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A E R O D Y N A M I C A L  I N V E S T I G A T I O N S  

with special reference to the Flow in the Rear of a Rotating 

Sphere.

Introduction.

The full equations of motion for the flow of a viscous 
fluid have proved too complicated for any general solution 
to be obtained. It is to be doubted if, in the near future, 
the problem of fluid motion will be solved in a general 
manner, although solutions for a few special cases which 
•have specified conditions may be found. In view of this it 
Is of some value to investigate experimentally certain cases 
which are likely to prove of mathematical interest at a 
later date,although these examples may be beyond the range 
of analysis for the present. This paper deals with such a 
p2̂ oblem. A solution for this case is known provided the 
velocity be small, a restriction usual to many examples of 
viscous flow. It may be regarded as possible to extend this 
olution to apply to higher velocities and in doing so some 
experimental evidence as to the nature of the flow to be 
Itimately arrived at is invaluable as, by this means, the 

 ̂ thematical analysis may be guided along the right lines.
No such analytical extension is attempted here but the
Sent position of the investigation marks a definite step

towards
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towards the solution of the fuller proolem which it is 
hoped to analyse later. It also marks a suitable point 
for the collection and presentation of the results obtained 
so far, which results may prove of some general hydro- and 
aero-dynamical interest.

The instrument used in exploring the fluid motion ha^ a 
special interest of its own as it may prove of use in further 
aerodynamical investigations where the flow is of three 
dimensional character. The developement of this instrument , 
and its performance vfhen tested, are described in Part I.
The theoretical investigations (S§ 1.0 to 1 «2 ) formed tne 
subject of a thesis awarded the James Thomson Centenary Prize 
of Glasgow University in 1926.

The experiments for the measurement of the forces on a 
rotating sphere, as described in Part II, were the first of 
the tests to be performed. It was from these that a suitable 
wind speed and speed of rotation were arrived at for the 
main experiments described in Part III. These experiments 
deal with the exploration of three sections behind a 6" dia. 
sphere placed in the wind channel and rotating at a constant 
speed about an axis at right angles to the wind direction.
Part III gives a description of these tests and^method of 
Reproducing the results on suitable diagrams.

The investigations of Part II were deemed necessary because 
°f the extremely unstable condition of the flow that is 
pî3esent when a stationary sphere is placed in a stream. The

flow
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flow oast a rotating sphere can hardly he expected to 
resemble the flow past a stationary sphere, except for low 
values of spin, because of the very different boundary 
conditions. It is most desirable, however, that the flow 
investigated be of a steady nature and the results of Part II 
suggested suitable conditions for the investigations of 
Part III.

In Part IV a short analysis is given for the fluid motion 
past a rotating sphere, the solution being applicable when 
the inertia forces of the fluid may be neglected in compar
ison with the viscous forces. Lines of investigation are 
indicated for extending this solution, so as to apply in the 
more general case when inertia cannot be neglected.

All the experimental work described in this paper was 
performed in the 2 ft. wind channel of the James Watt Engineer 
ing Laboratories, Glasgow University.
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P- A R T I.

The Spherical Velocity Gauge.

.0 Many types of velocity gauge have been designed from time 
to time, of v;hich most, if not all, of the pressure type 
have been "null reading" instruments. These gauges have to 
be capable of rotation until certain pressure differences 
are made zero, the angles of rotation giving the pitch and 
yaw of the wind,while the air speed is obtained from a 
separate pressure reading. The three dimensional velocity 
gauge designed and in use at the N.P.L. is of this class.*
It is a delicate,and hence costly, instrument and the 
supports are relatively large for use in experimental vjotSs. 

where the space is restricted. The gauge described here 
does not require rotation. It gives the direction and speed 
at a point from simultaneous readings of three pressure 
differences. If the flow be steady, one manometer gives tl®e 
tliree readings in a short period of time by taking the 
observations consecutively.

Two sets of experiments were performed, the first on a 
diameter model and the second set on a -J" diameter gauge,

bich instrument was used later in the investigations of 
Part III,

1.1 Theoretical.

Neporb of the Advisory Committee for Aeronautics, 1914-5 
and Report T.Î761.
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1,1 Theoretical, Consider the sphere shown in Pig. 1. Let 
A,B,C,X be small pressure holes on the surface. The holes 
A,B,C are equidistant from X and equidistant from each other. 
A is taken to lie on the vertical great circle through X.
The arcs AX, BX, CX each subtend an angle 9 at the centre of 
the sphere.

Let OP lie along the wind direction; then P is the point 
on the sphere v/here the pressure is above the static
pressure and the pressures at A, B, C, X will depend on the 
angles subtended by PA, PB, PC and PX at the centre of the 
sphere.

By an application of the theory of dimensions it is found 
that the pressures at A, B, C, X may be written in the form

p* = PA)

with three similar equations for p., p , p , Here f denotes
some function of the non-dimensional quantities VL/^ and PA,
^nd may be found from hydrodynamical theory or from experiment

Suppose P^ , Pgy , denote the pressure differences
Recorded on gauges connecting A and X, B and X, C and X,
Then, considering VL/V to have no effect on f for the present, 
we have

= P* - P̂
= ifV. (f(PX) - f(PA)] . . . (1)

''ith two similar equations for P,, , .
and ^ denote the angles of pitch and yaw through

Which
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which the sphere has to be rotated to make X coincide with 
P. The arcs PA, PB, PC and PX of great circles on the
sphere are functions of ^ ^ • Their relationships, as
found by spherical trigonometry, are

PX = cos'(cosdb coS|̂  )
PA = cos*(sin6 sinoC + cosB coscA cos^ )
PB = CO s’’(-t. sin 6 Sind cos6 coscA cos^ + g sinB cos<A sinp> )
PC = oos''(-i-.sln6 Bln*. + cos6 cos*. cos|i sln6 cos*, sinpi )

. . . (2)

These four equations express PX, PA, PB and PC as functions 
of 0̂ , ^ & and the values obtained might be substituted
in equations (1) thereby expressing the recorded pressure 
differences in terms of ^ , Y form of the
function f being known.
Introduce at this stage two auxiliary functions ^  and 

involving the pressure differences , P%y , I’cx̂ these
functions being chosen in such a way as to be independent of
the velocity if, as was assumed above, change in VX/v) does 
not affect the function f . It is necessary too that they 
should have no singularity in the region of ( & , p ) considered.

Norms of cj and ^  found to be satisfactory are :

(Sf ^ A x  - P%x =__________ f(PB) - f(FA) ____
+ Pcx 3.f(PX) - {f(PA) + f(PB) + f(PC)}

-y _ P.x - P.V _ _______ f(PC) - f(PAj________
Pw + P%, + P̂  ̂ 3.f(PX) - [f(PA) + f(PB) + f(PC)}

. (3)
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$ and ̂  may be regarded as calculable from two standpoints, 
viz., (a) from the pressure differences observed,or (b) know
ing ^ , 9 and the form of f, the expressions on the 
right of equations (3) give ^ and (Ÿ , equations (2) being 
used to find PX, PA, &c.

