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ABSTRACT.

This paper deals with the effects of symmetrical
loading on thin shells of uniform thickness; cyelical loads
are not included. The equations of equilibrium and
stress-strain relations are established for a portion of
thin curved plate subject to tangential and radial loading.
From these are derived the particular sets of equations for
circular flat plates, cylindrical, conical and spherical
walls. The distortion and stress equations for the
different sets are presented in expressions of similar
type. In oconical and spherical walls, experimental
corroboration has been obtained for the more complicated
expressions, which are believed to appear for the first
time. The applications include important practical
engineering problems on the separate and combined forms.

A comparison of the probable effects between welded and
riveted Joints in the cylindrical wall with a hemispherical
dished end serves as an introduction to a final discussion

of the elliptical and double segmental end.
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1.

The distdrtions and stresses in thin curved plates
have been the subject of many mathematical researches. In
nis standard work?! Professor Love has given references to the
more notable contributions, and his theory on thin shells may
be taken as the most advanced and comprehensive work of the
present day. He has dealt very fully with the immediate cases
which concern this paper; the cylindrical, conical and spherical
shells. While the expressions derived in the treatment satisfy
the mathematician, they are of little value to the engineer
who considers the worth of formulae on a basis of simplicity
and adaptability. To him there remains the task of
interpreting these expressions and reducing them to such a form
that their applications to problems in engineering design
present 1l1little difficulty. Papers demonstrating how the final
expressions of these mathematical researches may be extended,
recast and so applied, are very few. The lack of publications
must be attributed to the difficult methods adopted in
derivation and the complicated form in which the theory appears.

A brief survey may assist, in the reading of this
paper, to distinguish between what is presented as original
work and what has appeared elsewhere. It is necessary, of
course, that a paper of this order should include theories
which have appeared before; these are indicated. In many
cases, however, the methods of derivation are new and the final
forms entirely different.

The case of c¢ircular flat plates has received much
attention both analytically and experimentally. In a recent
papera, a line of investigation by the former method presented
a mode of treatment which differed from the established method
of derivation, resulting in the equations for direct and

bending stresses being formulated in expressions of similar

type/

1. "lathematical Theory of Elasticity” AEMH, Love, 3rd Edition, 1920,
2. ®irect and Bending Stresses in Circular Flat Plates”  Prof. 1. Ker, PhJ., Journal R.T.C., 1930,
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type. These expressions are not only identical, they are
also simple and possess a wide range of application. This
work has been embodied in this Thesis because the circular
flat disc is one of the extreme cases in arched plate theory;
and also, an illustration is given of the method of procedure
in the application of the results to an important engineering
problen.

The theory of eylindrical walls is well known and has

been included in many books. The application of the theory <::>

~-

has, however, been restricted to a very small range, and j
particular casesibutwit§>

‘this range have been the sﬁbjects of
isolated papers. \\Tﬁggé various investigations on an T
essentially similar problem, with degrees of variation in the
conditions, have been carried out on different lines. All
lead to important conclusions in engineering design, but the
varying methods of derivation obscure and complicate the
problem of the cylindrical wall. For design purposes this is
not satisfactory.

The direct or membrane stresses due to the effects of
internal pressure in a spheriggl shell have been included in
meny publications. The equations of stress due to edge forces
do not appear so frequently, and where they are mentioned, the
equations have been adapted from those for the cylindrical wall,
giving results which are approximately correct only for the
hemispherical shell. Equations of stress due to the loading
of a conical wall do not seem to have appeared in any
publication. In spite of the lack of information from
engineering research on these simple forms, elliptical and
double segmental dished ends have been the subjects recently
of much investigation in America and Germany. To attack such
complicated forms with no more guidance than what can be given
by the cylindrical equations, and these not fully developed, is

a very doubtful procedure. It would appear more satisfactory

to lead up to these solutions after the equations for conical

and/
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and spherical shells have been established.

In the present paper, from a general development,
the stress-strain relations and equations of equilibrium for
the forms, circular flat plate, e¢ylindrical, conical and .
spherical walls are derived. Each set shows very clearly
the nature of the successive complications that arise with
the change of form. Nevertheless, when the equations of
distortions and stresses are formulated, they show, for each
case, a similarity of type which is remarkable and constitutes
an aid to investigation.

The appearance of 80 many constants in the final
equations would appear to constitute a real difficulty in
their application. All that is required, however, is an
effective method of handling large and, at times, clumsy
expressions.

In circular flat plates the bending and direct
stresses are evaluated separately. The equations expressing
these types of stress, being developed from identical
equations, allow the use of one mode of attack which greatly
simplifies the work.

In cylindrical walls the extensional and edge effects,
analogous to direct and bending effects in flat plates, can
also be expressed separately. While the two sets of equations
are not at all similar, this step is advantageous in breaking
up the constants into two groups. The extensional equations,
not unlike the equations for circular plates, contain two
constants and their solutions are not difficult. The edge
effect equations include four constants and much work is
entailed in determining their values. Whatever the conditions
of the problem may be, these values are obtained by solving
four simultaneous equations. To facilitate the aﬁplication
of the results the values have been fully determined and

tabulated for a wide range of cases.

The/




The values of the constants for conical wells are
determined by an identical procedure, but they cannot be
reduced to the neat and simple terms which express the
cylindrical constants. A straight-forward evaluation of
stress for each example, reaching a numerical solution by
the most direct route is to be preferred. Owing to the
form, the constants for the extensional and edge effects in
spherical walls cannot be determined separately. While the
equations expressing these effects may be so determined, in
the evaluation of the constants it is necessary in most cases
to combine the two solutions. The handling of the constants
constitutes an important part of this paper, and the different
cases are discussed under their particular sections.

While some of the applications are new, there are
others which have appeared in recent publications. As
regards the latter, the methods of derivation employed here
are different; 1in one case only partial agreement is obtained
in the conclusions. The whole endeavour of this paper is
to demonstrate how problems on plate forms - flat and arched -
can be solved by similar methods, although specific conditions
may vary widely.







General Development of Theory.

Consider the portion of thin curved plate of uniform
thickness h as shown in Fig. I. The meridional and
circumferential‘radii at point A are denoted by R, and Ry
respectively. Under the actions of the radial force W and
the tangential force Q, A strains to Al. The tangential
displacement is Z and the radial displacement U. The

change of slope, i1, assumed positive in the direction shown,

du z
is then equel to - pi* g, . The circumferential strain
of the outer fibres is:- ’ o
l/ — \_ﬁli""’;‘”J o
20 iR.sme +2c0s0+Usine + fjp- sin(e+l) - Rysime - Af,- sme} NI
i & ’ Fhd
2T} Rsne + Fjr'sine} N -l
- z _q., Fl )‘,".Y:« v {: R S
= ,R.‘col'e a- R‘Lco\'e XA
(e
The meridional strain of the outer fibres is:- -
L. y -
Rade T R, + 2%, de
1L 4z
Observing that (—2‘5“60\'9 + %\) and R, do ¥ %,) are due
to direct stresses and R/za;((“*e) and %2‘-%"3 due to

bending stresses, the stress-strain relations are obtained as

follows:-
Direct Effects. Bending Effects.
Gote v & = foob (lake) = £ of
L.d b = b- H oA _p_
% e & P 25, 36 = P-of

where f end fl are the circumferential direct and bending
stresses respectively; p and pl the radial direct and
bending stresses; E, the modulus and ¢ , Poisson's ratio.
The equilibrium equations are obtained in the usual
manner. In Fig. 2(a), 9Q and ®W are respectively the
tangential and radial forces on the complete annular element
of length dee. The condition of tangential equilibrium for

the element subtending an angle a¢ at the centre gives:-
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(p+dh)(R+dR\) sin. (8+do) b dp cosdo - ":E.S\neﬁd;é ~ (s+ds)(Ri+dR) st (6 +de) b dg sin. de
~{Redohidpeose + dQ oy cosde = O

