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The pregsent regearch comprises --

(2) the development of an arithmetical trial and error
method of finding the torsional rigidity of, and the
stresses due to torsion in,bars with uniform non-circular
section, and circular shafts with varying radius,

( Other methods were investigated and were found inferior
to this one),

(b) tests on structural sectioms and on hollow square
sections to find the torsionsl rigidity, the stresses,

and the effective maximum stress whieh causes failure.

The present pogition of torsion research. The

general differentisl equations for the torsion of bars
with non-circular sections were obtained by St. Venant.
These were solved by him for the ellipse, elliptical
tube, equilateral triangle and rectangle. Solutions
for many other simple forms of cross sectiom have peen
obtained by the ususl snalytical methods -- a sectovorf |
a ci;cle,‘a curvilinear rectang;e bounded by two
circular arcs and two rsdii, & hollow circular shaft
with eccentric circular bouhdaries. Ag there are many
cross sections of practical importance which cen not be
solved in this way, other methods have been developed
for the general éase of any chosen boundary.

Prandt1™ called attention to the similarity of
the torsion equations and the equations of equlibrium
of a membrane stretched with uniform tension and
subjected to pressure. This analogy was applied
experimentally by Griffith and Taylorf using a soap

film as membrene (see p.4 ). They found the torsion

X Prendtl, Phys. Zeitschr., Bd.4 (1903).
T Griffith and Teglor, Aer.Res.Com., R & M, 3335 334, 392



properties of a number of sectiona, both solid and
hollow, and from their results derived an aspproximate
formule for solid sections ( compared with my
P 7 Acfers b the
snalyticel and experimental results on p. |4). f«'ﬁrmf:““%‘“ﬁ

Weber™ developed simple formulae for structural
sections by approximate amalysis ( compared with my
results on p.lqj).

Bairstow and PippardT develored & method for
the general case, eveluating a series of definite
integrals grephically by means of & planimeter and
special scales; this method is easily applied to most
solid sections but is awkward for a serrated shaft with
perhaps 30 serrations, since it necessitates using the
complete section, and is véry tedious in tne case of
hollow sections,

The general differential equations for the torsion
of circular shafts of varying radius, were obtained by
Michelli. Solutions by the usual analysis have been
obtained for a conieal shaft, snd one having the form of
& pareboloid of revolution. The only method so far
developed for the general case of any chosen boundary, is
an approximate graphieal one due to Willers".

Tests on bars with non-circular sections are not
numerous. Bachﬂ_tested cast iron bars with reetangular, .
I,LC ,L sections,to destruection. He remarked on the
weakness of the three latter sectioms in torsion end

stated that the ultimate torque was about the Ssme as

that for a rectangular seetion of the same thickness and

* Weber, Forsch. H,249, V.d.I., 1921

T Bairstow and Pippsrd, P.I.C.E., 1921-22, II

¥ Michell, London Math.Soc.,31,1900

"Willers, Zeit.Math.Phys., Bd.55, 1907

®Bach, Elastizitat u. Festigkeit, 9th edn., pp.365-386
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Egﬁ:&fhn:qgib%to t%:vzzg of the web plus flange lengths.
He glso tested circular tubes with longitudinal slits,
end his results show that St.Venant's equations do not
apply to this case, sinece the end conditions cause
normal stresses on the cross section ( compare witn my
results for the torsion of the square tube with hole in
one side, p.26").

Gibson end Ritchie™ found the torsiomal rigidity
of structural,and solid and hollow reetangular sections.
They remarked on the small torsional rigidity of the
I,C, and L seetions, which they found to be '&)’0 %0 15
of the value obtained by assuming stress proportional to
the distance from the axis of twist; they also remarked
on the much greater torsional rigidity of box amd hollow
sections, 31&{4ﬂadl'no amaﬂgﬁcaﬁ,éawaﬂgahh4,

Campbell’ found the torsiomal rigidity of a range
of I beams and developed a:?z;:ila limited to tais form
of section. His experiments are specially interesting
since he used strain gauges to find the stress on tae
flange face; he showed that the stress inecreases
towards the centre of the flange face.

Moore' tested the weakening effect of keyways on
the strength of steei shafts. He found the effect on
the torsional rigidity and on the torque at the elastiec
1imit. Goughu tested & pure irom and an 0.6% C steel
shaft with keyway to the static elastic limit, and to

fatigue failure under reversed stresses; he found also

* Gibson snd Ritchie, The Circular Arc Bow Girder, 1914
T Cempbell, Engin.News Record, 1928

¥ Moore, Univ. of Illinois, Bull.42, 1909

"Gough, Aer.Res.Com., R & M, 864, 1925
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the vorsional rigidivy ( see p.11').

Vedeler® round the torsiomnal
rigidity or rectangular tupes, built

up from two channel shsped plates

riveted togetner, rig.1. His results fisJ:

showed twists as mueh as double thatv given Dy tae usual
theory, whereas observation or tne torsional vioratiom
trequency of ships supports the usual theory, (compared

with my experimental results on pizs')
18

ihe aritnmetical trisl end error metnod of solution is
descoriped fully in tne two accompanying papers, pp.4—'lo33'
and /" 9" . Although the time to evaluate tne torsiomal
properties of any given seetion has peen reduced to half-

e dozen hours, this is out of all proportvion to tae time

spent in tne development of the method.

Lthe

method is described fully in Aer.Res.Com., R & M 333.

The following points are mot discussed in these papers.

In order to give tne bubble a sufficient life for
measurement purposes ( 5 to 15 minutes ), fairly wev films
had to be used. When the pressure

is applied tne film rises, commences

bbl

Junction of film and plate and Ap o
/

to drain towards the boundary, at the

causes & drop to gatner. Fig.2

Fig. 2

witn this sagging exaggerated. Now tme stress as tne

shows the seetion through a bubble

boundary is given by tne slope of tme film taere; as

tais cen not be found owing to tne sag, it is measured at

* Vedeler, frans.Inst.Nav.Arcn., 1924.
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A and B. The true slope at C is now estimatvea from taese
two readings.

Again, tne mevhod of obveining tne volume under uae
bubple by running a measured quantity of waver out of a
purette into the spaece below tne pubole, was found useless.
Tthis was due to the initial sag, requiring an additional,
unknown volume of water.

As & preliminary, tne torsionsl properties of a
shaft with square cross seetion were found by thnis methnod
in order to gain experience and master tne technique.

A 27 squarézggd a 2" eirculer hole were cut in wne same
plate. For the maximum stress in tae squuare snaiiv, tne
meximum inelination of tne soap film at tne middle oI one
side was compared with tne meximum inelination of tae

circular film. The following vable gives the comparison,

Max.Incln.|Max.Incln.| gig o o
Q, o 0, « sin «, .
14° 18.7° 1.328 1.339
19° 20.0° 1.34] 1.368
24° 32.5° 1.521 1.354
50° 40.9° 1.309 1.303

From tne asccurate solution,tne ratio of tae maximum
stresses is 1,351, so, using tae ratio of vane inclinavions
of tne films, gives this figure oeorrectly to 1% for %ne
renge shown. Griffitn and taylor found tme ratio ox tme
sines to give tne pest results, oput tnis difference in
conclusion is probapbly due to tmeir using drier films,
The torsiomal properties of a 2 x2x 375" B.S.
T seetion were also found., Fig.3 shows tne position of

tne ‘holes on tne plate; tne T seetioh is enlarged 2%
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times. In tne case of a symmetrical scetiom, sucn as the
1, it is unnecessary to work with the compleve ooumdary,
for it nas been found that uvne sSnape of & symmeerical film
is uneltered if it be divided by & sepvum wnich passes
tarougn an axis of symmetry. It is therefore only
necessary to cut nalf tne seoction on tne vest plate. Phe
diemever of tae circuler nole is ooptained oy making tne
ratio area/perimeter equal to taat for vae 1. When uvais
ratio is mace equal in votn films, tne mean value oI tae
gsine of vane inclination round tae ooumaary of eacn Iilm
is also equal.

Thé‘maximum s¢ress on tne T seetiom occurs atv B,
wnere rne inclination is & maximum. A large numver of
observations were taken for tnis value for & wide range
of inclination of tae circular film, ana the vesults are
shown plotted in fig.4. Witn tae exeeption of K ana ¥,
2ll tane points were obtaimed from bubbles wnich nad snorst
life., I'nese two points were obtained on a bubblse wnica
lasved tnree hours. fhe following taple is based om the

line through the points for une saorv life buooles.

Mex,Ineln.|Msx,Incln. sin a3 s
O, « T, a, sin a, oy
1 23.5 1.540 1.5

20 31.7 1,537 1.58

25 40.5 1.551 1.061
30.5 50.0 1.510 1 .04
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Teking the ratio of tne maximum siresses as 1.57, we have
tor vhe T, Rmax = 1.5/ X 0.895 = 1.40”, since Rmax 1or cae
circle = tne radius = 0.89%"( for notation see p.ll/).
Point F, fig.4, gives Rmax = 1.587 Griffivn's approximate
formula gives Rmax = 1.63" and tnis formula is Eg ;3

2% in error for struoctural sections ( see p.qu). So tae
short life buooles give results much too low, while the
long life pbubble gives much betver results. Since very
few bubbles last more than ten minutes, we cannot aepend on
the results ot soap film work for meximum svress.

