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PREFACE

This thesis contains a fairly complete account of the
modern development of the theory of absolute summability
and its applications to Fourier Series. It is necessary
to assume a knowledge of the definitions and some elemen-
tary properties of the Lebesgue and the Stieltjes integrals.
I have endeavoured, however, in the introductory chapter
to state briefly some results in the theory ofvintegration
which are of frequent application. Chapter 2 contains the
definitions of the Cesaro, Riesz and Abel methods of
absolute summability, and Chapter 3 some fundamental
theorems, including the consistency theorem for each method
and a Tauberian theorem for the Abel method. The equiva-
lence theorem for absolute Cesaro and absolute Rieszian
summability is proved in Chapter 4,

The remainder of the thesis is devoted to the absolute
summability of Fourier Series. Chapter 5 consists largely
of introductory exposition while in Chapters 6 and 7 very
general theorems are obtained for a Pourier Series and
its allied series respectively. In Chapter 8 the behaviour
of the Pourier series of a function satisfying a Lipschitz
condition is discussed.

I have endeavoured whenever possible to indicate, by
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means of footnotes, the sources from which the various
theorems of the thesis have been derived, The following
results I claim to be original: Theorems 12, 13, 14, 15,
21, 22, 23, 30 and 31, and Lemmas 44, 45, 46, 47, 48, and
49. In addition the proofs of Theorems 16 and 17 are new,
although the theorems themselves were originally proved
by Dr. L.S. Bosanquet, using different methods from those
which I have employed. Theorems 21, 22 and 23 have been
extracted from a paper which I wrote in collaboration with
Dr. Bosanquet. The proofs of these theorems were
criticized and improved byvhim and, in consequence, are
not cbmpletely original. For the sake of unity I have
found it advisable, in the case of some of the well-known
results, to include proofs of my own. Where these occur
I have inserted an explanatory footnote.

Neither part nor the whole of this thesis has been
submitted previously by me for a degree at a University.

JAMES M. HYSLOP.
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I. 1. General Remarks. In this introductory chapter

we state some properties of Lebesgue and Stieltjes integrals,
since integrals of these types will be used constahtly in
the thesis. We assume the definitions of these integrals
as well as all relevant knowledge of measurable functions
and sets of points, and simply give, in a form convenient
for reference purposes, these properties of the integrals
which are required in the sequel. It is to be understood
that no attempt has been made to state the results in
their most general forms. In each case, however, the
result as enunciated is sufficient for all desired applica-
tions.

|}
I, 2. Functions)of Bounded Variation. Suppose that .

the function $(x) is defined in the interval cex<b . Take

any points Xe,X,..., Xw-y in the range (&,v) such that

Q‘xg 4"‘ (xz -~ . <xn-| <xh.. = b

2

and fgeym the sum

5} | #(xy) - Rlx,0)) .

If, for all possible subdivisions of (Q,b) , this sum is
less than some fixed positive number, then %(xb is said to
be of bounded variation in (0,b) . The upper bound of this

sum is called the total variation of () in (Q;b)’and will

) Titchmarsh, 34. Hobson, 19.
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be denoted by V;(G,b).
The total variation of a function f(x) over the

range (Q,0) is defined by the relation

0.2\) Vg (Q)m) = Lo V: (Q; x).

X >0
The same type of definition also applies to the case when

£(x) is not defined at one of the end points of a
finite interval.
It is known that a function f(x) of bounded variation

can be expressed in the form
@ + P(x) - N(x),

where P(x) and N(x) are bounded, monotonic increasing
functions., Conversely the difference of twob bounded, mono-
tonic increasing functions is a function of bounded variation.
In particular if §(x) is of bounded variation in(a,b) then

Vgla,x) is also of bounded variation in (a,b) . In fact,
(|.22) V‘e (a,x) = PO N(x) .

LEMMA 1. If $(x) is of bounded veriation in (Q,b) and if

C is any point in (a,%) , thenflero) andfle~o0) are finite.

IEMMA 2. IfH(x) is of bounded variation in (a,b) . then

%’-(x) possesses a finite derivative almost everyr-here

in (Q) bz .

\.3. Integrals. If the function §(x) is integrable in

D) Hobson, 19. Titchmarsh, 34.



the Lebesgue sense over (a,b) , then the function F(x) ,

where

x
F(x) = [ f@w)dt + F(@),

ig defined, except for an adiitive constant, for oL x & b.
It is called an integral in (a,b) . The following prop-
erties of F() are important.

IELIA 3. The function F(x) is continuous and of bounded

variation fora &£xs b .

LEMZIA 4, For almost all values ofx in(a,b), we have

F'(x) = £(x).
1f $(x) is continuous forasxs b then this relation holds

for all values of x in(Q,%) .

LA Be  IfQPOX)is an integral in(a,b) and if $(x) is

integrable in the Lebesgue sense over(a,b) with integral

F(x), then

'x:h b

x=b b
[Tt @coda < | Fx) °] - j B P (x)de’
I.EMLTA 6. If ¥(xX)is an 1nte°'ra1 1n(&,b) then the total

variation of F(x) over(a,b) is given by

b
Ve (0,0) = [T1F )l da.

©
It should be noted in passing that the symbol J dx

(- ¥}
whether it occurs in connection with a Lebesgue or a Stielljes

2

integral, is to be tasken to mean

X%oofdm



{. 4. Further Properties of the Lebesgue Integral. We

now state some results pertaining to the subject of integ-
ration rather than to the integral itself.

LA 7. If two functions F(x) and q({x) are integrable

in the Lebesgue sense over the interval (Q,b),then their

sum and product are integrable over (a,b) . Moreover (R(x)|

is integrable over (a,b) and

) \f‘,ﬁ('_x)dm| < f%\ﬁ—(x)\dac.

This lemma does not necessarily hold when the interval is
infinite. In this case the first integral in (1.4t1) may

exist while the second may not,

LELD7A 8. If £(x)=Q(x) for almost all values of x in(a,b)

and _if$(x) is integrable in the Lebesgue sense over (Q,b),

then g(x) is also integrable over (Q,b) and

[P reoax = L" q(x) dac.

From Lemmas 4 and 8 we at once have the following

result ,
LEMMA 9. If F(x) is an integral in (Q,b),theri
F(x) = fr‘ ')k + Fla).
(%
LEMMA 10. If the function $(x) is positive, bounded and

decreasing in the range (@&,b), and if P(X) is integrable in

the Lebesgue sense over (Q,b), then

. g
j £(x) POx) dac = -ﬁ(a+o)j Plx) dx
o o



whereasS<¢ b

LENMA 11. If one of the integrals

‘Lbdmj;dlﬁ(t, L dy .Ld'd‘tj;b\r'(”co%”d",

is finite, then

d v
Lam [ ppay = [ o [ Fpa,

where b and d  may be finite or infinite.

If one of the expressions

PG Bf lua G0 | e,

n=0
is finite, then

Lbi iunm)}dnc = Z f “ﬂ‘“‘)d"“

hao nxo b

vhere b may be finite or infinite.

DY
LE 12,  If [ Poagydaexists for $7zb and if, for all

values of & , the limit $(x,0) exists, then, in order that

f Px,9)dxe = f fix, ©)da,

b S

it is sufficient that, for 04 x&l, 47 b

)l & P(x),

where Q(x) is integrable over (0,1) .

Y
I. 5. The Stieltjes Integral. We shsall require to use

certain properties of the Stieltjes integral

D)

2

Hobson, 20, 323,

For an sgcount of the otlelt,]es integral see Hobson 19,
Lebesgue, 27, Saks, 32 and Pollard, 29, 30.



b
(1.59) f £ (x) A Plx)

where $(x) is continuous and P(X) is of bounded variafion
in(Q,%) . In these circumstances(l.5Y certainly exists.

LEA 13. If §(x) is continuous in fo,b) and Q%) is

the integral of P(x) in (A, b), then

j;b?(x) d@(g = f:ﬁ(t) P(x) dc

LEMA 14. If -?(x) and @(x) are continuous and of

bounded variation in (Q,6) , then

x=b
f\’?(x) AP = [ £ P - LbQ’(’C)d-?(x).

Suppose that we take points x,a,---,Xwn.in (Q,b)

such that

Q: x.°4 x| (xk ( Rt SN < 'x“_-:_ b.

Let 3,32, ---- 3, Dbe any pointe in the intervals (e, X,),

(%),%,), ~--- = ~= - (X, Xn)respectively. Let

\ - Mo ('K,—-xf-\).

Tz 4,2,-) Ve

Then we define the integral
[ 200 1ag00
to be ‘the lim.:t
R 3 2391000 - QLxe)

\#o Tx\



if this limit exists.

It follows at once from this definition that
v
71490 = Np(@,;¥),
(9

and that

]

|jb$(x)d.¢('t)\ sfwm\\dq’(ﬂ\,

if the integral on the rizht exists.,

TEA 15. If $0x) is continuous in (@, b), and ir Pulx)

is the integral of a function ¥(x) in(a,%), then

b b
[Treconaeean = [ C1eaNeedida.,

A 16, If $00) and Yx) are of bounded variation in

(o, b) and one of these functions is continuous in (Q,b),

then

> ) b
[T1d1pm0eal < [ 12eandewal + [ @eoNdf,

b b b
j | ROA1A Q)| sf A ) P(x)} +fl¢(t)\ld.f-(t)\_
LINMA 17, If one of the integrals

L[om [Firepudocg | [aen Vo,

exists, then

jbdltfi‘g(x; ‘&')dq’(%) = J;id-cpcx-)jmb‘g("u ‘_&}dﬂ(,

where b and d may be finite or infinite,



CHAPTER 2,

Definitions of Methods of Absolute Summability.
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2.1, The Cesaro Method. Suppose that Lawis a given

- geries and that

(2.11) An= 0o+ +Qat --- + O
(2.\2) AE'3= Aor Ay A v-- - + By
_-9. ARd, &-9)
@ AY = A, o
QY
where, of course, R is a positive integer. Let €, denote
R\:) for the particular series 1 %+O0O+O4* ~~-- Then D/ the

series AQ.w is said to be summable (C,R) to the sum s if,

as n, tends to infinity,
AR L)
R £ ® - o.

From (R.!3) we have, formally,
® S SN LSRR
L A = 0 AALT

-0 n=90

© L\\ao.) w

=97 AR

-— e e A — -

so that . -

O \h o ’k"
(2.15) }:‘_\R )x = (-2 ‘Z,O-mc.
n=o

“—
Equating coefficients of x we then obtain

(2.10) RW = 2;\0( h*::‘:, ) S

- and, in particular,
L)

whlch is the coefflolent of X in the expansion of (- x.).\‘.

Y Cesaro, 10.
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We have already remarked that the above definition of
summebility (C,R) is valid only when R is a positive integer.
By means of the relations (2.1%) and (R.™) , however, the
definition may be extended‘)to other values of R . We say, in
fact, that the series WOwis summable (€,R) , where R>-1, to

the sum S if, as w tends to infinity.

A® LN L ®
(?. 1?) Cg‘) = f® = E(\,;) Z E.,Qy—=>S R
Y ™~ V=0

where E‘&) is the coefficient of x in the formal expansion

of L\-n)_h‘: The restriction Ry -\ is imposed since, when

R is a negative integer, EL:)is zero on and after some value of
e The expressions Rg?) and cgf)are called repeetively the

n-iL Cesaro sum and the nw-¥ Cesaro mean of the series )_\Q~ of

orderR.
e
R (3 ®
(2.19) ad L P e,

'a.nd" if 2\0?:)\ is convergent, the series AGwis said to be
absolutely summable (C,R) or summable \C,R\ . Altematively
the sequence A, is said to be absolutely summable (€, R) or
summable IC,\W\ ,

It follows at once from these definitions that & series
which is absolutely summable (CR)is also summable (C,R),
and that summability(C,0) and summability \C,ol are respectively

) Knopp, 24. Chapman, 11
Y  Pekete, 12. Kogbetlisantz, 25.
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equivalent to convergence and absolute convergence.

2.2. The Rieszian Method. Suppose that Zw is a sequence

such that
(2290 0<do M edag - € X -am s Nu S,
Let «
Ap(w) = A @) o,
(2.22) Tncd

— 0 ) w‘\o’

where R?-1, Then\) the series N\Ow issaid to 'Be summable
(RXw,R) to the sum S if, as @ tends to infinity continuously,
C\® = wh Ay 3.

The expressions Ryw) andCyw)are called respectively the
Rieszian sum and the Rieszian mean of the series 2\ Q., of
order R and type \we

Throughout the thesis we shali be concerned only with
Riezian summability when Ry%o0. Whenhk<oa complication arises
owing to the possible presence of a large term on the right of
(2.22). We note in passing that summability (R,\w,0) is
equivalent to convergence.

The following Lemma regarding Rieszian sums is fun-

damental.

LEMMA 18. Ifk7-\ R8>0, we have

9 Riesz, 31.
2 Hardy and Riesz, 18.
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w -1
C(R+S+y) j(uhu) Ak(u)d'“ ]

(223 W =
) nk*s Clke) C°®

Putting
W= N+ (WXt

in the integral

w G-t R
J;(u)-u) (-2 dae

it becomes s S
RS [ %-1, k r(k+) 0(5) *
N -t = —2 =20 (w-2\)
S R O v
Hence
(ke S+ k
L SRt evl (co W - ol
C(ky) T(S) ggo A ) )
- v(k+%+) j
Fley 0(9) J & §,§‘“ SRS
P(h&%*") -1
(
Flky) B(S) f‘ Ah “ ol

By putting k-t for R and $=1 we obtain the important

particular case:

(R.24)  Agw) = kf A ,Wdw Rkvo,
Hence, when wW%0O, R, Afdis an integral. By Lemma /i its
derivative is almost everywhere equal tokﬂk_‘@o , and, when
kyy , its derivative is everywhere eausal to the continuous
function RAR D,  since w® 55 an integral for w20

we see that, when hvo)avojch(@is an integrel for any finite

range (a,X) .,
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The serieshQw is said to be absolutely‘)summable (R, R)
or summeble IR\, Rl, for Ry0, if €\ is of bounded variation
in any range(a,0), a7o0 ; that is, if

(2.25 f:mck(m)\ <co.

It is clear that sumaebility \R,\.,ol is equivalent to
absolute convergence. Also, by Lemma 1, summability IR,\.,R|
implies summability (R,\.,R) .

Throughout the thesis we only have occasion to use
summability \R,w,RY; that is, the particular case of
absolute Rieszian summability when\.=wn. In future there-
fore, it is to be understood that the symbols Ag(w) and
Cu(w) refer to this particular type of summability.

It is convenient to state here a result which we shall
require later on.

2)
LEMZA 19. If the series EGW is summable (R"\,k) then

(220) A® = o™,

where £ is any positive integer less thank .

2.3, The Abel Method. The series )l Qw is said to be

@
summable (R) to the sum S if (i) the series 2 onx”™
N2y

converges, for o¢x<\ , to a funectionf(x)and (ii)f)>s asx-»,

3)
The series A0. issaid to be absolutely summable (R ,

aQ
or summable |Al , if (i) the series JNa.x" converges,

N=po

Y obreschkoff, 28.
Y  Hardy and Riesz, 18.
»  Whittaker, 35.
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forosx<! , to a functionf(x) and (1i) #(x) is of bounded
variation in (0,V) .