A third function P is defined by any of the three equations 
for or A '  say

n» = ■ifV’’ . \f(PX) - f(PA) ] = ipv’' . F

If the form of f be known (either from theory or from 
experiment) then it is seen that the three functions ^ 
and P may be calculated in the case of a special instrument
for various values of cL and . The results may be embodied
on two suitable charts, the first giving ^  and ̂  for varying
5 and the second chart giving F for ^  and 0 .

It will be realised, however, that the most desirable
î̂ oans of obtaining these charts would be to run a series of
tes OS on the instrument when the wind speed is known and
kept constant. By giving the gauge suitable angles of pitch
^rd yaw,a set.of pressure difference readings may be obtained
from which the charts can be derived since the velocity is 
known.

The method of procedure for the determination of A , ,
Ï a point is :
^0 From the pressure readings obtain ̂  and "Ÿ as given by 

^luations (3),

) Head off ^  and ^ from the first chart for these values
of
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of ̂  and (ÿ ,
(3) From the equation V = either of the tv/o
similar equations obtain the value of V, being obtained 
from the second chart as ^ ^ are known.

ti2 In order to give some idea of the working of the instrument 
a preliminary investigation was made to find the probable 
form of the ^ and chart. The pressure distributions over 
a 4" diameter sphere, when placed in an air current of 
various speeds up to 45 f./s,, were obtained and the results 
are embodied in Fig.3 which shows the function f = p/|-j>V̂  .
It will be seen that the effect of VL/ÿ on the form of f over 
the front portion of the sphere is not very great for at 
least the range of speeds tested,and part of the effect noted 
may be attributed to the interference of the channel walls.

The flow round the sphere appears to develops turbulence 
at a point about 60* or 65"* from the nose, so readings beyond 
this are not to be relied upon. It may be remarked in pass- 
^̂ 5 that the curves would indicate that from 140* or 150 to 

the conditions appear to be more steady as shô vn by the 
consistency of the pressure readings in this region.

Taxing the curve shown in Fig. 4 as the form of the function 
■" ̂ bich holds up to 80“ from the nose of the sphere, this 
R̂ve Was made the basis of a preliminary investigation in 
Ich ̂  and'Y were calculated for sets of ^ as indicated 

N equations (3) . The value of assumed was 45 , which
value
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value placed the holes A, B, C near to static pressure when 
the wind was in the direction BX. The results of these 
calculations are given in Tables 1 to 4.
The chart for these values of and is shown in Fig. 2. 

As the form was considered to be satisfactory it was deemed 
unnecessary to calculate the forms of the function F,

1*3 A model gauge for which the sphere v/as 2 "  diameter was 
constructed along the lines shown ih Fig. 5. The sphere 
was of box-wood turned to give a smooth and accurately 
spherical surface. The diameter supporting tube was of 
copper and was screwed firmly into the sphere along a radial 
hole. The small holes in the sphere were bored as accurately 
S'S possible with 6 = 45°, and aluminium tubing of 0.056" 
external diameter was run through these holes and continued 
along the copper tube. One end of the tubing was cut off 
flush with the surface of the sphere while at the other end 
connection was made to pieces of glass tubing, the joints 
being made air tight by sealing with wax. Fig. 6 shows the 
Eiodel mounted in the channel,and indicates how the pressure 
fubes of the gauge were connected by rubber tubing to the 

sides of the Chattock gauge,through a set of stop-cocks 
fixed on the side of the channel. Any of the pressure 
ifferences A* Pcy.could be applied to the Chattock 
nometer by manipulation of the sibop-cocks.
The gauge was set up in the channel with the holes A and 
Ppro^imately in a vertical plane. The gauge could be given

yaw
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3̂ ^ by rotating the supporting spindle, while pitch was
given by rotation of the instrument in a vertical plane 
about the pin which attached it to the spindle. The angles 
vfere measured by suitable scales fixed on the top of the 
channel and on the spindle respectively, the latter one 
being removed when the channel was running. The zero angles 
of pitch and yaw were obtained by Bringing the three pressure 
differences to the same value. The pressures were noted 
when the gauge was given specified angles of pitch and yaw 
between +50* and -50* . The channel velocity was kept 
constant at 14,9 f./s.

^ and ̂  for the different values of ^ and were calcul
ated and the chart obtained is shown in Pig.7 where it is 
compared vfith the chart calculated by the methods of § 1*2 . 
The experimental chart is not quite symmetrical due to some 
of the pressure holes being displaced slightly. As was to 
be expected from the pressure distribution curves of Fig. 7 , 
the values of ^ and ̂  deviate from the calculated values 
for angles greater than about 15 ,but it was not reasonable 
to expect too great a correspondence beyond this range.

The channel velocity being known for these tests, the 
function / F was calculated and a chart of F is shov/n in 
I’tg. 8. It was considered more accurate to use three different 
I functions according to the ( (A , ) dealt with. The pressure

was used when ( 4., ̂ > ) lay nearest to the hole A, and so on. 
A further test was carried out in v/hich the pitch and yaw 

°f ^he gauge and the channel speed were unknown to the

observer
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observer who determined ^ , V from the pressure readings .
Within the pitch and yaw limits of +15 and -15 the angles 
were correct to within 1*and the velocity was read to about 
2^ at 27 f./s.

1 *4 The Final Instrument. The tests on the 2" diameter model 
indicated that the instrument was a feasible proposition 
and that, moreover, with a properly designed gauge the results 
could be satisfactorily accurate. Therefore, a gauge was 
designed as shown in Fig, 9,and was manufactured from this
design by the Bar Knight Model Engineering Co, of Glasgow,E,

dThe diameter sphere and screwed cylinrical part of 5/16" 
length were of brass. Steel tubing of -J" external diameter 
Was screwed on to the cylinder firmly. Along this tubing 
there passed four steel tubes of 1/16" diameter 'which were 
connected to the fine pressure holes in the sphere in the 
manner indicated in the figure, A brass plug in the end of 
the dia. tube kept the smaller tubes in position. The 
Value of 6 taken for this instrument was 52i- as the tests

§ 1.3 indicated that 45̂ * was too great, the range of ( et , )
mecourable with any great accuracy bèing rather small to be 
Qf much practical value. With ^ = 52&, the pitch and yaw

considered to be fairly correct vdien ft and were within 
limits of about ±25* or ±50*.

■̂ Rg. 10 is a photograph of the instrument and its support- 
o led. The figures on the rod mark inches whereby the inst- 
m^nt could be set at any position along the spindle. One

side
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side of the rod was milled plane in order to give the same 
yaw at any position. A special brass attachment made the 
instrument capable of rotation about the main dia. tube, 
a screw fixing it in position when the holes A and X were 
nearly in the same vertical plane. %f Pitch could be given 
by rotation about a short horizontal spindle connecting two 
parts of the brass attachment. The photograph shows the 
gauge with an upward pitch.

