2.1 Network-on-Chip . 7

2.1.1 Topology . 8

2.1.2 Switching Techniques . 11

2.1.3 Routing . 12

2.2 Memory Hierarchy . 14

2.2.1 Primary Memory (Volatile Memory) 14

2.2.2 Secondary Memory (Non-Volatile Memory) 16

2.3 Memory Architectures . 16

2.3.1 Distributed Memory Architectures 16

2.3.2 Shared Memory Architectures . 17

2.3.3 Distributed Shared Memory Architectures 19

2.3.4 3D Memory Stacking Architectures 19

2.4 Cache Coherence . 20

2.4.1 Snooping Protocol . 20

2.4.2 Directory-Based Protocol . 21

2.5 Many-Core Systems Processors . 21

2.5.1 Xeon Phi Processor . 21

2.5.2 TILEPro64 Processor . 22

2.5.3 SW26010 Processor . 23

2.5.4 PEZY-SC Processor . 23

2.6 Summary . 24

3 Cost Model, Technology Node Assumptions, and Methodology 26

3.1 Topological Properties . 26

3.1.1 Link Complexity . 27

3.1.2 Routers . 28

3.1.3 Buffers . 28

3.2 Technology Node Assumptions . 28

3.3 Overheads for a 1024-core chip, 10nm (2023) ITRS Node 29

3.4 Packet Format and Switching . 30

3.5 Simulation Tool . 30

3.5.1 Heterogeneous Network-on-Chip Simulator (HNOCS) 31

3.5.2 Heterogeneous Network-on-Chip Simulator eXTended
(HNOCS-XT) . 35

3.5.3 HNOCS-XT and Noxim . 35

3.6 Experimental Methodology . 35

3.6.1 Group Clustering . 38

3.6.2 Ring Clustering . 38

3.7 Performance Measures . 38

3.7.1 Latency . 39

3.7.2 Throughput . 39

3.8 Summary . 39

4 Effects of Locality on Message Passing Communication Performance 40

4.1 Locality of Computation . 40

4.2 Relationship to Rent’s Rule . 41

4.3 Network Topologies . 43

4.3.1 Mesh Topology . 43

4.3.2 Concentrated Mesh Topology . 43

4.3.3 Fat Quadtree (FQT) Topology . 44

4.4 Simulation Setup . 45

4.5 Evaluation and Discussion . 46

4.5.1 Effect of Locality on Latency . 46

4.5.2 Effect of Locality on Throughput 51

4.5.3 Effect of Locality on Different Network Sizes 54

4.6 Summary . 55

5 Effects of Locality on Shared Memory Communication Performance 56

5.1 Shared Memory Communication . 56

5.2 Hierarchical Cache Model (HCM) . 58

5.2.1 Mesh Topology . 59

5.2.2 Concentrated Mesh Topology . 59

5.2.3 Fat Quadtree Topology . 59

5.2.4 Links and Buffers per Virtual Channel 61

5.3 Thread Placement Locality Models . 62

5.4 Simulation Setup . 63

5.5 Simulation Results and Discussion . 64

5.5.1 Effect of Locality on Latency . 64

5.5.2 Effect of Locality on Throughput 69

5.6 Summary . 73

6 Cache Coherency for Many-Core Systems 74

6.1 Cache Coherency . 74

6.2 Cache Coherency Protocol . 75

6.3 Cost Model . 79

6.4 Simulation Setup . 79

6.5 Results and Discussion . 80

6.5.1 Effect of Cache Coherency Traffic on Latency 80

6.5.2 Effect of Cache Coherency Traffic on Throughput 87

6.6 Summary . 90

7 Conclusion and Future Work 91

7.1 Thesis Statement Revisited . 91

7.2 Summary of Research Contributions . 93

7.3 Future Directions of the Research . 95

A 96

A.1 Publications . 96

Bibliography 98

List of Tables

3.1 Table of notations . 26

3.2 Cost model for N cores . 28

3.3 Technology parameters for 10nm CMOS (2023) based on ITRS 2011 . . . 29

3.4 NoC Simulation . 32

4.1 Simulation parameters . 46

5.1 Simulation parameters . 64

List of Figures

2.1 Mesh . 9

2.2 Concentrated mesh . 9

2.3 Fat quadtree layout . 10

2.4 Ring layout . 11

2.5 Example of XY routing . 13

2.6 Example of source routing . 14

2.7 Memory hierarchy . 15

2.8 Distributed memory architectures . 17

2.9 Symmetric multiprocessor architecture . 18

2.10 Non-uniform memory access architecture 18

2.11 Example of 3D memory stacking architectures (from [1]) 19

2.12 Xeon Phi processor architecture . 22

2.13 TILEPro64 processor architecture . 23

2.14 SW26010 processor architecture . 24

2.15 PEZY-SC processor architecture . 25

3.1 Effect of increasing number of flits per packet on the performance (α = 1:
no locality,α = 0: total locality) . 30

3.2 Mesh 8x8 as displayed in OmNeT++ when running HNOCS 33

3.3 The core consists of the source where the messages are generated and the
sink where the messages are received and statistical values are collected . . 33

3.4 The router in a mesh consists of five ports: four ports to the neighbouring
router and one port to the core . 34

3.5 The port consists of input port (inport), output port selector (opCalc), VC-
allocator (vcCalc), and scheduler (sched) 34

3.6 Latency comparison between HNOCS-XT and Noxim 36

3.7 Throughput comparison between HNOCS-XT and Noxim 36

3.8 Example of the models in an 8× 8 mesh 38

4.1 Mesh . 43

4.2 Concentrated mesh . 44

4.3 Fat quadtree logical layout . 44

4.4 Fat quadtree physical layout . 44

4.5 Hop count comparison . 45

4.6 Link delay comparison (17.5ns/link) . 45

4.7 Latency for group clustering (α = 1: no locality, α = 0: total locality) . . . 48

4.8 Latency for ring clustering (α = 1: no locality, α = 0: total locality) 49

4.9 Group and ring clustering (α = 1: no locality, α = 0: total locality) 50

4.10 Throughput for group clustering (α = 1: no locality, α = 0: total locality) . 52

4.11 Throughput for ring clustering (α = 1: no locality, α = 0: total locality) . . 53

4.12 Locality versus network size (1: no locality, 0: total locality) 54

5.1 The proposed 3D stacked memory (N = 256) 60

5.2 Hierarchical cache allocation for an 8× 8 mesh 61

5.3 12.5% of the links in an 8× 8 mesh are not used 62

5.4 Memory requests’ latency for group clustering 66

5.5 Memory requests’ latency for ring clustering 67

5.6 Group and ring clustering (1: no locality, 0: total locality) 68

5.7 Example of a memory request in an 8×8 mesh ring clustering (core 27 sends
a memory request to a shared memory with cores 18, 19, or 52 and back) . 69

5.8 Throughput for group clustering . 71

5.9 Throughput for ring clustering . 72

6.1 Tracking sharers . 77

6.2 Directory-based protocol chart . 78

6.3 Memory requests’ latency for group clustering (G: group clustering, Ps: the
shared rate, Prw: the read/write rate, and Pe: the eviction rate) 82

6.4 Memory requests’ latency for ring clustering (R: ring clustering, Ps: the
shared rate, Prw: the read/write rate, and Pe: the eviction rate) 83

6.5 Mesh heatmap for group clustering . 84

6.6 Frequency of latency in a mesh for some cores 84

6.7 Fat quadtree heatmap for ring clustering (the saturated case on top) 85

6.8 Cmesh heatmap for ring clustering (the saturated case on top) 86

6.9 Throughput for group clustering (G: group clustering, Ps: the shared rate,
Prw: the read/write rate, and Pe: the eviction rate) 88

6.10 Throughput for ring clustering (R: ring clustering, Ps: the shared rate, Prw:
the read/write rate, and Pe: the eviction rate) 89

1

Chapter 1

Introduction

1.1 The Shift Towards Many-Core Systems

The scaling of semiconductor technology has enabled billions of transistors to be integrated
into a single chip, following Moore’s Law that the number of transistors on a single chip
doubles every two years. There are three main limitations in the scaling of a single core:

• A power wall is due to the limitation on the scaling of clock speeds and because the
ability to handle on-chip heat has reached its physical limit.

• A memory wall occurs because the gap between memory access and processing speed
is growing further. In addition to improving the average memory access, caches are
getting bigger.

• A instruction-level parallelism (ILP) wall arises from the super-linear increase in exe-
cution unit complexity without linear speedup in application performance.

Multi-Core Processors (MCP) were the solution to overcoming the limitations of the single-
core processor, moving from sequential computing to parallel computing. This solution
allowes for the continuation of Moore’s Law. However, MCP came with its own limitations,
one of which was the imperfect scaling as the performance was dependent on serial code.
Another limitation was the difficulty of optimising a software to run in parallel. It is easier
to add more cores than for the software to take advantage of a multiple-core processor. The
end of Moore’s law is widely expected in the coming decade. The many-core system is one
of the solutions. The definition of many-core is a multi-core architecture with a particularly
high number of cores.

1.2. Motivation and Objectives 2

1.2 Motivation and Objectives

There are a number of issues that need to be considered when building a many-core system:

• Power

• Connectivity

• Arbitration

• Memory Issues

• Cache Coherence

• Scheduling

• Programmability

In this research, we focus on three of the issues that many-core systems need to address:
connectivity, memory issues, and cache coherence. A massive many-core system requires
high performance interconnections to transfer data between the cores on the chip. For many-
core processors with close to one hundred cores, such as the Tilera Tile64 [2] or the Intel
MIC [3], Network-on-Chip (NoC) has become the preferred on-chip communication infras-
tructure. Performance of NoC based many-core systems is highly dependent on the traffic
patterns and the NoC topologies. In many-core systems, communication, not computation,
is typically the performance limiting factor. In ten years, according to the International Tech-
nology Roadmap for Semiconductors (ITRS), we can expect that a thousand-core processor
can fit into an area of less than 1mm2 and it will consume only a few watts.

The NoC architecture of such many-core processors for exascale systems is of particular
interest. Besides the standard mesh, as used in the Tilera many-core system and the Intel
SCC, and the ring topology, as used in the Intel Xeon Phi and recent Intel Xeons [3], many
NoC topologies have been proposed and evaluated. Some aimed to provide improvements
on the ring topology, such as the Spidergon [4] or the Quarc [5]; some aimed to improve
on the mesh, e.g. the concentrated mesh [6]. There has also been interest in scale-invariant
topologies such as the quadtree [7].

With regards to memory issues in many-core systems, 3D memory stacking has been the
focus of research in recent years [8–11], since it enables much higher memory bandwidth
and mitigates the memory wall problem of 2D integration. The latest Xeon Phi (Knights
Landing) already uses a hybrid form of stacked memory, Micron’s Hybrid Memory Cube
[12]. Further integration leading to 3D memory stacked on top of the processor is in active
research. 3D memory allows each processor core to have fast and high bandwidth access to

1.3. Thesis Statement 3

the memory directly stacked on top of it using very dense vertical interconnections [13–15].
Some of the advantages of 3D memory stacking are lowering the latency and increasing the
memory bandwidth.

Cache coherency is important when many cores are sharing data. Cache coherency ensures
the consistency of shared data that is stored in multiple memory locations. The conven-
tional wisdom has been that cache coherence could not scale because of exploding storage
and interconnection network traffic requirements, as well as concerns over latency and en-
ergy consumption. However, some researchers have suggested techniques that enable cache
coherency to scale.

Locality of computations might be a solution for increasing the performance of many-core
systems. The performance of future many-core systems with thousands of cores will heavily
depend on the Network-on-Chip architecture to provide scalable communication. Commu-
nication locality is essential to reduce latency and increase performance. As the number of
cores increases, locality will only become more important. Many-core systems should be
designed so that cores communicate mainly with the neighbouring cores, to minimise the
communication cost.

1.3 Thesis Statement

The thesis statement is established as follows:

Memory architectures that support locality of computations on many-core Network-on-Chip
(NoC) communication subsystems can improve the performance in terms of latency and
throughput.

Distributed memory architecture and shared memory architecture can scale and improve their
communication performance if locality of computations is introduced. Many-core systems
that force cores to communicate mainly with their neighbouring cores can minimise the
communication cost. Locality of computations can increase bandwidth and reduce latency.
The ITRS physical data shows that the wire delay will increase significantly in the future;
therefore, the locality of computations will be crucial towards increasing many-core NoC
performance.

1.4 Thesis Contributions

The main findings from this work are summarised as follows:

1.5. Overview of the Thesis 4

• We establish that the link complexity, routers, buffers, area space, and wire space over-
head of the NoC on a thousand-core system are negligible, and the choice of topology
depends solely on the performance in terms of latency and throughput.

• In distributed memory architecture, locality of computations on many-core NoC com-
munication subsystems improves the system performance in terms of latency and
throughput. Scale-invariant topologies such as the fat quadtree perform worse than
flat ones (esp. cmesh).

• In shared memory architecture, data locality on 3D stacked hierarchical cache architec-
ture for many-core NoC communication subsystems without cache coherency traffic
improves the system performance in terms of latency and throughput. Scale-invariant
topologies such as the fat quadtree perform better than flat ones.

• Cache coherency scales using hierarchical cache architecture and locality of compu-
tations, with only slight traffic overhead and slight overhead of the directory on the
cache size.

1.5 Overview of the Thesis

The remainder of this thesis is organised as follows:

Chapter 2: Background and Related Work

This chapter presents general background information about Network-on-Chip (NoC) and
its characteristics in terms of topology, routing algorithms, and switching techniques. The
chapter delivers an overview of memory architectures, which are distributed memory, shared
memory, and distributed shared memory. In addition, it summarises the parallel program-
ming models and provides a brief overview of some of the most common programming
models: MPI, openMP, and PGAS. Moreover, it explains many-core systems and gives a
number of examples of commercialised many-core platforms that exist nowadays.

Chapter 3: Cost Model, Technology Node Assumptions, and Method-
ology

This chapter describes the cost models in a many-core system for the link complexity, the
routers, the buffers, and the area space for different topologies. It provides the technology
node assumptions for realistic future many-core system parameters, which we made using

1.5. Overview of the Thesis 5

data from the International Technology Roadmap for Semiconductors (ITRS) for the year
2023. This chapter compares a number of Network-on-Chip simulation tools, explains in
detail how the Heterogeneous Network-on-Chip Simulator (HNOCS) works, and gives rea-
sons as to why we have selected it as a simulation tool for this research. HNOCS-XT is
our extended version of HNOCS because our research has some requirements that are not
supported in HNOCS. This chapter provides the experimental methodology we use in this
research to measure the performance of different topologies by enforcing locality. We use
group clustering and ring clustering models to select the neighbouring cores communicating
with each other based on the locality parameter.

Chapter 4: Effects of Locality on Message Passing Communica-
tion Performance

This chapter describes the effects of communication locality on many-core Message Passing
Model (MPM) performance. In distributed memory architecture, cores communicate with
each other in NoC by passing messages. Using communication locality on a many-core sys-
tem can improve its performance as programs run on a large many-core system can benefit
from local communication, where data are placed in nearby cores. Thus, in this chapter, we
show the significance of locality in the future many-core systems and that our locality model
expresses Rent’s rule. This chapter provides a brief description of the topologies used in the
simulations. We compare the topologies in terms of latency and throughput. Furthermore,
the chapter details the simulation setup, the results, and discusses the many-core NoC simu-
lation results. We show that communication locality improves many-core NoC performance
and that the increase in NoC performance depends on the network topology. The following
papers are published based on the results of this chapter:

• “Evaluation of the Memory Communication Traffic in a Hierarchical Cache Model for
Massively-Manycore Processors.” 2016 24th Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing (PDP). IEEE, 2016.

• “The Performance of NoCs for Very Large Manycore Systems under Locality-based
Traffic.” International Journal of Computing and Digital Systems. Volume : 5. Issue:
2. Issue Publication Date: March 2016.

Chapter 5: Effects of Locality on Shared Memory Communication
Performance

This chapter presents the effects of data locality on a shared memory model in many-core
systems. Data locality is very significant in improving many-core performance, as applica-

1.5. Overview of the Thesis 6

tions mapped on a large many-core system can take advantage of short distance communica-
tion, where data are placed in cache banks closer to the cores accessing them. Therefore, in
this chapter, we design a hierarchical cache model that supports data locality. This chapter
shows the hierarchical placement of caches in different topologies on the proposed hierarchi-
cal cache model. In addition, it details the parameters used for the simulations and compares
the performance of the many-core architecture in terms of latency and bandwidth using the
ITRS physical data for 2023. The results show that the model of thread placement and the
distances at which they are placed significantly affect the NoC performance. Furthermore,
they confirm that scale-invariant topologies perform better than flat topologies. The follow-
ing paper is published based on the results of this chapter:

• “The Performance of NoCs for Very Large Manycore Systems under Locality-based
Traffic.” International Journal of Computing and Digital Systems. Volume : 5. Issue:
2. Issue Publication Date: March 2016.

Chapter 6: Cache Coherency for Many-Core Systems

This chapter presents the cache coherency protocol we suggest for many-core systems. It
explains the hierarchical tracking of shares. This chapter provides the cache coherency pro-
tocol overhead on the cache size and on traffic in the shared memory hierarchical cache
model. It details the simulation setup, the results, and discusses the simulation results. The
chapter shows that cache coherency scales, and its effect on the system performance is low
when using the hierarchical cache model.

Chapter 7: Conclusion and Future Work

Lastly, in this chapter, we present the thesis conclusions and suggest some directions for
future many-core systems.

7

Chapter 2

Background and Related Work

This chapter presents background information about Network-on-Chip (NoC) and the char-
acteristics of NoCs in terms of topology, routing algorithms, and switching techniques. The
chapter also provides an overview of memory architectures, which are distributed mem-
ory, shared memory, and distributed shared memory. Moreover, it describes the many-core
systems and gives some examples of many-core platforms that are commercially available
nowadays.

2.1 Network-on-Chip

The concept of Network-on-Chip (NoC) originated as a new on-chip communication ap-
proach used to design the communication subsystem between Intellectual Property (IP)
cores in a System-on-a-Chip (SoC). It offers better scalability, throughput, and overall la-
tency compared to a bus-based on-chip interconnect. In designing NoC, the most essential
characteristics are network topology and routing algorithm, along with congestion control
methodologies, link capacities, arbitration methods, number of buffers, and virtual channels
per link, etc. Moreover, the research area of NoC is still in its early stages. Therefore, new
architectures, techniques, and ideas are being proposed, developed, and evaluated [16], [17].

A Network-on-Chip is composed of three main building blocks: routers, links, and network
adapters. The links and the routers implement the functionality of physical, data-link, and
network layers of the OSI reference model [18]. Each router has a set of ports, which are
used to connect the router to the network. The routers implement the routing algorithm, and
switching technique. The links connect between the routers. They may consist of one or
more logical or physical channels [19].

The network adapters implement the interface by which cores connect to the NoC. Their
function is to decouple computation of the cores from communication of the network. In

2.1. Network-on-Chip 8

most NoC architectures the network interface implements the functionality of the transport
and session layers of the OSI reference model [17], [19].

An Intellectual Property (IP) core can be any computation or storage component that has
been employed in traditional SoC development, including processor, memory, FPGA, or
DSP. A core may be comprised of a number of IP cores that are connected to each other by
any communication architecture, including a NoC [17], [19].

2.1.1 Topology

The topology of a NoC identifies as the physical interconnection network. It describes how
nodes, switches, and links are connected to each other. Topologies for NoCs can be classified
into two categories: direct network topologies, where each node is connected to at least one
core, and indirect network topologies, which have a subset of nodes not connected to any
core and performing only network operation. Many on-chip network topologies are found
in the literature, such as fat-tree [7], mesh [20], torus [21], hexagon [22], spidergon [23],
quarc [5], and butterfly [24]. Implementing a particular topology for a NoC is vital since the
result is a trade-off between metrics such as performance, energy, and cost. The topology
of a network affects the scalability, performance, complexity of the routing algorithm, and
power consumption.

One of the main properties of a topology is bisection bandwidth. The bisection width is
the number of wires that must be cut when the network is divided into two equal sets of
nodes, and the bisection bandwidth is the collective bandwidth over these wires. Bandwidth
refers to the maximum capacity of data transmission over a communication network [20].
System performance increases when the bandwidth is higher. As more nodes are attached
to the network, a larger volume of communication and more bandwidth are required. If the
network bandwidth does not scale appropriately with the number of nodes, excessive traffic
will lead to high message latency and decreased performance. However, networks with high
bisection bandwidth will require more routers and more wires per node, which consume
considerable space and increase the cost of the system [20].

Mesh Topology

The mesh topology is the simplest and most popular NoC topology so far due to its regular
structure with uniform router design, easy scalability, and high compatibility with standard
silicon fabrication technologies [25]. It is used in most of the recent many-core chips, such
as Intel SCC 48-core [26], TFlops 80-core [27], and Tilera 64-core [2].

The mesh topology consists of a grid of routers with interconnecting cores placed along
with the routers. Every router, except those at the edges, is connected to four neighboring

2.1. Network-on-Chip 9

Figure 2.1: Mesh

Figure 2.2: Concentrated mesh

routers and one core. Therefore, the mesh has a radix (number of ports) of five. In a mesh,
the number of routers is equal to the number of cores. Addresses of routers and cores can
be easily defined as x-y coordinates in a mesh. Figure 2.1 shows the layout for a mesh of
16 nodes. The mesh topology assumes that all the links have the same length. It is easier
to predict the area requirements for the mesh topologies, because area requirement grows
almost linearly with an increase in the number of cores. In a mesh network, deadlock is
avoided by using a deadlock-free routing algorithm such as an XY routing algorithm [28].

The mesh topology has a relatively high network diameter, which is a drawback; hence, the
concentrated mesh topology was introduced.

Concentrated Mesh Topology

The concentrated mesh (cmesh) was introduced by Balfour and Dally [6] to preserve the
advantages of a mesh with decreased diameter. The number of cores sharing a router is called
the concentration degree of the network. In this work we use a degree of four. Therefore, in

2.1. Network-on-Chip 10

Figure 2.3: Fat quadtree layout

the cmesh topology a set of four neighboring cores is connected to the same router. It scales
better than the 2D mesh topology because of its lower hop count and consequently improved
latency. It has a radix of eight. Despite the larger number of ports, having a quarter of the
number of routers in 2D mesh leads to large savings in power consumption [29]. Figure 2.2
shows the layout for a concentrated mesh of 64 nodes. Routing in cmesh is using XY routing
in the mesh structure and once the flits arrive to the parent router of the core, the router sends
the flit to the appropriate core.

Fat Quadtree Topology

The tree topology interconnects the routers in a tree form with the cores at the leaves. A
major disadvantage of a tree network is its bisection width. Hence, in order to overcome this
drawback and to avoid congestion towards the root of the tree, a fat tree is introduced. A
fat tree uses an increasing number of point-to-point links per connection, as described in [7].
The number of links is multiplied by the tree degree as we move toward the root. A fat
quadtree (FQT) of size N is a structure that can be regarded as a rooted 4-ary tree of height
log4(N). Figure 2.3 shows the layout for a fat quadtree of 16 nodes. The fat quadtree of
size N has (4N − 1)/3 routers. The advantage of the fat quadtree over the mesh is that the
communication diameter of a fat quadtree is only O(log4N) compared to O(

√
N) for the

mesh. The fat quadtree uses the nearest-common ancestor routing algorithm. Packets are
routed adaptively up to the common ancestor and deterministically down to the destination
core. There are no cyclic connections in the fat quadtree; hence, it is deadlock-free.

Ring Topology

The ring topology is a popular topology for many communications and parallel processing
applications. This is due to its structural simplicity and very simple routing protocols. The
routers connect in a ring structure. Every router is connected to two neighbouring routers

2.1. Network-on-Chip 11

Figure 2.4: Ring layout

and one core [30]. Hence, the ring has a radix of three. In a ring topology, the number of
routers is equal to the number of cores. Figure 2.4 shows the layout for a ring of 12 nodes.
The ring topology is used in chips, including the IBM Cell processor [31], the Intel Larrabee
processor [32], and the Intel Xeon Phi [33].

2.1.2 Switching Techniques

Switching techniques are determined by how the input channel of the switch is connected to
the output channel, selected by the routing algorithm, and when the data can transfer along
the channels. Data are transmitted in the network as messages that are divided into packets,
which in turn are divided into flow control units (flits). Switching technique typically has a
more significant impact on performance than routing and topology [20]. Interconnection net-
work switching can be circuit switching, store-and-forward switching, virtual cut-through,
or wormhole switching.

Circuit Switching

Circuit switching reserves the circuit from source to destination from the time the connection
is established until the transport of data is complete [20, 34]. This is done by injecting the
routing head-flit into the network. The head-flit contains the source and destination addresses
and some additional control information. While the head-flit is transmitted to the destination
through intermediate routers, it reserves the physical links. Once it reaches the destination,
an acknowledgment is transmitted back to the source. Then, the message content can be
transmitted to the destination. The reserved physical links are released by the destination or
by the last few bits of the message.

2.1. Network-on-Chip 12

Store-and-Forward Switching

Store-and-forward switching is a packet-switched protocol in which the routers store the
complete packet and forward it based on the information within the header. In other words,
each packet is individually routed from source to destination. A packet is buffered at each
intermediate router before it is forwarded to the next router. Therefore, the packet may reside
in an intermediate router if the next router does not have sufficient buffer space [20, 34].

Virtual Cut-Through Switching

Virtual cut-through switching has a forwarding mechanism similar to the wormhole switch-
ing. However, before forwarding the first flit of the packet, the router waits for a guarantee
that the next router in the path will accept the entire packet. In case there are no guarantees,
the router must be able to store the whole packet [20, 34].

Wormhole Switching

Wormhole switching is the most popular technique used on-chip [17]. It combines packet
switching with the data streaming quality of circuit switching to achieve minimal packet
latency. The router looks at the routing information in the head-flit to determine its next
hop and immediately forwards it. The following flits are pipelined through the network
following the head-flit. This causes the packet to worm its way through the network, possibly
bridging a number of routers. Each intermediate router has enough space for a few flits,
which means less buffer size is required than in store-and-forward switching. A delayed
packet, however, has the unpleasantly expensive side effect of occupying all the links that
the worm spans [20, 34].

2.1.3 Routing

Routing algorithms decide the path from source to destination. The effect of routing algo-
rithms is significant to the network topology. Numerous routing algorithms have been pro-
posed and adopted for interconnection networks. Nevertheless, the uniqueness of Network-
on-Chip prevents employing most of the contributions. Routing tables and complex arbitra-
tion protocols must be avoided for on-chip networks, and efficient routing algorithms should
be used to target small area and high frequency implementation [5]. Deterministic routing,
source routing, and adaptive routing are mainly used for NoC connections.

2.1. Network-on-Chip 13

Figure 2.5: Example of XY routing

Deterministic Routing

In deterministic routing, the path is determined by the source and destination alone. The
path between source and destination is always the same. Each intermediate router computes
the next hop. It requires only the destination address to decide the next hop. A popular
deterministic routing scheme for NoC is XY routing [17], [35]. Figure 2.5 shows an example
of XY routing. In a 2-Dimesion mesh topology, each router can be identified by its coordinate
(x, y). The XY routing is when the packects are routed along the X-axis then Y-axis to reach
its destination [28].

Source Routing

In source routing, the source core specifies the entire path to the destination. A path from
the source to the destination is stored in the packet header. The path can be an ordered list
of addresses of all the intermediate routers. In the intermediate router, the path is typically
modified in order to represent the appropriate routing choice for the next router [17]. Figure
2.6 shows an example of source routing.

Adaptive Routing

In adaptive routing, the routing path is decided on a per hop basis. At each intermediate
router, the decision is not based on the destination address only. The traffic information is
taken into account as well. This results in more complex router implementations but offers
benefits like dynamic load balancing [17], [20].

