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Abstract 

Background 

A coordinated heart beat relies on the propagation of a rapid depolarising event 

throughout the atria and ventricles and the subsequent coupling of this electrical signal to a 

transient contraction in every atrial and ventricular cardiomyocyte. The rate of 

propagation, known as conduction velocity (CV) is mainly determined by cellular expression 

of Na channels and gap junctional proteins (connexins), however there is emerging 

evidence that both proteins may be functionally regulated by intrinsic signaling processes. 

Previous studies indicate that stimulation of the β-adrenergic pathway increases CV, but 

little consistent data exists on the magnitude, associated adrenoreceptor pharmacology or 

time course of the effect. This study investigates the effect of β-AR stimulation – using 

either the β-agonist isoproterenol (ISO) or by directly raising cAMP via addition of Forskolin 

(Fsk) and/or 3-Isobutyl-1-methylxanthine (IBMX) - on ventricular CV in the intact rat heart. 

The aim was to measure the response of CV to β-AR stimulation and investigate the 

mechanisms behind this response. Action potential (AP) and intracellular Ca2+ 

measurements were also made to determine the effect of β-AR stimulation on cellular 

electrophysiology over the same time-course as the CV response to β-AR stimulation. 

Methods 

Adult male Wistar rats (250-350g) were euthanized by cervical dislocation and excised 

hearts retrogradely perfused with modified Tyrode's solution. CV measurements were 

taken using a custom-built probe, consisting of bipolar stimulating and recording electrode 

pairs placed flat against the epicardium of the left ventricle (LV). The CV probe also 

incorporated a fibre-optic light guide, allowing ratiometric measurements of voltage and 

intracellular Ca2+ from the LV epicardium.  

Results and Conclusions 

β-AR stimulation increased LV longitudinal CV by approximately 10%. This increase in CV 

was found to be cAMP mediated. This effect was not due to changes in Ca2+ handling alone 

and although an increase in AP amplitude (APA) suggested that INa was increased, the 

magnitude was thought insufficient to explain the change in CV. This suggested a potential 

role for gap junction conductance (GJC) in mediating CV changes. This view was supported 

by preliminary data indicating the magnitude of the response was larger when measuring 

transverse CV: transverse conduction involves proportionally more GJC than longitudinal 

conduction. 
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β-AR stimulation was confirmed to increase CV, a response mediated via β1AR subtype, and 

which required an increase in cAMP: cAMP was increased by activation of adenylyl cyclase 

(AC) with forskolin (Fsk) or through inhibition of phosphodiesterases (PDEs) by IBMX.  The 

increase in CV was shown to be mediated through the cAMP sensitive kinase, PKA; another 

cAMP target, Epac, appeared not have a role in this pathway.   

Understanding the regulation of CV by β-AR stimulation is crucial to understanding 

sympathetic regulation of the heart and may lead to further understanding of the interplay 

between downregulated β-AR signaling and arrhythmia generation in the diseased heart. 
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1. Introduction 

1.1 The heart as a functional syncytium 

A coordinated heart beat relies on the propagation of a rapid electrical depolarising event, 

the action potential (AP), throughout the atria and ventricles and the subsequent coupling 

of this electrical signal to a transient contraction in every atrial and ventricular 

cardiomyocyte. Adult cardiomyocytes are elongated cells approximately 0.12mm long and 

0.02mm in diameter. The contractile proteins within the cells are arranged longitudinally 

and the associated longitudinal mechanical force is transmitted to adjacent cells via 

complex bridging structures at the end of cells known as intercalated discs. These 

structures contain protein complexes called zona-adherins that provide mechanical cell-to-

cell linkages (Giepmans, 2004) and specialised structures, termed gap-junctions (GJs),that 

allow the electrical coupling of adjacent cells by linking adjacent surface membranes with a 

protein channel. Clusters of GJs (called plaques) appear at the intercalated disc and to a 

lesser extent along the lateral membranes of the heart cells (Palatinus et al., 2012; 

Verheule et al., 1997).  

1.2 The Cardiac AP 

1.2.1 The Ventricular AP 

The cardiac AP is the membrane potential (Em) waveform which leads to the raise in 

intracellular [Ca2+] that ultimately leads to contraction of the myocyte. It is created by the 

interplay of the many different ion channels and transporters present in the myocyte, and 

it has different properties in different regions of the heart. As this thesis focuses on 

conduction within the myocardium, this introduction will focus on the properties of the 

ventricular AP. 

The ventricular AP has a stable resting Em of -80mV and is primarily maintained by IK1 

channels (Levick, 2000). The resting cardiac myocyte is preferentially permeable to K and Em 

is therefore close to the equilibrium potential (or Nernst potential) for K+: it is not exactly 

the Nernst potential for K+ (-89mV) as the cardiac myocyte contains many ion channels and 

is not impermeable other ions (Bers, 2001; Kaneshiro, 2011). The ventricular AP has a rapid 

upstroke driven largely by activation of voltage sensitive Na+ channels which reaches 

between +30-50mV, followed by the characteristic ‘notch’ and a prominent plateau phase 

(Bers, 2001). The AP is triggered by current spread from neighbouring activated 
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myocardium: this current spread is passive and occurs primarily through gap junctions, as 

discussed in section 1.8. This causes the depolarisation of the Em to a threshold where 

enough Na+ channels are activated that INa>IK (Kléber and Rudy, 2004). 

The long APD of the ventricular AP is due to the plateau phase: the plateau phase is a phase 

in the AP where the Em does not change rapidly. It maintains depolarisation, preventing 

reactivation of Na+ and Ca2+ channels and therefore preventing electrical re-excitation 

(Bers, 2001). 

An outline of the rabbit ventricular AP taken from Bers 2001 and the main ionic currents 

behind it is shown below (Fig. 1.2.1; Bers, 2001). There are 4 main phases to the AP which 

are outlined below: 

Phase 0: Rapid upstroke 

Passive spread of current from activated regions depolarises the membrane and leads to 

activation of voltage sensitive Na+ channels (Nav1.5), causing a rapid increase in INa and 

depolarising of Em to ~30-50mV. Depolarising Em also inactivates IK1 and activates voltage 

sensitive Ca2+ channels (CaL). At the AP peak, INa is at its maximum activation and ICa is at 

43% of maximum.  

Phase 1: Early Repolarisation 

This is characterised by the ‘notch’ seen in the cardiac AP. Nav1.5 channels rapidly 

inactivate (this is further explained in 1.2.3) and Ito and ICa(Cl) are activated. Sarcoplasmic 

reticulum Ca2+ release causes inactivation of ICa. 



Annabel Campbell 2017 
 

    17 
 

 

Figure 1.2.1: Calculated Em, ionic currents and [Ca]I during a rabbit AP, taken from Bers, 2001.  
This figure shows the rabbit ventricular AP alongside the ionic currents which generate the AP. 
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Phase 2: Plateau Phase 

Em does not change rapidly during the plateau phase. This phase is governed primarily by a 

combination of inward ICaL and outward delayed rectifier K+ currents (IKur, IKs and IKr),: the 

net influence of this is that there is little change in overall Em. 

Phase 3: Late Repolarisation 

During late repolarisation, Em rapidly repolarises back to resting Em. As repolarisation 

increases, IKr increases, accelerating repolarisation. At more negative Em, IKr inactivates and 

IK1 reactivates (at around -30mV). INa/Ca acts in the direction of Ca2+ extrusion, due to high 

intracellular [Ca2+]. 

1.2.2 Cardiac Ion channels 

The waveform of the cardiac AP is determined by of ion channels and transporters, the 

activity of which alter Em. Ions carry a charge and therefore cannot easily cross the 

hydrophobic lipid bilayer and require membrane translocators – in the form of ion 

channels, transporters or exchangers – to cross the cell membrane. Ion channels are 

complex protein channels in the cell membrane that provide an aqueous pore which allows 

the diffusion of ions across the cell membrane along their electrochemical gradient. The 

movement of ions across the membrane is ionic current, dennoted as ‘I’ (Aidley, 2008; Jalife 

et al., 2009; Kaneshiro, 2011).  

 Ion channels are characterised by two main properties:  

i) Gating: the ability to exist in an opened or closed state. This occurs in response 

to appropriate stimulus: this stimulus can be electrical (voltage-gated); 

chemical (ligand gated) or mechanical (stretch). Switching between an open 

and closed state requires a conformational change in the channel which alters 

the conductance of the channel, denoted as ‘g’ (Catterall, 2012; de Lera Ruiz and 

Kraus, 2015) An example of voltage gating – the voltage-gated Na+ channel – is 

explained below (1.2.3). 

ii) Selectivity: ion channels discriminate between different species of ion, allowing 

the diffusion of particular ions across the membrane (Catterall, 2012). Again, a 

detailed example of ion channel selectivity is discussed below using Nav1.5 as 

an example.  
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1.2.3 The Voltage Sensitive Na channel 

The amplitude and shape of the AP is a major determinant of conduction in the heart, 

particularly phase 0: the upstoke (this is further discussed in 1.6). INa and the availability of 

Na+ channels are a major determinate of membrane excitability and form the ‘source’ for 

cardiac propagation (Kléber and Rudy, 2004). Therefore, for this thesis it is important to 

understand the structure and function of the voltage-gated Na+ channel (NaV1.5). Voltage-

gated Ca2+ channels and some K+ channels share a similar structure to NaV1.5 (Bers, 2001). 

Voltage-gated Na+ currents were originally discovered in the giant squid axon by Hodgkin 

and Huxley in 1952 (Hodgkin and Huxley, 1952). Na+ channels were found to have 3 states: 

closed (resting); open conducting; inactivated. 

The voltage-gated Na+ channel is composed of one α subunit and 1 or 2 β subunits. There 

are nine subtypes of α subunit: NaV1.5 is the α subunit expressed in cardiac tissue. NaV1.5 is 

a single chain polypeptide 260kDa in size. It contains 4 homologous domains arranged in a 

pseudotetramic structure: DI-DIV. Each of these domains contains 6 transmembrane 

domains (S1-S6) (Catterall, 2012). 

As previously discussed in 1.2.2, NaV1.5 is a voltage gated channel. It is in the closed state 

at the resting membrane potential of -80mV. On depolarisation, the Na+ channel opens. 

The voltage sensors of the Na+ channel is composed of transmembrane α segments S1-4. 

The four voltage sensing domains are arranged around the central aqueous pore. The S4 

domain is positively charged and lies at the centre of the pore. On depolarisation, it is 

believed that the S4 domain moves towards the extracellular surface (Yang et al., 1996): the 

voltage sensitive domains are flexible as they contain a positively charged arginine and 

lysine for every third amino acid (Catterall, 1988). Linkers between the voltage sensitive 

segments and the pore confer a conformational change to the pore, switching the channel 

into the ‘open’ state. This allows the movement of Na+ down its electrochemical gradient 

into the cell – this gradient is established by the Na-K ATPase (de Lera Ruiz and Kraus, 2015). 
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Fig. 1.2.3: Nav channel architecture (Lera Ruiz de and Kraus, 2015) 
 (A) Topology of the human NaV α subunits. (B) Extracellular view of the open-channel conformation 

crystal structure of NaVMs, a marine bacterium from Magnetococcus sp. (C) Side view of the open-

channel conformation crystal structure of bacterial NaVMs, showing the selectivity filter and 

activation gate. 

During depolarisation, inactivation of the Na+ channel occurs rapidly due to the inactivation 

gate. This consists of the intracellular loop connecting DIII and DIV: this loops forms a 

‘hinged lid’ which is believed to fold into the centre of the pore during inactivation. This 

cause the ‘rapid’ inactivation of Na+ channels (Catterall, 2012; de Lera Ruiz and Kraus, 2015). 

Membrane repolarisation is required for the reactivation of NaV1.5 – therefore Na+ 

channels are inactive during the AP and a second activation of the myocyte cannot be 

elicited (absolute refractory period). The rate at which Na+ channels recover depends on 

how negative the Em is. Therefore, the more negative the Em, the faster the recovery of Na+ 

channels and the higher the Na+ channel availability (Bers, 2001). 

The pore itself is composed of the S5 and S6 transmembrane helices and the extracellular 

connecting pore loops. The pore confers the ion selectivity of the Na+ channel. Ion 
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selectivity in part relies on steric hindrance: the narrowest part of the pore is 3.5x5.1Å and 

allows hydrated Na+ ions to pass through the channel. However, this cannot entirely 

explain ion selectivity, otherwise smaller ions would be able to pass freely through the Na+ 

channel. It also relies on liganding of ions to specific sites on the pore where energy 

conditions favour the binding of the ion to which the channel is permeable (Aidley, 2008). 

An extracellular outer ring screens for Na+
 and repels it towards a highly Na+ selective 

location within the pore. This is formed of the hydroxyl groups of aspartate and glutamate 

(de Lera Ruiz and Kraus, 2015). 

1.2.4 Species differences in the cardiac AP 

The animal model used in this thesis is the rat. The rat is a well-established model and 

widely used model for studying cardiac electrophysiology. However, there are differences 

between the electrophysiology of the rat compared with larger mammals. These are 

particularly apparent in the AP shape and duration: rat APs lack the notch and plateau 

phase seen in humans and larger mammals such as rabbit and dog (Fig 2.1.2). The rat has a 

much greater Ito than larger mammals, leading to rapid early repolarisation. The extent of 

this early repolarisation eliminates the plateau phase seen in larger mammals (Bers, 2001). 

Late repolarisation is also different in rats compared to larger mammals due to the 

contribution of IKs and IKr: these currents are much smaller in the rat and contribute far less 

to repolarisation (Varró et al., 1993). This is particularly important when considering the 

effect of β-AR signalling on the AP, as β-AR increases IKs and therefore shortens the AP in 

large mammals – this is not observed in rat due to the rat AP’s rapid repolarisation (Walsh 

et al., 1988; Walsh and Kass, 1988). 

However, for studying propagation of the AP, the rat is still a valid model. NaV1.5 is highly 

conserved across species, and the upstroke of AP is the component most likely to 

contribute to CV. Ventricular CV is between 60cm/s and 80cm/s longitudinally with little 

variation between species (Draper and Mya-Tu, 1959). Connexins – the proteins from 

which gap junctions are composed – are also conserved across species. It is well established 

that the main Cx in the ventricle is Cx43, and although there is differential expression of 

Cx43 the atria, Cx43 is similarly expressed in the ventricle in human and other mammals, 

including rat (Gros and Jongsma, 1996; van Kempen et al., 1995; Vozzi et al., 1999). This 

makes the rat a suitable model for the study of ventricular CV.  
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Fig 1.2.4 APs across species.  
 
Example APs recorded from rat A) and rabbit B) recorded by ME in lab.  C) Example dog ventricle AP 

recorded in isolated cells (Kääb et al., 1996). D) Example human APs recorded from isolated human 

cells (Näbauer et al., 1996). 

 

1.3 Conduction of Action Potentials in the Ventricle 

Cardiac APs propagate along the length of a single cardiomyocyte at approximately 

100cm/sec (Cheng et al., 1999); this speed is dictated by the AP shape, particularly the 

leading phase, and the electrical cable properties of the cell, including the electrical 

resistance due to the intracellular space (approximately 5MΩ for a cell 0.12mm long)(Rohr, 

2004). The resistance of the link between cells provided by the GJs within the intercalated 

disc is a factor of ~104x higher than a comparable length of continuous cytosol (Rohr, 

2004). However, the distance that GJs span between cells is ~10-4x the length of the cell, 

thus the resistance between adjacent cells (5MΩ) is comparable to the resistance along the 

length of one cardiomyocyte (5MΩ). On this basis, the overall resistance of a series of 
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cardiomyocytes linked end-to-end is only ~2X that of a single cell of equivalent length and 

therefore the conduction velocity (CV) is ~1/√2 X 100cm/sec, i.e. approximately 70cm/sec. 

As demonstrated using computational models (Jongsma et al., 1999; Shaw and Rudy, 1997), 

the dependence of CV on the conductance of GJs is non-linear, with CV being proportional 

to GJ conductance to the power 0.28: i.e. doubling of GJ conductance would increase CV by 

approximately 12%. This analysis applies to longitudinal conduction model, where the 

intercellular resistance is equally distributed between intercalated disc and intracellular 

resistances. However, conduction transverse to the fibre axis has a larger contribution from 

intercalated disc resistances relative to the cytoplasmic component for an equivalent 

distance. Therefore, the effect of changes in overall GJ conductance on CV may be larger in 

the transverse axis.  

A second determinant of CV is the amplitude and shape of the cardiac AP. In particular, CV 

depends on the rate of depolarisation, which is approximately sigmoidal in time course, 

rising from 10% to 90% of maximum in 1-2ms with a maximum rate of rise (dV/dtmax) of 

~0.1V/msec. Computational modelling has shown that CV is proportional to dV/dtmax (and 

AP amplitude) raised to the power ~0.5 (Cohen et al., 1981) i.e. doubling dV/dtmax would 

increase CV by approximately 22%. 

Recently studies have shown high levels of Na channels (type NaV 1.5) in the regions of the 

intercalated disc near connexins. This raises the possibility that Na current flow at one 

membrane surface could generate negative potential in the narrow gap between cells at 

the intercalated disc and the subsequent electric field could influence membrane potential 

of the adjacent cell (Kucera et al., 2002). The same arguments apply to the movement of 

potassium within the limited extracellular space; this type of transmission between cells 

(i.e. not involving net ion current flow between cells) is termed ephaptic and the role of this 

form of cell-to-cell transmission relative to that mediated via gap-junctions is not known 

(Veeraraghavan et al., 2014). Some studies suggest that ephaptic transmission between 

adjacent cells is a significant consideration when coupling via gap-junctions is below normal 

e.g. under ischaemic conditions, in the presence of connexin-blocking drugs 

(Veeraraghavan et al., 2012) or after significant down-regulation of connexin expression. 

The ventricular wall has a complex 3D structure containing bundles of cardiac myocytes 

surrounded by a connective tissue sheath and arranged in regular sheets termed 

“laminae”, with the myocytes within these laminae connected end-to-end. On the 

epicardial surface, these sheets are arranged such that the fibre orientation (long-axis of 
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the cells) is parallel with the surface and runs approximately 90o to the vertical axis. This 

angle changes progressively in the myocardial layers between epicardial and endocardial 

surfaces. By the mid-myocardium, fibre orientation is approximately vertical and by the 

endocardial surface fibre orientation has turned by another 90o (Gilbert et al., 2011). During 

a normal cardiac cycle, the activation sequence of the free wall of the right and left 

ventricles consists of an initial rapid conduction of the AP over the endocardial surface via 

the Purkinje fibre network followed by propagation through the wall of the ventricle from 

endocardial to epicardial surfaces via cardiomyocyte-to-cardiomyocyte conduction. As 

longitudinal fibre orientation runs parallel to the surface of the heart, the conduction from 

endo to epicardium is at a direction transverse to the fibre axis (Gilbert et al., 2012): The 

speed of transverse propagation (i.e. 90o to the fibre axis) is approximately 1/2 that along 

the fibre axis (longitudinal propagation) (Roberts et al., 1979); this is thought to be due to 

the greater number of gap-junctions (per unit length) transverse to the fibre axis. 

Therefore, propagation velocity for this final phase of ventricular activation surface is slow 

(approximately 35cm/sec). For example, in a human left ventricle wall (1-1.5cm in 

thickness), propagation will take 0.03-0.05s, i.e. a major fraction of the total QRS duration 

(0.06-0.1s). 

Analysis of the timing of different phases of the electrocardiogram indicate significant 

shortening of the QRS duration during exercise, which is explained in terms of decreased 

ventricular activation time due to increased CV (Goldberger et al., 1994; Pilhall et al., 1993). 

These studies showed a decrease of QRS duration by approximately 10% during mild 

exercise (heart rate approximately 140bpm) in normal healthy adults. The QRS duration is a 

parameter that can be influenced by a series of factors other than ventricular CV e.g. 

Purkinje fibre propagation velocity and position and geometry of the heart, but the 

contribution of increased ventricular CV due to the influence of autonomic nervous system 

has not been properly investigated. 

Interventions which increase heart rate do so through reciprocal changes in activity of the 

parasympathetic and sympathetic nerves and therefore the effects on the ventricular 

electrophysiology could be via decreased parasympathetic as well as increased sympathetic 

activity (Brack et al., 2013b). Furthermore, sympathetic nerves release other 

neurotransmitters such as neuropeptide Y as well as norepinephrine (Potter, 1988). Thus 

examining the physiology of autonomic influences is complex; this study is focused on the 

potential effects of activation of adrenoreceptors on ventricular electrophysiology as one 
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of the dominant influences on the heart, but it should be recognised that the physiological 

response is more complex. 

1.4 The effect of adrenergic stimulation on ventricular conduction 

velocity in the intact heart 

Most reports of direct measurement of ventricular CV during adrenergic stimulation were 

published in the 1950s and 60s. These studies were carried out exclusively in dog and 

looked at the CV response to superfusion of epinephrine and norepinephrine. They showed 

increased AV-node CV and shortening of its functional refractory period by 40% in response 

to epinephrine in vivo, alongside an increase in ventricular CV (Krayer et al., 1951; Siebens 

et al., 1953). Decreased ventricular conduction time over the right ventricular epicardial 

surface in response to epinephrine has also been noted in dog (Mendez et al., 1964), 

though this study did not differentiate between changes in Purkinje fibre and myocardial 

conduction. As these studies adminstered catelcholamines in vivo, effects of epinephrine 

remote from the heart can occur making the direct effect of epinephrine on the heart less 

clear (Siebens et al., 1953; Williams et al., 1972) rather than a direct effect on the heart. In 

subsequent measurements on isolated dog heart-lung preparations, only small and 

inconsistent increases in ventricular CV were recorded following epinephrine 

administration (Swain and Weidner, 1957). 

Research has also been carried out looking at direct stimulation of the sympathetic nervous 

system of the heart. Stimulation of the left stellate ganglion caused an increase in 

intraventricular CV of approximately 6% (Wallace and Sarnoff, 1964) suggesting direct 

effects of sympathetic innervation to the heart. A more recent study on isolated rabbit 

heart with an intact sympathetic innervation described an instantaneous decrease in 

conduction delay of approximately 30% during sympathetic nerve stimulation but the 

conduction pathway would have included both ventricle and Purkinje fibres (Ng et al., 

2007). As mentioned above, it is important to consider that stimulation of the sympathetic 

nervous system may also include the activation of pathways other than the β-adrenergic 

pathway. However, this thesis will focus on the specific effects of the β-AR pathway on 

conduction. 

More recently, the effect of β-stimulation on Purkinje fibre electrophysiology recorded an 

increase in CV of ~10% without any significant change in the Vmax of the AP upstroke 

(Gintant and Liu, 1992; Munger et al., 1994). However, due to the relatively short time 

involving Purkinje fibre conduction, a 10% increase in CV would be anticipated to have a 
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small effect on the QRS duration, which is primarily influenced by propagation through the 

myocardium. 

In summary, the few studies directly measuring CV within the ventricular myocardium 

indicate an increased CV during activation of the β-AR pathway, but little consistent data 

exists on the magnitude, associated adrenoreceptor pharmacology or time course of the 

effect. 

-Adrenergic signalling in the heart 

Sympathetic nerves release norepinephrine which binds to predominately β-

adrenoreceptors (β-ARs), sub-types β1 and β2, causing an increase in force of contraction 

(positive inotropy) and rate of relaxation (positive lusitropy). The summation of all these 

effects results in a rapid increase in pump function via increased heart rate and increased 

force of contraction. In normal human ventricular muscle, β1-ARs are the predominant 

form (~70% β1:30% β2) (Mendez et al., 1964) and are expressed in both cell surface and T-

tubular membranes (Nikolaev et al., 2010). β1-adrenergic receptors are linked via Gs 

proteins to adenylyl cyclase (AC), and ligand binding to these receptors leads to activation 

of AC and production of the second messenger, cyclic adenosine monophosphate (cAMP). 

Protein kinase A (PKA) is activated by cAMP and has many targets in the heart, including 

multiple ion channels and components of EC-coupling (Hicks et al., 1979; Lehnart and 

Marks, 2007; Marx et al., 2000; Yue et al., 1990). cAMP also signals via the exchange 

proteins activated by cAMP (Epac) (Bos, 2006, 2003; Métrich et al., 2008) and by binding 

directly to ion channels activated by Camp (DiFrancesco and Tortora, 1991). Desensitisation 

of cAMP signals is undertaken by a superfamily of enzymes known as phosphodiesterases 

that hydrolyse the second messenger (Baillie et al., 2007). 

It is important to consider that multiple signalling pathways use cAMP as an intracellular 

messenger, for example prostaglandin E1 causes an increase in cellular cAMP 

concentrations comparable to that seen following β-AR stimulation (Hayes et al., 1979), but 

the effects of the independent addition of the two agonists on cardiac function is not the 

same. This data suggested and subsequent studies have gone on to show that cAMP and its 

effector proteins are compartmentalised within the cell (Baillie, 2009; Vila Petroff et al., 

2001). This results in agonist-specific increases of cAMP within certain discrete 

microdomains, allowing local cAMP -mediated effects (Fischmeister et al., 2006; Mongillo 

et al., 2004; Zaccolo et al., 2001).  
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1.6 The effect of β-stimulation on the upstroke of the ventricular 

action potential. 

The amplitude and shape of the cardiac AP is a major determinant of CV, particularly phase 

0: the AP upstroke (Buchanan et al., 1985; Kléber and Rudy, 2004). This phase of the AP is 

caused by activation of voltage dependent sodium channels. These channels are substrates 

for phosphorylation by PKA (Catterall, 1988; Rossie and Catterall, 1987) and several studies 

have shown that β-AR stimulation causes an increase in the magnitude of the voltage-

sensitive sodium current (INa) and the AP dV/dtmax (Frohnwieser et al., 1997; Lu et al., 1999; 

Matsuda et al., 1992; Schreibmayer et al., 1994; Wang et al., 1996). Other work has 

demonstrated that INa is increased by the action of Ca/CaM-dependent protein kinase II 

(CaMKII) (Jost et al., 2005). β-AR signalling also influences AP duration (APD) and the 

relationship between APD and the diastolic interval (restitution). However, the regulation 

of APD by β-AR signalling is complex; the slowly activating delayed rectifier K+ channel (IKs) 

is a substrate for phosphorylation by PKA; in large mammals, but not rats and mice, β-AR 

stimulation increases IKs which promotes APD shortening (Jost et al., 2005; Volders et al., 

2003). In whole hearts, sympathetic nerve stimulation or addition of β-agonists increases 

the steepness of the slope of the APD restitution curve and reduces the effective refractory 

period (Ng et al., 2007; Taggart et al., 2003). Therefore, the effects of β-AR on the upstroke 

of the AP are a combination of direct effects on INa and indirect effects via the diastolic 

interval that are difficult to predict and have not been measured systematically. 

The availability of INa during the AP upstroke is also limited by the duration of the preceding 

diastolic interval (DI). The normal positive chronotropic response associated with B-AR 

stimulation would naturally shorten the DI and hence reduce INa reactivation. But as 

described above, APD will shorten both due to the intrinsic rate dependence and the 

activation of IKs, both effects helping to maximise the DI and recovery of INa at higher heart 

rates. 

By examining the relationship between INa, dV/dtmax and CV, estimates can be made of the 

maximal possible effects of β-AR stimulation of CV via INa. The measured maximal effect of 

isoprenaline on INa reported is variable but on average isoprenaline increased the current 

by 30-40% (Frohnwieser et al., 1997; Lu et al., 1999; Matsuda et al., 1992; Schreibmayer et 

al., 1994; Wang et al., 1996). The relationship between INa and dV/dtmax is approximately 

linear (Cohen et al., 1984; Kléber and Rudy, 2004); according to both theoretical and 

experimental studies a 40% increase in INa would increase dV/dtmax by approximately 20%. 
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Several studies have shown that in intact ventricle dV/dtmax is proportional to 

CV2(Buchanan et al., 1985; Cohen et al., 1984), therefore an estimate of the maximal effect 

on CV following β-AR stimulation of INa is an increase of only 4-5%. This requires 

experimental validation, but it suggests a limit in the extent to which CV may be increased 

solely through changes in INa.  These results assume that the myocardium can be described 

by a continuous cable, but work by Spach has shown that relationship between dV/dtmax 

and CV is more complex on the surface of the myocardium (Spach and Dolber, 1986). 

Recently this relationship was examined using AP measurements in all 3 dimensions of the 

myocardium. The study concluded that dV/dtmax was unaffected by propagation direction 

deep within the myocardium and that AP rise time was dictated by a balance between INa 

and the downstream axial current developed by the myocardium (Kelly et al., 2013). 

Given the well documented effects of β-AR stimulation on the amplitude of the L-type Ca2+ 

channel current (LTCC), it is relevant to consider the role of this ionic conductance in 

determining propagation velocity. Under normal conditions, the role of INa is dominant; but 

under conditions of reduced excitability - e.g. chronic depolarisation when INa may be 

reduced to <30% of control values - LTCC activity makes a significant contribution to the 

upstroke of the AP and therefore CV. Therefore, modulation of this by β-AR stimulation 

may result in a marked increase in velocity as amplitude of LTCC is increased (Kléber and 

Rudy, 2004; Shaw and Rudy, 1997). 

1.7 The effect of adrenergic signalling on intracellular resistance. 

Low resistance channels between adjacent caridiomyocytes were first identified in 1975 by 

Silvio Weidmann’s group (Weingart et al., 1975). Measurement of intracellular 

conductances/resistances during adrenergic stimulation is technically difficult and only a 

few studies have examined this directly. Intercellular conductance between pairs of 

neonatal cardiac myocytes increased rapidly by approximately 50% on addition of 

isoprenaline or dibutyryl cAMP (dbcAMP) (Burt and Spray, 1988). Other studies simply 

inferred intracellular resistance from CV measurements and examined the effects of more 

long-term stimulation. For example, a large increase in conduction velocity (~25%) in 

response to 24 hrs incubation with dbcAMP was reported in cultured rat neonatal cells 

(Darrow et al., 1996). This was accompanied by an increase in both Cx43 and Cx45 

expression within the first 4 hours of exposure to dbcAMP and a causal link was suggested 

since no significant change in dV/dtmax was observed. However, more recent studies using a 

similar protocol on rat neonatal cardiomyocytes showed an increase in CV and dV/dtmax in 
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response to ISO (de Boer et al., 2007). This suggests INa is increased alongside any potential 

changes in intercellular resistance and therefore the potential role of β-AR mediated 

changes in gap junction conductance are difficult to assess. 

1.8 Gap junctions and Connexins 

Gap junctions are composed of clusters of thousands of GJ channels (Bruzzone et al., 1996). 

