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Abstract 

 

Most of the time we are not passively viewing scenes but want to extract behaviourally 

relevant information. In addition, objects do not often occur in isolation outside the visual 

scientist’s laboratory but are embedded in complex visual scenes. If the brain is to be 

adaptive, it needs to process visual information with regards to its context. Thus perception 

is not purely determined by the specific input to the retina but depends on the surrounding 

scene, objects, attention, memory, prior knowledge, expectations and predictions.  

Traditionally, the visual system in the human brain has been viewed as having a 

hierarchical organisation with signals travelling in one direction: input from the eyes 

arrives at ―lower‖ order areas, which then transmit their computations to ―higher‖ order 

areas. As one moves up the hierarchy, visual areas code more complex and more abstract 

information, and after the final processing stage, the system gives an output. However, in 

reality things are not so simple. In fact, in the primary visual cortex (V1), which is one of 

the first visual processing stages in the brain, external stimuli constitute less than 10% of 

the total input. The rest of the input originates from internal connections, either within V1 

itself or via signals arriving from ―higher‖ areas, back down to V1. In this way, ―higher‖ 

areas can tell ―lower‖ ones about the bigger picture and the neighbouring elements. This 

internal processing in the brain is the mechanism which provides context and enriches the 

information reaching us from the external world. 

The signals arriving to V1 from the retina are referred to as feedforward, while the signals 

going in the opposite direction, from higher areas back to V1, are called feedback. Each 

neuron responds to its preferred stimulus in a specific region of the visual field, called the 

receptive field. Feedforward signals act on the central region of a neuron’s receptive field, 

while feedback signals act on a larger surround region and thus are able to inform the 

centre about the surrounding context. However, it is not well established which aspects of 

the surrounding scene define these contextual interactions. This thesis investigated the 

influence of the scene surround on feedback to V1. We aimed to establish how the scene 

surround contributes to informative feedback signals. 

An introduction about what is already known regarding the function of feedback and the 

information it transmits is provided in Chapter 1. I give an overview of the previous 

studies which highlight the various contextual roles of feedback, such as perceptual 
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grouping, contour and object completion, expectation, attention and prediction, as well as 

being the mechanism allowing visual imagery. 

Chapter 2 aimed to address whether feedback provides coarse or fine-grained information 

about the surrounding scene. Since during normal viewing both feedback and feedforward 

signals are present, we investigated feedback signals in isolation by using a partial 

occlusion paradigm to remove meaningful feedforward input in a specific region of the 

scene. We filtered the scene surrounding the occluded region into a fine-grained and a 

coarse version. We also varied how much information was shared between the fine-grained 

and coarse version of the same scene. This was done to investigate whether the information 

feedback carried was tightly tuned to the spatial scale of the surrounding scene, or whether 

the information it contained was similar across the two types of the scene surround. We 

found that the feedback contained signals about both coarse and fine-grained surrounds, 

but there was also some overlap between these feedback signals. In addition, we found that 

the feedback information did not correspond to a direct ―filling-in‖ of the missing 

feedforward input, suggesting that feedback and feedforward signals represent the scene in 

different ways. 

In Chapter 3 we took a closer look at the amount of meaningful scene surround that is 

necessary to elicit informative feedback signals. The results showed that increasing the 

amount of scene information in the surround resulted in more meaningful feedback signals. 

We confirmed our earlier finding that the feedback information in the occluded region is 

dissimilar to the corresponding feedforward input when the feedforward region is isolated 

from the scene surround. Adding the scene surround to the feedforward stimulus increased 

this feedback/feedforward similarity. Overall, these findings point to the notion that 

feedback signals combine with feedforward input under normal visual processing. Isolated 

feedforward input in the absence of the surround provides V1 neurons with impoverished 

information. 

Neighbouring elements of the scene or its overall global structure can be sources of 

context. In Chapter 4 we explored which regions of the scene surround contribute the 

most to the contextual feedback signals arriving at V1 – is this limited to only local 

neighbouring regions or does the feedback directly contain information about the overall 

global image structure, taking into account distant retinotopic regions as well? In the first 

experiment, we used simple global structures made up of four Gabor elements and showed 

that such simplistic shapes failed to induce contextual feedback into the occluded region. 
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However, in the presence of feedforward information, we saw that feedback from the local 

surround combined with identical feedforward input to give rise to different activity 

patterns in that feedforward region. This suggests that feedback may be recruited 

differentially depending on whether feedforward stimulation is present or absent. In the 

second experiment, we used natural scenes and tested whether contextual feedback can 

originate from a distant retinotopic region in the situation when the local scene surround 

was not informative. We manipulated scene information in a distant retinotopic region (in 

the opposite hemisphere) while keeping the local neighbouring surround information the 

same. The results showed a lack of meaningful feedback in the occluded region, and that 

feedback from the distant surround had a negligible effect on the identical feedforward 

information, in contrast to the finding obtained previously with the local surround. These 

findings suggest that feedback preferentially originates from nearby regions and provides 

context to disambiguate local feedforward elements. Therefore context about the global 

scene structure may arise from a series of local surround interactions. 

Chapter 5 summarises these findings and discusses the overarching themes regarding the 

content of feedback and its role in full visual processing. At the end, I propose some future 

research directions. 
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1 General introduction 

 

 

Most of the time we are not just passively viewing scenes but want to extract behaviourally 

relevant information. In addition, objects do not often occur in isolation outside the visual 

scientist’s laboratory but are embedded in complex visual scenes. If the brain is to be 

adaptive, it needs to process visual information with regards to its context. For example, in 

Figure 1.1A, is the middle object the letter ―B‖ or the number ―13‖? In Figure 1.1B, the 

squares labelled A and B are actually the same colour, but appear different because the 

visual system takes the shadow into consideration. The reader is invited to check this for 

themselves by covering up the other squares and then comparing A and B once more. Thus 

perception is not purely determined by the specific input to the retina but depends on the 

surrounding scene and objects, attention, memory, prior knowledge, expectations and 

predictions. Investigating how the brain achieves this is a question which has kept 

psychologists busy for many decades (and still is!). 

 

Figure 1.1 | Context is often needed to interpret what we see. A) Is the object in the middle 

the letter “B” or the number “13”? B) The squares labelled A and B are actually the same colour, 

but appear different because the visual system takes the shadow into consideration. 

Traditionally, the visual system in the human brain has been viewed as having a 

hierarchical organisation with signals travelling in one direction: input from the eyes 

arrives at ―lower‖ order areas, which then transmit their computations to ―higher‖ order 

areas. As one moves up the hierarchy, visual areas code more complex and more abstract 

information, and after the final processing stage, the system gives an output. However, in 
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reality things are not so simple. In fact, in the primary visual cortex (V1), which is one of 

the first visual processing stages in the brain, external stimuli constitute less than 10% of 

the total input (Budd, 1998; Douglas & Martin, 2007). The rest of the input originates from 

internal connections, either within V1 itself or via signals arriving from ―higher‖ areas, 

back down to V1. In this way, ―higher‖ areas can tell ―lower‖ ones about the bigger picture 

and the neighbouring elements. This internal processing in the brain is the mechanism 

which provides context and enriches the information reaching us from the external world. 

This chapter will review some of the things we already know about the primary visual 

cortex and how internal processing helps us perceive the world by taking surrounding 

context, prior knowledge and behavioural goals into account. Feedback signals have a role 

in modulating feedforward input, as well as enabling internal computations in the absence 

of feedforward stimulation. Feedback has a variety of tasks, such as: the combination of 

local elements into global structures, generating internal models about the world for 

providing predictions and expectations, and supporting imagery and working memory. I 

will start by giving a short overview of the anatomy of the visual system and will move 

onto explaining in more detail some of the roles the internal signals have in visual 

processing. 

 

1.1  Primary visual cortex 

Vision is important – the human brain dedicates around a quarter of its neocortex to visual 

processing (Van Essen, 2004; Wandell, Dumoulin, & Brewer, 2007). The visual system 

has traditionally been thought of as having a hierarchical organisation with ―lower‖ order 

areas transmitting information to ―higher‖ areas, and as one moves up the hierarchy, visual 

areas code more complex and more abstract information about the visual input. However, 

the true relationship is slightly more complex since lower order areas have direct 

connections to several higher levels of the hierarchy, as well as higher areas having 

connections back to lower areas (Felleman & Van Essen, 1991). The primary visual cortex 

is the first stage of the hierarchy. Perhaps the most studied visual area, it is an important 

region since nearly all of the visual information reaching the cortex passes through here. 

V1 has also been implicated in visual awareness (Holmes, 1918; Tong, 2003) – an 

important region indeed! Damage to parts of V1 leads to blindness in the corresponding 

areas of the visual field. However, feedforward activity in V1 is not in itself sufficient for 
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awareness (Rees et al., 2000). Visual signals from the retina are transmitted to V1 via the 

lateral geniculate nucleus (LGN) in the thalamus. V1 and the rest of the early visual cortex 

is organised retinotopically; that is neighbouring parts of the visual field are projected to 

adjacent parts of the cortical surface (Wandell et al., 2007). In this way, the cortex forms a 

map of the visual world. However, due to cortical magnification, the central region of the 

visual field, the fovea, is processed by a larger part of the cortex. 

Signals passing from lower order to higher order areas are referred to as feedforward. In 

V1, these inputs from the LGN constitute less than 10% of the total excitatory input (Budd, 

1998; Douglas & Martin, 2007). Carandini et al. (2005) estimate that the best current 

models, mostly based on feedforward processing, can only explain around 40% of the 

response variance in V1. If most input to V1 does not originate from external stimulation, 

then internal intra- and inter-areal connections must explain the rest of the response 

variance. V1 receives many inputs from various cortical areas, both visual and non-visual 

(Muckli & Petro, 2013). For example, V1 receives ten times as many axons from V2 than 

it does from the LGN (Budd, 1998). These connections and signals from higher to lower 

cortical areas are referred to as feedback. Figure 1.2 shows the many brain regions which 

send feedback to V1. In addition to feedforward and feedback signals, there are lateral 

connections within small regions of each cortical area. 

 

Fig 1.2 | V1 receives feedback from many other cortical areas, both visual and non-visual. 

For example, visual areas like V2-5, the primary auditory cortex and some subcortical structures 

such as the amygdala send signals back to V1. Used with permission from Muckli and Petro 

(2013), Current Opinion in Neurobiology.  
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1.2 Receptive fields 

Each V1 neuron responds to a preferred stimulus, such as a line of a particular orientation, 

in a specific region of the visual field – this is the so called classical or central receptive 

field (RF, Hubel & Wiesel, 1959). However, the RF does not just consist of this central 

part, but also includes a near and a far surround region. Stimuli presented in the near 

surround RF, together with the central RF, usually facilitate the response to a visual 

stimulus. Presenting stimuli of the same orientation in the far surround instead suppresses 

the response to optimal stimuli in the centre. The LGN input acts on the central RF, with 

lateral connections extending along the near surround, while the far surround receives 

feedback from other cortical regions (Angelucci & Bressloff, 2006). The surround RF 

(comprising of the near and far areas) is also referred to as the non-classical RF, since the 

presence of stimuli here does not invoke spikes, but can still modulate the response to 

stimuli in the classical RF. Receptive field size increases along the processing hierarchy 

(Kravitz, Saleem, Baker, Ungerleider, & Mishkin, 2013), so feedback from higher areas, 

contributing to the far surround RF, carries information about a larger region of the visual 

field, compared to the classical RF. In V1 the central RF is around 1° of visual angle 

(Levitt & Lund, 2002). Surround RFs are on average 4.6 times larger (Angelucci & 

Bressloff, 2006). Angelucci and Bressloff (2006) found that at eccentricities between 2° 

and 8° of visual angle, V1 surround sizes were on average 5.1° of visual angle and ranged 

up to 13°. Ichida, Schwabe, Bressloff and Angelucci (2005) also reported larger surrounds 

of up to 28° in macaques. Feedback connections convey information to V1 from regions of 

visual space that are much greater than that conveyed by lateral connections. The size of 

this feedback region also increases with cortical distance from V1, being larger in the 

medial temporal area (MT) than in V2 (an area lower in the hierarchy compared to MT), 

for instance (Angelucci & Bressloff, 2006).  

 

1.3 Why does the brain need feedback? 

Traditionally, the visual system has been viewed in a bottom-up, hierarchical manner, with 

each stage processing more and more complex aspects of the visual stimuli. However, 

neurons do not act as simple linear feature detectors of bottom-up stimulus input but are 

also modulated by top-down internal processing (Kayser, Körding, & König, 2004). On the 

level of single neurons, feedback from the surround RF has been shown to be essential for 
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some properties of neurons. For example, Rao and Ballard (1999) found that removing 

feedback in their model disrupted the function of endstopped neurons (which normally 

reduce their response when an optimally oriented line extends beyond the classical RF). 

Murphy and Sillito (1987) have also shown that removal of feedback from area 17 and 18 

in cats (homologous to V1) reduced end-inhibition of LGN cells. On a larger scale, Gilbert 

and Li (2013) propose that ―each neuron is a microcosm of the brain as a whole, with 

synapses carrying information originating from far flung brain regions.‖ Influences from 

the surround have effects on neuronal response, and so we must look beyond the classical 

RF if we are to understand visual processing (Angelucci & Bullier, 2003). Thus in recent 

years, there has been a shift to acknowledging that top-down processing, via feedback 

connections from higher areas to lower areas, also plays an important role in visual 

processing. 

The visual system can provide a variety of responses to the same visual input. Perception is 

not purely determined by what is detected by the retina, but also by cognitive factors, such 

as attention, memory, expectations and predictions about the upcoming visual stimulation 

and the task at hand. We are not passively viewing scenes most of the time, but often want 

to extract behaviourally relevant information. As for recognising specific objects, they 

often do not occur in isolation outside the vision scientist’s laboratory, but are embedded in 

complex visual scenes. Feedback signals are thought to be the mechanism producing this 

visual and behavioural context. 

Processing visual input in context is helpful because local features may be insufficient to 

identify a specific object, since the object may be, for example, too small, occluded, 

camouflaged or ambiguous (Oliva & Torralba, 2007). Moreover, the same feedforward 

input may arise from several different objects, and thus the overall context of the scene can 

help to choose one inference over another. For example, in conditions of poor visibility 

such as blur, the same shape can correspond to either a hairdryer or a drill. In this case, the 

context of the room, either a bathroom or a garage, would help the perceiver to recognise 

the true object correctly (Figure 1.3, Bar, 2004). Context also affects the efficiency of 

search and recognition of objects. Objects appearing on a consistent and familiar 

background are detected more accurately than objects which appear in an inconsistent 

scene (e.g. Palmer, 1975). In addition, the recognition of objects that are highly associated 

with a certain context helps the identification of more ambiguous objects which share the 

same context (Bar & Ullman, 1996). This phenomenon demonstrates that predictable 

properties of the environment facilitate perception and object recognition. Such prior 
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knowledge can constrain the interpretations of an object we are viewing. Bar (2004) 

proposed that these context-driven predictions can in fact additionally allow us to choose 

not to attend to the object at all if none of the possible identities suggested by the context 

are of immediate behavioural interest. 

 

Figure 1.3 | An identical object can appear as a hairdryer or a drill depending on scene 

context. Used with permission from Bar (2004). Nature Reviews Neuroscience. 

Context can come from a variety of sources and can be spatial or temporal. For example, 

context can be activated by global scene information (Bar, 2004) and we can quickly 

extract scene category from brief presentations of around 100 ms. Natural scenes have 

predictable configurations that we are familiar with from previous experience. For 

example, we know what a generic city, a generic forest, and so on, looks like. Therefore, it 

is easy to quickly extract context from natural scenes. Haslinger et al. (2012) showed that 

when viewing natural scenes, the surround, spike history, and local field potentials could 

explain the firing rate almost as much as the input to the classical RF, highlighting the 

importance of feedback and context on neuronal firing. Contextual feedback about scene 

information specifically, may originate from the parahippocampal place area (PPA) and the 

retrosplenial cortex (RSC), as these cortical regions have been shown to code for spatial as 

well as non-spatial context (Bar & Aminoff, 2003).  

Context can also be temporal, such as learning a particular predictable sequence of events. 

For example, seeing the letters A, B and C in this order may provide context for expecting 

the letter D to appear next. Gavornik and Bear (2014) found that after mice were trained on 

a specific sequence, V1 showed activity for the full sequence, even when certain elements 

were omitted. The authors interpreted this as the brain making intelligent guesses to form 

visual percepts from limited information.  
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The following sections will elaborate some of the contextual influences that feedback 

underlies – from identifying objects and segmenting them from background, to allowing 

expectations and prior knowledge to modulate perception. 

1.3.1 Global stucture from local elements 

In a cluttered environment, the visual system has to identify how local features fit into the 

global picture. Objects are usually embedded in complex visual scenes, and are often not 

fully visible, for example, being occluded by other objects in front of them, being in a 

shadow, in limited viewing angles and so on. When viewing a scene, one role of the visual 

system is to segment it and form boundaries around various objects. This allows the 

identification of surfaces, grouping of local elements into single coherent objects and 

segregation of figures from background. For example, in order to identify which edges 

belong to the same object on either side of an occluder, the integration of contours and 

surfaces is needed. Lee and Nguyen (2001) found that V1 responds to illusory contours in 

Kanizsa figures. Since V1 neurons can receive feedback from a much larger retinotopic 

area than the classical RF, feedback to V1 can signal about the global image structure and 

modulate the neurons’ response to local features. On a single neuron level, these global to 

local interactions correspond to the centre-surround interactions of the neurons’ receptive 

fields. 

Many authors have proposed that feedback and lateral connections play an important role 

in perceptual grouping (Angelucci & Bullier, 2003; Ciaramelli, Leo, Del Viva, Burr, & 

Ladavas, 2007; Coen-Cagli, Kohn, & Schwartz, 2015; Fahrenfort, Scholte, & Lamme, 

2007; Gilad, Meirovithz, & Slovin, 2013; Gilad, Pesoa, Ayzenshtat, & Slovin, 2014; Hess 

& Field, 1999; Scholte, Jolij, Fahrenfort, & Lamme, 2008; Volberg, Wutz, & Greenlee, 

2013). For example, Scholte et al. (2008) showed that while boundary detection occurs in a 

feedforward fashion, surface segregation requires feedback signals towards the early visual 

areas. Disrupting this feedback activity interferes with figure-ground segregation 

(Fahrenfort et al., 2007). By using thermal deactivation of a higher area Schmidt, Lomber, 

Payne and Galuske (2011) demonstrated that feedback connections are necessary for 

integration of local cues into a global motion percept. In addition, when local elements are 

perceptually combined into a global shape, activity in V1 is reduced, presumably as a 

result of grouping processes which are fedback from higher areas (Murray, Kersten, 

Olshausen, Schrater, & Woods, 2002; de-Wit, Kubilius, Wagemans, & Op de Beeck, 

2012). 
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One way to code for a difference between figure and background or discontinuous 

elements, could be a differential recruitment of surround suppression, which feedback 

contributes to (Nassi, Lomber, & Born, 2013). Homogeneous regions of an image are 

likely to belong to the same surface, such as sand on a beach, while heterogeneities are 

likely to signal different surfaces and objects. Surround can be recruited to code for this 

difference. If the image is homogeneous, the output of the RF is suppressed, else the 

surround suppression mechanism is disengaged (Coen-Cagli et al., 2015) and changes in 

the local structure are detected, for example, a change in the surface or an edge. In this 

way, identical feedforward sensory stimuli can be interpreted differently depending on 

surrounding information. 

Feedback is also involved in contour completion. V1 even responds to illusory borders 

(e.g. Grosof, Shapley, & Hawken, 1993; Kok & de Lange, 2014; Lee & Nguyen, 2001), 

and can be modulated by surrounding context (Rennig, Karnath, & Huberle, 2013), 

suggesting top-down effects. Detection of contours requires grouping of related elements 

into a single coherent object. This cannot be achieved via a simple element by element 

feedforward coding. For example, Gilad et al. (2013) used voltage sensitive dyes in 

monkey V1 during contour detection. They found an early response to individual contour 

and background elements, and a later increased activity in the contour elements, together 

with the suppression of the background. This late activity went beyond the representation 

of individual background and contour elements, and was correlated with performance. The 

authors suggested that V1 is involved in the transformation processes from discrete 

elements in the early stages to a later representation of a coherent object. 

Ability to form global percepts out of local information enables the visual system to be 

good at recognising objects from partial information and be able to complete the missing 

image elements. Lerner, Hendler and Malach (2002) investigated where these effects might 

occur in the visual system. Subjects were presented with three types of images – whole line 

drawings of objects, grid images where these shapes were occluded by evenly spaced 

parallel strips and scrambled images, similar to the grid images but where the visible strips 

were scrambled. The image within each visible strip was still intact. However, the global 

coherence was broken. Using functional magnetic resonance imaging (fMRI) the authors 

found higher activation in the lateral occipital complex (LOC) to the grid images compared 

to the scrambled ones, highlighting a potential locus for ―completion effects‖ in the brain. 

However, a similar effect was not found in the early retinotopic areas (such as V1), leading 

the authors to conclude that the early visual areas are more concerned with local feature 
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representation, while completion effects occur later on in the hierarchy. Other studies, 

however, have shown the role of V1 in image completion, and this effect may depend on 

top-down feedback. 

For example, Ban et al. (2013) investigated the representation of an occluded part of an 

object in V1 and found that the occluded portion of an object was represented. This was 

modulated by prior knowledge since the activity was different to that in a ―divided‖ 

condition, even though the stimulus looked the same when going behind the occluder. This 

effect of prior knowledge was stronger in V1 than in V2, suggesting these areas may be 

playing different roles in solving the completion problem. Another study on occlusion 

found that macaque V1 responds to an occluded bar when the occluder that covers the bar 

has a perceived depth such that it looks to be in front of it (Sugita, 1999). Since the bar was 

not visible to the recorded central receptive field, this finding points to the contextual 

influence of the surround. There was no response to the occluding patch when it was 

perceived to be at the same depth (similar to Ban et al.’s ―divided‖ condition). The 

response latency for the bar behind the patch was not different from that for an unoccluded 

bar. Sugita suggested that it was therefore likely that the feedback signals originated from 

the areas very close to V1. In a study on neuronal response to whole and partial objects, 

Tang et al. (2014) recorded intracranial field potentials in epilepsy patients. The features of 

the object revealed in the partial condition varied from trial to trial. The researchers 

showed that even with few features present (on average 18%), neural responses in the 

ventral stream nevertheless retained object selectivity. Crucially, there was a response 

delay of around 100 ms for the partial objects, suggesting that perhaps recurrent 

computations based on prior knowledge about the object were needed for the object 

completion effects to occur. Processing delays were especially pronounced in higher areas 

along the visual hierarchy. Responses in occluded regions have also been seen with natural 

scenes. Smith and Muckli (2010) showed that activity patterns in an occluded region of a 

natural scene contain contextual information about the surrounding scene. Using more 

dynamic stimuli, such as apparent motion illusions, where two stimuli flashed in an 

alternating way to produce an illusion of back and forth motion, it has been shown that the 

apparent motion path is represented in V1, despite no stimulus ever being presented there 

in a feedforward manner (Muckli, Kohler, Kriegeskorte, & Singer, 2005). A similar result 

was also demonstrated in ferret area 17 (homologous to primate V1), where spikes were 

recorded in neurons situated between the stimulus representations (Ahmed et al., 2008). 
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1.3.2 Facilitating perception 

Visual input is interpreted with prior knowledge about the world. The visual system is 

somewhat ―lazy‖ and does not process everything that is out there to the same degree. 

Processing every single ―pixel‖ of the visual scene would use up unnecessary energy so the 

brain takes shortcuts. Information in the world is largely redundant (Attneave, 1954; 

Barlow, 1961) and a lot of the time is predictable from one instance to the next. For 

example, as we are walking along a familiar route, the colours of the houses do not 

suddenly change as we walk past them and we have some expectations of what we will see 

around the corner. Therefore, it is more efficient to code for departures from the expected 

rather than analysing all of the visual information. A similar idea is used in digital image 

processing techniques, using compressed formats such as JPEG. For example, it would be 

redundant to store and process every pixel in the uniform white background of this page, 

and therefore only the deviations from white, such as the black letters, would need to be 

coded. In a similar fashion, the brain can be more efficient, saving bandwidth and energy 

by only looking for unexpected variations and transmitting these deviations. 

Theories of predictive coding build on this idea and postulate that the brain aims to predict 

upcoming perceptual experiences based on internal models constructed from previous 

sensory experience and then encode the unpredicted input for further processing. The brain 

is somewhat like a black box: it has no direct access to the outside world and only knows 

about its internal states and spiking of neurons. Therefore, it has to infer what the stimulus 

was from the observed effect. A single effect may be consistent with multiple causes and 

therefore the brain must generate probability distributions associated with each cause 

(Clark, 2013). The brain is essentially an inference engine, trying to optimise the 

probabilistic representations of what caused the sensory input. The brain forms a model of 

the world which it tries to optimise using sensory inputs, with the end goal of reducing 

prediction errors (Friston, 2010). According to Friston, the brain’s task is based on the 

free-energy principle, aiming to minimise free-energy or surprise. There are two ways to 

achieve this, by either altering the sensory input (changing actions) or varying the internal 

state (changing perception). In this way, the brain is constantly optimising its internal 

models by predicting the stimulus and testing its hypotheses using new sensory input to 

explain away the prediction errors (Friston, 2010; Lee & Mumford, 2003; Mumford, 1991; 

Rao & Ballard, 1999). Rao and Ballard (1999) proposed a model in which feedback from 

higher areas carries predictions, while feedforward signals carry the discrepancies between 

the predicted and the actual sensory input – the prediction errors. Each hierarchical level 
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attempts to predict responses at each lower level. According to Mumford (1991) higher 

areas deal with more abstract information, whereas lower areas deal with more concrete 

data. The brain learns the various patterns that occur in sensory stimuli and generates 

multiple hypotheses as to what input can cause them. The thalamus then votes on these 

hypotheses. Descending predictions arising from deep pyramidal cells are compared to 

incoming sensory signals, and the computed mismatch (prediction error) is transferred in 

the feedforward stream of the superficial pyramidal cells up to the next cortical higher 

level to update the internal models (Clark 2013). 

Predictive coding theories hypothesise that a predictable stimulus would elicit a lower 

response because there is no prediction error and no new information needs to be encoded. 

In line with this, several studies have shown a decrease in activation when the stimulus is 

predictable. For example, Coen-Cagli et al. (2015) found that in a homogeneous image, the 

surround suppressed responses in the classical RF, which was not the case when the 

homogenous surround was removed from around the same feedforward patch of the image. 