The instrument was mounted in the channel and was tested 
under conditions similar to those under which the model had 
been tested. The channel velocity at which the gauge was 
calibrated was 27,0 f./s. Tables 5 give the observations 
and the functions , (ÿ and G_ derived from these readings. 
Throughout all the tables the pressure differences- &c,
3.re recorded as the number of revolutions of the disc on the 
Chattock gauge. If these differences be desired in Ibs./ftI 
"̂he transformation be achieved easily as 1 Turn = 0,1017 lb/ft 
Nig. 11 shows a reduced form of the ^ and (jr chart obtained.
Oa the full scale chart it was possible to interpolate and 

lines at intervals of 1* .
The G-functions are a modified form of the P-functions.

Re/iously, we defined the P-function by the equation

"AY = i^v'",^f(px) - f(PA)] = p

The G-function i.3 now defined by the equation

XAy = V , G/10 ,
being a more convenient system for finding the velocity
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in practice. Fig.12 gives the G-fmictions as derived from
the tests on the gauge.

As in the case of the model, the instrument underwent a
test designed to find its accuracy. Table 6 records the
observations and the values o f ^  ^ derived from them.

A comparison of the actual settings and the observed
readings indicates that the instrument is decidedly better
than the model with regard to the measurement of the angles
but that the speed determined // has not improved greatly
in accuracy. This might have been expected as the angle
^ - 32-g- in the instrument reduces the pressure differences
considerably under those obtained with 9 - 45* . Table 6
shows that the angles are correct to ±0*5 and this may be
taken as very satisfactory as the setting of the instrument
can be guaranteed]^% about ±0,2 . The speed appears to be
correct to about 2,0/, although five of the eight readings
are correct to less than 1.0/.

In conclusion, a few remarks on the final instrument may
be appropriate. As pointed out at the beginning, the main
^dvanGages are its compactness and independence of any need
of rotation provided the angles dealt with are not too great. 
It i  ̂S' decided disadvantage that the range is confined to 
25 or ±50 Out there are many applications in aerodynamics 
'̂ nich such an instrniient may be useful. Of course the 

R'oC may oe extended by giving the gauge initially a certain 
^^°unt of pitch or yaw.

'-or regard to scale effect , the results tabulated in

Table
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Table 6 indicate that no great variation is noticeable in 
the range dealt with in these tests. In cases where the 
speed range is very much greater,methods can be devised 
easily for allowing for such an effect.
The ideal method of using the instrument would be to derive 

the function £ from the stream function for for the flow 
past a stationary sphere, were this latter function known, 
This function f would be made the basis of both the charts 
and the necessary corrections for large ranges of VL/V ,

As will be shown by the results of Part III, the gauge in 
its present form has proved quite a useful and reliable 
instrument,
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P A R T  II.

The Aerodynamical Forces on a Rotating Sphere in an Air Current

2.0 A sphere in translational motion and spinning about an 
axis at right angles to its direction of flight presents 
certain interesting aerodynamical features which have been 
knov/n well for a considerable time. The resultant force 
on this sphere does not act opposite to the direction of 
motion but is such that there is a component at right angles 
to the flight path. Hence the path differs from that of a 
non-rotating sphere.

As far as records exist, Newton appears to have had a 
remarkably clear conception of the phenomenon considering 
the early date on which he wrote. In a letter describing 
his investigations on dispersion in 1666, he refers to his 
observation of the phenomenon and gives what he conceived 
to be the cause. He says that he had "often seen a tennis 
ball, struck by an oblique racket, describe a curve line.
For, a circular as well as a progressive motion being com
municated to it by that stroke, its parts, on that side 
where the motions conspire, must press and beat the contiguous 
air more violently than on the other ; and there excite a 
reluctancy and reaction of the air proportionally greater." 
Newton’s idea lacks only in the insight of the fluid mechan- 
isn which has been made possible by recent advances in hydro- 
^ad aero-dynamics.

About 1747, Robins experimented by firing bullets from
3t
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a gun whose barrel was bent slightly so that the shot was 
given spin before leaving the muzzle. He experimented also 
with a pendulum rotating about its supporting chord. With 
a physical view very similar to that of Newton, Robins 
found it easy to predict the direction of displacement before 
performing any experiment.

It is of interest that both Euler and Poisson appear to 
have had an erroneous physical conception of the phenomenon 
for they regard the side force, or lift, as a consequence of 
the compressibility of the air. They consider that the 
density on the front hemisphere must exceed that on the rear 
so that the frictional force is greater on the front than 
on the rear. This certainly gives a side thrust but the 
direction is opposite to that observed. Poisson, in his 
analysis, showed the deflecting force to be small.

Rayleigh deals with the problem of the path of a spinning 
tennis ball in one of his papers, but, in his analytical 
investigations, he confines himself to the more straight
forward case of the flow past a rotating cylinder. He con
siders the fluid to be inviscid and that there exists a 
circulation round the body. The motion is taken also as 
irrotational.

Tait appears to have spent a great amount of time and 
thought on considerations of the path of a rotating sphere.
In tv/o memoirs he deals with the problem, in attempting to
-— —____________________________________________ explain__
Rayleigh, Mess, of Maths, vii, 14, (I878).

t
Tait, Trans. Roy. Soc. Sdin. V.57, p.427 ; V.39, p. 491.



19.

explain the observed flight of a golf ball and to find the
essentials of a good drive. His papers are of considerable 
interest from the dynamical, if not from the hydrodynamical, 
standpoint.

In reviewing the literature of this subject, it is to 
be remarked that very little advance has been made in explain
ing the motion of the fluid over that given by Newton. It 
was evidently Newton's conception that the spinning sphere 
produces a swirl of air round it, and that this swirl 
modifies the uniform streaming so that,in consequence, the 
pressure is diminished on one side while Increased on the 
other, thus giving a side thrust. As will be shown in Part 
III, this is only the first feature Of the phenomenon. The 
difference of conditions on the two sides of the sphere 
produce a type of motion which none of the investigators 
mentioned above seem to have conceived.

As no experimental determination of the forces experienced 
by a spinning sphere in an air current appear to have been 
made previously, it was considered that such an investigation 
would be of some aerodynamical interest and that the results 
might indicate also some of the features of the fluid motion.

•̂1 ^ne Experiments. The balance used to find the forces on
the rotating sphere was that designed by Dr. A. Thom,and is
described by him in a paper on the forces on rotating cylinfl- %•

Fig. 3 of that paper shows the balance as used in the 
tests described here, with the modification that a 6" dia.
—  _____     wooden
Thom, Aeronautical Research Committee, R. and M. 1015,
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wooden sphere was mounted in the centre of the channel,
Throughout any test, the wind speed was maintained constant 

by observing the pressure in the throat of a Venturi tube, 
placed some distance ahead of the working section and about 
4»5" from the channel wall. This pressure was recorded on a 
U-tube containing water, it being arranged by a system of 
mirrors that both meniscuses were visible in the field of 
the microscope. Temperature effects were thus eliminated and 
the channel velocity v/as obtained from a previous calibration. 
This manometer was developed by Dr. Thom and is described 
fully by him in his thesis for Ph. D . (Glasgow University,1926) 

For a constant channel speed, the moments M , and were 
observed when the sphere was spinning first in one sense and 
then in the opposite sense. If T be the air torque acting on 
the sphere, then, for a definate rate of spin.

