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Abstract

Conventional 3D imaging techniques such as laser scanning, focus-stacking and confocal
microscopy either require scanning in all or a subset of the spatial dimensions, or else are
limited by their depth of field (DOF). Scanning increases the acquisition time, therefore
techniques which rely on it cannot be used to image moving scenes. In order to acquire
both the intensity of the scene and its depth, extending the DOF without scanning
is therefore necessary. This is traditionally achieved by stopping the system down
(reducing the f#). This, however, has the highly undesirable effect of lowering both
the throughput and the lateral resolution of the system. In microscopy in particular,
both these parameters are critical, therefore there is scope in breaking this trade-off.
The objective of this work, therefore, is to develop a practical and simple 3D imaging
technique which is capable of acquiring both the irradiance of the scene and its depth
in a single snapshot over an extended DOF without incurring a reduction in optical
throughput and lateral resolution. To this end, a new imaging technique, referred to as
complementary Kernel Matching (CKM), is proposed in this thesis.

To extend the DOF, in CKM a hybrid imaging technique known as wavefront coding
(WC) has been used. WC permits the DOF to be extended by an order of magnitude
typically without reducing the efficiency and the resolution of the system. Moreover,
WC only requires the introduction of a phase mask in the aperture of the system,
hence it also has the benefit of simplicity and practicality. Unfortunately, in practice,
WC systems are found to suffer from post-recovery artefacts and distortion, which
substantially degrade the quality of the acquired image. To date, this long-standing
problem has found no solution and is probably the cause for the lack of exploitation of
this imaging technique by the industry.

In CKM, use of a largely ignored phenomenon associated with WC was made
to measure the depth of the sample. This is the lateral translation of the scene in
proportion to its depth. Furthermore, once the depth of the scene is known, the ensuing
artefacts and distortion due to the introduction of the WC element can be compensated
for. As a result, a high quality intensity image of the scene and its depth profile
(referred to in stereo vision parlance as a depth map) is obtained over a DOF which is
typically an order of magnitude larger than that of an equivalent clear-aperture system.
This implies that, besides being a 3D imaging technique, CKM is also a solution to
one of the longest standing problem in WC itself. By means of WC, therefore, the
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DOF was extended without scanning and without reducing the throughput and the
optical resolution, allowing both an intensity image of the scene to be acquired and
its depth map. In addition, CKM is inherently monocular, therefore it does not suffer
from occlusion, which is a major problem affecting triangulation-based 3D imaging
techniques such as the popular stereo vision. One therefore concludes that CKM fulfils
the objectives set for this project.

In this work, various ways of implementing CKM were explored and compared;
and the theory associated with them was developed. An experimental prototype was
then built and the technique was demonstrated experimentally in microscopy. The
results show that CKM eliminates WC artefacts and thus gives high quality images of
the scene over an extended DOF. A DOF of ∼ 20µm was achieved on a 40×, 0.5NA
system experimentally, however this can be increased if required. The experimental
depth reconstructions of real samples (such as pollen grains and a silicon die) imaged in
various modalities (reflection, transmission and fluorescence) were comparable to those
given by a focus-stack. However, as with all other passive techniques, the performance
of CKM depends on the texture and features in the scene itself. On a binary systematic
scene consisting of regularly spaced dots with a linear depth gradient, an RMS error of
±0.15µm was obtained from an image signal-to-noise ratio of 60dB.

Finally, owing to its simplicity and large DOF, there is scope in investigating the
possibility of using the same CKM setup for 3D point localisation applications such
as super resolution. An initial investigation was therefore conducted by localising
sub-resolution fluorescent beads. On a 40×, 0.5NA system, a mean precision of 148nm
in depth and < 30nm in the lateral dimensions was observed experimentally from
4, 000 photons per localisation over a DOF of 26µm. From these experimental values, a
mean localisation precision of < 34nm in depth and < 13nm in the lateral dimensions
from 2, 000 photons per localisation over a DOF of 3µm is expected on a more typical
100×, 1.4NA system. This compares favourably to the competition, therefore we
conclude that there is scope in investigating this technique for 3D point localisation
applications further.



Table of contents

List of tables vii

List of figures viii

Acknowledgements xi

Declaration xii

Abbreviations xiii

Publications xv

1 Introductory Material 1

1.1 Thesis organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives and motivation . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Laser triangulation . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Structured light (also known as pattern projection) . . . . . . . 5

1.3.3 Stereo vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.4 Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.5 Moiré topography . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.6 Shape from focus or defocus . . . . . . . . . . . . . . . . . . . . 9

1.3.7 Confocal microscopy . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.8 Selective plane illumination microscopy . . . . . . . . . . . . . . 11

1.3.9 Light field imaging . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.10 Computational 3D imaging techniques . . . . . . . . . . . . . . 13

1.4 Background material . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14



Table of contents v

1.4.1 Basic wavefront coding system . . . . . . . . . . . . . . . . . . . 15

1.4.2 Practical considerations in wavefront coding - noise and post-
recovery artefacts . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Introduction to Complementary Kernel Matching . . . . . . . . . . . . 20

1.6 Contributions of this study . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Theory 24

2.1 Space model of the cubic PSF . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Verification of the PSF model . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Formalisation of the Complementary Kernel Matching (CKM) technique 37

2.4 Generating disparity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.1 Conjugate-masks method . . . . . . . . . . . . . . . . . . . . . . 41

2.4.2 Conjugate-astigmatic-masks method . . . . . . . . . . . . . . . 43

2.4.3 Biplane method . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4.4 Comparison of the various disparity generation techniques . . . 50

2.5 Statistical investigation of the various disparity generation techniques -
Cramér-Rao lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.6 Measuring disparity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.6.1 Extended scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.6.2 Sparse point-scenes . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.7 Algorithmic representation of the CKM recovery process . . . . . . . . 67

2.7.1 Extended scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.7.2 Sparse point-scenes . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3 Proof-of-concept: numerical simulations and experiment 74

3.1 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2 Proof-of-concept experiment . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2.1 Calibration of the spatial light modulator . . . . . . . . . . . . . 82

3.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



Table of contents vi

4 Experimental verification of the biplane CKM technique 94

4.1 Optical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Calibration for extended imaging . . . . . . . . . . . . . . . . . . . . . 99

4.3 Extended imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4 Point localisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.5 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . 129

5 Conclusion and future work 132

References 135



List of tables

2.1 Mean Crámer-Rao lower bound against depth range for various techniques 58

4.1 Error in depth of the biplane CKM for extended samples with respect to
SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2 NSR parameter values used in the image recovery for different SNR values110

4.3 Summary of the imaged extended samples . . . . . . . . . . . . . . . . 111

4.4 Summary of point localisation results together with performance of
established 3D localisation techniques . . . . . . . . . . . . . . . . . . . 124

4.5 Comparison of this technique to other established 3D point localisation
techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



List of figures

1.1 Laser triangulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Structured light 3D imaging techinque. . . . . . . . . . . . . . . . . . . 5

1.3 Mirau interferometer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Moiré topography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Confocal microscope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Light field microscope. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7 Comparison between double-helix PSF and cubic PSF. . . . . . . . . . 13

1.8 MTF and PSF of a wavefront coding system. . . . . . . . . . . . . . . . 16

1.9 Caustic generated by a cubic phase mask. . . . . . . . . . . . . . . . . 16

1.10 Wavefront coding imaging process. . . . . . . . . . . . . . . . . . . . . 17

1.11 Artefacts in wavefront coding. . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Pupil function of a wavefront coding system in 1D . . . . . . . . . . . . 26

2.2 Translation of the point spread function with defocus . . . . . . . . . . 28

2.3 Translation of the pupil with respect to the optical axis . . . . . . . . . 30

2.4 Plots of the space model of PSF compared to the Fourier transform PSF 33

2.5 Double Gauss lens setup simulated to investigate the effect of displacing
the aperture stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 MTF and PSF for centred and decentred aperture stop under ∼ −12.5
waves of defocus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7 Shift and cut-off frequency of a CPM system with a centred and a
decentred aperture stop . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8 Plots of the modulation of the OTF with defocus. . . . . . . . . . . . . 40

2.9 Optical setup for the generation of disparity by the conjugate-masks
method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.10 Comparison of the PSFs generated by the conjugate-masks setup . . . . 42



List of figures ix

2.11 Plots of the disparity between the PSFs of the conjugate-masks method. 43

2.12 Comparison of the PSFs generated by the conjugate-astigmatic-masks
setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.13 Polar plots of the disparity between the two PSFs of the conjugate-
astigmatic-masks method. . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.14 Optical setup for the generation of disparity by the biplane method . . 46

2.15 Comparison of the PSFs generated by the biplane setup . . . . . . . . . 47

2.16 Plots of the disparity between the two PSFs of the biplane method. . . 49

2.17 Crámer-Rao lower bound for various techniques . . . . . . . . . . . . . 56

2.18 Flow diagram of the CKM recovery algorithm for extended scenes . . . 69

2.19 Flow diagram of the 3D point localisation algorithm. . . . . . . . . . . 71

3.1 Scene used for numerical simulations. . . . . . . . . . . . . . . . . . . . 75

3.2 Biplane CKM compared to conjugate-masks CKM. . . . . . . . . . . . 76

3.3 Comparison of the depth profile given by the biplane CKM and the
conjugate-masks CKM . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4 Numerical simulation of CKM at low SNR. . . . . . . . . . . . . . . . . 78

3.5 Numerical simulation of CKM for texture-lacking scenes. . . . . . . . . 79

3.6 Experimental setup for the proof-of-concept experiment. . . . . . . . . 80

3.7 Proof-of-concept experiment: Measured PSFs and their shift. . . . . . . 81

3.8 Calibration of the SLM. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.9 SLM calibration: Amplitude and phase modulation. . . . . . . . . . . . 85

3.10 Testing the SLM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.11 Artefact removal: stem section and seeds. . . . . . . . . . . . . . . . . . 89

3.12 Artefact removal: tilted petiole. . . . . . . . . . . . . . . . . . . . . . . 90

3.13 Depth measurement: tilted distortion target. . . . . . . . . . . . . . . . 91

4.1 Biplane CKM optical setup . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Mounting the CPM inside an objective. . . . . . . . . . . . . . . . . . . 95

4.3 Components of the optical setup. . . . . . . . . . . . . . . . . . . . . . 97

4.4 Experimental PSF and MTF . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5 Experimental deconvolution of sub-resolution beads . . . . . . . . . . . 100

4.6 Field of view mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



List of figures x

4.7 Experimental shift of the PSFs of the biplane CKM configuration. . . . 103

4.8 Single PSF recovery and diffraction limited - sample: tilted distortion
target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.9 Biplane CKM compared to a Z-Stack - sample: tilted distortion target 107

4.10 Error analysis of CKM on extended scene . . . . . . . . . . . . . . . . . 108

4.11 Single PSF recovery and diffraction limited - sample: coin . . . . . . . 112

4.12 Biplane CKM compared to a Z-Stack - sample: coin . . . . . . . . . . . 112

4.13 Single PSF recovery and diffraction limited - sample: tracks on a silicon die113

4.14 Biplane CKM compared to a Z-Stack - sample: tracks on a silicon die . 113

4.15 Single PSF recovery and diffraction limited - sample: Lily pollen grains 114

4.16 Biplane CKM compared to a Z-Stack - sample: Lilly pollen grains . . . 114

4.17 Single PSF recovery and diffraction limited - sample: Schwann (neurilemma)
cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.18 Biplane CKM compared to a Z-Stack - sample: Schwann (neurilemma)
cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.19 Single PSF recovery and diffraction limited - sample: atomic force
microscope cantilevers . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.20 Biplane CKM compared to a Z-Stack - sample: atomic force microscope
cantilevers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.21 Point emitter (fluorescent beads) localisation . . . . . . . . . . . . . . . 118

4.22 Disparity averaged over the FOV against reference axial position . . . . 118

4.23 Histograms plots of localisation errors close to the focus position . . . . 119

4.24 Localisation precision at different axial positions . . . . . . . . . . . . . 122

4.25 Mean depth plots of localised beads . . . . . . . . . . . . . . . . . . . . 128



Acknowledgements

I would like to acknowledge the contribution and thank the following:

My supervisor, Prof. A. Harvey, for giving me the opportunity to work with
his research group. His encouragement and guidance were indispensable and very
instructive.

Dr. G. Carles who proposed the conjugate-masks CKM while I was independently
developing the biplane method on point-source scenes (see Chapter 2) and for the
myriad insightful technical discussions we had during the course of my studies. His
contribution is greatly appreciated.

Finally, I would like to thank all members of the imaging concepts group (ICG) at
the University of Glasgow who were very welcoming and helpful throughout my stay.
Working with them was a pleasure. Thank you.



Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university.
This dissertation is my own work and contains nothing which is the outcome of work
done in collaboration with others, except as specified in the text and Acknowledgements.

Paul Zammit
October 2016



Abbreviations

Acronyms / Abbreviations

ADU Analogue-To-Digital Unit

APSF Amplitude Point Spread Function

CKM Complementary Kernel Matching

CPM Cubic Phase Mask

CRLB Cramér-Rao Lower Bound

DFD Depth From Defocus

DH-PSF Double Helix Point Spread Function

DOF Depth Of Field

FFT Fast Fourier Transform

FOV Field Of View

FWHM Full-Width Half-Maximum

LSF Least-Square Fit

MLE Maximum Likelihood Estimation

MTF Modulation Transfer Function

MUM Multifocal Plane Microscopy

NA Numerical Aperture

NCC Normalised Cross Correlation

NSR Noise-To-Signal Ratio

OCT Optical Coherence Tomography

OPD Optical Path Difference



Abbreviations xiv

OTF Optical Transfer Function

PIV Particle Image Velocimetry

PSF Point Spread Function

PTF Phase Transfer Function

PWL Piece-wise Linear

SAD Sum Of Absolute Differences

SB-PSF Self-Bending Point Spread Function

SLM Spatial Light Modulator

SNR Signal-To-Noise Ratio

SP-PSF Saddle-Point Point Spread Function

SPIM Selective Plane Illumination Microscopy

SSD Sum Of Squared Differences

WC Wavefront Coding



Publications

Journal:

• P. Zammit, A. R. Harvey, and G. Carles, “Extended depth-of-field imaging and
ranging in a snapshot,” Optica, vol. 1, no. 4, pp. 209–216, 2014.

• Chapter 4 (main results of this study) is adapted to the following publication in
preparation: P. Zammit, G. Carles, A. R. Harvey, “Snapshot 3D imaging with an
extended depth of field.” To be submitted to Nature Photonics.

• Chapter 2 (Section 2.1 and Section 2.5) is adapted to the following publication in
preparation: P. Zammit, G. Carles, A. R. Harvey, “Augmenting the information
content of the cubic point spread function.” To be submitted to Optics Express.

Patent application:

• G. Carles, P. Zammit, A. R. Harvey, “Method and apparatus for evaluating
defocus in an image of a scene” (patent application number: GB2015/051743).

Conference:

• P. Zammit, A. R. Harvey, and G. Carles, “Passive 3D imaging in a single snapshot
with an extended depth of field,” in Classical Optics 2014, p. CTh2C.5, OSA,
2014.

• A. R. Harvey, N. Bustin, J. Downing, G. Carles, G. Muyo, A. Wood, and P.
Zammit, “Computational imaging for simpler optics,” in International Optical
Design Conference 2014, p. ITu3A–1, OSA, 2014.

• P. Zammit, A. R. Harvey, and G. Carles, “Single snapshot, extended depth of
field, 3D-imaging for incoherent imaging applications,” Photon14, 2014, London,
UK.

• P. Zammit, A. R. Harvey, and G. Carles, “Practical single snapshot 3D imaging
method with an extended depth of field,” in Imaging and Applied Optics 2015, p.
CT2E.2, OSA, 2015.



Abbreviations xvi

• P. Zammit, G. Carles, and A. R. Harvey, “3D imaging and ranging in a snapshot,”
Proc. SPIE, vol. 9630, pp. 963004–963004–9, 2015. [invited]

• P. Zammit, G. Carles, and A. R. Harvey, “Three-dimensional imaging and ranging
in a snapshot with an extended depth-of-field,” in Imaging and Applied Optics
2016, p. CW2D.1, OSA, 2016.

Book articles:

• AR Harvey, P. Zammit, G. Carles, G. Muyo, and S. Mezouari, “Wavefront-Coded,
Hybrid Imaging for the Alleviation of Optical Aberrations,” in Materials Science
and Materials Engineering (MATS), 2016. [invited]



Chapter 1

Introductory Material

In this chapter, the organisation of this thesis is first presented, followed by an explicit
statement of the motivation and objectives of this study. A review of the pertinent
literature is then presented in order to establish the baseline for this work. This is then
followed by a brief introduction to wavefront coding and the related theory, since this
is essential to the understanding of the material in the rest of this thesis. An overview
of the solution proposed in this work is discussed next, in order to put the reader in
perspective. Lastly, the contributions of this study are summarised and the chapter is
concluded.

1.1 Thesis organisation

The work conducted here was split into the following phases:

• Problem identification

• Solution identification

• Modelling and testing the proposed solution

• Implementation and experimental verification

The layout of this thesis was therefore designed to reflect this process. In this chapter,
the first two points (problem and solution identification) are dealt with. These are
supported by the relevant literature, therefore the literature review has been included
in this chapter. In addition, background material of direct relevance to this work is
covered in appropriate detail.

In Chapter 2, the theory relevant to the identified solution is presented in detail.
The chapter starts by modelling the cubic point spread function (PSF) in space, which
is at the heart of this work. We then proceed to the mathematical formulation of the
proposed solution itself. Various ways of implementing it are then investigated and
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compared. Lastly, an algorithm which can be used to implement the proposed solution
is presented for two scenarios: extended scenes, which are the primary objective of this
work and spares point-source scenes. This chapter is essential to the understanding of
the remainder of this thesis.

The modelling and testing phase is presented in Chapter 3. Numerical simulations
were used to confirm the theoretical inferences and predictions discussed in Chapter
2. A proof-of-concept experiment intended as an investigation of the feasibility of the
solution is also presented.

In Chapter 4, the actual implementation of the proposed solution is presented.
In this chapter the proposed solution is tested experimentally on extended scenes.
Furthermore, an initial investigation of the suitability of the proposed solution for point
localisation was also performed and is also included in this chapter.

Finally, the conclusions of this work are collected in Chapter 5, together with salient
future work and improvements which are yet to be undertaken.

1.2 Objectives and motivation

As will be discussed in more detail in the following sections, mainstream 3D imaging tech-
niques (i.e. techniques capable of acquiring both the irradiance and depth information
of a sample) involve either reducing the numerical aperture (NA) of the optical system
(such as stereo imaging and light field cameras/microscopes) or otherwise scanning -i.e.
multiple acquisitions- (such as confocal imaging or Z-stacking alternatively known as
focus stacking). However, reducing the NA has the obvious disadvantage of lowering
the spatial resolution and the optical throughput, whereas scanning entails longer
acquisition times in addition to the use of precision mechanical positioning equipment.
The increase in acquisition time can make such techniques unsuitable to image moving
scenes or samples such as live samples in microscopy or inspecting items on a conveyor
belt. On the other hand, precision mechanical positioning equipment substantially
increases the cost of the system and its complexity. Tackling these shortcomings is the
motivation behind this work. The objective of this work can therefore be summarised
as: the development of a practical and simple imaging technique which is capable of
acquiring both the irradiance of the scene and its depth in a single snapshot without
incurring a reduction in optical throughput and lateral resolution.

A key milestone in achieving this objective is to extend the depth of field (DOF)
of the optical system without reducing its NA and without mechanical movement. A
solution to this problem was proposed by Dowski et. al. in their seminal 1995 paper [1].
Wavefront coding (WC) requires only a phase mask to be placed in the aperture stop
of the system to extend the DOF by a significant amount (typically by an order of
magnitude). Despite this, the potential of WC has found little exploitation outside the
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research community. This is primarily due to post-recovery artefacts which significantly
degrade the quality of the recovered images [2]. This problem remains unsolved to
date, therefore successful employment of this technology first requires a solution to this
problem. As stated in [2], in order to eliminate the artefacts in question, knowledge of
the depth of the sample is required. Given that the principal objective of this work is
to develop a 3D imaging technique and hence the depth of the sample will be known,
then, the artefact problem is inherently solved.

The objectives of this work can therefore be listed as follows:

• Identify a means of acquiring 3D information about the sample over an extended
DOF without reducing NA and without mechanical movement in a single-snapshot.
As stated previously, the 3D information in question consists of: (1) the irradiance
of the sample and (2) its depth at each lateral location which is referred to as
a "depth map" in stereo vision parlance. The technique proposed here for this
purpose was dubbed Complementary Kernel Matching (CKM) and is based on
WC.

• Model and test the technique identified above.

• Build a setup to demonstrate the technique (CKM) experimentally. For this
purpose, microscopy was chosen as the application area, therefore CKM was
implemented around a microscope.

• Demonstrate the removal of artefacts experimentally, hence achieving an image
quality superior to that given by WC.

• Demonstrate 3D imaging of arbitrary extended samples experimentally.

• Finally, it is hypothesised that the same technique can be modified for applications
which involved point localisation such as particle image velocimetry (PIV) and
super-resolution. The advantage of this technique in these applications is expected
to be a relatively large localisation depth range. A secondary objective of this
work is therefore an initial appreciation of the potential of this technology for
such purpose.

The original contributions of this work are:

• Complementary Kernel Matching, which is a novel technique based on WC with
the unique capability of acquiring 3D images of an extended sample over an
extended DOF in a single snapshot (without scanning or a reduction in NA).

• A solution to the long-standing problem of post-recovery artefacts in WC.
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1.3 Literature review

The literature review conducted here is intended to establish the baseline for this work
in the matter of 3D imaging technologies and techniques. It should be noted, however,
that due to the broad spectrum of techniques available and their variants, it is virtually
impossible to cover them all [3]. As a result, only the most prominent were considered
and only those which are broadly applicable to microscopy. Techniques such as time
of flight [4, 3], which is generally used in macroscopic imaging, were therefore not
considered. Furthermore, here we are mostly interested in the capability and practical
aspects of the techniques rather than the theory behind them; therefore, the theory
will not be covered in depth. Appropriate references are, however, provided for further
reading.

1.3.1 Laser triangulation

Fig. 1.1 Laser triangulation. Image taken from [3].

Laser triangulation is a widely-known principle which has found employment in a
broad range of both microscopic [5] and macroscopic applications, such as 3D mapping
of heritage sites and reverse engineering [3]. In addition, this principle lies at the heart
of other important 3D imaging methods such as structured illumination and stereo
vision, therefore it is of particular relevance to this work. Fig. 1.1 shows a representation
of a typical laser scanning configuration. The baseline d measured from the exit pupil
of the laser (Op) to the entrance pupil of the detector (Oc) defines the angle between
the optical axis of the illumination (Zp) and that of the detector (zc) denoted in the
figure by α. This angle, in turn, stipulates the resolution and precision of the depth
measurements.

For point scanning, the laser source shines a thin collimated beam onto the surface
of the target which is then imaged onto the detector. Assuming that the beam impinges
on the target, at point S in 3D space and that its image on the detector occurs at S ′ ,
then the position of point S in 3D space can be calculated by triangulating the line
of sight S ′ , Oc and the known direction of the laser beam. To form a 3D image of a
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surface scanning is therefore necessary; hence, this method suffers from a prolonged
acquisition time. An improvement on this is what is known as slit scanning [6]. In
slit scanning, instead of scanning a point in two dimensions, a light sheet produced
by expanding a laser beam using a cylindrical lens is used instead. Scanning in this
case is necessary along one dimension only, therefore the acquisition time is reduced
significantly. Triangulation is then performed between the lines of sight S ′ (is, js) , Oc

to the plane of the light sheet λs. With reference to Fig. 1.1, S ′ (
is, js

)
denotes the set

of points along line A′ , B′ which are the image of each point S on the target illuminated
by the light sheet along the illuminated line A,B.

Besides a prolonged acquisition time, laser triangulation has other disadvantages.
These include laser and/or camera occlusion, safety considerations due to laser radiation,
susceptibility to the reflectivity of target in addition to laser speckle. The problem
of occlusion can be dealt with using a technique known as synchronised scanning [7].
This, however, significantly increases the complexity of the system and hence the cost.
The dependence on the reflectivity of the surface and the effect of laser speckle can be
mitigated using a dual aperture mask [8]. This permits the position of the image on the
detector to be determined differentially, therefore these effects cancel out. On the other
hand, laser triangulators achieve high accuracies, and are insensitive to illumination
conditions, as well as to the texture of the sample itself. This contributes to their wide
appeal, despite the fact that they are rather complex and expensive.

1.3.2 Structured light (also known as pattern projection)

Fig. 1.2 Structured light 3D imaging techinque. Image taken from [3].

The structured light method operates on the same triangulation principle discussed
above. In this case, a 2D pattern is projected onto the target illuminating various regions
of it simultaneously as shown in Fig. 1.2 where a striped pattern has been assumed.
This can be viewed as slit scanning (described above) with multiple slits illuminating
the target simultaneously. Range can therefore be determined by triangulating the line
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of sight of each point imaged on the detector to the correct illuminating light sheet.
For instance, the position in 3D space of point S on the target which is illuminated by
light sheet LPs can be found by triangulating the line of sight S ′ (is, js) , Oc with light
sheet LPs. Of key importance therefore is the identification of the correct illuminating
light sheet corresponding to each point imaged on the detector. To this end, various
projection strategies have been proposed in the literature, including the projection of dot
patterns, grid lines, multi-colour patterns and binary or gray coded patterns [3]. In the
latter, multiple vertical striped patterns are projected onto the target in succession and
an image is acquired for each. The illuminating light sheet corresponding to each pixel
of the detector can then be identified from the intensity pattern of the pixel itself in each
acquired frame. This is one of the most popular methods used to solve this ambiguity.
Finally, some patterns intended to maximise the resolution of the measurements have
also been proposed in the literature, such as superimposed sinusoidal patterns with
different frequencies in [9].

One of the main advantages of this technique over laser triangulation is the fact that
incoherent illumination is used to project the pattern. This implies that rather than a
dedicated laser scanner, a simple off-the-shelf projector can be used, which results in an
appreciable cost reduction. Other advantages of this technique are its high accuracy,
the fact that it does not rely on the texture of the target and its speed of acquisition
compared to laser scanning. In fact, although this technique is not a single-snapshot
technique, it can achieve real-time operation and has also been used to image moving
targets. On the other hand, as with laser scanning, this technique is still susceptible to
the reflectivity of the target’s surface and to occlusion, although it is inherently immune
to speckle-related problems. Finally, compared to passive systems such as stereo vision,
this technique can be considered to be complicated.

1.3.3 Stereo vision

Stereo vision is another technique which relies on the triangulation principle explained
above, although in this case, no active illumination is used. Instead, two or more
cameras are positioned at an angle to each other; therefore, each camera captures
an image of the scene from a different perspective. The acquired images are then
transformed from camera coordinates to world coordinates by means of a camera model
which takes into account projection and other distortion. Correspondence is then
established by matching the features or the texture of the scene itself in the acquired
images. Note that there are various ways of measuring correspondence, however these
will be covered in Section 2.6 due to their relevance to the technique proposed here.
Once correspondence has been established, triangulation is performed and hence range
information is obtained.
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The main advantages of stereo vision over the other triangulation methods lies in its
simplicity and low cost hardware. Moreover, stereo vision is a single-snapshot technique,
whereas the others require scanning to acquire the entire field of view (FOV). On the
other hand, the fact that this technique relies on the features and the texture of the
scene itself to establish correspondence implies that the accuracy and quality (density)
of the acquired range information depends on the scene being imaged. As a result,
stereo vision tends to display moderate to low range accuracy. Furthermore, as with
all other triangulation techniques, stereo vision is prone to occlusion which limits the
width of the baseline, hence its resolution and precision. Despite its disadvantages, the
simplicity of this technique makes it very appealing. In fact, besides the substantial
research endeavour in this field, especially in the computer science field, stereo vision
has found employment in many applications including microscopy, robotic or computer
vision and collision avoidance.

1.3.4 Interferometry

Interferometric techniques operate by sensing path length difference between a reference
beam and a test beam. This is usually accomplished using classical configurations such
as the well known Mach-Zehnder and Twyman-Green interferometers. These techniques
achieve very high accuracy (a fraction of the wavelength) on a small depth range where
the unambiguous range is equal to the wavelength. The unambiguous depth range
can be increased through multi-wavelength interferometry [10]. In addition, multi-
wavelength interferometry has also been proposed to compensate for stray fluctuations
in the refractive index of the medium. These interferometric techniques are mostly used
for surface quality control, such as in specifying the surface roughness and scratch-dig
of optical surfaces which are relatively smooth. On rougher surfaces, speckle dominates
over the interference pattern therefore these methods cannot be used directly. A way of
solving this problem is to perform two measurements under identical conditions but
using two different wavelengths. The difference between the two acquired images then
reveals the interference pattern [10].

Another popular configuration is the Mirau interferometer shown in Fig. 1.3 which
is often used in surface profilometry. In this case, the two arms of the interferometer
share the same optical path and are nearly the same length. This results in a compact
arrangement, making it possible to incorporate in a microscope objective. Furthermore,
this feature relaxes the coherence length requirement of a suitable light source. As a
result, this kind of interferometer is suitable for white-light interferometry. In white-light
interferometry, a source with a comparatively short coherence length (compared to
lasers) is used thus reducing the cost of the system. Due to the short coherence length
of the light, interference occurs only when the path lengths along each arm are nearly
the same, with the intensity peaking when they are exactly the same length. To find the
depth of the target therefore, a series of images are acquired while stepping the target
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Fig. 1.3 Mirau interferometer. Image taken from [10].

or the interferometer itself along the z direction. The depth at each pixel location is
then equal to the depth which maximises the intensity of the pixel. This technique can
achieve a resolution of 0.1nm over a 100µm depth range and it is often employed in
micro- and nanotechnology [10]. White-light interferometry is also the principle behind
optical coherence tomography (OCT), which is widely used in the medical field due to
its unrivalled tissue penetration depth [11].

The principal advantages of these techniques are their accuracy and resolution.
Their main disadvantages are their limited depth range, cost and their complexity which
is accentuated further by their sensitivity to environmental factors such as temperature,
air currents and vibrations.

1.3.5 Moiré topography

Fig. 1.4 Moiré topography. Image taken from [12].
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Moiré topography was originally proposed by Takasaki [13] in the 1970s and operates
on the principal of interference. A typical arrangement is shown in Fig. 1.4 where a
laser is used to illuminate a sample at an angle α through a grating. The reflected light
is then viewed through the same grating at an angle β as shown. The resultant fringe
pattern which exists on the surface of the object as seen by the detector is given by [12]:

IM (x1, y1) = A

[
1 + 1

2 · cos
(

2π [tan (α) + tan (β)] z (x1, y1)
p

)]
(1.1)

where p denotes the period of the grating, (x1, y1) denote the lateral coordinates of a
point on the surface such as P1 and z (x1, y1) denotes the height or depth of the surface
as a function of the lateral coordinates. Eq. 1.1 represents a series of contours from
which the depth can be estimated by unwrapping the phase term:

θ = 2π [tan (α) + tan (β)] z (x1, y1)
p

(1.2)

The main advantage of this technique lies in its simplicity despite the fact that an
illumination source is still required. On the other hand, the basic technique displays rel-
atively low accuracies. Several techniques, such as phase-locked fringe detection [12] can
be used to improve this, however these techniques significantly increase the complexity
of the technique. Furthermore, the basic technique also suffers from phase ambiguity
caused by phase wrapping and is also incapable of discerning the sign of a concavity.
Phase ambiguity problems [14] limit the size of discontinuities in the depth profile at
any point (x, y) to:

z (x, y) < p

[tan (α) + tan (β)] (1.3)

consequently, Moiré topography is typically used to measure largely flat surfaces with
small and smooth variations in depth. Finally, it should be noted that defocus further
lowers the accuracy of this method, therefore the depth of field can pose a limit on the
maximum measurable range. Despite its disadvantages, Moiré topography is extensively
used in medicine to perform anatomical measurements, for instance, in the diagnosis of
scoliosis.

1.3.6 Shape from focus or defocus

Defocus is a well known phenomenon in conventional optical system. Given that this is
proportional to the distance of the object with respect to the focal plane, measuring
the defocus (or blur) gives a measure of the depth of the object. There are several
implementations which rely on this phenomenon, including passive and active systems.
In passive systems, blur is evaluated on the texture and features of the scene. The
performance of passive shape from focus systems is therefore dependent on the scene
itself. In active systems, patterned illumination is projected onto the target surface,
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creating texture artificially. This technique reduces the reliance on the scene, hence
making the technique more versatile. Traditional shape from focus/defocus techniques
require the acquisition of two or more images of the scene in order to have a reference
and hence make it possible to assess the blur at different locations in the scene. Some
techniques where a single image is used to infer depth (or shape) from defocus (and other
monocular depth cues) can be found in the literature [15], however, these techniques in
general are less robust and less accurate.