These consist of two opposing connexon hemichannels docked end to end, one provided by 

each of the adjacent cells (Maeda and Tsukihara, 2011; Segretain and Falk, 2004). The 

connexons form a channel which allows the diffusion of ions and proteins up to 1000Da in 

size, and provide a low resistance pathway for the propagation of electrical impulses 

between adjacent cells (Verheule et al., 1997). 

Each connexon is made up of six connexin subunits: connexins (Cx) are proteins with four 

transmembrane domains, two extracellular loops and a long intracellular C terminal tail 

(Bruzzone et al., 1996; Maeda and Tsukihara, 2011; Segretain and Falk, 2004). The Cxs are 

arranged in a cylinder surrounding a central hydrophilic pore which is tilted along its axis 

(Unwin and Zampighi, 1980; Yeager, 1998). It has been suggested that sliding or tilting of 

the subunits may close the pore, though 'ball and chain' type gating mechanisms have also 

been suggested for some Cx isoforms (Maeda and Tsukihara, 2011). There are at least 21 

different isoforms of Cx and connexons can be homo- or heteromeric, consisting of more 

than one type of Cx (Giepmans, 2004). Cxs are ubiquitously expressed in a number of 

tissues, electrically and chemically coupling cells throughout the body. Cxs play roles in cell 

signalling (Bedner et al., 2003; Bruzzone et al., 1996), embryonic development (Wei et al., 

2004), and electrically couple neurons, cardiac myocytes and retinal cells. Cxs are 

synthesised and assembled into the GJ hemi-channels, connexons, in the endoplasmic 

reticulum (Segretain and Falk, 2004). It has been suggested that Cx43 is an exception to this 

and is assembled in the trans-golgi network (TGN) (Vanslyke et al., 2009). Connexons are 

then transported through the golgi stacks to the TGN, where they can be stored or 

transported to the plasma membrane in vesicles. Cx assembly into connexons occurs 

before the proteins reach the plasma membrane, allowing incorrectly folded or assembled 

connexons to be transported to the endoplasmic reticulum for degradation, before 

insertion into the membrane (Bruzzone et al., 1996). Docking of two connexons, one from 

each of the adjacent cells, forms the gap junction channel (Yeager, 1998). This occurs 

through hydrogen bonding between residues of the extracellular loops: these amino acids 

are highly conserved in different Cx isoforms (Maeda and Tsukihara, 2011). 
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Figure 1.8.1. Gap junctions and the intercalated disc: 
Diagram showing the organisation of cardiac myocytes and their communication via the intercalated 

disc. The intercalated disc contains GJs plaques - made up of 1000s of GJ channels - through which 

adjacent cells communicate, alongside physical junctions, such as desmosomes and adherens 

junctions. GJ channels themselves are composed of connexon dimers, with one connexon provided by 

each of the adjacent cells. Each connexon is composed of 6 connexins. 
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Once gap junction channels are formed, they cannot be separated into individual connexon 

hemi-channels (Goodenough and Gilula, 1974). This means the entire channel is 

internalised for degradation. Both the lysosomal and proteosomal pathways play a role in 

degradation of connexons (Dunn et al., 2012; Segretain and Falk, 2004). It has been 

suggested that active proteosomal degradation may play a role in the degradation of 

phosphorylated Cxs (Beardslee et al., 1998) and that gap junctional conductance (GJC) can 

be regulated at the level of Cx turnover (Musil et al., 2000). 

1.9 Regulation of connexins 

Physiologically, GJ function in cardiac muscle is regulated via altering Cx levels, localisation 

and opening of GJ channels. Cx43 turnover in the heart is dynamic: studies using 

radioactive labelling have demonstrated that Cx43 has a half life of only 1-2hrs (Beardslee 

et al., 1998; Laird et al., 1991). The short half-life of Cx43 allows dynamic regulation of Cx 

expression, synthesis and degradation, which may rapidly alter levels of Cx at the 

intercalated disc: this may, therefore, influence GJC. Cx43 is also post-translationally 

modified by various intracellular kinases; this allows rapid regulation of Cx43 channel 

formation and behavior (Lampe and Lau, 2004). 

Cx open probability is altered by intracellular Ca2+ and H+ concentrations (Ek-Vitorín et al., 

1996, p.; Liu et al., 1993) and by various forms of post-translational modification 

(Johnstone et al., 2012). Cx43 is a phosphoprotein, which is phosphorylated at multiple 

different sites on the C-terminal tail by kinases including PKA, PKC, PKG and MAPK (Lampe 

and Lau, 2004; Márquez-Rosado et al., 2012; Solan and Lampe, 2009). Mass spectrometry 

has also shown that Cx is variably phosphorylated throughout its lifetime (Chen et al., 2013) 

and its phosphorylation state has been suggested to play a role in almost every aspect of Cx 

life-cycle and function (Jongsma et al., 1999). 
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Figure 1.9.1. Schematic of Cx43 and known regulatory sites  
Diagram showing the C terminal tail of Cx43 and previously established phosphorylation sites located 

in this region (Lampe and Lau, 2004). 

Multiple signalling cascades play a role in the regulation of Cx43. PKC and MAPK have been 

shown to increase the probability of Cx being in a 'closed' state, reducing GJC (Johnstone et 

al., 2012), and have also been shown to play a role in Cx internalisation and degradation 

(Saffitz et al., 2000). The role of PKA mediated phosphorylation, and therefore β-AR 

mediated regulation of Cx43, is less clear: Cx43 has multiple PKA consensus sites in its C-

terminal tail but the protein is considered a relatively poor substrate for PKA (TenBroek et 

al., 2001).  

1.10 Connexins in the heart 

In the heart, the main isoforms of Cx expressed are Cx 43, Cx 40, Cx 37 and Cx 45 (Vozzi et 

al., 1999). Cx43 is the most abundant Cx and is expressed in all four chambers: it is the main 

Cx expressed in the ventricles, though Cx37, Cx40 and Cx45 are also expressed at lower 

levels (Vozzi et al., 1999). Cx40 is expressed mainly in the cardiac conduction system, at 

levels at least three-fold higher in the nodal and His-Purkinje system than in the ventricle, 

and also in the atrial myocardium (Kanter et al., 1993). Highest levels of Cx40 are found in 

the right atria, followed by the left atria and lower expression levels exist in the ventricles 

(Vozzi et al., 1999). Cx40 forms channels which have higher unitary conductance than Cx43, 

and higher expression levels of Cx40 may contribute to the distinct conduction properties 

of the His-Purkinje system (Beblo et al., 1995; Johnstone et al., 2009; Kanter et al., 1993). 
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Cx45 is also expressed primarily in the conduction system and is found at very low levels in 

the myocardium (Vozzi et al., 1999). 

1.11 Potential signalling pathways for gap junction regulation. 

As regulation of the ventricular gap junction protein Cx43 may play an important role in the 

regulation of CV, recent studies have looked at the way β-AR stimulation may affect Cx43. 

There are multiple ways GJC could be regulated: through an increase in permeability of gap 

junction channels, an accumulation of gap junctions in plaques at the intercalated disc or 

through changes in Cx expression (Giepmans, 2004; Salameh and Dhein, 2011). Regulation 

by cAMP plays a role in the assembly of Cx43 GJs, with the gap junction plaques shown to 

be dynamic structures which increase in size in response to increases in cAMP (Holm et al., 

1999). TenBroek et al. demonstrated that the cAMP analogue, 8-br-cAMP, increased 

assembly of Cx43 gap junctions and that the C-terminal tail of Cx43 was required for the 

reassembly of GJs, with a negative charge on Ser364 improving assembly (TenBroek et al., 

2001). However, as they observed little Cx43 phosphorylation in response to PKA, they 

suggested that increased assembly of Cx43 gap junctions occurs indirectly through a kinase 

pathway other than PKA (TenBroek et al., 2001). This conclusion was supported by a 

subsequent report in which cAMP increased dye-transfer and plaque size in Novikoff 

heptoma cells, but these changes were not seen in the presence of inhibitors of trafficking 

(Paulson et al., 2000a). 

Other studies suggest that regulation of Cx43 is responsible for changes in GJC in response 

to raised cAMP (Salameh and Dhein, 2011). Treatment of neonatal rat cardiac myocytes 

(NRCMs) with isoproteronol (ISO) over 24hrs increased Cx43 expression and subsequently 

increased GJC (Salameh et al., 2006). Transcription of Cx43 in communication deficient cell 

line – the rat Morris hepatoma cell line – is increased ~40 fold in response to cAMP 

elevation (Mehta et al., 1992). Changes in expression are reported to occur after longer 

(24hr) exposures to raised cAMP, which may explain why some studies report no GJC 

response to acute cAMP concentration increases (Kwak et al., 1995; Neyton and 

Trautmann, 1985). It has also been suggested that chronic elevation of cAMP may lead to 

upregulation of MAP kinase (MAPK) pathways, increasing Cx43 expression indirectly 

(Kanter et al., 1993; Saffitz et al., 2000). Conversely, some studies which report increases in 

GJC or CV in response to raised cAMP report no changes in Cx43 expression even after 

prologoned exposure to cAMP (de Boer et al., 2007; TenBroek et al., 2001). 
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There is some conflict as to whether cAMP and β-AR mediate acute changes via 

permeability and assembly of gap junctions, or slower changes through the upregulation of 

gap junction expression. It is possible that both possibilities could occur via distinct cAMP-

mediated signaling pathways. Somekawa et al. measured gap junctional permeability by 

measuring dye-transfer between adjacent cells in neonatal cardiac myocytes (Somekawa et 

al., 2005). They showed an increase in dye-transfer in response to increased cAMP, 

accompanied by both increased accumulation of Cx at the intercalated discs and an 

increase in the size of gap junction plaques. Activation of PKA by the PKA specific activator 

N6-benzoyladenosine-3′,5′-cyclic monophosphate (6Bnz) also led to an increase in dye 

transfer between cells, but with little change in levels of Cx at the intercalated discs. An 

alternative to the classical PKA pathway is cAMP mediated activation of Epac. The Epac 

specific activator 8-(4-chlorophenylthio)-2′-O-methyladenosine-3′,5′-cyclic monophosphate 

(8CPT) led to an increase in dye transfer through increased accumulation of Cx at the 

intercalated discs (Somekawa et al., 2005). This suggests that cAMP can regulate GJC 

through both PKA and Epac dependent pathways. 

In summary, there is considerable evidence that connexin function can be altered by β-AR 

stimulation and raised intracellular cAMP, both in the short-term (via phosphorylation or 

connexin assembly) or long-term (via altered turnover or expression). The majority of these 

reports use neonatal cardiac preparations to facilitate studies of intracellular pathways and 

few studies examine the functional consequences in terms of CV or electrophysiological 

characteristics. Therefore, the role of these pathways in the acute effects of β-AR 

stimulation on CV in the adult heart remains uncertain. 

1.12 The interaction between conduction velocity and action 

potential duration to cause re-entrant arrhythmias. 

APD and CV are important parameters in determining the propensity to re-entrant 

arrhythmias in the mammalian heart. Under normoxic conditions, the APD is the main 

determinant of the effective refractory period (ERP) i.e. the time limit after which an area 

of myocardium can be re-excited. This period multiplied by the CV gives a measure of the 

electrical “wavelength” of the myocardium. This concept, originating approximately 100 

years ago was used to predict the likelihood of re-entrant arrhythmias, i.e. the smaller the 

electrical wavelength, the more likely that re-entrant arrhythmias would occur within a 

fixed geometry. Since then several studies have indicated that electrical wavelength is a 

good predictor of propensity to tachy-arrhythmias (Weiss et al., 2000). In the case of 
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increased sympathetic nervous system activity, the shortened AP and ERP would be pro-

arrhythmic unless there was a commensurate increase in CV. However, the extent to which 

mediated changes in CV are able to stabilise ventricular electrophysiology in either atrial or 

ventricular tissue is at present unclear.  

Increased sympathetic activity may also modulate arrhythmic activity in the heart by 

altering the frequency of triggered activity, i.e. non-sinus spontaneous depolarisation in 

either the atria or ventricle which can initiate sustained arrhythmic activity. Early studies 

suggest that sympathetic activity increases the frequency of triggered activity, making the 

occurrence of arrhythmias more likely (Han et al., 1964). Thus, the effect of increased 

sympathetic activity on the vulnerability of the heart to arrhythmic activity is complex. 

1.13 Changes in ventricular conduction in cardiac disease 

Poor contractility and susceptibly to arrhythmias characterises heart disease from a variety 

of different causes. Uncoupling of GJs occurs acutely in ischaemic myocardium and 

profoundly slows conduction into an ischaemic area (Kléber et al., 1987; Severs et al., 

2004). In the surviving myocardium, over longer time periods, gap junctions remodel during 

heart failure in humans (Severa et al., 2004; Smith et al., 1991) and in animal models of 

cardiac disease (Matsushita et al., 1999; Smith et al., 1991). Cx43 expression is reduced 

(Wang and Gerdes, 1999) causing both an overall slowing and increased heterogeneity of 

CV (Kojodjojo et al., 2006; Peters, 2006). There is also an increased lateralisation of Cx43 in 

cells at the epicardial border zone (EBZ) of infarcts in canine hearts (Peters et al., 1997). 

Some studies suggest transverse coupling is decreased to a greater extent than longitudinal 

coupling in infarcted hearts (Cabo et al., 2006; Yao et al., 2003). It also suggests that Cx43 

which has relocalised to lateral membranes may not form functional gap junctions (Cabo et 

al., 2006). Additionally, reduced Na current also occurs in heart disease and would also 

contribute to a slowing of CV (Lue and Boyden, 1992; Pu et al., 1998). In inducible models 

of ischemia, Cx43 redistribution to lateral regions plays a significant role in post-ischemic 

arrhythmias, facilitated through reduction in PKC-epsilon phosphorylation of Cx43 (O’Quinn 

et al., 2011). Experimentally increasing phosphorylation of Cx43 at PKC sites (Cx43-S368) in 

mouse hearts reduces lateralisation and can limit post-infarct arrhythmias (Jozwiak and 

Dhein, 2008; O’Quinn et al., 2011). 

Changes in β-AR signalling are also known to occur in heart failure, typically down-

regulation of β1-ARs (to ~50% of control) occurs in response to a chronic increased activity 

of sympathetic nerves that normally occurs post myocardial infarction (Lohse et al., 2003a). 
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The proportion of β1:β2 changes to ~50:50 and there is recent evidence in a rat HF model 

for the loss of the selective of expression β2-ARs in the T-tubular network and subsequent 

loss of localised cAMP production on selective β2-AR stimulation (Nikolaev et al., 2010). 

Other aspects of the adrenoceptor pathway are altered in hypertrophic myocardium, 

including the uncoupling of the remaining receptors from Gs via increased activity of β-AR 

kinases (Lohse et al., 2003a). Changes in β-AR signalling in heart failure could reduce 

adrenergic regulation of INa and/or Cx43 which may attenuate the normal increase in CV 

that accompanies increase in heart rate. Potentially the limited CV response may affect 

both the inotropic response and contribute to the generation of arrhythmias. 

1.13.2 Cardiac arrhythmias 

Normal electrical conduction in the heart involves an AP originating from the sino-atrial 

(SA) node, conducted through the atria via the atrio-ventricular (AV) node down to the 

Purkinje fibres and then to the ventricles. Abnormality in the properties of ionic currents 

can lead to abnormal impulse generation and/or propagation which further leads to 

electrical disorder in the ventricles. This thesis will focus on the mechanism of arrhythmia 

generation termed re-entry, as alterations in CV can lead to the generation of re-entry 

arrhythmias. 

Re-entry  

Re-entry is the circulation of the cardiac impulse causing repetitive excitation of the heart. 

It depends upon the occurrence of unidirectional block, causing activation to occur in one 

direction only. For the arrhythmia to be maintainted, the size of the circuit must exceed the 

recovery period of the tissue within the circuit. Features which contribute to this are: a 

large circuit, slow CV or a short effective refractory period (ERP) (Jalife et al., 2009). This 

can be summarized by the 'wavelength’ theory. CV x ERP is defined as the cardiac 

wavelength. A lower wavelength promotes the generation and maintenance of re-entrant 

circuit arrhythmias, due to slow CV or a shorter ERP. Therefore, a lower CV could contribute 

to arrhythmogenesis and in principle, a higher CV could be anti-arrhythmic. 

Uncoupling of GJs has been demonstrated to occur in ischaemic regions of the heart 

(Kléber et al., 1987), which profoundly reduces CV. In surviving regions of the heart, 

remodeling of gap junctions has been shown to occur in heart failure in humans (Severs et 

al., 2004; J. Smith et al., 1991) and in animal models (Matsushita et al., 1999). Alongside 

this, β-AR signaling, particular β1ARs, has also been demonstrated to be down-regulated in 

heart failure (Lohse et al., 2003a; Nikolaev et al., 2010). Therefore, understanding the 
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regulation of CV by β-AR stimulation in heart failure could be key to understanding the 

changes in disease which lead to the generation of arrhythmias. 

1.14 Hypothesis and Aims  

Ventricular CV depends on multiple factors, including tissue excitability and intercellular 

resistance, both of which are potentially modifiable via β-AR stimulation. Despite the key 

role of ventricular CV in the electrical stability of the mammalian heart, little is known of 

how it is influenced by the activity of the autonomic nervous system. This introduction has 

focused on the literature associated with the potential for β-AR stimulation to modulate 

CV. In vivo and in vitro studies on whole hearts suggest that sympathetic nerve stimulation 

increases ventricular CV, but there is uncertainty over the magnitude of this response and 

little data that would allow the electrophysiological mechanism to be distinguished. In vitro 

studies on isolated cardiac muscle preparations report increases in GJC in response to β-AR 

stimulation or increasing intracellular cAMP, but the intracellular mechanisms are still 

unclear to explain both rapid (within 1 minute) or more long term (within several hours) 

effects on gap junction function. An additional issue is that many of these latter studies are 

carried out in neonatal cardiac myocytes in which the localisation of Cx is very different to 

that in adult ventricular myocytes. 

Hypotheses: 

i) An increase in ventricular CV is a component of the adrenergic response 

ii) This increase in CV is mediated by changes in gap junctional conductance 

iii) Increased CV in response to adrenergic stimulation is mediated via β-1 

adrenergic receptors 

iv) Ventricular CV is increased by raised cAMP via a PKA-dependent mechanism 

The overall aim of this PhD was to measure and quantify the effects of β-AR activation on 

CV and determine the relative contribution of changes in AP rise time and intercellular 

resistance to the response in adult ventricle. 

The individual aims of the project were: 

i) To develop a method by which CV can be measured in the intact rat ventricular 

myocardium on a scale which is primarily influenced by changes in cell-cell 

communication 

ii) To determine if β-AR stimulation altered CV in the intact rat heart and to 

determine if this was a cAMP mediated response 
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iii) To develop a method by which APs and Ca2+ transients can be simultaneously 

measured from the site at which CV is recorded using fluorescent dyes, Di-4-

ANEPPS and Fura-4-AM 

iv) To record the effect of β-AR stimulation on the ventricular AP and Ca2+ 

transient over the same time course as the CV response and determine if 

changes in cardiac electrophysiology cause the change in CV 

v) To examine the effect of Ca2+ on CV by altering extracellular Ca2+ and using the 

L-type Ca2+ channel inhibitor, Nifedipine 

vi) To investigate the signalling pathway responsible for the change in CV via 

inhibitor studies 

vii) To determine if a change in CV in response to β-AR stimulation is primarily 

mediated by gap junctions 
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2. General Methods 

2.1 Modified Tyrode’s Solution 

93mM NaCl, 20mM NaHCO3, 1mM Na2HPO4, 1mM MgSO4.7H2O, 5mM KCl, 20mM Na+ 

acetate, 25mM glucose. Solution contained 1.8mM CaCl2 unless otherwise stated. The 

solution was filtered through a 5µm filter (Millipore) and continuously bubbled with a 

gaseous mixture containing 95% O2 and 5% CO2 to maintain pH 7.4 

2.2 Preparation: Langendorff perfused rat heart 

Adult, male Wistar Han rats (Envigo, UK) were used in these experiments. These rats were 

weight-matched at 250-300g. All procedures were carried out in accordance with the 

Animals Scientific Procedures Act (ASPA, 1986). Rats were euthanized by cervical 

dislocation and the hearts excised and placed in chilled modified Tyrode’s solution. The 

hearts were Langendorff perfused with oxygenated modified Tyrode’s solution gassed with 

95% oxygen and 5% CO2 to maintain oxygenation and pH7.4. Hearts were perfused at a 

constant flow rate – rather than constant pressure – of 12ml/min using a peristaltic pump. 

Pressure was continually monitored using an inline pressure monitor, and typical pressure 

readings were between 40-60mmHg.  The perfusate was maintained at a temperature of 

37°C. 
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Fig. 2.2.1 Diagram of the Langendorff setup 
Oxygenated Tyrode's was retrogradely perfused through the rat aorta and then to the coronary 

arteries. A peristaltic pump was used to keep the flow of Tyrode's at a constant rate. A bubble trap 

and heat exchange coil protected the heart from air bubbles - which would block the blood vessels of 

the heart - and kept the Tyrode's solution at 37°C at the point it reached the heart. The heart was 

cannulated and suspended from the aorta, allowing it to contract freely. A pressure transducer was 

used to record the pressure in the system. 

2.3 Conduction Velocity Recordings 

Electrode Design and Analysis 

Measurements were taken using custom electrodes, consisting of silver bipolar stimulating 

electrodes and two sets of silver bipolar recording electrodes in fixed positions. Channel 1 

(Ch1) recording electrodes were positioned a fixed distance apart from Channel 2 (Ch2) 

recording electrodes and set in epoxy. These electrodes were placed flat against the 

epicardium of the LV (Fig. 2.3.1A). CV was recorded by pacing continuously on the 

epicardium at a fixed interval and recording the signals from the Ch1 and Ch2 recording 

electrodes continuously at a sampling rate of 20kHz. The difference in time between the 

peaks on the Ch1 and Ch2 electrodes was taken as the difference in time between 

activation of the LV at each pair of electrodes. As the distance between these electrodes 

was known, CV could be calculated using CV=Distance/time. Heart rate was recorded in 

unpaced hearts by measuring the time difference between peaks on a single channel. 
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Recordings were made using software written in house: ACQ1 (Dr. Francis Burton, 

University of Glasgow). 

Fig. 2.3.1 Electrode Design. 
 A) Photo of setup showing positioning of the electrode on the surface of the LV. B) Diagram of 

electrode design, showing the stimulating electrodes and two sets of recording electrodes which are 

all set in epoxy. Xmm is the distance between electrode pairs and is between 1 and 1.6mm, as several 

different electrodes were made and used during these experiments. C)  Example traces taken from an 

experiment showing the stimulus artefact and the peaks on the Ch1 and Ch2 recording electrodes.  

Traces were analysed using a program written in house (Dr. Francis Burton, University of 

Glasgow) in MATLAB (Mathworks). The software detects the peaks in the traces and 

calculates the delay between each pair of peaks, creating a continuous trace of the 

conduction delay (Fig. 2.3.2). This allows detection of small changes in CV and shows the 

exact time point at which these changes occur. Our system was limited to a digitization rate 

of 20kHz – this limited the resolution of the conduction delay (Fig. 2.3.2 B), producing a 

trace which fluctuates between two values when in reality the actual value will lie between 

the two recorded delays. Adjacent averaging of 30 sequential points of the conduction 

delay traces was used to minimise the impact of this. 
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Fig. 2.3.2 Analysis Program 
A) Example trace from section of experiment. Program detects trace peaks (black +) from the Ch1 

and Ch2 electrodes. This allows a continuous conduction delay (ms) to be calculated B). Note the 

digitisation rate (20KHz) limits the resolution of the conduction delay (0.05ms) and the subsequent 

CV calculation. 

 

Fibre Orientation 

Position of the electrode relative to fibre orientation leads to differences in conduction 

velocity: CV is roughly twice the CV in the longitudinal orientation (parallel to the fibre 

orientation) than in the transverse orientation (perpendicular to fibre orientation). To 

confirm that we were able to detect changes in CV relative to fibre orientation, the 

electrodes were rotated through 360⁰ with CV recorded at 30⁰ intervals. As it was not 

possible in this setup to identify fibre orientation, longitudinal CV was estimated by 

rotating the electrode until the fastest CV was observed: this was termed longitudinal CV. 

The electrode was then rotated 90⁰ to record transverse CV. This was termed 0⁰ for the 

diagram shown below (Fig. 2.3.3). From the 0⁰ point, the electrode was rotated in a 

clockwise direction and an individual CV recording was made at each 30⁰ interval. CV was 
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found to be approximately 50% faster at 90⁰ vs. 0⁰, representative of the difference 

between longitudinal and transverse CV due to fibre orientation.  

 

Fig. 2.3.3 360⁰ recording of CV on the rat LV.  
A) Diagram showing the angle of the electrodes and the direction of propagation at 0⁰ and 90⁰. B) 

Range of CVs recorded from 3 rats across 360⁰ shown as a % of the max CV recorded. 

To minimize variation in CV between different hearts, CV was recorded at as close to 

longitudinal CV as possible. At the beginning of each CV experiment, the electrodes are 

rotated through various angles to locate the fastest CV (minimum conduction delay). 
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2.4 Microelectrode Recordings 

Sharp microelectrode (ME) measurement of Vm is the ‘gold standard’ method by which 

intracellular APs are recorded. APs were measured from epicardial myocytes of the LV at 

the same region as CV recordings in previous experiments. This allowed us to measure the 

effect of β-AR stimulation on the AP to ascertain if changes in cellular electrophysiology 

could explain recorded changes in CV. 

ME AP recordings were carried out on horizontal Langendorff, with the heart positioned so 

that the LV surface faced up. Preparations were submerged in a specially designed Perspex 

water bath maintained at 37oC, containing modified Tyrode’s solution (see 2.1). Sharp glass 

microelectrodes of between 40-50MΩ were pulled (Flaming/Brown Pipette 97 

Micropipette Puller Sutter Instruments, Novato, CA) and filled with 1M KCl. Silver Chloride 

(AgCl) wire was used in the micropipettes – the Ag wire was galvanically chlorided in lab. 

The potential difference between the microelectrode and a Ag/AgCl reference electrode 

(commertially bought) placed in the water bath was recorded. ME recordings measured 

using an Axoclmap 2B amplifier and digitally recorded at 28kHz. A HS2A headstage (10x 

gain) with an input impedence of 500MΩ was used.  An ECG was recorded using Ag/AgCl 

disc electrodes and AP recordings were made using WinEDR (Dr John Dempster, University 

of Strathclyde, UK).  The heart was LV paced using bipolar platinum electrodes. 
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Fig. 2.4.1 Diagram of ME setup. 
Potential difference between the glass microelectrode and the waterbath reference electrode were 

recorded using WinEDR (Dr John Dempster, University of Strathclyde, UK). 

 

2.5 Optrode recordings 

Although ME recordings allowed us to record APs from the site at which we recorded CV, it 

was not possible to record CV and AP measurements simultaneously on this setup. Also, to 

obtain a continuous ME recording of APs was technically challenging, even in a 

mechanically quiescent heart. Therefore, a system was designed which allowed the 

simultaneous recording of CV, optical APs and optical Ca2+ transients from the same site on 

the LV. Electrodes with a similar design as previous setups (Fig. 2.3.1 B) were set into the 

centre of a fibre optic lightguide, which allowed the transmission and collection of light 

from sites directly adjacent to the CV recording electrodes (Fig. 2.5.1 A). The fibres of the 

fibre optic light guide were fixed in place in crescent shapes to either side of the CV 

recording electrodes, which each side containing five individual fibre optic fibres; this 

covered two areas of 4mm by 2mm which were 4mm apart. 
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Fluorescence was recorded simultaneously at 2 wavelengths (550nm and 650nm) using 

photomultiplier tubes (PMTs) to allow ratiometric measurements of voltage using Di-4-

ANEPPS. The 470nm LED was switched on for 5s at a time every 30s. This recorded a train 

of 60 APs, which would later be averaged during the analysis process to give a mean AP 

from this time-point. 

 

 

Fig. 2.5.1 Diagram of optrode setup. 
A) The 'optrode' incorporates the CV electrodes from the previous setup and includes a fibre optic 

lightguide which allows the excitation of fluorescent dyes and collection of light from the heart. B) 

CV recordings can be made in the same way as shown in section 2.2. C) An example averaged AP 

taken from recordings made using the optrode and the voltage-sensitive dye, Di-4-ANEPPS. D) An 

example averaged Ca2+ transient recorded with the optrode and the Ca2+ sensitive dye, Fura-4.2.5.1 

Voltage Sensitive Dye: Di-4-ANEPPS 

 

To record APs using the optrode, voltage sensitive dyes were used. These are dyes which 

respond rapidly to changes in membrane potential, which alters their fluorescence; this 

change is extremely fast and allows the recording of changes in electrical potential within 

milliseconds. 
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Fig. 2.5.2: Diagram of optrode light path 
Diagram showing the set-up for the optrode recordings. LP = long pass filter. LED = light emitting 

diode. Light from the LEDs would pass through a series of long pass filters to reach the fibre optic 

light-guide which would shine light on to the heart. Emission from the flouroescent dyes would be 

collected by the light-guide and pass through the LP500 filter to the PMTs. There the LP535 filter 

would split the emission between the 550nm and 650nm PMTs. 

The dye used in this study is Di-4-ANEPPS (Biotium, UK), an ANEP ratiometric dye. Di-4-

ANEPPS is not fluorescent until membrane bound, but when in the membrane its peak 

excitation wavelength is 470nm and its peak emission is at 600nm (Fig 2.5.2 A). Fig. 2.5.2 B 

shows the Di-4-ANEPPS emission spectrum in an adult rabbit cardiac myocytes. The black 

line shows emission of the dye in normal Tyrode's and the red dotted line shows emission 

in high potassium (K+), which depolarises the cardiac cell membrane. The change in 

membrane potential caused by the high K+ causes a spectral shift in fluorescence: this 

spectral shift is extremely small and can be seen more clearly in Fig. 2.5.2 C. 
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Fig. 2.5.2 B shows the relative change in fluorescence of Di-4-ANEPPS in normal Tyrode's 

and Tyrode's containing high K+.  The change in fluorescence peaks at two different 

wavelengths. Emission was split and recorded on two separate PMTs set to 550nm and 

650nm, which made it possible to take a ratio of the fluorescence at each wavelength. 

Calculating the ratio helps reduce the artifact associated with movement during the 

recording.  Di-4-ANEPPS bleaches in the presence of light – i.e. the fluorescence of the dye 

decreases with the time exposed to excitation light. As the emitted fluorescence recorded 

on at the two channels will decrease to the same relative extent due to bleaching, taking a 

ratio also reduces the effect of bleaching on the signal level. 

