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Preface.

The component papers gathered 
together in this thesis have a common origin from the 
application of theoretical physics, and physical practice, 
in the work of an industrial research.department 
concerned mainly with steam engineering. The chief papers, 
which should be regarded as the main thesis, are the 
first five, which are all studies of the behaviour of 
saturated fluids, i.e. of mixtures of liquid and vapour. 
About that subject there is nothing whose excitement or 
novelty is obvious, and it may be pardonable to give 
here a brief statement of what the value of the papers 
is eonsidered to be.

The first, on circulation in 
water-tube boilers, is an entirely original theoretical 
study which establishes, for the first time so far as 
I am aware, the non-dimensional groups, analogous to the 
Reynolds number, Froude number etc., which govern 
thermo-syphonic action* TThe second, on discharge of 
saturated water through orifices and nozzles, is an 
extract from a joint paper with my chief assistant.
It is an experimental and theoretical study in which 
Mr. Mitchell was responsible for the detailed conduct 
of experiments initiated by myself. Similar experiments 
had been made by previous authors and there had been a 
very great discrepancy between the results obtained and 
those anticipated from existing theory. In our paper 
a theory is put forward, whose predictions are in close 
agreement with experiment* The theory was initiated and 
worked ont in detail by myself, although I am naturally 
indebted to Mr. Mitchell for discussion. The third paper 
arose because I realised that remaining discrepancies 
between theory and experiment in the second could be 
used to calculate the water condensation coefficient 
in the Knudsen formula* The theory and experimental 
results for this are given therein. The fourth paper 
is an original furtherance of existing theory of cavity 
collapse, pointing out the retarding action of heat 
released by condensation and estimating its quantitative



effects. The fifth, a short letter to "Nature", defines 
an ideal thermodynamic fluid, which may prove to be 
of some importance, and suggests an alternative to 
Trouton's rule*

There are six additional papers 
dealing with other points of physical interest arising 
out of steam engineering research. The whole of the 
paper on Modern liquid state theory is a review of other 
work, but parts of that on applications of thermodynamics 
in steam engineering research are my own. The other 
additional papers are wholly original, except for obvious or 
acknowledged references*

The saturated state occurs in 
very many parts of the steam cycle. The five papers which 
form the main thesis are concerned with this state as it 
appears in the boiler, when it is being drained from 
feed heaters and condensers, when it may be suddenly 
recompressed with collapse of cavities, and with some 
general consideration on the nature of the saturation 
equilibrium. Some of the facts established in the thesis 
have already been of immediate practical significance, 
and almost all have applications beyond those discussed 
herein. Thus for example I have used the condensation 
coefficient to predict steam-side heat transfer coefficients 
in condensers. I find that, when the surface effect which 
this gives is superimposed upon the Nusselt heat transfer 
equation for the water layer around a condenser tube, the 
overall result is in close agreement with established data*

I am indebted to my employers 
for permission to publish the individual papers and 
so to assemble them into this thesis. . Other acknowledgements 
are made where due.
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2

A Thermodynamic Theory of Circulation in Water-tube 
Boilers fo

By R. S. Silver, M.A., B.Sc., Ph.D.*
A thermodynamic evaluation is made of the work available for, and the resistance to circulation by, 
natural convection in a water-tube boiler. This leads to a theory of circulation which is independent 
of the usual type of hydraulic theory expressed in terms of density difference.

The theoretical circulation equation is first used for the direct estimation of examples of particular 
circuits. Estimates made by means of this are in good agreement with estimates made on existing 
hydraulic theories.

It is then shown that the present theory lends itself to a more general formulation, and the treat
ment is developed to elucidate the general physics of natural convection in water-tube boilers. The 
fundamental variables are certain characteristic non-dimensional groups. The system is shown to 
possess critical limits of stability and of circulating quantity. Expressions for these are derived, and 
the general type of performance is given in charts. The relation of operating pressure and rate of 
heating to these critical limits is discussed.

In the course of the development a definition of an ideal standard boiler is proposed which is 
suggested to be a useful conception.

By means of the present theory an adequate account of qualitative characteristics of boiler opera
tion can be given. Its possible quantitative accuracy is then discussed. Some comparison with 
experimental results is given.

Appendix I shows that the theory is generally applicable to the convection of non-evaporating 
fluids in tubes as well as to the boiler circuit. Appendix II  indicates the relevance of the theory to the 
question of forced circulation. In  Appendix III  the problem is treated by dimensional methods and 
the characteristic non-dimensional groups are confirmed. Another characteristic group is shown to 
apply when capillarity is included. This permits some discussion of the effects of discontinuity and 
of the requirements of scale models.
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( 1 )  I N T R O D U C T I O N  A N D  L I S T  OF S Y M B O L S  

A considerable amount of valuable work has already been done 
on the theory of circulation in water-tube boilers. Among the 
most important papers in recent years are those of Orrok and 
Artsay (1929),f Davis and Timmins (1933), Worthen (1940), 
Lewis and Robertson (1940), Markson, Ravese, and Humphreys 
(1942), and Midtlyng (1942). These papers have the common aim 
of developing methods by which the circulation in a water-tube 
boiler can be predicted. In  all of them the energy available for 
circulation is described in terms of the density difference 
between the downcomers and risers, using a hydraulic con
ception of available head. Each presents a scheme which is 
more or less convenient for the estimation of circulation in a 
specific example. All require the solution of a set of simultaneous 
equations which can only be made by constructing sets of curves.

However, the chief common characteristic is that all treat 
the mixture of water and steam as a continuous fluid, in the sense 
that no account is taken in the main development of effects 
arising from discontinuity. These include buoyancy, capillary 
action, slug formation, variation in frictional coefficients, heat 
absorption factors, and undefinable variations of velocity across 
the section. The suggestion to neglect discontinuous effects 
seems to have been specifically made first by Orrok and Artsay 
who argued that at least for high pressures they might be 
negligible. In  practice such effects exist, and in the author’s 
opinion, no precise agreement with experiment or test can be 
expected from a theory which does not include them. Neverthe
less Orrok and Artsay were correct in emphasizing that the 
convective effect of differential heating is the basis of circulation. 
Its treatment on a continuous fluid theory will be of considerable 
importance in providing general under standing and guidance. 
Accordingly, it should preferably be developed not for detailed

The MS. of this paper was received at the Institution on 5th April 
1943, and the note on capillarity (Appendix II),on21st September 1943.

* Research Department, Messrs. G. and J. Weir, Ltd., Cathcart, 
Glasgow.

f  An alphabetical list of references is given in Appendix IV, p. 12.
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estimation of particular circuits, but in a form suitable 
general discussion. The present paper is an attempt to de 
a continuous fluid theory in an appropriate form.

It was found that none of the existing treatments was 
able, largely because of their essentially hydraulic chi 
Accordingly an alternative approach on a thermodynamic 
was tried, which has been found to simplify greatly the eli 
dation of general properties of a boiler circuit. In  particularly 
leads to the determination of characteristic non-dimensir*4  

groups appropriate to the phenomenon of circulation, and 
single defining equation relating these groups. Moreover) 
eliminates the confusion which arises in the hydraulic thi 
from the need to specify some standard density to which a’ 
able head may be referred.

The following symbols are used in the paper for the quani 
specified:—

(1) Elementary symbols:—
A  Internal cross-sectional area of a tube.
B  Inclusive coefficient for entrance and bend losses.
D  Internal diameter of a tube.
h Height (general) or (with a suffix) heat supply per Ml

area of internal surface per unit time to a tube. |
L  Latent heat of evaporation.
I Axial length of tube.
p  Pressure.
q Final dryness fraction.
R  Internal surface/section ratio.
5  Coefficient for section change losses.
Vs Specific volume of saturated steam.
Vw „  „  water.
v Velocity of fluid flow.
x Local dryness fraction at any point in the circuit.
z  Vertical projection of tube length.
6  Angle of inclination of a tube to the horizontal. .
a Ratio of amount of heat supplied in downcomers to td z

amount.
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The suffix 1 is used to denote downcomers, whether heated or 

unheated, while suffix 2  refers to the heated length of the risers. 
If an unheated part of the riser is indicated, the suffix 3 is used.

(2) Compound symbols:—
Certain groups of the above symbols are recurrent and have, 

for convenience, been represented by the following symbols:—
V , - V u

v a
( V ,- V „ \  

u =  = rq
Va

' _  8 (V s-V u , ) 2

| “ “  2-3gL 2

a, b} and c are coefficients formed as functions of other coeffi
cients in the course of the analysis. It is found that the whole 
[theory leads to the expression of the circulation in terms of a 
^functional relationship between the quantities, u, l2 /D2) cr, and 
I <x.h22ID2, all of which are non-dimensional groups. Symbols /  
[and j3 denote particular functions of these variables and the 
Coefficients a, b, and c.

•(3) Exceptions:—
I In Appendix I  only, is the coefficient of thermal expansion, 
;and c is the specific heat of the fluid.

, (2) T H E R M O D Y N A M I C  E V A L U A T I O N  O F  A V A I L A B L E
S W O R K

[ When a mass of fluid changes from liquid to vapour, it does 
work in expanding against surrounding pressure p. For unit 
weight of fluid, the work done in the expansion is p(Vs— Vw). 
When the evaporation occurs in an unconstrained liquid the 
iwork will be done radially in all directions and will not promote 
'such a unidirectional process as circulation. The problem in 
developing a thermodynamic theory of boiler circulation is to 
define how much of the work done in expansion becomes avail
able for unidirectional circulation.

In the theory proposed here the answer is given by con
sidering Newton’s third law that action and reaction are equal 
and opposite. If some constraint is applied to the originally 
unconstrained liquid so that there is a smaller resistance to 
motion in one direction than in another, the work of evaporation 
Will cause movement in the direction of less resistance. But the 
force with which it can do this is limited to the value set by 
whatever constraint exists in the opposite direction.

According to the present theory, a fluid in a gravitational field

Ss so constrained, because of the variation of pressure with 
teight. Let the pressure at a horizontal plane be p  and, at a

distance dh vertically above the plane be p+^jjdh, where ^  is,
°f course, negative.

The evaporation occurring in this defined region can displace 
[he upper plane by the application to it of the pressure p. But 
|f this value is exceeded, the lower plane will also be displaced. 
The resultant unbalanced pressure on the upper plane which 
causes the displacement is, in the direction of its action

P ~[p+ -£dh]  =  - f y h

This pressure is the maximum which can be applied uni- 
urectionally.

Hence the basic equation of a thermodynamic theory of cir
culation is

Work Per Poun<d of steam evaporated between the 

=  - f h(Vs- V w) d h ......................... (1)

dp

How, from elementary hydrostatics 

dh  (Density at the point) =
- 1

Specific volume at the point

Therefore - 1

dh V v + x iV '-V v ) . . (2)

where x  is the dryness fraction at the point.
If the tube is inclined at an angle 8  to the horizontal, and dl 

is an element of the tube axial length measured in the direction 
of flow, then dh =  dl sin 8 .

Also, assuming the heat to be applied uniformly along a 
length l2 of the tube, if q is the final dryness fraction at exit, 
we have

Therefore

dl =  -d xq
dh — —dx sin

q . . (3)

( 4)

Substituting from equations (2) and (3) into (1) we obtain 
Available work per pound of steam evaporated in the length dl 

l2 (Vs- V w)dx sin 8  

~  q Vw+x{Vs- V w) • * •
By integration, we obtain an equation for the total available 

work per pound of steam evaporated in the whole of the heating 
length. But since only q lb. of steam are evaporated per pound 
of fluid, we have to multiply the integral by q to obtain the final 
answer which is
Total work available for circulation, per pound of fluid circulated 

=  h  sin 8  loge[l + .(- ■ y ^ ”)q] . . .  (5)

In obtaining equation (5), sin 8  has not been included as a 
variable in the integration. This assumption is strictly correct 
only for straight heated tubes, and is completely satisfied in the 
main case which we shall consider, i.e. when the heating is 
confined to straight risers only. If  part of the heating is carried 
out in a horizontal tube, sin 8  is zero, and no circulation work 
is obtained from that portion. If  part of the heating is in a 
downcomer, sin 8  is negative, and the work opposes circulation.

The theory can readily be applied therefore to circuits with 
partially heated downcomers. For bends in the tube which can 
be regarded as circular arcs, the available work can be obtained 
by treating sin 8  as.a variable in the integration for equation (5). 
It is evident that the work available is a maximum when all the 
heating is applied to vertical risers. More extensive discussion 
of the case of heated downcomers will be given later.

(3) E V A L U A T I O N  O F T H E  W O R K  D O N E  A G A I N S T  
C I R C U L A T I O N  R E S I S T A N C E

The available energy is used to overcome friction, section 
change and bend energy losses, and to give kinetic energy to the 
fluid. An energy loss can usually be expressed as proportional to 
some velocity energy. The quantity v 2 /2g which represents 
kinetic energy—or to which energy losses may be made propor
tional—has the dimension of length and in the hydraulic 
theories is interpreted as “feet head” . But we note that if we 
concern ourselves with unit weight this dimension is identical 
with that of (ft.-lb.)/lb. and, therefore, with B.Th.U. per lb. 
Hence throughout the calculations we may use the thermo
dynamic interpretation of v 2 /2g as B.Th.U. per lb. or (ft.-lb.)/lb. 
instead of “head” . There is then no need to include modifi
cations for density, except those necessary to ascertain the 
actual velocity, and no need to define a standard density.

We may generalize the construction of a boiler as follows:—

Tube length before heating ............. l\
„  „  during h e a t i n g ............................... l2
,, ,, after h e a t i n g ...................................../ 3

The heat can be assumed to be supplied uniformly in the
length l2. A zero value of / 3 would represent a boiler in which
heating is continued right up to the steam drum. Different 
proportions l\ l2 / 3 represent different types of boiler con
struction.
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Further representation is made sufficiently general by the 
following conditions:—

A change of cross-sectional area occurs at the junction of li 
and l2.

A change of cross-sectional area occurs at the junction of l2 

and /3.
Allowance may be made for bends in any portion.

We can now consider the losses in each portion.
In 11, M  lb. per sec. of the substance enter as saturated liquid 

with specific volume Vw> into an initial area A ,. The initial 
velocity is therefore M V w!Ai =  v u the associated energy being 
V i 2/ 2 g  ft.-lb. per lb. Friction losses during the flow in are 
given by kR\Vi2 l2 g> where Ri is the ratio of total internal surface 
in 11 to the total cross-sectional area A 1} and k is the friction 
constant. If the portion consists entirely of tubes of equal dia
meter D u then R\ =  The hydraulic entrance loss and
losses in any bends present may be assessed as usual and are 
proportional to Vi2 /2g. Let the summed coefficients for entrance 
and bend losses in the first portion be B x. Then
Total losses in first portion

. 2
(6)

V =
M V  MVv

Assuming that the heated portion consists of tubes of equal 
diameter Z)2, the surface section ratio for an element of length 
dl is equal to 4d//D2.

Hence the friction loss in the element is
4kdl 
D 2 2  g2g 2g D 2 \A 2J I Vta J

Substituting in equation (8 ) for dl from equation (7) and 
integrating over the range x  =  0  to x  =  q, we obtain 
Friction loss in second portion

= % * w M % 2[{i+rqy~ n  ■ ■ (9)
where for convenience we have written (Vs—Vtt,)/Vte=r.

