THIF ANNIHILATION OF POSIIROIIS

by

SÜREYYA MERIÇ.

Thesis for the Degree of Ph.D.
of
Glasgow University.

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 13870137
Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

THE ANYIEILATION OF POSITRON:

TABLE UF CONTMNLS.

Introduction. 1

1. Previous \#ork on Positrons. 1.
II. The Cross-sections for Annihilation Processes. 25.
III. I'ke Angular Distribution of I'wo-quanta Annihilation Radiation. 57.
IV The study of One-Quantum Annifilation: Part I. 67.
V. Cerrelation of the beta- and gamma-Radiations from ču:64 79.
VI. The Study of One-qunatum Annikilation:rartII. 90.
VII. Proposals for ruture investigations. 138.
References. 146.
Appendix. 149.

Ihis thesis deals with the investigation of different processes of the annihilaition of positrons, mainly two-quanta annihilation in motion and one-quantun annihilauion . Before describing the experiments performed it is necessary to review the previous experimental and theoretical work which has been done on anninlation of posioruns in general in order to account for the choice of problem and for the experimental technique employed . A briof descripuion of the experiments on pair production will also be included in order to make the historical review more complete .

Our main experimenual work consisus of the full analysis of the absorption of the annihilation rauiation from cu produced in differen anninilators. In all observations two thin-walled rectangular counvers with absorbers between them were used for the measurement of the energy and invensity of the γ-rays by uno coincidence counting meihod . These experiments provide for the first iine a definice proof of the existence of the hard radi ations resulting fron the annihilaiion of posiorons in
motion. The experimental value obtaineu fur the raiio of the cross secions for one-quanuma annirilauiun in nouiun to urro-qumrta annihilation in motion is in agreenent with whe predicued theoretical value.

Two adaitional experiments ui consiaeraule importance were also perforned: Firstly the angular distribution of two-quanta cnninilation radiation was investigaced by menn of a new uype of γ-ray counter possessing high efficiency and high direcional resolution. vecund y a study of the corelation between seva and uamma radiations from cu ${ }^{64}$ was made by means of a coincidence method.

A number of experiments which were ranned but nou carried out because of the limiuations of time and equipment during the period of this research will be mentioned au the End of the thesis as possible future investigations.

CHAPTER I

PREVIOUS WURn ON POsITRONS

Sectiun A:- Dirac Hole Theory
The positron was discovered by C.D. Anderson
in 1932 in the course of cosmic-ray investigations. The existence of this new particle had been regarded as a theoretical possibility two years previously by Dirac. In the Dirac relativistic wave equation ${ }^{(2)}$ for a free electron the energy of the electron is given by a square root which could be either positive or negative for a given value of the momentum. Negative solutions correspond to negative energy states.

The connection between these theotetical negative energy states and observed positive electrons is given by the " Dirac hole theory ". According to this theory a positron is regarded as a hole in the negative energy states. It is assumed firstly that all negative energy states ranging from $-m c^{2}$ to $-\infty$, in the absence of an extermal field are normally occupied so that an electron which is in positive energy states can not jump into one of these occupied states. Secongly the electrons filling up the negative
energy states do not produce an external field and do not contribute to the energy and momentum of the system for which the charge density is infinite. The zero point measurement of the charge, energy and the momentum is represented by that electron distribution in which all negative energy states and no positive energy states are occupied. Inspite of the fact that the electrons occurying negative energy states can not produce an external field it is assumed that an external field can act on these electrons. A rapidly varying electromagnetic fieid high energy γ-rays; or the collision of two fast particles, can cause a transition from one state to another. at the moment of transition from the negative energy states k to a positive energy state E^{\wedge}, when a negative charge is removed from the negative energy states, an electron pair is created because a hole with a positive charge is produced at the same time as the electron. This process can occur unly if the interacting quantum or particle has sufficient energy to remove the electron from negative energy state. The reverse process i.e.transition frum the region of positive energy to that of negarive energy meano the annihilation of this pair, giving rise to the emission of electromagnetic radiation, called " annihilation radiation ". Ihis can happen at any energy of the positron, but has by
the
farkgreatest probability of occurrence when the positron possesses no kinetic energy. For this case the energy containe in the annihilation radiation is equivalent to the rest mass of the two electrons.
section B:- Creation of Positrons
Before Anderson's discovery an indirect evidence of the existence of positrons was obtained by several workers during the course their experiment on the anomalous absorbdion of high energy γ-rays in heavy material. As a result of the determination of the total absorption coefficient of 2.6 Mev γ-rays from ThC", in lead, the discrepancy between the observed and the calculated values was attributed to a nuclear interaction caused by these γ-rays. In fact, immediatelyafter the positrons were observed as a pair of eleatron tracks of opposite curvature in a cloud chamber immersed in the magnetic field, (5) Chadwick blackett and Occhialini showed that these positive electrons can be produced by borbearding lead with radiations fromarofonium - Beryllium source. Curie and joliot ${ }^{(z)}$ established that in this reaction the positrons were produced by the γ-rays resulting from the transmutation of beryllium by α-rays and they suggest that electron pairs were created by the interaction of photons with nuclei.

The laws of the conservation of energy and
momentum show that this phenomenon of materialisation of photons can take place only in the presence of a third body and only if the photon has an energy greater than a minimum threshold energy for which the value depends on the nature of the third body. if this third body is a nucleus, the minimum photon energy necessury to produce pairs is $2 m c^{2}$, but if it is an electron the photon energy must be greater than $4 m c^{2}$. Uther possibilities of pair production exist and these will be indicated later. (a) Pair Production by Fhotons in the rield of a vucleus. weation of pairs by the interaction of a photon and a nucleus is the most common process observed, and theorists have calculated the cross-section for this process in terms of 2 , the atomic number of the interacting nucleus, and $h \nu$, the energy of the photon. Uppenheimer, rlesset ${ }^{(8)}$, and later Feitlor and others ${ }^{(3)(10)}$ obtained an expression for the crosssection which was proportional to L^{2} and increasing rapidly with hy. This is in contfrust with vompton scattering cross-section which decreases with increasing photun energy. Later, the angular distribution of these pairs was investigated (\mathbb{A}) by means of a cioud chamber filled with krypton and it was found that positrons usually make smaller angles with the direction of the incoming photon than the electron does. this fact was attributed to the greater
*This is in good agreement with the theoretical distribution curve given by (10).
kinetic energy of positruns ut the roint of creation becauwe of the repulsive force between positron and nucleus. Inis interpretation led to a consideration of the relative values of E_{+}and E_{-}where \mathcal{F}_{+}is the energy of positron, s_{-}the onergy of electron. The difference $E_{+}-\xi_{-}$was calculated and measured experimentally ${ }^{(13)}$ in a Wilsun ${ }^{(1)}$ hamber and was found to be proportional to Z, the order of magnitude being 0.1之 - 0.28 MeV .

A distribution curve of the total energy of positron-electron pairs produced by γ-rays of 2.62 meV from ThC" showed ${ }^{(13)}$ that the average value for ${ }^{\text {F }}+\mathrm{E}_{-}$was 1.6 Mev as is expected from theory. 'the distribution of positron energy also was given theoretically by Heitler. (His result was checked experimentully in a cloud chamber by observing pairs produced by $\mathrm{Na}^{24} \gamma$-rays. ${ }^{(14)}$ Better results can still be obtained.)
(D) Pair production by photon in the field of an Blectron. This process was concidered first by Perrin and verfied experimentally by harque ν a silva ${ }^{(16)}$. It was also shown by the latter that the cross-section for this triplet " process (pair plus rejected electron) was 4 times smaller than for the photon-nuclear interaction i.e. the ratio of triplet production to pair production is proportional to $1 / \mathrm{Z}$, which was in quite good agreement with other experimenreferred to as Q.TR.)
tail results (14). more detailed calculation of this crosssection was curried out later by several authors (17-20, a) and the results of relativistic calculations were compared with the earlier work by Perrin and corresponding calculations for nuclear interaction, and it was found that for the very large photon energies the variation of cross -section is the same as that for pair production in the nuclear field.
(c) Pair production by fast Electron. Oppenheimer and Preset considered, for the first time, the possibility of materialisation by pair production of the kinetic energy of a charged particle egg. a fast electron. The cross-section as a function β-ray energy was calculated (21) first by fury and carlson and then by Heitler and Nordheim. The experimental evidence of this process was based upon stereoscopic photograph technique in a Wilson chamber using β-rays from Thc" source (23). Further accurate investigetions gave results which did not agree with the theoretical (24) prediction - The experimental value of the cross-section for pair production by fast β-rays of RaC was of the order of $10^{-22} \mathrm{~cm}^{2}$, which is about 100 times greater then the cross-section for materialisation by photons of the same energy. some of the later experiments gave also the same magnitude for ϕ within a factor of about two (25-27). the cross-section measured in these cases was found to be
proportionai to Z, the atomio number of whe bombarded element but not to z^{2} as the theory predicis. S. Benedetti using the trochoidal method, confirmed the proportionaliiy of emission of the positrons due to the wateriailoution of kinetic energy of S-rays from $\operatorname{Th}(B+C)$ with Z^{2} as is expected theoretically. But some of the experiments show no (29-32) indication of pair production by such a prucesi This indicates a threshold cross-section of the urder of 10^{-24} or $10^{-25} \mathrm{~cm}$. Although these figures contradict most of the previous expermentai resufto, they give good agreement with theoretical calculation.

The possibility of pair creation by eiectrons
in the neighbourhood of two other electrons was shown by (33)
F. Perrin provided that the incident efectron has an energy greater than $6 \mathrm{mc}^{2}$. (Heitler requires this amount to exeer $7 \mathrm{mc}^{2}$).

The evidence of positron emiosion frum radioactive suurces attributed to internal cunversion of σ-rays was also indicated by the authurs ${ }^{(32)}$ (${ }^{(4)}$. Halpern and urane observed a similar effect in the bumbardment of F^{19} with protons and found the coefficient of internal cunversion to be 1 per 100 -rays of 5.8 MaV from tnis recction, a value greater than tneory woud predict. The latter value was calcuiated by several authors $\begin{array}{r}(36-38) \\ \text { and }\end{array}$ the order of $10^{-4}, 10^{-3}$ per quantum of energy 5 mc .

Heitler, Q.T.R. P. 204

Section C:- Annibilation of positrons.

s. I. General Remarks:

There are several theoretically possible processes of annihilation which are listed below. The energies quoted correspond to the case of zero kinetic energy of the incident pusitron ($m=m_{0}$ and assumed to be the same for electrons and posit (1) The positron combines with a free or loosely bound electron. The mass energy is radiated as two \vee-ray quanta in opposite directions, each having an energy of $\mathrm{mc}^{2} \mathrm{a}_{5} 510 \mathrm{Kev}$. (2) The positron combines with an electron strongly bound to a nucleus. the nucleus takes up the recoil momentum the whole mass energy being confined to one y-ray quantum of energy $2 m c^{2}=1020 \mathrm{Kev.}$.
(3) The positron combines with an electron in the neighbourhood of another electron and a γ-ray quantum of energy $4 / 3$ $m c^{2}=680 \mathrm{KeV}$ is emitted.
(4) The positron combines with an electron in the neighbourhood of two other electrons. Two electrons, each having a Kinetic energy of mc^{2}, are ejected in opposite directions.
 boof (1) (1) - but only one electhen is ejected with aninete energy of zinct.
(5) The positron combines with an electron in the neighbour-

[^0] two particas to an accuracy of 2%.
hood of a bound electron. Again only one electron is ejected with a kineiic energy of $2 \mathrm{mc}^{2}$
(b) the positron combines with a k-electron without emission of radiation.

If positron possesses a kinetic energy E_{k} at the mument of annihilation in any of the $a b o v e$ cases then the total energy of the resulting radiation is $2 \mathrm{mc}^{2}+\mathrm{E}_{\mathrm{k}} \cdot$ (We must already mention that the probability of some of these anniiation processes for zero kinetic energy of the positron is zero e.g. i.e. annihilation can take place only while positron is in motion, such as one-quantum andinilation case(k)] The cross-section for the two-quanta annihilation (case (1)), the most probable annihilation process, was calculcted' by Dirac ${ }^{(2 a)}$ and found to be

$$
\phi_{2}=m_{0}^{2} \frac{1}{\gamma+1}\left[\frac{\gamma^{2}+4 \gamma+1}{\gamma^{2}-1} \log \left(\gamma+\sqrt{\gamma^{2}-1}\right)-\frac{\gamma+3}{\gamma^{\gamma}-1}\right]
$$

per electron, where $\gamma=E / \mu, \mu=m c^{2}$ and $r_{0}=e^{2} / \mu$. This cross-section increases as I is diminished. (This is in marked contrast with the cross-section for pair production which increases with the photon energy.) Thus annihilation occurs with the greatest frequency as the positron approaches the end of its ionising track. Experiments on the energy distribution of the J^{\prime}-rays show that annihilation radiation has a strong component of 0.51 MeV . agreeing with the above deduction that two-quanta annihilation at rest has a very
high probability. The above ex resoiun fur Φ_{2},tends tu an infinite value as the kinetic energy of the positron tends to zero but this does not mean that the probability of annthe halation becomes infinite. Since the lifetime of/positron is finite the rate of destruction (R) is limited and the eross-section is finite even for small v. The value of R in this case is given by

$$
R=\phi N Z v=M Z \pi r_{0}{ }^{2} c
$$

where N is the number of atoms per cm^{3} and Z is the atonmic number of the annihilating substance. For ∇ very small $R=N Z \pi r_{0}{ }^{2}$ is constant for a given Z.

For E very large the cross section may be
taken as

$$
\phi=\pi r_{c}^{2} C^{\mu} / E\left(\operatorname{lio} \frac{2 E}{\mu}-1\right)
$$

in this case the energy is not shared equally between the two quanta and they are not emitted in exactly opposite directions except in extremely relativistic cases where $\nabla \rightarrow C$. The quantum emitted in a forward direction acquires nearly all the kinetic energy of the incident positrons and the second quantum has an energy of the order of $\frac{1}{8} \mathrm{~m}^{2}$, the precise values of the two energies can be obtained theoretically. This will be discussed in chapter il.

The possible types of annihilation and creation of pairs ${ }^{\text {are }}$ listed together i. in a table in order to illustrate the similarity of these two processes. This is given in Appendix.I.
s.2. Experimental Work on Annihilation.

In the course of absorption measurements of the high energy gamma-rays, the presence of an unexplaned secondary gamma radiation of 055 mev given off during the absorption process was first shown by Chao ${ }^{(40)(41)}$ and its existence was confirmed ${ }_{\lambda}^{6 / G r a y}$ and Tarrant $(42,43)$. These experiments also pointed out that the energy of this secondary radiation is independent of the absorber material used for the absorption of the primary Y^{\prime} - rays and also dies not depend upon the energy of these incident radiations $1 t$ was also shown that the existence of the soft (secondary) radiation was possible if/incident photon possassed a minimum energy. By rather indirect methods this minimum was placed approximately as 1.5 mev

A connection between these unexplained secondary Y rays and the annihilation of poaitrons was first suggested by Blackett and Occhialini ${ }^{(44)}$ in 1932.
I: (a) In 1933 J . Thibaud ${ }^{(45)}$ observed the secondary radiatior due to pair annihilation, using the trochoidal method for collecting the positrons, and a film as γ-ray detector. The positrun source was a Radon tube surrounded with different materials ($\mathrm{Al}, \mathrm{Lu}, \mathrm{Pb}, \mathrm{Bi}$) which gave rise to positron emission under the influence of Y-rays. Photographic measurements

[^1]were made of the intensity of the \int-rays produced by absorption of the positrons(0.8 Mev mean energy) in platinium slaced at the focus of the magnetic separator. from the curve of logarithmic intensity against the superficial masa of γ-ray absorber he obtained a mass absorption coefficient of $\mu / \rho=0.2 \mathrm{~cm}^{2} / \mathrm{gm}$ (for $0.8-1.45 \mathrm{gm} / \mathrm{cm}^{2}$ thickness of ft) corresponding to $\mu=2.2 \mathrm{~cm}^{-1}$ in lead. By the more direct method of counting the number of photons in a lieiger-muller counter, he found a smaller value for μ which corresponds approximately to an energy of 0.5 Mev .
(46)
(b)- In 1934 F. joliot, using positrons emmited form Al bombarded by the α-rays from 80 millicuries of Polonium, and focussing them on to a 1 mm Pb or 5 mm Al absorber by the trodoidal method again, investigated the absorption of the X-rays produced in the first absorber(celled "radiator") in a second lead absorber of thickness varying from 1.5 to 6 $\mathrm{mm}\left(1.71-6.84 \mathrm{gm} / \mathrm{cm}^{2}\right)$. From a graph of log.intensity of ram diation counted in a G-M.counter against the superfidal mass absorber he obtained a mass absorption coofficient $\mu / \rho=0.24$ corresponding to a quantum energy of 485 nev using jaeger's relation $\mu_{\mathrm{Pb}}=4240^{\prime} \lambda^{2}$. The experiment showed that, if a hard component of lmev radiation existedits intensity was certainly less than 30% of that of the soft component.

Owing to the small intensity of the source employed
by Joliot (5000 positrons per minute on the focus) the number
of annihilation γ-rays counted was very smull. nis complete results are shown below. It will be seen thot his statistical error is very large.

Abs. thickness $\mathrm{gm} / \mathrm{cm}^{2}$	no. of γ / min
1.71	$2.46-0.2$
4.56	$1.24-0.2$
6.84	$0.65-0.25$

(c) In the same year, U.klemperer, 47 using a beron source, and a single counter in a lead cylinder, obtained $u=1.34 \mathrm{~cm}^{-1}$ By comparison with a standard Rai γ-ray a correction of about 26% was found to be necessary and the corrected result was $\mu=1.69 \mathrm{~cm}^{-1}$ in lead which is, within the limit of error, the same as the calculated value of $\mu=\sigma_{\text {scatt. }}{ }^{\sigma}{ }^{\sigma}$ comp. ${ }^{\circ}{ }^{\gamma}$ Proto $=$ 1.67 for 510 Kev . With a different experimental arrangement of source and counters in coincidence, and with sufficient absorber between the counters to prevent passage of recoil electrons of energy less than about 1 mev, it has been shown that the annihilation radiation consista only of soft quanta which is homogeneous with a hardness corresponding to $U .5$ mev.

Again in this experiment the statistics are very poor since only about 3 total coincidences per minite $/$ out of which $1.5 / \mathrm{min}$. wese cosmic ray coincidences) were observed. (d) Crane and Lauritsen ${ }^{(48)}$ using Carbon activated with 10 microamps of 0.9 Mev deuterons $\left(\mathrm{N}^{13}\right)$ obtained $\mu=1.58 \mathrm{~cm}^{-1}$.

The intensity of ionisation due to the annihiliotion radiation was measured in an ionisation chamber. Ho determine the absorption coefficient of the γ-rays a sheet of lead 7.1 mm thick was interposed between the two chambers (The first chamber was used in order to measure the positron intensity) The readings were taken every ${ }^{4}$ minutes with lead and one min. without lead alternately. From a graph of logarithmic intensity of both processes agwinst time measuring the difference between the position of these two curves they have calculated the linear absorption coefficient of/above value.

A few months later mamillan ${ }^{49)}$ found $\mu=1.71 \mathrm{~cm}^{-1}$ using the same source and experimental technique.

In all the above experiments the number of γ-rays emitted per positron was estimated and found to be very roughly equal to 2.

II: (a) More precise values of the quantum energy of annhilation radiation have been obtained from cloud chamber investigations of the γ-rays accompanying the positron emmision from certain artificial radio-elements. In such experiments a screen of mica or carbon is usually situated within the cloud chamber and irradiated by the γ^{\prime}-rays. The curvatures in a magnetic field of the tracks of the compton electrons emitted from this screen are measured statistically and the quantum energies of the incident f-rays can be deduced by muking aprropriate corrections for the enfrgy of the scattered quanta.

In such investigations evidence hagften been obtained of the existence of a strong γ-ray line with quantum energy approximating closely to the value 0.51 MeV to be expected from the two-quanta process of annihilation of positrons.

Experimental results obtained by Richardson and Kurie ${ }^{(50)}$ indicatersthe presence of radiations corresponding to the annihilation at rest from the positrons of W^{13}. (The source was obtwined by bombardment of C^{12} with 4 mev deuteronal The maximum momentum available from the main line was 2280 H . ($\mathrm{H}=250$ gauss, cloud chamber diameter $=7^{\prime \prime}$). The author suggest that occasimal electrons exhibiting a momentum greater than/ to be ascibed to this main line may be due to either contamination of the source,or the radiation emitted when a positron is annihilated while in motion(hard component of the two-quanta in motion and one-quantum annihilation).

In a later paper Richardson ${ }^{(51)}$ investigated the Y-rays emitted from $N^{13}, V^{48}, \mathrm{Cu}^{64}$ with a carbon radiator of the same thickness as mical because of the low energy of the expected γ-radiation the radiator was only $4 \cup \mathrm{mg} / \mathrm{cm}^{\alpha}$) in a cloud chamber of $12^{\prime \prime}$ diameter filled with hydrogen to a pressure of about 100 cm . Under the improved experimental conitions the result obtained from N^{13} is practically the same as the previous one. In the case of V^{48} (prepared by the bombardment of Ti with 5.5 MeV deuteron), in contrast with the N^{13} distribution curve alstrong 1.05 MeV line appears in addi-
tion to the main group (upper limit $2400 \mathrm{H} \rho=053 \mathrm{mev}$) in the ratio of 1.9 to 1 . This was at first thought to be due to one quantum annihilation, in view of the agreement between the eneugy of the γ^{\prime}-ray of 1.05 meV with the energy 1.02 mev to be expected from the annihilation of a positron in the field of a nucleus; but intensity considerations made it cleur that it was the radiatigh accompanying s-electron capture. The tail although present is prubably obscured by the large amount of this high energy radiation. The radiations from wu^{64} was alsu complicated because of the more pronounced tail with high uper limito . However the major part of the radiation consists again of the ordinary two-quarta radiation and the tail is a very small fruction of the intensity of the main line. Hence the statistics are not good enough in anyncase to make a numerical estimate of the hard radiations.