It follows at once from Lemma 1 that summability [Al
implies summability (R) . '

In dealing with summability 'R\ we shall find it
convenient on occasion to use a slightly different but
completely equivalent‘) definition. We shall say that the

N3

[ d
series XQw is sumnable VRl if the series XOwe converges,

nzo
for Syo, to a function ¢(8) which is such that
L )
. !
(2.30 g‘_;'.;‘.l; 1g'()lds <oo.

R.4. General Remarks. These three definitions are

the only ones with which we shall be concerned here,
Although the definitions of absolute summability follow very
naturally from those of ordinary summability, it is some=-
what surprising to record that these absolute summability
definitions have been given, at least in the form stated,
only within recent years. Feketefo however, as far back

as 1911 had stated Kogbetliantz's IC,R\ definition in the
case when R was a positive integer. Historically, the
earliest method of absolute summability was due to Borel,
who included an account of it in a bookQ)on divergent series
which he published in 1901. At that time Borel laid much

greater stress on his definition of absolute summability than

;) See Lemma 6.
3) Pekete, 12.
) Borel, 2.
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on his definition of ordinary summability. The latter,
however, attracted almost immediately the attention of
mathematicians, whereas the former was all bﬁt neglected.
Recently there has been a certain revival of interest in
the theory of absolute summability, although not in the
case of Borel's method, and this has led to interesting
results in connection with particular series such as

Fourier and Dirichlet series,



CHAFTER 3.

Some Fundamental Theorems on Absolute Summability.
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3. 1. Introductory Remark. When a method of absolute

summability has been defined it is essential to know if the
" new definition really constitutes a generalization of the
idea of absolute convergence. It should be possible to
prove, for example, that every absolutely convergent series
is also summable IC,RY, VR,n Rl and 1A\ | where, in the case
of the first two,R is positive. In this chapter these
results are obtained as particular cases of more general
results which will be required later on.

3. 2. The Consistency Theorem for Summability \C, RI_.

Before proceeding to the statement and proof of the
theorem we obtain some necessary Lemmas.

LEVIFA 20, e have

row) (8)
(32.) QL:*S) = Z En-» ni’ )
Y=o
kD) _®
(3.22) e 92; Eno By,
L)) w?

The first two results are true for all values ofk and § o

while the last is true provided that R is not a negative

integer.

From (2.15) we have



(s

ReS) n _k-S-\ Za ‘)C
n

8
p~]
4
o]
ll

®) w
-—x)-h 2 A'\' x )

¢ L

"

so that (3.2Y) and (3.22) 2t onte follow. The third relation

is merely the statement of a well-known limit.

21. If R720 , 90 we have‘)

LaLA
(R+ S) 2 6 ‘>
* = E(\u—)

(3.20) a.
Trom (2.19), (2.19) and (3 2\) we have

-\ k (h)
6-) L ® _ Z By {vAd® _(w) ALY

W &
()Qv ‘

ZEn-v Ev 0
Y=o Y=
LSO OO B L)) y 6y B
= 2 B vhA, "~ kz Ewy AP‘
»=0 Y=<t
(R4S UeS-9 RN )
=-knn:) w A ZE““’(-)
Y2 O
ReS (Re$ (r+S) ® Ot- D)
= ‘k Rt“_: )'\-‘V\— hf )—V\ Rn-\ —SZ E"‘—\ 1’
R+$ (R+-S)
= n ATD (Ranas) Amn
e
= n ES“%)QE.“ > .
Prom this lemma we have at once the formal relation
D RS (RaS) w - W ® w
(3.25) Z“E‘\- AQnw 2 = (- inE,\, Gw X
n=o

“=0
and an important particular case of this is the following

relation:-~
SR w R W ® w
n=o 2 =0

THEOREM 1. If  the series XQ..is summable IC,k\it is

also sumaable €, R+81 | ror k70,$v0 .

Y Yogvetlientz, 25.
Kogbetliantz, 2o.




From Lemm& 21 we have

N . ¥ o ST B L R O))
X\QS %)\ = Z R \ stv »E, ay \
N=\ Nz bt Y= ™ (%-‘)
",\ () i €y Enyp
< s Qay L “Eun.n)
= i \p(N) ‘st)\
V=
where
Lk) (‘5-‘) () T (ReS +1)
N, (N) =“2-Av” En-v Clr+Satan)
\ k+$
ZE En.v)f "'(t'n) da
A=
v _ (Sd) v\.
< vEg‘)j r.‘“(‘-’c) { Zp "y e
Nz

v Ep)‘] 2 (0™ (19 e

® P PlRe) - |
C(Rev+) )

The theorem now follows at once.

= VE,

Putting R=0 in this theorem we see that every
absolutely convergent series is summable IC,%| for ®v0O .
The direct converse of this theorem is not true for it
is easy to see that the non-absolutely convergent series
\-4+%---- is summable \C, W

3.3, A Necessary Condition for Summebility IC,k\ .

We shall now prove a theorem of a slightly different

character.

((b
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THEOREM 2. If the series Zawis summable \C, h\) then

the seriesZerowis absolutely convergent.

In this proof, and elsewhere in the thesis,R denotes
some positive constant which has not necessarily the same
value each time it occurs,

Tet F= Lkad. Thewn , l:Y (3.26),

n,
Gn \ S 28X I L I L))
- - ., vE, a
E&:_) D\E,\L_h) 2_) n-v » Y >

Y=\

so that

‘E“"\ £ wES

Y=
Hence
h £ < (-h.) g &h)
£ o ZE ,, P10 +R2 Z \a,

e Q.
A\ EG)\ < i Pat-v ¥

n= Pt w (T*f) Eru' P= N=ppr VNP

PN ey 0 (w
&"‘E)-(k) Z E,\_‘, VEV ‘ () R Z ‘Q9 ‘ .
=1

P=n-Par

= S, (N) + S,(N),

where
N ap Pap-y

S <A XSy 4 <AZ|a°‘)\ - 0w,

Y=o Ny =0
-k-9

N S O Eprw
S\N) = )_‘\vE,» DA S0y
P=1 +=9 (T‘\'P) Er*f

had
}1 PEY QS T(o,N),

(-R-V)
E ‘) Efsf-v

r=» (? 6 Ef?p
Writing fav+-¥= M we then have

and

where

T(‘V, N) =

Y Kogbetliantz, 25.




Nap-» P k-9 Fad [ (R~

o) By (&) E!:
T(.9 N) = Z o \\9 < Z: kh)
PP @D Epay p=p (WD) Bl

¢ T + T,

where -R-t)
-‘:(\’) =3 \ [{3)
pao (1+?) E’uv

Z E( ~R-\) ‘xr§9-‘Q~x)hdﬁn‘

=0 (-]

A __
\ j x“‘(.-t)h(\-x)“u\ < e

and b
T,(» < RE; ot (k)‘ < ’e"&j ’
p=o VE VE,
It follows that
s,(n) < A 2\0@ =0,
so that the series Z\ \1s convergent. The convergence

of the series )_‘v\\"\a.\.\then follows from (3.23) ,

This theorem is a particular case of a more general
theorem which was also proved by Kogbetliantz'). The
hypothesis irplies, in fact, the summability VC,R-2|of the
series L W Ouw where 0 <€4 R

3.4, The Consistency Theorem for Summabilitylﬂ,nlh\.

U
We first prove a lemma)which is fundamental in the
theory of absolute Rieszian summability.

IEMIA 22. If By(w) denotes the Rieszian sum of order R

for the series Abw , wherebnana.,, then

(2%

Kogbetliantz, 25.
® Obreschkoff, 28. Basanquet and Hyslop, 8.
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(3.-8) c%o €= k™ Bp.l) = kw' {C & - C o}

The result holds for all positive values of W whenkzt , and

for all values of W excent the positive intecers when o<R< I,

If R ig positive, and w is not an integer

n | R~ -k~
£ Ne-B) o = ka? X0-3) man = k™ By @

neWw new

=k 20D an - 2 0- B}

nqew naw
= ko' { Co, @ - C .

If k71, Cpw) is the integral of a continuous function
so that the formula holds for all positive values of w,

It is not difficult to see that, when o<k& V' the
left hand derivative of Cg(w) exists for all positive
values of w  while the right hand derivative is infinite
at the integer points,

THEORZL, 3 If‘) DA is absolutely convergent then it is

summable |Ryw, R\ for any positive R .

By Lemma 22 we have

(1460 = k[ 18, @)dw

¢ k[ "R -0 rlan Y

new
X .
= k X nlow f W @t daw
wek "
© -1
¢ k Xaet [(wt e e = 0w,
n<x 1

ob¥eschxoff, 28.
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The theorem therefore follows,

D
THEOREM 4. If the series Ja., is summable 1R,n,R), then

it is also summablelRn,R+$S|, where kyo, 870,

By (8.HY)  and (2.23) we have
X X _R-$-1
[V E @l = (e ® [T ™ 18y [Pl

(™)
_ C(RaSaY) xw_k-s-‘ol_..o \f(w-m)s-\ Bh_\(u\)du.|
r(R)T(S) Jo

-1
PRALIID \Bh_\@:)\du—-} W w-uw) dwo
t(RTG) %

C(R+S+Y) _\z. k.s- 8-
£ {8, Wldu dv=0«
r(R)ME) L ®-y f ey dv=00)

The theorem therefore follows,

3.5, & Relation between Summabilities I€,R\ and VA).

THEOREM 5. Ifz) the series XOw is summable |C,\l\,h70 then it

is also summable VAl .

By hypothesis and Theorem 2 the seriesx\{'k lanlis
convergent. In particular Q,‘--Q(wk) so that the series
ia,\xh is convergent for osx<\ , Let the sume
Nxto

function he $(x) . Then we have to prove that (x) is of

bounded variation in (0,1)

When o4& x4\ we have, by (3-20),
o
;'(x) - Z nNQw 'X:\“
N=\

Oirre sechkoff, £8.

Proved by Felf'Te, 13, for the case when R i1s a positive
integer.
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oo
R ®W W na
= (ex)t D nEC QT X

Thus, by Lemma 11,
o0

j‘—£|$‘(x)\dnc < 2_'\ ( \QW \f’)c. (- I,)d-m

N=1

° [ =]
Y 20 TR B
= 23 nEw C (RN ) ™

n=\

< op‘\a,?‘)\ <00.

b4
]

Hence,
) -t
€.-j 1£'0) | A
g0 Jo
is finite and the theorem follows.
in important particular case of the theorem provides
)

us with the consistency Theorem) for summability VAl ,

THZCREL 6. If the series AQw is absolutely convergent

then it is sumunable VAl .,

We shall now show that summability VA is more
geﬁeral then summability |C, Rl for any positive R .

We shall show, in effect, that the converse of Theorem 5

is false.

THEOREM 7. There exists a series which is summable |A)

but which is not summable \¢,R) for any positive value of R .

Consider the series XQW wherez)

oo -9
€
a = (~\ "~ —_—
. We have
LB

) Whittaker, 35,
Thi®semes iS due to H. Bohr. See Landau 26, 51.
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wRlad S A AZI = e

>
Y=

(32

so that the series Awn®iau) diverges for every positive wvalue

of k. Hence, by Theorem 2, the series Ja,., cannot be
sumieble G, R)  for any positive value of R

Cnn the other hand, when ©O% X<\,

oo () % EW-\)
£00) = Noux™ o N0 AN -
n=o n=o =0 .
o ] nP) w
= Xy QAeOVE

Y=o Nn=o
the interchange in the order of summation being justified

by absolute ionvergence. It follows that

fo = Kb - et
Clearly §() is of bounded variation(O,\)lso that the series
is summsble AV

3.6, A Tauberian Theorem for Summability !C,Rl . wWe

have seen that a series which is summable IC,R\ is
sumnable 16\ where R' is any number greater than R , and
that the converse is, in general, not true. In this
section we shall find a condition which, when satisfied
along with the hypothesis thatxﬂwis absolutely summable
by some Cesaro method, ensures that the series is also

summable V€,R\ . This type of condition is knom as a

Tauberian condition, so called, because, for the case of

)
ordinary summability, Tauber was the first to investigate

T

P
Tauber, 33.
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Througzhout the subsequent para-

theorems of this kind.
graphs we shall write,
— b'\— bb\_.\ )

\)'\= V\Q.\. ) ﬂb'\,_
and denote by 8™ tve WAL gesdro sum of order R for the
R 1(R
and d.w, ) the

;e shall also denote by d

series );\'-W\,- a
n-th Cesiro means of order R for the series Xbw and hdb,

respectively.
\
TTA 23. ‘.azhen) Rvo

LAL
Ged A ®
From (3.26) we at once have
Z EL\Q 0‘) o (\—x)~h§:’nn.\x~,
<o

we have

(R
= “Q“‘) .

=0
vthenice

R K k-9

'\EN)Q&.) = Bv\. 0

The result now follows since

R-)

B

1 (%)
d-m = O

LILIA 34, ,hen Ry~\ we have
1 (Rav) U (‘“9
= (ko) {e’=el 7}

(L2 da
(Ryy)

From (3.6VY) we have
Ruth“) Ay,
Ean?

qa ViRe) -
E,th“)

n LRy
) A - EQ\»\) {Rn
E‘S‘) A ® nE ,&_h +9
€ “\:m ES;) - { —"""E. U,.‘H) -
= (Red e oy

(r ) L)
£Y) n“’ )

R
AL
V\} E '&h »)

) Kogbetliantz, 25.
D Hardy, 14.
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Prom these lemmas we can at once deduce some straigh-
5 :

forwar'd theorems.

THEOREK 8. If the series MGw is summable \G,R), R%o then

the seriesAflb.w. or the secuence bw , is summable 1G R+,
By 32 we have
(R Uu—\)
L \ t(\u-\) A’ \-\)\ < 0“‘)2\ \ +&¥\)Z \a,, < w’

N=\

by hypothes:Ls and Theorem 1.

THEOREL] 9. If the series AQw is absolutely summable by

Cersgro's method of some order, and if the sequence by is

sumBable 1€, R\ . then ROw is summable 'C, R\ ,

suppose that AGw is summable V¢, 8\ yhere €7R%0.
If €<k the theorem merely reduces to Theorem 1 the
hypothesis regarding the seguence b., being superfluous.
Write €= Ryrm-% where 0<%« and wu is a
positive integer. Then, by Theorem 1, the series AQ,.,
is summable \C,kew| and the sequence bsw, is summable IC,kav)

for v=%,2,--,, M, .., Prom (3.62)

(Rawd) }3 12" £ Graw Z\ Yawmy +Z fan ™l a0

A=t n=\
< 0,
Thus E;Q.., is summable IC, Rrwm-i| , Repeating this argument
other m~\Vv times we clearly obtain the desired reault.

An important particular case of Theorem 9 is the

following: =~

) Bosanquet =nd Eyslop, 8o
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THEOREM 10. If the series ZQN is absolutely summable

by Cesz;.ro's method of some order, and if the sequence b,

is summable !1C;1\ . then X Qw is absolutely convergent.