2.2. Memory Hierarchy 14

Figure 2.6: Example of source routing

2.2 Memory Hierarchy

Memory is important to the operation of a computer system. Memory refers to any physical
device capable of storing information temporarily or permanently. The concept of memory
hierarchy is more important to the development of the modern memory system than it was
in early systems [36]. Memory hierarchy is usually illustrated as a pyramid, as shown in
Figure 2.7. The higher levels in the pyramid have better performance than the lower levels in
the hierarchy. Performance in the memory hierarchy is understood in term of response time,
complexity, and capacity. The purpose of the memory hierarchy is to allow the CPU to have
faster access to data, so that the CPU can spend more time working, instead of waiting for
data. A modern computer system moves data that are needed from the slower memory up
to the faster memory. This is why the small and expensive fast memory is located near the
CPU, so that the processor can quickly access the data needed [37]. Computer memory can
be divided into two groups: primary memory and secondary memory [38].

2.2.1 Primary Memory (Volatile Memory)

The primary memory consists of fast memory which is directly accessible by the CPU. This
type of memory is volatile. Volatile memory is a memory that loses its content when the
computer or hardware device loses power, in other words, it cannot save its state unless it is
powered on. Consequently, when a computer system is power off or rebooted, all data in the
primary storage is lost. Primary storage is fast, typically small and expensive [36, 37]. CPU
registers, caches and random access memory are some examples of primary memory.

2.2. Memory Hierarchy 15

Increasing speed

and cost per bit

Increasing size

Registers

Cache

Main memory

Solid-state disk

Magnetic disk

Optical disk

Magnetic tapes

Figure 2.7: Memory hierarchy

CPU Registers

CPU registers are at the very top of the memory hierarchy. There are only a few processor
registers in a CPU, but they are very fast. A computer moves data from other memory into
the registers, where it is used for different computations [36].

Caches

Cache memory is a fast memory which is located between the main memory and the CPU
registers in the memory hierarchy. Cache memory stores most recently accessed data and
instructions, to allow future accesses by the processor to particular data and instructions to
be handled much faster. Caches have a hierarchy of their own. Most computers nowadays
have three levels of cache [39, 40]. IBM zEnterprise 196 (z196) system uses four levels of
cache [41].

Main Memory

Main memory comes next in the hierarchy after caches. The main memory refers to Dynamic
Random-Access Memory (DRAM) which means it is relatively cheap, but still quite fast. It

2.3. Memory Architectures 16

performs both read and write operations on memory. If power failures happen in systems
during memory access then you will lose your data permanently because RAM is volatile
memory [37].

2.2.2 Secondary Memory (Non-Volatile Memory)

Secondary storage is in many ways the opposite to primary storage. It is a non-volatile
memory which means it can save its state even when powered off. Accordingly, when a
computer system is powered off or rebooted all the data stored in the secondary storage is
saved and accessible when the system is next time started. Secondary storage is generally
named external memory and it is characterized by being large, slow, and cheap. Secondary
memory can not be accessed by the CPU directly, which makes it even more complicated
and slow to access than primary memory [36].

2.3 Memory Architectures

Memory architecture describes the design used to build the data storage in a way that is a
combination of the fastest, most reliable, most resilient, and least expensive way to store and
retrieve information. As the number of cores in a chip increases, the latency on-chip inter-
connects take a longer time. On-chip interconnects refer to the exchange of data between
memory and cores as well as the exchange of data between cores. Therefore, depending on
the specific application, a trade-off in either the latency or the throughput may be necessary
in order to improve another requirement. The main models of memory architectures are: dis-
tributed memory architectures, shared memory architectures, and distributed shared memory
architectures.

2.3.1 Distributed Memory Architectures

The memory is physically distributed among processors and each processor has its own pri-
vate memory, which cannot be accessed by other processors. A processor can only access its
own memory. Access to data belonging to the memory of another processor must be explic-
itly requested; therefore, the communication in this type of architecture occurs by message
passing [42]. In distributed memory, memory is scalable with the number of processors. The
number of processors increases proportionately to the size of memory. Each processor can
quickly access its own memory without the overhead of cache coherency. The disadvantage
of distributed memory is that the programmer is responsible for many of the details related to
data communication between processors. In addition, it may be difficult to map existing data

2.3. Memory Architectures 17

Figure 2.8: Distributed memory architectures

structures, based on global memory, to this memory organisation [43]. Figure 2.8 illustrates
the distributed memory architecture.

2.3.2 Shared Memory Architectures

All memory is mapped onto a global memory address space, which is accessible by all
processors in the system. In shared memory, communication is performed by writing to and
reading from shared variables. The shared variables data is visible to all processors in the
system. Therefore, managing concurrent access to the shared variables is important. As the
number of processors grows in a shared memory machine, it becomes harder to guarantee
that every processor has fast access to the shared memory [42].

Symmetric Multiprocessor Architecture

Symmetric Multiprocessors (SMP) is a case of shared memory. In SMP, all processors have
the same access to any memory location [44]. Because SMP has a uniform memory latency
for all processors, it is also known as Uniform Memory Access (UMA). SMP has a cen-
tralised shared main memory operating under a single operating system with two or more
processors. Usually, each processor has an associated private cache memory to speed up the
main memory data access and to reduce the system bus traffic. This architecture is not really
scalable because it uses a central bus, which provides a constant bandwidth shared by all
processors [45]. Figure 2.9 illustrates the symmetric multiprocessor architecture.

Non-Uniform Memory Access Architecture

Non-Uniform Memory Access (NUMA) is a case of shared memory as well; however, pro-
cessors have faster access to their own local memory. In NUMA, processors are connected to
a scalable network, and each processor has a portion of memory attached directly to it. The
primary difference between NUMA and distributed memory is that in NUMA processors can

2.3. Memory Architectures 18

Figure 2.9: Symmetric multiprocessor architecture

Figure 2.10: Non-uniform memory access architecture

have mappings to memory connected to other processors; however, this is not the case for
distributed memory, as a processor does not have mappings to memory connected to other
processors [45]. Figure 2.10 illustrates the NUMA architecture.

Non-Uniform Cache Architecture

In the traditional cache architectures, each level in the cache hierarchy has a single and
uniform cache access time. The increasing communication delay causes the successful ac-
cess time to large on-chip caches to be a function of a line’s physical location within the
cache. Accordingly, cache access time becomes a range of latencies rather than a single dis-
crete latency. However, non-uniform access to caches can provide access to portions of the
cache that are closer to the core [46]. Non-Uniform Cache Architecture (NUCA) is a design
paradigm for large on-chip caches and was first proposed by Kim et al. [47]. It has been
introduced to deliver lower access latencies. The NUCA systems are built by dividing the
entire cache into smaller banks. Each of these banks has a single discrete latency [48].

2.3. Memory Architectures 19

Figure 2.11: Example of 3D memory stacking architectures (from [1])

2.3.3 Distributed Shared Memory Architectures

Distributed Shared Memory (DSM) is a form of memory architecture where the physically
distributed memory can be addressed as one logically shared global address space. Most of
the supercomputers that exist today have both shared and distributed memory architectures.
Current trends seem to indicate that this type of memory architecture will continue to prevail
and increase at the high end of computing for the foreseeable future. This architecture is
scalable; however, it has increased programming complexity [49].

2.3.4 3D Memory Stacking Architectures

3D memory stacking has received great attention in recent years, since it resolves the mem-
ory bandwidth challenges of 2D integration [13–15]. 3D memory stacking involves pack-
aging the memory on top of the processor cores, which allows each processor core to have
fast and high bandwidth access to the cache banks directly stacked on top of it, using very
dense vertical interconnects. The processor core can also address cache banks stacked on
the other processors [13, 14]. The advantages of 3D stacking are lower latency and higher
bandwidth. The proposals of the 3D stacked cache memory hierarchy have similar concepts
to the memory hierarchies of the traditional multiprocessors. For example, the stacked cache
can be either private or shared [1]. Figure 2.11 shows an example of 3D memory stacking
architecture.

2.4. Cache Coherence 20

2.4 Cache Coherence

Cache coherence is a concern in a multi-core environment because of the distributed local
caches. Since each core has its own cache, the copy of the data in that cache may not always
be the most updated version. Cache coherency can be understood as the mechanism that
ensures the consistency of data stored in local caches of a shared resource.

The easiest and safest way to do this is to update all copies as soon as any processor writes
on them. However, this leads to poor parallel processing performance because all processors
have to stall until their copies are updated. As a result, relaxed models exist in which the
copy update might be delayed. Cache coherency is a property of an individual memory
location while memory consistency refers to the order of accesses to all memory locations.
Memory consistency guarantees that the correct result of the program will not be affected by
delays in the memory updates. Many consistency models exist where the cache copies must
be updated, such as sequential and processor consistency. The implementation of memory
consistency is called synchronization. In shared memory systems, synchronization can be
implemented implicitly using cache coherence.

Many researchers think that cache coherency will not scale to a large number of cores [18],
[50], [51]. However, Martin and others [52] show that it is possible, using a combination of
known techniques for scaling cache coherence. Shared caches augmented to track cached
copies, explicit cache eviction notifications and hierarchical designs are some of these tech-
niques.

There are two basic ways of implementing cache coherence, namely the snooping and the
directory-based protocols.

2.4.1 Snooping Protocol

Snooping cache coherency protocols can only be used in systems where multiple processors
are connected via a shared bus [53]. Hence, snooping protocol takes advantage of the bus by
using the broadcast method. Snooping protocols mainly have two different ways to imple-
ment coherency: write-invalidate and write-broadcast. In write-invalidate, a processor sends
invalidation messages to all other processors that have cached copies of the shared data, and
then it updates its own copy. In write-broadcast, a processor broadcasts the updates made to
shared data to other processors who have a cached copy, so that all copies of the shared data
are the same. Processors can read the shared data without any coherence problems; however,
a processor must have exclusive access to the bus in order to write. MESI protocol [54] and
MOESI protocol [55] are some examples of snooping cache coherency protocols.

Snooping protocols are not scalable because they require a shared bus connection, which

2.5. Many-Core Systems Processors 21

limits the number of processors that can be attached to the bus. In addition, snooping pro-
tocols use broadcasting techniques that limit the performance due to competition for shared
resources. Consequently, they cannot be used in many-core NoC.

2.4.2 Directory-Based Protocol

Directory-based cache coherence protocols were introduced to deal with cache coherence
in systems containing more processors than the bus can accommodate [56]. In a directory-
based system, the shared data is placed in a common directory that maintains the coherence
between caches. The processors must ask permission from the directory to load shared data
from the primary memory to its cache. When the shared data are modified, the directory
sends either updates or invalidations to the other caches that have copies of the shared data.
The directory can be placed centrally with the main memory in a multi-processor system
or can be distributed among the caches. DASH coherence protocol [57] and SGI Origin
coherence protocol [58] are some examples of directory-based cache coherence protocols.

The directory-based protocols are scalable to a large number of processors. There are two
challenges of implementing directory-based cache coherence protocol, which are reducing
the overhead of directory storage and reducing the number of messages required to imple-
ment coherence protocol.

2.5 Many-Core Systems Processors

Many-core system processors are processors containing a large number of simpler, indepen-
dent pro- cessor cores. They are designed for a high degree of parallel processing. There
is much research about many-core design methods [59], [60], [61], which shows that many-
cores will continue to be integrated into chips in the future. This section describes a number
of existing many-core processors.

2.5.1 Xeon Phi Processor

Xeon Phi is manufactured by Intel. It has 60 cores connected by a bidirectional ring intercon-
nect [33]. Each core has a 22nm processor, 4-way hyper-threading, 32KB L1 private cache
and 512KB L2 private cache. The processor runs at a speed of 1.053GHz. The memory
bandwidth is 320GB/s. The Xeon Phi has eight memory controllers. Each direction in the
bidirectional ring interconnect is comprised of three independent rings. The first ring is the
data block ring. The data block ring is 64B wide to support the high bandwidth requirement
due to the large number of cores. The second ring is the address ring, which is used to send

2.5. Many-Core Systems Processors 22

Figure 2.12: Xeon Phi processor architecture

read/write commands and memory addresses. The third ring is the acknowledgment ring,
which sends flow control and coherence messages [62, 63]. Figure 2.12 shows the Xeon Phi
processor architecture.

Cache coherence is maintained using a global-distributed tag directory-based protocol. When
a cache miss occurs in a core’s L2 cache, an address request is sent on the address ring to the
tag directories. The memory addresses are uniformly distributed amongst the tag directories
on the ring. If the requested data block is found in another core’s L2 cache, a forwarding
request is sent to that core’s L2 over the address ring, and the request block is subsequently
forwarded on the data block ring. If the requested data is not found in any caches, a memory
address is sent from the tag directory to the memory controller.

2.5.2 TILEPro64 Processor

TILEPro64 is a multi-core processor originally manufactured by Tilera [64]. It has 64 cores
in an 8 × 8 mesh network with cache coherency. Each tile has a general purpose 90nm

processor, cache, and a router. The processor runs at a speed of 866MHz. The memory
bandwidth is 200GB/s. TILEPro64 has four memory controllers. Each core has a private
8KB L1 data cache, a private 16KB L1 instruction cache, and a private 64KB L2 cache.
The combination of all L2 caches across the chip form the distributed L3 cache [2,65]. Figure
2.13 shows the TILEPro64 processor architecture.

Cache coherence is maintained using in-cache directory-based protocol. When a miss oc-
curs in a local L2 cache, the core sends a request to the core that has the cache line in its

2.5. Many-Core Systems Processors 23

Figure 2.13: TILEPro64 processor architecture

private L2 cache read and copy the cache line into its own local L2 cache. TILEPro64 has
six interconnected meshes. Three of the networks are dedicated for hardware control and
managing memory movement and cache coherence, in order to speed the cache coherence
communication across the chip. The other three networks are allocated to software.

2.5.3 SW26010 Processor

SW26010 is a 260 core many-core processor designed by the National High Performance
Integrated Circuit Design Center. The processor frequency is 1.45GHz. It has a memory
bandwidth of 136.51GB/s. The SW26010 has four clusters that contain one management
processing element (MPE), one memory controller (MC), and 64 Compute-Processing El-
ements (CPEs), which are arranged in an 8 × 8 mesh. The four clusters are connected by
Network-on-Chip. Each MPE has a 32KB L1 instruction cache, a 32KB L1 data cache,
and a 256KB L2 cache [66]. Figure 2.14 shows the SW26010 processor architecture.

2.5.4 PEZY-SC Processor

PEZY-SC (SC: Super Computing) is a many-core processor developed by Pezy Computing.
PEZY-SC has 1024 cores and each core has a 28nm processor. The processor runs at a speed
of 733MHz. The memory bandwidth is 1533.6GB/s. PEZY-SC has a 1MB L1 cache,
a 4MB L2 cache and an 8MB L3 cache [67]. Figure 2.15 shows the PEZY-SC processor
architecture.

2.6. Summary 24

Figure 2.14: SW26010 processor architecture

The cores are classified into three layers: a village, which is 4 cores, each with a private L1
cache, a city, which is 4 villages, each with a L2 cache, a prefecture, which is 16 cities, each
with a L3 cache, and 4 prefectures. Cache coherency is not integrated in the processor [68].

2.6 Summary

In this chapter, we have discussed Network-on-Chip (NoC) in general and the important
aspects of NoCs in terms of topology, routing algorithms, and switching techniques. We have
provided an overview of the different types of memory architectures: distributed memory
architectures, shared memory architectures, and distributed shared memory architectures. In
addition, we have explained programming parallel models. We have provided a brief detail of
some common programming models: MPI, openMP, and PGAS. Moreover, we have detailed
an overview of some of the many-core platforms that exist nowadays.

We see that many-core systems are here and will continue in the future. Network-on-Chip is
the dominant interconnection architecture.

2.6. Summary 25

Figure 2.15: PEZY-SC processor architecture

26

Chapter 3

Cost Model, Technology Node
Assumptions, and Methodology

This chapter presents the cost models for the link complexity, routers, buffers, and area
space for three topologies: the mesh, the concentrated mesh (cmesh), and the fat quadtree
(FQT). In addition, it presents the technology node assumptions we made using data from the
International Technology Roadmap for Semiconductors (ITRS) for the year 2023. Moreover,
this chapter compares a number of Network-on-Chip (NoC) simulation tools and explains in
detail how the Heterogeneous Network-on-Chip Simulator (HNOCS) works and why we
selected it as a simulation tool for this research work. HNOCS-XT is our extended version
of HNOCS. We made a lot of modifications and additions to it to suit the requirements of this
work, which will be detailed later. This chapter describes the experimental methodology we
use in this research to measure the performance of different topologies by enforcing locality.

3.1 Topological Properties

In this section, we present the cost model of the mesh, the concentrated mesh, and the fat
quadtree in terms of link complexity, number of routers, and buffers. Table 3.1 shows the
notations used for the cost model throughout this section.

Table 3.1: Table of notations
Symbol Description Symbol Description
N Total number of cores NL Total number of links
nB Number of buffers NR Total number of routers
nV C Number of virtual channels NB Total number of buffers

3.1. Topological Properties 27

3.1.1 Link Complexity

Link complexity is the total number of links in the topology. A link is a set of wires that con-
nects two routers in the network. Links may consist of one or more physical channels. Table
3.2 shows that the mesh and the concentrated mesh have fewer links than the fat quadtree.
For a fair comparison between the topologies, virtual channels are added in the mesh and the
concentrated mesh, while the fat quadtree has no virtual channels.

The wire link overhead is how much space the wires take from the chip area. To calculate
the wire link overhead, we get the link’s width Linkwidth as in Equation 3.1, where (W) is
the wire pitch (pitch = width+ space [69]), (Nbits) is the number of bits in parallel for one
packet, and Nlayers is the number of layers.

Linkwidth =
W ×Nbits

Nlayers

(3.1)

The number of vertical wires in a fat quadtree can be obtained V erticalwire = 2(log4N−1)log4N ,
and for the mesh and the concentrated mesh V erticalwire =

√
N and V erticalwire =

√
N
2

,
respectively, where N is the number of cores. From Equation 3.1 and the number of vertical
wires, the total width of the vertical link is:

WidthV erticalLink = Linkwidth × V erticalwire (3.2)

The width of the chip is

WidthChip = LengthCore ×
√
N +WidthV erticalLink (3.3)

Starting from Equation 3.1, the total width of the vertical link and the width of the chip, we
can compute the area overheads as follows:

AreaWire = 2×WidthV erticalLink ×WidthChip (3.4)

AreaChip = AreaCore ×N + AreaWire (3.5)

AreaOverhead =
AreaWire

AreaChip
(3.6)

3.2. Technology Node Assumptions 28

Table 3.2: Cost model for N cores
Mesh Fat Quadtree Concentrated Mesh

NL 2
√
N(
√
N − 1).nV C N.log4(N)

√
N(
√
N
2
− 1).nV C

NR N N−1
3

N
4

NB 5nBnV CN nB(N − 4)(
√
N − 2) + 2nB

√
N 2nBnV CN

3.1.2 Routers

A router connects two or more links using ports. Radix is the number of ports a router has.
The router decides which link the packets should go to next in order to reach the destination,
based on a specific routing algorithm depending on the network topology. The number of
routers in the mesh has the order of O(N) compared to O(N/4) and O(N/3) for the con-
centrated mesh and the fat quadtree, respectively. The mesh has a radix of five ports while
the concentrated mesh and the fat quadtree have eight and five ports, respectively.

3.1.3 Buffers

The total number of buffers in the mesh and the concentrated mesh is straightforward, as in
each router there are five and eight ports, respectively. The total number of buffers in the fat
quadtree is more complex since the buffer size is not constant at each port for each router.
The buffer size doubles at every level because the wire lengths are doubling at every level.
The root router has only four ports while the rest of the routers have five ports. Therefore,
the mesh and the concentrated mesh have the order of O(N) number of buffers compared to
O(N

√
N) in the fat quadtree. Table 3.2 shows the cost model for all three topologies.

3.2 Technology Node Assumptions

In this section, we assume that the technology node used in the research is the 10nm process
as projected for the year 2023 by the International Technology Roadmap for Semiconductors
(ITRS). ITRS is a set of documents produced by a group of semiconductor industry experts.
The documents represent best opinion on the directions of some research areas of technology
such as integrated circuit (IC) interconnects, yield enhancement, and process integration
devices and structures. Moreover, the documents include timelines and predictions into the
future, up to around 15 years [70]. We use the data from ITRS to ensure realistic simulation
results of the next decade’s many-core systems. Table 3.3 lists the physical parameters for
this technology node from the 2011 ITRS data [70]. Because semiconductor companies
rarely publish the real size of a die, we need to estimate it. We use the die size (433.5mm2)
of the 64-core Tile64 from [71] to estimate the current core size and scale it to the year 2023

3.3. Overheads for a 1024-core chip, 10nm (2023) ITRS Node 29

Table 3.3: Technology parameters for 10nm CMOS (2023) based on ITRS 2011
Year 2013 2023

Chip size at production 140mm2 111mm2

Global wire delay 1ns/mm 33.8ns/mm
Estimated core size 6.8mm2 0.3mm2

Estimated wire delay 2.6ns 17.5ns

technology node. From ITRS [70] the chip size at production in 2013 was 140mm2 so it is
less than the estimated core size in [71] by a factor of 3.1 (433.5/140). In 2023, the chip will
contain 20×more cores than today’s chip, as Tile64 has 64 cores. Consequently, the chip size
in 2023 with nearly 1280 (20 × 64) cores will be approximately 3.1 × 111 = 344.1mm2.
Hence, the area of one core is 344.1/1280 = 0.27mm2. This core area corresponds to
dimensions of about 0.52mm × 0.52mm. The width of one core is thus 0.52mm and the
wire delay can be estimated at 0.52× 33.8 = 17.5ns.

3.3 Overheads for a 1024-core chip, 10nm (2023) ITRS

Node

We use the cost model mentioned in Section 3.1 to compute realistic overheads for a 1024-
core many-core chip. The mesh and the cmesh have 2V C, while the fat quadtree has no
virtual channels. The number of buffers is 16 flits. The flit’s size is 32Bytes. In terms of
buffer space overhead, the mesh will require 5.1KB of storage per core, the cmesh 2KB

and the fat quadtree 15.3KB. Although the total number of buffers (NB) is a lot more in
the fat quadtree than the mesh and the cmesh, it is only a very small fraction of the total size
of the chip. For example, the per-core L2 cache on the 60-core Xeon Phi is already 512KB

[72]. With the above assumptions, the area of a 15.3KB SRAM buffer would be 0.14% of
the estimated core size. Since the memory density is 37.6MB/mm2, then 11.3MB is the
memory size that can be placed on top of each core. In terms of wire overhead, our cost
model shows that the wire area overhead for the fat quadtree would be 0.3% of the estimated
chip size for a 1024-core chip (wire pitch 17nm).

These results are very important as they indicate that for this type of many-core architecture
the NoC overhead is negligible, which means that the choice of the NoC can be based solely
on performance.

3.4. Packet Format and Switching 30

6

60

600

α=1 α=0.75 α=0.5 α=0.25 α=0.05 α=0.01 α=0 α=1 α=0.75 α=0.5 α=0.25 α=0.05 α=0.01 α=0

Mesh Quadtree

E
n

d
 t

o
 e

n
d

 l
a
te

n
cy

 (
n

s)

Flits = 1

Flits = 2

Flits = 4

Flits = 8

Figure 3.1: Effect of increasing number of flits per packet on the performance (α = 1: no
locality,α = 0: total locality)

3.4 Packet Format and Switching

In this section, we discuss why we use a degenerated case of wormhole switching which
uses only a single flit. This has the advantage over wormhole switching with more flits per
packet because it will not block the routers along the packet path. Lee et al. [73] argued
that widening the flit size will increase the Network-on-Chip performance and make it cost
effective. In addition, in a modern chip wires are cheap, see Section 3.3.

In Figure 3.1, we show the effect of using different flits per packet when enforcing locality on
the mesh and the fat quadtree. The locality parameter is α. When α = 0, it means that all of
the packets are sent to neighbouring cores and when α = 1, it means that all of the packets
are sent to further cores. The figure shows that the average packet latency of the system
improves when reducing the number of flits per packet. The fat quadtree with single-flit
packets performs 15% to 75% better compared to 4 flits per packet under high locality traffic
(α < 0.25). The reason is when more flits are in a packet, more routers will be occupied by
one packet which leads to increased latency.

3.5 Simulation Tool

We discuss a number of NoC simulation tools and explain in detail the simulation tool se-
lected for this work. In addition, we list the extensions and modifications made in the selected
simulation tool. In general, building a real system for evaluation is too costly and not practi-
cal. In addition, it is impossible because we assume a technology node for the year 2023 and
it does not exist yet. Hence, building a simulation model is the most suitable approach for
evaluating and studying many-core systems. Furthermore, building a simulation tool is cost

3.5. Simulation Tool 31

effective and a feasible way to experiment and analyse theories, algorithms, mechanisms,
or strategies of the actual system. An analytical model for hierarchical NoC is difficult and
impossible to do; however, some analytical models are used for wire delay and chip area, see
Section 3.1.

Simulators are essential tools in evaluating the performance of different NoC designs and
new proposals. Table 3.4 presents a comparison between various NoC simulators. NIRGAM
is a SystemC based discrete event, cycle accurate simulator for research in Network-on-Chip.
It provides substantial support to experiment with NoC design in terms of routing algorithms
and applications on various topologies [74]. BookSim is a cycle-accurate interconnection
network simulator. It supports a wide range of topologies such as mesh, torus, and flattened
butterfly networks. It provides diverse routing algorithms and includes numerous options for
customising the networks router microarchitecture [75]. Noxim is an open, extensible, and
cycle-accurate Network-on-Chip Simulator developed using SystemC. Noxim has a com-
mand line interface for defining several parameters of a NoC in mesh topology [76].

The selected framework for this research is OMNeT++ (Objective Modular Network Testbed
in C++), which is an object-oriented modular discrete event simulator. It is a very popular
simulator, which has been in development since 1992. Its primary use is to simulate com-
munication networks and other distributed systems. One important feature in OMNeT++ is
its generic and flexible architecture. Therefore, it is used in other areas, like simulation of
IT systems, queuing networks, hardware architectures, and business processes, as well [77].
OMNeT++ is a public-source, component-based, modular, and open-architecture simulation
environment with strong GUI support and an embeddable simulation kernel. It also runs
on different operating systems, such as Linux, other Unix-like systems, and Windows. This
has allowed OMNeT++ to rapidly become a popular simulation platform in the scientific
community as well as in industrial settings [77].

OMNeT++ has several packages and technology specific simulators built on top of it, such as
HNOCS. HNOCS is an open-source NoC simulator based on OMNeT++. HNOCS stands for
Heterogeneous Network-on-Chip Simulator. This simulator was built to provide researchers
with an open-source, scalable, extendable, and fully parameterisable framework for mod-
elling NoCs [16]. Section 3.5.1 explains in detail how HNOCS works, and Section 3.5.2
mentions HNOCS-XT, which is an improved HNOCS with extensions and modifications
that we made to suit our research.

3.5.1 Heterogeneous Network-on-Chip Simulator (HNOCS)

The HNOCS simulator uses mesh topology and wormhole switching with virtual channels
and credit based flow control. The XY routing algorithm is used to route the packets.

3.5. Simulation Tool 32

Table 3.4: NoC Simulation
Frame work Topologies

NIRGAM [74] SystemC All
BookSim [75] C++ All

Noxim [76] SystemC Mesh
HNOCS [16] OmNet++ Mesh
HNOCS-XT OmNet++ All

HNOCS provides a set of statistical measurements such as the throughput and different la-
tency statistics at the flit and packet levels. HNOCS is selected to simulate Network-on-Chip
because it has a modular structure that makes it easier to modify and to add compared to
other simulators.