Another technique which relies on defocus to infer depth or shape is the well-known
focus-stacking or Z-stack. In this method, a stack of images of the scene is acquired at
definite depth intervals. Instead of quantifying the amount of blur in the scene, the
sharpness of the image is assessed locally in each of the acquired frames and the most
in-focus regions are then stitched together to produce the final reconstruction. The
local depth of the scene is equal to the depth at which the frame which maximises
the sharpness there has been acquired. Sharpness is assessed using several methods,
including simple high-pass and Sobel filters; and wavelet-based techniques [16]. Z-
stacking is nowadays implemented in most commercial high-end microscopes.

The principal advantage of these techniques is their simplicity because no additional
optics are necessary beside the imaging optics. The most commonly used implementation
is, however, Z-stacking and for this, a precise mechanised Z stage is necessary. Unlike
stereo vision and other triangulation-based techniques, this technique has only one view
point and therefore it does not suffer from occlusion. Finally, defocus based technique
typically shows low to moderate precisions in the range of one part per 400 [3].

1.3.7 Confocal microscopy

The confocal principle dates back to the 1950s and is a very well known and exten-
sively used principle. In conventional epi-illumination microscopy, the whole sample
is illuminated. Light from both the in-focus plane and the out-of-focus planes will
therefore make it to the detector. This reduces the contrast and hence the quality of
the acquired images. If an aperture (typically a pinhole) is placed at the image point
as shown in Fig. 1.5, the out-of-focus light is blocked and only light coming from the
in-focus plane is imaged. This improves the contrast and the axial resolution at the
expense of a reduction in optical throughput. A modest improvement in the lateral
resolution is also obtained. Mathematically, this would be equivalent to deconvolution,
however, given that this happens before detection, the noise amplification associated
with computational deconvolution is avoided.

This technique is exclusively employed in microscopy, where 3D images of an object
are acquired by optical sectioning. This implies that confocal microscopy can also
reconstruct internal features of an object besides its surface features. This makes it
highly versatile for biological applications, hence its extensive usage. In metrology,
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Fig. 1.5 Confocal microscope. Image taken from [10].

confocal microscopy is used to profile surfaces and multi-layered structures such as
silicon dies [10]. Surveying an extended sample, however, necessarily entails scanning
in all three dimensions of space. The lateral scanning is most commonly accomplished
by moving the sample laterally or by means of scanning mirrors. Recently, digital
micro-mirror devices have also been used for this purpose. As a result, this technique is
suitable mostly to image static samples. Furthermore, the additional scanning hardware
required contributes substantially to the cost and the complexity of this technique.

1.3.8 Selective plane illumination microscopy

Selective plane illumination microscopy (SPIM) [17] operates on the same principle as
confocal microscopy; that is by limiting of out-of-focus light from reaching the detector.
To achieve this goal however, in SPIM, instead of using a pin hole, the illumination
is expanded into a thin light sheet using a cylindrical lens and this is then used to
illuminate only the in-focus plane. This way, no light is reflected or emitted from the
out-of-focus planes. Unlike confocal microscopy, SPIM does not result in a lower optical
throughput. Furthermore, it does not require lateral scanning although scanning in
the axial dimension is still required. This is SPIM’s principal advantage. On the other
hand, the lateral resolution is not improved and the axial resolution is defined by the
thickness of the light sheet. Also, in SPIM, the illumination and the imaging path have
to be separate. In a SPIM microscope therefore, two objectives are required, whereas
in a confocal microscope only one. The main application of this technique is in 3D
imaging of fluorescent samples such as the imaging of zebrafish hearts [18].
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1.3.9 Light field imaging

Fig. 1.6 Light field microscope. (A) sensor plane, (B) objective plane, (c) microlens array
plane, and (D) detector plane. uv and st are conjugate planes. Image taken from [19].

Another technique of interest is light field microscopy [19] or photography [20] which is
sometimes also classified as a geometric technique (such as triangulation for instance).
To implement a light field microscope, all that is required is to place a microlens array in
the primary image plane of the microscope as shown in Fig. 1.6. This creates two planes
(st and uv) conjugate to the sample plane and the objective as shown. As a result,
each microlens corresponds to a different point on the objective and hence captures a
different view of the sample. The acquired image (called a light field) therefore consists
of a number of small images (called subimages) of the sample from different perspectives.
The number of subimages is equal to the number of microlenses in the microlens array.
By extracting one pixel from each subimage, different perspectives of the sample can be
created. By adding each individual subimage, an orthographic view with a shallow DOF
is obtained and finally, by shearing the light field (extracting different pixel positions
from each subimage); refocusing can also be performed. Furthermore, all this additional
functionality is obtained from a single snapshot, therefore this technique is suitable to
image moving samples.

This technique is growing in popularity both in macroscopic and microscopy and has
been exploited for the imaging of neural activity in zebrafish brains over an extended
DOF [21]. Its principal disadvantage is the drastic reduction in optical resolution
incurred by the use of the microlens array. Whereas optical resolution is not critical in
macroscopic imaging, in microscopy, this is often paramount. Consequently, the use of
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light field imaging in microscopy is restricted to those applications where resolution is
not critical.

1.3.10 Computational 3D imaging techniques

Traditionally, the imaging process is performed solely by the optics. In computational
imaging (also known as hybrid imaging), the optics are modified (typically by engineering
the aperture stop of the system) in such a manner as to produce an intermediate image
with some desired properties. The final image is then obtained after post-processing the
acquired intermediate image. Part of the imaging process can therefore be considered to
have been devolved to computation. The technique proposed here (CKM) falls into this
category, therefore these techniques will be discussed in more detail than the others.

One such technique was proposed by Quirin et. al. [22] where two different pupil
functions (or equivalently PSFs) were used: the double helix PSF (DH-PSF) [23, 24]
and the cubic PSF [1].

Fig. 1.7 Comparison between double-helix PSF and cubic PSF. Image taken from [22].

These two PSFs are shown in Fig. 1.7 together with the airy disk PSF created by a
clear aperture for comparison. As one can see, the DH-PSF which is generated using a
phase-only mask obtained from the superposition of Gauss-Laguerre modes presents two
bright lobes which rotate with defocus. This makes the DH-PSF suitable for ranging
over an extended DOF. On the other hand, the cubic PSF which is generated using a
cubic phase mask (CPM) is invariant with defocus. This makes the cubic PSF suitable
for the acquisition of the intensity of the scene over an extended DOF. In [22] therefore,
two imaging channels are used to acquire two images of the scene. One coded with a
CPM and the other with the DH-PSF’s mask. The intensity image given by the CPM
channel is then used to locally deconvolve the image acquired through the DH-PSF
channel thus yielding the DH-PSF with which that region of the scene is convolved.
From the obtained DH-PSF, the depth in that region can therefore be estimated by
measuring the angle subtended by the two bright lobes. It should be noted, however,
that deconvolving by the scene is an ill-posed problem due to absent frequencies in the
object’s spectrum; therefore, this operation poses some difficulties.
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This method was demonstrated in macro imaging where both the intensity image
of the scene and a depth map with a range error of 0.4mm over an extended DOF
were achieved. Its main disadvantage lies in the fact that two different pupil functions
are necessary. To implement this, in [22] the use of a spatial light modulator (SLM)
is proposed and acquisition was performed in a sequential fashion. If single snapshot
acquisition is desired, two separate imaging paths are unavoidable in order to accom-
modate the two phase masks. This incurs additional complexity of the optics and a
significant increase in cost - a phase mask alone costs £2,500 to manufacture at the
time of writing. A variation of this technique is proposed in [23] where one image is
acquired using the DH-PSF and the other with a clear aperture instead of a CPM.
This does reduce the cost because only one phase mask is necessary, however it does
not permit exploitation of the extended DOF provided by the DH-PSF. Besides, two
separate imaging channels or otherwise an SLM are still required. Yet another variation
was presented in [25] where only the DH-PSF channel is used. This solves the problem
of complexity, however both the quality of the recovered depth and the intensity image
is lower.

The use of amplitude-only masks has also been proposed in the literature for 3D
imaging. For example, in [26] an amplitude-only mask was designed in order to engineer
the response of the system to defocus. Using this together with a statistical model, the
depth map and the intensity image of the scene can be acquired from a single image
over an extended DOF. The process however cannot be automated and the recovered
depth maps are of low accuracy, therefore it is proposed mainly for image processing
applications such as image segmentation. The principal disadvantage of this technique
which is common to all systems which make use of an amplitude mask, is the reduction
in optical throughput.

Finally, in [27], a deformed binary grating placed in the aperture plane has been used
to alter the focal point of the resultant diffraction orders. In this way, each diffraction
order corresponds to a different depth in the sample space. Furthermore, it is suggested
that the binary grating can be replaced by a phase grating, thus preserving the optical
throughout and the resolution. This technique, however, is inherently monochromatic.
Furthermore, the large drop in the intensity of higher diffraction orders with respect
to the zeroth-order can pose a problem in imaging orders higher than the ±1. This
implies that this technique can image only a few depth levels simultaneously. It should
be noted that this technique does not necessitate any post processing, therefore it is
not strictly a computational imaging technique.

1.4 Background material

In this section, an overview of WC and the theory behind it is presented. This work is
based on WC; consequently an understanding of it is required in order to follow the
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material in the subsequent chapters. In addition, important practical considerations
and the artefact problem in WC in particular, will also be discussed in this section
since the mitigation of these artefacts is a principal objective of this study.

1.4.1 Basic wavefront coding system

WC is a hybrid imaging technique. As explained earlier, this means that part of the
imaging process is devolved to computation whereas the other part is devolved to the
optics. This particular hybrid imaging technique was introduced by Dowski et. al. in
1995 [1] where by means of the stationary phase approximation, the pupil function fp (·)
which renders the optical transfer function (OTF) independent of defocus has been
derived. Following the derivation given in [1], this pupil function is given by:

fp (x, y) = P (x, y) · e[α·(x3+y3)] (1.4)

where x, y are the pupil coordinates normalised by the radius of the pupil, P (x, y) is
the amplitude of the pupil and α is referred to as the coding strength. Notice that the
only difference between this pupil function and the pupil function of a conventional
optical system is the addition of the cubic phase term: α · (x3 + y3). This implies that
all that is required to implement WC is the addition of a phase mask in the aperture
plane. This mask is known as the cubic phase mask. An important feature of this mask
is the fact that it is phase-only. As a result, the optical throughput is not reduced.

The stationary phase expression of the OTF given in [1] in 1D is:

OTF (u, ψ) ≈
(

π

12 | αu |

)1/2

· e
[
iαu

3
4

]
· e
[

−iψ
2u

3α

]
(1.5)

where ψ is the defocus parameter and u is normalised spatial frequency. As one can
see from Eq. 1.5, with the exception of a linear phase term, the OTF is independent of
W20 as desired. Furthermore, in [1], the author argues that by choosing a large value
for the coding strength, this term can be reduced to negligible levels and hence the
OTF can be viewed as essentially independent of W20. The 2D OTF can be calculated
easily from the 1D expression because the CPM is separable. The in-focus modulation
transfer function (MTF) and the corresponding PSF, which will be referred to as the
cubic PSF here, are shown in Fig. 1.8. These were numerically computed for an α of
3. From these plots, another important feature of the OTF generated by the CPM
besides its insensitivity to defocus can be observed. This is the fact that although the
MTF is significantly suppressed, it presents no zeros in the pass band. This implies
that aberrating the pupil by a CPM does not result in any loss of detail (i.e. resolution
is preserved). Furthermore, this property makes the MTF particularly suitable for
deconvolution, which is necessary in order to restore contrast.



1.4 Background material 16

(a)
(b)

Fig. 1.8 (a) MTF of a wavefront coding system and (b) the cubic PSF. fx and fy are the
spatial frequencies and fo is the coherent cut-off frequency.

From a geometric point of view, the operation of the CPM can be intuitively
understood by considering the caustic. This is shown in Fig. 1.9 where the CPM was
placed in the aperture of a 70mm focal-length lens (not shown in the figure for clarity)
which was then illuminated using a collimated light beam from the left. A large α value
(∼ 900waves) was used in order to accentuate the shape of the caustic. Without the
CPM, all the light rays which make it through the aperture of the lens will converge to
a single point in space at the focal point. On the other hand, with the introduction of
the CPM, one notices that the focal point of a given bundle of rays depends on the
point on the CPM from which it emanates. For instance, in Fig. 1.9, bundle B which
lies at the centre of the CPM focuses at the original focal point of the lens (ZB) whereas
bundles A and C focus at point ZA to the right and ZC to the left of the original focal
point respectively. This implies that the introduction of the CPM results in a focal
point (or focal points) distributed over a range of axial positions rather than at single
one. As a result, the DOF is extended.

Fig. 1.9 Caustic generated by a CPM. A, B and C are bundles of rays along the phase mask
which are focued at ZA, ZB and ZC respectively; CP M is a cubic phase mask; and, Imax

is the point where the maximum intensity (peak intensity of the PSF) occurs.

Lastly, the WC imaging process will be described. This is illustrated in Fig. 1.10.
As shown, a CPM is fitted in the aperture stop of an optical system - in this case a
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finite conjugate single-lens arrangement. Capturing an image of an object will therefore
result in a blurred intermediate image because the scene is convolved with the extended
cubic PSF. This is the optical part of WC. Once the intermediate image is acquired,

Fig. 1.10 Wavefront coding imaging process. O: object, C: cubic phase mask, L: lens, D:
detector, Ii: intermediate image, P SF : point spread function, PC: computer, P SFm:
pre-acquired (measured) point spread function and Ir: recovered image.

deconvolution is necessary in order to remove the blur. This is typically computed using
a simple Wiener filter:

Hw = OTF ∗

| OTF |2 + k
(1.6)

where k is a regularisation parameter which represents the noise-to-signal ratio (NSR).
Besides the system itself, this parameter depends also on the scene and therefore it is
difficult to known a priori. For this reason, it is often chosen empirically and is assumed
to be constant, which is tantamount to assuming the noise to be white.

To compute Eq. 1.6, knowledge of the OTF of the system is required. This is
typically obtained by acquiring a PSF at some axial position. Given that the cubic PSF
is approximately invariant with depth, the exact position where the PSF is measured is
not important. In conventional WC therefore, a PSF close to the in-focus position is
often used. Once the intermediate image has been deconvolved, a sharp image of the
scene is obtained. This will be referred to as the recovered image in this text, whereas
the deconvolution process is sometimes referred to as the WC recovery process. Note
that since the PSF does not change with defocus, then the intermediate image will
also be approximately unchanged with defocus. This implies that a sharp image of the
scene can be obtained irrespective of the defocus in the scene. In simpler terms, this
implies that the DOF of the optical system has been increased (extended). In fact, WC
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is considered to be a technique for extending the DOF of the system without inuring a
throughput and resolution penalty. This is in line with the requirements of this work
hence the 3D imaging technique proposed in this work was based on WC technology.

1.4.2 Practical considerations in wavefront coding - noise and
post-recovery artefacts

Before adopting WC, there are some important practicalities which one should consider
carefully. One of the most important considerations is the signal-to-noise ratio (SNR).
Clearly, since WC entails aberrating the pupil by the introduction of a CPM, the resultant
MTF will be suppressed, as one can easily observe from Fig. 1.8a. Consequently, the
SNR of the recovered image given by a WC system will be less than that given by a
conventional clear-aperture system close to the focus. On the other hand, if the defocus
is significant, the SNR and spectral content of the WC image will be better. As a result,
if one considers the SNR over the entire extended DOF provided by a WC system it is
found that a WC system performs better than an equivalent conventional clear-aperture
system [28].

Another important consideration is the choice of the coding strength α of the CPM.
The higher the value of α is, the more suppressed the resultant MTF will be and hence
the lower the SNR. A small value is therefore desirable. On the other hand, if a small
α is used, the linear term in the OTF (Eq. 1.5) is significant. This implies that if
the scene has a variable depth profile within the FOV, the capture image will appear
distorted, since parts of the image which lie at different depths will appear shifted
laterally by an amount approximately proportional to their depth squared. In WC,
therefore, eliminating this distortion necessarily entails sacrificing SNR. This trade-off
is particularly important in microscopy because the shallow DOF often results in large
variations in defocus across the FOV.
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(a) (b)

(c) (d)

Fig. 1.11 Artefacts in wavefront coding. (a) scene, (b) coded (intermediate) image, (c) sub-
optimal recovery (post-recovery artefacts present) and (d) optimal recovery (no artefacts
present).

Finally, the as yet unsolved artefact problem in WC will be considered. This is
particularly important in WC and is probably the reason which is preventing full
exploitation of this technology. For instance in [29], the authors deemed WC unfit
for their application due to this problem. In order to explain the artefact problem,
numerically simulations using an α of 3 are shown in Fig. 1.11. Fig. 1.11a shows the
original scene and Fig. 1.11b shows the intermediate or coded image which would be
acquired using a WC system. The scene was assumed to be flat (single depth) and
the defocus was set to 1 wave. If the scene is recovered using the in-focus PSF, as is
customary in WC, the recovered image will display artefacts as shown in Fig. 1.11c. By
comparing this to the original scene shown in Fig. 1.11a, it is evident that this is far
from a faithful reproduction of the scene.
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These artefacts occur as a result of the fact that although the cubic PSF exhibits a
remarkable resistance (or insensitivity) to defocus, it is not completely unresponsive
to it. In fact, in order to eliminate these artefacts, it is necessary to recover the scene
with a PSF measured at the same depth (or defocus) as that in the scene itself [2].
This is shown in Fig. 1.11d where the coded image has been deconvolved with a PSF
which includes 1 wave of defocus like the scene itself. This implies that if the scene
has a varying depth profile (different depths in different regions) as is often the case
in practice, then optimal recovery will require a range of PSFs and not a single one
as is customary in WC. Notice further that the approximation of the OTF given by
Eq. 1.5 does not describe these artefacts. This is due to the fact that these artefacts are
caused by modulation of the phase transfer function [30] as their appearance suggests.
By taking the stationary phase approximation, therefore, one inherently assumes that
this effect is negligible.

To date, most research in WC aimed at solving the discussed issues has focused on
alternatives or alteration to the CPM such as the logarithmic mask [31, 32], radially
symmetric masks [33] and the generalised cubic mask [34, 35]. These phase masks
alleviate the problem, however they typically incur some other penalty. For instance,
the generalised cubic mask eliminates the issues caused by the linear term in the OTF,
however it has a reduced DOF compared to the CPM and is still an asymmetric phase
mask, hence it still gives rise to other forms of distortion. The artefact problem, on
the other hand, is largely unexplored. In [36], the use of an average phase transfer
function (PTF) measured over a range of axial positions is proposed as a solution. This
mitigates the problem, however artefacts can still be observed by eye. Another approach
can be found in [37] where a metric proportional to the amount of artefacts present
in the recovered image is proposed. By deconvolving the scene by a number of PSFs
acquired over a range of depths and minimising this metric, optimal recovery can be
performed. This, however, is suitable only for flat scenes due to the artefacts not being
localised. One therefore concludes that a satisfactory solution to this problem has yet
to be identified.

1.5 Introduction to Complementary Kernel Match-
ing

In this section, an introduction to the solution identified in this study will be presented,
in order to set the scene for the investigation conducted in the following chapters of
this thesis. Following the discussion above, one concludes that the key to a solution
lies in estimating the depth of the sample at every region in the FOV. This is because:
(1) ranging is an indispensable feature of any 3D imaging system, therefore the depth
requires measuring and (2) if the depth of the sample is known across the FOV, then
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each region of the intermediate image can be recovered with the matching PSF; thus,
post-recovery artefacts and the distortion caused by the linear phase term in the OTF
would be eliminated. This in turn would permit the use of WC to extend the DOF of a
system without the penalty of a reduced image quality.

The problem therefore boils down to exclusively measuring the depth of the sample.
To do this, in this work it was decided to make use of the linear phase term in the
OTF of a WC system. To date, this phase term has been either ignored or otherwise
suppressed, mainly by selecting large α values at the expense of SNR as previously
discussed. From Eq. 1.5, we notice that regions of the scene at different depth will be
imaged laterally shifted by an amount proportional to: ψ2/3α where ψ is the defocus
aberration caused by the depth of the sample. It therefore follows that if this lateral
shift can be measured, then, a measure of the depth of the sample in that region would
also have been acquired.

Unfortunately, encoding the z dimension (depth) as a lateral shift implies that
there is ambiguity between the lateral coordinates of a point in the scene and its axial
coordinate. Consequently, additional information is required to solve for the 3D position
of any given point in the scene. The easiest way of acquiring this information is to
acquire a second image of the scene with a different response to depth or defocus - i.e.
the relationship between depth in the scene and shift in each of the two acquired images
must be different. In this way, corresponding point in each image can be matched and
the relative shift between them calculated in a manner analogous to the way disparity
is measured in stereo vision. Several ways of accomplishing this goal are proposed and
investigated in this work. For the reasons discussed in the following chapter, the best
way of doing this turns out to be to acquire two images with an offset in defocus between
them. This results in a very simple optical setup and it is also possible to acquire the
two images simultaneously on the same sensor hence allowing single-snapshot operation.
We refer to this technique as: Complementary kernel matching or CKM for short.

Compared to the other techniques considered in the literature review above, CKM
does not require complex optics to implement and is very easy to incorporate in an
off-the-shelf system. In fact, it is simpler to implement than stereo because it does
not require two detectors placed some distance apart. Like stereo vision, it does not
require scanning and therefore is suitable for real-time 3D imaging. However, unlike
stereo vision and all other techniques which rely on triangulation, CKM is inherent
monocular and therefore it does not suffer from occlusion. This is a unique advantage
of this technique. Furthermore, with the exception of light field imaging, none of the
techniques considered exhibit an extended DOF and hence none is capable of acquiring
in a single-snapshot both an intensity image of the scene and its depth. Light field can
do this, however, unlike CKM, this is achieved at the expense of optical resolution which
is of major concern in microscopy. As the conducted experiments show, CKM displays
moderate accuracy in depth measurements comparable to that achieved by other passive
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techniques such as stereo vision and focus-stacking (depth from focus/defocus). Finally,
it is also important to note that CKM provides a definitive solution to the long-standing
artefacts problem in WC for the first time, thus paving the way for full exploitation of
this technology.

1.6 Contributions of this study

Following is a list of the contributions made by this study:

• Proposed a new 3D imaging technique ( Complementary Kernel Matching) capable
of acquiring both the irradiance of a scene and its depth from a single-snapshot over
an extended DOF without incurring a reduction in optical resolution and efficiency.
As stated in the Acknowledgements, the conjugate-masks CKM including the
recovery algorithm for extended scenes was proposed by Dr. G. Carles. All
mathematical analyses including those of the conjugate-masks CKM and the other
CKM configurations considered were conceived by the author. All experiments
were conducted by the author.

• By means of CKM, the long standing image quality problem (artefacts and
distortion) in WC was definitively solved.

• Proposed the use of the Airy transform for the analyses of WC systems. This was
used to derive the exact paraxial expression for the cubic PSF in 1D. In principle,
these analyses could be extended to any system with a dominant third-order
aberration.

• Proposed the use of the cubic PSF for 3D point localisation applications together
with the biplane CKM setup. This was conceived by the author independently
and before CKM was proposed.

• Using the analyses in (3), it was shown that translating the aperture augments
the 3D position information content of the cubic PSF.

1.7 Conclusion

In conclusion, the goal of this work has been defined and is the development of a simple
imaging technique which is capable of acquiring both an intensity image of the scene
and its depth in a single snapshot without incurring a reduction in optical throughput
and/or lateral resolution. To this end, a novel technique (CKM) based on WC has
been proposed and developed. From the conducted literature review, one concludes
that CKM has several advantages over the competition. These include: single-snapshot
operation; simplicity and relatively low cost; the ability to acquire both the depth and
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the intensity of the scene over an extended DOF and its inherent immunity to occlusion
which effects triangulation-based 3D imaging techniques. Additionally, CKM also solves
the long-standing image quality problem which has plagued WC systems to date. In
the following sections, the theory related to this technique is developed, several ways of
implementing it are investigated and ultimately, the technique was successfully tested
experimentally, thus fulfilling the objectives set for this study.



Chapter 2

Theory

In this chapter, the cubic PSF is modelled in space under the paraxial approximation
only, in order to investigate its properties; in particular, whether or not there are
secondary effects affecting its translation in response to defocus. This was necessary
because to date, only approximate expressions for the cubic PSF are available in
the literature. Following this investigation, the mathematical formalism of the CKM
technique is presented and various ways of generating disparity are proposed. These are
then analysed using various tools and compared in order to establish the most promising.
Next, various techniques of measuring disparity are discussed and the ones used later
during the experimental phase formalised. Finally, the CKM recovery algorithms for
extended scenes and spare point-scenes are presented in detail.

2.1 Space model of the cubic PSF

To date, most of the analysis of WC systems has been performed using numerical
simulations and/or approximate analysis. For instance, in [30], the OTF was modelled
using a geometric approach from which inferences about the artefacts and the cut-off
frequency of the system were made. The stationary phase method originally proposed
by Dowski in [1] has been used to approximate the OTF in [38] and the PSF in [39]. A
similar method was used to approximate the MTF in [40]. To the best of my knowledge,
the only exact analysis in the literature was conducted by Somayaji et. al. [41] where
the exact expression of the OTF has been derived from first principle. This expression
gives a clear description of the artefacts; however, it does not reveal any additional
information regarding the shift compared to the seminal 1995 paper by Dowski.

Given that this study is concerned with a secondary effect (WC artefacts) which
is not revealed by the stationary phase approximation as discussed in Section 1.4.1,
and that the proposed solution (CKM) relies on a largely unexplored phenomenon
(the translation of the PSF with defocus), it was deemed appropriate to conduct exact
analysis and modelling of the cubic PSF in space. The analysis were conducted in the
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space domain because CKM relies on the spatial translation of the PSF to infer depth
and hence to mitigate the post-recovery artefacts. Furthermore, the use of the Airy
transform [42, 43] - a recently defined integral transform with various properties similar
to those of the Fourier transform - is introduced as a mathematical tool for the analysis
of WC system for the first time. As discussed below, this results in a systematic method
of analysing WC systems, thus facilitating the process. Finally, in this section it is
shown for the first time that the shift generated by the CPM in response to defocus
is decoupled from the morphology of the PSF; hence, in principle, it is possible to
increase the responsivity (shift per wave of defocus) without major loss of frequency
content, or equivalently, with a smaller reduction in the cut-off frequency. Note that
the cut-off frequency of a WC system is solely defined by the size of the aperture under
ideal conditions (SNR = ∞). In practice, however, the SNR is finite due to unavoidable
noise sources such as shot noise and quantization noise. Furthermore, frequencies which
lie below the noise floor are hard to recover especially because deconvolution amplifies
the noise in the recovered image. Algorithms which are capable of recovering some of
these frequencies exist however the fidelity of the recovered spectrum still depends on
the SNR. In this work, a common definition of the cut-off frequency was adopted which
states that the cut-off frequency is the highest frequency in the normalised MTF which
is greater than or equal to the noise floor.

The 1D pupil function of a WC system using a CPM as shown in Fig. 2.1 can
be expressed as below where the curvature of the wavefront due to defocus has been
included:

fp (xp) =


1.0 × e[i2π(Wx2

p+αx3
p)], if |xp| < p

0.5 × e[i2π(Wx2
p+αx3

p)], if |xp| = p

0, if |xp| > p

(2.1)

xp denotes the pupil coordinate, p denotes the half-width of the pupil, α = αo/p3 [µm−3]
is the cubic aberration introduced by the CPM, where αo [µm/µm or Waves] is the
peak cubic aberration at the edge of the pupil expressed as OPD in multiples of the
wavelength; W = W20/p2 [µm−2] is the defocus aberration, where W20 [Waves] is the
Seidel defocus coefficient.

The amplitude PSF (APSF) is therefore given by:

APSF (xi) = F {fp (xp)} =

∫ ∞

−∞

{
rect

(
xp
2p

)
· e[i2π(Wx2

p+αx3
p)] · e[−i2πxixp]

}
dxp

(2.2)
where xi = x/λzi [µm−1] is the image-side coordinate; x is the space coordinate on the
image side and zi is the image distance. F {·} denotes the Fourier transform operator
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Fig. 2.1 Pupil function of a wavefront coding system in 1D showing the optical path difference
(OPD) expressed as multiples of the wavelength (λ) introduced by the CPM, αx3

p, (green
curve), the OPD introduced by the curvature of the wavefront due to defocus, Wx2

p, (blue
curve) and the transmittance, T , (red curve). p is half the pupil width.

and rect (·) is the Rectangular or Pulse function. Defining:

ζ = (6απ)1/3 (2.3)
x′
p = ζxp (2.4)

then, Eq. 2.2 can be re-rewritten as:

APSF (xi) =

∫ ∞

−∞

rect
(
x′
p

2ζp

)
· e

[
i

(
x′
p

3

3 +(Wζ
3α )(x′

p)2
+
(

−xiζ
2

3α

)
x′
p

)] dx′
p

ζ
(2.5)

Letting:
a = Wζ

3α (2.6)

x′
i = −xiζ2

3α (2.7)

x′′
p = x′

p + a (2.8)
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Eq. 2.5 can be re-written in a more revealing form as shown below:

APSF (xi) = e

[
i
(

2a3
3 −ax′

i

)]
ζ

∫ ∞

−∞

{[
rect

(
x′′
p − a

2ζp

)
· e[

i
3x

′′
p

3]
]

· e[ix′′
p(x′

i−a2)]
}
dx′′

p (2.9)

where Eq. 2.7 was not applied to the left hand side of Eq. 2.5 as this will be reversed
later. Here we note that Eq. 2.9 is an inverse Fourier transform integral; therefore,
letting:

H
(
x′′
p

)
= rect

(
x′′
p − a

2ζp

)
· e[

i
3x

′′
p

3] (2.10)

h (r) = F
−1 {

H
(
x′′
p

)}
(r) (2.11)

where r is a dummy variable, then, by Eq. 2.9, the amplitude PSF can be expressed as:

APSF (xi) = e

[
i
(

2a3
3 −ax′

i

)]
ζ

· h
(
x′
i − a2) (2.12)

The intensity PSF, which is what we are interested in, is thus given by Eq. 2.13 below
where Eq. 2.6 and Eq. 2.7 have been substituted back in.

PSF (xi) = 1
ζ2 ·

∣∣∣∣∣h
([

−xiζ2

3α

]
−
[
Wζ

3α

]2
)∣∣∣∣∣

2

(2.13)

From Eq. 2.13, one can notice that irrespective of what function h (·) is, the PSF will
experience a shift proportional to the square of the defocus as shown by the independent
variable of function h (·). Equating this to zero and substituting for peak aberrations
at the edge of the pupil yields: [

−xiζ2

3α

]
−
[
Wζ

3α

]2

= 0 (2.14)

=⇒ −xi = −x
λzi

= W 2

3α = W20
2

3αop
(2.15)

The spatial shift, δx, experienced by the PSF is therefore given by the equation:

δx = −λziW20
2

3αop
= −2λf#W20

2

3αo
= −2W20

2

3αofo
(2.16)

where f# denotes the f-number of the system and fo the incoherent cut-off frequency.
The negative sign in Eq. 2.16 indicates that the shift will occur in the negative direction
as shown in Fig. 2.2. Assuming a separable (square) aperture, the total shift, δS, as
shown in Fig. 2.2 is given by:

δS =
√

2λziW20
2

3αop
= 2

√
2λf#W20

2

3αo
= 2

√
2W20

2

3αofo
(2.17)
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Fig. 2.2 Translation of the point spread function with defocus. δS =
√
δx2 + δy2

which is in agreement with the original derivation given by Dowski in [1] using the
stationary phase approximation.

