MATHEMATICAL STUDIES OF HEAT CONDUCTION PROBLEMS,
USING THE METHOD OF WAVE-TRAINS,

BY

AGNES H, WADDELL,M,A.,



ProQuest Number: 13855716

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 13855716

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106- 1346



CONTENTS .

Pages.

Introduction. I-4.
Part 1.
Problem 1. |
Finite rod, initially at zero temperature,
constant temperature 0, maintained at
both ends and heat losses from surface of
rod.
Theoretical solutionm. | _ 5-1.
Application to experimental method for
determining comductivity and emissivity. =ty
Problem 2,
Application of the wave-train method of
sodution to J.H.Gray’s method of deter-
mining the thermal conductivity of metals,
Gray s experiment and theoretical consider-
ations. | Iy -16.

Theoretical solution using wave-train method, 6 -2.
Mathematical verification. 26 - 28.
Calculation of conductivity o€ copper using

Gray’s experimental results. 28~3lj,.



_ Pages.
Extension of method to find conductivity
and emissivity of other metals. 35-318.

Part 2.

Two-media Problems,

(a) Solution of a variety of problems.

Statement of problems solved. ' -4,

General results due to Dr.G.Green:

Notation and wave-train summations. Ll -43,
Procedure., 43Ul
Coefficients common to all problems. b4 -45.
Problems 1 to 3. b5 -49.
Problems 4 to 6. j-52.
Problem 7. ' 52-57.
Problems 8 to 15, 57- 58,
Problems 16 and 17. , 53-4.
Problem 18, b0=Gl.

) The roots of the gemeral equatiom A =0,

Reduction to Two separate sets of equations. 62-43,
First set. es—(.:i
Second set. 65-67.

Limitations, 67 -69.



©) ég_plication of theory to certain _problems
comnected with the insulation of furnace

walls,.

Statement of the problem.

Current method of solution by Schmidt Graph
method,

Conversion of analytical results into terms
of dimensionless groups.

Calculations.

Comparisom with results due to Schmidt
Graph method.

Graphical presentation of analytical

results,

Conclusions,

Bibliography and References,

£8-To0.

To-12

73-76.

76 - 8.

¥ -92,

$3-9s,

96 -27.

99-99.



INTRODUCTION.

The wave-train method of finding the solution to "
heat conduction problems was propounded by Dr. G.Green
in a paper in the Philosophical Magazine im April, 1927,
Since them, it has been further developed in a serigé-of
later publicatioms which are listed under references 2 to
10 inclusive in the Bibliography. The details of the
method, which have appeared in several of the above-
mentioned publications will be assumed in the present
thesis. |

This thesis consists of two parts. In Part 1, the
wave-train method of solutiom is applied to certain _
convenient experiments for determining comductivity and
emissivity. The results afford an accurate theory, from
which, in conjunction with certain experimental
observations, these coefficients cam be calculated. This
has been done fbr‘J.H.Gray's experimental method of
finding the thermal comductivity of metals and, aftgr we
have allowed for an error imn his working, a close corr-
espondence between his and our value for the conductivity

of copper is obtained,

* The figures g2 -----

refer to the Bibli
the end. e Bibliography at



Part 2 deals with problems of variable heat flow -
through two media of different materials in contact. It
falls naturally into three sections, @) , () and (¢) , the
scope of which is briefly outlined below,

(8) In a recent paper in the Philosophical Magazine,
Dr. G. Green has summarised the effects throughout two
media in contact due to any disturbance whose effect is
propagated by wave motion., As illustrations of the ;
application of these general results, he considers three
special problems, two of them involving the transmission
of malastic vibrations throughout two media in contact
and one analagous problem concerning temperature vibrations.
He makes ‘no attempt, however, to deal in detail with the
two-media problems associated with any one subject.

In the standard textbooks on the theory of heat
conduction, detailed solutions of a wide range of one-
medium problems are givenj; but no similar solutions are
available for the corresponding problems involving two
media in contact. To the best of the writer’s kmowledge,
such reeults do not appear together in any previously
published work. In view of the many applications of these
analytical results in different fields of practical
science and industry, the task of solving the main
two-media problems in heat conduction and the presentation



of them in a systematic mamner is undertaken in the first
section of Part 2. The wave-train method of procedure
is adopted in the derivation of these solutions and hence,

the general effects summarised by Green can be utilised,

() An examination of the solutions to the problems
studied in sectiom () reveals certain similarities in
form between the different results. It is found that the
roots of a general equation A =0 [see equation Usu-) below]
determine the normal functions required to express the
solution to each problem which involves an instantaneous
or continuous heat or temperature source. The method of
determining the roots of this equation is investigated

in the second section.

(©) Finally, the possibility of applying these exact
analytical results to certain practical problems
conceraning variable heat flow through composite furmace
walls is examined,

This latter section is a first attempt to replace
the present approximate methods of determining the
temperature distribution across insulated furnace walls
by an exact theoretical solution. The work done in this
section holds out the prospect that the exact method can

be adapted so as to give more accurate results without



the elaborate graphical methods at present needed for

each individual problem. This adaptation involves a
certain amount of preliminary work in constructing
diagrams using dimensionless groups; but, once constructed,
such diagrams will greatly simplify the application of

the analytical results to practical work. )

The actual construction of these graphs has not yet
been undertaken by the writer, who feels that the whole
text of Part 2, and particularly of section () , requires
to be discussed first by the practical scientists who
will be using them. Their utility and thlé‘[%om of their
presentation would then be more accurately knowne )

It is intended, therefore, to submit the work embodied

in Part 2 of this thesis to the Philosophical Magazine
* and to the Journal of the West of Scotland Irom and Steel
Institute for publication. The paper to the Philosophical
Magazine will be a suitable sequel to that of Dr.G.Green
mentioned im Ref, 6 It will contain less of the detailed
working than appears in Part 2 of this thesis. The paper
to the other journal will give more prominence to the

practical applications dealt with under section (¢) and
will include some additional numerical and graphical

detail of which time did not permit the ineclusion in this
thesis,



PART 1.
Problem 1.

The details of the process of solution are indicated
fairly fully in the first problem, which may be formulated
as follows: _

To find the temperature distribution throughout a rod,
of length & , whose initial temperature is zero, and both
ends of which are subsequently kept at constant temperature
. , while there are heat losses from the surface of the rody
further, to show how this result could be used to determiﬁe
the conductivity and emissivity of the material of the rod
experimentally. [See Figure 14

Figure 1,
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For one dimensional flow, the general equation of heat

conduction in a uniform medium, where there is loss of heat

from the surface is

v B
SE = X Sy s 1)




where 7V represents temperature, and

K = diffusivity = X =thermal conductivity ,
5 specific heat x density

4=

coefficient of surface emissivity,

N

I

emissivity,

H
5P w
H
f = perimeter,
W

= area of cross-section.

The initial and boundary conditions for the rod are

At =0, v=0, O(=x=a,
At any later time, =48, x =0, @)
v="9 x=Q.

Before proceeding to solve this problem by the wave-train
method, we note that there are here two continuous temperature
sources, one at each end of the rod. The temperature effects
due to these will be considered separately, and the results
added together to give the total effect.

The end conditions then are

Case 1. v= 1§, x=0,
v=0, x=0
Case 2. =0, t=0,
A= o" X=Q
-hk
If we let V=€ u in equation (), it becomes
W _ o (3)

ok T T x*



This is the heat conduction equation for the new function
AL ,and we now proceed to solve it, using the wave-train

method and taking Cases 1 and 2 separately.

Case 1.
The new end conditions for 4L are
W
a=p,, x =Q, where /", =e¢ 0,.

M =0 , x =Q..

1 o
Consider first a periodic temperature source /% e
situated at %X =0. We can regard it as setting up the
et - e ) .
positimely travelling wave-train /» € where i\ =J§ .
This wave=train will be refl@cted at the boundary x =0, to
. tat - i(2a-x)\
give a negatively travelling wave-train ﬂfo e , ‘
where A is the coefficient of reflection and is determined
by the boundary condition of zero temperature at x=a.
This wave-train in turn will be reflected at x=0 ,
where the coefficient of reflection is A, , and so on until

the following system of trains is built up

, e\ s _i x
R equ i ’ Ag, e'd;r Wza-IN ’
M-Lha-hc)\ 2 4 - Alra )N
A.A {’. 14 s ﬂ.ﬂ P.ek Je(r ) ,
22 Uk-iluasN
adpe , e -

The summation of all these wave-trains gives the temp-

/ tht
erature effect 4 due to a periodic source /A€ at x=0.

. Wh ¢ o-ix) ~ira-9N
LW =pe [ s al™ ™™
l -— ﬂoqe—-l"o-’\ : (""




The value of A can be determined by coﬁsidering any
wave-train incident on the surface x=a and its reflection.
To satisfy the condition that W =0 there, we find ﬂ=~ll « The
coefficient Ac must be such that the temperature effect at

%x=0_due to the initial train and all its reflections is /’,ew:
This means that A. must also equal -/ .

v ' i - 1\ - (2a- )N
= gl [ L e
‘ — e’zia\
= o™ gy (a- )N
[N ©

Proceeding now to obtain the temperature efféct A due

to the instantaneous temperature source /» at x =0 , we make
i
use of the fundamental integration

W
0 =~1-‘J M dk

0

= -_%.J ew ﬁ:'ﬂ SQ—-:QE dh’ )
A Ln AN ,

-KNE : '

=f7%- e“ fim (8-XIN 2 KN A\ @

o8 A AN

where, for facility in evaluating, we have changed to integrathon
with respect to X , and 0B is the radius vector from the
~origin to infinity which makes an angle ©=-% with the

positive ?-_axis in the A -plane.[k =% +iN = ﬁew]. This

change arises from consideration of the fact that
xz — 4 bk & _ih

A= I!E e'w"*‘



The evaluation of this integral 10- is most readily per-
formed by integrating round the closed contour in the X\ =plane
consisting of ® 0B , (2 BA , the arc of the circle )\=Rew
foom 9=-T to ©-0, and ()) AO , the real axis indented at
points given by 4w-aX =0 , e aX=mT, w =0,1, 2 -----

Figure 2.
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it can be shown that j,t(x)ax >0 as R —=>ew..
BA

Hence, when R->® and the radii of the indents —o,

J VN =Iw£(§)¢§ + ij»bodx. .(5;’
0B o | mi‘f:‘f.,‘

But Z[{(X)d\ =) mifaBe = "L nBE| U
indents nel

Therefore, combining results @) , ¢) and () , and equating



A to the real part of the right hand side, we have

L Py 2

L 'La"K‘»’
u=_2_“l‘ﬁzne = Mo MBX . (o)
a~ @ B

nei
-ht
Since V=€ 4 and A=8, initially, the corresponding
solution to equation () is
P Z'KK ea _6"%1 +L)t g 4'.—‘! . ‘
ar = EHTR z‘i n.e o 4T Q)
where vV is now the actual temperature effect due to an

instantaneous temperature b, at x =0.

The effect due to a continuous temperature O, at x =0
is obtained by putting (E-t) for £ and integrating with
respect to £ from 0 to k.

