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Abstract 

Toxoplasma gondii is an obligate intracellular pathogen.  Due to its experimental 

tractability it has acted as an excellent model system to understand the 

fundamental principles of pathogenic mechanisms within the group 

Apicomplexa, including Plasmodium spp. the causative agent of malaria. Work 

on T. gondii has provided the foundation to understanding how apicomplexan 

parasites power motility and invasion, which centres around the parasites gliding 

machinery.  This movement depends on the parasite's acto-myosin system, which 

is thought to generate the force during gliding.  However, recent evidence 

questions the exact molecular role of this system.  Deletions of core components 

of the gliding machinery, such as parasite actin or subunits of the glideosome 

indicate that the parasites remain motile and invasive, albeit at significantly 

reduced efficiencies.  These findings could be explained by different 

possibilities, such as functional redundancies or compensatory mechanisms for 

multiple components of the glideosome. 

Toxoplasma only encodes a single copy of ACT1, therefore redundancies for 

ACT1 are unlikely.  Much of the research in to the role(s) of TgACT1 focuses on 

motility and invasion.  Interestingly, while the conditional act1 KO shows a 

deficiency in gliding and invasion, severe defects affecting parasite survival were 

observed during intracellular replication and egress.  The amount of actin 

remaining in the act1 KO parasites was disputed which led to alternate 

conclusions about actins role in the parasites.  Therefore, this study provides a 

much more detailed characterisation of the conditional act1 KO and when the 

phenotypes are observed in relation to actin levels within the parasite.  

Furthermore, the study provides evidence of an alternative model for motility 

that is independent of the parasites acto-myosin system. 

Several studies assert that the polymerisation kinetics of TgACT1 is unusual, 

allowing the formation of only short, unstable actin filaments.  However, to 

date, it has not been possible to study actin in vivo, therefore its physiological 

role has remained unclear.  In order to investigate this, parasites expressing a 

chromobody that specifically binds to F-actin were generated and characterised.  

Importantly, TgACT1 forms a vast network during the intracellular life-stages 

that is important for parasite replication and egress.  Moreover, these filaments 
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allow vesicle exchange and produce F-actin connections between parasites in 

neighbouring vacuoles.  This study also demonstrates that the formation of F-

actin depends on a critical concentration of G-actin, implying a polymerisation 

mechanism akin to all other actins. 

This work is important for understanding the mechanisms used by Toxoplasma to 

move and invade with regards to the functions of the acto-myosin system.  

Moreover, it highlights a novel role of actin that is required to control the 

organisation of the parasitophorous vacuole during division.   

The role of actin during the lifecycle may have wider implications to other 

apicomplexan species, such as Plasmodium spp. and also much further in the 

field of parasitology where F-actin information is scarce.   
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ADF Actin depolymerising factor ELC Endosomal like compartment 

AGE Agarose gel electrophoresis ELC1 Essential light chain 1 

ALP Actin-like protein EM Electron microscopy 

AMA1 Apical membrane antigen 1 ER Endoplasmic reticulum 

Amp Ampicillin EtOH Ethanol 

ADP Adenosine diphosphate FBS Fetal bovine serum 

Arp Actin related protein fw Forward 

ATP Adenosine triphosphate g Gram or Gravity (context 
dependent) 

BLAST Basic Local Alignment Search 
Tool 

GAP Glideosome associated protein 

bp Base pair gDNA Genomic deoxyribonucleic acid 

BSA Bovine serum albumin GFP Green fluorescent protein 

Ca2+ Calcium GOI Gene of interest 

CAT Chloramphenicol 
acetyltransferase 

GPI Glycophosphatidylinositol 

cDNA Complementary 
deoxyribonucleic acid 

GSH Glutathione 

CDPK Calcium-dependent protein 
kinase 

h Hour 

CIP Calf intestinal phosphatase H2O Water 

CLEM Correlative light electron 
microscopy 

HEPES 4-(2-Hydroxyethyl)-
piperazineethanesulphonic acid 

C-terminal Carboxyl terminal HFF Human foreskin fibroblast 

CytD or CD Cytochalasin D HSP Heat shock protein 

dd Destabilisation domain Hx or 
hxgprt 

Hypoxanthine-xanthine-guanine 
phosphoribosyl transferase 

DHFR Dihydrofolate reductase IFA Immunofluorescence analysis 

DiCre Dimerisable Cre IMC Inner membrane complex 

DMEM Dulbecco's Modified Eagle's 
Medium 

IPTG Isopropyl-O-D-
thiogalactopyranoside 

DMSO Dimethyl sulfoxide Jas Jasplakinolide 

DN Dominant negative kbp Kilo base pair 

DNA Deoxyribonucleic acid KD Knockdown 

dNTP Deoxynucleotide 5'-
triphosphate 

kDa Kilo Dalton 

Drp Dynamin related protein KO Knockout 
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lat Latrunculin rpm Revolutions per min 

LB Luria-Bertani RT Room temperature 

LoxP Locus crossover in P1 rv Reverse 

M Molar s Second 

MCS Multiple cloning site SAG1 Surface antigen 1 

mg Milligram SD Standard deviation 

MIC Micronemal protein SDS-PAGE Sodium dodecyl sulfate 
polyacrylamide gel 
electrophoresis 

min Minute SEM Standard error of the mean 

ml Millilitre SOC Super optimal broth with 
catabolite repression 

MLC Myosin light chain spp. Species 

mM Milimolar SSR Site specific recombination 

MPA Mycophenolic acid t Time 

mRNA Messenger ribonucleic acid T. gondii 
or Tg 

Toxoplasma gondii 

MT Microtubule TAE Tris-acetate-EDTA 

Myo Myosin Taq Thermos aquaticus 

NCBI National Center for 
Biotechnology Information 

TEMED N,N,N’,N’-
tetramethylethylenediamine 

ng Nanogram TJ Tight junction 

nm Nanometer TM Transmembrane 

N-terminal Amino terminal Tris Tris [hydroxymethyl] 
aminomethane 

o/n Over night U Unit 

ORF Open reading frame UTR Untranslated region 

P. berghei 
or Pb 

Plasmodium berghei UV Ultraviolet 

P. 
falciparum 

or Pf 

Plasmodium falciparum V Volts 

PBS Phosphate buffered saline v/v Volume/volume percentage 

PCR Polymerase chain reaction w/v Weight/volume percentage 

PFA Paraformaldehyde WB Western blot 

Pi Inorganic phospahte WHO World health organisation 

PM Plasma membrane WT Wild-type 

POI Protein of interest Xan Xanthosine monophosphate 

PV Parasitophorous vacuole X-Gal 5-bromo-4-chloro-3-indoyl-â-D-
Galactopyranoside 

PVM Parasitophorous vacuole 
membrane 

YFP Yellow fluorescent protein 

r Resistant µg Microgram 

RFP Red fluorescent protein µl Microliter 

RNA Ribonucleic acid µm Micrometer 

RON Rhoptry neck protein µM Micromolar 

ROP Rhoptry protein   
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Chapter 1 Introduction  

1.1 The phylum Apicomplexa  

The phylum Apicomplexa consists of a diverse group of protozoa parasites 

belonging to the families of coccidia, gregarines, hematozoa and cryptosporidia.  

Apicomplexa has the highest diversity range of species of any protist group, with 

potential numbers reaching 1x107 different species estimated from 

environmental DNA samples (Adl et al., 2007).  However, to date, only around 

6000 species have been identified (Adl et al., 2007).   

Members of Apicomplexa are known to parasitise and cause diseases in both 

vertebrates and invertebrates.  This presents a huge burden on the world’s 

economy as they cause severe and debilitating diseases in both humans and 

animals (Levine, 1988).  The most well-known apicomplexan parasite is 

Plasmodium spp. that causes malaria through the bite of an infected female 

Anopheles mosquito.  Although new cases of malaria have dropped by almost 40 

% and deaths by 60 % (Figures from 2000-2015), it is still estimated that there 

are over 200 million cases of malaria, accounting for less than half a million 

deaths according to the World Health Organisation (WHO), January 2016.  

Nevertheless, other apicomplexan parasites are just as relevant due to their 

opportunistic nature and socio-economic impacts. Many apicomplexan parasites 

are food-borne pathogens and have an enormous global economic burden 

through the loss of commercial poultry and cattle (Sharman et al., 2010; Trees 

et al., 1999).  Opportunistic parasites like Neospora spp. and Toxoplasma gondii 

often causes spontaneous abortions resulting in a negative impact on economic 

growth.  Similarly, Cryptosporidium spp. cause the disease cryptosporidiosis 

which can lead to severe gastrointestinal illnesses and more recently been 

implicated as a major contributor in morbidity and mortality (Checkley et al., 

2015). 

While most apicomplexan parasites have limited hosts or cell types, Toxoplasma 

gondii could be regarded as the world’s most successful parasite. Toxoplasma 

can infect any warm-blooded animal and all nucleated cells within the host 

(Carruthers, 2002).  The success and prevalence of the parasite is reflected in 

the statistic that around one-third of the world’s human population is thought to 
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be infected with T. gondii, many of which do not show any outward symptoms 

(Hill et al., 2005; Pappas et al., 2009).  Despite it being asymptomatic, it does 

cause severe, life-threatening complications and sometimes fatality in 

immunocompromised individuals and can have drastic developmental issues of 

the foetus during pregnancy (Hill et al., 2005). 

1.2 History of Toxoplasma gondii  

Toxoplasma gondii was first discovered over 100 years ago by two independent 

groups; first in a hamster-like rodent, Ctenodactylus gundi (Nicolle & Manceaux, 

1908) and later in a rabbit (Splendore, 1908).  The name refers initially to its 

shape; Toxon (the Greek word for arc) and plasma for life (Nicolle & Manceaux, 

1909).  Moreover, gondii appears to come from a misspelling of gundi, the 

organism where it was first isolated (Nicolle & Manceaux, 1908).  Its importance 

in human health emerged years later after it was observed that T. gondii could 

be passed congenitally to the unborn foetus from mothers who were 

asymptomatic causing foetal under-development and miscarriage (Cowen & 

Wolf, 1937).  A few years later, the first fatal case in an adult due to T. gondii 

was reported (Pinkerton & Weinman, 1940).  From then much research 

proceeded to understand the biology of Toxoplasma as it was understood that 

the parasite can infect all warm-blooded animals and birds (Tenter et al., 2000). 

From the 1970s, research began to focus on the molecular biology, genetics and 

immunology of the parasite (Ferguson, 2009).  Pfefferkorn and colleagues 

characterised parasites that displayed different drug resistance and auxtrophic 

markers using mutagenic techniques (Pfefferkorn & Borotz, 1994; Pfefferkorn & 

Pfefferkorn, 1977a; Pfefferkorn & Pfefferkorn, 1977b; Pfefferkorn & Pfefferkorn, 

1980).  The ability to culture the parasite under in vitro conditions within the 

lab made significant progress in understanding many aspects of its lifecycle 

(Azab & Beverley, 1974; Hughes et al., 1986).  Most studies within the lab have 

focused on the highly virulent type I strain known as RH (Khan et al., 2009a).  

This strain has been used extensively to study many functions such as 

host/parasite interactions, aspects of the parasites asexual lifecycle and also in 

molecular characterisation (Yang et al., 2013). Furthermore, due to much 

conservation within Apicomplexa, Toxoplasma gondii became a valuable model 

organism in understanding some aspects of the Plasmodium spp. asexual 
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lifecycle, predominantly the mechanisms of invasion (Meissner et al., 2013) 

(discussed further in chapter 1.12).  Recent studies to characterise invasion 

mechanisms suggested that type I parasites invade in an active manner. This 

compares to avirulent strains that are thought to go through an alternative 

pathway of engulfment by a phagocytic cell and then escape from the 

phagosome (Zhao et al., 2014).  This raises the question to whether the RH type 

I strain has adapted to in vitro culturing over time.  Molecular characterisation 

began with Cesbron-Delauw and colleagues, who described the first cloning of 

individual genes (Cesbron-Delauw et al., 1989).  This lead to the development of 

selectable markers for allelic replacement and the generation of gene regulatory 

tools in T. gondii (Donald & Roos, 1993; Kim et al., 1993; Roos et al., 1994; 

Soldati & Boothroyd, 1993; Soldati & Boothroyd, 1995).  In recent years, the 

genetic tools to study specific gene functions have evolved greatly allowing the 

complete characterisation of many gene functions and pathways crucial to the 

parasite (Jimenez-Ruiz et al., 2014; Wang et al., 2016) (discussed further in 

chapter 1.13). 

1.3 Pathogenesis of Toxoplasma gondii 

Toxoplasmosis is an important clinical disease associated with the infection from 

Toxoplasma gondii.  Although T. gondii has a high prevalence rate throughout 

the world (Pappas et al., 2009), clinical manifestations of severe toxoplasmosis 

is surprisingly low (<20 %) (Flegr et al., 2014; Hill et al., 2005; Remington, 

1974).  Toxoplasmosis is generally asymptomatic in healthy individuals causing 

mild, flu-like symptoms.  However, in cases where the patient has a 

compromised immune system (e.g. AIDS, organ transplant or undergone 

chemotherapy), clinical disease can occur with varying severity.  In adults, the 

severity of illness ranges from ocular toxoplasmosis to myocarditis, encephalitis 

or hydrocephalus and can be fatal (Maenz et al., 2014).  On the other hand, if a 

female is infected during pregnancy, Toxoplasma gondii tachyzoites can traverse 

the placenta, infecting the developing foetus, causing congenital toxoplasmosis 

(Figure 1-1).  This can have drastic effects during development leading to 

miscarriage or stillbirth (Dunn et al., 1999).  However, if the foetus survives, 

many will not show symptoms until later in their adult life.  The disease for a 

foetal infection can range from mental retardation, being affected by seizures, 

hearing or vision problems, low birth weight or spleen or liver enlargement.  
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Many of these children will not survive past their teenage years (Moncada & 

Montoya, 2012). 

It is believed that Toxoplasma in the brain can manipulate the hosts’ behaviour.  

It has been shown that mice infected with Toxoplasma specifically lose their 

fear of cats leading to the hypothesis, that the parasites manipulate the host to 

continue their reproductive cycle (Ingram et al., 2013; Vyas, 2015; Webster, 

2001).  In humans, it has been implied that Toxoplasma can cause neurological 

diseases such as schizophrenia (Kramer, 1966), although a later study showed 

there is no correlation between incidences of neurological disorders and areas 

with high prevalence rates of T. gondii (Pappas et al., 2009). 

Different isolates of T. gondii show different virulence levels in their hosts (Khan 

et al., 2009b).  There are three main groups of Toxoplasma with various degrees 

of virulence; Type I is the most virulent while types II and III are less virulent and 

also have a much slower growth rate than Type I parasites (Fuentes et al., 2001; 

Grigg et al., 2001). Type I is most commonly found as a clonal isolate across 

Europe and North America, whereas South America and Asia are largely a mix 

between both Types II and III and an array of atypical strains (Khan et al., 

2009a). 

1.4 Lifecycle of Toxoplasma gondii 

As with many Apicomplexa, Toxoplasma gondii has a dual host lifecycle first 

reported in 1970 (Dubey et al., 1970b; Frenkel et al., 1970).  The parasite 

alternates between the sexual reproduction phase which is limited to the 

intestines of felids, its only definitive host and its asexual lifecycle which can 

occur in all warm-blooded mammals (Figure 1-1).  Unlike most other 

apicomplexan parasites T. gondii does not need to go through its sexual lifecycle 

before transmission to another host (Su et al., 2003). 
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Figure 1-1: The complete lifecycle of Toxoplasma gondii 

Sexual replication occurs in cats, the definitive hosts of Toxoplasma gondii.  The male and females 
gametes are formed in cats guts and unsporulated oocysts are shed into the environment by the 
cats faeces.  Once in the environment, the oocysts sporulate and are ingested by the intermediate 
hosts.  The fast replicating tachyzoites are able to invade all nucleated cells and can disseminate 
throughout the body.  These tachyzoites can also traverse the placenta causing congenital 
toxoplasmosis.  The tachyzoites will infect tissue cells and can differentiate into slow growing 
bradyzoites.  They will form long lasting cysts, and if the cat ingests them, the cycle continues.  
Reprinted by permission from Macmillan Publishers Ltd: [Nature Reviews Microbiology] (Hunter & 
Sibley, 2012), copyright (2012). 

1.4.1 Lifecycle in the definitive host  

The definitive host for Toxoplasma gondii is in all felids and in particular, 

domesticated cats.  It was widely accepted that transmission of bradyzoites to 

the cat was the predominant route to sexual reproduction (Dubey et al., 1970a).  

However, ingestion of either the tachyzoite or sporozoite form may also lead to 

the formation of gametocytes (Figure 1-1).  Once inside the cat's stomach, 

proteolytic enzymes in the stomach digest the bradyzoite cyst wall.  
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Trophozoites burst out of the cyst and invade the cats intestinal cells.  These 

begin to grow and differentiate to schizonts, some of which form gametes.  

Micro and macrogametes fuse to form a single oocyst that is shed into the 

environment through cat faeces (Dubey et al., 1970b) (Figure 1-1). 

These oocysts then undergo sporogony where the sporulated oocysts contain two 

sporoblasts, each containing four sporozoites.  To continue infection, another 

organism ingests these sporulated oocysts.  If ingested by a cat, the sexual 

lifecycle will occur, while ingestion by an intermediate host leads to 

toxoplasmosis infection.  In the intermediate host, excystation of the sporozoites 

occurs, and these actively cross the epithelial cells of the intestine and enter 

the lamina propria (Speer & Dubey, 1998).  Sporozoites then transform into 

tachyzoites, which will quickly propagate an infection throughout the body.  

After this, the tachyzoites go on to complete their asexual lifecycle. 

1.4.2 Lifecycle in the intermediate host 

Toxoplasma is an obligate intracellular parasite with a wide range of hosts.  

Virtually all warm-blooded vertebrates are susceptible to Toxoplasma infection, 

and within the host, all nucleated cells can be infected (Sibley, 2003).  The 

asexual lifecycle of T. gondii has two stages; first, the lytic stage where the 

parasites undergo multiple rounds of replication within the host's cells (Figure 

1-2).  The second stage is where the parasites lay dormant within cysts (Blader 

et al., 2015; Lyons et al., 2002) (Figure 1-1). 

1.4.2.1 The lytic lifecycle 

The lytic stage of the parasites lifecycle is a stepwise process where the 

tachyzoites use their gliding machinery to locate a suitable host cell.  The 

parasites then attach, re-orientate and penetrate into the host cell.  Once they 

are inside, the parasites reside within a parasitophorous vacuole and replicate 

by endodyogeny before egressing out of the cell to re-infect a fresh host cell 

(Figure 1-2). 
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Figure 1-2: The lytic lifecycle of Toxoplasma gondii 

Toxoplasma gondii use their gliding machinery to locate a host cell.  The parasites attach and 
reorientate to penetrate into the host cell through a tight junction.  As the parasites push into the 
host, they generate a parasitophorous vacuole with which they reside in safety from the host 
immune system.  The parasites then begin to replicate by endodyogeny, where the parasite 
numbers double after each round of replication.  Once the host cell cannot support the infection, 
the parasites induce their own egress by lysing the parasitophorous vacuole membrane and host.  
After which, the parasites disseminate to find a new host and continue the cycle.  Image inspired 
from Nicole Andenmatten. 

1.4.2.1.1 Gliding motility 

Toxoplasma tachyzoites are the infective stages to host cells.  These cells are 

highly motile and able to penetrate and migrate through tissue.  In most 

eukaryotes motility is flagella or cilia driven or by crawling over a substrate.  

While in Apicomplexa, the movement is powered by the parasites own acto-

myosin motor complex, known as gliding motility (discussed in chapter 1.10.3).  

This complex allows the parasites to move across a 2D substrate (Hakansson et 

al., 1999) and through 3D matrices (Leung et al., 2014a).  When parasites move 

over 2D substrates, they display three distinct motions; twirling, circular and 

helical (Hakansson et al., 1999).  The twirling motion is where the parasites 

appear to spin clockwise while balancing on their basal end.  They may also 

exhibit circular gliding, where they move across the substrate in a circular 

motion at average speeds of 1.5 µm/s (Hakansson et al., 1999).  This motion is 

comparable with Plasmodium sporozoites, which only move in a circular fashion 

on 2D surfaces (Montagna et al., 2012).  Finally, the parasites can move 
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helically, where they project forward about one body length over the 

substratum in a biphasic flip along the longitudinal axis of the parasites 

(Hakansson et al., 1999).  To date, the biological relevance of these movements 

has not been clearly defined.  During these three motions, the parasites shed 

their surface membrane, leaving behind a trail of surface antigens (SAG1) along 

with a variety of other proteins.  However, a more recent study evaluating 

parasite motility within a 3D matrix highlighted a new distinct motion (Leung et 

al., 2014a).  In 3D, parasites move exclusively in a left-handed corkscrew, 

leading to the speculation that 2D-motility is somewhat artificial and represents 

the attempt of the parasite to move in a corkscrew-like manner.  During this 

motion, parasites do not glide at a continuous speed but instead go through fast 

and slow boosts, which coincides with calcium secretion (Personal 

communication with Prof Gary Ward, ISAB meeting 2016).  This assay is more 

representative of the in vivo situations observed.  For example, Plasmodium 

sporozoites are capable of travelling across large distances before invading 

hepatocytes.  The sporozoites move also in a corkscrew-like fashion in 3D, where 

the movement through dermis is in random patterns caused by obstacles that 

force the parasite to change direction (Amino et al., 2006), while on 2D 

coverslip they only move in circular motions (Montagna et al., 2012). 

1.4.2.1.2 Invasion 

Motility and invasion are both tightly controlled and require the sequential 

secretion of proteins within the micronemes, rhoptries and dense granules 

(Carruthers & Boothroyd, 2007).  Invasion is a multistep highly conserved process 

among apicomplexan parasites (Figure 1-3).  It involves finding and invading a 

suitable host cell that is thought to be driven actively by the parasites gliding 

machinery (Dobrowolski & Sibley, 1996).  Once an appropriate cell is located, 

the parasites discharge their micronemal proteins from their apical end to 

attach firmly to host cell receptors (Carruthers & Tomley, 2008; Dowse & 

Soldati, 2004).  This firm apical attachment causes the parasites to reorientate 

at their apical end. The parasites then discharge a second set of specialised 

secretory organelles, known as rhoptries into the host cytosol.  Rhoptry bulb 

(ROPs) and neck (RONs) proteins are secreted in a regulated manner.  Firstly the 

RONs are discharged from the neck region into the host cytosol and return to the 

surface to form the scaffold between RON2 and AMA1 termed the tight- or 
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moving-junction between the parasite and host cell (Bichet et al., 2014; 

Lamarque et al., 2011).  After junction formation, the parasites sequentially 

secrete their ROPs to begin the formation of the parasitophorous vacuole (PV) 

made from the invagination of the host plasma membrane (Suss-Toby et al., 

1996).  Active penetration of the host cell begins at the apical end of the 

parasite and is thought to be dependent on the parasites gliding machinery.  The 

AMA1-RON2 junction at the apical tip is translocated to the posterior end of the 

parasite as it pushes further into the host cell (Figure 1-3).  The tight-junction 

acts as a molecular sieve where parasite surface proteins and host cell 

membrane lipids are cleaved off in a process known as protease mediated 

shedding (Dowse & Soldati, 2004).  The third set of secretory proteins, called 

dense granules, are constitutively secreted and thought to function in the 

formation and continual modulation of the PV and host cell environment during 

replication.  At the end of invasion, the tachyzoite resides within the PV and the 

PVM is closed (Mercier et al., 2005).  This whole invasion process from initial 

tight junction formation to closure takes on average around 30 seconds to 

complete (Figure 1-3) (Morisaki et al., 1995).  The PV is thought to be non-

fusogenic with the host endocytic system, allowing it a safe environment to 

proliferate (Mordue & Sibley, 1997).  Promptly after invasion, the PV actively 

moves towards the host cell nucleus and becomes tightly associated with the 

mitochondria and endoplasmic reticulum (Sinai et al., 1997). 

 

Figure 1-3: Invasion steps of Toxoplasma gondii 

The working model of Toxoplasma invasion.  1) The parasites locate and attach to the host surface 
using constitutively secreted surface antigens (SAG1).  2) Micronemal proteins (light green) are 
secreted to the parasites surface and are involved in intimate attachment to the host, namely 
through the interactions of MIC2 and host cell receptors.  Although not depicted, conoid extension 
occurs at some point between stages (2-3).  Proceeding intimate attachment, the parasite 
reorientates at the apical end (3), discharging their rhoptry neck proteins (RONs; light yellow) into 
the cytoplasm of the host.  These migrate back to the surface and interact with the micronemal 
protein AMA1 to stabilise the tight junction (red).  This structure is required to provide the 
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anchorage to the parasites acto-myosin system to actively penetrate the host (3-4).  
Simultaneously or immediately after, the rhoptry bulb proteins (ROPs; orange spheres) are 
discharged and fuse with the newly forming parasitophorous vacuole (PV) (4).  Concurrent with 
steps 3 and 4 dense granules secretion (purple) to assist in modulating the PV (5).  Figure inspired 
by Carruthers and Boothroyd (2007).  

1.4.2.1.3 Replication 

Once inside, the parasites reside within a parasitophorous vacuole, that resists 

the fusion with host endosomes and lysosomes (Jones & Hirsch, 1972) and 

maintains a neutral pH (Sibley et al., 1985).  The parasites then begin to 

replicate by endodyogeny (Figure 1-2) where two daughter cells form within one 

mother (Hu et al., 2002a).  Commitment to replication starts with the division of 

the centrioles and the interaction of these with the newly forming cytoskeleton 

ensuring the polarity of the daughter cells.  At the same time, DNA replication 

begins.  In early S1 phase, the components of the cytoskeleton are observed as 

daughter budding begins.  This is composed of the conoid followed by the 

spindle poles and intranuclear microtubules.  Following this, the inner 

membrane complex (IMC) of the daughter cells is initially formed (Agop-

Nersesian et al., 2010; Hu et al., 2002b; Nishi et al., 2008).  The microtubules 

drive daughter cell division concurrently with the IMC (Shaw et al., 2000).  Next, 

the organelles are distributed between the newly forming daughter cells in a 

coordinated manner; firstly the Golgi apparatus, followed by the apicoplast and 

then nuclear division (He et al., 2001; Hu et al., 2002a).  In the latter stages of 

division, the ER and mitochondrion are divided (Nishi et al., 2008).  At the end 

of division, all the organelles are separated between the two daughter cells and 

the IMC formation is closed to complete division.  Following this, the apical 

organelles such as micronemes and rhoptries from the mother cell are degraded 

and recycled by the daughter cells.  Finally, these specialised secretory 

organelles are synthesised de novo for each daughter (Nishi et al., 2008).  The 

generation time of Toxoplasma gondii tachyzoites will continually replicate with 

a doubling time averaging 6 hours (Gubbels et al., 2008; Radke et al., 2001). 

As the parasites double in number the parasitophorous vacuole (PV) is constantly 

modified to cope with the increasing numbers.  Following invasion, e-vacuoles 

made up of ROP proteins are secreted into the host cytosol and contribute to the 

biogenesis of the PV by fusing with the newly forming PVM (Hakansson et al., 

2001).  Moreover, dense granule proteins such as GRA5, 7 and 8 are secreted 
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into the PV to maintain the PVM (Mercier & Cesbron-Delauw, 2015; Mercier et 

al., 2002). The vacuolar space of the PV is modulated soon after invasion 

through the dense granules including GRA1, 16 and 24. Within an hour of 

invasion, dense granules, such as GRA2, 4 and 6 begin to make a membranous 

nanotubular network (MNN) (Sibley et al., 1995).  This network is made of tubule 

structures 40-60 nm that connect the parasites and extend to the PVM.  The 

network is highly dynamic and will persist during the entire development of the 

parasite.  The exact role of the network is still unknown, but it was suggested 

that it acts as a conduit for nutrient exchange between parasite and host 

(Mercier et al., 2005; Mercier et al., 2002; Sibley et al., 1995). 

1.4.2.1.4 Egress 

After several rounds of replication, when the host cell can no longer support the 

infection, it is important for the parasites to escape and continue the lifecycle 

(Figure 1-2).  To do this, the parasite induces its own egress.  A peak in 

intracellular calcium levels signals the parasites to activate their gliding 

machinery and lyse both the parasitophorous vacuole and host cell membrane.  

This increase in calcium levels triggers microneme secretion and causes a 

disruption to the parasitophorous vacuole membrane (PVM) through the perforin-

like protein (PLP1) (Kafsack et al., 2009).  Scanning electron microscopy 

revealed that tachyzoites exit host cells similar to how they invade (Caldas et 

al., 2010).  This indicated that egress is not a result of cell rupture but actively 

driven by the parasite. 

It has been demonstrated that calcium-dependent kinases, in particular, CDPK3, 

is required for egress.  This acts in a calcium-dependent signalling pathway that 

is induced by changes in environmental potassium levels from either cell damage 

or permeablisation.  It has also been shown that CDPK3 is involved in triggering 

microneme secretion and MyoA phosphorylation (Lourido et al., 2012; McCoy et 

al., 2012).  Akin to gliding motility and invasion, it has also been shown that 

actin is essential for egress. Treating vacuoles with high concentrations of CD 

blocks egress even after artificial induction with a calcium ionophore (Moudy et 

al., 2001; Shaw et al., 2000) similar to observations with a conditional act1 KO 

(Egarter et al., 2014). Moreover, conditional knockout of the motor complex 

components severely affects egress (Egarter et al., 2014).   
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1.4.2.2 Bradyzoite cysts 

Toxoplasma gondii is a member of the cyst-forming coccidia.  Therefore, after 

invasion and replication, some tachyzoites differentiate into the dormant cyst 

form of bradyzoites (Figure 1-1) (Dubey et al., 1998). This occurs around 10-14 

days post infection and is found in tissues throughout the body.  The name 

bradyzoite comes from the Greek term of ‘brady=slow’ to describe how they 

replicate (Dubey et al., 1998).  Bradyzoites are very similar in their 

ultrastructure to tachyzoites.  The key differences are that bradyzoites are 

slightly thinner and have many amylopectin containing granules used to store 

energy (Dubey et al., 1998).  These will lay dormant within most tissue cells 

avoiding the immune system and waiting to be ingested by another organism for 

transmission.  The concern to the health of the host follows the rupture of one 

of these cysts, where the bradyzoites are released with some transforming back 

into tachyzoites causing an acute infection (Gross et al., 1997; Lyons et al., 

2002). 

1.5 Morphology of Toxoplasma gondii 

With the exception of the male gametes during sexual reproduction, members of 

the phylum Apicomplexa are non-flagellated.  Another feature of Apicomplexa is 

they all have a highly polarised apical complex that is a regulated secretion 

gateway for invasion (Katris et al., 2014).  The morphology of Toxoplasma gondii 

changes depending on the life-stage the parasite is in (Dubey et al., 1998) and 

for this thesis, I will focus on the tachyzoite stages. 

1.5.1 The ultrastructure of the tachyzoite 

The tachyzoites are often present in a crescent “banana” like shape that 

measures approximately 2 μm by 10 μm (Figure 1-4).  The name “tachyzoite” 

was first termed by Frenkel in 1973 which was derived from the Greek word 

tachos, meaning speed, in reference to the rapid replicative rate of the 

parasites within the intermediate host (Frenkel, 1973). For the crescent shape, 

the parasites are more pointed at the anterior pole and rounded at the posterior 

end (Dubey et al., 1998).  The ultrastructure highlights various organelles, some 

of which are synonymous to eukaryotic cells but some are highly specific to 

Apicomplexa.  Akin to all eukaryotes, these tachyzoites contain a nucleus, a 
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single mitochondrion, a single Golgi apparatus and the endoplasmic reticulum 

(ER) (Pelletier et al., 2002).  Apicomplexa characteristics are derived from its 

apical complex which includes a highly specialised set of secretory organelles 

termed the micronemes and rhoptries (Morrissette & Sibley, 2002).  Including 

the micronemes and rhoptries, the parasites also have dense granules within 

their arsenal that are indispensable to the parasites intracellular lifestyle.  Many 

apicomplexan parasites contain a relic-like plastid termed the apicoplast (Waller 

& McFadden, 2005).  The parasite is completely enclosed by the three layered 

membranous structure composed of the plasma membrane and the inner 

membrane complex.  The IMC acts as an anchor for the motor complex (Mann & 

Beckers, 2001) 

 

Figure 1-4: Ultrastructure of the Toxoplasma gondii tachyzoite 

A) Schematic representation of the Toxoplasma gondii tachyzoite highlighting some specific 
organelles.  The tachyzoite is surrounded by a double membranous structure: the plasma 
membrane (black) and the inner membrane complex (IMC) shown in dark red.  Specialised 
secretory organelles, micronemes (red) and rhoptries (orange) are located at the apical end of the 
parasites under the conoid.  From the conoid, 22 sub-pellicular microtubules (dark green) run 2/3 of 
the parasites length to maintain the shape.  Dense granules (green) are distributed throughout the 
cytoplasm of the parasites.  The centre of the parasites contains a single tubular mitochondrion 
(pink), an apicoplast (mint green), Golgi stack (brown) and an endosome-like compartment (pink).  
The nucleus (light blue) is located in the bottom half of the parasites surrounded by the 
endoplasmic reticulum (dark blue).  B) An electron micrograph of an intracellular tachyzoite.  
Highlighted are the micronemes (M), rhoptries (R), dense granules (DG), conoid (C) and nucleus 
(N).  Also highlighted is the parasitophorous vacuole (PV) where the parasites reside.  Scale bar: 1 
µm.  Reprinted with permission from American Society for Microbiology: [Clinical Reviews 
Microbiology] (Dubey et al., 1998), copyright 1998. 
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1.5.2 The apical complex and secretory organelles 

1.5.2.1 The conoid and cytoskeleton 

At the extreme tip of the apical complex of the coccidia members of 

Apicomplexa lies the conoid and is bound to the cytoskeleton through the 

interaction of microtubules (Figure 1-4) (Dubey et al., 1998).  The conoid is a 

hollow cone-shaped structure.  The cone structure is made of 14 tubulin fibres; 

spirally wound around two intra-conoid microtubules that are sandwiched 

between two apical polar ring structures (Hu et al., 2002b). The conoid is 

suggested to be essential for penetration of the intestinal epithelium 

(Morrissette & Sibley, 2002).  The conoid may also play a major role during 

tachyzoite invasion.  When the parasites are extracellular, the conoid extends 

beyond this holding centre, appearing to test the environment for a suitable host 

cell to invade.  This extension process is thought to be actin-myosin driven (Del 

Carmen et al., 2009; Shaw & Tilney, 1999).  The polar rings form the 

microtubule organising centres (MTOC) that the sub-pellicular microtubules 

emerge from.  Toxoplasma contains 22 microtubules that emerge from the MTOC 

and spiral down 2/3 the length of the parasites (Figure 1-4).  These microtubules 

are the key component to Toxoplasma’s shape and structural stability 

(Morrissette et al., 1997; Shaw et al., 2000). 

1.5.2.2 Micronemes 

The small ellipsoidal shaped organelles (around 250 x 50 nm) concentrated 

around the apical end and are known as the micronemes (Figure 1-4).  Proteins 

stored in these organelles are essential for many processes during the lifecycle, 

most notably gliding motility and invasion (Carruthers & Tomley, 2008).  A pre-

requisite for successful invasion is the correct trafficking of the micronemal 

proteins to the organelles (Breinich et al., 2009; Kremer et al., 2013).  To date, 

there are over 50 micronemal proteins known, and these condense into two 

subsets within the micronemes during the trafficking (Kremer et al., 2013).  

Secretion of micronemal proteins is controlled by the increase of intracellular 

calcium levels (Lovett et al., 2002).  Intracellular Ca2+ levels peak before egress 

(Moudy et al., 2001; Withers-Martinez et al., 2014) and during invasion 

(Arrizabalaga & Boothroyd, 2004), both where microneme secretion is required.  

A key feature of many micronemal proteins is that they contain adhesive 
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domains (Sheiner et al., 2011).  For example, the thrombospondin-like domains 

found in MIC2 are implicated in host cell attachment (Carruthers & Tomley, 

2008).  Previously, MIC2 was thought to be essential (Huynh & Carruthers, 2006) 

and bridges the interface between the parasites acto-myosin motor complex and 

host cell receptors through the glycolytic enzyme aldolase (Starnes et al., 2009).  

This was recently questioned, and while MIC2 and aldolase were found to be 

non-essential in vitro, MIC2 still remains a major adhesive molecule for 

Toxoplasma (Andenmatten et al., 2012; Shen & Sibley, 2014).  Similarly, apical 

membrane antigen 1 (AMA1) bridges the gap during invasion by its intimate 

interaction with RON2 at the tight junction but is dispensable during in vitro 

culturing (Bargieri et al., 2013; Lamarque et al., 2011; Mital et al., 2005; 

Srinivasan et al., 2011).  Conversely, MIC8 another micronemal protein has 

adhesive domains but is not involved in attachment but implicated in the release 

of rhoptry proteins essential for invasion (Kessler et al., 2008).  Perforin-like 

protein 1 (PLP1) is also found in the micronemes but is secreted immediately 

prior to egress where it disrupts the parasitophorous vacuole membrane 

facilitating parasites release from the host (Garg et al., 2015; Kafsack et al., 

2009). 

1.5.2.3 Rhoptries 

Crucial for invasion are the club-shaped organelles termed rhoptries that appear 

at the apical end, extending into the conoid (Figure 1-4).  Tethering of these 

rhoptries to the apical end has been suggested to be actin dependent through 

armadillo repeat only proteins (TgARO) (Mueller et al., 2013).  Rhoptry numbers 

vary, but usually a parasite contains around 8–10, each measuring 1-3 µm in 

length (Dubremetz, 2007). Rhoptry proteins are located in dual sub-

compartments within the organelle.  The thin top duct of the rhoptries is termed 

the neck, which is in direct contact with the conoid and contains the rhoptry 

neck proteins (RONs) that are the first to be secreted during invasion.  After 

secretion, the RONs form a complex and traverse back to the host surface and 

provide an adhesive anchor for which AMA1 binds at the ring-like tight-junction 

during invasion (Figure 1-3) (Beck et al., 2014; Lamarque et al., 2011; Lamarque 

et al., 2014).  The bulbous, sac-like compartment below the neck contains the 

rhoptry proteins termed ROPs.  To date, there have been more than 30 ROPs 

identified (Bradley et al., 2005).  During invasion, ROPs are predominantly 
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involved in the formation and maintenance of the parasitophorous vacuole 

where the parasite resides (Figure 1-3) (Carey et al., 2004a; El Hajj et al., 

2007).  Toxofilin, a rhoptry protein, is secreted into the host and induces F-actin 

depolymerisation, weakening the host cytoskeleton to facilitate the invasion 

process (Delorme-Walker et al., 2012; Poupel et al., 2000).  Moreover, many 

ROPs are kinases which are targeted to the host cytoplasm and nucleus and are 

involved in subversion of the host gene expression (Boothroyd & Dubremetz, 

2008). Indeed, it is believed that some ROPs are major virulence factors for 

Toxoplasma gondii (Behnke et al., 2012; Behnke et al., 2015).  Toxoplasma Type 

I are the most virulent and contain some rhoptries that are absent from the Type 

II genome (Yang et al., 2013).  In mice, ROP5 and ROP18 have evolved to 

inactivate IRGs on the PVM and avoid killing of the parasites (Niedelman et al., 

2012). 

1.5.2.4 Dense granules 

Electron dense micro-spherical compartments measuring around 200 nm in 

diameter are arranged throughout the tachyzoite cytoplasm and are known as 

the dense granules (Figure 1-4).  There are approximately 15 dense granules per 

parasite that move within the parasite on F-actin tracks (Heaslip et al., 2016).  

Over the last 20 years, 16 dense granule genes have been characterised.  Dense 

granule (GRA) proteins are secreted during invasion and have been implicated in 

the formation of the newly formed parasitophorous vacuole (PV) and 

maintenance of both the PV and the PV membrane (PVM) during replication 

(Mercier et al., 2005).  The PV is constantly adapting during the intracellular 

stages of the parasites and control of this is essential for continual growth.  

Moreover, this PVM must be selectively permeable to allow nutrients to pass 

through (Gold et al., 2015).  Some GRA proteins are involved in the biogenesis 

and stabilisation of the membranous nanotubular network (MNN) otherwise 

known as the tubo-vesicular network (TVN) in Plasmodium spp. (Adjogble et al., 

2004; Mercier et al., 2002; Michelin et al., 2009).  This network is formed post-

invasion and expands throughout as the parasite replicates.  A knockout of gra2 

results in the disruption of this network and vacuole disorganisation (Mercier et 

al., 2002).  On the other hand, GRA16 and GRA24 are trafficked to the nucleus 

of the host and is implicated as major virulence factors for Toxoplasma 

(Bougdour et al., 2014). 
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1.5.3 Inner membrane complex 

The inner membrane complex (IMC) is made up of flattened membranous sacs 

called alveoli and lies just underneath the plasma membrane (Figure 1-4).  

Supporting the IMC on the cytoplasmic side is the highly organised subpellicular 

network consisting of a lattice of intramembranous particles (Mann & Beckers, 

2001).  This subpellicluar network connects the IMC to the microtubules 

(Morrissette et al., 1997).  In Toxoplasma, the IMC spans almost the whole 

length of the parasite but is not connected to the conoid or basal body.  

Measurements of the distance between the IMC and the PM ranges between 22-

30 nm in Plasmodium berghei sporozoites (Kudryashev et al., 2010) and is similar 

in Toxoplasma gondii.  Connecting the two membranous structures by 

myristoylated and palmitoylated residues is the glideosome-associated protein 

(GAP) 45.  This is thought to be the determining factor to hold the distance 

between the two membranes, as a conditional knockout of GAP45 causes the PM 

to detach from the IMC (Egarter et al., 2014).  Moreover, the apical and basal 

ends of the parasites have GAP70 and GAP80 respectively (Frenal et al., 2010).  

Transmembrane GAPs 40 and 50 are inserted into the alveolar membrane (Bosch 

et al., 2012) which are essential for IMC biogenesis (Harding et al., 2016).  The 

space between the IMC and PM is thought to harbour the parasites gliding 

machinery, which will be discussed later in chapter 1.10.3. 

1.5.4 The apicoplast  

Many apicomplexan parasites, with the exception of Cryptosporidium spp. 

contain two endosymbiotic derived organelles, a single mitochondrion and a relic 

non-photosynthetic plastid known as the apicoplast (Figure 1-4).  The apicoplast 

was discovered around 20 years ago in Plasmodium (McFadden et al., 1996).  The 

apicoplast is a relic plastid-like organelle derived from the endosymbiotic 

engulfment of a cyanobacterium by a red alga (Lim & McFadden, 2010; Waller & 

McFadden, 2005) and is surrounded by four membranes (Figure 1-4).  The 

outermost membrane is derived from the host phagosome with the second 

outermost deriving from the plasma membrane of the red algae.  The inner two 

membranes are from the chloroplast of the original organism (Waller & 

McFadden, 2005).  The apicoplast still contains its own 35 Kb circular genome 

and is essential for parasite survival (Wilson et al., 1996).  Many features of the 
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original plastid have been lost, for example, it's photosynthetic ability.  

Nevertheless, the apicoplast is still responsible for fatty acid biosynthesis (FASII) 

(Ramakrishnan et al., 2012; Waller et al., 1998), isoprenoid precursors through 

the (DOXP) pathway (Nair et al., 2011; Seeber & Soldati-Favre, 2010) and the 

synthesis of heme and iron clustering (Gisselberg et al., 2013; Lim & McFadden, 

2010; van Dooren et al., 2012).   

Correct segregation of the apicoplast during replication is actin and Myosin F 

dependent (Egarter et al., 2014; Jacot et al., 2013) that also depends on 

dynamin-related protein A (DrpA) (van Dooren et al., 2009).  Intriguingly, 

parasites that have lost their apicoplast can reinvade but succumb to delayed 

death when they begin to replicate (Fichera & Roos, 1997).  Although, it has 

been shown that for replication the vacuole must contain at least one apicoplast 

(He et al., 2001).  Impressively, Plasmodium falciparum blood stage parasites 

can survive without an apicoplast if the culture is supplemented with 

isopentenyl phosphate (IPP), however this does not work for T. gondii (Yeh & 

DeRisi, 2011). 

1.6 Actin 

1.6.1 Overview and structure of actin in eukaryotes 

Actin is one of the most abundant proteins in eukaryotic organisms (Poglazov, 

1983).  In the cytoskeleton, actin is one of three structural components along 

with microtubules and intermediate filaments (Alberts et al., 2014).  Actin exists 

in two forms: the monomeric, globular form known as G-actin or filamentous 

actin (F-actin).  It has been well established that actin is a major house-keeping 

gene, forming the principal component in many processes from motility, 

cytoskeleton structure, trafficking and cell division to name a few (Olson & 

Nordheim, 2010; Pollard & Cooper, 2009).  This is due to the transduction of 

mechanical signals and intracellular forces generated by the actin cytoskeleton. 

The actin monomer is a 42 kDa protein made up of 375 amino acids that is highly 

conserved across eukaryotes.  The atomic structure of actin was first resolved by 

complexing actin with DNaseI (Kabsch et al., 1990).  This revealed the monomer 

(also known as globular-actin or G-actin) has four sub-domains (Figure 1-5) 
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(Kabsch et al., 1990).  The comparison of ATP-bound and ADP-bound actin is a 

marked conformational change in the sub-domain 2 (Otterbein et al., 2001).  

Sub-domain 1 contains both the N- and C-termini of the protein, while sub-

domain 2 contains the highly variable DNaseI loop.  The cleft between 

subdomains 2 and 4 is the binding site for adenosine triphosphate (ATP) (Figure 

1-5).  At this position, the ATP can be hydrolysed to form ADP-bound actin.  The 

changes in nucleotide state modify the confirmation of actin structure (Kabsch 

et al., 1990; Otterbein et al., 2001). 

 

Figure 1-5: The structure an actin monomer bound to ADP 

The ribbon structure of uncomplexed human α-actin in the ADP state.  The four different sub-
domains of actin are shown in various colours.  Sub-domain 1 (blue), sub-domain 2 (red) contains 
the highly variable DNaseI loop, sub-domain 3 (green) and sub-domain 4 (yellow).  The ADP 
(magenta) is found in the cleft between subdomains 2 and 4, where nucleotide exchange from ADP 
to ATP occurs.  The structure is based on the actin monomer crystallised by (Otterbein et al., 2001) 
and solved to 1.54 Å resolution.  This image was generated using the PyMOL v1.74 software using 
the Protein Data Bank (PDB) code 1j6z, which is related to uncomplexed G-actin. 

In higher eukaryotes, actin exists in 3 isoforms; α-, β- and ϒ-actin, based on their 

isoelectric points (Garrels & Gibson, 1976). In general, these three isoforms are 

found in different cell types; α-actin is restricted to muscle cells, while β-actin 

and ϒ-actin are present in all cell types (Herman, 1993).  Actin was first 

discovered in the 1942 (Straub, 1942; Straub, 1943) and together with ATP forms 

filaments (Straub & Feuer, 1989).  Formation of actin filaments proceeds 



Chapter 1 Introduction 38 
 

through a process known as actin nucleation through a cooperative assembly 

process (Pollard et al., 2000). ATP-bound actin monomers form a nucleus, 

usually containing three actin monomers (Asakura et al., 1963).  Intermediates 

known as dimers or trimers are thermodynamically unstable and rapidly 

depolymerise without nucleation factors (Pantaloni et al., 1984).  Nucleation 

factors such as formins, spire or the Arp2/3 complex, function to stabilise the 

actin nucleus favouring polymerisation (discussed later in chapter 1.7.1).  Once 

nucleation is favoured, the interaction of four actin monomers allows the 

polymer to become thermodynamically stable.  Overcoming nucleation is the 

first rate-limiting step of actin polymerisation known as the lag phase (Figure 

1-6) (Nishida & Sakai, 1983).  Interestingly, polymerisation with purified Ca2+-

ATP-actin has a much longer lag-phase than Mg2+-ATP-actin monomers (Carlier et 

al., 1986). Then the elongation phase occurs, where ATP-bound actin monomers 

attach to both the barbed (+) end and pointed (-) end, although at different 

rates (Figure 1-6 A).  The actin polymer quickly extends in length (Figure 1-6 B).  

