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Abstract

Photothermal ablation is a promising new technique for treatment of some cancers, where

metal nanoparticles are introduced into the tumor and the system is locally heated with a

laser to destroy the malignant cells. The aim is to have nanoparticles accumulate within

the tumor and not in the surrounding healthy tissue, so that the heat source leads to a

differential increase in temperature in the cancer and hence cell death.

We begin by examining nanoparticle delivery from a single blood vessel into surround-

ing tissue using asymptotic analysis to construct the extravasation flux of nanoparticles

into the tissue.

We then incorporate this flux into a spatially one dimensional model which includes

interstitial fluid flow to examine the distribution of nanoparticles across the tumor and the

surrounding tissue. In this model we also consider nanoparticles conjugated with ligands

which selectively bind to tumor cell surface receptors and eventually leads to nanoparticle

internalization within the cell. We study how the mass of accumulated nanoparticles

within the tumour (and the surrounding tissue) is influenced by the nanoparticle delivery

time interval, ligand nanoparticle conjugation and tumor cell capacity for internalized

nanoparticles.

We then mimic laser irradiation of the tumor and the surrounding tissue (which com-

prise nanoparticles) estimating the temperature elevation and the induced tissue damage

within the tissue. Finally, we validate our predictions against two different sets of exper-

imental data and then discuss how to optimize the outputs of the photothermal therapy.

We show that conjugating binding ligands to the nanoparticles can lead to a heterogeneous

spatial distribution of nanoparticles and reduce tumor damage induced by laser irradia-

tion. We conclude by discussing strategies to optimize the treatment protocol to induce

maximal tumor damage with minimal side effects in the surrounding healthy tissue.
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ẑ = 0.02 and F) ẑ = 0.049 for different values of time steps. G)The axial spatial profiles

for the solute concentration in the tissue at r̂ = 4.9× 10−4 and at r̂ = 6.7× 10−4 (tissue

outer edge) for different values of time steps. H)The temporal profiles for the solute

concentration in the tissue at r̂ = 4.9 × 10−4 and at r̂ = 6.7 × 10−4 (tissue outer edge)

for different values of axial positions. . . . . . . . . . . . . . . . . . . . . . . . . 52

vi



LIST OF FIGURES vii

2.5 Prediction comparison of the solute transport problem at the microscale

to the two reduced problems using the parameter values in Table 2.1. A

comparison of the concentration predictions in the tissue calculated through

the full model (see Sec. 2.6) and the reduced problem 1 (see Sec. 2.8.1) at:

A) r̂ = 6.7× 10−4 and B) r̂ = 4.9× 10−4 for different axial mesh points. A

comparison of the concentration predictions in the tissue calculated through

the full model and the reduced problem 2 (see Sec. 2.8.2) at: C) r̂ =

6.7 × 10−4 and D) r̂ = 4.9 × 10−4 for different axial mesh points. E) A

comparison of the concentration predictions in the tissue calculated through

the full model and the reduced problem 2 at r̂ = 6.7×10−4 for different axial

mesh points. F) A comparison of the temporal total mass accumulated in

the tissue calculated through the full model and the reduced problem 2. . . 55

2.6 Prediction comparison of the GNR concentration and flux at the tissue/wall

computed by the full model and the two reduced models using the parameter

values in Table 2.1. A) The concentration profiles across the tissue for

different time steps. B) The concentration profiles very close to the wall (a

zoom in for (A)). C) The temporal radial flux at the tissue/wall for different

axial positions. D)The axial profiles for the solute flux for different time

steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1 The domain of a tumor surrounded by normal tissue. . . . . . . . . . . . . 59

3.2 The vasculature projection in the spherically symmetric model. . . . . . . . 61

3.3 The interstitial fluid pressure and GNR concentration profiles in the tumor

and tissue in the absence of binding ligands. A) The interstitial fluid pres-

sure profile, where P̂
(T )
v = P̂

(N)
v = 5.6 mm Hg. B) GNR temporal average

concentration. C) GNR spatial concentration, where Ĉv(0, r) = 2.34×10−5
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cm−1, D̂(T ) = 2.8 × 10−7 cm2/s and d̂b = 0.16 cm) against data published

by El-Sayed et al. [2013] [28] . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5 The temperature predictions across the tumor and the surrounding tissue

during 10 minutes of laser irradiation and 5 minutes post laser irradiation

(simulation of the in vivo experiment conducted by Dickerson et al. [2008]

[25]), for the rest of model parameter values see Table 4.1. A) The spatial

temperature distribution in the absence of binding ligands. B) The temporal

temperature profile where the curve styles refer to the corresponding vertical

lines with the same styles in (A). C) The spatial temperature distribution

in the presence of binding ligands. D) The temporal temperature profile

where the curve styles refer to the corresponding vertical lines with the

same styles in (C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



LIST OF FIGURES x

4.6 The cell death predictions across the tumor and the surrounding tissue dur-

ing 10 minutes of laser irradiation and 5 minutes post laser irradiation (sim-

ulation of the in vivo experiment conducted by Dickerson et al. [2008] [25]

where τ = 12.5 h), for the rest of model parameter values see Table 4.1. A)

The spatial profile of injury fraction distribution. B)The temporal damage

percentage profile. C)The damage percentage in the case of different GNR

delivery timescales (the period of time between GNR administration and

conducting laser irradiation). D)The damage percentage against different

GNR delivery timescales at 5 minutes post laser switch off time. E)The

temporal damage percentage profile for different GNR blood half life val-

ues. F)The damage percentage against different GNR blood half life at 20

minutes post laser switch off time. . . . . . . . . . . . . . . . . . . . . . . . 112

4.7 The temperature cell death predictions across the tumor and the surround-

ing tissue during 10 minutes of laser irradiation and 5 minutes post laser

irradiation in the presence of binding ligands (where τ = 12.5 h) using

the parameter values in Table 4.1. A) The temporal temperature profile

in the case of limited tumor cell capacity for internalizing GNRs. B) The

temporal temperature profile in the case of unlimited tumor cell capacity

for internalizing GNRs. C) The spatial profile of the injury fraction dis-

tribution in the case of limited tumor cell capacity for internalizing GNRs.

D)The temporal damage percentage profile in the case of limited tumor

cell capacity for internalizing GNRs. E)The spatial profile injury fraction

distribution in the case of unlimited tumor cell capacity for internalizing

GNRs. F)The temporal damage percentage profile in the case of unlimited

tumor cell capacity for internalizing GNRs. . . . . . . . . . . . . . . . . . . 115

B.1 Porous medium domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B.2 Two adjacent porous medium domains. . . . . . . . . . . . . . . . . . . . . 123

C.1 The relative error for different mesh sizes. A) The relative error of solute

concentration at ξ = 5.8×10−4 cm, z = 0 and t = 15.62 hr. B) The relative

error of GNR concentration at the tumor/tissue surface interface. C) The

relative error of tissue temperature at the tumor/tissue surface interface. . 126



Acknowledgements

All praise be to Allah who says in the Qura’n

‘And God has extracted you from the wombs of your mothers not knowing a

thing, and He made for you hearing and vision and hearts [i.e., intellect] that per-

haps you would be grateful.’ (Qura’n 16:78)

Then my appreciation is due my parents who have been giving me support as much as

they could and I owe my success to them.

‘And lower to them the wing of humility out of mercy and say: My Lord, have

mercy upon them as they brought me up [when I was] small.’ (Qura’n 17:24)

I would like to express my gratitude to my supervisors (Peter Stewart and Xiaoyu)

who gave me all the support that I needed to finish my PhD over the four years. I would

like to say a big thank to Peter, who spent his time and effort helping me to overcome

all obstacles that I had in my PhD. He did his best to construct the essential foundations

for my future research. A special thank to Xiaoyu, who was the reason I got this PhD

scholarship at the University of Glasgow. She worked hard to support and guide me before

I started my PhD and during my PhD. I consider her as my second mother before my

supervisor. Whatever I say about Peter and Xiaoyu, my words cannot describe what I

owe them because of their dedicated support.

I am also very grateful to the British Council and the Egyptian Cultural Affairs and

Missions Sector which funded me through the Newton-Mosharafa program. I would like

to also thank all my colleagues and all the staff at school of Mathematics and Statistics

in addition to the International Family Network members who helped me enjoy my PhD.

Finally, a special thank you to my wife who strove to support and encourage me in

every step I had in my life. Thank you for your support and being my happiness.

xi



Declaration

This thesis is submitted in accordance with the regulations for the degree of Doctor of

Philosophy at the University of Glasgow. With the exception of chapter 1, which contains

introductory material, all work in this thesis was carried out by the author unless otherwise

explicitly stated.

xii



Nomenclature

α The ratio of the vasculature to the interstitium hydraulic conductivities.

α2 A constant dependent on the average pore diameter of the vessel wall.

P̆ The effective permeability.

∆T̂ The temperature rise at the tumor center due to laser.

δ The ratio of the wall thickness to the vessel radius.
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γ̂b The specific heat capacity of the blood.
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µ̂s The light scattering coefficient.
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µ̂tr The transport attenuation coefficient.

ω̂ The fluid velocity in the axial direction.

ω̂b The blood perfusion rate.

φ̂ The light fluence rate.

π̂i The interstitial osmotic pressure in the tissue.

π̂v The vascular osmotic pressure in the tissue.

ρ̂ The tissue density.

ρ̂bω̂b The blood density times blood perfusion rate.

ρ̂g The gold density.

ρ̂t The tissue density (skin).

σ̂a The absorption cross-section.

σ̂s The scattering cross-section.

σ̂ext The extinction cross-section.

τ̂ The GNR blood half life.

ξ̂ The dimensionless radial direction in the tissue domain.

Ĉ The concentration of free GNRs.

Ĉb The concentration of bound GNRs.

Ĉi The concentration of internalized GNRs.

Ĉav The maximum average GNR concentration in the tumor.

Ĉbsmax The maximum cell receptor concentration.

Ĉimax The maximum internalized GNR concentration.

Ĉtot The total concentration of GNRs.

Ĉv The vascular concentration of GNRs.

D̂ The GNR (solute) diffusion coefficient.

d̂n The GNR diameter.
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d̂p The laser beam diameter.

Ê The internal energy.
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ĥ The heat transfer coefficient.

Ĵr The solute radial flux.

Ĵz The solute axial flux.

Ĵtot The total solute flux.

K̂ The interstitial hydraulic conductivity.

k̂2 The interstitial permeability in the vessel wall.

k̂3 The interstitial permeability in the tissue.

k̂a The association rate coefficient.

k̂d The dissociation rate coefficient.

k̂i The internalization rate coefficient.

K̂s The gold thermal conductivity.

K̂t The tissue thermal conductivity.

L̂ The vessel length.

L̂ The vessel wall thickness.

L̂n The GNR length.

L̂
(N)
pl Ŝ

(N)
l /V̂ (N) The lymphatic density.

L̂
(N)
pv The hydraulic conductivity of the microvascular wall in the tissue.

M̂ The total solute mass.

M̂g The gold molecular weight (molar mass).

P̂ The fluid pressure.

P̂ The laser density.

P̂0 Blood pressure at the vessel outlet.
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P̂i The interstitial fluid pressure.

P̂l The lymphatic pressure.

P̂v The vascular pressure.

P̂laser The laser power.

Q̂l The fluid flux into lymphatics.

Q̂v The vascular fluid flux into tissue.

Q̂in The inlet fluid flux.

Q̂out The outlet fluid flux.

Q̂tr The transmural fluid flux.

R̂ The tumor radius.

r̂ The radial direction.

r̂0 The radius of tumor core where the laser source term is independent of r.

R̂1 The vessel radius.

R̂2 The vessel radius + the vessel wall thickness.

R̂3 The vessel radius + the vessel wall and tissue thicknesses.

R̂∞ The width of the tumor and tissue.

r̂n The GNR radius.

r̂p The vessel pore radius.

r̂eff The effective GNR radius.

ŜNv /V̂ The vasculature density.

Ŝlaser The laser Heat source term.

T̂ The temperature.

t̂ Time.

T̂b The blood temperature.

û The fluid velocity in the radial direction.
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V̂tiss The volume of tissue.

Ŵ Blood mean velocity at the vessel inlet.

ẑ The axial direction.

λ The ratio of the tissue thickness to the tissue length.

q̂ The heat flux.

µEE The mean of elementary effect.

ν1 The ratio of GNR disassociation to association timescales.

ν2 The ratio of GNR disassociation to internalization timescales.

Ω The cell death index.

φb The vascular volume fraction.

φf The interstitial volume fraction.

φn The volume fraction of GNRs.

σ The osmotic reflection coefficient for GNRs.

σT The average osmotic reflection coefficient for plasma protein.

ξl The ratio of the lymphatic volumetric flow to GNR disassociation rates.

ξv The ratio of the vascular volumetric flow to disassociation rates.

ξb1 The ratio of GNR disassociation time scale to GNR blood half life.

ξb2 The ratio of tumor volume and blood circulatory system volume.

A2 A measure of the slip at the vessel wall/tissue interface.

Ea The cell activation energy.

EE The elementary effects.

g The anisotropy factor.

GIEE The elementary effect global index.

I0 The first kind of the modified Bessel function of zero order.

K0 The second kind of the modified Bessel function of zero order.
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m The tissue thickness scale factor.

n The GNR shape factor.

NA The Avogadro constant.

Pe The Peclet number.

rsd The relative standard deviation.



Chapter 1

Introduction

Cancer is the major cause of death in economically developed countries and the second

leading cause of death in developing countries [57]. It is expected that over 606, 808 Amer-

icans will die because of cancer in 2019 [100]. Globally, cancer spreads largely because

of the aging population [57] and human lifestyle (bad habits) [15]. For example, heavy

smoking, drinking alcohol, exposure to the sun and eating fatty foods (which leads to

obesity) in addition to physical inactivity. Furthermore, the spread of infectious viruses

such as Human papilloma viruses (HPVs), Epstein-Barr virus (EBV), Hepatitis B virus

(HBV) and hepatitis C virus (HCV) may cause gene mutations which promote cancer.

Therefore, in some ways cancer is easier to prevent than treat. This is because (mostly)

the symptoms of cancer appear too late to be treated effectively. In particular, cancer-

ous tumors which have already obtained direct access to the blood circulatory system

(through angiogenesis) can allow some cancer cells to travel to other organs and initi-

ate secondary tumors; this process is called metastasis. Deep-sited tumors are difficult

to be removed by surgery and there are some significant challenges for treating tumors

through chemotherapy (as discussed in Sec. 1.6.2). Therefore, researchers have recently

proposed new localized treatment techniques involving thermal therapy (see Sec. 1.3) and

photothermal therapy (see Sec. 1.4) to overcome these issues and restrict the side effects

of conventional cancer therapies.

1.1 Tumor Growth

There are different stages before a cancerous tumor becomes malignant, which may take

years [13]. Any tumor starts from a single cancerous cell (from a mutation) which then

starts to proliferate rapidly compared to the other surrounding healthy cells, see Fig. 1.1.

This process leads to the formation of a small solid tumor within the tissue. This new

cancerous mass receives most of its nutrient supply by diffusion of nutrient from the

surrounding tissue (provided in turn through the blood stream in the nearby vessels). As

1
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a result, the tumor mass engulfs and replaces the surrounding healthy tissue. The solid

tumor will therefore expand until it reaches the diffusion-maximal size (approximately 2

mm3 [13]) when the nutrient supply becomes insufficient for all the tumor cells. At this

stage cancerous cells at the center of the tumor start to die because the nutrients have

been consumed by the outer layer of the tumor before being able to diffuse to the center.

In this stage the solid tumor (approximately) maintains its volume of living cells because

the increase in volume due to the proliferation in the viable rim is equal to the volume

loss in the necrotic core at the center of the tumor.

During this steady state the solid tumor stimulates the surrounding blood vessels to

initiate angiogenesis (forming a new blood supply) to accumulate the high demand for

nutrient. Following this stage the tumor becomes a vascular malignant tumor, where the

tumor has its own blood supply which supplies sufficient nutrient and enables it to expand

beyond the diffusion-maximal size and possibly spread to other parts in the body.

1.1.1 Mathematical Modeling of Tumor Growth

There are a huge number of mathematical models for tumor growth in literature. Araujo

and McElwain [2004] [6] provided a comprehensive theoretical modeling review of tumor

growth starting with a simple diffusion model proposed in 1928 [42] and developing into

more complicated models from the 1990s such as multiphase models, mechanical mod-

els, models for tumor invasion (metastasis), avascular tumor models and vascular tumor

models. They discussed the interaction between these models and how these various

approaches compare to the experiment results. Theoretical models for cancer typically

involve consideration of either cancer cell genetics, cell motion [36], tumor growth [113],

angiogenesis [3, 18], chemotherapy [48], radio therapy [64] or other treatment methods.

For example, at the intercellular level Enderling et al. [2007] [29] considered how

a cancerous tumor can exist and grow in a healthy breast by sequential mutations in

genes. They used a tumor growth and invasion model in which the tumor invades the

surrounding tissue by releasing matrix degradative enzymes to degrade the adjacent tissue

to get extra space to expand; these occur in addition to the acidosis environment created

by the cancerous cells which kills the surrounding normal cells. In their mathematical

model they assumed that a mutation of only two suppressor tumor genes is sufficient to

initiate a tumor cell and breast cancers could be developed from breast stem cells. They

simulated three different radiotherapy strategies and analyzed their effect on the breast

tumor, finding that none of these strategies can prevent the development of a new local

or distant tumor.

Realizing the importance of the cancer tumor heterogeneity, Ward and King [1997] [114]

proposed a continuum multi-species model for the growth of an avascular tumor spheroid.

In their model they considered two phases of cells, living and dead tumor cells and the
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Figure 1.1: Tumor growth from an initial mutated healthy cell to a vascular tumor.

induced velocity field as a result of tumor volume change due to cell proliferation and

apoptosis (programmed cell death) depending on nutrient supply. This model predicts an

initial accelerated growth for the tumor for a period of time followed by a phase of uniform

growth. In addition, the live cell density reaches its maximal value in a narrow region

beneath the tumor surface and vanishes quickly outside this layer towards the tumor center,

which represents the viable rim and the necrotic core, respectively. The concentration

profiles show that the viable rim is rich in nutrient, whereas nutrient concentration in the
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core is very small. Finally, the tumor expansion velocity increases rapidly in the viable

rim due to cell proliferation, but decreases rapidly outside this region, to a negative value,

meaning that the cell death rate is greater than the cell proliferation rate, and finally

increasing to zero in the core region. An analytical traveling wave solution was obtained

and asymptotic techniques (for small death rates) used to study the tumor expansion

stages.

Ward and King [2003] [115] extended this model to incorporate the introduction of

an anticancerous drug, assuming the drug is applied in the external environment and

can diffuse into the tumor and kill cells. They studied both linear and Michaelis-Menten

kinetics of drug action on cells. Their results are consistent with the experimental results

and deduced that the efficiency of the drug depends on its penetration depth. Similar

ideas can be used in a model of nanoparticle (NP) delivery to avascular tumors.

1.2 Hyperthermia

Hyperthermia is the process of exposing tissue to an external source of energy to elevate

tissue temperature up to approximately 42 − 43◦C [67]. This concept has been used in

cancer treatment since 1800s [22] and is usually used as an additional therapy to improve

the outcomes of radiotherapy or chemotherapy [67]. This is because exposing tissue to

40−41◦C for relatively short time inhibits cell division and is cytotoxic [70]. In particular,

exposing tissue to higher temperatures (40−45◦C) for a sufficient period of time induces ex-

tensive protein denaturation which inactivates many cellular functions [70]. These cellular

dysfunctionalities occur due to the increase in the vibrational, transitional and rotational

motion of molecules in the cells (as a result of temperature increase) which speeds up the

intracellular reaction rates and metabolism, causing an unbalanced metabolism [70].

The human body is typically exposed to electromagnetic waves or intensive ultrasound

in hyperthermia [62,67], but this has severe side effects to the healthy tissue that surround

the tumor, see Fig. 1.2(A). This problem restricts the maximum temperature that can be

used in hyperthermia because of the expected induced damage in the healthy tissue and

organs [78]. In order to overcome this issue hyperthermia can be localized through using

a hot needle tip which can be placed at the tumor center, but this technique fails with

deeply seated (inaccessible) tumors [62]. In addition, hyperthermia can be combined with

chemotherapy and radiotherapy to improve the patient outcomes [22] where elevating

tissue temperature increases blood perfusion which carry more drug to the heated tissue.

Different techniques for hyperthermia have been investigated theoretically and exper-

imentally in the literature. Skinner et al. [1998] [101] compared theoretically the heat

generated via different applicators to transmit microwaves, laser and ultrasound. They

modeled the irradiation of different types of tissue: breast, brain and liver. They con-
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Figure 1.2: Hyperthermia (A) and thermal/photothermal therapy (B) technique diagrams.

cluded that tissue damage depends on the size of the applicator for large applicators. For

small applicators, however, the tissue temperature is less dependent on the energy source.

Deep sited tumors need an alternative external source of energy because it is difficult to

approach the tumor by a needle or applicator. Lang et al. [1999] [67] studied numerically

a technique for hyperthermia of deep sited tumors using electromagnetic waves. In this

technique they simulated the temperature induced in a patient who is surrounded by a

group of antennas which transmit electromagnetic waves. These antennas were tuned in

terms of their amplitudes and phases to heat a deep-seated tumor.
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1.3 Thermal Therapy

Thermal therapy is a stand-alone targeted therapy in which tissue is subjected to larger

temperatures than hyperthermia, 50 − 90◦C for a few seconds or minutes [101]. Hence,

the temperature of the cells can be raised sufficiently to be effectively destroyed. For

example, a sustained increase in temperature to the range 41−47◦C induces cell death via

apoptosis, while prolonged temperatures above 50◦C lead to necrosis [22]. For instance,

heating a tissue sample to 44.5◦C for 25 minutes kills approximately 90% of the cells [70].

The heating in thermal therapy is localized for the tumor, leaving the surrounding

healthy tissue relatively safe from heat exposure [101]. The heat generated in the thermal

therapy is localized within the tumor and prolonged for few seconds or minutes [78]. The

effect of this therapy can be substantially enhanced by altering the thermal properties of

the tissue. This can be achieved through targeting the tumor with metal nanoparticles

(NPs) with large thermal conductivity prior to heating or irradiation [22]. So, these

nanoscale agents are injected into the body to target either avascular (solid) or vascular

tumors. NPs can be conjugated with appropriate targeting ligands in order to selectively

bind to tumor cells [44,45] to help protect the surrounding tissue. The injected NPs either

extravasate from nearby vasculature (intravenous administration) or are delivered directly

to the tumor (intratumoral administration), advect through tumor interstitium and diffuse

across the tumor [54,66,78]. The diagram in Fig. 1.2(B) shows how thermal/photothermal

therapy is used for cancer treatment.

As NPs accumulate in the tumor they significantly enhance the contrast in imaging [89].

However, these NPs can also be used therapeutically to help destroy the cancer cells. In

the presence of a heat source (for example a heated probe, an alternating magnetic field

or a laser), these metal NPs cause the tumor tissue to increase in temperature more than

the surrounding tissue. Such an increase in temperature can be beneficial for a number of

cancer treatments. For example, a local increase in temperature increases the diffusivity

of chemicals through the tissue [70] which improves drug delivery and so can be used to

improve the effectiveness of chemotherapy [62].

These nanoscale agents are chosen according to some physical properties that can

be tuned by an external source of energy [62]. This allows clinicians to safely use a

stronger source of energy to maximize the damage occurs to the tumor, while protecting

the surrounding healthy tissue with relatively minor side effects [79]. Furthermore, thermal

therapy can be combined with chemotherapy or radiation therapy to enhance the treatment

effectiveness [79].

The choice of the NP material depends on the type of the external energy used in the

thermal treatment [17]. For instance, gold NPs and carbon nanotubes can be used with

laser irradiation source in a technique known as photothermal therapy [62]. Iron oxide

nanoparticles (IONPs) [17, 78] and ferromagnetic seeds [59] can be used in conjunction
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alternating magnetic field generator.

This therapy has attracted researchers in the last two decades because thermal therapy

techniques potentially ameliorate the main issues which arise in hyperthermia (the side

effects and the relatively long treatment session time). Cherukuri et al. [2010] [22] and

Kaur et al. [2016] [62] published reviews about enhancing hyperthermia using metal NPs.

In both these review papers, the excellence of using NPs in cancer imaging was discussed

in addition to generating heat within tumors using an electromagnetic field. In particular,

they reviewed the characteristics of magnetic nanoparticles, gold nanoparticles and carbon

nanotubes that can be exploited to induce high temperatures within the treated tissue.

Kaur et al. [2016] [62] reviewed some types of magnetic NPs, such as IONPs, super-

paramagnetic IONPs and iron doped IONPs. Moreover, they discussed the challenges

of using NPs in thermal therapy, such as NP biocompatibility (some NPs are toxic and

cannot be used clinically, e.g. carbon nanotubes), whereas other NPs can only be used with

restricted dose concentrations (e.g. gold NPs). Another challenge is the biodistribution

of the NPs in the body after the treatment, where NPs are mostly retained in the liver,

spline and kidney for several weeks/months.

Jinghua et al. [2014] [59] studied numerically and experimentally the tumor temper-

ature in magnetic interstitial hyperthermia. In their experiment the tumor is embed-

ded with a number of ferromagnetic seeds and then exposed to an alternating magnetic

field. They used a Lattice Boltzmann method to solve the corresponding bioheat equation

(known as Pennes equation [19]) to calculate the temperature profile across the tumor.

They carried out in vivo and in vitro experiments to validate their mathematical model

which showed high efficiency and precise results.

Cervadoro et al. [2013] [17] studied numerically three different types of superparamag-

netic IONPs exposed to an alternating magnetic field to find the minimum requirements

for successful hyperthermia and thermal ablation in terms of tissue temperature, NP con-

centration and blood perfusion. They solved the bioheat equation using the finite element

method. They found that in the absence of superparamagnetic IONPs, the tissue tem-

perature can be increased using a high frequency magnetic field (≈ 30 MHZ) and this

increased temperature depends on the thermal conductivity of the tissue. On the other

hand, introducing NPs into tissue can increase tissue temperature using a low frequency

magnetic field (< 1 MHZ) and the elevated temperature becomes linearly dependent on

the NP concentration.

Reflecting on the recent advances in the hyperthermia ablation experiments in vitro

and in vivo, Nabil et al. [2015] [78] carried out numerical experiments using an embed-

ded multiscale method to study how nano-based hyperthermia depends on the size of the

tumor and vascularity. They modeled the fundamental mechanisms that appear in nano-

based hyperthermia of a tissue sample, including realistic vasculature, coupled capillary
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and interstitial flow, coupled capillary and interstitial mass transfer applied to the con-

centration of NPs and coupled capillary and interstitial heat transfer. Their simulations

show that the concentration of nanoparticles in the tissue sample significantly decreases

after injection due to a high washout rate, which is a disadvantage of using small parti-

cles. Furthermore, the distribution of nanoparticles and temperature through the tumor

is affected by the blood flow in the capillaries and the capillaries network configuration.

In their simulation, the host tissue is injected with IONP for 40 minutes through a blood

vessel close to the tumor. The tumor is then exposed to an alternating magnetic field

for the following 20 minutes. They concluded that the tumor hyperthermic treatment is

greatly depends on the tumor size, where in large tumors IONP distribution is inhomoge-

neous causing heat heterogeneity across the tumor mass. This observation suggests that

large tumors need to be treated first using anti-angiogenic drugs to get normalized tumor

vasculature before applying the tumor hyperthermic treatment [53].

The model of Nabil et al. [2015] [78] was extended to study tumor vasculature targeting

by Nabil and Zunino [2016] [79]. In this new model they modeled large IONPs that could

not extravasate from the tumor vasculature but instead bind to receptors at the tumor

vasculature inner wall. They found that bound IONPs in the tumor vasculature and

the topology of the microvasculature itself influence the tumor temperature profile where

tumor regions with dense vasculature allow more bound IONPs to access these tumor

regions. Their model suggests that prolonging the wait time between IONP injection and

heating increases the concentration of the bound IONPs at the vasculature inner wall.

1.4 Photothermal Therapy

Photothermal therapy is a promising new therapy for targeted treatment of tumors [60].

As mentioned in the preceding section (Sec. 1.3), in photothermal therapy the tumor is

injected by gold nanorods (GNRs), gold nanoparticles (gold NPs) or carbon nanotubes and

the tumor is then irradiated by a laser beam which heats up the introduced nano material

to induce cell death in the nearby tumor cells, see Fig. 1.2(B). Hirsch et al. [2003] [43]

have promising results for applying photothermal therapy to human breast carcinoma cells

both in vivo and in vitro. They found that either using the laser alone or gold nanoshells

(GNSs) alone was insufficient to induce cell death. This means neither laser nor GNSs

are cytotoxic in their own right. However, irradiation of tumors injected with GNSs can

generate localized and irreversible tissue damage around the GNSs, where the temperature

can be increased by 37 ± 6.6◦C within 4 to 6 minutes. They used real-time magnetic

resonance temperature imaging to monitor the temperature at several depths (2.5, 3.75, 5

and 7.3 mm) beneath the tissue surface showing that increasing tissue temperature by 37◦C

causes coagulation and tissue shrinking.
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Qin and Bischof [2012] [92] provided a critical review to discuss the potential mecha-

nisms of heat generation across biological tissue during laser irradiation in the presence

of gold NPs where heat absorption in tissue depends on tissue composition. For example,

haemoglobin and melanin strongly absorb light in the visible spectrum, while water ab-

sorbs more in the infrared, so NPs can be tuned to absorb laser near infrared to minimize

absorption in water and haemoglobin. Hence, the amount of heat generated in the tissue

depends on laser type, laser scattering and absorption in the tissue and NPs.

In addition they investigated available measurements and mathematical models for

the thermal and optical response of biological tissue exposed to laser irradiation. They

discussed how the radiance (laser power per unit area in a solid angle of divergence mea-

sured in steradian) at any position can be modeled mathematically using the radiative

transport equations which incorporate the scattering and absorption effects and the laser

power. This equation is difficult to solve, so it can be simplified using a large diffusion

approximation which is valid for highly scattering media such as biological tissue. This

approximation was validated experimentally for small GNP concentrations, but gave un-

satisfactory results for high NP concentrations. Alternatively, laser irradiation can be

mimicked using Monte Carlo ray tracing where every photon is modeled and traced in the

tissue. However, this is computationally expensive. Moreover, Qin and Bischof [2012] [92]

discussed the thermal therapy effects on tissue temperature, physical structure and bi-

ological processes at the nano, micro and macro scale. They discussed the important

differences at every scale including macromolecular phase change, water phase change and

particle heating. In addition, they reviewed the thermal injury kinetics and mathematical

modeling. They showed how the photothermal therapy parameters (such as laser power,

irradiation duration and gold NP dose) can be tuned to reduce toxicity and increase the

outcome of the treatment. For instance, they reported that 3.5 W laser irradiation for 3

minutes was enough to treat a tumor injected by gold nanoshells, while in the absence of

gold nanoshells the laser power must be over 10 W with 10 minutes of irradiation to treat

the tumor. Finally, they discussed some techniques of combining photothermal therapy

with other conventional therapies to enhance drug delivery, drug release and radiation

therapy.

Jain et al. [2014] [56] provided a review paper to explore the potential uses of gold NPs

in cancer treatment. They showed how gold NPs can be used as drug carriers, contrast

agents and radiosensitizers (make tumor cells more sensitive to radiation therapy). Gold

NPs surpass the standard contrast agents in tumor imaging due to the high absorption of

X-rays. They also reviewed some experiments in vivo and in vitro showing that the size of

gold NPs influences the rate of NP uptake by tumor cells and the sensitization of the tissue.

For example, 50 nm gold NPs showed larger cell uptake rates and greater light absorbance

compared to 14 nm and 74 nm NPs when tissue was irradiated by X-rays in vitro. Some
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in vivo studies have shown that combining gold NPs with X-ray irradiation prolonged

survival in tumor bearing mice, where the tumor growth was significantly reduced 1 month

after treatment. The gold NP concentration peaked in the tumor vasculature within 7

minutes post injection and the NPs accumulated preferentially at the tumor rim rather

than in the tumor core. Furthermore, Jain et al. [2014] [56] discussed some Monte Carlo

modeling studies for using gold NPs in photothermal therapy and as an assistant to other

conventional therapies. Their Monte Carlo simulations showed that a combination of gold

NPs and X-ray irradiation was efficient, regardless the gold NP concentration value.

There are a number of different studies in the literature investigating the most ap-

propriate geometric properties of GNRs to optimize heat generated by laser irradiation.

Mackey et al. [2014] [72] carried out in vitro experiments to compare three different types

of GNRs (38 × 11, 28 × 8 and 17 × 5 nm). They found that 28 × 8 nm GNRs were the

most effective agents for phototherapy because this size showed the best balance between

the total absorbed light and the converted fraction to heat. In addition, this size of GNR

(28×8 nm) has an intense electromagnetic field that extends sufficiently far from the GNR

surface to interact with the other particles nearby, which can lead to enhanced heating.

Some challenges appear in mathematical modeling of photothermal and thermal ther-

apy techniques [60]. For example, the heterogeneity of the tumor structure is challenging

both in terms of the modeling and computational cost. Therefore, most of the available

theoretical models in the literature consider homogeneous tumors which ignore the het-

erogeneity of temperature distribution across the tumor. Another challenge is coupling

the NP delivery to the tumor with tumor heating and tumor damage as these typically

occur on vastly different timescales. Kaddi et al. [2013] [60] discussed an available com-

mercial package software known as NanoPlan (MagForce AG, Berlin, Germany) that can

be used to predict tumor temperature for a given magnetic NP distribution across the

tumor. They suggested that mathematical models need to be verified by experiments and

clinical trials in order to develop more realistic and sophisticated models.