= ').’K'ue,Z i M"‘f - R L) - k)ow,‘

14(“30 M n')hc
a* Z”"M R xn+ R Fatk
(kB ) E
[i-e at* }
MR K + o ' (2

[ -(eeBt uv)x]

«©
= 2URE, ) ki B

Casge 2,
In a similar way it would be possible to derive the
temperature effect v, due to the continuous temperature 9.

at x=aj3 but it can be seen that this result is obtained by
substituting @-%) for x in (4)

-(x 1‘1‘_5._1.-*1\)‘7]

(3)

A, = ~2kX8, Z_, B MTX fi-e

WK + ok

0.



The complete solution to the problem is obtained by
the summation of v, and <, , Hence, the temperature at

any point x at time A4 1is given by
('K"“ 401:

U = 2KN6, z/n W'““" [' «Mhi-e & J_ ‘(n‘.) '

WRK 4 oA

It may be noted that this result agrees with that
given in H.S.Carslaw’ s "The Conduction of Heat', page 70.

Application to an experimental method for finding K and H.

In order to determine K and H experimentally from

this result, we may proceed as follows: Take readings of the

temperature of the mid-point of the rod until a steady state
is approached and plot the results as in Figure 3.

Fis ure JSe
P ‘{
ﬁ,,
o»& -~ - - - P — -~

E

It is possible to obtain two expressions for the steady
temperature to which the mid-point of the rod settles down
and their mathematical equivalence provides a verification
of result 0¥ . This is now demonstrated.

®) If we put t=© in equation ®) , We have

o = 2K¥6, Zw i 0B 10" s

wWRKK+ah



Hence the steady temperature of the mid-point of the rod
is given by

[ .
v, = Y S <))
sV zkie.,z M Aun 3

2 wWrk+ah

= uk®O, S (A _2Zmot é
Z:( ) e, (0
® The steady temperature state can also be determined

from first principles; i.e. by solution of the equation
b«r

b &’\7’50
where ’U=eo ’ X-':O,
=0, & x=AQ.

(T = 9 ML:T’E + M(a-xﬂx
e bk o[
0, W -0 .
a A = 3 ulfing »x = = 1))
ana %= g MM
The values for ,vs given in equations (4 and (7) are
8
known to be equal from the identity
ahex = L N (m-) =
Fory

) i et O FE

Making use of (7 now, we can write for the temperature

at the mid-point at time £
i [ K(M’ o) A Y

»\T% — OrIE - LKTO Z(- ' (m-1) _ (19)

(1m-\)°1t K + otk

If we insert actual values for X , b and a , in the
summation part of the right side of equation (%) , we find

that the exponential part in all terms except the first

1z,



becomes extremely small after a certain time, which for a
copper rod, length 2 cm., is 5 secondsy or for a rod
of the same length made of a comparatively poor conductor,
iron, is 25 seconds. If we take a reading of the temper-
ature at any time after this, we need only consider the first

term in the summation when we apply the theory to the exper-

imental results.
- (x"ﬁ, -b‘s)f
. _ _ 4K\, @
.e ’U-C.i/z- _ 4 ,U;y?- KK +at}~ ‘ ('45

Now, from equation (7) ,

afE - 8. _
‘Illv 1'?:" 5’\7’“6— ’r‘ Py 5&5,

where 1 1is readily calculated.
Hence ]_% = % &}e (1’ "'J’r"—-l) = # ’ Saj.

2
Thus A = K4 where 4 can be calculated from the
observations.,

Now, if in Figure 3, AB=d = the difference between
the final steady temperature and the rising temperature at
any instant after the minimum time [ 25 seconds for iron ,

6 cm. long] , them from equation (19 N
-(1‘1‘!{., +h) &

d = vy —v, = LXKRE, o
s % % K +a”
1 2
_ awe, o x(E +y)E
"K"'l-dvgq'

Gl ‘ YK Oo
X = o “"ie M‘:‘(‘-o-a,g } .

['ﬁ *rat ;;"] K (20)




From the value of K obtained by this method A [= 4]
can be calculated. Thermal conductivity , K, and emissivity,
H, can then be found since K=psx, and H= Lewde .

e

_ Problem 2.

Application of the wave-train method of solution to

J.H.Gray s method of determining the thermal conductivity

of metals. . .
The second problem is related to the experimental method
of finding the conductivity of metals used by J .H.Gray."’ The
theory of this experiment has had a bartial treatment by
Je.Robertson in his first paper on the method of wave=-trains
as applied to the solution of heat conduction problems.7' The
conditions specified by Roberison in his theory, however, are
simpler than those actually used by Gray in his experiment.
It is intended here to derive theoretical results which
take into account the actual ‘conditior'ts of the experiment.
It will then be possible to calculate the conductivity of
copper, the metal used by Gray in his first experiment, and

by comparing it with Gray s result to estimate the worth of
his approximate theory.

The experiment.

In the experiment, a uniform copper wire was kept at



the temperature of boiling water at one end, and to the other
end a copper calorimeter was soldered. Part of the heat
passing from the wire to the ball was used to raise the temp-
erature of the latterj; the remaining part was lost by con-
vgctioﬁ and radiation from the surface of the ball to the
surrounding enclosure which was maintained at the uniform
temperature of the atmosphere. It was assumed that novheat

losses occurred from the wire itself, which was insulated.

[See Figure 44

Figure 4.
R %'_.:” T mnn LT ‘Bo‘“ﬂ% waler,
/iy | |
" é; L ke Comer bath,
N “ Wire to be Vested.
\, D InsulaVion.
T . Waker a¥ vd’mosfkcric Fem perature.

- ,,,._,“‘»_Co"u eaborimeter  ball.

In order to allow for the effect of heat lost to the
enclosure from the ball during the course of the experiment,
Gray performed the experiment in the following way:

He first of all cooled the ball to b below atmos-
pPheric temperature while he kept the upper end of the wire
at the temperature of boiling water. The enclosure box was

then brought into position round the ball. Readings of the




temperature of the ball were then taken every half-minute ‘
from approximately 3. below to 3° above atmospheric temp-
erature. The mean rise in temperature, 0 degrees per minute,
over this range was used to find the conductivity K of the
copper of the wire by substituting in the formula

cot
K= TRAT [, -T,) 6O

It

where ( = thermal capacity of the ball,
1 = radius of the wire,
£ = lenghft of the wire,

T~T, = difference in temperature between the hot

~end of the wire and the atmosphere,

.This method depends on the assumption that there isa
steady state of heat flow from the wire to the ball; whereas

in fact the heat flow varies with time.

Theory.
' Let the wire be of length @A units, and let the temp-

erature of the hot end, x=0, be 0, measured from atmos-

pheric temperature as zero. Suppose the ball end, x=a , to

be initially at temperature —©,. -
Figge 5.
v,
o Trikial femperature ditfibution = kt,),
.\

Foaal Seady state .

le.




Then the heat conduction equation for the wire is

b«r

= ‘K?—,‘ 2 ‘ (il)

and the initial and boundary conditions are
\T=6.-%(9.+9.)=-r("—) ,0&ex<a, F=o0, @a2)
v =0, , X=0 ,at any later time. (23)
-ng-‘,—{= Ms%};-&-HSU , X=0. @)

where w = cross-sectional area of the wire,
M = mass of the ball, | )
s = specific heat of copper, the material of the ball,
H = coefficient of surface emissivity of the ball,
S = surface area of the ball,

Condition @) may be written

-Kbl q/bﬁ 1'1)0’ , X=Q, @s)

where %-& , b= &

We wish to determine the temperature VU at any time
after £=0 for 0=sx=a.

Before proceeding any further with the theory, it should
be mentioned that no attempt is made here to eliminate one

of the possible sources of error foreseen by Gray, namely,
that the temperature recorded on the thermometer at the centre
of the ball might not reagd correctly the temperature of the
end of the wire, due to the finite thickness of copper inter-

vening. Gray made an allowance for this to which we shall




refer later. We are thus assuming that the copper is a good
enough conductor of heat to keep this error very small,
especially when wires of conductivity less than copper are
used for test purposes.The main aim of the following analysis
is to eliminate any possible error involved in assuming the

heat flow to be steady instead of variable.

The application of the wave-train method to this problem
involves its rational subdivision into three parts, @) , (&)
and (© aiscussed below, the physical interpretations of
which are quite obvious. These contribute three temperature

effects, v, , Y2 and V; which together make up the final effect,
= A + U, + 47; .

(6) The effect due to the continuous teinperat.ure 6, at »=0.

v, must satisfy

=0, , =0 at all times. )
@¢
AW, — g M =
K5e= {58 + Pv, x=a.
(b) The effect due to the initial temperature distribution
v ={® in the wire.
Y, must satisfy
%geo—%:(e"-‘-g‘) 7 t=o.
W, =0 » =0 at all later times. @)

'K%i;tf ﬁ% +pv,  x=a.




1.

(¢) The effect due to.ithe ball being an instantaneous heat

source.

V; has to satisfy
v3= 0 , X =0,

J; = —6, , throughout mass M, x=a, £=0. @)
%G _ 4 2V _ '
K= 45 + pvs , X=0u,

-

We discuss these in turn, noticing that wv; , v, and V3,
all satisfy equation (29).

(0 Theeffect due to the continuous temperature B8, at x=0.

First we shall require the temperature effect due to the
permanent temperature source O, at x=0. This involves
solving equation (@) where the end conditions are specified
in equations W) and where initially v=0 throughout the wire.

In the usual manner, we lfind the periodic solution due
to a periodic temperature Oog at Xx=0, The summation of
the first wave-train, aoQM‘mx and its successive reflections
at x=0 and Xx=Q alternately gives

, SOE i Q—L(Zo—x)x

- (4 + A
v, =6,¢ i F Ao Tox ?

(29)

where i)~=% and A 1is the coefficient of reflection at x=a
and is determined by condition &9.

The first incident and reflected wave-trains at x=o are
Boeuzk-&x.\ and AG‘,ew"“w"»,

In order that equation (2s) may be satisfied, we find




q = Ka—(p- 4 xN) N-2i¢ ' 6o
K+ (p—gKN?) =€

where 1an@ = -F%T;,;z - )

From t.his, we obtain |
v = a,p Rl M{(a A +of @2
A (AN + Q)

Proceeding now to derive the effect due to the instant-

aneous temperature 0, at x=0, we have
L]
v, = —'-ﬁJ v dke.
[

As in problem 1, this integration can be performed most
readily by writing it as

- 2.;7&9]""\‘7 )N+ (33)
Lin (Nt D)

where the path of integration is the infinite radius, 86=-F,
in the \-plane [x =Rele}. We evaluate it by integrating
round the contour used in problem 1 [See Figure 31, where the
indents in this case are giwen by &in (AM¢)=0 , ie a\t¢=n"TR,

€ Guoh = - lang =-T1f—:‘iv‘ ew
By peasoning similar to that used in equations © and
@ we fina . ' -KNE |
- 2. %6, Zh“‘)e Qin (T =xN)
F= TR % e 0007
= - 21(99 Z [“R Q'K\A:X /QAM—X)\]
=18,) f.¢ e Nt xA ()
where A, = Kzi + (b= g¥¥)" , (36)

KD+ (bogXXT*] + K(p + o)

20,




and the summation is with respect to all the positive roots

of equation Bu).

The effect due to the continuous temperature source 0.
at x=0 is obtained from equation (3) by replacing £
by (k-£') ana integrating with respect to £ from 0 +to L.

This gives v =126) A, disxh (- ™ @2
=6- -I{f—.m) -1,Y A ™ g\, (3)

where B,(I - T(PIT:) is the steady temperature effect obtained
from first principles and equivalent to the value of the
right side ol?@quation (37 when L=co.

al.

