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Abstract 

Abstract 

With increasing pressures on marine ecosystems and little recovery being 

observed in commercially important fish, it is essential to understand ecosystem 

effects on species. Unfortunately, in many cases the habitat requirements of 

commercially important species are not well understood. Atlantic cod (Gadus 

morhua), haddock (Melanogrammus aeglefinus) and whiting (Merlangius 

merlangus) were of commercial importance within the Firth of Clyde, west coast 

of Scotland prior to the late 20th century. However, over fishing and other 

anthropogenic impacts led to declines in all three species. Despite the 

prohibition of targeted fishing for these gadoids in much of the Firth of Clyde, 

they have still not recovered and scientific bottom trawl surveys have shown 

that 90% of the biomass is made up of small M. merlangus.  

With increased concern regarding the state of the world’s marine environment, 

efforts to implement ecosystem based fisheries management and restore 

ecosystems through spatially explicit management measures have developed. 

The array of ecosystem based research, management and monitoring initiatives 

has led to the use of a range of habitat-related terminology with different 

interpretations of the terms. Inconsistencies in terminology not only cause 

confusion between studies, but also make it difficult to understand the 

ecological requirements of fish. The second chapter of this PhD reviews the 

current terminology and sets the scene for the major habitat-related concepts 

used throughout the thesis. 

Photogrammetric techniques were used to collect data on gadoid distribution, 

abundance and size from June to September in 2013 and 2014. The study site 

was a recently designated Marine Protected Area (MPA) within the Firth of 

Clyde, west coast of Scotland. The two photogrammetric techniques used were 

stereo-video SCUBA transects and Stereo Baited Remote Underwater Video 

(SBRUV) deployments. 31 SCUBA transects were conducted in 2013 and a total of 

258 SBRUV deployments were conducted over the two data collection periods. 

SBRUV deployments were chosen as the main technique to collect demersal fish 

and benthos related data due to the ability to collect an increased number of 
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deployments at higher resolution, in addition to avoiding logistical constraints 

with SCUBA methods. 

From both SCUBA transects and SBRUV deployments, a higher abundance of G. 

morhua was observed in gravel-pebble substratum containing maerl and medium 

density algae, than boulder-cobble substratum with high algal cover or sandy 

areas with little or no macrophyte cover. A higher relative abundance of G. 

morhua was also observed in shallow and sheltered environments. Both M. 

aeglefinus and M. merlangus were observed in higher relative abundance in 

deeper sand and mud substratum types. All three species were observed in 

higher relative abundance in areas of increased benthic and demersal species 

diversity. On average G. morhua were smaller than M. aeglefinus and M. 

merlangus and exhibited the lowest growth rates. 

Seabed ground-truthed data from the stereo-video methods in combination with 

a range of observed environmental variables were used to predict substratum 

type, distribution and extent within the MPA. The predicted seabed map was 

used to understand landscape effects on gadoid distribution. G. morhua were 

observed in more heterogeneous landscapes than M. aeglefinus or M. merlangus. 

An increase in M. merlangus relative abundance was also observed with 

increasing substratum extent. 

The stereo-video photogrammetric methods in combination with the predicted 

substratum mapping have provided us with a better understanding of gadoid fish 

habitat requirements. This study has also provided fish and benthos baseline 

data within the MPA, trialled the use of non-damaging and extractive fisheries 

independent monitoring methods, and contributed evidence to support potential 

fisheries management options. The techniques used in this thesis could be rolled 

out on a larger scale across the UK to support sensitive seabed and fish 

monitoring and management measures. 
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General introduction 

Chapter 1. General introduction 

 

The human population is now greater than seven billion and is causing ever 

increasing pressure on the natural resources that we depend upon (Costanza 

1999; Sanderson et al. 2002; Halpern et al. 2008; Worldmeters 2015). The 

increase in human population combined with growing demands on the world’s 

resources, affects our wildlife populations through direct mortality of target 

species and land or seabed transformation (Dobson et al. 1997; Sanderson et al. 

2002; Foley et al. 2005; FAO 2014). Land and seabed transformation causes 

indirect mortality and reduces reproductive success by removing or inhibiting 

access to essential habitat components (Box 2.3.1, Chapter 2) for the survival of 

individuals and species (Turner 1996; Dobson et al. 1997; Sanderson et al. 2002). 

Habitat components may include food resources for survival or refuges from 

predation or environmental pressures (Hammer et al. 1993; Sodhi et al. 2004, 

Beaumont et al. 2007; Chapter 2). Land and seabed transformation has been 

cited as the single greatest threat to species diversity (Sanderson et al. 2002; 

Lotze 2006; Crain et al. 2009). Reductions in population sizes from hunting or 

harvesting, or from land or seabed transformation can also cause imbalances to 

community structures and ecosystem functioning, exacerbating extinction rates 

(Hammer et al. 1993; Dobson et al. 1997).  

Marine ecosystems are the most harvested and economically important wild 

ecosystems on earth (Costanza et al. 1997; Costanza 1999; FAO 2014). They have 

also received little attention (Costanza 1999; Dulvy et al. 2003), causing 

difficulties in identifying anthropogenic impacts and extinction rate (Dulvy et al. 

2003). Marine ecosystems not only provide us with important sources of food 

worldwide but also raw materials such as fertiliser from seaweed, fishmeal for 

aquaculture and farming, and increasingly the basis for pharmaceuticals 

products (Holmlund and Hammer 1999; Beaumont et al. 2008; Crain et al. 2009). 

The oceans and their biodiversity are vital for climate regulation and their 

biogenic structures have been found to be essential in alleviating damage from 

flooding and storms (Costanza 1999; Beaumont et al. 2008). Maintaining species 

diversity has been observed to enhance ecosystem productivity, stability, goods 
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and services including food resources (Holmlund and Hammer 1999; Worm et al. 

2006; Beaumont et al. 2008). Consequently there is a large concern regarding 

the effects of biodiversity loss on ecosystems and human well-being (Hammer et 

al. 1993; Liquete et al. 2016).  

1.1. Anthropogenic pressures on marine ecosystems 

Some of the most important anthropogenic pressures on marine ecosystems 

include climate change and commercial fishing activity (Worm et al. 2006; 

Halpern et al. 2007; 2008). Physiological and biological effects of climate change 

and ocean acidification on fish include phenological changes, productivity 

effects and distribution changes (Heath et al. 2012). For fish occupying coastal 

areas or shallow waters there may also be changes in rainfall and storminess and 

reduced availability of calcifying species such as corals and bivalves (Cheung et 

al. 2012; Heath et al. 2012). Indirect impacts from climate change may occur 

through the displacement of fishing effort away from offshore areas and towards 

coastal areas, should storms inhibit offshore fishing activities (Pinnegar et al. 

2010; Cheung et al. 2012).  

Harvest rates by large fisheries may have profound impacts on the targeted 

species they catch but may also impact non-target species and benthos (Hammer 

et al. 1993; Holmlund and Hammer 1999; Crain et al. 2009). Intense fishing over 

the years has led to changes in the reproductive age of adult gadoids and today, 

spawning stocks consist of smaller, younger adults (Hislop 1996; Hutchings and 

Reynolds 2004; Ottersen et al. 2006). Since spawning-stock biomass is made up 

of smaller-sized cohorts, there may be changes in the quantity and quality of 

eggs produced, particularly since fecundity of younger females is generally lower 

than that of mature females (Hislop 1996; Scott et al. 1999). In addition, the 

reduction of older larger spawners may influence the timing of the spawning 

season and also lead to shorter seasons (Hislop 1996; Scott et al. 1999). Indirect 

effects of fishing can however have more important impacts on ecosystem 

structure and function than the removal of fish (Hammer et al. 1993; Holmlund 

and Hammer 1999; Lotze 2006). 
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Certain fishing gear technologies can impact upon marine benthos through 

physical disturbance, abrasion and bycatch (Auster et al. 1996; Jennings and 

Kaiser 1998; Kaiser et al. 2006; Perry et al. 2010). Demersal trawling and 

dredging can also have severe consequences on benthos structure, reducing the 

structural rugosity and heterogeneity (Box 2.3.1, Chapter 2) of the seafloor 

(Auster et al. 1996; Jennings and Kaiser 1998; Freese et al. 1999; Kaiser et al. 

2006). The combined effects can lead to overall reduced benthic productivity 

(Hammer et al. 1993; Jennings and Kaiser 1998). Such changes could also 

potentially alter the suitability of substrata for species within the area (Auster 

1998; Jennings and Kaiser 1998; Ryan and Bailey 2012). Thurstan & Roberts 

(2010) have also implicated the opening of nearshore waters (< 3 nm) to trawling 

as the cause of a collapse in fish landings due to benthic impacts from the 

fishing gear.  

1.2. The importance of coastal areas  

To date some 30,000 different fish species have been identified (Froese & Pauly, 

2015). Global catch (reported and estimated unreported) of both finfish and 

marine invertebrates peaked in 1996 at 130 million tonnes, but have since 

declined at a mean rate of 1.22 million tonnes per year (Pauly and Zeller 2016). 

Global discards are estimated to be 10.3 million tons/year (Pauly and Zeller 

2016). Costanza et al. (2014) estimated the global value of coastal areas as one 

of the most important ecosystems, providing approximately $27.7 trillion 

US$/year. Coastal areas are also thought to contain some of the most 

heterogeneous  and biodiverse ecosystems (Airoldi and Beck 2007; Rogers et al. 

2014). Nonetheless, coastal areas are subject to particularly high anthropogenic 

pressures since most of the world’s population live near and depend on coastal 

ecosystems (Costanza 1999; Halpern et al. 2007, 2008; Beaumont et al. 2008). 

Coastal areas are also known to be important nursery areas for a variety of 

marine organisms e.g. gag grouper (Mycteroperca microlepis, Goode and Bean, 

1879), herring (Clupea harengus. L) and Atlantic cod (Gadus morhua. L) (Beck et 

al. 2001; Seitz et al. 2014; Liquete et al. 2016). Nursery areas are defined as 

areas that contribute more than average production of individuals that recruit to 

an adult population (Beck et al. 2001). However, understanding what makes 
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these nursery areas important, where these areas are, and the condition they 

need to be in to provide these vital services, can be quite difficult when 

considering highly mobile species such as gadoid fish (Hammer et al. 1993; 

Langton et al. 1996; Gaillard et al. 2010).  

1.3. Towards good environmental status  

Since the United Nations 1992 Convention on Biological Diversity (CBD), efforts 

have been put in place to try and recover and protect species and their habitats 

(Sinclair et al. 2002; Potts et al. 2012). One of the major initiatives which have 

been used to protect species and their habitats has been by the use of spatial 

management measures such as Marine Protected Areas (MPAs) (Dobson et al. 

1997). Significant efforts have been put in place to develop MPAs. However, for 

these to be of benefit to fish, an understanding of their life cycles and habitat is 

essential (Rice 2005; Johnson 2012). Current methods to regulate fish stocks in 

Europe are primarily through the Common Fisheries Policy (CFP). Efforts to 

regulate fishing via the CFP largely include setting total allowable catches, 

controlling fishing effort and setting rules on fishing gear adaptations to reduce 

bycatch, in addition to the introduction of some fisheries closures (EC 2009; 

Hilborn 2011; Fernandes and Cook 2013). An assessment of the effectiveness of a 

seasonal spawning area protection in the Firth of Clyde showed that it had no 

effect on trends in the relevant G. morhua stock compared to other stocks 

without protection (Clarke et al. 2015). Rijnsdorp et al. (2001) observed a 

similar trend with another G. morhua fisheries closures in the North Sea. While 

little is known about how much MPAs and fishery closures are doing for fish 

populations it is clear that many were implemented without sufficient 

knowledge of the habitat requirements of fish (Pikitch et al. 2004; Rice 2005). 

Conventional fisheries management mechanisms are recognised to be 

insufficient (Pikitch et al. 2004; Hilborn 2011) to recover fish stocks. More 

ecosystem based, multisector and multi-objective management methods are now 

required (Sinclair et al. 2002; Crain et al. 2009; Potts et al. 2012; Chapter 2), as 

proposed through Ecosystem Based Management (Pikitch et al. 2004; Hilborn 

2011; Potts et al. 2012). The relatively new Marine Strategy Framework Directive 

(MSFD) brings together different pieces of European legislation with the aim to 

achieve Good Environmental Status (GES) by 2020 and implement more of an 
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Ecosystem Based Management (EU 2008). Under the MSFD, achievement of a 

wide range of Descriptors is required to demonstrate GES (EU 2008). Some 

descriptors of the relevant to fish and their habitat (Box 2.3.1, Chapter 2) 

include maintaining biological diversity (D1) and seafloor integrity (D6), and 

reducing pollution (D8 - 11). For each of these descriptors a set of relevant 

indicators and targets need to be established so that progress towards GES can 

be assessed (Borja et al. 2013). Nonetheless, there are still many gaps with 

regard to the current understanding of human activities and pressures on marine 

ecosystems. Particular problems include our lack of knowledge of pre-

disturbance conditions from which GES could be defined and how to combine the 

indicators and descriptors into an assessment of environmental status holistically 

(McQuatters-Gollop 2012; Borja et al. 2013). 

1.4. Gadoid fish stocks and their decline  

Throughout the North Atlantic, many fisheries have declined, largely due to 

intensive fishing activities over the last few centuries (Myers et al. 1996; 

Hutchings and Reynolds 2004; Thurstan and Roberts 2010). Particularly affected 

are gadoid species (Hutchings and Reynolds 2004). In the UK the majority of fish 

are landed in Scottish waters (Thurstan and Roberts 2010; MMO, 2015). In recent 

years gadoid fish stocks have been reduced and, unlike some gadoid stocks in the 

North Sea which have been better studied (Bailey et al. 2011), some stocks of 

commercial importance to the west coast of Scotland (i.e. G. morhua) have 

shown no recovery (Fernandes and Cook 2013).  

Specifically, within the Firth of Clyde, southwest coast of Scotland, gadoid 

fishing was once an important fishery (Thurstan and Roberts 2010). However, 

overexploitation and improved methods of demersal fishing led to crashes in 

gadoid stocks and other demersal fish stocks (Thurstan & Roberts 2010). Since 

1984 the predominant fishery taking place in the Firth of Clyde is for the Norway 

lobster (Nephrops norvegicus L.) (Thurstan & Roberts 2010). Scientific bottom 

trawl surveys have however shown that 90% of the biomass is made up of small 

whiting (Merlangius merlangus L.) (Heath and Speirs 2012). The EU cod recovery 

plan introduced in the early 2000s, implemented various fisheries closures 

(including a spawning closure in the outer Firth of Clyde) and measures to 
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promote the conditions of G. morhua stocks (Anon 2001; Kraak et al. 2013). 

Nonetheless, stocks around the west coast of Scotland, including the Firth of 

Clyde have not recovered (Fernandes & Cook 2013; Clarke et al. 2015; ICES 

2015a-c). 

There are various possible reasons for the lack of recovery in gadoid stocks 

throughout the Atlantic. The latter includes very large scale factors across the 

northern hemisphere such as climate change effects driving key larval food 

(Calanus finmarchicus, Gunnerus, 1770) further north (Beaugrand et al. 2003; 

Heath and Lough 2007). This change in abundance may be associated with the 

warming of seas (Beaugrand et al. 2003; Bundy and Fanning 2005; Heath and 

Lough 2007). The increase in grey seal (Halichoerus grypus, Fabricius, 1791) 

abundance preying on young G. morhua has also been discussed (e.g. O’Boyle & 

Sinclair 2012; Smout et al. 2014; Cook et al. 2015). Other possible causes for 

lack of recovery in gadoid fish stocks include mortality from bycatch and 

misreporting (Thurstan & Roberts 2010; ICES 2015a - c). It is also likely that 

centuries of fishing pressure have fundamentally altered the ecosystem (Jackson 

et al, 2001) and the characteristics of the fish in ways that are not automatically 

redress by reducing fishing activity (Dunlop et al. 2009; Enberg et al. 2009). For 

instance, while fishing may provide a strong selective pressure towards smaller 

and earlier reproduction (Heino and Godø 2002; Probst et al. 2013), its cessation 

does not necessarily provide an equally strong pressure towards later 

reproduction within the same time period (Enberg et al. 2009).  

The three gadoid species studied within this thesis are G. morhua, haddock 

(Melanogrammus aeglefinus. L) and M. merlangus. All three species are 

commercially important and valuable species in the UK (MMO; 2014; Barreto & 

Bailey 2015). During their juvenile stages they are known to occupy coastal areas 

on the west coast of Scotland and have been subject to overfishing (ICES 2015a – 

c). G. morhua are also listed as a vulnerable species on IUCN red list (IUCN 2015) 

and both G. morhua and M. merlangus are listed as a Priority Marine Feature 

(PMF) to protect under the Scottish Marine Act (SNH 2016). Neither species was 

chosen as an MPA Search Features (Tyler-Walters et al, 2012) and therefore no 

MPAs were consequently designated to take into account G. morhua or M. 

merlangus. In the case of G. morhua this was because they were considered too 
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mobile (SNH 2010) despite closed areas being shown to benefit G. morhua in the 

USA and Norway (Murawski et al. 2000; Moland et al. 2013). 

In addition to CFP measures to regulate gadoid fishing activity, the International 

Council for the Exploration of the Sea’s (ICES) provide specific yearly 

management advice for fish stocks. Advice for 2016 G. morhua stocks on the 

west coast of Scotland (ICES area VIa), is that landings should remain at zero and 

that bycatch and discards should be minimised (ICES 2015a). The latter is a 

result of low Spawning Stock Biomass (SSB) and recruitment (ICES 2015a). ICES’ 

management advice on M. aeglefinus on the west of Scotland (VIa) is combined 

with the North Sea (IV) and Skagerrak (IIIa) area since 2014 and states that 

catches should be no more than 74,854 tonnes (ICES 2015b). However, there is 

no current agreed management plan for this area, and recruitment and SSB 

remain low (ICES 2015b). ICES’ advice for M. merlangus on the West Coast of 

Scotland (division VIa) for 2016 states that there should be “no directed fisheries 

and all catches should be minimised” (ICES 2015c). This is as a result of SSB 

being below the precautionary and limit reference point (Bpa and Blim) (ICES 

2015c). 

1.5. Gadoid life cycle in the west coast of Scotland 

1.5.1. Atlantic cod, Gadus morhua 

G. morhua VIa stocks are distributed widely throughout the west coast of 

Scotland (Wright et al. 2006a; Barreto & Bailey 2015). Upon reaching maturity 

between two and four years of age, G. morhua aggregate to spawn in large 

groups (Barreto & Bailey 2015; Clarke et al. 2015). Spawning areas have been 

documented as occurring in the Hebrides (particularly the Outer) and close to 

the entrance of the Firth of Clyde from February to June (Wright et al. 2006a; 

Wright et al. 2006b; Bailey et al. 2011), with peak spawning periods on the west 

coast thought to be in March (Wright et al. 2006a; Barreto & Bailey 2015). G. 

morhua have pelagic egg and larval stages, which float on the subsurface for 

several weeks, drifting towards the coast before developing into young pelagic 

age-0 (commercial fish in their first year of life cycle) G. morhua and then 

settling on the seabed (total length between 30 and 60 mm) in nearshore areas 
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as of late June to July (Magill & Sayer 2004; Juanes 2007; Bastrikin et al. 2014; 

Chapter 3 and 4). Movement of larvae and pelagic juveniles is thought to be 

associated with onshore larval transport and settlement during downwellings 

with retention of juveniles in coastal areas during upwellings (Ings et al. 2008). 

Gibb et al. (2007), undertook a study to identify G. morhua nursery grounds 

around Scottish waters. Although the density of 0-age G. morhua was generally 

scarce around much of Scotland’s coast, elevated densities were found within 60 

km of the coast, in particular around the Firth of Clyde (100 G. morhua.km-2) 

and isolated areas off Mull (Gibb et al. 2007). The study further confirmed that 

nursery areas for juvenile G. morhua are in shallow areas in depths less than 20 

m (Gibb et al. 2007). It is thought that juvenile G. morhua remain in such 

shallow (< 9 m depth), sheltered and structurally rugose substrata (such as maerl 

and eelgrass) all year round, but are most abundant during late summer through 

to early autumn (Fromentin et al. 1997; Magill and Sayer 2004; Kamenos 2004).  

On the west coast of Scotland juvenile G. morhua are thought to begin moving 

out of shallow waters after their first winter (Magill and Sayer 2004; Bailey et al. 

2011) to coarser substrata and areas of high bathymetric relief at depths of 15-

120 m (Gregory and Anderson 1997; Cote et al. 2003; Bailey et al. 2011). 

Movement out of shallow water does how seem to vary between stocks (Bailey et 

al. 2011). Adults have rich and complex spatial structures which are only partly 

understood. Nonetheless, adults are thought to remain relatively close to 

spawning areas all year round (Wright et al. 2006a, Galley et al. 2006). Other 

studies have shown they migration to natal spawning areas (Wright et al. 2006a; 

Heath et al. 2008). Although a few studies have been undertaken looking at 

juvenile G. morhua nursery areas around Scotland (e.g. Gibb et al. 2007; Ware 

2009), little information exists on fine scale distributions within these nursery 

areas around the west coast of Scotland (Gibb et al. 2007, Ryan and Bailey 2012) 

as is available in Canada and the USA e.g. (Lough et al. 1989; Tupper and 

Boutilier 1995a; 1995b; Gregory and Anderson 1997; Laurel et al. 2003b; Lough 

2010). 

Important food sources for larvae and juvenile fish include zooplankton such as 

C. finmarchicus (Drinkwater 2005; Heath and Lough 2007; Demain et al. 2011). 

As juvenile fish develop their diet expands to include crustaceans and 
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polychaetes, and small fish such as plaice (Pleuronectes platessa. L) (Ware 2009, 

Demain et al. 2011; Bastrikin et al. 2014). Foraging in juvenile fish is thought to 

mostly occur at night to avoid predators (Gibson et al. 1996; Linehan et al. 

2001). Mature G. morhua primarily feed on capelin (Mallotus villosus, O. F. 

Müller, 1776), C. harengus and crustaceans such as N. norvegicus (Bundy and 

Fanning 2005; Lilly et al. 2008). In the absence of other prey, cannibalism has 

been observed to increase (Uzars 2000; Lilly et al. 2008). Thought to be a crucial 

factor to population recruitment is the carrying capacity of the environment, 

particularly since G. morhua stocks indicate a high degree of spawning fidelity 

among repeat spawning fish (Wright et al. 2006a; Heath et al. 2008). 

1.5.2. Haddock, Melanogrammus aeglefinus 

M. aeglefinus are widely distributed around the west coast of Scotland (Barreto 

and Bailey 2015). M. aeglefinus aggregate to spawn between January to May, 

with peak times between February and March, and at a depth of about 100 m 

(Gibb et al. 2004; Bailey et al. 2011; Barreto and Bailey 2015). Spawning 

aggregations have been identified in mid waters to the west of the Outer 

Hebrides (Heath and Gallego 1998; Gibb et al. 2004; Ware 2009). M. aeglefinus, 

like G. morhua, have pelagic eggs which are produced in batches and have been 

found in the Clyde area, probably as a result of drifting with currents (Gibb, 

2004; Ware 2009; Casaretto et al. 2014). Larvae hatch after 90 days (depending 

on temperature), where they remain pelagic until they settle on the seabed as 

juveniles (total length 40 - 80 mm) from June to August (Wright et al. 2010). 

Following settlement juveniles have been observed to demonstrate site fidelity 

for many weeks (Wright et al. 2010; Demain et al. 2011). They can however, 

occupy the entire water column (Olsen et al. 2010). Juvenile M. aeglefinus have 

been observed over a range of substrata including sand and gravel (Lough et al. 

1989) 

Otolith microchemistry studies undertaken by Wright et al. (2010) indicate that 

relatively small regions (assessed at ICES rectangles scales) may act as important 

nurseries and that M. aeglefinus appear to show site fidelity for many weeks 

following settlement. Wright et al. (2010) also confirmed that although adult M. 

aeglefinus in offshore west of Scotland waters appear to be derived from inshore 
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juveniles in the west of Scotland; eggs and pelagic larvae from the west coast 

contribute to the North Sea stock (Heath and Gallego 1997; Wright et al. 2010). 

Pelagic M. aeglefinus larvae have been observed to begin arriving at coastal 

areas as of late April and begin occupying demersal areas in June (Bastrikin et 

al. 2014). M. aeglefinus have been associated with inshore areas on the west 

coast of Scotland and the Clyde Sea, changing depths according to preferred 

temperature ranges (Perry and Smith 1994; Heath and Gallego 1997). As M. 

aeglefinus mature (September onwards) they have been associated to 

increasingly deep and relatively less rugose substrata with smaller size particles 

(Ware 2009; Olsen et al. 2010; Chapter 4). Adult M. aeglefinus can reproduce 

from two years of age, however maturation is usually between 4 - 7 years (40 - 

60 cm) (Olsen et al. 2010; Barreto & Bailey, 2015).  

The diet of adult M. aeglefinus varies with size and time of year but mainly 

consists of sandeels (Ammodytes tobianus L.), Norway pout (Trisopterus 

esmarkii, Nilsson, 1855), and invertebrates such as molluscs and urchins (Demain 

et al. 2011; Keltz & Bailey 2012). Studies by Demain et al. (2011) and Bastrikin 

et al. (2014) showed that age-0 M. aeglefinus mainly preyed upon crustaceans 

such as copepods, decapods and fish species such as Ammodytes spp.  

1.5.3. Whiting, Merlangius merlangus 

M. merlangus is not a particularly valuable species compared to M. aeglefinus 

and G. morhua, they are however caught in high numbers and even discarded as 

a bycatch species (Barreto and Bailey 2015). West coast M. merlangus stocks are 

widely distributed along the west coast, with higher abundances to the north 

(Barreto and Bailey 2015). Spawning periods are closely associated with 

temperature changes around January to June (at depths ranging from 36 – 80 m), 

as the sea temperature begins to rise (Wright & Trippel, 2009; Bailey et al. 

2011). At two years of age females are usually able to spawn and spawning 

periods can last 14 weeks from February to May, where batches of eggs are 

produced (Fromentin et al. 1997; Gibb et al. 2004; Barreto and Bailey 2015).  

Like G. morhua and M. aeglefinus, M. merlangus spend their first few months in 

the upper pelagic zones feeding on zooplankton before migrating to sheltered, 
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inshore demersal areas at lengths 30 - 60 mm from June to December (Fromentin 

et al. 1997; Bailey et al. 2011). Juvenile M. merlangus, like the other gadoids 

are thought to begin moving to more exposed offshore areas from January to the 

summer period (Hall et al. 1990; Fromentin et al. 1997; Bailey et al. 2011). 

Little is known about the habitat of M. merlangus. However, in situ studies by 

Atkinson et al. (2004) have shown age-1 juveniles are though to select 

structurally more rugose substrata in response to risk of predation with larger 

individuals (age-2) aggregating over sand and gravel. In Scotland, adult M. 

merlangus displacement ranges can vary however can be greater than 500 km 

(Tobin et al. 2010). Age-0 M. merlangus substratum association has not been 

well studied however it is thought that they may not have a particular 

association other than to seek shelter (Hislop 1996; Fromentin et al. 1997; Bailey 

et al. 2011). Juvenile M. merlangus feed on crustaceans and as they develop 

they feed increasingly on other fish (Temming et al. 2007; Demain et al. 2011; 

Bastrikin et al. 2014). 

1.6. Juvenile gadoid habitat  

Fisheries research has largely concentrated on the target fish populations and 

only recently has more attention been given to important fish habitat 

components (Langton et al. 1996; Lindholm et al. 2001; Box 2.3.1, Chapter 2). 

Potential recovery of gadoid species on the west coast of Scotland depends on 

an understanding of important habitat components for all life stages (Langton et 

al. 1996; Cote et al. 2003) which is currently unknown. Numerous studies have 

been undertaken to understand substrata association of gadoids, particularly in 

Canada, the USA and Scandinavian countries. However, fine scale distribution 

and substrata association observations in the UK are few and far between (Gibb 

et al. 2007; Ryan and Bailey 2012). Studies have also demonstrated varying 

results with different stocks demonstrating different behavioural traits (Bailey 

2011). Further, most current studies have only investigated one or two habitat 

components (e.g. substrata and depth association), failing to take into 

consideration a range of abiotic and in particular biotic variables which may 

affect where a species inhabits (Darwin, 1972; Hall et al. 1997; Gaillard et al. 

2010; Chapter 2).  
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Studies of fish habitat provide a useful insight into the ecology of species (Rice 

2005), revealing factors such as predator avoidance, feeding, habitat component 

association or selection (Box 2.3.1, Chapter 2) and population dynamics (e.g. 

Cote et al. 2003; Renkawitz et al. 2011; Ryan et al. 2012). Understanding 

juvenile fish habitat could be particularly important since studies by Olsen & 

Moland (2010), showed that 75% of juvenile gadoids (G. morhua) died in their 

first year (50% caught by fishers). Understanding habitat information could 

therefore be important to help managers gain a better understanding of possible 

areas to protect which is currently being sort around the UK. 

A recruitment bottleneck may be occurring where environmental conditions do 

not facilitate high survival at early life stages and favour conditions for older fish 

(Svåsand et al. 2000; Fodrie et al. 2009). Insufficient important habitat 

components at early life stages which is currently unknown, may inhibit the 

recovery of gadoid populations. Additionally, changes in habitat component 

quantity and quality (Box 2.3.1, Chapter 2) caused by natural or anthropogenic 

events, could be used to predict the effects on recruitment (Gibson 1994). Most 

studies of gadoids in the UK have taken place using commercial catch and 

standardized trawl surveys (e.g. Ware 2009; Wright et al. 2010). The latter has 

not resulted in the spatially resolved data needed for detailed understanding of 

important juvenile gadoid habitat components, which may affect density, 

growth and survival to adult populations (Langton et al. 1996; Wright et al. 

2010). 

1.7. Techniques to collect data on juvenile gadoids 

A wide variety of methods exist to collect data on fish habitat, these include 

traditional mechanisms such as trawling which is commonly used for stock 

assessments, trapping techniques such as the use of seine and fyke nets. Non-

traditional techniques include the use of acoustic surveys, egg surveys for 

plankton, diver underwater visual census and the use of imagery techniques such 

as Remotely Operated Vehicles (ROV), drop down cameras, video transects and 

Baited Remote Underwater Video (BRUV) deployments (Murphy and Jenkins 

2010).  
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Survey techniques for demersal fish species have traditionally used trawl 

techniques. Since use of landings and trawling data is well established, long time 

series can be accessed e.g. Heath and Speirs 2012. However, such extractive 

methods are inherently destructive to the benthos and can alter the structure 

and function of benthic communities (Jennings and Kaiser 1998, Holmlund and 

Hammer 1999, Thrush and Dayton 2002). These techniques are therefore not 

suitable within protected areas or vulnerable substrata such as coral, sponges 

and maerl or where seagrass may occur. Use of trawl techniques is also not 

possible in highly structurally rugose substrata and shallow waters where 

juvenile gadoids are known to inhabit (Cappo et al. 2006). Additionally trawl 

techniques fail to provide detailed information of the interactions between 

substrata and benthic communities and the species of interest (Gregory and 

Anderson 1997, Harvey et al. 2007, Fitzpatrick et al. 2012; Chapter 4).  

Other trapping techniques commonly used to assess juvenile gadoid populations 

include seine netting methods and fykenets (e.g. Laurel et al. 2007 and Kamenos 

et al. 2004). Although these techniques enable areas to be quantified as with 

trawl techniques, biological interactions between species which may affect the 

distribution and abundance of the focal species of interest are difficult to 

quantify. It is also difficult to access highly rugose substrata using beach seine 

nets and deeper regions further from shore (Laurel et al. 2007).  

Hydro acoustic instruments are commonly used by research vessels and 

commercial fishermen to detect fish populations. The different sound 

frequencies enable the detection and quantification of species (ICES, 2007). 

Acoustic methods are however less accurate in detecting demersal and juvenile 

fish population in shallower waters due to the disturbance of the signal with the 

seafloor, bubbles from the vessel in the water column and the small size of the 

fish (ICES, 2007; Murphy and Jenkins 2010; Mallet and Pelletier 2014). 

Furthermore, detailed quantification of fish with their environment and other 

species is not possible using acoustic methods. Various fish tagging methods also 

exist (e.g. Lucas and Baras 2000) which can provide useful information on the 

movement, migration, use of space and distribution (Murphy and Jenkins 2010). 

However, unless detailed seabed mapping has been undertaken in the area and 

numerous arrays of acoustic receivers are fixed, substratum association of fish is 

not possible (Murphy and Jenkins 2010). In situ acoustic tagging studies of age-0 
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gadoids can be difficult due to their small size and previous tagging studies have 

demonstrated low recapture rates (Ware, 2009).  

Visual survey methods can provide an effect solution to access vulnerable, 

shallow, topographically rugose and protected areas whilst enabling the 

interactions between species and substrata to be quantified (Cappo et al. 2003, 

Harvey et al. 2007, Fitzpatrick et al. 2012). Such multifaceted information 

cannot be obtained using traditional fisheries techniques or any of the 

techniques described above. Visual surveys also enable a more complete picture 

of the habitat of demersal fish to be obtained albeit smaller scale assessments. 

Problems facing visual census techniques include quality of imagery (particularly 

in temperate and turbid waters) and the ability to accurately identify species 

and measure species (Shortis et al, 2009). Stereo-video imagery techniques, 

which uses two cameras to record pairs of frames with a calibration procedure, 

have enable accurate length measurements and 3-dimentional images to be 

obtained of objects in front of the cameras and the area sampled can be 

quantified (Harvey et al. 2002; Harvey et al. 2010; Langlois et al. 2010; Murphy 

and Jenkins 2010). The provision of a stable platform (from drop down frames) 

or controlled movement from ROVs and imaging software can also help to 

improve image quality.  

