DIFFRACTION OF CATHODE RAYS

by

William Cochrane

-0 -



ProQuest Number: 13905176

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 13905176

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346



THESIS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY IN THE
FACULTY OF SCIENCE AT THE
UNIVERSITY OF GLASGOW
SUBMITTED BY
William Cochrane

- 000 -

21st. Sept. 1934.



PREFACE

The following is intended to give an account of
certain aspects of electron diffraction by thin films.
Chapter I deals with those parts of wave mechanics which
have a bearing on the problem. Chapter II discusses the
collision of a beam of swift electrons with an atom. The
method given there for calculating the scattering power
of any atom appears to be new and, while the calculations
involved are simple, the accuracy of the method appears
to be good. Chapter III is concerned with the scattering
of electron waves by a lattice. An account then follows,
in chapter 1V, of experiments on the diffraction of cathode
rays using a new type of apparatus. The various patterns
obtained are discussed and the intensities, measured directly,
are compared with the theory of chapters II and III. Finally,
chapter V. contains concluding remarks together with some
experimental results on the absorption of the electron
beam by a film.

The writer is very much indebted to Professor
E. Taylor Jones for suggesting this work and for valuable

advice and encouragement.

m. C.
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Chapter I
WAVE MECHANICS

The phenomena which appear in the passage of
electrons through matter can generally be explained most
successfully from the view-point of wave mechanics.

The basic idea of this type of mechanies was
put forward by de Broglie!. He began by supposing that
any particle of energy ﬁz carried with it a vibration of
frequency 2/ , where

y=—§— e e (1)
7%‘being Planck's constant. (Gguation (1) suggests itself
from Planck's successful hypothesis that the energy of an
oscillator must be i;/or a simple multiple of 7€V.) To
a stationary observer, the vibration would appear as a
wave. This may be shown as follows. Let the particle move
with velocity 2 along OA and let the vibration be given
by the expression

com2xzl . ..., NN ¢-)
Let B = U/ where cis the velocity of light in vacuo.

Now apply the Lorentz transformation

I_ﬁ ]
r=Lt-c> . e (3)
/-p*
to the expression (2) and it becomes
/ '
Coo 270" (£ —fx) e e (4)
where
v = £
1B (5)
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Expression (4) represents an infinite monochromatic wave
moving along OX in the same direction as the particle,
with frequency 2'and (phase} velocity e/ .
1f A is the wavelength of the wave, then

2'

(veloecity)+(frequency)
- CL#;E“ ................... veed(8)

If there were a group, resulting from the superposition
of a number of such cosine waves with slightly different
values of the parameter P , then the group velocity would

be given by the well-known formula

group velocity = d%{,(-}‘?)
_dv' _d(Fx) (74)

— T e # 0 6 0 5 5 0 6 0 0 0 0 s & s 0

Ap, dp

group velocity

"
—>»
p

The group velocity is thus the same as the velocity of
the particle.

Te Broglie used for the energy E the value mcc’l
given by Einstein's speéial theory of relativity, 27,

denoting the rest mass of the particle. Hence

» - £

Substituting (8) in (6), we find
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But special relativity yields the formuls

7 = 8
/\/1——/5"
and thus
/
A A T (9)
mVv ’
wimilarly, from (8) and (5),
' 2

Z = e (10)

3

De Broglie's theory thus leads to the conception

of 2 wave (in ordinary space) which accompaniecs the moving
particle.

An alternative method of introducing wsves into
¢ynamical problems is given by schr¥dinger®. He considers
any conservative dynamical system defined by the independent
teneralised coordinates Z' i eea @'f‘ The xinetic energy is
denoted byﬁ7=and is expressible as a guadratic in the 2'5

so that we may write

——— A =_L_ oi .&
T =522562¢2 ... (11)
This expression is, by its nature, always positive. The

momenta.}?are defined by the equations

/é% ,()2& Zf/éi et (12)

Mchrodlnger then considers a Z space and defines the line

element by the equation

aﬁf'-r$27:0ét
_ i s R
—LZ%.;/”QOLZ% e ieeaeaea.a(13)

) - . - e ey 1
Liann. 4. Zrws. 74, 439, 1425,
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"he geometry of the space is non-Zucliieazn but the usual
concerts and orerations may be introduced. The coefficients
of the d%'s in (13),i.e.the quantitieié%g, are the covariant
components of the fundamental tensor of the Z—s:&ce. R

t.e formulae of tensor calculus we may 7rite the covariant

velocity components

k;—_;,zf'iﬁzl .................. (14)

and therefore, from (12), ve trhen have

SR = Gh (15)

2130
— ol.&= iﬁ. o ’
%é?ﬁe‘i‘i -42%3 i ... (15)

«nd therefore (11) muy be written

o LR
2Z%d 1t
LR
o A _-:.L
i Tl =45329 pip

“xpression (17) will ve denoted byfTYQ¢ﬂ without any boar

...... el (17)

over the 1 . In the general case, V the votentizl energy
will be = function of the ?L's and time.

Thus the Hamiltonian function is
H(g, b t) = T P)+Y(q.t)

and the Hamilton-Jacobi eguation runs

H(‘Z) t) + =0 ... (19)
herevVis uamllton's Principal Function. In the case of

conservative systems hdwever, »/ls only = function of

tre Z s =nd (1% may be written
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’B_V_V + +,§)._VY::
T@e) +Ve)+F =0 L

The next step is to write

Weg,t) =s@)—Eet .. (21)
so that

oW _ _ ¢

ot

Thus (R20) becomes
3 2 —
2T(G, W )=2(E-VY)
°7
The substitution (21) is well-known in mechanics. The

function Srepresents the acti and Eis the total energy

on
of the system. Substituting(1?) into (22) the latter becomes

L%a
j/ aw b”; = Q(E—V) ceens (23)

ow QW/&L are the covarlant components of the vector 7n‘m¢W
and the scalar quantity forming the left-hand side of (23)
is the square of the magnitude of WW‘. Therefore
(Ww)*-—zg(f—w)
and WW’ NRE=-VY . eeene. (24)
The family of surfaces W = const. are now
supposed to be described in the g -space, 7here w
catisfies (22) or its equivalent, (24). The "normal"
distance between two neighbouring surfaces with the

velues W and W +dW will bedn where
AW = ?;den

l5ee e.g. I'c.Connell: Appllcatlons of thne absolute
Uifferential Calculus,icge 168 e u. 1o,



