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PREFACE
The following is intended to give an account of 

certain aspects of electron diffraction by thin films.
Chapter I deals with those parts of wave mechanics which 
have a bearing on the problem. Chapter II discusses the 
collision of a beam of swift electrons with an atom. The 
method given there for calculating the scattering power 
of any atom appears to be new and, while the calculations 
involved are simple, the accuracy of the method appears 
to be good. Chapter III is concerned with the scattering 
of electron waves by a lattice. An account then follows, 
in chapter IV, of experiments on the diffraction of cathode 
rays using a new type of apparatus. The various patterns 
obtained are discussed and the intensities, measured directly, 
are compared with the theory of chapters II and III. Finally, 
chapter V contains concluding remarks together with some 
experimental results on the absorption of the electron 
beam by a film.

The writer is very much indebted to Professor 
E. Taylor Jones for suggesting this work and for valuable 
advice and encouragement.

T m . C .
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Chapter I 

WAVE MECHANICS 
The phenomena which appear in the passage of 

electrons through matter can generally be explained most 
successfully from the view-point of wave mechanics.

The basic idea of this type of mechanics was 
put forward by de Broglie1. He began by supposing that 
any particle of energy E  carried with it a vibration of 
frequency V  , where

..........................u )
'E  being Planck’s constant. (Equation (1) suggests itself 
from Planck’s successful hypothesis that the energy of an 
oscillator must be or a simple multiple of - & V . ) To 
a stationary observer, the vibration would appear as a 
wave. This may be shown as follows. Let the particle move 
with velocity &  along O X and let the vibration be given 
by the expression

C m & y r v t ...................... (2)
Let p = W /c where Cis the velocity of light in vacuo. 
How apply the Lorentz transformation

t  =  C. -   (3)
V  /-£*

to the expression (2) and it becomes

c m - £ ■ * ■ )    (4)

where

V/-/3*   (5)
.. i . u. e .til/ J • O, s., <„■ , j-.'dcjO
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Expression (4) represents an infinite monochromatic wave 
moving along OX in the same direction as the particle, 
with frequency T^and (phasej velocity c / p .

If ^ is the wavelength of the wave, then

X  = (velocity J-r(frequency)
= c J E S  ........................(s)

If there were a group, resulting from the superposition 
of a number of such cosine waves with slightly different 
values of the parameter |S , then the group velocity would 
be given by the well-known formula

group velocity = c£a^ L ( j t )
ctif oLljf) / 7, \

t d p
Inserting the values of y* and /)/ from (5) and (6), we find

group velocity = j3C-

= XT......................... (7)
The group velocity is thus the same as the velocity of 
the particle .

De Broglie used for the energy £  the value m 0CA 
given by Einstein’s special theory of relativity, 
denoting the rest mass of the particle. Hence

=   (8 )a
Substituting (8) in (6), we find

X  = ...............  (9A)
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But special relativity yields the formula

= i*
i 'and thus

' A^   (9 ̂
r n - i r

similarly, from (8) and (5),

p '  =  (10)
A,

Be Broglie’s theory thus leads to the conception 

of a wave (in ordinary space) which accompanies the moving 

parti cle .

An alternative method of introducing 'waves into 

dynamical problems is given by SchrUdinger1 . He considers 
any conservative dynamical system defined by the independent

j ly.
generalised coordinates £  . The kinetic energy is

denoted by r  and is expressible as a quadratic in the £ 's 

so that we may write

'J

This expression is, by its nature, always positive. The 

momenta are defined by the equations

I f *   1121
achrodinger then considers a ^-space and defines the lin< 

element by the equation
- jrfoLt

*

f f y . i )  =  i *   (ll,

 < » >

1(Ann. d . - hys. 7 9, 4 89, 1925.)
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The geometry of the space is non-Euclidean but the usual 

concepts and operations may be introduced. The coefficients 

of t h e m ' s  (13),i.e.the quantities'^, are the covariant 

components of the fundamental tensor of the ^ - space. By 

t...e formulae of tensor calculus we may write the c ova riant 

velocity components

 (14;
and therefore, from (12), we then have

A  = 2*   (lo;
Also

IA
^  _  h h  ........... (1

and therefore (11) may be written

«-* T r i - ) = - i H A K K  ..............

expression (17) will be denoted by without any bar

over the T . In the general case, V the potential energy 
7/ill be a function of the ^ fs and time.

Thus the Hamiltonian function is

=  {1(J)

and the Hamilton-Jacobi equation runs

' ♦ ' I p - 0    n r
■ a w  _I I T—

whereWis Hamilton’s Principal Function. In the case of 

conservative systems however, V is only a function of
the £ ’s and (19) may be written
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-h V(t) +1^  = o , ,7 ' 2>t ..... (20)

The next step is to write

W^.t) = s/f) - Et .......  (21)
so that

—  *  —  F
2>t

Thus (20) becomes

* T ( t 3 x ) - 2 < e - v >  ........... (22.

The substitution (21) is well-known in mechanics. The 
function /^represents the action and t l is the total energy 
of the system. Substituting(17) into (22) the latter becomes

- ■ * ' * - * >    (M )

how 2W/d<£ are the covariant components of the vector
and the scalar quantity forming the left-hand side of (23)
is the square of the magnitude of 1 . Therefore

 ̂c^rtxA. W  —  °2 V )

|<J^ZV*(W| - 'yfel ( &  ~~V)     (24)
The family of surfaces W = const, are now 

supposed to be described in the -space, where JY 
satisfies (22) or its equivalent, (24). The "normal" 
distance between two neighbouring surfaces with the 
values W and W - td w  will be dn where

c £ W  = ABC d r tc>*~
ibee e.g. he.Connell: Applications of the Absolute

differential Calculus,Page 168 equ. lb.

