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Abstract 

This project is aimed at the integration of a polarisation-insensitive optical 

waveguide isolator on a Silicon-on-Insulator platform. The final device must 

provide comparable performance for both Transverse Electric and Transverse 

Magnetic modes at a wavelength of 1550 nm. This is achieved through two core 

components, a 45 °  Nonreciprocal Polarisation Mode Converter, and a 45 ° 

Reciprocal Polarisation Mode Converter.  

In order to realise the Nonreciprocal Polarisation Mode Converter, several 

materials were investigated, all consisting of Silicon-on-insulator substrates with  

various thicknesses of the core layer that were coated with films of Magneto-Optic 

garnet materials. A wide number of Magneto-Optic garnet materials were tested. 

Among them, the Cerium-Terbium Iron Garnet proved the most promising for two 

reasons: first, it has a considerable Faraday rotation coefficient; secondly, it can 

be grown in crystalline form without the need for a buffer/seed layer, necessary 

for growing most other garnets.  

Simulations were carried out for all grown materials in order to identify the 

most promising design. The simulated designs, however, could not always be 

translated into fabricated devices, as sometimes growth challenges would hinder 

the quality of the material. Since the growths on the 340 nm and 500 nm Silicon-

on-Insulator platforms provided the best material quality, devices on these 

material systems were fabricated and optically characterised.  

Nonreciprocal isolation performance was observed in all fabricated devices, 

independently of the Magneto-Optic garnet used. On the 340 nm Silicon-on-

Insulator platform, the best performance was obtained when Bismuth-Terbium 

Iron Garnet, either on its own or in combination with Terbium Iron Garnet, was 

used as Magneto-Optic periodic cladding, leading to more than 3/4π Stokes vector 

angle. On the 500 nm Silicon-on-Insulator platform instead, Cerium-Yttrium Iron 

Garnet, either by Magnesium Oxide or on Yttrium Iron Garnet, provided a 

calculated isolation ratio of 11.6 dB. The length of the fabricated devices ranged 

between 3 mm and 6 mm.  

A reproducible device fabrication process, optical characterisation method 

and dedicated data analysis process had to be developed for this project. 

Nonreciprocal Polarisation Mode Conversion was demonstrated for devices on both 

the 500 nm and 340 nm Silicon-on-Insulator platforms. Moreover, in order to 
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achieve integration of Magneto-Optic garnet materials on Silicon-on-Insulator 

substrates, Radio-Frequency sputtering was preferred to wafer bonding as it 

improves the controllability and lends itself better to scaling up production.  

With regard to the Reciprocal Polarisation Mode Converter, an asymmetric 

structure consisting of an L-shaped waveguide was chosen. In such a structure, 

the rotation of the optical axis enables an injected linear polarisation mode to 

excite hybrid modes and reciprocal mode conversion. The research carried out in 

this project for the reciprocal polarisation mode converter helped identify major 

issues with fabrication and characterisation, and lead to the proposal of a new 

design for further research. 

This work successfully realised the first integrated polarisation-

independent Faraday rotator showing comparable performance for both 

Transverse Electric and Transverse Magnetic modes. Device operation was based 

on nonreciprocal polarisation mode conversion, and it was demonstrated on both 

500 nm and 340 nm Silicon-on-Insulator platforms. The results shown in this work 

in terms of performance and footprint prove the technology is suitable for optical 

integration.  
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1 Chapter 1— Introduction 

1.1 Integrated optics 

 
 
 
 

The concept of integrated optics was proposed by S. E. Miller in 1969[1]. It 

is a technology aiming to construct integrated optical devices, integrated optical 

circuits (IOC) (also called photonic integrated circuits or PICs) or planar lightwave 

circuits composed of specific optical components to realise complex functions. 

Since then, the fields of Opto-electronic Integrated Circuits(OEIC) [2]–[4] and of 

PICs[2][5]–[8] have been steadily growing, as part of an inevitable trend towards 

miniaturisation and the attainment of an ‘information superhighway’[2]. In order 

to reach that goal faster signal processing and transmission is required and dense 

wavelength division multiplexing (DWDM) PICs seem extremely promising for 

improving data processing and transmission, and for increasing bandwidth 

substantially with a great number of signals being de/multiplexed from a single 

channel.  

In comparison with bulk optical systems, composed of relatively large 

discrete optical elements and conventional integrated electronics, integrated 

optical systems perform better in nearly all aspects: they are alignment-free, 

vibration-proof, more stable, light-weight, portable, low-cost and, most 

importantly, have lower power consumption. Furthermore, they are suitable for 

signal processing and transmission with higher bandwidth and lower loss. 

Nowadays, it is common to get single-mode fibres with attenuation less than 0.4 

dB/km at 1.3 µm and 0.2 dB/km at 1.55 µm [2][9]. As silica fibres have their lowest 

attenuation at 1550 nm, the device designed in this work is intended to work at 

such wavelength.  

The development of extremely effective micro- and nano-fabrication 

methods, most of them borrowed from the electronics industry, has encouraged 

and made possible the advancement of new integrated optic devices and substrate 

structures. For example, thin film growth techniques allowed the creation of 
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quantum-well devices [2][10][11], while plasma processing has been applied to 

realise two- and three-dimensional photonic crystal structures[12][13].   

Any integrated optical system is composed of active and passive optical 

devices. Active devices include lasers, optical amplifiers, modulators, switches, 

and photodetectors, whereas passive ones range from simple waveguide 

interconnects to isolators/circulators, couplers, and splitters. The function 

achieved by the integrated optical system will depend on the particular 

combination of active and passive optical devices used. Depending on the type of 

device needing integration, different materials will be suitable. Some 

semiconductor materials, thanks to their direct bandgap, are capable of light 

generation, and they include gallium arsenide (GaAs), gallium aluminium arsenide 

(GaAlAs), gallium arsenide phosphide (GaAsP), indium phosphide (InP) and gallium 

indium arsenide (GaInP). Other III-V&II-VI semiconductors have an indirect 

bandgap, and are thus incapable of light generation, like silicon(Si), silicon on 

insulator (SOI), silicon nitride(Si3N4), silica/quartz(SiO2), polymers, and lithium 

niobate (LiNbO3)[2]. No specific material has been found so far that can 

accommodate the requirements of both active and passive optical devices, and 

that can be used to fabricate all components with optimal performance. A 

compromise needs therefore to be made when choosing a material as the 

substrate platform for the corresponding integrated system.  

Currently, despite some research carried out on some exotic material 

platforms, mainly three materials are used commercially as substrates for PICs: 

they are InP, Si/SOI, and TriPleXTM (alternating layers of Si3N4 and SiO2) [7][14]–

[16]. As Si/SOI and TriPleXTM are passive substrate platforms, difficulties arise with 

regard to the integration of active devices, such as lasers and optical amplifiers. 

On the contrary, InP based PICs seem to be able to integrate both active and 

passive optical components, but due to their large footprint, high cost and poor 

CMOS (Complementary metal-oxide-semiconductor) compatibility they present 

undesired and unavoidable limits to commercialisation. Future VLSI (Very-large-

scale Integration) for integration with the mature CMOS ICs is challenging, thus 

will not be able to take advantage of the mighty functions of the existing CMOS IC 

system. Comparing the two passive platforms (TriPleXTM and Si/SOI) that share the 

same obstacles regarding the integration of active devices, the high-index-

contrast platform of SOI, which enables further miniaturisation, makes it 

preferable.  
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So far, in order to integrate laser sources and other active devices in Si/SOI 

substrates, two main approaches are adopted: the monolithic approach, in which 

the same substrate material is used for all devices; and the hybrid approach, 

exploiting other active substrate materials bonded on top of the Si/SOI substrate 

to take advantage of the existing developed technology [2][17].  

In the monolithic case, Stimulated Raman Scattering (SRS) can be used to 

fabricated a silicon Raman laser in the presence of a light pumping source[17]–

[19]; rare-earth doped (Er, erbium) Si is able to integrate both light emitting 

devices and optical amplifiers [17]; Epitaxial growth of III-V/II-VI materials on 

silicon surface, like GaAs, InP and Ge, is another option for monolithic integration 

[20][21].  

In the hybrid case instead, direct bonding and adhesive bonding have both 

been employed to bond the active devices made of III-V/II-VI material on Si/SOI 

platforms [22]–[28]. However, the hybrid integration is sensitive to the alignment 

of bonding, vibration and even thermal expansion between the bonding 

interfaces[2] and also is not suitable for mass production. Eventually, the 

monolithic approach will be needed for automated mass production. Until then, 

great financial and technical efforts will be devoted to developing new ways to 

make active devices on Si/SOI platforms, thus creating new fabrication methods. 

Except for the lack of active devices on Si/SOI platforms, there is one 

passive device not fully integrated and deployed in commercial systems yet: the 

optical isolator or circulator. More precisely, it is not integrated in any of the 

common substrate platforms. Currently, an integrated TE/TM mode isolator has 

not been realised and most integrated optical isolators that have been reported 

can only work with TM mode[29][30]. TM-mode operation cannot accommodate 

the isolation needs of integrated optical systems as the vast majority of 

semiconductor lasers emit TE rather than TM, due to quantum mechanical 

selection rules. (A detailed literature review on the current research will be 

presented later in this chapter).  

To date only two TE polarised light optical isolators were realised by Ghosh 

etc.[31] and Shoji etc.[32]. Despite this approach being able to achieve TE 

isolation, it does not work on TM modes and has a rather large footprint. Also the 

controllability of the thickness of the adhesive bonding layer remains an issue of 

concern. Due to the lack of integrated optical isolators able to work with both 

modes, this project aims to make an integrated waveguide TE/TM optical isolator. 
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1.2 Isolators 

1.2.1 Bulk Isolators  

 

Optical Isolators are an indispensable and important component in many 

optical systems. By placing them between the light source and the rest of the 

system, they can prevent and block the reflected light signals which occur at 

interfaces, and also prevent undesired interference from coming back to the 

optical source, which would lead to instabilities. This ‘injection noise’ from the 

back-reflected signal may broaden the optical laser line width and increase the 

amplitude of noise[33][34] , potentially leading to severe system 

degradation[35][36].  

Traditionally bulk/discrete optical isolators are used[35][36], employing 

Faraday rotation to eliminate spurious reflections and keep the systems operating 

stably[37]. The bulk optical isolators generally consist of a polariser, a 45° Faraday 

rotator and an analyser, as depicted in Figure 1-1. The angle between the 

polarizer and the analyser is 45°.When the light comes out from the laser it is 

linearly polarized and set at an angle of 0°, so that it is able to pass through a 

polariser aligned with it. Upon passing through the Faraday rotator, the plane of 

the light’s electric vector (its polarisation) rotates 45°, making it parallel to the 

axis of the analyser so that the light can therefore pass through it. When any light 

is reflected back, it goes through the Faraday rotator and the electric vector 

rotates another 45°, thus becoming perpendicular to the optical axis of the 

polariser, which therefore blocks light propagation. The 45°rotator is made from 

garnet based media, employing Faraday rotation theory, while the polariser is 

usually a plastic-based thin film in contact with the sides of the garnet rotator. In 

addition, a ring-shaped permanent magnet is placed in a way where the direction 

of the magnetic field is parallel to that of linearly polarised light(see Figure 1-

2)[38].  
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Figure 1-1. Work flow of bulk magneto-optical isolator. 

 

 

                 

Figure 1-2.Structure of Bulk Component Optical Isolator. 

 

Commercially available 1550 nm polarisation-independent bulk isolators on 

the market can achieve 30 – 40 dB isolation with about 1 dB insertion loss, and 

cost approximately £1000 - 1500[39]–[41]. However, the assembly and alignment 

of these bulk systems is a rather time- and labour-consuming task, which leads to 

the reduced throughput and increased production cost. Therefore, the integrated 
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optical isolator has become an irresistible trend for the sake of high level of 

integration system, small format and low cost. 

Here in this project we intend to put the isolator in waveguide form so that 

it can be part of an integrated optical system. When light from a TE-polarised 

laser (as previously mentioned the vast majority of semiconductor lasers emit TE) 

propagates in the forward direction along the isolator, the polarisation angle will 

rotate by + 45o after traversing the Non-Reciprocal Polarisation Mode Converter 

(NR-PMC) and then rotate - 45o after passing through the Reciprocal Polarisation 

Mode Converter (R-PMC), so the two rotations cancel one another. When the light 

propagates backwards, it will first rotate + 45o after the R-PMC but then another 

+ 45o after the NR-PMC, adding to a total polarisation change by + 90o. As such, it 

converts to a TM mode, which does no harm to the laser source that emits TE-

polarised light, as it is essentially transparent at the TM mode’s wavelength (which 

is longer than the TE’s wavelength in the structure, as the two modes have 

different effective indexes, due to the birefringence discussed previously). The 

whole process for the device we intend to achieve in this project is described in 

Figure 1-3. 

 

Figure 1-3.Schematic of how the reflected signal is isolated in the integrated system that 
this project aims to achieve. 

 

1.2.2 What is an isolator 

 

An optical isolator allows light to pass in one direction while blocking the 

light in the opposite direction. It is thus useful between the laser source and the 

rest of the optical system to prevent the reflected light from the rest of the optical 

system to cause disturbance to the laser source. The intrinsic characteristic of an 

isolator is the non-reciprocity. 

Research has been carried out to develop isolators based on various 

structures and materials. Among them, some isolators have been developed which 
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although  reciprocal, are claimed to be non-reciprocal [42][43]; in them 

asymmetric structures are used to achieve asymmetrical total power transmission, 

rather than true asymmetrical modal properties.  

When an ‘isolator’ based on asymmetrical total power transmission is 

implemented in the system, the reflected signal is reduced but has the same 

polarisation as the laser source, meaning the source will still be affected and the 

‘isolator’ cannot provide sufficient protection. Comparatively, when an ‘isolator’ 

based on asymmetrical modal properties is implemented in the system, even 

though the reflected signal is not reduced at all, it has a different polarisation 

from the laser source, thus it is transparent to the laser source and can offer 

sufficient protection.  

In order to remove the confusion about the requirement for a ‘true’ optical 

isolator, Dirk etc.[44] defines that a ‘true’ isolator needs to break Lorentz 

reciprocity[45], where the relationship between an oscillating current and the 

resulting electric field will not change with the interchange of the place of the 

current and the detector. Breaking spatial structure symmetry and demonstrating 

asymmetrical power transmission is not sufficient to indicate the break of Lorentz 

reciprocity. The following equation describes the linear relationship between the 

incoming waves and outgoing waves of a linear, time-independent and passive 

system or device: 

 

                                   𝐵⃗ = 𝑆𝐴                                                     (1-1) 

 

Where 𝐴  , 𝐵⃗   are the incoming and outgoing waves, respectively, and 𝑆 is the 

scattering matrix. 

In order to break Lorentz reciprocity, the scattering matrix needs to be 

asymmetric. There are generally three cases that can break Lorentz 

reciprocity[44]. The first is magneto-optical materials with asymmetric 

permittivity tensor ε; the second option is nonlinear materials, where the 

permittivity ε is a function of the electric-field strength; and finally there are the 

time-dependent structures where permittivity ε or permeability µ or both depend 

on time. In our case, the magneto-optical material is used to break the Lorentz 

reciprocity to achieve non-reciprocity with asymmetric permittivity tensor. 
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1.3 Obstacles of Integration of Magneto-Optical Garnets 
on SOI platforms 

 

            

            
 

Figure 1-4.Structure of Waveguide Isolator. 

                                        
 
 
 

A number of inherent obstacles arise when integrating bulk isolators to 

planar waveguides. First of all, Yttrium Iron garnet (YIG), with its large Faraday 

rotation index (Verdet Constant, 200 deg/cm) has been widely used thanks to its 

magneto-optic effect [46]. Later it was found that doping (substitution) can 

improve the magneto-optic effect, and Ce substituted-YIG aroused much more 

attention because of their larger Faraday rotation index [47] and Faraday rotation 

coefficient of -4500o/cm at 1.55 µm [48]. It therefore makes sense to use Ce-YIG 

as the core layer of the waveguide on a lattice-matched GGG (Gadolinium Gallium 

Garnet, Gd3Ga5O12) substrate with refractive index of 1.936 at 1550 nm. Such a 

choice derives from ngarnet>nGGG, which is a traditional layer structure in a 

waveguide isolator, as seen in Figure 1-4. However, when SOI (nsi> ngarnet) is used 

as the substrate, based on the theory of mode guiding, the index of refraction of 

the core layer should be larger than that of both the substrate and the cladding 

layer. Therefore, Ce-YIG cannot be used as the core layer here. A solution is 

provided in [48][49] in which Ce-YIG was used as the upper cladding layer to take 

advantage of its magneto-optic effect through an interaction of the guided modes 

evanescent tail(see Figure 1-5). 
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Figure 1-5.Layer structure of waveguide-type isolator with Si as the core layer and the 
magneto-optical garnet as the upper cladding layer. All the refractive index of the material is 
given at 1.55 µm wavelength. 

 

Once a magneto-optic material has been chosen, birefringence needs to be 

dealt with. Birefringence is observed when light, not polarised along the optical 

axes of the material, is incident upon anisotropic material. There are primarily 

four kinds of birefringence: stress-induced birefringence due to lattice mismatch 

between film and substrate; growth-induced birefringence; geometrical/shape 

birefringence; and finally photo-elastic birefringence [50]–[52].  

Research shows that we can reduce shape-induced birefringence by growing 

multilayer films. The growth-induced effect can instead be reduced by annealing 

at high temperature and choosing the proper waveguide width, whereas the 

photo-elastic effect is reduced by growing compressively strained films. 

Additionally, by growing the top layer too thick and then thinning it, or by growing 

the top layer too thin and adding a dielectric layer of suitable thickness and 

refractive index, we can eliminate the remaining birefringence[51][53]. In[54], 

R.Wolfe et al. overcome the inherent birefringence by using laser annealing to get 

the sub-lattice magnetisation (i.e. the sign of the Faraday effect) reversed. In 

order to realise phase-matching, we can sometimes choose the proper size of the 

core[55], the temperature of the waveguide[56], apply stress and use periodic 

structures[57]–[59]. 

In this project to achieve the NR-PMC we adopted a quasi-phase matching 

(QPM) technique to overcome the shape-induced birefringence of the waveguide 
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device, where the propagation constants of the two orthogonal modes are 

different and there is phase mismatching between the two modes. The QPM 

technique allows for a phase mismatch over a coherence distance (half beat-

length), but then reverses or disrupts the nonlinear interaction at positions of 

coherence distance, in order to prevent the conversion to take place in the wrong 

direction and to avoid the polarisation rotation going back to 0. By utilising an 

upper cladding that alternates between MO material and non-MO material 

periodically(Figure 1-6)[58], we can achieve QPM in waveguide structure.  

Periodical structures have been long used to exploit QPM for polarisation 

rotation[58][60]–[62]. S.C.C. Tseng and A.R. Reisinger [60] used a periodic 

Permalloy structure to achieve periodic reversals of magnetisation and at 1.15 µm 

to get an optimum dc conversion efficiency of 80±2% on Gd0.5Ga1  garnet film. Y. 

Shani and R. Alferness [61] made asymmetric periodic loaded rib waveguides on 

InP to get polarisation rotation of 80%. 

 

 

Figure 1-6.(a) The periodic loading structure of NR-PMC with alternating half beat-length long 
(LΔβ) MO segments and Non-MO segments; (b) The difference in rotation between QPM and 
Phase Mismatching. 
 

Finally, the polarisation orientation of light through the integrated 

waveguide isolator should either be in plane or normal to the plane, to facilitate 

following manipulations such as polarising, mode splitting and polarisation 

rotation in integrated optical systems. A reciprocal polarisation mode converter(R-

PMC) is incorporated with the NR-PMC part to achieve light guiding in the forward 

direction and isolation when backwards [63]. 

The NR-PMC section of my project is to implement the isolator function in 

SOI, as part of the EPSRC (Engineering and Physical Sciences Research Council) 

project ‘Materials World Network: Complex oxides for heterogeneous 

optoelectronic integration’, in collaboration with Professor Bethanie Stadler’s 
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group from University of Minnesota. Professor Bethanie Stadler’s group will mainly 

use radio-frequency sputtering technique to provide the high-quality MO film 

deposited on the pre-patterned samples that we send to them. They will deposit 

the MO layer of different thicknesses and doping (substitution) on the sample 

surfaces. After the sample is deposited with MO layer in the US, we use lift-off 

techniques to create a patterned media, and then anneal to get the most 

appropriate and optimised Garnet phase MO layer, without unwanted crystal 

phases occurring, and fabricate samples with markers ready for patterning and 

etching of actual waveguide based devices.  

In summary, the role of the collaborator is to deposit the high-quality 

garnet material on the pre-patterned samples I provide. The collaborators also 

provide most of the garnet material characterisation. These activities had to be 

outsourced as Glasgow does not have the facilities to carry them out. My role in 

this project includes all aspects of device design (i.e. simulation and layout) 

followed by nanofabrication and optical characterisation of the devices. The 

contribution of each party in this project is described in table 1-1.  

 

                                                                           

                              

                            

                           

NR-PMC Section 

                                                                                             

                                                                                        

      My Contribution 

Device Design 

Simulation 

Nanofabrication 

Device Optical 

Characterisation 

Result Analysis 

Collaborators’ 

Contribution 

MO Garnet Deposition 

MO Garnet Material 

Characterisation 

R-PMC Section Independent Work Carried Out by Me 

Table 1-1.Contribution of each party in this project. 

 

 

1.4 Literature Review about Current Research conducted 
on SOI substrate  
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Integrated isolators currently developed are based on the destructive and 

constructive interference between two 45o rotations in the forward and backward 

direction, respectively. The two rotations are realised either by implementing a 

nonreciprocal phase shift through structures like MZI (Mach-Zehnder 

Interferometers) and rings, or by nonreciprocal mode conversion through the 

combination of a 45o Nonreciprocal Rotation (45o Faraday Rotator) with a + 45o 

Reciprocal Rotation. Both the phenomenon of nonreciprocal phase shift and 

nonreciprocal mode conversion can be found in magneto-optic garnets in the 

presence of an applied external magnetic field.  

Nowadays, waveguide isolators on Si platforms integrated with the 

magneto-optic garnet take advantage of either nonreciprocal phase shift or 

nonreciprocal mode conversion in different structures like rings[64]–[68], 

MZI[29][31][32][69]–[76] and periodic loading on top of normal waveguide[77]–[79] 

to achieve isolation. Due to lattice mismatch between garnet and Si surface, three 

approaches are usually employed to integrate magneto-optic garnet: they are 

deposition[64][67][77], adhesive bonding[31][72][73] and direct 

bonding[29][65][69]–[71]. The structure, fabrication method and characteristics 

of the devices are summarised in Table 1-2.  

 

Researchers Mode 

Working 

on 

Structure Fabrication 

Method 

Isolation Device 

Length 

Wavelength 

Working 

Year 

T.Mizumoto ’s 

group: Y.Shoji 

etc.[74] 

TM MZI 

 

Direct 

Bonding 

>21 dB NA 1530-1565 

nm 

2007 

T.Mizumoto ’s 

group: Y.Shoji 

etc.[71] 

TM MZI 

 

 

Direct 

Bonding 

21 dB 4 mm 1559 nm 2008 

T.Mizumoto ’s 

group: Y.Shoji 

etc.[80] 

TM MZI Direct 

Bonding 

18 dB >1.5x1.5 

mm2 

1322 nm 2012 

T.Mizumoto ’s 

group: 

Y.Shirato and 

Y.Shoji[75] 

TM MZI Direct 

Bonding 

28 dB >1.5x1.5 

mm2 

1552 nm 2013 

T.Mizumoto ’s 

group: Y.Shoji 

etc.[76] 

TM MZI Direct 

Bonding 

>20 dB >1.5x1.5 

mm2 

1550nm±4 

nm 

2014 
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T.Mizumoto ’s 

group: Y.Shoji 

etc.[32]  

TE MZI Direct 

Bonding 

26.7 dB >1.5x1.5 

mm2 

1553nm 2016 (to 

be 

published) 

John 

E.Bowers’ 

group: Ming-

Chun Tien 

etc.[65] 

TM Ring Direct 

Bonding 

9 dB Diameter: 

1.8 mm 

1550nm 2011 

John 

E.Bowers’ 

group: D. 

Huang, 

P.Pintus and 

etc.[68] 

TM Ring Direct 

Bonding 

32 dB NA 1555 nm 2016 (to 

be 

published) 

Caroline A. 

Ross’s Group: 

L. Bi etc.[64] 

TM Ring Deposition 19.5 dB 290 µm 1550 nm 2011 

Caroline A. 

Ross’s Group: 

X. Sun 

etc.[67] 

TM Ring Deposition 13 ±2.2 

dB 

NA 1564.4 nm 2015 

Roel Baets’ 

group: 

S.Ghosh 

etc.[72] 

TM MZI Adhesive 

Bonding 

25 dB 3.46x0.46 

mm 

1495.2 nm 2012 

Roel Baets’ 

group: 

S.Ghosh 

etc.[73] 

TM MZI Adhesive 

Bonding 

11 dB 1.5 mmx4 

µm 

1512.6 nm 2012 

Roel Baets’ 

group: 

S.Ghosh 

etc.[31] 

TE MZI Adhesive 

Bonding 

32 dB 6 mmx0.2 

mm 

1540.5 nm 2013 

Table 1-2.SOI-based Magneto-optical Isolator 

 

 

In our project we adopt the nonreciprocal mode conversion method by 

applying an external magnetic field along the direction of propagation of the light 

(along the z axis), so that both the TE and TM mode will be affected. The mode 

conversion requires phase matching while the non-reciprocal phase shift (NPS) 

method (based on MZI) does not. As such, it can be assumed that the latter may 

be easier to achieve. However, the NPS can be only applied for TM modes whilst 

the mode conversion method can be used for both. Also the vast majority of lasers 

emit TE polarized light [81]–[83] from the heavy-hole transition and since the TE 
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light becomes TM after the mode conversion, and the TE emitting devices are 

essentially transparent to TM, the reflected light will not have any effect on the 

system. 

As shown in Table.1-1, currently all reported isolator designs on SOI 

substrates are based on nonreciprocal phase shift (NPS) where devices only work 

with either TM or TE mode. TM-mode isolators based on NPS are easier to 

fabricate, however they do not have many applications as most semiconductor 

sources have a TE-polarised output. To date the only TE polarised light optical 

isolator was realised by Ghosh etc.[31] and Shoji etc.[32], where MO garnet 

material was adhesively bonded on top of the waveguide and the NPS approach, 

together with complicated optical serpentine circuit and complicated design of 

asymmetric coupled waveguides for TE-TM mode conversion, were employed. 

Despite this approach used to achieve TE isolation, it does not work on TM modes 

and has quite a large footprint even designed in serpentine shape, where the total 

size is 6 mmx0.2 mm with a 4x2.86 mm long nonreciprocal phase shifter section. 

Additionally, the adhesive bonding method is also not ideal, being sensitive to any 

thermal expansion and not suitable for mass production.  

In the following we use the device with MZI structure that works for the TM 

mode as an example to explain the process of isolation based on 

constructive/destructive interference [76]. Figure 1-7 shows the schematic of the 

device, composed of 3 dB couplers, nonreciprocal phase shifter, reciprocal phase 

shifter and Ce-YIG garnet bonded on top. An anti-parallel magnetic field is applied 

for the nonreciprocal phase shifter to provide a phase difference of –π/2 in the 

forward direction and +π/2 in the backward direction. The reciprocal phase shifter 

provides +π/2 phase difference in both directions resulted from the asymmetric 

path length of the MZI arm.  

In the forward directions, when the TM-polarised light is injected in, it is 

split into two waves with equal amplitude and phase. After transmitting through 

the nonreciprocal phase shifter and the reciprocal phase shifter, the phase 

difference between the two waves adds up, (–π/2) + (+π/2), to be 0. At the 

output, the two waves have the same phase and they interfere with each other 

constructively to make a wave with the same amplitude as that of the input wave. 

In the backward direction, the phase difference between the two waves adds up, 

(+π/2) + (+π/2), to be π. At the output, the two waves have a π phase difference 

and they escape from the side waveguide and no light comes out from the central 
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waveguide, so that isolation of the reflected light is achieved. The whole process 

of constructive interference and destructive interference in the forward direction 

and the backward direction respectively is depicted in figure 1-8.  

 

 

Figure 1-7.Schematic of a typical isolator with MZI structure based on nonreciprocal phase 
shift. 

 

 

Figure 1-8.The constructive and destructive interference in the forward and backward 
direction of the isolator system described in figure 1-7. 
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John E. Bowers [84] has proposed a novel design of TE isolator based on 

nonreciprocal phase shift. According to its proposal the internal wall of an ultra-

low loss[85] Si3N4 arrayed ring waveguide, buried in a silica media, is coated with 

Ce-YIG garnet under a vertical magnetic field so that part of the TE mode is 

confined in the Ce-YIG garnet part. A great difference thus arises between the 

resonance wavelength of the rings in forward and backward directions in the 

presence of a vertical magnetic field. A top view and cross-section view of the 

rings with sidewall coated with Ce-YIG is depicted in Figure 1-9. Theoretical 

analysis on this device’s loss, isolation has been carried out but no actual devices 

have been made yet, as there are significant fabrication challenges. Therefore, 

there has not been a TE/TM isolator realised on SOI substrate yet. 