Use of imagery techniques can help improve miss-identification errors by 

providing a permanent record (Cappo et al. 2003; Langlois et al. 2010; Boutros 

et al. 2015). Visual surveys also facilitate accurate and repeatable fish surveys 

to take place (Harvey and Shortis 1995; Boutros et al. 2015). Imaging techniques 

are also thought to be more accurate than trapping and trawling techniques 

(Spencer et al. 2005; Cappo et al. 2003) and could complement abundance 

estimates of fish (Priede and Merrett 1996). Cappo et al (2004) undertook a 

comparative analysis comparing BRUVs with prawn trawls to assess fish 

biodiversity. Significantly different fauna were recorded, where trawls caught 

smaller sedentary and demersal species, whereas BRUVs recorded larger, more 

mobile species from a larger range of sizes and families. Accurate comparative 

analysis of such techniques should however include approximations of the area 

sampled which for BRUV is currently not fully applicable (Cappo et al. 2003; 

Dunlop et al. 2015; Chapter 6). 
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In shallow waters, diver operated imagery techniques is possible (e.g. Harvey 

and Shortis, 1995). However, SCUBA methods are restricted to depth limits 

(Boutros et al. 2015). Drop down, towed cameras, stereo or simply (S)BRUV 

deployments are also commonly used(Watson et al. 2005; Hunter and Sayer 

2009; Murphy and Jenkins 2010; Easton et al. 2015). In deep waters, Remotely 

Operated Vehicles (ROV), manned vehicles and Autonomous Underwater Vehicles 

are used to gain a better understanding of the rocky and fragile benthos and 

demersal species (e.g. Isaacs and Schwartzlose 1975; Costello et al. 2005; 

Friedman et al. 2012; Morris et al. 2014).  

Lowry et al. (2012) undertook a comparative study between BRUV deployments 

and Underwater Visual Census (UVS) and found UVS methods recorded a greater 

number of species including better estimates of rare and cryptic species than 

BRUVs on reefs in southeast Australia. However, such comparative methods can 

be biased since BRUV methods of collecting data are passive whereas with UVS 

methods the divers can search within the substrata to identify and count species 

(Lowry et al. 2012).Certain species may also be diver averse (Harvey et al. 2007, 

Lowry et al. 2012). Conversely, comparative surveys between stereo-video diver 

operated transects and SBRUV undertaken in western Australia have indicated 

that SBRUV are more cost and time-efficient (Langlois et al. 2010). Baited 

cameras (used to attracted species) are commonly used to decrease zero counts, 

increase similarity and repeatability between surveys (Murphy and Jenkins 2010; 

Mallet and Pelletier 2014). Baited cameras may however be biased towards more 

predatory and scavenger species (Lowry et al. 2012; Dunlop et al. 2015). Bernard 

and Gotz 2012 also performed a comparative analysis between BRUVs and RUVs 

and found that BRUVs were more efficient at surveying entire communities 

(including demersal fish and benthic invertebrates). RUVs on the other hand 

were found to be more effective and surveying micro-invertebrates. Murphy and 

Jenkins (2010) and Mallet and Pelletier (2014), provide a detailed overview of 

observational methods used to monitor fish and their association to benthos. 



  40 

General introduction 

1.7.1. Use of stereo-video cameras to collect in situ data 

on juvenile gadoids 

Underwater, stereo-video imaging techniques have been around since the 1960s 

with synchronised cameras first used in the 1980s enabling length measurements 

of mobile species to be obtained in addition to size, density and structure of 

schools to be measured (Shortis et al. 2009). For accurate and precise 

measurements, stereo-video systems require rigid camera housings with a bar 

connecting the two cameras to ensure that the optical path is consistent for all 

measurements based on the calibration (Shortis et al. 2009, Shortis 2015). The 

relationship between the camera and the housing port must be consistent to 

ensure changes in position when removing and replacing the cameras from the 

housing is kept consistent (Shortis et al. 2009, Shortis 2015).The optical 

characteristics of the cameras and their orientation must also be determined 

during the calibration process (Harvey and Shortis 1995, Shortis 2015). 

Additionally, the left and right cameras must be synchronised, this is facilitated 

by placing a Light Emitting Diode within the field of view of both cameras 

(Mallet and Pelletier 2014). For calibration to take place the dimensions of the 

calibration object (usually a cube) must be known (Shortis et al. 2009, Shortis 

2015). The calibration procedure involves rotating the cube whilst within the 

field of view of the camera in different angles so that measurements can be 

made. Calibrations must be undertaken within a controlled environment such as 

a swimming pool. Length measurements are then independently calibrated using 

a scale bar to calculate the accuracy of the calibration (refer to Harvey and 

Shortis et al 1995;1998).  

Various methods exist to calculate the calibration to be able acquire accurate 

measurements. Shortis et al. (2009), provide a comprehensive review of 

underwater stereo-image measurements. Boutros et al. (2015) compares 

calibration techniques to configure stereo-video systems. Automation of 

measurement process in recent years has however enabled non-technical 

specialists to use stereo-video imagery for a wider range of purposes such as to 

further the understanding of marine biological systems and ecology.  
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Stereo imagery analysis can however increase costs, the bulk of equipment and 

lengthen information processing time unless automated or semi-automated 

imaging techniques are used (Shortis et al, 2009).The additional benefits of 

stereo-video imagery is however thought to outweigh the costs. Most work using 

stereo-video cameras to study fish populations and the ecology of fish have 

taken place in tropical and subtropical environments (e.g. Langlois et al. 2010; 

Misa et al. 2013; Goetze et al. 2015). The use of stereo-video cameras in 

temperate waters to study fish populations, nursery areas and behaviour has 

rarely been studied. However, this methodology could provide an important 

monitoring technique with the growing number of MPAs and other area closures. 

1.8. Thesis aims and objectives 

To understand the reasons for unrecovered gadoid stocks, the high biomass of 

juvenile M. merlangus in the Firth of Clyde, and to provide advice on possible 

management measures, knowledge of the full life cycle of gadoids is required. 

Sparse research exists on different aspects of gadoid life cycles on the west 

coast of Scotland and anthropogenic impacts on gadoid habitat. However, the 

cohort size of marine fish is thought to be determined during the first year of 

piscine life (Campana et al. 1989; Myers and Cadigan 1993; Ings et al. 2008). 

Understanding what variables affect juvenile gadoid distribution could therefore 

help recruitment and protection from anthropogenic activities. 

Consequently the overall aim of this thesis is to improve our knowledge of 

juvenile gadoid habitat. Chapters 3 - 5 address this aim. The second main aim of 

this thesis was to trial the use of two stereo-video SCUBA transects and SBRUV 

deployments as photogrammetric monitoring methods of collecting data on 

juvenile gadoid, demersal fish and benthos. Chapter 3 and 4 address this aim. 

The third main aim, addressed in chapters 3 - 5 was to provide baseline data on 

seabed type within a recently designated MPA -South Arran Nature Conservation 

MPA (NCMPA) (SNH 2014), and potential management and monitoring information 

for the conservation of juvenile gadoids. All research undertaken for this thesis 

was carried out within South Arran NCMPA which was designated August 2014. 

Data collection during 2013 took place before designation and data collection 

during both years took place before management measures were implemented. 
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To begin understanding gadoid habitat, chapter 2 provides a background to the 

terminology related to demersal fish habitat. The objective of this chapter was 

to disentangle the various uses of habitat and habitat related terminology, 

provide clear definitions for habitat related concepts discussed and examples of 

how to assess the fish habitat for conservation and management purposes. 

Chapter 3 trials the use of stereo-video SCUBA transects as a means of collecting 

abundance and length on age-0 G. morhua. Data were collected within South 

Arran Nature Conservation MPA (NCMPA), within the Firth of Clyde between June 

and the end of September 2013. Abiotic and biotic variables influencing the 

distribution and length of juvenile G. morhua in shallow (4.5 – 23 m) subtidal 

waters were explored. An assessment of the stereo-video SCUBA transects is 

made. 

Chapter 4 trials the use of SBRUV surveys as a method to collect relative 

abundance and length measurements on juvenile gadoid within South Arran 

NCMPA. Data were collected between June and the end of September 2013 and 

2014. Abiotic and biotic variables influencing juvenile G. morhua, M. aeglefinus 

and M. merlangus distribution and length in subtidal waters between 4 and 47 m 

were explored. An assessment of the use of SBRUV surveys is made. 

Chapter 5 explores a range of environmental variables in combination with the 

ground-truthed data using the stereo-video techniques to improve the 

substratum predicted map within South Arran NCMPA. The predicted maps were 

used to understand seabed landscape effects (substratum heterogeneity and 

extent) on juvenile gadoid distribution.  

Chapter 6 summarises the findings from these studies and discusses their use in 

the context of fisheries independent monitoring and management methods. This 

chapter also explores possible future applications of the findings of this work 

and the new methods developed. 
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Chapter 2. Disentangling habitat concepts for 

demersal marine fish management1 

 

2.1. Abstract 

Fishing and other anthropogenic impacts have led to declines in many fish stocks 

and modification of the seabed. As a result, efforts to restore marine ecosystems 

have become increasingly focused on spatially explicit management methods to 

protect fish and the habitats they require for survival. This has led to a 

proliferation of investigations trying to map ‘habitats’ vulnerable to 

anthropogenic impacts and identify fish resource requirements in order to meet 

conservation and management needs. 

A wide range of habitat-related concepts, with different uses and understandings 

of the word ‘habitat’ itself has arisen as a consequence. Inconsistencies in 

terminology can cause confusion between studies, making it difficult to 

investigate and understand the ecology of fish and the factors that affect their 

survival. Ultimately, the inability to discern the relationships between fish and 

their environment clearly can hinder conservation and management measures 

for fish populations. 

This review identifies and addresses the present ambiguity surrounding 

definitions of ‘habitat’ and habitat-related concepts currently used in spatial 

management of demersal marine fish populations. The role of spatial and 

temporal scales is considered, in addition to examples of how to assess fish 

habitat for conservation and management purposes. 

                                         
1
 NB: This chapter has been accepted as a paper: Elliott, S. A. M., Milligan, R. J, Heath, M. R., 

Turrell, W. R. & Bailey, D. M. 2016. Disentangling habitat concepts for demersal marine fish 
management. Oceanography and Marine Biology: An Annual Review, 54: 171-188. 
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2.2. Introduction 

Fish represent a highly diverse group of animals (Eschmeyer et al. 2010). They 

are known to play important roles in ecosystem structuring and provide essential 

resources for humans through the provision of food, regulation of food web 

dynamics and carbon cycling (Holmlund & Hammer 1999; Baum & Worm 2009). 

However, fishing and other anthropogenic pressures have led to declines in many 

fish species and modification of the seafloor (Jennings & Kaiser 1998; Crain et 

al. 2009). As a result, much effort has been expended on identifying 

management mechanisms to protect, sustain and restore depleted fish stocks. 

There has also been an increasing emphasis on the application of ecosystem-

based fisheries management (EBFM) (Box 2.3.1), in addition to species-by-

species assessment and fisheries management (Schmitten 1999; Sinclair et al. 

2002, Gavaris 2009).  

The transition to EB(F)M has led to a proliferation of investigations to identify 

fish ‘habitats’ for fisheries management purposes, ‘habitat’ mapping for seabed 

conservation purposes, and ‘habitat’ characterisation to explain ecosystem (Box 

2.3.1) functioning (Christensen et al. 1996; Diaz et al. 2004; Francis et al. 2007). 

In many cases, the term ‘habitat’ is not well defined and can have different 

meanings or implications, which may lead to confusion when interpreting the 

results of different studies, as reviewed by Block & Brennan (1993) and Hall et 

al. (1997). The use of ‘habitat’ to refer to seabed characteristics for mapping 

purposes and ecosystem functioning has been formalised through legislation that 

requires habitats to be classified and protected; e.g. the European Union 

Habitats Directive (92/43/EEC, CEC 1992) and the Marine Strategy Framework 

Directive (2008/56/EC, EU 2008). These uses of ‘habitat’ have become 

synonymous with descriptions of physical characteristics of the seabed, such as 

substratum type (e.g. seagrass, coral reefs or maerl beds) (Box 2.3.1) or marine 

biotopes (Box 2.3.1) (Olenin & Ducrotoy 2006; Dauvin et al. 2008a). These 

definitions of ‘habitat’ are fundamentally different from Darwin’s definition, 

which relates to the place in which a species lives (Dauvin et al. 2008b). 

Since the definition of ‘habitat’ is not standardised, further confusion has been 

caused by terms for certain characteristics of habitat (e.g. habitat complexity, 
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habitat heterogeneity or quality) (Box 2.3.1), which also have often lacked clear 

explanation (Block & Brennan 1993; McCormick 1994; Hall et al. 1997). Part of 

the difficulty is that much of the terminology is entirely dependent on spatial 

and temporal scales (Levin 1992; Chave 2013). For example, a demersal fish 

might utilise distinct substrata for feeding or protection at different times or 

during a particular stage in its ontogeny (e.g. Laurel et al. 2009; Grol et al. 

2014). Equally, the type of substratum required to provide physical protection 

will depend on the size of the demersal fish (Chave 2013; Figure 2.3.2). A 

substratum’s ‘complexity’ is therefore entirely dependent on the size and 

morphology of the species.  

Misused or undefined terminology could lead to misinterpretation of the role of a 

particular substratum type for individual species, or to the use of inappropriate 

methodologies when analysing the role of a ‘habitat’ or substratum type to a 

fish. For instance, if species’ abundance is greater around one substratum type 

than another, is that species displaying ‘habitat selection’ based on a particular 

‘preference’ (Box 2.3.1), or is that observation related to other environmental 

or life-history parameters that were not measured? Could the substratum type 

be considered ‘essential’ to the fish if other habitat components (e.g. 

appropriate depth range or other substrata) were not present? If definitions of 

habitat are unclear, variables which could affect fish distribution or abundance 

may not be recorded. Ultimately, the inappropriate use of ‘habitat’ and related 

terminology could have implications for the effectiveness of EB(F)M, especially 

where different fields of marine science use the same term with different 

implications.  

The present review paper, while not exhaustive, addresses the current ambiguity 

surrounding habitat and habitat-related concepts currently used in the spatial 

management of demersal marine fish. Particular attention is therefore paid to 

the role of the seabed. For each concept discussed, a conceptual definition is 

provided, followed by examples of how to assess fish habitat for conservation 

and management purposes. These definitions provide a possible conceptual 

framework for consideration of demersal fish-environment relationships, which 

could equally be applied to other areas of ecology.  
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2.3. Concepts and definitions 

2.3.1. Habitat 

The first use of the term ‘habitat’ discussed here, referred to hereinafter as 

Interpretation I, is derived from Darwin’s (1872) definition, describing the place 

in which a plant or animal lives (Box 2.3.1). This encompasses the resources and 

environmental conditions that determine the presence, survival and 

reproduction of a species (Hall et al. 1997; Gaillard et al. 2010). Interpretation I 

therefore encompasses the physical (e.g. depth, substratum type, wave 

exposure), chemical (e.g. oxygen concentration, pH, salinity) and biological 

characteristics (e.g. predator prey dynamics, competition and fauna providing 

structure to the seabed) of the environment (Hall et al. 1997; Kaiser et al. 1999; 

Diaz et al. 2004). Figure 2.3.1 illustrates schematically how the habitat of a 

demersal fish can be considered as the intersection of appropriate substratum 

type, physicochemical parameters and biological characteristics. 

For quantitative purposes, this interpretation of habitat (Interpretation I) has 

been explained as the ‘environmental space’ that a species is found within (e.g. 

Aarts et al. 2008; Matthiopoulos et al. 2015). However, many studies of fish 

habitat have often only described one or two habitat components, which may 

concern either the seabed type (Figure 2.3.1A), the physicochemical properties 

of the water column (Figure 2.3.1B), or both, with no mention of biological 

characteristics (Figure 2.3.1C) (Kaiser et al. 1999). Examples include seagrass or 

coral reef substratum types that a particular fish is found over, around or among 

(Costello et al. 2005; Seitz et al. 2014), or the depth and temperature ranges 

(e.g. Smale et al. 1993; Perry & Smith 1994). As stated by Lima & Dill (1990) and 

Able (1999), the lack of studies incorporating biological characteristics and 

interactions in the identification of fish habitat is most likely due to the 

difficulties of quantifying these aspects and collecting the required data in situ.  

The second use of habitat (Interpretation II), follows arbitrary classifications of 

the seabed or features based on differences obvious to human observers (e.g. 

different types of sediment, macroalgal beds, or biogenic reefs; Figure 2.3.1A) 

(Fraschetti et al. 2008). Interpretation II does not explicitly consider the 
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ecological requirements of a particular species; however, it has been used to 

identify associations of some species with particular substrata (e.g. Seitz et al. 

2014). Kenny et al. (2003) provides an overview of seabed mapping technologies 

available for classification purposes.  

The third use of habitat (Interpretation III) encompasses an ecosystem- or a 

marine biotope-based view of habitat (Olenin & Ducrotoy 2006; Airoldi & Beck 

2007; Dauvin et al. 2008a). Descriptions under Interpretation III typically include 

seabed properties (Figure 2.3.1A), physicochemical properties of the water 

column (Figure 2.3.1B) and the fauna found in that specific area, though 

interactions between those fauna are not considered. Interpretation III is 

typically characterised in terms of the community of flora and fauna present, 

rather than a particular focal species (Olenin & Ducrotoy 2006; Dauvin et al. 

2008a). 

Interpretations II and III derive from conservation and planning requirements to 

classify and map habitats in measurable geographical units for national and 

international management and monitoring purposes (Airoldi & Beck 2007; 

Fraschetti et al. 2008; Galparsoro et al. 2012). Classification of seabed types and 

their associated communities facilitates the implementation of policies to 

assess, maintain or restore marine environments subject to anthropogenic 

impacts (Airoldi & Beck 2007; Fraschetti et al. 2008; Galparsoro et al. 2012), but 

legal definitions of habitat can be inconsistent. For instance, the EU Habitats 

Directive (92/43/EEC) defines “natural habitats” as “terrestrial or aquatic areas 

distinguished by geographic, abiotic and biotic features”, but confusingly also 

defines the “habitat of a species” as “an environment defined by abiotic and 

biotic factors in which a species lives at any stage of its biological cycle” (CEC 

1992, Dauvin et al. 2008b). Examples of “natural habitats” defined under the 

Habitats Directive include reefs, Posidonia beds and estuaries (CEC 1992). The 

same word is therefore used to describe geological, biological and geographical 

entities at spatial scales varying from metres to many kilometres (Dauvin et al. 

2008b). Similarly, the Vulnerable Marine Ecosystem (VME) concept (FAO 2009) 

refers to classifications of the seabed and includes associated species, but has 

no clear description of what an ecosystem or habitat is (FAO 2009; Auster et al. 

2010). Such classification systems move away from the traditional definitions of 

habitat by focusing only on certain habitat components without considering 
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biological or physicochemical linkages. Interpretations II and III also instigate and 

perpetuate confusion in terminology across different fields of marine science 

and policy (Dauvin et al. 2008a, b; Galparsoro et al. 2012). Further, if the 

classified seabed types or identified fish habitats are used for conservation and 

management purposes without taking due account of varying temporal and 

spatial scales, efforts to protect and restore fish stocks and their habitats may 

be ineffective (Hilborn et al. 2004b; Guarinello et al. 2010). For example, a 

poorly planned G. morhua fisheries closure established in the North Sea in 2001 

not only had negligible effects on G. morhua stocks, but also displaced fishing 

activity, increased discarding and negatively impacted vulnerable populations of 

skate (Dipturus batis) (Rijnsdorp et al. 2001; Hilborn et al. 2004b). 

Identifying and collecting data on fish habitat is by no means straightforward, 

since habitats vary not only among species, but can also vary between sexes of 

the same species, life history stages and among different stocks. Investigations 

conducted over different temporal and spatial scales will also produce different 

outcomes when identifying a particular species’ habitat. Managers are therefore 

faced with daunting tasks of managing and monitoring stocks, often with little 

prior information on fish distribution and abundance, and insufficient funds 

(Bailey 1982; Langton et al. 1996). Loose definitions can therefore be beneficial 

for managers trying to implement measures to conserve and restore stocks with 

little baseline information (Fletcher & O’Shea 2000; Elliott & McLusky 2002). 

However, if simplified managerial definitions are adopted in the scientific 

literature, ecological meanings can become lost or confused, partly due to a lack 

of consensus within the scientific community itself (Dauvin et al. 2008a). As a 

result, habitats frequently lack metrics, threshold values or analytical 

approaches for their identification, monitoring and management (Murphy & Noon 

1991; Auster et al. 2010) and end up becoming separated from their theoretical 

roots (Dauvin et al. 2008b). 

In an attempt to reduce the confusion surrounding the term ‘habitat’, the 

present review uses Interpretation I, which refers to the combination of the 

types of substrata, biological characteristics and physicochemical properties 

required by a species during a particular stage in its ontogeny (Figure 2.3.1D) 

(Hall et al. 1997; Kaiser et al. 1999). A species’ habitat can therefore be applied 

both to individuals and to populations or stocks. Appropriate scales of time and 
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space will vary according to the hierarchical level in question. ‘Substratum type’ 

(Box 2.3.1) will be used to define seabed characteristics (Figure 2.3.1A). If only 

physicochemical properties of water and substrata are taken into account when 

identifying a species’ habitat, this will be referred to as ‘physicochemical space’ 

(Box 2.3.1; Figure 2.3.1E), a term modified from the “environmental space” of 

Aarts et al. (2008). The incorporation of biotic communities into the 

classification of substratum types (Interpretation III) will be referred to as a 

species’ ‘biotope’ (Olenin & Ducrotoy 2006; Dauvin et al. 2008a).  

The use of Interpretation II or III rather than Interpretation I is thought to have 

contributed to underperformance of fisheries management through lack of 

consideration of variables that might have an effect on fish abundance and 

spatial distribution (Degnbol et al. 2006). When trying to protect a certain 

species’ habitat, understanding the variables affecting its distribution and 

abundance is more likely to provide benefits to that focal species than using 

artificial constructs of substratum categories. Marine Protected Areas (MPAs), for 

example, are commonly designed to limit or exclude fishing and other damaging 

activities within a defined area (Halpern et al. 2010). Nonetheless, there is often 

a mismatch between the objectives of MPAs and ecosystem-based goals arising 

from different biological disciplines and specialisms (Degnbol et al. 2006; 

Halpern et al. 2010). In the UK for example, the majority of MPAs have been 

designated for the protection of benthic features, with little understanding of 

whether these features are of value to commercial fish species, and may 

therefore miss potential EBFM benefits (Hilborn et al. 2004b; Hilborn 2011). It 

should be noted that clarification of terminology and more widespread adoption 

of EBFM will not solve all fisheries management problems (Degnbol et al. 2006; 

Marasco et al. 2007). There are no blanket solutions to all fisheries management 

problems (Degnbol et al. 2006; Beddington et al. 2007; Hilborn 2007). 

Nonetheless, addressing discrepancies in language to facilitate cross-sector 

collaboration can only be beneficial. 
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Figure 2.3.1 - The three major components making up a species habitat. These 

include the substratum type (A), physicochemical properties of the water 

column (B), and biological characteristics (C), which together comprise a 

species’ habitat (D; Interpretation I). Circle A on its own encompasses 

interpretation II; the intersection of circles A and B (area E) is referred to as 

physicochemical space. Interpretation III of habitat would also be represented by 

area D, but considers communities rather than individual species (a biotope). 

 

2.3.2. Habitat complexity’ 

McCoy & Bell (1991) highlight three structural variables in relation to the 

ecological significance of ‘habitats’ (defined here as ‘substrata’): complexity, 

heterogeneity and scale. ‘Habitat complexity’ has been used to refer to the 

rugosity (Box 2.3.1) of the seafloor (e.g. Friedlander & Parrish 1998a; Wilding & 

Sayer 2002), the type and density of vegetation (e.g. McCoy & Bell 1991; Jackson 

et al. 2001), the presence and diversity of biota on the seabed (e.g. Kovalenko 

et al. 2012), as well as to substrata that provide vertical relief (e.g. Bohnsack 

1991; Santos et al. 2012). At larger spatial scales, ‘complexity’ has been used in 

relation to the diversity or ‘heterogeneity’ of substratum types available within 

a benthic ‘landscape’ (Box 2.3.1) (e.g. Dutilleul 1993; Kovalenko et al. 2012). 

The catch-all term ‘complexity’ has become a convenient shorthand despite the 

diverse measures used and the variety of scales at which it is quantified 
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(McCormick 1994; Bartholomew et al. 2000). Although habitat complexity and 

heterogeneity are well-established concepts, few policy documents address or 

define them. Within the international guidelines for deep–sea fisheries 

management (FAO 2009), structural complexity is characterised “by complex 

physical structures created by significant concentrations of biotic and abiotic 

features”. Although the FAO (2009) separates vulnerability and species diversity, 

their definition of complexity is circular and based on anthropocentric’ 

perceptions rather than being framed in terms of the resource requirements of 

particular focal species, and has no reference to scale or how complexity should 

be measured. 

‘Complex habitats’ are considered important to the survival of many fishes, 

since the interstices that characterise them may provide refugia from predators, 

currents and strong wave surges, and could potentially lead to reduced mortality 

(Sebens 1991). Some substrata, such as rock, calcareous shells of sessile 

invertebrates, macroalgae and seagrass, can also provide areas of attachment 

for other biota that may in turn form new substrata (e.g. algae, hydroids and 

bryozoans) (Sebens 1991; Gratwicke & Speight 2005). Such biotic substrata can 

lead to increased rugosity and heterogeneity, which may provide a wider range 

of refugia, biological diversity and food resources than an area of seabed with 

fewer types of substrata (Auster et al. 1996; Kaiser et al. 1999; Kovalenko et al. 

2012). Rugosity may also cause heterogeneity in aspect and flow regime, leading 

to a wider range of conditions suitable to more species (Sebens 1991; Kovalenko 

et al. 2012). Numerous studies that have investigated the roles of different 

marine substrata for fish species highlight the importance of structurally 

‘complex’ substratum types (e.g. maerl or coral reefs), raising their profile in 

terms of management priorities (e.g. Almany 2004; Kamenos 2004; Kutti et al. 

2015). Yet a combination of sediment grain sizes such as boulders with sparse 

coral may provide functionally equivalent rugosity for a particular species as a 

dense coral reef (Auster 2005). The use of ‘complexity’ to refer to ‘important’ 

biotic substrata has been reinforced because many are themselves vulnerable to 

anthropogenic impacts, such as trawling and dredging (Jennings & Kaiser 1998; 

Halpern et al. 2008). 

The diverse ways in which substratum complexity can be measured, has made 

the term difficult to apply in practice and compare between studies. To be able 
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to measure and define the role of substrata, the present review adopts the 

terms substratum ‘rugosity’ and ‘heterogeneity’ (Box 2.3.1), which can be 

applied regardless of the scale at which they are measured, but the appropriate 

scale of measurement will depend on the size and mobility of the species in 

question (McCoy & Bell 1991; Levin 1992). Rugosity is the measure of corrugation 

of a substratum and the degree of angulation that together provide a three-

dimensional space (McCormick 1994) that a fish may occupy, during a particular 

stage in its ontogeny. This can therefore include interstices and interstructural 

spaces of relevance to the species in question (Bartholomew et al. 2000). The 

rugosity of a substratum may therefore affect the availability (Box 2.3.1) of 

refugia and possible food resources (Figure 2.3.2) (Bartholomew et al. 2000). On 

a larger scale, substratum heterogeneity refers to the frequency, composition 

and pattern of substratum types and patches (Box 2.3.1; Figure 2.3.2) within a 

benthic landscape (Sebens 1991; Dutilleul 1993; Tews et al. 2004). The different 

types of substrata that occur within a particular species’ habitat will depend on 

the size, longevity, and mobility of the respective fish. 

There is usually a variety of different factors or gradients generating substratum 

rugosity or heterogeneity from a fish’s perspective (Sebens 1991; Gratwicke & 

Speight 2005; Du Preez 2015). For example, substratum height, height variation 

and interstitial space will affect the rugosity, while diversity of substratum, 

composition, areal extent and spatial distribution will affect the heterogeneity 

(Gratwicke & Speight 2005; Wilson et al. 2006). It is also important to be aware 

that substrata and community composition of the habitat may vary over time 

following successional processes or anthropogenic impacts (Sale 1991; 

Friedlander & Parrish 1998b; Kamenos et al. 2003). Table 2.3.2 gives some 

examples of methodological studies in which substratum rugosity and 

heterogeneity have been measured. 
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Figure 2.3.2 - Substratum rugosity and heterogeneity relative to the size of fish. 

A species’ habitat during a particular stage in its ontogeny may encompass 

rugose or heterogeneous substrata. Over the course of its life cycle, an 

individual may occupy different parts of the submarine ‘landscape’. 

 

2.3.3. Habitat association, selection and preference’ 

To relate species to habitat components, terms such as ‘habitat association’, 

‘selection’ and ‘preference’ are frequently used to identify environmental 

variables of relevance to the individual organism, population or stock. 

Theoretical and modelled applications in this field seem to be well established 

(e.g. Johnson 1980; Aarts et al. 2008; 2013), but both field and laboratory 

studies have frequently lacked clarity, and the terms ‘association’, ‘selection’ 

and ‘preference’ have been used interchangeably (e.g. Atkinson et al. 2004; 

Laurel et al. 2007; Misa et al. 2013). This interchangeable use of terms may arise 

from the overlapping definitions of association, selection and preference (e.g. 

Krausman 1999 and Morris 2003). To support implementation of the Essential 

Fish Habitat (EFH) concept under the United States Sustainable Fisheries Act 

(SFA) (USDOC 1996), the National Marine Fisheries Service considered four levels 

of information on fish populations in different substrata that could be used 

(following Able 1999). These levels are: (1) species presence-absence data, (2) 

population densities, (3) information derived from estimated growth, 

reproduction or survival rates, and (4) estimates of fish production (Able 1999). 
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The different options for the identification of EFH is beneficial to managers 

when considering data-poor ecosystems, but can lead to further lack of clarity in 

the terminology used to describe the role of a particular substratum for an 

individual fish.  

The present review focuses primarily on interactions with substrata, so for 

clarity ‘substratum’ rather than another habitat component is considered in 

relation to association, selection and preference. This terminology could, 

however, be applied to other habitat components (e.g. depth or temperature 

ranges) in a similar way. Specifically, substratum association has been defined as 

the substratum type(s) that a fish is observed to occupy during particular time 

and place (Box 2.3.1) (Hall et al. 1997). This has typically been measured by 

comparing relative abundances or densities of individuals in, on, or over 

different substratum types (e.g. Nickell & Sayer 1998; Misa et al. 2013). Here, 

substratum association refers to all the substrata that the fish occupies during a 

particular stage in its life cycle without any consideration as to whether an 

active choice was made to reside in the given substrata. 

Substratum selection refers to the process by which fish actively choose to 

occupy a particular substratum type at a given time, and therefore results from 

voluntary movements that cannot be attributed to passive transport (Box 2.3.1) 

(Johnson 1980; Kramer et al. 1997). Factors affecting substratum selection may 

include individual preference, the availability or condition of substrata in the 

landscape, or predation risk (Johnson 1980; Kramer et al. 1997; Gaillard et al. 

2010). Selection has been measured as the disproportionate use of one 

substratum type with respect to its availability (Aarts et al. 2013). 

Substratum preference (Box 2.3.1) is defined as a substratum type that an 

individual would associate with given a free choice (i.e., in the absence of 

predators or competitors) at a given time (Gaillard et al. 2010). Confusingly, 

‘preference’ has also been measured as the relative abundances of the focal 

species in the areas of different substrata in relation to their relative availability 

(Johnson 1980; Aarts et al. 2008). The latter would only measure a species’ 

innate preference after it has been modified by other, presumably unmeasured 

effects, such as predator-prey or competitive dynamics. Arguably, this usage 
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concerns the realised substratum selection. Laboratory experiments or field 

enclosures may be a more appropriate test for preference (Kramer et al. 1997). 

A practical problem when measuring substratum association, preference or 

selection by only comparing one or a few substratum types is that patches are 

rarely a uniform shape, size and condition. These aspects may have a strong 

influence on the extent, spatial distribution and refuge value of habitat for a 

particular species (Morrison et al. 1992; Block & Brennan 1993). For example, in 

a field experiment to investigate the significance of eelgrass patches for survival 

of juvenile G. morhua, Laurel et al. (2003) found that predation rates were 

negatively correlated with patch size. Methods to measure substratum 

preference are not always straightforward. Laboratory techniques usually 

simplify the environment to one or a few variables from complex natural marine 

systems (Kramer et al. 1997). Studies using a combination of field and laboratory 

methods may lead to more reliable conclusions (e.g. Stoner et al. 2008; Laurel 

et al. 2009). Table 2.3.2 provides examples of studies that use quantitative 

methods to study preference and selection for habitat components by demersal 

fish. 

2.3.4. Important habitats’ 

The ultimate aim of spatial management for the protection of fish species is 

often to protect ‘important’, ‘critical’ or ‘essential’ habitats. Essential Fish 

Habitat is defined under the US SFA as “those waters and substrate necessary to 

fish for spawning, breeding, feeding or growth to maturity” (USDOC 1996). A key 

element of the EFH concept is the identification of existing and potential threats 

to habitat components, and conservation measures that may improve the quality 

of the habitat and eliminate or minimise anthropogenic threats (Schmitten 

1999). The provision of EFHs through the SFA enabled a significant step towards 

EBFM (Fletcher & O’Shea 2000; Marasco et al. 2007). Unfortunately, although the 

SFA provided a platform to better understand EFH and a capacity to protect fish 

habitat through spatial management measures, the SFA’s definition of what EFH 

actually meant, is quite limited in scope (Sarthou 1999; Fletcher & O’Shea 

2000), as reviewed and applied by Able (1999). 
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Similar terms to EFH include ‘important’ and ‘critical habitats’ (Box 2.3.1), 

which are typically defined as areas required by fish to carry out key life history 

processes, such as reproduction, foraging and migration (Langton et al. 1996; 

Able 1999; Bradbury et al. 2008). These habitats may include nursery areas, 

defined by Beck et al. (2001) as areas whose “contribution per unit area to the 

production of individuals that recruit to the adult population is greater, on 

average, than production from other habitats in which juveniles occur”. Jackson 

et al. (2001) pointed out that assessing the importance of a substratum type to a 

fish species should include consideration of whether the substratum type is 

needed to sustain their populations. In the present review, an ‘important’ or 

‘critical’ habitat component is considered to be a property of the environment 

(e.g. a type of substratum or temperature range) which, if altered or reduced in 

availability, could adversely affect survival rate of an individual, population or 

stock. This definition is linked to habitat quality (Box 2.3.1) but focuses on 

certain components of the habitat rather than its entirety (Krausman 1999). At a 

population level, an important habitat component would therefore affect the 

long-term viability of a population (Murphy & Noon 1991). It should be noted 

that different population subunits (e.g. stocks) may utilise different but 

functionally equivalent habitat components. Isolating important habitat 

components rather than important habitats (which include substratum, 

physicochemical and biological characteristics) allows usable definitions to be 

developed for decision-making and policy implementation (Langton et al. 1996). 

Attempts to achieve this in a cost-effective and practicable manner are likely 

why management strategies often rely on identifying apparent associations 

between species and particular substrata. 