Photothermal therapy has been tested in different experiments in the literature. For

example, Soni et al. [2015] [102] mimicked laser irradiation of a biological tissue in vitro

using two Agrose gel samples of cylindrical shape. They injected a specified region of

gel with gold NPs (to represent the tumor tissue) with the surrounding gel to represent

the surrounding healthy tissue. The whole gel was irradiated by a laser. To validate

theoretically they solved (numerically) the bioheat equation incorporating blood perfusion

and metabolic heat generation to mimic a real tumor tissue. Their experiments and

modeling suggest that well-designed clinical technique can effectively induce cell damage

within 3 mm of the surrounding healthy tissue. In this study, the effect of laser irradiation

duration and intensity, gold NP concentration and laser spot size on the gel heating were

investigated. They concluded that heating cylindrical tumors (treated by NPs) up to
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50◦ C required two minutes of laser irradiation with intensity 2.5 W/cm2. This model,

however, needs to be verified by in vivo experiments to examine the influence of the blood

perfusion rate and the metabolic heat generation with the tumor.

Mayle et al. [2017] [73] introduced novel GNSs with cores filled in block polypeptide

vesicles with photothermal properties. They tested this new class of GNSs theoretically

and in vitro, which gave a comparable temperature profile. They used their model to

optimize the heat generated in the tumor via changing the parameters of the GNSs, where

the GNS diameter was 150 nm. Although the GNS core is positively charged which is

toxic, the golden shell removed this toxicity for all concentrations they tested. Hence, this

proposed GNS structure showed low toxicity in the absence of laser exposure.

Photothermal therapy techniques need to be studied and analyzed in vivo in order to

study the NP pharmacokinetics (drug movement and deposition within the body) and

toxicity. Terentyuk et al. [2012] [110] studied the tumor growth following a photothermal

treatment in vivo and in vitro, finding that 40 × 10 nm GNRs accumulate in the tumor

within 24 h, but GNR concentration in the spleen exceeds the corresponding concentration

in the tumor by 1 − 15 times. However, the concentration of GNRs in the muscle tissue

is nearly 3− 4 times smaller than in the tumor. This leads to more damage in the tumor

compared to tissue during laser irradiation. In addition, smaller laser power (1 − 2 W

cm−2) can be used to successfully ablate the tumor.

El-Sayed et al. [2013] [28] successfully inhibited the growth of tumor bearing rats

and mice by laser heating of GNRs administrated either intravenously or intratumorally.

They found that the GNR blood half life in the case of intravenous injection is less than 3

hours. In addition, GNRs mostly accumulate in the spleen, but for an additive intravenous

injection GNRs mostly accumulate with large concentrations in both the spleen and liver.

However, these elevated GNR concentration levels in the spleen and liver were non-toxic.

They concluded that the intravenous and the intratumoral administrations result in a

similar GNR spatial distribution across the tumors and are equipotent for tumor ablation

when coupled with laser irradiation.

Dickerson et al. [2008] [25] studied the feasibility of in vivo photothermal therapy

for deep-seated tumors. They compared the elevated temperature at the tumor in the

case of injecting GNRs directly to the tumor with the case of intravenous administration.

Although the intratumoral administration provided higher temperatures during the laser

irradiation, both techniques substantially inhibited tumor growth.

In the light of these in vivo and in vitro experiments various theoretical models have

been used to investigate the challenges which arise in photothermal techniques. Huang

et al. [2006] [45] investigated numerically and experimentally (in vitro) the minimum

laser irradiation power required to induce tumor cell death. They conjugated gold NPs

with antibodies in order to increase the concentration of gold NPs accumulated within
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the tumor. They concluded from their simulations that there is a temperature threshold

in the range 70 − 80◦C required to induce cell death in the tumor and healthy tissue.

Furthermore, introducing gold NPs reduced the required laser power to induce tumor

damage from ≈ 104 W cm−2 to ≈ 19 W cm−2. Moreover, the required laser irradiation

time (≈ 4 min) is very small compared to the conventional hyperthermia (≈ 60 min). As

a result, using gold NPs reduces the exposure time of the healthy tissue to the heat stress

which leads to reduced side effects.

Another theoretical study was developed by Huang et al. [2010] [44] which they vali-

dated experimentally (in vitro) using human prostate cancer cells. In their mathematical

model they considered GNRs that cannot diffuse through the interstitium as they bind to

tissue receptors. They measured and simulated the tissue temperature and the induced

cell death. They assumed that GNRs were not internalized within the cells, so all GNRs

are in the extracellular matrix. Their calculated spatiotemporal temperature distribution

agrees well with their experiments. They analyzed numerically the effect of cell injury

activation energy on the damage induced in the tumor. They showed that conjugating the

NPs with binding ligands could lead to a significant difference in tumor damage. They

also showed that GNRs in the extracellular matrix are more effective than the internalized

GNRs within the cells, although the reason for this difference is unclear.

Von Maltzahn et al. [2009] [112] conducted an experiment in vivo for photothermal

therapy using GNRs with a blood half life of ≈ 17 hours. They administrated these

GNRs via either intravenous or intratumoral injections. Furthermore, they computed the

temperature elevation across the tumor during the irradiation using a 3D mathematical

model with a temperature dependent blood perfusion rate in the bioheat equation. They

showed that a single intravenous injection was enough to successfully ablate the tumor.

Feng et al. [2009] [32] simulated the heat generated a 3D spherical prostate tumor

treated with GNSs. They again used the bioheat equation with a laser source term which

incorporates the absorption and scattering effects of the tumor tissue and the GNSs. They

used an Arrhenius damage model [70] to estimate the tumor damage induced by heating.

We use a similar approach to estimate damage in chapter 4. However, their study they did

not simulate the GNS delivery to the tumor. As a follow up paper, Feng et al. [2009] [32]

developed an integrated mathematical model to simulate the transient temperature profile

induced during laser irradiation. This model predicts changes to the optical and thermal

properties of the tumor tissue (due to introducing GNSs and change in tissue temperature)

using a Monte Carlo fluence model. Their (dynamical) model estimates the tissue thermal

conductivity, blood perfusion rate, and tissue absorption and scattering coefficients as

functions of the transient tissue temperature and wavelength of the laser light. Their

model gives reliable prediction of the temperature field since it incorporates the change in

thermal and optical properties of the irradiated tissue.
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Barvinschi and Bunoiu [2017] [7] simulated the laser irradiation of a 3D slab of multi-

layered tissue mimicking the structure of the human skin. In their model they incorporated

blood vessels at different depths within the tissue. Their model suggests that the tem-

perature profile depends on the laser power, laser spot size, blood vessel size and blood

flow rate. In particular, increasing the laser power or the laser spot size can significantly

magnify the maximum tissue temperature, while increasing blood flow rate in the vessel

reduces the maximum temperature that can be achieved in the tissue.

Rylander et al. [2006] [95] presented a computational model for phototherapy treat-

ment for healthy prostate and tumors [increasing heat shock proteins which are produced

in moderately heated tissues in order to increase cell resistance to heat which increases

cell viability]. Their model can predict two heat shock protein (HSP27 and HSP70) dis-

tributions in addition to tissue temperature and tissue damage induced via a number of

laser probes. This phenomenon challenges the chemotherapy and radiation treatments

combined with hyperthermia. Their model provides clinicians with the predicted regions

rich in heat shock proteins which need to be treated to prevent tumor recurrence.

Xu et al. [2011] [120] numerically investigated the influence of the laser wavelength

power, exposure time, concentration of NPs and the optical properties of tissue on the

photothermal process. They modeled the laser beam transport in the tissue to calculate

the laser source term in the bioheat equation. They concluded that the accumulated NPs

prevent laser light from evolving across the tissue which means that laser cannot penetrate

to the deep tissue. However, the efficiency of NP laser light absorbance balances the lack

of laser light propagation across tissue. They found that for a given laser power, there is a

NP concentration threshold beyond which any increase in NP concentration in the tumor

does not enhance the outcome of the laser irradiation.

Zhu et al. [2002] [122] simulated the tumor temperature profile during laser irradiation

of a perfused porcine liver through a spherical applicator with an optical fiber. They

used a dynamic model which updates the tissue optical properties due to the transient

temperature profile across the tumor and the induced tissue damage. They concluded

that ignoring the dynamic effects in thermal and optical properties of the tissue leads to

overestimated temperature and tissue damage.

1.5 Cell Injury

There are different intracellular pathways for cell death induced by heat [70]. For example,

Lepock [2003] [70] investigated the minimum thermal dose that can induce hyperthermic

cell death. Heating cells drives a transition in cellular macromolecules and structures like

DNA and proteins, where increasing temperature triggers structural transformation from

an ordered state to a disordered state. Moreover, heat triggers protein denaturation which



CHAPTER 1. INTRODUCTION 14

can then induce alterations in cell structure and function. Therefore, Lepock [2003] [70]

concluded that cell death needs a high activation energy of 100−200 Kcal/mole to trigger

a transition in a cellular macromolecule or structure. Furthermore, hyperthermic cell

death needs a high activation energy to induce protein denaturation. Finally, combining

hyperthermia with other stresses such as ionizing radiation helps in breaking the activation

energy threshold which leads to greater tissue damage.

The induced tissue damage as a result of heat stress can be modeled mathematically

using the Arrhenius injury model [94], see Eq. 4.35. This model was correlated according

to Arrhenius plots (the logarithm of dead cell number vs the inverse of the temperature)

for cell growth (30 − 40◦C), hypothermic killing (0 − 25◦C), and hyperthermic killing

(42 − 45◦C). These plots showed that the logarithm of dead cell number has a linear

relationship with the inverse of temperature and the slope of this linear relationship defines

the injury process activation energy. This mathematical model is intensively used in the

literature for simulating the tumor thermal damage. So, in this thesis we use the Arrhenius

injury model to calculate the induced tumor damage following a laser irradiation session

for a tumor contains GNRs, see Sec. 4.3.

1.6 Drug delivery

To be effective these thermal and photothermal techniques require significant metal GNR

accumulation within the tumor. However tumor targeting is a complex and challenging

process. GNRs need to be able to access the tumor and overcome clearance by the lym-

phatic system [35]. The immune system quickly recognizes the metal particles and starts

to eliminate them from the blood stream via macrophages. The time needed for NP con-

centration to decrease to half its initial value is called the blood half life for NPs. The

blood half life for NPs can be fitted experimentally and represented mathematically using

an exponential decay function, see Eq. 3.1. The interaction between the gold NPs and

the components of the immune system can be minimized through decorating the gold NP

surface with a biocompatible material (such as hydrophilic polymers) [15]. This biocom-

patible cover hides the gold NP from the immune system which prolongs the gold NP

suspension in the blood stream. As a result, gold NPs accumulate in the tumor with

higher concentrations.

Arami et al. [2015] [5] provided a review which investigates the influence of IONP

properties on the blood clearance pharmacokinetics, biodistribution and biodegration of

IONPs. They discussed how IONPs can be optimized by tuning their size and distribution

to become biocompatible. This makes IONPs suitable for cancer imaging and therapy due

to their unique magnetic properties.
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1.6.1 NP Blood Half Life

The NP blood half life can be prolonged by reducing uptake by macrophages. This can

be achieved through choosing NP size to be < 100 nm, and high NP surface curvature

and/or hydrophilic surface [14]. Another way to prolong the circulating time of NPs is by

temporarily inhibiting the immune system [5]. This process requires injecting the body

with some biocompatible material prior to the NP administration. This material consumes

the active macrophages in the body. Then, injecting NPs intravenously guarantees a

prolonged blood half life due to the lack of active immune cells [5].

Akiyama et al. [2009] [2] used decorated GNRs by various amounts of polyethylene

glycol (PEG) to investigate the biodistribution of GNRs in tumor bearing mice. They

found that using a PEG:Au molar ratio of 1.5 prolongs the blood half life and results in

an optimal GNR distribution across the tumor. Furthermore, using a high dose of GNRs

(more than 39 µg of gold) enhances the GNR accumulation in the tumor as the immune

system is temporary inhibited.

Dreaden et al. [2012] [27] reported that gold NPs coated with polyethylene glycol can

exhibit long circulation times in the blood (up to 51 h). They deduced that the optimal

hydrodynamic diameter of NPs for successful delivery to tumors is 50 − 60 nm. This

observation is consistent with another study in vivo [108] where NPs of size 50 nm are

delivered to tumors more effectively than 20 and 200 nm NPs.

1.6.2 Passive Targeting

It should be noted that gold NPs selectively accumulate in the tumor due to larger pores

in tumor vasculature (600−800 nm) compared to those in the healthy vessels. Tumors also

have dysfunctional lymphatics which reduce the efficiency of clearance [15], see Fig. 1.3(A).

This intrinsic characteristic in tumors is known as the enhanced permeability and retention

effect (EPR) which enables gold NPs to accumulate in the tumor without using binding

ligands via passive targeting [13]. Passive targeting, however, leads to enhanced gold NP

accumulation in the liver, spleen and kidney since the main function of these organs is to

filter the bloodstream [28].

In addition, the leaky tumor vasculature increases the transvascular fluid and the

osmotic pressure in the interstitial space [54]. The impaired lymphatics in tumors leave

the interstitial fluid without a viable sink. As a result, the interstitial fluid pressure

increases and becomes homogeneous across the tumor core and comparable to the vascular

pressure [66], reducing transport across the vessel wall and across the tumor core by

advection and so NP transport across the tumor core is dominated by diffusion [8].

In the light of these tumor characteristics, Lane et al. [2015] [66] mentioned in their

review paper some techniques to enhance passive diffusion. They suggested preparing
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Figure 1.3: GNR Passive tumor targeting (A) and GNR active tumor targeting (B) dia-
grams.

tumors to have a homogeneous and high vasculature area per unit tumor volume (to

increase the NP extravasation), degraded interstitium using bacterial collagenase enzymes

(to enhance NP diffusion), and short distances between vasculature vessels. Furthermore,

NP extravasation can be improved by temporarily increasing the vascular blood pressure

in order to overcome the abnormally elevated interstitial pressure. This can be achieved by

reducing the vessel wall pore size in the tumor vasculature using antiangiogenic drugs [20].

However, the temporary increase of blood pressure in the tumor vasculature can lead

to retention of fluid in the tumor interstitium which elevates the interstitial pressure again,

reversing flow into the tumor vasculature [66]. This will then return the NPs from the

interstitium back into the vasculature. Given this delicate balance the NPs need to be

prepared optimally to ensure their presence in the tumor at the required time.

1.6.3 Active Targeting

To help achieve this delicate balance gold NPs can be conjugated with binding ligands

which selectively bind to receptors at the tumor cell surface, and the bound gold NPs

can be engulfed by the tumor cell [34,40]. This targeting technique is called active tumor

targeting, see Fig. 1.3(B). The binding ligands used in the active tumor targeting are

chosen according to the type of the targeted tumor cell receptor. These binding ligands

include monoclonal antibodies, peptides/proteins, carbohydrates and DNA/RNA.

Lane et al. [2015] [66] discussed some strategies to improve the NP delivery via active

targeting. They reported that cell-NP interactions (NP binding to cells or NP internal-

ization into cells) are restricted by low cell concentrations and small NP diffusivity in

the interstitium. The NP binding rates can be increased by charging the NPs or using

NPs with greater hydrophobic character. In addition, binding ligand affinity and density

influence the cellular uptake rate.
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Kim et al. [2010] [63] studied in vitro and numerically the effect of NP charge on

NP binding to human colon carcinoma cells and NP diffusion across the tissue. They

found that positively charging the NPs improves the NP affinity to bind to tumor cell

receptors, whereas negatively charging NPs improves transport across deep tissue, because

negatively charged macromolecules which presence in the interstitium slows down the

transport of positively charged NPs. They found that the transport of the conjugated

NPs with (negative or positive) binding ligands across the tissue is dominated by the

NP-cell interaction which restrict NP diffusion across the tumor. This is due to the rate

of NP association and dissociation to cells is smaller than the NP diffusion rate across

the interstitium. Therefore, the required NP penetration depth into the tumor can be

controlled by the NP surface charge.

For successful delivery, NPs should be coated in binding ligands with high affinity

to the cell receptors in order to construct strong bonds between the NP and the cell

surface which can then wrap the cellular membrane to engulf the NP. Alternatively, NPs

can directly penetrate the cell membrane to get internalized into the cell. Lane et al.

[2015] [66] explained different techniques for preparing the NP surface to be actively or

directly internalized in the cell. The bound NP on the cell surface can dissociate from

the cell receptor, however, so the internalized NPs are usually trapped in the cell and

cannot exit again. Murugan et al. [2015] [77] discussed the pathways of internalizing

NPs in the tumor cells, and they investigated the role of NP size, shape and charge in

overcoming the biological barriers for NP internalization. They concluded from other

studies that the influence of NP size depends on the cell type and chemical characteristics

of the NPs. Positively charged NPs can bind easily to the cell surface (which is typically

negatively charged), and can then be internalized within the cells. They also concluded

that spherical NPs have a larger internalization probability than cylindrical NPs, and have

more drug-loading capacity than nonspherical NPs.

Guarnieri et al. [2011] [40] studied experimentally (in vitro) the influence of serum

proteins, (present in the blood) on NP uptake. They found that the proteins physically

associate to the NP surface which reduces the NP cellular uptake via reducing the rate

of NP binding to the cell surface. Furthermore, they found that the concentration of

the internalized NPs saturates, and the saturation point depends on the NP size. This

phenomena of maximal NP capacity is introduced in our mathematical model used in

this thesis, see Eq. 3.30. The fact that NP internalization saturates in the cells is very

important in modeling tumor active targeting since this allows NPs to penetrate further

into the tumor, see Sec. 3.4.2.

Hussain et al. [2014] [47] studied in vivo the effect of the number of binding ligands

at the NP surface on the NP-tumor-cell interaction. They used a mathematical model to

study the kinetics of the NP-tumor-cell interaction and they concluded that the number
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of available receptors at the tumor cell surface restricts the NP cellular uptake. Therefore,

they suggested that reducing the number of binding ligands on the NP surface may actually

increase the number of NPs which bind to the tumor cells.

Huang et al. [2010b] [46] studied in vivo the transport of GNRs conjugated with

binding ligands to tumors. They conjugated GNRs with three different types of bind-

ing ligands in order to target three different types of receptors at the tumor cell surface.

They found that introducing binding ligands has a minor enhancement for drug delivery.

However, binding ligands influence the intracellular and extracellular GNR distribution

in the tumor. They suggested that GNR intratumoral administration gives better re-

sults compared to intravenous administration. This is consistent with other experimental

studies [28]. However, in some cases intratumoral administration can be very difficult for

deep-sited tumors.

Ruoslahti et al. [2010] [93] highlighted the problem of the restricted available binding

sites in the tumor. They reported that a high dose of NPs (which exceeds the number

of receptors in the tumor) leads to a reduction in the NP dose fraction delivered to the

tumor (in the case of no NP internalization by the cells) since the unbound NPs stay in the

interstitium until removal by lymphatic vessels. In order to overcome this problem they

suggested using monovalent high affinity, allowing every NP to bind to one receptor, but

this may reduce the NP penetration into the tumor [63]. The reduction of NP penetration

due to NP-cell interaction is known as the binding site barrier, and we discuss this barrier

in our mathematical model in Sec. 3.4.2. We can overcome the binding site barrier using

multivalent weak affinity binding ligands which allow NPs to penetrate deeper in the tumor

and the multivalent affinity strengthens the NP binding to cells.

Doiron et al. [2011] [26] found that the number of the available sites at the cell

surface decreases for larger sizes of the delivered NPs. As a result, the NP binding and

internalization kinetics are influenced by the NP size.

1.6.4 Toxicity of the NPs

To use NPs clinically as agents in cancer treatment for humans it is important to under-

stand their toxicity. A NP toxicity study requires monitoring the dynamics, pathways

and the fate of NPs in animal models within weeks, months and years [5]. Arami et al.

[2015] [5] discussed some published results for NP toxicity studies in vivo and in vitro.

Some of those studies showed that about 80% of injected IONPs remained in the blood

circulatory system for 84 days as iron-protein complexes. Therefore, the NP toxicity in

the body is measured according to the influence of the administrated NPs on the blood

chemistry, blood cells, gene expression profiles in liver, gross of organs and body weight.

Other studies showed that in the case of intravenous and intranasal administration, IONP

toxicity can be reduced dramatically through coating IONPs with biocompatible polymers
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and using a suitable particle size. On the other hand, Arami et al. [2015] [5] reported that

according to some studies, the oral administration of lower doses of the IONPs provides a

safe route with mild side effects such as vomiting, nausea or flatulence.

1.6.5 First-in-clinical Trials

Lane et al. [2015] [66] reported successful first-in-human pilot studies for image-guided

surgery of tumors in humans using both active and passive targeting agents conjugated

with fluorescent dyes. These clinical trials clarified that most of human tumors (such as

breast, lung, ovarian and pancreatic cancers) have leaky vasculatures and can be targeted

through passive delivery. For example, the irradiation of near-infrared light successfully

facilitated the resection of tumors (cutting out the tumor through medical surgery) in

the human body in preliminary clinical trials of passive fluorescent agents. However,

this technique failed with tumors which have peritumoral inflammation. Furthermore,

active targeting was successfully tested in first-in-human clinical trials for cancer imaging.

These clinical trials involved patients with lung cancer and ovarian cancer. Fluorescein-

conjugated agents helped to discover tumor nodules that were not located by standard

techniques [66].

1.6.6 Drug Delivery Modeling

Modeling NP delivery to a tumor is challenging due to the heterogeneity of tumor tissue

and vasculature. Jain [1987] [51] reviewed the key parameters for the transvascular fluid

and solute transport. He discussed the measurement methods and 1D modeling techniques

of these transvascular transport parameters. The transvascular fluid transport is driven by

the transmural pressure (the difference between the interstitial, and the vascular and the

osmotic pressures), while the transvascular solute transport is driven by both diffusion and

advection. The transvascular fluid transport can be modeled by Starling’s law [33,104], see

Eq. (3.7). Conversely, the transvascular solute transport via diffusion and advection can

be approximated by the two pore model [10,97], see Eq. (3.24). We revisit the transvascular

fluid and solute transport in a single vessel model in Chapter 2.

Baxter and Jain [1989] [8] modeled the macroscopic transvascular exchange and the

interstitial transport of fluid and drug macromolecules in tumors. They considered a

homogenous spherical isolated tumor or tumor surrounded by a shell of normal tissue.

They considered the tumor as a porous media, so they used Darcy’s law for the interstitial

flow (see Eq. 3.5). They modeled the tumor vasculature and lymphatics as a spatially

homogenous and continuous source and sink, respectively. They used Starling’s law to

account the transvascular fluid (see Eq. 3.7), and considered the translymphatic fluid

is driven by the pressure difference between the interstitial pressure and the lymphatic
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pressure (see Eq. 3.8). For the drug transport, they used an advection diffusion equation

with a source term (representing the transvascular drug flux) and a sink term (representing

the translymphatic drug flux). The transvascular drug flux was calculated by the two

pore model, which incorporates the transvascular exchange via diffusion and advection

(see Eq. 3.24). Whereas the translymphatic flux was assumed to be proportional to the

drug concentration in the interstitium (see Eq. 3.19).

The model described in the preceding paragraph was extended to the case of heteroge-

nous tumor vasculature [8]. In particular, the tumor vasculature was considered to be

present only in the tumor viable rim and in the surrounding healthy tissue. Baxter and

Jain [1991] [10] extended these two models to study metabolism and drug-cell interaction

using a reaction term in the drug transport equation to model drug binding to the tumor

cells, but they did not model the drug internalization in the cells. They concluded from

their framework that in the absence of the binding ligands, the interstitial pressure profile

had the most significant influence on drug distribution. They found that introducing bind-

ing ligands slowed down the diffusion and reduce drug accumulation in the tumor core,

which result in heterogeneous drug concentration profile across the tumor (this conclusion

is similar to what we found in our model, see Sec. 3.4.2). The framework introduced

in these three papers is used in this thesis to model the GNR delivery to a vascularised

spherical tumor.

Goodman et al. [2008] [34] studied NP delivery to tumors both mathematically and

in vitro. They conjugated the NPs with binding ligands so they included the NP-cell

interaction within the mathematical model. This mathematical model accounts for NP

diffusion across the tumor interstitium, NP binding to the tumor cell surface and NP

internalization into the tumor cells. They used mixture theory to model three types of

NPs in the tumor: free NPs, bound NPs and internalized NPs, and they assumed that

free NPs can diffuse across the interstitium and not across the tumor cells. So, there is a

restricted tumor volume fraction for free NPs in the tumor. They determined the model

parameters experimentally and validated their numerical results against the experimental

data. They concluded that the key parameters that influence the drug profile in the

tissue are particle size, particle binding affinity and tissue porosity. They found that

spherical NPs with diameters 20 and 40 nm accumulated in the tumor spheroid, while

NPs with diameter of 200 nm showed no penetration into the spheroids. They also found

the amount of NPs that penetrate into tissue can be enhanced by increasing tissue porosity

using extracellular matrix degrading enzymes (collagenase). However, this model does not

consider a local maximal concentration for internalized NPs in the tumor cells (tumor cell

capacity for NPs) which means tumor cells can engulf very large number of NPs which

is not consistent with experimental results in the literature [40]. We use a variant of the

model of Goodman et al. [2008] [34] in this thesis to investigate the GNR-cell interaction,
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but including a maximal capacity for GNRs.

Hussain et al. [2014] [47] investigated theoretically and in vivo the influence of the

availability of the tumor cell receptors on the drug delivery to tumors. They used the

model of Goodman et al. [2008] [34] to discuss the drug binding to the tumor cells, but

did not consider drug internalization and modeled the drug clearance in the blood using

a biexponential decay function (sum of two exponential decay functions). They assumed

that the drug extravasation is proportional to the drug gradient across the blood vessel

wall which means that they ignored the drug extravasation by advection. They concluded

that the limitation of drug transport into the tumor decreases the number of cell receptors

available for binding, but this can be enhanced using tumor penetrating peptides which

enhance drug delivery to deep tissue or using drugs with long blood half life. Kim et al.

[2010] [63] used a similar mathematical model to discuss their in vitro results for delivering

NPs to human colon carcinoma. However, they assumed that NP binding rate coefficient

is heterogeneous in the tumor (we showed the results of this paper in Sec. 1.6.3).

Chou et al. [2013] [23] mimicked mathematically (in the microscale) the problem of

delivering NPs to a tumor in vivo. They modeled the NP clearance from the blood stream

using an exponential decay model, see the first two terms of Eq. 3.1. They considered no

lymphatics in the system as they modeled the tumor with no surrounding healthy tissue.

They modeled the transvascular fluid and the interstitial fluid using the model of Goodman

et al. [2008] [34]. However, they used Kedem-Katchalsky equation for the transvascular

NP transport which is an alternative to the two pore model used by Goodman et al.

[2008] [34]. In the interstitium they considered NPs that can diffuse and get internalized

(absorbed) directly to the tumor cells. They found that drugs with small radius penetrate

more deeply into the tumor interstitium compared to larger drugs; this means that small

drugs produce a more uniform concentration profile across the tumor. They also found

that enhancing vascular permeability increased the mass of drug in the tumor but did not

enhance drug penetration, while increasing drug diffusivity enhanced both the drug mass

in the tissue and drug penetration depth.

Stylianopoulos et al. [2015] [105] employed the model of Goodman et al. [2008] [34] to

investigate the optimal setup for delivering NPs charged by therapeutic drug and binding

ligands. They solved for blood flow in the tumor vasculature and used the two pore model

to calculate the NP extravasation flux. They modeled the interstitial flow using Darcy’s

law. They studied the dynamics of NP interaction with tumor cells and the effect of the

therapeutic drug release. Furthermore, they introduced a novel multistage drug delivery

system. In this proposed technique they simulated delivery of 20 nm NPs which release 5

nm NPs charged by the therapeutic drug and binding ligands. They concluded that the

multistage technique enhances the drug delivery provided the NPs are sufficiently small

with high affinity and high drug release rate.
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Tang et al. [2014] [108] extended the model of Goodman et al. [2008] [34] by assuming

that NP internalization into tumor cells is reversible. They studied in vivo the influence of

NP size on the NP biodistribution and penetration depth into the tumor. They concluded

from the mathematical model and from experimental data that 50 nm NPs give the optimal

NP accumulation in the tumor and NP internalization rate, compared to 20 and 200 nm

NPs.

Groh et al. [2014] [38] introduced three mathematical models for tumor cord geometry

using different length scales and compared their results to investigate the influence of

NP binding affinity on the NP penetration depth into the tumor. In the first model

(multidimensional cell-center 2D model) they considered every cell center in the tumor as

a computational node. In particular, every cell in the model is represented by a position,

a cell radius, a NP binding rate and available cell receptor concentration. In the second

model (radially symmetric compartment model) they partitioned the tumor into a group

of spherical shells surrounding the cylindrical vessel at the tumor center. They assumed

that the drug transport is proportional to the interface area and the concentration gradient

across the interface area. So, the NP concentration can be modeled via a system of ODEs

which represent conversation of mass. In the third model (radially symmetric model) they

modeled the tumor as a continuous and homogeneous spherical medium. They ignored NP

transport via advection across the tumor tissue. Furthermore, they considered that the

NP extravasation from the blood vessel is proportional to the drug concentration gradient

across the vessel wall. They used a common NP binding model with all three NP transport

models with three types of NPs: extracellular NPs, intracellular free NPs and intracellular

bound NPs. So, they considered that the NP binding happens within the cell (this is in

contrast with our model in Chapter 3 where we assumed that NPs bind to the cell surface).

They concluded from their study that the continuum and the compartment models give

approximately the same concentration profiles, while the cell-center model gives slightly

higher concentration predictions across the tumor.

Ying et al. [2013] [121] reviewed different mathematical models to mimic the NP-cell

interaction and the NP transport across the tumor interstitium. They also investigated

different models for determining NP diffusion coefficient in the tissue and for evaluating

the concentration of the available binding sites. They also discussed some mathematical

compartment (lumped parameter) models that can predict and analyze the kinetics of

NP accumulation in the tumor and the NP biodistribution in the body. For instance,

the blood circulatory system can be considered as a compartment and the tumor can be

represented by another compartment. Then, the NP delivery to the tumor can be modeled

by a system of two ODEs. Another example, a more complicated (three) compartment

model, incorporates NP concentration in the blood stream (the first compartment) using

the exponential decay model (Eq. 2.141), the NP concentration in the interstitium (the
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second compartment) and NP internalization by tumor cells (the third compartment).

This three compartment model consists of three ODEs which represent the change in NP

concentration in each compartment. We use this idea in chapter 3 to model three different

states GNRs: free GNRs in the interstitium, bound GNRs to tumor cells and internalized

GNRs within tumor cells. More complicated compartment models can incorporate sim-

ulating the pharmacokinetics for delivering NPs to tumors in vivo. These compartment

models can help in finding the optimal design of NPs to maximize the efficiency of the NP

delivery process and minimize their toxicity to the healthy tissue.

1.6.7 Thesis Outline

In this thesis we investigate photothermal therapy which comprises two steps: firstly

delivering GNRs to a tumor (drug delivery problem) and secondly irradiating the tumor

by laser (heat transport problem) which result in tumor damage (cell injury problem).

Herein we model the whole process in one spatial dimension at the macroscale. From this

we explore the optimal modeling setup for the maximal damage in the tumor and minimal

damage in the surrounding tissue.

First of all, in chapter 2 we investigate fluid and solute transport in a blood vessel

segment surrounded by tissue. In this chapter we model blood flow (in the vessel), in-

terstitial fluid flow and GNR transport (in the vessel, across the vessel wall and across

the tissue) using the principles of fluid mechanics. We apply asymptotic analysis to find

analytical solutions for blood velocity in the vessel and the interstitial fluid velocity across

the vessel wall and the tissue. The GNR concentration in the vessel and tissue are solved

numerically. We then validate the two pore model approximation (see Sec. 2.7) to estimate

the GNR extravasation into tissue instead of solving the full GNR transport equation in

the vessel.

In chapter 3 we study the problem of GNR delivery to spherical tumors surrounded by

healthy tissue at the macroscale. We use the two pore model approximation to estimate the

GNR flux into tissue and investigate the GNR profile across the tumor and the surrounding

tissue in the presence or absence of binding ligands. Furthermore, we consider GNR

administration by either intravenous or intratumoral injection. We investigate the optimal

setup which can result in a maximal homogeneous GNR concentration across the tumor

and a minimal concentration in the surrounding tissue.

In chapter 4 we model the laser irradiation of a spherical tumor surrounded by healthy

tissue which have both been targeted with GNRs (modeled in chapter 3) using a modified

energy equation (Pennes’ bioheat equation). The GNR distribution across the tumor and

the healthy tissue (which was estimated in chapter 3) is dependent on time and the radial

direction. We investigate the temperature elevation due to laser irradiation, and estimate

the tumor and tissue damage using the Arrhenius model (Sec. 4.3).



Chapter 2

GNR Extravasation From a Single

Blood Vessel

Delivering large dose fraction of anticancer (or NPs) to tumors in vivo is challenging [52].

This is because drug molecules encounter barriers before interacting with the tumor cells,

for example: molecule distribution in the vasculature, extravasation across the vessel

wall, transport through the interstitium and interacting with cell surface [51]. Therefore,

estimating the solute extravasation from tumor vasculature is a key step in drug delivery

modeling.

There are different mathematical expressions for solute extravasation flux [51] which

were used extensively in drug delivery studies at the macroscale in the literature [10, 97].

These mathematical expressions need to be tested at the microscale.

Shipley and Chapman [2010] [99] developed a model at the microscale for fluid and

solute transport through tumor vasculature and the interstitial space. They used the

multiple scales method to derive the fluid and solute transport equation at the macroscale.

Although they did not solve the equations, their model can be used to simulate blood

perfusion and drug transport in wide range of tissue.

Shipley et. al. [2010] [98] simulated biodegradable hollow fiber membrane bioreac-

tors. They applied lubrication theory to develop analytical solutions of the fluid transport

problem. Griffiths et al. [2013] [37] developed a mathematical model for fluid and solute

transport through a tube surrounded by thin porous walls. They applied Taylor dispersion

to find mathematical solutions for both the fluid and solute transport equations. In the

light of Griffiths et al. [2013] [37] and Shipley et. al. [2010] [98] models we develop a

mathematical model for fluid and solute transport through a single vessel with a thin wall

surrounded by tissue.