This means that if the centre can be predicted from the surround, the information in the 

centre is redundant and hence neuronal firing is suppressed. Essentially, the neuron is 

coding for error or deviation from uniformity rather than a particular piece of content (Rao 

& Sejnowski, 2002). Another example comes from an fMRI study from Alink, 

Schwiedrzik, Kohler, Singer and Muckli (2010), who showed that when the onset or 

motion direction of stimuli can be predicted from the surrounding illusory motion, a 

smaller blood oxygenation level dependent (BOLD) response in V1 is observed. This 

effect in V1 is retinotopically specific to the stimulus representation on the apparent 

motion path. No such effect was observed in V5 (motion processing visual area). 

Top-down predictions and expectations can facilitate or bias perception. Bastos et al., 

(2012) suggested that higher cortical regions create top-down expectations about the 

stimulus, which are sent to lower visual areas to aid perception. By using multivariate 

pattern analysis techniques Kok, Jehee and de Lange (2012) demonstrated that these 

perceptual expectations decreased V1 activity, while at the same time sharpening stimuli 

representation. This representational sharpening also correlates with behavioural response. 

Kok, Failing and de Lange (2014) showed that prior expectations evoked feature-specific 

activity in V1 that was in fact similar to the activity elicited by the corresponding actual 

stimulus. Top-down expectations are in fact powerful enough to create percepts out of 

noise. For example, observers can detect patterns in random noise which match their 

internal representation of a face (Smith, Gosselin & Schyns 2012).  
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Stimuli which are predictable in the context of apparent motion are detected more often 

than unpredictable stimuli (Schwiedrzik, Alink, Kohler, Singer, & Muckli, 2007). 

Predictions help keep perception coherent as demonstrated by studies of the retinal blind 

spot. In this patch of the retina, no photoreceptors are present; however, we do not see a 

―gap‖ in the visual field. Predictions are useful for filling in the missing pieces. For 

example, Maus and Nijhawan (2008) found that when observers were asked to judge the 

final position of a bar moving into the blind spot, they perceived the bar to disappear in 

positions well inside the blind spot. This kind of extrapolation must be due to predictions 

based on the movement of the bar, and does not occur when the bar stimulus is abruptly 

―switched off‖ and becomes invisible outside the blind spot, presumably because 

feedforward information takes over in coding the veridical offset of the stimulus. 

Panichello, Cheung and Bar (2013) argue that predictive mechanisms may shape the 

contents of visual awareness during sensory ambiguity, and when input is less ambiguous, 

predictions serve more of a facilitatory role. Such predictive modulation is advantageous as 

it is more useful to generate a meaningful representation of the world, rather than to 

faithfully represent a noisy signal. 

Binocular rivalry – when separate stimuli are shown to each eye and the combined percept 

alternates between one and the other – is a useful paradigm to study predictions under 

ambiguity. For example, Chopin and Mamassian (2012) showed that a stimulus will tend 

to dominate rivalry if it has been presented more frequently in the past. The authors 

proposed a mechanism for this – predictive adaptation. This follows the simple rule that 

the distribution of events in recent history should match the one observed in the reference 

time frame of the remote past. The expectation of the next percepts should match this so 

that the rule is not broken. The phenomenon of binocular rivalry itself could perhaps be 

explained with top-down predictions. Hohwy, Roepstorff and Friston (2008) argue that 

binocular rivalry is a reasonable (knowledge-oriented) response to an ecologically unusual 

stimulus. One stimulus is chosen to dominate perception, but a large amount of prediction 

error remains and thus perception shifts to include the unexplained variance. No stable 

solution is found and hence perception alternates. Presumably seeing a blend of the two 

stimuli is also very artificial because the visual system’s prior expectations would predict a 

correlation between the inputs to the two eyes. 

When visual input is noisy or degraded, predictions can help perception. In a study where 

images of objects were gradually revealed at each trial, Eger, Henson, Driver and Dolan 

(2007) found that images primed with a congruent word were recognised earlier than those 
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primed with an incongruent word. Because the prime was a word rather than a picture, the 

authors concluded that the observed effect reflected top-down processing. In fact, neuronal 

response may be highly driven by expectation rather than a specific stimulus itself. For 

example, Egner, Monti and Summerfield (2010) demonstrated that the fusiform face area 

(FFA, traditionally associated with face perception) responded strongly also to houses as 

well as faces under high-face-expectation conditions. Predictive processing with face 

expectation and face surprise neuronal units might explain the observed effect. The authors 

argued that visual cortex is better explained as a sum of feature expectation and surprise 

responses than by bottom-up feature detection. 

One source of contextual information is global scene representation (Bar, 2004; Oliva & 

Torralba, 2007), which feedback may signal about. Global scene structure can be used as a 

top-down prediction to help bias the interpretation and categorization of the scene. Global 

scene representations might rely on coarse information (Bar et al., 2006; Oliva & Torralba, 

2006) or fine-grained information (Walther, Chai, Caddigan, Beck, & Fei-Fei, 2011). 

Coarse and fine-grained visual information is represented by different spatial frequency 

bands. Spatial frequency (SF) is one of the first features of the visual scene processed by 

the early visual cortex (e.g. Wilson & Bergen, 1979). The visual system deconstructs the 

input into different spatial frequency bands. Low spatial frequencies define the coarse 

fluctuations in light and dark patches and reflect the global information about the image. A 

blurry picture has low spatial frequency (LSF); high spatial frequencies (HSF), on the other 

hand, convey more fine-grained detail about abrupt spatial changes in the image, such as 

edges. Cells can be described as broadly or narrowly tuned depending on their bandpass 

characteristics – the SF bands they preferentially respond to. LGN cells are broadly tuned, 

while cortical cells are narrowly tuned. Most cells have bandpass characteristics. Cortical 

cells tend to have a bandwidth of 1-1.5 octaves, with HSF preference cells more narrowly 

tuned than those with a LSF preference (De Valois, Albrecht, & Thorell, 1982). The visual 

system relies on midband more, as not all SFs can be used with equal efficiency (Gold, 

Bennett, & Sekuler, 1999). Several studies have indicated V1 preference for stimuli in the 

0.68-2 cycles per degree of visual angle (cpd) range (Haynes & Rees, 2005; Henriksson, 

Nurminen, Hyvärinen, & Vanni, 2008; Tong, Harrison, Dewey, & Kamitani, 2012). 

However, it depends somewhat on the stimulus, in terms of what SF is most optimal. For 

example, in tasks requiring configural information, LSF is processed faster, while in 

featural conditions, HSF has an advantage (Goffaux, Hault, Michel, Vuong, & Rossion, 

2005). Awasthi, Sowman, Friedman and Williams (2013) also found the importance of 

LSF for face stimuli, and additionally that HSF supports the processing of place stimuli. 
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Rajimehr, Devaney, Bilenko, Young and Tootell (2011) lent support to this result by 

finding that the parahippocampal place area is preferentially activated by HSF information. 

The gist of a scene refers to the meaningful information that an observer can identify from 

just a glimpse of a scene, for example, they can extract the category it belongs to. The gist 

is likely to originate from global scene features, which mostly come from LSF information 

(Oliva & Torralba, 2006). If the role of feedback is to provide the context of the scene, it 

may transmit information about the gist – its global structure. LSF information may be 

well suited, therefore, to provide the context of the scene via top-down mechanisms in 

order to bias the visual system to a subset of interpretations, with HSFs then filling in the 

fine-grained details (Bar et al., 2006; Oliva & Torralba, 2006). 

Some support for this hypothesis comes from studies showing that LSF is processed faster 

(Bar et al., 2006; Bar, 2003; Breitmeyer, 2014; Kveraga, Boshyan, & Bar, 2007). 

Prefrontal cortex, specifically the orbitofrontal cortex (OFC), may have a critical role to 

play in providing predictions using LSF information. A coarse version of the input is 

rapidly projected from early visual areas to the OFC. This LSF image is sufficient to 

activate an initial guess about the input. The predictions originating from the LSF 

information can then activate the corresponding visual representations in object processing 

regions in the ventral temporal cortex, to facilitate object recognition by biasing bottom-up 

processes to concentrate on a small set of the most likely object representations. Kveraga et 

al. (2007) proposed that coarse information about the scene is carried rapidly to the OFC 

using magnocellular channels (which are activated by coarse luminance information). They 

found that stimuli biased toward magnocellular processing differentially activated the OFC 

compared to parvocellular biased stimuli (more fine-grained). In addition, OFC activity 

predicted the performance advantage for the magnocellular but not the parvocellular 

stimuli. Bar et al. (2006) also showed that LSF stimuli elicit functional coupling between 

early visual areas and the OFC, while HSF ones do not. 

LSF may not always be processed first. Schyns and Oliva (1994) demonstrated that 

exposure to duration changed the interpretation of hybrid stimuli. Short duration produced 

more accurate matching of LSF hybrids, while long duration – more accurate matching of 

HSF hybrids. On the other hand, priming studies revealed that after a 30 ms exposure, both 

LSF and HSF information from a hybrid stimulus (one image in HSF superimposed over 

another image in LSF) was perceived (Oliva & Schyns, 1997; Parker, Lishman, & Hughes, 
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1996). Oliva and Torralba (2006) argued that scene gist proceeds in a global manner but 

does not necessarily rely on LSF. 

Schyns and colleagues proposed the flexible usage hypothesis (Schyns & Oliva, 1997) and 

highlighted the importance of task demands on which SF bands are preferentially 

processed. If the scene is unknown and needs quick categorisation, then LSF might be 

more useful to give an initial quick guess. But if the scene category is already established, 

HSF scales may become more useful in pinning down the particular example of the 

category (Schyns & Oliva, 1994). For example, if we already know we are viewing images 

of cities, higher scales would be more useful in differentiating between the Big Ben tower 

and the Empire State Building. One empirical example for flexible usage comes from 

Schyns and Oliva (1999), who used a face categorisation task based on gender or emotion, 

and found that LSF is used for gender categorisation, while HSF is important for emotion. 

This shows that different SF bands are available to the visual system early on and task 

demands bias the visual system to preferentially process a particular one. Schyns and Oliva 

(1997) suggested that scale usage could be flexibly determined by the diagnosticity of 

scale-specific cues for different categorisations of scenes and faces. Other studies have also 

shown top-down modulation of scale usage (Sowden, Özgen, Schyns, & Daoutis, 2003; 

Özgen, Sowden, Schyns, & Daoutis, 2005). For example, Sowden et al. (2003) 

investigated modulation of SF processing by top-down attention. They used cross-modal 

cueing, that is, they used a sound cue to indicate the SF to pay attention to in the trial, to 

make sure the effect was top-down rather than perceptual. The cueing encouraged 

participants to attend to the SF channel they expected to carry the relevant information. 

They found that detection of gratings was worse when it appeared in an unexpected SF. 

The detection of gratings is also worse when the SF varies from trial to trial (Davis & 

Graham, 1981; Hübner, 1996). This is consistent with the idea that selective monitoring of 

relevant SF channels is taking place. 

Attention can also modulate responses in the early visual cortex (Gilbert & Sigman, 2007), 

even in the absence of visual stimulation (Silver, Ress, & Heeger, 2007). Attention effects 

can also appear later in time, for example, after figure-ground modulation, probably as a 

result of feedback (Muckli, 2010; Roelfsema, Tolboom, & Khayat, 2007). Jehee, Brady 

and Tong (2011) showed that attention improved responses to orientation of gratings when 

orientation was the task-relevant feature, but not when the contrast of the grating had to be 

attended, suggesting that expectation of a particular task changed visual responses (Petro, 

Smith, Schyns, & Muckli, 2013). Feature-based attention spreads across the visual field, 
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even to regions of the scene not containing a stimulus (Serences & Boynton, 2007). This 

may be useful for increasing sensitivity to relevant visual features and facilitating 

detections of behaviourally relevant stimuli in the immediate future. Attention has also 

been shown to modulate effects of the contextual surround. A V1 response to a stimulus 

surrounded by identical context can either be suppressed or enhanced depending on 

whether the central stimulus or the contextual flanker stimulus is attended (Flevaris & 

Murray, 2015). 

Prediction is not only a useful mechanism for visual perception, but seems to be critical for 

brain function as a whole. For example, in everyday life, we are making inferences about 

others’ goals, thoughts and personalities. Social interactions require us to reason about 

hidden causes of behaviour. Predictable stimuli and observed actions such as watching a 

human make human-like movements, elicit a lower neuronal response, as opposed to a 

human making robot-like movements (Koster-Hale & Saxe, 2013; Saygin, Chaminade, 

Ishiguro, Driver, & Frith, 2012). Predictive coding may also be important for motor control 

– anticipating and explaining away the consequences of one’s own motor actions, and 

models based on prediction are thought to explain the sense of conscious presence in 

general (Seth, Suzuki, & Critchley, 2012). When these mechanisms go wrong, it may lead 

to mental disorders, such as schizophrenia, which is marked by delusions and 

hallucinations. It may be that in schizophrenia, highly-weighted false prediction errors are 

propagated and revise the brain’s internal model of the world. This new (incorrect) model 

then leads to delusions (Clark, 2013). 

1.3.3 Internal computations in the absence of feedforward 

input 

V1 can be active in the absence of bottom-up feedforward input, such as during visual 

imagery, working memory, sleep or hallucinations. This internally generated activation 

must therefore be due to feedback. Given the fine-grained nature of V1 in comparison to 

other brain regions, it is a good candidate area for supporting visual working memory and 

imagery (Petro, Vizioli, & Muckli, 2014). Harrison and Tong (2009) found that 

orientations of gratings held in working memory can be decoded from activity patterns in 

V1. Pratte and Tong (2014) demonstrated that working memory representations in V1 can 

be spatially specific, especially if the task requires the binding of a feature to a particular 

location. However, information can also be retained in a non-retinotopic manner (Ester, 

Serences, & Awh, 2009). Visual working memory mechanisms may be similar to visual 
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imagery more generally (Tong, 2013) and have been shown to have common visual 

representations (Albers, Kok, Toni, Dijkerman, & de Lange, 2013). Furthermore, Albers et 

al. found that patterns of activity during mental imagery were similar to those during 

physical presentation of the stimuli, suggesting actual perception and imagery rely on 

related neural processes. However, not all authors have found that V1 is activated during 

internally-generated perceptual experiences. For example, ffytche et al. (1998) found that 

hallucinations in patients with Charles Bonnet syndrome correlated with activity in the 

ventral extrastriate cortex, and there was an absence of consistent activity in V1. 

V1 does not just receive feedback from higher-level visual areas, but is also involved in 

processing information that is not strictly under the umbrella of visual perception. For 

example, V1 is active during sleep, which is thought to be mediated by the hippocampus 

and required for memory consolidation. Firing sequences evoked by experiences whilst 

awake are replayed in both early visual cortex and hippocampus during slow-wave sleep in 

mice (Ji & Wilson, 2007). However, during rapid eye movement (REM) sleep, despite this 

sleep stage being associated with dreaming, V1 shows an attenuation of activity (Braun et 

al., 1998). Hindy, Ng and Turk-Browne (2016) highlighted the role of the hippocampus in 

pattern completion and memory-based expectations in the visual cortex. They showed that 

sequence information (how much neural evidence is available about the full sequence [cue 

+ action + outcome] from cue + action) in the hippocampus preceded outcome information 

(how much neural evidence is available from cue + action about the expected outcome) in 

the visual cortex. This suggests that hippocampus reinstates expected outcomes in the 

visual cortex. 

Information about auditory stimuli can also be decoded in V1. Vetter, Smith and Muckli 

(2014) showed that category of an auditory stimulus could be read out from the primary 

visual cortex of blindfolded participants. This information may relate to visual imagery, 

although participants were not specifically asked to visualize the scene relating to the 

sound. The authors found a generalisation across different stimuli of the same category, 

suggesting that this V1 information was abstract and not a fine-grained pictorial 

representation. 

1.3.4 Visual awareness 

Lesion studies of V1 have shown that removing V1 disrupts visual awareness (Holmes, 

1918; Tong, 2003). Patients with damage to V1 report not seeing any stimuli presented 
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within the region of damage. This could be simply because the feedforward flow of 

information is halted at the first cortical stage, or alternatively because V1 may serve as a 

dynamic blackboard for generating perception, using both bottom-up and top-down 

mechanisms (Tong, 2013). Several studies have highlighted the role of feedback in visual 

awareness (Orpwood, 2013; Pascual-Leone & Walsh, 2001; Rees, 2007; Ro, Breitmeyer, 

Burton, Singhal, & Lane, 2003), supporting the latter hypothesis. For example, Pascual-

Leone and Walsh (2001) showed that feedback from V5 was needed for increased visual 

awareness of phosphenes. Feedback may also be important for consciousness in general 

(Seth et al., 2012). 

 

1.4 How does feedback exert its effects? 

Feedback connections are an important source of modulation of the neural signal, rapidly 

carrying information from more distant retinotopic regions. Changes from differences in 

the environment cannot be predicted by simple centre-surround interactions, and hence 

feedback is needed for the full spectrum of possible modulation of neuronal response 

(Angelucci & Bressloff, 2006; Bullier, 2006). Angelucci et al. (2002) argued that the 

extent of lateral connections is not sufficient to account for the full effect of modulation 

from the surround, and in addition, the conduction velocities of lateral axons are too slow 

for the rapid contextual effects which are often observed (Girard, Hupé, & Bullier, 2001). 

On the other hand, the conduction velocities of feedback connections are as fast as those of 

feedforward and ten times faster than those of lateral connections (Girard et al., 2001). 

Feedforward, lateral and feedback connections all send excitatory inputs to the central RF. 

Lateral connections additionally connect to local inhibitory neurons, which in turn affect 

the excitatory neurons. Feedback may have a role in the reorganisation of local 

connectivity (Bullier, 2006). For example, feedback connections can suppress output by 

acting on local inhibitory neurons (Angelucci & Bressloff, 2006). In addition, feedback 

may act on lateral connections which in turn modulate responses in the classical receptive 

fields (Muckli & Petro, 2013). Feedback signals can enhance V1 activity, and the relative 

impact of this enhancement can be modulated by subcortical activity. Pafundo, Nicholas, 

Zhang and Kuhlman (2016) proposed that control of V1 can be rebalanced such that 

excitatory response properties are more strongly determined by bottom-up inputs or 

feedback. 
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The cortex is divided anatomically into six distinct layers, layer 1 being the most 

superficial, close to the pial surface, and layer 6 being the deepest layer, close to the white 

matter. Each layer is distinct in some way, for example in terms of the types of cells 

located there, their density, types of inputs and outputs and so on. Feedforward projections 

originate in layer 2 and 3 (L2, L3) and terminate in L4. Feedback projections originate in 

L5 and 6 and terminate in L1 and L5 (Felleman & Van Essen, 1991; Kravitz et al., 2013; 

Petro & Muckli, 2017). Recent fMRI evidence has shown that information from 

feedforward signals peaks in the mid-layers, while feedback information peaks in the 

superficial layers (Muckli et al., 2015). 

Traditionally, it has been assumed that neurons simply add up all of the excitatory and 

inhibitory inputs and if the integrated value exceeds a threshold, then a spike is triggered. 

However, there is now evidence that pyramidal neurons have two distinct sites of 

integration, with input to one site modulating the response to input at the other. Pyramidal 

neurons have an apical tuft located away from the cell body. For cell bodies in L2, 3 and 5, 

the tuft is in L1. For cell bodies in L6, the tuft is located in L4 (Phillips, 2015). Inputs at 

the apical tufts of the pyramidal cells (where contextual feedback arrives) amplify response 

to the basal inputs (where feedforward information enters). This process is called apical 

amplification (Figure 1.4, Phillips, 2015). When apical and basal inputs coincide, the 

cell’s response to its basal inputs is amplified (Larkum, Nevian, Sandler, Polsky, & 

Schiller, 2009; Larkum, 2013). Thus, via this mechanism feedback can modulate the 

neuron’s response to the feedforward input. 

 

Figure 1.4 | A pyramidal neuron. Contextual feedback acts on the apical tuft and combines 

with feedforward basal input. 
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Feedback signals are usually thought of as weak and modulatory, that is, they have slow 

and diffuse actions and cannot cause spikes of activity, whereas feedforward signals can be 

thought of as driving. However, there is some evidence which suggests feedback can also 

have driving effects under some circumstances – strong, rapid effects on the target neurons 

(Covic & Sherman, 2011; Mignard & Malpeli, 1991; De Pasquale & Sherman, 2011). 

Hupé et al. (1998) found that, when V1 was active, a small number of V2 cells completely 

stopped responding to visual stimulation, during inactivation of area MT, i.e. when 

feedback signals were removed. However, when V1 was inactivated, V2 activity was 

abolished, even with an intact feedback connection from MT (Girard & Bullier, 1989). 

This suggests that in the absence of feedforward input from V1, feedback connections from 

MT cannot drive neurons in V2. Feedback signals may therefore act as a gain control of 

the neuronal response to the feedforward input (Bullier, 2006). 

Another difference between feedback and feedforward signalling is the frequency of 

oscillatory activity that supports them. Feedforward influences predominate in the gamma 

band (higher frequencies), while feedback projections are in the alpha-beta band (lower 

frequencies, Bastos et al., 2012; Fries, 2015; Lee et al., 2013; Michalareas et al., 2016). 

Buffalo, Fries, Landman, Buschman and Desimone (2011) found that gamma band 

synchronisation was strongest in the superficial layers (where feedforward projections 

originate) and alpha-beta frequencies were strongest in the infragranular layers (where 

feedback projections originate). 

 

1.5 Thesis rationale 

Despite contextual modulation from feedback being an important aspect of visual 

processing, much about the information it transmits and what factors give rise to 

informative feedback remains unknown. V1 cells receive feedback from the far surround 

receptive field (Angelucci & Bressloff, 2006) and it has been previously shown that 

stimulation in the surround provides contextual information about the scene to non-

stimulated parts of V1 (Smith & Muckli, 2010). Smith and Muckli showed participants 

three different natural scenes which had the lower right quadrant of the stimulus occluded. 

They recorded V1 activity patterns corresponding to this occluded non-stimulated region 

using fMRI and found that a linear classifier trained on these activity patterns could 

classify which scene was shown in each trial with above chance accuracy. There was no 
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meaningful feedforward information about the scenes in the occluded region. Therefore 

these differential activity patterns must originate via feedback from the visible scene 

surround. However, not much is known regarding the nature of the contextual information 

from the surround that feedback transmits. 

The aim of the thesis was to study the influence of changing information in the surround on 

V1 responses in non-stimulated retinotopic regions, as well as the same regions of the 

visual field when receiving bottom-up feedforward input. To investigate this we used an 

occlusion paradigm, as previously employed by Smith and Muckli (2010). During normal 

vision, both feedback and feedforward signals are present, and so a useful approach to 

studying feedback is to isolate it from the feedforward input. To achieve this, we occluded 

a region of the visual field in the stimulus in order to remove meaningful feedforward input 

about the image in that retinotopic area. Due to the retinotopic nature of V1, where 

neighbouring regions of the visual field map onto neighbouring parts of the cortex 

(Wandell et al., 2007), we were able to look at brain activity relating specifically to the 

occluded region. To assess brain activity in these regions we used fMRI and multivoxel 

pattern analysis (MVPA). These techniques are particularly suited to the task at hand 

because we are looking at regions of the cortex not receiving meaningful feedforward 

stimulation, and therefore we do not expect an increase in spiking which would lead to an 

overall increase in activation. Therefore, to compare the brain activity in the occluded 

region in response to different images, fMRI in conjunction with MVPA is a useful 

technique, as it is sensitive to non-spiking activity, and related more to computation and 

oxygen consumption rather than the actual output of the neurons (Logothetis, 2008; 

Muckli, 2010). Because we are not expecting to see differences in activation, a univariate 

approach in analysing fMRI data is not appropriate. Therefore, we used a multivariate 

approach to look at the pattern of brain activation, rather than an overall increase or 

decrease in activity (for reviews see Mur, Bandettini, & Kriegeskorte, 2009; Norman, 

Polyn, Detre, & Haxby, 2006). Using MVPA we were able to pick up differences in the 

information pattern between the different conditions. 

The specific experiments are described in Chapters 2-4. In Chapter 2, we were interested 

in probing the spatial frequency information transmitted by feedback. We presented 

participants with spatial frequency filtered scenes, a high spatial frequency and a low 

spatial frequency version. We investigated whether feedback carries coarse information 

about the scene (more low spatial frequencies) or something more precise and fine-grained 

(more high spatial frequencies). In addition, we wanted to know whether this information 
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is broadly tuned and is similar across different spatial frequency surrounds, or whether 

feedback signals are tightly tuned to the spatial frequency of the image. We found that 

feedback signals were informative for both high and low spatial frequency scenes. This 

argues against the idea that low spatial frequencies are predominantly involved in 

generating top-down context (Bar et al., 2006). However, we also showed that while we 

were able to decode between HSF and LSF feedback, there was also a similarity between 

the two conditions. A classifier trained on one SF could successfully decode scenes in the 

other. Finally, we found that the information carried by feedback signals in the occluded 

region does not represent a direct filling-in of the missing feedforward information, when 

this feedforward information is presented in isolation (i.e. without the surround). By 

removing the surround and leaving a small region of the feedforward information, we 

decreased contextual feedback in that region. We hypothesised that the 

feedback/feedforward similarity depended on the amount of information available in the 

surround, since it has previously been shown that feedback signals do show a similar 

activity pattern to the missing feedforward region when it is part of the full visual scene 

(Smith & Muckli, 2010). 

In Chapter 3, we probed this last finding further by assessing how the amount of scene 

information in the surround affects informative feedback in the occluded region and its 

similarity to the corresponding feedforward input. We parametrically changed the amount 

of scene information in the surround and found that first of all, increasing information in 

the surround increased meaningful feedback signals. Second, we replicated the finding of 

Chapter 2 that feedback does not represent a direct filling-in of the isolated feedforward 

information, and feedback/feedforward similarity increases when we increase information 

in the surround. Finally, we show that modulating the amount of information in the 

surround decreases the similarity of activity patterns in regions receiving identical 

feedforward stimulation. This means that feedback from the surround combines with 

feedforward signals. Our data highlight the importance of not underestimating feedback 

signals when aiming to explain full visual processing. 

In Chapter 4, we investigated which regions of the surround were more important for 

generating informative feedback signals. Specifically, we asked whether feedback depends 

more on the information neighbouring the occluded region (which we refer to as the 

―local‖ surround) or whether feedback signals transmit information based on the overall 

structure of the full surrounding region (which we refer to as the ―global‖ surround). We 

used stimuli composed of orientations which together represented different global 
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structures, and measured whether feedback signals carried information about the 

neighbouring orientations or the orientation that would be predicted in the occluded region 

by the overall global shape. We found that these simple stimuli which were less complex 

than natural scenes did not induce meaningful feedback in the occluded region. However, 

we did find that information from the local surround combined with feedforward input, a 

similar finding to that of Chapter 3. Finally we asked whether information from a distant 

region in the surround could influence feedback signals when we kept the local surround 

constant and uninformative and used more naturalistic images. We found that contextual 

information from the distant surround did not lead to meaningful feedback signals that 

differentiated the scenes. 