In a paper published a few months later than this an account is given of a more accurate experiment by the same author ${ }^{(52)}$ which showed a quite different momentum distribution curve for N^{13}, containing two distinct lines of energies $0.34 \mathrm{MeV}, 0.42 \mathrm{MeV}$ corresponding to the compton and photuelectrons due to the 0.51 mev radiation. ihe main difference in the experimental arrangement was merely the use of a very fine lead radiator of thickness 4.0017 cm
.hich is much more sensitive in the low energy rogiun. wu ${ }^{61}$ obtained by bombarding Nickel witn deuterons alsu was investigated in this experiment and a similar result was obtained.
(b) A very accurate study of the nnihilation radiation (53) spectrum has been made by Martin Deutrch using a " Magnetic Lens Spectrometer ". The suurce used was un 64. the result f the distribution of compton and photoelectrons converted in a relutively thick radiator ($50 \mathrm{mg} / \mathrm{cm}^{2}$) showed a distinct 0.5 MeV line and this was followed by a twil ending with a single line at 1.35 mev which was ascribed to the nucleary-rey. The intensity of this line indicated a production of lar $4 \cup$ positruns when compared ${ }_{\lambda}^{\text {with }}$ the Na^{22} nuclear γ-ray of 1.28 meV which is known to emit 1γ per positron. ihis is the culmost unly rublication which claims that the 1.30 line is due to a nuclear -ray . the poswibility of aocribing this Y-ray to the result of one-quantum annihilation of $v u^{64}$ positrons(0.3 meV mean energy) will be discusoed in uhapotyI. (54)
c.s. Cook and Langer have investigated the same
source with a high resolution magnetic spectrometer. (, The radius of curvature $w=4 U \mathrm{~cm}, \Delta H P / H=U .5 \%$ and the transmissiun angle was 01% of the total solid angle). They used a rb radiator of $0.0263 \mathrm{gm} / \mathrm{cm}^{2}$ and a very thin window $2.42 \mathrm{mg} / \mathrm{cm}^{2}$ which is 35 nev thick. (Later 2 Kev"Zapon" window counter was used.) The resuit wes that no hard radiation beyond U. 5

[^2]MeV could be seen on tncir grafli showing the distributa on of the recoil electrons. this perhwps was on account of the dimitation of the geometry of the apparatus. For 0.51 MeV the grours of the vompton and the photo-electrons are very distinct; even tho K, L, M lines are very clearly visible. moreover they found no evidence of a nuclear fory 0.38 or 0.19 MeV with an intensity of more than 2% *of the positron emissionand they also state that the 1.35 nev nuclear -ray was correlated with n-capture . There is no mention of any experimental verification of this statement.

A very precise value of the wave iength of the annihilation radiation frum a u^{64} suurce was determined by Dumond, Lind and warson (55) with a two-metre focus crystal spectrometer. The experiment originated from uthe idea of the calibration of the spectrometer and an exact experimental value of the Compton distribution from a homogeneous f-ray source such as"pure annihilation" radiation. Therefore all attention was concentrated on the radiatiors due to the annilation at rest. No evidence of hard radiations would be expected from such arrangement.

This fact rejects the possibility of ascribing the excess of particles at low energy to the speetra being complex. It was found

The deviation| was such that 9% of the $\underset{(54)}{\boldsymbol{\beta}}$ and 6% of the $\hat{\beta}$ transitions would be expected ta be forbidden ones.

III:- Angular Distribution of AnnihiLation Radiation.
(a) It was Otto Klemperer ${ }^{(47)}$ who established first the simultaneous emission of two Y-ray quanta in opposite directions in the annihilation process with the help of two G-M counters of nearly 2π solid angle in coincidence. The counters had a semi-cylindrical crosesection of diancter 2 cm (8 cm long). the councers were placed with 脌lat sides, which were covered with Findows $0.02 \mathrm{gr} / \mathrm{om}^{2}$ thick, faoing each other spaced 5 mm apart. When the source (activated carbon by bombardment of 600 kev rrutuns) was placed between the two counters after bei,ng wrapped in a sufficient materi- $^{\text {a }}$. 61 to stop $a l l$ the positrons, 300 single counts only ware obtainable in each counter and roughly 3 coincidences per minute were rearded under this geometry; when the whole system was: covered with lead (6 cm thick) this number was reduced to $1.5 / \mathrm{min}$. the latter being the natural background coincidences. (b) Better angular resolution was obtained by Alichanian, (61)
Aichinow and Arzimowich , in whose experiments the solid angle subtended by one counter was about 0.7 steradian. They have used two pairs of coincidence counters one pair on each side of the source. The source was radio-phosphorus obtained by bombarding Al with α-rays from 500 mC Rn. But the intensity obtained was only about 10^{5} which gave rise to 150 single counts (on the average) in each counter and the maximum number of cincidences per minute were only l-2 for various distances
of source from the counter. In oraer to show huw large the statistical error was, their complete results are giten bnlow.

$\begin{gathered} \text { Backgzound } \\ 3 \min . \\ \hline \end{gathered}$	$\begin{array}{r} \text { with } P_{15}^{30} \\ 3 \mathrm{~min} \\ \hline \end{array}$	Observed coinciaences 3 minutes	Cosmicrayt ord. background c.
RunI 510	935	4.7 ± 0.47	$3.3 \pm$. 2
$\begin{aligned} & \text { RunI } \\ & d=3.0 \\ & c=0 \end{aligned}$	890	2.8 ± 0.6	2.7 ± 0.35
RunII 516	[095	7.6 ± 1.0	1.1 ± 0.3
cm 010	890	2.6 ± 1.0	3.6 ± 0.6

(c) Beringer and Matgomery (62) used two small counters (1.05 cm to 3 cm long) subtending a solid angle of 0.015 steradian at the source. One of thesecounters could rotate round the source in order to measure the ratio of coincidences to the single counts for various angular deviationsfef one counter from the line through the other counter and the source. The annihilation radiation source was a cu foil activated by bombardement by 3.7 MeV deuterons. From 10 such sources a total of 800 coincidences was: recorded with a circuit of 3 (usec resolving time. The angular distribution curve obtained was much superior to any other previous work on this matter. But the authors seem: rathe uptimiotic in estimating a coinnearity of 15^{\prime} of the two quanta from their result.

However some factors such as the efficiency of the counter and the resolving time of the circuit could still be improved
in order to obtain becter statistacs. These points will be reviwed again in charter III in connection of with one of our experimenta.

IV:- Angular vorrelation Effect with Annihlation Kauiation.
A different type of investigation of the annihilation radiation couic be mentioned here in order to complete the list of experiments on the positrun anmilation. It has been (63) pointed out by Wheeldr that according to pair theory, the planes of polarisation of the two quanta resulting from tre annilation of a positron shouid be at rignt angles. The correlation between the states of polarisution of the two quanta, which is the equivalent of the angular momentum conservation in the process of annihilation at rest, has been experimentally verified by snyderetal.and others: (65). The azimuthal variation of intensity of the simultaneous Compton scattering of the two quanta has been calculated by several $(64,66,67$) authors . The experimental results are in very good agreement with the theory.

The arrangement used to determine the angular correlation was as follows: Cu^{64} prepared by deuteron irradiation was used as the annhilation source. The two opposite $\sqrt[f]{\text {-ruy beams collimated in a lead channel were scattered }}$ by two cylindrical Al scatterers and the scattered radiutions were drected: by two boll-shapedicountiers (with leàd cathode) placed above the scatterers. Coincidences were measured as
a function of the azimuthai angle between the axis of the two counters for $\hat{\psi}=0^{\circ}, 90^{\circ}$, 180 . In all cases $C_{90^{\circ}}$ was greater than $C_{180^{\circ}}$. The ratio of $C_{9} 0^{\circ} C_{180^{\circ}}$ was found equ©l to 1.9 which is close to the vaiue 1.7 predicted by the theory. Because of the absurption in the scatterurs, the maximum nuaber of coincidences were obtained for ψ less thon 90°, close to the theoretical maximum of anisotropy (82°).

Sumary of Experimental Work on Annihilation:

I- The early experiments (1933-1934), were confined to the measurement of the energy of the annihilation radiati on By the absorption method which depend upon measuring the abe sorption coefficient μ and the calculation of the eargy from a relation betweon μ and λ, the wave length of the radiation. The detectors used to detimine the intensity of radiation in these experiments were photographic film, G-M. counters, and, ionisation chamber.

Generally thenresults obtained by this method were not very accurate even in the case of two-quanta annihilation of positrons at rest; experiments of this kind can give the order of the energy of the radiation and the approximate number of quanta emitted per positron. II- In the next stage (1936 - 1938) attempts were made to obtain the more precise value of the quantum energy of the annihilation radiation in order to confirm the theory.

The energy measurements were bused upon the dermination of H ρ tur the compton recoil electrons or photoelectrons produced by the annihllation radiation. 1 n this method, the recording apparatus consisted of (a)- Wilson chamber in a magnetic field,(b)-The counters combined with a magnetic separator placed in a magnetic field, (c)-Crystal spectrometer.

The results obtwined frum the oloud chamber recoil electron measurements generally show agreement with the 0.51 MeV radiation as predicted from the theory, but do not seem to exhibit adequate proof of the existence of radiation due to the annihilation of positrons in motion. It must be noted that the data upon quantifenergy greater than me ${ }^{2}$ is inadequate in ampunt and accuracy in this method.

Study of the compton recoils and photvelectrons by means of magnetic spectrometer technique (1945-1948) with the improvement achieved on the resolution of these spectrometers, determines the energy of radiation with a great accuracy, but the attention is mostly paid to the comman type of annihilation process which give rise to the radiation of 0.51 MeV , hence the $\frac{\text { uxistence if the }}{\text { hard }}$ component of the two-quanta annihilation radiation and the one-quantum annihilation radiation which is hurder than the former could not be brought to light during the course of these experiments.

Moreover, even after the very recent (1949)study of the energy of the annihilation radiation by alorystal"
spectrometer, the evidence of these rare types of annihilation radiations of energy higher than $U .5 \mathrm{MeV}$ still remains obscure. III- Several experimentul attempts have been made to study Mm the directional properties of the emitted radiation. The earliest experiments were bound to show that the two quanta rroduced in annihilation at rest are emitted in opposite directions (1934-1936). As the geometry of the experimental arrangements and the counters were improved, better results were obtained illustrating the angular distribution of the annihilation radiation (1942). The method used in these series of experiments was coincidence counting between the two G-M counters placed to receive. radiation in opposite directions: the first measurements were taken only for $\theta=180^{\circ}$. $1 n$ therer experiments the variation of the number of coincidences with θ was investigated. The results obtained confirm only the existence of the annihilation at rest. The possibility of investigating the two-quanta annihilation in motion by this method is noted in Chapter.VII.

IV- A different type of experiment to show that the two quanta are emitted ${ }_{\lambda} 180^{\circ}$ as a result of annimilation at rest, was to investigate the two scattered quanta which have been polarised in two different planes making 90° with each other. The experimental technique was again the coincidence counting between the two scattered quanta as a function of the azimuthal angle between the two counters. The applicability of this method to the annihilation in motion requires theoretice
investigation.

CHAPTER II

THE CROSS-SECTIONS FOR ANNHILATION PROCESSES

In this chapter we shall consider two-quanta annihilation and one-quantum annihilation from the theoretical point of view. The probability of annihilation in motion and at rest and the cross-section as a function of positron energy will be discussed for the two processes. Finally the rutio of the two cross-sections will be given for different velocities and annihilating media.

Section A:- The probability of two-quanta annihilation as a funtion of positron energy.
3.1. Range:-The average range, R, of an electron of initial energy E_{0} may be calculated from the formula*

$$
\begin{equation*}
R\left(B^{\prime}\right)=\int_{0}^{E} \frac{d E}{(-d E / d x)} \tag{1}
\end{equation*}
$$

Where, -dE/dx is the energy loss per cm . of path in the m medium concerned. For lead $-\alpha E / d x$ as a function of energy E is shown graptically in Fig. (1). The fint curve indicates the total energy loss and the dotted curves show the contribution to the energy loss by collision and radiation. From

Fig. 1

Fig. 2
this curve we can derive by means of the formula (1) the curve giving the average range of an electron as a function of the primary energy. ihis curve is the full curve of rig(2). The average range of a positron of a prescribed initial energy is less than that of an olectron of the same energy because of the possibility of the annihilaiion of positron whilefmotion.

If we denote by $w\left(\mathbb{E}^{\prime}\right) d E^{\prime}$ the probability that the positron is annihilated while its energy is between E^{1} and $E^{\prime-} \mathrm{dE}^{\prime}$ then the function $W^{\prime}\left(\mathrm{F}^{\prime}\right)$ can be calculated theoretically. considering two-quanta annihilation only the form of variation $w\left(E^{\prime}\right)$ with E^{\prime} is found to be that shown in $\mathrm{H}^{\prime} \mathrm{g}(3)$. This probability of annihilation while in motion diminishes the average range of the positron by R, where

$$
R=\int_{0}^{O_{0}^{\prime}} R\left(E^{\prime}\right) w\left(E^{\prime}\right) d E^{\prime}
$$

From the curves for R, we can compute R as a function of E_{0} and so obtain a curve for the range of a positron as a function of its initial energy. This is shown as the dotted curve in Hig.(2). A few numerical values of the measured ranges \underline{r} are given below for the different substences and various energy of positrons:

$\mathrm{E}_{\mathrm{k}}(\mathrm{MeV})$	$\mathrm{r}(\mathrm{cm})$	
3	0.06	in lead
2	0.07	" $\quad 0.9$ in water
0.8	0.28	in air
0.3	0.04	in aluminium

Fig. 3

S.2. The toial probabiliuy of annıh+lwtion in muition.

If we denote by $W\left(E_{0}\right)$ the total probability of annihilauion a positron of initial energy E_{0} before it comes to the end of the range R, (while in motion) then

$$
\begin{equation*}
W\left(E_{0}\right)=\int_{0}^{P_{0}} W_{\left(E^{\prime}\right) d E^{\prime}} \tag{2}
\end{equation*}
$$

This probability increases with \mathbb{E}_{0}, and in lead it rises to a maximum of about 18%. See $\mathrm{Fig}(4)$. Namely this fraction of a beam of very fast positrons are annihilated while in motion and the remaining ones come to the end of their range when they are annihilated at a rate of $\phi \mathrm{nz} \cdot \mathrm{v}$.

As a further clarification we proceed to interpret Fig(4). In this figure the difference between the two ordinates corresponding to two different energies (E_{O}, E say) represents the total probability of annihilation of a positron of initial energy E_{0} during its slowing down to an energy E. Let N_{0} be the number of positrons with this initial energy E_{o} and suppose that $N(\mathbb{F})$ is the number of positron with energy E which survive annihilation. Then, since the probability of annihilation within the interval $d E$ is $w(k) d$, the number of positeons annihilated in this interval dE is

$$
\alpha N(E)=N(E) W(E) d E
$$

therefore

$$
\begin{equation*}
\operatorname{dN}(E) / N(E)=W(E) d E \tag{3}
\end{equation*}
$$

(That is to say in Fig(3) the ordinate showing the probability of anntilation represents the ratio of the number of
positrons annihilated in the range $d E$ to the number of surviting positrons with energy F).

If we integrate (3) from E_{0} to E we obtain the number of surviving positrons at energy E , when the initial number was known:

$$
\begin{equation*}
N(E)=N_{0} e^{-W\left(E_{0}\right)-W(E)} \tag{4}
\end{equation*}
$$

$N_{u}-N$, should give us the number of positrons annihilated between the energy limits E_{0} and E, ($\left.E_{0}>E\right)$. we proceed to determine the ratio ($N_{0}-N / N_{0}$ from equation (4). Let the difference

$$
W\left(E_{0}\right)-W(E)=W_{0}(E)
$$

Substituting this value in (4) we obtain

$$
N(E)=N_{0} e^{-N N_{0}(E)}
$$

Expanding the exponential term in a series and satisfying only with the first two terms, from last equation we derive

$$
\begin{equation*}
\frac{\mathrm{N}_{0}-\mathrm{N}}{\mathrm{~N}_{0}}=\mathrm{W}_{0}(E) \tag{5}
\end{equation*}
$$

The left hand side of equation (5) gives us the number of positrons annihilated while in motion. In an energy interval $\mathbb{H}_{0}-E$ as a fraction of the initial number $N_{0} O f$ positrons with energy E_{0}. The right side is the difference of two total probabilities of annihilation corresponding to that energy interval. Thus the difference between theरordinates in Fig (4) gives us a value of the number of annihilated partickles with a very slight difference from the actual value,

Let us take an example. suppose that the indian kinetic energy of our positron is $E_{0}=100 \mathrm{mc}^{2}$. If we start with 100 positrons having this initial energy, 18 of them will be annihilated while in motion according to tig(4). if we start from $\mathrm{E}_{\mathrm{O}}=10 \mathrm{mc}$, the total probability of annihilation should decrease to 12% again according to the same figure. Hence the number of positrons annihilated between $100 \mathrm{mc}^{2}$ and $10 \mathrm{mc}^{2}$ is $6 \%=(18 \%-12 \%)$. but the real number is a little less than that because of the term $\mathcal{E}=$ (1 - e -WO) - W_{0}. I_{n} the above case Ed corresponds to E. In this miner we can construct the following table:

TABLE 1

The fourth column represents the percentage of
a. initially of energy $100 \mathrm{mc}^{2}$
agengeng of positrons/ which survive at energy E. (colI)

The graph illustrating the surviving percentage as a function of the kinetic energy of positron is given in rig (5)

Fig (5)
a- Full curve shows the variation of surviving percentages with the ency, ordinates being calculated from Column.3.Table (1).
b- Dotted curve shows the approximate value of this curve i.e. ordinates are taken from column.2.of the same table.
g.3. Two-quanta annihilation of slow positron and positron " lifetime " :- The rate of destruction of very low velocity positrons by the two-quanta process is found to be
given by

$$
R=N \pi e^{4} / \mathrm{m}^{2} \mathrm{c}^{3}=7 \cdot 10^{-15} \mathrm{~N}
$$

.here N is electron density (Fermi and Uhlenbeck) (68). The nuclear repulsion prevents the positron from reaching the inner part of the arum. Therefore not all electrons are effective, so that \mathbb{N} will lie between n and $n \notin, n$ being the number of atoms per unit volume. for lead

$$
\begin{equation*}
\operatorname{Ro}=2.51 u^{8} \mathrm{f}_{\mathrm{sec}}{ }^{-1} \quad(1<\mathrm{f}<\mathrm{z} \tag{68}
\end{equation*}
$$

For $f=Z$ we have $R=2.1010 \mathrm{sec}-1 \quad$ (Heitler) ${ }^{\text {(}}$
The total cross-section for this type of annihilation was (aa) calculated by Dirac and found equal to

$$
\begin{equation*}
\phi=\pi r_{0}^{2} \frac{1}{\gamma+1}\left[\frac{\gamma^{2}+4 \gamma+1}{\gamma^{2}-1} \log \cdot\left\{\gamma+\sqrt{\gamma^{2}-1}\right\}-\frac{\gamma+3}{r^{\prime}-1}\right] \tag{6}
\end{equation*}
$$

where $\gamma=E / \mu, E=$ total energy of positron in the systthem where electron is at rest; $\mu=m c^{2}$ and $\quad r_{0}=e^{2} / \mu$ From this formulae F^{\prime}. Joliot (46) calculated the free path λ, of a positron in matter for which the number of electrons per cm^{3} is N , to be

$$
\lambda=1 / \mathrm{N} \phi
$$

For a positron of $2 M e V, \phi$ from Dirac's formula $=0.11510^{-24}$ cm^{2}. Whence $=3.1 \mathrm{~cm}$. in lead and 26 cm . in water, whereas the ionosing ranges of an electron of this energy is 0.07 cm . in lead and 0.9 cm . in water. In this way one can construct a table of corresponding calculated values of λ and experimental values of the ranges r for electrons of different
kinetic energies lying between 3 meV and 1 KeV . The probability of annihilation \mathbf{P} of the positron while its kinetic energy decreases from W_{1} and W_{2} because of the retardation (ralentissement) in the material is given by

$$
\begin{equation*}
\log \left[1-r\left(W_{1}, W_{2}\right)\right]=\int_{W_{1}}^{W_{2}} d r / \lambda \tag{7}
\end{equation*}
$$

nnowing the above mentioned tabular relation between r and λ we can integrate the right hand side of equation (7). The calculation of this probability in unit time shows that the ratio $P\left(W_{1}, W_{2}\right) / \Delta t$ increases as the kinetic energy of the positron decreases and reaches a constant value of about 2.9 sec^{-1} in water beyond W_{1} equal to 100 nev . Blackett and Ucchialini ${ }^{(69)}$ pointed out that the constancy of this ratio at low energies means that positron annihilation follows a law identical with that which applies to the disintegration of radioactive substance as function of time. Thus the constant of dematerialisation is defined by the relation

$$
(\alpha N / N) 1 / \Delta t=-\Lambda=-2.910^{9} \mathrm{sec}^{-1}
$$

N being the number of positron at time t, $d N=$ the number of positrons which disappear betweon t and $t+d t$. The "mean life-time" of positrons in water is, therefore, equal to $1 / \Lambda=$ 3.510^{-10} sec and 3.810^{-11} in lead.

The actual life-time of a positron can be determined
in cases where abrupt termination of ionising track can be seen to occur befure the velocity has fallen below the approp-
riate ionisation limit e.g. from cloud track photographs in a magnetic field where there is an absence of low energy scattering - vetermination of individual life-time and a statistic 1 check upon the above " radioactive " description might be possible by measurement in the region 0-100 (46) KeV. Moasurement of completed ranges of positron tracks will yield only minimum values of positron life-time. sor example for positrons of different energy ${ }^{\text {a }}$ duration of the measurable track " = $t_{\text {min }}$ is given below:

$\mathrm{E}_{\mathrm{k}}(\mathrm{MeV})$	$t(\mathrm{sec})$.	
3	$0.710^{-11} \quad$ in lead (Joliot j (46)	
1	0.310^{-11}	(68) (Fermi-thlenbeck)
0.8	1.210^{-8}	in air (Thibaud)

Section B:- The Equation of the vonservation of energy and momentum for the rositron annihilation by Two-quanta. 8.I. Energy distribution of the annihilation in motion in the observation system. (Electron is always assumed to be at rest in this system).