We may combine the enunciations of Theorems 8 and 9
as follows:-

THECREL 11l. If the series 20-\. is absolutely summable by

\ " - e s
Cesaro's method of some order, ther a necessary and sufficient

condition for it to be summable I¢,Rl, Rz0o is that the

sequence MQw should be summable |Gy Retl

4 7. A Tauberian Theorem for Summability [Al ,

We turn now to the question of a Tauberian condition
for summability |A\ ., It will be shown that the Tauberian
condition which was sufficient for absolute Cess\a,ro summability
is also sufficient for absolute Abel summability. Theorem
9, in fact, may be replaced by the following more general )

theorem,

2)
THEOREM 12. If the series JQw is summable 'R\, and if

the sequence naw 1S sumnable 1€, R+, kpo then HRAQw, is
summable G, R\ ,

Throughout the proof we shall suppose that N is a2

positive integer, m= 1wW] ) w=3""ang that

:r(u.)) - m(:_e-nl@) ) w7,

Clearly we can find positive constants 3; and J2 such that

Y By Eheorem 5.
3 Hyslop, 22,
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It is sufficient to prove that
(3.'19 CPN - jN | d;(.ha-\)‘ o T(w) duo = Q (\))
L

for, by (3.6V),
Not  _na

= 2 [ 1.0 Tewdduo

A=y “

-\ - Nt
- i V\.-‘ \d“'_ (h&-\)\j “m-l T(w)d.u.)

—

Nn=\
P SIPNLL MRS
nzy

The series Zamvill then be sumnable IC,Rw| and its
sumnability V€, R\ will follow from hypothesis and Theorem 9.
We proceed therefore to establish (3.My), Write
Pu € Sy + Sy

where

s, = [ w1y @)\dw,

t(Ray)

Se= [ |67y (E) + L Tl ldo,

the function q(S) being defined as in§2a . Iow

S, = f/ 1g' Nds = OW,
since \Q@.,, is summable IR\ . Also, by(2.15) an3 (3.61),
5 = - X boe M
% &) -éo
. - -alw)ku 53 (R+y) d'ﬂu—\) -njw

2
"
n =xo N



each series being convergent for ISwW<EN | It follows that

2 ..f \u) {‘”T("‘))jk‘z (w+) ~'\lm d.:h“)—d_'(h“)j\d*‘)

n

< 2, r 5542 ’

where

N RS O S TR o4 t (Rav)
- [Tl e L BT A 10T

n=o TN

. N - 0 Ry no S 1 (ReY)
Soz= [ 0T o N Bw € A 10d T

N= MAS T me

We then write

O Cy
Sap % S, + S

2,0 2\ ,
' (R
Sap = [ W™ Ty Zmd "
!

1nd. ™) j ww"“dw}

N
= 0§ Xinda. ™)}
- Q(\)’
and
S,(:) éf w in(w)) d.u) Z\Dd (kay) Z (kev) _.\,w
' =1 Nsy
< 0] Broar® B [l oo
=1

v
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n

p}md ") {+T} k"Z e ]

Of Lina,®0) - Lt

=t Ny

= 0] Z\r_\di““"\}
- Q 0. .

ulSO

[ Z mdl(\w)‘—/’ {mT(u))}. —::hoz (ray) -v\lWJ

=+

et Ra -7 £ Uw) ~w2w
=Ol2\ud W) [t foref el €7

=1 w=o

0§ F0a™ )\ 2ovten [ ort o]

T=1

Q 5( Z\ﬂd«'-u“o‘j
= Q(\),

Thus (3™M) follows and the theorem is proved.
As with Ceséro summability the following particular
case is of interest.

THEOREM 13. If the series AQw is summable VAl and if

the sequence hQw is summable 1C,1) , then AQwis

absolutely convergent.

D R - - o A~ Laliatiat

- - S .
) The suwmmation tewn 2 f»dw i hag been. omrﬂ'uL 'J:t 1Y

TaN» 5y Nz

casy to Ser however, +hat & is otd.




CHAPTER 4,

The Equivalence of Summability !C,R and Supmability (R,n,Rl.

==000~=




H.Ll. General Remarks. When discussing the summability

(¢,k) of special series such as Fourier Series or Dirichlet
series it has often been found convenient to deal with the
Rieszian mean rather than with the Ceséro mean., It is
permissible to do so in virtue of the wekl lmown equiv-
alence theoremoconcerning the methods (6,R) and(R,m,R), 1In
this chapter it will be shown that summebility IR,m,R\4sg
equivalent to summability I€,R\, in the sense that a series
which is summable by one of these methods is also summable
by the other. Later we shall make extensive use of this
theorem when considering the absolute summability of
Fourier series.

A. 2. ;ntroductory Lemnas. For the proofs of thé
theorems three lemmaéoare required and it is convenient to
state and prove them here.

LEMMA 25. IfR is any real number except a negative integer,

and if q) is any positive integer, there exists a seguence

of polynomials bol®), bi(©)-.. bu(6) , such that, for n%l |,
q -
@20 e = B bel® B4 O (I,
uniformly in Os$®& .

Suppose that R is not an integer. By Taylor's

Theorem we have

9 Hobson, 20, 90-93. -
2 phe first two of these lemmas were proved by Mr. A.E.
Ingham in a course of lectures which he delivered in

1930-31. See Hyslop 21, 48.



9 (-h-\) s h— R-
L“‘-e)k - ZL‘) Es S O( Q- \
s:

uniformly in O <O < L.
Employing Stirling's Theorem we hbve

EU?-?) (R-Tan)(R-T4+n-1) . (R-TaV)
~ n(n-v) ...  3.21

}_\S,sn +O(\r\. ),

where ¥=0,,2,...q), B+,s is a constant and

; v
%‘3" = T(R-rw) +0,
since R is not an integer.

It follows that

Q i > R-Ql~\
2 b B o DD 0
t=0

r=0 Sar
ks 3 R
-S ~qj~"
= ﬁ“’ A beSes + O(WV),
s:o TSO
Clearly we can now determine the polynomials pe(®) from the
equations
(-R-v)
,Z"f s "L\) Es e §) S"'o:')n)‘*“:w.

If Ris zero or a positive integer the same argument

gives an exact formula without the Q term if we ta.ke‘[hk.

If >R the lemma is still true provided p.(0)=0 forT> R.
LEMIA 26. If 0<0<1, Rv0, q) is any positive integer

or zero, and

1
Bromwich, 9.

(w



o kR-v _ (~k-1)
(#22) ‘(w(s)=v§}°('\*°~9) €5

then

J
~R-1 K ~R-1 R-qJ-2
(H.23) In(8) = S(6) E‘N‘Q Y O{ 230(9“) -0 V2
vhere

S(Q) = eh“ 4+ éoe«re’;

and €y 18 a constant.

From(k22)we see at once that, for o&xc |

5 k N k-t wn ’
2 Yn®x™ = @1-0f N i)' x™,
nN=0 NxO
Tow, by Lemma 25,
- 3y (R-\-t)
O = N OB 4 palo),
=0

where, for wz\ ,

) R-2-
Let &y Dbe defined by the relation

a @
Zef8f= - Z kr(e),

*=o *=0

and let Po(®) = S(Q) « Then

x oo o 4-1) w o .
2@ = @t X N el e L
N=o n=0 Y=o n=0
aJ © o
= Np e 200" X pux”,
T=0

n=0

and therefore, for h>q ,

n, -R-
Tv\.l.e) = Z E,;( ‘)PM—)’ .

Y=o
Since
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~R- ~Rk-
e = Q L™}

the result follows. Ifwn is less than q the lemma is
obviously true.
It should be noted that, when R>» 1! , theS(®) term

in(k23)can be incorporated in the sumiation term, giving,

LH"Z"“) ‘(,\(e) = Q{ i@a.\)“h"c\-m-\)h-‘u-z}’

Y=o

We now obtain a Lemma of a different type.

D) ®
LEITA 27, If b is a positive integer or zero, Aw can

be exvressed in the form

|2
f=o0

wheredp is = constant,

We have

SR
AQ’) = 2 En-v oy

™~

i (Prn- D)(p-14n-9) -~ (\am-9) a
S L2.--- p )

)":.o

and this may be expressed in the form

- |
(#-25) Q}P= i\cr Z("\"’)b Qy = Zc" nlwr('“))

=0 Y=o T=o

where Cy« is a constant,

D)

Hobson, 20, 93.



Let F(W) denote the expression
S PN
E‘OL“) (") Apns By
where 04 P&« p-1 . Then
- <~ N
Flw) = f}}eo"(";ﬂ) A e G- e,

=0 T=20

" P-f
= N Joo (FH e -mF

T™=0 r\"o

A"
— X
— L Q‘T‘ E“_,P,_P)
Y=o

b
where E'\,PP is the coefficient of -’lﬁ-; in the expansion of

b-p m-rr)x
- r
26" (P e ,
'-l-.-o
that is, in themexpansion of

- P = P-p
e (e®-)
It follows that E.\,,\,_f is of the form
[ P e
o (n-7) +e(n-v) &+ --- + €,

where €o,e,,-.,@p depend only onp and p and e,#0 .

Hence we heve, for f=0,1,2, ~~=, by,

b-¢ w
EOL-DF( P;f) Ay (nx %) = §°o.,. ﬁ €p o~ (n-7)

<=0

= i € o Ag(™),

STme
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On giving P in turn the values 0,),-9p-t we see at
once that Aelw), Ry(w),.., Ap{w) can each be expressed as a
linear function of Ap(w), Rp(ne ), ,R‘,(M.\) It follows from
( #25) that Au’) is expressible as a linear function of
Aptw, Ap(nr ), ., A\,(m-\)) and the lemma is therefore proved.
A.3. SumnabilitylCklimplies sSummability IRm, R\, 1t

will sometimes be found convenient to use, in the proofs

of the theorems which follow, symbols such as X\ where X

N=go
is a continuous variable. This is to be taken to mean
ol
N whered=%-v or LX) according as X is a positive

A=o

integer or not. A similar meaning is to be attached to
(2]

X .

=R ‘)
THROREL 14. If R%0 , and if the series AQw is sum-

mable &R\, then it is also summablelRw,Rl.

The theorem is true when R=0 since summability IR,nw,0)
and summability \C,0l are each equivalent to absolute
convergence. We shall therefore assume that R 1is
positive.

By(3-#Y) and (3.26) we have, for almost all values of w,

d Ciw) = Rw ~R-1 By (W)

dao w
R~
= R R @ 'nan,
A=\
. 0 & Ry (k) ®
= ko™ Z'Lw-w) 2 Ewv "By oy |
Nn=t Y=\

Y Hyslop, 21.
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Let w=N+0, 6¢<0O<¢\ ond let n-»=p. Then, inter-
changing the orders of summation, we obtain, for almost all

values of w,

d ~k-| ® () k-t (-R-9)
d_;chu) = ”Z‘ €, a NZ"LN\-G -v-p) B

and, using the notation of Lemma 26.

j \Jmch[‘”)‘dw O{j R Z)’Ev \Qv \\UN 9(9)\}

V=it

where

O [ ey e Y,

T, 0} [ o™ Soea® iseney \}

- ' ) £

Rearranging the orders of summation and integration,

and putting P-» =P, we obtain

h-q-2
= 0} Z E, P lag) 2(9- 210 f N daw §

Vau P=» frr
< R ke Pre 4 h-du-
- 0 {g ”Et»k)‘“vw\?_zm e :23\ "[W(N-P) dw |

{ xg E)’ 12, Z p (f-m-\)* ‘g\rh‘”'zj'

€hoose q) greater than R-t .  Then
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X

T, = Of i e N e o™
(I P= P=»
- (i) Essh)‘ (h)‘ ;Z) (P-P+ \) ‘j

=)

g
51

{
0 { A1}
= 00,

Il

Also, from Lemma 26,

T, -0} ivs " [ xw-‘“m-vu)"‘“tswndw}

0 Bt [l oo ]

YiPr

- ) N) (N-%\)-S-‘d.w
Ot hn ) [ J
P+Pa0
= 0] 51 Jed™ [ oo}
T ea t<o i
= {Zm»“)\ AN
Y= t=0
- 0 QuM]
= 0

The Theorem is therefore proved,
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4. 4. Sumnability \Rw,\Rl implies Summability \C,Rl. We

now proceed to prove the converse of Theorem 14.

)
THEOREW 15. If k%o =and if the series Aaw is summable

IR,\yRl | then it is also summable ¢, R\

s in the case of Theorem 14 we may take R to be

positive. By (326) and (2.18) we have
Lk~
nEU" ® _ Z B ‘)

=0

> (k) Y i) ®
= Z En—9 Z E)’-—rs Br-,

Y=o p=o

where L is an integer greater than R . Let
P = P(P) = P“»,

and let

(L)
R = p(Re) C (1+L-R)

Then, by Lemna 27 and (2.23) we have

(h) (b; . (h-\) d (-i- 2
nE ZdP Z En—v Ev-r- B (r”'q))
=0 ©r=o0

= Dh‘zdpw (Re) Z (-i-2) j hBh W) ('\&-Q-u.) .

r.; o Y=0

Using (3.w1) and interchanging the orders of summation

Y
Hyslop, 2l.



and integration we obtain

L

>/ ™ k& d~
r\ES) Q,t = D& de‘j ' {_Ch@kdu.

P=o °
-R (R- \)
X Z\ 1+ P-w 2 En
p=u-9 P=p

Tow, by (3.22),

r (R i3 "2" e th-1) E(»i.-z)
>_\ -9 Vo = neper T
)’2"" =0

tR-i-2)
= E'\-r* .

Hence

X

(—l. 2)

P,

Ea® Lo, / o a RCICILI

f=0

R, (k-t-2)

X Z (pa9-w) B

r\z\\‘Q

® '
Divide by W€, |, take absolute values, sum from zero

to N, and apply U-l-.‘lk-) Then, since L¥ R,

i lar =0 2 me\ Z\(\M\)k‘j S LWl du X

\zo f=o0 h=0

w Rei-2 Rt
x X))

pew-Q

Taking QJ=t and interchanging the order of the

summations and integration we obtain

(49



(0

L N
i 1 = 01 X \de\_[ s \%uck(‘*)\du x
=0 - P:o [

N R-i-2
N -R- f ~R-
x 2; (P Prr-w) ‘ 2,("““) (n-p+y) }
qu-? V\:‘L

4 N ~R-t -k-
=0 { Xidel J TR 13‘-Mchm)\du)_" (hePr-w) (B4 ‘}
- o P =9

'20

=0 { 2 \d‘)\jN\Lk“ \ %“Ck&u)‘ (u&-\-@)‘k-‘du.}
- f=o0 °

- O 1 & cuolan

= Q(‘).

The Theorem is therefore proved.
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5. 1. General Remarks. In this chapter some attempt

has been made to arrange in & compact form certain defin-
itions, and deductions therefrom, which will be required
repeatedly in the two subsequent chapters., Koreover, in
order to simplify the proofs of the principal theorems in
the next two chapters, certain results have been included
here as lemmas which ére virtually constituent parts of
these procfs. These lemmas occur at the end of the
chapter.

5. 2. Definitions ) relating to Fourier Series. If the

function £(x) is periodic, with period 2T , integrable
in the sense of Lebesgue over (-W,TW) and the constants ofm,

and Pn are defined by the relations

N
(52) on= :‘er_“ RO) ewnx da |

S 1.y
(5:22) Pn= _,L‘.j £ St dx ;  n
-
where N=0,1,2,... , then the Fourier series of #(x) is
defined to be

[- o)
(29  ddo *+ ) (datwnm s Brsmnn),
N=y

The Allied Series of the Pourier Series of £(x) is defined
to be

(5-20) i (Brewn — dnSwmnnac) |

A=y

D)

See for example Titchmarsh, 4. Hobson, 20, Zygmund, 38.
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The constants dn and Bw are called the Fourier constants
of the function ﬁ(x,)_
It may easily ve proved from these definitions that
the Pourier series of theevar Tunction
(525) QW) = 5{f0ert) - Rx-8)}
is
(526) Lo * i (oln csoncs Braswanc) ek,

N=\
and that the Fourier series of the odd function

529 P = L R0t - f(x-b)]
is
o0
(5.2%) 2 (F,\,euovu:c ~dn 3vmnn) Stand |
N=y
FPor the sake of definiteness we suppose throughout the
subsequent pages that tvo . It follows at once from (5.26)
that the Pourier series of P(t) at the point =0 is the
Fourier series of f(¥) at the pointt=x.