 

                               

Figure 1-9.Top view and cross-section view of the Si3N4 rings with sidewall coated with Ce-
YIG[84]. 

 
 

1.5 Approach adopted in this project   

1.5.1 NR-PMC (Non-Reciprocal Polarisation Mode Converter) 

 
 

The project is titled Integrated Waveguide Optical Isolators. My role in the 

project is to fabricate integrated isolators that can modulate arbitrary 

polarisation states through the use of NR-PMCs and R-PMCs in the SOI material 

platform. These NR-PMCs are based upon the theory of Faraday rotation, and the 
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R-PMCs are based upon mode beating polarization conversion [86]. When hybrid 

polarised light (i.e. not at 0 or 90 degrees) propagates along in a planar 

waveguide, the TE and TM components propagate at different speeds (due to the 

different propagation constants resulting from structural birefringence in planar 

systems) which leads to a different polarisation at the waveguide output. The 

resultant of the two fundamental polarised modes can be linearly polarised, 

elliptically polarised, circularly polarised, elliptically, or linearly polarised 

periodically (Figure 1-10) depending on the phase difference ψ between the TE 

and TM components.  

 

 

Figure 1-10.Changes in resultant polarisation from two modes propagating in anisotropic 
media, where ψ is the phase difference between the TE and TM components. 

 

There are two approaches[70][87][88] commonly used to achieve non-

reciprocal, magneto-optical isolation in waveguide formats: longitudinal field and 

transverse field. As previously discussed (see section 1.3), for the NR-PMC part, a 

periodic loading structure was adopted [77][79][86][89] in this thesis. Mode 

conversion is realised through the Faraday rotation effect resulting from the 

evanescent tail of the mode interacting with the magneto-optical garnet cladding, 

so that the first - longitudinal field approach - is employed. The relationship 

between dielectric tensor and Faraday rotation effect will be explained in more 

detail in Chapter 2. The simulation, fabrication and optical measurements of the 

NR-PMC part will be discussed in Chapter 3, Chapter 4 and Chapter 5 respectively.  
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1.5.2 R-PMC (Reciprocal Polarisation Mode Converter) 

 
In order to obtain reciprocal polarisation mode conversion, we use an L-

shape structure which is similar to the trench structure shown in Figure 1-11, that 

effectively will rotate the optical axis and excite the two TE and TM components 

from the incident pure TE mode which enables beating of the polarised light and 

achieves mode-conversion. Previously, slanted angled structures have been 

adopted,  which are based on the same principle[90]–[93]. This solution is free of 

longitudinally periodic structures. However, although much effort has been put 

into fabricating the slanted structures, exploiting various techniques including wet 

etching[94] and dry etching at an angle[95], it still is a difficult technique. 

Comparatively, the trench structure can be realised relatively easily by using 

Electron Beam Lithography (EBL) and exploiting the Reactive Ion Etching (RIE) lag 

effect[96].But since the RIE effect is not so obvious in Si, as it will be explained 

in Chapter 6, a similar structure, the L-shape, is adopted to achieve reciprocal 

polarisation mode conversion.  

 

                                  

Figure 1-11.Trench structure realised by Electrical Beam Lithography (EBL) and Reactive 
Ion Etching (RIE) lag effect [96]. Got permission from Dr. Barry Holmes to reprint. 

 

 

1.5.3 Integrated Waveguide Optical Isolator 

An integrated waveguide optical isolator that works at a wavelength of 

1550nm can be developed by integrating the 45° NR-PMC and the 45° R-PMC. The 

device proposed in this thesis is described in Figure 1-12. The rotation caused by 

the NR-PMC part is independent of the light propagation direction, while that 

caused by the R-PMC is dependent on the light propagation direction. In the 

forward direction, the TE-polarised light emitted from the laser source and 
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injected in the device will experience a +π/4 rotation after the NR-PMC part, 

followed by a - π/4 rotation after the R-PMC part. It thus turns back to TE-

polarised light at the output. In the backward direction, when the TE-polarised 

light is reflected back into the device, it will experience a +π/4 rotation after the 

R-PMC part then a + π/4 rotation after the NR-PMC part. It turns into TM-polarised 

light, which is essentially transparent to the laser source, thus achieving isolation 

of the optical system.   

 

Figure 1-12.The schematic of the integrated waveguide optical isolator device proposed in 
this thesis. 
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2 Chapter 2 – Magneto-optic Effects 

 

2.1 Magneto-optic Effects 

 

 

 

The term Magneto-optic effect (MOE) refers to the phenomenon in which 

an electromagnetic wave propagates differently through a magnetic medium 

depending on the presence or absence of a magnetic field, which alters the 

electromagnetic (EM) properties of the magnetic medium. Magneto-optic (MO) 

materials are also called gyromagnetic, and they give rise to two of the best known 

magneto-optic effects,  the Faraday and the Cotton-Mouton (CM) Effect (also 

called the Voigt Effect for gas media) where the light changes when transmitted 

through the MO material. The Magneto-Optic Kerr Effect (MOKE), in which the 

light changes when reflected from the surface of the MO medium, is also well-

known. In materials with magnetic moments, either from atoms or ions, the type 

of MOE encountered reflects the corresponding kind of magnetism: 

ferromagnetism, ferrimagnetism, para-magnetism, anti-ferromagnetism and 

diamagnetism. In materials without magnetic moments, Larmor precession of the 

internal electron orbitals under an applied magnetic field can also change the 

interaction with an electromagnetic wave. 

We consider the case of light waves transmitted in optical waveguides or 

fibres, applicable to, for example, optical communication systems. Thus, the 

propagation properties of the transmitted light can be affected by the Faraday 

Effect and the Cotton-Mouton Effect. Generally, application of MO effects is 

limited by two factors, the specific MO coefficients 𝜃, Faraday rotation coefficient 

𝜃𝐹 or linear birefringence, and the absorption coefficient α. The ratio of the two 

factors is defined as the Figure of Merit (FOM) of the material[97]: 
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                                      F. O.M [
𝑑𝑒𝑔

𝑑𝐵
] =

𝜃[𝑑𝑒𝑔/𝑐𝑚]

𝛼[𝑑𝐵/𝑐𝑚]
                                         (2-1) 

 

The Faraday Effect is observed when an applied external magnetic field is 

parallel to the direction in which the transmitted light propagates, and the field 

induces a nonreciprocal magnetic circular birefringence (MCB). MCB causes the 

phase velocity, or the index of refraction of left-rotating circularly polarised light 

(n-), to be different from that of right-rotating circularly polarised light (n+). The 

difference in refractive index is proportional to the longitudinal component of the 

applied magnetic field. The Faraday Effect is a first-order effect.  

The Cotton-Mouton Effect is observed when the applied external magnetic 

field is perpendicular to the direction of propagation, and it induces a reciprocal 

magnetic linear birefringence (MLB). Due to MLB the propagation velocity, or the 

index of refraction of the light polarised along the parallel direction to the 

magnetic field (n//) is different from that of the light polarised perpendicularly to 

the magnetic field (nꞱ). In the MLB case, the difference in refractive index is 

proportional to the square of the applied transverse magnetic field. Differently 

from the Faraday Effect, the Cotton-Mouton one is a second-order effect.  

When light waves are transmitted in optical waveguides, the propagation 

and coupling properties of the optical modes is determined by the permittivities 

of the cladding layer, core layer and substrate[98]. Since the Faraday Effect is 

nonreciprocal and Cotton-Mouton Effect is reciprocal, the combination of the two 

effects can be used to make an isolator[99][100]. However, implementing a design 

with two orthogonal magnetisation directions on a single chip presents great 

technical challenges[101]. For the magneto-optical media used in this project, 

rare-earth doped garnets, over the 1 to 3 µm wavelength range the Cotton-Mouton 

Effect is very small compared to the Faraday Effect. The Cotton-Mouton Effect is 

thus usually neglected[98][102][103], and the Faraday Effect is the predominant 

influence factor for the permittivity. 

In the case of thin films waveguides, the fundamental modes of the 

waveguide are conventionally called ‘transverse electric (TE)’, and ‘transverse 

magnetic (TM)’. The TE modes are polarised in the plane of the wafer, whereas 

TM modes are polarised perpendicularly to the plane of the wafer. This description 

is an approximation, as normally some hybridisation of both modes exists, and the 

quasi-TE and quasi-TM denomination is often used instead. However, in each 

dimension, one of the two components is predominant and typically much larger 
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than the other one, so it is common practice to still refer to them as TE and TM 

polarisations [104].  

The off-diagonal elements of the permittivity tensor represent the Faraday 

Effect contribution from an external magnetic field, as derived from the 

perturbation theory developed by Yamamoto and Makimoto [105]. As shown in 

Figure 2-1, the propagation direction of the light wave is along the z axis. 

According to perturbation theory, an external magnetic field applied in the 

direction of any of the three axes causes a corresponding perturbation to the 

waveguide system. The applied magnetic field will affect the components of the 

electric field which are perpendicular to the magnetic field, but will not affect 

the parallel electric field components. When an external magnetic field is applied 

along the z axis, as seen in Figure 2-1(a), the perturbed system is Longitudinal (L) 

and induces the 𝑖𝜀𝑥𝑦 and −𝑖𝜀𝑥𝑦 off-diagonal elements; when an external magnetic 

field is applied along the y axis, as seen in Figure 2-1(b), the perturbed system is 

Equatorial (E) and induces the 𝑖𝜀𝑥𝑧 and −𝑖𝜀𝑥𝑧 off-diagonal elements; finally, when 

an external magnetic field is applied along the x axis, as seen in Figure 2-1(c), the 

perturbed system is Polar (P) and induces the 𝑖𝜀𝑦𝑧 and −𝑖𝜀𝑦𝑧  off-diagonal 

elements. The Equatorial and Polar perturbed systems can be regarded together 

as the Transverse system. Equation 2-2 describes the perturbation involving all 

three axes:  

 

                                                  ε = [

𝜀𝑥𝑥 𝑖𝜀𝑥𝑦 𝑖𝜀𝑥𝑧

−𝑖𝜀𝑥𝑦 𝜀𝑦𝑦 𝑖𝜀𝑦𝑧

−𝑖𝜀𝑥𝑧 −𝑖𝜀𝑦𝑧 𝜀𝑧𝑧

]                                          (2-2) 
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Figure 2-1. Illustration of possible magnetisation direction. Light propagation is along the z 
axis and (a) (b) (c) describe the external magnetic field along z axis, y axis and x axis 
respectively. 
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In a longitudinally perturbed system, the electric field components in both 

the x and y directions are involved and there is coupling between TE and TM 

modes, thus mode conversion between TE and TM modes takes place, and this 

phenomenon is nonreciprocal. In a transversely perturbed system, only one 

component of the electric field is affected by the perturbation, either the TE or 

TM mode. A phase difference is therefore induced between the forward and 

backward traveling waves, when the propagation direction is parallel or anti-

parallel to the external magnetic field. This phenomenon is also a nonreciprocal 

effect. When the external magnetic field is in the plane of the waveguide, along 

the y axis, a phase shift is induced on the TM mode. When the external magnetic 

field is normal to the plane of the waveguide instead, i.e. along the x axis, there 

is a phase shift for the TE mode. By combining the phase shifts between forward 

and backward directions with special structures, like 3dB splitters, constructive 

and destructive interference takes place, and can be exploited to achieve devices 

such as Mach-Zehnder Interferometers (MZIs). MZIs can be used as isolators and 

structures have been proposed and designed to induce the right phase shift for 

both modes[106]–[110].  

Therefore, both the nonreciprocal polarisation mode conversion (NR-PMC) 

in the longitudinal approach, and the nonreciprocal phase shift (NPS) in the 

transverse approach result from the perturbation to the waveguide system caused 

by the Faraday Effect. It is important to differentiate between the NPS and the 

Cotton-Mutton Effect. As previously mentioned, the latter takes place when an 

external magnetic field is perpendicular to the direction of light propagation, and 

it might seem confusing. NPS, however, is a transverse expression of the Faraday 

Effect, while the Cotton-Mutton Effect is a reciprocal effect. NPS does not exist 

when light travels in bulk materials, while the Cotton-Mutton Effect does. 

Discontinuities of the waveguide structure and the Faraday effect are required for 

NPS[110]. It is safe to say that the Cotton-Mutton Effect is a bulk transverse 

magnetisation phenomenon while NPS is inherently a waveguide 

phenomenon[111]. The relationship between different kinds of magneto-optical 

effects is summarised in Figure 2-2. The NR-PMC effect has been highlighted with 

a red frame, since it has been employed in this thesis. 
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Figure 2-2. Summary of the relationship between different kinds of magneto-optical effects. 
The NR-PMC effect has been highlighted as it has been employed in this thesis. 

     

 

 

 

 

2.1.1 Nonreciprocal Polarisation Mode Conversion (NR-PMC) - 
Longitudinal approach of Faraday Rotation Effect  

 
 

Despite Nonreciprocal Polarisation Mode Conversion (NR-PMC) being just 

the longitudinal expression of the Faraday Effect, conventionally Faraday Rotation 

Effect is used to refer to NR-PMC, whereas Nonreciprocal Phase Shift (NPS) is 

preferred when referring to the transverse expression of the Faraday effect. The 

Faraday Rotation Effect is a type of magnetic circular birefringence, where a 

rotation of the wave polarisation plane results from the left-rotating circularly 

polarised (LCP) light and the right-rotating circularly polarised (RCP) light 

propagating at different speeds. Such birefringence is due to the splitting of the 

ground or excited-state energy levels when an external magnetic field is applied 

in the direction parallel to that of light propagation. The direction of the rotation 

depends on the direction of magnetisation of the material from the external 

magnetic field, but not on the propagation direction of the light, meaning the 

Faraday rotation is non-reciprocal. The non-reciprocity is very useful in 

applications like Faraday rotators, isolators and circulators. Rare earth iron 
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garnets (REIG) R3Fe5O12 are a typical and popular ferrimagnetic Faraday rotation 

material due to  their transparency in the infrared window from 1.5 to 5 µm, 

coupled with high Faraday rotation coefficient [112]. Ferrimagnetism is somewhat 

similar to antiferromagnetism, but within antiferromagnetic materials equal and 

opposite magnetic moments are present and they will cancel each other so that 

the total magnetization is zero; in ferrimagnetic materials instead, the opposite 

magnetic moments are not equal and give rise to a net remaining magnetisation. 

Faraday rotation in a ferrimagnetic garnet is the response of the 

ferrimagnetism to the applied external magnetic field and is related to both the 

electric dipole transitions and the ferromagnetic resonance (FMR). The Zeeman 

splitting of the energy eigenvalues in the ferromagnetic material at the presence 

of a static internal magnetic field 𝐻𝑖[112] determines the resonance frequency, 

where ħω = g𝜇𝐵𝐻𝑖 , with ħ =
ℎ

2𝜋
, ℎ is the Planck constant,  g is gyromagnetic or 

Lande factor, ω = 2πν is the resonance frequency, and 𝜇𝐵 is the Bohr magneton, 

therefore hν = g𝜇𝐵𝐻𝑖. The resonance splitting process is depicted in Figure 2-3. 

The Zeeman splitting occurs at the resonance peak and the original state is split 

into two quantum states of magnetic quantum number m = +
1

2
𝑔𝜇𝐵𝐻𝑖  and m =

−
1

2
𝑔𝜇𝐵𝐻𝑖, respectively. Summarising, the Faraday rotation results from electric 

dipole transitions, while FMR from the whole sub-lattices responding to the 

external magnetic field. 

 

                             

Figure 2-3. Illustration of the ferromagnetic resonance splitting process in presence of a static 
internal magnetic field Hi. 

 



27 

Chapter 2 – Magneto-optic Effects 
   

 
 

 

A TEM wave subject to a magnetic field splits into two counter-rotating 

circularly polarised waves as a consequence of the splitting from Zeeman 

Effect[113] (see Figure 2-4 (a)). The combination of the two counter-rotating 

circularly polarised waves  could result in a linear, elliptical, or circular 

polarisation [114]. Two equal-amplitude counter-rotating circularly polarised 

waves combine into a linearly polarised wave, while two unequal-amplitude ones 

with no phase difference will give rise to an elliptically polarised wave. A 

circularly polarised wave outcome is a sub-case of elliptical polarisation, and it 

will depend on the difference in amplitude between the two waves. The two initial 

counter-rotating circularly polarised waves are called right-hand circular 

polarisation (RHCP) and left-hand circular polarisation (LHCP), rotating clockwise 

and counter-clockwise, respectively. In this work + and – will stand for RHCP and 

LHCP, respectively. By using the Kramers-KrÖnig relations[115], the refractive 

indices will also be modified, as Figure 2-4 (b) shows. 

 

 

Figure 2-4.(a) Under magnetic field, because of the Zeeman Effect, the wave splits into two 
circularly polarised waves, right-hand polarised and left-hand polarised. (b) By the Kramers-
KrÖnig relations the corresponding refractive indices are modified. 
 

 

When the difference between the phase of LHCP and RHCP is 90°, the wave 

travels a distance of half beat length, 

 

                                            𝐿1

2

=
𝜆

2|𝑛𝐿−𝑛𝑅|
=

𝜆

2|∆𝑛|
                                         (2-3)   

 

If there’s no external magnetic field, the propagation constants of the two 

circularly polarised waves are equal, i.e. 𝛽+ = 𝛽− . Under the influence of an 

external magnetic field, the propagation constants are different (𝛽+ ≠ 𝛽−) and the 

permittivity ε changes: 
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                                         ε = [

𝜀𝑥𝑥 𝑖𝜀𝑥𝑦 0

−𝑖𝜀𝑥𝑦 𝜀𝑦𝑦 0

0 0 𝜀𝑧𝑧

]                                    (2-4) 

 

And correspondingly the refractive index:        

                                                                  

                                            𝑛± = √𝜇𝜀                                                    (2-5) 

 

Here  𝜇 = 1, so:    

                                           

                                           𝑛± = √𝜀                                                      (2-6) 

 

Setting the eigenvalue of permittivity ε as Φ, one gets the following equation: 

 

                                 |

𝜀𝑥𝑥 − ∅ 𝑖𝜀𝑥𝑦 0

−𝑖𝜀𝑥𝑦 𝜀𝑦𝑦 − ∅ 0

0 0 𝜀𝑧𝑧 − ∅

| = 0                            (2-7) 

 

The formula for the determinant of a 3x3 matrix yields: 

 

                       (𝜀𝑧𝑧 − ∅)[(𝜀𝑥𝑥 − ∅)(𝜀𝑦𝑦 − ∅) − 𝜀𝑥𝑦
2  ] = 0                          (2-8) 

 

For uniaxial crystals 𝜀𝑥𝑥 =  𝜀𝑦𝑦, thus substituting one obtains:      

   

                                   (𝜀𝑥𝑥 − ∅)2 − 𝜀𝑥𝑦  
2 = 0                                         (2-9) 

 

Solving for the permittivity, ∅ = 𝜀𝑥𝑥 ± 𝜀𝑥𝑦, therefore the refractive index is given 

by:                      

                         𝑛± = √𝜀 = √∅ = √𝜀𝑥𝑥 ± 𝜀𝑥𝑦 ⋍ √𝜀𝑥𝑥(1±
1

2

𝜀𝑥𝑦

𝜀𝑥𝑥
)                   (2-10) 

 

                                          ∆𝑛 =
𝜀𝑥𝑦

√𝜀𝑥𝑥
=

𝜀𝑥𝑦

𝑛0
                                            (2-11) 

 

And from (2-3), through the half-beat length 𝐿1

2

≡ 90°, one can get the Faraday 

rotation angle at a distance of 𝑥. 
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                         θ =
90°

𝐿1
2

∙ 𝑥 =
2∆𝑛

𝜆
90° ∙ 𝑥 =

2

𝜆

𝜀𝑥𝑦

𝑛0
90° ∙ 𝑥                          (2-12) 

 

If 𝜀𝑥𝑦 is known, the Faraday rotation coefficient 𝜃𝐹 can be derived: 𝜀𝑥𝑦 =

2𝜃𝐹𝑛0/𝑘0  [30], where 𝑛0  is the refractive index, and 𝑘0  is the vacuum 

wavenumber. The Faraday rotation coefficient 𝜃𝐹  is dependent on the 

temperature and wavelength of operation, but independent of the amplitude of 

the external magnetic field, thus 𝜀𝑥𝑦  will also share this feature. 𝜃𝐹  can be 

obtained experimentally or can be derived analytically as it will be shown later in 

the chapter. Given all other parameters in the equation are known, the rotation 

angle as after propagation along a distance x can be expressed as: 

 

                                         θ =
4

𝜆

𝜃𝐹

𝑘0
90° ∙ 𝑥                                         (2-13) 

 

 

 

 

2.1.2 Nonreciprocal Phase Shift (NPS) - Transverse approach of 
Faraday Rotation Effect 

 

The Nonreciprocal Phase shift is the transverse expression of the Faraday 

Effect, and can be achieved by properly adjusting the spatial variation of the 

Faraday rotation. In order to demonstrate the nonreciprocity of the phase shift in 

a waveguide cladded with a thin film of MO garnet, T. Mizumoto et. al. [116]–

[118] derived the eigenvalue equation for both TE and TM modes considering the 

boundary conditions of a three-layer asymmetric slab waveguide. As seen in Figure 

2-5, when light propagates along the z direction and the magnetic field is applied 

along the y axis, the permittivity tensor 𝜀1̃ shows off-diagonal tensor components 

𝛾(𝜀𝑥𝑧): 

 

                                      𝜀1̃ = (

𝜀1 0 𝑗𝛾
0 𝜀1 0

−𝑗𝛾 0 𝜀1

)                                         (2-14) 
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The eigenvalue equation for the TM mode can be obtained by considering the 

boundary conditions[116], [118],  

 

                               tan(𝑞𝑑) =

𝑞

𝜀2
(
𝑝1
𝜀1́

+
𝑝3
𝜀3

+
𝛾

𝜀1𝜀1́
𝛽)

(
𝑞

𝜀2
)
2
−

𝑝1
𝜀1́

𝑝3
𝜀3

−
𝑝3𝛾

𝜀1𝜀1𝜀3́
𝛽

                      (2-15)[118] 

 

where    

            

 𝜀1́ =
𝜀1

2−𝛾2

𝜀1
 

𝛽2 = 𝑝1
2 + 𝜀1𝑘0

2 = 𝑝3
2 + 𝜀3𝑘0

2 (𝑘0
2 = 𝜔2𝜀0𝜇0)  

 

And 𝑘0  is the wavenumber in vacuum. The quantity 𝑞  is the transverse 

propagation constant in the guiding layer;  𝑝𝑖(𝑖 = 1,3)  indicates the decay 

constants along the x direction in respective regions; finally, 𝛽 is the propagation 

constant along the z axis.  

From equation 2-15, a nonzero linear term in 𝛽 can be observe, indicating 

that 𝛽 depends on the direction of propagation. The sign in the linear term of 𝛽 

changes for opposite directions of propagation, thus leading to different 

propagation constants between forward (𝛽𝑓𝑤) and backward (𝛽𝑏𝑤) modes. 

 

                                              

                                

Figure 2-5. Schematic of a three-layer slab waveguide with MO garnet as cladding layer. The 
light wave propagates along the z axis, while the external magnetic field is applied along the 
y axis. 
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The difference between the forward (and the backward propagation 

constant ∆𝛽 = 𝛽𝑓𝑤 − 𝛽𝑏𝑤  is the nonreciprocal phase shift. In order to get 

constructive or destructive interference, a 0°/360°or 180°  phase difference is 

required, respectively. The lengths needed for 360°(𝐿1) or 180°(𝐿2)  phase 

differences are: 

 

                                          𝐿1 = 
2𝜋

𝛽𝑓𝑤−𝛽𝑏𝑤
= 

2𝜋

∆𝛽
                                           (2-16) 

 

                                         𝐿2 = 
𝜋

𝛽𝑓𝑤−𝛽𝑏𝑤
= 

𝜋

∆𝛽
                                           (2-17) 

 

In order to calculate ∆𝛽, O. Zhuromskyy et al. [108] have derived the phase 

shifts for TE modes in media with magnetic field applied along the x axis, and TM 

modes in media with magnetic field applied along the y axis. If the external 

magnetic field is perpendicular to the direction of light propagation (i.e. along 

the x or y axis), then the permittivity ε becomes: 

 

 

                                         ε = [

𝜀𝑥𝑥 0 𝑖𝜀𝑥𝑧

0 𝜀𝑦𝑦 𝑖𝜀𝑦𝑧

−𝑖𝜀𝑥𝑧 −𝑖𝜀𝑦𝑧 𝜀𝑧𝑧

]                                  (2-18) 

 
 

The TE and TM modes of the waveguide, as presented in Figure 2-1, are 

represented by their electric and magnetic fields, respectively[107]: 

 

                                     TE: 𝐄 = [0, 𝐸𝑦(𝑥), 0]𝑒𝑥𝑝[𝑖(𝜔𝑡 − 𝛽𝑇𝐸𝑧)]             (2-19)[107] 

 
And  
 

                                    TM: 𝐇 = [0, 𝐻𝑦(𝑥), 0]𝑒𝑥𝑝[𝑖(𝜔𝑡 − 𝛽𝑇𝑀𝑧)]            (2-20)[107]                   

 
Where 𝜔  denotes the angular frequency and 𝛽  denotes the mode propagation 

constant. 

The shift δ𝛽 in one direction due to gyrotropy can be expressed as[108]: 

 

                                        δβ = ω𝜀0
∬ 𝐸⃗ ∗∆𝜀𝐸⃗ 𝑑𝑥𝑑𝑦

∬[𝐸⃗ ×𝐻⃗⃗ ∗+𝐸⃗ ∗×𝐻⃗⃗ ]
𝑍
𝑑𝑥𝑑𝑦

                         (2-21)[108] 
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where 𝜀0 is the permittivity in absence of perturbation, ∆𝜀 indicates the part of 

the permittivity tensor representing gyrotropy, and the difference between 

forward and backward propagation constants is given by ∆𝛽 = 2δβ. The light 

propagating in opposite directions can be modelled by opposite signs of off-

diagonal elements 𝜀𝑥𝑧, 𝜀𝑦𝑧 and 𝜀𝑥𝑦. 

The applied magnetic field affects those components of the electric field 

which are perpendicular to the magnetic field, but will not affect the components 

of the electric field which are parallel to the magnetic field. TE modes have an 

electric field component along the y axis and TM modes have an electric field 

component along the x axis, since we are considering light propagation along the 

z axis, see Fig. 2.1. Thus, when the magnetisation is along the x axis, only TE 

modes are affected and their phase shift is: 

 

                                      δ𝛽𝑇𝐸 =
𝜔𝜀0

𝛽𝑇𝐸𝑁
∬𝜀𝑦𝑧𝐸𝑦𝜕𝑦𝐸𝑦𝑑𝑥𝑑𝑦                     (2-22)[108] 

 

where N =
1

2
∬[𝐸⃗ × 𝐻⃗⃗ ∗ + 𝐸⃗ ∗ × 𝐻⃗⃗ ]

𝑍
𝑑𝑥𝑑𝑦, 𝜀𝑦𝑧 = 2𝜃𝐹𝑛0/𝑘0 

Whereas when the magnetization is along the y axis, only TM modes are 

affected and the corresponding phase shift is given by: 

 

                                     δ𝛽𝑇𝑀 = −
𝛽𝑇𝑀

𝜔𝜀0𝑁
∬

𝜀𝑥𝑧

𝑛0
4 𝐻𝑦𝜕𝑥𝐻𝑦𝑑𝑥𝑑𝑦                (2-23)[108] 

 

where N =
1

2
∬[𝐸⃗ × 𝐻⃗⃗ ∗ + 𝐸⃗ ∗ × 𝐻⃗⃗ ]

𝑍
𝑑𝑥𝑑𝑦, 𝜀𝑥𝑧 =

2𝜃𝐹𝑛0

𝑘0
, 𝑛0

2 = 𝜀𝑥𝑥 = 𝜀𝑦𝑦 = 𝜀𝑧𝑧. 

Combining equations 2-22 and 2-23 with the fact that ∆𝛽 = 2δβ , and also 

exploiting equations 2-16 and 2-17, the lengths 𝐿1 and 𝐿2 needed for constructive 

or destructive interference (360°or 180° phase difference) can be derived. 