This result O%) is obtained by J.Robertson in Ref. 1, p-9&T.

‘o) The effect due to the initial temgerature distribution

=f) in the wire.

In addition to the temperature effect just found, there

will be another effect due to the initial temperature disbrib-

ution v ={(x) throughout the wire [ see conditions @m)]. In

order to obtain this effect, we consider a periodic heat
iht

source, strength Q€ per unit area situated at a point

X=x, in the wire, This source sends out two initial wave-

traing, ome in the positive and one in the negative direction.

General results for the total temperature effect due to



22,

these wave-trains and their reflections at =0 and x=Q

are given in Refs. 6 and /0, We may use them now.

. m SECHN 'i“za"'l»
'dzr[n,e""s‘ ve. 1€ ™ ene J

Effect at x‘x, =Pie { - RDRQ-IC&X

k¥

=f’.€ ¢(’°’ "w) j

7Y 4
Effect at X>% = f&" ¢(x,x).

Q
where h = 355
and A, = coefficient of reflection at x =0.

A = coefficient of reflection at x =q.

This value of f, is determined by consideration of
the fact that at x=x, the conditions for a periodic heat

.source have to be satisfied, namely,

S _ et
v.= vy, -KE - 2E]|=qe

The conditions determining the coefficients A, , A
are ) that v=0at x =0, since the effect due to v-=6,
at x=0 has been accounted for in part (@) ; and (2) the
condition in equation (5) at *=Q. From these, we find

- 1‘*

%
A,=-1, and A=¢ "“as obtained in equations G0 and ()

We therefore have

Effect at x <x = fe L udh R [(a-0)A+ 6}

L e
. Bffect at x>x, = ﬂe‘m U pim BN KES; xh+q §
where fand = _"—_p%xv'

Proceeding in the usual manner to obtain the effect

(39

(o)



23.

due to an instantameous source Q per unit area situated

at x=X, and inserting the value for /i , we have

‘ XY PP : -
Effect at x«x, = % J e 2{““"2“ ‘(;‘:g; w2y JRFIN @)

where 0B denotes the usual path of integration, The same
contour an-d points of indentation as are used in part (@)

give as the instantaneous solution, for Xx<x,,

ZQK Z_ 4. -K\”;wxx A;th,)\, @a)

where A, is given by equation (0 and the summation is
with respect to the positive roots of equation Bu). |
Integration of the second expression in &0 gives the
same value of 7V; for points where Xx>X,, Hence equation (42
holds throughout the wire and constitutes the effect due
to an instantaneous heat source ( situated at x=1x,.
Now, the initial temperature distribution v =fx) may
be considered as being due to an infinite number of such

instantaneous heat sources. Hence a substitution of %-R".)dﬂ‘

for Q in eguation () and an integration with respect to
X, from 0 to a will give the total temperature effect
due to the initial distribution v =4§e) .-

We therefore have
\7; = QZQ KX:W:L\J. Mt\ -FQC‘ (%)

Qi F\,L w;\ f Mz‘\ —(e. +e,)] (kt)

O )
= QE A.e ha m;\ [90 + 8 inax = (B, +8) 2us a\], (45)



(¢) The effect due to the ball being an instantaneous heat

sSource.,

Thirdly there is the temperature effect throughout
the wire due to the ball, mass M , being an instantaneous
heat source of temperature -8, at the beginning of the
experiment.

Initial and boundary conditions are given in equations
(9). |

If we consider first that there is a periodic source,
strength Qe™ in the ball, the initial negative wave-train
will be of the form /’Lew-i(bﬂx. The coefficient /; —must
be such that this initial wave-train will satisfy the
condition that the ball, mass M , acts as a periodic

source Qew. The law of emission in this case is

Kw%"-’;-t-l"\s%—“f +HS«r=QeM, X =0. “wO
e K2 . q 3L + f«r---%ew, x =a.
using the same notation as in equation (5).
We therefore obtain /4 in terms of Q@ by sub-
stituting v=A¢" ™ in equation 9, This gives
= “’[lef(b- OO (i)

Successive wave-trains are built up as usual, the
reflection coefficients having the same values as before,

and yield as the total effect



_ Q ew*@' A N
%= SR o) B (o)

= _Q N g d i N u3)
WK © Salon)

where jau¢ = ',;}.S%&’ as before.

Converting this now to the effect due to the instant-

aneous heat source @ in the ball, we have

-\t
v-“,ﬂae Rae P A XN 4N\ =.21‘1%z___q,.e“* Qe A\ i EN ()
8 WK i@+ 9) “

where A, is given by equation (0 and the summation is

with respect to the positive roots of equation (3u).

Tnitially, the heat content of the mass M is Msf@
where {:@:—9, as obtained from condition 7).
Q= - Ms6, o)

Hence ‘v}, =- zMB. [ A,. .k\tm o mtx B 1)

The summation of these three temperature effects GV ,
¢5) , and (5), dealt with in sections @), () and ©

gives the complete solution t.o the problem. Thus
-\r=e°(|-_L_‘) ZDZA..e F pioth

K+bpa A
+2Eﬂ“€° [9 + 9wl - (eaw)m»ax]__z_@,_zn .Kw,u;.p.kwx.k
A - O aa
e ) TRl s 29

" | .
Evn\m\’mj Fhe infeqral 53 means of the usual Contour.
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where A, 1is given by equation (30) and the summation is
in all cases over the roots of equation (34).

An explanation of the fact that parts of v and v,
neutralise one another is readily afforded when we examine

the graphical interpretation of vy , v, and v; .

Mathematical Verification.

It will be observed that apart from the first term on
the right side of equation (2 , we have a simple sine
summation., It would seem possible, therefore, to obtain
the solution to the problem by the ordinary method of

assuming that such a sine summation is a possible solution,

and thus have a mathematical verification of the above___result.

»%
[J .Robertson, in Ref. 7, verified that I- 1<_§-{=T« could be

l:w»x)x

represented by 2]_A , a result of which we made use

in equations 07 and (3).]

As stated earlier, the initial and boundary conditions

are v=6,-%(8,48), k=o.
v=8, , x=0.
_y v

dv =
-b-izt‘,s-i_- +f?’0“ ’ x =Q,

Let us introduce a new temperature function 4 , such
2
that M‘-‘:"U’"‘BO(I""TK—-EP: .

Then the conditions for um are

26,



w =B B8 -8~ f2), ’f‘-"’-} @
= ?(X—),

=20 x=0.
(3 - Rebo) = 4 35 Fplue - xH], ==a-

We can now assume that a solution to our problem

exists of the form

Y
n = B, e e
)

where )\ denotes A\, and where the summation is over
the roots of equation (3) . We evaluate the coefficient Bi.
by the following method:

g™ L B i

= ?,(").
o

a
) A /

== %ZBW “""xwa‘/“""xaca' , RN,

\

amd B ity de = Bmfa- tedet geme],

[

Y

/
Hence r«}(t) R\ x de =~ % Z B M A0 RN
o

+ ﬁ%_w[m - AuNaa c»xma]

) Y.

-- %mxma[%a) = Bun Biee Nauat ]

.4.3%&[0,- M%’M.

27.



Therefore

L 960 buhge du & L At 36)

%‘_ W‘lx«.& ¥ j__[a‘_ &All‘; w\&w]

Substituting for 9/(#») the expression given in equation

B,.=

(63 , we obtain for B,.. the value required by equation &2.

Calculation of the comductivity and the emissivity of

copper from Gray s experimental results.

The purpose of the following calculation is to obtain
a value for the conductivity of copper, using Gray’s
experimental figures and the theoretical result given in
equation (7) ., the derivation of which is based on the
actual experimental conditions. At the same time, our
method enables us to find the coefficient of surface
emissivity of the copper ball.

In Gray s experiment, measurements of temperature rise
were taken at the ball end of the wire, i.e. at x=oq.
Equation (62) gives,for this value of %

. 9 .-
=t e -2l A Bl s - B+ M L] @)

The following data are provided by Gray and in all

cases are in c.g.s.units$

Length of wire =a Thermal capacity of ball = Ms
= (»3{, = 6‘3"9

2.



Radius of wire= 1 Temperature of hot end = 97~3.‘
= 0’|05.
Radius of ball = R Temperature of atmosphere = J-¥5.

1.

|

From these, we calculate

s = 3357
g =L =

We shall take atmospheric temperature as our zero,
Then, & becomes %745 and we make our calculations
using the temperature readings of the ball beginhing at
- 3" which corresponds to — 0, . The graph of Gray’s
readings, adjusted to this arbitrary zero is given in
Figure 6. -

It will be appreciated that only if we can effect
some simplification of equation (54) will we be able
to use it to find values of K and H . Fortumately
an examination of the positive roots of equation (u)
enables us to neglect all but the first term of the
summation in equation (%) ,

Equation B4 is solved graphically by fimding for
what values of A the graphs of /4 = fawal\ apg

KX
q= - intersect.
With the above properties of the ball and wire,

2.



DA u - amg



Cr -



de.

these become y= B 631 \

- A .
’fr’ 238, 0" - 2055%

Even a rough knowledge of the order of magnitude of
H? is sufficient to show that the rectangular hyperbola
very soon approaches its horizontal asymptote. The result
of this is that the roots of equation (3,) ,after the first,
approach nearer and nearer to ’% y w=5L2 - ,the

degree of accuracy increasing with # , For these values

2

| SO
of A , it can be seen that &  #nwda: becomes very

small and in fact can be neglectedy so that in our
calculations, we need consider only the first term in the

summation in equation (54) which can then be written in the
-KNE
form 7, =0 - De )

It is now possible for us to measure from the graph
three values of Vo at times which are equidistant from

one another. We them have

T
Y
=0 -2
-\, P,
g=c DE.
‘ c—"ff- — e.ﬂ‘v(b"b'*’
. e /0_ ]
C ,U- e‘K\:—(p,_'bg)

C- w5,



Since b~k = k»'ks
) 2
we have (e~ )C - W)= (C - ,,)
from which C can be found. It gives us the steady
temperature to which the ball end of the wire would
have settled down. By substitution, D and K\, can

also be found.

Using Gray’s curve, we calculate
C=1er. D= 20T

k)f,' = (- 000305,

~0-000305 £ '
The graph of U = I1§-L7-22:67€ fits Gray’s

curve perfectly.

From equation (54) we know that steady temperature

(2)
is given by N = __"%
I+
C = —2
I+ Haa
P5Kw.
4= 7:u5
1967 I+ 200i6 B
1,‘-&-1 0-0001%,

We now require the first root of

_ K\ - N
fuch = T T W - &
] Ps%w
e, K e3ine X

BN 08k 6l

3.

We obtain the root graphisally and find [see Figure 'l].

)\‘ = 00§ , . 'K = fsx = 0963,

SR o= 033 H = 0:000178,




At first sight, this value of K=}/ appears
.to show an unduly large discrepancy with respect to
Gray’s value of ‘353 especially in view of the
consistency of the results which he quotes for various
lengths of ﬁhe same type of copper wire, and in view of
the care with which the experiment was performed.
However, an examination of Gray’s calculation reveals

an error in his working. From his experimental data, he

writes K = 89 x 3605 x (3l
T TR x (105)* x 9748 x 6O

which, in fact equals %62k and not ‘993 as he
states. The former value of 62k differs from ours
by less than 1 im 1000.