2 : L4
So(bRisne) - fR, 050 - spame = - e g%

Consideration of the forces radially gives:-
'(l”'d")(?‘“‘e‘ sin. (9+de) hdg simde - (stds)(RidR.) s, (o+de) b dé cosde
4 (5R) in.0.6.d¢ - [R,defdgsne - da-2 sindo+ dW. 4% = o

l”‘?n sn® + fR w0 4 ﬁ(s?.s\ne) = %’6%}%

From Fig 2(b), by taking moments about point 0, we have

g(ﬁ*“l")(kf dr) sin.(6+de) d¢ — ﬁ;_' b'R,81.0 -dg + (S+ds)(Ri+dR) sin (0+de) hdp gléé.e

+ 8Rsm.e-h-d¢ ‘R, ég - E-F-R,de-dé» €058 = O

S, SBR,sme = -%-g—(},?‘&na) t T FR;®59

The complete set of equations for the general development

may now be written down as follows:-

(Ee )= fooh | d(prone) fRome smane - S
E(-‘é%z- + —L—"é“) = ‘—)- c‘% bResne +¥Rqsme*§g,(s?-‘-‘wm e)= 21\'6
E'%' L ‘-2'9 = g‘-c—kw' ? SRR, 500 = - &-'—e(bE’Sne)‘l' F?,cose
) i = o A-.cd z
E%%%" = -s‘F‘) L‘°Qd +?—z /

From these relations a set of equations for different forms

may be derived.
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Circular Flat Plates?

| In this case ©=0, R=Rp= O | Put R.de- d\*)

~ Risin® = T, where dr 1s the thickness of an annular element

of radius r. The general equations become:-

z . - d - | 4Q
S S FP)-F = g
dz _ W
ES = Poof L F : 5eh - (2)
R L - f. |
ehh < Foop s e - B 4 B F
ehd - b -of Le-
These equations may be broken up into two separate groups
and appear as:-
For Direct Conditions. For Bending Conditions.
' \ '
£% - §ob ey- 1o
) \ ..
e = boof O - peef @
d 2 - 3.
I A ORE % § = S0 7w

where u'= G/'z'i- Similarity will be exact when the last

terms in the third equation of each group are written:-

d 2
{T"—é\-‘—\%= My + Dot L N e ()
3 \ . 1 ks
and s W = m, sy + Ky - - - - - ()

These expressions refer to a general state of loading and
in the Q equation only the third term is required for
rotational effects. In the W equation the first term is
necessary for ring loads and the third term for uniform

loading.

Formation of Basic Equation.

Considering the direct set of equations alone,
elimination of Z between the first and second equations

and substitution of £ from:-
4 . .
= S0 +mot ooy sk - - - --- @

leads on reduction to:-

¥ f\l\:‘(b")* Al i"\»(\“) = (bt) = - (te)my - 2+ a)n,t7 - (3+0) K{f?... (8
'Ibid.
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The solutions for the direct stresses p and f are

found as:-
b= A+S - (55) m, loger - (355) nar - () i - @)
f=n-%+ (‘;::)"’;"('—?)m\oga\‘ - %}m‘— L2 - - -~(0)
E'%"’ g_c\r, - = —(w)

The solutions for the bending stresses follow and are:-
b B - (D) milegr - (2450l - () - ()
f= a- 5+ (F)m! - () mileges - (3Dole - (ST - - -
e¥=ehk= et - -4

A and B, A' and B' are integration constants.

In these equations the accented symbols\refer always to
bending values and are to be contrasted with the same symbols
unaccented for the direet conditions.

Sign Convention.

Tensile stresses are 1n all cases positive. The
bending stresses are then at the outer fibres. The solutions
obtained for pl, rl, and ul refer to the lower side of a
horizontal plate, so that positive values would indicate
bending concave upwards. The lateral pressure is positive
if downwards.

The following example illustrates the method of
procedure in the application of these results to a typical
problem which maintains general expressions throughout. For
any specific example a straight-forward evaluation of stress
is simpler.

Investigation of Stresses in a High Speed Turbine
Dise under Pressure.

This problem is an investigation of the stresses in
a high speed turbine disc, machined from the solid, as shown
in Fig. 3(a). It carrles a lateral pressure, W, together
with peripheral radial stresses, and is taken as directionally
fixed at both outer and inner radii, Fig. 3(b).

This/
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This case 1is developed in three separate steps,
viz., consideration of:-

(I)

the direct stresses in the disc;
(II)

the direct stresses in the cylinder, treating the
cylinder as a disc;

(ITI) +the bending stresses in the disc.

(1). If Q be the radial loading due to rotation, then at
any radius r,

a® = f""”'d;’c""mﬂ; L. z'?c;%% = u%f 5 .'.K1=?'§°:
where p 1is the density and w is the ?ngular velocity. Also
Iy = Ng = 0:-
b= nsd - BT K R ()
= A-B - B35 0 - (1)
Es = f-<b ()

where U 1s the radial expansion at a radius r.

The boundary
conditions are:-

,’):1’)‘_ ot Y= J \7=‘7¢ at L NE P

hence:-~
B E12-8 2 L
h_ = A+ 33 = Kale e (18)
=) 340 +
. = A+ - Tgo K - (19)

From (18) and (19)

the integration constants A and B are
found as:-

A= - E k’q,\c

n} Yo -Ye + C'(‘Q"*Y:) ceee (20)
B = \‘.ﬂ (\,, ‘,,‘) - C, \aY¢ - Q@Y
where (= §§§:Kz.

Substituting the values of A and B
in (16) we obtain at r = rg:i-

™
ﬁ, t“"*\f: + :l:‘:‘,“‘ + C, {2\’¢‘+ \’a‘} - CyVa -~ (@)
. o Yo
where C, = LL;’*S'-' Ks

(I1). Rotational stresses only are considered in the cylinder
and/
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and to cover these effects Ko = 20T is used and the

¥
equations can be written:-
l7 = A 4+ %.1 - 3_’_“'5":.sz1 Ce e (23)
2 _ U4is e .
f - 2 3 Kt (24)
ﬁ%: %-@b -(25)
The boundary conditions for the cylinder are:-
\'): \"a% at Y= Ya ) “)*'O at \A"‘\,
Substituting in (23) therefore:-
SRS e
O = A _\.g’__\_—c‘\’; (:)_‘7)
Yo

From (26) and (87) the values A and B are obtained as:-

Aol sy (W) - Ge)
B % \\:—“ G T O BRI @)

The radial hoop stress in the cylinder at r = rq is found by

substituting the values above in (24), giving:-

Y . 1
Peohef A Lo aang) -G 00

The connecting condition between the disc and the cylinder is
that the radial expansion is the same for both at T = Trg.
Hence: -

(?‘0‘\") for cisc = (\'—-wb) go\‘ c\/\mc\t\‘
For the disc the value of f 1is found in equation (22) and
p = py.  For the cylinder f is as in (30) and \a\wﬁ/c
We finally obtain:-

YC +Ye" ) Yo Ve _ Sl . ___L.- x L3
t&{(-\;;—-;; Yo *':T—,;:' 6‘)2 = e T ¥ G 2Ya - 2Ty L)

DPg can therefore be found and hence all radial strains and

stresses in the disc and cylinder.