Next, to rind the torsional rigiditvy, contours were
plotted. It was necessary to vake tne,inclination of the
circﬁlar bubble at frequent 1ntervaléxg?§;e vne bubbles
vaeried witn the varying temperature. Tthe convours were
obtained on black paper and a photographic enlargemeny
was taken from tnis; fig.3 snows tnese for ome experiment.
Each contour is at a definive heignt aoove tae plave; as
tne ovuboles varied while taking tne contours, tnese neigavs
nhad To pe reduced to correspond Vo & mean value of tae
inclination of tme circular ouwvvle. The aresa enclosea vy
eacn contour was néw found oy & planimeter end plotiting
this on a oase of reduced neignt,emabled tne volume under
the buoole to be found. ° Tne ratio or tnis volume to the
volume or tne circuiar oubole corresponding vo tne mean
inclination equals,approximately, the ratio or tae
rigidities. ‘thus we have finally, C = 2.80 in“ . wais
result compares well witn C, = 2,78 in* , from an
approximate formulae developed oy tne suwvnor ( see p.IS').

In tnis research there was no furuvner work done oy
this method, since its results for stress are douptrul,
and the time and lapour are greater than for vne aritn-

metical trial end error method.
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p T tions were carried ouv vo fina

(«) tne torsional rigidity, (b) tne stresses, (¢) the
etfective maximum stress causing failure. - The tesw
results tror the torsional rigidity are summargised in tne
table on p.ﬂ¥’, and are tnere compared witn wue resulss
of analysis and approximate formula. Tne efrective
muaximum suress causing tfailure is discussed on pp. 20’ to 22’
fnere now follows a description of tae experimental
mevhods leading up tvo tnese results and some of tae
ditriculties encountered.

he tests were oarried out with e 100-ton Buckton
machine, serving normally for tension and compression bus
neving an asddivional arrangement tfor torsion. It is
partly snown in tne phovograpns and diagram, rig.5, Wnere
one may see tne straining wneel, turned by nand sarough
worm gearing, and vune extension of tne veam VO provide a
£rip tor tue specimen. Althougn vnis arrangemenv aas tae
edvantagse of accuracy in the measurement of the torque and
rigidity in the end fixings, it has the disadventage of
shortness of gausge lensth and nearness of this length ef
thi-g—lonabh tor;}ips. Hence special atteption was given
to eni fixings snd their effect on resulss. The length
of specimen was 3', but the gauge lensth was limited to
about 8" as shown in the diegram, fig.5. Fossible error
in the torque reading is negligible as the travelling
load waS'é ton and its position could be read by vernier
toés“. For a torque of 1 ton-in. the possible error is
1% and all the beams were loaded beyond this value.

Twist was measured by two mirrors, attached to the
Specimen, and two telescopes which sighted on scales
reflected in the mirroré. These are shown in the

Photographs, fig.5, and the mirrors are sketched sep®rately,
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When the mirror rotates through an angle, the ray from the
scale whieh coincides on reflection with the collimation
line of the telescope, rotates through double the angle;
This ansgle is approximately proportional to the secale
reeding difference. For great accuracy, a correction
must be made for the tangent; it was found necessary to
do this to obtain the limit of pr§portionality; The
gsimplest method of correction is to add to the scale
reading an increment to make it proportional to the angle.
These increments are tabulated in the last column of the
teble, below; Fig.6 éhows the relative positions of

mirror and scale

Scale—"
/ b7
Mirror — —+-
wvo %
— 78 2
{ 275// ]
Fie. 6.
Height y | Secale o NAO | 23d to
Reading Scale Rdg

o o 2°461.58 +0"
621.72 "
5 5.02 |4°49'.%0 + .05
621,53 "
10 10.04 |5°514.83 + .08
s 621.32 "
15 15.05 |6 54'.15 + .09
621.07 p
20 80.06 |7%56'.20 61197 + .09
25 25.08 [ 8°571.98 ’ + 06"

611.42 "

30 30,10 |9°59'.40 +0
611.03 "
35 35,12 11° 0'.45 - .09

|

Mean over the 0" to 30" range = 62.14

1" on scale, mean, = .0CYE00 radians of twislh
(0"Fe30)
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As the scale may be read to 0.02" = 0.000036 rédians, and
as all the bﬁﬁ%% twisted by more then 0.018 redisms on gn,
before resching the elastic limit, the error due to this
factor is less then 4.

The design of the grips for holdinz the ends of the
specimen end applying the torque, gave much troubdle.
First, a rigid grip was tried a&s shown in fig.7a. This
consisted of keypieces fitting into the keyways in the
beam and straining wheel, and trensmitting the torque
through 4" dismeter pins screwed into the specimen; cast
iron blocks were also used to support the flanges. With
these grips, the torque-twist curves are obtained are
shown in fig.8a. They are looped instead of straight and
the slopes are esbout 50% more than they should be; After
consideration it was fairly clear that this was due to the
rigidity of the grips imposing normal stresses on the
cross section. This point is illustrated by the diagrem,
fig.7b. The centre line of the flanges, under pure
twist, should teke the form of a helix, gb. If the
* rigidity of the grip restrains it at the ends parallel to
the axis, as shown at cd, the flanges take a transverse
bending moment which eauses normel stresses. Each flange
acts like a beam, built in at both ends, one end deflect-
ing relatively to the other. The case of a 6X3" I
section is caloulated numerically in fig.7b, where it is
shown that the apparent torsional rigidity, when the
stresses are purely normal,is fully double that for pure
twist ( we are negleeting in the first case the additional
rigidity of the web); This would explain the high slopes
of the ourves, snd also the looping, which eeuld is due to
variable restraint of the grips.

When the cast iron blocks were removed, the torque-
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twist curve had no loop, but became stee.er at the higher
loeds, fig.8b. Thus less restraint in the grips improved
the curves. Finally}:%aking away two of the three pihs
in each keypiece, as shown in fig;7c, and using grease to
eliminete frietion, the curves became straight lines (see
later). offect of
Next, theAproximity of the grip to the gauge length
wes investigated. This was done by two methods; firstly,
by means oﬂ tensometers the actual stresses were found
throughout the gauge length end secondly,by moving one
mirror 3" nearer the grip, the twist was found for the new
geuge length and dﬁpared with the twist for the old.

Both methods showed that the gauge length was quite clear
of end effects. The—deteiis—eof-these—bestseare—given
letery—p- .

Torque-twigt curves were now obtained after the preliminary

investigation, for the following sections --
5X41" I, 6x3" I, 4x3" I, 6x3"[ , 2x2" L., The proced-
ure was to estimate a safe range of torque for a section,
end load it through this range twice, taking readings of
twist. When straiszht lines were obtained, coincident for
1oadingAand unioading, the load was increased ebove this
renge by small increments until the bar had taken &
considerable permanent set. Figs;9 end 10 show the
curves for these sections;. From the straight line part
of the curves, the torsional rigidity of the sections is
found; it is given in column 3 of the table on p. .

Our next consideration is the failure of the bar.
Firstly, the limit of proportionality is a possible
criterion. To obtain this, the curves are replotted,

the abscissa now giving the divergence of the twist from
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the elastiec line. Fig.11 shows these curves for Fi and
Fg, two 5x 4%5”1 section bars. It is seen that F1 has &
definite limit of prorortionality at 6.25 tons-ins., but
FZ, test A, shows no such definite point, and,test B,
shows the dimproved elastieity due to the permanent set of
A. These two latter tests show the wealmess of taking
this as the criterion of failure, for in A it is
indefinite, and in B it is altefed. Further, Guest and
Lea™ , investigating the torsional hysteresis of round
mild steel bars, found slicht looping at very low loads,
far below the commonly aécepted elastic limit. Their
results would meke the limit of prorortionality practically
zero,

From these considerations, it was decided to sbanh
the limit of proportionality as the eriterion of failure.
Also, the yield point will not do, as only the curve for
the 2x 2" L shows anything like a yield. Thus we are
finally led to choose a torque groducing a definite
permenent set as the eriterioh, a proof torque. This
proint is more fully discussed on p.ZO'. $he proof
torques for the bars are shown in figs.9 and 10, and

/
given in column 5 of the table on p.RA .

Meagurement of the crogs gection of the bars was

undertaeken since the dimensions were a little different
from the British Stendard. The aim was tc measure the
eross section with such accuracy, thet analysis or
spproximate formula (if correct) would agree to within 14
of the test figures. Consider a 5;(4%"1 section; the
mesn flange thickness is sbout 0.45", and as the torsional
rigidity is proportional to the thickness cubed, this

measurement must be made correct to 0.C015" for 1%

'*Gnest end Lea, Proc.Roy.Soc., 493, 1916.
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accuracy. This was almost impossible considering the
rolled surface and the irregularities, yet an attempt was
mede to work up to this standard. By having three
specimens for each size of bar and measuring all these,
helped towards this aim. The surface of the bar weas
cleaned with emery paper et the ends and in the gauge
length. Even this cleaned surface was not the same as &
machined surfece, as is shown by the results for the
rectangular‘specimenﬁﬂxgiich also show the amount, 0.001",
to be deducted from each surface. The web thickness was
measured at the ends. The flange thickness was measured
in the geauge length by a point micrometer with bdese
suitable for & surface table. Supporting the bar at s
definite height above the téble with the flange feace
vertical, the micrometer measured the thickness of the
flange at & definite distance from its edge. This was
done for two positions, as shown at A\and B in fig.t2,
which is an originel obtained by upending the bar on the
table on paper and dreawing round the contour with & sharp
pencil. This gives the othér dimensions, and the ropt
and toe radii. The approximate formulae were applied to
these measured test sections, finding C1, C2, C3, and

Rmax, shown on p.qu.

Tests on Specimens. To find the rigidity modulus, N,

‘Young's modulus, E, and the stress causing failure, for the
material of the seetioms, circular and rectangular
séecimens were cut out. The rectanguler specimens were
téken from the flanges and web and the cireular from the
thiek portion at the junetion of the flange and web, as
shown in fig;20'. They were tested in a single lever

torsion machine, which is sketched in fig.13. Ag there
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was no suitable twist measuring aspparatus, one had to be
schemed out. The arrangement was similar to that on the
previous ( 100 ton Buckton) machine; A curved scale was
used, fig.13, to avoid correcting for the tangent, and it
was placed 180" distant from the specimen.

