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Abstract  

One of the major problems associated with colorectal cancer is resistance to cytotoxic 

chemotherapeutic agents.  New strategies are therefore required to inhibit colon cancer 

proliferation and survival.  Here I use modulators of cAMP pathways, including inhibitors 

of phosphodiesterase 4 (PDE4) enzymes, which are under clinical development for other 

disease states, to inhibit the breakdown of cAMP and to assess the effects of raising 

intracellular cAMP on colon cancer proliferation and survival. I found that some chemo-

resistant cancer cells are addicted to keeping low cAMP in PDE4 regulated compartments, 

and modulation of this pool causes G1/S-phase arrest and apoptosis.  I also show that 

PDE4 controlled cAMP negatively regulates the PI 3-Kinase/Akt pathway, which some 

cells are addicted to for survival.  Furthermore, I investigated the expression and role of 

PDE4 enzymes in metastatic colon cancer cells and assessed the effects of modulating their 

expression on survival.  Also, I used a clinically relevant analogue of forskolin, an agonist 

of adenylyl cyclase, to examine the general effect on growth of epithelial cancer cell lines.  

This work might provide new strategies for the treatment of advanced colon cancer. 
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1.      Introduction 

1.1 Colorectal Cancer 
 Colorectal cancer is the third most commonly diagnosed cancer in the UK, after 

breast and lung, and makes up 13% of all cancers.  Approximately 35,000 people in the UK 

are diagnosed with colorectal cancer every year and it accounts for 16,100 deaths per annum.  

This equates to approximately 10% of all cancer related deaths and is the second most 

common cause of cancer death in the UK (Cancer Research UK).  The five-year survival rate 

after diagnosis is dependent upon the stage of the cancer at presentation. One method of 

colorectal cancer classification is Dukes’ staging.  The Dukes’ stage describes extent of 

invasion/spread of the tumour and correlates with overall survival.  For example, patients 

diagnosed with Dukes’ stage A tumours have an 83% chance of survival over five years 

which is dramatically reduced to only 3% if diagnosed with Dukes’ stage D (see Table 1) 

(Cancer Research UK and (1)).  Another method of classification is the TNM (tumour, node 

and metastasis) system (2-4).  TNM system allocates a number to each letter, where for T, 

the number correlates with the size of the tumour; for N the number indicates which lymph 

nodes have cancer cells in them and for M indicates whether the cancer has spread beyond 

the lymph nodes (Table 2)(2-4).  For example, a colorectal cancer graded T1N0M0 indicates 

stage I colorectal cancer where the tumour has grown through the muscularis mucosa (the 

thin layer of smooth muscle) into the submucosa (layer of loose connective tissue that 

supports the mucosa) or that it may have grown into the muscular coat of the colon but has 

not spread to neighbouring lymph nodes or to distal sites.  Table 3 shows how the TNM 

system is simplified (into stages 0-4) and how each stage correlates with Dukes stages (5).   

The majority of colorectal cancers arise from pre-existing benign polyps in the mucosa of the 

bowel.  The progression from early adenomatous polyp through to invasive carcinoma is a  
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38% Tumour has spread to regional lymph nodes but no distal 
spreading 

C 

3% Tumour present at distal sites (e.g. Liver and Lungs) D 

70% Tumour has invaded through muscular mucosa of the 
bowel wall 

B 

83% Tumour confined to intestinal wall A 

5 Year 
Survival 

Pathological Features Dukes 
Stage 

Table 1.  The Dukes’ classification of colorectal cancer and 5 year survival rates 

The cancer has spread to 4 or more lymph nodes N2 

The cancer has spread to 1, 2 or 3 lymph nodes  N1 

The cancer has spread beyond the muscle layer of the 
colon 

T3 

The cancer has spread into the muscle layer of the colon T2 

The cancer has not spread to the nearest lymph nodes N0 N  
(regional 

lymph 
nodes) 

The cancer extends from colon wall into adjacent tissues T4 

The cancer has not metastasised  M0 M  
(distant 

metastases)  

Cancer has reached inner layers of colon wall T1 

The cancer has spread to distal lymph nodes/ 
organs/tissues 

M1 

Cancer has not spread beyond first epithelial layer of cellsTis 

 
 
 

T  
(Tumour) 

No evidence of tumour T0 

Description  TNM 
code 

 

Table 2. The TNM classification of colorectal cancer.

2 B T3, N0, M0 

1 B T2, N0, M0 

3 C Any T, N1, M0 

1 A T1, N0, M0 

0 ------ Tis, N0, M0 

TNM stage Dukes Stage TNM code 

 4 D Any T, Any N, M0 

Table 3.  Correlation between TNM and Dukes staging of colorectal cancer.
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 well documented process and a genetic pathway was initially proposed by Fearon and 

Vogelstein (6).  This model proposes that there are a series of genetic alterations, each  

conferring a growth advantage, leading to the progressive conversion of normal cells into 

cancer cells (6).  Examples of genetic changes that account for this transformation includes 

the inactivation of tumour suppressor genes (p53, APC and PTEN), through mutation or 

deletion, as well as activation of oncogenes including KRas and PI3KCA (reviewed in (7) 

(Figure 1 A).  Alterations in key pathways that regulate cell proliferation, differentiation and 

survival do not always occur at once.  Indeed, it has been proposed that a highly invasive, 

metastatic tumour has to acquire at least six essential alterations which are indicative of all 

cancer types.  Alterations such as self-sufficiency in growth signals, evasion of programmed 

cell death (apoptosis), limitless replicative potential, sustained angiogenesis and tissue 

invasion and metastasis were proposed by Hanahan et al (8) (Figure 1 B).  Often, these 

changes lead to the critical dependence of a cancer cell on one particular gene or signal 

transduction pathway for continued growth and survival, which has been termed ‘oncogene 

addiction’.     

1.2 Oncogene addiction 
  Oncogene addiction is the phenomenon by which some cancers that contain multiple 

genetic and epigenetic alterations may become dependent upon (“addicted to”) one, or a 

small number of, genes for both maintenance of the malignant phenotype and cell survival 

(8, 9).  There is now a large body of evidence to support the concept of tumour “oncogene 

addiction”.  Diverse systems have contributed to our understanding of oncogene addiction, 

namely mouse models that have been genetically engineered to mimic human cancer, 

mechanistic studies in human cancer cell lines and clinical trials with molecularly targeted 

agents.  For example, studies in mice have shown that sustained expression of c-Myc 

protooncogene resulted in both lymphoma and acute myeloid leukaemia formation (10).  In  
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Figure 1.  Cancer progression models.  (A)  Fearon and Vogelsteins genetic 
model of colorectal cancer progression.  A normal epithelium goes through a series 
of genetic alterations that include activation of oncogenes (K-Ras) and inactivation 
of tumour suppressor genes (e.g. p53) all of which result in tumours of increasing 
size and dysplasia.  (B)  Hanahan and Weinburgs model of cancer.  Most if not all, 
cancers acquire the same set of functional capabilities during their development. 
These are gaining self-sufficiency in growth signals, becoming insensitive to anti-
growth signals, evading apoptosis, gaining limitless replicative potential, it must 
sustain angiogenesis and also to invade tissue and spread to distant organs.       



Normal 
Epithelium

Loss of 
p53

Hyperprolif. 
Epithelium

Early 
Adenoma

Intermediate 
Adenoma

Late 
Adenoma

CarcinomaMetastasis

Mutation
K-RasAPC loss

DNA 
Hypomethylation

Other 
changes 
e.g. 
Src
EGF-R

Fearon & Vogelstein, (1990) Cell (61) 759-67

Figure 1  Cancer development models

A

B

Hanahan & Weinburg, (2000) Cell (100) 57-70
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growth signals

Insensitivity to 
anti-growth 

signals

Tissue invasion 
and metastasis

Limitless replicative 
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Evading 
apoptosis
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6
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this case, the conditional expression of a c-Myc transgene in haematopoietic cells resulted in 

tumours that were dependent on c-Myc expression for proliferation, and inactivation of c-

Myc caused regression of established tumours.  This underpinned the dependence on a single 

gene for generating and sustaining tumour formation.  In breast cancer, c-Myc protein is 

often overexpressed and correlates with poor prognosis and clinical outcome (11).  Induced 

human c-Myc oncogene expression in the mammary epithelium of mice resulted in the 

generation of invasive mammary carcinomas, many of which regress after c-Myc inactivation 

(12).  However, it was noted that in tumours that did not regress, an activating mutation in 

Kras oncogene was present which limited the tumours dependence on c-Myc (12).  Similar 

studies in mice have shown a critical dependence on c-Myc expression with numerous other 

cancer types, such as pancreatic β-cell tumours (13) and osteogenic sarcomas (14). 

In human cancer cell lines, there is a plethora of data implicating a number of proteins in the 

maintenance of tumour viability, where loss of expression of a single protein is sufficient to 

inhibit proliferation and survival, despite these cells carrying numerous genetic and 

epigenetic abnormalities.  Such proteins include genes encoding HER2, cyclin D1, K-ras, β-

catenin, cyclin E and mutant B-Raf (15-20).  Another pathway that is frequently deregulated, 

and to which tumours can be ‘addicted’ to, is the PI 3-kinase/Akt pathway, which I will 

discuss at a later point in this thesis.         

Perhaps the most convincing evidence for targeting oncogene addiction is highlighted in 

clinical studies using molecular targeted therapies, such as Gleevec® (BCR-Abl target; 

chronic myeloid leukaemia) and Herceptin™ (HER2; breast cancer) (21-25). Some of the 

targeted therapies for the treatment of colorectal cancer will be discussed later in some detail 

(Chapter 1.5).  I will now discuss current strategies for the treatment of colorectal cancer. 
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1.3 Treatment of colorectal cancer 
  Currently, treatment for colorectal cancer is dependent on stage of disease at 

presentation but consists primarily of surgical resection and chemotherapy.  Surgery is the 

preferred option for primary tumours and regional lymph nodes, and is often curative.   

Unfortunately though, about 50% of patients, who undergo curative surgery for colorectal 

cancer, relapse with metastatic disease, usually within five years (26).  The incidence of 

relapse is stage dependent with 20% of Dukes A, 30% of Dukes B and 50% of Dukes C 

patients will relapse.  However, the incidence of metastatic disease can be reduced by giving 

those patients at high risk of recurrence adjuvant chemotherapy, to try to eliminate any 

micrometastatic deposits (27).   

The vast majority of metastatic tumours are not resectable, and chemotherapy is therefore 

used to treat suitable patients.  For more than 40 years the anti-metabolite 5-fluorouracil (5-

FU) has been the frontline chemotherapeutic agent used in the treatment of advanced 

colorectal cancers.  The mechanism of action of 5-FU has been well characterised in attempts 

to increase the efficacy of the drug. 5-FU acts by inhibiting thymidylate synthase (TS) and 

incorporating into DNA and RNA resulting in cell cycle arrest and apoptosis (28) (Figure 2).  

Understanding the mechanism of action has lead to combinational therapies, for example 

with folinic acid (also known as leucovorin; LV), to improve the activity of 5-FU.  The 

development of an orally available fluoropyrimidine, capecitabine has improved treatment 

administration greatly (28, 29).  Capecitabine is a rapidly absorbed, prodrug that is 

metabolised by the liver to produce 5-FU by a three step process, the final of which is by 

thymidine synthase which is thought to be more active in tumour cells (Figure 2) (30, 31).  

Also, Capecitabine and its metabolites tend to be better tolerated and therefore offer 

significant advantages over standard 5-FU treatment (31).  Increasingly, the third generation 

platinum  

 



Figure 2.   5-Fluorouracil mechanism of action

Figure 2.  5-Fluorouracil (5-FU) mechanism of action.  5-FU is an anti-
metabolite that is readily absorbed by cells. The main mechanisms of action are the 
incorporation of its metabolites into either DNA or RNA thereby inducing damage 
responses as well as inhibition of thymidylate synthase (TS), which also results in 
DNA damage.  Capecitabine is an orally available, pro-drug that is converted to 5-
FU by a multistage process in both the liver and the target cells..    

Figure adapted from Longley DB, Harkin DP, Johnston PG.  (2003) Nat. Rev 
Cancer 3(5) ; 330-8
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based compound oxaliplatin, is used in combination with 5-FU (or Capcecitabine) and LV 

for the treatment of metastatic colorectal cancer (31).  However, one of the major problems 

associated with colorectal cancer, is resistance, either natural or acquired, to 

chemotherapeutic agents, such as 5-FU and oxaliplatin (32). 

1.4 Chemoresistance  
  Resistance to chemotherapeutic agents, such as 5-FU, limits the effectiveness of the 

current cancer treatments.  The development of drug resistance causes approximately 90% of 

treatment failures in patients with metastatic cancer (28, 32).  Also, drug-resistant 

micrometastatic tumour cells may contribute to decreased response to adjuvant 

chemotherapy.  Resistance to chemotherapeutics, such as 5-FU, can be either natural (the 

cells have an inbuilt natural resistance to chemotherapy) or acquired, where the cells ‘adapt’ 

mechanisms to evade the effects of the chemotherapy agents (32).  For example, 5-FU, 

resistance can occur by several mechanisms.  Inhibition of TS by 5-FU acutely induces the 

expression of TS in both tumours and cell lines (33, 34).  This induction may be due to 

inhibition of a negative feedback mechanism of TS binding to, and regulating, translation of 

its own mRNA (35).  This is the case in vivo where increases in TS expression correlate with 

increased resistance to 5-FU (36, 37).  Another mechanism of resistance is the 

overexpression of DPD (dihydropyrimidine dehydrogenase), which catabolises 5-FU to an 

inactive form, in 5-FU resistant cancer cell lines (38).  Also, an alteration in DNA repair, 

namely a down-regulation of ERCC1 (excision repair cross-complimenting 1) enzyme which 

prevents damage to DNA by nucleotide excision and repair, inversely correlates with survival 

and response in gastric cancer patients treated with 5-FU and oxaliplatin (39). 
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Therefore, there is now an impetus towards the generation of new, molecularly targeted 

therapies against proteins that are critical for the survival of the tumour cells, to help combat 

this disease, and which will be discussed in a later chapter (Chapter 1.9).   

In order to test any potentially new therapeutic strategies to combat colorectal cancer, good 

cancer cell models are required.  These include both cell-based, for example Fidler model of 

colorectal metastasis (40, 41), and animal-based models, such as the APCmin and APCflox 

models (reviewed in (42)). 

1.5 Cell-based models of colon cancer 
  Cell lines isolated from primary and metastatic tumours provide the main tool for 

research into the mechanisms involved in aspects of cancer, such as proliferation, evasion of 

apoptosis, and increased invasion and migration.  Several cell lines that are routinely used to 

evaluate colorectal cancer are HT29, SW480 and SW620s.  HT29s are an epithelial 

colorectal carcinoma cell line that can readily form tumour xenografts when injected sub-

cutaneously into the hind region of nude mice (43-45).  HT29 cells are frequently used to 

study the role of Src non-receptor tyrosine kinase, which shows increased expression and 

activity in colon cancer (46-48).  Indeed, treatment of HT29 xenografts with either antisense 

oligonucleotides against Src (49) or treatment with a Src family inhibitor (43) inhibited the 

growth of these tumours.  HT29 are also closely related to another cell line, WiDr (a human 

colorectal adenocarcinoma cell line) (50) and together these cell lines are useful tools for 

investigating cancer.   

Other colon cancer cell lines frequently used are the SW480 and SW620s.  SW480s are a 

colorectal adenocarcinoma cell line derived from a Dukes’ stage B tumour (51).  One year 

later, the SW620 cell line was isolated as a metastatic derivative of the SW480s, isolated 

from a lymph node metastasis in the same patient (51).  Both SW480 and SW620 cells are 
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able to form tumour xenografts (52, 53) and in addition SW620 cells when injected into the 

caecum of nude mice, metastasise to the liver (54).  As such, SW480 and SW620 cell lines 

are useful for studying genetic changes in late colon cancer progression.  However, despite 

HT-29, WiDr, SW480 and SW620 cells being able to grow xenografts in nude mice, this 

method of in vivo analysis of tumour formation, and use as a model to test potential drug 

treatments, is not ideal.  Genetically engineered animal-based models are far more useful 

tools for the study of colorectal cancer.   

1.6 Animal-based models of colon cancer 
  The adenomatous polyposis coli (APC) gene is one of the best studied and perhaps 

one of the most important genes with respect to colorectal carcinogenesis.  Germ line 

mutations in the APC gene results in the development of familial adenomatous polyposis 

(FAP) (55), which is one of the principal hereditary predispositions to colorectal cancer.  

Somatic mutations in the APC gene are also found in approximately 60% of sporadic 

colorectal adenomas and carcinomas (56).   

One of the main functions of the APC protein is the inhibition of β-catenin, which is an 

essential component of mammalian cadherin adhesion complexes.  β-catenin is also a 

downstream component of the Wnt signalling pathway and a key regulator of cell 

proliferation (42).  Under unstimulated conditions, β-catenin is in a complex (termed 

‘destruction complex’) which consists of scaffolding proteins axin and conductin,  as well as 

glycogen synthase 3β (GSK-3β) and APC (Figure 3) (reviewed in (42, 57)).  Whilst in a 

complex, GSK-3β phosphorylates four critical Ser/Thr residues on the amino-terminus of β-

catenin, thus targeting it for degradation by the proteosome (Figure 3)(58).  In colorectal 

cancer, loss or mutation of APC results in constitutive activation of the Wnt/β-catenin 

pathway, in the absence of external stimulation of Frizzled receptor.  Loss or mutation of 
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APC suppresses GSK-3β activity, resulting in decreased phospho-β-catenin, decreased 

degradative targeting and stabilisation of the protein (42, 59).  β-catenin is then free to 

translocated to the nucleus, bind to DNA-binding proteins of the T-cell-factor (Tcf) family 

and initiate transcription of its target genes, such as c-Myc (60) and cyclin D1 (61) (Figure 3; 

reviewed in (42, 59)).    

APC also plays an important role in several other cellular processes such as cell adhesion 

(62, 63), migration (62, 64, 65) and chromosome segregation (66).  However, its main 

function as a tumour suppressor is regulation of β-catenin levels (67). This function has been 

utilised in several mouse models of colorectal cancer where, truncated forms of APC are 

conditionally generated or the entire APC gene is selectively ‘deleted’.  The best known of 

these models is the APCMIN (multiple intestinal neoplasias) mouse.  This transgenic mouse 

line was generated by random ethylnitrosourea mutagenesis and carries a nonsense mutation 

at codon 850 of the APC gene, generating a truncated (95kDa) APC polypeptide (68, 69).  

APC+/APCMIN mice develop approximately 100 intestinal tumours per animal and mainly 

located in the upper gastro-intestinal (GI) tract over a period of approximately 100 days (68, 

69). 

Development of colorectal cancer is a multi-step process that can occur over long periods of 

time and the APCMIN model is ideally suited to assess mutational events, caused in part by 

chromosome instability, that lead to the inactivation of the second, wild type allele in an 

APC+/APCMIN mouse (reviewed in (42)).  Another model, APCflox/flox, is utilised to determine 

the immediate consequences of APC loss in normal, colonic epithelium (70).  In this model, 

mice with lox-flanked APC alleles were crossed into a novel inducible CRE transgenic 

background, which uses a Cyp1A promoter to deliver inducible CRE expression in the 

intestine.  Treatment of CRE+APCflox/flox mice with β-napthoflavone for four consecutive days  

 



Figure 3.  APC/β-catenin pathway.  

Figure 3.  APC/β-catenin pathway.  (A) In normal unstimulated, colon epithelium β-
catenin can be in a stable complex with Axin and adenomatous polyposis coli (APC) 
proteins.  When present in this complex, GSK-3β can phosphorylate β-catenin.  This 
serves as a signal for the β-TRCP/SCF ubiquitin ligase complex.  β-catenin is then 
poly-ubiquitinated and degraded by the 26S-proteosome, thereby preventing its 
accumulation in the nucleus.  Its transcriptional cofactor Tcf/Lcf therefore remains 
bound to Groucho and no transcription is activated.  (B)  In colon cancer where APC is 
either mutated or lost (ΔAPC above) β-catenin is no longer phosphorylated by GSK-3β, 
is stabilised and is able to translocate to the nucleus. β-catenin can then accumulate and 
initiate transcription of target genes such as c-MYC and cyclin D1.  
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results in CRE recombinase expression and cleavage of the lox sites flanking the APC alleles 

and complete intestinal recombination and loss of APC (70).  This leads to nuclear 

accumulation of β-catenin, increased c-Myc expression and perturbation of differentiation, 

migration, proliferation and apoptosis (Figure 3) (70). Therefore, the APCflox/flox and APCMIN 

mouse models of colorectal cancer are useful animal models for the study of both 

immediate/early and long-term effects of APC loss, which is a common occurrence in 

colorectal cancer. 

However, in order to understand the molecular and biochemical events that regulate colon 

cancer proliferation and survival, as well as metastasis, a cell based system that also has 

applications in an in vivo setting would be advantageous.  The Fidler mouse model of human 

colorectal metastasis provides just such a platform with which to do so.       

1.7 Fidler model of human colorectal metastasis 

  The Fidler model cell lines were initially derived from a primary human colorectal 

carcinoma (HCC) designated as Dukes Stage B.  These were established as a tissue culture 

cell line (KM12C).  KM12C cells, when directly injected into the spleen of nude mice 

resulted in the generation of infrequent liver metastases (Figure 4 A).  Isolation, re-culturing, 

expansion and injection of cells into the spleen from the few liver metastases that arose 

resulted in increased metastatic potential.  This process was repeated a further two times 

(total of four successive rounds of culturing and injections), resulting in the highly metastatic 

KM12L4A cell line (Figure 4 B) (41).  Also, the KM12C cells were used to generate another 

metastatic cell line, KM12SM, where the cells were injected into the cecum of nude mice to 

produce spontaneous hepatic metastases.  The metastatic foci generated by this route were 

harvested as cell cultures and yielded the spontaneous metastasis (KM12SM) derivative of 

the KM12C cell line.   
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Thus, the Fidler model of colorectal metastasis provides an excellent platform for which the 

roles of specific pathways may be investigated in both the cells with relatively low-metastatic 

potential and the more metastatic derivatives.        

1.8 Previous work using Fidler model of colorectal cancer cells  
  The expression and activity of the non-receptor tyrosine kinase Src is up-regulated in 

a number of tumour cell types including breast (71-73), ovary (74), lung (74, 75), head and 

neck (76) and colon (46-48) and is linked to the malignant potential of these tumours. Using 

the Fidler cells, Jones et al (77) showed that the expression and activity of Src were increased 

in the metastatic KM12L4A and KM12SM cells compared to the poorly-metastatic KM12C 

cells.  Src kinase has been linked to the regulation of processes such as proliferation, 

migration, invasion and adhesion (reviewed in (78)).  In HT-29 colon cancer cells, Src 

displays increased activity and expression.  Using an anti-sense approach to knockdown Src 

expression suppresses HT-29 growth both in vitro and in vivo (49).  However, in KM12C 

cells expression of a constitutively active form of Src, SrcY527F (KM12C/2C4 cells), where 

Tyrosine-527 (Tyr527) is mutated to a phenylalanine keeping Src in its ‘open’ and active 

conformation (reviewed in (78)), results in increased cell-matrix adhesion without any effect 

on proliferation (77).   

Elevated Src kinase activity in KM12C cells also affects the regulation of the cell-cell 

junction protein, E-cadherin.  Expression of SrcY527F in KM12C cells results in the 

internalisation of E-cadherin under high calcium conditions (79).  Moreover, regulation of E-

cadherin localisation by Src is dependent on its catalytic activity, as expression of Src lacking 

the kinase domain, but retaining its SH2 and SH3 domains, restores E-cadherin localisation 

to cell-cell junctions (79).  In addition, Src induced de-regulation of cell-cell junctions 

requires adhesion to αv and β1 integrins, therefore blocking this interaction, using specific  

 



Figure 4.  Fidler mouse model of human colorectal metastasis
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Figure 4.  Fidler mouse model of human colorectal metastasis.  (A) KM12C 
cells when injected into the spleen of nude mice produce few hepatic (liver) 
metastases.  (B)  KM12L4A cells were previously generated by four rounds of 
injection and sub-culturing KM12C cells that did produce liver metastases.  The 
result of which is the highly metastatic KM12L4A cells that produce a high degree 
of liver metastases when injected into the spleens of nude mice. Photographs 
courtesy of R.J.Jones.  
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antibodies, prevents focal adhesion formation and causes de-localisation of E-cadherin  (79).  

An important regulator of β1 integrin downstream signalling is focal adhesion kinase (FAK).  

FAK is heavily phosphorylated by Src at multiple sites and the introduction of FAK mutated 

on all five tyrosine residues (FAK-Y407-925F) in KM12C/2C4 cells, restored the 

localisation of E-cadherin to cell-cell junctions, indicating that FAK is the major downstream 

substrate of Src and that it is required for cadherin-mediated junctions (79).   

The altered cell morphology induced by active Src is consistent with an epithelial to 

mesenchymal (i.e. more migratory) phenotype and is accompanied by the expression of 

vimentin, a protein marker for mesenchymal cells (77, 80). 

The epithelial to mesenchymal “switch” in KM12C/2C4 cells is dependent upon the activities 

of both ERK and its direct substrate MLCK (myosin light chain kinase).  In KM12C cells, 

inhibition of either ERK or MLCK pathways results in reversion to an epithelial phenotype, 

with a loss of Src and integrin induced peripheral adhesion assembly and restoration of E-

cadherin distribution to cell-cell junctions (80).  The accumulation of the downstream target 

of MLCK, phospho-MLC (myosin light chain), at the cell periphery is dependent upon the 

SH2 (Src homology 2) and SH3 (Src homology 3) domains of Src as well as its kinase 

activity (80).  In addition, mutation of either the SH2 or the SH3 domains results in the 

proper localisation of E-cadherin to cell-cell contacts (80).  Thus, in KM12C cells, Src 

activity and its protein-protein interaction domains are important for the formation of 

integrin-adhesion structures and the redistribution of E-cadherin from cell-cell junctions.    

The role of Src mediated phosphorylation of FAK and the effects on cell matrix adhesions 

has also been investigated in KM12C cells (81).  Expression of kinase deficient Src mutants, 

namely SrcMF (full length Src with K295M (ATP binding site) and Y527F mutations) and 

Src251 (truncated Src minus the kinase domain), in KM12C cells did not alter proliferation 
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(81).  However, phosphorylation of FAK (Tyr407, Tyr576, Tyr577 and Tyr861) does increase and 

which are reported to be Src phosphorylation sites (81).  Mutation of Src SH2 domain and 

use of a specific Src kinase inhibitor in cells expressing SrcMF showed that the increase in 

pTyr phosphorylation was dependent on an intact SH2 domain but independent of Src family 

(Src/Yes/Fin) kinase activity (81).  Also, in cells expressing kinase defective Src, FAK 

phosphorylation on Tyr925 was reduced, indicating that this site was completely dependent 

upon the Src kinase activity (81).  Moreover, reduced FAK (pTyr925) was associated with 

impaired extension and retraction of adhesions (81).  Thus, based on evidence to date, Src’s 

role in Fidler cells is to alter cell-matrix and cell-cell adhesions but does not alter their 

proliferation.  

Other work carried out using Fidler cells include the analysis of expression patterns of 

approximately 1200 human genes in KM12C, KM12L4A and KM20 (a metastatic cell line 

derived from a Dukes stage D colon cancer tumour cells (41)) in order to identify alterations 

in genes that can contribute to the metastatic process.  Of the 1,200 genes analysed by 

Hernandez et al (82), a greater than 3 fold alteration (either increase or decrease) in 

expression of genes associated with proliferation and survival  was observed, including 

Zyxin (a gene implicated in regulating differentiation, proliferation and cell morphology), 

FRP1 (a member of the Phosphatidylinositol-related kinase family which controls cell cycle 

progression in the presence of DNA damage) and TRAIL (a member of the tumour necrosis 

family of protein that induces death of T-cells via apoptosis) (82) .  Proteins involved in the 

negative regulation of proliferation associated genes, such as the 26S proteosome, were 

found to be down regulated in the highly metastatic KM20 cells, compared to the KM12C 

and KM12L4A cells (82). Gene expression profiles, comparing the poorly-metastatic and 

metastatic Fidler cell lines have shown numerous alterations between the cell types (83, 84).  
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Perhaps one of the underlying causes of the changes associated with these cell lines is their 

genetic instability.   

Two forms of genetic instability have been described in colorectal cancers: microsatellite 

instability (MSI) and chromosomal instability (CIN) (85). Microsatellites are short stretches 

of DNA repeats that vary from person to person and defects in DNA mismatch repair can 

give rise to microsatellite instability (85).  In colon cancer, approximately 15% of tumours 

display microsatellite instability which contributes to colorectal carcinogenesis (86, 87). 

Camps et al have shown that KM12C cells have a near-diploid karyotype with high levels of 

chromosome instability and microsatellite instability, whereas the KM12L4A and KM12SM 

cells have polyploid karyotypes as well as chromosome and microsatellite instability (88).   

Microsatellite instability also affects responses to 5-FU treatment, where patients who have 

high microsatellite instability tumours have a better response than those with microsatellite 

stable tumours (89-91).  However, there are conflicting reports suggesting that MSI status 

does not correlate with prolonged survival after 5-FU treatment (92-94).  Treatment of 

KM12C cells, which have high MSI, resulted in decreased proliferation (95).  However, 

injection of KM12C cells into the spleens of nude mice and subsequent treatment with 5-FU 

had no effect on primary tumour formation, invasion or metastasis (95). 

Overall, the genetic instability and alterations in the numerous pathways between the low-

metastatic KM12C cells and the more highly metastatic KM12SM and KM12L4A cells, 

strongly reflects the alterations that are common in other human cancers.  Historically, work 

in our lab has focused on the role of both Src and FAK tyrosine kinases in these cell lines.  

The work in my thesis will use the Fidler model cells to investigate novel approaches to 

inhibit the proliferation of chemoresistant colorectal cancer cells and, in particular, will focus 

on modulation of cyclic nucleotide signalling pathways.  However, before discussing how 
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cyclic nucleotide signalling is perturbed in cancer and how these pathways might be 

exploited, I will discuss current the molecular targeted therapies that are now either 

approved, or in clinical trials, for the treatment of colorectal cancer.     

1.9 New strategies:  Molecular targeted therapies  
  Targeted therapies are classed into two distinct categories – monoclonal antibodies 

and small molecule inhibitors.  Currently, there are two new promising strategies for the 

treatment of advanced colorectal carcinomas – epidermal growth factor receptor (EGFR) and 

vascular epidermal growth factor (VEGF) inhibitors, both of which have FDA approval for 

use in the treatment of colon cancer.   

Aberrant signalling in cancer cells occurs during the development and progression of the 

disease.  Considerable efforts in developing ‘targeted’ therapies, directed against specific 

components of these pathways that are hopefully more potent and less toxic than 

conventional chemotherapy are currently underway.  The receptor tyrosine kinase (RTK) 

EGFR is frequently up-regulated in colorectal cancer (in 70-80% of cases (96, 97)) and can 

increase cell proliferation, invasion and metastasis of cancer cells (98).  For those reasons it 

has become a target for new agents. Two monoclonal antibody therapies, namely Cetuximab 

(Erbitux®; ImClone Systems/Bristol-Myers Squibb) and Panitumumab (Vectibix™; 

Amgen), have been developed as specific EGFR inhibitors (98-100).  Both antibodies can 

bind and block the extracellular ligand binding domain of EGFR and prevent activation and 

downstream signalling (98-100).  Clinical trials using both antibodies have shown good 

response rates, both alone and in combination with other frontline treatments for colorectal 

cancer.  Patients treated with cetuximab and irinotecan (topoisomerase I inhibitor) had an 

objective response rate (proportion of patients who have either a partial response or a 

complete response) of approximately 23% and those receiving cetuximab alone had an 

objective response rate of approximately 11% (101).  Out of a panel of 463 patients with 
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metastatic colorectal carcinoma, all expressing EGFR, treatment with panitumumab resulted 

in a statistically significant increase in progression free survival compared to those receiving 

best supportive treatment (not specified) alone (102).  The overall response rate of patients to 

panitumumab was 8% but there was not an increase in overall survival of the patients (102).  

As well as monoclonal antibodies directed against the extracellular domain of EGFR, small 

molecule inhibitors of the kinase domain have been approved for the treatment cancer, and in 

particular, NSCLC (Non-Small Cell Lung Cancer) which approximately 50% of NSCLC is 

positive for EGFR (reviewed in(103)).  Gefitinib (Iressa; AstraZeneca) and erlotinib 

(Tarceva®; OSI Pharmaceuticals ) are two small molecule EGFR inhibitors approved for 

treatment of NSCLC in patients who have failed to respond to conventional chemotherapy 

(104).  Both act as reversible, competitive inhibitors of ATP-binding at the active site of the 

EGFR kinase domain (105).  However, sensitivity to these molecules correlates to a subset of 

patients with somatic gain-of-function mutations in EGFR (located in the kinase domain of 

the protein) and EGFR overexpression, with 77% of clinical responders harbouring 

alterations in EGFR, compared to approximately 7% of patients with NSCLC that are 

refractory to gefitinib or erlotinib (106-109). 

The development of new blood vessels – angiogenesis – from pre-existing vasculature is a 

key process in normal tissue development but is also one of the hallmarks of cancer (8, 110).  

In order for a tumour to grow beyond a certain size, it requires a network of blood vessels to 

supply both oxygen and nutrients and to remove waste products, all of which are crucial for 

cell function and survival.  One potent stimulator of angiogenesis is vascular endothelial 

growth factor (VEGF) and its cognate receptors, VEGF-receptor 1 (VEGFR1) and VEGFR2, 

all of which are frequently altered in colorectal cancer (110) and the angiogenic pathway has 

therefore become a key target in drug development.  One of the first reports supporting anti-

angiogenic treatments for cancer came from Kim et al, where they showed that an antibody 
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directed against VEGF inhibits angiogenesis and also suppress tumour growth in vivo (111). 

Bevacizumab (Avastin®; Genentech), a monoclonal antibody which binds VEGF and 

prevents its interaction with VEGFR1 and VEGFR2, has now been approved for first-line 

treatment of metastatic colon cancer in the US (110).  In a clinical study with 813 patients, of 

which approximately 50% received Bevacizumab in combination with fluorouracil-based 

chemotherapeutic agents, like 5-FU, resulted in a statistically significant, and clinical 

meaningful, improvement in survival amongst patients with metastatic colorectal cancer 

(112).  In addition, on-going studies into using Bevacizumab in an adjuvant therapy setting, 

in combination with other chemotherapeutics, may provide better survival and decreased 

metastatic disease in patients (113, 114).   

Above, I have described two target therapies for the treatment of colorectal cancer.  

However, there are a number of other promising therapies that target other important 

pathways for tumour development.  For example, matrix metalloproteases (MMPs) have 

been extensively studied in colorectal cancers and are believed to be key regulators of the 

invasive aspects of the metastatic process (reviewed in (115)).  As such, orally available 

MMP inhibitors have shown considerable success in phase I/II trials (reviewed in (115)).  

However, a phase III trial of the BAY-129566 (broad spectrum MMP inhibitor) was 

terminated due to a lower survival rate of patients treated with the compound (116).   

Chronic inflammation of the intestine is closely linked to colorectal cancer and patients with 

ulcerative colitis and familial adenomatous polyposis (FAP) which are both high risk 

conditions for the future development colorectal cancer (117, 118).  Two potent stimulators 

of chronic inflammation are the cyclooxygenases Cox1 and Cox2 and are critical regulators 

of prostaglandin production which has been linked to the progression of colorectal cancer 

(118).  Early studies identified elevated Cox2 expression was present in approximately 85% 

of human colorectal carcinomas and approximately 50% of colorectal adenomas (119-121). 
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Non-steroidal anti-inflammatory drugs (NSAIDs) are inhibitors of Cox1 and Cox2 and 

include both aspirin and ibuprofen and have been proposed as chemo-preventative agents 

(118).  However, it is Cox2 appears to regulate inflammation and mitogenesis whereas Cox1 

is associated with the production of cytoprotective prostaglandins in the gastrointestinal tract 

(122).   Thus, NSAIDs targeted to Cox2 have been attributed to the anti-inflammatory effects 

of the drugs (122).  Selective Cox2 inhibitors that have been developed include celecoxib 

(Searle/Pharmacia/Pfizer), rofecoxib (Merck), and valdecoxib (Pharmacia/Pfizer), all of 

which have been approved for use in the management of pain and inflammation (118).   

Evidence for the involvement of Cox2 and therefore the use of specific inhibitors and 

NSAIDs in the treatment of colorectal cancer comes from a variety of animal model studies.  

Studies using a genetically engineered mouse expressing a targeted, truncated form of the 

APC tumour suppressor gene, APCΔ716, showed that in the background of Cox2-/- mice, both 

the number and size of intestinal polyps was reduced compared to the Cox2+/+ wild type mice 

(123).  Also, treatment of APCΔ716/ Cox2+/+ mice with a Cox2 specific inhibitor resulted in a 

reduction in the number of polyps, compared to a NSAID which inhibited both Cox1 and 

Cox2 (123).  However, therapeutic potential for the treatment of colorectal cancer is 

currently limited due to long term treatment of patients with selective Cox inhibitors 

resulting in adverse cardiovascular and thrombotic effects (118, 124-126).      

It is also important to consider other signalling pathways that may be utilised in order to 

develop new therapeutic strategies to combat colorectal cancer.  I will now discuss cyclic 

nucleotide signalling, its role in cancers of varying origin and its potential as a therapeutic 

strategy for the treatment of cancer.   
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1.10 Cyclic nucleotide signalling 
  Second messenger signalling, namely the generation of adenosine 3`,5`-cyclic 

monophosphate (cyclic AMP; cAMP) or guanosine 3`,5`-cyclic monophosphate (cyclic 

GMP; cGMP) has been investigated for over 50 years.  This has provided key insights into 

signal transduction networks, including receptor-effector coupling, protein kinase cascades 

and down-regulation of drug responsiveness.   

Cyclic nucleotide signalling is an important regulator of many cellular processes such as 

proliferation, migration, metabolism, growth and apoptosis, all of which can be altered in 

cancer.    

1.11 cAMP 2nd messenger signalling 

  Research into hormone-receptor interactions and subsequent generation of 

intracellular second messengers, transducing extracellular signal into an intracellular 

response, has been central to our understanding of hormone action for several decades now.  

The generation and degradation of cAMP were previously thought to be confined to 

membrane fractions (127, 128).  Generation of cAMP is achieved by the stimulation of G-

protein coupled receptors (GPCRs) by hormones, such as adrenaline and prostaglandins, as 

well as many others.  This in turn activates the stimulatory Gαs protein (by GDP-GTP 

exchange) and activated Gαs (Gαs-GTP) dissociates from the Gβγ subunits, then interacts 

and activates adenylyl cyclase (AC), leading to the generation of cAMP from ATP (Figure 5 

and reviewed in (129)). 

cAMP can elicit a diverse range of cellular processes with both short and long term 

consequences for cells.  These include proliferation, migration, differentiation, 

neurotransmission, metabolism, growth and transcription (Figure 5) (130, 131).  

Transduction of intracellular cAMP into a cellular response can be achieved by effectors  
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such as the cAMP dependent protein kinase, PKA (Protein Kinase A;) (131), cAMP 

dependent guanine nucleotide exchange factor (cAMP-GEFs; or Epac (Exchange protein 

directly activated by cAMP)), which regulates the small GTPase Rap 1 (132, 133), or cAMP 

gated ion channels (Figure5; (130).   

The action of cAMP specific phosphodiesterases (PDEs), which hydrolyses 3´,5´-cyclic 

adenosine monophosphate to the inactive 5´-adenosine monophosphate (AMP), provides the 

sole route of degradation and can act as the ‘off switch’ for this signalling pathway (131, 

134-136). Generation of specificity within cAMP signalling is achieved by partnering 

multiple components of the pathway that regulates the binding of hormones (GPCRs), 

intracellular transducers (G-proteins), cAMP generation enzymes (adenylyl cyclase) and 

cAMP degredation enzymes (PDEs).  For example, there are approximately 335 7-trans-

membrane GPCR receptors, 20 G-protein α subunits, 10 adenylyl cyclases and 11 PDE 

families.  Eight of the PDE families can generate over 30 different isoforms with the ability 

to hydrolyse cAMP (131, 134-136).  The sheer complexity of this system gives rise to almost 

unlimited combinatorial potential, which in turn, allows the cells to tailor their cAMP 

generation in a spatial and temporally regulated manner with a specific outcome.  This is 

achieved by compartmentalisation of cAMP signalling.   