AW )
and
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W o  W M o c jt "t

W  S U R F A C E S  IN S P A C E

h l

ij*--



or c(.V\/ = (ty ro A  i/Y )d n

= J a j E ^ V j . d r L ..............  (25)
Since W f p t ) = _ £ £ , the family i v -  const. may 
also he written = const. + £ t  . Hence, as time changes,
the form of the family of surfaces will not change and 
the surfaces will always he given bv/S^) = const. . As time 
changes, however, the value of V/ associated with any 
fixed surface will change. If V( -  W0 is the value on a 
surface,A  , at time t, then the value of on the surface 
A  at time t+cCt will he W0 + or W0 -EcCt . if JB> (fig. l)
is a neighbouring surface on which = at time Z" ,
then the value at time will he W0+dVjc -E d t. 7/e may
regard surface// as having moved into the place of surface 
JB during the time d t and carrying its value IY0 with it, 
provided

W0 * Wa + dWo — t - d tz

or dW0 -  Edt. ................... . (26)
Using (25), this becomes

■Ja c e -Vy. cEn_ = Edt

or = £. —
d t  J z i(E -V ') ................  (27)

Thus the surfaces may be regarded as moving about, each
carrying a constant value of JY .provided each point on a

Esurface moves along the normal with velocity .
This is equivalent to the well-known Huygens 

construction in optics. If we are given a surface at



(6|)

A T  A T
T/MB t. If M E  ti-ctt.

V -
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time £  we find its position at time t+ d t by drawing

£r*£Telementary spheres of radii — • . The envelope of
'J& TF -v)

these spheres gives us the position of the surface at
time (fig,. 2). The V\! surfaces are therefore
analogous to the surfaces of constant phase used in
Huygens' theory, and the quantity IY may be regarded as the
phase of some wave. It follows that the motion of a
dynamical system may be regarded as being accompanied by

na wave propagation in the^-space. At first Schrodinger 
does not inquire as to what the amplitude of this wave is,
but supposes that the wave is of the form

* ~ s i n i v t
cm uJtP L or

oince the phase is " " E T l , therefore
t - t therefore
£  » ^Xiconstant

The value /C suggests itself for this constant, it being
of the required dimensions. As already remarked in connection
with de Broglie's theory, the equation is similar
to celebrated equations previously used by Planck and Bohr.
Fence _

^  ~  £*  (28)
and therefore ^  -  phase vel. -r V ~

= ^
4 & ( k - v )

= _ A _ .......................... (29)
For a particle of mass m a n d  velocity V  (2.9) yields

9 = ^ = -  .........................  (30)
trc lT



Then solving optical problems in which the
wave-length is comparable with the distances involved, 
we do not use Huygens’ Principle but work directly from 
the wave aquation. This suggests that a mechanics which 
is accompanied by a geometrical optics in the g-space 
may not be adequate for dealing with problems in atomic 
physics and that a mechanics which is equivalent to a 
wave optics is required.

If be a wave function, then the wave equation 
which it must satisfy is

Presumably the velocity and frequency will be the same 
whether we adopt geometrical optics or wave optics. Thus 
we put (using (27) and (28))

and substitute in (34) we should expect to arrive back 
in some way to the results for ordinary mechanics, since

/ i f i L .v U = --------
(vel.)* (31)

— o?7T t
(32)

vel. * E (33)
V*2 ( F - V )

• •••« •••••••••
Hence (31) becomes

(34)
If we put

U- - ^
E t)

(35)

(36)



the phase previously found from ordinary mechanics had 
the form J-Et . 7/e write (34) more fully

i $ , . v
=° .... (3„

w h e r e ^  is the determinant of the Vs . Substituting (36),
this becomes

ZX <ii * h $ !? A  — 2 ( £ - V )  
L * y ~b<}1 2>Q*

£ i r l  i  fe ^  *  2 < i'

 -- (38)
Vhen may be regarded as very small, the right-hand side 
of (38) vanishes and we obtain

s z / =  w e - v )  . ,
i  A o  ^ t  ^ “T    (39)

If E t  , this is

211 =r &(E~V)
l  f t  O   (40)

This equation is exactly the s’ame as (23), being analogous 
to Hamilton's Frincipal Function and S  to the Action. ITow 
(23) is simply another form of the Hamilton-Jacobi equation 
(19). Thus, when ̂  is regarded as very small, (34)yields 
the results of classical mechanics. But, if ^  is not negli
gible, we have to include the term on the right-hand side 
of (38) and the (timeless) p h a s e d  is not exactly the same 
as the action, S  » in classical mechanics. This led 
Schrodinger to believe that equation (34) might be
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successful in treating problems in atomic physics for 
".vhich classical mechanics had failed to give results in 
accordance with experiment.

The amplitude of the waves remains to be 
considered. '.Yriting

_ Sici $-1 LL = ^  ^

7jq obtain . ,
, ' h ~ S7iL£j*r - — £7l L *=- \Ls e

and therefore

n ^ c ~ S* L % t  iL'Su,
' ~  SJll 2>t (41)

•“ <2/T i-Multiplying { ’64) by •£ ^ and using (41), we find

- ££? V* ~ ̂  —  (ao)py- ^  . ...y 42)
If w. is the conjugate function to u. , then tx. will be
a solution of the conjugate equation

~ 7 F  r  "f' T C S t  ••• (43)
Multiplying (42) by u* and (43) by tL and subtracting, we

« v \ ‘ - «“'7V  ~ *“¥ /
.... (44)

But z o h ^ T  <p

and X  V * f  =  ( X  f

if ^  and X  are any ^wo scalars. Using these results, (44) 
becomes

2- ( u  U * )  -+- O  , .
1>C t_Hi I ‘
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This equation is similar to the equation of continuity 
used in hydrodynamics

| £  +  a U j  =" o  _  (46)

Te are thus led to suppose that the density of particles
jftis proportional to and the flow per second across

unit area is proportional to ^  ^  ul

If we are dealing with a single particle, we may either
suppose that its effect (charge and mass) is spread over

•¥the part of space where ku does not vanish or else we
may interpret w a s  the probability that the particle will
be found at any point in space.

Thus, in agreement with other parts of physics
* .using wave theory, the square of the amplitude u u gives 

the density of particles , or, adopting the second
Malternative mentioned above,u u . gives the probability of 

finding a particle at any point.
Since the total number of particles must remain 

constant, we must have
^ i/Lu? s const,

or C d 'X i ~ O  ,T)t J
d T  being the element of volume ing^space. This is proved 
as follows.