50μL Di-4-ANEPPS (2mM stock concentration) was diluted in 2ml of modified Tyrode’s 

(50µM) and added slowly as a bolus over 10s, using a syringe cannula as close to the heart 

as possible (Fig. 2.7.1). Due to the flow-rate of 12ml/min, this equated to an approximate 

concentration at the heart of 25µM. This method of Di-4-ANEPPS administration had been 

optimized in previous work carried out in the lab.  A light-emitting diode (LED) that emitted 

light at 470nm was used to excite the dye. To minimize the effect of bleaching, the 470nm 

LED was turned on at either 30s or 1min intervals throughout these experiments for 5s at a 

time to record a train of APs that were subsequently averaged prior to analysis. 
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Fig 2.4.1.1 Excitation and Emission spectra of Di-4-ANEPPS (Recorded by Dr. Ole Kemi and Dr. Niall 
MacQuaide, University of Glasgow). 
A) Excitation and emission spectra of Di-4-ANEPPS. Peak excitation occurs at 473nm wavelength and 

peak emission is recorded at 607nm. B) Emission spectra of Di-4-ANEPPS in rabbit cardiac myocyte in 

presence and absence of high K+. High K+ depolarises the cell membrane and causes a spectral shift in 

Di-4-ANEPPS fluorescence. C) The spectral shift of Di-4-ANEPPS is shown; from this it is possible to see 

that there is a larger change in fluorescence at two wavelengths. By recording at both these 

wavelengths, a ratio can be taken. 

2.5.2 Ca2+ Sensitive Dye: Fura-4-AM 

Fura dyes are calcium sensitive dyes used for measuring intracellular Ca2+ concentrations. 

They are aminopolycarboxylic acids which bind to free Ca2+ in the cytoplasm (Grynkiewicz 

et al., 1985). Fura-4 is a lower affinity version of Fura-2, with a kd of 800nM: although this 

means there is a lower sensitivity to diastolic levels of Ca2+, it allows for better resolution of 
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peak Ca2+ recorded during Ca2+ transients. Fura-4 is designed to be excited sequentially at 

340nm and 380nm, with emission from both being collected at 510nm. This allows for a 

ratiometric measurement to be taken as a result of the emitted fluorescence from the two 

excitation wavelengths. However, using an LED based system does not easily allow 

excitation at 340nm since current LEDs that emit at this wavelength are of very low power. 

Therefore in these studies, Fura-4 was excited with a 360nm light from a longer wavelength 

LED. This wavelength is termed the isosbestic point since it represents a Ca2+ insensitive 

sector of the excitation spectrum. This approach still yields a ratiometric measurement of 

Ca2+ since changes in fluorescence signal due to movement or other artefacts are 

minimized due to the fluorescence signal recorded at 360nm.  

 

Fig.2.5.2 Fluorescence excitation spectra of Fura-2 in solutions containing from 0-39.8μM Ca2+ 
(taken from ThermoFisher Scientific). 
Fluorescence excitation of Fura-2 at different concentrations of Ca2+. The excitation of Fura-2 is the 

same as Fura-4; only the Kd of Fura-4 is different. The isosbestic point, at which fluorescence does 

not change in response to Ca2+
 concentration, can be clearly seen at 360nm. 

Background recordings of fluorescence were taken before adding Fura-4 to the heart. 

30μM Fura-4-acetoxymethyl ester (Fura-4-AM, Molecular Probes, Life Sciences, UK) - a cell 

permeable form of Fura-4 - was perfused into the heart over 5min: this was done at half 

the normal perfusion rate to allow time for the Fura-4-AM to enter the heart; this also 

allowed us to use smaller volumes of Fura-4-AM. The heart was then left for a further 

10min to allow the acetomethyl groups to be removed by intracellular esterases: this is 
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required for the functioning of Fura-4, but also prevents Fura-4 from diffusing back across 

the membrane. Further to this 2.5mM probenecid (Sigma Aldrich, UK) was perfused on 

with the Tryrode's solution to inhibit anion transport and prevent Fura-4 secretion. 

Recordings were made by exciting with a 360nm optoLED for 5s and then immediately 

switching to a 380nm LED for an additional 5s. Fluorescence was collected at 450nm and 

recorded using the custom software ACQ1 (Dr Francis Burton, University of Glasgow). The 

signals were then background subtracted and ratioed using custom software created in 

house: ViewACQ (Dr. Francis Burton, University of Glasgow). 

The recording of Ca2+ transients alongside APs and CV, using the optrode probe was a new 

technique developed in the lab. Fura-4 concentration, LED power and PMT settings were 

optimized over a series of experiments. Difficulties were encountered due to the low 

power of the 360 LED which generated a signal with low signal:noise. To reduce the impact 

of this noise on the Ca2+ transients, a section of each 360 recording was averaged and this 

average was used to calculate the ratioed Ca2+ transients: i.e. Ca2+ transient ration = mean 

360 / 380 trace.  

2.5.3 Near-simultaneous AP and Ca2+ recordings 

Due to their overlapping emission wavelengths, it was not possible to record both AP and 

Ca2+ signals simultaneously. Instead a protocol was developed which allowed sequential 

measurements of APs and Ca2+ transients. An initial 5s recording was made by switching on 

the 470nm LED: this excited Di-4-ANEPPS and allowed the recording of 5s of APs. The LED 

would then immediately be switched off and the 360nm LED switched on for 5s: this 

allowed the recording of the isbestic point of Fura-4. Finally, the 360 LED would be 

switched off and the 380nm LED would be immediately turned on: this allowed the 

recording of the Ca2+ sensitive portion of Fura-4 emission. Although these recordings were 

not simultaneous, they did allow both APs and Ca2+ transients to be recorded optically in 

the same heart and at the same location on the epicardium. The short time window in 

which these were recorded also allowed comparison of Ca2+ transients and APs at similar 

time-points during drug addition. However, it is important to consider that Ca2+ transients 

were recorded a full 10s after the APs were recorded. 

2.5.4 Analysis 

Both APs and Ca2+ transients were analysed using custom software developed in house: 

RatioAverager (Dr. Francis Burton). Using this program, it was possible to average the 

signals recorded over 5s to a mean single AP or Ca2+ transient. Properties such as the rise 
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time between 10 and 90% of the upstroke (TRise), the amplitude and the duration of the 

transient could be measured. 

2.6 Pacing Protocol 

Bipolar platinum stimulating electrodes were encorportated into the CV electrode design 

(2.3.1B). Bipolar platinum ‘hook’ electrodes were used to pace the heart in ME 

experiments. The heart was paced epicardially on the LV in all experiments. The heart was 

stimulated using a square pulse 2ms in duration. These were generated using an isolated 

constant voltage stimulator (Digitimer, Ltd.) and interval was maintained using a digitimer 

developed in-lab. Threshold for pacing was found by gradually increasing the voltage (V) of 

the pulse until successful pacing of the heart was established. V was mainted at 1.5x 

threshold. Unless otherwise stated, hearts were paced at 8Hz to override the higher 

intrinsic rates seen in adrenergic stimulation. 

2.7 Mechanical Uncoupler 

The normal contraction of the heart can interfere with the recordings. Although it was 

possible to make CV recordings while the heart was contracting, the electrode was more 

likely to be moved by the contracting heart and therefore invalidate the experiment. It is 

also not possible to make optical AP or Ca2+ recordings while the heart is contracting 

normally, as this generates a large motion artifact that is not sufficiently cancelled by 

ratiometric measurements.  

Mechanical couplers act by uncoupling the electrical signal from the physical contraction of 

the myocyte: this leaves the electrical signal unchanged, but prevents the heart from 

contracting during the experiment. Previously used uncouplers include 2,3-butanedione 

monoxime (BDM) and cytochalasin D. However, these uncouplers also have effects on 

intracellular Ca2+ handling, therefore making them imperfect for use in research (Kettlewell 

et al., 2004; Y. Liu et al., 1993).  

A newer mechanical uncoupler, blebbistatin, is believed to have fewer non-specific 

interactions. It is an inhibitor of the ATPases associated with myosin II, and therefore 

prevents the normal cycling of the myosin head and its attachment to actin (Straight et al., 

2003): this prevents cellular contraction. Federov et al. found that blebbistatin at 5-10μM 

eliminated contraction but had no effect on action potential morphology or intracellular 

calcium transients (Fedorov et al., 2007). However, Brack et al. found that blebbistatin at 
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5μM prolonged effective refractory period and caused AP prolongation in the intact rabbit 

heart (Brack et al., 2013a). 

In this study 3μM blebbistatin was used to try to reduce the negative impact of blebbistatin 

on the electrical activity of the heart. It was perfused onto the heart for 25min prior to any 

experimental recordings, so that the heart could reach a steady state. Further to that, all 

control recordings were made in the presence of blebbistatin. All experiments were carried 

out in the presence of 3µM blebbistatin unless otherwise stated. 

2.8 Drug Delivery 

Various drug interventions were used throughout this study. Timing of drug delivery was 

important, so it was necessary that the drug entered the system as close to the heart as 

possible and also that a set drug concentration could be maintained over a chosen period 

of time. To do this, a syringe driver was set up adjacent to the Langendorff system. This was 

set up to perfuse drugs at 0.4ml per min. The syringe cannula passed through the top of the 

rubber bung in the heat exchange coil, down the central channel and the opening was 

positioned immediately before the aortic cannula. This tubing was primed with drug prior 

to the experiment, meaning that as soon as the syringe driver was turned on, drug was 

mixed and delivered directly into the coronary circulation. Passing through the heat 

exchanger ensured that the drug was heated to close to 37⁰C and also allowed the drug to 

mix with the Tyrode's solution prior to reaching the aorta. A second tube through the heat 

exchanger coil was also used to deliver Di-4-ANEPPS to the coronary circulation. 
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Fig. 2.8.1 Diagram of syringe driver and drug delivery. 
Diagram showing the setup of syringe driver used to deliver drugs to the heart. Drugs were perfused 

on at a constant rate, to maintain a constant concentration for the duration of the experiment. A 

syringe cannula was used to ensure that drug was delivered as close to the coronary arteries of the 

heart as possible so that there was minimal 'dead space' in the system. 

2.9 Analysis and Statistics 

AP and Ca2+ transient data were exported from WinEDR (Dr. John Dempster, University of 

Strathclyde, UK) or ACQ1 (Dr. Francis Burton, University of Glasgow, UK) in the acq format. 

The section of trace pertaining to each time point was then exported as a ratio using 

ViewACQ (Dr. Francis Burton, University of Glasgow, UK). In the case of Ca2+ transient 

analysis, a section of the 360 trace (the isobestic point of Fura-4) was averaged, and this 

average was divided by the 380 trace; this reduced signal:noise, as noise was generated on 

the 360nm trace due to the low power of the 360nm LED. The ratioed transients were then 

averaged and analysed using RatioAverager (Dr. Francis Burton, University of Glasgow, UK). 

Example traces were exported using Origin (OriginLab Corporation, USA). 

CV traces were recorded using ACQ1 and exported using ViewACQ. CV analysis was carried 

out using MATLAB (Mathworks, USA) and software generated in-lab. Example traces were 

generated in Origin. 

Graphical and statistical analysis was carried out using GraphPad Prism (GraphPad 

Software, Inc., USA). Unless otherwise stated, graphs are presented as the mean with the 

standard deviation (s.d.) stated in the text. A student’s t-test was used in single comparison 
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tests, whereas a non repeated measures ANOVA with Bonferroni’s post-hoc test was used 

for multiple comparisons. A P-value of <0.05 was considered significant (* = p<0.05; ** = 

p<0.01; *** p<0.001).   
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3. β-adrenergic stimulation increases CV in the intact 

heart 

3.1 Introduction 

The autonomic nervous system (the ANS) is composed of the sympathetic and 

parasympathic branches. The sympathetic nervous system of the heart governs the 'fight or 

flight' response: it allows the heart to rapidly respond to stimuli to increase pump function 

and speed of contraction. The sympathetic nervous system acts through the binding of 

catecholamines to α- and β-adrenoreceptors, though in the normal adult myocardium the 

β-adrenorecptors (β-AR) are the dominant subtype. 

The effect of β-AR stimulation on the heart is well established. β-AR increases heart rate - 

positive chronotropy - via an increase in If - an ion channel directly activated by cAMP 

(DiFrancesco and Tortora, 1991) - and on shortening the conduction delay in the SA (Hutter 

and Trautwein, 1956, 1955; Levick, 2000). β-AR stimulation also causes an increase in the 

force of contraction of the heart - positive inotropy. This is achieved primarily through an 

increase in the inward Ca2+ current and enhancing the intracellular Ca2+ store (Bers, 2001, 

2002); this is dicussed in further detail in 4.1.2. β-AR stimulation also increases the rate at 

which the heart relaxes following contraction - positive lusitropy. This is due to the 

increased uptake of Ca2+ from the cytoplasm by SERCA (Bers, 2002) and also due to an 

increase in the slow outward K+ channel, IKs (Walsh et al., 1988). 

The effect of β-AR on the speed of myocardial conduction however, has not been well 

studied. The majority of studies on the effect of β-AR stimulation on CV were primarily 

carried out in the 1950s and 60s. Initial experiments carried out in in vivo dog hearts 

showed an increase in ventricular CV (Krayer et al., 1951; Siebens et al., 1953) in response 

to epinephrine, however later experiments carried out in the isolated dog heart-lung 

preparations showed only a small and inconsistent increase in CV (Swain and Weidner, 

1957). While Krayer et al. attribute the increase in CV to an increase in serum K+ caused by 

the action of epinephrine on the liver, Wallace and Sarnoff demonstrated that stimulation 

of the left stellate ganglion caused an increase in CV of approximately 6% (Wallace and 

Sarnoff, 1964), suggesting that sympathetic stimulation was having a direct effect on CV in 

the heart. More recent studies on isolated rabbit heart with intact sympathetic innervation 

demonstrate an increase in CV of 30% in response to sympathetic nerve stimulation (Ng et 

al., 2007). However, these studies included conduction via both the ventricle and Purkinje 
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fibres. So, though there is evidence that β-AR stimulation increases myocardial CV, there 

are few studies which measure ventricular CV directly and they do not address the 

mechanism or time-course of this response. 

Using the electrode design shown in Fig. 2.2.3, it was possible to measure conduction delay 

on the epicardial surface over a limited distance (between 1 and 2mm) that ensures only 

local conduction is sampled. Therefore, it was possible to directly record conduction delay 

from myocardial conduction without involving the cardiac conduction system. The initial 

aim of this study was to measure the effect of β-AR stimulation on CV, confirming the 

increase in CV previously recorded and measuring the time-course and amplitude of this 

response. 

The drug used initially to stimulate the β-AR was isoproterenol: ISO is a full agonist of all 4 

types of the β-receptors on the heart. 

This study also aims to determine the signaling pathways responsible for the increase in CV.  

One of the possible second messengers involved in β-receptor signaling in the heart is cyclic 

adenosine monophosphate (cAMP). To ascertain whether this was a cAMP-mediated 

response, drugs which raise cAMP were used: the activator of adenylyl cyclase, forskolin 

(Fsk), and the PDE inhibitor 3-Isobutyl-1-methylxanthine (IBMX) were used to raise 

intracellular cAMP. 

The effect of β-AR on heart rate is previously well documented (DiFrancesco and Tortora, 

1991; Hutter and Trautwein, 1956). In a separate set of experiments, heart rate was also 

recorded to ensure that the dose of ISO used was having the expected effect on the heart, 

to compare the time course of the CV and HR responses and to determine if the heart 

reached a steady state during drug perfusion. 

3.2 Methods 

3.2.1 Drug concentrations 

100nM of isoproterenol hydochloride (ISO) was dissolved in deionoised water (Sigma 

Aldrich, UK). 30μM Fsk and 100μM IBMX (both Sigma Aldrich, UK) were used to achieve a 

near maximal response, based on previous studies (Mehta et al., 1992; Paulson et al., 

2000b; Zhai et al., 2012). Both drugs were dissolved in DMSO. Finally, the combination of 

1μM Fsk and 100μM IBMX was chosen as the combination of drugs to maximally raise 

cAMP in further work:  Fsk gave the most consistent and stable results, however, Fsk is 

known to have some non-specific effects at high concentrations, so the lower 
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concentration of Fsk alongside a PDE inhibitor was chosen as the most effective and 

specific drug intervention. 

All experiments were carried out in the presence of 3µM blebbistatin, unless otherwise 

stated. 

3.2.2 Drug delivery 

Recordings were taken of both heart rate and CV for 5mins prior to drug addition to ensure 

that the heart had reached a steady state and to allow for a control recording. The control 

point for the graphs was taken as 30s prior to drug addition. The drug was perfused on for 

a total of five minutes until the response approached a steady state; in initial experiments 

drugs were added for 3mins (data not shown) but this was not long enough for the 

response to reach a steady state. Recordings continued for 5 minutes following drug 

perfusion to record the 'wash-off' of the response. However, as it appeared the CV 

response had a very slow wash off period, in subsequent experiments the wash-out period 

was not recorded. 

In the protocol to determine the ISO dose response curve, CV was taken as the maximal CV 

response. Each concentration was recorded separately on different hearts, as prolonged 

exposure to ISO may induce a desensitization response which would reduce the heart's 

response to ISO. 

3.2.3 Heart Rate Recordings 

Interval was recorded continuously throughout the experiment using the same electrodes 

as used for the CV recordings:Interval was recorded as the time between peaks on a single 

channel - the trace recorded from a single pair of electrodes. Heart rate was calculated 

from interval as beats per minute. 

3.2.4 Conduction Velocity Recordings 

Conduction delay was recorded continuously through the experiment, as described in the 

methods (Fig. 2.2.1; Fig. 2.2.2) and CV was calculated from the conduction delay (v=d/t). 

The heart was paced continuously at 130ms (approx. 8Hz) to prevent the increase in 

intrinsic HR caused by β-AR stimulation from disrupting pacing. The heart was paced on the 

epicardium of the left ventricle. 
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Results 

3.3 CV response to IBMX in presence and absence of blebbistatin 

The mechanical uncoupler blebbistatin was used to uncouple the electrical activity from 

the contraction of the heart in all CV experiments. This means that the heart remains still 

during recordings, which allows for more reliable and consistent CV recordings and is also 

required for the AP and Ca2+ recordings carried out in later experiments. 

As it was possible to make CV recordings without the use of a mechanical uncoupler, the CV 

response to IBMX was recorded both in the presence and absence of blebbistatin to ensure 

that blebbistatin was not having a non-specific effect on CV. 

100μM IBMX increased CV 11.5±2.5% in the absence of blebbistatin (p<0.05, n=3) and by 

9±1.9% in the presence of blebbistatin (p<0.05, n=4). The difference between the 

responses in the presence and absence of blebbistatin was not significant (Fig 3.3.1). 

 

Fig. 3.5.1 There is no significant difference between the CV response to IBMX in the presence and 
absence of 3μM blebbistatin.  
White bar indicates DMSO control, black represents treatment with 100μM IBMX in the absence of 

blebbistatin and grey shows hearts treated with 100μM IBMX while also continuously perfused with 

3μM blebbistatin. CV was taken as the max response to IBMX.  IBMX significantly increased CV in the 

presence and absence of blebbistatin (p<0.05, n=4). Data are shown as mean±s.d.  There was no 

significant difference between the IBMX response in the presence and absence of blebbistatin. 

(*=p<0.05) 
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3.4 The β-receptor Agonist ISO Increases Left Ventricular 

Conduction Velocity in the Intact Rat Heart 

HR was measured continuously as 100nM ISO was perfused onto the heart. ISO caused a 

rapid increased in mean HR from 270±50bpm to 360±80bpm (Fig 3.4.1 C). Mean heart rate 

in the control was recorded as 250±30bpm.  Due to the high degree in variation in heart 

rate between individual hearts, % change in heart rate was calculated. The max response of 

HR to ISO was on average a 30±20% (p<0.05 n=4) above control values. There was no 

significant change in the time control (Fig. 3.4.1 E). Following drug perfusion, the heart rate 

response began to wash out within five minutes, returning to 6±14% above the control 

heart rate recording. 

Left ventricular CV increased in response to treatment with 100nM ISO: CV increased from 

72±9cm/s to 78±10cm/s at its highest point (Fig. 3.4.1 D). The response was slow, with 

highest CV recorded after perfusion with ISO had stopped. The time control fluctuated 

between 66±10cm/s and 68±10 cm/s. This was probably due in part to limitations with the 

digitisation rate, as described in Fig. 2.2.2.  Again, due to the high degree of variation in CV 

between different hearts, % change in CV was calculated. A change in CV - at its highest 

point - of 8±4% was recorded (p<0.01, n=4). No significant change was recorded in the time 

control (Fig. 3.4.1 F). This is in line with previous experiments looking at the effect of 

sympathetic stimulation on CV (Wallace and Sarnoff, 1964) but demonstrate that the 

increase in CV is due to changes in myocardial CV and not other segments of the 

conducting system. The CV response to ISO did not return to normal within the 5min 

washout period: CV remained at 7±4% above control recordings at the end of the 

experiment. 

A dose response to ISO was carried out to ensure that the maximal response to ISO was 

being recorded. Concentrations between 0.1nM and 100nM were used. A near maximal 

response was recorded at 10nM: ~11.3±1.7cm/s at 10nM (SEM, n=4), vs. 11.8±1.4cm/s at 

100nM (SEM, n=5), so higher concentrations of ISO were not used (Fig. 3.4.2). 
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Fig 3.4.1 Effect of 100nM isoproterenol (ISO) on heart rate (HR) and CV in the intact rat heart 
Time control is shown in black and the ISO trace in grey. Black bar and dotted lines indicate time over 

which ISO was perfused onto the heart. Data shown is mean at individual time points. A) Example 

traces showing the effect of ISO on HR. B) Example traces showing the effect of ISO on CV. C) Average 

HR response to ISO. Error bars represents SE. D) Average CV response to ISO (n=4). E) %Δ in HR in 

response to ISO. Increase in HR in response to ISO became significant (p<0.05, n=4) at 120s. At 300s 

the change was no longer significant (n=4). F) %Δ in CV in response to ISO. Increase in CV became 

significant at 210s (p<0.05, n=4). At 330s-600s p<0.01 (n=4). 
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Fig 3.3.2 Dose response of CV to ISO. 
Graph showing the dose response of CV to ISO. Data displayed as mean with bars to represent 

standard error (SEM). ISO was perfused on over 5 minutes and the peak CV recorded during that time 

was recorded as the CV response at that concentration. n=4 at Control, 1x10-10, and 3x10-10. n=2 at 

1x10-9. n=5 at 1x10-7M. 

3.5 Treatment with Forskolin and IBMX Increases Left Ventricular 

CV in the Intact Rat Heart 

30μM Fsk caused a rapid increase in HR in the intact rat heart: heart rate was increased 

from 280±200bpm to 420±30bpm (Fig. 3.5.1 C). Fig. 4.4.1E shows an increase in HR of 

50±20% at its highest point (p<0.001, n=4). There was no significant change in the DMSO 

control. Fsk did not appear to wash out, with heart rate remaining at 30±7% above the 

resting heart rate at the end of the 5min washout period. 

30μM Fsk increased left ventricular CV: CV increased from 75±8cm/s to 85±11cm/s (Fig. 

3.5.1 D). This was a change of 13±2% (Fig. 3.5.1 F) and was significantly different from the 

DMSO control (p<0.001, n=4). There was no significant change in the DMSO control. Again, 

the CV response did not return to normal within the washout period, with CV remaining at 

9±6% higher than the control. However, this results was no longer significant when 

compared to the DMSO control (n=4), suggesting a high degree of variability. 
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Fig 3.5.1 Effect of 30μM forskolin (Fsk) on heart rate (HR) and CV in the intact rat heart. 
Black bar and dotted lines indicate time over which Fsk was perfused into the heart. Data are shown 

as mean at individual time points. A) example traces showing the effect of Fsk on HR. B) example 

traces showing the effect of Fsk on CV. C) Average HR response to Fsk. Error bars represents SE.(n=4) 

D) Average CV response to Fsk (n=4). E) %Δ in HR in response to Fsk. Increase in HR in response to Fsk 

became significant (p<0.05) at 90s (n=4). At 120s-570s p<0.001. F) The %Δ in CV in response to Fsk. 

Increase in CV became significant at 210s (p<0.01). At 330s-540s p<0.001 (n=4). 

These results show the raising cAMP, independent of β-AR stimulation, increases CV in the 

intact rat heart. 
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Fig 3.5.2 Effect of 100μM 3-Isobutyl-1-methylxanthine (IBMX) on HR and CV in the intact rat heart.  
Black bar and dotted lines indicate time over which IBMX was perfused into the heart. Data are 

shown as mean at individual time points. A) example traces showing the effect of IBMX on HR. B) 

example traces showing the effect of IBMX on CV. C) Average HR response to IBMX. Error bars 

represents SE.(n=4) D) Average CV response to IBMX (n=6). E) %Δ in HR in response to IBMX. Increase 

in HR in response to IBMX became significant (p<0.05) at 240s-300s (n=4). F) %Δ in CV in response to 

IBMX. Increase in CV became significant at 270s-450s (p<0.05, n=6). 

The PDE inhibitor IBMX was used to confirm this result by raising cAMP in an independent 

fashion. IBMX is a global inhibitor of PDEs, which breakdown cAMP, and therefore 

inhibiting PDEs increases intracellular cAMP. 
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100μM IBMX increased HR from 260±80bpm to 390±200bpm (Fig. 3.5.2 C), which was an 

increase of 60±40% (Fig. 3.5.2 E).  This increase was significant when compared to the 

DMSO control (p<0.05, n=4).  Heart rate began to return to normal after perfusion of IBMX 

ceased, with heart rate returning to 16±7% above control within the five minute washout 

period. 

Treatment with IBMX increased left ventricular CV in the intact heart. IBMX increased CV 

from 69±4cm/s to74±6cm/s (Fig. 3.5.2 D). Fig 3.4.2 F shows a maximal increase in CV of 

9±4%, which was significant when compared to the DMSO control (p<0.001, n=4). CV began 

to decrease towards control values during the washout period: at the end of the five 

minutes, CV was 5±3% above control values. This was not significantly different from the 

DMSO control (n=4), suggesting a high degree of variability in both the control and the 

IBMX trace at this time-point. 

These results confirm the Fsk results and show that raising cAMP increases LV CV in the rat 

heart. 

Finally, a combination of a lower dose of Fsk with IBMX was used to raise cAMP (Fig. 3.5.3). 

1μM Fsk and 100μM IBMX were perfused at the same time onto the heart for 5min. As the 

heart rate response for IBMX and Fsk had already been recorded, only CV was recorded for 

these experiments. Washout was also not recorded during these experiments. 

Treatment with Fsk and IBMX raised CV from 61±7cm/s to 67±6cm/s (Fig. 3.5.3 B). This was 

an increase of ~9±1% at its highest point and was significant when compared to the DMSO 

control (p<0.001, n=4). 
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Fig 3.5.3 Effect of 1μM forskolin (Fsk) + 100μM 3-Isobutyl-1-methylxanthine (IBMX) on CV in the 
intact rat heart. 
Black bar and dotted lines indicate time over which Fsk+IBMX was perfused into the heart. Fsk+IBMX 

was perfused on for five minutes. Data are shown as mean at individual time points. A) Example 

traces showing the effect of Fsk+IBMX on CV. B) Average CV response to Fsk+IBMX. Error bars 

represents SE.(n=4) C) %Δ in CV in response to Fsk. Increase in CV became significant at 150s (p<0.01, 

n=4). 180s-300s p<0.001. 
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3.6 Discussion 

3.6.1 Summary 

Previous studies looking at the effect of β-AR stimulation on myocardial activation time had 

reported a decreased ventricular conduction time in response to epinephrine (Krayer et al., 

1951; Siebens et al., 1953; Swain and Weidner, 1957; Wallace and Sarnoff, 1964). These 

studies date from the 50s and 60s, and did not distinguish between changes in Purkinje 

fibre conduction or myocardial CV (Mendez et al., 1964; Swain and Weidner, 1957). Neither 

did they investigate the signaling pathways involved in these changes. 

More recent studies have looked at the effect of raising cAMP on cell-cell conduction and 

intercellular resistance (Burt and Spray, 1988; Darrow et al., 1996; Somekawa et al., 2005). 

These studies have found that increasing cAMP can decrease intracellular resistance and 

suggest that these changes are gap junction mediated (Darrow et al., 1996; Somekawa et 

al., 2005). However, these studies were carried out in cell pairs or cultured cell lines and 

therefore cannot directly address the effect on CV. 

This study has found that stimulation of β-AR with the non-specific β-agonist ISO increases 

CV in the intact heart. As the heart was paced on the epicardium within 1.6mm of the 

recording electrodes, it is assumed that this corresponds with an increase in myocardiul CV 

independent of the His-Purkinje system. This study also showed that raising cAMP, one of 

the second messengers of β-AR signaling, also increases CV. Raising cAMP was achieved by 

manipulating two distinct pathways; increasing cAMP synthesis and decreasing cAMP 

degradation, respectively. The results indicate that the change in CV is not due to non-

specific effects of the drugs or due to effects specific to either adenylyl cyclase or PDEs. 

3.6.2 Relevance To Heart Failure 

The effect of β-AR stimulation on the heart has been extensively studied: particularly its 

effect on heart rate, force of contraction (positive inotropy) and on the speed of relaxation 

(positive lusitropy) (Hicks et al., 1979; Lehnart and Marks, 2007; Marx et al., 2000; Yue et 

al., 1990). Its effects on the heart are diverse and involve a range of secondary messengers 

(Hayes et al., 1979). Understanding not only the effect of β-AR stimulation on the heart, but 

also which intracellular pathways are involved, is important because any intervention on 

the β-AR signaling pathway will cause a range of different responses. It is well established 

that β-AR signaling is down-regulated during heart failure (Lohse et al., 2003a; Nikolaev et 

al., 2010), however β-AR stimulation increases mortality in heart failure patients, while β-

blockers are extensively used in treatment of heart disease. Although β-blockers are used 
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successfully in heart failure to reduce cardiac work, it is clear that β-AR signaling is complex 

and upregulating specific effects of the β-AR may be beneficial to patients with cardiac 

disease. It has been demonstrated that there is compartmentalisation of β-AR signaling in 

the heart (Edwards et al., 2012), and therefore fully understanding these separate signaling 

pathways is crucial to developing more targeted and effective drugs for heart disease. 

It is also important to understand the regulation of CV in the heart: the “electrical 

wavelength” of the myocardium - determined by the ERP multiplied by the CV - is used to 

predict the likelihood of re-entrant arrhythmias. This concept was first discussed by 

Thomas Lewis in 1920 (Lewis, 1920), and Smeets et al. further developed its application to 

examining re-entrant arrhythmias. A lower wavelength creates a smaller re-entrant circuit 

which is more likely to be created and sustained by conduction block or areas of 

inhomogeneity (Smeets et al., 1986). More recently, it has been demonstrated that a low 

wavelength is a predictor of tachy-arrhythmias (Weiss et al., 2000). A decrease in CV would 

lower the wavelength and therefore increase the chance of re-entrant arrhythmias in the 

heart. These changes in CV can occur both at an ischemic region in the heart due to 

intracellular acidosis affecting gap junction conductance (Kléber et al., 1987) or through 

remodeling of gap junctions during heart failure (Severs et al., 2004; J. Smith et al., 1991). 