If  there are bends, the losses can again be assessed by the 
usual hydraulic methods, in terms of the average velocity 
energy in the length l2. This average is, from equation (9)

El- ( d l ) 2 [( l+ rg )3- ! ]  
2 g \A J  3ra3rq

Let the total bend loss coefficients in l2 amount to B 2.
In  addition to these losses, we have what has been called by 

Lewis and Robertson the “ acceleration head” . This is simply 
the work done in increasing the velocity to allow for the expan
sion. It is therefore given by

v4 Q ) \ i + r qy - n
2  g \A 2'

Summing all the losses in this portion, we have 
Total losses in second portion

+  { j f ) W r « ) 2 - 1 } ]  • (10)

ViAi
At the end of the second portion, the velocity is —j —(1 +

If  a change of section occurs at the junction l2 and Ig 
have a loss for which the coefficient may be represented

In the last portion the velocity is constant and equal 

Hence the friction loss in this portion is given
A 3 

V\2( A t \ 2——I -j-1 ( 1  +rq)2kR 3 where R 3 is the ratio of the total inta
2 g \ / l3/
surface in l3 to total cross-sectional area A 3. If  the portion 0

a p

<1

On entering the second portion, which has total cross-sectional 
area A 2, a change of section loss is experienced. The section 
change coefficient here may be represented by S \2.

In  the second portion /2, the uniform heating causes the dry
ness to increase from zero at the junction with / j to q at the 
junction with l2. If  x is the dryness at any point in l2 we have 
therefore

dxjdl — qjl2 ...............................(7)
The specific volume at any point in l2 is

V  =  x V s + ( l- x )V w =  Vw+ x (V s -V a)
Therefore for the velocity at any point in l2 we have

sists entirely of tubes of equal diameter D3, then R3 =
The hydraulic loss in any bends present may be assessed hf

V i 2( A r\ 2 -
usual and will be proportional to ^ (1 + r? )-  Baffle la
in the drum may also be regarded as proportional to this 
Let the summed coefficients for bend losses in the last port 
and for baffle losses in the drum be B 3. Then
Total losses in third portion

=  § 5 23( ^ ) 2(l + r» )2+  ( ^ ) a  +rq) KkRy+ S ,)]

Summing all the losses in the three portions, we obtain 
Total work done

= 57[{1+Si2+w?i+Si-(;̂ )}

+ { [ l  +  S 23 + ( « 3 + S 3) ( ^ ) 2] ( l + r ?)2 (4 !)2}] (lfe
3 2 Df

(4 ) T H E  P A R T I C U L A R  C I R C U L A T I O N  E Q U A T I O N  51

The section-change coefficients S n  and 5 23 can be obt*  ̂
using the appropriate hydraulic formulae, and may in i ( 
cases be actually drum losses. They need not be given H r‘ 
detailed form here. The friction coefficient k is strictly a func  ̂
of Reynolds number, and will vary along the circuit. Ho* 
the range of variation is sufficiently small to assume a com j 
value for convenience. In  all the arithmetical work in this pi 
k is chosen as 0-005. We may now define for simplicity 
following constant coefficients:—

iva 
^Igr 

cc 
ap

P1ec

of
cc

a = { ^ j  (1 +  S 1 2 + k R i+ B i)  — 1 

b — 1 +«S23-f (&R3 + i?3)(^p j

This allows us to define the work done as a function 0 

in the following simple equation, which is equation
rewritten.
Work done on 1 lb. of circulated fluid

A \ 2 Vi2[ 
A ? 2 ^ i a + b( 1 -f rq) 2 + c [ ( i + r g y - i y

rq (i: i ]

But f  j =  M V vj/A i, where M  is the circulation rate in poa - 
per second; and M  =  H/Lq, where H  is the total rate of 1 
supply in B.Th.U. per second, and <7. is latent heat of evap 
tion. i
Therefore work done per pound of circulated fluid

H 2 VW2 ,
f  • • .2gL 2A 2 2q2 

where /  is written for the function
c [ ( l+ r g ) 3  

rqf  = a+ b(l+ rq)2+ 1 ]
(1!

P
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The complete solution for the circulation is therefore obtained 

by equating (14) to the work available per pound, as given in 
equation (5).

The case of main importance is when uniform heating is 
applied to a vertical riser, for which sin 8  in equation (5) is +1.

For this case the defining circulation equation becomes

/2 log<[ l + r?] =  2 ^ ^ /  . . . (16)

Equation (16) may be transferred to the form 
r2q2 log 10 (1 +rg) {VS- V W)2H 2

f
(17)4-6gA2 2L 2l2

Referring back to equation (13), we see that /  involves r  and 
q only in the group rq, so that equation (17) is a function only 
of this group which may be defined as

u = rq .......................... (18)
Therefore

u2 logw (l+ u) (Vs— VW)2H Z

a + b{l+u ) 2 + c[(1 +  m)3 - 1 ] “  4-6gA2 2L 2l2

Equation (19) is the defining equation for the circulation 
variable u. It can be immediately solved by means of a single 
graph for any given heating rate, boiler pressure, and proposed 
construction. Inclusion of the term sin 8  will enable it to be 
applied directly to inclined tubes.

This equation corresponds to the final solution obtained by 
previous theories, but it is to be noted that only the single 
equation is necessary. Before developing the anlysis to give the 
general characteristics of the system it may be desirable in view 
of the novelty of the thermodynamic approach to indicate some 
confirmation of the results so far obtained.

In the absence of actual test results the most satisfactory 
procedure will be to compare estimates from equation (19) with 
those obtained more laboriously by other authors on the basis 
jof the hydraulic theory. Markson, Ravese, and Humphreys 
[(1942) discuss a particular boiler proposed for an operating 
[pressure of 2,200 lb. per sq. in. For the dimensions given by 
[them, we find a =  30-65, b =  1-5, and c =  3-03. The same 
[boiler example has been considered by Midtlyng (1942) on the 
jbasis of his alternative development of the hydraulic theory. 
Bn Table 1 are given values of the circulation as number of 
ftiines round, estimated by Markson, Ravese, and Humphreys, 
py^Midtlyng and by the thermodynamic theory from equation

T able 1. C o m p a r iso n  o f C ir c u l a t io n  i n  2 ,2 0 0  l b . per  
sq. i n . B o iler , as E st im a t e d  b y  D iffe r e n t  T heories

Heating rate 
B.Th.U. per 
s9* ft. per hr.

49.000
93.000 

082,000 
015,000

Circulation as No. of times round

Thermo
dynamic
theory

This paper 
equation (19), 

p. 5

Hydraulic theory

Markson, 
Ravese, and 
Humphreys

10-56 9-10 1 0 - 0 0
3-72 2 - 8 6 3-45
2-44 2 - 0 2-27
1 51 1-33 1-41

Midtlyng

the constants for this example become a =  3-38, b =  1-38, 
c =  0-64.

Their stated total heat supply H  is 54 B.Th.U. per sec., and 
the boiler pressure is 300 lb. per sq. in. Substitution in equa
tion (19) of the appropriate values leads to an estimation of the 
circulation as 35 times round. Lewis and Robertson by their 
version of the hydraulic method, find a circulation of 36 times 
round.

Hence the circulation determined by the proposed theory 
may be either somewhat greater or less than is estimated by 
previous hydraulic methods, but the two methods agree fairly 
closely.

(5 ) T H E  G E N E R A L  C I R C U L A T I O N  E Q U A T I O N

On the right-hand side of equation (19), the quantity H  
represents the total rate of heat supply to the boiler. It is there
fore equal to the rate of heat supply per unit area which may be 
called h2, multiplied by the heated tube surface area. If  there 
are N  heated tubes, we have, therefore

H  =  NirD2l2h2 . . . .  (20)
assuming that h2 is calculated per unit area of internal surface. 

For the same bank of tubes
N ttD 22

4 (21)

Substituting for H  and A 2, the right-hand side of* equa
tion (19) becomes equivalent to

8 (V s -V w)2l2hz 2 _  l h \ W \  ™
2-3gL 2D 72 ~  \ d J \  D J  ’ ’

if we define

•3 gL 2D z 2 

8  (Vs Vw ) 2

2-3 gL 2

The quantity a is a function of boiler pressure alone. 
Rewriting equation (19) gives

M2 l o g i o ( l + a ) _________ /  M / ^ 2 2)
> - 1 ] ~  W \  Dj 1a+ b(l+ u)2+ c [( l+ W) 3 - l ]

(23)

(24)

The values in Table 1 indicate that for this particular boiler 
2 , 2 0 0  lb. per sq. in., the circulation as predicted by the 

hermodynamic theory is somewhat greater than that predicted 
ty the hydraulic density difference conception. That this is not 
‘ general result can be shown by applying the thermodynamic 
heory to another example which has been already discussed 
11 the literature.

Lewis and Robertson (1940) describe a single-tube boiler 
fchich tjiey suggest as a standard for discussion. The values of

Equation (24) shows that for given boiler-construction, con
stants a, b, and c, the circulation function u is dependent only 
on the two non-dimensional quantities l2 /D 2 and ah2 2 ID2.

The former is the length/diameter rhtio of the heated tubes, 
the latter is a non-dimensional number defined by the boiler 
pressure, the rate of heating per unit area, and the diameter of 
the heated tube. The right-hand side is therefore completely 
independent of the downcomers, and also of the number of 
heated tubes. The downcomers and the number of heated tubes 
only appear in the equation in determining the values of a, b, 
and c.

The theory has thus elucidated that the circulation of a boiler 
in which only risers are heated is a function of two character
istic non-dimensional parameters. It has been commonly 
realized in practice that the length/diameter ratio was of im
portance but the other parameter cch22 /D 2 does not appear to 
have been previously specified. The theory is general, even for 
inclined risers, for which it can be shown that parameter 
aLh2 2 ID2 becomes ahz2 /D 2 sin 8 . Taking the ratio of vertical 
projected height of the heated risers, which we may call z 2, 
to the heated length as a mean for sin 6 , the general parameter 
is ah2 2l2 /D 2z 2.

These non-dimensional parameters, being general character
istics of the problem, seem worthy of special names. The 
following are suggested, with appropriate notations:—

l2 ID2 =  Shape number =  N s 
oLh22 !D2 =  Thermal expansion number =  N e.

The quantity u =  which is the important function\ Vw 1

of N s and N e, is also a characteristic group which might be 
called the volume change ratio, but for which the author has 
preferred the operative term “ circulation function” .
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The order of magnitude of shape number N s =  l2 /D 2 will 
be fam ilia r  to all. Some indication of the magnitudes of the 
thermal expansion number N e in actual practice may be given 
here. Most boilers in existence have N e greater than 1 0 -6, but 
less than 10-3. These values and their significance will be dis
cussed later.

' ( 6 )  T H E  E F F E C T  OF H E A T E D  D O W N C O M E R S

In  order to investigate the effect produced on circulation by 
supplying some of the heat in downcomer tubes, we may 
consider simply the case when both risers and downcomers are 
vertical. For the general case it may be specified that a pro
portion a of the heat is given in the downcomers. Hence the 
dryness at the base of the downcomers is aq, while in the risers 
this is the entering value.

Referring back to section (1), p. 2 of the paper, it is seen that 
the work provided for circulation by heating in the risers, will 
now be obtained by integration between the limits {aq, q) 
instead of (as previously) between the limits (0, q). Therefore 
the work available in the desired direction from the risers, per 
pound of fluid circulated, is given by

Work available =  ^[log* (1 +rq) — loge (1 + arq)] . (25)
But we now have “work available” in the downcomers also, 

because of the evaporation there. This is obtained by integrating 
the corresponding function between the limits (0, aq). It is, 
however, “available” in the reverse direction, and in fact 
represents resistance energy which has to be overcome. It must 
therefore be deducted from that given by equation (25) to 
obtain the net work actually available when the downcomers are 
heated.

The opposing energy in the downcomers, per pound of fluid 
circulated, is given by

Opposing energy =  A log* [ 1  +  or#] . . . .  (26)
In practice we must have / i= = / 2  when both sets of tubes are 

vertical. The net available work becomes therefore
Net available work =  l2[loge ( 1  +  «)—2 loge (1 +  cm)] (27)
It will be noted that equation (27) reduces to equation (5) 

when a =  0 , i.e. when all heating is carried out in the risers. 
Hence the equation (27) is completely general, and the case of 
unheated downcomers, though developed first for simplicity, 
should properly be regarded only as the substitution of the 
particular value a =  0 .

The assessment of other resistances in the circuit is just as 
before, and allowing for the heat in downcomers the develop
ment ultimately gives
( 1  - g ) 2“ 2 [log10 ( 1  +*0 - 2 logio ( 1  +  (tm)3 _  / h\(<*-h22\

a + H 1 + u)2 + ‘M + f = D  <*>

Again it is clear that substitution of a =  0 reduces equation 
(28) to the form of (24). Hence equation (28) is the general 
circulation equation. It shows that the circulation function u 
is actually a function of three non-dimensional variables a, 
l2 /D2, and ah2 2 /D2. When the downcomers are unheated, a is 
zero, and the other variables alone remain.

It is however most convenient to regard the left-hand side 
of equation (28) as a function of u and a, which must, as the 
defining condition of circulation, equal the right-hand side. We 
shall accordingly define

™ _  ( l-o - ) 2M2 [log]0 ( l+ u ) -2 1 o g 1 0 (H-cm)]

—  (29)

The circulation equation is therefore
F  =  (J2lD2){*h2i[D £ . (30)

For any proposed system, a graph of the function F  against 
u for particular values of a may be drawn, and the point where 
it has the value equal to the proposed (l2 ID2)(a.h22 /D2) can be 
read off to give the circulation. I t is, however, worth while to 
give some general attention to the properties of function F.

It is immediately evident that, for a given value of a, Ffi 
increases with u, but subsequently diminishes. Hence it p 
turning point. For the particular value a = 0 the turning poi 
is at infinity, so that the function actually always increases i 
The expression is too clumsy to admit of convenient specific 
tion of the turning point value by differentiation. But the i 
portant physical consequences of the existence of a turn 
point require to be noted, and will be discussed later.