The identification of EFH or important habitat components for spatial 

management measures have similar issues as described above for habitats, in 

that managers are tasked with identifying areas for protection with little 

baseline information and minimal resources (Langton et al. 1996; Rubec et al. 

1999). The lack of detail in the SFA about how to identify EFHs can therefore be 

beneficial in enabling management authorities to identify EFH with little 

baseline information or by using the best available evidence. However, in some 

cases, using the best available evidence may amount to basing decisions on 

apparent selection for, or even just simple association with, certain habitat 
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components, rather than identifying genuinely essential fish habitats, and in the 

worst cases this could lead to ineffective or counterproductive management 

measures (Able 1999; Fletcher & O’Shea 2000). Gaillard et al. (2010) proposed 

that for conservation and management purposes, attention should be focused on 

habitats that “increase average individual fitness”. This approach would require 

measurement of parameters such as survival, future reproductive potential and 

growth rate, which can be difficult to quantify. Langton et al. (1996) and Able 

(1999) recommended focusing on critical life phases that determine cohort size. 

The present authors recommend that when examining important fish habitat 

components, habitat quality should be assessed and linked to population 

demographics over different temporal and spatial scales (Gibson 1994; Able 

1999; Gaillard et al. 2010). These sorts of studies require an understanding of 

the type, quantity and range of conditions required for the fish’s survival at each 

major life-history stage (Gibson 1994; Langton et al. 1996; Able 1999). Most 

demersal marine fishes, including most commercially exploited species, are 

highly mobile and occupy different substrata and depth ranges during different 

life history phases and according to varying environmental conditions. Spatial 

and temporal processes, such as diel, seasonal and ontogenetic movements 

between habitats must therefore be taken into consideration when identifying 

important fish habitat components and applying EBFM (Hilborn et al. 2004b). 

Table 2.3.2 highlights papers that provide quantitative methods for identifying 

important habitat components for species and management applications of this 

information. 
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Box 2.3.1 - A suggested glossary of terms used within the present review that 

relate to habitat conservation for demersal marine fish. 

 

Biotope: 

The definition of what a biotope consists of has evolved through time, as 

reviewed by Olenin & Ducrotoy (2006). The present review adopts the modern 

definition which describes the “physical environment and the community” 

(Olenin & Ducrotoy 2006) and therefore encompasses a biocoenosis (group of 

organisms found living together) rather than focusing on the habitat 

requirements of an individual species or “the ecosystem linkages between 

abiotic and biotic components” (Olenin & Ducrotoy 2006).  

Ecosystem: 

An ecosystem consists of biotic (community of organisms) and abiotic (physical, 

chemical and biogeochemical) features, processes and interactions in a defined 

space at a given time (Dauvin et al. 2008a; Curtin & Prellezo 2010) and may 

encompass many (potentially overlapping) biotopes. Dauvin et al. (2008a) 

provide an overview of the development of the term ecosystem. 

Ecosystem-Based Fishery Management (EBFM): 

There is a variety of definitions and interpretations of EBFM (Hilborn et al. 

2004a; Marasco et al. 2007). The present review adopts the definition of Marasco 

et al. (2007): “Ecosystem-based fishery management recognises the physical, 

biological, economic, and social interactions among the affected components of 

the ecosystem and attempts to manage fisheries to achieve a stipulated 

spectrum of societal goals, some of which may be in competition.” Not all 

aspects of EBFM have been touched upon in this review. 

Habitat:  

The required types of substrata, physicochemical parameters and biological 

characteristics of an area occupied by a species during a particular stage of its 

ontogeny. A species’ habitat can therefore be applied to individuals and 

populations or stocks. Variables making up a species’ habitat can be dynamic or 

static (e.g., predator or prey density, or depth; Beyer et al. 2010). A habitat will 

have spatial and temporal scales relevant to the body size and mobility of the 

study organism (Hall et al. 1997; Diaz et al. 2004). 
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Habitat components: 

The individual features and their properties that constitute a habitat; i.e., types 

of substratum, and physicochemical and biotic conditions (Figure 2.3.1) (Langton 

et al. 1996; Kaiser et al. 1999). 

Habitat quality: 

The degree to which a habitat directly influences the growth, survival and future 

reproductive potential of an individual fish depending on the condition and 

range of the individual habitat components (Gibson 1994; Hall et al. 1997). 

Factors affecting a habitat’s quality include the quantity and nutritional value of 

food available for the organism in question, the optimality of the ranges of 

physicochemical parameters, and the degree of protection afforded (Gibson 

1994). Nonetheless, habitat quality should be measured by the habitat’s ability 

to promote growth and survival and reproduction (Gibson 1994; Able 1999).  

Habitat component availability: 

The areal extent of a habitat component that could be occupied by an additional 

individual fish, taking account of prior occupation, as a proportion of the total 

areal extent of that habitat component. For example, a fish’s choice of 

substratum will depend on both its preferences and the availability of preferred 

substrata (Johnson 1980; Laurel et al. 2004). 

Important or critical habitat component: 

A habitat component for which a change in its condition or availability has the 

ability to directly affect the success (survival, growth and reproduction) of an 

individual or metapopulation. At a population level, a critical habitat component 

is essential for the long-term viability of the population (Murphy & Noon 1991). 

Landscape: 

The composition, distribution and topography of (abiotic and biotic) substratum 

types within a given area or volume of water (Saab 1999). A landscape typically 

encompasses several species’ habitats and one habitat will occupy only part of 

the landscape (Figure 2.3.2). The spatial characteristics (size, shape, 

orientation, arrangement of components) of a landscape may influence the 

ecological function of the area, such as acting as a corridor for migration (Zajac 

1999). 
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Physicochemical space: 

A space bounded by the limits of the tolerable ranges of the abiotic variables 

that influence where an individual can live. These may include variables such as 

current velocity, depth, temperature, salinity, oxygen concentration, pH, etc. 

The physicochemical space may vary over an individual’s lifespan and between 

sexes. 

Substratum association: 

The substratum type that is occupied by a fish during a particular stage in its life 

cycle.  

Substratum heterogeneity: 

The diversity and pattern of substratum types and patches within a habitat or a 

landscape, and the level of substratum rugosity (Dutilleul 1993; Tews et al. 

2004). Substratum heterogeneity should be measured on the same spatial scale 

as the home range of the life stage in question. 

Substratum patch: 

A continuous or homogeneous area of unbroken substratum type (Morrison et al. 

1992) e.g., an extent of seagrass or sand. The patch size should be measured at 

a scale appropriate to the life stage of interest. 

Substratum preference: 

The type of substratum that an individual would associate with given an 

unconstrained choice at a given time; for example, in the absence of predators 

and competitors (Johnson 1980; Hall et al. 1997). 

Substratum rugosity: 

The degree of corrugation and angulation of a substratum, which together 

provide a three-dimensional space (McCormick 1994) that a fish may occupy 

during a particular stage in its ontogeny. This includes interstitial and 

interstructural spaces of appropriate size and shape for the life stage in question 

(Bartholomew et al. 2000). Substratum rugosity should be measured at the scale 

appropriate to the focal species. 
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Substratum selection: 

The active choice made by a fish to associate with a particular substratum type. 

This may be affected by behavioural responses such as preference, inter- or 

intra-specific competition, the availability or quality of other substrata or 

resources in the immediate surroundings, or predator presence. Selection is 

therefore indicated by the substratum type a species resides in at a particular 

time, taking into account the aforementioned behavioural responses (Johnson 

1980; Hall et al. 1997; Kramer et al. 1997; Gaillard et al. 2010). 

Substratum type: 

A class of seabed of distinctive character composed of abiotic or biogenic 

material, or a combination, used to characterize sediment, algae, flora or 

biogenic reef, for conservation and explanatory purposes. Examples include 

seagrass, mud or maerl which may be found in an area. The appropriate degree 

of specificity will depend on the requirements of the study. 
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Table 2.3.2 - Examples of methodological papers relevant to habitat related terminology. Examples include peer-reviewed papers 

which encompass a range of different methodological and quantitative applications to concepts outlined within the present review. NB 

terminology in the selected papers may not be consistent with definitions used within this review. 

Habitat 

related 

terminology 

Summary description Species / life 

stage 

Habitat 

component  

Geographic 

zone /location   

Reference 

Substratum 

rugosity and 

heterogeneity 

A method to assess substratum complexity using 

‘habitat’ assessment scores to take into account 

different aspects of substratum structure and 

composition. 

Species richness 

and general fish 

abundance 

Sandy, algal, 

seagrass and 

reef substrata 

Tropical – 

British Virgin 

Islands 

Gratwicke & 

Speight 2005 

 A comparison of methods to measure and 

quantify substratum topography for reef fish. 

Tropical reef 

fish 

Coral and rocky 

reefs  

Tropical –  

Australia 

McCormick 

1994 

 A review of the relationship between species 

diversity and heterogeneity, looking at different 

spatial scales. Includes measurements of 

heterogeneity. 

Generic, 

terrestrial 

Generic Generic Tews et al. 

2004 
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Habitat 

component 

preference 

and selection 

A review of regression models for analysis of 

space use and ‘habitat’ preference using 

telemetry data and applied to tagged grey seals, 

Halichoerus grypus. 

Generic, but 

applied to grey 

seals 

Generic applied 

to sediment 

type, depth and 

distance from 

haul out 

Generic, 

temperate, 

Scotland 

Aarts et al. 

2008  

Methods to quantify the effects of ‘habitat’ 

availability on species distribution to measure 

and apply ‘habitat’ selection functions. 

Generic, 

applied to 

model 

simulations 

Generic, using 

continuous and 

discrete 

covariates 

Generic Aarts et al. 

2013 

 Methods and application of habitat component 

usage and availability to understand selection 

and preference. 

Generic but 

applied to 

mallards, Anas 

platyrhynchos 

Terrestrial, 

wetland and 

open water 

areas 

Generic, 

temperate, 

USA 

Johnson 1980 

Habitat 

component 

importance 

A review and application for the identification of 

essential fish habitats (EFHs). 

Juvenile 

estuarine fish 

Estuaries; 

oxygen, pH, 

salinity and 

temperature  

Temperate, 

USA 

Able 1999 
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 A conceptual framework for understanding 

‘habitat’ performance relationships using long-

term telemetry information from animals and 

indices of habitat quality at different spatial 

scales. 

Generic Generic Generic Gaillard et 

al. 2010 

 Advice to managers on prioritising information 

for the identification of EFHs, taking into 

account fisheries impacts. 

Generic Generic  Generic, 

temperate, 

USA 

Langton et 

al. 1996  

 Modelling fitness to link habitat availability to 

density-dependent population growth rates of 

mobile species.  

Generic, mobile 

species  

Generic  Generic Matthiopoulo

s et al. 2015 
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2.4. Discussion and recommendations 

With the continued decline in many fish stocks and anthropogenic pressure on 

marine ecosystems, there is a clear need to identify habitat components of 

importance to marine fishes and to introduce effective management mechanisms 

(Parma et al. 2006). Considerable effort has been spent on substratum mapping, 

ecosystem conservation and identification of fish habitat components (Diaz et al. 

2004; Francis et al. 2007), yet an integrated approach to EB(F)M is required for 

its successful implementation (Francis et al. 2007; Curtin & Prellezo 2010; 

Guarinello et al. 2010). The effects of fishing gear impacts on substrata and on 

fish have been described, but the effects of substrata and loss of benthic fauna 

on fish stocks are rarely included in demersal stock assessments (Auster & 

Langton 1999; Armstrong & Falk-Petersen 2008). For spatial management to be 

effective for fish, protection of important components of their habitat is clearly 

essential (Schmitten 1999; Francis et al. 2007). Throughout the world, there has 

been increased use of spatial management measures to manage fish populations, 

promote biodiversity, and improve ecosystems as a whole. However, benefits 

from such spatial management measures have not always been evident (Hsu & 

Wilen 1997; Hilborn et al. 2004a, b) and spatial management measures should 

not be seen as the only option to restore depleted stocks (Hilborn 2011). In 

endeavouring to protect important habitat components, careful planning and 

consideration of spatial and temporal scales are essential, in addition to 

adaptive management and monitoring (Hilborn 2011). Temporal and spatial 

scales are particularly important when managing fishing activities, to help 

reduce and resolve conflicts between different sea user groups through zoning 

(Marasco et al. 2007). Such consideration may also avoid unintended 

consequences of increased fishing prior to the implementation of spatial 

management (Hsu & Wilen 1997) and displacement of fishing effort to other 

areas with potentially harmful effects (Murawski et al. 2000; Hilborn et al. 

2004b). 

Language in science has changed over time and differs between disciplines; 

however, at a minimum, clarity in the use of language is necessary (Murphy & 

Noon 1991; Olenin & Ducrotoy 2006). The term habitat has been used in 

different ways and has become synonymous with ‘substratum type’ and in some 
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cases with ‘biotope’ or even ‘ecosystem’, through its adoption into policy and 

legislation (Hall et al. 1997; Olenin & Ducrotoy 2006). Habitat-related 

terminology has become confused through widespread use for different purposes 

without clear definitions, and through inconsistent usage in scientific research 

(Murphy & Noon 1991; Hall et al. 1997). To be able to manage marine resources, 

terminology must be ‘operational’, so that concepts can be realised and 

accurately measured (Murphy & Noon 1991; Hall et al. 1997). Papers focusing on 

reasons for the failure to properly manage marine resources consistently point to 

the need for improved clarity, transparency and clearly defined management 

objectives (Hsu & Wilen 1997; Fletcher & O’Shea 2000; Parma et al. 2006).  

Many of the terms relating to a species’ habitat are inherently scale dependent 

(Levin 1992; Hall et al. 1997; Chave 2013). The terms proposed in this review are 

scale-independent insofar as they can be applied to any spatial or temporal scale 

deemed relevant to a particular study species. This avoids the need for 

additional, unnecessary terms (e.g. ‘microhabitats’). Nonetheless, scale must be 

carefully considered in the design and interpretation of any investigation of 

habitat and should be explicitly stated to allow meaningful comparison between 

studies. When using the term habitat from the point of view of the individual, 

population or species, it is essential to consider the temporal and spatial scales 

relevant to the needs of the organism(s) in question, and for the concept to be 

biologically meaningful (Hall et al. 1997; Diaz et al. 2004; Guarinello et al. 

2010).  

The present review has identified some of the causes of confusion in use of the 

term habitat and habitat-related terminology, and provides a conceptual 

framework for managers to work with and apply to spatial management 

programmes. It is widely agreed that the different specialisms within marine or 

even terrestrial science and policy have not been well integrated, and better 

integration is required, particularly to achieve EBM (Degnbol et al. 2006; 

Marasco et al. 2007). With the increasing number of studies relating to fish 

habitat, standardised and consistent terminology is a prerequisite for developing 

clear hypotheses and carrying out comparable research (Murphy & Noon 1991; 

Levin 1992; Hall et al. 1997). By reviewing habitat-related concepts and re-

emphasising existing definitions for researchers and managers to work with, 

some standardisation may be possible. This could help align language used in 
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different fields of marine science and management, and help improve 

interdisciplinary collaboration, enabling a more coherent and effective 

implementation of EBM. 
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Chapter 3. An assessment of juvenile Gadus 

morhua distribution and growth using diver 

operated stereo-video surveys2 

 

3.1. Abstract 

Protecting juvenile fish habitat is of particular importance for their survival. 

However, in many cases fish habitat requirements are poorly understood. 

Stereo-video methods can provide non-destructive quantitative information on 

fish abundance and size in relation to their surrounding environment. Stereo-

video SCUBA transects were conducted during daylight hours from June to 

September 2013 within a proposed Marine Protected Area (MPA) in the Firth of 

Clyde, west of Scotland. More juvenile Atlantic cod (Gadus morhua) of size range 

6 – 11 cm were observed in substrata containing mixed gravel, including maerl, 

than in boulder-cobble substrata with high algal cover, or sand with low density 

seagrass. Community composition was significantly different between 

substratum types. A decrease in G. morhua abundance was observed over the 

period of data collection. Over time, mean and variance in fish size increased, 

indicating multiple recruitment events. Protecting mixed gravel substrata could 

be a beneficial management measure to support the survival and recruitment of 

juvenile G. morhua, other substrata might be important at night given their diel 

migratory behaviour. Stereo-video cameras provide a useful non-destructive 

fisheries independent method to monitor species abundance and length 

measurements.  

 

                                         
2
 NB: This chapter has been accepted as a paper: Elliott, S. A. M., Ahti, P. A., Heath, M. R., 

Turrell, W. R. & Bailey, D. M. 2016. An assessment of juvenile Atlantic cod distribution and 
growth using diver operated stereo-video surveys. Journal of Fish Biology. 
doi:10.1111/jfb.12998 
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3.2. Introduction 

With increasing concern over the state of the marine environment much 

attention has been paid to the development of Marine Protected Areas (MPAs) as 

an ecosystem-based approach to protect vulnerable substrata and restore 

species and their habitats (Roberts et al. 2005; Seitz et al. 2014). However, in 

many cases factors affecting the survival of temperate marine fish are not well 

understood (Langton et al. 1996). This is of particular relevance within European 

waters where measures to restore fish stocks have focused primarily on reducing 

fishing effort, fishing gear adaptations to reduce bycatch, and fisheries closures 

(Hilborn 2011; Fernandes & Cook, 2013). While improvements in some stocks 

have been observed in the European Union (e.g. European anchovy Engraulis 

encrasicolus L. and M. merlangus ), West of Scotland G. morhua stocks remain 

depleted (Fernandes & Cook, 2013; ICES 2015a).  

The Firth of Clyde was once a productive fishery. However, commercially 

important G. morhua stocks declined sharply around the 1980s (Thurstan & 

Roberts, 2010; Heath & Speirs, 2012). Since the first phase of the G. morhua 

recovery plan was introduced (early 2000s) (Anon 2001; Kraak et al. 2013), 

measures have been implemented to try and restore stocks, including the 

prohibition of targeted fishing and a seasonal spawning area closure 

implemented in the outer Firth of Clyde (Anon 2001; 2002; Clarke et al. 2015). 

Today the predominant fishery occurring in the Firth of Clyde is the Norway 

lobster N. norvegicus fishery, with smaller amounts of scallop dredging and creel 

fishing occurring (Thurstan & Roberts, 2010; McIntyre et al. 2012). There are 

various possible reasons for the lack of recovery in G. morhua stocks. However in 

the UK, little attention has been paid to key habitat requirements for juveniles 

in comparison to Canada, the USA and Scandinavian countries (Bailey et al. 

2011). 

To avoid confusion, within the present paper habitat refers to resources and 

conditions required by a species to live in during a particular stage of its 

ontogeny (Hall et al. 1997). Habitat therefore includes the types of substrata 

(e.g. sediment and algae type), physiochemical parameters and biological 

characteristics required by a species (Gaillard et al. 2010; Chapter 2). A 
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substratum type is considered important where a change in its conditions or 

availability has the ability to directly affect the survival of fish (Langton et al. 

1996; Able 1999). All terminology used in this chapter is in line with chapter 2. 

Age-0 G. morhua are known to migrate into and inhabit shallow (< 20 m) 

nearshore waters between June and October following pelagic larval stages 

(Magill & Sayer, 2004; Gibb et al. 2007). It is particularly important to 

understand the habitats of juveniles since cohort size of marine fish may be 

determined during their first year (Campana et al. 1989; Myers & Cadigan, 1993; 

Able 1999). Juvenile demersal fish are also thought to occupy a narrower range 

of substrata than adults (Gibson  1994; Able 1999). Higher densities of G. 

morhua have been observed around rocky reefs and eelgrass substrata (Tupper & 

Boutilier, 1995; Bertelli & Unsworth, 2014), as well as in more exposed areas 

(Lekve et al. 2006).  

Monitoring of fish in shallow coastal areas containing rocky reefs and boulders is 

not possible using fisheries dependent mechanisms such as demersal trawling 

gear. Fishing and gear restrictions may also inhibit access in managed areas. 

SCUBA transect methods can be advantageous, reducing damage and mortality 

to benthos and fish, and being able to provide greater detail about the 

association of individual fish with the morphology of the seabed (Gregory & 

Anderson, 1997). To produce accurate comparative surveys, undertaking 

standardised diver surveys and minimising disturbance to fauna can improve 

precision and reduce bias (Sayer & Poonian, 2007). Stereo-video cameras are 

particularly advantageous since they enable accurate measurements to be made 

(Harvey et al. 2002). Stereo-video systems have previously been used in tropical 

sea environments (e.g. Cappo et al. 2006; Fitzpatrick et al. 2012) but their 

application to identify fish substratum association in the UK has only recently 

been trialled through baited camera techniques (i.e. Unsworth et al. 2014). Such 

methods might be a valuable means of collecting information for spatial planning 

and for monitoring to see whether management is effective. 

The aims of the present study were two-fold: firstly, to determine the 

effectiveness of stereo-video SCUBA belt transects to assess the diversity, 

abundance and length of different epibenthic and demersal fish species in UK 

waters; and secondly, to assess abiotic and biotic variables influencing the 
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distribution and abundance of juvenile G. morhua in shallow subtidal waters. 

Data were collected between June and September 2013 around the south of the 

Isle of Arran, Firth of Clyde. All study sites fell within the South Arran Nature 

Conservation MPA (NCMPA) (SNH 2014), but took place before designation and 

any new management measures were implemented. By understanding abiotic 

and biotic variables affecting age-0 G. morhua abundance and distribution, 

targeted management measures within the South Arran NCMPA could be 

implemented to support their survival and apply a more ecosystem-based 

management. 

 

3.3. Materials and methods 

3.3.1. Study location  

Data were collected at depths of 4.5 - 23 m around South Arran NCMPA (Figure 

3.3.1). South Arran NCMPA encompasses an area of 250 km2 and was designated 

in 2014 for its internationally important seagrass and maerl beds in addition to 

other substrata (burrowed mud, kelp and seaweed communities) and epibenthic 

fauna (SNH 2014). The MPA contains within its boundaries the Lamlash Bay No 

Take Zone (NTZ), designated in 2008 and prohibiting all fishing within its 

boundaries under the Inshore Fishing (Scotland) Act of 1984 (Axelsson et al. 

2009). 

3.3.2. Camera set up 

A SeaGIS underwater stereo-video camera system (SeaGIS 2013) which consisted 

of two high-definition (HF G25, Canon) video cameras in waterproof housings, 

attached to a custom made diver-portable steel frame (Figure 3.3.2). The 

system was set up similar to prototype described in Harvey and Shortis (1995; 

1998), however, this system was optimised for smaller bodied fish. Distances 

between cameras were therefore configured with a base separation of 66 cm 

and an inward calculated angle of view of ~10° in sea water visibility of < 6 m 

distance. Each camera was set to manual mode with the focal length set to 
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infinity (∞). Two underwater LED W38VR Archonlight (1400 lumen) torches were 

mounted on the frame, facing at an angle to the middle of the stereo-camera 

field of view. Prior to in-field data collection the mounted cameras were 

calibrated within a controlled environment using methods outlined within Harvey 

& Shortis (1998) and using the program and user guide CAL (version 2.11, SeaGIS 

2013). A calibration cube (1 x 1 x 0.5 m) containing 85 targets was filmed with 

the stereo-video camera system in 20 different orientations (SeaGIS 2013). 

Individual camera calibrations were produced using the CAL software and 

physical camera parameters, camera separation and orientation parameters 

were computed to allow accurate photographic measurements to be taken 

(SeaGIS 2013). 

3.3.3. Data collection  

Deployment locations were determined according to existing information 

collected on substratum types around the pre-designated MPA (COAST 2012; SNH 

2014). Stratified random points were identified within five zones (Figure 3.3.1) 

with samples collected within each zone over the period of data collection. The 

zones were created according to prior information on substratum type and wave 

fetch, using Generate Stratified Random Points with Geospatial Modelling 

Environment software (Spatial ecology 2013) in Arc Geographic Information 

System (GIS) version 10.1. These zones were created to provide independent 

replicates of each substratum type and collect data across a representative 

range of substrata, depths and wave fetch values. Repeat transects within the 

same location were not undertaken. Survey work was not conducted in strong 

tides (measured using tide timetables) and bad weather (heavy rain and wind 

speed and gusts > 15 km/hour), because of difficulties in equipment and Rigid 

Inflatable Boat (RIB) handling. It has been previously observed that tidal 

conditions can cause variability in G. morhua counts (Sayer & Poonian, 2007). 

The abundance of G. morhua around South Arran NCMPA was recorded along 100 

m strip transects between 5 June and 20 September 2013 (Figure 3.3.1). Since 

juvenile G. morhua had not yet arrived during data collection days in June (5 - 

13), data analysis used 31 transect videos, taken after the first observation of G. 

morhua. Strip transects were chosen as a standard and accurate technique for 
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assessing fish abundance (Kimmel 1985; Hunter & Sayer, 2009). A leaded line 

transect was laid perpendicular to the shore line to keep survey depth consistent 

within the transect. Following a 10 minute wait for any disturbance to the 

seabed or fauna to dissipate (Dickens et al. 2011), the divers descended and 

swam at a slow constant speed along the transect. Transects were carried out by 

SCUBA divers swimming approximately one metre above the seabed with 

cameras held at an oblique angle to capture fauna in front of the field of view 

and the substratum. An index of maximum horizontal visibility was measured 

using a Secchi disk attached to the end of the leaded line. The maximum 

distance at which it could be distinguished was measured in the stereo-video 

recordings. An LED diode was used to synchronise the video footage prior to 

surveys and following transect completion (Harvey & Shortis, 1995). To reduce 

diel effects on species, data collection took place between 0800 and 1500 hours 

(GMT), a minimum of three hours after sunrise and before sunset. As a result of 

logistical complications night sampling did not take place.  

 

Figure 3.3.1 - South of Arran NCMPA with dive site locations and substratum 

categories. 
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Figure 3.3.2 - Image of stereo-video camera and line set-up showing i) float for 

frame buoyancy ii) stereo-video cameras in housing iii) custom made bar to 

attach LED lights iv) leaded line. 

 

3.3.4. Video analysis 

Each transect video was analysed twice by two observers using Event Measure 

software (version 3.61, SeaGIS 2013) to reduce observer bias. The first analysis 

focused on substratum characterisation, the second on fauna identification, 

abundance and length measurements. In the absence of acoustically mapped 

substrata around South Arran, substratum categories were visually classified 

according to the most abundant combination of sediment grain sizes and 

macrophyte types observed together (Table 3.3.1), similar to Gregory & 

Anderson (1997) and Cote et al. (2001 and 2003). Since transects had a uniform 

combination of sediment and algae type, transects were assigned a single overall 

transect substratum type using the two most common divisions on the 

Wentworth scale sediment (Wentworth 1922; Connor et al. 2004) and broad 

algae type and density (estimated by percentage cover; Table 3.3.1). Seagrass 

was not treated separately to sand because of the low density and spatial extent 

within the area, and the small sample size of the dataset. Equally, maerl was 

not treated separately from gravel-pebble substratum type because of its gravel-

pebble sized form around south of Arran. In addition impacted maerl has been 

demonstrated to be more similar to gravel than live maerl (Kamenos et al. 

2003). As a result of insufficient prior knowledge of the substratum types of the 
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area, the experimental design was unbalanced. Fourteen algal-boulder-cobble 

substratum type transects were carried out compared to 12 algal-gravel-pebble 

and five for the sand substratum category. 

Table 3.3.1 - Substratum type characterisation. Substratum types characterised 

according to dominant sediment type and macrophyte type and density. 

Substratum 

type 

Sediment composition Algae and seagrass type and 

density 

Algal-boulder-

cobble (ABC) 

Sediments composed of mixed 

boulders and cobbles 

(particles > 6.4 cm). 

Sediment covered in a mixture 

of kelp and red algae (> 60 % 

algae cover). Examples of algae 

species include Laminaria spp. 

and Ceramium spp. 

Algal-gravel-

pebble (AGP) 

Mixed gravel (stone, shell and 

maerl Phymatolithon 

calcareum (Adey & McKibbin, 

1970) and pebble (particles 

0.4 to 6.4 cm). 

Between 20 and 50 % of 

sediment covered by algae.  

Sand  Sandy sediments which may 

contain some gravel 

(consisting of broken shell) 

(particles < 0.4 cm) 

< 25 % algae or seagrass 

Zostera marina L. cover. 

 

Sections of the video recordings where the camera angle was incorrect and the 

substratum was not visible were removed and the transect length adjusted in 

subsequent calculations. Any further distance lost from transect length caused 

by large boulders or slack line was deducted from the total length of the 

transect. One entire transect was removed from the analysis because of 

inappropriate field of view. For each transect, the width of the field of view of 

the video camera was measured by identifying recognisable points on the seabed 

on both cameras. Horizontal visibility along the transect was measured in the 

video recordings as the greatest distance at which the Secchi disk was visible.  
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Fauna were identified to the lowest taxonomic level possible, usually to species. 

The fish fork length measurements were taken (measuring from the nose to the 

fork). To undertake length measurements, each individual observed had to be 

visible in both cameras. Length measurements of all G. morhua observed, were 

therefore not possible. All length measurements with a Root Mean Square (RMS) 

error above 2 cm and with a precision of length measurements > 0.5 cm were 

removed from analysis (SeaGIS 2013). 

3.3.5. Data analysis  

To understand community composition differences between substratum types, a 

one factor PERMutation Analysis Of Variance Analysis (PERMANOVA) in 

PERMANOVA 6 software as described in Anderson et al. (2008) was undertaken. 

PERMANOVA was used in order to overcome distributional and homoscedasticity 

restrictions of ANOVA. The standardised abundance of benthic and demersal 

fauna was square root transformed, to reduce the influence of dominant species. 

A Bray-Curtis similarity coefficient was used prior to applying PERMANOVA. 

Posterior pair-wise tests were used to compare the difference between the 

groups of samples. The PERMANOVA was run with 9999 permutations to draw 

inferences at the P (perm) < 0.001 level. Visualisation of the matrices was 

achieved using non-metric Multi-Dimensional Scaling (nMDS) plots which provide 

values of stress (stress increases with reduced dimensionality or the ordination). 

SIMilarity PERcentages (SIMPER) analysis was used to determine which species 

contributed most to the dissimilarity between the different substratum types 

(Clarke and Warwick, 2001). 

The effect of abiotic variables on age-0 G. morhua abundance included: 

substratum type, depth (m), distance from coast (m), Julian day (JD, days) and 

wave fetch (km). Wave fetch values for a 200 m coastline grid (downloaded from 

http://www.sams.ac.uk/michael-burrows) were used as described in Burrows et 

al. (2008). For each transect location, wave fetch for the closest grid was 

obtained. Distance from coast was calculated using Arc GIS version 10.1. Biotic 

variables explored included: Hill diversity N2 (reciprocal of Simpson’s index) and 

N∞ (reciprocal of the proportional abundance of the commonest species) (Hill 

1973) for epibenthic fauna (e.g. tunicates, echinoderms and crustaceans). 

http://www.sams.ac.uk/michael-burrows


  77 

An assessment of juvenile Gadus morhua distribution and growth using diver operated stereo-
video surveys 

Difficult to identify fauna, e.g. hydroid, bryozoan and Majidae spp. (Samouelle, 

1819) could not always be identified to species level. For continuity of analysis 

such fauna were quantified in total visible hydroid and bryozoan or Majidae 

abundance (e.g. Unsworth et al. 2014).  

To condense multivariate variability into fewer dimensions and identify habitat 

variables affecting the distribution of G. morhua, a Principal Component Analysis 

(PCA) was performed using R software (version 3.03, R Core Team, 2015). 

Explanatory variables observed to have a stronger effect on G. morhua 

abundance from the PCA were used in a Generalised Linear Model (GLM) to 

understand G. morhua abundance, removing collinear variables. An offset for 

transect area (m2) was incorporated into the GLM. A negative binomial 

distribution was used to account for over dispersion. Explanatory variables 

included substratum type (three levels), Hill diversity index for epibenthic fauna 

(continuous), wave fetch (continuous) and JD (treated as a continuous variable 

to reduce the number of parameters used in the model). The model of best fit 

was:  

𝑙𝑜𝑔(𝑌𝑖) =  𝛽0 +  𝛽1, 𝑆𝑖𝑗 + 𝛽2, 𝐽𝐷𝑖 +  𝑂𝑓𝑓𝑠𝑒𝑡 (𝑡𝑟𝑎𝑛𝑠𝑒𝑐𝑡 𝑎𝑟𝑒𝑎)𝑖     (3.1) 

where 𝑌𝑖 is G. morhua abundance, 𝛽 are the coefficients, 𝑆𝑖𝑗, substratum type 

and 𝐽𝐷𝑖, Julian day. A random effect for zone using R package “glmmADMD” 

(Skaug et al. 2014) was tested for but was not significant. Tukey tests using R 

package “multcomp” (Hothorn et al. 2008) were used to test the difference 

between categorical variables. Backwards stepwise model selection was 

implemented (Bolker et al. 2009; Zuur et al. 2009) and a log likelihood ratio test 

was used to test model significance against the null hypothesis in addition to 

checking residual plots.  

A Linear Mixed Model (LMM) using R package “nlme” (Pinheiro et al. 2014) was 

used to model length measurements. The best model fit included JD as a fixed 

effect with an offset for the transect area, and a random effect for zone: 

𝑌𝑖 =  𝛽0 +  𝛽1, 𝐽𝐷𝑖 + 𝑂𝑓𝑓𝑠𝑒𝑡 (𝑡𝑟𝑎𝑛𝑠𝑒𝑐𝑡 𝑎𝑟𝑒𝑎)𝑖 + 𝑧𝑖𝑗     (3.2) 
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where 𝑌𝑖 is G. morhua fork length, 𝛽 are the coefficients, 𝐽𝐷𝑖, Julian day and 𝑧𝑖𝑗, 

the random effect for zone. A large outlier identified by Cleveland dotplot was 

removed from analysis since it was considered that the individual could have 

been of age-1.  

Length variation over the period of data collection was analysed by subtracting 

the maximum length from the minimum length from each day of data collection.  

𝑌𝑖 =  𝛽0 +  𝛽1, 𝐽𝐷𝑖           (3.3) 

where 𝑌𝑖 is G. morhua fork length variation. 

 

3.4. Results 

Thirty one stereo-video SCUBA transects were analysed, covering an area of 

4093.14 m2 (mean transect length = 95.56 m, S.D. = 10.23 m and mean transect 

width = 1.38 m, S.D. = 0.18 m) (Figure 3.3.1). A total of 496 G. morhua were 

identified with a mean of 11.41 (S.D. ± 19.47) per transect and within four of 

the 31 (13%) transects no G. morhua were observed. 45 taxonomic groups were 

identified from 34 different families. 90% (9327) of the fauna identified were 

classed as epibenthic fauna. The maximum distance G. morhua were able to be 

identified and measured accurately was 2.86 m from the cameras (mean = 1.52 

m, S.D. ± 0.39) and the minimum distance objects were measured was 0.85 m. 