The findings from all three studies are discussed in Chapter 5 in line with the current 

literature and I propose ideas for further research for the remaining unanswered questions. 
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2 Feedback to nonstimulated V1 contains both 

high and low spatial frequency information 

 

 

 

2.1 Abstract 

Feedback signals originating from higher visual areas with larger receptive fields modulate 

the surround receptive field of V1 neurons. In this way, contextual information about other 

regions of the scene can be transmitted to a neuron’s receptive field. Feedforward visual 

input can be decomposed into different spatial frequency (SF) bands, with low spatial 

frequencies (LSFs) conveying coarse information, and high spatial frequencies (HSFs) 

providing fine-grained details. However, it was previously unknown which spatial scales 

feedback contains. By harnessing the retinotopic nature of V1, the spatial resolution of 

functional MRI, an established occlusion paradigm (Smith & Muckli, 2010) and pattern 

analysis methods; we investigated the spatial frequency content of feedback signals, by 

manipulating the spatial frequency of the scene surrounding a nonstimulated occluded 

region of V1. Thus we were able to probe feedback signals in the absence of feedforward 

input. We filtered two natural scenes into a high and low spatial frequency version, and 

varied the SF overlaps between the HSF and LSF scenes, to manipulate the amount of 

shared information between them. We found that 1) both high and low spatial frequency 

surrounds elicited meaningful feedback in the occluded region; 2) there was a similarity 

between feedback signals for LSF and HSF scenes, even with a lack of SF overlap; 3) but 

also a difference between HSF and LSF scene feedback; and 4) information in the 

occluded region is not a direct filling-in of the missing feedforward input. This suggests 

that feedback transmits both coarse and fine-grained information. However, this 

information does not have a direct correspondence to the missing feedforward input. 

 

2.2 Introduction 

The majority of synaptic inputs to the primary visual cortex (V1) are non-feedforward, 

instead originating from lateral and feedback connections (Muckli & Petro, 2013). 

Feedback signals originating from higher visual areas with larger receptive fields modulate 
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the surround receptive field of V1 neurons, also known as the non-classical receptive field 

(Angelucci & Bressloff, 2006). In this way, contextual information about other regions of 

the scene can be transmitted to a neuron’s receptive field. However, despite the importance 

of feedback, little is known about the format of information that it carries. Visual input can 

be decomposed into different spatial frequency (SF) bands, with low spatial frequencies 

(LSFs) conveying coarse information, and high spatial frequencies (HSFs) providing the 

fine-grained details. Do feedback signals also carry contextual information about different 

spatial frequencies, and which spatial frequencies dominate? Feedback could be fine-

grained and spatially precise, ―filling-in‖ the context, or spatially diffuse, providing the 

general expectation of some property, such as a category to which a natural scene belongs. 

One source of contextual information is global scene representation (Bar, 2004; Oliva & 

Torralba, 2007). Therefore, it seems plausible that feedback would also carry information 

about global scene structure (providing the gist of the scene) and this coarse representation 

may correspond to low spatial frequency information (Bar, 2004; Oliva & Torralba, 2007). 

Consistent with the hypothesis that LSF information contributes to top-down signals, 

several studies have shown that LSF information is processed faster than HSF. Therefore, 

LSF would have time to influence perception, before fine-grained information is processed 

(e.g. Bar et al., 2006; Bar, 2003; Breitmeyer, 2014; Kveraga, Boshyan, & Bar, 2007). On 

the other hand, the gist of a scene may not necessarily rely on low spatial frequencies 

(Oliva & Torralba, 2006). For example, Walther, Chai, Caddigan, Beck and Fei-Fei (2011) 

showed that global scene structure can be conveyed by HSFs. Previous studies in our lab 

have shown that feedback contains information about individual scenes as well as category 

(Morgan, Petro, & Muckli, 2016), suggesting some fine grained information may remain in 

feedback. 

A useful approach to studying feedback signals is to isolate them from the feedforward 

input by looking at the effect of surround on regions of a scene which are not receiving 

feedforward stimulation. Several studies have shown that occluded regions of the visual 

field contain information about stimulation in the surround (Ban et al., 2013; Shushruth, 

2011; Smith & Muckli, 2010; Sugita, 1999). Due to the retinotopic nature of V1 where 

neighbouring regions of the visual field map onto adjacent parts of the cortex (Wandell, 

Dumoulin, & Brewer, 2007) it is possible to investigate specific regions of a scene. Using 

functional MRI (fMRI) and multivoxel pattern analysis (MVPA, see Mur, Bandettini, & 

Kriegeskorte, 2009; Norman, Polyn, Detre, & Haxby, 2006) in human subjects, Smith and 
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Muckli (2010) showed that occluded regions of the visual field, and thus non-stimulated in 

a feedforward manner, contain contextual information about the surrounding natural scene. 

Using an occlusion paradigm (Smith & Muckli, 2010), fMRI and MVPA we investigated 

the spatial frequency content of feedback signals, by manipulating the spatial frequency of 

the scene surround outside the occluded region. We filtered two natural scenes into a high 

and low spatial frequency version, and additionally varied the SF overlaps between the 

HSF and LSF scenes. Thus we manipulated the amount of shared information between the 

two versions of each scene to see how broad feedback signals are in terms of the SF they 

contain. We found that 1) both high and low spatial frequency surrounds elicited 

meaningful feedback in the occluded region; 2) there was a similarity between feedback 

signals for LSF and HSF scenes, even with a lack of SF overlap; 3) but also a difference 

between HSF and LSF scene feedback; and 4) information in the occluded region is not a 

direct filling-in of the missing feedforward input. This suggests that feedback transmits 

both coarse and fine-grained information. However this information does not have a direct 

correspondence to the missing feedforward input. 

 

2.3 Methods 

2.3.1 Subjects 

Thirty five subjects from the University of Glasgow participated in the experiment (n = 17 

males; mean age: 24.63 years, range: 17 - 42 years). Subjects were paid for their 

participation. They provided informed written consent and the experiment was conducted 

in accordance with procedures and protocols approved by the local ethics committee at the 

University of Glasgow. We excluded two subjects: one due to large motion artefacts and 

another due to no above threshold activation in the visual cortex on one of the 

experimental runs. Therefore, we report results from 33 subjects (n = 16 males; mean age: 

24.48 years, range: 17 - 42 years). 

2.3.2 Stimuli 

2.3.2.1 Feedback vs feedforward condition 

To test feedback signals in the absence of feedforward stimulation, we used an occlusion 

paradigm previously employed by Smith and Muckli (2010). For the feedback conditions, 
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the lower right quadrant was occluded by a white rectangle. The white rectangle was 

placed 0.5° of visual angle diagonally from the centre of the scene, and spanned 11.6° x 

9.2°. For some subjects, these parameters were different (see Supplementary Methods, 

Appendix A). In the feedforward conditions, the corresponding quadrant of the scene was 

shown. 

2.3.2.2 Scenes 

We used two natural scene images for each participant. Only two scenes were used for 

each participant to keep the experiment length reasonable. Twenty three subjects saw a car 

and a people scene (Figure 2.1A), while ten subjects saw a New York and concert scenes 

(Appendix A). The car and people scenes were 600 x 480 px, which corresponded to 24° x 

19.2° visual angle. For five subjects in the Small SF Overlap group and for five subjects in 

the Large SF Overlap group, New York and concert scenes were used (Figures S2.1, S2.2, 

Appendix A). We used natural scenes as these induce a lot of contextual associations (Bar, 

2004). Each scene was filtered to create a high spatial frequency (HSF) and a low spatial 

frequency (LSF) version (Figure 2.1A). In creating these HSF and LSF scenes, we 

explored a variety of HSF and LSF cut-offs. Therefore, some participants viewed HSF and 

LSF scenes which shared, to various extents, a subset of SFs, whilst others viewed scenes 

not sharing any SFs (see Table 2.1 for SF cut-offs and number of subjects presented with 

each combination, which we refer to as Overlap groups). We did this to investigate how 

specific the feedback signals are to the SF band of the surround. If a large amount of SF 

information needs to be shared between HSF and LSF version of the scene for HSF and 

LSF feedback to be similar, this would suggest that feedback is tightly tuned to the SF 

band of the surrounding scene. 

Each group of subjects viewed HSF and LSF scenes with different Overlaps in the SF 

bands between the HSF and the LSF version. Each subject was assigned to one of four 

Overlap groups (Gap, No Overlap, Small or Large). The HSF and LSF stimuli in the Gap 

and the No Overlap conditions had no shared information in their SF bands, whereas the 

Small and the Large Overlap had some SFs which were common between the HSF and the 

LSF version. There were two Small and two Large Overlap groups with different cut-offs. 

The Small Overlap stimuli had an overlap of 1 octave, while the Large Overlap stimuli had 

an overlap of 1.5 octaves. The Gap stimuli had a gap of 1 octave. We chose our particular 

cut-offs as previous studies have indicated V1 preference for SFs of around 0.68-2 cycles 

per degree of visual angle (cpd, Haynes & Rees, 2005; Henriksson, Nurminen, Hyvärinen, 
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& Vanni, 2008; Tong, Harrison, Dewey, & Kamitani, 2012). Each subject only saw one 

HSF-LSF cut-off pair. Figure 2.1A shows stimuli for the 0.81/1.62 cpd Small SF Overlap 

group. For stimuli in the other conditions, see Figures S2.1 and S2.2 (Appendix A). 

TABLE 2.1 | Spatial frequency (SF) cut-offs used for each pair of stimuli and the SF overlap 

groups these corresponded to. Values are expressed in cycles per degree (cpd). For a graphical 

representation, see Figure S2.3, Appendix A. 

 

 High pass filter 

cut-off 

Low pass 

filter cut-off 
SF Overlap 

Pair 1 (n = 4) 1.62 0.81 Gap 

Pair 2 (n = 6) 0.97 0.97 No Overlap 

Pair 3 (n = 2) 0.65 1.30 Small 

Pair 4 (n = 10) 0.81 1.62 Small 

Pair 5 (n = 2) 0.81 2.03 Large 

Pair 6 (n = 9) 0.97 2.43 Large 

 

2.3.2.3 Occluded region mapping 

Subjects were presented with three contrast-reversing checkerboards (5 Hz) twice per run. 

The checkerboards either covered the inner rectangular part of the occluded region (Target 

mapping – approximately 1.5° diagonally from fixation, 10.1° x 7.7° visual angle) or the 

border between the lower right quadrant and the rest of the stimulus (Surround mapping). 

There were two types of surround stimuli – Large Surround (approximately 0.5° 

diagonally from fixation, 11.6° x 9.2° visual angle) and Small Surround (approximately 

1.5° diagonally from fixation, 11.6° x 9.2° visual angle) (Figures 2.1B and 2.1C). 
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Figure 2.1 | Example stimuli, shown here for the Small Overlap group. In feedback conditions 

the lower right quadrant was occluded with a white rectangle, while in feedforward conditions 

the corresponding quadrant was visible. A) Each scene was filtered to produce a high spatial 

frequency (HSF) or a low spatial frequency (LSF) version. The example images shown here 

represent the Small Overlap condition, with the HSF scene filtered at 0.81 cpd and LSF scene 

filtered at 1.62 cpd. B) Checkerboards were used to retinotopically map the occluded region in 

V1: Target (left), Large Surround (middle) and Small Surround (right). C) The contrast used to 

map the occluded quadrant (Target – Large Surround) is shown in the occipital cortex, with V1 

shaded in green on the inflated visualization. 

 

2.3.3 Task & procedure 

Scenes were presented on a uniform grey background using MRI compatible goggles 

(NordicNeuroLab) with 800 x 600 px screen resolution, which corresponded to 32° x 24° 

visual angle. For each subject there were 8 types of trial (2 scenes, high or low SF, 

occluded [FB] or non-occluded [FF]). In each 12 s trial the stimulus was flashed on and off 

(200 ms on/ 200 ms off) 30 times. This maximised the signal to noise ratio (Kay, Naselaris, 

Prenger, & Gallant, 2008). Each trial type was presented sequentially, with the trial order 

randomized in each sequence. Each sequence lasted 96 s (8 x 12 s). A 12 s fixation period 

was included before and after each sequence of trials. Each experimental run lasted 10 min 

48 s, consisting of four trial sequences and two mapping sequences (2 x Target and two 

Surrounds). There were four experimental runs in total. The subjects’ task was to fixate on 

a central checkerboard and report a fixation colour change with a button press. Subjects 

http://www.nordicneurolab.com/
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pressed a different button, depending on whether the colour change occurred during scene 

1 or scene 2. The purposes of the task were to ensure that the subject attended the stimuli 

and to minimize eye movements. This was important for accurate retinotopic mapping of 

the occluded region in the lower right quadrant of the visual field. 

After the experimental runs, we performed a retinotopic mapping procedure to estimate the 

borders of the early visual areas V1-3. The mapping procedure was a standard polar-angle 

protocol consisting of either wedge shaped checkerboards arranged in a ―bow-tie‖ or a 

single wedge which started in the right horizontal meridian and rotated clockwise (12 

rotations per scan, wedge angle: 22.5°, scan time: 13 min 28 s). Subjects were also 

familiarised with the unfiltered non-occluded images with a short practice run prior to 

entering the scanner. 

2.3.4 MRI acquisition 

MRI data were collected using a 3T Siemens Tim Trio System with a 12-channel head coil. 

Blood oxygen level dependent (BOLD) signals were measured with an echo-planar 

imaging sequence (echo time: 30 ms, repetition time: 1000 ms, field of view 210 mm, flip 

angle: 62°, 18 axial slices). The spatial resolution for functional data was 3 x 3 x 3 mm. 

Each experimental run had 648 volumes. Retinotopic mapping consisted of 424 volumes 

(bow-tie) or 808 (single wedge). The 18 slices were positioned to maximize coverage of 

occipital cortex. A high resolution 3D anatomical scan (3D Magnetization Prepared Rapid 

Gradient Echo, 1 x 1 x 1 mm resolution) was also recorded (192 volumes). 

2.3.5 MRI data processing 

Functional data for each experimental run and retinotopic mapping were corrected for slice 

time (cubic spline interpolation) and 3D motion (Trilinear/Sinc interpolation), temporally 

filtered (high-pass filtered at 6 cycles with GLM-Fourier, and linearly detrended), and 

spatially normalized into Talairach space with Brain Voyager QX 2.8 (Brain Innovation). 

Subsequently, the anatomical data were used to create an inflated cortical surface and 

functional data were overlaid. 

2.3.6 Voxel selection and analysis 

Excessive subject movement between runs is likely to affect correspondence between 

voxels from one run to another. This in turn could affect our analysis, as we selected our 
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region of interest (ROI) based on the averaged functional data of all 4 runs. To determine 

whether there was good alignment between functional data covering the visual areas, we 

calculated an alignment value for each subject by measuring Pearson’s correlation in a ROI 

in the visual cortex between the four functional runs. The median alignment value across 

the subjects was 98% and single subject values ranged from 92% to 99%. 

The occluded region was mapped using a general linear model (GLM) contrast of the 

Target region against the Large Surround, as described previously in Smith and Muckli 

(2010). The ROI was selected from activation in V1 only. To further minimize spillover 

activity from neighbouring stimulated areas, voxels from the ROI were then selected for 

analysis on the basis of the difference between Target and Large Surround t-value being 

greater than 1. 

2.3.7 Controls for MVPA analysis 

2.3.7.1 Analyses with extended safety boundary around the 

occluded region 

To further make sure our findings of scene information in the quadrant were not due to 

spillover activity from the feedforward surround, we ran a separate analysis with a more 

stringent method of voxel selection. We selected our region of interest in BrainVoyager as 

the contrast of Target mapping being higher than both the Large and the Small Surround. 

In addition, we selected voxels with t-values fitting the criteria of (Target – Large 

Surround) > 1 & (Target – Small Surround) > 1. This further minimized any voxels which 

may have been responding to feedforward stimulation at the border of the occluded region. 

2.3.7.2 Analyses with subjects with above chance classification in at 

least one feedforward condition 

In the feedforward conditions the quadrant receives visual stimulation. Hence there should 

be a difference in activity patterns between the images for these conditions. If no above-

chance classification was found for either of the feedforward conditions, it may suggest the 

subject was not paying attention or was making too many eye movements. Thus we also 

show additional results for only subjects with at least one feedforward condition 

classifying above chance. Significance above chance was measured using permutation 

analysis with 1000 trials. This excluded three subjects in the Small Overlap group and two 

in the Large Overlap group. 
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2.3.8 Multivoxel Pattern Classification Analysis 

The voxels matching all these criteria were entered into the linear classifier (Support 

Vector Machine [SVM]). For classification analyses, we trained the classifier to decode the 

two scenes in each condition. For cross-classification analyses we trained the classifier on 

one experimental condition and tested on the other. The classifier used single-trial activity 

patterns (beta values) for training, and was then tested on either single trial (8 trials x 4 

sequences) or average activity patterns for each of the 8 trial types. The classifier was 

trained on 3 of the runs and tested on the remaining run (i.e. one-run-out cross-validation). 

We bootstrapped (1000 samples) the classifier performances for individual subjects, in 

order to estimate the single subject mean. We then bootstrapped (1000 samples) these 

values to estimate the group mean and associated variance. The confidence intervals (CIs) 

were defined with an alpha level of 0.05. Classifier performances were deemed to be 

significantly above chance (50%) if the 95% confidence intervals did not overlap it. We 

were not able to conduct an ANOVA to check for group differences as the data were not 

parametric. Differences between group classifier performances were thus assessed via a 

permutation test (1000 samples) of the differences between the group means (p values not 

corrected for multiple comparisons). 

 

2.4 Results 

2.4.1 Both HSF and LSF scene surrounds induce meaningful 

feedback signals 

First, we tested whether the spatial frequency filtered surround induces meaningful 

information in the occluded quadrant. We trained the Support Vector Machine (SVM) 

classifier to decode between the two scenes using voxel patterns responding to the lower 

right quadrant. SVM classification performance was used to estimate whether the quadrant 

contained informative feedback signals about the scene. 

Collapsing across the different SF cut-off groups, classifier performance for decoding 

between the two scenes was above chance for both HSF and LSF scenes, in both feedback 

and feedforward conditions (Figure 2.2A). Decoding during feedforward (FF) conditions 

was significantly higher than during feedback (FB) conditions for high spatial frequency 
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(FF HSF, single trial classification [ST]: 76.52%, confidence interval [CI] [0.0540 0.0473] 

vs FB HSF, ST: 64.11%, CI [0.0502 0.0549], p = 0.001; FF HSF, average block 

classification [AB]: 84.85%, CI [0.0758 0.0606] vs FB HSF, AB: 70.83%, CI [0.0758 

0.0682], p = 0.008) and low spatial frequency (FF LSF, ST: 76.89%, CI [0.0521 0.0483] vs 

FB LSF, ST: 63.35%, CI [0.0436 0.0455], p < 0.001; FF LSF, AB: 87.50%, CI [0.0568 

0.0530] vs FB LSF, AB: 65.15%, CI [0.0758 0.0720], p < 0.001) conditions. There was no 

difference in classifier performance between HSF and LSF conditions, for either the 

feedback or feedforward stimuli. 

Figure 2.2B shows the single trial classification performance for decoding between the 

two scenes in each of the different cut-offs for HSF and LSF stimuli in the feedback 

conditions. Figure 2.2C shows the same for the feedforward conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

[Next page] Figure 2.2 | Classification performance for decoding the two scenes in HSF and 

LSF conditions, for feedback and feedforward stimuli. Chance level is 50%. Lines represent 95% 

confidence intervals around the bootstrapped mean (1000 bootstrap samples of individual 

subjects’ performances). Classifier performance is significantly above chance at α = 0.05 (not 

corrected for multiple comparisons) if the confidence intervals do not intersect with the chance 

line. We did not plot confidence intervals for groups with only 2 subjects. Dark hues = classifier 

tested on single trials; light hues = classifier tested on blocks of conditions averaged over the 

same type. The small red circles represent individual subjects’ results. A) Classifier performance 

for HSF and LSF conditions, collapsed over different SF cut-offs. N = 33. Images are example 

stimuli used for a subset of subjects. B) Classifier performance split by different SF cut-offs for 

feedback conditions. C) Classifier performance split by different SF cut-offs for feedforward 

conditions. 
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2.4.2 Similarity of feedback across HSF and LSF stimuli 

Secondly, we tested whether the classifier can generalise over spatial frequencies, in other 

words, decode between the scenes even when it was trained on HSF and tested on LSF 

(and vice versa). We trained the classifier on either the HSF version of the two scenes and 

tested on LSF, or trained on LSF and tested on HSF. We performed this analysis for the 

different Overlap groups, to see how the amount of shared spatial frequency information 

between the HSF and LSF version of the scene would affect this generalisation. We 

predicted that if feedback is specific to the SF range of the scene surround then the larger 

the overlap the better the classifier would perform since there would be more shared 

information between HSF and LSF. Alternatively, if feedback is similar across different SF 

surrounds, then we predicted we would see similar levels of generalisation across all 

Overlap groups. 

2.4.2.1 Training on HSF and testing on LSF 

In feedforward conditions, classifier performance was above chance for all Overlaps 

groups, for both single trial and average block analysis, and was not significantly different 

between groups (Figure 2.3A, right). For feedback conditions, classifier performance was 

above chance for Gap (ST only: 58.59%, CI [0.0469, 0.0703]), Small Overlap (ST only: 

55.99%, CI [0.0547 0.0573]) and Large Overlap (ST: 64.20%, CI [0.0909 0.0938]; AB: 

70.45%, CI [0.1250 0.1364]) groups (Figure 2.3A, left). Cross-classifier performance for 

Large Overlap was higher than for Small Overlap for average block classification, p = 

0.048. 

2.4.2.2 Training on LSF and testing on HSF 

For feedforward conditions, classifier performance was above chance for Gap, Small 

Overlap and Large Overlap, for both single trial and average block analysis, and was not 

significantly different between groups (Figure 2.3B, right). For feedback conditions 

(Figure 2.3B, left), classifier performance was above chance for Gap (ST only: 64.84%, CI 

[0.0703 0.0703]), No overlap (ST: 67.19%, CI [0.0833 0.0729]; AB: 66.67%, CI [0.1250 

0.1042]), Small Overlap (ST: 57.03%, CI [0.0599 0.0625]; AB: 61.46%, CI [0.0938 

0.1042]) and Large Overlap (ST: 63.64%, CI [0.0511 0.0511]; AB: 67.05%, CI [0.0795 

0.0909]). There was no significant difference between the groups. 
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The results show that the classifier can generalise over spatial frequencies. We can train on 

HSF and successfully decode between the LSF scenes, and vice versa. We see that a lot of 

shared information in terms of spatial frequency is not necessary for cross-classification, as 

we could cross-classify in the Gap, No Overlap and Small conditions. Large Overlap is the 

only condition that was above chance for both directions of cross-classification and for 

both single trial and average block classification, which may suggest that classifier 

generalises better across SF in the presence of more shared information. However, the fact 

that cross-classification works for the other conditions, in single trial classification at least, 

suggests generalisation can still occur without a large amount of shared information.  

2.4.3 Lack of similarity between feedback and corresponding 

feedforward information 

Are feedback signals similar to the corresponding feedforward information? For example, 

are feedback signals in the HSF condition similar to the activity pattern relating to the HSF 

feedforward stimulation, or do they carry different information? To test feedback and 

feedforward similarity, we first trained the classifier to decode between the two scenes on 

feedback conditions and tested on feedforward conditions (and vice versa), for both HSF 

and LSF (Figure 2.4A). Classifier performance was at chance level for both HSF and LSF 

scenes, and for both directions of cross-classification. This suggests that the information 

feedback provides in the occluded region is different to the corresponding feedforward 

information. Secondly, we trained the classifier to decode HSF vs LSF on feedback 

conditions and tested its ability to decode in the feedforward conditions (and vice versa, 

Figure 2.4B). Classifier was above chance only for Scene 2 when training on feedback and 

testing on feedforward (ST: 54.92%, CI [0.0275 0.0256]; AB: 56.82%, CI [0.0379 

0.0379]). 
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Figure 2.3 | Cross-classification performance for training to decode the two scenes in one SF 

and testing in the other, for different Overlap groups. Chance level is 50%. Lines represent 95% 

confidence intervals around the bootstrapped mean. Classifier performance is significantly above 

chance at α = 0.05 (not corrected for multiple comparisons) if the confidence intervals do not 

intersect with the chance line. Dark hues = classifier tested on single trials; light hues = classifier 

tested on blocks of conditions averaged over the same type. The small red circles represent 

individual subjects’ results. Gap: n = 4; No Overlap, n = 6; Small Overlap, n = 12; Large Overlap, 

n = 11. Images are example stimuli used for a subset of subjects. A) Classifier performance for 

training on HSF and testing on LSF. B) Classifier performance for training on LSF and testing on 

HSF. 
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Figure 2.4 | Cross-classification performance for training on feedback and testing on 

feedforward conditions (and vice versa). Chance level is 50%. Lines represent 95% confidence 

intervals around the bootstrapped mean. Classifier performance is significantly above chance at 

α = 0.05 (not corrected for multiple comparisons) if the confidence intervals do not intersect 

with the chance line. Dark hues = classifier tested on single trials; light hues = classifier tested 

on blocks of conditions averaged over the same type. The small red circles represent individual 

subjects’ results. N = 33. Images are example stimuli used for a subset of subjects. A) Classifier 

performance for decoding Scene 1 vs Scene 2 in HSF and LSF conditions. B) Classifier 

performance for decoding HSF vs LSF in Scene 1 and Scene 2. 
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2.4.4 Does feedback carry spatial frequency information not 

related to a specific scene? 

We wanted to see whether spatial frequency related feedback in one scene is similar to that 

in another scene. In other words, does feedback carry any information about the spatial 

frequency of the surround that is not specific to a particular scene? We trained the 

classifier to decode between HSF vs LSF on Scene 1 and tested whether it could decode 

between HSF vs LSF on Scene 2 (and vice versa). Classifier performance was above 

chance for both feedback and feedforward conditions, and for both directions of cross-

classification (Figure 2.5). Feedback appears to carry information about high or low 

spatial frequency that is similar across different scenes. In other words, there is some 

degree of similarity between the information in, for instance, the occluded region of the 

HSF version of Scene 1 and the occluded region of the HSF version of Scene 2. 