The final step in evaluating the PSF is to evaluate the function h (·). For generality,
let a generic aperture function be defined as: fapt

(xp−t
s

)
where s > 0 and t are arbitrary

scaling and translation constants respectively. For instance, in the case of a square-
shaped aperture as considered above, the aperture function is given by:

fapt

(
xp − t

s

) ∣∣
s=2p
t=0

= rect
(
xp
2p

)
(2.18)

then, from Eq. 2.10 and Eq. 2.11, we have:

h (r) = F
−1

fapt

(
x′′
p−a
ζ

)
− t

s

 · e[
i
3x

′′
p

3]
 (r) (2.19)

=⇒ h (r) = F
−1
{
fapt

(
x′′
p − a− ζt

sζ

)}
(r) ∗ F

−1 {
e[

i
3x

′′
p

3]
}

(r) (2.20)

where ∗ denotes the convolution product. Letting also:

Fapt (r) = F
−1
{
fapt

(
xp − t

s

) ∣∣
s=1
t=0

}
(r) = F

−1
{fapt (xp)} (r) (2.21)

then, the function h (·) is given by:

h (r) = |sζ|
{[
Fapt (sζr) · e[i(a+ζt)r]] ∗ Ai (r)

}
(2.22)

where Ai (·) denotes the homogeneous Airy function of the first kind. Evaluating
Eq. 2.22 from first principles is quite mathematically involved, however, we note that
Eq. 2.22 fits the definition of a relatively recently defined integral transform known as
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the Airy transform which, in a manner analogous to the Fourier transform, is denoted
as Aa {·} for the forward and Aa

−1 {·} for the inverse transform [42, 44]. The subscript
a ∈ R+ is a constant used to scale the basis of this integral transform which are given
by:

ωa (r) = 1
|a|
Ai
(r
a

)
(2.23)

The Airy transform of a function f (·) whose Fourier transform is F (·) is given in [44]
as:

γ (r) = Aa {f (r)} = f (r) ∗ ωa (r) = 1
2π

∫ ∞

−∞

{
e
i

[(
a3φ3

3 +φr
)]

· F (φ)
}
dφ (2.24)

We can therefore write Eq. 2.22 as:

h (r) = |sζ|A 1
{
Fapt (sζq) · e[i(a+ζt)q]} (r) (2.25)

where q and r are dummy variables. By applying the scaling property of the Airy
transform, we can also write Eq. 2.25 as:

h (r) = |sζ|A sζ

{
Fapt (q) · e[i(

a+ζt
sζ )q]

}
(sζr) (2.26)

At this point, we make an important observation. From Eq. 2.13, it is clear that
the morphology of the intensity PSF is exclusively dependent on the function h (·).
Furthermore, from Eq. 2.25 (or Eq. 2.26), the only effect the defocus has on this function
is given by the phase term:

e[i(a+ζt)q] = e[i(
Wζ+3αζt

3α )q] (2.27)

From the equation above, we notice further that if the aperture function is shifted
by an amount: t = −pW20

3αo for a 1D aperture (or under the assumption of a separable
fapt (·), by t = −

√
2pW20
3αo along the 450 degree direction with respect to the CPM axes

for a 2D aperture), then this phase term reduces to one. This means that the only
effect the defocus has on the shape of the PSF is describable by a shift of the aperture
function. This is consistent with what is reported in [39] where the highly idealised
unbounded aperture case (i.e. ignoring the aperture function) was analysed through a
combination of approximations and ray tracing. On the other hand, the fact that the
lateral shift experienced by the PSF in response to defocus, which is given by Eq. 2.17,
is not effected by shifting the aperture function, was not considered. This implies that
the shape of the PSF - and therefore the cut-off frequency of the system - is decoupled
from the responsivity of the PSF which we define as:

∂ (δS)
∂W20

= −2
√

2λziW20

3αop
(2.28)
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This is of particular relevance for CKM because in CKM maximising the responsivity
is of crucial importance, since this is directly linked to the precision with which the
depth can be inferred and thus also the extent or effectiveness with which WC artefacts
can be mitigated. Increasing the responsivity can only be achieved by operating the
system at a large W20 as shown by Eq. 2.28. This, however, has the highly undesirable
effect of reducing the cut-off frequency (potentially by a substantial amount especially
for off-axes frequencies) and thus the quality of the recovered images. The fact that
shifting the aperture can be used to compensate for the reduction in the cut-off frequency
without effecting the translation of the PSF eliminates this compromise; thus, it allows
the responsivity to be increased without lowering the image quality. Of course, shifting
the aperture is not always feasible in practice without stopping down the optics. For
instance, if we consider a microscope objective, then, shifting the aperture might be
difficult. On the other hand, if we consider a zoom lens, then this scenario is more
practical. Another practical difficulty in utilising the shift of the aperture to enhance
the performance of CKM lies in the fact that having an off-axes aperture would increase
field dependence for wide FOV systems, as well as introduce distortion. The use of
barrel distortion was identified in [45] as a feasible solution to this problem. This would
require the use of a modified phase mask, which is not foreseen to be problematic from
a practical point of view. The alternative would be to simply restrict the FOV, which
in applications such as inspection might not constitute a problem whatsoever.
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Fig. 2.3 Translation of the pupil with respect to the optical axis: (a) centred CPM and shifted
aperture; (b) both CPM and the aperture centred (reference); and, (c) centred aperture and
shifted pupil. Om and Oa denote the origin of the mask and the aperture respectively.

As a final note, it is important to distinguish between shifting the aperture of a
system and shifting the CPM itself [46], as depicted in Fig. 2.3. Fig. 2.3a shows the
aperture shifted with respect to the optical axis of the optical system, whereas the CPM
is centred. This is the case discussed above. On the other hand, the reverse situation is
depicted in Fig. 2.3c. This case is very easily analysed by considering the fact that a
shifted CPM will result in a pupil function of:

fpup (xp) = fapt (xp) · e[i2πα(xp−t)3] = fapt (xp) · e[i2πα(−t3+3t2xp−3txp2+xp3)] (2.29)
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Clearly, from Eq. 2.29, the only effect shifting the CPM has, besides introducing piston(
e[−i2παt3]

)
and tilt

(
e[i6παt2xp]

)
, is that of introducing an offset in defocus given by

the term: e[i6παtxp2]. This defocus term acts merely like a defocus offset in the specimen
plane and therefore it will affect both the morphology of the PSF (i.e. cut-off) as well
as the translation of the PSF in response to defocus. In conclusion, the decoupling
between the translation (and hence the translation rate) of the PSF with defocus and
its morphology cannot be achieved by decentring the CPM instead of the aperture with
respect to the optical axis of the system.

To conclude this section, we can express the PSF as follows by substituting Eq. 2.25
into Eq. 2.13.

PSF (x) = |sζ|2

ζ2 ·

∣∣∣∣∣A 1
{
Fapt (sζq) · e[i(a+ζt)q]}([−xζ2

3λziα

]
−
[
Wζ

3α

]2
)∣∣∣∣∣

2

(2.30)

For a rectangular aperture function, which is the main concern of this study, we have:

Fapt (r) = 2
sin
(
r
2

)
r

= sinc
(r

2

)
(2.31)

Substituting in Eq. 2.30 and setting s = 2p gives:

PSF (x) = 4p2 ·

∣∣∣∣∣A 1
{

sinc (pζq) · e[i(a+ζt)q]}([−xζ2

3λziα

]
−
[
Wζ

3α

]2
)∣∣∣∣∣

2

(2.32)

which by Euler’s formula, can also be written as:

PSF (x) =
(

1
ζ2

)
·

∣∣∣∣∣A 1

{(
e[i(pζ+a+ζt)q] − e[−i(pζ−a−ζt)q]

q

)}([
−xζ2

3λziα

]
−
[
Wζ

3α

]2
)∣∣∣∣∣

2

(2.33)
The last step is therefore to evaluate the Airy Transform in Eq. 2.33. To do this, we
use the following property of the Airy transform [44].

A α {qf (q)} (r) = rϕ (r) − α3ϕ′′ (r) (2.34)

where ϕ (r) = A α {f (q)} (r) (2.35)

Defining:

Cp = pζ + a+ ζt (2.36)

Cm = pζ − a− ζt (2.37)

ϕ (r) = A 1

{(
e[iCpq] − e[−iCmq]

q

)}
(r) (2.38)
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and given that:

A 1
{(
e[iCpq] − e[−iCmq]

)}
(r) = e

[
i

(
Cpr+

Cp
3

3

)]
− e

[
−i
(
Cmr+Cm

3
3

)]
(2.39)

then, the necessary Airy transform, ϕ (·), is given by the solution to the following
non-homogeneous, second order differential equation with variable coefficients:

rϕ (r) − ϕ′′ (r) = e

[
i

(
Cpr+

Cp
3

3

)]
− e

[
−i
(
Cmr+Cm

3
3

)]
(2.40)

To solve Eq. 2.40, we note that the homogeneous equation, rϕ (r) − ϕ′′ (r) = 0, is the
well known Airy equation; therefore, its solutions are: Ai (r) and Bi (r). The Wronksian
of these functions is also well known and is: W {Ai (r) , Bi (r)} = 1

π
. The particular

solution can therefore be found by the method of variation of parameters and is given
by:

ϕ (r) = C1Ai (r) + C2Bi (r) + ..

..− πAi (r)

∫ r

1

{
Bi(t)

(
e

[
−i
(
Cmt+Cm

3
3

)]
− e

[
i

(
Cpt+

Cp
3

3

)])}
dt+ ..

..+ πBi (r)

∫ r

1

{
Ai(t)

(
e

[
−i
(
Cmt+Cm

3
3

)]
− e

[
i

(
Cpt+

Cp
3

3

)])}
dt

(2.41)

where C1 and C2 are constants which depend on the initial conditions. For instance,
since: limx→∞ {PSF (x)} = 0, in a damped decaying fashion, then, we can consider the
initial conditions: ϕ (−∞) = 0 and ϕ′ (−∞) = 0. For these initial conditions, C1 and
C2 are given by the following equations:

C1 = π

∫ 1

−∞

{
Bi(t)

(
e

[
−i
(
Cmt+Cm

3
3

)]
− e

[
i

(
Cpt+

Cp
3

3

)])}
dt

C2 = −π

∫ 1

−∞

{
Ai(t)

(
e

[
−i
(
Cmt+Cm

3
3

)]
− e

[
i

(
Cpt+

Cp
3

3

)])}
dt

Finally, substituting Eq. 2.41 into Eq. 2.33 gives the exact analytical expression for the
intensity PSF of a WC system using a CPM and a rectangular aperture in 1D. This is
given by:

PSF (x) =
(

1
ζ2

)
·

∣∣∣∣∣ϕ
([

−xζ2

3λziα

]
−
[
Wζ

3α

]2
)∣∣∣∣∣

2

(2.42)

Finally, it is worth mentioning that the PSF can also be expressed as a series of Airy
polynomials [44] which are a special case of Gould-Hopper polynomials of the first
kind [47–49]. This expression is still not very tractable in itself; however, as discussed
above, the use of the Airy transform for the analyses of WC systems reveals important
information.
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Fig. 2.4 Plots of the space model of the PSF compared to the Fourier transform PSF. (a) - (e)
PSF given by Eq. 2.42 and (f) - (j) PSF given by the Fourier transform for different defocus
values. (a) and (f) for a defocus of −7.00 waves; (b) and (g) for a defocus of −3.50 waves; (c)
and (h) for a defocus of 0 waves; (d) and (i) for a defocus of 1.75 waves; and, (e) and (j) for a
defocus of 5.25 waves.
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The scope of this section is to verify the space model of the PSF and the deductions
made from it in Section 2.1. The simplest way of doing this is perhaps to compare the
PSF given by Eq. 2.42 to numerically computed PSFs using a fast Fourier transform
(FFT) algorithm. This is shown in Fig. 2.4 for an αo = 5 waves and a 1.4NA, 40×
system. Each row in the figure corresponds to a defocus of: W20 = −7.00,−3.50, 0, 1.75
and 5.25 waves respectively from top to bottom. A tube length of 200mm was assumed,
as is common for various commercial microscopes. The initial conditions used to
evaluate Eq. 2.42 were: ϕ (−147) = 0 and ϕ′ (−147) = 0. The value −147 was selected
arbitrarily in order to stabilise the solution where, given that the solution is highly
oscillatory, numerical instability can be problematic. As previously mentioned, however,
if numerical considerations are ignored, any arbitrary large value should yield the
correct solution since the intensity of the PSF tends to zero at ±∞. The maximum
RMS error between the numerically computed PSFs and the PSFs given by Eq. 2.42
was 1% and this happens at a W20 = 0 where the PSF exhibits the steepest slopes.
This fact suggests that this error can be attributed to sampling and other numerical
phenomena. Furthermore, the simulations predict a shift of: −1.269W20

2 µm whereas
Eq. 2.42 predicts a shift of: −1.270W20

2 µm demonstrating further agreement between
the two.

Fig. 2.5 Double Gauss lens setup simulated to investigate the effect of displacing the aperture
stop on the cubic PSF. O: Object plane, CPM: cubic phase mask, and, I: image plane. The
stop is in the same plane as the front surface of the CPM.

To verify the inferences regarding the pupil shift made in Section 2.1, it was deemed
appropriate to consider a more practical scenario rather than mere numerical simulations
based on the FFT. This is due to the fact that, as previously mentioned, displacing the
aperture can potentially introduce significant aberration, which will inevitably affect the
cut-off of the cubic PSF. To achieve this, a double Gauss lens with a circular aperture
4mm in diameter and a focal ratio of 8.56 was simulated using an optical design package
(Zemax-EE) which takes into consideration the aberrations introduced by displacing the
aperture stop. The aperture stop was placed in the same plane as the front surface of
the CPM. A CPM with an α of ∼ 8.3 waves was simulated by encoding the appropriate
sag (height of an optical surface with respect to a flat datum) on a BK7 (refractive
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index: ∼ 1.5168 at 587nm) substrate. The simulated setup is shown in Fig. 2.5 where
different colours denote different fields. The wavelength of light was taken to be 587nm.
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Fig. 2.6 MTF and PSF for centred and decentred aperture stop under ∼ −12.5 waves of
defocus; α =∼ 8.3 waves. (a) centred aperture stop; (b) on-axis defocused MTF with a
centred aperture stop; (c) PSF corresponding to the MTF in (b); (d) decentred aperture stop;
(e) on-axis defocused MTF with a decentred aperture stop showing that the effect of defocus
is nullified; (f) PSF corresponding to the MTF in (e).

To verify that displacing the aperture compensates for defocus by restoring the
cut-off frequency to its in-focus value, the object was displaced by −120mm (negative
was defined as away from the front surface of the lens) away from the in-focus position.
This corresponds to ∼ −12.5 waves of defocus. The on-axis MTF and the PSF obtained
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at this high level of defocus are shown in Fig. 2.6b and Fig. 2.6c respectively, where,
as one can observe, the cut-off frequency is reduced to ∼ 50% of the in-focus cut-off
frequency. From the analysis presented in Section 2.1, to compensate for this defocus,
the pupil should be displaced by: t = −pW20

3αo = +1.00mm along the vertical and the
horizontal axes of the CPM as shown in Fig. 2.6d with respect to the centred aperture
(Fig. 2.6a). This was simulated in Zemax and the resultant MTF and corresponding
PSF are shown in Fig. 2.6e and Fig. 2.6f respectively. As one can observe, the displaced
pupil restores the cut-off frequency to its in-focus value; thus, despite the fact that
there is a large defocus offset of 12.5 waves, no loss of detail results. This confirms the
hypothesis discussed in Section 2.1.
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Fig. 2.7 (a) shift and (b) cut-off frequency of a CPM system with a centred and a decentred
aperture stop plotted against defocus W20 in waves (bottom x-axis). The top x-axis shows
the depth in mm corresponding to the W20 on the bottom x-axis.

Finally, to verify that displacing the aperture affects the cut-off frequency and does
not affect the lateral translation of the PSF, the object was displaced in steps of 5mm
over a ±35mm depth range around the focal point of the decentred aperture system
and for comparison, the centred aperture system as well. The shift and the cut-off
frequency were then measured and are shown plotted on the same axes in Fig. 2.7a and
Fig. 2.7b respectively. As shown in Fig. 2.7a, the shift of the decentred and centred
aperture cases lies on the same quadratic. This implies that indeed, decentring the
aperture does not affect the translation of the PSF. The cut-off frequency, which was
defined as the highest frequency above the noise floor for an SNR of 100dB, on the other
hand, is amplified, as can be seen by comparing the blue to the green curve in Fig. 2.7b.
Notice that over the ±35mm depth range, the cut-off for the decentred aperture case
drops more than the cut-off for the centred aperture case. This is not caused by the
decentring of the aperture; instead, it is due to the fact that for the decentred aperture,
the system is operated at 120mm away from the original focus position. As a result, a
depth range of ±35mm translates into a larger W20 range for the decentred aperture
case than it does for the centred aperture case. This should be clearly visible in Fig. 2.7.
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Finally, we conclude this section by stating that for the considered optical system, an
aperture shift of 1.00mm will give a cubic PSF with a responsivity of:

∂ (δS)
∂W20

= −2
√

2λzi (W20 − 12.5)
3αop

= (14.28 − 1.14W20) [µm/Wave] (2.43)

and with no reduction in cut-off frequency where W20 is the defocus with respect to
the in-focus position (i.e. maximum cut-off) of the decentred aperture case. To achieve
the same responsivity with a centred aperture, the cut-off frequency would have to be
reduced by ∼ 45%, which is unacceptable for most applications. On the other hand,
to achieve the same cut-off frequency with a centred aperture, then the responsivity
would be:

∂ (δS)
∂W20

= −2
√

2λziW20

3αop
= −1.14W20 [µm/Wave] (2.44)

where W20 is with respect to the original focus position of the system. In other words,
if we consider a specific case, for instance, W20 = −1 wave, decentring the aperture will
result in a responsivity 13.5 times larger than that given by a centred aperture but
with the same cut-off frequency. The same responsivity with a centred aperture will
result in a reduction in the cut-off frequency of ∼ 53%.

2.3 Formalisation of the Complementary Kernel Match-
ing (CKM) technique

Following the brief introduction presented in Section 1.5, a formal (mathematical)
treatment of the CKM concept is presented in this section. To do this, the exact OTF
of a WC system using a CPM needs to be considered. Fortunately, unlike the PSF, for
which a model had to be derived from first principles as presented in the previous two
sections, the exact expression for the OTF can be already found in the literature [41].
This is given in 1D by the following equation:

H1D (u, ψ) =


(

π
48αu

)1/2
e[i2αu3]e

[
i2ψ2u

3α

]
× A (u, ψ) e[Φ(u,ψ)], 0 < |u| ≤ 1

1, |u| = 0
(2.45)

u = f/fc is the normalised spatial frequency where f denotes spatial frequency and fc

denotes the cut-off frequency; ψ = 2πW20 is the defocus in rad; and, α = 2παo is the
peak cubic aberration of the CPM also in rad. Eq. 2.45 assumes a pupil radius of 1 -
i.e. pupil coordinates should be normalised by the radius of the pupil. The function:
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A (u, ψ) e[Φ(u,ψ)] is given by:

A (u, ψ) = |C [b (u, ψ)] − C [a (u, ψ)] + iS [b (u, ψ)] − iS [a (u, ψ)]| (2.46)
Φ (u, ψ) = ∠ {C [b (u, ψ)] − C [a (u, ψ)] + iS [b (u, ψ)] − iS [a (u, ψ)]} (2.47)

where: a (u, ψ) =
(

12αu
π

)1/2(
ψ

3α − (1 − |u|)
)

(2.48)

b (u, ψ) =
(

12αu
π

)1/2(
ψ

3α + (1 − |u|)
)

(2.49)

and C [·] and S [·] are the Fresnel cosine and sine integrals respectively. Assuming a
separable pupil function, the 2D OTF is then given by: H (u, v, ψ) = H1D (u, ψ) ×
H1D (v, ψ) where u and v are the two spatial frequencies.

Consider a scene with intensity of I (x, y) for each point (x, y) in space. This can
be expressed in continuous space as:

i (x, y) =

∫∫
S

{I (x, y) δ (γ − x, ζ − y)} dγ dζ (2.50)

where S is some region of space. Assuming further that the scene has a varying defocus
profile given by: W (x, y) [rad], then, the image captured by a WC system, icap (·),
using a CPM as its coding element can be expressed with the aid of Eq. 2.45 in frequency
as follows:

F {icap (x, y)} = Icap (u, v) =

∫∫
S

{
I (x, y) e[2πi(xu+yv)]H (u, v,W (x, y))

}
dx dy

(2.51)
Under the assumption of an infinite SNR, the Wiener filter reduces to an inverse filter.
The recovered image, irec (x, y), in frequency can therefore be written as:

Irec (u, v) = F {irec (x, y)} = Icap (u, v)
H (u, v, ψo)

(2.52)

where ψo represents the defocus at which the PSF used for the recovery has been
acquired. Note that in this case, we are considering conventional WC recovery and
hence, a single PSF acquired at some axial position (typically at or close to the in-focus
position) is used to recover the capture image irrespective of the defocus in the scene.
Expanding Eq. 2.52 yields:

Irec (u, v) =

∫∫
S

{
I (x, y) e

[
i

((
2πxfc+ 2W (x,y)2

3α − 2ψo2
3α

)
u+
(

2πyfc+ 2W (x,y)2
3α − 2ψo2

3α

)
v

)]
× ...

...×
(
A (u, v,W (x, y))
A (u, v, ψo)

)
e[Φ(u,v,W (x,y))−Φ(u,v,ψo)]

}
dx dy

(2.53)
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where fc is the cut-off frequency. Defining:

Hr (u, v, ψi, ψo) =
(
A (u, v, ψi)
A (u, v, ψo)

)
e[Φ(u,v,ψi)−Φ(u,v,ψo)] (2.54)

where Hr (·) will be referred to as the "residual transfer function" and its inverse Fourier
transform, F −1 {Hr} = hr (x, y, ψi, ψo), as the "residual point-spread function", then,
the recovered image can be expressed in space as:

irec (x, y) =∫∫
S

{
I (x, y) δ

(
γ − x− W (x, y)2

3παfc
+ ψo

2

3παfc
, ζ − y − W (x, y)2

3παfc
+ ψo

2

3παfc

)
∗ ...

... ∗ hr (γ, ζ,W (x, y) , ψo)
}
dγ dζ

(2.55)

In (conventional) WC, the CPM is assumed to render the PSF completely insensitive
to defocus, which is tantamount to ignoring all the terms which depend on the defocus
in Eq. 2.55. Under this assumption, the recovered image (Eq. 2.55) is identical to the
scene (Eq. 2.50) which is the desired outcome. However, this assumption only holds for
very large α values. A large α value, however, results in a lower SNR, which is of critical
importance to the quality of the recovered image, especially when one considers the
fact that inverse filtering amplifies the noise [50]. Consequently, in practice, a smaller α
is desirable and is often used.

Investigating this further by comparing Eq. 2.50 to Eq. 2.55, one can immediately
notice two important differences between the scene and the recovered image. The first
concerns the residual point-spread function. From Eq. 2.54, we note that if ψo = ψi,
then, Hr (u, v, ψi, ψo) = 1 ∀ (u, v) and therefore, the residual point-spread function (or
equivalently the residual transfer function) has no effect on the recovered image. In any
other eventuality, however, Hr (·) will distort the spectrum of the recovered image. In
fact, the effect of the residual point-spread function on the recovered image manifests as
post-recovery image artefacts which substantially degrade the quality of the recovered
image, as discussed in the previous chapter. Shown in Fig. 2.8 are plots of the amplitude
and phase of the residual transfer function for: α = 3 waves, ψo = 0 and a range of ψi
values as indicated. From Fig. 2.8a, which shows the magnitude of the residual transfer
function, one can see that for all ψi ̸= ψo, the residual transfer function will amplify
or attenuate different frequencies of the scene’s spectrum by different amounts; thus,
distorting it. More importantly, the highly oscillatory phase spectrum of the residual
transfer function shown in Fig. 2.8b implies that different harmonics of the scene’s
spectrum will be shifted in space by different amounts, giving rise to the replication
artefacts which we observe in WC.
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(a) (b)

Fig. 2.8 Plots of the modulation of the OTF for different ψi values and ψo = 0. (a) modulation
(multiplication) of the amplitude of the scene’s spectrum which corresponds to the magnitude
of the residual transfer function and (b) modulation (addition) of the scene’s phase spectrum
which corresponds to the phase spectrum of the residual transfer function.

The second difference consists of a shift in space along the axes of the CPM given
by:

− W (x, y)2

3παfc
+ ψo

2

3παfc
= −2W20 (x, y)2

3αofc
+ 2Wo

2

3αofc
(2.56)

where Wo = ψo/2π [waves]. Comparing the first term to Eq. 2.16, one can notice that
this is the shift introduced by the cubic PSF. The second term is the shift of the PSF
used to perform the deconvolution (recovery). This implies that unless ψo = ψi, in
which case the deconvolution is optimal, then, different (x, y) points in the scene will
experience an additional shift in the lateral coordinates in proportion to the depth (or
defocus) of the scene at that particular point. Consequently, by deconvolving the scene
with a range of PSFs measured over a range of ψo values and finding the ψo value which
gives a shift of zero (or from a more practical point of view, which minimises the shift),
then, it is possible to: (1) eliminate (or reduce) the artefacts from the recovered image
and (2) estimate the depth at each location in the scene -i.e. obtain a depth map of the
scene, W̄ (x, y), such that: W̄ (x, y) ∼ W (x, y). These two points are essentially the
objective of the CKM technique.

Achieving these objectives, however, necessitates measuring the shift given by
Eq. 2.56. This cannot be done from a single image because the fact that depth
information (Z coordinate) is encoded as a shift in the lateral dimensions (X and
Y -coordinates) implies that we cannot distinguish between them - or in other words,
the Z dimension is coupled to the X and the Y dimensions. The problem is solved in
CKM by capturing two images of the scene in which the depth at a given (x, y) point
in the scene gives rise to a different shift (magnitude and/or direction). The disparity
(i.e. difference in shift) between the image of a point or region of the scene as it appears
in the two captured images will then give the shift induced by the depth only. The
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generation of this disparity, which has far-reaching consequences on various important
aspects of the technique, is the subject of the following sections.

2.4 Generating disparity

As previously mentioned, in order to solve for the depth, and hence eliminate the
artefacts, CKM requires two images in which the depth of the scene generates a different
shift (magnitude and/or direction). To solve for the depth, the difference in shift, which
is referred to as disparity, between the image of each point or region of the scene as it
appears in each of the two recovered images must then be estimated. The method used
to generate disparity has important repercussions on the performance of the technique
itself, as well as the complexity of the optics necessary for its implementation and the
calibration procedure. In fact, CKM was originally conceived with the idea of generating
disparity based on different shift directions (conjugate-masks approach); however, a
proof-of-concept experiment soon revealed that an alternative way of generating disparity
was necessary in order to make the technique practical and worth the extra complexity.
Two other ways of generating disparity based on modulating the magnitude of the
shift (the biplane method) and both the magnitude and direction of the shift (the
conjugate-astigmatic-masks method) were thus investigated and are presented in the
following subsections.

2.4.1 Conjugate-masks method

Fig. 2.9 Optical setup for the generation of disparity by the conjugate-masks method. O:
object; L0: collimating lens; BS: beam splitter; CM2 and CM1: cubic phase masks rotated
by 180◦ with respect to each other; L1 and L2: imaging lenses; zi: image distance; fo:
object distance; δz: longitudinal defocus (positive in the shown direction); and, D1 and D2:
detectors.
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In the conjugate-masks method, disparity is generated by modulating the direction of
the shift. In other words, the shift in each of the two captured images is of the same
magnitude but in diametrically opposite directions. This can be achieved by acquiring
one of the images with a CPM and the other with its complex conjugate, where the
complex conjugate of a CPM can be generated by simply rotating the mask through
an angle of 180◦. A possible way of implementing this method is therefore shown in
Fig. 2.9. Lens L0 collimates the light coming from the object and a beam splitter is
then used to generate two separate imaging paths. Two other lenses fitted with CPMs
(CM1 and CM2) rotated by an angle of 180◦ with respect to each other are then used
to image the object onto two detectors (D1 and D2) which could either be two separate
ones or different portions of the same detector. An alternative implementation is to
use a distorted diffraction grating as proposed in [27]. This technique would eliminate
the necessity of replicating the pupil [51]; however, the optical efficiency would be
substantially reduced. Furthermore, this technique does not permit full usage of the
detector area.

(a) (b) (c) (d) (e)

Fig. 2.10 Comparison of the PSFs generated by the conjugate-masks setup. The top row
depicts the two PSFs of the two imaging paths superimposed (with different colours). The
bottom row shows the airy disk of a conventional optical system for comparison. The defocus
from (a) to (e) is: −5.0, −2.5, 0, 2.5 and 5.0 waves respectively. An α of 5.0 waves was used.

Irrespective of the optical setup used to implement the conjugate-masks method,
the PSFs of the two images should look as shown in Fig. 2.10 for an α of 5.0 waves and
a range of defocus values. As shown, the PSFs move by equal magnitudes in opposite
directions. The disparity between the two PSFs is therefore related to the defocus or
depth of the point source object. Assuming a separable aperture, the shift of the cubic
PSF is given by Eq. 2.17. From Eq. 2.55 and Eq. 2.56, the disparity is therefore given
by:

Disparity = δD = 2
√

2λziW20
2

3αp ≈
(√

2zip3

6αλ

)
·
(

δz

fo (fo + δz)

)2

(2.57)

where α is the peak cubic aberration in waves, p is the radius of the aperture stop and
λ is the imaging wavelength. Furthermore, typically, fo ≫ δz, therefore Eq. 2.57 can
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be approximated as:

δD ≈
(√

2Mp3

6αλfo3

)
· δz2 (2.58)

where M is the lateral magnification. From this equation, one can notice that the
disparity is quadratically related to the peak defocus aberration, whereas it exhibits
a "quasi-quadratic" relationship with longitudinal defocus (δz). This is confirmed by
numerical simulations as shown in Fig. 2.11.

(a) (b)

Fig. 2.11 Plots of the disparity between the PSFs of the conjugate-masks method. (a) polar
plot of the disparity illustrating both direction and magnitude. The blue line is for negative
defocus, while the red line is for positive defcus (lines are superimposed). (b) magnitude
against defocus plot of the disparity.

From these analyses, we notice two important facts. Firstly, as shown in Fig. 2.11a,
the conjugate-masks method generates identical disparity for positive and negative
defocus. This implies that we cannot distinguish between them and as a result, only
half of the operational DOF is viable. Secondly, the conjugate-masks method has a
responsivity (given by the derivative of Eq. 2.57) of zero at the in-focus position which
gradually increases as the defocus increases. This means that the conjugate-masks
method does not allow the depth to be inferred with precision at small defocus values.
Consequently, use of this method of generating disparity would limit the operation of
the technique to less than half (∼ 35% from experimental observations) of the total
DOF provided by the CPM in a conventional WC arrangement. Given that this is a
rather significant inefficiency, a way of addressing the problem was needed and this led
to the development of the following methods of generating disparity.

2.4.2 Conjugate-astigmatic-masks method

This method relies on the same phenomenon as the conjugate-masks approach; however,
the addition of some astigmatism to the phase mask permits the sign of the defocus
to be discerned. As a result, using this method, the operational DOF is, in principle,
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doubled. The optical setup used for the conjugate-masks setup can be used for the
conjugate-astigmatic-masks unchanged except for the design of the sag of the phase
masks, which must include some amount of astigmatism.

(a) (b) (c) (d) (e)

Fig. 2.12 Comparison of the PSFs generated by the conjugate-astigmatic-masks setup. The
top row depicts the two PSFs of the two imaging paths superimposed (with different colours).
The bottom row shows the airy disk of a conventional optical system for comparison. The
defocus from (a) to (e) is: −5.0, −2.5, 0, 2.5 and 5.0 waves respectively. An α of 5.0 waves
and 2.5 waves of astigmatism was used.

The PSFs of the two captured images generated by this method are shown superim-
posed in Fig. 2.12 for various defocus values. Comparing this to the PSFs generated by
the conjugate-masks method (Fig. 2.10), one can notice that the only difference lies in
the fact that in this case, the PSFs do not translate along the 135◦ line. Instead, the
PSFs move along a parabola while rotating with respect to each other; thus, following a
distinct path for negative and positive defocus. This is shown in Fig. 2.12 where one
can observe that the PSFs go through an angle of ∼ 270◦ for a defocus ranging from −5
to 5 waves. This rotation is caused by a different rate of translation along the cardinal
axes of the CPM as a result of the introduced astigmatism. Therefore, in this case, to
analyse the disparity, the translation along each axis needs to be considered separately.
From Eq. 2.16, we can express the shift along each axis in the presence of astigmatism
as:

δx = −λzi(W20 +Wa)2

3αp (2.59)

δy = −λzi(W20 −Wa)2

3αp (2.60)

where δx and δy denote the shift along the x and y axis of the CPM respectively, α is
the peak cubic aberration of the CPM, Wa denotes the amount of astigmatism encoded
on the phase mask in waves and zi is the image distance. Keeping present that rotating
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the mask is equivalent to a negative α value, then, the disparity, δD, can be expressed
as:

| δD |=2
√
δx2 + δy2 =

(
2λzi
3αp

)
·
√(

2W20
4 + 12W20

2Wa
2 + 2Wa

4) (2.61)

∠δD =tan−1
(
δx

δy

)
= tan−1

(
(W20 +Wa)2

(W20 −Wa)2

)
(2.62)

which can be expressed in terms of longitudinal defocus, δz, by substituting:
W20 = δzp2/(2λfo (fo + δz)). Wa (in waves) would be produced by manufacturing the
appropriate sag on the phase mask so it would be known accurately.

(a) (b) (c)

Fig. 2.13 Polar plots of the disparity between the two PSFs of the conjugate-astigmatic-masks
method. (a) for 0 waves of astigmatism; (b) for 1.0 waves of astigmatism; and, (c) for 2.0
waves of astigmatism. The blue lines are for negative defocus, while the red lines are for
positive defcus.