The maximum distance the Secchi disk was seen from the cameras varied 

between 4 – 5.5 m. It is therefore unlikely that varying underwater visibility 

affected identification and measurement analysis.  

Differences in community composition between substratum types were observed 

(pseudo-F = 2.33, P (perm) < 0.001). Pair-wise tests between substratum type 

showed significant differences between AGP and ABC (t = 1.63, P (perm) < 0.001) 

and ABC and sand substratum type (t = 1.99, P (perm) < 0.001). No significant 

difference between AGP and sand substratum type was observed (t = 0.91, 

P(perm) > 0.05). The nMDS plot (Figure 3.4.1) shows relatively good ordination 

(stress 0.16), with some overlap between substratum types. SIMPER analysis 
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showed 22 species were required to explain dissimilarity between substratum 

types with 80% dissimilarity between AGP and sand, 79% between AGP and ABC 

and 94% between ABC and sand. Hydroids and poor cod (Trisopterus minutus L.) 

featured in the top species causing the largest dissimilarity between AGP and 

sand and AGP and ABC. Burrowing anemones (Ceriantheopsis lloydii, Gosse, 

1859) and the common sea urchins (Echinus esculentus L.) led to greatest 

dissimilarity between ABC and sand (cumulative dissimilarity of 19%).  

 

 

 

Figure 3.4.1 - nMDS plot of the community composition of all fauna observed 

between substratum types. Significant effects of substratum type on assemblage 

structure are observed (PERMANOVA: P < 0.001). 

 

3.4.1. Abiotic and biotic effects on G. morhua 

abundance  

The PCA was conducted on seven variables. Two components had eigenvalues 

over Kaiser’s (1960) criterion of 1, and in combination explained 57% (PC1 35%, 

PC2 22%) of the variance. PC1 was most negatively correlated with Hill diversity 

indices followed by substratum type and positively correlated with wave fetch. 
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PC2 correlated most strongly with distance from coast with a negative 

correlation with substratum type (Table 3.4.1). These results indicate that N2, 

substratum type, distance from coast and wave fetch had stronger trends than 

other variables and were therefore used as explanatory variables to understand 

the abundance and distribution of G. morhua.  

Table 3.4.1 - Eigenvectors of the standardised first and second principal 

component from the PCA of seven G. morhua habitat variables. 

Variable PC1 PC2 

Depth 0.240 0.268 

Distance from coast 0.258 0.568 

JD -0.175 0.265 

N2 -0.539 0.360 

N∞ -0.512 0.410 

Substratum type -0.448 -0.261 

Wave fetch 0. 301 0.409 

 

Analysis of the explanatory variables independently, only substratum type and 

JD had an effect on the abundance of juvenile G. morhua (L = 95.32, d.f. = 5, 

theta = 0.48, P < 0.01). The highest abundance of juvenile G. morhua was 

observed within AGP substratum type, and the lowest abundance was observed 

in sand substratum type. Intermediate values were observed in ABC (Figure 3.4.2 

and Appendix Table E.1 – Table E.2). A decrease in the abundance of G. morhua 

was observed over the period of data collection (Figure 3.4.3 and Appendix 

Table E.1). 
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Figure 3.4.2 - Substratum type association of age-0 group G. morhua observed 

around south Arran NCMPA. More juveniles were found in relation to substratum 

type algal-gravel-pebble than algal-boulder-cobble or sand. No significant 

difference was observed between algal-boulder-cobble and sand. The varied 

width boxplots, proportional to the square root of the sample sizes, indicate the 

25th and 75th percentiles of the total number of G. morhua observed within the 

different substrata. The upper bars indicate the 10th and the lower bars the 

90th percentiles. The thick line indicates the median abundance. Open circles 

indicate the outliers. Dashed horizontal lines between substratum types with * 

refers to Tukey test P value significance (* = P < 0.05 and ** = P < 0.01). 
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Figure 3.4.3 - Fitted values ± 95% confidence intervals from the model of best 

fit for G. morhua abundance for each substratum type over the course of data 

collection. Open circles represent abundance of G. morhua from 22 July to 20 

September 2013. A decline in G. morhua abundance was observed over the 

course of data collection (P < 0.01). 

3.4.2. Length Analysis 

121 G. morhua length measurements were made with the average length of 6.3 

cm (S.D. ± 1.4 cm). The largest G. morhua observed was 11.4 cm and the 

smallest 3.2 cm. The largest individual (2 cm larger than the second largest 

individual) was excluded from analysis as it could have been a small age-1 

individual following exploration of Marine Scotland Science quarter three (July – 

September) scientific bottom trawl data. All other G. morhua analysed were 

deemed to be age-0 (Dalley & Anderson, 1997; Marty et al. 2014). An increase in 

length was observed over the course of data collection (L = -470.50, d.f. = 4, P < 

0.01; Figure 3.4.4 and Appendix Table E.3). No other variables were significant 

in explaining G. morhua length. An increase in length variation was also 
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observed over this time period (LM, F1,118  = 9.18, P < 0.01) (L = -547.30, d.f. = 3, 

P < 0.01; Appendix Table E.4).  

 

Figure 3.4.4 - G. morhua length frequency (cm) over the course of data 

collection. Data points represent lengths of G. morhua measured from 22 July to 

20 September 2013. The solid line indicates the GLMM fitted line, the shaded 

area indicates ± 95 % confidence intervals. An increase in age-0 G. morhua 

length was observed over the course of data collection (P < 0.01). 

 

3.5. Discussion 

As far as the authors are aware, this is the first study using stereo-video SCUBA 

transects in the North Atlantic and builds upon existing single camera and 

Underwater Visual Census (UVC) studies (e.g. Schneider et al. 2008; Hunter & 

Sayer, 2009). Stereo-video SCUBA transects permit accurate, fisheries 

independent, three-dimensional measurements of fauna and transect dimensions 

to be made (Harvey et al. 2002). Data collected has enabled fine-scale 

abundance and distribution information to be gathered for the first time on G. 

morhua during daylight hours within the Firth of Clyde.  

Community composition differences of benthic and demersal species observed 

between the different substrata categories. Some overlap between substratum 
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categories was observed. The latter may be due to overlaps in species substrata 

association and given there was a certain amount of overlap in sediment grain 

sizes between substrata. Predictor variables such as wave fetch and depth are 

known to affect substrata which in turn affect the distribution of species 

(Burrows et al. 2008; 2012; Reiss et al. 2015; Chapter 5).  

The abundance of juvenile G. morhua varied with substratum type, with more G. 

morhua observed in algal-gravel-pebble substrata than algal-boulder-cobble or 

sand. Juvenile G. morhua exhibit a light brown and white checkerboard pattern 

which on gravel-pebble surfaces makes them relatively difficult to distinguish 

from their background, obscuring their movement from predators (Gregory & 

Anderson, 1997). The combination of colouration and substrata of sufficient 

rugosity to seek refuge within, suggests age-0 G. morhua, of the size ranges 

observed, may choose to spend a greater proportion of their time on algal-

gravel-pebble substratum type. Similarly, Lough et al. (1989) observed juvenile 

G. morhua in high abundance on pebble-gravel substrata. The high variability 

associated with these observations (Figure 3.4.2) is likely to be a consequence of 

the small sample size and some variability in juvenile G. morhua substratum 

selection.  

Transects within Lamlash Bay NTZ were algal-gravel-pebble substratum type. 

The effect of the NTZ on juvenile G. morhua abundance was not explored since 

data on juvenile gadoid abundance was not available prior to its establishment 

to perform a Before/After and Control/Impact (BACI) survey (Underwood, 1992; 

Sale et al. 2005). A study undertaken by Howarth et al. (2015) found no 

difference in fish abundance within and out with Lamlash Bay NTZ. The latter 

may be a result of the reserve’s small size (2.67 km2) and its young age (Howarth 

et al. 2015). Previous research on juvenile G. morhua does however show 

limited movement (Grant & Brown, 1998) but this may vary depending on 

substratum type (Laurel et al. 2004). 

Seagrass beds have previously been observed to be nursery grounds for age-0 G. 

morhua (Linehan et al. 2001; Bertelli & Unsworth, 2013; Lilley & Unsworth, 

2014) with some studies showing increased nocturnal association (Anderson et 

al. 2007; Bertelli and Unsworth 2014). However, because of the sample size and 

low density of Z. marina sampled within the area, this substratum was merged 
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with sand. Low density seagrass areas have been related to be more similar to 

sandy sites (Jackson et al. 2001; McCloskey & Unsworth 2015), particularly when 

patchy with low shoot density and area coverage (Jackson et al. 2001; Gorman 

et al, 2009). Mixed diurnal behaviour has also been observed with age-0 G. 

morhua, with some experiments showing more active behaviour during daylight 

hours (Keats & Steele, 1992; Sayer & Poonian, 2007). Differential aggregation 

behaviour has also been observed depending on light levels, predator presence, 

and seagrass patch size (Laurel et al. 2003a; Laurel et al. 2004; Anderson et al. 

2007). 

Gotceitas and Brown (1993) observed that juvenile G. morhua within an 

experimental tank selected cobble substrata in the presence of predators whilst 

selecting sand and gravel-pebble substrata in the absence of predators. It is 

possible that the juveniles identified during data collection did not feel 

threatened by the diver, and the low abundance of larger piscivores (Heath & 

Speirs, 2012) may have led to higher abundances on algal-gravel-pebble 

substratum type. In the present study, no predator prey interactions were 

observed. It is thought that some gravel substrata, specifically containing maerl, 

may contribute to higher benthopelagic diversity, structural rugosity (relative to 

the size of G. morhua) and heterogeneity, and that these factors are of 

importance to the survival of juvenile G. morhua (Hall-Spencer et al. 2003; 

Kamenos 2004; Lough 2010).  

A decline in G. morhua abundance and an increase in juvenile size and size 

variation were detected over the course of data collection. G. morhua have 

been observed to arrive in recruitment pulses to coastal areas during 

downwelling events (Ings et al. 2008). The increase in size variation is most 

likely caused by pulse recruitment occurring over this time period, or one 

continued long pulse recruitment (Bastrikin et al. 2014) from July to August 

2013. The decline in abundance is unlikely to have been caused by fish moving 

into deeper waters within such a narrow time span since previous studies show 

that this migration occurs after their first winter or first year (Magill & Sayer, 

2004).  

Fewer length measurements than counts were made (24% of the total number of 

G. morhua), owing to a combination of not being able to distinguish individual 
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juveniles within schools in both cameras and a blind spot between the cameras 

where the fish were too close to the cameras to be measured (Unsworth et al. 

2014). This latter problem could have been reduced by having the cameras 

closer together, but at the expense of reduced accuracy at distance (Boutros et 

al. 2015). Precision in the mid Z direction (towards and away from camera) is 

affected by the distance between cameras, affecting all measurements of 

objects which are not angled normal to the camera axis (SeaGIS 2013; Boutros et 

al. 2015).  

Future temperate water studies should take water visibility and fish size into 

account in order to maximise the number of fish measured. Stereo-video SCUBA 

transects can provide detailed and valuable information on fish assemblage and 

population structure in rocky and sensitive substrata which would otherwise be 

inaccessible. Use of semi-closed or closed circuit rebreather apparatus, or 

Autonomous Underwater Vehicles (AUV) may further reduce observer bias (Sayer 

& Poonian, 2007; Clarke et al. 2009). With the rise in MPAs and spatial 

restrictions to manage substrata and species around the UK, this technique 

provides important information for fisheries management and information for 

possible future monitoring. 

Despite measures in place to recover stocks, the already low numbers of G. 

morhua, small length index and isolation of the Firth of Clyde in comparison to 

neighbouring areas are likely to cause it to be more susceptible to local fishing 

impact (Heath & Speirs, 2012). Much debate exists on the value of MPAs for the 

protection of fish, particularly in temperate environments (Roberts et al. 2005; 

Takashina & Mougi, 2014; Fernández-Chacon et al. 2015). However, if an MPA 

can protect important substrata of value to juvenile G. morhua, bottle neck 

recruitment may be avoided, thus increasing the survival of individuals at this 

critical stage in their life cycle (Lough 2010). Management measures have 

recently (December 2015) been established to recover maerl beds found within 

the NCMPA (Scottish Government 2015). On the basis of the data presented here 

it appears that such management measures could have benefits for juvenile G. 

morhua. In the meantime, further investigations are recommended to strengthen 

habitat related observations of juvenile G. morhua abundance and distribution. 

Better understanding and protection of important habitat components could 

support juvenile G. morhua survival and recruitment.  
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Chapter 4. Habitat and growth related changes in 

juvenile gadoids using stereo-video baited cameras 

 

4.1. Abstract 

Demersal gadoid fishes such as Atlantic cod (Gadus morhua), haddock 

(Melanogrammus aeglefinus) and whiting (Merlangius merlangus) have been 

commercially important in the UK since the early 19th century. These species 

differ greatly in how well their stocks have fared in recent decades, with loss of 

juvenile habitat being a possible reason why some species and stocks are below 

safe limits.  

Non-destructive Stereo-video Baited Remote Underwater Video (SBRUV) surveys 

were conducted across a recently designated Marine Protected Area within the 

Firth of Clyde between June and September in 2013 and 2014. Abiotic and biotic 

variables affecting the relative abundance and length of these gadoids during 

daylight hours were explored. G. morhua were observed in higher relative 

abundance in sheltered areas composed of gravel-pebble substrata containing 

maerl, than over sand and mud, and more exposed areas. Ontogenic shifts and 

density dependence effects on substratum association were also observed. M. 

aeglefinus and M. merlangus were observed in higher relative abundance in 

deeper sand and mud substratum types. Relative abundances of all three species 

were positively related to benthopelagic species diversity. On average, M. 

aeglefinus and M. merlangus were larger and also grew at a faster rate than G. 

morhua.  

This work demonstrates the potential of SBRUV surveys as a non-destructive 

survey tool under northern-temperate conditions, allowing possible links 

between differences in the behaviour of different species and stock trends to be 

explored. The results also suggest that efforts to protect fish and enhance stocks 

must take into account the quality of the seabed, as indicated by benthopelagic 

diversity, and not just the presence of particular substratum types. 
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4.2. Introduction 

Atlantic cod (Gadus morhua), haddock (Melanogrammus aeglefinus) and whiting 

(Merlangius merlangus) (Appendix A) are of considerable economic importance 

throughout the North Atlantic (Cote et al. 2003; MMO 2015). However, stocks of 

all three species declined in the late 20th century with historic lows for G. 

morhua and M. merlangus in the early 2000s (Holmes et al. 2014; ICES 2014; ICES 

2015d). Subsequently efforts have been put in place to recover these stocks but 

little progress has been observed in much of the west coast of the UK and 

recruitment remains low for all three species (Fernandes & Cook 2013; ICES, 

2014; Barreto & Bailey 2015). Specifically within the Firth of Clyde, southwest 

Scotland, demersal fishing was an important sector, today the predominant 

fishery occuring is that of N. norvegicus trawling (Thurstan and Roberts 2010; 

Heath and Speirs 2012). A change has also been observed in the Firth of Clyde 

from an area of high species eveness to one with high biomass of juvenile M. 

merlangus as of the later 20th century (Heath and Speirs 2012).  

The recovery of commerical fish species depends not only on reductions in 

targeted fishing and bycatch but ensuring they have the food resources and 

shelter required to minimise natural mortality and maximise individual growth. 

Understanding habitat variables affecting fish distribution and abundance could 

also help reduce by-catch during this vulnerable stage in their life cycle if 

measures to protect these areas are implemented (Langton et al. 1996; Cote et 

al. 2003; Vasconcelos et al. 2014). Such measures were implemented on Georges 

Bank (Southern New England, USA) and along the Norwegian Skageerak coast. In 

both cases improved recruit survival was observed in demersal fish including G. 

morhua and M. aeglefinus (Murawski et al. 2000; Moland et al. 2013). Studies of 

habitat components of importance can provide useful information on the ecology 

of species, such as behavioural requirments for shelter use, important feeding 

areas and resource partioning (Kramer et al 1997). Habitat information can also 

provide valuable information for spatial management methods of protection 

(Vasconcelos et al. 2014). Unfortunately detailed analysis of habitat variables 

affecting species distirbution is often missing (Cote et al. 2003). 
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G. morhua, M. aeglefinus and M. merlangus (from here on referred to as 

gadoids) are known to have relatively similar life cycles, migrating to coastal 

areas following pelagic larval stages (Gibb et al. 2007; Olsen et al. 2010; Wright 

et al. 2010; Bailey et al. 2011). Higher densities of juvenile G. morhua have 

been observed around shallow (<20 m) rocky reefs and eelgrass substrata 

(Tupper and Boutilier 1995a; Gibb et al. 2007; Bertelli and Unsworth 2014), as 

well as in more exposed areas (Lekve et al. 2006). Few studies have been carried 

out on M. aeglefinus and M. merlangus habitat component associations, but 

juveniles are known to inhabit shallow coastal areas for the first year of their 

life cycle before migrating back into deeper waters as they undergo ontogenetic 

shifts (Heath and Gallego 1997; Ware 2009; Wright et al. 2010). Additionally, 

most studies that have looked at the habitats of these gadoids have not 

considered biological characteristics which may affect abundance observations. 

The majority of fish distribution and abundance surveys around the UK and more 

widely have taken place through trawl and larval surveys (Vasconcelos et al. 

2014) e.g. Gibson et al. 1996; Ware 2009; Wright et al. 2010; Bastrikin et al. 

2014. Such methods provide little information on fine-scale substratum 

associations which may affect juvenile gadoid distribution. Photogrammetric 

techniques can provide a useful means of collecting non-damaging and non-

extractive data on associations of fish with types of substratum and 

benthopelagic diversity (Harvey et al. 2007; Fitzpatrick et al. 2012). Data 

collection using imaging enables access to shallow and structurally rugose 

seabed types, and protected areas which would otherwise be inaccessible using 

trawl or seine netting methods (Cappo et al. 2006). Stereo systems are 

particularly advantageous since they enable accurate measurements to be made 

from stills or video (Harvey et al. 2002). Baited cameras are commonly presumed 

to be biased towards larger predators and scavengers (Lowry et al. 2012; Dunlop 

et al. 2015). However, comparisons between baited and unbaited cameras have 

shown higher relative abundances and species diversity in baited camera 

observations (Watson et al. 2005; Harvey et al. 2007; Bernard and Gotz 2012).  

Stereo-video Baited Remote Underwater Video (SBRUV) deployments can avoid 

biases from the presence of divers on more cryptic species and enable a larger 

range of depths to be surveyed (Harvey et al. 2007). SBRUV deployments have 

also been discussed as the most effective way to collect data for fisheries and 
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biodiversity monitoring and management (Murphy and Jenkins 2010; Bernard and 

Gotz 2012). Stereo-video systems have previously been used in tropical and deep 

sea environments (e.g. Cappo et al. 2006; Fitzpatrick et al. 2012) but their 

application to identify fish substratum association in the UK has only recently 

been trialled through baited camera techniques (i.e. Unsworth et al. 2014). 

SBRUV may be part of the solution to the survey and monitoring requirements of 

spatial management in the UK, but the method needs to be proven under the 

challenging conditions often found in British waters. 

The aims of this study were to: firstly, identify what environmental variables 

gadoid association to be able to describe their habitat requirements; secondly, 

to understand whether there were any growth and arrival differences; and three 

assess the use of SBRUV surveys to monitor commercial fish species. Data were 

collected between June and September 2013 and 2014 within the south of the 

Isle of Arran, Firth of Clyde. All study sites fell within the South Arran Nature 

Conservation MPA (South Arran NCMPA) (SNH 2014), but took place before 

management measures were implemented. By understanding habitat variables 

affecting the distribution and growth of juvenile gadoids, multi-purpose 

protection measures can be proposed protecting not only vulnerable benthos of 

conservation importance, but also commercially valuable gadoids. 

 

4.3. Method and materials 

4.3.1. Study location  

Within South Arran NCMPA data were collected at depths of 4.0 m – 47.2 m, 

(Figure 4.3.1). The MPA was designated in 2014 for its seagrass and maerl beds 

in addition to burrowed mud, kelp and seaweed communities and epibenthic 

fauna (SNH 2014), and encompasses an area of 250 km2. Lamlash Bay No-Take-

Zone (designated in 2008) covering an area of 2.67 km2 also exists within the 

MPA prohibiting all commercial and recreational fishing within its boundaries 

(Axelsson et al., 2009; Thurstan & Roberts, 2010). 
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4.3.2. Data collection 

In the sampling design, the MPA was divided into five zones of approximately 

equal size (Figure 4.3.1), but which differed in exposure and other 

characteristics. These zones formed the strata of a stratified random design. 

Sampling location points within each zone were generated using Geospatial 

Modelling Environment software (version 10.1, Spatial ecology 2013). The effect 

of this was to allow interspersed patches of different substrata to be surveyed, 

with the exception of seagrass, for which only a single patch was available. 

Deployment locations varied slightly between years due to logistical reasons. 

During summer 2013 cameras were deployed from a 6.5 m RIB whilst summer 

2014 a 10.8 m research vessel (RV Actinia) was used. During 2014 data were not 

collected around the southwest side of the island due to the slower steaming 

speed of the vessel used.  

 

Figure 4.3.1 - SBRUV data collection locations within South Arran NCMPA over 

the course of 2013 and 2014. Different coloured squares represent different 

substratum types observed. 

For 2013, sampling was conducted between 5th June – 29th September. However, 

data was used from 15th July due to the late arrival of gadoids. During 2014, 

sampling was conducted from 30th June – 18th September. Three baited camera 
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systems were used, each consisting of a pair of high-definition Canon (HF G25) 

video cameras in waterproof housings (SeaGIS Pty, Australia).  

The cameras were mounted on a custom made steel frame (Figure 4.3.2). The 

cameras were angled at an oblique view angle to have a partial view of the 

seabed (approximately half the image), and an inward angle of approximately 8° 

with a basal separation of 66 cm during year one and 58 cm during year two. The 

cameras were brought closer together during the second year to reduce the 

blind spot between the cameras where the fish were too close to the cameras to 

be measured (Unsworth et al. 2014). Each camera was set to manual mode with 

the focal length set to infinity (∞). Two underwater, LED W38VR Archonlight 

(1400 lumen) torches were mounted on the frame, facing at an angle to the 

middle of the stereo-camera field of view. A flashing strobe and bait box was 

attached on a 91 cm long bait arm situated in front of the camera (Figure 4.3.2). 

The strobe was used to synchronise the stereo-video images. The SBRUV frame 

was tethered to a rope for deployment and retrieval.  

The system was set up in a similar way to the prototype described in Harvey & 

Shortis (1995; 1998). However, this system was optimised for smaller bodied fish 

in sea water visibility of < 6 m distance by bringing the cameras closer together 

than the 80 cm basal separation recommended by Boutros et al. (2015). Bait 

consisted of 500 g of cut Atlantic mackerel (Scomber scombrus). S. scombrus was 

used since this is oily, relatively inexpensive, and has frequently been used to 

study bait attraction in temperate waters (e.g. LØkkeborg 1998; Dunlop et al. 

2015; Howarth et al. 2015). Prior to and over the course of field data collection, 

the mounted cameras were calibrated within a controlled environment using 

methods outlined within Harvey & Shortis (1998) and CAL software (version 2.11, 

SeaGIS 2013; Chapter 3). 

To reduce vessel noise disturbance from affecting species behaviours recorded, 

the first three minutes after camera landing and last five minutes before camera 

recovery were not analysed. Camera systems were deployed for a minimum of 55 

minutes on the seabed. This deployment length provided the best compromise 

between sufficient bait soak time as tested by Unsworth et al. (2014), and the 

need to bait and redeploy each camera multiple times on each sampling day. To 

minimise the possibility of deployments affecting each other, SBRUV 

deployments on the same day were a minimum distance of 500 m apart. This 
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distance was chosen taking into account maximum current speeds around Arran 

and information on gadoid swimming speeds upon bait detection obtained from 

Blaxter & Dickson (1959). Greater distances were not possible due to the low 

speed of the vessel used in 2014 which would compromise the ability to obtain 

sufficient samples. Samples were collected between 9:00 and 15:00 (GMT), so 

that all deployments would be a minimum of three hours after sunrise and three 

hours before sunset to avoid crepuscular variation in fauna behaviour. 

 

 

Figure 4.3.2 – Stereo Baited Remote Underwater Video system showing (i) bait 

box (ii) strobe to synchronise cameras (iii) torches (iv) water-proof housing 

containing video cameras (v) float and ropes to deploy the frame to the seabed 

from the vessel. 

4.3.3. Video analysis 

Prior to analysing the videos transects, the AVI videos were converted to high 

definition XVid files which are compatible with EventMeasure software (version 

3.61, SeaGIS 2013). Each deployment was analysed using Event Measure software 

and a sample of 48 deployments were analysed by two separate observers to 

check for observer bias. To prevent any further observer bias, transects were 
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assigned a random number before analysis and the resulting data were 

reconciled with location and depth information once analysis was complete. 

Benthopelagic fauna were used for community composition and diversity 

analysis, this included all epibenthic fauna observed (e.g. Echinoderms, 

crustaceans, tunicates etc.) and demersal species (e.g. gadids, blennies, dog 

fish, etc.). Benthopelagic fauna identified were quantified to the lowest 

taxonomic level possible. The maximum number of individuals of the same 

species appearing in a frame at the same time (MaxN) was used as a measure of 

relative abundance (Priede et al. 1994; Watson et al. 2005; Cappo et al. 2006). 

MaxN avoids repeat counts of individual fish re-entering the field of view (Priede 

et al. 1994; Watson et al. 2005). Time to First Arrival (TFA) was measured to 

understand whether gadoids observed were already within the vicinity of the 

SBRUV or travelled to the SBRUV. TFA is the elapsed time from camera 

settlement on the seabed to the first sighting of each species (Priede et al. 

1990, 1994; Stoner et al. 2008). 

For gadoid length and position measurements, each individual observed had to 

be visible in both cameras. Fish fork length measurements were taken at one 

time point per deployment, when the maximum number of measurable fish was 

present. This was typically at MaxN. Taking measurements at one time only, 

prevents repeat measurements of the same individual. All length measurements 

with a RMS error >2 cm and with a precision of length measurements >0.5 cm 

were removed from analysis (SeaGIS 2013).  

To undertake seabed type categorisation, ten minutes after landing on the 

seabed still images (JPEG) were extracted from the video recordings and 

manipulated in GIMP (version 2.8.6, GIMP 2013) to reduce the effects of 

backscatter and light attenuation. Coral Point Count analysis (Kohler & Gill 2006; 

version 4.1, CPC 2013) was used to record sediment and macrophyte type from 

the still images taken of the seabed. Two divisions of Wentworth grain scale 

(Wentworth 1922) was used to classify sediment type (Connor et al. 2004) and 

algae type was classified into broad categories according to order and colour 

(Chapter 3). A total of 66 (11x6) randomly stratified points were overlaid on the 

image during CPC analysis. This number of points was based on a pilot study 

where six images were sampled five times with increments from 10 to 100 points 

with random stratified and uniform points. Stratified random points proved to be 
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the optimum sampling procedure in terms of time taken to complete sampling 

and increasing rarer sediment and algae types detected within the image 

(Walkinshaw 2014). An optimum number of points to use were not found 

(Walkinshaw 2014). However, taking into account a similar investigation by Deter 

et al. (2012) and the time it took to complete sampling, 66 points were used for 

each image.  

Using the outputs from the CPC analysis, substratum categories were made from 

the most dominant substrata occurring within each sample (  
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Table 4.3.1). Use of raw percentages was not possible due to high numbers of 

zero values. The European Union Nature Information System (EUNIS) 

classifications of substratum type were not used due to the difficulty in assigning 

fish substrata observations into such classes which would not be of relevance to 

the fish (Galparsoro et al. 2012).   
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Table 4.3.1 - Substratum type characterisation. 

Substratum 

type 

Sediment composition Macrophyte type and density 

Algal-boulder-

cobble (ABC) 

Mixed boulders and cobbles 

(particles > 6.4 cm). 

Sediment covered in a mixture 

of kelp and red algae (> 60% 

algae cover). Examples of algae 

species include Laminaria spp. 

and Ceramium spp. 

Algal-gravel-

pebble (AGP) 

Mixed gravel (stone, shell and 

maerl Phymatolithon 

calcareum (Adey & McKibbin, 

1970) and pebble (particles 

1.6 to 6.4 cm). 

Between 20 and 50 % of 

sediment covered by algae.  

Sand  Sandy sediments (particles 

0.1to 0.4 cm) 

Absence of macrophytes 

Seagrass Sandy sediment (particles 

0.1to 0.4 cm) 

Presence of seagrass, Zostera 

marina 

Mud Mud and sandy mud sediment 

grain size (particles < 0.1 cm) 

Absence of algae 

 

4.3.4. Data analysis 

4.3.4.1. Community composition substratum differences 

PERMutation Analysis Of Variance Analysis (PERMANOVA) was performed in 

PERMANOVA 6 software (Anderson et al. 2008), to understand whether there 

were community composition differences in benthopelagic species within and 

between substratum types. The MaxN of species were square root transformed, 

to reduce the influence of dominant species. Prior to applying PERMANOVA a 

Bray-Curtis similarity coefficient was performed. Posterior pair-wise tests were 

used to compare the difference between substratum categories. PERMANOVA 

was run with 9999 permutations to draw inferences at the P (perm) < 0.001 

level. Non-metric Multi-Dimensional Scaling (nMDS) plots were used to visualise 
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the matrices which provide values of stress. Zone and grouped data collection 

day were tested for as random factors. 

4.3.4.2. Gadoid habitat identification 

Abiotic habitat variables explored included: substratum type (categorical, 5 

levels), depth (m), distance from coast (m), current speed (m/s), wave fetch 

(km) and year (categorical, 2 levels). Biotic variables explored included: Hill 

diversity indices N1 (exponential of Shannon), N2 (the inverse of Simpson’s index) 

and N∞ (inverse of Berger-Parker dominance index) (Berger and Parker 1970; Hill 

1973), for benthopelagic fauna (e.g. tunicates, echinoderms, crustaceans and 

demersal fish). Continuous explanatory variables were standardised by dividing 

the mean by the standard deviation prior to statistical analysis. Random effects 

used included the effect of the zones (five levels) and grouped days of data 

collection (seven levels over the period of 2013 and 2014). Depth data were 

obtained from vessel echosounders. A Lowrance Elite-5X-DSI with a 455 and 800 

kHz transducer was used on board the RIB during 2013 and Furuno FCV-295 with 

28 and 200 kHz transducers was used for Actinia during 2014. Latitude and 

longitude were recorded via the vessels Global Positioning System (GPS) plotter, 

the RIB used a Cobra Marine, MC600Ci EU and Actinia used a Furuno GP-37 DGPS. 

Both boats used Admiralty Raster Charts, datum World Geodetic System (WGS) 

1984. Distance from coast was calculated using the GPS fix made at time of 

deployment and ArcGIS v. 10.1 (EDINA digimap, datum WGS 1984, British 

National Grid 1984). Current speed was obtained from a tidal model developed 

by Sabatino et al (in review), which modelled the average current speed over 

the 55 minutes deployment at the time and location of each data collection 

point. Wave fetch values for a 200 m coastline grid (SAMS 2013) were used as 

described in Burrows et al. (2008).  

All statistical analysis was performed with the software R (version 3.1.2; R 

Development Core Team 2009). Data exploration followed recommendations 

from Zuur et al. (2010). Homogeneity and potential outliers were analysed with 

Cleveland dotplots (Cleveland 1993), and boxplots. Spatial independence was 

evaluated with variograms. Variance Inflation Factor (VIF) analysis and 

Spearman’s rank correlations were used to test for collinearity. Covariates with 

a VIF higher than three were removed stepwise and the analysis repeated until 
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all values were below this cut-off level. A pair-wise correlation of P < −0.5 and > 

0.5 was considered high for this study, and resulted in removal of one of the 

correlated covariates. 

Following data exploration (testing for zero inflated and non-linear patterns) the 

model of best fit for all count data was a negative binomial distribution (NBN) to 

account for over dispersion, using R package “glmmADMD” (Skaug et al, 2012) . 

Backwards stepwise model selection was implemented (Bolker et al. 2009; Zuur 

et al, 2009) looking for potential interactions. Model selection was tested using 

the difference between Akaike’s Information Criteria (AIC). Analysis Of Variance 

was used to test for model term significance, dropping variables which were not 

significant. Pearson’s residuals were compared between models fitting a model 

with the highest level of heteroscedasticity. A log likelihood ratio test was used 

to test model significance against the null hypothesis. Tukey tests using R 

package “multcomp” (Hothorn et al, 2008) were performed to test for 

differences between categorical variables. 

Equation 4.1 provides the model structure used for juvenile gadoid MaxN. 

𝑙𝑜𝑔(𝑌𝑖) =  𝛽0 +  𝛽1, 𝑋𝑖𝑗 +  𝛽2, 𝑋𝑖 +  𝛽3, 𝑋𝑖 … . . +𝑧𝑖𝑗 + 𝑡𝑖𝑗      (4.1) 

where 𝑌𝑖 is gadoid MaxN, 𝛽 are the coefficients, 𝑋𝑖𝑗, categorical explanatory 

variables and 𝑋𝑖, continuous explanatory variables, 𝑧𝑖𝑗   and 𝑡𝑖𝑗  the random 

effects (zone and day of collection). 

4.3.4.3. Gadoid substrata association differences between years 

Differences in substratum association between years was analysed independently 

via equation 4.2.  

𝑙𝑜𝑔(𝑌𝑖) =  𝛽0 +  𝛽1, 𝑆𝑖𝑗 ∗  𝛽2, 𝑌𝑖𝑗 +  𝑧𝑖𝑗      (4.2) 

where 𝑆𝑖𝑗, is substratum type and 𝑌𝑖𝑗, year. 
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4.3.4.4. Seasonal relative abundance and length variation 

SBRUV datasets were also analysed individually by year to understand relative 

abundance and changes in age-0 gadoids size over the period of data collection. 

For length measurements, linear mixed models were employed using the R 

package “nlme” (Pinheiro et al., 2014), testing for the significance of random 

effects. Data exploration and model selection was undertaken following the 

same steps outlined within the Gadoid habitat identification section p. 99). 

Equation 4.3 provides the model structure used to explore relative abundance of 

gadoids over the course of data collection for each year. 