For simplicity let us express the energy and the momenta in units of mc^{2} and mc respectively; assuming $c=1, m=1$, the equations of the conservation of energy and momentum become as follows:

$$
\begin{align*}
\mathrm{E}+1 & =\mathrm{k}_{1}+\mathrm{k}_{2} \tag{8}\\
\overrightarrow{\mathrm{p}} & =\overrightarrow{\mathrm{k}}_{1}+\overrightarrow{\mathrm{k}_{2}}
\end{align*}
$$

where k_{1} is the energy and momentum of the forward quantum, k_{2} is the energy and momentum of the backward quantum, and i, p are the total energy, and, the momentum of the positron. On the other hand, according to the solution of Dirac's relativistic equation for a free particle the total energy is given by

$$
E=\mp \sqrt{p^{2}+\mu^{2}}
$$

where p is equal to $m v c / \sqrt{1-\beta^{2}}$ and $\mu=m c^{2}$; hence we can wite

$$
\begin{equation*}
p=\sqrt{E^{2}-1} \tag{10}
\end{equation*}
$$

Inserting this value of p in the equations (8) and (9), it can be shown that

$$
\begin{equation*}
1-\cos \theta=\left(k_{1}+k_{2}\right) / k_{1} k_{2} \tag{II}
\end{equation*}
$$

where © is the angle between the two quanta. If we denote by θ_{1} the angle which k_{1} makes with the direction of incoming positron and by θ_{2} the one corresponding to $k_{2}, \theta=\theta_{1}+\theta_{2}$.
 (a)- For $\theta=\Pi$ and $E_{k} \neq 0$, the left hand side of the equation is a maximum, hence k_{1} and $\mathrm{k}_{2}{ }_{j}$ bound to have a maximum and ${ }_{h}^{\text {minimum }}$ value respectively. The maximum and the minimum energy of the two quanta can be expressed in the following way: Since the two quanta are emitted in opposite directions, (9) becomes

$$
\begin{equation*}
p=k_{1}-k_{2} \tag{12}
\end{equation*}
$$

From (8) and (12) we obtain

$$
\begin{align*}
& k_{1}=\frac{1}{2}\left(E+1+\sqrt{E^{2}-1}\right) \\
& k_{2}=\frac{7}{2}\left(E+1-\sqrt{\left.E^{2}-1\right)}\right. \tag{array}
\end{align*}
$$

Innthe extremely relativistic case, $\forall \rightarrow c$, (13) and (14) become

$$
\begin{align*}
& k_{1} \rightarrow E-\frac{1}{2} \tag{15}\\
& k_{2} \rightarrow \frac{1}{2} \tag{16}
\end{align*}
$$

It must be noted that the asymptotic value of the energy of the forward quantum is still less than the value of onequantum annihilation radiation by $\frac{7}{2} \mathrm{mc}^{2}=\frac{7}{4} \mathrm{MeV}$, assuming that the energy of single quantum for one-quantum annihilation radiation is $E+m c^{2}$. See Fig (7).

For $\quad v=0$ from (13) and (14) we obtain

$$
k_{1}=k_{2} \equiv k_{0}=1
$$

which corresponds to two -quanta annihilation at rest, and, each quantum in this case has an energy of $\mathrm{mc}^{2}=\frac{1}{8} \mathrm{MeV}$. (D)- For $\theta \notin \pi$, the right hand side of (II) is a minimum when

$$
k_{1}=k_{2}=\left(k_{1}+k_{2}\right) / 2
$$

Then

$$
\begin{equation*}
(1-\cos \theta)_{\min }=4 /(E+1) \tag{17}
\end{equation*}
$$

This corresponds to the minimum value of the possible angle between these two equal quanta(each $>$ than k_{0}), which is given by

$$
\begin{equation*}
\theta_{\min }=\operatorname{Arc} \cos [1-4 /(E+1)] \tag{18}
\end{equation*}
$$

Fig. 7.

Or, substituting $\theta_{0}=\theta / 2$, where $\theta_{0}=\theta_{1}=\theta_{i}$, we can write

$$
\begin{equation*}
\theta_{0}=\operatorname{Arctg}(2 /(\tan))^{1 / 2} \tag{19}
\end{equation*}
$$

Table.2. gives the numerical values of θ_{0} for different E.
Table 2

$E\left(\mathrm{mc}^{2}\right)$	$\mathrm{E}_{\mathrm{K}}(\mathrm{MeV})$	$\operatorname{tg} \theta_{0}$	θ_{0}	$\mathrm{~K}_{1} \mathrm{k}_{2}(\mathrm{mc})$
$3 / 2$	0.25	2	$63^{\circ} 34^{\prime}$	$5 / 4$
2	0.5	1.414	$54^{\circ} 54^{\prime}$	$3 / 2$
$5 / 2$	0.75	1.333	$49^{\circ} 54^{\prime}$	$7 / 4$
3	1	1	45°	2
9	4		26°	5

However, in the process of annihilation in motion the probability of obtaining two quanta of equal energy is much smaller than that of two quanta emitted with minimum and maximum energy. Therefore in nearly all cases when a fast positron is annihilated before it comes to rest one of the annihilation quanta acquires practically all the energy and the other quantum is very soft having only an energy of about $\frac{1}{4} \mathrm{MeV}$. The variation of the quantum energy as a function of energy of the incoming positron is shown graphically in Fig (7). A frequency distribution curve (70) is given in Fig(8)for positrons of $4 \mathrm{mc}{ }^{2}$ total energy.

g.2. The angular distribution of the annihilation radiation in the observation system.

The angular distribution of the two-quanta process in the centre of gravity system is isotropic. The pusitron and the electron both are in motion in this systfem with a velucity of $v / 2$ in opposite directions, and, the centre of gravity moves relative to the observation system with a velocity determined by the energy of the positron in that system.
(a)- Let us consider first a special case where the two quanta are emitted at right angle to the direction of motion of the positron and the electron in the centre of gravity system. If the velocity of the centre of gravity system is V, then the relation between the direction of the positron and the emitted quantum erin that system anu θ in the observation system iv given by

$$
\begin{equation*}
\operatorname{tg} \theta=\frac{\sqrt{1-v^{2}} \operatorname{cosin} \theta^{\prime}}{v-c \cos \theta^{\prime}} \tag{20}
\end{equation*}
$$

For the special case

$$
\theta^{\prime}=90^{\circ}
$$

maximum correspondence to $\pm 90^{\circ}$ of the C.G system in the observation system is

$$
\begin{equation*}
\operatorname{tg} \theta=\frac{\sqrt{1-V^{2}}}{v} \tag{21}
\end{equation*}
$$

(V is expressed in terms of c units.)
If $V=0$ we find $\theta=\pi / 2$ in the observer system. This
cores ponds to the annihilation at rest for which the angular distribution is spherical in both system.
For $V \neq 0, \theta$ is a function of v and therefore is a function of E also. The relationship between E and V can be obtained follows : Let the momentum of the positron, coming with a total energy E, be μ_{1} and the momentum of electron which is at rest (energy $=m c^{2}$) be p_{2} in the observer system, and $p_{1}^{\prime}, p_{\underset{\sim}{1}}^{1}$ in the C.G system respectively. Hence

$$
\left.\begin{array}{l}
p_{1} \equiv p \tag{22}\\
p_{2}=0 \\
p_{1} \equiv-p_{d}^{\prime}
\end{array}\right\}
$$

The Lorentz transformation for the momenta follows the same rule as that ${ }_{\lambda}$ space coordinates. Therefore

$$
\begin{align*}
& p_{1}^{\prime}=\frac{p_{1}-V E_{1}}{{\sqrt{1-v^{2}}}_{V^{2}}=\frac{p-V B}{\sqrt{1-v^{2}}}} \tag{23}\\
& p_{2}^{\prime}=\frac{p_{2}-V E_{2}}{\sqrt{1-v^{2}}}=\frac{-v}{\sqrt{1-v^{2}}} \tag{24}
\end{align*}
$$

From (22) and (23),(24)

$$
\mathrm{p}-\mathrm{VE}=\mathrm{V}
$$

and hence

$$
p=v(E+1)
$$

Substituting the value of p from (10) we obtain

$$
\nabla=\sqrt{\frac{E-1}{E+1}}
$$

Inserting this value in (20) we obtain a relation between θ, θ^{\prime} and E but it is not practical in general. (A satesfactory graphical method relating E to $\theta\left(\theta_{1}, \theta_{2}\right)$ directly soon will be described). For the special case, $\theta^{\prime}=90$, and . $k_{1}=k_{2}$ (in motion) from (21) and (25) θ becomes

$$
\begin{equation*}
\operatorname{Tg} \theta=\sqrt{2 /(\mathrm{E}-1)} \tag{19}
\end{equation*}
$$

which is identical with the previously described value of Q for this case.
(b)- For the general case $k_{1} \neq k_{2}$ the value of the angle between the two quanta can be obtained in the following way: We know that the distribution of quanta in the observation is such that $k_{1}+k_{2}=p$ for a given momentum. Hence in Fig θ) the point Q must be lie on an ellipse.

$$
\text { Let }=1+E=k_{1}+k_{2}
$$

We have

$$
\begin{aligned}
& k_{1}^{2}=x^{2}+y^{2} \\
& k_{2}^{2}=(p-x)^{2}+y^{2}
\end{aligned}
$$

hence the locus of Q is

Fig 9.

$$
x^{2}+\frac{\varepsilon^{2}}{\varepsilon^{2}-p^{2}} y^{2}-p x-\frac{\varepsilon^{2}-p^{2}}{4}=0
$$

or

$$
\frac{4}{\varepsilon^{2}}(x-p / 2)^{2}+\frac{4}{\varepsilon^{2}-p^{2}} y^{2}=1
$$

The semi-axis of the ellipse are $a=\frac{\varepsilon}{2} / 2$,

$$
b=\frac{\sqrt{\varepsilon^{2}-p^{2}}}{2}
$$

and the eccentricity $e=p / \varepsilon$. The eccentriciby iv thus a function of the positrun energy. For $v \rightarrow 0$ the locus of Q becomes a circle and for $\forall \rightarrow c$ the locus becomes a parabola whose equation is given by $b=\sqrt{a_{\text {. }}}$ For all energies of the positron the angular and the energy distribution of the two quanta can be shown in one diagram. To be able to draw the different ellipses lying between these two above limit cases corresponding to various energy values of E, fur simplicity, it is necessary first to draw the parabola $y^{2}=x$, and after having placed the major axis of the ellipse given by $E+1$ on x, the minor axis can be determined from the intersection point of the line arnth the parabole. The radius vectors of these ellipses originating from the focus will determine the energy of the forward and the backward quanta, and, the angle which they make with the direction x of incoming positron. An illustration of this method is given in Fig(10) . As seen the possible minimum and maximum value of the two quanta is limited by $a \pm x_{0}$ where $x_{0}=p / 2$. (the ebscissa of the center of the ellipse. ${ }_{0}$) Hence the energy of the backward quantum for different energies of positron, corresponding to this minimum limit will vary between from one to half $m c^{2}$ as the total energy increases. In the case of two equal quanta different from ko $=1$ the angle θ, is b / x and the measured values check the previously calculated values of θ_{0} (Cf. Table. 2.)

This figure illustrates the distribution of energy and direction of the two quanta resulting from the annikilation of a positron in motion for different energies E of the positron. The dotted fines indicate the magnitude and direction of the second quantum associated with a first quantum of given direction θ_{1}, for the various values of E.

Section C:- The Cross-section for One-quantum Annihilation
as a Function of Energy.
The probability of one -quantum annhilation was first calculated by Fermi and Uhlenbeck ${ }^{(68)}$ and found to be rather smaller than that of two-quanta annihilation for a particle of the same eregy. The cross-section for thip process is given approximately by ${ }^{*}$

$$
\begin{equation*}
\sigma_{1} \equiv 2 Q=\frac{4 \pi}{3} r_{0}^{2} \frac{z^{5}}{137^{4}} \frac{p}{l^{2}} \quad(N \cdot R) \tag{26}
\end{equation*}
$$

and for relativistic energies the exact formula is

$$
\begin{equation*}
\gamma_{1} \equiv 2 \psi_{1 k}=4 \pi r_{0}^{2} \frac{z^{5}}{137^{4}} \frac{1}{(\gamma+1)^{2}(\gamma-1)^{\frac{1}{2}}}\left\{\gamma^{2}+\frac{2}{3} \gamma+\frac{4}{5}-\frac{r+2}{\gamma^{2}-1} \hat{l}_{j}\left[\gamma+\left(r^{2}-1\right)^{1 / 2}\right]\right\} \tag{27}
\end{equation*}
$$

For a positron of 0.1 MeV the cross-section in lead is $25 \mathrm{r}_{0}^{2}$ i.e. $=1 / 16$ of that for two-quanta annihilation in motion. In two-quantic annihilation the croso-section increases as energy decreases; but in one-quantum annihilation the crosssection facreases with increase in positron energy up to a certain point and exhibits a rather flat maximum round about mc^{2}. The probabiiity of one-quantum annihilation is extremely small for slow positrons becaue of the fact that they would never get near the k-shell owing tu the repulsion of the nucleus. A curve iliusrating the cross-section as a function of the total energy of positrun is deduced theoretically by Jaeger and Hulme (71). This is given in Fig(11).

Fig. 11 .

In this graph σ_{0} represent the cross-section per atom calculated by Born's approximation. The exact criterion for the validity of this appruximation is

$$
2 \pi \xi=2 \pi \alpha / \beta<1
$$

where $\quad \alpha=2 / 137$ and $\beta=v / c$. This condition holds also in the relativisitic case where it is always aatisfied except for very heavy elements, even then $Z / 137 \beta<1$, for $\beta \rightarrow 1$.However To obtain an accurate value for the annihilation probability it is necessury to use a very accurate wave function in order to calculate the probability of an electrun in the K-shell making a transition to a state of negative energy. the crosssection for that is represented by \int. The difference is considerable especially for low energy where the Born aprroximation is not vilid. The correction factor is given by

$$
d / /_{0}=\frac{1}{a a_{e}^{2} x_{e}^{2} \times(\pi-2 x)}
$$

For slow positron annihilation the correction factor is in (72)
fact appreciably different from thic. The dotted curve shows the result when a nun-relativintic wave function is used.

The rate of annihlation of rast pusitrons by
electrons in the K-shel_ is theuretically investigated by (73)

Bahbha- Hulme ${ }^{(73)}$ All their calculations are valid for $E \geqslant 2 \mu$, that is when the kinetic energy \mathbb{B}_{k} is not amall compared with $\mu=m_{c} \mathcal{C}^{2}$ i.e. $\beta \sim 0.8$ or greater and also $\alpha<{ }^{1}$ that is to say for elemente of small atomio number.

Hith this restriction, the total number uf anninitation processes with a beam of positrons of unit intensity fulling on the atom i.e. annihilation cross-section due to erectrons inthe K-shell,

$$
\sigma=\frac{h e^{2}}{m^{2} c^{3}} \alpha^{5} z^{5} \frac{\beta \gamma^{2}}{(1+\gamma)^{3}}\left\{-\frac{4}{3}+\frac{1-2 \gamma}{\gamma^{(1-\gamma)}}\left[1+\frac{\gamma^{2}}{2 \beta} 1 g \frac{\gamma^{2}}{1+\beta^{2}} 2\right]\right\}
$$

In the limit of very large energies $\gamma \rightarrow \infty$, and we obtain for the cross-section

$$
\sigma=6.810^{-23}(\alpha Z)^{5} \frac{\mathrm{mc}^{2}}{\mathrm{E}}
$$

which does not differ from the above more exact formula by more than 2% for energies greater than $100 \mathrm{mc}^{2}$ and the deviation is less than 10% for energies greater than $10 \mathrm{ma}^{2}$. A table of values of $\%$, is given below fur twu different energies and various elements. A comparison of the cross sections per atom fur one-quantum and two-quanta processes is also indicated.

TABLE. 3 .

Total energ,	Cross-sections			
E	${ }_{8}$	Al_{13}	Fe_{26}	Pb_{82}
$2 \mathrm{mc}^{2} \quad 了_{1}$	1.0810^{-29} 1.8810^{-24}	1.2310^{-28}	3.9310^{-27}	$\begin{aligned} & 1.2310^{-24} \\ & .9310^{-23} \end{aligned}$
$\begin{array}{ll}100 \mathrm{mc}^{2} & \zeta_{i} \\ & \zeta_{2}\end{array}$	4.5910^{-31} 0.9010^{-25}	5.2010^{-30}	1.6510^{-28}	$\begin{array}{lll}5.21 & 10^{-26} \\ 0.92 & 10^{-24}\end{array}$

As seen from the above table, unerquintum wnhilation is nogigible in lighat materials; even fur load it is still very much mailer than that of two-yuanta: for a positron with energie in the range $3 \mathrm{mc}^{2}-20 \mathrm{mo}^{2}$ the une- u untum annhilation is about 16% of two-quant. process (Jaeger-Hulme) and for G~2me and $100 \mathrm{mc}^{8}$ is about 5-6 percent(Bhabha-Hulme) For oxygen the two-quanta process is greater by a factor of the order of 10^{5}.

The cross section for one -quantum annihilation for a strongly bound electron i.e k-shell electron, and also L-shelf electron, negiecting the screening by the outer electrons, are given by Eermi-uhlenbeck ${ }^{(68)}$. ζ_{L} can be expressed by

$$
\sigma_{K}=\sigma_{K} \cdot \frac{1-Z^{2} / W}{32\left(4-7 Z^{2} / W\right)}
$$

where W is the energy of positron expressed in Rydibergs. For large energies $W>10^{5}$ (about $\left.3 \mathrm{mc}^{2}\right) \sigma_{L}$ is at least a factor of 10^{2} smaller than ζ_{K}. (For pusitrons of low energy screening can nut be neglected.)

The rate of destruction for one quentum process is also given by the above authors. Numerical values of k for lead dred given below. They indicate that the positrons which have completely lost their inivial velocity can not give rise to a hard component because of the very smoll rate for this process at very low energies.

W (energy in Rydberg) 1	$R=\sigma$ 2. 10^{-5}	rate of destruction for one yuantum process) (N. is electronic density)
1.00	10	
10000	$5 \cdot 10^{7}$	
75000	10. 10^{8}	

The rate of destruction for positrons annihilation at the beginining of their pathis found to be higher since the probability for destruction is then much higher. But even the maximum rate of 10^{9} suggests a very small total probability of destruction by one quantum process. To obtain an estimate; for a positron of $1 \mathrm{MeV} f r=0 . \mathrm{C} 6 \mathrm{~cm}$ in lead and time required is about 310^{-12}) from the raue of $1 U^{9}$ we get, as total probability, 310^{-3}. As the authors pointed out, this result can be increased appreciably by introducing relativistic correction in the calculation of the cross section. For a positron Of energy of $i \mathrm{MeV}$ the rate value for transition to $\mathrm{S}-\mathrm{shell}$ is 0.410^{9} non-relativistic and 2.310^{7} relativistic.

Section D:- Ratio of One-quantum to Two-quanta Annihilation
Since there are twu K-eiectrons in an atom
which may give rise to one-quantum annhilation and 2 electrons altogether which are capable of two-quanta anninflation, the ratio of the processes is, according to the formulae giving the cross-sections per atom $\left(\sigma_{1}, J_{2}\right)$ or per electron $\left(\phi_{1}, \phi_{2}\right)$, given by

$$
\sigma_{1} / \sigma_{2}=(2 / z) \cdot \Phi_{1} / \varphi_{2}=\left(\alpha_{0} z\right)^{4} x(\gamma)
$$

where α_{0} is the fine structure constant and $X(\gamma)$

$$
x(\gamma)=4\left(\frac{\gamma-1}{\gamma+1}\right)^{\frac{1}{2}} \frac{\gamma^{2}-(2 / 3)-4 / 3-(\gamma+2)(\gamma-1)^{-\frac{1}{2}} 1 g\left[\gamma-(\gamma-1)^{\frac{1}{2}}\right]}{\left(\gamma^{2}-4 \gamma+1\right) \lg \cdot\left(\gamma+\left(\gamma^{2}-1\right)^{\frac{1}{2}}-(\gamma-3)(\gamma-1)^{\frac{1}{2}}\right.}
$$

As shown on the graph of $X(Y)$ against $E,(70)$,ii gin the pronounced maximum value of the curve ines in the range $5-9 \mathrm{mc}^{2}$ which corresponds 2-4 Mev kinetic energy, and $\chi(\gamma)$ has got a value of 1.3 i fur which the ratio of the tu processes is 0.185 for lead. For $E=2 \mathrm{mc}^{2}$.e. $\mathrm{E}_{\mathrm{k}}=0.5 \mathrm{mev}, \chi(\gamma)=1$ and the ratio, of one-quantum annihilation to two-quanta annihilation as calculated from $\left(\alpha_{0} z\right)^{4}$ in different materials is given in table. 4 . The results of Bhabha-Hulme are shown for comparison

TABLE. 4.

* Because of a factor of 2 missing in the calculation of Bhabha-Hulme the result should b. 1.14810^{-5} for oxygen, and, 12.7410^{-2} for lead which is in quite good agreement with bethe! result.
$X(\gamma) \rightarrow$ zero for $\gamma \rightarrow 1$ which means that for very small energies of positrons, one-quantum annihilation is very improbable compared with the two-quanta type, this is in agreement with the result of rermi-uhlenbeck (loc. citod. According to their calculation , the cross-section is even smaller than bethe's at low energies owing to the repulsion, of the positron by the atomic field, and the screening effect. 'lhese have not been taken into account in sethe's formula which are based on Born's approximaiion. (The screening will tend to diminish the probability for the outer shelk still further; for Pb the probability of one quantum annihilation by the outer electron is about 16% of that by n-electron (70), $X(\sqrt{\prime})$ reaches a very flat maximum valae of 1.2 over the region about $3 \mathrm{mc}^{2}$ to $20 \mathrm{mc}^{2}$. The probability of the onequantum process over this whole energy range is proportional to that of the two-quanta annihilation e.g., for lead it amounts to 16% of the latter, whereas for air the one quantum annihilation is extcemely rare, having about 10^{-5} times the probability of the ordinary two-quanta annihilation (70) which is in good agreement with Bhabha-Hulme ${ }^{(72)}$ result. At very high energies, the"ratio" decreases as $1 / \log$, i.e. the one quantum annihilation becomes less probable as well as the two-quanta one. For comparison, \vec{J}_{1} and \vec{j}_{2} are illustrated togethe in Fig(13), and their ratio as a function of energy

Fi6. 12.

