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PREFACE.

This thesis represents a review of the work on
electron excitation carried out by the author in col-
laboration with Dr. I. N. Sneddon during the years 1947
to 1949. It resulted from a lecture on isomeric states,
which Mr. Angus delivered early in 1947 at the Physics
Colloquium at this university. In this lecture the
experiments of Wiedenbeck on the excitation of nuclei

by electrons were discussed in some detail.

Most of the work was done independently from the
work of other investigators ( a paper on the disintegra-
tion of Be by Mamasachlisov was found when a letter on
electron excitation had already been published by the
author), but where in the meantime investigations of
& similar type have come to our notice they were found

to be in fair agreement with our results.

The basic methodological idea of the present thesis
in which the transition of an electron from one state
to another is understood as equivalent to a certain
electromagnetic field which interacts with the nucleus

stands somewhere between the Weizsdcker Williams method



ahd the expansion method used in the gquantum theory
of radiatioé;>The results obtained are identical with

those of the latiter method.

This interpretation of the basic phenomenon which
for some time appeared to be new has been previously
used by other awthors and is reviewed in relation to
the disintegration of deuterium in Rosenfeld's 'Nuclear
Forces'!, Out of the whole complex of problems related
to the interaction between electrons and nuclei that
of the electron disintegration of deuterium has recei-
ved maximum attention, owing partly to the fact that
most of the properties of this nucleus (wavefunction)
are well known and owing to the small energy expenditure
in this process. Since the teeatment of disintegration
phenomena (as disintegration phenomena) is in general
very similar to that reviewed in 3osenfeld's book this
subject has not been included in the present thesis.
Here disintegration is treated as & special case of
nuclear excitation a concept closely related to the
idea of the compound nucleus: the compound nucleus is
formed under electron impact; if it decays under emis-
sion of a heavy particle we have a nuclear disintegra-

tion, but the mode of decay has little influence on



the formation of the compound nucleus. This concept
seems to be better adapted to the treatment of heavy

nuclei.

The main purpose of this investigation was to
gain some insight into the most general properties of
electrons as nuclear projectiles, mainly because it
was felt that the machines shortly expected to operate
in this department would make such knowledge useful
and necessary. This purpose defines the frame of the
present thesis from which all considerations related

to particular nuclei have been execluded.

Paragraphs 1-3 contain a general development
of the theory. The nuclear transition is deseribed in
terms of the matrix element of the current correspon-
ding to this transition; the justification of this
procedure in the case of magnetic transitions is

given in eppendix 2.

Paragraphs 4-7 contain the application of this
theory to simple multipole transitidns.

The following sections 8-10 discuss 'sum-rules’

for the excitation of nuclei, similar to those known



in the theory of atomiec spectrat These considerations
establish the electron on the bottom of the scale of
nuclear projectiles: their total cross sections are
very small and the average energy transfer in a colli-

sion is only of the order of 1lMev for heavy nuclei.

Paragraph 11 gives a brief account of the present
status of the work on the behaviour of electronic ex-
citation curves near the threshold. The agreement rea-
ched with the experimental data given by Wiedenbeck

is poor and the work on this topiec is still going on.

Paragrephs 12 and 13 establish a reasonable agree-
ment with the experimental estimates of the order of
magnitude of the cross section for electron excitation

g€iven by Collins and Waldmann.

Paragraphs 14 and 15 deal with the production
of pseudoscalar mesons in collisions between electrons
and nueclei, a question suggested by the development of

electron accelerators in the 300 Mev region.

Appendix 1 gives the formalism for the determi-
nation of nuclear matrix elements. This formalism is

applied to magnetic transitions in appendix 2.
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)

The Interaction between Electrons and Nuclei.

Since the discovery of the neutron it is general-
ly essumed that electrons do not form a part of the
atomic nueleus. To explain the various phenomena re-
lated to [-decay ome has to assume a peculiar and es-
sentially quantised interaction beitween electrons and
nuclear matter in consequence of which electrons and @
neutrinos can be created and annihilated in the nuclmus.
Since the lifetimes of [(b-emitters are very long in
comparison with the unit nuclear time R/v (Rz nuclear
radius, vssome average velocity of a nucleon in an
etomic nucleug) the forces arfising from this interac-~
tion will be very smell. Mathematically this smallness
of interaction manifests itself in the form of a dimen-
sionless constant x= 1072* which in the theory of R-
decay plays a r8le similar to that played by the Sommer-
feld constant o= 17137 in the quantum theory of radixtion.

In addition to the specific interaction arrising from
the possibility of R-decay we have to assume electro-

magnetic forces between the electrons and the charges



in the nucleus.

The introduction of the meson has brought some
additional complication into the pattern of forces
acting between electrons and nuclear matter. If a
charged meson theory is assumed there will be an elec-
tromagnetic interaction between the electrons and the
mesons. But since the mesons can be thought of as
bound to the nucleons with an energy approfimately
equal to their rest energy their presence will only
become #e» apparent for very fast electrons that is
when the de Broglie wavelength of the dlectron becomes
small enough to resolve the meson cloud in the neigh-
bourhood of & nucleon.. In this case the exchange of
charge (and magnetic moggnt) between the nucleons and
the mesons will give rise to an electromagnetic field
which in its turn will interact with the electrons.
This interaction will give rise to the production of
mesons in collisions between electrons and nuclei,
the production of quanta and electron pairs in colli-
sions between mesons and nuclei and other processes

of this type.

The mesons are generally considered to be. radio-



active - an assumption which has recently been put on
a solid quantitative basis®. Whatever the detailed na-
ture of this radioactivity -~ which today is believed
- meson
to lead over an intermediate longlived A - one
branch of it at least should in the end lead to the
gimiltaneous production of an electron (ecarrying the
charge of the meson) and a neutrino. In this way and
in agreement with the original proposal made by Yukawa
the mesons can be made responsible for the whole
complex of [-decay phenomena, such that e.g. the f-

activity of the neutron could be deseribed in terms of

the (virtual) processes
Ned D+T = eee = D+ 8 + v

where the ... indicate processes involving the p-meson.
As a consequence of the radio activity of the mesons
there results a specifiec R -type interaction between
the mesons and the dectrons similar‘to that previousyy
agsumed for nucleons. The force resulting from this
interaction will be describable in terms of a dimen-

'

sionless constant Y » the megnitude of whieh can

be estimated in the following way. Since it is kmnown



that nuecleons interact strongly with one another (the
force acting between two closely spaced nucleons is
certainly very much greater than the electrostatic
force) the creation of a W -meson in & virtual process
is a very frequent mement. It follows that & mucleon
will spend a considerable portion of its time in the
resolved state, l1.e. in the form: nucleon + one or
gseveral mesons. It can therefore be concluded that
the constant x“ will be of approximately the same or-
der (though possibly by a factor 10 larger) as the
constant X appearing in the original Fermi theory
of f-decay.

The smallness of this constant justifies the
neglect of any specific ﬁ;-interaction, whenever
the times involved in the process under consideration
are small. This is particularily true for all scat-

because
tering processes, msimee there the natural unit of time
is the time required by the scattered particle to
cross the nucleus. This can be easily verified by esti-
of the cross section

mating the order of magnitude,for a typical f%-process,
e.g. the production of a neutrino in a collision de-

tween an electron and a proton: e + p = n +Vv . For



moderate energies ( a few Mev above the threshold) this
cross section will be of the ordergh; where A, is the
Compton wavelength of the electron. With yx 10" this
gives 10 * cm?. The absorption length corresponding

to this eross section would be larger than the dia-
meter of the sun. Cross sections of this order may

be of considerable cosmological importance but seem
hardly detectable under laboratory conditions. The pro-
bability of the above process increases rapidly with
energy up to a point where in the égntre of mass sys-
tem the wavelenghts of the light particles are com-
parable with nuclear dimensions. Beyond this point

the applicability of theory becomes doubtful and it
seems probable that radiation-damping will eheck the
increase to infinity of the cross section. But even

if the increase in cross section beyond the critical
energy region were real it would only be of importance

for the fastest particles in cosmic radiation 010'® ev).

®
Fermi's original theory of f4-decay shows & pe-
culiar divergence phenomenon associated with a 'reso-
nant' continuum of intermediate states and it might be

argued, that this may give rise to cross sections in



excess of the value of 10 *° cm'. This argument

would hold in particular for processes such as the
eleastic scattering of an electron or a neutrino
by a nucleon. This divergence difficulty is howe-
ver & characteristic of Fermi's 'quadrilinear'
formulation of the theory of f4~decay. It does
not appear if mesons are assumed as carriers of

5 -activity.

We are therefore left with a purely electro-
magnetic interaction between thé electrons and the
nucleus, particularly in an energy range of up to
approximately 500 Mev to which the calculations in
this paper are restricted. The limitation to ener-
gies of this order allows an approximately non-re-
lativistic treatment of the nucleons. Recent cal-
culations by Heitler and coworkers show that radia-
tion damping - which will be neglected in the fol-

lowing - is of minor importance in this energy

region.

6.7



2)
The Electromagnetic Field Produced in

an Electron - Transition.

In aﬁy scattering experiment with electrons
as primary particles the electron undergoes a change
of state. This change of state is accompanied by an
electro-magnetic field which in its turn may inter-

act with the scatterer.

We assume that the initial state of the elec-
tron can be described completely in terms of a Dirac
wave function corresponding to a plane wave with mo-
mentum p and energy E (E*:1 + p%) at an infinite dis-
tance from the scatterer. In the following radiation
units will be used: m, ¢, i =1 ( m=mass of the elec-
tron, ¢ = velocity of light, A=h/27 , h=Planck's
constant). In this system of units the unit of length
is the Compton- wavelength of the electron

Aoz 3.85 10" em
and the elementary charge is given by
e = o = 1/137.
The system itself suggests the use of Born's approxi-
mation in which the effect of the charge is treated as

a small perturbation. The final state of the electron



will be indicated by primed quantities: E' describing
the energy of the final state. To the transition 0<%
from the initial state to the final state we may then

-ikt
ascribe a current demsity (fls,(z)l0) e , where

K = E-E'. For inelastiec collisions we will have x> O,
for elastic collisions = 0. The 4 components of s

satisfy the egquation of continuity

’3,5,:0 (l)

where 9 = %v and X,X,,X,,X,4 = X,¥,%,it. IN the fol-
lowing we will have s denote the kinematical current,
i.e. the electric current divided by e. The electric
forces may now be derived from a 4-potential A, the
first 3 components of which form the vector potential.
The 4-potential will be understood to be the retarded

solution of the equation

'3:' A“_ = - 4-11’5,,‘_

which with the agsumed time dependence of s gives
vklt-lr-x'l)

e) = | T
ALlL.®) Sd_r Sulr') T (2)

From (2) one obtains a very simple form for the 4-po-

tentials if the electron waves of the initial and final



states can be taken to be plane waves. In this case

v (kr)
S, a, Q (3)

with kX = p - p' . a,represents the expectation value
for the transition 0> £ of the matrices a= (o ,i). On -
serting from equation (3) into equation (2) one ob-
tains after an elementary integration and by enforcing
convgéence by & suitable 'screening-factor'

k‘l-- K‘L

(4)

A, (c.t) =

The 4 components A, are rélated by the Lorentz-equation
A, A, =0 (5)
which follows from the equation of continuity (1). The
exponent in equation (4) shows that the field produced
by a change of state of the electrons has the form of
a wave with a vector of propagation k. In the case of
an inelastie collision it is interesting to note that
(kp) is always positive, so that the momentum carried
by the wave can never be directed opposite to the mo-
mentum of the incident electron. The phase velocity
of the wave 1s always smaller than the velocity of light,
which it only approaches when D and p' are nearly
parallel and both p,p' > max (1, w ). In this case

10



the transverse part of the field is nearly equal to
that of a suitable spectrum of light quanta. The
. Weizsdcker-Williams method is based on this fact
and therefore restricted to the above inequality.
This is the reason why this method should not be

applied to large energy transfers.