Numerical simulations of the disparity generated by the conjugate-astigmatic-masks
method are shown in Fig. 2.13. Fig. 2.13a shows the disparity for Wa = 0. This is
equivalent to the conjugate-masks method discussed in the preceding section and as
one can observe, the disparity generated by negative (blue line) and positive (red line)
defocus are identical and hence indistinguishable. Fig. 2.13b shows the disparity for
Wa = 1 and as one can see, in this case, the disparity is distinct for each defocus sign.
Finally, Fig. 2.13c shows the disparity for Wa = 2 and as one can see, the larger the
amount of astigmatism introduced in the phase mask, the more distinct the disparity
for each defocus sign is; hence, the easier it is to tell them apart. Of course, the larger
the amount of astigmatism, the lower the cut-off frequency of the system as a whole
will be and hence the lower the quality of the recovered image. This poses a maximum
limit on the amount of astigmatism that can be used. As far as the responsivity is
concerned, the conjugate-astigmatic-masks method does not show a zero value at the
in-focus position. The responsivity, however, still decreases with decreasing defocus.
One therefore concludes that, whereas this method permits the sign of the defocus
to be discerned, and hence the DOF provided by the CPM can be exploited more
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efficiently compared to the conjugate-masks method, it still requires replication of the
pupil (i.e. two CPMs) and its responsivity is still dependent on the depth of the scene
itself. It therefore solves only one of the shortcomings of the conjugate-masks method.

2.4.3 Biplane method

Fig. 2.14 Optical setup for the generation of disparity by the biplane method. O: a generic
object plane or position along the z-axis; Fo: original focal plane; ∆: longitudinal defocus (in
µm) with respect to the original focal plane (positive in the shown direction); F− and F+:
the two new focal planes; δ: difference in focal distance between the two new focal planes and
the original focal plane; fo: original focal length; L: imaging lens; CPM: cubic phase mask;
LBS: later beam splitter; I− and I+: images formed along the two image paths for an object
situated in the original focal plane; zi: original image distance; and, D: detector. The green
and red dashed lines show conjugate planes. The solid blue line denotes the imaging path.

The last method of generate disparity which will be considered is the biplane method.
In this case, we do not rely on the direction of the shift as in the conjugate-masks
method or the direction and magnitude as in the conjugate-astigmatic-masks method.
Instead, this method relies on the dependence of the rate of translation of the cubic PSF
with defocus. From Eq. 2.17, we know that the shift of the cubic PSF is a quadratic
function of defocus (W20). This means that if a defocus offset is introduced between
the two acquired images, then, a disparity will result. This is the concept exploited in
the biplane method.

Fig. 2.14 shows the optical setup (assuming a finite conjugate system) used to
implement the biplane method. In this case a single phase mask is fitted in the aperture
stop of the imaging lens and a lateral beam splitter is used to create both an offset in
defocus between the two images, as well as to split the imaging path into two. The two
images required for CKM can thus be easily acquired on a single detector as shown.
It should be noted that some additional optics, such as the introduction of a lens or
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glass slab or slabs in one of the imaging paths, might be necessary, depending on the
magnitude of the desired defocus offset. The difference in defocus is set such that two
focal planes (F+ and F−) are created around the original focal plane (Fo) at equal
distances (δ) away from it.

(a) (b) (c) (d) (e)

Fig. 2.15 Comparison of the PSFs generated by the biplane setup. The top row depicts the
two PSFs of the two imaging paths superimposed (with different colours). The bottom row
shows the airy disk of a conventional optical system for comparison. The defocus from (a)
to (e) is: −5.0, −2.5, 0, 2.5 and 5.0 waves respectively. An α of 5.0 waves was used and the
difference in defocus between the two imaging paths was set to 2.5 waves.

The generated PSFs are as shown superimposed in Fig. 2.15 for a range of defocus.
Comparing these to the PSFs generated by the two methods considered previously, one
can notice that the PSFs in this case have the same orientation; thus, they translate
in the same direction. Starting again from Eq. 2.17, the shift experienced by the PSF
with positive defocus offset (imaging path shown by a dashed green line in Fig. 2.14),
PSF+, can be expressed as:

δS+ =
√

2λz+
i W

+
20

2

3αp (2.63)

where z+
i is the image distance of the positive defocus offset path and is given by:

z+
i = zi − δM2 = foM − δM2 (2.64)

where M = zi/fo is the magnification of the original geometry. The defocus, W+
20, can

be expressed as:
W+

20 ≈ (∆ − δ) p2

2λ (fo + δ) (fo + ∆) (2.65)
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Similarly, for the PSF with a negative defocus offset (imaging path shown by a red
dashed line in Fig. 2.14), PSF−, we can write:

δS− =
√

2λz−
i W

−
20

2

3αp (2.66)

z−
i =zi + δM2 = foM + δM2 (2.67)

W−
20 ≈ (∆ + δ) p2

2λ (fo − δ) (fo + ∆) (2.68)

The disparity is therefore given by:

δD = δS+ − δS− ≈
( √

2 p3 M

12αλ(fo + ∆)2

)
·

(
(δ − ∆)2 (fo − δM)

(δ + fo)2 − (δ + ∆)2 (fo + δM)
(δ − fo)2

)
(2.69)

Assuming fo ≫ δM , (for a typical implementation on a 40×, 0.5NA system, fo ∼ 40 × δM),
then we can approximate Eq. 2.69 as:

δD ≈
(

−
√

2 p3 M

3αλf 3
o

)
· (δ∆) (2.70)

where one can notice that not only is the disparity proportional to the magnification, M ;
and inversely proportional to the imaging wavelength, λ; the peak cubic aberration, α;
and, the f-number cubed, f#

3; but it also is proportional to the defocus offset, δ, which
we introduce. This is important because whereas the other parameters are stipulated
by other requirements and thus cannot always be changed without compromising the
performance of the system, δ is not. As a result, the defocus offset provides a completely
decoupled degree of freedom which can be adjusted without compromise in such a way
as to maximise the disparity. This advantage is not provided by any other disparity
generation method considered.

Another important consideration revealed by Eq. 2.70 is the fact that the disparity
is a linear function of the longitudinal defocus ∆ rather than a quadratic, as was
the case with the conjugate-masks method, or quasi-quadratic as in the conjugate-
astigmatic-masks method. This implies that the sign of the disparity mirrors that of
the defocus and thus, it is easy to differentiate negative and positive defocus. Moreover,
the fact that the disparity is linearly related to the defocus implies that the responsivity
(derivative of the disparity with respect to the defocus) is constant. Therefore, whereas
the previous two methods display low responsivity for small defocus values, making
them unsuitable close to the in-focus position, the biplane method does not.
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(a) (b)

(c)
(d)

Fig. 2.16 Plots of the disparity between the two PSFs of the biplane method. (a) polar plot of
the disparity showing both magnitude and direction with δ = 2.0 waves and α = 5 waves; (b)
corresponding magnitude against defocus plot; (c) polar plot of the disparity with δ = 2.0
waves and α = 5 waves; (d) corresponding magnitude against defocus plot. The blue and red
lines in the polar plots are for negative and positive defcus respectively.

Plots of the disparity obtained from numerical simulations are shown in Fig. 2.16
for 2.0 and 1.0 waves of defocus difference and an α of 5.0 waves. The polar plots
reveal that indeed, the sign of the disparity reflects the sign of the defocus as predicted
by the analyses. On the other hand, by comparing the magnitude of the disparity to
that given by the other two methods, one can notice that the disparity generated by
biplane method is smaller for larger values of defocus, which constitutes an obvious
disadvantage. Equating Eq. 2.57 to Eq. 2.70, we deduce that the biplane method will
generate a disparity greater than or equal to the conjugate-masks method for: | ∆ |≤ 2δ
for a given geometry and peak cubic aberration.



2.4 Generating disparity 50

2.4.4 Comparison of the various disparity generation tech-
niques

As discussed above, the method used to generate disparity not only impacts the
performance of the technique itself, but also its implementation. Careful analysis
is therefore in order so as to identify the best compromise between practicality and
performance. In this section, a qualitative comparison of the three disparity generation
methods mentioned above is given and the best compromise selected.

Consider first the optical setup and complexity of implementation, the conjugate-
masks and the conjugate-astigmatic-masks techniques require two CPMs and the
replication of the aperture plane as shown in Fig. 2.9 to implement. An appropriately
deformed diffraction grating [27] can also be used; however, this would compromise
the optical efficiency and the efficient usage of the sensor area. Alternatively, a single
CPM and a single imaging path could be used and the two necessary images would
then have to be acquired sequentially by rotating either the sample or the CPM. This
has the obvious disadvantage of precluding single-snapshot operation, which is one of
the most alluring features of this technique. Furthermore, precision (highly repetitive)
positioning (rotation) equipment would also be essential; thus, making this option
rather unattractive from a practical perspective. In contrast, the biplane method
requires a single CPM and no replication of the aperture plane without sacrificing
optical efficiency, sensor area or single-snapshot operation and without requiring any
positioning equipment. The only additional optical component necessary is a lateral
beam splitter, which can be replaced by two cameras if desired with no additional
complexity.

Next we consider the disparity and the responsivity of the various disparity generation
methods. These are of particular importance because these parameters are directly
related to the performance of CKM. For the conjugate-masks method, the disparity is a
quadratic function of defocus and occurs along a single direction (along the unity-slope
line with respect to the CPM axes). Since a quadratic has two solutions for a given
disparity, then, this technique is sensitive only to the magnitude of the disparity. In
other words, the sign of the defocus cannot be deduced and as a consequence, the
operational depth range (depth range over which the depth of the scene/sample can be
inferred reliably) is half of that provided by the CPM in a conventional setting. Even
worse, the responsivity is proportional to the defocus. This implies that whereas a
large disparity is generated at large defocus values, close to the in-focus position, the
responsivity is low; therefore, unless the defocus in the scene is substantial, it cannot
be measured reliably using this method. This reduces the operational depth range of
this method further, resulting in an operational depth range ∼ 40% of that provided by
the CPM.



2.4 Generating disparity 51

On the other hand, the conjugate-astigmatic-masks method solves both of the issues
mentioned above by modulating the direction of the shift. By measuring both the
magnitude and direction of the disparity, therefore, both the magnitude and sign of
the defocus can be inferred. The responsivity of this method is still dependent on the
defocus; however, it is non-zero at the in-focus position. Small amounts of defocus
in the scene can therefore potentially still be reliably measured. The biplane method
generates an approximately linear disparity with defocus, therefore the responsivity is
constant (i.e. independent of defocus). Like the conjugate-astigmatic-masks methods,
the sign of the defocus in the biplane method is given by the direction of the disparity.
However, unlike the conjugate-astigmatic-masks method, in the biplane method, the
sign of the defocus is given by two diametrically opposite directions. This increases
the robustness and also facilitates the inference of the sign of the defocus, especially
for small defocus values. This permits both the conjugate-astigmatic-masks and the
biplane methods to exploit the entire operational depth range provided by the CPM.
On the downside, the biplane method generates the smallest disparity at large defocus
values compared to both the conjugate-masks and conjugate-astigmatic-masks. The
conjugate-astigmatic-masks method can generate disparities of a larger magnitude than
that generated by the conjugate-masks method depending on the amount of astigmatism
introduced however, one should exercise caution because astigmatism lowers the SNR.

Finally, we consider redundancy in the acquired information for each method.
Starting with the conjugate-masks and the conjugate-astigmatic-masks methods, we
notice that although the two acquisitions have different shifts with respect to each other,
they contain exactly the same information regarding the radiance of the sample or the
scene. This is because the two images are acquired with identical pupil functions except
for the sign of the α of the CPM. Conversely, the biplane method has two focal planes.
This implies that depending on the depth of the sample, parts of the sample that might
be out-of-focus in one of the images will be in-focus in the other. As a consequence, the
biplane method displays a higher overall frequency content as well as a better SNR in
the reconstructed image. On the other hand, one would expect the two images to be
less similar in the biplane method compared to the other two methods. This makes it
harder to precisely match features between them and thus to measure the disparity.

Based on this discussion, we conclude that the biplane method is the best of the
three options. This is mainly because it has the largest operational depth range and it
also is the easiest to implement and align. Experimental work will therefore be focused
on this implementation with the exception of the initial proof-of-concept experiment
discussed in Chapter 3.
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2.5 Statistical investigation of the various dispar-
ity generation techniques - Cramér-Rao lower
bound

An inherent capability of any 3D imaging technique such as CKM is that of localisation
in 3D space. In the case of CKM, besides the 3D position of a particular feature,
information about the irradiation of the sample is also obtained. The objective of this
section, however, is to assess the 3D localisation performance (precision) of the various
implementations (disparity generation methods) of the CKM technique. This allows
the comparison of CKM to other established techniques and thus to establish its place
in the broad spectrum of 3D imaging techniques - which has been taken to include 3D
super-resolution techniques.

The parameters which affect the localisation precision of a 3D imaging technique are
specific to the technique itself, therefore precision analysis tend to be technique-specific
as well. For instance, the analyses proposed in [52–54] are applicable only to depth from
defocus (DFD). Given that each theoretical framework has its own set of assumptions,
comparing between techniques can be difficult and perhaps even narrow in scope. One
generic framework which solves this issue was proposed by Oder et al. in [55] and is
based on the Cramér-Rao lower bound (CRLB). The CRLB is a generic statistical tool
through which the minimum error of an unbiased estimator θ̂ =

[
θ̂1, θ̂1, .., θ̂n

]T
of some

parameter θ = [θ1, θ1, .., θn]T
(

i.e. ⟨θ̂⟩ = θ
)

, can be calculated for a given process [56].
The process itself is represented by the probability density function p (y;θ) where y
denotes the observations. The (k, l)th element of the n× n Fisher information matrix,
Ik,l, is therefore defined as:

Ik,l (θ) = E

[
∂ ln p (y; θ)

∂θk
· ∂ ln p (y; θ)

∂θl

]
(2.71)

By the Cramér-Rao inequality, we can write:

V ar
(
θ̂m

)
≥ I−1

m,m (θ) (2.72)

It therefore follows naturally that the smallest possible error in the estimate of parameters
θ - i.e. the CRLB - is given by:

CRLBθ̂ = δθ̂ =
√
diag (I (θ))−1 (2.73)

where diag (I (θ))−1 denotes the vector composed of the reciprocal of the diagonal
elements of the Fisher matrix.

In computing the CRLB for CKM, an isolated point source scene will be assumed
despite the fact that CKM can also be applied to extended scenes - and perhaps that
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could even be considered to be its primary application. Other scene models have
been considered in the literature for different techniques, such as the Gaussian prior
on the scene’s slopes taken in [54] for single-image DFD. These are, however, not as
mainstream as the assumption of an isolated point-source scene. Furthermore, the
CRLB is affected by the spectral content of the scene where the higher the spectral
content, the lower the CRLB [22]. In this sense, the computed CRLB can be taken as
the smallest error achievable by CKM for a given geometry, SNR and over all possible
scenes or samples. Nevertheless, the primary objective of this section is to compare
CKM and its various implementations to other established techniques. Consequently,
as long as the same assumptions regarding the scene are taken for each technique, then
a meaningful comparison can still be made. Lastly, in computing the CRLB for CKM,
the post-processing (Wiener deconvolution) was not taken into consideration. This is
because Wiener deconvolution does not improve the SNR nor increase the information
content hence the lower bound on the uncertainty still holds. One could argue that
the SNR is improved by band-limiting the image, however, that could be applied to
any technique. Therefore, as far as comparing different techniques is concerned, it was
deemed inconsequential.

The image of an isolated sub-resolution point is obviously the PSF therefore the
observations in the case consist of the photon count per pixel over an N-pixel long array
of pixels. If we assume the photon count of the kth pixel to be Poisson distributed, then
the probability density function is given by:

p(c1, c2, .., cN ; θ) =
N∏
k=1

(
νckθ,ke

−νθ,k

ck!

)
(2.74)

where θ = [x, y, z] denotes 3D space, cn denote the photon count in the nth pixel and
νθ,n = µθ,n+βθ,n denotes the expected - or the "true" for an unbiased estimator - photon
count of the nth pixel; µθ,n denotes the mean number of signal photons and βθ,n the
number of background photons. Substituting Eq. 2.74 into Eq. 2.71 and simplifying
yields the Fisher information matrix as follows:

I(θ) =
n∑
k=1

[(
1
νθ,k

)
·
(
∂νθ,k

∂θ

)T
·
(
∂νθ,k

∂θ

)]
(2.75)

thus the CRLB can be evaluated. Notice that whereas the data model adopted here
(known as the "Poisson data model" [57]) takes into consideration the pixelation of the
detector, shot noise and the background count (which contributes to the shot noise), it
omits the read noise. Although the read noise can have a non-negligible effect depending
on the number of signal photons and on the effective pixel size, the Poisson data model
is nonetheless often used in the literature for comparison purposes [58] mainly due to its
relative simplicity. Thorough analysis of the Poisson data model and other data models
which take into consideration the read noise of the detector can be found in [57].
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As one can notice from the above discussion, this framework makes no assumptions
about the morphology of the PSF, therefore it is applicable to any PSFs [55], making it
very versatile. In fact, it has been extensively exploited in the literature to analyse and
compare various 3D PSFs and various microscopy techniques including: the astigmatic
PSF [59], multifocal plane microscopy (MUM) [60], 4Pi microscopy [61] and even
asymmetric engineered PSF such as the DH-PSF [62, 63, 58]. Here we extended this
body of work to include the cubic PSF. For the conventional (non-engineered or clear
aperture) PSF, tractable expressions exit. This is rarely the case for engineered PSFs,
therefore the PSF has to be computed numerically [63]. The simulations conducted
here assume a 40×, 0.50NA system and an image size of 265 × 265 pixels with 162.5nm
square pixels. The photon count was set to a total of 4,000 signal photons and 5
background photons at a wavelength of 530nm. For techniques which necessitate the
acquisition of more than one image of the emitter (CKM requires two), the total number
of signal photons was split equally between the number of acquired images. Also, the
total Fisher information is given by the sum of the Fisher information in each acquired
image [60, 64]. The PSF was calculated using the high NA model proposed in [59, 65].
The PSF as a function of axial position is thus given by:

PSF (x, y, z) =
∣∣F {

f (kx, ky) · e[2πi·Kz(kx,ky)·z]}∣∣2 (2.76)

where z, y, z are space coordinates; kx and ky are the reciprocal coordinates; f (kx, ky)
is the complex aperture function (NA limited) and Kz (kx, ky) =

√
(n/λ)2 −

(
kx

2 + ky
2);

n being the refractive index of the medium and λ is the wavelength of light. The PSF
given by Eq. 2.76 has to be normalised by the energy and then multiplied by the number
of photons.

We start by computing the CRLB for the conventional Gaussian PSF and for a
single cubic PSF to highlight the differences between them. Two techniques which rely
on the Gaussian PSF, the astigmatic PSF and the MUM technique, are considered next
as two examples of standard or established 3D localisation techniques. The CRLB for
the various implementations of CKM, a technique which relies on the cubic PSF, was
computed next. In addition, the biplane CKM implementation was also implemented
with a shifted aperture. As discussed in Section 2.1 and Section 2.2, decentring the
aperture function results in a higher responsivity without compromising the cut-off
frequency. This is expected to increase the amount of depth information in the PSF
and hence to lower the CRLB. Plots of the CRLB for each of the three dimensions of
space (σx, σy and σz) as a function of axial position (depth) for each of these PSFs and
techniques are shown in Fig. 2.17. Furthermore, the average CRLBs (σ̄x, σ̄y and σ̄z) are
shown tabulated in Tbl. 2.1 for various depth ranges as a figure of merit. This is mainly
intended to facilitate comparison between the different techniques and PSFs considered.

As can be seen from Fig. 2.17a, the Gaussian PSF displays an exceptionally low
σx and σy close to the in-focus position. This is due to the small size of the PSF -
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hence the higher SNR - at this depth. On the other hand, at the focus, σz displays
a singularity due to the symmetry of the PSF around the focal point. This implies
that close to the focus, the Gaussian PSF has very little depth information. As the
depth starts increasing, the PSF increases in size rapidly causing σz to drop rapidly
as well. This is, however, accompanied by a drop in SNR which eventually causes
σz to start increasing rapidly again. As a consequence, the depth range over which
an adequately low uncertainty in all three dimensions of space is obtained is severely
limited, making the Gaussian PSF unsuitable for 3D localisation. In contrast, the cubic
PSF’s transverse intensity profile changes only slightly with depth. This implies that
the drop in SNR is small for a relatively large distance away from the focal position.
As a result, the in-focus lateral localisation precision is conserved over a large depth
range, as can be observed from Fig. 2.17b where the CRLBs for a cubic PSF generated
using a CPM with an α of 3 waves is shown. On the other hand, this same resilience
to defocus of the cubic PSF means that the cubic PSF has little depth information.
This is clearly visible in Fig. 2.17b from the wide region of high uncertainty close to the
focus; at which point, the Fisher information is zero giving rise to a singularity as with
the Gaussian PSF. Lastly, it must be stated that this behaviour is entirely expected
given that the cubic PSF was engineered to extended the DOF of an optical system, or
in other words, to be insensitive to depth, which is tantamount to minimising depth
information.

As discussed above, the singularity at the focal point produced by the Gaussian PSF
severely limits its depth information content and hence its utility for 3D localisation
applications. As a result, extensive research has been dedicated to the solution of this
problem. One of the earliest solutions entails the intentional introduction of astigmatism
in the system, often by means of a cylindrical lens. This breaks the symmetry of the
PSF around the focal point, hence the singularity is eliminated. This also permits the
discrimination of the sign of the depth with respect to the focal point, therefore the
operational depth range is extended further. The CRLB for such a scenario has been
computed for a PSF with a difference of ∼ 5.65µm between the sagittal and tangential
foci as shown in Fig. 2.17c.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2.17 Crámer-Rao lower bound for various techniques. (a) Gaussian PSF, (b) cubic PSF,
(c) astigmatic PSF, (d) multifocal plane microscopy, (e) conjugate-masks technique, (f) biplane
technique, (g) conjugate-astigmatic-masks and (h) biplane with shifted aperture. σx, σy and
σz denote the Crámer-Rao lower bound (CRLB) along the x, y and z dimensions of space.
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Another solution to the problem is the so-called MUM technique. In this case,
two cameras are used to capture an image of the emitter simultaneously. The image
distance for each camera is adjusted so that the corresponding two focal planes are
some distance apart. This has also been simulated, which together with the astigmatic
PSF, represents two commonly used or established techniques for comparison. The
distance between the two focal planes was set to ∼ 5.95µm and the CRLB for MUM
is shown in Fig. 2.17d. Note that the CRLB for these two techniques depends on the
amount of astigmatism and on the distance between the focal planes respectively. The
values used here are typical experimental values take from [66] and scaled accordingly
by the NA.

As can be seen from Fig. 2.17c and Fig. 2.17d, the astigmatic PSF and the MUM
technique do not display a singularity at the focal point as expected. Furthermore, their
σz is flatter over a wider depth range. This makes them suitable for 3D localisation
over roughly a depth range of ±5.0µm in this case. The mean CRLBs increase if a
larger depth range is considered, as tabulated in Tbl. 2.1. The two techniques show a
similar uncertainty in depth, whereas the MUM displays ∼ 40% lower uncertainty in
the lateral dimensions over a ±5µm depth range compared to the astigmatic PSF.

We next consider the CKM implementations where an α of 3 waves has been taken
for all simulations. Considering first the conjugate-masks method, one immediately
notices that the singularity in σz which the single CPM displays is preserved, as can be
seen in Fig. 2.17e. This is expected because the responsivity of this method is zero at
the focal point. Moreover, in common with all the other disparity generation methods,
this method necessitates the capture of two images, hence the number of photons has to
be split between two images resulting in a lower overall SNR. These two facts coupled
together result in higher CRLBs for the conjugate-masks method compared to the
single CPM. Furthermore, the wide central region of high uncertainty, coupled with
the fact that the disparity is symmetric around the focal point, limits the operational
depth range of this method. This confirms the deductions made in Section. 2.4 from
the analysis of the disparity.

In contrast, the conjugate-astigmatic-masks method and the biplane methods do not
display a singularity at the focal point in σz. This is because both methods break the
symmetry of the disparity around the focal point. Alternatively, this can be deduced
from the fact that neither of these methods displays zero responsivity at the focal point.
Both methods display a similar σz as can be seen from Fig. 2.17g and Fig. 2.17f, where
the difference in distance between the two focal planes of the biplane method was set
to 7.70µm to coincide with the experiments conducted. For the conjugate-astigmatic-
masks, the amount of astigmatism introduced produces 6.36µm difference between the
sagittal and the tangential foci. Such a large amount of astigmatism and distance
between planes for the biplane method is possible due to the CPM’s insensitivity to
defocus.
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Technique σ̄x (nm) σ̄y (nm) σ̄z (nm)
Depth range

(µm)

Conventional PSF 60.45 60.45 129.29 -20 - +20

Conventional PSF 40.99 40.99 90.33 -15 - +15

Conventional PSF 11.93 11.93 44.68 -5 - +5

Conjugate-masks 19.63 19.63 126.58 -20 - +20

Conjugate-masks 22.11 22.11 82.11 +5 - +20

Biplane 22.12 22.12 82.12 -20 - +20

Conjugate-astigmatic-
masks

20.80 20.80 89.77 -20 - +20

Biplane with shifted
aperture

20.21 20.21 48.14 +2 - +32

Astigmatic PSF 61.51 61.51 125.31 -20 - +20

Astigmatic PSF 42.24 42.24 87.14 -15 - +15

Astigmatic PSF 15.88 15.88 47.36 -5 - +5

MUM 71.01 71.01 153.06 -20 - +20

MUM 43.55 43.55 100.72 -15 - +15

MUM 9.37 9.37 50.53 -5 - +5

Table 2.1 Mean Crámer-Rao lower bound along the x (σ̄x), y (σ̄y) and z (σ̄z) dimensions of
space against depth range for various techniques.

On the other hand, the conjugate-astigmatic-masks method displays higher lateral
localisation precisions, σx and σy, compared to the biplane method. The only depth range
where the conjugate-masks method shows a slightly lower uncertainty (∼ 7% lower) than
either of these two methods is roughly between 5µm and 15µm (or −5µm and −15µm).
This however is offset by a ∼ 70% smaller operational depth range. Consequently, one



2.5 Statistical investigation of the various disparity generation techniques -
Cramér-Rao lower bound 59

concludes that the conjugate-masks method offers the poorest compromise between
uncertainty and depth range. On the other hand, the biplane method shows the best
compromise of all three disparity generations methods considered.

Finally, a comparison between the biplane CKM method and the established tech-
niques introduced earlier -the astigmatic PSF and the MUM technique- will be made.
Comparing Fig. 2.17f to Fig. 2.17c and Fig. 2.17d, it is immediately apparent that both
the astigmatic PSF and the MUM display a σz approximately 50% smaller than the
biplane CKM over a ±5.0µm. Furthermore, the σx and a σy of the MUM technique are
approximately 50% less than those of the biplane CKM, whereas the astigmatic PSF
shows a slightly smaller lateral uncertainty compared to the biplane CKM. However, in
contrast to the biplane CKM, both techniques display a rapid increase in uncertainty
beyond this depth range. In fact, the uncertainty of both techniques in all three
dimensions surpasses that of the biplane CKM within a depth range of ∼ ±7.0µm and
continues to increase rapidly with depth. One therefore concludes that the biplane CKM
has scope if one is interested in performing 3D localisation over an extended depth range
(by a factor of ∼ 4 for the parameters considered here). Finally, in Section. 2.1, shifting
the aperture function has been proposed as a means of increasing the responsivity of
the cubic PSF without compromising the cut-off frequency. This is expected to result
in a smaller σz. In order to verify this, the biplane method was simulated again with
the aperture function shifted by +1.30mm along the cardinal direction of the CPM.
The resultant CRLBs are shown in Fig. 2.17h and as one can observe, the uncertainty
in depth has been reduced by ∼ 50% compared to the biplane with a centred aperture
function. In fact, the biplane CKM with a decentred aperture has CRLBs comparable
to those of the astigmatic PSF over a depth range three times as large. On the downside,
besides the practical difficulties involved in displacing the aperture function of, for
instance, an objective, the amount by which the aperture function can be displaced is
also limited by the NA of the system; therefore, the applicability of this technique is
limited.

In conclusion, these quantitative analyses confirm that amongst the three disparity
generation methods considered, the biplane method offers the best compromise between
performance and simplicity. Furthermore, for the considered parameters, we find that
this method has a localisation depth range roughly four times as large as that of the
astigmatic PSF and the MUM technique with lower CRLBs in all three dimensions of
space outside a depth range of roughly ±7.0µm. On the other hand, the biplane CKM
with an aperture function decentred by +1.30mm shows a σz comparable to that of
the astigmatic PSF and the MUM technique and a slightly higher σx and σy over a
localisation depth of approximately three times as large. We therefore conclude that
there is scope for this technique mainly when the primary objective is 3D localisation
over an extended depth range rather than an improvement in the 3D localisation
precision.
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2.6 Measuring disparity

In the previous sections, several ways of generating disparity have been proposed,
analysed and the best performing one (the biplane method) identified. Focusing therefore
exclusively on the biplane method, in this section, what is known as the "correspondence
problem" in stereo vision will be tackled. The correspondence problem is defined in the
field of stereo vision as the determination of the locations in each of the two camera
images that are the projection of the same physical point in space [67]. Similarly,
in CKM, we have two otherwise identical images with different local translations in
proportion to the depth of the scene at that point. We then seek to measure the
disparity between corresponding points in each image. This is essentially the same
correspondence problem tackled in stereo vision, consequently, all the methods used in
stereo vision can in principle also be adapted for CKM. Here we first consider extended
scenes where the disparity is to be estimated at each point in the FOV, thus resulting
in a dense depth map. We then turn our attention to measuring the disparity under
the assumption of a sparse scene composed of points. In the latter, the disparity
is to be estimated at the location of the points only, hence it is a simpler problem.
Furthermore, this would be more akin to 3D localisation in microscopy rather than
solving the correspondence problem in stereo vision. Conceptually, however, they are
essentially the same problem, therefore they have been grouped together in this section.

2.6.1 Extended scenes

In a nutshell, to solve the correspondence problem, the two images must be compared
by means of some similarity metric and corresponding points in each identified. Once
this is done, the disparity between them can be measured in pixels. Myriad ways of
doing this can be found in the extensive body of stereo vision literature. These can
be broadly divided into two categories: local methods and global methods. In local
methods, the image is segmented according to some scheme and then, each segment
(or region) of the image is processed separately. Examples of local methods are block
matching [68, 69], gradient-based methods (also known as optical flow) [70, 71] and
feature matching [72, 73]. Conversely, global methods exploit constraints and criteria
which are applicable to the entire image at once - hence the nomenclature. Some well
known global methods include dynamic programming [74] and graph cuts [75, 76]. As
we shall shortly discuss, the correspondence problem is ill-posed and cannot be solved
in regions of the scene where there are no features or texture. Since global methods
operate over the entire image at once, they are less sensitive to regional absence of
features and texture than local methods. This is in fact their principal advantage and
also the main purpose for which they were developed. However, this advantage is gained
at a significantly greater computational complexity compared to local methods [77].
Given that this is a first attempt at the implementation of the CKM technique, it was
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decided to focus on the simpler local disparity measuring techniques; however, global
methods by themselves or in conjunction with local methods definitely merit further
consideration.

As far as local methods are concerned, gradient-based methods (optical flow) are
computationally simple, however they have a theoretical limit on their accuracy of half
a pixel since the local derivatives are only valid over that range [67]. This excludes
them from usage for our application because the disparities we intend to measure in
CKM are of the order of a pixel per micron of depth on a 40×, 0.5NA system. Ways of
circumventing this theoretical limit exist, but these methods involve interpolation or are
otherwise iterative algorithms [78], and thus, the complexity of the algorithm is increased
significantly. Feature-based methods result in depth maps of lower density compared to
other local and global methods, however they are robust against discontinuities in the
depth profile of the scene and against regions lacking in texture. Furthermore, these
methods tend to be relatively efficient computationally therefore they are appealing
for real-time implementations. They however require well identifiable features in order
for segmentations algorithms to operate correctly. Given that the main application
considered here is microscopy, where features in the sample can be faint, this requirement
was deemed excessively limiting; hence, for a first attempt, the use of feature-based
methods was not favoured.