Therefore, understanding normal regulation and modulation of CV may be important in 

treating heart failure in the future. 

3.6.3 Limitations of Conduction Velocity Recordings 

CV was recorded using a fixed set of electrodes placed on the surface of the LV 

myocardium. This set of electrodes was freely able to rotate through 360⁰. As shown in fig. 

2.2.3, CV varies depending on the rotation of the electrode on the myocardium: this is due 

to its position relative to the fibre orientation. To keep CV as consistent as possible 

throughout experiments, CV was recorded as close to longitudinal fibre orientation as 

possible However, it is not possible to observe fibre orientation in the intact Langendorff 

preparation without high magnification optics. Therefore, it was necessary to estimate 

when the CV was at longitudinal CV - this was determined as the fastest CV observed as the 

electrode was rotated through 360⁰. This means there was an additional degree of 

variation in CVs recorded between different hearts. 

There seemed to be variation between different hearts in these experiments: basal CV 

recordings ranged from ~40cm/s to ~80cm/s. This could be due to a number of external 

factors, the most of likely of these being due to differences in position of the electrode 
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relative to fibre orientation and also due to slight differences in temperature of solution 

between experiments - reducing temperature decreases gap junctional conductance 

(Bukauskas and Weingart, 1993). For this reason, %Δ CV was calculated for all experiments. 

Any movement of the electrodes or preparation during the experiment would move the 

electrodes relative to fibre orientation and would cause a sharp peak or drop in CV. This 

would invalidate the experiment and for this reason some experiments had to be excluded 

from the results. This suggested the need for a mechanical uncoupler during these 

experiments to reduce the incidence of rapid discontinuities in the activation time 

recordings. 

3.6.4 Drug Interventions 

All drugs used in this study were perfused on via the method shown in fig. 2.6.1. Initially 

ISO was perfused on for 3mins (data not shown) however this was not long enough for the 

CV response to reach a near maximal response. 5min was then chosen for the incubation 

time. As seen in figs. 3.3.1 and 3.4.1, CV continued to increase following a 5min incubation 

period with both ISO and Fsk. Perfusion for more than 5mins was tried, however, the heart 

often became unstable during this time, sometimes developing arrhythmias. It was also a 

concern that incubation with ISO for a prolonged period would trigger the 

desensitization/β-arrestin response (Baillie et al., 2007; Lohse et al., 1992). Therefore, 5min 

was chosen as the optimal incubation time. Treatment with IBMX alone and with Fsk+IBMX 

appeared to reach near maximal response during the 5min perfusion with these drugs, 

therefore Fsk+IBMX was chosen as the intervention for future experiments raising cAMP. 
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4. Effect of β-adrenergic stimulation on the cardiac 

action potential and intracellular calcium transient 

4.1 Introduction 

Previous chapters have shown that β-adrenergic stimulation increases CV in ventricular 

muscle acutely. The main factors which affect ventricular CV are: cell size; gap junctional 

conductance (GJC) - due to either increased connexin or increased GJ permeability; and 

action potential shape. Specifically, the rate of rise (dV/dtmax) of the AP is a major 

determinant of CV: it is the source of the depolarising current which spreads between 

adjacent cells (Buchanan et al., 1985; Kléber and Rudy, 2004; Shaw and Rudy, 1997).  The 

AP upstroke is also indirectly influenced by β-AR stimulation through changes in diastolic 

interval, via influences on heart rate and APD (Ng et al., 2007; Taggart et al., 2003). 

Therefore, changes in both dV/dtmax and APD may have an influence on CV. 

There is no evidence to suggest the β-AR stimulation would alter cell size over short time 

periods (1-5mins). Therefore, to understand the mechanism by which β-AR stimulation 

increases CV, the most likely point at which to start would be either to look at the effect of 

β-AR stimulation on the cardiac AP or on GJC. 

This chapter looks at the effect of β-AR stimulation on the cardiac AP using both 

microelectrode recordings and the voltage-sensitive dye, Di-4-ANEPPS. Ca2+ transients were 

also recorded using the Ca2+ dye, Fura-4-AM. The incorporation of an LED light-guide into 

the electrodes used to record CV allowed the recording of AP and Ca2+ alongside CV at the 

same point on the myocardium. 

4.1.1 Effect of β-AR Stimulation on the Cardiac AP 

β-AR stimulation has multiple effects on cardiac AP shape. The upstroke of the AP - caused 

by the activation of voltage dependent Na channels (Nav1.5) is a major determinant of CV 

(Shaw and Rudy, 1997). Previous studies have shown that β-AR stimulation causes an 

increase in the magnitude of INa and AP dV/dtmax
 (Frohnwieser et al., 1997; Lu et al., 1999; 

Matsuda et al., 1992; Schreibmayer et al., 1994; Wang et al., 1996). However, in whole 

hearts sympathetic stimulation also increases the steepness of the slope of the APD 

restitution curve and reduces effective refractory period (ERP), which would in turn 

decrease the Na current (Ng et al., 2007; Taggart et al., 2003). Therefore, the effects of β-

AR on gNa is complex and its effects have not been extensively studied in the intact heart. β-

AR stimulation also influences APD and therefore diastolic interval: in large mammals, β-
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agonists increase IKs, causing shortening of the APD (Jost et al., 2005; Volders et al., 2003), 

preserving diastolic interval and maximizing time for Na channel recovery.  

Understanding the extent of the effect of β-AR stimulation on INa could indicate whether 

this change is responsible for the corresponding increase in CV. Recording AP amplitude, 

the rise time of the AP (TRise) and calculating the rate of rise (dV/dtmax) will all give an 

indication of the behavior of INa in response to β-AR stimulation. When considering AP 

amplitude as an indicator of INa, it is important to consider the effect of Ca2+ on the AP 

amplitude: studies carried out in the frog heart have indicated that an increase in 

extracellular Ca2+ leads to an increase in the AP amplitude (Niedergarke and Orkand, 1966). 

Therefore, dV/dtmax and TRise - which is also used to indicate the rate of rise of the AP – are 

considered better indicators of INa then AP amplitude.  Recording these changes at the 

same site and over the same time-course as the CV recordings is essential to understanding 

the effect of AP changes on CV. Our setup would not allow for microelectrode recordings at 

the site of the CV recordings, as the surface CV electrodes covered a large portion of the 

LV. Therefore, although the microelectrode is the more established method by which to 

measure cardiac APs - and allowed the calculation of dV/dtmax - the use of Di-4-ANEPPS and 

optical recordings of APs was a more valuable tool in understanding the impact of changes 

in AP on CV. 

4.1.2 Effect of β-AR Stimulation Ca2+ Handling in the Heart 

β-AR stimulation has a positive inotropic effect of the Ca2+ handling in cardiac myocytes. 

The L-type Ca2+ channel is a substrate for protein kinase A (PKA) - the main effector protein 

of β-AR signaling. On phosphorylation of the LTCC by PKA, ICa is increased (Bers, 2001; 

Reuter, 1987) increasing cytosolic Ca2+, SR Ca2+ content and thereby increasing the 

amplitude of the Ca2+ transient (Bers, 2002). The ryanodine receptor (RyR2) is also a target 

of PKA - this increases RyR2 sensitivity to Ca2+ (Bers, 2001) further facilitates calcium-

induced calcium release and therefore increases cytosolic [Ca2+] (Bers, 2002). This increase 

in systolic Ca2+ is largely responsible for the positive inotropic response to β-AR stimulation. 

The sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA2) is also a target for PKA 

phosphorylation following β-AR stimulation. Phospholamban (PLB) - an inhibitory protein 

which inhibits SERCA2 in the unphosphorylated state - relieves inhibition of SERCA2 when 

phosphorylated by PKA (Bers, 2001). This increases reuptake of Ca2+ from the cytoplasm 

and generates the positive lusitropy caused by β-AR stimulation. It also contributes to 
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positive inotropy - a combination of increased systolic Ca2+ and increased uptake by SERCA2 

increases the SR Ca2+ content (Bers, 2002). 

Recording Ca2+ alongside APs and CV allows a better understanding of the effect of β-AR on 

the cardiac AP and provides another possible mechanism for changes in CV. 

4.2 Methods 

4.2.1 Microelectrode Recordings 

Glass microelectrode recordings are the gold standard technique for measuring absolute 

transmembrane voltages. The sharp microelectrode technique was used to measure the 

electrical activity on a single cell as part of the intact myocardium, as previously carried out 

in this lab (Ghouri et al., 2015). This allowed recording of the AP at the same site and under 

similar conditions to the way CV recordings had previously been made.  

As described in 2.3, the heart was Langendorff perfused and orientated horizontally with 

the left ventricle facing upwards.  The heart was submerged in a specially designed Perspex 

waterbath containing Modified Tyrode's solution (93mM NaCl, 20mM NaHCO3, 1mM 

Na2HPO4, 1mM MgSO4.7H2O, 5mM KCl, 20mM Na+ acetate, 25mM glucose, 1.8mM 

Ca2+Cl) maintained at 37⁰C. The modified Tyrode’s solution also contained 3µM blebbistatin 

to prevent contraction of the heart and allow ME recordings. Sharp glass microelectrodes 

were pulled from borosilicate glass capillary pipettes of between 40-50MΩ tip resistance 

and were fillled with 1M KCl and a Ag/AgCl wire. Recordings were digitised at a sampling 

frequency of 28kHz. 

APs were recorded continuously where possible. However, as slight movement of the heart 

could disturb the microelectrode, this was often not possible. Therefore, recordings were 

made immediately prior to drug administration and at 1min, 3min and 5min during drug 

perfusion. Where possible an additional recording was made at 5min after drug 'wash-out.' 

The heart was LV paced continuously at 130ms intervals, as in the CV recordings, using 

bipolar platinum electrodes. Drug delivery occurred through the same syringe 

driver/syringe cannula system described in 2.6, however due to differences in the 

horizontal Langendorff system, drug was delivered via a syringe port immediately adjacent 

to the aortic cannula. As in the CV recordings, this ensured drug was delivered directly to 

the coronary vasculature. 
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4.2.2 Optrode Recordings 

The setup for the microelectrode recordings did not allow for the recording of CV during 

these experiments. To record AP and Ca2+ measurements alongside CV at the same site and 

time would allow better understanding of the interaction between these changes. 

Therefore, it was necessary to develop a method by which APs, Ca2+ transients and CV 

could be recorded simultaneously. 

The electrodes used to record CV were set into the centre of a fibre optic light guide. This 

allowed the transmission and collection of light from sites directly adjacent to the site at 

which CV was being recorded (2.4). Di-4-ANEPPS is well established as a voltage-sensitive 

dye, which has been used in single cell in multicellular preparations (Fluhler et al., 1985; 

Ghouri et al., 2015; Nygren et al., 2003). It is described in more detail in 2.4.1. 

Ca2+ sensitive dyes are also well established for use in recording intracellular Ca2+ 

transients. Fura dyes have been used in both single and 2-photon (2P) microscopy (Aistrup 

et al., 2009; Choi and Salama, 2000; Ghouri et al., 2015; Nishizawa et al., 2009). The dye 

used in these experiments was Fura-4-AM, a cell permeable version of Fura-4. This dye is 

discussed in more detail in 2.4.2. 

The 'optrode' setup allowed the recording of signals from the region of myocardium 

directly adjacent to the site at which CV was recorded. These were not single cell 

recordings, but a sum of the electrical activity and Ca2+ signals from epicardial cells over a 

small - ~1cm3
 - region. 

Background recordings were made prior to the addition of Fura-4-AM or Di-4-ANEPPS. 

30μM Fura-4-AM in Tyrode's solution was perfused into the heart over 5min. The perfusion 

was then switched back to Tyrode's and the preparation was left for a further 10min to 

allow the acetoxymethyl groups to be removed by intracellular esterases and for the heart 

to reach a steady state. At the end of this time, 50μl Di-4-ANEPPS (2mM) was added as a 

bolus. 

4.2.3 Drug Intervention 

30μM Fsk was used in the microelectrode experiments, as in 3.4 treatment with Fsk 

appeared to create the largest response of the interventions used (Fig. 3.4.1). However, it 

was later decided that 1μM Fsk and 100μM IBMX used together was a better intervention 

which was more stable and had a lower risk of causing non-specific effects. Therefore, 

Fsk+IBMX was used in the optrode experiments. 
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In both the microelectrode and optrode experiments, drug was perfused on continuously 

for 5min using the method described in 2.6. 

Results 

4.3 Microelectrode Recordings 

30μM Fsk was perfused into the heart for 5 min. Fig. 4.3.1A shows the time-course of these 

experiments alongside sections of example trace from each of the main time-points below. 

The resting membrane potential was recorded as -80mV and did not appear to change 

throughout the experiment. Fsk did not significantly change TRise (rise time of the upstroke 

between 10-90. AP amplitude also did not change significantly (12.6±3.8%, mean±SEM, 

n=4; 4.3.1 B). The TRise is a good indicator of dV/dtmax and is used to represent this in the 

optrode experiments. However, with microelectrode recordings it was also possible to 

calculate dV/dtmax. Actual values of dV/dtmax are shown in Fig. 4.3.1 D, to demonstrate that 

these were within expected values and that there was little variation between 

experiments. There was also no significant change in dV/dtmax. 

The greatest impact of Fsk was seen on the APD. APD is shown at 50%, 75% and 90% of the 

repolarisation. Fsk caused a rapid and significant increase in APD50, 75 and 90, increasing 

to near maximal response within the first minute of drug perfusion (Fig. 4.3.1 E). APD50 

increased by 90±20% (mean±SEM, n=4) at the maximal point of the response. APD75 

increased by 60±10% (mean±SEM, n=4) and APD90 increased by 30±10% (mean±SEM, n=4). 
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Figure 4.3.1 Raising cAMP prolongs APD in the intact rat heart  
 A) Example APs from a single experiment. The top line shows sections of the original trace from the 

experiment at each of the recording points. Data is represented in bar graph as the mean response ± 

SEM. Below shows a single AP which is an average of 5s recording. White bars indicate the control 

recording taken prior to adding Fsk, grey indicates time-points at which recordings were taken during 

Fsk perfusion and black indicates the washout period. B) There was no significant increase in APA in 

response to Fsk (n=4). C) There was no significant change in AP rise time in response to Fsk (n=4). D) 

Maximum rate of rise of the AP (Vmax) was calculated by differentiating the AP with respect to time. 

Treatment with Fsk did not significantly change Vmax (n=4). E) Fsk significantly prolonged the rat AP 

at 50, 75 and 90% (n = 4 for everything except wash out, which n=2). (*=p<0.05; **=p<0.01). 
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4.4 Optrode Recordings of the action potential show that β-AR 

stimulation prolongs APD and increases AP amplitude in the intact 

rat heart 

A combination of 1μM Fsk and 100μM IBMX were perfused into the heart to raise cAMP.  

Fsk+IBMX significantly increased APA (AP amplitude) to a maximum of 8.2±3.2% and by 

20.2±4.4% when compared to the DMSO control (p<0.001, control n=3, Fsk+IBMX n=6; Fig. 

4.4.1 B). There was no significant difference in TRise between Fsk+IBMX and the DMSO 

control at any point during drug perfusion (Fig. 4.4.1 C). 

Fsk+IBMX significantly increased APD at APD50, 75 and 90 (Fig 4.4.1 E-F). APD50 was 

increased by a maximum of 60.1±11.7% (p<0.001, control n=3, Fsk+IBMX n=6); APD75 was 

increased by a max of 53.2±4.6% (p<0.001 control n=3, Fsk+IBMX n=6); APD90 was 

increased by 32.6±4.7% (p<0.001 control n=3, Fsk+IBMX n=6). The change in APD was rapid 

with maximal values reached within 2min of drug perfusion. 

The effect of 100nM isoproterenol on AP was also recorded. ISO significantly increased APA 

by 10.6±5.0% compared to a time control (P<0.05, n=4; Fig 4.4.2 A). As with Fsk + IBMX, 

there was no significant change in TRise in response to ISO (Fig. 4.4.2 B). ISO prolonged 

APD50 and 90, but to a lesser extent than Fsk+IBMX (Fig 4.4.2 C-E). APD50 was prolonged 

by a maximum of 18.1±7.9% (p<0.05, n=4). APD75 was slightly prolonged by perfusion with 

ISO but this change was not significant. Finally, APD90 was significantly prolonged by ISO to 

a maximum of 8.7±6.2% (p<0.05, n=4). 
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Figure 4.4.1 Raising cAMP increases action potential amplitude (APA) and prolongs action 
potential duration (APD) in the intact rat heart 
A) Example APs from a single experiment.  The top line shows sections of the original trace from 

immediately prior to drug addition and at 1, 3 and 5min during drug perfusion. Below shows a single 

AP for each time point which is an average of 5s recording. Data are shown as the mean at individual 

time points B) Treatment with Fsk+IBMX significantly increased APA. 90s-300s p<0.001 (Control n=3, 

Fsk+IBMX n=6) C) There was no significant change in AP rise time in response to Fsk+IBMX (Control 
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n=3, Fsk+IBMX n=6). D) Fsk+IBMX significantly prolonged the rat AP at 50% (APD50). At 90s p<0.01. 

120s-300s p< 0.001 (Control n=3, Fsk+IBMX n=6). E)  Fsk+IBMX significantly prolonged the rat AP at 

75% (APD75). 90s-300s p< 0.001 (Control n=3, Fsk+IBMX n=6). F) Fsk+IBMX significantly prolonged 

the rat AP at 90% (APD90). At 90s-300s p< 0.001 (Control n=3, Fsk+IBMX n=6). 

 

Figure 4.4.2 β-adrenergic stimulation with isoproterenol (ISO) increases action potential amplitude 
(APA) and prolongs action potential duration (APD) in the intact rat heart 
Data shown as mean at individual time points. A) Treatment with ISO significantly increased APA. 

120s-240s p<0.05 (n=4) B) There was no significant change in AP rise time in response to ISO (n=4). C) 

ISO did not significantly prolong rat AP at 50% (APD50 (n=4)). D) ISO prolonged the rat AP at 75% 

(APD75) but the change was not significant (n=4). E) ISO significantly prolonged the rat AP at 90% 

(APD90). At 180s-300s p< 0.05 (n=4). 
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4.5 β-AR increases calcium transient amplitude and shortens the 

later phases of the calcium transient 

Using the Ca2+ sensitive dye, Fura-4, Ca2+ transients were recorded alongside the AP 

recordings. Fig. 4.5.1 A shows an example section of AP trace and the corresponding 

averaged AP, and below that is the averaged Ca2+ transient from the same time-point. 

1μM Fsk + 100μM IBMX were again used to raise intracellular cAMP. Fsk+IBMX did not 

significantly affect the Ca2+ transient baseline and therefore diastolic Ca2+ (n=4; Fig.4.5.1 B). 

Fsk + IBMX significantly increased the Ca2+ transient amplitude, increasing it by 100.3±7.4% 

(n=4, Fig. 4.5.1C). 

Fsk+IBMX also decreased the rise time of Ca2+, suggesting an increase in rate of rise of the 

Ca2+ transient (Fig 4.5.1 D). TRise 10-90% was reduced by 11.9±3.0% at its lowest point 

(p<0.05, n=4). Raising cAMP did not significantly alter Ca2+ duration (CaD) at 50% (Fig.4.5.1 

E), however it shortened Ca2+ transient duration at CaD75 and CaD90 (Fig 4.5.1 F-G). 

Fsk+IBMX shortened CaD75 by 11.1±1.4% (p<0.05, n=4) and CaD90 by 15.0±1.3% (p<0.001, 

n=4). 

100nM ISO was used to measure the effect of β-AR stimulation on the Ca2+ transient (Fig. 

4.5.2). ISO had no significant effect on diastolic Ca2+ (Fig. 4.5.2 A). As with raising 

intracellular cAMP, ISO significantly increased Ca2+ transient amplitude by 73.8±10.0% at its 

highest point (p<0.001, n=4; Fig. 4.5.2B). ISO also reduced TRise 10-90% to a maximum 

response of 9.0±1.8% (p<0.001, n=4; Fig.4.5.2 C), indicating an increase in the rate of rise of 

the Ca2+ upstroke. As with Fsk+IBMX, ISO had no effect of CaD50, but shortened the Ca2+ 

transient duration at 75 and 90% (Fig. 4.5.2 D-E). CaD75 was shortened by 11.6±1.3% 

(p<0.05, n=4) and CaD90 was shortened by  18.6±1.2% (p<0.001, n=4). 
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Figure 4.5.1 Raising cAMP increases calcium transient amplitude (CaA) and shortens the later 
stages of the calcium transient in the intact rat heart 
A) Example APs and Ca2+ transients from a single experiment. The top line shows sections of the 

ratioed AP trace from immediately prior to drug addition and at 1, 3 and 5min during drug perfusion. 

Below shows a single AP for each time point which is an average of 5s recording. The bottom row 

shows a single averaged Ca2+ from 5s of recording at the same time points as the APs. B) Fsk+IBMX 

had no significant effect on the baseline of the Ca2+ transient (n=4). C) Treatment with Fsk+IBMX 

significantly increased CaA. 120s-300s p<0.001 (n=4) D) Fsk+IBMX significantly shortened Ca2+ rise 

time. 90s-300s p<0.05 (n=4). E) Fsk+IBMX did not significantly affect Ca2+ transient duration (CaD) at 

50% (CaD50) (n=4). F) Fsk+IBMX significantly shortened the Ca2+ transient duration at 75% (CaD75). 

120s-300s p< 0.05 (n=4). G) Fsk+IBMX significantly shortened the Ca2+ transient duration at 90% 

(CaD90). At 60s, p<0.05 and at 120s-300s p< 0.001 (n=4). 
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Figure 4.5.2 β-adrenergic stimulation with isoproterenol (ISO) increases calcium transient 
amplitude (CaA) and shortens the later stages of the calcium transient in the intact rat heart 
A) ISO had no significant effect on the baseline of the Ca2+ transient. (n=4) B) Treatment with ISO 

significantly increased CaA. 120s-300s p<0.001 (n=4) C) ISO significantly shortened Ca2+ rise time. At 

240s p<0.05 and at 300s p<0.001 (n=4). D) ISO did not significantly affect CaD at 50% (CaD50 (n=4)). 

E) ISO significantly shortened the Ca2+ transient duration at 75% (CaD75). 120s-300s p< 0.05 (n=4). F) 

ISO significantly shortened the Ca2+ transient duration at 90% (CaD90). At 120s-300s p< 0.001 (n=4). 
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4.6 Discussion 

4.6.1 β-AR Stimulation Increases AP Amplitude but Does Not Affect dV/dtmax 

Phase 0 of the cardiac AP is the upstroke of the AP: in the ventricle, this upstroke is 

determined largely by the Na+ current (INa) which is caused by the activation of voltage 

sensitive Na channels (Nav1.5) (Levick, 2000). As previously discussed, the upstroke is a 

major determinant of CV: it is the source of the depolarising current which spreads 

between adjacent cells (Buchanan et al., 1985; Kléber and Rudy, 2004; Shaw and Rudy, 

1997).  It has been previously demonstrated the β-AR stimulation increases the magnitude 

of INa and increases the rate of rise of the AP, or dV/dtmax (Frohnwieser et al., 1997; Lu et al., 

1999; Matsuda et al., 1992; Schreibmayer et al., 1994). However, INa is also indirectly 

influenced by β-AR stimulation through changes in diastolic interval, via influences on heart 

rate and APD (Ng et al., 2007; Taggart et al., 2003), therefore the effect of β-AR on INa and 

dV/dtmax, in the intact myocardium is complex. 

Although it is possible to measure INa in the intact heart, these experiments are technically 

extremely challenging. Therefore, both AP amplitude and dV/dtmax were shown to 

represent changes in gNa. The relationship between gNa and dV/dtmax is approximately linear, 

and theoretical and experimental studies have suggested that a 40% increase in gNa would 

increase dV/dtmax by approximately 20% (Berecki et al., 2010, Buchanan et al., 1985; Cohen 

et al., 1984, 1981).  

The microelectrode study showed an insignificant increase in APA and no change in the AP 

TRise (Fig. 4.3.1B and C). dV/dtmax was calculated and Fsk did not significantly affect 

dV/dtmax. This suggests that raising cAMP via Fsk did not affect gNa and therefore was not 

the mechanism behind the previously recorded change in CV. However, it is important to 

note that APA is one of the more difficult parameters to record via sharp microelectode, as 

the slightest movement of the microelectrode would influence APA. Therefore, the trend 

towards an increase in APA may have become significant with further experiments. 

This is supported by the significant increase in APA in response to both Fsk and ISO 

recorded in the optrode experiments. An increase in APA could suggest an increase INa, 

however this increase was not large enough to significantly affect dV/dtmax or TRise. The 

largest increase in APA recorded in these experiments was 10.6%, which would correspond 

to only a 5% increase in dV/dtmax. Again, it is important to consider the possible influence of 

Ca2+ on the AP amplitude – experiments in 4.5 show an increase in CaA in response to 

Fsk+IBMX. Therefore, the calculated dV/dtmax values are a better indicator of gNa than APA.  
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Change in amplitude in response to Fsk may have been underestimated due to bleaching or 

wash-out of Di-4-ANEPPS - this is further discussed in 4.6.4. 

The relationship between dV/dtmax and CV is also not clear. Darrow et al. reported increases 

in CV in cultured rat neonatal cardiac cells without any reported increase in dV/dtmax 

(Darrow et al., 1996), whereas De Boer et al. carried out a similar study in neonatal rat cells 

and found a corresponding increase in dV/dtmax (de Boer et al., 2007). Studies carried out in 

the intact ventricle have shown that dV/dtmax is proportional to CV2 (Buchanan et al., 1985; 

Cohen et al., 1984). Therefore, if the recorded change in amplitude did correspond to 

approx. 5% increase in dV/dtmax, it would only produce an approx. 2% increase in CV. So, 

although these experiments indicate a possible increase in gNa, this increase is not large 

enough to account for the full extent of the CV recorded. Using the square-law relationship, 

an increase in CV of 10% would require an increase dV/dtmax of 25%, a result not reported 

or observed in this study. It is also important to consider that the linear relationship 

between dV/dtmax and CV2 exists in a uniform, linear cable (Buchanan et al, 1985), whereas 

in the intact myocardium the relationship will be more complex. 

4.6.2 β-AR Stimulation Prolongs APD in the Rat Heart 

It is well established that in larger mammals, β-AR causing shortening of the cardiac AP 

(Jost et al., 2005; Volders et al., 2003). However, in these experiments both Fsk+IBMX and 

ISO caused the opposite response: significant prolongation of action potential duration. 

The slow outward K+ current (IKs) is a substrate for PKA and β-AR stimulation causes an 

increase in IKs (Walsh et al., 1988; Walsh and Kass, 1988), causing the shortening of the APD 

in larger mammals. However, in rats and mice, the amplitude of both IKs and IKr are both 

much lower than in larger mammals, with a smaller relative contribution to repolarisation 

(Varró et al., 1993). Therefore, an increase in IKs in response to β-AR stimulation would not 

be sufficient to shorten the rat APD. This means that the influence of Ca2+and its reuptake 

by the SR has a greater influence on the repolarisation of the rat AP. As shown in Fig. 4.5.1 

and 4.5.2, β-AR stimulation significantly increases the amplitude of the Ca2+ transient 

through a combination of increased ICa, increased SR Ca2+ uptake as discussed in 4.1.2. 

Although the Ca2+ transient is shortened at 75 and 90% by treatment with β-AR stimulation 

(Fig. 4.5.2 E&F), the large increase in CaA causes an increase in mean Ca2+.  The overall 

effect of these changes on the AP in larger mammals is to elevate the plateau phase of the 

AP (Bers, 2001). The rat AP is shorter and lacks the plateau phase, therefore the increase in 

systolic Ca2+ instead affects AP repolarisation and prolongs APD. 
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This changes the effect of β-AR on effective refractory period (or ERP) in rats compared 

with larger mammals, which - as previously discussed - is an important determinant of 

calculating 'wavelength' and therefore predicting the likelihood of arrhythmias. This 

highlights a need to carry out further work studying the effect of β-AR stimulation on CV in 

larger mammal hearts, for example rabbits, which have a more similar cardiac AP to 

humans than rats. However, the changes shown in these experiments are rate independent 

changes in the AP and ERP due to pacing continuously throughout the experiment. The 

increase in HR caused by β-AR stimulation shortens ERP, and this effect occurs across 

species (Erlij and Mendez, 1964; Ng et al., 2007). 

4.6.3 β-AR Stimulation Increases Ca2+ Transient Amplitude and Shortens 

Transient Duration 

The largest response to β-AR recorded in these experiments was the increase in Ca2+ 

transient amplitude (Fig 4.5.1, Fig. 4.5.2); Fsk+IBMX increased Ca2+ by as much as 

100.3±7.4%. This is in line with previous studies, which suggest this increase is due to a 

combination of factors, including phophorylation of the LTCC and increase of ICa (Bers, 

2001; Kamp and Hell, 2000), increased SR content via stimulation of SERCA due to PLB 

phosphorylation (Bers, 2001), and increased Ca2+ release from RyR2 (Bers, 2002). β-AR 

stimulation also shortened the Ca2+ at CaD75 and CaD90. This was also in line with 

previously studies, which suggest this is due phosphorylation of PLB by PKA which reduces 

the inhibitory effects of PLB on SERCA2, and due to faster Ca2+ mediated inactivation of the 

LTCC (Bers, 2002). 

It is clear there is a large change in systolic Ca2+ during drug perfusion over the same time 

period as the changes in CV. Changes in Ca2+ have a number of effects in the cell: apart 

from the obvious positive inotropic and lusitropic effects previously discussed, Ca2+ is also 

involved in intracellular signaling through the calcium/calmodulin-dependent protein 

kinase (CaMKII) (Grimm and Brown, 2010).  

Therefore, although Ca2+ is not typically considered as a factor which could increase CV it is 

important to consider the multiple potential roles of Ca2+ in intracellular signaling. Raised 

intracellular Ca2+ has previously been shown to decrease gap junctional conductance, 

though it has been described as a small response which is more dependent on changes in 

intracellular pH (De Mello, 1975; Loewenstein, 1981; Spray et al., 1985). Therefore, further 

study on the effect of raised Ca2+ on CV in the intact heart is required. 
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4.6.4 Limitations of Optical Recordings 

Although optical recordings of APs and Ca2+ transients provided many advantages during 

this study, there were limitations to these techniques, particularly when studying both Ca2+ 

and voltage at the same time. Although a background recording was taken before each 

experiment, this background recording was made before the addition of either Di-4 or 

Fura-4-AM. For accurate measurements of [Ca2+], background subtraction from the Ca2+ 

signal is required. Due to the fact perfusion of Fura-4-AM and cleaving of the ester groups 

took in total 20min, Di-4 ANEPPS needed to be added after Fura-4-AM to prevent it from 

being washed out before the experiment. Therefore, the background recordings had to be 

taken in the absence of Di-4-ANEPPS, which was less accurate than taking a background in 

the presence of Di-4-ANEPPS. This did not affect the recordings of the time-course of the 

Ca2+ transient or the relative changes in amplitude recorded, therefore its impact on these 

experiments was small. 