(III). The pressure difference W on the disc within any area

of redius r is W -{Forb*ﬁ?)-ﬁ’} where P is the lateral

restraint at the bore. Hence: -

3 3 1 . ., 3r 3 . V7 ¢
T W = ‘;@\&ﬁw(\"—\a‘) -P§ N —i“c\z*r o Ta i) LKt E
The stress equations may now be written as:-
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‘7l-' N ,,2 - Hr) W, l°1'v (3:__)\( ce e @)
P e A B () migy - (M) 4 () ml )
E%«L—ﬁ-" F|—cl’3' ce (34)

The boundary conditions are, that the slopes at r = rg and
T = Ty are zero. Substituting in (34) the particular velues
of £l and pl at the above radii, two equations are obtained

from which the integration constants are found as:-

' . ¥ T V K ' L'
A= YTm {”i_i‘? loge ¥, \—\o%ex‘ai + 2 (we)(rra) - M - (8)
B= 5m. ‘<\ﬂ \% r B (v L. (39)

Substituting these values in (32) the radial bending stress
at r = v, is found as:-

R o LS I SR C)
Generally, high radial stresses occur at the junction of the
disc and cylinder. Superimposing the radial direct stress
as found from (31) on the radial bending stress as in (37),

the maximum stress at this radius may be found.
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SECTION II.

t————

THIN CYLINDRICAL WALLS.

Theoretical Development:

Reduction of the general equations ..

L

. o0

Development and solution of basic equation ..

Extensional equations: tangential supporting

Edge effect equations: shear forces and

forces and body forces... ... «..

bending moments at wall edges ...

Sign convention... .ccec cio cee oo oo

Evaluation of constants:

for different boundary conditions.

Applications:

I. Pipes reinforced by Steel Rings: .

IT.

Ring effect: shrinkege... ... ..
Boundary conditions: constants ..
Axial bending stressS... e¢ ocoees oo
Circumferential direct stress. ..
Ring stress... «.cc osee o0 o.e

Simplification of general method..

Overhung Rim of Rotating Wheel:

Boundary conditions: constants ..
Radial deflections... ... +soc &

Limiting length of rim... ... . ..
Limiting length of recessed hub ..
Axial bending stresses in rim.. ..

.

e o0

o o 0

tabular schemes

.

L

Page.

14
14

15

15
16

16.

2l
22
a2
23
23
23
24

27
27
28
28
28
28



14.

Thin Cylindrical Walls.

Restatement of the general equations:-

E(2RB+ %) = f-ob )

{EF TR

E'%" (‘ét ~d‘7'

B L B

fg(t’?ﬁm 9) - fRy (050 - SR 800 = - ’LT\

t)- c‘F » Fes\ne +¥E 5N -}de(sa S\ne) = e
SPR,5WO = - —-'Z—e (be.sme) ¥ -g F R,c05©

du oz

2u
|

5B z\%

R J

Derivation of stress-strain relations from general eQuations.

For the cylindrical wall

T = constant.

Q- 709 ?‘l &, 2.:1“’

Putting Rpd® = dx, the general equations become:-

EE=p-ct | @ f= s a6 | ©
E(0) = f-<p' | @ (s¥) = - Lh & (pY) M
EgE- el | @ L% ©

Formation of basic equation.

The reduction of these equations is effected by

equating the double differentiation of (1) to (4), eliminating

the terms containing p and f by means of (5), (6), and (7),

. , du

and observing f = 6p , i = — —,
dx
d 2(1-¢") o') 3 dw
I}cz“ { \’ TYR: ax®

This leads to the equation:-

3 d'Q

Wc\z\‘\_ dxt : (q)

If the variation of W and Q is such that there are no third and

second derivatives respectively, then, where

dip

4

dx

=

+ 4n¢V

The solution of equetion (10) is:-

o

3( l-a:)

e
-(10)

n* =

' nx . -0X .
i>= <2 iACOShJ(.#BSmhIi* e {CCosnx{—DSmnxg

where A, B, C, and D are integration constants.

known, all other quantities may be found.

When p' is

Substituting

d = nx, the complete set is given as:-
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r,'= Q‘{Aqm ¥ Bsm&} + <"‘{cms¢+ Dsu'm} w
g; o b’ (2)
(- i fo3y [Q 2(B-R) Cosd - 2(B+R)Smd}+e iz(mc) osd +2(D-¢) sman (3)
S=-¢hn [e‘ {(Bm) wsel +(B-R) Smcl} t € i(b-c)amt = (>t sw dﬂ (4
v o | M- [Re]- S

+ T &f.gf [c“ i23m¢~2ns&6A}+ e"‘i- 20 wsd + 2Csw'wtﬂ (s)

x
_ .| de, {
\7“ 2ubr L X &+ a, (1)
= eg v b . @
- - l xi xc.!.@.dx dx - O-Y‘ ig-dx + C.“..?‘- + b + d.;_’s:_s- QB)
2= e o U, &% odx E ' E

Omitting the equations for circumferential stress in the group
above, the remaining six supply the necessary conditions from
which the values of the integration constants may be determined.

Extensional Equations.

Where the boundary conditions are suitablel, i.e.

implying no shear or bending conditions at the edges, equation
= 4. dw . d

(6) may be written, f= =S¥ ; the term = (sr) being

negligible. The following group of equations comprise the

extensional effects:-

- { da

\7_~m]dxdx+a. (1
= L. 4w

F - onfh dx (20

X
v 2:(\3 [dw ‘rL i%'dx] - Sf‘éi (29
t ¥ de dw aix
Z =—2m§[f {I Z;-dx}dx“cr‘r H'dx + T+ 1>, 22)

These equations include all external loading effects.

Edge effect Equations.

When the conditions at the.boundaries include bending
and shear effects, the permissible step of breaking up
equation (6) and the above development allow the omission of
all external load actions on whose effects those resulting
from the forces at the edges may be superposed. Rewriting
equation (6) thus, £ = — a%(sr), the stresses and movements

due to edge effects are written:-

 rpida. p.560.
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P'er&iAmsa 4 Bsmel} + e—‘{ Ccosa 4 pshi} @»
et 2

L == %Qn Y [{{2(3-1&)091- 2(B+R)$\'nal+q"‘ {g(b*c) cosd + 2(d-¢) sind“ (25)

5 = -¢bo {e“g(sm)@sou(s-n) sl'n,zl + e"‘{(b-c)cos.c - (>+) mhd.}l 26)
U = %&%ﬁl{edggsma - 2As:hot} P SL_, 2D oot + 2C sid ﬂ (%))
f-e% (200
z = 5 29)

The integration constants al and bl are omitted from
the above group of equations, as their inclusion would merely
give results obtained in the preceding group. The condition
equations for a, and bl are (20) and (22), and for A, B, C,
and D, (23), (25), (26) and (27). The group of equations,
(19-22), give what is called extensional effects; the group
(23-28), give edge effects. The above procedure simplifies
the application of the equations.