(7 )  A N  I D E A L  S T A N D A R D  B O I L E R

Lewis and Robertson (1940), p. 147) remark that it is desirati 
to establish some simple type of boiler as a standard of aa 
lence. The performance of more complicated designs can 
be estimated with respect to the standard. These authors the 
selves propose a single U-tube connecting a single water t 
steam drum. While this proposal has the advantage of a 
metry which is easily pictured, it is lacking in resemblance; 
practical conditions. It is suggested that the new theory pif 
posed in this present paper shows a way of defining a 
satisfactory ideal standard boiler. ’

We may refer back to the end of section (5), p. 5, where? 
was remarked that the right-hand side of the defining a;' 
culation equation (24) was completely independent of the dot 
comers and also of the number of heated tubes, those quantr) 
being concerned only in determining the values a, b, and;; 
It will also be seen that the more general circulation eq# 
tion (28), which includes the effect of heating the downcomtf 
has the same property. It is this property of the defining 4 
culation equation which enables an ideal standard boiler to |  
specified with some strong physical significance. I

If  we examine the equations which define a, b, and c west 
that b tends towards unity when there is no third section in' 
circuit. The value of c is dependent only on the ratio /2/A 
that c is affected by the heated section only. Leaving eve; 
else the same, but altering the downcomer area A \ , i t  would! 
possible to obtain a value of a equal to zero. Hence if we s] 
a boiler in which the downcomers have suitable area, 
which no other losses occur anywhere except in the heated 
themselves, we define an ideal standard boiler whose values 
a and b are known as zero and unity respectively. All the res' 1 

the data can be exactly the same as the real values for 
proposed system. Hence, the ideal which we define has the 
heated tubes, heating rate, and heat distribution as the 
boiler but it is assumed that losses elsewhere than in the h< 
tubes are modified. With this proposed definition, each ao 
boiler will have its own particular ideal, so that the d< “ 
in no way limits the practical significance. Moreover, 
possible (as will be shown later) to express in a form wh» 
simply calculable the deviation of the actual boiler from its" 
ideal.

The author will now proceed, therefore, to show the prop 
of an ideal boiler and to give charts representing its quantity 
performance according to the circulation equation.

Denoting functions of the ideal boiler by the suffix ft1 

have oq =  0, b0 =  1. Since c is proportional only to /2/lV  
possible having assumed values of l2 and of a to calculate 
as a function of u using equation (29). Dividing the value of 
at a particular value of u by the assumed 12{D2 will give, actf 
ing to equation (30), the allowable value of <xh2 2 ID2. Hen# 
this process a graph can be constructed of u against ah22ljjr 
any assumed values of l2/D2 and a. By repetition with din® 
assumed values of l2jD2, but the same a  a chart of grap 
obtained which, for a particular value of a, will give the soM 
u for the circulation in the ideal boiler for any proposed ®

bination ( ^ ) ( - ^ ~ ) .  Repeating the whole sequence for difi®

values of a gives a set of such charts, which can be rnadesjj 
ciently extensive to cover all practical ranges of opera® 
Examples of such charts are presented in Figs. 1 and 2.

The range given is large, but by using a logarithmic F  
has been possible to present it in a relatively small sfj 
Values of l2/D2 included are from 50 to 1,000, which forj® 
of 1 inch inside diameter will cover from 4 to 80 feet m  
The charts include values of N e =  cth2 2 ID2 from 10"8 to ’ir
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LOG | 0 U
CIRCULATION FUNCTION (LOGARITHM)

Fig. 1 . Chart giving Examples of Relationship between 
Thermal Circulation Number and Circulation Function 

No heating in downcomers (o- =  0). The dotted line joins points of 
maximum circulated quantity.

This range will cover heating rates of from 63-5 to 63,500 
B.Th.U. per sq. ft. per hr. on a boiler pressed to 100 lb. per sq. 
in. abs., or 900 to 900,000 B.Th.U. per sq. ft. per hr. on a boiler 
at 2,000 lb. per sq. in. abs. The circulation range is taken up to 
u — 1 0 , which covers all conditions of stable operation.

too
150
200

300
400
500

•H— 750
1.000

100

150
AJ 200
D\  300 

400 
500

750

1,000

1-0 1-0

CIRCULATION FUNCTION (LOGARITHM)

Fig. 2 . Chart giving Examples of Relationship between 
Thermal Circulation Number and Circulation Function 

20 per cent heating in downcomers (<r =  0-2). The dotted line joins 
points of maximum circulated quantity.

The author will now show how the charts may be used for 
assessing the performance of an actual boiler.

( 8 )  D E V I A T I O N  OF T H E  A C T U A L  B O I L E R  F R O M  T H E  
I D E A L

We may regard the actual boiler with constants a and b as 
being a divergence from the ideal in which a0  =  0  and b0 = 1 . 
A convenient way of considering this divergence will be to 
imagine that the ideal boiler with a longer tube length l2t o would 
give the same circulation as the actual boiler with its proper 
length l2, i- It is easy to show that, for the same circulation, the 
two lengths must be in the ratio

A o  , o + (l+ w ) 2(f>— 1 ) . n n
£ 7  =  1+ f t  ' ' (31)

where f t  =  ( 1  + « j2+ ^ — ~ — -  . . . (32)

In Fig. 3 /So is plotted as a function of u for various values of 
l2 (D2. A logarithmic plot has been used in order to cover the 
required range. By means of it and equation (31), we can at 
once determine conditions in an actual boiler by using the 
charts for the ideal boiler. The procedure is to guess a value of 
the equivalent length l2,, 0 and read u from the appropriate chart. 
Then l2, ! is calculated from equation (31), and the process 
repeated until a value is found which agrees with the actual 
length. No more than about three trials are necessary and only 
a few minutes are required.

3 -0 -

T00

2 0 -

U

Fig. 3. Correction Function for Transferring Ideal Boiler 
Estimations to the Actual Case

j3o =  ( 1 + m)2+ C' - - + —  ^u

(9 ) T H E  M A X I M U M  C I R C U L A T E D  Q U A N T I T Y

I t  is apparent from the charts, and is generally accepted in 
practice, that an increase in the rate of heating augments the 
final dryness and so reduces the circulation expressed as 
number of times round. At the same time, however, the total 
evaporation is being increased. The actual quantity which is 
circulated is the product of the evaporation and the number of 
times round, i.e. it is the product of two factors, one of which 
increases, and the other of which diminishes, with increase in 
the rate of heating. As a result, the product may move in either 
direction. From first principles, it is to be expected that at low 
rates of heating the evaporation due to a higher rate of heating 
will more than offset the reduction in number of times round, 
so that the circulated quantity will increase. At higher rates of 

-heating, the reverse may take place. I t  is therefore of importance 
to be able to determine whether a maximum flow exists.

I t  is possible to determine the maximum analytically on the 
basis of the present theory.
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We find ultimately that the circulated quantity is proportional

to oc.h2 2
and, therefore, will have a maximum when the ratio

T-------   -. -w* 1AiÂ 5

for a maximum, that -r-.----- (log —p~~) =  2. This result is of con-d losu \  & D-> i

a.h2 2 /D 2u2 is a maximum. The ratio will be a maximum when 
the difference between the logarithms is a maximum, i.e.

oth2 2 . . .
l o g — 2  log u is a maximum. Now, we may differentiate
this equation with respect to log u, and find, as the condition

d /, <xh22̂
d log u\ D 2

siderable importance, and with the charts as presented in this 
paper very conveniently interpreted. It shows that the maximum 
circulated quantity occurs at the value of u such that the slope

Oifl 2 ^
of the graph of log -jr— when plotted against log u is 2 *

2This type of graph is precisely the one which has been used 
in representing the behaviour of the boiler. If  lines having a 
slope of 2  are drawn across these charts, we can immediately 
find the points at which the lines are tangents to the circulation 
curves. These points are marked and connected up by a line 
showing their locus in the charts.

From the geometry of the curves it follows as essential that 
the points having a slope of 2  must lie to the left of the turning 
points on the curves.

( 10)  D I S C U S S I O N  OF G E N E R A L  F E A T U R E S
Since any real boiler behaves at a given rate of heating 

exactly as the corresponding ideal boiler would behave with 
longer heated tubes, charts of the type given in Fig. 1 and 2 will 
show correctly the qualitative behaviour of real boilers. We may 
therefore conveniently discuss the general behaviour by referring 
to charts of this type.

First, we note that for any values of a greater than 0, i.e. 
whenever there is heating in the downcomers, the curves will 
show a turning point. At a value of ah2 2 /D 2 greater than the 
maximum for a given value of l2 /D 2 the circulation equation 
would have no solution. The turning point represents, therefore, 
a limit of stable circulation and indicates the onset of blow-back. 
Circulation is only stable for values of at.h2 2 ID2 less than the 
value at the turning point, and the value of u is given by the 
intersection on the rising portion of the curve. It will be noted 
that the points of maximum circulated quantity are always 
reached before the limits of stability, since—as proved in sec
tion (9)—they lie on the rising part of the curve. It will be found 
actually that, for current rates of evaporation and conditions, 
boilers are usually operated well beyond the maximum circulated 
quantity, towards the stability limits.

To consider the stability limits we shall consider /_ jL 2

V d 2
i.e. the square root of the thermal expansion number at which 
circulation becomes unstable, and denote it by S. Fig. 4 has 
been constructed from graphs of the type 1 and 2  for various 
values of a, and shows how both l2 /D 2 and a control S, and 
therefore control the maximum allowable heat per square foot 
per hour fed into the risers for a given pressure and tube 
diameter.

We have not discussed the constant of proportionality, which 
shows the effect of the operating pressure. Referring back to

(V s— Vw \ 2
equation (23), we see that a is proportional to ^ — j  . The
steam tables show that this quantity diminishes continually as 
the pressure is raised from zero to the critical. Hence in the 
group S, the constant of proportionality is less at a higher 
pressure than it is at a lower pressure. It follows that we can 
obtain the limit values of 5  with higher rates of heating at a 
higher pressure than we can at a lower pressure, i.e. for a given 
length/diameter ratio and heat distribution, the limit for stable 
circulation is continually increased as the operating pressure is 
raised. Hence other things being equal, a high-pressure boiler 
can maintain a stable circulation at a greater rate of heat absorp
tion and of evaporation than a low-pressure boiler.

* The theory of determination of turning points by this method 
has been given in a separate paper (Silver 1943).

Although this is so, it is worth noting that at the limit th| 
actual circulation expressed as number of times round 
continually diminished as the pressure is increased. This \ 
be apparent when we consider the circulation variable

(V s- V w\
u = rq = 1 - p HVu

The quantity in brackets continually diminishes with increase 
in pressure. Hence when the circulation equation has been 
solved, and a value of u obtained, the constant of proportionality

o-io-

0-09

0-08-

0-06-

t i r  0-05-

0-04

0-03

0-02

0-01

1,200200 400 600 800 1,000

Fig. 4. Thermal Expansion Number N e = a.h2 2 /D 2 at the
Limits of Stability 

The square root of Ne is plotted in order to include a wide range.

between u and the final dryness will be less for higher pressures. 
Thus the final dryness will be greater for higher pressures and 
the circulation expressed as number of times round is less. The 
situation is that at higher pressures a boiler can remain in stable 
circulation with higher values of the final dryness and with 
higher total rates of heat absorption.

Attention may now be drawn to the question of once-round 
evaporation. This aspect has been stressed in particular by 
Midtlyng (1942) who has suggested that it gives a valid criterion 
of the limit of operation. The condition for once-round evapora
tion is obtained by making q equal to unity. Hence the cir
culation variable u for once-round evaporation becomes equal 
to r. Now it will be noted in Fig. 2 that the stability limit value 
of u is almost independent of h i p ^  and this is found to be the 
case for all values of a. The limit values of u have been plotted 
as a function of a  in Fig. 5. On this figure a graph of r against 
pressure is superimposed. Since r must equal u for once-round 
evaporation. Fig. 5 shows that to any value of a  a particular 
pressure will correspond, for which circulation would only 
become unstable at the once-round condition, and would be 
always stable at lower rates of heating. This pressure may be
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called the pressure of stable complete evaporation and denoted 
by pi. The relation between a and p x is graphed in Fig. 6 . 
S i mi l a r  curves could be made for twice round, etc.

Fig. 6  shows that for a boiler to be stable at all loads up to 
the once-round condition, either a should be less, or the pressure 
greater, than the corresponding values in the graph. Since the 
graph is independent of I2 ID2 , Fig. 6  should be directly applic
able for real boilers.

Some further remarks may be made in respect of the appli
cation of this study of circulation to the problem of tube failure.

1-40

II
-2 0

5----

005 0-10 0-20 0-35
1,000 1,500 2,000 2,500 3,000 3,500

A — LB. PER.  S Q . I N .A B S .

Fig. 5. Circulation Function u at the Limits of Stability
■---------------- m, plotted against o.
---------------- r „ „ p.
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005 0-20 0-25 0-30
O’

Fig. 6 . Pressure of Stable Complete Evaporation related 
to Heat Distribution 

The region above the curve represents stable complete evaporation.

th ^  P^a c e 5  our whole theoretical discussion assumes that 
e heat is transmitted, and we have not at all considered the 

emperature differences necessary for the heat transmission, 
ence a word of warning is required in respect of the obvious 

uggestion that higher pressures are desirable for stable cir- 
hi r n- &eneral such higher pressures will involve not only 

gner tube stresses but also higher operating temperatures. 
0 f°5 e ^xtensive experimental data and theoretical appreciation 
will v, affecting heat transmission apd thermal resistances

e required before the problem of tube failure can be 
accurately studied.

( 1 1 )  E F F E C T  OF F E E D  T E M P E R A T U R E

It has been implicitly assumed in the previous discussion 
that the water entering the downcomers is just at saturation 
temperature. In fact the feed arrangement into the steam drum 
may permit relatively cold water to enter the downcomers. 
Hence, even when these are heated, not all of the heat given to 
them will cause evaporation, so that the above conclusions 
regarding the effects of a proportion of heat in the downcomers 
will not be directly applicable.

However, it is shown in Appendix I, p. 10, that the present 
theory is true for non-evaporating fluids also, provided the term

—̂ —-  is interpreted as the expansion per unit of heat supplied.
The coefficient of thermal expansion of water is so low that the 
resistance due to heat in the downcomers will be negligible so 
long as it only serves to raise the water temperature. This im
plies that the downcomer heating will not seriously disturb the 
circulation except to the extent to which evaporation occurs. 
Hence, in our theory, if we interpret a to mean the proportion 
of evaporation occurring in the downcomers, our calculations 
should be correct to a good approximation.

Similarly, if the water entering the downcomers is so cold that 
even in the water drum the evaporation has not commenced, the 
yvork obtained from the non-evaporative heating will be 
negligible compared with that of the subsequent evaporative 
heating. To a good approximation the circulation in such a case 
would be given by the curves for a =  0 .

In general, it will be seen that for an undercooling of amount 
T  we shduld replace <r, the proportionate distribution of heating,. 
by o' representing the proportionate ̂ distribution of evaporation 
where v

o -  o L

taking the specific heat of water as approximately unity.
It is of some interest to note that the particular value o' — 0 

would be obtained for an undercooling in which

Under these circumstances, the proportion of evaporation in 
the downcomers would be zero, and the circulation would be 
approximately predicted-by the chart for a = 0 .

The effect of unsteady feed temperature will therefore be a 
tendency to swing from the circulation corresponding to one 
value of a to another.

( 12)  D I S C U S S I O N  OF P O S S I B L E  A C C U R A C Y

It will be realized that, for theoretical estimation, a large 
number of variables must be known. These include not only the 
dimensions of the boiler and its overall operating condition, but 
also the actual rates of heat absorption at risers and at down
comers, and the temperature'of water entering the downcomers. 
It is because no published results exist in which all of these 
variables have been specified, that it has not been possible to 
give in this paper a proper comparison between theory and 
experiment. This defect has also been mentioned in earlier 
sections of the paper. Markson, Ravese, and Humphreys (1942) 
give an estimation of circulation in a proposed 2 , 2 0 0  lb. per 
sq. in. boiler, and as shown in Table 1, p. 5, estimates by their 
theory and by the present theory are in good agreement. But 
they give no test data on the boiler.