 
 
 

2.2 Magneto-optic Materials 

 

 

Since the discovery of Magneto-Optics and of the various Magneto-optic 

Effects (Faraday Effect, Magneto-Optic Kerr Effect, Cotton-Mouton Effect, 

Zeeman Effect to list but a few) in the nineteenth century, various MO materials 
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have been researched and developed. Magneto-optics finds application most 

prominently for optical isolators and Magneto-optical memories, where the binary 

information is stored/erased in the magnetic domains taking advantage of MOKE 

and of the difference in magnetisation and coercivity below and above their Curie 

temperature. Generally, magneto-optical materials have been divided into three 

categories: (a) Magneto-optical storage materials; (b) Magneto-optical  

semiconductors; (c) Antiferromagnets[119]. 

Magneto-optical storage materials are used for magneto-optical recording. 

Initially, MnBi was the material of choice, given its large MOKE signal. Its 

polycrystalline structure, however, meant high media noise. Later, the amorphous 

RE-TM (rare earth – transition metal, RE = Tb, Gd and TM = Fe, Co) alloys replaced 

MnBi as magneto-optical memory materials due to their large MOKE signal together 

with extremely low media noise; examples of RE-TM alloys are TbFeCo films[119]. 

Magneto-optical semiconductors have been classified under three 

categories: (a) ‘magnetic insulators’; (b) semimagnetic semiconductors (SMS, or 

diluted magnetic semiconductors, DMS) and (c) ferromagnetic semiconductors. 

The denomination ‘magnetic insulators’ denotes ‘large gap magnetic 

semiconductors’, and it includes all magnetic ionic crystals that can be applied in 

optical isolators.  

Among all the ‘magnetic insulators’, cubic garnets stand out for two 

reasons: their large Faraday rotation coefficient (and related Verdet constants), 

and their low loss in the infrared window[97][112][119][120]. Remaining  magnetic 

insulating materials include magneto-optical glasses (oxides and fluorides such as 

FeF2 and MnO, that contain large concentrations of ions like Ce3+, Pr3+, Eu2+, Tb3+, 

etc. [121]).  

The semimagnetic semiconductors (SMS) are II-VI semiconductors where 

nearly half of the host semiconductor material has been substituted by transition 

ions of magnetic semiconductors. Usually they have strong field-induced 

magnetism and large Verdet constants, and MOKE rotation has been observed at 

UV wavelengths. Finally, a III-V ferromagnetic semiconductor, Ga1-xMnxAs, has 

attracted research attention for its picosecond spin dynamics of photoinduced spin 

polarisation, which can be employed in ultrafast magnetic devices [119]. For the 

antiferromagnets (oxides, fluorides and chlorides of the transition metals like NiO, 

FeF2, NiCl2, Fe1-xZnxF2), magnetic linear birefringence (MLB) has found applications 

in spin electronics, magnetoelectric and multiferroic systems. Furthermore, MLB 



34 

Chapter 2 – Magneto-optic Effects 
   

 
 

is excellent in determining the specific heat 𝑐𝑚  of optically transparent 

materials[119]. 

  

 

2.3 Magneto-optical Garnets 

 

 

Rare earth iron garnets (REIG), an elemental unit of which has chemical 

formula Re3Fe5O12, are typical and popular ferrimagnetic Faraday rotation 

materials for their transparency in the infrared window (from 1.5 to 5 µm) which 

is coupled with a high Faraday rotation coefficient [97][112][120][121]. The figure 

of merit (FOM) for garnet films is the ratio of Faraday rotation per unit 

attenuation, i.e. degrees/decibel (dB)[122]. The FOM of  YIG was found to be 800 

deg/dB with 𝜃𝐹 of 240 deg/cm and α of approximately 0.3 dB/cm at a wavelength 

of 1200 nm, with doped YIG yielding even higher FOM [97]. Other MO materials 

with large Faraday rotation coefficient also have high light absorption at the 

wavelengths of interest, e.g. ferromagnetic metals and alloys. Fe thin films and 

Fe-Ni permalloys have FOMs of less than 1 deg/dB[97] or they have much lower 

Faraday rotation coefficient[97][121].    

REIG Re3Fe5O12 gets the name from natural garnet (M2+)3(M3+)2(Si4+)3O12, 

where M2+ can be Ca and M3+ can be Al, as they two share the same complex crystal 

structure. The rare earth ion Re3+ can be a non-magnetic ions (like Y3+) or a 

magnetic ion (like Bi3+, Ce3+[120], and Tb3+ [123] ). Moreover, the Fe3+ ion can be 

partially substituted, which enables REIGs to accommodate elements from half of 

the periodic table. The key parameters used to characterise garnet films include 

optical absorption, temperature and wavelength dependence of Faraday rotation 

coefficient, refractive index, optical birefringence and lattice constants[120]. 

Different doping and substitutions will change the properties of the garnet film. 

By properly tailoring the composition of the garnet film, films with the desired 

properties can be grown by various techniques, like Liquid Phase Epitaxy (LPE), 

sputtering, chemical vapour deposition, sol gel and Pulsed laser deposition (PLD) 

[112]. The composition of the film can be changed to match the lattice constant 

of the garnet films to that of the substrate surfaces, in order to reduce strain.   
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2.3.1 Basics of Magneto-optic Garnets 

 
 

The crystal structure of a garnet is a twisted form of the body centred cubic 

crystal structure, and results from the distortion of the dodecahedron cube[124] 

inside the structure frame. The chemical formula of garnets is 3Re2O3
.5Fe2O3. 

There are 8 units of Re3Fe5O12 composing each unit cell. Re stands for the trivalent 

rare earth such as non-magnetic yttrium or a magnetic rare earth such as 

lanthanum through ytterbium[125]. All rare earth cations in garnets are trivalent, 

which means there will not be any divalent ion of iron in garnets, and all iron will 

be trivalent. There are in total 160 ions in each unit cell, arranged by 24 Fe3+ 

taking the position of an octahedral site (a Fe3+ ion surrounded by six O2- ions), 16 

Fe3+ taking the position of a tetrahedral site (with the Fe3+ ion surrounded by 4 O2- 

ions), 24 Re3+ taking the position of a 12-sided polyhedral-dodecahedral site (with 

Fe3+ surrounded by 8 O2-), and finally 96 O2-.  

Figure 2-6 displays two possible presentations of a unit cell [30]. The top 

right section of the figure shows the location of all cation ions within the cubic 

structure, while the bottom left highlights their connections with the O2- ions. The 

lattice constant of the garnet unit is 12-13 Ao, while that of Si is approximately 5 

Ao, meaning there is a strong mismatch between the two materials. Post-

deposition rapid thermal annealing (RTA) is thus needed in order to achieve 

crystallisation whilst overcoming lattice mismatch.  
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Figure 2-6. Two possible presentations of a unit cell, showing both the location of all the 
cations within the cubic structure (top right), and their bonds with O2- ions (bottom left). 

 

The octahedral sites Fe3+ and the tetrahedral sites Fe3+ have an anti-parallel 

magnetic coupling, with a net magnetic moment of one Fe3+ ion from octahedral 

sites. The direction of the dodecahedral site Re3+ can be either way, depending 

on the specific ion. So the net magnetisation 𝑀𝑠(𝑇) of the garnet can be given 

by[120]: 

 

                                    𝑀𝑠(𝑇) = |𝑀𝑑(𝑇) − 𝑀𝑎(𝑇) ± 𝑀𝑐(𝑇)|                        (2-24) 

 

Where 𝑀𝑑(𝑇),  𝑀𝑎(𝑇) , and  𝑀𝑐(𝑇)  are the temperature-dependent sub-lattice 

magnetisations of the tetrahedral, octahedral and dodecahedral sub-lattices, 

respectively.  

Conventionally, the magnetisation of the material is thought of as being 

only positive, so the absolute value is used. The saturated magnetisation of the 

material is 4πMs (Gauss). A particular temperature called Compensation Point (Tc) 

exists, for which the sum of the sub-lattice magnetisations is zero. The reason is 

the temperature dependency of the sub-lattice magnetisations of the three sites, 



37 

Chapter 2 – Magneto-optic Effects 
   

 
 

together with the fact that under the same applied field the sub-lattice 

magnetisation switches direction below and above the compensation point. 

However, the net magnetisation/saturation magnetisation remains in the 

same direction as that of the external magnetic field while the Faraday rotation 

changes sign below and above the compensation point. The process of how the 

sub-lattice magnetisation switches direction below and above the compensation 

temperature is shown in Figure 2-7.  

The Faraday rotation coefficient θF (T,λ) can be calculated by[120]: 

 

                            𝜃𝐹(𝑇, 𝜆) = 𝐶(𝜆)𝑀𝐶(𝑇) + 𝐴(𝜆)𝑀𝑎(𝑇) + 𝐷(𝜆)𝑀𝑑(𝑇)            (2-25) 

 

θF (T,λ) is the sum of the Faraday rotation coefficient of each site and is a 

function of wavelength and temperature, while it can be clearly seen that it is 

independent of the size of the magnetic field. Attention needs to be paid to the 

fact that the compensation point represents the temperature at which the Faraday 

rotation changes its sign from negative to positive (for increasing temperature), 

but it does not mean that the Faraday rotation will be zero (only the magnetisation 

will be)  [30]. 

 

            

Figure 2-7. Schematic illustrating the change of direction in the sub-lattice magnetisation 
below and above compensation temperature. 
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2.3.2 Radio Frequency Sputtering Deposition 

 

Various techniques, including Liquid Phase Epitaxy (LPE), sputtering, 

chemical vapour deposition, sol gel, and Pulsed laser deposition (PLD) [112] can 

be used to grow garnet films. Traditionally, garnet films are grown on lattice-

matched GGG(Gadolinium gallium garnet, Gd3Ga5O12) substrate by the LPE 

method. This  process requires the use of lead (Pb) which then ends up in the film 

as an impurity and leads to an increase in the optical absorption of the film [126]. 

In this project, our collaborators, Prof. Bethanie Stadler’s group from 

University of Minnesota, adopted a Pb-free RF(radio-frequency) multi-target 

sputtering method to prepare garnet thin films of various compositions on a 

semiconductor platform[127]. As targets made of different materials can be used 

for deposition of different garnet films while the sputtering condition is kept 

constant, RF sputtering has an improved deposition rate and offers accurate 

control of the stoichiometry of the film, thus helping to produce garnet thin films 

of very good quality.  

After extensive research, our collaborators have succeeded in producing 

different substitutions of high quality garnet films with large Faraday rotation 

coefficients. All the MO films used in this project were provided by the University 

of Minnesota, that deposited the films and carried out initial characterisation. The 

garnets used for this work include Ce-YIG (Cerium Yttrium Iron Garnet, n=2.22 at 

1550 nm) films on YIG (Yttrium Iron Garnet,+200°/cm at room temperature, n=2.1 

at 1550 nm[127]) seedlayers showing a Faraday rotation of -3700 °/cm, Bi-YIG 

(Bismuth Yttrium Iron Garnet) films[128] on YIG (Yttrium Iron Garnet) seedlayers 

showing a Faraday rotation of -1700 °/cm, Ce-YIG (Cerium Yttrium Iron Garnet) 

films on MgO (Magnesium oxide) buffer layer[129], Ce-TIG(Cerium Terbium Iron 

Garnet, n=2.3 at 1550 nm) film with -2600 °/cm, TIG(Terbium Iron Garnet, n=2.3 

at 1550 nm) films with +500 °/cm and Bi-TIG(Bismuth Terbium Iron Garnet, n=2.3 

at 1550 nm) with -500 °/cm[123].        

The sputtering deposition of TIG(Terbium Iron Garnet) film will be used as 

an example to explain the deposition process, but obviously the numerical 

quantitieswill vary depending on the specific garnet material and composition. 



39 

Chapter 2 – Magneto-optic Effects 
   

 
 

The garnets were deposited in Minnesota on pre-masked samples prepared in 

Glasgow JWNC, using RF sputtering with an argon plasma and 20.4 sccm Ar flow. 

The Fe target was sputtered at 220 w of RF power and the Y and Tb (or Re) targets 

were sputtered at 120 w. A 2.0 standard cubic centimeters (sccm) oxygen flow 

was also perfomed during depositon, and the chamber pressure was kept at 6.0 

mTorr. During the process, the Ar+ ions bombard the Fe/Re targets ejecting 

Fe3+/Re3+ from the targets, with the ejected ions then travelling to the sample 

substrate, building up a thin film. The structure of the deposition chamber and 

the process is shown in Figure 2-7. 

 

                                

Figure 2-8. Schematic showing the structure of the deposition chamber and the deposition 
process. 

 
 

 

2.3.3 Characterisation of the garnet thin film 

 

 

All deposition, sputtering optimisation, and characterisation of the garnet 

film itself were carried out by our collaborators, Professor Bethanie Stadler’s 

group from University of Minnesota, so all the deposition parameters and 

characterisation results discussed in this chapter have been gently provided by 

them. The properties of the iron garnet film that matter for the application sought 

are the chemical stoichiometry, crystallinity, refractive index, magnetic 

properties (e.g. saturation magnetisation and saturation magnetic field), and the 

Faraday rotation coefficient. Targeted measurement methods were adopted for 

each individual property[38].  

The chemical stoichiometry is related to optical absorption and 

crystallinity. A lack of stoichiometry in the garnet is the main cause of optical 
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absorption within the 1310 nm and 1550 nm telecommunication bands[120]. The 

correct stoichiometry should have Fe3+ in the garnet, while Fe4+ and Fe2+ ions cause 

strong absorption in both the visible and the infrared wavelength range. Also, only 

garnets films with the right stoichiometry can exhibit perfect crystallinity, and 

this in turn explains why amorphous non-crystallised garnet films have larger 

optical propagation losses than crystallised films.  

A scanning electron microscope (SEM) equipped with energy dispersive X-

ray spectroscopy analysis is normally used to obtain the chemical composition of 

the garnet films, while information on crystal structure and crystallinity are 

obtained through standard θ-2θ X-ray diffraction (XRD) methods. XRD, however, 

lacks the spatial resolution needed for accurate analysis of the morphology of the 

film, and also it requires the film under test to be densely packed with a smooth 

flat surface. Moreover, the size of garnet film also needs to be in the order of few 

hundred of microns, as the smallest beam spot size of a standard commercially 

available XRD tool is 100 µm.  

The XRD method is therefore mainly used on wafer-scale specimens with 

smooth surface. Our collaborators use XRD during a trial sputtering run on an 

unpatterned wafer, to check the crystallinity of the thin film deposited before the 

actual deposition on a patterned sample. XRD can also be used on samples with 

dense patterns: the data will in this case be provided by the so-called 

polycrystalline powder diffraction, rather than by single-crystal diffraction.  

Another measuring method is the Electron Backscattered Diffraction (EBSD) 

system, which can be added as an accessory in a SEM and has a lateral spatial 

resolution from 0.1 to 0.01 µm, which is two orders of magnitude higher than that 

of the XRD methods[130]. ESBD methods are used for smaller patterns and precise 

phase examination, such as crystal orientation, crystallinity percentage, and 

phase boundary. 

In order to get the refractive index at a wavelength of 1550 nm (relevant 

to our application) a visible/near infrared spectrometer is used to measure the 

optical transmission spectra of the film. Magnetic properties, like saturation 

magnetisation and saturation magnetic field, are measured using a vibrating 

sample magnetometer (VSM) and the Faraday rotation coefficient is obtained using 

a dedicated measurement rig which detects a net signal difference resulting from 

the Faraday rotation in presence of a magnetic field. 
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In this work an SEM equipped with different detector systems is used to 

analyse both chemical composition and crystallography. Based on the differences 

in interaction depth between the electron beam and the specimen, and on the 

energy carried by the excited signal, the detected elements usually employed in 

the analysis are: Auger electrons, Secondary electrons (SE), Backscattered 

electrons (BSE), Characteristic x-rays and X-ray continuum (see Figure 2-9)[131]. 

Auger electrons usually occur at a few nm depth, SEs usually occur at 1-

10nm depth, while BSEs occur at 10 nm-1000 nm depth[132]. Auger electrons, SEs 

and BSEs all result from elastic scattering, where there is only a change in 

trajectory between the scattered electron and the incident electron, with nearly 

no energy loss. Characteristic X-rays and X-ray continuum instead derives from 

inelastic interactions with energy transfer taking place from the incident electrons 

to the atoms of the sample.  

Therefore, the electrons emitted from just beneath the surface can be used 

to get the topography of the surface, while the electrons excited from deeper, 

and carrying a characteristic energy of the atoms of the film, can be used for 

chemical composition analysis. In our application, SEs and BSEs can be used for 

normal SEM imaging; BSEs can be used together with the EBSD system for 

crystallographic analysis, and Characteristic X-ray can be used in energy dispersive 

X-ray diffraction (EDX) analysis to provide the chemical composition information. 
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Figure 2-9.Describes that in the SEM chamber different forms of signals are emitted based on 
the differences in interaction depth between the electron beam and the specimen and the 
energy the excited signal carries. 

 
 

 

2.3.3.1 Crystallographic analysis - XRD and EBSD 

 
Through XRD (θ-2θ X-ray diffraction) and EBSD (Electron Backscattered 

Diffraction), the two important crystallographic research tools, one can identify 

the atomic/molecular structure, the mean positions of the atoms and their 

chemical bonds, their disorder, crystallography, crystallographic orientation, 

crystal systems, orientation mapping, defect studies, phase identification, and 

grain boundary. In this work, only the crystallinity and the crystalline percentage 

of the garnet film are the properties of primary concern. Nowadays, all 

commercial XRD and EBSD tools are highly automated, so that they can collect the 

information from the specimen and automatically analyse the collected data by 

comparing them with a database to work out all the crystallographic information 

about the specimen. 

Both methods are based on Bragg’s diffraction law (see Figure 2-10), stating 

that the difference between the distances travelled by two beams that interfere 

constructively is an integer multiple of the wavelength: 
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                                                 2𝑑 sin 𝜃 = 𝑛𝜆                                          (2-26) 

 

where a beam of X-ray radiation (in the XRD case) or electrons (in the EBSD case) 

is incident on a periodic crystal structure and the emitted signals satisfy the Bragg 

condition to produce a constructive interference. At last, the total effect of all 

constructive interferences will contribute to the XRD spectra, that will have peaks 

of different intensities in preferred lattice planes.  

 

                                 

Figure 2-10. Illustration of Bragg’s condition, where the difference between the distances 
travelled by two beams that interfere constructively is an integer multiple of the wavelength, 

𝟐𝒅𝐬𝐢𝐧 𝜽 = 𝒏𝝀. 
 

 

 

As previously discussed, there are limitations to the spatial resolution of 

XRD, and XRD is used in research for garnet thin films deposited on a whole wafer. 

Since XRD is a relatively simple-operation tool, it’s useful to quickly check the 

crystallinity of the garnet thin film during the sputtering optimisation and 

development process. The XRD spectra of Bi:YIG and Ce:YIG layers grown with or 

without a seed layer is shown in Figure 2-11 (a) and (b), respectively[128]. The 

figures show the polycrystalline garnet crystal phase having three major peaks at 

orientations (400),(420),(422) and two minor peaks oriented in plane (521) and 

(532), agreeing with the XRD spectrum of garnet in database. 
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Figure 2-11.  XRD spectra of: (a) Bi:YIG layers grown with or without seed layer; (b) Ce:YIG 
layers grown with or without seed layer[35]. 

 
 

 

As the garnet film on top of the samples used in this work is patterned in 

µm-scale segments and is also polycrystalline, XRD is less useful. As such, EBSD 

(Electron Backscattered Diffraction) with its much higher resolution is used to 

check the crystallographic orientation and also the crystal orientation mapping, 

necessary to work out the crystalline percentage. Differently from standard SEM 

imaging where the incident beam is perpendicular to the surface of the specimen, 

the stage carrying the specimen is tilted by approximately 70o[132], so that the 

angle between the incident electron beam and the surface of the specimen is 

approximately 20o in order to increase the intensity of the backscattered electron 

signal (see Figure 2-11)[133][134]. When the specimen is tilted, the incident beam 

approaches the surface at a small angle, increasing the chance of electrons 

escaping from the surface and thus maximising the intensity of the EBSD pattern, 

which is depicted in Figure 2-12[134].   

  

                                   

Figure 2-12. Schematic showing how the chance of electrons escaping from the surface 
increases by tilting the specimen. 
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The biggest characteristic of the EBSD pattern is the Kikuchi bands. When 

the electron beam enters the tilted specimen, it is first diffused underneath the 

surface and then inelastically scattered in all directions, including the ones 

satisfying Bragg’s condition which can escape the surface. As the diffraction is in 

all directions, the electrons that satisfy Bragg’s condition are emitted out of the 

surface at the Bragg angle θB in all directions, which makes the locus of the 

diffracted trace the surface of a cone with its normal to the reflecting atomic 

planes with half-apex angle as 90 - θB. A typical Bragg angle  of approximately 

0.5o[133] is obtained by substituting typical values of electron wavelength and 

lattice inter-planar spacing in Bragg’s law equation, which makes the cone almost 

flat. The diffraction occurs at both the front and the back of the atomic planes, 

so that two cones are observed from each atomic plane. When the two cones 

extend to intercept the phosphor screen of the EBSD detector, a pair of nearly 

straight lines with an angular width of 2θB is imaged, called Kikuchi lines or bands. 

Knowing the angular width of the Kikuchi lines, the inter-planar spacing can 

be calculated. Each lattice plane has a pair of corresponding Kikuchi lines with 

specific orientation and angular width imaged on the screen. Some of the Kikuchi 

bands intersect, where the intersection corresponds to a zone axis of the garnet 

structure. Thus, the EBSD Kikuchi pattern reflects both the inter-planar and inter-

zonal information. When an EBSD Kikuchi pattern is gained from the specimen, an 

automated indexing is performed by the software and the specific material and 

structure can be identified by comparing the collected EBSD pattern with 

thousands in the database. 
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Figure 2-13. Illustration of the EBSD Kikuchi pattern formation. 

 

 

Figure 2-13 shows the indexed and matched EBSD Kikuchi pattern of Ce-YIG 

on 5 nm MgO annealed at 750 DegC in 120 mBar O2 atmosphere. Figure 2-13(a) 

shows a good match with the EBSD pattern of garnet saved in the database, while 

Figure 2-13(b) shows the EBSD pattern from silicon. Also by carrying out a 

crystallography mapping, the garnet turns out to be partially crystallised.  
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(a)  (b)  

Figure 2-14. EBSP patterns of: (a) garnet, with the blue lines outlining the crystalline structure 
which agrees with that in the database; (b) Si, with the red lines outlining the crystalline 
structure which agrees with that in the database 

 

 

 

2.3.3.2 Hysteresis Curve and Faraday rotation Coefficient Measurement 

 
The magnetic properties of the garnet film are measured using the 

traditional Vibrating Sample Magnetometre (VSM), where the sample is placed 

inside a strong uniform magnetic field and vibrated up and down and the magnetic 

moment of the garnet film is measured using “pick-up” coils placed above the 

vibrating sample and orientated perpendicular to the applied field. The field from 

the sample is then dected and  converted to an electrical signal to be collected in 

a lock-in amplifier and then  analysed and converted back to corresponding 

magnetic expressions. By varing the magnitude and direction of applied magnetic 

field, a characteristic hysteresis curve of the material can be obtained.  

Figure 2-14 shows the VSM hysteresis curves (normalised) of Ce-TIG [123], 

where the saturation magnetisation (ms), remnant magnetisation (mrs), coercivity 

(hc), and magnetic field needed to saturate the film (hs) are visibly presented. 

Here, coercivity (hc) is the intensity of the magnetic field required to reduce the 

magnetization of that material to zero after the magnetic saturation of the 

sample. Therefore, when the sample needs to be magnetized in the opposite 

direction, the magnetic field needs to be larger than hc. In our optical 

characterisation process, samples are saturated in opposite directions and 

measured separately. In order to get the sample with Ce-TIG on top, the magnetic 

field needs to be larger than hs, around 3000 Oe. Here we use a permanent magnet, 

which can provide around 1200 Oe, to magnetize the sample. After being 

magnetized in one direction, the sample is taken away from the permanent 
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magnet for measurement, so that remnant magnetization (mrs) is used in the 

measurement process. 

 

 

Figure 2-15. VSM hysteresis curve of Ce-TIG. A 1.5k Oe-2k Oe magnetic field is needed to 
saturate all these garnets. 

 

 

The Faraday rotation coefficient is measured by using the measurement rig 

shown in Figure 2-15 [38]. First, a linearly polarized and collimated beam from 

the laser source passes through a halfwave plate, rotating at 45o, where the 

amplitude of the TE and TM modes (conventionally, p and s orthogonally polarised 

beams in free space) are the same, and the beam is then modulated to reference 

frequency by the chopper. Then, it passes through the sample and is split into TE 

and TM modes using a polarizing beamsplitter. A pair of magnets are set at the 

sides of the sample where an external magnetic field parallel to the light 

propagation direction can be applied. When there is no magnetic field, no Faraday 

rotation occurs when light passes through the unmagnetised sample, and there is 

no difference in the signal strength between the TE and TM modes, unless there 

is remnant magnetisation present. Therefore, a net signal difference resulting 
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from the Faraday rotation is detected when the sample is in the presence of a 

magnetic field, from which the Faraday rotation can be calculated.  

The Faraday rotation coefficient of the material adopted in this project, 

measured at a working wavelength of 1550 nm at room temperature, is YIG (200 

deg/cm, n=2.1 [127]), Bi-TIG (-500 deg/cm, n=2.3 [123]), TIG (500 deg/cm, n=2.3 

[123]), Ce-YIG on YIG (-3700 deg/cm, n=2.22 [128]), Ce-TIG (-2600 deg/cm, n=2.3 

[123]). 

 

Figure 2-16. Faraday rotation coefficient measurement rig. 
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3 Chapter 3—Simulation and Design of 
Nonreciprocal Polarisation Mode Converter 

 

3.1 Introduction 

 

 

In order to avoid the mis-match in thermal expansion between the MO 

(magneto-optical garnet (10.4 ppm/°C, ppm means parts-per-million, 10-6) and Si 

(2.33 ppm/°C) [135] substrate during the annealing process that is necessary to 

crystalize garnet, small micron-scale widths of garnet island segments are used 

[136]. For garnet-segmented cladding on Si waveguides, there are two ways 

leading to it: one is to deposit whole garnet layers on Si and then getting it re-

masked by spinning HSQ, PMMA, or photoresist and patterned through e-beam 

lithography or photolithography, and then to use phosphoric acid to etch down to 

get garnet islands. The other is to use the lift-off process to get the garnet islands 

mask, and then deposit garnet on the sample; after lift-off, no etch process is 

needed, and we can get garnet islands.  

Dr. Barry Holmes initially tried the first method on III-V (GaAs) (however, 

the GaAs etched quicker than the garnet), and Sang-Yeob Sung et al. [135] tried 

wet etching on a Si substrate, which led to non-vertical sidewalls and rough edges. 

Therefore, Dr. Holmes pioneered the second method on III-V wafers – the lift-off 

process - which was adopted here to obtain garnet segments on SOI [89].  

Simulation of both the NR-PMC part and R-PMC part is run in MATLAB© . The 

simulation of the NR-PMC section is conducted in WGMODES© , which is a MATLAB© -

based full-vector finite difference discretization mode-solver package, and is used 

to calculate the electromagnetic modes of optical waveguides with transverse, 

non-diagonal, anisotropy based on transverse magnetic field components 

developed by Thomas E. Murphy from the University of Maryland [137]. Meanwhile, 

the simulation of the R-PMC part was also carried out in a MATLAB©  program.  

The incorporation of the xy off-diagonal elements in the permittivity tensor 

allows us to model the magneto-optical Faraday effect when applying a 

longitudinal magnetic field. Magneto-optical Faraday Rotation in MO cladding 
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modifies the guided modes in waveguides that are related to the off-diagonal 

elements of the permittivity tensor, which was discussed in detail in Chapter 2, 

and results in a significant Stokes parameter S3 component. The bigger the Faraday 

coefficient, the bigger the absolute value of the S3 Stokes parameter, the shorter 

the device required for the same rotation degree [138]. 

 

 

3.1.1 Stokes Parameters and Poincare Sphere  

 

                        

 

Figure 3-1. The rotation degree/azimuth (ψ) and the ellipticity angle (χ of a normal elliptically 
polarized lightwave in an x-y coordinate system. 