We consider the problem of GNRs extravasated from blood flow within a single blood

vessel of length L̂. We assume that GNRs extravasate across the vessel wall into the

surrounding tissue via diffusion and advection. The extravasation of the solute depends on

24
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the osmotic pressure which depends on the transmural concentration, however, we neglect

the effect of osmosis to decouple the fluid transport problem and the solute transport

problem in order to find an analytical solution for the fluid velocity in the vessel, wall

and surrounding tissue. We assume that the vessel wall is an annulus with inner and

outer radii R̂1 and R̂2, respectively. Similarly, we assume the surrounding tissue is also an

annulus with inner and outer radii R̂2 and R̂3, respectively, as shown in Fig. 2.1.

2.1 The Model

In this model we assume that the thickness of the vessel wall is very small compared to the

vessel radius. Furthermore, we assume that the radius of the vessel (and hence the vessel

wall thickness) is small compared to the vessel length. Hence, we introduce the following

small parameters

R̂1

L̂
= ε� 1,

R̂2 − R̂1

R̂1

= δ � 1

[
⇔ R̂2 − R̂1

L̂
= εδ

]
and

R̂3 − R̂2

L̂
= λ ≡ mε

In the analysis below we exploit the smallness of ε and δ to approximate the mathe-

matical model using asymptotic analysis. Furthermore, we assume that the outer region

of tissue has a thickness comparable to the radius of the vessel to study the variation in

the solute concentration within a small boundary layer in the tissue next to the vessel,

so we define m as an integer of O(1). This approximation is valid in tumors with dense

vasculatures which comprise abnormal chaotic disorganised blood vessels [80]. However,

the heterogeneity of tumor vasculature makes some regions in the tumor without blood

vessels or with few blood vessels with relatively large interstitium between the vessels

(m � 1). The scales of the vessel and the vessel wall were chosen to be similar to the

scales introduced by Griffiths et al. [2013] [37] and the scale of tissue region is chosen to

construct a dominant balance. Griffiths et al. [2013] [37] studied a problem of a hollow-

fiber membrane bioreactor (mimicking a segment of vessel surrounded by tissue), where

nutrient was delivered to sustain an annulus of cultured cells surrounding the tube. In

this chapter we extend the problem of Griffiths et al. [2013] [37] to incorporate a vessel

wall to investigate the solute flux across the wall. The values of these parameters in the

capillaries are R̂1 = 3 µm, R̂2− R̂1 = 1 µm, L̂ = 600 µm [16]. Thus, we have ε = 5×10−3,

δ = 0.333 and εδ = 1.7× 10−3.

2.1.1 The Fluid Transport Model at the Micro-scale

The blood velocity is typically very slow in the micro vasculature, so we model the blood

flow in the vessel using the axisymmetric Stokes equations for a Newtonian fluid [1,84]. We
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Figure 2.1: Microscale domain of a single vessel and the surrounding tissue. A)Three
dimensional structure of the domain . B)Radial cross-section of the domain.

note that in reality the blood flow in the microvasculature is a highly discrete process, with

relatively large red blood cells squeezing along the vessels. For simplicity we assume in

this study that the blood is incompressible and Newtonian fluid with a constant viscosity

µ̂b.

In the vessel we consider the radial coordinate r̂ with origin along the vessel axis and

equal to R̂1 at the vessel/wall interface. The axial coordinate in this problem is denoted ẑ

which is zero at the vessel inlet and equal to L̂ at the vessel outlet (see Fig. 2.1). We use

the symbol ûi for the radial velocity, the symbol ŵi for the axial velocity and the symbol

P̂i for fluid pressure, where i = 1, 2, 3. Note that all variables are assumed axisymmetric

throughout. We use the subscript 1 to refer to the variables in the blood vessel itself, the
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subscript 2 for the variables in the vessel wall and the subscript 3 for the variables in the

tissue.

Region 1: Within the Vessel

Across the capillary itself and the capillary wall there is neither a source nor sink of blood.

Assuming the blood is incompressible we write the blood continuity equation in the vessel

in the form (0 ≤ r̂ ≤ R̂1, 0 ≤ ẑ ≤ L̂),

1

r̂

∂

∂r̂
(r̂û1) +

∂ŵ1

∂ẑ
= 0. (2.1)

Furthermore, we ignore the effect of body forces and assume that inertial effects are

insignificant. Therefore, the r̂-momentum equation in the vessel is given by (0 ≤ r̂ ≤ R̂1,

0 ≤ ẑ ≤ L̂),

∂P̂1

∂r̂
= µ̂b

(
1

r̂

∂

∂r̂

(
r̂
∂û1

∂r̂

)
+
∂2û1

∂ẑ2
− û1

r̂2

)
. (2.2)

The corresponding ẑ-momentum equation in the vessel is given by (0 ≤ r̂ ≤ R̂1, 0 ≤ ẑ ≤
L̂),

∂P̂1

∂ẑ
= µ̂b

(
1

r̂

∂

∂r̂

(
r̂
∂ŵ1

∂r̂

)
+
∂2ŵ1

∂ẑ2

)
. (2.3)

Region 2: Within the Vessel Wall

We consider the vessel wall as a thin porous medium with uniform permeability k̂2 and

assume the flow in the vessel wall can be described using Darcy’s law (a similar idea was

used by Griffiths et al. [2013] [37]).

The continuity equation for water/plasma crossing the vessel wall is (R̂1 ≤ r̂ ≤ R̂2,

0 ≤ ẑ ≤ L̂)

1

r̂

∂

∂r̂
(r̂û2) +

∂ŵ2

∂ẑ
= 0. (2.4)

According to Darcy’s law, the fluid radial velocity across the vessel wall is driven by the

pressure gradient in the radial direction. Hence, we write the r̂-momentum equation in

the vessel wall in the form (R̂1 ≤ r̂ ≤ R̂2),

û2 = − k̂2

µ̂

∂P̂2

∂r̂
, (2.5)

where µ̂ is the viscosity of the transvascular fluid in the vessel wall. Similarly, the fluid
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axial velocity along the vessel wall is driven by the pressure gradient in the axial direction

ẑ and so the ẑ-momentum equation in the vessel wall is given by (0 ≤ ẑ ≤ L̂),

ŵ2 = − k̂2

µ̂

∂P̂2

∂ẑ
. (2.6)

Region 3: Within the Tissue

In the same way, we consider Darcy’s model for the fluid flow across the outer tissue

annulus which is considered as a porous medium with a constant permeability k̂3. In

the tissue, however, there are lymphatic vessels at pressure P̂l which are modeled as a

continuous sink across the tissue. Hence, the continuity equation in the tissue is different

to the other regions and takes the form (R̂2 ≤ r̂ ≤ R̂3, 0 ≤ ẑ ≤ L̂),

1

r̂

∂

∂r̂
(r̂û3) +

∂ŵ3

∂ẑ
= − Q̂l

V̂tiss
, (2.7)

where Q̂l is the (constant) fluid flux into the lymphatics normalized by the volume of the

tissue V̂tiss. The lymphatic flux Q̂l is assumed to be proportional to the pressure difference

between the tissue (P̂3) and the lymph vessels (P̂l) [8]

Q̂l

V̂tiss
=
L̂plŜl

V̂tiss
(P̂3 − P̂l) ≡ B̂(P̂3 − P̂l), (2.8)

where B̂ is a dimensional constant, Ŝl is the lymphatic surface area, L̂pl is the hydraulic

conductivity of the lymphatic wall and V̂tiss is the volume of the tissue surrounding the

vessel. Thus, we can write equation (2.7) in the form (R̂2 ≤ r̂ ≤ R̂3, 0 ≤ ẑ ≤ L̂)

1

r̂

∂

∂r̂
(r̂û3) +

∂ŵ3

∂ẑ
= −B̂(P̂3 − P̂l). (2.9)

According to Darcy’s law the r̂-momentum equation in the tissue is (R̂2 ≤ r̂ ≤ R̂3)

û3 = − k̂3

µ̂

∂P̂3

∂r̂
. (2.10)

Note that we assume the viscosity of the interstitial fluid in the tissue equals the viscosity

of the transvascular fluid in the vessel wall (denoted µ̂). The ẑ-momentum equation in

the tissue (0 ≤ ẑ ≤ L̂) takes the form

ŵ3 = − k̂3

µ̂

∂P̂3

∂ẑ
. (2.11)
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Boundary Conditions

We apply the continuity of fluid flux and pressure at the vessel/vessel wall interface and at

the tissue/wall interface. In addition, we use the boundary condition developed by Beavers

and Joseph [1967] [11] for the tangential velocity of a free Newtonian fluid flowing past a

porous membrane. Beavers and Joseph [1967] [11] concluded from their experiments that

there is a boundary layer developed across the porous membrane which must prevent the

tangential velocity reaching zero at the membrane surface (as would be expected from the

no-slip condition). They showed experimentally that this can be modeled at the membrane

surface as a slip velocity proportional to the tangential velocity gradient in the normal

direction. So, we write the following boundary conditions in the form

û1 = û2, P̂1 = P̂2 and
∂ŵ1

∂r̂
= − α2√

k̂2

(ŵ1 − ŵ2), (r̂ = R̂1), (2.12)

where α2 is a constant dependent on the average pore diameter of the vessel wall. The

Beavers-Joseph boundary condition approaches the no-slip condition (ŵ1 = ŵ2) when

α2 →∞. However, α2 = 0 is simply a no tangential stress condition.

Similarly, at the vessel wall/tissue interface the boundary conditions take the form

û2 = û3, P̂2 = P̂3 and ŵ2 = ŵ3, (r̂ = R̂2), (2.13)

These conditions are coupled to boundary conditions on the outer edge of the domain in

the form

∂P̂3

∂r̂
= 0, (r̂ = R̂3), (2.14)

here we considered no radial fluid flux at the tissue edge which is relatively far away from

the vessel wall. At the vessel inlet we prescribe the mean velocity Ŵ (which is the typical

velocity scale in the vessel chosen based on the inlet flux of the vessel) in the form

Q̂in ≡ ŴπR̂2
1 = 2π

∫ R̂1

0

r̂ŵ1(r̂, 0)dr̂, (ẑ = 0). (2.15)

At the vessel outlet we prescribe the blood pressure in the form

P̂1(r̂, L̂) = P̂0, (ẑ = L̂). (2.16)

Note that in principle the outlet pressure P̂0 and the lymphatic pressure P̂l could be

different from zero, but we choose P̂0 = P̂l = 0 without loose of generality.
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2.2 The Solute Transport Model at the Micro-scale

In the vessel, across the vessel wall and in the surrounding tissue we assume that GNRs

in the vasculature can transport via diffusion and advection in the both of radial and

axial directions. Therefore, we model the GNR concentration in the vessel (denoted C1,

0 ≤ r̂ ≤ R̂1), in the vessel wall (denoted C2, R̂1 ≤ r̂ ≤ R̂2) and in the surrounding tissue

(denoted C3, R̂2 ≤ r̂ ≤ R̂3) using the transport equations [68] in the form (0 ≤ ẑ ≤ L̂),

∂Ĉ1

∂t̂
+

1

r̂

∂

∂r̂
(r̂û1Ĉ1) +

∂

∂ẑ
(ŵ1Ĉ1) =

D̂1

r̂

∂

∂r̂

(
r̂
∂Ĉ1

∂r̂

)
+ D̂1

∂2Ĉ1

∂ẑ2
, (2.17)

∂Ĉ2

∂t̂
+

1

r̂

∂

∂r̂
(r̂û2Ĉ2) +

∂

∂ẑ
(ŵ2Ĉ2) =

D̂2

r̂

∂

∂r̂

(
r̂
∂Ĉ2

∂r̂

)
+ D̂2

∂2Ĉ2

∂ẑ2
, (2.18)

∂Ĉ3

∂t̂
+

1

r̂

∂

∂r̂
(r̂û3Ĉ3) +

∂

∂ẑ
(ŵ3Ĉ3) =

D̂3

r̂

∂

∂r̂

(
r̂
∂Ĉ3

∂r̂

)
+ D̂3

∂2Ĉ3

∂ẑ2
, (2.19)

we substitute from the continuity equations (2.1, 2.4 and 2.9) into the transport equations

(2.17, 2.18 and 2.19) we get

∂Ĉ1

∂t̂
+ û1

∂Ĉ1

∂r̂
+ ŵ1

∂Ĉ1

∂ẑ
=
D̂1

r̂

∂

∂r̂

(
r̂
∂Ĉ1

∂r̂

)
+ D̂1

∂2Ĉ1

∂ẑ2
, (2.20)

∂Ĉ2

∂t̂
+ û2

∂Ĉ2

∂r̂
+ ŵ2

∂Ĉ2

∂ẑ
=
D̂2

r̂

∂

∂r̂

(
r̂
∂Ĉ2

∂r̂

)
+ D̂2

∂2Ĉ2

∂ẑ2
, (2.21)

∂Ĉ3

∂t̂
+ û3

∂Ĉ3

∂r̂
+ ŵ3

∂Ĉ3

∂ẑ
=
D̂3

r̂

∂

∂r̂

(
r̂
∂Ĉ3

∂r̂

)
+ D̂3

∂2Ĉ3

∂ẑ2
− B̂(P̂3 − P̂0)Ĉ3, (2.22)

where D̂1, D̂2 and D̂3 are the diffusion coefficients in the vessel, in the vessel wall and in

the tissue, respectively. Note the final term in (2.22) arises due to the logs of GNRs into

the lymphatic system.

Note that these advection-diffusion equations are defined from the principle of mass

balance, assuming the flux has both diffusion and advection components in the form

∂Ĉj

∂t̂
= −∇̂ · Ĵj, (j = 1, 2, 3) (2.23)

where

Ĵj = Ĵjrer + Ĵjzez, (j = 1, 2, 3) (2.24)
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where

Ĵjr = ûjĈj − D̂j
∂Ĉj
∂r̂

, (j = 1, 2, 3), (2.25)

Ĵjz = ŵjĈj − D̂j
∂Ĉj
∂ẑ

(j = 1, 2, 3). (2.26)

where Ĵr and Ĵz are the radial and axial flux components, respectively.

Boundary Conditions

We impose continuity of total solute flux and concentration at the vessel/vessel-wall in-

terface (r̂ = R̂1) and at the vessel-wall/tissue interface (r̂ = R̂2). We do not prescribe this

flux because we include the vessel wall in the model, so the flux will be computed from

the model. Furthermore, we assume zero solute flux at the tissue edge (at r̂ = R̂3). So,

we write the following boundary conditions

Ĉ1 = Ĉ2 and Ĵ1r ≡ û1Ĉ1 − D̂1
∂Ĉ1

∂r̂
= û2Ĉ2 − D̂2

∂Ĉ2

∂r̂
≡ Ĵ2r, (r̂ = R̂1), (2.27)

Ĉ2 = Ĉ3 and Ĵ2r ≡ û2Ĉ2 − D̂2
∂Ĉ2

∂r̂
= û3Ĉ3 − D̂3

∂Ĉ3

∂r̂
≡ Ĵ3r, (r̂ = R̂2), (2.28)

Ĵ3r ≡ û3Ĉ3 − D̂3
∂Ĉ3

∂r̂
= 0, (r̂ = R̂3). (2.29)

2.3 Dimensionless Transformations

We take advantage of the small aspect ratio between the vessel radius and the vessel length

to apply the lubrication approximation to reduce the fluid flow and the solute transport

equations. Thus, we apply the following dimensionless transformations to the properties

of the vessel

t̂ =
L̂

Ŵ
t, ŵ1 = Ŵw1, û1 = εŴu1, r̂ = εL̂r, ẑ = L̂z, P̂1 = P̂0 + P̂P1,

Ĉ1 = Ĉ0C1, Ĵ1r = Ŵ Ĉ0J1r, Ĵ1z = Ŵ Ĉ0J1z. (2.30)

where Ĉ0 is the initial vascular GNR concentration. Similar to Griffiths et al. [2013] [37],

in the vessel wall we define a dimensionless coordinate η (scaled so that 0 ≤ η ≤ 1 across

the wall) in the radial direction, in addition to the following variable transformations

ŵ2 = εŴw2, û2 = εŴu2, r̂ = R̂1 + δR̂1η, P̂2 = P̂0 + P̂P2,

Ĉ2 = Ĉ0C2, Ĵ2r = Ŵ Ĉ0J2r, Ĵ2z = Ŵ Ĉ0J2z, D̂2 = D̂1D2, µ̂ = µ̂bµ. (2.31)
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Similarly, in the tissue domain we define a new dimensionless coordinate ξ (scaled so that

0 ≤ ξ ≤ 1 across the tissue domain) in the radial direction, in addition to the following

variable transformations

ŵ3 = εŴw3, û3 = εŴu3, r̂ = R̂2 + λL̂ξ, P̂3 = P̂0 + P̂P3,

Ĉ3 = Ĉ0C3, B̂ =
ε2

µ̂
B, D̂3 = D̂1D3. (2.32)

Note that we scale both û3 and ŵ3 to be O(ε) to satisfy the continuity of fluid velocity

at the tissue/vessel-wall interface. Furthermore, the constant B̂ must be O(ε2) to balance

the gradient of û3 in the continuity equation (2.9). Finally, we select the viscus pressure

scale based on flow along the vessel P̂ = µ̂bŴ/(ε2L̂).

Applying the transformations (2.30)-(2.32) into the equations (2.1)-(2.6), (2.9)-(2.11)

and (2.20)-(2.22); and the boundary conditions (C.1)-(2.16) and (2.27)-(2.29) we get the

following dimensionless equations:

The dimensionless governing equations in the vessel are (0 ≤ r ≤ 1, 0 ≤ z ≤ 1)

∂w1

∂z
+

1

r

∂

∂r
(ru1) = 0, (2.33)

ε2
(
ε2
∂2u1

∂z2
+

1

r

∂

∂r

(
r
∂u1

∂r

)
− u1

r2

)
=
∂P1

∂r
, (2.34)

ε2
∂2w1

∂z2
+

1

r

∂

∂r

(
r
∂w1

∂r

)
=
∂P1

∂z
, (2.35)

ε2
(
∂C1

∂t
+ u1

∂C1

∂r
+ w1

∂C1

∂z

)
=

1

Pe

(
1

r

∂

∂r

(
r
∂C1

∂r

)
+ ε2

∂2C1

∂z2

)
, (2.36)

where Pe = L̂Ŵ /D̂1 is the dimensionless Péclet number (the ratio of advection rate to

diffusion rate of GNRs) in the vessel. The dimensionless governing equations in the vessel

wall are (0 ≤ η ≤ 1, 0 ≤ z ≤ 1)

(2.37)δu2 + εδ(1 + δη)
∂w2

∂z
+ (1 + δη)

∂u2

∂η
= 0,

(2.38)u2 = −K2

µ

∂P2

∂η
,

(2.39)w2 = −δεK2

µ

∂P2

∂z
,

(2.40)
ε2δ(1 + δη)

(
δ
∂C2

∂t
+ u2

∂C2

∂η
+ εδw2

∂C2

∂z

)
=
D2

Pe

(
(εδ)2(1 + δη)

∂2C2

∂z2
+
∂2C2

∂η2

+ δ
∂

∂η

(
η
∂C2

∂η

))
,
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In Eq. (2.38) we chose K̂2 = δε4L̂2K2 so that we balance the radial velocity û with the

pressure gradient. The dimensionless governing equations in the tissue are (0 ≤ ξ ≤ 1,

0 ≤ z ≤ 1)

(2.41)mu3 + (1 + δ +mξ)

(
∂u3

∂ξ
+m

(
ε
∂w3

∂z
+BP3

))
= 0,

(2.42)u3 = −K3

µ

∂P3

∂ξ
,

(2.43)w3 = −mεK3

µ

∂P3

∂z
,

(2.44)
ε2(1 + δ +mξ)

(
mBC3P3 +m

∂C3

∂t
+ u3

∂C3

∂ξ
+mεw3

∂C3

∂z

)
=

D3

mPe

(
m2ε2(1 + δ +mξ)

∂2C3

∂z2
+ (1 + δ)

∂2C3

∂ξ2
+m

∂

∂ξ

(
ξ
∂C3

∂ξ

))
,

In Eq. (2.42) we chose K̂3 = mε4L̂2K3 so that we balance the radial velocity u3 with the

pressure gradient.

The dimensionless boundary conditions take the form

u1 = u2, P1 = P2,
∂w1

∂r
= A2(εw2 − w1), C1 = C2,

δε2(u1C1 − u2C2) =
1

Pe

(
δ
∂C1

∂r
−D2

∂C2

∂η

)
, (r = 1, η = 0) (2.45)

u2 = u3, P2 = P3, w2 = w3, C2 = C3,

δε2(u2C2 − u3C3) =
1

Pe

(
D̂2

D̂1

∂C2

∂η
− δD3

m

∂C3

∂ξ

)
, (η = 1, ξ = 0) (2.46)

∂P3

∂ξ
= 0, ε2u3C3 =

D̂3

mPeD̂1

∂C3

∂ξ
, (ξ = 1), (2.47)

where A2 = εα2L̂/
√
K̂2 is a measure for the slip at the vessel wall interface with the vessel.

The dimensionless boundary conditions for the vessel at the inlet and outlet take the form

∫ 1

0

rw1dr = 1
2
, (z = 0), P1 = 0, (z = 1). (2.48)

We need the transmural solute radial flux in Sec. 2.7, so we apply the transformations

(2.31) at the Eqns. (2.25) and (2.26) we get the dimensionless radial and axial transmural
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flux, respectively, in the form

J2r = εu2C2 −
D

δεPe

∂C2

∂η
, (2.49)

J2z = εw2C2 −
D

Pe

∂C2

∂z
. (2.50)

Note that, for simplicity we assumed in this study that µ̂ = µ̂b = 3× 10−5 mmHg-sec [20].

2.4 The Analytical Solutions for the Fluid Flow Prob-

lem

The governing equations for fluid and solute transport (2.33-2.44) subject to the boundary

conditions (2.45-2.48) are nonlinear, coupled partial differential equations (PDEs) which

are difficult to solve analytically. However, this system of equations can be simplified using

asymptotic analysis.

In the vessel we write the system of PDEs (2.33-2.35) to leading order (neglecting

terms of O(ε2) and higher) as follows (0 ≤ r ≤ 1, 0 ≤ z ≤ 1)

∂w1

∂z
+

1

r

∂

∂r
(ru1) = 0, (2.51)

∂P1

∂r
= 0, (2.52)

∂P1

∂z
=

1

r

∂

∂r

(
r
∂w1

∂r

)
. (2.53)

Similarly, in the vessel wall we write the leading order version of the PDEs (2.37-2.39) in

the form (0 ≤ η ≤ 1, 0 ≤ z ≤ 1)

∂u2

∂η
= 0, (2.54)

u2 = −K2

µ

∂P2

∂η
, (2.55)

w2 = 0. (2.56)

Note that in this system the flow is predominately through the wall i.e. flow along the

wall is negligible at leading order.

In the same way, in the tissue we write the leading order equations of the PDEs (2.41-
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2.43) in the form (0 ≤ ξ ≤ 1, 0 ≤ z ≤ 1)

mu3 + (1 +mξ)

(
∂u3

∂ξ
+mBP3

)
= 0, (2.57)

u3 = −K3

µ

∂P3

∂ξ
, (2.58)

w3 = 0. (2.59)

Finally, we write the boundary conditions (2.45-2.48) in the leading order in the form

u1 = u2, P1 = P2,
∂w1

∂r
= −A2w1, (r = 1 and η = 0). (2.60)

u2 = u3, P2 = P3,
∂w3

∂ξ
= A3(w2 − w3), (η = 1 and ξ = 0). (2.61)

∂P3

∂ξ
= 0, (ξ = 1). (2.62)

∫ 1

0

rw1dr = 1
2
, (z = 0). (2.63)

∂P1

∂z
= 0, (z = 1). (2.64)

From Eqns. (2.51)-(2.53) we conclude that the blood pressure (in the leading order

asymptotic approximation) is homogeneous in the radial direction and is a function of

the axial coordinate z alone. Hence, Eqns. (2.51) and (2.53) along with the boundary

conditions (2.60) can be solved analytically in the form

u1 =
r

16A2

(4− (r2 − 2)A2)
d2P1

dη2
, (2.65)

w1 =
1

4A2

((r2 − 1)A2 − 2)
dP1

dη
, (2.66)

where P1 = P1(z) will be determined after solving the pressure in the vessel wall and the

tissue and applying the internal boundary conditions between these three domains.

In the vessel wall the leading order equations (2.54) and (2.56) can be easily integrated

with respect to η and by applying the boundary conditions (2.60) we get the following
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closed form solutions

u2 =
4 + A2

16A2

d2P1

dη2
, (2.67)

w2 = 0, (2.68)

P2 = P1 −
η(4 + A2)µ

16A2K2

d2P1

dη2
. (2.69)

In order to find an analytical solution for the pressure and velocity in the tissue (region

3) we substitute u3 from Eqn. (2.58) into Eqn. (2.57) to obtain the following ODE (in two

dimensions) for P3 alone

(1 +mξ)
∂2P3

∂ξ2
+m

∂P3

∂ξ
− Bmµ

K3

(1 +mξ)P3 = 0, (0 ≤ ξ ≤ 1). (2.70)

This equation is a rescaled version of the modified Bessel differential equation. In order to

find the general solution, we make a change of variable (x = 1+mξ) to write this equation

in the standard form of the zero order modified Bessel differential equation as follows

x2∂
2P̌3

∂x2
+ x

∂P̌3

∂x
−

(√
Bµ

mK3

x

)2

P̌3 = 0, (0 ≤ x ≤ 1). (2.71)

The general solution to the zero order modified Bessel equation is given by [12]

(2.72)P̌3 = E1(z, t)I0

(√
Bµ

mK3

x

)
+ E2(z, t)K0

(√
Bµ

mK3

x

)
,

where E1 and E2 are arbitrary functions of z and t and I0 and K0 are the modified Bessel

functions of zero order. So, we write the general solution for the pressure in the tissue in

terms of P3 and ξ as follows

(2.73)P3 = E1(z, t)I0

(√
Bµ

mK3

(1 +mξ)

)
+ E2(z, t)K0

(√
Bµ

mK3

(1 +mξ)

)
.

We determine the arbitrary functions E1(z, t) and E2(z, t) through the boundary condi-

tions (2.61) and (2.62). Hence, we obtain the analytical solution for the pressure in the

tissue in the form

(2.74)P3 = G1(z)(I0((1 +mξ)ϕ)K1(ϕm) + I1(ϕm)K0((1 +mξ)ϕ)),

where

G1(z) =
A2(16K2P1 − µd

2P1

dη2
)− 4µd

2P1

dη2

16A2K2(I1(ϕm)K0(ϕ) + I0(ϕ)K1(ϕm))
, ϕ =

√
Bµ

mK3

, ϕm = (1 +m)ϕ.

(2.75)
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Hence the closed form solution for the interstitial fluid velocity in the tissue (u3) can be

found by substituting (2.74) into (2.58). This implies that the two components of the fluid

velocity in the tissue at leading order are given by (0 ≤ ξ ≤ 1)

u3 = G1(z)
√
mµBK3(I1(ϕm)K1((1 +mξ)ϕ)− I1((1 +mξ)ϕ)K1(ϕm)), w3 = 0. (2.76)

Finally, we use the continuity of velocity conditions at the vessel/vessel wall and the vessel

wall/tissue interfaces (Eqns. 2.60 and 2.61) to find an ODE for the blood pressure in the

vessel (P1(z)) in the form (u1

∣∣∣∣
r=1

= u3

∣∣∣∣
ξ=0

)

(2.77)(4 + A2)
d2P1

dz2
−G2

√
mµBK3

(
A2

(
16
K2

µ
P1 −

d2P1

dz2

)
− 4

d2P1

dz2

)
= 0,

where

(2.78)G2 =
I1(ϕm)K1(ϕ)− I1(ϕ)K1(ϕm)

K2(I1(ϕm)K0(ϕ) + I0(ϕ)K1(ϕm))
.

Eqn. (2.77) can be integrated twice with respect to z and the integration constants can

be determined from the boundary conditions (2.63) and (2.64). Hence, the closed form

expression for the blood pressure in the vasculature is given by

(2.79)P1 =
2A2e

−4G3z
(
e8G3 − e8G3z

)
G3(4 + A2)(1 + e8G3)

,

where

G3 =

√
A2K2

√
mµBK3(I1(ϕm)K1(ϕ)− I1(ϕ)K1(ϕm)

µ(4 +A2)(K2(I1(ϕm)K0(ϕ) + I0(ϕ)K1(ϕm)) +
√
mµBK3(I1(ϕm)K1(ϕ)− I1(ϕ)K1(ϕm)))

(2.80)

We can check the analytical solution for the vascular fluid flow velocity by verifying

conservation of fluid mass in the vessel. The fluid flux across the vessel inlet at z = 0

(Qin), the fluid flux across the vessel outlet at z = 1 (Qout) and the transmural fluid flux

at r = 1 (Qtr) are each defined as

Qin = 2π

∫ 1

0

w1(r, 0)rdr, at z = 0 (2.81)

Qout = 2π

∫ 1

0

w1(r, 1)rdr, at z = 1 (2.82)

Qtr = 2π

∫ 1

0

u1(1, z)dz, at r = 1 (2.83)

These flux expressions can be calculated analytically using Eqns. (2.65) and (2.66). Con-

servation of total mass of blood can then be expressed in the form

Qin = Qout +Qtr, (2.84)
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which is used to validate our predictions.

2.5 The Analytical Solutions for the Solute Transport

Problem

In order to apply the asymptotic analysis for the GNR transport along the vessel and

across the surrounding tissue, we need to define the order of magnitude of the parameters:

D̃2,3 = ε2D, Pe = O(1) and δ = ε2. Notice that the diffusion coefficients of the solute in

the vessel wall (D̃2) and in the tissue (D̃3) are in the same order, so we assumed that they

have the same value. We found these scales are the most appropriate for the transport

problem as they lead to a dominant balance and are consistent with values we found in

the literature [99].

We expand the GNR concentrations in each region, denoted Ci, according to the regular

perturbation expansion Ci = Ci0 + ε2Ci1 +O(ε4) (i = 1, 2, 3). Hence, the solute transport

equation in the vessel (2.36) becomes

(2.85)
ε2
(
∂C10

∂t
+ ε2

∂C11

∂t
+ u1

∂C10

∂r
+ ε2u1

∂C11

∂r
+ w1

∂C10

∂z
+ ε2w1

∂C11

∂z
+ O(ε4)

)
=

1

Pe

(
1

r

∂

∂r

(
r
∂C10

∂r

)
+ ε2

1

r

∂

∂r

(
r
∂C11

∂r

)
+ ε2

∂2C10

∂z2
+ ε4

∂2C11

∂z2
+ O(ε6)

)
,

Similarly, the solute transport equation in the vessel wall (2.40) can be written in the form

(2.86)

ε2
(
ε2
∂C20

∂t
+ ε4

∂C21

∂t
+ ε3w2

∂C20

∂z
+ ε5w2

∂C21

∂z
+ u2

∂C20

∂η
+ ε2u2

∂C21

∂η
+ O(ε7)

)
=

D

Pe

(
ε6
∂2C20

∂z2
+ ε8

∂2C21

∂z2
+
ε2 ∂C20

∂η
+ ε4 ∂C21

∂η

1 + ε2η
+
∂2C20

∂η2
+ ε2

∂2C21

∂η2
+ O(ε10)

)
,

Likewise, the solute transport equation in the tissue (i = 3) (2.44) can be written as(
BmP3(C30 + ε2C31 + O(ε4)) +mεw3

∂

∂z
(C30 + ε2C31 + O(ε4)) +u3

∂

∂ξ
(C30 + ε2C31 + O(ε4))

+m

(
∂C30

∂t
+ ε2

∂C31

∂t
+ O(ε4)

))
=

D

mPe

(
m2ε2

(
∂2C30

∂z2
+ ε2

∂2C31

∂z2
+ O(ε4)

)
+

1

1 + ε2 +mξ

(
∂C30

∂ξ
+ ε2

∂C31

∂ξ
+ O(ε4)

)
+
∂2C30

∂ξ2
+ ε2

∂2C31

∂ξ2
+ O(ε4)

)
.

(2.87)

The expanded boundary conditions become
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ε2(u1C10 + ε2u1C11 + O(ε4))− 1

Pe

(
∂C10

∂r
+ ε2

∂C11

∂r
+ O(ε4)

)
=

ε2(u2C20 + ε2u2C21 + O(ε4))− D

Pe

(
∂C20

∂η
+ ε2

∂C21

∂η
+ O(ε4)

)
,

C10 + ε2C11 = C20 + ε2C21, (r = 1 and η = 0), (2.88)

ε2m(u2C20 + ε2u2C21 + O(ε4))− mD

Pe

(
∂C20

∂η
+ ε2

∂C21

∂η
+ O(ε4)

)
=

ε2
(
m(u3C30 + ε2u3C31 + O(ε4))− D

Pe

(
∂C30

∂ξ
+ ε2

∂C31

∂ξ
+ O(ε4)

))
,

C20 + ε2C21 = C30 + ε2C31 + O(ε4), (η = 1 andξ = 0), (2.89)

(u3C30 + ε2u3C31 + O(ε4))− D

mPe

(
∂C30

∂ξ
+ ε2

∂C31

∂ξ
+ O(ε4)

)
= 0, (ξ = 1). (2.90)

2.5.1 The Leading Order Equations

To extract the leading order GNR transport equations we ignore all terms of order O(ε)

and higher in (2.85-2.90). So, we get the following system of solute transport equations

at leading order

∂

∂r

(
r
∂C10

∂r

)
= 0, (0 ≤ r ≤ 1) (2.91)

∂2C20

∂η2
= 0, (0 ≤ η ≤ 1) (2.92)

(1 +mξ)

(
mBP3C30 + u3

∂C30

∂ξ
+m

∂C30

∂t

)
=

D

mPe

(
∂2C30

∂ξ2
+m

∂

∂ξ

(
ξ
∂C30

∂ξ

))
, (0 ≤ ξ ≤ 1). (2.93)

These are coupled to the leading order boundary conditions

C10 = C20 and
∂C10

∂r
= D

∂C20

∂η
, (r = 1 and η = 0), (2.94)

C20 = C30 and
∂C20

∂η
= 0, (η = 1 and ξ = 0), (2.95)

Peu3C30 −
D

m

∂C30

∂ξ
= 0, (ξ = 1). (2.96)

Note that conservation of flux condition across the wall/tissue boundary does not involve

the GNR concentration in the tissue at leading order (i.e. Eq. (2.95) is independent of

C30). It emerges below that we must go to the next order in the expansion to close this

system.
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Equations (2.91) and (2.92) can be integrated twice with respect to r (or η) and the

constants determined using the boundary conditions (2.94) and (2.95). Thus, we get the

following solution

C10(r, z) = C20(η, z) = E3(z, t) (2.97)

where E3(z, t) is an arbitrary function which we determine by matching into the tissue

region at the next order. On the other hand, (2.93) is a linear second order ODE with vari-

able coefficients which is not possible to solve analytically (to the best of our knowledge).