1.12 Compartmentalisation of cAMP signalling 

  cAMP signalling controls a diverse range of signalling processes, and in order to do 

so it must activate or inhibit specific intracellular pathways.  This is achieved by 

compartmentalisation of cAMP signalling, where stimulation of cAMP generation (by a 

specific receptor and/or adenylyl cyclase enzyme) is coupled to selective activation of cAMP 

effectors (such as PKA and Epac) (137).  The concept of compartmentalised cAMP effects 

was first proposed nearly 30 years ago when it was shown that different Gs coupled GPCRs  

 



Figure 5.  cAMP generation

Figure 5.  cAMP generation. Stimulation of a G-protein coupled receptor (GPCR) by 
a hormone results in a conformational change and the activation of G-proteins.  G-
proteins are heterotrimeric and upon stimulation, the Gαs subunit becomes activated by 
GDP/GTP exchange. Gαs subsequently dissociates from the regulatory Gβγ subunits 
(which can themselves activate other signalling pathways) and activates adenylyl 
cyclase (AC) to generate cyclic AMP (cAMP) from ATP.  cAMP can then activate 
downstream effectors of the pathway, such as protein kinase A (PKA), Epac or cAMP 
gated ion channels which can ellicit a diverse range of cellular processes.    Switching 
off adenylyl cyclase is achieved by stimulation of Gαs intrinsic GTP hydrolysis, where 
the Gαs can then re-associate with the Gβγ subunits.    
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could selectively activate different isoforms of PKA in cardiac myocytes (138, 139).   This 

then lead to the concept of PKA ‘sampling’ localised pools of cAMP (140-142).    This can 

be achieved by tethering cAMP effectors to distinct sub-cellular locations, thereby 

positioning specific enzymes, for example PKA, to respond to local increases in cAMP 

concentrations. Proteins such as AKAPs (A-kinase anchoring proteins) are known to serve 

such a function (143).  There are numerous other scaffolding proteins, some of which will be 

mentioned throughout this thesis, that serve to localise cAMP effectors, including RACK1 

(144, 145), β-arrestin (137) and IQGAP1 (146).   

The cAMP pathways, particularly at the level of PDEs, have become a key therapeutic target 

for many disease areas and, as such, inhibitors of PDE families are currently at various stages 

of clinical trials.  In regards to developing a novel cancer treatment, components of the 

cAMP regulatory pathway may be perturbed in the malignant phenotype.  Here I will discuss 

cAMP generators, effectors and degradation machinery, aspects of their regulation and how 

they are perturbed in cancer.                 

1.13 GPCR signalling and cancer 

  G-protein coupled receptors play vital roles in the regulation of a variety of biological 

and physiological functions.  Numerous studies have shown that mutations or 

polymorphisms in GPCRs can result in a variety of human diseases or disorders (147-149).  

One of the first GPCRs with oncogenic properties was defined as the MAS oncoprotein, 

which is a GPCR which can transform NIH3T3 mouse fibroblast cells (150).  The ability of 

MAS to transform these cells was attributed to over-expression of the oncoprotein, due to 

rearrangements in its 5` non-coding sequences. 

Overexpression of GPCRs in cancer is commonly observed with many GPCRs over 

expressed in a variety of cancer types, which contribute to tumour cell growth after ligand 
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activation.  Amongst these are the receptors for bioactive lipids, such as LPA 

(lysophosphatidic acid), and also the protease activated receptors (PARs).  However, PAR 

receptors couple to the αq, α12/13, αi families of G-proteins, and not to the αs family, 

stimulating a diverse signalling network, but not cAMP production (151).  The PAR1 

receptor is overexpressed or deregulated in a variety of human malignancies, including 

invasive breast carcinomas (152). In HNSCC (Head and Neck Squamous Cell Carcinoma) 

thrombin cleavage of PAR1 stimulates the growth and invasion of these cells (153) and 

PAR1 expression is also increased in advanced prostate cancer (154). 

In colorectal cancer, several GPCRs and their ligands are linked to growth, survival, 

metastatic and angiogenic pathways.  For example, prostaglandins, which are a product of the 

cyclooxygenases Cox1 and Cox2, provide a strong link between inflammation and cancer 

(118).  The overexpression of Cox2, in conjunction with chronic inflammation, is now 

thought to play an important role in tumour development   The Cox2 regulated prostaglandin 

E2 (PGE2), as well as its cognate GPCRs, EP1-EP4, have all been linked to colorectal cancer 

progression (155-157).  Of the PGE2 receptors, EP2 and EP4 have the most prominent roles 

in colon cancer and both are coupled to Gαs, thereby stimulating cAMP production and 

accumulation (155).  However, the main mechanism by which PGE2 exerts its oncogenic 

effects is through the stimulation of the APC/β-catenin pathway (7, 57).  In colon cancer 

cells, PGE2/EP2 stimulation of the β-catenin pathway, involves the G-protein subunits Gαs 

and Gβγ.  PGE2 causes Gαs association with the RGS (regulator of G protein signaling) 

domain of axin, thereby releasing GSK-3β  from the complex (158).  PGE2 also causes 

release of the Gβγ subunits which activates the PI 3-kinase/Akt pathway and inhibits GSK-

3β released by axin by Akt mediated phosphorylation (158).  Therefore, GSK-3β can no 
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longer phosphorylate and inhibit β-catenin, allowing translocation to the nucleus and 

activation of target genes resulting in increased proliferation of the tumour cells (158). 

As one of the major effectors of GPCR signalling, G-proteins have been linked with 

oncogenic transformation.  In thyroid tissues, cAMP generation can stimulate cell 

proliferation.  Mutationally-activated forms of Gαs (encoded by the GSP oncogene) are 

found in neoplastic growths in the thyroid tissue (159).  The GSP oncogene encodes a protein 

that is mutated in the GTP hydrolysing domain, resulting in reduced GTP hydrolysis 

(approximately 30 times less than wild type Gαs), thus effectively rendering the protein 

constitutively active (159, 160).  Gαs activating mutations are found in approximately 40% 

of sporadic and growth-hormone secreting, pituitary tumours (159, 160).  

All of the above alterations in GPCR/G-protein signalling can confer a ‘high’ activity status 

on the adenylyl cyclase molecule, where the basal production of cAMP is elevated.         

1.14 cAMP effectors:  Protein kinase A 
  The cAMP dependent protein kinase A (PKA) is the cAMP effector by which the vast 

majority of cAMP downstream signalling effects are though to occur.  In its inactive form, 

PKA is a heterotetramer of two regulatory (R) and two catalytic (C) subunits.  Each subunit 

has multiple isoforms with 4 regulatory (RIα, RIβ RIIα and RIIβ) and 3 catalytic (Cα, Cβ, Cγ) 

subunits.  This produces different isoforms of PKA holoenzymes with distinct physical and 

biological properties in the cell (161, 162).  cAMP binds co-operatively to two sites termed A 

and B on each regulatory subunit (Figure 6).  In the inactive holoenzymes, only the B-site is 

exposed and available for cAMP binding.  When occupied, this enhances the binding of 

cAMP to the A site by an intramolecular steric change.  The binding of a total of four 

molecules of cAMP results in a conformational change and dissociation of the catalytic 

subunits from the regulatory subunits (Figure 6) (reviewed in (161, 163, 164)).  This release 
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of a molecular constraint on the catalytic subunits results in activation and subsequent 

phosphorylation of downstream targets on serine/threonine residues in a consensus motif 

(reviewed in (161, 163, 164)).  The PKA consensus phosphorylation sites consists of R-R-X-

S/T (Argenine-Argenine-X(any)-Serine/Threonine) and has been found in a plethora of 

targets that include regulators of cAMP signalling like the β2-Adrenergic receptor(165, 166), 

PDE4D3(167, 168)), Raf-1(169, 170), CREB (cAMP responsive element binding protein)  

transcription factor (171), regulators of apoptosis (BAD(172-174)) and the PI3-kinase p85α 

regulatory subunit (175, 176).   

The protein kinase A holoenzyme can be classified as either Type I or Type II depending on 

the association of either homo-or heterodimers of the R subunits, yielding holoenzyme 

complexes of PKA with distinct regulatory properties (Figure 6).  Type I PKA contains either 

the regulatory subunits RIα or RIβ; Type II contains either RIIα or RIIβ (162, 177, 178).  

Due to the significantly large number of PKA phosphorylation targets, several mechanisms 

are used to generate specificity and spatial/temporal activation of PKA.  For example, the R 

subunits exhibit different binding affinities for cAMP, giving rise to PKA holoenzymes that 

require different thresholds of cAMP for activation (for type I 50-100nM cAMP; type II 200-

400nM cAMP) (179).  In addition, the R subunits are differentially expressed in cells and 

tissues and are able to form both homo- and heterodimers, thus generating a huge number of 

combinations, which further contributes to the compartmentalisation and specificity of cAMP 

signalling that can help generate a plethora of cellular outcomes. 

Another mechanism, by which PKA activation is controlled, is by its spatial localisation.  

Sub-cellular localisation of PKA is controlled, at least in part, by anchoring of the R subunits 

by  AKAPs (Figure 6).  PKA type I is soluble and located in the cytoplasm, but conversely 

PKA type II is typically particulate and associated with sub-cellular structures and  

 



Figure 6.  cAMP effectors

Figure 6.  cAMP effectors.  cAMP (purple circles) generation by adenylyl cyclase can 
diffuse (red area) until it encounters effectors, such as PKA-type I and –type II and 
Epac.  Both PKA types exist as heterotetramers and each regulatory (R) subunits can 
bind two molecules of cAMP.  Upon cAMP binding, the catalytic (C) subunits are 
released and can phosphorylate target substrates on RRXS/T motifs. PKA-type I is 
localised to the cytoplasm and type II is anchored to sub-cellular structures via 
interaction with AKAP scaffold proteins.  Epac can bind one molecule of cAMP and 
catalyse the GDP-GTP exchange on Rap1, which is then free to activate downstream 
pathways.   
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compartments, being anchored by cell- and tissue-specific AKAPs (Figure 6; reviewed in 

(161)).  AKAPs were originally identified due to the fact that they were contaminating 

purified PKA preparations (180-182). 

Therefore, it is by a combination of differential expression, sub-cellular localisation and 

proximity to its substrates that cAMP activated PKA can act as an efficient and specific 

effector of cAMP signalling. 

1.15 cAMP effectors:  Epac  
  Early studies looking at the downstream effects of cAMP, attributed most of these 

effects to that of PKA.  However, within the past 10 years another cAMP effector molecule 

has been identified.  Epac (exchange protein activated by cAMP) proteins were first 

identified in 1998 during a database search of cAMP effectors and a screen of brain tissue for 

proteins containing second messenger binding motifs (132, 133, 183).  Epac proteins, Epac1 

and Epac2, are cAMP dependent Guanine Nucleotide Exchange Factors (GEFs) that activate 

the small GTPase proteins Rap1 and Rap2 (members of the Ras family) (Figure 6).   

Epac1 and 2 are multi-domain proteins which consist of an amino-terminal regulatory region 

and a carboxy-terminal catalytic region; Epac2 has an additional cyclic nucleotide-binding 

domain (CNB) (Figure 7).  X-ray crystallographic structure of Epac, in the absence of cAMP, 

has revealed that Epac2 exists in a compact structure in which the Rap binding site is 

completely hidden (Figure 7)(184).  The ‘open’ conformation of Epac, in which cAMP is 

bound, has not yet been solved.  However, binding of cAMP molecules to specific cAMP-

binding pockets may induce a conformational change that disrupts an ‘ionic latch’ and re-

orientates the second CNB domain towards the switchboard region (a β-sheet located in 

between the regulatory and catalytic regions), enabling the binding of Rap (Figure 7)(184).   
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Despite there not being any structural data available, the development of a fluorescence 

resonance energy transfer (FRET) probe of Epac, containing an amino-terminal cyan 

fluorescent protein (CFP) and a carboxy-terminal yellow fluorescent protein (YFP; CFP-

Epac-YFP), supports the concept of cAMP ‘opening-up’ Epac (185). 

1.16 Downstream effects of Epac activation 
  Activation of Epac by cAMP results in the stimulation of Rap1 or Rap2 the small 

GTPase proteins.  Rap was originally identified as a small GTPase that could induce 

morphological reversion of Ras transformed cells (originally named Kirsten-ras-reverent-1; 

Krev-1 (186)).  However, more recently Rap1s role in regulating integrin-mediated cell 

adhesion and E-cadherin mediated cell junction formation has received a lot of attention 

(187).  This is due to the development of specific Epac activators that displays greater 

selectivity towards Epac, compared to PKA (188).  The Epac specific agonist, 8-CPT (8-

pCPT-2`OMe-cAMP), was developed by comparing the cAMP binding domains of several 

proteins including Epac1, Epac2 and PKA regulatory subunits.  Epac proteins lack a critical 

and highly conserved glutamate residue present in all PKA isoforms and cAMP gated ion 

channels, and which forms high-affinity hydrogen bonds between the 2´-hydroxyl of the 

cAMP ribose group and PKA (189).  Thus, a number of candidate compounds were 

synthesised and tested, and 8-CPT was selected due to its 10-fold better at activating Epac 

than cAMP alone (188).  Also, another Epac agonist, 8-pMeOPT (8-pMeOPT-2´-O-Me-

cAMP) is reported to have increased membrane permeability, increased PDE stability and 

increased Epac activating abilities (190, 191). 

In Ovcar3 cells, stimulation of Epac with 8-CPT results in increased β1-integrin mediated 

adhesion to fibronectin coated dishes (192).  Also, activation of Epac/Rap1 in epithelial cells 

results in adhesion to Laminin-5 by α3β1 integrins, and which this interaction has been  

 



Figure 7.  Epac domain structure and regulation  

Figure 7.  Epac domain structure and regulation. (A)  The domain structure of 
Epac1 and Epac2 indicating the cyclic nucleotide binding doamins (CNB), catalytic 
region with the CDC25 homology domain (CDC25HD) which is responsible for 
guanine-nucleotide-exchange activity.  The DEP (Desheveled-Egl-10-pleckstrin (DEP) 
domain that is involved in membrane localisation; the Ras exchange motif (REM) 
which stabilises the catalytic helix of CDC25HD and the Ras-association domain (RA).  
(?) domain in a domain that is homologous to Epac2 RA domain but serves an unknown 
function.  (B)  Activation of Epac (shown for Epac2) by cAMP results in the opening of 
the protein, interaction with, and activation of, Rap.      
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implicated in epithelial wound repair and carcinoma invasion (193).  Epac/Rap1 activation 

also promotes decreased cell permeability and increased VE-cadherin-dependent cell 

adhesion independently of PKA activity (194). 

Rap1 is both a positive and negative regulator of the mitogenic Ras/Raf (B-Raf) /MEK/ERK 

pathway, in a cell type specific manner and binds the serine/threonine kinase Raf-1 in vitro  

and can inhibit downstream signalling(195-197).  Using an activated form of Rap, RapV12, 

that is insensitive to GAP (GTPase activating protein) activity, ERK activation by either LPA 

or EGF (epidermal growth factor) was diminished but Ras activation was unaffected by 

RapV12 in Rat-1 fibroblasts  (198).  However, in another study using a number of different 

fibroblast cell lines and a number of different stimuli (platelet derived growth factor (PDGF), 

EGF, LPA, thrombin and endothelin and insulin) activation of Rap1 did not alter ERK 

activation, indicating that Rap1 activation is a common event but Rap1 function is not the 

modulation of Ras effector signalling and are possibly cell type specific (199).   

In vitro, Rap1 is implicated in the activation of the ERK pathway via binding to, and 

activation of, B-Raf (200).  In PC12 rat neuroendocrine tumour cells, activation of Rap1 

results in Rap1 binding to, and activating, B-Raf and ERK signalling, causing differentiation 

of these cells (201, 202).  Also, use of Rap1 inhibitors (Rap1GAP and RapN17 (dominant 

negative form of Rap)) completely abolishes B-Raf activation of ERK (201, 202).   However, 

activation of Rap1 by Epac does not activate the ERK pathway in PC12 cells, due to 

differential localisation, with Epac normally present in the perinuclear region (203).  

Addition of a CAAX motif to Epac, which causes a translocation to the plasma membrane, 

results in cAMP/Rap1/B-Raf dependent activation of ERK, whereas wild type Epac cannot 

activate ERK in this fashion (203).  Also, antisense depletion of C3G (Crk SH3 domain 

guanine nucleotide exchange factor), showed that C3G was responsible for cAMP activation 
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of Rap1, association with B-Raf and ERK activation in Epac wild type cells (203). Despite 

evidence of Rap1 regulation of the Ras/Raf/MEK/ERK pathway, treatment of a number of 

cell lines (including PC12) with the Epac specific agonist, 8-CPT, failed to activate or inhibit 

ERK (188).  Where ERK was activated by cAMP, this was shown to be dependent upon Ras 

and PKA (188).  Thus, B-Raf is a physiological target of Rap1 but its activation is dependent 

upon the guanine nucleotide exchange factor used by cells to activate it. 

1.17 PKA and cancer 

  In the context of cancer, PKA activity and expression has been extensively studied.  

Alterations in the expression of RI and RII subunits have been well characterised during cell 

proliferation, differentiation and transformation.  It has been suggested that RIα is 

preferentially expressed in proliferating and transformed cells and RII is associated with 

normal, non-proliferating and terminally differentiated cells (204).  Indeed, PKA RIα is over-

expressed in a variety of cancers and is associated with poor prognosis in breast cancer 

patients (205).  Therefore, malignant transformation has mainly been associated with altered 

RIα expression or indeed, changes in the ration of PKA-I and PKA-II.  

In colon carcinoma cell lines treated with either anti-sense oligodeoxynucleotides against RI 

or RII subunits, proliferation is inhibited in a cell line dependent fashion.  This gave one of 

the first indications that PKA may be a potential anti-cancer target (206).  Antisense 

knockdown of RIα is growth inhibitory in a number of cancer cell lines including breast, 

lung, prostate, leukaemia and jurkat T lymphoma cell lines, demonstrating that inhibition of 

RIα may also be a relevant target for future cancer therapies (207-209).  

There may also be a similar role for PKA RIIβ in regulating the proliferation of colon cancer 

cells.  Overexpression of RIIβ subunit in LS-174T human colon carcinoma cells results in 

down-regulation of PKA-I and an induction of growth inhibition in both 2- and 3-
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dimensional substrates (210).  This suggested that along with PKA-I, PKA-II may play an 

important role in the regulation of neoplastic growth and transformation in a cell-type 

dependent manner.  Also, antisense suppression of PKA-RIα (which increases PKA-RIIβ 

expression) or overexpression of PKA-RIIβ increase differentiation associated genes and 

suppress proliferation and transformation associated genes in prostate cancer cells (211).  

Thus, switching the isoform expression profile of PKA regulatory subunits can cause a 

phenotypic reversion of malignant tumours.   

Also, a number of mouse studies have been used to validate PKA regulatory subunits as an 

anti-cancer targets.  For example, an antisense oligonucleotide against the RIα results in 

inhibition of tumour growth but for complete cessation, frequent dosing was required (210).  

PKA RIα antisense oligonucleotides used in combination with CpG DNA (CpG DNA 

mimics bacterial DNA due to absence of methylation and can elicit an immune response 

(212)) results in an enhanced anti-tumour effect on HCT-15 cancer cell growth in nude mice 

(213).  Therefore, PKA regulatory subunits have distinct roles in cell proliferation and 

differentiation making them attractive targets for anti-cancer therapies.   

1.18 Epac/Rap1 and cancer 
  Rap1/2 has previously been shown to have either increased or decreased activity in 

cancer cells.  For example, in breast epithelial cells Rap1 activity is increased in malignant 

T4-2 cells and inhibition of this activity leads to the formation of acinars (apico-basal 

polarised, three-dimensional pseudo-tissue structures) with the correct polarity, and restored 

architecture (214).  Whereas increasing Rap1 activity further led to increased invasiveness 

and tumourigenicity of these cells (214).  Also, in studies using cells derived from metastatic 

melanoma tumours, elevated Rap1 activity correlates with increased activation of the MAPK 

pathway and increased integrin activation, which promotes cell migration (215).  In ovarian 
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cancer cells, despite an interesting role for Epac in the regulation of cell-cell and cell-matrix 

adhesion (192), no definitive evidence as yet has directly implicated Epac in driving the 

progression of cancer.  For example, in thyroid tumours, where cAMP plays a pivotal role in 

mitogenesis, there are no activating mutations in the Epac – Rap1 signalling pathway and 

neither plays a role in the abnormal proliferation of these cells (216).  Thus, a role for Epac in 

the progression of a variety of cancers requires further study. 

1.19 Cyclic AMP degradation 
  Cyclic nucleotide phosphodiesterases (PDEs) provide the sole route for the 

degradation of key second messengers, such as cAMP and cGMP, thus providing a crucial 

method by which cells can regulate cyclic nucleotide levels.  The importance of these 

enzymes is reflected in the sheer diversity and number of PDE families encoded by the 

human genome.  It has been reported that there are approximately 11 different PDE families 

(PDEs 1-11), comprising of approximately 21 gene products many of which can produce 

multiple, alternatively spliced mRNA and with different transcription start sites.  Currently, 

there are reported estimates for >100 different PDE mRNA products (217).  PDE enzymes 

are responsible for the hydrolytic cleavage of the 3´ cyclic phosphate bond of adenosine 

and/or guanosine 3´ 5´ cyclic monophosphate (Figure 8).  This reaction is shown for cAMP 

in Figure 8.  Of the 11 PDE families, 8 of these are able to hydrolyse cAMP, 3 of which does 

so exclusively, where as others can hydrolyse both cAMP and cGMP as well as only cGMP 

(130, 217).  All of these enzymes, with the exception of PDE9, can be inhibited by the 

inhibitor 3-Isobutyl-methylxanthine (IBMX) (134).      
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Figure 8.  Cyclic AMP hydrolysis

Figure 8.  Cyclic AMP hydrolysis.  Phosphodiesterase (PDE) enzymes catalyse the 
hydrolysis of 3`5` cyclic adenosine monophosphate (cAMP) to 5` AMP via the cleavage 
of the 3`phosphodiester bond.  Therefore, the PDE enzymes regulate the localisation, 
duration and amplitude of cAMP signalling within sub-cellular domains.  
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The sheer complexity of the cyclic nucleotide PDE system has lead to a wealth of research 

focused on understanding the roles of PDEs in the regulation of cAMP and cGMP in cells.  It 

is now widely accepted that any cell type can express a number of different PDEs and that 

local concentrations of cAMP are highly regulated in cells.  This compartmentalisation of 

cAMP signalling allows different cell types to specifically tailor their responses to cAMP 

generation through controlling the duration of the cAMP “clouds”, as well as localised 

activation of downstream effectors (131, 134, 136).  Also, it has been proposed that PDEs 

may not only function as hydrolytic enzymes, but as scaffold proteins themselves, ensuring 

the correct receptors are in the vicinity of the cAMP generation and that the activity of these 

enzymes would serve to terminate the activation signal (131, 134, 136).  This is highlighted 

extremely well in the case of PDE compartmentalisation in cardiac myocytes,where both 

PDE3 (cGMP inhibited, dual specificity enzyme) and PDE4 (cAMP specific) enzymes are 

expressed.  Both enzymes are localised at distinct sub-cellular localisations within the 

myocytes and can generate distinct effects within these cells.  But, it is PDE4s that are solely 

responsible for modulating the amplitude and duration of the cAMP response to β-adrenergic 

receptor stimulation in these cells (218).           

1.20 PDE3 enzymes 
  One of the more extensively studied families of phosphodiesterases is the PDE3 

enzymes as they have several roles in physiological and pathological processes making them 

a target for drug intervention (134).  PDE3s have the ability to hydrolyse both cAMP and 

cGMP, with the in vivo cAMP hydrolysis activity seemingly being able to be inhibited by 

cGMP.  PDE3 enzymes can hydrolyse both cAMP and cGMP with relatively high affinities 

where the KmcAMP is <0.4 μM and the KmcGMP <0.3 μM.  However, the maximum rate at 

which PDE3 enzymes hydrolyse cAMP (Vmax) is approximately 10 fold higher than the 

Vmax for cGMP.  This has regulatory implications as it is possible that cGMP can then act as 
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an inhibitor of cAMP hydrolysis, first demonstrated in intact cells using blood platelets as the 

model system (219).   

The PDE3 family of enzymes consist of two genes, PDE3A and PDE3B, but with only 3 

splice variants giving rise to multiple isoforms present in the PDE3A gene (PDE3A1/2/3) 

(Figure 9 A)(217, 220).   

Localisation of PDE3 enzymes is thought to be regulated primarily by two hydrophobic 

motifs, one large and one small, located in the N-terminus of the protein.  The larger of the 

two, which is approximately 195 amino acids in length, is predicted to form approximately 6 

transmembrane helices; however the exact number of these that actually transect the 

membrane still remains undermined (Figure 9 B) (221).Activation of both PDE3A and 

PDE3B enzymes can be achieved through direct phosphorylation by PKA and/or PI 3-

kinase/Akt pathways, thus giving these enzymes the ability to act as a point of convergence 

between two distinct second messenger pathways (Figure 9 B).  Phosphorylation of these 

enzymes occurs in response to hormonal stimulation in a variety of cell types.  For example, 

prostaglandins and epinephrine (adrenaline) can activate PDE3A through phosphorylation by 

PKA and PDE3B can also act as a substrate for this enzyme (221).  Other hormonal signals 

can activate PDE3 enzymes also.  For example, insulin, IGF1 and leptin can activate the PI 

3-kinase/Akt pathway which can subsequently go on and induce the phosphorylation of 

PDE3B, and possibly PDE3A, thereby stimulating its activity (221). 

1.21 PDE3 enzymes and their role in cancer 
  Although the potential role of PDE3 enzymes in tumour development has not been 

extensively studied, there are reports highlighting differential expression and/or activity of 

PDE3s in tumour cell lines of various origins.  For example, one of the earliest studies using  
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Figure 9.  PDE3 domain structure and gene organisation. (A) Gene arrangement of 
PDE3s.  Three variants of the PDE3A isoform (PDE3A1/2/3) have been identified and 
are thought to exist as truncated forms of PDE3A1. Only one variant of PDE3B has 
been identified. (B) PDE3 domain organisation, with two hydrophobic motifs and a 
catalytic region.  PDE3 activity can be regulated by both PKA and PKB 
phosphorylation. The hydrophobic domains are thought to be involved in protein 
localization. 
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hepatocellular carcinoma cell lines indicated that PDE3 mRNA was indeed present in the 

majority of the cell lines tested (222).  As well as studies examining PDE3 expression, PDE3 

specific inhibitors, such as cilostamide (223), have been used extensively and has provided 

invaluable clues to the role of PDE3s in both normal and malignant cells.  Shimizu et al 

showed that PDE3 genes (both PDE3A and PDE3B) were expressed in squamous cell 

carcinoma cells and that inhibition of PDE3 enzymes inhibits proliferation (224).  This 

indicated that PDE3 enzymes may be a therapeutic target for skin cancer (224). In a 

malignant melanoma cell line (HMG), both PDE3A and PDE3B were expressed, but 

inhibition of the enzymes had no functional consequences on the proliferation of these cells 

and their role remains unknown (225).  Also, studies carried out using cells derived from 

malignant tumours of the salivary submandibular gland showed that treatment with 

cilostamide resulted in inhibition of proliferation, suggesting that PDE3 inhibitors may be 

important in the treatment of some cancers (226). 

In the context of colon cancer, the PDE3 specific inhibitor cilostazol, which has previously 

been used to treat patients with thrombosis, was used to assess the effects of PDE3 inhibition 

on aspects of cell motility.  This study revealed that treatment with this drug inhibited the 

invasion and migration of colon cancer cells, indicating that it may be used in some instances 

as an anti-metastatic agent in the clinical setting (227).  Thus, although the studies of PDE3 

involvement in cancer are limited at present, they do hint that PDE3s may be a potential drug 

target in an anti-proliferative or anti-metastatic setting.  However, due to PDE3s prominent 

role in cardiovascular function (228, 229) this could have adverse side effects, limiting their 

potential as therapeutic targets in cancer.     
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1.22 PDE4 Enzymes  
  The cAMP specific PDE4 family of enzymes is one of the best characterised.  

Enzymes of this class are widely expressed and they play key regulatory roles in a variety of 

cellular processes and disease areas.  The role for these enzymes has been elucidated using 

highly specific inhibitors (including rolipram) (230), targeted gene knock outs (231-236), 

dominant-negative disruption of endogenous enzyme intracellular targeting (237) and RNA 

silencing techniques (238).  Expression of PDE4s has been extensively studied and found in 

leukocytes (232, 239-242), vascular smooth muscle (234, 243, 244), vascular endothelium 

(241, 245)and brain tissues (235, 236, 246, 247).  Through their ability to modulate 

intracellular cAMP, PDE4 enzymes regulate processes including pro-inflammatory responses 

(231, 241, 248, 249), smooth muscle contraction (234), and neurotransmitter signalling 

mediated by GPCR activation of adenylyl cyclase (250-253). 

PDE4s have been linked to a wide range of diseases including chronic obtrusive pulmonary 

disease (COPD), asthma, rheumatoid arthritis, Parkinson’s disease, schizophrenia, 

HIV/AIDS depression and cancer (239-241, 248, 254-257).  Indeed, the PDE4 specific 

inhibitor rolipram was initially developed as a novel anti-depressant, (258).  However, 

rolipram suffered from dose limiting side effects, including nausea and emesis, which 

severely restricted its therapeutic use (259), but is utilised routinely in vitro to explore the 

functions of PDE4 enzymes in cells (131, 239, 260-262).  

1.23 PDE4 Isoforms 

  Currently, there are approximately 20 known PDE4 isoforms which all exhibit 

distinct targeting and regulatory properties that offers diversity and tailoring of cAMP 

signalling on a cell specific basis (262, 263).  This complex array of highly conserved 

enzymes indicates that the PDE4 family of enzymes is critically important to cellular 

function under normal physiological conditions. 
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PDE4 enzymes are generated by four different genes PDE4A, B, C and D and each gene has 

the ability to generate multiple PDE4 isoforms by utilising specific promoters (244, 264, 

265) as well as alternative splicing of mRNA (247). 

Knockout studies of PDE4 genes have given valuable insight into the specific roles of PDE4 

sub-families in vivo.  Mice deficient in PDE4A, PDE4B and PDE4D have been generated 

successfully and several studies have been published on the 4B and 4D mice but only 

preliminary data is available on PDE4A-/- (266).  Mehats et al showed that the airways of 

mice deficient in PDE4D were refractory to bronchoconstriction by cholinergic stimulation 

of the parasympathetic nervous system (234).  Furthermore, PDE4D plays a role in 

controlling β2- (which activates both Gαs and Gαi to regulate myocytes contraction), and not 

β1-adrenergic responses in cardiac myocytes (267).  Moreover, PDE4D-/- mice have 

progressive and accelerated heart failure after myocardial infarction which is due to a 

deficiency in the PDE4D3 isoform (268).  A lack, or deletion, of PDE4D3 results in the 

hyperphosphoryaltion of the ryanodine receptor (RyR2)/calcium-release-channel complex 

and hence altered Ca2+ flux control leading to cardiac dysfunction (268).   

Utilising mice deficient in PDE4B, it was demonstrated that these enzymes play an important 

regulatory role in the immune system.  PDE4B was found to be essential for the successful 

mounting of an inflammatory response lippopolysaccharide in monocytes (232) and 

macrophages (269).  More recently, PDE4B was implicated in mediating the antipsychotic 

effects of rolipram in conditioned avoidance responding of mice and that the PDE4B-

regulated cAMP signaling pathway may play a role in the pathophysiology and 

pharmacotherapy of psychosis (270).  

Insight into emesis induced by PDE4 inhibitors has also been gained by knockout mice 

studies.  Using this method, it has been shown that it is PDE4D, and not PDE4B, which is 
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primarily responsible for the emesis reaction to PDE4 inhibition (235).  Taken together, these 

studies have implications for future development of PDE4 sub-family specific inhibitors for 

neurological and inflammatory disorders.              

PDE4 isoforms themselves can be classed into three distinct groups: Long, short and super-

short isoforms (Figure 10) (262).  All isoforms have a unique amino-terminal region, long 

isoforms have paired regulatory domains, namely UCR1 (Upstream Conserved Region 1) 

and UCR2, which is followed by the conserved catalytic domain and then a sub-family 

specific domain (Figure 10) (262).  Short PDE4 isoforms have no UCR1 domain but do have 

an intact UCR2 domain and super-short isoforms have no UCR1 and a truncated form of 

UCR2 (Figure 10) (262).  The catalytic domain of all PDE4 isoforms contains a key aspartate 

residue (D556 in PDE4D5 (271, 272)), that when mutated to an alanine can render the 

enzyme catalytically inactive (271, 272).  This can be used to express ‘dominant negative’ 

(DN) isoforms, where their expression displaces the endogenous enzymes and prevents any 

break down of cAMP generated.  This method has been used extensively to analyse the role 

of specific PDE4 isoforms in a variety of cell types (237, 238, 273). 

A key functional role of the UCR modules is the regulation of PDE4 activity.  This can occur 

by PKA mediated phosphorylation of specific residues in the protein.  The PKA site, located 

in the UCR1 domain, allows PKA to activate long forms of the enzymes (Figure 10) (134, 

262), thereby increasing PDE4 activity in the regions of high intracellular cAMP and 

allowing the desensitisation of signalling by increased cAMP degradation (168, 274).    The 

UCR1 and UCR2 domains also confer specific interactions with a variety of scaffolding 

proteins such as the immunophillin XAP2 (246), allowing further compartmentalisation and 

targeting of these enzymes to specific sub-cellular localisations. The unique amino-terminal  

 



Figure 10.  PDE4 domain structure

Figure 10.  PDE4 domain structure. There are approximately 21 PDE4 isoforms 
generated by alternative splicing and transcription start sites. Each protein generated is 
classed as either a long, short or a super-short isoform.  Long isoforms contain paired 
regulatory domains, upstream conserved regions 1 and 2 (UCR1 and UCR2).  Short 
isoforms lack UCR1 but have an intact UCR2 module and super-short isoforms have no 
UCR1 and a truncated form of UCR2.  PDE4 activity can also be regulated by either 
PKA or ERK and the nature of their regulation is indicated above.  In the case of ERK 
phosphorylation, only PDE4A enzymes lack this site.  In addition to the UCR1, UCR2 
and catalytic domains, each isoform has a unique N-terminal region as well as a sub-
family specific C-terminal domain.
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region of each isoform also confers targeting to distinct intracellular sites and signalling 

complexes, by interaction with scaffolding proteins.  These include β-arrestin (144, 271, 275, 

276), RACK1 (144, 145) and AKAPs (237, 238, 277, 278). Therefore, the molecular 

structure of PDE4 isoforms and their interaction with binding partners, underpins the 

compartmentalisation of cAMP signalling within cells and tissues (262, 263, 279).    

1.24 PDE4s, cAMP and cross-talk with other signalling pathways 

  PDE4 isoforms play a crucial role in regulating distinct sub-cellular pools of cAMP 

and are uniquely positioned at pivotal points, by interactions with scaffolding proteins, 

allowing the integration of numerous signalling pathways that involve cAMP.  Two 

pathways that can either regulate PDE4 activity or, in turn, be themselves regulated (either in 

a positive or negative manner) are the Raf/MEK/ERK and PI 3-kinase/Akt pathways.  Both 

are important regulators of cell proliferation and survival and are heavily implicated in 

tumourigenesis. 

ERK regulation of PDE4 activity 

Regulation of PDE4s by ERK occurs by phosphorylation of a conserved serine residue in the 

catalytic domain of the PDE4 enzymes, with the exception of PDE4A (Figure 10) (280-282).  

Phosphorylation of Ser579 (PDE4D3) results in inhibition of PDE4 activity in long isoforms, 

activation in short isoforms and inhibition is observed in super-short PDE4 isoforms (Figure 

10) (280-282).  For PDE4D3 and PDE4D5, two of the most commonly expressed PDE4 

isozymes, phosphorylation by ERK2 causes a marked inhibition of the enzymes, leading to a 

localised increase of cAMP concentrations(247, 281, 282).  The consequences of this type of 

regulation is generation of a feedback-loop, whereby the increase in cAMP leads to 

activation of PKA and phosphorylation of PDE4D3/4D5 in the UCR1 (Ser54 in PDE4D3) 
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domain and ultimately an increase in cAMP hydrolysing activity (281, 282).  This type of 

regulation has also been shown for both PDE4B and PDE4C isoforms (280). 

cAMP mediated modulation of ERK activity 

The mechanisms by which cAMP exerts its effects on ERK are still under investigation.  One 

hypothesis is that phosphorylation of Raf-1 by PKA can negatively regulate its kinase 

activity.  In vitro, PKA has been shown to phosphorylate Raf-1 at several sites – namely 

serines 43, 233, 259 and 621 (283, 284).  Phosphorylation at these sites inhibits Raf-1 kinase 

activity by numerous mechanisms, including suppressing the interaction between Raf-1 and 

Ras (170), binding and sequestration of Raf-1 by 14-3-3 proteins (285) and inhibition of Raf-

1 auto-phosphorylation (283).  The net result of these phosphorylation events is the inhibition 

of Raf-1 activity and decreased downstream signalling to MEK and ERK.   

Unlike PKA phosphorylation of Raf-1, phosphorylation of B-Raf does not inhibit its activity.  

Truncation of B-Raf at the amino-terminal allows PKA to phosphorylate and inhibit B-Raf in 

vitro (286).  However, PKA cannot inhibit full length B-Raf immunoprecipitated from cells, 

indicating that the amino-terminal region of B-Raf interferes with PKA regulation of B-Raf 

(286).   

In addition to Raf-1 phosphorylation, PKA can also phosphorylate and, in this case, activate 

B-Raf.  In human uveal melanoma cells, both the inhibition of PKA, and RNAi depletion of 

PKA, reduced B-Raf activity as well as ERK1/2 activation and cell proliferation in wild type 

B-Raf cells, whereas it did not affect B-Raf (V600E) (constitutively active B-Raf) containing 

cells (287).  This mode of B-Raf and ERK activation was independent of Rap1 and Ras, 

although no phosphorylation site on B-Raf was identified (287).  PKA activity has been 

shown to be required for B-Raf mediated activation of ERK in a number of other systems, for 
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example, in human kidney cyst cells (288) as well as in response to elastin peptides (κ-

elastin) in dermal fibroblasts (289).      

cAMP mediated inhibition of ERK can occur by activation of Rap1 but a role for either PKA 

or Epac activation of Rap1 was not shown (290).  Thus, the ability of cAMP to inhibit the 

proliferation of cells is both cell type and context specific.  Although not directly implicated 

in the above mechanisms of ERK inhibition, PDE4s have previously been shown to regulate 

Epac/Rap1 activity (291) and PKA activity (237) and therefore may be a mechanism by 

which ERK is inhibited. 

PI 3-kinase/Akt Pathway 

PI 3-kinases are a large family of proteins, initially characterised by an ability to 

phosphorylate the 3´ position of the inositol ring structure on a number of lipid substrates 

(292).  PI 3-kinase is composed of three classes: I, II and III.  Class I catalyse the conversion 

of PtdIns(4,5)P2 to PtdIns(3,4,5)P3 and are extremely important in mediating the proliferative 

effects of growth factors.  Class I PI 3-kinase enzymes are heterodimeric and the most widely 

expressed subunits are p85α regulatory and p110α and p110β catalytic subunits which are all 

ubiquitously expressed (293-296).  Class II enzymes are poorly understood but it is thought 

that they act further downstream of surface receptors and also associate with clathrin(297) 

and their physiological substrates are still under investigation.  Class III enzymes can 

phosphorylate PtdIns to form PtdIns-3-P and are involved in vesicular transport to endosomal 

compartments (298, 299).  This thesis will focus solely on the class I PI 3-kinase due to their 

critical involvement in proliferative processes.   