In HNOCS, a NoC is built from two main modules: routers and cores. The core (Fig 3.3)
contains the source where the messages are generated and the sink where the messages are
received and statistical values are collected. The router is hierarchically built as a collection
of connected ports. The capacity and number of Virtual Channels (VCs) can be configured
at each port. The router (Fig 3.4) is made of a number of ports. The port (Fig 3.5) consists of
the input port (inport), output port selector (opCalc), VC-allocator (vcCalc), and scheduler
(sched). In the input port, the incoming flits are stored in the proper VC FIFO buffer. Then,
the head-flit is sent to the output-port selector to calculate the output port according to a
routing algorithm. After that, the VC-allocator allocates a proper output VC. The scheduler
arbitrates between the different packets that need to be transmitted through the proper out-
port.

HNOCS Simulator Architecture

The simulator architecture below shows how the hierarchical modules in HNOCS are con-
structed. A complete network topology is built from routers and cores, and it describes the
connections and links between them.

• Core (Fig 3.3)

– Source: packet generator

– Sink: packet collector

• Router (Fig 3.5)

– Ports (Fig 3.5)

∗ In-port: FIFO queue per VC

3.5. Simulation Tool 33

· vcCalc: VC-allocator

· opCal: routing algorithm (XY routing)

∗ Sched: Arbiters for selecting which packet wins the output port using worm-
hole switching

Figure 3.2: Mesh 8x8 as displayed in OmNeT++ when running HNOCS

Figure 3.3: The core consists of the source where the messages are generated and the sink
where the messages are received and statistical values are collected

Router Pipeline

The router pipeline describes the process of a head-flit when it arrives at the router.

3.5. Simulation Tool 34

Figure 3.4: The router in a mesh consists
of five ports: four ports to the neighbour-
ing router and one port to the core

Figure 3.5: The port consists of input
port (inport), output port selector (op-
Calc), VC-allocator (vcCalc), and sched-
uler (sched)

1. When a head-flit arrives at an in-port, it is queued in the proper VC buffer and the
routing module calculates the packet’s out-port.

2. When the head-flit is in the head of the buffer, the VC-allocator assigns a VC over the
out-port.

3. The in-port sends a request message to the scheduler of the out-port.

4. Once the scheduler can transmit the head-flit, it sends a grant message to the in-port.

5. The in-port sends a credit message to the scheduler of the previous router.

6. The in-port sends the head-flit to the out-port.

7. The scheduler sends it to the in-port of the next-router.

8. The rest of the packet’s flits are assigned the same out-port and VC of their head-flit.
The scheduler sends grant messages to the in-port whenever it can transmit the packet’s
flits. In return, the in-port sends the next packet’s flit or NACK if there are no ready
flits to transmit.

The scheduler serves the request messages from the in-ports (per VC) in a FIFO manner. It
employs a round-robin (each VC with outstanding flits sends a single flit) or a winner-takes-
all arbitration (the winner VC sends all its outstanding flits). Flits have to pass scheduling:
REQ→ GNT → ACK/NAK.

3.6. Experimental Methodology 35

3.5.2 Heterogeneous Network-on-Chip Simulator eXTended
(HNOCS-XT)

The original HNOCS supports only mesh topology with XY routing. For the purpose of
our research we created an extended version of HNOCS called HNOCS-XT. HNOCS-XT
supports cmesh and fat quadtree topologies and their routing algorithms.

The hierarchical cache model routing for all three topologies was built since they require a
different routing policy than the normal point-to-point routing. Moreover, a cache coherency
protocol was implemented with the additional message types it requires, which are eviction
and invalidation messages.

HNOCS was built for two or more flits per packet; therefore, some modifications were re-
quired in order to accept one flit per packet. Moreover, locality-based traffic models were
added as well. No physical parameters of the NoC were built in HNOCS; using ITRS data,
the physical parameters of the NoC for the year 2023 were integrated in HNOCS-XT.

3.5.3 HNOCS-XT and Noxim

HNOCS-XT was compared and verified with Noxim to assess the accuracy, the running time,
and the correctness of the simulators. Both simulation tools were setup using the same pa-
rameters. Figures 3.6 and 3.7 show the results of the comparison between HNOCS-XT and
Noxim for an 8 × 8 mesh network size. They show that HNOCS-XT has lower latencies
and slightly higher throughput than Noxim in higher transmission rates. In higher transmis-
sion rates, the networks are in saturation. The network is in saturation when more flits are
injected to the network which leads to increase in latency then the latency remains constant
because the flits will not be generated. When the network is congested, the generation of
the flits slows down or stop generating flits as in NoC no dropped flits should occurs. We
are interested in the results for when the network is not congested. When the networks are
not congested they produce the same results, which is more significant. Noxim has lower
granularity and it is cycle accurate, which means the values in higher transmission rate in
Noxim might be more accurate and closer to the physical behaviour. Noxim was not chosen
to simulate the Network-on-Chip for our work because it is harder to modify and compile in
a short time. In addition, because it is cycle accurate the simulation runs will be very slow.

3.6 Experimental Methodology

There are a number of traffic simulation methodologies that can be used in NoC simula-
tors: full-system simulation, trace-based traffic, and synthesis traffic. Full-system simulators

3.6. Experimental Methodology 36

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

La
te

n
cy

 (
n

s)

Transmission Rate (Gflit/s)

Noxim

HNOCS-XT

Figure 3.6: Latency comparison between HNOCS-XT and Noxim

1.E+03

1.E+04

1.E+05

Th
ro

u
gh

p
u

t
(n

u
m

b
e

r
o

f
p

ac
ke

ts
 r

e
ce

iv
e

d
)

Transmission Rate (Gflit/s)

Noxim

HNOCS-XT

Figure 3.7: Throughput comparison between HNOCS-XT and Noxim

3.6. Experimental Methodology 37

model each hardware component of the overall system and can run full applications and
operating systems. As a result, these simulators provide the highest degree of accuracy but
have long simulation times. Trace-based traffic using benchmark systems is not scalable for
thousands of cores and it is not possible to investigate and research the effect of locality [78].
Traditional synthetic traffic patterns, such as uniform random and transpose, are widely used
in NoC research [79]. However, these synthetic traffic patterns do not represent locality
enforced architecture.

In order to investigate the effect of the topology on the NoC performance, we propose ab-
stract synthetic traffic generation models that capture the locality behaviour with different
distance metrics, which lets us control the degree of locality as well as the shape of the local
area and thus provide general insights into the suitability of a given topology for a given
locality model.

In this section, we propose a simple hierarchical model for locality-based traffic. To model
locality, the cores of the chip are grouped and hierarchical groups are created to encompass
the whole system. Using 0 < l ≤ n for the levels of the hierarchy, and assuming n =

log4(N) with N the number of cores, the probability for communication across level-l can
be expressed as:

p(l) = (1− α)αl−1, 1 ≤ l < n (3.7)

p(n) = αn−1

The parameter α relates to the locality of the nodes in the topology. It expresses the proba-
bility that a message has to travel a certain distance in the network. Larger α means lower
locality: if α = 0.8, then according to equation (3.7) 80% of the message will have a desti-
nation outside the first cluster, and 80% of that portion outside the second cluster, etc. When
α = 1, it means that all of the traffic will be sent to the last level cluster. This is worse
than uniform traffic where all destinations have an equal probability of being the destination.
This type of locality-based model is used to enforce locality and investigate its effect on NoC
performance for different topologies.

It is interesting to note that these locality-based models are actually instances of the hotspot
traffic model. Hotspot traffic is when messages are destined to a specific core with a certain
probability and are otherwise uniformly distributed. According to the hotspot traffic model,
each core first generates a random number. If it is less than a predefined threshold, the
message is sent to the hotspot core. Otherwise, it is sent to other nodes in the network with
a uniform distribution. Our locality-based models perfectly fit this definition.

In this research, we use two different instances of this locality-based model to evaluate the
performance of the NoC topologies, group clustering and ring clustering.

3.7. Performance Measures 38

0 1 4 5 16 17 20 21

2 3 6 7 18 19 22 23

8 9 12 13 24 25 28 29

10 11 14 15 26 27 30 31

32 33 36 37 48 49 52 53

34 35 38 39 50 51 54 55

40 41 44 45 56 57 60 61

42 43 46 47 58 59 62 63

0 1 4 5 16 17 20 21

2 3 6 7 18 19 22 23

8 9 12 13 24 25 28 29

10 11 14 15 26 27 30 31

32 33 36 37 48 49 52 53

34 35 38 39 50 51 54 55

40 41 44 45 56 57 60 61

42 43 46 47 58 59 62 63

a) Group clustering b) Ring clustering

Figure 3.8: Example of the models in an 8× 8 mesh

3.6.1 Group Clustering

Group clustering is grouping the cores of the chip per four and creating hierarchical groups
to encompass the whole system, in a scale-invariant fashion. In this case n = log4(N) with
N the number of cores, and each level contains 4l cores. This is a generalisation of the node
communication resulting from e.g. tree-based reduction of values from all the nodes. The
group clustering locality captures the physical hierarchy of a quadtree topology. Figure 3.8.a
shows an example of group clustering of threads where the requesting thread is on core 0.

3.6.2 Ring Clustering

Ring clustering is grouping the cores of the chip in concentric rings around the sender core.
In this case, the number of cores per level is 8l as long as the rings do not meet the edge. Fig-
ure 3.8.b shows an example of ring clustering of nodes where the requested node is core 15.
This model is a generalisation of nearest-neighbour stencils typical for many finite-difference
based applications such as those encountered in e.g. weather prediction or computational
fluid dynamics.

3.7 Performance Measures

We use the performance measures to compare between the different topologies and architec-
tures of the many-core systems in our work. The performance measures we use are latency,
and throughput.

3.8. Summary 39

3.7.1 Latency

Latency is the time that a packet takes to be transmitted from the source to the destination.
Latency in NoC is measured in nanoseconds (ns). Latency is important for measuring the
success of NoC is an on-chip network, long latency can significantly worsen the overall
application performance, although it has high throughput.

3.7.2 Throughput

Throughput is one of the important parameters that we are interested in measuring in this
work. Throughput is defined as the average rate of error-free delivery of data over a com-
munication channel. It is generally measured in bits per second (bps) or data packets per
second.

3.8 Summary

In this chapter, we have discussed our assumptions on the technology node used to build
the many-core system, the cost model, and our methodology. Moreover, we have detailed
the parameters used to simulate a realistic technology node NoC for 2023 from ITRS. We
have shown that the buffer and wire space overhead of the NoC on a thousand-core system
is negligible for all three topologies, so that the choice of topology depends solely on the
performance.

HNOCS was chosen as the simulation tool and it has been extended and modified to HNOCS-
XT to suit the requirement of the researched NoC system. HNOCS-XT was explained in
detail and it was compared with Noxim for verification and to check the accuracy and the
running time of the simulation.

This chapter also introduced the concept of group clustering and ring clustering, which are
the two experimental models used to exploit locality in NoC.

Many-core memory architectures can be distributed memory architectures, shared mem-
ory architectures, or both distributed shared memory architectures. Many-core distributed
memory architectures are when cores communicate using point-to-point messages, such as
NUMA architectures. We focus on this type of architecture in Chapter 4. On the other hand,
many-core shared memory architectures are when cores share memory and communicate us-
ing process-to-memory communication. We focus on this type of architecture in Chapter 5.
Many-core shared memory architectures require cache coherency to ensure the consistency
of data in their memory; therefore, in Chapter 6 we focus on the effect of cache coherency
on many-core shared memory architectures.

40

Chapter 4

Effects of Locality on Message
Passing Communication
Performance

This chapter presents the effects of locality on the communication performance in many-core
Message Passing Model (MPM). The communication distributed memory architecture NoC
is point-to-point. Communication locality can optimise many-core performance since ap-
plications mapped on a large many-core system can benefit from clustered communication,
where data is placed in cores that are closer to each other. Thus, in this chapter, we show
the importance of locality in future many-core systems and that our locality model supports
Rent’s rule. In addition, we enforce locality using our experimental methodology mentioned
in Section 3.6 on flat and hierarchical network topologies to take advantage of such com-
munication locality. Moreover, this chapter describes the topologies used in the simulations,
and we compare them in terms of latency and throughput. Furthermore, it illustrates the sim-
ulation setup, the results, and the discussion of the many-core NoC simulation results. We
show that communication locality improves many-core NoC performance, and the increase
in NoC performance depends on the network topology.

4.1 Locality of Computation

Future many-core platforms can be expected to have distributed shared memory architecture
[80, 81]. Distributed shared memory architecture uses a hybrid message passing model and
shared memory model. Therefore, the communication protocols for programming parallel
computers similar to the approach used in NUMA architectures [45] and HPC clusters [82]
are to be expected [80]. In fact, it is likely that users will want to deploy legacy MPI code on

4.2. Relationship to Rent’s Rule 41

these novel platforms because rewriting large HPC codebases is a very large effort. However,
other message passing approaches, such as Erlang, would be equally suitable for this type
of architecture. Regardless of the programming language, it is clear that there is a need
for programming models that exploit locality to avoid the long latency of communication
between remote cores. We argue that communication cost, not the computation costs, is the
dominant factor in processor performance. As we move to thousands of cores on a chip, the
physical locality of computation and data becomes critical to performance and cost.

Recently, locality-based traffic and enforcing locality in NoC have been receiving increased
attention [83–86]. The performance of future many-core systems with thousands of cores
will heavily depend on the Network-on-Chip architecture to provide scalable communica-
tion. Communication locality is essential to reduce latency and increase performance. As
the number of cores increases, locality will only become more important [83]. Many-core
systems should be designed so that cores communicate mainly to the neighbouring cores, to
minimise the communication cost.

Without locality, the amount of communication grows with the square of the number of
cores. As a consequence, applications running on high-performance compute clusters always
display strong locality. Moreover, it has long been known that for high performance, message
passing applications require locality. We contend that a combination of locality-aware task
placement and a locality-based communication topology can greatly improve performance
of message passing style applications.

We define locality as the percentage of flits injected by a core communicating to its immedi-
ate neighbours in the network. Applications with high locality tend to have nearest neighbour
communication pattern with high local traffic.

4.2 Relationship to Rent’s Rule

There is a very interesting relationship between the α in our locality-based model (3.7) and
the measure for locality known as Rent’s rule, as extended to NoCs by Greenfield et al.
in [87]. Referring to Section 3.6, (1 − α) is the locality rate. Group clustering and ring
clustering are the models we use to choose the neighbouring cores communicating with each
other to enforce locality.

Rent’s rule was described in 1971 by Landman and Russo as the relation between the number
of terminals at the boundaries of an electronic circuit and the number of internal components
such as logic gates [88].

Greenfield et al. [87] argued that network traffic follows Rent’s rule. In addition, they argued
that Rent’s rule will naturally arise in multi-core and many-core because, just as it is typically

4.2. Relationship to Rent’s Rule 42

undesirable to place two blocks on opposite ends of the chip and wire them up, it is also
undesirable to map two communicating tasks to tiles at opposite ends. They extended the
concept of connection locality in circuits to communication locality among cores, proposing
a bandwidth based version of Rent’s rule,

B = kGβ

where B is the bandwidth sent or received by a cluster of G network nodes, k is the average
bandwidth per node, and 0 ≤ β ≤ 1 is the Rent’s exponent.

Heirman et al. [89] showed experimentally that many parallel applications follow Rent’s
rule. They analysed 13 popular benchmark applications running on 32 and 64 core networks.
Using a hierarchically partitioning algorithm they showed that the programs follow Rent’s
rule with measured values of the Rent’s exponent β ranging from 0.55 to 0.74, which proves
that communication is definitely localised.

As our many-core architecture is NoC-based, all traffic is transferred over the NoC. We
are then principally concerned with the latency and the throughput of our message passing
communications and, hence, with the latency and bandwidth of our NoC. In our proposed
architecture, the traffic flowing from level l to level l + 1 depends on α and the number of
cores in the level, 4l. Thus, for each level, the amount of core traffic generated is proportional
to the B(l) = 4l(1−α)αl−1. Following the derivation in [87], we consider the ratio of traffic
between two subsequent levels:

B(l + 1)/B(l) = 4α

and generalised to k levels:

B(l + k)/B(l) = (4α)k

Following again [87], we define α = 4β−1 and x = 4k and set l = 1, and we obtain exactly
the same equation as in [87], expressing Rent’s rule for bandwidth.

B(x) = B(1)xβ (4.1)

Thus, we obtain the very interesting result that the traffic bandwidth following from the
distribution in (3.7) is governed by Rent’s rule. In other words, our proposed hierarchical
locality approach expresses Rent’s rule for the bandwidth of the generated traffic.

4.3. Network Topologies 43

Figure 4.1: Mesh

4.3 Network Topologies

The network topology describes how routers are connected with each other and with the
cores. For many-core systems, the communication cost is increasingly important. The topol-
ogy has a major impact on the scalability and the performance of the network. With this
motivation in mind, the network performance and communication locality are analysed for
flat and hierarchical topologies. The three different types of network topologies used are the
mesh, the concentrated mesh (cmesh), and the fat quadtree (FQT). We choose to use these
topologies because chips now are produced using the mesh and the cmesh topologies such
as Tilera [64] and PEZY-SC [67]. Xeon-Phi [62] uses ring topology, but this topology will
not scale for thousands of cores because the communication latency becomes high, which
reduces the overall performance of the many-core system. In regards to the fat quadtree, we
will show that under localised traffic it might perform better than the mesh.

4.3.1 Mesh Topology

Figure 4.1 shows the layout for the mesh for an 8 × 8 network size. The mesh uses XY
routing. The wire delay for each link is 17.5ns, as calculated using ITRS data in Section
3.2.

4.3.2 Concentrated Mesh Topology

Figure 4.2 shows the layout for the concentrated mesh for an 8× 8 network size. Routing in
cmesh is using XY routing in the mesh structure and once the flits arrive to the parent router
of the core, the router sends the flit to the appropriate core. The length of the links in the
cmesh is double the length in the mesh; therefore, the wire delay for each link in the cmesh
is 35ns.

4.3. Network Topologies 44

Figure 4.2: Concentrated mesh

Figure 4.3: Fat quadtree logical layout

4.3.3 Fat Quadtree (FQT) Topology

The fat quadtree uses nearest-common ancestor routing. Figure 4.3 shows the logical layout
for a fat quadtree and Figure 4.4 shows the proposed physical layout for a fat quadtree for
64 nodes. In the proposed physical layout, the link length in the fat quadtree doubles as the
level of the hierarchy increases. The first level, which is the blue line, has a wire delay of
35ns and the next level a wire delay of 70ns, and so on.

In Figures 4.5 and 4.6, we calculated the number of hop counts and delays in 1024-core NoC
when a packet is generatedfrom all the cores to all the other cores. Frequency refers to the
number of occurrences of the hop count or the delay. Although the fat quadtree in a 1024
size NoC has a maximum of 9 hops compared to 63 and 39 hops for the mesh and cmesh,
respectively, the fat quadtree has the highest wire delay, as illustrated in Figures 4.5 and
4.6. Because the links between the hops of each level double in length in the fat quadtree,

Figure 4.4: Fat quadtree physical layout

4.4. Simulation Setup 45

0.00E+00

1.00E+05

2.00E+05

3.00E+05

4.00E+05

5.00E+05

6.00E+05

7.00E+05

8.00E+05

9.00E+05

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

Fr
e

q
u

e
n

cy

Hop Count

Mesh

Cmesh

FQT

Figure 4.5: Hop count comparison

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

140 280 420 560 700 840 980 1120 1260 1400 1540 1680 1820 1960 2100 2240

Fr
e

q
u

e
n

cy

Delay

Mesh

Cmesh

FQT

0.00E+00

1.00E+05

2.00E+05

3.00E+05

4.00E+05

5.00E+05

6.00E+05

7.00E+05

8.00E+05

9.00E+05

7
0

2
10

3
50

4
90

6
30

7
70

9
10

1
0
5
0

1
1
9
0

1
3
3
0

1
4
7
0

1
6
1
0

1
7
5
0

1
8
9
0

2
0
3
0

2
1
7
0

Fr
eq

u
en

cy

Link Delay

Mesh

Cmesh

FQT

Figure 4.6: Link delay comparison (17.5ns/link)

the wire delay doubles as well, while the wire delay of the mesh and the cmesh remains
constant. Looking at the figures, it is clear that the fat quadtree will have the longest delay,
and it will not be scaleable. However, by introducing locality into the picture the fat quadtree
can be scaleable and do better in terms of performance.

4.4 Simulation Setup

We simulate the different topologies on a 1024-core chip placed in a regular 32× 32 grid us-
ing HNOCS-XT. We model the process-to-process communication using Poisson-distributed
traffic because it typically offers a good estimate on the average performance of networks and

4.5. Evaluation and Discussion 46

Table 4.1: Simulation parameters
Topology Mesh CMesh Fat quadtree

Number of virtual channels 2 2 1
Wire delay (ns) 17.5 35 35× 2l−1, 1 ≤ l < n
Flit size (bytes) 32

Buffer size (flits/V C) 16
Channel datarate (Gb/s) 128

it has been widely used in the evaluation of interconnection networks. The packet length is
one flit and the flit size is 32Bytes. The flit size is equal to the size of most of the current
system’s messages. The frequency of a modern system is 500MHz; hence, the channel data
rate is 128Gbps and the bus is 256 bits wide. The clock speed is 2ns. The router delay
is 2ns. The fat quadtree has more links compared to the mesh and the cmesh. Therefore,
two virtual channels are used for the mesh and cmesh while for the fat quadtree one phys-
ical channel is used for the lowest-level links, and it quadruples at each level to simulate a
fat quadtree. Hence, the fat quadtree has no virtual channels. The buffer size in the router
is 16 flits per virtual channel for the mesh and cmesh and 16 flits per physical channel in
the fat quadtree. The wire delay is proportional to the distance between the routers, so in
a fat quadtree it doubles at each level. The destination is selected using different degrees
of localisation. The degree of localisation is described in Section 3.6, which has two dif-
ferent instances of locality-based model: group clustering and ring clustering. Table 4.1
summarises the simulation parameters used in our simulations.

The simulation run time is 1ms. In the simulation, all cores generate traffic at the same time.
A core will generate the next flit only if the flit in the source queue was sent; hence, there
will be no dropped flits.

4.5 Evaluation and Discussion

We evaluate the performance of the three topologies – the mesh, the concentrated mesh, and
the fat quadtree – as a function of the flit generation rate and the localisation degree α in
two different locality-based models: group clustering and ring clustering. When α = 1 ,
it means there is no locality traffic, as all flits go to the furthest cores to communicate, and
when α = 0 the traffic is fully local as all the flits go to the neighbouring cores.

4.5.1 Effect of Locality on Latency

For group clustering, Figure 4.7, the results show that the mesh has lower latencies when the
degree of localisation is low (0.5 ≤ α ≤ 1), while the fat quadtree has lower latencies when

4.5. Evaluation and Discussion 47

the degree of localisation is high (0 ≤ α ≤ 0.25). This indicates that the mesh will perform
better when the traffic is uniform and more distributed, but the fat quadtree will perform
better when the traffic is localised. It is known that the fat quadtree does not scale well
under uniform traffic; however, when locality is introduced the fat quadtree scales. Figure
4.9 clearly shows how the fat quadtree latencies improve when the degree of localisation
increases.

The concentrated mesh has low latencies when the traffic is highly localised (0 ≤ α ≤
0.25), similar to the latencies in the fat quadtree. This is because the concentrated mesh
has four cores for each router, similar to the first level of the fat quadtree. The concentrated
mesh has low latencies in low localised traffic (0.5 ≤ α ≤ 1), similar to the latencies in the
mesh. This is because the concentrated mesh has a similar structure to the mesh. However,
the concentrated mesh congests faster than the mesh because it has fewer links and a higher
wire delay.

For ring clustering, Figure 4.8, the mesh and the concentrated mesh have nearly similar
latencies and they perform better than the fat quadtree. The fat quadtree has very high la-
tencies as it congests faster. This is because in most cases the fat quadtree has fewer hops
but longer paths with higher delays, and it does not perform well when communicating with
neighbouring nodes that do not have the same ancestor.

Overall, the concentrated mesh performs best in group clustering and ring clustering. One
might expect the fat quadtree to perform better as the group clustering matches its topology.
However, the layout of the fat quadtree results in fewer hops but longer paths, and in the
10nm CMOS process for the 2023 node the wire delay is dominant (6.7× worse than for
the 2013 node). Figure 4.9 illustrates the latencies of the topologies when the network is not
congested and packets are generated every 70ns for different α parameter. It shows group
clustering results have lower latencies than ring clustering; this is an important result for the
placement of neighbours in stencil computations.

4.5. Evaluation and Discussion 48

0.001

0.01

0.1

1

10

100

0.010 0.100 1.000

En
d

 t
o

 e
n

d
 la

te
n

cy
 (

u
s)

Flit Generation Rate (Gflit/s)

Mesh

a=1 a=0.75 a=0.5

a=0.25 a=0.05 a=0

0.001

0.01

0.1

1

10

100

0.010 0.100 1.000

En
d

 t
o

 e
n

d
 la

te
n

cy
 (

u
s)

Flit Generation Rate (Gflit/s)

CMesh

a=1 a=0.75 a=0.5

a=0.25 a=0.05 a=0

0.001

0.01

0.1

1

10

100

0.010 0.100 1.000

En
d

 t
o

 e
n

d
 la

te
n

cy
 (

u
s)

Flit Generation Rate (Gflit/s)

Fat Quadtree

a=1

a=0.75

a=0.5

a=0.25

a=0.05

a=0

Figure 4.7: Latency for group clustering (α = 1: no locality, α = 0: total locality)

4.5. Evaluation and Discussion 49

0.01

0.1

1

10

100

0.010 0.100 1.000

En
d

 t
o

 e
n

d
 la

te
n

cy
 (

u
s)

Flit Generation Rate (Gflit/s)

Mesh

a=1 a=0.75 a=0.5

a=0.25 a=0.05 a=0

0.01

0.1

1

10

100

0.010 0.100 1.000

En
d

 t
o

 e
n

d
 la

te
n

cy
 (

u
s)

Flit Generation Rate (Gflit/s)

Fat Quadtree

a=1 a=0.75 a=0.5

a=0.25 a=0.05 a=0

0.01

0.1

1

10

100

0.010 0.100 1.000

En
d

 t
o

 e
n

d
 la

te
n

cy
 (

u
s)

Flit Generation Rate (Gflit/s)

CMesh

a=1 a=0.75 a=0.5

a=0.25 a=0.05 a=0

Figure 4.8: Latency for ring clustering (α = 1: no locality, α = 0: total locality)

4.5. Evaluation and Discussion 50

0.001

0.010

0.100

1.000

10.000

100.000

0 0.05 0.25 0.5 0.75 1

En
d

 t
o

 e
n

d
 la

te
n

cy
 (

u
s)

Locality factor

Group Clustering

Mesh

Fat Quadtree

Cmesh

0.001

0.010

0.100

1.000

10.000

100.000

0 0.05 0.25 0.5 0.75 1

En
d

 t
o

 e
n

d
 la

te
n

cy
 (

u
s)

Locality factor

Ring Clustering

Mesh

Fat Quadtree

Cmesh

Figure 4.9: Group and ring clustering (α = 1: no locality, α = 0: total locality)

4.5. Evaluation and Discussion 51

4.5.2 Effect of Locality on Throughput

For group clustering, Figure 4.10, we observe nearly similar behaviour in all the cases:
the throughput increases as the flit generation rate increases. In the case of low locality
(0.5 ≤ α ≤ 1), the throughput increases to a certain point then stays constant because the
latencies are higher, and so they are congested and deliver fewer messages. For high locality
(0 ≤ α ≤ 0.25), the throughput is approximately identical in all topologies. For ring clus-
tering, Figure 4.11, the fat quadtree has a lower throughput compared to the mesh and the
concentrated mesh, which have nearly similar throughputs.