𝑙𝑜𝑔(𝑌𝑖) =  𝛽0 +  𝛽1, 𝑋𝑖𝑗 +  𝛽1, 𝑋𝑖. . . + 𝛽2, 𝐽𝐷𝑖/𝑗 + 𝑧𝑖𝑗       (4.3) 

Where 𝐽𝐷𝑖/𝑗, is Julian day, treated as a continuous variable for 2013 and 

categorical for field season 2014 (data collection week). 

Equation 4.4 provides the model variables used to explore recruitment and 

growth related changes for age-0 gadoids over the period of data collection. To 

reduce the likelihood of observing age-1 gadoids, all individuals larger than 15 

cm were removed from analysis following DAtabase of TRAwl Surveys (DATRAS) 

ALK (product for standard species only) quarter 4 (October - December) data for 

the Clyde area (DATRAS 2015). A  Linear Mixed Model (LMM) was used to model 

length measurements (taken at MaxN or when the maximum number of 

individuals could be measured), exploring habitat variables in addition to JD as a 

fixed effect and zone as a random effect: 

𝑌𝑖 =  𝛽0 +  𝛽1, 𝐽𝐷𝑖/𝑗 + 𝛽1, 𝑋𝑖 + 𝑧𝑖𝑗        (4.4) 

Where 𝑌𝑖 is gadoid fork length. 

LMM length variation over the period of data collection for each field season was 

also analysed by subtracting the minimum length from the maximum for each 

day of collection where a measurement was obtained. 

𝑌𝑖 =  𝛽0 +  𝛽1, 𝐽𝐷𝑖/𝑗           (4.5) 
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Where 𝑌𝑖 is G. morhua fork length variation 

4.3.4.5. Gadoid size and bait attraction 

To understand gadoid size and bait attraction differences around the SBRUV, 

length, position and TFA differences between the gadoids were analysed. Linear 

and Linear Mixed Models were used to explore size differences and gadoid ‘mid 

Y’ and ‘mid Z’ (relative to the mid-point of the camera system) positions in the 

water column. Where, mid Z values are the distance from the camera system 

and mid Y values are approximate to height above and below the cameras 

(Shortis et al. 2009; SeaGIS 2013, EventMeasure user guide).  

To understand whether gadoids observed were already within the vicinity of the 

SBRUV or travelled to the SBRUV, a beta-binomial distribution GLMM was used to 

analyse TFA differences using R package “hglm” (Ronnegard et al. 2010), to 

allow random effects for time and zone to be incorporated into the model. Time 

was converted to proportions since it was bound between five and 55 minutes, 

lending to the need to use a beta distribution model (Faraway 2006; Crawley 

2012). Equation 4.5 provides the model of best fit to explore these gadoid SBRUV 

observation differences. 

𝑌𝑖 =  𝛽0 +  𝛽1, 𝐺𝑖𝑗 +  𝛽2, 𝑌𝑖𝑗 + 𝑧𝑖𝑗          (4.5) 

Where 𝐺𝑖𝑗, gadoid species. 

 

4.4. Results 

4.4.1. Community composition substratum differences 

Significant differences in community composition between substratum types 

were observed (pseudo-F = 13.663, P(perm) < 0.0001). Table 4.4.1 show 

significant pair-wise test differences between substratum types and SIMPER 

percentage dissimilarity between substratum types. The nMDS plot (Figure 

4.4.1), with a stress value of 0.21 illustrates some clear differences between the 
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substratum types as outlined in Table 4.4.1 but also some overlap which was to 

be expected. 

Table 4.4.1 - Pairwise tests between substratum type. Running PERMANOVA 

9999 times to draw inferences at the P(perm)<0.001. Blanks indicate a non-

significant result as shown using PERMANOVA software. 

Substratum types t statistic P (perm) Unique perms Dissimilarity % 

AGP, sand 2.62 0.001 997 79 

AGP, seagrass    77 

AGP, ABC    81 

AGP, mud 3.43 0.001 999 85 

Sand, ABC 3.68 0.001 998 92 

Sand, seagrass    72 

Sand, mud    70 

ABC, seagrass    89 

ABC, mud 4.07 0.001 999 95 

Seagrass, mud 3.42 0.001 999 81 
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Figure 4.4.1- nMDS plot of the community composition of all demersal fauna 

observed between substratum types. Significant effects of substratum type on 

assemblage structure are observed (PERMANOVA: P < 0.001) 

 

4.4.2. G. morhua relative abundance  

A total of 542 G. morhua were identified over the course of data collection 

periods 2013 and 2014 (mean = 2.09, S.D. ± 7.86), and were observed in 84 of 

the 214 SBRUV deployments. More G. morhua were observed in 2013 (13% zero 

observations) than 2014 (54% zero observations). The maximum distance G. 

morhua were able to be identified and measured accurately was 2.79 m from 

the video (mean = 1.76 m, S.D. ± 0.30;  

Figure 4.4.25). To see whether the ability to identify and measure juvenile G. 

morhua decreased with increasing depth (and therefore possibly reduced light), 

an ANOVA test between range (the distance between the camera and the G. 

morhua) and depth was modelled. Depth had no effect on the mid Z distance at 

which juvenile G. morhua were measured (F(1,223) = 0.72, P > 0.05; Appendix 

Table F.1). 
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4.4.2.1. G. morhua habitat  

No G. morhua were observed over the mud, this category was therefore removed 

from analysis to improve logistic model convergence. The highest MaxN was 

observed over AGP followed by ABC and Seagrass with lowest MaxN observed 

over sand (Figure 4.4.2; Appendix Table F.2 and Table F.3). A decrease in MaxN 

was observed with increasing N∞. This shows how the dominance of species had a 

negative effect on the relative abundance of G. morhua MaxN. A decrease in 

MaxN was also observed with increasing wave fetch and a decline in MaxN was 

observed between years (L = -314.13, d.f. = 8, theta = 0.84, P < 0.001; Figure 

4.4.3; Appendix Table F.2). 

 

Figure 4.4.2 - Substratum type association of juvenile G. morhua observed 

within South Arran NCMPA. More juveniles were found in relation to substratum 

type AGP with no G. morhua observed over mud and few over sandy seabed 

types. Varied width boxplots proportional the square root of the sample sizes 

indicate the 25th and 75th percentiles of G. morhua MaxN observed between 

different substrata. The upper bars indicate the 10th percentile. The thick line 

indicates the median MaxN. Open circles indicate the outliers. Dashed horizontal 

lines with * refers to Tukey test P value significance ** = P < 0.01). 
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Figure 4.4.3 – Coefficient plot for model of best fit for G. morhua habitat 

variables. Lines contain 95% confidence intervals for each of the explanatory 

variables. The verticle dashed line is the reference line enabling us to see which 

coefficients are significantly different from zero. The intercept  represents ABC 

and Year 1 of data collection.  
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4.4.2.2. G. morhua substrata association differences between 

years 

When only exploring differences between year and substratum type, a significant 

difference was observed (L = -331.36, d.f. = 10, theta = 1.09, P < 0.001; 

 

Figure 4.4.4; Appendix Table F.4 and Table F.5). Specific differences between 

substratum type and year showed, a decrease in G. morhua relative abundance 

over sand substratum type in year two relative to the MaxN over AGP in year 

one, and a decrease in G. morhua relative abundance over ABC in year two in 

comparison to AGP in year one.  
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Figure 4.4.4 - Substratum association between summer of 2013 and 2014 for 

juvenile G. morhua observed within South Arran NCMPA. Tukey test significant 

differences between substratum association were observed between AGP in year 

1 and Sand in year 2 and ABC in year 2 and AGP in year 1 (* = P < 0.05). 

4.4.2.3. G. morhua seasonal relative abundance and length 

variation 

From 15 July to 28 September 2013, a decline in G. morhua relative abundance 

was observed (P < 0.001)(L = -157.18, d.f. = 4, theta = 1.01, P < 0.05; Figure 

4.4.5; Appendix Table F.6).  
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Figure 4.4.5 -  Fitted values, ± 95% confidence intervals from the model of best 

fit for G. morhua MaxN over the period of data collection used for analysis (15 

July – 28 September 2013). A decline G. morhua relative abundance was 

observed over the course of data collection (P < 0.05). 

Over the course of summer 2014 from when G. morhua were observed (01 July – 

18 September 2014), a significant increase in MaxN was observed following the 

first week of data collection (Tukey test P < 0.01; Appendix Table F.8), followed 

by a non-significant decline in G. morhua relative abundance (L = -175.07, d.f. = 

6, theta = 1.17, P < 0.001; Figure 4.4.6; Appendix Table F.7 and Table F.8). This 

indicates a probable recruitment pulse shortly after the first week of July 2014.  
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Figure 4.4.6 - G. morhua MaxN (square root transformed) during data collection 

weeks from 01 July to 18 September 2014. An increase in G. morhua relative 

abundance was observed from the end of June through to July. Dashed 

horizontal lines with * refers to Tukey test P value significance (* = P < 0.05, ** = 

P < 0.01). 

From the length data collected, a total of 228 G. morhua length measurements 

were made in 87 SBRUV deployments. Average G. morhua size was 8.2 cm (S.D. 

± 2.8 cm), the largest individual observed measured 21.2 cm and the smallest 

individual observed was 2.4 cm. All individuals larger than 15 cm were removed 

from analysis as they were likely to be age-1 individuals (Dalley & Anderson 

1997; DATRAS 2014; Marty et al. 2014). 

During field season 2013, 126 G. morhua length measurements were analysed. 

The average length of G. morhua was 7.4 cm (S.D. ±  1.8 cm). An increase in 

length was observed from 15th July to 28th September during 2013 (P < 0.001;  

Figure 4.4.7), in addition to an increase in length with increasing N2 (P < 0.05) (L 

= -224.81, d.f. = 7, P < 0.001; Appendix Table F.9 and Table F.10). Significantly 

larger G. morhua were also observed in AGP (7.4 cm, S.D. ± 1.8 cm) than Sand 
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(5.7 cm, S.D. ± 1.7 cm) (L = -188.33, d.f. = 5, P < 0.05;

  

Figure 4.4.8; Appendix Table F.10). Although an increase in length variation was 

observed for 2013, there was no significant effect of JD. This is most likely due 

to small sample size (n = 11 data collection day differences). 
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Figure 4.4.7 - Fitted values, ± 95% confidence intervals from the model of best 

fit for G. morhua length over the period of data collection used for analysis (15 

July – 28 September 2013). An increase in G. morhua length was observed over 

this period (P < 0.001). 

  

Figure 4.4.8 - Length-frequency distributions by substratum for G. morhua 

during 2013, illustrating that G. morhua are significantly larger over AGP 

substrata than sand (P < 0.05). 

 

 
her   
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During field season 2014, 96 G. morhua length measurements were analysed. 

The average size of G. morhua observed during 2014 measured 8.3 cm (S.D. ± 

1.8 cm). A significant increase in length was observed over the period of data 

collection for 2014 ( 

Figure 4.4.9). There was also significant differences between substratum type 

with G. morhua of larger sizes over seagrass (10.2 cm, S.D. ± 2.5 cm) than that 

of AGP (7.8 cm, S.D. ± 1.7 cm) (L = -188.33, d.f. = 5, P < 0.05; 

Figure 4.4.10; Appendix Table F.11 – Table F.13). No significant increase or 

decrease in length variation was observed for 2014. This is likely to be due to 

the small sample size (n = 12 data collection day differences). 

 

Figure 4.4.9 - G. morhua length change over the period of data collection 

weeks, from 01 July to 18 September 2014. Dashed horizontal lines with * refers 

to Tukey test P value (* = P < 0.05), an increase in G. morhua length was 

observed between week 2 and week 3. 
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Figure 4.4.10 - Length-frequency distribution by substratum for G. morhua 

during 2014, illustrating that G. morhua are significantly larger over seagrass 

substrata than AGP (P < 0.05).  

4.4.3. M. aeglefinus relative abundance 

A total of 254 M. aeglefinus were identified between 2013 and 2014 (mean = 

0.98, S.D. ± 2.35) in 81 of the 259 deployments. Relatively more M. aeglefinus 

were observed in 2013 than 2014 (24% zero observation in 2013 and 44% in 2014). 

The maximum distance at which M. aeglefinus were able to be identified and 

measured accurately was 3.01 m from the SBRUV (mean = 1.52 m, S.D. ± 0.40 

m;  

Figure 4.4.25). To see whether the ability to identify and measure juvenile M. 

aeglefinus decreased with increasing depth, an ANOVA test between mid Z and 

depth was modelled. Depth had no effect on the distance at which juvenile M. 

aeglefinus were measured (F(1,200) = 0.77, P > 0.05; Appendix Table F.14). 

4.4.3.1. M. aeglefinus habitat  

The highest average MaxN for M. aeglefinus was observed over the sand 

substratum type followed by mud with lowest MaxN observed over ABC (Figure 
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4.4.11; Appendix Table F.15 and Table F.16). An increase in MaxN was observed 

with decreasing N∞ and wave fetch, and an increase in M. aeglefinus MaxN was 

observed with increasing depth (L = -278.98, d.f. = 10, theta = 1.31, P < 0.001; 

Figure 4.4.12; Appendix Table F.15). 

 

Figure 4.4.11 - Substratum type association of juvenile M. aeglefinus observed 

within South Arran NCMPA. More juveniles were found in relation to substratum 

type sand and mud with lowest MaxN observed on ABC substratum type. Dashed 

horizontal lines with * refers to Tukey test P value significance (** = P < 0.01, *** 

= P < 0.001). 
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Figure 4.4.12 - Coefficient plot for model of best fit for M. aeglefinus habitat 

variables. Lines contain 95% confidence intervals for each of the explanatory 

variables. The verticle dashed line is the reference line enabling us to see which 

coefficients are significantly different from zero. The intercept is represented as 

ABC. 

4.4.3.2. M. aeglefinus substrata association differences between 

years 

Due to differences in data collection between years it was not possible to 

undertake statistical analysis comparing M. aeglefinus MaxN between substratum 

type since no data were collected in deeper water containing mud in year one. 

Figure 4.4.13 shows consistently higher MaxN over sand substrata than the other 

substrata over the two years of data collection. 

 



  116 

Habitat and growth related changes in juvenile gadoids using stereo-video baited cameras 

 

Figure 4.4.13 - Substratum association between summer of 2013 and 2014 for 

juvenile M. aeglefinus observed within South Arran NCMPA. 

4.4.3.3. Seasonal relative abundance and length variation 

During summer 2013 from 15 July – 28 September, no significant difference in M. 

aeglefinus relative abundance was observed (L = -59.10, d.f. = 3, theta = 0.76, P 

> 0.05). Over the course of between 30 June to 18 September 2014, a significant 

increase in MaxN was observed following the first week’s data collection (P < 

0.001) (L = -233.42, d.f. = 5, theta = 0.93, P < 0.001; Figure 4.4.14, Appendix 

Table F.17 and Table F.18). This indicates a probable recruitment pulse shortly 

after the first week of July.  
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Figure 4.4.14 - M. aeglefinus MaxN (square root transformed) during data 

collection weeks from 01 July to 18 September 2014. An increase in M. 

merlangus relative abundance was observed from the first week’s data 

collection period at the end of June. Dashed horizontal lines with * refers to 

Tukey test P value significance (*** = P < 0.001). 

 

From the length data, a total of 208 M. aeglefinus length measurements were 

made in 72 of the 259 SBRUV deployments. Of the 81 SBRUV deployments M. 

aeglefinus were observed in, length measurements were not obtained in nine 

deployments. Average M. aeglefinus size was 12 cm (S.D. ± 3 cm), the largest 

individual observed measured 22 cm and was most likely an age-1 or 2 individual 

and the smallest individual observed was 6.8 cm. To understand recruitment and 

growth of age-0 M. aeglefinus, all individuals larger than 15 cm were removed 

from the dataset. 

During field season 2013, 50 M. aeglefinus length measurements were analysed 

at MaxN in 10 deployments. The average length of M. aeglefinus was 12.3 cm 

(S.D. ± 1.8 cm). A significant increase in length was observed over the course of 

data collection (15th July – 28th September) during 2013 (P < 0.001) (L = -88.19, 

d.f. = 3, P < 0.001;  
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Figure 4.4.15; Appendix Table F.19). Exploration of length variation of the 

period of data collection showed a non-significant increase in length variation 

for 2013. This is most likely due to small sample size (n= 6 data collection day 

differences).  

 

Figure 4.4.15 - Fitted values ± 95% confidence intervals from the model of best 

fit for M. aeglefinus length change over the period of data collection used for 

analysis (16 July – 28 September 2013). An increase in M. aeglefinus length was 

observed over the course of data collection (P < 0.001). 

 

During field season 2014, 131 M. aeglefinus length measurements were analysed 

at MaxN from 50 SBRUV deployments. The average size of M. aeglefinus 

measured 10.6 cm (S.D. ± 1.9 cm). A significant increase in length was observed 

for 2014 over the course of data collection (P < 0.001) (L = -221.93, d.f. = 7, P < 

0.001;  

Figure 4.4.16; Appendix Table F.20 and Table F.21). A significant increase in 

length was also observed with depth (P < 0.001) and a decrease in length with 

wave fetch (P < 0.05) was also observed. No significant increase or decrease in 

length variation was observed for 2014. This might be due to the small sample 

size (n=15 data collection day differences). 
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Figure 4.4.16 - M. aeglefinus length change over the period of data collection 

from 30 June to 18 September 2014. An increase in M. aeglefinus length was 

observed over the weeks of data collection. Dashed horizontal lines with * refers 

to Tukey test P value significance (* = P < 0.05, ** = P < 0.01 and *** = P < 0.001). 

4.4.4. M. merlangus relative abundance 

A total of 302 M. merlangus were identified between 2013 and 2014 (mean = 

1.16, S.D. ± 5.28) in 82 out of the 259 SBRUV deployments M. merlangus were 

observed in. Relatively more M. merlangus were observed in 2013 (23% zero 

observations) than 2014 (45% zero observations). The maximum distance M. 

merlangus were able to be identified and measured accurately was 2.74 m from 

the video (mean = 1.24 m, S.D. ± 0.29 m;  

Figure 4.4.25). To see whether the ability to identify and measure juvenile M. 

merlangus decreased with increasing depth, an ANOVA test between range and 

depth was modelled. With increasing depth an increase in range was observed 

(F(1,135) = 4.24, P < 0.05; Appendix Table F.22). This will however have been 

due to the positive relationship between M. merlangus observations and depth 

rather than increasing visibility with depth (refer to section 4.4.4.1) since all 

individuals were observed within 274 cm of the cameras (mean 127.6, S.D. ± 

29.1 cm).  
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4.4.4.1. M. merlangus habitat  

The highest MaxN for M. merlangus was observed over sand with lowest MaxN 

observed over ABC (Figure 4.4.17; Appendix Table F.23 and Table F.24). An 

increase in MaxN was observed with increasing N1 and depth. A decrease in MaxN 

was observed with increasing current velocity (L = -272.63, d.f. = 10, theta = 

1.11, P < 0.001; Figure 4.4.18; Appendix Table F.23). 

 

Figure 4.4.17 - Substratum type association of juvenile M. merlangus observed 

within South Arran NCMPA. More juveniles were found in relation to substratum 

type sand and mud with lowest MaxN observed on ABC substratum type. Dashed 

horizontal lines with * refers to Tukey test P value significance (** = P < 0.01). 
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Figure 4.4.18 - Coefficient plot for model of best fit for M. merlangus habitat 

variables. Lines contain 95% confidence intervals for each of the explanatory 

variables. The verticle dashed line is the reference line enabling us to see which 

coefficients are significantly different from zero. The intercept is represented as 

ABC. 

4.4.4.2. M. merlangus substrata association differences between 

years 

Due to differences in data collection between years it was not possible to 

undertake statistical analysis comparing M. merlangus MaxN between substratum 
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type since no data were collected in deeper water containing mud in year one. 

 

Figure 4.4.19, however, shows consistently high MaxN over sand substrata than 

the other substrata over the two years of data collection. 
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Figure 4.4.19 - Substratum association between summer of 2013 and 2014 for 

juvenile M. merlangus observed within South Arran NCMPA. 

4.4.4.3. M. merlangus seasonal relative abundance and length 

variation 

During field season 2013 (15 July – 28 September) no significant difference in 

MaxN was observed. During field season 2014 (30 June to 18 September 2014) 

the relative abundance of M. merlangus varied over the course of data collection 

with a decrease in MaxN observed during the third week (26 August - 2 

September) followed by an increase in MaxN in the last week of data collection 

(15 – 18 September) (L = -229.30, d.f. = 5, theta = 1.08, P < 0.001;  

Figure 4.4.20; Appendix Table F.25 and Table F.26). 

 

Figure 4.4.20 - M. merlangus MaxN (square root transformed) during data 

collection weeks from 30 June to 18 September 2014. A decline in M. merlangus 

relative abundance was observed during week three following by an increase in 

MaxN. Dashed horizontal lines with * refers to Tukey test P value significance (* = 

P < 0.05, ** = P < 0.01, *** = P < 0.001). 
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A total of 152 M. merlangus length measurements were made in 59 of the 259 

SBRUV deployments. Of the 82 SBRUV deployments M. merlangus were observed 

in, length measurements were not obtained in 23 deployments. Average M. 

merlangus size was 14 cm (S.D. ±  4.3 cm), the largest individual observed 

measured 35.5 cm and was most likely an age-2 individual (DATRAS 2015) and 

the smallest individual observed was 6.3 cm.  

During field season 2013, nine M. merlangus length measurements of individuals 

less than 15 cm were analysed at MaxN comprising of five deployments. The 

average length of M. merlangus was 10.7 cm (S.D. ± 2.2 cm). A significant 

increase in length was observed over the course of data collection (16th July – 

27th September) during 2013 and a non-significant increase in length was 

observed with increasing depth (L = -15.56, d.f. = 4, P < 0.05;  

Figure 4.4.21; Appendix Table F.27). Exploration of length variation was not 

undertaken due to the limited dataset available for M. merlangus length 

measurements during 2013.  

 

Figure 4.4.21 - Fitted values ± 95% confidence intervals from the model of best 

fit for M. merlangus length change over the period of data collection used for 

analysis (16 July – 28 September 2013). An increase in M. merlangus length was 

observed over the course of data collection (P < 0.01). 
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During field season 2014, 83 M. merlangus length measurements of juveniles 

smaller than 15 cm were made at MaxN from 37 SBRUV deployments. The 

average size of M. merlangus measured 11.3 cm (S.D. ±  2.3 cm). A significant 

increase in length was observed with depth during 2014 (P < 0.01) (L = -188.29, 

d.f. = 3, P < 0.01;  

Figure 4.4.22; Appendix Table F.28). No significant difference in size was 

observed in relation to data collection week. No significant increase or decrease 

in length variation was observed for 2014. This might be due to the small sample 

size (n=14 data collection day differences). 

 

Figure 4.4.22 - M. merlangus length change with depth during field season 

2014. Fitted values ± 95% confidence intervals from the model of best fit for M. 

merlangus length change with depth during field season 2014. A significant 

increase in length was observed with depth (P value; * = P < 0.01). 

4.4.5. Gadoid size and bait attraction differences 

4.4.5.1. Gadoid length differences 

During field season 2013, significant difference in length were observed between 

species, with G. morhua smaller than M. aeglefinus and M. merlangus (L = -

342.56, d.f. = 5, P < 0.001, R2 = 0.69;  
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Figure 4.4.23; Appendix Table F.29 and Table F.30). 

 

Figure 4.4.23 - Differences in folk length between gadoid species during field 

season 2013. G. morhua were significantly smaller than M. aeglefinus and M. 

merlangus and M. merlangus larger than M. aeglefinus. Dashed horizontal lines 

with * refers to Tukey test P value significance (*** = P < 0.001, * = P < 0.05). 

During 2014 significant differences in length were observed between gadoids 

with M. merlangus larger than G. morhua and M. aeglefinus and G. morhua 

smaller than M. aeglefinus (L = -1337.11, d.f. = 5, P < 0.001, R2 = 0.37;  

Figure 4.4.24; Appendix Table F.31 and Table F.32). 
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Figure 4.4.24 - Differences in folk length between gadoid species during field 

season 2014. M. merlangus were significantly larger than M. aeglefinus or G. 

morhua. Dashed horizontal lines with * refers to Tukey test P value significance 

(* = P < 0.05, *** = P < 0.001). 

4.4.5.2. Gadoid mid Y and mid Z positioning 

Significant differences in positioning between gadoids were observed. G. morhua 
positioning themselves on average closer to the seabed (mean mid Y = -6.8 cm, 

S.D. ± 14.3 cm) and further from the cameras (mean mid Z = 172.2 cm, S.D.  ± 
38 cm). M. merlangus average position was closer to the cameras in terms of 
height and distance off the seabed (mean mid Y = -3.2 cm, S.D. ± 12.3 cm, 
mean mid Z = 127.6 cm, S.D. ± 29.1 cm), for mid Y (L = -2359.36, d.f. = 6, P < 
0.001; Appendix Table F.33 and Table F.34) and for mid Z (L = -2934.83, d.f. = 6, 
P < 0.001; Table 4.4.2;  

Figure 4.4.25; Appendix Table F.35 and Table F.36). M. aeglefinus were 

positioned at intermediate distances from the cameras relative to G. morhua 

and M. merlangus (mean mid Z = 152.2 cm, S.D. ± 40.1 cm and mean mid Y = -

2.2 cm, S.D. ± 13.5 cm). 
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Table 4.4.2 - Tukey test differences in mid Y and mid Z positioning between 

gadoids. 

Species differences Mid Y Mid Z 

G. morhua – M. aeglefinus P < 0.001 P < 0.001 

G. morhua – M. merlangus P < 0.001 P < 0.001 

M. aeglefinus – M. merlangus P < 0.001 P < 0.001 

 

 

Figure 4.4.25 - Gadoid mid Y and mid Z positioning for 2013 and 2014. 

Measurements closer to the camera are shown in red and further from the 

camera in black. On average G. morhua positioned themselves further from the 

camera (mid Z) and closer to the seafloor (mix Y) than M. aeglefinus and M. 

merlangus, with M. merlangus positioning themselves closest to the camera in 

both mid Y and mid Z measurements. 
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4.4.5.3. Gadoid TFA 

A significant difference in TFA for both years combined together was observed 

between gadoid species with G. morhua entering the field of view earlier than 

M. merlangus and the first M. aeglefinus arriving shortly after G. morhua (P < 

0.001;  

Figure 4.4.26; Appendix Table F.37). Log likelihood ratio tests were not possible 

using the hglm package for this model. However, data exploration was 

undertaken to validate the results by Arcsin transforming the data to a Gaussian 

distribution and testing for significant differences. The same results were 

obtained. The Arcsin transformed model outputs were not used since logistic 

regressions have greater interpretability and higher power than arcsine-

transformed response variables (Warton and Hui 2011).  

 

Figure 4.4.26 - TFA between the different gadoid species for both 2013 and 

2014. G. morhua were observed in the field of view significantly earlier than M. 

merlangus. Dashed horizontal lines with * refers P value significance (*** = P < 

0.001). 
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4.5. Discussion 

Robust methods to assess fish distribution and abundance are essential for both 

fisheries management and conservation (Vasconcelos et al. 2014). With the 

increasing number of spatial management proposals being developed, non-

extractive and non-damaging fisheries independent mechanisms are becoming 

indispensable. There is a paucity of data on gadoid habitat as defined in Chapter 

2. This is unfortunate given the poor state of many stocks and their economic 

importance (Worm et al. 2009; FAO 2009; EEA 2011). Few studies in the northern 

hemisphere have used SBRUV surveys as a method to collect fish habitat data. 

This study provides habitat information on G. morhua, M. aeglefinus and M. 

merlangus in addition to behavioural, recruitment and growth observations from 

data collected during daylight hours.  

Previous research demonstrated that G. morhua have been associated with a 

variety of substratum types including rocky reef areas, seagrass and maerl beds 

(Tupper and Boutilier 1995a; Laurel et al. 2004; Kamenos 2004; Chapter 3). 

However, most studies only compare a few different substratum types to one 

another (e.g. Laurel et al. 2004; Bertelli & Unsworth 2014). Here association to a 

variety of substratum types were analysed in addition to other abiotic and biotic 

variables. Higher relative abundance of G. morhua was observed over the algal-

gravel-pebble substratum type, with no individuals observed over mud and the 

next fewest individuals observed occupying sand. These results support previous 

observations collected by stereo-video SCUBA transects (Chapter 3), where 

higher relative abundance of G. morhua were observed over algal-gravel-pebble 

substratum types.  

It is likely that fewer G. morhua were observed over seagrass areas due to the 

patchy, low density and small area of seagrass (Jackson et al. 2001; Gorman et 

al. 2009, McCloskey and Unsworth 2015) around south Arran. Surveys by local 

conservation volunteers (COAST 2013) in addition to data collected over the 

course of this thesis, estimate that the area of seagrass within Whiting Bay 

(South Arran) is less than 1 km2. Fewer G. morhua may have been observed over 

algal-boulder-cobble substrata since other potential predatory fish were 
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observed around these areas e.g. adult pollack, pollachius pollachius, L and 

saithe, Pollachius virens L.  

It is improbable that fewer individuals were observed in algal-boulder-cobble 

and seagrass substrata due to difficulties in observing the individuals since the 

static nature of SBRUV meant that any animals moving within the field of view 

were almost certain to be observed over the deployment period. Algal-gravel-

pebble substrata may provide a sufficient level of protection for the size ranges 

of G. morhua observed. Gravel-pebble substrata may also be selected as an anti-

predator technique, since G. morhua were more difficult to distinguish when 

over gravel-pebble surfaces (Lough et al. 1989; Gregory and Anderson 1997; 

Lough 2010). Much of the gravel around South Arran contained maerl which is 

thought to contribute to higher species diversity and heterogeneity and may be 

of importance to juvenile G. morhua (Hall-Spencer et al. 2003; Kamenos 2004; 

Lough 2010). 

Ontogenetic shifts in substratum association were observed, with higher G. 

morhua MaxN were observed over more rugose substrata (relative to their size). 

G. morhua ontogenetic shift movement from sand to algal-gravel-pebble over 

the course of data collection period 2013 and algal-gravel-pebble to seagrass 

areas within 2014 was observed. This indicates that ontogenic shift in 

substratum use may be occurring within the size ranges (3 cm - 15 cm) observed. 

Similar results were observed by Keats & Steele (1992), Laurel et al. (2007) and 

Tupper & Boutilier (1995b), where ontogenic shifts to more rugose substrata 

were observed with increased size. Such behaviour has been suggested to reduce 

agonistic interactions (such as from competition for resource or predation) 

between individuals (Keats and Steele 1992; Tupper and Boutilier 1995b). 

Ontogenic shifts within this size range also highlights the importance of 

substrata of sufficient rugosity relative to the size of the individual and that 

multiple substratum types are needed by the same species (Nagelkerken et al. 

2013; Chapter 3 - 5).  

Significant differences in G. morhua relative abundance were observed between 

years, with significantly fewer individuals observed during 2014. During both 

summers (2013 and 2014), relative abundances observed over algal-gravel-

pebble were higher than on other substrata. In addition, during data collection 
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period 2014, G. morhua relative abundance dramatically reduced in all 

substrata, where as in algal-gravel-pebble substratum type, G. morhua mean 

MaxN only halved. The latter indicates a selection for algal-gravel-pebble 

substratum type as opposed to other substrata, and density dependent substrata 

association given G. morhua relative abundances during 2014 were significantly 

less than 2013. This result also indicates that algal-gravel-pebble may be an 

important habitat component affecting juvenile G. morhua survival. Density 

dependent substrata association in G. morhua has previously been observed by 

Laurel et al. (2004), with individuals moving to less productive substrata with 

increasing abundance. These results should however be treated with caution, 

since when incorporating an interaction with year and substratum type in the G. 

morhua habitat model (G. morhua habitat – p. 102), the interaction was not 

significant. This is likely to be due to the small effect of this interaction. 

Although previous research has suggested M. aeglefinus and M. merlangus do not 

seem to have a particular nursery grounds (Hislop 1996), significant substratum 

associations were observed. For both species, higher relative abundances were 

observed over sand and mud substratum types with the fewest individuals 

observed over algal-boulder-cobble substratum types. Higher MaxN over sand 

was also observed over both years of data collection for both species, indicating 

a possible selection for this substratum type. These results match laboratory 

studies undertaken with M. merlangus, where juveniles selected sand when no 

external stimulus was present (Atkinson et al. 2004). Auster et al. (2001) and 

Brickman (2003) also found higher abundances of juvenile M. aeglefinus over 

sand-gravel surfaces in the western Atlantic.  

Similarities in substratum association between M. aeglefinus and M. merlangus 

may be because, on average M. aeglefinus and M. merlangus were more similar 

in size and significantly larger than G. morhua (Figure 4.4.23 and  

Figure 4.4.24). Substratum and depth differences between species indicate size 

(Bastrikin et al. 2014) and/or species specific segregation, with G. morhua in 

shallower and relatively more rugose substrata than M. aeglefinus and M. 

merlangus. Species specific segregation potentially reduces predation (Myers and 

Cadigan 1993; Fromentin et al. 1997) and minimises competition, most likely as 
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a result of different resource needs (Fromentin et al. 1997; Bastrikin et al. 

2014).  

M. aeglefinus and M. merlangus were also observed to occupy significantly 

higher heights off the seabed than G. morhua ( 

Figure 4.4.25; Table 4.4.2). G. morhua are known to be more benthic species 

relative to M. aeglefinus and M. merlangus with a better developed chin barbel 

containing taste buds (Harvey & Batty, 2002). The sand and mud substrata may 

have a higher abundance and diversity of M. aeglefinus and M. merlangus 

preferred prey types. Such results demonstrate that measures to protect 

juvenile substrata must be tailored to the species and life-history stages under 

consideration and that there may not be general rules which apply even within 

groups of closely-related fish (Nagelkerken et al. 2013). 

The relative abundances of all three species were positively correlated with the 

benthopelagic diversity. Increased N∞ (species dominance) was linked to 

decreased G. morhua and M. aeglefinus relative abundance. However, increased 

N1 (exponential of Shannon-wiener’s index) was linked to increased M. 

merlangus relative abundance. The same Hill number may not have been 

significant for each species due to the high proportion of zeros in observations of 

gadoids and the variation in numbers of samples between the different 

substratum types. N1 is also more sensitive to sampling imbalances (Soetaert and 

Heip 1990; Buckland et al. 2005, 2011). Benthic species observed were unlikely 

to have been prey food for the gadoids due to their larger sizes (Demain et al. 