The spacepari of the exponent in equation (4)
defines the momentum transferred from the electron
to the scatterer, the time part the energy. Because
of the conservation of energy the energy of the
scatierer must change from E, 1o E  +K . A part
of the energy of the electronic transition will
turn up as nuclear recoil, another as a change of
the intrinsic energy of the scatterer. The recoil-
energy is usually negligible being at mast of the
" order kX>/4000 (for a proton with mass M= 2000). How-
ever for electrons with energies of approximately
120 Mev the recoil energy of a single proton will
be of the order of 8 Mev that is roughly equal to
its binding energy within the mmecleus.

It follows from equation (4) that - the energy



< being given - the most frequent transitions will
lead to a final state near to that corresponding to

a minimum transfer of momentum. This effect will be
most promounced for extremely high electron emnergies
and smallXx energy transfers. It is due to the deno-
minator D= k* -«*= p? + P'*- 2pp'cos® - «? (6 being
the angle between p and p_'). Using extreme relativis-

tic approximation we have

p= E- 7z +O0(E™) (6)
so that
1
D= 2pp'i-w®)t 5

PP (7)

We see therefore that the 4-potential corresponding to
'forward-transitions' is of the order of 4p'p'*/k*
times stronger than for inelastic processes leading to
backward scattering. This factor is approximately 1400
for electrons of 20 Mev energy and an energy transfer

| of 5 Mev. For the width of the maximum we obtain from
equation (7): G./; </pp'. It is defined in such a way
that the amplitude of the 4 potential averaged over the
solid angle G‘T,z'l\' is roughly the same as the average

(b §



over the rest of the solid angle.

The perturbation formalism will in general lead
to terms proportional to D° ,D”' and D% . For the
term proportional to D° the large scattering angles
will give the major contribution to the angular inte-
gration, for D' large and small scattering angles
will be of equal importance, whereas for terms pro-
portional to D% the backward component can be neglec-
ted. One would therefore expect that - since all eross
sectionscalculated in this paper are proportional to
the swuare of the amplitude - the behaviour of D~ %
would introduce a considerable simplification of the
calculations. That this will not be the case is due
to the fact that the angles occur in the factors a,
as well as in the denominator (this makes terms pro-
portional to D° and D~' appear in the differential
cross sections) and that the equation of continuity
for the 4-current ecorresponding to the change of
state of the nueclear scatterer causes a considerable
cancellation in the forward direction. The important
terms are those proportional to 1/D. They are in the

end responsible for the slow logarithmic increase

13



with energy of the cross sections of most processes
involving electrons as primary particles. This logarith-
mic inerease can be deduced from the fact that because
of dcos® = - dk*/2pp', the angular integration over

the directions of the electron in the final state gives
SdcosG/D = log(p+p')/(p-p') and this is indeed the
asymp‘totic behaviour for large energies of all the

eross sections derived in this paper,

We have yet to specify the quantities a, occur-
ring in equation (3). They can be expressed in terms

of the Dirac matrices @
(O g
= \g o

_—

with
_(01 = (0-1 10
6= (1 0) Sy (i 0) e = (O-l)
o, then becomes
@, = (a"‘a,KG) 0y = 1 (a'%2a) (8)

(k=1,2,3), where a=a(p,s) are the Dirac spin ampli-

tudes for a plane wave. They are defined by the egqua-
tion

((guf)-c-(%- Ela(p.s)=0 (9)

and the additional requirementsthat for g = 1,2 E0
3

4



for s=3,4 EXO0, for 8=1,3 a."(o_’g)a = p and for
s= 2,4 a*(gg)a'e -p. The a(p,s) represent a complete

set of eigensolutions to equation (9).

3)

The Eiectromagnetic Interaction between

Electrons and Nuclei.

In this paragraph we will discuss the form of
the interaction matrix between the field correspon-
ding to the transition of the electrons and the cur-
rent corresponding to the transition carried out by
the nucleus. Neglecting electrostatic forces acting
between the nucleus as a whole and the electrons we
nay represent the electronic states by plane waves
and use the method of approximation whieh has been
developed by Born and applied by Méller and Bethe
to the calculation of the energy-losses due to ioni-

gation.

The limitations of this procedure will be dis-
cussed in paragraph | . In this place it may suf-
fice to state that the method should be applicable to

\5



light nuclei (2wZ < 137) and for electron energies

» me*,

The phyical picture underlying the method used
in this paper is a nucleus situated at the origin and
exposed to the electromagnetic field corresponding to
the transition of the electron from its initial state
to its final state. The electromagneticAis defined in
equation (4). We assume that under the influence of
this field the nucleus will make transitions from a
state O with energy O to a state £ with energy « . The
final state f may belong to the continuous as well as
to the discrete spectrum of the nucleus, though this
distinetion in nuelear theory is not nearly as rigid
as in the field of atomic spectra. The theory can be
carried quite far without specifying the nature of the
final state. The nuclear transition will be characte-
rised by a current 4-vector Jveikb . The determina-
tion of J, - assuming the nuclear eigenfunctions of the
initial aﬁd~final state to be known - will be carried
out in appendix 1. The 4 components of the current

vector are related by the equation of continuity

sVl +eg =0 (10)

e



The interaction energy corresponding to the forces ac-

ting between the field and the nucleus is then given by

A= o {dr Ayle,0) 3,00 o'<* (11)

which after inserting from equation (4) and with the

abbreviation
3, = 3‘&. éd(‘!)o’“&!) (12)

gives
bt a
k" K" a’v .SV

H'= (13)

By means of the equations of continuity and the Lorentz-
condition we can eliminate the components with v 4 in

equation (13). For o, we obtain by using equations (1)
and (4)
1lak)=wa =20 0y = (ak) (14)

Inserting for Jj, from equation (10) into equation (12):

_3" &Q-t@.:)'iq-(ﬁ)éﬂ - -LS‘;Q‘-!) (Yl)g{_r

3

we obtain by using Gauss's theorem
= L (k3

3p= £ (63) (15)

Ingerting this into the expression (13) for the per-

7



turbation energy we finally obtain

(3 %) )

H'= _‘*_“i‘.-‘-(ﬁ”}_—h T

k* -«

(16)

From this equation we may now determine the cross sec-
tion (in units of N, ) by means of the well known Ee-
lation

db = T _e';_ T \H g, de (17)

$s’
Here d @ denotes the differential cross section cor-
responding to an inelastic scattering process in which
the electron is scattered into an element of solid

angle dw, 9; is the density of final states of the

electron:
- -3 (1
and :E represents a summation over the spin-eigen-
SS!

values of the initial and final state of the electron.
The cross section (17) therefore is the differential
cross-section averaged over the directions of spin of
the incident electron and summed over the directions
of the final electron. Inserting from equations (16)
and (18) into equation (17) one obtains

4o = 208 EEE (0o eyEp (19)

'8



where P is defined by the relation
P= Hydesrgi = 3¥S3 (20)

S is the symmetriec tensor
6= S((I-kk/<)ao(l-kkl<)) (5,
Ss! ,

In this equationg all the vectorproducts are dyadic.

Bquation (19) is identical with a formula given
by Bethe@on the basis of the Mﬁlle'bheory of retar-
ded electromagnetic interaction. The term P'is of the
form

P=(lysdrl®
and appears in thié form in Bethe's theory of ionisa-

tion processes.

Equation (19) contains all information about the
process of inelastic electromagnetic scattering in the
range of validity of Born's approximation and the fur-
ther calculations will proceed in three steps:

1) The determination of the tensor S - defined in
equation (21). Its value when inserted into (20) and

(19) will give the differential cross section for a

19



given direction of p' averaged over the spin of the
electron. The cross section so obtained will still
depend upon the orientation of the nuclear spin 1in
the initial and final states.

2) An averaging process over the spin-orienta-
tions of the nucleus in the initial state and a sum-
mation over the ~ physically equivalent - spin-orien-
tations of the final state. When these summations
are carried out the cross section will depend upon
the direction of p' only.

3) Finally the integrationz over all the pos-
gible values of the vector p' will be carried out. We
then obtain the total cross section for the produc-
tion of a given final state of the nucleus in a

collision between an electron and the nucleus.

If the energy of the electron is sufficiently
large a further summation may be carried out over
the possible final states of the nucleus. These states
will be allowed to have different energies and simple
relations are obtained when a certain average excita-
tion energy is small compared with the energy of the

electron. The result of this summation will then re-

20



present the total cross section for an inelastic col-
ligion between the electron and the nuecleus. The average

energy loss can be determined in a similar manner.

4)

Determination of the Tensor S.

Because of equation (21) the determination of the
tensor S may be reduced to the determination of the ten-
sorY a a « According to equation (8) we may write for

$S'
this quantity:

Zae = Z (g al@"aa) (22)

The spin amplitudes a (p,s) can be interpreted as uni-
tary matrices with the spinor indices v . The Dirac-
matrices are matricesmx in these spinor indices. For

& given value of p the a,(ps) form a complete system

guch that

a,(ps)a* = 9,
§ (porau(ps) = by (23)

This fact may be used for the evaluation of sums of
the type (22). In a mammer similar to that used by

Heitler we exclude the negative energy values by intro-

21



ducing an operator
=
K= ’LE/((EE)*' A+ E) (24)

which, when applied to a spin amplitude describing a
state of positive energy, acts as a unit operator, but
gives O when applied to a negative energy amplitude.
Since the amplitudes occuring in equation (22) repre-

sent states of positive energy we may write
Az Ka a'=K'a" " (25)

and after inserting into equation (22) sum over all
values of the spin variables s and s'. Then by apply-
ing the identity (23) we obtain
2L = T splaKia k) (26)

where sp denotes the trace wit]g@ respectr® to the spi-
nor indices: sp(S,, )=§SW. This trace can be readi-
ly evaluated by considering that the trace of all odd
products of the matrices a and (> vanishes and that

sf(ﬁt) = Sf(aft'"-'-“- 'iz‘,?.‘3
By using the obvious relation

& (ap) + (0_\4:)9'_ =

we obtain in this way:

22



EE'T aa = I(EE'-(pp')-1)+ ppiep'p (27)
s /

v

where I is the unit tensor and the products pp',p'p
and aa are dyadic products. From this the tensor S

may be obtained by means of equation (21). This gives
EE'S = I(EE'- (pp)=1)+ pp'+ p'p

- {E'hprpk) s E(kp' + p'k) (0

b {EE e 1]

This rather complicated expression will be simplified
considerably in the special cases treated in this
paper. The calculation up to fhis state represents

& small step forward in the direction indicated by the
methods used by Welzsicker and Williamé;>1t allows

to determine the field equivalent to an electron tran-
sition (rather than that equivalent to an electron
state as in the Weizsécker Williams method) and in

the form (28) frees us of the troublesome complications
brought about by the electron spin - the electron
being described by only two characteristic parameters:

with the electronic spin —
mass and charge. The quantity inextricably connecteda

2%



the magnetic moment of the electron has been elimina-

ted in the spin summations.

It will be noted that S is a symmetric tensor.
Its components are effectively of the order 1/p* (which
can be seen by considering the easeﬁg'll_g. This is
due to the fact that the forward component of the ex~
pression (4) is purely longitudinal but that on the
other hand the transverse part of the field will cause
the majority of nuclear transitions - a result to be

expected from the Weizsédcker Williams method.

5) C)

The Multipole Approximation.

According to equations (19) and (20) the cross
gsection for the excitation of a certain nuclear level
is proportional to the matrix element J defined by equa-
tion (12). This matrix element contains the field
parameters as well as the nuclear eigenfunctions. How-
ever, if the fieldpart can be considered to vary only
little within nuclear dimensions an expansion of the

¢ k
exponential e'=L  will become possible, so that (12)

24



can be written in the form

o0 ()q,
2 = Lo 5"'85"'5(;)_4: (29)
n=o0 ‘

where " as well as k"™ stand for tensors of order
n so that equation (29) may be interpreted to repre-
sent a scalar product betwwen the tensor ¥ (of order
n) and the temsor ™ j (of order n+l). The result of
guch & multiplication is a vector - or a'tensor'of or-
der 1. The first term in the expansion (29) represents
the dipole approximation, the second an electric quadri-
pole if Sgr_gi is a gymmetric tensor and a magnetic
dipole if the integral is antisymmetric in the tensor-
indices. Generally the nth term will represent an elec-
tric 2" -pole transition together with a magnetic an-h

-pole transition.