Sign convention.

It is important in arithmetical solutions to note the
convention of signs adopted in the development. Internal
pressures and direct tensile stresses, positive; bending
tensile stresses on the outer edge of the wall, positive;

shear stresses are positive when the radius of the shell at

the origin tends to inorease.

Evaluation of the Constants.

The evaluation of the integration constants, a, and
bl, in the extensional solution is straightforward and need
not be discussed. Owing to the variety of combinations of
the end terminal conditions and the solution of four
simul taneous equations, the determination of the constants
A, B, C, and D in the edge effect group is more involved.

The following procedure is given:-

The equations for axial bending stress, shear stress,

slope/
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slope and radial deflection at the origin and at the end,

may be written:-

At origin At end, L
= - ' Y ‘D
R = AxC R_-A+aB+—§+a—{
Ho = -A-B+C-D Ho=AtbB-bS +2
° (30) LA Ci 2 31)
3 = - = - P — ‘D
Ko B+D K= A-cB - 3 +c S
.« A-B-C - - n- 4 LB
L, = A-B D L= A-dB-d3 -3
where,
at origin, p'= p'y, 8 = So, 1 = 15, u = u,.
) E L
and Psb., Ho= 2, K=- —oob _ SN
oo or gee > K- gy 0 bt ey
at end, L, p' = p'L, 8 = 87, b iL, u = uj.
and
y U e
P: _E_. = -
T Ko = vz b
e - e, L, -
G TvE ) T (TR (40)

end b:sind ) 4= wse , 5= ezdf q‘:%’, b = %’;% ) &= %, a's %fr:—

Any combination of four equations, two from the
origin group and two from the end L group, will suffice to
give values to the constants A, B, C, and D. Three tabular
schemes containing the more common conditions have been drawn up.
In teble I, the conditions are all of an essentially different
nature; in tables II and IITI the conditions appearing at both

ends are similar, but not necessarily equal.



Conditions - at origin, u = u,,

18.

TABLE 1.

i = 0;

at end, L, s = 8y, P'= P'y.

Constant. Coeff. of K, - 1 Coeff. of H, - m Coeff. of Pr- Ve ?
N - N N
_ 1 1 b—2 3g4-b
AVe - | ——=(22—20g—1)— —] —p—2"4 g4b + 2T
\/ eVe € €
_ 1 1 b
BVe - | +—=(20*+2bg—38)— —— e+ L —r1+b+——q+
'\/E €Ve € €
1 1 29+b b 3¢—b  g—b
C - - | —1— = (262 42bg— — = = = =
¢ (2R Ve e Ve v
1 q 7 g+b | 3g+4b
D - - 1— — (262 —2bg—3 + == +—= — +—
+ € ( 7 ) '\/E E'\/G ‘\/e e'\/e
1 1
N={1— —(462—6 —_—
f1- L)+ 5
TABLE 1II.
Conditions - at origin, p'= p'o, S = 8,3
at end, L, p'= p'L, 8 = 8y.
1 Veq 1 Ve (g—=b)
Const. Coeff. of P, - E Coeff. of P, - 5 Coeff. of H, ~, Coeff. of H, N,
_| 14-2bg4-262 1 qeb 202 b
— — — g+b — — +—= —b+—
A\/c Ve Ve € Ve €
_|  142pg—20° 1 q—3b 1-—2bg 1 q+2b
— ———— | —gq+b + — ——= +q—-——
BX/G ‘\/s e\/e € \/E G\/E
c 1 1%+ g+b  g—b o + b b
€ Ve Ve € Ve Ve
1—2bg—2b% q+8 g+b 14-2b¢ q—2b q
D - — =t +— | - ==+—=
€ A\/; 5\/5 \/e e\/e

1 1
N,= {1_ — (4*+2) + ‘g}‘
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TABLE III.

Conditions - at origin, u = u 1= 0;

o’
at end, L, u = u, i« 0.

Constant Coeff. of K, - T\II_ Coeft. of K, - Vb
1 1
— 2b% —2bg —1 1 qg— 3b
AV - T i A
€ Ve Ve €
_ 262 4+ 2bg +1 1 g—b
B - = == S
Ve 4/e Ve €
262 42bg —1 b b
c - - o TRl PR R b
€ '\/e e‘\/E
262 —2bg+1 b —b
D - +1— —q+ — q+_ +——q-—_
€ '\/c e\/e

|
J

mm| Pt

m:{L_l@w+m+

€

The reason for giving the coefficients of AvVZ
end BYZ 1s that in any subsequent work for the determination
of a movement or stress at some intermediate section of a
Particular cylinder, the constants A‘and B are modified by
the ratio 3%? , whereas the constants C and D are modified
only by ;%i . Again, 1if :ﬁf were included in the
coefficients of the constants A and B, it would appear that
when € is very large A = B « O, which is not the case.

The limitations of these tables are contained in the
facts that the bending stress condition 1s always associated
with the shear stress condition, and the radial deflection
condition with the slope condition, and that the slope
condition is zero. The argument for the first statement is
the frequeney with which such combinations appear in practice,
and for the second that the condition of a particular slope is
not generally useful. The only time that the slope condition
may be of value is when an uncertain fixity of the edge exists

and such a case can be solved with a fair degree of accuracy by

combining the slope condition with a factor m, varying from

Zero/
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zero for a free edge to unity for a fixed edge, as was shown
in the paper on flat eircular discss. Generally, however,
whatever the conditions in a problem may be, the values of the
constants can be abtained by solving the four appropriate
equations from groups (29) and (30). In any tabular scheme
ineppropriate coefficients, 1.e. coefficients associated with

zero conditions, automatically drop out.

3 ".oad and Teaperaturs Stresses in Circular Flat Plates®  McBroos and Woir. Journal R.T.C., 1932
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Application to Pipes reinforced by Steel Rings and
subject to Internal Pressure,

The behaviour of pipes reinforced by steel rings4
is given as an example to illustrate the procedure in the
application of the above development. The problem shows
how pipes reinforced in this way maintain the strength,
with a considerable reduction of thickness, given by plain
pipes. That there are definite limits for the distance
between the reinforcement rings can be clearly shown; but
the immediate exercise is merely a demonstration of the

determination of the stress values for definite lengths.

Let r be the mean radius of the pipe, h the
thickness, and p the internal pressure. The breadth of
the rings is C, the thickness t, and the mean radius is
taken as r, the mean radius of the pipe. The clear length

between the rings is L.

g O L 7———J4C-
F ‘ N
FNN i H N
| A7/ 97 ///////9‘1%9&7//// L L LA

r

e —
| A
S\ F1‘#vv&##%$ I
F F FlG. 4.
P _
E denotes the modulus, and ¢ Poisson's ratio. The

. forces acting on the ring and cylinder are given in Fig. 4,
P being the interface pressure and F the shear force per
unit length of the circumference. In this particular
problem axial effects are not considered, and the only

important equations from the extensional solution are:-

L X dw _ by ST I N
Ut e & T e ™ F- oo 3

These values may be incorporated in the edge effect

equations, which then give:-
U= u$+.-c“““ [e iz&cosai 2A5md}ﬁz i 2D cosel & ‘ZCS\neLU (32)

Feed SN (O

4
Prof. Cook, Report of British Assoctation, 1923, p.}5.
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b

where U;x EE

Equivalent pressure in the cylinder due to ring effect =

U"F”fz{‘:) (W)

Let radial expansion at origin = U, then
- Yx - g,.F
he % {hhe ¥ @)
Let § = sinrinkage, then stress in ring = E (éi%gz)
T S+u,)
. k = E ( Y ) ¥ @

-

F =« shear force per unit length. .. shear stress, s = E.