W suvrFaces

3?/

Wo +a(W ot e t

IN 2 - SPACE
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or AW

( grad w)cln
NUEV).do ... . (25)
Since W/Z)t)= 5/y -£t , the family W = const. may

als0 be written /572/ = const. + £L . Vence,as time changes,

the form of the family of surfaces will not change and

the surfaces will clweys be given by,g/i)z const. . Az time
cranges, however, the value of W ascocizted with wny
fixed surface will change. If W =W, is the value on =
surface,A , at time [, then the value of W on the surface
A =t time T+l will ve w,,+%"att or W,—FEdt . 1f B (fig. 1)
is o ncighbouring surface on which W=W,+dW at time 7,
then the value at time 2+ will be W, +dW,-Edt. e may
re.ard surface 4 as having moved into the place of surface
B curing the time & and carrying its value W, with it,
provided

W, W, +dw, —EdL

L}

or AWy = ELL ... . .. (26)

Using (25), this becomes

VRE-V).dn = EAL

or dn = £ } )
at VRE-Y) e ceeee.. (27)

Thus the surfaces may be regarded as moving about, ecch
carrying a constant value of W ,provided each roint on a
£
s g oves alo the normal with velocity ——m————— .
urface m s along e N NRED)
This is equivalent to the well-known Fuygens

construction in optics. If we are given a surface at



SURFACE  SURFACE
AT AT
TIME t. TIME t+dl.
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time Z“.-ve find its position at time Z# by drawing
EAL

elementary spheres of radii m . The envelope of
these spheres gives us the position of the surface =zt
time Z#AL (fig. 2). The W surfaces are therefore
anzlogous to the surfaces of constant phase used in
tuygens' theory, and the guantity /¥ may be regarded as the
phase of some wave. It follows that the motion of a
dynamical system may be regarded as being accompanied by
a wave propagation in the g -space. At first Schrgdingger
does not inguire as to what the amrylitude of this wave is,
but supposes that the wave is of the form
codnzl op e—gmw?

since the phase is S-FET , trerefore

£ o< xY , therefore

£ = VXconstant
The value 7{ suggests itself for this constant, it being
of the required dimensions. As already remarked in connection
with de Broglie's theory, the equation £=£7/ is similar

to celebrated equations previously used by Planck and Bohr.

Fence -~
— £
Z =5 e (28)
and therefore ﬂ= phase vel. + 7 =

1]
b
d

Tor a particle of mass mand velocity ¥ (29) yields
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"hen solving optical problems in which the
wave-length is comparable with the distances involved,
we do not use Huygens' Principle but work directly from
the wave squation. This suggests that a mechanics which
is accompanied by a geometrical optics in thef{-space
may not be adequate for dealing with problems in atomic
physics and that a mechanics which is egquivalent to =z
wave optics is required.

If « be a wave function, then éhe wave equation

which 1t must satisfy is

N

2
Vu‘:——/———— ’é_‘"_,-"a
(vel.)2 oC™ ... .. ..., (31)

Tresumably the velocity and frequency will be the same
wnether we adopt geometrical optics or wave optics. Thus

we put (using (27) and (28))

— i %t
w = € R - 1))

vel. = £ ecencaesesass (33)

N2 (E-V)

Hence (31) becomes

2 8x- =
<a -V =0
VY/+ ﬂ {E ),f EEEEEEREEEEE (54)

If we put '
L (S-Et)
u = € J ..(35)
re
or 7"-’-‘ < 8 e k38

and substitute in (34) we should expect to arrive back

in some way to the results for ordinary mechanics, since



(o
the phese previously found from ordinary mechanics rad

the fornl/%f'éaf. Te write (34) more fully
1k
L-quw; Bi(d—j _]’)+ -y =0

ihere g, is the determinant of the(;%k's. Substituting (36),

(37)

this becomes

z;i’éé«féﬁf — 2(E-V)
29" 2og*
=-4A L 552 /5
2l "Jj’* i feB?[ j Ez>
oo --(38)
“lien ﬁimay be regarded as very small, the right-hand side
of (38) vanishes and we obtain
iR 08 ’a/S
>z = Q(E Y
: R 92 %z > (39)
1t W=S8—Et , tnis is

f ........ (40)

This equation is exactly the same as (23),erbeing analogous
to Hamilton's Frincipal Function and 15 to the Action. Now
(23) is simply another form of the Hamilton-Jacobi equation
(19). Thus, when % is regarded as very small, (34)yields

the results of classical mechanics. But, if ﬁiis not negli-
gible, we have to include the term on the right-hand side

of (38) and the (timeless) phaseagﬁis not exactly the same
as the action,ig , in classical mechanics. This led

Sehrodinger to believe that equation (34) might be
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successful in treating problems in ntomic vhysics for
wnich classical mechanics had failed to give results in
accordance with experiment.

The zmplitude of the waves remains to be

considered. Vriting

) t
w =Y e ﬂ
we obtain ‘
e - QnL =t
Su = —rd %— )p i
ot
and therefore
_. £
-2kl L
Ce R __ _ K ou
L‘f/ - \&RL ot e s s e 0 s e s s 00 e (41)
JE
ultiplying (34) by € “"%'  and using (41), we find

2. BR° 4L Qu
V“— ﬁ" Vu ﬁ gt .000‘42)

. * .
If u* is the conjugate function to w, then w will Dbe
a solution of the conjugate equation

2 # z?n % LnLBu
vw: =2 Vub + B2 =T ... (43)

¥ultiplying (42) by u* and (43) by W and subtracting, we
have . L3
r > ¢ % “oud

w Ve = Vi = ‘ﬂ(,[u & 45
(44)

But V"qp = ol W ¥

, % = der (X grde) = AKX gl
and A g = dw W |

if ? and X are any two scalars. Using these results, (44)

becomes

L) K ot agi)=0
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This equation is similar to the eguation of continuity

used in hydrodynamics :=-

2 o
@%*MJ o ... (46)

7e are thus led to suprose that the density of particles
ig proportional to ttufand the flow per second across

. . . * _ *
unit area is proportional to Z{Lﬁ/l«( ?M“ «“ W“ )
If we are dealing with a single particle, we may either
suprose that its effect (charge and mass) is spread over
the part of space where ltu#does not vanish or else we
may interpret wlas the probability that the particle will
be found at any point in space.

Thus, in agreement with other parts of physics
using wave theory, the square of the amplitude bufgives
the density of particles , or, adopting the second
alternative mentioned above,tkufgives the probability of
finding a particle at any point.