Under normal, unstimulated conditions, p85 and p110 are present in the cell as preformed, 

inactive dimers.   PI 3 –kinase is recruited to sites of receptor activation by interaction of p85 

SH2 domain with specific pTyr residues within activation motifs on the intracellular 
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carboxy-terminal tails of the receptors (receptor tyrosine kinases (RTKs) or integrins) (293).  

This interaction brings the catalytic subunit into close proximity to its substrate, 

PtdIns(4,5)P2, and the interaction of p85 with the RTK causes the p85/p110 complex to adopt 

an active conformation,  resulting in PtdIns(3,4,5)P3 production (Figure 11) ((294) and 

reviewed in(300, 301)). It is this localisation of PI 3-kinase to regions of high substrate 

concentration that is thought to regulate its activity. 

Negative regulation of PI 3-kinase signalling is achieved by the activity of the tumour 

suppressor PTEN (phosphatase with tensin homology).  PTEN protein is a dual lipid/protein 

phosphatase whose main function is catalysing the dephosphorylation of PtdIns(3,4,5)P3 to 

PtdIns(4,5)P2, thereby terminating PI 3-kinase signalling in cells (Figure 11) (302).  PTEN is 

a 403 amino acid protein and analysis of its crystal structure revealed an amino-terminal 

phosphatase domain, followed by a tightly associated carboxy-terminal C2 domain (Figure 

12)(303).  Both of these domains form the minimal catalytic unit of the protein, with only a 

short amino-terminal region and a 50 amino acid sequence at the carboxy-terminal (Figure 

12) (303).   

Despite, PTEN lacking regulatory domains, such as a SH2 domain, its activity can be 

controlled by several mechanisms, such as phosphorylation, membrane recruitment and 

oxidation.  For example, phosphorylation of PTEN on serine and threonine residues occurs in 

a highly acidic region of its extreme carboxy-terminus (Figure 11) and cellular PTEN 

appears to be constitutively phosphorylated on these residues.  However, the role of PTEN 

phosphorylation in its carboxy-terminal tail region is shown to influence several aspects of 

PTEN function including recruitment to cell-cell junctions  (304), PTEN protein stability 

(305-307) and suppression of its activity (308, 309).  Phosphorylation of tyrosine residues 

has also been reported, but the functional consequences are, as yet, undefined (310, 311).   
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PTEN contains two highly reactive cysteine (Cys) residues within its phosphatase domain, 

making PTENs catalytic activity highly sensitive to oxidation. (Figure 12; (312)) and which 

may also be a physiologically relevant mechanism for inactivating PTEN.  Oxidation of 

PTEN results in a disulphide bond forming between a highly conserved Cys71 (that is not 

required for catalytic activity) and Cys124 (which if mutated, inactivates PTEN lipid 

phosphatase activity) , which in the crystal structure both lie very close to each other (303, 

313).  Regulation of PTEN activity by oxidation occurs during both experimental oxidative 

stress and endogenous reactive oxygen species and oxidative regulation of PTEN does play a 

role in redox regulation of PI 3-kinase-dependent signalling (314).    

PtdIns(3,4,5)P3 can also be dephosphorylated, on the 5´ phosphate of the inositol ring by 

SHIP (SH2-containing inositol phosphatase) generating PtdIns(3,4)P2.  However, in the 

absence of stimulation SHIP does not appear to regulate the basal levels of PtdIns(3,4,5)P3, 

as cells lacking SHIP do not have elevated basal levels of PtdIns(3,4,5)P3 and Akt activity 

that is characteristic of PTEN-null cells (302, 315-319).  Indeed, the loss of SHIP regulates 

the duration and magnitude of stimulated increases in PtdIns(3,4,5)P3 or Akt activity (315-

319).  Thus, it is possibly the long-term sustained elevation of phosphoinositol increases, 

caused by loss of PTEN, that is important for tumour development and progression.   

Production of PtdIns(3,4,5)P3 by PI 3-kinase allows the recruitment of PH (Pleckstrin 

Homology) domain containing proteins, which act as effectors of the PI 3-kinase pathway.  

One of the major downstream effectors of PI 3-kinase is the serine/threonine kinase Akt 

(Figure 11) (also known as protein kinase B; PKB).  This cytoplasmic kinase is recruited to 

sites of PtdIns(3,4,5)P3 generation by its PH domain, wherein it becomes activated through 

phosphorylation of two residues – threonine 308 (Thr308) and serine 473 (Ser473) (Figure 11).  

Akt phosphorylation at Thr308, in its kinase activation loop, is sufficient for activity, but 

requires Ser473 phosphorylation for maximal activity (320).  Phosphorylation at Thr308 is 
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carried out by the PH domain containing protein, 3-phosphoinositide dependent kinase-1 

(PDK1) and this site is specific for PDK1 (Figure 11).  Ser473 is phosphorylated by a number 

of kinases including mTOR and DNA-PK (Figure 11) (321, 322). When activated, Akt can 

phosphorylate its target substrates and promote cell survival and contribute to growth and 

proliferation (Figure 11). 

PI 3-kinase is often dergulated in a large number of sporadic human tumours, due to its role 

in cell surival and proliferation, and current estimates indicate that one or more components 

of the pathway is mutated in approximately 30% of all human tumours (323).  For example, 

mutations in the p110 catalytic subunit have been reported, with the most frequent ‘hot spot’ 

mutations enhancing PI 3-kinase activity and drive cell transformation (324).  These 

activating point mutations have been reported in 20-30% of colon, brain and gastric tumours 

(325),  and amplification of p110 catalytic subunit has been reported in ovarian, breast and 

pancreatic cancers (323).  The gene encoding the p85 regulatory subunit is also frequently 

mutated and can give rise to new fusion proteins (326, 327), with mutant p85 proteins 

lacking the carboxy-terminal SH2 domain (328, 329) as well as the inter-SH2 domain (330) 

also occuring in some cancers, resulting in the constitutive activation of PI 3-kinase. 

Mutations or deletions of the PTEN gene, which produce an inactive lipid phosphatase 

protein or loss of PTEN expression, results in sustained or uncontrolled PI 3-kinase 

signalling.  These alterations are common in sporadic tumours and can also predispose to 

Cowdens syndrome, an inherited disorder characterized by benign growths (hamartomas) and 

increased risk of cancer (331).  In fact, PTEN is perhaps one of the most frequently mutated 

or deactivated genes in the PI 3-kinase pathway in human cancers, with sporadic mutations 

found in a high percentage of tumour types including colon, breast, ovarian and glioblastoma 

(332).   
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Figure 11.  The PI 3-kinase/Akt pathway. Activation of the pathway is achieved 
by the autophosphorylation of RTKs or integrins on tyrosine residues in conserved 
motifs.  The PI 3-kinase heterodimer is recruited to the activated receptors via its 
SH2 domain and phosphorylates PtdIns(4,5)P2 to generate PtdIns(3,4,5)P3.  Effector 
proteins, such as PDK1 and Akt, are recruited via their PH domains to sites of 
PtdIns(3,4,5)P3 generation.  PDK1 can phosphorylate and activate Akt on Thr308.  
Akt can also be phosphorylated on Ser473 by so called PDK2s such as mTOR or 
DNA-PK.  Once phosphorylated on both sites, and therefore fully active, Akt can 
then regulate cell fates such as apoptosis, proliferation and growth via 
phosphorylation of downstream proteins.  Negative regulation of the pathway is 
achieved by the dual protein/lipid phosphatase PTEN which removes the 
3`phosphate on the inositol ring and converts PtdIns(3,4,5)P3 to PtdIns(4,5)P2.
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Figure 12.  PTEN domain structure

Figure 12.  PTEN domain structure. Full-length PTEN protein domain structure 
is represented above.  The N-terminal phosphatase domain and the C2 domain are 
required for PTEN catalytic activity.  The catalytic cysteine residue (Cys124) along 
with cysteine 71 (Cys71) form a reversible disulphide bond when the enzyme 
becomes oxidised.  The PtdIns(4,5)P2 binding domain and the extreme carboxy-
terminal PDZ-binding domain are also shown.  The phosphorylation sites within the 
carboxy-terminal tail is represented by a yellow circled letter P.      
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cAMP, PDE4s, and modulation of the PI 3-kinase/Akt pathway 

The ability of cAMP to negatively regulate the PI 3-kinase/Akt pathway occurs by a variety 

of mechanisms.  For example, cAMP can inhibit Akt by blocking PDK1 membrane 

localisation (333) and can also inhibit Akt phosphorylation by other means that are poorly 

understood (334-336).  cAMP can also activate the downstream effector Akt, by both PI 3-

kinase dependent and independent mechanisms.  For example, Fillippa et al (337) showed 

that forskolin (a direct activator of adenylyl cyclase) treatment of Cos cells (monkey kidney 

cells) resulted in the PKA-dependent, PI 3-kinase independent, activation of Akt.  Also, 

mutation of Akt Ser473 did not abolish PKA activation of Akt, indicating that this was not the 

direct phosphorylation site and mechanism of action (337).  cAMP can also activate Akt in a 

manner independent of both PI 3-kinase and PKA-phosphorylation of Akt (338).   

PDE4 regulated cAMP has previously been shown to be able to inhibit PI 3-kinase/Akt in a 

number of cell types.  For example, the PDE4B family can negatively regulate the 

proliferation of diffuse large B-cell lymphomas by inhibiting the PI 3-kinase/Akt pathways 

(339).  Also, in adipocytes, PDE4 inhibition can partially inhibit the insulin-stimulated 

phosphorylation of Akt (340).  Thus, PDE4s can act as pivotal regulators of both ERK and PI 

3-kinase/Akt pathways that are often hyper-activated in human malignancies and may 

provide potential therapeutic strategies to inhibit cancer cells critically dependent on them for 

survival.  

1.25 cAMP, PDE4s and the cell cycle 

  The cell cycle consists of several stages, namely G1, S, G2 and M, and all of which 

contribute to the process of cell division.  During S-phase DNA is replicated and is preceded 

by a gap (G1) phase during which the cell is preparing for DNA synthesis (for example 

checking growth factor availability and that no DNA damage checkpoints are activated).  A 
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second gap (G2) phase occurs after S-phase and is when DNA is checked to ensure it has 

been replicated faithfully prior to proceeding to mitosis (M), at which point the cell divides 

and the chromosomes are segregated into two daughter cells (Figure 13; reviewed in (341, 

342)).  Cells can also be in a non-replicating phase of the cell cycle, namely G0, which 

accounts for the majority of the non-growing, non-proliferating cells of the body (341, 342).    

Regulation of the cell cycle is achieved by the activity of key regulatory proteins such as 

cyclin dependent kinases (CDKs).  CDKs are serine/threonine kinases that are activated and 

phosphorylate a number of downstream target proteins at specific points during the cell cycle 

to allow the progression from one phase to another.  During G1 CDK4, CDK6 and CDK2 are 

all active, during S CDK2 and during G2 and M phases CDK1 (also known as Cdc2) is 

active (Figure 13 A).  CDKs are activated by specific cyclins that are specifically expressed 

during the phases of the cell cycle.  For example, during G1 cyclins D1, D2 and D3 are 

expressed and bind to, and activate, CDK4 and CDK6 which is essential for G1 entry (Figure 

13) (343).  Other cyclins expressed include cyclin E (which associates with CDK2 and which 

is essential for G1/S-phase progression), cyclin A (which binds CDK2 and is required during 

S-phase and also binds CDK1 for entry into M) and cyclin B, which binds CDK1 and 

regulates mitosis (Figure 13 A) (344-347).  One method of inactivating CDK/cyclin activity 

is by proteolysis of the cyclin component and this occurs by ubiquitin mediated proteolysis at 

the end of a cell cycle phase (348).   

Another method of counteracting CDK activity is by the action of cell cycle inhibitory 

proteins, namely CDK inhibitors (CKIs), which bind to CDKs either alone or in CDK/cyclin 

complexes.  Two distinct families of CKIs are the INK4 family and Cip/Kip family (349).  

The INK4 family consist of several members including p15 (INK4b), p16 (INK4a), p18 

(INK4c) and p19 (INK4d), all of which can bind CDKs in their inactive form and therefore 

prevent cyclin D binding and entry into G1 phase.  Cip/Kip CKIs include p21Cip1/Waf1 (p21Cip1 
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henceforth), p27Kip1/Cip2 (p27Kip1 henceforth) and p57Kip2.  These CKIs bind to, and inhibit, 

CDK/cyclin complexes and, in particular, G1-phase CDK/cyclins such as CDK2/cyclin E 

(Figures 13 A and B)(350-353).  Induction of CKIs is achieved by several mechanisms such 

as DNA damage and growth factor withdrawal, all of which can regulate CKI on numerous 

levels.  Regulation of CKI expression and activity is achieved by phosphorylation, 

localisation, transcription and degradation.  For example, p21Cip1 is a direct transcriptional 

target of p53 tumour suppressor, where it is expressed in response to DNA damage, thereby 

preventing replication of damaged DNA (354).  Also, p27Kip1 can be phosphorylated by both 

CDK/cyclin complexes and Akt, which regulates its localisation, nuclear import and 

interaction with 14-3-3 proteins (355-359).  p27Kip1 is also regulated by transcription (by 

FOXO transcription factors) and by degradation (by SCF/Skp2 ubiquitin ligase complex) 

(360-363). 

Downstream of CDK/cyclins is one of the major target substrates, retinoblastoma (Rb) 

protein (Figure 13 B).  During early G1, Rb is hyperphosphorylated (ppRb), leading to 

disruption of a complex containing Rb and the E2F transcription factor (amongst others).  

Hyperphosphorylated Rb dissociates from E2F leading to E2F transcription of target genes 

including proteins that are essential for S-phase progression including cyclin A, B1 and E as 

well as CDK1 (364-367).  Rb remains phosphorylated for the majority of the cell cycle and 

CDK2/cyclin E contributes to the maintenance of the hyperphosphorylated state and loss of 

hyperphosphorylated Rb results in re-association of the Rb/E2F complex and suppression of 

E2F activity (Figure 13 B) (347). 

In cancer, numerous components of the cell cycle, as well as cell cycle regulators, are 

commonly are mutated or overexpressed in cancer, leading to hyper-activation and 

contributing to the increased proliferative potential of tumour cells.  For example, the most 

commonly mutated protein is the tumour suppressor p53 (reviewed in (368)) and subsequent  
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Figure 13.  Cell cycle regulation by p21Cip1/Waf1/p27Kip1.  (A) Cell cycle progression 
is regulated at key points by the activity of several CDK/cyclin complexes.  These are 
in turn, regulated in a manner dependent on the transcription of the cyclins during the 
various stages of the cell cycle.  Proteins such as p21Cip1/Waf1 and p27Kip1 act as 
inhibitors of specific CDK/cyclin complexes (such as CDK/cyclin A/E), resulting in a 
loss of their activity and cell cycle arrest.  (B) p27Kip1 binding to these complexes 
results in suppression of CDK/cyclin activity.  This results in the loss of 
phosphorylation on a key downstream substrate, retinoblastoma (Rb) protein.  Under 
normal conditions Rb is hyperphosphorylated and is prevented from binding E2F 
transcription factors.  Loss of hyperphosphorylated Rb results in binding of E2F and 
inhibition of its transcription factor activity.  Rb/E2F target genes include cyclins A, B 
and E as well as CDK1, all of which are required for the progression of the cell cycle 
into S-phase and through G2/M phases.   
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loss of p53 activity prevents the activation of p21Cip1 and inhibition of the cell cycle.  Cyclin 

D1 is commonly overexpressed in breast, lung, oesophageal and bladder cancer and is linked 

to cancer progression (reviewed in (369)).  Also, Rb was the first tumour suppressor 

identified and is commonly lost in several types of cancer (reviwed in (370)).  Also, a key 

regulator of p27Kip1 stability, Skp2, is commonly overexpressed in ovarian, breast, colorectal 

and NSCLC cancers (371-374).    

PDE4 enzymes can also regulate aspects of the cell cycle progression which can be utilised 

to address the possible therapeutic benefits of PDE4 inhibition, especially in the context of 

cancer.  The role PDE4s play in regulating the cell cycle will be examined in the discussion 

section of Chapter 3.   

1.26 PDE4s and cancer 

  Previously, the involvement of PDE4s in human disease has been focused on COPD 

and asthma.  However, there is a growing body of evidence that PDE4s may be a potential 

drug target for several human malignancies. 

For nearly 10 years, PDE4 inhibition in chronic lymphocytic leukaemia (CLL) is known to 

induce apoptosis and has been proposed as a potential therapeutic target (375, 376).  PDE4 

inhibition in CLL activates a mitochondrial apoptotic pathway involving caspases 3 and 9 

along with cytochrome c release (377).  This process is dependent upon the activity of 

protein phosphatase 2A (PP2A), as inhibition using okadaic acid, prevented loss of 

phosphorylated Bad protein and dissociation from 14-3-3 protein (377).  This process was 

also shown to be independent of Epac mediated Rap1 activation, despite a forskolin/rolipram 

combination activating Rap1 (291).       Cell cycle arrest and apoptosis can be induced in 

acute lymphoblastic leukaemia (ALL), by both forskolin and rolipram (378).  In addition, 

PDE4B is often overexpressed in diffuse large B-cell lymphoma (DLBCL) which correlates 
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with poor clinical outcome (379).  Moreover, DLBCL cells overexpressing PDE4B were 

resistant to cAMP induced apoptosis but modulation of PDE4B activity, by either inhibition 

or the expression of dominant negative enzymes, resulted sensitisation and subsequent 

apoptosis in a PI 3-kinase/Akt dependent fashion (339). 

In addition to haematological malignancies, PDE4 inhibition causes a G1 cell cycle arrest 

and apoptosis in malignant glioma cells (380).  Also, osteoblastic osteosarcoma cells, which 

express PDE4A and PDE4C enzymes, show proliferative inhibition when treated with 

rolipram (381). 

As well as a direct role in inhibiting cancer cell proliferation, PDE4s inhibitors block 

angiogenic responses of endothelial cells (ECs).  In human umbilical vein endothelial cells 

(HUVECs), VEGF mediated proliferation is blocked by PDE4 inhibition, involving 

suppression of ERK signalling, loss of cyclin A expression and cell cycle arrest (245).  Also, 

PDE4 inhibition blocks VEGF-mediated EC migration (382).  Thus, the use of PDE4 

selective inhibitors may be a useful anti-angiogenic treatment, where pathological 

angiogenesis is driven by VEGF.   

PDE4 inhibition has also been shown to ablate Rho-driven migration of fibroblasts on 

Laminin substrates, which highlights their poteintial as anti-invasive or anti-metastatic agents 

in certain circumstances (383).     

Taken together, these studies that PDE4s may be useful drug targets several different types of 

malignancies.  However, what is not clear is how, if at all, PDE4 activity and/or expression 

influences any aspects of solid epithelial cancer behaviour, and how their modulation may be 

exploited as a potential therapeutic strategy.   
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1.27 Summary 

  Although not thought of as a ‘classical’ cancer pathway, cAMP and in particular, 

PDE4 regulated cAMP pathways, have been shown to be altered in some malignancies.  

Also, cAMP can cross-talk with other pathways, such as ERK and PI 3-kinase/Akt pathways 

which are frequently deregulated in cancer, and is therefore an attractive target for 

therapeutic intervention.  Thus, modulation of specific pools of cAMP, using 

pharmacological tools that are under development for other disease conditions, could provide 

a much needed way to treat cancers which may be resistant to conventional therapies. 

Thus, there is some tantalising evidence that cAMP pathways may play critical roles in 

regulating the proliferation of cancer cells.  It is the role of cAMP and how it may be 

modulated, to therapeutic benefit, in colorectal cancer that I wish to investigate in this thesis.  

 



 65

 

 

 

 

 

 

 

 

Chapter 2:       

Materials and Methods 

 

 



 66

2.   Materials and Methods 

 
Materials 
 

2.1 Cell culture reagents 
 

Supplier: Autogen bioclear, Wiltshire, UK 

Foetal bovine serum (FBS) 

 

Supplier: Beatson Institute Central Services 

Sterile PBS 

Sterile PBS/1 mM EDTA 

 

Supplier: Invitrogen, Paisley, UK 

Eagles Minimal Essential Medium with Earles salts  (MEM) 

Dulbecco’s modified Eagle’s medium (DMEM) 

RPMI 

200 mM L-glutamine 

MEM vitamins (100x) 

MEM Non-essential amino acids (NEAA) (100x) 

2.5% trypsin solution 

 

Supplier: Qiagen, Crawley, UK 

Polyfect transfection reagent 

 

Supplier: Roche Diagnostics Ltd, Sussex, UK 

Hygromycin 

 

Supplier: Sigma Chemical Co, Poole, UK 

 100 mM Sodium pyruvate 
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2.2   Cell culture plasticware 
 

Supplier: BD Biosciences, Oxford, UK 

Falcon tissue culture dishes (60 mm, 90 mm and 120 mm) 

12 and 96 well plates 

 

Supplier: Fisher Scientific, Loughborough, UK 

Nunc tissue culture flasks 

Nunc cryotubes 

 

2.3   Treatments 
 

Supplier: Sigma Chemical Co, Poole, UK 

IBMX 

Forskolin 

Rolipram 

H-89 

 

Supplier: MERK Chemicals Ltd, Nottingham, UK 

Cilostamide 

8-Br-cAMP 

LY294002 

 

Supplier: Axxora, Nottingham, UK 

 8-pMeOPT-2`-O-Me-cAMP 

 

Supplier: TOCRIS, Bristol, UK 

 NKH 477 (Colforsin daropate hydrochloride) 

 

2.4 MTT assay 
 

Supplier: Sigma Chemical Co, Poole, UK 

 Thiazolyl blue tetrazolium bromide 
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Supplier: Fisher Scientific, Loughborough,, UK 

 Dimethylsulphoxide (DMSO) 

 

2.5 PDE assay 
 
Supplier: Sigma Chemical Co, Poole, UK 

 3`5`-cyclic adenosine monophosphate (cAMP) 

 Snake venom (Crotalus atrox; Western diamondback) 

DOWEX MR-3 

 

Supplier: GE Healthcare Ltd, Chalfont St.Giles,UK  

 [3H] cAMP 

 

2.6 Rap1 activity assay 
 
Supplier: Perbio, Cramlington, UK 

 EZ-Detect Rap1-activation kit 

 

2.7 Cell cycle analysis 
 

Supplier: Sigma Chemical Co, Poole, UK 

Propidium iodide (PI) 

 5-Bromo-2´-deoxyuridne (BrdU) 

 

Supplier: DAKO, Ely, UK 

 Anti-BrdU mAb 

 

Supplier: Jackson ImmunoResearch, Luton, UK 

FITC labelled sheep anti-mouse IgG 
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2.8 Annexin-V staining 
 

Supplier: Transduction Laboratories, BD Biosciences, Oxford, UK 

 Annexin V-FITC Apoptosis detection Kit I 

 

 

 

2.9 Immunofluorescence 
 

Supplier: Jackson ImmunoResearch, Luton, UK 

FITC labelled sheep anti-mouse IgG 

 

Supplier: Leica UK Ltd, Milton Keynes, UK 

Leica SP2MP confocal microscope 

 

Supplier: Transduction Laboratories, BD Biosciences, Oxford, UK 

Anti-p85α mAb 

 

Supplier: Dr. N.R Leslie, University of Dundee 

 GFP-PH(Akt) construct 

 

Supplier: Sigma Chemical Co, Poole, UK 

TRITC phalloidin 

Tween 80 

 

Supplier: Vector Laboratories Ltd, Peterborough, UK 

Vectashield mounting medium with DAPI 

 



 70

2.10   Western Blotting 
 

Supplier: Amersham International, Little Chalfont, UK 

Anti-mouse/horseradish peroxidase conjugate 

Anti-rabbit/horseradish peroxidase conjugate  

ECL reagent  

High molecular weight rainbow markers 

 

Supplier: Biometra, Niedersachsen, Germany 
Semi-dry blotting apparatus 

 

Supplier: Chemicon International, Harrow, UK 

Re-blot kit 

 

Supplier: Genetic Research Instrumentation, Dunmow, UK 

Atto protein electrophoresis apparatus 

 

Supplier: PERBIO, Glasgow, UK 

Micro BCA protein assay kit 

 

Supplier: Schleicher and Schuell, London, UK 

Nitrocellulose membrane 

 

Supplier: Severn Biotech Ltd, Kidderminster, UK 

Design-a-gel 30% (w/v) acrylamide (37.5:1 Acrylamide to Bis-acrylamide) 

Design-a-gel 40% (w/v) acrylamide 

Design-a-gel 2% (w/v) Bis-acrylamide 

 

Supplier: Sigma Chemical Co, Poole, UK 

Ammonium persulphate (APS) 

Anti-sheep horse radish peroxidase conjugate 

Anti-vinculin mAb 

Anti-ERK rAb 

Anti-VSV rAb 
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Anti-α-tubulin mAb 

0.1% (v/v) aprotinin 

Bovine serum albumin (BSA) 

2 mM phenylmethylsulponyl fluoride 

TEMED 

Tween 20 

Triton X-100 

HEPES 

Sodium Fluoride (NaF) 

Phenylmethanesulphonylfluoride (PMSF) 

EGTA 

EDTA 

Ammoniumpersulphate (APS) 

 

Supplier: Transduction Laboratories, BD Biosciences, Oxford, UK 

Anti-p27Kip1 mAb 

Anti-PTEN mAb 

Anti-p85α mAb 

Anti-Rb mAb 

 

Supplier:  Santa Cruz Biotechnology, CA, USA 

Anti-cyclin A rAb 

 Anti-cyclin E rAb 

 Anti-CDK1 rAb 

Anti-Skp2 rAb 

 

Supplier:  New England Biolabs, Hertfordshire, UK 

Anti-pERK1/2 (Thr202/Tyr204) rAb 

Anti-PDK1 rAb 

Anti-pAkt (Thr308) rAb 

Anti-pAkt (Ser473) rAb 

Anti-Akt rAb 

Anti-pFKHRL1(Ser256)/pAFX(Ser195) rAb 

 

Supplier:  Thermo Fisher Scietific, Cheshire, UK 
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Anti-cyclin B1 rAb 

Anti-p21Cip1/Waf1 rAb 

 

Supplier:  Upstate(Millipore), Hampshire, UK 

Anti-Epac1 rAb 

 

Supplier:  Miles D. Houslay (University of Glasgow) 

 Anti-pan-PDE4D (sheep polyclonal Ab) 

 

Supplier: Whatman, Maidstone, UK 

3MM filter paper 

 

 

2.11   Reverse transcription (RT)-PCR 
 

Supplier: Qiagen, Crawley, UK 

miRNeasy mini RNA extraction kit 

 

Supplier: Applied Biosystems, Warrington, UK 

RNA PCR kit 

 

2.12   Stock solutions and buffers  

Cell culture solutions 
 

Complete medium for KM12C, KM12SM, KM12L4A, KM12/2C4 and MCF7 cell lines 

MEM supplemented with 

10% FBS 

2 mM L-glutamine 

1% MEM NEAA 

2% MEM vitamins 

1 mM Sodium pyruvate 

 

Complete medium for HT29, A431, WiDr, RKO, A375 and Du145 cell lines 

DMEM supplemented with 

10% FBS 
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2 mM L-glutamine 

 

Complete medium for SW480, SW620 and H630 cell lines 

RPMI supplemented with 

10% FBS 

2 mM L-glutamine 

 

Serum free medium  

MEM supplemented with 

2 mM L-glutamine 

1% MEM NEAA 

2% MEM vitamins 

1 mM Sodium pyruvate 

 

Trypsin 

0.25% trypsin in sterile PBS/1mM EDTA 

 

Protein extraction  
 

Lysis buffer (general) 

20 mM Tris/HCl, pH 7.4 

150 mM NaCl 

2 mM EDTA 

1% Triton X-100 

25 mM NaF 

1 mM PMSF 

10 μg/ml aprotinin 

100 μM sodium orthovanadate 

 

KHEM lysis buffer.  

 50 mM KCl 
50 mM Hepes, pH 7.2 
10 mM EGTA 

1.92 mM MgCl2 
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Cell cycle analysis 
70% Ethanol 

Saline (0.9g NaCl/100 ml H2O) 

4N HCl (34.5 ml Conc HCl + 65.5 ml H2O)  

PBT (PBS + 0.5% BSA + 0.1% Tween 20) 

 

Western Blotting 

 

Acrylamide gel – 10% 

12 ml Resolving gel buffer 

16.7 ml 30% acrylamide (37.5:1 acrylamide/Bis-acryalmide) 

20 ml H2O 

400 μl APS 

30 μl TEMED 

 

Rb Acrylamide gel – 7% 

12 ml Resolving gel buffer 

12 ml acrylamide (29.76% acrylamide/0.24% Bis-acrylamide) 

24 ml H2O 

400 μl APS 

30 μl TEMED 

 

Resolving gel buffer 

1.5 M Tris/HCl, pH 8.8   

0.4% SDS 

 

Sample buffer – 4x 

150 mM Tris pH 6.8 

20% SDS 

30% Glycerol 

15% 2-mercaptoethanol 

bromophenol blue to colour 
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Stacking gel  

4.5 ml Stacking gel buffer 

2.4 ml 30% acrylamide 

11.1 ml H2O 

400 μl APS 

30 μl TEMED  

 

Stacking Gel Buffer 

0.5 M Tris/HCl, pH 6.8 

0.4 % SDS 

 

Tank buffer - 10x 

0.52 M Tris 

0.52 M glycine 

1% SDS 

 

Transfer Buffer – 10x 

0.48 M Tris 

0.39 M glycine 

0.4% SDS 

Diluted with H2O and 20% methanol (v/v) 

 

Antibody dilution and wash buffer (TBST) 

50 mM Tris base, pH 7.4 

200 mM NaCl 

0.25% Tween 20 
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2.13  Cells and plasmids  
KM12C, KM12L4A and KM12SM cells were provided by Professor I Fidler (MD 

Anderson, TX, USA) and KM12/2C4 cells were derived as previously reported and cultured 

in complete MEM (MEM, 10% FBS, 2% NEAA, 1% MEM vitamins, 1% L-glutamine, 1% 

sodium pyruvate) (79).  Cell culture media for other cell lines used in this study include: 

MCF7 as per Fidler model cells; HT29, A431, WiDr, RKO, A375, H630, Du145 were all 

cultured   in DMEM supplemented with 10% FBS and 1% L-gluatamine; SW480 and 

SW620 were cultured in RPMI supplememnted with 10% FBS and 1% L-glutamine.  MCF7, 

HT29, A431, WiDr, RKO, A375, H630, Du145, SW480 and SW620 were obtained from the 

ATCC.  All cells were routinely maintained in a humidified incubator at 37ºC with 5% CO2 

and sub-cultured prior to reaching confluence.   PTEN-GFP (N-terminal tag) expressing cells 

were generated by retroviral infection of KM12C/2C4 cells with PTEN-GFP in pWZL 

vector, and single cell clones selected in growth media containing 400 µg/ml hygromycin B 

(V.G.Brunton). 

N-terminally tagged GFP-PH (Akt PH domain) construct was a kind gift from N.R. Leslie 

(University of Dundee). 

A lenti-viral construct containing the sequence AAGAACTTGCCTTGATGTACA, which 

has previously been shown to specifically silence PDE4D (238), was incorporated into a 

lenti-viral insert sequence flanked by a 5` BamH I and 3` Xho I restriction sites, the 

complimentary anti-sense sequence and a loop-sequence.  The specific sequence was 

generated on the Genscript web-based siRNA construct builder (www.genscript.com).  A 

reverse of this insert was also generated, annealed with the forward sequence and ligated into 

siRNA expression vector pRNAT-U6.1/lenti (Genscript Co, USA) that had previously been 

cleaved using BamH I and Xho I restriction enzymes.  Stocks of the plasmid were generated 

by transformation of ABLE® C competent cells and selected in ampicillin.  The same was 

 

http://www.genscript.com/
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also done for a scrambled PDE4D sequence (PDE4Dscr) as a control (5` - 3` Sequence:  

GGACCGATTATCTATGAATAC).  

PDE4D3-VSV, PDE4D3DN-VSV, PDE4D5-VSV and PDE4D5DN-VSV were kind gifts 

from M.D. Houslay (University of Glasgow).      
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Methods 

2.14  Routine cell culture 
All sub-culturing of adherent cells was achieved by removing the medium was by 

aspiration, the monolayer rinsed with PBS then with 10% trypsin/PE solution.  Upon 

detachment the cells were resuspended in appropriate media, counted, and then transferred 

into tissue culture flasks or plates.  Cells were generally treated one day after plating (unless 

otherwise stated).   

2.15 Treatment of cells 
Cells were treated with the numerous chemical compounds at the concentrations  and 

time points indicated in each figure legend.   

2.16 MTT proliferation assay 
 Cell proliferation and viability was assayed indirectly by a modified MTT assay, 

based on the enzymatic reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium 

bromide (MTT; Sigma) to formazan crystal by mitochondria and cellular dehydrogenase 

enzymes (384).  Briefly, 50 μl of cell suspension containing 500-1000 cells (dependeing 

upon cell doubling time) were dispensed into 96-well flat bottomed microplates.  Dilutions of 

pharmacological agents in growth media, were performed in four replicate rows per cell type 

and per dilution.  Plates were then incubated in a humidified incubator in 5% CO2 at 37ºC.  

At the time points indicated, 50 μl of MTT solution (5 mg/ml MTT in phosphate buffered 

saline PBS) was added into a total volume of 150 μl, and incubated in 5% CO2 at 37ºC for 4 

hours.  Formazan crystals were dissolved with 100 μl DMSO and optical density at 570 nm 

was determined using a plate reader (SpectraMax Plus 384, Molecular Devices, Wokingham, 

UK).    
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2.17 PDE activity assay 
PDE assays were done by a modification (385) of the two-step method by Thomson 

and Appleman (386). Cells were lysed in KHEM buffer containing Complete® protease 

inhibitors (Roche Molecular Biochemicals, Germany) and then subjected to 14,000 g for 15 

min at 4°C.  To 20 μl of the resulting supernatant was added 20mM Tris buffer/inhibitor to 

achieve a total volume of 50 μl.  The tubes were vortexed and 50μl of cAMP mix (1ml 

20mM Tris/10mM MgCl2: 2μl ‘cold’ cAMP: 3μl [3H] cAMP) was added and incubated at 

30ºC for 10 minutes.  Samples were then removed and boiled for 2 minutes.  25 μl of snake 

venom (1mg/ml in 20mM Tris) was added and incubated for 10 minutes at 30ºC and placed 

on ice.  DOWEX mix (400 μl ; 1 part DOWEX: 1 part H2O: 1 part Ethanol) was added, 

mixed thoroughly  and incubated on ice for 20 minutes and the supernatant (150 μl) was then 

added to scintillation fluid (1ml) and mixed gently .  cAMP mix (50 μl) was also added to 

separate vials of scintillant fluid as total cAMP controls.  Samples were then read on a β-

counter (Beckman Coulter LS 6500 TA liquid scintillation counter).  Each condition was 

performed in triplicate and each assay was repeated a minimum of three times.   PDE specific 

activity was calculated as pmol/min/mg protein and data shown is a mean ± SD of n=3 

independent experiments. In order to determine the contribution of various PDE family 

members to the total PDE activity, family specific inhibitors were used at a final 

concentration that completely inhibited their activities.  PDE3 and PDE4 activities were 

determined using 10 µM cilostamide (PDE3) (223) or 10 µM rolipram (PDE4) (239, 262).   

2.18  Preparation of protein extracts 
Dishes were transferred directly from the incubator onto ice.  The medium was 

aspirated and cells were washed twice with PBS and lysed in ice-cold lysis buffer for 15 

minutes. Cells were then scraped off the tissue culture plastic using a disposable cell scraper 

and the lysate transferred to a microcentrifuge tube. The lysate was then clarified by 
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centrifugation at 14,000g for 15 minutes at 40C (Eppendorf chilled centrifuge 5415 D).  

Protein concentration was determined using the Micro BCATM Protein Assay Kit and light 

absorbance then measured with a DU® 650 spectrophotometer (Beckman) at a wavelength of 

562nm.  

2.19   Western blot analysis 
To approximately 50-100μg of protein lysate was added sample buffer and then 

incubated at 99°C for 10 minutes.  Protein separation was achieved by running the samples 

and molecular weight markers on a SDS-PAGE gel consisting of a short stacking gel and a 

longer resolving gel.  The resolving gel contained 7%, 10% or 12% acrylamide depending on 

the size of the proteins being separated.  Retinoblastoma (Rb) protein was separated on a 7% 

gel with altered ratios of acrylamide:Bis-acylamide, as detailed in the materials section.  Gels 

were typically run at 40V overnight. Following electrophoresis, the proteins were transferred 

onto a nitrocellulose membrane, while being buffered by 3MM filter paper saturated in 

transfer buffer, using semi-dry blotting apparatus at 20V for 1hour 10 minutes.  After the 

proteins had been transferred onto nitrocellulose the membrane was blocked for a minimum 

of one hour at room temperature in 5% BSA in TBST.  The primary antibody in 5% 

BSA/TBST was then added for 1 hour at room temperature or overnight at 40C.  The blots 

were then washed three times in TBST (10 minutes each) and incubated with horseradish 

peroxidase conjugated secondary antibodies diluted at 1 in 5000 for 1 hour.  The blots were 

again washed three times in TBST (15 minutes each) and ECL reagent was added for 3 

minutes.  Bands corresponding to the specific proteins were observed using a Kodak X-

OMAT 480 RA film processor.  When necessary, blots were stripped using the Re-Blot Plus 

Strong Antibody Stripping Solution according to manufacturers instruction. The blots shown 

are representative of experiments which were repeated three times.  
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Primary antisera dilution for Western Blotting: 

All anti-bodies used were diluted 1/1000 in 5% BSA/TBST prior to incubation, unless 

otherwise stated. 

2.20  Rap1 activation assay 
 Extraction of activated Rap1 (Rap1-GTP) was carried out as per manufacturers 

instructions.  Briefly, approximately 2 x 106 cells were set-up and after treatment cells were 

washed with ice-cold TBS and 1ml of lysis buffer (supplied in kit) was added and the cells 

scraped immediately.  Cell lysates were incubated on ice prior to centrifugation at 14,000rpm 

for 15 minutes at 4ºC to remove cell debris.  Protein concentration was determined and 

500μg was added to immobilised glutathione discs in spin columns, which had been 

equilibrated with 20 μg of GST-RalGDS-RBD (Glutathion-S-transferase tagged-Ras binding 

domain of the Rap1 interacting protein RalGDS which specifically interacts with GTP bound 

Rap1) previously.  This was then used to purify Rap1-GTP from the lysates by 

centrifugation.  Rap1-GTP was removed from the discs after washing by the addition of 

sample buffer.  As controls, untreated lysates were incubated with either GTPγS (positive 

control) or GDP (negative control) for 30 minutes at 30ºC, prior to the purification of Rap1-

GTP.  Samples were then subject to SDS-PAGE western blot and purified-active Rap1-GTP 

was identified using a specific anti-Rap1 polyclonal antibody (supplied with kit).  As loading 

controls, lysates were also run and total Rap1 levels determined by western blot.           

2.21 Cell cycle analysis 
Cells were treated as indicated, washed in cold PBS (4°C), trypsinised and prior to 

fixation in 70% ethanol/phosphate-buffered saline (PBS) overnight. For DNA content 

analysis (including sub-2n DNA), cells were pelleted and resuspended in PBS containing 

1 µg/ml RNase (Qiagen Ltd, Crawley, UK) and 10 µg/ml propidium iodide (PI), incubated at 
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room temperature for 30 min, then analysed using a Beckton Dickinson (Oxford, UK) 

FACScan flow cytometer. To monitor BrdU incorporation, cells were incubated with 25 µM 

BrdU for the final hour of treatment, fixed in ethanol, resuspended in saline (0.9%) and 

permeablised using 4N HCl for 15 minutes at room temeperature.  Cells were centrifuged 

and washed 3x with PBT and resuspended in 100 μl PBT/anti-BrdU anti-body and incubated 

for 30 minutes at room temperature.  Cells were then washed once in PBT, centrifuged and 

resuspended in PBT/ fluorescein isothiocyanate (FITC)-conjugated secondary antibody for 

30 minutes in the dark.  Cells were again washed, centrifuged and resuspended in PBS 

containing 5 µg/ml PI.  Samples were immediately analysed by flow cytometry and the cell 

cycle distribution analysed.  Experiments were carried out 3 times and data shown as mean ± 

SD. 