Prom equation (26)

$= - +.ho [Qa {(Bm) osd + (B-R) sma.g + & {(D-()Cosel -(p+c)sman

In this case there is obfained at x =« O,

F= F—’%‘—’immmc} C (@)
The conditions for this problem are, 2t origin u = Gg,
i=0; at end, L, u = U, = G5, 1 = O, Table III
furnishes the values of the constants for these particular

conditions, but in this case, due to the alteration in the

general eguations,

K:.-EF_‘E:—)TE-,WB@\'Q % - \;'2.\_1—; t‘é_
° ‘Z('e‘;'ﬁn"f ) Up ue

Let the values of the coefficients, including the Nl value,

for the constants AJE, BYZ , Cy and D be ay, by, cg, and

d,. Then
flo 6 i b 4
F-= G Ko ¢, Where e, = ':1;-;- (ao'\' o) (- °)
. Eb - &1 - - (5)
Bl R R (
and F,, E(g{ﬁ',),% - E-:‘-‘Ei’s'{.ﬁ.ufk (6D

Inserting the values of (5;) and (67) in (1,), we obtain
0. = . bt _ b Rue

giving EtE

2o
V- T ¥ &
Y
%" t 20 (7‘)
V+ v Yo

The radial bending stress from equation (23) is

b= < incosuas\'nak 4 <% { Cosd + D ool L))

The/
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e (e e) vl ) )

f

The maximum bending stress will occur at x = O

where Yolisson's ratio, o= 0.,3.
The circumferential direct stress from equation
(32) is
’? 'z t’-g; + —'(;BTnl[e“{chosoh?Rs‘m\%Jr < {- 2Dwsd 4 zcs.'oa}]
The maximum circumferential direct stress will occur

atx:%‘

o= B v b [ong]

-0 )
where - L ok
h 4,7 °° Ebocos'—’z--a.&n—z‘i
%

p

nL - nl
g 2+C°5|n 2§

: ?max = { - - lb\:; @)
§ b -
The ring stress p» = 5 ES v & Eé Qe
20
\’_,—
10 M&b//

S
N

*\< N
T VAANERN
= AN

N

N

1
>
Q

Coelficrent Values of constants

/ 2 3r 3 4 S5 [~
- fie. S . 4 Values of nl.

With p, r, and h fixed, relative differences in

0
N
QS

Q

the stress values of equations (81), (91) and (101) may

be obtained by varying the shrinkage § and the distance
between the rings, L. The coefficients of the constantis
are independent of § and their values have been plotted on
a base "nL" varying from O to 6, as shown in Fig. 5. From
these graphs e, and 8, may be obtained for any particular
value of "mnL." With a definite shrinkage allowance, the
ratio k may then be calculated for the same value of "nL.,"

The problem quoted in the paper cited gives the

.following figures:- Diam. of pipe = 80 in., t = 1.575 in.,
h = 0.63 in., p = 278 1b. per in.2, L = 6.6 in., c = 4.45 in.

SIEEN ;‘;I":) - 0255, .nL= 1682 . € =y%=539
. S
From/
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From the graphs of the coefficients of the constants we

obtain:-

Qo= + 0968, bo': -Qe51 , Co= = 0+626, d°= +0-9

. o 1
S €= gz (derbh) - (G—do) = -6l
% nL DL -% oL . oL
L% e {boms~2- ~doSW 3 }+ o ¢ {'do‘“'i -\-COS\n-é‘ = - Q-920
Let shrinkage fit 8 =« 0.016, and E = 30 x 106 1b. per in.2
L
- a by cn
R £ - = 01502
'+ 57 + 5

s Axial bending stress,
' ds v Y
b= (-#)( % +c) 1815 b~ - 2,200 Wb, per in

.« Circumferential direct stress,

;: (|+ |...__‘k.3°) . ‘?EE = + 3890 “ L
o Ring stress,
b°= E—; + * \lé = ¥ 14565 ~ o« =

The latter two results are in close agreement with
those obtained by Professor Cook, who, however, has made no
mention of the axial bending stress which appears to be the
main stress in the pipe. Consequently, the first
conclusions in his paper are somewhai incomplete. With the
mejor stress values reduced to such formulae and with the
aid of the graphs to obtain the values of the constants, it
is a simple matter to extend the various points in a problem
of this order.

The Factor 'nL'.

In any actual application the constants are
associated with coefficients whose values depend entirely
upon the length, radius of the cylinder and the thickness
of the wall. In the general expressions the dimensions
combine to form a ratio, nL = {/5%?) - L and when this
ratio exceeds a certain value, which varies slightly for
different conditions, the coefficients of the constants
become X unity or even zero. Hence, in not a few cases,

certain of the constants disappear from the expressions,

sinplifying/
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simplifying the work entailed in determining the edge effects
throughout the cylinder. In the example above the principal
terms in the A& and BY€ coefficients are -(q - b) and
-(q + b), end in the C and D coefficients, + unity and - unity
respectively. The graphs of these quanyities are indicated in
Fig. 5 by the broken lines. When "nL"= T, the full values of
the coefficients and the above values are synonymous, showing
that beyond this value all the terms containing Y& or £ are
negligible. The explanation of this important point is found
in Table IIT and may be interpreted as the conditions at either
end having no influence on the movements and stresses at fhe
other. This allows the breaking up of groups (29) and (30);
the constants A and B being omitted from the former and the C
end D constants from the latter. For the conditions at the
origin the two appropriate equations may be written down and
solved for C and D; similarly with the appropriate equations
at end, L, for the evaluation of the constants A% and BJZ .
All the constants are retained in the stress and movement
equations for any intermediate section. When, however,
nL = 21 any intermediate stress or movement may be obtained by
evaluating only half the terms in the equation, depending upon
which end the section is nearest, i.e., for axial bending
stress at E, evaluate terms containing the constants C and D;
but for a similar stress at %%, evaluate the terms containing
A and B. When %F<:HL<:1F, all the terms may be omitted from
the coefficient values except those influenced by unity or f{ .
With these points established the following tentative table is
drewn up, and may be used for any conditions existing at the
edges of a cylinder.

(1) when nL = 2T

The four simultaneous equations necessary for the
determination of the constants mey be broken up into two pairs,

and the appropriate pair solved for the C and D and the A and B

constants/
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constants respectively. In any intermediate movement or
stress equation, terms containing A and B or C and D respectively
may be omitted depending on the relative position of the section
to the ends of the cylinder.

(11) when T <nL < 27

As in case (1) except that for the movement or stress at
any intermediate section, all the constants must be retained in
the appropriate expression.