The expansion (29) will give convergent results
for all those values of k for which XR< 1Tv, say. The
convergency condition in our case is not uniform since
to a given electron energy E there may belong a large
variety of values k. A sufficient - but far from neces-

sary-condition is that pR should be less than w . That
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this condition cannot be necessary follows from the

fact that it may just be the small walues of k which
give a maximum contribution to the cross section.

Table 1. below gives the critical values of energy.

They are chosen in such a way that for energies below
this dbi= critical value the multipole approximation
should be good. For the muelear radius R we have agsumed

R= 1.56 10" A" em, giving approximately .96 10™'* em

Table 1.

A ] 5 } 10 ] 15 I 20 I 50 i 100 |200

Ema(HWJ 114—1 92 [ 8l , 73 { 53 [7 42 l 34

for uranium., E is determined from the equationAEua R=2m.
[}

In the following two paragraphs we shall deter-
mine the energy dependence of the cross section for
electric dipole transitions and for electric quadripoles
and magnetic dipoles. An upper limit for the validity
of the calculation is given by the values of table 1,

& lower limit is defined by the application of Bormn's
method.
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In the electric dipole case it follows from equa-

tion (29) that

3 = {4 (30)

1

should be a good approximation. For this expression we

may write because of the equation of continuity (10)

3= anfgrdar  ga-ag, (31)

In the case of an electric quadripole or a magnetiec

dipole we may write

3= ieTk (32)
where because of equation (29) T is defined by
iwT= 7 {qrdr (33)

the product between r and j being dyadic. In the case
of electric quadripole transitions T is a symmetrie
tensor and we may restriet ourselves to the case in
which T in a suitable system of coordinates reduces to
the form
010
T = 4:(100) (34)
000
where T 1is the electric quadripole moment of the tran-
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sition. For etee%»i magnetic dipole transitions on
the other hand the tensor T is antisymmetric and we

ghall treat the case

T (35)

h

s

“
O
o
oo
g

where p¥k is the magnetic dipole moment of the tran-

gition.

It should be observed that the choice of the
tensor T can not be made arbitrarily but must be such
as not to be in contradiction to the conditions

Jgdr =0 Jocdr=0
the first of which expresses the orthogonality of the
wave functions in the initial and final state and the
second of which expresses the impossibility of electric
dipole transitions. If the second condition would not
be satisfied the tensor T would only represent a correc-
tion to the dipole term and this correction will be
small - of the order ER - if the multipole approxima-
tion is at all justified. It may be easily verified
that the choice (34) and (35) satisfies these conditionms.
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o)

Electric Dipole Pransitions.

Since the expression (30) for the matrix element J
is independent of k in the dipole approximation the
summation over the directions of J (i.e. the summa-
tion over the orientations of the nucleus in the fi-
nal state and the average over the orientations of the
nucleus in the initial state) becomes identical with
the summation over the orientations of J, so that by
equation (20)

P= LN = S)cHixl? (36)

4
?

where the bar denotes the result of the averaging and
the gummation process and

x= Joxde
is the 'geometrical' dipole moment with A, as & unit.
(S) denotes the trace of S with respect to the tensor-
indices. In the derivation of (36) use is made of the
theorem ee-iIwhere the upper bar denotes that we
take an average over all directions of the unit vector
e and I denotes the unit tensor. We therefore have to
evaluate (S). This can be done by means of equation (28)

and by replacing the dyadic products occwring in this
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expression by scalar products. We‘then have because
of (I)= 3 :
EE'(s)= 3(EE'=(pp)-1)+ 2(pp)

A l | E: - (37)

- EEkpIr BUpNT - o @EN (pp)e)

The occurrence of (k*- &) in the denominator of the
expression (19) for the cross section suggests an ex-
pansion of (S8) in powers of k - ' . This can easily
be accomplished by replacing the scalar product (p p')
whereever it occurs in equation (37) by é(p‘%p't- kY.

An elementary calculation then gives
{ 1
EE(SY = -2+ L (B4 EM)(K=w) - —, (K'=M)" (gq)

This expression does not contain the azimuthal angle
of the electron in the final state. The integration
over the angles of p' therefore reduces to an inte-
gration over the angle © . Now

dcos® = =-dx*/2pp!
and k™ varies from(p-p')" to (p+p")*, so that the in-
tegration over dw can be replaced by an integration
over X* . This integration can be carried out and
gives immediately

L E +E"“ EE'+ pp'-)
47 4ma lwl -.E- { b%—i—P—— '2} (39)

12



for the total cross section for a process leading to

a specified nuclear level with energy w o In the li-

miting case p'->» 0 , i.e. near the threshold of the
reaction, we have E= l+ w and E'-1 8o that equation

(39) reduces to
‘1
N.R. $= amabE L e ] (40)

for nonrelativistic energies of the electron in the
final state. It should however be noted that the ex-

pression (39) does not take account of the electrosta-

tic field of the mucleus and will therefore become
unreliable for heavy nuclei. The threshold behaviour
in this case will be estimated in paragraph ! .

In the limiting case p>>1 and p'< p we have
. ,
The close resemblance of this relation to a formula gi-
ven by Bohr (and extended by Bethe to cover the quan-
tum theoretical aspects of the process) for the ioni-

sation losses of charged fast partiecles should be ob-

gerved.

The validity of equation (41) is restricted to
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Figure 1.
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One level excitation curves for dipole transitions.

€' -1 is the kinetic energy of the scattered electron,

A the excitation energy in units of me* . The figure

does not take account of the electrostatie interaction
between the nucleus and the electron.



energies less than the ceritical energy listed in table
l. Beyond this limit the higher order components of

the transition will no longer be negligible. If further
electrostatic forces are taken into account even equa-
tion (41) might have to be corrected by a factor of

the order 2wZ/137. This factor should be nearly con-
stant since the deformation of the electronic eigen-
functions by the electrostatic field of the nucleus
will be mainly defined by the veleccity of the electron
which is constant in the energy-range in which equa-

tion (41) is applicable.

The function & /4ndrixl™ was calculated for
various values of the excitation energy « and the
energy E' of the scattered electron by means of
equation (39)., The results of this calculation are
shown in figure 1.

7)

_Electric Quadripole and Magnetic Dipole Transitions.

If we insert from equation (32) into equation
(20) we obtain
P=2 (kTSTk) (42)
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The 4 sign refers to electric quadripole transitions
the - sign to magnetic dipoless In the quadripole
case T is symmetric and may be expressed in terms of
the transition density Q - Multiplying the equation
of contimity (10) by the tensor r r we obtain by
integrating over the whole space:
gliriderde = - Tfgrrdr
from which we obtain ~ because of the symmetry of T:

“{S(Mﬁ)l'ﬁi‘.’=‘jé_:d—" = —iw\

_\.Sg vv dr is the conventional expression for the
c vy ay

electric quadripole moment.

With the tensor T defined in equation (34) we

may write

T . aa — bb
= 23 - b° (43)

where - in the sulitably chosen system of coordinates

( ) \
a= (g 'w° Lt:-(g-%0)
gso that (ab)=0 . & and b are unit vectors. This gi-

ves for the product Tk
Tk = a(ak)-b(bk)= kxc

where ¢ is a unit vector. Inserting this into equation
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(42) we obtain therefore
P= ' ((exk)Slexk))

To detnemine the average of this expression over all
the orientations of the mucleus, we choose the direc-
tion of k as the x-axis of a new coordinate system
so that kx=(k,0,0). Then

(c'.."h) = (o(c'%:-c')')
so that

P = 'D"kt(syy C;"" S%ic;—"' zstyctcy)
and therefore

P = =k (SytsSu)= T (K(S)-(kSk) (44)

By using equation (28) we thus obtain
KFEE'(kSk) = kY (EE't (pp' )+ V) + 24tk

' T ) oy -
t JE'(kp)t B(ep) T+ CRUEE-(ppY - 1) ()
+ 2t (pk)(p'x)
and after a few reductions similar to those carried

out in the dipole case:

(E S 53 = ‘ e §4EE‘(k‘L"K1'YL— (k‘- K‘L\}% (46)

LEE

The expression (S) has been determined in equation (37)
of the previous paragraph. Substituting from this equa-

34



tion and from equation (46) into equation (44) we have

Pr o =, { R e L ) () - e | )

Inserting from here into equation (19) and integrating
over the directions of the scattered electron we ob-
tain for the total cross section in the case of quadri-

pole transitions

$= T FEQ (48)

where the function F(E',« ) is defined by the equation

FE )= « ﬁ:_LLIM.E_E._LE&_l (49)
In the limiting case p'» 0 we have
NR . $= LT (ler ) p! (50)
and for p,p!'—> w
E.R. b= B ot g (%) (51)

Values of the function F(E',«) were calculated for
various values of the excitation energy < by means of
equation (49). The variation of this function with

E' and « is shown graphically in figure 2.
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In the case of a magnetic dipole transition
the tensor T occurring in equation (42) may be taken
to have the form (35). Introducing unit vectors e,

and e Y ‘perpendicular to one another we may write

oy ex) © (52)

T= (e, &y -
from which it follows that
Tk = plexky—eyh) (53)
Inserting this into equation (42) we obtain after some

elementary transformations

P gp (kxSxk) (53)

It follows immediately that all those terms in the
dyadic representation of S which con&ltin a factor k
cannot contribute to equation (53)e. k»Ixk can be
easily determined by writing it down in coordinates.
We have XkxIrk = -2x* . We therefore obtain by
ingserting from equation (28) into equation (53)

P-= Z-E‘—E, {(k‘- e Wpte p'h)(k*-«')- 4-‘4‘% (54)

Comparing this formula with equation (47) we see that
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One level excitation curves for electric quadripole
and magnetic dipole transitions. ¢' -1 is the kine-
tic energy of the scattered electron, A the excita-
tion energy in units of mec . The figure does not

take account of the electrostatic interaction between
the electron and the nucleus and should therefore
only be valid for very light nuclei.



the integrations over the directions of the scattered
electron are the same as in the case of electric quad-
ripole transitions. The eross section for the magnetic
dipole case is therefore obtained from the eross sec-
tion for the electric quadripole case - given in equa-
tion (49) by replacing t - the electric quadripole mo-
ment- by P - the magnetic dipole moment.

It should be noted that the result for the mag-
netic dipole is different from that obtained for the
electric dipole. The difference -~ which is rather small-
is due to the fact that the electron carries an elec-
tric charge - and not a magnetic charge. It is due
mainly to the longitudinal component of the transition

/

field.

8)
_Sum Rules for very High Energies.

In the previous paragraphyg we have been consi-
dering the excitation functions corresponding to the
excitation of one particular nuclear level. If the ener-

gy of the electron is very large compared with the
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average spacing of energy levels the excitation of one
particular level in the primary process will lose its
interest in favour of problems as that of the average
energy expenditure in a collision between an electron
and a nucleus or the total cross section for the ex-
citation.of & nucleus into any one of its excited
states. Some of the levels reached in transitions of
this kind will be deexcited by the emission of x-rays,
so that in general a particular level will be occupied
directly (i.e. in the process of collision and from
the groundstate) as well as indirectly over an inter-

mediate state of higher energy.