Both Vm and Ca2+ results are taken from an area on the surface of the heart, rather than a 

single cell. Although this meant that a larger number of cells were being sampled, this 

meant that there was a degree of difference in the time until activation (TAct) between cells. 

This could cause a 'smearing' of the action potential upstroke when averaging signals from 

a region of cells - the action potential upstroke would appear slower due to the range of 

APs being averaged. Due to the speed of the AP upstroke, this was the only measurement 

affected by this: APD, Ca2+ upstroke and Ca2+ transient duration would not be significantly 

affected by this due to their longer time-course. Reporting results as relative change 

reduced the impact of this, and our results were confirmed with the microelectrode 

recordings. 

Recording from a region of cells would also make it impossible to quantify [Ca2+]. Instead 

relative change in fluorescence was recorded, and changes in the Ca2+ reported as relative 

change. 

Finally, there was also an issue with Di-4-ANEPPS bleaching and washing out during 

experiments. A decrease in APA was recorded over control conditions (Fig. 4.4.1 B). 

Although an increase in APA was recorded in response to Fsk+IBMX, it is possible a greater 

response was partially masked by this decrease in the control. The most likely cause for this 

decrease in APA is the bleaching of Di-4-ANEPPS or the washout of the dye during the 

experiment. 
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5. The Effect of Calcium on Ventricular Conduction 

Velocity  

5.1 Introduction 

Previous experiments have demonstrated an increase in CV of ~8% in response to 

treatment with the β-agonist ISO and of ~10% in response to treatment with the cAMP 

raising drugs Fsk and IBMX (Chapter 3). Experiments with both microelectrode and voltage-

sensitive dyes suggested that changes in the AP were not sufficient to fully explain the 

mechanism behind these changes in CV in response to β-AR stimulation. These experiments 

also recorded the effects of β-AR stimulation on the Ca2+ transient. A large increase in the 

Ca2+ amplitude of ~100% was recorded in response to raising cAMP (Chapter 4) and this 

change occurred over the same time-course as the CV response to β-AR stimulation. A 

change in Ca2+ transient amplitude signifies at large increase in intracellular systolic [Ca2+]. 

This change in Ca2+ may have had some impact on CV, and therefore the next step of this 

study was to examine the effect of Ca2+ alone on CV in the heart. 

Increased intracellular [Ca2+] is typically thought to have a negative impact on CV - previous 

studies have shown that increased intracellular Ca2+ decreases gap junctional conductance 

(GJC) (De Mello, 1975; Loewenstein, 1981; Spray et al., 1985), which would also decrease 

CV. However, Ca2+ also plays a role in intracellular signaling through activation of Ca2+ 

sensitive kinases and phosphatases, particularly the Ca2+/calmodulin-dependent protein 

kinase (CaMKII), which has many diverse roles throughout the cell (Grimm and Brown, 

2010) - this is further discussed in 6.1.3. 

Initial experiments raised and lowered extracellular Ca2+ to measure the effect [Ca2+] on CV. 

However, it was not clear if this change in extracellular concentration was enough to alter 

intracellular CV as no significant change in Ca2+ amplitude was recorded (5.3.2 D). 

Therefore, following experiments looked at the effect of the LTCC inhibitor Nifedipine on 

CV: the LTCC is a substrate for PKA and is phosphorylated in β-AR stimulation. This 

increases ICa and is the primary way β-AR increases the amplitude of the Ca2+. Therefore, 

inhibition of LTCC would be expected to attentuate the CV response if it were mediated by 

Ca2+. 
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5.2 Methods 

CV measurements were recorded as described in 2.2. AP and Ca2+ recordings were made 

alongside CV using the 'optrode' setup described in 2.4. APs were recorded using the 

voltage sensitive dye: Di-4-ANEPPS. Ca2+ transients were recorded using the Ca2+ sensitive 

dye: Fura-4-AM. 

5.2.1 Altering Extracellular Ca2+ 

To raise extracellular Ca2+ for a 5min period, the heart was perfused with Tyrode's solution 

with (normal) 1.8mM Ca2+ as described in 2.1. A glass syringe was loaded with a high Ca2+ 

Tyrode's solution which, on mixing with the perfusate, would result in a final [Ca2+] of 

3.6mM. The high Ca2+ solution was delivered to the heart as described in 2.6. To reduce 

extracellular Ca2+, Tyrode's with a [Ca2+] of 1mM was perfused onto the heart. A glass 

syringe was loaded with high Ca2+ so that when the syringe driver was turned on, the final 

[Ca2+] reaching the heart was 1.8mM. The syringe driver was switched on from the 

beginning of the experiment and switched off to lower Ca2+ perfusing the heart to 1mM 

during discrete period (5mins) before switching the perfusion syringe on again to restore 

1.8mM Ca2+. 

5.2.2 Drug Delivery 

1μM Nifedipine (Sigma Aldrich, UK) was used to inhibit the LTCC. In 5.3.3, Nifedipine was 

perfused into the heart using the syringe driver setup described in 2.6. In 5.4.1, 1μM 

Nifedipine was perfused onto the heart with Tyrode's solution for 10min prior to the 

experiment. Fsk+IBMX were perfused into the coronary vasculature using the syringe driver 

setup shown in 2.6  
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Results 

5.3 Raising extracellular Ca2+ decreases Ventricular Conduction 

Velocity 

To study the effect of raising or lowering Ca2+ on CV, extracellular Ca2+ was either increased 

to 3.6mM or reduced to 1mM for a 5min period. CV, AP and Ca2+ transients were recorded 

over this time. Fig.5.3.1 A shows example averaged Ca2+ transients from individual 

experiments: it shows the Ca2+ in normal [Ca2+], followed by the Ca2+ transient after Ca2+ has 

been reduced to 1mM or increased to 3.6mM. Increasing extracellular [Ca2+] to 3.6mM 

significantly decreased CV by 7.3±3.0% when compared with a time control (p<0.05, n=4; 

Fig. 5.3.1). Decreasing extracellular [Ca]2+ to 1mM increased CV by 6.9±6.3%. This increases 

was not significant when compared to a time control (control n=4, Low Ca2+ n=3). 

Changing extracellular [Ca2+] did not significantly affect Ca2+ transient baseline - or diastolic 

Ca2+ - until 300s where high Ca2+ increased diastolic Ca2+ by 5.0±1.8% (p<0.05, Control and 

high Ca2+ n=4, low Ca2+ n=3; Fig 5.3.1 D). However, there was an upward drift in the control, 

and in both low and high [Ca2+] traces. These experiments are shown without background 

subtraction in Fig. 5.3.1; Fig. 5.3.2 compares these data with the background subtracted 

data for diastolic Ca2+.  An increase in diastolic Ca2+ is seen in the example traces for high 

[Ca2+]: this increase was seen in some but not all experiments, and is line with reported 

changes in the literature (Bers, 2002). The variability in diastolic Ca2+ recordings may be due 

to the sensitivity of Fura-4, and is further discussed in 5.5.2. 

Increasing extracellular [Ca2+] to 3.6mM significantly increased Ca2+ transient amplitude by 

32.2±5.2% at its maximal point (p<0.001, n=4; Fig. 5.3.1 E). Decreasing extracellular [Ca2+] 

to 1mM decreased Ca2+ transient amplitude but this change was not significant until 300s 

(p<0.05 control  n=4, low Ca2+n=3; Fig. 5.3.1 E). Altering extracellular Ca2+ did not 

significantly affect Ca2+ duration at 90% (control, high Ca2+ n=4, low Ca2+ n=3; Fig 5.3.1 F). 

The change in extracellular Ca2+ did not significantly affect the cardiac AP, with no change 

in APA, TRise or APD90 between high or low Ca2+ when compared with the time control 

(Fig. 5.3.1 G, H and I). However, there was a downward drift in APA over time, which may 

be due to Di-4 bleaching or wash-out, as discussed in 4.6.4. 
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Figure 5.3.1 Raising extracellular Ca2+ decreases CV, while lowering extracellular Ca2+ increases CV 
in the intact rat heart. 
 A) Example averaged Ca2+ transients from a single low Ca2+ (1mM) and a single high Ca2+ (3.6mM 

Ca2+) experiment. Transients from pre-and post changing extracellular Ca2+ concentration are shown. 

B) Example CV traces from single experiments showing the effect of high extracellular Ca2+ and low 

extracellular Ca2+ on CV. C) Decreasing extracellular Ca2+ causes an increase in CV which is not 

significant when compared to a time control (low Ca2+ n=3, time control n=4). Increasing extracellular 

Ca2+signficiantly decreases ventricular CV (120-270s p<0.05 or less, n=4) when compared to a time 

control. Low Ca2+ is significantly different from high Ca2+ (at 90s p<0.01, 120-300s p<0.001. High Ca2+ 

n=4, low Ca2+n=3). D) The change in extracellular Ca2+ did not significantly affect the Ca2+ transient 
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baseline (Control n=4, High Ca2+ n=4, low Ca2+n=3) until 300s where 1mM Ca2+ was significantly 

higher vs. time control (P<0.05 Control n=4, low Ca2+n=3). E) Increasing extracellular Ca2+ to 3.6mM 

significantly increased Ca2+ transient amplitude (60-180s p<0.001, n=4; 300s p<0.001 n=4). 

Decreasing extracellular Ca2+ to 1mM decreased Ca2+ amplitude but this change was not significant 

until 300s (p<0.05 time control  n=4, low Ca2+n=3). F) The change in extracellular Ca2+ did not 

significantly affect the duration of the Ca2+ at 90% (CaD90) (Control n=4, High Ca2+ n=4, low Ca2+n=3). 

G, H, I) The change in extracellular Ca2+ did not significantly affect the cardiac action potential 

(Control n=4, High Ca2+ n=4, low Ca2+n=3). 

The Fura-4 ratio signals that represent intracellular Ca2+ concentration results shown in Fig 

5.3.1 were measured without subtraction of background fluorescence: this means that the 

ratio signal is not purely due to Fura-4 fluoresence but also has contributions from 

backgroud light/intrinsic fluorescence. Thus, loss of Fura4 signal due to loss of dye or 

bleaching cannot be properly compensated by ratiometry since the significant fixed 

contribution of background fluorescence to both ordinate and abscissa would result in 

inappropriate ratio values. This may account for the apparent increase in fluoresence ratio 

baseline show in Fig. 5.3.1 C and again in Fig. 5.3.2A. Fig. 5.3.2 C and D show the same Ca2+ 

transient baseline and amplitude graphs as A and B, but a background recording - where 

fluorescence from the preparation has been recorded before the addition of Fura-4-AM - 

has been subtracted from the traces prior to analysis. 
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Fig. 5.3.2 Background subtraction gives a more accurate indication of Ca2+ transient baseline and 
amplitude. 
A, B) show the Ca2+ transient baseline and amplitude analysed from Ca2+ ratioed without background 

subtraction, as shown in fig. 5.3.1. C, D: show Ca2+ transient baseline and amplitude analysed from 

Ca2+ ratioed after background subtraction. C) The change in extracellular Ca2+ did not significantly 

affect the Ca2+ transient baseline (Control n=4, High Ca2+ n=4, low Ca2+n=3). D) The change in 

extracellular Ca2+ did not significantly affect the Ca2+ transient amplitude (Control n=4, High Ca2+ n=4, 

low Ca2+n=3). 

In the background subtracted experiments, there is no significant change in the Ca2+ 

transient baseline in response to raising extracellular [Ca2+] to 3.6mM or reducing it to 

1mM (control and high Ca2+ n=4, low Ca2+n=3; Fig. 5.3.2 C). However, there is also no 

significant change in Ca2+ transient amplitude in response to high or low Ca2+ (control and 
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high Ca2+ n=4, low Ca2+n=3). There is still a trend towards an increase in Ca2+ transient 

amplitude in response to high Ca2+ and a trend towards a decrease in Ca2+ amplitude in 

response to low Ca2+, however these changes are small and not significant. 

Therefore, it is not clear whether the changes in extracellular Ca2+ are also causing changes 

in intracellular Ca2+. This may due to small changes being difficult to detect on this system 

or due to the sensitivity of Fura-4-AM - this is discussed further in 5.5.5. Regardless, the 

changes in amplitude recorded are much lower than the corresponding increase in systolic 

Ca2+ recorded in response to β-AR. 

To study the effect of changing systolic Ca2+ on CV, the LTCC inhibitor Nifedipine was used, 

which would decrease systolic Ca2+ and therefore decrease Ca2+ transient amplitude. These 

experiments have a n=2, therefore individual traces fro these experiments are shown. 1μM 

Nifedipine was perfused into the heart for 5min. Nifedipine cause a small increase in CV of 

5.6% at its maximal in one trace, but no increase in the second (Fig. 5.3.2 B). Nifedipine did 

not affect diastolic Ca2+ (Fig 5.3.2 C) or Ca2+ transient duration at 90% (Fig.5.3.2 E). 

However, Nifedipine did decrease Ca2+ transient amplitude by 45% at its maximal response 

(Fig 5.3.2 D). 

There was no change in the amplitude or the TRise of the AP in response to Nifedipine (Fig 

5.3.2 F and G). However, incubation with Nifedipine decreased APD90 by 27%. 
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Fig. 5.3.3 Inhibition of L-type Ca2+ channel with 1μM Nifedipine increases CV but not to extent of 
cAMP response.  
A) Example trace showing the raw CV response to Nifedipine. B) % change in CV in response to 

treatment with Nifedipine. Traces show mean control (black), and the individual Nifedipine traces 

Nifedipine 1 (grey) and Nifedipine 2 (red).  Nifedipine appears to increase CV in one experiment but 

not in the second. Stats could not be calculated due to the n=2. C) Nifedipine does not affect the Ca2+ 

transient baseline. D) Nifedipine decreases Ca2+ transient amplitude. E) Nifedipine does not affect 

Ca2+ transient duration at 90%. F) Nifedipine does not significantly affect AP amplitude. G) Nifedipine 

does not significantly affect the TRise of the AP. H) Nifedipine significantly decreases APD at 90%. 
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5.4 Inhibiting the L-type Calcium Channel with Nifedipine does not 

Affect the Conduction Velocity Response to Forskolin and IBMX 

Although increasing intracellular Ca2+ appears to decrease CV (Fig. 5.3.1 B), the opposite of 

the CV change which accompanies the increase of systolic Ca2+ in β-AR stimulation, β-AR 

signaling and its interaction with Ca2+ is complex. Therefore, to understand whether the 

increase in CV in response to β-AR stimulation is Ca2+ independent, the response to 

Fsk+IBMX was recorded in the presence of 1μM Nifedipine. 

 

Fig. 5.3.4 CV increases significantly in response to Fsk+IBMX in the presence of the L-type Ca2+ 
inhibitor Nifedipine (1μM). 
A) Example CV traces from individual experiments showing a DMSO control (black), the CV response 

to Fsk+IBMX-Nifedipine (grey), and Fsk+IBMX+Nifedipine. B) % change in CV in response to fsk+IBMX 

± Nifedipine. The CV response is not significantly different between Fsk + IBMX ± Nifedipine (n=4). 

Fsk+IBMX in the presence of Nifedipine significantly increased CV compared to the DMSO control 

(150-300s p<0.001, n=4). C, D) The APA and TRise response to Fsk+IBMX are also not significantly 

different ± Nifedipine (control n=3, Fsk+IBMX-Nifedipine n=6, Fsk+IBMX+Nifedipine n=4). E) 

Fsk+IBMX+Nifedipine significantly prolongs APD at 90% when compared to the control (240-300s 

p<0.05; control n=3, Fsk+IBMX-Nifedipine n=6, Fsk+IBMX+Nifedipine n=4). APD90 prolongation is not 

significantly different between Fsk+IBMX±Nifedipine (control n=3, Fsk+IBMX-Nifedipine n=6, 

Fsk+IBMX+Nifedipine n=4). 
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Fsk+IBMX increased CV by 12.5±1.5% in the presence of Nifedipine (p<0.001, n=4; Fig 5.4.1 

B). The increase in CV was not significantly different between Fsk+IBMX±Nifedipine (n=4). 

The APA and TRise response to Fsk+IBMX was not significantly different ±Nifedipine 

(Control, Fsk +IBMX+Nifediepine n=4, Fsk+IBMX-Nifedipine n=6; Fig 5.4.1 C and D). APD90 

was significantly prolonged by Fsk+IBMX both in the presence and absence of Nifedipine 

(p<0.001 Control, Fsk +IBMX+Nifediepine n=4, Fsk+IBMX-Nifedipine n=6; Fig. 5.4.1 E). 

Although prolongation of the AP at APD90 was slightly reduced in the presence of 

Nifedipine, it was not significantly different from the Fsk+IBMX-Nifedipine results (Control, 

Fsk +IBMX+Nifediepine n=4, Fsk+IBMX-Nifedipine n=6). 

5.5 Discussion 

5.5.1 Raising Extracellular Ca2+ Decreases Ventricular Conduction Velocity, While 

Decreasing Extracellular Ca2+Increases CV 

 As β-AR stimulation causes a large increase in systolic Ca2+ as well as an increase in CV, this 

study looked at the effects of raising intracellular Ca2+ independent of β-AR stimulation. 

This was achieved by raising extracellular Ca2+
 from 1.8mM to 3.6mM. The effect of low 

Ca2+ on CV was also measured, by lowering extracellular Ca2+ to 1mM. The effect of raising 

extracellular Ca2+ on CV was the opposite of the effect of β-AR stimulation, where high Ca2+ 

significantly reduced CV compared to a time control (Fig. 5.3.1). Low Ca2+ also appeared to 

slightly increase CV, however this change was not significant. This results are in line with 

previous literature which suggests that raising intracellular Ca2+ decreases gap junctional 

conductance (GJC) (De Mello, 1975; Loewenstein, 1981; Spray et al., 1985). GJC is a major 

determinant of CV, and a decrease in GJC would correspond to a decrease in CV (Jongsma 

and Wilders, 2000; Shaw and Rudy, 1997). 

5.5.2 Altering Extracellular Ca2+ Did Not Affect Ca2+ transient Baseline or 

Amplitude 

Although it was expected that increasing extracellular Ca2+ would increase intracellular Ca2+ 

- which would be reflected in an increase in Ca2+ transient amplitude caused by both an 

increase in ICa
 and SR content (Bers, 2001, 2002) - no significant change was recorded in 

Ca2+ baseline - diastolic Ca2+ - or in Ca2+ transient amplitude (systolic Ca2+). Although a 

significant increase in Ca2+ transient amplitude is reported in Fig. 5.3.1, the result reported 

in Fig. 5.3.2 - in which the increase in Ca2+ transient amplitude is not significant - following 

background subtraction is considered the more accurate value. There is, however, both a 

trend towards increase in Ca2+ amplitude in 3.8mM Ca2+ and a trend towards a decrease in 

Ca2+ amplitude in 1mM Ca2+. The CV response to changing extracellular Ca2+ also suggests 
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that there is a change in intracellular Ca2+. It is possible that the change was too small to be 

detected by this system: the use of 360nm LED when exciting Fura-4-AM has limitations 

which are further discussed in 5.5.5. Fura-4-AM has a lower affinity for Ca2+ than its 

counterpart Fura-2: this makes Fura-4 ideal to study changes in peak Ca2+ and for studying 

the large changes in Ca2+ seen after β-AR stimulation, however it is less able to detect small 

changes in diastolic Ca2+ and therefore was possibly not the ideal choice of Ca2+ sensitive 

dye for use in these experiments. The combination of these factors may have prevented 

detection of small fluctuations in intracellular Ca2+. 

It is also clear that changes in Ca2+ caused by varying extracellular [Ca2+] are a great deal 

smaller than the large increase in Ca2+ transient amplitude (~100% increase) seen in 

response to β-AR stimulation. 

It is also important to consider that changes in extracellular [Ca2+] may affect the cardiac 

AP. Increased Ca2+ transient amplitude has been shown to increase APA in the guinea pig 

heart (Leitch and Brown, 1996). Also, increased Ca2+ could also alter intracellular Na+ via 

Na+-Ca2+ exchange. However, no change was seen in AP morphology in response to altering 

extracellular [Ca2+] (Fig. 5.3.1 G, H & I). 

5.5.3 Treatment with the L-Type Ca2+ Channel Inhibitor, Nifedipine, Decreased 

Intracellular Ca2+ but Did Not Significantly Affect CV 

The major contributor to the large increase in Ca2+ transient amplitude following β-AR 

stimulation is the increase in ICa caused by the phosphorylation of the LTCC (Bers, 2002; 

Kamp and Hell, 2000). Therefore, the LTCC inhibitor Nifedipine was used to lower systolic 

Ca2+ and determine whether this influenced CV; this also has the advantage of directly 

modifying intracellular Ca2+ without affecting extracellular Ca2+. A significant decrease in 

Ca2+ transient Inhibition of LTCC with 1μM Nifedipine demonstrated that inhibition of the 

LTCC was successful (P<0.001, control n=4, Nifedipine n=2; Fig. 5.3.1). Inhibition of the LTCC 

had no significant effect on CV (control n=4, Nifedipine n=2), however there was a trend 

towards an increase in CV in response to treatment of Nifedipine. The n of the Nifedipine 

experiments was only 2, therefore on further experiments, the increase in CV may have 

been significant. These experiments further suggest that the increase in CV in response to 

β-AR is not due to increased systolic Ca2+ and that in fact a decrease Ca2+ may increase CV.  
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5.5.4 Inhibition of the LTCC with Nifedipine Did Not Affect the CV Response to 

Fsk+IBMX 

Finally, to demonstrate that the β-AR mediated increase in CV was not mediated by 

increased ICa, Fsk+IBMX were perfused into the heart in the presence of 1μM Nifedipine. 

The CV response to Fsk+IBMX in presence of Nifedipine was not significantly different from 

the Fsk+IBMX alone (n=4). Although the change in APD90 suggests that the increase in ICa in 

response to Fsk+IBMX was not completely abolished, Fig. 5.3.1 demonstrated that 1μM 

was sufficient to reduce Ca2+ transient amplitude by ~40%. Therefore, it appears that β-AR 

mediated ICa is not a key event in the intracellular pathway responsible for increased CV. 

Nifedipine is used at a concentration of 1μM in these experiments. It is clear from 5.4.1 

that inhibition of the LTCC reduces Ca2+ amplitude. However, in 5.4.2, it does not 

significantly affect the APD90 response to Fsk+IBMX. Prolongation of APD90 is due in part 

to the affect of β-AR on the LTCC increasing ICa.. Therefore, it is clear that the LTCC is not 

completely inhibited by Nifedipine. Previous experiments carried out in isolated rabbit 

myocytes show that Nifedipine used at 1μM inhibits the LTCC at between 50-70% in the 

presence and absence of isoprenaline. So although the LTCC is significantly inhibited, the 

increase in intracellular Ca2+ is not blocked. Therefore, the increase in β-AR mediated 

increase in CV observed in Nifedipine does not eliminate a role for increased cellular Ca2+ 

as part of cAMP mediated response. 

5.5.5 Limitations of Optical Ca2+ Recordings Using 360nm and 380nm LEDs 

Fura dyes are made to be excited at 340nm and 380nm so that a ratio of the change in 

fluorescence at each of the wavelengths can be taken: taking a ratio allows for the 

reduction of artifact caused by movement and reduction of noise on the signal. In these 

experiments, the ratio of the 380nm signal and the 360nm signal are taken. The signal at 

360nm is the isobestic point - or Ca2+ insensitive part of the excitation spectrum. Using the 

isobestic point to take the ratio still cancels the movement artifact on the signal, but 

reduces the dynamic range of the indicator. 

Although the 360nm LED is more powerful than the 340nm equivalent, the maximum 

power of the 360nm LED is still low, resulting in small emission signals which are as much 

as 100x smaller than the 380 signal. This means that there is poor signal/noise ratio on the 

360nm signal and therefore noise on the 360nm signal can introduce noise on the final 

ratio. These factors combined with the lower sensitivity of Fura-4 to small changes in [Ca2+] 

may explain why it was difficult to detect changes in intracellular Ca2+ in 5.3.  
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6.Investigating the Signaling Pathway Behind a cAMP 

Mediated Increase in Conduction Velocity 

6.1 Introduction 

6.1.1 Catecholamines Signal Through Multiple Families of β-receptors on the 

Heart 

As previously discussed, the sympathetic nervous system acts on the heart through the 

release of epinephrine and norepinephrine, which bind to a group of receptors called β-

adrenergic receptors. β-receptors are G-protein-coupled receptors (GPCRs) located at the 

plasma membrane of cardiac myocytes (Bristow et al., 1986). There are multiple types of β-

AR expressed on the heart: β1-AR, β2-AR, β3-AR and β4-AR. β1-AR are the dominant type of 

β-AR in the human heart, with β1-AR expressed at a roughly 80:20 β1:β2/β3-AR ratio (Brodde 

et al., 2006; Lohse et al., 2003). Stimulation of β1 receptors generates positive chronotropic, 

isotropic and lusitropic effects on the heart. Stimulation of β2 receptors also generates 

these effects, however specific stimulation of β2 receptors cannot generate a max inotropic 

response at the same level of stimulation of β1 receptors (Brodde et al., 2006). It is thought 

this due to β1 signaling being able to generate a global rise in cAMP, whereas β2 signaling 

does not, instead giving rise only to compartmentalised increases in cAMP (Brodde et al., 

2006). It has also been shown that β2-AR stimulation does not lead to PLB or RyR2 

phosphorylation (Heijman et al., 2011; Xiao et al., 1995). β2 receptors are jointly coupled to 

both a Gs G-protein - which leads to the positive inotropic and chronotropic responses - and 

also to a Gi G-protein (Xiao et al., 1999; Xiao and Lakatta, 1993). Gi-proteins - or inhibitory 

G-proteins - lead to activation of phosphodiesterases (or PDEs), which may also limit the 

magnitude of any response to β2 stimulation (Berthouze et al., 2011). 

This study has shown a β-AR mediated increase in CV, which occurs via an increase in 

cAMP. Therefore, it is likely that this response occurs through either β1 or β2-AR mediated 

signaling. Hearts were treated with ISO (as in previous experiments) in the presence of 

either β1 or β2-AR specific inhibitors to determine whether CV is increased by either β1 or 

β2-AR stimulation. 

  



Annabel Campbell 2017 
 

    99 
 

6.1.2 The β1 and β2-AR Stimulatory Pathways Signal through Protein Kinase A 

and Exchange Protein Activated by cAMP 

β-ARs are GPCRs. Both β1 and β2-ARs signal through the Gs-protein. The G-protein is made 

up of the Gα, Gβ and Gγ subunits. On activation of the GPCR, the Gα subunit dissociates from 

Gβγ; in the case of the Gs-protein, Gα activates adenylyl cyclase (AC). AC converts cytosolic 

ATP to the second messenger cAMP, increasing cytosolic cAMP which in turn activates a 

number of cAMP effector proteins. The main effector of cAMP is protein kinase A (PKA), 

which, on binding to cAMP, dissociates from inhibitory subunits, allows it to phosphorylate 

target proteins. As previously discussed, there are a number of PKA targets in the heart, 

including Nav1.5 (Frohnwieser et al., 1997), the LTCC (Bers, 2001; Reuter, 1987), RyR2 (Bers, 

2002) and PLB (Bers, 2001). Cx43 contains  phosphorylation sites for multiple protein 

kinases, including PKA (Grosely et al., 2013; Lampe and Lau, 2004; Solan et al., 2007; 

TenBroek et al., 2001). As the CV response to ISO was found to be β1-AR mediated, we 

hypothethised that this increase may be PKA mediated and therefore a PKA activator and 

inhibitor were selected for the next step of this study. 

cAMP also signals via exchange proteins directly activated by cAMP (EPAC). Epac is a 

guanine nucleotide exchange factor: on binding of cAMP to Epac, Epac undergoes a 

conformational change which leads to the activation of Rap (Ras-related protein), which is 

a small GTPase (reviewed in: Edwards et al., 2012). Small GTPases are considered 'cellular 

switches' which are inactive in their GDP bound form, but become active on binding GTP. 

Activation of Epac leads to the activation of phospholipase Cε (PLCε) and also of CaMKII 

(Oestreich et al., 2009, 2007; Pereira et al., 2007), though the mechanism of this is not fully 

understood. Epacs have been shown to be activated in response to β-AR stimulation and 

play a role in the regulation of Ca2+ release in the heart (Oestreich et al., 2009), including 

phosphorylation of RyR2 (Pereira et al., 2007). 

Inhibitors of both PKA and Epac are used in this study to determine if the increase in CV 

observed is mediated by either PKA or Epac. However, inhibition studies have limitations 

due to difficulty in fully inhibiting effects at lower concentrations or potentially causing 

non-specific effects at higher concentrations. Therefore, further to the inhibitor studies, 

specific activators of PKA and Epac were used to discriminate between effects caused by 

activation of PKA and activation of Epac. Analogues of cAMP which interact specifically with 

either PKA or Epac have been developed and used in multiple studies in cardiac cells 

(Frohnwieser et al., 1997; Santillán and Boland, 1998; Somekawa et al., 2005). In this study, 

the PKA activator Adenosine- 3',5'-cyclic adenosine monophosphorothioate, Sp-isomer (Sp-
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cAMPS-AM; BioLog: Life Science Institute, Germany), which is resistant to PDE breakdown 

was used. It also contains an AM group to increase cell permeability as Sp-cAMPS is not 

lipophilic (Sandberg et al., 1991). 

The Epac specific activator used in this study was 8-Bromo-2'-O-methyladenosine-3',5'-

cyclic monophosphate (8-Br-2'-O-Me-cAMP-AM; BioLog: Life Science Institute, Germany). 

8-Br-2'-O-Me-cAMP-AM is a cell permeable variant of a cAMP analogue shown to 

specifically activate Epac  without activating PKA. (Börner et al., 2011; Komai et al., 2014). 