(111) when %§-< nL <

Simpiification in the actual procedure of determining the
constants is permissible. The finel expressions for the
coefficients of the constants will include terms containing only
unity and/or‘J%,

(1v) when nl < 2\? -

Full values of the constants must be obtained in the
manner outlined. Taking the conditions, say, at origin,

P' = p'o, 8 = 8,; at end, L, p's= p'y, 8 = 8 insert sufficient

L’
arithmetical values in the general conditions equations in order

to obtain a table of the type.

CONSTANT | coeff.of P | coeff.of S, |coef.of k_ otk of 5

AYZ , B%
c ., D,

In cases (1), (11), and (111l) maintain the general expressions
throughout; a table similar to the one above, containing the
arithmetical coefficients may be drawn up finally.

Any cylinder to which case (1) applies is generally
known as a "long" cylinder. The term is rather misleading, in
that 1t is possible to have two cylinders of equal length with
one pertaining to case (lV) and the other to case (1). It
would appear that before a cylinder can be classified in ahy one
of the above cases, the group ratio "nL", which includes all
the dimensions of the oylinder, and which controls the constants

and their method of evaluation, must be computed.
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Application to Overhung Rim of Rotating Wheel loaded by
Centrifugal Force.9

This application illustrates, for different rim

lengths, (1) the ratios between the radial displacement at the

disc and the free edge of the rim; (11) the increase of bending

stress at the disc fixture as the length of rim is extended.
The rim is assumed to have a constant thickness, h, a mean

radius, r, and a length L, as shown in Fig. 6.

L

vadws 1

Fig. 6.

Let the radial displacement at the disc be 0. The
conditions for the problem are then
at the disec fixture U= U, 1 = o,

at the free end 8 = 0, pP'm= O

the oriéin being at the digg.

With no internal pressuré or axiel loads the radial

deflection is given by

U= %&%“ U{ {ZBCos.d- ‘2H5\‘n.&} + :‘E i- 2D cosel + 2(‘.5@& ﬂ Qp

S Engineering Vol. 121 June 1926. p.649.
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b = Loy [‘EL {wmsoak- zns,-n.akg + 3',—2 {-2DCo5dL+2CsmoLLH N

18

The coefficients for the constants are selected from Table I,

(in this case they may be obtained from column 1). Let the
OE

coefficients of AJEH BJ?L , C and D, in terms of K°=-—é5£};;§

be ao, bo’ g and do. The radial displacement at

L may then be written:-

- _'-C_!D‘i‘ - _H_E—-——— - X ._2~ - n
UL— 6 E i 2(‘%‘%“‘\’\)£ {2 iL{bOCOS&L d,,S\ndl_i + “J—iﬂki d°C05dL+C°5\\ d"%] (_31)

:l"t_:

= - (b;Co‘SoLL - aOmbol_) - (-4, @3, + Co 51 d;)/\&._
= smd (A $) - csd, (b,- =) e )
. - ° Ji‘- - ° 'J—ZL

The values of the coefficients selected from Table I, p.1l8,
for values of nL from O, 4 are given in Fig. 7. The ratios
%’ are then easily computed and are given for the same range
of nL values in Fig. (8a). A study of this graph shows that
the condition for a good design is nL= 0.5; and that for
a recessed hub, a similar problem, to ensure a good grip
between shaft and hudb, the condition is, 2< nL< 3.

Treating this example as a statical problem in which
a cylindrical wall is subject to the same conditions, there
is the interesting feature that when nL = 2.5 the difference
between the edge deflections is a maximum. Where the
c¢ylindrical wall forms part of a more extensive arrangement,
this particular point may be of importance in fixing the 'best
length' of the cylindrical wall.

bending
The radial/stress is given by:~

b'= 2 (Ao + Bsina) + ;}——{(CCos_eLé-Ds\bd) e (8D
When X = o
) uE Qo
b G el
. !Zo' - _ (4 |
Cores sl {Q?'kc;l

The quantity -i%% +c°} is also graphed in Fig. (8b) and

ido
¥l

Possesses/




29.

possesses to some degree the same characteristics as the

U ' -
quantity g . In actual practice, of course, U would be
negative and hence the radial bending stress would be negative,

indicating compression on the outslde face.
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SECTION III.

THIN CONICAL WALLS.

Theoretical Development:

Reduction of the general equations... ... ... ...
Extensional equations for internal pressure.. ...
Development and approximate solution of basic
equations for edge effects... ... ocec oo oo
Edge effect equations: similarity with
cylindrical wall equations... .ce coe coe oeo
Evaluation of constants: the factor "n'R"
compared with "nL" for c¢ylindrical walls.. ...

Experimental Work:

I. Vertical Ring lLoad on Conical Wall: ... ec¢ oos &

"Experimental values for change of slope and
vertical deflection... cee vee ¢ see ces cae &
Analytical Investigation:
Boundary conditions: constants.. . ... ... ... .
Radial deflection and change of slope€.. ece ooe o
Variations in bending stress, radial deflection
and change of SlOp€... cev vee ese o ooe oeo
Extensional effects... .o v cve coe o vee cen .
Total vertical deflection.... .¢c coe o eee eee &

II. Vertical Load on Coned Separator Casing attached
to Cylindrical Wall. ... «ve o cos oas o

Experimental values for radial and
vertical deflections... v cee cee o coe ooe @
Analytical Investigation: assumptions . ... «.. .

Evaluation of constantS... e¢¢ cee ceo o ceo oo

Evaluation of indeterminate reactions . ... ...

Comparison of calculated with experimental
VBIUCB.:oe cee o06e ase o oo ses a0e o sos see o

Application:

Investigation of Stresses in a Coned Turbine
Diaphram..o . oe oo LI . LICIR eeo o o

Boundary conditions: constants.. ... ¢ eco o..
Evaluation of indeterminate reactions . ... ...
Tangential bending stresses.. ... «ee o coe oo
Approximate solution for maximum stress ... ...
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Thin Conical Walls.

Restatement of general equations:-

(2o 4 ) = f-oh 2 (prsine) - £R,cos0 -~ sRsine = — ztr - 4%
éﬂ’; 4 1&) = ],‘TY ‘n?‘ SO & ?E’,sme +‘%-9(ees«@e)= '-Y:FE'%%
phlete - fof | semane- %-a‘-g(rasm@ + & fracse

Derivation of stress-strain relations from general equations.

For the conical wall 0= (490-)) where 2A is the cone
angle at the apex. R, = co"', R=Ys xtan XN . | where x is

the distance measured from the apex of the cone to any section.

Putting R,de = dx , the complete set of equations may be

written:-
f(Er) - fob )0 A -F - - )9
E(E s hof | @ - & (sxhny= mx% ©
e(he) =feb o 60 = -FEposEY |0
(G4 <p-ef e o --% ®

Extensional Equations.

As before, the omission of the shear term in (6)
enables the necessary equations for extensional effects to be

found, and they are given as:-

¥ = i%g (yﬁ

_ 3T atan) ~L b i
u = :ﬁ:; -E—-(cfkkwg) b, fanm X (19
Z = Qi%g Pyx + %?hﬂcx + b\ Qn

where e, and bl are integration constants, and P the internal

bressure.