It would appear that the most comprehensive experimental 
data published are those given by Dight (1935-6). His experi
ments were made on Admiralty type three-drum boilers. Even 
in this case the data required are not all given. By assuming 
probable values for missing data the following comparison with 
mean circulations deduced from his figures has been obtained.

It will be noted that while predicted circulations are too 
high at low evaporation rates, the fall is more rapid than actually 
occurs, so that at high rates good general agreement is obtained. 
No information on stability as such is given by Dight, but it is 
interesting to note that he did find a tube failure occurring at 
20-3 lb. per sq. ft. per hr. from and at 2 1 2  deg. F. The theory 
indicates instability beyond the value 2 0  lb. per sq. ft. per hr.
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T a b le  2 .  C o m p a r iso n  b e t w e e n  T h e o r etic a l  E st im a t e  

a n d  E x p e r im e n t

Equivalent overall evaporation in 
lb. per sq. ft. per hr. from and 
at 212 deg. F. 4 . 5 1 0 2 0

Circulation: No. I Experimental 65 18 5
of times round ] Theoretical 83 25-8 4 . 4

(stability
limit)

In  conclusion, the situation may be summed up as follows. In 
common with other boiler circulation theories on a hydraulic 
basis, the present theory implicitly assumes that there is no 
discontinuity in the fluid. This assumption is obviously not ful
filled in practice. In the actual circumstances the existence of 
discontinuity leads to such effects as buoyancy of the steam 
bubbles, slug action, surface tension, and capillary action, to 
variations in frictional coefficients, and heat absorption factors 
and to undefinable variations of velocity across the section. It is 
therefore clear that no precise agreement with experiments can 
be anticipated.

It is suggested, however, that if the logical development of the 
present theory proves acceptable, it can be regarded as showing 
adequately the general properties of a boiler circuit and as 
giving estimates of circulation performance which will be some
what higher than the actual. The difference between experi
mental and theoretical results could then be ascribed to effects 
arising from the discontinuity of water and sfoam and would 
form a proper subject for experimental investigation. It would 
also seem a satisfactory procedure, providing a theory of the 
present type is generally accepted, to express the actual per
formance as a percentage of the theoretical.

In  the author’s opinion any “ continuous fluid ” theory can 
give only general understanding and guidance. Detailed practical 
work must allow for divergences due to discontinuity, and these 
must be investigated experimentally. But a developed treatment 
of general features and characteristics is an essential basis for 
the understanding and interpretation of such experiments. It is 
hoped that the present paper may contribute towards establish
ing an acceptable foundation.

As an essential preliminary to the experimental investigation 
of departures from the continuous fluid theory, a treatment of 
the conditions by dimensional methods can be suggested. A 
possible approach, based on the use of surface tension as the 
property associated with discontinuity, is offered in Appendix 
III , wherein it will be seen that the discrepancies between the 
main theory and Dight’s experiments are correctly predicted.
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A P P E N D I X  I

A P P L I C A T I O N  OF T H E  T H E O R Y  T O  N O N - E V A P O R A T I N G  
F L U I D S

In  the development of the theory, no allowance was made for 
surface of separation between water and steam particles. Thus 
surface tension effects are not considered, nor is slug action. 
These matters have been fully dealt with by Davis (1941). In 
fact, like all other theories of circulation we have still assumed 
that the properties of the system could be regarded (to a 
sufficient approximation) as represented by a uniform fluid. 
This fact is important, because it shows that the theory should be 
applicable for the convective heating of fluids in pipes even 
when evaporation does not occur, as for example, in the case of 
heated air, of flue gases, or the circulation of hot water. Since 
the final performance of the system has been represented or

derived in terms of non-dimensional groups, then not only tlit 
qualitative but also the quantitative results should be applicabfc 
for fluids in general. We have merely to interpret suitable not 
dimensional groups. It is quite obvious that a and are 
precisely the same as in the case of a boiler. Only the groups« 
and ah2 2 /D 2 require re-interpretation.

We may re-interpret u since
V - V w W  V s-V a, H  V s-Vu, H 

U ~  rq ~  Vw X M ~  Vw X L M  ~  L  X VaM
— . . . . . Vs-Vu, . .In this expression we recognize that — j -—  is the expansion •
produced by one unit of heat. In a non-evaporating fluid this 
expansion will be equal to PVq/c where c is the specific heat 
of the fluid, /3 the coefficient of expansion, and V0 the original | 
volume of fluid. Since Vw may be identified in this case with! 
V0 it will be seen that for a non-evaporating fluid the circulations 

8  H  *
variable u =  -  Thus M  is now the quantity circulated andjj
cM  represents the total thermal capacity of the quantity cir- 
culated; and therefore HjcM  is equal to the rise of temperature: 
given to the fluid. If  this rise is denoted by T , the results 
obtained in this paper will apply if we interpret the circulations 
variable u as /3T where T  is the rise of temperature given to the: 
fluid and /8 is its coefficient of thermal expansion. ■

In the other non-dimensional group ah2 2 ID2, both h2 and | 
D 2 have the same significance as before; only a is different,j. 
Referring back to equation (23), p. 5, we have \

We have already noticed in the preceding paragraph that | 

requires to be reinterpreted for the non-evaporatingLt ■■g 2
fluids as Hence we have for this case a =  2 -3 ^ 2  • ^  m
therefore be immediately evaluated for a fluid whose initial 
volume, coefficient of thermal expansion, and specific heat are ; 
known. With this value of a the results obtained in the paper 
should be applicable to a non-evaporating fluid.

The curves will give the predicted rise of temperature 1 1 

for a given heat supply in a given tube system. The quantity 
circulated will be obtained from this temperature and the heat 
input.

A P P E N D I X  I I
ea

F O R C E D  C I R C U L A T I O N  |

In the paper the development of the theory is limited to | 
natural circulation. It is, however, easy to include the effect of i 
forced circulation. If  there is a circulating pump present which 
produces a head E  feet, then this is equivalent to an additional 
available work of amount E  ft.-lb. per lb. The alteration to the 
general circulation equation due to this can easily be made 
when required and need not be elaborated here.

We note however that the theory as developed throws con
siderable light on the controversy of natural versus forced cir
culation. Evidently if it is desired to operate a boiler at con
ditions which would lie beyond the limits of stability shown on 
the appropriate er-chart, forced circulation will be indicated.

A P P E N D I X  I I I

D I M E N S I O N A L  T R E A T M E N T ,  C A P I L L A R Y  E F F E C T S ,  AND 
T H E  U SE  O F  M O D E L S

In  the paper the fluid was treated as continuous, and effects 
arising from the actual discontinuity of water and steam, ano 
principally related to the pressure of surface tension, were 
ignored. It has not been found possible to include these W 
direct analysis but it will be shown here that some useful 
indications may be deduced by using the theory of dimensions- 
In the first place it will be shown that dimensional treatment.
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neglecting capillarity, confirms the characteristic groups deter
mined by the main theory and that when capillarity is introduced, 
the same groups remain unmodified, but a new group appears. 
This is important because it shows that discrepancies between 
experiment and the theory can all be expressed as a correction 
factor which should be a function of the new group appearing 
when capillarity is included.

Dimensional Analysis, Neglecting Capillarity.* Let us con
sider the final dryness, q as the quantity to be investigated. Now 
we may consider a case when the downcomers have no effect, 
their resistance being negligible. This will be similar to the ideal 
boiler. The only variables which are present in the system are 
then as follows, if we neglect capillarity:—

Vs Volume of vapour per pound.
Va Volume of liquid per pound.
A Latent heat of evaporation per pound. 
h2 Rate of heating per square foot per hour. 
l2 Length of heated tubes.
D2 Diameter of heated tubes. 
g Gravitational field.
In this we have adopted a new symbol ‘A for latent heat of

evaporation, since we shall be using L  for the general dimen
sional formula for length. We may therefore represent q as a 
function of these variables of the form

q = <f>[VsaVwbXch2xl2yD 2zgu] . . . (33) 
The dimensions of the various quantities are as follows:—

L 3 T 2

v ' = ~ m l = L 2 T 2 m - 1

O T 2

v ” = m l = L 2 T 2 m - 1 

, _  M L 2 T ~ 2 

■ M LT ~ 2 ~  L  
, M L 2 T ~ 2 u 

2 =  ~ l 2T ' =  M T  
h = L
d 2 = l
g = L T - 2

Hence the dimensions of the function <f> are 
L2a T ^M -eL 2* T 2bM ~bL cM x T~3xLyLzLu T~2u

=  L,2(a+b)+c+y+z+uMx~{a + b)J'2{a + b) — ix— 2u
But q is non-dimensional, so that we have

2 (a + b )+ c+ y+ z+ u  =  0 . . . .  (34)
x -(a+ fc ) =  0 .............................. ; (35)

2 (a + b )-3 x -2 u  =  0 .......................(36)
There are altogether three equations and seven unknowns* 

tor only three of which we may solve. Treating, a, b, c, and y  as 
owns, we can solve for x, z , and u as follows

x =  a + b ............................................(37)
(a+ 6 ) ■

« =  - —J - 1   (38)

z  =  - 3 —  c - y .......................(39)

Therefore
[ _ Ka + b) ( a + W I

q = <j>lVs«Vulb\ch2a + bl2yD 2 2 * g 2  J . (40)
Examining this formula we see that it ran be arranged in  

groups thus

■ ■ < 4 , >

in on*itted from these considerations, since it appears
cynolds number implicit in the friction coefficient k.

Dimensionally we cannot distinguish between V, and Vn so 
what we in fact have is some linear function of Vs and Vn to 
the power a+b, so that it may be included in the last group. 
The difference Vs— Vw is the linear function which has most 
obvious physical significance. We obtain therefore

We have now only to assume c =  —(a+b) to obtain

• • hgivmg q as a function of the two non-dimensional groups -=r-
t->7

and ( V s - V r v )  h 2

A V g D 2
. The latter is obviously idential with the group

Voth2
V W ,

obtained in the direct analytical theory, since 

SCVs-Vso) 2

~ “  2-3^A2

Hence the application of dimensional theory confirms the 
groups found in the main analysis. Having shown this, we can 
now proceed to consider the important effects of capillary action, 
which could not be dealt with previously. This is done simply 
by in c lu d in g  the surface tension y of the water in the list of 
properties of which q is a function.

Dimensional Analysis Including Capillarity. We may include
M L T ~ 2

a term yw. The dimensions of y are — j-—  =  M T ~ 2 so that
the set of three equations becomes ,

2 (a+ b)+ c+ y+ z+ u  =  0 . . . .  (43)
x + w — (a+b) =  0 . . . .  (44)

2 (a + b )-3 x -2 u -2 w  =  0 . . . .  (45)
These correspond to (34), (35) and (36). Solving these we now 
obtain

x = (a+b)—w ...................................(46)

u =
(a+b) w 

2 2

3 (a+b) tv
z =  T " " C ~ 3 ' " 2

corresponding to (37), (38) and (39).

Therefore
3(a+6)

(47)

(48)

q =  <f>[VsaV j ,\ Ch2a+b- V,l2yD2

w a+b to- c-y—  — —+T
g2 ' ' ’I  .  2 ' 2 yu)]

Grouping as before, we now obtain

{ h y \ ( V s -V to )h ? a+b
q = <f>

( y ^ l Y  
\h 2 V D 2J .

(49)

(50)
A V g D 2

Comparing (50) with (42), to which it corresponds, we see 

that the two groups and  ̂ \V g W ~  ^°r 3S ^  ma*n PaPer

—) are still present. Hence, even when capillary phenomena
D 2 '

are included, the non-dimensional groups found by the theory 
are still correct and the general form of the relationship con
necting them found there will also be true. The capillary effects 
will appear as a modification expressible as a correction factor, 
and equation (50) shows that such modification is a function

y V g
of another non-dimensional group

Three chief non-dimensional groups are therefore concerned
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in actual boiler operation. They may be named and denoted as 
follows:—

h•jr- Shape number =  N s.u  2

Thermal expansion number — N e.
U 2
y 2 g

, Capillarity number =  N c.
» 2  ^ 2

While above the dryness fraction q has been used, the theory 
shows that the actual quantity concerned in the circulation is

which will be directly a function of N s, N e, and N c. The curves 
given in the paper show the circulation function u as a function 
of N s and N e. While it is not possible to determine analytically 
the modifications due to N c, some consideration may usefully be 
given at this stage to its influence.

Modification Due to Capillarity and Experimental Confirmation. 
In  the first place, the performance curves will show relative 
performances in the correct proportions only if group N c is 
the same in the cases compared, i.e. if capillary similarity has 
been achieved. In  practice when different rates of heating are 
considered in the same boiler at constant pressure, N c will also 
vary. The problem is to establish in what way the modification 
will tend.

The result which follows may be regarded as very important 
in this connexion because it indicates the opposite of what 
might intuitively be anticipated, and moreover, some confir
mation of this opposite can be found in experiment.

Intuitively one expects that a more rapid rate of heating would 
reduce the circulation so far as expansion effects are concerned. 
This is confirmed fully by the analysis. Now one might similarly 
anticipate that the same would be true in respect of capillary 
action, that increased heating rate would reduce circulation, so 
that the total reduction in circulation would be more severe than 
that predicted by the theory. But the form of the capillarity

y 2g
number N c = r V r r  shows that this is not correct. For it will be hz2D z
seen that whatever effect h2 has is in the same direction as the 
effects of D2, since h2 and D 2 are together in the denominator. 
Now there is no alternative but to believe that capillary inter
ference with circulation will be the more serious in a smaller- 
diameter tu b e ., Thus circulation will be reduced so far as 
capillary effects are concerned by a reduction in tube diameter, 
and hence must also be hindered in respect of capillary phenomena 
i f  the rate of heating is reduced. Conversely, the interference to 
circulation by capillary action will be less at higher rates of 
heating. Hence in fact if a comparison is made of two results at 
different rates of heating in the same boiler at the same pressure 
the circulations obtained may in both cases be less than pre
dicted by the theory, but the difference between the two will 
not be so great as predicted.

Thus when circulation plotted against rate of heating is con
sidered, the experimental results should show a slope less steep 
than the values predicted from the curves. This difference in

slope is due to the variation of capillary retardation with rateof 
heating.

This most interesting and important deduction is fully sub
stantiated when the theoretical values are compared with DightV 
experimental results, given in the paper. It was pointed on 
there that the predicted circulations were too high at lm 
evaporation rates, but that the fall in circulation was more rapid 
than actually occurred, so that at high evaporation rates good 
general agreement was obtained.

On the basis of the foregoing it may be suggested that, who 
suitable systematic experimental work has been done, the ratio 
of experimentally determined circulation to that predicted to 
the analytical theory should be plotted against y 2gjh22D2, to 
determine the form of the capillary action function.