Lift • = L ’ = M, - Ml -2T /J2d 
Drag = D' = M, + M^/j2d

where d is the length of the supporting arm of the balance.
The balance was not adaptable for the measurement of air 

torque on the sphere except when the channel was stopped. 
However, running down tests indicated that the difference 
in the air torque for the wind on and for the wind off was 
very slight. This was borne out also by the fact that when 
tne wind was put on with the sphere spinning, the rate of 
•-̂pin was but very slightly affected. The torque was found 

be about 2 oz.ins. at 4000 r.p.m. and a linear law was
assumed



21 .

assumed whereby the torque was taken as 0.5 oz.in. per 1000 
r.p.m. This was the value assumed in both preliminary and 
final tests.

In the preliminary experiments the spindle carrying the 
sphere was of 7/8" diameter,and it was estimated that the 
force on the spindle itself accounted for a large part of 
the force measured on the balance. The spindle was corrected 
for in the following manner. The velocity was taken at 
several points on a vertical line between the sphere and 
the top of the channel. The root-mean-square velocity for 
this section was found to be 26 f./s. when the channel 
velocity was 23 f./s. It was assumed that the velocity of 
the air in the region of the spindle had an increase of the 
same proportion. The lift and drag of the exposed spindle 
for this air velocity were obtained from previous experi
ments on rotating cylinders and these were subtracted from 
the observed forces.

By the Principle of Dynamical Similarity it may be shown 
that the lift and drag are of the form 

K(VL/f, v/V)  ̂L v"" 
where V = channel speed, v - equatorial speed of the spheiœ,
L = diameter of the sphere,  ̂= density and *9 = kinematic 
vdscoslty of the air.

Kence the lift coefficient, and the drag coefficient, 
s.re some functions of the non-dimensional quantities VL/V and 
v/V. Pig. 13 shows the coefficients obtained from the prelim
inary tests plotted on a v/V base for constant channel speed,

i.e..
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i.e., constant VL.
In the later tests,the spindle used was 0,45" diameter 

and it was shielded from the air stream by 7/8" diameter 
guards which extended from the channel walls to about 5/8" 
from the surface of the sphere. Fig.14 gives the results 
of these later experiments.

2,2 Remarks on the Results. In Fig. 14, the curves for Y = 10 
f./s. cannot be regarded as altogether satisfactory, for the 
balance moments measured at this wind speed were very small 
and the curves may be somewhat in error. The curves obtained 
for the other four wind speeds appear satisfactory.

The preliminary curves for on Fig. 15 agree with those 
on Fig. 14 for low values of v/V ; they reach a slightly 
greater maximum and thereafter swing about the values obtain
ed in the later tests.

One special feature to be noted is the appearance of 
negative lift at low values of v/V and high values of VL.
No satisfactory explanation has been postulated so far. It 
may be due to turbulent flow at small rotations or to some 
effect of channel wall interference. On the other hand, 
there may be a tendency for some type of flow to develop 
and produce negative lift. The experiments on rotating 
cylinders show a similar feature. As it is shown in Part 17 
t-hat there is no lift if VL/ÿ be small and 0 < ''/V< 1 , it 
seems most feasible that the turbulence of the fluid motion 
is the cause.

It will be noticed that the curve rises steeply from

v/V
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v/V = 0,5 This is contrary to what several investigators 
have predicted. In a letter to Tait, Stokes said that he 
considered that, provided v/V was small (<1),then the lift 
component would he proportional to Vw, where angular speed 
of the sphere. This would make v/V, but these experiments 
indicate that it would be more correct to take (v/V - 0.5)
for a short range of v/V above 0,5 .

In the final tests, the drag coefficients are grouped 
together for v/V >0,5 • If it were considered legitimate to 
extend these curves backwards for v/V ->-0, values of the 
drag coefficient might be obtained for a stationary sphere 
in an air stream, the flow being considered steady and not 
turbulent.
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P A R T  III.

The Exploration of the Flow in the Rear of a Rotating Sphere.

3,0 Of recent years,the physical conception of air-flow has 
received several modifications due to the advancement of the 
theory associated with Prandtl. This theory, which claims to 
be only a first approximination in analysis, deals chiefly 
with the flow past aerofoils -- an aerofoil being defined as 
a surface which gives a large value of lift/drag. In some 
respects the rotating sphere may be regarded as a limiting 
form of a finite aerofoil -- the aspect ratio decreasing to 
unity and also the section getting thicker. To this extent 
the problem of the rotating sphere may be considered as a 
step towards the more general investigation in which the surfaces 
are not necessarly of aerofoil character. However, it is 
obvious that there are many wide differences,which are due 
mainly to the different boundary conditions.

In the Prandtl theory of the flow past a monoplane, one 
is given the picture of a vortex sheet extending in the rear 
of the body from the trailing edge, and being so modified 
at the wing tips to form two vortices. It was considered of 
some interest to investigate whether trailing vortices were 
j-ormed in the rear of a spinning sphere and in what manner 
they modified the flow.

Prom past experience, aerodynamicians are rather shy of 
problems concerning the flow past a stationary sphere since 
the motion in the rear is extremely turbulent and drag deter

minations
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minations have never been satisfactory. It must be noted at 
the outset that the problem of the flow past a rotating 
sbhere must not necessarly have the disadvantages of that 
past a stationary sphere. The boundary conditions in the two 
examples are entirely different so that it is not advisable 
.to connect the two problems except when the speed of rotation 
is low. In the tests described in this part, the rotation v/as 
great, thus giving an intense circulation round the equatorial 
section of the sphere and adding, it was considered, to the 
stability of the flow.

3*1 The Axes of Co-ordinates. Diagram 3a gives the set of 
co-ordinate axes adopted in these tests. For an observer 
looking upstream from the sphere,the positive x-direction 
was taken forward while y and were measured towards the 
right and vertically downward respectively.

Diagram 3a.

In measuring pitch and yaw, the convention was the same 
that used when testing the velocity instrument. The wind 
considered to have positive pitch and yaw when it had 

components along the positive z-axis and the negative y-axis 
Respectively.

The direction of rotation of the sphere was such as to
give
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give lift along the positive z-direction, i.e.,vertically 
downward.

In representing the results by contour diagrams of pitch, 
yaw and velocity (Figs. 19 to 2?) it was considered desirable 
that these figures should be drawn similar to the contour 
diagrams given in aerofoil work. Hence has been drawn 
vertically upward. In discussing these diagrams it must be 
remembered that the top part of the sphere is approaching the 
observer while the bottom part is receeding. The sphere is 
shown by a broken line in each figure. Here, positive pitch 
represents an up-current along the positive direction of

In practice, it was found convenient to use the scale on 
the supporting rod of the velocity gauge for measurement in 
the 2-direction, and all references to _z have been made with 
respect to this scale. This displaced the centre of the sphere 
T>y -9/16" along the z-axis. By measurement, it was found 
that the sphere had a slight displacement along the y-axis 
relative to the gauge, when this instrument was placed at 
y = 0 by the scale on the top of the channel. This was evident 
again when plotting the pitch readings. Hence, the y-axis vfas 
displaced by 0,10" ; the pitch readings on different sides of 
y = 0 were found then to correspond very closely. The centre 
of the sphere has to be taken as 3", 6" and 9" ahead of the 
point marked on the z-axis in the contour diagrams.