 

 

Stokes parameters (𝑆0, 𝑆1, 𝑆2, 𝑆3) [139]–[141] are a set of values used to 

describe the polarization state of electromagnetic waves. They can reflect the 
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total intensity (I), the rotation degree/azimuth (𝜓), and the ellipticity angle (𝜒) 

of a normal elliptically polarized lightwave, as seen in Figure 3-1. The relationship 

of the four Stokes parameters is shown in the equations below: 

 

                                                𝑆0 = 𝐼                                                         (3-1) 

 

                                               𝑆1 = 𝐼𝑝 cos 2𝜓 cos 2𝜒                                     (3-2)    

                                       

                                               𝑆2 = 𝐼𝑝 sin 2𝜓 cos 2𝜒                                     (3-3) 

 

                                               𝑆3 = 𝐼𝑝 sin 2𝜒                                               (3-4) 

 

𝑆0  describes the total intensity of the optical beam, which is usually 

normalized as unit 1. As shown in Figure 3-2, 𝑆1 describes the preponderance of 

LHP (linearly horizontal polarized) light, of which the Stokes parameters are (1, 

0, 0) over LVP (linearly vertical polarized) light, of which the Stokes parameters 

are (-1, 0, 0). 𝑆2 describes the preponderance of L+45°P (+45° linearly polarized) 

light, of which the Stokes parameters are (0,1,0) over L-45°P (-45° linearly 

polarized) light, of which the Stokes parameters are (0, -1, 0). 𝑆3 describes the 

preponderance of RCP (right circularly polarized) light, of which the Stokes 

parameters are (0, 0, 1) over LCP (left circularly polarized) light, of which the 

Stokes parameters are (0, 0, -1). Thus, the 𝑆3 parameter is an indication of the 

gyromagnetic effect. The Faraday rotation effect is a kind of gyromagnetic effect. 

The absolute value of the 𝑆3 parameter is used in the simulation in this chapter as 

an indication of the magnitude of magneto-optical Faraday rotation. The bigger 

the Faraday coefficient of the magneto-optical garnet material, the bigger the 

absolute value of the S3 Stokes parameter, the shorter the device required for the 

same rotation degree [138].  

 

The Poincaré sphere [142] (Figure 3-2) is a sphere used to 

visualise (𝑆1,𝑆2,𝑆3). Then, for polarised light with a given power 𝐼, there is: 

 

                                              𝐼 = 𝑆0                                                           (3-5) 
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                                             𝑝 =
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2
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                                           2𝜓 = tan−1 𝑆2

𝑆1
              (0 ≤ 𝜓 ≤ 𝜋)                   (3-7) 

 

                                          2𝜒 = tan−1 𝑆3
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2
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𝜋

4
≤ 𝜒 ≤
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4
)                    (3-8) 

 

Where 𝑝 denotes the degree of polarisation of the lightwave. 

Each point on the Poincaré sphere represents a specific polarisation state. 

Points on the equator stand for all orientations of linearly-polarized light; the 

north and south poles stand for right and left circular polarization, respectively. 

All other points on the sphere represent elliptically polarised states, with 

ellipticity increasing with the distance from the equator. Two diametrically 

opposite points on the Poincare sphere represent two orthogonal modes, such as 

the TE mode and TM, shown in Figure 3-2, with the axis through them 

corresponding to the optic axis [138]. The Stokes vector angle of the two 

orthogonal modes is π. The Stokes Vector (𝑆1,𝑆2,𝑆3)  angle between opposite 

directions of magnetization is used to indicate the magnitude of Faraday rotation 

of the device in the optical characterisation process, detailed in Chapter 5. An 

angle of π indicates that the two modes are orthogonal to each other while 

magnetized in opposite directions, and total isolation can be achieved combined 

with appropriate waveplate and polarisers.        
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Figure 3-2. The Poincaré sphere is a sphere used to visualise (S1, S2, S3). Points on the equator 
stand for all orientations of linearly polarized light; the north and south poles stand for right 
and left circular polarization, respectively. All other points on the sphere represent elliptically 
polarised states, with ellipticity increasing with the distance from the equator. 

 
 

 

As an excellent way to visualize the polarised light, and also to describe 

the trace of the change of the polarisation of the light, the Poincaré sphere has 

been widely used [138][143][144] to show the changes in the state of polarised 

light.  

 

3.1.2 Simulation Methods 

 

In order to compute the electromagnetic modes of waveguides, finite 

element methods, mode-matching techniques, the Eigen-mode expansion (EME) 

method, mode-solving techniques, the beam propagation method (BPM), the 
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method of lines, the finite-difference time domain (FDTD) method, and finite 

difference methods are commonly used [145]. Among them, the Eigen-mode 

expansion method/mode-solving techniques, the beam propagation method, and 

the finite-difference time domain method are the most popularly integrated and 

commercialized in software like RsoftTM BeamPROPTM (BPM), FullWAVETM (FDTD), 

ModePROPTM (EME), Lumerical©  FDTD, and Lumerical©  ModeSolutions (EME, FDTD). 

Since the beam propagation method relies on the slowly varying envelope 

approximation, it is not accurate for devices with high refractive-index contrast, 

like silicon photonics (Si:3.48, SiO2:1.44 at λ=1550 nm) [146]. To use FDTD, 

however, the entire computational domain must be gridded sufficiently, and very 

large computational domains can be developed, requiring large PC storage and 

extremely long computational hours [145]. For other methods, they either ignore 

the material’s anisotropy, or they require the off-diagonal elements to be very 

small compared to the diagonal elements.  

WGMODES©  is a full-vector finite difference discretization mode-solver 

package based in MATLAB© , and is used to calculate the electromagnetic modes of 

optical waveguides with transverse, non-diagonal, anisotropy based on the 

transverse magnetic field components developed by Thomas E. Murphy from the 

University of Maryland [137]. 

Here, in our case, in order to calculate the basic modes properties (modes 

guiding, effective refractive index, half-beat length), as well as incorporate the 

off-diagonal elements in the permittivity tensor to model the Faraday effect in 

the longitudinal approach in an asymmetric magneto-optical waveguide, the 

WGMODES©  package [137] run in MATLAB©  turns out to be the simplest and 

quickest method. Each simulation only takes around 1-2 minutes, even on a 

computer with an Intel® coreTM i3 processor.  

Through simulation, the range of the half-beat lengths and the optimum 

width of the waveguides were obtained. Based upon the results from the 

simulation, a lift-off mask for e-beam lithography was designed and optimised. 

Here, all simulations were done at a wavelength of 1550 nm, at which the fibres 

have the lowest attenuation over all wavelengths, so the device we designed is 

also intended to work at 1550 nm.  
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3.2 Faraday Rotation Effect Simulation 

 

A software package called WGMODES© , written as MATLAB©  scripts by the 

University of Maryland run in MATLAB© , was utilized for the simulation to get the 

optimum range of the half-beat length, the width of the waveguides, and also the 

effect of different thicknesses of seed/buffer layers on S3 Stokes parameters (the 

Faraday rotation effect). In order to mitigate the asymmetry in the waveguide 

(where any slight misalignment of the garnet islands creates an anisotropic 

waveguide cross section – leading to reciprocal rotation effects), a layer of SixNy, 

with a similar refractive index to garnet, is coated on the sample before applying 

HSQ on top to make waveguides (Figure 3-3). Therefore, there are two layer 

structures: SixNy-Garnet-SOI and SixNy–SOI (Figure 3-4). The model we used is based 

on the SOI wafer we are going to use in fabrication: a 500 nm-thick Si layer on a 3 

µm-thick SiO2 lower cladding layer on an Si substrate. When making waveguides 

in the 500 nm Si core layer, all 500 nm Si is etched down to the SiO2 layer. 

 

 

Figure 3-3. The Si core is cladded by garnet segments alternating with SixNy segments. 
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Figure 3-4. a) A cross-sectional profile of the Si Waveguide on SiO2 with garnet segment 
claddings capped in SixNy; b) A cross-sectional profile of the Si Waveguide on SiO2 with 
SixNy capped on top. 

 

 

Although various magneto-optical materials were researched throughout 

the project: TIG (Terbium Iron garnet), Bi-TIG (Bismuth Terbium Iron garnet), Ce-

YIG (Cerium Yttrium Iron garnet) on MgO (Magnesium Oxide), and Ce-TIG (Cerium 

Terbium Iron garnet), the refractive index of the four are much alike at 1550 nm 

(n(Ce-YIG)=2.22, n(YIG)=2.2, n(TIG)=2.1)), and there is nearly no difference in the 

results of the simulations done to obtain the half-beat lengths of the materials. 

Hence, a refractive index of 2.2 is used in all simulations (for a wavelength of 1.55 

μm).  

Of all the garnets, Ce-TIG is very promising since it has a very large Faraday 

coefficient and, more importantly, does not need any seed layer or buffer layer 

[123], unlike  Ce-YIG - the only other garnet with such a comparatively large 

magneto-optical effect at 1550 nm. Multi-mode waveguides result in a conversion 

between the TE-polarised component and TM-polarised component of different 

orders. Consequently, here, only the fundamental modes were considered and 

studied, where mode conversion only happens between the two fundamental 

modes, which, thus, simplifies both the research and analysis process. Therefore, 

single mode waveguides were required. Conditions for cut-off and multi-mode 

behaviour were first obtained by judging from the effective refractive index of 
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the mode. Only those with the effective refractive index n ranging between 1.44 

(SiO2) and 3.48 (Si) were guided.  

Based on previous measurement experience of garnet-clad waveguides on 

a 500 nm-thick SOI platform, waveguides with a width less than 500 nm will not 

be able to guide any light at a working wavelength of 1550 nm as a result of high 

propagation loss, even though the simulation results show that all fundamental, 

1st order, and 2nd order modes are guided in 500 nm wide waveguides. This is 

believed to be due to stress induced from both the deposited SixNy layer and the 

garnet layer, or the large scattering loss resulting from the rough interface 

between the garnet layer and the Si substrate layer, or the absorption loss from 

the non-crystallized MO garnet material that is partially crystallized [79].  

The reason that a thick core of SOI (340 nm, 400 nm, 500 nm) was used 

here, in spite of the unavoidable multi-mode behaviour, is that the higher order 

modes are more lossy than the fundamental modes, and also need thick cores to 

realise either the L-shaped design or RIE trench design to achieve reciprocal mode 

conversion sections. As such, it was decided to continue using a thick core SOI, 

even whilst being multi-moded, in order to prove the concept of the Faraday 

Rotation Effect from the garnet-cladding layer. Widths ranging from 500 nm-1000 

nm were chosen to get the half-beat length of garnet on SOI for the reason 

mentioned above, and confirmed using a mode-solver in MATLAB© .  

Later, a 220 nm core SOI was also used to test the effect of the thickness 

of the core on the interaction between the evanescent guided wave and the garnet 

layer, thus testing the effect on the Faraday rotation. For both the SixNy-Garnet-

SOI model and the SixNy-SOI model, where the thickness of the Si core layer is 500 

nm, it turns out that even the 500 nm wide waveguides are multi-moded: 

fundamental, 1st order, and 2nd order of both the TE-polarised component and TM-

polarised component were obtained.  

Table 3-1 shows the effective refractive index of all the guided modes 

(fundamental modes, 1st order modes, and 2nd order modes) in 500 nm-wide 

waveguides on a 500 nm SOI platform for the SixNy-Garnet-SOI model and the SixNy-

SOI model, respectively. For waveguides wider than 500 nm (600 nm-1000 nm), 

more modes are supported. 
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 Effective Refractive 

Index 

Effective Refractive 

Index 

Modes SixNy-Garnet-SOI Model SixNy-SOI Model 

Fundamental modes 2.955301, 2.934846 2.946493, 2.923915 

1st order modes 2.321610, 2.060357 2.280050, 2.014293 

2nd order modes 2.009915, 1.614194 1.917639, 1.537461 

 

Table 3-1. The effective refractive index of all the guided modes (fundamental modes, 1st order 
modes, and 2nd order modes) in 500 nm-wide waveguides on a 500 nm SOI platform for the 
SixNy-Garnet-SOI model and the SixNy-SOI model, respectively. 

 

 

In mode solver - MATLAB© , a mode solver was utilized and modified to our 

needs in order to calculate how many modes are guided within the waveguide, as 

well as to obtain the half-beat length. When the hybrid light traverses a half-beat 

length 𝐿𝜋, the major axis of the resultant polarisation vector effectively rotates 

π/2, 

 

                                                                  𝐿𝜋 =
𝜋

|𝛽𝑇𝐸−𝛽𝑇𝑀|
                                                                      (3-14) 

 

Or                                                            𝐿𝜋 =
𝜆

2|𝑛𝑒𝑓𝑓,𝑇𝐸−𝑛𝑒𝑓𝑓,𝑇𝑀|
                                                           (3-15) 

 

Where 𝛽𝑇𝐸 and 𝛽𝑇𝑀 are the propagation constants of the two fundamental modes 

and ∆𝛽 = 𝛽𝑇𝐸 − 𝛽𝑇𝑀 is the difference of the propagation constant between the 

two fundamental (single-lobed) modes that propagate in the asymmetric 

waveguides [77]. The effective refractive index of TE- and TM-polarised 

components will change with the shape asymmetry (height and width) of the 

designed waveguide. Here, the height of the waveguide is fixed, so the width 

would be the only factor that is affected.  

Figure 3-5 shows how the effective refractive index of the two single-lobed 

fundamental modes changes with width for the SixNy-Garnet-SOI model and the 

SixNy-SOI model at a working wavelength of 1550 nm, while the relationship 

between Lπ and the width for both of the two models is indicated in Figure 3-6. It 

is obvious that the two models have much the same changing trend, and that the 

half-beat length decreases with the increase of the width and equivalent length. 
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It agrees with what is shown in Figure 3-5, where the difference in neff between 

the two fundamental modes increases with the increase of width. 

 

 

 

 

 

 

Figure 3-5. How the effective refractive index of the two single-lobed fundamental modes 
changes with width for the SixNy-Garnet-SOI model and the SixNy-SOI model, respectively, 
at a working wavelength of 1550 nm. 



61 

Chapter 3 – Simulation and Design of Nonreciprocal Polarisation Mode Converter 
   

 
 

  

 

Figure 3-6. The relationship between Lπ and the width for both of the two models for the 
500nm SOI platform at a working wavelength of 1550 nm. 

 

 

Therefore, by defining the correct beat length using equation (3-14) for the 

MO-cladding segments, quasi-phase matching (QPM) can be achieved in the MO-

cladded waveguides. Later on, by carrying out the corresponding optical 

measurements, the Faraday rotation degree per cm length can be obtained for 

the actual device. From this, the total length of the QPM waveguides and the 

number of periods required for a polarisation state change necessary for an 

integrated isolator, 45° nonreciprocal rotation, or any other arbitrary angles of 

polarisation can be decided.  

All fabrication errors, simulation errors, and the influence of garnet on light 

guiding are considered, for both SixNy-Garnet-SOI and SixNy-SOI (as shown in Figure 

3-4). The width range of 600 nm-1100 nm is chosen for the Si core layer of the 

waveguide. The width of the garnet-cladding segments needs to be 100 nm-200 

nm less than that of the Si waveguides to be sure that all garnets are situated on 

top of the Si waveguides; otherwise, part of the garnet cladding may fall out and 

act as a dry etch mask in the following process. This would both affect the 
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evanescent interaction, as the majority of interaction occurs in the middle of the 

guide, and also increase propagation loss, resulting from the rougher edge of the 

waveguide with garnet masking in the dry etch process. Thus, the widths of garnet 

islands were chosen as 500 nm-900 nm.  

The designed half-beat length of garnet-covered areas (length of the garnet 

islands) ranged from 10 μm-15 μm, with an increment of 0.5μm, and different 

ranges of gaps, starting from 10 μm, were chosen according to the length of the 

half-beat length for the non-garnet-covered areas. This takes account of the 

different refractive index of the garnet-clad areas to the non-garnet-clad areas. 

(This is not an issue when over-coating with SixNy). As a result, different duty 

cycles of waveguides were designed to test the Faraday rotation that resulted 

from the garnet islands on top. For example, for the half-beat length of 12 μm, 

gaps vary from 10 μm-12 μm with an increment of 0.5 μm; therefore, duty cycles 

start from 22 μm and end at 24 μm when the half-beat length is 12 μm, which 

applies to all widths. Based on what we learned from the results of the simulation, 

a suitable mask for fabrication can be constructed using L-edit© . 

The same simulation method applies to 400 nm SOI, 340 nm SOI, and 220 

nm SOI platforms. Similarly, we can get the relationship between Lπ and the width 

for both of the two models for these three platforms, which is indicated in Figure 

3-7. The same parameters selection rules applied as for 500 nm SOI and 600 nm-

1000 nm are chosen for the width range. For the 400 nm SOI platform, the designed 

half-beat length of garnet-covered areas (length of the garnet islands) ranged 

from 5 μm-14 μm, with an increment of 0.5 μm. Different ranges of gaps starting 

from 5 μm were chosen according to the length of the half-beat length for the 

non-garnet-covered areas. For the 340 nm SOI platform, the length of the garnet 

islands ranged from 3 μm-5.5 μm, with an increment of 0.5 μm, and different 

ranges of gaps, starting from 3 μm, were chosen for the non-garnet-covered areas. 

For the 220 nm SOI platform, the length of the garnet islands ranged from 1.1 μm-

2.4 μm, with an increment of 0.1 μm, and different ranges of gaps, starting from 

1.1 μm, were chosen for the non-garnet-covered areas. 
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Figure 3-7. The relationship between Lπ and the width for both the SixNy-Garnet-SOI and 
SixNy-SOI models on 400 nm SOI, 340 nm SOI, and 220 nm SOI platforms, respectively. 

 

 

3.3 Effect of Seed/Buffer Layer of Different Thicknesses 
on the Faraday Rotation 

 

Here, all of the simulation was done on a 500 nm SOI platform with a 

working wavelength of 1550 nm. The various kinds of magneto-optical garnet 

materials (YIG (Yttrium Iron Garnet), TIG (Terbium Iron garnet), Bi-TIG (Bismuth 

Terbium Iron garnet), Ce-YIG (Cerium Yttrium Iron garnet) on MgO, and Ce-TIG 

(Cerium Terbium Iron garnet)) researched had different Faraday Rotation 

Coefficients. It leads to the difference in the off-diagonal elements in equation 

(3-12), where 𝜀𝑥𝑦 = 2𝜃𝐹𝑛0/𝑘0 and 𝜀𝑥𝑥 = 𝑛0
2 and 𝜃𝐹 is the amount of the Faraday 

rotation. YIG has the smallest Faraday rotation coefficient of 200°/cm. TIG and 

Bi-TIG have the same amount of 500°/cm but with the opposite sign, which, 
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however, can be used to advantage in the MO(+)/MO(-) alternating design (Figure 

3-8) to enhance the Faraday rotation [79] over a given length. Ce-YIG is reported 

to have the biggest coefficient, reaching -4500°/cm [72] or -3700°/cm [128]. 

However, in our application, as the garnet layer acts as a cladding layer and only 

the evanescent tail of the guided mode interacts with it, the garnet is patterned 

in segments instead of a full thin film, which was researched by our collaborators. 

Therefore, the quality of the garnet is uncertain, and a relatively smaller Faraday 

coefficient was used here, -2000°/cm.  

Knowing the Faraday rotation coefficient, we can get εxy used in the 

modesolver© , and use the simulation to find out the optimal thickness needed to 

achieve the best performance. All of the characteristics are shown in Table 3-2. 

The first column shows the Faraday rotation coefficients of the garnet material, 

which was obtained from the Faraday rotation measurement obtained by our 

collaborators. The second column is the off-diagonal parameter 𝜀𝑥𝑦, calculated 

using equation 𝜀𝑥𝑦 = 2𝜃𝐹𝑛0/𝑘0 and 𝜀𝑥𝑥 = 𝑛0
2 and 𝜃𝐹 is the amount of the Faraday 

rotation coefficient displayed in the first column. The third column is the optimal 

thickness needed as the upper-cladding layer for each garnet material obtained 

from the simulation result shown in Figure 3-9.  

 

 

Figure 3-8. The Si core is cladded by garnet segments MO(+) alternating with MO(-) segments. 
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 Faraday Rotation  

Coefficient (°/cm) 

𝜀𝑥𝑦 (x10-4) Thickness for 

optimal 

performance (nm) 

(Figure 3-9) 

YIG 200 4 110 

TIG 500 10 150 

Bi-TIG -500 -10 150 

Ce-TIG -2000 -40 200 

Ce-YIG -2000 -40 200 

 

Table 3-2. The Faraday rotation coefficient, εxy, and thickness for optimal performance of 
different garnet layers. 
 

Figure 3-9 shows how different thickness of the garnet layer affect the 

Average S3 parameters of the quasi-TE and quasi-TM mode. Here, the S3 

component is taken as a characteristic to show the Faraday rotation in the 

magneto-optical cladding [86]. From the S3 component, the length of device 

needed for a certain degree of rotation ( 𝜃 ) can be calculated as:  𝐿 = 𝑁 ×

(𝐿𝜋𝑔𝑎𝑟𝑛𝑒𝑡 + 𝐿𝜋𝑆𝑖𝑥𝑁𝑦),  𝑁 =
𝜃

2𝑆3̅̅ ̅
 . Here, we suppose 2 sin−1 𝑆3̅ ≈ 2𝑆3̅, 𝑁 is the period 

needed, and 𝜃 is the degree rotated [86]. As the absolute value of the Faraday 

coefficient of TIG and Bi-TIG is the same, they are present together; the same 

applies to Ce-TIG and Ce-YIG. It is clear that the garnet layer of the bigger Faraday 

rotation coefficient gets bigger absolute Average S3 parameters, and it increases 

with the increase of the thickness of the garnet layer until it reaches an optimal 

thickness and goes steady.  

The garnet material is employed as upper cladding in our structure. The 

evanescent tail of the mode extends into a limited thickness of the upper cladding 

layer. Thus, after a certain thickness, the absolute Average S3 parameters stop 

increasing with the increase of the upper cladding thickness. The optimal 
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thickness for the YIG layer is 110 nm, for TIG/Bi-TIG it is 150 nm, and for Ce-

TIG/Ce-YIG it is 200 nm. 

 

 

 

Figure 3-9. How different thickness of the garnet layer affect the Average S3 parameters of the 
quasi-TE and quasi-TM mode. As the absolute value of the Faraday coefficient of TIG and Bi-
TIG is the same, they are presented together; the same applies to Ce-TIG and Ce-YIG. It is 
clear that the garnet layer of the bigger Faraday rotation coefficient gets bigger absolute 
Average S3 parameters, and it increases with the increase of the thickness of the garnet layer 
until it reaches an optimal thickness and goes steady. The optimal thickness for the YIG layer 
is 110 nm, for TIG/Bi-TIG it is 150 nm, and for Ce-TIG/Ce-YIG it is 200 nm. 
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Of all the garnet materials, terbium-based novel garnet is the most 

promising material as it does not require any seed/buffer layer, usually using 

YIG/MgO to achieve the crystallised phase [123]. This is a very important 

advantage when integrated into an integrated system as the adoption of a 

seed/buffer layer weakens the magneto-optical performance of the garnet layer 

[77]. However, in the early stage of research into terbium-based garnets, samples 

with/without an MgO buffer layer had to be checked to discover whether terbium-

based garnets needed a seed/buffer layer to get crystallized or not (discussed 

more fully in Chapter 4).  

Simulation of the existence and different thickness of MgO buffer layers on 

the performance of all the garnets were carried out and are displayed in Figure 3-

10. Here, the optimal thickness of the garnet layer is used, YIG (110 nm), Bi-

TIG/TIG (150 nm), and Ce-TIG/TIG (200 nm). It is demonstrated that the MgO 

buffer does severely decrease the Average S3 parameters. Compared to the quasi-

TE mode, the quasi-TM mode is more sensitive to the MgO layer. Only 10 nm of 

the MgO layer will weaken the S3 component by more than half of its original 

value. Also, the S3 component completely vanishes when the MgO layer reaches 

100nm. In actual fabrication, as the Tb (Terbium) family of garnets, like Bi-TIG, 

TIG, and Ce-TIG, do not require a buffer/seed layer to get crystallized [123], the 

S3 component will stay at its maximum value and not decrease at all. 
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Figure 3-10. The existence and different thickness of the MgO buffer layer on the performance 
of all the garnets. It is demonstrated that the MgO does severely decrease the Average S3 
parameters. Compared to the quasi-TE mode, the quasi-TM mode is more sensitive to the 
MgO layer. Only 10nm of the MgO layer will weaken the S3 component by more than half of 
the original value. Also, the S3 component completely vanishes when the MgO layer reaches 
100 nm. 
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From Figure 3-10 we can see that, among the terbium-based garnets, Ce-

TIG has the same level quantity of Faraday coefficient as Ce-YIG, and can get 

crystallized without any buffer/seed layer and, thus, becomes the best material. 

Comparatively, in order to crystallize Ce-YIG, a seed layer (YIG) or buffer layer 

(MgO) is required as a precursor before the deposition of Ce-YIG, or else the 

Cerium oxide phase forms instead of the Ce-YIG garnet phase. Our collaborators, 

Professor Bethanie Stadler’s group from the University of Minnesota, have made 

enomous endeavors and produced some of the best quality Ce-YIG film [129] [136] 

to date. A seed/buffer layer of MgO/YIG will be deposited before the Ce-YIG; the 

MgO layer acts as the block layer for the interaction between GaAs and Ce-YIG 

[147][148]; the YIG layer can act as a virtual substrate to enhance Ce-YIG’s 

crystallization [149] at a lower temperature.  

The effect of the MgO buffer layer on the magneto-optical performance of 

Ce-YIG is shown in Figure 3-10. Alternatively, the YIG seed layer can also be used 

to help in the garnet-phase-forming process. As predicted, the presence of a YIG 

seed layer underneath the Ce-YIG layer does even more harm to the performance 

(Figure 3-11) than an MgO layer (Figure 3-10), as YIG (+200 deg/cm for thin film) 

has the opposite Faraday rotation coefficient to Ce-YIG (-3700 deg/cm for thin 

film). Meanwhile, MgO behaves neutrally and, what is worse, in order to use YIG 

as a seed layer, the fabrication process becomes much more complicated and 

troublesome compared to the single deposition process using an MgO buffer layer. 

The YIG layer needs to be deposited, lifted-off, and annealed first, and then a 

new lift-off mask needs to be prepared for the deposition of Ce-YIG.  

Block et al. [128] reported that 15 nm of a YIG layer is needed to get the 

Ce-YIG layer 86.1% crystallised, and 45 nm is needed for nearly 100% crystallised. 

From Figure 3-11, we know that if we want 100% crystallised Ce-YIG film with a 

45 nm seed layer, the Faraday rotation effect is substantially decreased; while, if 

we want a bigger magneto-effect with a 15 nm thick seed layer, then the Ce-YIG 

film is only partially crystallised. There is always a compromise between the 

magneto-optical performance and the garnet quality.  

However, recently, an MIT group [67] have come up with a single-step 

deposition using the YIG layer as a cap layer deposited on top of the Ce-YIG layer, 
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which gets the Ce-YIG crystallised as well as avoids hindering the magneto-optical 

performance and strengthens and broadens the usage of Ce-YIG in the future. 

 

 

 

Figure 3-11. The presence and different thicknesses of the YIG layer underneath the Ce-YIG 
layer, and on top of the Ce-YIG layer on the performance of Ce-YIG. It is seen that it will not 
affect the magneto-optical effect of the Ce-YIG layer when the YIG layer acts as a cap layer 
put on top of it.
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4 Chapter 4 - Fabrication of Nonreciprocal 
Polarisation Mode Converter 

 

4.1 Introduction 

 

 
 

A solution is provided in papers[48][49], where we can use garnet as the 

cladding layer to take advantage of its magneto-optical effect, through an 

interaction of the guided modes’ evanescent tail (see Figures 4-1 (a) and 4-1 (b)). 

To use the garnet as cladding, people have used deposition [64], adhesive bonding 

[31][72], and direct bonding [71][80] techniques, combined with non-reciprocal 

phase shift sections to achieve isolation. In our application, the garnet material is 

deposited on a SOI platform using RF (radio frequency) sputtering. Additionally, 

we adopted a quasi-phase matching technique to overcome the inherent 

birefringence effects from planar waveguides, by utilising an upper cladding that 

alternates between magneto-optical (MO) material and non-magneto-optical 

(Non-MO) material, or, between MO(+) segments and MO(-) periodically, like Bi-

TIG (-500°/cm) and TIG (500°/cm), respectively (Figures 4-1 (a) and 4-1 (b)). 

Figures 4-1 (a) and (b) show the two structures of alternating segments, and Figure 

4-1 (c) indicates the difference in conversion efficiency between the QPM design 

and designs that are not phase matched.  
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Figures 4-1 (a) and (b). The layer structure of a waveguide-type isolator with Si as the core 
layer and the magneto-optical garnet as the upper cladding layer indicates the structures of 
NR-PMC alternating between MO segments and Non-MO segments, and between MO(+) and 
MO(-), respectively, All of the refractive index of the material is given at a 1.55µm wavelength. 
(c) demonstrates the difference in rotation efficiency between QPM (MO+ Non-MO structure 
and MO(+)+MO(-) structure) and Phase Mismatching.  

 

 

4.2 Whole Fabrication Process  
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4.2.1 Electron-Beam Resist: PMMA (Polymethyl Methacrylate) and 
HSQ (Hydrogen silsesquioxane) 

 

An electron-beam resist was used in the fabrication process to help define 

the structure features. There are two types (tones) of e-beam resist: positive tone 

resist and negative tone resist. The exposed areas of the positive tone resist clear 

out after development in appropriate chemical solvents, while that of the 

negative tone resist stays and the non-exposed areas are removed. The relation is 

described in Figure 4-2.  