6.1.3 β-AR Mediated Activation of Ca2+/Calmodulin-Dependent Protein Kinase II 

β-AR stimulation has also been shown to activate the Ca2+/Calmodulin-dependent protein 

kinase II (CaMKII). As previously discussed, a PKA independent mechanism of CaMKII by β-

AR stimulation has been demonstrated to involve Epac, though the mechanism behind this 

is not fully understood (Oestreich et al., 2009, 2007; Pereira et al., 2007). CaMKII is also 

activated in a PKA dependent manner by β-AR stimulation: it has been demonstrated that 

specific activation of PKA causes activation of CaMKII and that PKA activation is required for 

phosphorylation by CaMKII at particular phosphorylation sites (Kuschel et al., 1999; Said et 

al., 2002). 

It has been suggested that the systolic increase in Ca2+ caused by β-AR stimulation may be 

responsible for the activation of CaMKII. However, in their review, Brown and Grimm 

suggest that the phasic nature of CaMKII activity makes this unlikely (Grimm and Brown, 

2010) and that CaMKII is activated by local and restricted increases in Ca2+ (Song et al., 

2008). 

CaMKII has multiple targets in EC-coupling: CaMKII has been shown to interact with PLB 

and the RyR (Currie et al., 2004; Ferrero et al., 2007) and to increase cardiac contractility 

(Wang et al., 2004) There have also been CaMKII phosphorylation sites identified on the C-

terminus of Cx43 (Huang et al., 2011): Huang et al. identify 15 different phosphorylation 

sites for CaMKII on the C-terminus of Cx43, including previously identified CaMKII 

phosphorylation sites S306, S325, S328 and S330. It has been suggested that these may 

play a role in modulating GJC (Grosely et al., 2013). 

This study looked at the effect of raising cAMP via Fsk+IBMX in the presence of the CaMKII 

inhibitor, KN-93. 
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6.2 Methods 

6.2.1 Inhibitor Studies 

To study the mechanism behind the increase in CV caused by β-AR, various inhibitors were 

used to block various components of the β-AR signaling pathway. 300nM CGP 20712A 

(Sigma Aldrich, UK) was used to block β1-AR and 100nM ICI 118, 551 (Sigma Aldrich, UK) 

was used to block β2-AR. The PKA inhibitor H-89 (Sigma Aldrich, UK) was used at 3μM to 

selectively inhibit PKA; 10μM of H-89 was used initially (data not shown), however this 

concentration of H-89 appeared to be damaging to the heart: at this concentration the 

heart became inexcitable. 5μM KN-93 (C26H29ClN2O4S · H3PO4, Sigma Aldrich, UK) was used 

to inhibit CaMKII. Due to the known non-specific effects of KN-93, the control drug KN-92 

was also used: KN-93 is the active form of the drug, whereas KN-92 (C24H25ClN2O3S · H3O4P) 

lacks the active component of the molecule and does not inhibit CaMKII – this allows it to 

work as a negative control for KN93. Finally, a new inhibitor of Epac1, CE3F4 (Courilleau et 

al., 2012), was kindly donated by Professor Fischmeister, Université Paris-Sud. This was 

used at 40μM, as directed, however, this inhibitor had not previously been used in the 

intact heart. 

Inhibitors were perfused onto the heart with Tyrode's solution at least 10min prior to β-AR 

stimulation. A control recording was taken immediately prior to drug addition and then 

Fsk+IBMX was perfused into the heart for 5 min, as in previous experiments. 

6.2.3 Analogues of cAMP  

As previously mentioned in 6.1.2, analogues of cAMP which are designed to specifically 

activate either PKA or Epac - without binding to other downstream effectors of cAMP - 

were used to determine whether the recorded increase in CV was PKA or Epac mediated. 

The PKA activator Sp-cAMPS-AM was used at 24μM in line with concentrations used in 

previous studies (Sandberg et al., 1991; Santillán and Boland, 1998), however this analogue 

of cAMP had not previously been used in the intact heart. The Epac activator, 8-Br-2'-O-

Me-cAMP-AM, was used at 10μM. Studies site using 8-Br-2'-O-Me-cAM at a range of 

concentrations from between 20μM and 1mM (Börner et al., 2011; Komai et al., 2014). Due 

to the large volumes of drug needed in whole heart experiments, 10μM was used to allow 

the n numbers required for these experiments. Again, this drug had not previously been 

used on the intact heart. 

As the cell permeable variants of these drugs require the removal of acetomethyl group by 

intracellular esterases, these drugs were perfused on for 10min rather than the 5min used 
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in previous experiments. They were perfused on using the same syringe driver setup 

described in 2.6. 

Results 

6.3 β-AR Mediated Increase in Conduction Velocity is via β1 

adrenoreceptors 

The heart was pretreated with either 300nM CGP 20712A (CGP), an inhibitor of β1-ARs, or 

100nM ICI 118, 551 (ICI), an inhibitor of β2-ARs. The heart was then treated with 100nM ISO 

as in previous experiments. In the presence of ICI, CV increased in response to ISO by 

9.6±3.0%, which was not significantly different from the response to ISO without inhibitor 

(ISO n=6,  ISO+β-inhibitors n=4; Fig 6.3.1 B). Treatment with CGP significantly reduced the 

CV response to ISO: ISO increased CV by only 2.6±3.6% in presence of CGP compared to 

11.9±5.1 without CGP (p<0.001, ISO n=6, ISO+β-inhibitors n=4). Inhibition with ICI had no 

significant effect on the APA response to ISO: ISO increased APA by 5.1±6.5% in the 

presence of ICI vs. 10.3±5.6% without (n.s., n=4; Fig. 6.3.1 C). CGP completely abolished any 

increase in APA in response to ISO (p<0.05, n=4). 

Inhibition with either ICI or CGP produced no effect on the TRise of the APD90 response to 

ISO (n=4, Fig. 6.3.1 D and E). The increase in Ca2+ transient amplitude in response to ISO was 

reduced in the presence of CGP (p<0.05, n=4; Fig. 6.3.1 G): ISO alone increased Ca2+ 

transient amplitude by 62.3±5.4% at its maximal response, whereas ISO in presence of CGP 

increased Ca2+ transient amplitude by only 22.3±17%.  ICI appeared to slightly reduce the 

increase in Ca2+ transient amplitude, with Ca2+ amplitude reaching 53.3±15.8% at its max 

response, however the change is not significant (n=4). Shortening of the Ca2+at 90% in 

response to ISO was significantly decreased by CGP, with Ca2+duration being shortened by 

only 7.4±4.5% by ISO in the presence of CGP compared to 17.1±1.1% with ISO alone 

(p<0.05, n=4; Fig. 6.3.1 H). Again, ICI had no significant effect on Ca2+ duration shortening 

(n=4). 
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Fig. 6.3.1 β-AR mediated increase in CV is via β1-AR. 
A) Example CV traces taken from individual experiments. Traces show a heart treated with ISO alone 

(black), a heart treated with ISO after preincubation with 300nM CGP 20712A (grey), a β-1 inhibitor, 

and a heart treated with ISO after pre-incubation with 100nM ICI 118, 551 (red), a β-2 inhibitor. B) 

Pre-treatment with CGP 20712A significantly reduces the CV response to ISO (60-120s p<0.05 or less, 

150-300s p<0.001; ISO n=6; ISO+β-inhibitors n=4). Pre-treatment with ICI 118, 551 does not 

significantly alter the CV response to ISO (ISO n=6, ISO+β-inhibitors n=4). The increase in CV in 

response to ISO is significantly greater in hearts pretreated with ICI 118, 551 vs hearts treated with 

CGP 20712A (150-300s p<0.05 or less, n=4). C) Inhibition with ICI 118, 551 appeared to reduce the 

effect of ISO on APA, however this difference was not significant (n=4). CGP 20712A significantly 

reduced the effect of ISO on APA (120s p<0.05, n=4). D, E) Pre-incubation with CGP 20712A or ICI 

118, 551 had no effect on TRise or the effect of ISO on APD90. F) Pre-incubation with CGP 20712A or 

ICI 118, 551 had no effect on Ca2+ baseline. G) The increase in Ca2+ transient amplitude in response to 

ISO is reduced in the presence of CGP 20712A (120s p<0.05, n=4).  ICI 118, 551 also appears to slight 

reduce the increase in Ca2+ transient amplitude, however the change is not significant. H) Shortening 

of the Ca2+at 90% in response to ISO is significantly decreased by CGP 20712A (120-300s p<0.05, 

n=4). ICI 118, 551 does not significantly alter the CaD response to ISO. 
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6.4 Inhibition with the PKA Inhibitor H-89 Does Not Affect the CV 

Response to Forskolin and IBMX  

Hearts were pre-treated with the PKA inhibitor H-89 and then treated with Fsk+IBMX to 

raise intracellular cAMP to determine if the β-AR mediated increase in CV occurred via PKA. 

Inhibition of H-89 had no significant effect on the CV response to raising cAMP (Fsk+IBMX-

H-89 n=6, Fsk+IBMX+H-90 n=5; Fig. 6.4.1 B). 

 
 
Fig. 6.4.1 Inhibition of PKA via H-89 does not alter the CV response to raised cAMP via Fsk+IBMX. 
 A) Example CV traces taken from individual experiments. Traces show a heart treated with Fsk+IBMX 

alone (black) and a heart treated with Fsk+IBMX after preincubation with 3μM H-89 (grey). B) Pre-

treatment with 3μM H-89 does not significantly affect the CV response to Fsk+IBMX (Fsk+IBMX-H-89 

n=6, Fsk+IBMX+H-89 n=5). C) Pre-incubation with H-89 significantly reduced APD90 prolongation by 

Fsk+IBMX (p<0.01 Fsk+IBMX-H-89 n=6, Fsk+IBMX+H-89 n=5). 

Incubation with H-89 reduced APD90 prolongation in response to raising cAMP: APD90 was 

prolonged by 18.6±6.4% in the presence of H-89 and by 31.9±6.9% by Fsk+IBMX alone 

(p<0.01 Fsk+IBMX-H-89 n=6, Fsk+IBMX+H-89 n=5; Fig. 6.4.1 C). 

 

6.5 Inhibition with the CaMKII Inhibitor KN-93 Reduces the CV 

Response to Forskolin and IBMX  

Hearts were pre-incubated with either the CaMKII inhibitor KN-93 or the control drug KN-

92: KN-93 (C26H29ClN2O4S · H3PO4) is the active form of the drug, whereas KN-92 

(C24H25ClN2O3S · H3O4P) lacks the active component of the molecule and does not inhibit 

CaMKII – this allows it to work as a negative control for KN93. Inhibition with KN-93 

significantly reduced the CV response to Fsk+IBMX: Fsk+IBMX increased CV by 12.1±5%, 

whereas CV was only increased by 3.2±1.8% in the presence of KN-93 (p<0.001 

Fsk+IBMX±KN-93 n=6, Fsk+IBMX+KN-92 n=5; Fig. 6.5.1). There was no significant difference 
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between KN-92 and Fsk+IBMX alone (p<0.001 Fsk+IBMX±KN-93 n=6, Fsk+IBMX+KN-92 n=5). 

KN-93 also significantly reduced the prolongation of the APD at 90% in response to 

Fsk+IBMX: Fsk+ IBMX alone prolong the APD90 by 31.9±6%, whereas APD is prolonged by 

21.1±10.5% in the presence of KN-93 (p<0.05 Fsk+IBMX±KN-93 n=6, Fsk+IBMX+KN-92 n=5; 

Fig. 6.5.1). However, KN-92 also reduced APD prolongation in response to Fsk+IBMX, 

prolonging APD90 by only 12.1±3.7% (p<0.01 Fsk+IBMX±KN-93 n=6, Fsk+IBMX+KN-92 n=5). 

This suggests that there was a non-specific interaction between KN-92 - and therefore likely 

also KN-93 - and APD. 

 
Fig. 6.5.1 Inhibition of CaMKII via KN-93 significantly reduces the CV response to raised cAMP via 
Fsk+IBMX. 
A) Example CV traces taken from individual experiments. Traces show a heart treated with Fsk+IBMX 

alone (black) and a heart treated with Fsk+IBMX after preincubation with 5μM KN-93 (grey), and a 

heart treated with Fsk+IBMX after pre-incubation with the control peptide KN-92 (red). B) Pre-

treatment with 5μM KN-93 significantly decreases the CV response to Fsk+IBMX (150-180 p<0.05 or 

less, 210-300s p<0.001; Fsk+IBMX±KN-93 n=6, Fsk+IBMX+KN-92 n=5). KN-92 did not significantly 

affect the CV response to Fsk+IBMX. C) Pre-incubation with KN-93 significantly reduced APD90 

prolongation by Fsk+IBMX (120s p<0.05, Fsk+IBMX±KN-93 n=6, Fsk+IBMX+KN-92 n=5).  However, the 

control peptide KN-92 also significantly decreased the APD90 response to Fsk+IBMX (90-300 

p<0.05or less; Fsk+IBMX±KN-93 n=6, Fsk+IBMX+KN-92 n=5). 
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6.6 Inhibition with the Epac1 Inhibitor CE3F4 Does Not Affect the CV 

Response to Forskolin and IBMX 

Hearts were pretreated with the Epac1 inhibitor CE3F4 and then treated with Fsk+IBMX 

over 5min. Incubation with the Epac1 inhibitor had no effect on the CV response to 

Fsk+IBMX (Fsk+IBMX- CE3F4 n=6, Fsk+IBMX+ CE3F4 n=3; Fig.6.6.1 B). Pre-incubation with 

CE3F4 appeared to reduce APD prolongation at 90%: Fsk+IBMX alone prolonged APD90 by 

12.6±8, whereas APD90 was prolonged 5.6±4.3% in the presence of CE3F4, however this 

difference was not significant (Fsk+IBMX- CE3F4 n=6, Fsk+IBMX+ CE3F4 n=3; Fig. 6.6.1 C). 

 
Fig. 6.6.1 Inhibition of Epac1 via CE3F4 does not alter the CV response to raised cAMP via 
Fsk+IBMX. 
A) Example CV traces taken from individual experiments. Traces show a heart treated with Fsk+IBMX 

alone (black) and a heart treated with Fsk+IBMX after preincubation with 40μM CE3F4 (grey). B) Pre-

treatment with 40μM CE3F4 does not significantly affect the CV response to Fsk+IBMX (Fsk+IBMX- 

CE3F4 n=6, Fsk+IBMX+ CE3F4 n=3). C) Pre-incubation with CE3F4 appears to reduce APD90 

prolongation by Fsk+IBMX, however the change was not significant (Fsk+IBMX- CE3F4 n=6, 

Fsk+IBMX+ CE3F4 n=3). D) Pre-treatment with 40μM CE3F4 does not significantly affect the baseline 

of the Ca2+ transient (Fsk+IBMX- CE3F4 n=6, Fsk+IBMX+ CE3F4 n=3). E) Pre-incubation with CE3F4 

appears to reduce the increase in Ca2+ transient amplitude by Fsk+IBMX, however the change was 

not significant (Fsk+IBMX- CE3F4 n=6, Fsk+IBMX+ CE3F4 n=3). F) ) Pre-treatment with CE3F4 does not 

significantly affect Ca2+ duration at 90%  (Fsk+IBMX- CE3F4 n=6, Fsk+IBMX+ CE3F4 n=3). 
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6.7 PKA specific cAMP analogue SpcAMPS-AM Increases Conduction 

Velocity in the Intact Rat Heart 

Analogues of cAMP which specifically activate either PKA (Sp-cAMPS) or Epac (8-Br-2'-O-

Me-cAMP-AM - referred to as 8-Br-AM from this point) were perfused into the heart to 

determine whether the increase in CV in response to β-AR was a PKA or Epac1 mediated 

response. The analogues of cAMP used in these experiments were -AM cell permeable 

variants of the drugs, therefore they were perfused on for 10min - rather than 5min - as 

cleavage of the acetomethyl group would mean these drugs would take longer to work. 

The Fsk+IBMX trace shown for comparison contains only 5min of drug incubation. The 

DMSO control trace also shows only 5min of addition of DMSO, however a further 5min 

washout period is displayed as a time-control. 

CV was significantly increased by the PKA specific analogue, SpcAMPS (Fig. 6.7.1 B). 

SpcAMPS showed a maximal increase in CV of 10.9±3.5% (p<0.001 Fsk+IBMX n=6, DMSO, 

SPcAMPS-AM, 8-Br-AM n=4). This increase was comparable to the increase of 12.1±2.5% 

seen in response to Fsk+IBMX. 8-Br-AM had no effect on CV (Fsk+IBMX n=6, DMSO, 

SPcAMPS-AM, 8-Br-AM n=4). SpcAMPS significantly prolonged APD90 by 8.9±4.4% (p<0.05 

Fsk+IBMX n=6, DMSO, SPcAMPS-AM, 8-Br-AM n=4; Fig. 6.7.1 C), though APD90 by 

SpcAMPS was significantly less than APD90 prolongation by Fsk+IBMX (p<0.1 Fsk+IBMX 

n=6, DMSO, SPcAMPS-AM, 8-Br-AM n=4). 8-Br-AM showed no significant difference from 

the DMSO control (Fsk+IBMX n=6, DMSO, SPcAMPS-AM, 8-Br-AM n=4). 
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Fig. 6.7.1 Treatment with the PKA-specific cAMP analogue, SPcAMPS-AM, significantly increases 
CV over 10 minutes 
A) Example CV traces taken from individual experiments. Traces show DMSO control in black, a heart 

treated with Fsk+IBMX in grey, a heart treated with the PKA specific cAMP analogue SPcAMPS in red, 

and a heart treated with the Epac specific cAMP analogue 8-Br-2'-O-Me-cAMP-AM (8-Br-AM) in blue 

. B) 24μM SPcAMPS-AM significantly increases CV. 10μM 8-Br-AM was not significantly different 

from the DMSO control. (270s-330s p<0.05 or less, 330-600s p<0.001; Fsk+IBMX n=6, DMSO, 

SPcAMPS-AM, 8-Br-AM n=4). C) SPcAMPS significantly prolonged APD90, though not to the same 

extent as Fsk+IBMX. 8-Br-AM was not significantly different from the DMSO control (360s, 480-600s 

p<0.05, Fsk+IBMX n=6, DMSO, SPcAMPS-AM, 8-Br-AM n=4). 
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6.8 Discussion 

6.8.1 β1-AR stimulation Increases Ventricular CV 

Inhibition with the β1-AR inhibitor CGP almost completely abolished the CV response to ISO 

(Fig. 6.3.1). β2-AR inhibition has no significant impact on the CV response to ISO. This 

suggests that CV is modulated by β-AR specifically through β1-ARs. However, β2-AR 

inhibition also had no effect on the AP or Ca2+ transient. Although the inotropic effects of 

β2-AR stimulation are less than β1-AR stimulation, it is expected that β2 inhibition would 

lead to a slight decrease in Ca2+ amplitude and a slight reduction in APD prolongation. In 

these experiments, no significant difference was observed, suggesting it is possible that β2-

AR were not successfully being inhibited. 

Therefore, although this study demonstrates that CV is regulated by β-AR through β1-AR, it 

does not show that CV is not regulated through β2-AR. 

6.8.2 β-AR Stimulation Increases CV by a PKA Mediated Response 

The PKA specific activator SpcAMPS significantly increased CV to a similar magnitude to 

Fsk+IBMX (Fig. 6.7.1). This cAMP anologue has been shown to be highly specific to PKA 

activation (Sandberg et al., 1991). Therefore, it is possible to conclude that β-AR 

stimulation increases ventricular CV via a cAMP and PKA mediated pathway. Although 

inhibition with the PKA inhibitor H-89 had no effect on the CV response to Fsk+IBMX, using 

inhibitors is a less accurate way to study the mechanism behind this response than using a 

specific activator of PKA: it is not possible to ensure that PKA is entirely inhibited by H-89 in 

this intact preparation, and it is also not known to which extent PKA would need to be 

inhibited to prevent the CV response. Although it is clear from the APD90 response that H-

89 is having an effect on the heart, it was clearly not to a high enough extent to block PKA 

mediated changes in AP characteristics, this suggests there is a significant remnant PKA 

activity that couple mediate the CV response observed. 

As previously discussed, PKA interacts with numerous targets in EC-coupling, including 

Nav1.5, which is phosphorylated to increase INa (Frohnwieser et al., 1997; Lu et al., 1999; 

Matsuda et al., 1992). This may account for some of the increase in CV, however - as 

previously discussed in 4.6.1 - the magnitude of change recorded in APA is not sufficient to 

explain the full increase in CV. 

Cx43 has been shown to contain phosphorylation sites for PKA (reviewed by Lampe and 

Lau, 2004; Solan et al., 2007; TenBroek et al., 2001). Phosphorylation by PKA at S365 has 
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been suggested to cause an increase in GJC and also to prevent the down-regulation of GJC 

through phosphorylation by PKC (Solan et al., 2007). This is in line with previous studies 

which suggest that β-AR increases GJC (Burt and Spray, 1988; Mehta et al., 1992; Salameh 

et al., 2006) and studies which suggest that PKA activation increases GJC (Somekawa et al., 

2005). 

6.8.3 Epac activator 8-Br-2'-O-Me-cAMP-AM Did Not Increase CV 

The Epac activator 8-Br-2'-O-Me-cAMP-AM did not have any effect on CV (Fig. 6.7.1). The 

Epac activator also had no effect on APD90. A low concentration of this drug was used and 

it has never been used in the intact heart before, therefore it is difficult to ascertain 

whether 8-Br-AM successfully reached the cardiac myocytes at a concentration to have an 

effect. There are conflicting reports suggesting that Epac has no effect on APD (Hothi et al., 

2008) and also that Epac prolongs APD in the rat heart (Brette et al., 2013), therefore it is 

difficult to ascertain if 8-Br-AM had any effect via other likely EPAC targets. 

The inhibitor of Epac1, CE3F4, also had no impact on the CV response to Fsk+IBMX (Fig. 

6.6.1), supporting that this is not an Epac1 mediated response. It also had no significant 

impact on the APD90 prolongation. CE3F4 also had no significant impact on the Ca2+ 

transient. Epac is known to have a role in Ca2+ regulation in the heart. Literature suggests 

that activation of Epac decreases the Ca2+ transient amplitude (Hothi et al., 2008; Pereira et 

al., 2007), meaning that inhibition of Epac would cause an increase in Ca2+
 amplitude. 

However, it is possible this increase was masked by the already large increase in Ca2+ 

amplitude caused by Fsk+IBMX and PKA mediated effects. So it is again difficult to ascertain 

if CE3F4 was having any effect on the heart. 

Due to the magnitude of the PKA mediated CV response, it seems probable that this 

response is PKA and not Epac mediated. However, to fully investigate the role of Epac in 

this response, further experiments are required. For example, experiments using higher 

concentrations of the Epac activator while also taking Ca2+ transient recordings may give a 

better indication of whether the Epac activator is reaching the heart. 

6.8.4 CaMKII May Play a Role in the β-AR Mediated Increase in CV 

Inhibition with the CaMKII inhibitor KN-93 greatly reduced the CV response to Fsk+IBMX. 

This suggests that CaMKII is involved in the regulation of CV by β-AR stimulation. Recent 

studies have identified CaMKII phosphorylation sites on the C-terminus of Cx43 (Huang et 

al., 2011), however the role of CaMKII phosphorylation of Cx43 is unknown. Based on the 
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results of this study, CaMKII could be activated in a PKA dependent manner and both 

CaMKII and PKA phosphorylate targets which increase CV. 

However, although the control peptide KN-92 had no effect on the CV response to 

Fsk+IBMX, KN-92 significantly reduced APD90 prolongation by Fsk+IBMX. These results 

suggest that there are non-specific effects of KN-92 - and therefore KN-93 - occurring. 

Although these don't appear to affect CV, it would be important to verify these results in 

further experiments using a different CaMKII inhibitor, such as Autocamtide 2-related 

inhibitory peptide (AIP). 

In summary, attempts to modulate the cAMP mediated CV response using specific 

inhibitors of A-kinase and CaMkinase pathways proved equivocal. However, strong 

evidence for an A-kinase mediated changes was obtained using an A kinase specific cAMP 

analogue which strongly suggests that this is the dominant pathways used to modulate β1-

mediated changes in myocardial CV.  
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7. Discussion 

7.1 Conclusions 

This study aimed to investigate the effect of β-AR stimulation on ventricular CV. It found 

that β-AR stimulation via ISO caused an increase in left ventricular CV of approximately 8%. 

This increase in CV was found to be cAMP mediated, with Fsk+IBMX increasing CV by 

between 8-12%. This effect was not due to changes in Ca2+ handling and, although an 

increase in action potential amplitude (APA) was recorded, it was determined that changes 

in INa were likely not sufficient to explain the change in CV. This suggested a potential role 

for GJC in mediating these changes in CV. The role for GJC needs to be further investigated: 

methods by which this could be done are discussed in 7.3. 

β1AR stimulation was shown to be responsible for the increase in CV, though the role of β2-

AR signaling could not be completely ruled out. The β1AR signals through raising cAMP, and 

the increase in CV was shown to be mediated through the cAMP sensitive kinase, PKA. This 

was demonstrated using the PKA activator SP-cAMPS, whereas the inhibitor of PKA – H-89 

– had no effect. We suggest that the use of a specific activator is a more accurate way to 

assess the involvement of PKA in this pathway, as it is not possible to tell if PKA was fully 

inhibited by H-89. Epac was not shown to have a role in this pathway. The increase in CV in 

response to β-AR stimulation was also shown to be at least partially CaMKII dependent: 

inhibition of CaMKII significantly reduced the CV response to raising cAMP. However, this 

change was accompanied by non-specific effects of KN-92/93 on APD and therefore further 

experiments are required to validate this. 

7.2 PKA Phosphorylation Sites Which Modulate CV 

As the increase in CV in response to β-AR stimulation has been demonstrated to be 

mediated by PKA, it is important to discuss PKA phosphorylation sites which may affect CV 

and the mechanisms by which PKA may regulate CV. 

As previously discussed, NaV1.5 is known to be phosphorylated by PKA. The 

phosphorylation of NaV1.5 increases INa, which would be seen in these experiments as an 

increase in APA and dV/dtmax. An increase in APA of 11% was recorded but no change in 

dV/dtmax or TRise was recorded in these experiments. As previously discussed, APA is not an 

ideal method by which to estimate INa, as literature has suggests that it may also be 

influenced by increased Ca2+ transient amplitude (Leitch and Brown, 1996; Niedergerke and 

Orkand, 1966). However, if it is assumed the 11% increase in APA does correspond to an 
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equivalent increase in INa, this would increase dV/dtmax by approximately 5%. Since dV/dtmax 

is proportional to CV2, the effect of β-AR stimulation on INa would only increase CV by 

approximately 2%. Therefore, the estimated change in INa caused by acute β-AR stimulation 

over this time-period is insufficient to explain the ~10% increase in CV. The literature has 

not come to a consensus on this point, e.g. recordings from neonatal cardiomyocytes 

suggest that the increase on CV is caused entirely by an increase in dV/dtmax (de Boer et al., 

2007), while in a separate study on the same preparation (Darrow et al., 1996), increased 

CV was independent of increased in dV/dtmax. 

Therefore, the role of other PKA phosphorylation targets must be considered. Cx43 is the 

dominant Cx in the ventricle. Cx43 has been demonstrated to be a phosphoprotein, which 

has multiple phosphorylation sites for multiple different kinases. This includes multiple 

phosphorylation sites for PKA in the C-terminal tail of the protein: S373, S369, S365 and 

S364 (Lampe and Lau, 2004; Solan et al., 2007; TenBroek et al., 2001). Cx43 turnover is 

highly dynamic in the heart, as Cx43 has a half-life of only 1-2 hours (Beardslee et al., 1998; 

Laird et al., 1991) and Cx43 has shown to be variably phosphorylated throughout its 

lifetime (Chen et al., 2013). cAMP has been shown both to upregulate the amount of Cx43 

at the intercalated disc (Somekawa et al., 2005; TenBroek et al., 2001); this could be due to 

increased transcription of Cx43, as shown in neonatal rat cardiac myocytes (Salameh et al., 

2006) or through trafficking of Cx43 to the intercalated disc (Paulson et al., 2000b).  

Phosphorylation of Cx43 has also been shown to increase GJ permeability. Solen et. al 

demonstrated that phosphorylation of S365 on Cx43 not only increased conductance of 

GJs, but also that S365 phosphorylation prevented phosphorylation of Cx43 by PKC at a site 

which decreased GJC (Solan et al., 2007). Somekawa et al. showed that activation of PKA 

using a cAMP specific analogue (6Bnz) led to an increase in GJC without changing the levels 

of Cx43 at the intercalated disc, suggestion an increase in GJ permeability (Somekawa et al., 

2005). 

There has been very little work looking at Cx43 and its phosphorylation state following β-

AR in adult cells. Western blotting with the use of phospho-specific antibodies could be 

carried out on tissue which is snap frozen immediately following drug addition. Western 

blots could also be carried out on isolated cardiac myocytes treated with specific activators 

of PKA. Further to this, studying the localisation of both Cx43 and phospho-Cx43 following 

β-AR stimulation, using confocal microscopy and fluorescent antibodies, could give an 



Annabel Campbell 2017 
 

    114 
 

indication of whether any change in CV is due to GJ open probability or changes in GJ 

plaque size. 

7.2.1 The Role of CaMKII 

Activation of PKA can also lead to the activation of Ca2+/calmodulin-dependent protein 

kinase II (CaMKII) (Kuschel et al., 1999; Said et al., 2002). This study demonstrated that 

inhibition of CaMKII by KN-93 significantly reduced the CV response to raising cAMP, 

however there were concerns about the non-specific effects of KN-93/92, therefore further 

experiments are required. Recently, 15 CaMKII phosphorylation sites have been identified 

on Cx43 by mass spectroscopy (Huang et al., 2011), but the function of phosphorylation of 

Cx43 by CaMKII is unknown. 

7.3 β-AR May Regulate CV Via GJC 

One possible mechanism by which to explain the change in CV in response to β-AR is 

changes in GJC. Though these experiments have not measured GJC, the lack of a sufficient 

increase in dV/dtmax to explain this change presents GJC as a likely candidate to explain 

these changes. However, it is important to consider that the relationship between GJC and 

CV is not linear: at low levels of GJC, there is a far greater effect on CV than at GJC under 

normal conditions, as demonstrated by computer simulations by Jongsma and Wilders 

(Jongsma and Wilders, 2000). Fig. 7.3.1 shows the relationship between CV and GJC 

(represented as gj below) (Jongsma and Wilders, 2000). This simulation suggests that to 

increase CV from 60cm/s to 70cm/s - values within the normal range of CV in mammals - 

would take an increase in GJC of ~50%.  
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Fig. 7.3.1 Simulations of the effect of gap junctional conductance (gj) on conduction velocity 
(Jongsma and Wilders, 2000).  
Directional changes in CV shown as a function of gj. Annotated by Valderrábano et al. to highlight 

the difference in gj modulation of CV between longitudinal and transverse CV: a 50% decrease in gj 

generates a 13% decrease in longitudinal CV vs. a 36% decrease in transverse CV (Valderrábano, 

2007). 