The frames for the mirrors are sh:own in full in
fig.14. Parts (1) and (2) are made of cast aluminium,
part (3), which holds the mirror, of strip brass, and
ﬁart (4) of brass rod. The rotetion which is important,
is that round the axis YY, so this is controlled by screw
A snd sprbng B snd these give alsét%ero ad justment. The
rotations round the other two ﬁxts are not important,
since a movement there would not affect the scale reading.
A friction control is therefore sufficient snd this is
aided in the case of rotation round XX by suspending the
freme from the speecimen.

The grips used for the rectangulsr and circular
specimens are sketched in fig.15. It will be noted thsat
failure will occur first in the grips of the c¢irecular
specimens, but this Willlnot affect the results since this
is a local effect. This figure also shows the position
of the mirrors on the specimén.

Torque-twist ourves for the specimens from F2, a
5x 43" I bar, are shown in fig.16. The slope of the
elastic line gives the ratio T/4 = NxC. C may be found
easily in the case of the circle, and from tabular values
in the case of the rectangule ( calculated by St. Venant)
and hence N may be fouhd from these curves. The vélues

obtained in this way are given in the following table.
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Speeimen Dimensions C N 1lbs/int
6 51! I ‘ 4 o
web rough | 2.024% 0.2817" | 0.01371 im.|(11.42)0
web smooth | 2.024x 0.2757 0.01289 11.68
flange 2.012%x 0.2883 0.01456 *11.70
circle 0.50C5 diam. 0.006160 11.79
5 43" 1 ' o
web rougsh | 2.010x% 0.2895 0.1473 (11.57)
web smooth | 2.010% 0.2819 | 0.01364 11.70
flenge 2.025%* 00,4753 0.06198 11.63
circle 0.6429 diam. 0.01677 11 .68
6 5"
web 2.02X0.257 0.01043 11.70
flange 2.01»x{0.425 0 .0400C 11.60

C.344

The results fot web specimens with unasltered
surfeces give low,valués of N. On cleaning the surfaces
- end reﬁ%ting, N is reised to consistency with the other
results. Rough sgsurfaces evidently cause measurements to
be too great. By dedueting .001" from each rough surface,
and considering this as the true thickmess, would raise K
from 11.42 to 11.68. This amount was also deducted from
the measured thicknesses of the structural sections.

From these curves, fig.16, may be found also the
meximum shear stress at failuee ( at the proof torque ).
The torque and meximum stresses are tabulated on p.22°7.

It is necessary to know Poisson's ratio for the
material in order to find shear stress from tensometer

strain resdings. This was done in two ways; firstly,
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8 rectengsular specimen was pulled in a testing machine.‘
The longitudinel and transverse strains were found with
tensometers, and the ratio of these is the regquired result.
Seeondly, Young's modulus mey be found from the same test
by finding the stress. 0 may then be calculated from
E=2N(1+06)
A flange specimen from a 6X 3" I bar gave the following -
N = 11.7x 10° 1b/in*. First method 6 = 0.30.

Second method, E = 30.5x-10€

G = 0030.
The bresking stress in tension was zlsc obtainad,
to give a basis when considering maximum shear stresses.

This figure varied from 29.4 to 32.2 toms/in".

Tests on hollow gquare tubes. The test results are
discussed on pp; 24' - 26'. The specimens were solid
drewn cirecular tubes, hammered to square form, 33" x 317
outside dimensions. There were three s;ecimens,
thicknesses .171", .173", end .23}“; They were
cerefully annesled by heating to 850° C during 1t hour,
and cooling slowly in the furnace during 18 hours. I%
was hoped by this method to eliminate as far as possible
the stresses caused by the hammering, although initiel
stresses were not expected to affect appreciably elastic
amd these were
results, which—wes the chief aim of this experiment.
These tubes were tested in the 100 ton Buckton
machine. The length of the tubes was less than thet of
.the structural specimens, being 25", yet this still
allowed a gauge length of 8" end a distance of 7" between
mirror amd grip. |
The grips agein gave trouble. First there was

tried the srrangement, which was successful in the case of

structural sections, fig.7c. Here, large loops were
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obtained, es shown, fig,.,178, and the twists were consider-

ably greater than indicated by analysis (3 or 4 times ).

Fig.18a shows the arrangement
used here with one pin in each
keyiiece. When loacded, the
cross section takes the form

at the ends 2s shown exmggerated
in fig.18b. If the tube were
very long, probably SB. Venant's
prineiple that the streains
which are produced in an elastic

solid, by the arplication to =

small portion of its surface of a system of forces.
statical}y equivalent to zero force and zero couple, are
of negli@le dimensions at distances which are large
compared with the linear dimensions of that portion, would
erply. If this were so, the centre portion would behave
in eagreement with anslysis. It is therefore concluded
that the shortness of the specimen does not permit the

which
neglect of end conditions,Acaustng stresses so far rempved

from the required distribution.

distribute the stresses at the ends more favourably.

This was done by making the grips muehvmore rigid, as

shown in fig; 17', when the graph becﬁme straight, fig.17b.
Evidently the question of grips is very important

in torsion testing of non-circular sections, especielly if

the specimens are short. This conclusion may be applied

to actual cases in praectice, and there a careful

investigation of end conditions would be required bdefore

aettempting to find stresses.

From the curves, the torsional rigidities of the

seetions are found. It should be noted thet the twists

@)

F1cl8

(b)

The aim,then, is to
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are small, about 2" difference on the scales. Since the
scale can be read to 0,02" and there are two subtractions
to obtain a twist, the maximum reading is possidbly 4% in
error. Drawing a line through a number of values will
reduce this somewhat, to perhaps 2#

The following table gives the results.

Torsional Rigidity of 3% 31" Square Tubes, C

Tube Expt. |Approx.C*| 2nd C"
Formuls Approx.

1 (a71")| 5.6 En.| 5.28 in | 5.40 in
2 (.173) 5.36 5.C8 5.20
3 (.233) 7.20 6.83 7.10

In this table the approximate formule, which assumes
stress constant acfoss the thickness is
C' = 4A%*% /P

where A is the mean of the areas enclosed by the inner and
outer boundaries, P is the mean length of the inner anmd
outer boundaries and t is the thickness;
From the results of analysis on the hollow s&gre ( see
P.25' ), the second approximation is derived

C" = 2B ( &* - 1.92at + 1.92t )
where B = 8t / ( 2a - 2.48t ) -t , and &_ is the
outside dimension of the square.

There is really good sgreement between theory end
experiment, compared with the large disérepaneies due to
end conditions;

The stresses were found by tensometers, using 1"

gauge length. To find the complete system of stress on
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e surface by this method, the strains along three

directions are required, e1, e2, e3. ez
When pure shear is ecting on planes o
45
et right angles to the surfzce e
45° >
along the directions e1 and e2, e
|

then e! =-e2, 2and e3 = 0. These three strains were
measure@ at the centre of the flange faces and et a point
2" from the edge. The following table gives typical
results for tube 2. These figures were obtained by the
following procedure -- start at 1 ton-in., tave readings,
run load to 6 ton-in.,, then to 11, then back to € ton-in.,
4at each load position taking resdings of the temsometers.
ff they were not consistent, the clemping of the tensometer

was suspected.

Strain x 10% for Torque = 10 ton-in.

Dirn. ‘Top Under |Front |Beack Front | Baek
Centre|Centre|Centre| Centre|Edge | Edge
el 3,58 3.67 3,00 3.69 2.50 3.36
—32 3004 3.20 4.17 3.45 5.21 3:52
33 "017 O "008 O
Mean velue of e = 3.43x10 T

Ee/ (1 +0)
3.43x107 1.34x 10% /7 1.29

Shear stress, q =

= 3.56 ton/in*
From the spproximate formula, q = T / 2At, assuming

the stress constant over the ceross section. This equals

here q = 3.08 ton/in% Allowing for the

inerease of stress: from ' tnside to outside, this figure

would be raised to q = 3.25 ton/in® The other two tubes

gave similar results.



CONFIDENTIAL, ‘ T.3C03,
(strut,9).

T,3003.
(Strut.9),

AERONAUTICAL RISEARCH COMMITTEE,

Severasl cases of non-circular torsion
solved by analysis and direct test,

- By -

James Orr, B,.Sc,

Presented by Professor J. D, Cormack,

September, 1930,

1, Intrcduction,

1.1, Purpose.~- The purpose of the paper 1is to
demonstrate an arithmetical trial and error process, solving
the torsion problem for any chosen boundaries, By its use
several British Standard structural sections, a shaft with
keywaj, a hollow square, a hollow serrated shaft, a circular
shaft enlarging to greater diameter, and a shaft with a
collar have been sclved.' These results are checked by
tests in the case of the structural sectlons and hollow
square by measuring both the twist and stresses. Aiso,
the failure of a prism subjected to'loéal high stresses is

discussed.

1.2. Equations.- When a prism is éubjected to

terminal couples about’its axis (0z), the stresses and
»

straing are found by solving the equation

, -2

> y/

X
Love's Mathematical Theory of Elasticity, 4th. ed. Ch,1l4,



-3 ..'_....é + a = 0 seiees. (1)

throughout the cross-gection (x0y), keeping 1%? constant

on esech boundary. The shear stress components are given by

our
%, - e . OE Y - wr. 28
o s z O x
where N is the modulus of rigidity of the material and
T 1is the twist per unit length of the prism. The maximum

stress occurs on a boundary, and is given by

2 = \2
Wf.ag;- NT a¢ '*bi

On O x Oy

Anax,

where @n 1s the element of the normal to the boundary.

The torque T 1is equal to T = 2N’Z’.§§Ip.dx.dy in the

case of golid sections.