In order to solve this equation numerically we need to determine the arbitrary function

E3(z, t) by writing the system of equations (2.85-2.90) to the O(ε2) asymptotic order.

2.5.2 The GNR Transport Equations at O(ε2)

In order to solve the leading order GNR transport problem in the tissue we must consider

the asymptotic equations of O(ε2) in the vessel and in the vessel wall. This solution at

O(ε2) provides us with the boundary condition at the vessel wall/tissue interface which is

essential to determine E3(z, t) and solve the leading order transport problem in the tissue.

The solute transport equations in the vessel and the vessel wall of O(ε2) are

∂C10

∂t
+ w1

∂C10

∂z
=

1

Pe

(
1

r

∂

∂r

(
r
∂C11

∂r

)
+
∂2C10

∂z2

)
, (0 ≤ r ≤ 1) (2.98)

∂2C21

∂η2
= 0, (0 ≤ η ≤ 1). (2.99)

Eq. (2.98) indicates that at this order the diffusion of the perturbation concentration across

the vessel is balanced by unsteady effects, advective effects and diffusion along the vessel

of the leading order concentration. Conversely, Eq. (2.99) indicates that the perturbation

concentration is constant across the vessel wall at this order.

These equations are coupled to boundary conditions at O(ε2) in the form

C11 = C21, u1C10 −
1

Pe

∂C11

∂r
= u2C20 −

D

Pe

∂C21

∂η
, (r = 1 and η = 0). (2.100)

C21 = C31, u2C20 −
D

Pe

∂C21

∂η
= u3C30 −

D

mPe

∂C30

∂ξ
, (η = 1 and ξ = 0). (2.101)

The general analytical solution for this system of equations (2.98) and (2.99) (determined
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by Mathematica) is given by

C11 = f2(z, t)− Pe

8A2

r2dP1

dη

∂C10

∂z
+
r2

64

(
16Pe

∂C10

∂t
+ Pe(r2 − 4)

dP1

dη

∂C10

∂z
− 16

∂2C10

∂z2

)
,

(2.102)

C21 = f2(z, t)

+
1

64DA2

(
−8Pe

(
2ηC10

d2P1

dη2
+ (D+ 2η)

dP1

dη

∂C10

∂z

)
+A2

(
4PeηC10(16u2−

d2P1

dη2
)

+ 16Pe(D + 2η)
∂C10

∂t
− Pe(3D + 4η)

dP1

dη

∂C10

∂z
− 16(D + 2η)

∂2C10

∂z2

))
,

(2.103)

where f2(z, t) is an arbitrary function. Note that we have not yet applied boundary

conditions (2.101) which will determine f2.

The solute flux at vessel/vessel-wall interface can be written using (2.102) in (2.100)

in the form

J1r = u1C10 −
[
r

2

∂C10

∂t
+

1

64
(4r3 − 8r)

dP1

dη

dC10

dη
− 1

4A2

r
dP1

dη

dC10

dη
− 1

2Pe
r
∂2C10

∂z2

]
r=1

.

(2.104)

2.5.3 The Transmural Radial Solute Flux

We can calculate the radial solute flux across the vessel wall (J1r) at r = 1 from the left

hand side of (2.100) and using the Eq. (2.102) we get

J1r = u1C10 −
1

Pe

∂C11

∂r
+O(ε2) = u1C10 +

4 + A2

16A2

dP1

dη

∂C10

∂z
− 1

2

∂C10

∂t
+

1

2Pe

∂2C10

∂z2
+O(ε2).

(2.105)

This flux can be written in terms of the vascular pressure P1 rather than the radial vascular

velocity u1 by substituting the analytical solution for u1 (2.65) where we obtain

J1r =
4 + A2

16A2

∂

∂z
(
dP1

dη
C10)− 1

2

∂C10

∂t
+

1

2Pe

∂2C10

∂z2
, (0 ≤ z ≤ 1) +O(ε2). (2.106)

Similarly, we can calculate the radial solute flux across the vessel wall (J3r) at ξ = 1 in

the form

J3r = u3C30 −
D

mPe

∂C30

∂ξ
+O(ε2). (2.107)

Note that both of the flux expressions J1r and J3r are equal up to the order evaluated

as the radial solute flux across the vessel wall is uniform to this asymptotic order.
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2.6 Numerical Solution for GNR Transport Equation

in the Tissue

To form a closed system of equations we must impose boundary conditions between the

vessel wall and the tissue (2.101). This condition, substituting (2.103), becomes a con-

straint on the system including C10 and C30 alone. The resulting leading order transport

equations in the tissue (in terms of C30) takes the form (0 ≤ ξ ≤ 1, 0 ≤ z ≤ 1)

(1 +mξ)

(
mBP3C30 + u3

∂C30

∂ξ
+m

∂C30

∂t

)
=

D

mPe

(
∂2C30

∂ξ2
+m

∂

∂ξ

(
ξ
∂C30

∂ξ

))
, (2.108)

while the leading order transport equation in the vessel (in terms of C10) takes the form

(0 ≤ z ≤ 1)

Pe(4 +A2)
∂

∂z
(
dP1

dη
C10) + 8A2

∂2C10

∂z2
+

2D

m

∂C30

∂ξ

∣∣∣∣∣
ξ=0

 = 8PeA2

(
2u3C30

∣∣∣∣
ξ=0

+
∂C10

∂t

)
.

(2.109)

Note that A2 = εα2L̂/
√
K̂2 and B is constant determined by (2.32). Also (2.109) does not

depend on ξ and so is a 1D PDE in z, t. These coupled 1D advection diffusion equations

(in z and t) represent a model for studying drug (GNR) delivery to tissue in the presence

of flow. These two equations are solved subject to leading order boundary conditions of

continuity of GNR concentration

C10 = C30, (η = 1 and ξ = 0). (2.110)

and net GNR flux out of the tissue region,

Peu3C30 −
D

m

∂C30

∂ξ
= 0, (ξ = 1). (2.111)

In order to close this system we need to prescribe boundary conditions for C10 at z = 0

and z = 1. Previous work has assumed that the GNR concentration in the blood decreases

due to clearance by the liver and spleen at fixed rate τ [76] according to

Cv = Cv0e
−t/τ , (2.112)

where Cv is the instantaneous GNR concentration in the blood and Cv0 is the initial GNR

concentration. Hence, in our problem we impose the GNR concentration at the capillary

inlet to be equal to the exponential decay model (2.112) and we impose zero GNR diffusive
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Table of dimensional parameters
parameter value units description Ref.

R̂1 3× 10−4 cm The vessel radius [16]

R̂2 4× 10−4 cm The outer wall radius [16]

R̂3 7× 10−4 cm The tissue outer radius [16]

L̂ 0.06 cm The vessel length [16]
m 1 − the ratio of width of the tissue to the radius of

vessel
Assumed

µ̂b 3× 10−5 mm Hg s The blood viscosity [20]
µ̂ 3× 10−5 mm Hg s The interstitial fluid viscosity [20]

k̂2 1.33×10−12 cm2 The interstitial permeability (k̂2 = δk̂3) Assumed

k̂3 4× 10−12 cm2 The interstitial permeability [99]

L̂
(N)
pl Ŝ

(N)
l /V̂ (N) 1.33× 10−5 1/mm Hg

s−1
The lymphatic density [91,97]

α2 0.01 - a constant [11]

Ŵ 0.07 cm/s blood mean velocity at the vessel inlet [16]

P̂0 0 mm Hg blood pressure at the vessel outlet Chosen

P̂l 0 mm Hg lymphatic pressure [97]
τ̂ 12.5 h The GNR blood half life [2]

Table 2.1: Dimensional parameters used in the GNR and fluid transport models.

flux at the capillary outlet as follows

C10 = Cv0e
−t/τ , (z = 0), (2.113)

∂C10

∂z
= 0, (z = 1). (2.114)

2.7 The Two Pore Model

The transmural radial flux defined in the Eqn. (2.106) can be approximated using an

alternative approach known as the two pore model [87]. In this approximation it is assumed

that the radial solute flux (J2r) is uniform across the vessel wall. In addition, the wall

between the vessel and the tissue is very thin. According to (2.49), the full equation for

the radial flux across the wall can be written implicitly as

∂C2

∂η
− ε2δPe

D
u2C2 = −εδPe

D
J2r. (2.115)

Assuming u2 and J2r are constant (i.e. independent of η), the previous equation is a

nonhomogeneous ODE in C2 which can be solved using an integration factor µ̆ defined as

µ̆ = e−ωη, ω =
ε2δPeu2

D
. (2.116)

Hence, multiplying Eqn.(2.115) by the integrating factor µ̆ and integrating across the

vessel wall we obtain

C2(1)e−ω − C2(0) =
1

u2ε
J2r

(
e−ω − 1

)
. (2.117)
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We can rearrange the previous equation to get the radial transmural flux in terms of the

concentrations on either side in the form

J2r =
εu2 (C2(η = 0, z)− C2(η = 1, z)e−ω)

1− e−ω
≡ εu1(r = 1, z) (C1(r = 1, z)− C3(ξ = 0, z)e−ω)

1− e−ω
.

(2.118)

We will use this approximation for the solute flux J2r across the wall (2.118) to replace

the continuity of concentration boundary condition at the vessel/wall interface (2.110) in

Sec. 2.8.2. Note that the solute transmural flux J2r (2.118) is purely advective if Pe→∞

where J2r = εu1C1

∣∣∣∣
r=1

. We also consider the limit Pe = 0 which is corresponding to the

totally diffusive flux. However, this is problematic as we have scaled the transmural flux

(J2r) based on the advective component (see Eq. 2.31). So, we rescale J2r in the form

J2r =
1

Pe
J̃2r, (2.119)

where J̃2r is the transmural flux nondimensionalized using the diffusive component of the

flux. In this case we can write Eq. (2.115) in the form

∂C2

∂η
− ε2δPe

D
u2C2 = −εδ

D
J̃2r. (2.120)

Assuming J̃2r is independent on η and solving for C2 when Pe = 0 we obtain

J̃2r =
D

εδ
(C2(η = 0, z)− C2(η = 1, z)) ≡ D

εδ
(C1(r = 1, z)− C3(ξ = 0, z)). (2.121)

This flux expression (2.121) has been investigated by Shipley and Chapman [2010] [99].

Note that we cannot have C1(r = 1, z) = C3(ξ = 0, z) and still maintain a transmural

flux. Hence, we ignore this case in this thesis since we estimated Pe which is greater than

zero.

2.7.1 The Numerical Method

The system of PDEs. (2.108) and (2.109) are linear with non-constant coefficients which are

difficult to solve analytically. Therefore, we solve these two equations with the boundary

conditions (2.110), (2.111), (2.113) and (2.114) numerically using method of lines. We

discretize the ξ and z-domains onto a uniformly spaced mesh (ξj = j∆ξ, ∆ξ = 1/N2

in the tissue and zi = i∆z, ∆z = 1/N1 in the tissue or the vessel, see Fig. 2.2) using

central finite difference and solve the resulting system of ODEs using a built-in function in

MATLAB (ode15s) which solves systems of algebraic differential equations. We test the

MATLAB code by studying the mesh convergence, then we choose the number of mesh
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A)

B)

Figure 2.2: The computational domain for the healthy tissue. A)The grid of ξj (j =
1, 2, · · · , N2) and zi (i = 1, 2, · · · , N1) lines. B) The grid point numbers used in the
MATLAB code.

points which is corresponding to a relative error of O(10−4), see Appendix C.

It should be noted that Eqn. (2.108) has only derivative terms with respect to ξ, but

the coefficients are functions of z. On the other hand, Eqn. (2.109) is defined at ξ = 0 and

only has derivatives with respect to z. Across the bulk of either the ξ or z domains we use

second order central finite difference approximations. At the boundaries we use staggered

(off centered) grids to maintain the second order approximation. The time derivatives are

left to be integrated using the built-in MATLAB solver. This gives us a system of algebraic

differential equations, where at every spatial mesh point we get an ODE (method of lines)

that can be solved by the MATLAB subroutine (ode15s) according to appropriate initial

conditions for solute concentration at every mesh point at the computational domain.
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The finite difference approximations at ξ = ξ1 = 0 are given by

∂C30

∂ξ
(ξ1, zi) =

−3C30(ξ1, zi) + 4C30(ξ2, zi)− C30(ξ3, zi)

2∆ξ
, (i = 1, 2, · · · , N1), (2.122)

while at ξ = ξN2 = 1 are approximated in the form

∂C30

∂ξ
(ξN2 , zi) =

C30(ξN2−2, zi)− 4C30(ξN2−1, zi) + 3C30(ξN2 , zi)

2∆ξ
, (i = 1, 2, · · · , N1).

(2.123)

At the mesh points at 0 < ξ < 1 we use central difference formulas for the first and second

derivatives with ξ in the form (j = 2, 3, · · · , N2 − 1)

∂C30

∂ξ
(ξj, zi) =

C30(ξj+1, zi)− C30(ξj−1, zi)

2∆ξ
, (i = 1, 2, · · · , N1), (2.124)

∂2C30

∂ξ2
(ξj, zi) =

C30(ξj+1, zi)− 2C30(ξj, zi) + C30(ξj−1, zi)

(∆ξ)2
, (i = 1, 2, · · · , N1). (2.125)

The derivatives with z at z = z1 = 1 are approximated in the form

∂C10

∂z
(zN1) =

C10(zN1−2)− 4C10(zN1−1) + 3C10(zN1)

2∆z
. (2.126)

and at 0 < z < 1 the first derivative is given by

∂C10

∂z
(zi) =

C10(zi+1)− C10(zi−1)

2∆z
, (i = 1, 2, · · · , N1), (2.127)

∂2C10

∂z2
(zi) =

C10(zi+1)− 2C10(zi) + C10(zi−1)

(∆z)2
, (i = 1, 2, · · · , N1). (2.128)

2.7.2 GNR Conservation of Mass

We validate our numerical method by verifying conservation of GNR (solute) mass. The

total mass of GNRs in the vessel is calculated as

M̂1 = 2π

∫ R̂1

0

r̂dr̂

∫ L̂

0

Ĉ10dẑ. (2.129)

The change in mass in the vessel is then calculated from

dM̂1

dt̂
= 2π

∫ R̂1

0

r̂dr̂

∫ L̂

0

∂Ĉ10

∂t̂
dẑ. (2.130)
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Applying the dimensionless transformations (2.30) on (2.130) we get

dM1

dt
= 2πε2

∫ 1

0

rdr

∫ 1

0

∂C10

∂t
dz, M1(t) =

M̂1(t)

L̂3Ĉ0

. (2.131)

This change in mass is balanced by fluxes into and out of the vessel. Applying the nondi-

mensional transformations (2.30) on (2.26) we get the axial flux in the vessel at any

arbitrary z coordinate (z = z0) in the from

J1z

∣∣∣∣
z=z0

= 2π

[∫ 1

0

(w1C10 −
1

Pe

∂C10

∂z
)rdr

]
z=z0

, (z0 = 0, 1). (2.132)

The radial flux (2.107) is calculated from

J3r

∣∣∣∣
ξ=0

= 2π

[∫ 1

0

(u3C30 −
D

mPe

∂C30

∂ξ
)dz

]
ξ=0

. (2.133)

Thus the conservation of mass at any arbitrary time t0 ≥ 0 is given by

∫ t0

0

(
dM1

dt
− J1z

∣∣∣∣
z=0

+ J1z

∣∣∣∣
z=1

+ J3r

∣∣∣∣
ξ=0

)
dt = 0, (2.134)

which can be written in the form

M1(t0) = M1(0) +

∫ t0

0

(J1z

∣∣∣∣
z=0

− J1z

∣∣∣∣
z=1

− J3r

∣∣∣∣
ξ=0

)dt. (2.135)

2.7.3 The Solute Total Mass in the Tissue

We can calculate the total mass of solute (M̂3) accumulated in the tissue using the following

equation

M̂3 =

∫ L̂

0

Ĉ3dV̂ , (2.136)

where dV̂ is the control volume in the tissue in cylindrical coordinates which is defined as

dV̂ = r̂dr̂dθ̂dẑ. (2.137)

The control volume defined in the preceding equation can be written in terms of the

dimensionless variables (dξ and dz) using the transformations (2.32) we get

dV̂ = 2πmε2L̂3(δ +mξ + 1)dξdz. (2.138)
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Hence, the dimensionless total mass (M3) in the tissue is calculated as

M3(t) = 2πmε2
∫ zmax

0

∫ ξmax

0

(δ +mξ + 1)C3(ξ, z, t)dξdz, M3(t) =
M̂3(t)

L̂3Ĉ0

. (2.139)

2.8 Reduced Problems

In this section we introduce two reduced models which replace the vessel domain (Eqn. 2.108)

with an appropriate boundary condition. We show that these reductions remove the con-

straint ODE (2.109) from the system and so the final reduced system is a two-dimensional

PDE for solute transport in the tissue. This approach is then used when we study GNR

delivery to vascularised tumors at the macroscale, see Chap. 3.

2.8.1 Problem 1

In the first problem we prescribe the concentration of the solute in the vessel every-

where using the exponential decay model defined in Eqn. (2.112), hence, the vascular

concentration is independent of z. In addition, we assume continuity of concentration

at the tissue/vessel-wall interface (ξ = 0). Thus, the system reduces to the following

one-dimensional PDE

(1 +mξ)

(
mBP3C30 + u3

∂C30

∂ξ
+m

∂C30

∂t

)
=

D

mPe

(
∂2C30

∂ξ2
+m

∂

∂ξ

(
ξ
∂C30

∂ξ

))
, (2.140)

subject to the following boundary conditions

C30 = Cv0e
−t/τ , (ξ = 0), (2.141)

Peu3C30 −
D

m

∂C30

∂ξ
= 0, (ξ = 1). (2.142)

2.8.2 Problem 2: The Two Pore Model

In the second reduced problem we construct a more ad-hoc boundary condition using the

approach of the two pore model to define the solute flux across the vessel wall, see Sec. 2.7.

So, in this model we prescribe the vascular concentration using the decay model (2.112)

and specify the flux at the tissue/vessel-wall using the pore model that we derived in

Sec. 2.7. Hence, we write the following system of equations

(1 +mξ)

(
mBP3C30 + u3

∂C30

∂ξ
+m

∂C30

∂t

)
=

D

mPe

(
∂2C30

∂ξ2
+m

∂

∂ξ

(
ξ
∂C30

∂ξ

))
, (2.143)

C10 = Cv0e
−t/τ . (2.144)
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The system is solved according to the following boundary conditions

u3C30 −
D

mPe

∂C30

∂ξ
=
εu1(r = 1, z) (C10(r = 1, z)− C30(ξ = 0, z)e−ω)

1− e−ω
, (ξ = 0), (2.145)

Peu3C30 −
D

m

∂C30

∂ξ
= 0, (ξ = 1), (2.146)

where ω is determined by (2.116). In this reduced problem we balance the flux (at the

tissue/wall interface) calculated by the two pore model (2.118) with the radial flux defined

in (2.107).

2.9 Results

The Fluid Flow Predictions

To begin we examine the fluid flow in the domain, where in Fig. 2.3 we plot the analytical

solutions for the vascular pressure (P̂1), the components of the blood velocity (û1 and ŵ1),

the interstitial pressure (P̂3) and the interstitial fluid velocity (û3), which are defined in

Eqns. (2.65-2.69), (2.74), (2.76) and (2.79), respectively.

The radial blood velocity is typically very small (see Figs. 2.3(A), (B)) compared to

the axial velocity (see Fig. 2.3(C), (D)) and is approximately linearly decreasing along the

vessel (see Fig. 2.3(A)), due to the approximately linear vascular pressure drop as revealed

in Fig. 2.3(E). However, the radial velocity has a parabolic profile akin to Hagen-Poiseuille

flow, as shown in Fig. 2.3(B). The velocity of the blood in the axial direction has also a

parabolic profile across the vessel, but is approximately uniform along the vessel as shown

in the Figs. 2.3(C), (D).

Fig. 2.3(E) shows how the vascular pressure (P̂1) and the interstitial pressure (P̂3) in

the tissue decrease approximately linearly in ẑ and both pressures are very close in value

(P̂1 is slightly bigger than P̂3, and so the transmural pressure P̂1−P̂3 > 0). This suggests a

very small transmural pressure and as a result a very small transvascular fluid flux across

the wall. Although the interstitial pressure (P̂3) is a function of ξ̂ and ẑ (see Eq. (2.74)),

Fig. 2.3(F) shows that the interstitial pressure profile is approximately uniform across the

tissue and depends on ẑ only. However, the interstitial fluid velocity is very small (∼ 10−8)

decreases approximately exponentially in the radial direction r̂ and decreases linearly in

the ẑ direction as shown in Fig. 2.3(G), (H). As expected from the continuous velocity

boundary conditions at the tissue/vessel interface, the interstitial fluid velocity is typically

very small (see Fig. 2.3(G), (H)) and of the same order as the radial blood velocity (see

Fig. 2.3(A), (B)).
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Figure 2.3: Pressure and velocity profiles in the vessel and tissue using the parameter
values in Table 2.1. A) The interstitial pressure P3 across tissue. B) The vascular pressure
P1 along the vessel and the interstitial pressure P3. C)The interstitial velocity across the
tissue. D)The interstitial velocity along the tissue. E)The vascular axial velocity along
the vessel. F)The vascular axial velocity across the vessel. G)The vascular radial velocity
along the vessel. H)The vascular radial velocity across the vessel.

The Solute Concentration Predictions

The Fig. 2.4 shows the predictions of solute concentrations in the vessel (Ĉ10) and the

tissue (Ĉ30) which are results of solving Eqns. (2.108-2.111) numerically (the numerical
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technique is described in Sec. 2.7.1). The solute vascular concentration is approximately

spatially uniform as revealed in Fig. 2.4(A). As a result, the vascular concentration is

exponentially decreasing over time (see Fig. 2.4(B)) since the concentration is uniform (in

the vessel) and we impose the exponential decay model (2.112) at the vessel inlet.

The radial profile of the solute concentration across the tissue for different values of

ẑ are shown in Figs. 2.4(C)-(F). These four figures show that the solute concentration

initially increases as an approximate traveling wave advances away from the vessel, then

saturates, then decreases homogeneously following the exponential decay of the solute

vascular concentration, see Eqn. (2.112).

We plot the spatial concentration profiles along the tissue for different time points

in Fig. 2.4(G) and the temporal concentration profiles for different ẑ mesh points in

Fig. 2.4(H). In these two figures we compared the concentration profiles at two radial

mesh points: at r̂ = 4.9 × 10−4 cm (ξ = 0.3) using solid line plot and at r̂ = 6.7 × 10−4

cm (ξ = 1) using dashed line plot. We will use these two radial mesh points to assess

the two reduced models introduced in Sec. 2.8. Fig. 2.4(G) demonstrates a homogeneous

increase of GNR concentration until saturation; the GNR concentration decreases faster

closer to the vessel inlet than the concentration near the vessel outlet, resulting in an in-

homogeneous concentration decay along the tissue. Furthermore, the GNR concentration

rapidly increases in the tissue within the first four hours post injection, and then gradually

decreases until the end of the simulation (within the last eight hours of the simulation) as

depicted in Fig. 2.4(H), where the concentration increases to its maximum within 2 − 3

hours, but needs 10 hours to decrease to half of its maximum value.

We conclude from Fig. 2.4 that GNRs accumulate at the tissue edge (r̂ = 6.7× 10−4)

achieving 60% of the dose concentration within four hours post injection (Fig. 2.4(H))

which is a result of uniform GNR concentration in vessel (Fig. 2.4(A)), according to the

parameter values considered in this case study. The decay of GNR concentration in the

tissue (Fig. 2.4(C)-(F)) is due to the GNR removal by lymph vessels in the tissue (2.8) in

addition to the GNR clearance from the blood stream via the liver and spleen (mimicked

by the exponential decay model (2.112)) which is the only source of GNRs in the tissue

(Fig. 2.4(B)).

Predictions from the Reduced Problems

In to the Fig. 2.5 we compare the predictions of the reduced problems considered in

Sec. 2.8 against the predictions of the full model discussed in Sec. 2.9 and Figs. 2.5(A),

(B) depict the predictions of the reduced problem 1 (defined in Sec. 2.8.1) alongside the

predictions of the full model at the radial mesh points r = 6.7 × 10−4 cm (Fig. 2.5(A))

and r = 4.9× 10−4 cm (Fig. 2.5(B)). The predictions of the reduced problem 2 (defined in

Sec. 2.8.2) at r = 6.7×10−4 cm and r = 4.9×10−4 cm are plotted alongside the predictions
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Figure 2.4: Predictions for the solute transport problem at the microscale using the parameter values in

Table 2.1. A) Vascular concentration along the vessel axis for different time steps. B) A comparison for

the temporal profiles of the vascular concentration calculated through the model described in Sec. 2.6 and

exponential decay model (see Eq. (2.112)). The radial spatial profiles for the solute concentration in the

tissue at C) ẑ = 0, D) ẑ = 0.012, E) ẑ = 0.02 and F) ẑ = 0.049 for different values of time steps. G)The

axial spatial profiles for the solute concentration in the tissue at r̂ = 4.9 × 10−4 and at r̂ = 6.7 × 10−4

(tissue outer edge) for different values of time steps. H)The temporal profiles for the solute concentration

in the tissue at r̂ = 4.9 × 10−4 and at r̂ = 6.7 × 10−4 (tissue outer edge) for different values of axial

positions.
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of the full model in Figs. 2.5(C), (D), respectively. We conclude from these four figures

that the reduced models give a reasonable agreement with the full model near the vessel-

wall/tissue interface as shown in Figs. 2.5(B), (D). However, both reduced models slightly

overestimate the solute concentration in the deep tissue as shown in Figs. 2.5(A), (C),

which means the GNR flux at the wall computed by either the pore model (problem 2) or

the reduced problem 1 is larger than the GNR flux computed by the full model.

We conclude from these results that the reduced models successfully predict the solute

concentration near the vessel/tissue interface for the chosen values of parameters in this

study with a slightly overestimation of the concentration at the first 6 hours of simulation.

However, this overestimation vanishes as the temporal concentration profiles decay (see

Figs. 2.5(B), (D)).

In the reduced model 2 we impose the GNR flux according to the two pore model

and this model slightly overestimates the concentration near the vessel/tissue interface

(Fig. 2.5(E)). The overestimation of the GNR concentration in the deep tissue away from

the vessel is because the flux defined in the full model (2.106) is different from the flux

computed via the two pore model (which is defined in Eq. 2.118).

In the reduced model 1 we impose the GNR concentration at the tissue/wall interface

using the exponential model (Eq. 2.141) which means in this reduced problem we solve for

the GNR flux at the tissue/wall boundary. Interestingly, for a fixed axial position both

reduced models give approximately the same solute concentration temporal profile which

is very close to the full model predictions as revealed in Fig. 2.5(E).

In Fig. 2.5(F) we compare the transient total mass of solute accumulated in the tissue

(defined according to Eq. 2.139) which is calculated via the full model and the two reduced

models. This figure shows that both reduced problems predict exactly the same total mass

transient profile which almost exactly agree with the full model predictions during the first

six hours of the simulation and slightly deviate for larger times which is a result of the

difference in the concentration predictions of the three models.

In Figs. 2.6 (A), (B) we compare the radial profiles at ẑ = 0.022 cm for solute concen-

tration in tissue computed via the three models at various times. This figure shows that

the predictions of the three models agree very well across approx 17% of the tissue adja-

cent to the vessel, then the reduced problems predictions overestimate the concentration

across the remainder of the tissue. Overall, for the chosen parameter values in this study,

the two reduced problems give close predictions for the solute concentration in the tissue

and agree very well with the full model near the vasculature (within 0.5 µm of tissue).

This means the two reduced models successfully predict the solute concentration in the

tumor regions with dense capillaries. Furthermore, we compare the GNR radial flux at the

tissue/wall interface computed by the three models in the Figs. 2.6 (C), (D). Fig. 2.6 (C)

shows that the solute radial flux predictions at the tissue/wall interface computed by the
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three models are approximately the same within the first two hours post GNR injection

and within the last four hours of the simulation time considered in this study, however,

within the time in between the reduced models predict lower flux values compared to the

full model. Moreover, the three models predict an exponential decay for the radial flux

at the tissue/wall interface. The axial profiles for the radial flux for different times are

shown in Fig. 2.6 (D). This figure shows that the flux decays approximately linearly, but

reverses its direction to be from tissue into the vessel near the vessel outlet at large times

post injection which indicate that the local GNR concentration saturates in the tissue and

eventually becomes larger than the concentration in the vessel. Overall, the flux predicted

by either of the reduced models is a reasonable approximation to the full model, according

to the parameter values chosen in this study. Hence, we use the two pore model to define

the GNR flux at the macroscale model provided in chapter 3. At the macroscale study we

prefer to use the flux boundary condition calculated from the two pore model (reduced

model 2) over imposing the continuity of concentration at the vessel/tissue interface as

the two pore model can more easily incorporate the tumor vasculature density (which is

a key parameter in the drug delivery models as discussed in Secs. 3.5 and 3.5.3).

2.10 Conclusion

In this chapter we investigated the solute transport in a single vessel surrounded by tissue

at the microscale. We used the asymptotic analysis to develop analytical solutions for the

fluid transport equations and numerical solutions for the solute transport equations. We

investigated the solute concentration in the tissue and the solute extravasation flux using

our model. In our model we imposed the continuity of solute concentration and flux at the

two interfaces of the vessel wall. We compared our model results with the solution of the

transport problem in the tissue using the two pore model boundary condition at the vessel

wall which showed a reasonable agreement very close to the vessel, but not in the deep

tissue. We also investigated the solute concentration in the tissue using the continuity

concentration boundary condition at the vessel wall which agreed very well with the two

pore model, for the chosen values of parameters in this study.

However, in this model we applied some simplifying assumptions to find analytical

solutions for the fluid transport equations. In particular, we assumed that the tissue is

very thin at the same length scale of the vessel thickness. This assumption is valid only

in the presence of high dense vasculature where vessels are very close to each other.

We also neglected the osmotic pressure (which depends on the solute transvascular

flux) to decouple the fluid transport and solute transport models.

This model is a preliminary model to examine the mathematical expressions for the

solute flux boundary conditions used vastly in the literature, such as the two pore model.
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Figure 2.5: Prediction comparison of the solute transport problem at the microscale to
the two reduced problems using the parameter values in Table 2.1. A comparison of the
concentration predictions in the tissue calculated through the full model (see Sec. 2.6)
and the reduced problem 1 (see Sec. 2.8.1) at: A) r̂ = 6.7 × 10−4 and B) r̂ = 4.9 × 10−4

for different axial mesh points. A comparison of the concentration predictions in the
tissue calculated through the full model and the reduced problem 2 (see Sec. 2.8.2) at: C)
r̂ = 6.7 × 10−4 and D) r̂ = 4.9 × 10−4 for different axial mesh points. E) A comparison
of the concentration predictions in the tissue calculated through the full model and the
reduced problem 2 at r̂ = 6.7× 10−4 for different axial mesh points. F) A comparison of
the temporal total mass accumulated in the tissue calculated through the full model and
the reduced problem 2.

The next step will be investigating the case of thick tissue and including the osmotic

pressure as a function of solute transvascular concentration.
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Figure 2.6: Prediction comparison of the GNR concentration and flux at the tissue/wall
computed by the full model and the two reduced models using the parameter values in
Table 2.1. A) The concentration profiles across the tissue for different time steps. B) The
concentration profiles very close to the wall (a zoom in for (A)). C) The temporal radial
flux at the tissue/wall for different axial positions. D)The axial profiles for the solute flux
for different time steps.



Chapter 3

Mathematical Model for GNR

Delivery to Tumors

3.1 Introduction

Delivering gold nanorods (GNRs) to tumors is an essential process in the photothermal

therapy [92]. However, GNRs have to overcome some biological barriers such as: GNR

clearance from the blood by the immune system [2], elevated interstitial pressure in tumors

which restricts GNR extravasation in the tumors [66] and the maximal tumor capacity

for internalizing GNRs [40]. So, this needs comprehensive theoretical and experimental

studies to optimize the GNR delivery to tumors.

The GNR blood half life can be controlled by decorating GNRs with hydrophilic poly-

mers [15]. So, the influence of GNR blood half life on GNR delivery to tumors needs to be

investigated theoretically and experimentally. In addition, the tumor vasculature density

and the vessel pore size play a vital role in breaking the interstitial pressure barrier [20].

Moreover, the efficacy of passive targeting needs to be investigated and compared to active

targeting which is restricted by the available tumor receptors.

Baxter and Jain [8,10] provided a framework for modeling macroscopic fluid and solute

transport across tumors. They modeled the solute interaction with tumor cells, but they

neglected solute internalization by tumor cells. They found that the interstitial pressure

has a significant impact on the solute concentration in the absence of the binding ligands.