2011; Bastrikin et al. 2014). Key prey food for all three species with size ranges 

of 3 cm – 15 cm overlap to a certain extent. Stomach analysis on smaller 

individuals have shown consumption of a mixture of pelagic copepods and 

benthic invertebrates, to primarily invertebrates and juvenile fish at the larger 

age-0 size ranges (Demain et al. 2011; Bastrikin et al. 2014).  

Species diversity can provide a range of function for fish from seabed-surface 

topography and structural rugosity, provision of substratum heterogeneity and 

food sources to gadoids, to ecosystem functioning (Folke et al. 2004; Sherwood 

& Grabowski, 2016; Worm et al. 2006; Thrush et al. 2016). Species diversity can 

also be an indicator of seabed disturbance (Thrush and Dayton 2002). 
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Maintaining species biological diversity is a well-known mechanism in 

maintaining ecosystem services on which we depend (Worm et al. 2006; 

Beaumont et al. 2008; Gamfeldt et al. 2008). Declines in species diversity are 

largely caused by anthropogenic impacts such as exploitation, physical damage 

to substrata, pollution and climate change (Dulvy et al. 2003; Lotze 2006; Worm 

et al. 2006). Shallower gravel type substrata where G. morhua were found in 

greater abundance are more vulnerable to demersal mobile fishing gear, in 

particular to dredging which has greater benthic impacts than trawling (Collie et 

al. 2000, Hiddink et al. 2006, Kaiser et al. 2006). Sand and mud substrata where 

M. merlangus and M. aeglefinus were found in greater relative abundance which 

is subject to higher levels of trawling (Collie et al. 2000; Hiddink et al. 2006; 

Kaiser et al. 2006). Protecting more diverse areas or improving the state of areas 

with lower species diversity may therefore support the survival of commercial 

fish (Worm et al 2006; Beaumont et al, 2008).  

Wave exposure has previously been identified as having a strong influence on the 

local distribution of coastal species and food distribution (Burrows et al. 2008; 

Burrows 2012). For both G. morhua and M. aeglefinus there was a negative 

relationship between their relative abundance and wave fetch. Fromentin et al. 

(1997) observed higher abundances of G. morhua and M. merlangus in more 

sheltered areas within fjords as opposed to more exposed areas outside fjords. 

Mark recapture experiments undertaken by Rogers et al. (2014) have shown that 

distance travelled by juveniles is lower in more sheltered areas (Rogers et al. 

2014). The results found here may differ from Lekve et al. (2006) who found 

increased abundance of G. morhua in more exposed areas, since the level of 

exposure may be quite different. Within Lekve et al. (2006), exposure was not 

quantified on a continuous scale as used in this investigation (Burrows et al. 

2008), but instead categorically according to a more sheltered area and a more 

exposed areas.  

Although juvenile gadoids were more abundant in more sheltered areas, 

increased exposure has previously been observed to help drive larvae to coastal 

areas (Huwer et al. 2014). Various hypotheses exist regarding how fish larvae 

and fry arrive at coastal areas, all of which include oceanic processes supporting 

the transport of larvae (Ings et al. 2008; Huwer et al. 2014). These hypotheses 

include being carried by shoreward moving tidal forces (Pineda 1994), active 
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migration (Staaterman and Paris 2014) and arrival by up and downwellings (Ings 

et al. 2008). In all three species higher MaxN was observed during July and 

August with signs of possible pulse or extended recruitment from late June 

through to late September, due to the size ranges observed. The latter was 

particularly evident for M. merlangus. Significant differences in length variation 

indicating multiple recruitment cohorts were not observed. However, this is 

likely to be largely due to the small sample size.  

In all three species, higher relative abundance was observed in July with 

declines in August and September. G. morhua were unlikely to have moved to 

deeper waters during this period of time since none were observed in the deeper 

waters (> 30 m). Additionally, migration to deeper waters is thought to occur 

after their first winter or first year (Magill & Sayer 2004). An increase or in 

gadoid relative abundance was expected over the period of data collection 

because of pulse recruitment observed and expected over the period of data 

collection (Ings et al. 2008). The decline in G. morhua relative abundance may 

therefore indicate that habitats of sufficient quality to provide food and refuge 

may have been a limiting factor to their survival (Tupper and Boutilier 1995b; 

Vasconcelos et al. 2014). For both M. aeglefinus and M. merlangus a positive 

relationship between depth and size was observed. Additionally, for both years 

G. morhua were smaller than M. aeglefinus and M. merlangus, this may have 

been due to later recruitment to coastal areas. A smaller size range and latter 

arrival not only puts G. morhua at a competitive disadvantage in comparison to 

M. aeglefinus and M. merlangus but potentially makes them more vulnerable to 

predation (Werner and Gilliam 1984; Ellis and Gibson 1995; Renkawitz et al. 

2011). Studies undertaken by Heath & Speirs (2012) have shown that the biomass 

within the Firth of Clyde is largely made up of juvenile M. merlangus. Spawning 

earlier and multiple times throughout the year may give M. merlangus a 

competitive advantage over to G. morhua (Hislop 1975; McEvoy and McEvoy 

1992; Wright & Trippel, 2009). 

4.5.1. Management, considerations and future work 

Few studies have been undertaken using SBRUV as a mechanism to collect 

fisheries independent data in the UK. Few studies have previously looked at how 
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a range of abiotic and biotic habitat variables can affect gadoid abundance and 

length. Although measures have been put in place to recover gadoid stocks little 

improvement has been observed in west coast of UK stocks (Fernandes & Cook 

2013; ICES, 2014; Barreto & Bailey 2015). Links to substratum types have 

previously been undertaken, but substratum fish size related studies are few and 

far between (Seitz et al. 2014; Vasconcelos et al. 2014). Future research should 

focus on trying to quantify the carrying capacity of important nursery areas to 

facilitate targeted management measures to try and improve survival and 

recruitment (Heath et al. 2008; Bailey et al. 2011).  

A problem with using SBRUV is the limited view of substrata able to be observed 

around the cameras (approximately 2.5 – 3 m2) and the unknown distance a fish 

may have travelled if attracted to the cameras to calculate absolute abundance 

(Chapter 6) and understand wider seabed landscape effects. From TFA analysis 

and gadoid mid Y and Z positions, it appears as if M. merlangus were attracted 

to the bait given the time it took to arrive at the bait and since their mid Y and 

Z positions were closer to the SBRUV than G. morhua which were already within 

the vicinity. At the time this data was collected, acoustic information on the 

seabed was not available around the south of Arran to be able to understand any 

possible landscape affects which could have affected gadoid distribution. 

Chapter 5, however, considers such substratum heterogeneity and landscape 

effects.  

The findings on SBRUVS effectiveness under UK coastal waters should have wide 

relevance across the region. With the increasing number of spatial closures being 

designated within UK waters, SBRUV surveys could be used as a monitoring 

method. The biological results are specific to the area studied but would ideally 

be replicated elsewhere, or verified with several smaller-scale studies (see 

Chapter 6). 

 

4.6. Conclusion 

This study clearly demonstrates the importance of habitat variables on gadoid 

fish around the south of Arran. By understanding the range of conditions suitable 
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to gadoid species, adequate protection measures can be implemented to try and 

recover stocks and mitigate against climate change and other anthropogenic 

impacts. Substrata were clearly of relevance to juvenile G. morhua, M. 

aeglefinus and M. merlangus and more specifically a range of substratum types 

were required by G. morhua from arrival to coastal areas as they increased in 

size. Further, this study highlights the importance of benthic and demersal 

species diversity for all three of these species throughout the range of substrata 

that they were observed over. The latter has significant management 

implications since not only are certain substratum types of particular importance 

but potentially their quality as indicated by benthopelagic diversity. This is 

particularly relevant given Sherwood and Grabowski (2016) found older, larger 

and fatter G. morhua within MPAs than out with. This study not only highlights 

habitat variables which should be considered for gadoid fish management but 

has MPA and Marine Strategy Framework Directive (MSFD) management and 

monitoring implications. This research is particularly relevant to the MSFD 

descriptors relating to biodiversity (D1), seafloor integrity (D6), commercially 

exploited fish (D3) and elements of the food web (D4) (EU 2008). Links between 

descriptors 1, 3 and 6 have not been addressed (OSPAR 2014) and in general 

interactions between biodiversity, the quality of the seafloor and commercial 

fisheries management is increasingly separated (Pauly 1995, Auster and Langton 

1999, Armstrong and Falk-Petersen 2008). We recommend adopting such 

strategies to understand commercially exploited fish during critical life phases to 

habitat variables is essential to support the recovery of depleted fish stocks and 

implement a more ecosystem based management. 
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Chapter 5.  Substratum prediction modelling to 

investigate landscape effects on juvenile gadoids  

 

5.1. Abstract 

Successful spatial and zonal management for conservation purposes requires a 

good understanding of the distribution of species and their habitats. Protecting 

nursery areas for juvenile demersal fish has been proposed as a measure to 

conserve or recover fish stocks. However, there has been few studies on the role 

of heterogeneity at a landscape level and so the importance of variability in 

substratum types across an area inhabited by fish remains poorly understood. 

This is of particular relevance for commercially important gadoid fish on the 

west coast of Scotland which have been subject to intense fishing activities for 

decades with little sign of recovery. 

Data on gadoid relative abundance, size and substratum type were collected 

using fisheries independent, non-damaging SBRUV deployments within a recently 

designated MPA in the Firth of Clyde, southwest of Scotland. Factors correlating 

with the presence of different substratum types were determined, allowing 

substratum type to be predicted within the MPA. The predicted seabed map was 

used to understand the relationship between substratum type, extent (the area 

of each substratum type) and heterogeneity (diversity and pattern of substratum 

types and patches within a landscape), and gadoid relative abundance within a 

radius of 1500 m. The predicted substratum model performed well with an area 

under the curve score of 0.87 (rated as excellent). Atlantic cod (Gadus morhua) 

was associated with relatively more rugose substrata and heterogeneous 

landscapes, than haddock (Melanogrammus aeglefinus) or whiting (Merlangius 

merlangus). An increase in M. merlangus relative abundance was also observed 

with increasing substratum extent. 

This is the first study to look at the effects of landscape heterogeneity and 

substratum extent on gadoid distribution. Results from this study suggest that 

heterogeneous landscapes should be considered for the protection of juvenile G. 
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morhua, rather than simply choosing areas with the highest proportion of the 

substrata with which G. morhua has the strongest association. The approach 

used in this study has benefits for MPA, fisheries management and monitoring 

advice, supporting a more ecosystem-based management. 

 

5.2. Introduction 

Protecting species and their habitats requires a good understanding of species 

distribution and the role of their habitat. Unfortunately in many cases the latter 

is not well understood due to the difficulties in collecting such data (Brown et 

al. 2011; Seitz et al. 2014; Sundblad et al. 2014). With the increase in spatial 

protection measures, understanding the distribution of species and their habitat 

is increasingly important (Howell et al. 2011; Moore et al. 2016). An 

understanding of seabed type and distribution can influence maritime spatial 

planning required under European Union’s 2014 directive (EU 2014) and reduce 

spatial conflict from multiple sea-users (White et al. 2012; Evans et al. 2015; 

Reiss et al. 2015). Knowledge of substratum distribution can also influence 

management measures for MPAs (Reiss et al. 2015). It is well recognised that 

substratum type is of importance to demersal fish (e.g. Seitz et al. 2014; 

Sundblad et al. 2014). However there is often a lack of knowledge of landscape 

(Box 2.3.1, Chapter 2) effects on fish abundance and survival (Mangel et al. 

2006; Armstrong and Falk-Petersen 2008; Sundblad et al. 2014). This is of 

particular importance given that landscape analysis can provide a more 

complete understanding of how seabed type and distribution can effect 

demersal fish populations (Moore et al. 2011). 

Fisheries affect fish populations through direct mortality as catch or bycatch but 

also through indirect effects on the success of individual fish (Auster et al. 1996; 

Jennings and Kaiser 1998; Armstrong and Falk-Petersen 2008). Such effects 

might include disruption or disturbance to spawning areas (Clarke et al. 2015) or 

damage to resources used by the fish such as food sources or shelter (Auster et 

al. 1996; Auster and Langton 1999). Direct mortality can be reduced by a 

reduction in fishing effort, modifications to gear or by avoiding times and places 
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where there is high density of the species in question (Fernandes and Cook 2013; 

Clarke et al. 2015). Avoidance of indirect effects on the resources needed by 

fish is most commonly achieved through spatial measures such as MPAs or 

fisheries closures (Worm et al. 2009; Halpern et al. 2010).  

Protecting areas important to fish still remains a less common approach to 

conserving fish than reducing fishing effort or modifying gear impact (Armstrong 

and Falk-Petersen 2008). This is mainly because of the difficulties in 

understanding which habitat components are important to fish and how the 

extent (area of each substratum type) and heterogeneity (diversity and pattern 

of substratum types and patches within a landscape) of substrata (Box 2.3.I, 

Chapter 2) within a landscape affect fish populations (Moore et al. 2010, 2011; 

Sundblad et al. 2014). Further, species will relate to their environment 

differently according to their size, behaviour and mobility (Buhl-Mortensen et al. 

2012). More focus has therefore been placed in species abundance and 

distribution modelling than on modelling landscape effects on fish (e.g. Elith et 

al. 2006; Elith & Leathwick 2009). Environmental variability such as 

exceptionally warm or cold winters, can however cause fluctuations in fish 

abundance and distribution (e.g. Planque & Fox 1998; Planque & Frédou 1999; 

Magill & Sayer 2004) affecting species distribution models. Understanding 

substratum type and distribution of relevance to demersal and benthic species 

may therefore be more beneficial than modelling species distribution (Howell et 

al. 2011; Ross and Howell 2013). To protect substrata from anthropogenic 

impacts and understand how complex landscape responses affect species 

distribution, detailed full coverage seabed maps are required (Holmes et al. 

2008; Moore et al. 2011).  

Within coastal areas mapping has been derived from aerial and satellite images. 

Use of optical imaging techniques in high visibility waters can provide useful 

information, unfortunately such techniques are less useful in more turbid waters 

(Sundblad et al. 2014). Acoustic methods can also provide detailed maps of the 

seabed type (Brown et al. 2011), but can be resource intensive and prohibitively 

expensive (Reiss et al. 2015; Schubert et al. 2015). Predictive methods can 

therefore be an important tool to overcome such issues (Guisan and 

Zimmermann 2000). A wide range of predictive modelling methods exist (e.g. 

Guisan & Zimmermann 2000; Barry & Elith 2006; Elith & Leathwick 2009) and 
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method-specific differences can yield varying performance (e.g. Elith et al. 

2006; Reiss et al. 2011). In addition, predictive outcomes will vary largely on the 

spatial scales used (Levin 1992; Elith and Leathwick 2009; Chave 2013). For 

example, broad scale predictive maps already exist within the Firth of Clyde 

(i.e. Ross et al. 2009; McIntyre et al. 2012) and rock, gravel and sand substrata 

have been predicted within 12 km of the coastline the south of Arran coastline. 

However, ground-truthed data within the same area collected in chapters 3 and 

4 demonstrated that there was a broader range of substrata with different 

distribution. For individual MPAs and other spatial management plans to be 

effective, adequate spatial scales need to be used (Levin 1992; Crain et al. 

2009; Chave 2013). Therefore, rather than using broad scale predicted maps 

which have been undertaken on a country-wide scale to implement management 

measures within an MPA, higher resolution mapping should be undertaken at the 

scale of the MPA. 

Given the need for higher resolution seabed maps to implement adequate spatial 

management measures and the lack of knowledge of landscape effects on fish 

abundance and distribution, the aims of this study were two-fold. Firstly a range 

of environmental variables were explored to undertake fine-scale predictive 

mapping of substrata within south Arran NCMPA (SNH 2014; Figure 5.3.1). The 

predicted seabed map was then used to understand how substratum type, extent 

and heterogeneity affected juvenile G. morhua M. and aeglefinus M. merlangus 

relative abundance. Fisheries independent SBRUV recordings were used to 

collect substratum and gadoid data within the MPA as a quantitative, non-

destructive and non-extractive method of data collection. SBRUV surveys were 

undertaken since they are a useful technique that overcome depth and seafloor 

rugosity sampling limitations inherent of SCUBA and fisheries dependent 

techniques (Cappo et al. 2004; Harvey et al. 2007; Moore et al. 2010). 

Understanding the effect of the wider landscape on gadoid distribution was 

particularly important using SBRUV deployments since the field of view of SBRUV 

measurements are relatively small within temperate waters (~2 m2 depending on 

visibility). 
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5.3. Method 

5.3.1. Study Location 

Research was conducted from June to September 2013 and 2014 within South 

Arran NCMPA, located within the Firth of Clyde, southwest coast of Scotland 

(Figure 5.3.1), covering an area of 250 km2 (SNH 2014; refer to Chapter 3 and 4 

for more information). 

5.3.2. Data collection 

Gadoid sampling was undertaken using three SBRUV frames as described in 

Chapter 4. SBRUV and stereo-video SCUBA transect substratum classifications 

were also used to undertake substratum prediction modelling. Refer to Chapter 

3 and 4 for a detailed description of SCUBA and SBRUV substratum 

categorisation. A total of 289 ground-truthed data points were therefore used 

for substratum prediction analysis consisting of 74 SBRUV deployments from 

2013, 184 SBRUV deployments from 2014 and 31 SCUBA transects (Figure 5.3.1). 

 

Figure 5.3.1 - South of Arran NCMPA with SBRUV 2013 and 2014 site locations 

and substratum classification. Circles represent dive site locations and squares 

represent SBRUV deployment locations 
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5.3.3. Substratum modelling 

Five abiotic predictor variables were used for predictive substratum modelling 

(Table 5.3.1). These included depth, distance from coast, maximum current 

speed, wave fetch and underlying geology. Depth data were obtained from 

vessel echosounders (Chapter 4). Distance from shore was calculated using the 

GPS fix made at time of deployment and ArcGIS version 10.1 (EDINA digimap, 

British National Grid 1984). Maximum current speed was obtained from a 

hydrodynamic model of tidal elevations and current velocities developed by 

Sabatino et al (in review). The maximum current speed evaluated over a whole 

year was modelled at the location of each data collection point. Wave fetch 

values (downloaded from SAMS 2013) were used as described in Burrows et al. 

(2008). Information on the underlying geology of the MPA were obtained from 

British Geological Survey (BGS) was downloaded from EDINA (2015).  

Table 5.3.1 - Summary of environmental predictors.  

Predictor Description Unit Range 

Depth Water depth Metres 4.0 - 47.2 

Wave fetch A measure of exposure of a 

shore (the distance which 

wind-driven waves can build 

from the closest land point) 

Kilometres 193 - 2877 

Distance to 

coast 

Distance of SBRUV from the 

shore 

Metres 73- 2295 

Maximum 

current speed 

Maximum current speed at 

spring tides 

Metres/second 0.11 - 0.91 

Geology Dominant rock type found to 

occur in the area 

Categorical 2 levels: 

Permian 

rock  and 

Triassic rock 
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A multinomial distribution was selected to understand predictor variables 

affecting substratum distribution, since five possible discrete outcomes 

restricted between zero and one were plausible (Faraway 2005; Hosmer et al. 

2013). “nnet” R package (Venables & Ripley, 2002) in R software (version 3.03, R 

Core Team, 2015) was used for the multinomial model.Prior to statistical 

analysis, continuous variables were standardised to enable the predictor 

variables to be of comparable units. Principles outlined within Zuur et al. (2010) 

to check for collinearity and influential observations. One SBRUV sample was 

removed as a result of erroneous depth reading. One SCUBA transect was 

removed as described in Chapter 3. Automated model selection was undertaken 

using the stepwise function to find the model of best fit, selecting the best 

model using the difference between AIC scores. A log likelihood ratio test was 

used to test model significance against the null hypothesis. Equation 5.1, 

provides the model of best fit for substratum prediction. 

𝑌𝑖 =  𝛽1, 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 +  𝛽2, 𝐷𝑒𝑝𝑡ℎ𝑖 +  𝛽3, 𝑀𝑎𝑥 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑖 +  𝛽4, 𝐹𝑒𝑡𝑐ℎ𝑖 + 𝛽5, 𝐺𝑒𝑜𝑙𝑜𝑔𝑦𝑖𝑗 +

 𝛽6, 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 ∗  + 𝛽7, 𝐷𝑒𝑝𝑡ℎ𝑖  + 𝛽8, 𝐹𝑒𝑡𝑐ℎ𝑖 ∗  𝛽9, 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖   (5.1) 

Where 𝑌𝑖 is the response variable and 𝛽 are the modelled coefficientsfor sample 

𝑖.  

The multinomial model performance was tested on 25% of the dataset, by 

randomly splitting the combined 289 data points containing substratum 

classification and environmental variables into 217 samples (75%) to fit the data 

and 72 samples (25%) to validate the data. A confusion matrix and Area Under 

Curve (AUC) analysis and was run for the multiple class responses as outlined by 

Cullmann (2015) to assess the accuracy of the model. The confusion matrix was 

used as it allows visualisation of the performance of the model. Confusion 

matrices work by representing predicted classes against actual classes and so 

reporting the number of true positives (sensitivity) and true negatives 

(specificity) (Fielding & Bell 1997; Hosmer et al, 2013). AUC analyses provides a 

single measure of model performance by indicating the ability of a model to 

discriminate between the presence of substratum types, providing a score of 

how well the model discriminates between sensitivity (Fielding and Bell 1997; 

Hand and Till 2001; Leathwick et al. 2006). Both measures were used to help 

explain how well substrata were predicted. The threshold-independent Area 
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Under the Receiver Operating Characteristic (ROC) Curve was not implemented 

since it is deemed unsuitable for multiclass analysis as used in this analysis, as it 

measures the differences between two distributions (Hand and Till 2001). 

Interpretation of AUC range from: ≥ 0.9 = outstanding, ≥ 0.8 - < 0.9 = excellent, 

≥ 0.7 - < 0.8 = acceptable, > 0.5 and < 0.7 = poor discrimination and ≤ 0.5 = no 

discrimination (Hosmer et al, 2013). In addition to overall model AUC and 

confusion matrix scores, correct classification for the individual substratum 

categories was also calculated to understand sensitivity of the model’s predicted 

substratum types. “ROCR” R package (Sing et al, 2005) was used to understand 

how well each of the variables explained the presence of the modelled 

substrata. 

To create a continuous map of the substrata, predictor variable values on a 400 

and 600 m grid resolution were obtained within the South Arran NCMPA down to 

a depth of 50 m. This varied grid resolution was used since one of the main 

sources of predictor variables was a hydrodynamic model of tidal elevations and 

current velocities developed by Sabatino et al (In review). This hydrodynamic 

model was an implementation of the Finite-Volume Community Ocean Model 

(FVCOM) code, developed for simulating complex shelf and estuarine water 

circulation. FVCOM adopts an unstructured grid approach with triangular 

elements to better represent the coastline and provide increased resolution 

within the Firth of Clyde (Sabatino et al, in review).  

The modelled maximum current speed and depth data were obtained from 

Sabatino et al’s current model. Sabatino et al’s depth data were originally 

sourced from General Bathymetric Chart of the Oceans (GEBCO) overlapped with 

SeaZone (version 1.1; GEBCO 2014; SeaZone 2014). The point data were 

imported into ArcGIS and converted into shapefiles to be able extract wave 

fetch, distance from coast and geological information values for the same 

coordinates. Depth down to 50 m was used to predict substratum distribution to 

improve model prediction accuracy and avoid spatial extrapolation issues (Reiss 

et al. 2015). The explanatory variables were then imported into R, standardised, 

and the multinomial model of best fit was used to predict substratum type. The 

resulting data frame containing substratum predictions was imported back into 

ArcGIS, converted into a point shapefile and validated with ground-truthed 

substratum types. Polygons were then created joining the ground-truthed and 
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predicted substratum data points to create a smooth continuous surface for each 

substratum type across the predicted area (Figure 5.4.1). 

5.3.4. Gadoid landscape calculations 

Very little information exists on in situ juvenile gadoid movement patterns due 

to the difficulties in using acoustic tags on such small fish (< 10 cm) (Campana 

2001; Chapter 4) and difficulties in tracking marked, recaptured individuals 

(Laurel et al. 2004; Olsen et al. 2004; Wright et al. 2006a). Approximations of 

the distance the juvenile gadoids move were estimated using the SBRUV data in 

addition to using existing literature on gadoid swimming speeds and home 

ranges. The two methods were used since fish behaviour around baited cameras 

is not usually classed as normal; whereas existing literature on juvenile gadoid 

movement is sparse and varied. 

To calculate gadoid movement, their behaviour was first classified into four 

categories (Table 5.3.2). Only cruising behaviour - when the gadoids were 

moving in a straight line away from the bait, was taken into account to try and 

reduce bait bias. Cruising speed of ten individuals of each gadoid species of less 

than 20 cm were calculated (Appendix, Table G.1). The distance each gadoid 

could travel within an hour was then calculated (Appendix, Table G.2). 

Individuals of < 20 cm instead of < 15 cm as in the previous chapter were 

sampled since it was difficult to find and measure sufficient number of gadoids 

(particularly M. merlangus) undertaking the cruising behaviour. Current speed 

and direction were not taken into account.  

Mark-recapture experiments undertaken by Grant & Brown (1998) showed that 

juvenile G. morhua remain relatively localised - within a few hundred meters, 

following pelagic larval stages through to their first winter. However, Laurel et 

al. (2004) demonstrated that such movement behaviour may be spatially and 

temporally variable and that G. morhua may demonstrate substratum specific 

movement behaviour. Existing studies on larger G. morhua (age 2+ / > 20 cm) 

(DATRAS 2015) have also demonstrated relatively limited movement (e.g. 

Løkkeborg et al. 2002; Cote et al. 2004; Wright et al. 2006a). Literature on in 

situ M. aeglefinus and M. merlangus movement behaviour is even scarcer. 

Distance calculations were therefore verified from laboratory literature on 
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swimming speeds (e.g. Blaxter & Dickson 1959; Breen et al. 2004; Onsrud et al. 

2005). From the combined distance and speed calculations and existing 

literature on gadoid speed and movement behaviour, three different radii 

created in ArcGIS around the gadoid point data collection were trialled. These 

included a radii of 500, 1000 and 1500 m (covering an area of 0.78, 3.14, 7.07 

km2). 

Table 5.3.2 - Gadoid behaviour observed within the field of view of the SBRUV. 

Behaviour 

observed 

Explanation 

Cruising Gadoids observed moving at a steady speed away from the 

SBRUV, over a distance of >1.5 m for a period of time > 30 

seconds. 

Darting Brief (< 3 seconds) short (< 0.5 m) period of movement to 

attack a con-specific or prey. 

Turning Frequent turning behaviour within a short period of time in 

an alert or feeding manner. 

Feeding Gadoids observed feeding attempting to feed on the bait, 

something in the water column or on the seafloor. 

 

Using the predicted substratum point data, landscape heterogeneity was 

calculated using Hill numbers (Hill 1973). Substratum richness was the number of 

types of substrata within the radius, and evenness the frequencies of the 

substrata within the radius. Hill number N1, N2 and  N∞ (Hill 1973; Chapter 4), 

were used to understand how landscape heterogeneity affected gadoid relative 

abundance. The Hill numbers were used since they are inclusive of well-known 

indices (Jost 2015) and they are expressed as the effective number of species 

rather than probabilities as in Shannon-Wiener and Simpson’s (Maguran 2004; 

Jost 2006; Jost 2015). The extents of each substratum polygon within the radii 

were calculated in ArcGIS.  

Fish counts were over-dispersed and therefore modelled with a NBN error 

distribution (log link function) using R package “glmmADMD” (Skaug et al, 2012) 

to enable random effects to be used. Random effects to account for varying 
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location and data collection day were incorporated into the NBN models where 

significant. Zero inflated and non-linear patterns were explored but not 

significant. Starting with the full model, stepwise backwards selection, exploring 

for potential interactions, was used for model selection by AIC minimisation. 

Tukey tests were performed to test for differences between substratum 

categories using R package “multcomp” (Hothorn et al, 2008). Pearson’s 

residuals were compared between models fitting a model with the highest level 

of heteroscedasticity. Model selection was confirmed by log likelihood ratio tests 

against the null hypothesis. 

Equation 5.2 provides the model structure used for juvenile gadoid MaxN 

landscape effects. 

𝑙𝑜𝑔(𝑌𝑖) =  𝛽0 +  𝛽1, 𝑋𝑖𝑗 +  𝛽2, 𝑋𝑖 +  𝛽3, 𝑋𝑖 … . . +𝑧𝑖𝑗 + 𝑡𝑖𝑗      (5.2) 

where 𝑌𝑖 is gadoid MaxN, 𝛽 are the coefficients, 𝑋𝑖𝑗, categorical explanatory 

variables (substratum type) and 𝑋𝑖, continuous explanatory variables (landscape 

heterogeneity and or substratum extent), 𝑧𝑖𝑗  and 𝑡𝑖𝑗   the random effects (zone 

and grouped day of collection). 

Spatial autocorrelation between gadoid SBRUV deployments was visually 

inspected using semivariograms of the residuals of the models fit as a function of 

distance, using R package “geoR” (Ribeiro & Diggle, 2015). Spatial 

autocorrelation is represented by increased semi-variance at shorter distances. 

No spatial autocorrelation was observed. 

5.4. Results 

5.4.1. Substratum distribution model 

Evaluation of the multinomial model using the validation dataset indicated 

‘excellent’ predictive power (AUC score of 0.88) and a confusion matrix correct 

classification of 61% (L = -131.21, d.f. = 32, P < 0.001; Appendix Table G.3). 

Correct classification for seagrass was 100%, followed by mud with 89%. Algal-

gravel-pebble, sand and algal-boulder-cobble accurate classification received 
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scores of 70%, 69% and 68% respectively. Predictor variable individual AUC scores 

were particularly strong for wave fetch and depth (0.71 and 0.69 respectively). 

Distance from coast and maximum current speed had AUC scores of 0.66 and 

0.62. An AUC score for geology was not possible since categorical AUC values are 

not possible to evaluate. 

  

Figure 5.4.1 - Polygons of substratum types within South Arran NCMPA using 

substratum predictions in combination with ground-truthed data. 

5.4.2. Landscape effects on G. morhua  

G. morhua highest (mean and median) MaxN was observed over AGP substratum 

type with the lowest average MaxN observed over sand. Tukey test results 

between substrata demonstrated that significantly more G. morhua were 

observed in AGP than ABC (P < 0.01)(Figure 5.4.2; Appendix Table G.4 - Table 

G.5). No G. morhua were observed over mud, this category was therefore 

removed from analysis to improve logistic model convergence. A decrease in 

MaxN was observed with increasing N∞ (increase in dominance of substratum 

type) with a 1500 m radius (Figure 5.4.2; Figure 5.4.3; Appendix Table G.4). A 

significant decline in G. morhua was also observed between years with less G. 
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morhua in year two (2014) (L = -312.112, d.f. = 9, theta = 0.86, P < 0.001; 

Appendix Table G.4). Extent had no effect on G. morhua MaxN.  

Figure 5.4.2 - Coefficient plot for model of best fit for G. morhua substratum 

landscape effects. Lines contain 95% confidence intervals for each of the 

explanatory variables. The verticle dashed line is the reference line enabling us 

to see which coefficients are significantly different from zero. The intercept  

represents ABC and Year 1 of data collection. Dashed vertical lines with * refers 

to Tukey test p value significance: ** P < 0.01).  
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Figure 5.4.3 - Predicted substratum map with bubble plots showing the relative 

abundance of G. morhua  
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5.4.3. Landscape effects on M. aeglefinus  

M. aeglefinus highest MaxN was observed over sand, followed by mud with 

lowest MaxN observed over ABC (Figure 5.4.4; Appendix Table G.6 and Table 

G.7). Significantly more M. aeglefinus were observed over sand and mud than 

ABC (P < 0.001). An increase in M. aeglefinus MaxN was observed with increasing 

substratum N∞ and N2 (tested independently) with a 1500 m radius (Figure 5.4.4 

and  

Figure 5.4.5). When comparing models, N∞ had a lower AIC (L = -282.749, d.f. = 

9, theta = 0.88, P < 0.001; Appendix Table G.6).  

 

 Figure 5.4.4 - Coefficient plot for model of best fit for M. aeglefinus 

substratum landscape effects. Lines contain 95% confidence intervals for each of 

the explanatory variables. The verticle dashed line is the reference line enabling 

us to see which coefficients are significantly different from zero. The intercept 

represents ABC. Dashed vertical lines with * refers to Tukey test P value 

significance: *** P < 0.001).  
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Figure 5.4.5 - Predicted substratum map with bubble plots showing the relative 

abundance of M. aeglefinus. 

5.4.4. Landscape effects on M. merlangus  

The highest MaxN (including mean and median) for M. merlangus was observed 

over sand with lowest MaxN observed over ABC and seagrass. A significantly 

higher M. merlangus MaxN was observed over mud, sand (P < 0.001) and AGP (P 

< 0.05) than ABC (Figure 5.4.6; Appendix Table G.8 and Table G.9). An increase 

in M. merlangus MaxN was observed with increasing substratum dominance (N∞) 

at 1500 m and increasing substratum extent at 1500 m (L = -272.595, d.f. = 10, 

theta = 0.88, P < 0.001; Figure 5.4.6; Figure 5.4.7; Appendix Table G.8). 
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Figure 5.4.6 - Coefficient plot for model of best fit for M. merlangus substratum 

landscape effects. Lines contain 95% confidence intervals for each of the 

explanatory variables. The verticle dashed line is the reference line enabling us 

to see which coefficients are significantly different from zero. The intercept 

represents ABC. Dashed vertical lines with * refers to Tukey test P value 

significance: * P < 0.05, ** P < 0.01 and *** P < 0.001). 

 

 

Figure 5.4.7 - Predicted substratum map with bubble plots showing the relative 

abundance of M. merlangus. 
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5.5. Discussion 

This work had two main findings; firstly that a statistical model produced a map 

of substratum types within an area where ground-truthed data was collected. 

This is important because this method enabled a higher resolution and a more 

accurate map than previously existed to be obtained within the area (refer to 

Ross et al. 2009; McIntyre et al. 2012). The predictive model also enabled the 

drivers of substratum distribution to be explored and the resulting map could 

support South Arran NCMPA management and help with the design of monitoring. 

The second main finding was that diversity and extent of different substratum 

types, at ranges of up to 1500 m around gadoid data collection locations were 

related to the relative abundance of the gadoids. Such landscape effects on 

demersal fish has rarely been studied and could be beneficial to good fisheries 

management and MPA planning and monitoring (Sundblad et al. 2014, 

Vasconcelos et al. 2014; Reiss et al. 2015). 