The equation for a circular shaft of varying
diameter subjected to terminal couples about its axis (0z),

w»
is

where qU is constant on the boundary, using cylindrical

co-ordinates 1Oz, The stress components are

N N oy .
é\Z = - —b.-.% R Fe = - _é, R ___q:_
re Or r Oz
1,3/

*»
Leve's Mathematical Theory of Elasticity, 4th. ed, Ch.l4.
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1.3 Qther methods.- These equations have been

gsolved by the usual analytical methods only for certain
boundaries. Thus (1) has been solved for the ellinse,
the ellliptical tube, the rectangle, a sector of a circle,
a clrculer tube whose inner and outer boundaries are not
concentric, (2) for a conical shaft and a paraboloid of

re#olution.

Several methods have been discovered of solving
the problems for any chcosen boundary.

» A
Balrstow and Pippard have developed a method

for solving (1), evaluating a series of definite integrals
graphically by means of a planimeter and special scales,
this method 1s easily applied to most solid sections but

is awkward for a serrated shaft with perhaps 30 serrations,
since 1t necegsitates using the complete section, and is
very tedious in the case of hollow sections,

<+
Taylor and Griffith used an approximate analogy

to solve (1), experimentally by means of soap films; once
the apparatus is gathered and the technique mastered this
method gives quick results, but the accuracv 1s doubtful
in some cases, and this is illustrated by an experiment on
a T section. In this experiment, the maximum stress at

the/

%

Bairstow and Pippard, P.I.C.E. 1921-22, II.

+ o

Taylor and Griffith, Aero. Res. Comm., R.& M,s. 333 and 392,



the junction as measured by the ratio of tihe inclination
of the film to that of the circular standard increased
gradgally by 12%, on a bubble that lasted three hours,

and the final value was still less than correct.

*
Willers developed a graphical trial and error

method for solving (2).
There is given below an account of an arithmetical
+
trial and error method, developed by Thom for solving air
flow problems, which was applied to a great varlety of cases
and found verv counvenilent; for example, the EP"values were

found on an I section in 3 hours, This method has the

advantage that it can be used to solve both (1) and (2).

2. Method of solution.

2.1. Descrintion.- The boundaries are drawn

to a suitable scale on squared paper, so that estimated g?

values may be written at the corners

of the squares. The process of B A¢
estimating is given in the separate M ;
gections (3.1, 4.1, 5.1). For . :
finding the value of \P’ at the 5 %
centres of the squares, the follow- SR
ing formula may be developed by Taylor's Theorem: -

1l 1 Qﬁ 254
Y = ; @t Pst¥etyn)- ¢ 5" v - ;5;; s* (P 4 ""2“5;5)

sec e e s (3)-

Neglecting/

* . B -
#Willers, Zeit. f. I'ath, u. Phys., Bd.55, 1907,
+
Thom, Aero. Res. Comm,, R.& }.1194.
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Neglecting the terms with 4th order and higher derivatives
and substituting for §7QEP from (1) or (2), the centre
values are found throughout the section. Next, the same
formula is applied to the centre values to find again

the corner values, which are on the average a better
approximation (2.2) than the original; so the process is
repeated until the values cease changing, being now correct

to the approximation of (3).

The method is 1llustrated in Fig. 2, which gives
the solution for a 16 x 6" I section, while the typical
convergence of the estimated YP' values is shown at (a).
Pull numbers need not be ussd for every application of (3),
but merely the differences, as shown at (e), thus lessening
the work, Calculations with the full numbers are most
suitably performed with a comptdmeter, which lessens the
fatigue and chance of error. The last entered numbers

at the foot of each column are obtained by a method

given in (2.3) to shorten the process.

Two points may be noticed here, Firstly, the
size of the square must be such that the neglected terms
in (3) are really neglizible. This is easily tested at
any part of the section, when the values are settled, by
enlarging that part, usinz smaller squares and finding if
the values alter. Experience soon shows what smallness
is needed, and this depends on the degree of accuracy
required; for instance the results for the I section,

Fig. 2/
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Fig. 2, with the stze of the square shown, are less than
19 in error., Purther, the parts which generally require
testing are round portions of the boundaries which change
direction quickly, such as internal corners, Thus the
shaft with keyway (3.2) required two enlargements at the
internal corner of the keyway to obtaln the stresses

accurately in this region.

Secondly, where a boundary does not pass through
the corner of a square, the adjacent "LI/' value must be
found by interpolation; for 1% accuracy this may be done
graphically but greater accuracy requires numerical
interpolation, a short formula being developed for each

point of the forn
\‘P’ = aLI"l * bqjg Fz §{-Q'l E‘Ir,é)
/
I

2.2, Convergence.,- Let the size of the

square be such that neglected terms in (3) do not affect
the last significant figure, Let & denote the error in
1{/ ; the estimated values are then III + €., 1Inan

ordinary round, finding the centre values from

1 1 1
Yt & = R A ZE-éSS.VZWIU .. from (3)
1 1 2
2
since \PM" ;ng -és_\/lIf
1
we have EM = ;Ze R |

where Z denotes the sum of the corner values,

Fig, 3a/



Fig. 3a shows the T
8 (a) »\-vf" ™
variation of ‘v{r and along a / S~ \
NN
Yy = constant line and it is g l& \\’\‘

agssumed for convenlence of re-

presentation that ’\i’f does not

A
-]
vary with vy. Fig. 3b, which Eﬁ,\: ,.55_1?_
T~
gives £ alone, shows that the (b) / TR NN |£A
7 A
employment of (4) tends to \

L
L—._\ s__"f‘___ S slem8
smooth out abrupt changes in

€ and to decrease it
gradually. This point 1s also illustrated by finding a
relation between & arnd & , Wwhero 8 1s the difference
obtained in the estimated ‘\If value by applying (3) twice,
first for the centre value and again for the czxange in
the corner value (a double round), 1r € 1s the error
at a corner, by writing its value at the surrounding
corners in terms of its first and second derivatives and
applying a double round, Fig. 4, the difference would be

found in the form

1
62 ;Seovza EREEEX (5)

Fig. 4/
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T R e

Thus when the &£ -surface is concave up, Vze and &
are +ve, that is, hollows fill up and also peaks flatten,
This formula shows that the first tendency is to smooth
out abrupt changes in &, for in these regions V2€
has a high value, and the second tendency is to diminisgh

€ gradually over the section,

Further, the convergence is well tested by the
variaty of cases tried, even the sharp internal corner of a
hollow square, at which the stress 1is infinite, did not
interfere with a definite solution.

2.3 Shortening the Process.- If an approxlmate

average value of the ratioc &/8 could be estimated for
a section, the slow creep of Ip’ towards its correct value
. tould be quickened since € 1is the required difference,

Consider/
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Consider a rectangular portion of the section

including 2m X 2n squares of side s; ““!Tz‘
assume that ‘LI/' is known on the sides so (18
that & there 1s 0. Let & take the | s %
simple form ~ ,

2 2 |
[ = v
& = £ 1 = =p- 1 o epmm
"-’ok - -

where £ 1is the value of & at 0, From (5),

o)
) 2
1 1 1 1 x +
2 ¥
6 = - 82 AV, E = - - 60 -= t "é = ~575~5"
4 2 m n m’n s
. & 2
L] . ""'9 = indiadh aliad ol d Sl at O.
1 1
° 5 * -5
m n

Owing to irregular variations in & . d s greater and
50/6 1s less than the values given by this expression,
It 1s found that using

1.5
-?l.- - - -l ~~~~~ *erev 00 (6)
o) 2o X

m2  ne

all over the section gives good results in practice, The
best procedure is to take two double rounds, applying (8)

to the differences of the gecond,

In/



- 10 -

In actual cases which are < Zms 7
\ B A
not rectangular, equivalent values of | A i ! {
{ B, ,dn?h
m and n are used; for example in """~ _¢ D ~ |t
! -b‘:fw-—?f':—ﬁ"i"\l‘
an I section the equivalent rect- | ¢
angle 1s as shown, the error Lo

being assumed zero at AB and CD,

since \Jr may be fairly accurately estimated there by the
formula for long thin sections (3.1).

Example. 16 x 6" I, Fig. 2; m = 3, n = 2.5, &/8 = -6
The centre point in (a), I_LTJ + 61 = 19, 1lst double
round 81 = 0,2, 2nd, 62 = 0.4, therefore 2nd
approx. \'{/4- &2 = 19 + 0,6 + 6 X 0.4 = 22, (correctly
23.1),

The formula (86) 1s very useful and makes this

method, otherwise laboricus for this type of work, practicable.

3. Solid Sectiong.

3.1. Application of the above method.- 1In the

case of prisms with solid sections, the first point to
consider is the estimation of the maximum Yf values, for
once these are found intermediate values may be guessed by

drawing smooth curves, On a long rectangle, except at the

ends, we may assume awi’}/b y = 0 so that (1) becomes
2 ‘ ' AY

QY

-z~ = -2 N 1

25x - Bt

X
2 2 R

Integrating Y = & - x

and gjmax = 32 where x = 0,

This /



Thig holds for any parallel sided part, such as the web
of an I sgection and also for a gradually tapering

part like the flange.