It is interesting to compare the throughput results of group clustering and ring clustering
with today’s systems, when our system generates 0.1Gflits/s. In today’s systems, PEZY-
SC many-core processor has a maximum bandwidth of 1.5TB/s and Intel Xeon Phi has a
maximum bandwidth of 0.5TB/s. Under high locality (0 ≤ α ≤ 0.25), in all the cases
our system has a bandwidth of nearly 3TB/s except in the fat quadtree for ring clustering,
which has a bandwidth of nearly 2TB/s. It is important to mention that the wire delay in
our chip in 2023 is 6.7× higher than the wire delay in chips today, as mentioned in Section
3.2.

4.5. Evaluation and Discussion 52

0

2

4

6

8

10

12

14

16

0.010 0.100 1.000

Th
ro

u
gh

p
u

t
(T

B
/s

)

Flit Generation Rate (Gflits/s)

Mesh

a=1 a=0.75 a=0.5

a=0.25 a=0.05 a=0

0

2

4

6

8

10

12

14

16

0.010 0.100 1.000

Th
ro

u
gh

p
u

t
(T

B
/s

)

Flit Generation Rate (Gflits/s)

Fat Quadtree

a=1 a=0.75 a=0.5

a=0.25 a=0.05 a=0

0

2

4

6

8

10

12

14

16

0.010 0.100 1.000

Th
ro

u
gh

p
u

t
(T

B
/s

)

Flit Generation Rate (Gflits/s)

CMesh

a=1 a=0.75 a=0.5

a=0.25 a=0.05 a=0

Figure 4.10: Throughput for group clustering (α = 1: no locality, α = 0: total locality)

4.5. Evaluation and Discussion 53

0

2

4

6

8

10

12

14

16

0.010 0.100 1.000

Th
ro

u
gh

p
u

t
(T

B
/s

)

Flit Generation Rate (Gflits/s)

Mesh

a=1 a=0.75 a=0.5

a=0.25 a=0.05 a=0

0

2

4

6

8

10

12

14

16

0.010 0.100 1.000

Th
ro

u
gh

p
u

t
(T

B
/s

)

Flit Generation Rate (Gflits/s)

Fat Quadtree

a=1 a=0.75 a=0.5

a=0.25 a=0.05 a=0

0

2

4

6

8

10

12

14

16

0.010 0.100 1.000

Th
ro

u
gh

p
u

t
(T

B
/s

)

Flit Generation Rate (Gflits/s)

CMesh

a=1 a=0.75 a=0.5

a=0.25 a=0.05 a=0

Figure 4.11: Throughput for ring clustering (α = 1: no locality, α = 0: total locality)

4.5. Evaluation and Discussion 54

4.5.3 Effect of Locality on Different Network Sizes

Figure 4.12 compares the average latency for different network sizes of 4×4, 8×8, 16×16,
and 32 × 32 for different degrees of localisation. The flit inter-arrival time is 70ns. We
observe that for higher locality, the effect of the network size on the latency decreases for
both topologies. The fat quadtree does not scale well under no-locality and low-locality
traffic; however, it significantly reduces the latency as locality increases.

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1 0.75 0.5 0.25 0.05 0

En
d

 t
o

 e
n

d
 la

te
n

cy
 (

n
s)

Locality factor ()

Mesh 32x32

Mesh 16x16

Mesh 8x8

Mesh 4x4

QuadTree 32x32

QuadTree 16x16

QuadTree 8x8

QuadTree 4x4

Figure 4.12: Locality versus network size (1: no locality, 0: total locality)

4.6. Summary 55

4.6 Summary

In this chapter, we have investigated the overhead and performance of flat (mesh, cmesh) and
scale-invariant (fat quadtree) NoC topologies for future many-core systems with thousands
of cores under group clustering and ring clustering localisation models for point-to-point
traffic. We have shown that the degree of locality and the clustering model strongly affect
the performance of the network. Scale-invariant topologies such as the fat quadtree perform
worse than flat ones (esp. cmesh) because the reduced hop count is outweighed by the longer
path delays, as a consequence of the high wire delay in the 10nmCMOS process. Our results
clearly show the importance of traffic localisation for very large many-core systems. We will
next show how these many-core topologies perform in shared memory architecture. Will the
flat topology perform better than the scale-invariant topology?

56

Chapter 5

Effects of Locality on Shared
Memory Communication
Performance

This chapter presents the effects of locality on the communication performance of shared
memory model in many-core systems. Data locality is important in optimising many-core
performance as applications mapped on a large many-core system can take advantage of short
distant communication, where data is placed in cache banks closer to the cores accessing it.
Thus, in this chapter, we design a hierarchical cache model that benefits from communica-
tion locality. Moreover, this chapter examines the hierarchical placement of caches on the
proposed hierarchical cache model into different topologies. In addition, it illustrates the
parameters used for the simulations and compares the performance of the many-core archi-
tecture in terms of latency and bandwidth using the ITRS physical data for 2023. The results
show that the model of thread placement and the distance of placing them significantly affect
the NoC performance. Furthermore, they confirm that scale-invariant topologies perform
better than flat topologies.

5.1 Shared Memory Communication

In a NoC-based many-core system with global shared memory, the communication is be-
tween the cores and the memory. It means that with shared memory processing cores can
communicate with each other by storing data in shared memory locations and subsequently
reading and writing into them. The actual communication takes place over the interconnec-
tion network.

To make effective use of the resources provided by many-core processors, parallel program-

5.1. Shared Memory Communication 57

ming is essential. As a result, applications have increasing numbers of threads, and thread
placement and inter-thread communication have become important topics of research. Be-
sides, as the number of cores increases, memory locality becomes even more important. To
minimise the communication cost, these many-core processors should be designed so that
data accessed by threads are allocated to cache banks or memories closer to the processing
core on which a thread is running.

Shared memory traffic and point-to-point traffic are two different traffic patterns [90], and
the resulting NoC performance is very different. Chapter 4 discussed the point-to-point
traffic while this chapter deals with shared memory traffic. The main focus in this chapter
is to examine the effect of shared memory traffic and thread placement on the hierarchical
cache architecture, as well as the network performance resulting from different topologies
and locality models.

In the presence of caches, the traffic is determined by both the location of the cache with
respect to the thread and by the distribution of data over the cache hierarchy. For example,
in a distributed cache system with hashing such as that used by the Tilera TilePro [2], the
average distance from each core to the cache is constant. In the MIC architecture [3], the L3
cache is the union of the L2 caches for each core. The average distance of a ring topology in a
NoC means the memory distance between two threads that are located on physically adjacent
cores, which can be up to half the total number of cores. Neither of these architectures can
scale to thousands of cores because the average distance grows as the number of cores grow.
In addition, the average access time to memory grows as well, which leads to having a slow
system.

Memory locality is an essential concept of caching. In order to investigate the effect of
memory locality on performance, we propose abstract models of placing threads of shared
memory applications with different distance metrics in a hierarchical cache architecture.
These models let us control the distance between the threads that share a memory location
as well as the shape of the local area, and thus provide general insights into the suitability of
a given topology for a given shared memory thread placement model.

Our assumption is that the future many-core architecture will have a distributed shared mem-
ory architecture, with memory embedded in the processor tiles or stacked on top of them (if
not physically then at least logically). This assumption is supported by the advent of embed-
ded DRAM and 3D memories [8, 91–93] and the deployment of 3D memory in e.g. Intel’s
‘Knights Landing’ Xeon Phi [12]. Thus, we propose a hierarchical cache architecture model
and the allocation of the hierarchical caches in three topologies.

A crucial claim in our work is that in order to optimise performance, the communication
patterns in multi-threaded shared memory programs will need to exhibit data locality with
respect to the memory hierarchy, because the thread scheduler will consider both the load of

5.2. Hierarchical Cache Model (HCM) 58

the cores and the amount of data sharing when placing the threads, see e.g. [94–96]. Our re-
search shows that enforcing memory access locality will improve the latency and throughput.
Note in this chapter we use the terms memory block and cache line interchangeably.

5.2 Hierarchical Cache Model (HCM)

In this section, we will describe our proposed hierarchical cache architecture model. In re-
cent years, 3D memory stacking has received great attention [8–11], since it enables much
higher memory bandwidth and resolves the memory wall problem of 2D integration. The
latest Xeon Phi (Knights Landing) already uses a hybrid form of stacked memory, Micron’s
Hybrid Memory Cube [12]. 3D memory allows each processor core to have fast and high
bandwidth access to the cache banks stacked directly on top of it, using very dense vertical
interconnects. The processor core can also access cache banks stacked on the other proces-
sors [13–15]. Some of the advantages of 3D stacking are lower latency and higher memory
bandwidth. We propose a 3D stacked cache memory hierarchy that has a similar concept to
the memory hierarchies of the traditional multiprocessors. The stacked cache memory can
be either private or shared [1]. Some research focuses on the techniques for DRAM cache
architecture [97]; however, our focus is on the network communications between the cores
and the memory, and we abstract away the caches and main memory. Three levels of caches
are the most common number used in chips nowadays [39, 40]. IBM zEnterprise 196 (z196)
system is already using four levels of cache [41]. However, this is about to change in future
many-core systems because as the number of cores in a single chip increases larger caches
and more levels are needed [98].

We present a hierarchical cache architecture for three different network topologies, namely
the mesh, the concentrated mesh, and the fat quadtree, introduced in the next sections. The
caches are stacked on top of one another. Because of their inherent scalability, hierarchical
cache architectures are becoming an interesting alternative for many-core systems. Group-
ing cores and their caches in clusters reduces network congestion by localising traffic among
several hierarchical levels, potentially enabling much higher scalability. In our proposed
architecture, every four cores are clustered and share a level L2 cache, each 4 × 4 core is
clustered and shares a level L3 cache, and so on. Each cache is shared with the cores below
it and private to the other cores. Using 0 < l ≤ n for the levels of the cache, and assum-
ing n = log4(N) with N the number of cores, Figure 5.1 shows the proposed hierarchical
cache architecture. L1 caches are embedded in the cores; hence, the communication traffic
generated from the cores to their L1 private cache is not considered in the evaluation of the
communication network. In Figure 5.1, C1, C2, ..., Cn are the individual cores. The caches
in our hierarchical cache architecture are totally inclusive. Inclusion means that if a block is

5.2. Hierarchical Cache Model (HCM) 59

cached in any private cache, it is also cached in the shared cache.

5.2.1 Mesh Topology

In a mesh, we place the memory controllers for the hierarchical caches as near as possible to
the centre of the cores that share the cache. A router can only represent a single cache level.
Figure 5.2 shows an example of the hierarchical cache allocation for an 8×8 mesh. The core
can calculate the location of all its hierarchical caches using the following equation, where \
represents integer division.

4l−1(coreID \ 4l−1) + 4l−2 − 1, 1 ≤ l < n (5.1)

We use a novel Mesh Memory Routing (MMR) to route between the levels of cache. MMR
is a routing mechanism where the routing decision is made at the routers. When a memory
request arrives at a cache router, the cache router checks if this cache has a memory block
that is shared between the thread in the requester core and the other thread, which is obtained
using group or ring clustering. If the shared memory block is in this cache level (cache hit),
then a memory block will be sent to the requesting core. If the shared memory block is not in
this cache level (cache miss), the request will be sent to the next level cache above until the
shared memory block is found. We assume that the last level is the main memory, so if the
shared memory block is not in the caches it is requested from the main memory. Then the
memory block is returned to the requesting core passing through all the caches from which
the request came. The requests are routed through the network between the caches following
XY routing.

5.2.2 Concentrated Mesh Topology

The cache placement of the concentrated mesh is similar to the mesh but the cmesh has one
less level of cache. In a cmesh, each router represents L2 and might represent another level
of cache. The memory traffic routing in cmesh is similar to MMR in the mesh structure of
the cmesh then once the flits arrive to the parent router of the core, the router sends the flit to
the appropriate core.

5.2.3 Fat Quadtree Topology

The fat quadtree topology reflects our hierarchical cache architecture perfectly, as the leaves
represent the cores and the nodes represent the caches. Similarly, four cores share a L2
cache, four L2 caches share a L3 cache, etc.

5.2. Hierarchical Cache Model (HCM) 60

RAM

L4

L3

 L2

C3

 L2

C1

C2

C3

C4

C1
C2

C3
C4

C1
C2

C4
C1

C2
C3

C4

L2 L2

Figure 5.1: The proposed 3D stacked memory (N = 256)

5.2. Hierarchical Cache Model (HCM) 61

Figure 5.2: Hierarchical cache allocation for an 8× 8 mesh

We use a novel routing algorithm in fat quadtree topology to route between the levels of
cache. Fat Quadtree Memory Routing (FQMR) is a routing mechanism used to route requests
between the levels of cache. When a memory request arrives at a cache router, the cache
router checks if this cache has a memory block that is shared between the thread in the
requester core and the other thread, which is obtained using group or ring clustering. If the
shared memory block is in this cache level (cache hit), then a memory block will be sent
to the requesting core. If the shared memory block is not in this cache level (cache miss),
the request will be sent to the parent, which is the next cache level above. The requests are
routed through the network between the caches following nearest-common ancestor routing.
However, when the memory block shared between two threads is found, the memory block
is sent back to the requesting core. If the request reaches the highest level router, the main
memory, then the memory block is returned to the requesting core, passing through all the
caches from which the request came in order to update them.

5.2.4 Links and Buffers per Virtual Channel

In the shared memory traffic model, the flits are required to travel between the caches. The
fat quadtree reflects the hierarchical cache architecture perfectly; hence, all the links will be
used. However, in the mesh and the cmesh some of the links won’t be used at all because the
requests travel between the caches using XY routing and the caches are in specific locations.
Hence, the same links are always used to travel between the caches. Figure 5.3 shows an
example in an 8 × 8 mesh: around 12.5% of the total links are not used. To compensate
for the unused resources in the mesh and the cmesh, more resources (virtual channels and
number of buffers) are given to them. Furthermore, the mesh and the cmesh will congest

5.3. Thread Placement Locality Models 62

Figure 5.3: 12.5% of the links in an 8× 8 mesh are not used

faster compared to the fat quadtree if more resources are not given to them because the cache
router and the links between the caches will congest faster.

The fat quadtree has 5120 links while the mesh has 1984 links in a 32× 32 network and 22%

of those links are not used. Hence, four virtual channels (VC) are assigned to the mesh to
compensate for the unused links, giving 6188 utilised links. The cmesh has 480 links with
16% unused links. Therefore, 14 VC are assigned to the cmesh to give 5600 links. Now
the mesh and the cmesh have more links than the fat quadtree. Similarly, the number of
buffers in a virtual channel in the mesh and the cmesh is now 48 flit/V C and 24 flit/V C,
respectively.

5.3 Thread Placement Locality Models

We propose simple level-based models to enforce locality in shared memory architecture
by placing threads sharing a memory address close to each other. The models are similar
to the hierarchical model for point-to-point locality-based traffic mentioned in Section 3.6.
However, the traffic in this section is core to cache that shares a memory address between
two threads. To model locality of threads placement, we group the cores of the chip and
create hierarchical groups to encompass the whole system. Using 0 < l ≤ n for the levels of
the hierarchy, we can express the probability for communication across level-l as:

5.4. Simulation Setup 63

p(l) = (1− α)αl−1, 1 ≤ l < n (5.2)

p(n) = αn−1

The parameter α relates to the locality of placing strongly coupled threads. It expresses the
probability that a memory request has to travel a certain distance in the hierarchy to a shared
memory address with another thread. Lower α means higher locality threads placement:
if α = 0.2, then according to equation 5.2 there is a 20% chance of the requesting thread
finding a shared memory address with another thread in the first level cache, and 20% of
that portion in the second level cache, etc. When α = 1, it means that most of the threads
requesting a memory block will find the shared memory block in the last level cache or main
memory.

We use group clustering and ring clustering, which are two different instances of shared
memory locality-based thread placement models, to evaluate the performance of the NoC
topologies. These are abstract models representing different types of threads placement for
different applications. The clustering models are explained in Section 3.6

In general, a thread in a core generates a memory request to a memory block in a cache that
is shared with another thread, which is selected based on the clustering model. The memory
request results in a cache miss until it reaches the cache that accesses the memory block
shared between the threads. The cache then returns the shared memory block to the requested
thread. All memory requests generated by the cores are to a shared memory address with
other threads, which is the worst case scenario because in realistic systems not all memory
requests are to a shared memory block. Most of the data accessed by threads is not shared.

5.4 Simulation Setup

We simulated the different topologies on a 1024-core chip (placed in a regular 32 × 32

grid) using HNOCS-XT. We model the process-to-cache communication using Poisson-
distributed traffic because it has been widely used in both the evaluation of interconnection
networks and in cache modelling, see e.g. [99]. The packet length is one flit and the flit size
is 64Bytes. The flit size is equal to the size of most of the current system’s cache line. The
frequency of a modern system is 500MHz. Thus, the channel data rate is 128Gbps and the
bus is 256 bits wide. The clock speed is 2ns. The router delay is 2ns. Four virtual channels
are used for the mesh and fourteen for the cmesh as explained in Section 5.2.4, while for the
fat quadtree one physical channel is used for the lowest-level links, and it quadruples at each
level to simulate a fat quadtree. Hence, the fat quadtree has no virtual channels. The wire de-

5.5. Simulation Results and Discussion 64

Table 5.1: Simulation parameters
Topology Mesh Cmesh Fat quadtree

Number of virtual channels 4 14 0
Wire delay (ns) 17.5 35 35× 2l−1, 1 ≤ l < n
Flit size (bytes) 64

Buffer size (flits/VC) 48 24 16
Channel datarate (Gb/s) 128

lay is proportional to the distance between the routers, so in a fat quadtree it doubles at each
level. The threads that share a memory address are selected using different degrees of thread
placement localisation, as explained in Section 5.3. Table 5.1 summarises the simulation
parameters used in our simulations.

We set the simulation run time as 1ms. In the simulation, all threads in all cores generate
memory requests at the same time. A thread requests a memory block only if the memory
request in the core queue is sent; thus, there will be no dropped memory requests.

5.5 Simulation Results and Discussion

We evaluated the performance of the three topologies as a function of the memory access
generation rate. The miss rate α, where α = 1, means that the threads are replaced the
furthest and the main memory will be hit, and α = 0 means the first level cache will be 100%
hit. Memory access is the operation of reading or writing stored information in memory. The
thread sends a memory access request when it needs to read or write to memory. We assume
that all the memory blocks are shared between two threads. Here, latency is the latency of
the network, not taking into account the waiting time of a packet at the transmitting core
when the link is busy.

5.5.1 Effect of Locality on Latency

For group clustering, Figure 5.4 shows that the fat quadtree performs best. The cmesh and
the fat quadtree have lower latencies when (0 ≤ α ≤ 0.1). The latencies start to increase
as α becomes higher. The cmesh congests faster than the fat quadtree because it has fewer
routers. The mesh has high latencies although it has more routers than both the fat quadtree
and the cmesh. This is because in shared memory traffic, where the requests travel between
the caches, the path of the requests is deterministic; hence, some routers have more traffic
while others might not receive any traffic. Moreover, most of the links that connect between
the caches are nearly 100% utilized. Some of the cores do not receive any flits due to the
congestion, so we set the latency penalty for those cores to the simulation time 1ms.

5.5. Simulation Results and Discussion 65

For ring clustering, Figure 5.5 illustrates that the mesh and the cmesh have high latencies
as they congest faster and they perform worse than the fat quadtree. The fat quadtree has
low latencies. This is because in the mesh and the cmesh the memory request traffic always
travels on the same path between the caches, and so the network gets congested.

5.5. Simulation Results and Discussion 66

0.001

0.010

0.100

1.000

10.000

100.000

1000.000

0.010 0.100 1.000

En
d

to
 e

nd
 la

te
nc

y
(u

s)

Memory Access Generation Rate (Gflit/s)

Mesh

a=0.75

a=0.5

a=0.25

a=0.1

a=0.05

a=0

0.001

0.010

0.100

1.000

10.000

100.000

1000.000

0.010 0.100 1.000

En
d

to
 e

nd
 la

te
nc

y
(u

s)

Memory Access Generation Rate (Gflit/s)

Fat Quadtree

a=0.75

a=0.5

a=0.25

a=0.1

a=0.05

a=0

0.001

0.010

0.100

1.000

10.000

100.000

1000.000

0.010 0.100 1.000

En
d

to
 e

nd
 la

te
nc

y
(u

s)

Memory Access Generation Rate (Gflit/s)

CMesh

a=0.75

a=0.5

a=0.25

a=0.1

a=0.05

a=0

Figure 5.4: Memory requests’ latency for group clustering

5.5. Simulation Results and Discussion 67

0.1

1.0

10.0

100.0

1000.0

0.01 0.10 1.00

En
d

 t
o

 e
n

d
 la

te
n

cy
 (

u
s)

Memory Access Generation Rate (Gflit/s)

Mesh

a=0.75 a=0.5 a=0.25

a=0.1 a=0.05 a=0

0.1

1.0

10.0

100.0

1000.0

0.01 0.10 1.00

En
d

 t
o

 e
n

d
 la

te
n

cy
 (

u
s)

Memory Access Generation Rate (Gflit/s)

Fat Quadtree

a=0.75 a=0.5 a=0.25

a=0.1 a=0.05 a=0

0.1

1.0

10.0

100.0

1000.0

0.01 0.10 1.00

En
d

 t
o

 e
n

d
 la

te
n

cy
 (

u
s)

Memory Access Generation Rate (Gflit/s)

CMesh

a=0.75 a=0.5 a=0.25

a=0.1 a=0.05 a=0

Figure 5.5: Memory requests’ latency for ring clustering

5.5. Simulation Results and Discussion 68

0.001

0.01

0.1

1

10

0 0.2 0.4 0.6 0.8

En
d

 t
o

 e
n

d
 la

te
n

cy
 (

u
s)

Locality factor

Group Clustering

Mesh

Fat quadtree

Cmesh

0.1

1

10

0 0.2 0.4 0.6 0.8

En
d

 t
o

 e
n

d
 la

te
n

cy
 (

u
s)

Locality factor

Ring Clustering

Mesh

Fat quadtree

Cmesh

Figure 5.6: Group and ring clustering (1: no locality, 0: total locality)

Overall, group clustering results in lower latencies than ring clustering. This is an important
result for the placement of threads in group neighbours that match the cache architecture.
Figure 5.6 shows the latencies of the topologies when the network is not congested and

5.5. Simulation Results and Discussion 69

packets are generated every 80ns for different α parameter. In both models, the fat quadtree
performs best even when the threads are placed further apart.

Figure 5.7 shows an example for a ring clustering case. Core 27 sends a memory request to
a shared memory with one of these cores: 48, 49, or 52 and back to core 27. It illustrates
the path that a memory request traveling from core 27 has to pass through until it reaches
a cache shared with cores 48, 49, and 52, which is L4 cache. The request has to go to L2
(router 24), then L3 (router 19), then L4 (router 15), then pass back through all the caches to
update it and acknowledge it to the requesting core 27.

1

2

3

3

1

2

Figure 5.7: Example of a memory request in an 8× 8 mesh ring clustering (core 27 sends a
memory request to a shared memory with cores 18, 19, or 52 and back)

5.5.2 Effect of Locality on Throughput

For group clustering, Figure 5.8, we observe that the fat quadtree has the highest throughput
in all the cases. As the locality decreases the throughput decreases, because when locality
decreases, the requests have to travel further through the caches. Therefore, it takes a longer
time to reach the common cache and get back to the requester, which leads to longer delays
and a congested network. In the case of (0 ≤ α ≤ 0.1), the fat quadtree and the cmesh
have nearly similar throughput because of the similarity of the lower level structure of both
topologies. In the case of (0.25 ≤ α ≤ 0.75), the cmesh throughput starts to decrease
compared to the fat quadtree due to more requests traveling to higher levels of caches, which
have the same structure as the mesh. The mesh has the worst throughput of all. For ring
clustering, Figure 5.9, the fat quadtree has higher throughput compared to the cmesh which
has higher throughput than the mesh.

We now compare the fat quadtree with the existing systems today. Overall, the memory band-
width of our fat quadtree system in high memory access generation rate is around 15TB/S

in group clustering and 13TB/S in ring clustering. In the present systems, the memory

5.5. Simulation Results and Discussion 70

bandwidth for NVIDIA’s Kepler K40 GPU and Intel’s Xeon Phi 7120P are 0.28TB/S and
0.34TB/S, respectively. This shows that our 2023 system has much higher throughput, tak-
ing into account that the wire delay is much higher and our system has all shared memory
communication, which is the worst case.

5.5. Simulation Results and Discussion 71

0

2

4

6

8

10

12

14

16

18

0.01 0.1 1

Th
ro

u
gh

p
u

t
(T

B
/s

)

Memory Access Generation Rate (Gflits/s)

Mesh

a=0.75 a=0.5 a=0.25

a=0.1 a=0.05 a=0

0

2

4

6

8

10

12

14

16

18

0.01 0.1 1

Th
ro

u
gh

p
u

t
(T

B
/s

)

Memory Access Generation Rate (Gflits/s)

Fat Quadtree

a=0.75 a=0.5 a=0.25

a=0.1 a=0.05 a=0

0

2

4

6

8

10

12

14

16

18

0.01 0.1 1

Th
ro

u
gh

p
u

t
(T

B
/s

)

Memory Access Generation Rate (Gflits/s)

CMesh

a=0.75 a=0.5 a=0.25

a=0.1 a=0.05 a=0

Figure 5.8: Throughput for group clustering

5.5. Simulation Results and Discussion 72

0

2

4

6

8

10

12

14

16

0.01 0.1 1

Th
ro

u
gh

p
u

t
(T

B
/s

)

Memory Access Generation Rate (Gflits/s)

Mesh

a=0.75 a=0.5 a=0.25

a=0.1 a=0.05 a=0

0

2

4

6

8

10

12

14

16

0.01 0.1 1

Th
ro

u
gh

p
u

t
(T

B
/s

)

Memory Access Generation Rate (Gflits/s)

Fat Quadtree

a=0.75 a=0.5 a=0.25

a=0.1 a=0.05 a=0

0

2

4

6

8

10

12

14

16

0.01 0.1 1

Th
ro

u
gh

p
u

t
(T

B
/s

)

Memory Access Generation Rate (Gflits/s)

CMesh

a=0.75 a=0.5 a=0.25

a=0.1 a=0.05 a=0

Figure 5.9: Throughput for ring clustering

5.6. Summary 73

5.6 Summary

In this chapter, we have proposed a hierarchical cache model and suggested the cache place-
ments in three topologies. Moreover, we have investigated the overhead and performance
of flat (mesh, cmesh) and scale-invariant (fat quadtree) NoC topologies for future many-core
systems with thousands of cores using two different models of localised threads placement in
shared memory systems, group clustering, and ring clustering. We have shown that the dis-
tance between the threads sharing a memory block and the clustering model strongly affect
the performance of the network. Scale-invariant topologies, such as the fat quadtree, perform
better than flat ones because their structure matches the hierarchical cache architecture. In
addition, the fat quadtree has a direct link between the levels of cache, although the wire
delay increases as the request travels up the tree. Our results clearly show the importance of
localised threads placement for very large many-core systems. The model we have discussed
in this chapter is without cache coherency, and we assume that the programmer handles the
cache coherency. However, in the next chapter we will integrate the cache coherency in our
hierarchical cache model to make it easier for the programmers to use the chip. Will cache
coherency cause the system to crash as the conventional wisdom suggests?

74

Chapter 6

Cache Coherency for Many-Core
Systems

This chapter integrates cache coherency into a hierarchical cache model using shared mem-
ory architecture. It presents the cache coherency protocol we suggest for many-core systems.
It shows the importance of cache coherency in a shared memory architecture. In addition,
this chapter describes the hierarchical tracking of shares. It provides the cost model of the
cache coherency protocol in terms of the cache size and the communication performance in
the shared memory hierarchical cache model. It provides the simulation setup, the results,
and the discussion of the simulation results. The chapter shows that the directory-based
cache coherency scales, and that its effects on system performance are small when using the
hierarchical cache model. We show that cache coherency scales using the suggested cache
coherency protocol and hierarchical cache model.