In addition, introducing the binding ligands reduced the solute accumulation in the tu-

mor. A more sophisticated model for drug interaction with tumor cells was provided by

Goodman et al. [2008] [34]. They modeled NP delivery to spheroids mathematically and

validated their results in vitro. However, they assumed in their model that tumor cells can

internalize an unlimited number of NPs. Chou et al. [2013] [23] modeled mathematically

NP delivery to tumors in vivo (at the microscale). They assumed that NPs in the intersti-

tium can be directly internalized into the tumor cells (without binding to cell receptors).

57
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They found that increasing tumor vascular permeability enhances the NP accumulation

in the vascularised regions in the tumor, while increasing NP diffusivity increases the both

NP accumulation and NP homogeneity across the tumor.

In this chapter we introduce a mathematical model (at the macroscale) to investigate

GNR delivery to tumors prior to laser irradiation. In this model we mimic both methods

used for GNR administration to patients which consist of either intravenous and intra-

tumoral injections. We focus on the intravenous injection since it is convenient for deep

sited tumors which cannot be treated by tumor resection (cutting out a tumor through

surgery). Modeling GNR transport in the bloodstream is complicated, so we approximate

the transient GNR concentration in the bloodstream using an exponential decay model

which is validated by our asymptotic analysis in Sec. 2.8. In addition, we use the two pore

approximation to calculate the GNR extravasation flux from tumor vasculature, which

we validated against the predictions of the asymptotic model derived from the basic fluid

mechanical equations at the microscale (see Sec. 2.9). We then model the GNR transport

across the tumor and the surrounding tissue, where we consider active and passive tumor

targeting techniques (Sec. 3.2). We then investigate the model parameter space to discover

how GNR delivery to tumors can be optimized (Sec. 3.5).

3.2 The Model

We consider a spherical (partially vascularised) tumor of fixed radius R̂ surrounded by an

annulus of healthy vascularized tissue of thickness R̂∞ − R̂, see Fig. 3.1. We model the

presence of vasculature in the tumor and tissue as a continuous and uniformly distributed

source of both interstitial fluid and GNRs. We choose GNRs rather than other types of

nanoparticles (NPs) due to their optical thermal properties [72]. We assume that these

GNRs can access the tumor and the normal tissue from the vasculature by advection with

the flow into the tumor from the bloodstream and also by diffusion across the capillary

walls. In this model we assume that the system is spherically symmetric and denote r̂ as

the radial coordinate, so the tumor domain is 0 ≤ r̂ ≤ R̂ and the domain of healthy tissue

is R̂ ≤ r̂ ≤ R̂∞. Furthermore, we consider that the radius of the avascular tumor core is

r̂n ≤ R̂ (i.e. the width of the tumor vascular rim is R̂− r̂n). We denote t̂ as time.

We study the problem of targeting a tumor with GNRs treated with antibodies which

can only bind to malignant cells. Therefore, in the tumor zone (0 ≤ r̂ ≤ R̂) GNRs can

diffuse through the extracellular matrix, bind to tumor cell receptors and get engulfed

by these cells, as detailed in Fig 3.1. On the other hand, in the healthy tissue region

(R̂ ≤ r̂ ≤ R̂∞) GNRs can only diffuse through the interstitial compartment and cannot

react with the healthy cells as they do not have compatible receptors.

We now describe the constituents of the model in detail. We first describe the blood
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Figure 3.1: The domain of a tumor surrounded by normal tissue.

and lymphatic phases (Sec. 3.2.1). We then describe the interstitial flow in both the

healthy and tumor tissue (Sec. 3.2.2). After that we model the GNR transport in the

both healthy tissue (Sec. 3.2.4) and the tumor tissue (Sec. 3.2.6). Then, we introduce

the numerical method used to solve our model (Sec. 3.2.10) and describe our parameter

estimation (Sec. 3.3). We discuss the results of this model in Sec. 3.4.

In the model we denote quantities specific to the tumor with the index (T ), and specific

to the normal tissue with the index (N). In both regions we assume the tissue is formed by

four phases, cells (volume fraction φ
(j)
c ), fluid (volume fraction φ

(j)
f ), blood vessels (volume

fraction φ
(j)
b ) and lymph vessels (volume fraction φ

(j)
l ), such that φ

(j)
c +φ

(j)
f +φ

(j)
b +φ

(j)
l = 1,

i.e. there are no voids. Furthermore, the timescales considered in this study are very short

compared to the timescale of the tumor growth and vasculature density change. Therefore,

the cell, fluid, blood and lymph volume fractions are constants in our study as well as the

tumor radius.

In the following all variables are functions of the radial coordinate r̂ and time t̂, unless

specified otherwise. All variables and their units are listed in Table 3.1.

3.2.1 Blood and Lymph systems

Blood flows through the capillaries due to the pressure difference between the supplying

arteries (P̂in) and the draining veins (P̂out), see Fig. 3.2. In this chapter we consider a

zero dimensional problem for blood flow in capillaries, where for simplicity, we consider

that the blood pressure is constant and the blood velocity is zero.
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Therefore, we assume that the pressure in the blood (denoted P̂v) and lymph (denoted

P̂l) have constant values in both tumor and tissue. That means there is no flow in either

the vasculature or the lymphatic systems in the radial direction r̂. However, we still

build in features driven by the flow based on our analysis in chapter 2 (such as GNR

extravasation flux out of the vasculature into the surrounding tissue).

In addition, we assume that the GNR vascular concentration is spatially uniform (i.e.

Ĉv = Ĉv(t)), but a decreasing function of time due to GNR clearance from the blood-

stream. We consider a bolus injection of GNRs into the vasculature at initial concen-

tration Ĉ
(j)
v0 at time t̂ = 0 (without loss of generality). The GNR concentration in the

vasculature decreases due to clearance by the liver and spleen at fixed rate τ̂ (consistent

with the assumptions of Mpekris et al. [2015] [76]).

Furthermore, the GNR mass in the vasculature decreases due to extravasation into

the tumor (with mass flux J̆
(T )
tot ) and tissue (with mass flux J̆

(N)
tot ), hence we can write the

following ODE for the vascular GNR concentration,

dĈ
(j)
v

dt̂
= −1

τ̂
Ĉ(j)
v − (J̆

(T )
tot + J̆

(N)
tot ), (j = N, T ). (3.1)

In previous models τ̂ is chosen so that clearance takes place on a timescale of hours [20].

We examine the influence of this decay rate on our predictions in the Secs. 3.4.1 and 3.4.2

below. The transient GNR total vascular flux in the tumor (J̆
(T )
tot ) and in healthy tissue

(J̆
(N)
tot ) are calculated from

J̆
(T )
tot = 4π

∫ R̂

0

H(T )(r̂ − r̂n)
J̆

(T )
1

V̂ (T )
r̂2dr̂, (3.2)

J̆
(N)
tot = 4π

∫ R̂∞

R̂

J̆
(N)
1

V̂ (N)
r̂2dr̂, (3.3)

where J̆
(j)
1 is the GNR partial perfusion mass flux out of the vasculature normalized by

total volume V̂ (j) (j = T,N), r̂n is the radius of the avascular region in the tumor and

H(r − rn)(T ) is the Heaviside step function which is defined as

H(r̂ − r̂n)(T ) =

0, 0 ≤ r̂ ≤ r̂n,

1, r̂ ≥ r̂n.
(3.4)

We use the Heaviside step function (defined in the preceding equation) to define the GNR

extravasation flux in the tumor rim only (at r̂ ≥ r̂n) since we considered the tumor core

as an avascular tissue (at 0 ≤ r̂ ≤ r̂n).
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Figure 3.2: The vasculature projection in the spherically symmetric model.

3.2.2 Macroscopic Fluid Transport

To form a macro-scale continuum model for the fluid transport in vascular tissues we

average out the variations which occur over the microscopic length scale (the intercapillary

distance, O(100 µm) as considered in Chapter 2) which is very small compared to the

tumor radius length scale, O(1 cm), see Baxter and Jain [1989] [8]. At the macro-scale

we apply Darcy’s law for the interstitial fluid flow in the tumor and normal tissue [105].

The interstitial flow velocity in the radial direction (denoted û(j), j = N, T ) in the tumor

and the normal tissue as a function of the interstitial pressure (P̂
(j)
i , j = N, T ) can be
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written as [76],

φ
(j)
f û(j) = −K̂(j)∂P̂

(j)
i

∂r̂
, (j = N, T ), (3.5)

where K̂(j) is the hydraulic conductivity of the interstitium.

The volume of interstitial fluid increases due to flow in from the blood phase and

decreases due to flux out into the lymph phase. Thus, conservation of mass for the

interstitial fluid is given by [8],

1

r̂2

∂

∂r̂
(r̂2φ

(j)
f û(j)) = H(j)(r̂ − r̂n)

(
Q̂

(j)
v

V̂ (j)
− Q̂

(j)
l

V̂ (j)

)
, (j = N, T ), (3.6)

where Q̂v is the transvascular volumetric flow rate out of the vasculature into the intersti-

tium (driven by the pressure difference across the capillary walls) normalized using total

volume V̂ (j) (j = T,N) [8] and Q̂l is the volumetric flow rate out of the interstitium into

the lymphatic system, which is also normalized by V̂ (j). To capture the transvascular flux

(Q̂v) we use Starling’s law [33, 104], dependent on both the local pressure drop between

the interstitium (P̂i) and the vasculature (P̂v), and also the difference between the osmotic

pressure in the plasma (πv) and in the tissue (πi) which takes the form

Q̂(j)
v = L̂(j)

pv Ŝ
(j)
v (P̂v − P̂ (j)

i − σ
(j)
T (π̂v − π̂(j)

i )) ≡ L̂(j)
pv Ŝ

(j)
v (P̂e − P̂ (j)

i ), (j = N, T ), (3.7)

P̂ (j)
e = P̂v − σ(j)

T (π̂v − π̂(j)
i ), (j = N, T ), (3.8)

where Ŝv is the vasculature surface area, L̂pv is the hydraulic conductivity of the microvas-

cular wall, σT is the average osmotic reflection coefficient for plasma proteins and P̂e is the

net filtration pressure. In this study we ignore the variation of the osmotic pressure due

to the change in the GNR transvascular concentration, so we consider constant osmotic

pressures in both the tumor and surrounding tissue. This approximation decouples the

fluid transport and GNR transport models.

Similarly, the flux from the tissue into the lymphatic system is assumed to be propor-

tional to the pressure difference between the interstitium and the hydrostatic pressure of

the lymphatics (P̂l) [8] in the form

Q̂
(j)
l = L̂

(j)
pl Ŝ

(j)
l (P̂

(j)
i − P̂

(j)
l ), (j = N, T ), (3.9)

where Ŝl is the lymphatic surface area and L̂pl is the hydraulic conductivity of the lym-

phatic wall.

For constant vascular and lymphatic pressures, substituting Eqs. (3.5), (3.7) and (3.9)

into Eq. (3.6) we obtain one-dimensional PDEs for the interstitial pressure in both the
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healthy and tumor regions, in the form

1

r̂2

∂

∂r̂

(
r̂2∂P̂

(j)
i

∂r̂

)
=

− H(j)(r̂ − r̂n)

K̂(j)

(
L̂(j)
pv

Ŝ
(j)
v

V̂ (j)
(P̂e − P̂ (j)

i )− L̂(j)
pl

Ŝ
(j)
l

V̂ (j)
(P̂

(j)
i − P̂

(j)
l )

)
, (j = N, T ). (3.10)

On the right hand side of the preceding equation we group P̂
(j)
i as a common factor, so

we get

1

r̂2

∂

∂r̂

(
r̂2∂P̂

(j)
i

∂r̂

)
=

H(j)(r̂ − r̂n)

K̂(j)V̂ (j)

(
(L̂(j)

pv Ŝ
(j)
v + L̂

(j)
pl Ŝ

(j)
l )P̂

(j)
i − (L̂(j)

pv Ŝ
(j)
v P̂e + L̂

(j)
pl Ŝ

(j)
l P̂

(j)
l )
)
, (j = N, T ).

(3.11)

Hence, we can write the preceding equation in the form

1

r̂2

∂

∂r̂

(
r̂2∂P̂

(j)
i

∂r̂

)
=
α(j)

R̂2
(P̂

(j)
i − P̂ (j)

ss ), (j = N, T ), (3.12)

where

α(j) = R̂2H(j)(r̂ − r̂n)
L̂

(j)
pv Ŝ

(j)
v + L̂

(j)
pl Ŝ

(j)
l

K̂(j)V̂ (j)
, (j = N, T ), (3.13)

P̂ (j)
ss =

L̂
(j)
pv Ŝ

(j)
v P̂

(j)
e + L̂

(j)
pl Ŝ

(j)
l P̂

(j)
l

L̂
(j)
pv Ŝ

(j)
v + L̂

(j)
pl Ŝ

(j)
l

, (j = N, T ), (3.14)

here α(j) is the ratio of the vasculature to the interstitium hydraulic conductivities; and

P̂ss is the interstitial pressure required for the transvascular flux to identically balance the

translymphatic flux.

For spatially uniform vascular pressure (P̂v) and lymphatic pressure (P̂l), this PDE

can be solved analytically [8], but we consider only a numerical approach here.

3.2.3 Boundary Conditions for Macroscopic Fluid Transport

Following Baxter and Jain [1990] [9], we apply symmetry boundary conditions at the

center of the tumor, continuity of pressure and velocity, and a constant interstitial pressure

(P̂
(N)
ss , the interstitial pressure which results in equilibrium between vascular and lymphatic
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fluxes) at the outer edge of the healthy tissue. These boundary conditions take the form

∂P̂
(T )
i

∂r̂
= 0, (r̂ = 0), (3.15)

− K̂(T )∂P̂
(T )
i

∂r̂
= −K̂(N)∂P̂

(N)
i

∂r̂
, P̂

(T )
i = P̂

(N)
i , (r̂ = R̂), (3.16)

P̂
(N)
i = P̂ (N)

ss , (r̂ = R̂∞). (3.17)

3.2.4 GNR Transport in the Healthy Tissue

To form a macro-scale continuum model for the GNR transport in the healthy tissue we

average the variations of intercapillary distances over some region that is small compared

to the tumor radius. Following Baxter and Jain [1989] [8], we model GNR concentration

(in the total healthy tissue volume, Ĉ(N)) equation in the healthy tissue using an advection-

diffusion equation with a source term for GNRs from the uniformly distributed vasculature

and a sink term into the lymphatic system across the whole normal tissue, in the form

(R̂ ≤ r̂ ≤ R̂∞)

∂Ĉ(N)

∂t̂
+

1

r̂2

∂

∂r̂
(r̂2û(N)Ĉ(N)) =

1

r̂2

∂

∂r̂

(
r̂2D̂(N)∂Ĉ

(N)

∂r̂

)
+
J̆

(N)
1

V̂ (N)
− J̆

(N)
2

V̂ (N)
, (3.18)

where D̂(N) is the diffusion coefficient of GNRs in the healthy interstitial space, J̆1 is the

GNR mass flux out of the vasculature into the tissue and J̆2 is the GNR mass flux out

of the tissue into the lymph system. The GNR mass flux into the lymphatic system is

assumed to be proportional to GNR concentration in the interstitium [9] in the form

J̆
(j)
2 = Q̂

(j)
l Ĉ(j), (j = N, T ). (3.19)

In this study we define the GNR transvascular flux (J̆
(N)
1 /V (N)) according to the two pore

model which has been validated (at the microscale) against the full asymptotic model

introduced in chapter 2. We derive the corresponding GNR transvascular flux at the

macroscale [51,83] following the same technique we used in Sec. 2.7 (at the microscale).

3.2.5 The Two Pore Model at the Macroscale

We assume that the GNR transvascular flux (J̆1) across the vessel wall is approximately

steady and homogeneous, where we assume that the vessel wall thickness (∆η̂) is very thin.

Therefore, according to Fick’s law the GNR flux across the vessel wall can be written in
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terms of diffusion and advection in the form

J̆
(j)
1 = −D̂(j)

w Ŝ(j)
v

dĈ
(j)
w

dη̂
+ Q̂(j)

v (1− σ̆(j))Ĉ(j)
w , (j = N, T ), (3.20)

where D̂
(j)
w is the GNR diffusion coefficient in the vessel wall, σ̆(j) is the osmotic reflection

coefficient of GNRs (in either the tumor (j = T ) or the healthy tissue (j = N)) and Ĉ
(j)
w

is the GNR concentration across the vessel wall which is a function of the local spatial

coordinate η̂. Rearranging the preceding equation into the form of a nonhomogeneous first

order ODE we get

dĈ
(j)
w

dη̂
− Q̂

(j)
v

D̂
(j)
w Ŝ

(j)
v

(1− σ̆(j))Ĉ(j)
w = − J̆

(j)
1

D̂
(j)
w Ŝ

(j)
v

, (j = N, T ). (3.21)

This equation can be integrated using the integrating factor exp(−Q̂(j)
v (1−σ̆(j))η̂/(D̂

(j)
w Ŝ

(j)
v )),

so we obtain

Ĉ(j)
w exp

(
− Q̂

(j)
v

D̂
(j)
w Ŝ

(j)
v

(1− σ̆(j))η̂

)∣∣∣∣∣
∆η̂

0

=

∫ ∆η̂

0

J̆
(j)
1

D̂
(j)
w Ŝ

(j)
v

exp

(
− Q̂

(j)
v

D̂
(j)
w Ŝ

(j)
v

(1− σ̆(j))η̂

)
dη̂, (j = N, T ), (3.22)

which can be written in the form

Ĉ(j) exp

(
− Q̂

(j)
v

D̂
(j)
w Ŝ

(j)
v

(1− σ̆(j))∆η̂

)
− Ĉ(j)

v =

J̆
(j)
1

Q̂
(j)
v (1− σ̆(j))

(
exp

(
− Q̂

(j)
v

D̂
(j)
w Ŝ

(j)
v

(1− σ̆(j))∆η̂

)
− 1

)
, (j = N, T ). (3.23)

Thus we can write the GNR transvascular flux across the vessel wall in the form

J̆
(j)
1 = Q̂(j)

v (1− σ̆(j))
Ĉ

(j)
v − Ĉ(j)e−P̆ e

(j)

1− e−P̆ e
(j)

, (j = N, T ), (3.24)

where Ĉ
(j)
v is the GNR vascular concentration, Ĉ(j) is the free GNR concentration in the

interstitium and P̆ e is the effective local transmural Péclet number across the vascular

wall, representing the ratio of advection to diffusion and is defined as [10],

P̆ e
(j)

=
Q̂

(j)
v (1− σ̆(j))∆η̂

D̂
(j)
w Ŝ

(j)
v

≡ Q̂
(j)
v (1− σ̆(j))

P̆ (j)Ŝ
(j)
v

, P̆ =
D̂

(j)
w

∆η̂
, (j = N, T ), (3.25)
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where P̆ is the vascular permeability coefficient. The experimentally estimated mathe-

matical correlation between P̆ and σ̆ is defined in the Appendix A.

In this study we assume the GNRs are typically larger than vasculature pore size in

the healthy tissue. Therefore, there is no GNR transvascular flux in healthy tissue (i.e.

J̆
(N)
1 = 0).

3.2.6 GNR Transport in the Tumor

In a similar manner to Sec. (3.2.4), inside the tumor we assume that free GNRs (Ĉ(T )) can

diffuse through the extracellular matrix, but can also bind to cell surface receptors and

become engulfed by these cells. We denote the concentration of bound GNRs by Ĉ
(T )
b , cell

receptors by Ĉ
(T )
bs and the internalized GNRs by Ĉ

(T )
i . The transport equation for Ĉ(T ) in

the tumor will be very similar to that in the normal tissue (Ĉ(N)) with additional binding

and disassociation terms [105], in the form (0 ≤ r̂ ≤ R̂)

∂Ĉ(T )

∂t̂
+

1

r̂2

∂

∂r̂
(r̂2û(T )Ĉ(T )) =

1

r̂2

∂

∂r̂
(r̂2D̂(T )∂Ĉ

(T )

∂r̂
) +H(r̂ − r̂n)(

J̆
(T )
1

V̂ (T )
− J̆

(T )
2

V̂ (T )
)

− k̂aĈ
(T )
bs Ĉ

(T )

φ
(T )
f

+ k̂dĈ
(T )
b , (3.26)

where k̂a is binding coefficient of GNRs to available receptors and k̂d is the corresponding

dissociation rate. A similar model was previously proposed by Goodman et al. [2008] [34]

for nanodrug delivery to tumors with radially dependent tumor volume fraction φ
(T )
f which

is accessible to GNRs. This macro-scale equation can be derived from the micro-scale using

the method of volume averaging, where Ĉ(T ) would be a superficial average and the source

terms normalized appropriately by the tumor volume fraction accessible to GNRs [8].

The concentration of GNRs bound to the surface of the tumor cells (Ĉ
(T )
b ) can be

calculated from the following equation

∂Ĉ
(T )
b

∂t̂
=
k̂aĈ

(T )
bs Ĉ

(T )

φ
(T )
f

− k̂dĈ(T )
b − k̂if(Ĉ

(T )
i )Ĉ

(T )
b , (0 ≤ r̂ ≤ R̂), (3.27)

where Ĉ
(T )
i is the concentration of the internalized GNRs, k̂i is the internalization rate and

f(Ĉ
(T )
i ) is a dimensionless function of internalized GNR concentration that saturates as

Ĉ
(T )
i approaches Ĉimax (a constant). In this case we choose the simple saturating function

f(Ĉ
(T )
i ) =

Ĉimax − Ĉ
(T )
i

Ĉimax

. (3.28)

Hence, for small Ĉ
(T )
i (Ĉ

(T )
i ≤ Ĉimax), the loss of bound GNRs due to internalization
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is a constant (k̂i) proportion of Ĉ
(T )
b , while as Ĉ

(T )
i → Ĉimax the rate of internalization

approaches zero i.e. the tissue is saturated and cannot internalize any more GNRs. We

introduced the maximal GNR capacity in this study since this phenomenon has been

demonstrated experimentally [40]. The role of the parameter Ĉimax is examined below.

To solve for the concentration of free receptors (to which the GNRs can bind), Ĉ
(T )
bs ,

we write the following equation, where the rate of change of the concentration of binding

sites is the negative of the R.H.S. of Eq. (3.27),

∂Ĉ
(T )
bs

∂t̂
= − k̂aĈ

(T )
bs Ĉ

(T )

φ
(T )
f

+ k̂dĈ
(T )
b + k̂if(Ĉ

(T )
i )Ĉ

(T )
b , (0 ≤ r̂ ≤ R̂). (3.29)

By conservation of mass, the concentration of internalized GNRs (Ĉ
(T )
i ) must then satisfy

∂Ĉ
(T )
i

∂t̂
= k̂if(Ĉ

(T )
i )Ĉ

(T )
b , (0 ≤ r̂ ≤ R̂). (3.30)

The total concentration of GNRs in the tumor (Ĉ
(T )
tot ) and healthy tissue (Ĉ

(N)
tot ) take the

form

Ĉ
(T )
tot = φ

(T )
f Ĉ(T ) + φ

(T )
b Ĉ

(T )
b + φ(T )

c Ĉ
(T )
i , (3.31)

Ĉ
(N)
tot = φ

(N)
f Ĉ(N). (3.32)

3.2.7 Boundary Conditions for Macroscopic GNR transport

We consider no-flux boundary conditions across both the outer boundary of the domain

(r̂ = R̂∞) of the normal tissue and also at the center of the tumor (r̂ = 0), with continuity

of GNR concentration and flux across the interface between the tumor and normal tissue

(r̂ = R̂), in the form

− D̂(T )∂Ĉ
(T )

∂r̂
+ û(T )Ĉ(T ) = 0, (r̂ = 0), (3.33)

− D̂(T )∂Ĉ
(T )

∂r̂
+ û(T )Ĉ(T ) = −D̂(N)∂Ĉ

(N)

∂r̂
+ û(N)Ĉ(N), Ĉ(T ) = Ĉ(N), (r̂ = R̂), (3.34)

− D̂(N)∂Ĉ
(N)

∂r̂
+ û(N)Ĉ(N) = 0, (r̂ = R̂∞). (3.35)

The volume fraction of the fluid phase does not appear in the equations (3.18) and

the boundary conditions (3.33)-(3.35) because we have used superficially averaged con-

centrations in this model. Note that these would appear if we were instead to use the

intrinsically averaged concentrations. We used a zero GNR total flux boundary condition

at the tissue edge (r̂ = R̂∞) since we use a sufficiently large computational domain to
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ensure that the interstitial pressure gradient is zero at the tissue edge (corresponding to

zero interstitial velocity).

3.2.8 Initial Conditions

We assume that at the beginning of the simulations there are no GNRs inside the tumor or

the healthy tissue and there is a finite number of available binding sites, which is uniform

across the tumor (Ĉbs = Ĉbsmax). Thus, we write the following initial conditions

Ĉ(j)
v (r̂, 0) = Ĉ

(j)
v0 , Ĉ(j)(r̂, 0) = Ĉ

(T )
b (r̂, 0) = Ĉ

(T )
i (r̂, 0) = 0, (j = N, T )

Ĉ
(T )
bs (r̂, 0) = Ĉbsmax . (3.36)

3.2.9 Dimensionless Transformation

The full model has seven dependent variables. For computational efficiency it is appropri-

ate to nondimensionalize the system of the dimensional Eqs. (3.12), (3.18), (3.26), (3.27)

and (3.29)-(3.30) along with the boundary conditions (3.15)-(3.17) and (3.33)-(3.35) and

the initial conditions (3.36) into dimensionless equations using the following transforma-

tions,

t̂ =
1

k̂d
t, r̂ = R̂r, Ĉ

(T )
b = ĈbsmaxC

(T )
b , Ĉ

(T )
bs = ĈbsmaxC

(T )
bs , û(j) = R̂k̂du

(j)

Ĉ
(T )
i = ĈbsmaxC

(T )
i , Ĉ(j) = ĈbsmaxC

(j), Ĉ(j)
v = ĈbsmaxC

(j)
v , P̂

(j)
i = P̂ (N)

ss + P̂ (N)
e P

(j)
i ,

P̂ (j)
ss = P̂ (N)

ss + P̂ (N)
e P (j)

ss , P̂ (j)
e = P̂ (N)

ss + P̂ (N)
e P (j)

e ,

P̂
(j)
l = P̂ (N)

ss + P̂ (N)
e P

(j)
l , (j = N, T ), (3.37)

where we scale time using the GNR disassociation rate (k̂d), GNR concentration using

initial cell-receptor concentration (Ĉbsmax), lengths using the tumor radius (R̂), velocities

using the corresponding velocity scale (R̂k̂d) in the tumor and pressure using the net

vascular pressure in healthy tissue (P̂
(N)
e ).

Thus, we obtain the following system of seven dimensionless differential equations

dC
(j)
v

dt
= −ξb1C(j)

v − ξb2
∫ 1

0

H(r − rn)ξ(T )
v (P (T )

e − P (T )
i )(C(T )

v − C(T )e−P̆ e
(T )

)r2dr, (3.38)

1

r2

∂

∂r

(
r2∂P

(N)
i

∂r

)
= α(N)P

(N)
i , (3.39)

∂C(N)

∂t
+

1

r2

∂

∂r

(
r2u(N)C(N)

)
= γc

1

r2

∂

∂r

(
r2D

∂C(N)

∂r

)
− ξ(N)

l (P
(N)
i − P (N)

l )C(N), (3.40)
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∂C(T )

∂t
+

1

r2

∂

∂r

(
r2u(T )C(T )

)
= γc

1

r2

∂

∂r

(
r2∂C

(T )

∂r

)
+H(r − rn)

(
ξ(T )
v (P (T )

e − P (T )
i )(C(T )

v − C(T )e−P̆ e
(T )

)

− ξ(T )
l (P

(T )
i − P (T )

l )C(T )

)
− ν1C

(T )
bs C

(T ) + C
(T )
b ,

(3.41)

∂C
(T )
b

∂t
= ν1C

(T )
bs C

(T ) − C(T )
b − ν2f(C

(T )
i )C

(T )
b , (3.42)

∂C
(T )
bs

∂t
= −ν1C

(T )
bs C

(T ) + C
(T )
b + ν2f(C

(T )
i )C

(T )
b , (3.43)

∂C
(T )
i

∂t
= ν2f(C

(T )
i )C

(T )
b , (3.44)

1

r2

∂

∂r

(
r2∂P

(T )
i

∂r

)
= α(T )(P

(T )
i − P (T )

ss ). (3.45)

Note that the dimensionless interstitial flow is related to the interstitial pressure in the

form

u(N) = −γ(N)
u

∂P
(N)
i

∂r
, u(T ) = −γ(T )

u

∂P
(T )
i

∂r
. (3.46)

The dimensionless parameters which appear in the dimensionless equations are defined as

γ(j)
u =

P̂
(N)
e K̂(j)

φ
(j)
f R̂2k̂d

, γc =
D̂(T )

k̂dR̂2
, ξ(T )

v =
L̂

(T )
pv Ŝ

(T )
v P̂

(N)
e (1− σ̆(T ))

k̂dV̂ (T )(1− e−P̆ e
(T )

)
, ξ

(j)
l =

L̂
(j)
pl Ŝ

(j)
l P̂

(N)
e

k̂dV̂ (j)
,

ξb1 =
1

k̂dτ̂
, ξb2 =

4πR̂3

3V̂b
, ν1 =

k̂aĈbsmax

k̂dφ
(T )
f

, ν2 =
k̂i

k̂d
,

Cimax =
Ĉimax

Ĉbsmax

, C
(j)
v0 =

Ĉ
(j)
v0

Ĉbsmax

D =
D̂(N)

D̂(T )
, K̄ =

K̂(N)

K̂(T )
, R∞ =

R̂∞

R̂
, (j = N, T ), (3.47)

where γ
(j)
u is the dimensionless hydraulic conductivity of the vascular wall, γc is the ratio

of disassociation and diffusion timescales, ξb1 is the ratio of GNR disassociation time scale

to GNR blood half life, ξb2 is the ratio of tumor volume and blood circulatory system

volume, R∞ is the dimensionless healthy tissue radius, D is the ratio of GNR diffusion

coefficient in the healthy tissue to GNR diffusion coefficient in the tumor, K̄ is the ratio

of the interstitium hydraulic conductivity in the healthy tissue to its corresponding value

in the tumor, ξ
(T )
v is the ratio of the vascular volumetric flow to disassociation rates,
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ξ
(j)
l is the ratio of the lymphatic volumetric flow to disassociation rates, ν1 is the ratio

of disassociation to association timescales and finally ν2 is the ratio of disassociation to

internalization timescales, see Table 3.2.

The corresponding dimensionless boundary and initial conditions are

∂P
(T )
i

∂r
= 0, −γc

∂C(T )

∂r
+ u(T )C(T ) = 0, (r = 0), (3.48)

∂P
(T )
i

∂r
= K̄

∂P
(N)
i

∂r
, P

(T )
i = P

(N)
i , (r = 1), (3.49)

− γc
∂C(T )

∂r
+ u(T )C(T ) = −γcD

∂C(N)

∂r
+ u(N)C(N), C(T ) = C(N), (r = 1), (3.50)

P
(N)
i = 0, −γcD

∂C(N)

∂r
+ u(N)C(N) = 0, (r = R∞). (3.51)

Finally, the dimensionless initial conditions are

C(j)
v (r, 0) = C

(j)
v0 , C

(T )
bs (r, 0) = 1,

C(j)(r, 0) = C
(T )
b (r, 0) = C

(T )
i (r, 0) = 0, (j = N, T ). (3.52)

3.2.10 Numerical Approach

We solve the system of PDEs, ODEs and algebraic constraints described in Sec. 3.2.9 using

a semi-discretisation method. We choose R∞ as an integer (i.e. the outer annulus is an

integer multiple of the radius of the tumor). In this method, we convert the PDEs into

ODEs by discretising the radial coordinate on a uniformly spaced grid (r
(T )
j = j∆r(T ),

∆r(T ) = 1/N in the tumor and r
(N)
j = j∆r(N), ∆r(N) = (R∞ − 1)/N in the healthy

tissue where j = 1, 2, . . . , N) using a finite difference method. This results in a system of

differential algebraic equations (DAEs) which we solve using MATLAB DAE solver ode15s.

We studied the mesh convergence by testing different mesh sizes (C), so we choose 400

spatial mesh points which is corresponding to relative error of O(10−3).

3.3 Model Parameter Estimation

Tumor radius and GNR dose. In order to simulate GNR delivery to a tumor bearing

rat, we used results from a published in vivo experiment [28] to choose the parameter

values for our mathematical model. In particular, to compare the GNR concentration

profile calculated by our model to the results provided by that study, we use the same

tumor radius (R̂ = 0.42 cm) and GNR dose (Ĉv0 = 2.34×10−5 g/cm3) administrated either

intravenously or intratumorally. Furthermore, the surrounding healthy tissue thickness is

considered such that GNR concentration is zero at the tissue edge within the time scale of
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Table of dimensional parameters
parameter value units description Ref.