This is the second rate-limiting step as it is directly proportional to the 

concentration of available actin monomers. The cytosolic concentration of actin 

monomers available to polymerise into F-actin is known as the critical 

concentration (Cc) (Pantaloni et al., 1984).  If the monomer concentration is 

below that of the Cc, no polymerisation can occur. At this state, the existing 

filament will begin to depolymerise to provide the system with free actin 

monomers. Conversely, if the monomer concentration exceeds the Cc, the 

filament will polymerise and continue to grow until the monomer concentration 

reaches the Cc.  At this state, G-actin to F-actin will be at a steady state, 

termed treadmilling (Figure 1-6 B, C).  Therefore, the critical concentration 

determines the monomer to polymer equilibrium.  Actin monomers can associate 

to both the barbed and pointed ends of the filaments (Figure 1-6 A).  However, 

free actin monomers will associate and extend the barbed end with 3-5 times 

more affinity than the pointed end (Pollard, 1986).  Typically, under in vitro 

conditions, the Cc of ATP-bound G-actin is around 0.12 μM at the barbed end and 

0.6 μM for the pointed end (Figure 1-6 A) (Bonder et al., 1983; Sept & 

McCammon, 2001).  ADP-G-actin also has the ability to polymerise, but the Cc is 

around 3 times higher than ATP-G-actin (Pollard, 1984). 
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Figure 1-6: Actin nucleation and treadmilling 

A) Spontaneous nucleation of actin filaments is thermodynamically unfavourable with dissociation 
constant (Kd) to form a dimer.  Once the nucleation nucleus is formed, filament elongation will 
occur, with a greater affinity of actin monomers to the (+) end of the filament, depicted by a larger 
arrow and Kd of 0.12 μM compared to the slow growing end (-) and a Kd of 0.6 μM. Image inspired 
from Deeks and Hussey (2005).  B) Graphical representation of actin nucleation and 
polymerisation.  The three phases of actin polymerisation are depicted by the solid black curve.  
The solid red line shows the total monomer concentration and the blue line represents the filament 
mass over time.  At the start, there is an abundance of actin monomers.  Once this reaches the 
critical concentration (black dashed line), the nucleus is formed and the filament growth now 
becomes thermodynamically favourable.  During the elongation phase, more monomers are 
attracted to the filament as it grows in length.  When the monomer concentration limit is reached, 
the system remains in a steady state where the assembly and disassembly of actin monomers from 
the filament is at equilibrium.  Figure inspired from mechanobio.info. C) Actin filaments grow by 
addition of ATP-bound actin to the ‘barbed’ (+) end.  The ATP is hydrolysed to ADP-bound actin.  
Over time, the inorganic phosphate (Pi) is slowly released, resulting in the ‘pointed’ (-) end 
becoming unstable.  The ADP is then exchanged for ATP, and the monomers are ready to 
integrate that the (+) end again.  Actin-binding proteins such as cofilin and profilin act to sequester 
actin monomers.  In particular, cofilin serves to sequester actin monomers from depolymerising 
filaments.  While, profilin-bound ATP-actin is attracted to the FH1 domains of formins for 
nucleation.  Image inspired from Baum et al. (2006).   

The hydrolysis of ATP-bound actin to ADP-bound actin occurs in a dual process on 

F-actin: the ATP is cleaved from the actin subunit, and the inorganic phosphate 

(Pi) is slowly released (Korn et al., 1987; Murakami et al., 2010).  The cleavage 

of ATP from the actin subunit increases the stability of the filament with ADP-

bound actin subunits.  It is this slow release of Pi that destabilises the filament 
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for depolymerisation at the pointed or (-) end (Korn et al., 1987).  This process 

is known as actin treadmilling (Figure 1-6 C), where actin subunits are constantly 

removed from the filament at the (-) end while other subunits are added at the 

(+) end (Cleveland, 1982; Neuhaus et al., 1983; Wegner, 1976).  This process is 

essential for all functions of actin, in particular, cell motility (Figure 1-10) (Bugyi 

& Carlier, 2010). 

The actin filament is made up of two protofilaments that intertwine to form a 

right-handed helix with a diameter of around 7-10 nm (Figure 1-6 A) (Dominguez 

& Holmes, 2011; Egelman, 2004).  The length and conformation of these 

filaments in the cell varies considerably due to the control of actin-binding 

proteins and concentration of actin monomers (Discussed later in 1.7) (Wear et 

al., 2000).  The arrangements of F-actin can be categorised into three groups: 

parallel bundles (all the filaments orientate in the same direction), antiparallel 

bundles (filaments orientate in opposite directions) and dendritic networks 

(filaments form a lattice) (Chhabra & Higgs, 2007).  The lengths of the filaments 

are controlled by the cells tropomyosins, while the Arp2/3 complex generates 

dendritic networks and proteins such as coronins and fascins bundle actin 

filaments (Gandhi & Goode, 2008; Li et al., 2010). 

1.6.2 Actin in apicomplexan parasites 

Protozoan parasites have some of the most diverse actin compositions of 

eukaryotes (Gupta et al., 2015).  Giardia lamblia only has 58 % amino acid 

conservation and is the most divergent actin known to date (Drouin et al., 1995).  

Recently, actin homologues have also been described for prokaryotes and are 

involved in morphogenesis and cell polarity (Jones et al., 2001). 

The evolution of actin in Apicomplexa shows it to be highly divergent, first 

reported in 1988 for Plasmodium falciparum (Wesseling et al., 1988a; Wesseling 

et al., 1988b).  Plasmodium spp. encode two isoforms of actin (ACTI and ACTII), 

where ACTI is the major isoform, ubiquitously expressed throughout the lifecycle 

of the parasites.  Plasmodium ACTII is expressed in gametocytes and mosquito 

stages, although it appears to only be essential in male gametocyte flagellation 

(Siden-Kiamos et al., 2012; Vahokoski et al., 2014).  Unlike Plasmodium spp., 

Toxoplasma gondii encode a single actin gene, termed ACT1 (Dobrowolski et al., 
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1997).  Comparisons of amino acid sequences indicate that ACT1 from both 

Plasmodium spp. and T. gondii are highly conserved (93 %), however, divergent 

from canonical β and ϒ actin isoforms (~80 %) (Dobrowolski et al., 1997). 

Similar to the differences between α-, β- and ϒ-actin isoforms, the differences 

between apicomplexan actins and canonical actins give rise to some different 

properties.  Both Plasmodium actin isoforms can hydrolyse ATP much more 

efficiently than α-actin (Vahokoski et al., 2014).  In comparison to actin in other 

eukaryotic cells, Toxoplasma actin was reportedly found predominantly in the 

monomeric state (~97 %), with almost no F-actin detected (Dobrowolski et al., 

1997).  Actin filaments are expected between the plasma membrane and IMC at 

the acto-myosin motor complex (discussed further in chapter 1.10.3).  Despite 

this, the detection of actin filaments in the parasites has so far been elusive.  

Standard immunofluorescence analysis of TgACT1 with actin antibodies has only 

displayed a cytosolic staining, even after the addition of the F-actin stabilising 

drug, phalloidin (Schuler et al., 2005b).  Moreover, the use of GFP-actin as a 

reporter could not differentiate between cytosolic GFP-actin and F-actin 

(Angrisano et al., 2012a).  The use of a fluorescent jasplakinolide derivative 

(SiR-actin) was also unable to label any filaments within the parasites 

(Unpublished results from Dr. Javier Periz).  To date, actin filaments in 

Toxoplasma have only been detected by electron microscopy (Dobrowolski et 

al., 1997; Schatten et al., 2003; Shaw & Tilney, 1999).  Reasons for this could 

be, that they form very short, unstable filaments (Sahoo et al., 2006).  Likewise, 

phalloidin may be masked by an actin binding protein (Schuler et al., 2005b) or 

more simply it is unable to bind due to the amino acid divergence of Toxoplasma 

ACT1. 

For the past 20 years, much of the work on apicomplexan actin has been through 

the use of heterologous expression of PfACT1 and TgACT1.  This has shown that 

they are intrinsically unstable and form very short, unbranched filaments of 

approximately 100 nm in length compared to rabbit actin that polymerises to 

around 3.5 µm (Sahoo et al., 2006; Schmitz et al., 2005).  There is conflicting 

data regarding the polymerisation kinetics of TgACT1.  Under in vitro conditions, 

TgACT1 was shown to polymerise at a 3-4-fold lower concentration than those 

observed for canonical actins (Sahoo et al., 2006).  This would imply that actin 
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polymerisation in Toxoplasma gondii occurs at a much lower concentration of 

actin monomers than conventional actins.  It was noted that the cytoplasmic 

concentration of TgACT1 is within the range of 8-10 μM (Sahoo et al., 2006).  

This far exceeds the Cc required for polymerisation; therefore nucleation should 

be favourable.  However, as the parasite is thought to maintain a ~97 % G-actin 

state, there must be many actin-binding proteins regulating its dynamics to 

sequester the monomers so they cannot form filaments. Indeed, Toxoplasma 

gondii contains a strong actin depolymerisation factor (ADF), which may acts to 

sequester the actin monomers (discussed further in Chapter 1.7.3).  Toxoplasma 

F-actin is thought to be short and unstable, which is described as an evolutionary 

adaptation to control processes such as gliding motility. In contrast, a more 

recent study has suggested that TgACT1 polymerises in an isodesmic manner that 

does not have a lag-phase or require a critical concentration to polymerise 

(Skillman et al., 2013).  In an isodesmic model, polymerisation of any monomer 

would occur with equal affinity regardless of the polymer length due to a single 

equilibrium constant (Figure 1-7 B) (de Greef et al., 2009).  In comparison to 

cooperative polymerisation, there is no lag-phase during filament assembly 

(Figure 1-7), as dimer formation and filament elongation are both equally 

energetically favourable.  This would make TgACT1 unique when compared to all 

other known actins and actin homologues (Gupta et al., 2015).  In the case of 

apicomplexan actins, this would suggest that even with minute levels of actin, 

polymerisation would still be favourable for short unstable filaments. 

 

Figure 1-7: Isodesmic polymerisation versus cooperative polymerisation 
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A) In a cooperative polymerisation model (blue), filament growth will occur after the monomer 
concentration is higher than that of the critical concentration (Cc).  After which, further elongation of 
the filament is favourable over dimer formation.  In an isodesmic model (red), the monomer 
association to dimer, trimer and polymers is equally favourable.  Isodesmic assembly does not 
require a Cc.  Solid lines represent the protein in a polymer at equilibrium, while the dashed lines 
represent the monomer concentrations at this equilibrium for each assembly process.  Black 
dashed line represents the maximum possible monomer concentration.  Both monomer 
concentrations reach the maximum, however, in an isodesmic model, this can be overcome by 
increasing the total protein concentration.  Figure inspired by Miraldi et al. (2008). B) Isodesmic 
and cooperative polymerisation equilibrium constants; where M are the monomers, Ke = elongation 
equilibrium constant, K2 = nucleation equilibrium constant.  Note that isodesmic polymerization has 
a single equilibrium constant, while cooperative polymerization has a nucleation constant and an 
equilibrium constant.  Equations taken from Tambara et al. (2014). 

Although the mechanisms of actin polymerisation and visualisation of actin 

filaments in vivo is elusive in Toxoplasma gondii, actin has many roles within the 

parasites.  Treatment of parasites with small molecules that alter the actin 

dynamics affect many processes throughout the lifecycle, especially gliding 

motility and invasion.  In particular, depolymerisation of F-actin through the use 

of Cytochalasin D or latrunculin B (discussed in detail in chapter 1.8) affects 

both gliding motility and invasion (Dobrowolski & Sibley, 1996; Ryning & 

Remington, 1978; Wetzel et al., 2003).  Artificially polymerising actin with 

jasplakinolide interferes with proper parasite motility and invasion (Poupel & 

Tardieux, 1999).  This lead to the assumption that controlled polymerisation of 

F-actin is essential for efficient motility and invasion.  However, the 

characterisation of a conditional act1 KO indicated that ACT1 is important but 

not essential for motility or invasion.  The act1 KO also highlighted a role for 

actin in tachyzoite morphology, apicoplast division and egress (Egarter et al., 

2014), not observed with actin-modulating drugs. 

1.7 Actin binding proteins (ABPs) in Apicomplexa  

The transition between the monomeric pool and filamentous actin is controlled 

in spatial time and location within the cell by a vast repertoire of actin binding 

proteins (Dos Remedios et al., 2003; Welch & Mullins, 2002).  These proteins 

have various functions on actin, such as; nucleation, branching, capping, 

severing and bundling of actin filaments (Winder & Ayscough, 2005).  In addition 

to providing structural support, actin provides the track for molecular motors 

such as the myosins to transport cargo along (Hartman & Spudich, 2012).  

Apicomplexan parasites and protozoan parasites in general, have a greatly 

reduced repertoire of actin binding proteins and nucleating factors (Gupta et 

al., 2015). 
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Figure 1-8: Actin-binding proteins promote nucleation of F-actin 

A) On their own, actin monomers are thermodynamically unstable and very slow to self-nucleate 
but when four monomers interact, the Cc is overcome and filament growth is thermodynamically 
favoured.  B-C) nucleation is favoured through various cofactors.  B) The Arp2/3 complex is 
suggested to mimic an actin-trimer.  This acts as a stable nucleus and attracts actin monomers for 
polymerisation.  Moreover, the Arp2/3 can branch filaments at a 70o angle.  C) Formins are thought 
to stabilise an actin-trimer through the interactions of their FH2-domains (dark green) while the 
FH1-domain (light green) is an attractant for profilin-bound actin (light blue).  Figure inspired from 
Goley and Welch (2006).  

1.7.1 Nucleation 

Nucleation of actin filaments is an essential function for any cell.  Controlled 

nucleation of F-actin can occur in a variety of ways, mainly through the actin 

binding proteins such as the actin-related protein (Arp) 2/3 complex (Mullins et 

al., 1998), formins (Pring et al., 2003) or the Wiskott-Aldrich syndrome protein 

(WASP) homology 2 (WH2) domain nucleators, such as Spire (Kerkhoff, 2006) 

(Figure 1-8). These are essential to overcome the rate-limiting step, 

trimerisation, in actin polymerisation.  The Arp2/3 complex is large and consists 

of seven different subunits.  In this complex, Arp2 and Arp3 structurally 

resemble an actin dimer to attract more actin monomers to serve as a 

nucleation start point (Figure 1-8).  The unique feature of this complex is its 

ability to bind to an existing actin filament and nucleate a fresh actin filament 

that is branched at 70o forming an actin network (Figure 1-8) (Beltzner & 

Pollard, 2008; Machesky & Gould, 1999; Pollard, 2007).  Strikingly, Apicomplexa 

have lost the Arp2/3 complex and its associated WASH/WAVE/WASP complexes 
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(Gordon & Sibley, 2005), as potent nucelators and branchers of actin filaments 

(Dominguez, 2009; Gong & Jiang, 2004).  Indeed, these parasites only possess 

formins as actin-nucleating factors (Kuhni-Boghenbor et al., 2012).  Formins are 

large, multi-domain regulatory proteins that associate with the barbed end of 

actin filaments to promote actin polymerisation and control filament length 

(Evangelista et al., 2003; Goode & Eck, 2007; Higgs & Peterson, 2005).  

Nucleation of actin by formins commonly results in F-actin cables rather than 

branched filaments.  Typically, formins would coordinate with profilin for 

polymerisation, where the profilin provides the ATP-actin monomers to the poly-

proline rich, formin-homology 1 (FH1) domain (Figure 1-8).  All formins contain a 

homodimeric formin homology domain (FH2) required for nucleation and barbed-

end filament binding for new actin monomers (Figure 1-8) (Pruyne et al., 2002).  

Once bound to the barbed end, the formin remains associated to prevent 

capping proteins coupling with the filament (Pring et al., 2003).  While there are 

15 different formin proteins found in humans to nucleate actin (Schonichen & 

Geyer, 2010), only three have been identified in Toxoplasma (Baum et al., 2006; 

Daher et al., 2010).  While no actin filaments have been detected in 

Toxoplasma, it was shown that controlled polymerisation of actin was essential 

for parasites motility and invasion (Dobrowolski & Sibley, 1996; Wetzel et al., 

2003).  Toxoplasma formins (FRM) 1 and 2 localise to the pellicle of the 

parasites, where FRM1 associates with the plasma membrane and FRM2 

associated with the IMC.  FRM3 localises to the both the anterior and posterior of 

the parasites.  The depletion of FRM1 through the tetracycline regulatable 

promoter caused smaller plaques to be generated, while each stage of the 

lifecycle tested was only modestly perturbed (Daher et al., 2010).  FRM3 was 

determined to be dispensable for tachyzoite growth while the overexpression of 

dominant negative mutants had severe consequences for intracellular growth 

and replication (Daher et al., 2011).  Biochemical experiments show that both 

FRM1 and FRM2 promote actin polymerisation (Skillman et al., 2012). The 

interaction with profilin in vivo is still not certain as none of the Toxoplasma 

formins have a canonical FH1 domain (Daher et al., 2010). 

1.7.2 Monomer sequestration 

Actin treadmilling occurs by the affinity of actin monomers to the two ends of 

the filaments and is caused by the continuous hydrolysis of ATP (Bugyi & Carlier, 
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2010; Neuhaus et al., 1983).  Many actin-binding proteins bind to monomers for 

a variety of functions by sequestering G-actin to either promote polymerisation 

or depolymerisation (Neuhaus et al., 1983).  Again, only a few are present in 

Apicomplexa; profilin, and an Srv2/cyclase-associated protein (CAP).  Moreover, 

they lack many others including β-thymosin and a conventional gelsolin (Baum et 

al., 2006). 

In mammalian cells, profilin is an actin-binding protein that sequesters actin 

monomers.  Profilin is thought to catalyse the exchange of ADP-actin to ATP-

actin by altering the conformation of G-actin, through the opening of the 

nucleotide-binding site to the cytosol.  This increases the ATP-G-actin pool 

available that can subsequently be used for polymerisation (Kovar et al., 2006; 

Pantaloni & Carlier, 1993).  Working in combination with formins, profilin assists 

in promoting actin filament assembly (Figure 1-6 CFigure 1-8) (Paul & Pollard, 

2008).  Apicomplexan parasites are limited to a single profilin gene that is 

divergent from eukaryotic profilins (Kursula et al., 2008).  Biochemical studies 

have shown that Toxoplasma profilin has weak interactions with their formins 

raising the suggestion that profilin is not facilitating actin polymerisation in 

Toxoplasma, indicating a role in monomer sequestration (Daher et al., 2010; 

Skillman et al., 2012).  Genetic depletion of profilin impairs both gliding motility 

and invasion but is dispensable for intracellular growth of the parasites (Plattner 

et al., 2008).  The loss of profilin does not alter the detectable actin monomeric 

pool level, determined with the addition of CD and Jas (Plattner et al., 2008).  

Many studies have implicated Toxoplasma profilin as a potent inducer of IL-12 in 

mice (Kucera et al., 2010; Plattner et al., 2008; Salazar Gonzalez et al., 2014; 

Yarovinsky et al., 2005; Yuan et al., 2015).  It is thought that the parasites 

secrete profilin through an unknown mechanism during gliding motility and 

invasion for the mouse immune system to detect (Yarovinsky, 2014). 

The CAP homologue in apicomplexan parasites is much smaller than those 

identified in higher eukaryotes, where they have lost the N-terminal region and 

the WH2 domain.  This led to the suggestion that their function is solely in 

monomer sequestration (Hliscs et al., 2010).  In Toxoplasma, the CAP protein 

localisation depends on the lifecycle stage of the parasite.  During intracellular 

replication, CAP is isolated to the apical region, while with extracellular 

parasites it is relocated to the cytoplasm (Lorestani et al., 2012).  Moreover, in 
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vitro assays of CAP in Plasmodium berghei revealed that it is not essential for 

the asexual stages of the malaria lifecycle (Hliscs et al., 2010). 

1.7.3 Severing and filament depolymerisation 

As well as polymerisation, these filaments are required to be severed or 

depolymerised.  A family of proteins termed actin depolymerisation factor 

(ADF)/Cofilin or gelsolin regulate these processes.  The ADF and Cofilin family 

influence actin dynamics by sequestering G-actin monomers (Figure 1-8) 

(Bernstein & Bamburg, 2010; Galkin et al., 2011; Yeoh et al., 2002).  ADF is 

usually more efficient monomer sequestration than Cofilin as it has a much 

weaker nucleating ability (Bamburg & Bernstein, 2010; Bernstein & Bamburg, 

2010).  Inhibition of the ADP exchange to ATP by actin bound to ADF/Cofilin 

prevents re-polymerisation.  There are 14 different ADF/Cofilin proteins in 

humans, while Toxoplasma is limited to one and Plasmodium spp. have two 

(Baum et al., 2006).  In Apicomplexa, the ADF has a high affinity for ADP-actin 

and catalyses the conversion to ATP-bound actin (Schuler et al., 2005a), a role 

normally associated with profilin.  Apicomplexan ADF has a limited ability to 

depolymerise and sever actin filaments, probably due to the loss of PIP2 (Mehta 

& Sibley, 2010; Schuler et al., 2005a; Yadav et al., 2011).  The loss of ADF in 

Toxoplasma causes an accumulation of F-actin at the apical and basal regions of 

the parasites and causes a rocking movement of the tachyzoites, comparable 

with Jas treatment (Mehta & Sibley, 2011).  

1.7.4 Crosslinking and bundling of F-actin 

The reduced repertoire of actin binding proteins in Apicomplexa continues in 

their ABPs required to crosslink and bundle actin filaments.  Apicomplexa only 

encode a single coronin protein to cross-link or bundle actin filaments while 

notable absentees are α-actinin/filamin/spectrin bundling proteins as well as 

fascin and tropomyosin (Baum et al., 2006).  Moreover, they have also lost all 

cytoskeletal actin structural proteins such as talins and vinculins (Baum et al., 

2006).  Conventional coronins rapidly remodel cytoskeletal actin for processes 

including endocytosis (Kimura et al., 2008) and cell motility (Cai et al., 2008).  It 

is thought that coronin has dual functions to accelerate actin polymerisation at 

the barbed end by recruiting the Arp2/3 complex but also coordinates with 
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Cofilin to depolymerise ADP-rich actin filaments (Chan et al., 2011; Gandhi & 

Goode, 2008).  Overall, the coronin plasticity is required to increase the actin 

network by replenishing the monomer pool required for further filament growth 

(Gandhi & Goode, 2008).  In apicomplexan parasites, coronins have the ability to 

bind F-actin and facilitate the bundling of parallel filaments (Olshina et al., 

2015; Tardieux et al., 1998).  This protein has been implicated in guiding 

directional motility and invasion (Olshina et al., 2015; Salamun et al., 2014).  In 

Toxoplasma and Plasmodium spp., coronin is involved but not essential for 

invasion and egress, where the protein relocalises from the cytoplasm to the 

posterior end of moving parasites (Bane et al., 2016; Salamun et al., 2014).  

Coronin was also shown to localise around the periphery of the invading malaria 

merozoite (Olshina et al., 2015). 

In summary, actin-binding proteins in Apicomplexa are significantly limited and 

possibly evolved to adapt to the complex lifecycle of these parasites.  

Furthermore, all known actin-binding proteins in Apicomplexa have been shown 

to be involved in regulating actin during gliding motility and invasion stages on 

the parasites. 

1.7.5 Myosin motors  

Myosins are a large family of motor proteins defined by their ability to displace 

actin filaments upon ATP hydrolysis (Foth et al., 2006; Szent-Gyorgyi, 2004).  

They are made up of three domains; the catalytic head domain which contains 

the ATPase and actin binding site, a neck domain which the regulatory light 

chains bind and the tail domain which is used to transport cargo.  Myosins have 

been shown to walk along actin filaments and have a strong association with 

ADP-actin.  The affinity of the myosin to actin filaments is drastically lowered 

when ATP binds to the catalytic head domain.  Thus, the affinity of myosins to 

the actin filament is controlled by the ATPase cycle (Hartman & Spudich, 2012).  

Conventional myosins have been grouped based on their functions, class I are 

involved in vesicular trafficking while class II are implicated in muscle 

contraction.  However, there are many ‘unconventional’ myosins which vary in 

subcellular location, velocity and force they exert on actin filaments (Sellers, 

2000). 
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Grouped within these ‘unconventional’ myosins are the ones found in 

Apicomplexa.  Toxoplasma gondii has the largest repertoire of myosins amongst 

Apicomplexa, containing 11 different myosins (Foth et al., 2006).  Myosin A is 

the most studied of the apicomplexan myosins and is a core component of the 

parasites gliding machinery.  It is a single-headed myosin with a conserved motor 

and short neck domains but lacks a tail domain (Heintzelman & Schwartzman, 

1997).  The myosin light chain 1 (MLC1) binds to the IQ domains of MyoA and 

targets it to the motor complex to power gliding motility (Hettmann et al., 

2000).  However, other myosins have important functions.  MyoB/C are the 

product of alternative splicing of the last intron, where MyoB is predominantly 

expressed in bradyzoite stages but has also been implicated in tachyzoite 

replication (Delbac et al., 2001).  Whereas MyoC localises to the posterior ring 

along with MORN1 and it thought to be important in daughter cell formation 

(Gubbels et al., 2006).  Myosin H localises to the apical ring and controls conoid 

protrusion.  Myosin F belongs to the class-XXII myosins and has multiple functions 

within the parasites.  MyoF contains WD40 repeats that are thought to interact 

with ARO, acting as a motor required for rhoptry tethering to the apical complex 

(Mueller et al., 2013).  It is also involved in apicoplast inheritance (Jacot et al., 

2013) and more recently has been shown to transport dense granules within the 

parasites cytoplasm (Heaslip et al., 2016).  While many of the myosins are still 

to be characterised, two uncharacterised myosins, MyoI and MyoJ have recently 

been implicated in forming vacuole connections (Dominique Soldati, BioMalPar 

2016). 

1.8 Small molecules that bind to actin 

Actin-binding drugs are widely used in research for their ability to influence 

actin filament dynamics.  They have been used extensively in biological 

research, however, their use as pharmacological agents is poor due to uptake 

problems. Many of these are naturally occurring small molecules derived from 

fungal and microbial toxins. Overall, their mechanisms are damaging for actin 

filaments.  Some induce polymerisation or stabilisation of filaments in the case 

of phalloidins and jasplakinolide, while others block further filament assembly 

resulting in depolymerised filaments such as cytochalasins or latrunculins (Figure 

1-9). 
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1.8.1 Actin polymerisation drugs 

1.8.1.1 Phalloidins 

Phalloidin is derived from phallotoxins of poisonous mushrooms, Amantia 

phalloides, and is used extensively as experimental agents for F-actin dynamics.  

Phalloidin binds to actin filaments and shifts the equilibrium to support further 

filament formation instead of filament disassembly (Cooper, 1987). Moreover, 

phalloidin inhibits the ATP hydrolysis of the actin filament, significantly reducing 

the rate constant for monomer dissociation (Figure 1-9) (Barden et al., 1987).  

Polymerisation of filaments is a tightly controlled process, balancing monomer 

association and filament dissociation.  By inhibiting the latter, the critical 

concentration of polymerisation is reduced by 10-30 fold under optimal 

conditions (Visegrady et al., 2004; Visegrady et al., 2005).  Therefore, the lack 

of free monomers increases filament elongation (Figure 1-9).  Due to phalloidins 

being unable to permeate intact cell membranes, they have predominantly been 

used solely as biochemical experimental agents with little use in vivo (Cooper, 

1987).  The effect of phalloidins on polymerization is distinctive among actin 

modulators.  Most work, therefore, has been studied on fixed cells in vitro.  

Phalloidin does not bind to or stabilise actin filaments within apicomplexan 

parasites, possibly due to an actin-binding protein masking its target site (Cintra 

& De Souza, 1985; Poupel et al., 2000; Schuler et al., 2005b) but may also result 

from the divergent amino acid composition of apicomplexan actins. 

1.8.1.2 Jasplakinolide 

Jasplakinolide was first isolated from the marine sponge Jaspis johnstoni and is 

used widely to study F-actin dynamics.  Its effects include reducing the critical 

concentration required for filament formations from a tetramer to a trimer 

(Figure 1-9).  This results in almost spontaneous nucleation of monomeric actin 

into filaments and the continual polymerisation and stabilisation of filaments 

(Figure 1-9) (Bubb et al., 1994; Bubb et al., 2000). 

Treatment of Toxoplasma gondii tachyzoites with Jas results in a drastic 

increase in actin filaments, predominantly seen at both the apical and posterior 

ends of the parasites (Shaw & Tilney, 1999).  Originally it was observed that 

treatment with Jas causes a block in both gliding motility and invasion, 



Chapter 1 Introduction 51 
 

seemingly affecting motor functions (Poupel & Tardieux, 1999).  A later study 

demonstrated that Jas treated parasites become increasingly motile, although 

their directional movement was severely affected (Wetzel et al., 2003).  Many of 

these parasites begin to twirl with the direction changing from a clockwise 

twirling motion to a counter-clockwise motion (Wetzel et al., 2003).  Overall, 

this shows that regular motility requires the tight regulation of filamentous 

actin.  Invasion was completely blocked with Jas treatment in Plasmodium 

falciparum while intracellular development was unaffected (Mizuno et al., 

2002). 

 

Figure 1-9: Actin modulating drugs 

Actin modulating drugs function to alter actin dynamics by either promoting polymerisation or 
depolymerisation of filaments.  (1-2) For F-actin stabilisation and polymerisation there are the 
phallotoxins and jasplakinolide.  1) Phalloidin binds and stabilises the filaments by inhibiting the 
release of inorganic phosphate.  2) Jasplakinolide functions to lower the critical concentration by 
promoting nucleation of a trimer nucleus (N).  Moreover, jasplakinolide acts to increase filament 
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length by attracting actin monomers to the barbed end. Other drugs act to depolymerise filaments 
(3-4).  3) Latrunculins bind and sequester actin monomers thus inhibiting the filament growth.  This 
causes the filament to depolymerise as all the actin subunits in the filament are hydrolysed.  4) In 
the case of cytochalasins, they bind and cap the barbed ends of actin filaments.  This blocks further 
monomers interacting with the filament.  In time, these filaments get hydrolysed and begin to 
depolymerise. 

1.8.2 Actin depolymerisation drugs 

1.8.2.1 Latrunculins 

Latrunculins are natural toxins purified from the red sea sponge Latrunculia 

magnifica. Initially, these compounds were found to inhibit actin polymerisation 

and disrupt the arrangement of F-actin by sequestering monomeric actin causing 

disassembly of actin filaments (Figure 1-9) (Coue et al., 1987).  It has been 

shown that these drugs mimic the activity of actin sequestering proteins, such as 

profilin (Coue et al., 1987; Spector et al., 1989; Yarmola et al., 2000).  

Disruption of F-actin by latrunculin A (latA) is both rapid but reversible.  With a 

Kd= 200 nM, latA is more potent than latB and around 10 fold more potent than 

cytochalasin D (CD) (Spector et al., 1989).  This profound efficacy of latA has 

made it a choice drug to study actin dynamics, and thus supersedes the 

conventional CD.  Latrunculin A and B are highly similar, even down to the 

binding sites, however, latB differs in the loss of two carbons in the macrocycle 

ring that form one of its ethyl links. Latrunculin A binds to monomeric actin in a 

1:1 ratio between subdomains 2 and 4 (Figure 1-5) near the ATPase binding site, 

inhibiting ATP exchange (Yarmola et al., 2000).  Latrunculin A bridges the gap 

between subdomains 2 and 4 which rearranges the loop between amino acids 

Gly55 and Thr66 of sub-domain 2 and movement of the loop between Gly197 and 

Glu207 (Morton et al., 2000).  This conformational change inhibits actin 

polymerisation.  The crystal structure of Plasmodium ACT1 highlights a salt 

bridge between subdomains 2 and 4 suggesting that Plasmodium ACT1 may be 

naturally resistant to latA (Vahokoski et al., 2014).  Cryptosporidium sporozoite 

motility can be inhibited in the presence of latB (Wetzel et al., 2005). 

1.8.2.2 Cytochalasins 

Cytochalasins are a group of fungal metabolites that can rapidly permeate cell 

membranes having fast effects on actin polymerisation.  Unlike latA, 

cytochalasins bind the barbed ends of actin filaments rather than the actin 

monomers (Figure 1-9).  Binding of cytochalasins occurs similarly to capping 
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proteins at a ratio of one molecule per filament.  There are many derivatives of 

cytochalasins, A-E and H (Scherlach et al., 2010).  Interestingly, apart from actin 

dynamic inhibitors, cytochalasins A and B have unspecific targets (Foissner & 

Wasteneys, 2007), both inhibiting monosaccharide transport across the plasma 

membrane (Jung & Rampal, 1977; Lin & Spudich, 1974; Rueckschloss & Isenberg, 

2001).  Due to their off-target effects in binding glucose transporters, 

cytochalasins A and B are suggested to be a poor inhibitor for studying actin-

based motility.  Moreover, cytochalasin A has been shown to indirectly 

depolymerise microtubules (Foissner & Wasteneys, 2007; Himes & Houston, 

1976; Himes et al., 1976).  However, the other cytochalasins (C, D, E and H) are 

deemed to be highly specific for actin capping.  Over the years, CD has been the 

most commonly used drug from the cytochalasin class of small molecules to 

study actin dynamics.  Binding of CD between subdomains 1 and 3 effectively 

blocks the association of actin monomers to the barbed end and in turn prevents 

further elongation of filaments (Goddette & Frieden, 1985; Goddette & Frieden, 

1986; Nair et al., 2008).  A secondary function of cytochalasins is that they also 

slow the dissociation of the filament at the pointed end by ADF activation 

(Figure 1-9) (Goddette & Frieden, 1986; Rueckschloss & Isenberg, 2001).  In 

apicomplexan, cytochalasins have been used extensively to study the importance 

of the acto-myosin system during gliding motility and invasion (Dobrowolski & 

Sibley, 1996; Drewry & Sibley, 2015; Ryning & Remington, 1978). 

1.9 Actin-related and actin-like proteins in Apicomplexa 

1.9.1.1 Actin-related proteins 

Actin-related proteins, known more commonly as Arps, share a common actin 

fold and sequence similarity to conventional actins, ranging from 20-60 % 

(Frankel & Mooseker, 1996; Schafer & Schroer, 1999; Schroer et al., 1994).  

There are 11 Arps that are highly conserved across eukaryotes (Muller et al., 

2005).  Actin-related proteins belong to the actin superfamily and act as 

regulatory proteins involved in modulating the cytoskeleton or regulating 

chromatin remodelling (Schafer & Schroer, 1999).  Location of Arps is restricted 

to the cytoplasm or nucleus of the cell where they from complexes to fulfil their 

various functions.  The cytoplasmic actin-related proteins; Arp1, Arp10 and 

Arp11 regulate microtubule motor activity (Schafer et al., 1994), while Arp2 and 
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Arp3 form a complex to polymerise and branch actin filaments (Gong & Jiang, 

2004; Welch et al., 1997a).  Nuclear Arps (Arp4-Arp9) are involved in chromatin 

remodelling (Fenn et al., 2011). 

Strikingly, protozoan parasites including Toxoplasma gondii have lost many of 

the actin-related proteins, most notably the Arp2/3 complex and many of the 

subunits of the complex (Gordon & Sibley, 2005; Gupta et al., 2015).  Moreover, 

Toxoplasma only contains two actin-related proteins; Arp1 and an ortholog of 

Arp4 termed Arp4a (Gordon & Sibley, 2005; Siden-Kiamos et al., 2010; Suvorova 

et al., 2012).  Arp1 is highly conserved and forms part of the dynactin complex 

required for dynein and kinesin motor movement along microtubules.  It is the 

only known Arp to form a filamentous-like structure (Schafer et al., 1994).  As 

for Arp4a, it is thought to be involved in chromatin remodelling and histone 

acetyltransferase complexes.  A specific mutation Ile162Thr in Arp4a causes a 

temperature sensitive growth arrest of the tachyzoites.  This is caused by the 

destabilisation and mislocalisation of Arp4a leading to chromosome loss during 

nuclear division (Suvorova et al., 2012). 

1.9.1.2 Actin-like proteins 

Actin-like proteins, termed ALPs, are similar to Arps but unique to Apicomplexa 

(Gordon & Sibley, 2005).  These ALPs are also not related to the actin-like 

proteins of bacteria such as MreB or ParM (Carballido-Lopez, 2006).  There are 

several ALPs in the genomes of Apicomplexa, although nomenclature continually 

changes due to updates to the ToxoDB. and PlasmoDB.  For example, Actin-

related protein 6 (Arp6) originally published in Gordon and Sibley (2005) recently 

changed to ALP5 after an update to ToxoDB.  The exact location and functions of 

these ALPs within the parasite are still unclear.  To date, only ALP1 has been 

characterised.  This is the closest related protein to actin in Apicomplexa and is 

thought to have a role in daughter cell formation by transporting contents to the 

newly forming IMC of these daughter cells (Gordon et al., 2008).  The 

overexpression of ALP1 causes defects in daughter IMC formation along with 

defects in nuclear and apicoplast segregation (Gordon et al., 2008; Gordon et 

al., 2010). 
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Overall, it is suggested that the limited Arps and expression of unique ALPs must 

be an evolutionary adaptation required for the parasites lifecycle.  The limited 

Arps are thought to be involved in vesicular transport while the ALPs have a 

more concentrated role unique to the parasites such as actin-based gliding 

motility (Gordon & Sibley, 2005). 

1.10 The role of actin during cell motility 

1.10.1 The mechanisms behind cell motility  

Cell motility is a highly dynamic phenomenon that is a fundamental process in 

biology, required not only for general cell locomotion, but also for diverse 

processes such as embryo development, wound healing and cellular immunity 

and much more (Lodish et al., 2004).  Many eukaryotic cells such as amoebas, 

protozoan parasites and bacteria are required to move throughout their life 

(Baum & Frischknecht, 2015).  Motility can be driven through a variety of 

mechanisms. Both eukaryotic cells and bacteria can use flagella based migration.  

In eukaryotic flaggelated cells, motility is driven by dynein movement along 

microtubules to createing a flaggelar-beat to propel the cell forwards. Bacteria 

use the proton motive forces to power the rotation of their falagellar during 

motility. In the case of phagocytic immune cells, based on dynamic cytoskeletal 

shape changes is described as amoeboid crawling.  This section highlights 

examples of well-known motility mechanisms from classical amoeboid movement 

and also some alternative mechanisms. 

1.10.2 Crawling motility 

Crawling motility, also known, as amoeboid motility is the best characterised 

and used by many cells types to move and overcome biological barriers in 

response to a stimuli.  By their nature, metastatic cancerous cells, pathogens 

such as Entamoeba histolytica and phagocytic immune cells are highly motile 

and use crawling based motility for migration. 

Cells move in response to external stimuli from the environment either through 

physical, chemical, diffusible or non-diffusible signals.  Many cells move by a 

crawling motion over a 2D planar surface.  This requires the cell to modulate its 

cytoskeleton to make plasma membrane protrusions such as lamellipodia, 
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filopodia and blebs (Bergert et al., 2012; Friedl & Wolf, 2010).  The geometry of 

actin filaments at the membrane dictates the morphology of the membrane 

protrusions (Bergert et al., 2012).  Highly branched actin filaments generate the 

sheet-like extensions termed lamellipodia while bundled actin filaments 

generate spike-like filopodia (Pollard & Borisy, 2003; Yang & Svitkina, 2011).  

Each of these has been observed to facilitate migration under specific 

circumstances in Zebrafish cells (Diz-Munoz et al., 2010).  At this time, I will 

focus on lamellipodia actin-based motility.  This is characterised by cycles of 

actin polymerisation-driven lamellipodium protrusions (Figure 1-10 A), myosin II-

mediated contraction at the rear and continued rounds of adhesion and de-

adhesion of integrin-dependent attachment sites (Niculescu et al., 2015; Ryan et 

al., 2012). 

During crawling motility cells characteristically move over a solid substrate in 

response to an external stimuli.  This results in the cells establishing a polarity 

and activates signals that will in turn cause cytoskeletal reconstruction (Keren, 

2011; Ridley et al., 2003).  The external stimuli activates Rho-family GTPases 

and Phosphatidylinositol 4,5-bisphosphate (PIP2) and recruits the Wisckott-

Aldrich Syndrome Protein (WASP)/SCAR proteins, triggering the Arp2/3 complex 

to attract ATP-G-actin to the leading edge (Figure 1-10 A) (Hall, 1998; Hall & 

Nobes, 2000; Ridley, 2006; Tapon & Hall, 1997). The cell then undergoes a series 

of cytoskeletal changes, firstly by protruding its membrane forward at the 

leading edge forming a lamellipodium (Bisi et al., 2013; Keren, 2011; Mogilner, 

2006; Ridley, 2011).  This is caused by rapid polymerisation of F-actin at the 

leading edge, producing a protrusive force on the cell membrane (Figure 1-10).  

Moreover, Arp2/3 complexes function with two Rho-family GTPases, Rac1 and 

Cdc42, to stimulate F-actin branching (Tapon & Hall, 1997).  This results in the 

restructuring of the lamellipodia by the formation of the actin network known as 

the dendritic network (Svitkina & Borisy, 1999).  Formins (mDia1 and mDia2) and 

Spire have also been implicated in the nucleation of unbranched filaments within 

the lamellipodia (Kerkhoff, 2006; Vitriol et al., 2015).  The filament length is 

controlled by actin regulatory proteins, Ena/VASP that both assist in actin 

polymerisation and also controlling the actions of capping proteins (Bear & 

Gertler, 2009). 
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Throughout motility, cells regulate the rate of actin assembly at specific regions 

of the cell allowing cell contact and protrusion in a particular direction (Forscher 

et al., 1992; Mogilner & Oster, 1996).  However, if actin polymerises against the 

plasma membrane to drive the lamellipodium, there would be little space for 

the addition of actin monomers.  This is where the Brownian motion ratchet 

theory was originally provided (Guo et al., 2010).  It is believed that fluctuations 

of the plasma membrane and actin at its plus end, provides a gap sufficient for 

actin monomers to be incorporated into the filament (Guo et al., 2010; 

Mogilner, 2006).  Two main proteins are involved in controlling the actin 

treadmilling in lamellipodia based motility: profilins and ADF/cofilin.  

ADF/cofilin acts to severe filaments, and it also recycles old networks by 

depolymerising ADP-actin near the cell body interface with the lamellum, thus 

providing an ADP-G-actin pool (Kanellos & Frame, 2016).  Subsequently, profilin 

attracts these ADP-G-actin monomers and catalyses the nucleotide exchange, 

generating ATP-G-actin (Figure 1-10).  This pool of ATP-G-actin is then attracted 

to the leading edge for further polymerisation. This creates the treadmilling 

action of actin within the lamellipodia (Blanchoin et al., 2014; Insall & 

Machesky, 2009). 

Simultaneously, as the lamellipodia spread forward, it must form new adhesion 

sites with the substrate (Figure 1-10 B).  These provide both traction for the 

forward movement and allow the cell to measure the rigidity of the substrate 

(Borghi et al., 2010; Iwamoto & Calderwood, 2015).  The stiffness of the 

substrate will determine the speed the cell can travel (Mih et al., 2012).  For 

example, a more rigid surface will slow down cell motility. Likewise, softer 

surfaces also reduce motility speed, indicating an ideal surface lies somewhere 

in the middle (Dokukina & Gracheva, 2010; Mih et al., 2012).  β1-integrins are 

positioned periodically along the cell but found to focus at the very front of 

lamellipodial protrusions (Iwamoto & Calderwood, 2015; Regen & Horwitz, 1992; 

Zech et al., 2011).  These form focal adhesion sites acting as ‘molecular 

clutches’ (Bard et al., 2008; Elosegui-Artola et al., 2016; Havrylenko et al., 

2014).  This enables the actin cytoskeleton to interact physically with the 

extracellular matrix through focal adhesion kinases (FAK) and talins, aiding 

forward movement and regulating the forces produced by actin dynamics 

(Calderwood et al., 2013).  By engaging the molecular clutch, they resist the 
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actin retrograde flow, thus indirectly promoting the force produced by the actin 

polymerisation at the leading edge (Figure 1-10 B) (Case & Waterman, 2015). 

After the cell lamellipodia are firmly anchored, myosin II regulates contractility 

forces from the rear that is translocated throughout the cell (Bondzie et al., 

2016; Keren et al., 2009; Wilson et al., 2010).  This results in the translocation 

of the cell body at the lamellipodia-cell-body interface (Figure 1-10 B).  It was 

shown that myosin IIB is required to establish a front to rear polarity. While the 

contractile forces generated by the acto-myosin network facilitates the 

retraction at the trailing edge through the interactions of myosin IIA.  Together, 

the cell converts the contractile forces generated by the myosins into traction 

forces against the extracellular matrix (Oelz et al., 2015).  This causes the focal 

adhesion sites at the rear to disassemble resulting in the cell body retraction 

from the rear (Figure 1-10 B).  Together, the focal adhesion sites and acto-

myosin system cooperatively contribute to the forward movement of the cell 

(Chi et al., 2014).  The speed at which these cells move is relatively slow.  

Primary fibroblasts typically move at speeds of 1-3 µm/min, whereas amoeboid 

cells and immune cells can migrate at speeds of 5-15 µm/min (Bretscher, 2014). 

 

Figure 1-10: Actin control during lamellipodia protrusion and crawling motility  

A) Actin dynamics during lamellipodia protrusion.  (1) External stimuli activate Rho GTPases and 
PIP2 (2), which in turn recruit the WASP/SCAR proteins (3) to activate the Arp2/3 complex at the 
leading edge (4).  The Arp2/3 complex promotes actin polymerisation and branching of actin 
filaments (5).  These filaments push against the membrane resulting in lamellipodia protrusion (6).  
The actin filaments are then capped (7) to terminate the filament length.  (8) Ageing filaments are 
severed or depolymerised through ADF/cofilin interactions (9) and then catalysed from ADP-actin 
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to ATP-actin through profilin (10). Reprinted with permission from Nature Publishing Group: 
[Nature], (Pollard, 2003), copyright (2003).  B) Schematic representation of the three stages of 
actin-based substrate-dependent motility.  1) The polarised cell polymerises actin at the leading 
edge causing a lamellipodia extension.  2) The lamellipodia form an attachment site with the 
surface while the trailing edge depolymerises and detaches from the surface.  3) The cell contracts 
at the rear, propelling the parasite forwards.  Reprinted with permission from Ivyspring International 
Publisher: [Int. J. Biol. Sci.], (Ananthakrishnan & Ehrlicher, 2007), copyright (2007). 