Antibody dilutions for Brdu/PI analysis: 

 Antibody Dilution 

Anti-BrdU  1/40 

Anti-mouse-FITC conjugate   1/128 

  

2.22 Annexin V detection of apoptosis 
Apoptosis was quantified using an Annexin V-FITC detection kit (Beckton 

Dickinson) and staining was carried out as per manufacturers’ instructions.  Briefly, KM12C 

cells were set up at low density and treated for 24 hours, 48 hours or 72 hours with the 

treatments indicated.  At each time point cells were washed with cold PBS, trypsinised and 

resuspended in binding buffer (100 mM HEPES, 1.4 M NaCl, 25 mM CaCl2, pH 7.4) at a 
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concentration of 1 x 106 cells per ml and 100 µl of resuspended cells were incubated with 

Annexin V-FITC and 5 μg/ml PI.  Cells were analysed using a Beckton Dickinson (Oxford, 

UK) FACScan flow cytometer.  

2.23   Transient transfection 

Cells were plated onto glass cover slips in an eight-well plate and at a density of 

1x105 per well, twenty four hours prior to transfection.  KM12C cells were transfected using 

Polyfect according to the manufacturers instructions with 1.5μg DNA per well.  

Transfections were incubated at 37ºC, 5% CO2 for 4-5 hours then washed three times with 

PBS, fresh media added and left overnight in the incubator.  Treatments were carried out 

approximately 24 hours after transfection.   Typical transfection efficiencies were around 

30%. 

2.24  Immunofluorescence 
Cells were washed in cold PBS then fixed in 4% paraformaldehyde for 15 minutes.  

They were then washed 3 times with cold PBS and permeabilised with PBS/0.5% Triton X-

100/1% BSA for 15 minutes.  Afterwards cells were blocked with PBS/10% FCS, for a 

minimum of 1 hour cells and then incubated with primary antibodies overnight, at 4ºC in the 

dark.  Antibody detection was by reaction with fluorescein isothiocyanate (FITC)-conjugated 

secondary antibody at 1 in 100 for 1 hour.  Cells were then washed and mounted prior to 

visualisation using a Leica confocal microscope.  In the case of GFP-PH transfected cells, 

these were mounted after blocking stage.  These experiments were repeated a minimum of 

three times and the images shown are representative of the localisation observed in the 

majority of cells.  100-150 cells under each condition and for each separate experiment were 

counted and the percentage of cells with the localisation shown under control conditions was 

calculated.  Data shown is a mean ± SD of n=3 independent experiments.     
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Primary antibody dilution for IF: 

 Antibody Dilution 

Anti-p85α   1/100 

2.25 Sub-cellular fractionation 

KM12C cells were grown as above and treated as indicated in the figure legend. The 

medium was aspirated and the cells were washed twice with ice-cold PBS, followed by a 

wash with ice-cold KHEM buffer (containing Complete™ protease inhibitor cocktail (Roche 

Molecular Systems)), and then snap-frozen in liquid nitrogen. The frozen cells were thawed 

on ice and lysed by passing them 10 times through a 26.5-gauge needle. Samples were then 

centrifuged at 1000 g for 10 min (Eppendorf chilled centrifuge 5415 D) to produce a low-

speed pellet (P1 fraction) and a low-speed supernatant (S1). S1 was then centrifuged at 

100000 g for 60 min (Beckman TL-100 ultra centrifuge and TLA-100.3 rotor) to produce a 

high-speed pellet (P2 fraction). The pellet fractions were resuspended in the same volumes of 

KHEM buffer.  To equal volumes of each fraction was added sample buffer prior to SDS-

PAGE/western blot analysis.   

2.26  Immunoprecipitation (IP) 
The protein concentration of lysates was determined and approximately 1mg total 

protein was pre-cleared with 20 μl Protein G-agarose (Sigma, Poole, UK), centrifuged at 

14,000 rpm at 4ºC and then the supernatant incubated with either 2 μl of anti-pan-PDE4D 

anti-sera or pre-immune sera overnight at 40C.  Protein G-agarose was then used to 

precipitate anti-body/protein complexes, which were then washed three times in lysis buffer 

and resuspended in 20 μl of sample buffer prior to SDS-PAGE/western blot analysis.  As a 

control, pre-immune serum was used in place of anti-pan-PDE4D.     
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2.27 RT-PCR 
 1x106 cells were used to extract total RNA using the miRNAeasy kit (Qiagen, 

Crawly, UK) as per the manufacturer’s instructions.  RNA concentration was determined 

using UV absorbance and measured with a DU® 650 spectrophotometer (Beckman) at a 

wavelength of 260nm.  1 µg of RNA was then used to generate cDNA using RNA PCR kit 

(Applied Biosystems, Warrington, UK) which included the relevant buffers, nucleotides, 

oligo-d(T)s  and MuLV reverse transcriptase.  Reverse transcription was carried out at 42ºC 

for 5 minutes and samples were subsequently denatured (99ºC for 5 minutes) and cooled.  

For PCR amplification of specific genes, 5 µl of reverse transcription reaction solution was 

used.  Sense and anti-sense primers of the gene of interest (0.625 µM final concentration) 

were added to 5 µl of RT reaction as well as sense and anti-sense primers corresponding to 

GAPDH (0.625 µM final concentration), as an internal control.  PCR master mix was then 

added to the reaction (as per manufacturer’s instructions) which included TAQ DNA 

polymerase.  The cycle sequence for each primer set varied and is detailed below.  The PCR 

products were then resolved on a 1.5% agarose gel containing ethidium bromide, and 

visualised under a UV light source and the image was captured by a SYNGENE gel 

documentation system.  Images shown are representative of experiments carried out at least 3 

times.   

 

Sense, anti-sense and cycle condition for genes of interest: 

Gene Sense primer sequence 

 (5`- 3`) 

Anti-sense primer sequence 

(5`- 3`) 

Cycle  

conditions 

Fragment 

 Size(bp) 

 

PDE4D 

 

CCTCTGACTGTTATC-
ATGCACACC 

 

GATCCACATCATGTA-
TTGCACTGGC 

94º 60seconds 

50ºC 80seconds 

72ºC 70seconds 

 

262 
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30 cycles 

 

PDE4D3 

 

ATTTTCCGTTCAGA-
AGGCATTCCTGG 

 

CCTGGTTGCCAGAC-
CGACTCATTTCA 

94º 60seconds 

50ºC 80seconds 

72ºC 70seconds 

35 cycles 

 

561 

 

PDE4D5 

 

CTGTTGCAGCATGA- 

GAAGTCC 

 

CCTGGTTGCCAGAC-
CGACTCATTTCA 

94º 60seconds 

52ºC 70seconds 

72ºC 100seconds

35 cycles 

685 

GAPDH GTGGATATTGT- 

GCCCAATGACATC 

 

GGACTCCACGACGTA-
CTCAGCGCCAGCA 

 

All above  

conditions 

 

214 

  N.B.  All PCR reactions are given an initial 1 minute at 94º (denaturing) and a final 7 

minutes at 72ºC (extension) as additional steps.   

2.28 Preparation of DNA 
E.coli (ABLE® C) competent cells, stored at -70ºC, were thawed on ice and 20μl 

aliquoted into pre-chilled Eppendorf tubes.  Various amounts of DNA, ranging from 0.5 to 

2μl, were added to the competent cells and the solution was gently mixed with a pipette tip.  

The mixture was incubated on ice for 30 minutes, after which the cells were heat-shocked for 

45 seconds in a 41ºC water bath.  After an additional two minutes on ice 80μl of pre-heated 

L-broth was added and cells were incubated for one hour at 37ºC in a shaking incubator (at 

225 rpm).  The mixture was then spread on agar plates containing 100 μg/ml of ampicillin 

and incubated overnight at 37ºC.  DNA extraction was carried out by Maxi prep (Qiagen, 

Crawley, UK). 

 



 87

2.29  Retroviral infection 
Phoenix Eco packaging cells were plated on 60 mm tissue culture dishes for 6 hours 

prior to the transfection of DNA using DOTAP Liposomal Transfection Reagent.  The 

transfection medium was removed 16 hrs later and replaced with fresh DMEM and 10% 

FBS.  After twenty-four hours the viral supernatant was collected, filtered through a 0.45μM 

membrane and added to KM12C/2C4 cells in the presence of 4μg/ml polybrene.  Fresh 

medium was added to the Phoenix Eco cells and a second infection carried out twenty-four 

hours later.  Clones were obtained by the addition of hygromycin. 

2.30 Nucleofection 
Nucleofection was carried out using Kit V (Amaxa, Koeln, Germany) and a 

Nucleofector II device (Amaxa, Koeln, Germany) for the efficient transfection of plasmid 

DNA into KM12C or KM12L4A cell lines.  Nucleofection was carried as per the 

manufacturer’s instructions.  Briefly, 1 x 106 cells were centrifuged at 1000rpm and 

resuspended in 100µl of supplemented solution V (supplied in kit).  To this was added 5µg of 

purified plasmid DNA and transferred into a cuvette (supplied in kit) and subjected to an 

electrical pulse using programme P-20 on the Nucleofector II.  The cell suspension was 

immediately transferred to a 60mm tissue culture dish containing the appropriate media, 

allowed to plate overnight and the media replaced and left for a further 24 hours prior to 

treatment.  For the generation of stable cell lines, selection such as Geneticin (G418 sulphate; 

Invitrogen, Paisley, UK), was added after allowing the cells to plate overnight.         

2.31 Stable knockdown of PDE4D in KM12L4A cells 
2x106 KM12L4A cells were Nucleofected with 5µg siRNA constructs containing 

either PDE4D or PDE4Dscr sequences (as well as containing green fluourescent protein 

(GFP) under a separate promoter), allowed to plate overnight and then placed in media 

containing 800µg/ml G418 as a selection media.  The cells were allowed to grow in the 
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selection media and when they reached 70-80% confluence, were split and allowed to 

continue growing.  The cells were then FACs sorted for GFP expression and pooled.  PDE4 

expression was then assessed and the cells were used in subsequent experiments.      

2.32 Statistical analysis 
Statistical analysis was done using the nonparametric Mann-Whitney test using 

MiniTab statistical analysis programme.  Generation of a P value  < 0.05 was considered 

significant as it corresponded to a > 95% probability that the two populations being 

compared are different.   

2.33 Densitometry 
Analysis of fold expression of a protein was carried out using WCIF image J analysis 

software, where measurements were taken from western blots of the same exposure, analysed 

and expressed as fold change.    
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3.   cAMP effects on KM12C proliferation 

3.1 Aim 
The work presented in this chapter was to test whether or not cAMP could regulate the 

proliferation of KM12C colorectal cancer cell line which is inherently resistant to common 

cytotoxic chemotherapeutic agents and signal transduction inhibitors, such as Src tyrosine 

kinase inhibitors, and, if so, I wished to understand the mechanisms by which cAMP 

modulated proliferation.   

3.2 cAMP inhibits the proliferation of KM12C cells 
cAMP can have either a positive or negative effect on the proliferation of many cell 

types (130).  However, when I started the work evidence in the literature suggested that the 

effect cAMP might have is cell type and context specific, and could occur by a variety of 

mechanisms (375, 387-389).  Initial experiments, using an MTT assay to measure 

proliferation, showed that elevation of cAMP using the adenylyl cyclase activator forskolin 

(Fsk; 50 µM; yellow line) and the non-hydrolysable cAMP analogue 8-Br-cAMP (300 µM; 

pink line) strongly inhibited the proliferation of KM12C cells  over a five day period (Figure 

14 A and quantified in Figure 14 B).  The anti-proliferative effect of raising intracellular 

cAMP also occurs in other epithelial cancer cell types including breast (390), ovarian (391) 

and pancreatic (392).  However the mechanism by which cAMP exerts its anti-proliferative 

effect may not be the same in each case.   

Increasing cAMP by phosphodiesterase inhibition alone, using IBMX (a non-specific PDE 

inhibitor), cilostamide (a PDE3 specific inhibitor) or rolipram (a PDE4 specific inhibitor) at 

concentrations known to maximally inhibit PDE activity (218, 223, 262, 393), had no effect 

on the proliferation of KM12C cells (Figure 14 A and quantified in Figure 14 B).  This is in 

contrast to adding the PDE3 and PDE4 inhibitors alone, where these were able to suppress 
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the proliferation of some normal and cancer cell types (242, 254, 375, 378, 380, 391, 394, 

395).    

50 µM Fsk completely inhibited the proliferation of KM12C cells (Figures 14 A and B).  To 

define the mechanisms regulating local cAMP concentrations, a lower dose that only 

exhibited a partial response was required so that we then could modulate pools of cAMP 

using specific PDE inhibitors.  We used Fsk at different concentrations and measured the 

effects on proliferation using the MTT dye based assay over a five day period.  This allowed 

determination of the Fsk concentration that gave an approximate 50% inhibition of 

proliferation.  1 µM Fsk (Figure 14 C; brown line and Figure 14 D) gave rise to 50% 

inhibition of proliferation at day 5 of the assay (as indicated by the red line on Figure 14 D).  

This ‘low dose’ concentration of Fsk was then used in conjunction with PDE inhibitors to 

look for potentiation of the anti-proliferative effect.  
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Figure 14.  cAMP inhibits the proliferation of KM12C cells. Proliferation 
of KM12C cells was monitored over a 5 day period using a MTT dye based 
assay using the absorbance at 570nm as a readout of viable cells, where 
increasing A570nm correlates with increased number of viable cells.  Data 
points represent mean A570nm ± SD of n=3 independent experiments (A) 
Cells were treated with control (DMSO; dark blue line), 100 µM IBMX (non-
specific PDE inhibitor; brown line), 10 µM Cilostamide (PDE3 specific 
inhibitor; dark green line), 10 µM rolipram (PDE4 specific inhibitor; light blue 
line), 300 µM 8-Br-cAMP (non-hydrolysable cAMP analogue; pink line) and 
50 µM forskolin (Fsk, adenylyl cyclase activator; yellow line). (B) 
Quantification of (A) using proliferation at day 5  (C)  A concentration range 
of Fsk (0.1 µM – 50 µM) to establish which concentration (1 µM; brown line) 
gave an approximate 50% inhibition of proliferation (D)  Quantification of Fsk 
concentration range in (C) at day 5 time point.  Red line indicates 50% of 
proliferation. Data is expressed as a percentage of control A570nm, mean ± 
s.d. (n=3 independent experiments).   
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3.3 PDE enzymes can regulate the anti-proliferative effects of 

cAMP 
Intracellular signalling by cAMP is a highly compartmentalised process where localised 

cAMP caused by stimulation of specific receptors via adenylyl cyclase isoforms activates 

cAMP-binding proteins, such as PKA, Epac and PDEs (130, 143). To test whether or not 

specific PDE enzymes regulate the pool of cAMP controlling KM12C cell proliferation the 

‘low dose’ (1 µM) Fsk was used, in combination with PDE inhibitors, to try to potentiate the 

intermediate effect of the ‘low dose’ Fsk and so cause a greater inhibition of proliferation. 

‘Low dose’ Fsk in combination with the non-specific inhibitor IBMX (Figure 15 A, light 

blue line) induced a complete inhibition of proliferation, where IBMX alone (Figure 15 A 

pink line) had no effect.  As before, ‘low dose’ Fsk (Figure 15 A, yellow line) had only a 

partial effect (Figure 15 A).  This data implied that one or more PDE enzymes was 

responsible for controlling cAMP regulated proliferation.  Since the majority of cAMP 

hydrolysing activities comes from the PDE3 and PDE4 families (134, 262), it was logical to 

test whether or not PDE3 or PDE4 inhibitors in combination with ‘low dose’ Fsk caused 

growth cessation.  The PDE3 inhibitor, cilostamide, had no effect on its own at a 

concentration known to maximally inhibit its activity (10 µM, ref (223)) (Figure 15 B, pink 

line).  Cilostamide did not potentiate the anti-proliferative effects of ‘low dose’ Fsk when 

used in combination (Figure 15 B; Fsk/cilostamide, light blue line) and ‘low dose’ Fsk had 

only an intermediate effect (Figure 15 B, yellow line).  In contrast, the PDE4 inhibitor 

rolipram, used at a concentration known to maximally inhibit its activity (10 µM (262, 

393)), enhanced the partial growth suppression induced by ‘low dose’ Fsk alone (Figure 15 

C; Fsk/rolipram, light blue line).  Statistical analysis of the data in Figure 15 C, showed that 

there was no significant difference between control (vehicle; DMSO) versus rolipram alone 

(Figure 15 C, P > 0.09) for all time points. However, for control versus ‘low dose’ Fsk (P < 
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0.03), ‘low dose’ Fsk versus Fsk/rolipram (P < 0.02) and control versus Fsk/rolipram (P < 

0.02) the data were statistically significant from day 2 onwards (Figure 15 C) (P < 0.05 is 

statistically significant). 

Thus, the above data suggests that under conditions of sub-maximal adenylyl cyclase 

activation, inhibition of specific cAMP-hydrolysing PDE4 enzymes can suppress the 

proliferation regulatory machinery in KM12C cells.  This is interesting, as under resting 

conditions PDE3 enzymes have a greater activity (23.6 ± 4 pmol/min/mg protein; Figure 15 

E)  compared to PDE4 enzymes (13 ± 3 pmol/min/mg protein; Figure 15 E) in KM12C cells.  

This hints at compartmentalisation of PDE3 and PDE4 enzymes, with PDE4s regulating 

proliferation and PDE3s having, as yet, an undefined role in KM12C cells.
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Figure 15.  PDE enzymes regulate the anti-proliferative pool of cAMP. (A) 
Cells were treated with control (DMSO; dark blue line), the non-specific PDE 
inhibitor IBMX (100 µM; Pink line), ‘low dose’ Fsk (1 μM; yellow line) or 
IBMX in combination with low dose Fsk (1 μM Fsk +100 μM IBMX; Fsk/ 
IBMX; light blue line).  (B) Fsk/cilostamide (1 µM Fsk + 10 μM cilostamide; 
light blue line) did not potentiate the partial growth inhibitory effects of Fsk 
alone (1 μM Fsk; yellow line) and cilostamide alone (10 μM; pink line) had 
no effect compared to control (DMSO; dark blue line).  (C) Fsk/rolipram (1 
μM Fsk + 10 µM rolipram; light blue line) completely inhibited proliferation 
whereas neither agent alone (1 μM Fsk yellow line; 10 μM rolipram pink 
line) was able to do this.  Values shown are mean ± SD of 3 independent 
experiments * P < 0.03 compared with 1 µM FSK alone.  (D)  Quantification 
of Fsk ± PDE3/4 inhibitors in (B) and (C) at day 5 time point.  Data is 
expressed as a percentage of control A570nm, mean ± SD (n=3 independent 
experiments).  (E)  PDE activity assays were carried out in vitro using 1 μM 
cAMP as substrate and the PDE specific inhibitors (cilostamide and rolipram) 
to calculate the resting activity of the relevant PDE family. The difference 
between control ± inhibitor was used to calculate the specific activity. 
Activities are expressed as a mean ± SD and were determined in 3 independent 
assays.  
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3.4 Epac did not mediate the anti-proliferative effects of cAMP 
Exchange protein directly activated by cAMP (Epac) is a cAMP binding protein that 

acts as a guanine nucleotide exchange factor (GEF) for the small GTPases Rap1 and Rap2. 

Epac can mediate effects of cAMP independently of the main cAMP effector, PKA (132, 

396). Rap1 activation by cAMP is one of a number of mechanisms proposed to mediate anti-

proliferative effects of cAMP (387).  Rap1 mediated inhibition of proliferation is thought to 

occur via negative regulation of MAP kinase and occurs in both PKA dependent (290, 388) 

and PKA independent pathways (397, 398).  Until recently, there was a lack of biological 

tools to help distinguish between PKA and Epac dependent activation of Rap1.  However, 

the development of a method for measuring the activation of Rap1 (GTP bound state) (399) 

and potent and specific Epac agonists which can efficiently activate Rap1 (8-pCPT-2'-O-Me-

cAMP and 8-pMeOPT-2'-O-Me-cAMP) (188, 190, 191, 396), allows the efficient 

measurement of Rap1-GTP loading levels in an Epac specific manner. 

50 µM Fsk (‘high dose’ Fsk) and ‘low dose’ Fsk (1 µM Fsk) in combination with rolipram 

(Fsk/rolipram) induces complete growth cessation in KM12C cells (Figures 14 A and D).  

Therefore, the question of whether or not Epac/Rap1 is responsible for mediating cAMP-

induced inhibition of proliferation observed was addressed.  

Firstly, the Epac agonist was tested to ascertain whether or not it was able to induce Rap1 

activation.  Treatment with 100 µM Epac agonist (8-pMeOPT-2’-O-Me-cAMP; 8-pMeOPT) 

for 24 hours induced Rap1 activation (Figure 16 A) as compared to the control (DMSO; 

Figure 16 A).  Subsequently, several conditions were set-up to test whether PDE4-induced 

Epac/Rap1 activation caused inhibition of proliferation.  Five conditions were used to this 

end, namely 1) Control (DMSO vehicle), 2) ‘high dose’ (50 μM) Fsk, which alone blocks 

cell proliferation, 3) ‘low dose’ (1 μM) Fsk (which only suppresses proliferation by around 
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50%), 4) rolipram (10 μM) which does not affect proliferation, and 5) the combination of 

‘low dose’ Fsk (1 μM) plus rolipram (10 μM) (Fsk/rolipram), which causes complete 

growth cessation (Figure 15 C).  These treatments were used throughout the remainder of this 

thesis to investigate mechanisms of action.  Cells were treated for 24 hours prior to the 

purification of Rap1-GTP.  Lysates from untreated cells were incubated with either GTPγS 

(Figure 16 B), a non-hydrolysable GTP analogue which constitutively activates Rap1 

(positive control) or GDP (Figure 16 B) as a negative control for Rap1 activation.  GTPγS 

efficiently activated Rap1 compared to GDP.  Total Rap1 and total Epac protein levels were 

used as loading controls (Figure 16 B).  ‘High dose’ Fsk and Fsk/rolipram induced Rap1 

activation consistent with growth inhibition (Figure 16 B).  ‘Low dose’ Fsk produced only a 

partial increase in Rap1-GTP and rolipram had no effect on Rap1-GTP levels (Figure 16 B).  

Therefore, PDE4 regulated cAMP can activate Rap1, which could therefore contribute to 

reduced proliferation. 

Treatment of cells with the five conditions – the standard treatment set – described above, 

resulted in both ‘high dose Fsk’ and Fsk/rolipram suppressing pERK (Thr202/Tyr204) in a 

reciprocal manner to Rap1 activation (Figure 16 C).  Control and rolipram treatment had no 

effect on pERK (Thr202/Tyr204) and ‘low dose Fsk’ had only a partial effect (Figure 16 C).  

Treatment with the Epac agonist, 8-pMeOPT, at a concentration known to activate 

Epac/Rap1, suppressed pERK (Thr202/Tyr204; Figure 16 C) compared to control and using 

total ERK as a loading control (Figure 16 C).  This showed that pErk is suppressed in a 

reciprocal manner to Rap1 activation and is dependent upon PDE4 inhibition, which may be 

a mechanism by which proliferation was inhibited. 

Treatment of cells with ‘low dose’ Fsk alone induced the partial loss of pERK (Thr202/Tyr204) 

(Figure 16 D) and the PKA inhibitor H-89, when used in conjunction with ‘low dose’ Fsk 
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had no effect on pERK (Thr202/Tyr204) status (Figure 16 D).  This indicated that suppression 

of pERK was independent of PKA activity.  Cells were then incubated with either control 

(DMSO, dark blue line) or 100 μM Epac agonist (pink line) and proliferation of KM12C 

cells was monitored over a six day period (Figure 16 E).  Despite the ability of the Epac 

agonist to activate Rap1 and suppress pERK (Thr202/Tyr204), there was no inhibition of 

proliferation observed (Figure 16 E).  Thus, PDE4 regulated cAMP-induced activation of 

Epac/Rap1 and its subsequent suppression of pERK (Thr202/Tyr204) was not responsible for 

the inhibition of proliferation in KM12C cells, as the result could not be mimicked by direct 

activation of Epac/Rap1.  Also, inhibition of PKA, in combination with ‘low dose’ Fsk, did 

not negate pERK suppression, indicating that PKA is not involved in the cAMP inhibition of 

ERK phosphorylation.  In fact, a role for PKA in the PDE4/cAMP mediated inhibition of 

proliferation was not elucidated and the reasons for which are discussed at a later point in this 

thesis.      
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Figure 16.  Epac/Rap1 did not mediate the anti-proliferative effects of 
cAMP. The ability of PDE4 regulated cAMP to activate Rap1 via Epac was 
assessed. (A)  Cells were treated with either control (DMSO) or100 μM Epac 
agonist (8-pMeOPT-2’-O-Me-cAMP; 8-pMeOPT) for 24 hours and Rap1-
GTP levels assessed.  (B)  Cells were treated with control (DMSO; lane 1), 
‘high dose’ Fsk (50 μM; lane 2), ‘low dose’ Fsk (1 μM; lane 3), 10 μM 
rolipram (lane 4) or Fsk/rolipram (1 μM Fsk  + 10 μM rolipram; lane 5) for 
24 hours and Rap1-GTP levels analysed.  GTPγS and GDP treated lysates were 
used as positive and negative controls for Rap1-GTP respectively.  Total Rap1 
and total Epac levels were used as loading controls.  (C)  The effect on pErk 
(Tyr202/Thr204) was assessed after treatment with the 5 conditions outlined in 
(B) and also after 8-pMeOPT treatment (lane 7) .  Total ERK was used as 
loading control.  (D) pERK (Tyr202/Thr204) status after treatment with 1 μM 
Fsk ± 10 μM H-89 (PKA inhibitor).  (E)  Proliferation of cells over a five day 
period ± 100 μM 8-pMeOPT.  All blots are representative of n=3 independent 
experiments.  Proliferation assay points are mean A570nm ± SD of n=3 
independent assays.  Molecular weight markers are indicated on blots.      



Rap1-GTP

Total Rap1

C
on

tro
l

50
 µ

M
 F

sk

1 
 µ

M
 F

sk

10
  µ

M
  r

ol
ip

ra
m

Fs
k/

ro
lip

ra
m

G
TP

γS

G
D

P

EPAC1
8-

pM
eO

PT

C
on

tro
l

C
on

tro
l

50
 µ

M
 F

sk

1 
 µ

M
 F

sk

10
  µ

M
  r

ol
ip

ra
m

Fs
k/

ro
lip

ra
m

pErk1/2
(Thr202/Tyr204)

Total Erk

Figure 16.  Epac/Rap1 did not mediate the anti-proliferative effects of cAMP

8-
pM

eO
PT

C
on

tro
l

- +-
- ++

10 μM H-89
1 μM Fsk

pErk1/2
(Thr202/Tyr204)

D

A B

C

8-pMeOPT

ab
so

rb
an

ce
 (A

57
0n

m
)

10 2 3 4 5 6
0

0.5

1.0

1.5

Control

E Proliferation ± Epac agonist

1 2 3 4 5 6 7

1 2 3 4 5

1 2 3

44kDa

20kDa

20kDa

44kDa

44kDa

Lane 

Lane 

Lane 

102



 103

3.5  Fsk/rolipram induces a partial G1/S-phase arrest  
In order to better understand the underlying mechanisms by which PDE4 regulated 

cAMP affects the colon cancer cells used here, KM12C, cell cycle distribution was analysed 

after treatment with cAMP modulators. 

Cells were treated with the standard treatment set outlined in Chapter 3.4 for 24 hours, pulse 

labeled with 25 µM bromodeoxyuridine (BrdU) for the final hour of treatment, stained with 

10 μg/ml propidium iodide (PI) and analysed by flow cytometry.  Scatter plots were 

generated for each treatment (Figure 17 A) and analysis (Figure 17 B) of cell cycle stages 

was carried out using the gates as indicated in Figure 17 A (control). In keeping with the 

anti-proliferative effects observed by MTT assays, quantification of BrdU incorporation 

showed that ‘high dose’ Fsk and Fsk/rolipram caused a partial G1 arrest, with around 15-

20% of cells still in S-phase (Figure 17 A and B).  We found that neither ‘high dose’ Fsk nor 

Fsk/rolipram had any effect on G2-phase after 24 hours treatment (Figure 17 A and B).  

Rolipram alone had no effect (Figure 17 A and B) but surprisingly ‘low dose’ Fsk caused a 

similar G1 arrest (Figure 17 A and B) to Fsk/rolipram, even although these cultures were 

still able to proliferate to around 50% of control cells in MTT assays (Figures 14 and 15).  

This implied that there were other mechanisms in addition to the G1/S-phase arrest which 

inhibited the proliferation of these cultures.  I will come back to the reason for this apparent 

discrepancy between the proliferation assays and cell cycle analysis in a later chapter.  

However, next I will assess the effects of the standard treatments on cyclin dependent kinase 

inhibitor (CKI) proteins, in order to addresses the mechanisms regulating the G1/S-phase 

transition.   
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Figure 17.  Fsk/rolipram induces a partial G1/S-phase arrest.  Cells were 
treated with control (DMSO), 50 μM Fsk (high dose Fsk), 1 μM Fsk (low dose 
Fsk), 10 μM rolipram or Fsk/rolipram (1 μM Fsk + 10 μM rolipram) for 24 
hours, pulse labelled with BrdU for final hour of treatment and the cell cycle 
was analysed.  (A)  Representative scatter plots of BrdU/PI stained cells after 
treatments of n=3 independent experiments.  (B)  Quantification of BrdU 
pulse-labelled cells using gates indicated in control (A).  Cell cycle distribution 
is presented as percentage of gated cells.   Bar chart is mean of 3 independent 
experiments ± SD. 
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3.6  Fsk/rolipram induces specific G1/S-phase CKIs             
Key regulators of the G1/S-phase transition of the cell cycle are the Cip/Kip family of 

cyclin dependent kinase inhibitors.  Previously, the PDE4 inhibitor rolipram was shown to 

induce expression of CKIs, p21Cip1 and p27Kip1, leading to growth inhibition and 

differentiation of glioma cells (380).  Therefore, we wished to assess the effects of our 

standard treatments on the expression of the G1/S-phase regulators p21Cip1 and p27Kip1 after 

24 hours.    

Firstly, unlike previous reports of Fsk inducing p21Cip1 expression (380), we found that 

neither ‘high dose’ Fsk nor Fsk/rolipram treatments resulted in a consistent increase in 

p21Cip1 (Figure 18 A).  However, ‘high dose’ Fsk and Fsk/rolipram induced expression of 

the G1/S-phase inhibitor p27Kip1 by approximately 7 fold (Figure 18 A and quantified in 

Figure 18 B).  ‘Low dose’ Fsk induced a partial (approx 3.5 fold) increase in p27Kip1 

expression (Figure 18 A and quantified in Figure 18 B), but had no effect on p21Cip1 

expression, suggesting that only a small induction of p27Kip1 is sufficient for the partial G1/S-

phase arrest (Figure 17 B).  Neither rolipram nor control (DMSO) treatments had any effect 

on the expression of p21Cip1 or p27Kip1 (Figure 18 A and quantified for p27Kip1 in Figure 18 

B). 

3.7  Fsk/rolipram inhibits Rb/E2F regulated cell cycle proteins 
 p27Kip1 is an important regulator of cell cycle control and negatively regulates the 

CDK/cyclins responsible for G1/S-phase transition (353).   

To help us understand the underlying mechanisms behind the G1/S-phase arrest, expression 

of Rb protein and Rb/E2F regulated cell cycle proteins was analysed by western blotting.  

After 24 hours treatment of KM12C cells with the standard treatment set outlined in Chapter 

3.4, once again we found that p27Kip1 levels were increased under ‘high dose’ Fsk and 
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Fsk/rolipram conditions (Figure 19 A).  Induction of p27Kip1 by ‘high dose’ Fsk and 

Fsk/rolipram paralleled an approximate 5-fold reduction in hyper-phosphorylated Rb 

(ppRb; upper arrow) and a shift to its faster migrating hypo-phosphorylated state (pRb; 

Figure 19 A).  ‘Low dose’ Fsk reduced the hyper-phosphorylated Rb by approximately 50% 

(Figure 19 A) which is consistent with the partial inhibition of proliferation observed, while 

rolipram alone had no effect on Rb phosphorylation (Figure 19 A). 

‘High dose’ Fsk and Fsk/rolipram suppressed the expression cyclin A, cyclin B1, cyclin E 

and CDK1 (Cdc2) proteins to levels 3-4 fold less than control treated cells (Figure 19 A) and 

all of which are known to be targets of Rb/E2F regulation (364-367).    For all the above, 

vinculin was used as a loading control (Figure 19 A).  The induction of p27Kip1 and 

subsequent suppression of ppRb and Rb/E2F regulated cell cycle proteins, paralleled with the 

reduced G1/S-phase block and the growth inhibitory effects of Fsk/rolipram.   This was 

probably contributing to the anti-proliferative effects of Fsk/rolipram treatment. 

The effects of PDE4 regulated cAMP on the Rb/E2F pathway correlate with increased levels 

of p27Kip1.  One pathway which regulates p27Kip1 levels is the SCF (Skp1, Cul1 and F-box 

protein) ubiquitin ligase degradation pathway.  One of the major components of this complex 

is the F-box adaptor protein Skp2, which targets p27Kip1 for ubiquitination and subsequent 

degradation by the 26S proteosome (400, 401). Skp2 is also overexpressed, and correlates 

with late stage disease and poor prognosis, in numerous cancers including non-small cell 

lung carcinoma (372, 402, 403), breast (371, 404), colorectal (373, 405) and ovarian cancer 

(374).  Therefore, we examined whether PDE4 regulated cAMP alters Skp2 levels.  

Treatment with either ‘high dose’ Fsk or Fsk/rolipram resulted in decreased Skp2 

expression by approximately 10 fold in each case (Figure 19 B) and rolipram alone had no 

effect and ‘low dose’ Fsk had only a partial effect on Skp2 protein expression (Figure 19 B).  
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Interestingly, Skp2 is a transcriptional target of E2F (406) which could provide an 

amplification loop for inducing p27Kip1 stability and G1/S-phase inhibition. 
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Figure 18.  Fsk/rolipram induces a specific G1/S-phase CKI.  Cells were 
treated with control (DMSO; lane 1), 50 μM Fsk (high dose Fsk; lane 2), 1 μM 
Fsk (low dose Fsk; lane 3), 10 μM rolipram (lane 4) or Fsk/rolipram (1 μM 
Fsk + 10 μM rolipram; lane 5) for 24 hours and p21Cip1 and p27Kip1 protein 
levels were analysed by western blotting using specific anti-bodies as probes. 
(A) ‘High dose’ Fsk (lane 2) and Fsk/rolipram (lane 5) increases p27Kip1

(middle panel) but does not affect p21Cip1 levels  (top panel) (B)  Quantification 
of change in p27Kip1 protein expression in (A).  p27Kip1 expression is presented 
as fold-change compared to control in arbitrary units.   Bar chart is mean of 3 
independent experiments ± SD. 
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Figure 19.  Fsk/rolipram treatment inhibits expression pRb/E2F regulated 
cell cycle proteins.  Cells were treated with control (DMSO; lane 1), ‘high 
dose’ Fsk (50 μM;  lane 2), ‘low dose’ Fsk (1 μM; lane 3), 10 μM rolipram 
(lane 4) or Fsk/rolipram (1 μM Fsk + 10 μM rolipram; lane 5) for 24 hours 
and protein levels of Rb and downstream cell cycle regulators were analysed 
by western blotting using specific antibodies as probes.  (A) ‘High dose’ Fsk 
(lane 2) and Fsk/rolipram (lane 5) increases p27Kip1 (top panel), decreased 
hyper-phosphorylation of Rb (ppRb) and total Rb (2nd panel), and deregulated 
Rb/E2F regulated cell cycle proteins cyclin A (3rd panel), cyclin B1 (4th panel), 
cyclin E (5th panel) and CDK1 (6th panel).  Vinculin immunoblotting (bottom 
panel) was used as a loading control in all of the above.  (B) ‘High dose’ Fsk
(lane 2) and Fsk/rolipram (lane 5) caused a decrease in levels of the SCF 
ubiquitin ligase adapter protein Skp2 (upper panel).  Vinculin immunoblotting 
was used as a loading control in all of the above.  All blots are representative 
of n=3 independent experiments.  The relative molecular weight markers are 
indicated next to blots.   
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3.8  Fsk/rolipram induces a cell death morphology 
Going back to investigate the apparent differences between the MTT assay versus cell 

cycle analysis (Figure 14 and Figure 17 respectively) where ‘high dose Fsk’ and 

Fsk/rolipram cause complete growth cessation, whilst ‘low dose’ Fsk-treated cultures can 

still proliferate, albeit more slowly, we examined cell viability.  Treatment of KM12C cells 

was extended up to 72 hours and cell viability was then evaluated.  Detection and analysis of 

cell death was exploited by several techniques including light microscopy, PI and Annexin-V 

staining. 

The process of apoptotic cell death is characterised by several morphological and 

biochemical features that allows identification of dying cells in a population.  Morphological 

features include cell shrinkage, rounding and blebbing of the membrane.  Cells were seeded 

at a density of 5 x 105 cells per 60 mm dish, allowed to adhere overnight and treated with the 

standard conditions outlined in Chapter 3.4.  Phase contrast images were then taken at either 

24, 48 or 72 hours and analysed for evidence of cell death.  In the control cultures  after 48 

hours, cells were tightly aggregated (Figure 20).  However, ‘high dose’ Fsk and 

Fsk/rolipram treatments resulted in fewer of these colonies and the emergence of what 

appeared to be small, round and shrivelled cells (Figure 20).  ‘Low dose’ Fsk had only a 

partial effect and rolipram alone had no effect on the morphology of the cells (Figure 20).  

This data suggested that ‘high dose’ Fsk and Fsk/rolipram may have been inducing some 

form of cell death which would account for the differences observed in the proliferation 

assays (Figures 14-15) even although cell cycle profile of ‘high dose’ Fsk,  Fsk/rolipram 

and ‘low dose’ Fsk were all similarly affected (Figure 17).   
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3.9 Fsk/rolipram induces DNA fragmentation 
To quantify the relative abilities of each standard treatment used to induce cell death, 

cells were seeded and treated for 24, 48 or 72 hours, fixed in ethanol, stained with PI and 

analysed by flow cytometry.  Fragmented DNA appears as the sub-2n-DNA region of the 

histograms (arrow indicates regions of interest in Figure 21 A).  Control or rolipram 

treatments caused no significant increase in fragmented DNA at 24 or 48 hours (Figure 21 A, 

and quantified in Figure 21 B).  An increase in sub-2n DNA content was observed after 72 

hours but this was not statistically significant with P > 0.09.  ‘High dose’ Fsk and 

Fsk/rolipram induced more cell death within the cultures than ‘low dose’ Fsk alone (Figure 

21 A and quantified in Figure 21 B).  The difference became statistically significant after 48 

hours, with P < 0.05 (when compared to ‘low dose’ Fsk alone), which was consistent with 

Figure 15 C, where the inhibition of proliferation became statistically significant after 2 days 

of treatment (‘low dose’ Fsk alone compared to Fsk/rolipram). 

3.10 Fsk/rolipram induces apoptosis. 
To confirm that Fsk/rolipram was inducing apoptotic cell death, Annexin-V staining 

and analysis by flow cytometry was used to detect early apoptotic cells over a 72 hour 

period.  Cells were trypsinised and resuspended in Annexin-V binding buffer and incubated 

with Annexin-V FITC conjugate, PI and analysed.  Detection of intact cells, early apoptotic 

and late apoptotic cells were analysed.  Scatter plots were generated (Figure 22 A) and the 

lower right quadrants (corresponding to early apoptotic cells) were quantified (Figure 22 B).  