Since the total number of particles must remain
constant, we must have

Swu!‘ dT = const.
or 2 wutdt = O ,
ot
AT being the element of volume in tspace. This is proved
as follows.
From (44) we have
2 (u u*) = ﬁ—, W Vuk— JVw)
ot e
Integrating both sides of this equation over any "volume"

T (in Z-space) we obtain



(g
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2 (uukdr = A W Koo
Using Green's Theorem on the right-hand side we find

éatj““*"‘("‘:“ :f‘,.t S(uWu‘~u*Wq)o(o~

As T becomes very large, the surface integral vanishes

and hence, if the integral is taken over all space,
e AT =
. vtj““ T =0.
Schrodinge;'s theory of waves appears to yield

a simple wave in ordinary space only in the case of the
motion of a single particle or a beam of similar particles.
In general it may be said that the waves visualised by
his theory are merely mathematical abstractions which
have no essential reality in our space-time frame.

The infinite monochromatic wave which was used
in deriving equation (34) is unsatisfactofy if we are
dealing with a single particle since the probablility
density /t&l&is the same from-- tote. If we wish to
narrow down the limits of the particle's position we are
obliged to think of a wave function whose graph takes the
form similar to that shown in fig.3 . A wave of this kind
is well known in the theory of Waves in Deep Water, where,
as in Wave Mechanics, the phase velocity is a function of
the wave-length. At first it is scaréely possible to pick
out the wave<length at any point. After a lapse of some
time, however, the wave is found to have spread out
somewhat and many more undulations have appeared. It thus
possible to take a part of the wave and say that there is

a predominant wave-length ;Lthere, so that the wave in
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that region is made up of an infinite number of infinite
monochromatic waves with wave-lengths lying between A + £
and A,-£ , € being small. As mentioned previously, such a
disturbance has a group velocity given by the formula 3%2).
Bhere will be various regions in the wave like that just
described, where a certain wavelength predominates and
a group is formed, moving with its appropriate group vel-
ocity. Bach of these predominant groups will be separating
from its heighbours, since its group velocity differs
from that of its neighbours. Thus, further spreading will
occur and each of the old groups will itself give fise to
several new groups. This process will proceed until, finally,
the whole disturbance is diffused through space.

Clearly, the description of a single electron by
a non-monochromatic wave gives rise to considerable
difficulties. In the sequel we shall use only infinite
monochromatic waves wnd deal only with steady beams of
particles. This is a considerable simplification, the

main justification for which must be found in the

comparison with experiment.
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Chapter 1II
ELASTIC SCATTERING OF A BEAM OF ELECTROKS BY AN ATOM

For many purposes it is convenient to consider
an atom as a spherically symmetrical electrostatic field
with a potential function V%) . The scattering of a beam
of slectrons by an atom can then be treated by wave mechanics.
The problem was first solved in this way by Born?! for both
elastic and inelastic‘ collisions. Another method, which
leads to mBre accurate results for slow electrons,was later
given by Faxen and Holtsmark?, but for fast electrons Born's
method is sufficiently accurate. The result obtained by
Born for elastic collisions was afterwards expressed in a
different form by Mott®, who introduced the well~known
Z-ray form factor F/e) in place of V/?j.

Let the incident beam of electroms be along Ox
and let the centre of the atom be at O. From the discussion
in the previous chapter, the incident beam may be regarded
as being accompanied by a plane wave e—lkx’ where the time
factor has been omitted and K:qu/}\ . The scattered wave
will have the same time factor since the collision is
#lastic and E is unchanged. We may now write Schr'o'dinger's
equation (34) for the beam of electrons, each with massmn,

VY + &R (E-V)y =0
or \7"?)1( + Ky = @%’;} vir)
1zs. f£. Phys. 38, sos;glgzsg

®%5. f. Fhys. 45, 307,(1927
3Proec. Roy. soc. 1274, 658, (1330)

RN V- LD
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& _ 3]7’2?»\1_:
wnere K £2
- T (48)
Similar equations to (47) are well-known in physics. For
R
example, V7f’ = 4TE()  has the solution
dtT
¥ =55—~F
2
ana VX + KX =4 (49)
has the solution
e-LKf o
X = T..... Ceeeere e 50
S &=+ (50)

‘ie therefore write (47) in the form
4 ]
Vg +Ky = 4 @ VDY
and then, comparing with (49), we get the particular

solution

—iKIT=F

[Tt 1y € ' ! 5ol T
¥ =) TV T re
—>

where 7 represents the vector from O to the integration
/ -~ .
point P and 7 represents the vector from O to the point

A
P, where XOP =8 (fig. 4). To this must be added the
solution+p of equation (47) with the right - hand side

put equal to zero. Thus _a«iKV?L7W
7T, / N
Y= '/_J’o&?g} W) =57 Vo3 (1)
where:is the solution of

2 Ry
vy rK =0 . . (52)
‘e now proceed to evaluate the second on the right-nand
! ~x
side of (51) when 7 is large i.e. Z§>7-§ Ji then have
-> >
F-F] = {r2-2di)+ 0 g
22, . ) 0 _L}
< i1 - Gy Righer e 1
-)‘)')

_Gr
= 1‘ pou



m .

(1
-~ ] >
Let 7 denote unit vector in the direction OFP . Then M =
¢

and IT-F) = — (7Y

Y

® 0 0 0 8 00000 000

In the denominator of the expression on the right-hand
side of (51) we use the approximation ’T 7’" Y and in
the exponential term we use the approximation (53). Thus

we obtain _CK,_ -/—L-K[)’l y_,)

—iK L '
TJQAWL V(') e Kn r))L/xJB)dz' ...(54)

This represents a spherical wave spreading out from the

origin. This is clearly the scattersd wave and the other
part of the solution, 7% , must represent the incident
wave, i.e.V¥; = _..‘_Rx . Since we are dealing with fast
electrons, we may approximate further by supposing that the
incident wave is not much diffracted by the atom and

therefore in (54) we may write

P ph5) = Yol 4139

_ —LKX

Txpression (54) then becomes

—-LKT

eee...(55)
where -0
7") ; /
2Jm n. ~LKx
#(e) = j prt)e* KO e

9 .
From fig. 4, x'*(ﬁ)z;)where 7, is the unit vector in the

direction Ox and therefore
-9' P
‘A h—no)

f/é)" ey jV/)*”— k(% dr' . ..., (57)