Edge effgct Equations.

|
Due to the presence of the term %g in equation (7),

the reduction of the equations for edge effects is somewhat

more/
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more complicated than the similar procedure in the cylindrical

wall case. Omitting the load terms and integration constants

we obtain:-
From (5) and (6) £ (bx) = £ - - Lisylnn (1
From (1) EZ = (;) -a(b0) - Ecobn.u )

F = A - e h(bn) -Eeobr B 1s)
Substituting from (2)

boofe L) -chl)-Eotrde O

EwtNl = - (%19 fand + fan) - % g\x &(sx)} an)

Hence from (13)

ds 3 ds EL .
ot X W T ohea T ° )

From equations (3) and (4)
' . , EY-\ . .
) =& §) b ) ;(.—.;ﬁé‘izw‘-ézl

' de’ x) = uo-«‘) S8+ % ()

-avy  Ax

Substituting for c%‘(]a&) and f' in equation (7).

N e AL } (20)

d’c A de ¢ > (-ot
d~xr + ’X-C\;C‘)()’*' —C';i"_Eo:‘s = O (1\)

- o™ o
Putting = — (sx) and X= %  equations (18) and (21) may

be written:-~ ‘
do , Ldn _dn 206D . _ o
s T RAR T Rr [T
‘f_‘; L du 24 -
art R 3%{ ;21 -7 = o

The solutions of the equations in (22) are:-
L= —L--Qmegkasn‘ﬁ + HSI'V\D'R\& + e’“QiK,msdQ + H, o “'Eﬂ - (3)
R

D= %[@R% HosnR + Kpw rs'fe}3 + e—“ei\—l‘cosrs'ﬁ - H pmn‘E;Q.- (24)

4
where X, H a are integration constants; n = -/20=c)
| » H, K and H are e N

Q= (a‘ ;\1\3 , and R=~42x . With i and n known, all other

qQuantities may be found.

The tangential bending stress, p' = E6 (d c;z}

2(\- 1) dax x
'\ _EBR

e @{_ (s - (K-1) S0 or} + e‘“‘“i— (K- W) cosniR = (KibH) St n‘feﬂ

To/ 1. .
" Ibid., p.583 et seq.
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To obtain an expression similar to that for the axial bending
stress in thin cylindrical walls, it is necessary to put
20 ‘> n. XK"Hls = n ; similarly for the terms containing

(k-v), (K- ¥h) and (+H) in terms of B, C and D

respectively. Hence

| l
k’l = 3},_ iﬂ COSPV'R A—Bsmn(eg A %Ccosnfe»—DSmnR§
= \('{ g B cosp &+ Bsw‘,el‘ i :},—{— ic«,se +3>,D\Y-,@§

. 3 3
n'R=© and % , @ssocialed with fl and B - Q"DR/(R)

where . ;
and 2. “ - e .D = e "R
A
Putting = [20-5%) , the edge effect equations are:-

b'= NT (Acoserpsne) + r(Cwso+Dane) @)
?: fy‘ @6)
S = -’Zﬁ [«ﬁ {(84-9)60594- (B-H)Slbe§+7'f,_‘-§(b-6) wse- (>+¢) sme}] )
L=~ -—\[;L iz(& A)Cos0 - 2(6&9)sme§ fr—{ 2(Or) wsp+2(D-0) smeq (2®)
u= 5 I\Eguscpse -'z.Asmngf ﬁg—mwsw/msmeﬂ @D
? - E%ﬁ (20)
k’ = - Shann D)
Z = ¢§§§ 32)

The cylindrical equations may be reduced to a similar
'form; but, whereas the radius, r, in the cylindrical plate
is constant, in the above equetions it is variable.
Evaluation of the Constants.

The procedure for the determination of the constants
A, B, C and D is similar to that given for the cylindrical wall.
For that case, however, when X=0O, e" = |, resulting in simple
equations for the conditions at the origin. In truncated
cones, the conditions always appear at sections x, and X5
these values representing the distance of the sectioms from the
origin or apex of the cone. Consequently the eight conditions
équations for the conical wall are of a nature similar to those
of the ocylindrical wall at end, L, and the full expressions for

the coefficients of the constants are too long to be of

Practical/
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practical use.
The essential difference in the coefficients of the

nk
two cases depends on the value e for the cylinder and

(& )?‘.‘ . en' (Ry-R)
[

and a conical wall of equal length and thickness and the

for the comne. Teking a cylindrical wall

radius of the cylinder equal to the horizontal radius at the
base of the cone, a comparison of the above quantities may be

effected and results in

AZ = et
— 12Vo) o [Coek
3. ,<F ok, \_mi'z cosh
-_ = m~. @
Z,
3(-V .
where o= 2f c\lx_:; 5 ™m = 3—;-51 and L = L,

In order that the criterion for the four cases
indicated in the cylindrical wall development may be adopted,
it is merely necessary to §eterm1ne the value "nL," by equating
$« — This amounts to reducing the length of conical
wall to a corresponding length of cylindrical wall and selecting
the appropriate method of procedure for the determination of
the constants. When case (1V) applies, the table drawn up,

corresponding to that for the cylindrical wall, is of the type:-

Conditions, at X, P = p'l, S = 855

at xz, »p'c p'z, 8 = 82.
CONSTANT, Coeff. of p'4. &dﬂof&. &nﬂ.ﬁp%. Cosff, of 87, —
AME,, BZL
C/J{‘ . D/J_z—‘ - ] L J -

An interesting observation on the above ratio is that
when X\ tends to zero,m approsches wnity and 25—5' > umtby
showing that when a cylindrical wall becomes a truncated conical
wall, the edge effects are not so rapidly damped out. When
A>T, fﬁ ~>09 , which is the case of a circular flat
dise 8lightly coned, where the boundary conditions cause
distortions and stresses throughout the plate.
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Applications to Experimental Cases.

(1) Vertical Ring Load on a Conical Wall. An application

of these equationsis given for a test on a truncated cone
carried out in the laboratory. The detailé of the plate are
as shown in Fig. 9. A vertical ring load P is applied at
edge (A). The base of the cone is simply supported; the
surfaces in contact being highly polished, frictional forces

were assumed to be zero.

ey

PN ¢

e —]
\(//// \ éﬂé} Rwg Lono P
H"/ ! \\V

T

,‘ {hickness 1z in.

Ta

\

Experimental Observations. The simplest experimental readings

"

li.’l da..

-n

G- 9.

to observe as a check on any results are the relative vertical

displacement between the edges (A) and (B), and the slope at

(B). The former was obtained by means of an Ames' dial

reading to i in., the letter by a Martin's extensometer. -

1000 S e
These tests were carried out in the Laboratory of the
Mechanics and Mechanical Engineering Department at the Royal
Glasgow.

Technical College/. A diagram of the apparatus is shown in

Fig. 10. ;
The readings are shown in Figs. 12 and 11 respectively.

06
The slope of the graph in Fig. 12 gives Eg-- in. per ton, and

1000
in Fig. 11, 22282 radiens per ton. e
1000 o ‘
Y
5 < i A L
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[

éi;
“
I
%gm
®
Qg b al
83
SRS
o o/ (754 03 o4 (723
Total vertical load. fons.
Fic. B,
Change of Slope at B.
: )8
| S
| E:QE
: 2% 50
" SV
| R NN
‘ §§§5 ot — |
R il
S8y ‘e
8 9 0/ 17253 03 2 06
‘ Total vertical load, 7ons.