6.1 Cache Coherency

Cache coherency is very important in shared memory many-core systems. It ensures the
consistency of shared data that is stored in multiple caches. The conventional wisdom has
been that cache coherence could not scale because of exploding storage and interconnection
network traffic requirements, and concerns over latency and energy consumption. However,
Martin et al. [52] discuss some techniques that can be used to scale the cache coherency.
They examine five potential concerns when scaling on-chip coherence. First, regarding the
traffic on the on-chip interconnection network, they show that it scales when precisely track-
ing sharers. Secondly, regarding storage costs for tracking sharers, they show that a hierarchy
combined with inclusion enables efficient scaling of the storage cost for exact encoding of
sharers. Thirdly, for inefficiencies caused by maintaining inclusion, they find that using chip

6.2. Cache Coherency Protocol 75

architects to design a system with an inclusive shared cache with negligible recall rate can
efficiently embed the tracking state in the shared cache. Fourthly, latency of cache misses
is shown to be tolerable, as misses to actively shared blocks have greater latency than other
misses. Finally, the energy overhead analysis shows that based on the traffic and storage
scalability analyses, the energy overhead of coherence will not increase with the number of
cores.

According to the findings of Martin et al. [52] we can assume that the traffic overhead of the
cache coherency traffic will be negligible. Furthermore, Gustavo et al. [100] show that the
amount of application data in the NoC are much larger than the amount of cache coherence
data for almost all cache sizes. In this chapter, building on the arguments of Martin et al.
[52], we assume a shared memory model of computation. Our proposed hierarchical cache
architecture, which was explained in Chapter 5, provides a good baseline for a hierarchical
cache architecture with cache coherency. We use a directory-based protocol and hierarchical
tracking of sharers on our hierarchical cache architecture. We assume that the caches and the
main memory are abstract. We focus on the communication side, the messages generated
using cache coherency protocol, and its overhead on the network.

6.2 Cache Coherency Protocol

There are two cache coherency protocol methods of implementation, which are the snooping
and the directory-based protocols [53,57]. We use a directory-based cache coherency proto-
col because it scales and generates less coherency traffic. Directory-based cache coherency
protocol assumes a shared memory space, which is physically distributed. The idea of it is
to implement a directory that keeps track of where each copy of a memory block is cached
and its state in each cache [56]. The snooping protocol keeps the state of the block in the
cache only. Cores must consult the directory before loading memory blocks from the main
memory to the caches. When a memory block in the cache is updated (written), the direc-
tory is consulted to either update or invalidate the other cached copies. This eliminates the
overhead of broadcasting; hence, it scales.

The directory keeps track of where each memory block is stored in the cache. Accordingly,
a memory block can be in one of three states. It can be un-cached and no core has it; in this
case, the memory block should be requested from the main memory. It can be shared and
clean, when it is cached in one or more caches and the block is up-to-date with the data in
the main memory. It can be exclusive and dirty, when one processor owns the data and is
out of date with the data in the main memory. Note in this chapter we use the terms memory
block and cache line interchangeably.

There are different ways to implement a directory structure in many-core systems:

6.2. Cache Coherency Protocol 76

• Full-map directories share a given piece of data simultaneously with all the cores in the
chip. Consequently, they have to maintain an enormous amount of status information
[56]. Precisely, each block in main memory must maintain a complete list of all the
caches in the system. Therefore, the amount of data required to store the state of each
memory block scales linearly with the number of cores [101].

• Duplicate-tag-based directories mirror the organisation of the private-cache tags. This
ensures that there is always enough space in the directory to track all cached blocks
[102]. The duplicate-tag associativity must equal the product of the cache associativity
and the number of caches, which results in large associative directories [102]. Because
of the large associative directories, duplicate-tag-based directories are non-scalable.
The Xeon Phi processor uses this type of directory-based protocol [33].

• Sparse directories’ goal is trying to reduce the space of directory storage by reducing
directory associativity. When sparse directory space overflows, it experiences set con-
flicts and forced evictions of cached blocks that cannot be simultaneously tracked by
the directory [101].

• In-cache directories extend an inclusive shared cache’s tags with the sharer informa-
tion, implicitly saving directory tag storage, but grossly over-provisioning the sharer
storage because the number of tags in the lower-level cache greatly exceeds the num-
ber of tracked blocks in the private caches [102]. The SGI Origin2000 multiprocessor
system [103] and Tilera Tile64 [2] are real architectures that implement in-cache di-
rectory. In-cache directory integrates the directory state with the cache tags, thereby
avoiding a separate directory either in DRAM or on-chip SRAM. The tag overhead
can become huge in many-core systems with a bit for each sharer. However, to re-
duce tracking sharers’ overhead, a hierarchy combined with inclusion enables efficient
scaling of the storage cost for exact encoding of sharers [52].

In our directory-based cache coherency protocol, we use an in-cache directory that extends
an inclusive shared cache’s tags with sharers’ information and distributes directory among
cores. Because of the hierarchical nature of our cache architecture, each memory block
requires 4 bits to track sharers and maintain the inclusiveness of the caches. Figure 6.1
shows how tracking sharers is done in our hierarchical cache model. Since every cache level
has four lower level caches, we need only 1 bit for each lower level cache to know where the
shared memory block is. In Figure 6.1, the highest level memory block has the bits 0010 as
the cache tag. Thus, the block is shared and the third lower level (level 2) cache has a copy
of the block. It has a 0100 cache tag, which indicates that its second lower level (level 1)
cache has a copy.

6.2. Cache Coherency Protocol 77

Figure 6.1: Tracking sharers

Although using hierarchical tracking sharers requires additional layers of cache lookup, it
has two key advantages for coherence. First, it reduces the number of coherence messages.
For example, if a number of cores shares a block, and one of them writes to the block on
the shared last level cache, only one invalidation message can be triggered for each cluster
that shares the block. The second advantage is that it enforces inclusion at each level, which
reduces the storage cost of coherence. Because we are using an exact tracking of sharers,
this allows for scalable communication.

There are two ways in which updates to cached memory can be made. A write-through policy
updates to main memory directly every time a change is made in a cache line. However, a
write-back policy is able to avoid these expensive writes to main memory by making these
updates in the caches. When data in a write-back cache needs updating, its value in the
cache is updated and the cache line state changes to dirty. It is only when the cache line
is evicted that the write actually goes out, and a main-memory transaction occurs. For our
directory-based cache coherency protocol we use a write-back policy.

Figure 6.2 shows the flow chart of our directory-based cache coherency protocol. For a read
memory request, the request goes to the first cache level. If the memory block exists in the
cache and is a read hit, then it is sent to the requested core. If the memory block does not
exist in the cache and is a read miss, then the request goes to the next level cache until it is
a hit, assuming the last level is the main memory. If the request is a hit in a higher cache
level and the cache line is clean and shared, then the cache line is copied to the lower cache
levels and to the requested core. However, if the cache line is dirty and exclusive, then it is
updated in the main memory and the state of the cache line is changed to clean and shared.

6.2. Cache Coherency Protocol 78

Figure 6.2: Directory-based protocol chart

After that, the cache line is copied to the lower level caches and to the requested core.

For a write memory request, the request goes to the first cache level. If it is a write hit
and the memory block is clean and shared, then invalidations are sent to the cores sharing
the memory block. The memory block is updated and its new state is dirty and exclusive.
An acknowledgment is sent back to the core. If the memory block is exclusive, then it is
updated and an acknowledgment is sent back to the core. However, if it is a write miss, then
the request goes to the next cache level until it is a hit, assuming the last level is the main
memory. If the request is a hit in a higher cache level and the cache line is clean and shared,
then invalidations are sent to the cores sharing the memory block. The memory block is
updated and its new state is dirty and exclusive. The cache line is copied to the lower cache
levels and an acknowledgment is sent back to the core. If it is exclusive, then it is updated
to the main memory and invalidations are sent to the cores sharing the memory block. After
that, the cache line is copied to the lower cache levels and an acknowledgment is sent back
to the core.

6.3. Cost Model 79

6.3 Cost Model

Since the directory is part of the cache, we need to compute the directory overhead on the
cache. The directory stores the status of all the blocks in the memory whether it is clean or
dirty. This requires 1 bit/memoryblock. In addition, it stores the cores that have copies of
the memory block to keep track of sharers. Because of the hierarchical structure of our model
we only need 4 bits for each memory block as explained in Section 6.2. Consequently, 5 bits
for each memory block are required by the directory. The memory block size is 64Bytes;
therefore, the total directory overhead is 0.97% for each memory block.

6.4 Simulation Setup

We simulate the many-core system on a 1024-core chip for different topologies using HNOCS-
XT. We use the same thread-to-thread communication used in Section 5.4; however, the
cache coherency traffic is added. Threads running on many-core systems use shared caches
to communicate and share data with each other. We use the same simulation parameters and
setups used in Section 5.4. To simulate the cache coherency protocol as explained in Sec-
tion 6.2, we created a memory model in HNOCS-XT to simulate the main memory and the
caches. According to the protocol, the memory model generates cache coherency traffic and
eviction messages. In addition, it uses the following parameters: the read/write rate (Prw),
the shared rate (Ps), and the eviction rate (Pe). The read/write rate (Prw) defines the read
and write requests’ ratio. The shared rate (Ps) defines the ratio of reads and writes to shared
data, as not all reads and writes are to shared data. The eviction rate (Pe) defines the ratio of
generating eviction messages. For an application running on a shared memory architecture,
not all instructions are memory accesses. In addition, not all reads and writes are communi-
cating data. In this research, we focus on reads and writes that send data to the network to
access memory.

We use SPLASH-2 [104] and PARSEC [105] benchmarks to select the proper rates to use
in the simulation. SPLASH-2 is a well-known benchmark suite containing a variety of high
performance computing and graphics applications. PARSEC is a more recent benchmark
suite that has a wider variety of applications. In SPLASH-2 and PARSEC benchmarks ap-
plications, memory accesses are between 27.83% and 35.99% of all instructions [105]. The
worst application in terms of a miss rate is canneal, which has a miss rate of 3.18% with
4MB caches [105]. However, the blackscholes application has the lowest miss rate of all
applications of 0.01% with 4MB caches. The worst case for shared writes is in the Lu

program in SPLASH-2, with 27.40% shared writes with 8MB caches [105]. As the cache
becomes large enough to keep the shared part of the working set, the miss rate decreases and

6.5. Results and Discussion 80

the shared rate increases. In terms of the memory access generation rate, streamcluster is a
typical application in PARSEC, which has a memory access of 0.875B/instruction [105].
This is equivalent to 0.0068Gflits/s in our system memory access generation rate.

In our model, the miss rate is equivalent to our locality parameter α. Thus, we assume that
α = 0.05 which is equivalent to 95% locality or to 5% miss rate. In most of our simulation
cases, we use 50% shared writes.

6.5 Results and Discussion

We evaluate the performance of the three topologies as a function of the memory access
generation rate, the read/write rate (Prw), the shared rate (Ps), and the eviction rate (Pe). The
miss rate is fixed and equal to α = 0.05. Group clustering (G) and ring clustering (R) are the
two clustering methods we use to choose the core that has threads sharing a memory block.
There are two standard cases to compare the results with. The first case is the Hierarchical
Cache Model (HCM) with no cache coherency traffic in Chapter 5, and the other case is the
cache coherency case when all the parameters are equal to zero (Prw = 0, Ps = 0, Pe = 0).
The second case should give nearly the same results as the HCM case with a slight increase in
latency. No cache coherency traffic is generated as all the memory requests are read requests,
and the slight increase in latency is caused by the computation delay in the memory model.

6.5.1 Effect of Cache Coherency Traffic on Latency

For group clustering, Figure 6.3, the fat quadtree and the concentrated mesh perform better
than the mesh. However, the fat quadtree saturates faster than the concentrated mesh. Both
topologies have the same low level architecture, and when α = 0.05 it means that 95 of the
memory requests will be a hit on the first level cache. Moreover, the 5% miss requests go
to a higher cache level, which makes the fat quadtree saturate faster. Because of this, the
fat quadtree has to have longer links with higher wire delay in order to go to the next level
compared to the concentrated mesh. This leads to the question of whether the concentrated
mesh will still perform better than the fat quadtree if the number of cores increases. The
mesh performs worse because many packets travel between the caches using the same links;
hence, the links are fully utilised, which slows the traffic and increases the latency. Note
that the mesh saturates on the case (Prw = 0.2, Ps = 0.2, Pe = 0.2), which is not even the
worst case scenario. Figure 6.5 illustrates the heatmap for the mesh when it is saturated. It
shows that only a small number of cores (red and yellow cores) have a very high latency,
which gives a higher total average latency. The green coloured cores are the most common
in the chip and they have low latencies. This is because the mesh uses the same links to

6.5. Results and Discussion 81

move packets between the caches, which leads to higher utilisation of some links. Figure 6.6
describes the frequency of latency for all the packets received by three different cores from
each colour group (core[66], core[230], core[239]).

For ring clustering, Figure 6.4, the fat quadtree performs best, although as the memory access
generation rate increases it starts to saturate. The fat quadtree has an advantage over the
mesh and the concentrated mesh because it has direct links between the caches, unlike the
flat topologies that use the same links to go through the caches, which makes the links utilise
faster.

Now comparing the streamcluster application in our system in group clustering, we see that
the mesh is already saturated but the application has a low latency in the concentrated mesh
and the fat quadtree. However, the application has a higher latency in the ring clustering.

When taking a closer look at the ring fat quadtree, the standard case (Prw = 0, Ps = 0, Pe =

0) is saturated differently than the HCM-No-Coherency case. The heatmap of the ring fat
quadtree in Figure 6.7 shows that it saturates faster when the memory access generation rate
increases. The heatmap shows that the cores that have higher latencies are near the edge of
the group. Since this is ring clustering, this behaviour is expected because in a fat quadtree
neighbouring cores might not have a direct common ancestor, and so the packet has to travel
further up the tree.

For the cmesh in ring clustering, although the memory access generation increases the la-
tency does not increase saturation much. In Figure 6.8, the heatmaps show the latency of
each core when the access generation rate is very low, the bottom figure, and when the
access generation rate is high, the figure on top. More cores get higher latency as the genera-
tion rate increases, but this is not reflected in the average latency in Figure 6.4 because some
cores have a very huge latency; even if many cores have lower latency, it does not affect the
average.

6.5. Results and Discussion 82

0.01

0.10

1.00

10.00

100.00

1000.00

0.005 0.05

M
em

o
ry

 R
eq

u
es

ts
 E

n
d

 t
o

 e
n

d

la
te

n
cy

 (u
s)

Transmission Rate (Gflit/s)

Mesh

HCM-No-Coherency

G,Ps=0,Prw=0,Pe=0

G,Ps=0.2,Prw=0.2,Pe=0.2

streamcluster

0.01

0.10

1.00

10.00

100.00

1000.00

0.005 0.05

M
em

o
ry

 R
eq

u
es

ts
 E

n
d

 t
o

 e
n

d

la
te

n
cy

 (u
s)

Transmission Rate (Gflit/s)

Fat Quadtree

HCM-No-Coherency

G,Ps=0,Prw=0,Pe=0

G,Ps=0.2,Prw=0.2,Pe=0.2

G,Ps=0.5,Prw=0.2,Pe=0.2

G,Ps=0.5,Prw=0.5,Pe=0.2

G,Ps=1,Prw=0.5,Pe=0.2

streamcluster

0.01

0.10

1.00

10.00

100.00

1000.00

0.005 0.05

M
em

o
ry

 R
eq

u
es

ts
 E

n
d

 t
o

 e
n

d

la
te

n
cy

 (u
s)

Transmission Rate (Gflit/s)

CMesh

HCM-No-Coherency

G,Ps=0,Prw=0,Pe=0

G,Ps=0.2,Prw=0.2,Pe=0.2

G,Ps=0.5,Prw=0.5,Pe=0.2

G,Ps=1,Prw=0.5,Pe=0.2

streamcluster

Figure 6.3: Memory requests’ latency for group clustering (G: group clustering, Ps: the
shared rate, Prw: the read/write rate, and Pe: the eviction rate)

6.5. Results and Discussion 83

0.1

1.0

10.0

100.0

1000.0

0.005 0.05

M
e

m
o

ry
 R

e
q

u
e

st
s

En
d

 t
o

 e
n

d

la
te

n
cy

 (
u

s)

Transmission Rate (Gflit/s)

Fat Quadtree

HCM-No-Coherency

R,Ps=0,Prw=0,Pe=0

R,Ps=0.2,Prw=0.2,Pe=0.2

R,Ps=0.5,Prw=0.5,Pe=0.2

streamcluster

0.1

1.0

10.0

100.0

1000.0

0.005 0.05

M
e

m
o

ry
 R

e
q

u
e

st
s

En
d

 t
o

 e
n

d

la
te

n
cy

 (
u

s)

Transmission Rate (Gflit/s)

Mesh

HCM-No-Coherency

R,Ps=0,Prw=0,Pe=0

R,Ps=0.2,Prw=0.2,Pe=0.2

streamcluster

0.1

1.0

10.0

100.0

1000.0

0.005 0.05

M
e

m
o

ry
 R

e
q

u
e

st
s

En
d

 t
o

 e
n

d

la
te

n
cy

 (
u

s)

Transmission Rate (Gflit/s)

CMesh

HCM-No-Coherency

R,Ps=0,Prw=0,Pe=0

R,Ps=0.2,Prw=0.2,Pe=0.2

R,Ps=0.5,Prw=0.5,Pe=0.2

R,Ps=1,Prw=0.5,Pe=0.2

streamcluster

Figure 6.4: Memory requests’ latency for ring clustering (R: ring clustering, Ps: the shared
rate, Prw: the read/write rate, and Pe: the eviction rate)

6.5. Results and Discussion 84

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 24.0233 168.834 24.0609 72.1892 24.0716 72.1745 24.0446 72.1732 24.046 72.2456 24.0533 72.1277 23.9791 72.2531 24.06 72.2311 24.0289 168.47 24.1024 72.1696 23.9982 168.416 24.0662 72.2851 24.0642 72.2133 24.0444 72.1855 24.0033 168.566 24.0574 72.1333

1 72.2574 120.448 72.216 120.254 72.2262 120.493 72.1532 120.311 72.1546 120.364 72.1093 120.317 72.3385 120.78 352.685 120.656 72.3211 120.556 72.1199 120.228 72.3174 120.436 72.2239 120.241 72.1891 120.252 72.1964 120.224 72.3377 120.424 72.1841 120.238

2 24.0298 72.1759 24.0645 72.1777 24.0338 72.1886 24.0755 72.1215 24.0822 72.3531 24.0034 72.1888 2234.37 1036.29 12314.9 21772 1248.16 72.2351 24.0019 72.3553 24.0416 72.2066 23.994 72.2901 24.0184 72.2239 24.0681 72.1865 24.0647 72.1767 24.0401 72.1244

3 72.181 120.323 72.1882 120.35 72.153 216.991 168.116 120.322 72.2004 120.339 72.1392 120.313 168.67 3373.86 13544.8 12260.2 1680.47 2432.76 168.252 120.199 72.1829 120.189 72.1946 120.291 72.169 120.227 72.2065 120.208 72.1966 120.236 72.1213 120.231

4 24.0451 72.1766 24.0813 72.1405 24.067 72.192 139.132 72.1607 24.0466 72.1404 35558.5 48809.2 62536.2 88106.5 49046.2 75261.1 11397.3 72.1405 5007.47 72.1784 24.0375 72.2858 24.017 72.1446 24.0896 72.2214 24.0695 72.1656 23.9932 72.1528 24.0225 72.1389

5 72.187 120.653 72.2206 120.235 72.2176 120.313 72.1856 120.31 72.204 120.522 16285.5 47401.5 80177.1 94192.4 52702.3 164392 8191.84 10840.8 2892.96 1559.64 72.2119 120.261 72.1245 120.284 72.1453 120.278 72.1755 120.297 72.1805 120.391 72.1084 216.771

6 23.9996 169.064 24.1039 72.1727 24.0466 72.2275 5878.56 10105.1 54235.8 50462.9 172067 196062 222658 240590 299562 324948 292771 7472.65 145305 135818 25180.4 72.2119 24.1001 72.1775 24.0416 72.2398 24.0172 72.1689 24.046 72.0987 24.1058 72.1145

7 168.579 120.377 72.1746 120.316 72.1723 120.325 5368.56 12627.6 45106.9 60870.9 165679 184196 225270 246576 303056 352783.178 292697 299280 124856 127697 27029.8 32961.9 624.32 120.321 72.0729 120.236 72.2048 120.263 72.2044 120.309 72.1681 120.288

8 24.1152 72.1588 24.0765 72.1885 24.0176 72.1981 24.0689 72.1766 24.0784 85.4658 24.0151 239.139 24.0383 147.727 558.554 4441.11 10849.4 20368.4 219155 218105 62134.7 72.2285 57040.6 62018.3 8731.25 168.82 24.0352 72.1959 24.0341 72.14 24.0679 72.179

9 72.1838 120.272 72.1768 120.309 295806 120.256 168.621 120.4 72.2118 135.562 72.3418 199.046 72.2121 192.107 625.775 12205.7 10993 10786.1 108692 246899 63853 62922 56108.3 62403.8 8222.06 7660.35 72.1229 120.253 72.2234 120.252 72.2213 120.279

10 24.0509 72.1532 24.0825 72.1675 24.0684 72.2157 24.0376 72.1685 24.0574 72.2238 120.294 72.0754 120.761 72.413 24.0238 72.2057 24.0587 72.2819 120.118 72.2363 24.0422 72.2322 24.0332 72.2296 24.0592 72.1782 24.0332 72.2009 24.0635 72.1562 24.0587 72.1246

11 72.1936 120.269 72.211 120.305 72.191 120.306 295806 120.162 72.198 217.046 71.9845 295806 72.135 217.259 72.1769 123.63 72.1597 120.27 72.1363 120.198 72.164 120.28 72.1912 120.291 295806 120.126 72.1485 120.265 72.173 120.244 72.1832 120.276

12 24.0708 72.1633 24.1056 72.1616 24.0314 72.1862 24.0652 72.2085 24.0674 72.2459 24.0646 72.2042 24.0833 72.3691 24.0558 72.243 24.0586 72.2459 24.0366 72.2441 24.0349 72.1973 24.0786 72.2377 24.0537 72.2258 24.0767 72.1919 24.0599 72.1741 120.497 72.0932

13 72.1656 120.268 72.1377 120.276 72.2168 217.096 72.1968 120.325 72.1842 120.35 72.1888 120.361 168.84 120.612 72.1754 121.603 72.1728 120.311 72.203 120.294 72.1875 120.264 72.2032 120.281 72.1851 120.282 72.1801 120.295 72.2126 120.416 72.2912 120.336

14 24.0615 72.1733 24.0287 72.186 24.0533 72.2065 24.0435 72.1987 24.0413 72.2093 24.0701 72.2183 24.0688 72.2136 24.0714 72.1996 24.0475 72.2678 24.0381 72.2455 24.0453 72.25 23.9364 72.0796 24.053 72.2081 24.0641 72.1718 24.0581 72.1852 24.0337 72.1486

15 72.1889 120.309 72.1891 120.356 72.1666 120.319 72.1828 120.321 72.1712 120.31 72.1859 120.343 72.1156 120.331 72.1871 141.874 72.1697 120.265 72.1552 120.278 72.1616 120.282 72.0509 216.377 72.1989 120.264 72.2253 120.275 72.1627 120.296 168.256 120.278

16 24.0523 72.1233 24.0685 72.1701 24.0578 72.1845 24.068 72.1845 24.0472 72.1641 24.0872 72.168 24.0608 72.2616 23.9806 72.0604 24.018 72.2377 24.0672 72.2632 24.0271 72.2234 24.0512 72.2558 24.0555 72.2157 24.0297 72.1756 24.052 72.1525 24.0477 72.1491

17 72.183 120.285 72.1708 120.286 72.201 120.331 72.1629 120.335 72.2451 120.493 72.2083 120.363 72.1792 120.412 168.416 295806 295806 120.29 72.1464 120.288 72.1712 120.27 72.1834 120.281 72.1693 120.286 295806 120.133 72.202 120.348 72.1885 120.288

18 24.0828 72.1313 119.952 72.0775 24.075 72.1759 24.067 72.218 24.0345 72.2944 24.0639 72.2171 24.052 72.2122 24.1019 72.219 24.0724 72.3369 24.076 72.2699 24.0777 72.2702 24.0607 72.2147 24.0422 72.1763 24.0271 72.1742 24.0517 72.1677 24.0171 168.151

19 72.1454 120.299 72.1501 120.266 72.1704 120.32 72.1603 120.271 168.63 120.389 72.2167 120.493 72.2027 120.362 72.2001 120.385 168.46 120.314 72.1565 120.31 72.1958 120.264 72.1406 120.268 295806 120.119 72.1626 120.237 72.1422 120.243 72.1287 120.167

20 24.0883 72.1943 24.084 72.1848 24.0458 72.2121 24.0528 72.1802 24.0604 72.2097 24.0738 72.1887 24.0435 72.239 24.0681 72.2064 24.0759 72.2507 24.0334 72.2287 24.0398 72.2504 24.0136 72.2156 24.0344 72.2794 24.0773 72.2102 24.0352 72.1613 24.0664 72.1277

21 72.1781 120.262 72.2002 120.355 72.1336 120.308 72.1669 120.36 72.1538 120.4 72.1568 120.349 72.1807 120.359 72.1761 120.331 72.2099 120.379 72.2921 216.822 72.1739 120.311 72.1649 120.26 168.728 120.499 72.1529 120.264 72.1686 120.234 72.1407 120.321

22 24.0986 72.1449 24.0745 72.1584 24.0443 72.181 24.0539 72.2301 24.0445 72.2313 24.0279 72.205 24.0745 72.2518 24.0533 72.1987 24.0457 72.1678 24.0202 72.1729 24.0451 168.865 24.0529 72.1767 24.0431 72.1178 24.0567 295806 24.0881 72.2088 24.0617 72.1272

23 72.1831 120.291 72.1451 120.266 72.2035 120.351 72.2061 120.344 72.1858 120.313 360.489 120.35 72.2048 120.391 72.2001 120.36 72.142 120.287 72.1506 295806 72.1521 120.247 72.1792 120.317 72.1927 120.267 72.1268 120.1 72.2055 120.278 72.1197 120.255

24 24.0955 92.0247 2956.32 3294.22 37243.3 42314.3 12771.7 18515.7 24.0419 189.015 24.0077 186.424 24.0745 81.1131 24.068 88.3368 15138.4 104941 292922 3977.23 124170 126961 29865 72.2072 6435.43 72.1175 1297.9 72.2161 24.0332 72.1991 24.0695 72.1346

25 72.1865 191.574 4002.56 4056.63 35535.1 41240.3 12432.6 18711.4 72.2122 247.1 72.2429 141.658 72.1717 130.016 72.1969 135.646 14929.8 40961.2 295776 297715 126596 127687 33141.6 31488.3 5852.73 6930.48 2433.26 1890.22 72.221 120.336 72.1764 120.24

26 24.0386 72.1461 24.0542 72.1831 24.0088 72.1663 23.9883 72.1715 120.759 892.284 19044.4 19846.5 5675.68 146243 273190 68277.6 317473 72.3994 35013.5 39558.8 9275.09 72.2668 23.9663 72.1644 24.0547 72.1127 23.9826 72.1202 24.0553 72.168 120.151 72.0967