3*2 ^ e  Apparatus. A wooden sphere of 6" diameter was mounted 
on a 0,45” diameter spindle which passed through holes in the 
ide walls of the channel. The housings for the ball-races on

which
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which, the spindle ran were fixed rigidly to steel strips 
mounted horizontally on the channel. These strips had holes 
bored suitably for mounting the sphere at three positions 
3" apart down the channel. Thus, throughout these tests, 
the velocity instrument was kept in the same section of the 
channel and the sphere itself was moved to change the section of 
investigation behind the body.

A small electric motor, fixed on the roof of the channel, 
was connected to one end of the spindle by a belt drive. A 
Bonniksen cyclometer, mounted to the channel wall by a frame, 
was attached by a piece of flexible rubber to the other end 
of the spindle. This cyclometer proved to be most valuable, 
for, though only registered to read 1000 r.p.m,, it was found 
to act very satisfactorily at much higher speeds, care being 
taken that the revs, recorded were of the correct order,as no 
record of the thousands was given on the dial. This was easily 
achieved by observing the revs, as they increased steadily.

In order to eliminate the effect of the rotating spindle 
on the air pattern, the spindle was enclosed in thin tubes of 
sheet tin, thus making the external diameter approximately . 
These tubes extended from close to the surface of the sphere 
to the channel walls and were fixed so that they did not rotate 
‘'7ith the spindle. Friction was diminished by inserting thin 
î etal rings at the ends of the tubes.
Tt was found that vibration of the rotating system was 

Ggpravated at certain rates of revolution and wind speeds by 
^dignt vibrations of the channel as a whole. This was remedied

by
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by attaching a wire to one of the snindie tubes, about 2" 
from the surface of the sphere, and running it along the 
channel and through the honey-comb to the outside, where it 
was fixed under a small tension.

Throughout these tests, the channel velocity was maintain
ed at V = 27 f./s. by means of the U-gauge referred to in 
Part II. This gauge was connected to the static hole in the 
channel wall and Fig. Î5 shows its initial and final calibrat
ions. The speed of rotation of the sphere was 4130 r.p.m. 
which gave v/V a value of 4.0 . Care was taken that the revol
utions did not vary by more than -30 r.p.m.

The investigations of Part II indicated that, with V = 27 
f./s. and v/V = 4,0 , the lift and drag coefficients had 
become constant so that the flow in this instance should be 
expected to be steady and not to vary greatly with slight 
variations of V and v/V . In addition, the velocity gauge 
had been calibrated initially for V = 27 f./s., so this inst
rument should be expected to be functioning under the most 
favourable conditions.

3*3 % e  Experiments. The three sections explored were X = -3" 
^ ~ -b" and X = -9". It was considered that these three sect
ions should show the main character of the flow behind a 
rotating sphere when v/V is large.

In exploring the section at X = -3", it was found imposs- 
lole to use the velocity gauge immediately behind the sphere. 
The moving surface produced large values of pitch and yaw,

making
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making it difficult to manipulate the instrument close to 
the body.

By means of the sliding shutter on the roof of the channel, 
the gauge was made to traverse a series of lines behind the 
sphere for which z was constant. It was found necessary to 
give the gauge an initial pitch of 20 for the central read
ings at z - -4". This kept the angles within the range of the 
instrument, which was moved down the supporting spindle in 
order to bring the recording part of the gauge into its former 
position. Similar angles were given in other regions where 
it was obvious that such a step vfas necessary. The angle of 
bias was kept small and never exceeded 20*of pitch. Yaw did 
not require any initial setting although there were indicat
ions of this being necessary had it been possible to get 
immediately behind the sphere.

Observations were taken at over 150 points in this section. 
Only a very few of these were found to lie too far out of the 
range of the instrument to be valueless.

The sphere was then moved forward by 3" and part of the 
section at X = -6" was explored in a similar manner, starting 
with z = -6”. At z = -2 " , the instrument had to be compensated 
Tor both pitch and yaw, the bias being 15*in each case. Even 
linen, the central readings were beyond the range of the 
Instrument and tests with smoke jets, etc., were carried out 

get an idea of the magnitude of the angles. These tests 
“Til be referred to later. It was discovered from them that 
Tne angles were very large . Hence the sphere was moved back

by
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by 3" and the gauge was given a downward tilt of 54^ , thus 
bringing the instrument into its correct position relative 
to the sphere. Readings were obtained immediately behind the 
sphere by these means.

The majority of the 220 observations taken over this 
section were within the range of the instrument. Care had 
to be taken,however, in the manipulation of the gauge as 
great changes often occured in very short distances and,in 
traversing some of the lines, the magnitude of the angles 
had to be anticipated to a certain extent.

Over the section at X = -9", very little trouble was exper
ienced. Changes in the angles were more gradual than in the 
other sections. About 150 points were observed.

3.4 Reduction of the Observations. All the observations were 
tabulated, and the values of the ^ and Q functions were 
obtained for each point. The pitch, yaw and velocity were 
calculated by the methods given in Part I.

Readings of pitch for negative values of y were super
imposed upon those for positive values of y and curves were 
drawn through the points.

Yaw readings for negative values of y were changed in sign 
and plotted with the readings obtained when y was positive.

It was considered desirable that the ratio V/U be plotted 
Rather than V, where V = speed at point and U = channel speed 
27 f./s. This gives a more general indication of the condit

ions over the field. The ratio V/U was found at all the points 
ODserved and was plotted after the manner of the pitch readings

The
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The readings were usually of the*prder for points beyond
y - 4" ; it was considered better to tabulate the mean read-

all
ing at these points rather than plot^the observations in the 
diagrams of ^ ^ and V/U.

The contour diagrams were obtained from the curves of 
observations and the cross-plotted curves of these quantities.

Figs. 16-17-18 give the observations of ^ ^ , V/U at
the three sections while Figs. 19 to 27 give the contours for 
the same sections.

3*5 Discussion on the Observation Curves. It will be noticed 
that all pitch readings are very consistent and that there 
are no excessive divergences from the curves. The yaw and
V/U observations are not quite so good,but it was found usually
that a curve could be drawn through the points in a satis
factory manner.

Lines shown broken in Sections X =: -3", X = -6” are indicat
ions only of the curves, the number of observations not^being 
sufficient to establish the forms definately. No great error 
in these curves is anticipated.

The observations obtained by tilting the gauge steeply in
Section X = -6" are satisfactory from the standpoint of consist
ency .

The velocity along z = 0, between y - 4 and y = 8 , is found 
lo be greatly reduced due to the presence of the spindle some 
distance ahead. Readings were taken along this line in the 
~ “8 and X = -9 sections. In the section X = -3, readings 

Were taken along z = -1 and z = 1, the line z ~ 0 being omitted
It



32.