The maximum 'g} value on a circle of radius

a, 1is found by transformine (1) to polar coordinates

giving
hy 1 du 2 2%y . - o
D re r Opr 2 doe
o\r ’ o
Here ,_E£ = 0 so that j@- r . <:E£ +2r = O
[eX: r K Or

For I or L sectiong the formula

1
& m. 2 ) 2 5
may be used,
R ~ D‘:\ 'f ~ . D~
2b5 ."’i‘r:.,‘ /’%:’. t:@(g i .)‘\g-nf‘ 2-bl
—~ B “a 5/,,.‘4'«-—-- K a ! X
‘\\ ,r . /‘.-—-‘..,m.
Ny / Son |
9b2/ =
265! 2bg |

The torsional properties of a prism are expressed

by torque T = NT .C, stress q = NT R where C

is/
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is a gquantity of the fourth, and R, the stress factor,
of the first degree in the linear dimensions of the cross
section. The relation between T and g 1is

C

T = q.~. Now C = 2S‘g\}/°d_x.dy, which is
R

easily evaluated gince \if is known throughout the section,

To find the stresses at any point on the

section involves finding

/aq L[ 2wY

ux oy

Thls 1s done most easily and accurately by difference
formulae. The value of O ?/ax at the corner of a

square is given by

[ 2 1.3 bog
¢ omemo - A --& - - - es e
s ; J Al AR AR

or more generally, for a point B on the boundary not at

the cormer of a square

6 .<->C&>‘<~S-+§
oY 2x + 1 o 3x+x+33m, Lo
S 3 “é—; = AW"’ ""-é-"‘ ? + --—---—6-—— .-A- J... o rl %
where Alp, Az‘l{f are the first, second ----a-

differences of a table of values, whose leading term is 'Li'.rl,

- second , 4r_, etc.
12

A/
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A check may be applied to solutions for the solid

sectlons obtained by ncticing that the distortion ¢, of
*
the material vnarallel to the aris must be single wvalued.

Hence round any closed curve in the section

| m=== , d38 = O
J Os
]
D¢

and alse == . ds = 0
d@n

where (J 1is the function conjugate to @ and n 1s the
normal to the curve. Again 'qp = gb - 1/2(x2 + yz)

/ e ¢
R U TR N YA P ?—f- . ds
On A n On

A
I !
=0 - br.cos (6,s8) . ds \\)S
£y//6g g

= -g‘rz.d6=-2.& e e (7)

where A 1s the area enclosed by the curve. Taking the
boundary as the curve, @ gr/a n = R, the stress
factor, and the relation (7) expressos the fact that the
area under the stress factor curve, plotted on the boundary,
equals twice the area of the section. This check has been

applied to most of the solutlons,

3.2 Results.- The torsional properties of
several British Standard structural sections were solved

and/

»
Taylor and Griffith, Aero. Res. Comm,, R.& M,392.
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and the results checked by direct test, as shown in Table I,
-There 1s also given the properties as obtained by three
epproximate formulae, one developed by the author (C;),

S X
one due to Griffith, and the third to Weber,

Table I.

D ——————

c
Values of C and R y Shown -{
max. Rm
ax,

Approximate Formulae
Section Analysis Direct fkecemcccmcmccrcccccceciccn e
Test C Griffith C Weber c
1 2 3
B,S.16 x 6"I 2.28 2,29
1,16 1.18
---------------------------------- M mmammmmw i emesemcvanowess o ne
B.S.5 x 43" 0.574 0.872 0.683 0.496
0.84 0,87
Ll Rl il R iadad o KA - o ov oo s = --ﬂnn—-—!p-—hﬂ---r --------- - afon o - - ---
5 % 4§'I 0,390 0,336 0,457 0.342
o.™
CHER B ol om e A N BT B M e G G GBS e AN e TS T Gb wh AR e a8 S aB e Y W e o o r ————— P o Gn W ap e B W - ey B Sn am BN e W > oo > o oo
B.S.6 x 3"I c.1l67 0.197 0.143
0,63
------------------------ LR E XY r-—-——-—l-----—----—--a]—------....
6 x 3"1 0.153 0.150 0.180 0,128
0,62
P WD TS e S G P s My B0 fe G e e s BE S . ., W nfas @ " - L EL AR L T X R R R X ] - ov
B.S.4 x 3"1 0,135 0.168 0.113
0,61
W - P D P At e S an s o 0 B G e S O N W W L IR PR Y L R WO o wmmnw Smww e emwwwe wn
4 x 31 0.111 0.112 0.132 0,098
0.57
B.S.6 x 3'C | 0.163 0.179 0.143
0.586
PRED G0 an w0 S NS WD TS S0 er e O S8 J ------- o v o or ool av de v W e @ e J ---------------------- A an gn Cn wn wp 4> S e
6 x 3"[ 0.167 0.164 0,147
0.58
B.S.12 x 4" | 0.905 0.914 1,010 0.823
0.84 J 0.82
B.S.2 % 2"L | 0.0344 0.0316 | 0.0372 | 0.0317
x 34 0. 447 0,445
2 % "L 0®49 |0.0454 0.0404
x 0,321"
NN IO cecmmedecemeaelecmemeele ——
*

Griffith, Aero., Res., Comm., R.& M.334.
Xweber, Z.V.d.I. Bd.66, 1922, pp.764-769 (abstract), also
Mechanical npiﬂe=ring, V. A4 1922 (abstract).
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The sections for which a solution is obtained
by analysis have dimensions given in the B.Z,S.A. tables
whereas the actual sections tested have dimensions some-
what different from these, Yet the approximate formula
(Cl) supplies the link and shows that the test results

are in agreement with the analytical solutions.

The valuo C1 is obtained by dividing the
gection into rectangles and wedges, the basis for which is
indicated in (3,1), where it is shown that parallel-sided
and gradually tapering parts have the same ﬂE— values as
when they are separated‘from the section, Now this
holds throughout a section except at the junctions, and
there special treatment 1s necessary, Weber, using this

method of dividing Iinto rectangles and wedges, obtained

an/
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an expression for the junctions by approximate analysis which
glves low results as shown (G,).

To obtain 01 - draw in the largest circle
at a junction, radius =, Continue the boundaries of
the parallel-sided or wedge portions to a distance 0,4a
past the centre of the circle, Thon C1 = > G for the
geparate circles, rectangles and wedges, Thus for an
I section with flanges of constant thickness, Fig. 10a,

the separate parts are:=-

2 circles radius a
1 rectangle, (A - 1,2a) X by

4 rectangles, (B/2 + 0.4a) X ty

In using the above formula, the value of ¢ for

rectangles may be found from tables, or from

1 3 4
C = =~Dbt" -~ 0,21 ¢ correct to
3

1/2% £0r D/ED 2, tiieseoccorsarcncees (8)

where b = Dbreadth, t = thickness.
Fo: ed in (3.1 T/'/T/

) or a wedge, as ( )s b 1) t %;
since d°T/dy° = 0 on strip , dYH 4 ¥y
t % dy, gf = (1/2 ’o)2 - xz, with the ’VX b N

N 7

origin at the centre of thickmess.

b 1/2t b ’ b ’°14 ) t24
c = 2 d.y o R i‘r. dx = 1/5t' . dY T e g memee -

o} o o 1

The correction for the ends is obtained from (8), and gives

c =/



e o 4 4
. 0.1 (tl + t2 )

C = o=
12 ty - o

For R . Griffith's empirical formula gives

good results for these sections,

The stress factor R 1s plotted round the
boundaries of the B.S.5 x 4-1/2", I, and the
B,s.2 x 2 x 0,3"L, Figs. 12, 13. As shown in (3.1) the
area under these curves supplies a check to the golution.
The stresses on the flange face and the web of the
5% 4-1/2", 1 and the 6 X 3"[ , were found by means of
tensometers, (see 3.3) the results agreeing well with
analysis (within 5%). Fig, 14 illustrates the experi-
mental and analytical stresses for the flange face of the

I sgection,

A shaft with keyway has also been solved by
analysis. The dimensions are those of standard practice
and the radius at the internal corner of the keyway is taken
equal to that on a shaft tesisd by Goughf 8o thet the results
of analysis could be compared with the test results, Two
enlargements were required at the internal corner and Fig,15
gives the complete solution as illustrating the method.
Also the curve of stress factor round the boundary is giwven

in Fig,16,
Kesults/

%
Gough, Aero. Res. Committee, R.& M.864.
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Regults. Rad. = 10,
Analysis C = 14,30C; Rmax. = 17.8; Rl = 12.4
Gough's tests C = 14,300 and 13,900
Griffith's formula C = 14,600; R, = 11,7

where Rl is the stress at the centre of keyway.
3.3 Testg.- Torsion tests on the structural

sections were carried out using a 100 T capacity Buckton
testing machine, Twist was measured by two mirrors, whose
frames were pinned at the centre of the flange faces, and
two telescopes, sighting on scales reflected in the mirrors.
The distance hetween specimen and scale was 274", and the
scales could be read to 1/50", allowing a high degree of
accuracy. Fig. 17 shows the grips for the I and [
gsections, At first the key pieces were fastened to the
flanges by three pins, but the torque-twist curves produced
had large loops, due to the end constraining actions
preventing the centre lines of the flanges from taking up
their positions on a helix, and thereby applyling a transverse
bending moment, This trouble was completely surmounted
by having only one pin, conmnecting grip to flange, and
free to turn in the grip, and by having the surfaces well

greased to eliminate friction,
Typical torgue-twist curves are shown in Fig.18

In order tb measure the stresses on the specimens
Hugpenberger Tensometers of gauge length 1" and (1/2") were
used. Since the scale can be read to 0,02" and the magni-
fication is 1200, the stregssgses are measured to 0.2 tons per
in.z. To determine the shear stress at any point, strain

readings/
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readings are taken on two directions

’

at 45° to this stress, AB and CD D B’"‘ir,‘
in Pig.19. If e 1is the strain, TR ?;:;%5;{
shear stress q = .22 , where § = Pi
‘ 1 +G g. 19.

"Poisson's ratio.

A sgecond use found for the instruments was the study
of end effects, the stresses being found close to the grips.
There was no appreciable difference at a distance of half the
flange breadth from the edge of the grip and this was checked
by moving one mirror to this position, and finding the twist

on the new gauge length.