Cells treated with either ‘high dose’ Fsk or Fsk/rolipram were induced to die by apoptosis 

(26% and 27% of gated cells respectively at 72 hours).  This became statistically significant 

at 48 hours (P < 0.05) when compared to ‘low dose’ Fsk alone (Figure 22 A, and quantified 

in Figure 22 B).  Control (7%) and rolipram (10%) treated cells did not show a significant 

induction of apoptosis after 72 hours (Figure 22 A and quantified in Figure 22 B).  
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Importantly, ‘low dose’ Fsk produced only a partial induction of early apoptotic cells (Figure 

22 A and quantified in Figure 22 B).   

Using PI and Annexin-V/FITC staining of cells, we found that both ‘high dose’ Fsk and 

Fsk/rolipram treatments induced apoptosis in a manner that was statistically significant after 

48 hours compared to ‘low dose’ Fsk alone.  This data indicates that ‘low dose’ Fsk not only 

causes G1 arrest but also primes KM12C cells to die, presumably from the G1 arrested 

population, on addition of the PDE4 inhibitor rolipram and challenge with rolipram alone 

did not cause apoptosis (Figures 21 and 22).     
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Figure 20.  Fsk/rolipram induces a cell-death like morphology.  Cells were 
treated with control (DMSO), ‘high dose’ Fsk (50 μM), ‘low dose’ Fsk (1 
μM), 10 μM rolipram or Fsk/rolipram (1 μM Fsk + 10 μM rolipram for 48 
hours and phase contrast images taken and alterations in cell shape and 
morphology was examined. ‘High dose’ Fsk and Fsk/rolipram appear to 
induce altered cell morphology where more detached, rounded cells were 
visible compared to control (arrows indicate cells that were representative of 
those observed).       
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Figure 21.  Fsk/rolipram induced DNA fragmentation. The effects on cell 
viability were examined by treatment with control (DMSO), 50 μM Fsk (‘high 
dose’ Fsk), 1 μM Fsk (‘low dose’ Fsk), 10 μM rolipram or Fsk/rolipram (1 
μM Fsk + 10 μM rolipram) for 24, 48 and 72 hours.  Cells were then washed, 
trypsinised and incubated with propidium iodide (PI) and analysed by FACs 
for the detection of sub-2n DNA.  (A) Representative histograms for all time 
points and treatments are shown, with the sub-2n region indicated by arrow. 
(B)  Quantification of sub-2n DNA regions of the histograms and data is 
expressed as percentage of gated cells shown as a mean ± SD of 3 independent 
experiments.  * P < 0.05 compared to 1 µM Fsk alone.  
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Figure 22.  Fsk/rolipram induces apoptosis. To confirm the type of cell 
death induced cells were treated with with control (DMSO), 50 μM Fsk (high 
dose Fsk), 1 μM Fsk (low dose Fsk), 10 μM rolipram or Fsk/rolipram (1 μM 
Fsk + 10 μM rolipram) for 24, 48 and 72 hours Cells were then washed, 
trypsinised and incubated with Annexin-V FITC conjugate, PI and analysed by 
FACs for the detection of early apoptotic cells.  (A) Representative scatter 
plots for all time points and treatments are shown, with the lower right 
quadrant (corresponding to early apoptotic cells) indicated by arrow.  (B) 
Quantification of lower right quadrants of the dot plots for the detection of 
Annexin-V positive early apoptotic cells.  Data expressed as percentage of 
gated cells shown as a mean ± s.d. of 3 independent experiments.  * P < 0.05 
compared to 1 µM FSK alone.  
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Discussion 

3.11  Inhibition of chemo-resistant colon cancer cells by cAMP 
Since their isolation, KM12C cells have been used for many studies, including the 

characterisation of the v-Src oncoprotein and its cellular homologue c-Src where its role in 

mediating cell-cell and cell-matrix adhesions was elucidated (77, 79-81).  Proliferation of 

these cells, in vitro and in vivo, is unaffected by Src tyrosine kinase activity and expression 

(77, 79-81) and they are also resistant to cell death induced by common chemo-therapeutic 

agents such as 5-fluourouracil (5-FU) and cis-platin (V.G. Brunton, unpublished data).  This 

increased tolerance to first-line therapeutics is a trait indicative of some advanced cancer 

cells, including colorectal cancer, and is therefore perhaps the major problem in colorectal 

cancer treatment (31, 407).  This study used the KM12C colon cancer cells from the Fidler 

model of colorectal metastasis (40) to examine whether modulators of intracellular cAMP 

may provide means to kill chemo-resistant tumour cells, and ultimately colorectal cancer, 

thereby providing novel mechanisms by which these tumours may be treated. 

Numerous studies have shown that cAMP can have either a positive or negative effects on 

proliferation, which is both cell type and context specific (387, 388).  However, in the 

majority of cases cAMP appears to have an anti-proliferative effect.  The inhibition of 

proliferation by cAMP occurs by a variety of mechanisms that can lead to either cell cycle 

arrest and/or apoptosis.  For example, as I was carrying out my work Naderi et al published 

that by using cAMP elevating agents such as forskolin, IBMX and PGE2, a S-phase arrest 

and an inhibition of DNA replication was induced (408).  This correlated with increased 

p21Cip1 levels and subsequent binding to (and inhibition of Cdk2-cyclin complexes), leading 

to dephosphorylation of Rb and dissociation of PCNA (Proliferating Cell Nuclear Antigen) 

from chromatin in S-phase cells.  cAMP has also been shown to induce apoptosis as a means 

of inhibiting cancer cell proliferation.  This has been shown in A-172 glioma cells, where 
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elevation of cAMP using 8-Br-cAMP, forskolin or IBMX resulted in the activation of PKA 

and subsequent decreased proliferation and increased apoptosis (409).  

In the work presented in this thesis, we used chemical agents that have previously been 

shown to directly increase cAMP, such as forskolin and 8-Br-cAMP, as well as indirectly by 

modulating the breakdown of cAMP to the inactive 5`AMP.  We found that only forskolin (at 

relatively high doses) and 8-Br-cAMP had significant effects on KM12C cells and that using 

the PDE inhibitors IBMX, cilostamide or rolipram on their own was insufficient to suppress 

proliferation.  This indicated that the adenylyl cyclase (AC) molecules were in a ‘low’ 

activity state, which can be the result of reduced endogenous activation by GPCR/Gαs 

proteins, inhibition by Gαi proteins or low levels of signalling by other molecules known to 

activate ACs (410).  We also investigated whether or not rolipram, in combination with 

GPCR agonists, such as PGE2 and isoproternol (β2-adrenergic receptor agonist), could 

synergise and inhibit KM12C proliferation.  We have some preliminary evidence that PGE2, 

and not isoproternol, can synergise with rolipram and inhibit KM12C proliferation (data not 

shown), indicating that natural agonists that are often overexpressed by colorectal tumours 

(reviewed in (156)), may be utilised to inhibit their proliferation. 

Thus, we have shown that in cells, refractory to Src kinase inhibitors and common chemo-

therapeutics such as Cis-platin and 5-FU, cAMP can robustly inhibit their proliferation when 

its production is exogenously stimulated. 
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3.12  Is Epac or PKA regulating KM12C proliferation? 
 cAMP-induced inhibition of proliferation can occur by a number of mechanisms, one 

of which is the inhibition of the ERK pathway (411).  Both of the major cAMP effectors, 

PKA and Epac, have been shown to inhibit the ERK pathway in a context specific manner, 

but both can do so by the inhibition of the upstream kinase Raf-1.  PKA can phosphorylate 

and inactivate Raf-1 on a number of residues, including Ser259, and cAMP mediated 

activation of Epac induces Rap1 association with Raf-1 and prevents its activation by Ras 

(283, 290, 387). 

We have shown that under conditions which inhibit proliferation, namely ‘high dose’ Fsk 

and Fsk/rolipram, Rap1 is activated (presumably by Epac) and correlates with a suppression 

of ERK phosphorylation.  Moreover, the suppression of pERK appears to be mediated by 

Epac activated Rap1 as use of the Epac specific agonist, 8-pMeOPT, suppresses pERK and 

also, use of the PKA inhibitor H-89 does not counter the effects of Fsk on pERK suppression, 

indicating that is occurring in a manner independent of PKA.  However, the Epac/Rap1 

mediated suppression of pERK does not appear to be responsible for inhibiting the 

proliferation of KM12C cells, as 8-pMeOPT did not inhibit the proliferation of these cells.   

Despite the inhibition of PKA not having an effect of pERK, we have not fully ruled out the 

possibility of it having a role in the PDE4/cAMP mediated inhibition of proliferation.  We 

examined PKA activity after our standard treatment set (as outlined in Chapter 3.4) and PKA 

activity was elevated under all conditions compared to control treatment (data not shown).  

However, we were hampered in our efforts to assess whether or not inhibition of PKA, using 

either H-89 or the more potent and specific inhibitor KT5720 (412), in conjunction with 

Fsk/rolipram was able to counteract the anti-proliferative effects as PKA inhibition alone was 

sufficient to inhibit the proliferation of KM12C cells (data not shown).  If time permitted, 
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further investigation could make use of RNAi depletion of PKA types I and II, as well as 

using the Ht31 peptides which disrupts anchoring of PKA type II to AKAPs (237) to 

elucidate the mechanisms by which PKA can regulate KM12C proliferation and also whether 

or not PKA activity is required for Fsk/rolipram mediated inhibition of proliferation. 

3.13 PDE3 vs PDE4 induced inhibition of proliferation  
Modulation of specific ‘pools’ of cAMP that was regulated by specific PDE enzymes, 

was achieved using the ‘low dose’ Fsk, which caused a partial inhibition of proliferation, in 

combination with PDE inhibitors, which in the cases of IBMX (non-specific PDE inhibitor) 

and rolipram (PDE4 specific), resulted in a synergistic inhibition of proliferation.  The PDE 

inhibitors, when used alone, were unable to elicit any effect on the proliferation of KM12C 

cells.  This approach allowed us to determine which PDE family was responsible for 

regulating the anti-proliferative intracellular pool of cAMP.  This was in contrast with 

previous research which showed that, at least in the same context, PDE inhibition alone was 

sufficient to prevent the proliferation of several cell types (378, 380, 394, 413).  Presumably, 

in their situation adenylyl cyclase was in a ‘high’ activity state, and inhibition of cAMP 

breakdown caused a larger accumulation of cAMP in those cells. 

The combination of Fsk plus the non-specific PDE inhibitor IBMX has been used extensively 

to elicit the maximum cAMP response of cells.  When we used IBMX in combination with 

low dose Fsk we observed an inhibition of proliferation, indicating that one or more PDEs 

are controlling the ant-proliferative pool of cAMP.  Since PDE3s and PDE4s constitute the 

major cAMP hydrolying machinery in the cell (134, 262), we used specific inhibitors of these 

enzymes in conjunction with low dose Fsk.  Intriguingly, we showed that KM12C cells can 

be efficiently growth arrested by a low dose combination of the adenylyl cyclase activator 

forskolin, and the PDE4 selective inhibitor rolipram (Figures 15, 17, 21 and 22), but not by 

forskolin plus the PDE3 selective inhibitor cilostamide. Such selectivity is consistent with the 
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now well-established notion that cAMP signalling is compartmentalised in cells, with PDE3 

and PDE4 activities contributing to distinct functional compartments (218, 262, 414).  The 

ability of PDE4 enzymes to negatively regulate proliferation of cells, including cancer cell 

lines, is now becoming clear.  For example, in chromic lymphocytic leukaemia (CLL) and B-

cell CLL (B-CLL), the PDE4 inhibitor rolipram, alone and in combination with Fsk, was 

shown to inhibit the proliferation of these cell lines (375, 377).  This is consistent with other 

reports highlighting cAMP and PDE4 enzymes as critical regulators of proliferation in 

numerous other cell lines (242, 339, 378, 380). 

In contrast to PDE4 inhibitors, PDE3 inhibitors in combination with ‘low dose’ Fsk did not 

potentiate the anti-proliferative effect of Fsk in the KM12C cells.  Such distinct 

compartmentalisation of PDE3 and PDE4 enzymes regulating separate intracellular pools of 

cAMP in the same cell type has been previously reported.  For example, in rat mesangial 

cells inhibition of PDE3 enzymes results in an inhibition of DNA synthesis, whereas PDE4s 

in the same cell type regulates the generation of reactive oxygen metabolites (394).  Also, 

using real-time imaging of cAMP generation in situ, PDE4 enzymes were shown to be 

responsible for regulating the duration and amplitude of rat cardiac myocytes response to the 

β-agonist, norepinephrine (218).  PDE3 enzymes are also localised to distinct compartments 

but had no role in the response to β-agonists.  In addition, it has recently emerged that PDE3 

enzymes regulate cAMP concentrations in sarcoplasmic reticulum, resulting in increased 

Ca2+-ATPase pumping in PI 3-kinase-γ deficient cardiac myocytes (415).  Also, loss of PI 3-

kinase-γ expression selectively abolishes PDE4, but not PDE3, activity (415).  In KM12C 

cells, the role of PDE3 enzymes, if any, has still to be explored.  However, our results further 

underpin the compartmentalisation of cAMP signalling and show that specific pools of 

cAMP can regulate precise cellular outcomes. 
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3.14 PDE4/cAMP controlled cell cycle arrest 
  One of the first studies that linked cAMP to cell cycle regulation, and in particular an 

inhibition of G1/S-phase, was carried out by Kato et al (416).  These authors showed that by 

modulating cAMP, they could induce a G1/S-phase arrest by induction of p27Kip1.  Following 

on from this, several groups have noted that cAMP, and in particular PDE4 regulated cAMP, 

can induce the CKIs p21Cip1 and p27Kip1.  For example, in malignant glioma cells rolipram 

mediated inhibition of proliferation occurs via the induction of both p21Cip1 and p27Kip1 CKIs 

resulting in differentiation and eventually apoptosis (380).  Rolipram has also been shown to 

induce p21Cip1 in lymphoblastic leukaemia cells (378) and p27Kip1 in corneal epithelial cells 

(336).  In our study, we showed that inhibiting PDE4s, in combination with low dose 

forskolin treatment, induced p27Kip1.  This provides further evidence that PDE4 regulated 

cAMP can control the expression of G1/S-phase CKIs and that PDE4s may be useful 

therapeutic targets for several human malignancies.     

We have shown that under conditions that inhibited the proliferation of KM12C cells, namely 

‘high dose’ Fsk and Fsk/rolipram, levels of the SCF adaptor protein Skp2 were 

substantially decreased (Figure 19 B).  This suggests that the mechanism by which p27Kip1 

accumulates during cell cycle withdrawal may be due, at least in part, to loss of Skp2-

mediated degradation.  It has also been reported that targeting of p27Kip1 for degradation 

requires phosphorylation on its Thr187 by the cyclin E/CDK2 complex (355) which acts as a 

substrate recognition motif for Skp2 (360, 361).  Here, we monitored p27Kip1 levels using an 

antibody against total protein, but we were unsuccessful in observing the phosphorylation 

status at Thr187 using a phospho-specific antibody due to a lack of specificity and high 

background noise (data not shown).  Previously, there has been only one report of cAMP 

mediated down-regulation of Skp2 protein levels (362) and we have provided the first link 
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between PDE4 inhibition and the suppression of Skp2, an important regulator of p27Kip1 

stability and cell cycle progression.  

3.15  Rolipram mediated apoptosis  
Apoptosis is the protective mechanism by which cells undergo programmed cell 

death in response to signals such as DNA damage, growth factor withdrawal and activation 

of death receptors and is functionally distinct from authophagy and necrosis. The apoptotic 

program itself is characterized by certain morphologic features, including loss of plasma 

membrane asymmetry and attachment, condensation of the cytoplasm and nucleus, and 

internucleosomal cleavage of DNA.  Previous work in a number of cell types has implicated 

PDE4 enzymes as regulators of apoptotic pathways.  For example, treatment of B-CLL cells 

with the PDE4 specific inhibitor rolipram induces apoptosis of the B-CLL cell population but 

not T-cells in a manner that requires PP2A (protein-phosphatase 2A ) but not the cAMP 

effector Epac/Rap1 (291, 375, 377, 417).  Indeed, rolipram has also been shown to induce 

apoptosis in other haematological malignancies including acute lymphoblastic leukaemia 

(378) and diffuse large B-cell lymphoma (DLBCL) (339).  Also, rolipram can induce 

apoptosis in malignant glioma cells after extended treatment (greater than 48 hours) (380).  

The data available for the effects of rolipram on haematological malignancies has led to the 

idea that PDE4 inhibitors may be useful anti-cancer agents in the clinic (254). 

In the context of breast cancer, resveratrol (RSVL) is a naturally occurring, biologically 

active, phytoalexin commonly found in grapes and berries (418, 419) and is proposed to be a 

chemo-protective agent in breast cancer models (420).  Treatment of MCF7 cells (breast 

epithelial caner cell line) with RSVL selectively activated adenylyl cyclase (and not guanylyl 

cyclase) and inhibited the proliferation of the breast cancer cells (421).  Moreover, a 

combination of RSVL and rolipram significantly augmented the inhibition of proliferation by 
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cAMP, indicating that PDE4 enzymes were regulating the anti-proliferative pool of cAMP in 

MCF7 breast cancer cells (421).     

Our work has provided further evidence that PDE4 regulated cAMP can inhibit proliferation 

and induce apoptosis in a colorectal cancer cell line that is difficult to kill.  This may offer a 

potential therapeutic opportunity to combine PDE inhibitors with low concentrations of 

adenylyl cyclase activators, as we have mimicked here, although with non-physiologically 

relevant Fsk, as novel anti-cancer therapeutic approach. 

3.16 Summary 
In KM12C cells, elevation of cAMP by high dose Fsk or treatment with a non-

hydrolysable cAMP analogue, resulted in complete growth cessation.  A combination of low 

dose Fsk plus PDE4 (but not PDE3) recapitulated these results, where neither alone had any 

effect.   Fsk/rolipram induced a G1/S-phase arrest, presumably, as a result of increased 

p27Kip1, decreased ppRb and inhibition of Rb/E2F regulated cell cycle proteins including 

cyclins A, B1 and E and CDK1 as well as the SCF ubiquitin ligase adaptor protein, Skp2.  

This resulted in complete deregulation of the cell cycle and sustained treatment (>24 hours) 

with Fsk/rolipram induced apoptosis more effectively than low dose Fsk alone, contributing 

to the anti-proliferative effect of cAMP on chemo-resistant KM12C cells. 

Together with my work, these observations raise the exciting possibility of cAMP 

modulation as a novel anti-cancer therapy that may attack some chemo-resistant cancers.  I 

will address the generality of my findings in a number of solid cancers later (Chapter 6.2) 

and discuss how we might utilise this in vivo (Chapter 7.1).  This further highlights the 

importance for developing PDE4 inhibitors as novel anti-cancer agents for the treatment of 

the disease.      
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4.   cAMP interference with oncogene addiction 

4.1 Aim 
We showed that PDE4 regulated cAMP inhibits the proliferation of KM12C cells.  In 

this chapter, we describe the mechanisms by which PDE4/cAMP inhibits a pathway critical 

for KM12C proliferation and survival.  We also describe the alterations that lead to oncogene 

addiction and how exogenous reconstitution of a key component of the pathway alters 

proliferation and sensitises the cells to further inhibition by modulation of cAMP. 

4.2 Loss of pAkt (Ser473) is an early event in PDE4/cAMP 

inhibition of proliferation 
Using a 36 hour time course of Fsk/rolipram (1 µM Fsk + 10 µM rolipram) treatment 

of KM12C cells to monitor the changes of cell cycle regulators (as detailed in the previous 

chapter), we determined the order, and timing, of some events important for PDE4/cAMP 

mediated inhibition of proliferation.  The induction of p27Kip1 (Figure 23), observed at 6 

hours, occurs at approximately the same time as loss of hyperphosphorylated Rb (ppRb) 

(Figure 23) and loss of Skp2, but precedes the loss of CDK1  which occurs at between 20 to 

22 hours after start of treatment (Figure 23).  The induction of p27Kip1 is probably brought 

about, at least in part, by stabilisation of the protein, due to a partial loss of Skp2 expression 

at approximately the same time (6 hours) (Figure 23).  This is likely to result in the binding 

of p27Kip1 to CDK/cyclin complexes and suppression of hyperphosphorylated Rb. 

The early events governing induction of p27Kip1 are unknown.  To help understand the early 

events by which PDE4 regulated cAMP inhibited proliferation, the PI 3-kinase pathway was 

examined, since it has a major role in regulating cell growth and survival (300).  As an initial 

readout of PI 3-kinase activity, the phosphorylation status of the major downstream effector, 

Akt at Serine 473 (pAkt (Ser473)) was used.  Treatment with Fsk/rolipram resulted in the 
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loss of pAkt (Ser473) between 0 and 3 hours of treatment (Figure 23).  Total Akt was used to 

ensure equal loading in each lane (Figure 23).   The reduction in pAkt (Ser473) at such an 

early time point, and prior to the induction of p27Kip1, loss of hyperphosphorylated Rb or 

Rb/E2F regulated cell cycle proteins, suggests that this may lie upstream of cell cycle 

withdrawal.  This implies that PDE4 regulated cAMP may be impeding throughput of the PI 

3-kinase/Akt pathway. 

 



Figure 23. Loss of pAkt (Ser473) is an early event in PDE4/cAMP inhibition of 
proliferation
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Figure 23.  Loss of pAkt (Ser473) is an early event in PDE4/cAMP inhibition of 
proliferation. In order to ascertain the timing of events associated with G1/S-phase 
arrest, KM12C cells were treated up to 36 hours with Fsk/rolipram (1 μM Fsk + 10 
μM rolipram) and lysed at the time points indicated.  Lysates were analysed by SDS-
PAGE gel electrophoresis, transferred to nitrocellulose, blocked and probed with 
specific antibodies against the proteins indicated.  These included p27Kip1(top panel), 
Rb (2nd panel), Skp2 (3rd panel),  CDK1 (4th panel) and vinculin was used a loading 
control for all of the above (5th panel).  pAkt (Ser473) and total Akt levels were also 
determined  (6th and 7th panels respectively).  All blots are representative of n=3 
independent experiments.  Molecular weight markers show the proteins position 
relative to the marker indicated.
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4.3  Fsk/rolipram perturbs PtdIns(3,4,5)P3 localisation 
Phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) is a second messenger and 

the product of class I PI 3-kinase enzymes that phosphorylate phosphatidylinositol (4,5)-

bisphosphate (PtdIns(4,5)P2) on the 3 postion of the inositol ring structure.  PtdIns(3,4,5)P3 

recruits and activates kinases with a lipid-protein interaction, PH, domain (300).  To assess 

any effects Fsk/rolipram may have on PI 3-kinase activity, we used the PH domain of Akt 

fused to GFP (PH-GFP) as a reporter of PtdIns(3,4,5)P3 localisation (422).  Under control 

(DMSO) and rolipram conditions, PH-GFP was constitutively localised to the plasma 

membrane in a uniformly distributed manner (Figure 24 A).  Under conditions that inhibited 

proliferation (namely ‘high dose’ Fsk and Fsk/rolipram) displacement of PH-GFP from the 

plasma membrane was observed (Figure 24 A).  Localisation of PH-GFP was quantified by 

counting 100 transfected cells under each condition in 3 independent experiments and 

statistical analysis of the differences was carried out.  Both ‘high dose’ Fsk and 

Fsk/rolipram had less than 20% of cells with PH-GFP localised at the plasma membrane 

(quantified in Figure 24 B) and the differences were statistically significant (P < 0.05 ‘high 

dose’ Fsk versus control and P < 0.05 Fsk/rolipram versus ‘low dose’ Fsk).  ‘Low dose’ 

Fsk, which caused a partial inhibition of proliferation, displayed  an intermediate phenotype, 

where both membrane localisation and internalised PH-GFP was evident.  Approximately 50 

% of cells analysed showed uniform distribution of the PH-GFP reporter at the plasma 

membrane, similar to that of both control and rolipram treatments (Figure 24 A and 

quantified in Figure 24 B).  Thus, under conditions that inhibited the proliferation of KM12C 

cells, namely ‘high dose’ Fsk and Fsk/rolipram, a loss of PH-GFP, and presumably 

therefore PtdIns(3,4,5)P3, from the plasma membrane correlated with the growth suppressive 

effects of these treatments.  
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4.4 Fsk/rolipram displaces PI 3-kinase p85α subunit from the cell 

periphery 
PI 3-kinase is recruited to the plasma membrane by the SH2 domain of the p85 

(regulatory) subunit interacting with phospho-tyrosine residues on activated receptors.   This 

localises the catalytic subunit in the vicinity of its substrate, PtdIns(4,5)P2, and catalyses 

PtdIns(3,4,5)P3 production.  Therefore, PI 3-kinase requires to be correctly localised at the 

plasma membrane, where it is in close proximity to its substrate, to be fully functional. 

We next analysed the distribution of the p85α subunit of PI 3-kinase in response to 

Fsk/rolipram.  Distribution of PI 3-kinase p85α was monitored using a specific antibody 

and immunoflourescence after treatment with the standard conditions outlined in Chapter 3.4.  

Cells were treated for 3 hours, fixed and incubated with anti-p85α anti-body overnight.  

Under control and rolipram treated conditions, p85α (green) was located proximal to the 

cortical actin structure (red; Figure 25 A).  In contrast to control and rolipram treatments, 

p85α was displaced from its normal membrane-proximal localisation in cells treated with 

‘high dose’ Fsk or Fsk/rolipram (compare proximity of green staining (p85α) with red 

staining; Figure 25 A).  ‘Low dose’ Fsk gave an intermediate phenotype with approximately 

45% of treated cells with membrane-proximal localisation of p85α (Figures 25 A and B).  

Quantification (as in Chapter 4.3) and statistical analysis of the data shows that under growth 

inhibitory cAMP-elevating conditions, the loss of p85α at the cell periphery is statistically 

significant (P < 0.05; control versus ‘high dose’ Fsk; ‘low dose’ Fsk versus Fsk/rolipram) 

(Figure 25 B), in keeping with the loss of PH-GFP from the plasma membrane (Figure 24). 

Thus, displacement of p85α localisation, and therefore its activity, could explain loss of PH-

GFP localisation from the plasma membrane (Figure 24) as well as the suppression of pAkt 

(Ser473) (Figure 23) after Fsk/rolipram treatment. 
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To confirm the loss of p85α from the plasma membrane, sub-cellular fractionation was 

carried out after treatment with either control (DMSO) or Fsk/rolipram and p85α 

distribution analysed by western blotting.  Three fractions per sample were generated by this 

method: cytosolic (S2), plasma membranes (P2) and nuclear (P1).  In control samples, p85α 

distribution appears to be mainly cytosolic; however, there was also a significant association 

with both the membrane (P2; fractions marked with *) and the nuclear fractions (P1) (Figure 

25 C).  Treatment with Fsk/rolipram resulted in a loss of p85α from the membrane fraction 

(Figure 25 C).  Interestingly, the same pattern of regulation was observed with PDK1, which 

contains a PH domain and is responsive to PI 3-kinase activity (Figure 25 C).  This data 

suggests that cAMP elevation caused the PI 3-kinase p85α regulatory subunit to dissociate 

from its normal membrane localisation in KM12C cells with an associated loss of activity.  

This, in turn, may cause the delocalisation of PDK1, an important effector of PI 3-kinase, and 

presumably a decrease in its activity.  Therefore, cAMP elevation interferes with the 

localisation of PH-GFP, p85α and PDK1 and their mis-localisation may be critical events in 

loss of signalling to pAkt and decreased proliferation. 
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Figure 24.  Fsk/rolipram perturbs PtdIns(3,4,5)P3 localisation. (A)  A PH-
GFP-expressing plasmid was transiently transfected into KM12C cells to 
monitor PtdIns(3,4,5)P3 distribution.  Its localisation after 3 hours treatment 
with control (DMSO), ‘high dose’ Fsk (50 μM), ‘low dose’ Fsk (1 μM), 10 
μM rolipram or Fsk/rolipram (1 μM Fsk + 10 μM rolipram) was visualised 
using confocal microscopy.  Arrows show distribution of the PtdIns(3,4,5)P3
reporter.  (B)  Quantification of membrane-localised PH-GFP was carried out 
by counting 100 transfected cells under each condition.  The number of cells is 
presented as percentage ± SD of 3 independent experiments. * P < 0.05 
compared to control, **, P < 0.05 compared to 1 µM Fsk alone.  

 



Green - GFP-PH domain

Fsk/rolipram

Control 50 µM Fsk 1 µM Fsk

10 µM rolipram

A

Figure 24.  Fsk/rolipram perturbs PtdIns(3,4,5)P3 localisation

B

Control 50µM 
Fsk

1µM 
Fsk

10µM 
rolipram

Fsk/ 
rolipram%

 c
el

ls
 w

ith
 P

H
-G

FP
 a

t c
el

l p
er

ip
he

ry PH-GFP localisation 

0

20

40

60

80

100

120

* **

138



 139

 

Figure 25.  Fsk/rolipram displaces PI 3-kinase p85α from the cell 
periphery. Immunofluourescence using anti-p85α antibody (green), TRITC-
phalloidin (actin; red) and DAPI (nucleus; blue)  was carried out to determine 
if PDE4-regulated cAMP altered the localisation of PI 3-kinase after standard 
treatment set outlined in Chapter 3.4  (A) 3 hours treatment with either ‘high 
dose’ Fsk (50 μM) or Fsk/rolipram (1 μM FSK + 10 μM rolipram) resulted in 
p85α (green) being displaced and was no-longer proximal to the cortical actin 
(red) structure.  Visualisation was achieved using confocal microscopy (B) 
Quantification of membrane-localised p85α and was carried out by counting 
100 cells under each condition.  The number of cells is presented as percentage 
± SD of 3 independent experiments. * P < 0.05 compared to control, **, P < 
0.05 compared to 1 µM FSK alone.  (C)  Sub-cellular fractionation and 
western blotting revealed that both p85α (upper panel) and the 
phosphoinositide dependent protein kinase (PDK1; bottom panel) were 
displaced from the membrane fraction (P2; marked by *) after Fsk/rolipram 
treatment, compared to control (DMSO) treated cells.  
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4.5 PDE4/cAMP inhibits downstream effectors of the PI 3-kinase 

pathway 
Akt phosphorylation on Ser473 and Thr308 can be used as a readout of both PI 3-kinase 

and Akt activity.  Phosphorylation at Thr308, is sufficient for Akt activity, but Akt also 

requires Ser473 phosphorylation for maximal activity (320). When activated, Akt can 

phosphorylate its target substrates and promote cell survival, growth and proliferation.  

Therefore, in light of the effects on GFP-PH and p85α localisation, we decided to assess the 

timing of pAkt suppression and to confirm the long term effects our standard treatments have 

on pAkt status.   

Loss of pAkt (Ser473) occurred within 3 hours of Fsk/rolipram treatment and this loss of 

pAkt was sustained throughout the period of treatment (Figure 23).  To define how early the 

loss of pAkt (Ser473) occurred, a shorter, more precise time course of Fsk/rolipram treatment 

was used, with time points between 0 and 60 minutes.  The phosphorylation status of Ser473, 

as well as Thr308, was monitored by western blot.   Between 5 to 10 minutes, phosphorylation 

was lost at both Ser473 and Thr308 (Figure 26 A) and total Akt levels were judged not to be 

altered by Fsk/rolipram treatment (Figure 26 A).  Continuous treatment up to 24 hours with 

‘high dose’ Fsk and Fsk/rolipram suppressed pAkt at both sites (Figure 26 B). Rolipram 

alone had no effect and ‘low dose’ Fsk had only a partial effect on pAkt (Ser473 and Thr308; 

Figure 26 B).  Loss of pAkt is both rapid and sustained and correlated with the anti-

proliferative conditions, namely ‘high dose’ Fsk and Fsk/rolipram.  Moreover, this loss of 

pAkt, and presumably its activity, was mirrored by a partial suppression of Akt-mediated 

phosphorylation of two of its downstream substrates, namely FKHRL1 (Ser256) and AFX 

(Ser193) after both ‘high dose’ Fsk and Fsk/rolipram (Figure 26 C).   
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Figure 26.  PDE4/cAMP inhibits downstream effectors of the PI 3-kinase 
pathway. (A) Phosphorylated Akt (pAkt) (Ser473 and Thr308) was monitored by 
western blot of lysates prepared from cells treated for time points up to 60 
minutes after Fsk/rolipram (1 μM Fsk + 10 μM rolipram) treatment, and 
compared to total Akt. (B) Cells were treated continuously for 24 hours with 
the standard treatment set outlined in Chapter 3.4. ‘High dose’ Fsk and 
Fsk/rolipram treatments (lanes 2 and 5, respectively) resulted in loss of pAkt 
(at both Ser473 and Thr308).   (C)  The effects on downstream signalling of Akt 
was addressed using western blotting with phospho-specific antibodies against 
two Akt substrates, namely FKHRL1 (Ser256) and AFX (Ser193).  Both ‘high 
dose’ Fsk and Fsk/rolipram inhibited the phosphorylation of both of these 
Akt target substrates at the sites indicated after 24 hour treatment.  Blots shown 
for all of the above are representative of n=3 independent experiments.     
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Both FKHRL1 and AFX are Forkhead transcription factors and have been implicated in Akt 

regulation of p27Kip1 (423-425).  However, since the loss of phosphorylation is not complete, 

there may be other mechanisms involved in the regulation of p27Kip1 levels and proliferation.  

4.6 LY294002 induces similar effects to Fsk/rolipram 
We next sought to test whether or not KM12C cells were dependent on the PI 3-

kinase/Akt pathway for continued proliferation and survival, by using the PI 3-kinase 

inhibitor, LY294002.  

We first titrated LY294002 to find a relatively low concentration of the PI 3-kinase inhibitor 

that caused suppression of Akt phosphorylation.  We established that a concentration of 20 

µM was sufficient and this was used throughout the study (data not shown). 

Cells were treated with either control (DMSO) or 20 µM LY294002 for 24 hours, pulse 

labeled with 25 µM BrdU for the final hour, fixed and stained with PI and FITC conjugated 

anti-BrdU antibody and the cell cycle was analysed.  Scatter plots were generated for each 

treatment (Figure 27 A) and analysis (Figure 27 B) was carried out using the gates (as 

described for Figure 17 A).  Under control conditions, there were approximately 30% of 

cells in G1 phase (light blue column), 55% in S-phase (dark red column) and 20% in G2 

phase (blue/purple column) of the cell cycle (Figures 27 A and B).  After treatment with 

LY294002 the G1 content of the cells increased (55 %) and the number of cells in S-phase 

decreased to 15% (Figures 27 A and B).  No significant change in G2 phase was observed 

after LY294002 treatment (Figures 27 A and B).  Thus, treatment of KM12C cells with 

LY294002 induced a partial G1/S-phase arrest similar to that induced by Fsk/rolipram. 

Next, the effects on cell cycle proteins examined in Chapters 3.6 and 3.7 were assessed after 

24 hours treatment with either control (DMSO) or LY294002.  LY294002 induced the 

expression of the G1/S-phase inhibitor p27Kip1 (Figure 27 C).  This may account for the 
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ability of LY294002 to induce a G1/S-phase arrest.  Also, LY294002 treatment resulted in 

reduced Skp2 expression as well as a loss of hyperphosphorylated Rb (Figure 27 C).  

Expression of the Rb/E2F controlled cell cycle proteins cyclin A, cyclin B1, cyclin E and 

CDK1 were also reduced (Figure 4.6 C).  As a control, pAkt (Ser473) was used to confirm the 

inhibition of the PI 3-kinase pathway by LY294002 and total Akt was also analysed (Figure 

27 C).  Interestingly, treatment with LY294002 also resulted in the loss of phosphorylation of 

both Forkhead proteins, FKHLR1 (Ser256) and AFX (Ser193) at sites specific for Akt 

phosphorylation (Figure 27 D).  Reduced phosphorylation at these sites may lead to increased 

Forkhead transcriptional activity, and could provide another mechanism by which p27Kip1 

levels were elevated.  Taken together, these results demonstrate inhibiting the PI 3-

kinase/Akt pathway in KM12C cells induces a partial G1/S-phase arrest, most likely, by an 

increase in p27Kip1 levels, loss of hyperphosphorylated Rb and inhibition of Rb/E2F cell 

cycle proteins.  These effects were all similar to PDE4 regulated cAMP mediated inhibition 

of proliferation, supporting the idea that PDE4 regulated cAMP is acting by inhibiting the PI 

3-kinase/Akt pathway to suppress proliferation. 

4.7 LY294002 induces apoptosis and inhibits proliferation 
The effect of sustained PI 3-kinase suppression on long term survival of KM12C cells 

was also examined.  Inhibiting the PI 3-kinase/Akt pathway for greater than 24 hours was 

assessed by analysis of sub-2n DNA content and an MTT proliferation assay.  LY294002 

induced sub-2n DNA content over a 72 hour period compared to control (DMSO) treated 

cells when analysed by PI staining (Figure 28 A and quantified in 28 B).  Also, extended 

treatment of cells with LY294002 resulted in complete cessation of proliferation over a five 

day period, as measured by an MTT assay (Figure 28 C).   
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Figure 27. LY294002 induces similar effects to Fsk/rolipram. The effects 
on cell cycle proteins was assessed using the PI 3-kinase specific inhibitor 
LY294002. (A)  Cells were treated with either control (DMSO) or 20 μM 
LY294002 for 24 hours, and BrdU analysis was carried out as described in 
Figure 3.5.  (A) Scatter plots were generated and cells were gated as previously 
(Figure 3.5) indicated.  (B) Quantification of BrdU incorporation after 24 hours 
of LY294002 treatment.  Data shown is mean ± SD of n=3 independent 
experiments and scatter plots are representative results.  (C)  Sub-confluent 
KM12C cells were treated with control (DMSO) or 20 μM LY294002 for 24 
hours and western blot analysis of cell cycle regulators was carried out using 
specific antibodies.  LY294002 induced p27Kip1 and loss of Skp2, cyclin A, 
cyclin B1, cyclin E and CDK1.  pAkt (Ser473) was used as a readout of PI 3-
kinase inhibition and total Akt was used as a loading control in all of the above 
(D) Sub-confluent KM12C cells were treated with either control (DMSO) or 
20 μM LY294002 and western blot analysis of pFKHRL1 (Ser256) and pAFX 
(Ser193) levels was carried out using specific antibodies.  Total FKHRL1 and 
vinculin were used as loading controls.      
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Figure 28.  LY294002 induces apoptosis and inhibits proliferation. PI analysis 
(A) and quantification (B) of sub-2n DNA content of KM12C cells treated with 
control (DMSO) or LY294002 for 24 hours, 48 hours or 72 hours was (as performed 
for Figure 21, for n=3 independent experiments ± SD).  (C) Proliferation of KM12C 
cells was monitored by MTT assay over a 5 day period in the presence of control 
(DMSO), 50µM Fsk or 20µM LY294002 and values shown are mean ± SD of n=3 
independent experiments.   
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Overall, these results indicate that treatment of KM12C cells with a small molecule inhibitor 

of the PI 3-kinase/Akt pathway induces cell cycle arrest, induction of p27Kip1, inhibition of 

the Rb/E2F pathway and the stimulation of apoptosis in a manner similar to that induced by 

PDE4regulated cAMP.  KM12C cells are critically dependent on the PI 3-kinase/Akt 

pathway for their proliferation and survival and are therefore ‘addicted’ to this oncogenic 

pathway for proliferation.  Moreover, elevated cAMP, in a compartment regulated by PDE4 

enzymes, feeds in to the PI 3-kinase pathway causing displacement of components of the 

pathway and suppression of signalling.  This provides a mechanism by which 

compartmentalised PDE4s block cancer cell proliferation. 

4.8 Exogenous expression of PTEN inhibits Akt phosphorylation 

and sensitises KM12C cells to Fsk 
The tumour suppressor gene PTEN (phosphatase with tensin homology, which is 

located on chromosome 10) is a lipid phosphatase that negatively regulates PI 3-kinase 

signalling by dephosphorylation of PtdIns(3,4,5)P3 (302).  Mutation or deletion of the PTEN 

gene results in an inactive protein being transcribed and consequently, constitutive PI 3-

kinase signalling to downstream effectors, such as the survival kinase Akt.  Alterations in 

PTEN are common in sporadic tumours and can also predispose to Cowden disease, a rare 

autosomal dominant syndrome where patients have increased risk of developing skin, 

thyroid, bowel, and in the case of females, breast cancer (331).   