Prom (44) we have
3 > ( u « * ) ^  J h - A  v u * -  t Z A . )

Integrating both sides of this equation over any "volume" 
~Cr (in -space) we obtain



Iry>
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■gJAu^clTr =  J U j ^ u V u * -  y * V ^ y r

Using Green’s Theorem on the right-hand side we find
 ̂(u^ «-c* —  J^cr

As *r becomes very large, the surface integral vanishes
and hence, if the integral is taken over all space,

, ’k h ' ^ o l r  =  0 -Schrodinger*s theory of waves appears to yield 
a simple wave in ordinary space only in the case of the 
motion of a single particle or a beam of similar particles. 
In general it may he said that the waves visualised by 
his theory are merely mathematical abstractions which 
have no essential reality in our space-time frame.

The infinite monochromatic wave which was used 
in deriving equation (34) is unsatisfactory if we are 
dealing with a single particle since the probability 
density /**-/ is the same from- 00 to . If we wish to 
narrow down the limits of the particle’s position we are 
obliged to think of a wave function whose graph takes the 
form similar to that shown in fig. <5 . A wave of this kind 
is well known in the theory of Waves in Deep Water, where, 
as in Wave Mechanics, the phase velocity is a function of 
the wave-length. At first it is scarcely possible to pick 
out the wave-length at any point. After a lapse of some 
time, however, the wave is found to have spread out 
somewhat and many more undulations have appeared. It thus 
possible to take a part of the wave and say that there is 
a predominant wave-length \  there, so that the 7/ave in



that region is made up of an infinite number of infinite 
monochromatic waves with wave-lengths lying between + £
and /\0- 1  , & being small. As mentioned previously, such a

<?tvdisturbance has a group velocity given by the formula ^71) .A-/
®here will be various regions in the wave like that just 
described, where a certain wavelength predominates and 
a group is formed, moving with its appropriate group vel
ocity. Each of these predominant groups will be separating 
from its faeighbours, since its group velocity differs 
from that of its neighbours. Thus, further spreading will 
occur and each of the old groups will itself give fise to 
several new groups. This process will proceed until, finally, 
the whole disturbance is diffused through space.

Clearly, the description of a single electron by 
a non-monochromatic wave gives rise to considerable 
difficulties. In the sequel we shall use only infinite 
monochromatic waves iend deal only with steady beams of 
particles. This is a considerable simplification, the 
main justification for which must be found in the 
comparison with experiment.
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Chapter II

ELASTIC SCATTERING Off A BEAM OF ELECTRONS BY AB ATOM
Por many purposes it is convenient to consider 

an atom as a spherically symmetrical electrostatic field 
with a potential function . The scattering of a beam 
of electrons by an atom can then be treated by wave mechanics. 
The problem was first solved in this way by Born1 for both 
elastic and inelastic collisions. Another method, which 
leads to mdre accurate results for slow electrons,was later 
given by Paxen and Holtsmark3, but for fast electrons Born’s 
method is sufficiently accurate. The result obtained by 
Born for elastic collisions was afterwards expressed in a 
different form by Mott3, who introduced the well-known 
X-ray form factor Ffi) in place of VfrJ.

Let the incident beam of electrons be along 0 3c 
and let the centre of the atom be at 0 . Prom the discussion 
in the previous chapter, the incident beam may be regarded

-ifCjcas being accompanied by a plane wave , where the time 
factor has been omitted and K = oLit/A . The scattered wave 
will have the same time factor since the collision is
felastic and E is unchanged. We may now write Schrodinger!s
equation (34) for the beam of electrons, each with mass^n ,

V Sf  +  C E ~ V ) ' f =  O'n.
°r ^  - t  k * t  *  V ( r ) f   U 7  j
126. f. Phys. 38, 803,(1926)
2Zo. f. Phys. 45, 307,(1927)
3Proc. Roy. Soc. 127A, 658, (1930)
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*  __ Srr^nv p  ^1
where ^  ^i

.........  (48) ̂. . v ................ \ ^ o )bimilar equations to (47) are well-known in physics. For
example, V  f  - Ltfrf(r) has the g0iuti0n

f - S ^
and ^ X = f(f) .......................  (49)
has the solution

. - i K r
*  = J    (50)

7e therefore write (47) in the form
' f  -t V (r) f '

and then, comparing with (49), we get the particular
solution .

- L K l r - r ' l

f =j VW) - y ?

— j>
v/here represents the vector from 0 to the integration
point P  and T~ represents the vector from 0 to the point 
P  , where XOP-Q (fig. 4). To this must be added the 
solution^ of equation (47) with the right - hand side 

put equal to zero. Thus *^/r T̂l

- + - %  i m
Y*whereAis the solution of

+- =  O   (52)

tie now proceed to evaluate the second on the right-nand 
side of (51) when T  i3 large i.e. 7^^" • ê then have

= r [  I -  ° i  r f



(16
~5> _>> ^

Let n. denote unit vector in the direction OP . Then
and l T - t ' l  T  — ( r L r ' )   (53)
In the denominator of the expression on the right-hand
side of (51) we use the approximation ( T - T / — 'P and in
the exponential term we use the approximation (53). Thus
we obtain . , ,• ^ r  i - t -Kcn. y- 'J

j  w r )  ̂

— ^ - Llorr^  v w L K ( n  , / 11 *\ , i— —  J ~ g r  V<■!■)■£- ...(54)

This represents a spherical wave spreading out from the 
origin. This is clearly the scattered wave and the other 
part of the solution, "/£> , must represent the incident 
wave, i.e. t  =  . Since we are dealing with fast
electrons, we may approximate further by supposing that the 
incident wave is not much diffracted by the atom and 
therefore in (54) we may write

—  -e.
Sxpression (54) then becomes

i.AC'T 
*  -r  ir J  (55)

where . ( ,^.7)

From fig. 4, where ^  is the unit vector in the
direction O x  and therefore

• / « ; , = p j W r O ^ K C ? ^ ' n‘)^ ' .......