Overall the multinomial model used for substratum prediction performed well. 

Depth and wave fetch had the strongest relationships with the substratum types 

in comparison with the other predictor variables. Depth affects many species 

and is commonly used as a surrogate stressor for light, temperature and benthic 

shear stress from ocean swell (Holmes et al. 2008; Reiss et al. 2015). Wave fetch 

will also have an effect on benthic shear stress and light attenuation through 

varying levels of exposure and turbidity (Edwards 1980; Burrows 2012; Schubert 

et al. 2015). Maximum current speed will have acted as a surrogate for benthic 

shear stress in addition to providing actual point-specific information of 

hydrodynamic regimes within the area (Reiss et al. 2015). Depth, wave fetch and 

current are also proxies for a range of factors which affect demersal fish such as 

food availability and shear stress (Chapter 4). The geodiversity around Arran 

includes a wide variety of rock types and formations which partly arise from a 

geological fault bringing together contrasting geological features (Ross et al. 

2009; COAST 2012; BGS 2015). The two main geological rock formations found 

within South Arran NCMPA include Permian rock (formed 286-248 million years 

ago), predominantly made up of sand stone and limestone, and Triassic rock 

(formed 248-213 million years ago) predominantly made up of siltstone and 

mudstone (EDINA, 2015). Together the above environmental variables (depth, 
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wave fetch, distance from coast, maximum current speed and the underlying 

geology) enabled an accurate, high resolution map of substratum types to be 

predicted within South Arran NCMPA. 

Although confusion matrix correct classification were only “acceptable” (Hosmer 

et al, 2013), confusion matrices can make the often erroneous assumption that 

the costs of the different kinds of misclassification are equal (Fielding and Bell 

1997; Hand and Till 2001). Confusion matrices can also lead to unreliable metrics 

of the performance of classifiers if the dataset is unbalanced which was the case 

for the number of different substratum categories collected (Fielding & Bell 

1997; Hand & Till, 2001). Individual substratum correct classification showed 

that seagrass and mud substrata had the highest classification accuracy. Seagrass 

only grows in shallow areas where sufficient light can penetrate, and mud only 

existed within deeper or more sheltered areas (Schubert et al. 2015; Figure 

5.4.1). Algal-boulder-cobble substratum type also occurs at shallower depths (< 

20 m) and more exposed areas composed of larger sediment grain sizes where 

the macro-algae can grow and anchor itself (Holmes et al. 2008; Burrows 2012; 

Christie et al. 2009). Algal-gravel-pebble substratum type largely consisted of 

varying percentages of maerl, which together with red algae requires a lesser 

degree of light penetration (≤ 30 m) (Hall-Spencer et al. 2003). 

A maximum of approximately 30% live maerl was found within any SBRUV 

deployment. This is most likely due to heavy anthropogenic impacts from fishing 

activity (Hall-Spencer et al. 2003) which took place around Arran from the early 

19th century (Thurstan and Roberts 2010). The combined factors of degraded 

maerl quality and displacement, may have led to reduced prediction accuracy 

for algal-gravel-pebble substratum. Sand substratum can be found within a broad 

range of environmental conditions which may have led to sand having a lower 

prediction accuracy (Reiss et al. 2011).  

The predicted substratum map demonstrates how, from ground-truthed data and 

a range of environmental predictor variables, high resolution maps can be 

modelled saving on expensive and resource intensive acoustic methods. To 

increase accuracy of substratum prediction more accurate depth data would 

have been beneficial. Depth inaccuracies were observed using the modelled 
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SeaZone and GEBCO topographic data. The latter will most likely be due to the 

high variability in depth around the south of Arran. 

Using the predicted full coverage map, seabed landscape effects on gadoid 

relative abundance were modelled at ranges relevant to the movement 

behaviour of the gadoids studied. This is particularly important since seabed 

types have been observed to have important effects on the abundance and even 

survival of juvenile gadoids (e.g. Tupper & Boutilier 1995a; Laurel et al. 2007; 

Lough 2010). Furthermore, experimental studies have shown that substratum 

patch size can affect the behaviour and predation rate of juvenile G. morhua 

(Laurel et al. 2003b, Ryan et al. 2012). In situ landscape effects on commercially 

important gadoid fish have however rarely been explored. Other studies 

measuring landscape heterogeneity effects on species using the use of diversity 

entropies include Freemark & Merriam (1986) and Brown (2003). Freemark & 

Merriam (1986) measured plant heterogeneity as an index of Shannon within 

forests. Brown (2003) measured substratum heterogeneity within a stream using 

a range of diversity entropies. Diversity entropies are, however, harder to 

compare against each other since they not are normalised as Hill diversity 

indices are. Moore et al. (2011) also explored landscape heterogeneity on 

demersal reef fish distribution and relative abundance within a 200 m radius of 

SBRUV deployments. From hydroacoustic surveys, Moore et al, (2011) explored 

23 indices of landscape heterogeneity were explored including patch density, 

shape, extent and Shannon’s diversity index. 

In conjunction with results from Chapter 4 on habitat component association and 

behavioural observations, distinct niche occupation between G. morhua and that 

of M. aeglefinus and M. merlangus appears evident. G. morhua MaxN was 

observed in higher relative abundance over algal-gravel-pebble, whereas M. 

aeglefinus and M. merlangus were observed in higher relative abundance over 

sand and mud. Possible reasons for gadoid substratum association are outlined 

within Chapter 4. G. morhua were also on average significantly smaller than the 

M. aeglefinus or M. merlangus (Chapter 4). Smaller fish are not only at a 

competitive disadvantage but more vulnerable to predation (Tupper and 

Boutilier 1995b; Juanes 2007). Few demersal species are associated to a single 

seabed type, but instead use a combination of substrata according to foraging, 

shelter and tidal behaviours (Gorman et al. 2009; Nagelkerken et al. 2013). For 
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example, Tupper and Boultier (1995a) found juvenile G. morhua to be associated 

to a range of substrata from sand, seagrass to rocky reefs. Growth rates were 

also observed to vary between substrata. As proposed by Nagelkerken et al. 

(2013), attempts to identify fish nursery areas are frequently static processes 

identifying individual homogeneous seabed types. However, seascapes are often 

dynamic and varied and the focal species may also undergo ontogenetic shifts as 

a result of changing resource needs (Laurel et al. 2009; Nagelkerken et al. 2013; 

Grol et al. 2014; Chapter 4). Such behaviour (ontogenetic shifts in resource and 

available substrata), may have explained why all three gadoids were observed 

over the range of substratum types. 

A decrease in G. morhua relative abundance was observed with increasing N∞ 

(Figure 5.4.2). This trend indicates that juvenile G. morhua are associated with 

more heterogeneous landscapes. However, for M. aeglefinus an increase in 

relative abundance was observed with increasing N2 and N∞. N2 and N∞ infinity 

are similar indices, particularly with a richness of five since Simpson’s index is 

sensitive to the abundance of the more abundant species in the sample and can 

therefore be regarded as a measure of dominance (Hill 1973; Buckland et al. 

2005). M. merlangus were also observed in higher relative abundance with 

increasing substratum dominance (N∞) but in combination with substratum 

extent. The N∞ dominance indices might have been more significant than N2 or N1 

for all three species since these other two Hill numbers are more sensitive to 

varying sample size (Soetaert and Heip 1990; Buckland et al. 2005, 2011). 

The increase in G. morhua observed with increasing landscape heterogeneity 

may enable G. morhua to access areas with possibly increased food availability 

and areas with sufficient refugia (Kamenos et al. 2003; Moore et al. 2011; 

Nagelkerken et al. 2013). An experimental study undertaken by Laurel et al. 

(2003b) demonstrated that juvenile G. morhua seem to differentiate between 

substratum types, selecting areas where growth and survival were highest. 

Additionally, substratum type boundaries are thought to be important foraging 

and refuge areas for fish depending on the extent of the patches (Laurel et al. 

2003b; Gorman et al. 2009). The increase in M. aeglefinus and M. merlangus 

observed with increasing substratum dominance, and extent for M. merlangus, 

may be an indication of how these gadoids are better adapted to prey found 

within sand and mud substrata. 
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Demain et al. (2011) observed greatest similarity between juvenile M. aeglefinus 

and M. merlangus, which concur with the results observed here. Demain et al. 

(2011) also observed an overlap between small to medium G. morhua and larger 

M. merlangus which may be disadvantageous to G. morhua as larger individuals 

would be expected to be more efficient predators (Demain et al. 2011). Juvenile 

G. morhua have previously been observed to be prey themselves to larger M. 

merlangus (Temming et al. 2007). The size differences between the G. morhua 

and, M. aeglefinus and M. merlangus (Chapter 4) may explain the differentiation 

between the gadoid distribution differences. More rugose substrata relevant to 

the size of G. morhua observed and more heterogeneous landscapes may provide 

smaller G. morhua with more prey in addition to refuge from predators (Brown 

2003; Laurel et al. 2003b). Whereas, larger M. aeglefinus and M. merlangus prey 

may occur in greater abundance in the deeper sand and mud substrata, where 

these two gadoids were observed in greater relative abundance. Additionally, 

their increased size and mobility (Blaxter and Dickson 1959) may enable them to 

travel further in search of preferred prey as well as avoid predation.  

Trialling of larger radii for all three species may have led to increased 

understanding of wider landscape effects on gadoid relative abundance. Juvenile 

gadoid (> age-2) movement data is limited for all three species. However, 

movement is likely to be greater for G. morhua than previously observed by 

Grant & Brown (1998) and subject to substratum type (Lindholm et al. 2001; 

Laurel et al. 2003b). A study by Gorman et al. (2009) found that predation risk of 

G. morhua was a parabolic function of patch size up to 80 m2 with greatest risk 

at intermediate patch size. Only the larger radius of 1500 m may have been 

significant since the gadoids are relative mobile within short periods of time. In 

addition, the substrata around the south of Arran can be quite varied, and may 

lead to possibly increased movement (Lindholm et al. 2001; Laurel et al. 2003b).  

5.5.1. Considerations, management and future work 

Predictive substratum mapping provided a cost effective method to understand 

landscape effects on juvenile gadoid fish (Howell et al. 2011, Schubert et al. 

2015). If combined with climate change scenarios, distribution modelling may be 

able to provide estimations of protection efficiency for MPAs (Beyer et al. 2010; 
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Reiss et al. 2015). Further refinements to this modelling approach would have 

been to trial other modelling methods such as Multivariate Adaptive Regression 

Splines (MARS), Maximum Entropy or Random Forest, since comparative 

approaches have shown that models can vary (Elith et al. 2006; Phillips et al. 

2006; Reiss et al. 2011, 2015). A multinomial model was used due to the multiple 

class nature of substratum presence absence and since general linear models 

have a strong statistical foundation and ability to model ecological relationships 

realistically (Barry and Elith 2006; Elith et al. 2006). Other predictor variables 

such as light and wave action were not incorporated into the model since these 

data were not available at the appropriate resolution. The aforementioned 

predictor variables may also have been collinear with depth and wave fetch. . 

Classifying substrata into categories, can lead to over simplification of actual 

seabed morphology and therefore difficulties in understanding its role for 

demersal species (Gaillard et al. 2010). However, quantifying substratum 

rugosity on a continuous scale as per McCormick (1994); Bartholomew et al. 

(2000) and Wilding et al. (2007) was not possible. Future considerations of 

structural rugosity could be advantageous to understand how substratum rugosity 

affects fish relative to their size. To take into account substratum rugosity on a 

continuous scale, several scales may need to be considered relative to the size 

of the study species (Chapter 2). Additionally a three-dimensional photographic 

mapping technique would be advantageous to take into account the multiple 

aspects of rugosity (Sebens 1991, Gratwicke & Speight 2005; Du Preez 2015). If 

substratum rugosity were possible to quantify on a continuous scale and 

combined with anthropogenic impacts, a better understanding of substratum 

patch and edge effects could be possible which are currently not well 

understood. The latter would be as a result of understanding spatial scales of 

substrata in relation to the species of interest, in addition to seabed’s quality 

(Gorman et al. 2009 Gaillard et al. 2010). 

5.6. Conclusion 

The use of a range environmental variables enabled the prediction of substrata 

and the creation of a fine scale map. This fine scale map demonstrates how 

detailed maps are possible with simple field tools and often readily available 
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data e.g. depth, geological information, distance from coast, etc. and should be 

used more widely. This study also demonstrates the importance of incorporating 

measures of landscape analysis in demersal fish distribution given that landscape 

heterogeneity had differing effects on the gadoids studied here. The different 

gadoid species studied here responded to landscape heterogeneity differently, 

demonstrating that both the diversity of substrata and contiguous substrata can 

be of benefit or disadvantageous to different species. The methods trialled in 

this study could be applied on a larger scale for the selection of areas for stock 

improvement. More detailed research into juvenile gadoid survival is 

recommended to better understand the importance of substrata for these gadoid 

fish for fisheries management and conservation prioritisation. The protection of 

important substrata could eliminate bottle neck recruitment which may be 

occurring. 
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Chapter 6. General discussion 

 

With improvements in underwater technology, developing a better 

understanding of our marine environment is becoming increasingly possible and 

higher resolution data can be collected. The use of high-definition stereo-video 

imagery has provided in situ, fine-scale data on abundance, size, behaviour and 

the ecology of marine wild life that would not be possible using static and 

mobile gear or single camera techniques. The techniques used in this thesis have 

enabled progress towards an understanding of juvenile gadoid habitat within 

coastal waters. Notwithstanding, there is still a need for improved knowledge of 

the ecology of fish, their environment and factors affecting their survival, to be 

able to improve stocks.  

The overall aim of this project was to 1) improve understanding of juvenile 

gadoid habitat. 2) Trial use of stereo-video imagery techniques in temperate 

waters to collect fish abundance, size and benthos data. 3) Collect baseline data 

within a recently designated MPA, and contribute to management and 

monitoring currently being discussed for demersal fish. 

 

6.1. Exploring the role of coastal environments for 

juvenile gadoid 

The primary aim of this thesis was to improve our knowledge of juvenile gadoid 

habitat requirements. It is hoped that this could help support the establishment 

of management measures to try to contribute to stock regeneration. While 

detailed studies have been carried out on juvenile gadoids in Canada, the USA 

and Scandinavian countries (Bailey et al. 2011), there was a set of major 

information gaps for UK waters. The present study only uses a single stretch of 

coastline in the Firth of Clyde. However, its variable geology, topographic 

exposure, and aspect made it an excellent model system in which to test these 

ideas. 
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When commencing this project it became clear that there were many 

confusions, ambiguities and inconsistencies in the way habitats and habitat-

related terminology was described. Reviewing existing literature and 

terminology related to habitat concepts and assessing their application (Chapter 

2), improved understanding of how to investigate juvenile gadoid habitat more 

holistically (Chapters 3 to 5). 

Many studies of juvenile gadoid ‘habitat’ only consider a few variables such as 

substratum type and depth, rather than considering the range of abiotic and 

biotic characteristics which may affect fish abundance and distribution. In 

addition, few studies have looked at wider landscape effects on fish. This could 

be a result of the widespread understanding that the term ‘habitat’ only 

referring to seabed types, as opposed to the range of abiotic and biotic variables 

and the wider landscape affecting the spatial pattern of species.  

Upon exploring the data to identify the habitat of juvenile gadoids, distinct 

niche differentiation between G. morhua and that of M. aeglefinus and M. 

merlangus was evident, since different relative abundance in substratum type, 

depth, water column occupancy, landscape heterogeneity, bait attraction and 

growth rates were observed (Allan 2014; Chapter 4 and 5). These observations 

have important implications for the management of these gadoid fish given the 

species-specific spatial measures that would be required. 

Interestingly, all three species were found in higher relative abundance with 

increasing benthopelagic diversity (Chapter 4). Although a seemingly obvious 

result, species diversity effects on gadoid abundance have rarely been studied. 

Loss of biodiversity causes imbalances to community structures and ecosystem 

functioning, exacerbating extinction rates (Hammer et al. 1993; Dobson et al. 

1997). The increased relative abundance with higher benthopelagic diversity is 

therefore an important driver for future ecosystem management considerations 

to protect and recover seabeds for commercially valuable species. A link which 

has not yet been made within the MSFD (Chapter 4).  

In the three gadoids studied, a decline in relative abundance was observed over 

the period of data collection following recruitment (Chapter 3 and 4). This was a 

surprise since an increase in abundance is expected given pulse recruitment of 
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juveniles to coastal areas is supposed to take place from June to end of 

September (Ings et al. 2008; McEvoy & McEvoy, 1992). It would be expected that 

pulse recruitment would lead to increased abundance at least until pulse 

recruitment ended. The observed decline in abundance may indicate that a 

density-dependent survival bottle neck exists in which good quality habitat is 

limiting (Svåsand et al. 2000; Fodrie et al. 2009). Although the mechanisms for 

the timing were not investigated in this thesis, collecting data from June to 

September enabled an indication of pulse recruitment to be observed through 

the size ranges of gadoids over the period of data collection. Discerning habitat 

components of relevance to juvenile gadoids in addition to timing of recruitment 

to coastal areas provides useful information on when to protect relevant coastal 

areas from anthropogenic pressures.  

The predictive substratum mapping permitted landscape effects on juvenile 

gadoids to be observed for the first time (Chapter 5) and is one of only a small 

number of studies to have investigated landscape effects on fish. The different 

response of G. morhua in comparison to M. aeglefinus and M. merlangus, 

demonstrates how associated substrata, a diversity of substrata and contiguous 

substrata, can be of benefit to these gadoids. Gadoids are not currently 

protected under the present network of UK MPAs. Nonetheless, MPAs have been 

designated around the UK to protect seabed types and species of conservation 

importance (JNCC 2016), which may be of benefit to gadoid species. Further, 

the current UK MPA mechanism does not prioritise heterogeneous landscapes 

which are of benefit to G. morhua.  

Large areas of the Firth of Clyde are made up of homogenous substratum types 

(largely mud and sandy substrata)(Ross et al. 2009; McIntyre et al. 2012). The 

higher relative abundance of M. merlangus and M. aeglefinus with increasing 

substratum dominance (particularly sand and mud), may partly explain why 

these two juvenile gadoids (especially M. merlangus) are more abundant in the 

Firth of Clyde (Heath and Speirs 2012). 

Collecting data in the same location (within South Arran NCMPA), not only 

enabled more data to be collected to strengthen the understanding of the 

results against environmental variability (Chapter 4), but also permitted relative 

abundance differences between years to be examined. The latter results 
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revealed density dependent selection of G. morhua for algal-gravel-pebble to be 

observed as opposed to an association, given the large difference in relative 

abundance between years (Chapter 4). A selection for sand substrata was also 

observed for M. aeglefinus and M. merlangus (Chapter 4).  

It is recommended that more studies should be undertaken looking at how a 

variety of abiotic and biotic factors affect fish of commercial importance. 

Methods used in Chapters 3 and 4 could also be trialled during night hours to 

improve understanding of juvenile gadoid nocturnal behaviour. Improved 

knowledge of fish habitat during their various ontogenetic stages could facilitate 

more focused and better planned protection measures to be put in place. As 

previously highlighted, a number of fisheries closure exist around the UK to 

protect gadoids (e.g. Firth of Clyde seasonal spawning closure and the 

“windsock” closure north of Scotland). However, little improvements in stocks 

have been observed (Jaworski & Penny, 2009; Clarke et al. 2015). It is unlikely 

that improvements will be observed for many years given the variety of 

pressures facing fish (e.g. predation, direct and indirect capture from fishing 

activities, degradation of habitat quality, effects from climate change, etc.) 

(Chapter 1). However, being able to understand factors affecting their 

abundance, distribution and length, using methods undertaken in this thesis 

would enable better planned area closures to be put in place. The latter would 

be through understanding habitat variables affecting the abundance and 

distribution of gadoids, during critical stages of their ontogeny that determine 

cohort size (Auster et al. 1996; Able 1999; Chapter 2). 

 

6.2. Trialling stereo-video photogrammetric methods 

to study juvenile gadoids in temperate waters 

The second main aim of this thesis was to trial stereo-video photogrammetric 

techniques in temperate waters (Chapters 3 and 4). Use of such methods to 

explore fish habitat (as per reviewed in Chapter 2) have rarely taken place and 

SBRUV deployments has only recently been trialled in the UK (Unsworth et al. 

2014). Both stereo-video SCUBA transects and SBRUV methods provided useful 
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data to understand juvenile gadoid association with benthos. Additionally, both 

methods showed similar results with regard to G. morhua substrata association. 

M. aeglefinus and M. merlangus could not be compared due to the low 

frequency of observations in the year in which stereo-video SCUBA transects 

were used. The latter may be a result of shallow depths surveyed using SV-

SCUBA transects, or the effects from diver presence. SBRUV surveys were the 

preferred method in the second year of data collection due to their ability to 

collect an increased number of deployments with less human resource in the 

same period of time. In addition, use of SBRUV deployments avoids 

decompression and depth constraints imposed by SCUBA techniques. These 

results observed are in line with Langlois et al. (2010).  

Baited cameras are criticised as being biased towards predatory and scavenging 

species (Lowry et al. 2012; Dunlop et al. 2015). The latter was not tested for in 

this thesis, but was not considered a problem since the gadoids studied within 

this thesis are predatory, and large piscivores (> 25 cm) were rarely observed 

and generally not attracted to the cameras. It was observed that M. Merlangus 

was more attracted to the bait, with G. morhua the least attracted (Allan 2014; 

Chapter 4). This attraction did not affect G. morhua observations since they 

were still able to be observed within the field of view of the cameras. Statistical 

analysis between stereo-video SCUBA transects and SBRUV deployments was not 

undertaken. The latter was as a result of the limited SCUBA dataset collected, 

and since SBRUV deployments and SCUBA transects were rarely undertaken in 

the same location within the same time period (within a few weeks) due to 

logistical constraints (weather and divers support). In addition, it is difficult to 

compare such techniques quantitatively (Langlois et al. 2010) when the area 

species are drawn to by the bait is unknown as a result of unknown plume 

dispersal. 

The use of baited cameras has also been criticised since they do not measure the 

absolute abundance of species due to the inability to calculate how far fish 

travelled to the cameras (Dunlop et al. 2015). Dunlop et al. (2015) developed a 

model to measure absolute abundance of species in shallow waters using BRUV 

systems, applying information from current speeds and existing published 

literature on species swimming/movement speeds. However, the model 

developed by Dunlop et al. (2015) did not take into account the fluid dynamics 
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of bait plume dispersal. With the development of such a combined model, 

including juvenile gadoid speed calculations from the stereo-video cameras, 

absolute abundance could be calculated for juvenile gadoids.  

 

6.3. MPA and commercial fish management and 

monitoring implications 

The present thesis was part funded by Marine Scotland Science (MSS) and 

Scottish Natural Heritage (SNH), as a source of research contributing to the 

discussion of possible management plans within the Firth of Clyde (Scottish 

Government 2015; Clyde Forum 2016). Results from chapters 3 and 4 provided 

baseline ground-truthed data of benthos and fish abundance around South Arran 

NCMPA which fed into and could influence future management measure 

discussions within the MPA. The results from chapter 5 provided an up to date 

full coverage map of substrata within the MPA down to a depth of 50 m. Results 

from chapter 3 to 5 also demonstrated habitat variables that should be taken 

into consideration when considering juvenile gadoid habitat protection measures 

i.e. substratum type and heterogeneity, benthopelagic diversity, wave fetch and 

depth. Using this information on habitat variables where a higher abundance of 

juveniles were observed within, a carefully planned area closure, restricting 

benthic impacts and taking into account possible negative effects from 

displacement activities, could be implemented. A BACI survey could then be 

used to investigate the effects of the area closure on gadoid fish. The latter 

would help understand whether improvements to the quality of the seabed have 

an impact on gadoid abundance.  

In addition, the results from the present thesis have demonstrated how G. 

morhua are more vulnerable to anthropogenic pressures than M. aeglefinus and 

M. merlangus. The latter is as a result of the smaller size, later arrival and 

slower growth of G. morhua relative to M. aeglefinus and M. merlangus. In 

addition G. morhua were found to occupy shallower substrata more vulnerable 

to climate change effects (seagrass and maerl) (Hiscock et al 2004) and dredging 

for which such substrata and their associated biota are more vulnerable to 
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anthropogenic impacts (Collie et al. 2000; Hiddink et al. 2006; Kaiser et al. 

2006). 

The stereo-video imagery methods trialled here could be used as a fish or 

benthos monitoring technique on a wider scale in spatially restricted or sensitive 

seabed types around the UK. Other fish and benthos monitoring techniques that 

could be trialled would be the use of an AUV (Clarke et al. 2007; Morris et al. 

2014). Use of AUVs permits precise area coverage to be calculated, in addition 

to being able to cover much larger areas without depth, time constraints 

imposed by SCUBA techniques (Clarke et al. 2007). AUVs also enable height 

above the seabed and the angle of the cameras to be controlled more precisely 

which could facilitate automated imagery processing (Girdhar 2014). 

Nonetheless installing a stereo-video system on an AUV has not yet taken place. 

In addition, applying a forward facing oblique view on AUVs which is useful for 

fish identification, understanding of the wider seabed, and controlling for more 

rugose topography is not currently possible using AUVs. The use of semi-closed or 

closed circuit rebreather apparatus, reducing noise disturbance from bubble 

exhalations could be another option (Sayer and Poonian 2007). 

 

6.4. Recommendations 

Despite considerable advances in understanding juvenile gadoid habitat through 

the use of imaging technology, there is plenty of scope for future improvement. 

It is still not possible to state whether any habitat component is important to the 

gadoid species studied. A key investigation to understand the importance of a 

habitat component is whether the use of particular substrata (or combinations 

thereof) results in higher survival, faster growth or reduced mortality. 

An area of particular value to forward this thesis would therefore be to 

understand habitat components affecting the survival of juvenile gadoids 

through their first year to recruitment. Due to the difficulties in tagging such 

small juveniles a modelling approach would most likely be the best method to 

forward knowledge of juvenile gadoid survival (e.g. Campana et al. 1989; Myers 

and Cadigan 1993; Bjørnstad et al. 1999; Persson et al. 2012). An infield 
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approximation of habitat component importance would be through experimental 

studies. For example, changes to the availability or quality of the environment 

could be used to understand changes in relative abundance between areas or 

through the use of tethering techniques (e.g. Laurel et al. 2003a; Gorman et al. 

2009; Warren et al. 2010). Although not ideal such a method would enable the 

possibility to quantify habitat quality (Box 2.3.1, Chapter 2) of juveniles to 

support recruitment (Gibson 1994; Gaillard et al. 2010). 

Over the course of the two years of data collection, and through looking at ICES 

recruitment data on gadoids, it is evident that fish populations fluctuate 

significantly between years (DATRAS 2015; Chapter 4). Long term monitoring is 

therefore highly recommended in order to gauge whether any improvement in 

stock is being observed and identify possible causes for recruitment success. 

Applying the techniques used within this thesis on a larger scale is 

recommended. Mapped coastal areas could be randomly selected within the 

Firth of Clyde, and even west coast of Scotland within similar depth ranges, with 

a range of substratum types. Monitoring juvenile gadoid abundance, distribution 

and benthopelagic diversity would then be required over a minimum of five 

years with at least two years prior to area closure. Gadoid length measurements 

would also be of benefit as an indicator for gadoid health (growth) (Borja et al. 

2013; Probst et al. 2013), if monitoring within each area took place over a 

similar time frame (i.e. beginning of July - to the end of September). In Norway, 

G. morhua are known to remain in coastal waters and have not had selective 

pressure from trawling (within 12 nm) for over a 100 year (Hermansen et al. 

2012). The techniques trialled in this thesis could therefore also be applied in 

Norwegian coastal water in order to investigate potential differences in juvenile 

gadoid habitat component association.  

MPAs in the UK have largely been designated for specific features of 

conservation importance (JNCC 2016). However, managed areas with reduced 

benthic impact could improve benthopelagic diversity, benefiting juvenile 

gadoids. There is also a need for better planned and managed fisheries closures 

(Hilborn et al. 2004b). The methods used in this thesis (understanding habitat 

component association and substratum mapping for landscape effects) could be 

applied to establish or adapt fisheries closures to help improve stocks. For 

example identifying areas where higher fish abundance occurs, understanding 
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the abiotic and biotic variable ranges within these areas and applying a BACI 

survey, are all actions that can help support the development of targeted 

management measures.  

There are plenty of other fish stocks that have faced a similar situation to 

gadoids in the Firth of Clyde throughout the world e.g. Orange roughy 

(Hoplostethus atlanticus Collett, 1889) and Greenland halibut (Reinhardtius 

hippoglossoides Walbaum, 1792) (Moore et al. 2016). Trialling the methodologies 

undertaken within this thesis (use of SBRUV surveys and stereo-video SCUBA 

transects to identify fish habitat), and even trialling the use of AUVs or 

rebreather apparatus on other fish stocks to forward understanding of their 

habitat at the various stages in their ontogeny would be of value.  

 

6.5. Concluding remarks 

Despite the known importance of understanding species distribution and 

abundance, in particular commercially important species, there is a surprisingly 

large amount that is not known in the field of marine fish habitat. Research 

presented in this thesis enabled juvenile gadoid behaviour, distribution and sizes 

to be measured, alongside information about the benthos and the landscape. 

Comprehending fish habitat is increasingly important, especially given the 

increasing anthropogenic pressures exerted on the marine environment and 

increasing emphasis to put in place ecosystem-based management. 

This thesis provides novel data on juvenile gadoid habitat and monitoring 

techniques in temperate waters. Improvements in the understanding of juvenile 

gadoid habitat has been made, and stereo-video SBRUV and SCUBA transects 

have been trialled to understand gadoid habitat for the first time in temperate 

waters. This work highlights the role of benthic diversity in supporting 

commercial fish stocks, at scales of meters to km. These concepts need further 

testing over a wider range of coastal areas, but if similar results are found they 

will have a vital role in the future management of fish populations. 
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Appendix A: Juvenile gadoids species investigated 

 

Figure A.1 provides visual images of the three gadoid species observed in their 

juvenile form.

 

Figure A.1- Image of juvenile gadoid study species i) G. morhua ii) M. aeglefinus 

iii) M. merlangus. 
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Appendix B: Stereo-video SCUBA transect 

substratum types 

Figure B.1 provides examples of each substratum categories used to analyse 

stereo-video SCUBA transects. 

 

Figure B.1 - Examples of each substratum type i) Algal-boulder-cobble , ii) Algal-

gravel-pebble, iii) Sand. 
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Appendix C: SBRUV substratum types 

Figure C.1 provides examples of each substratum category used to analyse SBRUV surveys. 

 Figure C.1 - Examples of each substratum type i) Algal-boulder-cobble , ii) Algal-gravel-pebble, iii) Sand, iv) Mud, v) Seagrass.



  174 

Appendix D: Description of mathematical functions 

Appendix D: Description of mathematical functions 

 

Shannon-Wiener entropy 

𝐻𝑖 = − ∑ 𝑝𝑖 In(𝑝𝑖) 

Here, Pi, is the proportion of species i. 

 

Simpson’s diversity indices 

1/𝐷 = 1/ ∑ 𝑃𝑖
2

𝑆

𝑖=1

 

Where the probability that a second individual drawn from a population should 

be of the same species as the first. S is the number of species (Simpson 1949). 

 

Berger-Parker dominance index 

𝑑 =
𝑁

𝑁𝑚𝑎𝑥
 

Where N is the number of species and 𝑁𝑚𝑎𝑥 is the maximum proportion of any 

one species in a sample (Berger & Parker, 1970). 

 

N1 diversity indices (exponential of Shannon index) 

𝑁1 = 𝐼𝑛(𝑁𝑖) 
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N2 diversity indices (inverse of Simpson’s index) 

𝑁2 = 1/𝑆𝐼 
 
Where SI is Simpson’s index.  

 

N∞ diversity indices (inverse of the proportional abundance of the 

commonest species) 

𝑁∞ = 1/𝑃𝑚𝑎𝑥 

Were 𝑃𝑚𝑎𝑥 is the maximum proportion of any one species in the sample. 

 

Bray-Curtis similarity coefficient 

𝑆𝑗𝑘 = 100 {1 −
∑ |𝑦𝑖𝑗 − 𝑦𝑖𝑘|𝑝

𝑖=1

∑ (𝑦𝑖𝑗 + 𝑦𝑖𝑘)𝑝
𝑖=1

} 

 

Where yij represents the species abundance in the ith row and the jth column of 

the data matrix and yik is the count for the ith species in the kth sample. |…| 

represents the absolute value of the differences. 
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Appendix E: Chapter 3 statistical output 

 

G. morhua model coefficients and diagnostics 

Table E.1 - Results from the model of best fit for the response variable G. 

morhua abundance. Explanatory variables show substratum type and JD with an 

offset of transect area (m2). Coefficients and diagnostics (z- and P-values) 

indicate the effect of each parameter level on the reference level, denoted as 

intercept. The reference level is substratum type, ABC. P value significance (* = 

P < 0.05 and *** = P < 0.001). 

Variables Estimate Std. Error z value P-value  

(Intercept) 3.103 1.694 1.832 0.067  

AGP 1.152 0.472 2.441 0.015 * 

Sand -1.249 0.745 -1.678 0.093  

JD -0.028 0.008 -3.537 0.001 *** 

 

Table E.2 - Results from the Tukey test performed between substratum type 

categories for the response variable G. morhua abundance. P value significance 

(* = P < 0.05 and ** = P < 0.01).  

Variables Estimate Std. Error z value P-value   

AGP - ABC 1.139 0.476 2.393 0.042 * 

Sand – ABC -1.223 0.755 -1.620 0.230  

Sand – AGP -2.361 0.759 -3.109 0.005 ** 
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Figure E.1 - A histogram of the residuals for the optimal NBN model for G. 

morhua and residuals versus habitat variables. 

 

Table E.3 - Results from the model of best fit for the response variable G. 

morhua length. Fixed effects show JD with an offset of transect area (m2). P 

value significance (** = P < 0.01). 

Variables Estimate Std. Error t-value  P-value   

(Intercept) 23.30671 12.51339 1.862542 0.0652   

JD 0.182449 0.059287 3.077398 0.0026 ** 
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Figure E.2 - Residuals versus fitted values for G. morhua length, a histogram of 

the residuals for the optimal NBN model and residuals versus JD. 

 
Table E.4- Results from the model of best fit for the response variable G. 

morhua length variation over the period of data collection. P value significance 

(** = P < 0.01). 