At an internal sharp corner the stress by calcula=~
tion becomes infinite. Actually, as is well known, local
yielding relieves this high stress. Yet 1t was thought worth
while removing the flllet at the junction of flange and web in
the case of two I sections and testing this altered section.
The result was that no difference could be detected in the

.torque causing failure, as shown in table 2.

There were three test specimens for the same size
of section, one being used for the test to failure, the second
for the test with the fillet removed, and the third cut up

into specimens. These specimens

circular specimens
were circular and rectangular and o
g i

were taken from the positions shown ;
S web 5%3

in Fig.20. Using a single lever . Y specinensi)
HE i
torsion testing machine, and AN A
8 ’ CHmN s
telescope and mirror apparaius, the C flange )
rigidity modulus N, and the torque speclmens.
Fig. 20,

at failure were found for the

specimens.
The /
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The value of ¥ veried from 11.62 - 11,79 x 106
1b./in2 8o the average value N = 11.7 X 10G was used.

In calculating the stresses from the tensometer
tests 1t 1is necessary to know Young's modulus; E, and
Poisson's ratio,§; these were found by subjecting the rec-
tangular specimens to tension in order to measure the longi-

tudinal and transverse strains., The results are
E = 30.5 10 1b./in.e 6 = 0.30
Again, calculating & from E = 2N(1 + €), gives § = 0.30

3.4 Fallure.- Most parts of construction, subjected
to torsion are considered to have failed when they take a con=-
siderable permanent set. For duciile matcrials like mild
steel this 1s the criterion in the case of steady stressese.
Fig.21 shows a typical torque-

T u '
twist curve for a circular orque /

specimen of mild steel. After A B};,,.—_u*___~
the elastic 1imit is passed the
curve varies for different speci-

mens, sometimes showing a definilte

yield, as at (a), or no dofinite 0 Twist

vield, as at (b). This depends Fig. 21,

on the rate and manner of loading, and on the heat and mechanical
treatment the material has received. Because of this indefinite.
" ness, it would seem better to use a limit of proportionality or

a torque giving a definite permarent twist, as the basis of
faiiure, in preference to a yield point. Now the limit of
proportionality is too severe a basis and very Indofinite, since
with accurate twist measuring arrangemants it can be taken at

nearly/
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*
nearly zero torque. On these considerations it was decided

to use a proof torque as the basis of failure, defining it as
the torque producing a deviation from the elastic line of 10%
of the elastic twist at that tcrque. In Fig.21 the proof
torque 1s OA, producing BC = fa AB. This basis was con-
sidered as also suitable for complicated sections as the curves

are of the same form, Fig.l8.

In the tests on the structural scctions, 1t was

found that the calculated maximum stresses at proof torque,
werc considerably higher than the corresponding meximum stresses
of the specimcns, the calculations assuming perfect elasticitye.
This is shown in column 8 cr table 2. Thus local high
stresses do not have as much effect as would be anticipated
from analysis. So the effective maximum stress is less then
the calculated, and a formula consistent with the results of

these tests 1is

1
Rops. = Fmean * - (Fmax. - Rpgan) sececvees (9)

where Rmean is the mean stress factor on the boundary and
equals Rmean = %ﬁﬁ A = area of scction, P = longth of
boundary. Column 7, table 2 gives the results of this

formula.

Teble 2;/

a4

* ~
Guest and. Lea’ P.RDS. 95, 1'910"'17.



- 22 =

Table 2.
Stress facior Stress
fpecimen C  pemmeee- Memreemad PP00f peeece el
Fnax. Rore, To:.;que Unax. | deff, =
..-----——---——-’- ----------------- o - .o on -{-- ------ o on v wv 0o o5 on - -T-.{E-:-?Eff i
in.4 in, in. | tong/in tons/in:5 tons/ in®
ix 3 I 0.155 0.860 ) 0.37 5.2 20,1 12.4
fx 3 I, filllets
removed 0.147 high 5.1
lirc1e 0.500"
‘liameter. 0.00618 0.25 0.25 0.283 11,5 11,5
flange rect,
1,01 X 0,288 0.0146 0.29 0.26 0.70 13.9 12,5
~{lgh rect .
02 x 0,276 0.0129 0.28 0,25 0.70 15.2 13,6
-------------- D at s 0r G o 0 o o WD w20 fo - hadiadindl ol el i R TR IR R TR Y R Y _ R R R R N R
ix 4-1/2 1 0.390 0.74 0.46) 8.4 15.9 9.9
X 4=1/2 1
i1lets removed | 0,376 high 8.7
lircle O, 643"
ilsmeter 0.0168 0,32 0,32 0.52 9.9 9.9
flange. rect,
02 X 0,475 0.0620 0.475 0.40 1.46 11.2 9.4
b rect,
01 x 0,282 0.0136 0.28 0.26 0.70 14 .4 13.4
PR B wwared e o e e B W PR P Er w M W SR G P e G em A ED SR AS e W ERE_X N KX X X X L X R RN PR R ) e - -
x3 [ 0..6%7 0,56 .56 4.8 16.1 10.4
ange rect, 0.0200 0.425 0.35 1.16 12,3 10.2
b rect. 0,0104 0.26 0.24 0.58 14,5 13,4
3T 0.111 0.57 0.25 3.6 18,5 11,0
tx2 x 0,320 0,0449 0.50 0.33| 1.5 16,7 11,0

It will be noticed that the web specimens show
higher stresses than the others, but this does not interfere
with the consistency of the results since, as is shown in
Fig., 13, the material which falls in a structural section
is the flange at the junction of the web, the region from
which the circular and flange rectangular specimens are
taken,

4./




4., Hollow Sections.

4,1, Application of the Analytical Method.- We

cannot proceed directly with the solution since there are
two boundaries and the constant for one of them is unknown.
If its value is estimated, and a solution obtained, equation
(7) should be satisfied, on both boundaries, The amount
and sign of the error in (7) gives approximately the
necessary correction to the unknown constant. So the
procedure is to solve (1) with one boundary constant
esvimated, next to correct the constant from the solution,
and then to solve (1) again with the new wvalue, Usually
two golutions are sufficlent and it should be noticed that
the second 1s quite short since the g? values by a regular
alteration of those of the first solution, are nearly

correct,

Thus for the hollow square, 30 %X 30" outside, and
3" thick (see 4.2), taking the outer boundary constant

B, = 0, the inner by estimatlion B1 = 48, the solution

2
glves

‘thz .ds = 2040 2A, = 1800

Length of outer boundary = 120, so R should be diminished
on the average by 2, Now, since R 1s the slope of U
and the thickness is 3, the ccrrected value of B 1is

48-2 x 3 = 42, Similarly from the second solution a

third approximation to B1 is 42.4, and hence it 1is not
necessary to proceed with the third solution for accuracy

within 19.
The /
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The formula for ¢ 1is

2 / 2 ,
c=;£{{( ~§Z) + (0¥ { dxdy jfEPl o . ds :{]ﬁ§LK7Qdex.dy
ox Ay An ”

where the single integral is taken round the boundaries, and

the double integral over the section,

e« C = 2AB, - 2B, + %J[yﬁip‘.dx.dy

vhere A,, Ay, are areas enclosed by inner and outer
boundaries and By, B2 are the inmer anmd outer boundary

constants,

4,2 Thin T:ibes.~- An approximate solution is
*
easily obtained , giving

4A° ¢
T = 2Aqt = hadadindh of * NT- eesocoes (10).

where A 1s the area, and 1 the length of the mean line
midway betweer. the boundaries, and t 1is the thickness,

The only experimental work done on tubes, gther
than circular, that could be traced, was by Vedeler and the
results he obtained showed that the angle of twist up to
twice that given by (10). He explained this by the

discontinuity/

o mw—s -

—
‘Cage, Strength of Materials.
X

Vedeler, Trans. Inst. .av. Arch., 1924,



dlscontinuity at the corners. So 1t was decided to find
the properties of a hollow square both by analysis and by
test,

The analysis was taken on a hollow square, 30 X 30
outsgide, 3 thick, when the outer boundary constant B2 = 0,
the inner B1 = 42.4. The stresses on the boundaries are

given in Fig., 22,

The checks J R, . ds = 1801, le.ds = 1151
2A2 = 1800, 2A1 = 1152

By analysis _ C = 63,000

By the approx. formula, ¢ = 59,000

Thus even for this moderately thick tube the error

in the approximate theory 1is small,

In the tests it was thought well to avold riveted
or welded joints, and therefore solid drawm circular tubes,
hammered to square form were used, The dimensions were
3-1/4 x 3-1/4" outside and two thicknesses 0.172" and
0,233", They were annealed to remove initial stress as
far as possidble, The tests were taken in a similer manner
to those on the structural sectious, although a much more
rigid type of grip was found necessary, as shown in Fig, 17,
The twist was measured and the stresses checked by tenso-
meters, There was falr agreement between these results and

the approximate formula (10), 5 being the maximum difference

in the twist and 107 in the stress.

Therefore/
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Therefore (10) gives sufficiently accurate results
for tubes of the above order of thickness, Vedeler's
high twist valuss could be explained by slipping at the

riveted connection in his test specimen.

An interesting point investigated was the effect
of a discontinuity in the form of a rectangular hole, cut
in one side of the tube, Fig. 17 shows the position and
size of the holes, The procedure was to take a test with the
shortest length of hole, then to increase the length and
re-test. Thils was done on tubes of two thicknesses and
the results gave the percentage increase in twist as in-
dependent of the thickness. Also the increase in twist
was proportional to the length of the hole, for lengths
less than 3", and could be expressed in the form =--

length 1 including the 1-1/4" hole

of length 1' (1'¢ 3"), has the same K1 '

—
-

1_‘1;_"

e

angle of twist per unit torque

(N
&

A
ey

-] @w wn v poom
-le ow o ow pu—

-

as length (1 + 0,71') of the

uncut tube,

The stresses were measured at the corners of
the holes with the tensometers using 1/2" gauge length,
The maximum tensile stress lay between 3,5 and 4 times the
tensile stress in the uncut tube and was also independent
of the thickness, This agrees with the concentration

factor for a circular hole in a flat plate subjected to

shearing stresses.