- >
7e now take the direction of the vector M-, as axis
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of spheric;l polar coordinstes T'9'¢I (fig. 5). Then
( r ”lo) JR ~F,) oo &'
But, from fig. 4,
|R-R| = AB = 2sen 8
and therefore ('?', 71:”1;) = ng eond’

e write -
M= XKSw g (58)
and tae ax T2 ur'wwd' o ., '
f@) QIMId?ij(f)e 7' s 6 Ar' A6
o
- mrmfl//r) r'mf O gm0l
S oS ) 7 el

Year the origin V/T) ii, where Z is the atomic number and
£ 1is the electronic charge. ¥We also have V{V=477j’£ where £
éf(f) represents the density of electricity. Thus when the

expression (59) is integrated by parts twice we obtain

2 Z-~F
f/a) 5’7”"* & . _?“) ....... (60)
where Fe)=] '“*j‘:éf LESOY AT (51)
o

Zquation (60) can also be represented in terms of O and
VU, the velocity of the electrons. For, since /Fé; ,

therefore ) =g
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and therefore

_ S,
ACR R /éwwuz T Tselg
£ Z-Fo

RXmu? &;v:‘o% e . (62)

The solution of (47) is thus
-—LKI’ —LKT

YA: Q < f/é) ...... (63)

wheref@is given by (62).

Using either of the expressions on page 11 lines

5 =ndét! we may say that the number of scattered electrons
passing through area A0, placed at a point F’(T‘@) and
perpendicular to OP, will be JE;— do~ . If Ao~ subtend a
solid angle dw at O, then this expression becomes f(e) ico.
nence the fraction of the incident beam scattered into
unit solid angle in a direction making an angle 6 with
the incident beam is /f(@/?

Before we can calculate from this formula the
scattering power of any atom in a given direction, we must

first know the quantity f?%)for that atom. The formula for

F i
T Rey- 55""/“"Wﬂf>”0f

; - [¢)
with M= %s&ni
£O)

density of electrons in the atom

The value of f(¥) can be found approximately in various ways.

i

wavelength of incident electron-waves.

11t is clearly immaterial which expression we use.
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Thomzs! gave a method in which the atomic electrons were
regarded as a degenerate gas obeying what are now called
the Fermi Statistics. Hartree has obtained the required
values of f> for many atoms® by his very accurate method
involving a lengthy calculation of successive approximations.
A simple method of evaluating F is to assume that the
atomic electrons are spread over the surface of various
concentric spheres with centres at the nucleus. This way
of picturing an atom has been discussed by Pauling?® who
applied it to predict certain physical properties of
many-eclectron atoms and ions.

For our purpose, formula (64) can be expressed

more conveniently in the form

F =3k 2o coveeees (65)

where K; is the number of electrons on the g th. shell
and 1i is the radius of the Zth. shell. We shall consider

. . 2 0?5& 39 é
the electrons to be divided up into the groups /s, LA,
<35& . In this notation, the first figure denotes the

9 e o o o

gquantum number R , the letters-s,f),af,..... correspond

to the values 0, 1, 2,..,. of the quantum number {Q(zﬂfn_)
and the index at the upper right-hand denotes the number,

?% , of electrons in the group viz. 2(2¢+1). Consider now
iroc. Camb. Phil. Soc. 23, 543, 1927.

®Iroc. Camb. Thil. Soc. 24, 89, 1923.

znd rroc. roy. Soc. 141A, 282, 1933.

froc. Xoy. Soc. 114A, 181, 1927.
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the problem of an electron of charge -€ moving about =
fixed nucleus of charge t}é. The solution is expressed in
wave mechanics by a well-known Schrgdinger eigenfunction
which we denote by 7%994h%ﬁ. The electrons in any group
in the atom are taken to correspond to the eigenfunction
)"/)t,f, m,j/) , where n, £ nave the values for the group in
guestion and 3,, the effective nuclear charge, is simply

o

taken to be Z"Z)QP . The symbol/fis intended to denote
the sum of the numbers of electrons in the previous groups
lying nearer to the nucleus. If?%i is the eigenfunction
corresponding to the zfﬂh group of electrons and ﬁ;is
the number of electrons in the group, then we take the
function )1?%*7% to be the density distribution in space
of the ¢ th. group of electrons. If now 4z is the element
of volume in spherical polar coordinates, then the number

of the ¢ th. group of electrons distant between between 7

and r+dy from the origin is given by

I oyttt

and the average distance of the group of electrons from

the origin is "
IR ER A Aty
T = R,

- j‘(j"“fff:dt . e, .. (66)

T@ is taken to be the radius of the sphere on which the

Z}h. group of electrons are spread. 7hen evaluated, the

integral gives



r
t

(67)
Formulz,is not proved here. It is to be found quoted in

I
(P
Q«[ S
>
+
s
N
§
N
:fJ';:é
<
g

Ta 1ing's varer®, being obtained from a more general formula
siven by Waller®. The constant @,is the r=dius of the first
circular orbit of Bohr's hydrogen atom and has the value
5-28 1079 cms.

For any atom we can now drav up a table such as
that shown (table 1), giving the values of Q'for the various

groups =s calculated from (67).

+

Teble 1

TARBLE OF 7o FOR ALUNINIUM
Ld

n¢€| Ry |symbor| % (ems.)

1] ol =2 1s* | 6:092 10-10

2] o] 2 ot | 2-880 10-°

21| 2p° | 2-934 1079

3 o] 2 3st | 2-375 1078

301 1 3p | 6-863 1078
Z =13

— o

The quantity F?b)is then obtained at once for given values

of O using formula(65). The outer (valency) electrons, usually
one or two in number, are probably only loosely attached to
the atom and, since they do not contribute appreciably to

the value of F:, they may generally be neglected.

Y1oc. cit.)