This leaves block matching methods, which are the simplest of all methods considered
and thus the most efficient. These methods estimate disparity at a given point in one of
the images by seeking to match a small region (neighbourhood or support) around that
point (referred to as the "template") to similar small regions in the other image known as
the "search image". In order to perform the matching, a cost has to be computed using
some metric. Commonly used metrics include: Normalised cross correlation (NCC),
sum of absolute differences (SAD) and the sum of squared differences (SSD) [67]. The
process of computing the cost over a neighbourhood of each point rather than exclusively
at the point is referred to as cost aggregation and it increases the uniqueness of each
point as well as the robustness of the algorithm to noise. Again, several different support
functions can be found in the literature, ranging from the traditional convolution with
a 2D Gaussian function to 2D shiftable windows of various kinds with fixed or variable
size [77]. Here we focus on the traditional approach (i.e. convolution with a 2D Gaussian
function), where the support is defined by the standard deviation or the full-width
half-maximum (FWHM) of the Gaussian. This is mainly due to the simplicity and
computational efficiency of this approach. The cost function that was used is the SSD;
however, although the results presented here were obtained using this, several others
were tested and no significant improvement in the depth maps was observed.
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In formalising this, let Gσ (x, y) be a 2D Gaussian function with a standard deviation
of σ and a mean of zero:

Gσ (x, y) = 1
2πσ2 · e

−
(
x2+y2

2σ2

)
(2.77)

where (x, y) are the space dimensions in a reference plane - here taken to be the original
image plane at a focal distance of fo (see Fig. 2.14). The sum of square differences in
the reference plane is given by:

β (x, y, ρ) =
[
ir+

(
x+M+

M
,
y+M+

M
,ρ

)
− ir−

(
x−M−

M
,
y−M−

M
,ρ

)]2

=⇒ β (x, y, ρ) = [ir+ (x, y, ρ) − ir− (x, y, ρ)]2
(2.78)

where assuming the focal lengths of the two focal planes of the biplane setup to be
(fo ± δ) and the original image distance to be zi, then, M = zi/fo, M+ = (zi − δM2)/(fo + δ)

and M− = (zi + δM2)/(fo − δ) are the original magnification and the magnification of each
channel respectively. (x+, y+) are the image coordinates of the focal plane with a
positive defocus offset, (x−, y−) are the image coordinates of the focal plane with a
negative defocus offset and (x, y) are the image coordinates of the original focal plane
which is here taken as the reference plane. ir+ (·) is the image recovered from the image
captured with a positive defocus offset, ir− (·) is the image recovered from the image
captured with a negative defocus offset and ρ is the axial position with respect to the
reference focal plane at which the PSFs used to deconvolve the images were acquired.
The cost function, f (x, y, ρ), for any point, (x, y), in the reference image plane and a
given ρ can therefore be expressed as:

f (x, y, ρ) =

∫∫
S

Gσ (γ − x, ν − y) · β (γ, ν, ρ) dγ dν (2.79)

where S is a region of space. Notice that because Gσ (·) is a symmetric function,
then, f (x, y, ρ) = (Gσ ∗ β) (x, y) |ρ. This allows the cost function to be computed very
efficiently. Letting, therefore, the depth profile of the sample be r (x, y) with respect
to the reference focal plane, the defocus profile of the sample in either of the captured
images, W+ (x, y) and W− (x, y), can be approximated by:

W± (x, y) ≈ (r (x, y) ∓ δ) p2

2λ (fo ± δ) (fo + r (x, y)) (2.80)

where λ is the wavelength of light and p is the radius of the entrance pupil. Similarly,
the defocus at which the PSF was acquired on each of the two imaging channels has
been captured, ψo+ and ψo−, can be approximated by:

ψo± (ρ) ≈ (ρ∓ δ) p2

2λ (fo ± δ) (fo + ρ) (2.81)
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From Eq. 2.55, therefore, we can express the recovered images as:

ir± (x, y, ρ) =∫∫
S

{
I (x, y) δ

(
γ − x− W± (x, y)2

3παfc±
+ ψo± (ρ)2

3παfc±
, ζ − y − W± (x, y)2

3παfc±
+ ψo± (ρ)2

3παfc±

)
∗ ...

... ∗ hr (γ, ζ,W± (x, y) , ψo± (ρ))
}
dγ dζ

(2.82)
where fc± ≈ 2pe/[λ (zi ∓ δM2)] with pe denoting the radius of the exit pupil. From
Eq. 2.80 and Eq. 2.81, we note that ∀(x, y) such that r (x, y) = ρ, W± (x, y) =
ψo± (ρ). Furthermore, from Eq. 2.54, the residual point spread function satisfies:
hr (x, y,W± (x, y) , ψo± (ρ)) = δ (x, y). From Eq. 2.82, therefore, it follows that ∀(x, y)
such that r (x, y) = ρ, ir+ (x, y, ρ) = ir− (x, y, ρ) hence β (x, y, ρ) = 0. On the other
hand, ∀(x, y) such that r (x, y) ̸= ρ, disparity between ir+ (·) and ir− (·) exists thus
β (x, y, ρ) > 0 therefore the cost function yields a larger score. Assuming therefore
that r (x, y) is a single-valued, smooth (at least over the σ of Gσ (·)) function, then,
we conclude that ∀(x, y) such that r (x, y) = ρ, the cost function f (x, y, ρ) will yield a
minimum. By minimising the cost function over a range of ρ values, [ρmin, ρmax], then,
the depth profile of the sample can be estimated. This can be expressed as:

r (x, y) = arg min
ρ∈[ρmin, ρmax]

{f (x, y, ρ)} (2.83)

Here we are assuming that the cost function yields a global minimum ∀(x, y) such
that r (x, y) = ρ however this omits the complex effects of hr (·) in Eq. 2.82. In
principle, the residual point spread function, hr (·), which accounts for the post-recovery
artefacts, could cause f (·) to yield a minimum when this condition is not satisfied.
This is particularly relevant in areas of the image with no features and/or texture
or with features and/or texture of comparable contrast to the artefacts themselves.
For most practical situations, however, the impact of the artefacts on the score of the
cost function is negligible compared to that of legitimate image features and texture,
therefore this assumption is found to hold well. Furthermore, areas of the image with
little texture and features are translation invariant. This implies that despite the fact
that disparity exists between the images in these regions, the images would still be very
similar (i.e. ir+ (x, y, ρ) ≈ ir− (x, y, ρ)) irrespective of ρ. As a result, the cost function
is flat over ρ hence the depth in featureless and textureless regions cannot be reliably
estimated. This problem is common to all techniques which rely on intensity matching
to infer depth. Lastly, the assumption of a smooth r (x, y) highlights the susceptibility
of this method to rapid changes in depth (or equivalently discontinuities in r (x, y))
which typically, but not necessarily, accompany a change in intensity. This is because
for points close to a discontinuity in depth, the neighbourhood over which the cost
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function is evaluated would encompass a wide range of depths; thus, rendering the score
of the cost function non-representative of the intended condition.

Once the depth profile of the sample has been estimated from Eq. 2.83, the intensity
image, irec (x, y), can then be reconstructed by stitching together parts of the two
recovered images according to some scheme. In principle, ∀(xo, yo) ∈ (x, y) such that
r (xo, yo) = ρo, ir+ (xo, yo, ρo) = ir− (xo, yo, ρo). However, in practice, despite the fact
that the CPM increases the DOF significantly, the more out-of-focus the sample is,
the more suppressed the higher frequencies are. Since for ρo > 0, ir+ (xo, yo, ρo) is
more in-focus than ir− (xo, yo, ρo) and vice versa, then, we choose to compose the final
intensity image from the most in-focus parts of both acquired images, and thus, exploit
the fact that we have two focal planes in the biplane configuration to further improve
the quality of the reconstruction. Note that for ρo = 0, then both images are equally
out-of-focus, therefore either one of them can be used, or else their mean. Assuming
that the mean image is used, this can be expressed as:

irec (x, y) =


ir+ (x, y, r (x, y)) ∀ (x, y) s.t. r (x, y) > 0
[ir+ (x, y, r (x, y)) + ir− (x, y, r (x, y))]/2 ∀ (x, y) s.t. r (x, y) = 0

ir− (x, y, r (x, y)) ∀ (x, y) s.t. r (x, y) < 0

(2.84)

In conclusion, Eq. 2.83 and Eq. 2.84 constitute a 3D topographic image of a sample
over an extended DOF.

2.6.2 Sparse point-scenes

For the case of a sparse scene or sample consisting of points of a size comparable
to the resolution limit, the problem of measuring disparity is significantly simplified.
This is because the features in the captured images -essentially PSFs- are predefined.
Moreover, owing to the sparsity condition, localising them with adequate accuracy is
also relatively easy. By far, the most commonly used techniques to achieve this goal are:
least-square fitting (LSF) and Maximum likelihood estimation (MLE). These techniques
entail fitting a model of the PSF to the acquired image of a fluorophore in order to
estimate its position. Non-fitting algorithms such as virtual window centre of mass
used in software tools such as QuickPALM [79, 80] which relies on centroiding and
Fourier-based techniques which rely on phase estimation rather than position [81], can
be found in the literature. These techniques have the advantage of not requiring a model
and are also simpler and faster; however, they tend to achieve lower accuracies than
their fitting counterparts. For this reason, they are mostly employed for applications
such as deep-tissue imaging where the PSF is distorted due to aberrations and/or
refractive index variations within the sample, and thus, it is difficult to model. Given
that the main objective of this work is to compare this technique to other established



2.6 Measuring disparity 65

techniques and that fitting algorithms are by far the most frequently employed in these
techniques, in this work, we focus exclusively on fitting algorithms.

Amongst MLE and LSF, the MLE is known to be the estimator which theoretically
achieves the CRLB (maximum theoretical precision). In fact, in [82], where an exhaustive
comparison of MLE and LSF can be found, MLE was found to yield precisions 25%
closer to the CRLB than LSF for a wide range of SNRs. MLE, however, requires
detailed knowledge of the noise sources of the detector and rigorous characterisation
of their statistics. This can be particularly difficult if, as is the case here, an sCMOS
detector is used because the pixels of an sCMOS detector have different noise statistics.
On the other hand, LSF can be implemented with less detailed knowledge of the noise
and is still widely used in the literature; hence, LSF was preferred.

LSF relies on the minimisation of the weighted squared-difference between a model
of the data and the acquired noisy data. We can therefore define the cost function for
the kth particle as follows:

fk (xo, yo, σx, σy, θ, A, b) =
∑

(x,y)∈wk

{
[Io (x− xo, y − yo, σx, σy, θ, A, b) − Im (x, y)]2

Io (x− xo, y − yo, σx, σy, θ, A, b)

}
(2.85)

where (x, y) are pixel indices; wk is a window of a predefined size which encompasses the
kth particle ideally close to its centre; Io (·) is the model of the data; and Im (·) is the
measured data including noise -i.e. a cubic PSF. In principle, one could localise a cubic
PSF directly, however, this would require specialised algorithms. Here, the acquired
cubic PSFs were deconvolved using a Wiener filter, thus reducing them to Gaussian-
shaped points in order to be able to use conventional Gaussian-fitting algorithms. The
denominator on the right hand side of the equation is the weight and it equates to the
expected variance where a Poisson noise model has been assumed. The model of the
data used here is given by:

Io (x, y, σx, σy, θ, A, b) = Ae[−(ax2−2bxy+cy2)] + b

a = (cosθ)2

2σx2 + (sinθ)2

2σy2

b = sin2θ
4σx2 + sin2θ

4σy2

c = (sinθ)2

2σx2 + (cosθ)2

2σy2

(2.86)

which describes a generic elliptical Gaussian function centred at (0, 0), where: A is the
amplitude, θ essentially describes its orientation, σx and σy are the standard deviations
and b is an offset, which, in this context would model the background. Notice that the
smaller Io (·) is for a given pixel, the higher the weight assigned to it. In this context,
this implies that such a cost function weighs the tails of the PSF heavily. This would
not be a problem if the data model, Io (·), is a rigorous model of the data, as is often
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the case for non-engineered (conventional) and non-aberrated PSFs. If, however, the
model of the PSF is approximate, then, weighted LSF can be problematic. In this case,
Im (·), is a deconvolved cubic PSF for which an elliptical Gaussian function is clearly
only an approximation. As a result, no weights were used [83]. The actual cost function
used can therefore be expressed as:

fk (xo, yo, σx, σy, θ, A, b) =
∑

(x,y)∈wk

{
[Io (x− xo, y − yo, σx, σy, θ, A, b) − Im (x, y)]2

}
(2.87)

Letting, therefore, Θ = [xo, yo, σx, σy, θ, A, b] ∈ Θs where Θs is the parameter space,
the position (centroid) of the kth fluorophore or particle, (xok, yok), is given by:

(xok, yok) ∈ Θk = arg min
Θ∈Θs

{fk (xo, yo, σx, σy, θ, A, b)} (2.88)

where Θk are the fit parameters for the kth particle. Eq. 2.88 was minimised using
the well known Levenberg-Marquadt algorithm [84]. Initial (coarse) estimates of the
particle location were obtained by thresholding the intensity and then performing a
weighted-centroid on the detected points. Note that during the deconvolution operation,
the image is band-limited; therefore, high frequency noise is reduced making intensity
thresholding viable. The initial estimate of the background, b, was taken to be the mean
of the entire image and the initial A was taken to be the mean of the four central pixels
around the point given by the weighted-centroid. The orientation, θ, of the deconvolved
point, Im (·), depends exclusively on the orientation of the CPM which is fixed. As a
result, an empirically determined fixed value of θ was used. This reduces the number
of parameters in the optimisation, therefore it aids the algorithm to converge both
faster and more reliably. Lastly, although the optimisation yields various other useful
parameters such as (σxk, σyk) ∈ Θk, here, only (xok, yok) were considered, while the rest
were discarded. For instance, (σxk, σyk) ∈ Θk describe the ellipticity of the localised
particle; therefore, from these parameters, it is possible to tell whether the localised
particle is a single particle or not, and thus, to discard or retain the result accordingly.
These considerations, however, are beyond the scope of the investigation conducted
here, therefore no such checks were performed. Instead, appropriate measures such as
low bead density were taken in the experiment in order to avoid such problems.

In conclusion, Eq. 2.88 gives a means of localising particles in an image. To determine
the disparity as required by CKM, particles have to be localised in the two acquired
images, and then, the difference between the positions of corresponding particles taken.
Once the disparity is known, the depth and hence the lateral position of the particle can
be calculated. The algorithm used to implement this will be discussed in the following
sections.
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2.7 Algorithmic representation of the CKM recov-
ery process

After discussing in some detail the concepts behind this technique, in this section, the
algorithms used to implement it will be discussed. As mentioned in Section 2.6, the
procedure used to measure disparity for extended scenes is different from that used
to measure disparity for sparse scenes consisting of sub-resolution points, although
they are conceptually equivalent. For this reason, the two cases will again be treated
separately.

2.7.1 Extended scenes

For extended scenes, the flow diagram representing the CKM recovery algorithm is
shown in Fig. 2.18 where the quantities shown are matrices or in the continuous case,
2D functions of space. The notation: Q (⟨condition⟩) = p, has been used in the
figure to denote that those elements of matrix Q, for which the condition: ⟨condition⟩,
is satisfied are assigned the value p, where p is a scalar. Similarly, the notation:
Q = P (⟨condition⟩), implies that those elements of matrix Q for which the condition:
⟨condition⟩, is satisfied are assigned the same (or the corresponding) elements in matrix
P where matrices Q and P have the same dimensions. The condition: ⟨condition⟩, is
itself a matrix of the same dimensions as matrices Q and P generated by comparing
element-wise two matrices of the appropriate dimensions.

The CKM recovery algorithm requires two sets of data which need to be pre-acquired.
These are:

1. A set of PSFs acquired at definite intervals over the designed DOF. In Fig. 2.18,
the size of the z-step is denoted by δz and the total number of acquired PSFs is
2km. The PSFs are therefore referred to by an index, k, such that: −km ≤ k ≤ km

where k ∈ R+. This index therefore denotes the depth at which the PSF has been
acquired where the depth is given by: k · δz

2. A set of calibration data which maps the two halves of the detector onto one
another at every depth. This is necessary because the images acquired on either
half of the detector will be misaligned. Consequently, unless corrected, the
displacement between them will not reflect the translation experience by the
cubic PSF in response to defocus, which is what we are ultimately interested in
measuring. This calibration takes the form of a geometric transform of some kind.
In Fig. 2.18, this is denoted as a piece-wise linear (PWL) transform, since this
kind of geometric transform was found to yield best results.

From this data, the input data structures required by the CKM recovery algorithm are
obtained. These are:
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1. Two sets (one for each of the two acquired images of the scene) of 2km images of the
PSF acquired at steps of δz along the designed DOF. These can be represented
as 3D arrays: PSF+ (Nr, Nc, k) and PSF− (Nr, Nc, k) where −km ≤ k ≤ km,
k ∈ R+; and, the size of the PSF image at each k (or depth step) in pixels is
Nr × Nc. From these, two corresponding sets of 2km OTFs can be obtained by
simply taking the Fourier transform of each PSF set. These can also be represented
as 3D arrays: H+ (Nr, Nc, k) and H− (Nr, Nc, k) where H+ (·) and H− (·) denote
the OTFs corresponding to PSF+ (·) and PSF− (·) respectively. For conciseness,
these will be denoted as: H+ (kδz) and H− (kδz) hereupon - that is, the OTF as
a function of depth (kδz) only.

2. A set of 2km PWL transforms which map each of the two acquired images of
the scene onto each other at every depth step. This eliminates any shifts and
distortion caused by misalignment and other geometrical effects leaving only the
shift induced by the CPM which is what need to be measured. These can be
represented as an array of PWL transform: PWL (kδz) where −km ≤ k ≤ km,
k ∈ R+. In other words, for a given depth step k, or equivalently, an axial position
(or depth) of kδz, the corresponding PWL transform which eliminates all stray
shifts between the two acquired images at that depth is: PWL (kδz).

The CKM recovery algorithm therefore proceeds as follows. First, two images of
the scene (Ic+ and Ic−) are acquired on either half of the detector as shown in Fig 2.14.
These are then deconvolved by their respective PSFs at the depth of the current iteration
(kδz). The deconvolution is denoted in Fig. 2.18 by the inverse filters: 1

H+(kδz) and
1

H−(kδz) . The recovered images (Ir+ and Ir−) are then transformed using the PWL
transform corresponding to the depth of the current iteration (PWL (kδz)) to eliminate
stray translations caused by misalignment, as previously explained. The transformed
images (I ′

r+ and I ′
r−) are then used to compute the the sum of square differences

as given by Eq. 2.78. Finally, the metric M for the current iteration is computed by
aggregating (Eq. 2.79).
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Fig. 2.18 Flow diagram of the CKM recovery algorithm for extended scenes

The next step is to compute the recovered image Ir according to the metric of the
current iteration. This is done by keeping those pixels in the two recovered images
where the metric M is minimum. After all iterations have been processed, Ir will be
composed of pixels from I ′

r+ and I ′
r− for which the metric yields a minimum over the

entire depth range considered; hence, fulfilling Eq. 2.84. Note that the equations in
Fig. 2.18 show a slight variation compared to Eq. 2.84 for the case k = 0; however,
both versions are applicable and both yield very similar results. Next, the depth map
(denoted by Z (·) in the figure) is updated by setting those pixels of the depth map for
which the metric M is minimum to the depth corresponding to the current iteration -
i.e. δz · k for the kth iteration. After the last iteration, the depth map will consist of the
depths at which the metric is minimum over the entire depth range considered; thus, as
previously explained, the depth of the scene at each (x, y) point. This fulfils Eq. 2.83.
Note that for obvious reasons, the depth map saturates at: ±km · δz; therefore, one
must ensure that the depth of the scene lies within these bounds.
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The final step in each iteration of the algorithm is to update the metric in order to
ensure that the global minimum is obtained at the end of all iterations. This is done by
comparing M to the metric obtained in the previous iteration and keeping only those
pixels which have a smaller value in the current iteration. This is expressed in Fig. 2.18
as: Mk+1 = M (M < Mk). Note that the value of the metric itself is not utilised in the
recovery process except to perform the minimisation. It can, however, be utilised in a
post-processing step in order to identify regions in the scene where the depth cannot
be reliably, inferred such as textureless or featureless regions. This is because for such
regions, the metric will display a steady value over the entire depth range. This was
not implemented in this work and is suggested as further work.

2.7.2 Sparse point-scenes

The flow diagram for the case of a sparse scene consisting of point sources is shown in
Fig. 2.19. As in the case of extended scenes, some pre-measurements need to be taken
in order to implement this algorithm. These are listed below:

1. The in-focus PSF of each of the two channels.

2. The alignment PWL geometric transform in order to align the two channels.

3. The relationship between generated disparity and actual depth which will then be
used as a dictionary (or look-up table) in order to convert the measured disparity
to depth. This is denoted by Dz in the figure.

4. The relationship between the generated disparity and the translation experienced
by each cubic PSF in each channel with respect to its in-focus position. This is
then utilised as a dictionary in order to compute the actual (x, y) coordinates of
the emitter from the measured centroid of the point in each of the two acquired
images. The dictionaries for the positive and the negative channels are denoted
by Dxy+ and Dxy− respectively in Fig. 2.19.



2.7 Algorithmic representation of the CKM recovery process 71

Fig. 2.19 Flow diagram of the 3D point localisation algorithm.

The process starts by the acquisition of two images of the scene on either half of the
detector, as was the case for extended scenes. In this case, however, the recovered images
are deconvolved by their respective PSFs. Moreover, since the features of the image
(points) are known a priori, the deconvolution can be done by the in-focus PSFs only
as denoted in the figure by the inverse filters: 1

H+(0) and 1
H−(0) where H+ (·) and H− (·)

denote the in-focus OTFs. The cubic PSFs in the captured images are thus reduced to
Gaussian-shaped points in the recovered image which are easier to localise accurately.
These are then aligned by means of a pre-measured PWL transform which, as already
mentioned, eliminates translations and misregistrations caused by misalignment. Note
that in this case, the PWL was measured only at the in-focus position. This was found
to be adequate due to the additional calibration data Dz, Dxy+ and Dxy−.
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The next step is to determine the correspondence between the images of the same
emitter in each of the two recovered images. To achieve this goal, a coarse affine trans-
form obtained by matching intensities in each image was applied. This transform maps
the images of the emitter in each image to one another albeit coarsely. Corresponding
images will thus appear close to each other (typically within ∼ 1.0 pixels); thus, allowing
them to be paired based on a minimum distance criterion. The particles were then
centroided by means of a weighted-centroid algorithm and the pairs of corresponding
centroids were then transferred back to their original location by reversing the coarse
affine transform. This eliminates any inaccuracies such a transform might introduce.
Note that this method of establishing correspondence is sufficiently adequate in this case
due to the assumption of a smooth depth profile. In any other eventuality, a minimum
distance criterion alone cannot guarantee proper pairing. To solve this problem, other
constraints can be applied such as a predefined direction (a curve or region) within
which a corresponding pair must lie.

After correspondence has been established and the centroids of the image of the
emitter in either image coarsely estimated, localisation is performed using the LSF
method given by Eq. 2.88. The centroids obtained by the weighted centroiding
performed in the previous step are used as the initial estimates of the centroid of
each emitter in either image. This step yields an accurate estimate of the centroids((
x′
k−, y

′
k−
)

and
(
x′
k+, y

′
k+
))

from which the disparity is then calculated. This is
done by calculating the magnitude of the vector connecting the centroid of the emitter
in one of the images to the other -i.e.

(√
(x′

k+ − x′
k−)2 +

(
y′
k+ − y′

k−
)2
)

. Using the
dictionary Dz and the disparity, the actual axial position, Zk, of the emitter can thus
be inferred. The depth, or the disparity itself depending on how the calibration has
been performed, can then be used to find the amount by which the estimated centroids
are displaced from the actual lateral position of the emitter. This is performed by
means of the dictionaries Dxy+ and Dxy− which relate disparity or depth to the shift
of the individual cubic PSFs. After applying this correction, the resultant centroids
((xk−, yk−) and (xk+, yk+)) of the image of the emitter in either image will be the same
within the limits of precision; thus, the position of the emitter can be estimated by
taking the average of the two. Alternatively, given that an estimate of the depth is
available at this point, the lateral position of the emitter could be estimated from
the more in-focus image only. The latter was found to yield a slight improvement in
precision at large defocus values.

In conclusion, at the end of this process, an estimate of the 3D position (xk, yk, zk)
of the kth emitter is obtained. Except for the deconvolution and alignment step, the
process would then have to be repeated for all other emitters in the FOV. This, however,
can be largely parallelised; therefore, it can be performed in a reasonable time frame,
especially if coded in a low-level language such as C.



2.8 Conclusions 73

2.8 Conclusions

In this chapter, the theoretical aspects of this work have been investigated. The cubic
PSF has been thoroughly modelled in the space domain using a novel approach based
on the Airy transform. This led to a closed-form representation of the cubic PSF under
the paraxial approximation only, which should be fit for publication. Furthermore,
through this model, it was confirmed that the cubic PSF does not experience any
additional translation besides those predicted by conventional approximate models.
This theoretical framework also revealed that the morphology of the cubic PSF and
the amount of translation it experiences are decoupled and that they can be controlled
separately by decentring the aperture function. Based on simulations, it has been shown
that this can be used to amplify the shift of the cubic PSF without sacrificing SNR; a
compromise which is crucial to the CKM technique.

The mathematical formulation of the CKM technique was discussed next and several
ways of generating the necessary disparity have been proposed and investigated. This
investigation revealed that the biplane method is the easiest to implement, as well as
the method which performs best. A statistical framework (CRLB) commonly used in
localisation microscopy and other 3D imaging techniques was then utilised to compare
the various disparity generation methods considered amongst themselves and also to
compare them to other established 3D PSFs. Throughout this investigation, it was
confirmed that the biplane offers the best compromise between DOF and precision.
Furthermore, it was also confirmed that decentring the aperture increases the information
content (i.e. lower the CRLB) as expected. This investigation also revealed that CKM is
likely to display lower depth precision than the considered standard 3D PSFs for the same
number of detected photons close to the focus. This is mainly due to the fact that cubic
PSF is larger, therefore it exhibits a lower SNR. The lateral precision is also moderately
lower close to the focus; however, it remains constant over a significantly larger DOF
than the competition. Its main application would therefore be 3D localisation over a
large depth range.

Finally, methods to measure the disparity for the case of extended scenes and sparse
point-scenes, have been proposed and investigated. In this case, it was decided to focus
on the most basic algorithms since this is a first attempt at the implementation of the
technique in question. Furthermore, although satisfactory results have been obtained
using these methods, several better alternatives or additions have been suggested.
Lastly, the algorithms as implemented during the course of this work were presented
and discussed.



Chapter 3

Proof-of-concept: numerical
simulations and experiment

Given that no literature of direct relevance to this technique is available, an extensive
investigation was deemed necessary in order to assess its feasibility before undertak-
ing the actual implementation. With this goal in mind, numerical simulations were
conducted, as presented in this chapter. These are intended to give an idea of what
performance to expect from CKM under various scenarios such as lack of features
and low SNR. Additionally, a proof-of-concept experiment was conducted in order to
gain further insight into the practical difficulties involved in its implementation. This
experiment was conducted before the emergence of the biplane CKM method, therefore
the conjugate-masks method was used instead. Nevertheless, by means of the theoretical
framework presented earlier, extrapolation of the results and conclusions to the biplane
CKM technique is possible. The investigation presented in this chapter is for extended
scenes only, which are the primary concern of this study. Sparse point-source scenes
are considered in Chapter 4.

3.1 Numerical simulations

As stated, the principal objective of these numerical simulations is to investigate the
viability of this technique under a low SNR and for scenes which lack features. Moreover,
a brief comparison between the biplane CKM method and the conjugate-masks CKM
method was made in order to confirm numerically the theoretical predictions made in
the previous chapter. The conjugate-astigmatic-masks CKM was not considered because
it requires specialised phase masks to implement and, as with the conjugate-masks
method, replicating the aperture plane is still necessary. Consequently, from a practical
stand point, the complexity was deemed to outweigh the advantage. The intensity
of the simulated scene is shown in Fig. 3.1a which is an image of fungus spores. A
ramp depth profile ranging from −2.5 to +2.5 waves from left to right as shown in
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Fig. 3.1b was assumed. It should be noted that whereas the use of a natural intensity
distribution (intensity image) avoids unnatural slopes and hence allows a more realistic
assessment of the performance of the technique to be made, the fact that the depth
profile does not correlate with the intensity image could be considered to be unrealistic.
This is therefore to be considered as a limitation of the numerical simulations conducted
here. The coded images were generated by point-wise convolving the scene with a PSF
generated at a depth equal to the depth of the scene at that point. The PSFs were
calculated by taking the Fourier transform of the appropriate pupil function; therefore,
the paraxial approximation is implicit. A coding strength α of 3 waves was taken for
all simulations and a difference in defocus of 2 waves was taken for the biplane CKM.

(a) (b)

Fig. 3.1 Scene used for numerical simulations: (a) intensity image (fungus spores [85]) and (b)
depth profile (ramp from left to right).

Consider first the comparison between the biplane CKM and the conjugate-masks
CKM. For this purpose, the SNR is of no relevance as long as it is identical for both
techniques, therefore no noise was added to the images. The image recovered using
the conventional wavefront recovery procedure (i.e. single PSF deconvolution) is shown
in Fig. 3.2a for reference. From this image, one can clearly observe the sinusoidal
post-recovery artefacts discussed earlier. Besides, it is also evident that the image
presents a significant amount of blur due to the mismatch between the recovery PSF and
the actual PSF in different regions of the image. As a result, the quality of the recovered
image is poor. Fig. 3.2c shows the CKM recovery given by the conjugate-masks method
where a conspicuous improvement in image quality can be observed. The raw depth
map given by the conjugate-masks method is shown in Fig. 3.2b. By comparing this to
the actual depth profile of the scene, one can see that a substantial amount of noise is
present in the depth map. This is expected and as discussed in Chapter 2, the cause of
this lies in the fact that this technique is unable to differentiate the sign of the defocus.
As a result, the measured magnitude of the defocus will be correct; however, the sign
will oscillate randomly between negative and positive.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.2 Biplane CKM compared to conjugate-masks CKM: (a) conventional recovery, (b)
raw depth map, (c) recovered intensity image and (d) absolute of the depth map given by
conjugate-masks CKM. (e) recovered intensity image, and (f) raw depth map given by biplane
CKM.

If one takes the absolute of the depth map, this noise is eliminated, as shown in Fig. 3.2d.
This, however, also results in the loss of information about the depth of the scene. On
the other hand, the biplane CKM is not prone to this ambiguity in sign, therefore
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such difficulties should be eliminated. The recovered image given by the biplane CKM
method and the raw depth map are shown in Fig. 3.2e and Fig. 3.2f respectively. As one
can see, whereas the recovered image is comparable to that given by the conjugate-masks
CKM, the depth map is superior because it does not display the mentioned noise. In
addition, both negative and positive defocus in the scene are correctly identified, thus
no information about the scene’s depth is lost. These results are in accordance with
the theoretical predictions presented earlier.

The last point which shall be considered is the effect of the different responsivity of
the two techniques. As stated earlier, the conjugate-masks CKM has a responsivity
of zero near the focus which results in its inability to infer depth at small defocus
values. On the other hand, the biplane method has a constant responsivity therefore
this problem is once more eliminated. To investigate this, the absolute value of the
depth maps given by either method were averaged along the columns and plotted as
shown in Fig. 3.3 together with the actual depth profile of the scene, which serves as a
ground truth. As one can see from this figure, the conjugate-masks CKM does display a
large error in depth over a defocus range of ∼ ±0.8 waves as expected. Conversely, the
biplane CKM follows the ground truth over the entire defocus range. The RMS error
in depth for the biplane and the conjugate-masks methods were 0.1 and 0.14 waves
respectively, therefore the conjugate-masks method gives an RMS error 40% larger than
the biplane CKM. This is also in agreement with the theoretical predictions.

Fig. 3.3 Comparison of the depth profile given by the biplane CKM and the conjugate-masks
CKM.

Next, the feasibility of this technique and its performance under low SNR conditions
will be explored. To do this, Poisson noise was added to the image as per the following
equation:

SNR = 20 · log
(√

N̄
)

dB (3.1)

where N̄ = k · Ī is the mean number of detected photons; k denotes the conversion
factor of the detector in e− per analogue-to-digital unit (ADU) and Ī denotes the
mean intensity. Shown in Fig. 3.4a and Fig. 3.4b are the recovered intensity image
and depth map using the biplane CKM technique (the conjugate-masks CKM will
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not be considered any further) for an SNR of 30dB. As one can see, the recovered
image displays a substantial amount of noise which is accentuated by the deconvolution
process. The depth map, however, still reflects the true depth of the sample. The RMS
error for an SNR of 20dB and 30dB was found to be 0.27 and 0.16 waves respectively.
These correspond to an increase in RMS error of ∼ 170% and ∼ 60% respectively with
respect to the ideal case (SNR = ∞). We therefore conclude that the CKM technique
is robust against noise, although a significant increase in RMS error is to be expected.

(a) (b)

Fig. 3.4 Numerical simulation of CKM at low SNR (30dB): (a) recovered intensity image, and
(b) depth map.