27 72.166 120.232 72.2225 120.271 72.2193 120.317 72.1231 120.258 72.0639 120.337 15718.1 13965.2 130947 154673 271245 295806 304241 306014 31126.2 35446.9 7372.06 8014.93 168.12 120.208 72.161 120.312 168.154 216.267 72.1547 120.285 72.1095 216.31

28 24.0902 72.1724 24.0553 72.175 120.597 72.1721 24.0831 72.2128 24.0708 72.1818 23.9934 72.1742 27749.3 16782.5 184752 239346 67081.3 69303.9 9769.57 72.5028 24.1184 72.2308 120.315 72.2151 24.023 72.1955 120.455 72.1419 24.0633 72.152 24.0313 72.189

29 295806 120.152 72.2121 120.295 72.3007 120.495 72.2212 120.388 72.2083 120.42 72.1915 120.438 21875.7 22884.7 196797 251395 295806 75041.8 11429.1 9219.66 72.1604 120.35 72.1846 120.385 72.1577 120.349 72.1688 120.322 72.206 120.28 72.1995 120.287

30 24.0519 72.1401 24.0816 72.175 24.0701 72.1915 24.0401 72.2699 24.0936 72.1637 23.9717 168.166 24.0521 72.3718 2569.27 26264.5 1286.05 72.2013 24.0438 72.2541 24.0146 72.114 24.0018 72.1825 24.0272 72.1929 24.0175 72.2093 24.0587 72.0895 24.0124 72.1244

31 72.1549 120.298 72.1342 120.305 72.276 120.336 72.149 120.334 72.1337 120.334 72.2165 120.432 72.2384 120.524 3870.28 24533.7 1595.22 1609.45 72.0308 120.32 72.1425 120.293 72.2405 120.236 72.1691 120.279 72.1844 120.22 72.1334 120.231 72.1769 120.243

Figure 6.5: Mesh heatmap for group clustering

0

500

1000

1500

2000

2500

3000

3500

1
1

1
6

2
1

2
4

2
7

3
0

3
6

7
0

7
3

7
6

7
9

8
2

8
6

1
0
6

3
7
7
6
1

4
2
1
6
4

4
5
3
0
9

4
9
7
1
2

5
1
5
9
9

5
3
4
8
6

5
5
3
7
3

5
7
2
6
0

5
9
1
4
7

6
1
0
3
4

6
4
1
7
9

6
6
0
6
6

6
7
9
5
3

6
9
8
4
0

7
1
7
2
7

7
4
2
4
3

7
6
7
5
9

7
9
9
0
4

8
1
7
9
1

8
3
6
7
8

8
5
5
6
5

8
7
4
5
2

8
9
9
6
8

9
1
8
5
5

9
3
7
4
2

Fr
e

q
u

e
n

cy

End to End Latency (ns)

core[66]

core[230]

core[239]

Figure 6.6: Frequency of latency in a mesh for some cores

6.5. Results and Discussion 85

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 25.37 53.7 53.33 69.37 55.38 110 71.66 120.7 56.04 71.73 109.9 121.3 72.78 123.1 124.1 157.7 110 56.01 122.4 72.25 61.13 224.2 77.52 230.6 123.6 73.6 156.4 123.6 77.51 229.5 128 263.8

1 109.1 121.8 56.09 71.98 123.2 156.7 73.28 123 60.28 76.48 224.6 230.6 76.78 127.9 230.4 263.4 157.2 123.3 122.5 73.5 126.8 265.7 77.56 229 127.5 77.8 265.9 232.5 80.94 235.7 236.5 336.5

2 7827 403.1 7287 387.8 83.93 520.7 111.4 510.6 7355 400.5 7696 783.9 117.3 530.7 530.4 816.6 523.4 179.6 527.2 227.9 2463 64985 2648 60760 531.8 195.5 794.6 628.8 2361 62376 2772 61226

3 8363 2080 7257 1001 1804 2448 735.3 1759 7563 1091 12156 7605 943.8 2053 7452 8149 2504 1813 1778 783.2 4289 63492 3079 61169 2081 995.4 8437 7636 3117 63368 9824 67416

4 8398 7821 426 497 7740 8348 447.6 1098 121.4 148.6 805.6 782.5 163.1 850.1 812.5 1258 8910 7930 2125 813.8 8331 13098 1071 7858 1754 94.53 2349 1734 713 2500 2060 2625

5 762.4 730.7 232.2 208 446.1 1155 242.5 839.3 2483 2732 65419 61207 2514 3368 59593 61700 2308 1549 1619 573.2 1901 8688 312.2 8140 3857 2943 62940 64016 3333 5330 66134 66039

6 15669 9527 9759 1813 9727 11147 1520 3269 10102 1460 10871 3336 1298 2913 3001 3999 10962 9773 3340 1574 11683 66775 3739 62028 2887 1301 4043 3074 3226 59963 5272 60587

7 10764 3249 9510 1522 2928 4000 1480 3112 12165 3727 66341 60443 3055 5497 61240 62800 4193 3060 3049 1387 5354 61657 3529 60407 5006 3483 61437 59686 5338 62587 61130 1E+05

8 64621 2275 60544 2492 213.8 608.4 216.8 604.9 60940 2239 60807 2931 263.6 605.9 693.4 978 577 87.2 555.1 113.9 388.6 8156 411.1 7669 560.1 135 867.4 580.4 434 7657 828.9 7819

9 64501 4318 62942 2970 1949 2667 878.3 1861 61864 3255 68786 9976 1059 2143 7750 8208 2510 1835 1958 748.7 2153 8324 987 7430 2098 952.9 8090 7577 1114 7498 7863 12376

10 221.3 60.69 228.6 77 56.13 109.6 72.01 121.7 231.4 78.02 264 127.8 73.39 123 124 156.4 108.5 55.9 122.9 71.84 53.37 25.38 69.31 53.86 122.6 72.9 157.1 123.5 71.67 56.09 121.5 108.3

11 263.3 127.8 230.3 78.21 123.1 156.7 73.39 122.9 233.1 81.44 338.2 232.4 77.31 128 230.3 265 155.7 123.3 122.7 73.26 122.5 109.8 71.96 56.18 128.3 77.39 264.8 230.9 76.56 61.17 230.5 225.3

12 66441 11448 60595 3838 9567 10712 1633 3326 61298 3497 62582 5359 1324 2912 2967 4012 10858 9779 3315 1574 10024 15641 1872 9605 2914 1287 4193 2902 1570 9129 3227 10908

13 61408 5079 61831 3634 3150 3957 1363 2935 59639 5083 1E+05 63528 3474 5189 60994 59400 3971 2943 2982 1408 3358 10800 1629 9933 5103 3569 62133 60779 3767 12085 59348 68053

14 12271 7831 7626 1207 7391 8430 964.9 2218 7675 949.9 8528 2274 744.2 227 184.3 3008 7660 7476 871.3 413.3 7466 7964 425.7 367.7 576.4 118.2 877.3 567.7 110.9 92.68 551.8 574.8

15 8265 2217 7420 1034 1829 2651 862.5 1991 9869 3261 68607 62232 2903 4348 64627 64049 829.2 532.5 627.3 224 515.6 523 161 208.8 2412 2435 60309 59922 2613 2622 60512 65340

16 64045 60940 2517 3037 59954 61151 2281 3071 176 193.6 621.1 628.9 257.1 749.4 626.4 977.1 64097 63069 4176 2744 63691 68168 3198 9759 1941 818.5 2518 1804 1101 7423 2096 8189

17 711.2 686.9 110.7 129.7 695 1080 152 711.6 406.3 426.9 8143 7792 430.6 1002 7782 8154 2634 1803 1811 788.5 2084 7972 1000 7299 2192 959.3 8038 7493 1174 7474 7590 12193

18 67862 58189 12158 3895 60726 61230 3202 5164 10106 1587 10258 3386 1468 3157 3000 4077 62287 60421 5089 3543 62493 1E+05 5080 63127 3056 1410 4167 3014 3672 59732 5179 60820

19 11764 3326 9780 1544 2965 4041 1231 2958 9271 191.4 15040 9551 1545 3318 10420 11100 4061 3063 2812 1304 5225 62560 3711 60409 3170 1674 11071 10046 3621 60239 12213 66811

20 223.2 228.8 60.57 77.37 232.2 263.8 77.78 127.5 55.61 71.65 109.7 122.6 73.08 123.2 123.7 157 262.8 233.3 128.4 77.7 233.5 335 81.85 234.7 122.9 73.38 156.6 124.1 77.48 233.5 127.7 263.6

21 109.1 122.7 56.08 71.58 124.2 156.4 72.66 123 53.4 69.62 25.31 53.52 71.23 121.8 55.56 109.7 156 124.3 123.3 73.35 127.5 265 77.06 232.3 122.6 72.03 110.3 55.83 76.3 230.4 60.66 224.4

22 11971 7745 7616 1129 7448 8116 955.5 2129 7207 935.6 8028 2039 734.1 1839 1792 2591 8200 7505 1994 1073 9665 68159 3167 62323 1736 788.9 2418 1899 2704 63311 4308 64059

23 7848 872.1 7393 409.6 608.6 913.3 117.3 590.5 7329 402.4 7982 372.2 101.9 476 100.6 482.3 759.4 571.9 483 239 2788 60957 2452 61357 485.1 211.4 492.8 193.4 2428 61052 2223 64337

24 1E+05 63035 62066 5036 62586 62903 3880 5309 59753 3522 60974 5481 1479 3096 3241 4069 61497 60835 5389 3191 57885 67032 3422 12407 2951 1333 4122 2866 1673 9706 3097 10956

25 60702 5133 59526 3439 2987 4435 1422 2965 60969 3458 67053 12208 1607 3176 9959 10954 4059 2804 2924 1261 3240 10886 1494 9867 3239 1460 10769 9469 188.5 9517 9174 14004

26 68768 61546 9532 3259 63538 64603 3319 4189 7470 1072 8069 2042 777.8 1905 1702 2365 60874 60451 2834 2317 59622 64633 2594 2483 610.6 203.5 815.6 550.6 199.7 162.7 535.9 529.3

27 8283 1980 7321 872.2 1659 2362 635.6 1689 7462 294.5 12025 7284 877.3 1934 7357 8411 755.3 503.2 505.8 124.4 499.1 499.8 102.9 83.62 773.2 379.5 7578 7342 415.4 361.6 7123 7715

28 69452 9711 63345 3400 7466 7989 1020 2143 63118 3042 63324 4016 905.4 1785 1864 2417 8109 7448 2012 915.4 7071 11425 266.1 7225 1739 669.6 2556 1742 1003 7575 2068 8421

29 59778 2911 60226 2193 699.5 926 241.7 607.7 60390 2804 64983 2394 290 586.8 185.1 608.5 985.3 671.5 630.8 139.6 956.3 7908 421.3 7476 631.7 123.7 645 98.85 396.6 7582 365.9 7972

30 336.2 235.3 232.9 81.03 230.5 264 77.61 127 231 78.07 263.8 127.3 73.82 122.8 123 157 263.5 232.5 128.5 78.22 229.9 224.2 76.87 61.15 123.8 73.13 156 123.7 72.08 55.84 122.3 108.5

31 266.1 128.4 231.4 77.39 122.8 156.5 73.62 122.7 227.8 77.24 223.9 60.59 72.28 122 55.97 110.7 155.9 123.5 123.5 73.35 123.8 109.9 71.67 55.95 121.9 71.86 108.6 56.17 69.49 53.63 53.46 25.28

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 25.3 52.94 53.46 68.84 55.08 109.1 70.71 119.8 55.31 71.5 108.6 121.7 72.52 122.1 123.7 154.5 108.1 55.68 120.8 71.62 60.07 224.5 77.24 224.9 122.3 72.27 156.8 122.2 76.61 229.9 127.6 263

1 109 122.1 55.74 71.48 122.5 156.4 73.42 123.2 60.17 75.93 223.9 230.3 77.65 126.5 230.5 258.7 155 122.9 123.1 73.08 126.9 263 76.63 227.6 126.5 76.74 262.7 230 80.13 231.4 232.9 331.6

2 221.2 60.67 224.3 76.25 55 109.6 71.35 120.8 229.3 76.73 261.4 126.4 73.53 122.4 124.1 155.8 108.6 56.25 122.3 72.37 70.45 446.6 86 439.4 122.5 72.9 155 122.9 85.65 447.9 135.2 479.6

3 262.8 127.5 229.9 77.29 121.7 156 72.98 122.9 233.3 81.45 326.4 233.5 76.54 129 231.3 266.4 156 123.5 123.1 73.03 133.8 475 85.85 445.5 125.8 78.41 261.9 228.6 88.91 446.1 240.8 545.3

4 219.7 226.1 59.75 77.19 228.4 262.3 78.52 127.6 56.13 71.76 110.1 121 73.23 122.1 121.8 156.6 262.5 230.1 127.1 76.32 230.4 331.4 80.74 233.2 121.6 73.12 155.5 122.4 78.31 229.4 127.5 263.6

5 108.3 121.1 56.14 72.41 121.7 156.5 73.54 122.8 68.77 86.97 446.1 443.4 83.97 135.9 435.9 483.2 156.6 122.9 125.1 73.24 125.8 260.5 78.6 229.6 134.6 85.43 470.3 447.4 88.54 241 439.5 555.6

6 331.8 231 233.6 80.58 226.9 262.5 78 127.5 228.7 78.24 263.3 126 73.46 122.4 122 155.2 260 231.5 127.8 76.98 244.9 548.4 91.59 441.6 123.2 73.08 156.1 124 85.41 440.7 135.6 472.6

7 263.6 126.9 233.1 77.62 122.3 155.9 74.02 123 239.9 89.6 544.7 448 85.99 134.3 441.7 474.3 154.5 123.3 123.1 74.11 132.4 476.2 87.32 443.5 135.9 86.61 480.8 439.1 97.08 446 454.8 688.5

8 447.5 69.84 444.7 86.37 55.7 108.6 71.6 121.5 440.6 86.05 484.1 135.5 73.17 121.8 122.2 155 108.3 55.73 120.3 71.48 61.11 221.7 76.16 229.2 122.4 73.22 156.2 121.6 77.28 226.7 126.5 259.7

9 478.4 135.7 447.6 87.23 123.3 156.7 73.61 121.7 449.7 91.56 548.2 242.3 78.17 126.8 229.5 263.3 157.4 122.9 121.8 73.17 127.4 264 77.39 229.9 126.9 77.6 262.9 228.9 80.25 232 233.3 330.8

10 219.9 61.6 225.3 76.81 55.88 109.5 71.79 120.5 228.8 77.73 263.1 127 73.07 122.5 123.1 155 108.3 55.56 121.2 70.73 53.09 25.41 68.97 53.26 122.2 73.04 155.7 121.8 71.75 54.9 121.1 109.4

11 263.1 126.6 226.3 77.2 122.2 156.3 73.13 123 230.8 80.11 330 233 77.37 127.1 228.2 261.1 157.3 123 122.7 72.85 122.1 108 71.98 55.56 127.8 76.55 260.1 229.4 76.96 60.07 229 223.5

12 552.1 238.3 444.6 90.82 230.9 262.8 78.77 126 440 83.95 478.7 136.4 73.42 122.7 123 156.9 259.3 229.3 127 77.57 230.1 334.4 80.93 230.4 123 72.99 155 123.5 77.71 229.3 127.3 263.5

13 485.5 135.9 452.6 86.96 123.3 156.6 73.81 122.8 456.8 96.93 689.7 456.3 86.4 136 447.1 482.4 155.1 123.4 123.3 72.88 126.4 260.8 78.07 229.2 136.2 86.8 470.9 444.4 87.22 243.2 446.1 546.9

14 333.7 230.3 232.5 80.91 230 261.9 78.01 126.6 230 77.59 262.2 125.6 72.91 122.9 122.7 156.6 261.9 226.7 126.9 77.16 227 223.4 76.22 61.22 123 73.28 155.4 121.9 70.99 55.46 120.5 108.9

15 263.5 128.5 229.9 76.8 122.6 154.3 73.68 122.6 239.8 90.54 550.7 439 86.3 137.1 440.9 474.2 155.9 122.7 124.5 72.91 121.6 107.9 72.27 56.67 136.4 84.58 479.6 449.1 86.74 70.09 446.2 447.3

16 445.5 440 69.1 86.19 446.1 473 85.99 136.3 55.89 72.39 109 121.5 73.2 124 124.1 155.7 483.4 452.3 137.4 86.4 449.4 550.5 89.8 241.7 122.8 73.78 156.5 123.9 77.51 227.6 127.9 262.2

17 109.9 121.4 55.93 71.42 122.3 155.9 73.21 122.4 60.6 75.65 219.7 227.2 77.16 126.3 230 262.3 155.4 122.9 121.9 73.25 128 262.1 76.92 226.6 127.2 77.26 261.7 230.2 80.79 229.2 231.1 330.9

18 541.4 442.2 241.1 88.03 435.8 473.2 86.99 137 228.2 78.03 263.4 126.5 73.42 123.2 124 155 483.6 444.5 136.3 85.19 459.5 690.8 95.8 443.9 123.2 73.97 155.6 122.5 85.5 446.5 135.3 469.5

19 263.4 126.6 227.9 77.35 123.5 155.4 72.97 123.2 229.8 80.42 333.2 230.8 77.21 126.5 227 262.5 154.6 123 123.4 74.03 137.4 472.9 86.48 441.7 127 78.76 263.8 229.2 87.53 457.8 240.3 541

20 222.5 230.6 60.24 76.87 229.2 261.6 77.64 127.2 55.36 71.78 109.2 120.5 73.48 122.4 122.5 155.4 260.8 232.2 126.3 77.59 230.7 331.7 80.9 230.3 122.6 73 155.2 122.3 76.38 225.4 127.5 264.7

21 107.8 120.3 55.13 71.4 122 155.6 72.78 122.2 53.85 68.59 25.17 53.71 71.12 120.3 55.1 107 154.9 124.6 121.9 72.3 125.7 259.4 76.61 228.7 121.1 71.94 109.7 55.72 76.93 226.3 60.39 222.5

22 331.5 230 232.4 80.2 229 262.9 76.75 125.9 227.8 77.42 259.6 127.4 73.59 122.7 122.7 155.1 262.2 231 127.6 77.41 240.8 546.5 90.69 442.6 123.7 73.6 156.6 123.2 87.33 441.9 135.9 478.8

23 263.6 127.6 228.8 77.4 122.7 156.4 72.8 123 225.8 76.29 223.2 59.7 71.6 120.6 55.8 108.7 156.2 123 122.6 72.81 136.4 473.8 85.41 443.5 121.7 72.36 108.8 55.85 86.77 441.8 70.62 450.7

24 690.5 448.4 453 96.71 448.8 471.8 86.66 135.6 447.9 84.99 479.9 136.7 73.96 123.6 122.2 157.2 475.9 445.3 135.4 85.79 444 549.3 89.93 238.1 122.2 73.69 156.1 121.9 77.01 232.1 128.9 263.3

25 477.3 136.7 443.1 84.27 122.2 155.8 73.54 123.7 450.1 87.95 544.9 238 77.35 126.1 229.1 264.3 154.9 122.9 123.7 72.5 127.7 260.7 76.35 225.9 128.6 78.15 260.8 227 80.69 231.3 229.7 333.7

26 546.5 445.9 242.4 89.44 440.5 465.8 85.15 135.9 228.5 77.55 260.1 126.4 73.9 122.3 122.6 154.6 474.3 438.5 136.6 84.35 441.8 444.8 85.97 70.25 123.4 73.8 156.1 121.3 72.66 56.14 122.1 109.3

27 261.7 126.5 230.9 78.1 122.3 155.8 73.51 123.2 231.6 79.82 336.3 232.3 77.44 127.6 228.8 261.9 156 122.1 122.4 72.91 122 108.3 71.93 56.63 126.3 77.1 262.5 229.5 76.19 60.16 226.5 223.2

28 549 238.6 445.9 90.6 230.7 260.4 78.57 126.3 444.1 86.31 474 135.9 73.43 121.6 123.8 155.8 261.9 229 125.5 77.5 233.8 333.6 80.26 230.8 123.5 72.94 156.7 122.2 76.49 230.3 127.4 263.4

29 475.3 136.8 444.2 85.63 124.2 154.6 73.28 123 445.7 86.28 448.5 69.74 71.87 121.6 55.79 109.4 156 123.6 121.7 72.98 127.5 260.1 77.11 227 120.1 71.41 109.4 56.12 77.37 224.8 60.73 220

30 331 231.7 230.9 81.27 231.9 266.4 77.1 126.4 230.5 76.71 261 126 73.17 124.8 123.9 156.6 261.2 229 127.1 77.44 227.4 224 76.83 60.09 123.2 72.76 155.9 123.4 71.77 55.54 121.5 107

31 260.8 124.9 228 76.17 122.9 155.6 73.16 123.1 228.5 76.3 226.1 60.69 71.25 122.3 55.58 109.1 156.4 122.4 120.8 72.91 120.8 109 71.27 55.65 122.9 71.51 109.1 55.72 69.13 53.14 53.77 25.37

Figure 6.7: Fat quadtree heatmap for ring clustering (the saturated case on top)

6.5. Results and Discussion 86

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 12.0028 11.9962 11.9836 11.9916 1429.03 150586 1442.42 1435.58 11.9901 11.9967 12.0106 12.0041 11.9979 7087.44 12.0003 12.012 11.9934 12.0131 8309.23 11.9958 11.9976 8600.5 11.9892 9357.37 12.0002 12.0023 12.0162 11.9966 12.0086 11.9871 100.038 12.0068

1 14686.1 11.9874 14853 12.0034 12.0019 13862.7 12.0058 13826.9 8737.73 11.995 8686.69 11.9896 11.991 12218.2 11.9902 11.9855 11188.9 12.0057 12.0055 11.9851 13880.7 13818.6 10898.2 14282.8 6671.04 11.9997 11.9904 12.0035 100.958 11.9973 12.0078 100.954

2 104.686 12.0074 12.0134 104.644 11.9946 12.0023 150373 11.9943 12.0034 151.218 11.9933 149667 12.0063 11.9925 250.701 255.098 7616.59 12.0058 12.0053 508.785 7706.2 7197.64 7659.27 1E+06 12.0127 12.0162 7484.83 11.9931 1695.44 12950.3 1666.39 10783.5

3 15094.1 102.063 11.9988 101.336 12.0102 11.9845 6536.44 11.9911 7124.33 12.0149 7259.79 121.953 224.222 12.0004 225.165 12.0043 12.0188 11.9948 4566.58 100.204 12.0101 4431.22 1E+06 1E+06 12.0317 1350.3 11.9996 5692.37 2061.2 11.9906 6532.2 6622.7

4 11.9997 12.005 12.005 12.012 156781 156695 4614.23 4615.65 153963 11.9884 154876 12.0083 153919 153614 109.736 110.285 11.9959 11.9949 11.9944 11.9878 8632.02 12.0092 5681.85 11.995 10375.5 10768.5 11.9944 8778.72 100.844 11325.5 100.83 10857.9

5 10967.6 11.9957 12.0112 12.0024 11.9882 11.9922 11.9996 9207.21 11029.4 12.0011 12163.1 12.0116 11584.5 11.9995 11.9996 13366.4 10279.4 9066.38 11839.2 12.004 7673.98 13987.8 12.0082 13349.1 11.9889 9585.39 9831.44 11.9876 100.801 11.9978 100.841 11.9984

6 107.415 107.504 11.9929 107.448 11.9897 12.0024 11.9931 7856.92 155763 12.0032 11.9962 11.9768 12.0053 6308.12 11.9925 1E+06 12.0129 12.0024 7695.78 7810.96 5658.09 12.0105 12.0076 8656.28 8769.22 1011.01 11.9923 7193.68 2636.19 12.0048 9093.85 12.0016

7 11.9935 1398.45 12.0049 1651.69 6425.15 11391.1 12.0061 14176 100.883 100.86 11813 12579.3 10143.2 10286.8 9906.75 1E+06 12.0184 12.0042 9716.05 11617.4 6945.94 10925.6 7403.27 10719 1139.07 1434.78 8460.9 1432.48 11.9825 11.9895 9950.35 10120.9

8 11.9917 6284.57 12.0067 11.9945 12.0027 5047.8 4836.05 4726.46 11.9845 12.0057 12.0253 11.9961 104.55 5125.42 103.407 103.149 11.9913 11.9992 11.9853 12.0001 8595.29 6694.12 11.9983 7981.21 5862.67 7679.12 12.0129 11.9967 100.911 6449.9 100.902 11.9961

9 2638.17 2280.13 12.0115 11.9892 11.9936 3200 11.992 12.0043 4129.73 2591.67 12.0032 12.014 99.9896 3701.9 11.9986 11.9933 11.9981 11282.1 14077.9 12.0127 12.0113 17757.9 10875.7 11368.1 11689.1 11197.2 12.0016 12.007 12.0031 11.9979 100.079 11.9812

10 11.9994 100.036 12.0053 2676.52 2479.71 12.0148 11.99 11.9884 11.9781 1532.01 4117.97 1445.97 2196.45 2123.11 4042.39 4124.51 11.9766 12.0118 8366 5888.07 6121.81 6335.67 1E+06 5917.17 6308.24 11.9702 6143.25 11.9916 3510.85 12.008 6239 7086.1

11 4272.63 480.041 3412.73 3169.52 3216.52 11.9887 1E+06 11.9986 1209.73 11.9989 3959.73 3637.3 12.0024 3602.86 2192.6 3507.89 11.9869 104.814 14113.4 12.0144 12810.2 13410.3 11.986 13323.4 703.967 11.9766 13063.3 12.0001 2174.41 1648.78 11.9941 12176.5

12 4924.62 11.989 12.0002 12.0124 3567.94 4650.78 12.0121 5622.2 3523.21 11.9856 11.9831 11.9871 12.0243 3910.04 12.0023 113.901 11.9894 12.0038 6616.38 12 11.9929 9848.7 8589.85 6139.71 6212 11.9998 6326.62 12.0089 12.0018 9255.36 9052.5 8366.67

13 4272.89 3056.35 11.9883 12.0125 5768.07 5758.61 12.0108 12.0048 11.9837 12.0086 3094.42 12.0119 2931.25 3308.32 100.044 12.0049 12921.3 11.9842 12.0032 11.9946 10746.7 20861.3 18795.7 12118.4 13699.7 13096.3 11.9917 11.9911 102.538 11.9958 102.594 102.549

14 11.9867 100.029 6216.5 7679.17 12.001 11.9978 12.0043 1E+06 4117.33 11.993 11.9832 4351.5 210.496 209.474 206.65 1054.87 6884.8 11.9892 12.0075 4696.4 5708.99 8260.59 12.0003 6236 99.9965 11.9845 10389 11.995 6719.35 6856.25 6242.08 1126

15 12.0041 700.342 4986.17 4956.94 12.0102 3585.38 12.0002 3725.83 3560.62 752.528 4341.22 12.0074 834.532 12.0041 5701.44 5672.11 11382.5 1840.38 13849.2 11.9834 6902.44 15040.6 12.0084 15704.1 13027.7 101.237 14026.4 101.089 12.0044 12.0033 12.0058 12872

16 5323.22 5903.63 11.9744 11.9916 4815.7 11.9799 4564.44 12.0177 3999.75 6292.55 5070.6 12.0034 7832.75 6755.4 100.048 12.0021 12.0227 11.9963 11.9952 11.9811 10137.6 7515.78 5029.23 11.9916 12.0097 11.9983 11.9767 11.9961 9292.26 12.0044 100.085 9830.76

17 12.0065 11.9841 12.0079 11.9866 12.0099 3633 4231 4256.64 5113.89 5666.3 12.0054 11.9787 3988 99.9973 12.0055 12.0062 12.0054 6186.92 12.0099 12.011 12.0164 4875.42 5057.81 6390.44 6068.69 12.0059 12 11.9895 112.035 11.9907 112.078 11.9925