  

 

Figure 4-2. Two kinds of electron-beam resist are used in the fabrication process: PMMA 
(Polymethyl Methacrylate, positive-tone resist) and HSQ (Hydrogen silsesquioxane, negative 
tone resist). 

 

 

Two kinds of electron-beam resist were used in the fabrication process: 

PMMA (Polymethyl Methacrylate, positive-tone resist) and HSQ (Hydrogen 

silsesquioxane, negative tone resist). As an EBL resist, PMMA has been used for 

decades, and is still very popular for excellent definition of ultra-high resolution 

patterns, and multiple layers of any combination of molecular weights can be used 

to minimise pinholes in the resist or provide improved undercut profiles for lift-

off.  
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The two most common molecular weights used are the PMMA 2010 series 

with an average molecular weight of 150,000 g/mol, and the PMMA 2041 series 

with an average molecular weight of 500,000 g/mol. The one with the heavier 

molecular weight is less sensitive to the electron beam, based on which bilayers 

of these two molecular weights can create various different resist profiles for 

different purposes. Figure 4-3 shows two examples of bilayer structures. The left 

can be used as the mask for T-gate devices while the right structure is very useful 

in the lift-off process. However, the PMMA resist has very poor dry etch resistance 

when acting as the dry etch mask in many types of plasma.  

  

 

 

Figure 4-3. The two kinds of bilayer structures. 

 

Comparatively, the HSQ resist has very high dry-etch selectivity, and can 

also provide ultra-high resolution features. The HSQ has negative resist. After e-

beam exposure, the Si-H bonds in the net structure are broken and cross-linking 

occurs. After development, the cross-linked structures form a porous silicon 

dioxide [150], as shown in Figure 4-4 [151]. HSQ can be adopted to achieve clear 

sub 10 nm resolution features [152]. 

 



75 

Chapter 4 – Fabrication of Nonreciprocal Polarisation Mode Converter 
   

 
 

      

 

 

 

 

 

 

Figure 4-4. The network structures and Cage structures before and after exposure [14]. 

                 

  

4.2.2 Whole Fabrication Process  
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Figure 4-5. The whole device fabrication process: Sample clean — Spin PMMA on — E-beam 
exposure — Development — Etch markers down — PMMA removed — Spin bi-layer PMMA 
for lift off — E-beam exposure — Sent to US — Garnet deposition — Lift-off — RTA — SixNy 
coating — Spin HSQ on to — E-beam exposure — SixNy etch — Si etch. 

 

 

The whole fabrication process is described in Figure 4-5. At step ①, a 

sample clean process was carried out. The SOI (Silicon on Insulator) wafers are 

usually 6-inch or 8-inch depending on different manufacturers. The larger wafers 

need to be cut into small pieces, usually 15x15 mm square pieces, for different 

purposes of processing. In order to protect the sample surface and prevent more 
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pollutants (like particles from the scribed line) being introduced during the 

cleaving step, a layer of PMMA resist is applied beforehand to the whole wafer. 

Then, a solvent cleaning process was used to clean the SOI sample pieces – 

opticlear, Acetone ((CH3)2CO), Methanol/IPA (Isopropyl alcohol, C3H8O or C3H7OH 

or CH3CHOHCH3) in an ultrasonic bath, each for 5 mins. Finally, the substrate was 

rinsed under the running tap of RO (Deionized) water and was dried with a nitrogen 

blow dryer. The whole process for sample cleave and clean steps is presented in 

Figure 4-6. If the substrate surface is not clean enough, contamination will act as 

an etch mask in the following pattern-transfer process, and ‘grass’ will form all 

over the sample surface (Figure 4-7), which will lead to poor device performance 

like high optical loss. 

                                        

Figure 4-6. Sample cleave and clean process. 
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Figure 4-7. Contaminated surface and ‘grass’ after etch. 

 

 

For step ②, before getting the PMMA lift-off mask, etched markers used 

for alignment between layers were prepared in e-beam lithography (Au is not used 

due to the high anneal temperatures in subsequent steps). Two layers of 12% 2010 

PMMA were used as the etch resist mask and written at a dose of 650 μC/cm2 with 

a 64 nA e-beam current along with a VRU (variable resolution unit) of 16 under 

100 kV at step ③. The sample was developed in 2.5:1 IPA: MIBK for 140 s followed 

by 45 s IPA at 23.5 Degrees. At step ④, an Si etch tool was used to etch the 

markers down into the Si layer on the SiO2, which was confirmed using the end 

point detector to get the interferometer trace. Therefore, all of these markers 

are 500 nm deep, the same thickness as that of the Si core layer. At step ⑤, 

overnight, hot acetone (50 Deg C) and then 2 mins Oxygen Plasma ash were 

adopted to remove the remnant PMMA resist.  

At step ⑥, a lift-off mask was patterned on the SOI samples for MO garnet 

material deposition. Two layers of 15% 2010 PMMA and 4% 2041 PMMA were applied 

on the sample. After spinning the 15% 2010 PMMA, 10 mins on the hotplate at 180 

Degrees, and 1.5 hours in a 180 Degree oven were conducted for thermal curing. 

At step ⑦, the lift-off mask was written at a dose of 1000 μC/cm2 with a 64 nA 

e-beam current along with a VRU of 16 under 100 kV. Then, the lift-off mask was 

developed in 2.5:1 IPA: MIBK for 65 s followed by 45 s in IPA at 23.5 Degrees. At 

step ⑧ and ⑨, samples were carefully packed and sent to the US for magneto-

optical garnets deposition by our collaborators, Andrew Block (involved in the 

project in the first year), then Prabesh Dulal (main collaborator throughout the 

project) in Professor Bethanie Stadler’s group at the University of Minnesota. 
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According to the simulation results in Chapter 3, the optimal thickness for the YIG 

layer it is 110 nm, for TIG/Bi-TIG it is 150 nm, and for Ce-TIG/Ce-YIG it is 200 nm. 

As there is atomic trajectory restriction in the RF deposition process, thicker 

garnet, 300 nm, was deposited. 

Once returned, a lift-off process was carried out at step ⑩. Four hours in 

hot acetone would lift-off the bi-layer PMMA mask and 5 mins in acetone and 5 

mins in IPA in an ultra-sonic bath were used to give thorough PMMA lift-off and a 

good clean of the whole sample. Then, it was annealed in an RTA (rapid thermal 

annealing) tool in an oxygen atmosphere at 900° for 2 mins to achieve 

crystallisation at step ⑪. Afterwards, the crystallisation phase was analysed in 

an XRD (X-ray diffractometer) and with an EBSD (electron backscatter diffraction) 

by our collaborators.  

Hereafter, at step ⑫, a 100 nm thick SixNy of the same refractive index as 

the garnet material, around 2.1 at a wavelength of 1550nm, was coated all over 

the sample surface to exclude the observed periodic loading effect that arose 

from slight offsets of the garnet segments on top of the Si waveguides. The slight 

offsets led to a reciprocal mode conversion from the periodic garnet segments (as 

the offset led to asymmetric profiled guides, in turn leading to mode conversion). 

The SixNy film was deposited in an ICP-CVD (Inductively Coupled Plasma Chemical 

Vapor Deposition) tool. The standard recipe for SixNy deposition is with 

SiH4/N2=7/6 sccm, ICP/Platen=100/0 w at a pressure of 4 mTorr at 25 oC.  

Then, at step ⑬ and step ⑭, HSQ (Hydrogen silsesquioxane)-negative resist 

was spun at 2000 rpm and baked on a hotplate for 15 mins and written at a dose 

of 650 μC/cm2 with an 8 nA e-beam current along with a VRU of 8 under 100 kV. 

Afterwards, the mask was developed in neat TMAH for 30 s, followed by 30 s in RO 

(de-ionsed) water, 30 s in RO (de-ionsed) water, and 45 s in IPA.  

Then, at step ⑮, the pattern was transferred to the SixNy layer by etching 

into the SixNy layer with the 80 PLUS RIE tool. Gas CHF3/O2 = 50/5 sccm was used 

to get vertical features at room temperature while setting the platen power to 

150 w and the pressure at 55 mTorr.  

Afterwards, at step ⑯, the STS-ICP dry etch tool was usually used to etch 

Si to obtain the Si waveguide. Gas SF6/C4F8 at 30/90 sccm was demonstrated to 

get a straight sidewall for Si. The recipe was run at the pressure of 10 mTorr with 

the platen at 12 w and the coil power 600 w at room temperature. The He/Cool 

rate was 7/4, and the DC-bias votage was 152 V. The etch rate was measured at 
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150nm/min with the selectivity to HSQ of 3:1. Meanwhile, an ICP 180 dry etch tool 

can be also used for this sample if the STS-ICP is not available. In this tool, gas 

Cl2/BCl3 at 18/2 sccm is used to etch Si (Temp=20 Deg, ICP Power=1000 w, 

Platen=60 w, Pressure=20, Back cooling=10 Torr). It took 3 mins and 40 s to etch 

down 500 nm Si. The HSQ remaining on top was taken as an SiO2 cap rather than 

removed after the dry etch.  

The whole fabrication process was then finished. Waveguides with 

alternating magneto-optical garnet-HSQ upper cladding segments were completed 

and ready to cleave. The two sides of the sample were cleaved to form a Fabry-

Perot cavity in order to adopt the Fabry-Perot loss measurement method. Before 

cleaving, the sample was coated with PMMA resist for protection against particle 

pollution from the cleaving process. After cleaving, the cleaved piece was soaked 

in Acetone and IPA for 5 mins to remove the resist and any other introduced 

particles or organics in the cleaving process.  

All fabrication processes were carried out in the James Watt 

Nanofabrication Centre (JWNC) based at the University of Glasgow. Finally, the 

cleaved central piece was used for all optical measurements and the two cleaved 

side pieces were used to check the thickness and profile of each layer, the sidewall 

roughness, and the cross-section profile under a scanning electron microscope 

(SEM). 

Below, Figure 4-8 (a) displays the cross section of a waveguide on the 

completed sample with Bi-TIG as upper cladding. From top to bottom, HSQ, SixNy, 

Bi-TIG, and Si are clearly shown. Figures 4-8 (b), (c), and (d) show the octant and 

the cross section of the structure with SixNy removed by HF.  
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Figure 4-8 (a). The cross section of a waveguide on the Bi-TIG sample. From top to bottom, 
HSQ, SixNy, Bi-TIG, and Si are clearly shown in the micrograph. Figures 4-8 (b), (c), and (d) 
show the octant and the cross section of the structure with SixNy removed by HF. 

 

 

Among all the fabrication steps, great effort was spent on the optimization 

of the lift-off process (including the preparation of the lift-off mask, MO garnet 

deposition, lift-off) and the RTA process. 

 

4.2.3 Lift-off 

 

As discussed above, the bilayer structure of PMMA with different 

sensitivities results from the different molecular weights of the resist. After 

development, a decent undercut profile can be created (the right bilayer structure 

of Figure 4-3). Using the heavier resist on top of the lighter resist, it is very useful 

for the lift-off process. The ideal lift-off mask for our application is the one that, 

after lift-off, has no ‘buttresses’ or edges on the garnet segments [77]. They will 

lead to an increase of optical propagation loss in finished devices, mainly through 

scattering loss. A nice undercut profile for garnet deposition is shown in Figure 4-
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9 [77]. The two layers of PMMA resist is a layer of 15% 2010 series underneath and 

a layer of 4% 2041 series on top. The optimised e-beam mask writing and 

development parameters are confirmed to be: the lift-off mask was written at a 

dose of 1000 μC/cm2 with a 64 nA e-beam current along with a VRU of 16 under 

100 kV. Also, the lift-off mask was developed in 2.5:1 IPA: MIBK for 65 s, followed 

by 45 s in IPA at 23.5 Degrees. The garnet segments after lift-off under optical 

microscope and SEM are shown in Figure 4-10.  

 

                        

Figure 4-9. Cross section undercut profile of two layers of PMMA for the garnet lift-off. 

 

 

               

Figure 4-10. Left a) is the optical micrograph for the garnet islands after lift-off, and right b) is 
the 2.2 µm-wide garnet islands under SEM when written with the dose of 976 μC/ cm2. 

 

  

The lift-off profile is especially sensitive to the parameters in the 

development step. The development temperature, time, and the concentration 

of the developer solvent (the ratio of MIBK and IPA, MIBK – Methyl isobutyl ketone, 

the chemical formula is (CH3)2CHCH2C(O)CH3) heavily affect the resist profile. The 
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higher the temperature of the developer or the longer the development process 

is, the further along the continuum of solubility the dissolution will extend [153], 

causing the feature width to widen, and the undercut profile to resolve. The 

concentration of the developer solvent plays a vital role in the formation of the 

feature. Table 4-1 [154] lists the sensitivity of different concentrations of 

developer and how they affect the resolution of the pattern features. The more 

concentrated the developer solvent is, such as neat MIBK and 1:1 MIBK/IPA, the 

more sensitive it is; in particular, the development time and temperature. By 

contrast, the more dilute the developer solvent is, such as 1:3 MIBK/IPA, the 

better the resolution that can be provided. Depending on applications, the proper 

combination of these parameters can be employed.  

 

Developer Composition Resolution Sensitivity/Throughput 

1:1 MIBK to IPA High High 

1:2 MIBK to IPA Higher Medium 

1:3 MIBK to IPA Very high Low 

MIBK Low High 

Table 4-1. [23] The characteristics of different ratios of developers. 

 

At the first stage, the sample was developed 1:2 MIBK/IPA developer at 

22°C for 75 s, followed by 45 s in RO water, and finished with 15 s in IPA. Here, a 

rinse in RO water after the 75 s in the developer helps to neutralise the developer 

and prevent further reaction by the remaining developer on the surface of the 

sample. However, buttresses were found at the corner of the segments after lift-

off (Figure 4-11), which might result from the 1:2 developer solvent being 

aggressive to the features. Subsequently, a 1:2.5 MIBK/IPA developer solvent was 

adopted. The pattern was developed at 23.5°C for 35 s then directly in an IPA 

solvent for 45 s. Here, the RO rinse step was omitted so that the reaction kept 

going, but very slowly and mildly in the rinse step in the IPA solvent. It turned out 

that some of the resist was not cleared out totally. There were 30 s more 

development in the 1:2.5 MIBK/IPA developer carried out, and also finished with 

a 45 s rinse in the IPA solvent. This time, edges instead of buttresses were found 

around the islands (Figure 4-12). Based on this process, the final development 

process was taking shape. This time, the sample was developed at 23.5°C for 65 
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s, then directly in the IPA solvent for 45 s, from which lift-off segments without 

buttresses or edges were obtained (Figure 4-10). 

 

                           

 

 

 

Figure 4-11. Buttresses are found at the corners of the segments after lift-off. 

 

 

 

Figure 4-12. Edges instead of buttresses are found around the islands. 

 

 

4.2.4 RTA (Rapid Thermal Annealing) 
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Rapid Thermal Annealing (RTA) after lift-off was carried out to get the 

deposited magneto-optical layer crystallized. Here, the RTA process helped 

reduce the thermal budget of crystallization. It also offered the optimized 

crystalline conditions during the process where reactions between the deposited 

cladding layer and under-layer are decreased. Research carried out by our 

collaborators, Professor Bethanie Stadler’s group from the University of 

Minnesota, shows that samples with YIG/TIG films on top should be annealed at 

no more than 800°C, and those with Ce-YIG films should be annealed at no more 

than 750°C, as higher temperature annealing will lead to cracks in the garnet film 

[136]. Figures 4-13 (a), (b), and (c) describe 100x100 µm square of Bi-TIG, Ce-TIG, 

and Ce-YIG on MgO material after annealing at 900oC for 2 mins. Cracks existed in 

all of the three patterns, and the square of Ce-YIG on MgO even started to peel 

off, which means that the stress was beyond the limit that part could bear. 

This also explains why the rapid thermal annealing process needs to happen 

before the coating of the porous SixNy layer, which also attributes a certain 

amount of stress to the substrate surface and waveguide structure, or else the 

stress from the SixNy layer will be enlarged and the interaction and tension 

between the layers can lead to cracks during the thermal process. This gives 

damage to the waveguide structure and, therefore, gives such substantial 

propagation loss that no light is guided through. 
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Figures 4-13 (a), (b), and (c). 100x100µm square of Bi-TIG, Ce-TIG, and Ce-YIG on MgO material 
after annealing at 900°C for 2 mins. Cracks exist in all of the three patterns and the square of 
Ce-YIG on MgO even starts to peel off, which means that the stress is beyond the limit. 
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Here in our application, periodic segments instead of wafer-scale whole 

thin film were deposited. Patterning the garnet material in small segments prior 

to the crystallisation process under rapid thermal annealing (RTA) helps to 

increase the stress tolerance and compensate the mis-match in thermal expansion 

between the garnet material and the substrate [136], thus avoiding any cracks in 

the garnet material after annealing. It turns out that all kinds of magneto-optical 

cladding layers can be annealed at or over 900°C, which also helps improve the 

crystallization percentage of the segments.    

Before the actual annealing step, a 10 s Oxygen inlet and 10 s gas purge 

process was repeatedly performed (three times) to give a nice clean chamber, and 

also prepare the chamber for an O2 atmosphere. Afterwards, O2 process gas was 

inlet into the process chamber without pumping out until the pressure reached 

80mBar. This ensures that the pressure was around 120~130mBar when the 

temperature rose over 900°C.  

Then, the temperature was first raised to 350°C in 20 s at a ramp rate of 

17.5°C/s, and stayed the same for 20 s, after which it was increased to the desired 

temperature (like 900/950°C) in 20 s and stayed for 120 s/2 mins. At the end of 

this step, it entered the cooling step. The default cooling process of the system 

lasted for 180 s with N2 filling in the process chamber and cooling water circulating 

in the metal chamber walls. The simulated process and the actual annealing 

process for 900°C and 950°C is shown in Figure 4-14 and Figure 4-15, respectively.  



88 

Chapter 4 – Fabrication of Nonreciprocal Polarisation Mode Converter 
   

 
 

 

 

 

 

 

 

Figure 4-14. The simulated process (a) and the actual annealing process (b) for 900°C, 
respectively. 
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Figure 4-15. The simulated process (a) and the actual annealing process (b) for 950°C, 
respectively. 

 

 

 

4.2.5 Garnet Material Characterisation 

 

Figure 4-16 displays the X-ray emission spectrum on the bright spot where 

the crystalline phase of Ce-YIG was found, from which we can confirm the 

existence of O, Fe, Y, Ce, and also an Si signal from the substrate surface on which 

the Ce-YIG islands sit. The ratio of all the elements can help work out the 

stoichiometry of the Ce-YIG garnet. 
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Figure 4-16. The X-ray emission spectrum on the bright spot where the crystalline phase of 
Ce-YIG was found, from which we can confirm the existence of O, Fe, Y, Ce, and also an Si 
signal from the substrate surface on which the Ce-YIG islands sit. The ratio of all the elements 
can help work out the stoichiometry of the Ce-YIG garnet. (Courtesy to Mr. Peter Chung in 
ISAAC from the School of Geographical and Earth Sciences, University of Glasgow, for the 
pics). 

 

The Ce-TIG and Bi-TIG material is used to demonstrate how the 

characterisation for garnet material is carried out in SEM with different detector 

systems, including the topography (both the top-down view and the cross-section 

view) and the crystallographic structure.  

There was 300nm Ce-TIG/Bi-TIG deposited in the multi-target radio-

frequency (RF) sputtering tool in an oxygen atmosphere in various ranges of 

length, from 10-15 μm long segments, at a step of 0.5 μm to accommodate the 

substantive thermal expansion mis-match between garnets and semiconductor 

substrates, (in the University of Minnesota) before annealing. Because of atomic 

restriction where narrower deposition space restricts the angular trajectory of the 

ions, around 100nm-thick Ce-TIG/Bi-TIG material was deposited in the segments 
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area after lift-off[77]–[79]. Afterwards, the magneto-optical material was 

partially crystallised by rapid thermal annealing three times, at 900 Degrees, at 

120 mbar in an oxygen atmosphere for 2 mins.  

Figure 4-17 and Figure 4-19 show the Ce-TIG and Bi-TIG before and after 

annealing under a scanning electron microscope (SEM), respectively. The clear 

crystalline garnet phase can be easily seen from the micrographs of Bi-TIG after 

annealing. The three micrographs in Figure 4-18, taken in a 3-in-1 Multi-beam 

(gallium, neon, and helium ion beams) Ion Microscope, indicate the crystallisation 

of Ce-TIG in thicker segments; the white spots are crystallised while the grey areas 

are not. It can also be seen that the garnet has grown in different directions, 

making it poly-crystalline with the grain size ranging from 20-50 nm.  

Some Electron Backscattered Scanning Diffraction results of Bi-TIG are 

displayed in Figure 4-20. (a) shows the EBSD diffraction pattern for both the Si 

substrate and the Garnet segments pattern; (b) shows the EBSD mapping results 

in the grating pattern in (a); coloured spots are crystallised. It is clearly seen that 

it is poly-crystalline and partially crystallised. Later, in order to remove the 

periodic loading effect of the garnet segmented islands, 100 nm SixNy with the 

same refractive index of 2.1 with garnets was coated all over the sample in an ICP 

deposition tool. Therefore, the garnet segments of different lengths were 

alternating with SixNy of different lengths in the gap, corresponding to the 

calculated half-beat length/coherence length between the fundamental quasi-TE 

and quasi-TM modes [86]. Silica waveguide masks aligned to the garnet segments 

were written by electron-beam lithography of spun HSQ, with widths from 600 to 

1100 nm. Silicon-core waveguides were formed with fluorine-based plasma 

processes to etch through the SixNy layer and Si layer in an 80+ RIE tool and an STS 

ICP etcher. Here, all the waveguides were etched down 500 nm to the SiO2 layer 

(Figure 4-21).  
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Figure 4-17. The upper two pics show the position of the segment in an e-beam mask taken 
under SEM. The upper SEM micrograph is the Ce-TIG segments after lift-off. The lower SEM 
micrograph is the Ce-TIG segments after annealing three times at 900 deg at 120 mbar in an 
oxygen atmosphere for 2 mins. 
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Figure 4-18. The three micrographs taken in a 3-in-1 Multi-beam (gallium, neon, and helium 
ion beams) Ion Microscope indicate the crystallisation of Ce-TIG in thicker segments; the 
white spots are crystallised while the grey areas are not. It can also be seen that the garnet 
has grown in different directions, making it poly-crystalline with the grain size ranging from 
20-50 nm. (Courtesy to Mr. Peter Chung in ISAAC from the School of Geographical and Earth 
Sciences, University of Glasgow for the micrographs). 
 

   

 
 

 

 

                         

Figure 4-19. The upper two micrographs are the Bi-TIG segments after lift-off. The lower two 
micrographs are the Bi-TIG segments after annealing three times at 900 deg at 120 mbar in 
an oxygen atmosphere for 2 mins. The clear crystalline garnet phase can be easily seen from 
the micrographs after annealing. 
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Figure 4-20. EBSD results of annealed Bi-TIG: (a) shows the EBSD diffraction pattern for both 
the Si substrate and the Garnet segments pattern; (b) shows the EBSD mapping results in the 
grating pattern in (a); the coloured spots are crystallised. It is clearly seen that it is poly-
crystalline and partially crystallised. 
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Figure 4-21. The micrographs (a) and (b) show the periodic alternating garnet segments with 
bare Si or SixNy; micrograph (c) shows the cross-section profile of all the layers: Si core 
layer, garnet cladding layer, and SixNy layer. 

      

 

 

4.2.6 Effect of MgO Buffer Layer on the Crystallisation of the 
Magneto-optical Garnets  

 

Rapid Thermal Annealing (RTA) tests after lift-off were carried out to find 

whether a buffer layer, MgO, or a seed layer, YIG, is needed for different garnet 

materials to crystallize. Even using the RTA process, the problem for optimal 

crystallization of Ce-doped YIG with rather high Faraday rotation quality (giving 

about 3700 deg/cm) still remains. Our collaborators, Professor Bethanie Stadler’s 

group from the University of Minnesota, have conducted extesive trials and made 

some of the best quality Ce-YIG film [129] [136] to date. A seed/buffer layer of 

MgO/YIG will be deposited before the Ce-YIG; the YIG layer can act as a virtual 

substrate to enhance Ce-YIG’s crystallization [149] at lower temperatures.  

However, though our collaborators have developed mature skills to produce 

garnet films of high quality, as it is garnet segments and not a whole thin film that 

is used in this project, research needed to be carried out by ourselves to confirm 

whether garnet material patterned in segments of a much smaller scale before 

annealing hold the same material properties as the whole thin film.  

For the first set of samples, YIG was tried with or without the MgO buffer 

layer annealed at several different temperatures: pure YIG were annealed at 

800oC (Figure 4-22 (1a) and (1b)); YIG on the MgO seed layer were annealed at 

800oC (Figure 4-22 (2a) and (2b)); YIG on the MgO seed layer were annealed at 

825oC (Figure 4-22( 3a) and (3b)); and YIG on the MgO seed layer were annealed 

at 900oC (Figure 4-22 (4a) and (4b)).  
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Figure 4-22 presents the four situations in both optical pictures (top) and 

scanning electron micrographs (bottom). All annealing processes were performed 

in about 150 mB oxygen for 120 s. Some erosion of the YIG segment was observed 

for the YIG alone on SOI annealed at 800oC, while, for the other three tests, no 

erosion was seen. However, for the YIG on the MgO seed layer that were annealed 

at 825oC and 900oC, there were some obvious and visible changes to the segment 

morphology under both optical microscope and SEM, which is more obvious for the 

one annealed at 900oC. It seems that there is some unclear phase within the grains 

at a comparable size to the segment width. Judging from the micrographs taken 

in a 3-in-1 Multi-beam (gallium, neon, and helium ion beams) Ion Microscope 

(Figure 4-18), which clearly shows the poly-crystalline phase with the grain size 

ranging from 20-50 nm in the segments after annealing, it can be inferred that 

higher temperatures help the crysatllisation of YIG on MgO. While YIG can get 

crystallied without an MgO buffer layer, the MgO buffer layer seems to increase 

YIG’s tolerance for higher temperature annealing. From the EBSD analysis 

provided by our partners, all samples here were partially crystallized. 

 

 

Figure 4-22. 1a) and 1b): the Optical microscope and SEM micrograph for YIG were annealed 
at 800oC; 2a) and 2b): the Optical microscope and SEM micrograph for YIG on the MgO seed 
layer were annealed at 800oC; 3a) and 3b): the Optical microscope and SEM micrograph for 
YIG on the MgO seed layer were annealed at 825oC; and 4a) and 4b): the Optical microscope 
and SEM micrograph for YIG on the MgO seed layer were annealed at 900oC. 
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In addition to YIG, other magneto-optical materials were also researched, 

including Ce-YIG and TIG, which demonstrate a larger and opposite sign for the 

saturated magneto-optic Faraday rotation effect at room temerature when 

compared to YIG. This time, we tried Tb-YIG alone annealed at 800oC, Tb-YIG on 

MgO (120 nm/5 nm) annealed at 900oC, and Ce-YIG on MgO annealed at 900oC. All 

annealing processes were performed in about 150 mB oxygen for 120 s. From the 

EBSD analysis provided by our partners, all samples here were partially 

crystallized. Both optical and SEM micrographs are shown in Figure 4-23. 

 

   

 

Figure 4-23. 1a) and 1b): the Optical microscope and SEM micrograph for Tb-YIG on MgO 
(120nm/5nm) annealed at 900oC; 2a) and 2b): the Optical microscope and SEM micrograph 
for Tb-YIG alone annealed at 800oC; and 3a) and 3b): the Optical microscope and SEM 
micrograph for Ce-YIG on MgO annealed at 900oC. 

 

 

Our partner group provided the analysis for the crystalisation of garnets 

using electron backscatter diffraction (EBSD). The research result on the effect of 

the buffer/seed layer (MgO/YIG) on the crystallisation of various garnets is 

summarized in Table 4-2. It uncovers that YIG, TIG, Bi-TIG, and Ce-TIG do not 

require a buffer/seed layer to get crystallized, while Ce-YIG needs either a buffer 

layer/MgO or seed layer/YIG to prevent it from getting oxidised first, and to 

enable it to achieve the garnet phase upon annealing.  
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As discussed in Chapter 3, compared to YIG, MgO is a better candidate as a 

buffer layer. MgO is a non-magnetic material, while YIG is of the opposite Faraday 

rotation coefficient to that of Ce-YIG. Placed under a Ce-YIG layer, YIG will 

weaken the MO effect of Ce-YIG. However, better controllability has been 

achieved in the crystalline process of Ce-YIG on YIG. Thus, both Ce-YIG on YIG and 

Ce-YIG on MgO have been chosen in this research. From the simulation in Chapter 

3 and also in paper [77], we know that just  a 10nm seed/buffer layer will make a 

big difference and substantially decrease the interaction between the garnet layer 

and the guided evanescent tail. Ce-TIG becomes the optimal material. It has a 

comparative level quantity of Faraday coefficient of about -2600°/cm to Ce-YIG, 

and gets crystallized without the need of a buffer/seed layer. Thus, the range of 

promising material used in this project was chosen as TIG (θF(TIG)=500 deg/cm at 

1550 nm), Bi-TIG (θF(Bi-TIG)=-500 deg/cm), Ce-YIG on MgO (θF(Ce-YIG)=-3700 

deg/cm), Ce-YIG on YIG (θF(Ce-YIG)=-3700 deg/cm), and Ce-TIG (θF(Ce-TIG)=-2600 

deg/cm).  