In the following paragraphs we shall derive some
expressions for the total cross section for nuclear
excitation and for the average nuclear energy loss
of electrons. The calculations will be based on the
completeness of the set of nuclear eigenfunetions and
represent an analogue to what is known as sum rules
in the theory of atomic spectra. It will be assumed that
the energy of the electron is large and for definite-

ness larger than the energy values given in table 2.
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The mathematical procedure will be the follow-
ing. The total cross-section for the excitation of
a level £ with excitation energy K1‘will have the

form

¢f = $(E ek f) (55)
The total cross section for the excitation of any nu-
clear level - and these levels include the 'continuous'
levels.of the nucleus -~ is obtained from eqﬁation (55)-
by summing over all possible nuclear stateg f. If for
a given state £ the cross section ¢¥ varies only
slowly with energy and if the levels with an energy
b4 do not contribute appreeciably to the total cross
gection then a good approximation should be obtained

by using the mean value theorem:

z¢g§ %tb(E,E-E,(-) (56)

The summation over the final states f now only con-
cerns the nuclear part of the mafrix element of the
trangition - i.e. the vector integral J defined in
equation (12). With this simplification the summa-

tion over the final states of the nucleus can be car-
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ried out by using the fact that the nuelear wavefunc-
tions to states with energy less than a certain maxi-
mum energy form a nearly complete£§§; - the complete-
ness of which incereases with increasing maximum energy.
If %%, is known the average energy loss may be de-
fined by

R Tu% /T (57)

The sum in the enumerator may be evaluated in the fol-
lowing way. We replace the nuclear Blgenfunction uF
of the final state by Hu /¢& where H is the nuclear
Hamiltonian normalised in éuch a way that the gruund-
state has energy O. With this substitution use can
be made of the completeness relations. The values of

‘6 thus obtained can then be inserted into the expres-

gion for %the total cross section.

The metho® for the calculation of these average
values becomes very cumbersome in the multipole region
the lower limit of which is given in table 1. It will
however be seen from a comparison of tables 1 and 2,

that there is a considerable range of energy in which
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E»:, so that the sum rules can be applied and also

E K Ew so that the dipole approximation is justified.
For very high energies and in particular for very heavy
nuclei the applicability of the dipole approximation

is no longer obvious. We shall derive sum rules fer

for electric quadripole transitions and magnetiec di-
pole transitions in pragraph O and it will be seen
that their comtribution to the average cross section

is very small. A reason for this is that the multi-
pole expansion is equivalent to an expansion in v/c

of the nucleons., The contributions of successive mul-
tipole terms therefore decrease by factors T/M where

T is an average kinetic energy of a nucleon in the
nucleus. Since this ratio is hardly ever greater than
1710 it can therefore be expected - and this expec-
tation is verified for the lowest multipole orders =
that higher multipole transitions - though of extreme
importance for the excitation of particular levels -
only represent a small portion of the total nuclear
energy loss of very fast electrons.

9)
_Sum Rules for the Dipole Approximation.

In this approximation it follows from equation
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(41) together with equation (56) that - provided that

a % can be chosen in such a way that EDw -
¢ o (log = ) Z{— Ixgol (58)

The matrix element Xco BN be evaluated by means
of the method given in the appendix. We may write
Zil+ TE i 5560y
we(§--Fad g (8. £ )x5 45 wols! . €))
Here §1- represents all the coordinates of the ith mu-
cleon (dncluding the space variables 3"-,"(xi ¥ »%;), the
spinvariables s; and the variables corresponding to
the isotopic spin %.). The indices i and § run from 1
to A. q; is an operator acting on th:::;?n of the ith
particlep. It has the eigenvalue 1 for protons and O
for neutrons. The completeness relation for the Schri-

dinger functions may be assumed to be of the form
X ( '
gwf(é,--ww;(é.--%h Ag-¢) (58)

where 3(§-¢') is the antisymmetric § -function defined
in the appendix. (7 1is a Kronnecker symbol with re-

gard to the discrete variables s and t ). Using equation
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(59) we obtain (frem—eauatien—{56Y

g
zlxl ‘Sdg, dE, uo q; Xy ¥ 94 o
Here the terms with 1% § do not contribute to the sum-

mation. (If u, represents an S state this is trivial
and in the case of spatial agymmetry of the ground
state the terms i#4 J vanish after averaging over all

the possible orientations of the nucleus).

It follows from the antisymmetry of the u's that
all the terms with i= J are equal. Now, since the ex-
pectation value of q:‘ is Z/A and there are A terms with

i=) we have

leli = Zx* = .‘52-“-
where Rt is the average »adius square radius of the
charge distribution in the nucleus. Assuming a constant
charge distribution all over the nucleus (of radius R)
we may write

Ix\* = = ZR?*

Z 5 (60)

Inserting this result into equation (58) we obtain for

the total cross section for all dipole transitions

¢ = 2’““ RMZ (vg 2 - 1)

(61)
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I$ will be noticed that with R»R A"*this cross sec-
tion inereases roughly as A?/® thus favouring strong-
ly the excitation of very heavy nuclei. The increase
of the cross section with A however is not strong
enough to make the cross section absurdly smaell for
the highest values of the atomic weight. Even for the
heaviest nuclei the cross section remains well below
1/10 of the geometrical ceross section of the nucleus.,
Equation (61) is incomplete as long as we can not
propose a suitable value for ¥ . It will however

be seen that the result does not depend ceritically

on this value.

The determination of K can be carried out in
the manner outlined in the previous paragraph. Com-
bining equation (57) with the result (41) for the
dipole case we have - provided that E»k -

E = Td = Snau"'{zo%&g-%%xflx N (62)

The summation on the right hand side can now be
carried out in the followkng menner: if H is the Ha-
miltonian of the nuclear system normalised in such a

way that Hue O, then for every state £F 0
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and therefore
% - » . .-
{_&{_ Ixgol® = ‘Z{Sdg‘..dgA Wo qt”"H"aqz“’" (63)
Here again only the diagonal terms i= j need be con-
sidered since the non diagonal terms cancel out in the
average over the orientations. Since the expectation

value of q* is Z/A we may write
. ,
zf-_nfle_,, |t = ZSdg‘,.o(gA Wo X, H x,ug (837)

This integral may now be evaluated by using the com;
mutation properties of the nuclear Hamiltonian H. In
& nonrelativistic theory H can be assumed to be of
the foem H = Zf;P:+ F where F is a function of
the space coord‘inates of ‘the nucleons and an operator
with respect to the spin and isotopiec spin coordinates.
P. is the momentum of the ith nucleon and M is an
average nucleon mass. The function F will commute
with x. Now, since u, is an eigen function to Hu, = O
we have

EHxu, = [Hx]w,
where the square brackets denote the commutator Hx-xH.

The only non commuting term in the Hamiltonian is P/iM
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Now, because of[Px]=~i we have

[2'x] = - 2iP,
Inserting this into equation (63') we obdsain after a
partial integration (remembering that P, may be re-

presented by the operator -i19/9x,)

- T (N
w$ = 4-1ra."-:‘:‘-' {2033':.— - l% (64)

Comparing this with equation (61) we find

Te ——
TMR

(65)

The expression 1/MR' is the natural nuclear energy
unit (X*/MR in dimensional units) which for a given
value of R gives a rough indication of the spacings
of the lowest energy levels. The result of this ana-
lysis can therefore be said to be, that the average
dipole excitation energy is 2.5 nuclear energy units
for all nuclei. We see that this average excitation
energy is very small - even for the lightest nuclei,
so that the application of the completeness relations
is justified for moderately high energies. The result
(65) will represent an upper limit for energies only

little in excess of the mean excitation energy« .



In table 2. we have listed the values of & for dif-
ferent atomic weights A. The 2nd line gives the values
in units of me? +the third in Mev. R has been assumed

to be of the form Re RoA"’ with R,=1.56 10~ cm.

Table 2.

A 5 10 15 20 50 J]100 |200
27.4 | 17.2| 13.1 | 10.9 | 5.9] 3.7 | 2.3

(Mev)|14.0 8.8] 6.7 5.6 3.01 1.9 | 1.2

Table 3 gives the values for the total cross seetion
for different values of A and E. The cross sections
are calculated from equation (61), in which K has
been replaced by the values given in table 2. The
unit of eross section was taken to be 10"°®em*. The
range of the energy values E has been chosen in such
a way that the dipole approximation as well as the
application of sum rules is Justifyable. It is seen

that near the upper limit E~:Eauthe cross section

varies only slowly with energy.

It is seen from table 3 that the total electron
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Table 3.

Total cross sections for electron excitation; unit-lddscm?

3 5 10 15 20 50 100 200
10 47 179 602
20 4.34 | 8.7 15.9| 176 261 845

30 |1.52 | 5.7 |[11.0 19.7 922 309 986
40 1 1.79 | 6.4 |12.5 22.4 | 101 342 (1080
50 | 2.00 | 7=07 | 13.7 24.5| 111 368 {1160

60 | 2,19 | 7.65 | 14.8 26.3 | 119 392 11230
70 | 2.33 | 8.11 | 15.7 27.8 | 125 410

80| 2.46 8.54 | 16.4 29.1 | 130 426
90 | 2.58 8.89 | 17.1 30.2 | 135

100 | 2.68 9.20 | 17.7 31.3 | 139

120 | 2.84 9.54 | 18.6 32.8
140 3.00 | 10.2 ] 19.5 34.5

160| 3.12 | 10.6 | 20.4
180 3.25 | 1l1l.0
200| 3.34

cross sections are fairly large, particularly for heavy

elements. On the other hand it has to be considered that

43



according to equation (64) the total energy loss /proton
is practically independent of the atomic number (#here
is a slight increase with increasing atomic number

due to the variation K in the logarithmié term.) For

a heavy nucleus the average energy loss (of the order

of 1 Mev ) is so small that most of the levels exci-
table by electrons will lead to ﬁ-active or X-active

states rather than to particle emission.

10)
Estimate of the Error in Extrapolating the

Dipole Sum Rules into the Multipole Region.

In this paragreph we want %o give reasons which
make us believe that the sum rules given in the pre-
vious paragraph hold even for energiesfém which the
dipole approximation should no longer be reliable.

We want to show ¢hat

(i) the contribution to the total cross section
of electrie quadripole and magnetic dipole transitions

jg small in comparison with the electric dipole con-

tribution and
(ii) that with a simplified model in which all
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energy transfers < Eod& are treated as dipole transi-
tions and all energy transfers with « » E ag due to
individual collisions between electrons and protons,
the cross-section obtained in the dipole approximation
only suffers a small correction and the total ewess

energy loss remains unaltered.

To prove (i) we have to go back to equation (51)
which is valid if Eypx - which we shall assume in the
following. We the have to determinez;ggtt to obtain
the total cross section., By a considgration similar

to that carried out in the previous paragraph we ob-

tain

7;7&}.1% ZS*éw*’s‘ﬂ-Z' YLy w, (66)

Here again use can be made of Huz0 and the products
H.xXy can be replaced by commutators. In thié way omne
obtains
STtz -‘:'-4-;, S dE, ... 4§, we Pt , P,

and this integral is of the order P'R‘/M! Comparing
this result with that obtained in the electric dipole
case, namely equation (62), we see that the quadripole
contribution is of the order P/M*times smaller than

the dipole contribution. It should be noted that for

50



a rigorous proof of this statement we should have to
determine the average energy loss TZ% for the quadri-
pole case., But since this energy loss will only show
up under the logarithm of equation (51) an accurate
determination of Zq does not seem necessary.

This argument can be generalised to all electriec
transitions in such a way that the contribution of
successive multipole orders has a ratio of the order
T/¥. It therefore appears that the majority of the
transitions caused by electron impact are dipole

transitions.

The contribution of magnetic dipole transitions
can be sstimated by using the expressions for the mag-
netic dipole moment given in appendix 2. For the or-
bpital #£er part of the dipole moment the considerations
are quite similar to the elestric quadripolg case and
lead to the same result. ror the part due to the magne-
tic moments of protons afld neutrons we obtained by
applying the completeness relation (59) to equation (5)

of appendix 2:
1 A
Z‘f"’ = mq. Sdgt d;g“:("?q:* l“N("qP)z.“'o (67)
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where o and g, are the magnetic moments of proton and
neutron respectively. (pp= 2.79, fty==1.91 nuclear mag-
netons.) The factor 1/4M* is due to the nmelear mag-
neton which in our units is 1/2M. Putting A ~ 22 we

obtain from equation (67)
%‘fvi = *ML{"P*‘*N} - M7 (68)

with
Comparing this Wet the result obtained in the electric

dipole case we obtain

- %
$(¢)/¢(M) o 2.8 A [ (69)

where EBGQ denotes the total cross section for the

electric dipole and E;m%hat for the magnetic dipole.
It is seen that the dipole correction is of the order
of less than 10% for the lightest nuclei. It is rela-

tively less ( a fraction of 1%)for very heavy nuclei.