The Use of Model Boilers. The establishment of the appro 
priate non-dimensional groups is of considerable importana 
with reference to the construction of model boilers. For con
venience, a model should be on a reduced scale. It will be seen 
immediately that capillary similarity to the real boiler cannot to 
obtained unless y 2 /h2 2 is reduced in the same proportion as the 
dimensions. This means either that the model must operate! 
a higher pressure than the actual boiler, since surface tension 
diminishes as temperature is increased, or that the rate of heating 
per unit area in the model must be greater than that in the real 
boiler; or it may mean both of these things. But considerinj 
the thermal expansion group number N e = <x.h2 2 /D2, similarity 
on a reduced scale model requires either a reduced rate of heat
ing or an increased pressure.

Now when models are made they are usually intended foi 
convenient visual experiments and the natural wish is to havt 
pressures close to atmospheric. The above considerations show 
that it is then impossible to meet the complete similarity requiro 
ments. If the heating rate is reduced to keep N e correct, capillary 
hindrance will be much more serious than in the actual boiler. 
If  the heating rate were increased to keep N c correct, the system 
would be completely unsimilar in respect of thermal expansioa 
Necessarily, therefore, the reduced scale model at atmospherit 
pressure with reduced heating, which is the usual type of modd 
will show instability at values of N e much less than indicate! 
by the curves and due to the large capillary effects the visual 
phenomena exhibited may be very different from those occurrin! 
in the real boiler.
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1. INTRODUCTION.

In various parts of steam power 
plant, water is encountered at or very near to the 
saturation condition, i.e. its temperature is ¥ery 
close to that for which its vapour pressure would 
be equal to the actual hydrostatic or gas pressure 
exerted on the water* In feed heaters, evaporators 
and condensers for example, wqter condensed from 
supplied steam is in this condition. In practice 
such water has to be made to flow or drain continuously 
out of the vessel. The attainment of the necessary 
velocity requires a reduction of hydrostatic pressure 
to values which may be much less than the vaponr 
pressure corresponding to the initial water 
temperature. The direct and obvious treatment of this 
pressure reduction as an adiabatic process predicts 
the formation of vapour immediately on reduction of 
pressure. Thus if S is the entropy of saturated 
water and s that of saturated vapour at the initial 
conditions ind if a mixture of proportion q of 
vapour is present, the initial entropy will be

• b  -  -+ I- _ - - • v>)
 ̂ t

^  t  '̂ IrCL
Differentiation of this equation 

and the use of the Clausius - Clapeyron relation 
gives, when dS is zero

\



2

In (2), C is the specific heat 
of the liquid when kept saturated, and C is the 
corresponding specific heat of the saturated 
vapour. The former is negligibly different from 
the usual liquid specific heat at the same 
temperature, but C is very different from the usually 
defined gas specific heat, and is in fact usually 
negative.

Equation (2) shows that when we 
start with no vapour present, i.e. q = 0, a reduction 
of pressure adiabatically on a saturated liquid 
involves the formation of vapour, since dt, which 
corresponds to the reduction of pressure, is necessarily 
negative. In fact, from the Clapeyron equation 
we may substitute for dt and obtain in (2)

For water it happens that C is, 
over the whole pressure range up to the critical, 
approximately equal to ”Cw ,so that for water, 
equation (3) becomes

4 j l  ,  -

Thus for initial dryness less than 
0.5 adiabatic expansion involves vapour formation, 
while for higher dryness than 0.5> adiabatic expansion 
involves condensation, as in the Wilson cloud chamber.

Returning to the flow of the 
saturated liquid, the velocity gained by a pressure 
reduction is theoretically given by Bernoulli's



where v is the velocity acquired from rest and V is 
the specific volume of the fluid and P is its 
density* For a liquid P  can, as is conventional, 
be taken as constant, and for a gas under adiabatic 
conditions V can be obtained as a function of ? 
from the equation of state and the ratio of gas 
Specific heats. But if a mixture of saturated liquid 
and its vapour is treated as a fluid ih the same 
way, the specific volume is

\ [  *

where V and V are the volumes of saturated liquid 
and vapSur respectively* Since equation (U) 
for q cannot be solved in functional form conveniently, 
V cannot readily be obtained as a function of p.

However the values can be obtained 
to a satisfactory,accuracy by graphical wefchodsas 
used by Bottomley^ ' or by approximate expressions 
together with the use of the Gibbs function

5  e  +• y v  —

( 2 )as suggested in a previous paper' 7 by the writer*
The calculations show that while the velocity is 
substantially increased by the energy derived from 
the formation of vapour, the specific volume is so 
very much higher than that of the liquid even for 
small amounts of evaporation, that the weight quantity 
flowing per unit area is very seriously reduced as 
compared with cold water. Subsequently in the paper 
we shall have occasion to refer to the above theory 
and it is desirable to adopt a specific name for it*

equation
\r



Since it gives s direct analysis in terms of only 
the usual thermodynamic properties of the fluid, 
we shall throughout the paper refer to it as the basic theory#

In engineering tests however, 
Bottomley found that the quantity passed was very 
much greater than the quantity calculated on the 
basic theory# Indeed he obtained "discharge 
coefficients" of the order of 2+ or 5# In later 
work Benjamin and Miller(3) using sharp-edged 
orifices, found that the quantity of saturated 
water passed was not appreciably different from 
the amount of cold water* Bottomley accounted 
for the discrepancies by citing the fact that 
a liquid can exist in a metastable superheated 
state oyfing to the difficulty of forming bubbles, 
and Benjamin and Miller accepted the same explanation* 
There is little doubt but that this is substantially 
the true cause. As discussed by Bottomley* the 
existence of the metastable state is associated with 
the difficulty of forming bubbles due to surface 
tension, i.e* with the difficulty of boiling*

It was suggested by Kittredge in 
the discussion of Benjamin and Miller’s paper that 
there would also be a limiting action due to the 
requirement of a finite time for heat transfer*
Heat transfer into a bubble was discussed by the 
w r i t er(2) and shown to require times of an order 
of magnitude such that with a sharp-edged orifice 
the fluid would have passed through before appreciable 
evaporation could occur* The importance of the time 
factor became immediately evident in experiments on 
flow through tubes of appreciable length instead 
of sharp-edged orifices* It was found that the 
hot water flow was then considerably reduced as 
compared with cold. In a second paper Benjamin and 
M i l l e r W  have shown that for flow through pipes, 
critical conditions similar to those deduced by 
Bottomley from the basic theory do apply, showing 
that when sufficient time is available the vapour 
does in fact appear*

Prom that introductory description 
of present knowledge it is clear that the duration 
aspect of the phenomenon is of prime importance.
It is evident that the evaporation expected is not



obtained, and we require a quantitative account of the 
rate of vapour formation in order to give a truer 
estimate of flow conditions, and of how they may 
be affected by nozzle dimensions* In the present 
paper a theory is proposed to meet this need, and 
experiments are described which give, results for 
comparison*

In the proposed theory it is 
assumed that a cylindrical stream of liquid emerges, 
remaining in the superheated metastable state, 
without formation of bubbles, with evaporation 
occurring at its surface* The evaporation causes 
a lowering of temperature in the surface layer so that 
the actual amount is controlled by the thermal conductivity 
of the liquid. These concepts permit the calculation 
of the rate of evaporation*

It will be evident that the correctness 
of deductions from the proposed theory will depend 
upon the maintenance of the metastable state in the 
central stream. Precisely because this is metastable, 
it can be expected to be subject to some irregular 
behaviour due to random interference* Some remarks 
on the metastable state may not be out of place.
It can be much more readily obtained than is commonly
known* If water which has been previously boiled to 
remove the air be placed in a test-tube suspended in
a constant temperature bath of about 22+0° to 250° P
a slow and uniform heating of the water in the 
test-tube is obtainable without mechanical disturbance.
Under such simple conditions we have obsgrved the 
water temperature to rise well above 212 P. without 
any appearance of boiling until suddenly an explogive 
spurt would take place. In these experiments 220 P 
was easily reached and on some occasions the spurt did 
not occur until 230 P. Immediately after each spurt 
the temperature falls to 212 P. and ghe cycle begins 
again* At any temperature above 212 P., a small 
disturbance of the tube such as a slight tap on its 
surface or movement of the thermometer immediately 
causes the explosive spurt* While the system is in 
the metastable state, evaporation proceeds from 
its surface. In certain experiments of a similar 
type, but conducted at reduced pressure, Alty(5) 
was able to obtain ice formation on the water surface 
due to its own surface evaporation.



In the remainder of the paper 
the terms "basic" and "proposed" will be used 
throughout to distinguish the two theories, and it 
may therefore be advantageous to summarise here the 
difference between them. The basic theory is a 
straightforward thermodynamic treatment of the fluid 
alone, assuming that at every point thermodynamic 
equilibrium is preserved. Hence it implies that the 
rate of phase change from liquid to vapour is 
infinite. In fact, the rate of phase change must 
be finite. The proposed theory attempts to specify 
that finite rate and to calculate its effects.

2. THEORY OF VAPOUR FORMATION.

We assume that evaporation 
occurs from the surface bounding the stream of 
liquid flowing through the orifice. If r is the radius 
of the stream and if 1 is the length of the nozzle 
we obtain the total surface for evaporation as 
2xrl. The temperature of the liquid stream is assumed 
to be preserved in the main core of liquid, but 
to fall off to Tfi , over a surface layer of 
thickness \  • This permits transmission of heat 
through the layer and it can be assumed that the cooling 
of the layer is the source of heat for formation 
of vapour. If we denote by q the proportion of 
vapour present in the ultimate discharge, i.e. 
the dryness at exit from the orifice, and if W is the 
total weight of fluid passed per second, the evaporation 
rate is qW.

The latent heat supply at rate 
qWL needed to maintain the evaporation, must come 
from the cooling of the outer layer of liquid.
Imagine this to be confined to an annular region of 
thickness across which the temperature falls 
linearly from T to T , enabling the necessary 
transmission of°heat ?o take place* The quantity 
of liquid flowing in this annulus will be q ’W where
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Q 1 - J?lA  ' ' " ~ ^

Also the mean temperature of 
the liquid in the annulus will be 
so that the mean cooling is

T o  -  T . f  t  = u  U
3L. i t

The heat H so released is therefore given by

\ \  = ^  w l  L t . - t Q  ( c ;

Equating this to the heat 
needed for steam formation,

q ' N y l o C T . - ^  = a ^ W L  ----(3)

whence

Substituting from (5) we find for 
the thickness of the annulus

\  c  T  L-

Thus the effective temperature
gradient G is
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Vo

1
  0)

If K is the thermal conductivity 
of the liquid the rate of heat flow across the 
annulus due to this gradient can now be obtained, 
and must of course also be equal to qWL i.e. to the 
heat supplied for evaporation. Hence we obtain

<” C ~T  C X o ^ T a .)

V L _
\n L.

whence

or

Q [ W  -
l  /

ov

It should be stated at once 
that evidently equation (1 1) from its derivation 
is only satisfactory if the width of the cooled 
region near the surface is a small proportion 
of the radius. This condition is satisfied for 
orifice lengths which are not too long.



The s p e c i f i c  volum e i s

It is convenient to write ~ dL - - -
\ U

Hence if v is the velocity 
of flow, the quantity discharged from the nozzle 
is

v- c '■*■*-)

provided the nozzle has no vena contracta, i.e. 
runs fullj -r0 ^  .

Substituting from (13) into 
(1 1) and multiplying by V we obtain

O

vww

qL   ̂ \k _  JlvtKCCw ( to-T1.)
J ^ 5T J M “vf »-0

- ' - ilvj
Equation (1U) would define oC. 

if the velocity v were known, since all other 
constituents are known. To obtain v we shall give 
an approximate solution for ^ave
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therein x is the proportion evaporated in the drop ^ 
from p to p. We assume that x will have an 
approximately linear distribution, so that

where p - p, is the total grop to the discharge 
pressure Pd«* Then integration of (15) gives

£  - - > L  C y . - V O -  V i _
^  >.-Ya.

+  \  y ^ U p .

T*The limited integrals may be 
obtained either graphically or by approximate^ 
integration. The important point is that it has 
been possible to separate q from them, and so 
the equation be written in the form

2 l Z  . \ L
9l <̂  L



1 1 .

where m can be determined for a given p and p,, 
and where V is now the specific volume°of saturated 
steam at the discharge pressure p^.

i.e. the kinetic energy of flow can be written 
in the form

j s t l T  _

But Vw (p — p^) is the flow energy
which would be given to cold water between the same 
pressures.

Hence, for the mixture we can write

=  ^ t< l  -  —  -  '  (< 8 j\ r

Thus

- \ nJ ,(

if W  denotes the cold water quantity passed by 
the nozzle for the same pressure difference.

Substitution in (14) gives

o L
A-

-  -  -  . (3 0 /



Equation (20) permits the 
determination of since all other terms in it are 
known* Then the quantity of hot water passed is 
easily obtained from (13) and (1 9) as

N K J^  ( .  . ( s u ,

Critical Pressure in the Nozzle*

When the above theory is applied 
to the calculation of %£antity discharged from a 
vessel at constant initial pressure and temperature 
but assuming various back pressures, a graph is 
obtained as in Pig. 1* This shows a maximum, the calculated 
quantity rising as the bacA pressure is reduced 
from the supply pressure, but subsequently falling 
after further reduction beyond a certain value of 
back pressure. It will now be shown that the situation 
corresponds to that well-known in a steam or other 
gas nozzle, that the velocity of flow is then the 
velocity of sound, and that the descending portion 
of the curve will not be obtained.

The nozzle has been regarded 
as of constant cross sectional area, and our 
experimental nozzles conform to this except for 
a short entrance convergence. The weight flowing 
is W = A v » and we consider the variation of W

V

\ M  =

with back pressure. It is



According to a general equation 
of physics, the velocity of sound in a medium is 
given by the equation

This is true for any condition of propagation. If 
it is isothermal the value of d£ to use is that for

isothermal changes, if it is adiabatic, the adiabatic 
volume/pressure law-applies, etq. Hence in our 
equation the term where c is the
velocity of sound in the saturated fluid 
undergoing the particular kind of flow and volume 
change with pressure which we have specified.

Now when the graph indicates that 
W is a maximum, dW must be zero, whence it follows

dV

that



But vdv = and the value
of this is given by the general equation assumed for 
tge flow as .— gVdp. Substitution gives therefore
—2 = 1 as *he condition when W is a maximum, c

Hence when the curve shows a 
maximum, the velocity of flow is equal to the velocity 
of pressure propagation, and, as in a steam nozzle, 
further back pressure lowering will not be propagated 
into the nozzle and the discharge will remain at the 
turning point, the pressure in the nozzle remaining 
at the associated value, which may be t e m e d  a 
critical pressure.

It will be appreciated that the 
theory is too complicated to permit the analytical 
expression of the critical pressure in a useful 
form. Accordingly one has perforce for a given 
nozzle under given supply conditions to calculate 
flow for various back pressures, in order to obtain the 
maximum flow and the critical pressure. To get a 
performance curve for a nozzle discharging to a 
given back pressure with varying supply, the procedure 
of calculating with various back pressures must be 
done for several supply pressures and thqjfnaximum 
flow and critical pressure obtained for each.
The required performance curve is then made by using 
actual quantities calculated for the given back pressure 
when the supply is such that the critical pressure 
is less than the given back pressure, but using 
indicated maximum at critical pressures when the 
supply pressure is such that the critical is greater 
than the given back pressure.