FIG. 13 .
is given graphically in Fig (14) and rig (15). the values of l_{1} are deduced from curve in $f i g(11)$, and $?_{2}$ is numerially calculated by transferring the curve of differential r probability into cross-section. The necessary procedure for that is to divide the ordinate of the Fig (3) by the number of electrons per cm^{3} and multiply by the en trey loss per cm of path given in Fig(1) . The numerical detail of the calculations is shown in table. 5

TABLE. 5

Remark :- The ratio ofone-quantum annihilation to two-quanta strould be expressed by $2 /(z-2) \cdot \phi_{1} / \phi_{2}$ instead of $(2 / Z), \phi_{1} \phi_{2}$ because the two K-shell electrons are included in the number \bar{Z}, and they can only give rise to one-quantum annihilation since they are so near to the nuclei. Hence the two-quanta anninilation is Z-2 times probable and that is maximum. However the difference is small, only a few percent.

Fig. 14 ,

Fig. 15.

CHAPTER III

THE ANGULAR DISTRIBUTION OF TKU-QUANTA
 ANNIHILATION RADIATION *

The purpose of this experiment was two-fold:-
(a) To make a more detailed investigation of the direcm tions of the two quanta produced by positron annihilation at rest.
(b) To attempt to reach a conclusion on the existence of two-quanta annihilation in motion from the form of the angular distribution curve.

Improvements on early experiments were:
(1) The use of a source of much greater intensity,
(2) the use of a new counter of high γ-ray efficiency and good directional resolution,
(3) the small resolving time of the recording circuits. The Maltiple Parallel Plate Gamma-ray Counter

The low efficiency of the ordinary Geiger-Müller counter for γ-rays, renders difficult and tedious any experiments involving γ-ray coincidences. Methods of

This work was carried out before Beringer's paper came to our attention.
increasing the efficiency by using an assembly of several plates with wires between them have been described previously. A new type of parallel plate counter was designed for this experiment.

Fig. 16 illustrates the construction. The counter is in the form of a pyramid of square cross-section. Slxteen copper plates, 1.6 mm . thick, of edge varying from $1^{\prime \prime}$ to $3^{\prime \prime} .5$ sere mounted 1 cm . apart in slots cut in two ebonite walls (A,B). The two other walls of the pyramid consisted of coper plates screwed to A, B. To form the anodes a tungsten wire 0.004 in diameter was threaded through holes drilled in A and B so that the wire occupied a central position between successive plates. The whole assembly wes enclosed in a brass lining $\frac{1}{B}$ thick, the larger end-plate carrying a small filling tube and anode terminal.

Tests of different mixtures showed that a filling of 7 cm . argon and 1 cm . alcohol gave satisfactory temperature stability. The operating potential was 975 volts with a plateau of about 50 volts. The low value of the latter was probably due to inaccuracies in the centralisation of the wires. A comparison of the efficiency of the counter with that of G. M. counter was made by mounting a small Co source at the apex of the pyramid and placing the $G-M$.

Parallel plate covnter

Fig. 16
counter in such a position that it subtended the same solid angle. The gain in efficiency dependud on the filling, the factor being 12.5 for 9 cm . total pressure and 10.3 for 8 cm . The reduction from the possible value of about 15 can be attributed to inefficiency of collection of electrons from the outer regions of the larger sections. (This defect can be remedied by inserting two additional wires in these sections;

Experimental arrangement.
Two counters of above construction were usea in coincidence; one of them-was fixed and the other rotated in a circle with the source as centre. The source was a copper wire $\left(C u^{64}\right)$ of 2.6 mm . in diameter, surrounded by Aluminium 1 mm . thick (sufficient to stop all positrons) placed at the apices of the pyramids. The anode wires of each counter were vertical and in the same plane as the souree. uver 5000 coincidence counts were recorded in one seitas of experiments. (resolving time of the circuit $0.9 \mu \mathrm{sec}$.$) . The variation$ of the coincidence counting rate with θ, the angle between the axes of the counters, is shom in Fig. 17 . The ordinate K_{r} is the number of real coincidences per minute, after corrections for background (cosmic rays and chance coincidences) and decay have been made. The discrepancy from a single line at 180° is mainly due to the angular width of the counter.

If we assume that two quanta are emitted exacly in opposite

Angular oistribution of annihation radation.

Fig. 17
directions, thefrate of real coincidences due to the annihilalion radiation would be a function of the angle β common to both counters, as one counter deviates by an angle α from $\theta=180^{\circ}$.

Let θ_{0} be the half-angle subtended by counter (Which is 10° in our case) then,

$$
\beta=2 \theta_{0}-2 \alpha
$$

If we denote the rate of real coincidares by K_{r}, then
where

$$
\begin{equation*}
K_{r}=x \varepsilon \frac{\beta}{2 \theta_{0}}=x \varepsilon\left(1-\frac{\alpha}{\theta_{0}}\right) \tag{28}
\end{equation*}
$$

is the number of single counts per min. in one counter,
ε, the efficiency of that counter (ω, is the effective solid angle subtended by the counter). The relation (28) gives us two starlight lines which intersect at $\alpha=0$ where $K_{r}=X \varepsilon$ and meet the θ axis at $\theta= \pm \alpha$. If θ_{0} is not small equation (28) takes the form of

$$
\begin{equation*}
K_{r}=x \varepsilon \frac{t^{2}\left(\theta_{0}-\alpha\right)}{\operatorname{tg}^{2} \theta_{0}} \tag{29}
\end{equation*}
$$

which gives two slightly curved lines. See Fig (17a).
The positive value of $\mathbf{K}_{\mathbf{r}}$ outside the region $180^{\circ} \pm 10^{\circ}$, can be attributed to the effect of scattered quanta from the counter walls or the source itself.

Fig 17 a

Angular distribution curve obtained by using a more intense source. Dotted lines illustrate the 180° emission of the twu-quanta.
K_{r}, can be calculated in the following way from the observed total number of coincidences \bar{K}_{t}. The latter was assumed to be the sum of the following components:

$$
K_{t}=K_{r}+K_{s}+K_{c}+K_{s c}+K_{0}
$$

where;
K_{s} is the number of the chance coincidences due to the presence of the source, which is given by

$$
2 n_{1} n_{2} \tau
$$

where n_{1}, n_{2} are the numbers of single counts in the first and second counter and τ is the resolving time of the circuit K. is the number of chance coincidences due to the presence of the high background which is equal to $2 a_{1} a_{2} \tau$ where a_{1}, a_{2} are the number of cosmic ray counts per minute in each counter (about $2000 / \mathrm{min}$.) IE
$\mathrm{K}_{\text {se }}$ is the number of chance coincidences between the source and cosmic rays which is equal to $2 \tau\left(n_{1}{ }_{2}+n_{2} a_{1}\right)$ K_{0} is the number of genuine cosmic ray coincidences. Inserting these values in the above equation we obtain

$$
K_{t}=K_{r}+\bar{K}_{0}+2 \tau\left(n_{1}+a_{1}\right)\left(n_{2}+a_{2}\right)
$$

The quantities we measure in the presence of the source are $H_{1}=n_{1}+a_{1}, N=n_{2}+a_{2}$ and K_{t}, and in the absence of the source we measure $K=K_{0}+K_{c}, a_{1}, \frac{a}{2}$. Therefore the convenient form of the correction formula would be

$$
K_{r}=K_{t}-K-2 \tau\left(\frac{K_{1}}{2}-a_{1} a_{2}\right)
$$

*. Staietty $K_{3}=2 T\left(n_{1}-k_{n}\right)\left(n_{2}-k_{n}\right)$ but k_{n} io of under 0.1% of n_{1} and n_{2}

The results of the experiment are shown on the next page. The experimental value of the peak is slightly less than the estimated value $K_{r}=X \varepsilon$. This difference might be au due to the Cu ${ }^{64}$ $(53,76)$ but not coincidences.

If we denote the number of nuclear γ - rays by Π_{1} and annihilation radiation quanta by N_{2} emitted in to 4π and the efficiency of the counter for both γ - rays $\varepsilon_{1}, \varepsilon_{2}$ respectively, the number of single counts \mathbf{X} detected in each counter will be

$$
X=X_{1}+X_{2}
$$

where

$$
\begin{aligned}
& x_{1}=N_{1} \varepsilon_{1} \omega \\
& x_{2}=N_{2} \varepsilon_{2} \omega
\end{aligned}
$$

As we know there is one γ - quantum of 1.35 MeV per 40 positrons, and 2γ - quanta of 0.51 MeV per positron; Therefore:

$$
N_{1}=\frac{2.5}{100 \times 2} N_{2}
$$

It was found, by comparison of the relative efficiency of the pyramid counter with different sources of different energy, that for 0.5 MeV radiation only a factor of 5.6 was obtained in favour of the pyramid counter against G - counter. Hence $\varepsilon_{1} \xlongequal[2]{2} 2 \varepsilon_{2}$

$$
\frac{X_{1}}{X_{2}}=\frac{W_{1}}{H_{2}} \frac{\varepsilon_{1}}{\varepsilon_{2}} \cong 3 \%
$$

Hence the presence of the nuclear γ - rays will reduce the value of the peak by 3%.

The experiment gives no definite indication of radiations from the annihilation of positrons in motion for the following reasons;
a- Small probability (cross section) of annihilation in motion at small onergies, compared with the annihilation a a.t rest.
b- The large compton scattering effect from the source and the surrounding for which the cross section varies with Z as in the case of two quanta annihilation. c- The low eotneiange rate at the base line of the distribution curve (beyond $180^{\circ} \pm \theta_{0}$) which entails large statistical errors. This is wiere the annihilation in motion (mostly) would be observable.

For further investigation of this phenomenon a counter of even higher efficiency would be desirable. This could be a achieved by increasing the number of sections and using lead ${ }^{(77)}$ plates of suitable thickness.

- - $00000-\infty$

CHAPTERTI

THE STUDY OF ONE-QUANTUM ANNLHLLATIONT PART.I.

In Chapter II we have seen that the cross section for one quantum annihiaation varies with Z^{5} while the cross section for two - quanta annihilation varie as \mathbb{Z} 。 This factor of Z^{4} in the ratio of the cross sections means that one- quantum annihilation would be negligible in aluminium as compared with that in lead. Thus if absorption curves are taken with these two substances as annihilators one would expect a difference between the two curves which would be due to the greater number of hard γ - rays produced by one-quantum annihilation in lead.

The experimental technique used for this experiment consisted of coincidence measurements in two counters between which an Al absorber of varying thickness could be inserted. The γ - ray energies were measured in terms of the range of the converted electrons in aluminium. The ratio of the number of real coincidences to the number obtained with no absorber was plotted against the energy of the γ - rays. Apparatus: Two thin walle redargrace counters were made from a rectangular copper wave guide of dimensions $2 \frac{1}{8}{ }^{\prime \prime} \times 1^{\prime \prime} \times 1 \frac{1}{8}{ }^{\prime \prime}$

The windows were formed by soldering cu foils 0.001 " thick, on to both sides of this cathode frame (1.6 mm . thick The anode was a $0.008^{\prime \prime}$ tungsten wire of $1 \frac{1}{4}{ }^{\prime \prime}$ effective length. the counters were filled with a mixture of alcohol and argon up to a total pressure of 7.5 cm . in the ratio of $1 \frac{7}{2}$ to 6 cm . respectively. Under these circumstances a plateau of 200 volts minimum was obtainable at an operating voltage of 1100-1300 V. .

Experimental frrangement:

Two of the above counters were placed 4 mm .apart and the first counter window was covered with $\mathbf{U} .4 \mathrm{~mm}$. of lead sheet. This absorbed any incident β - rays and also increased the efficiency of the counter by a factor of more than two. This factor was determined by measuring the efficiency of the counter with and without the lead covering, using a standard Radium source of strength $\mathbf{U . 6} \mathrm{mc}$. The absolute value of the efficiency (with leaden) was found by comparison with a G - M counter of known efficiency. The values obtained for 0.5 MeV and 1 MeV (approx.), were 0.2 and 0.45 percent.

The source consisted of an activated cu ${ }^{64}$-foil 0.001 " thick placed $\frac{3}{4}{ }^{\prime \prime}$ from the first counter. When it was covered on both sides with Al foil 1.6 mm . thick or Pb foil 0.4 mm . thick alternately (each thick enough to stop
all the positrons) about 30,00 to 40,000 counts per min. were recorded in the first counter.

A quick run within the life of one cu ${ }^{64}$ source gave a satisfactory result. Using the Pb and Al annihilator alternately two absorption curves were obtained, the curve for Pb being above the Al curve. (see Fig.18).

Te should expect the Pb curve to be above the Al curve fer the following reason: Let f be the factor for the abundance of one-quantum annihilation compared to the twoquantum so that $f \ll 1$. Let us indicate the efficiency of the counter for one-quantum annihilation by $\varepsilon_{\text {, }}$ and for the two -quantum process by ε_{2}. We should expect, for n positrons, nf of one-quantum annihilation and $\operatorname{zn}(1-f)$ of the two-quanta type. Then the number of γ 's which we would detect in the same counter at 4π solid angle is

$$
\operatorname{an}(1-f) \varepsilon_{2}+n f \varepsilon_{i}=n\left[2 \varepsilon_{2}+f\left(\varepsilon_{1}-2 \varepsilon_{2}\right)\right] \ldots(30) .
$$

From measurements of ε_{1} and ε_{2} as functions of the quantum energy we know that $\varepsilon_{1}-2 \varepsilon_{2}$ is positive. Further, if f is positive (ice. if the one-quantum process occurs:), the additional ter $f\left(\varepsilon_{1}-2 \varepsilon_{2}\right)$ is positive in (30). Thus the larger f is, the greater is n_{e}^{*}, and hence the curve for $P b$ is expected to be slightly above the curve for Al.

Te make certain that this difference was real the expert-
mont was repeated with very long readings. In order to reduce the statistical error to a satisfactory value, especially at the greater absorber thicknesses where the number of coinciaencos per minute is very low, 10-15 hours continuous counting ($n_{c} 2$ no of corinaidences in the two contains)
was required for each point. Since the half-Iife of the 64
cu is only 12.8 hours it was necessary to use different sources of slightIy different size and distance for fre various of the absorption curve.

To be sure of the consistency of the apparatus during leng counting periods, single counts in both counters were taken for one minute and the efficiency of the counters was checked by means of the standard radium source after each rum.

At the time of performing this experiment only one scaler was available and therefore single counts and coincidence counts could not be made simultaneously. The procedure for taking readings for each point e was as follows:
(1) Single counts in both councers without absorber.
(2) Number of coincidences with no absorber.
(3) Number of coincidences with a given absorber thickness. (4) Single counts in both councers with absorber.
(5) Check of efficiency of counters.

This procedure was repeated for each annihilator. The total number of coincidences divided by the time of observation was taken as the average rate of coincidences at the middle of this interval, and the decay correction factor $e^{\lambda t}$ was applied, t being the period, from the middle of one interval to the middle of the next interval. It can be shown that the error involved in this assumption is smaller than 3% even for $t=19$ hours.

The chance coincidences from the source were calculated from the relation $2 n n_{2} \tau$, where, τ is the resolving time of the recording circuit. This was measured and found to be $1.65 \mu \mathrm{sec}$. The same kind of decay correction was also applied to the chance coincidence counts; in this case the correction factor was ${ }_{e}^{2 \lambda t}$. (The chance coincidences between cosmic rays and source were neglegted since the cosmic ray count. is extremely smail; a maximum of 70-75 permin in each counter.) The true cosmic ray coincidences were measured as a function of the absorber thickness. The real number of coincidences n_{c} from the
source was obtained by subtracting the sum of the calculated chance coincidences and measured cosmic ray coincidences from the total number of coincidences observed at a given absorber thickness. The same procedure was applied to the calculation of the initial number of coincidences N_{c} at zero absorber thickness. Each n_{c} was normalised to the corresponding $N_{c}{ }^{\text {画 }}$. (\mathbb{N}_{c} was measured separately for each $\left.n_{c}\right)$. The ratio of n_{c} / N_{c} was plotted against the absorber thickness the statistical accuracy being 1% (See Figg The difference between the ordinates of the two absorption curves for $Z=82$ and $Z=13$ lies between $6 \%-11 \%$ which is much greater than the probable error.

To ensure that this real differmee is not accidental but due to positron annihilation, the experiment was repeated with a different source, not a positron emitter, exactly undrr the same conditions. A Co ${ }^{60}$ source was found suitable for comparison because of its long life time(5 years) (78) $(0,6,6)^{*}$ It emits tue γ - rays of 1.155 and 1.3 m ineV and B-rays. When a sourcelfew square mm. in size was wrapped with Al and Pb alternately as in the case of the Cu^{64} source, the same number of single counts was obtained in the first counter at the ame distance. The number of coincidences corrected for background was plotted against absorber thickness after being normalised to the initial number of coincidences.

The resulus are given in Fig. 20. . The two absorption curves are identical in nature, they are parallel to each other, the Al curve being slightly above the Pb one. This discrepancy could be attributed to the difference in the superficial mass of the two annihilators. (1.6 mm . Al 0.432 $\left.\mathrm{gm} / \mathrm{cm}^{2} ; 0.4 \mathrm{~mm} . \mathrm{Pb} 0.448 \mathrm{gm} / \mathrm{cm}^{2}\right)$.

On the abycissae of the above graphs is indicated the energy of the electrons of range corresponding to the ahereter thickness. These figures were obtcined from the range-energy curve for homogenous $\boldsymbol{\beta}$ - rays as given in "The Science and Engineering of Nuclear Power " p.52 Fig. 1-24. To show that these figures are direcly applicable to our apparatus an absorption curve of β - rays of RaE was obtained. This curve had an end point $543 \mathrm{mg} / \mathrm{cm}^{2} \mathrm{Al}$ which according to the table corresponds to an energy of 1.32 MeV , in agreement with the known energy of these β-rays. (In deriving the above figure, allowance was made for the three copper windows, involved in the coincidences, each of was which/ $0.001^{\prime \prime}$ thick. The stopping power of the copper relative to that/ of aluminium was obtained by direct comparison of end-point measurements and half-value layers. Mean value of this factor was 4) -

The experiment proves conclusively the existence of one-quantum annihilation which appears to have an end

point (mainly due to the compton elctrons) in the neighbourhood of 1.3 MeV . It is not possible, however, to make any quantitátive analysis of the result or to compare it with theory, because it is very difficult to assess the effect of the nuclear γ - ray which is now known to have an energy of 1.35 MeV .

There are other features of this experiment which render very difficult any attempt to predict the shape of the absorption curve. The γ - ruys which are incident on the wall of the first cuunter are heteregenjous and consist theoretically of the follwwing components: (a) X-rays * K-radiation accumpanying one-quantum annihi_ lation and K-electron capture)
(b) < $\frac{1}{2} \mathrm{Mev}($ Backwards component of two-quanta annihilati on in motion)
(c) $\frac{7}{2} \mathrm{MeV}$ (Two-quanta annihilation at rest)
(d) $>\frac{1}{2} \mathrm{MeV}$ (Forward component of two-quanta annihilation in motion)
(e) $>1 \mathrm{MeV}$ (One-quantum annihilats on in motion)

The $\frac{1}{2} \mathrm{MeV}$ radiation will form the larger part of these γ - rays but even assuming that the incident beam were homogendous the effect of the wall of the first counter

[^3]will be to produce a wide variation of energy ofthe conversion electrons. The total thickness of the lead foil and copper window is of the order of the range of a 1 MeV electron. Photoelectrons produced inside the wall will lose energy before reaching the inside of the first counter. For $\frac{1}{2} \mathrm{MeV} \gamma$-rays in lead Compton electrons and photoelectrons are produced in approximately equal amounts. Therefore, in any case, fifty percent of the recoil electrons will have energies varying from zero up to 340 KeV . (These will also be affected by energy losses in the wall). Thus the beam of electrons entering the first counter will have an arbitary energy distribution which will bear littlè resemblance to the energy distribution of the original γ radiation. In addition to these considerations we have in this experiment large solid angles subtended by the counters and also a variation of counting efficiency with energy. The complexity of the problem is such that it is not possible to make any reliable esimate of the cross-action for the two-quanta annihilation process by introducing very many approximations in deriving the shape of the absorption curve. The difficulties due to the presence of the nuclear γ-rays can, however, be eliminated by two methods;
(1) The use of a positron souree which has no nuclear γ (52,79) γ-rays (at least no γ-rays of energy>1 MeV) such as $\mathbb{1}^{13}$. Since
N^{13} has a short life-time (11 min.) the experiment would have to be performed with a continuous supply produced by nuclear transformation e.g. in conjunction with a high Voltage generator. (The department H.T. generator was not in operation at that time).
(2) The separation of the positron beams from the nuclear γ-radiation with the aid of a magnetic field. This method was adopted and the experiment is described in Chapter VI .
$$
-000=
$$

CHAPTER.Y.

$\frac{\text { CORRELATION BETWEEN THE BETA-AND GAMMA-RADIATIONS }}{\text { ERON Cu }}$

One reason for selecting Cu^{64} as the positron that the γ-radiation was that of source was that it was thought/thebe a pure annihilation source. In every paper relating to cu ${ }^{64}$ published before 1946 there is a positive assertion of the absence ($57,58,80-3$)
of the nuclear γ - rays. In a preliminary experiment we have done as a test of the source the absorption of γ - radiation from Cu^{64} by a coincidence method shoved a prolonged tail up to 1.3 MeV which was ascribed to the existence of the nuclear γ - ray (Fig.21) (The study of the end-point is given on a larger scale; it indicates the precise value of the maximum energy of the recoil compton electrons which is equal to $1.105-0.015 \mathrm{meV}$. The intensity of the tail first appearka to be too large to regard it as due to the hard componentfof the annihilation radiation.)

In this chapter an additional experiment attempting to relate this γ - ray to the energy scheme of Cu^{64} will be described.

The apparatus used in this experiment consisted of two square counters as previously describe , a small magnet
FlG. 21

having pole pieces of $2^{\prime \prime}$ in diameter (which provides 3üũ Gauss at 1 amp. 3.5 cm . pole gap) and the same recording devices.
Expermental Arrangement; The two counters were placed in the magnetic field. One was used for counting β - rays and wam placed in the pole gap with the window horizontal; the other was placed at right anglea to the first counter and separated from it by a few mm. This was used as a γ - ray counter with 0.4 mm lead covering on the window. The source a thick cu ${ }^{64}$ foil of area $2 \times 10 \mathrm{~mm}$ was mounted in the space between the two counters. (See Fig. 22). the position of the source and the counters was adjusted so as to collect the maximum number of positrons (or electrons) and γ - rays in the β and γ ray counters respectively. the number of real (β, γ)coincidences was investigated for positrons and for electrons as a function of the energy of the β particles. This was achieved by varying the field in direction and magnitude.