The correspondence between the two results can
partly be attributed to the fact that, for the small
range in temperature at the ball end of the ‘wirev —
which is involved in this experiment, the gradient of
the temperature-time graph is small and the rate of
change of the gradient is very small.

-RN\G &
rv=C—-7De
PR Wy 2
%&’4’: = P K\, €
1 RN 2
%ﬁ-{= -p ke ., KN = -0003.

’ 3605
Thus, Gray s mean value, ~(o y for the gradient,

on the assumption of a steady heat flow over this small

3z,




range of temperature and time, is not far different from
{but slightly less than] the actual gradient of the curve
at atmospheric temperature, [see Figures 8 and Q], . |

ﬁgur‘e 8. ﬁﬂure 9.
art ar b
Mo = M . Mog N Mer .
b A 8 . A
| .
o Pl o X 8
e ;
-8 o/ 4 i : ) > " d ' " -
¥, k 4 e % A Xy t

Our result, which is slightly greater than Gray’s
thus shows a difference in the direction which wé might

expect, i.e. an increase.

In order to be certain that our omission of the
second and higher terms in the summation part of equation
had not introduced an error into our results, the second
root of equation (L) was calculated and hence the value
of the second term in the summation [using the values of
K and H already found as first approximations]. The
order of magnitude of this second term was found teo be

- ‘035 after one second. For t > 1 second, this term
decreases rapidly and higher assssms roots of equation (3u)




3.

yield terms in the summation of alternating signs and
even smaller dimensions than :0035 , It is clear,
therefore, that,to the degree of accuracy possible in
redding the temperature at the ball end of the wire and
in calculating G and D [see page 3! above], these
terms can be neglected without affecting our result,

One final correction requires to be made to the
calculated result for conductivity in order to allow for
the thermometer at the centre of the ball not reading
the exact temperature at the end of the wire, Gray estim-
ated this correction to be of the order of ‘00b of an
increase to the uncorrected value, again basing his
theory on a steady heat flow into the ball. This correction
gives K='9bSL according to Gray and K =-$69/ according
to our result.

The close correspondence betweem the results
constitutes a valuable verification of Gray’s method
by an exact theoretical solution,even although it has
involved the exposure of an unexpected error in his

working.
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Extension of the method to find the conductivity and

emissivity of other metals.

Gray used the same calorimeter ball in a series
of similar experiments from which he calculated the
conductivities of materials other than copper, The above
treatment requires only slight modification in order that
a result corresponding to equation (52 may be derived
and applied to this new problem, involving a wire made
of a different metal to copper.

Consider that the wire is of some other metal, with
conductivity K and emissivity H' » and to make the
problem perfectly general, consider that there is heat
lost from the surface of the wire. The properties of the
calorimeter ball remain as before, its emissivity now
being known, Its conductivity does not enter into this

preblem.

The heat conduction equation to be solved is

W _ D _ (55)
SE =K T3 A
«’ r O HE
where K= s = s’

and the dashed constants all apply to the material of
the wire. The initial and boundary conditions are

v = en_ %(904'8') ’ k =0'

v = §, , =0 aFall larer Himes.



KR gBE e, xme, @

where ¢=Sf12 ,  pP=—5

By using the substitution u=€ v, we can change

equation (9 to
a'u

/) 't O :
-;)% K === 67

and equation G0 to
o — 5 M ! '
K= 455 + (1) )
The solution to the problem is now similar to the
one already treated, with the difference that the
instantaneous solution for . requires multiplication
-Lk
by € to give the solution for VU , and that
equation (%) differs from equation 9 in that p-Ly

has replaced § .

As before, we divide the problem into three parts.,
Without going into the details of the method again, we
find the results to be:

() Effect due to the continuous temperature & at x =0,

-( A*) :
o 18, ) A, Ay (-] (59

KN+ fp- e +493 . 9
aKN® + [p- (N 8T + K b + 4 (A= LT]]

where A; =

and the summation is over the positive roots of

_ _ K5
ltwa\ = PO )

6,



3.

The steady temperature is found from first
principles to be
v o=0 vk (a5 + W [B M[A-X))—%T' . (B
st Vo paik af + Kl wla]%

Vepification that this is equivalent to the steady
temperature obtained from equation (59) by putting E£=<
has not been done, but could no doubt be carried out in

a manner similar to the verification performed on pages 26-23,

(2 The effect due to the initial temperature distribution

v=f@) in the wire is found by an analysis similar to

that used in section ® and gives

G\ 1) K .
=1) A, e O L N ) eth] @)

(3) The effect due to the ball being an instantaneous

heat source, temperature -0, is

—( IN+L)E
vy = :lség’ Z e IR AN PG 3 \ ©n)

/

where in all cases A. and the summation are as required

by equations ¢d and ).

The total temperature effect is then

4)""/0’ U, U,

=0 paiks (a-2)]E + K & Mk(a-xﬁ%

¢ pakaly + KL tsh afk ©9
'Z'Z A. 'L«M-k)t [EL‘% X — ..el.to.aX + T?e‘ b

This result can now be used in conjunction with

experimental readings in order to determine Kl and H‘.
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It should be noted that the steady temperature at x =a

is given by !
[ . 00
0‘ 3 - z = T—-———

for values of K and H 1likely to occur when dealing
with metals,

As we should expect, equation (¢5) reduces to equation
(62 when 4 =o, K=K, ® ==, o

Finally, Gray discusses the desirability of using

a smaller calorimeter ball when testing wires of lower
conductivity than copper, in order that appreciable
temperature rises will be recorded at the ball end of
the wire within a reasonably short time,

From a practical stand-point, this reduction in
the heat capacity of the ball is essential., Without
going into its detailed effect on the roots of equation
() as compared with those of equatiom (34) , and thus
intoc the effect on the value of V' as given by equation
(¢5) , we note that a reduction in the size of M in
the last term of the R.H.S. of equatiom (¢5) does cause
an increase in the value of the temperature vV after

any given length of time,



PART 2,

Two-media problems.

As stated in the Introductiom, Part 2 is subdivided
into three sections, (&) , () and (¢) . Im the first of
these, a collectiom of results for some of the main

two-media problems in heat conduction is made.

(0) Solution of a wvariety of problems.

The problems solved concern in all cases a uniform
rod, composed of two different materials in contact,
medium 1 extending from x=0 to x=0 , and medium 2
extending from xX=& to x = b, They involve the deter-
mination of the temperatures <v; in medium 1 and VY in
medium 2 after time L , where the initial and boundary

conditions are stated below,.

Statement of problems solved.

1. End x=0 maintained at constant temperature 6, ,
end x=b radiating to an atmosphere at zero temperature.

Initial temperature zero throughout.

2, End x=0 at temperature 0, , end xX=b impervious

to heat. Initial temperature zero throughout.



3, End X=0 at temperature 0, , end X=0b kept at
zero temperature., Initial temperature zero throughout.

4, Emd x= b maintained at constant temperature 6, ,
end x=0 radiating to an atmosphere at zero temperature,

Initial temperature zero throughout.

5o End x=b at temperature 0, , end x =0 impervaous

to heat. Imitial temperature zero throughout.

6. End x=b at temperature 0, , end x=0 kept at

zero temperature, Initial temperature zero throughout.

7. Initial instantaneous temperature distribution {,&x) in

medium 1, and f,&) in medium 2, Ends x=0 and x=b

both radiating to an atmosphere at zero temperature,

8,9,10,11,12,13,14, and 15, Tnitial instantaneous temp-
erature distribution f () in medium 1, and f.) in
medium 2, but involving each of the eight other possible
combimations of end conditionsy e.ge radiation to the
atmosphere at one end while the other end is impervious

to heat or is kept at zero temperature, etc.

16, End x=0 at variable temperature ¢, © y end x=50b
radiating to an atmosphere at zero temperature (or imper-
vious to heat or kept at zero temperature .), Initial temp-

erature zero throughout.

Lo,



17, End x=b at variable temperature g, &) , end =0
radiating to an atmosphere at zero ﬁemperature (or imper-
vious to heat or kept at zero temperature). Initial
temperatﬁre zero throughout.

13. Problems involving more complex initial and boundary
conditions than those stated above,

Since we shall have occasion to refer to Dr. G. Green’s
6.
results in their general fornm, they are for convenience

given below in equations ¢ to (0 , with the appropriate
meanings of the notation.

Notatione

For a wave train originating in medium 1, and initially
incident on the boundary =&,

A = reflectiom coefficient at =0 )

A = transmission coefficient at X = 4.

B = reflection coefficient at x =b. \ W
¢ = retransmission coefficient at =0,
. ¢ = reflection coefficient at =0,

A, = reflection coefficient at x =0, ) .

= I .
%A= ToAATTS ¢
5= /

2 ) = BC e iiklb-a)N

4l



E{@)-AR)= ¢ o> [1-a.a e,'“"“\]

S = ﬁ- ’ = A,A'BC S,S.be-usx}
s = @ +)b(|a-m)
I
P =333

N\ and M are determimed by the differential

(©3)

(©9)

Go)

equations goverming the wave motion in the two media [see

equation () 1.

Wave-train Summations.

Case 1, Periodic source at point x, in medium 1.

Total effect at % im 1 (x>=)

= .% eME{x,x,ﬂJ‘[E[x\,ﬂ.'ﬁﬁS - e&tx]

Total effect at X in 1 (x<%)

= same expression, » and X, interchanged.

Total effect at x in 2
ek = ish _ 4
=pe E{xx,Aq) c{n(l.-,éx,sj% )

= -

Case 2. Periodic source at point ¥, in medium 2.

Total effect at X in 2 (x5%)

i A CEE )N
= 1%' eME{/L(b-x)A,nj [E[Ms«.)\,ﬁ]S,S -e&" ) ]

Total effect at x in 2 (X<X%) |
= same expression, X and %, interchanged.

(79

¢2)

(1%

@

@)

k2.



Total effect at x in 1

= £ 7 L)), 8 €=, 4.3 < 16y

Case 3. Periodic source at boundary X=0 in madium 1.

ik FEAN
Total effect at x in 1=+ e [E{xAaf55-¢7 ], )

* Wt ~ 18\ N
Togftl effect at x in 2 = f ¢ E{)t(‘"’dk,ﬁ} % . G9)

N

Case 4, Periodic source at boundary x=b in medium 2,

kK Aipulo )N
Total effect at X in 2 =5¢ [E-Ngs5-¢ ]

t idak - is\
Total effect at x in 1 = pe £ =X, Ao} £ G0

Procedure.

In the solutions to our problems, we require to use
these results and to translate them into terms of the
uswal notation of heat conduction problems, ,

Problems 1 to b involve finding the temperature
effects due to continuous sources at x=0 and %= \07
respectively. We do this by first utilising the gériodic
‘source effects giWen under Cases 3 and 4. An application
of Fourier’s integral theorem, involving the integration
of the periodic solutions with respect to R yields the
instantaneous source effect. Finally, the continuous source

effect is obtained by integration of the instantaneous

Ao in e numerabor 04 the RH.S of ref.b i5 wrong and 15  omited here.
f B hd L d fed . . -~ v - -~ o ™ ” .
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result with respect to time. _‘

In the same way, the solutions to problems 7 to 15
are obtainmed by thinking of the final temperature effect
as being due to a series of instantaneous heat sources ‘
initially distributed all along the rod, each instantaneous
source effect being obtained from the corresponding o
periodic source effect by the usual integration with respect
to AR . These require the periodic source effects as given
in Cases 1 and 2,

Problems 16 and 17 do not differ in nature from
numbers 1 to 6 and are approached by the same method.
Those grouped under 18 may involve a subdivisiom of a
particular problem into several parts and an application
of Cases 1 and 2 to one part, and of Cases 3 and 4 to another.
The final effect will then be a summation of these separate
effects.