7/e now take the direction of the vector as axis
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P'

< 5 ^  &



of spherical polar coordinates (fig. 5). Then
[  r \

But, from fig. 4,
I 7T ~ n cj  —  /4£> ~

and therefore =*-
We write A

y t l ~   (58)
and then ^  . , ,

- 5Xhv f f ^  6 cbr'cA b

O DO it , t ,t«j /* /. X<. g OTD& _ i *_ UT tn. J  r ' l f r ' j *  ŝ .6d6
■k

nCi
' - ,*

o
oO

—  $yT fv\_ f /U. rrjvu f s ^ u f  k/rOr'
* *  J o  Z ^ '  / \° y   (59)

Bear the origin where 2  is the atomic number and
£ is the electronic charge. We also have V*V-47Tf£ where £ 

represents the density of electricity. Thus when the 
expression (59) is integrated by parts twice we obtain

d / n \  - Sit W  „
f (eJ “   (60)

where R S ) = j ^ T ^ ) ^ r    (61,
o

Equation (60) can also be represented in terms of 0  and 
, the velocity of the electrons. For, since ?[= %

therefore
- ( £ k  ~ )
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and therefore 5

D /D 'nH vfu* §-&  flTPib^U*' aA
= _i!_ z ~F(q)

o2>niP   (62)
oL

The solution of (47) is thus
— L/cr - lKT-

f ~ ‘  4  *• —    (83)
where ̂ (& ) is given by (62).

Using either of tine expressions on page 11 lines 
5 and6} we may say that the number of scattered electrons 
passing through area d (T  , placed at a point P  { T fB ) t and 
perpendicular to OP , will be . If subtend a
solid angle cL(& at 0  , then this expression becomes 11® !% o. 
Hence the fraction of the incident beam scattered into 
unit solid angle in a direction making an angle 0 with 
the incident beam is f j(b )/.

Before we can calculate from this formula the 
scattering power of any atom in a given direction, we must 
first know the quantity Ffe) for that atom. The formula for

F f t ) =  5 ^  ............(64)
o

with
^ A &

= density of electrons in the atom
A = wavelength of incident electron-waves.

The value of f i t )  can be found approximately in various ways
*It is clearly immaterial which expression we use.
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Thomas1 gave a method in which the atomic electrons were 
regarded as a degenerate gas obeying what are now called 
the Fermi Statistics. Hartree has obtained the required 
values of j? for many atoms3 by his very accurate method 
involving a lengthy calculation of successive approximations. 
A simple method of evaluating F is to assume that the 
atomic electrons are spread over the surface of various 
concentric spheres with centres at the nucleus. This way 
of picturing an atom has been discussed by Pauling3 who 
applied it to predict certain physical properties of 
many-electron atoms and ions.

For our purpose, formula (64) can be expressed 
more conveniently in the form

f=r = r  S I 4r  ^    (65)
where ^  is the number of electrons on the ^th. shell 
and t£ is the radius of the ̂ th. shell. We shall consider
the electrons to be divided up into the groups /s  ,<3.5 ,
d?s   in this notation, the first figure denotes the
quantum number 72 , the letters -S , f> ,d- ...... correspond
to the values 0, 1, 2,..,. of the quantum number €  ( £ < n  ) 
and the index at the upper right-hand denotes the number,
^  , of electrons in the group viz. 2(2^+l). Consider now 
1Iroc. Camb. Phil. Soc. 23, 543, 1927.
2Iroc. Camb. Phil. Soc. 24, 89, 1923.

and Froc. hoy. Soc. 141A, 282, 1933.

3Proc. hoy. Soc. 114A, 181, 1927.
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the problem of an electron of charge-€moving about a 
fixed nucleus of charge . The solution is expressed in 
wave mechanics by a well-known Schrodinger eigenfunction 
which we denote by The electrons in any group
in the atom are taken to correspond to the eigenfunction 

, where h_, £  have the values for the group in 
question and 2, the effective nuclear charge, is simply 
taken to be /h 2 iKp  . The symbol^is intended to denote 
the sum of the numbers of electrons in the previous groups 
lying nearer to the nucleus. I f i s  the eigenfunction 
corresponding to the £rouP electrons and ^  is
the number of electrons in the group, then we take the 
function to be the density distribution in space
of the £,th. group of electrons. If now d x  is the element 
of volume in spherical polar coordinates, then the number 
of the £th. group of electrons distant between between Y~ 

and T fd r from the origin is given by

and the average distance of the group of electrons from
the origin is

K  "L

  (66)
is taken to be the radius of the sphere on which the 

gjth. group of electrons are spread. Then evaluated, the 
integral gives



T'
] l

cLQn..

(67)

(21

U  7l~'JJ  (67)
Pormula^is not proved here. It is to be found quoted in
Pauling’s paper1, being obtained from a more general formula
given by Taller3 . The constant cl0is the radius of the first
circular orbit of Bohr’s hydrogen atom and has the value

eras .
Bor any atom we can now draw up a table such as

5 '28 1CT9

that shown (table 1), giving the values of ^  for the various 
groups as calculated from (67).

Table 1 
TABLE OP BOR ALIETBTUL

n A 4 Symbol Y%/ ( cms.)
i 0 2 is* 6*092 10*10

2 0 2 2-880 10~9

2 1 6 2-934 10**9

3 0 2 3S4 2-375 10-S

3 1 1 3K 6-863 10~8

Z. =13
The quantity is then obtained at once for given values 
of 0 using formula(65) . The outer (valency) electrons, usually 
one or two in number, are probably only loosely attacned to 
the atom and, since they do not contribute appreciably to 
the value of , they may generally be neglected.
1 (1 o c . c i t .}
2 Zo. f. Phys. 58, 535, 1525.
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Chapter III
SCATTERING- OP A BEAM OP ELECTRONS BY A CRYSTAL

The essential characteristic of an isotropic 
crystalline structure is that it can he divided into a 
series of regularly placed parallelepipeds auch that each 
contains exactly the same kind of matter, arranged in the 
same way. An alternative way of characterising a crystal 
is to say that we can find a series of regularly placed 
points in the substance such that observers placed at each 
of these points would each see, surrounding himself, the 
same kind of matter, distributed in the same way. The 
position in space of the parallelepipeds or points is not 
definite. The parallelepipeds may be moved as a whole, so 
long as their relative positions to one another are unaltered. 
The same may be said 0f the points and thus the points may 
be made to form the corners of the parallelepipeds.(fig. 6)