The real number of (β, γ) coincidences was obtained from the following observations :
(1)- Number of single γ-ray counts in the γ - ray counter.
(2)- Number of single $(\beta+\gamma)$ counts in the β - ray counter.
(5) fumber of γ ray counts in the β-ray counter.l The
last was obtained by covering the thin window of the counter

[^4]
β-ray counter

Fig. 22.

Fig. 22.
with a lead sheet thick enough to stop all the β - rays. In this case the change in the efficiency of the counter for Y - rays is negligible because they enter the counter mostly through the same thick copper end-wall as in \therefore case (2).
(4) Lotal number of coincidences between γ is: and $(\beta+\gamma)$ (5) Number of $(\gamma-\gamma)$ coincidences.
(4) and (5) include cosmic ray coincidences. Therefore the difference between (4) and (5) would give the sum of a- Number of real (β, γ) coincidences
b- Number of chance coincidences from these β and σ. (b) was calculated by means of the formula $2 n_{1} n_{2} \tau$, where n_{1} is the single γ count measured in (1), n_{2} is the single β count which can be obtained by subtracting (3) from (2), and τ is the resolving time of the circuit which was measured and found to be $1.65 \mu s e c \cdot$ (Under these conditions, from maximum of 25000 total single counts per minute the maximum total number of coincidences obtained was of the order of 25 and 10 per minute for β^{+}and β^{-}respectivelyd. Aut readings were taken for positrons and electrons alternately for each point corresponding to biven gifferent field intensity (The duration of observation was 1 min . for single counts and 10 min. for coincidence counts). The variation of the real number of (β, γ) coincidences with the energy of the positrons and electrons is shown in Fig. 23

Fia. 23

jical	no $\beta^{+} \%$ min	Total now of Coincidencences	(γ, γ) coinci rel imin.	chance coin. per inin.	Real number of ($\bar{\beta}, \gamma)$ coincidences.	$\frac{\beta \rightarrow \gamma}{\beta} \cdot 10^{4}$
0.1	- $\begin{array}{r}343 \\ 6358\end{array}$	$578 F 0.75$	$5.6 F 0.75$	-	0.18	$5 \cdot 30$
0.2	6358	13.4 F 1.5	8.0 ∓ 1.5	1.95	3.45	5.427
0.3	10376	9.8 -1.0	3.9 ∓ 0.62	1.13	4.77	
0.5	21398	23.8 ∓ 1.5	11.971 .2	2.30	7.60	4.597
0.6	14447	17.4 ∓ 2.0	6.1F1.0	2.23	9.15	3.55
0.7	16467	15.7戸1.25	3.570 .57	2.49	9.71	$6 \cdot 3$
08	7358	14.671 .1	8.6 ∓ 1.2	2.3	3.70	5.02
0.1	$\beta^{-} / \text {min }$ 407	5.170 .75	5.170 .7	-	\bigcirc	0
0.2	16440	15.4 ∓ 0.3	10.470 .4	4.586	0.42	0.254
0.3	11837	7.3 ∓ 0.84	5.5 ∓ 0.75	1.58	0.22	0.186
0.4	17570	17.4 ∓ 0.2	10.0 ∓ 0.38	5.01	2.30	1.31,
0.6	17617	10.2干1.0	6.2 ∓ 065	2.94	1.06	0.57,
0.7	6447	5.0 ∓ 0.7	3.6706	0.95	0.45	0.698
0.8	4785	4.8 ∓ 0.6	4.070 .5	0.73	0.07	0.14 s

The ordinate indicates the ratio of the number of (β, γ) coincidences to the number of single β counts. The abscissa gives the value of the magnetic field strength.

As we see from the graph there is a correlation between γ^{-}- rays and ${ }^{+}$of the order of $1 \gamma^{\prime}$ to 5 positrons. This figure is uncertain at least by a factor of two, firstly because the large statistical errors involved in such a low coincidence counting rate and secondly because of the under dainty: of the energy of this γ - ray which will affect the counter s efficiency.

An attempt to determine the energy of the coinciding γ - rays was made by using a triple coincidence arrangement: a pair of coincidence counters to measure the γ - ray energy as a function of absorber thickness was set in coincidence with the β ray counter . The experiment failed because of the very low coincidence rate (0.5 per minute) which was recorded at zero absorber thickness.

* If there was one to one correspondence between β^{+}and γ the coincidence rate (β, γ) would be equal to the β
efficiency of the γ - ray counter. Hence in general

$$
n=\frac{(\beta, \gamma)}{\beta}=\mathbf{f} \cdot \varepsilon
$$

where $f \leqq 1$ and

$$
\varepsilon=\varepsilon\left(E_{\gamma}\right)
$$

An additional check on the measurement of the (β, γ) coincidences was made, repeating the experiment with slightly improved conditions. The collection of the β particles was localised to a small area of the β - ray counter . This was achieved by covering the thin window with a lead sheet 1 mm . thick which a square aperture $\frac{1}{3}^{\prime \prime} x^{\frac{7^{\prime}}{8}}$ in the middle, where the efficiency of the counter is uniform. (The variation of the efficiency of the counter along the wirw is shown in Fig. 24). The total number of chance coincidences between β and γ, and, γ and γ was measured by means of a new method in which the β radiation from $c u^{64}$ was replaced by the β radiation emitted by a different source. The procedure was as follows : First of all the total number of $(\beta+\gamma)$ single counts and $(\beta+\gamma), \gamma$ coincidences from cu^{64} were measured at a cer tain field strength; afterwards RaE needles of different intensitfes wrapped in very thin Al foil were placed right on the top of the β - ray counter underneath a lead screen over the aperture and their stregth was adjusted until the same number of total single counta was obtained from the sum of $\mathrm{Cu}^{64} \gamma$ - rays $\mathrm{RaE} \beta$ - rays . Then the number of coincidences were $\theta \in \theta$ measured also for this case. The difference between the two total coincidence rates gives directly the number of the real $\left(\beta_{64}, \gamma\right)$ coincidences, The experiment was performed with a thin cur foil, $\because . U_{0} 001$

Fig. 24 .

FIGS. 25,26 show the variation of the γ-ray counting rate in the β and γ-ray counters as a function of the field intensity.

The curves $H(I)$ correspond to the direction of the field necessary for the collection of positrons in the β-ray counter, the curves $H(I I)$ Correspond to the direction of the field for the collection of negative electrons in the β-ray counter. (See the next Page).

FiG. 25

Fig. 26.
thick , 4 mm . oy 10 mm . in size. Fig. 27 shows the result of this run. It indicates the correlation of γ - rays with positrons in the ratio of 1 to 10 . The apparent independence of the (β, γ) coincidence rate with positron energy suggests that this γ - ray is of nuclear origin. The diffi culty of interpreting the result of this experiment arises from the fact that it is impossible to fit a nuclear γ - ray, which is known to have an energy of 1.35 meV , in to the energy scheme of Cu^{64}. The values of $\mathrm{M}^{-}-\mathrm{A}$, where ${ }^{A}$ is M^{\prime} the the mass number and is the atomic weight, for/three isobar of mass 64 (Cu, Zn, IVI) are :-

Lu	-507.4	10^{-4}	mass unit
Zn	-513.6		
Ni	-525.6		$"$

The energy available for the transmutation $c u \rightarrow$ iif, is equal to $18.210^{-4} / 1110^{-4}=1.66 \mathrm{MeV}$. This accounts for the creation of the positron and its known maximum kinetic energy (cf. Cu^{64}). According to the latest investigation of of the Fermi distribution of Cu^{64} positrons the probability of the existence of even a low energy nuclear γ - ray is (84) very small. (The positron distribution at low energy differs from the rermi distribution only by 1 percent ; this discrepancy could be easily due to experimental error .) The remaining possibility of interpretation of the result could be to attribute this γ - ray to some type of annihilatior radiation. Howevor the accuracy of the present experiment is not high enough to make a final decision.

FIG. 27

$i(A)$	β^{+}	$\begin{aligned} & \left.\operatorname{Cu}^{64} \text { (} \beta, \gamma\right) \\ & \text { counci. + othencin } \end{aligned}$	$\left(\mathrm{Cu}^{64}+\mathrm{Ra} a^{2}\right)\left(\beta_{5}\right.$ coin + otherea	Decay cavreation	(β, γ) covincted.	$\left.\frac{(\beta+\gamma)}{\gamma}\right)$
0.2	6538	2.5 ∓ 0.5	1.0 ∓ 0.3	0.02	1.52	2.33
0.3	22124	5.1 ∓ 0.7	1.7 ∓ 0.4	0.05	3.45	1.56
0.4	16306	$8.1=0.9$	4.4 ∓ 0.6	0.08	3.78	2.41
0.5	11878	6.5 ∓ 0.8	5.0 ∓ 0.7	0.06	1.56	1.31
6	26781	8.8 ∓ 0.9	2.370 .5	0.09	6.59	2.43
0.6		6.0 ∓ 0.75	4.0 ∓ 0.5	0.06	2.06	2.07
0.7	9981	0.0 ∓ 0.75	4.070 .5			
0.8	10797	2.4 ∓ 0.5	0.9 ∓ 0.3	0.02	1.52	1.41
0.9	5511	5.0 ∓ 0.7	3.7 ∓ 0.6	0.05	1.35	2.43
1.0	12420	2.3 ∓ 0.5	0.5 ∓ 0.2	0.02	1.82	1.465
	β^{-}					
0.2	28280	4.6 ∓ 0.7	5.1 ∓ 0.7	0.04	-0. 54	-0.17
0.2	6815	0.6 ∓ 0.2	0.4 ∓ 0.17	0.006	0.206	0.303
0.3	24967	5.4 ∓ 0.75	5.4 ∓ 0.73	0.05	0.05	0.02
0.4	19959	1.7 ∓ 0.4	1.3 ∓ 0.35	0.017	0.417	0.209
0.5	11903	4.5 ∓ 0.67	3.5 ∓ 0.6	0.04	1.04	0.87
0.6	12556	0.7 ∓ 0.26	1.0 ∓ 0.3	0.007	-0.3	-0.2.4
0.7	18824	6.1 F0. 8	5.1 ∓ 0.7	0.06	1.06	0.52
0.8	4545	1.0 ∓ 0.3	1.0 ∓ 0.17	0.01	0.01	0.02
1.0	6262	0.7 ∓ 0.26	0.5 ∓ 0.2	0.007	0.207	0.315

CHAPTER VI

THe STUDY OF ONE-QUANTUM ANNIHILATION• PART II.

The separation of the positrons from the nuclear ζ-rays of cu^{64} was achieved by the trochoidal method. This method was selected because it offered much greater efficiency of collection than methode employing any orthodox magnetic spectrometer. The latter instrument involves a small solid angle for collection in producing energy resolution and is a factor of 10^{-3} to 10^{-5} down in efficiency of collecting positrons on to a small target. t'hus the use of a spectrometer would have involved a source strength of the order of one curie which is impossible to obtain in the thickness and size required for this experiment.

Section A:- The Trochoidalmethod.

§.1. This technique of collecting particles by using the fringing field of an electromagnet was first introduced by U. Tnibaud (85) specially for the study of positrons. The trajectory of the particles emitted from a source which is placed in such a field, possessing an appreciable radial gradient, will be a trochoid if the initial velocity of the particles is perpendicular to the lines of force and in the
median plane. The magnitude of the precession δ, which is caused by the existence of the radial field gradient Δn, is proportional to the radius r of the elementary circular orbit of the particle (defined by $m \not{ }^{2} / r=H e v$), is given by

$$
\begin{equation*}
\delta=\pi r(\Delta H)_{r} / H \tag{30}
\end{equation*}
$$

where H represents the field strength in the centre of the elementary orbit; $(\Delta H)_{r}$ the variation of the field along r in the median plene . For a given charge, δ will cause a displacement always in the same direction irrespective of the initial direction of emiseion and velocity of the particle. therefore in the case of a point source, all positrors emitted in the median plane will be transported to the other end of the tube. But the finite size of the source will cause a loss which increases in the ratio of the source diaweter to the magnitude of δ.

The total path L of the electron from the source to the diametrically opposite point will also be a function of the field intensity and gradient and is given
by

$$
\begin{equation*}
L=\frac{2 \pi R}{(\Delta H)_{\Omega} / H} \tag{.31}
\end{equation*}
$$

Here R is the radius of the mean circle. see rig. 28 . (For $R=30 \mathrm{~cm}$ and $\underset{H}{(\Delta H)}=1.19 .70^{3}$ the most energetic positrons from $\mathfrak{u n}^{64}$ will travel a distance of approximately 2 Km . These figures are quoted from our experimental arrangement, further explanation will be given in the next paragraph.

FIG. 28.

FIG. 29
in the general case where the source emits particles in all directions and the initial velocities are no longer in the median plane, the path will depend upon the field variation in the transverse direction as well as in the radial direction ; and the trajectory of the electron, where the thes of force are transformed from ${ }_{\lambda}^{a} c y l i n d e r ~ t o ~ a ~ c o n e ~$ will be given by the equation

$$
\begin{equation*}
\operatorname{rcos} \alpha=\text { constant } \tag{32}
\end{equation*}
$$

This is a geodesic of a surface of revolution and α is the angle which the initial velocity of the β particle makes with the meridian of the surface of revolution, r is the radius of the cone at a point where $\alpha \neq 0$, and, the value of the constant is determined by $\quad r=r_{0}$ corresponding ${ }_{\lambda} \alpha=U$.

As seen from Fige29-36.the path of the electrons is no longer helichoidal because of thecenicity. This expression " conicity " is defined by Thibaul as being the half angle of the cone which is ${ }^{\text {in }}$ question and the value of this angle ω is given by

$$
\begin{equation*}
\operatorname{tg} \omega=r(1-\cos \alpha) / 1=\left(2 A \sin \frac{\alpha}{2}\right) / 1 n \tag{33}
\end{equation*}
$$

where

$$
\left.l=d-d_{0} \text { and } A=r H \quad \text { (see fig. } 31 .\right)
$$

If we denote the value of the field at the point s by n and at M by H_{0} and the difference of the two by (δH) it is possible to derive another relation for ω interms of these measurable quantities, and ω is given by

FIG. 30.

FIG. 3 I.

$$
\begin{equation*}
\omega=A \delta H / 2 R H^{2} \tag{34}
\end{equation*}
$$

This reiation holds for ω and α small; and as seen, the conicity of the tubes of force is not constant but varies as the pols is approached. Substituting the above value of ω in (33) and concidering the case where $=a$, (a is the width of the gap of the magnet) we obtain a limitimgalue α_{m} given by

$$
\begin{equation*}
\sin \frac{\alpha_{m}^{2}}{2}=\frac{1}{2}(\delta \mathrm{H} / \mathrm{H})^{\frac{7}{2}} \tag{35}
\end{equation*}
$$

This limitingangle will restrict the lateral oscillation of the particles, hence. it will play a part on their collection. For a point source the efficient regon of emission is represented by the complementary volume of the double cone of aperture of $\left(\pi-2 \alpha_{m}\right)$. see rig. 32. The fraction uf particles collected can be expressal as the ratio of this volume v to the sphere. The numerical value of the fractional yield will differ from one systom to another. In our experimental arrangement,for $P=1 \frac{3}{4}^{\prime \prime}$ and $\delta H / H=2.8410^{-2}$ α was found equal to $9^{0} 36^{\prime}$ wnd the percentage yield given by $V / 4 \pi$ corresponding to the above value of α_{m} was equal to 16.8%. The experimental results of the measurement of the

FIG. 32. yield will be given later in detail.
§.2.Apparatus : (a)- Glasgow university's 15 tons magnet was used to provide the necessary field. The pole diameter of this electromagnet was 2 feet and the gap between the poles was originally $8^{\prime \prime}$. This was reduced to $4^{\prime \prime}$ later by the addition of two extra pole-pieces . The field intensity ubtainable in the $4^{\prime \prime}$ gap as a function of the current ${ }^{\text {s ginen }}$ rig. 33, For the maximum value of $1=40 \mathrm{~A}$. used here the magnetic field measured in the centre of the gap was 12000 gauss. the radial distribution of the fieid in the median plane and in the plane parallel to it each at an inch apart was studied for $8^{\prime \prime}$ gap and the results are given in rig. 33 b . The distribution of the lines of force was also obtained by the help of the iron filings method. After these two obser(See Fig 34). vations diagrams of the isofieldswere drawn from which the variation of the field and therefore the value the precession δ could be determined. A knoledge of the position cor the best value of δ determines the region in the inhomogeneous field for which the yield of particles is greatest. (b)- The magnetic separator was a seamless semicircular tube of copper, 1.5 mm . thick and $12 \frac{3}{4}$ " mean radius having a cross-section $3 \frac{1}{2}$ " in diameter ${ }^{\prime \prime}$ The width of the gap was reduced to $4^{\prime \prime}$ in order to have the maximum field gradient within the cross-sectional area). Two flanges, were screwed and seakd on to the two ends. Une of the flanges carried

Fig. 33 (a).

FIG. 33 (b)

FIG. 34.
the source which couid be rotated through 360° by means of a vertical ground juint(A). Near the other end of the tube wes another ground joint operating horizontally and having a possible rotation of $180^{\circ}(B)$ (This was usel to carry the annihilators for the purpose of main experiment). Fig. 35 . illustrates the construction.
(c)- A β-ray counter was used for the determination of the efficiency of the separator in collecting various β particles (positive and negative) of different energies from aifferent sources. the cathode was a copper cylinder 1 mm . thick, $2 \frac{1}{4}^{\text {" }}$ in diametur and $2 \frac{33^{\prime \prime}}{4}$ long. The anode was a tungsten wire, $2^{\prime \prime}$ long, carrying a smail glass bead at the end near the window. The window was a very thin sheet of mica ($2 \mathrm{mgr} / \mathrm{cm}^{2}$) sealed on to a thick brass ring which was soldered on to the cathode in order join the counter to the magnetic separator. A rubber ring was inserted between the counter and the tube to reduce the risk of fracture of the thin window. The counter was connected to the separator. through a narrow copper tube which permitted simultaneous evacuation. The counter was filled with a mixture of alcohol and argon to a total pressure of 6 cm . in the ratio of 1 to 5 respectively. It gave a very flat and long plateau extending over a range in excess of 300 V . (The threshold voltage was ~ 1200).

FIG 35 .
§3. Iest of the efficiency of the separatur.
Observations on the fractional yleld (the ratio of the number of particles collected to the number of particles emitted) showed that the efficiency of the separator is a funtion of the following facturs:
(I)- source shape and position in the tube.
(2)- The position of the tube in the field.
(3)- riesd intensity H.
(4)- rressure in the tube P.
(5)- The energy of the particles E.

1. Form of the source: Point sources are obviously the ideal type, but for various reasons they are impracticable. In the case of line sources the length must be along the field axis. A rotation of 90° reduces the yield by a factor of two. The effect of the decentralisation of the source is shown in fig 36 (d). 2. The separator must be placed so that its centre of curvature is at the mid-point of the gap and should be with its plane perpendicular to the axis of the magnetic field. Small displacements or rotations were found to give rise to very large reductions in the yield factor . Especially the tube must be positioned with great accuracy in the field in/ the to and fro " direction.

The variation of the yield with the three dependent variables H, P, and E is investigated in the following way: $Y=f(H) ; E, P$ constant. $Y=f(P) ; H$ const. $Y=f(P) ; H, P$ const.
3. Variation of the yield as a funcion of the field incensity with S and P constant is shown in Fig. 36 . The source used in this test was Rai β-rays, maximum energy of 1.3 MeV und mean energy 0.3 MeV . For a given value of $P_{=} P_{1}$, the yield increases rapidly with the increasing H and tends to show a flat maximum at the higher H. For P2 smaller than P_{1} this maximum appears at smaller values of the field and the new maximum yield Y_{2} is greater than the previous max. Y_{1} The absolutevalue of the yield was determined by measuring directly the emission from the source with a rectangular counter and with the β-ray counter attached to the separator and found equal to $\% 16$ and $\% 30$ for the pressures 1 mm . and 0.02 mm . of mercury respectively. All of the figures quoted are subject to a pather small correction due to the difference in the absorption of the window on the counter used with the separator and that on the counter used to measure directly the emission from the source. The latter was $30 \mathrm{mgr} / \mathrm{cm}^{2}$ in thickness but the correction is not large for RaE. 4. $Y=f(P) ; E$ and H constant.

IE is found that the yield rapidly increases with decreasing pressure down to a value of about 0.1 mm of Hg and below that pressure it showe a rather slow increase along a plateau, see Fig. 37, a, For this reason the pressure was kept as low as possible during the course the main experiment, since any change in pressure at low pressures does nut produce any

FIG. 36 .

FIG. 36 (a)

Fig. 38
appreciabie effect on the counting rate. (FiG 37.6.)
o. $Y=f(E)$; H and P constant.

Three different radioelements Co^{60}, Rat , Cu ${ }^{64}$ were used as sources to determine how the yield might depend on the energy of the radiation.
(a) Ras : The best yield obtainea in these experiments with very thin old radon neadee was in excess of $\% 30$ and it was secured at $P=0.01 \mathrm{~mm}$ of Hg and $i=27.5 \mathrm{~A}$.
(b) $C O^{60}$: An old nickel wire (mainly cobalt) source of about 100 Kev mean energy and 0.4 Mev maximum energy was studied at the same pressure as radium ($\mathrm{P}=0.01 \mathrm{~mm}$ of Hg . Because of the reduced energy of the β-rays a window correction of $\% 30$ was made. The measured yield for this source had a maximum value of $\% 50$ at $i=27.5$ A. FiG•38.