To assess whether or not known oncogenic or tumour suppressor regulators of the PI 3-

kinase pathway influenced KM12C proliferation, cells in which either PTEN or Src proteins 

had been modulated by exogenous expression were analysed at low densities.  Src, which 

positively regulates PI 3-kinase (426) is occasionally activated, and commonly over-

expressed, in late stage colon cancer cells (427, 428), while PTEN is commonly lost or 
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mutated (300, 331). The expression of PTEN in KM12C cells is lost (personal 

communication, V.G. Brunton).  We therefore reconstituted KM12C cells with PTEN-GFP 

by retroviral infection.  Endogenous PTEN protein was retained in HT29 colon cancer cells 

(Figure 29 A), while, as expected, no expression of PTEN was detected by western blot in 

KM12C, or in KM12C cells over-expressing SrcY527F (constitutively active Src (77); 

KM12C/2C4) (Figure 29 A).  Exogenous expression of PTEN-GFP was detected as a slower 

migrating species compared to endogenous PTEN (HT29 cells; Figure 29 A).  Endogenous 

PTEN protein expression in HT29 and PTEN-GFP in KM12C/2C4 cells correlated with 

decreased pAkt (Ser473) levels (Figure 29 A).  However, expression of SrcY527F had no 

further activating effect on pAkt (Ser473; Figure 29 A). 

The proliferation of KM12C, KM12C/2C4 and KM12C/2C4 +PTEN-GFP cells was analysed 

over a 6 day period. Over-expression of SrcY527F had no effect on the proliferation of 

KM12C cells (Figure 29 B) and was consistent with what had previously reported (77).  

However, re-expression of PTEN-GFP (Figure 29 B) resulted in decreased proliferation but 

did not cause complete growth cessation as observed when cells were treated with LY294002 

or Fsk/rolipram.  

KM12C and KM12C/2C4 cells both had approximately 40% of gated cells in G1 (Figure 29 

C).  KM12C/2C4 + PTEN-GFP showed a 20% increase, with approximately 60% of gated 

cells in G1 compared to KM12C and KM12C/2C4 cell lines (Figure 29 C).  This 

accumulation of cells in G1 may be responsible for the reduced proliferation of KM12C/2C4 

+ PTEN-GFP cells, compared to KM12C and KM12C/2C4 cells.  Furthermore, the re-

expression of PTEN-GFP in KM12C/2C4 cells sensitized the cells to increased inhibition of 

proliferation by ‘low doses’ (1 or 0.5 μM) of Fsk when grown continuously in its presence 
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(Figure 29 D).  Proliferation, when measured at day 6, was reduced by approximately 80% 

by ‘low dose’ Fsk (1 μM) treatment of KM12C/2C4 + PTEN cells (Figure 29 D). 

Re-expression of PTEN resulted in reduced pAkt (Ser473; Figure 29 A) and although some 

PTEN-mediated control of the PI 3-kinase/Akt pathway was restored, this did not result in 

complete growth cessation or cell death (Figure 29 B).  The re-expression of PTEN may 

result in a finely balanced PI 3-kinase/Akt signalling pathway, whereby treatment with ver 

‘low doses’ of Fsk  is sufficient to elicit anti-proliferative effects on PTEN expressing cells 

more effectively than control cells (Figure 29 D).  Together, these data provide support for a 

critical role for the PI 3-kinase pathway in KM12C proliferation, presumably mediated, at 

least in part, by PTEN loss and is possibly a point of intersection between cAMP and PI 3-

kinase pathways.         
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Figure 29. Exogenous expression of PTEN inhibits Akt phosphorylation 
and sensitises KM12C cells to Fsk.  Cells were plated at low density (5 x 105 

cells in 60 mm dish).  (A)  KM12C cells do not express PTEN and re-
introduction reduces  pAkt (Ser473).  Expression of endogenous PTEN protein 
in HT29 colon cancer cells and PTEN-GFP in KM12C/2C4 (upper panel) 
correlates with reduced pAkt (Ser473), whereas lack of PTEN protein in 
KM12C and KM12C/2C4 cells correlates with raised pAkt.  Immunoblots 
were carried out using the specific PTEN and pAkt antibodies as probes.  Total 
Akt was used as a loading control in all of the above.  (B)  Re-introduction of 
PTEN affects low density growth of KM12C cells.  Proliferation of KM12C, 
KM12C/2C4 and KM12C/2C4 PTEN-GFP cells was monitored using an MTT 
assay over a 6 day period and  (C) Re-expression of PTEN in KM12C cells 
increases the percentage of cells in G1 phase as analysed by PI staining.  (D) 
Proliferation of KM12C, KM12C/2C4 and KM12C/2C4 PTEN-GFP cells in 
the presence of control (DMSO), 1 µM and 0.5 µM Fsk and was monitored 
over a 6 day period and the percentage proliferation of control (DMSO) at day 
6 was calculated for the mean ± SD of  3 independent experiments.  All blots 
are representative of n=3 independent experiments.     
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Discussion 

4.9 PI 3-kinase localisation 
One common method for detecting the production and localisation of specific 

phosphoinositides is through the use of a PH domain fused to a reporter protein such as GFP 

(PH-GFP).  Previous studies have utilised the PH domains of various proteins including 

Akt/PKB and GRP1 (General Receptor for Phosphoinositides-1) and have shown that both 

overlap in their abilities to bind PtdIns(3,4,5)P3 (the product of PI 3-kinase) (422).   

In our study, we used the PH domain of Akt fused to GFP as a reporter of PtdIns(3,4,5)P3.  

Under normal conditions, PH-GFP constitutively localised to the plasma membrane in 

KM12C cells.  This suggests that PI 3-kinase is continuously producing PtdIns(3,4,5)P3 and 

that a gradient or localised concentration is not established.  Therefore, this continuous 

production of PtdIns(3,4,5)P3 has implications for downstream signalling of PI 3-kinase, 

including events regulated by the downstream kinase Akt. Under anti-proliferative conditions 

of increased cAMP, namely ‘high dose’ Fsk or Fsk/rolipram treatment, PH-GFP was mis-

localised from its peripheral membrane position.  The data presented here implies that PI 3-

kinase signalling is disrupted under conditions that inhibited proliferation and induced 

apoptosis.  This constitutive localisation of PH-GFP was in contrast to what was reported by 

Gray et al where, in their study, they required stimulation of the cells with growth factors, 

such as PDGF, in order to obtain membrane localisation of the reporter (422) and which may 

be a difference between normal and cancer cells. 

Key to the production of 3´ phosphoinositides by PI 3-kinase and successful downstream 

signalling events, is the localisation of PI 3-kinase subunits to regions of high substrate 

concentration, namely at cell membranes.  In conjunction with our studies using the PH-GFP 

reporter for analysis of the spatial distribution of PtdIns(3,4,5)P3, we analysed the 
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localisation of the regulatory subunit of PI 3-kinase, p85α using both immunofluourescence 

and sub-cellular fractionation techniques.  We found that the PI 3-kinase subunit p85α was 

displaced from its membrane-proximal localisation under anti-proliferative conditions, 

similar to the regulation of PH-GFP localisation in KM12C cells.  Interestingly, a recent 

study of the p85α regulatory subunit of PI 3-kinase has revealed the presence of a PKA 

phosphorylation site at Ser83.  Phosphorylation of this site by PKA is critical for cAMP 

induced G1 arrest in Swiss 3T3 mouse fibroblasts (175).  In addition, the same site on p85α 

was also implied to play a positive role in oestrogen and TSH stimulated cAMP production 

with respect to PI 3-kinase activity (175, 176).  Thus, PI 3-kinase regulation by cAMP is 

context specific. 

4.10 PDE4/cAMP induced loss of Akt/PKB phosphorylation 
Activation of PI 3-kinase by growth factors and the subsequent generation of 

PtdIns(3,4,5)P3 has been shown to have key roles in regulating keys aspects of cellular 

processes such as control of cell growth, proliferation, survival, glucose metabolism and 

genome stability (reviewed in (429, 430)).  One major down-stream effector of PI 3-kinase 

signalling is the serine/threonine kinase Akt which was one of the first proteins to be 

discovered that contained a PH domain (431-433).   

In our study, treatment of KM12C cells with either ‘high dose’ Fsk or Fsk/rolipram 

resulted in the rapid and sustained dephosphorylation of Akt at both Thr308 and Ser473.  We 

believe that this is the result of an inhibition/delocalisation of PI 3-kinase and hence loss of 

PtdIns(3,4,5)P3 from the plasma membrane.  Previous studies have identified a role for 

cAMP in the inhibition of Akt phosphorylation by several mechanisms.  One of which is the 

cAMP/Fsk induced dephosphorylation of both Thr308 and Ser473 sites on Akt.  Most 

notablely, PDK1 localisation at the plasma membrane was shown to be disrupted upon 

 



 157

cAMP elevation resulting in loss of pAkt (Thr308) (333), although PDE4 enzymes were not 

investigated.   In the same study, cAMP/Fsk treatment resulted in the in vivo loss of 

PtdIns(3,4,5)P3 and PI 3-kinase/Akt activity, which was probably responsible for PDK1 mis-

localisation.  In our study, the localisation of PDK1 was not studied in detail although we 

were able to show that upon treatment with Fsk/rolipram, PDK1s distribution was lost from 

the membrane fraction.  Therefore, this may contribute to the loss of pAkt (Thr308) in our 

study. 

Regarding the regulation of pAkt (Ser473) phosphorylation, there are currently no reports 

linking PDE4s with regulation of the two widely accepted ‘PDK2s’ – mTOR and DNA-PK.  

Interestingly, one report does highlight the ability of cAMP to attenuate insulin mediated 

activation of mTOR by an undefined mechanism (434).  This may provide a way by which 

cAMP can suppress pAkt (Ser473) in KM12C cells when treated with Fsk/rolipram.  

However, Smith et al showed that PDE4 inhibition in diffuse large B-cell lymphoma results 

in the inhibition of Akt phosphorylation (339). 

In addition, the protein phosphatase PP2A can dephosphorylate Akt (435) and that cAMP 

and, more specifically PDE4 regulated cAMP, can activate PP2A (377, 436).  However, 

inhibition of PP2A using okadaic acid and subsequent treatment with Fsk/rolipram did not 

alleviate the suppression of pAkt at either site  indicating that the cAMP dependent inhibition 

of Akt is independent of PP2A activation (not shown). 

Taken together, our data that describes that ability of PDE4 regulated cAMP to inhibit the 

phosphorylation of Akt at both Ser473 and Thr308 supports evidence that PDE4s may be 

present at a critical intersection point between two second messenger pathways, namely those 

regulated by PtdIns(3,4,5)P3 and cAMP.  
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4.11  PI 3-kinase/Akt regulation of proliferation  
 The regulation of cell proliferation by PI 3-kinase/Akt can occur at the G1/S-phase 

transition, where inhibition of PI 3-kinase/Akt causes accumulation in G1 (424, 437).  One 

mechanism by which this might occur is Akts’ ability to govern p27Kip1 localisation, 

degradation and expression by phosphorylation at multiple sites on p27Kip1 including Ser10 

(356) Thr157 (359, 438), Thr187 and Thr198 (358).  Phosphorylation of Ser10 regulates the 

stability and nuclear export of p27Kip1 at the G0/G1 transition (439, 440).  Phosphorylation of 

Thr187 regulates Skp2 binding and recruitment to SCF/E3 ubiquitin ligase complex (361) and 

phosphorylation of both Thr157 and Thr198 both increase binding to 14-3-3 proteins resulting 

in nuclear exclusion and cytoplasmic retention (356, 357).    

Here we found that, loss of pAkt after ‘high dose’ Fsk treatment, Fsk/rolipram combination 

or inhibition of PI 3-kinase/Akt directly (LY294002) resulted in induction and/or 

stabilisation of p27Kip1.  We could not detect any alterations in the phosphorylation status of 

p27Kip1 at any of the reported sites (data not shown).  However, cAMP mediated suppression 

of pAkt may induce loss of phosphorylation at one of the sites on p27Kip1 and could be a 

contributing factor to the G1/S-phase block. 

The PI 3-kinase/Akt pathway also regulates the expression of Skp2 (441, 442), the adaptor 

protein responsible for targeting p27Kip1 for degradation (360).  Direct inhibition of PI 3-

kinase using LY294002 in KM12C cells resulted in an increase in p27Kip1 and a decrease in 

Skp2.  This was similar to the effects of Fsk/rolipram treatment, indicating that the 

inhibition of the PI 3-kinase/Akt pathway, either directly or indirectly, is responsible for the 

decrease in Skp2 levels, increase in p27Kip1 levels and, presumably, the subsequent G1/S-

phase block.  However, Skp2 is also a target for E2F transcription (406).  Therefore, further 

work would be required to completely understand how Skp2 expression is controlled in 

response to cAMP elevation in.   
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Another way by which PI 3-kinase/Akt can control p27Kip1 levels is by regulation of its 

transcription by the activity of Forkhead transcription factors (TFs) such as, FKHRL1 

(FOXO3) and AFX (FOXO4) (363, 424).  We examined both pFKHRL1 (Ser256) and pAFX 

(Ser193) levels after treatment with Fsk/rolipram and LY294002 , both of which suppressed 

phosphorylation at these sites.  However, we were unable to visualise any translocation of 

these TFs from the cytoplasm to the nucleus due to a high background signal.  Therefore we 

cannot directly attribute the loss of phosphorylated Forkhead TFs to the increased expression 

of p27Kip1.  However, it is likely that decreased targeting for degradation (by loss of Skp2) 

and increased transcription (by Forkhead mediated mechanisms) after either Fsk/rolipram or 

LY294002 treatment were both responsible for elevated p27Kip1 levels, and the induction of 

the G1/S-phase arrest in KM12C cells.       

Long-term inhibition of the PI 3-kinase/Akt pathway induces apoptosis and complete 

inhibition of proliferation of KM12C cells over a 5 day period (Figure 28).  Although the 

precise mechanism by which either direct (LY294002) or indirect (Fsk/rolipram) inhibition 

of the PI 3-kinase/Akt pathway induced apoptosis was not elucidated, several candidate 

pathways exist.  These include phosphorylation and inhibition of Caspase 9 (443), the pro-

apoptotic protein Bad (444) and FKHRL1 (445), all of which regulate apoptosis in a PI 3-

kinase/Akt dependent manner.  In the case of Bad, it is a phosphorylation target of both Akt 

and PKA, and both have the ability to inhibit its pro-apoptotic action by increasing 

interaction with 14-3-3 proteins and decreasing its ability to bind Bcl-2/Bcl-XL (172-174, 

444, 446, 447).   Attempts at analysing the phosphorylation status of Bad and caspase 

activation were inconclusive and the manner in which PDE4 regulated cAMP induces 

apoptosis in KM12C cells is as yet, undefined. 
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4.12 Effects of PTEN expression  
PTEN loss can result in constitutive activation of PI 3-kinase signalling and increased 

survival and proliferation of cancer cells.  In KM12C cells, PTEN expression is lost and this 

could contribute to the constitutive localisation of the PH-GFP reporter to the plasma 

membrane, by ensuring the PI 3-kinase/Akt pathway is highly active.  When both PTEN 

protein expression and pAkt levels were compared in HT29 colon cancer cells, PTEN was 

expressed and levels of pAkt (Ser473) was low.  When re-expressed PTEN in the KM12/2C4 

cells we were able to increase their G1 cell content, slow their proliferation at low cell 

densities and sensitised them to low concentrations of Fsk mediated growth inhibition 

(Figure 29).  

Because of its tumour suppressor activities, there has been much interest in evaluating the 

effects of re-expression of PTEN in cancer cells as a possible gene therapy approach.  For 

example, adenovirus mediated gene transfer of wild type (Wt) PTEN into colon cancer cells 

resulted in suppression of PI 3-kinase/Akt signalling, a G2/M cell cycle arrest and an 

induction of apoptosis (448).  The same study also identified that over-expression of PTEN 

in two of the cell lines (HT-29 and SW480) resulted in a significant inhibition of tumour 

growth in tumour xenografts (448).  Moreover, exogenous expression of PTEN in numerous 

glioblastoma cell lines results in an inhibition of the G1/S-phase transition by inducing 

p27Kip1, reducing cyclinE/CDK2 activity and dephosphorylation of Rb but no apoptosis 

(449).  PTEN re-expression in MCF-7 breast cancer cells results in a G1 arrest and 

subsequent apoptosis, which was dependent on inhibition of PI 3-kinase/Akt (450).   

Our results correspond with some aspects of what has previously been reported, but PTEN 

re-expression did not recapitulate the complete growth cessation and cell death associated 

with direct PI 3-kinase inhibition using LY294002.  Therefore, re-expression of PTEN may 

not be sufficient to induce apoptosis or during the process of establishing a cell line that 
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stably expresses PTEN, selective pressure has removed those cells in which PTEN did induce 

apoptosis. 

A dual strategy of re-introducing PTEN into cells and treatment with either chemotherapy or 

radiotherapy of prostate cancer cell lines or xenografts is an effective approach to inhibit 

their growth (451, 452).  Interestingly, combinational therapy using caffeine, a known 

phosphodiesterase inhibitor, and adenovirus-mediated gene transfer of PTEN results in a 

synergistic suppression of colorectal cancer cell growth by the inhibition of the PI 3-

kinase/Akt pathway and arrest in G2/M (453).  These studies, in combination with our own 

data, raise the exciting possibility that combination therapy combining the re-introduction of 

wild type PTEN and treatment with cAMP modulators, such as the adenylyl cyclase activator 

Fsk or PDE inhibitors, may provide a novel therapeutic strategy for combating some human 

malignancies.      

4.13 Oncogene addiction and its inhibition 
Cancer cells, despite having many genetic, epigenetic and chromosomal 

abnormalities, are often ‘addicted’ to one or two oncogenic changes for continued 

proliferation and survival (454). Therapeutic advances now come from determining 

oncogenic addictions of individual tumours.  This would, in turn, allow tailored therapy to be 

more widely applied.  There are now a number of examples of agents that target critical 

molecular events having therapeutic benefit.  For example, in non-small cell lung cancer, a 

subset of patients with activating mutations in the kinase domain of the epidermal growth 

factor receptor (EGFR), exhibit impressive clinical responses to the EGFR inhibitor gefitinib 

(455). In this case, oncogene addiction is a result of mutation, not simply over-expression or 

inappropriate cellular activation, and it is thought addiction may be mediated by constitutive 

activation of the pro-survival Akt pathway downstream of activated EGFR (456).  Other 

clear examples of clinical benefit arising from the targeting of critical oncogenes have come 
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from treatment of breast cancers, in which the HER2 receptor tyrosine kinase is over-

expressed, with the monoclonal antibody trastuzumab (Herceptin®) (457).  A further 

example is imatinib (Gleevec®) which is used to treat chronic myeloid leukaemia and 

gastrointestinal stromal tumours that are driven by the oncogenic BCR-Abl and c-Kit 

proteins, respectively (458).  It is likely that identification of tumour oncogene addiction will 

thus provide a key part of delivering effective cancer treatments in the future. 

4.14 Summary 
Here we establish for the first time that KM12C colon cancer cells, which are 

resistant to cell death induced by DNA damaging or other cytotoxic agents commonly used 

to treat colorectal cancers (our unpublished data), are critically dependent upon the PI 3-

kinase pathway for their continued proliferation and survival.  In cancer cells which are 

addicted to the PI 3-kinase pathway, there is an urgent need to devise effective, yet relatively 

non-toxic, ways to inhibit tumour cell growth and survival.  In this regard, inhibitors of PI 3-

kinase have been developed with against various classes of PI 3-kinase (459), although these 

drugs are not particularly specific (460). Although there is optimism that on-going efforts 

will lead to selective isoform-specific PI 3-kinase inhibitors as therapeutic agents, these are 

neither readily available nor at an advanced stage of clinical development (461). Thus, the 

need for novel therapeutics to exploit such oncogenic addictions is required and therefore this 

raises the exciting possibility that the adenylyl cyclase/PDE4 combinational treatment we 

have defined here may be exploited for therapeutic benefit.  
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5.  PDE4 expression and activity is altered in metastatic cells - 

consequences for Fsk sensitivity 

5.1 Aim 
The aims of this chapter were to assess the activity and expression of PDE4 enzymes in 

the metastatic derivatives of the KM12C cells, namely KM12L4A and KM12SM, and to 

address whether or not modulation of PDE4 expression altered Fsk sensitivity to cAMP 

modulation.   

5.2 Metastatic cells have increased resistance to Fsk mediated 

inhibition of proliferation 
Treatment of KM12C cells with the adenylyl cyclase activator, Fsk (50 µM), 

completely inhibits their proliferation whilst treatment with 1 µM Fsk results in approximate 

50 % inhibition of their proliferation (Figures 14 C and 30 A).  A number of variants of this 

cell line have been described (40) that differ in their abilities to metastasise to the liver of 

nude mice following intrasplenic injection (40, 41). Here we set out to evaluate the 

KM12L4A and KM12SM metastatic variants of the KM12C cells for their abilities to 

proliferate in the presence of Fsk.  KM12L4A cells exhibited increased tolerance to Fsk-

mediated growth inhibition (Figure 30 B) compared to the non-metastatic KM12C parental 

cell line (Figure 30 A).  Indeed, KM12L4A cells were resistant to growth inhibition up to a 

concentration of 25 µM Fsk, which gave an approximate 50% inhibition of proliferation at 

day 5 of the assay and was statistically significant (P < 0.01; Figure 30 D).  Interestingly, 

KM12SM cells, also a metastatic variant of KM12Cs, exhibited increased tolerance to Fsk 

mediated inhibition of proliferation (Figure 30 C) with 10 µM Fsk giving an approximate 

50% inhibition (Figure 30 D).  This was also statistically significant (P < 0.05) compared to 

10 μM Fsk treated KM12C cells at day 5.      
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Thus, we have shown that the experimentally derived KM12L4A metastatic derivative cell 

line, and, to a lesser extent, KM12SM (which arose as a spontaneous metastasis (41) of 

KM12C cells), appear to have evolved an ability to resist the anti-proliferative effects of 

cAMP elevation by Fsk. 
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Figure 30.  Metastatic cells have increased resistance to Fsk.  Proliferation 
of KM12C (poorly-metastatic), KM12L4A (highly metastatic) and KM12SM 
(highly metastatic) cells were assessed over a five day period in the presence of 
either control (DMSO), 1 µM, 5 μM , 10 μM , 25 μM or 50 μM Fsk using an 
MTT assay.  (A)  KM12C cells are strongly inhibited by concentrations of Fsk 
> 1 µM.  (B)  KM12L4A cells are less sensitive to Fsk mediated inhibition of 
proliferation.  (C)  KM12SM cells are less sensitive to Fsk inhibition of 
proliferation compared to KM12C cells.  (D)  Quantification (percentage of 
control at day 5) of treatments shows a statistically significant difference 
between KM12L4A (upto 50 µM Fsk) and KM12SM (up to 25 μM Fsk) 
compared to KM12C cells.  Data shown is mean ± SD of n=3 independent 
experiments.  (*)P < 0.05; (**) P < 0.01.    
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5.3 Metastatic cells have increased PDE4 activity and expression 
One mechanism by which the metastatic cell lines might evade the anti-proliferative 

effects of Fsk is through increased activity and/or expression of PDEs which serve to cause 

the breakdown of cAMP.  We showed that PDE4 actively regulates the anti-proliferative 

effects of cAMP in KM12C cells (Chapters 3 and 4). Therefore, we decided to examine the 

activity and expression of PDE4 isoforms in the metastatic cells lines to assess any 

alterations in this pathway which might account for the acquired resistance to cAMP 

elevation.  Firstly, we examined the cAMP specific PDE activity of all three cell lines under 

resting conditions and found that while KM12C cells had relatively low PDE4 activity (13 ± 

3 pmol/min/mg protein; Figure 15 E and Figure 31 A), KM12L4A metastatic cells had a 4 to 

5 fold increase in PDE4 specific activity (70 ± 3 pmol/min/mg protein; Figure 31 A).  The 

KM12SM cells had a similar increase in PDE4 specific activity (60 ± 7 pmol/min/mg 

protein; Figure 31 A).  We next analysed PDE4 subfamily expression using semi-quantitative 

RT-PCR, showing that mRNA corresponding to PDE4A and PDE4C sub-families was not 

present in any of the cell lines (data not shown), and that PDE4B mRNA was present but no 

protein could be detected (data not shown).  For PDE4D, mRNA was increased in both the 

KM12L4A and KM12SM cells (Figure 31 B).  In particular, PDE4D3 and PDE4D5 isoforms 

had increased mRNA expression in both of the metastatic cell lines, compared to the poorly 

metastatic KM12C cell line (Figure 31 B).  This was confirmed by immunoprecipitation and 

immunoblotting with a pan-PDE4D antibody (Figure 31 C).  In KM12C cells, the 

predominant PDE4 isoform was the 108 kDa PDE4D5, with very little PDE4D3 detected 

(Figure 31 C).   However, in KM12L4A cells, we found that PDE4D3 expression was 

increased approximately 12 fold and PDE4D5 expression by approximately 1.5-2 fold 

compared to KM12C cells (Figure 31 C and quantified in 31 D).  KM12SM cells also 

exhibited increased expression of PDE4D3 and PDE4D5 but to a lesser extent 
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(approximately 7 fold and 1.5 fold respectively; Figure 31 C and quantified in 31 D).  These 

data suggests that during the multi-step process of tumourigenesis, there was selection for 

increased PDE4D expression, presumably contributing to the reduced sensitivity to cAMP-

mediated growth suppression in these cells. 
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Figure 31.  Metastatic cells have altered PDE4 expression and activity.
(A)  PDE4 specific activity in KM12C, KM12SM and KM12L4A cells was 
assessed in vitro using 1 μM cAMP as substrate in the presence and absence of 
rolipram to calculate resting PDE4 activity. The difference between untreated 
± rolipram was used to calculate the specific activity.  Activities are expressed 
as a mean ± SD of n=3 independent assays.  Both metastatic cell lines have a 
5-6 fold increase in PDE4 activity compared to KM12C cells.  (B)  Semi-
quantitative Reverse-transcription polymerase chain reaction (RT-PCR) using 
cDNA derived from mRNA as template and PDE4 sub-family specific primers 
as probes, showed elevated levels of PDE4D transcript were present in both 
KM12L4A and KM12SM cell lines (upper panel; lanes 2 and 3).  Using 
isoform specific primers as probes, both PDE4D3 and PDE4D5 isoforms were 
also shown to have increased levels of transcript present.  Primers for GAPDH 
were used as an internal loading control in all of the above.  Gels shown are 
representative of n=3 independent experiments.  (C)  Immunoprecipitation 
with either pre-immune serum or a pan-PDE4D sub-family specific anti-body 
using KM12C, KM12L4A and KM12SM lysates and probing with the same 
antibody in a western blot indicated that PDE4D3 and PDE4D5 protein levels 
were also increased in the metastatic cell lines.  Blot is representative of n=3 
independent experiments.  (D)  Densitometry quantification of PDE4 
expression (fold increase compared to control (KM12C); arbitrary units) 
showed a 1.5-2 fold increase in PDE4D5 protein and an approximate 12 fold 
increase in PDE4D3 levels.  Quantification is mean ± SD of n=3 independent 
experiments.           



Figure 31.   Metastatic cells have altered PDE4 expression and activity
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5.4 PDE4D RNAi sensitises metastatic cells to Fsk 
Next, we set out to generate a stable knockdown of PDE4D sub-family in KM12L4A 

cells, using an RNAi sequence directed against PDE4D family enzymes (238) cloned into a 

short hairpin vector (shRNA).  This was used to determine the role of the PDE4D enzymes in 

regulating key proliferation pathways in these late stage metastatic tumour cell lines.  

Therefore, KM12L4A were transfected with PDE4D shRNA (L4 4Di) or scrambled 4D 

sequence as a control (L4A 4Dcont). Analysis of PDE4D expression by western blotting, in 

the L4A 4Dcont and L4A 4Di cell lines showed an approximate 80% reduction in PDE4D3 

and 50% reduction in PDE4D5 protein expression (Figures 32 A and B). 

We then tested whether or not reduced expression of PDE4D isoforms in the L4A 4Di 

metastatic cell line had any effect on the ability of these cells to respond to the effects of Fsk 

and signaling to the ERK and PI 3-kinase/Akt pathways.  Potentially, this would offer insight 

into the roles of PDE4D3 and PDE4D5 in the metastatic Fidler cells.   

L4A 4Dcont and L4A 4Di cells were challenged with increasing Fsk concentrations and pAkt 

(Ser473) and pERK (Thr202/Tyr204) levels were monitored by western blotting.  Although there 

was a decrease in pAkt (Ser473; Figure 32 C), a larger decrease in the levels of pERK 

(Thr202/Tyr204) was observed (Figure 32 C).  Interestingly, treatment of L4A 4Di cells with 

increasing concentrations of Fsk, resulted in a partial inhibition of proliferation, as measured 

by MTT assay (Figure 32 D).  This greater sensitivity to Fsk in the metastatic Fidler cells 

when PDE4D proteins reduced was similar to the inhibition of proliferation achieved in the 

poorly-metastatic KM12C cells (Figure 32 D).  These data imply that increased expression of 

PDE4D isoforms, and in particular PDE4D3, was contributing to the increased resistance to 

Fsk mediated inhibition of proliferation in the metastatic cells.  The metastatic cells may 

have used this mechanism to counter the strong  anti- proliferative effects cAMP in PDE4 
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regulated compartments to which the poorly-metastatic parental cell line, KM12C, is 

sensitive (Chapters 3-4). 
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Figure 32.  PDE4D RNAi sensitises KM12L4A cells to Fsk.  (A)  Partial 
knockdown of PDE4D protein levels was achieved using a lenti-viral vector 
containing a sequence specific for PDE4D sub-family.  KM12L4A cells were 
infected with either PDE4D RNAi (KM12L4A4Di) or PDE4D scrambled 
sequence as a control (KM12L4A4Dcont), grown in selection media, FACs 
sorted for GFP-positive cells and pooled.  PDE4D protein expression was 
analysed by immunoprecipitation and western-blotting using a pan-PDE4D 
antibody.  Blot shown is representative of n=3 independent experiments.  As a 
loading control, lysates were also subject to SDS-PAGE and vinculin 
expression was analysed using a specific antibody.  (B) Densitometry 
quantification of PDE4D knockdown of both isoforms of n=3 independent 
experiments.  PDE4D3 protein expression was reduced by approximately 80% 
and PDE4D5 by approximately 50%.  (C)  KM12L4A4Dcont and 
KM12L4A4Di cells were treated with increasing concentrations of Fsk and 
pAkt(Ser473) and pERK (Thr202/Tyr204) levels were analysed by western 
blotting.  (D) Proliferation of KM12L4A4Dcont, KM12L4A4Di  and KM12C 
cells were analysed after 3 days continuous growth in the presence of 
increasing concentrations of Fsk.  All blots are representative of n=3 
independent experiments.  Proliferation assays are the mean ± SD calculated as 
a percentage of control of n=3 independent experiments.            



Figure 32.  PDE4D RNAi sensitises KM12L4A cells to Fsk
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5.5   PDE4D3 does not regulate the apoptosis in KM12C cells 
Next, we individually expressed both PDE4D3 and PDE4D5 isoforms in KM12C cells 

and challenged them with Fsk in order to ascertain which isoform is involved in the 

regulation of the apoptotic pool of cAMP in these cancer cells.  Therefore, cells were treated 

in the presence or absence of 1 μM Fsk for 24 hours (which only produces a small increase 

apoptosis; Figure 21 B).  The PDE4 proteins expressed were either wild type or dominant 

negative full length proteins with a VSV tag, to aid identification.  The dominant negative 

(DN) isoforms were generated by a point mutation in the codon corresponding to the 

aspartate residue in the catalytic domain (D556A in PDE4D5), rendering the enzyme 

catalytically inactive (237, 238, 273).  The VSV epitope tag is a stretch of 10 amino acids 

that is located within amino acids 501-511 of the Vesicular Stomatitis virus glycoprotein and 

contains the sequence YTDIEMNRLGK (462) and has previously been used as a tag by 

numerous groups, including the Houslay group, from whom I received the tagged PDE4 

constructs (145).   

KM12C cells were either mock transfected, transfected with VSV-PDE4D3 Wt (4D3 Wt)or 

VSV-PDE4D3 DN (4D3 DN) constructs, allowed to recover for 48 hours and incubated in 

the presence or absence of 1 µM Fsk for 24 hours.  We found that over-expression of 4D3 Wt 

alone was sufficient to prevent the Fsk/cAMP mediated loss of pAkt (Ser473 and Thr308) and 

pERK (Thr202/Tyr204) (Figure 33 A).  Also, expression of 4D3 Wt and treatment with Fsk 

does not lead to a statistically significant increase in apoptosis (P > 0.05), as measured by PI 

staining and when compared to 4D3 Wt transfected, untreated cells (Figure 33 B).  This 

suggests that PDE4D3 may have a protective role against Fsk mediated apoptosis in KM12C 

cells.  Expression of PDE4D3 DN resulted in suppression of pAkt (Ser473 and Thr308) and 

pERK (Thr202/Tyr204) after Fsk treatment (Figure 33 A) as well as restoration of Fsk mediated 

apoptosis (Figure 33 B).  However, this effect was not enhanced over mock-transfected, Fsk 
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treated cells and was not statistically different (P > 0.05).  This indicates that although 

expression of PDE4D3 dominant negative restored Fsk mediated suppression of pAkt (Ser473 

and Thr308) and pERK (Thr202/Tyr204), it did not enhance apoptosis.  Therefore, if PDE4D3 

was regulating the cAMP pool which controls apoptosis in KM12C cells, displacement of the 

endogenous enzyme would have enhanced the apoptotic effect of increasing cAMP in 

compartments regulated by PDE4D3.  Thus, PDE4D3 may not be responsible for controlling 

the apoptotic pool of cAMP in KM12C cells. 

5.6 PDE4D5 may regulate KM12C apoptotic response to cAMP 
Next, PDE4D5 Wt (4D5Wt) and PDE4D5 DN (4D5DN) were individually expressed in 

KM12C cells and pAkt (Ser473 and Thr308), pERK (Thr202/Tyr204) and apoptosis were 

analysed after 24 hours treatment with 1 µM Fsk.  Over-expression of PDE4D5, which is the 

major PDE4 isoform expressed in KM12C cells (Figure 31), resulted in a rescue of Fsk 

mediated suppression of pAkt (Ser473 and Thr308)  and pERK (Thr202/Tyr204) (Figure 34 A) 

when compared to Fsk treated, mock transfected cells (Figure 34 A).  Although expression of 

PDE4D5 in KM12C cells resulted in an increase in basal apoptosis, the overall increase in 

apoptosis was only 3% when challenged with 1µM Fsk, implying that PDE4D5 may also be 

playing some protective role in these cells (Figure 34 B).  However, expression of PDE4D5 

DN and Fsk treatment resulted in the suppression of pAkt (Ser473 and Thr308) as well as 

pERK (Thr202/Tyr204) (Figure 34 A).  In contrast to the results obtained when PDE4D3 DN 

was over-expressed, the combination of 4D5DN and Fsk treatment resulted in a large 

increase in apoptosis (20% gated cells had sub-2n DNA; Figure 34 B) which was statistically 

significant (P < 0.05) compared to Fsk treated, mock transfected cells.  Thus, it is possible 

that PDE4D5, and not PDE4D3, regulates specific sub-cellular pools of cAMP which 

controls downstream signalling and, when inhibited, causes cell death. Potentially, we have 

identified a new role for PDE4D5 and which may be important in controlling cancer cell 

death/survival pathways and that could be utilised for therapeutic benefit.
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Figure 33.  PDE4D3 does not regulate apoptosis in KM12C cells.  (A) 
KM12C cells were either mock transfected, transfected with PDE3D3-VSV or 
PDE4D3 (dominant negative; DN)-VSV , left for 48 hours and treated with 
either control (DMSO) or 1 μM Fsk for 3 hours.  Cells were lysed and pAkt 
(Ser473 and Thr308) or pERK (Thr202/Tyr204) levels were analysed by western-
blotting. Total Akt and total ERK levels were used as loading controls and an 
anti-VSV antibody was used to monitor PDE4D3 expression.  (B)  Propidium 
iodide (PI) analysis of sub-2n DNA content in cells transfected as above, 
treated with 1 μM Fsk for 24 hours.  Data is expressed as mean percentage 
gated cells ± SD. ** P > 0.05. 
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Figure 34.  PDE4D5 may regulate KM12C apoptotic response to cAMP. (A)  
KM12C cells were either mock transfected, transfected with PDE3D5-VSV or 
PDE4D5 DN-VSV, left for 48 hours and treated with either control (DMSO) or 1 
μM Fsk for 3 hours.  Cells were lysed and pAkt (Ser473 and Thr308) or pERK 
(Thr202/Tyr204) levels were analysed by western-blotting.  Total Akt and total ERK 
levels were used as loading controls and an anti-VSV antibody was used to monitor  
PDE4D5 expression.  (B)  Propidium iodide (PI) analysis of sub-2n DNA content in 
cells transfected as above, treated with 1 μM Fsk for 24 hours.  PDE4D5 protects 
KM12C cells from apoptosis and PDE4D3DN enhanced the effect of Fsk with an 
increase in cells with sub-2n DNA compared to mock transfected, Fsk treated cells. 
Data is expressed as mean percentage gated cells ± SD.  * P < 0.05.
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Discussion 

5.7 Metastatic resistance to Fsk inhibition of proliferation 
Increased resistance to chemotherapeutic agents is a key theme in advanced cancer and 

even now examples of resistance to new molecularly targeted therapies are emerging.  For 

example, resistance against the BCR-Abl tyrosine kinase inhibitor imatinib, which is used 

extensively in the treatment of CML and gastrointestinal stromal tumours (GIST), occurs by 

mutation of  several key residues in the Abl tyrosine kinase domain (463).  These mutations 

frequently resulted in outgrowth of clones with imatinib-resistant BCR-Abl mutations and 

subsequent patient relapse.  To combat this, dasatinib, the dual Src/BCR-Abl kinase 

inhibitor, is used to overcome imatinib-resistant BCR-Abl mutations, at least in all but one of 

the mutations (464).  It is reported that dasatinib is 300 times more selective for BCR-Abl 

than imatinib and may eventually become the frontline treatment for CML (465, 466).  This 

highlights the need to understand molecular mechanisms by which drug resistance emerges 

and the requirement to further develop more effective treatments.      

In our study, we found that the metastatic derivatives of KM12C cells, namely the 

experimentally derived KM12L4A and spontaneous metastatic cell line KM12SM, have 

increased resistance to cAMP induced inhibition of proliferation.  It appears that a hierarchal 

correlation exists between increasing metastatic potential and decreased sensitivity to Fsk, 

where Fsk resistance is ordered as such KM12C < KM12SM < KM12L4A; with KM12C 

cells being least metastatic (and most sensitive to Fsk) and KM12L4A cells being producing 

the greatest frequency of liver metastases (and being least sensitive to Fsk) when injected 

into the spleens of nude mice (40, 41).  There are several mechanisms by which cells could 

evade the anti-proliferative effects of Fsk, including alterations in the cell death pathways, 

increased PDE expression and/or activity as well as alterations in the adenylyl cyclase 

proteins that produce cAMP.  Interestingly, alterations in Fsk sensitivity in adrenocortical 
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tumour cells arises through loss of expression of adenylyl cyclase-4 (AC4) enzymes, which 

renders these resistant to stimulation of cAMP production and therefore inhibition of 

proliferation (467-470).  However, due to time constraints we were unable to examine these 

proteins in this study, which was concentrating on PDEs, but nevertheless investigation into 

other components of the cAMP pathway may provide further ideas as to how it may be 

exploited for therapeutic benefit.   

These observations may have implications for future therapies designed to exploit cAMP-

mediated inhibition of proliferation and, in particular, for the metastatic diseases that are 

often difficult to treat. 

5.8 Increased PDE4 expression and activity in metastatic cell 

lines 
Under conditions of normal cell proliferation and differentiation, PDE4 expression and 

activity changes in a cell-type and -context manner.  For example, in the monocyte to 

macrophage differentiation process, there is a dramatic reduction in PDE4-activity and this is 

associated with a marked down-regulation of both PDE4D3 and PDE4D5 isoforms (471).  

Also, PDE4 expression is altered in inflammatory cells of smokers with COPD, when 

compared to smokers without COPD and non-smokers (472).  PDE4 expression can also be 

regulated by changes in intracellular cAMP.  For example, increasing intracellular cAMP in 

smooth muscle cells can induce expression of PDE4D5  and site directed mutagenesis 

identified a cAMP responsive element (CRE) present in is promoter sequence(244).  Also, 

the short PDE4D1 and super-short PDE4D2 isoforms are also expressed in response to 

increased cAMP, which allows for the attenuation of cAMP signalling in cells (265).  