18 103.642 299.369 12.0246 104.918 2685.12 2639.91 11.9977 1E+06 11.9903 398.745 4683.29 5009.75 11.9949 11.9963 759.53 4074.96 12.0003 100.177 3786.61 11.9835 12.0055 12.0034 12.0027 3695.25 6453.74 12.0033 6332.31 6138.58 1700.84 12.0039 1681.73 7045

19 238.73 12.0188 11.9899 2028.97 2326.25 11.995 12.0049 2346.2 474.749 11.9984 12.0072 11.9706 12.0114 4075.92 12.005 5103.41 11.991 11.9962 3065.89 11.9966 3187.15 11.9909 2971.3 12.0079 2953.61 112.008 11.9926 2925.61 11.9869 204.728 205.458 12.0005

20 12.0186 5307.48 11.9995 11.988 6039.33 5024 5261.75 4933.92 3812.77 3853.85 12.0181 12.0037 12.0043 11.99 100.004 11.999 11.9983 6146.36 11.9979 12.0138 9699.62 9914.87 11.9926 11268.8 8338.64 6715.43 12.0255 12.0184 6453.18 9190.36 12.0081 8578.95

21 11.9888 3661.8 4201.7 12.0022 11.9992 11.996 4436.21 5866.73 4547.44 12.0144 4422.47 11.9995 3735.76 5214.77 103.632 102.078 5063.11 12.019 5723.55 12.0018 4956.75 12.0049 12.0017 6371 11.9718 11.9975 4152.93 11.9923 100.83 11.9979 100.857 12.004

22 11.9955 12.0123 11.9983 5477.42 12.0037 11.9843 4700.72 12.0068 4212.92 11.9916 12.0082 11.9955 11.9905 4172.93 4385.48 1000000 6884.48 11.9971 7631.7 12.0092 11.9942 11.994 5280.42 9989.42 6642.71 12.0199 6802.79 100.799 188.817 11.998 12.0035 12.02

23 11.9961 964.624 3802.79 11.9962 3284.31 3282.14 7809 5683.17 99.9899 12.0077 5083.18 6723.73 11.993 12.0092 3570.96 1000000 11.9986 11.9965 11.9956 5029.22 3128.97 5023.5 2889.99 5233.16 105.582 12.0023 11.9995 5961 12.0016 11.9987 5025.74 5509.98

24 11.9999 12.0049 11.996 12.0111 12.0039 12463.2 3674.06 3644.68 142853 7055.6 142990 12.0091 12.0001 6655.69 101.499 101.51 2980.38 12.0138 2803.25 12.0134 3907.9 1E+06 3734.45 2945.5 5544.63 4747.67 12.004 11.9945 100.008 7383 11.9991 6393

25 1978.71 2260.8 4257 12.0051 3677.61 3832.88 4361 12.002 4882.54 11.9881 12.0018 12.0144 101.312 4932.03 101.456 4525.33 12.0059 11.9948 12.0073 11.9952 5144.18 12.0036 11.9983 3071.54 5706.07 11.9919 12.0025 11.9857 12.0154 11.9942 100.923 100.963

26 12.0074 12.0009 11.9907 119.358 137340 12.0067 136987 1E+06 142661 127.609 144585 125.617 11.9945 12.0093 12.0116 8108.49 285.444 11.9977 4013.15 11.9855 3630.16 3520.52 3146.16 3558.19 4226.88 1588.63 3939.63 1804.26 12.0184 6398 5019.57 7494

27 5731 712.511 4826 12.0087 3366.12 3549.82 11.9928 11.9886 3156.5 12.0025 3570.7 921.878 2078.92 5265.53 1628 1784.44 100.049 12.0035 12.001 12.0021 11.9988 1583.47 1618.35 1E+06 11.9918 1589.05 3108.67 3022.75 2190.05 11.9839 2091.36 3539.62

28 137440 12.0038 12.0017 12.0122 11.994 11.9933 2258.8 12.0169 141442 11.9847 12.0064 11.9814 103.898 6098.84 11.9979 6362.96 3716.08 11.9957 11.9936 11.9945 3451.88 3680.9 3425.75 4244.55 12.0107 3900.73 11.9889 11.9999 4254.68 6005.89 100.02 12.0013

29 4228.54 11.992 4531.62 12.019 2635.58 11.9927 6207.18 11.9992 12.0018 12.0122 12.0025 11.9971 2426.83 100.896 100.908 4388.82 4632.24 3571.69 12.0044 11.9927 12.0025 4261.69 3074.42 4367.67 1426.98 11.9941 12.014 11.9983 12.0059 11.999 11.9903 102.669

30 11.9998 11.9964 12.0227 108.419 200.409 200.206 200.275 11.9845 773.106 660.065 140223 12.0057 1639.61 1646.12 11.9966 6354.67 100.855 12.0054 12.0154 12.0016 11.9926 12.0005 188.804 12.0069 770.221 865.31 4262.53 767.617 366.283 5721 12.0041 11.9874

31 1569.44 1443.8 5545.67 1277.28 2189.84 2929.96 2138.01 2275.08 2272.78 100.898 11.9892 100.861 11.977 11.9961 11.9819 4430.62 4816.62 211.551 11.9942 208.903 453.964 11.9919 423.654 12.0235 366.871 379.578 12.013 363.554 12.0033 245.327 244.046 12.0023

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 12.0501 12.0495 12.0469 12.0369 12.0492 289.725 12.028 289.731 12.0188 12.0613 12.0358 12.0396 12.0263 12.0707 100.264 12.0421 12.0339 12.0202 12.0655 12.0578 12.0797 290.03 100.443 12.0555 201.311 12.0493 12.0337 12.0418 12.0456 1364.44 100.468 1364.5

1 12.0455 12.048 1279.42 12.0521 12.0409 12.0564 100.601 289.707 12.0318 12.049 12.0381 12.0529 12.046 12.0542 648.163 12.0414 12.0407 12.0237 12.0486 12.0556 12.045 12.0438 12.0205 289.665 12.0595 12.0219 12.0382 12.0409 12.0352 12.0198 100.174 100.163

2 12.0712 100.451 12.0373 100.459 201.226 201.231 12.0578 201.243 290.685 100.853 290.509 290.659 188.702 188.654 12.0312 733.871 12.0289 100.432 646.831 100.417 201.647 12.0697 201.58 12.0415 12.0695 100.556 289.82 100.552 188.513 188.565 12.0479 12.0453

3 1366.94 12.075 289.639 100.565 12.0533 12.0338 201.04 201.105 290.229 100.413 12.0655 290.13 188.374 12.0454 12.0607 12.0482 645.592 12.0514 289.8 100.378 12.0549 12.0525 11.9903 201.46 12.038 100.228 289.155 12.0439 188.243 12.0626 12.0549 12.067

4 203.042 12.0461 12.0452 12.0305 291.704 291.747 101.422 12.0645 202.982 12.0587 12.0705 12.0444 100.6 646.133 100.538 645.939 559.414 12.0475 12.0647 12.0477 12.0556 12.0406 100.602 100.607 202.119 12.0264 12.065 12.0583 12.0445 290.184 12.028 100.332

5 12.0549 12.0494 12.0227 12.0292 12.0937 290.546 12.0527 100.659 202.446 12.0292 202.394 12.0254 290.463 12.045 100.309 12.0557 558.162 12.0611 558.526 12.0436 291.675 291.392 12.0661 12.0545 12.0483 202.263 202.22 12.0115 290.157 12.0326 100.525 100.469

6 12.0362 100.425 646.023 12.048 188.789 379.056 734.401 734.433 290.904 12.0521 290.854 12.0358 379.858 1E+06 379.613 1000000 646.993 12.0604 647.118 647.109 188.292 12.0212 12.0431 12.0082 290.16 100.44 290.222 100.468 12.0475 12.0542 1452.81 1452.83

7 1367.83 100.461 1367.86 100.48 12.0159 189.688 12.0462 379.453 290.359 100.252 12.0231 648.478 12.0639 382.504 382.615 12.0504 12.0509 100.241 12.0591 646.052 12.0653 12.0426 188.572 379.086 290.285 100.527 100.557 645.702 188.633 12.0586 733.779 733.822

8 560.619 12.0593 12.0401 12.0297 100.571 648.856 12.032 100.638 561.393 12.0773 12.0284 12.0432 649.494 649.505 100.471 12.0261 12.0266 12.056 12.0764 12.0535 12.0386 291.792 12.044 100.634 563.474 12.0415 12.0471 12.0356 100.344 12.0189 12.0511 1369.42

9 12.0533 12.1045 1288.93 12.0417 656.643 12.0356 100.878 291.52 570.344 570.391 204.999 12.0333 12.0428 658.248 100.472 657.69 563.163 12.0144 563.633 12.0575 12.0606 12.0452 12.0385 291.141 12.0379 12.0286 202.499 12.0063 100.459 650.975 100.413 100.495

10 100.363 100.338 12.0385 12.0516 201.649 201.736 1E+06 1E+06 291.236 12.0763 12.038 12.0641 12.0473 737.448 188.561 12.0288 12.031 100.534 291.731 291.606 12.035 203.113 203.169 1E+06 12.0315 12.0568 291.189 12.0634 12.0383 1459.76 12.0414 381.027

11 100.493 100.48 12.0638 12.0513 202.92 202.986 1E+06 12.0476 12.0603 293.562 293.612 12.0461 188.763 12.0534 188.761 12.0313 100.812 12.0383 291.302 100.702 202.557 202.605 202.669 12.0455 100.664 100.649 290.732 100.636 12.0444 12.0757 188.628 378.768

12 12.0611 12.0456 12.04 12.0462 100.583 289.458 12.0348 12.0341 12.0699 201.842 201.851 12.0365 12.0415 289.922 12.0572 648.601 202.811 202.806 12.0672 12.0812 291.36 291.302 101.096 12.0364 12.06 12.0302 12.0503 12.0486 289.897 1368.57 100.697 100.749

13 12.0684 12.0536 12.0664 12.0534 290.027 12.0449 12.0822 12.0345 203.259 203.293 12.0673 12.0497 291.338 12.0358 100.639 656.679 12.0483 12.054 12.0448 12.043 12.0624 12.0883 12.0444 12.0601 12.0107 200.983 201.063 12.0583 12.0534 12.0308 100.339 100.35

14 12.0635 100.266 12.027 12.0838 12.032 377.317 188.407 1454.5 100.236 12.0418 12.0623 100.192 188.346 12.0208 12.0561 1454.8 12.0421 100.384 12.0273 1369.64 12.0252 191.769 1461.47 381.687 289.825 100.454 1368.86 1368.93 742.463 742.682 12.0634 742.429

15 1375.49 100.333 12.0033 12.0439 188.418 12.0232 1464.16 1463.93 12.0261 100.463 12.0556 1377.6 188.548 744.555 188.533 744.641 100.343 12.0253 1369.39 12.0427 188.271 188.301 1457.63 12.0573 12.0496 100.355 1369.65 12.0367 188.359 12.0429 1456.94 1456.69

16 12.0286 12.0286 12.0377 12.0516 100.579 12.0625 12.0276 289.288 201.73 1277.71 12.0466 12.0218 12.0343 12.0349 100.406 648.214 12.0642 12.0332 568.786 12.0356 1375.99 1376.17 100.994 101.053 1286.58 1285.67 202.392 12.048 100.337 1373.63 12.0371 12.0508

17 1283.75 1283.46 12.0447 12.0325 1372.11 12.0357 100.353 12.0662 12.078 1285.93 12.0446 12.0443 12.0485 12.0285 100.296 658.158 12.0481 12.0491 561.468 12.0235 12.0506 290.248 12.0548 100.517 1276.05 1276.2 12.0429 12.032 12.0813 12.0647 12.0424 12.0604

18 12.0338 100.512 289.175 100.492 200.858 200.823 200.841 1E+06 12.0363 100.617 12.0509 12.0521 12.0408 189.382 189.354 737.416 656.811 100.666 292.065 12.0323 12.0407 203.457 1E+06 203.454 290.855 100.796 12.0021 12.0691 12.0388 12.0969 378.755 1462.39

19 100.257 12.0642 12.0745 12.037 12.0329 12.0687 12.0903 12.0623 292.408 100.927 292.328 292.373 12.0584 746.532 12.0559 746.799 12.0518 100.549 290.303 100.463 201.806 12.0524 201.754 1E+06 100.681 100.624 289.733 289.749 12.0195 12.0148 377.785 12.0541

20 12.0759 12.0365 12.0417 12.0591 289.55 12.04 12.0526 289.573 201.896 201.827 12.0432 12.0618 12.0355 289.87 100.437 12.0499 205.649 12.0532 570.344 12.0366 101.083 294.366 101.13 12.0416 203.994 203.985 12.0646 12.0383 292.122 291.88 100.548 12.038

21 204.657 204.262 12.039 12.0207 101.612 293.414 101.506 101.58 206.453 12.0659 206.187 12.0521 659.651 659.992 100.641 659.961 202.824 12.0485 561.823 12.0677 291.313 12.0316 100.937 100.975 201.761 12.0417 201.722 12.0406 100.189 12.0346 12.0403 100.158

22 12.0231 100.218 12.0734 100.221 188.342 12.0325 188.391 12.0502 100.273 100.295 648.34 100.314 381.195 12.0386 12.0644 381.371 657.884 100.322 658.061 12.0308 12.0612 381.796 12.0397 12.0576 100.368 12.0288 656.661 12.0576 188.475 1463.68 744.501 12.029

23 1374.36 100.501 657.686 12.0591 189.405 189.38 12.0467 381.452 100.349 100.319 660.08 660.156 388.14 12.0805 12.0324 388.356 649.761 100.325 12.036 12.0533 188.553 12.0462 188.516 738.195 289.854 12.0204 649.195 100.355 12.0383 12.0671 188.212 12.0645

24 12.0118 557.501 12.0339 12.0522 645.541 12.0651 12.0506 100.471 203.288 12.0766 203.214 12.0419 12.0644 100.436 12.0373 646.537 561.423 12.0386 12.036 12.0658 12.0427 12.025 100.574 291.184 12.0656 12.0445 202.752 12.0337 100.575 649.513 12.0528 1367.08

25 12.0193 564.451 12.0764 12.0518 653.217 292.961 12.0512 293.028 565.641 565.556 205.142 12.0389 652.962 653.295 100.681 100.658 12.0549 557.798 12.0356 12.0483 646.064 646.002 101.027 646.034 12.0535 12.0261 12.0464 12.0445 100.308 100.286 12.0347 100.291

26 12.0245 100.249 12.063 12.0373 12.0397 201.612 12.0621 12.0555 291.82 101.089 291.795 101.048 12.0476 734.823 188.938 735.005 12.0148 12.0632 649.629 100.327 12.0702 12.0381 12.0718 202.759 12.043 101.067 291.359 291.253 188.813 1455.42 12.0388 1455.15

27 1368.3 100.941 1368.46 292.45 203.751 203.69 1E+06 12.0428 294.151 101.273 294.037 294.037 189.093 189.136 381.74 12.0543 100.775 100.718 290.58 12.0444 201.942 201.852 1E+06 1E+06 289.598 12.0557 12.0335 12.044 188.33 188.235 12.034 12.0144

28 12.0692 12.0753 12.0282 12.0514 100.24 288.855 12.0311 12.0492 12.0697 12.0488 12.021 12.05 12.0306 645.701 100.496 100.494 560.806 201.871 12.0444 12.0342 12.0575 290.218 12.0428 12.0436 12.034 12.0754 201.072 12.0783 12.0379 289.113 100.219 12.0243

29 201.82 12.0577 12.0343 12.0351 12.0449 290.488 100.983 290.335 202.306 202.332 12.0383 12.04 100.316 12.0768 12.0348 650.854 557.437 201.772 12.0589 12.0526 290.167 290.183 12.0357 290.184 200.751 12.0497 12.077 12.0251 288.856 288.9 100.448 12.0409

30 12.0459 12.066 12.0439 12.0873 12.0266 188.188 12.0428 12.0445 289.765 12.0525 12.0294 12.0422 188.386 733.551 12.0693 733.342 648.714 12.0577 12.0261 12.0301 188.416 188.368 188.402 12.0631 12.0227 100.215 100.195 100.201 12.0517 12.0409 12.0418 1454.02

31 100.365 100.362 12.0488 12.0485 188.584 188.656 188.596 377.966 100.373 100.338 290.524 12.0289 188.333 12.0427 188.298 12.0406 12.0174 100.117 12.0481 12.0349 12.0481 12.046 188.451 12.0337 100.166 12.044 12.0597 12.0668 188.272 188.253 12.045 12.0709

Figure 6.8: Cmesh heatmap for ring clustering (the saturated case on top)

6.5. Results and Discussion 87

6.5.2 Effect of Cache Coherency Traffic on Throughput

For group clustering, Figure 6.9, the fat quadtree and the concentrated mesh perform better
than the mesh. However, as the write rate increases in the fat quadtree, the throughput
also increases, then remains constant at nearly 2TB/s, which is a worse case. The cmesh
throughput increases as the memory access generation rate increases, and its highest memory
bandwidth is around 7.5TB/s.

For ring clustering, Figure 6.10, the concentrated mesh performs better than the fat quadtree
and the mesh. Nevertheless, the fat quadtree throughput is marginally lower than the con-
centrated mesh. The highest memory bandwidth in the cmesh is around 4TB/s. Overall,
the throughput of the group clustering is higher than the throughput in the ring clustering.

Comparing the streamcluster application in our system in terms of throughput, we see that it
has low throughput, and the system is not saturated with many memory access requests.

In today’s systems, the PEZY-SC Many Core Processor has a memory bandwidth of 1.5TB/s,
taking into consideration that this chip is without cache coherency. Furthermore, Intel Xeon
Phi has a memory bandwidth of 0.5TB/s. Comparing the memory bandwidth of these sys-
tems with our system, we can see that our system performs better than today’s systems in
both group clustering and ring clustering. It is important to mention that the wire delay in our
chip in 2023 is 6.7 times higher than the wire delay in chips today, as mentioned in Section
3.2.

6.5. Results and Discussion 88

0

1

2

3

4

5

6

7

8

9

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Th
ro

u
gh

p
u

t
(T

B
/s

)

Memory Access Generation Rate (Gflit/s)

Fat Quadtree

HCM-No-Coherency

G,Ps=0,Prw=0,Pe=0

G,Ps=0.2,Prw=0.2,Pe=0.2

G,Ps=0.5,Prw=0.2,Pe=0.2

G,Ps=0.5,Prw=0.5,Pe=0.2

G,Ps=1,Prw=0.5,Pe=0.2

streamcluster

0

1

2

3

4

5

6

7

8

9

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Th
ro

u
gh

p
u

t
(T

B
/s

)

Memory Access Generation Rate (Gflit/s)

Mesh

HCM-No-Coherency

G,Ps=0,Prw=0,Pe=0

G,Ps=0.2,Prw=0.2,Pe=0.2

streamcluster

0

1

2

3

4

5

6

7

8

9

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Th
ro

u
gh

p
u

t
(T

B
/s

)

Memory Access Generation Rate (Gflit/s)

CMesh

HCM-No-Coherency

G,Ps=0,Prw=0,Pe=0

G,Ps=0.2,Prw=0.2,Pe=0.2

G,Ps=0.5,Prw=0.5,Pe=0.2

G,Ps=1,Prw=0.5,Pe=0.2

streamcluster

Figure 6.9: Throughput for group clustering (G: group clustering, Ps: the shared rate, Prw:
the read/write rate, and Pe: the eviction rate)

6.5. Results and Discussion 89

0

1

2

3

4

5

6

7

8

9

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Th
ro

u
gh

p
u

t
(T

B
/s

)

Memory Access Generation Rate (Gflit/s)

Fat Quadtree

HCM-No-Coherency

R,Ps=0,Prw=0,Pe=0

R,Ps=0.2,Prw=0.2,Pe=0.2

R,Ps=0.5,Prw=0.5,Pe=0.2

streamcluster

0

1

2

3

4

5

6

7

8

9

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Th
ro

u
gh

p
u

t
(T

B
/s

)

Memory Access Generation Rate (Gflit/s)

Mesh

HCM-No-Coherency

R,Ps=0,Prw=0,Pe=0

R,Ps=0.2,Prw=0.2,Pe=0.2

streamcluster

0

1

2

3

4

5

6

7

8

9

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Th
ro

u
gh

p
u

t
(T

B
/s

)

Memory Access Generation Rate (Gflit/s)

CMesh

HCM-No-Coherency

R,Ps=0,Prw=0,Pe=0

R,Ps=0.2,Prw=0.2,Pe=0.2

R,Ps=0.5,Prw=0.5,Pe=0.2

R,Ps=1,Prw=0.5,Pe=0.2

streamcluster

Figure 6.10: Throughput for ring clustering (R: ring clustering, Ps: the shared rate, Prw: the
read/write rate, and Pe: the eviction rate)

6.6. Summary 90

6.6 Summary

In this chapter, we suggested a directory-based cache coherency protocol. We have studied
the cache coherency overhead and the performance of three different NoC topologies for
future many-core systems. We used group clustering and ring clustering models for thread
placement in shared memory systems. We showed that the directory-based protocol has only
0.97% overhead for each cache line in the cache. The concentrated mesh and the fat quadtree
both perform better than the mesh. Our results clearly show that cache coherency scales and
it does not affect the system greatly when using the hierarchical cache model. Furthermore,
our results show that it is important to choose the right model for thread placement.

91

Chapter 7

Conclusion and Future Work

A general purpose processor used to consist of a single processing core. Due to the contin-
uous increase of the number of transistors available on-chip, it became impossible to follow
Moore’s Law as a number of limitations occurred. This led to architectures with many inde-
pendent processing cores being integrated into a single chip.

For these many-core architectures, a Network-on-Chip is required to interconnect the indi-
vidual cores. The NoC is important because it increases the communication performance in
comparison with single bus-based architectures.

Using 3D memory stacking on top of the many-core systems allows each processor core to
have fast and high bandwidth access to the memory directly stacked on top of it using very
dense vertical interconnects

From this we see that many-core systems are likely to continue in the future. Network-on-
Chip is the dominant interconnection architecture. 3D memory stacking is the solution to
breaking the memory wall. It has become clear from our literature review in Chapter 2 that
the cache architectures and coherency protocols have not sufficiently advanced to provide
scalability to thousands of cores. The goal of our research is to provide a scalable many-core
architecture by exploiting locality in distributed memory architectures and shared memory
architectures.

7.1 Thesis Statement Revisited

The thesis statement presented in Section 1.3 is as follows:

Memory architectures that support locality of computations on many-core Network-on-Chip
(NoC) communication subsystems can improve the performance in terms of latency and
throughput.

7.1. Thesis Statement Revisited 92

Distributed memory architecture and shared memory architecture can scale and improve
their communication performance if locality of computations is introduced. Many-core sys-
tems that force cores to communicate mainly to their neighbouring cores can minimise the
communication cost. Locality of computations can increase bandwidth and reduce latency.
The ITRS physical data show that the wire delay will increase significantly in the future;
therefore, the locality of computations will be crucial towards increasing many-core NoC
performance.

To prove this statement, the following work has been done:

Chapter 3 described the cost models for the link complexity, routers, buffers, wire space,
and area space for three topologies. It showed the technology node assumptions for realistic
future many-core system parameters used in the research, based on data from the Interna-
tional Technology Roadmap for Semiconductors (ITRS) for the year 2023. Based on the
cost models and the technology node assumptions, the chapter detailed the overheads for a
1024-core chip. It described packet format and switching techniques to improve the packet
latency. The chapter discussed a number of NoC simulation tools and explained in detail the
simulation tool selected for this work. A great deal of work has been done to HNOCS to
suit the requirements of this research, as is shown in this chapter. HNOCS-XT, the extended
version of HNOCS, is compared with Noxim to assess the accuracy, the running time, and
the correctness of the simulator. The chapter described the experimental methodology pro-
posed to exploit locality and two models of choosing neighbouring cores: group clustering
and ring clustering. Finally, the chapter provided the performance measures used to evaluate
the results of this work.

Chapter 4 explained the importance of locality of computation. It explained the relationship
between our proposed hierarchical locality approach and Rent’s rule for the bandwidth of the
generated traffic. The chapter described the topologies used in this research: mesh, concen-
trated mesh, and fat quadtree. It described the proposed physical layout of the fat quadtree.
In this chapter, we investigated the overhead and performance of flat (mesh, cmesh) and
scale-invariant (fat quadtree) NoC topologies for future many-core systems with thousands
of cores, under group clustering and ring clustering localisation models for point-to-point
traffic. We have shown that the degree of locality and the clustering model strongly affect
the performance of the network. Scale-invariant topologies such as the fat quadtree perform
worse than flat ones (esp. the cmesh) because the reduced hop count is outweighed by the
longer path delays, as a consequence of the high wire delay in the 10nmCMOS process. Our
results clearly show the importance of traffic localisation for very large many-core systems.

Chapter 5 detailed the proposed hierarchical cache architecture model that benefits from
communication locality. We suggested efficient hierarchical cache placements for caches on
the mesh, the concentrated mesh, and the fat quadtree. The chapter described the cost mod-

7.2. Summary of Research Contributions 93

els for links and buffers per virtual channel. In this chapter, we investigated the overhead
and performance of flat (mesh, cmesh) and scale-invariant (fat quadtree) NoC topologies
for future many-core systems with thousands of cores using two different models of lo-
calised thread placement in shared memory systems: group clustering and ring clustering.
We showed that the distance between the threads sharing a memory block and the clustering
model strongly affect the performance of the network. Scale-invariant topologies, such as
the fat quadtree, perform better than flat ones because their structure matches the hierarchi-
cal cache architecture. In addition, the fat quadtree has a direct link between the levels of
cache, although the wire delay increases as the request travels up the tree. Our results clearly
showed the importance of localised thread placement for very large many-core systems.

Chapter 6 expressed the importance of cache coherency in shared memory architectures. It
described the cache coherency protocol suggested, as well as showing the hierarchical track-
ing of sharers. In this chapter, we studied the cache coherency overhead and the performance
of three different NoC topologies for future many-core systems. We used group clustering
and ring clustering models for thread placement in shared memory systems. We showed that
directory-based protocol has only 0.97% overhead for each cache line in the cache. The con-
centrated mesh and the fat quadtree both perform better than the mesh. Our results clearly
showed that cache coherency scales, and it does not affect the system greatly when using the
hierarchical cache model. Furthermore, our results showed that it is important to choose the
right model for thread placement.

7.2 Summary of Research Contributions

This work contributed towards the scalability of many-core systems in the following findings:

• The link complexity, routers, buffers, area space, and wire space overhead of the
NoC on a thousand-core system is negligible, and the choice of topology depends
solely on the performance.
In order to test the research hypothesis, the technology node assumptions were made
on data from the International Technology Roadmap for Semiconductors (ITRS) for
the year 2023. The cost model for a number of topologies was calculated to show that
the overhead of the NoC on a thousand-core system is negligible.

• In distributed memory architecture, locality of computations on many-core NoC
communication subsystems improves the system performance in terms of latency
and throughput. Scale-invariant topologies, such as the fat quadtree, perform
worse than flat ones (esp. cmesh).
We showed that the degree of locality and the clustering model strongly affect the

7.2. Summary of Research Contributions 94

performance of the network. Scale-invariant topologies, such as the fat quadtree, per-
formed worse than flat ones (esp. cmesh) because the reduced hop count is outweighed
by the longer path delays, as a consequence of the high wire delay in the 10nm CMOS
process. Our results clearly showed the importance of traffic localisation for very large
many-core systems.