The measured values of the two maximum yields for Raw and $C 0^{60}$ show that it is easier to bring soft β - par. ticles round the separator. This fact indicates that at the pressures obtaining in the apparatus the length of total sath travelled by the β-rays is not a determining factor in the yield. (The paths of the rays of co ${ }^{60}$ are on the average much longer than those of the particles from $R_{a E}$). We can explain the result by considering particles which do not travel in the median plane. Those particles which are emitted at an angle to that plane will move towards the well of the separator. The chance of deflecting
them towards the median plane is greater for the particles of small energy. Hence preasumably the lower yield obtained for RaE is due to the fact that the high energy particles from this source are more frequently lost by striking the .all of the separator. (c)- Cu ${ }^{64}$: The above yields could have been more accurately measured by adopting the technique now described for Cu^{64}. In this second method of determining yield the errors due to window thickness and estimation of the solid angle employed were eliminated. The procedure was as follows: Tne source of Cu^{64} was mounted at one end of the separator and the numbers of particles arriving at the other end were measured with the standard β-ray counter (mica window) The tube pressure was 0.0005 mm of Hg and the field current was set at $i=8 \mathrm{~A}$, corresponding to 2160 gauss. (These values of the pressure and the field were chosen during the course of the main experiment because it provided the max. rate of counting. A curve indicating the distribution of of the intensity of the annihilation radiation as a function of the field is given in Fig. 39.). Next the same source was placed at a point in the separator immediately above the counter (counter being still attached to the tube). The separator was evacuated to.the same pressure as before. Magnetic field was switched on in order to:

FIG. 39.
(i) get rid uff the esectrons from the source, (II) provide the same solid angle, approximately 4π, for the positrons entering $\%$ the counter. The number of counts obtained in these circumstances was corrected for the decay uf the source and the final ratio n / N was found to be $\% 10$. The arrangement is suchnthat the measured value of iv may be tuo high on account of penetration of the counter by negative β - rays before they pass along the separator in the the opposite direction to the positrons. rig. 40 . The source distance was ~ 1 cm and H was ~ 2000 gauss. Thus ρ, the radius of cur-
 vature for the electrons of average average energy 0.3 MeV .would be about 1.0 cm which gives

FIG. 40 .
them a chance of penetrating
the counter. A method of allowing for the electron component of the counting rate (by comparison with the distribution uf the X - rays resulting from the annihilation of positrons as a function of the field intensity) was readily obtained and the corrected value of the yield was \%l6. 1 . should be noted that this value of $\% 16$ would be raised slightly if
currection is made for the counts produced by X-rays (Ni X-rays froin K-capture) and γ-rays (γ-radintion cuused by the annihilation of positrons in the source and the surroundings of the counter) .

Section B:- Experiment on the Annihilation Radiation. F-1.Electronid Devices: These consisted of a coincidence circuit, two amplifying probe units(one for each counter) and three scalers (Scaling Unit Type 200 A) to measure the two single counts and coincidences gmultaneously. The supply voltages for the amplifiers and the coincidence unit were obtained from the scalers. The mixing circuit(the coincident Unit Type 1035) was designed to give three positive outpats which were separately fed to the three scalers. The coincidence output consisted of pulses of 20 volts in amplititude which were produced when the two counters discharged simultancously: a negative pulse from the first probe unit (Probe Unit Type 1el4), applied to the grid of the first valve, cut this triode off, and, the large wide positive pulse produced from the anode passed through a cathode follower, and after being differentiated by a condencer and resistence passed through a diode producing a positive pukef 5 volts amplititude across a resistence. The process is repeated for the second input and the resulting pulses are applied to the grid of a pentode which only takes anode current when the
pulse amplituue excueds 5 volts. Hence we can record a coincldence only when two single pulses are superimposed i.e unly when the in u ut pulses are coincident within the resolVing time of the circuit. The latter was determined by measuring the chance coincidences produced by :
a- two independent sources; lead shieding between the two counters.
b- one source; counters set apart widely.
The value of the resolving time was found to be $1: 49 \mu \mathrm{sec}$. and $1.50 \mu \mathrm{sec}$. for method (a) and (b) respectively, and checked from time to time during the course of experiment. The high voltage for the counters was supplied by a stabilised 2.2 KV power pack provided with the two potantiometer (P.U. Type 1007) which permitted independent adjustment of the voltage on each counting tube. The two rectangular coincidence counters were the same as previously described.
E.2. Experimental arrangement: Magnetic separator was mounted in its best position in the magnetic field; to close the counter end an aluminium aheet and a copper ring of the sam total thickness as the β-ray counter flange were screwed on to the tube and sealed carefully in order to keep the whole system vacumbtight. To reach a pressure of about $10^{-4} \mathrm{~mm}$. of Hg and to ensure the stability of the vacum the system was continuously evacuated by the help of a single
stage oil diffusion purap backed with a Hivac.
The source consisted of a number of wires of $U .018^{\circ}$ diameter and $1^{\prime \prime}$. length. Usually 5 or 6 such wires were used in one mounting to provide the required intensity. it was found by experiment that the most efficient arrangement was obtained by mounting these wires 5 mm . apartiparallel to each other and to the axis of the magnetic field) on a very thin tungsten wire support at right angles to it.

In the presence of the magnetic field the positrons travelled round the separator and on striking the annihilator l" above the flange produced the source of radiation to be investigated. The annihilators were rectangular sheets of jead and aluminium of nearly equal superficial mass stuck together and screwed on to the horizontal ground joint. By rotating the knob either annihilator could be turned to receive the particles without interfering with the vacurme. A large lead block ($3^{\prime \prime}$ by 15") was put on the way of unwanted Y-rays from the source between the two ends of the tube. The two coincidence countex, screened to avoid interference, were set 3 mm . apart and screwed on to a metal plate which could slide between the two metal bars fixed on another metal plate. This arrangement allowed rotation of the counter assembly around an axis parallel to the axis of the field. With the help of this arrangement the distance of the counters and their angular position relative
tu the source cousd be adjunted as required. As a resunt of the severas testo the muximum ratio of coincidences to oingle counts was obtained for the geometry in which $v=45^{\circ}$ und $d=i^{\prime \prime}$ (Fig. 4 .) The reasons for the counters being set as described were :
(a) to keep them out of the strong field,
(b) to subtend as lurge a solid angle at the source as positile. When they were placed vertically beiun the unihilator the Loss of energy of the secondary electrons in the thin copper walls was excessive since they all made several passages through the councer in the strong fringing field.

Under these conditions ", at the begirining of 4 run the number of single counts in the first ana second counters were of the order of 40000 per minute and $1000 \mathrm{v} / \mathrm{min}$. respectively and approximately 500 coincidences with no absorbers and about 25 at infinite absorber thiakness were obtained.
8.3. Three seties of experiments were carried out, each involving several differencas in the method of taking and analysing the data.

I- The first run was made withina single source of five wires. To cover the full range of the two absorption curves with lead and aluminium annhilators while employing only the one source and to maintain the consistency of the experimental conditions observations were cuntinuubiy perfurmed fur a

Fig. 41 .

112

period of over 36 hours in tach case. Two measurements on each point of each curve were taken in the couroe of decreasing the thickness of absorber. The curves were studied up to the maximum number of absorbers (12 of $U .01$ " thickness each, which is the range of 2 MeV electrons) which was well beyond the region of the possible maximum energy of the annihilation radiations.

The teal number of coincidences was calculated from the total number of observed coincidences by subtracting the chance coincidences and the cosmic-ray backgruund. The latter was studied in the new system as a function of the absorber thickness taking several hours measurement for each absorber. On the average the number of cosmic ray councidences varied between 2 and 6 per minute for $x \geqslant 12$ and $\mathrm{x}=0$ respectively. (Here x is the absorber thickness)

The readings in the presence of the surce were taken alternately for Pb and Al in the following order: (a)- Ten minute readings for coincidences N_{c} at $x \neq 0$ Ihe total counts were found to vary between $\sim 20-50 / \mathrm{min}$. as the number of absorbers varied between 12 and 1 .
(b)- simultaneously with starting to count cuincidences the single counts were measured for a minute ur two.
(c)- The number of coincidences N_{0} for $\mathbf{x}=0$ was measured at the beginning, widdle and at the end of the run, and
the decaj cor ection for each point was made referring to a single time origin. Each number of coincidences at an absorber thickness was corrected for cosmic rays and chance coincidences and decay and was normalised dividing by the number of coincidences at zero absorber thickness corrected for chance and cosmic ray coinsidences. The result of this run is shown in $\mathrm{H}^{\prime} \mathrm{ig} .42$. The ordinate indicates the ratio uf n_{c} / N_{0}. The abscissa shows the number of aluminium absorbers The absorption curve obtained with lead annhilator is still above that for an aluninium annihilator each ending more or less in the same point within the probable error . Naturally in this method large statistical errors do not allow us to make further very definite conclusion. What we can say as a first approximation is this that the nuclear γ-rays do not produce an appreciable effect on the process we observed. This makes the previous observation more reliable.(Cf. (hap.II.). II- In order to reduce the statistical errors a single pair of points (one point on each curve) was examined carefully with one set of wires as source. Because the maximim rate of delivery of the sources from Harwell was one per weak, full curves were obtained only after several months.

The procedure of taking readings for each pair of points was as follows:
(a)- Number of coincidences at zero absorber was measured

Fig. 42
for 5 or 10 minutes.
(b) - Number of single counts in the first and second counter was simultaneously measured with (a) for the same period. i.e.the three scales were switched on and off exactly at the same time. (c)- Number of coincidences at absorber thickness x was measured over a period of 5-6 hours. over 210^{5} coincidences were recode (d)- Number of single counts in both counters was measured during the first minute of (c) (because the value of the single counts in the second counter varied with the absorber thicknesses ${ }_{\alpha}$ about $\mathcal{F} 10$ and even the no of ingle counts in the first coonter was slightly affected by the presence of the absorbers.) (e)- Both single counts and coincidence counts were checked nearly every half : hour in order to ensure the stability of the experimental arrangement.
(f) - (a) and (b) were repeated at the end of the run to avoid any accidental changes.
these long observations need a very elaborate decay correction because of the short lifetime of the source. The proper form of correction made for the decay, chance coincidences and the background is summarised in the filowing formula:
where,
$n_{c}=$ Real number of coincidences per minute at an absorber thickness x .
$\lambda=$ Decay constant for Cu ${ }^{64}$ positrons which is equal to 9.02 10^{-4} per minute .
$t_{2}-t_{1}=$ Time interval during which the integral number of coincidences is observed .
$n_{t}=$ integral number of coincidences.
$B=$ cosmic-ray plus ordinary backgound coincidences/min. $n_{1}=$ Number of single counts in the first counter at the instank t_{1}.
$\mathbf{n}_{2}=$ Number of single counts in the second counter at t_{1}. $\tau=$ Resolving time of the coincidence. circuit.

In order to avoid any confusion the necessity of employing such formula is explained below: The square bracket indicate e the real number of coincidences. The first term $n_{t} / t_{2}-t_{1}$ is the rate of average number of total coincidences as a result of an observation of duration $t=t_{2}-t_{1}$. since n_{t} is the integral number of coincidences measured over a period t, the average number corresponds to a time $t_{1+t_{m}}$ where τ_{m} (mean time) is given by

$$
e^{-\lambda t_{n=0}}=\frac{1-e^{-\lambda t}}{\lambda t}
$$

τ_{m} is only slightly different from $t / 2$ for $a n$ observation of duration 18.5 hours for which $\lambda t=1$
$e^{-\lambda t / 2}=1 / \sqrt{e}=0.6065$, and $e^{-\lambda \tau_{m}}=1-1 / e=0.6321$,
Thus the difference between thesetwo is about 4.5%. Therefore for the short readings of $10-20$ minutes this difference is entirely negligible. Hence in such short readings the average number of coincidences is regarded as corresponding to - time given by $\left(t_{2}-t_{1} \gamma 2\right.$, but in every reading exceeding half an hour the corrections are made by referring to τ_{m}. The second term is the background correction for cosmic rays and etc. it is assumed to be constant per minute for each x at any time. The third term indicates the chance coincidentces correction. The latter would occur with the rate of $2 n_{1} n_{2} / 60$ per minute at the time origine and because of the decay the number would be $2 n_{1} n_{2} \tau / 60 . \bar{e}^{-2 \lambda t}$ after a time t. During the time interval $t_{2}-t_{1}$, the integral number of the chance coincidences would be

$$
2 n_{1} n_{2} \frac{\tau}{60} \int_{0}^{t_{2}-t_{1}} e^{-2 \lambda t} d t
$$

Hence the rate of chance coincidences at the time $t_{1}+\tau_{m}$ will be

$$
c=\frac{n_{1} n_{2} \tau / 60\left(1-e^{-2 \lambda\left(t_{2}-t_{1}\right)}\right)}{\lambda\left(t_{2}-t_{1}\right)}
$$

The decay correction for the real number of coincidences referred to the moment $t_{1}+\tau_{m}$ was made relative to an arbitrary time origin t_{0} from which t_{1}, t_{2} are measured.

The content of the square bracket has to be multip_ lied by a factor $e^{\lambda\left(t_{1}+\tau_{\text {m }}\right)}$ which is equivalent to division - by

$$
\frac{e^{-\lambda t_{1}}\left(1-e^{-\lambda(t 2-t 1)}\right)}{\lambda\left(t_{2} t_{1}\right)}
$$

which is equal to

$$
\frac{e^{-\lambda t_{1}}-e^{-\lambda t_{2}}}{\lambda\left(t_{2}^{-t} t_{1}\right)}
$$

The accurate values of $e^{-\lambda t}$ for $0<\lambda t<1$ were obtained from a table $y s i n g$ up to five or six decimals.

The numerical values calculated for each observations from the above formula are given in Appendix. \bar{y}. Fig. 43. ilustrates the result of the experiment after n_{c} and $N_{c}^{\text {werrerrecied and the ratio of } n_{c} / N_{c} p l o t t e d ~ a g a i n s t ~}$ the energy of the recoil electrons . the shape of the absorption curve in general agrees with the previous one, and confirms the results obtained before with a much increased accuracy (free of large statistical errors) (Sec Mp. E)

From this graph, the following qualitative conclusions can be deduced at once :
(1)- The difference of intensity between the two curves obtained with Pb and Al annihilators in favour of lead proves the existence of one quantum annihilation. (ef.omapter IV)
(a)- The different slope of the tails of the two curves
near the end point verifies that this radiatiun is produced only in a heavy annihilating medium in sufficient amount to be observed.
(3)- A pronounced tail beyond the strong component of U. 5 $M E V, ~ i n ~ b o t h ~ m a t e r i a l s, ~ i n d i c a t e s ~ t h e ~ e x i s t e n c e ~ o f ~ t h e ~ t w o-~$ quanta annihilation radiation in motion.

To be able to make a quantitative analysis of these curves an extrapolation back to the real zero absorber thickness is required. This was done firstly by plotting the logarithmic intensities against the energies and allowing for the two copper windows of $U .001^{\prime \prime}$ thickness $64.72 \operatorname{mon}_{6}$)

In the case of aluminium the logarithmic absorption curve could be easily decomposed into two nearly straight lines of different slopes. Neglecting the latter which is obviously very small compared with the main radiation (See Fig. 44 .) a factor of 10 was ohtained from the extrapolation of the first line, undoubtedly due to the $U .5$ mev radiation. In the numerical calculation of the areas SPb and $\mathrm{SAl}_{\mathrm{A}}$ under the two curves for lead and aluminium, this factor of 10 was taken into account.

If we denote the difference of areas $\mathrm{SPb}_{\mathrm{Pb}}-\mathrm{S}_{\mathrm{H}}$ by s, the ratio of s / S from the measurement of these areas was found fequal to 5%. This can br interpreted in the following way :

In the case of Pb annihilator we have three types of radiations:

1. Two-quanta annihilation radiation at rest for which the absorption coefficient of the secondary electrons is denoted by μ_{1} and the numerical value of μ_{1} can be obtained from the slope of the first line in the logarithmic plot of the absorption curve.
2. Two-quanta annihilation radiation in motion for which the absorption coefficient is μ_{2}.
3. One-quantum annihilation radiation for which the absorplion coefficient is μ_{3}.
In the case of Al annihilator, according to the result of the experiment and the theory, we have in practice the first two components of the radiations only and not the third one (crosssection for low value of 2 is very small) . Then the area under the absorption curve obtained when using Pb as annihilater is given by

$$
S \quad \int_{0}^{x} y d x=\int_{0}^{x} I_{01} e^{-\mu_{1} x} d x+\int_{0}^{x} I_{02} e^{-\mu_{2} x} d x+\int_{0}^{x} 1_{03} e^{-\mu_{3} x} d x
$$

where I_{01}, I_{02}, I_{03} are the intensities of the three types of radiation measured at zero absorber thickness . Then

$$
S_{P b}=\frac{I_{01}-I_{1}}{\mu_{1}}+\frac{I_{02}-I_{2-}}{\mu_{2}}+\frac{I_{0}}{0} \bar{\mu}_{3}-I_{3-}
$$

$1_{1}, 1_{2}, 1_{3}$, are the intensities of the radiations at an absorber thickness x. in considering the total area
we are dealing with values of x at which the intensities of the radiations are reduced to zero. Hence we can regard I_{1}, I_{z}, I_{3} afn negligible compared with the intial intensities $\perp_{01}, \perp_{02}, \perp_{03}$ - Therefore

$$
\mathrm{s}_{\mathrm{Pb}} \cong \frac{I_{01}}{t_{1}}+\frac{I_{02}}{\mu_{2}}+\frac{I_{03}}{v_{3}}
$$

and

$$
s_{A 1} \cong \frac{I_{01}}{\mu_{1}}+\frac{I_{02}}{\mu_{2}}
$$

and

$$
S_{P b}-S_{A 1}=\frac{I_{03}}{\mu_{3}}
$$

Here we are assuming that \perp_{02} is the same for $A l$ and Fb , which is true theoretically and is in essential agreement With the results. We deduce therefore that the difference of the areas under the two curves is proportional to the intensity of the hard radiation due to the oneequantum annehilation process; the factor of proportionality being the wosorption coefficient for that radiation and it can be meansure by the help of the logarithmic plot of the curve. Knowing the values of μ_{1} and μ_{2} as well, we can express.; the ratio of s / S as a function of these measurable quanttities and L_{03}. This is given by

$$
s / B=\frac{s_{P_{b}}-s_{A 1}}{s_{A 1}}=\frac{L_{03} / \mu_{3}}{\frac{L_{01}}{\mu_{1}}+\frac{I_{02}}{\mu_{2}}}
$$

or, in order to introduce the ratio of the absorption coefficient this relation can be written as:

$$
s / S=\frac{I_{03}}{\mu_{3}^{\mu} / C_{1}\left(I_{01}-I_{02} \mu_{\mu_{2}}^{\mu}\right)}
$$

In this last relation μ_{3} / μ_{1} and μ_{i} / μ_{2} are measured from the graph and found equal tow 0.015 and \sim lU respectively. s/s was determined from the ordinary absorption plot. To estimate the \perp_{03} in terms of \perp_{02} and \perp_{01} another relalion between the three is required. This can be obtained firstly from the ratio of the logarithmic intensities at zero absorber, extrapolated to the absolute zero absorber thickness which gives us $1_{02} / I_{e l}$ equal to $\frac{1}{2} \%$. As an alternative approach we can introduce the theoretical value of the cross-section σ_{2} in order to obtain the equivalent of an extra relation connecting the quantities in the above equation. The justification for this step is found now to lie in the overall agreement which follows between our expe64 rimental results and theory: for the cu^{64} source the annihiladion in motion would be mainly due to the positrons of energy (on the average) 0.3 MeV and these have a range of $80 \mathrm{mgr} / \mathrm{c}_{\mathrm{m}}^{\mathrm{L}}$ which correspond to 0.0073 cm of range in lead. there are approximately 3.210^{22} atoms per cm^{3} in lead and hence $2,31 \mathrm{v}^{20}$ atoms in the range of the electrons $\left(n_{n}\right) Z_{2}$ per atom in lead for $E_{k}=0.3 \mathrm{MeV}$ is $2.210^{-23} \mathrm{~cm}^{2} . n_{n} \sigma_{2}=2.2 \times 2.3 \times 10^{-23} \times 18^{2 \mathrm{~V}}$

$$
-125-
$$

which is equal to 5.10^{-3}. If we take this value of as the ratio of two -quanta annihilation "in mution"to "at rest" and substitude in the following relation

$$
s / s=\frac{I_{03}}{0.015\left(I_{01}-10 I_{02}\right)}
$$

we will have

$$
=\frac{I_{03}}{I_{02}}\left(\frac{0.015}{0.005}-0.15\right)^{-1}=5 \%
$$

Finally as the ratio of one-quantum annihilation in motion to two-quanta annihilation we obtain

$$
\frac{I_{03}}{I_{02}}=16 \%
$$

As we have seen in chapter II the theoretical value of the ratio of the two cross-sections calculated on the basks of the Burn approximation for both processes has a maximum limit of about 15%. The actual value of the average cross-sections σ_{1} and J_{2} for the cu 64 positrons could be calculated, over the all energies, from

or, to a first approximation, the ratio of the average crosssections $\left(G_{1}\right)_{A} /\left(\zeta_{2}\right)_{A}$ will be equal to
where;
$P(E)$ is the energy distribution of $w u^{64}$ positruns, and $N(E)=$ number of the positruns at a given energy; this was obtained frum a curve illustrating the momentum spectrum of the positrons from $\mathcal{C} u^{64}(54)$, and $\zeta_{1}(E), \sigma_{2}(E)$ are the cross-sections as a function of energy for one and two quanta annhilation processes and their numerical values were taken from the rig. 13 . The result of the numerical calculations gaves a vilue of 10% as $\left(\mathcal{C}_{1} / \delta_{2}\right)_{A}$. which is infairly good agreement with the fatio of ine intensities obtained frum the result of our observations. As a further justification of this comparison it would be nesessary to show that these two ratios are identical, i.e. $I_{0 甘} / I_{02}=\sigma_{1} / \mathcal{C}_{2}$

Let us suppose that originally we have N_{0} positrons and let us asoume that ali these positrons will annihilate in the medium concerned; then considering that we have an inhomogeneous beam of positrons we can regard them ${ }^{\text {as }}$ being absorbed exponentially. ${ }_{\lambda}^{\text {thneed }}$ For a subsiance of density ρ the absorption ${ }^{\circ}$ positrons man be described by the equation

$$
i v=N_{a} e^{-H / \rho} m
$$

where, Mf is the absorption cefficient, m is the superficial mass of the absorber i.e. annhilating material, iv is the number of positrons which survives. Thus the number of positrons which is annihilated will be $N_{0}-\mathbb{N}$. I'his, to a first approximation, is equal to $N_{o} \mu=m / p$. Therofore the
intensity of the annihilation radiation which is produced will be proportional to this quantity. On the other hand, by definition, the cross-section is the absoption coefficient per atom (or per electron). If we denote the numbder of atoms per cm^{3} of the annihilating material by n, the cross-section per atom δ will be equal μ / n, hence, f, the intensity of γ-rays produced in a given material will be

$$
i \cong \mathrm{n} \zeta \pi_{0} \mathrm{~m} / \rho
$$

In lead the component of annihilation radiation due to onequantum process will be

$$
i_{1}=n \delta_{1} N_{0} \mathrm{~m} / \mathrm{s}
$$

and due to the two-quanta process will be

$$
i_{2}=n \delta_{2} N_{0} m / \rho
$$

and the number of detected quanta will be proportional to $i_{1} \varepsilon_{1}$ and $2 i_{2} \varepsilon_{2}$ respectively, where ε_{1} and ε_{2} are the efficiencies of the counter for both radiations. It is known that: $2 \varepsilon_{2} \cong \varepsilon_{1}$. Hence the ratio of $\begin{gathered}\text { thincensities is the same }\end{gathered}$ as the ratio of the cross sections.