For the comparison of electric and magnetic tran-
sition we have assumed that the average excitation
energy of magnetic dipole transitions is of the same
order as that for electric dipole transitions. Though
this seems very plausible it is not quite easy to prove.

The average energy loss comes out to depend strongly
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on the assumptions made about the nuclear forces e.zg.
their spin- and isotopic spin-dependence. To make
sure that the higher order transitions do not affect
the average energy loss it seems useful to investi-
gate the model proposed under alternative (ii) of

this paragraph.

The physical justification for the application
of model (ii) is that with increasing energy the elec-
tron becomes more and more 'shortsighted'!, so that in
the end the fact that the eteetrem nucleon is bound
in a nuecleus can no longer influence the behaviour of
the cross section. In wuantum theory the critical
quantity is the energy transferred by the electron
rather than the energy of the electron, so that for
large energy transfers we should be entitled to treat

the nucleons as free particles.

—-—

It d>. denotes the eross section (in dipole appro-
ximation) corresponding to all those processes which
lead to a transfer of energy less than an‘ and as
long as E K is small in comparison with qﬁ4(which
is always the case as can be seen from a comparison

of tables 1. and 3.) we have
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& = S_T;_ﬁtaf-b%%ééa_u_ (70)
w

if only the leading term is taken into account:
EE /K 1.
log2 il © »

In the case of a free proton the cross section
for the production of a proton with momentum Xk can be

derived from equations (19),(20) and (21) by putting

= k/am (71)

(For a free proton the magnetic moment does not con-
tribute in non relativistic approximation owing to
the lack of spin orbit coupling.) Inserting this into
equations (19) and (20) we obtain for the differen-

$ial cross section:

' EE'p' =1
dh = 2 SSE-Tksk) (72)

The expression (kSk) has been derived in equation (46),

which when inserted into (72) gives
» E*
db, = o Toh, (73)

where it has been assumed that EX> k* . Now the energy
loss in the case of a free proton is simply x%/2u.

Inserting this value for K and integrating over all
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angles leading to an energy transfer > E .4 we have

¢, = Z'E; (74)

where again only the leading term has been written down.
Comparing this with the ceross section Ei (equation (70))
we see that the free particle contribution is compara-
tively small. The cross section (70) is larger by a
factor of the order log%? which is approximately 10
for very high energies. The replacement of £ by E.,\

in the logarithm of equation (70) also gives a correc-
tion of approximately 10% - compared whth the uncorrec-
ted dipole result. The two corrections have opposite
sign, so that by using this picture of the proeess we
are again led to assume that the dipole approximation

is very good even beyond its natural range of validity.

The situation is even better with regard to the
total energy loss. Here

-—-——'_ ‘Lz ?/EE
B A g

(75)
and for the free proton
— +Z E
xd, = Gnegleg (76)

and these two expression add up to exactly the leading
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"term of equation (64) obtained for the dipole approxi-

mation.

1)

The Threshold Problem.

The results obtained in the previous sections
are only valid if the electron in its initial as well
as in its final state can be represented by a plane
Dirac wave. This will never be the case sinece the elec-
trostatic field of the nucleus may cause a considerable
deformation of the electronic eigenfunctions. However,
for very large energies this deformation will be com-
paratively small and will not depend very strongly on
the energy, so that the sum rules should remain unal-
tered provided that the nuclear charge is not too
high. The Coulomb-deformation of the eigenfunctions
may be mitigated a little by the cut-off of the electric
field strength in the neighbourhood of the nuclear
radius. The influence of the electrostatic charge of
the nucleus will always tend to inerease the cross-

o POCRI e .

sectionninitfated by particles of negative charge,

since the attraction between unlike charges makes the
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wmakes—bthed electronic eigenfunctions large in the neigh-
bourhood of the nucleus. The magnitude of the effect
however can not be immediately estimated from the
Coulomb-correction of the electronic eigenfunctions

at the origin: the electric field produced by an elec-
tronic transition will depend on the values of the ei-
genfunction at any distance firom the origin owing to

the large range of the electric interaction.

The mathematical programme for the determination
of the electrostatic correction can be seen elearly
from equation (2) into which the transition density
or the transition current for an electron in a Coulomb-
field would have to be inserted. The following calcu~
lations then proceed in a manner identical to the

analysis of the previous paragraphs.

We shall here glve an estimate of the electro-
static effect based on the Sommerfeld-Maue approxi-
mation and restriet ourselves to the dipole approxi-
mation. The shortcomings of the various approximations
made will be discussed in pseagraph V3 . An accurate
determination of the electrostatic correction - though

possiblé - involves quite considerable analytical dif-
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ficulties comparable and very similar to those 4n the
relativistic theory of the internal conversion coeffi-
cient. Work on this problem is still in progress and

seems necessary in view o the lack of agreement with

experimental data - i.e. Wiedenbecks experiments.

Since the Coulomb force will be of particular
importance for very slow electrons and since the first
'accessible! excited levels are usually about 1 Mev
above the ground state a maximum correction will have
to be expected near the threshold for the excitation
of a given level. There the electron in the final state
is very slow, but it is to be expected that the Cou-
lomb correction for the initial state will not be very
large. We shall therefore neglect the electrostatiec
correction for the initial state of the electron. The
Coulomb correction for the final state on the other
hand is described in terms of a zero order Sommerfeld

Maue funetion

pr)
LV’ ] Na' %4' f‘ Ln(g) (77)

where Lw(g) is the Laguerre transcendental function, n
is defined by
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n= —i1aZ/fB (78)

[E is the velocity of the scattered electron and &9

is the 'transverse' part of(p'r) i.e.
g=-ip'r)= p'r) (79)

N is & normalisation factor which has to be chosen in
such a way that the outgoing part of the wave (76)
represents a ppherical wave of unit amplitude. For
this
2 in |

NIt: T2

l |- g Winl (80)
With these abbreviations we obtain in dipole approxi-
mation, i.e. in that approximation in which A(r) is

replaced by A(0) - the value of A at the origin:

A*'(O) = Q.N'a:j ‘ (81)

where J is the integral

de -+(xr+(kr))

3= S—;"‘" L.(3) (82)

For the evaluation of the integral (8l) we may use
the integral representation of the Laguerrefunction,
namely

ami Lw(g) = @(H 3?"’:{"('*"’) e 34 dy (83)
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in which the path of integration goes round the points
0 and -1 in the positive sense. Inserting this into
equation (82) the integration over r can be carried

out and one obtains
2 —a\n,~n-\ . -1
Iz P4 ke o (o
Putting as an abbreviation

w= 2(pk+(p'kN/(K*-x*) >=I (85)
we may write instead of (84)

Vile note that in the limit p'=2 0 w90 . Further,
with Z=0 that is by taking a plane wave approxima-
tion for the {inal state, we obtain

l_ | 2 4
B V(e *\é’%‘

k"- -kt

and this is identical with the equation of paragraph
The integral (84') may be evaluated by noting that

é“a.‘ (\"U-‘x-“-‘“- M)":’M. =(l- iv' ;a)&l}(::x).—_ﬂ“:(wl& ¥ x)

where F(o,p,¥;x) isk the hypergeometric function. The
integral (84') represents a special case of this inte-

gral withaz -n, = y =1 and therefore
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-n-‘

2(-) i
V2 ————— (1= ") F(Cn, 0V, 1, - (86)
Tt ( )F(-n, , =) -n ) Tlhew)
Now by.using the relation F(-n,l,1;-w) = (l+0)™ C}
and a well known property of the [ - function we

obtain:

4w "
‘_S = —‘:-;::;" (\+ w) (87)
Since n is purely imaginary we have l(l+w)"\ = 1

and therefore by disregarding a phasefactor which does
not affect the finel result
4 = 4t Na,

kt_ K‘L

(88)

This expression replaces equation (4) in the Sommerfeld
Maue approximation for the outgoing electron. It is
Yherefore seen that as far as this approximation goes
the influence of the electrostatic interaction will
just multiply the results obtained earlier by the fac-
tor IN\* defined in equation (80). The following table
4. gives the values of the factor IN(* for electron
energies ranging from 1 to 1.15 electron units and
for & medium heavy nucleus (Z = 48). The factor N is
familiar from the theory of [5 decay and numerical

determinations have been carried out by many authors.
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Table 4.

B' [1.005 [1.010 | 1.015 |1.020 |1.03[11.04/11.10( 1.15
|5t 22.1 | 15.6] 12.9| 11.2 [ 9.2] g.02] 5.3 | 2.5 B

lim|§* = 2.2
e

The result obtained in this section is surpri-
gsing when one considers the argument given above, nam;L
ly that the amplitude of tﬁ:j;;gnetie potential should
not only depend on the values of the wavefunction near
the nucleus. One excuse may be perhaps bé found in the
fact that the wavelength of the equivalent gquanta being
very short, the argument about the long range of
electro magnetic simply imlies that the volume in
which the electronic eigenfunction has to be known
accurate is large compared with the cube of the wave
length of the wuantum. This can still be small com-
pared with the de Broglie wavelength of the outgoing
electron. The principal objection however can be
raised against the application of the Sommerfeld-

Maue method, which in the case of a Coulombd txype
field does mot converge properly near the origin:

the wellknown factor (PR)“" which should accom-
peny the Coulombfactor [NI* can not be reprasgnted:-
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in terms of an expansion into powers of e in a uniform-
ly convergent menner. This together with the fact that
owing to the long range character of electro-magnetic
forces it is very hard to decide to which part of the
electronic wavefunction one should attribute meximum
welght, makes the Sommerfeld Mauve method not very
reliable for our purposes. A decision on the threshold
problem (i.e. a decision és Yo whether such a problem
exists at all) can only be expected from the applica-
tion of the full Dirac eigenfunctions.

12)
Estimate of the Nuclear Quadripole Moment.

In the foregoing sections the only nuclear pro-
perty which enétered the calculations was the radiative
moment of the transition in question. Transition mo-
ments of this kind can be measured directly by obser-
ving resonance widths and these measurements turn out
to be in rough agreement with the theoretical expecta-
tions derived from various nuclear models., One way of
forming & theoretical opinion on the magnitude of nu-

élear trensition moments is offered by the liquid drop
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model. There certainly are many objections against the
application of this model arrising from the unsatis-
factory way in which it deals with internal degrees of
freedom. On the other hand it seems the only model

capable of making systematic predictions on this subject.

@)

According to the liquid drop model there should
be no electric dipole moment and only quadripole and
higher moments should occur. This arrises from the fact
that in this model the centre of gravity of the protons
coincides with the centre of gravity of the nucleus as
a whole., That there is no exee magnetic dipole moment
is due to the lack of the rotational components of the
displacement current and the logical neglect of ex-
change currents which represent one of the internal
degrees of freedom necessarily neglected in a semi-

classical theory of the nueleus.

In the liquid drop model the frequency w of the

1th harmonic of the surface wave is given by

where G is the total surface energy, namely 9.6A™ (Mev),
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9 is the density of nuclear matter and S the surface
of the nucleus. Only the mode 1 =22 gives a contribution
to the electric quadripole moment. The emrgy of the
first execited level is 4w so that by taking the

nuclear radius to be 1.56 10~'° A"%cm we obtain
= 39A°VE (90)

This would give a first excitation level at 4.9 Mev
in oxygen and at 1.3 Mev for a heavy nucleus like
uranium. The quadripole moment of a transition corres-

ponds to
ZR b Al
7Y (91)

where b - the amplitude of the second Harmonic -~ is

related to x by
k= 2GEY/15R (92)

Combining these equations we obtain for the quadripole

moment in electronic units:

ts L2Z A 0"7 (93)

This value may now be inserted into equation (48), to

obtain the order of magnitude of the cross section.