We shall write(s.26) and (5.2%) in the form

(5.20) E anennd | },‘o Qnsinnk

A=moO N=ay

so that
0‘0 ad %.do b

—



&

5 3. The Function O(t) . e shall have occasion to

refer to a function related to the function Y(+), and its
definition depends on an elementary lemma which we now
oproceed to prove.
LEMMA 28. The Integral
WY
TW = L PR d.,

exists for every positive value of £ .

Let
%

T, = f ‘_P.il‘)du, t 70,

t

and let m. and N be integers such that

M <t <ma)TT , NW £ X < (Ne)TW,

Then - N O wew)
V(W b
I,u;)=f “-’-‘f’dm\\z J Td‘*'"f o e
+ P=may P N

DAY NN T YlurwN) s

W wwytMda + O

=J ‘E)d“'*'z fo UAPTY -(N))
t PVamar

since I'WW\is integrable over any finite range. Now W(u)

is odd and periodic so that, as X0,
) ¢
T, W > f"m‘ YU + [ W) Xtwda,
t w °

where 0o 0
X(w = X&) Us YW
YVzmi-t
The function X(u) is continuous Tor 64u&W since the

series 1s uniformly convergent in this range. The result



therefore follows,

whent70 the function O(£) is defined by the relation

(523) QW) = %f,‘ YWy,

)

LEMIA 29. The) Punction O) is intecrable in the sense

of Lebesgue over any range (0,8) where o is finite and

‘vositive, In fact

(5-32) fae(.t:)o\i: = albl) + %—f&lv({:)dj;,

It is clear, from Lemma 28 and the fact that W(w) is

integrable over any finite range, that the two integrals
o w © o
Yw - YW
I\-.:J‘ Td‘u-{;dj: s Iz—L —-a-d-u-‘J;di-'
existe.
Now co
—of YWy - | ar [ ¥,
O (-]
and by Lemma 11,
T fo-dkfa' Y
—y - o t w .

Hence
a

TeL, = [t {f” f@"‘“’ o = § [ owd,

so that (5.82) follows.

& 4. some Functions related toO(E), P(£) =na¥W(t). e

(65

define the functions @ (&) , Py (£) by means of the relations

Hardy, 15.
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t ol~\
d,b = F‘z;)jo@:-u) P(wdum , « 20,
(€4 P = P,

Qr) = Pt T o), 50,

and the functions Wa(k) ,Ya(¥), O, ), Oul&)  are
defined similarly. The function §d({-,) is called the
Riemann-Liouville integral of order for the function P(t),
It should be observed that @ (+)is a kind of average of the
function @(t).

We now prove some important results concerning these
functions.

D]
LEMMA 30. If P 770 we have

. -
Erd) B = sy [ -0 Toodu

A similar resukt holds for the functions ® and U .

We have

t “
! t o1 \ P-d~1 of~1 .
opd) Lu:-u) T, dun = 7 " l\t-u) d.u.j; w@-y)  Pv)dv

*

\ p-d- o~

= j%(‘()d\ljfd;-u) (w-v) du,
v r(p-) % N 2

the inversion of the order of integration being justified

by Lemma 1ll. Tet w= V*lk-¥)x, Then

P Bosanquet, 3.
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T'(P)f - @(0dv

From this lemma it follows at once that, if £ %),
t
)= [ T, Wdu,
so that §¢“=) is an integral for £ %0 and, for almost
2ll positive values of t
'
g, =8  w.

Another Lemma of the same type is the following.
LEMIA 31. If') PrL20, L(t) is of bounded variation in

(0,0) , where 0v0, and Qg(+o)=o , then
t -V B-d-t

- V- A, W

EwD T = P(P-d)fo owfo v-w) T,

1in{0,0) . A similar relation holds for the function ¥ .

By Lemmas 30 and 14 we have

A t P-d~r
B0 = fp [ - P wda

w=t
= "(#-d) l'-“ -of Q(“)]u_,o

) +
p-dk
+ P(P+\_d) 'lo t&- u‘) d’ §d(u)

)
) Bosanquet, 4.



} ! t p-
_— - - d P, (u)
P (o) UH)], Ol

| £ £ B
ol L AT L™ e

! ) + N p~d-\
= r(p-d) jo ok ‘Io w9 A g,

the inversion of the order of integration being justified

"

N

by Lemma 17.
in immediate corollary from this lemma is the follow-
ing:

)
L&A 32, If Pr>0, M{:‘) is of bounded variation in (0,0),

where Q.Y 0, and Q(%Q: O then Ip(b) is an integral

in (0,6) and, for almost all values of + inlo,0) |

' + B~d-
Eaw) T w = T,'(N)jo k-0 AT,

A similar relation holds for the function P .

It should be ébserved that, when f7o71, the relation

(5.HK) reduces to (5:32) withp-i forp and of-1 for .

LEMMA 33. Ifﬂd}o,é7o we have

(S48 Y, &) = FTE) { Oy, (4) - O l4) ],
We have, from (5.832) ) for tzo,
) = $T{ O, -t BB}

whence, by (5.A2),

Y Bosanquet, 4.
3 ¢f. Bosanquet and Lyslop,

)
e
—



t ol~1
A _ Y () dun
"{)0“‘({:) = l"(d)]o (£-u) X

t ol-1
n t o=\ . w(t- Q, (W) due
LI _ QO (w)du ~ (t-vw) o
= 2t(d) l (t-uw 2P(,o()’[o

t o wt f -
W - — | -v) @udnu
- T 6,0+ gy [ #9800~ 5 9 B

Thus A
hy) P, ) = TiW00, w-tem}
and

Wy (8) = Tld+2) & T { ) Q,,, ) -t B0}

= ‘-E(.d‘\-‘) { ed+\(£) - Sd(k)}-

)
LEMMA 34. 1f oly0, £r0 we have

w
Prom (5 #5) and (5 ht6) we see that, ford 70 and € 7o

the functions Q) and @.(+) are integrals. Thus, by
differentiating (5.46) we obtain, ford» 0 and almost

e Guw = [ Tl g,

all positive values of €&

1

V)= T {0 Q- 0,0 -t 0, ®)]

|)C'f’. Bosanquet and Hyslop, 8.



(0

1
v
- T Q) -t ®, W}
whence, forod 70 and almost all positive values ot & ,

‘E.}Qi) - "_2\: C(d410) {a(—l:‘dd o, ) - £ ®°“(Q.}
t

=-T %k{ Clds) 7% O}

= -T o, &),
It follows that _
2 (% Pulw -
2[ ¥ - ) -0,

As X9, O(X) > o from its definition. Hence, from (5. 42),

84 » O , and the result follows.

LEMMA 35. If.)_‘&(t)is of bounded variation in an interval

(0,0), where 0070 , then Pp(+) is of bounded variation

fn(o,0) wthe following cases:- (i) BYRXZ 1, (ii) P=d+), X0,
(1ii) P?d = O .

case (i), Brd1., In this case %(b) and Ppt) are
integrals fortvo . Hence, by(s:h2)we have, for almost

all positive values of € ,

) .This lemma has been proved for P?A»0 by Bosanquet, 5.
In his proof he uses the function (&) ford<o , and the
definition of this function seems open to criticicm. In

any event the three cases enunciated above are sufficient
fTor our nrecert Mrnrnan



9, ) = Fped G 1EF B0
=rps {7 iép,‘u:) - pt“P"QP(&)j

C(p+) B-ct-1
= — t-w 'b§ (w) du
P (P {j& )

..[aj @:-u_) i ddjd(u)duj

E_(_E:_‘z-——- - ‘b-u. \0.6,'@9@
tP*‘P(Pa){j@u) Q““’d‘”ﬂ J S

- o™ Bada

Integrating the first integral by parts and observing

that Luo)-o , we obtain

-\ ' t  Pal-
Q)= o _j o wBeodu ot Bodul

{;P*‘ t(B-o)
_ LY + ¢ {j‘eud“&-u.)pd-‘q’étu)duj
© (o) TR -o) A :

Thus,

T R LT AT
fl%uc)\du\. éruu)r(p«) j R ) l%( N due

) o O A 3~
o TP J u"‘*‘l‘dm)\duj £Mew ok
P4y T(P-) “
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= [ 1%/ du <o,

Case (ii), B=od+!l, K70 s Since @, () is an integral

for €0 we have, for almost all positive values of ﬁ,
' —d~ ~d~ .
L @) = Pl42) {7 B (1) D) E£2E, #) ]

“ ¢
=) £ Q) —@r) [ W R (W}

u:‘t _t \
- @y TR QW - [ m] + j° AW §

w0

+
_ (0(4-\) 'l:-dng U-de-(Pd(u).
Hence,
j o]d(P )} < (ol+9) _/ &-l;“d“zdi f tu.““ 1A, Cu\
° ofA\ ~ A A o«
oL oo
ced [ 1AW [ £k

©

Case (1ii); Brd(=0 :

We have



Pelt) = Ppr tF Bp®)
= ptf ffL’c P ey

= P L‘(\—V)F-‘(P(Vf)dv.

since P@) is of bounded variation in(0,0) it can be

* xx *
expressed in the form P W) - "(¥), where CP’G.:) and ©F ¥ (&)
are positive, bgunded, monotonic inereasing functions.

Hence we may write
*w) -9 Fw
q’p“:) = (PP ) - 3 »
where

g &)= P [ ‘o P by,
g wr= £ 10" ¢ v
o

€learly the‘ functions <P:U:) and ‘P:*(l:) are positive, bounded,
monotonic increasing functions, The results therefore
follows,

It should be noted that the proof of Case (i) of this
lemma when translated directly to the functionBis valia
for Bvd70. This follows since Oy(t) is an integral for
t70 2nd d 70 whereas @, (+) and Yy (+) are xmowm to

be integrals only when €30 and o %V .
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)

LEMMA 36. Ifd7»0 , necescary and sufficient conditions

that Oy(&) should be of bounded variation in an interval

(0,Q) , where avo , are that Wun(4) and Oalt) should be

of bounded variation in (0,0.) for some M (2d) .

The conditions are necescary for, if Qy(+) is of
bounded variation in an interval (0,a), so also are Onl&)
anded“(g) , by Lemma 35. From Lemma 33 it at once
follows that ¥, (+)is of bounded variation in (0,0),

The conditions are sufficient for, if A=o4msf,
where O¢P4«l and ™u is a positive integer, the function
Ousmsr k) is of bounded varistion in (0,0) .  Also by
Lemma 35 the function Wy,,...(£) is of bounded variation in

(0,0) . Hence, by Lemma 33, the function Oy, (t)is of
bounded variation in (o,a). Repeating this argument we see
in turn thatql+m_$t),~-~,§(t)are each of bounded variation in

(o,0) ,

We now prove a lemma similar in type to Lemrria 35.
LEMMA 37. Ifz) Br70 ¥ (t)is of bounded variation in (0,Q)
where A%20, Q!(+o)= O and

&4 T fau:“ AP (W) <A, :

then ~
v [P 1dP ) <A,
)

Bosanquet and Hyslop, 8.
Y or, Bosanqguet, 4. -
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Prom Lemmas 31, 32 and 15, we have

re) TP 1a8,0) = T [ WP P wlda

c(p) >_p > Py
= o) 4o MUQL“‘Y) +8,0]

o o)
< ﬂf}«j\di(v)\j lfp(uw)p-d-‘du.
T(B-o«) % v

= T [v*ia P, <A,

1
LEMIA 38. If 70,070 necessary and sufficient conditions

that Wa(&) be of bounded variation in (0,0 ,

(Baa) [T 14 Dol <0,

and Py(40) =0 ore that W) and Oa(4) should be of

bounded variation in (0,0) for some A(zd) .

Ifd =\l+Yy = where § 70, then ﬂ“‘uo):o since @H_a(k)
is an integral for t%0O and P“‘(o)eo . Also the left

hand side of (5 4Q) becomes

O-

& v = L -1 L PN
fo T E Ol = fo j: o IRl = S L vegttdu

Thus, whem@ o | , the lemmua reduces simply to Lemma 36.

) Bosanquet and Hyslop, 8.



wWe shall therefore suppose that OLo4L i
The conditions are necessary, for, if §’¢(+o)=o and

(5 #9) holds, it follows from Lemna 37 that

o.
JTe g, @1 <o,
(-]
that is,

jo" \Wd(u)\du < 00
° w .

In other words Ox(£), and therefore Op(t), is of bounded

variation in (0,0) . Again, by Lemma 16,
o o _d Wy (u)
jo MW & Pl [u WP W o _[ Rl g,

so that Y (+) is of bounded variation in (O,0)

The conditions are sufficient, for if, W, (+) and O\()
are of bounded variation in(0,0), it follows, as in the

proof of Lemma 36, that Gy(&) is of bounded variation in
(0,0); that is,

jo“’ (%lu)\d‘u_ <00,
°

W

Thus, by Lemmas 15 and 16,
' N o
) [t ia g ¢ [Ta¥ el 4o [ Rl
° 4 °

W

< 00.
Finally, since¥(4) is of bounded veriation in (0,@), Wy(+0)
is finite. Hence WPy(+0)=oO.

5. 5. The Functions ¥Wlt) and EL({:) s e now consider

in some detail the particular cases of the function P (E)

when Q(¥) is coet and whenPl)iz sin€e., The functions



(L"!

— ,)
e (d), k), G end Yu(b) ore defined

relations)

by means of the

= t o~V
Cub) +i Oy (&) = r‘,J(:)_L t-w) e du, <70,

- Lt
(5.51) Po(b) + & Tolk) = e,

Yalt) v LT, 8) = CEOE*{Tal)et LW, o«zo.

It should be noted that ‘4({:),.&({:) do not quite correspond
to Py(£) when®(4) 1s cost or sint, since U(d+1) which appears
on the right hand side of (541, has been replaced by INCO R

It is clear from these definitions that

— ) i
Ju(£)+ LPa (&) = fL\-\*)d et au , Lo,
(5.52) o

_ e , d:O)

and that, for d 2?0, yu(0)=d™', Tyl(o)=o0.

We now obtain some important results concerning

these functions.

2)
LEMVA 39. If 20,470 we have

3!
653 Yarrlt) = Yalt) = ~¥q (£),

-{d«n({:) ".8:1 W) = Kd.’ (¢).

It is only necessary to vprove the second of these

V) .
2 These functions were first considered by Young, 36.
Bosenquet and Hyslop, C.
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since the proof of the fwet is sirilar.

We have

] o~
Kd'm - - fcq_u.)

\

w S, tu da
\ o , ‘ o-v
- j Q.—u.) s tu du -Ju-u-) S\»\,‘Lud.us
o ©

= Ydu +) - —i& (&) p]

which is the required result.