Variables Estimate Std. Error t-value  P-value   

(Intercept) -9.603 20.488 -0.469 0.640   

JD 0.295 0.097 3.030 0.003 ** 
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Results from Table F.1 to Table F.37 provide coefficient and diagnostics for the 

models of best fit within this chapter. Caution should be taken with respect to P-

values provided since negative binomial mixed models are approximates (Zuur et 

al. 2009).  

G. morhua model coefficients and diagnostics 

Table F.1- Results from the ANOVA test for the response variable G. morhua 

MaxN with depth. Coefficients and diagnostics (F- and P-values) indicate the 

effect of each parameter level on the reference level, denoted as intercept.  

Variables Df Sum Sq Mean Sq F value Pr(>F) 

Depth 1 1838 1838 0.013 0.91 

Residuals 217 31272997 144115 

   

Table F.2 - Results from the model of best fit for the response variable G. 

morhua MaxN. Explanatory variables show substratum type, N∞, wave fetch and 

year. Coefficients and diagnostics (z- and P-values) indicate the effect of each 

parameter level on the reference level, denoted as intercept. The reference 

level is substratum type, ABC and Year 1. P value significance: * = P < 0.05, ** = 

P < 0.01. 

Variables Estimate Std. Error z value Pr(>|z|)   

(Intercept) 0.33 0.50 0.66 0.51 

 AGP 1.31 0.42 3.14 0.00 ** 

Sand -0.30 0.49 -0.62 0.54 

 Seagrass 0.22 0.64 0.34 0.74 

 Ninf.std -0.34 0.15 -2.24 0.02 * 

Fetch.std -0.50 0.17 -2.88 0.00 ** 

Year2 -1.32 0.61 -2.15 0.03 * 
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Table F.3- Results from the Tukey test performed between substratum type 

categories for the response variable G. morhua MaxN, P value significance: ** = P 

< 0.01. 

Variables Estimate Std. Error z value Pr(>|z|)   

AGP – ABC 1.309 0.416 3.144 0.008 ** 

Sand - ABC  -0.303 0.491 -0.617 0.917  

Seagrass - ABC  0.217 0.643 0.338 0.985  

Sand – AGP -1.612 0.694 -2.321 0.083 . 

Seagrass - AGP  -1.092 0.789 -1.384 0.479  

Seagrass - Sand  0.520 0.701 0.742 0.866  

 

Table F.4 - Results from G. morhua Substratum association between summer of 

2013 and 2014. Coefficients and diagnostics (z- and P-values) indicate the effect 

of each parameter level on the reference level, denoted as intercept. The 

reference level is substratum type, ABC and Year 1. P value significance: ** = P < 

0.01. 

Variables Estimate  Std.Error z value Pr(>|z|)   

(Intercept) 0.43 0.49 0.87 0.39   

AGP 1.56 0.52 3.01 0.00 ** 

Sand -0.62 0.88 -0.70 0.48 

 Seagrass 0.22 1.03 0.21 0.83 

 Year2 -1.31 0.79 -1.65 0.10 . 

AGP:Year2 0.13 0.90 0.14 0.89 

 Sand:Year2 0.66 1.12 0.59 0.56 

 Seagrass:Year2 -0.26 1.33 -0.19 0.85 
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Table F.5 - Results from the Tukey test performed between substratum type 

categories and year for the response variable G. morhua MaxN, P value 

significance: * = P < 0.05. 

Variables Estimate Std. Error z value Pr(>|z|)   

2xABC - 1xABC -1.31 0.79 -1.65 0.68   

1xAGP - 1xABC  1.56 0.52 3.01 0.05 * 

2xAGP - 1xABC  0.38 0.57 0.66 1.00 

 1xSand - 1xABC  -0.61 0.88 -0.70 1.00 

 2xSand - 1xABC  -1.27 0.59 -2.16 0.34 

 1xSeagrass - 1xABC 0.22 1.03 0.21 1.00 

 2xSeagrass - 1xABC  -1.35 0.89 -1.51 0.77 

 1xAGP - 2xABC  2.87 0.90 3.18 0.03 * 

2xAGP - 2xABC  1.69 0.97 1.75 0.61 

 1xSand - 2xABC  0.69 1.17 0.59 1.00 

 2xSand - 2xABC  0.04 1.02 0.04 1.00 

 1xSeagrass - 2xABC  1.53 1.34 1.14 0.93 

 2xSeagrass - 2xABC  -0.04 1.26 -0.03 1.00 

 2xAGP - 1xAGP  -1.18 0.76 -1.54 0.74 

 1xSand - 1xAGP -2.18 1.01 -2.15 0.34 

 2xSand - 1xAGP -2.83 0.85 -3.32 0.02 * 

1xSeagrass - 1xAGP  -1.34 1.21 -1.11 0.94 

 2xSeagrass - 1xAGP  -2.91 1.13 -2.58 0.14 

 1xSand - 2xAGP  -0.99 1.05 -0.95 0.97 

 2xSand - 2xAGP  -1.65 0.81 -2.04 0.41 

 1xSeagrass - 2xAGP  -0.16 1.15 -0.14 1.00 

 2xSeagrass - 2xAGP  -1.73 1.05 -1.65 0.68 

 2xSand - 1xSand  -0.65 1.07 -0.61 1.00 
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1xSeagrass - 1xSand  0.83 1.36 0.61 1.00 

 2xSeagrass - 1xSand  -0.73 1.27 -0.58 1.00 

 1xSeagrass - 2xSand  1.48 1.10 1.35 0.85 

 2xSeagrass - 2xSand  -0.08 0.99 -0.08 1.00 

 2xSeagrass - 1xSeagrass  -1.56 1.24 -1.26 0.89 

  

Table F.6 - Results from G. morhua MaxN over the period of data collection for 

2013. Coefficients and diagnostics (z- and P-values) indicate the effect of each 

parameter level on the reference level, denoted as intercept. P value 

significance: *** = P < 0.001. 

Variables Estimate Std. Error z value Pr(>|z|)   

(Intercept) 1.30 0.24 5.36 0.00 *** 

JD -0.01 0.00 -6.26 0.00 *** 

 

Table F.7 - Results from G. morhua MaxN over the period of data collection for 

2014. Coefficients and diagnostics (z- and P-values) indicate the effect of each 

parameter level on the reference level, denoted as intercept. The reference 

level is JDg 1. P value significance: * = P <0.05, ** = P < 0.01, *** = P < 0.001. 

Variables Estimate Std. Error z value Pr(>|z|)   

(Intercept) -2.04 0.73 -2.78 0.01 ** 

JDg 2 2.11 0.82 2.57 0.01 * 

JDg 3 3.18 0.82 3.86 0.00 *** 

JDg 4 1.55 0.84 1.86 0.06 . 
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Table F.8 - Results from Tukey test performed between grouped JD for the 

response variable G. morhua MaxN over the period of data collection for 2014. P 

value significance: * = P <0.05, *** = P < 0.001.  

Variables Estimate Std. Error z value Pr(>|z|)   

JDg 2 – 1 2.11 0.82 2.57 0.05 * 

JDg 3 - 1  3.18 0.82 3.86 <0.001 *** 

JDg 4 – 1 1.55 0.84 1.86 0.24 
 JDg 3 – 2 1.08 1.07 1.01 0.74 
 JDg 4 – 2 -0.55 1.07 -0.52 0.95 
 JDg 4 – 3 -1.63 1.04 -1.58 0.38   

 

Table F.9 - Results from G. morhua length over the period of data collection for 

2013. Coefficients and diagnostics (t- and P-values) indicate the effect of each 

parameter level on the reference level, denoted as intercept. The reference 

level is substratum type, ABC. P value significance (* = P < 0.05, *** = P < 0.001). 

Variables Estimate Std. Error t value Pr(>|t|)   

(Intercept) 5.08 0.54 9.40 0.00 *** 

JD 0.02 0.00 6.00 0.00 *** 

AGP 0.74 0.41 1.82 0.07 . 

Sand -1.15 0.73 -1.58 0.12 

 Seagrass 0.58 0.51 1.14 0.26 

 N2 0.21 0.08 2.56 0.01 * 
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Table F.10 - Results from the Tukey test performed between substratum type 

categories for 2013 for the response variable G. morhua length. P value 

significance: * = P < 0.05. 

Variables Estimate Std. Error t value Pr(>|t|)   

AGP - ABC  0.74 0.41 1.82 0.26   

Sand - ABC  -1.15 0.73 -1.58 0.38 

 Seagrass - ABC  0.58 0.51 1.14 0.65 

 Sand - AGP  -1.89 0.65 -2.89 0.02 * 

Seagrass - AGP -0.16 0.41 -0.38 0.98 

 Seagrass - Sand  1.73 0.74 2.34 0.09 

  

Table F.11 - Results from G. morhua length over the period of data collection 

for 2014. Coefficients and diagnostics (t- and P-values) indicate the effect of 

each parameter level on the reference level, denoted as intercept. The 

reference level is substratum type, ABC and grouped JD (JDg) week 1. P value 

significance: *** = P < 0.001. 

Variables Estimate Std. Error t value Pr(>|t|)   

(Intercept) 6.60 1.77 3.73 0.00 *** 

JDg 2 1.78 1.73 1.03 0.31 

 JDg 3 2.94 1.74 1.69 0.09 . 

JDg 4 2.05 1.76 1.17 0.25 

 AGP -0.99 0.51 -1.95 0.05 . 

Sand -0.50 0.55 -0.92 0.36 

 Seagrass 1.24 0.91 1.36 0.18 
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Table F.12 - Results from the Tukey test performed between grouped JD for 

2014 for the response variable G. morhua length. P value significance: * = P < 

0.05. 

Variables Estimate Std. Error t value Pr(>|t|)   

JDg 2 - 1 1.78 1.73 1.03 0.71   

JDg 3 - 1  2.94 1.74 1.69 0.30 

 JDg 4 - 1 2.05 1.76 1.17 0.62 

 JDg 3 - 2 1.16 0.42 2.80 0.03 * 

JDg 4 - 2 0.27 0.49 0.56 0.94 

 JDg 4 - 3 -0.89 0.51 -1.76 0.27 

  

Table F.13 - Results from the Tukey test performed between substratum type 

for 2014 for the response variable G. morhua length. P value significance: * = P < 

0.05. 

Variables Estimate Std. Error t value Pr(>|t|)   

AGP - ABC  -0.99 0.51 -1.95 0.20   

Sand - ABC  -0.50 0.55 -0.92 0.79 

 Seagrass - ABC  1.24 0.91 1.36 0.51 

 Sand - AGP  0.49 0.41 1.21 0.61 

 Seagrass - AGP  2.23 0.83 2.68 0.04 * 

Seagrass - Sand  1.74 0.84 2.06 0.16 
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M. aeglefinus model coefficients and diagnostics 

Table F.14 - Results from the ANOVA test for the response variable M. 

aeglefinus MaxN with depth. Coefficients and diagnostics (F- and P-values) 

indicate the effect of each parameter level on the reference level, denoted as 

intercept.  

Variables Df Sum Sq Mean Sq F value Pr(>F)  

Depth 1 96576 96576 0.789 0.376  

Residuals 179 21921217 122465      

 

Table F.15 - Results from the model of best fit for the response variable M. 

aeglefinus MaxN. Explanatory variables show substratum type, N∞, depth and 

wave fetch. The reference level is substratum type, ABC. P value significance: * 

= P < 0.05, ** = P < 0.01, *** = P < 0.001. 

Variables Estimate Std. Error z value Pr(>|z|)   

(Intercept) -2.771 0.748 -3.710 0.000 *** 

AGP 1.588 0.721 2.200 0.028 * 

Mud 1.887 0.959 1.970 0.049 * 

Sand 3.251 0.750 4.330 0.000 *** 

Seagrass 2.986 0.815 3.670 0.000 *** 

Ninf.std -0.413 0.158 -2.620 0.009 ** 

Depth.std 0.615 0.257 2.390 0.017 * 

Fetch.std -0.422 0.155 -2.720 0.007 ** 
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Table F.16 - Results from the Tukey test performed between substratum type 

categories for the response variable M. aeglefinus MaxN. P value significance: ** 

= P < 0.01, *** = P < 0.001. 

Variables Estimate Std. Error z value Pr(>|z|)   

AGP - ABC  1.588 0.721 2.204 0.170  

Mud - ABC  1.887 0.959 1.967 0.270  

Sand - ABC  3.252 0.750 4.334 < 0.001 *** 

Seagrass – ABC 2.986 0.815 3.666 0.002 ** 

Mud - AGP  0.298 1.157 0.258 0.999  

Sand - AGP  1.663 0.920 1.809 0.355  

Seagrass – AGP 1.398 0.933 1.498 0.549  

Sand - Mud  1.365 0.825 1.654 0.448  

Seagrass - Mud  1.100 1.039 1.058 0.819  

Seagrass – Sand -0.265 0.791 -0.335 0.997  

 

Table F.17 - Results from M. aeglefinus MaxN over the period of data collection 

for 2014. Coefficients and diagnostics (z- and P-values) indicate the effect of 

each parameter level on the reference level, denoted as intercept. The 

reference level is grouped JD (JDg) week 1. P value significance: * = P < 0.05, ** 

= P < 0.01, *** = P < 0.001. 

Variables Estimate Std. Error z value Pr(>|z|)   

(Intercept) -1.01 0.34 -2.92 0.00 ** 

JDg 2 1.66 0.42 3.95 0.00 *** 

JDg 3 1.05 0.43 2.42 0.02 * 

JDg 4 0.96 0.44 2.18 0.03 * 
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Table F.18 - Results from the Tukey test performed between grouped JD for 

2014 for the response variable M. aeglefinus MaxN. P value significance: *** = P < 

0.001. 

Variables Estimate Std. Error z value Pr(>|z|)   

JDg 2 – 1 1.66 0.42 3.95 <0.001 *** 

JDg 3 – 1 1.05 0.43 2.42 0.07 . 

JDg 4 – 1 0.96 0.44 2.18 0.13 

 JDg 3 – 2 -0.62 0.36 -1.72 0.31 

 JDg 4 – 2 -0.71 0.37 -1.94 0.21 

 JDg 4 – 3 -0.09 0.38 -0.24 1.00   

 

Table F.19 - Results from M. aeglefinus length over the period of data collection 

for 2013. Coefficients and diagnostics (t- and P-values) indicate the effect of 

each parameter level on the reference level, denoted as intercept. P value 

significance: *** = P < 0.001. 

Variables Estimate Std. Error t value Pr(>|t|)   

(Intercept) 9.04 0.69 13.11 < 2e-16 *** 

JD 0.04 0.01 5.00 0.00 *** 
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Table F.20 - Results from M. aeglefinus length over the period of data collection 

for 2014. Coefficients and diagnostics (t- and P-values) indicate the effect of 

each parameter level on the reference level, denoted as intercept. The 

reference level is grouped JD (JDg) week 1. P value significance: * = P < 0.05, ** 

= P < 0.01, *** = P < 0.001. 

Variables Estimate Std. Error t value Pr(>|t|)   

(Intercept) 8.55 0.57 15.08 < 2e-16 *** 

Depth 0.05 0.02 3.13 0.00 ** 

JDg 2 0.70 0.49 1.44 0.15 

 JDg 3 1.74 0.53 3.32 0.00 ** 

JDg 4 2.91 0.57 5.06 0.00 *** 

Wave Fetch 0.00 0.00 -2.13 0.04 * 

 

Table F.21 - Results from the Tukey test performed between grouped JD for 

2014 for the response variable M. aeglefinus MaxN. P value significance: * = P < 

0.05, ** = P < 0.01, *** = P < 0.001. 

Variables Estimate Std. Error t value Pr(>|t|)   

JDg 2 - 1 0.70 0.49 1.44 0.46   

JDg 3 - 1 1.74 0.53 3.32 0.01 ** 

JDg 4 - 1 2.91 0.57 5.06 < 0.001 *** 

JDg 3 - 2 1.04 0.29 3.61 0.00 ** 

JDg 4 - 2 2.21 0.37 6.03 < 0.001 *** 

JDg 4 - 3 1.16 0.39 3.01 0.02 * 
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M. merlangus model coefficients and diagnostics 

Table F.22 - Results from the ANOVA test for the response variable M. 

merlangus MaxN with depth. Coefficients and diagnostics (F- and P-values) 

indicate the effect of each parameter level on the reference level, denoted as 

intercept. P value significance: ** = P < 0.01. 

ANOVA Df Sum Sq Mean Sq F value Pr(>F)   

Depth 1 409893 409893 7.445 0.00765 ** 

Residuals 90 4955185 55058       

 

Table F.23 - Results from the model of best fit for the response variable M. 

merlangus MaxN. Explanatory variables show substratum type, N1, depth and 

current. The reference level is substratum type, ABC. P value significance: * = P 

< 0.05, ** = P < 0.01, *** = P < 0.001. 

Variables Estimate Std. Error z value Pr(>|z|)   

(Intercept) -2.243 0.625 -3.590 0.000 *** 

AGP 1.470 0.621 2.370 0.018 * 

Mud 1.431 0.837 1.710 0.087 . 

Sand 2.496 0.652 3.830 0.000 *** 

Seagrass 1.018 0.904 1.130 0.260 

 Depth.std 0.691 0.227 3.040 0.002 ** 

N1.std 0.330 0.145 2.280 0.022 * 

Current.std -0.296 0.154 -1.920 0.054 . 
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Table F.24 - Results from the Tukey test performed between substratum type 

categories for the response variable M. merlangus MaxN. P value significance: ** 

= P < 0.01. 

Variables Estimate Std. Error z value Pr(>|z|)   

AGP - ABC  1.470 0.621 2.367 0.116  

Mud - ABC  1.431 0.837 1.710 0.410  

Sand - ABC  2.496 0.652 3.829 0.001 ** 

Seagrass - ABC  1.018 0.904 1.126 0.781  

Mud - AGP  -0.039 0.991 -0.039 1.000  

Sand - AGP  1.026 0.790 1.298 0.677  

Seagrass - AGP  -0.452 1.048 -0.431 0.992  

Sand - Mud  1.065 0.769 1.384 0.621  

Seagrass - Mud  -0.413 1.124 -0.368 0.996  

Seagrass - Sand  -1.478 0.969 -1.525 0.528  

 

Table F.25 - Results from M. merlangus MaxN over the period of data collection 

for 2014. Coefficients and diagnostics (z- and P-values) indicate the effect of 

each parameter level on the reference level, denoted as intercept. The 

reference level is grouped JD, week 1. P value significance: ** = P < 0.01. 

Variables Estimate Std. Error z value Pr(>|z|)   

(Intercept) 0.30 0.27 1.11 0.27 

 JDg 2 0.30 0.37 0.80 0.42 

 JDg 3 -1.42 0.44 -3.22 0.00 ** 

JDg 4 -0.21 0.38 -0.55 0.59   
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Table F.26 - Results from the Tukey test performed between grouped JD for 

2014 for the response variable M. merlangus MaxN, P value significance: * = P < 

0.05, ** = P < 0.01, *** = P < 0.001. 

Variables Estimate Std. Error z value Pr(>|z|)   

JDg 2 - 1 0.30 0.37 0.80 0.85 

 JDg 3 - 1 -1.42 0.44 -3.22 0.01 ** 

JDg 4 - 1 -0.21 0.38 -0.55 0.95 

 JDg 3 - 2 -1.72 0.43 -3.98 < 0.001 *** 

JDg 4 - 2 -0.50 0.37 -1.36 0.52 

 JDg 4 - 3 1.21 0.44 2.74 0.03 * 

 

Table F.27 - Results from M. merlangus length over the period of data collection 

for 2013. Coefficients and diagnostics (t- and P-values) indicate the effect of 

each parameter level on the reference level, denoted as intercept. P value 

significance: * = P < 0.05. 

Variables Estimate Std. Error t value Pr(>|t|)   

(Intercept) 2.42 3.85 0.63 0.55 

 Depth 0.49 0.29 1.68 0.14 

 JD 0.07 0.02 2.75 0.03 * 

 

Table F.28 - Results from M. merlangus length with depth for 2014. Coefficients 

and diagnostics (t- and P-values) indicate the effect of each parameter level on 

the reference level, denoted as intercept. P value significance ** = P < 0.01, *** = 

P < 0.001. 

Variables Estimate Std. Error t value Pr(>|t|)   

(Intercept) 9.36 0.79 11.90 < 2e-16 *** 

Depth 0.08 0.03 2.65 0.01 ** 
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Gadoid size and behavioural differences 

Table F.29 - Results from 2013 data collection period gadoid length differences. 

Explanatory variables show gadoid species. The reference level is G. morhua. P 

value significance: *** = P < 0.001. 

Variables Estimate Std. Error t value Pr(>|t|)   

(Intercept) 7.39 0.17 44.83 < 2e-16 *** 

M. aeglefinus  4.94 0.31 16.10 < 2e-16 *** 

M. merlangus  3.32 0.63 5.26 0.00 *** 

 

Table F.30 - Results from the Tukey test performed between gadoid species for 

2013 for the response variable length, P value significance: * = P < 0.05, *** = P < 

0.001. 

Variables Estimate Std. Error t value Pr(>|t|)   

M. aeglefinus  - G. morhua 4.94 0.31 16.10 <0.001 *** 

M. merlangus  - G. morhua 3.32 0.63 5.26 <0.001 *** 

M. merlangus  - M. aeglefinus   -1.62 0.66 -2.45 0.04    * 

 

Table F.31 - Results from 2014 data collection period gadoid length differences. 

Explanatory variables show gadoid species. The reference level is G. morhua. P 

value significance: *** = P < 0.001. 

Variables Estimate Std. Error t value Pr(>|t|)   

(Intercept) 8.28 0.20 42.13 <2e-16 *** 

M. aeglefinus  2.34 0.26 9.04 <2e-16 *** 

M. merlangus  3.06 0.29 10.61 <2e-16 *** 
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Table F.32 - Results from the Tukey test performed between gadoid species for 

2014 for the response variable length, P value significance: * = P < 0.05, *** = P < 

0.001. 

Variables Estimate Std. Error t value Pr(>|t|)   

M. aeglefinus  - G. morhua 2.34 0.26 9.04 <1e-04 *** 

M. merlangus  - G. morhua 3.06 0.29 10.61 <1e-04 *** 

M. merlangus  - M. aeglefinus   0.72 0.27 2.68 0.02 * 

 

Table F.33 - Mid Y differences between gadoid species. Explanatory variables 

show gadoid species and data collection year. The reference level is G. morhua 

and year 1. P value significance: *** = P < 0.001. 

Variables Value Std.Error DF t-value p-value   

(Intercept) -6.82 1.30 580.00 -5.26 0 *** 

M. aeglefinus  4.66 1.35 580.00 3.46 0.001 *** 

M. merlangus  10.51 1.54 580.00 6.84 0 *** 

Year 2 -0.76 1.35 580.00 -0.56 0.574   

 

Table F.34 - Results from the Tukey test performed between gadoid species for 

the response variable mid Y, P value significance: *** = P < 0.001. 

Variables Estimate Std. Error z value Pr(>|z|)   

M. aeglefinus  - G. morhua 4.66 1.35 3.46 0.002 ** 

M. merlangus  - G. morhua 10.51 1.54 6.84 < 1e-04 *** 

M. merlangus  - M. aeglefinus   5.85 1.47 3.98 0.001 *** 
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Table F.35 - Mid Z differences between gadoid species. Explanatory variables 

show gadoid species and data collection year. The reference level is G. morhua 

and Year 1. P value significance: ** = P < 0.01, *** = P < 0.001. 

Variables Value Std.Error DF t-value p-value   

(Intercept) 166.67 4.15 580.00 40.20 0 *** 

M. aeglefinus  -22.74 3.61 580.00 -6.31 0 *** 

M. merlangus  -49.45 4.12 580.00 -12.02 0 *** 

Year 2 9.81 3.68 580.00 2.67 0.007 ** 

 

Table F.36 - Results from the Tukey test performed between gadoid species for 

the response variable mid Z, P value significance: *** = P < 0.001. 

Variables Estimate Std. Error z value Pr(>|z|)   

M. aeglefinus  - G. morhua -22.74 3.61 -6.31 <1e-09 *** 

M. merlangus  - G. morhua -49.46 4.12 -12.02 <1e-09 *** 

M. merlangus  - M. aeglefinus   -26.71 3.95 -6.76 <1e-09 *** 

 

Table F.37 - TFA differences between gadoid species. Explanatory variables 

show gadoid species and data collection year. The reference level is G. morhua 

and Year 1. P value significance: ** = P < 0.01, *** = P < 0.001. 

Variables Estimate Std. Error t-value Pr(>|t|)   

(Intercept) -0.94 0.29 -3.24 0.00 ** 

M. aeglefinus  0.11 0.14 0.80 0.43 

 M. merlangus  0.53 0.15 3.60 0.00 *** 

Year 2 0.58 0.30 1.93 0.05 . 
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Gadoid swimming speed calculations 

Table G.1 - Juvenile gadoid swimming speeds during cruising behaviour 

calculated from distance moved over time 

Trial Gadoid Length (cm) Distance (m) Time (s) Speed (m/s) 

1 G. morhua 6.78 0.78 8 0.10 

2 G. morhua 7.64 1.11 5 0.22 

3 G. morhua 7.19 1.13 5 0.23 

4 G. morhua 8.64 0.73 5 0.15 

5 G. morhua 8.92 0.90 11 0.08 

6 G. morhua 7.74 1.35 5 0.27 

7 G. morhua 9.48 1.65 7 0.24 

8 G. morhua 7.90 0.39 3 0.13 

9 G. morhua 7.67 0.49 5 0.10 

10 G. morhua 6.89 0.37 3 0.12 

11 M. aeglefinus 10.80 1.12 5 0.22 

12 M. aeglefinus 9.95 0.69 4 0.17 

13 M. aeglefinus 9.84 0.65 4 0.16 

14 M. aeglefinus 11.10 0.85 4 0.21 

15 M. aeglefinus 11.97 0.53 3 0.18 

16 M. aeglefinus 11.39 0.51 2 0.25 

17 M. aeglefinus 9.46 0.81 4 0.20 

18 M. aeglefinus 11.02 0.85 4 0.21 

19 M. aeglefinus 10.42 0.54 4 0.14 

20 M. aeglefinus 10.94 1.63 11 0.15 

21 M. merlangus  15.46 0.90 2 0.45 
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22 M. merlangus  16.52 1.15 4 0.29 

23 M. merlangus  15.35 0.35 1 0.35 

24 M. merlangus  13.13 0.54 2 0.27 

25 M. merlangus  14.86 0.43 1 0.43 

26 M. merlangus  14.53 1.00 3 0.33 

27 M. merlangus  13.59 0.85 2 0.42 

28 M. merlangus  14.02 0.58 2 0.29 

29 M. merlangus  14.99 0.26 4 0.06 

30 M. merlangus  13.26 0.40 1 0.40 

 

Table G.2 - Gadoid average swimming speed and length from Table G.1. 

Gadoid 

Average 

length (cm) SD SE 

Speed 

(m/s) SD SE 

Speed 

(m/hr) 

G. morhua 78.86 8.38 2.65 0.16 0.07 0.02 586.99 

M. aeglefinus 106.90 7.30 2.31 0.19 0.04 0.01 685.08 

M. merlangus  152.50 10.24 3.24 0.33 0.11 0.03 1,190.90 
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Substratum prediction model outputs 

Table G.3 - Results from the model of best fit for the multinomial substratum prediction model. Coefficients and the standard error 

indicate the effect of each parameter level on the reference level, denoted as intercept. The reference level is substratum type ABC. 

Coefficients (Intercept) Current.std Fetch.std Distance.std Depth.std Geology2 Distance.std: 

Depth.std 

Fetch.std: 

Distance.std 

AGP 5.00 0.92 -0.45 -0.22 2.47 -3.56 0.33 -0.86 

Sand 5.67 -0.02 -0.27 0.37 6.85 -4.75 4.77 -1.49 

Mud 1.33 -2.25 1.63 -0.38 13.62 -10.38 7.83 -4.72 

Seagrass -23.14 -1.39 -13.11 -27.61 -13.66 -56.14 -10.28 -25.82 
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Std.Error (Intercept) Current.std Fetch.std Distance.std Depth.std Geology2 Distance.std: 

Depth.std 

Fetch.std: 

Distance.std 

AGP 1.56 0.34 0.32 0.59 0.91 1.44 1.17 0.47 

Sand 1.63 0.48 0.48 0.71 1.32 1.64 1.57 0.69 

Mud 2.24 1.20 1.48 1.81 2.31 3.12 2.15 1.50 

Seagrass 27.75 1.88 18.27 30.57 19.57 0.00 21.01 22.16 
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G. morhua statistical model outputs 

Table G.4 - Results from the model of best fit for the response variable G. 

morhua MaxN. Explanatory variables show substratum type, heterogeneity (N∞) 

and Year. Coefficients and diagnostics (z- and P-values) indicate the effect of 

each parameter level on the reference level, denoted as intercept. The 

reference level is substratum type, ABC and Year 1. P value significance: * = P < 

0.05, *** = P < 0.001. 

Variables Estimate Std. Error z value Pr(>|z|)   

(Intercept) 1.73 0.79 2.21 0.03 * 

AGP 1.57 0.43 3.66 0.00 *** 

Sand -0.17 0.51 -0.33 0.74 

 Seagrass 0.36 0.68 0.53 0.60 

 N∞ -0.80 0.34 -2.33 0.02 * 

Year 2 -1.18 0.52 -2.26 0.02 * 

 

Table G.5 - Results from the Tukey test performed between substratum type 

categories for the response variable G. morhua MaxN. P value significance: ** = P 

< 0.01. 

Variables Estimate Std. Error z value Pr(>|z|)   

AGP – ABC 1.57 0.43 3.66 0.00 ** 

Sand - ABC  -0.17 0.51 -0.33 0.99 

 Seagrass - ABC  0.36 0.68 0.53 0.95 

 Sand - AGP  -1.74 0.70 -2.47 0.06 . 

Seagrass - AGP  -1.21 0.81 -1.49 0.42  

Seagrass - Sand  0.52 0.73 0.72 0.88  

 

Figure G.1 shows model outputs from the GLMM models looking at the effect of 

substratum type, heterogeneity and year on G. morhua. 
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Figure G.1 - Residuals versus fitted values for G. morhua relative abundance and 

residuals substratum type, heterogeneity (N∞) and year and a histogram of the 

residuals for the optimal NBN model. 
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M. aeglefinus statistical model outputs 

Table G.6 - Results from the model of best fit for the response variable M. 

aeglefinus MaxN. Explanatory variables show substratum type and landscape 

heterogeneity (N∞). Coefficients and diagnostics (z- and P-values) indicate the 

effect of each parameter level on the reference level, denoted as intercept. The 

reference level is substratum type ABC. P value significance: * = P < 0.05, ** = P 

< 0.01, *** = P < 0.001. 

Variables Estimate Std. Error z value Pr(>|z|)   

(Intercept) -5.61 1.19 -4.73 0.00 *** 

AGP 1.97 0.73 2.71 0.01 ** 

Mud 3.32 0.79 4.20 0.00 *** 

Sand 3.94 0.74 5.32 0.00 *** 

Seagrass 2.23 0.90 2.49 0.01 * 

N∞ 1.15 0.41 2.83 0.00 ** 
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Table G.7 - Results from the Tukey test performed between substratum type 

categories for the response variable M. aeglefinus MaxN. P value significance: *** 

= P < 0.001. 

Variables Estimate Std. Error z value Pr(>|z|)   

AGP – ABC 1.97 0.73 2.71 0.05 . 

Mud - ABC  3.32 0.79 4.20 <0.001 *** 

Sand - ABC  3.94 0.74 5.32 <0.001 *** 

Seagrass – ABC 2.23 0.90 2.49 0.09 . 

Mud – AGP 1.35 1.03 1.32 0.67  

Sand - AGP  1.97 0.90 2.19 0.18  

Seagrass – AGP 0.26 1.01 0.26 1.00  

Sand - Mud  0.62 0.71 0.86 0.91  

Seagrass - Mud  -1.09 0.98 -1.11 0.80  

Seagrass - Sand  -1.71 0.86 -1.98 0.27  

 

Figure G.2 show model outputs from the GLMM models looking at the effect of 

substratum type and heterogeneity on M. aeglefinus. 
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Figure G.2 - Residuals versus fitted values for M. aeglefinus MaxN, residuals 

substratum type and landscape heterogeneity (N∞) and a histogram of the 

residuals for the optimal NBN model.. 
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M. merlangus statistical model outputs 

Table G.8 - Results from the model of best fit for the response variable M. 

merlangus MaxN. Explanatory variables show substratum type, heterogeneity 

(N∞) and extent with a 1500 m radius. Coefficients and diagnostics (z- and P-

values) indicate the effect of each parameter level on the reference level, 

denoted as intercept. The reference level is substratum type ABC. P value 

significance: * = P < 0.05, ** = P < 0.01, *** = P < 0.001. 

Variables Estimate Std. Error z value Pr(>|z|)   

(Intercept) -8.36 2.32 -3.60 0.00 *** 

AGP 3.78 1.17 3.23 0.00 ** 

Mud 5.01 1.27 3.94 0.00 *** 

Sand 5.23 1.20 4.35 0.00 *** 

Seagrass 3.27 1.41 2.33 0.02 * 

N∞ 1.36 0.66 2.05 0.04 * 

Extent 0.00 0.00 2.74 0.01 ** 

N∞:Extent 0.00 0.00 -2.20 0.03 * 
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Table G.9 - Results from the Tukey test performed between substratum type 

categories for the response variable M. merlangus MaxN. P value significance: * = 

P < 0.05, *** = P < 0.001. 

Variables Estimate Std. Error z value Pr(>|z|)   

AGP – ABC 3.78 1.17 3.23 0.01 * 

Mud - ABC  5.01 1.27 3.94 <0.001 *** 

Sand - ABC  5.23 1.20 4.35 <0.001 *** 

Seagrass – ABC 3.27 1.41 2.33 0.13  

Mud – AGP 1.23 1.32 0.93 0.88  

Sand - AGP  1.45 1.12 1.29 0.69  

Seagrass – AGP -0.51 1.41 -0.36 1.00  

Sand - Mud  0.23 0.94 0.24 1.00  

Seagrass - Mud  -1.73 1.35 -1.29 0.69  

Seagrass - Sand  -1.96 1.17 -1.68 0.44  
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Figure G.3 show model outputs from the GLMM models looking at the effect of 

substratum type, heterogeneity and extent on M. merlangus. 

 

 

Figure G.3 - Residuals versus fitted values for M. merlangus MaxN, residuals 

substratum type, extent and heterogeneity (N∞) and a histogram of the residuals 

for the optimal NBN model. 
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