13)

Discussion.

As a general result of the foregoing sections we
conclude that any reaction which can be caused by'x-
rays can also by caused by electrons. This result is
nearly trivial in view of the contents of the Weizsidcker
Williams theory of Bremsstrahlung according to whick

- in a suitable frame of reference - an electron is
equivalent to a continuous spectrum of quanta with an
energy distribution n(k)e dk/137k. However the method
applied here goes a little further than the Weizsédcker
Williams method: formally it is capable of extrapola-
tion to the threshold in contrast to the Weizsicker
Williams method which may become very unreliable in
this region - the results depending on the cut off para-
meter. Formally our method is identicalZ with Born's
approximation in radiation theory, though the classi-
cal treatment of the electromagnetic field represents
gsome simplification of the mathematical procedure, as
we shall show in ggrticulaz in paragraph |4 for the

case of meson production.

From an experimental point of view there is one
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important difference between electrons and g -quanta:
in the energy region above a few Mev quanta can only
be produced in the form of a continuous spectrum, where
as the new machines are capable of delivering a 'mono-
chromatic' beam of electréns. Can any use be made of
this property of electrons? The answer seems to be in
the affirmative, with the qualification that even with
a monochramatic beam of electrons the electrons are
equivalent to & continuous spectrum of yerays. In
Borns approximation there is very little difference
between this equivalent spectrum and the continuous
spectrum produced in thg/process of Bremsstrahlung.
However, since the Brems-spectrum used is usuaily a
thicktarget spectrum, the use of electréns will at
leagt have the advantage of allowing one to work with
something closely resembling a thin target spectrum

under geometrical conditions which resemble the thick-

target situation.

This advantage has indeed been successfully used
by Wiedenbeck, who, in the 4 Mev region, finds exeita-

tion curves closely resembling the 'resonance curves'®
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observed in a Franck-Hertz experiment. This resemblance
however ig deceptive: in the Franck Hertz experiment
the typical resonance behaviour is not due to a reso-
nance at all but is caused by a peculiar property of

“law of thermionic

the cireuit together with the U
valves. A typical Wiedenbeck curve is whown in figure
3. For the first level the excitation curve derived
from this measurement is shown in figure 4. One can
see that the threshold is considerably better marked
than in the case of ) rays represented in figure 5.
The threshold behaviour in Wiedenbecks experiments is
even more favourable than one would expect from the
rough theoretical model given in paragraph Il .The
prediction derived from this model is indicated by the
dotted line in figure 4 and it is seen that the agree-
ment of the two curves is very poor. It is hard to
decide which of the assumptions leading to the theo-
retical estimate should be responsible for this dis~
crepancye. The only approximately relativiéggg:gay be
one of the reasons, since it results in the neglect

of the divergent behaviour of the s and p eigenfunc-

tions of Dirac's theory. A correct consideration e#
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of this property of the Dirac wave functions might be
expected to add a factor (p'R)zs‘z where s« (1-atZ)"?
to the Coulomb factor (Nltdefined in equation (80).
It can however be seen that this correction would
vary too slowly to give a noticeable decrease of the

excitation function near the threshold.

On the other hand there might be a few techni-

cal reasons which might alleviate the discrepancy
from the experimental side. Wiedenbecks experiments
were carried out with a constant current but it seems
hard to assess what a constant current really means
in terms of numbers of electrons actually hitting the
target. A practically constant excitation curve could
be turned into a curve showing a maximum near the
threshold if the actual number of electrons would de-
crease sufficiently fast with increasing energy. This
would also tend to make the higher exeitation levels
show more pronounced maxima - in agreement with Wie-
denbecks measurement shown in figure 3. This is due
to the fachhat the negative slopes of the apparent
excitation curves would add, so that the third exci-
tation level should show a peak approximately one
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Figure 3.
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third the width of the first. The general trend of the
excitation curve to rise with increasing energy could
then be explained by the factor ' occurring in the
expression (60) for the threshold behaviour in the
quadripole case.(It seems razher plausible to assume
that the excited states represent quadripole transi-
tions from the ground stete, since the long lifetime
of 50 min at an excitation energy of 195 kev in Cd
suggests a transition with Al ~ 2. Assuming that the
spins of the excited states (at 1.25 and 1.68 Mev)
lie halfway between the spins of the ground state
and the metastable state, this gives a quadripole

transition from the groundstate to the excited state.)

The order of magnitude of the predicted cross
section may be checked against an estimate given by
Collins and Waldmann. A first check of the quality
of the liquid drop model ig obtained by comparing the
energy of 1.9 Mev calculated from equation (92) for
Z =48 (Cd) with the value 1.2 Mev observed in Wieden-
becks experiments. For the same value of Z equation
(93) gives a value of approximately 0.85 10”2 for the

quadripole moment, This is very large - nearly of the
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order of the nuclear cross section. From figure 2.

we f£ind F to be approximately 10 in the quadripole case
and for an energy of about 1lo0 kev above the threshold.
This has tonbe multiplied by a factor of the order 5

to account for the rather strong Coulomb interaction
between the nucleus and both the outgoing and incoming
eléctron. We should therefore expect a cross section

of the order of lO’zqcmL.

This is in excess of the value 10™* estimated by
Collins and Waldmenn for indium. However,considering the
limitations of the liquid drop model and the assumptiond
which Collins and Waldmann had to introduce about the
efficiency of their counters the discrepancy is not s
large. If we use their estimate we could calculate back
the quadripole moment required to give their wvalue.

It comes out of the order 0.4 10” * which is small but
within the possible range of this quantity. There is

no obvious reason to believe that Collins and Waldmann
have actually observed a quadripole transition - an
octupole would give excellent agreement with the esti-
mated value of 10 °% em“for the cross section. It is

to be hoped that with the development of the synchrotron

more experimental data will be fortheoming to make
a quantitative check of the theory possible.
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4)
The Production of Mesons by Electrons.

The general formalism developed.‘:paragraphs -4
may be used to caleulate the cross section for the
production of mesons by electrons. The production
of a meson in a collision between an electron and

an atomic nucleus, i.e. & process of the type

e+ 2> (Z;l)A-q-Tl':-o- e (94)

can be derived exhaustively from the matrixelement

of the currént corresponding to the production of

a meson. Recent investigations have shown that the
problem of the production of mesons cannot be satis-
factorily treated under neglect of radiation damping.
However, the same considerations show that the effect
of radiation damping on the cross section for the pro-
duction‘of a (vector or pseudoscalar) meson is not
excessively large for energies up to approximately
600 Mev. This is equally true for the production of
mesons by y- rays and the production of mesons in

nucleon-nucleon collisions. In the following we shall
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neglect radiation damping altogether. The results are
therefore inappliceble to cosmic radiation problems

but should give & reasonably good approximation in the
300 Mev range. The limitation to 'small' energies allows
us to neglect the influence of heavy particle recoil -
and the neglect of this effect will involve an error

of the same order of megnitude (namely wup tonb0%) as
the possible error due to the neglect of radiation

damping.

The analysis will be carried out for pseudoscalar
charged mesons the mass of which we assume to be appro-

ximately 300 electron masses.

The simplest interpretation of the process seems
to be the following. The electron with momentum p pro-
duces an electromagnetic field Qg'lAlg) (defined in
equation (4)) in a transition to a state with momentunm
p'. The field carrying a momentum X = p - p' interacts
witﬁr;ucleus, which under the influence of the field
makes & transition from a state with ‘bound' or no
mesons to a state with a free meson of momentum g .
This transition can be described in terms of a current

(£1310), where O signifies the initial state of the

73



nuclear system (consisting of the nucleons and the
meson field) and f its finael state. The matrix-element
corresponding to this process can then be assumed to
have the form (1l) for whieh - by using the equations

of continuity-we may write
H = fdr {A] - S@KWKYTe (95)

This expression may-in the extreme relativistiec
region of electron energies- be simplified considerab-
ly by means of the considerations of paragraph 2. .
Of the quantities involved in (95) A is the only one
which depends strongly on k. As a function of k¥ 4
shows & pronounced maximum when k is parallel to p
in which case k2 « the energy transferred from the elec-
trons to the nuclear system. Whenever k occurs in a
quantity other than A we may therefore write k=« p/p.
With this approximation involving an error of the or-
der 1/p' the right hand side of equation (95) reduces
4o the transverse part of the interaction between the
vector potential and the transition current. EBquation

(95) may therefore be replaced by
iwt

-H‘:.Sé! (és.-éL)@ (96)
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where F ;, denotes the transverse part of the vector
field F: F,=F - (Fk)/k . With this simplification
the whole calculation reduces to the determination of
the matrix element of j corresponding to the production

of a free meson.

With the assumption of infinitely heavy nucleons
(i.e. under neglect of recoil effects) the interactions
between the nucleons and the mesons can be deseribed
in terms of the large sourcefunctioq alone. This, in

sl
the case of pseudo scalar meson hasAyector character.
The Lagrangian funetion of the sya§em consigting of

nucleons and mesons may then be written

£=8,- {(V‘?+XV‘F)"?+‘§’ + p"q*cf + (PUg*) +(f*V?)} (97)

L, describes the bare nucleons, <|7+and ¢ are the me-
son operators, q* corresponding to the production of

e positive or the annihilation of a negative meson.

P is the vector source function. To ensure gauge-in-
variance it has to be assumed that under a gauge trans-
formation P transforms in the same way as ¢ . The
only non vanishing matrixelements of P then represent

transitions from a proton- into a neutron state. The
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expression (97) represents the Lagrangian in the ab-
sence of an electromagnetic field. In the presence of
such a field we have to replace the operators ga and
V in (97) by % -ieA, and U-ieA when acting on
Q and by their complex conjugates when acting on ?*
With the usual procedure we then obtain for the cur-

rent vector j:

é.—. —; .Q{(V‘(')? ‘{’+(V‘|7)+ P - P‘f)+} (98)

This expression for the current wector has an
obvious physical interpretation: In a model in which
a proton is considered as a mixture of a bare proton
state and a state consisting of a neutron and a 'bound’
positive meson the production of a free meson may
arise in either of two ways:-

(1) The meson is produced spontaneously by the
source, i.e. the bare proton is transmuted to & bare
neutron and a free positive meson; or

(ii) the meson bound to the neutron is liberated
by the action of the electromagnetic field.

Wheé%s the process (i) has no counterpart in a clagsi-
cal theory, (ii) bears a close resemblance to an ioni-

sation process.
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The commutation relations for the meson operators

Q+ and ? can be satisfied by putting

v 1 - - - - ‘1_= "L+ q»z_
where the (r) are wave functions with the asympto-

tic behaviour

i(qr)
d>1<:)~¢

Near the origin this simple form will be distorted as
the result of the electrostatic interaction between
the meson and the nucleus. This will give rise to a
Coulomb factor which, in the first instance, we shall
assume to be unity and which we shall reintroduce at

a later stage of the calculation. The operators a

and b correspond %o the annihilation of positive and
negative mesons respectively and for such transitions
they have the value unity. Although they satisfy the
commutation relations the expressions (99) do not,

in the presence of sources, lead to a diagonal form
for the Hamiltonian matrix. If we neglect the reaction
of the meson field on the sources (i.e. if the source
function P is assumed to be known) the gensral iselutien

solution of the problem may be written in the form



(_f - (fo + ?M (100)

where T@ is the solution of the static equation
(Or=ptlep, = - (VP) (101)

It is then easily verified that equation (100) defines

a matrix f which satisfies the necessary commutation

relations and makes the Hamiltonian diagonal.