The absolute intensity of the coincidences which are measured con be expressed in terms of the parameters which are involved in the experimental arrangement. We have $I=k n \cdot \frac{L}{A} \sigma m X_{0} r$ where k is a complicated proportion. nolity factor which is afunction of solid angle and probably energy Loss. No is the number of atom e pere.c in material of counter, $X=$ cuas-section for (oinpton and photo-ecectron (an average combined one have), La Loxhmidte constant
 produced in moll of cantor.

Apart from the intensity of the radiations the onergy value of the λ-rays due to one-quantum annihilation seems to agree quite well with theoretical prediction. The end point obtained from the logarithmic plot, and atso Woll from the ordinary plot of the absorption curve tends to be between six or seven absorber, which correspond to range: equivalents of 1.13 and 1.27 MeV respectively. Since the cross-section for compton electrons is much higher than the cross section for photoelectrons for λ-rays of energy about 1 MeV we can assume to a first approximation that the ranges we measure in Al can be considered as the ranges of compton electrons. If we assume that the collisions are head-on $(\theta=\pi, \varphi=0), E=2 h \nu_{i} \alpha /(1+2 \alpha)$, where $\alpha=h \gamma_{\mathrm{c}} / \mathrm{mc} \mathrm{c}^{2}$. From this formula we find that for the measured value of $E, h \gamma_{0}=1.34 \mathrm{Mov}$. On the other hand, for a poiitron of energy 0.66 moV , the maximum energy of annihilation radiation is $h \nu_{c_{m a x}}=\frac{1}{2} m c^{2}+m c^{2}+E_{k}=1.41 \mathrm{MeV}$, which is in good agreement with the above value. Photeelectrons correspondin to this energy would give us, if we take into account the binding energy of the K-shell, a minimum of 1.31 MoV recoti energy. If we took the end-point as corresponding to Ne. 7 absorber this would be equivalent te an energy of 1.27 MeV . which is close to the above value.

To make certaingthe existence of the hard component due to the two-quanta annihilation in motion, since this radiation appears in both curves taken with lead and aiuminium annihlator, a comparison between the result for a Cu^{64} source and that of a source of γ-rays omittore of energy near 0.5 MeV wrould be desirable. Fior that purpose a Sn source, known to emit $0.6 \mathrm{MeV} \quad Y$-rays was tried first and found to extibit a strong tail up to 1.2 MeV range. This was in disagreement with tabulated data but it may have been due to impurity or deficiency in previous work. Next ~ very thoroughly studied source $A u^{198}$, which emits γ radiation of energy 0.41 was chosen ${ }^{80-90}$. A small piece uf gold foil, activated in the pile, was mounted on the annihilators after being covered with a thin mica sheet. The absorption measurements were carried out in exactly identical circumstances as that θ for Cu^{64} source. The number of coincidences were measured even for the high valueg of the absorber thickness.;. The results are shown in Fig. 45 . As seen from the graph a very flat background was obtained up to the second absorber in coming down to the zero absorber. This finding is entirely different from the case of Cu^{64}.

The ideal thing to have would be a non-positron emitter source of $051 \mathrm{MeV} \quad Y$-ray, but in $^{\text {sinch }}$ source of accurately known energy is available.

Another difference was the intensity of the backgrouna. It was by a factur of 5 higher than the background which was obtained with cu ${ }^{64}$. This was true when the number of coincidences from both radiations (Cu^{64} and Au^{198}) were normaLised to the number of coincidences at zero absorber. However the effect of the counters windows for both radiations had still to be taken into account. lo be sure about this relatively high background one more absorption curve with gold was taken by mounting the source on the lead annhilator. The result was nearly the same as for $\quad \mathrm{Al}$, (Pb curve being slightly below the Al curve)

Frum the logarithmic plot of the absorption curves for gold, extrapolated to zero window thickness, it was found that an additional factor of abouc 2 seemed necessary for the normalisation of the number of coincidences from gold source with that of copper source in order that the background intensities should be the same. To obtain the precise value for the window correction the following experiment was planned and carried out with both sources $C u^{64}$ and $A u^{198}$ The two square counters, as used for the previous experiment, were mounted in a flask with the same geometry asim the urevious setting, and the windows facing each other were removed. The whole assembly was evacuated and filled with the same mixture at the same pressure. The sources were
mpunted alcernately on the flask (See Fig. 46 .) being rrapped with a sheet of lead and both being at the sume distance from the first counter. The number of coincidences was: measured and also the single counts readings were taken in both counters and the relative coincidence intensities were calculated in terms of the single counts for both sources. The same process repeated after inserting two copper foils of $0.001^{\prime \prime}$ thick each(which is the equivalent of the two window thickness) infto the space between the two counters. This simulated the windows used in normal pracice. The whole sys iem was again evacuated and refilled as usual. In the latter case the relative number of coincidences was reduced,fom 36.6% to 1.81% for gold, and from 39.8% to 4.29% for copper. This implies a correction by a factor of 2.37 for gold. Incidentally it should be noted that the ratio of 39.8/4.29 gives a factor of 9.25 for the extrapolation of the annhilation radiation to the zero window thickness. This is in good agreement with the facter of 10 which we accepted earlier in the analysis of our curves.

To make sure that the two counters with no window present do not cause any additional coincidences due to the sympathetic discharge (induced say by photo-emission) the same test was repeated with a very thin aluminium foil between the two. The ratio of the number of coincidences

FIG. 46
to the number of single counts par minute for Au and for Cu was 23.2% and 24.7% respectively. The agreement of the two ratios among themselves verifies that the two ratios obtrained with no wind $\begin{gathered}\text { w are free of errors. . (The }\end{gathered}$ reduction in the value of the ratios: when $A 1$ foil is used is mainly due to the scattering effect). Having traced 2.37 parts of the factor of 5 in background intensity ratio we can proceed further to explain the high background in the case of the gold source. Thus it can be definitely assumed that the remaining background in each case (Cu^{64} and Au^{198}, is due to the :
(a)- Double Compton process.
(v) - Double Photo process.

By (a) we understand that a compton process at one counter yields a secondary electron'which triggers it and a softer quantum winch succeeds in triggering the other counter. By (b) we mean that an act of proto-eleciric absorption gives a triggering photo-electron and an X-ray quantum (normally K-level) which triggers the second counter. The first of these processes will obviously not vary rapidly with quantum energy, but it is known that the cross section for the photoelectric effect varies with the $-7 / 2$ power of the energy of the incident γ-rays

$$
\phi_{\bar{k}} \phi_{0} \frac{\mathbf{z}^{5}}{(13)^{4}} 4 \sqrt{2} \cdot(\mu / \mathbf{k})^{7 / 2}
$$

Hence for the ratio of the cruss-sections, ϕ ни $\$$ wu we obtain a factor of

$$
f=\left(\frac{k_{\mathrm{Cu}}}{\mathbf{k}_{\mathrm{Au}}}\right)^{7 / 2}=2.1
$$

where $\mathbf{k}_{\mathrm{Cu}}=0.51 \mathrm{MeV}$ and $\mathbf{k}_{\mathrm{Au}}=0.41 \mathrm{MeV}$. We have therefore a definite explanation of the relatively high background on the absorption curve for gold since $I=2.1$ is very close to the ratio of 5 to 2.37 , the required factor of normalisation for zero window thickness for both radiations (gold and copper \quad-rays).

Furthermore the very close agreement means that the remaining background in both cases is due to the photo-electron-Xray coincidences and not to the compton electron-γ-ray coincidences. In other words the double compton effect is negligible beside the double photo effect: Sufficiently careful study of the rate of diminution of the background intensity with aluminium absorbers should give a coefficient of absorption corresponding to the K X-rass of lead. III - As an additional check on the main experiment and in order to avoid any systematic orror in the long run technique, the relative intensities of the γ-radiations produced in lead and aluminium as annhilators, were alternately measured every minute and the sums of the total number of coincidences per minute plotted against the absorber thicknesses;Fig. 47 - shows the consistency of the nature of the

FIG. 47.

Section C:- General Remarks and concıusiuns -

The experimental results seem to exhibit an ade-

- quate proof of the existence of hard radiation from the annihilation of positrons at a nucleus. This " one-quantum annihilation"radiation is observable only when a heavy substance ${ }_{\text {is }}$ used as an annihilator. The experiments establish also very definitely the existence of radiation produced in the process of two-quanta annihilation in motion. The ratio of the intansity of single quantum radiation to that of the two-quanta radiation in motion agrees with the theoretical value within a factor of two.

Moreover, the comparison of the results obtained in studying the absorption of the radiations produced by : (a) A total source of Cu^{64} (ef. Chapter Iv) , and, (b) The positrons only from source Cu^{64} (cf.Chapter VI), shows that the effect of any nuclear (-radiation ascribed to the source is quite negligible. This close agreement in the two studies throws considerable doubt on the results of Deutsch for Cu^{64} radiations. This remark is supported to some extent by the separate work discussed in chapter v.

CHAPTER VII

PROPOSALS FUR FUTURE INVESTLGALILONS.

In this chapter a list of suggestions will be given for further experiments on the annihilation of positrons. First,of,all we shall mention those which arise as a result of our own work. For the most part they will show that it is desirable to prosecute experiments of a type smilar to those described here but with improved experimental conditions or with rather different methods, not possible to put into practice or adopt during the course of the present work. Afterwards we shall pass on to suggestions for experiments on points which have been neglected or not clearly established so far in connection with positron annihilation in general.
(A): 1- An investigation of the angular distribution of the two-quanta annihilation radiation as a function of the energy of the positrons is of importance. This introduces the necessity of obtaining positron sources* of different

A list of the positron emitters with histograms showing the life-time and the energy distribution among these substances is given in Appendix. II
energies and suitable life-times, or obtaining sufficiently intense sources to permat magnetic resolution of the positrons. L'his second possibility is preferred because it allows us to define the direction of incidence of the positrons; the experiment also requires very high efficiency counters (for γ - radiation) of small solid angle such as crystal plus photomultiplier counters. The study of the various angular distribution curves normalised at the peak might produce interesting results, such as the variations of the probability of annihilation in motion with energy or the cross-section for the two-quanta annihilation process. z- study of one-quantum annihilation by (a)- the routine coincidence absorption method using a very slow positrdn source for which the two-quanta annihilation in motion is negligible. $1 t$ was hoped that $N i^{59}$ tabulated as a source of upper energy 50 Kev , would be used. No such material was obtained in longterm irradiation of nickel in the Harwell pile. (b)- detecting the coincidences between the one-quan tum annihilation radiation and the X-ray produced in the annihilating material (because a k-electron will be missing wfter annihilation takes place). High efficiency proportional counters filled with krypton or xenon to make them sensitive to X-rays, are preferable as detectors. Determination of the energy of the X-ray characteristic of the
annihilaiing material could be made directly by $u_{0} i n g$ the proportional tube calibrated with known radiations. Une of the complicating features is the presence of strong γ - radi_ ation (O.bl Mev) and we need to separate the pulses due to the X-rays from the ray pulses. fheafore the cylinder. should be of a light material such as carbon to reduce photoelectric effect from it relative to the gas effect. since the X-ray pulses will be of nearly uniform amplitude the use of a pulse amplitude selector will automatically rid us of much of the γ-ray effect. Again it is possible to use a special system of counters within a container; the inner one (rig. 48) is made of wires parallel to the axis of revolution and it is surrounded by a set of counters. rossible improvements achieved with this system are: (i) reduced γ effect since this occurs at outer wall and outer tubes are in anti-coincidence; (ii) reduced wall effect for x -rays. Here most of the counts of the counter, corrected by anticoincidence, are due to absorption of X-rays in the gas. Again the pulse amplitude measures the X-ray energy when used proportionally.
3- (β, γ) correlation from $\mathcal{L u}^{64}$ could be checked very tho roughly with the help of the trochoidal method. A seperator preferably semi-circular as used in the present work, can be placed in the fringing field of the magnet with a pair

FiG. 48 .

FiG. 49.
of coincidence counters to measure the energy or the γ-rays and a thin window β - tube which is used to detect the positrons or the electrons. ${ }^{\text {Fif }} 49$ The single counter is connected to the first two in coincidence to give (β, γ) and (γ, γ) coincidence rates. This arrangement is satisfactory in the sence that it operates with nearly whole emission of ρ or β^{+}particles but it separates from other incerfering effects. 4- study of γ-radiations from $c u^{64}$ by means of an upto-date β-ray spectrometer abd by changing the annihilating material around the source. Although the mean energy of the annihilation radiation(anc-quantum process) and the nuclear radiation coincide-at 1.35 mev the shape of the secondary electron spectrmm will determine whether the radiation is really howogeneous (nuclear) or inhomogeneous (one-quantum annihilation radiation). the expected energy distribution of one-quantum annihilation radiation from cu ${ }^{64}$ is shown in Fig. 59 . The changing of the annihilating material from, for instance, aluminium to lead will indicate whether or not the nuclear γ-ray alone is responsible for. 1.35 men γ - radiation.
(B): 1- With the help of Wilson chamber photography method from t he /investigation of positron tracks coming to jabrupt termination and the determination of the range distribution, or probably better, energy distribution of the rositrons at the instant
of annihilation it should be possible to study statistically, if somewhat laboriously, the rrocess of annihilation at rest und in motion. $($ use of a magnetic field and track curvature measurements are necessary). the experimental efficiency may be increased by using counters in anti-coincidence in order to detect the positrons which are definitely stopred in the cloud chamber.

2- Wilson chamber investigation of the energy spectrum of the annihilation radiation by photography of compton electrons from radiators illuminated with annihilation radiation could be carried a stage further than past experiments. Possibily, if intensity considerations permitted (somewhat better sources are now available) magnetic resolution of the positrons prior to the annihilation would yield more definite information. 3- Temperature effect of annihilation medium upon intensity of annihilation could be investigated in order to obtain the annihilation probability as a funtion of energy for very slow positrons -
4- The advance of the technique of using photo-multiplier detectors for radiations makes attempte to determine, by wccurate delay counter coincidence experiments, the life times of positrons (e.g. by delayed coincidences between positrons entering an absorber and the detection of the quanta emission) a nearly practicable method of studying in some detail the time-sequence of ionisation and annihilation events. --000--

Acknowledgements

My thanks are due to Prof. PoI. Dee and Dras.C. Garran who supervised this work and helped to make it successful with their suggestions and stimulating discussions. I would also lice to express my gratitude to Dr. W. M^{C} rarlane for his deep interest in my work and for his continuous help in many directions, and to his wife who kindly provided every facility during my stay in their house to enable me to compiete my studies. 1 am also indepted to Mr. U.T. Lloyd, the chief technician of the department, whose assistance was very valuable during this research.

Finally 1 would like to thank the University of Istanbul for the grant they provided from september 1946 to Juhe 1949 .
\qquad

References.

1. C.D.Anderson,	Science, 76, 238, (1932). Phys.Revo,41, 405, (1932).
2. P.A.M.Dirac,	Proc.Roy.Sac.A., 126,360, (1930).
2a.P.A.M.Dirac,	Proc.Camb.Phil.Soc., 26,361, (1930).
3. G.T.P.Tarrant,	Proc.Roy.Soc.A., 128, 345, (1930).
4. C.Y.Chao,	Proci.Nat.Acad.Sci., 16,431, (1930).
5. C.DaAnderson,	Phys.Ret.,43,491, (1933),44, 406, (1933)
G. J.Chadwick,P.M.S.Blackett, \& G.Occhialini. Nature, 131, $286 \& 473$, (1	
7. I.Curie and F.Joliot,	C.R., 196, 1105, (1933).
8. J.R.Oppenheimer \& M.Plesset, Phys. Rev.,44, 53, (1933).	
9. W.Heitler \& F.Sauter	Nature, 132, 842, (1933).
10. H.Bethe \& W.Heitler,	Prac. Roy. Soc., 146, 83, (1934).
11. Grosew \& Frank,	C.R.(Doklady), 19, 49, (1938).
12. H.R.Hulme \& J.C.Jaeger,	Prac.Ray.Soc., 153,443,(1936),
13. F.Simon \& K.Zuber,	Proc.Roy.Soc., 159, 383, (1937).
14. Ogle \& Kruger,	Phys.Rev., 67, 273 \& 282, (1945).
15. P.Perrin,	C.R., 197, 1100, (1933).
16. Narques da Silva	Ann.de Phys., 11, 504, (1939).
17. Chizzeti \& Borsellino	Ric.Sci.,16, 625, (1946).
18. Watson,	Phys. Rev.,72, 1060, (1947).
19. Borsellino	Helv.Phys.Acta, 20, 136,(1947).

20. Memirowsky,	J.Phys.U.S.S.R., 11, 94, (1947).
20.a V. votruba	Phys. Rev. 73,1468 (1948)
21. Furry \& Carlson,	Phys. Rev., 44, 237, (1933).。
22. Heitler \& Nordheim,	J.de Phys. 5, 449, (1934).
22a.L.Nordheim,	J.de Phys., 6, 135, (1935).
22b.J.R.Oppenheimer,	Phys.Rew., 47, 146, (1935).
22c.J.William,	Nature, 135, 66, (1935).
22d.H.J.Bhabha,	
23. D.Sobobe:Itzyn,	Nature, 133, 128, (1934).
24.Skobeltgyn \& Stepanawa,	J.de Phys. 6, 1, (1935), Nature, 137, 272, (1936).
25. Mode Silwa,	C.R., 202, 2070, (1936).
26. Champion \& Barber,	Nature, 140, 105, (1937).
27. Feather \& Dunworth,	Proc.Camb.Phil.Soc.,34, 435, (1938).
28. S.de Benedetti,	J.de Phys.,7\% 205, (1936).
29. E.C.Champion,	Proc.Roy.Soc.A., 153, 353, (1935).
30. Staub,	Helv.Physo.Acta, 9, 306, (1936).
31. Crane \& Halpern	Phys. Rev., 55, 838, (1934).
32. Alichanor, Alichaniew, \& Kosodaew,	J.De Phys.,7, 163, (1936).
33. F.Perrin,	C.R., 197, 1302, (1933).

84. F.W.A.Fowler \& C.Iauritsen,

Phys.Rev., 56, 840, (1939).
35. Halpern \& Crane,

Phys. Rev.,55, 260, (1939) .
36. Oppenheimer \& Nedelski, Phys.Rev.,44, 948, (1933).
37. Rase \& Uhlembeck,
38. Jaeger \& Hulme,
39. Spees \& Zahn,
40. C.Y.Chao,
41. C.Y.Chao,
42.I.H.Gray \& G.T.P.Tarrant,
43.L.H.Gray \& G.T.P.Tarrant,

Phys.Revio, 48, 211, (1935).
Proc.Roy.Soc.A., 148, 708, (1935).
Phys.Rew. ,57, 72, (1940);58, 861, (1941)
Phys.Rev., 36, 1519, (1930).
Proc.Roy.Soc.A., 135, 206, (1932).
Proc.Roy.Soc.A., 136, 662, (1932).
Proc.Roy.Sac.A., $143,681 \& 706$,
(1934).
44.P.M.S.Blackett \& G.P.Occhialini,

Proc.Roy.Soc.A., 139, 669,(1933).
45. F.Joliot,
J.de Phys., 5, 229, (1934).
46. J.Thibaud,
C.R., 197, 1629, (1933).
47. O.Klemperer,

Proc.Camb.Phil.Soc., 30, 347, (1934)
48. Crane \& Lauritsen,
49. E.McMillan,
50. Richardson \& Kurie,
51. J.R.Richardson,
52. J.R.Richardson,
53. M.Deutch,
4. C.S.Cook \& L.M.Ianger, 55.7.w.M Du Mond, D.A.Lind \& B.B Watson 56. S. van Woorhis,
57.ar.Myler,
58. AA.Townsend,

Phys.Rev., 46, 868, (1934).
Phys.Rev., 50, 999, (1936).
Phys.Rev., 53, 124, (1938).
Phys.Rev., 53, 610, (1938).
Phys.Rev., 72, 729, (19477).
Phys. Rev., 73, 601, (1948).
Phys. Rev., 775, 1226, (1949).
Phys. Rev.,50, 895, (1936).
Phys. Rev., 56, 125, (1939).

- Proc.Roy.Soc.aA., 175, 48, (1940).

59. J.Bacchus,
60. G.L Lawson
61. Alichanon, Alichanian, \& Arzimonicz,

Phys.Rev.,68, 59, (1945).
Phys.Rev., 56, 13: (1939).

Nature, 137, 703,(1936). C.R.(Doklady),1, 287, (1936).
62. R.Beringer and C.G.Montgomery,

Phys.Rev., 61, 222, (1942).
63. JoA Whee ler,

Ann. N.Y.Acad.Scio, 48, 219, (1946)
64. H.S.Synder \& S. Pasternack, Phys. Rev.,73, 440, (1948).
65. Bleuler \& Bradt,

Phys. Rev., 7.3, , (1948).
66. Pryce and Ward,
67. E. Bleuler \& der Haar,
68. Fermi and Unlenbeck
69. P.M.S.Blackett \& G.P.Occhialini,

Prow.Roy.Soc.A., 144, 235, (1934).
7.0. H.Bethe,

Proc.Roy.Soc.A.,150,129, (1935).
J.de Phys.,6, 114, (1935).

Proc. Camb. Phil . Soc. 32 .(1936) 158
Proc.Roy.Sot, A.,146, 723, (1934).
Rev.Sci.Instr., 19, 67, (1948).
J.Sci.Instro,25, 423, (1948).