Fic. IR 12,
Relative Vertical Deflection between A and B.

The first two readings in Fig. 12 which are obviously
not correct theoretically, may be explained as due to a
slight non-parallelism of the edges (A) and (B), and therefore
a non-equal distribution of the load round the edge A, which
continued until a load of 0.1 tons was applied. Another
reading observed was the extension of a chord of length
8.993 in. under full load, and this was found to be in close
agreement with the theoretical calculation.

Anelytical Investigation.

Length of conical plate 4.62 in.,
x

Some 22 0.333.

IB

Corresponding length of c¢ylindrical wall, L =« 3.72 in.

X, = 2.31 in., xB- 6.93 in.,

4/ 30-6™)
Re?
. nL = 2.1 x 3.72 = 7.8, which is >2T; hence for edge

=

= 2.1, where

effects, case (1) applies.
Edge Effects.

The conditions for the problem are:-

d" xl) F‘=°, s=$ﬂ.
ab xg , t>'=o, S : Sg.
The necessary equations for the evaluation of the constants

are then - for A and B,
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0= Vg (hwse, + B q)
Sp= - %\j-% [\r{e {(m A) 0so, + (B-A)sio egq

for ¢ end D.

- W®

O = «l:‘{:n (Cosop 4 Dsmeg)

~ . @_')

Sp =" %\j—%“ LT‘_;; {(D-C_) COSOH ~ (D‘\'C) 9N eniJ

From which we obtain the constants,
Sab s

AT = — B ks L
AL - v %/t

M - e MR T e
e\ &/ em

Where b= swe q= cose.

When determining the distortions and stresses at an edge,
it is not necessary to evaluate the constants. Substituting
the above constants in the appropriate expressions we obtain:-
At edge (A)

Radial deflection, u = Vo[l [ 2¢ }
acte setion, © ee[ﬁ;("’%* bn )

Py faa A

THE E:/fu

7.97 in.per ton

1000 (inwards).

Circumferential direct stress, f = E 8 .-22.9 tons per in.%
rA per ton.

Change of slope, 1

-2/_;\/% [J—;ﬂ{g(mc)qw + 2(p-¢) baﬂ

Py ¥an)~
TRE
— 20.3 radians per ton.
1000
At edge (B), it follows
PV ;un A .
Rediel deflection, u = — DA 3-8 .
| rre e T e iPerlen
Ciroumferential direct stress, £ « E l% = 4+ 32 Vo«s)}urfn‘. )azr fon.
[
P l‘an)s - 20-3 .
Change of slope , 1 = -~ T&FE_— = o~ = Yadians }wr ton .
Experimental reading, i = - 19.65 radians per ton.
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For intermediate sections it is necessary to draw

up & tabular scheme.

The best method is to determine the

effects of the forces at edges separately, the final result

at any section belng obtained by addition.

According to the

ratio nL, the forces at the edges in this case have no effect

at sections beyond a distance of 2 in., which means roughly

that the sections in the middle sixth of the plate are not

affected by the conditions at either edge.

for the tangential bending stresses induced at sections

The following table gives the method of computation

within a distance of 2 in. from the edge (2).

Tangential bending stress, p'= /2 (F\c‘/ + Bb)

‘5bb3 (] SBCXB
2 AZ, T 2 - - 035 ) Beele: - ———t> = - |-52

° ¥ &/e ? ® ¥ ke

ReVi| [3
2R | | 8 .0,-08 R) \’i—’; cos & | sin® | AlcosB | B'cosB| '
68 | 3.3 | 552 | 2080 |1 1 1 | 0615 e |o 183 |-18 0

643 | 358 | * [ 1985 |04T5 102 | 0485 | o78 | .685 [e10.3 105 |-89
5.3 |3.44 | * (1900 {o2 | 100 | o2 | +9%9 [e03® [ [s004 |-500
50033 | * |80 oot | 100 | 009 | o3 |-% LB |etm |-14
43 {3u ] v |mae oo | 14| oo | et |eom 5B [e15 | -0.182

These results, along with those for radial deflection

and change of slope have been graphed and are shown in Fig.l3.

The graphs are interesting and show definitely the rapidity

with which the edge effects are damped out.

Similar results

may be obtained for distortions and stresses due to effects at

edge (A).
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~
(8]

RADIAL
‘{ DEFLECTION

% I,
R0 ;
X Max. deflection
¢ SN R
k)
%, ~ L
N
%30 TCHANGE
%2 —t OF SLOPE
) \
é 0 > ~
R0
20-3
Max. change of slope 255 rad.
o TANGENTIAL BENDING
N, STRESS
30 —“TMxl;end' ;
NS lax. ing
2 s / \/E#ESS, 9 dons/id|,
L
o *
693 643 593 543 493 /n.
Distances measured from the apex C,
Fic. 1l 13.
r—-——'—'-*f ''''''
Extensional Effects.
Pmsx a. . -
At X=Xqg ) t)- m-*;q S, a4, = - 4] fbﬂSY?&\’\n.'
a, .
t? = = = ~ 0.6366 tons }w.\’ .
R x A !
= = - " -
FB * X, 7 -ora .
dl' X = X , USinN = Z <os A\
from which \9\ = - ‘aé{k&i Xg 4 o”s\n‘)\g = 0——1——'1’636 in.

With al and bl known, it is & simple matter to determine the
values u and z. The displacements at the boundaries due to

extensional and edge effects are combined in the following

table: -

At Edge (A). Extensional . Edge Effect. Total.
0.228 197 8.198
Radial displacesent, u. o — ® cone ® owmem in,
© 1 2
Tongential * s Ze s m - g:.@.‘ s 9.:.@; '
© 13 v
At Edge (8) Extengfomal . Edge Effect. Total.
Redial displacement, u. s 0.0% ¢+ Ba . DE% in.
© © ©’
Tangmtial * | 2, o 20 AL L
3 1 03
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The tangential displacement, z, due to edge effects is
generally assumed to be zero. The assumption is obviously
permissible.

Relative vertical deflection between edges (A) and (B)

(un - Us) sION

= 1243 4p, per ton.
10°

Experimental reading = lﬁgﬁ " P
10

Increase of horizontal radius at base of cone -

Ug cosh + Zp SN

= 2282 4. per ton.

103
The conclusions from this problem show the critical
stresses to be the tangential bending stress, p', and the
eiroumferential direct stress, f, the important movements to
be the radial displacement u, and the change of slope, 1i; all

of which occur at, or near, the edges of the coned plate.
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Applications to Experimental Cases.
Coned
(11) Load Test on a/Separator Casing.

An opportunity waé

afforded to record the distortions in the shell of a grit
separator supporting a load of 26 tons, representing the weight
of a chimney. Fig. 14 shows a photograph of the separator
under full load, while the general arrangement 1s given in
Fig. 15. A ring welded to the upper conical wall at (b)
supports the load. This cone is connected to the outer
cylinder by a single riveted lap joint at (a), while it is
reinforced by an inner cylinder (c.d.) attached by a welded
joint at (c). The bottom conical wall, forming the base of
the separator, is heavily reinforced by vanes terminating at
(£); and the connection to the outer cylinder at (e) is similar
to the one at (a).

lgzperimental Observations: The two important movements of

this separator recorded during the load tes