To obtain a solution of equation (101l) we have

to specify the source function P. We have

P= f%i_g 1t -it,) (102)

where 6 s the spin operator acting on the nucleons
and the T's are the Pauli isotopic spin matrices. The
constant f is the coupling parameter which, in our sys-
tem of units is of the order unity. We now have to de-
termine the matrix element of (102) corresponding to

a transition in which one of the nuclear protons is
transformed into a neutron and a momentum ‘g_ is

transferred to the nuclear system. We may write for

this matrix element

(Er)
_ o £ 6T
P =W £ (103)
in which is the expectation value of the matrix

element 3 4 (T, -1 tT,), that is
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- o) @y W)
§" ) ;&dg' dgA F(g‘ g‘xyoﬁ( |“T’7,)u’o(g( §A)
with the notation used in appendix 2. The solution of

equation (10l) can now be wikitten down immediately:

. & v (Er)
%= ' ez te (104)

where €'e p}+ gz « This method of building up solutions
baged on the solutions of the static equation is justi-
fyable only if the recoil emergy of the nucleons can

be treated as negligible.

Substituting from equations (99),(100) and (104)
into the expression (98) for the matrix element of the
current we obtain

3= v:e {g_(q-& g)(éo') o'% (105)

—

According to equation (96) we have to combine this ma-

trix element with the vector potential corresponding

to a transition in which the momentum k is transferred

from the electron to the system of mesons and nucleons.

From the conservation of momentum it follows
9-8 = k

so that we obtain for the transverse compounent of the

current:
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5*=v§r {5340 -g] (106)

Here again the first term is the ionsiation term and it
is seen that it gives rise to an anisotropic distri-
bution of mesons with very high energy with a marked
preference for the forward direction. The second term
due to the direct conversion of a wuantum into a2 me-~
son gives an isotropic distribution of mesons. When
added together the two terms tend to cancel each other
in the forward dieection, though this cancelation is
far from being complete. It will be seen later that

the major contribution at all meson energies is given

by the second term in equation (106).

Inserting from equation (106) into equation
(96) we obtain an expression for the matrix element
H' which in Born's approximatiom is related to the

differential eross section by the formula (17).

From equations (96), (106) and (17) we therefore
obtain as a result of carrying out the summation over

the orientations of the nucleus

db = —L;- ,,2“‘ (12.7:.)2- d&qplt 40 da'(k*-«?)
faa(hat-INHa8-1)a.}

where the spin summation over the tensor &, &; has yet

—  Smem——
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to be carried out. 6, denotes an arbitrary component of
the vector_o_’ . It is observed from this expression that
the lonisation term tends to cancel the leading term

for mesons in the forward direction.

In the determination of the cross section we first
carry out the integration over the directions of the

megon and obtain N
= ot _f£- 240" (ke 2)" =
Ja#® = S deqptd (22

Y R I
q od

where the dot now denotes a scalar product. In perfor-
ming this integration it was assumed tzhat in the me-
son terms k~K with the same degree of approximation
as is used in the derivation of equation (96). The
firgt term in the curly bracket is due to the process
(i), while the second comes from (ii) and the inter-
ference between the processes (i) and (ii). The second
term is usually small. For non relativistic mesons
Q& V¥ and this term behaves like g*/y* while in the
relativistic region it is of the order 2p/k‘' times

a slowly increasing logarithmic factor. Even in the
case k= 2rc. "it amounts to only 26% of the leading term.
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The scalar product ( @ . os) has been discussed earlier.
It is simply equal to (8) where S is the tensor defined
in equation (21). (S) has been evaluated in equation
'(38). Inserting from this expression into equation (107),
the integrations over the angles can immediately be

carried out and give

&gt £
d? = X (108)
S.a. Sn.' ¢ T @31 (1370 S(r)d«

in which S(x)dk , the spectral distribution funection

of the mesons is given by

S(x)dk = g":‘ (Et* E“){b QE,;E' Ez;ise‘n}

{|_ (@39.1 3_)} (109)

The total cross section is obtained from this expres-

sion by integrating over dK from g to E.

14)

Numerical Evaluation of the Meson-Spectrum

eand the Cross Section for Meson Production;

Digcugsion of the Results.

In the derivation of equations (108) and (109)

82



the; effect of the electrostatic field of the nucleus
has been neglected. We can correct this by multiply-
ing S(x) by N* - a 'Gamow factor' for the meson wave.
This factor is defined by [NIt= |¢ﬂ(°)|"/ld"‘("°7|1§vhere ¢.1>‘1 is
a regular solution of the Schrédinger (:‘r.ordon equation
of a free meson in the dectrostatic field of the nu-
cleus. The nearly isotropic distribution of the mesons
in the final state suggests that there is no appreci-
able error involved in taking s-waves for the meson
functions. For light nuelei (Z<4«20), for both positive
and negative mesons N can be taken to be unity. For
large values of Z we can make use of the W.B.X.-
method to obtain an estimate of the function ¢S (r)
and hence of N°. In the case of a negative meson it

is easily shown that
v _ gt - o)

N*=N. = 4579 (110)
where q_@s" denotes the momentum of the meson at the
surface of the nucleus, so that

)

4s = {(e7 TR gt}
When the meson has positive charge we must distinguish
between two cases. In the first case the energy of the

meson may be less than the Coulomb barrier: x=-p<{ oZ/R
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in which case N' is very small so that in first appro-
ximation we may put N= 0, since the short wavelength
of the meson will make the barrier practically impene-

trable. For higher energies «-p >4Z/R we may take

(+)
/

N1'=N.:. qs

(111)
with q(;) defined as above. The spectral distridbutions
for mesons - positive and negative - Si(‘)g N; S(x)
obtained by multiplying the expression (109) by the
factors (110), (111l) respectively are shown graphi-
cally in figure 6, for the case in which « Z/R= 30
(i.e. for a very heavy nucleus) and a maximum energy
of 600. The meson mass has been assumed to be 300.
If we denote by n  and n_ respectively the total num-
ber of positive and negative mesons produced under
these conditions we find by & numerical integration

that

VL_/'L,‘,I L4 ; n_/ny= .27, n./n, 6= 073

n, being proportional to the area under the dotted
curve. The dotted curve gives the spectral distridbu-
tion S(«) defined by equation (109). Even in the case
of this extremely heavy nucleus the error involved

in taking N*=1 is less than 30% for this emergy. For



Figure 6.

The energy distribution of pseudoscalar mesons pro-
duced in a collision between an electron and a
nucleus. Sy and S_. represent the spectral distri-
bution functions of positive and negative mesons
for a very heavy nucleus. S 1is for a very light
nucleus. k- 1ig the kinetic energy of the mesons
in units of me? . The maximum energy was assumed

to be 300me*.



lower energies it is greater.

With the assumption N'= 1 we may now proceed to
estimate the total ceross section for which we find from

equations (108) and (109)

b = & q(E)e}/23+1 (112)
where
4 §2
g, - (7R (113)
and
E
g(E) = S S(c) dw (114)
’0

With p =300 anf £%1 we find that & = 1.1 10 em®, If
the energy of both the electron and the meson in the
final state is large compared to some average nuclear
excitation energy (of the order of 10 Mev) we may con-
gsider the possible final states of the nucleus to be
energetically equivalent, Then by & process similar to
that used in paragraph - i.e. by using the completeness
of the set of nuclear wigenfunctions we may svaluate

%‘&%/U* I and obtain:
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~
3)1-1 z { Z, for positive mesons

¢ (115)

A-Z, for negative mesons

The integral g(E) can eagily be estimated in the non-
relativistic and extreme relativistic range of meson
energies. From what has been said Previously we may
neglect the contribution to this integral made by the
ionisation term. Replacing the logarithmic term in the
integrand by a suitably echosen mean value (E'~ %(E-p))

we find s
2VZ E- % _
q(E) ~ —;—(-—tp ) tog (€-p) (126)
in non relativistic approximation and
g (E) ~ %”“8"'5) (117)

in extreme relativistic approximation. As a result of
a numerical integration of the spectral disgribution
function defined in equation (109) we find that
g(600) = 1.9, This is a factor 4 less than the value
given by either equation (116) or (117) but we would
not expect better agreement in this case since the
energy is outside the range of validity of both appro-

ximations. In deriving these approximations we have



neglected terms which would tend to decrease the total
eross section, so that equations (116) and (117) should

be considered to define upper limits.

It follows from these comnsiderations that the
cross section is proportional to the number of nucleons
in the target nucleus, a result which is immediately
egident by considering the small wavelengths of all
particles occurring in this process. The absolute value
of the cross section is very small; at 300 Mev it is
approximately 2»10"*° ecm’per nucleon. From equation
(117) it is seen that the cross section increases slow-
ly with energy but the result is unreliable in the
high energy reagion because we have neglected to take
into account the effects of nuclear recoil and radia-
tion damping. However it follows from recent calcula-
tions reviewed by Heitler that up to energies of 600
Mev the influence of radiation damping is not large

in the case of pseudoscalar mesons.

The cd@ss gection for the production of mesons
by nucleons is only about one hundredth part of the

eross section for the production of mesons by x -rays,
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as determined by Chang (without radiation damping) C§
and Peng. It should be observed however that the values
for the cd@ss section given by Morette and Peng are
rather high owingbto the small meson mass assumed in
the calculations. In order to observe the production
of mesons by electrons it appears therefore that very
thin targets (of the order of one hundredth of a radia-
tion length) must be used. In the case of lead this

is of the order 0.05mm.

The shape of the meson spectrum produced by elec-
trons &s roughly the same as that produced by a thin
target Brems spectrum of ¥ -rays. The reason for this
is that the nucleus radiates its mesons under the in-
fluence of the Maxwell field of an electron trausition.
The spectrum of this equivalent Maxwell field is appro-
ximately the same as the spectrum derived from thin
target radiation. Even quantitatively we should expect
the resemblance to be close considering the equivalence

of electrons and photons revealed in the Weizsidcker-

~ Williamg method.
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Appendix 1.

The Determination of Nuclear Matrix Elements

{
by Means of the Becker Leibfried Metho(3Dr

The Becker Leibfried method of'second quanti-
sation' represents a very convenient way for the de-
termination of matrix elements defined in terms of
field operators. It is in a way a mathematical pre-
cisation of the ideas of Hartree and Fock and hard-
ly adds anything substantially new. In field theory
however it helps one to avoid the cumbersome momen-
tum representation and enables one to give a meaning
Y0 operators without any restriections as to the
choice of suitable coordinate systems in momentum
space. In this capacity it has been recently used
by Schwinger in his theory of the Lamb-shift.

Since no account of this method - in particulae
in its application to Fermi-systems - has been pmh-
lished - we shall outline the basic idea of the Becker
and Leibfried approach in the following pages. The

formulation given here is based on a discussion of
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3,
this method given by Heisenberg in his colloquium on
the guantum theory of radiation and to many informal

talks with Prof. Becker and Prof. Rellich in Gottingen.

In quantum theory a nucleon can be deseribed in
terms of five coordinates: the 3 space coordinates x,y,z
& spin coordinate s (capable of the two values *!| ) and
& coordinate of isotopie spin t. The isotopic spin-
variable is also capable of two eigenvalues !, the
first of which describes the proton state. In the fol-
lowing we shall tesat the nucleons in non relativistic
approximation. It is well known that Fermi-fields
can be described in terms of two wave-operators‘t’?g)and
YE), the first of which symbolises the creation of a
particle E , that is the creation of a particle with
gpins s,t at the point r of ordinary space. 4 move-
ment of a particle in this representation is a sequence
of creation and annihilation processes along the
points in the neighbourhood of its classical trajec-
tory. The guantum properties of the field are expres-

ged in terms of the commutation relations
FHEINENT = {¥TEIvrE) = o
SYHEIY(EN T = B(E-€) (1)

90



where the curly brackets denote the + commtator : {AB{-
=AB + BA. 0 (€ -§') is used as an abbreviation for
§(x=x*) §(y-y") 8(z-2")84 8, . The 8's are Dirac
functions when the;act on a continuous variable and
Kronnecker symbols when they act on a discrete variable.
The operatorsﬁﬂ(% ) and Y (§ ) have to be such that
that the operator representing the energy obtains the
form of a diagonal matrix. In non relativistic nuclear
theory this operator - the Hamiltonian - has the form
He= [dg 25 1T «
+ Jde fde W WrEIV(E-§TWENKE)  (2)
4+ ...
Here M is the mass of a nucleon (the trivial mass-
difference between neutron and proton has been neg-
lected in equation (2)). The first term represents
the kinetic energy of the nucleons, the second inter-
action between pairs of nucleons and the ... indicate
3= and more particle interactions. The order of the
operators in the second term has been chosen in such

a way that no selfenergy terms will occur.