 

 

Figure 2.5 | Cross-classification performance for training to decode HSF vs LSF in Scene 1 

and testing in Scene 2 (and vice versa), for feedback and feedforward conditions. Chance 

level is 50%. Lines represent 95% confidence intervals around the bootstrapped mean. Classifier 

performance is significantly above chance at α = 0.05 (not corrected for multiple comparisons) if 

the confidence intervals do not intersect with the chance line. Dark hues = classifier tested on 

single trials; light hues = classifier tested on blocks of conditions averaged over the same type. 

The small red circles represent individual subjects’ results. N = 33. Images are example stimuli 

used for a subset of subjects. 
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2.4.5 Analyses with more stringent criteria 

Analyses using a more conservative method of voxel selection in the occluded region, 

using both the Large and the Small Surround mapping (see Methods), led to a similar 

pattern of results (Figure S2.5, Appendix A), suggesting our results are unlikely to be due 

to ―spillover‖ activation from the surround feedforward stimulation. Analysis using only 

subjects who had at least one feedforward condition above chance, also showed a similar 

pattern of results, suggesting that the results observed are unlikely to be due to excessive 

eye movements and subjects not paying attention during the experiment (Figure S2.6, 

S2.7, Appendix A). 

 

2.5 Discussion 

The present study aimed to investigate the spatial frequency information carried by 

feedback signals to an occluded region of the visual field in V1. First, we have replicated 

the findings of Smith and Muckli (2010), by showing that non-stimulated V1 receives 

contextual feedback from the surrounding regions of the scene, and this can occur even 

with reduced information, in other words, when the surrounding scene only contains 

information in certain spatial frequencies. Second, we show that feedback carries 

information about both low and high spatial frequencies, suggesting that it transmits both 

coarse and fine-grained information, respectively. 

2.5.1 Feedback contains both coarse and fine-grained 

information 

We found scene-specific information patterns in the occluded region, with both LSF and 

HSF surrounds. This suggests that both LSF and HSF surrounding information gave rise to 

meaningful feedback signals. In addition to theories suggesting LSFs are important for 

providing contextual information and contribute to top-down expectations (e.g. Bar et al., 

2006; Bar, 2003; Breitmeyer, 2014; Kveraga et al., 2007), we show that HSF scene 

information is also sufficient to trigger contextual feedback. Our results are more in line 

with the flexible usage hypothesis (Schyns & Oliva, 1997), which proposes that both HSF 

and LSF information can be processed first and demands of the task can bias the visual 

system to attend to the most informative scale. Both HSF and LSF information is available 

at the onset of visual processing (Schyns & Oliva, 1994) and when presented with a hybrid 
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stimulus (HSF and LSF superimposed in one image) people attend to the most relevant SF 

channel for the task at hand (e.g. Oliva & Schyns, 1997; Schyns & Oliva, 1999; Sowden, 

Özgen, Schyns, & Daoutis, 2003). Furthermore, Oliva and Torralba (2006) argue that 

scene gist might be provided by global scene structure, but which might not necessarily use 

LSF. In addition, Walther et al. (2011) showed that global scene structure is preserved in 

line drawings and underlies scene category representation. It is plausible that LSF is an 

important source of contextual information in natural viewing when all spatial scales are 

available. However, in our filtered scenes, informative context was presented only in one 

type of spatial scale. Thus, in the HSF stimulus, high spatial frequencies were the only 

informative spatial scale and therefore this spatial scale was used for top-down context. 

Walther et al. found a similarity between brain activity in relation to line drawings (HSF) 

and coloured photographs of the same image (full SF spectrum), suggesting that 

impoverished HSF information is sufficient for scene identification. Rajimehr, Devaney, 

Bilenko, Young and Tootell (2011) showed that the parahippocampal place area (PPA), 

which is known to process scenes and spatial context (Bar & Aminoff, 2003), responds 

preferentially to HSF information. Since we used scenes in the present experiment, it is 

plausible that feedback may originate from the PPA (as well as other cortical regions) and 

therefore transmit contextual information about HSFs back to V1. 

While we found that HSF surrounds can elicit feedback, suggesting some fine-grained 

information may be transmitted, we also tested the breadth of SF tuning for feedback 

signals. Walther et al. (2011) found that they could cross-classify from line drawings to 

coloured photographs, and vice versa. However, the coloured photographs had a full SF 

spectrum and therefore there was shared information between the two types of image. To 

address how broad feedforward and feedback signals are in terms of spatial frequency 

tuning, we tested cross-classification from one SF type to another when only some or none 

of the SF information was shared between the two versions. We found we could cross-

classify from one SF to the other, in both feedforward and feedback conditions even when 

there was no overlap in terms of the spatial frequency spectrum between the HSF and LSF 

version (for example, in the Gap condition), suggesting brain activity patterns were similar 

for the HSF and LSF version, commensurate with a broad tuning. Both HSF and LSF 

surrounds elicited meaningful feedback and since it was similar for the two versions of the 

scene, one hypothesis could be that the surround elicits feedback containing the same 

general template (in some SF band) for the particular image, regardless of the SF it is 

presented in. However, we would argue that feedback for the HSF and LSF scene is not 

identical as we could also decode between HSF and LSF in the occluded region and 
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generalise this decoding to another scene. This suggests that the tuning of feedback does 

depend at least somewhat on the surround of the scene – presumably HSF for HSF 

surround and LSF for LSF surround. 

We have demonstrated that on the one hand feedback signals share a similarity between the 

HSF and LSF scenes even when there is little shared information in terms of the spatial 

frequency of the scene surround. On the other hand, we found that the HSF and LSF 

surrounds elicited informative feedback signals equally well, and we could also decode 

between HSF and LSF versions of the same scene. This suggests that feedback may 

contain coarse information about the scene, but nevertheless retain some fine-grained 

information. This is in line with previous work in our lab (Morgan et al., 2016) which 

showed that feedback contains information about both the category of a scene (such as a 

forest, corresponding to coarse structure) as well as individual scenes within a category 

(fine-grained structure of a particular example of a forest scene). 

One possible limitation is that we also saw SF generalisation for the feedforward 

conditions. Even when there was no shared SF information in the HSF and LSF version, 

we could cross-classify from HSF to LSF, and vice versa. This suggests that our SF cut-

offs were not wide enough to lead to completely separate brain activity patterns in the 

feedforward regions. Since feedback signals are likely to be even coarser than feedforward 

signals (Muckli et al., 2015), it is unsurprising we could generalise across SF in feedback 

conditions as well. With a wider Gap condition, we might be able to better probe how 

broad feedback signals are in comparison to feedforward. Alternatively, this generalisation 

could be possible because there is a relationship between where the object boundaries are 

in the different SF bands. A blurry or a sharp edge is still the same edge, and hence the 

brain activity pattern is similar, if the scene representation in the visual system is related to 

figure-ground segregation and object identification. 

2.5.2 Feedback signals do not correspond to a direct filling-in of 

the missing feedforward information 

We saw that feedback is meaningful for both HSF and LSF scenes. However, how do the 

activity patterns in the occluded region compare to those in the corresponding feedforward 

region of the scene? Are feedback signals in the HSF and LSF scenes similar to the 

corresponding feedforward signals? To answer this question we trained the classifier on 

feedback conditions and tested whether it can use the same information to decode the 
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stimuli in the feedforward conditions. We did not find a similarity between feedback and 

feedforward signals, suggesting that feedback signals do not represent a direct filling-in of 

the feedforward information. This is in contrast to the findings of Smith and Muckli 

(2010). However, they used a full scene as the feedforward condition, whereas in the 

present study we used a feedforward quadrant with no surround. In Chapter 3, we 

demonstrate that this feedback and feedforward similarity depends on the amount of 

surrounding scene information. This is because removing the scene surround outside the 

feedforward quadrant removes the contextual surrounding feedback, which drives this 

similarity effect. This finding might be surprising if we consider that feedback has been 

implicated in transmitting predictions and expectations about the scene (e.g. Clark, 2013; 

Friston, 2010; Rao & Ballard, 1999; Bastos et al., 2012; Kok, Jehee, & de Lange, 2012), 

and we might therefore expect feedback to represent the missing feedforward information. 

It is possible that the missing scene information is still represented, but in a different 

format. For example, it may be that the information is coarser in terms of its content 

because of the larger visual fields in higher visual areas or less precise retinotopically (e.g. 

de-Wit, Kubilius, Wagemans, & Op de Beeck, 2012) or because feedback and feedforward 

signals project to different cortical layers (Muckli et al., 2015; Rockland & Pandya, 1979). 

Muckli et al. showed using high resolution fMRI that during normal visual stimulation, 

feedforward information peaks in the mid-layers, while contextual feedback information 

peaks in the superficial layers. 

2.5.3 Low level properties 

One question arises about the level of information that feedback transmits. Does it code for 

high level information, for example the scene category, or does it have some low level 

information, such information about the spatial frequency band that is not specific to a 

particular scene category? We were able to decode HSF vs LSF on Scene 1 and generalise 

this to decoding HSF vs LSF on Scene 2. This similarity of the SF information between the 

different scenes suggests that feedback carries general information about the spatial 

frequency band of the surround that is unrelated to the specific structure of the scene in 

question. However, this finding may be explained by differences in contrast since the HSF 

scenes were mostly grey whereas the LSF scenes would be better described as patches of 

white and black. It would be useful to further test this finding with SF filtered scenes 

which are better matched for contrast. 
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2.5.4 Lateral connections 

We can be sure that there is no meaningful feedforward stimulation in the occluded region. 

However, the information that we do record there could originate from both lateral and 

feedback connections. Although lateral connections might have a role, we would argue that 

they cannot fully explain the observed effect, as they only span a relatively small region of 

retinotopic space, and are not sufficient to account for the full range of surround 

modulatory response (Angelucci et al., 2002). Lateral connections are 2.3 times larger than 

the classical receptive field (Sceniak, Ringach, Hawken, & Shapley, 1999) and can project 

to around 2° from the classical RF in V1 at eccentricities of 2-6° (Stettler, Das, Bennett, & 

Gilbert, 2002). 

2.5.5 Conclusion 

Using pattern analysis techniques we probed the information content of feedback signals, 

and show that they contain both high and low spatial frequency information about the 

surrounding scene. Further to behavioural studies demonstrating that both HSF and LSF 

information can be used for scene processing depending on which spatial scale is 

informative, we show on a neural level that both HSF and LSF scene surrounds can 

contribute to top-down contextual feedback. In addition, we demonstrate that although we 

can decode between HSF and LSF feedback, there are also similarities in feedback for the 

two versions of the scene, suggesting its tuning is quite broad. Finally, we find that the 

information in the occluded region is not a direct filling-in of the missing feedforward 

input. 
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3 Increased scene information in the surround 

enhances contextual feedback 

 

 

 

3.1 Abstract 

The majority of synaptic inputs to the primary visual cortex (V1) are non-feedforward, 

instead originating from lateral and feedback connections (Muckli & Petro, 2013). Animal 

electrophysiology experiments show that feedback signals originating from higher visual 

areas with larger receptive fields modulate the surround receptive field of V1 neurons 

(Angelucci & Bressloff, 2006). Surround modulation of feedforward processing has never 

been parametrically investigated in human V1, despite theories of visual processing 

specifying that both feedback and feedforward signals are required for healthy visual 

cognition (Larkum, 2013). In the present study we investigated how much contextual 

surrounding information is necessary for scene-specific feedback in non-stimulated 

regions, using an occlusion paradigm with natural scenes (Smith & Muckli, 2010), 

functional magnetic resonance imaging (fMRI) and pattern analysis methods. We 

gradually revealed the surrounding scene using Gaussian bubbles (Gosselin & Schyns, 

2001) of varying sizes around an occluded or visible lower right quadrant. We show that 1) 

increasing the visibility of the surround, and thus increasing information in surround 

receptive fields, increases meaningful feedback in the occluded region; 2) information in 

the non-stimulated region does not represent a direct filling-in of the missing feedforward 

input; and 3) full visual processing is a mixture of feedback and feedforward signals. 

 

3.2 Introduction 

The majority of synaptic inputs to primary visual cortex (V1) are non-feedforward, instead 

originating from lateral and feedback connections (Muckli & Petro, 2013). Animal 

electrophysiology experiments show that feedback signals originating from higher visual 

areas with larger receptive fields modulate the surround receptive field of V1 neurons, also 

known as the non-classical receptive field (Angelucci & Bressloff, 2006). Surround 

modulation of feedforward processing has never been parametrically investigated in human 
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V1, despite theories of visual processing specifying that both feedback and feedforward 

signals are required for healthy visual cognition (Larkum, 2013). It is unclear how much 

stimulation in the surround is necessary for informative feedback signals, and how much 

information feedback contributes to visual processing during feedforward stimulation.  

A useful approach to studying feedback signals is to isolate them from the feedforward 

input by looking at the effect of surround on regions of a scene which are not receiving 

feedforward stimulation. Due to the retinotopic nature of V1 where neighbouring regions 

of the visual field map onto adjacent parts of the cortex (Wandell, Dumoulin, & Brewer, 

2007) it is possible to investigate specific regions of a scene. Several studies have shown 

that occluded regions of the visual field contain information about stimulation in the 

surround (Ban et al., 2013; Shushruth, 2011; Smith & Muckli, 2010; Sugita, 1999). Smith 

and Muckli (2010) showed using functional magnetic resonance imaging (fMRI) and 

multivoxel pattern analysis (MVPA, see Mur, Bandettini, & Kriegeskorte, 2009; Norman, 

Polyn, Detre, & Haxby, 2006) in human subjects that occluded regions of the visual field, 

and thus non-stimulated in a feedforward manner, contain contextual information about the 

surrounding natural scene. 

Smith and Muckli (2010) found that with three quarters of the scene visible it was possible 

to record contextual information in the occluded region, while Tang et al. (2014) showed 

that with only 9-25% of an image revealed, neural responses in the visual ventral steam 

retained object selectivity, suggesting that scene completion is possible from very limited 

information. In the present study we investigated how much contextual surrounding 

information is necessary for scene-specific feedback in non-stimulated regions of V1, 

using an occlusion paradigm with natural scenes (Smith & Muckli, 2010), fMRI and 

MVPA. We gradually revealed the surrounding scene using Gaussian bubbles (Gosselin & 

Schyns, 2001) of varying sizes around an occluded or visible lower right quadrant. We 

show that 1) increasing the visibility of the surround, and thus increasing information in 

the surround receptive fields, increases meaningful feedback in the occluded region; 2) 

information in the non-stimulated region does not represent a direct filling-in of the 

missing feedforward input; and 3) feedback from the surround is essential for full visual 

processing. 
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3.3 Methods 

3.3.1 Subjects 

Twenty nine subjects from the University of Glasgow participated in the experiment (n = 

13 males; mean age: 24.28 years, range: 19-41 years). Subjects were paid for their 

participation. They provided informed written consent and the experiment was conducted 

in accordance with procedures and protocols approved by the local ethics committee at the 

University of Glasgow. We excluded subjects for chance level classification performance 

for at least one feedforward condition (actual image visible in the quadrant, control 

condition). Additionally we excluded subjects with poor alignment between the four 

functional runs (see Voxel Selection and Analysis). Thus, eight subjects were excluded 

from further analysis and in the following we report results from 21 subjects (n = 10 males; 

mean age: 25.29 years, range 19-41 years). 

3.3.2 Stimuli 

3.3.2.1 Feedback vs feedforward condition 

To test feedback signals in the absence of feedforward stimulation, we used an occlusion 

paradigm previously employed by Smith and Muckli (2010). For the feedback conditions, 

the lower right quadrant was occluded by a white rectangle. The white rectangle was 

placed 0.5° of visual angle diagonally from the centre of the scene, and spanned 11.6° x 

9.2°. In the feedforward conditions, the corresponding quadrant of the scene was shown. 

Thus, in these conditions, we looked at the full visual processing, i.e. both feedforward 

signals and feedback from the surround. 

3.3.2.2 Scenes 

We used two natural scene images for each participant. Natural scenes were used as these 

induce a lot of contextual associations (Bar, 2004). Each scene was 600 x 480 pixels and 

spanned 24° x 19.2° of visual angle. We did not normalize the images in terms of low-level 

visual features, such as luminance, contrast or energy at each spatial frequency because we 

wanted the scenes to look as natural as possible. Smith and Muckli (2010, Experiment 4) 

previously showed that feedback signals cannot be solely attributed to these low-level 

visual features. 



Chapter 3  65 

To investigate the contribution of surrounding contextual information on the brain activity 

patterns corresponding to the lower right quadrant, we manipulated the visibility of the 

surrounding ¾ of the scene with Gaussian apertures (referred to as ―bubbles‖ from this 

point onwards, Gosselin & Schyns, 2001) of various sizes to produce the following types 

of stimuli: ¼ (no surrounding scene shown), Small Bubbles (standard deviation [SD] = 50 

x 32 pixels), Medium Bubbles (SD = 90 x 56 pixels), Large Bubbles (SD = 125 x 100 

pixels) and Full (surround fully visible). The study consisted of four experiments, with 

each subject participating in only one of them (see Figure 3.1A for number of subjects in 

each experiment). In each experiment, stimuli were shown in four different conditions 

(Figure 3.1A). We kept the number of conditions to four in each experiment partly to test 

different combinations of stimuli conditions and partly to keep the experiment length 

reasonable. In Experiment 1, we used stimuli in the Full Feedback occluded condition, ¼ 

feedforward, Small Bubbles feedforward and Medium Bubbles feedforward conditions. In 

Experiment 2, we replaced Small and Medium Bubbles with Large Bubbles and the Fully 

Visible scene. In Experiment 3, we added the Fully Visible scene to test whether more 

contextual feedback would be seen in the Small and Medium Bubbles conditions if 

participants were more familiar with the full scene. In Experiment 4, we tested the effect of 

reducing the surrounding information around the occluded region using Small, Medium 

and Large Bubbles feedback conditions. 

3.3.2.3 Occluded region mapping 

Subjects were presented with three contrast-reversing checkerboards (5 Hz) twice per run. 

The checkerboards either covered an inner rectangular part of the occluded region (Target 

– 2.5° diagonally from centre, 10.2° x 7.8° visual angle) or the border between the lower 

right quadrant and the rest of the stimulus (Surround). There were two types of surround 

checkerboard stimuli (Figure 3.1B) – Large Surround (0.5° diagonally from fixation, 

11.6° x 9.2° visual angle) and Small Surround (1.5° diagonally from fixation). The 

activation in the early visual areas for the (Target – Large Surround) contrast is shown in 

Figure 3.1C. 
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Figure 3.1 | Stimuli. A) In feedback conditions the lower right quadrant was occluded with a 

white rectangle, while in feedforward conditions the corresponding quadrant was visible. We 

manipulated scene visibility around the lower right quadrant with Gaussian apertures (“bubbles”) 

of various sizes (¼ condition [no surrounding scene visible], Small Bubbles [SD = 50 x 32 px], 

Medium Bubbles [SD = 90 x 56 px], Large Bubbles [SD = 125 x 100 px] and Full [surrounding scene 

fully revealed]). The dark bars labelled “Surr” represent the extent to which the surrounding ¾ 

of the scene was revealed, from minimum – no surround revealed, to maximum – surround fully 

visible. The light bars labelled ”¼” represent the extent to which the quadrant of the scene was 

revealed, from minimum – occluded condition, to maximum – feedforward condition. Note that 

the bars are not to scale. Each participant took part in one experiment only. Experiment 1, n = 

6; Experiment 2, n = 4; Experiment 3, n = 6; Experiment 4, n = 5. B) Checkerboards were used to 

retinotopically map the occluded region in V1. Left: Target checkerboard (2.5° diagonally from 

centre, 10.2° x 7.8° visual angle), Middle: Large Surround (11.6° x 9.2° visual angle), Right: 

Small Surround (10.9° x 8.5° visual angle). C) The activation for the contrast of (Target - Large 

Surround) used to map the occluded region is shown on the occipital cortex, with V1 shaded in 

green on the inflated visualization. 

 

3.3.3 Task & Procedure 

Scenes were presented on a uniform grey background using MRI compatible goggles 

(NordicNeuroLab) with 800 x 600 px screen resolution, which corresponded to 32° x 24° 

visual angle. In each experiment there were 8 types of trial (2 scenes in 4 different 
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conditions). In each 12 second trial the stimulus was flashed on and off (200 ms on/ 200 

ms off) 28 times (11.6 secs + variable fixation to account for uncertainty in timing). This 

maximised the signal to noise ratio (Kay, Naselaris, Prenger, & Gallant, 2008). Each trial 

type was presented sequentially, with the trial order randomized in each sequence. Each 

sequence lasted 96 seconds (8 x 12s). A 12 second fixation period was included before and 

after each sequence of trials. Each experimental run lasted 10 min 48 seconds, containing 

four trial sequences and two mapping sequences (2 x Target and two Surrounds). There 

were four experimental runs in total. Thus, each stimulus was shown 16 times per 

experiment. Subjects’ task was to fixate on a central checkerboard and report a fixation 

colour change with a button press. Subjects pressed a different button, depending on 

whether the colour change occurred during scene 1 or scene 2. The purposes of the task 

were to ensure that the subject paid attention to which scene was being shown and to 

minimize eye movements. This was important for accurate retinotopic mapping of the 

occluded region in the lower right quadrant of the visual field. In addition, we used eye-

tracking to make sure subjects were fixating. 

After the experimental runs, we performed a polar angle retinotopic mapping procedure to 

estimate the borders of the early visual areas V1-3. This consisted of a single checkerboard 

wedge which started in the right horizontal meridian and rotated clockwise (12 rotations 

per scan, wedge angle: 22.5°, scan time: 13 min 28 sec). For some subjects, we also 

performed an eccentricity mapping procedure. This consisted of an expanding ring which 

started at the centre and expanded towards the periphery (8 expansions per scan, ring width 

increased exponentially towards the periphery, scan time: 9 min 12 sec). Subjects were 

also familiarised with the full non-occluded scenes in a short practice run prior to going 

into the scanner. 

3.3.4 MRI acquisition 

MRI data were collected using a 3T Siemens Tim Trio System with a 12-channel head coil. 

Blood oxygen level dependent (BOLD) signals were measured with an echo-planar 

imaging sequence (echo time: 30 ms, repetition time: 1000 ms, field of view: 210 mm, flip 

angle: 62°, 18 axial slices). The spatial resolution for functional data was 3 x 3 x 3 mm. 

Each experimental run had 648 volumes. Retinotopic mapping consisted of 808 volumes 

(polar angle) or 552 volumes (eccentricity). The 18 slices were positioned to maximize 

coverage of occipital cortex. A high resolution 3D anatomical scan (3D Magnetization 

Prepared Rapid Gradient Echo, 1 x 1 x 1 mm resolution) was also recorded (192 volumes). 
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3.3.5 MRI data processing 

Functional data for each experimental run and retinotopic mapping were corrected for slice 

time (cubic spline interpolation) and 3D motion (Trilinear/Sinc interpolation), temporally 

filtered (high-pass filtered at 6 cycles with GLM-Fourier, and linearly detrended), and 

spatially normalized into Talairach space with Brain Voyager QX 2.8 (Brain Innovation). 

Subsequently, the anatomical data were used to create an inflated cortical surface and 

functional data were overlaid. 

3.3.6 Voxel selection and analysis 

Excessive subject movement between runs is likely to affect correspondence between 

voxels from one run to another. This in turn could affect our analysis, as we selected our 

region of interest (ROI) based on the averaged functional data of all 4 runs. To determine 

whether there was good alignment between functional data covering the visual areas, we 

calculated an alignment value for each subject by measuring Pearson’s correlation in a ROI 

in the visual cortex between the four functional runs. The median alignment value across 

subjects was 98.08% and single subject values ranged from 77.85% to 99.31%. We 

excluded data from further analysis if the alignment value was below 90%, which applied 

to three subjects. Furthermore, we excluded any subject with chance level performance in 

any feedforward condition in single trial analysis (significance above chance was measured 

using permutation analysis with 1000 trials). The feedforward conditions have bottom-up 

stimulation and hence there should be a difference in activity patterns. If the scenes could 

not be decoded in these control conditions in a subject, we excluded them from the 

analysis, as it suggests that the subject might not have been paying enough attention during 

the experiment. This excluded a further five subjects. Thus, the following analyses were 

performed on 21 subjects. 

The occluded region was mapped using a general linear model (GLM) contrast of the 

Target region against the Large Surround, as described previously in Smith & Muckli 

(2010). The ROI was selected from activation in V1 only. To further minimize spillover 

activity from neighbouring stimulated areas, voxels from the ROI were then selected for 

analysis on the basis of the difference between Target and Large Surround t-values being 

greater than 1. 
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3.3.6.1 Analyses with extended safety boundary around the 

occluded region 

To further make sure our findings of scene information in the quadrant were not due to 

spillover activity from the feedforward surround, we performed a separate analysis with 

more stringent methods of voxel selection. First of all, we selected our region of interest in 

BrainVoyager as the contrast of the Target mapping region being higher than both the 

Large Surround and the Small Surround mapping conditions. In addition, we selected 

voxels fitting the criteria of (Target - Large Surround) > 1 and (Target - Small Surround) > 

1. This helped to restrict voxels to the more peripheral regions and to further minimize any 

voxels at the inner borders of the quadrant. Analysis showed the same pattern of results 

and significant decoding between the two scenes in all conditions except Small Bubbles 

Feedback and Full Feedback (Average block analysis, Experiment 1 only). 

Moreover, we performed another analysis using population receptive field (pRF, Dumoulin 

& Wandell 2008) mapping for the subjects which had both the polar angle and eccentricity 

retinotopic mapping available (Expt 2: n = 4, Expt 3: n = 2, Expt 4: n = 4). Again, this was 

done to restrict our voxel selection to the quadrant. We only included voxels that were both 

within the occluded region as defined by pRF and only within our original Target > Large 

Surround ROI as defined in BrainVoyager. 

3.3.7 Multivoxel pattern classification analysis 

The voxels matching all these criteria were entered into the linear classifier (Support 

Vector Machine [SVM]). For classification analyses, we trained the classifier to decode 

between the 2 scenes in each condition. For cross-classification analyses we trained the 

classifier to decode between the two scenes in one condition and tested on the other. The 

classifier used single trial activity patterns (beta values) for training, and was then tested on 

either single trial (8 trials x 4 sequences = 32 trials) or average activity patterns for each of 

the 8 trial types. The classifier was trained on 3 of the runs and tested on the remaining run 

(i.e. one-run-out cross-validation). 

We bootstrapped (10000 samples) the classifier performances for individual subjects, in 

order to estimate the single subject mean. We then bootstrapped (10000 samples) these 

values to estimate the group mean and associated variance. The confidence intervals (CIs) 

were defined with an alpha level of 0.05. Classifier performances were deemed to be 

significantly above chance (50%) if the 95% CIs did not intersect with 50%. We were not 
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able to conduct an ANOVA to check for group differences as the data were not 

parametrically distributed. Differences between group classifier performances were thus 

assessed via a permutation test (1000 samples) of the differences between the group means 

(p values not corrected for multiple comparisons).  