2 23. f. Tays. 58, 355, 1923,
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Chapter III

SCATT RING OF A BEAN OF ELECTRONS BY A CRYSTAL

e et et ot et e it

The essential characteristio of an isotropic
crystalline structure is that it can be divided into a
series of regularly placed parallelepipeds such that each
contains exactly the same kind of matter, arranged in the
same way. An alternative way of characterising a ecrystal
is to say that we can find a series of regularly placed
roints in the substance such that observers placed at each
of these points would each see, surrounding himself, the
same kind of matter, distributed in the same way. The
position in space of the parallelepipeds or points is not
definite. The parallelepipeds may be moved as a whole, s0
long a5 their relative positions to one anqther are unaltered.
The same mzy be said 6f the points and thus the points may
be mede to form the corners of the parallelepipeds.(fig. 6)

The points may be represented by the formula

re - 4 a, rhag +ET L (es)
where the €'s are integers. The points form a lattice and
zz ,Ti;, Eisare the lattice srace constants. If we now
draw a plane making intercepts o/, , ﬂvﬁb- %vﬁb on the
axes a ?;_{25 and draw a parallel plane through the origin,
then a set of parallel, equidistant planes may be constructed,
these two planes being adjacent members of the set. This
set of planes will contain all the lattice points. If,

however, 7 ,1>,q3'have a common factor, some of the members

of the set of planes will not pass through any of the
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lattice points. Therefore,if we wish to have the minimum
number of planes, containing 211 the points, with the ziven
normal direction, ther # ,%, , n, must be divided by their
common factor. They are then called the !iller indices of
the set of lattice planes. The simplest of crvstol occurs
when each parallelepiped contains a single atom. In general,

each of these unit cells corresronding to the vector

-
€ - - —>
ro= 6@/ -/’éa>+/3a3 ....... .. (62

will itself contain various kinde of atome. The vositions

of these atoms in.the cell at the origin will be given by

R E R 5 R e \
% =64 FRAFEIG (59)
g0 that fﬁ/&,, ﬁf/hl, Qﬁ/aa'are the coordinates of the Kth.
etom in the cell (fig. 7). The position of any atom will

be given by

_>g = 2
Te =Tt (7¢)
-tKx . . C —>
Let a wave € , moving in the direction s,

" be incident on the lattice and let each atpm in the lattice
scatter a spherical wave of the form J% C-Lkr T , Where

the part zi(which is independent of ¥~ ) refers to the f%th.
atom in the typical unit cell.(fig. 8). It will be assumed
that the total "effect" at a point P is found by first
adding the wave functions for each atom (taking into account
Phase differences) and Eggg sduaring the modulus of the

, - = ->
resultant wave. Let O0FP= K and let S be unit vector in the
-> - > > 2
direction OP . Also let OA ={fand AP=R& , where Ais

the typical atom. If the phase of a wave scattered from






Y\J

(

an otom ot the origin is taken to te zero, then the wave

4

scattered by an atom at A is rerresented =t P by
>, - I'A
fe — (K(Tfs) — KR,
RK -e . (71:“
(3
"he vezultant wave =t P is Civen by
: K(y.;t?) —1L KR/?
. -t =0
Se >k Sz #

'3
If OP is very large compsred wit* OA we may write, in ths

A
denominator, Rk = R and,in the exyorential term,

RE - [Ri+vf — QR(%3)]"

R

=R[1- %(?ﬁ;)%u]&

>,
14 a0y
=R“(7;:(5)' ceceervaenr e ceanon (73]
neglecting terms in /R, 1 /R* etc., Fence (72) becomes
. o]
et R i k(%E,3-5)

R Zéﬁﬁe . (74)

and ueing (7C) this expression may be written

-iKR K (F32-2) PK(R,375)
2 ? L ) o —— .e f‘) o
R 2Le Zéf& e (75)
—9
Substituting the value (68) for 7¢~we find
. -ae g--sv ‘ . - ‘/vﬂ L(/’
Z' &LK/Y) o) Sz’eéflA’Zbe xz.,e 3773
wrere = = =
A = j:SM“:)" ....... il (76)
LK(T, 35

byS and thus the square of the

e denote 2/}‘ €

modulus of the wave (75) is

L et

If we prescribe linits o?/‘,’,o?ﬂl "’?Aé (/V' ,NV/);being integers:

\

(7))



then the S 's mav be summed 1r-(77; bj the ordinary formul

for =, geometrical progression. After o simple transformatlon

the modulus may be taken and the expression (77) becomes

S S T

rR? sl & s B s ) (78)
Thies is a maximum if
A' =ik, Ay =2k, , 'qa = 2 h,
ﬁ:,-ft,-ﬁabeing integers. Thus relations (76)lbecome
263 = A o
FACES NSV e, (79)

;1;[?*5;) AR,

where A =%§'= wave length. These are the Laue equations
and give the directions of the interference maxima. It is

usual to write

A . & e & & o o 0 (80)
and then equations (79) become
(.q.ji) =& , E=6L2,3)......... (81)
-3“—5 -
The reciprocal vectors éﬁ é;,é; are now introducedg\%ei ij\

defined by the equations

L =K.
- (=, ﬁ> . eeeea.. (82)

If Zjils any vector, then b k '
U < 2GV) A0 @D

We may thus express ﬁfln terms of the @'s and the
15ee e.g- C. I. Weatherburn: Zlementary Vector Analysis

rage <5.
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- = >
reciyrocal vectors#, %, , %, :-

Z =20 + L6 Z") J/a %)

and from (81)we thus have:-
7’( = /i K, 7‘/{» %\__ 7 {5 %3

or ?f A

This latter equation, like eguations (79), contains the

conditions for interference maxima.

Equation (8C) maoy be represented geometrically
_— -
(fig. 9) and, since s , S, are (equal) unit vectors, it is
_9
clear that ﬁ rust be perpendicular to the plane which
. 3 2 - s
bisects the angle between — and — or s and s, . Thus we

) A
may consider a reflection of the rays to take place from
the sur‘face_}of a plane (or set of planes) perpendicular to
the vector { . This leads to Bragg's statement of the
condition for interference. If & be the angle between the
directions S and _Si , then from the diagram (fig. 9)
sl 8
K] = f ...... (85)

Let N ve the { integral ) common factor of 4, 4, , £, and

write

NS ALK ) = AL AR (86)
e RPN A

so that —
\§ *

Bragg supposes that reflectionrn takes place from a set

of lattice planes. These, as we have seen, rmust be
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- >
rerpendicular to ﬁ?(orfx). Using this condition, it is

easily proved that the spacing (5) of these planes is ;ﬁ*

]

k .
and that f.,‘(L, (: cre the Miller indices of the set.