We have applied the theory in 
this way to the calculation of discharge from nozzles 
whose performance has also been determined experimentally. 
We shall first describe the arrangement in our 
experiments.



3» EXPERIMENTAL APPARATUS AND PROCEDURE.

The apparatus used is shown 
diagrammatically in Pig. 2. It consists of a cast 
iron pressure vessel in which steam and water are 
mixed to obtain water at or close to saturation 
temperature, of a nozzle through which the saturated water 
discharge, and a condenser to cool the discharged 
fluid after exit to prevent evaporative loss during 
weighing. Water was supplied t o  the vessel by a 
centrifugal pump previously thoroughly cleaned to 
remove grit* The pump suction was from a supply 
tank and its main discharge, at a pressure of 
801b./sq. in. led back through a stop-valve into the 
tank, the feed to the experimental vessel being 
a by-pass. This permitted fine control of the water 
supply to the vessel. The supply tank was filled 
with tap-water, the quantity lost through the experimental 
by-pass being continually made up through a clean 
hose. The steam supply was from a 3501b./sq.in. 
main, cut down through a reducing valve.

The nozzle was mounted in a 
flange at the base of the vessej. as shown. The pressure 
external to it was maintained at atmosphere by having 
an outer flange with a hole in it. To this hole 
was connecteu a short U-tube in which a head of water 
was allowed to gather initially by condensation as 
shown in the figure. The presence of the water 
formed a seal preventing loss of vapour, and the 
smallness of the head prevented the discharge pressure 
differing appreciably from atmosphere.

The discharged fluid was collected 
by a large (3” diameter) pipe which could not offer 
appreciable restriction even had total adiabatic 
evaporation occurred. A water cooling jacket 
around this pipe was used to condense the vapour 
formed and to cool the discharge prior to its arrival 
in the weighing tank, so that evaporation loss of 
weight would be negligible. The discharge was 
measured by the time required for a known weight 
(usually 56 or 28 lb.) to collect in the weighing tank.
The time was taken with a stop watch, calibrated



throughout the experiments against a standard pendulum.
The temperature of the liquid 

in the vessel and of the atmosphere just outside 
the nozzle were measured by thermometers as shown, and 
the pressure in the steam space by a mercury 
manometer or bourdon tube gauge. The mercury 
manometer was used up to a total vessel pressure 
of 3 atmospheres, i.e. anoperating pressure difference 
of 2 atmospheres, and consisted of two U-tubes connected 
in series, with an adjustable compressed air supply 
between them. Manometer readings were corrected 
for water condensation in the limb nearest the steam 
space. For a few experiments at higher pressures a 
bourdon tube gauge calibrated before and after 
the experiment by a deadweight gauge tester was used.

It was not possible to run the 
experiments with zero water head above the nozzle 
but this was kept as low as found convenient, which 
was at a constant level throughout the work of k  inches. 
The gravitational velocity due to' this is small 
compared with that due to the hydrostatic pressure 
difference caused by the steam space but nevertheless 
the water level pressure was allowed for in calculations. 
The operating pressure in the vesoel was controlled 
roughly by the steam admission valve, and as a fine 
adjustment, by having a steam by-pass valve as shown 
in the figure.

Steel nozzles corroded and varied 
in their discharge. Accordingly our experiments 
,r?ere on nozzles made of monel.

In making an experiment the 
vessel pressure was continuously controlled by the 
steam and water admission valves and the steam 
by-pass, to maintain it at the desired value with 
the fixed water level. After some initial trials 
and adjustments the whole procedure could be carried 
out and observations made by a team of three. For 
any one nozzle experiments were made at gauge pressure 
setting® of 5, 10, 15, 2 0 , 23, 30 and sometimes 
35 lb./sq.in. Depending on the state of condensation 
above the manometers and the other correction 
factors the corrected pressure at which the experiment



was conducted might be somewhat above or below these 
values.

h. EXPERIMENTAL RESULTS.

In the first place experiments
were made with a sharp—edged orifice as shown in
Fig-3 -3. The results, which are shown in the graph
of Fig. k  confirm completely Benjamin and Miller’s
statement that the hot water flow was not appreciably
different from the cold water. The discharge
coefficient of the orifice was 0 .6 3 for both hot and
cold water, corresponding to the usually accepted
value for such orifices. This result is of course
predicted by the proposed theory, since L  ^
zero length, and therefore W = W .c

Such a discharge coefficient 
indicates a severe vena contracta effect. This was 
also found for cold’ water with a nozzle with a sharp
entrance. As discussed above, the theory is
conveniently applicable only to orifices which run 
full. Accordingly different designs were tried 
until a nozzle giving practically full flow with
cold water (discharge poefficient 0 .98) was
obtained. This was as shown in Fig. 5. The 
experimental results obtained with it are given 
in the graph of Fig. 6. It is immediately evident 
that even the short length of 9/ 32” effects a severe 
reduction in the flow of hot water as compared with 
cold.

In discussing these results it 
will be noted that we are referring to ’’hot” instead 
of ’’saturated” water. This is because it was not 
found possible to maintain the apparatus in sufficiently 
steady operation precisely at the saturation 
temperature corresponding to the vessel pressure, 
and it was always a little undercooled. £he extent 
of this undercooling was of the order 1.5 F. at 
the lowest vessel pressure (5lb./sq.in. gauge) and rose 
to about 5.5 F. at the highest (lj.5lb/sq.in. gauge).



Since the corresponding saturation 
temperatures are 1 5 .3 f. and 8 0 .3 f. respectively 
above the atmospheric boiling point of 212 F. at 
least 90% o f  the possible temperature difference

“ T was always obtained, and the experiments o  &
can rightly be regarded as dealing with near 
saturated water. In the theoretical calculations, 
the actual water temperature T is of course used. It 
is the temperature difference fthich is important 
and if T is greater than T some evaporation must 
eventually occur no matter Row much T is less than 
the saturation value corresponding to°p . If 
T is T , clearly no evaporation can occur and the 
fiow is jus? as for cold water. Indeed Mcold water” 
can properly for the present purpose be defined as water 
whose initial temperature T is less than the 
saturation temperature T c8rresponding to the 
discharge pressure, whill ”hot water” has TQ Tfl.

The comparison of the experimental 
results with the theoretical values calculated from 
equation #») is also shown in Fig. a smooth 
curve having been drawn from the theory. It is 
clear that the reduction as compared with cold water 
is of the order indicated by the theory and the 
general agreement is satisfactory.

Having established this for the 
nozzle of length 9/ 32” , we continued experiments with 
several other nozzles of different lengths, up 
to 2.9/32”. The respective experimental results 
compared with, theory are shown in the succession of 
figures 7 tool2. In every case there is agreement 
to a good approximation. The divergences, which 
are significant, will be discussdd later.

Besides illustrating the 
quantitative validity of the theory, the graphs 
sho~' the comparison with the cold water flow through 
the same nozzles. In every case there is a considerable 
reduction, which increases with length. Also e have 
shown on the graphs the flow curve derived from the 
basic theory as used by Bottomley. This being 
independent of nozzle length is the same on all the 
graphs and is far removed from the experimental results.



Comparison of Results with Theory.

In figures 6 to 1|, it will he 
noticed that there is a general tendency for the 
experimental results to lie above the theoretical 
values at lower pressures, and beneath^&hem at higher 
pressures. With the shorter length orifices the cross 
over occurs at higher pressures, so that for the 
9/ 32” nozzle almost all the experimental results 
are above the predicted values while for the 
2 9/32” nozzle they are all below* The departures 
from the theory are therefore systematic and 
not only due to random scatter* We may now 
indicate the probable reasons for such systematic 
differences*

In section 2 giving the theory 
of the vapour formation, it was assumed that the 
surface layer of liquid was at the temperature 
T of the surrounding atmosphere- i.e. it was 
assumed implicitly that there was no resistance 
to vapour formation at the surface and that 
evaporation could occur from a liquid whose 
vapour pressure was the same as the pressure of 
the surrounding atmosphere of saturated vapour.
This is incorrect, although the fact is usually 
ignored. Conventional thermodynamics has so 
accustomed us to thinking of equilibrium changes 
occurring infinitely slowly that we tend to 
forget that in fact a liquid must be out of 
equilibrium with its surrounding vapour befowe 
it can evaporate at a finite rate. Its vapour 
pressure must be higher than the pressure cf the 
surrounding vapour, and hence its temperature 
must be higher than T * Let the surface temperature 
be T-, and the correspSnding vapour pressure be p,.
Then it is known from the kinetic theory of gases 
that the evaporation rate must be proportional 
to (p-i • P )• The formula defining this is known 
as the Knussen formula and will be discussed later. 
From the engineer’s standpoint it may be most 
8imply regarded as a surface film resistance 
to heat transfer which must be added to the .
resistance of the outer layer of liquid of thickness A



considered in the theory, in order to get the
total heat transfer resistance. The net result
is that the rate of steam formation per unit area
for the total temperature difference T - T
cannot he so great as predicted by the°prop8sed theory.
Hence for a given area the steam formed is less
than anticipated, and so the quantity passed
should be rather greater than predicted* Indeed
it should be possible to use the excess of the
actual over the calculated flow as an experiment
to determine the coefficient of proportionality
in the Knudsen formula* We have done this,
with results which are reported elsewhere.

However all such discussion 
assumes that the liquid remains in the metastable 
state and that no bubbles are formed to make 
the actual evaporative surface greater than that 
of the jet assumed in the theory. The ease with 
which the metastable state may be upset by 
mechanical disturbance has been described in the 
introduction, and accordingly we must anticipate 
that in certain circumstances bubbles may form, 
increasing the surface very considerably. Such 
increase may be more than enough to compensate 
for the fact that the rate per unit area is less 
than assumed. The total steam formed would 
then be more than anticipated and the flow 
quantity less.

Bearing these points in mind 
it would appear from the experimental results 
that with the lower pressures and shorter nozzles 
the metastable state is fairly well preserved, 
so that the surface is approximately as assumed, the 
discharge being greater than calculated due to 
the surface resistance to evaporation. But at 
higher pressures and with larger nozzles the 
metastable state becomes disturbed so much as 
to make the results fall below the theoretical.



Experimental Confirmation of Critical Pressure.
\

It is not sufficient to check
the theory in respect of flow quantity* We have 
seen that it also indicates a critical pressure 
condition associated with the attainment of acoustic 
velocity* This is predicted at relatively low 
velocities (of order 80ft, per sec.) and for an 
(Jnhomogeneous fluid consisting of a central 
core of liquid in which an acoustic velocity 
of order UOOOft./sec. might be expected and an 
envelope of vapour wherein sound would be expected 
to travel at about ll+OOft./sec* It is therefore 
very necessary to examine whether such a critical 
pressure does occur.

Accordingly experiments were 
made with another nozzle of length 2 9/ 32”, which 
was pierced radially near the discharge end and 
the hole connected to a manometer. A valve was 
inserted on the discharge side of the condenser 
so that the back pressure into which the nozzle 
discharged could be varied* It was found that 
beyond a certain point the pressure at the end 
of the nozzle did not change much, no matter 
how much the back pressure was reduced. Nor 
did the quantity alter greatly beyond that point.
The following result is typical.

Supply Pressure 30p*s»i. gauge*

Nozzle end 
pressure 
p.s.i. gafcge

25.5 23.5 22.3 2 1 .6 20.5

Quantity 
lbs*/hr* 970 1130 1f70 1210 12U0



Such results certainly 
indicate the existence of a critical pressure at 
the end of the nozzle and therefore imply that the 
back pressure is not propagated into the nozzle, 
so that there must be an acoustic limit. The 
small diminution of nozzle end pressure and 
slight increase of flow quantity which do occur 
are probably due to a secondary effect as follows.
The outside wall of the nozzle is in a vapour 
atmosphere whose temperature is the saturation 
value corresponding to the back pressure. As 
this is reduced heat loss from the nozzle will 
increase, reducing slightly the formation of steam, 
and so lower the value of pressure which is critical.

Unfortunately these readings 
of critical pressure cannot be taken to apply 
directly to the other results with the same nozzle, 
for the flow quantity when the pressure hole was 
present was much less than that obtained with 
the unmodified nozzle. This was true at all 
supply pressures. Thus while the unmodified 
nozzle passed 1l+50lbs./hr. at a supply pressure of 
30p.s.i. gauge and atmospheric back pressure the 
above table shows that with a pressure hole at 
its end it passed only 12^0lbs./hr. This difference 
was confirmed by making a new 2 9/ 32” nozzle 
without pressure hole and obtaining the former 
result again. It seems that the surface 
irregularity caused by the hole disturbs the 
sensitive metastable jet and causes more rapid 
steam formation,

However from the observed 
nozzle end pressure and flow quantity, the actual 
ste®m formed %n the pressure measurement case 
can be calculated, and so the velocity of flow 
in that case can be obtained. The value for atmosphere 
back pressure is 77 feet/sec. Thus since a critical 
acoustic condition has undoubtedly occurred under 
these conditions it can be accepted that another, 
but similarly defined acoustic limit occurs with 
the normal nozzle. The value of its critical 
pressure may be estimated as follows. According 
to the theoretical calculation of formed steam 
the critical pressure for 30p.s.i, gauge supply



should he 11.5 p.s.i. g a u g e and the flow should be 
1680 lbs./hr. The pressure measurement experiment 
gave a critical of 20.5p,s.i. gauge with a flow 
of 1 2 k 0  lbs./hr* Interpolating between these for 
the actual observed flow of 1U50 lbs./hr. in the 
non-pressure measurement experiment, we can deduce 
a critical pressure there of about 15p.s*i. g.
(N.B. This interpolation is made graphically 
in terms of absolute pressure.).

Variation of the back pressure 
by the valve also showed the presence of a critical 
pressure in the unmodified nozzle and there was 
little increase in quantity for back pressure 
below 15p»s.i. g. with 30p.s.i. g. supply, thus 
confirming the deduction by interpolation. Such 
experiments were only made with the one nozzle 
of 2 9/32” length as the back pressure control 
by the valve was difficult. For the other nozzles 
critical pressures corresponding to the observed 
flow quantities were deduced as follows.

The performance curves of the 
type shown in Fig. 1 are calculated from the theory 
and are based upon the theoretical amount of steam 
formed. Similar curves can be obtained by using a 
different value of some parameter in the equation, 
such as fo» example a different length. They imply 
a different amount of formed steam. Each different 
length has its own maximum point and if the curves 
for a number of different lengths at the same supply 
pressure are plotted on one graph sheet the maximum 
can be joined by a connecting line. This will be a 
curve relating critical pressure to delivered 
quantity* Since the length governs this relation only 
by governing the steam formation, it may be assumed 
as a reasonable approximation that, whatever the 
actual geometrical length of the nozzle, the critical 
pressure in it can be read from this curve at the 
point corresponding to the experimentally delivered 
quantity. By this procedure the critical pressures 
corresponding to the experimental results for each 
nozzle were obtained* As a check on this method 
of interpolation it should be noted that the 
result deduced by it for the 2 9/32” nozzle agreed 
with that deduced by the other interpolation with 
reference to the experimentally measured critical 
pressure*



Naturally where the critical 
pressure so indicated is less than atmosphere, 
the actual nozzle end pressure must have been 
limited to atmosphere and the critical condition would 
not be reached#

^  4  ><U ^

*  ^  V W  ^
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B 2. II* Extract from
"The Condensation Coefficient of Water 

at Atmospheric Pressure"*
Joint Paper by R.S. Silver and J.A. Mitchell. 
1st Draft communicated to the Royal Society 
by the late Prof. Sir R.H. Fowler*
Referees report on that favourable to 
acceptance but a 2nd draft in preparation.