• In shared memory architecture, data locality on 3D stacked hierarchical cache
architecture for many-core NoC communication subsystems without cache co-
herency traffic improves the system performance in terms of latency and through-
put. Scale-invariant topologies, such as the fat quadtree, perform better than flat
ones.
We proposed a hierarchical cache model and suggested the cache placements in the
mesh, the concentrated mesh, and the fat quadtree. We investigated the overhead and
performance of flat (mesh, cmesh) and scale-invariant (fat quadtree) NoC topologies
for future many-core systems with thousands of cores using two different models of
localised thread placement in shared memory systems: group clustering and ring clus-
tering. We showed that the distance between the threads sharing a memory block and
the clustering model strongly affect the performance of the network. Scale-invariant
topologies, such as the fat quadtree, performed better than flat ones because their struc-
ture matches the hierarchical cache architecture. In addition, the fat quadtree has a di-
rect link between the levels of cache, although the wire delay increases as the requests
travel up the tree. Our results clearly showed the importance of data locality and thread
placement for very large many-core systems.

• Cache coherency scales using hierarchical cache architecture and locality of com-
putations with only slight overhead.
We explained a directory-based cache coherency protocol and a hierarchical method
for tracking sharers. We have studied the cache coherency overhead and the perfor-
mance of three different NoC topologies for future many-core systems. We used group
clustering and ring clustering models for thread placement in shared memory architec-
ture. We showed that directory-based protocol had only 0.97% overhead for each cache
line in the cache. The concentrated mesh and the fat quadtree both performed better
than the mesh. Our results clearly showed that cache coherency scales and it does not
affect the system greatly when using the hierarchical cache model. Furthermore, our
results showed that it is important to choose the right model for thread placement.

7.3. Future Directions of the Research 95

7.3 Future Directions of the Research

The work described in this dissertation has answered the questions posed by the research
hypothesis, and in doing so has laid the foundation for significant future work. This section
outlines a number of directions to be followed.

• 3D NoC topologies:
The 2D integrated circuits have restricted floor planning choices and they limit the
performance enhancements of NoC architectures. 3D integrated circuits allow for per-
formance improvements because of the reduction in interconnection length. Besides
this benefit, power is reduced from shorter wires.

• Locality aware scheduling on operating system level:
If the operating system is aware of the hierarchical memory architecture that supports
locality in the hardware level, it can take advantage of that by scheduling tasks in a way
that supports locality of computations. An operating system that guarantees locality
can improve the many-core performance even further.

• Locality aware programming models:
Programming models that support locality can allow the programmer to take advantage
of the hierarchical memory architecture which supports locality, hence increasing the
many-core performance. This can be done by adding annotations in existing languages
similar to the Java annotations [106].

• Cache coherency:
Cache coherency protocols can be improved so that they generate less coherency traf-
fic, which improves the many-core performance. Reducing the coherency traffic can
be achieved by running threads that share a memory address in the same core or in
cores close to each other.

96

Appendix A

A.1 Publications

A selection of the work presented in this thesis has been peer-reviewed and published in
academic conference proceedings as follows:

• “The Impact of Traffic Localisation on the Performance of NoCs for Very Large Many-
core Systems.”
S. Al Khanjari and W. Vanderbauwhede
Procedia Computer Science 56 (2015): 403-408.

• “Evaluation of the Memory Communication Traffic in a Hierarchical Cache Model for
Massively-Manycore Processors.”
S. Al Khanjari and W. Vanderbauwhede
2016 24th Euromicro International Conference on Parallel, Distributed, and Network-
Based Processing (PDP). IEEE, 2016.

• “The Performance of NoCs for Very Large Manycore Systems under Locality-based
Traffic.”
S. Al Khanjari and W. Vanderbauwhede
International Journal of Computing and Digital Systems. Volume : 5. Issue: 2. Issue
Publication Date: March 2016.

A collaborative work on topics related to the main topics of the thesis resulted in the follow-
ing publications:

• “Shortest Path Routing Algorithm for Hierarchical Interconnection Network-on-Chip.”
O. Inam, S. Al Khanjari, and W. Vanderbauwhede
Procedia Computer Science 56 (2015): 409-414.

• “Group based Shortest Path Routing Algorithm for Hierarchical Cross Connected Re-
cursive Networks (HCCR).”

A.1. Publications 97

O. Inam, S. Al Khanjari, and W. Vanderbauwhede
International Journal of Computing and Digital Systems. Volume : 5. Issue: 2. Issue
Publication Date: March 2016.

We intend to publish the outcomes of Chapter 6, which is about cache coherency scales using
hierarchical cache architecture and locality of computations with only slight overhead, in the
near future.

BIBLIOGRAPHY 98

Bibliography

[1] J. Jung, K. Kang, G. De Micheli, and C.-M. Kyung, “Runtime 3-d stacked cache
management for chip-multiprocessors,” 2013.

[2] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif,
L. Bao, J. Brown et al., “Tile64-processor: A 64-core soc with mesh interconnect,” in
Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE

International. IEEE, 2008, pp. 88–598.

[3] A. Duran and M. Klemm, “The intel R© many integrated core architecture,” in High

Performance Computing and Simulation (HPCS), 2012 International Conference on.
IEEE, 2012, pp. 365–366.

[4] M. Moadeli, A. Shahrabi, W. Vanderbauwhede, and M. Ould-Khaoua, “An analytical
performance model for the Spidergon NoC,” 21st IEEE International Conference on

Advanced Information Networking and Applications, pp. 1014–1021, 2007.

[5] M. Moadeli, P. Maji, and W. Vanderbauwhede, “Quarc: A high-efficiency network
on-chip architecture,” in Advanced Information Networking and Applications, 2009.

AINA’09. International Conference on. IEEE, Conference Proceedings, pp. 98–105.

[6] J. Balfour and W. J. Dally, “Design tradeoffs for tiled cmp on-chip networks,” in
Proceedings of the 20th annual international conference on Supercomputing. ACM,
2006, pp. 187–198.

[7] C. E. Leiserson, “Fat-trees: universal networks for hardware-efficient supercomput-
ing,” Computers, IEEE Transactions on, vol. 100, no. 10, pp. 892–901, 1985.

[8] G. H. Loh, “3d-stacked memory architectures for multi-core processors,” in ACM

SIGARCH Computer Architecture News, vol. 36, no. 3. IEEE Computer Society,
2008, pp. 453–464.

[9] S. K. Lim, 3D-MAPS: 3D massively parallel processor with stacked memory.
Springer, 2013, pp. 537–560.

Bibliography 99

[10] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. H. Loh, D. Mc-
Caule, P. Morrow, D. W. Nelson, D. Pantuso et al., “Die stacking (3d) microarchitec-
ture,” in 2006 39th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO’06). IEEE, 2006, pp. 469–479.

[11] X. Dong, X. Wu, G. Sun, Y. Xie, H. Li, and Y. Chen, “Circuit and microarchitecture
evaluation of 3d stacking magnetic ram (mram) as a universal memory replacement,”
in Design Automation Conference, 2008. DAC 2008. 45th ACM/IEEE. IEEE, 2008,
pp. 554–559.

[12] G. Russell, “Intel micron hybrid memory cube: The future of exascale computing,”
Bright Side of News. Sep, vol. 19, 2011.

[13] N. Madan, L. Zhao, N. Muralimanohar, A. Udipi, R. Balasubramonian, R. Iyer,
S. Makineni, and D. Newell, “Optimizing communication and capacity in a 3d stacked
reconfigurable cache hierarchy,” in High Performance Computer Architecture, 2009.

HPCA 2009. IEEE 15th International Symposium on. IEEE, Conference Proceed-
ings, pp. 262–274.

[14] A. Zia, P. Jacob, J.-W. Kim, M. Chu, R. P. Kraft, and J. F. McDonald, “A 3-d cache
with ultra-wide data bus for 3-d processor-memory integration,” Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on, vol. 18, no. 6, pp. 967–977, 2010.

[15] Y. Xie, “Processor architecture design using 3d integration technology,” in 2010 23rd

International Conference on VLSI Design. IEEE, 2010, pp. 446–451.

[16] Y. Ben-Itzhak, E. Zahavi, I. Cidon, and A. Kolodny, “Hnocs: Modular open-source
simulator for heterogeneous nocs,” in Embedded Computer Systems (SAMOS), 2012

International Conference on. IEEE, 2012, pp. 51–57.

[17] T. Bjerregaard and S. Mahadevan, “A survey of research and practices of network-on-
chip,” ACM Computing Surveys (CSUR), vol. 38, no. 1, p. 1, 2006.

[18] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wilson,
N. Borkar, and G. Schrom, “A 48-core ia-32 message-passing processor with dvfs in
45nm cmos,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC),

2010 IEEE International. IEEE, Conference Proceedings, pp. 108–109.

[19] C. A. Zeferino, M. E. Kreutz, and A. A. Susin, “Rasoc: A router soft-core for
networks-on-chip,” in Design, Automation and Test in Europe Conference and Ex-

hibition, 2004. Proceedings, vol. 3. IEEE, Conference Proceedings, pp. 198–203.

Bibliography 100

[20] J. Duato, S. Yalamanchili, and L. Ni, Interconnection networks. Morgan Kaufmann,
2003.

[21] W. J. Dally and B. Towles, “Route packets, not wires: On-chip interconnection net-
works,” in Design Automation Conference, 2001. Proceedings. IEEE, Conference
Proceedings, pp. 684–689.

[22] Z. Xiao and B. Baas, “A hexagonal shaped processor and interconnect topology for
tightly-tiled many-core architecture,” in VLSI and System-on-Chip (VLSI-SoC), 2012

IEEE/IFIP 20th International Conference on. IEEE, Conference Proceedings, pp.
153–158.

[23] M. Coppola, R. Locatelli, G. Maruccia, L. Pieralisi, and A. Scandurra, “Spidergon: a
novel on-chip communication network,” in System-on-Chip, 2004. Proceedings. 2004

International Symposium on. IEEE, Conference Proceedings, p. 15.

[24] J. Kim, J. Balfour, and W. Dally, “Flattened butterfly topology for on-chip networks,”
in Proceedings of the 40th Annual IEEE/ACM International Symposium on Microar-

chitecture. IEEE Computer Society, Conference Proceedings, pp. 172–182.

[25] P. P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh, “Performance evaluation and
design trade-offs for network-on-chip interconnect architectures,” Computers, IEEE

Transactions on, vol. 54, no. 8, pp. 1025–1040, 2005.

[26] J. Howard, S. Dighe, S. R. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Erraguntla,
M. Konow, M. Riepen, M. Gries et al., “A 48-core ia-32 processor in 45 nm cmos
using on-die message-passing and dvfs for performance and power scaling,” Solid-

State Circuits, IEEE Journal of, vol. 46, no. 1, pp. 173–183, 2011.

[27] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, P. Iyer,
A. Singh, T. Jacob et al., “An 80-tile 1.28 tflops network-on-chip in 65nm cmos,” in
Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of Technical Papers. IEEE

International. IEEE, 2007, pp. 98–589.

[28] W. Zhang, L. Hou, J. Wang, S. Geng, and W. Wu, “Comparison research between
xy and odd-even routing algorithm of a 2-dimension 3x3 mesh topology network-on-
chip,” in 2009 WRI Global Congress on Intelligent Systems, vol. 3. IEEE, 2009, pp.
329–333.

[29] J. Camacho, J. Flich, A. Roca, and J. Duato, “Pc-mesh: A dynamic parallel concen-
trated mesh,” in 2011 International Conference on Parallel Processing. IEEE, 2011,
pp. 642–651.

Bibliography 101

[30] A. Kamath, G. Saxena, and B. Talawar, “Analysis of ring topology for noc architec-
ture,” in 2015 International Conference on Computing and Network Communications

(CoCoNet). IEEE, 2015, pp. 381–388.

[31] D. C. Pham, T. Aipperspach, D. Boerstler, M. Bolliger, R. Chaudhry, D. Cox, P. Har-
vey, P. M. Harvey, H. P. Hofstee, C. Johns et al., “Overview of the architecture, circuit
design, and physical implementation of a first-generation cell processor,” IEEE Jour-

nal of Solid-State Circuits, vol. 41, no. 1, pp. 179–196, 2006.

[32] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins,
A. Lake, J. Sugerman, R. Cavin et al., “Larrabee: a many-core x86 architecture for
visual computing,” in ACM Transactions on Graphics (TOG), vol. 27, no. 3. ACM,
2008, p. 18.

[33] J. Reinders, “An overview of programming for intel xeon processors and intel xeon
phi coprocessors,” Intel Corporation, Santa Clara, 2012.

[34] E. Salminen, A. Kulmala, and T. D. Hamalainen, “Survey of network-on-chip propos-
als,” white paper, OCP-IP, pp. 1–13, 2008.

[35] A. Agarwal, C. Iskander, and R. Shankar, “Survey of network on chip (noc) architec-
tures & contributions,” Journal of engineering, Computing and Architecture, vol. 3,
no. 1, pp. 21–27, 2009.

[36] S. A. Przybylski, Cache and memory hierarchy design: a performance-directed ap-

proach. Morgan Kaufmann, 1990.

[37] G. Sun, Exploring Memory Hierarchy Design with Emerging Memory Technologies.
Springer, 2014.

[38] A. S. Tanenbaum, Structured computer organization. Pearson, 2006.

[39] R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd, “Power7: Ibm’s next-generation
server processor,” IEEE micro, vol. 30, no. 2, pp. 7–15, 2010.

[40] M. Butler, “Amd bulldozer core-a new approach to multithreaded compute perfor-
mance for maximum efficiency and throughput,” in IEEE HotChips Symposium on

High-Performance Chips (HotChips 2010), 2010.

[41] F. Busaba, M. A. Blake, B. Curran, M. Fee, C. Jacobi, P.-K. Mak, B. R. Prasky,
and C. R. Walters, “Ibm zenterprise 196 microprocessor and cache subsystem,” IBM

Journal of Research and Development, vol. 56, no. 1.2, pp. 1–1, 2012.

Bibliography 102

[42] H. F. Jordan, “Shared versus distributed memory multiprocessors,” DTIC Document,
Tech. Rep., 1991.

[43] H. Kasim, V. March, R. Zhang, and S. See, “Survey on parallel programming model,”
in IFIP International Conference on Network and Parallel Computing. Springer,
2008, pp. 266–275.

[44] D. E. Culler, J. P. Singh, and A. Gupta, Parallel computer architecture: a hardware/-

software approach. Gulf Professional Publishing, 1999.

[45] N. Manchanda and K. Anand, “Non-uniform memory access (numa),” New York Uni-

versity, 2010.

[46] J. Lira, C. Molina, and A. Gonzlez, “Analysis of non-uniform cache architecture poli-
cies for chip-multiprocessors using the parsec benchmark suite,” in Workshop on Man-

aged Many-Core Systems (MMCS), Conference Proceedings.

[47] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-uniform cache structure
for wire-delay dominated on-chip caches,” in Acm Sigplan Notices, vol. 37. ACM,
Conference Proceedings, pp. 211–222.

[48] ——, “Nonuniform cache architectures for wire-delay dominated on-chip caches,”
Micro, IEEE, vol. 23, no. 6, pp. 99–107, 2003.

[49] C. Lee, “Distributed shared memory,” in Proceedings on the 15th CISL Winter Work-

shop Kushu, Japan, February. Citeseer, 2002.

[50] B. Choi, R. Komuravelli, H. Sung, R. Bocchino, S. Adve, and V. Adve, “Denovo: Re-
thinking hardware for disciplined parallelism,” in Proceedings of the Second USENIX

Workshop on Hot Topics in Parallelism (HotPar), Conference Proceedings.

[51] J. H. Kelm, D. R. Johnson, W. Tuohy, S. S. Lumetta, and S. J. Patel, “Cohesion: An
adaptive hybrid memory model for accelerators,” Micro, IEEE, vol. 31, no. 1, pp.
42–55, 2011.

[52] M. M. Martin, M. D. Hill, and D. J. Sorin, “Why on-chip cache coherence is here to
stay,” Communications of the ACM, vol. 55, no. 7, pp. 78–89, 2012.

[53] S. J. Eggers and R. H. Katz, Evaluating the performance of four snooping cache co-

herency protocols. ACM, 1989, vol. 17, no. 3.

[54] M. Dalui and B. K. Sikdar, “An efficient test design for cmps cache coherence re-
alizing mesi protocol,” in Progress in VLSI Design and Test. Springer, 2012, pp.
89–98.

Bibliography 103

[55] K. Baukus and R. Van Der Meyden, “A knowledge based analysis of cache coher-
ence,” in International Conference on Formal Engineering Methods. Springer, 2004,
pp. 99–114.

[56] D. Chaiken, C. Fields, K. Kurihara, and A. Agarwal, “Directory-based cache coher-
ence in large-scale multiprocessors,” Computer, vol. 23, no. 6, pp. 49–58, 1990.

[57] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy, The directory-

based cache coherence protocol for the DASH multiprocessor. ACM, 1990, vol. 18,
no. 2SI.

[58] J. Laudon and D. Lenoski, “The sgi origin: a ccnuma highly scalable server,” in ACM

SIGARCH Computer Architecture News, vol. 25, no. 2. ACM, 1997, pp. 241–251.

[59] D. N. Truong, W. H. Cheng, T. Mohsenin, Z. Yu, A. T. Jacobson, G. Landge, M. J.
Meeuwsen, C. Watnik, A. T. Tran, and Z. Xiao, “A 167-processor computational plat-
form in 65 nm cmos,” Solid-State Circuits, IEEE Journal of, vol. 44, no. 4, pp. 1130–
1144, 2009.

[60] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, “Kilo-noc: a heteroge-
neous network-on-chip architecture for scalability and service guarantees,” in ACM

SIGARCH Computer Architecture News, vol. 39, no. 3. ACM, 2011, Conference
Proceedings, pp. 401–412.

[61] S. Borkar, “Thousand core chips: a technology perspective,” in Proceedings of the

44th annual Design Automation Conference. ACM, 2007, Conference Proceedings,
pp. 746–749.

[62] A. Heinecke, K. Vaidyanathan, M. Smelyanskiy, A. Kobotov, R. Dubtsov, G. Henry,
A. G. Shet, G. Chrysos, and P. Dubey, “Design and implementation of the linpack
benchmark for single and multi-node systems based on intel R© xeon phi coprocessor,”
in Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th International Sympo-

sium on. IEEE, 2013, pp. 126–137.

[63] C. Demerjian, “Intel details knights corner architecture at long
last,” August 2016. [Online]. Available: http://semiaccurate.com/2012/08/28/
intel-details-knights-corner-architecture-at-long-last/

[64] M. Berezecki, E. Frachtenberg, M. Paleczny, and K. Steele, “Power and performance
evaluation of memcached on the tilepro64 architecture,” Sustainable Computing: In-

formatics and Systems, vol. 2, no. 2, pp. 81–90, 2012.

Bibliography 104

[65] ——, “Many-core key-value store,” in Green Computing Conference and Workshops

(IGCC), 2011 International. IEEE, 2011, pp. 1–8.

[66] H. Fu, J. Liao, J. Yang, L. Wang, Z. Song, X. Huang, C. Yang, W. Xue, F. Liu,
F. Qiao et al., “The sunway taihulight supercomputer: system and applications,” Sci-

ence China Information Sciences, vol. 59, no. 7, p. 072001, 2016.

[67] T. Aoyama, K.-I. Ishikawa, Y. Kimura, H. Matsufuru, A. Sato, T. Suzuki, and S. Torii,
“First application of lattice qcd to pezy-sc processor,” Procedia Computer Science,
vol. 80, pp. 1418–1427, 2016.

[68] T. Ishikawa, T. Boku, and M. Sato, “Design and preliminary evaluation of omni ope-
nacc compiler for massive mimd processor pezy-sc,” OpenMP: Memory, Devices, and

Tasks, p. 293.

[69] S. Kundu and S. Chattopadhyay, Network-on-chip: The Next Generation of System-

on-chip Integration. CRC Press, 2014.

[70] (2011) International technology roadmap for semiconductors (itrs).

[71] C. Killebrew et al., “L2 cache to off-chip memory networks for chip multiprocessor,”
Ph.D. dissertation, Department of Electrical Engineering and Computer Sciences,
University of California, 2008.

[72] J. Fang, A. L. Varbanescu, H. Sips, L. Zhang, Y. Che, and C. Xu, “An empirical study
of intel xeon phi,” arXiv preprint arXiv:1310.5842, 2013.

[73] J. Lee, C. Nicopoulos, S. J. Park, M. Swaminathan, and J. Kim, “Do we need wide
flits in networks-on-chip?” in VLSI (ISVLSI), 2013 IEEE Computer Society Annual

Symposium on. IEEE, 2013, pp. 2–7.

[74] L. Jain, B. Al-Hashimi, M. Gaur, V. Laxmi, and A. Narayanan, “Nirgam: a simulator
for noc interconnect routing and application modeling,” in Design, Automation and

Test in Europe Conference, 2007.

[75] M. Bauer and N. Jiang, “Parallelizing a network simulator,” Network, vol. 2, p. R3.

[76] F. Fazzino, M. Palesi, and D. Patti, “Noxim: Network-on-chip simulator,” URL:

http://sourceforge. net/projects/noxim, 2008.

[77] A. Varga et al., “The omnet++ discrete event simulation system,” in Proceedings of

the European Simulation Multiconference (ESM2001), vol. 9. sn, 2001, p. 185.

Bibliography 105

[78] A. Butko, R. Garibotti, L. Ost, V. Lapotre, A. Gamatie, G. Sassatelli, and C. Adeniyi-
Jones, “A trace-driven approach for fast and accurate simulation of manycore archi-
tectures,” in The 20th Asia and South Pacific Design Automation Conference. IEEE,
2015, pp. 707–712.

[79] M. Badr and N. E. Jerger, “Synfull: synthetic traffic models capturing cache coherent
behaviour,” in 2014 ACM/IEEE 41st International Symposium on Computer Architec-

ture (ISCA). IEEE, 2014, pp. 109–120.

[80] S. Nürnberger, G. Drescher, R. Rotta, J. Nolte, and W. Schröder-Preikschat, “Shared
memory in the many-core age,” in European Conference on Parallel Processing.
Springer, 2014, pp. 351–362.

[81] J. M. Smith and D. J. Farber, “Traffic characteristics of a distributed memory system,”
Computer Networks and ISDN Systems, vol. 22, no. 2, pp. 143–154, 1991.

[82] A. Bhatele, H. Langer, A. D. Malony, M. Schulz, S. Shende, and N. R. Tallent, “Per-
formance analysis, modeling and scaling of hpc applications and tools,” Lawrence
Livermore National Laboratory (LLNL), Livermore, CA, Tech. Rep., 2016.

[83] R. Das, S. Eachempati, A. K. Mishra, V. Narayanan, and C. R. Das, “Design and eval-
uation of a hierarchical on-chip interconnect for next-generation cmps,” in High Per-

formance Computer Architecture, 2009. HPCA 2009. IEEE 15th International Sym-

posium on. IEEE, 2009, pp. 175–186.

[84] P. P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh, “Effect of traffic localiza-
tion on energy dissipation in noc-based interconnect,” in Circuits and Systems, 2005.

ISCAS 2005. IEEE International Symposium on. IEEE, 2005, pp. 1774–1777.

[85] B. M. Beckmann and D. A. Wood, “Managing wire delay in large chip-multiprocessor
caches,” in Microarchitecture, 2004. MICRO-37 2004. 37th International Symposium

on. IEEE, 2004, pp. 319–330.

[86] Z. Chishti, M. D. Powell, and T. Vijaykumar, “Optimizing replication, communica-
tion, and capacity allocation in cmps,” in 32nd International Symposium on Computer

Architecture (ISCA’05). IEEE, 2005, pp. 357–368.

[87] D. Greenfield, A. Banerjee, J.-G. Lee, and S. Moore, “Implications of rent’s rule for
noc design and its fault-tolerance,” in Networks-on-Chip, 2007. NOCS 2007. First

International Symposium on. IEEE, 2007, pp. 283–294.

[88] B. S. Landman and R. L. Russo, “On a pin versus block relationship for partitions of
logic graphs,” Computers, IEEE Transactions on, vol. 100, no. 12, pp. 1469–1479,
1971.

Bibliography 106

[89] W. Heirman, J. Dambre, D. Stroobandt, and J. Van Campenhout, “Rent’s rule and par-
allel programs: characterizing network traffic behavior,” in Proceedings of the 2008

international workshop on System level interconnect prediction. ACM, 2008, pp.
87–94.

[90] M. Tripathy and C. Tripathy, “A comparative analysis of performance of shared mem-
ory cluster computing interconnection systems,” Journal of Computer Networks and

Communications, vol. 2014, 2014.

[91] E. Guthmuller, I. Miro-Panades, and A. Greiner, “Adaptive stackable 3d cache archi-
tecture for manycores,” in 2012 IEEE Computer Society Annual Symposium on VLSI.
IEEE, 2012, pp. 39–44.

[92] S. K. Lim, “3d-maps: 3d massively parallel processor with stacked memory,” in
Design for High Performance, Low Power, and Reliable 3D Integrated Circuits.
Springer, 2013, pp. 537–560.

[93] S. Lee, K. Kang, J. Jung, and C.-M. Kyung, “Runtime 3-d stacked cache data manage-
ment for energy minimization of 3-d chip-multiprocessors,” in Fifteenth International

Symposium on Quality Electronic Design. IEEE, 2014, pp. 197–204.

[94] F. Broquedis, N. Furmento, B. Goglin, R. Namyst, and P.-A. Wacrenier, “Dynamic
task and data placement over numa architectures: an openmp runtime perspective,” in
Evolving OpenMP in an Age of Extreme Parallelism. Springer, 2009, pp. 79–92.

[95] D. Tam, R. Azimi, and M. Stumm, “Thread clustering: sharing-aware scheduling on
smp-cmp-smt multiprocessors,” in ACM SIGOPS Operating Systems Review, vol. 41,
no. 3. ACM, 2007, pp. 47–58.

[96] E. Z. Zhang, Y. Jiang, and X. Shen, “Does cache sharing on modern cmp matter to
the performance of contemporary multithreaded programs?” in ACM Sigplan Notices,
vol. 45, no. 5. ACM, 2010, pp. 203–212.

[97] S. Mittal and J. Vetter, “A survey of techniques for architecting dram caches,” Parallel

and Distributed Systems, IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2015.

[98] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, and N. P. Jouppi, “A compre-
hensive memory modeling tool and its application to the design and analysis of future
memory hierarchies,” in Computer Architecture, 2008. ISCA’08. 35th International

Symposium on. IEEE, 2008, pp. 51–62.

[99] C. M. Krishna, Performance modeling for computer architects. John Wiley & Sons,
1996, vol. 11.

Bibliography 107

[100] G. Girão, B. C. de Oliveira, R. Soares, and I. S. Silva, “Cache coherency communica-
tion cost in a noc-based mpsoc platform,” in Proceedings of the 20th annual confer-

ence on Integrated circuits and systems design. ACM, 2007, pp. 288–293.

[101] L. Han, J. An, D. Gao, X. Fan, X. Ren, and T. Yao, “A survey on cache coherence
for tiled many-core processor,” in Signal Processing, Communication and Computing

(ICSPCC), 2012 IEEE International Conference on. IEEE, 2012, pp. 114–118.

[102] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi, “Cuckoo directory: A scalable
directory for many-core systems,” in 2011 IEEE 17th International Symposium on

High Performance Computer Architecture. IEEE, 2011, pp. 169–180.

[103] H. Lee, S. Cho, and B. R. Childers, “Perfectory: a fault-tolerant directory memory
architecture,” IEEE Transactions on Computers, vol. 59, no. 5, pp. 638–650, 2010.

[104] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-2 programs:
Characterization and methodological considerations,” in ACM SIGARCH Computer

Architecture News, vol. 23, no. 2. ACM, 1995, pp. 24–36.

[105] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite: char-
acterization and architectural implications,” in Proceedings of the 17th international

conference on Parallel architectures and compilation techniques. ACM, 2008, pp.
72–81.

[106] R. McIlroy, “Using program behaviour to exploit heterogeneous multi-core proces-
sors,” Ph.D. dissertation, Citeseer, 2010.