1EgA 40. 12 £%0 we have

- \xfg@\ < A i:)-\,
(558

\Y:k)@')‘ « AT,

wheeR KN is a positive integer or zero, d 70and
N = Mins (4, ha2) 5, p = Mins (o, k),
It should be noted in the first place that all the
derivatives of Yu(+) and Y, (t) are bounded for o %O and

finite values of £t w0 . Ve need only prove therefore

that, for large values of ¢,

VW 2at™ LY <Attt

The proof is divided into several parts.

case (i) o=0,hzo0. In this case the result is obvious.

) .
.) The proof of this lemma has been constructed from the
proofs of a particular case; seec Hobson, 20, 565,



4

Case (ii); 0«d<lhzQ  We have

— . ! of~ ot
X:k)@ L nm@:) = kao(‘-“) "ut e T du

. LI R (+0-uw)
= ij W -w T e du

—

~tta

o v ' - .
C Pt [t e
=0 °

h v Wt , -V-d4 t d4V-r LV
=L‘-Z(—\)(‘$)Qt£ \lv e av
Y =0
L) t, ~d
™ Ne (Be tTTW),

PY=0

where

vt dev-r Sy
T =t v < d

v g ‘L' d.g.\)-\-i\ld.
= & {jo fJ!{_t\l e dv

- I.(‘E) A IQ(.‘{:))

say. Now clearly
\T, (D < A,
and by Lemma 10,
IT.00 = | f:vd"éwdv\ S e
where 3 £31¢S§ <t . It follows th:jt

\T Wl <A,



so that Case (ii) is proved.

Case (iii);l14d42,h=0. e have

Yy (&) = jo (\—u)f(“m{:udxk
d-\'“=‘ -1 ! -2
= [Flsite 0] +EOE [ svidbuda

= ““) {:ﬂ .id-\ “":))

so that
N ¢ AT EY < pt?

Case (iv); d 22, h=0. We have, on integration by parts,

u=\

Yult) = [ £ simtu 0] -e-p [ £lemtu 0-w**]

u=0 U= 0

—d-de-t* j 'q-gd'amtudu.,
whence °
el < A473,
Similarly it may be shown that, if of 21,
1)) ¢ A,

Case (v);d»Y, h70. Prom Lemma 30 we have

W = P S nw)

= P [ €W 1700, W}
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= -7 {d L8 - 0 0}

GV
and, by repeated differentiation, it is clear that Yy &)

is of the form
-t

ct™ Yalt) + t§°t‘ WLCrL x:t? (\& P
where € arecr_are definite constants independent of ‘6.(‘\“)
suppose that the Lemma is true for Yal&), ¥ (t),---, ¥4 &),
Then - et
e OV < AL At ™) 4:"‘"’&“‘:'9213:"""4;"‘"'
p=o =

< At e at 2

The resultg of Case (v) for X&k)ﬂ;) now follows by induction
and it is clear that a similar proof holds also for —X-d“‘)@:).
Combining Cases (i), (ii) and (v), we see that the

lemma is completely established.

LEMMA 41, Ifd2t then\lal®lis integrable over (O, o0) ,

and Yul®), Yalb) are of bounded variation over (0,o).

By Lemma 40,
Wal < AC ™ + AGSE2,
L () < A(1+EY %+ A(E)73,
1Tq (1 2 A O+ & AL

from which the results follow at once.,
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h) -
LAITA 42. If o<d4l, OKE< 1, and

-t

55 YO = [ -0 lsituda,

- — ol
then, for all values of £ 7o , | ¥ult) - Y, W <AL,

and, for €7 &' ,

1T @ - Yq,e @ At
We have, for t7oO,
A \

1% @) - Tae ) ¢ [ -0 A 2 ALY,

-g
while, if t2¢™' , we have by Lemma 10,

- ~ ! oA~y
R B S L I R O T e

-4
- .
£ ‘!:‘—d Mon \Jémtud.u.\ + J Q-\Qd"du-
+'<g <t 1-% S S

< AL

2
LEMMA 43. If {21, we have

o0 -
(5.60) fo W) ewxkbdt = :g(\-x)“ ‘, o<x4&t,
= O > X7,

and

w~ ol-y
D)) j T (O siuxkdt = TO-x), oaxgl,
©

- O , Xz,
On integration by parts we obtain

M Bosanauet and Hyslop, 8,

2 Hobson, 20, 566. *



0 U=1 - 1 oln
Xd(‘t) = ['e-‘ Sm‘.‘-u. (l—-tk)d _] + (d-‘)t _/U-u-) 2'Sw\.’kl‘l.d_u.

=0 ]

f

@-0¢™ [ " svmbudus,

Hence
o (] ol-2 Co Mé t
}oxd_(k)c;o'x.‘kdt =(o(-.\)‘£0-u.) d“i S :mn “J

the inversion of the order of integration being justified

by Lemma 12. Now
oo e ©
j Sm-buuox‘hdt - _Lf Sm(uF’C)tcu: +_,_] Svm(u-x)’l:ou:
L T+ T T LT e O

which is equal to 4T if x<w and zero if x»w. Thus
= «-0W ' o-2
j Xd({’) &Dddk = -2. ‘/\Q-\k) Py x&‘,
(<]
P

= O > Xz,

Relation (846) therefore follows.

To provel(s§S5Y)we have

—\u=‘ -1 ! o~
Yl = [_—‘t-'mtu. (\-uj‘ J_ -t (o(-\)l -w 2uo£udu.,

whernce
) o ™ ' ol~2
j.. Tulb) simxt ok =£ S:’&d’: ““‘")foszttd*/oa'@ swotudu

Vg2 gtk eot
- st et
= —= -o(-\) (PTY du,f —_——— d};
7 ~EeD 0 duf S
and the results follow as in the case of(&.5¢).

8. 6. Excerpts from the Proofs of Subse ~uent Theorems.
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LoMMA 44, If P is positive, finite or infinite, and if
hav  hay dan P hod  (
(D) w hi2)
L(w,w,¢) = — (i: w) wt) dt
o C(k+1) TClher-o) XP ) 7
where

o< h=1d] éo((ﬁ—\<k+\,

then, for w70, W70,

| Liw,u, )] < AW W Gawwf,

We have, if urd'< P

’

| L2, f)) & L, 4Ly,

where o
hat o4
L, = w oW j h-od (ha2)
‘ T(d3) Plhpr-o) tt W XP wb dk ‘
Wt of &1 P hool (\\1-2)
* Claay) Clhar-o) & ) P ) \

Now by Lemma 40,

L A G P [

< Aw d ! (\‘\-uot.\)P

while, by Lemmas 10 and 40,

dyt  odat
w w
Lz - [

= (Ma)
Pd) Clha-o) s ‘S‘ “[ @t)dtl

Z {_\ ol d“(l-\-wu.)P



&

If weg' > P the integral need not be split up and
the argument is siupler.

LEITIA 405, If P is positive, finite or infinite, and if

ol — (W)
T

where
ot h=Jd] ¢l < <hrt, >0,

then, forwyo,oKustT,

jotw,u,l < A w?! (uuou.)‘F.
The proof of this lemma is precisely the same as
that of Lemma 44 except that we use the inequality for
u“)(l:)lnstead of the inequality for 3;(5 »2)@.

LECA 46. If .o h, B are defined as in Lemma 45 and

1 w
Elw,u,f) = r(d“)_[ Va —% O(w,v,p) dv

then, for O<u&T | w>2o,

1Ew,w,] ¢ Aw " u:‘(u-mu.)-P
Let

. w

o' (w,up) = [ ' 000, p)dlv.

Then, on integration by parts, we have

AL 1Y
E(w,u,p) = mn [ v* oCw,v, e)\lo - ~a) D (w NS
whence

IEW,u, )] < A 1DCw,u,p)| + A 10" (w,u,



x
<ﬂw w (\{-wl&) + H ‘D (w,“)P)|)
by Lemna 45. The result will follow if we show that
d-v o -
\D (0,0, < A ut (10w P,

-If o«wuw ¢t we have, from Lemma 45,

w - -1 o
\D”(\O,\ln?)\ 24 Qf \ld-' ood Id.v < Rw u.
o

Hence it remains to show that, if wud,
- of~
W0, 1l ¢ A P WP

Now

LR = (haw)
> 2w vy [ 8- e wdk
o (w,f P) T (red) j j e

| VI P _ (o h-of
DR j XF( +)L‘.,@au:j\l"“' (t-v) dy,

M ner-o)
provided that the inversion of the order of integration
is permissible. ‘Then P is finite this presents no
diffieulty, the justification following from Lemma 11.
When P is infinite the interchange will be justified

if we show that, as X oo,

= (ha
T(X) = f N ‘dvf ®-v KP * wddk o

for each fixed positive value of Yrite

T = T, () + T,(N),

where



(v

K+

IT.00\ = U v ‘*"l; - T wak |
X+
¢ j v A j G-t Pdk

< AxP j v (ke v)

= AYM™
and u\ \
£
IT00\ = j " j TR0 e b dt |
XA

4 L“va-. (x-v) " “dv Mo lj ‘Ff““) wdk |

D £>xm X4t

¢ px"r.

Thus TIX) S 0 , and the interchange is completely justified.

Returning to the expression for D’tw,f, e) .,

W W
€D P Pk gD ak
Tinay) v
‘Gef

we have

o (w,pp) =

LAY . -
_edw ”“)IZL) h-D . (o) 7,:" Do
T(way) Y=o ol

The terms all vanish at t=0 , while, for fixed positive

\

+ and large W ,
— (h.y) V-hay ‘\.

Yo (wb) = Ofct) } w3,

G (wt) = O {e)FY
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Thus, if f is finite

0* (0,8,8) = Ot F) = O (JS™"F),

while, if P is infinite,

o, P =0.

It now follows from the relation)

O* (0,5,8) =~ D™ (w,f) ~ [ v ow,v,mdy,

and Lemma 45 that, if wwy,
0w, w0 ] ¢ RSP & A [TV Py

APy AP P
T

The lemma is therefore proved.

LEITA 47. If O4o<&t, and,-

- .~ ] ofy
Guelw,d) + L G (w,t) = Z w-n) e
’ NLW-1

then, for wy),oct«wwe have

P ol -
\ Qulw, )1 ¢ Aw“(nmé)" R 16, (w0,8)) < Ag“é (1rwt) ',

~d- - \ ~of
12, Glot)] ¢ RS (rwti™, 125 e8] ¢ RSET (hot)
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The proof of each of these relations is similar. e

shall therefore prove one of them, say the third. If

o<wti we have
[ %«t (;.4(“’)&)‘ = \ 2\ LQ-W) h&mvd:‘
. hcw-\

AV DR (w-n)"

NLW-

£ ijz (,w-x)d“dm < Rc.oeuq‘&,

while, if wt ),

d“ A~ .
w) nswnk ‘+ \ 2 @-v) nswnk 1
w-t <naw-r

‘bt(-‘ (“’“\ £ ‘ Z (o-

new-t

wt' ™ Mox | Zsmd:\ ;uaf L‘**")d 'de

NN naN w-£~

4 Awt™

The result then follows.
If 0Ld<¢ P&l and
|

ju: -u) {Z,Lw'\) C—Lte kg,

LEMITA 48.
T(woywW) v+ L T (w,u) = (‘ 7

then, for O U(T, WP , -p
-3 -\
1T (W, W)\ + 1T (w,u)) 4 AW (rwu) PFrAlw]l  (w- l“’])
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1f N= 1wl we have

Flo = 2 [T { B - neand job

r(-o) o

L\)‘F-‘ il -d 3 T
t"(\-d).J G-y Selwt)db

l"(\ jL{:-u) (w-N)P NeoWNt dt

=3, +3,,

saye ow, by Lemmas 10 and 47, we have

urw?

g
\"(\ o) {j - ‘*) | %:.Z;P(“)J*‘)\dt * \j@:“*) ;thip(w,{:)d:!: ‘}

!Lk\&)

£ Abrwu) Pj (& -w) "k +Rm‘°"m°m \f —tSF(w,a)dil

RS 3 X419

\?\\ <

< Aw“"(umu)‘ﬁ + F\wdu (\+wu)"3"'

< Aw™ (1»wu) P

tlso, by Lemma 10,
usnN?

-— ~B-1
1T ¢ O - leontidk

r(-o)

y Wk N(w-N)F ‘f@‘~-) emm:d:bl

r(‘ d) u&N-‘

3
< AN ~’Muo N)'3 -\.RN Y- N)‘5 Morx \f wN!;d-l:\
urlNT <8¢0 waw™



< AN @ F 7 (0P

oAd-p-y 4z P
(ALw] T (w-lw))
Similar results hold also for T(w_,u). The lemma is

therefore established.

LELLA 49. If 0<d<¢B <), and

— YLy F
K(w,w = F'&‘;_o.[ x :a—xT(w’x)dm7

then, for O¢u4&TY, WY1,

d-p-1
Riw,w| ¢ A *' & (nuou)‘P + Alw]
\

We have, on integration by parts,

(w-1w) )F-‘.

- . RN=w w o~

K(w,u) = \"‘(_d:\) [‘x."‘ T(m,x)lho— ‘1(“)]‘, > ' T(w,'x)dm
T N ?(w,u) - T(‘*(w,u.)
= r(da) (o) )

and the lemma will be proved if we show that

‘k- x (w,1) \ = \ _];u'x“" T (w,x) dm.‘
o-@~1 _
< AS™ & (hwuw) P plw] f (w-[u)])P ‘

If o<cww £ | we have, from Lemma 48,

(8!

| R* (w, u) \ Z A j ‘*‘Xd-. wd~\ dm + R[u)]d-P-‘(w- [wJ)P“ “fo xd‘.‘dn(



(%2

¢ A e + ALw) T (et P

A]_ S0
of-1 w B
x dac *(1-ol)

ftéx) { Aw-n neant Yot

niw

B-1 v
- — { XL(D v\) n&nv\tjdtj dq‘-{: 7—) dm
~d) Yo T wmew
the inversion o: the order of integration being justified
by Lemma 11. Thus

-3~ ™ p-\
K¥wm™ = w \r(a)j" {_Ew@—n) newnt § ok

=0 .
~Hence

w d~\ ==
R‘* (w,n) = —j x T(m,x)dac,
(V%)
and, ifww\ we have, by Lemma 48,

- ap SR g
IR (w,w)| < A j“x“"‘Fu) P & F\f‘x“ [w]  (w-1]) de

ol-P-~1 _
¢ AP A Tel - te) P

The result now follows at oncee.




CHAPTER 6.

The Absolute Summability of Fourier Series.
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6.1l. General Remarks. We are now in a position to

diécuss the absolute summability'oof a Fourier series.
Theorems 16 and 17 below were proved by Bosanguet by
the use of Césgro means. Throughout we shall employ
Rieszian means, and it will appear that, while the proof
of Theorem 16 is not any improvement on Bosanquet's
proof, that of Theorem 17 is slightly simpler. We first
state two classical theorems on Fourier series which we
require in the proofs of the theorems.

b.2. Two Classical Results.

2
LEMMITA 50. If)the function f£(x) has periodzirand is

irtegrable in the sense of Lebesgue over(o,2w), and if

g(x) is of bounded variation and 1@(x) is integrable

over(o,©) , then we may evaluatey

L7200 ) de

by substituting for-@tx)its Fourier Series and integrating

term by term.

The same result is true for a finite range of integs

ration@,@)if4(x) is of bounded variation in(d,f).