Coefficients common to all problems,

N

The following relationships, depending as they do on

the properties of the media in contact, and not om the
external boundary or initial conditions, are common to all

the problems 1 to 18, and are therefore stated at the outset.
The heat conduction equations to be satisfied by the solutions

are 2
Y AR d, . DWa 6)
Yl T R YR T

in the two media respectively.
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A consideration of the wave-trains set up by an
initial periodic source proportional to P.M and

satisfying equations (%) gives the values of N and M

tx"f?/‘r ‘ (32)

The conditions holding at the boundary >=0 are

to be

QU
17; =4, Kn?z_g‘{ kz. dx @3)

]

These determine the coefficients A , A , C, and ¢
which remain the same in all the problems.

h= Bobfan o', 4=k rpK,. )

. _ 2K, = 2K
R"‘T’cf 4

Problem 1.

End X=0 maintained at constant temperature 6, ,
end x=b radiating to an atmosphere at zero temperature.
Initial temperature zero throughout. [Case 3.].»

Initial and boundary conditions are -
v =1 =0, k=0. (39
v = 9., , x=0, for all later times. 80

Kg, bx_ = J‘LVL ’ x-‘-’b : (57)



Equation §7) gives y
_ K- hy L)
B=dn — @)

where f[inf = LA

2
All wave-trains which ate reflected at x=0 are

subject to zero end condition there. Thus
A, = -1, 9)

From Case 3, we now obtain the temperature effect

in medium 1 and medium 2 due to the periodic source X
situated at x* =0 , It is convenient to calculate %.’
—g—; , dd and 55 W?lic'h we find to be
% = 2e ['K,&»a)\ b il hina)] . (i)
4 - = 26 OO K b ui8, ) # K, 0 neB)] @)

%

where b-a=c.

d , -’L(’\ + 91) (
= = 92)
555 ~ *k€ A »
where A =K tnoh Ll 4B) + KK, buvad o (BeX48,). 43
Also 59 = 5:1)
&a
= L[, bl ;) + g o My . @qu)

Hence, substituting in equatioms (W and (19 , th
periodic solutions are

o = [ Kt (1% bin bk 40, ] + K, tinla-dhemuelin)]. @)

[

v = %:_ Ky i uto-0Ih 48,7 4v)

kb,



If in equation {9 , we let the right side = —EAQ‘—) )

then the instantaneous solutions are

_ (O F
“‘?JOTMQ

FON -
=.,;_rj_‘_§_ 2i €, N d\

(5:)
_ 2iK ) A FQ
- 2% (n) AR
a=
A FN
- AR
A
s
where the summation is over the roots of the equation

A =0, and the integration has been performed over the

usual contour,

At these roots, F(\) simplifies and gives

dA
ax

'“aka , .
(YA O
Similarly
Y7
‘ ‘ -x)N 40
1];. —_ - zx'"K‘Z Sne A A&"'[, F(b IN 4 1,3 (qg)

The effect due to a continuous source 9‘, at x=0 {g

‘obtained from equations (47 and @¢) by integration with
respect to time. |

v, = 'ZPO’K‘Z_ DA [l -ef"’*"].

JYRIAN %%
. —%A“Ik
= Rabyx 1s (ediB,) Aanth €
= 61 - —S-i-] + 2f), ) el ia @9

4.



0, =-20K) mktn;;x A -me]

=) K. ﬁz.‘;sﬁ"_fl"_) + 20K Z_ Mﬂ:{b-:!Xq»S}_,. e~1<.\‘k (09
(4 P x %g

where § = KK, + b [Ke+Ka].

Summary of results for the temperature effect throughout

a two-media rod due to temperature 9, at x =0 , where
there is radiation to am atmosphere of zero temperature

at end »x =b, Initial temperature zero throughout,

Periodice.
Uek
g =G [K tor (oI A (MME) # K, gl (o ueA40)]  49)
Xy, = 6,%- 1( i o248} ge)
Instantaneous, .
) Ac o> %Q_
—_ A din { b 49s eald 9]
v, = -2k K5 Al pte I 48. e @
s
Comtinuous. _ Kk
'Kz M?‘Wx"e"b) AN @ L
a = Byfi -~ BazaX ]+ 8K, 7 TRTTy @9
¢ 1 3V 4
Aolb-x) wlub-ON4on] e
g =8k ﬂa_tg_v___ o gaK Yy selp - %;; §e (109)
where maz 3 m 5 S = 1(.7(1_ +JL,.[K|C f-Klq]
3 (to))

A =Ko pi @pehdf)) + WK, punok o fuh18y)

and the summations are over the positive//oots of 8=0.

L%,



Problem 2, _
End x=0 at temperature 5. , but end x=b impervious
to heat, Initial temperature zero throughout,

Then condition (7 becomes

VU, o .
—b_x’z > ’l—-—\o,
ﬂlﬁs B=+1, ie. 9L= ]i ’ J"a-:'o

With this value of 8, ,results (15 to (o) are
then the solutions to problem 2.

Problem 3.
End % =0 at temperature 8, , but end x =L kept at

zero temperature., Initial temperature zero throughout.

Then, condition (%) becomes

1);_:0, x———b;

Tl'lus B:"‘) (’e_ 91;-'0’ /L/g,"——'m.

With this value of 0, , results (9 +to (o) are
then the solutions toc problem 3,

Problem 4. o
End x=b maintained at constant temperature 6, , end
x =0 radiating to ‘an atmosphere at zero temperature.
Initial témperature Zero. [Case 4] .

Initial and boundary conditions are



W= =0, F=o0 (t02)
=0 ,x=b, for all aater times. (o3)
K "bL'-—-‘- K , =0, : (fou)

Equations (93) and () give

B =~ (t05)
. - ‘('K'ﬁ-gl)
Ho= A:K‘x /1»: —_— eb .
‘K/X"‘ ' (,ob)
— KA

where fain 0, = 7

From Case 4, we now obtain the temperature effects

in medium 1 and medium 2 due to the periodic source Ooew

at x=b,
Periodic.
Y= %3 MK, pian (XN, (o7
v, = % ¢’ [1( eraNtE) ain flc-aI\ + foH tinlaNH s fi-al)] 109
where A =K, o @\D)dicheh + K, tuc (aMB) o0 ek @oq)

Converting these now to the instantameous solutions

By means of the usual contour integration, we have

Instantaneous.
&) “KAE
v, =-26, }&KL%.Z X‘“”dzwr € (o)
B . ~KXK
g = =28 K x, ) At 0in) Lo pLON € @)
R joe
where the summation is over the positive roots of the equ-

O.h'On A =0.

EEEEE————



Finally, integration with respect to time gives the

effects due to the continuous source & at »x=0b,

Continuous.
. -%x Nk
Vv = 00 M‘;_J".Lﬂ + 2§ ﬁkzlﬁ*%‘;—g‘r‘l_& (12)
o[ = Kb ticoh10) dus ploonly & N
= (1 +£i_’$] + 28, 1K,) - Vi s 4A e 13
™

where (b, = ﬁ/%-”'

B =K, (an8) e peh + Ky pie@NH8)) b X . )

6 = K.Kz. +4"‘[K'Q + .Kia'] ‘
and the summations are over the pesitive roots of A =0.

These results (o7) to (1) correspond to results @3
to () respectively. The one set bears to.the other a
reciprocal relationship, For the one set, x , \,K,, §
in medium 1 correspond to (b-%, u\, 4K, 0. réspect-
ively im medium 2 for the other set.

Problem 5.
End x=b at temperature 0., but end *=0 imper-
vious to heat. Initial temperature zero throughout,

Then, condition (04 becomes

M = x =0
ax ’
Thus Ro=+' ’ 1e. 9'=1(2: ’ L‘=O'

With this value of 0, , results (*? to (%) are
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then the solutions to problem 5.

Problem 6, i
End x=b at temperature 0, sy but end x=0 kept
' *
at zero temperature. Initial temperature zero throughout,

Then, conditiom (04} becomes

,U"r_-o , % =0

Thus ao::-l; i,@, B|=O)L.=w.

With this value of 0 , results (o7 to (") are
then the solutions to problem 6.

Problem 7.

Initial instantaneous temperature distribution {
in medium 1, and §.®) in medium 2, Ends % =0 and x=b
both radiating to an atmosphere at zero temperature,
[Cases 1l and 2.‘3

Initial and boundary conditions are

v o= {"@d ’ V= 'F’;»Q‘) , E=0. (1s)

K W, L,v; x =0, (1e)
¢ dx ) ‘

-Kz% = ’t"z"'rz., x = b @r7)

% This problem is treated and the same results reached
by H.S.Carslaw in "The Conduction of Heat", 1921, p 213,

and Dy G Green in Phil, Mag, Ser.7, vol.xxxv, 1944, p 529,
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Periodic Solutions.

A periodic heat source Q,e‘M at x=x, in medium 1
gives the effects stated under Case 1, where [ = ?&"T{
This value of // is determined by consideration of the

fact that at x=x, , the conditions for a periodic heat
source V.=, K [w. BV“] 1,. have to be
satisfied,

Equations @ and @7 give

A - eL(l’— 1481) m — % (ug)
Hm- 28 _ A .
B = & , m%—- % (“q)
: . d d
As in problem 1, we find the expressions for R
dD and 55 .
d v —afan+49,) . .
£ =12¢ [K, a8 + & Ky aleat8)] (20)
4 2 MBIk i et + A, con in 48] (+2i)
2
d> = bi e-us)we. +e,)A ’
; (122)
where A =K, tn(a\8) dnlbN8,) + AK, Auclaht8) cor(lue+8, )
. ei(a.\«b&)
also 55=353 = Ta (K siagres,) + Ky o ekt E)] (27)
Then from Uase 1, we have
x>k, ;= ’—Zﬁ-e"“”m(x,xm)
X [, tor (30N e uNH8,) ¢ Ky b @)X tor(pecn 48] (124)

X<X , 4 = same expression with x and x, interchanged, (1)
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20K,

v = eSS TR PR INTX (120)

. i
A periodic heat source §,€ at x=x%, in medium 2

gives the effects stated under Case 2, where 9 = e

_ 2K, O
Substituting in equations (%) , ¢#5) and (7¢) , we have
A = E%ﬂ* e hr tian { potb-x, N 8,3 pise (X 48) (127)

xS, U= 2—3& € A {L‘(L«\HB;‘)

X[, o @) i fre-aN # fie, 2eclaA8) o N 02D

- X<X VY = same expression with x and x, interchanged, (/29)

Instantaneous Scolutions.
Effects due to the instantaneous heat source 9,

at »=x, in medium 1 are obtained by integrating the

periodic source effects in equations (24) , (25) and (2¢ with
respect to Ak, We find that this integration, performed,
by means of the usual contour, gives a summation of terms
which depend on the roots of the equation A =0 where A
is defined in equation (2t above.

At theée roots the part insidé the square bracket
in equation (%) becomes modified to

e (leX+8,) e (N +8)
: /h-y.(a/)\-i'e.)