It was not realised at the time of the tests that the spindle
would have so great an effect ; otherwise, some means of
eliminating this effect would have been devised.

The line z = 0 has not been considered beyond y = 3,in
plotting the contours of V/U in section X = -6. At X = -9,
however, the effect of the spindle is shown, though it might 

preferable
have been^to. have omitted readings beyond y = 3.

3.6 The Contour Diagrams. These diagrams give the best general 
view of conditions over each section. There are several 
details which stand out clearly in these figures.

Perhaps the most important result of these experiments 
is the establishment of the vortices behind the sphere. Pigs. 
25 and 26 show the vortex very clearly. In the diagram of 
pitch, positive contours indicate an up-current while negative 
contours show a downward tendancy of the wind. In the diagram 
of yaw, positive contours show that the wind has a component 
towards the left and negative contours show a motion towards 
the right. It will be seen, by superimposing the two diagrams, 
that there is a general rotary motion ; the centre of rotation 
may be taken approximately as the point of intersection of 
é- = 0, ^  = 0 , viz. (y = 1 ,45, z = -2,4) . Comparison of the 
Tigs, for sections X = -6, X = -9 show that the vortex does 
ant travel horizontally down-wind, but is inclined at an angle. 
This was to be expected as one vortex must influence the other. 
Towards the core of the vortex,the speed of the air is low but 
appears to rise slightly as it travels dowh-stream.

In
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In seeking the means by which the vortex forms, Pigs. 19 - 21, 
which show the conditions at X = -3, may be considered. The 
speed of the air below the sphere is seen to be extremely low 
due to the under surface of the body being in rapid motion 
against the main stream. On the other hand, the speed above 
the sphere seems to be increased only slightly above the 
channel speed. This might be taken to indicate that there is 
considerable dissipation in the fluid around the body. The 
pressure difference above and below the sphere, brought about 
by the great difference in the speed of the air, gives rise 
to the lift, as conceived by Newton and other investigators.
This pressure difference must be responsible also for the 
forming of the vortices. Figs. 19-20 indicate that the air 
under the sphere tends to curl round the lower quarter of
the body, while the air from above descends steeply in a con
tracting band. The rotation must be set up in this manner. It 
would be necessary to know the conditions immediately behind 
the sphere to get a clearer view of the motion.

Several other points may be noted in the diagrams. At X =-6, 
'̂he angles of pitch are seen to vary very rapidly in the 
Region where the up-current meets the descending current. There 
appears to be a slight in-flow along the y-axis some distance 
Dehind the body. This is seen in the yaw diagrams.

The low velocity near (y = 2, z = 0) at X = -6, -9 may be
^ue in part to the spindle.

3.7 nlbe_Plov; ahead of the Sphere. It has been mentioned above 
thau some difficulty was experienced in obtaining an indication

of
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of the angles In certain regions behind the sphere. Kence, 
an attempt was made to trace the flow by means of smoke Jets. 
The apparatus vras similar to that used at the N.P.L. in 
investigating the discontinuous flow past a bluff obstacle. 
The Jets were of ammonium chloride.

Very little knowledge of the conditions in the rear of 
the sphere was gained by these tests. The Jets spread almost 
immediately on leaving the mouth of the tube.

An indication of the flow in front of the sphere vfas quite 
easily obtained, however. It v/as found that the flow appeared 
to be little affected by the rotation of the body a short 
distance ahead. The velocity gradient over the forward part 
of the sphere seems to be great,and it appears that the flow 
not very far from the body is little different from that 
obtained without rotation. These statements would require 
to be confirmed as no observations were taken in this region 
and the Jets merely give an indication of the flow.
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The Slow Viscous Flow past a Slowly Rotating Sphere.

4*0 The notation used throughout this part will be the same 
as that used in Lamb’s "Hydrodynamics" and will require no 
explanation.

The equations of motion of a viscous fluid, as found by 
Havier, Saint-Venant, Poisson and Stokes, may be written

Du/Dt = X - i.-iioAx + 32) . . (1)f 3 tx T>y ÔZ

with two similar equations, where the operator D/Dt denotes 
V'̂ t + u.^/bx t v.^Ay + w."^A^ •

It being permissible for all ordinary motions to neglect 
compressability, the equation of continuity in this case 
becomes

%u/bx + "bv/by + bw/bz = 0 o . (2)

These four equations have to be solved for u, v, v/ and p . 
So far they have proved to be unmanageable in their full 

■̂ orm and, in consequence, have had to be modified to allow 
for the application of known means of analysis.

A common modification consists of neglecting the terms 
on the left of (1). This amounts to taking the motion as 
steady and neglecting the inertia forces of the fluid ; hence, 
^ny solution obtained from these new equations must be regard
ed as being valid only when the inertia forces are small in

comparison
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comparison with the viscous forces. For this to he the 
case the flow must he exceedingly slow or the fluid very 
viscous.

Accordingly, for slow motion and in the absence of 
extraneous forces, the equations (1) reduce to

\ bP . (3)

ws. » P.
with tvfo similar equations.

It will be seen that if u, , v, , vq , p, and u^, v̂  , 
are two independent solutions of equations (2) and (3), then 
the flow represented by u,+ u^, v, + iq , Wj t ŵ  , p, + p̂  is 
also a solution. The boundary conditions of u,&c, satisfied 
in this latter case will be the sum of the two conditions 
satisfied in the sa--t4.gf 1 ed, in-tfas- initial cases.

If the first motion be considered as a slow steady stream
ing past a fixed sphere, and the second motion be that obtained 
by slowly rotating a sphere in a fluid at rest at infinity, 
then the motion obtained by summing these two independent 
motions will represent the flow past a slowly rotating sphere.

U

4,1 êt Diagram 4a represent the system under consideration.
X,
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X, Y, Z are rectangular axes having their origin at the 
centre of the sphere of radius a and the flow at any point 
P is (u, V, w). It will be convenient to express some of 
the functions in terms of the spherical polar coordinates 
(r,& ,^ ) shown.

The uniform slow flow past a stationary sphere was invest
igated by Stokes and is usually expressed in terms of the 
current function ̂  . The fluid has velocity (U, 0, 0) at 
infinity and the flow is considered to take place in planes 
which intersect along the axis OX.

The stream function takes the form

= -iU( 1 - ) .r sin^ô . . . (4)

and the components of velocity along and at right angles to 
the radius vector are given by the expressions

1 b/'f i
■  HlXê'Iè = u oosb (1 _ +i.-j

(5)
IThen v̂ , are the velocity components with respect 

to the axes x, y, z then
r, = R,cos6 - QjSinô

= U.oos*6 ( 1 - |.â + ) 4- U.slnô ( t - 4 J - 4 ^

= U . ( t  -  f  .S _ ) _ f  .U .c o s ‘ 6 (g  -

= U.[(l - |) + â ){l - 3 .008*6 )

=
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V, = (R.sinG + ôcosB ) .cos<Ç
= -f - aT ) .0080 sinô coscf

■- (R.sinfe + Ô cos6 ) .sinĉ
= (r̂  - ) .cosè sink sinĈ

• • • * . ( 6)
Consider now the flow produced in an infinite expanse 

of fluid by the slow rotation of the sphere about the axis 
Oz. The flow may be expressed in terms of the function 
\  the components of velocity being

-cOô . sinô cos<D 
r^

cûft̂ .cosô
r^

(7)

angular velocity of the rotating sphere.
For the complete analytical processes for obtaining the 

above solutions reference may be made to the usual text-books 
on hydrodynamics.