Similarly, Caenorhabditis elegans sperm move in an amoeboid fashion, however, 

lack both actin and myosins.  In contrast, the assembly of Major Sperm Protein 

(MSP1) into filaments forms the lamellipodium.  It still requires the formation 

and release of adhesive sites to transduce the power for motility (Havrylenko et 

al., 2014).  The cell contains internal stores of membranous proteins that are 

added to the leading edge of the cell and swept back to the rear (Roberts & 

Ward, 1982).  Furthermore, the membrane tension is a master regulator of 

lamellipodial directionality (Batchelder et al., 2011).  Therefore, it was 

suggested that the C. elegans sperm cells move in a polarised endocytic cycle 

similar to amoeboid without actin or myosins (Bretscher, 2014; Havrylenko et 

al., 2014). 

1.10.2.1 Swimming 

Recent findings suggest that cells undergo crawling motility and can move even 

in the absence of adhesive coupling as a response to their microenvironment 

(Lammermann et al., 2008).  In cells such as human leukocytes and 

Dictyostelium, it was effectively shown that these cells can swim when they are 

suspended in a viscous medium of Ficoll (Barry & Bretscher, 2010; Howe et al., 

2013).  This demonstrated that adhesion to a solid substrate was not required for 

movement, and that crawling and swimming are similar processes (Barry & 

Bretscher, 2010; Bretscher, 2014).  In this instance, similar to crawling cells, 

they throw out large protrusions and change their cytoskeletal shape at the 

leading edge.  The cells surface proteins are then transported from the anterior 

to posterior of the cell, thought to be similar to a retrograde membrane flow 

(Bretscher, 1996a).  These proteins are then recycled through endocytic 

pathways, located randomly along the cell.  In agreement with this, is the fact 

that endocytic trafficking factors play a fundamental role in cell motility such as 

the recycling focal adhesions (Maritzen et al., 2015).  Moreover, it is suggested 

that the membrane transport to the leading edge and retrograde flow during 

motility are the rate-limiting steps (Fogelson & Mogilner, 2014).  Consequently, 
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these cells swim much slower than they crawl which has been attributed to the 

viscosity of the medium, resulting in a threefold reduction in speed (Barry & 

Bretscher, 2010; Bretscher, 2014).  While it was originally suggested that a 

retrograde membrane flow could provide the force for amoeboid swimming 

(Barry & Bretscher, 2010), it was later shown that this was not the case for 

Dictyostelium (Howe et al., 2013).  In fact, the authors suggest that the 

constant shape changes of the cell drives swimming (Howe et al., 2013).  

However, for neutrophils, they suspect that the swimming motion could still be 

due to the retrograde membrane flow, similar to C. elegans motility. 

1.10.2.2 Osmotic engine model 

As described for cancer metastasis, the cancerous cells migrate away from the 

primary tumour site by moving through the surrounding microenvironment and 

microvessels.  They then go on to invade into the blood or lymphatic tissue and 

circulate the system to colonise a distal site (Joyce & Pollard, 2009).  While 

much work has characterised cancer metastasis in 2D surfaces (Joyce & Pollard, 

2009; Machesky, 2008; Stevenson et al., 2012), it gives little evidence of in vivo 

situations.  Recent work has shown that unlike 2D planar surfaces, cells can 

swim and also move through microenvironments by changes in the cells osmotic 

pressures and shape (Balzer et al., 2012; Barry & Bretscher, 2010; Stroka et al., 

2014b).  Fluid forces resulting in motility have been studied extensively over the 

years (Charras et al., 2005; Jaeger et al., 1999; Keren et al., 2009).  However, 

in these systems, the fluid force is coupled with myosin II contractility at the 

trailing edge (Chi et al., 2014; Keren et al., 2009; Oelz et al., 2015).  Moreover, 

ion channel pumps and aquaporins coordinate with the actin cytoskeleton to 

drive protrusions at the leading edge of the cells (Chen et al., 2012). 

Recently a study by Stroka and colleagues, showed that interfering with actin 

polymerisation or myosin contractility has no effect on motility through the 

microenvironment (Stroka et al., 2014b).  They convincingly go on to show that 

cell migration is driven purely by water permeation through the cell membrane 

(Figure 1-11).  This mechanism was termed the ‘osmotic engine model’ (Stroka 

et al., 2014b).  The osmotic engine model requires the coordination of ion 

channels and aquaporins to control water flux into the cell at the leading edge 

and water flux out at the trailing edge (Figure 1-11) (Stroka et al., 2014b).  
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While sodium/hydrogen exchange pumps (NHE1) and aquaporin 5 (AQP5) are 

randomly localised along the cytoskeleton of migrating cells in 2D, they are 

highly polarised in cells migrating through 3D microenvironments.  This causes 

different osmolarities at the cells leading edge, and trailing edge through the 

distribution of the NHE1 and AQP5 (Stroka et al., 2014a).  Aquaporins allow the 

cell to take in water at the leading edge, swell and protrude the forefront.  The 

water is directed to the trailing edge and released causing the cell to retract 

(Stroka et al., 2014a; Stroka et al., 2014b).  Meanwhile, NHE1 is there to 

regulate the intracellular pH of the cell by exchanging Na+ and H+ ions 

(Magalhaes et al., 2011).  While this model is of great interest for an actin-

myosin independent motility mechanism, it is incompatible for a 2D setting and 

where the environment cannot generate similar hydrodynamic pressures.  This 

system may provide the link between actin-driven crawling motility in 2D and 

actin-independent movement in 3D microenvironments. 

 

Figure 1-11: Osmotic engine model 

An osmotic engine model drives cell migration in a confined microenvironment through water 
permeation across the cell membranes. Water flows in at the leading edge, allowing the cell to 
extend forwards.  While, at the trailing edge, the water is pushed out of the cell causing the back to 
retract. The translocation is a result of changes in cell volume due to water fluxes.  Reprinted with 
permission from Elsevier Inc: [Cell] (Stroka et al., 2014b), copyright (2014). 

1.10.3 Apicomplexan gliding motility 

In the case of Apicomplexa, these parasites employ a unique form of substrate-

dependent locomotion that does not require any cytoskeletal shape changes.  

This motion is known as gliding motility and is powered by the acto-myosin 

motor system (Figure 1-12) (Heintzelman, 2015).  While all apicomplexan 
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parasites appear to have this complex, some parasite stages are non-motile, 

such as the merozoites from Plasmodium spp. and Theileria spp.  However, it is 

thought that this actin-myosin dependent motility also powers invasion into - 

and egress out of - the host cell (Sibley, 2004). 

1.10.3.1 Molecular basis of the MyoA-motor complex 

It was first reported that actin polymerisation was essential for motility in 1988, 

where Eimeria sporozoites were blocked in movement by the addition of 

cytochalasin D (CD) (King, 1988).  Subsequent actin inhibitor studies revealed 

that T. gondii actin polymerisation was also highly important for the parasites 

gliding (Dobrowolski & Sibley, 1996; Wetzel et al., 2003).  Biochemical studies 

on parasite actin revealed it to be rather divergent from canonical actins.  It was 

shown that in vitro, TgACT1 formed short unstable filaments through an 

isodesmic polymerisation manner (Sahoo et al., 2006; Skillman et al., 2011; 

Skillman et al., 2013).  This instability and novel polymerisation kinetics was 

thought to be an evolutionary adaptation to the parasites lifecycle, in particular 

to function with the linear motor (Skillman et al., 2011).  

The myosin A motor was identified as the driving force for motility as a genetic 

knockdown of myoA resulting in a block in motility, invasion and egress (Meissner 

et al., 2002).  Additionally, it was shown that recombinant MyoA can move 

towards the barbed end of actin filaments at 5 µm/s on an in vitro kinetic assay 

(Herm-Gotz et al., 2002).  The motor domain of MyoA only shares <30 % identity 

with mammalian myosins (Heintzelman & Schwartzman, 1997) and lacks the 

conserved glycine at the lever arm pivot point.  Moreover, they also have a very 

short C-terminal tail, which is suggested to play a critical role in 

mechanochemical functions for motor activity (Bosch et al., 2007; Heintzelman 

& Schwartzman, 1997).  Biochemical studies showed that MyoA interacts with a 

myosin light chain (MLC1) (Figure 1-12) and two essential light chains (ELC1 and 

ELC2) that are required to promote movement of the MyoA arm (Williams et al., 

2015). 

In order for the movement to occur through any actin-myosin system, either 

actin or myosin must be anchored to allow the displacement during the 

contractile motions.  In this instance, it was shown that glideosome associated 
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proteins termed GAPs provide the anchorage points of the complex (Gaskins et 

al., 2004).  The GAP45 is the connector that holds the IMC to the plasma 

membrane (Gilk et al., 2009) but also is the anchoring point of MLC1-MyoA 

complex (Figure 1-12).  Further characterisation revealed that GAPs 40 and 50 

are integral components of the IMC (Frenal et al., 2010) and are involved In IMC 

biogenesis (Harding et al., 2016). 

Finally, for parasite-substrate dependent movement, the parasites must directly 

interact and establish transient adhesions with the substrate or the host cell 

surface.  Mainly these interactions are determined by a set of adhesive 

molecules, which are released by the micronemes, such as the apical membrane 

antigen-1 (AMA1) and microneme protein-2 (MIC2), a member of the 

thrombospondin-related anonymous protein (TRAP) family.  It is the cytosolic tail 

domains of these proteins that have been implicated in linking to the acto-

myosin motor complex.  It was previously thought that the actin filaments bind 

the transmembrane surface adhesins through the glycolytic enzyme, aldolase 

(Jewett & Sibley, 2003; Sheiner et al., 2011; Starnes et al., 2009).  Subsequent 

analysis demonstrated that the found interactions have no in vivo relevance and 

aldolase was later ruled out as linker to the acto-myosin system (Shen & Sibley, 

2014).  Therefore, it is still speculated that an unknown linker protein bridges 

the adhesions to the acto-myosin motor complex (Shen & Sibley, 2014).  These 

surface adhesins bind to a wide variety of host cell ligands, such as heparin 

sulphate and other proteoglycan derivatives (Carruthers et al., 2000a; Huynh et 

al., 2003).   Together, this whole complex is better known as the MyoA-motor 

complex or glideosome (Figure 1-12) (Opitz & Soldati, 2002). 

1.10.3.2 The linear motor model 

This has led to the linear motor model that has dominated the field of 

Apicomplexa for over a decade.  In this model, the MyoA motor is anchored to 

the IMC of the parasite through the interactions of the MyoA-tail domain to the 

myosin light chain (MLC1), which in turn is connected to the glideosome 

associated protein (GAP45) (Frenal et al., 2010; Gilk et al., 2009; Keeley & 

Soldati, 2004; Leung et al., 2014b).  Once anchored to the parasite, MyoA walks 

short actin filaments that continually polymerise and depolymerise between the 

parasites IMC and plasma membrane (Heintzelman & Schwartzman, 1997; Herm-
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Gotz et al., 2002; Meissner et al., 2002; Wetzel et al., 2003).  As the MyoA 

motor walks along actin filaments, this generates a force that is transmitted 

through to extracellular adhesive domains.  Together, this causes a smooth acto-

myosin dependent rearwards translocation of the microneme-substrate complex, 

which results in the forward gliding movement over the substrate (Soldati & 

Meissner, 2004). 

 

Figure 1-12: The MyoA-motor complex in Toxoplasma gondii 

The working model of the motor complex consisting of an unconventional myosin (MyoA) interacts 
with GAP45 through the myosin light chain MLC1.  GAP45 bridges the inner membrane complex 
(IMC) and plasma membrane.  GAP40 and GAP50 provide structural support to the motor complex 
and IMC.  The mechanical forces of MyoA moving along F-actin is transferred to the substrate or 
host cell plasma membrane via the interactions of adhesive transmembrane proteins such as 
MIC2.  This causes a treadmilling action of the IMC and plasma membrane, resulting in a forward 
displacement of the parasites.  Figure inspired by Nicole Andenmatten. 

Recent work using conditional knockout systems (described in chapter 1.13.3) 

has demonstrated the importance of the motor complex for efficient gliding.  

However, many components can be functionally removed without complete 

inhibition of gliding motility (Egarter et al., 2014).  Mutants for MyoA, MIC2 and 

AMA1 can be maintained in an in vitro culture indefinitely (Andenmatten et al., 

2012; Bargieri et al., 2013; Egarter et al., 2014).  While many components of the 

motor complex could be functionally complemented (Frenal et al., 2014), there 

is only a single actin gene (Dobrowolski et al., 1997).  Nevertheless, it was noted 
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by Boucher and Bosch (2015) that the parasites have a repertoire of actin-like 

protein that are still largely uncharacterised (Gordon & Sibley, 2005).  Although 

unlikely, these might provide some functional redundancy for the loss of actin 

(Boucher & Bosch, 2015). 

Over the years there have been different ‘alternative’ models to the linear 

motor model.  The original ‘glideosome’ was described in a reverse topology 

model by King (1988). This predicts the myosin motor to be anchored to the 

parasites plasma membrane and displaces actin filaments that are in close 

proximity to the IMC (King, 1988; Tardieux & Baum, 2016).  Although this reverse 

topology model has never been completely disproved, the above linear motor is 

most widely accepted model to explain parasite motility to date.  In a recent 

review, a “free” orientation model was also predicted where F-actin is bound to 

the parasites plasma membrane by F-actin bundling proteins such as coronins 

(Bane et al., 2016; Olshina et al., 2015; Tardieux & Baum, 2016).  This would 

bypass the necessity for a linker protein and the myosin-GAP complex is not 

fixed along the anterior-posterior axis.  The force generated by the myosin 

would move a membrane patch that is linked to F-actin through multiple 

adhesins which would result in forward movement (Tardieux & Baum, 2016).  

Alternatively, the parasites may employ an entirely different mode of motility 

that is based on an osmotic gradient, which was proposed by Egarter et al. 

(2014).  Indeed, how these parasites can still glide without actin or myosins will 

greatly enhance the understanding of parasite biology.  However, the 

importance of actin is still clear and it is possible that the motor complex has an 

alternative function rather than force generation. 

Here, I have presented an overview of different concepts that various cell types 

use for motility.  This is by no means a comprehensive view, as there are many 

other types of motility such as flagellar-based movement and other models that 

contrast with the models described above.  With regards to Apicomplexan 

motility, it is of great importance to understand how the parasites glide and 

invade.  The continual understanding of the parasites motility could provide 

novel, targeted therapeutics for the apicomplexan diseases such as 

toxoplasmosis and malaria. 
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1.11 Actin during apicomplexan invasion 

In general, intracellular pathogens invade the target host cell by manipulation of 

host-dependent signalling pathways, which result in entry through the 

invagination of the membrane in a process similar to endocytosis.  Apicomplexan 

parasites appear to be unique in their invasion process.  While most 

apicomplexan parasites possess the unique gliding machinery, not all are motile 

and different species invade through a number of mechanisms.  Indeed, the 

currently accepted linear motor model for gliding motility is described to be 

essential for Toxoplasma gondii and Plasmodium spp. invasion (Heintzelman, 

2015; Meissner et al., 2013).  Emerging data is beginning to shift the focus from 

the parasites acto-myosin motor being the sole contributor for force production 

and cell entry (Koch & Baum, 2016; Meissner et al., 2013).  The influence of the 

host cell was thought to be rather passive.  However, it is clear that host cell 

contents such as ATP and magnesium levels are also favoured for invasion (Field 

et al., 1992; Kimata & Tanabe, 1982; Rangachari et al., 1987).  However, the 

role of the actin cytoskeleton during invasion has been a debated topic for many 

years. 

Alternative gliding and invasion mechanisms exist for other Apicomplexa and 

may reveal a different outlook.  Cryptosporidium parvum causes gastrointestinal 

illnesses, however, unlike Toxoplasma, it does not actively the gut epithelial 

cells.  While C. parvum sporozoites motility is similar to T. gondii, they do not 

appear to use this for invasion (Wetzel et al., 2005).  Instead, C. parvum attach 

with their apical end and orientate towards to the host cell.  At this point, the 

parasite remodels the actin cytoskeleton of the host cell and essentially wraps 

the cell around itself.  At the contact site for entry, it has been shown that 

many actin modulators, such as the Arp2/3 complex, cdc42, VASP and N-WASP, 

are recruited (Chen et al., 2004; Elliott & Clark, 2000; O'Hara et al., 2008).  

Furthermore, it was shown that at the attachment site, there is also a range of 

sodium/glucose co-transporters and aquaporins (Chen et al., 2005).  

Subsequently, the uptake of glucose causes a water influx that results in the 

host cell volume increasing to wrap around the parasite.  Therefore, C. parvum 

invasion is dependent on modulation of the host cytoskeleton through actin 

polymerisation.  This results in membrane protrusions to encapsulate the 

parasite (Chen et al., 2005; O'Hara et al., 2008).  Interestingly, Theileria 
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sporozoites are non-motile, and their invasion is independent of both parasite 

and host cell actin (Shaw, 1999; Shaw, 2003).  These parasites invade completely 

different, where their initial attachment to the host cell is strong and non-

reversible.  Moreover, the parasite can invade at any orientation, which is 

entirely different from other Apicomplexa such as Toxoplasma or Plasmodium 

parasites.  After attachment, Theileria sporozoites induce a zippering 

mechanism that involves a firm interaction between the parasite and host cell 

(Shaw, 2003).  Interestingly, while Theileria contains rhoptry and microneme 

proteins, there is little evidence of their role during internalisation (Shaw, 

2003).  Overall, it appears that Theileria parasites can invade without the 

gliding machinery or host cell actin. 

The prevailing view is that invasion by Toxoplasma and Plasmodium spp. is an 

active process driven by the parasite, while the host cell is large passive during 

entry (Dobrowolski & Sibley, 1996; Morisaki et al., 1995).  Moreover, different 

views regarding the role of actin in the process from either the host or parasite 

is under debate.  It was first demonstrated that using cytochalasin D (CD) both 

phagocytic and non-phagocytic host cells actively participate in Toxoplasma 

invasion (Ryning & Remington, 1978).  Later, it was shown using CD resistant 

parasites, that invasion was purely driven by the actin of the parasite 

(Dobrowolski & Sibley, 1997; Dobrowolski & Sibley, 1996).  However, more 

recent work has indicated that cellular invasion depends on both the parasite 

and host cell actin.  Toxoplasma gondii and Plasmodium berghei can modulate 

the actin cytoskeleton of the host at the point of attachment (Delorme-Walker 

et al., 2012; Gonzalez et al., 2009).  Also, host cell F-actin accumulates around 

the tight junction to facilitate proper parasite internalisation (Baum et al., 

2008b; Gonzalez et al., 2009; Sweeney et al., 2010).  Host cell cortactin and 

actin nucleating factors have also been implicated in host cell entry by 

Toxoplasma (Gaji et al., 2013).  Invasion speeds are much slower in toxofilin KO 

parasites, where the parasites are unable to remodel the cortical actin 

cytoskeleton of the host locally.  Moreover, they penetrated half their body 

length into the cell before stopping and pulling the host cell plasma membrane 

around the parasite (Bichet et al., 2014; Delorme-Walker et al., 2012).  This is 

similar to the described method for invasion of C. parvum (Elliott & Clark, 2000) 

and the myoA KO (Bichet et al., 2016b). Plasmodium merozoites may also induce 
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cytoskeletal re-arrangements of the erythrocyte that greatly enhances invasion 

(Koch & Baum, 2016). 

Overall, it suggests that during host cell entry there are many factors involved.  

In particular, both actin from parasite and host cell appear to have important 

functions. 

1.12 Toxoplasma gondii as a model organism  

Toxoplasma gondii is an ideal model organism to study aspects of apicomplexan 

biology, in particular cell motility and invasion.  As discussed in chapter 1.4, the 

lifecycle of T. gondii is very well understood (Dubey, 2009; Dubey et al., 1998).  

With the wide variety of cell types that Toxoplasma can infect (Kim & Weiss, 

2004), it makes it much easier to culture in vitro compared with Plasmodium 

spp. that will only infect hepatocytes and erythrocytes (Cowman & Crabb, 2006).  

The size of T. gondii tachyzoites also makes it more appealing in imaging studies 

etc. rather than Plasmodium spp. which are in general much smaller (Baum et 

al., 2008a). Transfection of exogenous DNA into the parasites is also much 

simpler in Toxoplasma compared to Plasmodium spp. 

The genome sequence for T. gondii was completed around ten years ago (Khan 

et al., 2005).  The parasites are haploid with 14 chromosomes and a 65 Mb 

genome (Khan et al., 2005; Sibley & Boothroyd, 1992).  With the genomes always 

updated on the databases such as ToxoDB and PlasmoDB, this has significantly 

enhanced the understanding of the parasites, allowing reverse genetic tools to 

thrive.  In the recent years, the methods to study both classical and reverse 

genetics have seen a huge leap forward. 

1.13 Reverse genetics in Apicomplexa 

Over the last 20 years, the understanding of gene functions within Apicomplexa 

has taken a huge step forward, not least with the development of various 

genetic tools.  These tools have allowed the functional analysis of genes by 

assessing the phenotypic consequences of disruption or removal of the genes.  

Several strategies have been developed in Toxoplasma gondii to control gene 

expression at different levels.  These include the DiCre system (Andenmatten et 
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al., 2012) and newly established CRISPr-Cas9 (Shen et al., 2014; Sidik et al., 

2014; Sidik et al., 2016) system that control at the genetic level.  A recent study 

has conducted a full genome-wide characterisation using the CRISPr-Cas9 

technology, defining around 200 previous uncharacterised essential genes (Sidik 

et al., 2016). The tetracycline-inducible system (Meissner et al., 2001; Meissner 

et al., 2002; van Poppel et al., 2006) and the U1-mediated gene-silencing 

system (Pieperhoff et al., 2015) function at the transcriptional level.  In 

addition, systems can control expression at the protein level, such as the 

degradation domain fusion system (Herm-Gotz et al., 2007) and the auxin 

inducible degradation (AID) system implemented in Plasmodium (Kreidenweiss et 

al., 2013; Philip & Waters, 2015). 

1.13.1 Gene knockdown 

There are various gene knockdown techniques available in Toxoplasma gondii.  

Here, I will focus on the tetracycline-inducible system (Figure 1-13 B).  The 

tetracycline-transactivator system (Tet-TA) (Meissner et al., 2002) is an adapted 

version of the tetracycline-repressor system (Tet-R) first described in 2001 

(Meissner et al., 2001).  This system is comprised of two regulatory elements.  

The tetracycline-responsive promoter (TRE) is placed close to the promoter of 

the gene of interest (GOI).  The other factor is the TetO operator sequences that 

were placed upstream of a minimal promoter termed the tetracycline-

dependent transactivator domain (TATi).  Transcription of the gene is activated 

when the TetO binds to the TRE.  However, when the tetracycline homologue, 

anhydrotetracycline (ATc) is added, this blocks the binding of the TetO to the 

TRE thereby repressing the gene expression (Meissner et al., 2002) (Figure 1-13 

B).  This system was also adapted for studies in Plasmodium (Meissner et al., 

2005). 
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Figure 1-13: Reverse genetic tools in Toxoplasma gondii 

Schematic representations of the three most commonly used genetic tools used in Toxoplasma 
gondii.  A) Control at the genetic level is by the DiCre system. LoxP sites flank the genomic cDNA, 
which is integrated into the genome via double homologous recombination.  The addition of 
rapamycin reconstitutes the two subunits of DiCre recombinase. The gene of interest is excised 
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after rapamycin induction and YFP is expressed.  B) The Tet-inducible system is used to control 
gene expression at the transcriptional level.  Transcription is abolished by the additions of 
anhydrotetracycline (ATc) by preventing the transactivator binding to the Tet promoter, therefore 
silencing transcription.  C) Protein levels are controlled by the ddFKBP destabilisation domain 
system.  Upon addition of Shield-1 the protein of interested is stabilised while in absence of Shield-
1 it is targeted to the proteasome for degradation. 

1.13.2 Rapid regulation of protein stability 

In many cases, suppression or deletion at the genetic level is slow, leading to the 

requirement of a fast inducible system that can rapidly regulate protein stability 

(Jimenez-Ruiz et al., 2014).  The Destabilisation Domain (DD) system works by 

fusing a protein of interest (POI) to a rapamycin-regulated destabilisation 

domain, ddFKBP (Herm-Gotz et al., 2007).  Once the construct in expressed in 

the parasites, the protein is trafficked to the proteasome to be rapidly degraded 

(Figure 1-13 C).  Upon addition of the rapamycin analogue Sheild-1 (Shld1) the 

protein is stabilised (Figure 1-13 C) (Herm-Gotz et al., 2007).  The system can be 

used to degrade proteins rapidly but is also suitable for the generation of 

dominant negative mutants.  Degradation of proteins requires the proteosome, 

which resides in the cytosol, therefore regulation of proteins located in 

organelles will be ineffective (Wang et al., 2016). 

1.13.3 Gene knockouts 

Complete gene removal is required to overcome the leaky expression that 

cannot be controlled by the gene or protein knockdown systems described 

above.  With essential genes, a straight knockout strategy would fail therefore 

the system must be inducible.  With this came the development of the DiCre 

system in Apicomplexa (Figure 1-13 A) (Andenmatten et al., 2012; Collins et al., 

2013), based on the Cre-lox system originally described by Sauer and Henderson 

(1988).  The Cre recombinase enzyme is split into two inactive polypeptides, 

each fused to a different rapamycin binding proteins (FKBP12 and FRB) (Jullien 

et al., 2007; Jullien et al., 2003).  The addition of the ligand, rapamycin, brings 

the FRB and FKBP together and thus reconstituting the function of Cre which 

results in the LoxP-flanked gene of interest to be excised (Figure 1-13 A) (Jullien 

et al., 2007).  The DiCre cassette was expressed in wild-type T. gondii parasites 

(termed RH DiCre ∆Ku80) and shown to excise a LoxP-flanked lacZ to 90 % 

(Andenmatten et al., 2012). 
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The system works by generating a geneswap vector consisting of ~2 kb region of 

both 5’ and 3’ UTR sequences for homologous recombination.  The cDNA of the 

gene of interest (GOI) is flanked by LoxP sites, and a reporter cassette of YFP is 

placed downstream of the stop codon of the cDNA (Andenmatten et al., 2012).  

This geneswap vector is integrated via double homologous recombination into a 

RH DiCre ∆Ku80 parasite strain (Figure 1-13 A).  Once integrated into the 

genome of the parasite, the addition of rapamycin controls the site-specific 

recombination.  The addition of rapamycin excises the GOI, bringing the YFP 

under the control of the endogenous promoter (Figure 1-13 A) (Andenmatten et 

al., 2012).  The DiCre system is advantageous since there is no leaky expression 

of the gene and can be controlled by the endogenous promoter, however, this 

system is not reversible (Jimenez-Ruiz et al., 2014). 

These systems have been used extensively in Toxoplasma gondii over the years.  

However, functional analysis of one gene by all of these techniques is rare.  For 

example, a component of the parasites motor complex, the myosin A motor has 

been characterised by all techniques described above. Suppression of myoA 

using the Tet-transactivator system (Figure 1-13 B) caused a remarkable 

reduction in gliding motility and invasion, which led to the conclusion that MyoA 

is essential for powering these processes (Meissner et al., 2002).  Moreover, the 

parasites that remained motile and invasive were attributed to the residual 

expression of MyoA, a characteristic of this technology (Meissner et al., 2002).  

While the over-expression of ddFKBP-myoA-tail construct caused a reduction in 

invasion (Figure 1-13 C), it also highlighted a role of MyoA during intracellular 

replication (Agop-Nersesian et al., 2009).  This raised the possibility that MyoA is 

important for IMC biogenesis and that the ddFKBP caused a dominant negative 

phenotype (Agop-Nersesian et al., 2009).  Interestingly, analysing the role of 

MyoA with the DiCre system (Figure 1-13 A) indicated that while MyoA was 

important for gliding motility and invasion, it was not essential, as a clonal myoA 

KO line could be maintained in culture (Andenmatten et al., 2012; Egarter et 

al., 2014). 

The DiCre system has been successfully employed to characterise many 

components of the acto-myosin motor complex that were previously deemed 

essential.  Remarkably, re-addressing the question of essentiality demonstrated 

that null mutants could be generated and maintained in culture for not only 



Chapter 1 Introduction 73 
 

MyoA but also mic2 and ama1 (Andenmatten et al., 2012; Bargieri et al., 2013).  

Moreover, other components of the motor complex (ACT1, MLC1, ALD1, GAPs 40, 

45, 50 and ROM4 and 5) have been successfully removed and shown to have an 

important but non-essential role in motility and invasion (Egarter et al., 2014; 

Harding et al., 2016; Rugarabamu et al., 2015; Shen & Sibley, 2014).   

1.14 Aim of study 

Currently, movement by apicomplexan parasites is thought to be a parasite-

driven process that is dependent on its acto-myosin gliding machinery (Keeley & 

Soldati, 2004).  This motor complex, consists of a myosin A motor, the myosin 

light chain 1 (MLC1) and glideosome associated proteins (GAP40, GAP45 and 

GAP50), anchored to the inner membrane complex and plasma membrane 

(Soldati & Meissner, 2004).  A core component of the complex is thought to be 

the MyoA motor (Meissner et al., 2002), which functions with short actin 

filaments (Dobrowolski & Sibley, 1996; Sahoo et al., 2006) to generate the force 

required for motility.  The force is transmitted to key components of the gliding 

machinery that bridges the interface between the parasites and substrate 

(Huynh & Carruthers, 2006; Tonkin et al., 2011).  Recent data using the newly 

established DiCre system has revealed that functional knockouts of all the key 

components of this gliding machinery, including actin, are dispensable for both 

gliding motility and invasion (Andenmatten et al., 2012; Bargieri et al., 2013; 

Egarter et al., 2014; Shen & Sibley, 2014).  However, the role of actin has come 

under increased scrutiny due to conflicting results and interpretations 

(Andenmatten et al., 2012; Drewry & Sibley, 2015; Egarter et al., 2014).  

Moreover, there is conflicting data regarding the polymerisation kinetics of 

actin, between and isodesmic or cooperative process (Sahoo et al., 2006; 

Skillman et al., 2013). 

Here, I will use both the conditional act1 KO and actin-modulating drugs to 

readdress the role of actin throughout the lytic lifecycle of Toxoplasma gondii.  

Moreover, I also aim to understand when actin is depleted in the conditional 

act1 KO and how the levels of actin affect the phenotypes to provide an 

indication of whether actin is polymerised in an isodesmic process or cooperative 

manner.  As actin filaments have not been detected in the parasites without the 

use of modulating drugs, I will also attempt to find filaments using novel 
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chromobodies specific to actin.  Finally, I will evaluate the role of the acto-

myosin system in motility and elucidate an alternative mechanism that could 

generate a force and drive motility in an actin/myosin-independent manner. 

 

Aims in summary: 

 To analyse the functions of actin during the lytic lifecycle of Toxoplasma 

gondii;  

 Quantify the level of actin in Toxoplasma gondii required during its lytic 

lifecycle; 

 Address how actin polymerises, in either a cooperative or isodesmic 

manner; 

 Visualise actin filaments within Toxoplasma gondii;   

 Identify a potential new model for Toxoplasma motility with relation to 

the parasites acto-myosin system. 
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Chapter 2 Materials and Methods 

2.1 Equipment 

Table 2-1: Equipment used in this study 

Applied Precision  DeltaVision Core microscope, DeltaVision RT 
microscope  

BD Biosciences  Syringes, Needles (23 gauge), FACS tubes with 
cell strainer cap  

BioRad  Agarose gel electrophoreses equipment, UV 
Transilluminator, Gel documentation imaging 
system, Gene Pulser Xcell, Micropulser, SDS-
PAGE system, Blotting apparatus (Transblot SD 
and Mini transblot electrophoretic transfer cell)  

Eppendorf  PCR thermocycler (Mastercycler Epigradient), 
Thermomixer compact  

Fisher Scientific  Ultrasound water bath FB15047 
FEI Tecnai T20 transmission electron microscope 
Grant  Water bath  
Heraeus Instruments  Incubator  
Ibidi 15 µ-Slide 10.8Luer collagen IV chambers 
Jeol, Japan Jeol 6400 scanning electron microscope 
Kd Scientific Syringe pump 
Kuehner  Shaking incubator (ISF-1-W)  
LiCor Odyssey CLx 
Millipore  MilliQ water deionising facility  
Photometrics  CoolSNAP HQ2CCD camera  
Sanyo  CO2- incubator tissue culture  
Sartorius  Analytical balances  
Sciquip  Sigma 6K 15 centrifuge (1150 rotor and 12500 

rotor)  
StarLab ErgoOne Single & Multi-Channel pipettes, StarPet 

Pro pipette controller 
Stuart  Heat block, Roller mixer, Orbital Shaker  
Thermo Scientific  CO2- incubator tissue culture, Nanodrop 

spectrophotometer, Centrifuge (sorvall legend 
XFR), Table top centrifuge Heraeus Pico 21, 
Tabletop cooling centrifuge Heraeus Fresco 21  

Toshiba Terca R804-11E 
Zeiss  Axioskop 2 (mot plus) fluorescence microscope 

with Axiocam MRm CCD camera, Primo Vert 
(light microscope), Axiovert 40 CFL fluorescence 
microscope with Axiocam ICc1, Axiovert A1 
fluorescence microscope with Axiocam IMc1, 
ELYRA PS.1 Super-resolution microscope with 
sCMOS pco SIM camera 

 

 

 



Chapter 2 Materials and Methods 76 
 

2.2 Computer software 

Table 2-2: Computer software 

Adobe Systems Inc.  Photoshop CS4 and Illustrator CS4  
AcaClone Software  pDraw32  
Applied Precision  SoftWoRx Explorer and SoftWoRx suite  
BitPlane Imaris version 8.2.1 
Carl Zeiss Microscopy Zen Black and Zen Blue 
CLC Bio CLC Genomics Workbench 6 
CellProfiler Analyst software Cell Profiler 2.1.1  
Fiji  Fiji (is just ImageJ) (Schindelin et al., 2012) 
GraphPad Software Inc.  Prism 6.0  
Ibis Biosciences  BioEdit Sequence Alignment tool 
LiCor Image Studio 5.0 
Microsoft Corporation  Windows 7, Microsoft Office 2007, 2010  

National Center for Biotechnology 
Information (NCBI) 

Basic Local Alignment Search Tool (BLAST) 

National Institute of Allergy and 
Infectious Diseases (NIAID) 

ToxoDB, EuPathDB and PlasmoDB 

National Institutes of Health  ImageJ 1.34r software  
New England Biolabs NEBaseChanger 
OligoCalc Oligo Analysis tool, Avialable at: 

http://www.basic.northwestern.edu/biotools/ol
igocalc.html 

PerkinElmer  Volocity 3D Image Analysis  

Savvy 
 

Plasmid generator tool, Available at: 
http://www.rf-cloning.org/savvy.php  

Schrodinger PyMOL v1.7.4 
Thomson Scientific  Endnote X6  
Wayne Davis, University of Utah ApE Plasmid Editor v2.0.46, Available at: 

http://biologylabs.utah.edu/jorgensen/wayned/
ape/  

 

2.3 Biological and chemical reagents 

Table 2-3: Biological and chemical reagents 

Thermo Fisher Scientific Bovine serum albumin, ethylene diamine 
tetraacetic acid, glycerol, glycine, methanol, 
Tris, Sodium Chloride, PageRuler Prestained 
Protein Ladder, 40 nM FluoSpheres® Carboxylate-
Modified Microspheres, Platinum Taq DNA 
Polymerase High Fidelity 

Electron Microscopy Sciences 20 % Paraformaldehyde (PFA) 
Formedium Tryptone, yeast extract 
LiCor Chameleon Duo Pre-stained Protein Ladder 
Life Technologies  Phosphate buffered saline (PBS), Trypsin/EDTA 

(0.05 %), DNaseI, DNA ladder (1 kb plus), NuPage 
SDS loading buffer and reducing agent, ultrapure 
agarose  

Marvel  Milk powder (skimmed)  
Melford Agar, dithiothreitol, IPTG, X-Gal  
New England Biolabs  All restriction endonucleases and associated 

http://www.basic.northwestern.edu/biotools/oligocalc.html
http://www.basic.northwestern.edu/biotools/oligocalc.html
http://www.rf-cloning.org/savvy.php
http://biologylabs.utah.edu/jorgensen/wayned/ape/
http://biologylabs.utah.edu/jorgensen/wayned/ape/
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buffers, T4 DNA ligase, Taq polymerase, 
Phusion® High-Fidelity DNA Polymerase, Calf 
Intestinal Phosphatase (CIP)  

Pheonix Research Products  GelRed nucleic acid stain  
Promega  pGEM®-T Easy Vectors system  
Sigma  Ammonium persulfate, bromophenol blue sodium 

salt, casein hydrolysate, Dulbecco’s Modified 
Eagle Medium (DMEM), ficoll, ethylene glycol 
tetra-acetic acid, Ponceau S, isopropanol, 
sodium dodecyl sulfate (SDS), dimethyl sulfoxide 
(DMSO), N,N,N’,N’-tetramethylethylenediamine 
(TEMED), triton X-100, rapamycin, β-
mercaptoethanol, calcium ionophore A23187, 
Tween20, Giemsa stain, RNase-ZAP, L-
glutathione reduced, adenosine 5′-triphosphate 
disodium salt hydrate, glutamine, 30 % acryl-
bisacrylamide mix, sodium deoxycholate, 
K2HPO4, magnesium chloride  

Southern Biotech  Fluoromount G (with and without DAPI)  
VWR  CaCl2*2H2O, glacial acetic acid, ethanol, 

methanol, HEPES, potassium chloride, Na2HPO4, 
KH2PO4  

Zeiss  Immersion oil  

  

2.4 Drugs and antibiotics  

Table 2-4: Drugs and antibiotics 

Sigma Ampicillin sodium salt, Gentamicin, Xanthine, 
Chloramphenicol (CAT), Mycophenolic acid 
(MPA), 6-Thioxanthine, Pyrimethamine, 
Cytochalasin D, Latrunculin A, SMIFH2,  

Merck Millipore Ciliobrevin D 
Molecular Probes Jasplakinolide, Latrunculin B 

 

2.5 Nucleic acid extraction kits 

Table 2-5: Nucleic acid extraction kits 

Qiagen  Spin Mini-Prep, Plasmid Midi-Prep, MinElute PCR 
Purification, MinElute Gel Extraction, DNeasy 
Blood and Tissue  

Roche High Pure RNA Isolation, High Pure PCR Product 
Purification 

 

2.6 Buffers, solutions and media 

Table 2-6: Buffers and media for bacterial culture 

LB medium  10 g/l tryptone, 5 g/l yeast extract, 5 g/l NaCl  
LB agar  1.5 % (w/v) agar in LB medium  
SOB medium  2 % tryptone (w/v), 0.5 % yeast extract (w/v), 
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0.05 % NaCl (w/v), 2.5 mM KCl, 10 mM MgCl2  
SOC medium  20 mM glucose in SOB medium  
NYZ broth  5 g/l NaCl, 2 g/l MgSO4*7H20, 5 g/l yeast extract, 

10 g/l casein hydrolysate, pH adjusted to 7.5 
with NaOH  

Transformation Buffer I (TfbI) 100 mM RbCl, 50 mM MnCl2*4H2O, 30 mM 
Potassium acetate, 10 mM CaCl2*2H2O, 15 % 
Glycerol, pH 5.8 with acetic acid 

Transformation Buffer II (TfbII) 0.2 M MOPS, 10 mM RbCl, 75 mM CaCl2*2H2O, 15 
% Glycerol, pH 6.5 with NaOH 

Ampicillin (1000X)  100 mg/ml in H2O  
IPTG (100 μl/petri dish)  100 mM IPTG in H2O  
X-Gal (20 μl/petri dish)  50 mg/ml in N,N-dimethylformamide  

 

Table 2-7: Buffers for DNA analysis 

50X TAE buffer 2 M Tris, 0.5 M Na2EDTA, 5.71 % glacial acetic 
acid (v/v) 

5X Loading dye 15 % Ficoll (v/v), 20 mM EDTA, 0.25 % 
Bromophenol Blue (w/v) in H2O 

NEB© 1 kb DNA ladder 150 μl 1kb ladder (1 μg/μl), 300 μl 5X DNA 
loading buffer, 1050 μl H2O 

Thermo© 1 kb+ DNA ladder 150 μl 1kb+ ladder (1 μg/μl), 300 μl 5X DNA 
loading buffer, 1050 μl H2O  

 

Table 2-8: Buffers for protein analysis 

RIPA buffer  50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1 mM 
EDTA, 0.5 % sodium deoxycholate, 0.1 % SDS 
(w/v), 1 % triton X-100 (v/v)  

4X separating gel buffer  1.5 M Tris-HCl (pH 8.8), 0.4 % SDS (w/v)  
Separating gel  8-15 % of 30 % acryl-bisacrylamide, 25 % 4X 

separating gel buffer, 0.1 % APS 10 % (w/v), 0.2 
% TEMED (v/v)  

4X stacking gel buffer  0.5 M Tris/HCl (pH 6.8), 0.4 % SDS (w/v)  
Stacking gel  4 % of 30 % acryl-bisacrylamide, 25 % 4X stacking 

gel buffer (v/v), 0.1 % APS 10 % (w/v), 0.2 % 
TEMED (v/v)  

SDS PAGE running buffer  25 mM Tris, 192 mM glycine, 0.1 % SDS (w/v)  
Transfer buffer for wet blot  48 mM Tris, 39 mM glycine, 20 % methanol (v/v)  
Blocking solution  50 % Odyssey blocking buffer in TBS  
Washing solution or TBS-T  0.2 % tween (v/v) in TBS  
1 M DTT 3.085 g 1,4-dithio-DL-threitol (DTT) in 20 ml 10 

mM NaAc (pH 5.2) 
10 % APS 1 g ammonium persulfate in 10 ml H2O 
PageRuler Prestained protein 
ladder 

62.5 mM Tris-H3PO4 (pH 7.5 at 25°C), 1 mM 
EDTA, 2 % SDS, 10 mM DTT, 1 mM NaN3 and 33 % 
glycerol. 

Li-Cor© Chameleon® Duo protein 
ladder 

Not supplied 
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Table 2-9: Buffers and media for Toxoplasma gondii and mammalian cell culture 

Dulbecco’s modified Eagles 
medium (DMEMCOMPLETE) 

500 ml DMEM, 10 % FBS (v/v), 2 mM glutamine, 20 
μg/ml gentamicin  

Dextran Sulfate Media DMEMCOMPLETE supplemented with 2.5 % Dextran 
sulfate (w/v) 

10 x PBS 137 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4, 1.8 mM 
KH2PO4 (pH 7.4) 

1 x Freezing solution  25 % FBS (v/v), 10 % DMSO (v/v) in DMEM  
Electroporation buffer (Cytomix) 10 mM K2HPO4/KH2PO4, 25 mM HEPES, 2 mM EGTA 

pH 7.6, 120 mM KCl, 0.15 mM CaCl2, 5 mM MgCl2 
with 5 mM KOH adjusted to pH 7.6,  
3 mM ATP, 3 mM GSH  

Giemsa staining solution  10 % Giemsa stain (v/v) in H2O  
Chloramphenicol  10 mg/ml in ethanol (30.9 mM)  
MPA (mycophenolic acid)  12.5 mg/ml in methanol (39 mM) 
Xanthine   20 mg/ml in 1 M KOH (1.31 mM) 
Pyrimethamine   1 mM in ethanol  
Rapamycin   50 μM in DMSO  
Calcium ionophore A23187  20 μM in DMSO  
Sheild-1 1 mM in 70 % EtOH 
6-thioxantine  25 mg/ml in 0.3 M NaCl (148.65 mM) 
Negative hxgprt selection media  10 mM HEPES, 1 % dialysed FBS, 1.36 % 6-

thioxanthine, 1.36 % 0.3 M HCl, 2 mM glutamine, 
20 μg/ml gentamicin in DMEM  

FACS buffer  1 % FBS, 1 mM EDTA in PBS  
PFA fixing solution  4 % PFA (w/v) in PBS  
Permeabilisation solution (Harsh) 2 % BSA (w/v), 0.2 % triton X-100 (v/v) in PBS  
Permeabilisation solution 
(Gentle) 

2 % BSA (w/v), 0.1 % Saponin (w/v) in PBS 

Blocking solution  2 % BSA (w/v) in PBS  
Hanks' balanced salt solution 
(HBSS)  

5.33 mM potassium chloride, 0.44 mM KH2PO4, 
4.17 mM sodium bicarbonate, 138 mM sodium 
chloride, 0.338 mM Na2HPO4, 1mM EGTA (pH= 
7.3), 12.5 mM HEPES  

Endo buffer  44.7 mM K2SO4, 10 mM Mg2SO4, 106 mM sucrose, 5 
mM glucose, 20 mM Tris, 0.3 5 % (w/v) BSA, pH 
8.2  

Gliding buffer 1 mM EGTA, 100 mM HEPES in HBSS 
3D Motility Media 1X Minimum Essential Medium lacking sodium 

bicarbonate, 1% (v/v) FBS, 10 mM HEPES pH 7.0 
and 10 mM GlutaMAX L-alanyl-L-glutamine 
dipeptide, supplemented with 0.3 mg/ml Hoechst 
33342 

Phosphate buffer (0.1 M) 10.9 g NA2HPO4, 3.2 g NaH2PO4 in 500 ml H2O, pH 
7.4 

EM fixation solution 2.5 % Glutaraldehyde (v/v), 4 % Paraformaldehyde 
(w/v) in 0.1 M Phosphate buffer, pH 7.4 
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2.7 Antibodies 

 

Table 2-10: Primary antibodies 

  
Dilution 

 Name Species IFA WB Source 

T. gondii ACT11 Rabbit 1:1250 1:500 Sibley, L. D. 

T. gondii ACT12 Rabbit 1:250 1:2000 Sibley, L. D. 

ACTN05 (C4) ab3280 Mouse 1:500 1:2000 ABCAM 

P. falciparum ACT1, Ep1 Rabbit 1:1000 1:1000 Scherf, A. 

P. falciparum ACT1, Ep2 Rabbit 1:500 1:1000 Scherf, A. 

T. gondii ACT1 Mouse 1:100 1:500 Soldati, D. 

T. gondii ACT1polyclonal Rabbit 1:500 1:500 Baum, J. 

T. gondii ACT1monoclonal Mouse 1:500 1:500 Baum, J. 

JLA-20 Mouse 1:100 n.t. Sigma 

β-actin Rabbit 1:250 1:2000 Sigma 

Phalloidin-AlexaFlour350  1:1000 n.t. Molecular Probes 

Phalloidin-AlexaFlour488  1:1000 n.t. Molecular Probes 

Phalloidin-AlexaFlour594  1:1000 n.t. Molecular Probes 

DNase1-AlexaFluor594  1:2000 n.t. Molecular Probes 

Aldolase Rabbit 1:2000 1:3000 Sibley, L. D. 

Catalase Rabbit (-) 1:3000 Soldati, D. 

AMA-1 Mouse 1:500 n.t. Ward, G. 

Mic2 6D10 Mouse 1:500 n.t. Carruthers, V. 

Mic3 T82C10 Rabbit 1:500 n.t. Lebrun, M. 

Rop1 Mouse 1:200 n.t. Sibley, L. D. 

Rop5 T53E2 Mouse 1:1000 n.t. Dubremetz, J.F. 

RON4 TS6H1 Rabbit 1:500 n.t. Lebrun, M. 

GAP40 Rabbit 1:250 n.t. Soldati, D. 

GAP45 Rabbit 1:1000 n.t. Soldati, D. 

Gra1 Mouse 1:500 n.t. Delauw, M. F. 

Gra2 Rabbit 1:500 n.t. Delauw, M. F. 

Gra5 Rabbit 1:500 n.t. Delauw, M. F. 