Thus from (85) and (88)

N ;023\.&»;&63
which is Bragg's X-ray reflection condition. In Bragg's
terminology N represents the order of the reflection
and we speak, for example, of the 3rd. order reflection
from (100) planes. In laue's notation the reflection is
given by the numbers %, f;,‘fi, which become in the case
mentioned (300). The different orders of reflection

~>

-
correspond to the 1engths}£f[,2/%?L 3fﬁ7, ...... of the
>

vector A and this is seen from the figure (9) to
correspond to larger and larger Qalues of the angle 0 .
The positions of the maxima of interference are
thus seen to depend on the second of expression (78). The
intensity of the maxima will be dependent on the part\csl&

of (78) where
Lk(T, 35
S = Eﬁ < e (90)

Using (80) this becomes -
. -
ane (K7g)

\S=Zfﬂe
:Z}fke

. 2 o
using the values (84) and (69) for n and ¥ and bearing in
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mind relations (82).
The apylication of the expression (91) for o ic

shown in the case of a face-centred cubic lattice made ur

of similar ztoms. The values of the coordinates ff.ff:,g&

of the atoms forming a unit cell are (see fig. 10)

(000)

‘ 1 k’\ - { 2
(zg0) ©@hd

(Ogé) Loy
iod o
( 2;)2) oo
The quantity'jiwwill be the same for each atom. Therefore
oni Kths LRty ari Karh
Y

_ f — 2iri =
\S—'f,&/fe + €

vix

and IS} :If”l-#eﬁl%-}enl&%’-fegﬂ &v']
If £, 4 , %, are all odd or all even, then ‘S':l+'f, )

if 4, , f. , A, are partly odd and partly even, then ISy:O.
Thus, for an elementary substance crystallising in a face-
centred cubic lattice, we whould expect to find reflections
such as (200), (111), (220), etc. but no reflections of the
form (100), (211), etc.

From the mathematical analysis of this dhapter
and the previous one, we should expect to find a pattern
formed when a beam of electrons suffers elastic scattering
by a crystal and then falls on a screen. fxperiments by
Davisson and Germer and by Thomson and others! have shown
1 see e.g. Thomson:f Tave Mechanics of Free ZLlectrons

Coil
or Taylor Jones:- Inductiog,Theory and Applications
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this to be true. Xo interference of inelastically scattered
electrons has been reported. It would seem that ifa% ,Ji s oo
are elastically scattered waves (of the same wave-length)

then the resultant squared amplitude at any point is
|3\+3‘7—"' T |‘Q

But if\Z ,3;»,.... represent inelastically scattered electron
waves (all of the same wave-length) then the resultant
squared amplitude at any point is
2 2
|71+ )R+ .

In the first case there is interference but not in the second

PN

case. These facts support the conclusion to which Schrgdinger's
theory led us viz. that the electron waves have no real

existence in space-time and are merely mathematical devices.



Chapter IV

SLECTRICAL METHOD OF DETECTING TRANSMISSION
DIF¥RACTION PATTERYNS

Professor G. P. Thomson's experiments were made
with high velocity electrons (cathode rays). These impinged
on a thin film of gold or other substance and the transmitted
beam was then allowed to fall on a photographic plate. When
developed, the plate showed a Debye~Scherrer type of pattern.
Other workers have repeated these experiments, altering
certain of the details and sometimes obtaining new results,?
but in all cases a photographic plate or fluorescent screen
was used. It is naturally of interest to know whether it

is possible to detect the dlffractlon of the cathode rays /

B e B

by some dlrect electrlcalvmeihod of measurement This if Kb
successfdl would give immediately the intensities of the |
different parts of the pattern.
In this chapter, apparatus for such an experiment
is deseribed and the results obtained withigre given. Small
parts of the electron beam are allowed to pass successively
into a Faraday cylinder and are measured with an electrometer.
A diagram of the vacuum tube is shown in fig. 11.
A pyrex glass tube « with aluminium electrode /A was
sealed into the cylindrical brass tube 4 with "Picien”.
The tubes ¢ and o were also brass cylinders and 4} <
and A were screwed together and sealed. At o , ™ and ™

were small apertures with diameters 1 mm., 1 mm., and 0 13

mms . respectively. The film under investigation was mounted

1 ] _ ;
vee references on rage =3
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on a small'b‘ra-ss ring of diameter 2 vnms and fixed in
position at Z immediaté’ly b‘e‘hind‘ - . -The two circular Sl
brass plates R ’ ﬁ',\/could 5e rotated about the axis of / /—z\f(vz .

S
~ §

the tube, while the system was evacuated, by means of the
brass cones € , f . These cones were lubricated with
Ramsay grease and they were connected to the plates A , R
by the rods ¥ ,.4J . Zach cone was fitte(a/gg(pointer moving /
over a circular scale fixed on the end of the tube at X.
The Faraday cylinder ?‘ was held in position by two brass
rods S and Z ,» by one of which connection to the electro-
meter was made. Ebonite bushes served to insulate s and 2
from the tube o« , and they were painted over with an
insulating wax to make them vacuum tight. The ground brass
cone 9 enabled the small disc 7 to be moved when desired.
The tube « was connected to a mercury diffusion pump,
backed by a "Hyvac®™ rotary oil pump. Some of the dimensions
were:- O to n, 9 cms.; tto m, 9 cms.: £ to plate 4,
19-8 cms.

Fig 12 is a diagram of the plates R R R as
viewed along the axis of the tube. ZTach plate has a centiral
aperture A of diameter 0'5 mm. The plate 4 , uppermost
in the figure, has a radial slot FED® cut in it of breadth
0'5 mm. and the plate % , which lies immediately behind
A, has a spiral slot DEC of the same width. At the
point where the radial slot is superimposed on the spiral,
a small aperture E is formed and, if PEC is an equiangular

spiral, the aperture will be practically constant in area
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for different relative positions of the two slots. One of
the spirals used was given by the equation 1"=0454ﬁ%(5“ﬁ“?2
77 being in cms. The opening of the Faraday cylinder was
made sufficiently wide to catch the cathode rays which passed
through the aperture £ , in any of its positions.

The brass tubes were connected to earth and the
electrode f> was connected tofﬁge secondg;y of an inductio;——\\_’
coilﬂ_A mercury jet interrupte; was used in the primary #ﬁka |

/A Lt
circuit of the coil or, alternatively, a succession of
single breaks was made with a hand-operated interrupter.
In the lead from the induction coil to the discharge tube
a resistance of several megohms was inserted. This prevented
*flashing®™ of the tube. To measure the potential across
the tube, a spark gap with 2 cm. diameter zinc spheres
was used.

The electrometer used in connection with the
Faraday cylinder was of the Dolezalek type. The suspension
consisted of a length of "Vollaston"™ platinum wire 0-005
mm. in diameter. The quadrants of the electrometer stood
on quartz pillars and the interior of the instrument was
kept dry by small dishes of calcium chloride placed inside.