It also shows that changes in GJC do not affect transverse conduction velocity (CVT) and 

longitudinal (CVL) equally. Longitudinal conduction velocity is conduction along the fibre 

orientain - ie. along the long axis of the cell. This has a higher proportion of cytoplasmic 

conduction vs. conduction across the intercalated disc and is overall lower resistance than 

in the transverse direction. With transverse conduction, conduction crosses a higher 

proportion of intercalated discs vs. cytoplasm. This is a higher resistance path - 

demonstrated by lower CV - but also a path which is more influenced by GJC. This is also 

demonstrated by computational modeling carried out by Martin Bishop, King's College, UK 

(Fig. 7.3.2). His modeling demonstrates that increasing GJC has a greater influence of CVT 

than CVL, whereas varying intracellular conductance has a greater influence on CVL than 

CVT. 
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Figure 7.3.2:  Computational modelling of longitudinal and transverse conduction (Dr. Martin 
Bishop, King's College, UK). 
A.) Schematic representation of an idealised cuboid cell of length lcell, width dcell, showing resistance 

to current flow along and transverse to the cell’s length where Rcl is the cytoplasmic resistance along 

the cell, Rct is the cytoplasmic resistance transverse to the cell and Rj is the resistance of the gap 

junction. B.) Variation in CV as gap junction conductivity is varied and C.) Variation in CV as 

intracellular conductivity is varied. 

This suggests that if CV was recorded in a transverse direction rather than a longitudinal 

direction, then a greater increase in CV in response to β-AR would be recorded. Some initial 

experiments were carried out during this study to investigate this. Fig.7.3.3 shows CV 

response to 5min of ISO, carried out as described in previous experiments. Recordings were 

made in the transverse direction rather than the longitudinal - this was achieved by first 

locating the point of highest CV (CVL) and then rotating the electrode 90⁰. Initial 

experiments show an increase in CVT of 23±7.9% compared to the 8-10% response 

recorded in the longitudinal direction (Fig. 7.3.3 B). However, locating the angle at which 

CVT is completely transverse to the electrode is more difficult than locating the direction of 

longitudinal conduction, and therefore the transverse response to β-AR was highly variable 

and the difference between CVL and CVT was not significant (n=4), though further 

experiments are required to account for variability. 
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Fig. 7.3.3 The ISO CV response is greater in the transverse vs. longitudinal direction, but the 
difference is not significant. 
A) Example CV traces taken from individual experiments. Traces show a heart treated with ISO where 

CV was measured in line with fibre orientation, longitudinally (black), and a heart treated with ISO 

where CV was measured at right angles to the fibre orientation, transversely (grey). B) The increase 

in transverse CV in response to ISO appears greater than the increase in CV in the longitudinal 

direction, however this difference is not significant (n=4) C) Recording APD90 in the longitudinal or 

transverse direction has no effect on APD90 (n=4). 

The next logical step in this study would be to find a way to measure the effect of β-AR 

stimulation on GJC. Though this has been carried out in isolated pairs of cells or in 

monolayers of neonatal rat cardiac myocytes, this has not been carried out in the intact 

heart. 

One way to approach this would be to measure space constant: recording the distance a DC 

electrical signal can travel through the myocardium.  This would involve using a 

subthreshold pulse at one point on the surface of the myocardium, and then measuring the 

rate at which this pulse degrades as it travels away from the point of stimulation. This 

would give an indication of the resistance of the myocardium and therefore GJC. 

Experiments could be carried out in more linear models – such as trabeculae – to simplify 

the study and allow the application of linear cable theory. 

Another possible technique has been used in the myocardium to measure myocardial 

impedance and calculate GJ resistivity (Dhillon et al., 2013): in this technique, cardiac 

myocardium was coated with mineral-oil gel and an electrical current was passed through 

both the myocardium and an extracellular shunt. The impedance of the entire system was 

measured, and resistance was measured using two electrodes in the myocardium which 

were a known distance apart. The impedance of the extracellular shunt was known, and 

from this it was possible to calculate impedance of the myocardium. Longitudinal 

impedance was calculated as both sarcoplasmic resistance and GJ impedance, and from 
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this it was possible to calculate GJ resistance. Use of a method such as this would allow the 

study of the effect of β-AR on GJC while still studying the intact myocardium, which is 

essential when looking at the effect on CV in the adult heart. 

Substances that modulate GJC – such as the gap junction inhibitors heptanol and 

carbenoxolone – could also be used to inhibit GJC. If the increase in CV in response to β-AR 

stimulation were GJ mediated, it is possible that inhibition of GJC would attenuate the CV 

response. However, there are few compounds that modulate purely GJC without also 

altering the electrophysiology of the heart. 

Although it is important to study CV in intact tissue, this work could also be supported by 

experiments carried out in pairs of cells or cell monolayers (Burt and Spray, 1988; 

Somekawa et al., 2005). This would also allow the use of drugs which we were unable to 

use in the intact heart, either due to cost constraints or due to the drug appearing not to 

reach the tissue: these include the specific inhibitor of CaMKII, AIP, and other cAMP 

analogues which specifically activate PKA or EPAC. 

Investigating both the effect of β-AR stimulation on Cx43 itself and also how this affects GJC 

would give a better idea of how the β-AR pathway regulates CV. 

7.4 Regulation of CV in Heart Failure 

As previously discussed, understanding the regulation of CV is an important part of 

understanding both arrhythmogenesis and how re-entrant circuit arrhythmias are 

maintained. A key model for understanding this is the 'wavelength' theory. CV x ERP is 

defined as the cardiac wavelength. A lower wavelength promotes the generation and 

maintenance of re-entrant circuit arrhythmias. Therefore, a lower CV could contribute to 

arrhythmogenesis and in principle, a higher CV could be anti-arrhythmic. 

Uncoupling of GJs has been demonstrated to occur in ischaemic regions of the heart 

(Kléber et al., 1987), which profoundly reduces CV. In surviving regions of the heart, 

remodeling of gap junctions has been shown to occur in heart failure in humans (Severs et 

al., 2004; J. Smith et al., 1991) and in animal models (Matsushita et al., 1999). Alongside 

this, β-AR signaling, particular β1ARs, has also been demonstrated to be down-regulated in 

heart failure (Lohse et al., 2003a; Nikolaev et al., 2010). Therefore, understanding the 

regulation of CV by β-AR stimulation in heart failure could be key to understanding the 

changes in disease which lead to the generation of arrhythmias. 
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In addition to experiments on normal myocardium, experiments looking at the effect of β-

AR stimulation in heart failure models would be an interesting next step. A routine 

observation in failing hearts is β-AR desensitization within the ventricle: this occurs through 

multiple mechanisms in which β-ARs are uncoupled from Gs protein. Phosphorylation of the 

GPCR by PKA and G receptor kinases (GRKs) lead to decreased association of Gs and 

increased association with the inhibitory G protein (Gi) and also increases recruitment of β-

arrestin (Ungerer 1994, 1993). This is more pronounced in β2AR signaling and therefore the 

decreased ratio of β1:β2 in heart failure amplifies this effect (Lohse et al., 2003b). Lower 

levels of Gs and higher levels of Gi are expressed in heart failure (Ping et al., 1997). 

Therefore, β-AR signaling is greatly altered in the ventricle in heart failure. Potentially, if the 

modified β-AR response in HF has a lowered or absent CV compoenent, the absence of a 

higher CV may contribute to the pro-arrhythmic status of the myocardium. As explained 

elsewhere (Section 3.6.2) decreased electrical wavelength increases the opportunity for re-

entrant arrhythmias, a pathological β-AR response that involved a decreased APD without 

an increased CV may result in a critically reduced electrical wavelength. Further work is 

required to investigate whether this novel mechanism applies in HF. The study would 

involve direct measurements of ECG in vivo, electrophysiology and CV in vitro and Western 

Blot analysis of tissue to determine the phosphorylation state of Cx43 in heart failure 

models.  



Annabel Campbell 2017 
 

    120 
 

8. Bibliography 

Aidley, D.J., 2008. Ion Channels: Molecules in Action, 1st edition edition. ed. Cambridge 
University Press, Cambridge ; New York. 

Aistrup, G.L., Shiferaw, Y., Kapur, S., Kadish, A.H., Wasserstrom, J.A., 2009. Mechanisms 
underlying the formation and dynamics of subcellular calcium alternans in the 
intact rat heart. Circ. Res. 104, 639–649. doi:10.1161/CIRCRESAHA.108.181909 

Baillie, G.S., 2009. Compartmentalized signalling: spatial regulation of cAMP by the action 
of compartmentalized phosphodiesterases. FEBS J. 276, 1790–1799. 
doi:10.1111/j.1742-4658.2009.06926.x 

Baillie, G.S., Adams, D.R., Bhari, N., Houslay, T.M., Vadrevu, S., Meng, D., Li, X., Dunlop, A., 
Milligan, G., Bolger, G.B., Klussmann, E., Houslay, M.D., 2007. Mapping binding 
sites for the PDE4D5 cAMP-specific phosphodiesterase to the N- and C-domains of 
beta-arrestin using spot-immobilized peptide arrays. Biochem. J. 404, 71–80. 
doi:10.1042/BJ20070005 

Beardslee, M.A., Laing, J.G., Beyer, E.C., Saffitz, J.E., 1998. Rapid turnover of connexin43 in 
the adult rat heart. Circ. Res. 83, 629–635. 

Berecki, G., Wilders, R., Jonge, B. de, Ginneken, A.C.G. van, Verkerk, A.O., 2010. Re- 
Evaluation of the Action Potential Upostroke Velocity as a Measure of the Na+ in Cardiac 

Myocytes at Physiological Conditions. PLOS ONE 5, e15772. 
doi:10.1371/journal.pone.0015772Beblo, D.A., Wang, H.Z., Beyer, E.C., Westphale, 
E.M., Veenstra, R.D., 1995. Unique conductance, gating, and selective permeability 
properties of gap junction channels formed by connexin40. Circ. Res. 77, 813–822. 

Bedner, P., Niessen, H., Odermatt, B., Willecke, K., Harz, H., 2003. A method to determine 
the relative cAMP permeability of connexin channels. Exp. Cell Res. 291, 25–35. 

Bers, D., 2001. Excitation-Contraction Coupling and Cardiac Contractile Force 
(Developments in Cardiovascular Medicine): Second Edition, 2 edition. ed. Springer, 
Dordrecht. 

Bers, D.M., 2002. Cardiac excitation-contraction coupling. Nature 415, 198–205. 
doi:10.1038/415198a 

Berthouze, M., Laurent, A.-C., Breckler, M., Lezoualc’h, F., 2011. New perspectives in cAMP-
signaling modulation. Curr. Heart Fail. Rep. 8, 159–167. doi:10.1007/s11897-011-
0062-8 

Börner, S., Schwede, F., Schlipp, A., Berisha, F., Calebiro, D., Lohse, M.J., Nikolaev, V.O., 
2011. FRET measurements of intracellular cAMP concentrations and cAMP analog 
permeability in intact cells. Nat. Protoc. 6, 427–438. doi:10.1038/nprot.2010.198 

Bos, J.L., 2006. Epac proteins: multi-purpose cAMP targets. Trends Biochem. Sci. 31, 680–
686. doi:10.1016/j.tibs.2006.10.002 

Bos, J.L., 2003. Epac: a new cAMP target and new avenues in cAMP research. Nat. Rev. Mol. 
Cell Biol. 4, 733–738. doi:10.1038/nrm1197 

Brack, K.E., Narang, R., Winter, J., Ng, G.A., 2013a. The mechanical uncoupler blebbistatin is 
associated with significant electrophysiological effects in the isolated rabbit heart. 
Exp. Physiol. 98, 1009–1027. doi:10.1113/expphysiol.2012.069369 

Brack, K.E., Winter, J., Ng, G.A., 2013b. Mechanisms underlying the autonomic modulation 
of ventricular fibrillation initiation--tentative prophylactic properties of vagus nerve 
stimulation on malignant arrhythmias in heart failure. Heart Fail. Rev. 18, 389–408. 
doi:10.1007/s10741-012-9314-2 

Brette, F., Blandin, E., Simard, C., Guinamard, R., Sallé, L., 2013. Epac activator critically 
regulates action potential duration by decreasing potassium current in rat adult 
ventricle. J. Mol. Cell. Cardiol. 57, 96–105. doi:10.1016/j.yjmcc.2013.01.012 



Annabel Campbell 2017 
 

    121 
 

Bristow, M., Ginsburg, R., Umans, V., Fowler, M., Minobe, W., Rasmussen, R., Zera, P., 
Menlove, R., Shah, P., Jamieson, S., 1986. Beta 1- and beta 2-adrenergic-receptor 
subpopulations in nonfailing and failing human ventricular myocardium: coupling 
of both receptor subtypes to muscle contraction and selective beta 1-receptor 
down- regulation in heart failure. Circ. Res. 59, 297–309. 

Brodde, O.-E., Bruck, H., Leineweber, K., 2006. Cardiac adrenoceptors: physiological and 
pathophysiological relevance. J. Pharmacol. Sci. 100, 323–337. 

Bruzzone, R., White, T.W., Paul, D.L., 1996. Connections with Connexins: the Molecular 
Basis of Direct Intercellular Signaling. Eur. J. Biochem. 238, 1–27. 
doi:10.1111/j.1432-1033.1996.0001q.x 

Buchanan, J., Saito, T., Gettes, L., 1985. The effects of antiarrhythmic drugs, stimulation 
frequency, and potassium-induced resting membrane potential changes on 
conduction velocity and dV/dtmax in guinea pig myocardium. Circ. Res. 56, 696–
703. doi:10.1161/01.RES.56.5.696 

Bukauskas, F.F., Weingart, R., 1993. Temperature dependence of gap junction properties in 
neonatal rat heart cells. Pflüg. Arch. Eur. J. Physiol. 423, 133–139. 

Burt, J.M., Spray, D.C., 1988. Inotropic agents modulate gap junctional conductance 
between cardiac myocytes. Am. J. Physiol. - Heart Circ. Physiol. 254, H1206–H1210. 

Cabo, C., Yao, J., Boyden, P.A., Chen, S., Hussain, W., Duffy, H.S., Ciaccio, E.J., Peters, N.S., 
Wit, A.L., 2006. Heterogeneous gap junction remodeling in reentrant circuits in the 
epicardial border zone of the healing canine infarct. Cardiovasc. Res. 72, 241–249. 
doi:10.1016/j.cardiores.2006.07.005 

Catterall, W.A., 2012. Voltage-gated sodium channels at 60: structure, function and 
pathophysiology. J. Physiol. 590, 2577–2589. doi:10.1113/jphysiol.2011.224204 

Catterall, W.A., 1988. Structure and function of voltage-sensitive ion channels. Science 242, 
50–61. 

Chen, V.C., Gouw, J.W., Naus, C.C., Foster, L.J., 2013. Connexin multi-site phosphorylation: 
Mass spectrometry-based proteomics fills the gap. Biochim. Biophys. Acta BBA - 
Biomembr. 1828, 23–34. doi:10.1016/j.bbamem.2012.02.028 

Cheng, D.K., Tung, L., Sobie, E.A., 1999. Nonuniform responses of transmembrane potential 
during electric field stimulation of single cardiac cells. Am. J. Physiol. 277, H351-
362. 

Choi, B.R., Salama, G., 2000. Simultaneous maps of optical action potentials and calcium 
transients in guinea-pig hearts: mechanisms underlying concordant alternans. J. 
Physiol. 529 Pt 1, 171–188. 

Cohen, C., Bean, B., Tsien, R., 1984. Maximal upstroke velocity as an index of available 
sodium conductance. Comparison of maximal upstroke velocity and voltage clamp 
measurements of sodium current in rabbit Purkinje fibers. Circ. Res. 54, 636–651. 
doi:10.1161/01.RES.54.6.636 

Cohen, I., Attwell, D., Strichartz, G., 1981. The Dependence of the Maximum Rate of Rise of 
the Action Potential Upstroke on Membrane Properties. Proc. R. Soc. Lond. B Biol. 
Sci. 214, 85–98. doi:10.1098/rspb.1981.0083 

Courilleau, D., Bisserier, M., Jullian, J.-C., Lucas, A., Bouyssou, P., Fischmeister, R., Blondeau, 
J.-P., Lezoualc’h, F., 2012. Identification of a tetrahydroquinoline analog as a 
pharmacological inhibitor of the cAMP-binding protein Epac. J. Biol. Chem. 287, 
44192–44202. doi:10.1074/jbc.M112.422956 

Currie, S., Loughrey, C.M., Craig, M.-A., Smith, G.L., 2004. Calcium/calmodulin-dependent 
protein kinase IIdelta associates with the ryanodine receptor complex and 
regulates channel function in rabbit heart. Biochem. J. 377, 357–366. 
doi:10.1042/BJ20031043 



Annabel Campbell 2017 
 

    122 
 

Darrow, B.J., Fast, V.G., Kleber, A.G., Beyer, E.C., Saffitz, J.E., 1996. Functional and 
Structural Assessment of Intercellular Communication: Increased Conduction 
Velocity and Enhanced Connexin Expression in Dibutyryl cAMP–Treated Cultured 
Cardiac Myocytes. Circ. Res. 79, 174–183. doi:10.1161/01.RES.79.2.174 

de Boer, T.P., van Rijen, H.V.M., Van der Heyden, M.A.G., Kok, B., Opthof, T., Vos, M.A., 
Jongsma, H.J., de Bakker, J.M.T., van Veen, T.A.B., 2007. Beta-, Not Alpha-
Adrenergic Stimulation Enhances Conduction Velocity in Cultures of Neonatal 
Cardiomyocytes. Circ. J. 71, 973–981. doi:10.1253/circj.71.973 

De Mello, W.C., 1975. Effect of intracellular injection of calcium and strontium on cell 
communication in heart. J. Physiol. 250, 231–245. 

Dhillon, P.S., Gray, R., Kojodjojo, P., Jabr, R., Chowdhury, R., Fry, C.H., Peters, N.S., 2013. 
Relationship between gap-junctional conductance and conduction velocity in 
mammalian myocardium. Circ. Arrhythm. Electrophysiol. 6, 1208–1214. 
doi:10.1161/CIRCEP.113.000848 

DiFrancesco, D., Tortora, P., 1991. Direct activation of cardiac pacemaker channels by 
intracellular cyclic AMP. Nature 351, 145–147. doi:10.1038/351145a0 

Draper, M.H., Mya-Tu, M., 1959. A comparison of the conduction velocity in cardiac tissues 
of various mammals. Q. J. Exp. Physiol. Cogn. Med. Sci. 44, 91–109. 

Dunn, C.A., Su, V., Lau, A.F., Lampe, P.D., 2012. Activation of Akt, Not Connexin 43 Protein 
Ubiquitination, Regulates Gap Junction Stability. J. Biol. Chem. 287, 2600–2607. 
doi:10.1074/jbc.M111.276261 

Edwards, H.V., Christian, F., Baillie, G.S., 2012. cAMP: novel concepts in compartmentalised 
signalling. Semin. Cell Dev. Biol. 23, 181–190. doi:10.1016/j.semcdb.2011.09.005 

Ek-Vitorín, J.F., Calero, G., Morley, G.E., Coombs, W., Taffet, S.M., Delmar, M., 1996. PH 
regulation of connexin43: molecular analysis of the gating particle. Biophys. J. 71, 
1273–1284. doi:10.1016/S0006-3495(96)79328-1 

Erlij, D., Mendez, C., 1964. Adrenergic actions on heart rate, atrio-ventricular refractory 
period and intraventricular conduction in dogs. Arch. Int. Physiol. Biochim. 72, 44–
65. 

Fedorov, V.V., Lozinsky, I.T., Sosunov, E.A., Anyukhovsky, E.P., Rosen, M.R., Balke, C.W., 
Efimov, I.R., 2007. Application of blebbistatin as an excitation-contraction 
uncoupler for electrophysiologic study of rat and rabbit hearts. Heart Rhythm Off. 
J. Heart Rhythm Soc. 4, 619–626. doi:10.1016/j.hrthm.2006.12.047 

Ferrero, P., Said, M., Sánchez, G., Vittone, L., Valverde, C., Donoso, P., Mattiazzi, A., 
Mundiña-Weilenmann, C., 2007. Ca2+/calmodulin kinase II increases ryanodine 
binding and Ca2+-induced sarcoplasmic reticulum Ca2+ release kinetics during 
beta-adrenergic stimulation. J. Mol. Cell. Cardiol. 43, 281–291. 
doi:10.1016/j.yjmcc.2007.05.022 

Fischmeister, R., Castro, L.R.V., Abi-Gerges, A., Rochais, F., Jurevičius, J., Leroy, J., 
Vandecasteele, G., 2006. Compartmentation of Cyclic Nucleotide Signaling in the 
Heart. Circ. Res. 99, 816–828. doi:10.1161/01.RES.0000246118.98832.04 

Fluhler, E., Burnham, V.G., Loew, L.M., 1985. Spectra, membrane binding, and 
potentiometric responses of new charge shift probes. Biochemistry (Mosc.) 24, 
5749–5755. doi:10.1021/bi00342a010 

Frohnwieser, B., Chen, L.Q., Schreibmayer, W., Kallen, R.G., 1997. Modulation of the human 
cardiac sodium channel alpha-subunit by cAMP-dependent protein kinase and the 
responsible sequence domain. J. Physiol. 498, 309–318. 

Ghouri, I.A., Kelly, A., Burton, F.L., Smith, G.L., Kemi, O.J., 2015. 2-Photon excitation 
fluorescence microscopy enables deeper high-resolution imaging of voltage and 
Ca(2+) in intact mice, rat, and rabbit hearts. J. Biophotonics 8, 112–123. 
doi:10.1002/jbio.201300109 



Annabel Campbell 2017 
 

    123 
 

Giepmans, B.N.., 2004. Gap junctions and connexin-interacting proteins. Cardiovasc. Res. 
62, 233–245. doi:10.1016/j.cardiores.2003.12.009 

Gilbert, S.H., Benoist, D., Benson, A.P., White, E., Tanner, S.F., Holden, A.V., Dobrzynski, H., 
Bernus, O., Radjenovic, A., 2011. Visualization and quantification of whole rat heart 
laminar structure using high-spatial resolution contrast enhanced MRI. Am. J. 
Physiol. - Heart Circ. Physiol. doi:10.1152/ajpheart.00824.2011 

Gintant, G.A., Liu, D.W., 1992. Beta-adrenergic modulation of fast inward sodium current in 
canine myocardium. Syncytial preparations versus isolated myocytes. Circ. Res. 70, 
844–850. doi:10.1161/01.RES.70.4.844 

Goldberger, J.J., Ahmed, M.W., Parker, M.A., Kadish, A.H., 1994. Assessment of effects of 
autonomic stimulation and blockade on the signal-averaged electrocardiogram. 
Circulation 89, 1656–1664. 

Goodenough, D.A., Gilula, N.B., 1974. The splitting of hepatocyte gap junctions and zonulae 
occludentes with hypertonic disaccharides. J. Cell Biol. 61, 575–590. 

Grimm, M., Brown, J.H., 2010. Beta-adrenergic receptor signaling in the heart: role of 
CaMKII. J. Mol. Cell. Cardiol. 48, 322–330. doi:10.1016/j.yjmcc.2009.10.016 

Gros, D.B., Jongsma, H.J., 1996. Connexins in mammalian heart function. BioEssays News 
Rev. Mol. Cell. Dev. Biol. 18, 719–730. doi:10.1002/bies.950180907 

Grosely, R., Kopanic, J.L., Nabors, S., Kieken, F., Spagnol, G., Al-Mugotir, M., Zach, S., 
Sorgen, P.L., 2013. Effects of phosphorylation on the structure and backbone 
dynamics of the intrinsically disordered connexin43 C-terminal domain. J. Biol. 
Chem. 288, 24857–24870. doi:10.1074/jbc.M113.454389 

Grynkiewicz, G., Poenie, M., Tsien, R.Y., 1985. A new generation of Ca2+ indicators with 
greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450. 

Han, J., Jalon, P.G.D., Moe, G.K., 1964. Adrenergic Effects on Ventricular Vulnerability. Circ. 
Res. 14, 516–524. doi:10.1161/01.RES.14.6.516 

Hayes, J.S., Brunton, L.L., Brown, J.H., Reese, J.B., Mayer, S.E., 1979. Hormonally specific 
expression of cardiac protein kinase activity. Proc. Natl. Acad. Sci. U. S. A. 76, 1570–
1574. 

Heijman, J., Volders, P.G.A., Westra, R.L., Rudy, Y., 2011. Local control of β-adrenergic 
stimulation: Effects on ventricular myocyte electrophysiology and Ca2+-transient. J. 
Mol. Cell. Cardiol. 50, 863–871. doi:10.1016/j.yjmcc.2011.02.007 

Hicks, M.J., Shigekawa, M., Katz, A.M., 1979. Mechanism by which cyclic adenosine 3’:5’-
monophosphate-dependent protein kinase stimulates calcium transport in cardiac 
sarcoplasmic reticulum. Circ. Res. 44, 384–391. 

Holm, I., Mikhailov, A., Jillson, T., Rose, B., 1999. Dynamics of gap junctions observed in 
living cells with connexin43-GFP chimeric protein. Eur. J. Cell Biol. 78, 856–866. 
doi:10.1016/S0171-9335(99)80087-9 

Hothi, S.S., Gurung, I.S., Heathcote, J.C., Zhang, Y., Booth, S.W., Skepper, J.N., Grace, A.A., 
Huang, C.L.-H., 2008. Epac activation, altered calcium homeostasis and ventricular 
arrhythmogenesis in the murine heart. Pflüg. Arch. Eur. J. Physiol. 457, 253–270. 
doi:10.1007/s00424-008-0508-3 

Huang, R.Y.-C., Laing, J.G., Kanter, E.M., Berthoud, V.M., Bao, M., Rohrs, H.W., Townsend, 
R.R., Yamada, K.A., 2011. Identification of CaMKII phosphorylation sites in 
Connexin43 by high-resolution mass spectrometry. J. Proteome Res. 10, 1098–
1109. doi:10.1021/pr1008702 

Hutter, O.F., Trautwein, W., 1956. Vagal and sympathetic effects on the pacemaker fibers in 
the sinus venosus of the heart. J. Gen. Physiol. 39, 715–733. 

Hutter, O.F., Trautwein, W., 1955. Effect of vagal stimulation on the sinus venosus of the 
frog’s heart. Nature 176, 512–513. 



Annabel Campbell 2017 
 

    124 
 

Jalife, J., Delmar, M., Anumonwo, J., Berenfeld, O., Kalifa, J., 2009. Basic Cardiac 
Electrophysiology for the Clinician, 2nd Edition. ed. Wiley-Blackwell 

Johnstone, S., Isakson, B., Locke, D., 2009. Biological and Biophysical Properties of Vascular 
Connexin Channels. Int. Rev. Cell Mol. Biol., International Review Of Cell and 
Molecular Biology Volume 278, 69–118. 

Johnstone, S.R., Billaud, M., Lohman, A.W., Taddeo, E.P., Isakson, B.E., 2012. 
Posttranslational Modifications in Connexins and Pannexins. J. Membr. Biol. 245, 
319–332. doi:10.1007/s00232-012-9453-3 

Jongsma, H.J., van Rijen, H.V.M., Kwak, B.R., Chanson, M., 1999. Chapter 6: 
Phosphorylation of Connexins: Consequences for Permeability, Conductance, and 
Kinetics of Gap Junction Channels, in: Gap Junctions Molecular Basis of Cell 
Communication in Health and Disease. Academic Press, pp. 131–144. 

Jongsma, H.J., Wilders, R., 2000. Gap Junctions in Cardiovascular Disease. Circ. Res. 86, 
1193–1197. doi:10.1161/01.RES.86.12.1193 

Jost, N., Virág, L., Bitay, M., Takács, J., Lengyel, C., Biliczki, P., Nagy, Z., Bogáts, G., Lathrop, 
D.A., Papp, J.G., Varró, A., 2005. Restricting excessive cardiac action potential and 
QT prolongation: a vital role for IKs in human ventricular muscle. Circulation 112, 
1392–1399. doi:10.1161/CIRCULATIONAHA.105.550111 

Jozwiak, J., Dhein, S., 2008. Local effects and mechanisms of antiarrhythmic peptide AAP10 
in acute regional myocardial ischemia: electrophysiological and molecular findings. 
Naunyn. Schmiedebergs Arch. Pharmacol. 378, 459–470. doi:10.1007/s00210-008-
0317-4 

Kääb, S., Nuss, H.B., Chiamvimonvat, N., O’Rourke, B., Pak, P.H., Kass, D.A., Marban, E., 
Tomaselli, G.F., 1996. Ionic mechanism of action potential prolongation in 
ventricular myocytes from dogs with pacing-induced heart failure. Circ. Res. 78, 
262–273. 

Kaneshiro, E. (Ed.), 2011. Cell Physiology Source Book: Essentials of Membrane Biophysics, 
4 edition. ed. Academic Press 

Kamp, T.J., Hell, J.W., 2000. Regulation of cardiac L-type calcium channels by protein kinase 
A and protein kinase C. Circ. Res. 87, 1095–1102. 

Kanter, H.L., Laing, J.G., Beau, S.L., Beyer, E.C., Saffitz, J.E., 1993. Distinct patterns of 
connexin expression in canine Purkinje fibers and ventricular muscle. Circ. Res. 72, 
1124–1131. doi:10.1161/01.RES.72.5.1124 

Kelly, A., Ghouri, I.A., Kemi, O.J., Bishop, M.J., Bernus, O., Fenton, F.H., Myles, R.C., Burton, 
F.L., Smith, G.L., 2013. Subepicardial action potential characteristics are a function 
of depth and activation sequence in isolated rabbit hearts. Circ. Arrhythm. 
Electrophysiol. 6, 809–817. doi:10.1161/CIRCEP.113.000334 

Kettlewell, S., Walker, N.L., Cobbe, S.M., Burton, F.L., Smith, G.L., 2004. The 
electrophysiological and mechanical effects of 2,3-butane-dione monoxime and 
cytochalasin-D in the Langendorff perfused rabbit heart. Exp. Physiol. 89, 163–172. 
doi:10.1113/expphysiol.2003.026732 

Kléber, A.G., Riegger, C.B., Janse, M.J., 1987. Electrical uncoupling and increase of 
extracellular resistance after induction of ischemia in isolated, arterially perfused 
rabbit papillary muscle. Circ. Res. 61, 271–279. 