P̂
(N)
v 15.6 mm Hg vascular pressure [97]

P̂
(T )
v 15.6 mm Hg vascular pressure [55]

P̂
(N)
l 0 mm Hg lymphatic pressure [97]

P̂
(T )
l 0 mm Hg lymphatic pressure [97]

σ
(N)
T 0.91 - Average osmotic reflection coefficient for

plasma protein
[97]

σ
(T )
T (1− (1− λ)2)2 - Average osmotic reflection coefficient for

plasma protein
[55]

σ(T ) 1−W - Osmotic reflection coefficient for GNRs [20]

π̂
(N)
v 20 mm Hg vascular osmotic pressure in the tissue [9]

π̂
(T )
v 19.8 mm Hg vascular osmotic pressure in the tumor [55]

π̂
(N)
i 10 mm Hg interstitial osmotic pressure in the tissue [9]

π̂
(T )
i 15 mm Hg interstitial osmotic pressure in the tumor [9]

K̂(N) 8.53× 10−9 cm2/mm Hg s−1 interstitial hydraulic conductivity in the tis-
sue

[9]

K̂(T ) 4.13× 10−8 cm2/mm Hg s−1 interstitial hydraulic conductivity in the tu-
mor

[9]

φTf 0.2 - interstitial volume fraction [106]

φNf 0.4 - interstitial volume fraction [106]

φ
(T )
b (0.2(R3 − r3n)/R3) - vascular volume fraction [8]

R̂ 0.42 cm tumor radius [28]

r̂
(T )
p 10−5 cm vessel pore radius [85]

r̂
(N)
p 5(3− 6)× 10−7 cm healthy tissue vessel pore radius [96]
r̂n 6× 10−7 cm GNR radius [20]

L̂ 5× 10−4 cm vessel wall thickness [20]

k̂d 3.58× 10−4 s−1 dissociation rate coefficient [109]

k̂a 1.21× 105 M−1s−1 the association rate coefficient [109]

k̂i 0.69× 10−4 s−1 the internalization rate coefficient [34]

D̂(T ) estimated function cm2/s GNR diffusion coefficient in the tumor [111]

D̂(N) estimated function cm2/s GNR diffusion coefficient in the healthy tis-
sue

[111]

L̂
(N)
pv 0.36× 10−7 cm/mm Hg s−1 the hydraulic conductivity of the microvas-

cular wall in the tissue
[8]

L̂
(T )
pv estimated function cm/mm Hg s−1 the hydraulic conductivity of the microvas-

cular wall in the tumor
[20]

ŜN
v /V̂

(N) 70 cm−1 the tissue vasculature density [97]

ŜT
v /V̂

(T ) 200 cm−1 the tumor vasculature density [97]

R̂∞ see the text cm Tissue edge Chosen
γ 10−4 vessel surface area fraction occupied by pores [85]
µ̂b 3× 10−5 mm Hg s blood viscosity [85]
τ̂ 16.883 hr GNR half life [2]

Ĉbsmax 3.66× 10−6 M maximum cell receptor concentration [74]

L̂
(N)
pl Ŝ

(N)
l /V̂ (N) 1.33× 10−5 1/mm Hg s the tissue lymphatic density [91,97]

L̂
(T )
pl S

(T )
l /V (T ) 0 1/mm Hg s the tumor lymphatic density [55]

Ĉ
(T )
imax

8× 10−8 M constant concentration Chosen

Ĉv0 1.6× 10−5 g/cm3 vascular concentration of GNRs [28]

P̂ (N) estimated function cm/s effective permeability [20]

P̂ (T ) estimated function cm/s effective permeability [20]

L̂n 55× 10−7 cm GNR length [2]

d̂n 9× 10−7 cm GNR diameter [2]

M̂g 196.9665 g molˆ-1 gold molecular weight (molar mass)

Table 3.1: Dimensional parameters used in the GNR and fluid transport models.
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Table of dimensionless parameters
parameter value description
ξb1 0.0621 the ratio of GNR disassociation time scale to GNR blood half life.
ξb2 0.0321 the ratio of tumor volume and blood circulatory system volume.

ξ
(T )
v 0.04− 0.15 the ratio of the vascular volumetric flow to disassociation rates.

α(N) 35.12 the ratio of the vasculature to the interstitium hydraulic conductivities in the
healthy tissue.

α(T ) 1.3 the ratio of the vasculature to the interstitium hydraulic conductivities in the
tumor.

γc 0.0323 the ratio of disassociation and diffusion timescales.

ξ
(N)
l 0.2415 the ratio of the lymphatic volumetric flow in the healthy tissue to GNR disasso-

ciation rates.

ξ
(T )
l 0 the ratio of the lymphatic volumetric flow in the tumor to GNR disassociation

rates.
ν1 6.2× 103 the ratio of GNR disassociation to association timescales.
ν2 0.1927 the ratio of GNR disassociation to internalization timescales.

γ
(N)
u 0.0172 the dimensionless hydraulic conductivity of the vascular walls in the healthy

tissue.

γ
(T )
u 0.1666 the dimensionless hydraulic conductivity of the vascular walls in the tumor.
K̄ 0.2065 the ratio of the interstitium hydraulic conductivity in the healthy tissue to its

corresponding value in the tumor.
D 1 the ratio of GNR diffusion coefficient in the healthy tissue to GNR diffusion

coefficient in the tumor.

Table 3.2: Dimensionless parameters used in the GNR and fluid transport models.

the experiment i.e. we choose R̂∞ sufficiently large so that the outer boundary condition

has no influence on the behavior of the model.

GNR blood half-life. GNR blood half-life (denoted τ̂) is the time that GNRs spend

in the circulatory system to decrease to half their initial concentration. The GNR half-life

must be as long as possible to increase GNR extravasation time into the tumor. Arami et

al. [2015] [5] reviewed different strategies to maximize τ̂ which strongly depends on the

dose level and GNR dimensions. In this study we use τ̂ = 16.88 hrs which corresponds

GNRs of length 55 nm and of diameter 9 nm [2].

GNR extravasation and diffusion. In addition to GNR dimensions, the vascular

wall pore size and the fraction of wall surface area occupied by these pores determine

how many GNRs can extravasate into interstitium [20]. Most of studies in nanomedicine

consider spherical nanoparticles which makes it difficult to find data for GNR parameters

in biological tissues. We address this issue by assuming that the physical properties of

GNRs are similar to the corresponding physical properties of spherical NPs which have the

same volume. Therefore, we approximate the effective permeability (P̆ (j)) and reflection

coefficient (σ̆(j)) of GNRs (of length 55 nm and of diameter 9 nm) to be similar to spherical

nanoparticles of radius 9.4 nm which are functions of the nanoparticle size ratio to vessel

wall pore size [20, 24]. The GNRs diffusion coefficient depends on their length and width

which can be calculated according to the approach introduced by Tirado et al. [1984] [111],

see the Appendix A.

Fluid transport parameters. The fluid transport model used in this study has been

developed by Baxter and Jain [1989] [8]. In a follow up paper [55] they summarized the

model parameters which have been measured experimentally or estimated, see Table 3.1.
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Since vascular pore size in the tumor and normal tissue blood capillaries are different,

we use an empirical function for the hydraulic conductivity as a function of pore size

determined from experimental data [20], see the Appendix A.

3.4 Results in the Absence of Heating

In this section we consider the temporal and spatial distribution of GNRs following a

bolus injection. We consider baseline cases pertinent to photothermal ablation, which

we discuss in turn. Firstly, we consider intravenous injection of GNRs which have not

been conjugated with binding ligands (Sec. 3.4.1). Secondly, we examine the importance

of binding (Sec. 3.4.2). Thirdly, we examine the intratumoral GNR administration both

with and without binding ligands (Sec. 3.4.3). We then explore the parameter space of

the model and particularly discuss the role of the tumor vascularity in Sec. 3.5.1 and the

internalized GNR saturation threshold (i.e. how many GNRs the tissue can absorb) in

Sec. 3.5.2. We further study the sensitivity of the model to changes in the most pertinent

parameters in Sec. 3.5.3.

3.4.1 Baseline Case 1: Intravenous Administration of GNRs

Without Binding Ligands

In Fig. 3.3 we consider a baseline case where we plot the predictions of the model in the

case of GNRs without binding ligands, which means that GNRs cannot bind to tumor

cell receptors or become internalized into the tumor. In the spatial distribution figures

(Fig. 3.3(A), (C), the tumor center is at r̂ = 0 and the shaded region represents the

tumor vascularized region (the outer 10% of the tumor in this case) with an external

domain of healthy tissue. In this example the interstitial fluid pressure distribution across

the tumor (Fig. 3.3(A)) is uniformly elevated compared to the healthy tissue; outside

the tumor, a distance of approximately half a tumor radius the pressure drops to its

equilibrium value. At the interstitial fluid pressure equilibrium value in the tissue, the

net vascular and lymphatic volume flux is zero, i.e. there is no net fluid transport into

the tissue. This pressure profile is expected since in this study we assume there are

no functional lymphatics in the tumor and so fluid cannot escape and must accumulate

[8]. This is similar to that predicted in previous spherical tumor models [9]. It should

be noted that the interstitial fluid pressure in the avascular region of the tumor is flat

(no pressure gradient). However, in the tumor rim there is a negative pressure gradient

which drives fluid (and hence GNRs by advection) out of the tumor and towards the

surrounding healthy tissue. The assumption of constant transvascular concentration of

GNRs approximates the profile of the interstitial pressure within the tumor rim because
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the change in the transvascular concentration changes the osmotic pressure (post GNR

injection). We will address this issue in the future work by coupling the fluid transport

model with the solute transport model. In this baseline case (GNR dose = 2.025×10−4 g)

the average concentration (GNR mass normalized by the tumor volume) of GNRs in the

tumor increases over the first 16 hrs post intravenous administration to a peak and then

decreases monotonically due to GNR diffusion towards the surrounding healthy tissue

(Fig. 3.3(B)). Conversely, in the healthy tissue the GNR average concentration (GNR

mass normalized by tissue volume) increases gradually from zero to almost one tenth of

the corresponding concentration value in the tumor at 34 hrs post injection. Fig. 3.3(C)

shows the corresponding spatial GNR concentration distributions in the tumor and healthy

tissue at different time points. This figure reveals that GNRs can penetrate into the

tumor center within less than 8 hrs post injection and then GNR concentration increases

to its maximal within one day post injection. Although the GNRs diffuse towards the

surrounding tissue, GNR concentration in the healthy tissue is decaying quickly to zero

at a distance equivalent to three tumor radii. This can be explained as tissue volume

is relatively large compared to the tumor, so that GNR concentration cannot build up

like in the tumor. In addition, in the healthy tissue GNRs are removed by lymphatic

vessels, while in tumors the lymphatics are dysfunctional. In Fig. 3.3(D) we compare the

temporal GNR concentration profiles at the tumor center (dashed blue line), tumor rim

(solid black line), midway between the tumor center and tumor rim (dashed red line),

healthy tissue edge (solid blue line) and a chosen position in the healthy tissue (solid

red line). The line styles used in this figure match the vertical lines in Fig. 3.3(C) to

visualize the corresponding spatial positions in the computational domain. In this figure

we can see that GNR concentrations in the tumor are larger than in the healthy tissue.

Furthermore, the GNR concentration temporal profiles at the three considered positions

in the tumor show a relatively homogenous GNR distribution at the time between 21

and 28 hours post injection. After one day the concentration decreases in the tumor

and loses its homogeneity, see Figs. 3.3(C), (D). We can determine the optimal time for

GNR distribution in the tumor by determining the time when GNRs are most homogenous

across the tumor. In order to measure the GNR homogeneity across the tumor we calculate

the coefficient of variation (CV) (the ratio of the standard deviation to the mean) of the

GNR concentration at ten equally spaced positions across the tumor at each time, see

Fig. 3.3(E). The CV is maximal at t̂ = 0 as GNRs are initially in the vasculature only.

Over time CV decreases as GNRs spread across the whole tumor until GNR concentration

becomes approximately homogeneous (CV≈ 0). Eventually, the CV elevates again as

GNRs diffuse towards the surrounding healthy tissue. We conclude from this figure that

GNRs become homogenous (CV ≤ 0.01) in the range 22.9 − 25.5 hrs post injection. Of

course since the tumor is only partially vascularized, it may not be necessary to force
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GNRs to the center of the tumor if it is already undergoing apoptosis. If we assume a

necrotic core for r̂ ≤ 0.5R̂ and compute the coefficient of variation for 10 equally spaced

intervals across r̂c ≤ r̂ ≤ R̂, we find instead that GNRs become homogeneous from 21

hours post GNR administration (Fig. 3.3(F)). The spatio-temporal carpet plot shown in

Fig. 3.4 visualizes the temporal and spatial GNR profiles in the tumor and the surrounding

tissue. It is clear that GNRs accumulate within the tumor in preference to the healthy

tissue.

3.4.2 Baseline Case 2 and 3: Intravenous Administration of

GNRs With Binding Ligands

We now investigate the case of intravenously administrated GNRs loaded with binding

ligands (GNR dose = 2.025 × 10−4 g), as shown in Fig. 3.5. Again, we assume only the

outer 10% of the tumor radius is vascularized. In this case, according to our assumptions

free GNRs extravasate from the tumor vasculature and diffuse through the interstitium

of the tumor and healthy tissue. In addition, the free GNRs can bind to tumor cell

receptors (due to the conjugated binding ligands) and then become internalized by tumor

cells similar to Goodman et al. [2008] [34]. Introducing binding leads to a much more

heterogeneous spatial distribution of GNRs within the tumor (Fig. 3.5(A)). As the GNRs

enter the tissue they rapidly bind to the tumor cells across the vascular region and become

internalized within these cells. This then leads to a much more dilute concentration of

free GNRs in the avascular region compared to case 1. As a result, the penetration depth

of GNRs into the tumor depends on the timescales of the GNR clearance from the blood,

GNR diffusion, binding and internalization processes. In this case, we assumed there is

no maximal tumor capacity for internalized GNRs [34], which leads to almost no GNR

penetration into the tumor beyond the vascular region. However, the GNR concentration

in this narrow shell increases monotonically as long as there are available GNRs in the

vasculature (Fig. 3.5(B)). The spatial profiles of bound GNRs shown in Fig. 3.5(C) exhibit

traveling waves propagating from the tumor boundary towards the tumor center, but

confined within the outer 20% of the tumor volume. That means free GNRs which diffuse

through the interstitium quickly bind to the available free receptors, which elevates bound

GNR concentration to its maximal value (the maximum concentration of available binding

sites). However, tumor cells internalize the bound GNRs which frees up the receptors and

retains the free GNRs rather than allowing them to diffuse towards the tumor center.

Since there is no maximal tumor capacity for internalized GNRs, the internalized GNR

concentration increases monotonically generating an unlimited sink for GNRs in the system

(see Fig. 3.5(C)). For this reason the spatial profiles of bound GNRs decay over time within

the tumor rim (see Fig. 3.5(D)) which means the internalized GNRs dominate the total

GNR distribution across the tumor (Fig. 3.5(A), (D)). Fig. 3.5(E) shows the corresponding
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Figure 3.3: The interstitial fluid pressure and GNR concentration profiles in the tumor
and tissue in the absence of binding ligands. A) The interstitial fluid pressure profile,

where P̂
(T )
v = P̂

(N)
v = 5.6 mm Hg. B) GNR temporal average concentration. C) GNR

spatial concentration, where Ĉv(0, r) = 2.34 × 10−5 g. D) GNR temporal concentrations
for different spatial positions in the tumor and tissue. The line styles used in (D) match
the vertical lines in (C) to visualize the corresponding spatial positions in the tumor
and tissue. E) The coefficient of variation of temporal GNR concentration at equally
spaced 10 positions in the tumor domain. F) The coefficient of variation of temporal GNR
concentration at equally spaced 10 positions in the tumor half domain (0.5R̂ ≤ r̂ ≤ R̂).
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Figure 3.4: GNR concentration spatio-temporal carpet plot for the case of no binding
ligands conjugated to the GNRs using the parameter values in Table 3.1.

penetration depth of the bound and internalized GNRs into the tumor. These changes

occur at approximately the same rate until the threshold at 0.33 cm measured from the

tumor center. Beyond this threshold the bound GNR penetration depth decreases due

to internalization and eventually we expect all free and bound GNRs in the tumor to be

removed and only the internalized ones will remain within the system. However, in this

case the average GNR concentration across the tumor is about 5 times the corresponding

average concentration in the case of no binding ligands conjugated to the GNRs (compare

Figs. 3.5(F) and 3.3(B)). Despite the GNR average concentration being relatively high,

the GNR distribution is strongly heterogeneous across the tumor as revealed in the carpet

plot in Fig. 3.6. This heterogeneous GNR distribution suggests that the efficiency of

using binding ligands is restricted to tumors with a narrow viable rim. The optimal time

to achieve maximal concentration of GNRs distribution is when GNRs disappear from

the blood stream (see Fig. 3.5(F)), since the concentration of internalized GNRs saturate

where GNR internalization is irreversible [34].

On the other hand, in our model we introduce a tumor capacity for internalized GNRs,
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where tumor cells cannot internalize GNRs when the concentration inside the tumor cell

reaches a threshold (Ĉimax). Therefore, we choose a parameter value for Ĉimax in the

baseline case to study the influence of this parameter on the spatial GNR distribution

within the tumor, see Fig. 3.7, but then consider a larger range in Sec. 3.5.2. Plotting

the total GNR concentration across the tumor and the surrounding tissue in Fig. 3.7(A)

we see that the GNRs cover almost half of the tumor, but with smaller concentrations

compared to the case in Fig. 3.7(B). This distribution is mainly driven by the saturation

of the bound and internalized GNRs (Fig. 3.7(C) and (D)), where the internalized GNR

concentration saturates due to the maximal tumor capacity for internalized GNRs, and

the bound GNR concentration saturates due to the restricted number of receptors at the

tumor cell surface. As a result free GNRs can diffuse further towards the tumor center

(compared to Fig. 3.5) which start to bind and become internalized. This effectively

means that GNRs can invade the whole tumor but on a much longer timescale compared

to the case of GNRs without binding ligands (see Fig. 3.3). In the time scale considered

in this study GNRs invade 21% of the tumor (see Fig. 3.7(E)) with a threefold increase

in the GNR mass compared to the case without binding ligands, see Fig. 3.7(F). The

spatio-temporal plot for the GNR concentration shows a monotonic increase of the GNR

concentration and penetration which suggests that the optimal time for GNR profile is

beyond the time of simulation considered in this study (Fig. 3.8).

3.4.3 Baseline Case 4: Intratumoral Adminstration of GNRs

In some cases GNRs can be injected directly into the tumor (intratumoral adminstration).

El-Sayed et al. [2013] [28] have carried out intratumoral injection for rats and mice in vivo

and compared it to intravenous adminstration. We can also use our model to simulate

the intratumoral administration mimicking the injection profile as an initial condition in

the free GNR concentration. To accommodate spherical symmetry this injection (2.025×
10−4 g) must be centered at the center of the tumor and spread over a radius r̂i ≤
1. We consider an initial concentration of GNRs (in the absence of binding ligands)

at the tumor center occupying about 25% of the tumor volume, so there is no GNR

extravasation from the blood stream into the tumor. We run the simulation using our

model with the same boundary conditions and plot the results in the Fig. 3.9. The GNR

concentration starts initially high (0.16 g/cm3) at the tumor center as the whole dose is

injected over a small volume (25% of the tumor volume, r̂i ' 0.105 cm) which then takes

about 6 hrs to spread across the whole tumor (Fig. 3.9(A)). In Fig. 3.9(B) we show the

corresponding temporal profile of the GNR concentration at four different spatial points

which are the tumor center, half way between the tumor center and the tumor boundary,

the tumor/tissue interface and 17 mm away from the tumor/tissue interface. This figure

shows that the concentration at the tumor center drops by 1.7% within 6 hrs. Whereas,
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Figure 3.5: GNR concentration profiles in the tumor and healthy tissue for the case
of binding ligands conjugated to the GNRs using the parameter values in Table 3.1. A)
Total GNR spatial concentration, where Ĉv(0, r̂) = 2.34×10−5 g. B) Total GNR temporal
concentration at the tumor/tissue interface. C) Bound GNR spatial concentration. D)
Internalized GNR spatial concentration. E) Bound and internalized GNR wave front
penetration depth. F) GNR temporal average concentration.

midway between the tumor center and the tumor surface the GNR concentration increases

from zero concentration to 0.0016 g/cm3 within 3 hrs and then decreases monotonically to
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Figure 3.6: GNR concentration spatio-temporal carpet plot for the case of binding ligands
conjugated to the GNRs and no maximal tumor capacity for internalizing GNRs using the
parameter values in Table 3.1.

13.56×10−5 gm/cm3 by the end of the simulation (33.8 hrs). Similarly, at the tumor/tissue

interface the concentration elevates from zero to a maximum value of 0.0002 g/cm3 at 11.8

hrs post injection, then decreases monotonically to very small values by the end of the

simulation. The average concentration of GNRs in the tumor is significantly larger than the

corresponding average concentration in the healthy tissue (Fig. 3.9(C)). This figure reveals

that the system attains an approximately constant GNR average concentration across the

tumor until approximately 3.7 hrs post administration, then the average concentration

decreases monotonically. This decrease in the average concentration is due to the spread

of GNRs over the tumor and the surrounding tissue. We deduce from these figures that

the GNRs are initially concentrated at the tumor center and the concentration decreases

rapidly over time with a slow diffusion towards the tumor rim and the surrounding tissue.

In addition, when the GNRs reach the surface of the tumor, they accumulate in a relatively

thick annulus of the healthy tissue (of width about half of the tumor radius), where GNR

concentration builds up and becomes comparable to the concentration in the tumor.

On the other hand, in Fig. 3.9(E) we examine the case of GNRs conjugated with
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Figure 3.7: GNR concentration profiles in the tumor and healthy tissue for the case of
binding ligands conjugated to the GNRs using the parameter values in Table 3.1. A) Total
GNR spatial concentration, where Ĉv(0, r̂) = 2.34 × 10−5 g. B) A comparison for GNR
temporal concentrations at the tumor/tissue interface in the case of no binding ligands
(case 1), with binding ligands (case 2) and with binding ligands in the case of limited
GNR internalization (case 3). C) Bound GNR spatial concentration. D) Internalized GNR
spatial concentration. E) Bound and internalized GNR wave front penetration depth. F)
GNR temporal average concentration.
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Figure 3.8: GNR concentration spatio-temporal carpet plot for the case of binding ligands
conjugated to the GNRs and the tumor has a maximal capacity for internalizing GNRs
using the parameter values in Table 3.1.

binding ligands for intratumoral administration. Considering a limited tumor capacity

for internalized GNRs, the maximal concentrations of the internalized and bound GNR

concentrations are initially very small compared to the free GNRs, since the maximum

concentration of internalized GNRs is restricted by the tumor capacity (Fig. 3.9(D)), and

the maximum concentration of bound GNRs is restricted by the maximum concentration

of the cell receptors (not shown). Therefore the GNR spatial and temporal concentrations

in this case are almost identical to the corresponding distributions shown in Figs. 3.9(A)

and (B). In the case of no tumor capacity limit for internalizing GNRs the concentration

of GNRs in the tumor (Fig. 3.9(E)) is slightly larger than the previous two cases due to

the monotonic increase of the concentration of the internalized GNRs (Fig. 3.9(F)). We

conclude from this study that intratumoral administration for GNRs is preferable in the

case of tumors which have no necrotic core since the largest GNR concentrations will be

at the tumor center. Note that, in our simulations we used the same amount of dose for

both the intratumoral and intravenous administrations.
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Figure 3.9: GNR concentration profile (intratumoral administration) in the tumor and
healthy tissue in the presence of binding ligands using the parameter values in Table 3.1.
A) GNR spatial concentration in the absence of binding ligands. B) GNR temporal con-
centrations for different spatial positions in the tumor and healthy tissue. The line styles
used in (B) match the vertical lines in (A) to visualize the corresponding spatial positions
in the tumor and tissue. C) GNR temporal average concentration. D) Internalized GNR
spatial concentration with a restricted tumor capacity of GNRs. E) GNR spatial concen-
tration in the case of presence of binding ligands with an unlimited tumor capacity for
GNRs. F) Internalized GNR spatial concentration with an unlimited tumor capacity of
GNRs.
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3.5 Exploring the Parameter Space

3.5.1 The Influence of The Degree of Vascularisation

The tumor degree of vascularization (r̂n) has a nonlinear influence on the interstitial fluid

pressure and average total GNR concentration across the tumor (Figs. 3.10(A), (B)).

Totally vascularized tumors (r̂n = 0) have almost the same interstitial fluid pressures as

tumors which are nonuniformly vascularized provided the vasculature rim width exceeds

15% of the tumor radius. In tumors with 0.85 ≤ r̂n/R̂ ≤ 0.99, the interstitial fluid

pressure is substantially influenced by the vasculature width. The interstitial fluid pressure

significantly decreases in tumors with narrow vasculature layers (corresponding to large

r̂n), see Fig. 3.10(A). Furthermore, the parameter r̂n plays a vital role in determining

the maximum GNR concentration which can be achieved in the tumor (Fig. 3.10(B)).

Fig. 3.10(B) shows that the value of Ĉ
(T )
av in tumors with uniform vasculature (r̂n = 0)

is two times as large as tumors of r̂n/R̂ = 0.99. This large difference in total GNR

concentration is because the tumor vasculature is the source of GNRs.

3.5.2 The Influence of The GNR Internalization Saturation Thresh-

old

In the presence of binding ligands (discussed in Sec. 3.4.2), the maximal tumor capacity for

internalizing GNRs (administrated intravenously) controls the GNR accumulation within

the tumor and the GNR penetration depth (Figs. 3.5(A), (B), 3.7(A), (B)). Here we study

the bound GNR penetration depth for different tumor capacities (Ĉimax). In Fig. 3.10(C)

we monitor the bound GNR penetration depth r̂d across the tumor against time, where

the tumor center is at r̂ = 0 and the tumor rim is at r̂ = 1. For small values of Ĉimax the

bound GNRs can access the tumor center, because the internalized GNR concentration

saturates allowing free GNRs to diffuse more deeply into the tumor and then bind to

cell receptors. For large capacities GNRs are internalized faster than the GNR diffusion

towards the tumor center (Fig. 3.10(C)). Fig. 3.10(D) shows that value of Ĉimax does not

influence the mass of GNRs accumulate within the tumor, so it only determines the GNR

distribution across the tumor.

3.5.3 Parameter Sensitivity Analysis

The parameters used in our model vary according to the type of the targeted tumor and

the properties of the GNRs used in this therapy. For instance, the microvascular pressure

(P̂
(T )
v ) in tumors varies between 15− 25 mm Hg and the vessel wall surface area per unit

volume of the tumor (ŜTv /V
(T )) has the range of 50 − 250 cm−1 [55]. Furthermore, the

GNR aspect ratio influences parameters in the model such as the GNR diffusion coefficient
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Figure 3.10: The influence of the degree of vascularization and the saturation threshold
for a tumor of radius R̂ = 0.42 cm using the parameter values in Table 3.1. A) The
interstitial fluid pressure for different r̂n values (r̂n = (0, . . . , 0.99)R̂). B) The maximum
average concentration in the tumor for different r̂n values. C) The wave front for bound
GNRs in the case of different tumor capacities for GNRs. D) The transient GNR mass in
the tumor for different tumor capacities for GNRs, and the subplot shows the GNR mass
against tumor capacity for GNRs for different time steps.

and the interstitium volume fraction accessible for GNRs in the tumor [34]. In addition,

some parameters have significant uncertainty, such as the tumor vessel wall pore size [20].

Therefore, we study the sensitivity of the model to the following parameters: the vessel wall

surface area per unit tumor volume (Ŝ
(T )
v /V̂ (T )), the tumor vessel wall pore size (r̂

(T )
p ), the

GNR diffusion coefficient in the tumor (D̂(T )), tumor interstitium volume fraction (φ
(T )
f ),

the hydraulic conductivity of the lymphatic wall times lymphatic density in the healthy

tissue (L̂
(N)
pl Ŝ

(N)
l /V̂ (N)) and the hydraulic conductivity of the tumor interstitium (K̂(T )).

In practice, modifying the volume of the GNR diffusion coefficient requires modifying the

GNR physical properties or degrading the tumor interstitium using extracellular matrix

degrading enzymes (collagenase). However, changing GNR physical properties changes
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the GNR blood half life. Therefore, in order to study the influence of the GNR diffusion

coefficient on our model we vary its value through degrading the tumor interstitium so

that the GNR blood half life remains constant. We consider the temporal maximum of

the spatially averaged concentration of GNRs in the tumor (Ĉ
(T )
maxi , i = 1, . . . , 8) (i.e.

Mmax = max(
∫ R̂

0
Ĉ

(T )
tot r̂dr̂)) as the objective function for this sensitivity analysis. In order

to study the effect of these parameters on the considered objective function we choose eight

values for one of the parameters in the range of ±50% deviated from the baseline value

of this parameter, and we run the model for nine equally spaced values across this range

(indexed by i = 1, . . . , 9) and calculate the corresponding maximum GNR concentrations

in the tumor for all time (Ĉ
(T )
maxi , i = 1, . . . , 8), see Table 3.3. For simplicity we measure

the sensitivity of every parameter using the relative standard deviation (rsd) from the

base line case (Ĉ
(T )
maxb , the maximum averaged concentration in the tumor corresponding

to the parameters in Table 3.1), which is calculated as [30]

rsd =

√√√√1

8

9∑
i=1

(
C

(T )
maxi − C

(T )
maxb

C
(T )
maxb

)2

× 100. (3.53)

We calculate the relative standard deviation for each of the parameters in the same way and

list the results in Table 3.3. The value of the rsd which is corresponding to some parameter

gives a measure of the importance of this parameter compared to the other parameters

under investigation. Hence, the relative standard deviation values show that the tumor

vasculature density (Ŝ
(T )
v /V̂ (T ), rsd = 14.6) and the vessel wall pore size (r̂

(T )
p , rsd = 13.1)

are the most sensitive parameter choices (which correspond to the highest two values of

rsd) compared to the other four parameters. Therefore, these two parameters control the

GNR extravasation into the tumor more than the other parameters. Beyond these the

next most sensitive parameters are the diffusion coefficient and the tumor interstitium

volume fraction which determine the GNR diffusivity and volume accessible by GNRs in

the tumor, respectively. Conversely, the sink for GNRs in the model (L̂
(N)
pl Ŝ

(N)
l /V̂ (N))

has only a minor influence on Ĉ
(T )
max compared to the rest of parameters investigated in

this section. The hydraulic conductivity of the tumor interstitium (K̂T ) has the lowest

influence on the model compared to the parameters considered in these analysis. The

negligible influence of K̂T on the GNR concentration in the tumor means that GNR

transport across the tumor is dominated by diffusion which is a result of the flat pressure

profile across the tumor core (see Fig. 3.3(A) i.e. pressure gradient across the tumor

core is zero). In addition, impaired lymphatics in the tumor reduces the influence of the

parameter L̂
(N)
pl Ŝ

(N)
l /V̂ (N) on the GNR concentration in the tumor. Furthermore, we repeat

this parameter sensitivity test for larger parameter values deviated from the baseline case

(this means some parameters will exceed their experimentally measured value range in the
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literature) to explore the influence of these parameters on the model predictions (Table

3.4). The values of the relative standard deviation confirms that Ŝ
(T )
v /V̂ (T ) and r̂

(T )
p are the

most important parameters compared to the other chosen parameters for this sensitivity

analysis. However, the model showed more sensitivity to volume accessible by GNRs in

the tumor compared to the GNR diffusivity, which is different from what we found with

smaller deviation values from the baseline. Overall, the GNR diffusion coefficient showed

the highest change in the relative standard deviation value which increased by 3.9 times,

followed by the tumor hydraulic conductivity which increased by 3.5, and then comes the

volume accessible by GNRs in the tumor which increased by 3.1 times. The remaining

parameters increased by ≈ 2.6 as depicted in Table 3.4.

In the preceding paragraph we studied the local sensitivity, where each parameter

is changed individually. We now study the effect of changing all of these parameters

simultaneously on Ĉ
(T )
max, known as a global sensitivity analysis (GSA) [90]. There are

several different GSA techniques in the literature (such as Elementary Effects Test, Re-

gional Sensitivity Analysis and Variance-Based Sensitivity Analysis [90]). Hence we use

the elementary effect method (EEs) introduced by Morris [1991] [75]. In this technique,

samples of parameter values are generated by randomly changing one parameter value

to get the first sample, then another sample of parameter values is generated from the

preceding sample by changing another parameter value at random. In other words, the

first sample comprises one changed parameter value, while the second sample comprises

two changed parameter values compared to the baseline parameter values etc. In effect,

only one parameter is changed in every newly generated sample starting from the pre-

ceding sample. In this way we get a set of samples in which the parameters are changed

randomly and simultaneously. Then we solve the model at all of these input samples and

calculate the objective function (Ĉ
(T )
max in our case). We calculate the elementary effects

of each parameter by computing the derivatives of the objective function with respect

to each parameter under investigation. This can be calculated since every sample of the

model input is generated from the preceding sample with a single parameter change, thus

the elementary effect (EE) of this parameter is the change in the output between these

two samples divided by the change in this parameter value [75]. Finally, we calculate

the elementary effect indices (using 20 samples for each parameter, i.e. 140 samples for

all parameters) which are the elementary effect mean (µEE), the elementary effect stan-

dard deviation (σEE) and the elementary effect global index (GIEE) to measure the model
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sensitivity to these parameters [49] and these parameters are defined in the form

σEE =

√√√√ 1

19

20∑
i=1

(EEi − µEE)2, (3.54)

µEE =
1

20

20∑
i=1

EEi, (3.55)

GIEE =
√
µ2
EE + σ2

EE. (3.56)

We implement this technique using a MATLAB toolbox developed by Pianosi et al.

[2015] [90] and present the results in the Figs. 3.11(A) and (B) for the same six parameters

as previously investigated locally. This MATLAB toolbox generated 140 samples to com-

pute µEE and σEE (the results are shown in the Table 3.5), then another 140 samples were

generated to test the convergence of the results. In the Fig. 3.11(C) we plot the values of

µEE (for the parameters under investigation) against the number of samples which shows

that the results are converging. Parameters which have relatively large µEE values com-

pared to the corresponding value of σEE (µEE/σEE >> 1) are considered to be important

to the model output. Parameters which have relatively large σEE values compared to the

corresponding µEE value (µEE/σEE << 1 are considered to be important with nonlinear

effects and interaction with other parameters [75]. In Fig. 3.11(B) we show the global index

graphically as a relative quantitative measure of parameter sensitivity. This index confirms

the results of the local sensitivity analysis, see Tables 3.5, 3.3, where the tumor vasculature

density (GIEE = 1.089×10−6) and the vessel wall pore size (GIEE = 1.02×10−6) have the

largest figures for the elementary effect global indices calculated for the chosen parameters

in these analysis. Therefore, we conclude from these analysis that the tumor vasculature

density and the tumor cell density (the interstitium volume fraction) are among the key

parameters in our model which control the GNR concentration profile across the tumor in

the case of GNR intravenous administration.