Hence, instantaneous effects are

x>x 1 = _Lf”ew e OAE) Ao A E) 2in (048, ) k.
> To N A Ma(an+8)

. . -KXE
-axq,) f OBy A e N4B ) aue (048)) @ (30
a(‘l M@,&*g') %A: .

|



Since this is symmetrical in X and X, , it also
constitutes the result for x<x, in medium 1.

Similarly,
v, =-12Kq,) S (20 48] s [Jullo-x)\ 48, o *F o

&%

Effects due to the instantaneous heat source 9, at

X =%, in medium 2 are obtained from equations (17), (29,
and azﬂ .
R . ‘4“ (’CL*'Q s - ‘K,\‘k
v = -2%qa] A —£ (132)

N

x>%,, v, = -2ng Y Lelehile &(:;:';W;%%(Mmd e e
where the part in the square bracket in equation 1%) has
been modified due to the summation again being over the

roots of the equation A=0, Equation (%) is symmetrical
in x and x, , and hence gives the result for x<x, in

medium 2,

Summary of results for the temperature effect throughout

a two-media rod due to an instantaneous heat source ¢,
at x=x, in medium 1, and due to an instantaneous heat
source 9, at x =%, in medium 2, where there is radiation

to an atmosphere at zero temperature at both ends ofthe rod.

Periodie.

Source at *=x, in medium 1.

55
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Periodic,

Source at 1'-*7:. in medium 1,
x >, U = -—"& e e (2 N48) -

x[1< N wwm&) 4 Wy fan (a-DIN o uerty )] (124)

x <%, 4= game expressiom with x and »x,. interchanged. (z5)
U, = 1=E—Le Aim GNHO,) Hun § u(o-20N+0,3 @29

Source at x=x, in medium 2.
A = _‘fa&f;‘& e G Julhore )N 8, Y s eN16) (27)
. u* .
>a¢, T = £&4 b-)\~+D,
X > b —A& e | ﬂ-‘“t}"L ") .S
KMo @046 s fil-aN + i, ain(aM40) e pule-aN]  @28)

x <% 4, =same expressiom, * and ¥, interchanged. (127)

LI}

/)ts_iL_..

where /7 2; -K N 2% /a("x

Instantaneous.

Source at x =x, in medium 1.

-%NF

= kg S Suslieht B) Mie OHD,) Aa(iN401) ¢ G
L= -2K4,5 RN e0) 43 130)
,u; - ,11(‘1'2 A;w(x,x*ﬂ/,:@» (;‘(b-x)ijl e-ﬂ'xtk ’ @3)
Source at x =x, in medium 2.
AV o
v = -2x9,5 pinfa o) 48,7 pin(048) € (t32)
i [y
) - KXF
4 =-2xq Z M(a\-fs,)/lw-ﬁ‘(" 2 )0 18, Luin [leCo -2\ 48,] € (133)
MNP
where  f.f = T y il = &' ()
3l
and B =K, e\ pifurit) + }«K, pin QMO (05 (1A 0, )
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and the summations are over the positive roots of the
equation A =0,

The final solwtion to problem 7, namely the temper-
ature throughout the rod due to an initial distribution
i (x) in medium 1 and -f,,(x) in medium 2 can be obtained

from these instantaneous source resulis by putting

q,= 1(;:- f,6¢)de, in equations (30 and (3) , and integ-
rating from x,=0 to x,=Q& , and by putting )
3.= ‘%f{-,.("h dx, in equatioms (32 and (33) , and integ-
rating from X,=& to %=b . The sum of the results
derived from the equations #0) and 32) will give the
temperature at > in medium 1 after time A , while the
sum of these derived from equations (3) and (3) will

give the temperature at > in medium 2 after time £

PI‘OblenS 8’9,10’11,12’13’14 and 150

Initial temperature distribution }® in medium 1
and }® in medium 2, but involving each of the eight
other possible combinations of the end conditioms;

e.g. radiation to an atmosphere at zero temperature at one
end while the other is impervious to heat or kept at zero
temperature,

The solutions to problem 7 require to be modified
only with regard to the values of 0 and 0, in order



to give the solutions to these eight problems. If the ends
x=0 and x =b are impervious to heat, then A,=8B=1,
and 6,=8 =% . mg If these ends are kept at zero temper-
ature, then A,=B=-l , and §,=6, =0 . By choosing the
appropriate value for Y, and & , we obtain the temp-

erature effect with any combination of these end conditions,

Tt should be noted that if K,=K,=K, 6 =6=fa. Kh a-p
. 4,=9.=¢ ,then results 39, @), 3 , and (33) all
reduce to

U= —2-;1(({/2' /Mal M(x,\ 4’9‘) A"“’ @X+9.) 6'7‘

which is the correct result for a one medium rod wit.h an

PNy 4

instantaneous heat source ¢ situated at x=x, The

sumnation in this case is over the roots of the equation
A= K gifar+26)=0.

oblem 16.
End x=0 at variable temperature 4, &} , ena x=b

radiating to an atmosphere at zero tempe:éture (or imper-
vious to heat or kept at zero temperature). Initial temp-

erature zero throughout,

The periodic and instantaneous solutions relating to
this problem are similar to those given in egBations (%)
to () , where in this case /’,=9,=¢, (H).We then have



Instantaneous.
Vi = -2 4,(0) Kin T Aaie (hehiB,) duxh ok
PP\ N %%
T mYmeT (55)

=28, K K ) M s (o 48] ¢ NF
- da

- CL“,) Z- Y,.Q\) €~K.Xvk (136)

where the meanings of Y,0) and Y,0\) are obvicus,.

Continuous effects are then given by

= 2o N g - o o

for media 1 and 2 respectively, where fau b, and Q-
are defined in equations () and the summations are over

the positive rooks of the equation A =0.

Problem 17, .
End »x=b at variable temperature ‘Px@’), end x =0

radiating to the atmosphere at zero temperature (or imper-
vious to heat or kept at zero tempemture). Initial temp-

erature zero throughout.

Just as the solutions to problem 16 bead a simple
relationship to results @5} to ({9 , so can the solutions
to problem 17 be derived from results (7) to (1)

The continuous effects are obtained in the same way
as result (37) is obtained from ¢45) and (/5¢) above,
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Problem 18,
Problems involwing more complex initial and boundary

conditions,

Under this heading, it is intended to mention possible
extensions of the above results to more complex problems,

A two-media rod, for instance, with different constant
temperatures maintained at each end and initial temperature
zero throughout will require the subdivision of the problem
into two parts. Resul%s to problems 3 and 6 then give the
two separate effects with the appropriate values for 6§, ,
the end temperatures at =0 and x=b , and theie
addition gives the total effect.

In the same way, a two-media rod with variable temp-
eratures 4() and §,() at ends x=0 and x=b respect-
ively, and initial temperature zero throughout, requires
the addition of the solutions to problems 16 and 17 with
8,=8,=0.

Similarly, if in addition to having a temperature source
at one or both ends, there is an initial temperature
distribution throughout the rod, them there will be an
effect due to this distribution givem by the solution to
problem 7 (or one of its modifications 8 to 15). A summation
of effects again gives the final result.

Problems involving boundary conditions other than
those mentioned here can also be solved by finding the
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appropriate equations governing the heat transmission

at the ends of the rod and hence the value of the coefficients
A, and B (di.e. 6, and®8,) , For instance, the presence
of a large mass at the end of the rod  x=b, will affect

the value of B (i.e. of §,), and will also contribute

an initial quantity of heat to the system depending on

its mass, specific heat and initial temperature., This prob-
lem can then be dealt with by a slight extension to the
methods outlined in problems 1 to 17. In every problem ,

the solution will be found to be dependent on the roots of
an equation of the form O=0 where 0O and 6, will

have values dependent on the boundary conditions at x=0
and x=b.
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(b) The roots of the gemeral equation A =0.

All the results which have beem derived above are
dependent on the;positive roots of an equatiom A=0,
where A 1is defined for different problems in equations
o), (1) and (%) , One camnot fail to motice the
similarity of form of these expressions. The equa.tioh in

its most general fomm is

K,m(dﬂ&) ‘;“'W)‘*sﬁ) + pKs fu (OM6) ﬁh‘l«\*@) =0
- . L
where* fau 6 = % y g 8 = -,&1:- .
If we put 7‘1%;:‘-’ "‘1%2 o, 'M,t\l:‘ o« , this becomes
AN @M)[G‘ S flic MB)) + faun(aX4B)] = O (135)
where fon b = dN 2‘&*8:. = ;™. '

H.S.Carslaw* has made a study of the roots of this
equation (written in a slightly different form] for the
special case where b =6, =0 , He shows that, for this
simpler case, there is am infinite number of real, mon~ .
repeated roots. The proof used by Carslaw to show that
there were no imaginary roots to his equation can be
applied to the more general equatiom (/3%) in order to
establish the same fact with respect to it.

¥ The values of § and 6§ for special problems mentiomed
under heading 18 will depend on the end conditions.
t Ref, 20.
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We show that the roots are infinite in number and
non-repeated by recognising that the roots of equation
which we requite are the positive roots of

O i (ki) 4 R @) =0 139)

and the common positive rooets , if any, of
wox®) =0 ter (LN +8;)=0 (110)

Roots of equation (39),

General case,

Equation (39) cam be written
Jaul@8) = = o foan ko8, )

where fa B, = &N, fGB = AN

A graphical method of finding 6 and . for varying
values of » exists only if «, and 4, are very smll,
N\  can then be chosen as the independent variakle, while
‘the 4 -axis is marked off in units to measure fan 8 with
the value of the angle 0 marked opposite each measure,
If two lines through the origin 4 =«) , and j = %\
are drawn, the values of 0§ and f, for any value of
can be read off [See Figuee 10],

For greater accuracy, however, and for all but small
values of «, and d, , the most efficient method of find-
ing 0 and 6 is simply to tabulate lwb, and faf for
varying N\ and thus find 0, amd 0, .

For every value of X\ , the corresponding value of

B is now added to 4\ , and similarly of 6, is added to






Men o and the graphs of
A = Ta (aX+5)) (u2)
A ="0—}ﬁu—$h¢\+9,) (143
plotted on the same diagram, |
The values of » at their points of intersection
‘constitute the wsmmt roots of equation (/3f) and can be
seen to be infinite in number and non-repeated. [See Fig. ll].

Special Cases.
le If &« and d, are very small, this method can be
modified by using the first approximétion for f-o\ and
=4\ and equations (42) and (ltﬂ} can be written

f= S @rdh | =0 (b saN

2. If & and & are very large, then 0, and £ may

be assumed equal to % -£ , and % -£, respectively,
where £ =/ Jx and f=fuwj5 and & and £ are both
small,.

Equations (4% and (43) then become

g = hu(ds) g e ).

N

3 and 4, &, and 4, equal to zero or infinity. -
Finally, if it is known that one or both of the ends

of the rod is either impervious to heat or kept at zero

temperature, the equations (42 and (43) require to have

the appropriate values for f and § inserted, namely

0 o L.

ble.
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The question of when the two curves with equations
Us7) and (u3) settle down to having a regular phase
difference depends on the magnitude of &, and d,.  If
these are small, then over a large range of X\, the
values of 0, and 0,  will vary non-linearly, and hence
the roots will occur without regularity. If, however,
o, and d, are large, them even for fairly small values

It

of X\ , § and 0, will tend to 5 and the curves will

soon approximate to
. j = fan QN+ ]}) , d = —0’1&»«(#«\*‘2{).

Common roots of equations (o).