Kléber, A.G., Rudy, Y., 2004. Basic Mechanisms of Cardiac Impulse Propagation and 
Associated Arrhythmias. Physiol. Rev. 84, 431–488. 
doi:10.1152/physrev.00025.2003 

Kojodjojo, P., Kanagaratnam, P., Segal, O.R., Hussain, W., Peters, N.S., 2006. The Effects of 
Carbenoxolone on Human Myocardial Conduction: A Tool to Investigate the Role of 
Gap Junctional Uncoupling in Human Arrhythmogenesis. J Am Coll Cardiol 48, 
1242–1249. doi:10.1016/j.jacc.2006.04.093 



Annabel Campbell 2017 
 

    125 
 

Komai, A.M., Brännmark, C., Musovic, S., Olofsson, C.S., 2014. PKA-independent cAMP 
stimulation of white adipocyte exocytosis and adipokine secretion: modulations by 
Ca2+ and ATP. J. Physiol. 592, 5169–5186. doi:10.1113/jphysiol.2014.280388 

Krayer, O., Mandoki, J.J., Mendez, C., Rubio, G.R., 1951. Studies on veratrum alkaloids. XVI. 
The action of epinephrine and of veratramine on the functional refractory period of 
the auriculo-ventricular transmission in the heart-lung preparation of the dog. J. 
Pharmacol. Exp. Ther. 103, 412–419. 

Kucera, J.P., Rohr, S., Rudy, Y., 2002. Localization of sodium channels in intercalated disks 
modulates cardiac conduction. Circ. Res. 91, 1176–1182. 

Kuschel, M., Karczewski, P., Hempel, P., Schlegel, W.P., Krause, E.G., Bartel, S., 1999. Ser16 
prevails over Thr17 phospholamban phosphorylation in the beta-adrenergic 
regulation of cardiac relaxation. Am. J. Physiol. 276, H1625-1633. 

Kwak, B.R., Hermans, M.M., De Jonge, H.R., Lohmann, S.M., Jongsma, H.J., Chanson, M., 
1995. Differential regulation of distinct types of gap junction channels by similar 
phosphorylating conditions. Mol. Biol. Cell 6, 1707–1719. 

Laird, D.W., Puranam, K.L., Revel, J.P., 1991. Turnover and phosphorylation dynamics of 
connexin43 gap junction protein in cultured cardiac myocytes. Biochem. J. 273, 67–
72. 

Lampe, P.D., Lau, A.F., 2004. The effects of connexin phosphorylation on gap junctional 
communication. Int. J. Biochem. Cell Biol. 36, 1171–1186. doi:10.1016/S1357-
2725(03)00264-4 

Lehnart, S., Marks, A.R., 2007. Regulation of Ryanodine Receptors in the Heart. Circ. Res. 
101, 746–749. doi:10.1161/CIRCRESAHA.107.162479 

Leitch, S.P., Brown, H.F., 1996. Effect of raised extracellular calcium on characteristics of 
the guinea-pig ventricular action potential. J. Mol. Cell. Cardiol. 28, 541–551. 
doi:10.1006/jmcc.1996.0050 

Lera Ruiz de, M., Kraus, R.L., 2015. Voltage-Gated Sodium Channels: Structure, Function, 
Pharmacology, and Clinical Indications. J. Med. Chem. 58, 7093–7118 

Levick, J., 2000. Introduction to Cardiovascular Physiology, 3Ed. Taylor & Francis. 
Lewis, S.T., 1920. The Mechanism and Graphic Registration of the Heart Beat. Shaw & Sons. 
Liu, S., Taffet, S., Stoner, L., Delmar, M., Vallano, M.L., Jalife, J., 1993. A structural basis for 

the unequal sensitivity of the major cardiac and liver gap junctions to intracellular 
acidification: the carboxyl tail length. Biophys. J. 64, 1422–1433. 
doi:10.1016/S0006-3495(93)81508-X 

Liu, Y., Cabo, C., Salomonsz, R., Delmar, M., Davidenko, J., Jalife, J., 1993. Effects of diacetyl 
monoxime on the electrical properties of sheep and guinea pig ventricular muscle. 
Cardiovasc. Res. 27, 1991–1997. 

Loewenstein, W.R., 1981. Junctional intercellular communication: the cell-to-cell 
membrane channel. Physiol. Rev. 61, 829–913. 

Lohse, M.J., Andexinger, S., Pitcher, J., Trukawinski, S., Codina, J., Faure, J.P., Caron, M.G., 
Lefkowitz, R.J., 1992. Receptor-specific desensitization with purified proteins. 
Kinase dependence and receptor specificity of beta-arrestin and arrestin in the 
beta 2-adrenergic receptor and rhodopsin systems. J. Biol. Chem. 267, 8558–8564. 

Lohse, M.J., Engelhardt, S., Eschenhagen, T., 2003a. What Is the Role of β-Adrenergic 
Signaling in Heart Failure? Circ. Res. 93, 896 –906. 
doi:10.1161/01.RES.0000102042.83024.CA 

Lohse, M.J., Engelhardt, S., Eschenhagen, T., 2003b. What Is the Role of β-Adrenergic 
Signaling in Heart Failure? Circ. Res. 93, 896–906. 
doi:10.1161/01.RES.0000102042.83024.CA 



Annabel Campbell 2017 
 

    126 
 

Lu, T., Lee, H.-C., Kabat, J.A., Shibata, E.F., 1999. Modulation of rat cardiac sodium channel 
by the stimulatory G protein α subunit. J. Physiol. 518, 371–384. 
doi:10.1111/j.1469-7793.1999.0371p.x 

Lue, W.M., Boyden, P.A., 1992. Abnormal electrical properties of myocytes from chronically 
infarcted canine heart. Alterations in Vmax and the transient outward current. 
Circulation 85, 1175–1188. 

Maeda, S., Tsukihara, T., 2011. Structure of the gap junction channel and its implications for 
its biological functions. Cell. Mol. Life Sci. CMLS 68, 1115–1129. 
doi:10.1007/s00018-010-0551-z 

Márquez-Rosado, L., Solan, J.L., Dunn, C.A., Norris, R.P., Lampe, P.D., 2012. Connexin43 
phosphorylation in brain, cardiac, endothelial and epithelial tissues. Biochim. 
Biophys. Acta BBA - Biomembr. 1818, 1985–1992. 
doi:10.1016/j.bbamem.2011.07.028 

Marx, S.O., Reiken, S., Hisamatsu, Y., Jayaraman, T., Burkhoff, D., Rosemblit, N., Marks, A.R., 
2000. PKA Phosphorylation Dissociates FKBP12.6 from the Calcium Release Channel 
(Ryanodine Receptor): Defective Regulation in Failing Hearts. Cell 101, 365–376. 
doi:10.1016/S0092-8674(00)80847-8 

Matsuda, J.J., Lee, H., Shibata, E.F., 1992. Enhancement of rabbit cardiac sodium channels 
by beta-adrenergic stimulation. Circ. Res. 70, 199–207. 

Matsushita, T., Oyamada, M., Fujimoto, K., Yasuda, Y., Masuda, S., Wada, Y., Oka, T., 
Takamatsu, T., 1999. Remodeling of cell-cell and cell-extracellular matrix 
interactions at the border zone of rat myocardial infarcts. Circ. Res. 85, 1046–1055. 

Mehta, P.P., Yamamoto, M., Rose, B., 1992. Transcription of the gene for the gap junctional 
protein connexin43 and expression of functional cell-to-cell channels are regulated 
by cAMP. Mol. Biol. Cell 3, 839–850. 

Mendez, C., Erlij, D., Moe, G.K., 1964. Indirect Action of Epinephrine on Intraventricular 
Conduction Time. Circ. Res. 14, 318–326. doi:10.1161/01.RES.14.4.318 

Métrich, M., Lucas, A., Gastineau, M., Samuel, J.-L., Heymes, C., Morel, E., Lezoualc’h, F., 
2008. Epac mediates beta-adrenergic receptor-induced cardiomyocyte 
hypertrophy. Circ. Res. 102, 959–965. doi:10.1161/CIRCRESAHA.107.164947 

Mongillo, M., McSorley, T., Evellin, S., Sood, A., Lissandron, V., Terrin, A., Huston, E., 
Hannawacker, A., Lohse, M.J., Pozzan, T., Houslay, M.D., Zaccolo, M., 2004. 
Fluorescence Resonance Energy Transfer–Based Analysis of cAMP Dynamics in Live 
Neonatal Rat Cardiac Myocytes Reveals Distinct Functions of Compartmentalized 
Phosphodiesterases. Circ. Res. 95, 67–75. 
doi:10.1161/01.RES.0000134629.84732.11 

Munger, T., Johnson, S., Packer, D., 1994. Voltage dependence of beta-adrenergic 
modulation of conduction in the canine Purkinje fiber. Circ. Res. 75, 511–519. 
doi:10.1161/01.RES.75.3.511 

Musil, L.S., Le, A.C., VanSlyke, J.K., Roberts, L.M., 2000. Regulation of connexin degradation 
as a mechanism to increase gap junction assembly and function. J. Biol. Chem. 275, 
25207–25215. 

Näbauer, M., Beuckelmann, D.J., Uberfuhr, P., Steinbeck, G., 1996. Regional differences in 
current density and rate-dependent properties of the transient outward current in 
subepicardial and subendocardial myocytes of human left ventricle. Circulation 93, 
168–177. 

Neyton, J., Trautmann, A., 1985. Single-channel currents of an intercellular junction. Nature 
317, 331–335. 

Ng, G.A., Brack, K.E., Patel, V.H., Coote, J.H., 2007. Autonomic modulation of electrical 
restitution, alternans and ventricular fibrillation initiation in the isolated heart. 
Cardiovasc. Res. 73, 750–760. doi:10.1016/j.cardiores.2006.12.001 



Annabel Campbell 2017 
 

    127 
 

Niedergerke, R., Orkand, R.K., 1966. The dependence of the action potential of the frog’s 
heart on the external and intracellular sodium concentration. J. Physiol. 184, 312–
334. doi:10.1113/jphysiol.1966.sp007917Nikolaev, V.O., Moshkov, A., Lyon, A.R., 
Miragoli, M., Novak, P., Paur, H., Lohse, M.J., Korchev, Y.E., Harding, S.E., Gorelik, J., 
2010. β2-Adrenergic Receptor Redistribution in Heart Failure Changes cAMP 
Compartmentation. Science 327, 1653–1657. doi:10.1126/science.1185988 

Nishizawa, H., Suzuki, T., Shioya, T., Nakazato, Y., Daida, H., Kurebayashi, N., 2009. Causes 
of abnormal Ca2+ transients in Guinea pig pathophysiological ventricular muscle 
revealed by Ca2+ and action potential imaging at cellular level. PloS One 4, e7069. 
doi:10.1371/journal.pone.0007069 

Nygren, A., Kondo, C., Clark, R.B., Giles, W.R., 2003. Voltage-sensitive dye mapping in 
Langendorff-perfused rat hearts. Am. J. Physiol. - Heart Circ. Physiol. 284, H892–
H902. doi:10.1152/ajpheart.00648.2002 

Oestreich, E.A., Malik, S., Goonasekera, S.A., Blaxall, B.C., Kelley, G.G., Dirksen, R.T., Smrcka, 
A.V., 2009. Epac and phospholipase Cepsilon regulate Ca2+ release in the heart by 
activation of protein kinase Cepsilon and calcium-calmodulin kinase II. J. Biol. 
Chem. 284, 1514–1522. doi:10.1074/jbc.M806994200 

Oestreich, E.A., Wang, H., Malik, S., Kaproth-Joslin, K.A., Blaxall, B.C., Kelley, G.G., Dirksen, 
R.T., Smrcka, A.V., 2007. Epac-mediated activation of phospholipase C(epsilon) 
plays a critical role in beta-adrenergic receptor-dependent enhancement of Ca2+ 
mobilization in cardiac myocytes. J. Biol. Chem. 282, 5488–5495. 
doi:10.1074/jbc.M608495200 

O’Quinn, M.P., Palatinus, J.A., Harris, B.S., Hewett, K.W., Gourdie, R.G., 2011. A Peptide 
Mimetic of the Connexin43 Carboxyl Terminus Reduces Gap Junction Remodeling 
and Induced Arrhythmia Following Ventricular Injury. Circ. Res. 108, 704–715. 
doi:10.1161/CIRCRESAHA.110.235747 

Palatinus, J.A., Rhett, J.M., Gourdie, R.G., 2012. The Connexin43 Carboxyl Terminus and 
Cardiac Gap Junction Organization. Biochim. Biophys. Acta 1818, 1831–1843. 
doi:10.1016/j.bbamem.2011.08.006 

Paulson, A.F., Lampe, P.D., Meyer, R.A., TenBroek, E., Atkinson, M.M., Walseth, T.F., 
Johnson, R.G., 2000a. Cyclic AMP and LDL trigger a rapid enhancement in gap 
junction assembly through a stimulation of connexin trafficking. J. Cell Sci. 113, 
3037–3049. 

Paulson, A.F., Lampe, P.D., Meyer, R.A., TenBroek, E., Atkinson, M.M., Walseth, T.F., 
Johnson, R.G., 2000b. Cyclic AMP and LDL trigger a rapid enhancement in gap 
junction assembly through a stimulation of connexin trafficking. J. Cell Sci. 113, 
3037 –3049. 

Pereira, L., Métrich, M., Fernández-Velasco, M., Lucas, A., Leroy, J., Perrier, R., Morel, E., 
Fischmeister, R., Richard, S., Bénitah, J.-P., Lezoualc’h, F., Gómez, A.M., 2007. The 
cAMP binding protein Epac modulates Ca2+ sparks by a Ca2+/calmodulin kinase 
signalling pathway in rat cardiac myocytes. J. Physiol. 583, 685–694. 
doi:10.1113/jphysiol.2007.133066 

Peters, N.S., 2006. Gap Junctions Clarifying the Complexities of Connexins and Conduction. 
Circ. Res. 99, 1156–1158. doi:10.1161/01.RES.0000251936.26233.0d 

Peters, N.S., Coromilas, J., Severs, N.J., Wit, A.L., 1997. Disturbed connexin43 gap junction 
distribution correlates with the location of reentrant circuits in the epicardial 
border zone of healing canine infarcts that cause ventricular tachycardia. 
Circulation 95, 988–996. 

Pilhall, M., Riha, M., Jern, S., 1993. Changes in the QRS segment during exercise: effects of 
acute beta-blockade with propranolol. Clin. Physiol. Oxf. Engl. 13, 113–131. 



Annabel Campbell 2017 
 

    128 
 

Ping, P., Anzai, T., Gao, M., Hammond, H.K., 1997. Adenylyl cyclase and G protein receptor 
 kinase expression during development of heart failure. Am. J. Physiol. 273, H707-
 717. 
Potter, E.K., 1988. Neuropeptide Y as an autonomic neurotransmitter. Pharmacol. Ther. 37, 

251–273. 
Pu, J., Balser, J.R., Boyden, P.A., 1998. Lidocaine action on Na+ currents in ventricular 

myocytes from the epicardial border zone of the infarcted heart. Circ. Res. 83, 431–
440. 

Reuter, H., 1987. Calcium channel modulation by beta-adrenergic neurotransmitters in the 
heart. Experientia 43, 1173–1175. 

Roberts, D., Hersh, L., Scher, A., 1979. Influence of cardiac fiber orientation on wavefront 
voltage, conduction velocity, and tissue resistivity in the dog. Circ. Res. 44, 701–
712. doi:10.1161/01.RES.44.5.701 

Rohr, S., 2004. Role of gap junctions in the propagation of the cardiac action potential. 
Cardiovasc. Res. 62, 309–322. doi:10.1016/j.cardiores.2003.11.035 

Rossie, S., Catterall, W.A., 1987. Cyclic-AMP-dependent phosphorylation of voltage-
sensitive sodium channels in primary cultures of rat brain neurons. J. Biol. Chem. 
262, 12735–12744. 

Saffitz, J.E., Laing, J.G., Yamada, K.A., 2000. Connexin expression and turnover: implications 
for cardiac excitability. Circ. Res. 86, 723–728. 

Said, M., Mundiña-Weilenmann, C., Vittone, L., Mattiazzi, A., 2002. The relative relevance 
of phosphorylation of the Thr(17) residue of phospholamban is different at 
different levels of beta-adrenergic stimulation. Pflüg. Arch. Eur. J. Physiol. 444, 
801–809. doi:10.1007/s00424-002-0885-y 

Salameh, A., Dhein, S., 2011. Adrenergic control of cardiac gap junction function and 
expression. Naunyn. Schmiedebergs Arch. Pharmacol. 383, 331–346. 
doi:10.1007/s00210-011-0603-4 

Salameh, A., Frenzel, C., Boldt, A., Rassler, B., Glawe, I., Schulte, J., Mühlberg, K., Zimmer, 
H.-G., Pfeiffer, D., Dhein, S., 2006. Subchronic alpha- and beta-adrenergic 
regulation of cardiac gap junction protein expression. FASEB J. 20, 365–367. 
doi:10.1096/fj.05-4871fje 

Sandberg, M., Butt, E., Nolte, C., Fischer, L., Halbrügge, M., Beltman, J., Jahnsen, T., 
Genieser, H.G., Jastorff, B., Walter, U., 1991. Characterization of Sp-5,6-dichloro-1-
beta-D-ribofuranosylbenzimidazole- 3’,5’-monophosphorothioate (Sp-5,6-DCl-
cBiMPS) as a potent and specific activator of cyclic-AMP-dependent protein kinase 
in cell extracts and intact cells. Biochem. J. 279, 521–527. 

Santillán, G.E., Boland, R.L., 1998. Studies suggesting the participation of protein kinase A in 
1, 25(OH)2-vitamin D3-dependent protein phosphorylation in cardiac muscle. J. 
Mol. Cell. Cardiol. 30, 225–233. doi:10.1006/jmcc.1997.0577 

Schreibmayer, W., Frohnwieser, B., Dascal, N., Platzer, D., Spreitzer, B., Zechner, R., Kallen, 
R.G., Lester, H.A., 1994. Beta-adrenergic modulation of currents produced by rat 
cardiac Na+ channels expressed in Xenopus laevis oocytes. Receptors Channels 2, 
339–350. 

Segretain, D., Falk, M.M., 2004. Regulation of connexin biosynthesis, assembly, gap 
junction formation, and removal. Biochim. Biophys. Acta BBA - Biomembr. 1662, 3–
21. doi:10.1016/j.bbamem.2004.01.007 

Severs, N.J., Coppen, S.R., Dupont, E., Yeh, H.-I., Ko, Y.-S., Matsushita, T., 2004. Gap junction 
alterations in human cardiac disease. Cardiovasc. Res. 62, 368–377. 
doi:10.1016/j.cardiores.2003.12.007 



Annabel Campbell 2017 
 

    129 
 

Shaw, R.M., Rudy, Y., 1997. Ionic mechanisms of propagation in cardiac tissue. Roles of the 
sodium and L-type calcium currents during reduced excitability and decreased gap 
junction coupling. Circ. Res. 81, 727–741. 

Siebens, A.A., Hoffman, B.F., Enson, Y., Farrell, J.E., Brooks, C.M., 1953. Effects of l-
Epinephrine and l-Nor-Epinephrine on Cardiac Excitability. Am. J. Physiol. -- Leg. 
Content 175, 1–7. 

Smeets, J., Allessie, M., Lammers, W., Bonke, F., Hollen, J., 1986. The wavelength of the 
cardiac impulse and reentrant arrhythmias in isolated rabbit atrium. The role of 
heart rate, autonomic transmitters, temperature, and potassium. Circ. Res. 58, 96–
108. doi:10.1161/01.RES.58.1.96 

Smith, J., Green, C., Peters, N., Rothery, S., Severs, N., 1991. Altered patterns of gap 
junction distribution in ischemic heart disease. An immunohistochemical study of 
human myocardium using laser scanning confocal microscopy. Am. J. Pathol. 139, 
801. 

Smith, J.H., Green, C.R., Peters, N.S., Rothery, S., Severs, N.J., 1991. Altered patterns of gap 
junction distribution in ischemic heart disease. An immunohistochemical study of 
human myocardium using laser scanning confocal microscopy. Am. J. Pathol. 139, 
801–821. 

Solan, J.L., Lampe, P.D., 2009. Biochemistry of Connexins, in: Harris, A.L., Locke, D. (Eds.), 
Connexins. Humana Press, Totowa, NJ, pp. 263–286. 

Solan, J.L., Marquez-Rosado, L., Sorgen, P.L., Thornton, P.J., Gafken, P.R., Lampe, P.D., 
2007. Phosphorylation at S365 is a gatekeeper event that changes the structure of 
Cx43 and prevents down-regulation by PKC. J. Cell Biol. 179, 1301–1309. 
doi:10.1083/jcb.200707060 

Somekawa, S., Fukuhara, S., Nakaoka, Y., Fujita, H., Saito, Y., Mochizuki, N., 2005. Enhanced 
Functional Gap Junction Neoformation by Protein Kinase A–Dependent and Epac-
Dependent Signals Downstream of cAMP in Cardiac Myocytes. Circ. Res. 97, 655–
662. doi:10.1161/01.RES.0000183880.49270.f9 

Song, Q., Saucerman, J.J., Bossuyt, J., Bers, D.M., 2008. Differential integration of Ca2+-
calmodulin signal in intact ventricular myocytes at low and high affinity Ca2+-
calmodulin targets. J. Biol. Chem. 283, 31531–31540. doi:10.1074/jbc.M804902200 

Spach, M.S., Dolber, P.C., 1986. Relating extracellular potentials and their derivatives to 
anisotropic propagation at a microscopic level in human cardiac muscle. Evidence 
for electrical uncoupling of side-to-side fiber connections with increasing age. Circ. 
Res. 58, 356–371. 

Spray, D.C., White, R.L., Mazet, F., Bennett, M.V., 1985. Regulation of gap junctional 
conductance. Am. J. Physiol. 248, H753-764. 

Straight, A.F., Cheung, A., Limouze, J., Chen, I., Westwood, N.J., Sellers, J.R., Mitchison, T.J., 
2003. Dissecting temporal and spatial control of cytokinesis with a myosin II 
Inhibitor. Science 299, 1743–1747. doi:10.1126/science.1081412 

Swain, H.H., Weidner, C.L., 1957. A study of substances which alter intraventricular 
conduction in the isolated dog heart. J. Pharmacol. Exp. Ther. 120, 137–146. 

Taggart, P., Sutton, P., Chalabi, Z., Boyett, M.R., Simon, R., Elliott, D., Gill, J.S., 2003. Effect 
of adrenergic stimulation on action potential duration restitution in humans. 
Circulation 107, 285–289. 

TenBroek, E.M., Lampe, P.D., Solan, J.L., Reynhout, J.K., Johnson, R.G., 2001. Ser364 of 
connexin43 and the upregulation of gap junction assembly by cAMP. J. Cell Biol. 
155, 1307–1318. doi:10.1083/jcb.200102017 

Ungerer, M., Böhm, M., Elce, J.S., Erdmann, E., Lohse, M.J., 1993. Altered expression of 
beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing 
human heart. Circulation 87, 454–463. 



Annabel Campbell 2017 
 

    130 
 

Ungerer, M., Parruti, G., Böhm, M., Puzicha, M., DeBlasi, A., Erdmann, E., Lohse, M.J., 1994. 
Expression of beta-arrestins and beta-adrenergic receptor kinases in the failing 
human heart. Circ. Res. 74, 206–213. 

Unwin, P.N.T., Zampighi, G., 1980. Structure of the junction between communicating cells. 
Publ. Online 07 Febr. 1980 Doi101038283545a0 283, 545–549. 
doi:10.1038/283545a0 

Valderrábano, M., 2007. Influence of anisotropic conduction properties in the propagation 
of the cardiac action potential. Prog. Biophys. Mol. Biol. 94, 144–168. 
doi:10.1016/j.pbiomolbio.2007.03.014 

van Kempen, M.J., ten Velde, I., Wessels, A., Oosthoek, P.W., Gros, D., Jongsma, H.J., 
Moorman, A.F., Lamers, W.H., 1995. Differential connexin distribution 
accommodates cardiac function in different species. Microsc. Res. Tech. 31, 420–
436. doi:10.1002/jemt.1070310511 

Vanslyke, J.K., Naus, C.C., Musil, L.S., 2009. Conformational maturation and post-ER 
multisubunit assembly of gap junction proteins. Mol. Biol. Cell 20, 2451–2463. 
doi:10.1091/mbc.E09-01-0062 

Varró, A., Lathrop, D.A., Hester, S.B., Nánási, P.P., Papp, J.G.Y., 1993. Ionic currents and 
action potentials in rabbit, rat, and guinea pig ventricular myocytes. Basic Res. 
Cardiol. 88, 93–102. doi:10.1007/BF00798257 

Veeraraghavan, R., Gourdie, R.G., Poelzing, S., 2014. Mechanisms of cardiac conduction: a 
history of revisions. Am. J. Physiol. Heart Circ. Physiol. 306, H619-627. 
doi:10.1152/ajpheart.00760.2013 

Veeraraghavan, R., Salama, M.E., Poelzing, S., 2012. Interstitial volume modulates the 
conduction velocity-gap junction relationship. Am. J. Physiol. Heart Circ. Physiol. 
302, H278-286. doi:10.1152/ajpheart.00868.2011 

Verheule, S., van Kempen, M.J., te Welscher, P.H., Kwak, B.R., Jongsma, H.J., 1997. 
Characterization of gap junction channels in adult rabbit atrial and ventricular 
myocardium. Circ. Res. 80, 673–681. 

Vila Petroff, M.G., Egan, J.M., Wang, X., Sollott, S.J., 2001. Glucagon-like peptide-1 
increases cAMP but fails to augment contraction in adult rat cardiac myocytes. Circ. 
Res. 89, 445–452. 

Volders, P.G.A., Stengl, M., van Opstal, J.M., Gerlach, U., Spätjens, R.L.H.M.G., Beekman, 
J.D.M., Sipido, K.R., Vos, M.A., 2003. Probing the contribution of IKs to canine 
ventricular repolarization: key role for beta-adrenergic receptor stimulation. 
Circulation 107, 2753–2760. doi:10.1161/01.CIR.0000068344.54010.B3 

Vozzi, C., Dupont, E., Coppen, S.R., Yeh, H.-I., Severs, N.J., 1999. Chamber-related 
Differences in Connexin Expression in the Human Heart. J. Mol. Cell. Cardiol. 31, 
991–1003. doi:10.1006/jmcc.1999.0937 

Wallace, A.G., Sarnoff, S.J., 1964. Effects of Cardiac Sympathetic Nerve Stimulation on 
Conduction in the Heart. Circ. Res. 14, 86–92. doi:10.1161/01.RES.14.1.86 

Walsh, K.B., Begenisich, T.B., Kass, R.S., 1988. Beta-adrenergic modulation in the heart. 
Independent regulation of K and Ca channels. Pflüg. Arch. Eur. J. Physiol. 411, 232–
234. 

Walsh, K.B., Kass, R.S., 1988. Regulation of a heart potassium channel by protein kinase A 
and C. Science 242, 67–69. 

Wang, Q., Li, Z., Shen, J., Keating, M.T., 1996. Genomic organization of the human SCN5A 
gene encoding the cardiac sodium channel. Genomics 34, 9–16. 
doi:10.1006/geno.1996.0236 

Wang, W., Zhu, W., Wang, S., Yang, D., Crow, M.T., Xiao, R.-P., Cheng, H., 2004. Sustained 
beta1-adrenergic stimulation modulates cardiac contractility by Ca2+/calmodulin 



Annabel Campbell 2017 
 

    131 
 

kinase signaling pathway. Circ. Res. 95, 798–806. 
doi:10.1161/01.RES.0000145361.50017.aa 

Wang, X., Gerdes, A.M., 1999. Chronic Pressure Overload Cardiac Hypertrophy and Failure 
in Guinea Pigs: III. Intercalated Disc Remodeling. J. Mol. Cell. Cardiol. 31, 333–343. 
doi:10.1006/jmcc.1998.0886 

Wei, C.-J., Xu, X., Lo, C.W., 2004. Connexins and cell signaling in development and disease. 
Annu. Rev. Cell Dev. Biol. 20, 811–838. 
doi:10.1146/annurev.cellbio.19.111301.144309 

Weingart, R., Imanaga, I., Weidmann, S., 1975. Low resistance pathways between 
Myocardial cells. Recent Adv. Stud. Cardiac Struct. Metab. 5, 227-232Weiss, J.N., Chen, P.-

S., Qu, Z., Karagueuzian, H.S., Garfinkel, A., 2000. Ventricular Fibrillation How Do 
We Stop the Waves From Breaking? Circ. Res. 87, 1103–1107. 
doi:10.1161/01.RES.87.12.1103 

Williams, R.L., Vick, R.L., Riopel, D.A., 1972. Intraventricular propagation time: Biphasic 
effect of epinephrine. J. Electrocardiol. 5, 111–118. doi:10.1016/S0022-
0736(72)80026-8 

Xiao, R.P., Avdonin, P., Zhou, Y.Y., Cheng, H., Akhter, S.A., Eschenhagen, T., Lefkowitz, R.J., 
Koch, W.J., Lakatta, E.G., 1999. Coupling of beta2-adrenoceptor to Gi proteins and 
its physiological relevance in murine cardiac myocytes. Circ. Res. 84, 43–52. 

Xiao, R.P., Ji, X., Lakatta, E.G., 1995. Functional coupling of the beta 2-adrenoceptor to a 
pertussis toxin-sensitive G protein in cardiac myocytes. Mol. Pharmacol. 47, 322–
329. 

Xiao, R.P., Lakatta, E.G., 1993. Beta 1-adrenoceptor stimulation and beta 2-adrenoceptor 
stimulation differ in their effects on contraction, cytosolic Ca2+, and Ca2+ current 
in single rat ventricular cells. Circ. Res. 73, 286–300. 

Yao, J.-A., Hussain, W., Patel, P., Peters, N.S., Boyden, P.A., Wit, A.L., 2003. Remodeling of 
gap junctional channel function in epicardial border zone of healing canine infarcts. 
Circ. Res. 92, 437–443. doi:10.1161/01.RES.0000059301.81035.06 

Yeager, M., 1998. Structure of Cardiac Gap Junction Intercellular Channels. J. Struct. Biol. 
121, 231–245. doi:10.1006/jsbi.1998.3972 

Yue, D.T., Herzig, S., Marban, E., 1990. Beta-adrenergic stimulation of calcium channels 
occurs by potentiation of high-activity gating modes. Proc. Natl. Acad. Sci. 87, 753–
757. 

Zaccolo, M., Filippin, L., Magalhães, P., Pozzan, T., 2001. Heterogeneity of Second 
Messenger Levels in Living Cells 85–95. doi:10.1002/0470846674.ch8 

Zhai, K., Hubert, F., Nicolas, V., Ji, G., Fischmeister, R., Leblais, V., 2012. β-Adrenergic cAMP 
Signals Are Predominantly Regulated by Phosphodiesterase Type 4 in Cultured 
Adult Rat Aortic Smooth Muscle Cells. PLoS ONE 7. 
doi:10.1371/journal.pone.0047826 

 