Finally, the susceptibility of this technique to the texture and features of the scene
was investigated. As stated earlier, just like stereo vision and focus/defocus-based
techniques such as Z-stacking and depth or shape from defocus, CKM’s ability to
infer depth depends on the amount and the quality of the texture and features in
the scene. If none are present, then the correspondence between the acquired pair of
images cannot be established and hence the depth cannot be measured. On the other
hand, the more texture the scene has and the higher the contrast, the easier it is to
establish correspondence, hence the smaller the RMS error of the depth map will be.
Furthermore, unlike the other techniques mentioned, in CKM, errors in the calculated
depth have the additional repercussion of lowering the quality of the recovered image
due to suboptimal deconvolution. In order to investigate this, the intensity in the
central region of the scene was set to its mean intensity. A pair of coded images was
then simulated with an offset in defocus as required for the biplane CKM and ultimately
recovered. No noise was added in order to isolate the effect which lack of features
has on the technique. The recovered intensity image is shown in Fig. 3.5a and the
corresponding depth map is shown in Fig. 3.5b. As one can see, in regions of the scene
where there are features, the quality of the recovered image still shows a significant
improvement over the conventional WC recovery. However, in the central region where
the scene has no features, artefacts are clearly visible. This implies that as expected,
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CKM is appreciably less effective in removing artefacts in areas of the scene where
features and/or texture are lacking. This can also be observed from the depth map
where an error in the inferred depth can easily be observed close to the centre of the
scene. The RMS error in this case is 0.21 waves, which corresponds to an increase of
112% with respect to the ideal case without the features of the central region of the
scene blacked out.

(a) (b)

Fig. 3.5 Numerical simulation of CKM for texture-lacking scenes: (a) recovered intensity
image, and (b) depth map.

3.2 Proof-of-concept experiment

As has already been mentioned, the objective of this experiment is to gain insight into
the difficulties of implementing this technique in practice. It also serves the purpose of
experimentally confirming the theoretical predictions. Furthermore, these investigations
were conducted using the conjugate-masks method because the biplane method was
developed later. As a result, the problem of rotating the CPM in order to generate
the complex conjugate of the pupil function had to be tackled. This can be done by
replicating the pupil or by mechanically rotating the CPM in a highly repetitive manner;
however, both such techniques are quite complicated or necessitate precision positioning
equipment. A simpler way of achieving this goal is to use an SLM. An SLM provides a
means of electronically rotating the CPM without physically moving any part of the
setup itself, thus eliminating the need for precision positioning equipment and ensuring
repeatability. Furthermore, this also provides the flexibility of changing the focus of
the system electronically, as well as to experiment with different coding strengths in
order to establish the most appropriate value. The SLM used in this experiment was a
Holoeye LC2002, which is of the thin twisted nematic type operable in transmission.
The detector used was a Hamamatsu Orca CCD (C4742-95).
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Fig. 3.6 Experimental setup for the proof-of-concept experiment. LS: fibre-coupled tungsten
light source filtered at 540nm, O: sample or object plane, P: polariser, S: spatial light
modulator, M: aperture mask (iris), Q: quarter-wave plate, A: analyser and D: detector
(Hamamatsu C4742-95).

Fig. 3.6 shows a schematic of the experimental setup which is essentially a single-
lens finite conjugate system with a nominal magnification of approximately 5. The
SLM requires some ancillary optics to operate; namely: a polariser, an analyser and a
quarter-wave plate. The function of these is discussed in further detail in the following
section where the procedure used to calibrate the SLM is covered. Given that the SLM
has a rectangular aperture, an iris was used to produce a circular aperture. This and
the SLM were placed in close proximity to the lens (f/15 singlet lens of focal length
300mm) in order to act as the aperture stop of the system. The light source used was
a fibre-coupled white tungsten light source which was then filtered at 540nm. The
filtering is primarily required because the calibration of the SLM is strictly only valid
at the calibration wavelength. To a lesser extent, this is also necessary because WC is
in principle a monochromatic technique, although it can still be employed satisfactorily
for narrowband applications.

Following calibration of the SLM, CPMs with an intended coding strength, α, of 3
waves were generated and a set of 200 PSFs was acquired for each rotation at different
axial position. The focus was varied in steps of 0.03 waves over a range of ±3 waves
by introducing a quadratic phase profile of the appropriate magnitude in the aperture
stop of the system by means of the SLM. The PSFs were acquired by imaging a 1µm
pinhole illuminated by a focused laser beam of the appropriate wavelength. A laser is
necessary in this case in order to acquire the PSFs at a sufficiently high SNR. This is
important because these PSFs will be used to perform the recovery. After acquiring the
PSFs, the offset was removed and the relative shift between them was measured for
each set by correlating all PSFs with the in-focus one. The acquired PSFs close to the
focus position are shown in Fig. 3.7a and the measured shift for each set is shown in
Fig. 3.7b.
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(a)
(b)

Fig. 3.7 Proof-of-concept experiment: (a) PSFs (green acquired with the pupil function (CPM)
and purple with its complex conjugate (rotated CPM)) and (b) shift of the PSFs (shift of the
purple PSF was taken as positive).

From 3.7a it is immediately apparent that the two PSFs acquired with the pupil
function and its complex conjugate have other differences beside the expected 180◦

relative rotation. Furthermore, from Fig. 3.7b, one can also notice that the shift of
the PSF acquired with the complex conjugate of the pupil function displays a larger
shift. Given that the magnitude of the shift is inversely proportional to α and that
the extent of the PSF in space is proportional to α, one concludes that both these
observations indicate that the α of the complex conjugate pupil function is smaller
than that of the pupil function. To confirm this theory, the coding strengths were
measured using a wavefront sensor (Shack-Hartmann sensor) and the obtained results
were found to be compatible with the observations. Despite this, this discrepancy was
not corrected because in actual implementation, the pupil has to be replicated; therefore,
such variations are likely to occur due to imperfect matching between the two channels.
As a result, it was deemed beneficial to conduct the experiment in the presence of the
discrepancy in question. This matter is treated in more detail in the following section.

From Fig. 3.7b, it is also possible to notice that the measured shifts (black dots)
display a substantial amount of noise (or jitter), which is more detrimental to this
technique than variations in parameters such as α. The cause of this is the refresh rate
of the SLM. This implies that this jitter is dependent on the exposure time setting of the
camera, which makes it difficult to calibrate for. Note that the actual implementation
is envisaged to make use of a glass phase mask rather than an SLM, so this would not
constitute a problem. In order to mitigate this, a quadratic polynomial was fitted to
the measured shifts (blue curves in Fig. 3.7b) and the PSFs were then repositioned to
lie on them. This eliminates the error associated with the refresh rate of the SLM from
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the measured PSFs but not from the subsequently acquired scenes, therefore it is not a
definitive solution.

Once the PSFs were acquired and calibrated, two images of the scene were acquired
in succession with the pupil function and its complex conjugate and deconvolved by
their respective set of PSFs. The metric discussed in Subsection 2.6.2 was evaluated in
each case and minimised over the depth range considered. This is essentially the same
algorithm discussed in Subsection 2.7.2 with the exclusion of the alignment step (PWL).
In this case, since the images were acquired in succession through the same imaging
channel (i.e. exactly the same train of optics), it is safe to assume that no misalignment
between the two acquired images exists. This is in fact an additional benefit of utilising
an SLM and sequential acquisition to perform CKM. On the down side, the obvious
disadvantage lies in the fact that this precludes single-snapshot operation which is one
of the main advantages of this technique. This, however, is of no concern here because
the primary objective of this experiment is to verify the feasibility of the technique.

3.2.1 Calibration of the spatial light modulator

The SLM was calibrated using the method proposed in [86]. Here SLMs are of interest
exclusively from an application point of view, therefore the mathematical framework
(Jones matrices) describing their operation and other similar details were deemed beyond
the scope of this work. Consequently, only those physical phenomena which have a
direct impact on the operation of the SLM will be discussed.

An SLM is composed of a number of liquid crystal cells -pixels. Liquid crystals are
birefringent and their birefringence, ∆n, defined as the maximum difference between the
refractive indices of the material is dependent on the potential difference applied across
them. This is because applying a voltage across a layer of liquid crystals causes the
molecules to align with the field, hence altering the refractive index. The retardation
introduced by a slab (or a pixel) of such material is given by: ∆n× t where t denotes
the thickness of the slab or pixel. For twisted nematic SLMs, besides a change in
birefringence, the polarisation of the light transmitted or reflected by the SLM is also
dependent on the potential difference applied across the pixel. This is because, as
the name implies, in twisted nematic SLMs, the molecules are arraigned in a helical
fashion when the potential difference across the pixel is zero. As the potential difference
increases, this helical arraignment starts unwinding, causing the polarisation of the
output light to turn with the alignment of the molecules.
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(a)

(b)

Fig. 3.8 Calibration of the SLM. (a) optical setup. BE1: beam expander 1 (L0: 0.4NA
objective, PH: 1.0µm pinhole, and, L1: 30mm lens), P: polariser, S: spatial light modulator
(twisted nematic), M: double slit mask, Q: quarter-wave plate, A: analyser, BE2: beam
expander 2 (L2: 300mm lens, and, L3: 75mm lens), and, D: detector (Hamamatsu C4742-95).
The spatial light modulator and the double slit mask should be placed as close to each other
as possible. (b) detected fringes as a function of grey level. (Diagrams are not to scale)

In this case, the SLM used is a transmission-type, thin, twisted nematic SLM.
Twisted nematic type SLMs were originally designed as display devices for equipment
such as projectors, therefore their primary use is for amplitude modulation rather
than phase. In the past, these devices were manufactured with thick pixels, hence an
adequate phase modulation depth could be achieved despite the fact that the change in
birefringence is small. With the advent of technology, however, the same amount of
amplitude modulation became possible with thin pixels and thus most modern twisted
nematic SLMs are manufactured with thin pixels like the one used here. To achieve an
adequate phase modulation depth with these devices, the SLM has to be sandwiched
between a polariser and an analyser as shown in Fig. 3.8a [87, 88]. Doing this, however,
results in coupling between amplitude and phase modulation [89] which is detrimental to
application where phase-only modulation is required. This coupling is a consequence of
the fact that the polarisation of light transmitted by each pixel of such an SLM depends
on the potential difference across it, as previously discussed. Several methods have been
proposed in the literature to mitigate this problem, such as the double quarter-wave
plate arrangement [90, 91] and the more recent and simpler single quarter-wave plate
configuration employed in [90]. Using this method, it is possible to maximise the phase
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modulation depth while keeping amplitude modulation to minimal levels, thus achieving
the necessary phase-only modulation. This is done by including a quarter-wave plate in
between the SLM and the analyser as shown in Fig. 3.6 and Fig. 3.8a, and setting the
angles of the polariser, the quarter-wave plate and the analyser appropriately.

Fig. 3.8a shows the setup used to calibrate the SLM - i.e. measure phase modulation
as a function of grey level. Note that the grey level of a pixel of the SLM is proportional
to the voltage applied across it. The angles of the polariser and the analyser were set to
the experimental values determined in [86] for the same model of SLM as the one used in
this experiment. In principle, the input-director angle of the SLM should be measured
experimentally, as discussed in [92, 90], for optimal results; however, satisfactory results
were obtained nonetheless. The SLM display was then split into two regions: a left
region and a right region; and a double-slit mask was then placed close to the SLM as
shown where the left slit coincides with the left region of the SLM’s display and the
right with the right. A 543nm HeNe laser was expanded to an appropriate size using a
beam expander and spatially filtered (BE1) and this was then used to illuminate the
SLM. This constitutes a double-slit interferometer, where by changing the grey level
of one of the regions of the SLM with respect to the other, the path length difference
between the light emerging from either slit is changed. Finally, a second beam expander
(BE2) was used to magnify the resultant interference pattern before detection. The
resultant interference pattern for different relative grey levels (between the left and the
right halves of the SLM) is shown in Fig. 3.8b.

The angle of the quarter-wave plate was determined empirically by minimising the
amplitude modulation over the entire range of grey levels (0 - 255 since each pixel is
addressed by an 8-bit number). This was done by sweeping the grey level of the right
half of the SLM display in steps of ten, while keeping the grey level of the left half at
zero and acquiring an image of the resultant interference pattern for each grey level
setting. By summing each acquired frame, the total detected energy can be estimated.
This was repeated for a range of quarter-wave plate angle settings and the quarter-wave
plate was then set at that angle which displays the least variation in detected energy
over the entire grey level range. This is shown in Fig. 3.9a where the shown angles of
the quarter-wave plate are with respect to the angle of the input-director, which has
been assumed to be 45◦ to the horizontal (in [86], this angle is given as 46.5◦) where
positive angles are clockwise. From Fig. 3.9a, it can easily be seen that the amplitude
modulation is minimised when the quarter-wave plate is set at an angle of −28◦. In
this case, the maximum variation in energy was found to be ∼ 5%. In Fig. 3.9a, the
cases where the angle of the quarter-wave plate was set to −28◦ ± 5◦ are also shown
and as one can observe, even a small error in the angle of this component significantly
increases the amplitude modulation. Finally, the case where the quarter-wave plate
has been omitted was also included in Fig. 3.9a, in order to demonstrate the coupling
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between phase and amplitude modulation displayed by twisted nematic SLMs when
sandwiched between a polariser and an analyser.
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Fig. 3.9 SLM calibration: (a) amplitude modulation and (b) phase modulation against grey
level setting on the SLM. θ denotes the angle of the slow axis of the quarter wave plate and
φmax denotes the maximum phase modulation attainable. The angles are measured with
respect to the angle of the SLM’s input-director (∼ 45◦). Negative angles are anti-clockwise.

Once amplitude modulation has been minimised, the phase modulation as a function
of SLM grey level is to be measured. As previously mentioned, changing the grey level
of one of the regions of the SLM while keeping the grey level of the other fixed at
zero introduces a relative phase difference between the wavefront of the light emerging
from the slits. As a result, the interference fringes will translate laterally, as shown
in Fig. 3.8b, for all grey levels. From basic interferometer theory, we can therefore
calculate the phase introduced by the SLM for each grey level from:

Φg = 2πyg
w

(3.2)

where yg is the lateral translation of the fringes with respect to the position of the
fringes when the grey level of both halves of the SLM is the same -i.e. zero phase
difference- and w is the period of the fringes which should not change with grey level.
By sweeping the grey level from 0 to 255 and measuring the period and position of each
maxima in the resultant interference pattern from which yg can then be calculated, the
phase delay introduced by the SLM for each grey level was deduced. This is shown in
Fig. 3.9b, where, as one can see, the maximum phase delay which can be introduced for
the optimal quarter-wave plate angle (−28◦) is 279◦ (∼ 3π/2 rad), which is consistent
with what is reported in [86]. Consequently, any phase greater than this value has to
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be rounded. This was done according to the equation below:

θd =


θd if 0◦ ≤ θd ≤ 279◦

279◦ if 279◦ < θd ≤ 319◦

0◦ if 319◦ < θd ≤ 360◦

(3.3)

Finally, the cases where the quarter-wave plate was set to an angle of −28◦ ± 5◦ and
the case where no quarter-wave plate was used are also shown to illustrate the effect of
the quarter-wave plate on the phase modulation depth. A maximum phase modulation
depth of ∼ 320◦ is obtained when no wave plate is used. From this, it is clear that by
introducing a quarter-wave plate, phase modulation depth is sacrificed in favour of a
reduced amplitude modulation.

(a)

(b)

Fig. 3.10 Testing the SLM. (a) SLM test setup. BE1: beam expander 1 (L0: 0.4NA objective,
PH: 1.0µm pinhole, and, L1: 30mm lens), P: polariser, S: spatial light modulator (twisted
nematic), M: aperture mask, Q: quarter-wave plate, A: analyser, BE2: beam expander 2 (L2:
300mm lens, and, L3: 75mm lens), and, SH: Shack-Hartmann wavefront sensor (WFS150).
The spatial light modulator and the aperture mask should be placed as close to each other
as possible. (Diagram not to scale). (b) measured sagital and tangential phase profiles for a
CPM with α = 3.
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This was deemed advantageous because, given that the cubic phase profile is smooth,
rounding is not expected to have a severe impact. On the other hand, since CKM relies
on intensity matching between two images acquired with different coding, the effect of
the amplitude modulation in the aperture stop can be significant.

The final step is to test the calibration of the SLM. Given that the SLM in this case
will be used to generate the necessary cubic phase profile necessary for a CPM, it was
deemed appropriate to test the SLM on this phase pattern directly. The optical setup
used to achieve this goal is shown in Fig. 3.10a.

Comparing this to the calibration setup shown in Fig. 3.8a, one can see that the
only difference is the use of a wavefront sensor (also known as a Shack-Hartmann (SH)
sensor) instead of a detector. The SH is to be illuminated with a collimated light beam.
This was generated by expanding a 543nm laser beam using a beam expander and
spatial filter (BE1). A second telescope or beam expander (BE2) was then used to
resize the beam in order to fill most of the area of the SH sensor. The focal lengths of
the lenses of this beam expander were chosen so that the SH is in a plane conjugate
to the aperture stop (i.e. the SLM) of the system. To do this, the aperture stop and
the SLM were laterally illuminated by a diffused light source and the SH sensor was
then positioned in the plane where a sharp image of the SLM’s dark regions (inter-pixel
regions) and the aperture mask were visible. This ensures that the wavefront at the
aperture stop is the same as that sensed by the SH.

A CPM with an α of 3 was therefore generated and the corresponding grey levels
necessary to implement it on the SLM were obtained from the calibration curve
(Fig. 3.9b). Fig. 3.10b shows the measured phase profiles along the vertical and the
horizontal directions. Also shown in Fig. 3.10b is the theoretical (or expected) phase
profile, which should be identical in both directions. Note that the wavefront sensor
used decomposes the incident wavefront into Zernike polynomials and outputs the
Zernike coefficients. For this reasons, the discontinuities in the phase profile produced
by rounding (Eq. 3.3) are not visible in the plots. Furthermore, due to the alignment of
the setup, the measured wavefront will include tilts which are not actually generated by
the SLM, thus the peak aberration cannot be measured directly. This, however, can be
easily estimated by fitting a cubic polynomial to the measured phase profile and then
estimating α from the cubic term. This was done and the measured coding strength in
the vertical and in the horizontal directions of the CPM were found to be 3.04 waves
and 3.17 waves respectively. The corresponding values for the rotated CPM were found
to be 3.98 waves and 2.49 waves.

From these measurements, one concludes that there is significant variation in the
coding strength of the intended mask and that which is actually generated, particularly
for the non-rotated one. It is interesting to note that the error in the measured α

becomes appreciably smaller for CPMs with larger α values. This suggests that other
(fixed) aberrations in the system are not negligible compared to a CPM with an α of 3
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waves. As α is increased, the CPM aberration dominates; therefore, the error in the
coding strength becomes smaller. Furthermore, it should be stated that the calibration
method used here operates on the fundamental assumption that all pixels of the SLM
are identical and will respond in identical fashion. This follows from the fact that only
those pixels which lie within the width of the two slits of the double-slit mask are
actually calibrated. While this greatly simplifies the calibration procedure because it
renders it insensitive to mechanical vibrations, air currents and other practicalities,
it does not take into account regional variations in the response of the SLM. This is
believed to be the major cause of the observed error in coding strength. Nevertheless,
as previously stated, it is interesting to investigate the performance of CKM under such
a mismatch between mask parameters because such variations are to be expected to
some extent. As a result, no further calibration was undertaken. Finally, from Eq. 2.16
we know that the shift of the cubic PSF is inversely proportional to α. Therefore, from
the measured α values, one can calculate that the difference in shift between the two
PSFs at a defocus of ±3 waves will be ∼ 10.6 pixels. This is in good agreement with
the shifts measured directly from the PSFs which are shown in Fig. 3.7b.

3.2.2 Results

The main objectives of this experiment are to demonstrate: (1) the feasibility of the
CKM recovery algorithm on real images acquired on a real detector in the presence of
noise and other practicalities; (2) the removal of the post-recovery artefacts associated
with WC and hence the ability to recover an image of a quality superior to that
achievable with conventional WC; and (3) the ability to recover the depth information
of a sample for a pair of complementary coded images.

Shown in Fig. 3.11a is the NA limited image of a sample of a section of plant stem
superimposed on another sample of a section of mustard seeds. These two samples
were superimposed on each other to create a step-change in defocus, as one can observe
from Fig. 3.11a, where the mustard seeds in the background are out-of-focus whereas
the stem section is in-focus. Fig. 3.11b shows the image given by conventional WC.
This was obtained by acquiring a coded image with the CPM and deconvolving it with
the in-focus PSF only. As one can see, in this case we obtain strong post-recovery
artefacts which, as expected, show up as low frequency sinusoidal variations in intensity.
The image recovered by applying the CKM algorithm is shown in Fig. 3.11c. As one
can easily notice, the artefacts have been completely eliminated. For comparison, a
Z-stack was captured and the reconstruction is shown in Fig. 3.11d. This was obtained
from 201 images captured at equally spaced intervals over a defocus range of ±3 waves.
The reconstruction was performed using a commercial Z-stacking software (Helicon
focus V5.3). Furthermore, line profiles taken along the dotted lines shown on the
conventional WC recovery, the CKM reconstruction and the Z-stack reconstruction are
shown in Fig. 3.11e. From this, we conclude that the CKM reconstruction obtained
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from two snapshots and which can be obtained from a single one as proven later in
this thesis, is comparable to that given by a Z-stack from 201 snapshots. The line
profiles further prove this point, although the Z-stack does show fewer variations than
the CKM recovery. It is, however, hard to speculate on what the reason for this might
be, because the Z-stack reconstruction algorithm is proprietary.

(a) (b)

(c) (d)

(e)

Fig. 3.11 Artefact removal: stem section and seeds. (a) NA limited, (b) conventional wavefront
coding recovery, (c) CKM recovery, (d) Z-Stack reconstruction and (e) line profiles taken
along the lines of the corresponding colour shown in figures (b) to (d).
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Fig. 3.12 is another example showing artefact removal by CKM. In this case, the
sample is a tilted section of petiole. Unlike the previous sample where a step-change (or
two level) depth profile was induced, in this case, a linear depth gradient was emulated
by tilting the slide, as one can see from the NA limited image shown in Fig. 3.12a.
Fig. 3.12b and Fig. 3.12c show the conventional WC recovery and the CKM recovery
respectively. Again, one can see that the conventional single PSF recovery yields
appreciable post-recovery artefacts which are not present in the CKM recovery. Note
that the presence of wavefront coding artefacts in the image tend to give the impression
that the image has higher contrast. This is likely because they are most prominent
near the edges. In Fig. 3.12b and Fig. 3.12c, the contrast was adjusted such that the
two images have identical contrast. We therefore conclude that the CKM algorithm
is practical on real images and that it does yield the expected improvement in image
quality by eliminating post-recovery artefacts.

(a) (b)

(c)

Fig. 3.12 Artefact removal: tilted petiole. (a) NA limited, (b) conventional wavefront coding
recovery and (c) CKM recovery.

The final objective of this investigation is to explore the possibility of estimating or
measuring the depth of a sample through this technique. This was done by imaging a
systematic scene with well identifiable features. For this reason, a tilted dot-distortion
target was used, as shown in the NA limited image illustrated in Fig. 3.13a. In this case,
it was only possible to measure depth on either the negative or the positive defocus
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range. This is expected because, as previously discussed, the conjugate-masks CKM
does not permit discrimination of the sign of the defocus.

(a) (b)

(c) (d)

(e)

Fig. 3.13 Depth measurement: tilted distortion target. (a) NA limited, (b) conventional
wavefront coding recovery, (c) CKM recovery, (d) processed 3D reconstruction (white regions
were set to zero and depth was averaged over the area of each dot) and (e) slope estimates.

An attempt was made to apply the conjugate-masks CKM on a sample with a depth
spanning both negative and positive defocus and the expected abrupt changes in the
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depth map due to the fluctuations in sign were observed. Another interesting point is
the fact that the error in depth close to the focus was found to be excessively large.
These two points confirm the theoretical deductions presented in Chapter 2. The
conventional single PSF WC recovery and the CKM recovery are shown in Fig. 3.13b
and Fig. 3.13c respectively where artefact removal and the associated improvement in
image quality are again evident.

As previously discussed, CKM relies on image features to infer depth. This implies
that the depth map in regions where the image has no features, such as the areas
of the distortion target where there are no dots and within the dots themselves is
unreliable. To reduce the effect of this, only the depth of the dots was considered.
This was done by averaging the depth map over the area of each dot and taking that
value as its depth. The regions where there are no dots were then set to zero. The
obtained 3D reconstruction using this method is shown in Fig. 3.13d for illustration
purposes. Fig. 3.13e shows the depths of the dots as given by CKM and by a Z-stack for
comparison. In this case, the Z-stack was performed using only a sharpness estimator
(Sobel filter). The generated depth map was then post-processed in the same way as
that generated by CKM. This allows us to compare the accuracy with which depth
can be estimated from the sharpness of an image to that which can be obtained by
measuring the translation of a cubic PSF without weighing in the effect of additional
post-processing. A ground truth slope was then established by taking the ratio of the
mean horizontal and the mean vertical separation between the dots. This was found to
be 1.976 ± 0.002. A reliable measure of the slope can be obtained this way due to the
relatively low NA of the system, which permits substantial tilt to be induced. The slope
of the distortion target from the Z-stack and the CKM measurements was obtained by
least-square fitting a line to the depths of the dots as shown in Fig. 3.13e. These were
found to be 1.95 ± 0.02 and 2.00 ± 0.01 respectively, which are both consistent with the
ground truth. Moreover, given that the error in the estimate of the slope given by CKM
is +1.2%, whereas that given by the Z-stack is −1.3%, we can further claim that in this
case, CKM displays an accuracy comparable to that of a Z-stack. Of course, additional
post-processing might improve the depth accuracy of both techniques. Finally, it should
be noted that such a comparison is scene-dependent, since both techniques rely on the
features and texture of the scene.

3.3 Conclusion

In conclusion, numerical simulations were conducted and it was confirmed that the
biplane method is superior to the conjugate-masks method, which is in agreement with
the theory. The biplane method was therefore adopted for the actual implementation, as
discussed in Chapter 4. Furthermore, through numerical simulation, it was established
that CKM is robust against noise and lack of features and texture in the scene despite
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the fact that in both cases, a significant increase in the RMS error of the depth is
to be expected. A lowering of the quality of the recovered intensity image is also
to be expected in both cases. For low SNR conditions, the quality of the recovered
image is degraded by noise amplification following deconvolution. For scenes lacking
features and texture, besides the noise amplification, the quality of the recovered image
is degraded further by suboptimal recovery, which results in the incomplete removal of
the post-recovery artefacts.

A proof-of-concept experiment was also conducted which confirmed that CKM is
feasible on experimental images in the presence of optical aberrations, mismatch between
the coding strengths of the CPM in the two imaging channels and other practicalities.
Artefact removal has been demonstrated experimentally and the error in the slope
of a tilted dot distortion target was found to be 1.2%, which is comparable to that
given by a Z-stack. This experiment also demonstrates that CKM can be satisfactorily
implemented using experimental PSF, which is an important consideration. Although
the experiment was conducted using the conjugate-masks CKM, it is safe to assume
that the conclusions also apply for the biplane method especially since both numerical
simulations and theoretical considerations suggest that the latter should perform better.
Finally, given that this experiment was performed by acquiring the two required images
of the scene sequentially, single-snapshot operation was not investigated. This, therefore,
is the only major component of this technique which was not tested during this phase
of this work. This was eventually implemented successfully, as discussed in Chapter 4.



Chapter 4

Experimental verification of the
biplane CKM technique

In this chapter, the experimental verification of the biplane CKM method is presented
in the context of microscopy. Results for both extended imaging and point-localisation
performed on synthetic samples are presented. The optical setup is discussed first in
Section 4.1 because this is common to both extended imaging and point localisation.
The calibration procedure used for extended imaging is discussed next, to which an
individual section (Section 4.2) has been dedicated, mainly due to its complexity. The
conducted imaging on extended samples and the obtained results are discussed next
in Section 4.3. The calibration procedure for point localisation, experimental point
localisation and the obtained results are presented in Section 4.4. The performance of
this technique is also compared to that of established point localisation techniques of
comparable complexity in the aforementioned section. Finally, the conclusions extracted
from this experiment and future work are discussed in Section 4.5.

4.1 Optical setup

A representation of the optical setup used in this experiment is shown in Fig. 4.1
for widefield fluorescence imaging. For the case of brightfield imaging in reflection,
the dichroic was replaced by a 50:50 beam splitter and a 532nm (25nm FWHM)
filter, was then placed in the path of the epifluorescence illumination in order to
achromatise the illumination. Normal Köhler illumination filtered at 532nm using the
aforementioned filter was used to perform brightfield imaging in transmission. The
setup was built around a commercial inverted microscope (Nikon Eclipse Ti-E) using a
modified 40×, 0.75NA objective (Nikon Plan Apochromat) with a DOF of 1.1µm. The
modifications made to the objective were necessary in order to fit the CPM inside it and
this was accomplished by means of several 3D printed parts. The dismantled objective
together with the CPM and its mount are shown in Fig. 4.2 where the objective was
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Fig. 4.1 Epifluorescence optical setup. CPM: cubic phase mask, S: specimen, OB: objective
(40×, 0.75NA), DI: dichoric, M: mirror, EX: excitation (480nm), FL: fluorescence (532nm),
TL: tube lens, LBS: lateral beam splitter, SL: glass slab, D: detector, δω: defocus offset,
I+: image with positive defocus offset, I−: image with negative defocus offset

Fig. 4.2 Mounting the CPM inside an objective. (A): back aperture; (B): first optical element;
(C): spacer; (D): second optical element; (E): CPM and 3D printed mounts; (F): third
optical element; (G): barrel and front lens of the objective; and (H): tool used to open the
objective.

dismantled by unscrewing the back aperture of the objective and pulling out the optical
elements and other components from the back in succession. With reference to Fig. 4.2,
to assemble the objective, the CPM is enclosed in the 3D printed mounts (E) and then
this is placed inside the hollow space in (F). The whole assembly is then placed inside
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the barrel of the objective (G). Finally, elements (A) to (D) are stacked in reverse
order inside the barrel as well and the back aperture is screwed tight in place using an
appropriate tool (H).

As a side-effect of these modifications, the objective was stopped down to roughly
70% of its original effective aperture diameter. Although an accurate measurement of
this is quite difficult to make (especially with the CPM in place) without considerable
knowledge of the optics of the objective itself, an estimate was obtained by measuring
the shift of the cubic PSF with depth. This reduction in effective aperture diameter
resulted in a numerical aperture of roughly 0.5 and hence a DOF of ∼ 2.4µm as per
the definition of DOF given by Eq. 4.1 where λo is the wavelength of the illumination,
NA is the numerical aperture of the objective under the assumption that the numerical
aperture of the condenser is equal to or greater than that of the objective, n is the
refractive index (1.0 in this case), M is the lateral magnification and finally, e is the
pixel pitch.

DOF = λo × n

NA2 + n× e

M × NA (4.1)

On the other hand, the position of the CPM within the objective is of critical
importance. In the ideal case, it should be placed exactly in the aperture stop in order
to ensure uniform coding of all fields. Any deviation from this condition will result in
field dependence - i.e. the PSF will vary across the FOV. Placing the mask exactly in
the aperture stop is, however, difficult to achieve in practice. This is because, owing
to their commercial sensitivity, the design details of a commercial objective are not
available to the general public. As a result, the exact position of the aperture stop
is unknown and can only be roughly estimated. Furthermore, not every plane within
the objective is accessible due to the physical construction of the objective itself. In
this experiment, given that the number of accessible plane between the internal optical
elements of the objective was small, an exhaustive approach was taken. In other words,
the mask was placed at each accessible planes within the objective and the amount
of field variation assessed by sampling the PSF across the FOV. The mask was then
placed at the plane where field dependence was minimum. Despite this, some remnant
field dependence was observed and this was mitigated through calibration, as discussed
in the following section.
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Fig. 4.3 Components of the optical setup: (a) layout of the mask substrate, (b) design of the
lateral beam splitter, (c) 3D printed housing and assembly of the slabs and the lateral beam
splitter, (d) slabs and lateral beam splitter mounted on the camera showing the aperture
(half of the detector), and (e) slabs and lateral beam splitter mounted on the camera on the
microscope port.

The CPM used in this experiment was custom-designed for a wavelength of 532nm
and manufactured by PowerPhotonic Ltd. on a 1mm thick fused silica substrate
(refractive index of 1.46071 at 532nm) using a process with a sag resolution of 1nm and
a pixel size of 10µm× 10µm. Fig. 4.3a shows a diagram of the design for illustration
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purposes. As shown, four CPMs with α of 3.0, 5.3, 7.7 and 10.0 waves respectively
were fitted onto the available substrate area. The substrate was then diced into four
quadrants, thus giving four separate CPMs with different α values. Following some
experimentation with different masks, it was decided to use the one with the smallest
α value of 3 waves in order to maximise the magnitude of the shift, as discussed in
Section 2.1.

(a)

(b)

Fig. 4.4 Experimental (a) PSF (scale bar: 10µm), and (b) MTF. In each case, the dimensions
are referred to the object side.