 

3.4 Results 

Our hypothesis is that the surround stimulation drives higher visual areas with larger 

receptive fields to send a contextual feedback signal to voxels in V1 responding to the 

occluded quadrant. We can therefore modify the feedforward surround stimulation to learn 

more about the nature of contextual feedback.  

3.4.1 Increased stimulation of the surround receptive field 

enhances contextual feedback 

First, we tested how much surrounding scene information is needed for non-stimulated V1 

to contain information about the scene. We parametrically modulated the availability of 

surround information and trained the SVM classifier to decode between the two scenes 

using voxel patterns responding to the lower right quadrant. SVM classification 

performance was used as an estimate of the amount of available information in the 

activation pattern. We used SVM on both the occluded (feedback) and the stimulated 

conditions (feedforward). We refer to the stimulated condition as feedforward but note that 

this contains a mixture of feedforward, lateral and feedback activation. In contrast, the 

feedback conditions contain feedback and lateral interactions but no direct feedforward 

input. 

When the lower image quadrant was occluded, scene classification in those non-stimulated 

voxels improved with increasing availability of surrounding scene information (Figure 

3.2A, left). Classification was significantly above chance for Medium Bubbles (single trial 

classification [ST]: 61.25%, confidence interval [CI] [0.075, 0.075]; average block 

classification [AB]: 70.00%, CI [0.175, 0.15]), Large Bubbles, (AB only: 82.50%, CI [0.3, 

0.175]) and the Full Feedback condition (ST: 81.84%, CI [0.0723, 0.0586]; AB: 89.84%, 

CI [0.1328, 0.0859]), but not for the Small Bubbles. Averaging across experiments, 

classifier performance for the Full Feedback condition was significantly higher than Small 

or Medium Bubbles conditions (Small: ST: 50.62%, CI [0.0687, 0.0500], p < 0.001; AB: 
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62.5%, CI [0.15 0.15], p = 0.015; Medium: ST only: 61.25%, CI [0.0750, 0.0750], p = 

0.009). 

Increased surround information also improved classifier performance during feedforward 

processing of the scenes (Figure 3.2A, right), as the Fully Visible condition (ST: 88.12%, 

CI [0.0396, 0.0375], AB: 98.33%, CI [0.0250, 0.0167]) was significantly higher than the 

other feedforward conditions (Large: AB only: 93.75%, CI [0.0625 0.0625], p = 0.019; 

Medium: ST: 79.95%, CI [0.0443 0.0495], p = 0.028, AB: 91.67%, CI [0.0313 0.0313], p 

= 0.001; Small: ST only: 78.91%, CI [0.04127, 0.0469], p = 0.007; ¼: ST: 80.94%, CI 

[0.0469 0.05], p = 0.034, AB: 91.25%, CI [0.0625 0.0625], p = 0.017). Classification 

performance for all conditions and experiments is shown in Figure 3.2B. 

3.4.2 Contextual feedback enhances feedforward processing 

Classifier analyses reveal, first of all that with increased presence of the surrounding scene 

more scene-specific information is detected in the occluded, and hence non-stimulated, V1. 

Increasing input from the surround enhances the feedback signal, and the information 

patterns in non-stimulated V1 are richer and more classifiable. Feedforward information 

was also improved with increased surround stimulation. When there was feedforward 

scene information in the lower quadrant, revealing more image information in the surround 

helped classifier performance. The question arises however, do feedback and feedforward 

signals carry the same information? We used a cross-classification approach to test if the 

classifier can be trained on contextual surround information in the non-stimulated region 

i.e. to discriminate the two scenes in the feedback conditions and then use the feedback 

information to discriminate scenes in the feedforward condition (cross-classification). 

Successful cross-classification would suggest similar information content. 
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Figure 3.2 | Classification performance for decoding between the two scenes in the same 

condition, for feedback and feedforward stimuli. Chance level is 50%. Lines represent 95% 

confidence intervals around the bootstrapped mean (10000 bootstrap samples of individual 

subjects’ performances). Classifier performance is significantly above chance at α = 0.05 (not 

corrected for multiple comparisons) if the confidence intervals do not intersect with the chance 

line. A) Classifier performance for each condition, averaged over the four experiments (solid line 

= classifier tested on single trials; dashed line = classifier tested on blocks of conditions averaged 

over the same type). Small, Medium and Large Feedback conditions, n = 5; Full Feedback, n = 16; 

Fully Visible, n = 15; Large Feedforward, n = 4, Medium and Small Feedforward, n = 12; ¼, n = 

10. B) Same data as in (A) but classifier performance split by four experiments (separate 

colours). ST (dark hues) = classifier tested on single trials; AB (light hues) = classifier tested on 

blocks of conditions averaged over the same type. The small red circles represent individual 

subjects’ results. 
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3.4.2.1 How much does feedback contribute to normal visual 

processing? 

We trained the classifier to decode between the two scenes in the Full Feedback condition 

(with no direct feedforward input in the quadrant) and tested on the feedforward 

conditions, with varying amount of feedback from the surround (Figure 3.3). Cross-

classification performance decreased with decreasing scene information in the surround. 

The classifier could generalize from the Full Feedback condition to the Fully Visible (ST: 

72.5%, CI [0.0781, 0.075]; AB: 75%, CI [0.1125, 0.1125]) and Large Bubbles condition 

(ST only: 63.28%, CI [0.0547, 0.0547]) (Figure 3.3A). However, cross-classification for 

Medium, Small Bubbles, and ¼ conditions was at chance level. Averaging across 

experiments (Figure 3.3A), the Fully Visible condition was significantly higher than the 

Medium Bubbles (ST: 53.91%, CI [0.0521, 0.0495], p = 0.002; AB: 57.29%, CI [0.0729 

0.0833], p = 0.021), Small Bubbles (ST: 48.7%, CI [0.0495, 0.0469], p < 0.001; AB: 

52.08%, CI [0.0625, 0.0833], p < 0.001) and the ¼ condition (ST: 50.31%, CI [0.05, 

0.0531, p < 0.001]; AB: 50%, CI [0.05, 0.0625], p = 0.003). These results tell us that we 

can train on a feedback signal (that is likely to be coarse), and test on a signal that is a 

combination of fine-grained feedforward signal and (coarse) surround feedback, suggesting 

some shared scene-specific information. This common information must arise from the 

contextual feedback signal because when the surround stimulus is reduced to nothing (i.e. 

with shrinking bubbles), we learn that the content of information or its scale (coarse or 

fine) in feedforward and feedback signals differs. 

In order to further test how much information from the surround contributes to normal 

visual processing, we compared the Fully Visible scene with other feedforward conditions 

with a reduced scene surround, as well as the feedback conditions (Figure 3.4), by training 

the classifier on the Fully Visible scene and testing on the other conditions. In a fully 

visible scene both parts of the information are available simultaneously and the classifier 

might rely more on the rich, fine-grained feedforward information. However, we found 

that Fully Visible feedforward to feedback cross-classification was only possible with large 

amounts of scene information surrounding the occluded region. Fully Visible to Full 

Feedback cross-classification was above chance, while Large, Medium and Small Bubbles 

did not reach significance in the feedback conditions. This suggests that much of the 

information in the activity patterns of the Fully Visible scene stems from feedback from 

the surround. In addition we found that although we could cross-classify above chance 

from the Fully Visible to all other feedforward conditions, cross-classification reduced 



Chapter 3  74 

with decreased scene information in the surround. Classifier performance was significantly 

higher for Large Bubbles (ST: 73.44%, CI [0.0469, 0.0469]; AB: 84.38%, CI [0.1563 

0.125]) compared to Small Bubbles (ST: 58.85%, CI [0.0521, 0.0573], p = 0.007; AB: 

60.42%, CI [0.0833 0.0833], p = 0.023) and ¼ (ST only: 60.16%, CI [0.0547, 0.0625], p = 

0.028) conditions. If contextual feedback did not contribute scene-specific information to 

V1, we would have observed equal cross-classification across feedforward conditions, 

regardless of surround stimulation.  

Interestingly, we found that when the classifier was trained on the Fully Visible image it 

cross-classified better to Full Feedback (ST: 74.06%, CI [0.075, 0.075]; AB: 0.7875%, CI 

[0.125 0.1125]) than to some feedforward conditions (significantly above chance for Small 

Bubbles: ST: 58.85%, CI [0.0521, 0.0573], p = 0.013; AB: 0.6042%, CI [0.0833 0.0833], p 

= 0.035). This suggests that feedback in the occluded region from full stimulation in the 

surround is at least as informative about the scene as actual feedforward information in the 

quadrant with minimal surround stimulation. This shows that feedback is an important part 

of the information in V1, both when feedforward stimulation is present and when it is 

absent.  

If feedback information interacts with feedforward processing, then increasing contextual 

surround information should reduce cross-classification from the ¼ feedforward condition 

to feedforward conditions with surround stimulation (Figure 3.5). Indeed, cross-classifier 

performance for ¼ to Small Bubbles (ST: 83.33%, CI [0.0573, 0.0625], AB: 91.67%, CI 

[0.0833, 0.0625]) was higher than to Large (ST only: 69.53%, CI [0.0313, 0.0391], p = 

0.015) or the Fully Visible condition (ST: 67.97%, CI [0.0703, 0.0703], p = 0.021; AB: 

65.63%, CI [0.125, 0.1563], p = 0.006). Cross-classifier performance for ¼ to Medium 

Bubbles (ST: 82.81%, CI [0.0677, 0.0677], AB: 0.9375%, CI [0.125 0.0625]) was also 

significantly higher than to Large (ST only: p = 0.039) or the Fully Visible condition (ST: 

p = 0.037; AB: p = 0.036). 
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Figure 3.3 | Cross-classification performance for training on the Full Feedback condition and 

testing on the feedforward conditions. Chance level is 50%. Lines represent 95% confidence 

intervals around the bootstrapped mean. Classification performance for the Full Feedback 

stimulus (training and testing on the same condition) is shown for comparison. Classifier 

performance is significantly above chance at α = 0.05 (not corrected for multiple comparisons) if 

the confidence intervals do not intersect with the chance line. A) Classifier performance for each 

condition, averaged over the four experiments (solid line = classifier tested on single trials; 

dashed line = classifier tested on blocks of conditions averaged over the same type). Fully 

Visible, n = 10; Large, n = 4; Medium and Small, n = 12; ¼, n = 10. B) Same data as in (A) but 

classifier performance split by four experiments (separate colours). ST (dark hues) = classifier 

tested on single trials; AB (light hues) = classifier tested on blocks of conditions averaged over 

the same type. The small red circles represent individual subjects’ results. 
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Figure 3.4 | Cross-classification performance for training the classifier on the Fully Visible 

scene and testing on the other feedforward and feedback conditions. Chance level is 50%. 

Lines represent 95% confidence intervals around the bootstrapped mean. Classification 

performance for the Fully Visible stimulus (training and testing on the same condition) is shown 

for comparison. Classifier performance is significantly above chance at α = 0.05 (not corrected 

for multiple comparisons) if the confidence intervals do not intersect with the chance line. A) 

Classifier performance for each condition, averaged over the four experiments (solid line = 

classifier tested on single trials; dashed line = classifier tested on blocks of conditions averaged 

over the same type). Large Feedforward, n = 4; Medium and Small Feedforward, n = 6; ¼, n = 4; 

Full Feedback, n = 10; Large, Medium and Small Feedback, n = 5. B) Same data as in (A) but 

classifier performance split by four experiments (separate colours). ST (dark hues) = classifier 

tested on single trials; AB (light hues) = classifier tested on blocks of conditions averaged over 

the same type. The small red circles represent individual subjects’ results. 
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Figure 3.5 | Cross-classification performance for training the classifier on the ¼ condition 

and testing on the other feedforward and feedback conditions. Chance level is 50%. Lines 

represent 95% confidence intervals around the bootstrapped mean. Classification performance 

for the ¼ stimulus (training and testing on the same condition) is shown for comparison. 

Classifier performance is significantly above chance at α = 0.05 (not corrected for multiple 

comparisons) if the confidence intervals do not intersect with the chance line. A) Classifier 

performance for each condition, averaged over the four experiments (solid line = classifier 

tested on single trials; dashed line = classifier tested on blocks of conditions averaged over the 

same type). Small and Medium, n = 6; Large and Fully Visible, n = 4; Full Feedback, n = 10. B) 

Same data as in (A) but classifier performance split by four experiments (separate colours). ST 

(dark hues) = classifier tested on single trials; AB (light hues) = classifier tested on blocks of 

conditions averaged over the same type. The small red circles represent individual subjects’ 

results. 
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3.4.2.2 Does increased presentation of the entire image change 

feedback information? 

Apart from varying how much surround information is visible in a stimulus, we also 

wondered whether being reminded of the full scene would improve feedback in the stimuli 

with reduced surround. In Experiment 3, we presented the Fully Visible scenes along with 

the Medium and Small Bubbles stimuli, unlike in Experiment 1 where we had not 

presented the Fully Visible scene as one of the stimuli. Varying the frequency of the Fully 

Visible scene allowed us to investigate whether being reminded of the full structure of the 

scene would boost meaningful feedback in stimuli with reduced surround information. We 

found that cross-classification from Full Feedback to Small and Medium Bubbles was at 

chance level for both Experiment 1 and 3 (Figure 3.3B), suggesting that reduced feedback 

to the feedforward quadrant in the Small and Medium Bubbles stimuli was mainly due to 

the decreased contextual surround information as opposed to a reduced implicit memory of 

the fully visible scene. 

3.4.3 Results with extended safety boundary around occluded 

region 

We performed an additional separate analysis in order to decrease the number of voxels 

that are close to the boundary region and hence reduce the possibility of any feedforward 

stimulation ―spilling over‖ from the surround. For the conjunction analysis using the 

contrast of (Target > Large Surround) & (Target > Small Surround), we found the same 

pattern of results and significant decoding between the two scenes in all conditions except 

Small Bubbles Feedback, and Full Feedback (AB analysis, Experiment 1 only, Figure 

S3.1, Appendix B). 

After restricting voxels to the occluded region using pRF mapping, we saw that classifier 

performance decreased in some conditions, but the pattern of the results remained the same 

(Figure 3.6). Due to the low numbers of subjects in each experiment for whom we were 

able to perform pRF mapping, we did not calculate confidence intervals for the mean 

value. 
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[Next page] Figure 3.6 | Classification and cross-classification performance after applying 

population receptive field (pRF) mapping to further constrain voxels to the occluded region. 

Classifier performance is shown for each condition for each of the three experiments (separate 

colours; Expt 2: n = 4; Expt 3: n = 2; Expt 4: n = 4). ST (dark hues) = classifier tested on single 

trials; AB (light hues) = classifier tested on blocks of conditions averaged over the same type. 

The small red circles represent individual subjects’ results. Chance level is 50%. A) Decoding two 

scenes in the same condition. B) Training on Full Feedback and testing on feedforward 

conditions. C) Training on the Fully Visible scene and testing on other feedforward and feedback 

conditions. D) Training on the ¼ condition and testing on other feedforward and feedback 

conditions. 
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3.5 Discussion 

The present study aimed to establish how the contextual surround information affects 

cortical feedback in an occluded region of the visual field in V1. Firstly, we have 

replicated the findings of Smith and Muckli (2010), by showing that non-stimulated V1 

receives contextual feedback from feedforward stimulation in the surrounding regions of 

the scene. Secondly, we have extended this by showing that this effect is modulated by 

how much scene contextual information is available in the regions surrounding the 

occluded area. We further show that feedback signals combine with feedforward 

information to provide a full visual representation. Using a technique sensitive to the 

information content in a neuronal population, we have built on previous studies by 

investigating how surrounding feedback changes the information pattern relating to the 

visual scene, rather than simply looking at increase or decrease in activation. 

3.5.1 Increased stimulation of the surround receptive field 

enhances contextual feedback 

We show that it is possible to study influence from the scene surround in populations of 

neurons using fMRI, complementing what we already know from single cell studies in 

electrophysiology. We found that increasing information in the surround, led to increased 

information in the occluded region of V1. This means that even without direct visual 

stimulation, regions of V1 are processing information about the surrounding scene.  

There was no meaningful feedforward stimulation in the occluded region, and yet we could 

decode the two scenes using brain activity patterns corresponding to this non-stimulated 

region. This differential activity must originate from meaningful contextual information in 

the scene surround. Classical receptive fields are smaller than the surround, which carries 

feedback from higher areas with larger receptive fields. Hence neurons in the occluded 

area in V1 could receive information about the rest of the scene via cortical feedback from 

higher areas. V1 neurons integrate signals over a large area that is well beyond the classical 

receptive field (Angelucci & Bressloff, 2006; Angelucci et al., 2002). Lateral connections 

can modulate the response in the central receptive field over short distances. However, 

feedback from higher cortical areas is needed to account for the full extent of the surround 

modulation effects (Angelucci & Bressloff, 2006). 
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As we are measuring a population of neurons using fMRI, as opposed to single cells, it is 

hard to estimate how widespread the effect of the surround RF would be. Since V1 

receives feedback from many cortical areas, which have increasing receptive field sizes as 

one moves to higher and more abstract processing areas, we might expect influence from 

the surround would be restricted to regions close to the occluded region for feedback 

coming from V2, for example, but transmit information from a larger area of the 

surrounding scene for feedback originating from higher visual areas. Williams et al. (2008) 

have demonstrated that feedback can indeed come from distant retinotopic regions, by 

showing that the fovea receives feedback about objects in the periphery. 

Larger bubbles in the surround lead to more informative feedback in the occluded region. 

This may be because we are revealing more of the overall scene structure as we increase 

the bubble size. Tang et al. (2014) demonstrated top-down effects in image completion by 

presenting partially revealed images using bubbles. The number of bubbles was constant, 

but their location was changed. This suggests that revealing a certain amount of the global 

image structure, regardless of the specific parts, can be enough for top-down completion to 

take effect. Alternatively, our result could be explained by larger bubbles providing more 

information close to the lower right quadrant, compared to small bubbles, because our 

bubbles were centred in each quadrant. Since we did not specifically measure effects of 

bubble location, it remains to be seen whether varying proximity of surrounding 

information can affect feedback. 

3.5.2 Interaction of feedback and feedforward signals 

Stimulating the non-classical surround not only increases information in the occluded 

region, but also in the quadrant when it contains feedforward information. We saw that 

similarity between identical feedforward quadrants was reduced if the amount of 

information in the surround was different. If feedback signals from the surround did not 

combine with feedforward information or only weakly modulated it, we would have seen 

similar brain activity patterns relating to the feedforward quadrant regardless of the 

surround. This suggests that feedback from the surround combines with feedforward 

information and is necessary for full visual processing in V1. The feedforward signal has 

been traditionally considered the ―loud‖ signal, since it drives receptive fields, while 

feedback has been thought of mostly modulatory and not able to trigger spikes (Bastos et 

al., 2012; Bullier, 2006, but see Mignard & Malpeli, 1991). By using fMRI which is 

sensitive to non-spiking activity (Logothetis, 2008; Muckli, 2010) we established that this 
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modulation from feedback may be just as important as the spiking produced by stimuli in a 

bottom-up manner. Many studies support the notion that feedback to V1 is a crucial part of 

visual perception. For example, inactivation of higher areas such as V2 or MT reduces the 

response of neurons in the lower areas to visual stimulation in the centre RF, (Hupé et al., 

1998; Hupé et al., 2001; Sandell & Schiller, 1982; Schmidt, Lomber, Payne, & Galuske, 

2011) and has been shown to affect prediction in an apparent motion paradigm (Vetter, 

Grosbras, & Muckli, 2015) and has been implicated in awareness (Pascual-Leone & 

Walsh, 2001), suggesting that feedback from higher areas interacts with feedforward input. 

In the present study, we took the opposite approach and removed the feedforward input. In 

addition, we used a paradigm allowing us to investigate how feedback influences the 

information content in a population of neurons, rather than just spiking activity or change 

in overall activation. We found that not only does feedback modulate the feedforward 

information, as has been previously shown, but in fact provides a significant part of the 

information in full visual processing. The brain is now more commonly viewed as a 

parallel rather than serial processor (Singer, 2013) and each cortical neuron can be thought 

of as a ―microcosm of the brain as a whole, with synapses carrying information originating 

from far flung regions‖ (Gilbert & Li, 2013). Since feedback pathways outnumber the 

feedforward, it may perhaps be more appropriate to think of internal processing as the 

important input signal, and the subsequent sensory stimulation forming the feedback 

signal. 

3.5.3 Lateral connections 

We can be sure that there is no meaningful feedforward stimulation in the occluded region. 

However, the information that we do record there could originate from both lateral and 

feedback connections. Although lateral connections might have a role, we would argue that 

they cannot fully explain the observed effect, as they only span a relatively small region of 

retinotopic space, and are not sufficient to account for the full range of surround 

modulatory response (Angelucci et al., 2002). Lateral connections are 2.3 times larger than 

the classical receptive field (Sceniak, Ringach, Hawken, & Shapley, 1999) and can project 

to around 2° from the classical RF in V1 at eccentricities of 2-6° (Stettler, Das, Bennett, & 

Gilbert, 2002). 
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3.5.4 Information content of feedback 

Predictive coding theories (Clark, 2013; Friston, 2010; Rao & Ballard, 1999) would 

hypothesise that the occluded part of the scene should be represented, based on the 

expected scene structure behind the occluder. Several authors have demonstrated that an 

expected or predicted stimulus evokes activity in V1 which is similar to activity elicited by 

actual bottom-up stimulation (e.g. Ban et al., 2013; Gavornik & Bear, 2014; Kok, Failing, 

& de Lange, 2014). Therefore, it is somewhat surprising that we do not find similarity 

between the occluded region and the missing feedforward quadrant. This suggests that the 

information in feedback signals does not represent a direct filling-in of the missing 

feedforward input.  

However, a lack of a direct filling-in of the feedforward information is possibly not so 

counter-intuitive since the participants do not report seeing the missing portion of the scene 

in the occluded trials (i.e. they do not have a hallucination), so it makes sense to suggest 

that feedback and feedforward information may be coded in different formats, even though 

both carry information about the scene. For example, it may be that the information is 

coarser in terms of its content because of the larger visual fields in higher visual areas or 

less precise retinotopically (e.g. de-Wit, Kubilius, Wagemans, & Op de Beeck, 2012) or 

because feedback and feedforward signals project to different cortical layers (Muckli et al., 

2015; Rockland & Virga, 1989). Muckli et al. showed using high resolution fMRI that 

during normal visual stimulation, feedforward information peaks in mid-layers, while 

contextual feedback information peaks in the superficial layers. 

If feedback is carrying expectations and predictions based on prior knowledge we might 

find that improved knowledge of the full scene structure would be important for 

meaningful feedback in the occluded region. However, it seems that knowledge about the 

particular scene being viewed is not necessary. Smith and Muckli (2010) previously found 

that contextual feedback in the occluded region is present even if participants never see the 

fully visible scene and were not familiarised with it previously. In the present study we 

also found that increased exposure to the full scene did not improve feedback in the 

conditions with reduced surround. Therefore, it appears that the contextual feedback we are 

seeing in this experiment stems from the scene structure available in each trial, and 

possibly knowledge of natural scene properties in general, but familiarity with the specific 

scene is not required. Natural scenes have predictable scene statistics and a lot of the 

information they contain is redundant (e.g. Attneave, 1954; Barlow, 1961; Torralba & 
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Oliva, 2003). Surround suppression has been shown to be engaged differentially based on 

image statistics inferred from Bayesian priors (Coen-Cagli, Kohn, & Schwartz, 2015). 

Therefore this suggests that prior exposure to a specific scene is not required for feedback 

from the surround to provide contextual information to the occluded region. 

3.5.5 Which brain areas does this contextual feedback originate 

from? 

Feedback to V1 originates from many brain regions, both visual and non-visual (Muckli & 

Petro, 2013). It is difficult to speculate where the feedback that we see in the occluded 

region originates from. However, it is plausible that because we used complex natural 

scenes feedback would originate from multiple areas. Parahippocampal place area (PPA) 

and retrosplenial cortex (RSC) could be two candidate areas, as these have been shown to 

preferentially process scene information (Epstein & Kanwisher, 1998; Park & Chun, 2009; 

Vann, Aggleton, & Maguire, 2009) and spatial and non-spatial context (Bar & Aminoff, 

2003). Future studies will give more insight into where V1 receives feedback from in the 

case of natural scene processing. 

3.5.6 Conclusion 

We have demonstrated that feedback forms a large part of the brain activity under normal 

visual stimulation. Using a non-invasive brain imaging technique we have corroborated 

evidence from electrophysiology showing that stimulation in the far-surround receptive 

field modulates the response in the classical receptive field. We show that increased 

information in the scene surround results in increased scene information in both stimulated 

and non-stimulated visual field regions. 
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4 Feedback signals from the local surround 

combine with feedforward information in 

human V1 

 

 

 

4.1 Abstract 

An important aspect of visual perception is grouping local elements into global scene and 

object representations, and feedback signals are thought to underlie this process (e.g. 

Murray et al., 2002; Schmidt et al., 2011; de-Wit et al., 2012). Feedback transmits 

contextual information about a larger region of visual space than feedforward stimulation 

(Angelucci & Bressloff, 2006). Feedback may directly transmit contextual information 

about the global image structure (Bar, 2004) or the global scene representation may be 

achieved via several local mechanisms. We investigated whether feedback preferentially 

transmits information about neighbouring regions (local surround) or the full scene 

structure, transmitting contextual information from distant retinotopic regions (global 

surround). In two experiments, we used a partial occlusion paradigm (Smith & Muckli, 

2010), functional magnetic resonance imaging (fMRI) and pattern analysis techniques to 

investigate activity patterns in regions of V1 which were occluded and thus not receiving 

bottom-up feedforward stimulation. In this way, we were able to probe feedback signals in 

the absence of feedforward input. In Experiment 1, we presented stimuli composed of four 

oriented Gabors (45° or 135°), one in each quadrant. Together the Gabors formed one of 

four global structures (Right, Left, Diamond or X). We showed that such simplistic shapes 

failed to induce contextual feedback into the occluded region. However, in the presence of 

feedforward information, we saw that feedback from the local surround combined with 

identical feedforward input to give rise to different activity patterns in that feedforward 

region. This suggests that feedback may be recruited differentially depending on whether 

feedforward stimulation is present or absent. In Experiment 2, we tested whether feedback 

can originate from a distant retinotopic region in natural scenes. We demonstrated that 

information in a distant retinotopic scene surround is not a source of feedback. These 

findings suggest that feedback preferentially originates from nearby regions and provides 

context to disambiguate local feedforward elements. Therefore context about the global 

scene structure may arise from a series of local surround interactions. 
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4.2 Introduction 

An important aspect of visual perception is grouping local elements into global scene and 

object representations, and cortical feedback signals are thought to underlie this process 

(e.g. Murray, Kersten, Olshausen, Schrater, & Woods, 2002; Schmidt, Lomber, Payne, & 

Galuske, 2011; de-Wit, Kubilius, Wagemans, & Op de Beeck, 2012). Feedback transmits 

contextual information about a larger region of visual space than feedforward stimulation 

(Angelucci & Bressloff, 2006). Neighbouring elements of the scene or its overall global 

structure can be sources of context. Thus feedback may enable a global representation via 

several local mechanisms such as contour completion (e.g. Gilad, Meirovithz, & Slovin, 

2013; Grosof, Shapley, & Hawken, 1993; Kok & de Lange, 2014; Lee & Nguyen, 2001) or 

it could directly transmit contextual information about the global image structure (Bar, 

2004; Oliva & Torralba, 2006, 2007). For example, Williams et al. (2008) have shown that 

feedback can originate from retinotopically far regions, suggesting feedback might not be 

constrained to only transmitting information about neighbouring elements. 