General case.

tr(an+8) = O } o)
(my‘,,x+ez) =0
The common roots are found by drawing on the same

diagram the graphs of
A=t aNeD) ,  f= to (Ueh +8,)
where Jfucf, = d,\ R vﬁ»@”‘zxy
and finding where they cross the A -axis concurrently.
The condition that the equations (»fx =O and
,c-mix-—-o shall have common roots is that
-%V- = ”-4%’- = ratio of two odd integers, and the common roots

are then at "Nt AIn K SnT® ...

ap 7 2p ’ ap
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S‘pecial cases,

1. If « and «,; are very small, the first approximation
for 0§, and 0, may be used in equations (%6 and the cond-

ition for common roots :_ls that

ﬁ‘:" = :' = ratio of two odd integers,
2

2 If o, and 4, are very large, we can let 0= T -¢ ,

b= T -¢, where € and ¢, are small and m%:;:—x,ﬁwfzzzk.

Equations (40) become
pusfin =4y} =0, g (k- zlx)=0,

and the common roots are found graphically.

3. If « and A, are zero, § =8 =0 and equations (%0
become |
trax = ( Cov/-l)\ =0

’

These have common roots if
& _ X _ratio of two odd mtegers.

i =
4, If « abd «, are infinite, 8=6, = T and equations (140)
become
el = 0 , s e =0
These bave common roots if
ﬁ = m—1 =rational number,

Tt will easily be appreciated that only for very few
simple cases will equations (49 have common roots which
are small and of the same order as the first few roots
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of equation (/3)) . Since the results stated in problems

1l to 18 are not of practical value unless they can be )
simplified by requiring only the first few terms of the )
sunmmation part, our task in solving the eqﬁation 4=0 for
practical work consists of finding the first few roots of
this equatiom. These are usually given by equation (%) 3
and the common roots of equation (49 are usually outwith
the range of X required for the summation. [ See section ©
besow]

The writer had hoped, after a study of equation
to be able to devise a nomograph which would allow of
speedy calculation of the roots for varying walues of «,

o, 5 & , e and o , There are twomain reasons,
however, for the fact that a completely graphicgl mef_hpd
of solution was not found to be possible or practicable,

() In the applicatiom of this theory to practical
work, great accuracy is required in the determination of
the first few roots of equation () . Such accuracy is
impossible where graphical methods alone are being used.
Successive approximation methods were found to be hopelessly
wnweildy due to the complex hature of the derivative of
SN = fik @) + & fan (uekes,),

(3) o straight-forward graphical method was found
of incorporating O [= fa'd\] along with 4\ and "

91.[; b 4,\]  along with e\ before plotting the curves
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necessary to solve equatiom (/39).

(¢) Exploration of the possibility of adapting the
amalytical theory to solve certain practical problems
in connection with the insulation of furnace walls,

The complex nature of some of the preceding results
(problems 1 to 18) make their application to prectical
problems seem at first sight rather remote. In the ‘
following section, a first attempt is made to investigate
how far this applicatiom is possible. The heat transfer
across imsulated furnace walls is chosen as a suitable
subject of study and results derived using the exact
amalytical solution are compared with those obtained
using the "Schmidt Graph Method™ at present widely used
by practising metallurgists and engineers,

Statement of the: Problem.

In the firing of opem-hearth steel furmaces, one of
the causes of inefficiemncy is the loss of heat due either
to its transfer through the furmace or checker walls to
the exterior, or to the storage of unutilised heat in
the fabric of the walls. The second of these two sources



of heat loss assumes ’the greater importance if the furnace
is being operated intermittently. The magnitude of the
heat loss due to both causes depends on the material of
the walls. In general, the quality of high resistance o
heat which is required in a good refractory material is
accompanied by high thermael conductivity. This latter
feature is an undesirable one on account of the large heat
loss which it involves., Low conductivity materials, however
desirable they may be in order to overcome the heat loss
problem, are uneconomical due to their low resistamce to
the high temperatures generated in.the furmace.

Experience has shown, and theory bears out, that if
the outside of the furmace walls (which may be made of
high conductivity refractory material) is lined with
insulating fire-brick of low conductivity, the heat losses
are greatly reduced. The saving in fuel which this involves
far outweighs the increased costs of insulation and moxre
expensive refractories. e 15

Insulation, however, introduces a number of other
problems which include the variable heat transmission
through two media in contact, the quicker wearing of thé
inside fire-brick due to the forcing up of the internal
temperature of the furmace, and the question of the optimum
amount of insulation permissible for a given internal

refractory material. The second and third of these problems



may find their solutions in the future use of basic
refractories and are, in any case, outwith the scope of
the present paper. It is intended here to investigate the
first problem — that of variable heat transmission
through an insulated furnace wall.

* 22, 23.
In the standard textbooks * and in various

technical articles ~  on the practical aspects of the
subject, the exact theoretical solution to the problem
is not given,and instead, several approximate methods are
used by which the temperature distribution throughout the

furnace walls can be obtained.

Current approximaté method of solution by means of Schmidt

Graphs.

Most of the approximate theories for the solution of
variable linear heét flow problems for a finite medium
are based on a method developed by E. Schmidt. Speaking of
unsteady heat flow in only one medium, M. Fishenden and
O.A. Saunders say, "In many cases where exact mathematical
solutions cannot be given, an approximaté method due to
E, Schmidt may be usefully empldyed.“ As expounded by
Fishenden and Saunders (see Ref. 22 P.79) this method
depends on the solution to the heat conduction equation

for a semi-infinite medium, It also involves the use of

finite differences instead of the &ifferential equation

Yo.



which governs linear heat flow., The method emables one,
by a graphical process, to deduce from am initial
temperature distribution what the new distribution will
be after a short interval of time. Its successive applic-
ation gives the temperature after any length of time,

A fuller exposition, taking into account the heat
transfer at the surfaces of the plate to or from the
surrounding medium, is givem by W, Trinks. e mis still

suffers from the defects associated with choosi.ng finite

intervals of time and distance, and unless the width of the

wall is divided into more than four sections (laminae)
this method will indicate a temperature distributiion

W

throughout the wall which rises much too quickly., The method

as outlined for one medium can easily be extended to the

variable flow of heat through two different media in contact.

In an article in "Blast furnmace and steel plant",
N.A.Humphrey discusses the advantages of insulation as an
economic measure in the running of steel furmaces and uses
Schmidt Graphs to study the temperature distributions
throughout the two media of the walls for different thick-
nesses of insulation, One of his diagrams is reproduced
in Pigure 104.The work involved in the compilation of
these diagrams must have been considerable. Since the
problem with which he deals is one to which our theory
provides the exact amalytical solution, it seems desirable
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M.

to apply this theory and to compare the results with those
of Humphrey, while at the same time remembering that
practical men want a solution that is speedy as well as
accurate. o

The problem is as follows: A furnace wall is made of
9 inches of fire-brick and is insulated with 4% inches of
insulating fire-brick. The intermal furnace temperature is
2400° F and the extermal temperature and the initial temp-
erature of the furnace walls is 80° F. Heat is lost by
radiation and convection from the outside surface. What
is the subsequent temperature distribution throughout the
walls and in particular at the outside surface‘.l

In our results (9 to (o) above, we possess the
sqlution to this problem. One condition of their ready
application to practice is that only a limited number of
terms in the summation should be required. This in fact
we find to be the case, It is intended, therefore, to
derive numerical results for the temperature distribution
using the data supplied by Humphrey and the amalytical
results (1) to (o) . Comparison with Humphrey’s results
will then be possible.,

It should be mentioned here that no allowance is made
in our calculations for the fact that thermal conductivity
changes slightly with temperature. gl‘his allowance was not
made by Humphrey either. A mean value over the range of
temperapfre under consideration is used.
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Conversion of the amalytical results into terms of

dimensionless groups.

Before going into the numerical detail of our problem,
some mention should be made of the work which has been
done in connection with adapting the analytical solutions
for variable heat transfer through onme finite medium
to suit practica® needs. It has been found that the
amalytical results for the main important shapes of bodies,
namely, slab, long cylinder and sphere, can be expressed
in terms of four dimensionless ratios and then presented
in graphical form. @1 2 an These ratios are: a temperature
difference ratio, a “relative time" ratio, a thermal
resistance ratio and a position ratio. A useful table
and an explanation of these is to be found in Ref. 2/, p.31.
The simplification which this method of presentation
affords for the application of one medium results to
practical work is very comsiderable,

Bearing this work in mind, we now proceed to examine
the solution to the furnace wall problem mentioned above,
with a view to effecting, if possible, a similer
simplification of thg analyticél results by the introduction
of dimensionless groups.

Let us consider the two-media furnace wall as
extending from x=0 to x=b , where % =0 is the

interior and x=b is the exterior surface. Let the



.

surface of contact between medium 1 and medium 2 be at
x=a and let the temperature of the atmosphere be our
zero. Then the temperatures in media 1 and 2 respectively

are giwen by equations (#4) and (o0) .

, : -RNK
0y = - B e g T ppeensts) g oh 7 @
_ SlKIK 44 1(b-x)) y )N 48, e-ms:'t (00)
Y = : ¥ 0K, >~ MW{ JLY te .
where & = KK, tho[Ke+Ha] | S8 = gﬁl (ov)

A =K, erah pia (eh48)) + UK, 2 aX (o6, ) |
and the summations are over the positive roots of & =0O.

We find that
4% = JiKy trok wr (ke +8,) GO)

Kl
where 9(\) = A,(I-I—Ma)\) +-[l FtEl (mxwz}}[v',u. ¥ Ami (1 hels)

and T = }—Z%L'

Hence

Koho x (14 faad) bl 0, €N
— PR % e g & X
0 = 0fi- Bgax] - 20,7 (e s )
, KNk
o = BoK.[Kz“’ aa.(b"‘)] +28’¢Z mw‘rx)\-l—gd 61‘ . (1 o)
z ® Nt aX iy (LeN+6, ) GOV
If now, in these equations we write a\ =V , S,
and sv; for the steady temperatures in media 1 and 2
respectively, we find "
%2 F
; % . 3
o=, UHEEY) M ZY e ()
ST Y 50)
i o -w,ﬁ-:t
& =0 41855 A [e==v 48] ¢ “d

VoV e Mty 48,) GO)



, X,
= 3
where Ain 6, %J;
D = Ty A Ky 48) + Y o (BEv+8)
: - 2 2 e Je (LK’.
GO0) = 1+ fay + ot +1al Bg v o g )] 1 +W)}
and the summations are over the roots of A =0.

The quantities which appear above in dimensionless

group form are:

Two-media comparison ratios. ¢ = -;—‘-—z
Y = Me
. O
. . = MKa
Thermal reustancg ratio. m %—;:

- 'y * x — “lt
"Relative time" ratio. = e——
Position tatios. m, = =

M~
/n,‘a Tt
Y sV, —w,
Temperature difference ratios, e R

Since we wish to calculate absolute temperatures
for comparison with Humphrey’s results, we shall use
this notation with the exception of the temperature
difference ratios, Y, and Y, meantime. Equations (u7)

and %9 +then become

) -xv”
= A — I+ BlV) . 2
/U; Y 1902 v G(”) (“‘9)
) 8 -xy*
G = ¥ e T Sl ) 8 (50)

Yoy (YW +0,) Q)



where hlinb, = mV
A = GtV OV48) + puy Wy +8) | (151

Gv) = (+@mly) + T{Hﬁu‘(fv*‘sﬂﬁ” T‘:ﬁfmj

and the summation is over the positive roots of & =0.
. The equations to determine the roots of A =0 then

become
Ly = — s fa(Yv ‘|'Bz) (152)

and by =0 , (v+g) =0. | (153)

The advantages of this more concise expression of
results (99) te (o) are obvious, particularly in

connection with the working out of numerical examples,

Calculation of the roots of A =0 , and derivation of

the temperatures at x=a and ==b ,

We can now use Humphrey s data to evaluate the

various constants in our notation.