Gra7 Rabbit 1:500 n.t. Delauw, M. F. 

IMC1 Mouse 1:1000 n.t. Ward, G. 

ISP1 Mouse 1:1000 n.t. Bradley, P. 

MLC1 Rabbit 1:2000 n.t. Soldati, D. 

SAG1 (Toxoplasma)  Rabbit 1:1000 n.t. ABCAM 

CPN60 Rabbit 1:1000 n.t. Sheiner, L. 

HSP60  Rabbit 1:2000 n.t. Sheiner, L. 

Tom40 Rabbit 1:2000 n.t. van Dorreen, G. 

GFP Mouse 1:500 1:2000 Roche 

HALO Monoclonal Mouse - 1:1000 Promega 

HALO Polyclonal Rabbit 1:500 - Promega 

n.t.=not tested, (-)=does not react 
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(-) = Does not react 

 

2.8 Oligonucleotides 

Oligonucleotides or primers were used to amplify specific regions of DNA by PCR 

(See Chapter 2.11.5).  The primers were designed carefully with the assistance 

of OligoCalc analysis tool.  Oligonucleotides were planned with a specific 

criterion; an optimal GC content (40-60 %), a melting temperature between 55 

and 65 °C and an overall length between 17 and 24 bases long, avoiding any 

primer dimers.  All oligonucleotides were synthesised and purchased from 

Eurofins© MWG Operon. 

Table 2-12: Main oligonucleotides used in this study 

Name Sequence 5’ → 3’ Purpose 

Act cDNA fw GGGAATTCGACAAAATGGCGGATGAAGAAGTGCAAGCC Int PCR 1-1’ 

Act cDNA rv CGTTAATTAAAAGCACTTGCGGTGGACGATGCTCGGG Int PCR 1-1’ 

Act1integ5' fw CGTCACACCCGCTCAGCCAAAGG  Int PCR 2-2’ 

YFP int rv ATGGGCACCACCCCGG  Int PCR 2-2’ 

HX fw GCTACGACTTCAACGAGATGTTCCGCG  Int PCR 3-3’ 
Act1integ3' rv GGCTCAAACATGACACGTGTGC Int PCR 3-3’ 

 

Table 2-11: Secondary antibodies  

  Dilution  

Name Species IFA WB Source 

Alexa Fluor 350 α-mouse Goat 1:3000 (-) Life Technologies 

Alexa Fluor 488 α-mouse Goat 1:3000 (-) Life Technologies 

Alexa Fluor 594 α-mouse Goat 1:3000 (-) Life Technologies 

Alexa Fluor 633 α-mouse Goat 1:3000 (-) Life Technologies 

Alexa Fluor 350 α-rabbit Goat 1:3000 (-) Life Technologies 

Alexa Fluor 488 α-rabbit Goat 1:3000 (-) Life Technologies 

Alexa Fluor 594 α-rabbit Goat 1:3000 (-) Life Technologies 

Alexa Fluor 633 α-rabbit Goat 1:3000 (-) Life Technologies 

Alexa Fluor 350 α-rat Goat 1:3000 (-) Life Technologies 

Alexa Fluor 488 α-rat Goat 1:3000 (-) Life Technologies 

Alexa Fluor 594 α-rat Goat 1:3000 (-) Life Technologies 

IRDye680RD α-Mouse  Goat (-) 1:5000 Li-Cor 

IRDye800CW α-Mouse Goat (-) 1:5000 Li-Cor 

IRDye680RD α-Rabbit  Goat (-) 1:5000 Li-Cor 

IRDye800CW α-Rabbit  Goat (-) 1:5000 Li-Cor 
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2.9 Expression vectors 

 

Figure 2-1: Cloning strategy for the LoxPAct1CDr plasmid 

The act1 cDNA containing the nucleic acid mutations Cytosine 407 Guanine (black line in act1CDr  
map, yellow block) which confers the resistance to cytochalasin D (CD) was synthesised by 
CloneTek and provided in a pUC57 vector. The act1 cDNA from the original LoxPAct1 plasmid 
(Andenmatten et al., 2012) was replaced with the act1CDr cDNA through a PacI and XmaI digestion.   

 

Figure 2-2: Vector maps for chromobody expression plasmids. 
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A) Chromobody-Halo plasmid was generated by Dr. Javier Periz and used for transient 
transfections.  For Stable transfections, the hxgprt selectable marker was digested from LoxPAct1 
plasmid (Figure 2-1) by SacII and inserted into the chromobody-Halo-HX plasmid within the SacII 
site.  B) The chromobody-RFP plasmid was generated by Dr. Javier Periz and used to transient 
transfections.  The selectable marker for this plasmid was the chloramphenicol gene (CAT).  
Expression of all plasmids was under the p5RT70 constitutive promoter (Soldati & Boothroyd, 
1995). 

2.10 Bacterial strains (Escherichia coli) 

All bacterial strains used in this study were chemically competent, either 

homemade or commercially bought and stored at -80 °C.  

Table 2-13: Escherichia coli strains 

DH5α™ New England 

BioLabs® 

fhuA2 Δ(argF-lacZ)U169 phoA glnV44 Φ80 
Δ(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 
hsdR17 

One Shot TOP10® ThermoFisher 
Scientific™ 

F- mcrA Δ( mrr-hsdRMS-mcrBC) Φ80lacZΔM15 
Δ lacX74 recA1 araD139 Δ( araleu)7697 galU 
galK rpsL (StrR) endA1 nupG 

XL10-Gold® Stratagene™ TetrD(mcrA)183 D(mcrCB-hsdSMR-mrr)173 
endA1 supE44 thi-1 recA1 gyrA96 relA1 lac 
Hte [F´ proAB lacIqZDM15 Tn10 (Tetr) Amy 
Camr]. 

 
Home-made chemically competent DH5α™ bacteria were produced using the 

methods described in Green and Rogers (2013).  In summary, untransformed 

DH5α (NEB) were streaked onto an LBAGAR plate without ampicillin and grown 

overnight.  A single colony from this was then cultured in 50 ml LB media 

without ampicillin at 37 °C, shaking overnight. The culture was then added to 1 

L of LB media and grown to a density of 0.5 OD600 37 °C, shaking.  Cultures were 

cooled to 4 °C for 15 minutes before pelleting the bacteria (4500 rpm).  The 

pellet was resuspended in TfbI and maintained on ice for 15 minutes before 

pelleting again at 400 rpm at 4 °C.  Finally, the pellet was resuspended in TfbII 

and aliquoted into sterile Eppendorf tubes on dry ice and transferred to -80 °C 

for storage. 

2.11 Molecular biology 

2.11.1 Isolation of genomic DNA from Toxoplasma gondii 

Genomic DNA was isolated from extracellular parasites using a Qiagen© DNeasy 

Blood and Tissue kit.  As the act1 KO parasites cannot egress (Egarter et al., 
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2014), large intracellular vacuoles were scratched and put through a 23 G needle 

to release the parasites before DNA isolation.  In all cases, parasites were 

centrifuged (5 minutes, 500 g, 4 °C) and re-suspended in 200 μl PBS.  The 

extraction of gDNA was as the manufacturers protocol described with a final 

elution volume of 100 μl ddH2O. 

2.11.2 Isolation of RNA from Toxoplasma 

RNA was extracted from extracellular parasites, where each 6 cm culture dish 

gave approximately 2x107 tachyzoites/ml.  Parasites were centrifuged at 600 g 

for 5 minutes at 4 °C, after which the samples were kept on ice.  Total RNA was 

isolated from the parasite pellet using the PureLink RNA mini-kit (Roche©) 

following the manufacturer’s stated protocol.  Throughout the RNA extraction, 

all equipment and gloves were cleaned with RNaseZAP™ (Sigma©).  Isolated RNA 

was quickly analysed for integrity by running in a standard TAE-based agarose gel 

(6 ng per lane) for 5 minutes.  We were looking for the presence of two distinct 

bands; 28S and 18S RNA (Aranda et al., 2012). Final pure RNA samples were 

quantified using the NanoDrop™ spectrophotometer (Thermo Scientific©) (see 

chapter 2.11.4). 

2.11.3 Making cDNA (reverse transcription) 

Complementary DNA (cDNA) was prepared with 1 μg of RNA as a template for 

reverse transcription.  cDNA synthesis was carried out using Invitrogen© reverse 

transcriptase (SuperScript™ III) and random primer sets following steps described 

in the manufacturer's protocol.  For the reverse transcription reaction, an initial 

incubation step of 25 °C for 10 minutes was followed by 15-minute incubation at 

50 °C and final step of 85 °C to terminate the reaction. 

2.11.4 Nucleic acid concentration 

Nucleic acid concentrations were quantified using a NanoDrop™ spectrophotometer 

following the manufacturer’s guidelines. The NanoDrop™ assesses the purity of 

nucleic acids within the sample by determining if a nucleic acids sample is 

contaminated with proteins or other chemical contaminants (Desjardins & Conklin, 

2010). DNA is considered as ‘pure’ if the 260/280 nm ratio is approximately 1.8, 

whereas a ratio is around 2.0 is accepted as ‘pure’ for RNA samples.  Moreover, 
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nucleic acid samples are also considered as ‘pure’ if the 260/230 nm ratio is 

between 2.0-2.2, while ratios out with this range indicate the presence of 

contaminants usually proteins or phenol. 

2.11.5 Polymerase chain reaction 

The polymerase chain reaction was used for various purposes during this study: 

the amplification of DNA fragments for molecular cloning, colony screening in 

transformed bacteria or testing genetically modified Toxoplasma strains for the 

presence of transfected DNA.  However, every PCR conducted contained the 

necessary components at the desired concentration described in (Table 2-14).  

Once prepared, the PCR reaction was carried out in a thermocycler outlined in 

(Table 2-15).  Unless otherwise stated, the PCR products were run on a 1 % 

agarose gel (in 1 x TAE buffer) to check for amplification of the correct size. 

Table 2-14: Components of a PCR mix  

Component 
Desired 

concentration 

Platinum HiFi Buffer or ThermoPol buffer (10 x) 1 x 

dNTPs (10 mM) 200 µM 

MgSO4 (50 mM) 2 mM 

Forward Oligonucleotide (100 pmol/µl) 0.4 µM 

Reverse Oligonucleotide (100 pmol/µl) 0.4 µM 

Platinum HiFi taq Polymerase or taq DNA Polymerase (5 U/µl) 1 Unit 

DNA  (~1-50 ng) 

H2O To a final volume of 25 µl ---- 

 

Table 2-15: PCR thermocycler program  

Temperature Time Step Cycles 

95 °C 5 minutes Initial denaturing 1 
95 °C 30 seconds Denaturing 

25 - 30 55-65 °C*  30 seconds Annealing 
68 °C 1 minute per 1 kb Elongation 
68 °C 10 minutes Final elongation 1 
4 °C ---- Storage Hold 
* The optimal temperature is dependent on the Tm of the oligonucleotide (I used 5 °C 
below the stated Tm for the oligonucleotides from OligoCalc). 

2.11.5.1 Molecular cloning 

For molecular cloning, specific primers were used to amplify DNA fragments 

from gDNA, cDNA or plasmid DNA.  Invitrogen© Platinum® HiFi taq polymerase 
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was used to amplify products for molecular cloning due to its high proof-reading 

capability.  The PCR reactions were prepared according to the manufacturer’s 

guidelines as described in Table 2-14 using Platinum® HiFi taq polymerases and 

respective buffers.  For the reaction, the thermocycler was set for 30 cycles 

with the rest of the set-up as described in Table 2-15. 

2.11.5.2 Bacterial colony screening 

Colony PCRs were used to screen a large number of bacteria colonies for the 

presence of the transformed plasmid.  For this, specific primers were designed 

with around 150 bp upstream and downstream of the target fragment within the 

plasmid to allow the discrimination between a plasmid that integrated the 

expected fragment versus a plasmid that had no insert.  To test for positive 

transformations, a PCR master mix was made for a minimum of 24 colonies. This 

contained the components described in Table 2-14 and NEB® Thermopol® taq 

polymerase and buffer.  Bacteria colonies were picked from an LBAGAR plate, 

spotted onto a fresh LBAGAR + ampicillin plate and then re-suspended in 25 μl of 

PCR master mix.  The PCR reaction was carried out as described in Table 2-15 

with the only adjustment to reduce the number of cycles to 25. 

2.11.5.3 Integration PCR 

To confirm that exogenous DNA was expressed in T. gondii or that Cre-mediated 

excision had occurred, gDNA was extracted from the parasites (see chapter 

2.11.1) and used as a template for PCR amplification.  The reaction comprised of 

the components described in Table 2-14 and used both the Thermopol® buffer 

and NEB® taq polymerase.  Note, additional MgSO4 was not added to the reaction 

mix as the Thermopol® buffer already contains 2 mM MgSO4.  The thermocycler 

was set up as stated for 25 cycles in Table 2-15 with no other alterations. 

2.11.6 Agarose gel electrophoresis 

Agarose gel electrophoresis separates DNA fragments based on fragment sizes. 

Agarose gels were made up to a concentration between 0.8 – 2 % agarose (w/v) 

in 1 x TAE buffer (see chapter 2.6) by boiling in a microwave.  The addition of 

0.01 % GelRed allowed the visualisation of the DNA fragments later on. 
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Sample DNA was mixed with 5x loading dye and subsequently loaded into a well 

along with 5 μl of 1 kb DNA ladder (NEB®) or 1 kb plus DNA ladder (Thermo 

Scientific™). 

2.11.7 Restriction endonuclease digest 

Restriction enzymes are widely used to cut DNA at site-specific palindromic 

sequences providing blunt or sticky ends.  Throughout this study, restriction 

endonucleases were used extensively for three purposes: molecular cloning, 

diagnostic purposes or linearising plasmid DNA before transfections.  Throughout 

this study, I used restriction enzymes and their respective buffer supplied by 

NEB®. 

For molecular cloning, around 2 µg of PCR product and 0.5 µg vector were 

digested with restriction enzymes according to the manufacturer’s protocol for 2 

hours at the respective temperature. 

Plasmid DNA isolated from the bacteria was verified using diagnostic digests.  

Around 100 ng DNA was digested with the respective enzymes for 2 hours before 

running on an electrophoresis gel. 

For transfections, plasmid DNA (either 60 µg for BioRad© or 20 µg for AMAXA© 

transfections) was linearised with a single cutting enzyme for 3 hours at the 

respective temperature. 

2.11.8 Dephosphorylation of digested DNA fragments 

Alkaline calf intestinal phosphatase (CIP) from NEB® was added to vector at the 

end endonuclease digestion.  This enzyme catalyses the dephosphorylation of 

the 5’ end of DNA.  This reaction reduces the likelihood of the vector self-

ligating, although still allowing ligation of insert DNA into the CIP treated vector. 

2.11.9 DNA extraction from agarose gel 

Qiagen© MinElute DNA extraction kit was used to isolate DNA from within an 

agarose gel.  The desired band was excised from the gel using a sterile scalpel 

blade over a UV trans-illuminator.  The gel fragment was placed in a fresh 
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Eppendorf tube and weighed.  The isolation of the DNA from the gel fragment 

was conducted as stated in the manufacturer’s protocol, eluting finally with 20 

μl ddH2O. 

Following this, 0.5 μl was run on an agarose gel to determine if the purified DNA 

sample is uncontaminated with other DNA fragments.  At this stage, the NEB® 1 

kb DNA ladder allows a rough estimation of DNA quantity. 

2.11.10 Ligation of DNA fragments 

DNA ligase is used to join two fragments of DNA covalently (insert and plasmid 

backbone).  It catalyses the formation of phosphodiester bonds between the 5’ 

phosphate and 3’ hydroxyl ends in dsDNA and requires ATP as the co-factor. 

PCR amplified products were occasionally sub-cloned into the bacterial 

expression vector, pGEM® T-easy.  pGEM®-T easy vectors contain poly-T 

extensions that allow efficient ligation of poly-A tailed PCR products.  For this, 1 

µl of PCR product and 1 µl pGEM® was mixed with 2X rapid ligation buffer and 

ligase and incubated for 1 hour at room temperature. 

NEB® T4 DNA ligase, derived from the bacteriophage T4, was used to ligate 

inserts into T. gondii expression plasmids.  For a 10 µl ligation reaction, 1 µl of 

T4 ligase and 1 µl ligase buffer (10x) was added along with both insert and 

vector at a molar ratio between 3:1 and 5:1.  The total DNA quantity for the 

reaction did not exceed 120 ng.  Ligations were incubated for 1 hour at 22 °C or 

overnight at 16 °C. 

2.11.11 Plasmid transformation into E. coli 

Chemically competent E. coli (see chapter 2.9) was used to transform the 

ligation mix and amplify the desired plasmid.  Bacterial cells (50 μl) were 

thawed on ice to which 5 µl ligation mixture was added for 20 minutes.  After 

which, the cells were heat-shocked for 30 seconds at 42 °C then returned to the 

ice for a further 2 minutes.  The transformation mix was resuspended in 500 µl 

pre-heated NZY broth and transferred to a 37 °C shaking incubator for 1 hour 

before plating on an LBAGAR plate containing ampicillin and incubated overnight 
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at 37 °C.  Transformed bacterial colonies were screened by a colony PCR (see 

chapter 2.11.5.2). 

2.11.12 Isolating plasmid DNA from E. coli 

Plasmid DNA was isolated from competent bacteria after transformation through 

a series of steps.  The bacteria are pelleted and lysed under alkaline conditions 

to release the nucleic acids. The lysis buffer contains SDS, sodium hydroxide and 

RNase A.  The SDS is used to lyse the bacterial cell wall to release the DNA while 

the sodium hydroxide raises the pH and thus denatures proteins and dissociates 

DNA to single strands.  The RNase A will degrade any RNA contaminants.  During 

this process, plasmid DNA remains supercoiled and can resist these chemicals.  

Next, the lysis buffer is neutralised using a buffer containing potassium acetate 

to neutralise the pH and renatures the plasmid DNA.  At this pH, the SDS 

precipitates proteins and also any chromosomal DNA that will be interacting with 

proteins.  By high-speed centrifugation, all unwanted contaminants from the 

lysis will be pelleted, thus yielding a solution containing the plasmid DNA.  The 

DNA was purified using a silica-gel membrane bound column through a series of 

stringent washes.  Plasmid DNA binds to the silica-gel-membrane where an initial 

wash step is used to remove any remaining cellular debris followed by two 

washes with high ethanol solution to remove the salts from the first isolation.  

The DNA is eluted from the silica gel using molecular grade water. 

2.11.12.1 Small scale extraction (MiniPrep) 

Single colonies from LBAGAR plates were inoculated in 4 ml LB media overnight at 

37 °C.  The pelleted bacteria was resuspended and isolated using Qiagen® Spin 

MiniPrep kit following the manufacturer’s protocol.  The final elution was with 

50 µl ddH2O, yielding between 5-20 µg of plasmid DNA. 

2.11.12.2 Medium scale extraction (MidiPrep) 

For larger yields of plasmid DNA, 50 ml of bacterial culture was grown overnight.  

The plasmid DNA was extracted using Qiagen® Spin MidiPrep kit following the 

manufacturer’s protocol eluting with 200 µl of ddH2O, typically giving yields 

between 50 and 300 µg of plasmid DNA. 
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2.11.13 Site-directed mutagenesis 

To make a specific, intentional single or multiple nucleotide changes in a DNA 

plasmid sequence, a site directed mutagenesis reaction was carried out.  Primers 

were designed using NEBaseChanger software with 5’ end annealing back-to-

back.  Between 1-25 ng/µl of DNA was mixed with NEB® Q5® Hot Start High-

Fidelity 2X Master Mix along with 0.5 µM forward and reverse primers and ddH2O.  

The amplification cycling conditions were similar to those described in Table 

2-15 for PCR amplification.  The changes however are, denaturing step is 

conducted at 98 °C and extension at 72 °C.  After the amplification reaction; 

phosphates are added to the blunt end of then PCR product; then it is ligated, 

and the parental plasmid was digested.  This all occurs through the KLD reaction 

as described in the manufacturer’s protocol.  Finally, this treated plasmid was 

transformed into chemically competent bacteria as described in chapter 

2.11.11.  

2.11.14 Ethanol precipitation 

For transfections, plasmid DNA was purified through a series of ethanol 

precipitation steps.  Plasmid DNA was mixed with 1/10 volume of 3 M sodium 

acetate (pH 5.2) and 3 volumes of ice-cold 100 % ethanol and transferred to -80 

°C for at least 1 hour.  Afterwards, the precipitating DNA was centrifuged for 30 

minutes at 13,000 rpm at 4 °C.  Next, the DNA was then washed twice with ice-

cold 70 % ethanol to remove residual salts.  Finally, the supernatant was 

removed, and the pellet was air dried before the DNA pellet was resuspended in 

either P3 buffer (AMAXA©) or cytomix (Bio-Rad©), depending on which 

transfection machine is to be used. 

2.11.15 DNA sequencing 

Plasmid DNA was sequenced by GATC© Biotech using their LIGHTRUN™ Sanger 

sequencing facilities.  Sequencing requires a total volume of 10 µl with 80-100 

ng/µl of purified plasmid DNA and 5 µl of 5 pmol/µl of primer. 
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2.12 Cell biology 

2.12.1 Organisms 

Various organisms were used throughout this study, from Toxoplasma gondii 

parasites strains to their mammalian host cells used to culture and maintain 

them. 

2.12.1.1 Host cell strains 

Human foreskin fibroblasts (HFFs) were purchased from ATCC (American Type 

Culture Collection) at passage 15 and are maintained up to passage 23.  These 

cells grow in a monolayer due to contact inhibition.  This makes them ideal for 

many phenotypic analysis assays for Toxoplasma.  These were the primary cell 

line that was used to culture Toxoplasma in this study. 

HeLa cells are an immortalised cell line isolated from cervical cancer cells 

(Scherer et al., 1953).  These also grow in monolayers and were used for 

phenotypic assays with latrunculin A.  These were initially provided by ATCC and 

maintained indefinitely in the lab. 

RADA2 cells are latrunculin A resistant HeLa cells first described in Fujita et al. 

(2003).  The RADA refers to the two point mutations (R183A and D184A) in the 

actin gene.  These were kindly provided by Dr. Cora-Ann Schoenenberger and 

were used in latrunculin A invasion assays. 

2.12.1.2 Parasite strains 

Various parasites strains have been used throughout this study, but all are 

genetically altered from the highly virulent Type 1 RH ∆hxgprt strain of 

Toxoplasma gondii (Donald & Roos, 1993).  This strain was predominantly used 

as the wild-type control or for random integration of plasmid DNA. 

∆Ku80∆HX is a strain based on RH, which lacks the Ku80 gene, enhancing 

homologous recombination (Fox et al., 2009; Huynh & Carruthers, 2009).  Ku80 is 

part of the Ku heterodimer, which is involved in DNA repair and non-homologous 

DNA end joining (NHEJ). Knockouts of Ku80 almost eliminate random integration, 
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in turn favouring the insertion of constructs with homologous sequences into the 

proper loci. 

RH DiCre ∆Ku80∆HX was adapted from the ∆Ku80::DiCre (Andenmatten et al., 

2012) and generated in our lab by Dr. Gurman Pall.  The strain is of an RH 

background where the DiCre plasmid was randomly integrated, followed by the 

deletion of Ku80.  RH DiCre ∆Ku80∆HX is the parental strain for inducible 

knockout constructs containing LoxP sites and for this study the parental for the 

LoxPAct1 strain.  Moreover, an indicator strain for gene removal was also 

generated for geneswap vectors lacking a fluorescent reporter cassette. For this, 

Ku80 was replaced with Tub8-LoxP-KillerRed-LoxP-YFP with homologous 

recombination.  Therefore, parasites express KillerRed and upon rapamycin 

treatment, begin to express YFP indicating the Cre recombinase activity has 

occurred. 

2.12.2 Culturing Toxoplasma gondii and host cell lines 

Host cells used in this study (chapter 2.12.1.1) were grown on TC treated 

plastics and maintained in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10 % Foetal Bovine serum, 2 mM L-glutamine and 25 mg/ml 

gentamycin, known as DMEMCOMPLETE.  Host cells were maintained in an incubated 

humid environment of 37 °C and 5 % CO2.  

Human foreskin fibroblasts (HFFs) were the primary cell line infected when 

culturing Toxoplasma gondii strains.  Extracellular parasites were inoculated 

onto a confluent layer of HFFs.  Alternatively, intracellular parasites could be 

artificially liberated from within their vacuoles and inoculated onto a fresh 

monolayer of host cells.  To artificially release parasites, these were scratched 

using a cell scraper followed by syringe lysis of the host through a 23 G needle 

three times. 

2.12.3 Trypsin treatment of host cells 

HFFs were split 1:4 weekly up to passage 23 by our technician Matthew Gow.  

Other cell types were also passed weekly but in a 1:20 ratio.   
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Splitting and maintaining host cells was performed using the trypsin/EDTA to 

detach the cells gently from the bottom of the culturing flasks.  Trypsin is a 

protease that cleaves distinct peptide bonds.  For this, culture media was 

removed, and the cells were washed with cold PBS to remove traces of FBS, 

which blocks the enzymatic activity of trypsin.  Cells were covered with trypsin 

and incubated for 3 minutes at 37 °C, 5 % CO2.  Flasks would be gently tapped to 

facilitate further detachment of the cells.  Finally, fresh DMEMCOMPLETE was added 

to stop the trypsin activity, and the cell suspension was transferred to new 

culturing flasks or dishes. 

2.12.4 Transfection of T. gondii 

Transfection is where exogenous DNA is integrated and expressed in T. gondii.  

The most efficient method of introducing linearised DNA into T. gondii is through 

electroporation (Soldati & Boothroyd, 1993).  Throughout the study, two 

different systems were used to transfect parasites; the Bio-Rad©, which yields 

around 30 % efficiency transient or the AMAXA® Nucleofactor™ which gave an 

impressive >90 % for transient transfections also yielding a very high rate of 

stable integration. 

2.12.4.1 Bio-Rad© transfections 

Transfections with the Bio-Rad© Gene Pulser Xcell™ were conducted in cytomix, 

(see chapter 2.6) a buffer which mimics the cytosolic ion composition of the 

cells, resulting in the greatest survival rate (van den Hoff et al., 1992).  60 µg of 

DNA was linearised and ethanol precipitated. The pelleted DNA was dissolved in 

cytomix to a volume of 100 μl; parasites were re-suspended in 640 μl of cytomix 

to which 30 μl ATP (100 mM) and 30 μl GSH (100 mM) was added.  This 

transfection mix was transferred into an electroporation cuvette (BioRad©; 4 

mm).  Electroporation was conducted using the following settings; mode: square 

wave, voltage: 1700 V, pulse length: 200 μs, the number of pulses: 2 and interval 

between pulses: 5 ms.  

2.12.4.2 AMAXA® transfections 

For transfections using the AMAXA®, only 20 µg of DNA is required.  DNA after 

ethanol precipitation was mixed with 200 μl of pelleted parasites in 100 μl total 
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of Lonza® P3 buffer.  Lonza® F158 program was used to electroporate, yielding 

an impressive transfection rate. 

2.12.4.3 Transient transfections 

Transient transfections of circular DNA into T. gondii will be lost over several 

replication cycles since the DNA will be expressed only as an extra-chromosomal.  

This approach is useful to analyse the expression of localisation of recombinant 

proteins without having to go for stable transfections (discussed in chapter 

2.12.4.4).  Immediately after electroporation, the parasites were inoculated on 

coverslips containing a confluent monolayer of HFFs and incubated from 24 to 72 

hours before fixation. 

2.12.4.4 Stable transfections 

Similar to eukaryotes, DNA is preferentially integrated randomly into the 

genome of T. gondii and only around 5 % of all transfections integrate by 

homologous recombination (Donald & Roos, 1993).  This was a major obstacle in 

gene targeting.  However, a major development in T. gondii genetics was to 

remove the gene; Ku80 (Fox et al., 2009; Huynh & Carruthers, 2009).  The Ku 

genes are involved in DNA repair of double strand breaks via non-homologous 

end joining machinery (NHEJ) (Manivasakam et al., 2001).  Therefore deletion of 

Ku80 loses the ability for NHEJ and favours homologous recombination up to 

around 90 %. 

DNA integrated into the genome via homologous recombination was linearised 

using site-specific endonucleases upstream of the expression cassette.  

Linearised DNA was transfected into approximately 1x107 freshly egressed 

parasites as described in chapter 2.12.4. 

Linearised DNA integrated into the genome via random integration plasmid DNA 

was transfected as above.  One difference from homologous recombination is 

that the DNA integrates randomly into the genome.  This is achieved by the 

addition of the restriction enzyme NotI (10 Units) into the transfection mix, a 

procedure known as Restriction Enzyme Mediated Insertion or REMI (Black et al., 

1995).  This activates the DNA repair machinery of the cells and increases the 

probability of integration of exogenous DNA into the T. gondii genome by up to 
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400 times (Black et al., 1995).  However, more often than not with REMI, 

additional copies of plasmid can integrate into the genome (Gubbels & Striepen, 

2004). 

To obtain stable integration after transfection, parasites were inoculated onto a 

fresh monolayer of HFFs with the addition of a selectable drug (See Table 2-16) 

in the culture media. 

Table 2-16: Selection strategies for stable transfection of T. gondii 

Selectable marker gene Drug Selection procedure 

Dihydrofolate reductase-
thymidylate synthase allele 
(DHFR-TS) from T. gondii 
(Donald & Roos, 1993) 

Pyrimethamine 
(1 μM) 
1000X 

Drug added immediately after 
electroporation and maintained to 
until stable resistant pool emerged.  

Chloramphenicol acyl 
transferase (CAT) from E. 
coli (Kim et al., 1993) 

Chloramphenicol  
(10 μM) 
1000X 

Drug added immediately after 
electroporation. The effect is 
delayed (3-4 lytic cycles); therefore 
it is important to passage about 
5×106 parasites every two days to 
keep pool heterogeneous until drug 
treatment leads to parasite death.  

HXGPRT from T. gondii 
(Donald et al., 1996; 
Pfefferkorn & Borotz, 1994; 
Pfefferkorn et al., 2001) 

(+) selection: 
Mycophenolic acid 

(25 μg/ml) and 
Xanthine  

(40 μg/ml) 
500X 

Drugs diluted in DMEMCOMPLETE to 
appropriate concentration before 
adding them to the cells 24 hours 
post electroporation. Drug 
treatment maintained until a stable 
resistant pool emerged.  

 
(-) selection:  

6-thioxanthine (340 
μg/ml) 

DMEMCOMPLETE was replaced by 
negative hxgprt selection media 
(Table 2-9) 24 hours post-
electroporation and maintained until 
stable resistant pool emerged.  

 

2.12.5 Isolation of a clonal parasite line  

After the pool of transfected parasites recover from the drug selection pressure, 

it is important to isolate a clonal parasite expressing the desired plasmid DNA.  

To do this, 50 µl of the lysed parasites were incubated in every 2nd well down 

column A of a 96 well plate.  Each well was mixed 10 times before transferring 

50 µl to the well below.  Finally, using a multi-channel pipette the wells were 

mixed 10 times before transferring 50 µl to the adjacent column and so on.  

Parasites were incubated for 5 days undisturbed.  After which, the wells were 

analysed for the formation of plaques which would have been caused by a single 
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parasite going through its lifecycle multiple times.  Single clones were isolated 

and tested for correct expression of the plasmid by IFA (chapter 2.13.1) and 

integration PCR (chapter 2.11.5.3). 

2.12.6 Cryopreservation of T. gondii and thawing of stabilates 

To generate parasite stabilates, large intracellular vacuoles were frozen in 

cryotubes.  In detail, HFFs were highly infected with the T. gondii strain for 

around 30 hours.  This aimed to have most of the host cells infected with large 

vacuoles.  Cells were gently removed from the dish using a cell scraper and 

resuspended in 750 μl DMEM only and an equal volume of 2x freezing media (see 

Table 2-9).  This suspension was transferred to a cryo-tube and immediately 

frozen to -20 °C.  One day later, tubes were transferred to -80 °C where they 

could be stored for up to 6 months.  If a longer period was required, cells were 

deposited in liquid nitrogen tanks indefinitely. 

2.12.7 Inducing the act1 KO 

The inducible act1 KO was obtained by addition of 50 nM rapamycin to the 

parental LoxPAct1 strain for 4 hours at 37 °C, 5 % CO2 (Andenmatten et al., 

2012).  Rapamycin is used to reconstitute the two halves of Cre-recombinase 

that are fused to rapamycin binding domains.  Cre is an enzyme, which 

recognises LoxP sites and excises the gene of interest between the LoxP sites.  

Culturing the act1 KO at a high percentage was rather complicated.  With an 

initial induction rate of around 90 %, the 10 % of uninduced parasites will quickly 

outgrow the act1 KO as they can complete the lytic life cycle faster than the 

act1 KO (Egarter et al., 2014).  Therefore, dextran sulfate 2.5 % in DMEMCOMPLETE 

was added to the parasites 24 hours after addition to HFFs.  Dextran sulfate was 

used to isolate egress mutants since it blocks re-invasion of extracellular 

parasites by binding to glycans thus enhancing the act1 KO population as they 

cannot egress (Coleman & Gubbels, 2012).  Cells were washed 3 times in 

DMEMCOMPLETE before the cells were scratched and syringed to release the act1 KO 

parasites.  This cycle was sustained every 48 hours. 



Chapter 2 Materials and Methods 97 
 

2.13 Phenotypic analysis 

Experiments were designed to characterise the phenotypes observed for the 

mutant parasites. 

2.13.1 Immunofluorescence analysis 

For immunofluorescence analysis (IFA), coverslips were fixed with 4 % 

paraformaldehyde (PFA) for 20 minutes at room temperature and washed once in 

PBS.  Subsequently, coverslips were either blocked without permeabilising (2 % 

BSA in PBS) or blocked with permeabilisation (0.2 % Triton X-100, 2 % BSA in PBS) 

for 20 minutes on an orbital shaker.  Primary antibody was diluted in the 

respective buffer used for blocking.  Immunolabelling was conducted in a wet 

chamber (petri dish containing wet blue roll, parafilm and 20 μl of buffer 

containing the primary antibody) at room temperature for 1 hour.  After this, 

coverslips were replaced back into the well, followed by three washes with PBS 

for 5 minutes each.  To each well, 150 μl of secondary antibody (1:3000) was 

added and placed on the orbital shaker for 45 minutes.  Again, coverslips were 

washed three times in PBS for 5 minutes before mounting on glass microscope 

slide with either Fluromount-G containing DAPI or without DAPI. 

2.13.2 Quantitative immunofluorescence analysis 

Wild-type (RH) and parental LoxPAct1 strains were used as controls.  For the 

act1 KO, parasites were induced with rapamycin as described and cultured for 24 

hours on HFFs prior to fixation.  An IFA was conducted using α-ACT1 (Soldati, 

1:100) with AlexaFlour 594 (Molecular Probes, 1:3000) as the secondary 

antibody.   Images obtained using an Axioskop 2 (mot plus) fluorescence 

microscope with Axiocam MRm CCD camera and Velocity software. Images were 

saved as single red and green channel 16-bit .tif files.  CellProfiler 2.1.1 

software was used to analyse and quantify fluorescence intensities.  RGB images 

were imported into the program as grey images prior analysis.  The pipeline was 

adjusted to detect objects within the range of 5 to 40 pixels to represent 

vacuole area.  Objects were identified using a global threshold strategy with a 

three class-Otsu threshold and weighted variances.  Under these parameters, the 

program identified each image YFP-expressing parasites (generated by the DiCre 

cassette after correct gene removal) and red-coloured region of interest 
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(corresponding to ACT1 signal).  The red signal was quantified on the basis of the 

total pixel occupied by the YFP expressing objects.  The intensity of the red 

channel was measured for each object and exported to an Excel spreadsheet.  

The obtained data was filtered manually using area and integrated intensity 

parameters to include all parasites in a vacuole and exclude any clustered 

vacuoles, random objects or out of focus vacuoles.  Intensities from 60 vacuoles 

per time point were quantified and processed. 

2.13.3 Fluorescence intensity analysis 

To analyse the fluorescent intensity of cross-reactive ACT1 antibodies, LoxPAct1 

and act1 KO parasites were cultured on HFF cells for the desired time.  The 

coverslips were fixed with 4 % PFA and stained with the respective ACT1 

antibody.  Image acquisition was conducted using a 100x oil objective lens on a 

DeltaVision Core microscope with a CoolSNAP HQ2CCD camera.  After staining 

with the ACT1 antibodies, Z-stacked images were processed using the ImageJ 

software; Plot Profile.  A rectangular region of interest was placed over the 

longest length of each vacuole and the intensity was analysed in both the green 

and red channels.  These were plotted against each other in GraphPad Prism 7.0. 

2.13.4 Plaque assay 

Plaque assays were used to determine if any stage of the lifecycle is perturbed.  

From this, 1000 freshly lysed parasites were added to confluent a monolayer of 

HFF cells within a 6-well plate and incubated for 5 days at 37 °C, 5 % CO2.  The 

monolayer was then washed with PBS and fixed with ice cold methanol for 10 

minutes.  Subsequently, the HFFs were stained with Giemsa (1:10 in H2O) for 45 

minutes and then washed three times with PBS.  Images were acquired using 

Axiovert 40 CFL fluorescence microscope with Axiocam ICc1.  Sizes of ten 

plaques were measured in three independent experiments using ImageJ 1.34r 

software and calculated as a percentage value and normalised against RH 

Δhxgprt. 

2.13.5 Trail deposition assay 

To examine the motility of the parasites over a 2D surface, we assayed for their 

surface antigen trail deposition.  Glass coverslips were coated with 100 % FBS at 
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room temperature for at least 2 hours.  These were washed three times with PBS 

before use.  Parasites were artificially liberated using a 23 G needle, counted 

and adjusted to 1x106 parasites in 200 μl of pre-warmed gliding buffer (see Table 

2-9) and deposited into the coverslips adapted from Hakansson et al. (1999).  

Parasites are incubated at room temperature for 5 minutes and then transferred 

to a 37 °C incubator for a further 30 minutes.  Note, for all deposition assays 

involving the use of chemical inhibitors, the drugs were added to the parasites 

and left for 15 minutes before adding to the coverslips.  After this, the buffer 

was exchanged for 4 % PFA carefully.  Fixation was for 20 minutes after which 

the PFA was removed, and the coverslips left to air dry for a further 5 minutes.  

Immunostaining under non-permeabilising conditions with an antibody against 

the surface antigen SAG1 allows the visualisation of the trails deposited by the 

parasites.  Assays were performed in triplicate on three independent occasions.  

For each coverslip, 15 fields of view were counted for the number of trails 

deposited and normalised to RH Δhxgprt. 

2.13.6 Assessing for tight junction formation 

To assess whether Toxoplasma tachyzoites penetrate through a conventional 

tight junction, we can evaluate this using a pulse invasion assay and staining the 

tight junction formation with α-RON4.  For this, 1x106 parasites were artificially 

released from their vacuole and allowed to invade for 10 minutes.  After which, 

the media was removed and 4 % PFA was added, fixing the parasites mid-

penetration.  Coverslips were blocked under non-permeabilising conditions and 

stained for the rhoptry neck protein, RON4, which should form a ring around the 

parasite. 

2.13.7 Inside/outside invasion assay 

Here we used an inside/outside invasion assay, based on the “red/green” 

invasion assay described by Huynh and Carruthers (2006).  In detail, 1x106 

parasites were allowed to invade a confluent monolayer of HFF cells for 1 hour 

and fixed with 4 % PFA.  Extracellular parasites were stained with α-SAG1 under 

non-permeabilising conditions.  Total numbers of parasites within 15 fields of 

view were counted along with the total number of SAG1 positive parasites within 

the same 15 fields.  By deduction, we were able to determine the number of 
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invaded parasites.  Invasion rates were performed in triplicate and normalised to 

RH Δhxgprt. 

2.13.8 Invasion/replication assay 

The invasion/replication assay was used to analyse the ability of the 

extracellular parasite to invade the host cells and replicate as described in 

Kremer et al. (2013).  In summary, 1x105 were artificially egressed and 

inoculated onto a confluent layer of HFFs for 1 hour at 37 °C, 5 % CO2.  After 1 

hour, coverslips are washed by immersion in PBS 10 times using forceps and then 

incubated in fresh media and left for a further 24 hours under normal culturing 

conditions.  Coverslips were fixed with 4 % PFA for 20 minutes followed by 

immunostaining with α-IMC1.  Invasion rates were determined by counting the 

total number of vacuoles from 15 random fields of view.  The invasion rates 

were normalised against RH Δhxgprt. 

2.13.9 Replication assay 

For replication, the assay was conducted as described in chapter 2.13.8.  After 

immunostaining with α-IMC1, 200 vacuoles were counted.  Vacuoles were scored 

for parasites per vacuole at 2, 4, 8, 16 and 16+ and giving as a percentage. 

2.13.10 Apicoplast loss 

Loss of the apicoplast was observed and discussed for the act1 KO after 96 hours 

(Egarter et al., 2014).  To characterise at which time after gene excision the 

apicoplasts division defect occurs, LoxPAct1 parasites were induced and 

incubated for 24-hour intervals before fixing.  Vacuoles were stained for with 

antibodies against both ACT1 (α-ACT1-Soldati) and an apicoplast marker α-HSP60 

(Sheiner).  200 vacuoles were counted and scored for the correct ratio of 

apicoplast to parasites within the PV.   

2.13.11 Egress assay 

To determine the parasites ability to egress from the host cell, calcium 

ionophore (A23187) was used to artificially induce egress (Black et al., 2000).  

5x105 parasites were inoculated onto a monolayer of HFFs and left for 36 hours 
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to replicate under standard conditions.  After which time, pre-warmed serum-

free DMEM containing 2 μM Ca2+ ionophore A23187 was added to three coverslips 

for each strain.  As a control, serum-free DMEMonly was added to one coverslip to 

indicate that egress is not natural but ionophore-induced.  The plate was 

transferred to 37 °C, 5 % CO2 incubator for either 5 or 10 minutes and then fixed 

with 4 % PFA for 20 minutes.  Coverslips are immunostained with α-SAG1 under 

non-permeabilising conditions, which will only stain extracellular egressed 

parasites.  Egress was quantified where 200 vacuoles were scored as egressed, 

lysed but unmoved, or intact vacuoles and normalised to RH Δhxgprt. 

2.13.12 Time-lapse video microscopy 

Time-lapse video microscopy was used to analyse the kinetics of mutant 

parasites gliding over a 2D surface similar to Hakansson et al. (1999) and also 

penetration time into a confluent monolayer of HFFs using a DeltaVision® Core 

microscope and SoftWoRx® software or Fiji software.  The microscope was 

equipped with a fitted chamber which allowed the maintenance of standard 

culturing conditions of 37 °C, 5 % CO2.   

2.13.12.1 Penetration time of invading parasites 

Large intracellular vacuoles were artificially liberated through a 23 G needle, re-

suspended in pre-warmed DMEMCOMPLETE and added a confluent layer of HFFs 

grown on a glass-bottom live cell dish (Ibidi μ-dish35mm-high).  Time-lapse images 

were taking at 1 image per second at 40X objective in DIC for both RH Δhxgprt 

and LoxPAct1 parasites.  As for the act1 KO parasites, a final image was taking 

with both DIC and FITC to distinguish knockout parasites from un-induced 

LoxPAct1 parasites due to the YFP expression of act1 KO parasites.  For 

penetration times, 15 invasion events were analysed and scored from the initial 

start point of a tight junction to complete parasite internalisation.   

2.13.12.2 Gliding kinetics 

Ibidi μ-dish35mm-high were coated in 100 % FBS for 2 hours at room temperature.   

Intracellular parasites were put through a 23 G needle, washed once in pre-

heated gliding buffer (See Table 2-9) and added to the dish.  Time-lapse videos 

were taking with a 20X objective at 1 frame per second.  For the wrMTrck 
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tracking plugin, images need to be taking with fluorescence.  Wild-type parasites 

expressing KillerRed were analysed with images taking in the A594 channel.  As 

for the act1 KO, images were taking in the FITC channel.   

The motility profiles were analysed using the Fiji software with the wrMTrck 

plugin.  For analysis, 20 parasites were tracked during both helical and circular 

trails with the corresponding distance travelled, average and maximum speeds 

determined.   

2.13.12.3 Egress 

To assess if and how the filaments break during egress, RH chromobody-Halo 

parasites were prepared akin to the egress assay (See Chapter 2.13.11).  Briefly, 

1x104 parasites were incubated in an Ibidi μ-Dish35mm, high and left to replicate to 

become large intracellular vacuoles.  After 36 hours, Halo TMR-ligand (1:5,000) 

was added to the dish, allowed to bind and washed out after 15 minutes.  The 

dish was then transferred to the DV Core microscope, where a region of interest 

was found at 40X objective.  Ca2+ ionophore (10 μM) was directly above the area 

of interest.  Images were captured at 1 frame per second.  

2.13.13 Flow chamber attachment 

Parasites attachment strengths were assessed under shear stress conditions. 

Parasites were incubated in Collagen VI Ibidi© chambers under increasing flow 

rates.  Parasites were artificially liberated and syringe filtered to remove cell 

debris.  Both the control and parasites of interest were counted and adjusted to 

2x105 each in 250 µl DMEMCOMPLETE and loaded into the Ibidi chamber.  Parasites 

were allowed to attach for 20 minutes at 37 °C, 5 % CO2.  After which, the 

chamber was assembled onto the microscope and connected to a syringe pump 

containing DMEMCOMPLETE.  Care was taken to avoid bubbles in the tube or 

chamber.  An initial flow rate of 0.1 ml/min was transferred through the 

chamber to remove all non-attached parasites for 10 minutes.  An initial image 

was taken as a starting point under no flow.  An increasing flow rate was passed 

through the chamber for 1 minute at a time.  At the end of each minute before 

the flow rate is increased, an image was taken in both channels at the same 
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position.  In the end, parasites that remained attached were counted.  At least 

seven independent experiments were completed for each condition. 

The attachment strength of T. gondii was tested in the presence of 0.5 µM 

cytochalasin D.  Parasites were pre- and post- treated with the drug.  For the 

pre-treated parasites; before loading into the Ibidi chamber, the parasites were 

incubated for 10 minutes in the presence of 0.5 µM CD then allowed to attach.  

For post-treatment with CD, parasites were allowed to attach the same as the 

controls.  For both conditions, parasites were washed with 0.5 µM CD in the flow 

media. 

The motor complex mutants; act1 KO, mlc1 KO, MyoA KO and mic2 KO were 

analysed by Dr. Gurman Pall. 

2.13.14 Bead translocation assay 

Glass-bottom live cell dishes (Ibidi μ-dish35mm-high) were coated with 0.1 % poly-L-

lysine for 30 minutes.  After which time, these were washed with MilliQ H2O and 

air dried in a sterile environment.  The 40 nM FluoSpheres® Carboxylate-Modified 

Microspheres from Invitrogen™ were diluted 1:80 in HBSS containing 25 mM 

HEPES and 1 % BSA.  The beads were sonicated twice in an ice bath and pulse 

centrifuged for 10 seconds to pellet bead clumps. 

Parasites were scratched, syringed and filtered prior to counting.  Parasites were 

then adjusted to 2.5x107 per ml and centrifuged for 5 minutes at 3000 rpm.  