As discussed earlier, CKM necessitates two acquisitions (I+ and I−) of the scene
which for a "true" single-snapshot implementation have to be acquired simultaneously.
There are several ways of performing this, for instance, by using two cameras and a
beam splitter. In this experiment, however, a single camera (Andor Zyla 5 MP, 6.5µm
pixel pitch) was used in order to make the setup more compact. The sensor area was
then split in two using a lateral beam splitter custom designed to match the sensor size,
as shown in Fig. 4.3b. A difference in defocus, 2δω, of 11.2mm was then generated by
means of additional custom-cut BK7 glass slabs as shown in Fig. 4.3c and Fig. 4.3e. As
one would expect, the addition of glass slabs introduce spherical and other aberrations;
however, owing to the fact that the beam on the image side of a microscope is slow
(i.e. high f# since the tube lens has a long focal length (200mm for Nikon microscopes)),
this was not found to be a major problem. Lastly, the PSF and MTF are shown in
Fig. 4.4a and Fig. 4.4b respectively. These were acquired by imaging 0.39µm fluorescent
beads affixed to a coverslip close to the in-focus position.
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4.2 Calibration for extended imaging

As discussed in Section 2.3, in order to infer depth, CKM relies on the measurement
of depth-induced disparity between two shifted, but otherwise identical, images of the
sample (I+ and I−). Moreover, this disparity is measured by matching the intensities
in either image over a neighbourhood of pixels. This implies that any difference in
the distortion between the two images, and any relative shift between them which
is not depth-induced, has a direct impact on the measured depth. Given that the
achievable responsivity (translation in the lateral dimensions on the image side [µm]
per change in axial position around the focal point on the object side [µm]) is often
small, the error in depth introduced by these factors can be significant. It therefore is of
the utmost importance to have excellent correspondence between the two acquisitions.
This constitutes one of the two objectives of the calibration procedure described here.
The other objective is the characterisation of the system over the extended DOF of
interest; or, in other words, the acquisition of the set of PSFs necessary to implement
the algorithm described in Section 2.6.

In practice, achieving a good enough correspondence between the two images,
or equivalently, the two halves of the detector (a process which will henceforth be
referred to as field calibration), revealed to be challenging mainly due to the complex
distortion which resulted. The problem is further compounded by the fact that this
distortion was found to be dependent on the axial position (i.e. depth). The probable
source of this distortion is the modifications applied to the objective coupled with
the fact that the CPM was not placed exactly in the aperture stop as was previously
mentioned. Furthermore, in extended DOF imaging, the objective is operated at a
significant distance away from the intended focal point. This reduces the efficacy of its
aberration correction, thus giving rise to additional aberrations which would normally
be suppressed [93]. Finally, as is often the case for an inverted microscope, the Nikon
Eclipse Ti-E microscope used in this experiment focuses by displacing the objective
rather than the sample. Given that a CPM was fitted inside the objective, the beam
in the infinity space of the microscope is no longer collimated. This can potentially
enhance the dependence of the distortion on the axial position. More importantly,
this might also have repercussions on the performance of the calibration itself, since
this constitutes a key difference between the calibration procedure and the actual
measurement procedure. Further enquiry into the matter is, however, necessary in order
to make definitive claims.

The calibration procedure adopted in this experiment is based on the 2D calibration
method presented in [94] using fluorescent beads and the similar procedure followed
in [95] where a sub-resolution pinhole array was used instead. In this case, a flat (single
depth) synthetic scene consisting of ∼ 600 sub-resolution fluorescent beads (0.39µm
diameter) scattered across the FOV was used, where the beads act as fiducial markers.
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(a) (b)

Fig. 4.5 (a) captured image of sub-resolution (0.39µm diameter) beads, and (b) recovered
(deconvolved) image of the same beads.

A through-focus series over a depth range of ±10µm was then acquired at steps of
0.1µm. The image of one of the sub-resolution beads in each of the two acquisitions
(I+ and I−) at each depth step, which constitutes the PSF with which that image
is convolved, was then isolated, centred and thresholded to remove the offset, and
finally used to deconvolve its respective image. In the absence of any distortion and
field dependence, the two recovered images should be identical -i.e. no relative shift
between them should exist. This is because each of the two acquisitions has been
deconvolved with a PSF measured at the same depth as that of the beads in it. Any
remnant disparity (or misregistration) between the two recovered images can therefore
be attributed to distortion and other non-depth-induced displacements, thus it must be
compensated for.

To this end, corresponding beads in the two images acquired at each depth step were
identified and localised with subpixel accuracy. A piecewise linear (affine) transform [96,
97] was then extracted from the location of the fiducial markers in such a manner as
to map the position of the fiducial markers in one of the recovered images to those of
the corresponding ones in the other. Localisation of the beads was performed on the
recovered images because deconvolution converts the triangular cubic PSFs to Gaussian-
shaped points (see Fig. 4.5) and the latter are more apt for accurate localisation. The
position of the beads was thus found by least-square fitting a 2D Gaussian function to
each recovered PSF. Since this amounts to over 240, 000 (∼ 600 beads ×2 images ×200
axial positions) fits for the calibration alone, it was found to be rather computationally
intensive and could not be performed in a realistic time frame using a high-level language
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such as Matlab. Consequently, the necessary code was developed in C and subsequently
interfaced to other code written in Matlab.
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Fig. 4.6 Mapping field of view between the two captured images I− and I+ (not all possible
sections are shown).

In theory, the only distortion which should result is simple projective distortion
and a change in magnification (scaling); however, as mentioned previously, complex
field-dependent distortion was observed. As a result, simple global (i.e. applicable to
the entire FOV/image) geometric transforms, such as affine and projective transforms,
were found to be inadequate. On the other hand, a piecewise linear transform segments
the FOV into small triangular sections with vertices at three neighbouring fiducial
markers, as shown in Fig. 4.6. An affine transform is then calculated in such a manner
as to map each triangular section in one of the images to its corresponding one in the
other image. The division of the FOV here is key because over a small section of the
FOV, the field dependence is small enough for a simple geometric transform such as
affine to hold. This permits adequate mapping between the two images to be achieved
without rigorous modelling of the distortion. The same issue was observed in [94, 95]
and was solved by means of a local weighted mean transform [98] which, similar to the
piecewise linear transform used in this experiment, acts on portions of the FOV rather
than globally. A piecewise linear transform was preferred because it can be calculated
and applied faster than the local weighted mean and because it was found to yield
almost identical (in some cases even better) results, while requiring less trimming at
the edges of the image. The mean residual error calculated by applying the calibration
to the images from which it was calculated and then re-localising the beads was 3.2nm
which corresponds to an error in depth of ∼ 0.34nm.

Sample preparation is of critical importance to the success of the calibration pro-
cedure described above. Beads suspended in a fluid will experience Brownian motion
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and drift, which can result in appreciable error. Furthermore, even if a liquid viscous
enough to reduce these effects to negligible levels had to be used, the sample is still
likely to contain beads at different depths, rendering the calibration impossible. This
problem was solved by producing a single layer of beads immobilised on a coverslip. In
order to do this, 5µl of beads solution (1% solids, 0.1% Tween 20 and deionised water)
was diluted in 70µl of isopropyl. The mixture was then shaken for a few minutes to
ensure homogeneity and a drop was then placed on a 24 × 60mm, #1 1/2 coverslip.
This was then re-flown until the liquid evaporated, leaving only the beads dispersed
on the coverslip. Isopropyl was used because it is volatile and to prevent the Tween
20 from crystallising; thus, ensuring a homogeneous refractive index throughout the
sample. Finally, a region of the sample with little aggregation was identified and imaged.
Obviously, the flatness of the sample, which is critical to the calibration procedure just
described, is directly affected by any tilt in the placement of the sample and/or any
bending of the coverslip. A way to circumvent this problem is to image only a small
region of the sample over which it can be assumed to be flat, despite any tilts which
might be present. This region would then have to be scanned in order to calibrate the
entire FOV. In this experiment, this could not be done, however, for higher numerical
apertures, following this procedure is advisable [99].

As mentioned earlier, the second objective of the calibration procedure is the
acquisition of the set of PSFs (PSF+ and PSF−) necessary to run the CKM algorithm
(i.e. system characterisation). Since the PSF depends on the imaging modality whereas
field calibration does not, several attempts were made to acquire these PSFs separately
from the field calibration data. These were, however, unsuccessful because it is difficult
to match with precision the PSFs to their corresponding field calibration data unless
they were acquired simultaneously on the same sample. The choice of bead diameter
was made with this in mind. As stated previously, the diameter of the beads was
chosen to be smaller than the resolution limit (636nm). This enables the acquisition of
PSFs concurrently with field calibration data. The problem of matching PSFs to field
calibration data is therefore eliminated. A relatively isolated bead was thus identified
and its two images were taken as the PSFs at that particular depth. Before the PSFs
were used to deconvolve images, they were centred in exactly the same manner as in
the field calibration, the offset was removed by subtracting a dark frame and the total
intensity was then normalised to unity. These are essentially the same PSFs used to
deconvolve the field calibration data prior to the localisation of the beads. The downside
of this approach is that it is only applicable to fluorescence imaging because beads in
brightfield do not yield PSFs of a sufficiently high quality. This is not an issue for field
calibration, however, due to spectral differences between brightfield and fluorescence,
it is for the system characterisation, since the PSFs acquired during this phase of the
calibration will be used for deconvolution. In this work, PSFs acquired in fluorescence
were used to deconvolve both fluorescence and brightfield images and were found to
yield recoveries of satisfactory quality; however, this leaves scope for improvement.
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(a) (b)

(c) (d)

(e)

Fig. 4.7 (a) magnitude of the individual shift of the PSF with positive defocus offset (PSF+)
and the PSF with negative defocus offset (PSF−), (b) direction of the shifts represented
by the angle subtended between the shift vectors and the horizontal axis of the image, (c)
magnitude of the disparity (i.e. difference between the individual shifts), (d) direction of the
disparity represented by the angle subtended between the disparity vector and the horizontal
axis of the image, and (e) the disparity (magnitude and approximate direction).

The individual shifts of the PSF with positive defocus offset (PSF+) and the PSF
with negative defocus offset (PSF−) were measured by correlating the PSFs with a
reference PSF in each case. These are shown in Fig. 4.7a and, as expected, the shift is
approximately a quadratic function of defocus expressed as peak aberration at the edge
of the pupil (i.e. Seidel’s defocus coefficient W20). To convert between longitudinal
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defocus, δz, and W20, an NA of 0.5 was taken. Moreover, to do this, knowledge of the
in-focus position is also required; however, this cannot be inferred from the morphology
of the PSF, since the cubic PSF does not respond to defocus - unlike a Gaussian
PSF. To find the in-focus position, therefore, the longitudinal defocus was assumed
to be proportional to W20; hence, under this assumption, the relationship between
longitudinal defocus and the shift is also quadratic. It is important to note that this
assumption only holds close to the focus (i.e. |δz| ≪ f with f being the focal length)
as the following equation shows:

W20 ≈ δzr2

2f(f + δz)λ ≈ δzr2

2f 2λ
Waves (4.2)

where r is the radius of the aperture and λ is the wavelength. In this experiment,
the total extended DOF is several orders of magnitude smaller than f , therefore, this
approximation holds. A reference PSF was thus chosen arbitrarily close to the apparent
focus. All the PSFs were then correlated with it and the shifts with respect to it thus
measured. The positions at the turning points were then estimated by fitting a quadratic
polynomial to the measured shifts against longitudinal defocus plots. The positions at
the turning points represent the in-focus position of the two imaging channels. We can
therefore write:

TP+ ≈ Zo + δzo

TP− ≈ Zo − δzo
(4.3)

where TP+ and TP− are the axial positions at the turning points, Zo is the nominal
focus position and δzo is the longitudinal defocus offset introduced by the lateral
beam splitter and slabs combination referred to the object side. From Eqs. 4.3, the
nominal focus position, Zo, can then be estimated by taking the mean of TP+ and TP−,
thus longitudinal defocus can be converted to W20. Note also that the defocus offset
introduced by the beam splitter and slabs is given by:

δω ≈ δzor
2

2f(f + δzo)λ
(4.4)

which was found to be 1.26 Waves. Finally, given that this translation (or shift) is
a vector quantity, the direction is also of relevance and this is shown in Fig. 4.7b as
the angle subtended between the sift vectors and the horizontal axis. As one can
observe from this figure, the translation occurs in approximately the same direction
and therefore the angle does not change much, except close to the focus. This anomaly
is caused by the presence of aberrations in the system, in particular astigmatism, as
discussed in Subsection 2.4.2.

The disparity between them (i.e. resultant shift, or equivalently, the difference
between the shift of PSF− and PSF+) is shown in Fig. 4.7c. As expected, the magnitude
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of the disparity displays an approximately linear relationship with the defocus, albeit
some deviation from this is evident. This can be attributed to aberrations present in
the system to which it is particularly susceptible given the modest coding strength
(α) of 3 Waves used in this experiment. The slope of the disparity which corresponds
to the responsivity was found to be 2.90 pixels/Wave or equivalently 18.85µm/Wave.
Close to the in-focus position, 1 Wave ∼ 2.03µm, therefore, the responsivity can also
be expressed as: 9.30µm/µm, or equivalently, 1.43 Pixels/µm. The direction of the
disparity vector is shown in Fig. 4.7d, from which one can see that the disparity switches
direction with defocus. This is what permits inference of the sign of the defocus as
discussed in Subsection 2.4.3, and hence, the utilisation of the full extended DOF
provided by the CPM. All fitted curves in Fig. 4.7b to Fig. 4.7e were obtained by fitting
quadratic polynomials to the individual shifts of the PSFs as shown in Fig. 4.7a and are
intended to give an idea of the ideal (i.e. aberration-free) response. Fig. 4.7e depicts
the magnitude of the disparity and its direction under the assumption that for negative
defocus, the disparity is negative and vice versa. This is intended to illustrate the
predicted approximately linear relationship between the disparity and the defocus, as
derived in Subsection 2.4.3.

To recapitulate, following the calibration procedure just described, for each 0.1µm
step within the depth range of interest (±10µm): (1) field calibration data which is
used to compensate for any kind of distortion which might be present at that particular
depth, and (2) two PSFs (PSF− and PSF+) were acquired. For a generic sample,
therefore, two images, I− and I+, are acquired simultaneously once. These two images
are then deconvolved by their respective PSF (I− by PSF− and I+ by PSF+) acquired
at some depth within the depth range of interest. Following deconvolution, the field
calibration at that depth is applied in order to compensate for any stray shifts caused
by any distortion present. A metric proportional to the disparity is then evaluated
for that particular depth. This is then repeated for each depth step and the metric
minimised over the entire depth range of interest. The depth which minimises the
metric at a particular (x, y) location in the sample is equal to the depth of the sample
at that location. This is essentially the algorithm discussed in Subsection 2.7.1.

4.3 Extended imaging

Using the optical setup and the calibration procedure discussed earlier, several extended
samples intended to demonstrate the various facets of this technique and to gauge its
performance in matter of image quality/artefact removal and depth measurement were
imaged. On a generic sample with complex geometry, it can be difficult and quite
laborious to obtain a suitable ground truth. For this reason, a tilted chrome-on-glass
distortion target consisting of dots with a 5µm diameter and 10µm centre-to-centre
separation, was imaged (in transmission) in order to assess the performance of CKM in
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inferring depth. The purpose of the tilt is to induce a range of depths in the sample.
The diffraction limited image (i.e. image taken with a clear aperture) of the sample
is shown in Fig. 4.8a. This was acquired using a non-modified 0.75NA, 40× objective.
The single PSF (conventional) WC recovery is shown in Fig. 4.8b and Fig. 4.8c for each
of the two acquired images. As one can see from these images, single PSF recovery
results in noticeable artefacts besides the noise amplification inherent to WC.

For comparison, a Z-Stack of the sample was also taken. The Z-Stack reconstruction
is shown in Fig. 4.9a, a colourmap of the depth as given by the Z-Stack is shown in
Fig. 4.9b, and finally, the 3D topographic reconstruction is shown in Fig. 4.9c. The
equivalent images obtained by CKM are shown in Fig. 4.9d, Fig. 4.9e and Fig. 4.9f
respectively. In each case, the raw depth map was average over the area of each dot and
the mean depth was taken to be the depth of the dot. This was necessary because both
the Z-Stack and CKM display artefacts in their depth maps. The SNR in the images
shown in Fig. 4.8 and Fig. 4.9 was 60dB by the definition of SNR given by Eq. 4.5
below:

SNR = 20 × log10

(
Image mean − Offset

Noise standard deviation

)
(4.5)

Comparing Fig. 4.9a to Fig. 4.9d, one can see that the CKM reconstruction displays
a lower SNR than its Z-Stack counterpart. Apart from that, the two images are of
comparable quality. On the other hand, comparing the CKM recovery to that given by
conventional wavefront (Fig. 4.8b and/or Fig. 4.8c), the improvement in image quality
due to the suppression of artefacts is apparent. The correlation between the depth
profile given by CKM and that given by the Z-Stack is conspicuous; however, this merits
further consideration.
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(a)

(b) (c)

Fig. 4.8 Tilted distortion target: (a) Diffraction limited (0.75NA, 40×), (b) Single PSF
recovery from I−, and (c) Single PSF recovery from I+.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4.9 Tilted distortion target: (a) Z-Stack reconstruction, (b) Z-Stack depth profile, (c)
Z-Stack 3D reconstruction, (d) CKM reconstruction, (e) CKM depth profile, and (f) CKM 3D
reconstruction. Z-Stack step size: 0.1µm.
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Fig. 4.10 Error analysis on extended scenes: (a) measured dot depths (red markers) and fitted
plane (image of distortion target), and (b) comparison between CKM and Z-Stack.

To calculate the error in the depth as inferred by CKM, a ground truth needs
to be established. The obvious way of doing this is to take the depth given by the
Z-Stack as the ground truth. This, however, is not ideal because the Z-Stack, like
CKM, relies on the features in the image to infer depth and hence is susceptible to
depth artefacts [100–102] which for individual dots might still be significant. In this
case, the depth profile of the distortion target is known to be a plane. Consequently, a
plane was fitted using a least-square fit to the depths of the dots given by CKM, as
shown in Fig. 4.10a. Any deviation from this plane was then assumed to be random
(i.e. "uncalibratable") error caused by noise and other factors which were not accounted
for. A plane was fitted in the same way to the depths of the dots as given by the Z-Stack
and a comparison between the slopes caused by the tilt was made. The experiment was
repeated for different SNRs and the results are tabulated in Tbl. 4.1.

SNR (dB) Error (µm) Difference in slope
w.r.t. Z-Stack (%)

60 ±0.15 -4.61
50 ±0.19 -4.89
40 ±0.20 -3.55
30 ±0.25 -4.95

Table 4.1 Error in depth of the biplane CKM for extended samples with respect to SNR

From Tbl. 4.1, one can notice that the error in depth is inversely proportional to
the SNR, which is as expected. Moreover, one can see that there is a ∼5.0% difference
in slope between the CKM estimate and that obtained from the Z-Stack. In this
case, it cannot be established whether this difference is an underestimate by CKM, an
overestimate by the Z-Stack or a combination of both; however, given that it varies
only slightly with SNR, one concludes that it is probably a systemic error. In principle,
therefore, this error can be eliminated by calibration. A potential cause of this error lies
in the fact that the calibration was performed using an epifluorescence setup, whereas
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the imaging in this case was performed in transmission. This implies that there are
spectral differences between the calibration and the actual imaging, which is known
to effect the responsivity, and hence, the measured depth. Further investigation is,
however, necessary in order to definitively identify the cause.

An important consideration is the effect which the NSR ("K factor") in the Wiener
filter used to recover the captured (coded) images has on the depth map given by
CKM. In WC, the NSR is commonly assumed to be independent of frequency [103]
although sometimes, a power law distribution [104] is used instead. In this experiment,
no substantial difference in the quality of the recovered images given by either method
was observed; therefore, a constant NSR was used for simplicity. Furthermore, the NSR
dependence on the scene itself amongst other things. Consequently, without making
assumptions on the scene, it is impossible to know the NSR a priori. This is usually
dealt with by manually tweaking this parameter in order to optimise the recovered
image.

On the other hand, whereas the frequency dependence of the NSR can be adequately
addressed as explained above, the dependence of the NSR on defocus (or depth) is
rarely considered in WC. This is because in conventional WC, the coding strength, α, of
the CPM can be freely chosen to match the required depth range. As a result, over the
depth range of interest, variations in the MTF with depth can be reduced to negligible
levels. A single NSR value can therefore be used to recover an image irrespective of the
defocus in the scene. On the contrary, in CKM, the choice of α (or δω in case of the
biplane CKM) is restricted by shift considerations. Because of this, the depth range is
often at the limit of what the CPM can handle without significant loss of frequencies.
This implies that over the depth range of interest, variations in the MTF with depth
can be significant (especially at higher frequencies), and thus, a single value of NSR
might not be suitable. In fact, using a single NSR value over the entire depth range
was found to give a difference of ∼20% between the slope of the distortion target as
given by CKM and that given by the Z-Stack for the 60dB case. To circumvent this
problem, an empirically-determined profile of NSR values was used as given by Eq. 4.6.

NSR = C ·
{(

1.25 × 10−4)Z4 −
(
2.51 × 10−5)Z3 + ...

...+
(
1.88 × 10−6)Z2 −

(
6.28 × 10−8)Z + 1

}
(4.6)

where Z is depth in µm and C is a constant chosen to optimise the recovered image,
as previously discussed. The choice of a quartic polynomial was made based on the
reasoning that the NSR close to the focus position should change slowly, whereas it
should increase rapidly at the extremities of the depth range. This is because close to
the focus position, the MTF is still resistant to defocus, and hence, is suppressed only
slightly. Conversely, the MTF at larger defocus is suppressed significantly and rapidly.
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A quartic was found to adequately emulate this behaviour. The values of C used are
tabulated in Tbl. 4.2.

SNR (dB) C

60 4.5 × 10−4

50 6.0 × 10−4

40 9.0 × 10−4

30 22.0 × 10−4

Table 4.2 NSR parameter values used in the image recovery for different SNR values

To further illustrate this technique, several other natural -i.e. non-synthetic- samples
were imaged in different imaging modalities (fluorescence and reflection). In each case,
a Z-Stack of the sample was taken for comparison. In addition, the diffraction limited
(non-coded aperture) and the conventional WC images are illustrated as tabulated in
Tbl. 4.3. The diffraction limited images were acquired using an unmodified 40×, 0.75NA
objective. The raw depth maps given by CKM were smoothed using a simple Gaussian
filter or a guided filter [105] in order to reduce noise-induced artefacts in the depth
map. These filters give very similar results, with the guided filter showing a slightly
better performance when sharp transitions in the depth map coincide with transitions
in the intensity image. Care, however, needs to be exercised in choosing the guided
filter parameters because excessive filtering will give rise to erroneous edges in the depth
map.

The Z-Stack reconstructions were performed using NIS-Elements version 4.10 by
Nikon. In this case, owing to the complex geometry of the samples, the procedure used
to find the error in depth described above for the distortion target could not be applied.
As a result, the standard deviation of the difference between the depth maps given by
CKM and the Z-Stack was taken as a figure of merit (referred to as "error" hereafter)
for the correlation between the two techniques. As stated before, however, both CKM
and the Z-Stack produce artefacts in their depth maps; therefore, one cannot attribute
the error solely to CKM. Another source of error lies in the fact that the Z-Stack and
CKM were performed using two different objectives. Although care has been taken to
use similar objectives for both, the effects of the modifications applied to the objective
used for CKM are not easily matched. Consequently, some differences in translation,
viewing angle and distortion in general will inevitably result. To mitigate these effects,
an intensity-based affine transform was applied to the Z-Stack images and depth maps
in such a manner as to register them to their CKM counterparts. This registration,
however, is not perfect, mainly due to differences between the CKM and the Z-Stack
reconstructions. As a result, the error is augmented artificially.

Finally, an important consideration which has a profound impact on the performance
of CKM is the amount of texture and/or features present in the sample itself. As
discussed earlier, much like a Z-Stack, CKM can only infer depth in areas of the sample
where features and/or texture are present because these permit the local registration
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Sample Imaging
modality Results Error (µm)

Groove on a 2 Euro coin Reflection Fig. 4.11
\4.12 ±0.59

Silicon die Reflection Fig. 4.13
\4.14 ±0.84

Lily pollen grains Fluorescence Fig. 4.15
\4.16 ±1.22

Schwann (neurilemma)
cells on a tilted slide Fluorescence Fig. 4.17

\4.18 ±3.17

Atomic force microscope
cantilevers Reflection Fig. 4.19

\4.20 n/a

Table 4.3 Summary of the imaged extended samples.

of the image to be performed, and therefore, the shifts induced by the CPM to be
measured. In featureless and textureless regions, no depth information can be obtained.
This is demonstrated by the cantilever sample which has been included for this purpose.
Owing to the fact that this sample is entirely featureless, depth could only be inferred
at the edges, and as expected, the CKM reconstruction (Fig. 4.20c) is inferior to that
obtained for other samples. At the other extreme, the coin sample has a substantial
amount of texture throughout, therefore, a good depth map was obtained over the
whole sample (or FOV). In fact, most of the error occurs close to the edge due to the
a large transition in depth in a small region of space. The pollen grains sample has
enough features to infer depth in the region of the image occupied by the grains. The
rest of the FOV is background so it was masked. In this case, most of the error occurs at
the interface between the grain and the background. The Z-Stack also predicts changes
in depth as large as 5µm on the surface of the grain, which is probably artefactual.
The Schwann cells sample is similar to the pollen sample; therefore, most of the error
was found to occur at the interface between the cells and the background. In this case,
however, such interfaces are much more numerous, therefore, their contribution to the
error figure is substantially larger than in the pollen grains case. For the silicon die,
CKM was found to struggle in the green region of the sample, mainly due to the lack
of features there. In contrast, owing to the granularity of the copper deposits, a good
depth estimate was obtained on the copper tracks. The error quoted in Tbl. 4.3 for
this sample was evaluated on the copper tracks only. On the entire sample, the error
increases to ±1.54µm. The Z-Stack in this case was found to perform well on the entire
sample. In each case, the removal of post-recovery artefacts can be appreciated by
comparing the CKM reconstruction with the conventional WC images.
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(a)

(b) (c)

Fig. 4.11 e0.02 coin (Greek): (a) diffraction limited (0.75NA, 40×), (b) single PSF recovery
from I−, and (c) single PSF recovery from I+.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4.12 e0.02 coin (Greek): (a) Z-Stack reconstruction, (b) Z-Stack depth profile, (c) Z-
Stack 3D reconstruction, (d) CKM reconstruction, (e) CKM depth profile, and (f) CKM 3D
reconstruction. Z-Stack step size: 0.1µm.
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(a)

(b) (c)

Fig. 4.13 Tracks on a silicon die: (a) diffraction limited (0.75NA, 40×), (b) single PSF recovery
from I−, and (c) single PSF recovery from I+.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4.14 Tracks on a silicon die: (a) Z-Stack reconstruction, (b) Z-Stack depth profile, (c)
Z-Stack 3D reconstruction, (d) CKM reconstruction, (e) CKM depth profile, and (f) CKM 3D
reconstruction. Z-Stack step size: 0.1µm.
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(a)

(b) (c)

Fig. 4.15 Lily pollen grains: (a) diffraction limited (0.75NA, 40×), (b) single PSF recovery
from I−, and (c) single PSF recovery from I+.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4.16 Lilly pollen grains: (a) Z-Stack reconstruction, (b) Z-Stack depth profile, (c) Z-
Stack 3D reconstruction, (d) CKM reconstruction, (e) CKM depth profile, and (f) CKM 3D
reconstruction. Z-Stack step size: 0.1µm.
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(a)

(b) (c)

Fig. 4.17 Schwann (neurilemma) cells on a tilted slide: (a) diffraction limited (0.75NA, 40×),
(b) single PSF recovery from I−, and (c) single PSF recovery from I+.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4.18 Schwann (neurilemma) cells on a tilted slide: (a) Z-Stack reconstruction, (b) Z-Stack
depth profile, (c) Z-Stack 3D reconstruction, (d) CKM reconstruction, (e) CKM depth profile,
and (f) CKM 3D reconstruction. Z-Stack step size: 0.1µm.
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(a)

(b) (c)

Fig. 4.19 Atomic force microscope cantilevers: (a) diffraction limited (0.75NA, 40×), (b) single
PSF recovery from I−, and (c) single PSF recovery from I+.

(a)

(b)

(c)

(d)

Fig. 4.20 Atomic force microscope cantilevers: (a) Z-Stack reconstruction, (b) Z-Stack depth
profile, (c) CKM reconstruction, and (d) CKM depth profile. Z-Stack step size: 0.3µm.

4.4 Point localisation

Owing to the large extension in DOF this technique can provide and its simplicity, there
is scope to consider it for applications which rely on point or particle localisation. These
include µPIV [106, 107] and localisation microscopy, which is used for super-resolution
imaging and single molecule (or particle) tracking, amongst various others. The experi-
ment reported in the section was intended as an initial evaluation of the suitability of
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this technique for the mentioned applications. For this purpose, the available experi-
mental setup originally designed for extended imaging was used despite the fact that
the numerical aperture is atypically small for, for instance, super-resolution applications.
Realistically scaling the results (localisation precision) to a higher numerical aperture
is challenging; however, estimates can be obtained by combing measurements with
numerical simulations. This approach was deemed appropriate given the scope of the
experiment, and thus, it has been adopted in this evaluation.

In order to accomplish this goal, a sample consisting of a single layer (i.e. single
depth) of 0.39µm (diameter) fluorescent beads at a density of 0.009 microspheres/µm2

was prepared. The density was kept very low in order to ensure sparseness and to avoid
the additional complications associated with dense labelling [83, 108]. The samples
were prepared using the procedure described in Section 4.2. These were then imaged in
widefield fluorescence using the epifluorescence setup shown in Fig. 4.1, where the beads
act as point emitters. By placing the sample at different axial positions and localising
the beads in the FOV, the localisation precision in 3D and the accuracy of the depth
measurements was determined as a function of depth. This allows us to compare the
performance of this technique to that of others found in the literature; thus, fulfilling
the objective of this experiment.

The average number of detected photons per emitter, Nd, was set by adjusting the
integration time of the camera and was estimated from the intensity according to the
following equation:

Nd = S

n
×
∑
pixels

[(Ii − Id)] (4.7)

where S is the sensitivity (1.97 e−/ADU) of the camera, Ii denotes the captured intensity
image (see Fig. 4.21a), Id is the image offset and n is the total number of emitters in
the frame (∼ 300). The image offset was estimated by averaging 20 dark frames taken
with an empty clean coverslip in place of the sample. This was then subtracted from
the image of the beads and the resultant was then thresholded to remove negative pixel
values. The image was then summed, divided by the number of emitters and finally
multiplied by the sensitivity, thus giving the average number of detected photons per
emitter.

Localisation was performed using the algorithm described in Section 2.7. As
previously noted, owing to prior knowledge about the shape of the PSF and to the
sparseness of the sample, the full CKM technique is not required for point localisation
applications. In this case, two images of the sample, I+ and I−, were again captured
simultaneously, however, instead of deconvolving each with its respective set of 200
PSFs as per the CKM recovery algorithm, each image was deconvolved only once with
its in-focus PSF, irrespective of the depth of the beads in the sample. This results in two
recovered images, Ir− and Ir+. A piecewise affine transform obtained by imaging fiducial
markers (beads) as described in Section 4.2 was then applied to the recovered images
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(a)

(b)

Fig. 4.21 Point emitter (fluorescent beads) localisation: (a) raw image of 0.39µm fluorescent
beads (contrast adjusted), and (b) 3D plot of 3 layers of beads at 3 different depths.

in order to compensate for misregistrations and distortion (magnification in particular)
at that particular depth. It is important to note that this does not compensate for
misregistrations and depth-dependent non-linearity; however, these were taken into
account in a subsequent calibration step. Each emitter in the two recovered images was
then localised by least-square fitting a 2D non-isotropic (elliptical) Gaussian function
where the well known Levenberg–Marquardt algorithm was used to perform the non-
linear fit, as explained in Subsection 2.6.2. This yields the lateral coordinates of each
emitter in each of the two recovered images. The disparity was then calculated by
taking the magnitude of the vector connecting the image of the emitter in Ir− to its
image in Ir+.
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Fig. 4.22 Disparity averaged over the FOV against reference axial position.