The points may be represented by the formula

where the /'s are integers. The points form a lattice and 
ci f , c( are the lattice space constants. If we now ̂ ‘* ■ 3  *
draw a plane making intercepts 0,/fy, , the
axes 'a , \  and draw a parallel plane through the origin,
then a set of parallel, equidistant planes may be constructed, 
these two planes being adjacent members of the set. This 
set of planes will contain all the lattice points. If» 
however, j ( , ^  have a common factor, some of the members
of the set of planes will not pass through any of the
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lattice points. Therefore,if we wish to have the minimum 
number of planes, containing all the points, with the given 
normal direction, then 7b must be divided by their
common factor. They are then called the Hiller indices of 
the set of lattice planes . The simplest of crystal occurs 
when each parallelepiped contains a single atom. In general, 
each of these unit cells corresponding to the vector

.........  (6e;

will itself contain various kinds of atoms. The positions
of these atoms in,the cell at the origin will be given by

%  - f. A , +  +  fa ............  (69)
ikso that f ,  /a^ , /c l^ , / a a are the coordinates of the^th. 

atom in the cell (fig. 7). The position of.any atom will 
be given by

=  - % + r e  (7C)
_ i. ACJtr — VLet a wave ^ , moving m  the direction s& ,

be incident on the lattice and let each atom in the lattice
. - l K t/

scatter a spherical wave of the form A  e / T" , where 
the part ^ ( w h i c h  is independent of Tf~ } refers to the ^ t h .  
atom in the typical unit cell.(fig. 8). It will be assumed 
that the total "effect" at a point P is found by first 
adding the wave functions for each atom (taking into account 
phase differences) and then squaring the modulus of the 
resultant wave. Let OP-R and let 5 be unit vector in the 
direction OP . Also let OA = ^ a n d  P = /\̂ , where /\ is 
the typical atom. If the phase of a wave scattered from
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an atom at the origin is taken to be zero, then the wave

scattered by an atom at A  is represented at P  by
—  lk.(Tf%) - iKRft 

•*  (71i
The resultant wave at P i s  given by

->* A
—  ^  /?*  (72)

If OP is very large compared with OA we may write, in the 

denominator, K  = R  and,in the exponential term,
K

K

= r [ I -  ^ ^ 5 ^ w c -- ] ^

= R - ( W )  .....................  (73;
neglecting terms in i/I? , I /R^ etc.. Fence (72) becomes

R
^  e    j74.

and using (70) this expression may be written

—  2 S ^ «  ....  (75)

Substituting the value (58) for t we find

A, - ( ? ; ? . , ? ; >    (75,
■*<"? /> * ^ wFe denote x *, fa ̂  by/k> and thus the square of the

modulus of the wave (75) is

 1 - 1 ^se^r... r i 4 i

If we prescribe limits ̂  (^f ,/V̂  ,/l^being integers)
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then the 2  1 s mag/ he summed ih:;(77) h.y the ordinary formula, 
for a, geometrical progression. After a simple transformation, 
the modulus may he taken and the.expression (77) becomes

i Nt A i /)fA /\ ^ jpA
R* L  SvT 4  s ^ - ^ r  J    (78)«. A. ^ V

This is a maximum if
=  <2/7 3 II £ % _  , ^ 3  y

^  , -£v , ^  being integers. Thus relations (76) become

a a.(s-s„) _  .............

A / ? ' A  » 3  A

■14

= ̂ 3 =1c
nd give the directions of the interference maxima. It is

where ^ =53 = wave length. These are the Laue equations Ic

usual to write
S - 5t _ a

A   (80)
and then equations (79) become

(aLt) , ( i - i . A  , 5  ) ................. (81)
-=> -9> .~wy\

The reciprocal vectors 2̂ , 4” » ^3 are now introduced^^Bein^
defined by the equations

/ -» 7 \  I . i  = \  •
L * i  V  = ^  ■ , e.   (82)O , L t  h  ,

If 2j is any vector, then

21 - % $ t $ )  H / S )  ^ 7 X )  ,

We may thus express £  in terms of the«-fs and the
x8ee e.g. C. A. Weatherburn: Elementary Vector Analysis

page 55.

(83)
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~̂> -*•

reciprocal vectors^, /v , ^  :-

and from (81)we thus have:-

7a ■*= £, &, 7̂  Z\_ t
....... (84)

or s ~ ! l  =. <, 4 ( r C  £  ^

This latter equation, like equations ('79), contains the 
conditions for interference maxima.

Equation (8C) may be represented geometrically
—=> -5>

(fig. 9) and, since 5 , are (equal) unit vectors, it is
—5>

clear that k  must be perpendicular to the plane which
bisects the angle between and f  or 5 and .s, . Thus weA ^
may consider a reflection of the rays to take place from 
the surface of a plane (or set of planes) perpendicular to 
the vector . This leads to Bragg’s statement of the 
condition for interference. If 0 be the angle between the 
directions s. and , then from the diagram (fig. 9)

  (85,
Let /V be the ( integral ) common factor of and
write

..   (86)
1 * - -  1 K t  ■+<* X   (87)

so that _s>
*  - T V / *  ......... (38)

Bragg supposes that reflection takes place from a set
of lattice planes. These, as we have seen, must be



perpendicular to &  (or^J . Using this condition, it is 
easily proved that the spacing (£*) of these planes i;

* ,iL1  and that C .  C , i *  are the Miller indices of the set.
Thus from (85) and (88)

/ V J  — c i  S'. .........

which is Bragg’s X-ray reflection condition. In Bragg’s 
terminology hi represents the order of the reflection 
and we speak, for example, of the 3rd. order reflection 
from (100) planes. In Laue's notation the reflection is 
given by the numbers , which become in the case
mentioned (300). The different orders of reflection
correspond to the lengths /£*/, & I ^ J ,  3 l" f7 j *  0:f ^he
vector /£ and this is seen from the figure (9) to 
correspond to larger and larger values of the angle 0 .

positions of the maxima of interference are 
thus seen to depend on the second of expression (78). The 
intensity of the maxima will be dependent on the part 1^1 
of (78) where

Using (80) this becomes
(90)

(£■ r & )
s  -  2 5  / k  e

am / * t<̂ )
= * A *

............  (91)
7  *using the values (84) and (69) for >*- and V and bearing in
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mind relations (82).