3.6 Conclusion

In this chapter we mimicked the GNR delivery to a partially vascularized tumor and the

GNR tumor-tissue interaction. The main target of this study is to explore the potential

GNR delivery that can result in the optimal GNR distribution across the tumor (for the

chosen model parameter values). We require the GNRs to be homogeneous and in large

concentration across the tumor compared to the surrounding healthy tissue.

Using GNRs without binding ligands administrated intravenously result in a homo-

geneous GNR distribution across the tumor within 24 hours post injection (Fig. 3.3(D),

(E)). Hence, the optimal GNR delivery timescale in this case is 24 hours which should
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parameter min. max. Change at min. Change at max. rsd1

Ŝ
(T )
v

V̂ (T ) −50% +50% 26.5% 20.4% 14.6

r̂
(T )
p −50% +50% 29.8% 11.1% 13.1

D̂(T ) −50% +50% 10.2% 8.2% 5.7

φ
(T )
f −50% +50% 11.7% 4.3% 5

L̂pl
Ŝ
(N)
l

V̂ (N) −50% +50% 6.6% 4% 3.3

K̂(T ) −50% +50% 1.6% 0.6% 0.7

Table 3.3: Local sensitivity analysis results (rsd1) for six parameters. Every parameter is
varied 50% and the objective function is calculated at the minimum and the maximum of
the parameter value.

parameter min. max. Change at min. Change at max. rsd2 rsd2/rsd1

Ŝ
(T )
v

V̂ (T ) −90% +200% 71.4% 69.2% 40 2.74

r̂
(T )
p −90% +200% 97.8% 25% 34.4 2.63

φ
(T )
f −90% +200% 62% 8.7% 19.3 3.1

D̂(T ) −90% +200% 39.7% 26.7% 17.6 3.9

L̂pl
Ŝ
(N)
l

V̂ (N) −90% +200% 18.7% 10.8% 8.3 2.5

K̂(T ) −90% +200% 8.1% 1.3% 2.5 3.5

Table 3.4: Local sensitivity analysis results (rsd2) for six parameters. Every parameter is
varied between −90% to +200% and the objective function is calculated at the minimum
and the maximum of the parameter value.

parameter min. max. mean (EE) standard deviation (EE) global index (EE)
Ŝ
(T )
v

V̂ (T ) −50% +50% 1.046× 10−6 3.037× 10−7 1.089× 10−6

r̂
(T )
p −50% +50% 9.506× 10−7 3.697× 10−7 1.02× 10−6

D̂(T ) −50% +50% 4.394× 10−7 2.758× 10−7 5.188× 10−7

φ
(T )
f −50% +50% 3.543× 10−7 2.142× 10−7 4.14× 10−7

L̂pl
Ŝ
(N)
l

V̂ (N) −50% +50% 2.393× 10−7 1.08× 10−7 2.626× 10−7

K̂(T ) −50% +50% 4.407× 10−8 2.792× 10−8 5.217× 10−8

Table 3.5: Global sensitivity analysis results for six parameters. Every parameter is varied
50% and the objective function is calculated at 140 samples of parameter values.
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Figure 3.11: Sensitivity analysis results. A) The standard deviation and the mean for
the elementary effects. B) The global index. C)The standard deviation of the elementary
effect against number of samples.

be immediately followed by laser irradiation. However, in large tumors the tumor core

is already dead tissue, so we measured the GNR homogeneity across the outer half of

the tumor and we found that 21 hours post administration is the optimal time for laser

irradiation.

On the other hand, using GNRs conjugated with binding ligands results in a hetero-
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geneous GNR distribution, where GNRs accumulate in large concentration (ten times of

the corresponding GNR concentration in the absence of binding ligands) within the tumor

rim only (Fig. 3.5(A)). The width of this rim depends on the maximal tumor capacity for

internalizing GNRs (Fig. 3.7(A) and Fig. 3.10(C)).

In the case of GNR intratumoral administration (at the tumor center) leads to a

heterogeneous distribution of GNRs across the tumor, with a maximal GNR concentration

at the tumor center (Fig. 3.9(A)). In this technique the GNR concentration at the tumor

rim is comparable to the GNR concentration in the surrounding tissue, which means

ablating the tumor rim will cause severe damage to the surrounding tissue.

In the absence of the binding ligands, we conclude from the parameter sensitivity

analysis (Sec. 3.5.3) that the GNR delivery to tumors is dominated by tumor vascularity,

tumor vasculature pore size and the GNR diffusivity across the tumor. That means

the intravenous administration is suitable for vascularized tumors with large vasculature

density.

In this study we introduced the maximal tumor cell capacity to internalize GNRs

which was observed experimentally [40], but this phenomena was not included in the

theoretical models in the literature, to the best of our knowledge. Therefore, our model is

a generalization of those models which neglected NP internalization such as Baxter and

Jain [1989] [10] (i.e. zero tumor capacity to internalize GNRs, Cimax = 0) in addition to

the other models which assumed unlimited NP internalization, for example Goodman et

al. [2008] [34] (i.e. Cimax −→ ∞). Therefore, we suggest testing this phenomena in vivo,

in vitro and theoretically for different NP types and experimental setups.

However, we used some simplifying approximations (assumptions) in this study which

we will address in future work. For example we assumed that the osmotic pressure is

constant [55] which is typically influenced by the transvascular GNR concentration [21].

So, we plan to couple the macroscopic fluid transport model with the GNR transport

model to estimate the osmotic pressure more accurately.

In addition, we considered homogeneous tumor and homogeneous continuous tumor

vasculature at the tumor rim. This approximation is essential to maintain the spherical

symmetry of the problem. Typically tumors have heterogeneous structures, and the tumor

vasculature is discrete and heterogeneous. This tumor characteristic requires a 2D or 3D

mathematical model at the microscale to mimic a realistic tumor. The extension to either a

2D or 3D requires estimation to heterogeneous GNR transvascular flux and GNR diffusion

coefficient.

Finally, we proceed to study the laser irradiation theoretically using the output of this

chapter to evaluate the impact of the GNR distribution across the tumor in either the

absence or the presence of binding ligands.



Chapter 4

Mathematical Model for Laser

Irradiation

4.1 Introduction

Laser irradiation is used in photothermal therapy to elevate tumor temperature in the

presence of GNRs [43]. The impact of laser irradiation depends on the tumor size, tumor

depth in the body and the GNR distribution across the tumor [43, 92]. So, theoretical

modeling of laser irradiation needs to be coupled with a GNR delivery and a cell injury

model to investigate the key parameters and the optimal GNR distribution which generates

the maximal damage in the tumor (in the presence of laser irradiation) and minimal

damage in the surrounding tissue.

Soni et al. [2015] [102] studied theoretically and experimentally the problem of deliv-

ering gold NPs to a cylindrical Agrose gel surrounded by another cylindrical Agrose gel to

mimic a cylindrical tumor surrounded by healthy tissue. They investigated the influence

of laser spot size, irradiation duration and laser intensity. They found that increasing

tumor temperature up to 50◦ C requires two minutes of laser irradiation with intensity

2.5 W/cm2. Huang et al. [2006] [45] investigated theoretically the laser power and tem-

perature thresholds required for inducing tissue damage. In addition, they studied the

significance of conjugating NPs with binding ligands. They found that tumors needed to

be heated up to 70−80◦ C to induce cell death. This tumor temperature can be generated

(in the presence of NPs) using laser irradiation of power 19 W cm−2 with 4 min of irradi-

ation time. They also found introducing binding ligands increases the NP concentration

in the tumor. They validated their results in vitro.

Huang et al. [2010] [44] simulated GNR delivery to human prostate cancer cells and

validated their model in vitro. They assumed that GNRs were not internalized by the

tumor cells. They studied the significance of activation energy (the minimum cell energy

required to induce cell death). Von Maltzahn et al. [2009] [112] used a 3D mathematical

92
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model to simulate laser irradiation of tumors and they validated their model in vivo.

They used GNRs with blood half life of 17 hours which were administrated intravenously

or intratumorally. They reported that their experiment setup successfully ablated the

tumor.

In the preceding chapter we mimicked the GNR delivery to tumors to predict the GNR

distribution profile across the tumor and the surrounding healthy tissue. We investigated

the cases of administrating GNRs either intravenously or intratumorally, in addition to

the influence of the presence of the binding ligands. In this chapter we extend this model

to irradiation by an external laser beam (Fig. 4.1), from which we estimate the overall

tissue damage. The tumor temperature can be modeled using conservation of energy

through the Pennes’ bioheat equation (a modified heat equation) which is commonly used

in the hyperthermia therapy modelling literature and described by Welch and Van Gemert

[2011] [118] in their text book. We use this thermal model to examine laser irradiation

efficacy in the presence or absence of binding ligands and investigate the optimal time

interval for GNR delivery and laser irradiation in order to maximize tumor damage and

reduce side effects in the surrounding healthy tissue.

4.2 The Model

4.2.1 The Bioheat Equation

We return to the model discussed in chapter 3 and extend it to include a heat source (laser

irradiation) and thermal effects. We study the temperature across the tumor (T̂ (T ), K) and

the surrounding tissue (T̂ (N), K) (both loaded with GNRs) in the presence of an external

laser irradiation (Fig. 4.1) using Pennes’ equation. Rylander et al. [2006] [95] reported

that Pennes’ equation predictions demonstrated a good agreement with the measured

temperature across a prostate tumor surrounded by healthy tissue irradiated by laser

in vitro. Pennes’ bioheat equation assumes that the heat exchange between the blood

available in the capillaries and the surrounding tissue is proportional to the blood perfusion

rate (ω̂b, s−1) (the rate of blood volume flow delivered to a unit volume of tissue) times the

temperature difference between the blood (T̂b, K) and tissue (T̂ (j), j = T, N ; K) [19]. This

is an empirically constructed term which encompasses the effects of both conduction and

convection, similar to the concept of a heat transfer coefficient used mainly in the thermal

literature. This model assumes that blood enters the tumor vasculature at temperature

T̂b with a very slow velocity, which results in thermal equilibrium between the tissue and

the blood in the capillaries. This thermal exchange is typically thought to be dominated

by conduction across vessel wall [19]. We estimated the contribution of heat transfer

by convection across the vessel wall using the fluid flow driven by the Starling law (3.7)

and found the heat exchange rate is ≈ 1.2 × 10−5 s−1 which is much smaller than the
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Figure 4.1: The domain of a tumor surrounded by normal tissue both loaded with GNRs.

estimated value for ω̂b in the literature, for example, Jiang et al. [2002] [58] considered

ω̂b = 1.25× 10−3 (s−1) in skin. Hence, in this study we treat ω̂b as an unknown parameter

which we use to fit our model predictions to the experimental data, see Sec. 4.4, i.e. we

ignore the thermal boundary layer adjacent the vasculature wall and replace it by a heat

transfer coefficient times the transmural temperature (ω̂b(T̂
(j) − T̂b), (j = T, N)) . We

will address this approximation in the future work using asymptotic analysis for the energy

equation at the microscale similar to our study in chapter 2.

We assume that the laser source is relatively far from the tumor, so we ignore the

direct effect of the laser beam in favor of the light scattered across the tumor and the

surrounding tissue. To maintain spherical symmetry, we assume that the laser beam

generates a spherical heat source at the tumor center. The contribution of energy released

by GNRs due to laser irradiation is represented by a source term (Ŝlaser, J s−1 cm−3) in the

energy (Pennes’) equation. For simplicity, we assume that the temperature in the blood is

a prescribed function. We also assume that heat exchange occurs with the capillaries (in

the healthy tissue and the vascularized region of the tumor), with the lymphatic vessels
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Figure 4.2: Control of volume dV̂ of an arbitrary tissue of volume V̂ , where n is the unit
and q is the heat flux across the surface area of dV̂ .

(in the healthy tissue) and across the healthy tissue outer boundary. Furthermore, we

incorporate heat transfer by convection with the interstitial fluid flow (since we have

shown in Sec. 3.4.1 that the interstitial fluid pressure gradient across the tumor periphery

generates an interstitial fluid velocity out of tumor). Using these assumptions we can

derive the energy equation for an arbitrary volume of tissue of volume V̂ and with surface

area Ŝ (see Fig. 4.2).

4.2.2 Pennes’ Equation

We consider an arbitrary tissue of volume V̂ containing a control volume dV̂ with surface

area dŜ. We denote n as the unit vector perpendicular to the surface and q as the heat

flux across dŜ. We use Fourier’s law to write the heat flux q in terms of the temperature

gradient in the form [71]

q̂ = −K̂∇T̂ , (4.1)

where K̂ is the tissue thermal conductivity which is a function of space, tissue temperature

and time which is difficult to be determined experimentally, so herein we consider K̂ is

constant across the tumor and the surrounding tissue. According to the first law of

thermodynamics, the heat transfer rate Q̂ equals the change in the internal energy Ê, so

we write [71]

Q̂ =
dÊ

dt̂
≡
∫
V̂

ρ̂tγ̂t
∂T̂

∂t̂
dV̂ , (4.2)

where t̂ is the time variable, ρ̂t is the tissue density and γ̂t is the specific heat capacity

(the heat required to raise the temperature of a unit mass of tissue by one degree). Now,



CHAPTER 4. MATHEMATICAL MODEL FOR LASER IRRADIATION 96

we can write the change of energy in the control volume in the form

dQ̂ = −(ûT̂ − K̂∇T̂ ).ndŜ + (Ŝblood + Ŝlymph + Ŝlaser)dV̂ , (4.3)

where û is the interstitial flow velocity, ûT̂ .ndŜ represents heat transfer across the control

volume surface by convection, K̂∇T̂ .ndŜ represent heat flux across the control volume

surface by conduction, Ŝblood represents the heat exchange with blood vessels in the control

volume, Ŝlymph represent the heat exchange with lymphatics in the control volume, and

Ŝlaser is the heat generated within the control volume due to laser irradiation. We integrate

Eq. (4.3) over the whole tissue to get the net heat rate.

Q̂ = −
∫
Ŝ

(ûT̂ − K̂∇T̂ ).ndŜ +

∫
V̂

(Ŝblood + Ŝlymph + Ŝlaser)dV̂ . (4.4)

Substituting Eq. (4.2) into Eq. (4.4) we get∫
V̂

ρ̂tγ̂t
∂T̂

∂t̂
dV̂ = −

∫
Ŝ

(ûT̂ − K̂∇T̂ ).ndŜ +

∫
V̂

(Ŝblood + Ŝlymph + Ŝlaser)dV̂ . (4.5)

Using Gauss’s theorem we can write the preceding equation in the form∫
V̂

ρ̂tγ̂t
∂T̂

∂t̂
dV̂ = −

∫
V̂

∇ · (ûT̂ − K̂∇T̂ )dV̂ +

∫
V̂

(Ŝblood + Ŝlymph + Ŝlaser)dV̂ . (4.6)

Hence, from the preceding equation we can write the energy equation in the form∫
V̂

(ρ̂tγ̂t
∂T̂

∂t̂
dV̂ +∇ · (ûT̂ − K̂∇T̂ )− Ŝblood − Ŝlymph − Ŝlaser)dV̂ = 0, (4.7)

Since the volume V̂ is arbitrary, we write the energy equation in the tissue in the form

ρ̂tγ̂t
∂T̂

∂t̂
dV̂ +∇ · (ûT̂ − K̂∇T̂ )− Ŝblood − Ŝlymph − Ŝlaser = 0, (4.8)

Equation (4.8) is the bioheat equation [95] that we use to mimic laser irradiation of

a spherical tumor surrounded by a shell of healthy tissue and both loaded with GNRs

(Fig. 4.1). We assume that both tumor and the surrounding tissue have the same thermal

properties which are independent of time, space and temperature. So, we write the source

and sink terms in Eq. (4.8) as follows
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Ŝblood = −ρ̂bγ̂bω̂b(T̂ − T̂b), (4.9)

Ŝlymph = −ρ̂tγ̂tL̂pl
Ŝl

V̂
(P̂i − P̂l)(T̂ − T̂l), (4.10)

where ρ̂t (g cm−3) denotes the tissue density, ρ̂b (g cm−3) is the density of blood, γ̂t (J

g−1 K−1) is the specific heat capacity of the tissue, K̂
(T )
t and K̂

(N)
t (J s−1 cm−1 K−1)

are the thermal conductivities of the tumor and healthy tissue, respectively, T̂l (K) is the

temperature of the lymphatic fluid and γ̂b (J g−1 K−1) is the specific heat capacity of the

blood. We assume that the blood density and the blood specific heat capacity of the blood

are constants.

Similar to chapter 3 we use the superscript (T ) to denote variables in the tumor, and

(N) to denote variables in the healthy tissue. Furthermore, we assume that the tumor

is partially vascularized and tumor lymphatics are dysfunctional. On the other hand, we

assume that the healthy tissue is fully vascularized and contains lymphatics. Hence, using

Eqs. (4.8-4.10) we write the energy equations in the tumor and the surrounding tissue in

the form

ρ̂tγ̂t

(
∂T̂ (T )

∂t̂
+

1

r̂2

∂

∂r̂
(r̂2û(T )T̂ (T ))

)
=

1

r̂2

∂

∂r̂

(
r̂2K̂

(T )
t

∂T̂ (T )

∂r̂

)
−H(r̂ − r̂n)ρ̂bγ̂bω̂b(T̂

(T ) − T̂b) + Ŝlaser, (0 ≤ r̂ ≤ R̂) (4.11)

ρ̂tγ̂t

(
∂T̂ (N)

∂t̂
+

1

r̂2

∂

∂r̂
(r̂2û(N)T̂ (N))

)
=

1

r̂2

∂

∂r̂

(
r̂2K̂

(N)
t

∂T̂ (N)

∂r̂

)

− ρ̂bγ̂bω̂b(T̂ (N) − T̂b)− ρ̂tγ̂tL̂pl
Ŝ

(N)
l

V̂ (N)
(P̂

(N)
i − P̂ (N)

l )(T̂ (N) − T̂l) + Ŝlaser, (R̂ ≤ r̂ ≤ R̂∞)

(4.12)

where ω̂b is the blood perfusion rate parameter, H(r̂− r̂n) is the Heaviside function and r̂n

is the radius of the avascular region in the tumor. ω̂b is an empirical parameter which is

used to fit the Pennes’ model (4.11 and 4.12) to the measured temperature gradients and

heat flows [19]. So, this parameter controls the heat exchange between blood and tissue in

the Pennes’ equation. For simplicity, in this study we consider the blood perfusion rates in

both the tumor and the healthy tissue to be constant (since the change of blood perfusion

rate is accompanied by a change of vasculature, interstitium and cell volumes which are

considered constants in this study).

Laser transport in a biological tissue is attenuated due to light absorption and scat-
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tering which occurs simultaneously across the tissue [118]. It is difficult to find an exact

assessment of the laser distribution in tissue as this requires a model describing the spa-

tial configuration of the tissue, the optical properties of the tissue and trace all photons

scattering and absorbing within the tissue [118]. Therefore, in this chapter we assume the

tissue (tumor or healthy tissue) is optically isotropic, homogeneous and absorbs the laser

as a bulk material, and all the scattered photons are distributed over the whole tissue.

The absorption probability for an individual photon propagating over a unit distance is

known as the absorption coefficient (µ̂a, cm−1). The scattering probability for a single

photon propagating over a unit distance is known as the scattering coefficient (µ̂s, cm−1).

When the scattering and absorption coefficients for a medium are comparable, it is

necessary to solve the full laser transport problem using Monte Carlo simulation [7] where

the light is considered as discrete particles (photons) absorbing and scattering over the

medium. If light absorption dominates the light scattering process, the Beer-Lambert law

which is an empirical expression for the light fluence rate (φ̂laser, J s−1 cm−2) is a valid

approximation to the light transport equation [7]. Beer-Lambert law states that φ̂laser

decreases exponentially with the light path depth in the medium, where φ̂laser is defined

as the number of photons crossing per unit time per unit area. When biological tissue

is irradiated by a laser beam with wave length in the infrared region of the spectrum

(which is the case in this study), scattering dominates absorption [94]. In this case, the

optical diffusion approximation can provide an accurate approximate solution to the laser

transport problem [61] where light propagation over the tissue is treated as a diffusion

process. This approximation reduces the laser transport equation across the tissue to

a diffusion equation in the light fluence rate which can be solved analytically and used

to estimate the heat source (Ŝlaser = µ̂aφ̂laser) generated by the laser inside a spherical

tumor, but this solution is invalid at the tumor center within a sphere of radius r̂0 = 0.1

cm [118]. Hence, the rate of laser energy generated in the tumor and the surrounding

tissue for a point laser source located at the tumor center can be written as a function

of laser power (P̂laser, J s−1), transport attenuation coefficient (µ̂tr, cm−1), the effective

radiation coefficient (µ̂eff , cm−1) and the radial position in the form [118]

Ŝlaser =



3P̂laserµ̂trµ̂a
4πr̂0

e−µ̂eff r̂0 , (0 ≤ r̂ ≤ r̂0),

3P̂laserµ̂trµ̂a
4πr̂

e−µ̂eff r̂, (r̂0 ≤ r̂ ≤ R̂∞),

(4.13)

where

µ̂eff =
√

3µ̂aµ̂tr, µ̂tr = (µ̂a + µ̂s(1− g)), (4.14)
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where µ̂s (cm−1) is the total scattering coefficient and g is the anisotropy factor.

The total absorption and scattering coefficients are magnified because of the presence

of GNRs, which can be written as

µ̂a = µ̂at + µ̂an, µ̂s = µ̂st + µ̂sn, (4.15)

where µ̂an (cm−1) is the GNR absorption coefficient, µ̂sn (cm−1) is the GNR scattering

coefficient, µ̂at (cm−1) is the tissue absorption coefficient, µ̂st, (cm−1) is the tissue scat-

tering coefficient, σ̂a (cm2) is the absorption cross-section coefficient and σ̂s (cm2) is the

scattering cross-section coefficient. We assume µ̂at and µ̂st are material constants, whereas

µ̂an and µ̂as are functions of the local GNR concentration which are given by [31]

µ̂an = φn(r̂)σ̂a, µ̂sn = φn(r̂)σ̂s, φn(r̂) =
Ĉ

(j)
tot (r̂)

ρ̂g
, (j = T, N), (4.16)

where φn is the GNR volume fraction and ρ̂g is the density of the gold (constant). The total

concentration of GNRs (Ĉ
(j)
tot , g/cm3) (see Eqn. 3.31) is calculated from GNR transport

model introduced in chapter 3 (Eq. 3.32).

The spatial distributions of the GNR volume fraction and the value of the laser source

term across the tumor and the surrounding tissue are plotted in the Figs. 4.3 (A) and (B)

for the case of no binding ligands conjugated to the GNRs, while the Figs. 4.3(C) and (D)

are for the case of GNRs conjugated with binding ligands. The Figs. 4.3(A) and (C) show

the profiles of the GNR volume fraction immediately prior the irradiation in the absence

and the presence of binding ligands, respectively. The laser source value is constant at the

tumor center within 0.1 cm from the tumor center according to the definition in Eq. (4.13),

but it is three times larger in the absence of the binding ligands than in the presence of the

binding ligands where binding ligands resist the GNRs from accessing the tumor center

and accumulate at the tumor rim (Fig. 4.3(C)). As a result, the laser source term value

peaks at the tumor rim (Fig. 4.3(D)) then decreases rapidly in the surrounding tissue.

This laser source profile is a result of our assumption about that the laser irradiation can

be represented as a point source at the tumor center in order to maintain the spherical

symmetry of the model. We will address this approximation in the future work.

The GNR Volume Fraction in the Tumor

The volume fraction (φn) of GNRs in the tumor and healthy tissue is equivalent to the

ratio of the GNR pointwise concentration to the gold density which can be derived using a

control volume (dV̂ ) in the physical domain contains GNRs with concentration Ĉ
(j)
tot (r̂, t̂).

The mass of gold (dM̂n) in the control volume can be estimated in two ways
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Figure 4.3: The laser source term (Eq. (4.13)) value and the GNR volume fraction across
the tumor and the surrounding tissue are plotted using parameter values in Table 4.1.
A)The spatial GNR volume fraction distribution in the absence of binding ligands. B)The
spatial laser source term value in the absence of the binding ligands. C)The spatial GNR
volume fraction distribution in the presence of binding ligands. D)The spatial laser source
term value in the presence of the binding ligands.

dM̂n = Ĉ
(j)
totdV̂ , dM̂n = ρ̂gdV̂n, (4.17)

where dV̂n is the total volume of GNRs in the control volume. The volume fraction of

GNRs φn in the control volume can be determined from

φn =
dV̂n

dV̂
. (4.18)

Hence, we substitute (4.17) into (4.18) we get an expression for the pointwise GNR volume

fraction that we can use in our model (4.16) as follows
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φn =
Ĉ

(j)
tot

ρ̂g
. (4.19)

The Absorption (Scattering) Cross-Section for GNRs

The absorption (scattering) cross-sections for GNRs determine the amount of energy ab-

sorbed (scattered) by the irradiated GNRs and can be calculated either experimentally or

analytically [81]. Jain et al. [2006] [50] reported that σ̂a and σ̂s depend on the effective

GNR radius (r̂eff , cm, the radius of the corresponding sphere which has the same volume

(V̂n) of the GNR) which can be calculated from

r̂eff =

(
3V̂n
4π

) 1
3

=

(
3

16
d̂2
nL̂n

) 1
3

, (4.20)

where, d̂n (cm) is the GNR diameter and L̂n (cm) is the GNR length. Jain et al. [2006] [50]

numerically calculated σ̂a, σ̂s and the extinction cross-section (σ̂ext, cm2, σ̂ext = σ̂a + σ̂s)

for variety of GNRs with 7 ≤ r̂eff ≤ 23. So, we extract from these data the values of both

parameters σ̂a and σ̂s according to the GNR physical properties (r̂eff , cm) we use in this

study, see Table 4.1.

4.2.3 Initial and Boundary Conditions For the Bioheat Equation

At the center of the tumor we apply the spherical symmetry condition, while at the outer

edge of the healthy tissue the heat flux is proportional to the thermodynamic driving

force (the temperature difference across the boundary) which is typically a Robin-type

boundary condition. Also, we apply continuity of temperature and continuity of heat flux

at the tumor/tissue boundary interface

û(T )T̂ (T ) − K̂
(T )
t

ρ̂tγ̂t

∂T̂ (T )

∂r̂
= 0, (r̂ = 0), (4.21)

û(T )T̂ (T ) − K̂
(T )
t

ρ̂tγ̂t

∂T̂ (T )

∂r̂
= û(N)T̂ (N) − K̂

(N)
t

ρ̂tγ̂t

∂T̂ (N)

∂r̂
, T̂ (T ) = T̂ (N), (r̂ = R̂), (4.22)

û(N)T̂ (N) − K̂
(N)
t

ρ̂tγ̂t

∂T̂ (N)

∂r̂
=

ĥ

ρ̂tγ̂t
(T̂ (N) − T̂b), (r̂ = R̂∞), (4.23)

where (ĥ, J s−1 m−2 K−1) is an experimental heat transfer coefficient. In this study we

use a large domain so that the value of ĥ have a negligible influence on the results. The
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Table of parameters
parameter value units description Ref.
∆T 20 s temperature rise at the tumor center due to

laser
[25]

Tb 310.15 K blood temperature [94]

ρt 1109× 10(−3) g cm−3 the tissue density (skin) Database
(IT’IS)

γt 3390× 10(−3) J g−1 K−1 the specific heat capacity of the tissue (skin) Database
(IT’IS)

K
(T )
t 0.0037 J s−1 cm−1 K−1 the thermal conductivity Database

(IT’IS)

K
(N)
t 0.0037 J s−1 cm−1 K−1 the thermal conductivity Database

(IT’IS)

ρbωb 3.328× 10(−3) g cm−3 the blood density times blood perfusion rate [103]

γb 3617× 10(−3) J g−1 K−1 is the specific heat capacity of the blood
µat 0.2625 cm−1 medium absorbance coefficient
µst 14.74 cm−1 medium scattering coefficient [31]

h 2× 10(−3) J s−1 cm−2 K−1 is the heat transfer coefficient [78]
σext 5.376× 10−11 cm2 extinction cross-section [50]
σa 5.084× 10−11 cm2 absorption cross-section [50]
σs 0.292× 10−11 cm2 scattering cross-section [50]
g 0.8 - is the anisotropy factor (human skin) [82]
r0 0.1 cm a constant [118]
ρg 19.3 g/cm3 gold density [69]
n 4.13 GNR shape factor [25]
NA 6.022140758×1023 mol−1 Avogadro constant
Ks 3.1 W cm−1 K−1 gold thermal conductivity
γs 0.129 J/g.K gold specific heat capacity
P 1.7 W/cm−2 laser density [25]
dp 0.6 cm laser beam diameter [25]
A 6× 1029 s−1 a scaling factor [44]
Ea 200× 103 J mol−1 the activation energy [44]

R̆ 8.3144598 J mol−1K−1 Gas constant

Table 4.1: Dimensional parameters in the thermal and cell injury models. IT’IS is an
abbreviation for the Foundation for Research on Information Technologies in Society.

initial temperature is the normal body temperature (T̂b)

T̂ (r̂, t) = T̂b, (0 ≤ r̂ ≤ R̂∞). (4.24)

4.2.4 Dimensionless transformations

We use the normal body temperature as a baseline temperature and scale the temperature

difference to baseline by the expected temperature rise (∆T̂ ) at the tumor center. The

timescale of the thermal model is different to the GNR transport timescale, we scale

time using a timescale based on the tissue thermal conductivity. Hence, we write the
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dimensionless transformations in the form

T̂ = T̂b + ∆T̂ T, t̂ =
ρ̂tγ̂tR̂

2

K̂
(T )
t

t, û(j) =
K̂

(T )
t

ρ̂tγ̂tR̂
u(j), P̂

(N)
i = P̂ (N)

ss + P̂ (N)
e P

(N)
i ,

K̂
(j)
t = K̂

(T )
t K

(j)
t , P̂

(N)
l = P̂ (N)

ss + P̂ (N)
e P

(N)
l , Ŝlaser =

K̂
(T )
t ∆T̂

R̂2
Slaser, T̂b = ∆T̂ Tb.

(4.25)

Applying the nondimensional transformations (4.25) to Eqns. (4.11) and (4.12), we obtain

the following two dimensionless PDEs

∂T (T )

∂t
= − 1

r2

∂

∂r
(r2u(T )(Tb + T (T ))) +

1

r2

∂

∂r

(
r2K

(T )
t

∂T (T )

∂r

)
−H(r − rn)βTT

(T ) + Slaser(r), (0 ≤ r ≤ 1) (4.26)

∂T (N)

∂t
= − 1

r2

∂

∂r
(r2u(N)(Tb + T (N))) +

1

r2

∂

∂r

(
r2K

(N)
t

∂T (N)

∂r

)
− βTT (N) − βl(P (N)

i − P (N)
l )T (N) + Slaser(r), (1 ≤ r ≤ R∞) (4.27)

where

Kt =
K̂

(N)
t

K̂
(T )
t

, βT =
ρ̂bγ̂bω̂bR̂

2

K̂
(T )
t

, βl =
ρ̂tγ̂tL̂plŜ

(N)
l P̂

(N)
e R̂2

K̂
(T )
t V̂ (N)

. (4.28)

Applying the nondimensional transformations (4.25) on the boundary conditions (4.21-

4.23) we get the corresponding dimensionless boundary and initial conditions in the form

u(T )(Tb + T (T ))−K(T )
t

∂T (T )

∂r
= 0, (r = 0), (4.29)

u(T )(Tb + T (T ))−K(T )
t

∂T (T )

∂r
= u(N)(Tb + T (N))−K(N)

t

∂T (N)

∂r
, T (T ) = T (N), (r = 1),

(4.30)

u(N)(Tb + T (N))−K(N)
t

∂T (N)

∂r
= βhT

(N), (r = R∞), (4.31)

T (0, r) = 0, (0 ≤ r ≤ R∞), (4.32)

where K
(T )
t is the dimensionless thermal conductivity of the tumor, K

(N)
t the dimensionless

thermal conductivity of the tissue, βT the ratio of the blood perfusion rate and the tumor

thermal conductivity, βl the ratio of the lymphatic volumetric flow to the tumor thermal

conductivity and βh the dimensionless heat transfer coefficient at the tissue edge which is



CHAPTER 4. MATHEMATICAL MODEL FOR LASER IRRADIATION 104

defined in the form

βh =
ĥR̂

K̂
(T )
t

. (4.33)

4.3 The Cell Injury Model

Experiments indicate that the induced thermal damage in tissue is (approximately) ex-

ponentially dependent on tissue temperature and linearly dependent on duration of tissue

exposure to heat [88]. Henriques [1947] [41] proposed a damage prediction model based

on the Arrhenius equation, where he studied thermal damage induced in pig skin. Hen-

riques [1947] [41] assumed that cell death occurs as a result of protein denaturation which

requires a minimum amount of energy Êa (known as the activation energy) to trigger the

process of programmed cell death. Therefore, the rate of cell death equals the fraction of

cells which acquire energy greater than or equal to the activation energy Êa. In addition

the cell death rate induced in tissue increases with heating which is essential to break the

activation energy threshold. This cell fraction can be estimated by Maxwell-Boltzmann

energy distribution law in the form [117].

dΩ

dt̂
(r̂) = Âe−Êa/R̆T̂ (r̂,t̂), (4.34)

where Ω is the damage index, T̂ is the tissue temperature (K), τ̂1 is the time period of

laser irradiation (s), R̆ is the universal gas constant (J mol−1K−1) and Â is an empirical

parameter (s−1). The parameters Â and Ê depend on the type of tissue and can be

estimated by fitting to experimental measurements. Hence, the induced cell death as a

result of heating prolonged for τ̂1 seconds is defined as

Ω(r̂, τ̂1) = Â

∫ τ̂1

0

e−Êa/R̆T̂ (r̂,t̂)dt̂. (4.35)

Weinberg et al. [1984] [116] provided a correlation function which relates the damage

fraction FD to the damage index Ω in the form

FD(r̂, τ̂1) =
Ĉd(t̂ = τ̂1)

Ĉ0(t̂ = 0)
= 1− e−Ω, (4.36)

where Ĉd is the concentration of the damaged cells, Ĉ0 is the initial concentration of the

living cells and FD = 0 for undamaged tissue.
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4.4 Model Validation Against Experiments

We perform model validation against two sets of experiments. The experiments of El-Sayed

et al. [2013] [28] successfully inhibited the growth of tumors in vivo by a laser irradiation

of GNRs administrated either intravenously or intratumorally into either mice or rats.