These were then re-suspended in 250 µl ice-cold HBSS + 25 mM HEPES and 

transferred to the live cell dish.  These were incubated on ice for 20 minutes to 

allow for attachment.  Beads were diluted 1:50 from the stock in HBSS + 25 mM 

HEPES and added at equal volume to the parasites in the dish.  These were 

transferred to a 37 °C incubator for 15 minutes.  After which, 4 % PFA was added 

to the dish for 15 minutes, then 2 washes were carried out to remove excess 

beads.  Finally, the dishes were incubated with HBSS containing 25 mM HEPES 

and 0.01 % Hoechst.  Non-fluorescent parasites were stained with α-SAG1 under 

non-permeablising conditions to highlight their cell structure.  Parasites were 

assessed for their ability to caps the beads.  Three situations were quantified; 
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beads were not bound to the parasites (Un-bound), beads bound but not 

translocated (Bound) and finally capped (Capped).  

2.13.15 3D motility assay 

Tachyzoites were prepared and assayed in the Matrigel® as previously described 

in Leung et al. (2014a).  Briefly, the act1 KO parasites were released by syringe 

lysis of infected HFF monolayers using a 27-G needle, filtered through a 3 µm 

Nucleopore filter, and gently centrifuged at 1,000 x g for 4 minutes.  The pellet 

was washed and resuspended at a final concentration of around 2x108 

tachyzoites/ml in 3D Motility Media.  The tachyzoite suspension was then mixed 

with 3 volumes of 3D Motility Media and 3 volumes of Matrigel® (BD 

Biosciences™) and pre-chilled on ice.  Motility through the Matrigel® was imaged, 

tracked and processed using Imaris x64 v. 7.6.1 software (Bitplane AG) as 

previously described in Leung et al. (2014a).  Three independent biological 

replicates, each with three technical replicates, were performed.  Our 

collaborators Dr. Jacqueline Leung and Prof. Gary Ward at the University of 

Vermont, USA, conducted this assay and all analyses. 

2.13.16 Electron microscopy 

For this section, after infecting HFFs with the parasites and fixing with EM 

fixative solution (Table 2-9), the full processing and imaging were conducted by 

Dr. Leandro Lemgruber, the WTCMP imaging technologist. 

2.13.16.1 Scanning electron microscopy (SEM) 

The infected cells were processed as previously described Magno et al. (2005).  

Briefly, the infected cells were fixed in 2.5 % glutaraldehyde and 4 % 

paraformaldehyde in 0.1 M phosphate buffer.  Following several washes with 0.1 

M phosphate buffer, the cells were dehydrated in ascending ethanol series and 

critical point dried.  Before metal sputtering, the cell monolayer was scraped 

with Scotch tape, exposing the cytoplasm of the cells, as well as the 

parasitophorous vacuoles.  These exposed cells were metal coated with 

gold/palladium and observed in a Jeol 6400 scanning electron microscope (Jeol, 

Japan).  Further image processing was carried out with the Fiji software. 
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2.13.16.2 Correlative-light electron microscopy (CLEM) 

For standard correlative-light electron microscopy, host cells were grown in 

gridded glass bottom petri dishes and infected with chromobody-Halo parasites. 

The cells were incubated with Halo-TMR ligand for 15 minutes before fixation 

with EM fixative.  Vacuoles presenting an extensive intravacuolar network were 

imaged with an Elyra super-resolution microscope as in Harding et al. (2016).  

Samples were processed for transmission electron microscopy as described 

previously in Loussert et al. (2012).  Thin sections of the same areas imaged in 

3D-SIM were imaged in a Tecnai T20 transmission electron microscope (FEI, 

Netherlands).  

 

For correlative-light/cryo-electron microscopy, cells were fixed in EM fixative, 

infiltrated in 2.1 M sucrose overnight and rapidly frozen by immersion in liquid 

nitrogen.  Cryo-sections were obtained at -100 °C using an Ultracut cryo-

ultramicrotome (Leica, Austria).  Cryo-sections were blocked in 3 % BSA in PBS 

and incubated in the presence of α-HaloMouse.  After several washes in blocking 

buffer, the cryo-sections were imaged in an Elyra super-resolution microscope 

(Carl Zeiss, Germany), and then incubated with 10 nm, gold-labelled anti-mouse 

(Aurion, Netherlands).  The same areas observed on the light microscope were 

imaged in a FEI T20 transmission electron microscope (FEI, Netherlands). 

2.14 Biochemistry 

2.14.1 Isolation of protein from parasite cell lysate 

For sample preparation, cell lysates from 1x105 parasites were loaded per lane.  

Parasites were pelleted and washed once with ice-cold PBS and re-suspended 

with 8 μl RIPA buffer (See Table 2-8) for 5 minutes on ice to prevent protein 

degradation.  This was pelleted to remove the insoluble material by 

centrifugation at 4 °C for 10 minutes at maximum speed.  The supernatant was 

transferred to a fresh Eppendorf with 1.2 μl reducing agent (Invitrogen©) and 3 

μl NuPage® 4x loading dye.  Samples were boiled for 10 minutes at 95 °C. 
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2.14.2 Sodium dodecyl sulphate polyacrylamide gel 
electrophoresis 

Proteins can be separated according to their relative size and charge by 

denaturing sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-

PAGE) (Laemmli, 1970).  SDS-polyacrylamide gels were made in a 1.5 mm thick 

glass cassette at 10 % as described in Table 2-8.  Note, 10 % APS and TEMED were 

added immediately before the gels were poured.  After pouring the resolving 

gel, isopropanol was added on top to give a level finish to the gel.  After the 

resolving gel had set, the isopropanol can be removed to which the stacking gel 

was added along with the appropriately sized comb. 

Gel cassettes were assembled in the Bio-Rad© mini-PROTEAN® Tetra Cell with 1 x 

SDS running buffer (see Table 2-8).  Samples were loaded into the wells along 

with 2.5 μl Chameleon© Duo ladder.  Samples were run at 120 V through the 

stacking gel then increased to 150 V for the resolving gel. 

2.14.3 Protein transfer from SDS gels to nitrocellulose 
membrane 

For western blotting, proteins were transferred from the SDS gel to a 

nitrocellulose membrane, thereby immobilising them for further study.  During 

this study, a wet transfer technique was used.  For this, a membrane sandwich 

was assembled which consists of sponge, Whatman filter paper, gel, 

nitrocellulose membrane, Whatman filter paper and sponge (Assembly described 

from cathode to anode) all presoaked in transfer buffer.  This assembly was 

placed in Bio-Rad© mini-PROTEAN® Tetra Cell and submerged with transfer 

buffer (See Table 2-8).  The Cell was positioned in a Styrofoam box containing 

ice to keep the temperature down around 4 °C thus, preventing overheating.  

The transfer was run at 110 V for 65 minutes. 

2.14.4 Verification of transfer by Ponceau-S staining 

The membrane was stained with Ponceau-S solution for 2 minutes at room 

temperature.  This is a verification that the protein transferred to the 

membrane, and that roughly equal concentration of protein was loaded in each 

well.  This was then removed and washed several times with the transfer buffer.  
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Progressive washing removes background staining highlighting the bands present 

and finally yielding a clear membrane for immunostaining. 

2.14.5 Immunostaining of the membrane 

Membranes were blocked in Li-Cor® Odyssey® blocking buffer (TBS) either for 1 

hour at room temperature or overnight at 4 °C on an orbital shaker.  For 

staining, the membrane was incubated in a wet chamber with the primary 

antibody diluted in blocking buffer (Table 2-10) plus 0.1 % Tween-20 for 1 hour.  

Membranes were then washed three times with TBST for 5 minutes each after 

which the membrane was incubated with 5 ml of IRDye® (LiCor®) secondary 

antibody diluted in blocking buffer (Table 2-11) containing 0.1 % Tween-20 for 1 

hours shaking.  Finally, the membranes were washed three times again with 

TBST with a final incubation with TBS only. 

2.14.6 Visualisation and quantification 

Proteins were detected using the Li-Cor® Odyssey® system.  This system allows 

highly accurate quantitative infrared detection of the protein of interest.  

Quantification of protein abundance was by Image Studio 5.0 software (LiCor®). 

2.14.7 Stripping 

To re-probe the membrane with more antibodies or optimise antibody 

concentrations, membranes were incubated with Li-Cor® stripping buffer for 20 

minutes at room temperature on an orbital shaker to remove any bound 

antibodies.  After stripping, the membrane is washed three times in TBS before 

re-imaging to ensure all traces of the antibodies were removed.  After which, 

the membrane would be immunostained as stated previously. 

2.14.8 Co-immunoprecipitation 

Extracellular RH and chromobody-Halo parasites were harvested, filtered and 

washed before being resuspended in an actin stabilisation lysis buffer (60 mM 

PIPES, 25 mM HEPES, 10 mM EDTA, 2 mM MgCl2, 125 mM KCl, completed with 

Pierce™ Protease inhibitor mini-tablets, EDTA Free Thermo Scientific™ and 

Triton X-100 0.2 %).  Lysates were incubated on ice for 1 hour, then incubated 
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with equilibrated Magne® HaloTag® Beads (Promega©) for 2 hours at 4°C.  Beads 

were washed 5 times with 1 ml of lysis buffer and elution was made using the 

TEV protease (Promega©) as instructed in the manufacturers protocol.  For 

visualisation, a classical western blot was used with antibodies against TgACT1 

(Soldati) and processes using Li-Cor© Odyssey Clx.  Actin intensity ratios between 

the lysate before purification and the elution were calculated using Li Cor© 

Odyssey Clx for RH and chromobody-Halo.  Dr. Simon Gras conducted this study. 

2.15 Bioinformatics 

2.15.1 DNA sequencing alignments 

DNA plasmid maps were generated using pDRAW, ApE Plasmid Editor or CLC 

Genomics Workbench 6.5 software.  Sequences returned from GATC (chapter 

2.11.15) were aligned to the plasmid maps using CLC Genomics Workbench 6.5.  

The ‘assemble sequences to reference’ tool was used to check the 

chromatogram of the sequence along with the respective base alignment.  If 

there are queries within the sequence alignment that were present in both 

forward and reversed sequences, the complementary sequence would be firstly 

converted to amino acid sequence to determine if it is a synonymous mutation or 

nonsynonymous mutation.  Next, the sequence would be analysed through the 

Basic Local Alignment Search Tool (BLAST) (Altschul et al., 1990) on NCBI 

homepage (http://blast.ncbi.nlm.nih.gov/Blast.cgi) or ToxoBD 

(http://toxodb.org/toxo/). 

2.15.2 Data and statistical analysis 

Data collected was first analysed in Microsoft Excel to calculate basic analysis 

such as averages, percentages and means.  Data was transferred to GraphPad 

Prism 6.0 for statistical analysis.  When comparing two groups, the P value was 

calculated using an unpaired Student's t-test or a 1-way ANOVA.  When 

comparing multiple groups, the P value was determined using a multiple t-test 

applying the Holm-Sidak method or a two-way ANOVA.  

 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://toxodb.org/toxo/
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Table 2-17: Significance rating from GraphPad Prism 6.0 

P Value Wording Summary 

≥0.05 Not Significant ns 

<0.05 Significant * 

<0.01 Very significant ** 

<0.001 Extremely significant *** 

<0.0001 Extremely significant **** 
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Chapter 3 Characterisation of a conditional act1 

KO 

Actin is involved in many processes in eukaryotes including motility, cell 

morphology, cell to cell adhesion, protein trafficking and various other functions 

(Olson & Nordheim, 2010).  In Apicomplexa, actin is thought to be essential for 

parasite motility and invasion (Baum et al., 2008b; Dobrowolski & Sibley, 1996) 

without playing a major role in intracellular functions, such as replication and 

organellar biogenesis (Shaw et al., 2000). 

Actin is highly dynamic and required for various types of cellular motility 

(Mitchison & Cramer, 1996; Theriot & Mitchison, 1991).  In the case of 

Apicomplexan parasites, actin is involved in a unique form of substrate 

dependent movement, termed gliding motility.  This type of motility allows the 

parasites to both locate and invade a host cell.  Gliding motility is believed to be 

centred around an actin-myosin motor complex that is located just beneath the 

parasites plasma membrane.  In this system, the myosin motor moves along short 

actin filaments and the force generated is transmitted to transmembrane 

microneme proteins that interact with host cell surface receptors.  This results 

in the rearward translocation of the microneme-substrate complex and the 

forward motion of the parasites (Keeley & Soldati, 2004; Soldati & Meissner, 

2004).  Removal of the main components of the motor complex (ACT1, MyoA, 

MLC1, MIC2, Aldolase, GAP40, 45 and 50) leads to significantly reduced, but not 

abrogated, motility and host cell invasion.  This retained ability to move and 

invade cannot be explained fully by the current linear motor model 

(Andenmatten et al., 2012; Egarter et al., 2014).  It is possible that the low 

level of motility and invasion is due to plasticity between genes in the same 

family, meaning that mutating one gene leads to compensation by another 

(Frenal & Soldati, 2015).  However, unlike the myosins or micronemal proteins, 

ACT1 is a single copy gene (Dobrowolski et al., 1997), meaning functional 

complementation by one of the actin-like proteins is highly unlikely.  More 

recently a second study using the act1 KO suggested that gliding and invasion 

can still occur due to residual levels of ACT1 remaining in the act1 KO (Drewry & 

Sibley, 2015).  In addition to the decrease noted in motility and invasion, ACT1 
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appears to be essential during intracellular replication and egress of the parasite 

(Egarter et al., 2014). 

This project sets out to characterise the act1 KO in more depth to consolidate 

the contradicting findings between studies (Drewry & Sibley, 2015; Egarter et 

al., 2014).  Also of interest, the way in which Toxoplasma actin polymerises has 

become a debate with contradicting data defining cooperative (Sahoo et al., 

2006) versus isodesmic approaches (Drewry & Sibley, 2015; Skillman et al., 

2013).  Cooperative assembly of actin predicts that once a critical concentration 

(Cc) is reached, residual amounts of actin are not able to lead to the formation 

of F-actin meaning once actin drops below this level a complete phenotype 

would be observed as no F-actin can be formed.  In contrast, isodesmic 

polymerisation does not require a nucleus to initiate polymerisation where all 

monomer-polymers interact with equal affinity (Smulders et al., 2010).  In this 

instance, no Cc is needed for polymerisation, and thus even very small levels of 

actin could fulfil the requirements for the phenotypes.  With this contradicting 

data regarding the polymerisation kinetics of Toxoplasma actin, the project aims 

to demonstrate when actin is undetectable using quantifiable methods and how 

the down-regulation of ACT1 relates to the phenotypes observed.  This genetic 

approach should provide insight into whether actin polymerises through 

cooperative or isodesmic assembly. 

3.1 Analysis of different actin antibodies 

Two bodies of work aimed at the study of actin within parasites used similar 

knockout strategies to remove the act1 genes (Andenmatten et al., 2012) yet 

yielded opposing conclusions.  Findings focused on the residual concentration of 

ACT1 at different time points after deletion of the act1 gene.  Each study used 

different antibodies and techniques to quantify ACT1 levels (Drewry & Sibley, 

2015; Egarter et al., 2014).  Unfortunately, the Drewry and Sibley study lacked 

proper controls to exclude cross-reaction of the ACT1 antibody used to quantify 

actin levels.  This appears to be critical, especially since it was previously shown 

that ACT1 antibodies can cross-react during immunofluorescence analysis (IFA) 

(Andenmatten et al., 2012).   
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To test antibody specificity for Toxoplasma ACT1, a range of ACT1 antibodies 

were analysed by both immunoblot and IFA.  Using an immunoblot the specificity 

of the antibodies was tested for Toxoplasma versus host cell actin.  The actin 

monomer in both Toxoplasma and the mammalian host has an expected size of 

around 42 kDa.  Lysates from both wild-type parasites (RH) and human foreskin 

fibroblasts (HFFs) were run on an SDS-gel under denaturing conditions.  All 

antibodies that were raised against a particular epitope of apicomplexan ACT1 

were specific to the parasite and not host cell actin (Figure 3-1 A).  Commercial 

antibodies tested revealed a band in both the host and parasite actin at the 

expected size of 42 kDa (Figure 3-1 A).  

Next, commercial actin antibodies were tested against Toxoplasma ACT1. 

LoxPAct1 parasites were induced with rapamycin for 4 hours and cultured as 

described in chapter 2.12.7. Parasite actin was tested for at 4 days post 

rapamycin treatment.  Actin filaments within the parasites were undetectable 

with phalloidin, supporting previous observations (Poupel et al., 2000).  

Similarly, antibodies raised against mammalian actin isoforms do not stain 

TgACT1 within the vacuoles.  Similar to the results obtained from our 

immunoblot, ACTN05(C4) from Abcam was not unique to TgACT1, with a strong 

signal remaining in the act1 KO - 4 days post induction - around the periphery of 

the parasites (Figure 3-1 B).  It should be noted that this antibody has been used 

in previous studies regarding Toxoplasma actin on immunoblot and could be 

detecting both TgACT1 and mammalian actin isoforms (Achanta et al., 2012; 

Dobrowolski & Sibley, 1996). 
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Figure 3-1: Investigating the specificity of various antibodies for Toxoplasma ACT1 

Antibodies raised against actin were analysed for their specificity for either Toxoplasma gondii 
ACT1 via immunofluorescence and immunoblot.  Antibodies used were either raised against 
Toxoplasma ACT1, Plasmodium falciparum ACT1 or commercially available mammalian actin 
probes.  A) Immunoblot to test the ACT1 antibodies for their specificity for TgACT1 compared to 
host actin.  Immunoblots of whole cell lysates from extracellular RH parasites and host cells show 
all Toxoplasma raised antibodies were specific to TgACT1 while the commercially available 
antibodies bind both human and Toxoplasma actin. B) Commercially available actin antibodies 
were tested for their specificity to TgACT1.  Most of these antibodies do not react with TgACT1. 
DNaseI appears to cross-react with some apical parasite protein, while the ACTN05 shows a faint 
signal around the parasites periphery.  Scale bars: 10 µm.  To the right, colocalisation of 
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immunofluorescence signals from an act1 KO and un-induced LoxPAct1 parasite vacuole.  Red 
lines show the signal detected in the A594 channel that represents the fluorescence of the ACT1 
antibody.  Green lines represent the signal detected in the FITC channel, which corresponds to 
YFP expression of the act1 KO or background fluorescence of LoxPAct1 parasites.  Solid lines 
represent the act1 KOs and dashed lines represent the LoxPAct1 vacuoles (found using the DAPI 
filter). 

To analyse the cross-reactivity of the apicomplexan antibodies by IFA, LoxPAct1 

parasites were induced for 4 hours with 50 nM rapamycin, washed and 

continuously cultured (Andenmatten et al., 2012).  The act1 KO was tested at 

both 4 and 8 days post rapamycin treatment.  An assumption was made that no 

residual actin will be remaining 8 days after act1 removal when parasites have 

undergone 4 invasion events and roughly 32 rounds of division (Radke et al., 

2001).  Parasites were manually lysed and added to coverslips 36 hours prior to 

fixation and immunostained with various ACT1 antibodies (Figure 3-2 A, B).  

While all antibodies appear to recognise Toxoplasma actin, only 3 showed no 

cross-reaction at both 4 and 8 days after removal of act1.  The two antibodies 

generously supplied by the Sibley lab were not ACT1 specific.  Sibley1 only 

recognises a protein specific to the apicoplast, while the Sibley2 antibody used 

to quantify ACT1 levels in the act1 KO (Drewry & Sibley, 2015) shows a strong 

non-specific cross-reaction in the act1 KO with no difference up to 8 days post 

excision (Figure 3-2 A, B).  However, three antibodies raised against TgACT1 

showed a specific signal in wild-type parasites that was absent in the act1 KO as 

early as 4 days post rapamycin treatment (Figure 3-2 A, B).  This can also be 

seen in the colocalisation graphs where the red signal in the act1 KO parasites is 

similar to the background intensity. 
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Figure 3-2: Investigating the specificity of various apicomplexan antibodies against 
Toxoplasma ACT1 

Intracellular act1 KO parasites were stained using Toxoplasma actin antibodies after 4 days (A) 
and again after 8 days (B).  Some “Toxoplasma specific” antibodies are highly specific to TgACT1 
while others show significant non-specific signal that remains even after 8 days post induction.   
Scale bars: 10 µm.  To the right of images, colocalisation of immunofluorescence signals from an 
act1 KO and un-induced LoxPAct1 parasite vacuole.  This displayed a two-dimensional graph of 
pixel intensities of a rectangular area of each vacuole.  Red lines show the signal detected in the 
A594 channel that represents the fluorescence of the ACT1 antibody.  Green lines represent the 
signal detected in the FITC channel, which corresponds to YFP expression of the act1 KO or 
background fluorescence of LoxPAct1 parasites.  Dashed lines represent the LoxPAct1 vacuoles, 
while the solid lines represent the act1 KO vacuoles.  The Sibley1 α-ACT1 antibody only stains a 
protein that localises to the apicoplast, also indicated by the sharp peaks in the colocalisation 
graph.  The Sibley2 antibody significantly cross-reacts even up to 8 days post induction and shows 
a high intensity signal in the act1 KO at both time points measured.  The two Plasmodium ACT1 
antibodies are highly cross reactive in Toxoplasma and host cells.  The epitope1 (Ep1) antibody 
stains the conoid of the parasites up to 4 days post rapamycin treatment but is absent in the act1 
KO parasites by 8 days post induction.  The antibodies provided by the Soldati and Baum labs are 
specific the most specific for TgACT1 as only a background signal in the A594 channel is detected in 
the YFP expressing parasites.    

In summary, cross-reactivity occurs with many commercially available actin 

antibodies when probing for TgACT1 by immunoblot and immunofluorescence.  

Based on these data, a decision was made to continue with the specific 

Toxoplasma ACT1 antibodies (Figure 3-2) (kindly provided by Dr. Jake Baum and 

Prof. Dominique Soldati) to quantify ACT1 by immunoblot and IFA.  

3.2 Down-regulation of ACT1 

Recently, the Meissner group published data demonstrating that actin is 

undetectable after 72 hours post induction in the act1 KO (Egarter et al., 2014).  

However, a separate study (using cross-reactive antibodies as described above 

and Figure 3-2) suggested that residual levels of ACT1 are present in the 

conditional act1 KO up to 96 hours post induction (Drewry & Sibley, 2015).  To 

re-address this question, we chose to conduct quantitative immunofluorescence 

and immunoblot analysis. 

For the quantitative immunofluorescence time course analysis, parasites were 

allowed to invade and replicate for 24 hours in addition to a 12-hour time point, 

before fixation and staining with the primary TgACT1 antibody provided by Prof. 

Dominque Soldati (Figure 3-2). The sample was then treated with an AlexaFluor 

594 secondary antibody.  Images were captured and analysed using CellProfiler 

software (see chapter 2.13.2), which generates output data based upon the 



Chapter 3 Results - Characterisation of a conditional act1 KO 118 
 

intensity of the red signal detected, which should correlate to ACT1 expression 

(Figure 3-3 A). 

It was noted that actin levels in wild-type parasites fluctuate over a wide range, 

but never reach the background (Figure 3-3 A, B).  This is likely due to the fact 

that actin is a major house-keeping gene, with concentrations varying depending 

on the developmental stage of the parasite (Sebastian et al., 2012).  No 

significant difference was observed in ACT1 levels between RH and the parental 

LoxPAct1 strains before rapamycin induction.  Actin levels within the act1 KO 

were measured at 12-hour intervals for 48 hours and then every 24 hours after 

that (Figure 3-3 A).  Actin levels in this parasite line were significantly reduced 

as early as 12 hours post rapamycin treatment.  In the act1 KO (YFP+ parasites), 

a range of ACT1 signal was detected between vacuoles at early time points (up 

to 36 hours after rapamycin treatment) that overlapped with wild-type ACT1 

levels.  By 48 hours post induction, the average level of ACT1 detected was close 

to background (determined with a YFP expressing control strain without the 

addition of antibodies) (Figure 3-3 A).  No significant changes in ACT1 expression 

were observed after 48 hours, although some vacuoles still had some overlap 

with wild-type levels, only at the lower expression levels of wild-type cells.  In 

agreement with previous results (Egarter et al., 2014), this method confirmed 

that ACT1 levels were significantly reduced in YFP+ parasitophorous vacuoles by 

72 hours and by 96 hours post excision actin levels were undetectable (Figure 

3-3 A).  Importantly, if an ACT1 signal is detected in the act1 KO after 72 hours, 

these parasites were then confirmed to be un-induced (as indicated by missing 

YFP expression) (Figure 3-3 B). 

Although not quantified, this clear distinction between the act1 KO and wild-

type parasites was also observed 96 hours post induction using the two other 

ACT1 antibodies kindly supplied by Dr. Jake Baum (as described above Figure 3-2 

B). 

As quantitative immunofluorescence analysis can be prone to errors (Waters, 

2009), a quantitative immunoblot was conducted to confirm these results.  

Parasites were induced continually over 4 days.  Parasite lysate of all the 

samples was harvested on the same day.  Since contamination with the non-

induced population would lead to the detection of ACT1, the act1 KO parasites 
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were enriched at 48 and 72-hour time points. Since act1 KO parasites cannot 

egress naturally (Egarter et al., 2014), the act1 KO population could be enriched 

by incubating the parasites in media containing 2.5 % dextran sulphate.  This 

allows the un-induced (LoxPAct1) parasites to egress and then block their re-

invasion.  The use of dextran sulfate was used to identify egress mutants by 

blocking attachment and re-invasion of parasites (Coleman & Gubbels, 2012). 

However, for the immunoblot, this technique did not work for the 96-hour time 

point, as there were still significant numbers of un-induced LoxPAct1 parasites in 

the mix at this time-point leading to ACT1 contamination.   

The immunoblot quantification showed that the population of act1 KOs at 24 and 

48 hours post excision has a similar ACT1 expression level to that of wild-type 

parasites (Figure 3-3 C, D).  In line with previous results, there was only a minor 

signal detectable for ACT1 at 72 hours post-induction.  This is significantly 

reduced from previous time points (Figure 3-3 C) and when quantified, was less 

than 2 % compared to wild-type (Figure 3-3 D).  It could be suggested that this 2 

% is from minor contamination of un-induced parasites that weren’t eliminated 

during our enrichment step.  These results confirm previous data, and also 

provide quantification of actin levels throughout the culturing process (Egarter 

et al., 2014).  

In summary, these analyses demonstrate that actin is highly variable within wild-

type parasites.  More importantly, ACT1 was depleted in the act1 KO to 

undetectable levels by both immunofluorescence and immunoblot as early as 72 

hours post excision.  Based on this quantification, it is proposed that phenotypes 

obtained at 96 hours post induction reflect the function of actin in the parasite. 
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Figure 3-3: The down-regulation of TgACT1 in the act1 KO 

Different methods were used to measure the down-regulation of ACT1 after rapamycin induction.  
A) Quantitative immunofluorescence assay (IFA) of actin. Vacuoles were stained with α-ACT1 
(Soldati) every 12 hours post induction for 48 hours, and then every 24 hours up to a total of 96. 
Fluorescence intensity was analysed using CellProfiler software and plotted using the mean. The 
background was calculated using a YFP+ parasite strain without antibodies to determine the auto-
fluorescence level of host cells.  Error bars represent 95 % CI.  The dataset was analysed using a 
two-tailed Student’s t-test. **** p<0.0001, ** p<0.01, non-significant (ns) p>0.05, n=60 vacuoles.  B) 
Representative images of labelled vacuoles used to analyse ACT1 levels over time.  After 72 
hours, actin was undetectable by IFA in YFP+ vacuoles.  Scale bar: 10 µm.  C) Western blot 
analysis of actin protein levels in the act1 KO over time. Immunoblot was made with parasite 
lysates taken at 0, 24, 48 and 72 hours post induction. Aldolase was used as a loading control. 
Expression of YFP upon act1 excision was checked using α-GFP.  D) Quantitative measurements 
of band fluorescence was done using the LiCor Odyssey.  The relative levels of ACT1 were 
normalised using Aldolase (loading control) and then compared against the LoxPAct1 (wild-type 
control).  Error bars represent standard deviation.  The datasets were compared using a two-tailed 
Student’s t-test.  * p<0.05, n=4. 

3.3 Phenotypic analysis of the act1 KO in correlation with 

ACT1 down-regulation 

Although significantly hindered, parasites without actin and/or myosin are still 

capable of moving and invading host cells.  Moreover, aspects of the 
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intracellular replication are completely blocked in the act1 KO (Egarter et al., 

2014).  Previous analyses of act1 KO was conducted at 96 hours post excision 

when actin was determined to be completely absent (Andenmatten et al., 2012; 

Egarter et al., 2014).  Therefore, we set out to characterise the phenotype(s) of 

the act1 KO in more detail at various time points after gene excision.  This 

characterisation will allow the correlation of relative actin levels at specific 

time points with specific phenotypes. It will also provide an assessment of the 

critical concentration of actin required to fulfil actins known functions. 

During replication, apicoplast instability was one of the severe phenotypes 

attributed to the act1 KO (Egarter et al., 2014) resulting in the delayed death of 

parasites (Fichera & Roos, 1997).  We believe this phenotype is one of the main 

reasons that obtaining a clonal act1 KO line has proven unsuccessful.  Artificial 

liberation of the mlc1 KO (with similar characteristics to the act1 KO but not the 

apicoplast loss) results in the mixed population culture being maintained for up 

to 6 weeks (Whitelaw et al., 2017).  Of note, at all stages, each wild-type 

parasite within a vacuole contained an apicoplast.  However, as early as 24 

hours post induction, apicoplast loss occurs in 50 % of the act1 KO vacuoles 

(Figure 3-4 A, C).  Moreover, it appears that some of these parasites have 

undergone up to 3 divisions with many vacuoles not having the correct apicoplast 

to parasite ratio (1:1) (Figure 3-4 C).  This indicates that apicoplast loss had 

occurred earlier than 24 hours after act1 loss.  Attempts to test this were 

inconclusive as the majority of the parasites have not begun to express YFP 

strongly enough to visualise via IFA and the ACT1 signal is still comparable to 

wild-type.  At time points where actin levels are undetectable (72 hours post 

induction and onwards), no vacuoles had the correct apicoplast to parasite ratio 

(Figure 3-4 A, C).  During this analysis, it was observed that in many act1 KO 

vacuoles, the sizes of the apicoplasts appear to be larger than those within wild-

type parasites (Figure 3-4 C).  Furthermore, it also observed that no vacuoles 

were completely void of apicoplasts, meaning that at least one apicoplast was 

detected.  Therefore, it is possible that parasites without an apicoplast do not 

invade or, more likely, do not initiate replication after invasion and die within 

the host cell. 

Parasites egress from the host after a signal to permeabilse both the 

parasitophorous vacuole membrane and the host cell membrane (Arrizabalaga & 
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Boothroyd, 2004).  In the case of the act1 KO, parasites are unable to egress, 

both naturally and after ionophore induction, from the host cell (Egarter et al., 

2014). This phenotype was also observed in wild-type parasites upon addition of 

cytochalasin D (Black et al., 2000).  To test egress in the act1 KO, parasites were 

incubated for 36 hours in host cells to allow the formation of large vacuoles.  

Parasites were artificially induced with a calcium ionophore for 5 minutes, and 

then fixed and stained with α-SAG1 under non-permeabilising conditions.  

Therefore, only lysed parasites would be labelled with the SAG1 antibody, 

allowing the visualisation of vacuoles that have ruptured the membrane and 

escaped (Figure 3-4 D).  Inducing egress for 5 minutes in wild-type parasites 

caused rupture and completed dissemination of over 95 % of vacuoles.  An 

additional 3 % of vacuoles had permeabilised the vacuole, but had not initiated 

motility out of the cell (Figure 3-4 B).  When testing the act1 KO, at early points 

(36 hours post induction) only around 20 % were able to completely egress, while 

75 % of the remaining vacuoles had permeabilised the membranes without 

initiating motility (Figure 3-4 B).  At later time points, when actin is not 

detectable (72-96 hours post induction) full egress was as low as 8 % or 

completely blocked, respectively (Figure 3-4 B).  At these time points the ability 

to permeabilise the PV membrane is significantly reduced (Figure 3-4 D).  

Finally, at 96 hours post induction, egress is completely blocked in the act1 KO, 

reproducing data from Egarter et al. (2014) (Figure 3-4 B).  

In summary, both apicoplast maintenance and parasite egress are dependent on 

ACT1.  These phenotypes are observed even when high levels of ACT1 are still 

detectable (taken from Figure 3-3).  One could speculate that a similar effect 

would be seen for other phenotypes of the act1 KO.  Next, the gliding motility 

and invasion in the act1 KO at various time points over the course of 96 hours 

was analysed.  Previously, it was published that the act1 KO can still glide and 

invade even when actin is not detectable (Egarter et al., 2014).  Interestingly, 

Drewry and Sibley also observed this finding, but they attributed this lasting 

motility and invasion to residual actin levels within the act1 KO parasites 

(Drewry & Sibley, 2015). 
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Figure 3-4: Actin is essential for apicoplast division and egress 

Analysing the phenotypes for apicoplast loss and egress in the act1 KO post rapamycin treatment.  
A) Quantification of apicoplast loss in the act1 KO.  The ratio of apicoplast to parasites within the 
vacuoles was quantified at 24-hour intervals after act1 removal.  Vacuoles were stained with α-
ACT1 (Soldati) and α-HSP60 (Sheiner).  Apicoplast loss is observed as early as 24 hours post 
excision in around 50 % of the vacuoles.  Error bars represent ± S.E.M.  B) Artificial egress was 
induced in the act1 KO at time points 36, 72, and 96 hours post excision.  Three conditions were 
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considered: lysed and moved away from the vacuole (complete egress), lysis of the membranes 
without the release of parasites, and no lysis of the PVM or host membranes.  Complete egress is 
mostly blocked by 36 hours and lysis of membranes is mostly blocked by 96 hours.  Error bars 
represent ± S.E.M.  C) Representative images used to score the apicoplast loss assay.  Note, at 
early time points, there are still high levels of ACT1 while some parasites within the vacuole do not 
contain an apicoplast.  Scale bar: 10 µm. D) Representative images of induced egress in act1 KO 
parasites over time.  act1 KO parasites at later time points are unable to lyse the membranes, as 
determined by the lack of SAG1 staining within the vacuoles.  Scale bar: 100 µm.  All experiments 
were performed in biological triplicate and compared with a two-tailed Student's t-test, **** 
p<0.0001, *** p<0.001, ** p<0.01. 

When comparing motility and invasion capabilities of the act1 KO and wild-type 

parasites, both phenotypes decreased by around 50 % as early as 24 hours post 

rapamycin treatment (Figure 3-5 A, B).  Unexpectedly, the phenotypes for both 

gliding motility and invasion did not change after 48 hours (though these were 

only analysed up to 96 hours) post induction (Figure 3-5 A, B).  This concludes 

that ACT1 is still highly important for both gliding motility and invasion.  To 

ensure that the 20 % of parasites were indeed act1 KO parasites we analysed 

levels of ACT1 by immunofluorescence.  This was important as we assume we 

have a homogeneous act1 KO population that is YFP+, however the fact that only 

20 % actually form trails and invade is still unknown and intriguing.  It was 

observed that ACT1 antibodies appear to cross-react with α-SAG1.  This cross-

reaction meant that trail deposition analysis would be inconclusive.  

Subsequently, we analysed invasion using α-GRA7 as a marker for PV formation 

(Mercier et al., 2005).  Parasites were stained for GRA7 one hour after invasion 

and green fluorescent parasites (indicative of knockouts) with no detectable 

ACT1 signal (Figure 3-5 C).  Therefore, we demonstrate that act1 KO parasites 

are capable of invasion without any detectable actin.   

Taken together, these results confirm previous findings (Egarter et al., 2014) 

that ACT1 is essential for apicoplast division and egress, while important (but 

not essential) for motility and invasion.  It may be that trail formation and 

invasion may have ACT1 independent mechanisms, which will be discussed later 

in Chapter 6.  Whereas, high ACT1 levels appear to be required the maintenance 

of the apicoplast as slight changes cause drastic perturbations in apicoplast 

stablitility during division.  In each vacuole, around 10-20 % of act1 KO parasites 

still contain an apicoplast.  Interestingly, this is the average rate by which the 

act1 KO can still glide and invade.  Therefore, it could be inferred that retention 

of the apicoplast is required for effective invasion and thus survival, as each 

each replicating vacuole always has at least one apicoplast.  Moreover, these 
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data strongly suggest that once actin is below a critical concentration the 

phenotypes observed for the act1 KO do not significantly change, even after 

further depletion of actin, supporting cooperative polymerisation kinetics. 

 

Figure 3-5: Phenotypes for gliding and invasion established 48 hours post induction 

Characterising the ability of the act1 KO to deposit trails and invade at various time points after 
act1 excision.  A) Trail deposition assay where the act1 KO parasites glide across an FBS-coated 
coverslip and are stained with α-SAG1.  The number of trails observed dropped significantly after 
act1 excision (24 hours).  The gliding phenotype does not significantly change after 48 hours up to 
96 hours.  Error bars represent ± S.E.M.  B) Invasion of the act1 KO at 24 hour time points after 
act1 excision.  Invasion rates drop significantly by 24 hours, but the phenotype remains constant 
after 48 hours.  Error bars represent ± S.E.M.  All experiments were performed in biological 
triplicate and compared with a two-tailed Student's t-test, **** p<0.0001, ** p<0.01, * p<0.05.  C) 
Invasion without actin.  act1 KO parasites invade without ACT1 and form a PV with GRA7.  Scale 
bar: 5 µm. 

3.4 Kinetics of gliding motility and invasion 

The characterisation of motility and invasion of Toxoplasma predominantly relies 

on end-point trail deposition and invasion assays.  These have proved highly 

valuable, however, they reveal little information about the dynamics of these 

processes.  To analyse the kinetics of motility we exploit the fact that wild-type 

parasites can move over a 2D-substrate coated with FBS in three distinct types of 

motility: circular, helical, and twirling (Hakansson et al., 1999).  During circular 
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gliding, the parasite lies on its right side and moves in a counter-clockwise 

motion at average speeds of 1-1.5 µm/s.  Parasites can also be observed 

twirling, where the parasite uprights itself on its posterior end and begins to spin 

in a clockwise fashion.  During helical motions, parasites propel themselves 

forward across the substrate in a horizontal twirling movement that results in 

forward displacement.  During this motion, they can move at speeds ranging 

from 1-3 µm/s (Hakansson et al., 1999).  More recently a novel corkscrew-like 

motility profile was shown in a 3D matrix with speeds ranging from 0.5-2 µm/s 

(Leung et al., 2014a).   

As previously described, static assays for gliding and invasion show that the act1 

KO remains capable of movement across a substrate by gliding motility and also 

invasion into host cells (Egarter et al., 2014).  With this in mind, it should be 

possible to visualise motility and invasion in real-time.  Time-lapse video 

microscopy was used to understand the kinetics of gliding and invasion for the 

act1 KO at 96 hours post induction when there should be no actin remaining in 

the parasites.  

For motile parasites, images were captured at one frame per second under 

fluorescent conditions (A594 for RH expressing KillerRed or FITC for the act1 KO).  

As expected, both RH and the act1 KO were observed using each of the three 

motility profiles described above (Supp. Movies appendix 1-4).  Using the ImageJ 

cell tracking software, wrMTrck (Silva et al., 2011), individual parasites that 

moved in either helical or circular trails were analysed with an aim towards 

identifying their speed and distance travelled.  Twirling parasites were excluded 

from this analysis as the tracking software cannot distinguish and calculate the 

tight clockwise movement accurately.  Of the act1 KO parasites that move, the 

kinetic analysis revealed that overall they were not different in speed or 

distance travelled compared to wild-type (Figure 3-6).  When comparing the 

movements of wild-type parasites, it was observed that RH could move in helical 

motions better than circular.  This is seen for both speeds (1.01 ± 0.24 µm/s for 

helical and 0.76 ± 0.17 µm/s for circular) and distance travelled (55.08 ± 10.98 

µm for helical and 41.47 ± 9.92 µm and circular) (Figure 3-6 A).  This contrasts 

with the act1 KO where the knockout parasites travel faster in a circular motion 

than helical (1.19 ± 0.35 µm/s and 0.86 ± 0.21 µm/s respectively) (Figure 3-6 A).  

This supports the observations from static trail assays where mutants for the 
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acto-myosin motor complex were predominantly observed leaving behind 

circular SAG1 deposits (Egarter et al., 2014).  Moreover, act1 KO parasites were 

able to move faster than RH in circular motions (1.19 ± 0.35 µm/s act1 KO and 

0.76 ± 0.17 µm/s RH) but travel a shorter distance overall (36.82 ± 14.27 µm 

act1 KO and 41.47 ± 9.92 µm RH) (Figure 3-6 A).  Intriguingly, live imaging of the 

act1 KO highlighted movements and trails comparable to wild-type, while static 

trail assays of the act1 KO only form half circles (Egarter et al., 2014).  This 

discrepancy could suggest that the act1 KO parasites do not shed their 

membrane as efficiently as wild-type, thus leaving behind fewer trails.  This 

could infer an attachment defect or proteolysis defect in the act1 KO parasites. 

 

Figure 3-6: 2D gliding kinetics of the act1 KO 

Real-time imaging of wild-type and act1 KO parasites for their ability to glide on an FBS substrate.  
Parasites were tracked with Fiji wrMTrck software for their distance covered (A), average (B) and 
maximal speeds (C).  RH, on the whole, are more proficient in helical gliding whereas the act1 KOs 
can complete much better circular motions.  Act1 KO parasites can glide at similar, even slightly 
higher speeds than RH.  Error bars represent ± 95 % CI.  n= 20 for each movement.  The datasets 
were compared with a One-way ANOVA followed by Tukey’s post hoc test, * p<0.05.  D) 
Representative images of the parasite and the track analysed by the wrMTrck software (see Supp. 
Movies appendix 1-4 for movements). Scale bar: 5 µm.  Time stamp: m:ss 
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Next, the act1 KO motility was assessed in an assay more suited to physiological 

conditions to determine if this movement could be compared to the 2D results.  

Our collaborators Prof. Gary Ward and Dr. Jacqueline Leung performed all the 

3D motility experiments and analysis.  The percentage of act1 KO parasites 

moving through a 3D matrix is significantly reduced compared to wild-type 

(Figure 3-7 A, C) but comparable with the percentage seen in the trail deposition 

assays (Figure 3-5 A,Figure 3-7 A).  Speeds generated by the act1 KO are similar 

to wild-type (Figure 3-7 E, F), while the distance covered is significantly reduced 

(Figure 3-7 D) (Whitelaw et al., 2017).  When looking at the instantaneous speed 

of the act1 KO and wild-type parasites, it was observed that they show very 

different profiles (Figure 3-7 B).  Wild-type parasites appear to move in a 

biphasic fast/slow motion, while the act1 KO moves slower but more continuous 

over the analysed period.  These motility profiles indicate that we were 

specifically looking at the act1 KO parasites within the matrix and not the 

LoxPAct1 uninduced parasites.  Therefore, observations seen in 2D and 3D are 

comparable for the act1 KO and this demonstrates that the parasites are capable 

of generating forces for movement in the absence of actin (Whitelaw et al., 

2017).  

 

Figure 3-7: 3D motility profiles of the act1 KO 

The act1 KO parasites were analysed for their motility profiles through a 3D matrix by our 
collaborators Prof. Gary Ward and Dr. Jacqueline Leung.  A) The percentage of parasites that 
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move greater than 2 µm.  The act1 KO is significantly reduced in numbers moving.  B) The 
instantaneous speed of the parasites shows two different populations.  The act1 KO parasites do 
not have fast bursts as seen in the parental strains.  From this, we can confirm that we analyse the 
act1 KOs and not the residual WT parasites.  C) Representative maximum intensity projection of 
the matrix.  LoxPAct1 parasites form many corkscrew shaped trails, while the act1 KO show few. 
Scale bar: 50 µm.  D) The mean trajectory displacement shows the act1 KO to cover significantly 
less distance than the LoxPAct1 strain.  There is no significant difference in (E) average speeds or 
(F) maximal speeds between the two strains.  Error bars represent ± S.E.M. Datasets were 
compared by two-way ANOVA with Sidak’s multiple comparisons test, **** p<0.0001, *** p<0.001, 
non-significance was determined with p>0.05. 

During invasion, parasites attach to the host and re-orientate at their apical end 

before penetrating through a tight junction and residing within the 

parasitophorous vacuole (Carruthers & Boothroyd, 2007).  Wild-type parasites 

complete this process in 15 to 30 seconds without any membrane ruffling of the 

host (Suss-Toby et al., 1996). 

Similar to gliding motility, once ACT1 is below a critical concentration, the rate 

of invasion remains constant for the act1 KO (Figure 3-5 B).  To understand the 

penetration kinetics, images were captured at one frame/second using phase 

contrast microscopy.  For the act1 KO, a final FITC image was taken to 

determine if any of the invaded parasites were YFP+, which is indicative of act1 

KO population.  In line with published data, the controls (RH and LoxPAct1) 

penetrated the cell within 30 seconds (Kafsack et al., 2007) (Figure 3-8 A, B, 

Supp. Movies appendix 5, 6).  Analysis of the act1 KO highlighted the fact that 

the penetration speeds of these parasites are highly variable (Figure 3-8 A).  As 

we predicted, some act1 KO parasites were very slow invaders, taking from 3 to 

11 minutes to complete entry.  Curiously, the slowest invading act1 KO parasite 

appears to penetrate only half of its body length into the host, after which the 

parasite begins to pull the host cell membrane around itself to complete 

invasion (Figure 3-8 B, Supp. Movie appendix 7).  At this point, it is unclear if 

this membrane wrapping is parasite or host cell driven.  Similar observations 

were described for the myoA KO (Bichet et al., 2016b), where host cell 

membrane is wrapped around parasites during invasion.  This is also similar to 

the zippering mechanism described for Cryptosporidium (Meissner et al., 2013).  

Then there were the “intermediate invaders”, which take just over one minute 

to invade (Figure 3-8 A).  Unexpectedly, half of act1 KO parasites analysed 

invaded at speeds comparable to wild-type (~30 seconds) (Figure 3-8 A, B, Supp. 

Movie appendix 8).  This distribution of invasion speeds is similar to the mlc1 KO 

(Whitelaw et al., 2017) but faster than the myoA KO (Egarter et al., 2014). 
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In summary, only around 20 % of act1 KO parasites are capable of gliding and/or 

invading.  Surprisingly, of the percentage that moved, these parasites can move 

with a speed similar to wild-type.  Moreover, the act1 KO is significantly 

impaired in the distance it can travel, suggesting that the force produced is not 

continuous.  Many act1 KO parasites can penetrate at speeds comparable to 

wild-type, but overall show an extensive range of penetrating speeds.  It would 

be interesting to see if these fast invading parasites have retained their 

apicoplast compared to the slower invaders.  These results suggest that parasites 

can produce forces required for motility and invasion in the absence of actin or 

myosin.  However, as most parasites fail to initiate motility, this lead us to 

believe it is an ‘all-or-nothing’ response.  We, therefore, speculate that the 

molecular function of the acto-myosin-system might be distinct from merely 

force production. 