We explored which regions of the scene surround contribute the most to contextual 

feedback signals in V1 – only local neighbouring regions or does the feedback directly 

contain information about the overall global image structure, taking into account distant 

retinotopic regions as well? A useful approach to studying feedback signals is to isolate 

them from the feedforward input by looking at the effect of the scene surround on the 

activity patterns corresponding to occluded regions of the image, which are therefore not 

receiving feedforward stimulation. Due to the retinotopic nature of V1 where neighbouring 

regions of the visual field map onto adjacent parts of the cortex (Wandell, Dumoulin, & 

Brewer, 2007) it is possible to investigate specific regions of a scene. Several studies have 

shown that occluded regions of the visual field contain information about stimulation in the 

surround (Ban et al., 2013; Shushruth, 2011; Smith & Muckli, 2010; Sugita, 1999). 

In two experiments, using functional magnetic resonance imaging (fMRI), multivoxel 

pattern analysis (MVPA, see Mur, Bandettini, & Kriegeskorte, 2009; Norman, Polyn, 

Detre, & Haxby, 2006) and a partial occlusion paradigm (Smith & Muckli, 2010), we 

investigated whether the neighbouring local surround contributes more to the activity 

pattern in the occluded region or whether feedback signals code for the global stimulus 

structure. In Experiment 1, we presented stimuli composed of four oriented Gabors (45° or 

135°), one in each quadrant. Together the Gabors formed one of four global structures 

(Right, Left, Diamond or X). We investigated whether feedback transmitted information 
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about the orientations of the Gabors in the neighbouring quadrants (local hypothesis) or 

about the orientation compatible with the overall stimulus structure (global hypothesis). 

We showed that such simplistic shapes failed to induce contextual feedback into the 

occluded region, unlike natural scenes (Chapter 2, Chapter 3, Smith & Muckli, 2010, 

Muckli et al., 2015). However, in the presence of feedforward information, we saw that 

feedback from the local surround combined with identical feedforward input to give rise to 

different activity patterns in that feedforward region. This suggests that feedback may be 

recruited differentially depending on whether feedforward stimulation is present or absent. 

In order to determine whether feedback from a distant retinotopic region can give rise to 

meaningful feedback when the scene structure in the local surround is not informative, we 

performed Experiment 2 using natural scenes and informative surrounding context in the 

opposite visual field. We demonstrated that information in a distant retinotopic scene 

surround was not a source of feedback and did not combine with feedforward information, 

unlike feedback from the local surround. These findings suggest that feedback 

preferentially originates from nearby regions and provides context to disambiguate local 

feedforward elements. Therefore context about the global scene structure may arise from a 

series of local surround interactions. 

 

4.3 Methods 

4.3.1 Subjects 

Sixteen subjects from the University of Glasgow participated in the experiment (n = 9 

males; mean age: 25.625 years, range: 21-31 years). Subjects were paid for their 

participation. They provided informed written consent and the experiment was conducted 

in accordance with procedures and protocols approved by the local ethics committee at the 

University of Glasgow. Eleven subjects took part in Experiment 1 and five in Experiment 

2. One subject from Experiment 1 was excluded due to excessive motion in one run. Hence 

the following data for Experiment 1 are reported for 10 subjects. 

4.3.2 Stimuli 

4.3.2.1 Feedback vs feedforward condition 

To test feedback signals in the absence of feedforward stimulation, we used an occlusion 

paradigm previously employed by Smith and Muckli (2010). For the feedback conditions, 
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the lower right quadrant was occluded by a white rectangle (Experiment 1) or an occluder 

with a more naturalistic shape in the left visual field (Experiment 2). In Experiment 1, the 

white rectangle was placed 0.5° of visual angle diagonally from the centre of the scene, 

and spanned 7.5° x 7.5° of visual angle. In the feedforward conditions, the corresponding 

region of the scene was shown. Thus, in these conditions, we looked at the full visual 

processing, i.e. both feedforward signals and feedback from the scene surround. 

4.3.2.2 Images 

Experiment 1 

We used stimuli consisting of four oriented Gabors on a grey background, one Gabor in 

each quadrant. Each Gabor was oriented at either 45° or 135°, with the four Gabors 

together forming a single global structure. There were four possible structures: Right (all 

Gabors at 45°), Left (all at 135°), Diamond and X-Shape (Figure 4.1A). We were 

interested in how contextual feedback to the occluded region would be influenced by the 

global structure, such as a diamond, versus the orientations in the two quadrants directly 

adjacent to the occluded quadrant (we refer to these as ―local‖ orientations). For example, 

in the occluded region for the diamond, we might expect to decode a 45° orientation if the 

global shape is taken into account, or alternatively 135° if the local surround contributes to 

feedback signals the most. Right and Left slant served as control conditions since both 

local and global orientations would be the same. The Gabors has a spatial frequency (SF) 

of 0.71 cycles per degree of visual angle (cpd), as previous studies have indicated V1 

preference for SFs of around 0.68-2 cpd (Haynes & Rees, 2005; Henriksson, Nurminen, 

Hyvärinen, & Vanni, 2008; Tong, Harrison, Dewey, & Kamitani, 2012). The particular SF 

of 0.71 was chosen to be optimal to activate V1 and in addition, we required that the 

sinusoidal pattern in each quadrant was identical, as well as aligned between quadrants in 

order to facilitate the perception of a uniform oriented field across the full stimulus. Gabors 

had a bandwidth of 0.75 and an aspect ratio of 0.5, as the four elongated shapes led to a 

better subjective perception of a global structure. Each quadrant was 384 x 384 pixels, 

corresponding to a visual angle of 7.9° x 7.9°. 

Experiment 2 

We used two coloured natural scenes depicting a person in the left visual field looking into 

a mirror located in the right visual field (Figure 4.1C). There were three conditions: 

feedback (person on the left is occluded), feedforward control (full scene visible) and 
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feedforward conflict (full scene visible, but the reflection in the mirror does not match the 

identity of the person). The scenes were 1024 x 683 pixels which corresponded to 20.88° x 

14.11° of visual angle. In the left visual field, the surrounding image around the occluder 

was kept the same for the two scenes, as we were interested in effects of global image 

structure rather than differences in the surround directly neighbouring the occluded region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Next page] Figure 4.1 | Stimuli. A) Gabor stimuli used in Experiment 1. One Gabor was placed 

in each quadrant and the four Gabors together formed one of four possible global structures: 

Right (all Gabors at 45°), Left (all at 135°), Diamond and X-Shape. In feedforward conditions the 

full image was shown; in feedback the lower right quadrant was occluded with a white rectangle. 

The “local surround” was the orientations in the two quadrants directly neighbouring the 

occluded region. The “global surround” was the whole surrounding image around the occluded 

region. B) Checkerboards used to retinotopically map the occluded region in V1 for Experiment 

1. Left: Target checkerboard (1.5° diagonally from centre, 6.8° x 6.8° visual angle), Middle: 

Large Surround (0.5° diagonally from the centre, 7.5° x 7.5° visual angle), Right: Small Surround 

(1.5° diagonally from the centre, 6.8° x 6.8° visual angle). C) Stimuli in Experiment 2. The 

images consisted of a person in the left visual field looking into a mirror in the right visual field. 

The images were either a person looking at their own reflection (Feedforward), a person looking 

at another’s reflection (Feedforward conflict) and the person in the left visual field occluded by 

a white region with a reflection in the mirror in the right visual field still present (Feedback). D) 

Checkerboards used to retinotopically map the occluded region in V1 for Experiment 2. Top: 

Target checkerboard (covering region inside the surround checkerboard), bottom: Surround 

checkerboard (approximately 1° wide measured from the occluder edge). 
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4.3.2.3 Occluded region mapping 

Experiment 1 

Subjects were presented with three contrast-reversing checkerboards (5 Hz) twice per run. 

The checkerboards either covered an inner rectangular part the occluded region (Target 

mapping – 1.5° diagonally from centre, 6.8° x 6.8° visual angle) or the border between the 

lower right quadrant and the rest of the stimulus (Surround mapping). There were two 

types of surround stimuli (Figure 4.1B) – Large Surround (0.5° diagonally from the 

centre, 7.5° x 7.5° visual angle) and Small Surround (1.5° diagonally from the centre, 6.8° 

x 6.8° visual angle). 

Experiment 2 

Subjects were presented with two contrast-reversing checkerboards (5 Hz) twice per run 

(Figure 4.1D). The checkerboards either covered an inner part the occluded region (Target 

mapping - covering region inside the surround checkerboard) or the border between the 

occluded region and the rest of the stimulus (Surround mapping - approximately 1° wide 

measured from the occluder edge). 

4.3.3 Task & procedure 

Stimuli were projected on a screen seen through a mirror mounted on top of the head coil. 

The screen had a resolution of 1024 x 768 px, which corresponded to a visual angle of 

20.88° x 15.87°. In each experiment there were 8 (Experiment 1) or 6 (Experiment 2) types 

of trial (2 scenes in 4 or 3 different conditions). In each 12 second trial the stimulus was 

flashed on and off (200 ms on/ 200 ms off) 30 times. This maximised the signal to noise 

ratio (Kay, Naselaris, Prenger, & Gallant, 2008). Each trial type was presented 

sequentially, with the trial order randomized in each sequence. Each sequence lasted 96 

seconds (Experiment 1, 8 x 12 s) or 72 seconds (Experiment 2, 6 x 12 s). A 12 second 

fixation period was included before and after each sequence of trials. Each experimental 

run lasted 10 min 48 seconds (Experiment 1) or 10 min (Experiment 2), containing four 

(Experiment 1) or five (Experiment 2) trial sequences and two mapping sequences. There 

were four experimental runs in total. Thus, each stimulus was shown 16 times (Experiment 

1) or 20 times (Experiment 2) in total. The subjects’ task was to fixate on a central 

checkerboard and report a fixation colour change with a button press. For Experiment 2, 

subjects pressed a different button, depending on which person was shown in the mirror 
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when the colour change occurred, and the buttons were counterbalanced across 

participants. The purposes of the task were to ensure that the subject paid attention to 

which scene was being shown and to minimize eye movements. This was important for 

accurate retinotopic mapping of the occluded region. 

After the experimental runs, we performed a polar angle retinotopic mapping procedure to 

estimate the borders of the early visual areas V1-3. This consisted of a single checkerboard 

wedge which started in the right horizontal meridian and rotated clockwise (12 rotations 

per scan, wedge angle: 22.5°, scan time: 13 min 12 sec). For some subjects, we also 

performed an eccentricity mapping procedure. This consisted of an expanding ring which 

started at the centre and expanded towards the periphery (8 expansions per scan, ring width 

increased exponentially towards the periphery, scan time: 8 min 52 sec). Subjects were 

also familiarised with the full non-occluded scenes in a short practice run prior to going 

into the scanner. 

4.3.4 MRI acquisition 

MRI data were collected using a 3T Siemens Tim Trio System with a 32-channel head coil. 

Blood oxygen level dependent (BOLD) signals were measured with an echo-planar 

imaging sequence (echo time: 30 ms, repetition time: 1000 ms, field of view: 210 mm, flip 

angle: 62°, 18 axial slices). The spatial resolution for functional data was 3 x 3 x 3 mm. 

Each experimental run had 648 (Experiment 1) or 600 (Experiment 2) volumes. 

Retinotopic mapping consisted of 792 volumes (polar angle) or 532 volumes (eccentricity). 

The 18 slices were positioned to maximize coverage of occipital cortex. A high resolution 

3D anatomical scan (3D Magnetization Prepared Rapid Gradient Echo, 1 x 1 x 1 mm 

resolution) was also recorded (192 volumes). 

4.3.5 MRI data processing 

Functional data for each experimental run and retinotopic mapping were corrected for slice 

time (cubic spline interpolation) and 3D motion (Trilinear/Sinc interpolation), temporally 

filtered (high-pass filtered at 6 cycles with GLM-Fourier, and linearly detrended), and 

spatially normalized into Talairach space with Brain Voyager QX 2.8 (Brain Innovation). 

Subsequently, the anatomical data were used to create an inflated cortical surface and 

functional data were overlaid. 
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4.3.6 Voxel selection and analysis 

Excessive subject movement between runs is likely to affect correspondence between 

voxels from one run to another. This in turn could affect our analysis, as we selected our 

region of interest (ROI) in V1 based on the averaged functional data of all 4 runs. To 

determine whether there was good alignment between functional data covering the visual 

areas, we calculated an alignment value for each subject by measuring Pearson’s 

correlation in a ROI in the visual cortex between the four functional runs. The median 

alignment value was 99.21% (Experiment 1, individual subjects’ values ranged 98.16% – 

99.64%) and 99.21% (Experiment 2, range 99.17% – 99.73%) and no subjects were further 

excluded. 

The occluded region was mapped using a general linear model (GLM) contrast of the 

Target region against the Large Surround, as described previously in Smith and Muckli 

(2010). The ROI was selected from activation in V1 only. To further minimize spillover 

activity from neighbouring stimulated areas, voxels from the ROI were then selected for 

analysis on the basis of the difference between Target and Large Surround t-values being 

greater than 1. To further make sure our findings of scene information in the quadrant were 

not due to spillover activity from the feedforward surround, for Experiment 1 we 

performed population receptive field mapping (pRF, Dumoulin & Wandell, 2008). This 

was done to restrict our voxel selection to the quadrant. We only included voxels that were 

both within the occluded region as defined by pRF and only within our original Target > 

Large Surround ROI as defined in BrainVoyager. In Experiment 2, the occluded region 

was in a different visual field to the meaningful surround, thus ensuring feedforward 

spillover would not affect brain activity patterns in the occluded region. V1 has almost no 

direct connections from one hemisphere to the other (Van Essen, Newsome, & Bixby, 

1982), and thus we assumed that any contextual influence would have been due to 

feedback from higher cortical areas. 

4.3.7 Multivoxel pattern classification analysis 

The voxels matching all these criteria were entered into the linear classifier (Support 

Vector Machine [SVM]). For classification analyses, we trained the classifier to decode 

between the different Gabor structures in either feedback or feedforward conditions. For 

cross-classification analyses we trained the classifier to decode two stimuli in the feedback 

condition and tested on the feedforward condition or vice versa. The classifier used single-



Chapter 4  95 

trial activity patterns (beta values) for training, and was then tested on either single trial 

(Expt 1: 8 trials x 4 sequences = 32 trials; Expt 2: 6 trials x 5 sequences = 30 trials) or 

average activity patterns for each of the 8 or 6 trial types. The classifier was trained on 3 of 

the runs and tested on the remaining run (i.e. one-run-out cross-validation). 

We bootstrapped (1000 samples) the classifier performances for individual subjects, in 

order to estimate the single subject mean. We then bootstrapped (1000 samples) these 

values to estimate the group mean and associated variance. The confidence intervals (CIs) 

were defined with an alpha level of 0.05. Classifier performances were deemed to be 

significantly above chance (50%) if the 95% CIs did not intersect with 50%. 

 

4.4 Results 

4.4.1 Local surround interacts with feedforward information 

In Experiment 1, we aimed to see whether the brain activity patterns in the occluded region 

are more related to the local neighbouring surround orientation or more commensurate 

with the orientation predicted by the global shape. To test this, we decoded between all 

combinations of pairs of stimuli. The comparisons of particular interest were those which 

would predict a difference in ability to decode based on whether the local or the global 

surround contributes more, specifically Right vs Diamond, Right vs X, Left vs Diamond 

and Left vs X. For example, in the Right vs Diamond comparison, if the local orientations 

contribute more, we would expect to decode the two stimuli since different orientations 

would be predicted in the occluded region. On the other hand, if the global shape is taken 

into account, then we might see poor decoding as the same orientation would be expected 

in the occluded region. The Right vs Left comparison acted as a control for the presence of 

informative feedback in the occluded region in general, as the local and global surround 

predict the same orientation in the lower right quadrant. 

In the feedback conditions, we found that we could not decode between the different 

stimuli apart from Diamond vs X (single trial only, 56.87%, CI [0.0563 0.0687], Figure 

4.2, left). In this pair of stimuli there was a difference in both the local and the global 

surrounds and therefore this suggests that feedback might carry information about local or 

global surround, or a mixture of both. However, since we failed to decode above chance in 

the Right vs Left, which served as the control condition, and the other feedback conditions, 
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it suggests that the surround failed to induce very meaningful stimulus specific feedback 

signals in the occluded region. 

In the feedforward conditions, we could decode above chance in all comparisons where 

there was an actual feedforward difference in the orientation of the Gabor in the lower 

right quadrant, as would be expected (Figure 4.2, right). In addition, we could also decode 

Right vs Diamond, even though the feedforward orientations in the lower right quadrant 

were the same. The local surround, on the other hand, was different, suggesting that 

feedback from the local surround combines with otherwise identical feedforward 

information in the quadrant to give rise to different activity patterns for the two stimuli. 

Surprisingly, however, we did not see the same above chance classification for Left vs X. 

 

Figure 4.2 | Classification performance for decoding pairs of stimuli, for feedback and 

feedforward conditions. Chance level is 50%. Lines represent 95% confidence intervals around 

the bootstrapped mean (1000 bootstrap samples of individual subjects’ performances). Classifier 

performance is significantly above chance at α = 0.05 (not corrected for multiple comparisons) if 

the confidence intervals do not intersect with the chance line. Single trial (dark hues) = classifier 

tested on single trials; average block (light hues) = classifier tested on blocks of conditions 

averaged over the same type. The small red circles represent individual subjects’ results. N = 10. 
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4.4.2 Information from the retinotopically distant surround does 

not contribute to feedback  

In Experiment 2, we investigated whether the occluded region contains contextual 

information about the surrounding scene, when using more naturalistic stimuli and when 

the difference in the surround between the two scenes was in a retinotopically distant 

region. The scene behind the occluder would be different depending on the reflection in the 

mirror, and thus we aimed to probe the influence of global scene structure, while keeping 

the neighbouring surround the same. The occluded region was in the left visual field, while 

the informative surround (mirror) was in the right visual field. Hence we hoped to probe 

top-down influences of feedback, minimizing influences from lateral connections or spread 

of activation from the edges of the occluder. The two visual fields would be represented in 

different hemispheres and V1 has almost no callosal connections between the two (Van 

Essen et al., 1982). We found that we could not decode the scenes in the feedback 

conditions (Figure 4.3, gold bars), suggesting that information about the person in front of 

the mirror from the distant surround was not fed back to the occluded region. 

 

Figure 4.3 | Classifier performance for decoding the figures in feedback and feedforward 

conditions. Chance level is 50%. Lines represent 95% confidence intervals around the 

bootstrapped mean (1000 bootstrap samples of individual subjects’ performances). Classifier 

performance is significantly above chance at α = 0.05 (not corrected for multiple comparisons) if 

the confidence intervals do not touch the chance line. Single trial (dark hues) = classifier tested 

on single trials; average block (light hues) = classifier tested on blocks of conditions averaged 

over the same type. The small red circles represent individual subjects’ results. N = 5. 
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In addition, we were interested in whether feedback from the surround would combine 

with feedforward information, similar to the effect we found in Experiment 1 with the local 

surround. To test this, we decoded between the feedforward control and the feedforward 

conflict conditions. The feedforward information was identical (the same person) but 

feedback from the surround differed. Classifier performance was at chance level, 

suggesting that information from the distant surround about the reflection in the mirror did 

not influence the activity patterns representing the feedforward figure (Figure 4.3, 

rightmost two pairs of blue bars). Finally, the classifier was able to decode above chance in 

the feedforward conditions, both the control and conflict, as was expected (Figure 4.3). 

 

4.4.3 No similarity between feedback and feedforward 

information 

Another way to test which information is fed back to the occluded region is to compare 

activity patterns in the occluded region with those in the corresponding feedforward 

region. We performed cross-classification by training the classifier to decode two stimuli 

in the feedback conditions and tested its ability to decode two stimuli in the corresponding 

feedforward condition (and vice versa). In Experiment 1 we tested whether the information 

about the orientation in the lower right occluded quadrant was more compatible with the 

global shape or the neighbouring surround. For example, is the lower right quadrant of the 

occluded Diamond more similar to the lower right quadrant of feedforward Diamond/Right 

(global representation) or is it more similar to feedforward Left (local representation)? We 

did not find above chance cross-classification for any comparisons in either direction of 

cross-classification (Figure 4.4A). Classifier performance was at chance level for training 

and testing to decode Right vs Left, Diamond vs X, and also training on Diamond vs X in 

feedback and testing on Right vs Left in feedforward. This suggests there was no similarity 

between the information in the occluded region and the corresponding feedforward region. 

In Experiment 2 we also found that we could not cross-classify above chance from 

feedback to feedforward, or vice versa (Figure 4.4B, left and middle). The lack of 

successful feedback to feedforward cross-classification is unsurprising since we did not 

find meaningful feedback information in the occluded region in the first place (Figure 4.2, 

left, Figure 4.3). This further suggests that the person in front of the mirror was not 

represented in the occluded region. Finally, we could cross-classify from the feedforward 
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control to the feedforward conflict condition, and vice versa, as expected (Figure 4.4B, 

right). 

 

Figure 4.4 | Cross-classification performance for training on feedback conditions and testing 

on feedforward (and vice versa). Chance level is 50%. Lines represent 95% confidence intervals 

around the bootstrapped mean (1000 bootstrap samples of individual subjects’ performances). 

Classifier performance is significantly above chance at α = 0.05 (not corrected for multiple 

comparisons) if the confidence intervals do not intersect with the chance line. Single trial (dark 

hues) = classifier tested on single trials; average block (light hues) = classifier tested on blocks of 

conditions averaged over the same type. The small red circles represent individual subjects’ 

results. A) Experiment 1, N = 10. B) Experiment 2, N = 5. 
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4.5 Discussion 

 

In the present study we investigated whether feedback to V1 carries more information 

about the neighbouring surrounding regions, or whether it codes about the global image 

structure. We showed that simplistic shapes, as opposed to natural scenes, failed to induce 

contextual feedback into the occluded region. However, in the presence of feedforward 

information, we saw that feedback from the local surround combined with identical 

feedforward input to give rise to different activity patterns in that feedforward region. This 

suggests that feedback may be recruited differentially depending on whether feedforward 

stimulation is present or absent. We also demonstrated that information in a distant 

retinotopic scene surround was not a source of feedback. Overall, our findings suggest that 

feedback preferentially originates from nearby regions and provides context to 

disambiguate local feedforward elements. Therefore context about the global scene 

structure may arise from a series of local surround interactions. 

4.5.1 No contextual feedback in occluded region for simple 

shapes 

We did not find informative activity patterns in the occluded region of the Gabor structures 

in Experiment 1. This finding was surprising as we found contextual feedback signals 

previously using natural scenes (Chapter 2, Chapter 3; Smith & Muckli, 2010, Muckli et 

al., 2015). One explanation could be that these shapes are too simple and artificial, and 

therefore do not elicit contextual feedback from the surround. Natural scenes provide rich 

context and expectations (Bar, 2004), which may not have been available in our Gabor 

stimuli. Even though participants were familiar with the full structures in the feedforward 

conditions, it is possible that in the occluded conditions participants did not get a strong 

percept of the full structure, such as Diamond, but rather perceived the stimulus as three 

orientated shapes and a white square. 

In natural scenes there are predictable contours, from prior knowledge of what everyday 

objects and scenes look like. If one role of feedback is to integrate local elements into 

continuous contours, then this could be the mechanism underlying informative activity 

patterns in the occluded region of natural scenes. In the Gabor structures of the present 

study, filling in information in the occluded region was less to do with contour 
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continuation of several collinear elements arranged end to end, but rather relied more on 

the expectation and prediction of the missing Gabor that would complete the full structure. 

In addition, feedback is recruited more for low salience stimuli (Bullier, Hupé, James, & 

Girard, 2001; Bullier, 2006). Since our stimuli had high contrast, this could explain why 

contextual feedback was not strong. It may be the case that feedback is more useful in 

ambiguous situations or when there is a strong contextual drive from the surround, such as 

in natural scenes. 

4.5.2 Feedback from the local surround combines with 

feedforward information 

We found that in the feedforward conditions, even when the feedforward orientation in the 

lower right quadrant was identical, we could decode the different stimuli (Right vs 

Diamond). This shows that feedback from the local surround combines with the 

feedforward information in the quadrant. This is a surprising finding considering we did 

not find meaningful feedback in the occluded quadrant. This suggests that contextual 

feedback is more likely to be recruited when feedforward stimulation is available, 

compared to when it is missing due to occlusion. One interpretation could be that feedback 

is useful for modulating the response to stimuli presented in the classical RF. Several 

studies have highlighted the role of feedback in modulating feedforward information 

(Hupé et al., 1998; Hupé et al., 2001; Sandell & Schiller, 1982; Schmidt et al., 2011). A 

mechanism by which modulation from feedback may occur is apical amplification 

(Phillips, 2015) where inputs at the apical tufts of pyramidal cells amplify the response to 

the basal inputs (where feedforward information enters). Via this mechanism, contextual 

input from feedback can amplify the cell’s response to the feedforward input. Feedback 

may be needed in the feedforward case to help interpret how the feedforward orientation 

fits in with the bigger picture. In other words, is the 45° orientation a part of the Diamond 

or the Right slant stimulus? When information in the lower right quadrant is missing, it is 

less necessary to interpret and disambiguate. 

We should note that the analogous comparison of Left vs X in the feedforward condition 

was not decodeable. The local surround was different hence we should have been able to 

decode. A possible explanation for the difference between Right vs Diamond and Left vs X 

could be the arrangement of the Gabors. In the Diamond stimulus, the ends of the Gabors 

were oriented towards the periphery, while not containing any information in the fovea. 