A potential on the needle of about 85 volts gave the max-
imum sensitivity, namely:- 380 cms. deflection per volt,

on a scale at 110 cms. The instrument was almost dead beat.
The capacity of the electrometer and Faraday cylinder

system was of the order of 100cms. The leads between the
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cylinder and the electrometer were completely shielded
and insulated, where necessary with paraffin wax. The earthing
switch was formed from a block of paraffin wax with a small
hole in its upper surface containing a solution of copper
sulphate in water. The (copper) wires from the Faraday
cylinder and the electrometer dipped into this solution
and an earthed copper rod was suspended vertically with
its lower end immersed. By operating a windlass arrangement,
the copper rod could be raised and the quadrants and cylinder
were then unearthed. The whole switch was placed in an
earthed copper box with a small hole in the cover to allow
the earthing rod to be operated. The design of the earthing
switch was found to be important when using an electrometer
of this sensitivity. When mercury was used as a liquid in
the switch with amalgated rod and wires, the electrometer
needle did not remain steady after unearthing, even when
the switch was operated extremely slowly. No trouble was

experienced, however, with the arrangement described above.

L

o

o

S

~~ experiments must be as thin as possible.

The films used in transmission diffraction

Celluloid films were made by dissolving a small
piece of celluloid in amyl acetate and allowing a drop of
the solution to evaporate on the surface of water. The
films used were almost black when their surface was viewed
by reflected light and transparent and colourless by

transmitted light.
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For gold films, beaten gold leaf was used. This
was generally thin enough for the purpose but, when necessary,
it was thinned with dilute aqua regia. The films appeared
green by transmitted light.

The beaten éluminium leaf obtainable was rather
thick. The foil was fixed on the carrier ring and thinned
by placing a drop of dilute caustic soda solution on its
surface. This solution was then removed using the edge of
a piece of filter paper and the film wg%sgggeral times by
successively placing drops of distilled water on it and re-
moving the water with filter paper. The films were obtained
finally practically transparent and colourless by transe
mitted light.

For silver films, a piece of the beaten silver
leaf was fixed over a small brass ring which was suspended
by a fine copper wire in a vessel containing a very dilute
solution of silver nitrate in water. The ring was
suspended so that the surface of the film was in a vertical
plane, thus enabling the film to be immersed and withdrawn
from the solution with the least possible risk of damage.
The ring was made to form the anode of an electrolytic cell
and a current of about 10 milliamps was passed. In about
five or ten minutes the silver film was found to be zlmost
transparent and colourless by transmitted and the ring was

solvien was S0

carefully raised out of the solution. Since the wa,dilute,

it was scarcely necessary to wash the film.

These methods of thinning aluminium and silver
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leaf gave films which were not stained on the surface in
any way . Attempts were made to thin silver égg?;éfleaf e&z;m
with acid but there was considerable uncertainty attached '
to the process and the resulting products were generally
yellowish in colour.

m—
f Before the tube was placed in position on the
bench, a glass cathode ray tube of about the same length
was fitted up and a 1 ngth was fixed ¢n p031t10n so that 4u;;;7—-

e U N v
the vertical component of the earth's" magnetlc field was

neutrallsed at the tube and the electron beam was practieally
undeflected. The effedt of the horizontal component was
eliminated by placing the tube along the magnetic N-S line.
The testing tube was then removed and the apparatus placed
in position. |
By adjustment of an artificial leak, the pressure
in the tube was kept at a value which ﬁouldvgive a
sufficiently long mean free path and at the samevtime allow
o discharge to pass in the tube at the potential desired.
Thg/éééﬁ?gie A (fig. 12) was kept oren by moving
the disc © out of the line of the beam and the cones € , £
were turned so that the aperture £ was not formed. The
tube was then given é series of "runs" from the induction
coil of, say, one minute each. The position of one or two
small magnets, placed near the tube, was changed during each
"*run® until the maximum electrometer deflection was obtained.
The film being in position in front of the aprerture m,

the apparatus was ready for o diffraction experiment. The
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cone 2 wes turned so thet the dice Y closed the qperturei:‘ﬁ
A . The rocition of the cone € , controlling the rlate A ,
LS kejg::g thut the r;di;l slot did not move. The readings
were then talken of electrometer deflections for different
rositions of the the conejZ . Since the latter cone controlled
the position of the spiral slot, the readings gave electron
intensities at different points along a radius. Similarly,
intensities at points on the circumference of a circle of
given radius K were obtzined by setting the relative
positions of the radial and spiral zlots so that AL =~
and by moving the cones e,andzﬁ round together into
different positions.

Figs. 13 and 14 indicate typical results for a
celluloid film. They were produced by electrons of energy
42,500 electron volts. The full line graph on fig. 13

~ represents intensity at points on part of the circumference
o~

ﬂwJ7 of a circle of radius C-27 cms. The dotted curve gives <——2\\

’p-"
1 intensity at points on a circle of radius 0-5 cms. The

4 gives intensities at points on the radius 9

3 _?' g hd
- 0

el
_— graph in :
OA (fig. 135.

These results show that the pattern consists of

six maxlmalen a circle of radius approximately 0-3 cms. lf&)ﬁ%~¢ﬂ

Pt
and six maxlmaﬂsn a circle of double this radius. Lying
in a21mutha1 positions between these spots there,also ,//’//r“
maxima on a c¢ircle of radius about 0-5 cms.

This type of pattern has been found for
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celluloid films, using the photographic metrod, by
Dauvillier?!, Kirchner?®, Taylor Jonmes3, and Trillat4. A4s
these writers have pointed out, this pattern would arise
if the scattering centres were arranged, in planes parallel
to the surface of the film, at the corners of =z dismond-

shaped network as in fig. 15. The first ring of spots arises
from reflections by planes parallel to AB and perpendicular
to the plane of the paper. The next ring is formed by
planes parallel to AC .

The third ring is the second order of the first.
Assuning the de Broglie wave-length A;ééér, the side of
one of the dizmonds is found to be 4-75 X.U. Consideration
of the specing found between atoms in X-ray work shows that
these scattering centres at the corners of the diamonds
cannot be single atoms. Some of the centres may be vacant.
Those that are occupied probably each représent a group
of atoms like CgHgOglly or CgHgOnN.

Figs. 16 and 17, 18 and 19, 20 and 21 indicate
results for gold,aluminium and silver, respectively.

The curve on fig. 16 gives intensities on part
of the circumference of a circle of radius 0-61 cms. The
full line on fig. 17 gives intensities at points on fhe
radius OA (fig. 16). The dotted line on fig. 17 gives
intensities at points on the radius OB (fig. 16). The
pattern deduced from these results consists of four rather
1Comptes Rendus 191, 708, 1930. 2Naturw. 18, 706, 193C.