Considering that high temperature annealing (900oC) will not provide any 

obvious harm to the garnets in our application, later on, the garnet segments used 

in actual devices were all annealed at 900oC, or even higher at 950oC. 

 

 Material Thickness(nm) Thickness of 

MgO/YIG(nm)  

Annealing 

Temp(oC) 

EBSD Result 

 

 

 

No 

Buffer/Seed 

Layer 

YIG 120 0 800 Partially 

Crystallized 

TIG 120 0 800 Partially 

Crystallized 

Bi-TIG 200 0 900 Partially 

Crystallized 

Ce-TIG 200 0 900 Partially 

Crystallized 

 

With 

Buffer/Seed 

Layer 

Ce-YIG 200 20nm YIG 800/900 Partially 

Crystallized 

Ce-YIG 200 12nm MgO 900 Partially 

Crystallized 

Table 4-2.The effect of a seed layer (MgO/YIG) on the crystallisation of various garnets. 

  

 

Besides, the garnet islands are well aligned so as to act as the magneto-

optic alternating upper cladding on top of the Si waveguides (Figure 4-24). We can 

see from the picture that a set of waveguides with different widths have been 
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designed, 600 nm-1100 nm. The width of the garnet is about 100-200 nm less than 

that of the waveguide in order to inrease the misalignment tolerance. In each 

waveguide set of fixed width, there are five sets of waveguides of different lengths 

of garnet segments and gaps. Here, as shown in the bottom graph of Figure 4-24, 

the width of the waveguide is fixed at 600 nm and the width of the garnet 

segments is 500 nm. The length of the garnet segments ranged from 9 µm-11 µm 

with an increment of 0.5 µm. From bottom to top, the length of the garnet islands 

were 9 µm, 9.5 µm, 10 µm, 10.5 µm, and 11 µm, respectively. Within each sub-

set, different gaps are considered to get different duty cycles. For the length of 

9 µm, the gap starts from 6µm and ends at 9 µm with an increment of 1 µm, making 

the duty cycles 15 µm-18 µm. 

               

 

Figure 4-24. General map of well-aligned garnet islands segments on substrate. 
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When  characterising waveguides, the key characteristics include: layer 

thickness, refractive index, optical coupling, optical losses, and non-linear 

properties [155]. The layer thickness can be inspected by checking the cross-

section profile under a scanning electron microscope (SEM) or by using a DEKTAK 

stylus surface profiler after patterning and etching down the layers of the 

waveguides. The refractive index can be confirmed using an ellipsometer for 

multi-layer thin films. Usually this step is omitted as the wafer manufacturers will 

provide the tested parameters. Here, for my application, the end coupling method 

was adopted to couple the laser beam into the waveguides. Using this technique, 

the propagation loss and Faraday rotation magneto-optical effect were checked.       

Initially, a lensed-fiber was used to couple TE-polarised light emitted from 

a 1550 nm Tunable laser into the waveguide. Later, a free space (Lens) coupling 

technique was adopted for increased stablity. Generally speaking, the free space 

coupling technique is used to couple TE-polarised light by converting the TM-

polarised light emitted from a 1550 nm tunable laser into the waveguide using an 

in-line polariser and a TE-TM in-line converter. Additionally, a polarising beam-

splitting cube is placed before the input lens, which couples this light out from 

the laser into the sample in a pure TE-polarised plane. Moreover, a second 

polarising beam-splitting cube is placed at the end of the output, before the 

detector, to separate the TE component from the TM component for the purpose 

of measurement. In the measurement process, TE-polarised light is injected and 

the TM component is measured. Thus, any substantial TM power measured at the 

output is from the polarisation conversion process based on the Faraday rotation 

effect introduced by the periodic upper magneto-optical garnet cladding at the 

presence of an external magnetic field. 

In all measurements in this work, TE-polarised light is used as the input as 

the majority of semiconductor lasers used in integrated optical systems are TE-

polarised as a result of the quantum mechanical selection rule. Here we have 
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successfully demonstrated the achievement of an integrated Faraday rotator by 

integrating periodic magneto-optic garnet as cladding on top of the waveguide, 

which acts as the nonreciprocal part of the designed isolator device.  

In the future, the same optical characterisation methodology can be 

applied for TM-input or circularly-input to further confirm the feasibility of the 

integrated Faraday rotation device and support the claim that it can work for light 

with arbitrary polarisation.     

 

5.1 Introduction  

 

5.1.1 Coupling Method 

 
In order to couple the laser beam into the waveguides, four methods can 

be used: prism coupling, end-fire coupling, tapered/non-tapered launch coupling, 

and grating coupling. Among them, prism coupling and end-fire coupling are the 

most popular methods for their high coupling efficiency and relatively easier 

realisation [155]. Prism coupling was discarded in our application for the complex 

setup and high accuracy requirement of the gap between the prism and the 

waveguide surface. End-fire coupling was implemented in all of our optical 

measurements, which requires the coupling-in/out end facet to be flat and defect-

less when preparing it by cleaving. Also, strict alignment accuracy is needed in 

order to get good coupling.  

          

 

5.1.2 Propagation Loss Measurement – The Fabry-Perot 
Measurement Method 

 
There is attenuation or loss of the lightwave signal while it propagates 

through an optical waveguide. There are mainly five aspects that can contribute 

to propagation loss [155], which are depicted in Table 5-1. When the refractive 

index of the core layer film is close to that of the substrate, or the thickness of 

the core layer film is close to cut-off thickness, the mode will be radiated into the 
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substrate and/or the cladding layer/air. When there is mode conversion from an 

excited mode to other guided modes, the optical energy can also be lost, 

especially in a device where a guided mode performs a function. There can be 

inherent absorption or induced absorption arising from the fabrication process of 

the waveguide itself, mainly consisting of inter-band absorption, impurity 

absorption, and carrier absorption. The inherent or induced imperfections, like 

surface roughness, rough sidewalls, porosity, cracks, pores, grain boundaries, 

etc., can also lead to diffusion/scattering losses.  

Apart from the tunnelling losses, the four other kinds of losses exist in our 

waveguide. First of all, the thickness of the core layer is 500 nm, which is not 

thick enough to confine all the light. Part of the light will radiate in the upper 

cladding layer and finally radiate away while propagating along. Our device also 

involves TE-TM mode conversion sections, which induce mode conversion loss. 

Interactions between layers, the porous SixNy cladding layer, the rough garnet 

layer, and the rough sidewall, etc., can give substantially large scattering losses. 

Also, the grain size of the garnet is 20-50 nm, while a nano-crystal structure larger 

than 10-15 nm will increase the propagation losses dramatically [155]. 

 

Type of Loss Origin of the Loss 

Radiation losses The refractive index of the core layer 

is close to that of the substrate, or the 

thickness is close to cut-off thickness 

Mode conversion losses Conversion from the excited mode to 

other guided modes 

Absorption losses Light absorption in the waveguide 

materials 

Diffusion losses/Scattering losses Imperfection of the waveguide 

structure 

Tunnelling losses Only in barrier optical waveguide 

caused by Ion modification 

 

Table 5-1. Different types of losses and the origin of them. 

 

There are essentially four ways to measure the propagation losses: the 

Cutback Method, Sliding-Prism Method, Fabry-Perot Resonances Method, and 
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Scattered Light Measurement Method [155]. As discussed above, end-coupling is 

used in the measurement. Therefore, only the Cutback Method and Fabry-Perot 

Resonances Method are suitable, since the Sliding-Prism Method needs prism 

coupling and the Scattered Light Measurement uses optical fibres to collect the 

scattered light.  

For the Cutback Method, the device needs to be cut short after the first 

measurement, which makes a change to our device and will affect the function as 

it changes the periods of the garnet, and most probably will change the rotation 

degree. Besides, there is a higher requirement for the coupling-in/out facets to 

produce repeated measurements, and it is also much harder to cleave the sample 

the second time (as they get smaller each time). Additionally, the Fabry-Perot 

Resonances Method is more stable, repeatable, and more accurate than the 

Cutback Method, thus it is adopted in this thesis. 

After cleaving the two sides of the sample, the waveguides on top form a 

Fabry-Perot cavity with the two cleaving facets acting as two semi-mirrors. The 

ratio of the output and the input powers can be expressed by: 

 

                                    
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
=

(1−𝑅)2𝑒−𝛼𝐿

(1−𝑅𝑒−𝛼𝐿)2+4𝑅𝑒−𝛼𝐿 𝑠𝑖𝑛2(∅/2)
                            (5-3) [155] 

 

Where R stands for the facet reflectivity, and can be expressed as:  

 

                                                    𝑅 =
(𝑛−1)2

(𝑛+1)2
                                               (5-4) 

 

While ∅ = 2𝑛𝑘𝐿 cos 𝜃 + 𝜑𝑟  is the phase difference related to the optical 

path difference of the resonator, and 𝜃 ≈ 0 is the incident angle. 

If the ratio of the maximum intensity to the minimum intensity of the Fabry-

Perot resonances fringes can be expressed as: 

 

                                              𝜉 =
𝐼𝑚𝑎𝑥

𝐼𝑚𝑖𝑛
=

(1+𝑅𝑒−𝛼𝐿)2

(1−𝑅𝑒−𝛼𝐿)2
                               (5-5) [155] 

 

Then the propagation loss α can be depicted as: 

 

                                              𝛼 = −
1

𝐿
ln (

1

𝑅

√𝜉−1

√𝜉+1
)                                  (5-6) [155] 
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Here, 𝑛 = 3.45 (Si at λ = 1550 nm), 𝑅 =
(3.45−1)2

(3.45+1)2
= 0.3031. So, once we get 

the Fabry-Perot resonances fringes from the measurement, 𝜉 =
𝐼𝑚𝑎𝑥

𝐼𝑚𝑖𝑛
 can be easily 

obtained from the traces and L is the device length, which can be easily measured. 

The propagation loss can be calculated from equation (5-6). As in the third graph 

of Figure 5-1 (a), 𝐼𝑚𝑎𝑥  reads as around 55 while 𝐼𝑚𝑖𝑛 reads as 43.5. So 𝜉 =
𝐼𝑚𝑎𝑥

𝐼𝑚𝑖𝑛
=

55

43.5
. The length of the device is measured at 6.2 mm and 𝑅 = 0.3031. According 

to equation 5-6, we can get the propagation loss 𝛼 = 11.2 dB/cm. 

During the measurement process, FP fringes were obtained by putting a 

beamsplitting cube at the output to measure only the TE or TM polarised 

components at 1550 nm when scanned at a step of 0.005 nm over the 1nm 

wavelength range from 1550 nm–1551 nm. The choice of the wavelength range 

needs to be near 1550 nm, and is fairly flat on the response, which also indicates 

that it should be away from the quasi-phase matching/peak wavelength. However, 

proper FP fringes can only be obtained from the waveguides with just HSQ or YIG 

on top as cladding along the whole waveguides, but not from the waveguides with 

periodic garnet cladding, which probably resulted from the perioidicity of the 

cladding layer.  

Figure 5-1 shows the transmission spectra, associated FFTs, and FFT-

filtered spectra of (a) the TE mode and (b) the TM mode of HSQ-cladded 

waveguides, respectively. We can see that in the second graph of (a), a peak is 

shown at a frequency of 20.18 nm-1, which corresponds to the spatial frequency 

of the TE mode in a 6.2mm-long SOI waveguide at a wavelength around 1550 nm, 

and can be calculated by 𝑓 =
2𝑛𝑒𝑓𝑓𝐿

𝜆0
2 , where 𝑛𝑒𝑓𝑓 is the effective refractive index 

of the corresponding mode, 𝐿 is the length of the Febry-Perot cavity/device, and 

𝜆0 is the central transmission wavelength. In the second graph (b), a peak is shown 

at a frequency of 20.98 nm-1, which corresponds to the spatial frequency of the 

TM mode in a 6.2 mm-long SOI waveguide at a wavelength around 1550 nm. Based 

on equation 5-6, knowing the readings of the maximum and minimum output from 

the third graph of Figure 5-1 (a) and (b), we will be able to get the propagation 

loss for the TE mode, 11.2 dB/cm, and the TM mode, 14.7 dB/cm. Also, the 

Δλ=0.04nm from the received FP modulation agrees well with the theoretical 
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calculated results from 𝛥𝜆 =
𝜆2

2𝑛𝐿
, which suggests that the FP fringes loss pattern 

is correct (Figure 5-1).  

Figure 5-2 shows the transmission spectra and associated FFTs of (a) the TE 

mode and (b) the TM mode of YIG cladded waveguides, respectively. We can see 

that in the second graph of Figures 5-2 (a) and (b), a peak is shown at the same 

frequency of 7.79 nm-1 for both the TE and TM modes, while no peak is shown at 

the frequency around 20 nm-1, which correspondes to the spatial frequency of the 

TE mode in a 6.2 mm-long SOI waveguide at a wavelength around 1550 nm. Also, 

the value of Δλ does not match the theoretical value, which makes it a potentially 

false result (Figure 5-2), and probably resulted from other cavities in the setup, 

like the cavity between the lens to the sample facet, the cavity between the 

couple-in and couple-out lenses, etc., or resulted from the polarisation 

modulation of the laser itself. Therefore, FP fringes cannot always be used to 

measure the propagation loss of the waveguides with garnet cladding on top 

because they are too lossy.  

Lei Bi et al. [156] reported that the losses of YIG, Bi0.8YIG, and Ce-YIG films 

of nearly fully polycrystalline garnet films were around 50 dB/cm, 150 dB/cm, and 

40 dB/cm, respectively. The more amorphous the garnet film is, the higher the 

optical loss will be. For our example, the garnet cladding is partially 

polycrystalline, which leads to a larger optical loss. Another option to measure 

optical loss is the Cutback Method. Because of the destructive nature of this 

method, it is not suitable for our application for now. In the future, spare samples 

will be prepared in order to measure the propagation loss through the Cutback 

Method.   
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Figure 5-1. The transmission spectra, associated FFTs, and FFT-filtered spectra of (a) the TE 
mode and (b) the TM mode of HSQ-cladded waveguides, respectively. 
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Figure 5-2. The transmission spectra and associated FFTs of (a) TE mode and (b) TM mode of 
YIG-cladded waveguides, respectively. 
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5.2 Measurements with Permanent Magnets 

 

5.2.1 Setup of the Whole Measurement Rig 

 
In experimentation, both lensed fibre and optical microscope objective 

lenses of different magnifications can be used to couple the laser beam with the 

waveguides. Compared to the optical lens, lensed fibre is getting more attention 

for its simplicity of alignment and better coupling efficiency. However, the lensed 

fibre is less stable, and the slightest vibration of the lensed tip can be a potentially 

serious problem for delicate measurement, especially when the output signal is 

relatively small. Thus, in our experiment, only the optical lens was used in order 

to get better stability and to separate the TE and TM components of the input 

beam.  

In the early stage of measurement, a periodic longitudinal magnetic field 

provided by a pair of Helmholtz coils (one on either side of the sample) driven by 

a waveform amplifier with the periodic signal coming from the wave function 

generator was used to magnetize the sample. However, there is a problem using 

the Helmholtz coils as a source of magnetic field. On one hand, the heat 

interaction of light and the magnetic field leads to a slight mechanical movement 

off/in the pinhole, which presents as a false signal of the periodic modulation of 

light. This inherent noise factor cannot be ruled out easily. On the other hand, at 

least a 1.5 kOe-2 kOe magnetic field is needed to saturate the MO garnet material, 

and over 0.4 kOe is needed to switch the direction of magnetization. The 

Helmholtz coils cannot provide such a high magnetic field. A maximum of 150 Oe 

(11936 A/m) can be achieved, and 300 Oe (23873 A/m) can be shortly achieved 

while starting to heat up and overload. Here, in our experiment, permanent 

magnets of around 1.2 kOe were used to saturate the samples with subsequent 

optical characterisation undertaken using the remnant magnetisation only. 

The two sides of the sample were cleaved to form a Fabry-Perot cavity. The 

schematic of the whole measurement setup is shown in Figure 5-3. As the output 

of the tunable 1550 nm laser is TM-polarised, TE polarised radiation was coupled 
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with the guides using an in-line polariser followed by an in-line TM-TE converter 

together with a 20x optical lens, and the output passed through a polarising beam-

splitting cube in order to separate the TE- and TM-polarised components (Figure 

5-4, right). The in-line polariser is to only allow TM-polarised light through. Then, 

the in-line TM-TE converts TM-polarised light to TE-polarised light. Next, the 

polarising beam-splitting cube after the 20x lens is a double guarantee for a pure 

TE injection. Subsequently, a collimated 40x (f=4.5 mm) objective lens was used 

to inject TE-polarised light into the millimetre scale long waveguides (Figure 5-4, 

left), while a second 40x optical lens was used to couple the light signal out from 

the waveguide. Here, all lenses and the sample were situated on 3-axis micro-

positioning stages, of which all 3 axes can be adjusted to achieve the best 

alignment. A photodiode detector linked with a lock-in amplifier modulated by a 

mechanical chopper or a polarimeter was used to receive the signal out of the 

waveguides (see Figure 5-5). In the measurement process, TE-polarised light was 

injected and the TM component was measured. Thus, any substantial TM power 

measured at the output is from the polarisation conversion of the device. 

 

 

 

Figure 5-3. Measurements rig set-up using permanent magnets. 
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Figure 5-4. The right pic shows that TE-polarised radiation was coupled with the guides using 
an in-line polariser followed by an in-line TM-TE converter, and the output passed through a 
polarising beam-splitting cube in order to separate the TE- and TM-polarised components; 
the left pic shows that a collimated objective lens was used to inject TE-polarised light into 
the millimetre scale long waveguides.  

 

 
 

 

Figure 5-5. A photodiode detector linked with lock-in amplifier modulated by a mechanical 
chopper (left) or a polarimeter (right) was used to receive the signal out of the waveguides. 

 
 

 

5.2.2 Measurement Process 
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Figure 5-6. The steps for the whole measurement process. 

 

 

The steps for this method of measurement are described in Figure 5-6. In 

the 1st step, a wavelength scan (1500 nm–1630 nm) is performed, while no 

magnetic field is applied, with the results recorded by a Lock-in amplifier. Here, 

any large rotations observed were actually due to a slight misallignment in the 

position of the MO garnet islands relative to the Si waveguides (slightly off-

centre). This resulted in the waveguides being asymmetric in the cross-sectional 

profile, and, hence, led to the reciprocal mode conversion. In order to avoid this 
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problem in future, new samples were prepared with SixNy overcladding (which has 

a much closer refractive index to garnet). Figure 5-7 and Figure 5-8 describe the 

optical characterisation results of samples on a 500 nm SOI platform with Ce-YIG 

on MgO and Ce-TIG as upper cladding, respectively. We can see that there is a 

small peak in Figure 5-7 (a) before saturation, most likely due to the small mis-

alignment between lithography mask writings, and there is no peak confirmed at 

all in Figure 5-8 (a) before saturation, which means that there is no misalignment 

between the two mask writings. 

In the 2nd and 3rd steps, a wavelength scan was carried out when a 

longitudinal magnetic field (≥1 kOe, around 1.2 kOe) was applied to saturate the 

samples with subsequent optical characterisation undertaken using the remnant 

magnetisation only, with the results recorded by a Lock-in amplifier. It was found 

that the polarisation mode conversion exhibits a peak when the phase-matching 

criterion is satisfied, and different quasi-phase matching periods lead to different 

wavelength peaks [89]. Peaks purely resulting from the magneto-optical Faraday 

rotation effect can be spotted, and peaks resulting from the combination of the 

reciprocal loading effect and MO Faraday rotation effect experienced an 

enhancement compared to the same peak obtained in the 1st step. As shown in 

both Figure 5-7 (a) and Figure 5-8 (a), substantially bigger peaks were found after 

saturating the sample both negatively and positively. 

In the 4th and 5th steps, wavelength scans with a smaller range (30nm; even 

smaller for finer resolution scans) centred at the peak wavelength were done on 

the saturated sample, and the output signal was recorded by polarimeter, which 

analysed the signal and records S1, S2, S3, azimuth, ellipticity, etc. When 

saturating the sample in opposite directions, the azimuth turns in opposite 

directions, as seen in Figure 5-7 (b) and Figure 5-8 (b), and the Stokes parameter 

of the traces should behave differently from each other at the same peak 

wavelengths.  

A potential difficulty using azimuth and ellipticity to characterize 

polarisation states is that these are essentially periodic functions, and that small 

changes in the polarisation state can appear as large changes when they occur 

near the limits of the measurement range. For example, the azimuth could appear 

to switch randomly between + and – in the vicinity of ±90°, as + 90° and - 90° are 

equivalent to each other on Poincare sphere. However, there can be just a small 

difference between the polarisation states as shown in the Poincare sphere. 
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Therefore, the opposite changes observed can potentially be interpreted as false 

signals. Further analysis was required on these opposite azimuths at the peak 

positions to exclude this possibility. Stokes parameters, on the other hand, are 

continuous functions bound by -S0, +S0 and, hence, Stokes vectors were chosen for 

the following analyses. Thus, the Stokes parameters were used to confirm that 

the signal is true when the azimuth turns in opposite directions at the same peak 

wavelengths when saturated in oppostie directions.  

Initially, a comparison of S1, S2, and S3 of the two opposite directions of 

saturation was carried out, where the points of oppositely saturated directions 

determined by the three Stokes parameters should be situated in opposite sections 

on the Poincare sphere, while the points of the false signal resulting from the 

system should be the same in both saturated directions. Hence, the true non-

reciprocal polarisaton change resulting from a magneto-optical effect can be 

identified. As predicted, some of the results are false signals, as the traces of S1-

S3 are exactly the same both ways, as seen in Figure 5-7 (c). Figure 5-8 (c) presents 

the true signals. It is observed that at λ=1511nm there is an opposite change in 

the sign of the S2 and S3 Stokes parameters of the two opposite saturation 

directions, which indicates that both the orientation of the major axis and the 

sense of the ellipse of the transmitted polarisation state have reversed with the 

reversal of the longitudinal magnetic saturation direction. 
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Figure 5-7. The optical characterisation results of Ce-YIG on the MgO sample. (a) displays 
that substantially bigger peaks occur after saturating the sample both negatively and 
positively, while there is a small peak before saturation, most likely due to the small mis-
alignment between lithography mask writings. (b) shows that the azimuth of the light turns in 
the opposite direction when saturated in different directions at the same wavelength peak, as 
found in the upper graph. (c) shows traces of the S1, S2, and S3 Stokes parameters of the two 
saturated directions. It is clearly seen that there is no difference in the Stokes parameters of 
two opposite directions of saturation. 
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Figure 5-8. The optical characterisation results of the Ce-TIG sample. (a) displays that good 
peaks occur after saturating the sample both negatively and positively, while there is no peak 
at all before saturation. (b) shows that the azimuth of the light turns in the opposite direction 
when saturated in different directions at the same wavelength peak, as found in the left graph. 
The waveguide is with the beat length of Ce-TIG/HSQ=10.5/10.5 µm. (c) shows traces of the 
S1, S2, and S3 Stokes parameters of the two saturated directions. It is observed that at λ=1511 
nm there is an opposite change in the sign of the S2 and S3 Stokes parameters of the two 
opposite saturation directions, which indicates that both the orientation of the major axis and 
the sense of the ellipse of the transmitted polarisation state have reversed with the reversal 
of the longitudinal magnetic saturation direction. 
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5.2.3 Analysis of the Results – Poincare Sphere and Angle 
Between Two Stokes Vectors 

 
In order to simplify the identification and quantify the nonreciprocal 

magneto-optic component of the quasi-phase-matched polarisation mode 

conversion of the two real results, the position of the points on the Poincare 

sphere corresponding to the Stokes parameters and the angle between the Stokes 

vectors were adopted. The positions of the Stokes vectors corresponding to the 

peak points were displayed in the Poincare sphere. Orthogonal polarisations 

states, as are required for an optical isolator, will appear as diametrically opposite 

points and an angle between the vectors of π.  

Here, a Bi-TIG sample (Figure 5-9) and a Ce-TIG sample (Figure 5-10) on a 

500 nm SOI platform are used to explain the analysis process. For the Bi-TIG 

sample in Figure 5-9, it was noticed that there was a 1-1.5 nm shift of peak 

wavelength while analysing by Polarimeter from that analysed by the Lock-in 

amplifier measurement system. Unfortunately, there is no way to automatically 

couple the two measurement systems together. Furthermore, it is time scans of a 

tuning laser instead of absolute wavelength scans in the Polarimeter 

measurement, so the wavelength difference can be simply caused by switching 

between absolute wavelength scans vs time using the Lock-in amplifier 

measurement system and time scans using the Polarimeter. There was also an 

estimate in time for the starting point of the scan.  

The angle between the two Stokes vectors of scans of different directions 

of magnetic saturation was used to quantify the non-reciprocity and isolation 

extinction of the device. For devices with 100% isolation, the two vectors should 

rotate ±90°, which makes the angle between the two vectors 180°. The third 

graph of Figure 5-9 (the Bi-TIG sample on the 500 nm SOI platform) and Figure 5-

10 (the Ce-TIG sample on the 500 nm SOI platform) plots the angle between the 

two Stokes vectors vs wavelength. For Bi-TIG, it reached around 55° at λ=1531.5 

nm. For the Ce-TIG sample, the angle got to nearly 180°, which indicates that the 

number of quasi-phase matching periods on this device is near ideal for 

implementation in an isolator.   
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Figure 5-9. The optical characterisation result of the Bi-TIG device. The first plot shows the 
relative fraction of the TM-polarised output as a function of the input wavelength; a peak at 
λ=1530 nm is observed. The second plot displays the position of the peak points on the 
Poincare sphere. It is clearly seen that they are situated on different sections of the sphere 
while saturated in different directions. The third graph shows the angle between the two 
Stokes vectors in opposite directions of saturation. The maximum angle is around 55°. 
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Figure 5-10. The optical characterisation result of the Ce-TIG device. The first plot shows the 
relative fraction of the TM-polarised output as a function of the input wavelength; a peak at 
λ=1511 nm is observed. The second plot displays the position of the peak point on the 
Poincare sphere. It is clearly seen that they are situated on different spheres while saturated 
in different directions. The third graph shows the angle between the two Stokes vectors in 
opposite directions of saturation. The angle is nearly 180°, which indicates that the number 
of quasi-phase matching periods on this device is near the ideal for an optical isolator 
implementation. 
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In order to calculate the isolation ratio of the NR-PMC part according to the 

obtained Stokes vector angle, we suppose that in the forward direction the output 

light from the NR-PMC part first goes through an integrated quarter-wave plate, 

where the circularly polarized light is converted into linearly polarised light. It 

then goes through a polariser oriented at the same angle as the output linearly 

polarised light, which makes sure that 100% of the output light is getting through 

in the forward direction. We set the optical power of the output light as unit 1. In 

the backward direction, a similar integrated quarter-wave plate and polariser 

were placed at the output of the NR-PMC section, where the polariser was 

oriented orthogonally to the polariser in the forward propagating direction. We 

set the angle between the two Stokes vectors of opposite propagation directions 

as 𝜃 ; thus, the angle between the azimuths of the output light of opposite 

propagation directions was 
𝜃

2
, as was the angle between the output light and the 

polariser in the backward direction. Therefore, the optical power of the output 

light that passes through the polariser and goes back to the laser source is  

(cos
𝜃

2
)
2

. We know that isolation is defined as: 

 

                                           𝑑 = −10 log
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
                                           (5-10) 

 

Where 𝑃𝑜𝑢𝑡 is the optical power of the output light and 𝑃𝑖𝑛 is the optical power 

of the input light. 