THE CONDENSATION COEFFICIENT OF WATER 
AT ATMOSPHERIC PRESSURE.

1. Introduction.

The rate of evaporation of a 
liquid into a vacuum can be calculated by using the 
concept that when in equilibrium with its vapour the 
same number of molecules leave the liquid as condense 
in it, and by using Knudsen's formula from the 
kinetic theory to obtain the number of gas phase 
molecules striking unit area at the vapour pressure of 
the liquid and assuming that this number will still 
leave the surface even when a vacuum is preserved 
above it. In fact, however, a portion of the 
molecules which strike the surface may be reflected 
from it without condensing and the rate of evaporation 
corresponding to a certain vapour pressure will be 
given by Knudsenfs formula multiplied by some 
condensation coefficient f.

Since in practice a vacuum 
cannot be maintained, an appropriate way of measuring 
the value of f is to determine the rate of evaporation 
from a liquid surface of known temperature, and 
therefore known vapour pressure, into a surrounding 
atmosphere of gas at some measureable lower pressure.
The rate of evaporation should then be the coefficient 
f multiplied by‘the Knudsen formula, using the difference 
between the vapour pressures of the surface and the 
pressure of the surrounding atmosphere. Several 
investigators have reported that considerable 
departures of the condensation coefficient from unity 
can be obtained*

Roberts (19U0) mentions some of 
these results and in particular draws attention to 
the need for determining the true temperature of the 
surface layer of liquid, since the temperature 
gradient in the liquid towards the surface may be very 
severe with considerable rates of evaporation. He 
mentions however that Altyfs results for water gave 
very low values for f , of the order 0.01, although



great care was taken in the temperature measurement.
In later work Alty and MacKay (1935) 

used a technique in which the surface temperature was 
obtained by determining the surface tension of 
small drops of water from which the evaporation took 
place. They found a value of f = 0.036 and considered 
that the value previously reported was too low, due 
to a too high estimate of surface temperature. The 
departure from unity is still very great and indicates 
that only about 3.6$ of the molecules striking the 
surface actually penetrate it.

The use of relatively simple 
formulae of the Knudsen type with a correct value of 
condensation coefficient is likely to be of considerable 
use in many industrial evaporation and condensation 
problems but there is some difficulty in accepting 
it as applicable to other than very low pressure 
conditions. For the mass motion of a gas it is 
certainly not correct, unless the pressure is 
sufficiently low for the mean free path to be 
significant in relation to the geometrical dimensions 
of the apparatus. At higher pressures the motion 
is no longer molecular streaming, but is governed by 
the ordinary hydrodynamic treatment.

It would seem correct to 
regard both types of behaviour as present always, the 
streaming being due to the random molecular motions 
graded by pressure gradient, and the hydrodynamic 
flow resulting from the Newtonian response to the 
force arising from the pressure gradient. At low 
pressures molecular streaming predominates while at 
high pressures the forces acting are over-riding. Now 
it can be urged that in the case of an interface 
between liquid and vapour or solid and vapourt the vapour 
pressure of the condensed phase is not effective as 
a force, even at high pressures and the hydrodynamic 
type of effect may be negligible. On this view the 
rate of evaporation or condensation would be entirely 
governed by the Knudsen or "streaming" type of formula, 
even at pressures where the mean free path was very 
small compared with apparatus dimensions.



In a previous paper (which for 
convenience will be referred to as l )  w e have 
described experiments on the flow of saturated water 
from a vessel through a nozzle* In such circumstances 
there is a fall in pressure due to the Bernouilli 
effect in the nozzle, and since the initial temperature 
of the water is near the saturation value corresponding 
to the vessel pressure, some of it will evaporate 
at the lower pressure in the nozzle. The specific 
volume of steam is so great compared with that of water 
that in proportion to its formation it severely 
restrictjH^ the weight of fluid discharged from the 
nozzle. Accordingly measurements of the discharge 
can be used to calculate the amount of steam formed 
and therefore its rate of evaporation.

Theory for Calculation of Condensation Coefficient.

We recall that the vapour pressure 
on the surface of the water 3©^ must be rather higher 
than the pressure of the saturated vapour around it 
if evaporation is to take place. If the surface 
temperature is T-, and p, is the corresponding vapour 
pressure, while p is tne pressure of the surrounding 
vapour, then we hive the Knudsen type formula as

where f is the condensation coefficient, M the molecular 
weight and R the gas constant, /*- being the 
evaporation rate per unit area.

Now the pressure and temperature 
differences with which we have to deal are small and 
with sufficient accuracy we may put from Clapeyronfs 
equation

~T $rSL/ 'Cr O-0 Vo UnJC



where L and V are the latent heat of evaporation 
and the specific steam volume at T 
so that a 7

T can replace T, in the 
square root bracket witftout much inaccuracy, the 
temperatures being absolute, differing by less than 
10 K, and of the order 373 K*

In the jet experiments the 
rate of evaporation per unit area is Q \N

" " a v v r t

The radius r of the jet is however equal to

the symbols all having the meanings defined in I. 
Substituting for in (2) we obtain

* aI±tiiir (?̂ )
\ cl

The entire argument regarding 
heat conduction in a water layer near the surface, as 
given in I, also applies, provided T is replaced by
T i *
Thus we obtain

Q  ^ It) ~  - ■ d t-l

^  il



This equation, derived in part I, 
is applicable here only provided heat loss by 
conduction into the surrounding vapour space from 
the jet surface is negligible* This is valid since 
heat going into that space will raise the vapour 
temperature, making slightly superheated, and 
bringing it into equilibrium ',rith the surface temperature 
Tn* For Alty and Mackay have proved the accomodation 
coefficient for water to be unity* As a result, the 
weight of vapour striking the surface per unit area 
is many times more than the weight of vapour evaporated 
from the surface* Since every molecule striking 
the surface attdiu^ temperature equilibrium, the heat 
taken away for a supposed temperature difference a T  
between surface and vapour, by vapour striking the 
surface^is very much more than is needed to raise the 
actual quantity of vapour in the s$ace by AT*
A balance will be struck depending ’6n the rate of heat 
loss through the metal wall of the nozzle* If this 
is so small as to be negligible the vapour envelope 
will be superheated to very nearly T^* Because of 
the thickness of metal and the low temperature difference 
between the vapour inside and the outside vapour 
atmosphere, this rate is very small compared with 
that required to maintain evaporation, and can be 
neglected*

W is directly measured by the 
experiments* The pressure in the vapour envelope 
around the jet is either one atmosphere or is a 
critical pressure whose value may be estimated by 
the interpolation method described in I. When that 
pressure is known T  is known and t and q may be /
calculated by the fSrmulae given in I* All other 
constituents are then known so that T, can be calculated 
from ( b ) , substituted in (3) and used to calculate f*

Results*
It will be apparent from the 

above that the theory used in part I, where the 
difference between surface vapour pressure and the 
surrounding pressure is ignored, is equivalent to 
assuming f , since T^ becomes T& in ( b )  and



T.. - T zero in (3) while qW JTl remains finite* 
Thus finite and positive values of f can only be 
calculated from such experimental flow quantities 
as lie above the theoretical prediction of I* Results 
below that were shown in I to be due probably to 
disturbance of the metastable state, with increased 
surface caused by bubbles. Such results substituted 
in ( k )  would give a value of T-, lower than T , 
indicating a negative f, all or which is imp8ssible 
and due to the wrong surface* Now results which 
lie above the theoretical predictions of I may also 
have-been affected by disturbance of the metastable 
state, making the true surface larger than is allowed 
for. Hence the positive values of f which can be 
calculated from such results may be— too high - but 
they cannot be too low* The true value of f must 
be equal to or less than values calculated from 
our experimental results on flow through nozzles*

The following table gives those 
of our experimental results which indicated positive 
values of T-» - T , and the values of f deduced from 
them. a
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These values of f may how be 
plotted against T^ - T , as has been done in 
Fig# 1, where the general tendency is illustrated by 
the line which has been drawn in* The apparent 
values of f increase rapidly as the apparent T-. - T 
tends to zero indicating that the surface must havea 
been greater than supposed# From the graph it appears 
that for T-, - T >  6 F the values of f have ceased 
to show a definite diminishing trend with increasing 
T-i - T , so that it may be assumed that metastable conditions 
are then fairly well preserved, the surface being as 
assumed, and the variations of f being subject only 
to residual experimental errors*

Accordingly the best estimate of 
f is obtained by taking the mean of the eleven 
values for T, - T >  6 F. The average gives f = 0*010, 
the standard erro£ of the average being 0*0027*

This result does not agree with 
that given by Alty and Mackay, whose mean, based 
on five of their reliable results was 0.038, with a 
standard error of 0*002i+ for the mean. Thus the 
results are of comparable accuracy and are significantly 
different.

The evaporation in our case 
took place at pressures ranging from 760 to 1100mms. 
absolute, while in Alty and Mackay*s experiments the 
pressure at which evaporation occurred was always 
less than 23mms. It appears therefore that while 
the Knudsen type of formula may still be used in the 
higher pressure region, the condensation coefficient 
must also be regarded as a function of pressure.
The discussion given in the introduction suggests 
that the reason for this is in the restricted mean free 
path. The effect is such as to give f = 0.010 in 
the region of atmospheric pressure.
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B. 3. Theory of Stress due to Collapse of 
Vapour Bubbles in a Liquid.



Reprinted from  “ EN G IN EER IN G ,” December 25, 1942.

THEORY OF STRESS DUE TO COLLAPSE 
OF VAPOUR BUBBLES IN A LIQUID.

By R. S. SILVER, Ph.D., F.Inst.P.*

T h e  collapse of vapour bubbles formed in the 
body of a liquid is a phenomenon of considerable 
importance in connection with cavitation erosion. 
This phenomenon, which is encountered with ship 
propellers and in hydraulic apparatus, sometimes 
assumes serious proportions. There is now con
siderable agreement that this particular type of 
attack on metal surfaces is actually mechanical in 
origin and for a summary of the evidence in favour, 
a recent paper by Beechingf may be referred to. 
Briefly the supposed mechanism is as follows. 
For some reason connected with the particular 
hydraulic apparatus, the pressure in the liquid 
falls below the pressure corresponding to saturation 
at the liquid temperature. This may occur, for 
example, in the wake of propeller blades, or in 
centrifugal pump entrance passages. With the 
reduction of pressure some evaporation of liquid 
occurs and small cavities of vapour are formed. 
Subsequently the pressure rises, and as a result the 
cavities collapse. It is contended that the erosive 
action is caused by liquid compression waves 
initiated by the collapse of these cavities. There 
has been a certain amount of doubt whether the 
stresses set up by the collapse could in fact be 
sufficiently great to cause the observed damage. 
Beeching states that several investigators have 
arrived at the conclusion that the pressures pro
duced by the impacts are not sufficient to cause 
plastic deformation of most metals and quotes 
extensive criticisms by Haller.J Beeching himself, 
however, considers that the impacts are quite 
sufficient, and in the subsequent discussion of his 
paper he gives a derivation of the amplitude of the 
pressure waves in support of his contention.

Except for the inclusion of surface tension, his 
treatment is precisely similar to that given by Lord 
Rayleigh§ and by Cook.|| These treatments con
sider only the dynamics of the flow of water into 
a cavity which is supposed to be suddenly anni
hilated. In actual fact the collapse of a vapour 
bubble cannot take place suddenly because, for the 
collapse to be maintained, it is essential that the 
latent heat should be abstracted. Moreover for a finite 
solution these treatments also require an arbitrary 
assumption regarding the final size of the bubble;

* Research D epartm ent, Messrs. G. and J . Weir, 
L im ited , Glasgow.

t “ R esistance to C avitation  E rosion ,” D iscussion, 
Trans. In st. Engineers and Shipbuilders in Scotland, vol. 
85, page 273, April, 1942.

J S. L. Kerr, Trans. A .S .M .E ., vol. 59, page 373 (1937), 
and Beeching, loc. cit., page 219, March, 1942.

§ P h il. M ag., 1917, vol. 34, page 94.
|| Sir Chas. Parsons and Mr. S. S. Cook. Trans, of 

Inst, o f N ava l Architects, vo l. 61, page 223, A ppendix II  
(1919).

they lead to infinite pressures for complete collapse" 
With the increasing attention given to cavitation 
erosion and its relation to fatigue of surfaces it 
becomes important to develop a more precise theory. 
In this note a method is developed by which the 
bubble collapse is treated thermodynamically and 
allowance is made for the necessary abstraction of 
latent heat. The maximum possible pressure 
amplitudes are calculated. These more accurate 
values are much less than those given by the 
dynamical theories of Beeching, Cook, and Lord 
Rayleigh. They are, however, in excess of the 
values given by Haller and would appear to be quite 
sufficient to cause deformation of a metal surface.

Thermodynamic Theory o f Bubble Collapse.—The 
cause of any compression which exists must rest 
in the change of energy of the bubble between the 
vapour and liquid states. We can suppose that 
whatever energy is available is given as compression 
energy to the fluid. Now it is clear that the value 
of the pressure will depend upon the quantity of 
fluid to which the available energy is communicated. 
The minimum quantity to which the energy can 
be communicated is to the liquid formed from the 
bubble itself. Hence the maximum compression 
pressure reached can be calculated by considering 
the available energy as applied to the liquid formed 
by the condensation of the bubble. The problem, 
therefore, becomes one of determining the energy 
available from tfle collapse of the bubble. In con
densing, the latent heat given out will, in the first 
place, raise the temperature of the condensed layer 
and its immediate neighbourhood. If all the latent 
heat were given to the condensed layer the rise in 
temperature would be considerable, up to 970 deg. 
F., which is impossibly high. The increase of 
temperature above the average temperature of the 
fluid will result, however, in the conduction of the 
heat away from the layer. It is evident that, if 
the resultant temperature were higher than the 
saturation temperature for the hydrostatic pressure 
around the bubble, the collapse of the bubble would 
be stopped because of the excess vapour pressure. 
(We neglect here the effect of surface tension which 
will be included in the mathematical formulation 
later.)

Let the external hydrostatic pressure be p e and 
at any instant during the collapse of the bubble 
let the vapour pressure be p . Then work is done 
by the pressure difference p e — p  through the volume 
4 7r r2 dr. Also the change in surface area allows 
energy to be released, adding to the increment of 
work. Hence the increment of work available is 

dW  =  8 n r S dr -f- 4 n r2 dr (p e — p) 
dW  =  [8 it r S +  4 7r r2 (pe — p)] dr. . (1)

To the value of p  some surface temperature T 
will correspond, T being the saturation temperature



at pressure p . The rate of thermal conduction 
away from unit area of the surface will be propor
tional to the difference between the temperature T 
and the surrounding temperature T0. We may, 
therefore, write the rate of heat conduction away 
from unit area of the surface as m  (T — T0), and 
we can use the Clapeyron substitution to express 
this in terms of the difference between p  and p 0 
where p 0 is the saturation pressure corresponding 
to T0. We find the rate of heat conduction equal to

4 n r 2.