3Phil. lag. 12, 642, 1u3l. %Comptes kendus 198, 1027, 1934.
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broad maxima(én a circze of radius 0-6 cms. and also on a
circle of double this razdius. Lying in azimuthal positions
between these maxima, there are also maxima on a circle
of radius about C-94 cms.

The interpretation of the graphs in figs. 18, 19
and 20, 21 is exactly the same.

Fatterns of this nature have found by various
workers using the photographic method: for gold, Taylor
Jones! and Trillat and EHirsch?®: for aluminium, Thomson®.
This Laue type of pattern arises from a crystal lattice
of the cubic face-centred type, oriented with the (200)
sets of planes perpendicular to the surface of the film.
The maximum § is formed by reflections from (200) planes,
P, from (220) planes and T, ic the second order of — . “/<i
The slight curvature, which the films are almost certain |
to possess, provides the necessary inclination between the
reflecting planes and the incident beam of electrons.

In the case of the celluloid pattern there zre,
as has been shown, probably at least twenty-five atoms

i v
/ﬂébﬁin%)each scattering. There will be interference betweencﬂ*l’

‘the waves scattered by each atom and a knowledge of the
relative’positions of the atoms in the group would be
necessary before the resultant effect of the group could

be calculated theoretically. This interference will
evidently also be a function of @ , the angle of scattering.
1oc. cit. 225, £. Fhys. 75, 784, 1932.

3Troc. loy. Soc. 1174, 500, 1928.
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Since little is known regarding the structure of the units
in the long-chain nitrocellulose molecule, no attempt is
made here to calculate theoretically the intensities in
the celluloid pattern.

In the case of the gold, aluminium and silver
patterns, the heights of the maxima § ,2 ,/; above the
general scattering (shown with a dot-dash line) were taken
as the intensities. The theory of chapter III only applies
to a perfectly formed crystal, and it is usual in X-ray
work to take the area of the hump as the intensity and use
"integrated" reflections. But the fact that slower electrons
are always present in an induction coil discharge makes this
procedure undesirable in the present case. Since the
incident pencil is so narrow and the crystal so small, the
considerations, which make it necessary to use integrated
reflections in X-ray Work,7@§¥}ﬁaijéiéé§ here unless great
accuracy is desired.. N

The comparison between experiment and theory is

shown in the table 2 (below). Column (a) gives the theoretical

g

values of the intensities at scattering angles corresponding

to the points 7, , /2 ,/ of figs. 17, 19 21.\ Theae~are

calomlated from formula (62) with the appropriate values

of 7, 6 ,2 taken from the data in figs. 17, 19, 21.

’
Column (b) gives the experimental values of the intensities.
These are obtained from the graphs by reading off the heights

of P, F. . F above the general scattering level. Column

(c) is the ratio of the numbers in columns (a) and (b).
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The agreement between experiment and theory is fairly good

zs indicated by the aprroximate constancy, in each case,

of the numbers in column (c).

. Table 2 N N
(a7’ o) ()
Theory: Experiment: [Rat#o:
’ arbitrary
10-18¢ms . 2 units (2)+(b)
P 5210 49 106
GOLD
. P 2246 20 112
(fig.17) 2
F 1030 9 114
; wan
P 757 285 27
ALUMNINIUK —
(£ig.19) A 103 4.3 24
ig.
I 52.1 2 26
Pl (3744 28-5. 131
SILV:R ! - « e —
( ) I 1690 14-2 112
fig.21
I 767 7 110 /
advadtle &
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Chapter V
ABSORPTION OF ELECTRONS AND CONCLUSION

The electrical method of detecting electron
diffraction patterns from thin films is not so suitable
as the photographic method,for verifying de Broglie's
formula )-”_b' It is: approximatei&Xshown io begtrue in the="~—
curves of the previous chapter. Other experimenters such

as PSMMZ ﬁ;é;‘; uhgalg;&;ilatlon to be satisfied to a hiéﬁ”//~
degree of accuracy. The results of Taylor Jones* show a
variation in the ratio Z/A' , where A' is the value found

from the photographs of gold patterns,for different speeds

of electrons. This may be due to the fact that the film is
charged up by the electron stream and the velocity of the
electrons thus is altered.

Experiments have been made by the writer to
measure the absorption of electrons by thin films. The
apparatus was of the same nature as that shown in fig. 11
except that the film was on a carrier allowing it to be
moved in and out of the beam. Only one central aperture,

1 mm. in diameter, was used in front of the Faraday
cylinder instead of the plates £,#® (fig. 12). The films
experimented with were of celluloid and showed interference
colours. By fiewing the film by reflected light at a

given angle, the thickness could be found from the colour

at any desired point. Tables of thicknesses corresponding

1 30c. cit.
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to the different colours are given by Newton and repeated
in various b_ooks.L The thickness of a celluloid film varies

;agidly from point to point and interferometer methods

S

are not suitable for mzking the determination. The results
/}rw e,y'\w—v. .M,L..,_,t.am"A

wergAOnly approximate but it was found that,if Jg was the

. s . Conrs ot
incident beam current, JT the transmitted beamqand‘x the

X ‘
, Wwas fulfilled

thickness, then Lenard's law, /-1, <
for different thicknesses. The constant & depends on
the speed of the electrons and for 29kV. electrons it had
the value 1+7.10% when x was in cms. The fraction absorbed
et this voltage by a "black" film.of celluloid (such as
is used for electron diffraction) is only 2%.

Another set of experiments were made in which
the films under examination were placed close up to the
Faraday cylinder. In the first experiments, only the
undeflected transmitted beam had been measured. But now,
the total transmitted beém, even if scattered, was
collected. Aluminium leaf was used for films and it was
found that the ratio 1/75 was greater than unity for 29 kV.
electrons unless three or more thicknesses of the leaf were
used for the absorber. Thus it is evident that secondary
electrons are emitted in large numbers from the film. For
a single sheet of foil the ratio I/io was 1-3. It is thus
possible that the film, if insulated, may charge up
positively.

13ee e. g. Lawerence: Soap Films, page 137.
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If we exclude the disagreement regardlng the
Mo, Pdriardlons o7
wavelength, it may be said thatéi:te mechanlcs hes

received-considerable—eonfirmation from tbe elee:;;E)
E QYOI VI by S
dlffractlon experiments./ The general principle that the
R S D by
electrons £ollow a wave is verified by the interference

e 37
et bt Y o 48 5 E aimatia s (ORI P L

patterns)while the principle that lﬁ# = density of electrons

is verified by the intensity measurements described in

chapter IV.