In metastatic derivatives of the KM12C cells, we found a robust up-regulation of PDE4 

specific cAMP hydrolysing activity that correlates with increased expression of PDE4D, in 

particular PDE4D3 and PDE4D5 enzymes (Figure 31).  This led us to propose that elevated 
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PDE4D3 and/or PDE4D5 were primarily responsible for the reduced sensitivity of metastatic 

cells to Fsk.  Metastatic cells appear to have selected for an up-regulation of PDE4s which 

enhances their ability to proliferate under conditions of increased cAMP.  When we depleted 

PDE4D using a sub-family specific RNAi sequence, we sensitised these cells to Fsk 

inhibition of proliferation making them respond in a similar way to the poorly-metastatic 

KM12C cells (Figure 32). This underlines the importance of PDE4 regulation of proliferation 

in cancer cells from the Fidler model of colorectal metastasis. A similar increase in PDE4D 

expression has been reported in thyroid tumours with activating mutations in either the 

thyroid stimulating hormone receptor (TSHR) or the Gsα subunit of the G-proteins (473).  

This raises the exciting possibility that PDE4 expression may be generally associated with 

late stage metastatic tumours, and that this may be a result of increased cAMP signalling 

occurring during tumour progression. 

The role of PDE4D sub-family enzymes in regulating proliferation of epithelial cells has not 

been widely studied.  However, it has been reported that PDE4D plays a non-redundant role 

in regulating interleukin-2 (IL-2) production as well as proliferation in T-cells, as RNAi 

depletion of PDE4D resulted in decreased IL-2 production and inhibited proliferation, similar 

to what was seen when using a pan-PDE4 inhibitor (474).  It appears to be PDE4B that is 

primarily responsible for regulating the PDE4-mediated inhibition of proliferation in other 

cell types, such as lymphocytes (339, 417, 475).  The emerging role of PDE4 enzymes as 

critical regulators of proliferation in tumour cells has wide ranging implications for the 

development of future therapeutics where further development of PDE4 sub-family specific 

inhibitors may be clinically important in the treatment of cancer (discussed in detail later). 

 



 185

 

5.9 PDE4D3 versus PDE4D5 regulation of proliferation and cell 

death 
Spatial and temporal regulation of cyclic AMP signalling is a well studied phenomenon 

(130).  Highly compartmentalised signalling is achieved mainly by the scaffolding of both 

cAMP degradation and effector machinery, often close to a particular receptor, or the 

localisation with a particular adenylyl cyclase isoform.  This allows specific activation of 

downstream pathways as well as regulating the duration and amplitude of the signal (137, 

414).  This is especially true for PDE4 regulated cAMP signalling, where interaction with 

scaffolding proteins such as AKAPs, RACK1 and β-arrestins can influence the effects of 

cAMP in a context specific manner (137, 143, 262, 414).  The two main PDE4 enzymes 

identified in this study, namely PDE4D3 and PDE4D5, have completely different binding 

partners which can either act to recruit (as in the case of PDE4D5 and β-arrestin and 

RACK1) or anchor (as with PDE4D3 and mAKAP) the enzymes to different sub-cellular 

locations (144, 145, 271, 275-278). 

We have found that over-expression of either PDE4D3 or PDE4D5 enzymes protects 

KM12C cells from Fsk mediated reduction in pAkt, pERK and induction of apoptosis 

(Figures 33 and 34).  Overexpression of dominant-negative, catalytically inactive, versions of 

PDE4D5 and PDE4D3 and subsequent challenge with Fsk resulted in both suppression of 

pAkt and pERK as well as increased cell death (Figures 33 and 34).  Using the Mann-

Whitney two-sample test of PI stained cells top compare mock transfected, Fsk treated and 

DN, Fsk treated populations, indicated that transfection with PDE4D5 DN (and not PDE4D3 

DN) and subsequent treatment with Fsk resulted in a statistically significant increase in cell 

death.  This data implies that is potentially PDE4D5 (and not PDE4D3) which is regulating 

the intracellular pool of cAMP responsible for inducing cell death, despite both isoforms 

seemingly able to regulate both pAkt and pERK (Figures 33 and 34).  Therefore, we propose 
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that it is the spatial regulation of cAMP and its influences on specific sub-cellular pools of 

pAkt/pERK that is important for the induction apoptosis.  However, due to time constraints, 

we were not able to investigate this further using techniques such as confocal microscopy 

(for analysing pAkt/pERK/PDE4 localisation) or FRET (spatial generation of cAMP) which 

would have given us further insights into the precise mechanisms governing PDE4-mediated 

regulation of proliferation and apoptosis in KM12C cells.  Also, over-expression of PDE4D 

enzymes may not be the ideal experiment, as we may have been effectively ‘forcing’ the 

PDE4s into compartments that they would not be in at endogenous expression levels.  More 

refined approaches to take the work forward will be required, and will be discussed later.           

5.10 Summary 
We have found that PDE4 activity is 4 to 5-fold higher in two highly-metastatic 

variant cell lines, namely KM12L4A and KM12SM, compared to their poorly-metastatic 

parental cell line KM12C.  This increase in PDE4-specific activity strongly correlated with 

increased expression of PDE4D3 and PDE4D5 isoforms at both mRNA and protein levels, as 

well as reduced sensitivity to Fsk mediated inhibition of proliferation.  Partial depletion of 

PDE4D enzymes using RNAi resulted in re-sensitisation of these cells to Fsk mediated 

inhibition of proliferation, which appeared to be dependent mainly on the PDE4D3 isoform.  

In contrast, we found that over-expression of PDE4D3 and PDE4D5 separately in KM12C 

cells was sufficient to protect from Fsk mediated apoptosis.  Using dominant negative forms 

of the enzymes, we identified PDE4D5 as the principal contributor to altered proliferation of 

these cells.   

The important role of PDE4s in the Fidler model of colorectal cancer cell line in regulating 

proliferation raises the exciting prospect that a Fsk/rolipram-type of treatment may be 

exploited as a therapeutic strategy for epithelial cancers.  However, at this stage it is unclear 

whether this is a unique feature of this cell line and if it can be more widely applicable to 
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other cancer cell types.  The next chapter will address the generality of Fsk/rolipram-induced 

inhibition of cancer cell lines of different origins as well as the effects of a Fsk analogue 

which is water soluable and has been used in a number of animal and clinical studies.   
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6. Effects of Fsk/rolipram and Fsk analogues on cancer cell        

proliferation 

6.1 Aim 
To address the generality of Fsk/rolipram treatment to inhibit proliferation we used of 

cancer cell lines of different origin.  Also, we tested the effects of a more clinically relevant 

Fsk analogue, NKH477 (colforsin daropate) in its ability to inhibit KM12C proliferation, 

effects on downstream signalling and also the effects NKH477 has on the proliferation of the 

panel of cancer cell lines. 

6.2 Sensitivity to growth inhibition by cAMP modulation is not    

restricted to KM12C cells 
In considering the potential therapeutic benefit of any new strategy, for example 

combinations of cAMP modulators, it is important to test whether the observed effects are 

not particular to one cell line, in this case KM12C cells.  Therefore, we examined a number 

of different cell lines for their ability to proliferate in the presence of Fsk/rolipram using the 

MTT dye based assay to measure the proliferation.  Of the 11 cell lines were selected from 

various tissues of origin, these were 7 colon cancer cell lines (KM12C, HT29, WiDr, RKO, 

H630, SW480 and SW620), 1 breast (MCF7), 1 squamous cell carcinoma (SCC; A431), 1 

prostate (Du145) and 1 melanoma (A375) cell line.  All cell lines differed in their doubling 

times and the assay was optimised by assessing which starting cell number gave a non-

saturated A570nm absorbance after 3 days.  All cell lines were plated at their optimised 

density, allowed to adhere overnight and then treated continuously with control (DMSO) or 

Fsk/rolipram for 3 days continuously prior to MTT analysis.    

After Fsk/rolipram treatment, the cell lines segregated into three distinct groups; highly 

sensitive (red), intermediately sensitive (blue) and resistant (green).  In conjunction with 
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proliferation assays, each cell line was also analysed for their endogenous levels of PTEN, 

pAkt (Ser473) and pERK (Thr202/Tyr204) with tubulin used as a loading control.  As a readout 

of PTEN activity, pAkt (Thr308) was used as this site is dependent on PDK1 activity, which, 

in turn requires PtdIns(3,4,5)P3 and therefore active PI 3-kinase.      

3 out of the 11 cancer cell lines tested (KM12C, MCF7 and HT29) were sensitive to 

Fsk/rolipram-induced inhibition of proliferation, displaying approximately 80% inhibition of 

proliferation (Figure 35 A).  Analysis of the PI 3-kinase/Akt and ERK pathways showed that 

KM12C cells completely lack PTEN expression and have relatively high pAkt (Thr308 and 

Ser473; Figure 35 B). In contrast, both MCF7 and HT29 cells appear to express functional 

PTEN protein, due to the presence of pAkt (Thr308) (Figure 35 B).  Also, MCF7 and HT29 

cells displayed almost undetectable levels of pAkt (Ser473) and only modest levels of pERK 

(Thr202/Tyr204) (Figure 35 B).   

5 out of the 11 cell lines (A431, WiDr, RKO, A375 and H630; blue) showed a partial 

sensitivity to Fsk/rolipram treatment, displaying between 40% and 60% inhibition of 

proliferation (Fig. 35 A).  Interestingly, all five cell lines had PTEN protein present, but in 

A431 and RKO cells, pAkt(Thr308) levels were relatively high which did not correlate with  

PTEN status when compared to the other cell lines (Fig. 35 B).  In contrast, A375 and H630 

cell lines appeared to retain functional PTEN protein due to decreased levels of pAkt (Thr308) 

but both showed elevated levels of pAkt (Ser473) , indicating that this is possibly regulated 

independently from PI 3-kinase activity (Fig. 35 B).  Also, it was interesting to note that the 

more Fsk/rolipram resistant cell lines have increased levels of pERK (Thr202/Tyr204), 

indicating that perhaps their survival is dependent on other signalling pathways and not 

solely on the PI 3-kinase/Akt pathway (Fig. 35 B).       

Du145, SW480 and SW620 cell lines were all insensitive (green), as their proliferation was 

only inhibited by approximately 20% upon Fsk/rolipram treatment (Figure 35 A).  Both 



 191

 

PTEN and pAkt status varied between each cell type, with Du145 displaying active PTEN 

(through lack of pAkt (Thr308)), which did not correlate with pAkt (Ser473) status and also had 

moderate to high levels of pERK (Thr202/Tyr204) compared with the other cell lines (Figure 

35 B).  SW480 cell line showed a correlative expression of PTEN and decreased levels of 

pAkt (Thr308 and Ser473) whereas SW620 showed a similar pattern to that of Du145, but with 

greatly decreased levels of pERK (Thr202/Tyr204) (Fig. 35 B). Thus, there are a sub-set of 

cancer cells that respond to a greater or lesser extent to the Fsk/rolipram combination (8 out 

of 11 in our study), implying that a proportion of cancer cells may be sensitive to this type of 

growth modulation. 

 

 

 

 

 

 

 

 

 

 

 



 

 

192

Figure 35.  Fsk/rolipram inhibits a number of cancer cell lines.  (A) 
Cancer cell lines of varying origins were treated with either control (DMSO) or 
Fsk/rolipram (100 μM Fsk + 10 μM rolipram) for 3 days and their proliferation 
assessed using an MTT assay, and expressed as a percentage of control. 
Response to Fsk/rolipram treatment of the 11 cancer cell lines placed them into 
three distinct groups:  Sensitive (>60% inhibition; red writing), intermediately 
sensitive (40-60% inhibition; blue) and insensitive (<20% inhibition; green). 
Data shown is mean ± SD of n=3 independent experiments.  Red dotted line 
represents cut-off for sensitive cell lines (30% control) and blue dotted line 
represents cut-off for intermediately sensitive cell lines (60% of control).   (B) 
Protein levels of PTEN, pAkt (Thr308 and Ser473) and pERK (Thr202/Tyr204) was 
assessed in Fsk/rolipram sensitive (red text), intermediately sensitive (blue 
text) and insensitive (green text)  cell lines. Tubulin was used as a loading 
control for all of the above.  Blots shown are representative of n=3 independent 
experiments.   
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6.3 NKH477 induces p27Kip1 and loss of pAkt in KM12C cells. 
We now know that compounds that elevate intracellular cAMP can effectively kill 

cancer cell lines of various origins by multiple mechanisms (380, 392, 408, 476).  Despite 

these potent anti-tumour effects, substances such as Fsk and 8-Br-cAMP cannot be used as 

anti-cancer agents due to their poor solubility and their high toxicity in vivo.  However, the 

orally available, water soluble, adenylyl cyclase activator and Fsk analogue 6-(3-

dimethylaminopropionyl)-Forskolin (NKH477 or colforsin daropate hydrochloride) has been 

used in a wide range of animal models, as well as in humans, to treat a variety of conditions 

(477-482).  We therefore tested whether or not NKH477 inhibited KM12C proliferation by 

similar mechanisms to Fsk, whether rolipram also potentiated the effects of low 

concentrations of this adenylyl cyclase activator. 

Both Fsk (Figure 36 A) and NKH477 (Figure 36 B) are structurally similar, with only two 

side chain modifications altered (red boxes 1 and 2).  Using increasing concentrations of 

NKH477 (0.5, 1 and 10 µM; Figure 36 C), 10 µM rolipram alone (Figure 36 C) and a 

combination of 0.5 µM NKH477 + 10 µM rolipram (NKH477/rolipram; Figure 36 C) we 

examined the effects of these combinations on pAkt and pERK in KM12C cells.  Treatment 

of KM12C cells with increasing concentrations of NKH477 alone for 24 hours resulted in the 

dose dependent loss of pAkt (Ser473 and Thr308; Figure 36 C) compared to control cells.  

Increases in p27Kip1 and a decrease in pERK (Thr202/Tyr204) was also observed with 

increasing concentrations of NKH477 when compared to control cells (Figure 36 C).  Total 

ERK was used as a loading control (Figure 36 C).  NKH477/rolipram treatment resulted in 

potentiation of low dose NKH477 (0.5 µM) treatment causing a suppression of pAkt (Ser473 

and Thr308), an increase in p27Kip1 and loss of pERK (Thr202/Tyr204) compared to rolipram 

treated KM12C cells (Figure 36 C).  Also, using an MTT assay to assess the effect on 

proliferation after 5 days of treatment, we can see that the increasing concentrations of 
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NKH477 correlate with decreased proliferation (Figure 36 D).  In addition, 

NKH477/rolipram can potentiate the inhibition of proliferation, where neither agent alone, 

at the concentrations used, can dos so (Figure 36 D).  This implied that NKH477 and Fsk 

may be acting through similar pathways in KM12C cells despite the small structural 

differences.    

6.4 NKH477 inhibits the proliferation of numerous cancer cell 

lines 
We next assessed the effects of the Fsk analogue NKH477 on proliferation of the 

cancer cell lines described previously (Figure 35).  In this case, treatment with either 100 or 

50 µM NKH477 alone induced approximately 70% (or greater) inhibition in all of the 10 cell 

lines tested (Figure 37).  Thus, all 10 cell cancer cell lines tested were highly sensitive to 

NKH477.  This is in contrast to Fsk/rolipram treatment, where only three cell lines were 

highly sensitive.  This raises the exciting possibility of using NKH477, a compound which 

has extensively been tested in a variety of animal and human conditions with no adverse 

effects, as a potent anti-cancer agent.  Further work to elucidate the mechanisms by which 

NKH477 so potently inhibits such a wide variety of cancer cell lines is required if any 

potential anti-cancer therapies based around this drug are to be realised.  AT this point we do 

not know why it has a more general effect on inhibiting cancer cell proliferation, but the 

mechanism of action cannot be identical to that of Fsk.      
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Figure 36.  NKH477 suppresses pAkt, pERK and KM12C proliferation.
(A)  Chemical structure of Fsk, and (B) NKH 477, with the altered side chains 
highlighted (red boxes, 1 and 2).  (C)  KM12C cells were treated with control 
(DMSO), increasing concentrations of NKH477, 10 μM rolipram or 0.5 μM 
NKH477 + 10 μM rolipram (NKH477/rolipram) and levels of pAkt (Thr308 and 
Ser473), p27Kip1 and pERK1/2 (Thr202/Tyr204) were analysed by western 
blotting.  NKH477/rolipram synergise to suppress both pAkt (both sites) and 
pERK as well as inducing p27Kip1.  (D)  NKH477, both alone, and in 
combination with rolipram, suppressed the proliferation of KM12C cells.  All 
blots are representative of n=3 independent experiments.  Proliferation is 
expressed as a percentage of control and is mean ±SD of n=3 independent 
assays.      
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Figure 37.  NKH477 inhibits the proliferation of all cancer cell lines.
Proliferation of colon cancer cell lines (H630, HT29, RKO, WiDr, SW480 and 
SW620), squamous cell carcinoma (SCC; A431), prostate (Du145), breast (MCF7) 
and skin melanoma (A375) cell lines was assessed after 72 hours treatment with 
either control (DMSO), 100 μM NKH477 or 50 μM NKH477 using an MTT assay 
and was expressed as a percentage of control.  Both concentration of NKH477 
inhibited all the cell lines to >70% of control, where Fsk alone was unable to do so 
(data not shown).  
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Discussion 

6.5 Cell lines sensitivity to Fsk/rolipram 
Advanced cancer cells carry a unique set of mutated or inactivated genes that contribute 

to defining the nature and aggressiveness of individual tumours.  For example, in lung cancer 

EGFR is frequently overexpressed leading to hyper activation of both ERK and PI 3-kinase 

pathways and in colon cancer mutations in the PI 3-kinase pathway, such as inactivation of 

PTEN or activating mutations in p85 or p110,  as well as loss of APC are also common (7).  

In skin cancer, B-Raf V600E is a common, activating mutation that leads to hyperactivation 

of the ERK pathway (483).     

In our study, we assessed the sensitivity of a variety of cancer cell lines to Fsk/rolipram 

mediated inhibition of proliferation and found that there were distinct variations in their 

sensitivities.  Moreover, the sensitive and insensitive cell lines, when treated with LY294002, 

exhibited proliferation profiles similar to Fsk/rolipram treatment, indicating a possible 

correlation between Fsk/rolipram sensitivity and PI 3-kinase dependence (data not shown).  

However, despite our best efforts in analysing the PTEN/pAkt status of these cells, we could 

not define any distinct pattern that related PTEN/pAkt with Fsk/rolipram sensitivity (Figure 

35).  This could be attributed to a number of factors including mutations in PTEN that render 

it catalytically inactive but the cells still retain PTEN expression.  This could explain why 

some cell lines exhibited relatively high levels of pAkt (Thr308) in the face of PTEN 

expression, for example A431 and RKO cell lines.  However, in the case of A431 cells, 

EGFR is over expressed which may lead to hyperactivation of the PI 3-kinase/Akt pathway 

and therefore could account for the increased levels of pAkt observed (484). In the case of 

the RKO cell line, expression of wild type PTEN inhibited the activation of Akt as well as 

downstream signalling to β-catenin, indicating that the PTEN expressed in RKO cells is non-
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functional (485).  However, overall we could not correlate PTEN status with sensitivity to 

Fsk/rolipram-induced inhibition of proliferation.    

In spite of this, this data does highlight the potential of pharmacological activators of 

adenylyl cyclase and PDE4 inhibitors, to have therapeutic benefit in the treatment of 

numerous cancers of different origins.      

6.6 NKH477 as an anti-cancer therapy 

Chemical compounds that often used in the laboratory setting are, more often than not, 

unsuitable for use in animal models or for the treatment of human diseases.  Therefore, it is 

important to produce small molecules that overcome problems such as toxicity, insolubility, 

and increase their bioavailability.  Forskolin is unsuitable for some of these reasons and so 

NKH477 (or colforsin daropate hydrochloride) was developed as a water soluble analogue 

that may be more suitable for in vivo use (477).  It has been used in a wide variety of animal 

models for research topics including immuno-modulation in mice (480), canine ischemia 

(486), canine arrhythmia (478) and as an anti-depressant in a rat model (487).  It has also 

been used in humans as a bronchodilator (488, 489) and as both an immune-suppressant and 

vasodilator during cardiac surgery (481).  However, at present there are no reports of this 

compound being used as an anti-cancer drug either in cells or animal based studies. 

In our study, we showed that NKH477 suppressed the proliferation of all 11 cell lines tested 

(Figures 36 and 37), where Fsk/rolipram was only able to inhibit 8 out of the 11 cell lines 

tested.  We have also shown that NKH477 suppresses the proliferation of KM12C cells in a 

manner similar to that of Fsk and a low concentration of NKH477 was also able to synergise 

with rolipram (Figures 36).  The mechanisms involved in NKH477 mediated inhibition of 

proliferation in the panel of cell lines remain unsolved, but clearly there are some differences 

to Fsk.  Further work is required to elucidate whether or not NKH477 is inducing cell cycle 
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block and/or apoptosis in all the cell lines tested, which may provide useful information 

about potential uses.  It has been reported that NKH477 is more selective for adenylyl 

cyclase-V isoform (490) and that could be the AC isoform important in the regulation of the 

anti-proliferative effects of cAMP in cancer cells.  These data suggests the exciting 

possibility that this orally available, water soluble compound may be useful as an anti-cancer 

therapy.  Further, work using both tissue culture and animal models is being undertaken to 

fully explore NKH477s potential as an anti-tumour agent.   

6.7 Summary 
We have found that a combination of Fsk/rolipram inhibits the proliferation of 8 out of 

11 cancer cell lines of differing origins.  Also, we addressed the effects of a more clinically 

relevant Fsk analogue, NKH477, on the same panel of cell lines.  We found that NKH477 

inhibited the proliferation of KM12C cells in a manner similar to that of Fsk and also that 

NKH477 potentiated the effects of a ‘low dose’ of NKH477 on pAkt, pERK and 

proliferation.  Most surprising of all was the inhibition of proliferation observed in all cancer 

cell lines tested.  The final chapter of my thesis will now discuss the potential of using PDE4 

inhibitors and NKH477 as an anti-tumour therapy. 
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7. Concluding remarks and future perspectives 

7.1 cAMP, PDE4s and their therapeutic potential in cancer 
We showed that a colorectal cancer cell line (KM12C), which is resistant to common 

chemotherapeutic agents such as 5-FU, can be inhibited from proliferating, and killed, by 

increasing cAMP in compartments regulated by PDE4 enzymes.  We can also interfere 

with and inhibit the PI 3-kinase/Akt pathway as a result of modulating cAMP in PDE4-

regulated compartments.  Thus, KM12C cells are critically ‘addicted’ to the PI 3-

kinase/Akt pathway, and use of a PI 3-kinase inhibitor, LY294002, recapitulated the effects 

of PDE4/cAMP modulation on proliferation and apoptosis.  In retrospect, we could have 

stumbled upon this ‘addiction’ to the PI 3-kinase/Akt pathway by simply testing a range of 

inhibitors, including LY294002 (and potentially wortmannin).  However, by approaching 

the inhibition of proliferation from the angle of modulating cAMP, we were able to identify 

a further ‘addiction’, namely that of keeping low levels of cAMP in PDE4-regulated sub-

cellular compartments.  We identified a new intersection between cAMP regulation and the 

PI 3-kinase/Akt pathway.  We propose that cAMP-regulation of events may offer a new 

potential ‘Achilles heel’ for the treatment of some tumours that are resistant to 

conventional therapies.   

Identification of ‘new’ addictions (such as keeping low cAMP in compartments controlled 

by PDE4s) that could be exploited to combat cancer may provide another therapeutic 

option for a tumour in advanced stage disease.  Identification of patients that may benefit 

from a cAMP-based, or other molecularly targeted therapy, would ideally allow the 

tailoring of a patient’s treatment to their specific genetic drivers and oncogene addictions, 

hopefully providing a better long-term outcome. 
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Also, we have shown that in at least one model of colon cancer PDE4 expression and 

activity are elevated in metastatic cells, which confers a proliferative advantage to these 

cells in the presence of cAMP agonists. 

The work presented in this thesis raises several important questions with regards to 

exploiting PDE4s and cAMP based therapeutics for the treatment of cancers which are 

otherwise difficult to kill: 

1. Does PDE4 expression and/or activity correlate more evidently with tumour 

grade and/or survival? 

2. Can PDE4s and/or cAMP pathways be exploited as potential anti-cancer 

therapies? 

3. Can this work be translated from cell-based models of cancer to more relevant 

animal-based models of cancer, including colorectal? 

I will now address each of these important issues. 

7.2 Does PDE4s elevation correlate with disease stage? 

In terms of the clinical value, PDE4 expression may be a good prognostic marker for 

some late stage tumours and potentially could give an indication as to whether or not a 

cAMP/PDE4 based treatment may effective for a particular individual, if expression was 

analysed in a tumour biopsy sample.  This seems to be the case for diffuse B-cell 

lymphocytic leukaemia (DLBCL), where increased PDE4 expression was highlighted 

during analysis of a large number of genes from clinical DLBCL samples and which also 

correlated with the cells ability to be growth inhibited by PDE4-specific inhibitors (339, 

379).  This work has potentially opened the door for PDE4 based therapies for the 

treatment of some leukaemia’s, and my work suggests this may also be applicable to other 

cancer types.   
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PDE4 expression and/or activity in epithelial cancer cells, or in tumours samples, is still not 

widely studied.  Here we have considered several lines of investigation that would address 

the generality of PDE4 expression in tumours and, whether or not, elevated expression 

correlates with tumour grade.  Firstly, a tissue micro-array (TMA) of tumour biopsy 

samples that are fixed and mounted ready for immunohistochemical (IHC) staining.  This 

type of TMA study would, in principal, allow analysis of a large quantity of tumour 

samples, and from a variety of origins and multiple tumour stages.  Often good TMAs are 

available from cancer centres where the samples are linked to clinical outcome, enabling 

inferences to be drawn about protein expression and disease progression.  Equally in 

clinical setting, IHC analysis of PDE4 expression in a patient tumour biopsy could provide 

valuable insight as to whether not PDE4s are altered in cancer, and whether PDE4 

inhibitor-based therapy might be employed.  However, one major problem associated with 

PDE4 expression analysis by IHC is the limited availability of good, specific anti-human 

PDE4 antibodies, for all isoforms identified thus far.  Due to the limited availability of 

antibodies, and coupled with time constraints, a TMA study would be technically difficult 

at the present time.   

Another alternative to immunostaining is genetic profiling of tumour samples to define 

PDE4 isoform RNA levels.  For example, RT-PCR or the more accurate quantitative-PCR 

(q-PCR), would tell us which PDE4 enzymes, both sub-family and specific isoforms, are 

expressed and whether or not their expression is altered relative to the surrounding tissue.  

This would be particularly useful for screening a number of tumour tissues as well as 

primary and metastatic cancer cell lines.  This could also, in principal, provide a prognostic 

indicator of disease advancement, which may be useful information in a clinical setting.  

PCR-based analysis would counter the disadvantages of a lack of antibodies; however, it 

would not give any indication as to whether or not the activity of the enzymes was altered.  
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PDE4 activity would have to be investigated by biochemical means, as unlike cases of 

increased kinase activity/expression, there are no direct downstream readouts that could act 

as surrogate markers.  Using anti-cAMP antibdies, its levels could potentially be observed 

by some IHC techniques, but this would have limitations, as it is most likely that PDE4s 

would be regulating distinct pools of cAMP, and perhaps not ‘global’ cAMP within the 

cell.   

The relationship, if any, between PDE4 expression and aggressiveness of a particular 

tumour type, for example colon cancer, requires further investigation.  Although difficult, 

as discussed above, this could potentially be rewarding in terms of identifying late stage 

tumours and potentially recognizing particular patient sub-groups who may benefit from 

therapeutic strategies based around PDE4 enzyme inhibition.   

7.3  Can PDE4s be exploited as therapeutic targets for cancer? 

PDE4s have been long-standing therapeutic targets for diseases such as asthma and 

COPD, where it is postulated that specific inhibitors will have both anti-inflammatory and 

smooth muscle relaxant properties.  In recently completed phase III trials, the PDE4-

selective inhibitor cilomilast decreased inflammatory responses and has subsequently been 

approved for the treatment of COPD (259).  Another PDE4-selective inhibitor, roflumilast, 

also potently inhibits inflammatory responses (even more so than cilomilast), is active in 

models of bronchoconstriction and lung inflammation and is orally active (259).  As a 

result, it too has been approved for the treatment of both COPD and asthma.  There are also 

other PDE4 inhibitors undergoing phase I and Phase II trials for the treatment of asthma, 

COPD and neurological disorders (239).  Therefore, there is great scope to utilise these 

compounds for clinical application in other disease areas that have also been shown to be 

dependent upon PDE4 activity.  In addition, because these have undergone pre-clinical and 

clinical evaluation, such agents may be developed more rapidly as anti-cancer therapies. 
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Despite some tantalising reports suggesting PDE4s may be critical regulators of key cancer 

cell processes, they have not been fully exploited as potential anti-cancer therapeutics yet.  

However, during the period of my PhD, several reports have been published which 

highlighted PDE4-regulated cAMP elevation as a potent growth inhibitory event, especially 

in the case of haematological malignancies.  Together with my work, these reports lend 

further credence to the potential of cAMP modulation as an anti-cancer therapeutic strategy 

(254, 291, 339, 377, 417). 

My studies have focused on a potential role for PDE4 enzymes in the regulation of 

colorectal cancer cell proliferation and survival.  However, we were aware that the effects 

observed by modulating PDE4/cAMP in the Fidler model of colorectal metastasis may not 

have been widely applicable to other cancer cell types.  Nevertheless, despite not having a 

broad range study on PDE4 expression and/or activity in numerous cancer cell lines, we 

showed that using a combination of Fsk/rolipram, we could inhibit the proliferation of 8 out 

of 11 cancer cell lines of varying origin.  This highlights the exciting possibility that there 

are potentially a number of cancers that may respond to a PDE4/cAMP based therapy.  At 

this stage it is not clear whether, and if so how, Fsk/rolipram-induced apoptosis and/or cell 

cycle arrest in those 8 cell lines.  However, it may be of value to carry out more extensive 

tests of other cancer cell types that were not represented, particulary chemoresistant and 

difficult to treat cancer cells (such as pancreatic), and attempt to identify common features 

that may define susceptibility to a cAMP-modulation based therapy.   

Potentially, one of the major problems associated with PDE4-based therapy would be 

targeting specific PDE4 isoforms or even sub-families involved in specific disease states.  

This is due to the high degree of structural similarity between all of the PDE4 active sites.  

However, differential effects of abolishing specific PDE4 sub-family activities are an 

effective strategy in other disease contexts.  For example, the PDE4-selective inhibitor 
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rolipram failed in early clinical trials due to adverse side effects that limited its use.  The 

adverse side effects, such as nausea and emesis, were eventually related to inhibition of 

PDE4D, while the desired anti-inflammatory effects were related to PDE4B inhibition 

(235, 259).  Therefore, it may be worthwhile pursuing the generation of sub-family specific 

rather than isoform specific inhibitors.  This has already been exemplified by the 

generation of PDE4D selective inhibitors (491).  However, another problem associated 

with generating PDE4 sub-family selective inhibitors is the conformation of the catalytic 

domain.  It is believed that the PDE4 catalytic site of all four sub-families can adopt either 

a high-affinity rolipram binding site (HARBS) or a low affinity rolipram binding site 

(LARBS) (492).  In fact, it was initially thought that the emesis and nausea caused by 

PDE4 inhibitor was due to the binding to PDE4s in the HARBS conformation (492).    

Currently, all PDE4 crystal structures of their catalytic domains bound to rolipram, are in 

the LARBS state.  One of the biggest challenges for PDE4 inhibitor design is crystallisation 

of full-length protein and understanding the mechanisms involved in the switching of the 

active site to the HARBS conformation which will enable the design of more potent PDE4-

selective inhibitors.     

One compounding problem is that it may be difficult to generate specific small molecule 

inhibitors of specific PDE4 isoform active sites.  Therefore, more likely PDE4 isoform 

targeting would involve the sub-cellular distribution of the enzymes, rather than their 

catalytic activity.  This ‘displacement’ of PDE4 isoforms from their particular signalling 

complexes may be achieved by using small interfering peptides that compete with the 

native PDE4 enzymes for binding on specific scaffolding proteins.  This is exemplified in 

‘dominant-negative’ strategies where overexpression of a catalytically inactive PDE4 most 

likely displaces the endogenous enzyme, thereby preventing the regulation of cAMP in that 

particular sub-cellular compartment.  Use of a specific interfering peptide that consisting of 
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38 amino acids that is identical to a portion of PDE4D5s unique amino-terminal region, 

disrupts the endogenous PDE4D5 interaction with both RACK1 and β-arrestin scaffolding 

proteins causing enhanced PKA phosphorylation of β2-adrenergic receptor(493).  This 

strategy itself offers yet more technical challenges, such as effective delivery of peptides to 

all cells in a tumour as well as limiting adverse side effects.  A disruption based therapy for 

PDE4D3 would have to consider adverse effects on the heart, due to PDE4D3s prominent 

role in regulating contraction of the heart muscle (268).  However, despite these obvious 

imperfections in designing an ideal strategy at this point, it is promising potential area of 

drug discovery to disrupt specific PDE enzyme isoform signalling. 

In terms of metastatic cancer cells, we showed that in least one model PDE4 expression 

and activity were increased, hinting at a potential role for PDE4s in the metastatic process.  

To investigate this, we stably depleted PDE4D3 and PDE4D5 using a sub-family specific 

RNAi sequence.  This depletion apparently sensitised the metastatic cells to inhibition of 

proliferation by low doses of Fsk alone.  In addition, we showed that in KM12C cells 

PDE4D5 was the more likely regulator of the cAMP pool that controlled apoptosis.  

However, due to time constraints I was unable to fully investigate the roles of PDE4D3 and 

PDE4D5 in the metastatic cells, although we could infer that PDE4D3 was responsible for 

the metastatic cells increase tolerance to Fsk.  If time permitted, in order to investigate the 

role of each enzyme further I would have liked to generate cells with stable knockdowns of 

both PDE4D isoforms individually and assess the effects on downstream signalling 

pathways.  It would also have been exciting to use the stable knockdown cells in the in vivo 

metastasis assay that for which the Fidler cell lines are valuable i.e. the intrasplenic to liver 

metastasis assay, assaying both tumour growth at the site of injection and at site of ectopic 

metastatic growth, in this case the liver.  This work would again further our knowledge of 
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how specific PDE4 isoforms regulate aspects of late stage colon cancer behaviour, 

including potentially how their activity may influence the metastatic process.           

PDE4 research in cancer is an exciting new field which, as mentioned, may offer some 

therapeutic potential for some advanced cancers resistant to conventional therapies.  With 

selective PDE4 inhibitors in advanced stages of clinical development, for other diseases 

advancing PDE4 based therapies for cancer treatment could occur fairly rapidly than 

completely new drug discovery programmes, since toxicology isuues have already been 

dealt with.                   

7.4 Future work 
Perhaps one of the most exciting aspects to come out of my study is the potential 

anti-cancer applications of the Fsk analogue, NKH477.  NKH477 (or colforsin daropate) 

has been used in several small patient studies and acts as an anti inflammatory agent (481), 

a bronchodilator (488, 489) and also a vasodilator (482).  Trials using this agent have 

focused on the cardiovascular and anti-inflammatory effects of NKH477, a common theme 

for agents that increase intracellular cAMP.  Towards the end of my study I examined the 

effect of NKH477 treatment on a variety of cancer cell lines because it was a potentially 

more clinically relevant agent. NKH477 inhibited the proliferation of KM12C cells in a 

manner similar to that of Fsk (as far as was examined) and low concentrations of NKH477 

could synergise with rolipram to inhibit proliferation.  Also, when we tested the panel of 

cell lines used to assess the generality of Fsk/rolipram-induced inhibition of proliferation, I 

found that NKH477 alone was sufficient to inhibit the proliferation of all cancer cell lines 

tested.  This was a remarkable result as Fsk alone was not sufficient to elicit such a 

universal and strong response, and even the Fsk/rolipram combination only inhibited 8 out 

of 11 cell lines.  Clearly then there are other mechanisms by which NKH477 inhibits 

proliferation or NKH477 is activating specific adenylyl cyclase isoforms to a greater extent 
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than Fsk alone.  In this regard, NKH477 can activate adenylyl cyclase-V more potently 

than other isoforms (490).  Again, due to time constraints I was unable to investigate the 

mechanism of action of NKH477 fully but this should be done now by determining if 

NKH477 more potently stimulates the production of cAMP by directly measuring cAMP in 

the cells using either a biochemical cAMP assay, an ELISA (Enzyme linked 

immunosorbent assay) based method or by either using PKA or Epac FRET sensors (185, 

218).     

Finally, perhaps one of the most exciting areas of work to progress this research would be 

to use NKH477 into an animal model of colorectal cancer.  We have now begun a 

collaboration with Dr. Owen Sansom at the Beatson Institute to address the long-term  

effects of NKH477 on tumour formation in the APCMIN  (multiple intestinal neoplasias) 

transgenic mouse model of colon cancer (68, 69).  By analysing the number of intestinal 

polyps as well as the survival time of the mice (by Kaplan-Meiers survival curve) we can 

assess whether or not NKH477 can be used as a chemo-preventative treatment for 

colorectal cancer.  We will also utilise the APCflox model, which has been crossed with 

PTENflox mice, in order to generate APCflox/PTENflox mice; the tumours generated in this 

model are both highly invasive and metastatic and the mice can be treated with NKH477 

after tumour initiation.  Thus, in light of our results with the KM12C cells, this model will 

allow us to address the whether or not NKH477 treatment has any effect on aggressive, 

metastatic tumours which have alterations in tumour suppressor genes that are common in 

colorectal cancer.  In this instance, we intend to look at markers for apoptosis (such as 

activated caspase 3), alterations in cell cycle (for example phospho-histone H3, a marker 

for G2/M) and differentiation.  Indeed, preliminary results using the APCflox/PTENflox have 

been encouraging, and although it is very preliminary, NKH477 does appear to have a 
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substantial effect on the tumours, with a first experiment suggesting increased 

differentiation and apoptosis in mice treated with NKH477 (Figure 38).    

In addition to the APC-deletion models of colorectal cancer, there are now a growing 

number of other genetically engineered mouse models of cancer that more closely mimic 

the human disease.  Also, the advent of new imaging technologies, such as the knocking-in  

of GFP or luciferase, allows for the in vivo imaging of fluorescent tumours such that the 

effects of any treatments, like NKH477, can be monitored in live animals and tumour 

volume as well as metastasis can be accurately visualised.   

In conclusion, I believe that the work presented in this thesis adds to the growing body of 

evidence that PDE4 and cAMP pathways could potentially be utilised as anti-cancer 

therapies.  NKH477, which we are now beginning to test in vivo in animal models of 

cancer looks to provide a promising start to test this proof of principal.  
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Figure 38.  NKH477 treatment of APCflox/PTENflox mice. Hematoxylin and eosin 
(H&E) staining of intestine sections of (A) APC wild type crypt (top) showing 
enlargement (below) and arrows indicate presence of paneth cells.  (B)  
APCflox/PTENflox adenoma.  Note the number of paneth cells (indicated by arrow in 
the bottom panel) which are not normally present at during this stage of 
tumourigenesis.  NKH477 treatment may be inducing differentiation in these 
tumours.    