4,3/



4,3 Hollow Serrated Shaft.- The evaluation of

the torsional properties of the hollow serrated shaft,
shown in Flg. 24, introduces a departure from the usual
method. As there is symmetry it is only necessary to
golve the part of the section of sector shape, including
g half serration, ABCD, By conformal representation,
this sector can be transformed into a
rectangular shape as shown, A'B'C'D', AN

!
Fig, 23, which 1is more suitable when D

applying the analytical method, Al

The formula of trans-

formation is

§* oty
.§ = mlogr

'?::me

vhere m has any convenient value and 1s chosen to make

mlog (x + 1y) = m log r + mi@

} 0 s0ercsccrsose (ll)

A'D'an exact number of units, The new boundary A'B'C'D'
Is found using (11), and noticing that at B' there is a
¢ircular arc of radius m log 4.49/4.39, for in this type

of representation infinltesimal elements are similar,

It mav be ghown that

2°W o _ AN

uuuuu "o ra - - on -~ o e - +

). - -1y
0 x2 0y re \ 0 fz DT!
Yow the torsional properties are found by solving either

.az\y/
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2 2 2 2
2L 2. .o W 2DV -
0x Y 0 x Ay
1l
where Vv =y. - (x® + y©)

Thus it is simpler to use t// in this case since

!

2 2 r2 2
_-.A... -@.5” = .. (D} +--~5”
Q \f m Ox

and (3) becomes (,.'/M

1
- Wyt t Yo * )

Fixing the value of ‘71/ at one point on the outer
boundary (¥ = 0 at B' in Fig,24), its value at the
other points on this boundary is found from
({/- 1/2 r® = constant. | As the inner boundary constant
is at present unknowm, it is estimated at the (,(/ value
on the outer boundary which lies on g mean circle, that is,
it lies about the middle of the range of wvalues on the outer

boundary.

The relatlon which must be satisfied by ' on any

fb(’(-/- ds = O (see 3.1).
On

curve is

On a circle
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. :-'__Sl; o d'?’z = 0 must hold on a = constant line ,..(12)
o3

Again for a circle, solid or hollow,

. 1 5
}P' = const, - -1 (see 3,.1)
2
2
and ¢ =T+ 1/2 r° = const, over the section; thus W

has a constant value on the section of the serrated shaft
from 5 = 0 to § = 8 (found by trial); the effect of
irregularity in the outer boundary does not extend into
this region. The settling of the field from § = 8 to
§ =‘ 15,63 sgolves the problem,

The value of (' at §’ = B was quickly found,
two estimations being sufficier;t, as shown, to satisfy (12)
on this line.

The analytical method is particularly sultable for
a problem of this type, since it makes full use of symmetry

and regularity.

Finelly, the stress factor R =3y /dn. Here,
as in most cases, the maximur stress occurs at a point on the

boundary where the normal is a radial line.

At B! R = QE“ = ..LE -

Jr S
1 2

%/f(rgqp -21. r¥ df.d?

The/

e}

Lo 2 B~ {

il

And C

+

2A,B, - 24,8,
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The results are
C = 595; R = 13,3

When these are compared with a hollow circular shaft, 10"

outside and 5.8" inside diameter, as standard, they give

Stiffness ratio, C/CS = 0,68
Stress ratio, R/RS = 2,66
C/R
Strength ratio --7—- = 0.256 = ratio of torques,
C_ /R
8 's

producing the same maximum stress,
The strength ratio to that of a hollow shaft whose outer
diameter equals the diameter at the bottom of the serrations

is 0,414,

5. Bar of varving circular scection,

Here equation (2) is to be solved on an axial section,
rOz; the method is similar to that for solid bars (see 3,1),

For estimating Y/ values, consider

c
sectlons where the diameter 1s #r
m,) Qg
constant or varying slightly, A a1
gome distance from positions El-- - B
where it is changing rapidly
such as O0A, BC, Fig.25
Fig, 25,
2
Here fl_&g = 0 and (2) becomss
Oz
2
3
---ﬁg - -, Elffi = 0 giving ¢/ = ket
Or r O r



([J is then calculated for corners of squares on OA and BC,
noting that since ¥ is constant on the boundary,

Wa = 51/0. Also Y = 0 on OB; therefore / 1s lmown
completely on the boundaries of aresa OABC. Inter-

mediate <values are guessed to give regular increases.

When equation (3) is applied, we have

1 3 52
Yu = ;“/’A*%* Yo +¥p) - %}/5. ’y

Hence asl//br is 1o be found from the estimated values, and
in the cases tried 1t was sufficient to take first differ-

"ences, Thus for the point, E midway between

C and B,
B A
| %
2. . ¥s- ¥ R
a!‘ ) G D\V

Also since this correction was small 1t dild not change as

the Y values altered slightly on settling.

The stresses are, Fig 25,

=

/ N
q T - . &/ = .b:y

/
- cae - q ped - - . -
1 r Ar T e ré Oz

w2}

Hence the stress on the boundary, is amiven by

7 e 2
Y oaw Nyl . oy

4 = 2" 6.;1 peV \ar 0z

where n 1s the normal to the boundary. It is s maximum

on the boundary.
For/



For the twist, let ¥7 b ths ancular position of

any point with reference to its vnstralned position

\] ;
‘ [ Yozy e L v

~

_2. -
A r Or Z r Or

So the twist between t®wo cross sections whose radiil remailn

straight, such as OA, BEC, Fig. 25, is found by intesgrating

OB
/\
J ' oy
-- Se--- , dz along a line r = constant
0 r3 Jr

Two cases were conasidered,

'1. Shaft enlarging to greater diameter,

Max. stregss at P = 1,52 X stress l"RA»} X
(’ T T ey 6"5.1&
on the smaller circle. 1g"d1& i
—— %r +
The twist may be found by taking an ( ! 9;~1~.<.%t~§, (}
R
v Y ]

equivalent extra length 0,58" of the
12" diameter shaft, to allow for the
Junetion. That 1g, for length OB = 1, with the junction
at its mid-point, the twist is the same as 1/2 + 0,58" of
12", and 1/2 of 18",

2, Shaft with collar. Yax.

b 4% %
stresgs at P = %0 X stress

on the shaft, T“’

The twist is found, as for case 1, by taking an equivalent

iength of shaft= 1,06'to allow for the junctions. Or, length

v !

”“’1 including the collar has the same twist as 1 - }46" of sheft,

The /




The experimental work of this paper was carried
out 1n the James Watt Engineering Laboratories, Glasgow
University, I wish to acknowledge my indebtedness to
Professor Cormack for helpful suggestions and encourage-
ment, and also to Dr. Thom, whose method of analysis forms
the basis of this paper, for hls assistance in its
application to this problem,
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Introduction. When a bar of eircular seetion whose
radius is a function of 2z,

fig.1, is subjected to

terminal couples applied

in a suiteble way, the stresses

snd strains may be expressed*

in terms of a funetion Y . This function satisfies the

equation 2
i) 2 '
-2 L+ 20 - -0

throughout an axial seetion, with ¥ = constant on the
boundary. The stresses: are
fr- %% , fe--%gF
where 4« is the modulus of rigidity of the material.
The displacement, v, of eny point is directed at right
engles to an axial plene passing through the point, and is
given by s 9_(1)=_3‘4’ r?2(¥)= Wy
ol Yy oz ) ¥/ Ir
Equation (1) has been solved for certain boundearies
by the usual anslytical methods; for the general case (
(including boundaries of non-mathemeticel form ), the only
method so far developed is an approximate graphical one due
to Willerst. The present paper describes an arithmetical
trial and error method, applicable to the generel ocase,
which may be carried to any desired degree of accuracy.
An gppendix to the paper mentions other physical problems
which can be treated by similar methods.
Method of Solution. The boundaries are drawn to &

suitable scale on squared paper, so that estimated HV

Love, "Mathematical Theory of Elasticity", 4th.edn,p 325
YWillers, "zZ. Math. Phys.", vol.55 (1907)



values may be written et the -

corners of the squares. To B T A
find the corresponding velues Qﬂ;

of Yr at the centres of the **-~~§*
squares,:wWe have, using ¢ E.‘S& D

Teylor's Theorem

Yo Wt g5 45w 49 B 4 4 TR 14 0 -
end similar expressions for Vs K6 Y., VY»
at. 'l N 1 a_2. PRy AT TN
Uy o= ;(w,,wswd%) gS'Vy - 5845"(V‘*¢+49—%—£,)~
SubSubstituting from (1), Vl//- 3 L , and neglecting

the 27'
the terms with 4th order a,nd hi‘%her derivatives

YM T ZLYATYB Tt et Yp)— Y ere Y= §S ¥ ¥ )
The term Y 1is obteined from the estimated Y values; it
is & smell correction and in all ceass which have been
tried, it was sufficiently accurate to take
¥ oat u (rig.2) = § PV 4 L Vsl

Hence, an approximation to the values of ¥ at the centres
of the squares mey be found, and used, by applying (3)
egein, to find:hew eapproximation to the original corner .
values. $his approximation is in general better than the
essumed velues (see below), thet is, the process is con-
vergent; Continuing, the process is repeated until the
values cease changing, when equation (1) is satisfied to
the approximation of (3). An actual exemple of the
method is ziven 1a§er in the paper.