Medium 1, Medium 2.

a= ‘75, | ¢ = b-a = -37s.
K, = 1-02. K = -1025.

[, = 125. f= 30

5, = 26 s, = -23.

_ k. _ . _ K
K = 7 = 0314 . K= orde = o144,

= 2320, hy= 22,

<
i



Ky

}L = , = |-453, Y = /‘-%—‘:' = '72,(_.,7
_ K . = MKy = ‘040
G = yuo = 6-SLT. m h 0903,

British Units (foot-pound-hour-degrees Fahrenheit)
are used throughout in the calculation of the dimension-
less ratios, ¢ , Y y " o The value of the heat transfer
coefficient 4, between the outside surface and the
atmosphere is not given explicitly by Humphrey. The value
L,_= 22 is a mean value over the temperature range of
the outside face (see Figure 10A, Heat transmission
through wall) and corresponds with the value given by
W.Trinks in Ref. 24, p.81, Fig. 70,

Equations (49 to ('53) comstitute the solution to .
our problem. Substituting the known numerical quantities,
we see that the roots of the equation AO=0 are those of

tuv = - 6867 faw (T267y +8) 05L)
and the common roots, if any, of

oy =0 , e CI%TY #§)=0 59)

where 1 8, = -0903 V.

We therefore draw in Figure 11 the graphs of
y o=y, 4= - CST fa (267 v +8)

and find the values of Y at points where they intersect;
and in Figure 12, we draw the graphs of
=y, 4= te(727v +9)

.
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T2,

and find whether they cross the V-axis concurrently
at values of V in the region of the first few roots
of equation (I54).

We find that the first six roots of equatiom (154 are

v, = 16092 - W, = Tur¥.
vﬂ- = 3'738‘2 . V ))5 = §240.
¥ = LEs3T. Vi = 10345

Higher roots tham VY, contribute a negligible
amount to the temperature effects (49 and (%0) , due to
the exponential term e-xv" becoming 'extremeiy smalle

The curves in Figure 12 show that equations (/5)
hare no common roots within this range of Y , and any
higher roots contribute a negligible quantity towards the
temperature effect.

Steady state temperatures are given by the first
terms on the R.H.S. of equations (&%) and (4¢) 3 or,
expressed in terms of the dimensionless groups, they

are

n,
sv = 8[1- m] , - (1s0)
+ N
s = 0w =TT (s7)
To find the steady temperatures at X =a and x=5b
we can put ",=! and m,=0 in equations (56 and (157

respectively, and find v, =196¥45 and v, = 21750, The

temperatures at x=a and »*=b for times after £ =0
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are obtained by inserting a certain number of values
of YV in the expression under the summation sign in equations‘

(lug) and (1%0) . o
19.(4-&1&1'\!)1;41) e g

If we let E = ) in equation (49)

and £ = ks ai~ 8, e¥

ViV e (¥W+8) GOOT
we obtain the following temperatures:

in equation (150),

Temperature at x =Qa.

After one hour, using the first expression for £ , we

find
E, = 2212-4) E,= -2 SoAp = 1qefis ~ 222040
. -— Mg~ 12,
E, == bbb Eg= 635 bko
207.7[‘_ - (-3
€, = - 2074 €, = ~ 0-ug 014
= 22298 - 2233%-%%
S U= 9490,
After two hours,
E, = I‘)Ia.'él ES = ~55.77
Ezz -30 '[‘3 {a = 0'7‘ ..- 1’&“:’ |31‘03;
After four hours,
E, = udy-Ob g, = —hO3
[ﬂ. = - b-uo. fu = nulh'iuo‘f_ S U, = 8li-5Sl, .

After six hours,

£, = 1074-3% £, =-0124.

£,= - 3 S = 395-Lo.

2




After eight hours,

E, = Soltls. E, = -0°25. | S Ua = Nél00.

After ten hours,

€ =60277(. E,= -0-06. S U= 13650 L5,

S —————————

After twelve hours s

E, = us1-17. £, = aggligible. S = 1516 9.

It will be noticed that after six hours, only the
first two roots, and after eight hours only the first

root need be used to give an accuracy of 03 F.

Temperature at x=b.

After two hours, using the second expression for E , we
find

E, = -2%(9. E,= 120,

E, = 4%Le. Eg= ~025,

E, = - 3010, Lo, = 2402,

After four hours,

€ =-213-23, E =217
f’.f-‘ 20-71. E;= nejh'lele. .'_‘U‘, = 22C§.
After six hours,

E =-15-"]5. £= —015.
€,= L35 S v, = bl-9s.




After eight hours,

E, = ~19-0f. € = 0-92.

After ten hours,

£, = -99-63. £,= 0194.

p S

After twelve hours,

E, = - 6707 E, = Au’lu’ﬁ]ue‘

The time required to reach within 10% of the steady
state temperature can be calculated, since we know that
beyond ten hous only the first term in the summation need
be used., We find this time to be, for the end ==& ,

17-74  hours, and for the end 2=b , 19-30 hours.

. Vy = Qi’-%l.
Uy = (28- 6.
0;: ’50“-&‘.

Comparison with Humphrey’s results.

The results calculated above are now plotted on a
graph in Figure 13 along with the corresponding graphs
derived from Humphrey’s diagram which was construeted
using the Schmidt Graph method. Unfortunately, Humphrey
does not publish the exact figures for the temperatures
af, x=a and = =b , but these can be read off his
diagram with reasomable accuracy.

The discrepancies between the two sets of results
are quite clear. The Schmidt Graph method gives gemper-

atures which rise more Quickly with time than do the

%




ure
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temperatures obtained from the analytical results. This
is due to the finite thickness of the laminae into which
the wall is divided for the purpose of using the graphical
method. An increase in the mumber of laminae and thus a
decrease in their thickness will make the temperature-
time gradient less steep, ‘

A similar discrepancy is noted by W.Trinks (see
Ref. 24, p.405) when investigating the relatiwe merits
of the graphical and analytical methods as applied to
linear variable heat flow through one fimite medium,
Neither in this reference nor in Humphfey's article is
any claim made that the Schmidt Graph method results
correspond better with practice than do the analytical
results. The verification of this point Wou;d require
experimental work to be carried out in conjunction with
the two theoretical methods. This work may indeed have
been done, but if it has, it has not come to the noétice
of the writer. Corresponderice with the authors of the
two references mentioned above would have been possible
had they been in this country and not in the United

States of America,.




33,

Graphical presentation of the results to problems 1 to 18,

Neither the Schmidt Graph method nor the analytical
method is quick or easy in its application. It is reason-
able to suppose that the analytical results will correspond
better with practice than do the Schmidt Graph results
provided no other factors than those we have considered
are at play. If this is shown to be the case, then it will
be desirable to make available the analytical results in
a form in which they can be readily applied to practical
worke. It is intended now to show how their application
may be simplified by the construction of graphs using
dimensionless groups. Once constructed, such diagrams
will obviate the necessity of heavy computational work
in connection with each individual problem. 7

We shall show how the construction of these graphs
for Humphrey s problem treated above would greatly simplify
future work on problems‘of the type dealt with under
problems 1, 2, and 3 in Sectiom (&) , and shall merely
indicate how similar modification of results to problems
4 to 18 could also be carried out.

We have already seen how an alternative form of
results @4 and (oo) is given in equations (149) and (I50) ,

At that stage, we purposely omitted using the temperature
difference ratios Y and Y, . The results (49 and (5o

can however, be expressed wholly in terms of the
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dimensionless groups. They then become
-xXyp*

- (1 + V) pny ¢ g
Y =27 » GO (%)
Y, =20y sntnVi8) e . (59

Y Vo (Yv 46,) GO
where (anf, = mV }

g())) = I*ﬁ“}u 4‘0"{/1"@%{1’ +Bz)}[x +T;'M7i‘7‘943

and the sxizrmations are over the roots of
fany = - ¢ fa(¥v +6) (52)

and the common roots, if any, of

oy =0 ¥y +8) =0 | (153)

7

The three ratios @ , ¥ , m are required to find
these roots and together with the ratio X are involved
in both expressions (58) and (59) . Of the other four
ratios, n and Y are needed for equation (5%) and n.
and Y, for equation (/59 .,

It can be seen then that for givem ¢ , Y anda m,
the graphs of Y and Y, on a logarithmic scale against
X to a uniform scale can be plotted for varying m,
and M, , This has been dome in Figure 14 for the data
of the previous problem, B

A series of diagrams like this and similar to those
constructed by Gurney and Lurie . for one medium would

enable the metallurgist or engineer to obtain temperature






%S,

distributions for varying conductivities and thicknesses
of the two media, for varying surface emissivity, time
and position in the media. Each diagram could have 0
and ¥ fixed and each graph line labelled with the
appropriate value of m and # ., Interpolation would
give values of Y. and Y, for intermediate values of
m  and 1,

Absolute values for temperature for a particular:
value of m and #, (ors,;) would be obtained from Y,
or Y,) by simple arithmetic (see equations (%) and (57)

The above suggestions regarding the presentation
of these results graphically are naturally open to
variation to meet special requirements. For instance,
if the main interest in a problem is the temperature
of the outside face, then only Y, néed be plotted and
n,(=0) is constant. Thus, ¢ - and ™ -variations can
be incorporated in the one diagram, with M, and Y

constant.

With similar modifications to those autlined above
the results to problems 4 to 18 could also be expressed
in terms of dimensionless ratios, and then presemted
graphically to simplify their application to practical

problems,



Conclusion,

Further work which the writer had planned to do in
this field must be postponed meantime due to her early
departure from this country to the €Gontinent of Europe.

On the theoretical side, she is well aware of the
wide variety of problems in cylindrical and spherical
heat flow which still await solutiom and for which the
wave-train method provides a suitable approach, and of
the difficulties still to be overcome in modifying these
solutions} for practical application. It is clear too that
this work has its applications in relation not only to
problems of furnace wall insulation but also to those
involving variable heat transfer through other media in
contact, e.ge. rubber, glass, steel, etc. B

The writer hopes to extend this work at some future
date and alsc hopes that the work embodied in this paper
has opened the way up for workers in the same field
l. by providing a compendium of results for the main

~two media heat conduction problems involving linear flow,

2. by examining in detail the gemeral equation A= O whose

roots determine the normal functions required to express
the solutions of the two media problems, '

3. by the juxta-positionm of the approximate and anmalytical
methods of finding the temperature distributiomn across a

two-media wall and showing that the accuracy of the two

86,



theoretical methods requires verification by practice,
4, by indicating how the analytical results may be
presented graphically using dimensiomless groups in a
form suitable for direct use by practical scientists

in these fields of work.

Throughout the whole of the work involved in this
thesis, the writer has had the guidance and advice of
Dr. G. Green and she wishes now to record her great }
indebtedness to him. Thanks are also due to Dr. T. Carter

for advice on the metallurgical side,

er.
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