4 2 rnThe slow viscous flow past a slowly rotating sphere is 
obtained by adding the two independent solutions given in 
Ibe last paragraph.

For any particular value of U, the flow will depend on
the

:= - y-ll = -(ùa .y = 
r̂

V ^  := - z.ït = c0̂ a\x =
\x r*

W ^  := y. ̂  - x.-^ s 0
'bx Iky

the boundary conditions make A

Lamb, "Hydrodynamics", 5th. edn. §§ 335-8, pp.562-71
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the rate of rotation of the sphere. The theory of similarity 
indicates that the non-dimensional variable %s«û^a/U will 
be one of the factors which determines the flow in the 
general case, the other being Ua/f.
*“ Inserting the factor 7- into the set of equations (7) : 

u = Uj + u^ = U^( 1 “ (r̂  - a) ( 1 - 3 .cos 6 )
- sinô cos^ ^

V = V, + y, = uS\.f^.cos6 - f .a.(r̂  - a) .cosô sin& cosd 
L r'' r̂

w = w. + ŵ  = U '§3 .cosô sinô sinĈ  |

These equations give the components of velocity at any 
point in the fluid when a sphere is rotated about an axis 
at right angles to the main stream, provided the inertia 
forces are small in comparison with the viscous forces. 
Stokes’s solution, as given in equations (6), is valid when 
UaA is small and the equations (7) are valid if or
h.UaA be small.

Thus, for equations (8) to hold for the flow past a rotat
ing sphere, both Ua/? and must be small. If >- be of
unit order, Ua has to be small compared with 9 which, for air 
at atmospheric pressure, is 0.132 e.g.s. units. Hence, for 
the equations to be valid for a sphere of 1 cm. radius in an 
nir stream, U has to be small compared with 0.132 cm./sec. .. 
and 0 < ^ <  1 .

From the above considerations it will be realised that the 
Solution given above holds only when the motions are minute.

A
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A method of extending the above solution to higher values of 
VL/V is advanced in § 4.4 below and is based upon some suggest
ions put forward a few years ago by certain investigators. In 
the paragraph mentioned the line of attack is outlined and a 
number of suggestions are made with regard to the method of 
solution and possible limitations.

4*3 When the solution given by equations (S) holds, the force 
and torque experienced by the rotating sphere may be derived 
very simply if the additive quality of the primary solutions 
be applied.

It may be shown that the x- and y-components of stress 
across the surface of a sphere of radius r are given by

M.= ~.p D u  ♦ + yv + aw) =

= -^.P D v  +.^.^(xu + yv + zw) = pĵ +

Here p̂ , p^ represent the terms involving u ,̂ v^, Wj and p^’,
«L
Represent those involving u^, v^, when û  + u^, &c., are 

substituted for u, v, w.
Since S u^= ^  v^= 0, then p^is constant by equations (3), 

and p, the mean pressure at any point in the fluid, is given 
by p = P|t p̂  = P, + constant. It will be seen also that

yVj_ 4 sŵ  , which represents r.(radial velocity), is zero, 
Ine flow in the second of the initial cases being in circles 
about Oz.

The stresses p^^and , when integrated over the sphere
*

b'tvA.
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of radius a, give the drag and lift respectively. If dg he an
element of the surface of the sphere, then P̂ ||.dS and
[fp̂ \d'S are easily seen to he zero. Since p^is constant and JJ
xu^+ yv̂  t zw^= 0 then the first and third terms of these 
integrals vanish for the reasons given above. The second
terms

zero, the integrand of the first, viz. ( 3 being
proportional to y and that of the second to x.

Hence, the drag of a slowly rotating sphere in a slowly 
moving stream is the same as if it had no rotation and is 
that fomad by Stokes, viz. 6Ty.aU. The sphere experiences no 
lift component.

The torque acting on the sphere about Oz^and in the positive 
direction will be seen to be f" • As the
integral/jj(x.p^'^- y .p^.dS vanishes, this becomes 

Torque ^

~ “ - # K  - - #)u^as

= ^  008^8 4 sin 6 COs(̂  ) .â  sin6 .dQ .d(Ç

The value of the double integral can be easily shown to 
be a/ so that the torque becomes -8"R̂ 6̂ &a and tends to
stop the rotation.

It is now generally accepted in aerofoil theory that when 
a body experiences a force component in the cross-stream 
direction then this component, or lift, is proportional to 
the circulation. At first sight it appears strange that the 
rotating sphere does not have lift when there is clearly a

circulation
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circulation present.
In the case dealt with above, the circulation produced 

is due entirely to viscosity. Any fluid reaction which may 
be brought into play on one hemisphere due to the spin is 
annulled by the equal but opposite reaction on the other 
hemisphere. Thus, there is no addition to the force exper
ienced by a non-rotating sphere, but there does come into 
existence a torque tending to stop the spin.

However, it must not be concluded from this that the 
fluid inertia is wholly responsible for the production of 
lift and that the fluid may be taken as non-viscous when 
calculating the cross-wind force. The inertia forces of 
themselves will not give lift.

In the theory advanced by Prandtl and his colleagues, 
viscosity is dispensed with almost entirely. The circulat
ion which produces lift is considered as that in existence 
on the outside of the boundary layer. Its magnitude is 
fixed as sufficient to bring the rear stagnation point to 
the trailing edge, it being supposed that eddies formed in 
the rear are carried off by the fluid, leaving a circulat
ion round the body which gradually builds up to this value. 
This cannot be considered as an altogether satisfactory 
oasis. The boundary layer is the region where the viscosity 
is of greatest importance, the shear in this part of the 
fluid being great. Hence, it would be decidedly more satis
factory if the mechanism of this thin layer were more clearly

understood
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understood so that the growth or disappearance of the 
circulation in passing through the boundary could be 
analysed, instead of simply treating the layer as an auxiliary 
part of the solid body.

The method suggested below indicates a scheme, whereby, 
starting from the purely viscous flow,-- such as that repres
ented by equations (8) -- the inertia of the fluid may be 
brought gradually into the problem, and a solution obtained 
which promises to be of some value as it would deal with the 
whole expanse of fluid instead of only that part where the 
viscous forces are small.

4,4 From time to time, a number of attempts have been made to
obtain solutions for particular cases of fluid motion by
inserting solutions which are valid only for low speeds into
the dynamical equations, and then re-solving these equations.
It was hoped by this step-by-step process to obtain a solution
which would be valid for higher values of VL/y^but none of

*
these attacks were advanced very far.