It can be assumed that the rate of condensation 
is proportional to the rate of thermal conduction 
away from the surface and hence the elementary 
change dr is proportional to T — T0, and there
fore, by the Clapeyron substitution, proportional to 
p  — p 0. We can now consider the value of dr as 
a function of p  — p 0. In the expression for d W  
and by differentiation obtain the condition for d W  
to be a maximum.

Writing dr — n  (p — p 0)dt where dt is an ele
ment of time, and n  =  m V* T„

L2
we can substitute

in equation (1) and obtain
dW  =  [8 77-rS +  4:7rr2 (pe — p)] n (p — p 0) dt (2)
Differentiation with respect to p  indicates a 

maximum rate of work when
p  =  Po +  Pe +  s (3)

I f  therefore we assume that throughout the collapse 
of the bubbles the thermal balance is such that the 
internal vapour pressure is maintained in satis
faction of equation (3), we shall obtain WTO the 
maximum work possible from the system. Sub
stitution from equation (3) into equation (1) gives

d W m =  4:TrrS d r - \-2 ir r 2 (pe — p 0) dr.

Integration between the limits r0 and r lf where 
r„ is the original and r 1 the final bubble radius, gives

W =  2 it S (rj — r\) -f ^  (pe — p 0) (rg -  r\).

When the bubble is all condensed its volume is 
V w
y -  of its original value, where Vw and Vs are the V 8
specific volumes of liquid and vapour respectively.

I f  also we denote by P  the excess of the applied 
pressure pe above the average saturation value p 0, 
we have

Pe -  Po =  F>

*"5
. . . (4)

It is now supposed that the whole of this energy
is given to the volume of liquid — n r * as potential

energy of compression. Hence the pressure ob
tained is given by

r6 * w -i*  . . .

- Pm L 4^rf J  • • (5)

where k  is the bulk modulus of the liquid. Substi

tuting for W in equation (5) we obtain finally

wh ch can be written

(8)
Pressure Produced at a Solid  Surface by a Single  

Bubble.—It is known from the general theory of 
the propagation of spherical pressure waves in a 
liquid, that the amplitude must vary inversely 
as the distance from the source, i.e., the amplitude
at a distance r is of the form p  =  a . The value of

r
the constant a is the quantity which requires to be 
found in such problems. This can be done in the 
present case from equation (6) above, for we have 
P =  Pm a t  r =  r t .

/V W\Aa =-- Pm r! =  Pm r0 

Substituting from equation (6) we have

« -  n, y / t p ( £ ) *  {1 + ! f „  [ i  -  ( ^ ) 8]  j 4

. . . (7)
It is clear from the equation that the lowest 

value of a  for initial radii so large that the surface 
tension term is small, is

k P (£)*•
3 SFor very small initial bubble size, however, —- 

J Pr„
becomes large, and we have

Now it is reasonable to assume that the nearest 
possible approach of a bubble centre to a solid 
surface will be of the same order of magnitude as its 
original radius r0. Hence for the maximum pressure 
waves incident on a solid surface we may consider 
the bubbles which originally just touch the surface, 
and the pressure amplitude caused at the surface by 
their collapse will be

For the effect of large bubbles we have

'•h<,iV ip (£)*■
while for very small bubbles

neglecting G - r ) f  compared with unity. 

In general at a solid surface we have

3 S r .

• . . (8 )
Equation (8) is of fundamental importance in 

cavitation erosion. It shows that the pressure
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pulse caused by the collapse of a single bubble 
touching the surface is never less than

whatever the size of bubble and may become very 
much larger for very small bubbles.

Effect o f N um ber o f Cavities.—So far we have not 
considered the effect of the lower pressure limit 
which in the first place causes the cavities to form. 
The subsequent collapse of a cavity will be governed 
by the conditions already examined, but the number 
of cavities which are present will be governed by the 
extent to which in the first place the pressure has 
been reduced below the saturation value. To the 
initial temperature T0 there corresponds the satura
tion pressure p 0. The essential condition for 
cavitation to occur is p x <  p 0 where p x is the lower 
limit to which the pressure is allowed to fall. When 
this is the case the depression below the saturation 
value is p 0 — p x, and, if  this is not too great, the 
corresponding temperature drop may be obtained 
from Clapeyron’s equation

A t =  T° ^-(Po -  Pi) . . (9)

where as before V s is the specific volume of the 
saturated vapour at temperature T0.

For the proportion of vapour per unit weight we 
have therefore approximately

=  C T0 V, (Po -  P l)
H L2

where C is specific heat of liquid.
Hence the total volume of the bubbles formed per 

unit weight of fluid is
it C T0 V| (p0 — p.)q v s= — -— — — . . (io)L2

If there are N bubbles per unit weight of fluid 
we have therefore

| ffr{{N = 9ToV*^o^ g i)   ̂ (U)

The number of bubbles per unit volume of fluid is
_______N_______
(1 — q) V w +  q Vg‘

Considering only those touching the surface, we 
shall have over unit area of the solid, a number of 
bubbles

2 N l
(1 — q) V w -(- qV s

since the width of the layer will be 2 r0. But the 
force exerted by one touching bubble can be taken 
as p s 7t r* assuming that, approximately, its pressure 
is expended over its diametral projection. Hence 
the total force on unit area of the surface is

2 N r0p s nr*
(1 — q) Vw +  q V s  

Substituting we obtain

3 CT0V2(p0 -
A  — ~  -  . (12)

2 L2[ ( l  - ? ) V W +  ?V»]

X  is the total stress incident per unit surface area 
of the solid caused by all the bubbles which touch 
unit surface area. It is therefore on the basis of X

that estimations of cavitation erosion should be 
made.

Equation (12) may also be expressed with the 
Clapeyron substitution omitted as

3 C (T0 -  T.) V, PsX  = ------*__o-------------------------------- . (13)
2 L 1(1 — q) Vw -f- q VSJ

where T x is the saturation temperature corresponding 
to the minimum pressure p x.

Again neglecting V w compared with Vs and 
substituting for q we find

X  _________3 ps______  . . (14)
2 r  i + — l z h — i

L C (T0 — Tj) VSJ

D iscussion .—The final equations derived from 
the theory are equations (8) and (14). Formally 
they are quite simple, but owing to the number of 
variables involved it is difficult to represent them 
in the form of graphs or charts for reference pur
poses. Considering first equation (14), apart from 
any variation in p s, the value of the denominator 
is not only a function of the initial temperature but 
also of the lower pressure limit. I f  the pressure is 
not reduced below the saturation value we have 
Tx =  T0 and X  becomes formally zero irrespective 
of the calculated value of p s. This is just as it 
should be, since unless the pressure is reduced below 
the saturation value no cavities will be present. 
When the pressure is reduced very far below the 
saturation value we may assume that T0 — Tx 
becomes very great and tends to infinity. UnderO
these conditions X  tends to a maximum value — '

2
It will therefore serve to simplify our representation 
of the significance of the derived equations if we 
consider only circumstances in which the lower 
limit of pressure reduction is very far below satura
tion so that a large number of cavities are formed ; 
i.e., we consider the worst possible conditions for
any value of p s to be given by the limit X  =

We have now to consider whether it is possible 
to show graphically in a convenient form the 
significance of equation (8) for p s. We have three 
independent variables present. The maximum 
applied pressure p e, the saturation pressure p„ 
corresponding to T0, and the initial bubble size r0. 
Of these variables p 0 alone determines V s, V  w and 
S ; but P is defined in terms both of p e and p 0 as 
being p e — p 0. If, however, we choose to con
sider a number of cases in which p e — p 0, i.e., the 
increase of pressure above saturation, is a stated 
proportion of p 0, the function becomes dependent 
only on p 0 and on r0. We could, therefore, under 
these conditions, make a set of graphs of the stress 
against r0 for various values of p 0. In Fig. 1, 
page 4, we show, for example, a set of graphs for 
each of which it is supposed that the saturation 
pressure has been increased by 100 per cent, to 
reach p 0, i.e., a saturation pressure of 1 lb. per 
square inch, has been increased to a maximum ap
plied pressure of 2 lb. per square inch, while a 
saturation pressure of 100 lb. per square inch, has 
been increased to a maximum of 200 lb. per square 
inch.

While these graphs are of interest it may be of 
most value, particularly in connection with applica
tion to propellers, if we consider water at a normal
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open air temperature, say 60 deg. F., for which 
the saturation pressure is 0-256 lb. per square inch. 
We shall assume that the pressure is first reduced 
far below this value so that a large number of 
cavities is formed and then returns to normal 
atmospheric pressure of 14-7 lb. per square inch, 
so that for this case the value of p e — p 0 is 14-444 lb. 
per square inch. A graph of p s for this condition 
is shown in Fig. 2, herewith, stresses being plotted 
against bubble radius. The maximum possible X  is 
readily obtained by multiplying values from the 
graph by 1-51

The values shown in Figs. 1 and 2 are worth 
further discussion. It will be seen that the influ-

ordinary water will be larger than 10-4 ft. radius 
and so the value of p s should not exceed the limit 
value shown in Fig. 2, i.e., 6 • 1 tons per square inch. 
The value of the maximum stress corresponding to 
this is 9 • 1 tons per square inch. We see therefore 
that we are calculating a limit stress of an order 
much less than that calculated by Beeching (loc. cit.) 
His values are somewhat indeterminate because 
they are based on some assumed final radius, but 
they are about 100 tons per square inch. On the 
other hand the figure 9 tons per square inch is 
about five times as much as values given by Haller 
in his criticisms quoted by Beeching. More im
portant, the stress calculated above is of the correct
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ence of surface tension does not become appreciable 
until the bubble radius is smaller than about 10 4 ft. 
For larger bubbles it can therefore be taken that 
the stress is at the asymptotic value given by

» - \ /  «(&)*■
Now in practice it is known that without special 
precautions water boils with a very low degree of 
superheat, of the order of less than 1 deg. F. Under 
such conditions the average size of bubble must be 
of the order 1 mm. diameter, i.e., the radius is of 
the order 10~3 ft. Hence it would appear that in 
practice the average size of bubbles which form in

order for the fatigue strength of cast metals. It 
is also necessary to emphasise that the figure of 
9 tons per square inch, represents the minimum stress 
incurred when a number of cavities is formed no 
matter what the size of bubble. I f  smaller bubbles 
are present they will give rise to stresses larger than 
this. A more advanced treatment of the theory 
would require to investigate the possible distribu
tion of bubble size.

I wish to acknowledge my indebtedness to the 
directors of Messrs. G. and J. Weir, Limited, for 
permission to publish this article, which forms part 
of investigations carried out in their Research 
Department.
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Entropy of Saturated Liquid-Vapour Mixtures
Trouton's Rule.

^  ^  )
It is well known that the entropy of a 

saturated vapour usually diminishes continually as the 
saturation temperature and pressure increase up to the 
critical values. On the other hand, the entropy of the 
saturated liquid increases continually. At any equilibrium 
below the critical, the vapour entropy S is greater than
the critical entropy S , while the liquid entropy S-, is less.
Thus it is possible to define a mixture of saturated liquid 
and vapour, say of dryness q, such that the entropy of the 
mixture will be equal to the entropy at the critical point. 
The defining equation will be

(1 - q)3x + qSv = Sc --------- (1).
Now it is of some interest to note that,

in fact, for quite a few substances, the value of q so 
defined varies but little over the whole range from the 
triple point to the critical point. Thus, for such 
substances, there is a particular mixture whose entropy 
is approximately constant at the critical value. The 
following table, obtained by examining tabulated data, 
shows mixtures whose calculated entropies differ by no 
more than 10°£ from the critical entropy over the whole 
range of available data, in some cases down to the 
freezing point, although the vapour and liquid entropies 
vary widely.

Table 1.
Mixtures Giving Approximately Constant Entropy.

Substance CH^Cl C Clgf^ ^B5B r NB3 ^°2
q 0.63 0.89 0.29 0.55U 0.61 0 .5 0



Consideration of this circumstance has 
suggested the following discussion of a definable ideal 
case. Since S = S-, + L, S., can be eliminated from

t 1
equation (1) to give

O  - <l)L = Sy - Sc ----------(2).

Now let us imagine an ideal substance 
such that the equation for the entropy of a perfect gas 
is applicable to its saturated vapour right up to a 
critical condition and also such that its mixture of 
dryness q has constant entropy at the critical value.
Then substitution in equation (2) will give the following 
expression for its heat of vaporisation

(1 - q)L_ = 5  log t - log 2  ------- (3)
Rt 2 *e Pc

Now if we assume that real substances 
may be considered to approach this ideal, we can 
substitute in equatiorf-Vexperimental values of boiling 
points and heats of evaporation at a given pressure, say 
atmospheric, and the critical temperatures and pressures, 
and so calculate values of q.

Using available values for the undernoted 
substances we find the corresponding values of q.

Table 2.
Calculated Values of q for Ideal Conditions.

Substance He H2 02 HC1 Cl2 C02 CS^

q 0 .8U0 0.7U5 0.755 0 .7 2 0 0.715 0.692 0.805 0.735
Substance C^H^ N0 NH'3 °2H5°H H2°

q 0.742 0.741 0.752 0 .7 2 0 0 .7 6 8 0.693

It is immediately obvious from Table 2 
that the values of q so calculated are nearly equal for all 
the substances. The average is 0.7U6, which is nearly 
equal to 0.75. This may be of significance since it 
gives a whole number ratio, 3/1 of molecules in the



3 .

vapour phase to molecules in the liquid phase.
Thus a number of real substances behave 

approximately in such a way that their heats of vaporisation 
and boiling prints at atmospheric pressure are related to 
their critical temperatures and pressures as would be those 
of an ideal substance having the perfect gas laws for its 
saturated vapour, and a constant entropy for its mixture 
containing 3 molecules of vapour to 1 of liquid. The 
3/1 ratio may be related to the packing volume of 
spherical symmetry.

It will be clear that use of this idea, 
and consequently substituting q = 0.75 in equation (3), 
will predict values of L, so that the suggestion gives

t
something corresponding to Troutonfs rule. But the following 
table, which compares experimental values of L with

t
values calculated on q = 0.75* shows it is more accurate 
than Trouton^ rule..

Substance H e h 2 n 2 °2 HC1 c i 2 co2 cs2

Experimental 5.1 10.8 17.3 18.1 20.7 19.2 31 21

Calculated 
from equ.(3) 
with q=0.75

3.3 11.0 17.1 20.2 23.7 23.6 2 k . 3 22.1

Substance c 6H* w NO nh3 CoHj-0H 2 5 h 2o

Experimental 20.8 21.9 26.7 23. k 27.2 26.0

Calculated 
from equ.(3) 
with q=0.75

21.5 22.7 26.5 2 6 .2 25.2 32.0

a  s .  v s w