The application of the expression (91) for ̂  iE 
shown in the case of a face-centred cubic lattice made up

ja a aof similar atoms. The values of the coordinates 
of the atoms forming a unit cell are (see fig. 10)

(000)
( U o ) \  o  I i

(°iV ' x 6 *■ ]

(i ° i ) • v l  3 '
The quantity will be the same for each atom. Therefore

„  /  37tL JtTi • 3/t~l )5  =* / / / y e  -  -  j

, i , r ,  I I <SVT i j j j f l  I

and \ S ]  ^ I f f l  | + e  ^  -)

If i are all odd or all even, then ('S| — Z4-|^| .
If <  , 'C , are partly odd and partly even, then
Thus, for an elementary substance crystallising in a face-
centred cubic lattice, we whould expect to find reflections
such as (200), (111), (220), etc. but no reflections of the
form (100), (211), etc.

From the mathematical analysis of this chapter
and the previous one, we should expect to find a pattern
formed when a beam of electrons suffers elastic scattering
by a crystal and then falls on a screen. Experiments by
Davisson and Germer and by Thomson and others1 have shown
1 See e.g. Thomson:- Wave Mechanics of Free Electrons

Coil
or Taylor Jones:- Induction^Theory and Applications
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this to be true. ¥o interference of inelastically scattered 
electrons has been reported. It would seem that if , ...
are elastically scattered waves (of the same wave-length) 
then the resultant squared amplitude at any point is

|3,+ 3P-r |*
But if 5, , , . ... represent inelastically scattered electron
waves (all of the same wave-length) then the resultant 
squared amplitude at any point is

r + j&r +
In the first case there is interference but not in the second

Mcase. These facts support the conclusion to which Schrodingerfs 
theory led us viz . that the electron waves have no real 
existence in space-time and are merely mathematical devices.
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Chapter IV

ELECTRICAL METHOD OF DETECTING TRANSMISSION 
DIFFRACTIOH PATTERNS 

Professor G. P. Thomson’s experiments were made 
with high velocity electrons (cathode rays). These impinged 
on a thin film of gold or other substance and the transmitted 
beam was then allowed to fall on a photographic plate. When 
developed, the plate showed a Debye-Scherrer type of pattern. 
Other workers have repeated these experiments, altering 
certain of the details and sometimes obtaining new results,1 
but in all cases a photographic plate or fluorescent screen 
was used. It is naturally of interest to know whether it 
is possible to detect the diffraction of the cathode rays 7

by some direct electrical-mfithod of measurement. This if
successful would give immediately the intensities of the
different parts of the pattern.

In this chapter, apparatus for such an experiment
itis described and the results obtained with^are given. Small 

parts of the electron beam are allowed to pass successively 
into a Faraday cylinder and are measured with an electrometer .

A diagram of the vacuum tube is shown in fig. 11.
A pyrex glass tube a. with aluminium electrode /> was 
sealed into the cylindrical brass tube zf with "Picien" .
The tubes c  and c?( were also brass cylinders and ^  c 
and were screwed together and sealed. At o , and 
were small apertures with diameters 1 mm., 1 mm., and 0 13
m m s . respectively. The film under investigation was mounted
1oee references on page 23
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on a small brass ring of diameter 2 mms. and fixed in 
position at zf immediately behind .The two circular . .

brass plates ^  , A  /could be rotated about the axis of / ( \
K - / ,

the tube, while the system was evacuated, by means of the
brass cones £ , ^  . These cones were lubricated with
Ramsay grease and they were connected to the plates ^  ^
by the rods . Each cone was fitted a pointer moving

K
over a circular scale fixed on the end of the tube at .
The Earaday cylinder was held in position by two brass 
rods 5 and t  , by one of which connection to the electro
meter was made . Ebonite bushes served to insulate s  and ̂  

from the tube <?C , and they were painted over with an 
insulating wax to make them vacuum tight. The ground brass 
cone £  enabled the small disc T to be moved when desired.
The tube u  was connected to a mercury diffusion pump, 
backed by a "Hyvac" rotary oil pump. Some of the dimensions 
were:- O to 9 cms .; ^  to , 9 cms.: ^ t o  plate ^  ,
19'8 cms.

Eig 12 is a diagram of the plates ^ ^  as 
viewed along the axis of the tube. Each plate has a central 
aperture A of diameter 0*5 mm. The plate , uppermost 
in the figure, has a radial slot FE & cut in it of breadth 
0*5 mm. and the plate ^  , which lies immediately behind 

, has a spiral slot of the same width. At the
point where the radial slot is superimposed on the spiral, 
a small aperture £  is formed and, if S >£C is an equiangular 
spiral, the aperture will be practically constant in area
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for different relative positions of the two slots. One of 
the spirals used was given by the equation T -  o i5 4 ^ { & <*?4Je><fX 

T  being in cms . The opening of the Faraday cylinder was 
made sufficiently wide to catch the cathode rays which passed 
through the aperture £  , in any of its positions.

The brass tubes were connected to earth and the 
electrode p  was connected to the seconda/y of an inductionV̂
coil£ A mercury jet interrupter was used in the primary / 

circuit of the coil or, alternatively, a succession of 
single breaks was made with a hand-operated interrupter.
In the lead from the induction coil to the discharge tube 
a resistance of several megohms was inserted. This prevented 
"flashing" of the tube. To measure the potential across 
the tube, a spark gap with 2 cm. diameter zinc spheres 
was used.

The electrometer used in connection with the 
Faraday cylinder was of the Dolezalek type. The suspension 
consisted of a length of "Wollaston" platinum wire 0*005 
mm. in diameter. The quadrants of the electrometer stood 
on quartz pillars and the interior of the instrument was 
kept dry by small dishes of calcium chloride placed inside.
A potential on the needle of about 85 volts gave the max
imum sensitivity, namely:- 380 cms. deflection per volt, 
on a scale at 110 cms. The instrument was almost dead beat. 
The capacity of the electrometer and Faraday cylinder 
system was of the order of lOOcms. The leads between the



cylinder and the electrometer were completely shielded 
and insulated, where necessary with paraffin wax. The earthing 
switch was formed from a block of paraffin wax with a small 
hole in its upper surface containing a solution of copper 
sulphate in water. The (copper) wires from the Faraday 
cylinder and the electrometer dipped into this solution 
and an earthed copper rod was suspended vertically with 
its lower end immersed. By operating a windlass arrangement, 
the copper rod could be raised and the quadrants and cylinder 
were then unearthed. The whole switch was placed in an 
earthed copper box with a small hole in the cover to allow 
the earthing rod to be operated. The design of the earthing
switch was found to be important when using an electrometer
of this sensitivity. When mercury was used as a liquid in 
the switch with amalgated rod and wires, the electrometer 
needle did not remain steady after unearthing, even when 
the switch was operated extremely slowly. Bo trouble was 
experienced, however, with the arrangement described above.