The GNRs were administrated every three weeks; the laser irradiation was conducted at

one week post GNR administration while tumor growth was monitored over seven weeks.

At each irradiation they used a laser with power density 50 W/cm2 for 2 minutes, which

elevated the temperature up to approximately 352 K (79◦C) at the tumor center. This

high temperature at the tumor center decayed monotonically to approximately 314 K

(41◦C) at edge of the tumor. They demonstrated that both intravenous and intratumoral

administrations result in a similar GNR distribution across the tumor and are equipotent

for tumor ablation.

In a similar study Dickerson et al. [2008] [25] studied photothermal therapy in vivo

through implanted human squamous carcinoma cells (a type of skin cancer) into female

mice. They administrated GNRs either intravenously or intratumorally in one of two

different dose concentrations. They found that the GNRs administrated intravenously

needed approximately one day to accumulate across the tumor. Following this, they

exposed the tumors to 10 minutes of laser irradiation (1.7-1.9 W/cm2) 24 hours after

GNR intravenous administration or 2 minutes after GNR intratumoral administration.

Both administration methods significantly reduced the tumor growth. They found that

the maximum temperature at the center of the tumor was within the first three minutes

of the ten minute irradiation. However, between 10 to 15 minutes of laser irradiation is

needed for optimal tumor damage and minimal surrounding healthy tissue damage.

4.5 Model Validation Using Dickerson et al. [2008]

[25] Experiment

In order to validate our model, we simulate the in vivo study provided by Dickerson et al.

[2008] [25] following the protocol used in this experiment. Therefore, in our model we pre-

scribe the tumor radius recorded in the experiment before the GNR administration. Then,

we calculate the initial GNR concentration according to the dose injected into the rodent.

In addition, we use the same time interval between GNR delivery and laser irradiation. Fi-

nally, we use the same laser irradiation time chosen in the experiment. Hence, we compare

the thermal model predictions against the temperature profile measured in this in vivo

study as shown in Figs. 4.4(A). In this figure we plot the model predictions for the temper-

ature elevation at the tumor center during the time of laser irradiation and the predictions

for temperature relaxation during the 5 minutes after irradiation against the experimental
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data published by Dickerson et al. [2008] [25]. In simulations we loosely fit the model

results to the data by choosing a suitable tumor vasculature density (Ŝ(T )/V̂ (T ) = 250

cm−1), blood perfusion rate (ρ̂bω̂b = 3.328×10−3 g/s.cm3) and suitable tumor and healthy

tissue absorption coefficients (µ̂at=0.4875 cm−1). These three parameter values lie in the

range of parameter values measured in the literature [20, 31, 55, 58]. Note we fitted the

data (temperature at the tumor center) manually by inspection, but we will make this

much more rigorous in future. In particular, we tested different values for laser spot size

and blood perfusion rates because we observed (by inspection) that the temperature pro-

file across the tumor during irradiation is highly sensitive to the laser spot size, and the

temperature decay in the absence of the laser is dominated by the blood perfusion rate.

Both of these parameters (used in data fitting) were not measured in the corresponding

experiments, so we estimated their values to be within the range reported in the literature.

Following this loose fitting the model exhibits good agreement with the data during the

laser irradiation and heat relaxation after the laser irradiation (see Fig. 4.4).

4.6 Model Validation Using El-Sayed et al. [2013] [28]

Experiment

In Fig. 4.4(B) we plot the spatial temperature profile (across the tumor and the surround-

ing tissue) predicted by the model, and the data measured by El-Sayed et al. [2013] [28]

immediately after switching off the laser. We fit the model predictions of the temperature

at the tumor center to the experimental data through estimating an adequate GNR blood

half life (τ̂ = 1 week), tumor vasculature density (Ŝ(T )/V̂ (T ) = 100 cm−1), blood perfusion

rate (ρ̂bω̂b = 3.328 × 10−3 g/s.cm3) and the laser spot size (d̂b = 0.174 cm). These three

parameters were not measured in the experiment [28], so we choose their values from the

literature to fit the temperature at the tumor center (one point fit at r = 0) and then the

model predict the temperature across the rest of the tumor and the surrounding tissue.

The fitted values for the tumor vasculature, GNR diffusion coefficient and the laser spot

size are consistent with other experiments in the literature [20, 45,55].

However, the blood half life needed to fit the data is very long compared to experiments,

which is thought to be less than one day [46]. Although El-Sayed et al. [2013] [28] reported

that the GNRs disappeared from the blood after less than 3 hours of injection, their data

showed that the maximum GNR concentrations in the tumor, liver, spleen or kidney

were achieved after 72 hours of injection. We could not find a proper explanation for

the elevation of GNR concentrations in these organs (including the tumor) for 72 hours

without available GNRs in the blood after 3 hours of injection. Therefore, in order to fit

our model to this experiment we have to prolong the presence of GNRs in the blood (τ̂ = 1

week) to achieve the maximum GNR concentration in the tumor after 72 hours of injection
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Figure 4.4: A) The model predictions for temperature (Ŝ(T )/V̂ (T ) = 250 cm−1, ρ̂bω̂b =
3.328 × 10−3 g/s.cm3 and µ̂at=0.4875 cm−1) against data published by Dickerson et al.
[2008] [25], for the rest of model parameter values see Table 4.1. B)The model predictions
for temperature (τ̂ = 1 week, Ŝ(T )/V̂ (T ) = 100 cm−1, D̂(T ) = 2.8 × 10−7 cm2/s and
d̂b = 0.16 cm) against data published by El-Sayed et al. [2013] [28]

.

as observed in the experiment. In this simulation we chose the tumor and healthy tissue

absorption coefficients as same as the value we fitted to the data from [25]. We estimated

the laser spot size (by inspection) to fit the tumor temperature at the tumor center. It is

clear from Fig. 4.4(B) that the model predictions for temperature across the tumor show

good agreement with the data through one point fitting (at the tumor center).

4.7 Results in the Presence of Heating

We simulate the laser heating for a spherical tumor surrounded by healthy tissue (Fig. 3.1),

using the mathematical model described in Sec. 4.2.4 coupled to GNR distribution ob-

tained by solving the model in chapter 3. The laser power, the tissue-GNR thermal prop-

erties and the model parameters, listed in Table 4.1, are chosen to simulate the in vivo

experiment conducted by Dickerson et al. [2008] [25]. The results of simulations of laser

heating and tissue damage across the tumor and the surrounding tissue are presented in

Fig. 4.5. The computational domain in this figure (tumor surrounded by a shell of tissue)

is the same as the computational domain in Fig. 3.3 (which shows the GNR distribution)

to easily relate the temperature profile to the GNR distribution.

The GNR distribution across the tumor and the surrounding tissue, which is calculated

by the GNR transport model described in Sec. 3.2, is used as an input to the thermal

model. Although the tumor tissue is loaded with GNRs, the GNR volume fraction (φn)

is very small and has a negligible influence on the thermal properties of the tumor tissue
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Figure 4.5: The temperature predictions across the tumor and the surrounding tissue
during 10 minutes of laser irradiation and 5 minutes post laser irradiation (simulation of
the in vivo experiment conducted by Dickerson et al. [2008] [25]), for the rest of model
parameter values see Table 4.1. A) The spatial temperature distribution in the absence
of binding ligands. B) The temporal temperature profile where the curve styles refer to
the corresponding vertical lines with the same styles in (A). C) The spatial temperature
distribution in the presence of binding ligands. D) The temporal temperature profile where
the curve styles refer to the corresponding vertical lines with the same styles in (C).

such as tumor thermal conductivity and density. So, the GNRs have no contribution to

heat transfer by conduction across tissue. In other words, the thermal properties of the

tissue with embedded GNRs (K̂
(j)
t , ρ̂t, γ̂t, j = N, T ) are constants and independent of

the GNR distribution across the tumor.

On the other hand, the presence of the GNRs significantly increases the tissue absorp-

tion coefficient µ̂a which increases the amount of heat (Ŝlaser) generated across the tissue

in the presence of GNRs, see Figs. 4.5(A)-(D). In these four figures we show the tempera-

ture elevation across the tumor and the surrounding tissue during laser irradiation (for 10
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minutes, red colour curves) and after switching off the laser (for 5 minutes, black colour

curves) in the absence of binding ligands (Figs. 4.5(A) and (B)) and in the presence of the

binding ligands (Figs. 4.5(C) and (D)). These figures reveal that in both cases the laser

irradiation induces a transient maximum in the temperature at the tumor center (where

the laser spot is concentrated) and these maximal temperatures decrease across the tumor

and the surrounding tissue (strongly heterogeneous temperature profile). The maximum

temperature at the tumor center during the laser irradiation is a result of our assumption

about the laser source term (Eq. (4.13)) which is maximal at the tumor center and decays

exponentially away from the tumor center. This assumption is necessary to maintain the

spherical symmetry of the model and it needs to be addressed in the future work because

in practice laser irradiates the tumor starting from its surface towards its center which

requires solving the Pennes’ equation in 2D or 3D.

However, when the laser is switched off, the temperature profile across the whole tissue

drops rapidly and quickly equilibrates to normal body temperature, which suggests that

the heat transfer by conduction quickly spreads the heat to the surrounding tissue. This

heat loss across the tumor is more clear in the temporal temperature profile (Fig. 4.5(B)).

Though the laser irradiation lasts for 10 minutes, approximately 90% of the temperature

elevation at the tumor center happens within the first three minutes, then the heat transfer

by conduction dominates leaving a gradual temperature increase across the tumor until

the laser is switched off. The temperature acquired at the tumor center beyond 10 minutes

of laser irradiation reaches 330 K, but drops to 312 K within two minutes of switching off

the laser.

Introducing binding ligands slightly enhances the temperature profile across the tumor

periphery as revealed in the Figs. 4.5(C) and (D). Although there is no GNRs at the tumor

center, the temperature increases at the tumor center due to the assumed mathematical

definition of the laser source term (Eq. (4.13)) across the tumor. However, temperatures at

the tumor periphery (Fig. 4.5(C)) are slightly larger than the corresponding temperatures

in the absence of the binding ligands (Figs. 4.5(A)) due to the accumulation of the majority

of the GNRs within the tumor rim in the presence of the binding ligands.

4.8 Results in the Absence of Binding Ligands

Exposure to heat induces the tissue damage due to protein denaturation [70], which can

be estimated using the Arrhenius injury model described in Sec. 4.3 based on the temporal

profile of the temperature at each spatial location. The results for the cell injury model

are shown in Fig. 4.6. In Fig. 4.6(A) we plot the predicted spatial-temporal profile of

damage across the tumor and the surrounding tissue. This profile depicts heterogeneous

damage, where (as might be expected) the tumor core has more severe damage compared
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to the tumor rim and the surrounding tissue.

In Fig. 4.6(B) we estimate the total induced damage across the tumor and the sur-

rounding tissue during 10 minutes irradiation and 5 minutes post irradiation. This figure

reveals that 99% of the tumor was damaged during the irradiation time, then no more

damage is induced when the laser is switched off. Conversely, only 10% of the surround-

ing tissue is damaged during irradiation, but this damage has not saturated within the 5

minutes after irradiation.

In Fig. 4.6(C) we investigate how to maximize the tumor damage and minimize the

healthy tissue damage by simulating the same experiment [25], but for different GNR

delivery timescales (the period of time between the GNR injection and application of

the laser) and fixing the other parameters in the model. So, we solve the GNR transport

model described in chapter 3 over a period of t̂max seconds, and then use the resulting GNR

distribution across the tumor and tissue as an input to the thermal model to predict the

temperature across the tumor and the surrounding tissue. Following this we then estimate

the induced damage using the cell injury model [94]. We repeat this process ten times

considering t̂max = 0.5, · · · , 3 hours and show the tumor and tissue damage percentage in

Fig. 4.6(C). This figure shows that the GNR delivery timescale has a significant influence

on the tumor damage profile, but only a relatively minor influence on the surrounding

tissue. This heterogeneous effect of the GNR delivery timescale can be attributed to the

observation that the GNR concentration across the tumor is much larger than the GNR

concentration in the surrounding tissue. In addition the laser irradiation is localized at

the tumor center which makes the tumor damage much more sensitive to any change at

the GNR distribution.

The damage induced in the tumor increases with the increase of the GNR delivery

timescale, as shown at Fig. 4.6(D). However, when the GNR blood half life exceeds approx-

imately 26 hours, the tumor damage fraction eventually decreases as we see at Fig. 4.6(D).

That means prolonging the laser irradiation post GNR administration by (approximately)

more than one day (twice the GNR blood half life used in this optimization) gives time for

GNRs in the tumor to diffuse into the surrounding tissue lowering the GNR concentration

across the tumor. In other words, the GNR diffusion towards the outside of the tumor

dominates the GNR extravasation into the tumor and hence reduces the effectiveness of

the therapy.

Furthermore, the tumor and healthy tissue damage can be optimized by controlling the

GNR blood half life by adjusting the GNR physical dimensions. Therefore, we simulate

this experiment again for different GNR blood half life values fixing the other parameters

in the model, see damage profiles in Fig. 4.6(E). For every GNR blood half life in these

simulations we postponed the laser irradiation for a period of time equals to the chosen

GNR blood half life and illustrate the damage profile at the Figs. 4.6(E), (F). Fig. 4.6(E)
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shows that the GNR blood half life has a significant influence on the tumor damage profile,

but only a minor influence on the surrounding tissue, similar to Fig. 4.6(D).

The damage induced in the tumor generally increases with increases in the GNR blood

half life value saturating as the GNR blood half life reaches approximately 17 hours

(Fig. 4.6(F)). However, the damage induced across the surrounding tissue continues to

increase with higher values of GNR blood half life. Therefore according to this measure,

the optimal GNR blood half life is approximately 17 hours which is sufficient to ablate

the whole tumor but with only minor damage to the surrounding tissue.

4.8.1 GNRs Conjugated with Binding Ligands

In this section we conduct simulations of photothermal therapy for a tumor bearing mouse

in vivo using GNRs conjugated with binding ligands. In these simulations we use the

experimental protocol described by Dickerson et al. [2008] [25]. We investigate the effect

of introducing binding ligands to the GNRs on the tumor/tissue damage. We test the two

cases, the first where the tumor cells have no maximal capacity for internalizing GNRs,

as proposed by Dickerson et al. [2008] [25], and a second where the tumor cells have

a maximal capacity for internalizing GNRs, as observed experimentally by [39, 40] and

discussed in chapter 3.

As shown in chapter 3, introducing the binding ligands slows down the GNR diffu-

sion towards the tumor center (due to binding and internalizing mechanisms), generating

a strongly heterogenous GNR distribution across the tumor. Simulation results for tu-

mor/tissue temperature and induced damage in the case of introducing the binding lig-

ands are shown in Fig. 4.7. The temporal profile of temperature in the case of the tumor

has a maximal capacity for internalizing GNRs, as shown in Fig. 4.7(A), is similar to the

case of no binding ligands conjugated to the GNRs, see Fig. 4.5(B). GNRs manage to

diffuse towards the tumor center within 24 hours due to the GNR saturation threshold

(for internalized GNRs) and at the cell surface (for bound GNRs) as shown in Fig. 3.7(A).

Furthermore, the heat transfer by conduction is large enough to conduct heat across the

core to the tumor region which comprises accumulated GNRs (Fig. 4.7(A)). On the other

hand, in the case of unlimited GNR internalization into the tumor cells, the tumor/tissue

temperature increases are lower than the previous case (Fig. 4.7(B)). We hypothesise that

this is because GNRs accumulate within a thin layer at the tumor rim which is relatively

far from the tumor center where the laser heating is applied, see Fig 4.7(B).

The corresponding tumor/tissue damage caused by heat elevation in the presence of

binding ligands is shown in the figures 4.7(C)-(F). In Figs. 4.7(C), (D) we plot the spatial

profile of the cell injury fraction and the temporal profile of tumor/tissue damage, respec-

tively, in the case of saturated GNR internalization by the tumor cells. These predictions

are similar to the predictions in the case of no binding ligands conjugated to GNRs, see
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Figure 4.6: The cell death predictions across the tumor and the surrounding tissue during
10 minutes of laser irradiation and 5 minutes post laser irradiation (simulation of the in
vivo experiment conducted by Dickerson et al. [2008] [25] where τ = 12.5 h), for the rest of
model parameter values see Table 4.1. A) The spatial profile of injury fraction distribution.
B)The temporal damage percentage profile. C)The damage percentage in the case of
different GNR delivery timescales (the period of time between GNR administration and
conducting laser irradiation). D)The damage percentage against different GNR delivery
timescales at 5 minutes post laser switch off time. E)The temporal damage percentage
profile for different GNR blood half life values. F)The damage percentage against different
GNR blood half life at 20 minutes post laser switch off time.
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Sec. 4.8. This means that introducing binding ligands (at least with binding and internal-

ization parameters used in this simulation) does not improve the efficiency of photothermal

therapy. This observation is important since conjugating GNRs with binding ligands is

expensive and requires special equipment and expertise [107], whereas GNRs themselves

are very cheap (easy to synthesize and only a tiny mass of gold is needed for every patient).

On the other hand, in the case of tumor maximal capacity for GNR uptake by the

tumor cells (Figs. 4.7(E), (F)) we found that the overall tumor damage profile after 10

minutes of laser irradiation is reduced by 6% in the tumor (reduced approximately from

99% to 93% of the overall tumor), but in the surrounding tissue the damage is almost

identical to the case with no binding ligands conjugated to the GNRs. In this case GNRs

can diffuse across the tumor surface towards the surrounding tissue, whereas in the tumor

the GNRs distribution is limited within the tumor rim only which fails to elevate the

tumor temperature to the same level as the case with no binding ligands, see Fig. 4.5(B).

4.9 Conclusion

We conclude from this chapter that the presence of GNRs within the tumor can magnify

the thermal influence of laser irradiation across tissue comprising GNRs. So, the key step

is to maximize GNR concentration within the tumor and minimize it in the surrounding

tissue as we investigated in chapter 3. For the protocol of Dickerson et al. [2008] [25]

and the parameter values used in this study, 99% of the tumor was damaged within 10

minutes of laser irradiation, whereas the corresponding damage in the surrounding tissue

was only 12%.

We numerically investigated the optimal time for irradiating the tumor post injection

and we found 24 hours gives the maximum damage in the tumor with a relatively minor

damage in the surrounding tissue. However, this optimal time interval (24 hours) for

GNR delivery is corresponding to the GNR-blood half life (which is 12.5 hours) used in

this study, which means using GNRs with different blood half life will result in different

optimal time interval for GNR delivery. We found the blood half life should be at least 17

hours to get the optimal tumor damage, so using GNRs with blood half life larger than

17 hours does not enhance the treatment efficacy, for the parameter value used in this

study. Finally, conjugating GNRs with binding ligands decreases the effectiveness of the

treatment where introducing binding ligands results in heterogeneous GNR distribution

in the tumor which leads to heterogeneous tumor damage.

However, this model comprises some simplifying assumptions which need to be ad-

dressed in the future work. For instance, we assumed that blood perfusion is constant [19]

which is typically a function of temperature. We need to study the heat exchange between

the interstitial and the blood vessels at the microscale. So, in our model we approxi-
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mated the thermal boundary layer at the vessel wall with the blood perfusion term Ŝblood

(Eq. 4.9).

Another assumption was considering constant thermal and optical properties for the

tumor tissue which are typically functions of temperature. Feng et al. [2009] [32] provided

a model which addressed this assumption.

Finally, we assumed that the impact of the laser irradiation was at the tumor center to

maintain the spherical symmetry of the problem. This is a significant simplifying assump-

tion that should be addressed in future work, where laser irradiates tumors externally

which requires a 2D or a 3D model.

To sum up, the thermal model introduced (in this chapter) coupled with the GNR

transport model (in the preceding chapter) represent a step forward for establishing more

sophisticated models to simulate the photothermal therapy to guide clinicians for the best

treatment setup.
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Figure 4.7: The temperature cell death predictions across the tumor and the surrounding
tissue during 10 minutes of laser irradiation and 5 minutes post laser irradiation in the
presence of binding ligands (where τ = 12.5 h) using the parameter values in Table 4.1. A)
The temporal temperature profile in the case of limited tumor cell capacity for internalizing
GNRs. B) The temporal temperature profile in the case of unlimited tumor cell capacity
for internalizing GNRs. C) The spatial profile of the injury fraction distribution in the
case of limited tumor cell capacity for internalizing GNRs. D)The temporal damage
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spatial profile injury fraction distribution in the case of unlimited tumor cell capacity for
internalizing GNRs. F)The temporal damage percentage profile in the case of unlimited
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Chapter 5

Conclusion

5.1 Thesis Summary

In this thesis we modeled photothermal therapy of a spherical tumor surrounded by a

shell of healthy tissue. The main object of this study was to investigate how to optimize

this therapy, maximizing the tumor damage while minimizing side effects. In chapter 3

we studied the influence of tumor characteristics on the efficiency of the treatment and we

found that tumor vasculature and porosity of tumor tissue play a vital role in delivering

GNRs successfully (Fig. 3.11(B)). A large tumor vasculature density allows a large fraction

of the GNR dose to access the tumor, while a large tumor tissue porosity allows GNRs to

spread uniformly across the tumor. Hence, we can magnify photothermal therapy outputs

by normalizing the tumor vasculature (eg. using bacterial collagenase enzymes [66]) or

degrading the tumor interstitium (eg. using extracellular matrix degrading enzymes [34]).

We have compared the GNR distribution in the tumor in the presence or absence of

binding ligands. In particular we found that introducing binding ligands results in an

accumulation close to the vascularized region and so is more suitable for treating the

tumor rim. We showed that the width of the tumor rim which is accessible for GNRs

conjugated with binding ligands depends on the maximal tumor capacity for internalizing

GNRs (where large maximal tumor capacity inhibit GNR penetration into deep tumor

tissue). In the absence of binding ligands, the GNR distribution is more uniform across

the tumor (but in smaller concentration values than in the case of using binding ligands).

We also found that the GNR concentration across the tumor (in the presence or absence

of binding ligands) can be increased by prolonging the GNR blood half life which prolongs

GNR delivery time to the tumor.

When also including thermal effects in our model we found that heat generated in the

tumor depends on laser power, laser spot size, blood perfusion rate and GNR distribution

across the tumor. For example, our model predicted heterogeneous tissue damage between

the tumor and the surrounding tissue, where 99% of the tumor was damaged while only

116
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12% of the surrounding tissue was damaged (for the chosen parameter value in this study).

We also investigated the influence of GNR delivery timescale (the time between GNR

administration and laser irradiation) on the tumor damage percentage, finding that the

most effective ablation occur when the GNR distribution (in the tumor) is approximately

uniform and in a relatively large concentration value. We also compared ablation in the

presence or absence of binding ligands and found that introducing binding ligands reduces

the efficacy of the treatment by 6% and induce damage only at the tumor rim (for the

parameter values considered). Overall, we concluded that using binding ligands reduces

the treatment efficacy. Although using GNRs without binding ligands typically reduces

the overall GNR concentration value, the GNR concentration in the tumor was still large

enough to ablate 99% of the tumor efficiently (according to our damage model).

5.2 Model Limitations

Our model comprises various assumptions (in order to simplify the model and make it

easier to analyze and explain the model outputs) which need to be addressed in the future

work. For example, we assumed that the tumor is spherical and has uniform material

properties. In practice, tumor tissue is strongly heterogeneous and has an irregular shape.

Furthermore, we assumed that the tumor vasculature is homogeneous and continuously

distributed over the vascularized region.

The model predictions depend strongly on the GNR extravasation flux which we com-

pute in chapter 2, but we still need to validate the estimated value of blood perfusion rate

ωb (which is a key parameter in the bioheat equation) using similar asymptotic analysis

through solving the heat transport equation in the thermal boundary layer across the

vessel wall. We also need to incorporate the effects of metabolism which influences the

temperature map across the tissue.

Furthermore, we still need to investigate the blood flow explicitly (blood flow in a

realistic vasculature) and the variations of blood temperature. Finally, we need to study

the direct influence of the laser beam on the tissue (not just the light scattering).

5.3 Model Contribution and Future Work

A commercial software package (NanoPlan) is available which simulates the hyperthermia

using magnetic NPs [60]. Our model provides a preliminary platform for predicting the

outputs of the photothermal therapy technique. The inputs of this model are the GNR

physical and optical properties, the binding ligand association and dissociation rates, the

tumor radius, the laser power, and the laser spot size. So, our model is the first model

which simulates the whole process of the photothermal therapy including the GNR tumor
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cell interaction, for the best of our knowledge.

However, our model comprises some simplifying assumptions which need to be ad-

dressed. For instance, we need to extend our model to 3D and estimate the blood per-

fusion rate as a function of temperature [112]. We also need to incorporate the changes

of the optical and thermal properties of the tumor during laser irradiation [32]. Further-

more, we need to extend our GNR transport model to the case of heterogeneous GNR

binding rate [63]. In addition, we can include the influence of GNR electric charge [63]

and multivalent binding ligands [93] on the GNR delivery to the tumor.

Hence, by addressing these simplifying limitations we could provide a realistic software

package to guide clinicians and predict the output of the photothermal therapy.



Appendix A

Properties of GNRs

Summary of properties of GNRs and experimentally fitted corre-

lations

The mathematical correlation for the vessel wall permeability for spherical nanoparticles

(P̆ ), the vessel wall hydraulic conductivity (L
(T )
pv ) and the osmotic reflection coefficient of

spherical nanoparticles (σ̆) are given by [20]

L(T )
pv =

γpr
2
0

8µbL
, P̆ =

γpHD
(j)
0

L
, σ̆(j) = 1−W, (j = N, T ), (A.1)

where µb is the blood viscosity, L is the vessel wall thickness, r0 is the vessel wall pore

radius and γp is the fraction of the vessel wall surface area contains pores. The diffusive

(H) and convective (W ) hindrance factors are prescribed functions of (λ) the ratio of the

GNR size to the vascular wall pore size in the form [24]

H(λ) = 1 +
9

8
λ log λ− 1.56034λ+ 0.528155λ2 + 1.91521λ3 − 2.81903λ4 + 0.270788λ5

+ 1.10115λ6 − 0.435933λ7, (A.2)

W (λ) = (1− λ)2

(
1 + 3.867λ− 1.907λ2 − 0.834λ3

1 + 1.867λ− 0.741λ2

)
, (A.3)

The mathematical correlations for W and H are derived using Cross-Sectional Averaging

for different values of λ, for more details see [24]. We used these correlations in our model

as approximation for GNRs since there is no closed form mathematical expressions for W

and H in the case of nonspherical particles in literature [4].
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GNR Diffusion Coefficient

The macroscopic diffusion coefficient D for a GNR of length L and diameter d moving in

a random direction is calculated in this study according to the following equation

D =
KBT

3πµtL

(
log

L

d
+ 0.312 + 0.565

d

L
− 0.1

(
d

L

)2
)
, (A.4)

where KB is Boltzmann constant (cm2 g s−2 K−1), T (K) is temperature and µt (g cm−1

s) is the interstitium viscosity. Tirado et al. [1984] [111] tested this correlation of diffusion

coefficient for DNA fragments against experimental data and they found a good agreement.

Calculating the Optical Density for GNRs

The optical density (OD) of a sample of GNRs is calculated as [65]

OD = εC∗l, (A.5)

where ε (M−1cm−1) is the molar extinction coefficient, C∗ (M) is the GNR molar con-

centration and l (cm) is the light path length (1 cm in a standard cuvette). The GNR

molar concentration C∗ is different from the gold molar concentration C∗g , since one mole

of gold has a mass of 196.9665 g mol−1 (gold molar mass) whereas one mole of GNRs has

mass of the sum of 6.0221409× 1023 (Avogadro’s constant) GNRs mass (g mol−1). So, we

have to distinguish between the gold mass concentration (Cg, g/cm3) and the GNR mass

concentration (C, g/cm3) which can be calculated using the molar concentration in the

form

C∗g =
Cg × 103

196.9665
, C∗ =

C × 103

NAρgVGNR
. (A.6)

where NA (mol−1) is the Avogadro constant (here it is the number of GNRs in one mole),

ρg (g/cm3) is the gold density and VGNR (cm3) is the volume of a single GNR (the factor

103 is to convert volume dimension from liter into cm3).

The molar extinction coefficient ε (M−1cm−1) can be calculated from the following

formula

σext = 2.303
ε× 103

NA

= 3.82× 10−21ε. (A.7)

where σext (cm2) is the GNR extinction cross-section [50, 65, 86] (the factor 103 is to

convert volume dimension from liter into cm3). We can calculate the optical density using

the number of GNRs presence in a cylinder (the dose container) of radius rD (the same as

the laser beam radius dn/2) and length lD (a part of the laser beam path) and volume VD
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using equation (A.5). The molar concentration of GNRs C∗ in this cylinder is calculated

as

C∗ =
n∗ × 103

πr2
DlD

, n∗ =
n

NA

(A.8)

(A.9)

where n∗ is the number of GNR moles in the cylinder and n is the number of GNRs (the

factor 103 is to convert volume dimension from liter into cm3). Thus, using Eqns. (A.5)

and (A.8) we can write OD in the form

OD = ε
n/NA

πr2
D

× 103, (A.10)

OD =
nε× 103

πr2
DNA

. (A.11)

For a given dose volume VD, optical density OD, GNR width dn, GNR length Ln and

laser beam radius rD one can find the total mass of GNRs (M , g) in the dose using the

following equation

M =
π

4
nρgLnd

2
n, n =

πr2
DNAOD × 10−3

ε
, (A.12)

where dn is the GNR diameter and Ln is the GNR length. There is another way of doing

that using equations (A.5) and (A.6) as follows:

C =
NAρgVGNR × 10−3

εlD
OD, lD =

VD
πr2

D

(A.13)

M = CVD =
πr2

DNAρgVGNR × 10−3

ε
OD. (A.14)



Appendix B

Deduction of Darcy’s Model by

Volume Averaging

In Fig. B.1, we have a homogenous porous medium of two phases, which are the fluid

phase (f) and solid phase (s). The volume of the porous medium (V ) is the sum of the

volume of the fluid phase (Vf ) and the solid phase (Vs), so we write:

V = Vf + Vs (B.1)

The porosity (ε) of the porous medium is defined as the ratio of the fluid phase volume to

the total volume of the porous medium, see Whitaker [2013] [119].

ε =
Vf

Vf + Vs
(B.2)

The average velocity of the fluid in porous medium can be defined in terms of the fluid

intrinsic average velocity 〈v〉f which are defined as

〈v〉f =
1

Vf

∫
Vf

vdV, (B.3)

〈v〉 =
1

Vf + Vs

∫
Vf

vdV. (B.4)

From the definition of the porosity of the porous medium in Eq. B.2 we can write

〈v〉 = ε〈v〉f . (B.5)
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Fluid phase

Solid phase

Figure B.1: Porous medium domain.

Fluid phase Solid phase

Figure B.2: Two adjacent porous medium domains.

So, we can write the fluid flow governing equations in a porous medium using Darcy’s

model in the form

∇ · 〈v〉f = 0, (B.6)

ε〈v〉f = −K
µf
∇〈p〉f . (B.7)

The fluid flow in the two homogeneous porous mediums Ωη and Ωω which are sketched
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in Fig. B.2, can be modeled using the following system of equations

∇ · 〈v〉fη = 0, (B.8)

εη〈v〉fη = −Kη

µf
∇〈p〉fη , (B.9)

∇ · 〈v〉fω = 0, (B.10)

εω〈v〉fω = −Kω

µf
∇〈p〉fω, (B.11)

where the subscript η refers to variables in Ωη; and ω refers to variables in Ωω. In order to

solve the flow problem in Ωη and Ωω we apply continuous pressure and continuous velocity

at the interface between the two region as follows

∇〈p〉fη = ∇〈p〉fω, (B.12)

εη〈v〉fη = εω〈v〉fω. (B.13)



Appendix C

Mesh Size Test

We solved the systems of PDEs in chapters (2)-(4) numerically using the method of lines us-

ing a built-in MATLAB solver. In particular, in chapter (2) we used 90 mesh points in each

spatial direction, z and ξ. We tested different number of mesh points (70, 80, 90, 100, 110,

120) and calculated the corresponding relative error (RE) as shown in Fig. C.1(A). The

relative error for an arbitrary objective function F is defined as:

RE =
FN+1 − FN
FN+1

, (C.1)

where FN is the value of the objective function F calculated using N mesh points and

FN+1 is the value of the F for the case of using N + 1 mesh points. The objective function

here is the solute concentration at ξ = 5.8×10−4 cm, z = 0 and t = 15.62 hr. The relative

error was of O(10−4) (Fig. C.1(A)) which means that the results were independent of the

mesh size.

Similarly, in the both chapters (3) and (4) we solved two systems of PDEs in 1D using

400 mesh points. We tested different mesh points sizes: 250, 300, 350, and 400. We used

the concentration of the GNRs (Fig. C.1(B)) and the tissue temperature (Fig. C.1(C)) at

the tumor/tissue surface interface as objective functions. The both relative errors were

of O(10−3) (Figs. C.1(B) and (C)) which means the results are independent of the mesh

sizes.
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Figure C.1: The relative error for different mesh sizes. A) The relative error of solute
concentration at ξ = 5.8 × 10−4 cm, z = 0 and t = 15.62 hr. B) The relative error of
GNR concentration at the tumor/tissue surface interface. C) The relative error of tissue
temperature at the tumor/tissue surface interface.
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