 

Figure 3-8: Penetration kinetics of the act1 KO 

The amount of time needed to invade (from tight junction formation to closure of the vacuole) was 
analysed for individual parasites. A) On average both RH and LoxPAct1 controls invade within 30 
seconds as reported in the literature.  The act1 KO parasites penetrate with highly variable speeds.  
Some can invade at speeds similar to controls while another subset invades much more slowly.  
Error bars represent ± 95 % CI.  n=15 independent invasion events, compared with a two-tailed 
Student's t-test, *** p<0.001.  B) Stills of parasite penetration.  Orange arrows indicate the tight 
junction throughout penetration.  Final FITC images (indicative of YFP expression) show a fast and 
slow act1 KO penetrating a host cell.  Scale bars: 10 µm.  Time stamp, m:ss. 
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3.5 ACT1 is involved in regulating attachment sites 

A pre-requisite for both motility and invasion is the ability of the parasite to 

attach to the surface of a host cell.  Surface antigens (SAGs), always present at 

the parasites surface and allow the parasites to attach to a substrate before 

being cleaved as the parasites progress forward (Mineo & Kasper, 1994).  More 

intimate attachment is achieved by regulated secretion of micronemal proteins 

secreted, such as MIC2, which is thought to be the major adhesion for T. gondii 

(Huynh et al., 2003; Rabenau et al., 2001).  It is suggested that MIC2 directly 

links to the acto-myosin motor complex through an unknown linker protein, 

previously thought to be aldolase (Meissner et al., 2013; Shen & Sibley, 2014; 

Starnes et al., 2009). 

Assays to study the attachment properties of parasites to date are not well 

defined.  The attachment was previously analysed through a red/green invasion 

assay, where parasites that have not invaded are counted as attached (Huynh et 

al., 2003).  More recently, tachyzoite adhesion was tested through the use of 

microfluidics creating flow conditions similar to that of physiological shear stress 

(Harker et al., 2014), allowing a more direct measurement of adhesion strength.  

To this end, Dr. Gurman Pall adapted a shear stress assay similar to the one 

described in Harker et al. (2014) to study the dynamics of attachment.  Parasites 

were left to attach to a Collagen VI coated Ibidi chamber and subsequently flow 

was passed through the chamber creating a shear stress.  As in Harker (2016), an 

initial wash step under very low flow conditions was used to wash away weak/ 

unattached parasites.  After which, a shear stress was applied to the chamber 

with increasing flow rates up to 15 dyn/cm2.  This was in line with the 

approximate mean arterial shear stress levels (Papaioannou & Stefanadi, 2005). 

Although this assay reproduces physiological conditions that the parasites 

experience, it still has a couple of limitations.  Most noteably in the justification 

of what is attached and how long they have been attached.  As it is a closed 

microfluidics chamber, parasites that detach from the entry point of liquid may 

indeed re-attach somewhere down the chamber.  In this instance, while 

parasites are washed away, new parasites may form an attachment and stay 

firmly bound to the collagen substrate for the duration of the experiment and 

what is attached is subjective.  To overcome this, multiple images can be 
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analysed from the same chamber and averaged but with this one cannot 

determine if the parasite has been washed off and again moved into the new 

field of view.  However, at this time, this is the best representation of 

attachment strengths and has been used throughout this thesis. With this assay, 

Dr. Gurman Pall analysed the mutants of the motor complex for their respective 

attachment strengths (Figure 3-9).  Results demonstrated that the act1 KO has a 

severe attachment phenotype (Whitelaw et al., 2017).  When analysing the mic2 

KO, it was found that the act1 KO was more impaired in attachment than the 

mic2 KO (Figure 3-9).  On the other hand, the myoA KO appears to have similar 

attachment strengths to wild-type parasites (Figure 3-9) (Whitelaw et al., 2017).  

As with motility and invasion kinetics, the act1 KO behaves similarly to the mlc1 

KO in its attachment strengths (Whitelaw et al., 2017). 

 

Figure 3-9: Attachment of motor complex mutants under shear stress 

Trend line graph evaluating the attachment strengths of the mic2 KO, myoA KO and act1 KO.  A 
shear stress was applied to the chamber with a fluidic pump to wash parasites away.  The 
percentage retained is highlighted in the graph.  RH and myoA KO have similar strong attachment 
strengths.  The mic2 KO has a weaker attachment as expected with MIC2 being a major adhesive 
molecule.  act1 KO parasites have the weakest attachment strength of the tested parasites.  
Experiments performed by Dr. Gurman Pall. 

Together, this demonstrates an important role of the acto-myosin system for 

efficient attachment to the surface and suggests a function in the regulated 

turnover of attachment sites, as suggested by Munter et al. (2009).  It is 

tempting to speculate that ACT1 and MyoA act as regulators of attachment sites, 

therefore acting as a molecular clutch to transfer the force generated by ACT1-

independent mechanisms to the surface (Case & Waterman, 2015). 
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3.6 Ultrastructure and trafficking in the act1 KO 

In many organisms, actin is involved in the cytoskeletal stability of the cell 

(Charras & Brieher, 2016).  Whereas, in Toxoplasma, the structure is maintained 

by microtubules (Morrissette et al., 1997).  In a previous study, extracellular 

act1 KO parasites appeared morphologically aberrant at the basal end (Egarter 

et al., 2014). We, therefore, wished to examine basal complex (Figure 3-10). 

3.6.1 Shape of the act1 KO 

To analyse the ultrastructure of the act1 KO, the parasites were processed for 

scanning electron microscopy (SEM) processing.  Immunofluorescence analysis 

suggested the parasites have a flattened basal end (Figure 3-10 B).  The SEM 

analysis (processed by Dr. Leandro Lemgruber) highlighted that the basal end is 

not completely flat but more concave (Figure 3-10 A, B, red arrows).  It was 

hypothesised that ACT1 might play a major role during the final stages of 

endodyogeny, leading to incomplete IMC formation.  To test this, act1 KO 

parasites were inoculated onto HFFs and allowed to replicate.  After fixation, 

the parasites were stained with α-IMC1 to find parasites at the end point of 

division.  While early stages of replication appeared relatively normal, at the 

end of division act1 KO parasites formed a larger than normal residual body, 

indicating a defect in the recycling of mother cell material (Figure 3-10 A, white 

arrows).  From this, it is hypothesised that the act1 KO parasites appear 

flattened at the basal pole due to an IMC recycling defect (Periz et al., 2017).  

This flattened appearance of parasites is more pronounced in extracellular 

parasites (Figure 3-10 B), also observed in a TgUNC1 knockout (Damien Jacot, 

MPM 2016 abstract).  Using the α-IMC antibody, it was also observed that many 

act1 KO parasites replicated asynchronously compared to wild-type cells. This 

meant that on many occasions the vacuoles had atypical numbers of parasites 

within it.  This also indicates a role for actin for synchronously controlling 

replication throughout the whole vacuole.  Furthermore, it was found that act1 

KO parasites have a highly ruffled membrane, as seen by SEM (Figure 3-10), 

which might suggest defects of the cortical actin cytoskeleton.  Similar 

observations have also been described for a Plasmodium falciparum act1 KO 

(unpublished data from Dr. Sujaan Das). 
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Figure 3-10: Ultrastructure of the act1 KO 

Intracellular and extracellular parasites were analysed by both fluorescence imaging and scanning 
electron microscopy (SEM).  A) Intracellular parasites were stained with α-IMC1 to visualise 
parasites and daughters during cell division.  White arrow highlights the residual body and IMC 
recycling in the act1 KO.  Scale bar: 10 µm.  The SEM highlighted a disorderly vacuole and a 
flattened basal end of act1 KO parasites (red arrows).  Scale bar: 2 µm.  B) Extracellular parasites 
were stained with α-GAP40, a marker for the IMC.  This highlights a similar localisation between 
RH and the act1 KO parasites, where the act1 KO parasites have a flattened posterior end.  Scale 
bar: 5 µm.  The SEM shows a sort of concave basal complex in the act1 KO (red arrow).  Zoomed 
area highlights act1 KO parasites have a much more ruffled membrane compared to RH.  Scale 
bar: 2 µm.  Electron microscopy images provided by Dr. Leandro Lemgruber. 

Transmission electron microscopy of the act1 KO highlighted the exclusion of the 

apicoplast while all other organelles appear to be located in their expected 

location, i.e. the rhoptries and micronemes at the apical end (Egarter et al., 

2014).  However, we wished to find out if the proteins required for gliding and 

invasion are transported to the appropriate organelles since actin has recently 

been demonstrated to be involved in dense granule trafficking (Heaslip et al., 

2016). 

3.6.2 Motor complex formation 

We wished to determine if the assembly of the ‘glideosome’ complex located 

just beneath the plasma membrane is affected in the absence of ACT1.  Briefly, 

the ‘glideosome’ consists of the myosin motor connected to the inner membrane 
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complex (IMC1) through the myosin light chain 1 (MLC1).  Embedded within the 

IMC are the glideosome-associated proteins (GAP), with GAP45 acting as the 

connector between the IMC and plasma membrane and GAP40 located 

throughout the IMC. By using a selection of antibodies against different 

components of the motor complex, we checked for the location of MLC1, IMC1, 

GAP40 and GAP45 (Figure 3-11).  Unfortunately, we do not have a working 

antibody against MyoA for immunofluorescence so α-MLC1 was used as a 

representation.  Analysis of the ‘glideosome’ complex showed that this is 

positioned correctly in the act1 KO (Figure 3-11), however the staining pattern 

of GAP40 appears more uneven compared to the smooth depiction of wild-type 

parasites.  Overall, this suggests that reduced gliding and invasion is not due to 

the loss of other components of the motor complex.  It would appear that the 

formation of the glideosome is on the whole unaffected by the recycling defect 

of the IMC during late stages of development.  Next, we wished to analyse some 

other key proteins derived from the micronemes and rhoptries involved in gliding 

motility and invasion. 

 

Figure 3-11: Glideosome components localise normally under the plasma membrane 

Act1 KO parasites were fixed after 96 hours and stained with antibodies for components of the 
glideosome.  Loss of ACT1 has no impact on the glideosome formation.  Glideosome associated 
proteins (GAP40 and 45) localise to the IMC.  As a representation to MyoA, the MLC1 localisation 
is also unaffected.  Scale bar: 10 µm. 
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3.6.3 Trafficking of specialised secretory proteins in the act1 KO  

As the act1 KO is deficient in both gliding and invasion, it is possible that 

trafficking of the specialised secretory proteins (micronemes and rhoptries), 

which are key determinants for gliding and invasion, is affected (Carruthers et 

al., 1999).  To test this, different micronemal proteins were analysed using 

specific antibodies against, AMA1, MIC2, and MIC3.  MIC2 binds to a wide variety 

of surface proteins presented by the host (Brossier et al., 2003; Huynh & 

Carruthers, 2006) and AMA1 binds the RON complex at the tight junction during 

invasion (Besteiro et al., 2009; Srinivasan et al., 2011).  The IFAs suggest that 

while both AMA1 and MIC3 localise as expected to the apical region, MIC2 

mislocalises in many of the act1 KO parasites (Figure 3-12 A).  MIC2 accumulates 

at the periphery of the parasite, the basal end (Figure 3-12 A, white arrows), 

and in some cases close to the nucleus, suggesting trafficking defects for MIC2.  

This would have to be followed up in more detail.  Unfortunately, initial 

immuno-EM experiments of the act1 KO with α-MIC2 were unsuccessful.  Overall, 

ACT1 may have a role in trafficking of MIC2 to the micronemes and as one of the 

parasites major adhesive components might be a cause of the defect in the 

attachment. 

Toxoplasma ARO was shown to interact with MyoF to traffic and tether the 

rhoptries to the apical end in an acto-myosin dependent manner (Mueller et al., 

2013).  Therefore, we wished to understand if the rhoptry proteins were 

targeted properly.  Rhoptry proteins (ROPs) 1, 2 and 4 were analysed and found 

to localised normally at the apical end (Figure 3-12 B).  However, a signal was 

also observed at the basal region/residual body of some parasites (Figure 3-12 B, 

yellow arrows).  This could suggest that while the rhoptry organelles are 

normally tethered to the apical end, the absence of ACT1 caused some 

mislocalisation of rhoptry proteins, suggesting a role of ACT1 in directed 

vesicular transport of ROPs. 
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Figure 3-12: Localisation of the secretory organelles in the act1 KO 

After 96 hours post rapamycin treatment, act1 KO parasites were fixed and stained with antibodies 
against various specialised secretory proteins.  A) Trafficking of MIC proteins to the micronemes.  
Loss of ACT1 causes a mislocalisation of MIC2 but has little/no impact on other microneme 
proteins analysed. White arrows highlight MIC2 at the basal end of the parasites.  B) Localisation 
of rhoptry proteins in the act1 KO.  ACT1 is involved in correct apical trafficking of rhoptry proteins, 
with many seen in the posterior end or residual body of the parasites. Yellow arrows show rhoptry 
proteins at the basal end/residual body of the parasites.  C) Dense granules secretion into the PV 
is not dependent on ACT1.  Scale bar: 10 µm. 

3.6.4 Dense granule secretion into the PV is an actin-independent 

process 

A recent study highlighted that other specialised secreted proteins, specifically 

dense granules, move along actin filaments within the parasites (Heaslip et al., 

2016).  After invasion, dense granules are secreted into the newly forming PV to 

assist in building and maintenance of the PV during replication (Mercier et al., 

2005).  With this recent study in mind, we also wished to see if the dense 

granules are transported into, and continually modulating the PV during 

intracellular growth of the act1 KO.  Dense granules are secreted to various 

locations within the PV.  Therefore, the formation of the PV membrane was 

analysed with α-GRA5 and 7, the tubulovesicular network (TVN) with α-Gra2 and 

the vacuolar space with α-Gra1 (Mercier & Cesbron-Delauw, 2015) (Figure 3-12 

C).  Although actin is thought to be essential for dense granule trafficking within 

the parasites (Heaslip et al., 2016), after secretion, the GRA proteins analysed 

appear to localise within the vacuole, indicating no secretion defect.  This would 

lead us to believe that ACT1 is important for intra-parasite movement of GRAs 

only and secretion into the PV is ACT1 independent. 

3.6.5 Actin is essential for apicoplast division but not the 

mitochondria  

With the exception of Cryptosporidium spp., apicomplexan parasites possess two 

endosymbiotic organelles, the apicoplast and mitochondria (Lim & McFadden, 

2010; Zhu et al., 2000).  The apicoplast is a product derived from the secondary 

endosymbiosis of an alga and an auxotrophic eukaryote (Vaishnava & Striepen, 

2006).  Through the evolution of the parasite, it has become an essential 

organelle required for fatty acid biosynthesis, isoprenoid and heme synthesis as 

well as iron-sulphur clustering (Lim & McFadden, 2010; Waller & McFadden, 

2005).  Loss of the apicoplast leads to a delayed death of the parasites (Egarter 
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et al., 2014; Fichera & Roos, 1997; Jacot et al., 2013; Mehta & Sibley, 2011).  

Due to apicoplast inheritance defects in the act1 KO (Figure 3-13), we wished to 

look at the other endosymbiotic organelle, the mitochondria.  It was thought 

that since the mitochondrial organisation is mediated by actin cables in budding 

yeast (Drubin et al., 1993) it might have an analogous role in Toxoplasma.  Anti-

TOM40 (Sheiner) binds to the mitochondrial outer membrane and was used to 

check for the presence of the mitochondrion (Figure 3-13).  In general, the 

mitochondrion forms a “lasso-like” structure within the parasite around the 

nucleus (Nishi et al., 2008).  The structures of the mitochondria seen, in 

general, were open and “lasso-like”.  However, some were also observed to have 

flattened mitochondria (Figure 3-13).  Therefore, ACT1 appears to have no 

essential role in mitochondrial dynamics in Toxoplasma and might mainly require 

the microtubules, similar to Dictyostelium (Woods et al., 2016).  However, at 

this point, we cannot exclude a role of ACT1 in tethering of mitochondria to the 

IMC to keep the ‘lasso’ shape open.  Future experiments need to be performed 

to analyse this in more detail. 

 

Figure 3-13: Actin is required for apicoplast division but not the mitochondria 

Division of the endosymbiotic organelles in the absence of ACT1.  The loss of ACT1 has no impact 
on mitochondrial segregation as seen with α-TOM40.  Additionally, the apicoplast phenotype was 
confirmed with apicoplast marker CPN60.  Scale bar: 10 µm. 

Together these results suggest that ACT1 is essential for apicoplast division and 

that biogenesis or replication of other organelles is not directly affected by the 

loss of ACT1.  However, it appears that ACT1 may be involved in accurate 

trafficking of subsets of secretory proteins to their apical organelles.  New 

scanning EM images provide more insights into the loss of the basal complex, 

which we predict is due to a defect of recycling from the mother cell.  
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Moreover, the SEM highlights a membrane ruffling on the act1 KO not observed 

in wild-type, but the reasons behind this are still unclear. 

3.7 Summary and conclusion 

Recently, many components of the acto-myosin motor complex have been 

dissected and thoroughly characterised.  Many key components have been 

described as no longer essential for motility and invasion (Andenmatten et al., 

2012; Egarter et al., 2014; Shen & Sibley, 2014), while some are more important 

for structural stability (Harding et al., 2016) rather than motility.  One key 

component of the motor complex is actin, a single copy gene in Toxoplasma 

(Dobrowolski et al., 1997).  The conditional act1 KO was developed to 

understand the functions of the acto-myosin motor complex.  However, recently 

the exact functions of TgACT1 have come under intense scrutiny and doubt 

within the field (summerised in Table 3-1). 

In summary, this chapter has demonstrated that there is a critical concentration 

of ACT1 required to fulfil the essential roles for ACT1.  As previously stated, 

actin has a pivotal role in intracellular replication for apicoplast division and 

priming the parasites for egress (Egarter et al., 2014).  Importantly, I show that 

apicoplast loss and egress is blocked very soon after act1 removal even when 

there is still detectable ACT1 protein remaining.  Furthermore, ACT1 may have a 

role in signalling egress as it is unable to lyse the vacuole, a prerequisite step 

before movement out of the cell.  Although the signal may be to initiate motility 

as perforin alone might not be sufficient for parasite release (Kafsack et al., 

2009). Actin was proposed to have essential functions during the extracellular 

stages of the parasites lytic lifecycle (Dobrowolski & Sibley, 1996).  However, as 

previously shown, actin was important but remarkably not essential for motility 

or invasion (Egarter et al., 2014).  Here, data is provided that there is indeed 

critical concentrations of actin required for motility and invasion and thus reject 

the suggested (isodesmic) polymerisation process of apicomplexan actin. This 

critical concentration occurs even when levels of actin are relatively high within 

the cell. After which, the phenotypes remain constant.  This indicates that even 

if there is residual actin remaining, once the G-actin level is below the critical 

concentration, no F-actin can be formed. Therefore, it is predicted that even if 

there is still minute (undetectable) levels of ACT1 in the act1 KO at 96 hours 
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post induction, the phenotypes will not be enhanced.  Furthermore, kinematic 

studies of the act1 KO reveals these parasites can move and penetrate as well as 

wild-type, and these processes are more of an ‘all or nothing’ (either normal or 

completely blocked). A novel role for actin during the parasites attachment to 

the substrate has been shown.  The reduced attachment could be linked with 1) 

the mislocalisation of MIC2, 2) a highly ruffled membrane or 3) ACT1 is involved 

in the formation of attachment sites through a ‘molecular clutch’ mechanism.  

In this instance, we lean towards a role of the acto-myosin system acting as a 

molecular clutch, allowing the parasite to transmit the force to the surface, 

which will be later discussed in chapter 6.  If parasites can attach, they move 

normally. However, if the attachment is in any way perturbed they appear 

completely paralysed in 2D trail deposition but this may also be an effect of 

inefficient shedding of their surface membranes. 

Table 3-1: Summary of data presented in this thesis compared to published literature. 

act1 KO at 96 hours 
post rapamycin 

induction 
Egarter et al. (2014) 

PLoS ONE 
Drewry and Sibley 

(2015) MBio 
Whitelaw et al. (2017) 

BMC Biology * 

ACT1 level 
Non-detectable by IFA 

& WB 
Significant ACT1 still 

present by qIFA 
Non-detectable by 

qIFA & qWB 

Gliding motility (%) 10 † ~ 25 † 22 † 

Invasion (%) 10 † 30-fold defect 25 † 

Intracellular 
growth 

Slower † ND ND 

Egress (%) 2 † 5 † 0 † 

† - Data normalised to wild-type 

* - Data also presented in this thesis 

IFA – immunofluorescence analysis, qIFA – quantitative IFA 

WB – Western blot, qWB – quantitative WB 

ND – Not defined in this study 
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Chapter 4 The effects of actin-modulating drugs 
on Toxoplasma gondii 

Actin has a vast range of cellular processes (Olson & Nordheim, 2010).  To 

control these processes, the cell tightly regulates the actin dynamics to respond 

rapidly to various stimuli (Welch & Mullins, 2002). Actin-modulating drugs have 

been employed extensively across all species with these drugs controlling the 

dynamics either by enhancing polymerisation or depolymerisation of actin 

filaments, through a variety of mechanisms. 

Drugs that target actin and affect its polymerisation kinetics are predominantly 

derived from bacteria, fungi or marine-sponges (Kustermans et al., 2008).  All of 

these compounds share a common structural feature, where the primary 

hydrophobic core is associated with stereochemically complex side groups.  

These drug compounds are separated according to their influence on actin.  

Drugs such as phallotoxins and jasplakinolides can stabilise or induce actin 

polymerisation (Visegrady et al., 2005).  Whereas, there are those that 

destabilise filaments or inhibit the assembly of filaments, such as cytochalasins 

or latrunculins (Coue et al., 1987; Goddette & Frieden, 1986). 

While there have been no in vivo observations of F-actin within the parasites, 

actin disrupting drugs have been used extensively in Apicomplexa to highlight its 

importance during the lifecycle.  Here we wish to investigate the effect actin 

disrupting drugs have on the motile and invasive T. gondii tachyzoites. 

4.1 Cytochalasin D has an off-target effect 

The fungal metabolite, Cytochalasin D (CD) modulates actin dynamics by capping 

the barbed ends of actin filaments and has been used for many years studying 

the dynamics of actin (Peterson & Mitchison, 2002).  The addition of CD results 

in slow depolymerisation of actin filaments by capping the barbed ends of F-

actin (Goddette & Frieden, 1986).  Cytochalasin D has been used predominantly 

to study the dynamics of actin in Apicomplexa (Dobrowolski et al., 1997; Drewry 

& Sibley, 2015; Gonzalez et al., 2009; Ryning & Remington, 1978).  Its use during 

the Toxoplasma lytic lifecycle has highlighted that CD affects the parasites in a 

dose-dependent manner.  Cytochalasin D was shown to reduce motility and 
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invasion rates (Dobrowolski & Sibley, 1996; Drewry & Sibley, 2015; Ryning & 

Remington, 1978), cause enlarged residual bodies during replication (Shaw et 

al., 2000) and slow egress (Black et al., 2000).  However, unpublished results 

from the Meissner lab lead us to question the specificity of CD on Toxoplasma 

actin.  While it was shown that other cytochalasins have off-target effects, CD is 

thought to be highly specific (Foissner & Wasteneys, 2007).  We noticed that 

both the act1 KO and the CytD resistant (CytDr) mutant described in Dobrowolski 

and Sibley (1996) became sensitive to CD at increasing concentrations. Indeed, 

an off-target effect of CD was inferred in Dobrowolski and Sibley (1996).  They 

succeeded to isolate three clones resistant to CD, however, after sequencing the 

actin gene in these mutants, only two had the mutation Ala 136 Gly (Figure 4-1 

C), while the third had no mutation in the actin gene (Dobrowolski & Sibley, 

1996).  

4.1.1 Generation of an inducible Cytochalasin D resistant ACT1 
knockout line 

To evaluate the effect of CD has on parasite actin, an inducible act1 geneswap 

vector was generated where the endogenous actin was replaced with a LoxP-

flanked copy of act1 containing the Ala 136 Gly mutation, conferring resistance 

to CD (Dobrowolski & Sibley, 1996).  This allowed the expression of a CD 

resistant actin that can be excised in a DiCre-dependent manner.  Consequently, 

any protein that remains after act1 removal is supposed to be resistant to CD.   

The act1 genomic sequence with the mutation GCT → GGT at positions 407 was 

synthesised by GenScript and provided it in a pUC57 vector.  The cDNA of act1 

from the original geneswap vector described in Andenmatten et al. (2012) was 

digested using XmaI and PacI and replaced with the resistant cDNA using the 

same enzymes.  The plasmid was then linearised using ApaI and transfected into 

the RH DiCre∆Ku80∆HX strain (Figure 4-1 A), selecting with Xan and MPA (Donald 

et al., 1996).  Single clones were isolated and tested for act1 excision and YFP 

expression after rapamycin treatment (Figure 4-1).   

To confirm that the plasmid had integrated correctly, genomic DNA was isolated 

and analysed for its integration into the expected locus of the genome (Figure 

4-1 B).  Using site-specific primers for the act1 gene (1→1’), endogenous act1 of 



Chapter 4  Results – The effects of actin-modulating drugs on Toxoplasma gondii 144 
 

the parental strains yielded products of ~1.5 kb whereas both the LoxPAct1 and 

act1 KO stains, where the endogenous act1 had been replaced with act1 cDNA, 

yielded products of ~1.1 kb.  Thus indicating that the endogenous act1 was 

replaced by the geneswap plasmid (Figure 4-1B).  Since PCR is highly sensitive, 

the band present in the act1 KO lane is most likely due to un-induced 

contamination in the sample since the rapamycin induction is not 100 % 

efficient.  When we tested for 5’ UTR integration and Cre-mediated 

recombination (2→2’), no signal was detected in the untransfected controls 

whereas two different sized bands were seen between the LoxPAct1 and act1 KO 

parasites (3.3 kb and 2.1 kb respectively) (Figure 4-1 B).  This size shift 

represents that act1 was excised in the act1 KO population.  A third PCR to 

check 3’ UTR integration (3→3’) showed a 2.9 kb band only in the transfected 

lines.  Therefore, double homologous recombination had occurred, replacing the 

endogenous act1 with one conferring CD resistance (Figure 4-1 B). 

 

Figure 4-1: Generation of an inducible cytochalasin D resistant act1 KO. 

A) Schematic representation of the LoxPAct1CDr geneswap plasmid used to transfect into the RH 
DiCre ∆Ku80∆hxgprt strain.  The endogenous act1 locus was replaced with the cDNA of act1 
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containing the A136G mutation, flanked by LoxP sites via homologous recombination. A reporter 
cassette of YFP is placed downstream of the cDNA and only expressed once act1 is excised in a 
DiCre dependent manner.  B) An analytical PCR was used to identify correct integration of the 
LoxPAct1CDr plasmid.  Primer sets under the gel are highlighted in the schematic (A).  C) Sequence 
alignments of different actins highlighting the A136G mutation for CD resistance.  ACTB (Hs) is 
Human β-actin, ACT1 (Tg) from Toxoplasma gondii, ACT1 (Pf) from Plasmodium falciparum and 
ACT1 (Pb) from Plasmodium berghei. 

Induction of the LoxPAct1CDr strain led to 95 % excision of act1 consistent with 

results described for the act1 KO in Andenmatten et al. (2012).  Furthermore, 

the act1 KOCDr parasites were assessed and had identical phenotypes when 

compared to act1 KO, such as: apicoplast loss, morphological defects and 

reductions in gliding motility and invasion.  Therefore, we were able to use this 

strain confidently knowing that it will behave like the original act1 KO. 

4.1.2 Characterisation of gliding 

Having both the original LoxPAct1 and LoxPAct1CDr strains, we began to elucidate 

if CD specifically blocks motility through its interaction with actin or through an 

off-targeted effect.  Moreover, could it be distinguished if the act1 KO is 

sensitive to CD due to undetectable levels of ACT1 or if there was a secondary 

target of the drug?  The act1 KO and act1 KOCDr were analysed for their ability to 

glide over FBS-coated coverslips and compared these to the control RH and CytDr 

parasites kindly provided by Prof. David Sibley (Dobrowolski & Sibley, 1996).  As 

expected, RH was affected by the addition of CD at low concentrations (≤ 0.5 

µM), while it took much higher concentrations (≥ 1 µM) before an effect was 

observed in the CytDr parasites (Figure 4-2 A).  Importantly, at all concentrations 

tested both the act1 KO and act1 KOCDr resulted in comparable sensitivity to CD 

(Figure 4-2 A).  Since at high concentrations of CD (2-4 µM) all parasite strains, 

including CytDr, act1 KO and actCDr KO, demonstrated a significant block in 

gliding motility, it appears that CD affects parasite viability in a more general 

manner. Furthermore, the effects observed with CD at concentrations higher 

than 0.5 µM should be interpreted with care.   
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Figure 4-2: The effect of cytochalasin D on both gliding motility and attachment. 

Evaluating how the addition of CD effects attachment and gliding motility and any potential off-
target(s).  A) Trail deposition assay under increasing concentrations of CD.  Parasite strains RH 
(wild-type control), CytDr (a CD resistant strain), act1 KO and act1 KOCDr were tested.  The 
difference between RH and CytDr strains is only significant different with concentrations ≥ 0.5 µM.  
There was no significant difference between the act1 KO and act1 KOCDr strains at all 
concentrations.  Error bars represent ± S.E.M.  Data sets were compared with multiple t-tests with 
the Holm-Sidak correction.  P *<0.05.  B) Trend line to show RH and CytDr parasites attachment 
strength in the presence of 0.5 µM CD.  CD containing media was flushed into the chamber as the 
flow-through.  Different conditions were tested for their attachment strengths with CD added pre-
attachment or post-attachment.  act1 KO parasites (green line) is shown as a comparison (taken 
from Figure 3-9).  Attachment forces are reduced by around 50 % in the presence of CD compared 
to the no-drug control.  The addition of CD does not diminish the attachment strength to the act1 
KO levels. n= a minimum of 3 experiments. 

4.1.3 Cytochalasin D reduces attachment but not to act1 KO 
levels 

One of the first studies using CD on Toxoplasma showed that while it blocked 

invasion, attachment was unaffected (Ryning & Remington, 1978).  Previously we 

showed that Toxoplasma ACT1 has an essential role during attachment 

(Whitelaw et al., 2017) (chapter 3.5).  In malaria sporozoites, the addition of CD 

or Jasplakinolide (Jas) blocked motility and affected parasite attachment to the 

substrate (Hegge et al., 2010).  Malaria sporozoites pre-incubated with CD are 

washed off under minimal flow rates.  Whereas, if the sporozoites were allowed 

to attach under normal conditions, the addition of CD had no effect on 

attachment under shear flow rates (Hegge et al., 2010).  From this study, it 
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appears that depolymerisation of actin filaments before attachment reduced the 

attachment strengths of the parasites.  Indeed, once the attachment site was 

made, these filaments might be rather stable.  Here, we wished to consolidate 

the effect CD has on the attachment strength of Toxoplasma tachyzoites. 

Therefore, a flow chamber system was used as described in chapter 3.5 to 

analyse attachment strengths.  Similar to Hegge et al. (2010), two experiments 

were conducted to test the affinity of the parasites to attach to a collagen-

coated chamber in the presence of CD (Figure 4-2 B).  Parasites were either pre-

treated with 0.5 µM CD for 15 minutes before allowing them to attach in the 

chamber or allowed to attach under normal conditions.  For both experiments, 

media containing 0.5 µM CD was passed into the chamber at increasing flow 

rates, creating shear stress conditions.  In the two different experiments, 

parasites were washed off with 50 % slower flow rates than parasites not 

exposed to the drug (Figure 4-2 B).  It appears that the attachment strength is 

slightly weaker than those pre-incubated with CD (Figure 4-2 B). 

Though these data were reproducible, at this point no reliable interpretation is 

possible since they are hard to reconcile with known functions of F-actin.  The 

effect is most likely secondary due to the off-target effects of CD but could also 

be a caveat of the experimental design, discussed previously in chapter 3.5. 

4.2 Toxoplasma ACT1 is naturally resistant to 
latrunculins 

The use of CD to study parasite actin dynamics has become questionable due to 

the unidentified secondary target(s) in the parasites, therefore the actin 

destabilising Latrunculins (A and B) derived from the sea sponge, Latrunculia 

magnificans were tested.  Both latrunculins are more accurate and potent 

inhibitors than CD (Spector et al., 1989) and bind to free actin monomers, 

mimicking sequestering proteins to inhibit further polymerisation (Coue et al., 

1987; Morton et al., 2000).  

4.2.1 Gliding motility with latrunculin A 

In budding yeast, resistance to latrunculin A comes from two amino acid 

substitutions R183A D184A (Ayscough et al., 1997; Fujita et al., 2003; Wertman 
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et al., 1992).  The R183 and D184 amino acids are conserved over a range of 

apicomplexan actins (Figure 4-3 C).  However, before mutating these residues in 

TgACT1, wild-type parasites were analysed for their ability to glide in the 

presence of latA.  Parasites were allowed to glide in increasing concentrations of 

latA from 0 M to 1 µM, where the working concentration in conventional 

eukaryotic cells is as low as 90 nM (Coue et al., 1987).  Surprisingly, even up to 1 

µM latA, no significant difference was observed in trail deposition (Figure 4-3 A).  

In agreement, latA also has no effect on Plasmodium berghei sporozoite motility 

(Hegge et al., 2010). 

4.2.2 Gliding in the presence of latrunculin B 

Motility of Cryptosporidium sporozoites (closely related to Toxoplasma gondii) 

can be completely blocked with latrunculin B (latB) (Wetzel et al., 2005).  

Therefore, we wished to observe the effect latB has on T. gondii motility.  

Latrunculin B binds to free actin monomers in a similar mode of action to latA 

but appears to be less potent (Spector et al., 1989).  A trail deposition assay 

tested the ability of the parasites to glide in the presence of latB.  Results for 

gliding were comparable between both drugs.  Even at high concentrations of 

latB, trail deposition was not perturbed (Figure 4-3 B). 
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Figure 4-3: The effect of latrunculins on gliding motility  

A trail deposition assay analysed the ability of the wild-type parasites to glide in the presence of 
increasing concentrations of latrunculins.  No significant difference was observed for trail deposition 
with either (A) latA or (B) latB.  Error bars represent ± S.E.M.  All experiments were performed in 
biological triplicate and the dataset were compared with a two-tailed Student’s t-test.  Non-
significance (ns) p >0.05.  The double mutation of R183A and D184A confers latrunculin A 
resistance.  C) Sequence alignments of different actins from Humans (Hs), Toxoplasma gondii (Tg) 
and Plasmodium falciparum (Pf) and P. berghei (Pb). 

4.2.3 Invasion with latrunculin A 

Contradicting studies have highlighted the importance of host actin during 

invasion.  Some studies have shown the host to be rather passive during invasion 

with the penetrative force solely generated by the acto-myosin system within 

parasite (Dobrowolski & Sibley, 1997; Dobrowolski & Sibley, 1996).  While others 

studies have described the actin cytoskeleton to be necessary for invasion 

(Bichet et al., 2016a; Gonzalez et al., 2009; Ryning & Remington, 1978).  To 

readdress this question, we decided to use latA during invasion, since 

latrunculins had no effect on parasite motility and thus Toxoplasma ACT1.  Dr. 

Cora-Ann Schrodenberg kindly provided latA resistant RADA2 HeLa cells first 

described by Fujita et al. (2003).  RH parasites and HeLa cells were pre-

incubated in 1 µM latA for 10 minutes before invasion.  Parasites were left to 

invade for one hour followed by five washes to remove parasites that have yet to 

invade.  These were then left to replicate in the presence of 1 µM latA for a 

further 24 hours.  This indicated that the presence of 1 µM latA did not inhibit 

invasion of RH into the RADA2 cells (Figure 4-4 A).  Interestingly, 1 µM latA also 

had no effect on parasite replicating inside RADA2 HeLa cells (Figure 4-4 C).  

Meanwhile, invasion rates in the sensitive HeLa cells were significantly reduced.  

However, the inhibition observed with latA on the sensitive HeLa cells may be 

due to cell death.  Latrunculin A is a fast acting drug (Coue et al., 1987), 

therefore, coupled with a high concentration and incubating with latA for 24 

hours, it is feasible that we may not have blocked invasion but rather destroyed 

most of the host cells.  To test this, we performed an invasion assay into 

sensitive HeLa cells where parasites were only allowed to invade for one hour 

before fixation and staining for extracellular parasites with α-SAG1.  The cells 

were exposed to increasing concentrations of latA (0-1 µM) (Figure 4-4 B).  As 

little as 10 nM latA, significantly reduces the invasion rate.  As the concentration 

of latA increases, invasion rates further decrease, but a full block was never 

observed within the range tested.   
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Figure 4-4: Invasion and replication of RH with latrunculin A 

The role of the actin cytoskeleton of the host during invasion was analysed.  A) Invasion of wild-
type parasites was allowed to invade into RADA2 latrunculin resistant HeLa cells.  No significant 
difference was observed with 1 µM latA.  Error bars represent ± S.E.M.  Dataset were compared 
with a two-tailed Student’s t-test. Non-significance (ns) p >0.05.  B) Invasion of wild-type cells in 
latA sensitive HeLa cells shows a significant decrease in invasion rates as the concentration of latA 
increases.  Error bars represent ± S.E.M.  Dataset were compared with a 1-way ANOVA followed 
by Tukey's post hoc test. **** p<0.0001 and ** p<0.01.  C) Representative images of replicated 
parasites with and without 1 µM latA.  Scale bar: 10 µm. 

To conclude, it would seem that parasite ACT1 is naturally resistant to 

latrunculins.  Resistance to latrunculins was alluded to in Vahokoski et al. 

(2014), where they crystallised both ACTI and ACTII proteins from Plasmodium 

falciparum and observed structural evidence of a salt bridge between residues 

Lys 207 and Glu 188, similar to latrunculin bound α-actin Vahokoski et al. (2014). 

Nevertheless, latA allowed us to test specifically the role of host cell without 

affecting the actin dynamics of the parasites (Figure 4-4 B).  Our results are in 

agreement with previous studies, suggesting that while the parasite primarily 

drives invasion, the actin cytoskeleton of the host is also highly important for 

this process (Gonzalez et al., 2009; Ryning & Remington, 1978).   

4.3 Forcing actin polymerisation inhibits motility 

Artificially polymerising actin through the use of Jas blocks both gliding motility 

and attachment in P. berghei and C. parvum sporozoites (Hegge et al., 2010; 
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Wetzel et al., 2005).  Exposure to Jas causes T. gondii tachyzoites to stop gliding 

in both helical and circular motions, where many parasites begin to exhibit a 

counter-clockwise twirling rotation (Wetzel et al., 2003).  Interestingly, both T. 

gondii sporozoites and tachyzoites display a unique “rolling” movement with Jas 

treatment.  This rolling action is where the parasites move back and forth along 

the longitudinal axis (Wetzel et al., 2005).  In extracellular parasites, the 

addition of Jas causes the conoid to extend due to extensive actin 

polymerisation at the apical end (Shaw et al., 2000).  While analysing the 

chromobody effect to actin-modulating drugs (Figure 4-5 B) (discussed later in 

chapter 5.2), it became apparent that very few trails were seen in the 

chromobody-Halo parasites after Jas treatment (Periz et al., 2017).  Therefore, 

we wish to understand if artificially forcing the polymerisation of actin has an 

effect on motility and if the act1 KO is effected by Jas treatment. 

For this, both wild-type and act1 KO parasites were pre-incubated with 1 µM Jas 

for 10 minutes before the start of the trail deposition assay.  Parasites were 

incubated with the drug on FBS-coated coverslips and allowed to glide for 30 

minutes.  In agreement with previous findings (Hegge et al., 2010; Wetzel et al., 

2003; Wetzel et al., 2005), we found that forcing polymerisation blocked 

motility of wild-type parasites (Figure 4-5 A).  Meanwhile, no significant 

reduction was observed in the act1 KO parasites (Figure 4-5 A).  Therefore, it 

was concluded that Jas only has a single target and functions to polymerise 

actin.  Moreover, since there was no decrease in trail formation within the act1 

KO, there must be insignificant or no ACT1 protein remaining in the act1 KO at 

96 hours, supporting results from chapter 3.2 and again opposing the isodesmic 

process (Skillman et al., 2013).  The addition of Jas to the act1 KO does not 

cause the conoid to extend as seen for wild-type parasites (Figure 4-5 B).  To 

conclude, forcing actin polymerisation has an adverse effect on parasite 

motility.  However, this does not directly reflect the function of actin, since 

act1 KO motility was not blocked. The presented result suggest that the artificial 

polymerisation of F-actin in the parasite can have more general adverse effects, 

leading to functional interference with other processes. 
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Figure 4-5: The effect of jasplakinolide on the motility tachyzoites. 

A) Trail deposition assay of RH parasites and act1 KO parasites in the presence of the actin 
polymerisation drug jasplakinolide.  Forcing polymerisation blocks motility in RH but has no effect 
on an act1 KO. Error bars represent ± S.E.M.  Dataset were compared with a two-tailed Student’s 
t-test. **** p<0.0001, non-significance (ns) p >0.05.  B) Wild-type parasites treated with 1 µM Jas 
extend their conoid at their apical end (highlighted by chromobody-Halo (red), discussed later in 
chapter 5.2).  Scale bar: 5 µm. 

4.4 Summary and conclusions 

In summary, the act1 KO remains capable of gliding and invasion at around 25 %.  

This directly conflicted with various studies using the actin-disrupting drugs, CD 

and latrunculins, where they have been shown to completely block in motility 

and invasion (Dobrowolski & Sibley, 1996; Ryning & Remington, 1978; Wetzel et 

al., 2005).  Data has been presented to support the argument that conventional 

actin-modulating drugs are not entirely specific for Toxoplasma actin.  While CD 

affects parasite actin similarly to other actins, it has also been shown that the 

drug has an as-yet-unknown off-target(s) effect within the parasites, also 

observed in (Dobrowolski & Sibley, 1996; Gonzalez et al., 2009).  When actin is 

depleted to undetectable levels; CD affects both the act1 KO and act1 KOCDr 

equally.  Moreover, CytDr parasites become increasingly sensitive to CD as the 

concentration exceeds 0.5 µM, solidifying the possibility of an off-target effect.  

To conclude, CD should be used at concentration ≤0.5 µM CD (Figure 4-2 A).   

The role of the host cell actin cytoskeleton was thought to be passive during 

invasion (Dobrowolski & Sibley, 1997; Dobrowolski & Sibley, 1996).  Here we 

have shown that latA specifically inhibits host cell actin but not parasite actin.  

Therefore, the active block in invasion with latA highlights the importance of the 

host actin cytoskeleton during invasion.  In support of this, the remodelling of 

the actin cytoskeleton of phagocytic and non-phagocytic cells is critical for 
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parasite invasion (Unpublished results from Mario del Rosario) (Bichet et al., 

2014; Zhao et al., 2014).  Artificial polymerisation with Jas in wild-type 

parasites leads to a complete block of motility. Act1 KO parasites remain motile, 

and no block occurs after addition of Jas, demonstrating that Jas is specific for 

ACT1.  Moreover, it also indicates that artificial polymerisation of F-actin within 

the parasite can lead to non-specific phenotypes.  Finally, the role of the actin 

cytoskeleton of the host will need to be re-addressed in future studies. 
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Chapter 5 Actin Filaments in Toxoplasma gondii 

Actin is one of the most abundant proteins in cells and a major house-keeping 

gene.  Actin exists in two forms; the monomeric globular (G-actin) and 

filamentous actin (F-actin) (Wear et al., 2000).  The dynamic transition between 

the two is tightly regulated in spatial time, location within the cell and as a 

response to various stimuli (Ballestrem et al., 1998; Mitchison & Cramer, 1996; 

Welch et al., 1997b).  In mammals, the monomeric pool of actin accounts for 

around 50 % of the total actin (Galdal et al., 1983).  To date, no known system 

has been shown to function on monomeric actin only, although, in many 

parasitic organisms, the detection of F-actin has been elusive (Dobrowolski et 

al., 1997; Gupta et al., 2015; Paredez et al., 2011).  In comparison to 

mammalian actins, the pool of G-actin in Apicomplexa is thought to be around 

97 % (Dobrowolski et al., 1997; Mehta & Sibley, 2010) and is only properly 

detected within the cytosol of the parasites.  Apicomplexan actin has been 

characterised as unconventional, highly dynamic and intrinsically unstable 

(Sahoo et al., 2006; Skillman et al., 2011).  Together, this led to the assumption 

that the parasites must form very short filaments (Sahoo et al., 2006; Schmitz et 

al., 2005) and have a unique form of actin polymerisation in vitro, termed 

isodesmic (Skillman et al., 2013).  However, recent work has shown that 

apicomplexan actins are not adequately folded when heterologously expressed.  

This is due to differences in the chaperonin T-complex (Olshina et al., 2016), 

and therefore previous biochemical studies will have to be readdressed.  

Besides its function in gliding motility and host cell invasion, apicomplexan 

actins have also been shown to be also involved in apicoplast inheritance and 

egress (Egarter et al., 2014).  However the inability to detect filaments within 

the parasites was a major obstacle in order to perform functional analysis based 

on its localisation.  Filaments in Apicomplexa have only properly been described 

for malaria gametocytes and Theileria sporozoites (Hliscs et al., 2015; Kuhni-

Boghenbor et al., 2012).  Few reports have visualised filament-like structures in 

Toxoplasma.  To date, F-actin has been visualised using scanning electron 

microscopy (Schatten et al., 2003), an actin antibody that appears to be 

preferential for filamentous structures (Angrisano et al., 2012b) and by the actin 

stabilising drug Jasplakinolide (Shaw & Tilney, 1999).  Phalloidin, an F-actin 

binding protein, which has been used extensively to highlight actin filaments in 
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mammalian systems, is unable to bind to any Apicomplexan actin.  Several 

reasons have been suggested to account for this; 1) a severe lack of filaments. 2) 

very short unstable filaments as proposed by (Sahoo et al., 2006; Skillman et al., 

2011) or 3) a cytosolic protein that may bind to F-actin masking the accessibility 

of phalloidin or antibodies to the filament (Schuler et al., 2005b).   

In a new attempt to visualise F-actin within the parasites, specific nanobodies 

were expressed that have a strong affinity to actin, known as chromobodies.  

Chromobodies are minuscule and derived from the heavy chain fragment of 

antibodies from Camelidae spp. specific to actin (Rothbauer et al., 2006) (Figure 

5-1 A).  The single chain camelid antibody, fused to the fluorescent protein RFP 

allowed live imaging of actin filaments and has been shown to have no 

detrimental effect on cell viability or motility (Rothbauer et al., 2006).  Several 

studies have demonstrated the use of chromobodies to be a valuable tool for 

studying protein functions.  The use of actin-chromobodies in plant cells 

indicated that this was particularly advantageous as it labelled actin without 

impairing the polymerisation kinetics of F-actin (Rocchetti et al., 2014).  More 

recently, a study using chromobodies, visualised active endogenous proteins 

expressed in a living Zebrafish, with no deleterious effects (Panza et al., 2015).   

5.1 Expression of chromobodies highlights a vast 
network within the parasitophorous vacuoles 

This project set out to visualise and begin to understand the dynamics of actin 

throughout the lifecycle to Toxoplasma gondii.  Different vectors expressing 

chromobody-fusions recognising F-actin were generated in order to visualise 

actin filaments.  The chromobody expression was put under the control of a 

constitutive, strong promoter p5RT70 (Figure 5-1 C).  Fused to the C-terminal 

region of the chromobody was either red fluorescent protein (RFP) or a Halo-tag 

from Promega©.  The Halo-tag® (a modified haloalkane dehalogenase) is designed 

to bind covalently to synthetic ligands (Los et al., 2008), allowing visualisation 

of the chromobody upon addition of a cell permeable, fluorescent TMR-ligand 

(Figure 5-1 B).  Other ligands allow a diverse range of applications; such as 

bright fluorescence dyes for protein localisation, biotin for protein purification 

and/or protein-protein interactions (Blackstock & Chen, 2014; Stagge et al., 

2013).  