Helv.PhysaActa.,19, 219, (1946).
Helv.Phys.Acta.,19, 77, (1946).
Phys. Rev. 68. 193 , 1945
(b) E.N \quad I/ensen , L.T Laslett and w... Reoth
(c)

Nature, 160, 435, (1947).
Science, 108, 10, (1948).
Phys. Rer. 44,510 , 1933
72. JoSolomon,
711. J.C. Jaeger end H.R. Hulme
73. H.R.Hulmev\& H.J.Bhabha,
74. S.C.Curran \& J.M.Reid,
75. R.W.Pringle,
76. Bradt et al.
77. Bradt et al.

78 (A) Deutsch, Ellioft, Robert

78 (d) Jensen et A...
(e) Alburger
(f) Lind Dumond a Brawn
79. Langer, Cook \& Sampson.
80. Heyn,
81. Huber,
82. Seaborg,

屏s. Rev.

Phys.Rev.,71,906, (1947).
Physica, 4,16, (1937).
Helv. Phys. Acta, 16, 226, (1943).
Rev.Mod.•Phys., (1944).
83.M.Good, S.Peaslee, \& M.Deutch, Phys. Rev.,69, 313, (1946).
84. C.S.V紋 \& R.D.albert, Phys. Reve, 75, 315, (1949).
85. J.Thibaud, I.Cartan \& P.Comparet,
"Quelques techniques actuelles en physique nucleaire"
(Paris, 1939).
86. J.L. Lawson , J.M.Cork
87. E.H. Plesset
88. K. Sieghahn
89. DuMond. Lind, IVatson
90. Siegbahn

Fhys. Rer. 58, 580, (1940)
Phys. Rev. 62, 181 (1942)
Proc. Roy. Soc. 189. 527, 1947
Phys. Rev. 73 . 1392 . (1948)
Phys Rev. 75, 3, (1949)

APPENDIX.

I. Comparison of creation and annihilation processes.

Creation of pair.

a pair can be produced by the interaction of:1. Photon with nucleus ($E_{\mathbb{N}}=0$) if $k_{p}=h \nu \geqslant 2 \mathrm{mc}^{2}$.
2.Phaton with electron $(E=0)$ if $k_{p} \geqslant 4 \mathrm{mc}^{2}$
3. Electron with electron if $E^{\prime}=0$ and $E_{i}=6-7 \mathrm{mc}^{2}$. (6-Rerrin, 7-Heitler).
4. Photon with photon. if $\mathrm{E}^{\prime}+\mathrm{k}_{\mathrm{p}} \geqslant 2 \mathrm{me}^{2}$.
5. Electron with nucleus
($E=0$) if $E_{-}^{\prime} \geqslant 2 \mathrm{mc}^{2}$.
6. Heavy particle with nucleus $(E=0)$ if $E_{-} \geqslant 2 \mathrm{mc}^{2}$

Annihilation of pair.

A pair can be annihilated by the combination of a positron with an electron which is:-

1. Strongly bound to a nucleus giveing a single photon $\left(\mathrm{k}_{\mathrm{s}}>2 \mathrm{mc}^{2}\right)$.
2. In the neighbourhood of another electron giving electron $\left(\mathrm{E}_{=}=\frac{2 \mathrm{mc}^{2}}{3}\right)$ and photon ($\mathrm{k}_{\mathrm{s}}=4 \mathrm{mc}^{2} / 3$).
3. In the immediate neighbourhood of another electron giving a single electron ($E_{-}=2 \mathrm{mc}^{2}$).
4. Loosely bound or tree (in matter. giving photon $\left(k_{1}=m c^{2}\right)$ and photon ($k_{2}=m c^{2}$),
5. In the neighbourhood of a bound electron giving a single electra
6. In the neighbourhood of two other electrons giving electron $\left(E_{-}=m c^{2}\right)$ and electron ($\left.E_{-}^{\prime}=m c^{2}\right)$
7. γ-ray emitted by a nucleus \mid 7. A K-electron. in the field of the same nucleus ($k \sim 5 m c^{2}$)
II. List of Positron Emitters.

Element	Half-life	Energy in MeV .	Produced by
C_{6}^{10}	8. B sec.	3.4 cleh.	$B-p-n$
$C_{6}^{\prime \prime}$	20.5 min .	0.95 clch.	$\begin{aligned} & B-\alpha-n ; B-p-\gamma ; N-p-n ; \\ & C-n-2 n ; \end{aligned}$
N_{7}^{13}	9.93 min .	$\begin{aligned} & 0.92,1.20 \\ & \text { (spect.) } \end{aligned}$	$\begin{aligned} & C-d-n ; C-p-\gamma ; B-x-n ; \\ & \mathbb{N}-n-2 n ; N-d-H_{3} \end{aligned}$
0_{8}^{15}	126 secs.	1.7 clch .	$\begin{aligned} & N-\alpha-n ; 0-Y-n ; N-p-Y ; \\ & C-\alpha-n . \end{aligned}$
F_{9}^{17}	70 secs.	2.1 cIlch.	$0-d-n ; N-\alpha-n ; 0-p-Y$.
F_{9}^{18}	112 min	0.7 clch .	$\begin{aligned} & \mathrm{Ne}-\mathrm{d}-\alpha ; 0-\mathrm{p}-\mathrm{n} ; \mathrm{F}-n-2 n ; \\ & 0-\mathrm{d}-\mathrm{n} ; \mathrm{F}-\mathrm{d}-\mathrm{H}_{3} ; \mathrm{F}-\gamma-\mathrm{n} . \end{aligned}$
Ne_{10}^{19}	20.3 secs.	2.20 clch.	$\mathrm{F}-\mathrm{p}-\mathrm{n}$.

Element	Half-life	$\begin{gathered} \text { Energy in } \\ \mathrm{MeV} . \end{gathered}$	Produced \qquad
$\mathrm{Na}_{i 1}^{22}(y)$	3 years	0.58 clch .	Mg-d-x ; $\mathrm{F}-\times-\mathrm{n}$; $\mathrm{Ne}-\mathrm{d}-\mathrm{n}$ 。
Mrg_{12}^{23}	11.6 secs.	2.82 clch.	Na-p-n; Nag- $\mathrm{V}^{\text {- }}$ -
Al_{13}^{26}	7.0 scs.	2.99 clch.	$\mathrm{Na}-\alpha-\mathrm{n} ; \mathrm{Mg}-\mathrm{p}-\mathrm{n} ; \mathrm{Mg}-\mathrm{p}-\mathrm{r} ; \mathrm{Al}-\mathrm{p}-\mathrm{n}$ 。
Sii ${ }^{27}$	4.9 scs.	$\begin{aligned} & 3.74 \mathrm{clch} . \\ & 3.54 \end{aligned}$	Al-p-n; Mg-x-n.
P_{15}^{29}	4.6 sec.	3.63 clch .	Si-p-n.
P^{30}	2.55min.	3.0 clch. 3.5 spect.	$\begin{aligned} & A Z-\alpha-n ; S-d-x ; P-n-2 n ; \\ & P-y-n \text {. } \end{aligned}$
$S_{\text {i6 }}^{3 i}$	3.2 secs	3.85 clch.	P-p-n; Si-x-n; S-r-m.
C7 ${ }^{33}$	2.4 scs .	4.13 clch.	$S-d-n$
Cl_{17}^{34}	33 min .	2.5 abs.	$\begin{aligned} & P-x-n ; S-d-n ; C l-n-2 n ; \\ & C I-x-n ; S-x-p . \end{aligned}$
$61_{17}^{36}(k, \bar{\beta})$	$10^{3} \mathrm{yr}$.		
A35 8	1.88 sec.	4.4 clch.	Cl-p-n;S-x-n.
K_{19}^{38}	7.7 min .	2.3 abs.	$\begin{aligned} & \mathrm{Cl}-\alpha-\mathrm{n} ; \mathrm{Ca}-\alpha-x ; \mathrm{K}-\mathrm{n}-2 \mathrm{n} ; \\ & \mathrm{K}-\gamma-\mathrm{n} \text {; } \end{aligned}$
Ca_{20}^{39}	4.5 min .		Ca-n-2n ?
Sa_{21}^{42}	0.87 sec	4.94 clch.	Cam-n.

Element	Half-Life	Energy in MeV .	Produced by
S^{42}	13.5 days.	1.4 abs.	$\mathrm{K}-\boldsymbol{\alpha}-\mathrm{n}$ 。
$\mathrm{Sc}_{21}^{4.3}(\zeta)$	4 hrs 。	$\begin{aligned} & 0.4,1.4 \\ & 1.13 \mathrm{abs} . \end{aligned}$	$\mathrm{Ca}-\mathrm{d}-\mathrm{n} ; \mathrm{Ca}-\mathrm{p}-\mathrm{n}$.
$\operatorname{Sc}_{21}^{4}(Y)$	4.1 hrs.	1.5 abs. 1.33 spect.	$\begin{aligned} & \mathrm{Sc}-\mathrm{n}-2 \mathrm{n} ; \mathrm{K}-x-n ; \mathrm{Ca}-\mathrm{d}-\mathrm{n} ; \\ & \mathrm{Ti}-\mathrm{d}-\alpha ; \mathrm{Ca}-\mathrm{p}-\mathrm{n} ; \mathrm{Sc}-\mathrm{d}-2 \mathrm{n} ; \\ & \mathrm{Sc}^{4}(52 h) \mathrm{I} . \mathrm{T} . \end{aligned}$
$\mathrm{Ti}_{22}^{55^{5}}$	\%.08 hrs.	l.2e clch.	$\begin{aligned} & \text { Ca }-u-n ; S c-p-n ; S c-d-2 n ; \\ & \text { Ti-n-2n; Ti-r }-n . \end{aligned}$
V_{23}^{47}	33 min .	$1.9 \mathrm{abs}$.	Ti-d-n; Ti-p-n.
$V_{0}^{48}(x, y)$	16 days.	1.0 clch.	Ti-d-n; Sc- - - C ; $\mathrm{Cr}-\mathrm{d}-\alpha$;
V_{23}^{50}	3.7 hor.	0.58.	$\begin{aligned} & \text { Ti-p-n. } \\ & V-n-2 n ; T i-d-n ; T_{i}-\alpha-p . \end{aligned}$
$\operatorname{Cr}_{24}^{49}$	41.9 min .	1.45 abs .	Ti- $\alpha-n ; C r-n-2 n$.
Mn^{51}	46 min .	2.0 abs	$C r-d-n ; C r-p-5$.
$\operatorname{Mn}_{25}^{52}(\gamma)$	21 min.	2.2 clah	Ferd- α; Cr-d-n.
$\operatorname{Min}_{25}^{5^{2}}(k, y)$	6.5 days.	0.77 clch.	Fe-d-x; Cr-p-n.
Fe_{26}^{53}	8.9 min.		$\begin{aligned} & \mathrm{Cr}-x-\mathrm{n} ; \mathrm{Fe}-\mathrm{n}-2 \mathrm{n} ; \\ & \mathrm{Fe}-\gamma-\mathrm{n} . \end{aligned}$
$\mathrm{Co}^{55}(\mathrm{y})$	18.2 hrs .	1.50 spect.	$\mathrm{Fe}-\mathrm{d}-\mathrm{n} ; \mathrm{Fe}-\mathrm{p}-r$.

Element	Half-life	Energy in MeV.	produced by
$\operatorname{Co}_{27}^{56}(y, k)$	72 days.	1.2 abssc.c.; coinc. 1.5 spect. coin.	Fe-d-Ln;Ni-d- ${ }^{\text {a }}$; Fe-x-n,p.
$\mathrm{Co}_{27}^{57}\left(k_{1}, \gamma\right)$		0.26	$\mathrm{Fe}-\mathrm{p}-\mathrm{r} ; \mathrm{Fe}-\mathrm{d}-\mathrm{n}$.
$\mathrm{Ca}^{51} \mathrm{~S}(5)$	72 days.	0.4 abs; 0.47 spect.coinc.	$\begin{aligned} & \mathrm{Fe}-\alpha-\mathrm{n} ; \mathrm{Mn}-\alpha-\mathrm{n} ; \mathrm{Ni}-\mathrm{d}-\alpha ; \\ & \mathrm{Fe}-\alpha-\mathrm{n} ; \mathrm{Ni}-\mathrm{n}-\mathrm{L} \mathrm{p} ; \mathrm{Fe}-\alpha-\mathrm{n} ; \\ & \mathrm{Fe}-\mathrm{p}-\gamma \end{aligned}$
Ni_{28}^{57}	36hrs.	0.67 abs.	Fe-d-n; Ni-n-2n;Ni-Y-n.
Cu_{29}^{58-60}	81 sec.		Ni-p-n.
CuI 58.60	7.9 min .		Ni-p-n.
$\mathrm{Cu}_{20}^{61}(k)$	3.4 hr	Q. 9 abs.	$\begin{aligned} & \text { Ni- }-\alpha-n ; N i-p-n ; N i-p-\gamma ; \\ & \text { Ni- }-p ; \end{aligned}$
$\mathrm{Cu}_{2 \mathrm{C}}^{\mathrm{Cl}}$	10.5 min.	2.6 clch .	$\begin{aligned} & \mathrm{Cu}-\mathrm{n}-2 \mathrm{n} ; \mathrm{Cu}-\gamma-\mathrm{n} \text {; } \mathrm{Co}-\alpha-\mathrm{n} ; \\ & \mathrm{Ni}-\mathrm{p}-\mathrm{n} ; \mathrm{Ni}-\mathrm{p}-\gamma ; \mathrm{Cu}-\mathrm{d}-\mathrm{H}_{3} \text {. } \end{aligned}$
$\mathrm{Cu}_{29}^{64}(\bar{\beta}, k)$	12.8 hrs.	0.66 spect.	$\begin{aligned} & \mathrm{Cu}-\mathrm{d}-\mathrm{p} ; \mathrm{Cu}-\mathrm{n}-\gamma ; \mathrm{Ni}-\mathrm{p}-\mathrm{n} ; \\ & \mathrm{Zn} \mathrm{n}-\mathrm{p} ; \mathrm{Cu}-\mathrm{n}-\mathrm{Zn} ; \mathrm{Cu}-\gamma-\mathrm{n} . \end{aligned}$
$\operatorname{Zn}_{3} 13$	38 min 。	2.3 abs.spect.	$\begin{aligned} & \mathrm{Zn}-\mathrm{n}-2 \mathrm{n} ; \mathrm{Zn}-\gamma-n ; \operatorname{Cu}-\mathrm{p}-\mathrm{n} ; \\ & \mathrm{Ni}-\alpha-\mathrm{n} ; \mathrm{Cu}-\alpha-2 n ; \end{aligned}$
Zn_{30}^{65}	250 days.	0.4 clch.	$\mathrm{Zn}-\mathrm{d}-\mathrm{p}$; Cu-d-2n;Cu-p-n; $Z n-n-\gamma$; Ge 65 -K decay.

Element	Half-life	$\begin{gathered} \text { Energy in } \\ \text { liev. } \end{gathered}$	Produced by
Gaa ${ }_{31}^{64}$	48 min .		$\mathrm{Zn}-\mathrm{p}-\mathrm{n}$.
$\mathrm{Ga}_{\mathrm{a}} \mathrm{C6}$	9.4 hrs .	3.1 abs.	$\mathrm{Cu}-\mathrm{x}-\mathrm{n}$; $\mathrm{Zn} \mathrm{n}-\mathrm{p}-\mathrm{n}$.
Ga_{31}^{68}	68 min .	1.9 abs.	$\begin{aligned} & \mathrm{Cu}-\alpha-\mathrm{n} ; \mathrm{Ga}-\mathrm{n}-2 \mathrm{n} \text {;Ga-r-n;} \\ & \mathrm{Zn}-\mathrm{p}-\gamma ; \mathrm{Zn}-\mathrm{d}-\mathrm{n} \text {;Ge-d- } \alpha ; \end{aligned}$
Ge 71	40 hrs .	1.2 abs .	```Zn-x -n;Ge-n- %;Ge-d-p;Ge-d- 2n;Se-n-x.```
- As_{3}^{72}	26 hrs .		$G e-p-n$.
As_{33}^{73}	50 hrs .	0.6	$\mathrm{Ge}-\mathrm{d}-\mathrm{n}$
$\operatorname{As}_{3}{ }_{3}^{74}(\bar{\beta}, \mathrm{~K})$	16 days.	0.9 clah.	As-n-2n; Se-d-x ; Ge-p-n.
$\operatorname{As~}_{33}^{7}(\bar{\beta}, \text {, })^{\prime}$	26.8 hrs .	$\begin{aligned} & 0.7,2.6 \\ & \text { clch. coin. } \end{aligned}$	$\begin{aligned} & \text { As-n-y;Br-n-x;Ge-p-n; } \\ & \text { Se-d-n;Se-di- } \alpha ; \end{aligned}$
$\mathrm{Br}_{35}^{7 \ell}(\bar{e}, \gamma)$	6.4 min .	2.3 abs.	$\begin{aligned} & \mathrm{Se}-\mathrm{d}-\mathrm{n} ; \mathrm{As}-x-\mathrm{n} ; \mathrm{Br}-\gamma-\mathrm{n} ; \mathrm{Br}-\mathrm{n}- \\ & 2 \mathrm{n} ; \mathrm{Se}-\mathrm{p}-\mathrm{n} . \end{aligned}$
$\frac{K r}{36}^{7 i, q 1}$	34 hrs .	0.4 clch.	$\mathrm{Kr}-\mathrm{d}-\mathrm{p} ; \mathrm{Br}-\mathrm{p}-\mathrm{n} ; \mathrm{Se}-\alpha-\mathrm{n}$.
$Y_{361}{ }^{26}$	2.0 hrs.	1.2 clch.	Sr-d-n; $-\mathrm{n}-2 \mathrm{n}$; $\mathrm{Sr}-\mathrm{p}-\mathrm{n}$.
Zr 49 40	$78 \mathrm{hrs}$.	1.0clch.abs'.	Zr-n-2n; $\mathrm{Y}-\mathrm{p}-\mathrm{n}$; $\mathrm{Mo}-\mathrm{n}-\times$.
$\mathrm{Mo}_{42}^{\mathrm{q1}, 93}$	17 min .	2.65 clch .	Mo-n-2n; Mo- $\gamma-\mathrm{n}$.
TC $\begin{aligned} & 96 \\ & 43\end{aligned}$	2.7 hrs.		$\mathrm{Cb}-\alpha-\mathrm{n} ; \mathrm{Mo}-\mathrm{p}-\mathrm{n} ; \mathrm{NiO}-\mathrm{d}-\mathrm{n}$.

Element	Half-Iife	Energy in MeV .	Produced by
$\operatorname{Rh}_{45}^{102}(4,5)$	210 days.		$\mathrm{Rh}-\mathrm{n}-2 \mathrm{n}$.
$\mathrm{Ag}_{47} 16$	24 min.	2.04 abs .	Ag-n-2n;Pd-d-n;Cd-n-p; Rh-x-n; Ag-r $-n$; Pd $-\mathrm{p}-\gamma$; Pd-p-n;Ag-d-p,2n.
$\mathrm{Cd}_{48}^{10 \mathrm{O}_{1}}$	33 min .		Cd-n-2n
In 110	65 min.	1.6 spect.	Cd-p-n;Ag-x-n;Cd-d-2n.
$\operatorname{In}_{49}^{\prime \prime \prime}(r, \bar{e})$	20 min.	1.7 clch .	$C d-d-n ; C d-p-n$.
$\operatorname{In}_{4 i}^{\prime \prime 2}\left(p_{i} r_{i}\right)$	17.5 min .	1.3 abs.	$\begin{aligned} & \operatorname{Ag-\alpha }-n ; \operatorname{In}-n-2 n ; \operatorname{In}^{112}(16.5 \\ & \min .) \text { I.T. } \end{aligned}$
$\mathrm{Sb}_{-1}^{116,118}$	3.6 min.		$\operatorname{In}-x^{\prime}-\mathrm{n}$.
Sb_{51}^{120}	17 min 。	1.53 abs.	$\begin{aligned} \mathrm{Sb}-\gamma-\mathrm{n} & ; \mathrm{Sn}-\mathrm{d}-\mathrm{n} \end{aligned} ; \mathrm{Sn}-\mathrm{p}-\mathrm{n} ; \mathrm{Sb}^{3}-\mathrm{d}-\mathrm{H}^{3} .$
I_{53}^{124}	4.0 days		$\mathrm{Sb}-\mathrm{x}-\mathrm{n}$; Te-p-n.
$\mathrm{Ce} \quad \begin{gathered} 139 \\ 58 \end{gathered}$	2.1 min.		$\mathrm{Ce}-\mathrm{n}-2 \mathrm{n}$?
$\begin{array}{cc} \\ \hline \end{array} 140$	3.5 min .	2.40 clch .	Pr-n-2n.
Nd $\begin{aligned} & 141 \\ & 60\end{aligned}$	2.5 hrs .	0.78	Nd-d- H^{3}; Nd-n-2n; $\mathrm{Pr}-\mathrm{p}-\mathrm{n} ; \mathrm{Nd}-\gamma$
$\operatorname{Eu}_{63}^{150}$	$27 \mathrm{hrs}$.		Eu-n-2n?

Element	Half-life	Energy in MeV .	Produced by
$\operatorname{Dy~}_{66} \text { ? }$	2.2 min .		Dy-n- 3
$\operatorname{Er}_{68}^{165}$	1.1 min .		Er-n-2n.
Re_{75}	$30-55 \mathrm{~min}$.		W-p-n.
Pb_{82}^{203}	10.25 min .	1.66 abs .	Tl-d-2n.

III. Statistical Distribution of Positron Sources.

a- as a function of the atomic number of the emitters. (fic.51.) b - as a function of the kinetic energy of the emitted positronsfas

Fig. 51

FIG. 52.

IV(\&) (β, γ) coincidences from ThC.

FiG 53

Fig. 54.

The discontinuous nature of the curve illustrates the complexity of the β - γ transition of the source.

APPENDIX $\overline{\text { V }}$

[^0]: - A pecent aprimen (39)

 A recent experiment has shown the equality of the ratio o/m for the

[^1]: * The fuzl description of this method will be given in Chapter VI, Section A.

[^2]:

[^3]: * These most probably'will be stopped by the counter's window .

[^4]: *

 As a check on the correct operation of the apparatus ThC source was analysed before commencing the experiment with cu!t The results, a typical exampld
 of which is shown in Appendix II, indicate that the experimental driangement is satisfactory