A few years ago Cowley and Levy^advanced the important 
idea, that, since the quantity VL/v> forms the determining 
factor in all usual problems in fluid motion, then the stream 
function ay ̂ in any example of steady two-dimensional flow, 
may be expansible in some series of the variable Vh/^• The 
authors do not indicate any method whereby the form of the 
Series may be determined but they suggest the power series
.---   as* \ . “ "  ■ “ - ■ ■ “ ■ ■
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as perhaps a suitable form.
Thus they consider that ̂  may he put into the form 

ay zz + ay o 4 \  ajQo + ... *v ..
where G = VL//•

If this expansion of ̂  be substituted in the equation

which has to be satisfied for steady two-dimensional flow, 
then the equation may be broken up into an infinite series 
of differential equations. This is permissible since the 
equation is an identity in _G, and, therefore, the coefficients 
of powers of 0 may be equated to zero. Each differential 
equation depends on the proceeding one, and the first equation 
is = 0, simply that for slow motion.

Thus, starting with -- the solution for slow flow -- it
is conceivable that    may be determined success
ively and thus a function pjT built up which will satisfy the 
dynamical equations and the boundary conditions completely. 
Above all, it should be valid for a greater range of VL/\̂  
than that satisfied by the solutions for slow motion.

There are some problems in two-dimensional flow where it
IS fairly obvious that cannot be expanded in a power series. 
In these examples a different series should be sought. The 
flow past any cylinder in an infinite fluid is such a case, 
for here no steady slow viscous motion is possible, it being 
impossible to satisfy all the boundary conditions. R.A.Frazer
'— -— — ________ _______________________________ attempted
L̂amb, 5th. edn. P.58I, § 343.
Frazer, Phil.Trans.Roy.Soc.,A.225,(1926), p.93.
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attempted the problem of a circular cylinder, using the 
power series. As might have been expected, the results of 
the first stages were not too encouraging, it being found 
that eddies were formed ahead of the cylinder as well as in 
the rear. Professor Bairstow has suggested that one might 
start initially with Oseen’s solution as the basis of some 
expansion. This would avoid certain of the difficulties 
which exist in dealing with the slow motion solution,and 
would partly take account of inertia at the beginning.

If, in an example of two-dimensional flow, we can assume 
to be expansible in a power series, then it is evident 

that u and y , the velocity components at a point, are expan
sible also in a power series.

In the case of any general three-dimensional flow,the 
equations of motion are not so compact as those for two- 
dimensional examples and consequently analysis is more labor
ious. As all flows depend on VL/y ̂ it still may be considered 
that the actual solution in a three-dimensional case will 
depend fundamentally on the variable VL/^ . In fact, the 
conditions at any point in the fluid must be functions of 
this variable.

Hence, the suggestion may be advanced that the velocity
components at any point may be expansible in some series of

. The form of the series for a-ny particular case canndt
oe stated off-hand but there may be some hope that an examin-
"̂tion of the dynamical equations might suggest, a, suitable 
form.

Hence, as a method of solution, we suggest to start by
carefully
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carefully examining the equations of notion for an incompress
ible fluid and find the expansions of u, y, w which promise 
most satisfactorily. This done, these expansions would he 
substituted in the dynamical equations, when written in their 
non-dimensional form, and an attempt made to solve for the 
coefficients in the expansion assumed. Having thus determined 
the series, the flow represented by this solution may be 
examined to find the forces experienced by the solid bodies 
in the stream, to find by what means the circulation is pro
duced, to establish the criterion for instability, and many 
such fundamental problems.

In the example dealt with above, equations (8) give values
of u, V, w from which the general method of solution might
be commenced. It will be realised that all will depend on the
validity of these equations. Rayleigh has pointed out that
the kinetic energy of the fluid is infinite,when the flow
produced by the motion of a sphere is that represented by

established
btokes s solution. Thus equations (8) give the flow which iŝ  
on the elapse of some time after the motion starts. This 
suggests that it might be necessary to take time into consider- 
s-tion in the initial solution, so that equations (S) are 
arrived at asymptotically as the time increases. However, it I"» naf 
deemed advisable to lay too much stress on this point though 

conceivable that such a modification might be necessary 
‘hen other examples come to be considered.

â.yleigh, Phil. Iilag. (5), xxl. p.374 (1886) ; Papers, il. p.46:



47.

Conclusion and Aclmowledglpients.

The results of the experiments described in Parts II and
III seem sufficient to check any analytical work which may 
be embarked upon in investigating the flow past a rotating 
sphere. Hence, the next necessary step in this problem is 
the extension of the analysis. The method indicated in Paitt
IV appears to be a very natural means of attack and seems to 
have many hopeful possibilities.

Finally, the author desires to express his indebtedness 
to Professor J.D.Gormack, Director of the James Watt Engineer
ing Laboratories, for placing at his disposal the facilities 
for carrying out the work involved in these investigations.
To Dr, A.Thom, he is under a great debt for guidance and 
encouragement in these aerodynamical studies.

The reduction of the observations and the construction of 
the diagrams of Part III were carried out during the tenure 
of a Beit Fellowship at the Imperial College of Science and 
Technology. The authors thanks are due to Professor L.Bairstow 
for this privilege.
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à g à 8 s â  s â 8 « s  fi R

F 3 2 F F  g sr-̂  F F-?^  !n ^  3  fh 1)0 fô qf- fô ô  (©
pgpcEKftSM

r  K i- M s g 5“F jry p 
fJ<vfîi5{lîJfJj;fif!?i
0 w in 2 9 F ü? a S S S



41 .

of radius a, give the drag and lift respectively. If ^  be an 
element of the surface of the sphere, then P<̂ .d.S and 
jJp̂ '̂ .d'S are easily seen to be zero. Since p^is constant and 
XU 4 yv̂  t z\\=z 0 then the first and third terms of these 
integrals vanish for the reasons given above. The second
terms f(h - 1 )u,ds A .  i ) v  flS or r ’■
zero, the integrand of the first, viz. ( being
proportional to y and that of the second to x«

Hence, the drag of a slov/ly rotating sphere in a slowly 
moving stream is the same as if it had no rotation and is 
that fomid by Stokes, viz. S-n̂ aU. The sphere experiences no 
lift component.

The torque acting on the sphere about Oz^and in the positive 
direction will be seen to be j(x.p^^- y.p^).dS . As the

oecomesintegral)jj(x.p^'^- y.p|̂ .dS vanishes, this 1
«I

~ - # K  -

= =  -3^ oos^ -V sinô oos(̂  ) .a*" sin6 .dô .diÇ

Torque

= r-

The value of the double integral can be easily shown to 
be -̂ir a*" so that the torque becomes -8"Ê (̂ &a and tends to 
stop the rotation.

It is novf generally accepted in aerofoil theory that when 
 ̂body experiences a force comoonent in the cross-stream 
direction then this component, or lift, is proportional to 
bhe circulation. At first sight it appears strange that the 
rotating sphere does not have lift when there is clearly a

circulation
Reproduced with permission of copyright owner. Further reproduction prohibited without permission.