For the X stimulus, it was the opposite arrangement. Since receptive fields in the periphery 
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are larger than those in the fovea (Xu, Anderson, & Casagrande, 2007), the smaller 

surround receptive fields in the occluded region near the fovea would not capture the 

informative parts of the image surround. This further suggests that the local neighbouring 

surround contributes the most to the information in the lower right quadrant, rather than 

information about the overall global structure of the stimulus. 

One worry about seeing effects from neighbouring regions is that we are measuring 

activity from voxels receiving feedforward stimulation from the surround – a sort of 

―spillover‖ effect. However, we would argue that this is not the case. If our results could 

simply be explained by voxels receiving feedforward stimulation, we would have observed 

above chance decoding in the occluded as well as the non-occluded conditions. Since we 

only saw an effect of surrounding information in the feedforward conditions, this suggests 

that our results are more likely to be due to modulatory effects of feedback/lateral 

connections.  

4.5.3 No contextual feedback from retinotopically distant 

regions 

We established that there is a contextual influence of the neighbouring surround on 

information in the lower right quadrant. We did not find evidence of feedback about the 

global structure of the stimulus, stemming from the top left quadrant. In Experiment 2, we 

tested whether scene information in a retinotopically distant surround would affect activity 

patterns in the occluded region when local information was not informative. We used 

natural scenes, since contextual global image structure may be more important in this type 

of stimulus. We found that there was no meaningful scene information in the occluded 

region, stemming from a retinotopically distant surround. We also did not find a difference 

in the activity patterns of identical feedforward information, when there was a difference in 

the surround. This suggests that the local surround contributes more to feedback, as we 

demonstrated in Experiment 1. 

Although our goal was to use a natural scene where contextual influences from the 

surround would be relevant for its interpretation, it is possible this was not the most 

optimal stimulus to elicit contextual effects. It may be that ―filling-in‖ of the figure in the 

occluded region was a too high-level task, because it is more complex than contour or 

background extrapolation, for example. It could also be the case that seeing the reflection 

in the mirror was enough to identify the person depicted and thus interpret the scene, and 
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contextual feedback to the occluded region was not required. Some subjects reported that 

the stimuli were subjectively perceived as a person standing in front of a window, or the 

figure was viewing a photograph on the wall. If participants did not perceive a strong 

relationship between the figure and the information in the surround, it could explain why 

contextual feedback was diminished. Feedback about the global scene structure may also 

be more informative when the global scene structure differs more and is behaviourally 

relevant. For example, when the spatial layout of the scenes is different and they provide 

different navigational affordances. The spatial layout of the two scenes we used was the 

same and we only manipulated objects in the scene. 

Overall, we show that information from the nearby surround contributes more to feedback. 

This makes sense if we consider that feedback is involved in perceptual grouping, contour 

completion and figure-ground segregation (Gilad et al., 2013; Gilad, Pesoa, Ayzenshtat, & 

Slovin, 2014; Grosof et al., 1993; Hess & Field, 1999; Kok & de Lange, 2014; Lee & 

Nguyen, 2001; Scholte, Jolij, Fahrenfort, & Lamme, 2008). The surround receptive fields 

provide information about the neighbouring image structure to aid interpretation of local 

features (Angelucci & Bullier, 2003; Coen-Cagli, Kohn, & Schwartz, 2015). This could 

explain why increasing the size of bubbles in the surround (Chapter 3) led to more 

informative feedback signals in the lower right quadrant. Making the bubbles smaller 

meant that contours neighbouring the occluded region were not available, and therefore 

feedback was not recruited to complete and extrapolate them. However, feedback is 

involved in more than just local centre-surround interactions. For example, Williams et al. 

(2008) showed that feedback to the fovea can originate in the periphery. Tang et al. (2014) 

found object completion effects regardless of the location of ―bubbles‖ containing scene 

information. It seems plausible therefore that feedback can be signal about the overall 

scene structure. This might be more likely if the global image structure is behaviourally 

relevant, and might be achieved via a series of more localised interactions. 

4.5.4 Information content of feedback 

Predictive coding theories (Clark, 2013; Friston, 2010; Rao & Ballard, 1999) would 

hypothesise that the occluded part of the scene should be represented, based on the 

expected scene structure behind the occluder. Several authors have demonstrated that an 

expected or predicted stimulus evokes activity in V1 which is similar to activity elicited by 

actual bottom-up stimulation (e.g. Ban et al., 2013; Gavornik & Bear, 2014; Kok, Failing, 

& de Lange, 2014). However, in the present study we did not find that the orientation of 
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the Gabor expected in the occluded quadrant, considering the overall structure, was 

represented, but rather, feedback transmitted information about neighbouring orientations. 

In the mirror stimuli, there should have been a violation of expectations in the incongruent 

feedforward stimuli, compared to the control stimuli. However, we did not find a 

difference in contextual feedback between the congruent and the incongruent versions of 

each scene. This suggests that expectations did not play a major role in eliciting the 

contextual feedback in our case. In Experiment 1 it is possible that participants did not 

have strong enough expectations about the occluded Gabor, for example, if the stimulus 

did not lead to a strong perception of the global structure but rather a combination of 

several individual elements. In Experiment 2, the incongruent feedforward condition may 

not have been unexpected enough. On the one hand, it would be unexpected in terms of 

real life perception, but on the other hand, it is not unexpected as part of the experiment, 

since all conditions were presented an equal number of times. Overall, we demonstrate that 

feedback is more involved with transmitting information about the neighbouring structure, 

rather than ―filling-in‖ the missing stimulus. Future studies should investigate whether 

filling-in may occur when there is a stronger expectation of the missing stimulus or when 

the scene structure behind the occluder is highly task relevant. 

4.5.5 Conclusion  

We show that feedback may be recruited differentially depending on whether feedforward 

stimulation is present or not. Simple shapes made of Gabors do not give rise to contextual 

feedback in an occluded region, but feedback from the nearby surrounding regions 

combines with corresponding feedforward information when it is available. Finally, we do 

not find informative feedback from a distant retinotopic region, suggesting that feedback 

may be preferentially transmitting information about neighbouring local elements and 

global scene context may be achieved via a series of local mechanisms. 
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5 General Discussion 

 

 

 

5.1 The influence of scene surround on cortical feedback 

This thesis aimed to investigate the influence of the scene surround on cortical feedback to 

non-stimulated visual cortex. Normally during vision, both feedback and feedforward 

signals are present. Feedforward signals act on the central region of a neuron’s receptive 

field, whereas feedback signals carry information from higher cortical areas with larger 

receptive fields, and are therefore able to ―inform‖ the central receptive field about the 

surrounding scene. To study feedback signals in isolation, we took advantage of the 

retinotopic organisation of V1 and the spatial resolution of fMRI, in order to investigate 

activity patterns in regions of V1 which were not receiving meaningful feedforward 

stimulation. In the absence of feedforward stimulation, overall activity levels in those 

neurons were expected to be low. However, by using decoding techniques to probe the 

information content of the non-stimulated region, we hoped to study the information that 

feedback carries about the surrounding scene. Functional MRI is a technique sensitive to 

non-spiking activity and therefore it allowed us to investigate feedback signals, which are 

considered to be mostly modulatory (Muckli, 2010). 

Previously it has been shown that visually occluded regions of V1 (and thus non-

stimulated in a feedforward manner) contain contextual information about the scene 

surround outside the occluded area (Smith & Muckli, 2010). In the present work, we asked 

how exactly the scene surround influences feedback signals, and investigated the 

information that feedback transmits. 

To answer this question, in Chapter 2 we looked at whether feedback transmits coarse or 

fine-grained information, represented by low and high spatial frequencies respectively. We 

found that both high and low spatial frequency surrounds elicited informative feedback 

signals in the occluded region, suggesting that feedback can transmit both coarse and fine-

grained information. There was a similarity between the HSF and LSF feedback activity 

patterns, indicating that feedback signals are likely to be broad in their spatial frequency 

tuning. Another finding of Chapter 2 was the lack of similarity between feedback activity 

patterns and the corresponding feedforward information which was presented in isolation, 
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without the scene surround. We later demonstrated (Chapter 3) that this feedback to 

feedforward correspondence depends on information from the scene surround, suggesting 

that in feedforward conditions, surrounding feedback provides additional information 

about the visual stimulation, different to what is represented by the feedforward input. 

In Chapter 3, we explored the amount of scene surround required to elicit meaningful 

feedback signals to the occluded region. The results showed that increasing the amount of 

scene information in the surround, increased meaningful feedback signals. Again we 

replicated the dissimilarity between information in the occluded region and the isolated 

region of the corresponding feedforward stimulation, which was lacking the surround. 

Similarity between feedback activity and activity in the visible feedforward regions 

increased with increasing amounts of information added in the scene surround. Thus we 

confirmed the original finding of Smith and Muckli (2010) who showed that the activity 

patterns in the occluded region were similar to the corresponding portion of the full 

feedforward image, suggesting that activity patterns in the full scene represent in part 

feedback from the surround, and in part the feedforward input. Overall, these findings 

point to the notion that feedback signals combine with feedforward input under normal 

visual processing. Isolated feedforward input in the absence of the surround provides V1 

neurons with impoverished information. 

Neighbouring elements of the scene or its overall global structure can be sources of 

context. Therefore the finding of Chapter 3 that informative feedback reduced with a 

decreased scene surround could be explained either by disruption of the informative global 

scene structure or removal of informative surround directly next to the quadrant. In 

Chapter 4 we explored which regions of the scene surround contribute the most to 

contextual feedback signals to V1 – are local neighbouring regions most important, or does 

feedback directly contain information about the overall global image structure, taking into 

account distant retinotopic regions as well? Using simple global structures made up of four 

Gabor elements, we first of all showed that such simplistic shapes failed to induce 

contextual feedback into the occluded region. However, in the presence of feedforward 

information, we saw that feedback from the local surround combined with identical 

feedforward input to give rise to different activity patterns in that feedforward region. This 

suggests that feedback may be recruited differentially depending on whether feedforward 

stimulation is present or absent. In a second experiment, in Chapter 4, using natural scenes, 

we tested whether contextual feedback can originate from a distant retinotopic region when 

the local scene surround was not informative. We manipulated the scene information in a 
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distant retinotopic region (in the opposite hemisphere) while keeping the local 

neighbouring surround information the same. The results showed a lack of meaningful 

feedback in the occluded region, and feedback from the distant surround did not modulate 

identical feedforward information, in contrast to what we saw previously with the local 

surround. These findings suggest that feedback preferentially originates from nearby 

regions and provides context to disambiguate local feedforward elements. Therefore 

context about the global scene structure may arise from a series of local surround 

interactions. 

Overall, the results of the thesis show that feedback contains both coarse and fine-grained 

information, is dependent on the amount of surrounding scene information available and 

preferentially transmits information from the nearby surrounding regions. Some 

overarching themes relevant to the work of this thesis are 1) the content of feedback in V1 

– what does it represent, what features of the surround is it transmitting? 2) interaction of 

feedback and feedforward information - under normal visual processing, what is the 

relative contribution of feedback signals? and 3) where is the origin of the non-feedforward 

signals we observe in the occluded region? The following sections will discuss these 

themes in relation to the present findings and current literature. Towards the end of this 

chapter, I will review some limitations of the present data and will propose future studies 

for the remaining unanswered questions. 

5.2 Content of feedback 

We know that feedback carries information about the surrounding regions. However, the 

exact nature of this information is not entirely clear. Feedback has been implicated in 

various functions, from informing the neurons’ receptive fields about nearby local 

elements, through to underlying higher level cognitive functions, such as memory, 

expectations and predictions. Therefore, it is likely that feedback has many roles. I will 

now discuss our results in relation to these proposed functions of feedback. 

5.2.1 Eavesdropping on the neighbours 

Feedback acts on the surround receptive field of neurons and thus provides the central 

receptive field with information about the nearby surrounding regions. This enables tasks 

such as perceptual grouping, figure-ground segregation and contour integration (e.g. Coen-

Cagli, Kohn, & Schwartz, 2015; Hess & Field, 1999; Scholte, Jolij, Fahrenfort, & Lamme, 
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2008). On the one hand, on a single neuron level, these centre-surround interactions could 

be quite local in terms of their retinotopic extent, up to the amount that the far surround 

region extends. On the other hand, the size of the far surround increases with cortical 

distance from V1 (Angelucci & Bressloff, 2006) and hence feedback to even a single 

neuron may originate from a relatively large region of the scene. Effects of combining 

local elements into a global percept have been observed in V1 and this is proposed to arise 

from feedback originating from higher areas (Schmidt, Lomber, Payne, & Galuske, 2011; 

de-Wit, Kubilius, Wagemans, & Op de Beeck, 2012). How is this global percept achieved? 

It might be that V1 has direct access to the global scene representation from large surround 

receptive fields. Alternatively, a global percept may be achieved via several more local 

centre-surround interactions. 

Our results are more compatible with the role of feedback in signalling about the local 

surrounding regions. In Chapter 4 we found that feedback carries information about the 

local surrounding regions, and does not transmit information from distant retinotopic 

regions. The results of Chapters 2 and 3 are also compatible with this finding. We saw 

informative activity patterns in the occluded region of the scene when the surrounding 

information was available close to the occluded region. When this information was 

reduced, in the conditions with the ―bubbles‖, we saw a reduction in contextual feedback. 

Our data suggest that feedback predominantly codes for information in the nearby 

surround. It is possible that global scene representation arises from a series of local 

interactions. Alternatively, it could be that the participants did not really perceive the 

global shapes in our experiment in Chapter 4, and the visual system treated them as a 

collection of local elements. In addition, the global scene structure in the mirror stimuli in 

Chapter 4 was very similar. We showed that feedback does not directly transmit 

information about a distant retinotopic object, but our results are not necessarily 

incompatible with the role of feedback in global scene structure in other circumstances. For 

example, global scene context may be more evident in cases where the local information in 

a particular region is the same, but the overall spatial layout of the scene differs. 

Furthermore, Williams et al. (2008) showed that information about objects placed in the 

periphery could be decoded in the fovea. The occluded region in the mirror stimuli 

(Experiment 2, Chapter 4) was more peripheral, and perhaps this diminished contextual 

feedback relating to a peripheral object (in our case, the face in the mirror). 

To summarise, it is highly unlikely that feedback is only involved in signalling about local 

surrounding information. This would not account for top-down modulation in cases where 
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the feedforward information is identical, such as a different percept arising from task 

demands, effects of prior knowledge and expectations. Feedback is also involved in cases 

where feedforward stimulation is absent altogether, such as visual imagery. It could be that 

local surround interactions predominate and are a more automatic process, whereas global 

scene interpretation requires more cognitive effort. For example, in the famous image of 

the Dalmatian from Gregory (1970), at first the scene is parcellated automatically into 

many black and white patches, but prior knowledge and a willingness to identify a dog are 

required to interpret the global structure within those patches. 

5.2.2 Blobs or edges? 

On the surface, the global/local processes may seem to correspond to coarse/fine 

processing. However, it is important to note the distinction. For example, Oliva and Schyns 

(1997) suggest that global/local processing happens on the 2D image, while coarse/fine 

processing is orthogonal to the image plane, in a third dimension. In Chapter 4, we looked 

at global and local scene structure, in terms of which regions of the surround feedback 

transmits signals about. We were interested in which regions of the 2D image were 

important for eliciting feedback – is it only nearby local regions, or the global structure 

incorporating information from distant retinotopic regions as well? In Chapter 2, we 

looked at the spatial scale of the information (fine-grained or coarse) that feedback might 

contain, without concentrating on whether the global image structure is taken into account 

or if only specific retinotopic regions elicit feedback. Although some authors have 

suggested that LSF must be implicated if feedback is transmitting information about the 

global image structure (Bar et al., 2006), this might not necessarily be the case. For 

example, Walther, Chai, Caddigan, Beck and Fei-Fei (2011) have suggested that global 

scene structure can be extracted from fine-grained information. In their study this 

corresponded to line drawings. This means that both HSF and LSF information could be 

important for providing scene context. 

Some studies have suggested that feedback information is less fine-grained than 

feedforward representations. For example, Vetter, Smith and Muckli (2014) found a 

similarity for feedback activity patterns within a sound category, when blindfolded 

participants listened to different auditory stimuli. They suggested that feedback 

information is rather abstract and not pictorial (as actual perception presumably would be). 

Muckli et al. (2015) showed that feedback information was coarse enough to withstand 

shifts of up to 2° of visual angle in the image surround. When trained on the original 
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image, the decoding of a 2° shifted image was above chance. Feedforward information is 

more sensitive to this shift (Lucy Petro, personal communication), therefore suggesting it is 

more fine-grained. Feedback is likely to be coarser because of the larger RFs in the higher 

visual areas, which is where the information is transmitted from. A recent study which 

aimed to measure imagery receptive fields – that is a region of the mental visual field in 

which imagined stimuli evoke real brain activity – found that these were on average larger 

and more scattered than the corresponding visual RFs (Breedlove, St-Yves, Olman, & 

Naselaris, 2016). Since visual imagery is a top-down process, this suggests that feedback 

information is likely to be coarser than bottom-up stimulation. 

In Chapter 2 we found that both the HSF and LSF surrounds induced informative 

feedback signals. This may suggest that feedback contains both coarse and fine-grained 

information. However, it is difficult to know for certain from the current data, how 

different the feedback information in the HSF and LSF stimuli was and how coarse the 

feedback representations are in relation to the corresponding feedforward input. We could 

decode between HSF and LSF feedback, suggesting there is some difference between the 

two. However, the spatial scale of these representations may be shifted to be coarser, in 

comparison to the feedforward HSF and LSF. With the paradigm that we used, it is not 

possible to tell what precise SF band feedback represents. Comparing feedback to 

feedforward activity was not useful since we found (Chapter 3) that this was driven by the 

similarities in the scene surround, and the shared surround feedback in the stimuli. Perhaps 

studies of imagery and working memory could shed more light on how fine-grained 

feedback information could be, since visual imagery has been found to elicit similar 

activity as actual perception (e.g. Albers, Kok, Toni, Dijkerman, & de Lange, 2013). 

Since we find that the HSF image surrounds could induce meaningful information in the 

occluded region, we can at least say that feedback transmits information about fine-grained 

image features, even if we cannot say how coarse this transmitted information is. At first 

glance, this speaks against previous suggestions that contextual scene information stems 

predominantly from LSF (Bar et al., 2006). However, our finding might not be completely 

incompatible. First of all, we used filtered images, where the image surround was only 

informative in one SF band. When the LSF information about the scene was unavailable, it 

is possible that HSF was used instead. Schyns & Oliva (1997) suggest that subjects use the 

most informative scale that is applicable for a task, be it LSF or HSF. Secondly, the 

dominance of LSF stems mostly from the finding that LSF is processed faster than HSF, 

and hence is able to be processed quickly enough to be useful for biasing interpretations of 
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bottom-up input. Due to the low temporal resolution of fMRI, this advantage should not be 

evident in our studies. Indeed Schyns and Oliva (1994) have shown that with longer 

exposure, HSF stimuli become more important. 

There is evidence for feedback being both precise (Alink, Schwiedrzik, Kohler, Singer, & 

Muckli, 2010; Murray, Kersten, Olshausen, Schrater, & Woods, 2002) and diffuse (Muckli 

et al., 2005; de-Wit et al., 2012). Although, precision is not exactly the same as spatial 

scale, this nevertheless suggests that feedback may transmit coarse, as well as more fine-

grained, more precise information. The more coarse feedback could gain back some 

precision by combining with lateral connectivity (Muckli & Petro, 2013). 

5.2.3 Completing the jigsaw? 

In the natural environment occlusion is ubiquitous. Despite this, we often do not notice 

objects and scenes as being incomplete. Is one role of feedback to ―fill-in‖ the missing 

visual information, in order to give us a more coherent representation of the world? 

Theories of predictive coding propose that the brain has internal models of the world based 

on previous experience (Clark, 2013; Friston, 2010; Rao & Ballard, 1999). These 

predictions and expectations about incoming input, based on internal models, are sent back 

to V1 to be compared with the current sensory stimulation (Bastos et al. 2012). Any 

mismatch is sent to higher areas as a prediction error to update the internal models. Are 

these internally generated models represented in V1 in the same way as actual bottom-up 

stimulation? 

Several previous studies have suggested that V1 represents the expected, occluded or 

imagined object, and this activity is similar to the actual bottom-up stimulation (Albers et 

al., 2013; Ban et al., 2013; Gavornik & Bear, 2014; Kok, Failing, & de Lange, 2014). 

Using fMRI, Kok et al. showed that prior expectation of a specific visual stimulus evokes a 

pattern of activity in V1 which is similar to the activity elicited by the corresponding 

bottom-up stimulus. When an expected stimulus was omitted, stronger BOLD activation 

was seen in voxels which had a preference for that stimulus, suggesting a similarity 

between activity for expected but omitted stimuli and the ones actually presented. 

Gavornik and Bear also found a similar result in mice. When a stimulus from a trained 

spatiotemporal sequence was omitted, V1 nevertheless showed activity commensurate with 

the full sequence. Ban et al. showed that a target behind an occluder evoked a similar 

response in V1 compared to a corresponding non-occluded target. Albers et al. 
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demonstrated that working memory, imagery and actual stimulus representations were 

similar in early visual areas. A classifier could be trained on one type of representation and 

successfully tested on the other. However, it has also been suggested that imagery and 

bottom-up perception, although showing similarities, involve different dynamics in the 

ventral stream (Lee, Kravitz, & Baker, 2012). In addition, these authors showed that the 

representations of the different object stimuli were more similar during imagery than 

perception. 

Using decoding methods, sensitive to the fine-grained pattern of activation in V1, we 

found that the activity patterns in the occluded region are not a direct representation of the 

missing feedforward information. When we presented the feedforward portion of the image 

in isolation, without the image surround, we found that it was not similar to the occluded 

region. We only found a feedback/feedforward similarity when using feedforward stimuli 

with a large amount of scene information in the surround. This is presumably because in 

the full feedforward image, a part of the information comes from the feedforward 

stimulation, and the other part from feedback from the surround. Hence the activity pattern 

in the completed scene is then similar to the occluded scene because both stimuli have 

surrounding feedback. 

On the one hand, it makes sense that the representation would not be exactly the same, 

because participants do not report seeing the missing quadrant of the scene (i.e. they do not 

have a hallucination). So even if feedback is coding for something specific to the image, 

the representation does not have to exactly match the activity evoked by bottom-up 

stimulation (Lee et al., 2012). It may also be that information from feedback is coarser 

because of the larger receptive fields of higher areas, or is less precise retinotopically. For 

example, the Vetter et al. (2014) study found that there was a similarity between the V1 

representations of the auditory stimuli within a particular category, suggesting that the 

feedback representation was not fine-grained and pictorial, but perhaps something more 

abstract. The representation in terms of the pattern of activity might be different also 

because feedback and feedforward signals project to different cortical layers (Muckli et al., 

2015; Rockland & Pandya, 1979). Muckli et al. found using high resolution fMRI that 

during normal visual stimulation, feedforward information peaks in mid-layers, while 

feedback peaks in superficial layers. This anatomical difference is unlikely to be a major 

factor in our studies, as we used a 3T MRI scanner and hence we had a relatively coarse 

resolution. However, it is something to bear in mind. 
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Another reason we find a dissimilarity between feedback and feedforward information 

could be because using decoding methods allowed us to compare the fine-grained pattern 

of information, rather than just overall activation, as some of the other studies did (Kok, 

Failing, & de Lange, 2014; Ban et al., 2013). Albers et al. (2013) used a decoding method 

and did find a similarity between top-down generated information and bottom-up 

stimulation. However, the crucial difference to our studies might be that Albers et al. 

specifically measured imagery and working memory. In other words, these were active 

conditions where participants had to generate and keep a visual representation in their 

mind. In our studies participants were passively viewing the stimuli, and were not 

instructed to mentally fill-in the missing portion of the occluded region, even though some 

participants may have unintentionally imagined the missing quadrant. However, it is 

possible that more active imagery generation may be important for eliciting V1 

representations which are similar to the feedforward input. Other work in our lab (Paton, 

Petro, & Muckli, 2016) has built on the Vetter et al. (2014) study, and showed that V1 

activity for sounds was similar to that of feedforward visual stimulation with the 

corresponding visual scene, suggesting that perhaps the auditory stimulus triggered 

involuntary visual imagery. In addition, Vetter et al. showed that a cognitively demanding 

visuospatial task disrupted these representations in V1, further suggesting that visual 

imagery may be involved. Interestingly, Paton et al. showed that there was no similarity 

between activity patterns for the sound and those in the occluded region of a scene 

(feedback). This further highlights that the activity patterns we recorded in the occluded 

region were different from visual imagery, and for this reason did not closely match 

bottom-up stimulation.  

If expectations and prior knowledge evoked corresponding activity in V1 of the expected 

stimulus, we might have seen activity patterns corresponding to the predicted Gabor 

orientation corresponding to the global structure of either Diamond or X (Experiment 1, 

Chapter 4). However, this was not the case. We also did not see any informative activity 

patterns in the occluded region of the mirror stimuli. One explanation could be that the 

participants did not have a strong expectation to see something in the occluded region. For 

example, they might not have perceived the stimulus as occluded, but as ―three Gabors 

with a white square‖. If the fourth Gabor was perceived as missing rather than occluded, 

this could have changed the participant’s expectations about the lower right quadrant. 

Johnson and Olshausen (2005) suggest that occlusion and deletion modulate perception in 

slightly different ways. Occluded objects are recognised more accurately than objects with 

the same parts simply deleted. The Gabor stimuli may have been too artificial to evoke any 
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strong expectation of scene structure behind the occluder, compared to natural scene 

stimuli which may evoke stronger contextual associations (Bar 2004). In Experiment 2, 

Chapter 4, where we used the mirror stimuli, the task was to report the identity of the face 

in the mirror, which does not necessarily require forming expectations about the identity of 

the person under the occluder. In the incongruent feedforward conditions, there should 

have been a violation of expectations, compared to the congruent feedforward conditions. 

However, it is possible that participants did not perceive the incongruent condition as 

unexpected enough. Each condition in the experiment was presented an equal number of 

times, and so participants came to expect the incongruent stimulus just as much as the 

congruent one. On the one hand, it is unexpected in terms of real life perception; on the 

other hand, it is fully expected as part of an experiment, which is in itself an artificial 

setting. It might be easier to find effects of expectation in predictable spatiotemporal 

sequences, such as A, B, C … (D), or when expecting a particular object in a natural scene 

is somehow behaviourally relevant.  