Therefore, the isolation ratio becomes: 

 

                                      𝑑 = −10 log (cos
𝜃

2
)
2

                                         (5-11) 

 

Where 𝜃 = cos−1 (
𝑆𝑓⃗⃗ ⃗⃗  ∙𝑆𝑏⃗⃗ ⃗⃗  

|𝑆𝑓⃗⃗ ⃗⃗  ||𝑆𝑏⃗⃗ ⃗⃗  |
), 𝑆𝑓

⃗⃗  ⃗ is the Stokes vector of forward direction, while 𝑆𝑏
⃗⃗⃗⃗  is 

the Stokes vector of backward direction. The Stokes vector angle for the Ce-TIG 

on the 500nm SOI platform in Figure 5-10 is 0.8158 π, i.e., 2.563 rad, and the 

isolation ratio d = 10.9 dB. 
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5.2.4 Observed Promising Results on Both 500 nm SOI and 340 
nm SOI Platforms with Different Garnets on Top 

 
As discussed in Chapter 4, for the fabrication of the NR-PMC part, different 

kinds of MO garnets, including Bi-TIG, TIG, Ce-TIG, and Ce-YIG on YIG/MgO were 

used as cladding layers on both 500 nm SOI and 340 nm SOI platforms, and 

corresponding devices were fabricated and measured. Though there was a mis-

alignment problem in the fabrication process of the devices on 340 nm SOI 

platforms, there are still some devices that were well aligned, with the MO 

Faraday rotation effect observed on both the 340 nm SOI substrate and 500 nm 

SOI substrate. Depending on the quality of the garnet and the number of quasi-

phase matching periods, the Faraday rotation degree and, thus, Stokes vector 

angle vary among these devices. All of the results presented below (on the 500 

nm SOI platform) and in the Appendix (on the 340 nm SOI platform) indicate that, 

with proper optimisation of the quality of the garnet and the right device length, 

all of the garnets presented here can be used to achieve non-reciprocal mode 

conversion as part of the isolator device. 

 

5.2.4.1 500 nm SOI Platform with Bi-TIG, Ce-TIG, Ce-YIG on YIG, and Ce-YIG 
on MgO as a Cladding Layer 

 
The measurement results of the devices with 300 nm Bi-TIG and 300 nm Ce-

TIG as an MO cladding layer on a 500 nm SOI platform, the wavelength scan with 

the sample unsaturated and saturated positively and negatively, the peak 

wavelength point on the Poincare sphere, and the angle between Stokes vectors 

are presented in Figure 5-9 and Figure 5-10, respectively. 

Figure 5-11 and Figure 5-12 display the measurement results of the device 

with Ce-YIG on YIG (330 nm/50 nm) as cladding. Figure 5-11 shows the relative 

fraction of the TM-polarised output as a function of input wavelength when the 

sample is not saturated, and saturated in a forward direction and back direction; 

a peak at λ=1612 nm is observed.  

Figure 5-12 presents the Stokes vector angle of opposite magnetic 

saturation at a resolution of 0.01 nm, where an angle of nearly 3/4π is observed 
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and there is fringe-like noise. By calculating the frequency spacing λ in the free 

spectral range (FSR), it can be confirmed that the fringe-like noise came from the 

Fabry-Perot fringes, which can be avoided by applying an anti-reflection coating 

on the facets of the cleaved sample. Besides, quasi-phase matching (QPM) is found 

on 800 nm-wide and 900 nm-wide devices of different lengths of beat-length at 

different peak wavelengths (Figure 5-13). Compared to the simulation results, 

though there is a small difference in the QPM period length, there is good 

agreement in the general development trend, where devices with a shorter QPM 

period length tend to have a longer peak wavelength. 

 
 
 
 

 

Figure 5-11. Device with Ce-YIG on YIG cladding on a 500nm SOI platform: the relative fraction 
of the TM-polarised output as a function of input wavelength when the sample is not 
saturated, and saturated in a forward direction and back direction; a peak at λ=1612 nm is 
observed. 
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Figure 5-12. Device with Ce-YIG on YIG cladding on a 500 nm SOI platform: it presents the 
Stokes vector angle of opposite magnetic saturation at resolutions of 0.01 nm, where an angle 
of nearly 3/4π is observed and there is fringe-like noise. 
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Figure 5-13. Device with Ce-YIG on YIG cladding on a 500nm SOI platform: (a) and (b) 
compare the experiment results of the QPM period length to the simulation results of QPM 
period length on 900 nm-wide devices and 800 nm-wide devices, respectively. 
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Figure 5-14 and Figure 5-15 display the measurement results of the device 

with Ce-YIG on MgO (300 nm/20 nm) as cladding. Figure 5-14 shows the relative 

fraction of the TM-polarised output as a function of input wavelength when the 

sample is not saturated, and saturated in a forward direction and back direction; 

a peak at λ=1614 nm is observed. Figure 5-15 presents the Stokes vector angle of 

opposite magnetic saturation at 0.5 nm resolution, where an angle of about 1/2π 

is observed. 

 
 

 

Figure 5-14. Device with Ce-YIG on MgO cladding on a 500 nm SOI platform: the relative 
fraction of the TM-polarised output as a function of input wavelength when the sample is not 
saturated, and saturated in a forward direction and back direction; a peak at λ=1612 nm is 
observed.  
 



129 

Chapter 5 – Optical Measurement for Nonreciprocal Polarisation Mode Converter 
   

 
 

 

 

Figure 5-15.Device with Ce-YIG on MgO cladding on a 500 nm SOI platform: it presents the 
Stokes vector angle of opposite magnetic saturation at a 0.5 nm resolution, where an angle 
of about 1/2π is observed. 

 
 

 

5.2.5 Summary of the Observed Promising Results  

 

Table 5-2 summarises the measurement results of all the NR-PMC devices 

fabricated on both 500 nm SOI and 340 nm SOI, which have been described above. 

The actual device lengths in measurement (Lm), angle between Stokes vectors (Θ), 

and calculated Isolation ratio (dc) of the devices fabricated are presented. 

However, the isolation ratio we got here from the measurements is not the 

optimised performance that each device should have. Here, the isolation ratio 

depends on the number of QPM (Quasi-Phase Matching) periods on the device. 

Thus, the longer the device is, the more QPM periods there are. When the device 

is cleaved at the proper length, a Stokes vectors angle of π is expected, where 

the lightwaves of opposite propagation directions are orthogonal to each other 

and there is 100% isolation theoretically, and ideally more than 60 dB can be 

achieved, integrated with some other necessary components, like wave-plates and 
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polarisers, as discussed above. The lengths needed to achieve π between Stokes 

vectors (Loptimal) for all devices are also calculated and presented in the table.  

Among all the devices on 500 nm SOI platforms, the one with Ce-YIG/YIG 

claddings stands out to be the best, where 0.74π has been obtained on a 4.07 mm-

long device, and 5.5 mm will be needed to get total isolation. The second best is 

the one with Ce-TIG cladding, where 0.816π has been obtained on a 6 mm-long 

device, and 7.35 mm will be needed to get total isolation. This, however, does 

not agree with what was discussed in Chapter 2, whereby devices with the Ce-TIG 

MO (magneto-optical) cladding should have the best performance with the 

smallest footprint. Besides, the performance of the device with Ce-YIG/YIG 

cladding outbids that of the device with Ce-YIG/MgO cladding, which, in theory, 

should be the other way around, as YIG has an opposite Faraday coefficient from 

that of Ce-YIG, which weakens the performance, while MgO has a neutral 

magneto-optical performance.  

Among all of the devices on 340 nm SOI platforms, the one with Bi-TIG 

claddings stand out to be the best, where 0.84π was obtained on a 3.4 mm-long 

device, and 4.1 mm will be needed to get total isolation. The second best is the 

one with Bi-TIG + TIG cladding, where 0.81π was obtained on a 3.7 mm-long 

device, and 4.57 mm will be needed to get total isolation. This, also, does not 

agree with what was discussed in Chapter 2, whereby devices with the alternating 

MO cladding (MO+/MO-) should have the better performance with a much smaller 

footprint than the devices with just a single sign of MO cladding.  

All of these contradictions between theory and application can most 

probably be attributed to the inconsistency of the quality of the partially 

crystallised garnet materials. Full crystallisation is a worldwide problem yet to be 

overcome. Recently, our collaborators have been using low temperature laser 

annealing to improve the crystallinity of the garnet materials. The results seem 

very promising and re-producible and are to be published. Therefore, in the 

future, devices with different lengths and with different MO garnet materials can 

be designed and fabricated to get further confirmation, and better repeatable 

performances should be expected.  
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 Substrate 1 Substrate 2 

 500nm SOI 340nm SOI 

Garnet Lm(mm) Θm(rad) dc(dB) Loptimal(mm) Lm(mm) Θm(rad) dc(dB) Loptimal(mm) 

Bi-TIG 5.4 0.28π 0.88 19.3 3.4 0.83π 11.57 4.1 

Bi-

TIG+TIG 

NA NA NA NA 3.7 0.81π 10.63 4.57 

Ce-TIG 6 0.816π 10.9 7.35 4.5 0.32π 1.15 14 

Ce-

YIG/YIG 

4.07 0.74π 8.02 5.5 5.74 0.10π 0.11 57.4 

Ce-

YIG/MgO 

7 0.51π 3.1 13.7 NA NA NA NA 

 

Table 5-2. Summary of the measurement results of all the NR-PMC devices fabricated on both 
500 nm SOI and 340 nm SOI. In the table, Lm - Measured Device Length, Θm – Measured Stokes 
vectors angle, dc – Calculated Isolation ratio based on Θm, Loptimal - Device Length Needed to 
achieve π between Stokes vectors. The best results are highlighted in red. 

 

Below, Figure 5-16 (a), (b), (c), and (d) present the relationship between 

isolation vs wavelength of the four best results highlighted in red in Table 5-2. 

Isolation was calculated by the method and equation 5.11 described in 1.2.3, while 

the relationship between the Isolation Ratio and Stokes Vector Angle based on 

equation 5.11 is described in Figure 5-17. Figure 5-17 (a) shows the periodic 

relationship between the isolation ratio and Stokes vector angle according to 

equation 5.11 with the period of 2π. The maximum value, which tends to be 

infinite, is obtained at Stokes Vector Angle = (2n+1)π, n=0,1,2…, where the two 

modes are orthogonal to each other. Figure 5-17 (b) presents the relationship 

between the Isolation Ratio and Stokes Vector Angle for half a period (0-π), and 

points out the best results described in Table 5-2.  

 

                                      𝑑 = −10 log (cos
𝜃

2
)
2

                                         (5-11) 
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Figure 5-16.(a), (b), (c), and (d). The relationship between isolation vs wavelength for the 
four best results highlighted in red in Table 5-2. The isolation was calculated by the method 
and equation 5.11 described in 5.4.4. 



133 

Chapter 5 – Optical Measurement for Nonreciprocal Polarisation Mode Converter 
   

 
 

 

Figure 5-17.(a) describes the relationship between the Isolation Ratio and Stokes Vector 
Angle according to equation 5.11, which clearly shows a periodic trend with the period of 2π. 
The maximum value, which tends to be infinite, is obtained at Stokes Ve Vector Angle = 
(2n+1)π, n=0,1,2…, where the two modes are orthogonal to each other. (b) presents the 
relationship between the isolation ratio and Stokes vector angle for half a period, and points 
out the best results described in Table 5-2.
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6 Chapter 6—Design, Fabrication, and Optical 
Measurement for Reciprocal Polarisation Mode 
Converter 

 

6.1 Introduction 

 

 
Chapters 3, 4, and 5 discussed the simulation, design, fabrication, and 

optical measurement of the NR-PMC part. This chapter is going to describe the 

simulation, design, fabrication, and optical measurement of the R-PMC (reciprocal 

polarisation mode conversion) part. Here, an L-shaped structure was adopted to 

achieve reciprocal polarisation mode conversion, similar to the trench structure. 

The asymmetric profile of the L-shaped waveguide effectively rotates the optical 

axis of the waveguide, such that, when a single mode from a symmetric waveguide 

is incident upon this asymmetric section, it excites both polarisation modes within 

the asymmetric structure. Beating between these two excited modes results in a 

modification of the state of the polarization that varies with propagation through 

the asymmetric section. Thus, through careful design of the length and degree of 

asymmetry of this section, various desired polarisation state conversions may be 

achieved.  

The trench structure has been realised in III-V materials by Electrical Beam 

Lithography (EBL) and the Reactive Ion Etching (RIE) lag effect [96] [157] where, 

after the same amount of etch time, the etched depth of patterns with smaller 

feature sizes is smaller than those of bigger feature sizes. But, primarily due to 

its smaller dimensions, but also due to the etch parameters adopted for Si, the 

control of the RIE-lag approach is not straightforward in Si. The left pic of Figure 

6-1 presents the cross-section profile of trenches of different widths after being 

deep etched for 20 mins, where it is clear that not much difference in etched 

depth vs trench width is obtained. The 5 µm-wide trench is etched down 54 µm, 

while the 10 µm-wide trench is etched down 60 µm. The right pic of Figure 6-1 

includes four sets of data reflecting the change of etch depth of different trench 

widths after being etched for 20 mins, 60 mins, 80 mins, and 100 mins, 
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respectively. We can see that for the same trench width range, the difference in 

etch depth increases with the increase of the etch time. The RIE lag effect is small 

even for features of both the trench width and the trench depth at the 100 µm 

scale. It will become much smaller for our case, where the width and depth of the 

trench is only at the 500 nm scale.   

Therefore, an equivalent structure, the L-shaped profile, achieved through 

a two-step etch and re-mask process, is adopted to achieve the required 

asymmetry and reciprocal polarisation mode conversion. 

 

 

 

Figure 6-1. The left pic of Figure 6-1 presents the cross-section profile of trenches of different 
widths after being deep etched for 20 mins, where it is clear that not much difference in etched 
depth is obtained. The 5 µm-wide trench is etched down 54 µm, while the 10 µm-wide trench 
is etched down 60 µm. The right pic of Figure 6-1 includes four sets of data reflecting the 
change of etch depth of different trench widths after being etched for 20 mins, 60 mins, 80 
mins, and 100 mins, respectively. These results are reprinted with the kind permission of Dr. 
Haiping Zhou [158]. 

 

 

6.2 Simulation and Design on 500 nm SOI and 340 nm SOI 

6.2.1 500 nm SOI 

 

The Reciprocal Polarisation Mode Converter (R-PMC) is designed to be made 

in an L-shaped (Figure 6-2b) cross-section on 500 nm SOI, where a big dimension 

gives more fabrication tolerance and offers enough space for modes conversion 

compared to thinner core SOI platforms. Simulation is conducted in a modesolver 
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program [137] in MATLAB©  to ascertain the whole width (=W1+W2) of the 

waveguide and also W1, W2, and h1, the depth to be etched down to. Here, 50%, 

not 100%, modes polarization conversion (i.e., the equivalent of a half-waveplate 

orientated at 22.5) has been previously identified as better implementation for 

the integrated isolator. The Stokes vectors relating to the effective optic axis 

orientations are 𝑆 = (
1

√2
, ±

1

√2
, 0) and 𝑆 = (−

1

√2
, ±

1

√2
, 0), respectively [86].  

First of all, an initial simulation was carried out to find out the width range 

for single-mode guided 500nm-thick waveguides. The cross-section profile is 

shown in Figure 6-2 (a). The height of waveguide H is 500 nm. The relationship 

between the effective refractive index of the two orthogonal single-lobed 

fundamental modes and the width of the waveguide is described in Figure 6-3, 

from which we can obtain the width range of single mode waveguides, 150 nm-

300 nm. Then, for the L-shaped simulation, 250 nm, half of the whole Si core 

thickness, was chosen as the etched-down depth h1. The cross-section profile is 

shown in Figure 6-2 (b). Based on the obtained single-mode width range and the 

etched depth h1, simulations were conducted to find the proper dimensions to 

achieve 50% mode conversion by varying W1 and W2. The single-mode width range 

150 nm–300 nm was used as the width range for W1. By increasing the value of W2, 

structures with different optic axis orientations, which also only allow the guiding 

of the single-mode, can be found from the Stokes vectors. The simulation result 

is summarized in Table 6-1.  

In the actual e-beam mask design, a wider range of widths for W2 were 

chosen for each W1 value to accommodate any fabrication error/difference. 

Taking W1 = 150 nm as an example, the simulated value for W2 was 168 nm, while 

165 nm-175 nm was chosen for W2 when designing the e-beam mask. Three lengths 

of the L part were chosen based on the half-beat length Lπ to achieve a different 

percent of mode conversion, Lπ, 1.5Lπ, and 2Lπ, from which a 50%, 35.36% 

(=
√2

2
∙ 50%), and 0% mode conversion should be expected.  

As the waveguides were thin, in order to ensure they were guiding the light 

and avoiding bad facets of these thin waveguides after the cleaving process, a 

linear Si adiabatic taper coupler was added to both sides of the waveguides, as 

shown in Figure 6-4. Here ‘adiabatic’ means that the taper changes so slowly that 

the power is maintained in the two fundamental modes, and the power that 

couples to other higher order modes is nearly negligible [159][160][161]. A long 
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and gently changing taper is one solution to achieve adiabatic coupling [161]. An 

adiabatic taper coupler does not require a precise power-transfer length [162] as 

long as it is long enough to satisfy the adiabatic condition. The width of the taper 

varied from W1 to 2 µm through a 350 µm length on an SOI platform [163]. In actual 

design, waveguides with adiabatic tapers of different lengths can be designed and 

tested. Additionally, tapers of two forms, the triangle and the quarter circle, were 

also added to both ends of the L-part to avoid the sudden change and in-

continuity, as seen in Figure 6-5. Also, there is an overlap between the layer of 

the L-part and the layer of the straight waveguide to allow for a greater 

fabrication tolerance.    

        

        

 

Figure 6-2. (a) The Cross-Section Profile of a 500 nm-thick single-moded waveguide, while (b) 
is the Cross-Section Profile of the L-shaped design. 
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Figure 6-3. The relationship between the effective refractive index of the two fundamental 
modes and the width of the waveguide. 
 

 

h1(nm) W1(nm) W2(nm) W(nm) Lπ(µm) S1(1) S2(1) S1(2) S2(2) 

250 150 168 318 2.5384 0.7009 0.6041 -0.7080 -0.5722 

250 160 168 328 2.6596 0.6979 0.6099 -0.7013 -0.5772 

250 170 165 335 2.7276 0.7079 0.6026 -0.7076 -0.5716 

250 180 165 345 2.8816 0.7054 0.6083 -0.7020 -0.5782 

250 190 165 355 3.0536 0.7027 0.6142 -0.6965 -0.5856 

250 200 163 363 3.1713 0.7113 0.6086 -0.7029 -0.5833 

250 210 163 373 3.3820 0.7074 0.6159 -0.6971 -0.5928 
 

Table 6-1. The optimised parameters of the L-shaped waveguide of each specific width to 
achieve a 50% mode conversion on 500 nm SOI. 
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Figure 6-4.The structure of the L shape with Si adiabatic taper coupler. 
 
 
 

 

 

 

Figure 6-5. The triangle and the quarter circle added to both ends of the L-part to avoid the 
sudden change and in-continuity. 
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6.2.2 340 nm SOI 

 

The same rules and methods apply to the simulation and design of the L-

shaped design on the 340 nm SOI platform, except that the thickness of the core 

Si layer is now 340 nm and not 500 nm. Figure 6-6 indicates the relationship 

between the effective refractive index of the two fundamental modes and the 

width of the waveguide, from which we can get the width range of single mode 

waveguides, 200 nm-400 nm. Interestingly, there is a crossover for square cross-

section guides.  

For waveguides with widths less than 340 nm, represented by the points at 

the left side of the crossover point (340,340) in Figure 6-6, the difference in the 

effective refractive index between the two fundamental modes decreases with 

the increase of the width in the horizontal dimension. This means that the half-

beat length increases and the difference becomes 0 when the width in the 

horizontal dimension equals the height in the vertical dimension.  

For waveguides with widths more than 340 nm, represented by the points 

at the right side of the crossover point (340,340) in Figure 6-6, the difference in 

the effective refractive index between the two fundamental modes increases with 

the increase of the width in the horizontal dimension. Meanwhile, the height in 

the vertical dimension stays the same, at 340 nm; hence, the half-beat length 

decreases. For waveguides with a fixed value of the vertical dimension (height), 

the bigger the difference between the horizontal dimension (width) and the 

vertical dimension (height), the bigger the effective refractive index between the 

two fundamental modes, the shorter the half-beat length. 

For the L-shaped simulation, 170 nm, half of the whole Si core thickness, 

was chosen as the etched down depth h1. Here, no proper 50% mode conversion 

structures were found in waveguides where W1 was wider than 320 nm, as the 

horizontal dimension (W1 + W2) is much bigger than the vertical dimension (h1 + h2 

= 340 nm), and there is always more power scattered in the horizontal dimension 

than in the vertical dimension. The simulation result is summarized in Table 6-2. 
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Figure 6-6. The relationship between the effective refractive index of the two fundamental 
modes and the width of the waveguide. 
 
 
 

h1(nm) W1(nm) W2(nm) W(nm) Lπ(µm) S1(1) S2(1) S1(2) S2(2) 

170 200 90 290 2.6592 0.6837 0.6185 -0.6943 -0.6327 

170 210 85 295 2.7996 0.6879 0.6169 -0.6965 -0.6306 

170 220 80 300 2.9899 0.6898 0.6177 -0.6970 -0.6304 

170 230 75 305 3.2401 0.6891 0.6211 -0.6953 -0.6324 

170 240 70 310 3.5642 0.6853 0.6276 -0.6909 -0.6373 

170 250 65 315 3.9830 0.6774 0.6378 -0.6828 -0.6457 

170 260 60 320 4.5266 0.6643 0.6525 -0.6696 -0.6586 

170 270 50 320 5.1111 0.7039 0.6144 -0.7107 -0.6183 

170 280 45 325 6.0714 0.6838 0.6367 -0.6907 -0.6387 

170 290 40 330 7.4204 0.6510 0.6689 -0.6584 -0.6690 

170 300 30 330 9.2702 0.6997 0.6228 -0.7082 -0.6200 

170 310 25 335 12.5990 0.6404 0.6795 -0.6506 -0.6745 

170 320 15 335 19.0707 0.7124 0.6109 -0.7247 -0.6007 
 

Table 6-2. The optimised parameters of the L-shaped waveguide of each specific width to 
achieve a 50% mode conversion on a 340 nm SOI. 
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6.3 Fabrication 

 

First of all, etched markers used for alignment between layers were 

prepared using e-beam lithography. Two layers of 12% 2010 PMMA were used as 

the etch resist mask, and written at a dose of 1000 μC/cm2 with a 64 nA e-beam 

current along with a VRU (variable resolution unit) of 16 under 100 kV. The sample 

was developed in 2.5:1 IPA: MIBK for 140 s followed by 45 s IPA at 23.5 Degrees. 

These markers are sets of 20 µmx20 µm of 4 squares plus 700 µmx20 µm crosses. 

A Si etch tool (STS-ICP, Estrelas, or ICP-180) was used to etch the markers down 

into the Si layer to the SiO2, which was confirmed using the end-point detector to 

get the interferometer trace. Therefore, all these markers are 500nm/340nm 

deep, the same thickness as that of the Si core layer. Overnight soaking in hot 

acetone (50 Degrees C) and then 2 mins Oxygen Plasma ash were adopted to 

remove the remnant PMMA resist.  

Afterwards, 1:1 MIBK diluted HSQ (Hydrogen silsesquioxane)-negative resist 

was spun at 2000 rpm and baked on a hotplate for 15 mins before being sent to 

the e-beam to write the waveguides patterns. Only the straight waveguide part 

and the taper couplers were written this time as the first layer. The patterns were 

written with a 2 nA beam with VRU as 6 and at a dose of 1350 μC/cm2. At the same 

time, the cover strips to cover the markers, to protect them from being damaged 

in the subsequent dry etch procedure, were written.  

Afterwards, the mask was developed in neat TMAH for 30 s followed by a 

30 s rinse in RO (de-ionsed) water, another 30 s in RO (de-ionsed) water and 45 s 

in IPA. Then, an Si dry etch tool was used to etch away half of the core Si layer, 

using an end-point detector, 250 nm deep for the 500 nm SOI and 170 nm deep for 

the 340 nm SOI. Then, an acetone, IPA rinse, and an oxygen ash were carried out 

to remove any ‘etch residues’ on the sample surface, after which a second layer 

of 1:1 MIBK diluted HSQ resist was applied on the sample, to have the second layer 

of the L-part written, without stripping off the remaining HSQ, which was used as 

the dry etch mask for the second etch as well. The same spinning speed, bake 

time, e-beam beam size,VRU, dose, and develop condition were used as in the 

first layer. Then, the device was etched down another half thickness of the Si core 

layer in the Si etch tool. The device was completed and ready for cleaving.  
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Before cleaving, a layer of photoresist was spun on top without any hot-

plate curing. Careful cleaving was carried out using the scribe+cleave tool to get 

a 4-5mm-long device with straight edges. Finally, a 5 mins acetone rinse was 

applied to remove the photoresist on top, and the device was ready for 

measurements. Figure 6-7 indicates the structure of the L-shape under SEM. The 

left and the middle pics show the top-down view of the L-part with a triangle and 

quarter-circle taper, respectively, while the right pic presents the cross-section 

profile of the L-part. 

 

 

 

Figure 6-7. The structure of the L-shape under SEM. The left and the middle pics show the 
top-down view of the L-part with a triangle and quarter-circle taper, respectively, while the 
right pic presents the cross-section profile of the L-part. 

 

During the fabrication process, the alignment between the layers is very 

critical as there is very small fabrication tolerance in this design. Only mis-

alignment under W1/2 (75 nm-105 nm for a 500 nm SOI and 100 nm-160 nm for a 

340 nm SOI) is allowed if a W1/2 wide overlap is placed between the first straight 

waveguide layer and the second L-part layer, while the normal drift in the VB6 

tool is ~30 nm every 15 mins [164]. So, in order to achieve a good alignment, a re-

calibration every 15 mins is needed during the e-beam job-writing process, or a 

job shorter than 15 mins should be designed by varying the e-beam mask, e-beam 

spot size, or VRU.  

Another fabrication problem will be the stitch error (Figure 6-8), resulting 

when the whole e-beam mask is divided into many 1.2 mmx1.2 mm or 1 mmx1 mm 

subfields [164]. Therefore, there will be many stitches between the sub-fields, 

and it becomes worse when there is drift in the process of switching fields. To 
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avoid the stitch error, overlap can be placed in the mask between subfields if the 

mask is too large to be put in a single subfield, and an effort should be made to 

design the mask to be in a single subfield if it is within a single subfield size.  

A cell registration process can be developed to solve the alignment issue 

and the stitch error where the whole mask is divided into small cells whose mask-

writing time is shorter than 15 mins, and there is a re-calibration between two 

cells writing and a bit of mask overlap between two cells. As the mis-alignment 

for the last set of devices fabricated is within the tolerance range because of the 

good performance of the EBL tool, the cell registration process is not applied in 

the fabrication process of the R-PMC part yet. However, in the future, the cell 

registration process, which guarantees the good alignment between layers 

regardless of the performance of the EBL tool, is a must, and has to be applied in 

the fabrication process of the L-shape device.    

   

 

 

Figure 6-8. Field stitch errors 
 
 

 

6.4 Optical Measurements 

 

The measurements method for the R-PMC part is much the same as that 

described for the NR-PMC part in Chapter 5. The same free space end-coupling 

method was adopted with pure TE injected in, and TM and TE modes of the output 

measured by the photodiode detector together with the lock-in amplifier system. 

The whole setup of the measurement system is shown in Figure 6-9.  
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Figure 6-9. Measurement rig set-up for the R-PMC part. 
 

 

Figure 6-10 shows the measurement results of TM output vs wavelength of 

three devices on a 500 nm SOI, where W1=200 nm, W2=163 nm, and h1=250 nm; 

the only difference between the three devices is the length of the L-part with the 

three different values as L1=Lπ, L2=1.5Lπ, and L3=2Lπ, from which we should expect 

50%, 35.36% (=
√2

2
∙ 50%), and 0% mode conversion. We can see that there is a 

trend whereby, with the increase of the L-part length, the TM output power 

increases, which hints that there is more mode conversion. However, there is not 

one outstanding obvious peak in any results of the devices of different L-part 

lengths. The peaks are quite randomly scattered. There are also fringes resulting 

from the Fabry-Perot cavity of the device in the traces. Similar results are 

obtained from devices of different lengths in the L-part on the 340 nm SOI (Figure 

6-11), where W1=280 nm, W2=50 nm, and h1=170 nm.  

Later, the reason why the measurement results did not match what should 

be expected was discovered: there was a problem with the designs we had for 

both the 500 nm SOI and 340 nm SOI platforms. From the dimension parameters 

of the structure designs on the 500 nm SOI and 340 nm SOI in Tables 6.1 and 6.2, 

respectively, we can see that, in the L-part, the total width (w) of the waveguide 

is smaller than the height of the waveguide (500 nm for a 500 nm SOI and 340 nm 

for a 340 nm SOI), while, in the adiabatic taper section, the input/output side, 

2µm wide, is larger than the height of the waveguide. Thus, there will be a square 
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cross-section part in the design where the width of the waveguide equals the 

height, which leads to polarisation scattering between the modes with a similar 

effective refractive index, and random polarisation states will be obtained.  

 
  

 

 

 

 

Figure 6-10. The measurement results of TM output vs wavelength of three devices on a 500 
nm SOI. 
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Figure 6-11. The measurement results of TM output vs wavelength of three devices on a 340 
nm SOI. 