Chapter 5 Results - Actin filaments in Toxoplasma gondii 156 
 

 

Figure 5-1: Expression systems to visualise actin filaments 

Chromobody technology used to detect F-actin dynamics in Toxoplasma gondii.  A) Schematic of 
the actin chromobody development adapted from (Rothbauer et al., 2006).  The chromobody is the 
VHH fragment from a Camelidae IgG specific to actin.  B) The actin-chromobody was C-terminally 
fused to a Halo-tag (Promega©).  The Halo-tag is versatile and can be visualised by incubation with 
the chloroalkane; TMR-ligand but also functions in pull-down assays for biochemical 
characterisation using Magne™ beads (Promega©).  C) Schematic plasmids used to express the 
chromobodies in Toxoplasma gondii. Chromobody is under the control of the constitutive 
overexpression promoter (p5RT70) and C-terminally fused to either Halo-tag or RFP. 

5.2 Chromobody signal changes with actin-modulating 
drugs 

Both vectors (Figure 5-1 C) were transiently transfected into the RH ∆hxgprt and 

incubated on HFFs for IFA analysis.  While no filaments were readily observed in 

extracellular parasites (Figure 5-2 A), both chromobodies highlighted an 

extensive network within the parasitophorous vacuole, seemingly connecting 

individual parasites (Figure 5-2 B).  To confirm that the chromobodies are 

binding specifically to F-actin in the parasites we used the actin-modulating 
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drugs; Jasplakinolide (Jas) and cytochalasin D (CD) (Figure 5-2).  The addition of 

Jas to extracellular parasites induces rapid polymerisation of almost all cytosolic 

G-actin to F-actin at the apical and polar end of the parasite, causing the conoid 

to extend and formation of a small “bulb” at the basal end  (Figure 5-2 A) (Shaw 

& Tilney, 1999).  Moreover, in intracellular parasites, the drug causes the 

intravacuolar network to appear longer and thicker (Figure 5-2 B).  In contrast, 

the addition of CD caused the filaments to become unstable and depolymerise.  

Within the vacuole, the chromobody with CD highlighted many punctate dots 

that were predicted to be possible centres of polymerisation.  Indeed, no 

filaments were observed in extracellular parasites (Figure 5-2 A, B).  

Intriguingly, there was only a partial colocalisation of chromobody-Halo with an 

actin antibody (BaumPolyclonal), indicating that exogenously added antibody might 

not gain access to the actin filament, potentially due to sterical hindrance (Periz 

et al., 2017).  However, since F-actin structures were still observed with this 

antibody, it was concluded that the chromobody specifically binds to F-actin.  

To exclude that these filaments were not caused by parasites hi-jacking actin 

from the host, large intracellular vacuoles were treated with latrunculin A 

(latA).  Since TgACT1 is naturally resistant to this actin-modifying drug 

(Vahokoski et al., 2014) (see results in chapter 4.2), latA represents a potent 

inhibitor of host cell actin dynamics without affecting the parasite actin.  

Parasites expressing chromobody-Halo were allowed to invade and replicate 

within latA sensitive HeLa cells for 24 hours.  After which the cells were 

incubated with various concentrations of latA for 3 hours before PFA fixation.  

Phalloidin488 assessed the integrity of the host cell actin network and the 

parasite network was visualised with Halo-TMR (Figure 5-2 C).  It was observed 

that at low concentrations latA (<100 nM), both host and parasite filaments 

appear unaffected.  However, at concentrations exceeding 0.5 µM LatA, the host 

F-actin begins to collapse whereas the parasites filaments remain intact, similar 

to the no drug control.  Even up to 5 µM, the parasite network appeared normal 

whereas the HeLa cells were significantly rounded after disruption of the cells 

cytoskeleton (Figure 5-2 C). 
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Figure 5-2: The effect of actin-modulating drugs on the chromobody expression 

Chromobody-Halo parasites were exposed to actin polymerisation and depolymerisation drugs.  A) 
Extracellular parasites present a cytosolic staining of chromobody with no apparent filaments.  A 
similar expression is seen with 1 µM cytochalasin D (CD) while 1 µM jasplakinolide (Jas) causes 
the extension of the conoid and chromobody signal is only observed at the apical and basal ends of 
the parasites.  Scale bars: 5 µm.  B) Intracellular parasites were exposed to the same 
concentrations of F-actin modifying drugs.  Filaments depolymerise with CD and become much 
thicker in the presence of Jas.  Scale bars: 10 µm.  C) Chromobody-Halo parasites were treated 
with increasing concentrations of latrunculin A to show that the actin network is solely TgACT1 and 
not scavenged from the host.  Latrunculin A is a potent inhibitor of actin polymerisation of the host 
but ineffectual for parasite actin.  The parasite network remains present even up to 5 µM latA while 
the host actin cytoskeleton is severely affected.  Scale bars: 100 µm.   

Overall, the use of these drugs indicates that the chromobodies expressed by the 

parasites are indeed binding specifically to Toxoplasma F-actin.  Chromobodies 

highlight a novel actin network connecting the parasites that are emphasised in 

the presence of actin-modifying drug Jas but absent with CD treatment.  

Moreover, the filaments are unaffected by latA indicating that no actin from the 

host is being scavenged to make this network.   
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5.3 Chromobodies bind specifically to Toxoplasma ACT1  

To further verify the specificity of the chromobodies for F-actin, their 

localisation was tracked in the conditional act1 KO (Figure 5-3).  As stated 

above, filaments are observed as a network within the parasitophorous vacuole 

in wild-type cells.  After transient expression of the chromobodies into the 

LoxPAct1 strain, the excision of act1 was induced with 50 nM rapamycin, and the 

filaments were tracked over a time course.   

In both cases (chromobody-RFP and chromobody-Halo), filaments were non-

existent in the act1 KO at 72 hours (Figure 5-3).  In detail, chromobody-RFP 

expression in wild-type cells only highlights a dense network without any 

cytosolic staining of RFP (Figure 5-3 A).  However, at early time points (24 hours 

post induction), the signal for chromobody-RFP was often observed within the 

cytosol of YFP+ parasites and the filamentous structures became much smaller 

and disappeared (Figure 5-3 A).  This change can be interpreted that the 

equilibrium shifts to favour G-actin within the cell when the concentration of 

actin drops and therefore formation of F-actin is reduced or impossible.  While 

at 48 hours post rapamycin treatment, it was observed that the chromobody 

signal is punctate and often found around the residual body or at either the 

apical or basal end of the parasites, similar to the observations with CD (Figure 

5-3 A).  At the latest time point analysed (72 hours post rapamycin treatment), 

no YFP+ parasite vacuoles contained a network (Figure 5-3 A).  Sometimes 

punctate spots could still be observed, similar to earlier time points.   

Similarly, for the chromobody-Halo in the act1 KO the dynamics change soon 

after excision of act1.  However, unlike the chromobody-RFP, the signal is 

readily observed in the cytoplasm of wild-type parasites expressing chromobody-

Halo (Figure 5-3 B).  Filaments in the act1 KO become shorter after 24 hours, 

concentrated in the residual body.  As the parasites continue to grow, filaments 

were observed at a much lower frequency, where they appear very short and 

thin.  By 72 hours post induction, the YFP+
 parasites do not have any filaments, 

and chromobody-Halo appears only cytosolic (Figure 5-3 B). 

The Halo-tag offers a variety of functional analysis.  Here, the chromobody-Halo 

parasites were used as bait for a co-immunoprecipitation (Co-IP) experiment to 
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see if Toxoplasma actin could be separated from the other parasites proteins.  

Dr. Simon Gras extracted whole parasite lysates and incubated with Halo-

Magne™ beads from Promega®.  Through a series of stringent washes, the sample 

was eluted from the Magne™ beads using the TEV protease.  The input and final 

elution was run on a SDS-PAGE gel and analysed by western blot.  The western 

blot was probed with a specific actin antibody (TgACT1Soldati; see chapter 3.1).  

Here, a large actin band was present in both input samples (wild-type control 

and chromobody-Halo parasites) (Figure 5-3 B, C).  Indeed, actin was only 

observed in the chromobody-Halo elution after Co-IP (Figure 5-3 C).  This band 

represents between 1-5 % (n=3) of actin from the initial population.  From this, 

we predict that the chromobody-Halo preferentially binds to F-actin, although 

this may represent only a fraction of the F-actin that bound to the resin.  One 

way to overcome this is to use CD to depolymerise the filaments before Co-IP to 

show specificity to F-actin.  Moreover, mass spectrometry analysis confirmed 

that TgACT1 is specifically identified as the top hit in a Co-IP using chromobody-

Halo parasites as bait (unpublished work from Dr. Simon Gras).   
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Figure 5-3: Chromobodies bind specifically to TgACT1 

Chromobodies were transiently expressed into LoxPAct1 then induced with 50 nM rapamycin to 
excise act1.  Images were taken at 24-hour intervals.  Scale bars: 10 µm.  A) Chromobody-RFP 
expression in the act1 KO.  In wild-type cells, the chromobody-RFP is always seen as filamentous.  
At early time points after excision the chromobody expression becomes cytosolic and by 72 hours 
no network is visible in the act1 KO parasites.  B) Chromobody-Halo expression in the act1 KO.  
Similar to the chromobody-RFP, the filaments break up quickly after excision and at 72 hours, no 
filaments were observed. Scale bars: 10 µm.  C) Co-immunoprecipitation (Co-IP) of both wild-type 
(RH) and chromobody-Halo parasites with Halo-Magne™ beads.  The western blot was labelled 
with a specific antibody against actin (TgACT1Soldati).  Actin labels both inputs with a predominant 
band at 42 kDa, while only the elution of chromobody-Halo parasites are labelled with actin.  Dr. 
Simon Gras performed this experiment. 

To investigate the presence of F-actin within this network, a correlative-light 

electron microscopy (CLEM) was performed (Figure 5-4).  Chromobody-Halo 

parasites were incubated for around 30 hours to obtain vacuoles with an 

extensive F-actin network and stained with Halo-TMR for 10 minutes.  After 

which, the live-cell dishes were fixed with EM fixative (4 % glutaraldehyde and 

2.5 % PFA).  The network was imaged with super-resolution microscopy (3D-SIM) 

and recorded for its position within a gridded live cell dish. These dishes were 

then given to Dr. Leandro Lemgruber for processing and transmission electron 

microscopy (TEM) as described in Loussert et al. (2012).  From the 

reconstruction, this network appears to contain multiple actin filaments (shown 

by arrowheads and false colour pink tracers; Figure 5-4 A).  Moreover, vesicle-

like structures were also observed along these filaments (full arrows) (Figure 5-4 

A).  To accompany the standard CLEM, actin filaments in the network were also 

observed with cryo-immuno CLEM.  Chromobody-Halo parasites were incubated 

in HFFs for around 24 hours and fixed in EM fixative at 4°C.  The samples were 

then processed for TEM as described above by Dr. Leandro Lemgruber.  After 

TEM processing, the samples were placed on a gridded surface for 

immunofluorescence analysis with Halo specific antibodies.  After which, the 

sample was then processed for immuno-EM by labelling with gold antibodies.  

Interestingly, actin filaments were observed in an area without the gold 

particles (white arrows; Figure 5-4 B1).  While the area of chromobody-Halo 

signal on IFA also has a dense gold signal (black arrow; Figure 5-4 B2). 

To conclude, the chromobody expression highlights an F-actin network within 

parasite vacuoles that is sensitive to actin-modulating drugs.  Filaments 

highlighted by the chromobody-RFP are much thicker than what was observed 

with the chromobody-Halo.  Biochemical results from Dr. Simon Gras show that 
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the chromobodies preferentially bind to F-actin as only around 1-5 % was pulled 

down in a Co-IP experiment, supporting previous findings that the actin 

monomer pool is around 95-98 % (Dobrowolski et al., 1997).  Overall, from these 

results, we are confident to use chromobodies as a tool to visualise actin 

dynamics in the parasites.  The formation of filaments is dependent on the 

presence of G-actin, which has been confirmed.  In a time course analysis, it was 

shown that long filament formation is inhibited as soon as 24 hours after excision 

of act1 when a significant amount of actin can still be detected (see chapter 

3.2).  This strongly indicates that once G-actin is below a critical concentration, 

no F-actin can be formed, as also reflected by the phenotypic analysis 

performed in earlier chapters.  To conclude, similar mechanisms exist for 

polymerisation as observed in conventional actin and it is suggested that the 

isodesmic polymerisation model is dismissed (Skillman et al., 2013). This is the 

first direct application to study actin dynamics in vivo within Apicomplexa.   
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Figure 5-4: Correlative-light electron microscopy (CLEM) of the actin network 

A) The F-actin network was imaged with super-resolution microscopy (3D-SIM), and the same 
areas were imaged with Transmission Electron Microscopy (TEM).  1) Vesicles were observed 
within the network tubules (Arrows).  Filaments of 5 nm in thickness were present within the 
network tubules (2-4), extending over 100 nm in length (Arrowheads).  The putative actin filaments 
are indicated in pink for images 3 and 4. Scale bars: 200 nm (3D-SIM); 50 nm (TEM).  B) Immuno-
labelled CLEM of a chromobody-Halo vacuole.  1) Actin filaments observed in bundles (white 
arrows).  2) Immune-labelled Halo is observed in the network, although no distinct filaments are 
observed.  Scale bar: 500 nm.  EM images provided by Dr. Leandro Lemgruber. 



Chapter 5 Results - Actin filaments in Toxoplasma gondii 165 
 

5.4 Stabilisation of actin filaments phenocopies the act1 
KO 

Transient expression of chromobody-RFP indicated that these filaments were 

much thicker than what we observe with chromobody-Halo.  It is predicted that 

this may be due to RFP forming tetramers (Campbell et al., 2002), inhibiting 

conventional actin kinetics.  This filamentous network causes a noticeable 

defect during the parasites replication.  Using an IMC1 antibody as a marker for 

parasite cytoskeleton, it was observed that vacuoles expressing an extensive 

network appear to reproduce the division phenotype of the act1 KO (as discussed 

in chapter 3.6.1).  These parasites divide but do not seem stay in the 

conformational rosette of wild-type parasites (Figure 5-5).  Parasites that 

control chromobody-RFP expression (seen with a small network organised within 

a large residual body) replicated relatively normal within the PV.  Therefore, an 

extensive network causes the parasite vacuole to become highly disorganised 

(Figure 5-5).  Vacuole disorganisation occurred in the majority of the vacuoles 

expressing the chromobody-RFP.  From this observation, other markers were 

checked using various antibodies.  As previously shown, the act1 KO cannot 

divide its apicoplast during replication (Egarter et al., 2014) (see chapter 3.3).  

Using α-CPN60 as an apicoplast marker, it was observed that division of the 

apicoplast is affected in many vacuoles with a filamentous network, where they 

do not contain the correct ratio of apicoplast to the parasite (Figure 5-5).  We 

also assessed how the actin antibodies reacted to the filaments.  Three different 

actin antibodies were tested, two that are G-actin specific (from Soldati and 

BaumMonoclonal) and one that is preferential for F-actin (BaumPolyclonal) (see chapter 

3.1).  Instead of the typical cytoplasmic staining, all three co-localise with the 

filaments (Figure 5-5).  This lead us to believe that the pool of monomeric actin 

is depleted almost entirely to generate the filaments giving rise to defects 

during replication.  Therefore, expression of chromobody-RFP causes a dominant 

negative effect similar to the act1 KO during its intracellular stages.  This is 

most likely due to the RFP forming tetramers, although stable expression of the 

chromobody-RFP would be required to validate this hypothesis.  
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Figure 5-5: Chromobody-RFP phenocopies the act1 KO 

The chromobody-RFP expression appears to stabilise the F-actin network during intracellular 
replication.  Antibodies against the IMC highlight that if the cells divide in a normal rosette, the 
filaments are small and contained within the residual body (left hand image).  While large networks 
cause the vacuoles to become disorganised (see right hand image).  Specific antibodies against 
TgACT1 co-localise with the stabilised F-actin rather than the cytosolic staining normally observed.  
Apicoplast loss, seen with α-CPN60 was also observed when the filaments are less dynamic. Scale 
bars: 10 µm. 

5.5 Stable expression of chromobody-Halo 

Next, transgenic parasites stably expressing chromobody-Halo were generated.  

The chromobody-Halo plasmid was linearised with ApaI, transfected randomly 

into RH ∆hxgprt and selected with the combination of xanthine and MPA (Donald 

et al., 1996) (Figure 5-1 C).  Five clonal lines were isolated and tested for their 

expression of chromobody-Halo and for their ability to maintain an infection in 

HFFs over five days (Figure 5-6 A).  None of the clones showed significant 

differences in overall growth, as determined by plaque assays (Figure 5-6 A).  

Subsequent phenotypic assays showed that expression of chromobody-Halo in 

clone 1 had no significant effects during the lifecycle.  In detail, a trail 

deposition assay highlighted that parasites expressing the chromobody-Halo have 

a slightly higher rate of motility than RH (Figure 5-6 B), which might indicate 

that the chromobody is causing a slight stabilisation of the filaments, in a similar 

way as low dose treatment with Jas (Wetzel et al., 2003).  As for invasion, both 

RH and clone 1 invade at similar rates through a conventional tight junction 

(Figure 5-6 C, Figure 5-8 B).  Once inside the PV, the parasites begin to 

replicate.  The replication assay highlights that although chromobody-Halo 
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parasites replicate slightly slower than RH it is not significant.  Higher 

percentages of chromobody-Halo parasites were found to be in early stages (≤ 

8), while RH had a higher proportion in the 16 parasites per vacuole stage 

(Figure 5-6 D).  Finally, large vacuoles of both RH and chromobody-Halo clone 1 

were artificially induced for egress using a calcium ionophore A23187 for 10 

minutes.  Vacuoles were counted for their ability to egress using an antibody 

against the surface antigen SAG1 under non-permeabilising conditions.  Both 

were able to egress at similar rates, indicating that there is no significant 

difference between parasites (Figure 5-6 E).   

 

Figure 5-6: Expression of chromobody-Halo has no effect on the lytic lifecycle 

Parasites stably expressing chromobody-Halo were tested for their lytic lifecycle growth ability 
compared to wild-type and don’t appear to be affected.  A) A 5-day growth assay between different 
clones shows no significant difference in plaque area compared to RH.  Clone 1 was most similar 
to wild-type after three independent experiments, so this was used for all other assays.  Scale bar, 
100 µm.  B) Trail deposition assay where parasites were allowed to glide across FBS-coated 
coverslips. The number of trails formed was significantly increased in the RH chromobody-Halo 
parasites, * p<0.05.  C) No difference is seen in invasion rates of chromobody-Halo parasites 
compared to wild-type.  D) Replication is slightly slower but not significantly different.  More RH 
chromobody-Halo parasites are found in the 2, 4 and 8 stages.  E) No significant difference is seen 
in egress rates between RH and RH chromobody-Halo parasites.  Error bars represent ± S.E.M.  
Datasets were compared with a two-tailed Student’s t-test, * p<0.05, non-significant (ns) p≥0.05.   

Next, we analysed if vesicular traffic normally occurred, since slight anomalies 

of vesicular transport could be found in act1 KO (see chapter 3.6).  In the act1 
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KO, it was shown that although the micronemes were tethered to the apical 

complex, MIC2 seemed to be mis-localised.  However, in the chromobody-Halo 

strain, MIC2 and other micronemal proteins are correctly localised to the apical 

complex.  Moreover, rhoptry proteins 2/4 are tethered to the apical end (Figure 

5-7).  Dense granule motility is thought to be actin-dependent (Heaslip et al., 

2016) and here its is shown that GRA proteins 1 and 2 were indeed secreted into 

the parasitophorous vacuole as expected.  Finally, the apicoplast and 

mitochondria are normally divided within the chromobody-Halo parasites (Figure 

5-7). 
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Figure 5-7: Expression of chromobody-Halo has no effect on protein trafficking or 
organellar division 

Chromobody-Halo parasites were stained for some protein markers known to be affected by ACT1.  
Both the micronemes and rhoptries correctly localise to the apical tip.  The motor complex appears 
to be made up normally.  Dense granules are also trafficked properly into the PV, and the 
endosymbiotic organelles (Apicoplast and mitochondria) are divided properly in the chromobody-
Halo parasites.  Scale bars: 10 µm. 

Overall, stable expression of the chromobody-Halo plasmid in RH has no 

deleterious effects throughout the lytic lifecycle of the parasites.  Therefore, we 

are sure that using the chromobody technology will allow the accurate 

visualisation of actin filaments without adversely affecting the actin dynamics. 

5.6 F-actin during gliding and invasion 

To further address the question if actin/myosin are producing the force for 

motility or acting as a molecular clutch (see chapters 3.5 and 6.3), we decided 

to analyse F-actin dynamics during gliding and invasion.  Intriguingly, we failed 

to detect filaments at the surface of extracellular parasites, where the motor 

complex is localised.  Instead, the chromobody-Halo only shows a cytosolic 

staining (see also Figure 5-2 A).  It was observed that in gliding trails a 

chromobody-Halo signal was deposited and co-localised with SAG1, indicating 

that actin must be shed in gliding trails in some fashion during motility (Figure 

5-8 A).  

During invasion, parasites penetrate through a tight junction consisting of an 

AMA1-RON2 ring.  In Plasmodium merozoites, it was observed that actin localises 

around the RON2 ring during penetration (Angrisano et al., 2012b).  Here we 

wished to check if actin filaments, highlighted by the chromobody-Halo 

expression, are observed at the tight junction.  During penetration, it was 

observed what could be actin filaments or bundles localise at the basal end of 

the parasites (Figure 5-8 B).  In support of this, a single chromobody-RFP 

parasite was observed that invaded with a thick actin bundle only at the basal 

complex (Figure 5-8 E, Supp. Movie appendix 10).  Moreover, in the chromobody-

Halo parasites, these filament-like structures were only seen in the extracellular 

part of the invading parasites until the closure of the PV (Figure 5-8 B).  During 

invasion the chromobody signal was almost excluded from the tight junction ring 

(Figure 5-8 B; white arrows).  In contrast, it was shown previously that α-
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ACT1Polyclonal from Dr. Jake Baum forms a ring around the parasites that co-

localises with the RON2 ring (Angrisano et al., 2012b).  Therefore, the α-

ACT1Polyclonal was tested on the chromobody-Halo parasites during invasion, 

however, actin was not observed at the junction with this antibody in our hands 

(Figure 5-8 C).  Although not detected, F-actin may still accumulate at the 

junction, as the chromobody interaction could be out-competed for the 

stabilisation by other proteins during invasion.  During live invasion events of the 

chromobody-Halo parasites (one frame per second for both DIC and A594), only a 

cytosolic staining was observed (Figure 5-8 D, Supp. Movie appendix 9).  

Although an accumulation of signal was observed in the extracellular part of the 

parasites, this is most likely from the focal point of the sample or that cytosolic 

chromobody-Halo protein is squeezed to the basal end.  The stabilised filaments 

from the chromobody-RFP were only observed at the basal end of the parasites 

during invasion (Figure 5-8 E, Supp. Movie appendix 10).   

In summary, no obvious F-actin filaments were detected during gliding and 

invasion that are consistent with a linear motor model or the retrograde 

membrane flow model (see Chapter 6).  While there appears an accumulation of 

F-actin at the posterior pole of the parasite during invasion, further analysis is 

required to confirm these data.  
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Figure 5-8: Actin filaments during gliding and invasion 

Actin filaments were expected to be near the IMC during gliding and invasion.  A) Halo-TMR ligand 
indicates that actin in secreted into the trails during gliding motility.  No such filaments were 
observed within the parasites.  B) F-actin appears to be at the basal end of the parasites during 
while the parasites penetrate through a tight junction.  As the parasites penetrate, it appears in 
many parasites that chromobody-Halo is excluded at the tight junction ring.  C) F-actin is not seen 
at the RON2 ring either with chromobody-Halo or the F-actin preferential ACT1 antibody.  Live cell 
video microscopy of invading parasites.  D) During invasion of chromobody-Halo parasites, no 
change in signal was observed.  E) Stabilisation of F-actin with chromobody-RFP parasites 
indicates that they invade with a large actin network at the basal end of the parasites.  Scale bar,: 5 
µm. 
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5.7 Actin forms a network during intracellular replication 

During the intracellular stages of the tachyzoite lifecycle, a vast actin network 

was observed within the PV connecting to the parasites cytosol similar to 

filopodia or nanotubes.  Here we wished to understand the actin dynamics 

during replication. This analysis was performed by Dr. Clare Harding using a 

GAPM3-YFP and GAPM1a-YFP strain as markers for the IMC and chromobody-Halo 

for F-actin (Figure 5-9).  During replication, these filaments are highly dynamic 

and change continually during the developmental stages.  During the early stages 

of daughter formation, F-actin is seen at the posterior end of the parasites 

(Figure 5-9).  However, in later stages of development, F-actin localises to the 

developing IMC of the daughter cells (Figure 5-9, Yellow arrows, Supp. Movie 

appendix 11).  Prior to the end of replication, the IMC of the mother collapses 

and appears to be recycled into the daughter cells suggesting a role of F-actin in 

recycling at the final stages of endodyogeny (Figure 5-9, White arrows, Supp. 

Movie appendix 11).  During the latter stages of development, GAPM3 vesicles 

were also observed to be recycled from the mother cell to the daughters and 

between parasites at the basal complex.  This indicates that F-actin might also 

be required for vesicular trafficking, supported by the CLEM (Periz et al., 2017). 

 

Figure 5-9: F-actin is dynamic and controls replication. 

F-actin was assessed during parasite replication using GAP-M3 as a marker for the IMC.  GAPM3-
YFP expressing parasites transiently expressing chromobody-Halo were imaged every 6 mins for 5 
hours. F-actin can be seen initially connecting the basal end of the parasites before accumulating 
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beneath the newly forming daughter cells.  At this stage, it concentrates at the rear of the new 
daughters during emergence and recycles IMC maternal (see, Supp. Movie appendix 11). Scale 
bar: 5 µm, time stamp in minutes.  Figure from Dr. Clare Harding and Madita Reimer. 

This actin network is highly dynamic during endodyogeny and may be required 

for organisation of the parasites within the PV.  To test this, the network was 

viewed in scanning electron microscopy.  Wild-type (RH), RH chromobody-Halo, 

RH chromobody-RFP (a transient expression that stabilises the filamentous 

network) and act1 KO parasites were analysed.  All parasite strains were 

infected onto HFFs and grown for 24 hours or 30 hours in the case of the act1 

KO.  Coverslips were fixed in EM fixative and processed by Dr. Leandro 

Lemgruber as described in (Magno et al., 2005).  Interestingly, structural tubules 

appear to connect the basal end of the parasites to a central core, probably the 

residual body (Figure 5-10 A).  These connections were also observed in 

untransfected wild-type parasites.  While connections were also observed in the 

chromobody-RFP parasites, there is a large mass around the residual body and a 

loss of connections to some parasites causing a minor organisational defect 

(Figure 5-10 A).  Moreover, the act1 KO shows a complete disorganisation of the 

parasites within the vacuole and no visible tubule structures were observed 

between individual parasites (Figure 5-10 A).   

 

Figure 5-10: F-actin holds parasites during replication from the residual body. 
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Scanning EM of wild type (RH), chromobody-Halo, chromobody-RFP and act1 KO parasites 
showing the tubule-like network connecting parasites from the posterior end. The act1 KO 
parasites are disorganised within the vacuole and form no connections, while the chromobody-RFP 
indicates that some parasites have broken their connections to the residual body.  Scale bar: 2 µm.  
Images provided by Dr. Leandro Lemgruber, WTCMP imaging technologist.  

To conclude, F-actin is involved in late stages of replication and suggested a role 

of F-actin during IMC recycling.  This supports data from chapter 3.6.1 that the 

act1 KO cannot recycle its IMC efficiently causing a flattened basal complex, and 

that vesicles are transported along filaments seen in Figure 5-4 and Figure 5-9.  

Actin filaments are required in order to organise daughter parasites within the 

PV.  

5.8 Toxoplasma ACT1 interacts with the apicoplast 

One significant phenotype of the act1 KO is the inability to replicate the 

apicoplast in dividing parasites (Andenmatten et al., 2012; Egarter et al., 2014).  

Changes in expression of actin binding proteins; profilin (Plattner et al., 2008), 

actin depolymerising factor (ADF) (Haase et al., 2015; Mehta & Sibley, 2011) or 

the FH2 domain of formin 2 (Daher et al., 2010) also affects the ability of the 

apicoplast to divide.  These proteins are known to control F-actin dynamics.  It 

has also been implicated that the class-XXII myosin F is necessary during the 

separation of the apicoplast during replication (Jacot et al., 2013).  Taking 

together, apicoplast inheritance is tightly regulated in an actin-myosin 

dependent fashion.  The lack of visualised filaments has so far inhibited the 

understanding of the dynamics of actin during this process.  

With the chromobodies, we wished to understand the dynamics during apicoplast 

division.  Super-resolution microscopy and 3D reconstruction of the filaments 

highlighted a direct interaction between the apicoplast and the filaments (Figure 

5-11).  In both the chromobody-RFP (Figure 5-11 A) and chromobody-Halo (Figure 

5-11 B) parasite lines, it appears that some apicoplasts are in contact with the 

filaments. However, it is still unknown how these large filaments that appear 

outside of the parasite but inside the PV actually come in contact with the 

apicoplast.  More work will have to be conducted to determine. 
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Figure 5-11: F-actin interacting with apicoplasts 

Filamentous actin appears to interact with the apicoplast within T. gondii tachyzoites.  A) A super-
resolution 3D-SIM of chromobody-RFP actin filaments (White) and apicoplast (pink).  The red 
speckles are from the α-IMC antibody.  Scale bar: 10 µm. Insert panel shows the apicoplast to 
wrap around the actin filament.  B) SR-SIM of chromobody-Halo parasites highlighting the F-actin 
network (White) and apicoplasts (Pink).  Boxes from the main image are zoomed in projections to 
indicate apicoplast interactions. Scale bar: 10 µm.  C) Schematic representation of Toxoplasma 
tachyzoites within a vacuole, highlighting F-actin and apicoplasts. In this representation, the actin 
filaments are depicted in red, while the apicoplasts are depicted in pink as per the images in (A and 
B).  Some apicoplasts are drawn to interact with the F-actin where the parasite A represents in 
image A and parasite B for image B. 
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5.9 Parasites make F-actin connections with 
neighbouring vacuoles 

 
Immediately after invasion, dense granule proteins are secreted from the 

parasite where they begin to modulate the parasitophorous vacuole (PV).  Key 

dense granules, namely GRA2, 6, 8 and 12 are exported and initiate the 

formation of the tubo-vesicular network.  This network has been shown to 

initiate through the residual body of the parasite holding the newly forming 

parasites (Mercier et al., 2005; Mercier et al., 2002).  After observing F-actin 

connecting individual parasites within the vacuole from the parasites basal 

complex, we predicted that this might be similar to the tubo-vesicular network 

(TVN).  To test this, dense granule markers were used that make up the TVN 

(Gra2) and the surrounding PVM (Gra7).  While the TVN and PVM formed as 

expected, a surprising observation arose.  On rare occasions, it appeared that 

the chromobody-Halo signal was observed connecting two distinct vacuoles 

together (Figure 5-12 A).  These connections can be seen both between vacuoles 

in the same host but more interestingly between vacuoles from different host 

cells, sometimes over great distances (>50 µm) (Periz et al., 2017).  Moreover, it 

was observed that dense granule proteins, Gra2 and 7, follow these F-actin 

extensions (Figure 5-12 A).  Upon super resolution of the chromobody-Halo 

connection with α-Gra7, it was shown that Gra7 forms a tubule-like structure 

with an F-actin core (Periz et al., 2017).  It was also observed that not all 

connections were chromobody-Halo positive, indicating that the F-actin 

connections are very transient and probably depolymerises after the connection 

is established.  This observation was supported with live cell video microscopy of 

chromobody-Halo parasites, where the chromobody filament touched a 

neighbouring vacuole then receding (Supp. Movie appendix 12) (Periz et al., 

2017).  It should be noted that Gra2 positive extensions were also observed in 

the act1 KO.  However, these extensions were not observed connecting two 

vacuoles together.  Other groups have also described connections between 

vacuoles with Gra3 and Gra7 (Dunn et al., 2008) and by the group of Dominique 

Soldati (Abstract BioMalPar XII, 2016).  Interestingly, tubular-like connections 

were also observed in SEM images of the chromobody-Halo and wild-type (RH) 

parasites (Figure 5-12 B). 
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Together, it appears that dense granules are pushed out by F-actin and the 

dense granules make a tubule-like structure around an F-actin core.  The exact 

physiological functions of these protrusions are still unknown.  However, the 

connections could function similar to nanotubes in other systems that are 

required for intracellular transfer of vesicles (Gerdes & Carvalho, 2008; Zhu et 

al., 2015) or communication (Marzo et al., 2012; Szempruch et al., 2016). 

 

Figure 5-12: F-actin makes connections between neighbouring vacuoles 

A) Connections between vacuoles were observed to be made up of an F-actin core surrounded by 
a dense granule tubule-like structure.  B) Tubule-like extensions leaving from one vacuole are also 
seen in scanning EM of both wild-type (RH) and RH chromobody-Halo vacuoles.  Scale bars: IFA: 
10 µm and SEM: 2µm.  EM images provided by Dr. Leandro Lemgruber. 

5.10 The actin network breaks in a calcium-dependent 
manner before egress 

The mechanism by which parasites escape from the host, termed egress, is 

thought to be essential to escape the innate immune system in vivo or from a 

dying host cell (Blader et al., 2015).  Egress occurs by fluctuations in 

intracellular calcium levels, either natural or ionophore-induced, a drop in pH or 
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change in potassium levels (Blader et al., 2015).  It is understood that the 

parasites acto-myosin system is necessary for egress to initiate gliding motility in 

a similar function as invasion (Hoff & Carruthers, 2002; Wirth & Pradel, 2012). 

Actin was recent implicated to be essential for egress due to phenotypes 

observed with the conditional act1 KO (Egarter et al., 2014) or incubation with 

high concentrations of CD (Lavine & Arrizabalaga, 2008), indicating that 

filamentous actin is important during this process.  Here, we wished to look at 

actin filaments during egress through live-cell video microscopy.  

Chromobody-Halo parasites were grown in a confluent layer of HFFs in live cell 

dishes for around 36 hours.  Halo-TMR (1:10,000) was incubated in the live cell 

dish for 10 minutes at 37 oC.  The dish was then transferred to the DeltaVision 

Core with an incubator set for standard culturing conditions.  Vacuoles 

containing an extensive filamentous network were focused on, and images were 

taking every second for DIC and A594 with the adjusted exposure for each 

channel.  The image sequence was initiated, after which time, 10 µM Ca2+ 

ionophore was added to the media.  These filaments appear to break up after 

addition of calcium to the media (Figure 5-13 A, Supp. Movie appendix 13).  

Although, it would seem that F-actin disassembly is a downstream result of 

calcium signalling cascade required for egress, at this time we still do not have 

the evidence for causation. Once the network breaks, many punctate dots are 

observed throughout the vacuole along with either one or two large actin dense 

areas (Figure 5-13).  Then the vacuole membrane shrinks and the parasites 

initiate motility to escape (Figure 5-13 B, C, Supp. Movie appendix 14, 15).  

Upon closer inspection of the parasites expressing chromobody-Halo, a distinct 

signal was detected at the rear of the parasites, suggesting that actin may 

accumulate at the rear similar to the basal signal observed during invasion 

(Figure 5-8 C, Supp. Movie appendix 15).   
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Figure 5-13: The actin network breaks in a calcium-dependent manner before egress 

Parasite escape was artificially induced with a calcium ionophore.  A) The filamentous network 
breaks up in a calcium-dependent manner, and the vacuole shrinks even if the parasites do not 
escape.  B and C) Parasites need to break up this network before they initiate motility out of the 
cell.  It appears the signal for membrane rupture is after the filaments break up.  Scale bars: 10 µm.  
Time stamp: m:ss. 
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In some cases, after the large filamentous network breaks parasites can still be 

seen connected to other parasites (Figure 5-14 A, Blue arrows).  These can 

stretch while the parasites that are connected move in opposite directions 

(Supp. Movie appendix 16).  Moreover, some escaping parasites were retracted 

back towards the PV, like being held by an elastic band (Figure 5-14 B, Supp. 

Movie appendix 17).  Upon overexposure of the image, an extremely thin 

filament was observed holding this parasite (Figure 5-14 C).  This may suggest 

that small microfilaments, possibly containing an F-actin core hold the parasites, 

and these, in turn, are also required to break to escape the host successfully. 

 

Figure 5-14: Short filamentous-like structures hold the parasites together even after the vast 
network has been fragmented. 
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After calcium ionophore triggered egress has occurred, parasite initiate motility out of the vacuole.  
A) Some remain held together with filamentous-like structures.  B) These structures are rather 
flexible, and the parasites are sprung back towards the vacuole, similar to an elastic band.  This 
must break before the parasite can successfully re-invade a new host cell.  C) Overexposure of the 
rebounding parasite from (B).  Yellow arrowheads indicate a potential connection.  Scale bars: 10 
µm.  Time stamp; m:ss. 

In summary, F-actin is required for parasites to egress and that these filaments 

may have an essential role in calcium signal transduction.  It has previously been 

shown that CDPK1 and 3 are required for egress (Lourido et al., 2010; McCoy et 

al., 2012; Nagamune et al., 2008).  Moreover, CDPK3 phosphorylates the MyoA 

motor during egress (McCoy et al., 2012), and is possible that this signal is 

translocated along F-actin synchronising the parasites to initiate motility.   

5.11 Summary and conclusions 

This chapter has provided evidence that Toxoplasma parasites do indeed form 

actin filaments that appear to depend on a critical concentration of G-actin.  F-

actin has multiple functions during the intracellular stages of the lifecycle; from 

parasite replication during endodyogeny, organising the PV, apicoplast division 

and egress.  Parasites replicating by endodyogeny, are held together with 

tubules containing actin filaments.  Upon triggering egress with an increase in 

intracellular Ca2+ levels, the filaments depolymerise rapidly which must occur 

before motility can be initiated. So far, there has been no observed evidence of 

actin at the parasite pellicle where the motor complex should be situated during 

gliding and invasion, but this study has provided preliminary observational signs 

of actin accumulating at the rear of motile and invading parasites.  Future 

experiments controlling the signal to noise ratio of the chromobody may reveal 

more about this basal localisation or even F-actin at the pellicle. 
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Chapter 6 A new outlook on parasite motility 

Cell motility of non-flagellated organisms depends on the coupling of 

intracellular forces to a substrate (Keren, 2011; Mogilner & Oster, 1996).  

Motility of apicomplexan parasites is predicted to occur through a linear motor 

complex, once known as the ‘glideosome’ (Keeley & Soldati, 2004).  This model 

predicts that the actin-myosin motor complex produces forces through 

interactions with transmembrane proteins to propel parasites across the 

substrate (Meissner, 2013; Soldati & Meissner, 2004).  Throughout this thesis, 

evidence has been shown that actin, at the core of the complex, is important 

but not essential for motility.  Moreover, components of the motor complex once 

thought to be essential are no longer critical to motility, in particular the 

myosinA motor (Andenmatten et al., 2012; Egarter et al., 2014).  These 

discoveries lead our group to suggest a novel model of motility based on 

gelation/solation (Egarter et al., 2014).  This model predicts that actin and 

other cations generate osmotic pressures within the cytoplasm of the parasite.  

In turn, if adequate adhesion sites exist ahead of the parasite, this pressure 

pushes the leading edge forward.  Subsequently, the parasite detaches from its 

substrate at the rear and the cytoplasmic flow of macromolecules generates an 

osmotic gradient that traverses to the apical end in a ‘continual loop’ (Egarter 

et al., 2014).  Here, evidence has been provided in support of this model.  

6.1 Blocking microneme secretion/recycling abolishes 
motility 

In crawling cells, such as Dictyostelium and human leukocytes, it has been 

shown that these cells not only crawl across a substrate, but can swim efficiently 

when suspended in a viscous medium consisting of Ficoll 400 (Barry & Bretscher, 

2010; Howe et al., 2013).  By observing cells swimming, it became apparent that 

adhesion to a solid surface is not necessary for cell movement, although the rate 

at which these cells move is decreased compared to adherent cells (Bretscher, 

2014).  This suggests that motility could be driven purely by surface membrane 

flow.  This ‘swimming’ would result primarily from a secretory-endocytic cycle 

acting as a fluid drive from the anterior to the posterior end of the cell 

(Bretscher, 1976; Bretscher, 1996a; Bretscher, 2014).  In support of this, 

Toxoplasma tachyzoites move well through a 3D matrix without well-defined 
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attachment sites (Leung et al., 2014a).  Therefore, the possibility of a 

secretory/endocytic cycle occurring during gliding motility of tachyzoites was 

investigated.  Here we predict that secretion of micronemal proteins at the 

apical end of the parasite could serve to drive the membrane in a retrograde 

manner towards the basal end.   

The importance of microneme secretion in motility has been shown in many 

studies over the years.  Extracellular parasites incubated in a high potassium 

buffer (Endo Buffer) are unable to secrete micronemes (Endo & Yagita, 1990) 

and consequently cannot move (Figure 6-1 A, C).  In contrast, all known 

enhancers of gliding motility are associated with increased levels of microneme 

secretion (Carey et al., 2004b; Child et al., 2013).  While in the past, enhanced 

gliding motility was attributed to the deposition of micronemal proteins on the 

parasite membrane, it could be hypothesised that enhanced motility is instead 

due to the generation of a rapid membrane flow which generates the force for 

motility.  By this model, membrane shedding at the posterior pole would lead to 

increased lipid disposition at the apical pole to act as a balance, as previously 

shown (Hakansson et al., 1999).  In addition, endocytosis, which is known 

primarily for nutrient uptake, could also mediate the recycling of lipids.  

However, no clathrin-mediated endocytosis has been observed in T. gondii 

(Pieperhoff et al., 2013).  To determine if clathrin is involved in lipid reuptake, 

PitStop2 was used as an inhibitor of clathrin independent endocytosis (CIE) and 

looked for defects in gliding motility.  Pitstop2 blocks CIE in mammalian cells by 

interacting with the amino-terminal domain of clathrin (Dutta et al., 2012).  

Blocking CIE in extracellular tachyzoites was shown to abolish their ability to 

glide (Figure 6-1 B, C).  It should be noted that studies have shown that PitStop2 

can also cause off-target effects (Dutta et al., 2012; Liashkovich et al., 2015).  

Therefore, other inhibitors of CIE should be tested to validate these 

observations. 

This study presents preliminary data that endocytosis may be important for 

motility in Toxoplasma tachyzoites through an unknown mechanism.  Taken 

together, a secretion and recycling system may be required for motility of the 

parasites, which would be similar to the retrograde flow observed during 

amoeboid movement. 
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Figure 6-1: Inhibition of microneme secretion or recycling blocks motility 

Trail deposition assays under conditions that block microneme secretion or membrane recycling.  
A) Wild-type parasites were allowed to glide over FBS-coated coverslips in either gliding or Endo 
buffer.  Endo buffer inhibits microneme secretion and significantly reduces motility.  B) Wild-type 
parasites were allowed to glide with or without the endocytic inhibitor; PitStop2 (30 µM).  Inhibition 
of membrane recycling abolishes motility.  Error bars represent ± S.E.M.  Datasets were compared 
with a two-tailed Student’s t-test, **** p<0.0001.  C) SAG1 trails deposited during gliding motility of 
RH in gliding buffer, Endo buffer or with 30 µM PitStop2.  Scale bar: 10 µm. 

6.2 The ability for parasites to cap their membranes is 
actin-independent  

In motile cells, retrograde membrane flow causes a distinct capping of surface 

ligands (Bretscher, 1996a; Bretscher, 1996b).  In the case of apicomplexan 

parasites, a recent study demonstrated the importance of a retrograde 

membrane flow in motile Plasmodium sporozoites.  This study showed that a 

bead bound to the parasite surface is translocated to the rear of the parasite 

through a membrane flow with a rate somewhat faster than motility itself 

(Quadt et al., 2016).  Interestingly, this flow still occurs in the presence of actin 

disrupting drugs (Quadt et al., 2016).  The addition of cytochalasin D (CD) had no 

significant effect on the speed of bead translocation, while the force generated 

to move the bead was significantly reduced at high concentrations (Quadt et al., 

2016).  Previously in this thesis, it was shown that CD and loss of ACT1 have an 
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effect on parasite attachment under flow conditions (see chapters 3.5 and 

4.1.3).  Therefore, the reduced force acting on the bead could also result from a 

failure to transmit, rather than generate, the force.  This raises the possibility 

that apicomplexan motility may be similar to amoeboid-like crawling. We 

speculate that Toxoplasma could generate a retrograde membrane flow in the 

absence of the acto-myosin system.   

To test this hypothesis, an examination was carried out on the parasites ability 

to translocate fluorescent latex beads (40 nM FluoSpheres® Carboxylate-Modified 

Microspheres from Invitrogen) to their posterior end in an assay modified from 

King (1981) (Figure 6-3).  This assay was initially designed and performed by 

Prof. Gary Ward.  Parasites were allowed to attach to poly-L-lysine coated 

dishes on ice.  Latex beads were then added and allowed to bind to the parasites 

before the temperature is raised to facilitate capping.  In this experiment, three 

conditions were scored based on the beads interaction with the parasite.  The 

interaction was defined as ‘bound’ where the beads are attached to the surface 

of the parasites but had not been translocated to the posterior end of the 

parasite, ‘capped’ where the associated beads were bound and translocated to 

the posterior, and finally ‘un-bound’ where no beads were attached to the 

parasite surface (Figure 6-3 C).  Initial experiments by Prof. Gary Ward indicated 

that latex beads are bound to the surface of the parasite and are actively 

capped, in the majority of active parasites, to the posterior end of the parasite. 

This end capping typically occurred within 10 minutes (Whitelaw et al., 2017).  

Since the secretion/recycling system appears to be important for gliding 

motility, we wished to analyse membrane flow under varying conditions 

including: blocking micronemal protein secretion, constitutive micronemal 

secretion to the membrane and inhibition of recycling (Figure 6-2) (Whitelaw et 

al., 2017).  Dr. Simon Gras carried out this analysis.  It was observed that 

inhibiting micronemal protein secretion by incubation in Endo buffer causes a 

significant reduction in bead attachment and thus bead capping (**** p<0.0001) 

(Figure 6-2).  It is predicted that without micronemal proteins present along the 

surface, the capacity of the beads to interact with the surface of the parasites is 

reduced (Whitelaw et al., 2017).  Moreover, testing of a dynamin-related protein 

B (DrpB) mutant, termed DrpBDN was carried out, which was devoid of secretory 

organelles and thus unable to secrete micronemal proteins at the apical pole of 



Chapter 6 Results – A new outlook on parasite motility 186 
 

the parasite.  Instead, the micronemal proteins are secreted to the parasite 

surface through the constitutive (default) pathway (Breinich et al., 2009).  

These parasites are unable to glide across a substrate (Breinich et al., 2009).  

With the micronemes constitutively secreted, it was observed that beads easily 

bind along the parasites surface, but are almost entirely blocked in translocation 

to the parasites posterior (Figure 6-2) (Whitelaw et al., 2017).  This indicates 

that polarised secretion of the micronemal proteins is required for efficient 

capping of the membrane and gliding.  Also, we wanted to assess the role of 

membrane recycling in capping.  The addition of PitStop2 allowed parasites to 

secrete their micronemal proteins at the apical end, but subsequently blocked in 

endocytosis.  Similarly to the DrpBDN mutant, we observed beads bound to the 

surface of the majority of parasites, but noted that capping was significantly 

blocked by PitStop2 (**** p<0.0001) (Figure 6-2) (unpublished data from Dr. 