LEMMA 51, Ifnﬁtx)is periodic and integrable in the sense

of Lebesgue over(0,2%) thendw. and A~ areolr) . If f(x)

is, in addition, of bounded variation in(o,2w) we have

) The question of the ordinary Ces;ro summability of a
Fourier series and its Allied series has been exhaustively
studied by many writers. For references, see Bosanquet and
Hyslop 8. % Hobson 20, 582-584. % Hobson, 20, 514-516.

&



(85

dn.= Q(J\:-), Pw" Q(.J\;..).

6. 3. Deduction from Function to Series.

D}
THEORZN 16. If Pul&) is of bounded variation in (0,77),

then the Fourier Series of @), at the point £=2%, is

summable &, where B2 7 Q.

By Theorcem 1 there will be no loss in generality if

we suppose that
0 h=1d] $ <B<hs.

We divide the proof into two parts.

Case (i); B>« 2. By Lemmas 50, 43 and 41, we have

j V0o (ot QOO = ZQ» j U”F(w{:)wrd:cu:
j Fip (0B QLOIAE = Sran j Fiup (08) conpet A

- t‘_°, .o 1
=
T N a. (- 5)F
p<u3

Thus
oo
Cplw) = 'f}‘ff Fiap (ot) Q)AL

and, from Lemmas 22 and 39, it follows that, for w>o,

) Bosanquet, 6 & 7.
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8

{ ¥ (wb) - ¥y (0} L) ol

00

Tp (b Plr)dL.

OR* OL-ﬁ

Denote this integral by T{w) and let

™

—

e
T,(w) = L Vp (wt) Ple)dt,

If = Min(p,2)and w21 e have, by Lemma 40,

oo L2s+ )W

Tatont < AN [ v hieendt

S=1 @Qs)W

¢ Aw? X {lasomy f’j | PNdE,

S=\
gince P(¥) has period 2W . It follows that

\ Tt < AwF

and)sincef >,
f‘oolIalw)ldw < 00,

We must now show that the same is true of L,(w).

Integrate L,(w) by parts h times. We then obtain

I.(o)-.:[Z(\) w ‘§m( ({:)]

Y=
=0



(5™

=T, )+ T, W,
say. Uow ®,(0)=0endF,W)is finite so that, by Lemma 40,
T, ) = O(u™F) + 0™,
It follows that

j | T, Wldw ¢oo.

'
By Lemrma 30, we have

J !P(\w\‘) t)_/@ u)k.aQ Lu)du

L,
_ f‘( hat~o)

=/ "8, W Ow,u,m,

by Lemma 45, the change in the order of integration

being justified by Lemna 1l. Integration by parts gives

W=« I
Il,z@ = [ E (w) “(.W,\l;“')] - f—’%‘—*\) ¢d(‘0 D(w,u,T) dus
W= o ©

W=

= - [E(w,u,‘“‘)@d(u) -\-j E(w,u,Tr) ‘Pd(“)d-&
wpo
Since §(w) is of bounded variation inlo,w), the limitQe)is

finite. Also E(w,0,W)50, Hence, by Lemma 46,

T, = O(w*'"F) +f'KE(‘°:‘*fW) cP,(' (w)du,

and,

j \T,,.W\duwo ¢ Afw “-fdw*_ Af‘q"@\du-{f o “"dw&-ff“’&"‘ﬁwj

<A+ F\l 1P, (W)dun <00,
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The first case of the theorem is therefore proved.

Case (ii);0%ol<l . The formula for Cg(w) which formed

the basis of the previous proof wae only valid for [l

Hence we require a sevarate exemination for this case.

e hbve
-}{WB () ._fcpu:){ Z\Lw-w) hm“ﬂd*

Nn<w
Since P4 (£) is of bounded variation in (0,%) the limit
P(+r0) is finite and therefore £(+o)=0. It follows,')
by Lemmas 22 and 32, that, when « is not a positive

integer,

srep = 202 [ RS heonkji -5 8

F(\-d)]dl‘(“)f@‘) { X@ '\) nmd:}&;l;

the interchange in the order of integration being just-.
ified by Lemma 17. Hence, when W is not a positive

integer.

1rp CP(“))— f T(m,u)d.g‘(u.)

- 8w f(m,u)j , f R D Fu)da
ugo O

T(d4y) Y
- -[K(w,u) %(u)_]““ +f° K(w,w)d P (w)
= - R(u),"\t) Pu(r) + f:‘- K (w,u) d@y(u),

) This transformation is umnecessary when «=0O.



Now, by Lemme 49,
w _ o cou«-'sw-l—rd“)
f‘ | K(w,uldw < Rj‘ ww  dw +R[:‘
® nH¥ .. -3
A ) TP e
=y

= Q),

uniformly forocwu&W, It at once follows that

0 §\y
Jlcdtondw <A+ A 1dQ O <.
] . o

The proof of the theorem is therefare completed.

The most interesting case of the theorem occurs
when =0 and, althouzh the proof in this case is included
in that of €ase (ii) above, it is perhaps advisable to

treat it sepnarately.

We have, if N= [w] and o<p<y,

L7 8, (W) = _{ o) {Em&w—w) B newnk jolk

= [TL 2 @ em nt}aow)

new
v _ Ly B-*
= = [ Talomdow - J w-n) swNtd QW)

whencé, by Lemma 47,

XY a0 Bt -
I‘Q\C‘;(w)\dm ¢ Afﬁd‘?(’c)\“fw" "t d +j;."°F €Fdu
+°i j\z:o-tgp.‘u;P“Skhl:du)}




G. 4. Deduction from Series to ™unction. e now

consider the converse problem.,

)
THIOREL 17, If ~ the Fourier series of the function -PH:),

at_the point€=%, is summable 1C,d|, then Pg(t) is of

bounded veriation in (0,00) where B-1Yo« % O.

Since the PFourier series of P(£) is

.i Queew nk ,

-t V=0
and since(- UL{ for P71, of bounded variation in (0,1),

we have, by Lemma 50 and the definitions of Palt)and ¥plt),

£ 0 = [-wP ! Pt du
= }} Q...jL W) P~ eoo miar dun
n=o0

2 Qn xp(w‘t)

n“=0

The series obtained by formally differentiating the

right hand side is

2k b Y ()

A=t
This series is uniformly convergent fortztyofor, if p<3,

we have, by Lemma 40 and Theorem 2,

Z‘bw\\xptwh)\ <Aef Z nwPlaan 2 AZ Ww¥la.) < oo,

Axt =t

D)

Bosanquet, 6, 7.
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while, 173 we have, by Lemmas 40 and 51,
o) o0
2 lbn\\‘(,;(mt)\ CAEE AW <o,
N=? Nn=1
It follows that, for + 70,

(o) B Qate) = X bu Yp (k)

N
= Qn )iba Y (k)

N = nN=\

N- '
= G X Bu] T (n0) - Tp lnsdti]

N n=\

+ B BuYp(NE),

N =00
Now, if p<3, t#&7o,
Yp (N8) = O (NP),
and by Theorem 2, .
- 14d
Bl ¢ Simiamt € N AT Ml = O(NMY),
=y n=\

while, if p%3,twut7o,
1Bl p vl = QN O(N) = O (NT),

by Lemmas 40 and 51. Thus, sincepyd+ , we have, forfvo)

B P (4) = X B Yo (nk) = Yo Lnentl]

=t B [ ¥p telou
N=1

. O "
- _{:‘L B(u) ¥ (uk)obus..



Qz

By Lemma 35 there is no loss in generality in supvosing
that
h=la] €L <B-1 < har,
We shall also suppose in this proof thatd 0. The
interesting cased=0 will be considered separately.

Integrating by parts k. times we have, for '670)

P.q (Pl;(t) = [ 2 \) B8, ('*)‘E (vu) ui)]u—hao
k&\

L“‘)k r( *)J‘ Bk( )xp‘“z)@&)d‘“'-

The integrated terms vanish when w=o0 and, as uaaOJ we

have by Lemma 51,

9‘\'?» )
)

1 By (W =) PN L*w») naw| =

L XN N
and, by Lemmas 22 and 19,
u&&\)

\Bk(u)\ =
while, by Lemma 40,

W) = QWY v ke,

Q(\fp) » Y= k-l, k'
It therefore follows that
h;\ hat

P(h D]
whence, by Lemma 18,

j’ Bk( ) (\nz)(wk) du.

ey N e @.v)“‘“ B, (Vv
P L
0 (2) C(hav-a) %



Jo "I'p LCHHUAL A H“eolunl l'}o "‘ICPU\tJIUUL ?J'\_"'\ UF\“&uuu_J

co n! 2o -p,-p
<HZ|QN\{‘L v\d);+f'€‘w 4 d:l:})

A\x©O

X2 I WP RY co 0 h- .
- et f B, ()dv / w-v) d\";hm)(u}.)clu
Po) Tlhn-d) Jo v

o
= _) dv B, (V) L(£,v,0)dv,

the inversion of the order of integration being justified
by Lemmas 11 and 22,

Tt now nllawa hy T.omma AA +h At

© o ’ o “

j ‘(Ppl(‘k)\(‘u: 4 A] \%C‘(v)\dv{jiav«u” +j'bd P! Pdi:}
(-] o o v-‘

Jo LS R 'J‘, I B R L B iy -

v-! —d
£ 0O,

The theorem is therefore proved when o YO . The
case =0 deserves special consideration and we therefore

zive a separate proof. From (b.k1) we have

[igiende <n e {4 g ooidt + Mg oldt |

n=0

oo . X g,
<A D 16w ifo“v\d:l: +f“~‘wp-£ Fd):})

by Lemma 40. Thus

L19 nak <A Jlan <oo.

N=z0O

b.5. A General Statement of the Preceding Results.,

We may summarise the results of these two theorems as follows.,

THEOREM 18. A necessary and sufficient condition that

the Fourier series of £(&) be summable \C,R), at the point
t=Xx, for some R is

that the function Palt) be of




@an

bounded variation in (O,) for some \ .

6.6, A Particular Case of the Preceding Theorems., we

now show that Theorems 16 and 17 are 'best possible' when
ol=0 1in the sense that they are not necessarily true for
®=0.

v
THEOREN 19. There exists a function of bounded variation

in(o, ) whose Fourier series is not absolutely convergent

at the point £=0 .

Consider the even function,
Q) = -'i-‘_’W Sqve (4w- H:,\) )
where ~W< 4T, Clearly Q(4) is of bounded variafion in

(0,‘\'\‘) and if its Fourler series is

N=0
we have
2 Lo wd
Awm = —T‘-IE‘_ s%( W-1t1) & dk
T onddd - & [ eombdh
= Lsin?.
= m
Thus

N-1
QQ“_‘ = b\) An-1 ) ans o ’

so that the Fourier series of (&) at t=o0 is

o

' N~y Y
Z%\) 2An-~t\
n=t

’

D)

Bosanquet, 6.



and this series is not absolutely convergent.
To obtain a similar result for Theorem 17 we require
two elementary lemnas.

IELA 52, If A7bvo, then

. ) b
Uo.bl) ‘ f:‘sma’t‘t&m.bt dtl < (r_‘i) .

Denote the left hand side of (b.bY) by X. Then

o
T = ‘_‘,2‘[0 m(&-b)k;m(&&h)‘tdt‘

I ot+bo

- 4 [

° a-b

sinxct dz:.\
oarbo

S IPNE S kel e
O~

o-b

LEMMA 53. If v is a positive integer then, as M=%,

We have
W
j.“- S\x‘m’l'-& =j s\;\"’l‘.di
o t A +
[ ety
= z ! +
Pz1 W)W

@s



@c

™ - 4 Ly Ty,
st .2
- [ = db + [ {,’Z,,m,c}cu:
() ° =
Now -
-\
~! \ __j da N
£ 491X ,  E+xTW 2
=\
where
! y
4. ¢ L
0< N\ <& Lo w2
and K==t
"‘"_d._nc___. = Qo%({:+x‘!\')
—!:&-‘X.‘W =\

uniformly for ost & . Hence

Ay ' ™
[ g [sitb o = St

D
THEOREM 20. There exists a function PlE) whose Pourier

series is agbsolutely convergent for 'L-zg , but which

is such that @ (£) is not of bounded variation in(o,m).

Let 0o

Q) = X Am e Nt

M=o
where the series X\dm\ is convergent and Mo is an

inecreasing seqtience of positive integers satisfying

the relations

) A brief sketch of this proof was given by Bosanquet, 6.
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LG.GZ) )\mn 7(“"9)\m_, 970,

(L-b2) Lme eﬂ\m =» 0.
a e
For example, we may take dm=m, A\p=2 . In these

circumstances the Fourier series of §(&)at any point in
(-W,W) is absolutely convergent.

How
o

t ol m.
Q‘Uz) = {;-‘j P(wW)du = 2 \M»\‘t Swlmt ) o<t <,

and, if Q,(&) is defined in(~T,0) so as to be an odd
function, the Fourier series of @;(£) is) b,swilwhere

b = 2 j Tevwt 20;‘—":- S hnk

- A mt

j‘—“—Sw;. ?\’b Sw\\w\.‘t di:
t ’

i
10
D8

m=0

The change in the order of integration and summation will
be justified if we show that, for each fixed value of N,

R i Lom. f&Smn‘btamlmfdi =0,

R o) m=0 lw
Choose & such that 042nwt<W_ Then

\ Z eS\'N\V\.'l: sév\\-.d:d};‘ < i ‘i"“ J n |sw\nt ldt
M=0 't m=0 w
< y\gz \d"“ £ Ar\z

Hence the intercharize is justified.



Returning to the expression for B.\, we have

3 A w t
\)\“’: :.\' Z \m Sw\.\ ism\m ok
m=0
2t
2 dn S MTdEl + B+ E
= T \.»j t TR R,
where
E‘z T \w t
Manrt ,
n-t Al
2 T % swilnt swhet g
E.= T« N | + ’
m=9Q

From Lemia 52 and (L.6R) we have

TR RPN =

mznt New M=
o)
— —_ <~ < <
< T W= nr Q*‘e)\"-'\‘“ R N ’
and
" \‘m\ \m
Ea ¢ £ ZEQ Yo NN

‘i \dm\
‘W\N m=0 &“- )

)

K(148) A
5 Z ldwm\ £ o

12" M\=0

It therefore follows from Lemma 53 that

by~ % 3 L3+ O3,

by(b.L3) . It follows from Lemma 51 that P,(£) is not

of bounded variagion in(O;I).

(a3



The Absolute Summability of the Allied Seriese.
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~N.1. General Remarks. In this chapter we obtain

results analogous to these of the preceding chapter for
the Allied Series. Some slight additional complications
arise in this case. Pirst we require an extension of
Lemma 50.

)
LEMAA 54, If $(x) has period 2T and is integrable in

thesense of Lebesgue over(e,2T) and ifq(x) is of bounded
7

variation in(o,«0) and tends to zero as x tends to infinity,

then
o0

|t geadax
[

may be evaluated by substituting for £(x) its Pourier

series and integrating term by term, provided that the

Fourier series of RB(x) has no constant term.

.2, Deduction from Function to Series.

THEOREM 21. If£?
AN
° t

then the Allied series is summable 1,81, at the point

?

+t=x, for -\ > 0.