 

 

6.5 Discussion and Future Work 

 

More work needs to be done in order to develop a working R-PMC device in 

the future. On one hand, in order to remove the Fabry-Perot fringes noise, an 

anti-reflection coating (ARC) can be applied to both facets of the devices after 

cleaving. The existence of the anti-reflection coating layer creates a double 

interface, which, thus, leads to two reflected waves, as seen in Figure 6-12. When 

the coating layer is a quarter-wavelength thick 𝑑 =
𝜆

4𝑛
 with a refractive index of  

𝑛 = √𝑛1𝑛𝑎𝑖𝑟[165], there will be a π phase difference between the two waves, so 

the two waves will completely cancel each other. SixNy with a refractive index of 

around 2-2.1 at the infra-red wavelength range is a good candidate for the AR 

coating. According to the reflectivity equation,𝑅 = (
𝑛1−𝑛

𝑛1+𝑛
)
2

, only 4% of the wave 

is reflected.  
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Figure 6-12. The existence of the anti-reflection coating layer creates a double interface, 
which, thus, leads to two reflected waves. 
 
 

 

On the other hand, a defect was found in the design of the L-shape. 

Between the wide taper (2-3 µm wide) and the straight waveguide (200-300 nm), 

there is a part where the width of the waveguide equals the height of the 

waveguide, which makes it a total square waveguide (500x500 nm for a 500 nm 

SOI and 340x340 nm for a 340 nm SOI). This leads to unwanted mode conversion 

between the guided modes as it can be either mode component. The mode 

scattering at the square cross-section part gives a random incoherent polarisation 

state.  

Later measurements carried out in a polarimeter system can be done to 

identify whether the output is a polarisation coherent state or a polarisation mode 

scattering state, which is an incoherent state that can result from a structure with 

total square cross-section dimensions. Polarisation coherent state outputs are 

represented by points on the Poincare sphere, and the relationship of the Stokes 

parameters of the points can be expressed by equations about Stokes parameters, 

as discussed in Chapter 5. The polarisation mode scattering states are described 

by random points in the middle of the Poincare sphere, and the relationship of the 

Stokes parameters is not coherent. Revisions need to be made to avoid the total 

square area, including making the taper area a half-etch down by applying a wider 

second layer, as seen in Figure 6-13. Also, waveguides with adiabatic tapers of 

different lengths can be designed and tested. Besides, the QPM periodic loading 

on top of the Si waveguide can be another promising option, as observed and 

discussed in Chapter 5. 
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Figure 6-13. The structure of a potential working L-shaped R-PMC device; a wider second 
layer can be added to the coupler to avoid the total square waveguide. 
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7 Chapter 7—Discussions, Conclusions, and 
Future Work  

 

 
As an indispensable component in optical circuits/systems, an optical 

isolator helps to keep the performance of the whole system stable, by preventing 

and blocking reflected light signals that occur at interfaces. The isolator also 

prevents undesired interference and interactions between connected devices and 

pathways/routes from coming back to the optical source, which will make the 

source suffer and lead to instabilities. To date, the optical isolator is the most 

significant device that has not been successfully commercialised.  

The core technique of the integrated isolator requires non-reciprocity. 

There are commonly two approaches taking advantage of magneto-optical (MO) 

garnet material in waveguides: the Faraday Effect (longitudinal) – Nonreciprocal 

Polarisation Mode Conversion (NR-PMC), and the transverse approach – 

Nonreciprocal Phase Shift (NPS), where a phase shift between forward and 

backward traveling light is generated, but which only normally applies to TM mode 

designs.  

Currently, almost all of the research into the development of integrated 

isolators correspond to TM (Transverse Magnetic) modes by applying NPS in 

structures like ring isolators [64]–[67] and MZI (Mach-Zehnder Interferometers) 

[29][31][69]–[73]. This, however, does not the match the needs of many integrated 

systems, like PICs (Photonic Integrated Circuits) or OEICs (Opto-Electronic 

Integrated Circuits), as most of the lasers within these systems emit TE 

(Transverse Electric)-polarised light as a result of quantum-well selection rules. A 

detailed literature review can be found in Chapter 1.  

A few TE mode integrated optical isolators have been proposed based upon 

NPS [31] [32] [84] [110]. To date, the only two TE polarised light optical isolators 

were realized by Ghosh et al. [31] and Shoji et al. [32]. In these experiments, MO 

garnet material was adhesively bonded on top of the waveguide and the NPS 
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approach, together with a complicated optical serpentine circuit or complicated 

design of asymmetric coupled waveguides for TE-TM mode conversion, was 

employed, although the controllability of the thickness of the adhesive bonding 

layer remains an issue of concern. 

Obstacles remain in the integration of MO garnet material on semiconductor 

substrates. In most cases, adhesive bonding or direct bonding is utilized for the 

integration [29][65]–[67][69]–[73], which is sensitive to any thermal expansion and 

currently unsuitable for mass production.  

This project aimed to realise the integration of an optical waveguide 

isolator that works for both TE and TM modes on the Silicon-on-Insulator platform. 

We have targeted a design with two core components that are required to build 

such an isolator. One is a 45 °  NR-PMC (Nonreciprocal Polarisation Mode 

Conversion), where the NR-PMC approach, which works for both TE and TM modes, 

is adopted. The other is a 45° R-PMC (Reciprocal Polarisation Mode Conversion), 

where an asymmetric structure, with an L-shaped cross-section waveguide is 

employed, so that the resultant rotation of the optical axis of the guide enables 

the excitation of hybrid modes from an injected linear polarisation mode and 

reciprocal mode conversion between the two modes.  

For the NR-PMC part, in order to resolve the problems of phase matching 

and the integration of MO garnet material on the SOI substrate, a bilayer PMMA 

lift-of mask was developed to form a periodic loading MO garnet segments pattern 

in order to achieve quasi-phase matching. This was achieved by forming MO 

segments that alternate with SixNy segments, or by forming MO segments (+) with 

a positive Faraday rotation coefficient alternating with MO segments (-) with a 

negative Faraday rotation coefficient. Radio-frequency (RF) material deposition 

techniques were adopted, followed by a rapid thermal annealing process (RTA) to 

achieve crystallinity of the MO garnet. This section of the project was in 

collaboration with Professor Bethanie Stadler’s group from the University of 

Minnesota. All the MO garnet materials deposition and all the material 

characterisation with VSM, XRD, EBSD, and Faraday rotation measurements were 

carried out in Minnesota, where I spent several weeks. 
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7.1 Nonreciprocal Polarisation Mode Converter (NR-PMC) 

 

7.1.1 Conclusions 

 

On the NR-PMC part, different SOI substrates with the Si core layer 

thicknesses of 220 nm, 340 nm, 400 nm, and 500 nm, together with different MO 

garnet materials (YIG, Ce-YIG on MgO, Ce-YIG on YIG, Ce-TIG, Bi-TIG, and TIG) 

were chosen to be researched. Among them, Ce-TIG, which posses a considerable 

Faraday rotation coefficient, and, additionally, does not require a buffer/seed 

layer to achieve crystallinity, was the most promising garnet.  

As there was a quality problem with the 220 nm SOI and 400 nm SOI wafers 

we were supplied with, simulation has only been conducted on these two substrate 

platforms, and devices have only been fabricated and optically characterized on 

340 nm SOI and 500 nm SOI platforms.  

First of all, simulation of the structure with MO garnet on top was carried 

out in WGMODES©  [137], a Modesolver©  package based in MATLAB© , primarily to 

get the parameters of the effective refractive index, half-beat length, and Stokes 

parameters. The effect of the seed layer (YIG) and buffer layer (MgO) on the MO 

behaviour of different garnets was also simulated. Then, an e-beam mask was 

designed in L-Edit© , based upon the obtained parameters from MATLAB© . 

Afterwards, a nanofabrication process, including e-beam lithography, plasma 

processing, RF sputtering, and RTA, mainly conducted in the James Watt 

Nanofabrication Center (JWNC) of the University of Glasgow, was used for the 

device definition. The development of a suitable bilayer undercut PMMA lift-off 

layer for periodic loading MO garnet islands and the optimisation of the crystalinity 

of the MO garnet materials have been critical steps during the process. Once 

fabricated, the two sides of the device can be cleaved to form an Fabry-Perot (FP) 

cavity, and used for free space measurement.  

During the measurement, pure TE mode light was injected into the 

waveguide. In the beginning, TM output separated by a polarisation splitting cube 

was measured by a Lock-in amplifier under situations when the waveguide was 
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unsaturated. It was then magnetically saturated in the forward and backward 

directions, where only the remenant magnetization of the garnet was used, so 

that the quasi-phase matching (where a peak should appear) wavelength, together 

with the MO Faraday effect, can be identified.  

Devices were saturated using a permanent magnet providing a ~1200 Gauss 

magnetic field. A pair of Helmholtz coils were also employed as a source of 

variable magnetic field and placed at the two sides of the device under 

measurement, which also enables simultanous measurements with changing 

magnetic fields. Later, they were abandoned as they could only produce a 

relatively weak magnetic field of ~200 Gauss, and also for undesirable thermal 

effects upon propagation modes, arising from the heating of the coils.  

Afterwards, the total output of the waveguides where quasi-phase 

matching occured was analysed by the Thorlabs©  polarimeter system, in which 

various parameters of the output mode can be obtained, such as Stokes 

parameters, azimuth, and ellipticity. Later, further analysis was done on these 

parameters to present the nonreciprocity of the device.  

The angle between the two Stokes vectors of opposite magnetization 

directions was elected as the optimum index to show the nonreciprocity and 

isolation of the measured device. Here, an angle of π indicates that the two output 

modes of opposite magnetization saturation directions are completely orthogonal 

and, as such, demonstrates that it could achieve 100% isolation with appropriate 

polarisers and waveplates.  

A nonreciprocal isolation performance has been found in devices with many 

kinds of MO garnets on both 340 nm SOI and 500 nm SOI platforms. Among these, 

more than a 3/4π Stokes vector angle was observed in devices with Bi-TIG and Bi-

TIG + TIG as MO periodic cladding on a 340 nm SOI, and Ce-YIG on YIG and Ce-TIG 

as MO periodic cladding on a 500 nm SOI, which corresponded to about an 11 dB 

isolation ratio if combined with proper polarisers. The length of these devices 

ranged between 3mm and 6 mm.  

Also, in this design, the number of periods of the alternating MO segments 

and SixNy segments or MO segments (+) with a positive Faraday rotation coefficient 

and MO segments (-) with a negative Faraday rotation coefficient decides the 

isolation ability of the device. Thus, 100% isolation can be achieved in every device 

where quasi-phase matching is satisfied and nonreciprocal behaviour is identified, 

as long as an appropriate length of the device is designed.  
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7.1.2 Future Work 

 

So far, a producible device fabrication process and optical characterisation 

and analysis process have been fully developed for the NR-PMC part, and isolation 

has been demonstrated in devices on both 500 nm SOI and 340 nm SOI platforms. 

However, effort is still required to to optimize the performance of the device and 

make the fabrication process more controllable. 

 

Firstly, research can be conducted on SOI platforms with different 

thicknesses of Si core layer to find the optimum platform. Thinner cores of SOIs, 

340 nm SOI and 220 nm SOI, have been used to make waveguides that enable more 

interaction between the mode and the garnet on top, as modes become less 

confined/more radiative and pushed up in thinner core waveguides. However, 

more evanescent wave interaction in thinner core SOI waveguides can also lead to 

more propagation loss as more light is confined in the garnet layer. Usually, garnet 

waveguides are quite lossy [156], while less interaction in thicker core SOI 

waveguides requires a longer device length to achieve an equivalent amount of 

rotation, which also increases the propagation loss. Therefore, a compromise 

might be needed according to the relationship between the Faraday rotation and 

propagation loss.  

There is a large mis-alignment problem in the processing of 340 nm SOI, as 

mentioned in Chapter 4, while the 220 nm SOI wafer we were supplied with was 

of poor quality, resulting from manufacturing defects from the producer. Actually, 

400 nm SOI was first considered as it is also practical for the R-PMC. However, 

there was the same material problem with the new 400 nm SOI wafers as with the 

220 nm SOI wafers. As such, fabrication parameters need to be optimised on 400 

nm SOI, 340 nm SOI, and 220 nm SOI of good quality. Also, the whole fabrication 

and optical measurement process will be carried out, from which the best 

structure can be decided based on the results of the figure of merit (isolation 

ratio/propagation loss) of waveguides on SOI platforms of different core 

thicknesses. 
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Secondly, from the aspect of MO garnet material, an increase in the 

crystalline percentage of the garnet segments, ideally fully crystallized, are to be 

achieved.  

Thirdly, optical characterisation-wise, the measurement results are to be 

improved by removing the FP fringes noise found in the optical measurements of 

the devices currently fabricated. Tapers and polymer couplers can be added to 

both the input and output of the waveguides. Also, anti-reflection coating (AR) 

can be applied to both sides of the cleaved facets.  

Besides, in all measurements in this work, TE polarised light is used as 

input, as the majority of the lasers used in optical systems are TE-polarised as a 

result of the quantum mechanical selection rule to demonstrate the feasibility of 

the design of the NR-PMC part and R-PMC part, and the nonreciprocity of the NR-

PMC device, the integrated Faraday rotator. Here, we have successfully 

demonstrated the achievement of an integrated Faraday rotator by integrating 

periodic magneto-optic garnet as cladding on top of the waveguide, which acts as 

the nonreciprocal part of the designed isolator device. In the future, the same 

optical characterisation methodology can be applied for TM-input or circularly-

input to further confirm the feasibility of the integrated Faraday rotation device 

and support the claim that it can work for light with arbitrary polarisation.      

Fourthly, from the aspect of specific application, though isolation has been 

achieved in the current devices, the required 45o mode converison devices for the 

integrated waveguide isolator are not realised yet. Waveguides with different 

numbers of quasi-phase matching periods can be designed to find out the right 

number of periods/device length to achieve a 45o mode conversion.  

 

7.2 Reciprocal Polarisation Mode Converter (R-PMC) 

 

7.2.1 Conclusions 

 

On the R-PMC part, an asymmetric structure, an L-shape waveguide, was 

chosen so that the rotation of the optical axis could enable the excitation of hybrid 

modes from an injected linear polarisation mode and reciprocal mode conversion 

between the two modes. The L-shape design is similar to the trenches structure 
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due to the RIE (Reactive Ion Etching) lag effect [157], which is not applicable in 

our situation, as the RIE lag effect is less flexible in Si etching and even less so for 

shallow etching.  

R-PMC might be able to be accomplished in a 500 nm SOI, 400 nm SOI, or 

340 nm SOI, but not on a 220 nm SOI as it is too thin (here, possibly, we can deposit 

amorphous Si selectively on top of a section of the waveguides to increase the 

thickness of the core layer to complete the whole device on a 220 nm SOI wafer 

[31]).  

To start with, simulations in MATLAB©  were formed to aquire the half-beat 

lengh and the right dimensions – the widths and height of each section of the L-

shaped part. Then, a similar method of mask design, device nanofabrication, and 

optical characterisation process was applied. Designs of waveguides were made 

with different lengths of the L-shaped part, at both sides of which an inverted 

adiabatic Si taper was placed in order for better light coupling in/out. During the 

device fabrication process, the alignment between the two mask layers was very 

critical for the success of the device. The same free space measurement setup 

was used to measure the reciprocal mode conversion. The only difference is that 

an external magnetic field is not needed any more.  

The measurement results turned out to be quite different from what was 

expected. The mismatch between the measured and expected results led to a re-

check in the design of the device, where it was discovered that a total square 

cross-section waveguide part was included in the design, where the two modes 

cross with one another and, thus, the polarisation got messed up. A new design 

was proposed for further research by making an inverted adiabatic taper area a 

half-etch down by applying a wider second layer to avoid the total square cross 

section.    

 

7.2.2 Future Work 

 

Initial simulation and fabrication of the L-shaped design have been 

conducted to show that more trials and efforts are required in order to create a 

working reciprocal 45o mode converter.  

On one side, optimization can be done to the simulation, fabrication, and 

optical measurements of the design, as suggested at the end of Chapter 6. To start 
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with, simulation in R-soft©  is to be conducted to find out the optimized 

dimensions. Then, during the fabrication process, cell registration in e-beam 

lithography can be used to achieve critical layer-to-layer alignment. Additionally, 

an AR coating can also be applied to both sides of the cleaved facets to avoid the 

FP fringes noise.  

On the other side, from the optical measurements of the NR-PMC part, it is 

verified that offsetting the quasi-phase matching loading periods on top of the 

waveguides can lead to reciprocal mode conversion. There are both reciprocal and 

non-reciprocal mode conversions in the waveguides with magneto-optical (MO) 

garnet material as periodic upper cladding at the presence of an external 

magnetic field, and an offset between the waveguide and the upper garnet 

cladding layer. The device itself can be an isolator when a proper half-beat length 

and the right number of quasi-phase matching loading periods are defined. 

 

7.3 Integration of the NR-PMC Part and R-PMC Part 

 

When success has been made in both the 45° NR-PMC part and 45° R-PMC 

part, the optimized NR-PMC section and the R-PMC section will be combined and 

integrated together with polarisers to make an integrated isolator. A quarter-wave 

plate also needs to be integrated between the NR-PMC and R-PMC parts to provide 

the necessary phase shift to convert between linear polarization and circular 

polarization [138]. Also, a SmCo permanent magnet layer [136] or a metallic strip 

(Ti/Au) [68] can be added on top of the garnet cladding layer to help bias the 

garnet layer for Faraday rotation, which exempts the presence of an external 

magnetic field and makes the optical system more integrated.  

In addition, by deciding the length of each part, control of the arbitrary 

angle can be achieved. There will be 30 deg, 45 deg, and 60 deg polarisation 

converters made to confirm the control of arbitrariness. Also, a complete optimum 

recipe with good repeatability will be created for integration with other optical 

devices’ fabrication processes and, later, even massive production in industry. For 

example, tapers will also be made on the same device to help couple in from the 

laser and couple out the signal to another optical device. 

Furthermore, the garnet lift-off technique where tapers can be added to 

the garnet pattern can be transferred for other applications, like ring isolators 
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[64]–[68] and the MZI (Mach-Zehnder Interferometer) [29][31][69]–[73] to avoid 

the discontinuity brought by adhesive bonding [32][72][73] or direct bonding 

[29][65][68]–[71]. Therefore, rings and the MZI with magneto-optical garnets on 

top, which adopt the non-reciprocal phase shift theorem, are also considered to 

achieve light isolation, and can be investigated in the future. 

 

7.4 Conclusions 

 

This thesis presented research work to realise the integration of an optical 

waveguide isolator that works for both TE and TM modes on the Silicon-on-

Insulator platform. Two core components are required to build such an isolator. 

One is a 45° NR-PMC (Nonreciprocal Polarisation Mode Conversion), where the NR-

PMC approach, which works for both TE and TM modes, is adopted and periodic 

magneto-optical (MO) rare-earth doped yttrium iron garnet (RE-YIG) segments are 

deposited on top of the Si waveguides as upper cladding to achieve quasi-phase 

matching. The other is a 45° R-PMC (Reciprocal Polarisation Mode Conversion), 

where an asymmetric structure, with an L-shaped cross-section waveguide, is 

employed. This is so that the resultant rotation of the optical axis of the guide 

enables the excitation of hybrid modes from an injected linear polarisation mode, 

and reciprocal mode conversion between the two modes.  

On the NR-PMC part, different SOI substrates with the Si core layer 

thicknesses of 220 nm, 340 nm, 400 nm, and 500 nm, together with different MO 

garnet materials (YIG, Ce-YIG on MgO, Ce-YIG on YIG, Ce-TIG, Bi-TIG, and TIG) 

were chosen to be researched. Nonreciprocal isolation performance has been 

found in devices with many kinds of MO garnets on both 340 nm SOI and 500 nm 

SOI platforms.  

Among these, more than a 3/4π Stokes vector angle was observed in devices 

with Bi-TIG and Bi-TIG + TIG as MO periodic cladding on a 340 nm SOI, and Ce-YIG 

on YIG and Ce-TIG as MO periodic cladding on a 500 nm SOI, which corresponded 

to about an 11 dB isolation ratio if combined with proper waveplates and 

polarisers. The length of these devices ranged between 3 mm and 6 mm.  

However, the isolation ratio we got here from the measurements is not the 

optimised performance each device should have. Here, the isolation ratio depends 

on the number of QPM (Quasi-Phase Matching) periods on the device. Thus, the 
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longer the device, the more the QPM periods. When the device is cleaved at the 

proper length, a Stokes vector angle of π is expected, where the lightwaves of 

opposite propagation directions are orthogonal to each other and 100% isolation, 

ideally more than 60 dB, can be achieved integrated with some other necessary 

components, like wave-plates and polarisers, as discussed before. 

On the R-PMC part, an asymmetric structure, an L-shaped waveguide, was 

chosen so that the rotation of the optical axis enables the excitation of hybrid 

modes from an injected linear polarisation mode and reciprocal mode conversion 

between the two modes. Devices have been fabricated on both 500 nm SOI and 

340 nm SOI platfroms. However, the measurement results turned out to be quite 

different from what was expected. A new design was proposed for further research 

by making an inverted adiabatic taper area a half-etch down by applying a wider 

second layer to avoid the total square cross section. 

In summary, this work has successfully realised the first integrated SOI 

polarisation-independent Faraday rotator, which works for both TE and TM modes, 

based on nonreciprocal polarisation mode conversion (NR-PMC) on both 500 nm 

SOI and 340 nm SOI platforms. Both the performance and the footprint are 

promising and suitable for optical integration. Instead of bonding, RF sputtering 

was adopted to integrate MO garnet materials on an SOI substrate, which improves 

the controllability and is more favourable in massive production.  

By contrast, all other isolators realised nowadays are based on 

nonreciprocal phase shift (NPS) and usually employ either direct bonding or 

adhesive bonding to achieve MO garnet integration, which suggests that these 

isolators can only work on either TE mode light or TM mode light, which has limits 

in mass production. The TM isolators cannot accommodate the isolation needs as 

the vast majority of semiconductor lasers used in the integrated optical system 

emit TE rather than TM due to quantum mechanical selection rules. The TE 

isolators based on NPS need a complicated optical serpentine circuit or a 

complicated design of asymmetric coupled waveguides for TE-TM mode 

conversion, which leads to a large footprint. 
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Appendix A – Observed Promising Results on 340 
nm SOI Platforms with Different Garnets on Top 

 
1. 340 nm SOI platform with Bi-TIG, Bi-TIG+TIG, Ce-TIG, and Ce-YIG on YIG 

as cladding layer 

 
Figure a-1 and Figure a-2 display measurement results of a device with 300 

nm Bi-TIG as cladding. Figure a-1 shows the relative fraction of the TM-polarised 

output as a function of input wavelength when the sample is not saturated, and 

saturated in a forward direction and back direction; a peak at λ=1546.5 nm is 

observed. Figure a-2 presents the Stokes vector angle of opposite magnetic 

saturation at a resolution of 0.001 nm, where an angle of more than 3/4π is 

observed. 

 

 

 

Figure a-1. Device with Bi-TIG cladding on 340 nm SOI platform: it shows the relative fraction 
of the TM-polarised output as a function of input wavelength when sample is not saturated, 
and saturated in a forward direction and back direction; a peak at λ=1546.5 nm is observed. 
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Figure a-2. Device with Bi-TIG cladding on 340 nm SOI platform: it presents the Stokes vector 
angle of opposite magnetic saturation at resolution of 0.001 nm, where an angle of more than 
3/4π is observed. 
 

 

Figure a-3 and Figure a-4 display measurement results of a device with 300 

nm Bi-TIG and 300 nm TIG as cladding, the MO(+) + MO(-) design. Figure a-3 shows 

the relative fraction of the TM-polarised output as a function of input wavelength 

when the sample is not saturated, and saturated in a forward direction and back 

direction; a peak at λ=1541 nm is observed. Figure a-4 presents the Stokes vector 

angle of opposite magnetic saturation at 0.5 nm resolution, where an angle of 

more than 3/4π is observed. 
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Figure a-3. Device with Bi-TIG + TIG as cladding on a 340 nm SOI platform: it shows the 
relative fraction of the TM-polarised output as a function of input wavelength when the sample 
is not saturated, and saturated in a forward direction and back direction; a peak at λ=1541 nm 
is observed. 
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Figure a-4. Device with Bi-TIG + TIG as cladding on a 340 nm SOI platform: it presents the 
Stokes vector angle of opposite magnetic saturation at 0.5 nm resolution, where an angle of 
more than 3/4π is observed. 
 

 

Figure a-5 and Figure a-6 display measurement results of a device with 300 

nm Ce-TIG as cladding. Figure a-5 shows the relative fraction of the TM-polarised 

output as a function of input wavelength when the sample is not saturated, and 

saturated in a forward direction and back direction; a peak at λ=1548 nm is 

observed. Figure a-6 presents the Stokes vector angle of opposite magnetic 

saturation at a resolution of 0.01 nm, where an angle of more than 1/4π is 

observed. 
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Figure a-5. Device with Ce-TIG cladding on a 340 nm SOI platform: it shows the relative 
fraction of the TM-polarised output as a function of input wavelength when the sample is not 
saturated, and saturated in a forward direction and back direction; a peak at λ=1548 nm is 
observed. 
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Figure a-6. Device with Ce-TIG cladding on a 340 nm SOI platform: it presents the Stokes 
vector angle of opposite magnetic saturation at a resolution of 0.01 nm, where an angle of 
more than 1/4π is observed. 
 

 

Figure a-7 and Figure a-8 display measurement results of a device with 330 

nm Ce-YIG on 50 nm YIG as cladding. Figure a-7 shows the relative fraction of the 

TM-polarised output as a function of input wavelength when the sample is not 

saturated, and saturated in a forward direction and back direction; a peak at 

λ=1524 nm is observed. Figure a-8 presents the Stokes vector angle of opposite 

magnetic saturation at 0.5 nm resolution, where an angle of about 1/8π is 

observed. 
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Figure a-7. Device with Ce-YIG on YIG cladding on 340 nm SOI platform: it shows the relative 
fraction of the TM-polarised output as a function of input wavelength when the sample is not 
saturated, and saturated in a forward direction and back direction; a peak at λ=1524 nm is 
observed. 
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Figure a-8. Device with Ce-YIG on YIG cladding on 340 nm SOI platform: it presents the Stokes 
vector angle of opposite magnetic saturation at 0.5 nm resolution, where an angle of about 
1/8π is observed. 
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Appendix B – Failed Fabrication on 220 nm SOI, 
340 nm SOI, and 400 nm SOI  

 

The same method of simulation, design, and fabrication process is applied 

on thinner core SOIs platforms, like 220 nm SOI, 340 nm SOI, and 400 nm SOI, 

where the guided mode is more pushed up and there is more interaction between 

the evanescent tail of the guided mode and the MO garnet layer so that a stronger 

MO Faraday effect can be expected.  

For the 220 nm SOI and 400 nm SOI samples, the wafer itself was of poor 

quality resulting from a mistake in the manufacturing process. The interface 

between the Si and SiO2 box layer was too rough, which led to huge propagation 

loss. Before the actual fabrication process, wafer-quality tests were carried out. 

It turned out that the 500 nm wide waveguides on 400 nm core SOI are not guiding 

light at all, while those on 220 nm core SOI have a much larger loss for both the 

TE mode and TM mode than a normal good-quality 500x220 nm waveguide. The 

340 nm SOI turned out to be of very good quality, and the plain 500x340 nm 

waveguides give a loss of around 1 dB/cm for the TE mode and around 2 dB/cm 

for the TM mode.  

In spite of the large propagation loss in the 220 nm SOI, the actual 

experiment was carried out on both the 220 nm SOI and 340 nm SOI. However, the 

introduction of the MO garnet also substantially gave rise to the propagation loss 

[156], which leads to none of the waveguides devices on the 220nm SOI guiding 

light when integrated with MO material.  

For the 340 nm SOI devices, the misalignment between e-beam layers 

resulting from the shift in the mask-writing process became a serious problem 

where the MO segments would not get crystallized when the second layer of MO 

material, like Ce-YIG, was not aligned with the first seed layer/buffer layer 

(YIG/MgO), or there was huge propagation loss when the HSQ mask layer was not 

aligned with the MO segment layer (Figure b-1). There is about 30 nm drift in 15 

mins writing time of the VB6 tool resulting from heat, flatness of the sample, the 

alignment between the sample and the holder, etc., which can be reduced by 

automatically re-calibrating the whole system every 15 mins. Compared to the e-
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beam mask of the 500 nm SOI, that of the 340 nm SOI is much larger and it takes 

much longer to write, which means the drift is also much larger because of the 

accumulation effect of the drift. In order to reduce the drift and improve the 

alignment between the e-beam layers, the size of the e-beam mask can be 

reduced, or the mask can be divided into small cells, and cell registration can be 

applied in the future.    

 

 

 

Figure b-1. Mis-alignment between e-beam layers. 
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