Simon Gras).  In summary, these data suggest that a secretory/endocytic 

pathway is required for efficient translocation of beads by retrograde membrane 

flow. 

 

Figure 6-2: The formation of a retrograde membrane flow with secretion/endocytic inhibitors 

A bead translocation assay was used to evaluate the possibility of a retrograde membrane flow.  
Quantification of the bead interactions with the parasites after 10 minutes incubation: un-bound 
(White), bound (Red/white stripes) and capped (red).  No significant difference was observed in 
bead translocation of wild-type parasites (RH and the un-induced DrpBDN).  Capping is almost 
blocked when the parasites cannot; secrete their micronemal proteins (Endo), generate a 
microneme gradient (DrpBDN Shld1 induced) or recycle their membranes PitStop2.  Parasites 
incubated in Endo buffer have significantly reduced capacity to bind the beads to their surface. 
Error bars for represent ± S.E.M. from a minimum of 4 independent experiments.  Datasets were 
compared with a two-tailed Student’s t-test.  **** p<0.001. 
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Next, the role of ACT1 in generating a retrograde membrane flow was assessed 

(Figure 6-3).  Significantly fewer beads bound to the act1 KO, while the addition 

of CD to wild-type parasites only had a minor deficiency in attachment (Figure 

6-3 A).  If we assume that beads must bind before they can be capped, the data 

could be normalised to the total number of bound parasites and used to 

determine capping capabilities.  Consequently, the act1 KO has no effect on the 

ability of the parasites to translocate beads (Figure 6-3 B) as per Quadt et al. 

(2016).  However, the addition of 0.5 µM CD significantly reduces bead 

translocation (** P<0.01) (Figure 6-3 B).  Since the act1 KO has no defect in 

capping, the effect with CD is probably due to the off-target effect of the drug 

as described in chapter 4.1.  Moreover, data from the lab indicates that other 

critical components of the motor complex (MyoA, MLC1 and MIC2) are not 

required for bead translocation (Whitelaw et al., 2017).  Overall, these results 

demonstrate that the establishment of a retrograde membrane flow can occur 

independently of functional ACT1 and more importantly, the whole acto-myosin 

system (Whitelaw et al., 2017). 
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Figure 6-3: Actin is not required for bead translocation 

A bead translocation assay was used an indirect measurement of retrograde membrane flow.  A) 
Quantification of the bead interactions with the parasites after 10 minutes incubation: un-bound 
(White), bound (Red/white stripes) and capped (red).  Bead translocation of wild-type parasites (RH 
and CytDr) is the same.  Beads are significantly impaired in attachment to the act1 KO, ** p<0.001. 
The addition of 0.5 µM reduces both bead attachment and capping.  B) Percentage capped 
normalised to total beads bound.  ACT1 has no impact on bead translocation while the addition of 
0.5 µM CD slightly reduces capping activity, ** p<0.001.  Error bars for both (A and B) represent ± 
S.E.M from a minimum of 4 independent experiments.  Datasets were compared with a two-tailed 
Student’s t-test.  C) Representative images of the three conditions observed.  Non-fluorescent 
parasites (RH and CytDr) were stained with α-SAG1 (green) under non-permeabilising conditions to 
highlight the surface membrane. In all parasites conditions tested, beads were observed to bind 
and cap at the posterior end.   Scale bars: 5 µm. 

Taken as a whole, these data indicate that bead translocation cannot occur in 

the absence of polarised micronemes secretion and probably clathrin-mediated 
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endocytosis, as suggested by inhibition of CIE using Pitstop2.  Importantly, this 

retrograde flow of membranes is actin and myosin-independent. 

6.3 New model for parasite motility 

Here a new hypothetical model for motility based on a retrograde membrane 

flow is presented, generated by polarised secretion of the micronemes.  In this 

model, a lipid engine could drive motility independent of the acto-myosin 

system (Figure 6-4).  In this scenario, secretion at the apical end and 

recycling/membrane shedding at the polar end result in a retrograde membrane 

flow produces the force necessary for motility.  In contrast, the acto-myosin 

system acts primarily by transmitting force through regulation of attachment 

sites at parasite the surface (Figure 6-4).  According to this model, the acto-

myosin system would be important for the regulated formation and release of 

attachment sites, similar to a ‘molecular clutch’ (Case & Waterman, 2015; 

Elosegui-Artola et al., 2016).  Transmembrane micronemal proteins interact with 

the extracellular matrix (similar to integrins), while the tail domains of these 

micronemes interact with a yet unknown “connector” within the parasite (Figure 

6-4).  The interaction of MyoA and short ACT1 filaments engages the clutch to 

link transmembrane micronemes as described in Elosegui-Artola et al. (2016).  

The forces generated by membrane flow would be physically transmitted to the 

parasites IMC through this molecular clutch (Figure 6-4), resulting in tension on 

the membrane.  When ACT1 is depolymerised or MyoA disengages from the actin 

filament, the clutch disengages.  This results in disengagement of the 

attachment site, leading to the parasite project forward.  Together, tight 

regulation of these forces will result in the parasites ability to glide across the 

substrate and invade the host (Figure 6-4). 
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Figure 6-4: Retrograde membrane flow model for motility 

It is hypothesised that a polarised secretion of micronemes at the apical end creates a retrograde 
membrane flow.  The membrane is translocated to the posterior of the parasites where it is both 
shed and recycled.  Transmembrane microneme proteins bind to host cell receptors and through 
the membrane flow generates the force.  The acto-myosin system is required to transmit the force 
to the IMC and for the formation and release of attachment sites. Top Right panel: MyoA is 
disengaged from the short actin filament.  Only a weak attachment to the substrate.  Middle right 
panel: MyoA interacts with the actin filament (Clutch engaged).  This increases the attachment 
strength to transmit the force generated by the membrane flow.  Bottom right panel: 
Depolymerisation of F-actin and disengagement of MyoA releases the clutch and weakens the 
attachment strengths.  Together this membrane flow and regulation of attachment sites results in 
forward translocation of the whole cell. 

To conclude, this model consolidates many observations explained in this thesis 

and work done by others.  Important things to note: 1) Filaments between the 

IMC and PM are still not visualised. Therefore, they may still be either extremely 

short or have rapid actin dynamics as described in Sahoo et al. (2006), 2) The 

linear motor cannot be the force generator for motility as described in Soldati-

Favre (2008), 3) Actin and myosins are important but not essential for motility 

(Egarter et al., 2014), 4) The acto-myosin motor complex is necessary for 

regulating surface attachment (Hegge et al., 2010; Munter et al., 2009).   
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Chapter 7 General discussion and outlook 

7.1 Establishment of the chromobody technology in 
Toxoplasma 

Filamentous actin has many dynamic processes in eukaryotic cells, such as cell 

morphogenesis, migration or cell division (Olson & Nordheim, 2010; Pollard & 

Cooper, 2009).  Due to its significance in cellular processes, it is fundamental to 

understand the basic principles of actin from actin polymerisation to complex 

processes like motility.  Regarding actin dynamics in vivo within the cell, many 

different tools have been developed to visualise actin, such as LifeAct, SiR-Actin 

and others (Lukinavicius et al., 2014; Riedl et al., 2008).  Since the development 

of tools to visualise the actin dynamics in live-cell conditions, the field of actin 

dynamics has moved forward rapidly.   

The techniques to visualise actin filaments have been around for many years.  

Phalloidin was successfully used to stain actin filaments back in 1974 (Lengsfeld 

et al., 1974).  Furthermore, phalloidin tagged to fluorescent probes advanced 

the differentiation and characterisation of F-actin within the cell (Wulf et al., 

1979).  While phalloidin is highly specific to F-actin and has provided a greater 

understanding of the actin cytoskeleton, the stabilising properties of the drug 

become toxic to the cells, where they frequently die or have severe alterations 

in actin-based functions (Cooper, 1987).  The use of actin-tagged approaches 

such as rhodamine-labelled actin or GFP-actin allowed in vivo visualisation of 

the actin filament.  However, these also exhibited several drawbacks: for 

example, it was demonstrated that they had altered dynamics and reduced 

functionalities (Feng et al., 2005; Riedl et al., 2008).  In 2008, Riedl and 

colleagues demonstrated that the first 17 N-terminal amino acids of the yeast 

actin-binding protein Abp140, termed LifeAct, provided a new versatile marker 

for labelling F-actin (Riedl et al., 2008).  Indeed, LifeAct is the smallest actin-

binding probe that lies between subdomains 1 and 3 of the actin monomer and 

its binding site does not have any sequence homology to other actin-binding 

proteins.  Therefore, it does not appear to interfere with actin regulation in vivo 

(Riedl et al., 2008). 
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While the mammalian system has established a variety of tools to visualise actin 

in the cell, the area of Apicomplexan actin research is still lagging behind.  

Filaments in the motile stages of the parasites lifecycle have been elusive 

leading to the conclusion that the filaments are intrinsically unstable (Sahoo et 

al., 2006).  The use of the above techniques has been rather unsuccessful in 

Apicomplexa to determine the localisation of actin filaments.  Others have 

previously demonstrated that phalloidin does not label actin filaments in the 

parasites and reasons such as an actin-binding protein may mask its target site 

have been proposed (Cintra & De Souza, 1985; Schuler et al., 2005b).  Previous 

attempts to visualise F-actin using GFP-labelled actin in Toxoplasma gondii and 

Plasmodium berghei have shown an increased signal at both the apical and basal 

end of the parasites with the addition of the actin stabilisation drug, 

jasplakinolide (Jas) (Angrisano et al., 2012a; Wetzel et al., 2003).  Detection of 

filaments with GFP-actin was limited due to the difficulty in differentiating the 

GFP-actin that is cytosolic from that incorporated in filaments.  Furthermore, 

GFP-actin incorporation into Toxoplasma gondii had detrimental effects on 

parasite viability over time (Personal communication, Prof. David Sibley).  The 

versatile F-actin marker in a mammalian system, LifeAct was also tested in 

Plasmodium berghei but subsequently did not label actin in any form (Personal 

communication, Prof. Freddy Frischknecht).  Additionally, specific antibodies for 

apicomplexan actin predominantly bind only the monomeric form (see chapter 

3.1).  Only the antibody employed in Angrisano et al. (2012b) appears to 

preferentially label F-actin, though the signal to noise ratio still made it difficult 

to clearly identify filaments. 

This project set out to use the chromobody technology to try a different 

approach to visualising actin filaments within the parasite.  This technology, 

based on nanobodies of Camelids, has been used extensively to study actin 

dynamics in other eukaryotes such as plants (Rocchetti et al., 2014) and animal 

cells (Panza et al., 2015; Plessner et al., 2015; Rothbauer et al., 2006).  Actin 

chromobodies have several advantages compared to other actin probes in the 

mammalian system: lower toxicity, no influence on actin dynamics and a high 

signal to noise ratio (Panza et al., 2015; Plessner et al., 2015).  Moreover, it has 

been suggested that nanobodies might recognise epitopes that are not accessible 

for conventional antibodies (Muyldermans, 2013).  Despite the specificity of 
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actin-chromobodies for F-actin, the exact epitope that it targets is still unknown 

(Personal communication, Dr. Tina Romer from Chromotek).  This is because 

nanobodies tend to bind to 3D structures making it difficult to get a direct 

binding site (Muyldermans, 2013).   

In this study, I was able to generate a parasite line stably expressing the 

chromobody-Halo plasmid in a wild-type RH background.  This parasite line was 

able to complete multiple rounds of the lytic lifecycle with no significant 

difference compared to the control parasites, as analysed by a plaque assay.  

Additionally, when testing individual aspects of the lifecycle, it was observed 

that while no differences were observed in replication, egress or host cell 

invasion, gliding motility rates were slightly enhanced.  From this, I am 

confident that the expression of actin-chromobodies in Toxoplasma has no 

significant effects on the actin dynamics within the parasite.  In support with 

this finding is that actin chromobodies could be expressed throughout the 

lifecycle of a live Zebrafish without detrimental side effects (Panza et al., 

2015).   

By applying the characterised chromobody technology to visualise actin 

filaments in vivo, the first identification of an actin network became apparent in 

Toxoplasma gondii (Periz et al., 2017).  This network responds to actin-

modulating drugs as expected and is lost over time in the act1 KO.  Using two 

different correlative-light electron microscopy approaches, it was possible to 

visualise actin filaments within this network, along with some vesicles being 

transported.  As a result, we now have a robust tool to visualise actin dynamics 

within the parasite, and can begin to do biochemical characterisation of these 

filaments, that may reveal novel actin-binding proteins. 

7.2 Stabilisation of chromobody-RFP 

Two different C-terminal fusions of the chromobody were generated, and while 

the chromobody-Halo had no obvious defects throughout the lifecycle, the 

chromobody-RFP plasmid appeared deleterious to the parasites.  The 

chromobody-RFP fusion led to strong labelling of a thick filamentous network at 

the posterior end of the parasites.  Furthermore, this network appears to be a 

collapsed nest of filaments that resulted in both an enlarged residual body and 
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caused an apicoplast division phenotype.  The apicoplast replication defect is 

consistent with the functional interference of actin (Andenmatten et al., 2012; 

Egarter et al., 2014).  In addition, the chromobody-RFP recapitulates the defects 

observed with the conditional act1 KO (Andenmatten et al., 2012; Egarter et al., 

2014) and when filaments are artificially stabilised with Jas (Shaw & Tilney, 

1999).  While analysing the specificity of chromobody-RFP for F-actin, it was 

noted that the act1 KO was unaffected by its expression compared to the wild-

type parasites.  In this study I also show that specific TgACT1 antibodies that 

typically only stain cytosolic actin in the parasites, co-localised with the 

filaments, indicating that the chromobody may sequester all available actin 

monomers for filament formation.  Upon depletion of ACT1, no filaments were 

detected indicating that the chromobody-RFP may artificially stabilise the actin 

filaments.  This could be caused by the capability of RFP to form multimers 

(Baird et al., 2000).  Unlike the chromobody-Halo, attempts to generate stably 

expressing chromobody-RFP were unsuccessful.  Therefore, we predict that by 

fusing the DD-FKPB domain (Herm-Gotz et al., 2007) to the chromobody-RFP, 

this overexpression system could be used to conditionally interfere with actin 

dynamics, resulting in a rapidly functional act1 KO phenotype.  

7.3 The phenotypes indicate a cooperative 
polymerisation process of TgACT1 

For actin to fulfil its diverse functions, it must cycle between the monomeric G-

actin state and filamentous F-actin state.  Conventional actins undergo 

cooperative assembly to polymerise, where actin monomers are incorporated 

into the barbed end of growing filaments (Pollard et al., 2000).  Polymerisation 

is a result of nucleation or lag-phase followed by elongation where the critical 

concentration (Cc) is overcome and finally a steady state is reached where there 

is an equilibrium between monomer association and dissociation (Lodish et al., 

2004; Nishida & Sakai, 1983).  The slow nucleation step is due to the instability 

of the dimer, trimer intermediates (Cooper et al., 1983).  However, the 

polymerisation kinetics of Toxoplasma ACT1 has been suggested, at least in 

vitro, to lack both a lag-phase and Cc (Skillman et al., 2013).  In an isodesmic 

polymerisation model, the formation of dimers, trimers and polymers is equally 

favoured which would lead to formation of many short filaments, independent of 

actin nucleators.  As such, the question arises, what are the role of actin 
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nucleators, such as formins would be in the parasite, which have been 

demonstrated to be essential (Daher et al., 2010).  This isodesmic 

polymerisation method would make TgACT1 unique amongst actins, which was 

predicted to be an evolutionary adaption to fit with the dynamic lifestyle of the 

parasites.  In comparison, a previous study by Sahoo et al. (2006) suggested that 

TgACT1 has a 3-4 fold lower Cc required for polymerisation than conventional 

actins.  In this study, they suggest the Cc of TgACT1 is 0.03 µM (Sahoo et al., 

2006) compared to 0.12 µM (Pollard et al., 2000).  This is lower than 

conventional actins but similar to other protozoan actins (Gupta et al., 2015).  

Herein, I have looked at the phenotypic consequences of the loss of TgACT1 and 

relate this to either an isodesmic or cooperative polymerisation kinetics as a 

recent study indicated that heterologous expressed actin is mis-folded due to 

differences in the chaperonin T-complex (Olshina et al., 2016).  This likely 

makes the previous biochemical analysis of heterologous Toxoplasma actin non-

functional. 

Intriguingly, small decreases in ACT1 levels results in: instability of the 

apicoplast during division, blocked intracellular dense granule transport and a 

block in egress even when there are high levels of ACT1 detectable in the 

parasites.  There is further evidence where the act1 KO parasites are 

significantly reduced in gliding and invasion rates as early as 24 hours post 

induction.  However, importantly, the phenotype does not change after 48 hours 

post induction.  This indicates that once ACT1 is below a Cc, the phenotypes 

remain constant.  Overall, these data strongly suggest that TgACT1 polymerises 

in a cooperative model and that polymerisation kinetics in vitro does not match 

the kinetics in vivo.  One could assume that both egress and apicoplast 

maintenance require more F-actin than gliding motility and invasion, therefore 

these phenotypes are affected more severely.  However, while analysing F-actin 

formation in the act1 KO, it was noticed that these filaments were reduced in 

length at early time points after act1 excision.  This indicates that the formation 

of actin filaments requires a Cc of TgACT1, strongly supporting a cooperative 

polymerisation model rather than an isodesmic process. 
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7.4 Off-target effects of actin-modulating drugs 

Actin modulating drugs have been used to explore the functions of actin 

dynamics in cells for many years.  Some of the most used actin-modulating drugs 

are the cytochalasins.  Cytochalasin D (CD) has been used as the primary drug to 

study actin-based dynamics since other cytochalasins have either lower potency 

or off-target effects such as inhibiting glucose transporters (Copeland, 1974; 

Foissner & Wasteneys, 2007).  The mechanisms by which these drugs interact 

with canonical actins has been well described (Goddette & Frieden, 1986; 

MacLean-Fletcher & Pollard, 1980) but how these drugs affect atypical actins 

may differ significantly.  Results described in this thesis provide evidence for an 

off-target effect of CD.  Herein, I have shown that CD affects both the act1 KO 

and act1 KOCDr parasites similarly and also at high concentrations affects the 

CytDr mutant.  Nevertheless, while actin is the primary target of CD, its side 

effects also inhibit motility, possibly through reducing attachment to the 

substrate.  This revelation has direct implications for many studies that have 

used CD to characterise Toxoplasma ACT1 and indicate that TgACT1 is essential 

for parasite motility and invasion (Dobrowolski & Sibley, 1996; Drewry & Sibley, 

2015).  Moreover, it was discovered that concentrations above 0.5 µM lead to 

significant, actin-independent effects.  In support of a secondary target, a third 

CD resistant mutant was isolated that did not have a mutation in the actin 

sequence (Dobrowolski & Sibley, 1996).  As a next step, it would be interesting 

to do whole genome sequencing on this mutant to determine where the CD 

resistance mutation is.  This would enable the secondary mode of action and the 

effects that drugs has on parasite actin to be quantified and understood.   

Furthermore, I have shown that TgACT1 is naturally resistant to latrunculins.  

This is supported by previous biochemical observations where it was shown that 

Plasmodium actins have a salt bridge present that is only usually observed in 

latrunculin bound actins (Vahokoski et al., 2014).  This is contradictory to a 

study that showed Cryptosporidium parvum sporozoites are sensitive to latB 

(Wetzel et al., 2005).  However, this could be due to the differences in species, 

where C. parvum actin has only 88.1 % amino acid similarity to TgACT1 whereas 

Plasmodium ACT1 is much closer with 93.1 % identity (Dobrowolski et al., 1997). 

Since there is no structure of C. parvum actin, it may not have this structural 
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alteration. Therefore, latrunculins may have a more significant effect on C. 

parvum actin-based motility.   

Together, the phenotypes of the act1 KO significantly differ from the effects 

caused by incubating parasites with drugs that affect F-actin dynamics.   

Therefore, great care should be taken in choosing the correct concentration for 

each actin-modulating drug, especially CD, where unknown targets also affect 

parasites motility and possibly many other aspects of the lifecycle.  Care should 

also be taken not to group all Apicomplexan actins as the alterations in amino 

acid structures may highlight subtle differences in functions. For example, 

apicomplexan parasites contain the triple membranous structure where the 

acto-myosin motor complex is located.  However, many invade through 

completely different mechanisms (Meissner et al., 2013). 

7.5 Cell-cell communication 

7.5.1 Vesicular transport between parasites 

While characterising the chromobody-Halo expression in parasites, it was 

observed that there were filamentous connections between parasites but 

surprisingly also between adjacent vacuoles.  F-actin connections were observed 

predominately from the posterior end of the cells, however in some cases they 

were observed connecting to parasites near their apical ends.  In both cases, 

cytosolic GFP vesicles are transported along actin filaments.  This was abrogated 

with the addition of cytochalasin D (CD) and in the act1 KO.  This suggests that 

material is transported between parasites while they are within the PV requiring 

the formation of F-actin connections.  Where F-actin localises at the posterior 

end, the network appears to go through the residual body, making connections 

to other parasites within the vacuole.  The residual body function is relatively 

undefined but thought to exist as a repository for waste material (Hu et al., 

2002a; Shaw et al., 2000) and for remnants released from the posterior end of 

the parasites during cell division (Muniz-Hernandez et al., 2011).  In this thesis, 

using the GAPM1a and GAPM3 as a marker for the IMC (Harding et al., 2016), a 

recycling mechanism involving F-actin was seen.  At the final stages of 

endodyogeny, the mother's contents are recycled into the newly forming 

daughter cells through the F-actin connections.  Therefore, the residual body 
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might not act purely as a disposal item, but function to exchange material 

between parasites.  Muniz-Hernandez et al. (2011) also suggest that the residual 

body may fulfil a role in the organisation of the rosette formation (Muniz-

Hernandez et al., 2011).  Interestingly, the addition of CD causes the residual 

body to increase in volume and blocks egress (Shaw et al., 2000).  In this thesis, 

I have shown that the act1 KO has a flattened basal end (Egarter et al., 2014), 

which is predicted to be a result of a recycling defect.  Furthermore, the loss of 

actin results in vacuole disorganisation, similar to the gra2 KO (Mercier et al., 

2002).  Taken together, this indicates that F-actin has a role during latter stages 

of endodyogeny by recycling contents through the residual body to the daughter 

cells.  As a future outlook, it would be insightful to look at this actin network in 

a gra2 KO and the myoI and myoJ KO.  The gra2 KO could provide knowledge of 

the membranous nanotubular network (MNN) and aid in understanding if F-actin 

is required for the MNN formation.  While the myoI and myoJ KO (Damien Jacot, 

MPM 2016 abstract) may highlight the role of the myosins in a complementary 

understanding of F-actin transport. 

7.5.2 Connections between vacuoles 

During this project, F-actin extensions that connect two independent vacuoles 

were detected.  In some cases, these were > 50 µm in length.  However, the 

actual physiological function for this connection is doubtful and may be an in 

vitro artefact.  It is of interest that these connections may form with adjacent 

vacuoles in the same host cell.  It is possible that these connections act as a kind 

of cell-cell communication in the form of membrane nanotubes (Gerdes et al., 

2007; Marzo et al., 2012).  Membranous nanotubes or cytonemes are protrusions 

that extend from the plasma membrane of one cell and are able to contact 

another over relatively large distances.  They are quite often visualised in 

neuronal and immune cells (Onfelt et al., 2004) and used for communication and 

vesicular transport (Gerdes & Carvalho, 2008).  Viruses such as the human 

immunodeficiency virus (HIV) generate actin-driven protrusions to neighbouring 

cells for intracellular transmission (Lehmann et al., 2005).  In plant cells, it has 

been shown that plastids can form a nanotubule connection and allow the 

exchange of material between them (Kohler et al., 1997).  It was predicted that 

this may facilitate the coordination between the plastids (Kohler et al., 1997). 

This could open up a whole new area of research for the apicoplast during the 
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intracellular stages, possibly not over large distances but within the vacuole to 

coordinate replication and nutrient uptake (Lim & McFadden, 2010). 

7.5.3 Formation and functions of the network 

Nanotubes are encompassed by a membranous structure.  Therefore, it was 

difficult to imagine that the F-actin is secreted out of the parasite without being 

confined in a tubule-like structure.  Our CLEM data indicates that these F-actin 

bundles are inside a membranous structure, however no plasma membrane 

markers were detected.  Nevertheless, F-actin connections surrounded by 

markers of the MNN were observed, such as GRA2 and GRA7 (Mercier & Cesbron-

Delauw, 2015; Mercier et al., 2002).  An independent group has also shown 

connections similar to this with other dense granule proteins GRAs1, 3 and 7 

(Dunn et al., 2008).  Moreover, Plasmodium berghei make tubular extensions of 

HSP101 within the red blood cell (Matz et al., 2015), which look very similar to 

the actin network we observed in Toxoplasma.   Matz and colleagues tested a 

range of actin inhibitors but never observed a difference, in HSP101 location in 

the tubule, however both CD and Jasplakinolide delay the development of the 

tubules (Matz et al., 2015).   

From observations so far, F-actin connections appear to control replication and 

maintain vacuolar organisation.  This network might function to hold the 

parasites during this process.  However, the network may have other functions, 

such as nutrient uptake from the host.  Toxoplasma gondii is auxotrophic for 

cholesterol (Coppens et al., 2006; Coppens et al., 2000) and such has been 

shown to scavenge lipoprotein-derived cholesterol from host endosomal 

compartments through vesicle transport (Sehgal et al., 2005).  As parasite 

numbers in the PV can exceed 64, it could be envisioned that parasites in direct 

contact with the PV will uptake cholesterol and other nutrients in a higher 

abundance than those in the middle of the vacuole.   

7.6 Localisation of actin filaments at the linear motor 
complex 

Toxoplasma parasites actively locate and penetrate a suitable host cell.  The 

prevailing model of Toxoplasma motility is through the parasites unique gliding 
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machinery, known as the glideosome.  The glideosome is believed to be located 

in between the triple membranous structure of the plasma membrane and inner 

membrane complex that appears to be conserved across the infrakingdom of 

Alveolata (Gould et al., 2011; Tardieux & Baum, 2016).  In this complex, the 

myosin motor produces the force by actively displacing actin filaments and 

linked surface adhesions to the rear, creating a traction force that propels the 

parasites forwards or into a host cell (Soldati & Meissner, 2004).  In this system, 

one would expect to visualise actin filaments beneath the plasma membrane.  

However, to date, there is little evidence of actin filaments at the motor in 

vivo.  This could be explained by the unusual properties of actin in Apicomplexa, 

such that it forms short filaments that are transient and unstable (Sahoo et al., 

2006; Schmitz et al., 2005).  Also, it was suggested that the parasites actin is 

evolutionary altered in its polymerisation kinetics (Skillman et al., 2013).  With 

the applied chromobody technology to detect F-actin in Toxoplasma gondii, we 

were unable to detect filaments at the pellicle of moving parasites.  Using 3D 

super-resolution microscopy, some filamentous-like structures were seen.  More 

recent work to enhance the signal to noise ratio observed that there are long F-

actin cables-like structures within the cytoplasm of the parasites but not at the 

pellicle.  These are similar to long F-actin tracks observed in Plasmodium 

falciparum stage IV gametocytes (Hliscs et al., 2015).  These possibly act as 

tracks for myosin motors to transport material such as dense granule proteins 

(Heaslip et al., 2016).  Interestingly, as soon as the parasites lyse out of the host 

cell during egress, F-actin accumulation was detected at the rear of motile 

parasites.  This is similar to the observations where GFP-actin accumulated at 

the apical and basal ends of motile Plasmodium ookinetes (Angrisano et al., 

2012a).  A recent study indicated that during Plasmodium sporozoite motility, an 

increase in calcium levels causes the relocation of the F-actin binding protein, 

coronin, from the pellicle to the basal end of the parasites (Bane et al., 2016).  

Similarly, Toxoplasma coronin relocalises from the cytoplasm to the basal pole 

of motile parasite (Salamun et al., 2014). 

A recent review on the mechanisms of gliding motility of apicomplexan 

highlighted three alternative models of the glideosome architecture and how 

they have evolved over time (Tardieux & Baum, 2016).  This is very interesting, 

as F-actin in each case is thought to lie between the IMC and plasma membrane.  
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With the new marker for F-actin indicating that the filaments are located within 

the cytoplasm, the topology of the myosin motor complex may require to be 

revaluated.  The reverse topology model suggested by King and colleague has 

never properly been disproved (King, 1988; Tardieux & Baum, 2016).  Therefore, 

with high-resolution markers for each component of the motor complex, the 

arrangement of this will need to be re-evaluated.  Importantly, this could lead 

to a new mechanistic model that fits all known data for gliding motility.  

7.6.1 Alternative models of gliding 

During gliding motility, the force is produced by the acto-myosin motor complex 

and transformed into traction forces through the interactions of adhesive 

proteins (Soldati & Meissner, 2004).  Undeniably, the acto-myosin motor complex 

as a whole is required for motility. However, exactly how such observations 

within this thesis and work by others fit a simplified linear motor is 

questionable.  In this thesis, it is shown that the act1 KO has a severe 

attachment defect but can still move with similar speeds in both 2D and 3D to 

wild-type cells.  This is somewhat similar to other motility systems. For 

example, dendritic cells treated with latrunculin A (latA) had no difference in 

motility speeds (Renkawitz et al., 2009), while the loss of all integrins 

completely abrogated attachment and 2D migration but not 3D motility 

(Lammermann et al., 2008).  These results and work by others led us to 

speculate on other mechanisms involved in the force generation for Toxoplasma 

motility.  For example, the fundamental mechanism for the gel-solation model 

predicted in Egarter et al. (2014) works in principle and can be consolidated 

with many (but not all) of the available data.  It predicts that the force is 

generated from changes in hydrodynamic pressures caused by osmotic 

differences with a poroelastic cytosol, generated either by the acto-myosin 

activity itself or osmogenic ion transporters located on the plasma membrane, 

which results in shape changes during motility (Charras et al., 2005; Mitchison et 

al., 2008).  A similar model for an osmotic engine has been demonstrated for 

tumour cells confined in space (Stroka et al., 2014b). 

Results presented in this thesis indicate that the acto-myosin system is not 

essential for producing the force as once predicted.  Interfering with polarised 

microneme secretion causes a block in motility (Breinich et al., 2009; Endo & 
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Yagita, 1990).  In support of this, enhancers of cell motility target the secretion 

of microneme proteins (Carey et al., 2004b; Child et al., 2013), while inhibitors 

of microneme secretion block motility (Endo & Yagita, 1990).  Moreover, these 

micronemes are translocated to the basal end after secretion in a process known 

as capping (Carruthers et al., 2000b; Dowse & Soldati, 2004; Quadt et al., 2016).  

It has been suggested that motility can be driven by a surface membrane flow 

that acts as fluid drive and is generated by a secretory-endocytic cycle from 

anterior to posterior (Barry & Bretscher, 2010; Bretscher, 2014).  To test this, a 

bead translocation assay was adapted, first described in King (1981), as an 

indicator of a retrograde membrane flow.  Surprisingly, it was found that bead 

translocation occurs independently of the major components of the glideosome: 

ACT1, MyoA, MLC1 and MIC2 (Whitelaw et al., 2017).  In comparison, bead 

translocation was completely blocked if we inhibited the polarised secretion of 

the micronemes using Endo buffer or a dynamin mutant that is devoid of its 

microneme organelles (Breinich et al., 2009).  Akin to other systems it is 

speculated that polarised secretion is critical for establishing a membrane flow 

that can generate the force required for motility.  In support of this, Quadt and 

colleagues measured the retrograde membrane flow in Plasmodium sporozoites 

with bead movement.  Interestingly, they demonstrate that bead movement was 

faster than the overall parasite gliding speeds (Quadt et al., 2016).  This 

suggested that the rate of retrograde flow does not directly translate into 

forward migration, but requires regulation of attachment and detachment in 

form of a molecular clutch (Tardieux & Baum, 2016).  Unfortunately, in our 

study, we were unable to measure bead translocation speeds and correlate this 

to parasite motility directly.  However, retrograde membrane flow can differ 

due to the diffusion coefficient of the protein, where non-circulating protein are 

swept to the rear of the cell quicker (Bretscher, 2014).  For example, GPI-linked 

antigens may be capped sufficiently as a result of reduced diffusion coefficient 

and hence is more sensitive to the membrane flow (Bretscher, 2014).  

It has been shown that parasites leave behind membranous trails during gliding 

motility (Hakansson et al., 1999).  It is hard to imagine how the parasites can 

cope with the loss of lipids.  In other systems, surface proteins are recycled 

through an endocytic pathway and trafficked back to the leading edge of motile 

cells (Bretscher, 1976; Bretscher, 1996a; Bretscher, 2014).  Since conventional 
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endocytosis through clathrin-coated pits has not been observed in Toxoplasma 

(Pieperhoff et al., 2013), a clathrin-independent endocytic (CIE) inhibitor on 

both gliding motility and bead translocation was tested.  Here, preliminary 

evidence is shown that both gliding motility and bead translocation are inhibited 

with a CIE inhibitor, PitStop2.  Therefore, it is suspected that endocytosis is 

occurring and involved in gliding motility.  In support of this, extracellular 

Toxoplasma can uptake molecules through receptor-specific or fluid-phase 

endocytosis (Botero-Kleiven et al., 2001).  The authors demonstrate that 

glycosaminoglycans (GAG) heparin that bind to tachyzoite surface proteins are 

internalised in an endocytic manner (Botero-Kleiven et al., 2001).  Since 

microneme proteins bind to surface receptors, it would be exciting to see which 

sets, if any, of the micronemes are endocytosed.  For example, it would be 

interesting to use photoactivatable proteins tagged to different micronemes and 

see if different coloured micronemes are internalised.  Therefore, more work is 

necessary to understand endocytosis and a reanalysis of the role of the 

micropore might be required (Nichols et al., 1994). 

The other aspect of this model includes the role of the acto-myosin system in 

force transmission.  In this thesis, it is shown that the acto-myosin system plays 

an important role in surface attachment.  Together these results are consistent 

with a molecular clutch hypothesis where the myosin engages the clutch, 

reducing the actin flow and transmitting the force produced by the membrane 

tension (Bard et al., 2008; Case & Waterman, 2015).  Interestingly, a 

Plasmodium coronin mutant failed to attach properly to substrate (Bane et al., 

2016), a similar observation to the Toxoplasma act1 KO.  However, the exact 

role of F-actin and coronin during attachment is still speculative as F-actin 

visibility in motile cells is lacking (Bane et al., 2016).  To shed light on the 

distribution and turnover of adhesion sites in Toxoplasma gondii, one could use 

reflection interference contrast microscopy (RICM), traction force microscopy 

(TFM) or optical tweezers to trap the parasites or beads in a laser beam as these 

have been used successfully to show Plasmodium sporozoite motility is 

dependent on the turnover of adhesion sites (Hegge et al., 2010; Hegge et al., 

2012; Munter et al., 2009). 
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Together, the results presented in this thesis, suggest that a retrograde 

membrane flow works coordinately with the acto-myosin system for forward 

propulsion and gliding motility.   

7.6.2 The role of the host actin during invasion 

Actin from the parasite is thought to be essential for parasite invasion, while 

actin of the host was thought to be rather passive.  In this study, it is 

demonstrated that a conditional act1 KO can still invade host cells at variable 

kinetic speeds, supporting data previously published (Andenmatten et al., 2012; 

Egarter et al., 2014).  The finding that Toxoplasma tachyzoites are naturally 

resistant to the actin sequestering drug, latrunculin A (latA) is also shown.  This 

provided a potent inhibitor of actin polymerisation of the host cell without 

perturbing the actin dynamics of the parasite.  From this, it is shown that in 

non-phagocytic (HeLa) cells, the actin cytoskeleton is required for invasion, as 

the addition of latA reduced invasion rates compared to the negative control and 

latA resistant host cells.  This observation was also supported in phagocytic 

macrophages where invasion was significantly reduced upon addition of latA 

(results from Mario del Rosario).   

Overall, this work along with others indicates that the host cell is not passive in 

invasion as previously suggested (Bichet et al., 2014; Gonzalez et al., 2009; 

Zuccala et al., 2016).  Moreover, this actin reorganisation of the host to wrap 

around the Toxoplasma tachyzoite during invasion may, in fact, represent an 

alternative invasion mechanism the cell uses when under stress.  More work in 

the future will have to be conducted to elucidate the exact role. 

7.7 The role of Toxoplasma ACT1 during the lytic cycle of 
actin: Summary 

Actin has many functions in eukaryotic cells, including apicomplexan parasites.  

Here, I have shown that shortly after invasion, during replication of the parasite, 

F-actin surrounded by membranous dense granules begin to form a dynamic 

network that is required for the organisation and structural stability of the 

parasites within the vacuole.  Moreover, as vesicles were seen moving along 

these actin filaments, they could also be involved in cell-cell communication.  As 
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the parasites are dividing, actin along with the class XXII myosin F control 

apicoplast division (Jacot et al., 2013). Increases in calcium levels causes a 

signalling cascade required for egress.  At this point, the F-actin network 

depolymerises in a yet unknown manner, allowing the parasites to initiate 

motility and escape the host cell.   

 

Figure 7-1: Actin throughout the lifecycle of Toxoplasma gondii 

Toxoplasma actin is dynamic throughout the lytic lifecycle.  All parasite stages have a large pool of 
monomeric G-actin (Dobrowolski et al., 1997) indicated in light red from antibody analysis, while F-
actin indicated by the chromobody technology is highlighted in thick red structures.  1) Gliding 
parasites have an increased actin signal at the basal end of the cell.  Moreover, actin is also found 
in the trails of gliding parasites.   2) Actin is important for attachment, although the localisation of F-
actin during this process is still unknown.  3) As the parasites invade a host cell, F-actin 
accumulates at the basal (extracellular) part of the cell until the closure of the parasitophorous 
vacuole membrane (PVM).  4) Once inside the parasitophorous vacuole, F-actin and dense granule 
proteins begin to form a membranous nanotubular network from the basal end of the parasites.  At 
late stages of endodyogeny, F-actin focuses around the daughter cells and recycles contents of the 
mother cell.  5) The daughter cells are held in at the basal end by F-actin network.  6) As 
endodyogeny continues, the actin network is continually reorganised to hold the parasites in a 
conformational rosette.  Cell to cell connections are also observed and may transfer material.  7) 
The F-actin network collapses and PVM constricts after the parasites sense the increase in calcium 
levels.  8) Parasites egress leaving behind parasite actin that is in the residual body.  The motile 
parasites have an increase in actin signal at their basal end, and some have to break 
microfilaments before they can fully egress.  Image adapted from Periz et al. (2017) to highlight 
actins observed role for the whole lytic lifecycle. 

7.8 Outlook and future studies 

Within this thesis, I have provided evidence for the functions of actin within 

Toxoplasma gondii.  I have characterised an act1 KO, shown that actin-

modulating drugs are not specific to TgACT1 and demonstrated novel functions 
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of F-actin during intracellular development of the parasites.  Furthermore, I 

have provided first evidences for a new hypothesis for motility that places the 

generation of retrograde membrane flow, potentially caused by a secretory-

endocytic cycle, into the centre as a force producer for motility.  In contrast, 

this view predicts a function of the acto-myosin system as a molecular clutch for 

attachment regulation.  While such a hypothesis can consolidate many of the 

(sometimes) conflicting data, more work is required to clarify the exact 

mechanisms involved in this process.   

Firstly, obtaining a chromobody fusion that enhances the signal to noise ratio 

may indeed highlight more important questions regarding actin dynamics.  Would 

there be a clarification of F-actin within the parasites, such that filaments may 

be present at the pellicle for motility and could we see filament formation to 

visualise dense granule migration?  Can we determine the polymerisation kinetics 

and movement of the filaments?  Some interesting questions are the roles and 

functions of actin-binding proteins, which will need to be readdressed in light of 

the presented data.  For example, the actin-binding protein coronin appears to 

bundle actin filaments to control adhesion and motility (Bane et al., 2016; 

Salamun et al., 2014).  It would be interesting to see the link between the 

coronin and actin filaments during Toxoplasma motility. Moreover, it would be 

beneficial to see how the loss of the actin-depolymerisation factor (ADF) affects 

the formation and maintenance of the network.  Loss of ADF may enhance and 

stabilise the F-actin within the network, similar to jasplakinolide treatment.  

Furthermore, it would be useful to see if the Co-IP and mass-spec identifies any 

novel actin-binding proteins that may be contributing to controlling F-actin 

dynamics.  Also, the role of actin-like proteins (ALPs) should be clarified in 

detail, since they might play important roles in organisation of F-actin and F-

actin dynamics, for example acting as bundling proteins. Finally, the role of the 

myosins in Toxoplasma is an interesting area of research.  Some questions posed 

include; what would their role be with regard to the filaments?  Are they 

involved in shunting F-actin to the posterior end of the parasites and into the 

network?  Whatever the roles, more work will need to be addressed to 

understand the nature of this network and how F-actin is involved in motility and 

invasion. 
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Chapter 9 Appendices 

9.1 List of supplementary movies 

Supplementary Movie 1: Example of helical gliding motility of RH KillerRed.   

Time-lapse video microscopy of a RH KillerRed parasite gliding in a helical motion over an FBS-
coated Ibidi glass bottom dish.  Images were taken at 1 frame per second in A594 channel, DV 
Core.  Movie supports Figure 3-6 D. 

Supplementary Movie 2: Example of circular gliding motility of RH KillerRed.   

Same conditions as supplementary movie 1 where a wild-type parasite moves in a circular motion. 
Movie supports Figure 3-6 D. 

Supplementary Movie 3: Example of helical gliding motility of the act1 KO. 

Time-lapse video microscopy of an act1 KO parasite gliding in a helical motion over a FBS-coated 
Ibidi glass bottom dish.  Images were taken at 1 frame per second in FITC channel to represent 
YFP+ act1 KO parasites, DV Core. Movie supports Figure 3-6 D. 

Supplementary Movie 4: Example of circular gliding motility of the act1 KO. 

Same conditions as supplementary movie 3 where an act1 KO parasite moves in a circular motion. 
Movie supports Figure 3-6 D. 

Supplementary Movie 5: Penetration of a RH parasite. 

Time-lapse video microscopy of RH invading an HFF cell.  Images were taken at 1 frame per 
second in DIC channel, DV Core. Movie supports Figure 3-8. 

Supplementary Movie 6: Penetration of a LoxPAct1 parasite. 

Same conditions as supplementary movie 5 where a LoxPAct1 parasite invades an HFF cell. Movie 
supports Figure 3-8. 

Supplementary Movie 7: Penetration of an act1 KO parasite with speeds similar to wild-type. 

Same conditions as supplementary movie 5 with a final image in FITC (not shown) to distinguish 
YFP+ act1 KO parasites from the un-induced LoxPAct1 parasites, DV Core. This parasite invades 
at a similar speed to wild-type cells.  Movie supports Figure 3-8. 

Supplementary Movie 8: Penetration of a slowly invading act1 KO parasite. 

Same conditions as supplementary movie 7, DV Core. This act1 KO parasite invades significantly 
slower than wild-type parasites.  Movie supports Figure 3-8. 

Supplementary Movie 9:  Penetration of Chromobody-Halo parasites. 

Time-lapse video microscopy of a chromobody-Halo parasite invading an HFF cell.  Images were 
taken at 1 frame per second in DIC and A594 channel, DV Core. Movie supports Figure 5-8 D. 

Supplementary Movie 10: Penetration of Chromobody-RFP parasites. 

Same conditions as supplementary movie 9. F-actin can only be seen at the basal end of the 
parasite and isn’t dynamic during invasion.  Movie supports Figure 5-8 E. 
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Supplementary Movie 11: F-actin during replication. 

Time-lapse video microscopy of a chromobody-Halo parasite expressing GAPM1a as a marker for 
the IMC replicating within an HFF cell.  F-actin accumulates at the residual body during replication 
and appears to recycle contents to the new daughter cells.  Images were taken at 1 frame per 
second in FITC (GAPM1a) and A594 (chromobody-Halo) channels, DV Core. Movie supports Figure 
5-9. 

Supplementary Movie 12: Chromobody-Halo parasites making an F-actin connection to a 
neighbouring vacuole during replication. 

Time-lapse video microscopy of a GAPM1a parasite transiently expressing chromobody-Halo 
replicating within an HFF cell.  The chromobody-Halo vacuole makes a dynamic connection with a 
neighbouring non-transfected vacuole and retracts.  Images were taken at 1 frame per second in 
DIC and A594 channel, DV Core. Movie supports Figure 5-12. 

Supplementary Movie 13: The F-actin connections break up prior to egress. 

Time-lapse video microscopy of a chromobody-Halo parasite egressing an HFF cell.  This network 
breaks up after addition of Ca2+ ionophore even if the parasites do not escape.  Images were taken 
at 1 frame per second in a Z-stack of 15 slices of 0.2 µm (total time per stack was around 6 
seconds) in A594 channel, DV Core. Movie supports Figure 5-13 A. 

Supplementary Movie 14: F-actin dynamics during egress 1. 

Time-lapse video microscopy of chromobody-Halo parasites escaping after calcium induced 
egress.  Images were taken at 1 frame per second in DIC and A594 channel, DV Core. This movie 
shows that many of the vacuoles egress at similar times after an increase in calcium levels.  Movie 
supports Figure 5-13 B. 

Supplementary Movie 15: F-actin dynamics during egress 2. 

Same conditions for supplementary movie 13. Focused vacuole indicating the network breaks prior 
to parasites escaping.  F-actin can be seen to be left behind in the residual body after egress.  
Movie supports Figure 5-13 C. 

Supplementary Movie 16: Parasites are held together by tubule structures stained with Halo. 

Time-lapse video microscopy of a chromobody-Halo parasite during induced egress.  Some 
parasites within the vacuole can be seen moving in opposite directions while being held together by 
tubule-like structures.  Images were taken at 1 frame per second in A594 channel, DV Core.  Movie 
supports Figure 5-14 A. 

Supplementary Movie 17: Parasite is recoiled after egress. 

Same conditions as supplementary movie 17.  A single parasite is recoiled to the vacuole by an F-
actin connection before it breaks and the parasite invades a new cell.  Movie supports Figure 5-14 
B, C. 
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9.2 Figure copyright permissions 

Table 9-1: Copyright permissions obtained for figures reproduced from journal publications 

Publisher Journal Reference journal title Author (Year) 
Figure No. 
in paper 

Figure No. in 
this thesis 

Copyright 
permission code 

NPG Nature Reviews 
Microbiology 

Modulation of innate immunity by 
Toxoplasma gondii virulence effectors 

Hunter and Sibley 
(2012) 

Figure 1 Figure 1-1 3931340226607 

American 
Society for 
Microbiology 

Clinical Reviews 
Microbiology 

Structures of Toxoplasma gondii 
Tachyzoites, Bradyzoites, and Sporozoites 
and Biology and Development of Tissue Cysts 

(Dubey et al., 1998) Figure 6 Figure 1-4B * 

NPG Nature The cytoskeleton, cellular motility and the 
reductionist agenda 

Pollard (2003)  Figure 1 Figure 1-10A 3936070623227 

Ivyspring Int. International Journal 
of Biological Sciences 

The forces behind cell movement Ananthakrishnan and 
Ehrlicher (2007) 

Figure 1 Figure 1-10B ** 

Elsevier Cell Water Permeation Drives Tumor Cell 
Migration in Confined Microenvironments 

Stroka et al. (2014b) Graphical 
Abstract 

Figure 1-11 3935331457584 

* Permission granted by email from Clinical Reviews Microbiology 
** Permission granted by email from International Journal of Biological Sciences 
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