The films used in transmission diffraction
experiments must be as thin as possible.

Celluloid films were made by dissolving a small 
piece of celluloid in amyl acetate and allowing a drop of 
the solution to evaporate on the surface of water. The 
films used were almost black when their surface was viewed 
by reflected light and transparent and colourless by 
transmitted light.
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For gold films, beaten gold leaf was used. This 

was generally thin enough for the purpose but, when necessary, 
it was thinned with dilute aqua regia. The films appeared 
green by transmitted light.

The beaten aluminium lesvf obtainable was rather 
thick. The foil was fixed on the carrier ring and thinned 
by placing a drop of dilute caustic soda solution on its
surface. This solution was then removed using the edge of

* washeda piece of filter paper and the film was several times by
successively placing drops of distilled water on it and re
moving the water with filter paper. The films were obtained 
finally practically transparent and colourless by trans
mitted light.

For silver films, a piece of the beaten silver 
leaf was fixed over a small brass ring which was suspended 
by a fine copper wire in a vessel containing a very dilute 
solution of silver nitrate in water. The ring was 
suspended so that the surface of the film was in a vertical 
plane, thus enabling the film to be immersed and withdrawn 
from the solution with the least possible risk of damage.
The ring was made to form the anode of an*electrolytic cell 
and a current of about 10 milliamps was passed. In about 
five or ten minutes the silver film was found to be almost
transparent and colourless by transmitted and the ring was

SpJufttn. so
carefully raised out of the solution. Since the.««,A dilute,
it was scarcely necessary to wash the film.

These methods of thinning aluminium and silver



leaf gave films which were not stained on the surface in 
any way . Attempts were made to thin silver ^ j.lvgjfo'leaf 
with acid but there was considerable uncertainty attached 
to the process and the resulting products were generally 
yellowish in colour.

Before the tube was placed in position on the 
bench, a glass cathode fay tube of about the same length 
was fitted up and a length was fixed jn position so that 
the vertical component of the earth1s'magnetic field was 
neutralised at the tube and the electron beam was practically 
undeflected. The effect of the horizontal component was 
eliminated by placing the tube along the magnetic IT-S line. 
The testing tube was then removed and the apparatus placed 
in position.

By adjustment of an artificial leak, the pressure 
in the tube was kept at a value which would give a 
sufficiently long mean free path and at the same time allow 
a discharge to pass in the tube at the potential desired.

The^/^erture A (fig. 12) was kept open by moving 
the disc t  out of the line of the beam and the cones £ 
were turned so that the aperture E was not formed. The 
tube was then given a series of "runs" from the induction 
coil of, say, one minute each. The position of one or two 
small magnets, placed near the tube, was changed during each 
"run" until the maximum electrometer deflection was obtained. 
The film being in position in front of the aperture h\ , 
the apparatus was ready for a diffraction experiment. The
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cone ^  '.vr,s turned so that the disc A  closed the apertureT 

A . The position of the cone ^ , controlling the plate R ,
fixed

wlvS keptA so that the radial slot did not move. The readings 

were then taken of electrometer deflections for different 

positions of the the cone^  . Since the latter cone controll 

the position of the spiral slot, the readings gave electron 

intensities at different points along a radius. Similarly, 

intensities at points on the circumference of a circle of 

given radius R  were obtained by setting the relative 

positions of the radial and spiral slots so that A t - ( R  

and by moving the cones 6. a n d r o u n d  together into 

different positions.

Pigs. 13 and 14 indicate typical results for a 
celluloid film. They were produced by electrons of energy 
42,500 electron volts. The full line graph on fig. 13 
represents intensity at points on part of the circumference
of a circle of radius 0-27 cms. The dotted curve gives

1 intensity at points on a circle of radius 0-5 cms. The 
) 4
^  graph in<?ig. 4)gives intensities at points on the radius

OA (fig. 13).
These results show that the pattern consists of

six maxima|on a circle of radius approximately 0-3 cms. £
and six maxima/on a circle of double this radius. Lying 

'vin azimuthal positions between these spots there.also
Amaxima on a circle of radius about 0*5 cms.

This type of pattern has been found for



(37
celluloid films, using the photographic method, by 

Dauvillier l f Kirchner3, Taylor Jones3, and Trillat4 . As 
these writers have pointed out, this pattern would arise 
if the scattering centres were arranged, in planes parallel 
to the surface of the film, at the corners of a diamond
shaped network as in fig. 15. The first ring of spots arises 
from reflections by planes parallel to A 3 and perpendicular 
to the plane of the paper. The next ring is formed by 
planes parallel to AC .

The third ring is the second order of the first. 
Assuming the de Broglie wave-length A - , the side of 
one of the diamonds is found to be 4-75 &.U. Consideration 
of the spacing found between atoms in X-ray work shows that 
these scattering centres at the corners of the diamonds 
cannot be single atoms. Some of the centres may be vacant. 
Those that are occupied probably each represent a group 
of atoms like CgHgOgHg o r CgHgO^B.

Bigs. 16 and 17, 18 and 19, 20 and 21 indicate 
results for gold.aluminium and silver, respectively.

The curve on fig. 16 gives intensities on part 
of the circumference of a circle of radius 0-61 cms. The 
full line on fig. 17 gives intensities at points on the 
radius OA (fig. 16). The dotted line on fig. 17 gives 
intensities at points on the radius 0 3  (fig. 16). The 
pattern deduced from these results consists of four rather 
^Comptes Kendus 191, 70§, 1930. 2Xaturw. 18, 706, 193C.
3Phil. hag. 12, 642, 1931. 4Comptes Rendus 198, 1027, 1934.
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broad maxima^on a circle of radius 0*6 cms. and also on a 
circle of double this radius. Lying in azimuthal positions 
between these maxima, there are also maxima on a circle 
of radius about 0 *94 cms.