If P20 we have, by Lemmas 54 and 43,

o0 oo o
fo Virp (08 V()AL = gé‘ar., fo pr(wt)s\m.r{;d};

Y Hobson, 20, 683.
) Bosanque¥ and Hyslop, 8.
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[o 0]

=o' L3 [ Tupersim Gt

B_
= ;_‘:; ZU'%) Qg

frewd

)

= WX ~
2w Cﬁ(w)'

Hence, by Lemnas 22 and 39, if pr\,

‘%’K P"' EP,("J) = f {YH_P (wt)—?P(wt)} W(t)&
=] xp' (wt) Wit) ot

= I‘(IO) + Iz(w),

where

’.W 1)
Tw)= | ¥p(od) Yydd,

T, (w)= j1r Yo (o) W) d.

Now, if P= Min (p3,3),
@s+ )W -p
IT.(0) ¢ A i wt)  1y@)idt

3=t @2s-0)W

0 v
<& Aw? Qlicsowi? [ 1vendt
1y

S =\
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< I-\w—P,
so that, if g7,

[+ =)
f T dup < 0o
]

By Theorem 1 there is no loss in generality in supposing

that

0¢ h=1a] §L<p-r < ha,

Integrating L,(wW) by parts hat times we obtain

Ny 9ot Wy = ) €=
T, (w) = [ 1) T W) Ye (w’c)Je
Y=\ . : =0

s DM\ m\“.\ ’[Wx;“a)(w{:) Fh“&) i
= T, (w)+ T, 5(w),
say,
Now

Ib‘ (W) = ..0_. (wh-P)

r

and theréfore
[~ o) .
f \I‘,\(w)‘w <m,
'

since

£ 2 hry,

Also, by Lemmas 30 and 11,
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Lhwn
4+ -w w
Tialw) = v(m.\ d.) 90&.[ \ ) ?a( Yol
hat  hay U v
Q) W - ha)
= (Wduw | (E-« wt Jdt
tlwarrv-o) -[ Qd '!;L ) \' )

T
| |, A
/S (S 5

the inversion of the order of integration being justified

by Lemma 11, It follows from Lemma 44 that

* g 1\ )l
J‘ |,z (0 dO € j'dw‘[ 1’%_ 1L (w,u, )| da

1" (-]
= j | Wa L) d.u.j | Llw,u, ™) duo
o w ]

t u?‘

™ T ©
, dH- of-
< Aj ‘%f:“d“{j SN S duwo + F PAAO}
()
£ 9O,
The result therefore follows.
As in Chapter 6 it is worth while to examine separetely
the theorems of this chapter when = O .

We have, from the preceding proof,
! .
1w Cp (w) = Ty(w) + T,lw),

where
20

J 1 Tatan s <o,

and
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.
T = [ Yptot) peydi,

If we suppose, as we may without loss of generality,

that \<psz, we have

= ©

© w w—-F -p
j.lI.(w)\cho sﬂjot\l’ck)idt{f'dm +L_. € d“’j |

I
<Aj ‘_\_.p_.gi)..\dt < 00,

The particular case of the theorem therefore follows.
We now prove a theorem similar in type to Theorem

21 but which implies as conclusion the summability

of the Allied series when O< B .

THEOREN 22. If 0<o<i, Palre)=0, By(4) is of bounded

variation in (0,%) and

v
[ €41 LW <o,

then the Allied series is summable IC, B, at the point

By Theorem 1, there will be no loss in genérality
if we suppose that O<A < @<,

We have

.Y
a. = ,%jo WL) sim wh ok

Bosanquet and Hyslop, 8.
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so that
J{l\'EP -—f \{)(_{:){ 2 (uo-n.) ns»m.ntjd_,{-,

new
Thus, ifw is not an irteger, we have, by Lemma 32,

j Riw-r)® " nsiant Jolb j -0 A T

r( -4) .\m

4w Cpto) =

jdfd(\k)jtl:-u) { Z@a-—v\) -\\r\smv\ksd&:;

p(\ d) new
the interchange in the order of integration being justified

by Lemmsg 17. It follows that
w
! o ~d
i p ! Cp Lw) =-.£ w J(w,wW) u d.E(&))

and

o co A of ~ol ~—
1718 o de < Ajob.nj o 1T o, % 1d Z,tw))
| P

£ A] |di7 (u)\j @ 1 T (w, )\ duo |

Yow, by Lemma 48,

[ o = O [ o} O [ 5P

'

+ O {/[w]d-r-\(w—[w])p-‘dm}
‘OL\) +OW +O ZN.F jN(w N) d‘“’j

Nt\

=00,
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uniformly for O<W<T,

The theorem now follows at once.

It will be shown later on that this theorem is
false whem o =O.

M.3. Deduction from Series to Function. Wie now

consider the converse problem.

THECREN. 23. If 9 the Allied series is summable 1€, |

at the point4t=x , then

a0
j Wf‘—f‘“dﬁ <,

o

for P2 O
Since the Fourier series ofP(t) isZ{d&s&..._,J;, and

P o
since({-w) is of bounded variation in (o,1\-g¢),0<g<), We have,

by Lemma 50,
| B8

£

t -\
0~-w) Wuw)duw

o~——

Yo, (k) = P

-€ -“
pla. U9 Swmntwdu

P Z Q. ?P'E (nt),
A=\

I1f p») the same is true with ¢=0 , and we then have

8 a8

!

a©

Palt) = B ) A Tpint).

N=h
If 6¢ P(\ , we have, by Lemma 42,

Y Bosanquet and Hyslop, 8.
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oo ' N
Lo R Q| Ypint) -Tp (181} = G [O( aaeh)

€0 n=\ n=

+O( X 1@nnF)
n=NMw
oo

= Q( Z\I 1a.\ Vc’a)

Nz NAY

The left hand side is independent of N and, by Theorem 2,

the series )\ Gl w®  is convergent. Hence, for o% o(<P<l,

na

It follows that, for p7d >0,
3 —
Yo k) = P X T Vplnd),
A=

provided that the integral for \PPU:) is interpreted in
the Cawchy sense.
By Lemma 35 there will be no 1l®ss in generality in

supposing that
0 ¢h=Ld) s <B <hsy,

For convenience we shall also suppose that >0 and
prove separately the case o =oO.
Since T\.\,-Q(v?)) where o= M (d,\) and, for every fixed
. T )
positive t ,YP(\»\.{:): On ),where T=Min(p))we have, by partial

summation,
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0o ‘n-u— \

F @) < -t A An [ Tp cubrda
© _, -

= -t [ Tpub) A(Wdu.

Intezrating by parts h, times we obtain

w3 oo

N h V-t Py - = vl &)
-E ) = [ A0 £ e Ryt ) ]
=1\ U=0

hyh o
(SD) t = (ha) =
* r'um)-/o o @D AL,

Now A,,io) =0 and, for each fixed positive t » 88 WDoo,
we have, by Lemmas 51 and 40,

V4t

- - P-

Ay (W) Yp w =o(u )Q(uv') = o),
for Pz=4,2,~~-~,h-v,  Also, by Lemnas 19 and 40,

Ay (W) —fr:k)@i) = o) O(cP) = o0,

Hence the integration terms venish. We then have, by

Lemma 18,

-l ;=i - | k‘é‘\. 0~ ('\ \) -
~P t \PPU:.) = L—T?(M-\) -[, XP ' (u.@ Ak(u)d.u.

oo

hy b | . -
-2 Tt u-v) dRyLv)
Nmorcm.a)j, Ip l‘*‘:)d“fo “-v "




(loq

\) Iy j (hs)
= (V) | u-¥ ub du
F(da ) Clhrr-o) -l VL ) Cp )

Pw)jo(t v,0)d R (V) |

provided that the inversion of the order of integration
can be justified.
To justify the inversion it will be sufficient to

show that, as X tends to infinity.

X o © heo — (ha)
Jo d—‘\d(v)jx “-v  ¥e " (wt)du - o,
for every fixed positive t . Writing
h- « (hav)
f Q*’V) P * Lu‘!:)d..\-k '=I. -\-Iz
where
LS a)
(hn)
T, =/ " wh) du
X
o u. )
T, = | @0 L0,
XA

we have, for every fixed positivet , if v<X,

K4

1Tl = 0 (), w9 “wlPauf= OxF)
and, by Lemma 10,

- ~ (W
T € o™ M [ [T F MMedan) = OO,

X‘7x+\ m-\



uniformly for O4V¢X . Also

P ) x - ~ ’
X f’_{ 1R ™)) = X PQUOV“MC«M\} +X‘PQ{ZX‘&$’2‘A~,}

= QW) [ 1dT )l + O(xP) | W dy

=0 (xFf) = o),

since X&w is summable IRm,a| and P,
Returning to the expression for 'PF({:)H; we obtain,

on integration by parts,

V=200
P.lf‘.q ‘VP(E}-‘-—'[-"-_'&:) A (v) D({,")OO)] + ‘L'— f\( Cdlv)
The integratﬁd term vanishes since F\,(to)..o and s1nce, for

fixed positive € , we have, by Lemma 45,
Kd(v) D(t,v,®) = Q(v“‘), Q(V"P) = oW,
Integrating by parts again we have
(]
Pl Yol) = - [ Eleyv, @ d ),

the integratldl term vénishing by Lemma 46.
It follows from Lemma 46 that

R LTy jw\dﬁ(vn fw\E(‘\',v,ao)lcﬁ:
£ © = d-! ddj: “"‘P “‘Pd_i:
A fo &) J v . ] ]

£ 00,
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In the case d=0 we have, as in the previous proof,

co
|

. 0O ©
J _‘P%‘fﬂdh £ Pfoﬁ.‘di‘a 2; tQ.\ \fp(w{-.)l

o

@ o
= P A1 | 1Fant)) 70k

- Pi 1@\ {O(fndk) & O( mPePar)}

n=1
[+ »)
= 11a.1.00 <oo,
n=t
The theorem is therefore completely proved.
At this stage it is convenient to show that Theorem
22 is false whend=0,

D)
Consider the function

V) = (g F)

Clearly WY(&) is an intesral for & ¢& T

Vi) = £ (g T)Y
and

N
L j LY @) dE
| 3

t~o0
is finite. It follows that W(&) is of bounded variation
in (O,W) . lMoreover Y(+0)=0O , so that the hypothesis
of Theorem 22 are satisfied. The function 'l ¥ (¥)|how-

ever, is not integrable over (o,T), for

Y Bosanquet and Hygiop, 8.
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t ' -\
il!.(k)=_£(&>% D) da,

t - ! 2 -~
V) = 7 oy T =j°(eo% ) ot

and
0y

_[:e“lw.(e)\di: =j 't"‘. cu:fo'(ed& T ) d
-_-j'om _[w(‘éeoﬁﬂ)-‘di:

[}

m

as t20 . It follows, by Theorem 23, thati{anf cannot
be summable IC,pl for o<pci,

M.4. General Consideration of the Preceding Theorems.

D)

We now consider these theorems in the light of some lemmas

which were proved in Chapter 5.
By Lemma 34 we see that Theorem 21 may be written
in the following form,

THEOREM 24, If Ou(t) is of bounded variation in (0,W),

then the Allied series of (&) , at the pointd=x , is

summable \C,d+%+\, wheredy%0,5v0.

Bosanquet and Hyslop, 8.
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We may also rewrite Theorem?23 as follows.

THEOREM 25. If the Allied series of $(&) , at the point

£=x is summable €&l , then @dts(k)is of bounded variation

in (0,0), ford»o0,%20. ‘
We at once obtain the analogue for the Allied series
of Theorem 18.

TESOREL 26, A necessary and sufficient condition for

the Allied series of (&) to be summablelC,p] for some M

at_the point £=x, is that @)(4) be of bounded variation

in (0,1Y) , for some \ .

By Lemmas 36 and 38 we see that the statements of
Theorems 21. and 22 may be combined as follows.

THEOREM 27. Ifd%0, %70 and¥%®).8fkre of bounded

variation in (0,T) for some hN , then the Allied series

of $(£) , at the point =% , is summable |C,x+8].

Theorem 21 is the particular case of this theorem when

oL 7 | and Theorem 22 the case 0«{4\{. We have seen that
Theorem 22 is false with o{=6 . Theorem 27, however, is
true whenod=0 and its truth is at once deducible from
‘Lemma 35 and the case of the theorem when«YO.

N.5, A Particular Case of the Preceding Theorems., Ve

conclude this chapter by considering the case $=0O of
Theorems 2% and 27. It will be shown that, as with

Fourier series, these theorems are not true for A=$=0,
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D)
THEOREL, 28. There exists a function f({:) for which W(t)

and OW) are of bounded variation in (0,7), but whose

Allied series at the point&t=o0 is not absolutely convergent,
Let f) =4t . Then YW)=4t ,0()~-4, so that W)

and ©(&) are of bounded variation in (0,T1) .  Also the

Fourier series of R(&) isZ{{inSV;\'\f)Where
Po = #jo"fscmt = O™
Thus the Allied series of £(£) is
NED  ntesnt
which is not absolutely convergent at t=o .
For the proof of the next theorem we requii‘e two

elementary lemmas.

LEMVA 55. If az?byo, then

(rey | [Feastocebtgy] b

This result is a 31mple corollary from (L L),

LEMMA 56. If m is a positive integer then, as m temds

to infinity,

./owmm‘t.(tl-wmt)dt ~ “'a’eo%m.

Suppose that m is even and equal to 2 .  Then

f“euam":(hwm‘adk - fzr"‘;o{:({l:—&d:)db

o +

Bosanquet and Hyslop, 8.
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-j&ob("m£){ 4:&-21\' ot £+2(r~-\)‘“}qu:

W - AN P~ ,
= [ eetlest) gy o [entloent){ X T bok,
o () V=i

Now
H~|

29“**: ‘[ tr2Wx \’
where

O0< N < st S L,
and

-t x=piet
J:H t?:ﬂ‘x = 21r[e°%(&+2ﬂ’x)] = ;“_“_Qo%m+9(|)’

uniformly for ©s& < .,  Hence

2w
mem-ti“medi: ~ 5!;‘. mf(m{:-upz'b)dir

~ -é CO%W\’.

A similar proof also holds when m,is odd.

Vj
THEOREM 29. There exists a function —F({:) whose allied

series, at the point £=0 , is absolutely- convergent,

but for which®(t) is not of bounded variation in (o,%) .,

Let Rdm be an absolutely convergent series and )mu

v For a brief sketch of the proof of this theorem see

Bosanquet and Hyslop, 8.