We have still to examine whether the neglected
terms in (2) are in fact negligible. Phis is easily
$ested at any part of the section, when the values have
settled, by enlarzging that part, using smaller squares
and finding if the values alter, for the neglected terms
diminish in importance with the size of the square. Now
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the higher derivatives are, in genersl, greatest near
portions of the boundary which change direction quickly,
so it is necessary in many cases to énlarge the section
near these parti

In estimating the preliminary ¥ values, consider
the regions where the boundary radius is ecbnstant, or
varies slightly with z,.such as OA, OB, fig;t, some
distance from positions where it is changing rapidly.

at
For these regions 1%%_= O , and (1) becomes

¥ _ 3. 2¥ _ 1o
Pt Y oy T

The value of ¥ 1is then caloulated for corners of squares

giving v = Kkr*

on OA and BC, noting that since is constant on the boundery

Ya = Y Also Y = 0 on OB; %Therefore it is known
completely on the boundary OABC. Intermediate values are
guessed to give regular increases,

Where a boundary does not pass through the corner
of a square, the adjacent Y value must be found by
interpolation. For about 1% accuracy this may be done
graphicaelly, but greater sccuracy requires numerical
interpolation;

Conversgence. This will be considered in two steps, (a)
when the term Y in (3) is small and therefore changes in
it are negligible, as in all exsmples yet solved by this
method; and (b) when changes in it are not negligible.

(a). Let $he size of the square be such that
neglected terms in (2) do not affect the last significant
figure at any part of the seoction., Let £ denote the
error in the assumed value of yV ; the estimated values

are them VY +¢& . Including € in (3) we have

Yt Em = IV +ETE—Y

Since Ym = fIy ~Y
subtracting & = +% - - - - - g
"#350 (4)

z €
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where 2. denotes the sum of the corner values. &m iS
the error in the sprroximetion to the centre value on
applying (3).

Let fig.3 give the
variation of Y and §

=

Axis of Shatt

along & line, z = const.
Assume for convenience
of representation that

| y
€ does not vary with

Ze The successive

<V Boundary

eyproximations are shown
in the lower figure,

which gives & alone,

and it is seen that

gbrupt changes in it
are smoothed out, while N . e e —

it creeps steadily to zero. Ip this disgram, abed is the

error surface which aslters, on arplying (3) twice, to efgzd.
This point is also illustrated by finding a relation
between & and J , where J is the difference obtained in
the estimated ¥ value by applying (3) twice, first to
obtain the central values and again from these , to obtain
new cornei' values (a doubléd round). If § is the error
et a corner, its value at the surrounding corners may be
expressed by Taylbr's Theorem, in terms ofl its first and
second derivatives as shown at the nine main corners in

fiz.4.
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1=1}+1 1+0+1 1444
35— w0t s SHRE
&;ﬁiil é}’_ﬁ.‘% The numbers ave
4 +4— +4 + ﬁo . ‘. F
-tho 1 t1ilsg  Coetficients o
+2+0[10 +3+0+0
-3 |
“ *;& *4“&*4‘44%‘
] = 1+
+3 4Rz vz &-‘I*-‘i

The four centre values are then found from (4);
Another application of (4) gives theZ%Zntral error, which
is then found to exceed the original by

§ = £5.V¢ - ———-6)
When the error surface is concave up, sz, end so 5 ere
positive, that is, hollcws £illup; similarly, peaks
flatten. This formula shows that the first tendency is
to smooth out ebrupt changes in & , for in these regions
V€ hes a high value, and the second tendency is to
diminish § gradusally over the section.

(b). When the changes in Y are not negligible,
(4) becomes Em= L&~ § &S 3 %6‘

It will be shown that the effect of the second term is to
hasten the convergence. Referring to fig.3, the typical
variation of the erpvor ealong & line, 7z = const., is shown;
it 18 zero for some distance near the r = 0 end, since ¥
there is small, and also irregularities in the boundary
scarcely affect this regionm.

Consider the square, two of whose corners are A
end B, fig.3; here $° 35. is hb, giving gs 3%% (hb\
Since §r-<\ except for the first square, the effect of
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this term is never violent, and it decreases as r increases;
it hestens the convergence where %% end &€ have the same
sign, which oceurs in general 2t the smaller values of r;

it retards the convergence where they have different

signs, which occurs in general at the higher values of r.
Now, this term is less important et the higher values of

r, the region where the convergence is retarded, hence,

the general effect is to hasten the convergence.

Shortening the Frogess. If an approximate averege

value of the ratio i} could be estimated for a2 part of
the section, the slow creep of the successive approximat-
ioms could be quickened. Consider & rectangular part of
fﬁe séction inecluding 2mx 2n squares of side s, fig.1,;
assume that Y is known on the sides so that the error

there is zero. Let the error take the simple form

£~ &l1= ) (1 - Zig)
where €, is the error at the centre of the rectangle, the

origin of coordinates. From (5)

N I &
- 9 - 4Gt 5
4
T- (h‘\"+ n“—)
end the average value of &/§ is less than this. It is
found that using E/J = —1-5/(’"1.,.“1 -———— - =)

over the part of the section considered gives good results
in practice. The best procedure is to take two double
rounds, and apply (6) to the differences obtained by the
second.

In actual cases, equivalent values of m and n are
estimated; for example, in the case of a shaft enlarging
to greater dismeter, fig.t, the equivalent rectangle is
usually as shown, enclosing the region of great error,

This method gives better results than might appear at
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first sight, for, with the differences ) all over the
gection, obtained by applying e double round, the operator
can tell, after e little experience, where the error is
great and where it is neerly zero. Farther, if the
multiplier (6) is incorrectly estimated, its general
effect can be observed when the next double round is

taeken, and so may be altered to suit.

Example. To illustrate the method, the examile of a
shaft with collar is given in full, figs; 5 and 6;

First, the values are estimated; on the line z = -1,
1k=50r*, so , taking any convenient number (in the example
41), as the boundary value, intermediate velues are guessed

]

to give regular increases -

The term Y 4is calculsted throughout the section
from the estimated values, and is shown by numbers enclosed
in cireles in fig.5.

Now the correcting r.rocess can proceed. By
apprlying (3i, the values are found at the centres of the
squares, a comptometer p:oving very vseful for this step;
epplying (3) agaein to the centre values a better
approximation to the cornmer values is obtained. The
differences between the sccond and first approximations
are written down sb that a double round may be repeated
on them, the smaller numbers meking this easier thean the
first round..

As the formula for shortening the process is ap;lied
at this stasge, & rectangle is sketchgd in, which surrounds
the region requiring much correction. In the example the
rectangle is bounded by the lines z = 3, z = 9, r = 6,
r=11. From (6) €/ = =1.57 (1/9 + 176.2) = -6

Hence the differences from the last double round are
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ENLARGEMENT AT JUNCTION

Outer values are deduced from squares thus

Inner values (dose Yo the junction between shalt
and collar) are deduced from squares thus ——
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multiplied by 6 to obtain the next apiroximation. Phe
epplication to a few values is shown at (a), fig;B; for
the centre point v+ € = 23, the first double
round gives 4, = 0.6, the second gives d, = 0.4,
therefore the second approximation is

Y+E€ =23+ 0.6+ 6x0.4 =26.0 The value at this
proint when the field has finally settled is 25.9.

Having settled the values on the section with this
gize of square, we next investigate t*e effectzéhe
neglected terms in (2) by reducing the size of sguare to
helf at verious parts, end finding if the values alter.
In theés case it is found that they alter only near the
junction of shaft and collar, and this region is shown
enlarged in fig.é;

When the values cease changing, the problem is
solved, and the final step of finding the stresses and

streins may be taken, The maximum stress occurs on the
boundary; it is equal to \/{(9“:)’+(F9Y} A \/{(ﬁh(% } :—i‘)i

where dn is the normael to the boundeary. The simplest
end most sccurate method of finding these derivatives, is
to use difference formulse. The stress on the boundary,
fromz = 0 to z = 2.7, is plotted in Pig.6; the maximum
stress occurs at z = 2.25, sand = 1.47 X gtress on the
boundary at z = 0.
The angular position, (v/r), of any point with
referen&e to its unstrained position, is given by
E(F) = v

So the twist of the cross section at z = 12, relatively

to the section at z = 0, is found by integrating
ys 7‘% dz . @along a line, r = const. Here %7‘!’;

is found slong r = 8 and is shown plotted in fig.6.
The twist on this 12" length is the seme as that for a
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lencth of 8.7" of an 8" redius shaft, subjecteé to the
same torque;

The methods discussed in this paper have beenr
developed in connection with experimental work, which is
being carried out ih the James Watt Engineering
Laeboratories, University of Glasgow, under the

directorship of Frofessor J.D.Cormack.

Appendix. Similer methods have been applied to the
gsolution of other physical problems, namely -

(a) Torsion of prisms with non-circular sections; the
equation to be solved is 2;———24- 3;%,_-\-2= o
with 1? = const; on each boundary.  Actual cases&%ﬁich
a solution has been obtained include a shaft with keyway,
several British Standard structursl sections, a hollow
square and & hollow serrated shaft. In several of these

cases, tests on specimens gave experimental verification.

(b) * Perfeet fluid flow in two dimensions; the equation
»y- | v ‘

is Tﬁﬁ-+ -3;; = 0 , with Yy = const. on & fixed
boundeary.

(e) Viscous fluid flow in two dimensions; the equations

to be solved are yVE8 = - %IT; %{ + %%%
Vy= 25

Asolutioﬁ%has been obtained for the flow past a eylinder
at Reynold's Number = 10, which was consistent with
exy erimental results.,

The solution in cases (&) and (b) is straightforward
end the remarks on convergence given above, apply to thése
case also. In oase (¢) it is necessary to solve two
fields simultanebumsly, one for the stream function( ¥ ),
the other fot the vortieity ( § ). A consideration of
the flow between parallel plates indicated that the process
mey not be convergent if the sire of the square exceeds
some limiting figure.

*Thom, Aer.Res.Com. R & M, 1194.