The interpretation of the graphs in figs. 18, 19 
and 20, 21 is exactly the same.

Patterns of this nature have found by various 
workers using the photographic method: for gold, Taylor 
Jones1 and Trillat and Hirsch3: for aluminium, Thomson^. 
This Laue type of pattern arises from a crystal lattice 
of the cubic face-centred type, oriented with the (200) 
sets of planes perpendicular to the surface of the film.
The maximum ^  is formed by reflections from (200) planes, 
?A from (220) planes and ^ is the second order o f  cT 

The slight curvature, which the films are almost certain 
to possess, provides the necessary inclination between the 
reflecting planes and the incident beam of electrons .

In the case of the celluloid pattern there are, 
as has been shown, probably at least twenty-five atoms

each scattering. There will be interference between
the waves scattered by each atom arid a knowledge of the
relative positions of the atoms in the group would be*
necessary before the resultant effect of the group could 
be calculated theoretically. This interference will 
evidently also be a function of $ , the angle of scattering. 
1loc. cit • 2Zo. f. Phys. 75, 784, 1932.
3Proc. hoy. hoc. 117A, 500, 1928.
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oince little is known regarding the structure of the units 
in the long-chain nitrocellulose molecule, no attempt is 
made here to calculate theoretically the intensities in 
the celluloid pattern.

In the case of the gold, aluminium and silver 
patterns, the heights of the maxima ^ above the
general scattering (shown with a dot-dash line) were taken 
as the intensities. The theory of chapter III only applies 
to a perfectly formed crystal, and it is usual in X-ray 
work to take the area of the hump as the intensity and use 
"integrated” reflections. But the fact that slower electrons 
are always present in an induction coil discharge makes this 
procedure undesirable in the present case. Since the 
incident pencil is so narrow and the crystal so small, the 
considerations, which make it necessary to use integrated 
reflections in X-ray work, mayjnot arisjj here unless great 
accuracy is desired.

The comparison between experiment and theory is 
shown in the table 2 (below) . Column (a) gives the theoretical 
values of the intensities at scattering angles corresponding 
to the points ^  , F3 of figs. 17, 19 21 *5
calculated from formula (63.) with the appropriate values 
of 2F t & taken from the data in figs. 17, 19, 21.
Column (b) gives the experimental values of the intensities. 
These are obtained from the graphs by reading off the heights 
of P , ^  # 3̂ above the general scattering level. Column 
(c) is the ratio of the numbers in columns (a) and (b).



The agreement between experiment and theory is fairly good 
as indicated by the approximate constancy, in each case, 
of the numbers in column (c).

.
U) “

Theory:
’10*18cms.2

=-------W -----Experiment: 
arbitrary 

units

(c) - - 
Ratio:
(aH(b}

rax t> n 5210 49 106

(fig.17) £ 2246 20 112

£ 1030 9 114

A1UKIKIUM 
(fig.19)

757 28 • 5 27

£ 103 4*3 24
52-1 2 26

3ILV3R 
(fig.21)

p, , 3744 28'5• n f l i t ' y

PL 1690 14* 2 112

n 757 7 110
% I
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Chapter V

ABSORPTION OP ELECTRONS AND CONCLUSION 
The electrical method of detecting electron 

diffraction patterns from thin films is not so suitable 
as the photographic method,for verifying de Broglie’s 
formula ^  It is ̂ approximately^ shown to be^true in the-45̂
curves of the previous chapter. Other experimenters such

too*.I-**.*- ■ ■tJ-.'si**
as Ponte.have found the relation to be satisfied to a high 
degree of accuracy. The results of Taylor Jones1 show a 
variation in the ratio a J \* , where W  is the value found 
from the photographs of gold patterns,for different speeds 
of electrons. This may be due to the fact that the film is 
charged up by the electron stream and the velocity of the 
electrons thus is altered.

Experiments have been made by the writer to 
measure the absorption of electrons by thin films. The 
apparatus was of the same nature as that shown in fig. 11 
except that the film was on a carrier allowing it to be 
moved in and out of the beam. Only one central aperture,
1 mm. in diameter, was used in front of the Paraday 
cylinder instead of the plates (fig. 12). The films
experimented with were of celluloid and showed interference 
colours . By viewing the film by reflected light at a 
given angle, the thickness could be found from the colour 
at any desired point. Tables of thicknesses corresponding 
1 loc . cit.
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to the different colours are given by Hewton and repeated 
in various hooks.1 The thickness of a celluloid film varies 

idly from point to point and interferometer methods 
are not suitable for making the determination. The results 
were^ only approximate but it was found that, if was the 
incident beam current, J. the transmitted beam^and ->c the 
thickness, then Lenard's law, I ~ l 0 ^  , was fulfilled
for different thicknesses. The constant depends on 
the speed of the electrons and for 29kV. electrons it had 
the value 1*7.1C3 when x  was in cms. The fraction absorbed 
at this voltage by a "black" film-of celluloid (such as 
is used for electron diffraction) is only 2%.

Another set of experiments were made in which 
the films under examination were placed close up to the 
Faraday cylinder. In the first experiments, only the 
undeflected transmitted beam had been measured. But now, 

total transmitted beam, even if scattered, was 
collected. Aluminium leaf was used for films and it was 
found that the ratio I/l© was greater than unity for 29 kV. 
electrons unless three or more thicknesses of the leaf were 
used for the absorber. Thus it is evident that secondary 
electrons are emitted in large numbers from the film. For 
a single sheet of foil the ratio i/l© was 1-3. It is thus 
possible that the film, if insulated, may charge up 
positively.
xSee e. g. Lawerence: Soap Films, page 137.
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If we exclude the disagreement regarding the 

wavelength, it may be said that^ave mechanics hare- 
racei-ve-d- c^ne-ijegable eenf h e  e 1 ectron^ 

^diffraction experiment^y The general principle that the
(JC-Vt y

electrons f .ollow^ a wave is verified by the interference 
patterns^while the principle that Iy / = density of electrons 
is verified by the intensity measurements described in 
chapter IV.