(M.S'
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a steadily increasing sequence of positive integers

satisfying the relations

(M.52) \mu v (2+0) - , 0(9(\_,

(n.53) A g\ Do,

as™M tends to infinity. For example, we may take

3

-2 \h\,= 2."\

dm: ™m
Let
% .
ﬁ(&) = 23. d'n\. 3\'\'\-‘\“1_
M=y

Then the Allied series of $(x) at x=o isz{d.‘, which 'is

absolutely convergent. Also, at x=0

‘P({-.) = i o(..\sén.\m{:,

M=\

so that, if 0 <t &7,
W () = j WYlu)du =
Let Y(-t) =W, (t) . Then the B‘ourier series of W(4) is

2]
'%Qo A ZQ»\C&DW%,

Nn=1\

where, forwnwul,

O = %fmneat % I (et di

M=
4 S d_"':. jwmvd: (- m\\f)dt
- ‘T‘: m=\ ‘\'N ° ‘e ‘

The chanze in the order of integration and summation

will be justified if we show that, for each fixed value



of v,
LR dm oo nt (1-codid)
2‘;'; g-,-.\ }”"'[ 4 d£ =0
Now ¢ o €
Ayn _
| 552 [eonblentatan) 2] 42 e po gt

o0
£ € ol So,

M=y

Returning to the expression for Qw, , we have

-2 :& ~[ eIt (1- Custhk)di:

e m=1 ‘:
2. d'\. 18 - "
where
n-y o ~
2 o CAOXU\‘& (‘*m\m'k)
E.= 5 b .[ £ du:’
M=\
B . 2 i L f“w\.ec (-eXnk) 4
1 ) Vo > +
Mm=nay

Now, from Lemma 5%,
"i u..\\ fem\.d: m(\m+\-\.)'€ou._‘
o €

& < ¢ A
'j;; \o(..,‘\ f ewint - Clo('\v\"\m)tdkl
+

it Ny
3 lded N, 4 L)
L :tL‘— 2:“ N\ wo Y 1 Z \m \n"\w

w =1
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N-\
o A 20
< —W\w Z \dw\.\ + “\w 1+0 é\‘d"\-‘

A
L I ?
o v S LES] ] -“—eoa\n't - e\t
\EQ\ s ';"—'éh“ \\m. ‘ A + dk‘

st i 1= f exhnb — uo(ln\—\-\){:dil

=Nt .

]
< x o ~
M=t "\.V\*\
o0
.' ‘
ldwl + 2 X lden
< 1?\'“ "2-)“‘ m.\, 2&-9 Manat
.
Q (\w) .

It therefore follows from Lemma 56 that

Ay ~ 'T\' )N fﬁ\“’ ?
and this is not equal to(_)_(\.L ) by (4.53). It follows
from Lemma 51 that W,(&)is not of bounded variation in
(0,T) and therefore, by Lemma 36, &4&)is not of bounded

variation in (0,TY),
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R.1. Preliminary Remarks. 1In Chapter 6 we invewstigated

the summability of the Fourier Series of #(£) at the
point £=x when RI&) was of bounded veriation in (o) .
Instead of taking as hypothesis the fact that R(£) is of
bounded veriation we now suppose that §(&) satisfies a
Lipschitz condition of ordero in (o,). The function
f-U:) is said to satisfy a Lipschitz condition of order
o, or, more briefly, §$(£)is said to belong to Lip¥, in

(o,w) , if

@) [R+W -2 = O L),

uniformly for O&t<¢T . It is clear that, if R(&)belongs
to Lip®,«70in(o,), it is continuous in (o,T) .

- It has been proved by Bernstein’ that, iff(£)belongs
to Lip# in (0,W) , its Fourier series is absolutely con-
vergent for all values of x in (0,W) wheno>% but is
not necessarily absolutely convergent wheno <5 . The

principal theorem of this chapter constitutes an extension
of Bernstein's results for the case A$% .

8. 2. Preliminary Lemmas. Before proceeding to the

proof of the theorem we state some well known results which

will be required.

LEMMA 57. If z)the function f(x) is such that its square

) Bernstein, 1. -
%) Hobson, 20, 575.



is intezrable in the sense of Lebesgue over (-T,T), then

1 2 co
= f“ {ROOY A = Lo + )} (A2 4p2)
= Nz

where dn, Bn are the Fourier coefficients of £(x).

LEINA 58. We have the inequality
Va n Yan, Pary 1
| Busvs| ¢ X uwi i Nl
Vawe V=ne Pawno

2)
LIIIA 59. If o<, Q20,the series

(.21) i w34 e (anlogn + w)

N=2
converzes uniformly foro<¢xX<2mwto a function ?—(x) which

belongs to Lip& in (0,2W).

¥.3%. The FPrincipal Theorem. Ve proceed to the

statement and proof of the main resul't.
3)
THECRENY 30. If the function £(x) is periodic and belongs

to Lipd,0<o{¢% in(o, ), then the Fourier series of £(x)

is summable IC, ), for all values of & , when $r 4ol

We have
e\
QA = dn & e +ﬁ,.,s\;n.1mc = —%L(P(b)e«onfd:t,

whence

x
Naw = f(p“:) g}s\;n.'-d; adt,

2
I
It follows that

v d o 8-
dl(S)_ %l(p(t)&{é?)kgth Swu(n-h)f:}di:,

[, 1

) pitchmarsh, 34, 361.
%) Hardy and LitTlewood, 16. See also Zygmund, 38, 116-9.

» Hyslop, 23.
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where d,.' is defined as in 3.6 and, by Lemma 23, it is

’

sufficient to prove that the series
[~ -]

Z\‘ “:" ld_‘i (S)\

n=1

is convergzent.

Tow, by (3.23),
2

w w (S-\)
L '® y w2 [ ew -RE (n-w) £ }dk
Nwt1at <n I {kz.}" k ee(n-W) tldk |

n=i n=y
< A{ s+ )s, }

where

S,(n) = n IJ‘PU:){ Z Eh c.u:.(n \a)t}(ﬁ:l

jq’(‘&){ Z “Eh tw(tvk){: -\-Zkéiﬁ\&o(\r\-b)t}(ﬂ:].

R=-nay

Syln) = ~\-% ‘

We now write
Sa(n) & S,,(M) + S, ,(n),

where the integral in S,,(W) extends over (o,w"') and that

| (8-9

in S, W over (n™, ™). Since By ~ steadily decreases and
\s '

RE 0 steadily increases as R increases, the absolute

value of each of the sums in S, M is less than Rv\.‘!'- .

Hence, by hypothesis,

Zsa.(“) <A Z “‘sf WS Q) ok

n=\

R e e e e e . o~ — - - —_ - - .

9 Theve s no \o.s.s of gqemerality 1w Supposing,as we have

heve, that ©6<S8S<).
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!
oo

< AZ vC'_/ Ak

=\

Z A 3 -

N =y

v'e now show that Sz,g('\) behaves ir a similar way.

We have
s| [ -
St = K70 | [P0 s mst”
S )
NEp | stu(kned)t - swu(k-n-%)¢ )
R=nat

+ ihéi. I sim(n-Rad)t - s (n-k- -k){}]d:kl)
R=o0

and summation by parts given

San® = W't | [T RE) (2omA) x

n-!

® (S (Bw)
X I:V\és \)3“\-‘5‘!: + NZ{ By - Eun st (Ranad)t

Rznis

N G- ®-v)
oS st Z{moem —REy Jsinin-h- %){]d:l:l

Rao

é $22.|(’K) + S ) + 32.2,3(“))
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where
- ) £-9
Szﬂ)‘('\) =n ‘ f -L(P(t) i- E na Sd}'\;
a -\
550209 = WP | [, OW (st %

X [ i { E(:;‘)" L:M‘)} Sm(h-v\»-‘-){;] di:‘

h': na

SQ,Q,g('\) = .‘.- j (P(*:) (25\'\\:%{3)

)_ L {RE, =(k-v) E\(:o} sln-bas)E]dk |

Cince

&0 S o™,

we have

ZS,,.M (AN f\q’u)\ou. <A.

N=y
Since the expression
~(8-Y) (3-9
R Ewan

steadily decreases as R increases, the absolute value
%-2 ,.
of the sum inS,,Vis less than An £ '. IHence

D Sana @ < AZ _/ £ Q)| dk

A=



(125

¢ A;z: ~[ -td:aik

4 AZ3 cU A.Z;'Cz

N=\
Usinz the relation
G-y (5-9
REL D —R-DEn, = § Fen

we may write
S“‘»‘%a n) < 52 2,3, \(“) + S‘lm,s,z ("),

where

sy (Y S U
Spann ) =S| [ @te)zsmt8)" | g; Ep Sw(n-h-4)t}d4]
w =0 2

e v oo (8-)
Sz,a,a 2(W)=%wm -3 |j @) ( ZSM‘&'L).‘ { 2 Eh sw.(n- h-t)l;}d:!:l
":‘ h:l\. .

Arguing in much the same way as in the case of Sa,a,}-"\),

we at once obtain

Zsaaaz(‘) <R

N=\
Also
($-9) U\- it kit
3]

\ Zeh S\m.(v\-\ii)‘t'—\j{ai e

k:o

l 1 { w‘a)tt -..e) s}‘
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-tk -S
¢ e <At

for ©«t<W ., 71t follows that

i Saaan M < R i vx"'sfwt“'s \P@)| dt

Nnet Nxt n-t

¢ A‘i'{hs‘[’“’ {:d‘\-sd};
n=1\ n

oo o
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It has been proved that the series ASaln) is con-
vergent. We proceed to prove that the same is true for
the series NSun). Ve shall assume now, as we may,
without loss of generality that S<% .

We write
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where '
S L5-Y - L)
b(,'l:) = 2 Eh ekt ’ ‘-Uu:) = Z E\i Sv'v\.k‘k,
hno ‘l=0

Now b(t) and q(£) are continuous for R¢t4¢W , =nd
their absolute values when o4l:$'l are each less than Rﬂt—s.

The constants pw and Qn, are thus the Fourier coefficients
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of an even and an odd function respectively, and each of
thes e functions has its s-uare integrable. It follows

from Lemma 57 and (5.28) that
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Now, taking h to be positive, we have
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and therefore

T
T.(w) AR 0@ = o),

since0¢® <% . It should be observed in passing that

only in this part of the proof is it necessary to use the

full hypothesis.
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e now split up I,(k) into two parts T, ,(k)snd T, W),

where
"
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NN
Taa(h) = f {PWY | a2y ~be) 3 dlk .
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e have then
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It follows that, as b tends to zZero,
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and it may be proved similarly that

Zq,,,_.a»mnk O( ‘).

Let h=T[an Then we obtain
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and, ertlnb N=2 , we at once deduce that

Z ks = O (2™%).
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A similar relation also holds in the case of QJ,, .

It now follows that
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The theorem is therefore proved,

. 4. Proof that the Preceding Theorem is a 'Rest

Possible'! Result.

)
THS0RBI] 3l. There exists a function £(x) belonging

to Lipd, whereo4d<i, whose Fourier series, for allyvalueg

of & , is not sumnableC,4-o1.

For the series (8,21) , whenS~4-o, we have
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v This proof is due to Bosanquet. See Hyslop, 23.
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since the last series 13(9.2\)‘ withe=% , a replaced
by 2e.and x by 2x,, and so it converges for every value
of x. Since the series Xn’s 0w\ is not convergent it
follows, from Theorem 2, that ROw carmmot be summable

\C,8) . The theorem is therefore proved.



| (132

1. S. BERISTEIN: Sur la convergence absolue des series
%rlgonometrlques. bomptes Rendus, 158(1914).,
1661-1664.

2. 5. BOREL: Legons sur les series divergentes, (raris, 1901)

3¢ LeSe. BOSANQUET: On Abel's integral equation and
fractional integrals. Proe, London Math. Soc.,
(2), 31. (1930), 134-143.

4, Some extensions of Young's criterion for the
convergence of a Fourler series, ~uart.J.of Math.,
6(1935), 113-123.

Se The absolute summability (A) of Fourier series.
Proe.Bdinburgh Math.Soc. (2), 4(1935), 12-17.

6e Note on the absolute summability {C) of a Fourier
Series. Journal London Math. Soc., 11(1936), 11-15,

e The absolute Cesﬁro summability of a Fourier series,
Proe. London ilath. Soc., (2), 41(1936), 517-528,

8¢ LoS. BOSAN UZT and J.M. HYSLOP: On the absolute summability
a Fourier series. ILiath,
Zeitschrift 42(1937), 489-512.

9. T.J.I'2 BROMWICH: Theory of Infinite series. (London 1931)

10, E. CESARO: Sur la multiplication des series, Bull.
de Ia Soc. Math. de Prance, (2), 14(1890), 114-120.

11. S. CHAPHAN: On non-integral orders of summability of
series and integrals. Proe. London Math. Soc. (2),
9 (1910), 369-409. ’

/. /.
12. . PEKETE: A széttarté véételen sorok elmeletehez.
ath. es Termesz. Brt. 29(1911), 719-726,

13. On the absolute summability (A) of infinite series.,
Proe. Edinburgh Math. Soc. (2), 3§1933), 132-134.

14. G.H. HARDY: Theorems relating to the summability




15.

16.

17.

18.

19.

20.

21.

(133

and convergence of slowly oscillating series.
Proe. London lath. Soc., (2), 8(1909), 301-320.

Notes on some points in the integral calculus
(LXVI). The arithmetic mean of a Fourier constant.
liessenger of Liath. 58(1928), 50-&2.

G.He HARDY and J.3. LITI'LITIOCD: Some problems of

Diophantine approximation. A remarkable
drigonometrical series. DProe. National Acad.
seé. 2(1916), 583-586.

G.He. HARDY, J.E. LITTLEV0O0D and G. POLYA: Inequalities,

(Cambridge, 1934])
G.H. HARDY and M. RIESZ: The General Theory of Dirichlet

Series. CGCambridge Tracts, 18(1915).
EJN. HOBSON : The Theory of Functions of a2 Real Variable

I. (cambridge, 1927).

The Theory of Functions of a Real Variable II,
(Cambridge, 1926)

JJi. HYSLOP: The Absolute summability of series by

22,

23,

24.

25,

26

Rieszian means. Proe. Edinburgh Math. Soc.,
(2), 5(1936), 46 -54.

A Tauberian theorem for absolute summability
Journal London Math. Soc., 12(1937), 176-180.

On the absolute summability of Fourier series,
Proe. London Math. Soc., (2), 43(1937), 475-483.

K. XWOPP; Grenzwerte von Reihem.bei der Annsherung -

anfie Konvergenzgrenze. ([Berlin, 1907).

5o KOGBETLIANTZ: Sur les seéries absolutement sammables

par 1a methode des moyennes arithmétiques. Bull.
des Sc. Math. (2), 49(1925), 234-256.

B. LANDAU: Darstelling und Begrundung einiger neuerer

27.

BErgebnisse der Funktiorheorie, (Berlin, 1930).
H. LEBESGUE: Legons sur 1l*'Integrale, (Paris, 1928).

—



28,

29.

30.

3l.

32,
354

(134

N. OBRESCHKOFF:  \Wber die absolute summleruna der
Dirichletschen reihen. Nsth. Zeitschrift
30(1929), 375-386,

Se. POLLARD: The Stieltjes integral and its general-
izations. Quart. J. of Math., 49(1920) 73-137.

On the eritewta for the convergence of a
Pourier series. Journal London Math. Soc.,
2(1927), 255-262,

Mo RIESZ: Une methode de sommation equlvalente a la
methode des moyennes arlthmetiques. Comptes
Rendus, 152(1911), 1651-1654.

S. SAXB$: Theorgy of the Integral, (Warsaw, 1937).
A. TAUBER: Ein satz aus der theorie der unendlichen

Teihen. Monatshefte f. Math. u. Phys. 8(1897),
R73-2177. |

34. E,C, TITCHIARSE: The Theory of Punctions, (0xford,
19327 . ,

35¢ JJM. WHITTAKER: The Absolute summability of Pourier
Series. Proc. Edinburgh Math. Soc., (2),
2(1930), 1-5.

"36e WeHo YOUNG: On infinite integrals involving a general-
ization of the sine and cosine functions,
Quart. J. of Math., 43(1912), lél-177,

37 A. ZYGMUND: Sur la convergence absolue des series
de Fourier. Journal London Math. Soc.,
3(1928), 194-19%90.

38. Prigonometrical Series, (Warsaw, 1935).