It follows immediately from egquations (1) and

Il



(2) that the operator
A= S‘V*(g)‘v(éh"g (3)

commutes with H and therefore represents a constant of

motion. The operator A has the following properties:

(i) the eigenvalues of A are real and positive,
(11) One of the eigenvalues of A is O.
(1ii) the eigenvalues of A are integers.

The proof off (i) is trivial and follows from the
positive definite form of 63). (ii) follows from the

commutation relations (1):
AW_WA = —w
(4)

AV YA = +¥*
It xx,is an eigen-vector of A to the eigenvalue A!
then because of the first equation (4)Yy,:is an eigen-
vector of A to A%~1 . Applying the operator Y suffi-
ciently often to the vector X We would therefore
arrive at negative eigenvalues which is in contradic-
tion to (i). It therefore follows that there must
be anveigenvector.xb with the propertytfm;oand hence
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AY,=0 and that all the eigenvalues of A must be integers.
The physieal interpretation of the operator A is obvious:
It represents the number of Fermi particles. The eigen-

vector Xe corresponds to the vacuum state.

The operator A gains its importance from the fact
that in most theories it commutes - or commutes appro-
ximately - with the Hamiltonian of the total system.
It is therefore useful to divide the Hilbert space -
on which the operators Y,YT' are allowed to act into
subspaces each corresponding to a certain eigenvalue
A' of A, 1.e. to & certain number of particles. In the
case of the Hamiltonian (2) these different subspaces
do not communicate: there are no matrix elements of
the type (A'|M|[A")=% O for A'4 A", provided that the
quentity M is observable. It should be noted that the
operators ¥ and YT - the amplitudes of a Fermi-

field-doe nct represent observable quantities.

Starting from the eigenvector Xo which we agsume
to be normalised (foYo)=1, we may now proceed %o
construct the eigenvectors.Xk by using equation (4).

We obtain in this way:
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f(E) = ﬁ-'-_- Y+ (&) yo
X.(§,8) = T,l—',‘ WHEIHT(E)

(5)
Kalka - £) = = W) VB,

The Hilbert vectors defined in this way are functions
of the coordinates of the partiecles. There is one Hil~
bert vector to each configuration of the particles in
coordinate space. The normalisation employed in equa-
tion (5) gives the following orthogonality relation:
A
(XA.XL) = -i-'- Z(‘)P]T 8(§,“' §,’t) (6)
- T
which follows immediately from (5) by applying the
commutation relations (1). The scalar product between
two vectors X and y,« is nothing for A'$£ A", The eigen-
vectors Xa defined in equation (5) are antisymmetric

in all their variables: y, (.. §;.. §«c..) = “Xal- - §- -8, -)e

The right hand side of equation (6) has the same pro-

perty. (The summation has to be carried out over all
/

permtations of the indices of §. , (-)® veing +1

for an even pergutation and -1 for an odd permutation).



In the following we shall use the abbreviation 3(;-§W
for the right hand side of equation (6). This antisym-
metrised & -function can then be replaced by a normal
Dirac- $ -function whenever it acts on functions which

are antisymmetric in all coordinates.

The veetors y, defined in equation (5) can be
interpreted as basisvectors of the Hilbertspace on
which the operators W and Yt act. The quantities
E.'fz"“ £ correspond to the indices of the unit-

vectors in an ordinary vector space.

The most general Hilbert vector U in the sub-
space A will have the form

U= §dg . dg, w(f, - Ea)xal6- 6Q) (7)

the functions u(é,... §A) representing the 'coordinates'
of the vector U in the frame of reference defined by
the basisvectors (5). Without loss of generality we
can agssume that u 1s antisymmetric in the same way

as Y - the symmetric part would not contribute to
the integration (7). The normalisation chosen for the

basis veetors X mnow guarantees that U is a unit
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vector (UU) =1, provided that

(48, .. 4ga utg, - g0 = (8)

This normalisation rule and the fact that u has to be
antisymmetric suggests the interpretation of u as the

Sehrédinger function of the A particle prodblem.

The analysis now lets us determine unambiguousiy
any operator built up in the conventional way out of
the Fermi-amplitudes ‘( and ‘Y"' . Let a denote a state
with A particles and b a state with B particles. The
state A can then be described in terms of a Schrodin-
ger function %(E,""gh)’ $he state b by ub(g,...gb).
We can now determine the matrix-element of Yt ,sey
corresponding to the transition a be This metrix-
element is simply (DbBlY¥§)ad) = (U’L[/"U’n) where Up
and Uy are defined in equation (8). Now, by using (5)
and (6) and the symmetry property of the function

we have

(bB‘W(;“ﬁA) = zAf‘ V-B-Sdgl'"éA":(gg"SAlg)“'a(gg--§A) (9)

We therefore see that the operator Y'Y corresponds to

the creation of a particle - the number B of particles
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is one larger than the number A of particles in the
initial state. Taking the Hermitian adjoint of equa-

tion (9) we can determine the matrix-element of Y
(bBlHE)aA) = 55,(,A‘/K34€.~-4€3 wal§, 5/ 6)ut(g,..55) (10)

and it is therefore obvious that the operator (r

represents the annihilation of particles.

The matrix-elements of the operators (10) and
(9) may be very useful in the discussion of R-decay
phenomena for which the number of electrons does not
remain.constant. Whereas the original procedure in
Fermi's theory is to replace Yt by the conjugate of
the wavefunction of the crecated electron we see from
(9) that this procedure might lead to erroneous re-
sults - since even the one particle electron eigen-
functions are not orthogonal in the initial and fi-
nal state (Change of 2!). This gives rise to exchange
phenomena - introducing an exceedingly émall correc-
tion in the shape of fb -spectre - and to intermal

ionisation processes.

However, in the applications given in this paper

we are mainly concerned with operators which leave the
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the number A of particles unaltered. By means of the
equations (9) and (10) and the completeness relations

for the Schrddinger functions

Zuelhi VL (o na) = AE-1) (11)

the matrix-element of the simplest operator of this
type

TE) = 4R YE) (12)

may be readily evaluated. Q§ is an operator acting
on the coordinate % . With the general rule for matrix
multiplication we have

(bBIQ(E) [a &)= D (DBIY*(E) °C)q, (o0l (§)lan)
<«C

and this relation can be immediately evaluated by means

of equations(9),(10),(11). The result is
(BIR(§)NBA) = A&A'BSdg,.,dgA_‘ w:cg‘..gyag L, £) (12)

The J-functiony implies that the operator & leaves
the number of particles invariant. The factor A is not
immediately obvious but it can be understood that for

Q= I - the unit operator - Q represents the particle

28



density. In this case the expectation value of

Sdgﬁ(g) should be equal to the number of particles.
(13) shows immediately that this is the case for a=)b
- i.e. for the expectation value.

In some cases average values of § over the whole space
will occur. Because of (13) - and keeping in mind the
symmetry property of the wave functions - we may write

for these

(bBIj@dElaA) = IZSJ;,..dgAu.Z Qg, wa (14)

It will be seen that the method outlined above
gives an unambiguous procedure for the determination
of matrix-elements without reference to a transfor-
mation in momentum space. It therefore enables to
deal with matrices of the type given in equation (12)
as 1f they were one particle matrices and make the
transformation té:ﬁany particle situation at a very
late stage of the caleulation. This of course is one
of the basic ideas of the Hartree Fock method but it
gseems to us to come out in a much more tangible

form in the Becker Leibfried version of the theory.
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Appendix 2.

Formal Remarks on the Magnetic Dipole Moment

of Nuclear Transitions.

It is well known that the proton as well as the
neutron has a magnetic moment. The proton moment is
2.79 nuclear magnetons (1/2M in our units), that of
the neutron -1.91. One therefore has to assume that
it is not only the charge of the nueclear particles
which interacts with an electromagnetic field but

their magnetic moments as well.

Throughout this paper it has been assumed that
a 4-vector jy =~ subject to an equation of continuity
- ig a sufficient description of a nuelear transition,
but the verification of this assumption is only obvi-
ous in the case where the charge of the nuclear par-
tieles is alone responsible for the interaction with
the electromagnetic field. We want to show in this
paragraph that the 'magnetic'! interaction can also
be described in the form of an equivalent current,
guch that the total current used previously has to

be interpreted as the sum of an ‘orbital' current
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©) )
J and a 'magnetic! current j . A formula will be given

for the determination of the 'magnetiec! current in terms
of the magnetic moments and spind of the nuclear par-

ticles.

We start from a Lagrangian for the system of nu-
clear particles in an electromagnetic field. We assume

that this lagrangian has the form

§= & 1Y B,ricqA T (3-ieqA W) + T MicQiA-9A) (1)

Here V' and ¢ are the operators corresponding to the
creation or annihiltation of & nucleon respectively

and g is an operator acting on the isotopic spin with
the eigenvalues 1 for & proton and O for a neutron.

(q= 2(1+ 't))). M,  is an antisymmetric temsor (i,k
1,2,3) representiasthe magnetic part of the interaction.

We may write
M= T $T{2799- V@io (2

where 6“‘ is the spin operator. In a relativistical-
ly invariant theory the temsor M;, will have i-4-
components as well, so that (1) has to be interpre-~
ted as a non-relativistic approximation. The current

j may now be defined - by general prineiples of the
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quantum theory of wave fields - as the funetional
derivative of the lagrangian with respect to the com-
ponents of the vector-potential. The current defined
in this way satisfies the equation of continuity pro-
vided that the Lagrangian is gauge-invariant, i.e.

invariant against the gauge transformation

Y- A%y Yt yre o9

This is certainly the case for the Lagrangian leading
to the Hamiltonian (2) of appendix 1, and for the
additional term M;, introduced in equation (1). With

this definition of the current we.obtaig)
. §& L 5 AL A = 3+ %Mik
%U‘ 8Aq ’aAv f"‘b('br,ﬁv) %4’ - ’.504’-

the}first term of which represents the 'orbital' cur-

(3)

rent the second the current due to the magnetic mo-
ment of the nucleons. It is easily seen that both
components of the current separately satisfy an equa-
tion of continuity. In the case of the magnetic
component this is due to the absence of a four-com-

ponent and the antisymmetry of Mik .

The magnetic dipole moment has been defined in
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paragraph , equations (33) and (35). Considering the
antisymmetry of T, equation (33) may be written

«Tie = T]dr {aie= dexid (4)

Inserting from equation (3) we then have
)

«Tie = k Tic + o Wi (5)
(‘o\
where T, 1s that part of the magnetjc dipole moment

which is due to the orbital components of the current.

The result (5) is obtained after a partial integration.

It is therefore seen that our definition (33) of
the magnetic moment, namely;:)ﬁ‘::sﬂd_' differs from the
one commonly used by a factor 1/« . This difference
is clearly #:rivial and due to the more convenient
Telectrice! interpretation of the magnetic dipole mo-
ment used in this paper. As a result of this interpre-
tian our formulae show a close resemblance between the
electric quadripole case and the magnetic dipole case,
whereas commonly the resemblance lies between electric
and magnetic dipoles. It appears however that for our
problem the interpretation used is preferable, since
the field produced by a moving electron does not show

symmetry between the electric and magnetic field com-
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bonents - in contrast to the electromagnetic field of

a quahtum.

Owing to the magnitude of the magnetic moments

and to the fact that the neutrons may also contribute
of ke type defined by 3"

in the case of magnetic dipole transitionsAthe orbi-
tal contribution of.magnetic dipole transitions will
generally be small. In the discussion in paragraph
we have therefore neglected the orbiéziAalitogether.
This will be the more justified since there are a
great number of selection rules forbidding orbital
magnetic dipole transitions and it will be remembered
that in the theory of atomic smectra such transitions
are altogether impossible for optical frequencies.
If orbital magnetic dipole transitions are allowed

they will in general behave very similar to magnes

electric quadripoles.
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