Overall, we find that our results are more compatible with the notion that feedback is 

mainly transmitting information about image statistics, rather than something higher-level 

or more semantic. We found similarities between feedback signals of the same spatial 

scale, across different scenes. In other words, HSF feedback from the car scene was similar 

to HSF feedback from the people scene. This means feedback contains information about 

the spatial scale that is not specific to a particular scene. In addition, we did not find that 

feedback represents a direct filling-in of the feedforward information, as theories of 

predictive coding might postulate. For example, the orientation compatible with the global 

shape made up of Gabors was not filled-in. In the mirror stimuli, the person in front of the 

mirror was also not filled in. This may be surprising if we suppose that feedback is 

transmitting knowledge about the scene or some semantic information, but less unexpected 

if feedback is more concerned with coding for image statistics. Further arguing against 

prior knowledge and expectations playing a large role in the information we decode from 

the occluded region, we found that increased exposure to the full scene did not increase 

meaningful feedback (Chapter 3). It appears that feedback information depends more on 

the features of the image available on each trial, and perhaps natural scene statistics in 

general. However, familiarity with a specific scene is not required. Indeed if a large role of 

feedback is to transmit information from the (predominantly local) surround, predictions 

about the precise structure of the missing scene quadrant are less necessary. 



Chapter 5  115 

5.3 Where is the information in the occluded region 

coming from? 

Now that we have established what the activity patterns in the occluded region might be 

representing, the next question of interest is regarding the origin of this information. We 

can be sure that there is no meaningful feedforward stimulation in the occluded area. 

However, the information that we record there could originate from both lateral and 

feedback connections. Although it is likely that lateral connections do have a role, we 

would argue that they are not sufficient to explain the effect. Lateral connections span a 

smaller part of a neuron’s RF compared to feedback connections (Angelucci & Bressloff, 

2006), and are not sufficient to account for the full range of surround modulatory response 

(Angelucci et al., 2002). Lateral connections are about 2.3 times larger than the classical 

RF (Sceniak, Ringach, Hawken, & Shapley, 1999) and can project to around 2° from the 

classical RF in V1 at eccentricities of 2-6° (Stettler, Das, Bennett, & Gilbert, 2002). Since 

our scene surround spanned a large region of the visual field, we would have stimulated the 

far surround RF of neurons in the occluded region, as well as possibly the near surround of 

some neurons very close to the quadrant border. Therefore, it is highly likely our 

contextual surround effects would come mostly from feedback, as well as some minimal 

influence directly from lateral connectivity. Nevertheless, we tried to minimize the 

selection of voxels close to the occluded region border in various ways. First of all, we 

reduced the number of voxels in the 1° region directly next to the border, as measured 

diagonally from the centre, by choosing our region of interest as responding higher to the 

Target mapping checkerboard than the Surround mapping checkerboard (which was 1° 

wide, diagonally). This should have ideally eliminated any ―spillover‖ voxels receiving 

feedforward stimulation from the surround and minimized the influence of lateral spread. 

We also repeated our analysis with population receptive field mapping (pRF) for subjects 

for whom both eccentricity and polar angle retinotopic mapping were available, where we 

removed any voxels whose estimated RF was not fully within the occluded quadrant. This 

technique is likely to be more stringent than the Target-Surround mapping, as fewer voxels 

remained for analysis. Although the classifier performance did reduce somewhat, we still 

saw the same pattern of results. This suggests that any unintentional selection of voxels 

responding to the feedforward surround that we might have not accounted for is unlikely to 

fully explain the observed result. In Chapter 3 we found an intriguing result that the 

activity in the lower right quadrant of the full scene seemed to be as similar to the occluded 

region with the full surround, as it was to actual feedforward information without the 

surround. It seems unlikely that a few ―stray‖ voxels from the surround would contain just 
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as much information as a feedforward quadrant about the corresponding full feedforward 

scene. We also found some modulation from the surround in conditions where we had 

reduced feedforward stimulation directly next to the quadrant (―bubbled‖ conditions), thus 

arguing against a ―spillover‖ effect and making the result solely due to lateral connections 

unlikely. 

Other studies have shown that information in the occluded region is likely to stem from the 

far surround RFs. Smith and Muckli (2010) showed that the most informative voxels were 

correlated more with the inner region of the occluded area, rather than the border region. 

Shushruth (2011) used a more precise method of electrophysiology and recorded local field 

potentials (LFPs) in monkey V1, while the animals viewed partially occluded natural 

scenes. Similar to our findings, the author found informative activity patterns in the 

occluded region. Each LFP represented the activity of around 0.25° of visual angle, while 

the border of the occluded region was at least 3° away from the recorded RF. Therefore, it 

is highly likely that this result was due to the modulatory signals from the far surround, 

rather than feedforward information at the border or lateral activation. This study also 

showed a very similar pattern of results in comparison with our own findings. For example, 

when trained on the full scene, classifier performance was higher for testing on the 

occluded region than on an isolated feedforward part of the scene (similar to our ¼ 

condition). This provides support to our finding that feedback from the surround is an 

important component of the information in the full scene. In addition, there was a low 

similarity between the occluded region and the isolated feedforward section, mirroring the 

results presented in this thesis. Information in the occluded regions can also be modulated 

by prior knowledge (Ban et al., 2013), arguing against a simple spread of lateral activity 

from the feedforward information near the border of the occluded region. 

We found that surrounds closer to the occluded region influence the activity patterns the 

most, and scene surround information in the opposite visual field did not have an effect. 

Therefore we cannot fully rule out the contribution of lateral connections in our studies, 

although this result can also be compatible with contributions of feedback. Most surround 

RFs would have been near the occluded region since we were measuring populations of 

neurons within the occluded region, with a few very large surround RFs perhaps spanning 

most of the scene surround. Therefore, the finding that neighbouring surround information 

is important, does not speak against the role of feedback. In addition, since previous 

studies from other researchers have suggested that top-down feedback is needed to account 

for similar findings, we would argue that feedback from higher areas is highly likely to be 



Chapter 5  117 

involved. Feedback may act on lateral connections which in turn act on the classical RFs of 

neurons (Muckli & Petro, 2013), so lateral connections are likely to be important as well. 

If the information in the occluded region is transmitted via feedback from higher areas, 

then the question arises of which higher cortical areas contribute to the information in the 

occluded region in our case? V1 receives inputs from many visual and non-visual areas 

(Muckli & Petro, 2013). We cannot tell from our paradigm where the feedback signals are 

coming from. However, I would speculate that the majority of feedback would originate 

from other early visual areas, such V2 and V3, as well as scene processing regions like the 

parahippocampal area (PPA) and the retrosplenial cortex (RSC), which have been shown 

to code for spatial, as well as non-spatial context (Bar & Aminoff, 2003). 

5.4 How much does feedback contribute to normal visual 

processing? 

Our results are compatible with the many studies showing that feedback signals combine 

with the feedforward input (e.g. Hupé et al., 1998; Sandell & Schiller, 1982; Schmidt et al., 

2011). We found that the activity pattern for otherwise identical feedforward stimulation is 

modulated by information in the surround (Chapters 3 and 4). This means that 

feedforward input alone is not enough to fully explain the response in a given retinotopic 

region. The activity pattern for the feedforward quadrant of the full scene is a combination 

of feedforward input and feedback from the surround. Haslinger et al. (2012) showed that 

under natural scene viewing, the surround, spike history, and LFPs account for almost as 

much of the V1 response as the classical RF, suggesting that feedforward stimulation alone 

cannot fully account for the activity in V1. 

It is difficult to quantify precisely how much feedback contributes to explaining the neural 

activity under normal visual processing. However, feedback must contribute a significant 

amount, as non-feedforward inputs account for most of the connections in the visual cortex 

and models mostly based on feedforward processing are unable to account for the majority 

of the response variance (Carandini et al., 2005). Many authors suggest that inputs from 

feedback are necessary for fully-fledged visual processing (Angelucci & Bressloff, 2006; 

Angelucci & Bullier, 2003; Kayser, Körding, & König, 2004; Muckli, 2010). The brain 

may be better thought of as a parallel processor (Singer, 2013) and with both feedback and 

feedforward streams being (equally?) important. In fact, the function of the brain may be to 

mostly process internal input, while occasionally sampling information from the external 
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world (Bullier, 2006; Muckli, 2010). Predictive coding theories, for example, might 

propose such a hypothesis. The important computations are the internal models, and the 

external stimulus is only needed to verify or refute the models. Neurons in the brain may 

be coding an error or a deviation from the expected input, rather than a specific piece of 

content (Rao & Sejnowski, 2002). For example, Egner, Monti and Summerfield (2010) 

found that the fusiform face area (FFA) also responds strongly to houses as well as faces, 

when the expectation of seeing a face is high. The authors suggest that feature expectation 

and surprise, rather than actual input per se, are more important factors in explaining the 

response of that cortical region. Dopaminergic neurons in the striatum have also been 

shown to code for unexpected information about the value of an upcoming reward, rather 

than the properties of the present stimulus (Koster-Hale & Saxe, 2013). The difficulty in 

assessing the relative contribution of feedback vs feedforward signals is also due to the 

case that how much feedback contributes to the response might not be set in stone. The 

influence of feedback signals may be gated by attention (Clark, 2013) and subcortical 

mechanisms (Pafundo, Nicholas, Zhang, & Kuhlman, 2016). 

In Chapter 4 we found an influence of feedback from the surround when feedforward 

information is available, but not when the quadrant is occluded and meaningful 

feedforward stimulation is missing. Although the role of context in modulating neuronal 

response has been demonstrated in the absence of feedforward input, an important role for 

feedback is acting on the surround receptive field to modulate the response to stimuli 

presented in the classical receptive field. In the mechanism of apical amplification 

(Phillips, 2015), when apical and basal inputs coincide (corresponding to the feedback and 

feedforward inputs respectively), the cell’s response to its basal inputs is amplified. This 

suggests that the presence of feedforward input may be important for contextual 

modulation to take place, at least in some circumstances. For example, in our stimuli in 

Chapter 4, feedback from the surround may have been important in disambiguating which 

wider structure the identical feedforward orientation belongs to, or signalling about the 

neighbouring orientations – important for detecting contours and identifying which local 

elements belong to the same object. When the feedforward information in the quadrant was 

missing, feedback from the surround may have been less useful, as there was nothing to 

disambiguate. 
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5.5 Future directions 

In the following section, I will briefly review some limitations of the studies we have 

conducted so far and will propose potential future experiments which could investigate 

some of the remaining questions. 

5.5.1 Methodology 

There are some aspects of the methods and the paradigm we used which limit what we can 

conclude from the data. First of all, using fMRI allowed us to have a good spatial 

resolution and record activity patterns from specific retinotopic regions. However, due to 

the low temporal resolution, we are not able to say much about the timecourse of the 

contextual feedback signals. They are likely to be in the range of hundreds of milliseconds, 

which we cannot differentiate with fMRI. It would be interesting to see in future studies 

how fast the contextual feedback from the surround propagates to the occluded region. 

Feedback connections are faster than lateral (Girard, Hupé, & Bullier, 2001), so it would 

be interesting to investigate the timescale of the effects, are they rapid and more 

commensurate with feedback or slow and more in line with lateral signals? Perhaps both 

initial fast effects and later slower effects would be seen. 

MVPA is a useful method for examining the pattern of brain activity in a given region of 

interest, compared with looking at overall activation or deactivation which may miss subtle 

differences between conditions due to averaging over many voxels. However, a limitation 

of using decoding methods is that we can often only say that there is a difference between 

the conditions and it is difficult to determine what that difference stems from or what the 

activity patterns represent about the stimulus. For example, in Chapter 2, we could decode 

a difference between the HSF and LSF occluded stimuli. However, we cannot say with 

certainty if the information in the occluded region of the HSF scene represented high 

spatial frequencies in the same SF band as the scene surround. For example, the 

information may have been coarser for the HSF stimulus and more fine-grained for the 

LSF one (or vice versa). However, as long as there was still a difference between the two 

types of stimuli, we would have been able to decode them. An extreme example would be 

that HSF and LSF surround elicit LSF and HSF feedback, respectively. This is highly 

unlikely; however, it illustrates the point that being able to differentiate two conditions 

does not tell us exactly which stimuli features the activity pattern in each condition 

represents. 
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One way to probe the nature of the content is to compare one set of conditions to another 

set of conditions. For example, we can train the classifier on the feedback conditions and 

test whether it can use the same information to decode the stimuli in the feedforward 

conditions. If the classifier can do this successfully, we can say that there is a similarity 

between the stimuli representation for feedback and feedforward conditions. However, in 

our studies we did not find a generalisation between feedback and feedforward conditions. 

From this, we can conclude that the representation in the occluded region is dissimilar to 

that of the corresponding actual stimulation, but still leaves us somewhat in the dark about 

what the occluded activity pattern represents. To bring us closer to being able to 

reconstruct the occluded representations, future work should compare the occluded activity 

patterns to a wider range of feedforward features. In addition, future experiments could use 

encoding methods (as opposed to decoding). Encoding and decoding are complementary 

methods, but the direction of the operations is the opposite. Encoding methods use stimuli 

to predict activity patterns and vice versa for decoding. For example, the activity patterns 

of several feedforward stimuli could be used to predict the activity patterns in the occluded 

region. Although decoding methods can be very useful, only encoding methods are able to 

obtain a complete description of the features represented in a ROI (Naselaris, Kay, 

Nishimoto, & Gallant, 2011). 

5.5.2 Spatial frequency and feedback 

There are several unanswered questions about how the spatial frequency of the surround 

affects information in the occluded region, such as hemisphere differences, eccentricity 

differences and task constraints. For example, our occluded quadrant was always in the 

right visual field. However, some studies have suggested hemisphere differences in spatial 

frequency processing (Peyrin, Mermillod, Chokron, & Marendaz, 2006; Peyrin et al., 

2005; Peyrin, Chauvin, Chokron, & Marendaz, 2003; Peyrin, Chokron, et al., 2006; dos 

Santos, Andrade, & Fernandez Calvo, 2013). These studies found that the left hemisphere 

preferentially deals with HSFs, while the right hemisphere processes LSFs. Future studies 

can investigate whether this association exists in the feedback from higher areas as well. 

For example, can we decode LSF stimuli better in the right hemisphere compared to the 

left? 

Another potential follow-up experiment concerns how the information in the occluded 

region varies by eccentricity. Neurons in the fovea have a preference for higher SFs 

compared to cells in the periphery (Xu, Anderson, & Casagrande, 2007). Future studies 
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could investigate whether HSF feedback is stronger closer to the fovea and feedback 

concerning LSF is predominantly in the periphery. Does feedback follow the same pattern 

as feedforward processing or is the information from feedback more uniform? 

SF processing can also be modulated by task constraints or by sensitization to a particular 

SF (Schyns & Oliva, 1997, 1999; Sowden, Özgen, Schyns, & Daoutis, 2003; Özgen, 

Sowden, Schyns, & Daoutis, 2005). Future studies should investigate whether contextual 

feedback about SF to the occluded region can also be modulated by task demands or 

whether the SF feedback represents more automatic processes which cannot be influenced 

much by top-down cognitive states. For example, future work could use a hybrid stimulus 

containing one scene in LSF superimposed with another scene in HSF. Participants could 

be made to attend to a specific SF band, either via cueing or sensitization, for example. We 

could then measure whether the information in the occluded region of the hybrid scene is 

more similar to one SF or another depending on task demands by cross-classifying to non-

hybrid stimuli presented in only one SF band. The feedforward information in the surround 

would be exactly the same, so any potential difference can be attributed to top-down 

processes, rather than lateral spread of activation or any ―spillover‖ from the feedforward 

surround voxels. 

5.5.3 Global vs local effects 

In the experiments reported in this thesis we have recorded brain activity of V1 during 

passive viewing. However, we did not establish what participants perceived in these 

stimuli and whether the contextual surround actually elicited any perceptual differences 

which could be measured in a behavioural study. For example, in Experiment 1 of 

Chapter 4, participants may simply not have had a strong perception of the global shape, 

and hence we did not observe contextual feedback about the global scene. 

Stimuli embedded in a congruent contextual surround are recognised faster and more 

accurately (e.g. Palmer 1975). This means that it may be easier to accurately report the 

orientation of the Gabor in the lower right quadrant (in a non-occluded stimulus) that is 

compatible with the global structure, if the global structure indeed elicits context in our set 

of stimuli. A follow-up study could look at behavioural measures such as reaction times 

and accuracy of reporting the Gabor depending on whether it is part of a compatible global 

structure (Diamond or X) or not. Another measure could be the probability of reporting an 

orientation compatible with the global shape in conditions where an actual stimulus is not 
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shown in the lower right quadrant (just the noise background). Participants would not be 

told about these ―catch‖ trials and we could measure if there is a bias in reporting a 

globally congruent orientation. If the participants are just guessing, we should see an equal 

probability of reporting either orientation. However, top-down expectations are powerful 

enough to create percepts out of noise (Smith, Gosselin, & Schyns, 2012). If the stimuli 

that were used in Chapter 4 do not elicit strong contextual effects behaviourally, we could 

find stimuli that do and then test those with our fMRI paradigm. At the moment, we cannot 

say whether the lack of differential information in the occluded region of V1 was due to 

decreased contextual feedback from the surround for these simplistic shapes or more so 

because participants did not perceive strong surrounding context in the first place. 

Future experiments could also design better stimuli to elicit global scene structure context. 

The mirror stimuli used in Experiment 2 of Chapter 4 might not have been optimal as 

some subjects reported subjectively perceiving the mirror as a window or a picture on the 

wall. Stimuli designed to elicit a strong contextual effect of the global surround, especially 

where it is highly relevant for interpreting the scene, might be better posed to investigate 

contextual feedback about the global image structure. For example, stimuli where the 

spatial layout or the navigational affordances are different may elicit more global 

contextual effects. In addition, follow-up experiments could look at the influence of 

surrounding feedback on the activity patterns representing the face in the mirror. There 

may be more modulation for the face stimulus, rather than for the person viewed from the 

back. The face is a more important stimulus, so the direction of modulation by feedback 

maybe reversed from the one we tested in our study. 

5.5.4 Visual imagery 

Feedback signals in the absence of feedforward stimulation may represent visual imagery 

and working memory in some paradigms (e.g. Albers et al., 2013; Harrison & Tong, 2009; 

Vetter et al., 2014), but not necessarily on other studies on occlusion (e.g. Ban et al., 2013; 

Sugita, 1999). However, it would be interesting to establish whether feedback in the 

occluded region is related to the same mechanisms as imagery/working memory, even 

when participants are not explicitly instructed to visualise and do not report vivid imagery 

in the occluded/non-stimulated regions. For example, feedback signals in the non-

stimulated regions might lie on a continuum of imagery, from extremely weak to very 

vivid, or be part of an altogether different mechanism. Imagery strength should be 

modulated by instructing participants to either actively visualise the missing quadrant or 
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just passively view the stimuli. If the activity patterns in the occluded region are related to 

imagery, we might observe better decoding in the imagery conditions, compared to passive 

viewing. In the passive viewing conditions it would also be interesting to correlate the 

strength of decoding in the occluded region with individual differences in visual imagery 

strength. For example, some people are better at visualising than others, and there are 

people who appear to lack the ability to produce visual imagery entirely (Zeman, Dewar, & 

Della Sala, 2015). Therefore, it would be useful to see if people who are naturally more 

prone to visualising would have more informative feedback in the occluded region. 

5.5.5 Occlusion 

Missing feedforward information in the natural world can come from various sources, such 

as, occlusion or strong shadow. In addition, some scene features may fall onto the retina in 

the position of the blind spot. Finally, some parts of the object may simply be missing. It is 

unclear if the contextual feedback in these non-stimulated regions would be similar or 

different depending on the reason behind the missing information. For example, Johnson 

and Olshausen (2005) showed that objects which are partially occluded are recognised 

more accurately compared to objects which are partially deleted in the same regions. 

Future studies can investigate if feedback is stronger in cases of occlusion vs deletion. 

Results from some previous studies may suggest that this would be the case, as they found 

that V1 activity was different depending on whether the stimulus was perceived as 

occluded or deleted (Ban et al., 2013; Sugita, 1999). In the former case, the occluded part 

of the stimulus was still represented in V1, while not in the latter case. 

5.5.6 Contextual feedback in patients 

In the experiments described in this work we have only tested healthy participants. 

However, our aim as cognitive neuroscientists is to understand the brain in both health and 

disease. Future studies could extend the paradigm to patient groups. For example, people 

who have schizophrenia have been shown to have deficits in predictive mechanisms 

(Clark, 2013), which is one of the functions of feedback. It would be useful to study how 

contextual feedback is affected when predictive mechanisms are impaired. Another 

potential patient group of interest could be patients with hemispatial neglect. These 

patients allocate their attention predominantly to the right and ―neglect‖ their left visual 

field. To investigate how feedback is modulated by attention future studies could compare 
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feedback in the occluded region in the left vs the right visual field in patients with 

hemispatial neglect. 

 

5.6 General conclusions 

In the studies described in this thesis we used a partial occlusion paradigm to investigate 

feedback in the absence of meaningful feedforward stimulation. We studied how the scene 

information in the image surround affects feedback signals to a particular retinotopic 

region of V1. We lend support to previous studies suggesting that information presented in 

the surround receptive field can modulate neuronal activity in the central receptive field, 

both in the presence and absence of bottom-up visual stimulation. In addition, we found 

that feedback combines with feedforward information during full visual processing. To 

build on the previous findings, we tested which aspects of the surround are important for 

eliciting these contextual effects. First of all, we showed that both coarse and fine-grained 

surrounds can elicit contextual feedback about the scene. Second, we demonstrated that the 

strength of the contextual feedback depends on the amount of scene information in the 

surround and does not appear to be modulated by the familiarity with the scene. Finally, 

we found that this feedback originates predominantly from the local surrounding regions 

and it does not send information about objects located in a distant retinotopic region. 

Together these results bring us closer to understanding how neuronal activity is modulated 

by contextual information from the surround receptive fields. 
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Appendix A - Supplementary Methods & Results for 

Chapter 2 

 

Methods 

Stimuli 

Scenes 

Twenty-three subjects saw the car and people scenes, while ten subjects saw the concert 

and New York images. Concert and New York images were 800 x 600 px, which 

corresponded to 32° x 24° visual angle. Two subjects saw the concert and New York 

images in Small 0.65/1.30 cpd group; three subjects saw them in Small 0.81/1.62 cpd 

group; two subjects saw them in Large 0.81/2.03 cpd group; and three subjects saw them in 

Large 0.97/2.43 cpd group. All the images used for all conditions are shown in Figures 

S2.1 and S2.2. SF cut-offs used for each pair and the overlap conditions are shown in 

graphical representation in Figure S2.3. 

Occluded region mapping 

The mapping stimuli used for the New York and concert stimuli are shown in Figure S2.4. 

The occluded region spanned 15.6° x 11.6° visual angle. Target mapping spanned 14.9° x 

10.9°. Large surround spanned 15.6° x 11.6°, while Small Surround spanned 14.2° x 10.2°. 

The occluded region and the Large surround were presented 0.5° diagonally from the 

centre. Target mapping was presented 1.5° from centre, while Small surround was 2.5° 

from centre. 

Task & Procedure 

For subjects presented with the concert and New York images, in each 12s trial the 

stimulus was flashed on and off (200ms on/ 200ms off) 28 times (11.6s + variable fixation 

to account in uncertainty in timing). 
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Figure S2.1 | Images used for Gap, No Overlap and Small Overlap groups. 
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Figure S2.2 | Images used for Large Overlap groups. 

 

 

Figure S2.3 | SF cut-offs used for each pair of stimuli and the Overlap groups these 

corresponded to. 
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Figure S2.4 | Mapping stimuli used for subjects who saw the concert and New York images. 

Target, left; Large Surround, middle, Small Surround, right. 

 

 

Results 

 

 

Figure S2.5 | Classification performance for decoding the two scenes in HSF and LSF 

conditions, for feedback and feedforward stimuli using both surround mappings for region of 

interest selection. Chance level is 50%. Lines represent 95% confidence intervals around the 

bootstrapped mean (1000 bootstrap samples of individual subjects’ performances). Classifier 

performance is significantly above chance at α = 0.05 (not corrected for multiple comparisons) if 

the confidence intervals do not intersect with the chance line. Dark hues = classifier tested on 

single trials; light hues = classifier tested on blocks of conditions averaged over the same type. 

The small red circles represent individual subjects’ results. A) Classifier performance for HSF and 

LSF conditions, collapsed over different SF cut-offs. N = 30, three subjects were removed from 

this analysis due to not having above threshold activation in V1 using the more conservative 

contrast. 
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Figure S2.6 | Classification performance for decoding the two scenes in HSF and LSF 

conditions, for feedback and feedforward stimuli using only subjects who had at least one 

feedforward condition classifying above chance. Chance level is 50%. Lines represent 95% 

confidence intervals around the bootstrapped mean (1000 bootstrap samples of individual 

subjects’ performances). Classifier performance is significantly above chance at α = 0.05 (not 

corrected for multiple comparisons) if the confidence intervals do not intersect with the chance 

line. Dark hues = classifier tested on single trials; light hues = classifier tested on blocks of 

conditions averaged over the same type. The small red circles represent individual subjects’ 

results. A) Classifier performance for HSF and LSF conditions, collapsed over different SF cut-

offs. N = 28. 
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Figure S2.7 | Cross-classification performance for training to decode the two scenes in one 

SF and testing in the other, for different Overlap groups, using only subjects who had at least 

one feedforward condition classifying above chance. Chance level is 50%. Lines represent 95% 

confidence intervals around the bootstrapped mean. Classifier performance is significantly above 

chance at α = 0.05 (not corrected for multiple comparisons) if the confidence intervals do not 

intersect with the chance line. Dark hues = classifier tested on single trials; light hues = classifier 

tested on blocks of conditions averaged over the same type. The small red circles represent 

individual subjects’ results. Gap: n = 4; No Overlap, n = 6; Small Overlap, n = 9; Large Overlap, n 

= 9. A) Classifier performance for training on HSF and testing on LSF. B) Classifier performance 

for training on LSF and testing on HSF. 
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Appendix B – Supplementary Figure for Chapter 3 

 

Figure S3.1 | Classification performance for decoding between the two scenes, with an 

extended safety boundary around the occluded region. We selected our ROI in BrainVoyager as 

the contrast of the Target mapping region being higher than both the Large Surround and the 

Small Surround mapping conditions. In addition, we selected voxels fitting the criteria of (Target 

- Large Surround) > 1 and (Target - Small Surround) > 1. Chance level is 50%. Lines represent 95% 

confidence intervals around the bootstrapped mean (10000 bootstrap samples of individual 

subjects’ performances). Classifier performance is significantly above chance at α = 0.05 (not 

corrected for multiple comparisons) if the confidence intervals do not intersect with the chance 

line. Classifier performance for each condition, split by four experiments. ST (dark hues) = 

classifier tested on single trials; AB (light hues) = classifier tested on blocks of conditions 

averaged over the same type. The small red circles represent individual subjects’ results. Expt 1, 

n = 6; Expt 2, n = 4; Expt 3, n = 6; Expt 4, n = 5. 
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