In order to relate the measured disparity to the axial position, a second calibration
step is necessary (see Subsection 2.7.2). To do this, the integration time was set to
maximise the SNR and the beads were then imaged over a depth range of ∼ 30µm in
steps of 0.1µm. The beads were then localised as described above and a calibration
curve (sometimes referred to in the literature as "look-up table" or "dictionary", which
is also the term adopted in Subsection 2.7.2) relating the measured disparity to the set
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axial position was constructed, as shown in Fig. 4.22. The measured disparity shown
plotted in Fig. 4.22 is the average disparity of all beads across the FOV. The disparity
follows a weak quadratic (i.e. a quadratic with the quadratic term being small compared
to the linear term), therefore, a quadratic polynomial was fitted to the mean disparity
and this was then used to relate disparity to axial position as desired. As a final note,
it should be said that averaging the disparity over the entire FOV is not ideal if the
FOV is large, because this does not take into consideration any FOV dependence. To
mitigate this, rather than averaging the disparity over the entire FOV, the FOV can be
divided into a number of smaller sections and a calibration curve constructed for each
section individually.
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Fig. 4.23 Histograms plots of localisation errors close to the focus position: (a) histogram of
errors in X position, (b) histogram of errors in Y position, and (c) histogram of errors in Z
position.

In this experiment, the average number of detected photons per localisation (or per
bead) was set to ∼ 4, 000. This relatively high number of detected photons was chosen
because this experiment was conducted using an sCMOS camera with ∼ 3e− RMS read
noise, whereas EMCCDs with < 1e− RMS read noise are utilised in the vast majority of
the available literature. Besides the significant difference in read-noise power between
EMCCDs and sCMOS cameras, there also is the fact that each pixel in an sCMOS
detector has different noise statistics due to an individual sense amplifier. This has been
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shown to have an impact on the localisation precision. Despite these shortcomings, it has
also been demonstrated that modern sCMOS cameras perform similarly to EMCCDs at
higher photon counts (i.e. in the shot noise limited case) [109, 110] hence, 4,000 photons
was selected and the precision was then scaled appropriately to enable comparison.
Note that scaling is required anyway due to differences in wavelength and geometry
between experiments.

The sample was then placed at the in-focus position and imaged over a 26µm
(−11.7µm to 14.3µm) depth range at 1µm steps. In each case, a minimum of ∼ 200
beads were localised in 3D as illustrated in Fig. 4.21b for 3 axial position around the
focus. The precision was evaluated by capturing two sets of images of the sample at each
axial position in rapid succession and then localising the beads in each of them [111].
In the absence of noise, the (x, y, z) location of each bead in each of the acquired set of
images should be identical, therefore, any resultant differences must constitute error.
The precision can therefore be calculated as follows:

σp =

√∑n
i=1
[
(ϵp,i − ϵ̄p)2]

2 (n− 1) (4.8)

where p denotes the dimension of space: x, y or z, ϵp,i denotes the ith error along
the pth dimension of space (i.e. the difference in the positions of the ith bead along
the pth dimension of space as inferred from each of the two acquired sets of images),
ϵ̄p = E [ϵp,1, ϵp,2, ..., ϵp,n] is the mean error along the pth dimension, and n is the total
number of localised beads. It is important to note that by Bienaymé formula, taking
the difference between two such data sets will double the variance of the error under
the assumption that: (1) they both have equal variances and (2) each data set is
independent. The first assumption was assumed to hold because both data sets are
realisations of the same process. In order to explore the second assumption further, we
note that the errors, ϵp,i, can be expressed as:

ϵp,i = (Po,i + δp1,i) − (Po,i + δp2,i) = δp1,i − δp2,i (4.9)

where Po,i represents the real position in the pth dimension of space of the ith bead; and,
δp1,i and δp2,i represent the error in the position of the ith bead due to noise in set 1
and set 2 respectively. From Eq. 4.9, we can therefore write:

V ar [ϵp] = V ar [(δp1,1 − δp2,1) , (δp1,2 − δp2,2) , ..., (δp1,n − δp2,n)] (4.10)

Since δp1 = [δp1,1, δp1,2, ..., δp1,n] and δp2 = [δp2,1, δp2,2, ..., δp2,n] can safely be assumed
to be independent (i.e. Cov [δp1, δp2] = 0) due to the stochastic nature of the noise,
then, it can also be assumed that:

V ar [ϵp] = V ar [δp1] + V ar [δp2] + 2Cov [δp1, δp2] = 2V ar [δp1] = 2V ar [δp2] (4.11)
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where as stated previously, it has been assumed that: V ar [δp1] = V ar [δp2]. Given
that by definition the precision is: σp =

√
V ar [δp1] =

√
V ar [δp2], then, from Eq. 4.11,

it follows that:

σp =
√
V ar [ϵp]

2 (4.12)

and thus, the additional
√

2 factor in the denominator of Eq. 4.8 is justified. The above
analyses strictly hold only if δp1 and δp2 are normally distributed. Since δp1 and δp2 are
not directly observable in this experiment, this assumption is difficult to verify. However,
we know that the difference of two normally distributed random variables is also normally
distributed; therefore, the errors, ϵx, ϵy and ϵz, should be normally distributed if δp1

and δp2 are. The normality of the errors was therefore investigated using a one-sample
Kolmogorov-Smirnov test (a.k.a. K-test) with a 5% level of significance. The results
confirm that the errors are normally distributed, thus indicating that δp1 and δp2 also
have normally distributed populations. Histogram plots of the errors taken at a depth
close to the focus position are shown in Fig. 4.23a, Fig. 4.23b and Fig. 4.23c respectively
together with a fitted normal distribution. In this case, the K-test for a null hypothesis
that the data comes from a normal distribution yields p-values of: 0.65, 0.70 and 0.77
respectively; thus, the null hypothesis is comfortably accepted.

The measured localisation precision (standard deviation) in the lateral dimensions
(σx and σy) are shown plotted in Fig. 4.24a and in the axial (σz) in Fig. 4.24b where
the mean precisions are: σ̄x = 26.44µm, σ̄y = 29.10µm and σ̄z = 147.76µm. In order to
verify these results, numerical simulations were conducted using the specifications of
the experimental setup. The image of the beads was modelled by the PSF, which was
calculated using the high NA model proposed in [59, 65]. Only shot noise was taken into
consideration in the simulations because this is expected to be the dominant source of
noise. Three hundred PSFs were then generated at each depth at steps of 1.0µm. These
were then localised using the same procedure used in the experiment and the results
are shown in Fig. 4.24c and Fig. 4.24d for the lateral and axial precisions respectively.
The mean precisions are: σ̄x = 28.85µm, σ̄y = 28.25µm and σ̄z = 157.97µm. Given
these results, one concludes that numerical simulations and experiment results are in
good agreement. This fact was used to scale the precisions obtained experimentally
on the low NA setup to a higher, more typical NA, thus enabling a comparison of this
technique to others found in the literature.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4.24 Localisation precision at different axial positions: (a), (b) measured (40× ,
0.5NA, 4, 000 photons at 532nm); (c), (d) simulated (40×, 0.5NA, 4, 000 photons at 532nm);
(e), (f) simulated (100×, 1.4NA, 2, 000 photons at 650nm); and, (g), (h) simulated
(100×, 1.4NA, 2, 000 photons at 650nm). Pixel size is roughly the same in each case.
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To accomplish this goal, a 100×, 1.4NA system was simulated. The number of
photons was reduced to a total of 2,000 photons per localisation at λ = 650nm and the
pixel size of detector was set to 16µm. These are the specifications of the experiment
presented in [112] which is the primary competition for this technique. The difference in
defocus between the two imaging channels was adjusted in order to maintain the same
responsivity as in the experiment (1.43 pixels/µm). This ensures that only the effects
of the geometry, the wavelength and the number of detected photons are taken into
consideration. The resultant precisions are shown in Fig. 4.24e and Fig. 4.24f, where
the mean precisions are: σ̄x = 13.49µm, σ̄y = 13.25µm and σ̄z = 73.08µm. By scaling
the experimental precisions by the ratio of the mean simulated precision, an estimate
of the precisions expected on a 100×, 1.4NA system from 2,000 photons/localisation
at λ = 650nm can therefore be obtained. Using this approach, the scaled precisions
are: σ̄x = 12.37µm, σ̄y = 13.65µm and σ̄z = 68.35µm. This approach was deemed the
most reliable and comprehensive way of scaling the precisions between different system
specifications. It should be noted that no rigorous study of the relationship between the
localisation precision and system specifications for this technique or the cubic PSF is
available in the literature or has been conducted in this work; therefore, the approximate
relationships applicable for the Gaussian PSF (such as: σ ∝ λ, and σ ∝ 1/

√
Nd where λ

is the emission wavelength and Nd the number of detected photons [113, 114]) cannot
be assumed to hold.

Lastly, the difference in defocus between the two imaging channels was adjusted
in order to maximise the precision (i.e. minimise the standard deviations) without
changing the other parameters. It should be noted that increasing the difference
in defocus results in an increase in the responsivity and therefore a corresponding
improvement in precision. On the other hand, the additional defocus also reduces the
SNR, and hence, also the precision. This implies that there is an optimal value of
defocus at which the precision is maximised. In simulation, this optimal value was
determined by sweeping the difference in defocus and selecting the one which minimises
the error in localisation. Simulations were then conducted using this value and the
resultant precisions are shown plotted in Fig. 4.24g and Fig. 4.24h over a depth range of
3µm. The mean precisions are: σ̄x = 11.88µm, σ̄y = 11.91µm and σ̄z = 35.42µm. By
scaling the measured precision as previously described, estimates of the best localisation
precision attainable with this technique can be obtained. These are: σ̄x = 10.88µm,
σ̄y = 12.27µm and σ̄z = 33.13µm.

The mean measured precisions are shown tabulated in Tbl. 4.4, together with
the typical performance of other established 3D localisation techniques commonly
used in localisation microscopy of comparative complexity - i.e. astigmatism [115] and
biplane [116]. Interferometric techniques such as the 4Pi detection scheme [117] and
iPALM [118] which can achieve ∼ 10nm axial and ∼ 20nm lateral precision over a
650nm imaging depth have not been considered, due to their complexity, which was
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Name σ̄x
(nm)

σ̄y
(nm)

σ̄z
(nm)

Number of
photons per
localisation

Depth
range
(µm)

System
specifica-

tions

Refer-
ence

Astigmatism(
∆† = 475nm

) 25 25 55 400 1.0 1.2NA, 63×
λ = 585nm [66]

Biplane(
∆‡ = 500nm

) 25 25 50 480 1.5 1.2NA, 63×
λ = 585nm [66]

SB-PSF 13 13 15 2,000∗ 3.0 1.4NA, 100×
λ = 650nm [112]

This technique 26 29 148 4,000 26.0 0.5NA, 40×
λ = 532nm n/a

† axial distance between the sagittal and tangential foci
‡ axial distance between the foci of the two focal planes
∗ in the central lobe only

Table 4.4 Summary of point localisation results together with performance of established 3D
localisation techniques. Note: quantities retrieved from the literature are approximate.

deemed to classify them in a different category from the ones considered here. On the
other hand, although not as well-established as the previously mentioned techniques, the
self-bending PSF (SB-PSF) [112] has been considered, due to its relevance to this work.
The SB-PSF is generated from a slightly modified CPM, however, like the technique
proposed here, the detection scheme used in [112] still relies on the measurement of the
lateral shift. Furthermore, the disparity is generated by means of two conjugate pupil
functions in a manner very similar to the conjugate-masks CKM. These similarities
between the SB-PSF and the work reported here make the SB-PSF particularly relevant
to this study.

As stated previously, due to the different geometries, signal levels and emission
wavelength, it is difficult to compare the techniques tabulated in Tbl. 4.4. To circumvent
this problem, the performance of each technique was referred to a 1.4NA, 100× system
with 2,000 detected photons per localisation at λ = 650nm. All figures tabulated in
Tbl. 4.4 were obtained by localising beads; thus, the level of background fluorescence
is expected to be similar for all. On the contrary, whereas the effective pixel size in
the SB-PSF experiment and the experiment conducted here is approximately the same
(∼ 160nm), for the astigmatic and the biplane experiments, the effective pixel size used
was 1.6 times larger. This effective pixel size, however, is very close to the optimal value
for Gaussian PSFs (which is equal to the standard deviation of the distribution [114])
therefore, it does not place either of the techniques at a disadvantage. As a result, this
discrepancy was allowed without compensation. It should be noted that the optimal
effective pixel size for either the SB-PSF or the technique proposed here have not been



4.4 Point localisation 125

Name σ̄x
(nm)

σ̄y
(nm)

σ̄z
(nm)

Depth range
(µm)

Refer-
ence

Astigmatism(
∆† = 475nm

) 12 12 27 0.7 [66]

Biplane(
∆‡ = 500nm

) 14 14 27 1.1 [66]

SB-PSF 13 13 15 3.0 [112]

This technique 12
(11)∗

14
(12)∗

68
(33)∗

1.8
(3.0)∗ n/a

† axial distance between the sagittal and tangential foci
‡ axial distance between the foci of the two focal planes
∗ best performance achievable

Table 4.5 Comparison of the obtained results to other established 3D point localisation
techniques. All figures are scaled for 100×, 1.4NA and 2,000 detected photons per localisation
at λ = 650nm.

investigated mainly due to the difficulties posed by their complex distributions. Finally,
to compensate for different wavelengths and geometry, the precisions of the astigmatic
and biplane techniques were assumed to be proportional to λ/

√
Nd [113, 114]. This

approximate relationship holds (to a first-order) for Gaussian PSFs only. The scaled
results are shown tabulated in Tbl. 4.5, from which a comparison amongst them is
tractable.

From the table above, it is immediately apparent that the lateral precisions for all
three techniques are comparable. On the other hand, the SB-PSF shows the largest
depth range of 3µm followed by this technique with 1.8µm. Note, however, that the
depth range of this technique can be easily extended by increasing the coding strength
α of the CPM and by adjusting the difference in defocus between the two imaging
channels in order to compensate for the ensuing loss in SNR by an increase in responsivity
and thus maintaining the precision. This capability is only offered by the technique
presented here, therefore it can be considered as one of its main advantages over the
other techniques. Furthermore, as previously mentioned, simulations suggest that a
depth range of 3µm on a 100×, 1.4NA with a mean axial localisation error of 33.13µm is
achievable even by simply increasing the difference in defocus without changing α. On
the other hand, both the biplane and the astigmatic techniques have a fixed depth range
beyond which the localisation error increases very rapidly; therefore, one concludes that
they are mostly suitable for 3D localisation on relatively thin samples.

Regarding axial precision, it is clear that the technique proposed here performs
worse than all the others considered under the specified experimental conditions. One
reason for this is the fact that the cubic PSF is by far the largest ( i.e. spreads over
the largest number of pixels) PSF of all considered. The astigmatic and the biplane
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techniques utilise a Gaussian PSF. Owing to the compact support of this distribution,
the collected photons are concentrated on a small number of pixel, thus resulting in
a high SNR. Away from the focus, the support of a Gaussian PSF increases rapidly,
limiting the depth range over which a satisfactory precision can be obtained with these
techniques. The SB-PSF on the other hand is essentially an apodized cubic PSF and
is approximately Gaussian in shape. Furthermore, it maintains its profile over a large
depth range, thus permitting localisation to be performed with high precision over a
relatively large depth range. On the down side, the apodisation necessary to implement
the SB-PSF reduces its maximum optical efficiency to approximately 70%, which is one
of the major disadvantages of this technique. Note that in the comparison performed
here, the number of detected photons was set to 2,000 photons for all techniques,
effectively placing the SB-PSF at an advantage over the rest.

Besides the support of the PSF (or distribution), the responsivity (shift in the lateral
dimensions per micron of depth) has a critical impact on the axial localisation precision
of the SB-PSF and the technique presented here. To understand this, we can express in
1D for simplicity, the disparity in terms of the depth and the responsivity as follows:

D (z) = X+
z −X−

z = ∂D (z)
∂z

· z (4.13)

where z is depth, X+
z and X−

z denote the location in image coordinates of the particle in
the two simultaneously acquired images at depth z, D (z) is the disparity as a function
of depth and R (z) = ∂D (z)/∂z is the responsivity. This readily lends itself to error
analysis, therefore, we can write:

σDo
2 ≈ σX+

zo

2 + σX−
zo

2 ≈
∣∣∣∣∂D (zo)

∂z

∣∣∣∣2 · σzo2

=⇒ σzo
2 ≈

σX+
zo

2 + σX−
zo

2∣∣∣∂D(zo)
∂z

∣∣∣2
(4.14)

where σDo is the error in disparity, σX+
zo

and σX−
zo

are the errors in localising the point
in the two acquired images, and σzo is the error in axial position at a particular depth
z = zo. Note that σX+

zo
and σX−

zo
do not correspond to the lateral localisation errors and

that normality has been assumed in Eq. 4.14. Since σX+
zo

and σX−
zo

depend exclusively
on the distribution and the SNR, Eq. 4.14 implies that the only control we have on
the axial resolution is through the responsivity. From the data published in [112], the
responsivity of the SB-PSF is: R (z) = 56.22 ·z [µm/µm] whereas the scaled responsivity
for this technique is: R (z) = 25.64 [µm/µm]. This implies that the responsivity of the
SB-PSF will exceed that of this technique for z ≥ 456nm. Following this investigation,
one therefore concludes that the SB-PSF performs better than this technique for two
reasons: (1) it has a smaller support, hence a better SNR and (2) its responsivity
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exceeds that of this technique, with the specified difference in defocus at a relatively
small depth.

Lastly, the case of the optimal difference in defocus (Fig. 4.24g and Fig. 4.24h) will be
considered, which, as previously stated, corresponds to the best performance expected
from this technique. In this case, the scaled responsivity is: R (z) = 77.18 [µm/µm]
therefore the responsivity of the SB-PSF will exceed that of this technique for z ≥
1.17µm, which is more than twice that of the experimental value. It is worth noting
that despite the fact that this technique has a higher responsivity for z < 1.17µm, the
SB-PSF still displays a precision roughly twice as good over this depth range. This can
only be caused by the fact that the SB-PSF has a better SNR compared to the cubic
PSF, due to a smaller support. Furthermore, this also suggests that if the cubic PSF
used in this experiment is replaced by the SB-PSF while keeping the rest of the biplane
CKM setup unchanged, the precision reported in [112] can be further improved.

The last criterion which will be considered is the simplicity (or complexity) of the
techniques considered above. This is an important aspect of any technique, as proven
by the fact that this is the central theme of various research endeavours [119, 120].
Both the astigmatic and the biplane methods have the advantage of a very simple (the
simplest of all four methods considered) implementation and calibration; however, they
suffer from a relatively small imaging depth which cannot be increased easily. The
SB-PSF is substantially more complex to implement than the former two techniques
but is still significantly less complicated than, for instance, interferometric techniques.
The advantage of the SB-PSF is its large imaging depth of 3.0µm, exceeded only by
that of the saddle-point PSF (SP-PSF) [121], which is reported to achieve imaging
depths of up to 5µm with a moderate localisation precision of ∼ 50nm from ∼ 3, 470
photons/localisation on a 1.4NA, 100× system. The technique presented here has
only one additional complication over the biplane and the astigmatic techniques: the
addition of the CPM in the pupil plane. Compared to the SB-PSF, this technique is
significantly simpler to implement and can provide a similar or even larger imaging
depth. Furthermore, as previously mentioned, the imaging depth can easily be tailored
to the application by proper selection of the design parameters δw and α -a feature not
provided by the SB-PSF. Finally, in contrast to this technique, the detection scheme
of the SB-PSF makes no use of deconvolution. Instead, what amounts to amplitude
modulation of the pupil (apodisation), in order to suppress the side-lobes of the cubic
PSF (which is what the SB-PSF is) and thus allow it to be localised directly, was
employed. This simplifies the computational process at the expense of optical efficiency
- a penalty which can be prohibitive for a number of applications. In fact, using the
SB-PSF, the maximum attainable efficiency is ∼ 70% whereas the technique proposed
here does not have a theoretical maximum efficiency limit. If an SLM is used instead,
the efficiency drops to ∼ 30%, as reported in [112], thus the use of an SLM is not
an option for photon-limited applications. We therefore conclude that the technique
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proposed here has a significant advantage in terms of simplicity over the SB-PSF and is
of a complexity comparable to that of the astigmatic and biplane techniques.

(a) (b)

Fig. 4.25 Mean depth plots of localised beads: (a) mean disparity of beads (b) mean depth of
beads.

Finally, the accuracy of the technique will be considered, although this is often
left untreated in the literature. Fig. 4.25a shows the mean measured disparity of the
beads at each axial position, whereas Fig. 4.25b shows the depth extracted from the
disparity using the calibration curve shown in Fig. 4.22. Also shown in Fig. 4.25b is the
unity-slope line which delineated the ideal response. The slope of a line fitted to the
measured depths using a least-squares fit is 0.9948µm/µm. Given that this is very close
to unity, one can conclude that the linearity of the technique is good. The RMS error
with respect to the unity-slope line (which can also be referred to as the accuracy) was
∼ 0.28µm (corresponding to 20.57nm for 1.4NA, 100× system). The major cause of
this inaccuracy is probably the regional dependence of the shift. This can be mitigated
by performing the calibration on sections of the FOV rather than on the entire FOV, or,
equivalently, by restricting the FOV over which localisation is performed. Furthermore,
the localisation of the points by fitting a Gaussian function to the recovered points can
potentially also cause inaccuracy because the recovered points are strictly not Gaussian
in shape [82].

Following this first appreciation of the potential of this technique for 3D localisation
applications, one concludes that at best, this technique yields mean localisation precisions
comparable to those of the conventional astigmatic and biplane techniques but over
roughly three times the depth range and with minimal additional complexity. Compared
to the SB-PSF, for the same number of detected photons, the best precision achievable by
this technique is roughly twice as bad in depth and comparable in the lateral dimensions;
however, this is achieved using a significantly simpler optical setup. Furthermore, this
technique utilises all incoming photons whereas the SB-PSF has a maximum efficiency
of approximately 70%. Lastly, if the SB-PSF is used instead of the cubic PSF in
the optical setup proposed here, an improvement in the localisation precision of the
SB-PSF can potentially be obtained, together with simplification of the SB-PSF optical



4.5 Conclusions and future work 129

setup. Nevertheless, with the advent of bright and very bright fluorophores such as Cy2
and Cy5.5 which yield 6,241 and 5,831 photons per switching cycle [122] respectively,
attaining lateral localisation precision of ∼ 8nm in the lateral dimensions and ∼ 15nm
in depth over a 3.0µm depth range using this technique without any modifications
should be feasible. This, coupled with the large depth range which this technique offers,
and its simplicity, brings us to the conclusion that there is scope for further investigation
of this technique for 3D localisation applications.

4.5 Conclusions and future work

In conclusion, we have demonstrated 3D topographic imaging of extended scenes or
samples (both natural and synthetic) with an extended DOF (> 8 times the conventional
DOF) in a single-snapshot with an error of ±0.15µm on a binary systematic scene
consisting of regularly spaced dots from an image SNR of 60dB. The results show that
CKM eliminates WC artefacts and distortion; hence, a better image quality compared
to that given by standard WC is obtained. The depth maps obtained on real samples
of arbitrary shape, texture and features, are comparable to those given by a focus-stack
from tens of images.

Furthermore, an initial investigation of the suitability of this technique for 3D local-
isation of sparse point-samples has been conducted. It has been shown experimentally
that, using this technique, sub-resolution fluorescent beads can be localised with a mean
precision of 26 − 29nm in the lateral dimensions and 148nm in the axial dimension over
a depth range of 26µm from 4,000 photons/localisation. These results were obtained
on a 40×, 0.5NA system using a wavelength of 532nm. By scaling these experimental
results for the optimal difference in defocus between the two acquired images and more
typical system specifications, the expected best achievable precisions for the considered
specifications have been determined. These are: 11−12nm in the lateral dimensions and
33nm in the axial dimension over a 3.0µm depth range from 2000 photons/localisation.
These figures are for a 100×, 1.4NA system using a wavelength of 650nm. Finally, a
comparison between this technique and other established techniques revealed that there
is scope for this technique, primarily due to its unique trade-off between localisation
precision and simplicity, in addition to its large and adjustable depth range.

As far as future work is concerned, improvements to the experimental setup and/or
procedure which became apparent during the course of this investigation have been
suggested throughout this chapter. The most salient of these are listed below for
reference:

• Focusing should be performed by displacing the sample rather than the objective,
as is customary on inverted microscope. This is because once an objective is fitted
with a CPM, the beam coming out of its back aperture will not be collimated
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(assuming an infinity-corrected objective). It was not possible to investigate and
quantify the effects of this; however, the fact that this constitutes a deviation
from the ideal is conspicuous and thus it should be avoided.

• Deconvolution has been performed using a simple Wiener filter, as is customary
in WC. However, the effect of the NSR parameter in the Wiener filter on the
performance of the CKM technique, and a systematic way of selecting this have not
been thoroughly investigated, mainly due to time constraints. Future development
on this technique is therefore envisaged to include a study of this.

• Slabs of glass were used to induce the necessary difference in defocus, δω. Given
that a significant thickness of glass (24mm) is needed, spherical aberrations which
reduce localisation precision in point localisation and increase the differences
between the two acquired images will result even though these are expected to
be minimal due to the fact that the image-side beam is slow. More importantly,
chromatic aberrations, which have a similar adverse effect on the performance
of this technique, will also be introduced as a consequence of the introduction of
the glass slabs. Assuming a 60nm range around a centre wavelength of 532nm, a
longitudinal chromatic interval of ∼ 22nm is estimated.

• Fitting the CPM inside a standard off-the-shelf objective makes the setup more
compact and robust; however, this requires precise knowledge of the location of
the aperture stop of the objective. Furthermore, unless this is accessible, then the
CPM cannot be fitted in the required plane, resulting in field-dependent shifts
and PSFs. One way of mitigating this problem is to re-image the aperture stop
of the objective such that the CPM can be placed outside the objective. This
permits the CPM to be positioned accurately in a plane conjugate to the aperture
stop at the expense of a more complicated optical setup. More importantly, if this
implementation is adopted, then, displacing the sample rather than the objective
is imperative, since moving the objective necessarily entails displacing the aperture
stop and thus also its conjugate plane. This effect is again expected to be small
due to the large image-side DOF of a typical microscope, however, given that the
shifts which are to be measured are also very small, it is best avoided.

• The flatness of the calibration target (beads attached to a coverslip) is critical
to the calibration procedure used here and the higher the effective NA of the
imaging system is, the more important this becomes. This, however, cannot be
guaranteed when using a sample such as the one used here. One way of improving
on this is to scan a small region of the sample across the FOV using a mechanised
XY-translation stage, rather than imaging the entire sample at once.

• The calibration procedure used in the point localisation experiment described
above involves constructing a curve relating the measured disparity to the true
axial position. To do this, the average disparity measured throughout the FOV
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has been used. This method ignores regional variations in disparity caused by, for
instance, distortion. Consequently, a better way of doing this would be to either
restrict the FOV to a smaller region if the sample which is to be imaged permits,
or else to section the FOV in smaller sections and then take the average disparity
over each individual section separately. This would increase the complexity of the
calibration procedure; however, it is expected to result in a significant improvement
in accuracy.

• The precisions quoted for typical point localisation system specifications were
obtained by scaling experimental precisions obtained on a different geometry,
wavelength and number of detected photons. Although these were deemed reliable
due to the excellent correlation between the experiment and the numerical analysis,
direct observation is still necessary. Future work is therefore necessary in order to
observe these directly, as well as to investigate the performance of this technique
under other practical circumstances such as background fluorescence, fluorophore
overlap (multiple-fluorophore images) [83, 123], fixed-orientation dipoles [124, 125]
(i.e. non-isotropic emitters) and the effect of photo bleaching.

• Finally, in this experiment, the beads were localised by least-square fitting a 2D
Gaussian to their deconvolved image. This was done mainly due to the simplicity
of the method; for instance, contrary to the MLE method, this method does not
require rigorous characterisation of the detector noise [83]. However, the shape
of a recovered point is not Gaussian and it is also dependent on the NSR used
in the Wiener filter. Given that misspecification of PSF can result in systematic
error [82], a better alternative to this might be to fit pre-acquired experimental
PSFs [116]. The fitting can also be performed using the MLE method which is
known to out-perform the least-square fitting if the noise characteristics of the
detector are known. These modifications are envisaged to result in better accuracy
and can potentially also improve the precision of the technique.



Chapter 5

Conclusion and future work

In conclusion, we have proposed a new technique dubbed Complementary Kernel
Matching (CKM), which fulfils the objectives set for this project, namely:

• 3D imaging (both intensity of the scene and its (dense) depth map).

• Single-snapshot operation (no scanning required).

• No reduction in optical resolution or efficiency.

• Simple to implement or to integrate in an off-the-shelf optical system such as a
standard microscope.

• Solves the long-standing artefacts and distortion problems typically associated
with WC systems.

An additional benefit of this technique is its monocularity, which makes it inherently
immune to occlusion - a major problem effecting triangulation-based 3D imaging
techniques such as stereo vision.

The theory behind CKM has been developed and several ways of implementing it
have been proposed and analysed, as presented in Chapter 2. The most promising
configuration was then implemented around a standard microscope. A means of
calibrating the setup was proposed and several samples were then imaged (in a snapshot)
in various modalities: transmission, reflection and fluorescence. A DOF of ∼ 20µm
was achieved on a 40×, 0.5NA system with a conventional DOF of 2.4µm. The results
show that CKM eliminates WC artefacts and distortion; hence, a better image quality
compared to standard WC -i.e. single PSF recovery- is obtained. The depth maps
obtained on real samples of arbitrary shape, texture and features, are comparable to
those given by a focus-stack from tens of images. On a systematic scene consisting
of regularly spaced dots with a linear depth gradient, an RMS error of ±0.15µm in
depth was obtained from an image with an SNR of 60dB. This increases to ±0.25µm
for an SNR of 30dB. Like other passive techniques, however, the performance of CKM
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in measuring depth depends on the quality of the features and the texture of the scene
itself.

Owing to its large and adjustable DOF and its simplicity, there is scope in considering
the use of the same CKM setup for applications which involve 3D point localisation, such
as 3D super-resolution techniques, for instance. An initial investigation was therefore
conducted by localising sub-resolution fluorescent beads. The mean precisions measured
on the 40×, 0.5NA setup were 148nm in depth and < 30nm in the lateral dimensions
from 4, 000 photons per localisation over a DOF of 26µm. From these values, we
calculate that a mean localisation precision of < 34nm in depth and < 13nm in the
lateral dimensions from 2, 000 photons per localisation over a DOF of 3µm should be
achievable on a more typical 100×, 1.4NA system. This DOF is appreciably larger than
that provided by most 3D super-resolution techniques in common use. The recently
proposed SB-PSF [112] has a similar DOF and a mean localisation precision of ∼ 15nm
in all dimensions of space. This is, however, achieved at the expense of complexity and
optical efficiency. One therefore concludes that there is scope for further investigation
of this technique for 3D point localisation applications.

Despite the encouraging results obtained so far, the work conducted here is only the
first step towards the finalisation of this technique. Future work has been suggested in
context throughout the text. Below, the most salient future work and improvements
will be summarised.

• Improvements to the experimental setup as discussed in the conclusion of Chapter 4.
In particular, the use of a moving sample stage rather than a moving objective
stage, which would allow the CPM to be mounted outside the objective, and a
better means of producing the difference in defocus between the two channels, as
required by the biplane method. The latter was implemented using glass slabs.
A better way of doing this would be to use a beam splitter and two right-angle
prisms in order to direct the perpendicular beam onto the appropriate half of
the detector. By adjusting the position of the prisms, the separation between
the two images can be adjusted; hence, any sensor size can be accommodated.
Furthermore, the difference in defocus between the two imaging channels can also
be adjusted. This option, therefore, has the advantage of flexibility.

• One of the least explored areas of this technique is the image processing. As
stated in Chapter 2, the results presented in this thesis were obtained using a
relatively basic stereo vision block matching algorithm. However, there is a wealth
of literature and methods on the subject which are yet to be tested on CKM.
Of particular relevance are global methods such as dynamic programming [74].
These can be used in conjunction with local methods such as block matching
algorithms to alleviate the dependence of CKM on scene features and texture.
Another important aspect of the processing which CKM involves is the effect
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of the NSR parameter in the deconvolution. Here, this parameter was used as
is customary in WC; that is, by manual optimisation. However, as discussed in
Chapter 4, CKM operates at the limits of the DOF provided by the CPM for a
given coding strength. As a consequence, rigorous modelling of the dependence of
this parameter on depth is required.

• CKM as presented in this work is a passive technique which relies completely on
the features and quality of the texture of the sample or scene itself in order to
infer depth. As a result, the depth of smooth samples, such as the atomic force
microscope cantilevers discussed in Chapter 4, cannot be measured. However, an
active version of this technique can be realised by using structured illumination
to induce texture/features in the sample. This would reduce the reliance of the
sample itself at the expense of single-snapshot operation. Note that CKM would
still have the advantage of monocularity and hence immunity to occlusion, over
techniques such as structured light, which was introduced in Chapter 1.

• As far as 3D point localisation is concerned, the work conducted here is an initial
evaluation of the capability of this technique for the mentioned application. This
was conducted on sub-resolution bead samples, as is common in the literature.
This implies that certain important practicalities, such as the effect of background
fluorescence, dense labelling and fixed dipoles for instance, have not yet been
considered. These factors are, however, application-specific, therefore they are
best accounted for by directly imaging the sample of interest.
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