APC wild type crypt NKH477 treated APCflox/PTENfloxA B
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Abstract

One of the major problems in treating colon cancer is
chemoresistance to cytotoxic chemotherapeutic agents. There
is therefore a need to devise new strategies to inhibit colon
cancer cell growth and survival. Here, we show that a combi-
nation of low doses of the adenylyl cyclase activator forskolin
together with the specific cyclic AMP (cAMP) phosphodiester-
ase-4 (PDE4) inhibitor rolipram, but not the cAMP phospho-
diesterase-3 (PDE3) inhibitor cilostamide, causes profound
growth arrest of chemoresistant KM12C colon cancer cells.
Low-dose forskolin causes KM12C cells to exit the cell cycle in
G1 by inducing p27

Kip1 and primes cells for apoptosis on
addition of rolipram. The effect of the low-dose forskolin/
rolipram combination is mediated by displacement of the
phosphatidylinositol 3,4,5-trisphosphate/phosphoinositide
3-kinase signaling module from the plasma membrane and
suppression of the Akt/protein kinase-B oncogene pathway,
to which KM12C cells are addicted for growth. The cAMP
and phosphoinositide 3-kinase pathways form a critical inter-
section in this response, and reexpression of the tumor
suppressor lipid phosphatase, phosphatase and tensin homo-
logue, which is commonly lost or mutated in colon cancer,
sensitizes KM12C cells to growth inhibition by challenge with
low-dose forskolin. Certain chemoresistant colon cancer cells
are therefore exquisitely sensitive to subtle elevation of cAMP
by a synergistic low-dose adenylyl cyclase activator/PDE4
inhibitor combination. Indeed, these cells are addicted to
maintenance of low cAMP concentrations in a compartment
that is regulated by PDE4. Well-tolerated doses of PDE4 inhi-
bitors that are already in clinical development for other the-
rapeutic indications may provide an exciting new strategy for
the treatment of colon cancer. [Cancer Res 2007;67(11):5248–57]

Introduction

Colorectal cancer is the third commonest cancer in the United
Kingdom, which can, at present, only be cured by complete
resection of the primary tumor and isolated metastasis. In reality,
the majority of metastatic tumors are not resectable, and

chemotherapy is the first-line treatment for a large number of
patients. Currently, chemotherapy, which is usually 5-fluorouracil
(5-FU), or capecitabine, which is processed to generate 5-FU in
tumor cells, folinic acid, or newer agents such as irinotecan or
oxaliplatin, improves survival in only a proportion of cases
(reviewed in ref. 1). Although chemotherapy can also give a
modest improvement in time to tumor progression and overall
survival in more advanced disease, there remains an urgent need
for new treatments to improve survival. Here, we have used cancer
cells of various origins, including those from the Fidler model of
colorectal metastasis (2), to examine whether modulators of cAMP
may successfully intervene in chemoresistant cancers, and to
identify both mechanism and circumstances in which this might be
useful.
Cyclic AMP (cAMP) acts as a second messenger that controls a

diverse range of cellular processes (3), usually through activation of
either or both protein kinase A (PKA; ref. 4) and the cAMP-GTP
exchange factor Epac (5). cAMP signaling is regulated in both
spatial and temporal manner by cAMP phosphodiesterases (PDE;
ref. 6), which provide the sole route for degradation of cAMP in
cells (3, 7). Whereas a large and complex enzyme family provide for
cAMP phosphodiesterase activity within cells, invariably the
majority of cAMP-hydrolyzing activity is provided by members of
the phosphodiesterase 3 (PDE3) and phosphodiesterase 4 (PDE4)
families (7, 8). However, enzymes of the PDE4 family have attracted
much recent interest because they play a key role in underpinning
compartmentalized cAMP signaling in many cell types (9) and
because PDE4-specific inhibitors seem to have therapeutic
potential as anti-inflammatory agents for treating chronic obstruc-
tive pulmonary disease and as cognitive enhancers and antide-
pressants (7, 10).
In the cancer context, there are some reports suggesting that

modulating intracellular cAMP levels may have effects on the
behavior of cancer cells (11). For example, the archetypal PDE3-
selective inhibitor cilostazol (12) and the archetypal PDE4-selective
inhibitor rolipram (7) both suppress colon cancer cell motility (13),
whereas inhibition PDE4 by rolipram can negatively affect chronic
lymphocytic leukemia (14). Interestingly, rolipram can also induce
expression of cyclin-dependent kinase (CDK) inhibitors, leading to
growth inhibition and differentiation of glioma cells (15), although
a high concentration of rolipram was required for these effects. The
cAMP-elevating agent forskolin (16), when used at high doses, has
been reported to inhibit DNA replication in lymphocytes via PKA-
mediated effects on p21CIP1, leading to dephosphorylation of the
retinoblastoma protein (pRb) and disrupted tethering of prolifer-
ating cell nuclear antigen to DNA (17). Taken together, these
reports tantalizingly suggest that modulating intracellular cAMP,
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perhaps in a localized manner by targeting particular PDE types,
may affect the proliferation of cancer cells.
In the present study, we set out to test the hypothesis that some

chemoresistant epithelial cancer cells are ‘‘addicted’’ to oncogenic
growth-regulatory pathways that may be influenced by cAMP
modulation. This would provide a novel, and much needed, way to
inhibit such cancer cells, particularly if it could be achieved by well-
tolerated synergistic low doses of cAMP modulators. We found that
a combination of relatively low doses of forskolin and rolipram (but
interestingly not cilostamide) can work together to cause growth
arrest and apoptosis via sustained inhibition of the phosphoinosi-
tide 3-kinase (PI3K)/Akt pathway and effects on regulators of G1
progression. Reexpression of the phosphatase and tensin homo-
logue (PTEN) lipid phosphatase, which negatively regulates PI3K
and is commonly lost or mutated in many human malignancies
(18, 19), slows the growth of KM12C cells at low density and
renders them more sensitive to growth inhibition by the low-dose
forskolin/rolipram treatment. Therefore, KM12C colon cancer cells,
which are resistant to cytotoxic agent-induced cell death, can be
effectively growth inhibited and killed by particular modulators of
cAMP degradation and synthesis; in this case, specifically by a
mechanism that ablates signaling through the PI3K/Akt pathway,
to which these cells are addicted for growth and survival. In a
survey of 11 cancer cell lines (including 7 colon cancer cell lines),
we found that up to 8 of these are sensitive to the forskolin/
rolipram combination to a greater or lesser extent, implying that
this may have more general applicability as a way of inhibiting
cancer cells that are otherwise extremely difficult to kill.

Materials and Methods

Cell culture and cell lines. KM12C cells were provided by Prof. I. Fidler
(Department of Cancer Biology, M.D. Anderson Cancer Center, Houston,

TX) and KM12/2C4 cells were derived as previously reported (20), MCF7,

HT29, A431, WiDr, RKO, A375, H630, Du145, SW480, and SW620 were
obtained from the American Type Culture Collection. MCF7 and KM12C

cells were cultured in Eagle’s MEM with Earle’s salts supplemented with

MEM vitamins, nonessential amino acids, L-glutamine (2 mmol/L), and

sodium pyruvate (1 mmol/L; all from Life Technologies) in the presence
of 10% fetal bovine serum (Autogen Bioclear). HT29, A431, WiDr, RKO,

A375, and Du145 cell lines were cultured in DMEM supplemented with

L-glutamine (2 mmol/L; Life Technologies) and 10% fetal bovine serum

(Autogen Bioclear). SW480, SW620, and H630 cells were cultured in RPMI
(Invitrogen) supplemented with L-glutamine (2 mmol/L; Life Technologies)

and 10% fetal bovine serum (Autogen Bioclear). All cells were routinely

maintained in a humidified incubator at 37jC with 5% CO2 and subcultured
before reaching confluence. Cells expressing PTEN-green fluorescent

protein (GFP; NH2-terminal tag) were generated by retroviral infection of

KM12C/2C4 cells with PTEN-GFP in pWZL vector, and single-cell clones

were selected in growth media containing 400 Ag/mL hygromycin B
(Calbiochem).

Modified 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide proliferation assay. Cell proliferation and viability was assayed

indirectly by a modified 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay, based on the enzymatic reduction of MTT (Sigma) to

formazan crystal by mitochondria and cellular dehydrogenase enzymes

(21). Briefly, 50 AL of cell suspension containing 1,000 cells were dispensed
into 96-well flat-bottomed microplates. Dilutions of pharmacologic agents

in growth media were done in four replicate rows per cell type and per

dilution. Plates were then incubated in a humidified incubator in 5% CO2 at

37jC. At the time points indicated, 50 AL of MTT solution (5 mg/mL MTT in
PBS) were added to a total volume of 100 AL and incubated in 5% CO2 at

37jC for 4 h. Formazan crystals were dissolved with 100-AL DMSO and

absorbance at 570 nm was determined with a plate reader.

Immunoblotting. Cells were treated with DMSO (vehicle), forskolin,
rolipram (all obtained from Sigma-Aldrich), or LY294002 (obtained from

Calbiochem) at the concentrations and times indicated before generation

of cell extracts. Cell extracts were prepared in lysis buffer (20 mmol/L Tris,

150 mmol/L NaCl, 2 mmol/L EDTA, 1% Triton X-100, 10% glycerol pH 7.4)
from subconfluent cell cultures and clarified by centrifugation at 4jC. Total
protein was measured using microBCA reagent (Pierce). Proteins were

resolved by 10% SDS-PAGE, transferred to nitrocellulose, and blocked before

probing with indicated specific antibodies and detection by horseradish
peroxidase (HRP)–conjugated secondary antibodies (antimouse and anti-

rabbit HRP, Cell Signaling). Antibodies used in this study include anti-

p27KIP1 (Becton Dickinson Transduction Laboratories); anti-vinculin

(Sigma-Aldrich); anti-p21CIP1, anti–cyclin A, anti–cyclin E, and anti–CDK1
(Cdc2 p34; Santa Cruz Biotechnology); and anti–phospho-Akt (Ser473 and

Thr308) and total Akt (Cell Signaling Technologies). pRb was resolved by

7.5% SDS-PAGE (29.74% acrylamide/0.24% bis-acrylamide) gels before
transfer and probed with anti–total pRb antibody (Becton Dickinson

Transduction Laboratories). For immunoblotting, 50 to 100 Ag of cellular
proteins were resolved as above.

Cell cycle analysis and apoptosis detection. Cells were fixed in 70%
ethanol in PBS overnight. For DNA content analysis, cells were pelleted and

resuspended in PBS containing 1 Ag/mL RNase (Qiagen Ltd.) and 10 Ag/mL
propidium iodide, incubated at room temperature for 30 min, then analyzed

using a Becton Dickinson (Oxford, United Kingdom) FACScan flow
cytometer. To monitor bromodeoxyuridine (BrdUrd) incorporation, cells

were incubated with 20 Amol/L BrdUrd for the final hour of treatment,
fixed, and incubated with an anti-BrdUrd antibody (Dako) followed by
FITC-conjugated secondary antibody. Apoptosis was quantified using an

Annexin V-FITC detection kit (Becton Dickinson) and staining was carried

out per manufacturers’ instructions. Briefly, KM12C cells were set up at low

density and treated for 24, 48, or 72 h with the treatments indicated. At each
time point, cells were washed with cold PBS, trypsinized, and resuspended

in binding buffer (100 mmol/L HEPES, 1.4 mol/L NaCl, 25 mmol/L CaCl2,

pH 7.4) at a concentration of 1 � 106/mL and 100 AL of resuspended cells
were incubated with Annexin V-FITC and propidium iodide.
Microscopy and immunofluorescence. Cell were plated at a density of

1.5 � 105 per glass coverslip for transfection and 7 � 104 per glass coverslip

for all other imagings. KM12C cells were transiently transfected with 1.5 Ag
of GFP fused to the plektstrin homology (PH) domain of Akt (GFP-PH;

ref. 22) construct for 4 h using Polyfect (Qiagen) and left in fresh media

overnight. Cells were treated with pharmacologic agents and then fixed

using 4% paraformaldehyde for 15 min at room temperature. GFP was
visualized with a confocal microscope (Leica).

Statistical analysis. Statistical analysis was done using the nonpara-
metric Mann-Whitney test and P < 0.05 was considered significant.

Phosphodiesterase assay. PDE assays were done by a modification (23)
of the two-step method by Thomson and Appleman (24). In brief, cells were

lysed in KHEM buffer [50 mmol/L KCl, 50 mmol/L HEPES (pH 7.2),

10 mmol/L EGTA, 1.92 mmol/L MgCl2] containing protease inhibitors

(Roche Molecular Biochemicals). Cells were then subjected to 14,000 � g for
15 min at 4jC and the resulting supernatants were assayed for total PDE
activity using 1 Amol/L cAMP and [3H]cAMP as a substrate. To determine
the contribution of various PDE family members to the total PDE activity,
family specific inhibitors were used at a final concentration that completely

inhibited their activities. PDE3 and PDE4 activities were determined using

10 Amol/L cilostamide (PDE3; ref. 12) or 10 Amol/L rolipram (PDE4;

refs. 7, 10).

Results

cAMP modulators cause growth suppression. Treatment
of KM12C cells with the adenylyl cyclase activator forskolin (at
50 Amol/L) completely inhibits their growth (Fig. 1A), an effect that
is mediated by cAMP as it is mimicked by challenging cells with
the cell-permeant cAMP analogue 8-bromo-cyclic AMP (8-Br-
cAMP; 300 Amol/L; Fig. 1A). However, treatment of KM12C cells
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with the cell-permeant cAMP analogue 8-pMeOPT-2¶-O-Me-cAMP,
which selectively activates Epac rather than PKA, did not result in
growth suppression (Fig. 1A). Interestingly, treatment with the
nonselective PDE inhibitor I-methyl-3-isobutylxanthine (IBMX;
100 Amol/L), the specific PDE3 inhibitor cilostamide (10 Amol/L),
or the specific PDE4 inhibitor rolipram (10 Amol/L), at concen-

trations known to induce selective PDE inhibition (7, 9, 12), did not
cause growth cessation (Fig. 1A).
We next titrated the action of forskolin and found that 1 Amol/L

forskolin gave rise to f50% inhibition of KM12C cell growth
(Fig. 1B). We therefore used this ‘‘low dose’’ of forskolin to look for
potential synergistic action with inhibitors specific for the PDE3
and PDE4 families because these are collectively responsible for
f35% of cAMP-hydrolyzing activity in KM12C cells (Supplemen-
tary Table S1). We found that the PDE3-selective inhibitor
cilostamide, when used at a dose known to maximally inhibit
PDE3 (10 Amol/L; ref. 12), did not potentiate low-dose (1 Amol/L)
forskolin–induced growth suppression (Fig. 1C). In marked
contrast to this, addition of rolipram at a dose (10 Amol/L) known
to maximally inhibit PDE4 (7, 10) enhanced the growth suppression
induced by 1 Amol/L forskolin (Fig. 1D); rolipram plus low-dose
forskolin caused complete growth cessation of KM12C cells,
despite rolipram having no effect on its own. Statistical analysis
of the data indicated that there was no significant difference
between control and rolipram (P > 0.09) for all time points;
however, for control versus forskolin (P < 0.03), forskolin versus
forskolin/rolipram (P < 0.02), and control versus forskolin/rolipram
(P < 0.02), the data were deemed statistically significant from day 2
onward. Thus, under conditions of submaximal adenylyl cyclase
activity, inhibition of specific cAMP-hydrolyzing PDE4 can suppress
growth regulatory pathways in KM12C cells. The profound growth
arrest is intriguing because these cancer cells are resistant to
cytotoxic agents and to inhibitors of the major oncogenic Src and
Ras pathways.4 We may therefore have uncovered an apparent
‘‘Achilles heel’’ for these chemoresistant cancer cells.
Effects of forskolin and rolipram on cell cycle regulators.

Next, we addressed known regulators of the G1-S transition in
response to five conditions: (a) DMSO vehicle control; (b) high-
dose (50 Amol/L) forskolin, which alone blocks KM12C cell
proliferation; (c) low-dose (1 Amol/L) forskolin, which only
suppresses proliferation by f50%; (d) low-dose (10 Amol/L)
rolipram, which does not affect proliferation; and (e) the combined
low doses of both forskolin (1 Amol/L) and rolipram (10 Amol/L;
forskolin/rolipram), which causes complete growth cessation
(Fig. 1). These treatments were used throughout of the remainder
of this study to investigate mechanism of action.
We found no consistent difference in p21CIP1 expression induced

by forskolin or rolipram (Fig. 2A, top). However, p27KIP1 expression
was increased by treatments that blocked proliferation, particularly
by high-dose forskolin and the synergistic low-dose combination of
forskolin/rolipram (Fig. 2A, middle, lanes 2 and 5). In addition,
Skp2, an oncogenic F-box protein component of the SCF ubiquitin
ligase complex, which is known to target p27KIP1 for proteosomal
degradation (25), is regulated in a reciprocal manner to p27KIP

(Fig. 2B, top, lanes 2 and 5); Skp2 protein expression is reduced
when p27KIP1 is enhanced after treatment with high-dose forskolin
or the low-dose forskolin/rolipram combination (Fig. 2B, top, lanes
2 and 5). This suggests that the mechanism by which p27KIP1

accumulates during cell cycle withdrawal may be due, at least in
part, to loss of Skp2-mediated degradation. As expected, the
induction of p27KIP1 was paralleled by loss of phosphorylated pRb
(and reduced pRb expression) as well as decreased expression of
the pRb/E2F-regulated cyclins A, B1, and E, together with their

Figure 1. Specific cAMP elevation inhibits KM12C proliferation. Proliferation of
KM12C cells was monitored over a 5-d period using a MTT dye–based assay,
during which the cells were treated with modulators of cAMP. A, cells were
treated with vehicle only (control ; DMSO), 50 Amol/L forskolin (FSK ; a adenylyl
cyclase activator), 300 Amol/L 8-Br-cAMP (a nonhydrolyzable cAMP analogue),
100 Amol/L 8-pMeOPT-2¶-O-Me-cAMP (a Epac-specific activator), 100 Amol/L
IBMX (a nonspecific PDE inhibitor), 10 Amol/L cilostamide (a PDE3-specific
inhibitor), and 10 Amol/L rolipram (a PDE4-specific inhibitor). B, a concentration
range of forskolin (0.1–50 Amol/L) was carried out to establish which
concentration (1 Amol/L) gave an f50% inhibition of proliferation. C, stimulation
of KM12C cells with low-dose forskolin (1 Amol/L) in combination with a PDE3
inhibitor (10 Amol/L cilostamide) indicated that PDE3 enzymes do not control the
cAMP pool that regulates proliferation on stimulation with forskolin. D, PDE4
inhibition (10 Amol/L rolipram) in combination with a low forskolin concentration
(1 Amol/L) completely inhibited the proliferation of KM12C cells, whereas
neither agent alone (at these concentrations) was able to do this. Points, mean of
three independent experiments; bars, SD. *, P < 0.03, compared with 1 Amol/L
forskolin alone.

4 Our unpublished data.
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kinase partner CDK1 (Fig. 2C, lanes 2 and 5). These results imply
that high-dose forskolin and the low-dose forskolin/rolipram
combination induce cell cycle arrest via inhibition of the pRb/
cyclin/CDK pathway, which normally controls progression through
G1-S phase of the cell cycle, and that this is via stabilization of
p27KIP1.
Low-dose forskolin causes cell cycle arrest and primes

KM12C cells for rolipram-induced apoptosis. To complement
the results of the proliferation assays (Fig. 1) and analysis of cell
cycle regulators (Fig. 2), we next cultured cells in the combination
of cAMP-modulating agents for 24 h and then pulsed with BrdUrd
during the final hour. Cells were stained with propidium iodide and
analyzed by flow cytometry to determine BrdUrd incorporation
into the DNA at various cell cycle stages. In keeping with the
antiproliferative effects observed by MTT assays, quantification of
BrdUrd incorporation showed that high-dose forskolin and the
low-dose combination of forskolin/rolipram ( forskolin/rolipram)
caused a partial G1 arrest, with f20% of cells still in S phase
(Fig. 2D). Surprisingly, low-dose (1 Amol/L) forskolin caused a
similar G1 arrest although these cultures were still able to grow to
f50% of control cells in proliferation assays (Fig. 1). To investigate
the reason why high-dose forskolin and low-dose forskolin/
rolipram cause complete growth cessation whereas low-dose
forskolin–treated cultures can still proliferate, albeit more slowly,

we examined cell viability. Cells were treated with the cAMP-
modulating agent combinations for 24, 48, or 72 h, and the cells
were fixed and stained with propidium iodide (Fig. 3A) or an
Annexin V-FITC conjugate (Fig. 3B) and analyzed by flow
cytometry to detect apoptotic cells. Quantification and statistical
analysis of sub-2n DNA by propidium iodide (Fig. 3C) and Annexin
V staining (Fig. 3D) showed that whereas both high-dose (50 Amol/L)
and low-dose (1 Amol/L) forskolin caused G1 arrest (Fig. 2D), only
high-dose forskolin–treated cells were apoptotic. In contrast to
low-dose forskolin alone or rolipram alone, the low-dose forskolin/
rolipram combination caused both G1 arrest and apoptosis that
was statistically significant from 48 h onward (P < 0.05) when
compared with 1 Amol/L forskolin alone (Fig. 2D , quantified in
Fig. 3C and D). This correlates with the data in Fig. 1D , in which
a statistically significant difference in the proliferation between
1 Amol/L forskolin alone versus forskolin/rolipram combination is
observed from day 2 onward and reflects the increase in apoptosis
observed in forskolin/rolipram–treated cells (Fig. 3C and D). These
data indicate that low-dose forskolin not only causes G1 arrest but
also primes KM12C cells to die, presumably from the G1 arrested
population, on addition of the PDE4 inhibitor rolipram (Fig. 3).
Challenge with rolipram alone did not cause apoptosis (Fig. 3). This
suggests that the combination of low-dose forskolin/rolipram can
arrest and kill chemoresistant KM12C colon cancer cells. This

Figure 2. Combined low-dose forskolin/
rolipram induces p27KIP1, loss of Skp2,
pRb phosphorylation, and cyclin/CDK
components. Subconfluent KM12C cells
were cultured for 24 h under normal
conditions and in the presence of DMSO
(control ; lane 1), 50 Amol/L forskolin (lane
2), 1 Amol/L forskolin (lane 3 ), 10 Amol/L
rolipram (lane 4 ), or 1 Amol/L forskolin +
10 Amol/L rolipram (FSK/rolipram; lane 5 ),
and the protein levels of various cell
cycle regulators were analyzed via
immunoblotting with specific antibodies as
probes. A, high forskolin and forskolin/
rolipram combination treatment increases
p27KIP1 (middle, lanes 2 and 5) but does
not affect p21CIP1 levels (top ). B, forskolin
and forskolin/rolipram treatment causes
a decrease in levels of the SCF ubiquitin
ligase adapter protein Skp2 (top, lanes
2 and 5). C, high forskolin (lanes 2)
and low-dose forskolin/rolipram
treatment (lanes 5) causes loss of
hyperphosphorylated (ppRb ) and total
pRb and deregulation of the pRb/E2F
regulated cell cycle control proteins cyclin
A, cyclin B1, cyclin E, and CDK1. Vinculin
immunoblotting was used as a loading
control in all of the above. D, quantification
of BrdUrd pulse-labeled KM12C cells.
Cell cycle distribution is presented as
percentage of gated cells. Columns, mean
of three independent experiments;
bars, SD.
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raises the exciting possibility that such combinations of relatively
low doses of cAMP-elevating agents may provide a means of
inhibiting the growth of some advanced cancer cells, which are
otherwise extremely difficult to kill. This also indicates that KM12C
cell viability and growth requires maintenance of cAMP at low
levels, at least in the compartments that are regulated by PDE4.
Low-dose forskolin/rolipram works by suppressing PI3K

signaling. Because the PI3K pathway plays a major role in
regulating cell growth and survival (26), we examined whether it
was important for continued proliferation of KM12C cells and
whether it impinged on the novel, cAMP-induced, inhibitory effects
on survival. Intriguingly, we found that GFP-PH [used as a reporter

of phosphatidylinositol 3,4,5-trisphosphate (PIP3) localization;
ref. 22] was displaced from its normal membrane localization in
cells treated with either high-dose forskolin (P < 0.05, compared
with control) or the low-dose forskolin/rolipram combination (P <
0.05, compared with 1 Amol/L forskolin alone), but not with
rolipram alone (P > 0.09; Fig. 4A , quantified in Fig. 4B). We saw
similar displacement of the membrane-proximal location of the
PI3K regulatory subunit p85a on treatment with forskolin or the
lower-dose forskolin/rolipram combination (data not shown).
These data indicate that under growth inhibitory cAMP-elevating
conditions, there was loss of membrane-associated PI3K and PIP3.
In addition, low-dose forskolin/rolipram combination treatment

Figure 3. Forskolin/rolipram induces apoptosis of KM12C cells. Effects of treatments on cell viability. KM12C cells were cultured for 24, 48, or 72 h in the presence
of DMSO, 50 Amol/L forskolin, 1 Amol/L forskolin, 10 Amol/L rolipram, or 1 Amol/L forskolin + 10 Amol/L rolipram, and then washed, trypsinized, and incubated with
either propidium iodide (PI ; A) or anti–Annexin V-FITC conjugate and propidium iodide (B) and analyzed by fluorescence-activated cell sorting for the detection
of apoptotic cells. Results shown are for 48 h. Quantification of sub-2n DNA regions of the histograms (C ) and lower right quadrants of the dot plots for the detection of
Annexin V–positive early apoptotic cells (D ) were used to calculate percentages of gated cells (columns, mean of three independent experiments; bars, SD).
*, P < 0.05, compared with 1 Amol/L forskolin alone.
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led to a rapid dephosphorylation of the PI3K/PIP3–regulated protein
kinase Akt/protein kinase B (PKB) at Ser473 (Fig. 5A). Moreover,
although the biological effects of cAMP-elevating agents were long
term and sustained, suppression of Akt/PKB phosphorylation was
evident between 5 and 10 min after drug addition (Fig. 5A).
Decreased phosphorylation of Akt/PKB, at both Ser473 and Thr308,
which are known to regulate Akt/PKB activity (27), correlated with
cell death induced by high-dose forskolin or the low-dose forskolin/
rolipram combination (Fig. 5B). We confirmed the implied necessity
for the PI3K/Akt pathway for continued proliferation and survival
of KM12C cells by showing that the PI3K inhibitory drug LY294002
recapitulated the growth inhibitory effects induced by forskolin
or the low-dose forskolin/rolipram combination (Fig. 5C). Indeed,
more detailed analysis indicated that 20 Amol/L LY294002 caused
G1 arrest, with <20% of cells still incorporating BrdUrd (Supple-
mentary Fig. S1A , quantified in Fig. 5D), and also resulted in

accumulation of cells with sub-2n DNA content when compared
with DMSO-treated controls (Supplementary Fig. S1B). In keeping
with a similar mechanism of action, LY294002 also induced p27KIP1,
inhibited pRb phosphorylation, and reduced the expression of
cyclins A, B1, and E and CDK1, effects that were similar to the
forskolin/rolipram combination (Supplementary Fig. S2). These
data show that PI3K membrane localization and phosphorylation
of Akt/PKB were strongly inhibited by the low-dose forskolin/
rolipram combination, and this is almost certainly how these agents
induce growth arrest and cell death.
PTEN reexpression suppresses growth at low density and

sensitizes KM12C cells to forskolin. To determine whether
known oncogenic or tumor suppressor regulators of the PI3K
pathway influenced KM12C cell growth, we examined cells in
which either PTEN or Src had been modulated by exogenous
expression. Src, which positively regulates PI3K (28), is commonly

Figure 4. Forskolin/rolipram perturbs PIP3
localization. A, a GFP-PH–expressing
plasmid was transiently transfected into
KM12C cells to monitor PIP3 distribution.
Its localization after 3-h treatment with
DMSO, 50 Amol/L forskolin, 1 Amol/L
forskolin, 10 Amol/L rolipram, or 1 Amol/L
forskolin + 10 Amol/L rolipram was
visualized by confocal microscopy. Arrows,
distribution of the PIP3 reporter.
B, quantification of membrane-localized
GFP-PH (Akt PH domain) reporter of PIP3
after treatment with cAMP modulators or
DMSO control was carried out by counting
100 transfected cells under each condition.
Columns, mean number of cells
(in percentage) from three independent
experiments; bars , SD. *, P < 0.05,
compared with control; **, P < 0.05,
compared with 1 Amol/L forskolin alone.
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activated, or overexpressed, in late-stage colon cancer cells
(29, 30), whereas PTEN, which acts as a PIP3 lipid phosphatase
to down-regulate the PI3K pathway (19), is frequently lost or
mutated (26). We found that overexpressing a constitutively active
Src-Y527F mutant did not alter the growth properties of KM12C
colon cancer cells (specifically in KM12C/2C4 cells described in
ref. 20; data not shown). However, reexpression of PTEN, the
expression of which is lost in these cells, slows down growth rate of
KM12C/2C4, particularly evident at lower cell densities (Fig. 6B),
with accumulation of cells in G1 (Fig. 6C). Reexpression of PTEN
resulted in reduced Akt/PKB phosphorylation to levels found in
colon cancer cells that have retained PTEN expression (shown for
HT29 cells in Fig. 6A). However, although PTEN-mediated control
of the PI3K/Akt pathway was restored, this did not result in
complete growth cessation or cell death induced by complete loss
of phospho-AKT caused by the PI3K inhibitor LY294002. Together,
these data provide support for a critical role for the PI3K pathway
in KM12C proliferation, presumably mediated, at least in part, by
PTEN loss (Fig. 6A and B). Interestingly, we found that reexpression
of PTEN resulted in a 4-fold greater inhibition of cell proliferation
in the presence of 1 Amol/L forskolin (or 0.5 Amol/L forskolin;
Fig. 6D).
Sensitivity to growth inhibition by cAMP modulation is not

restricted to KM12C cells. In considering the potential therapeu-
tic benefit of any new strategy (e.g., the potentiating low-dose
combination of cAMP modulators), it is important to test whether
the observed effects are not particular to one cell line, in this case
KM12C colon cancer cells. We therefore examined a number for
their ability to be growth inhibited by the low-dose forskolin/
rolipram combination. Of the 11 cancer cell lines tested, 3 of these
(KM12C, MCF7, and HT29) were extremely sensitive to forskolin/

rolipram, displaying f80% inhibition of proliferation (Supplemen-
tary Fig. S3A). Another five cell lines (A431, WiDr, RKO, A375, and
H630) were partially sensitive, displaying between 40% and 60%
inhibition (Supplementary Fig. S3B), whereas three cell lines
(Du145, SW480, and SW620) were all insensitive to forskolin/
rolipram–induced growth inhibition (Supplementary Fig. S3C).
Thus, there is a subset of cancer cells that respond to a greater or
lesser extent to the forskolin/rolipram combination (8 of 11 in our
study), implying that a significant proportion of cancer cells may be
sensitive to this type of growth modulation.
Interestingly, we found that the sensitive cells were also highly

sensitive to treatment with LY294002, whereas the forskolin/
rolipram–resistant cancer cell lines were relatively insensitive to
LY294002 (Supplementary Fig. S3A and C), showing a consistent
link between sensitivity to cAMP modulation and PI3K depen-
dence.

Discussion

Cancer cells, despite having many genetic, epigenetic, and
chromosomal abnormalities, are often addicted to one or two
oncogenic changes for continued proliferation and survival (31).
Major therapeutic advances are likely to come from molecular
profiling the oncogenic addictions of individual tumors. This would
in turn allow tailored therapy to be more widely applied. There are
now a number of spectacular examples of agents that attack
critical molecular events having therapeutic benefit. For example,
in non–small-cell lung cancer, a subset of patients with activating
mutations in the kinase domain of the epidermal growth factor
receptor (EGFR) exhibit impressive clinical responses to the EGFR
inhibitor gefitinib (32). In this case, oncogene addiction is a result

Figure 5. Forskolin/rolipram synergy
causes loss of Akt/PKB phosphorylation.
A, phosphorylated Akt (pAkt ) was
monitored by Western blot of lysates
prepared from cells treated for various
times up to 60 min and compared with total
Akt. B, KM12C cells were treated
continuously for 24 h with DMSO,
50 Amol/L forskolin, 1 Amol/L forskolin,
10 Amol/L rolipram, and 1 Amol/L
forskolin + 10 Amol/L rolipram.
Phospho-Akt (Ser473) (top ) and
phospho-Akt (Thr308) (middle ) status was
monitored by immunoblotting with
phospho-specific antibodies and total Akt
(bottom ) was compared as a loading
control. High forskolin and the low
forskolin/rolipram combination (lanes 2
and 5 , respectively) resulted in loss of
phospho-Akt (at both Ser473 and Thr308).
C, proliferation of KM12C cells was
monitored by MTT assay over a 5-d period
in the presence of DMSO, 50 Amol/L
forskolin, or 20 Amol/L LY294002. Points,
mean of three independent experiments;
bars, SD. D, quantification of BrdUrd
incorporation after 24 h of LY294002
treatment resulting in a partial G1-S phase
block.
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of mutation, not simply overexpression or inappropriate cellular
activation, and it is thought that addiction may be mediated by
constitutive activation of the prosurvival Akt/PKB pathway
downstream of activated EGFR (33). Other clear examples of
clinical benefit arising from the targeting of critical oncogenes
come from treatment of breast cancers, in which the HER2
receptor tyrosine kinase is overexpressed, with the monoclonal
antibody trastuzumab (Herceptin; ref. 34) and the use of imatinib
(Gleevec) to treat chronic myeloid leukemia and gastrointestinal
stromal tumors that are driven by the oncogenic BCR-Abl and c-Kit
proteins, respectively (35). It is likely that identification of tumor
oncogene addiction will thus provide a key part of delivering
effective cancer treatments in the future.
Here, we establish for the first time that KM12C colon cancer

cells, which are resistant to cell death induced by DNA-damaging
or other cytotoxic agents commonly used to treat colorectal
cancers,4 are critically dependent on the PI3K pathway for their
continued proliferation and survival. The PI3K pathway is
frequently deregulated in cancer through a variety of mechanisms,
including PTEN loss (reviewed in ref. 36), as in KM12C cells, or
activating mutations in PI3Ka (37). One consequence of such
mutations is activation of downstream effectors, including Akt/
PKB and mammalian target of rapamycin (reviewed in ref. 38),

which promote proliferation and cell survival. In cancer cells, such
as KM12C, which are addicted to the PI3K pathway, there is an
urgent need to devise effective, yet relatively nontoxic, ways to
inhibit tumor cell growth and survival. In this regard, inhibitors of
PI3K have been developed with against various classes of PI3K (39),
although these drugs are not particularly specific (40). Although
there is optimism that ongoing efforts will lead to selective
isoform-specific PI3K inhibitors as therapeutic agents, these are
neither readily available nor at an advanced stage of clinical
development (41).
Whereas reexpression of PTEN reduces phosphorylation of Akt/

PKB and causes slowed proliferation at low density (Fig. 6), it does
not recapitulate complete growth cessation and cell death induced
by the PI3K inhibitor LY294002 (Fig. 5C and D and Supplementary
Fig. S2). This implies that although loss of PTEN is a contributing
factor to the apparent dependence of KM12C cells on PI3K, other
mechanisms may also operate. Intriguingly, we show here that
KM12C cells can also be efficiently growth arrested and killed by a
low-dose combination of the adenylyl cyclase activator forskolin
and the PDE4-selective inhibitor rolipram (Figs. 1, 2D , and 3), but
not by forskolin and the PDE3-selective inhibitor cilostamide. Such
selectivity is consistent with the now well-established notion that
cAMP signaling is compartmentalized in cells, with PDE3 and

Figure 6. Exogenous expression of PTEN slows KM12C growth rate and sensitizes to forskolin/rolipram. Cells were plated at low density (5 � 105 in 60-mm2 dish)
for analysis. A, KM12C cells do not express PTEN and reintroduction restores lower phospho-Akt (Ser473) levels. Expression of endogenous PTEN in HT29 colon
cancer cells and PTEN-GFP in KM12C/2C4 (top ) correlates with reduced phospho-Akt (pAkt ; Ser473), whereas lack of PTEN in KM12C and KM12C/2C4 cells
correlates with increased phospho-Akt. Immunoblots were carried out with the specific PTEN and Akt antibodies as probes. B, reintroduction of PTEN affects
low-density growth of KM12 cells. Proliferation of KM12C, KM12C/2C4, and KM12C/2C4 PTEN-GFP cells was monitored with an MTT assay over a 6-d period.
C, PTEN increases percentage of cells in G1 phase. Propidium iodide analysis of KM12C, KM12C/2C4, and KM12C/2C4-PTEN-GFP was carried out and the
percentage of cells in G1 calculated as described earlier. D, PTEN sensitizes cells to low concentrations of forskolin. Proliferation of KM12C, KM12C/2C4, and KM12C/
2C4 PTEN-GFP cells in the presence of DMSO and 1 and 0.5 Amol/L forskolin was monitored over a 6-d period and the percentage proliferation of control (DMSO)
at day 6 was calculated. Columns, mean of three independent experiments; bars, SD.
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PDE4 activities contributing to distinct functional compartments
(6, 7, 9).
In evaluating the mechanism of action of forskolin/rolipram on

these cells, we found induced rapid and sustained inhibition of the
PI3K pathway, as judged by displacement of a GFP-PH domain (Akt
PH) protein (reporting PIP3; Fig. 4), and inhibition of Akt/PKB
phosphorylation on both Ser473 and Thr308 residues. Although we
do not yet know the precise mechanism by which specific cAMP
pools are mediating PIP3 displacement, it is noteworthy that PKA
has been shown to phosphorylate p85a on Ser83 and that this
contributes to PKA-induced growth arrest (42). cAMP can also
block the membrane localization of PDK1, an upstream activator
of Akt/PKB (43). The forskolin/rolipram–induced inhibition of
the PI3K pathway shown here is associated with clear changes
in cell cycle regulators, including reduced Skp2, which is linked
to induction of p27KIP1, together with the dephosphorylation
and reduced expression of pRb, cyclins A, B1, and E, and CDK1
(Fig. 2A–C). Such key changes, commonly associated with negative
regulation of progression through the G1 phase of the cell cycle
(17, 44), are consistent with the observed accumulation of cells in
G1 (Fig. 2D). In addition, whereas low-dose forskolin (1 Amol/L)
can, by itself, induce a partial G1 arrest (Fig. 2D), the coapplication
of rolipram (10 Amol/L), which has no effect on its own, potentiates
the effects of low-dose forskolin to cause growth-arrested cells to
undergo apoptosis (Fig. 3). Taken together, these data imply that
whereas submaximal stimulation of adenylyl cyclase in KM12C
colon cancer cells is sufficient to cause a partial growth arrest, it
also primes cells for cell death on further elevation of cAMP in
subcellular compartments that are specifically controlled by PDE4
rather than PDE3. This offers a unique opportunity for therapeutic
exploitation. Whereas both PDE3 inhibitors and high-dose
colforsin daropate, a water-soluble forskolin derivative, exert
potent positive inotropic effects on heart, no such actions are
evident using PDE4-selective inhibitors (45), which is consistent
with PDE3 and PDE4 controlling distinct intracellular compart-
ments also in cardiac myocytes (6, 9). Consistent with this, PDE4-
selective inhibitors, which have undergone clinical trials for
treating inflammatory lung disease, have shown no inotropic or
chronotropic effects on cardiac function (10, 45). Thus, a
combination therapy of low-dose forskolin coupled with a PDE4
inhibitor may provide a novel means of treating various colon
cancers without associated cardiac toxicity.
We have here discovered a novel way of inhibiting the PI3K

pathway by a synergistic combination of relatively low doses of
cAMP modulators. Our data suggest that we have found another
Achilles heel for these chemoresistant cancer cells: that these cells
also critically require PDE4 activity, presumably during the normal
adenylyl cyclase/PDE cycle that controls cAMP production and
degradation in a localized manner. Thus, PDE4 inhibition, under
conditions when adenylyl cyclase activity is stimulated endoge-
nously, results in the death of these colon cancer cells, which
display chemoresistance that is extremely hard to overcome. Such

a novel addiction to maintenance of low levels of cAMP in the
appropriate subcellular locations, via PDE4 activity, is required to
maintain signaling through the PI3K/Akt pathway. This, as we
show here, is needed for the proliferation and survival of KM12C
cells. It is interesting that by bringing it back under the normal
regulatory control exerted by PTEN, the PI3K/Akt pathway acts to
sensitize the cells to complete growth cessation and death
induced by cAMP modulation, as shown by the enhanced
responses to low doses of forskolin that do not normally kill
these cells (Fig. 6).
To evaluate the generality of our discovery, we probed a number of

cancer cells with forskolin/rolipram combinations. In doing this,
we found that 8 of 11 of such cell lines were growth inhibited by
the forskolin/rolipram combination to a greater or lesser extent
(Supplementary Fig. S3). In particular, three of these cell lines were
extremely sensitive to growth inhibition by forskolin/rolipram,
suggesting that a significant number of cancer cells may be addicted
to the need to maintain low levels of cAMP in the compartment
regulated by PDE4. These data raise the exciting possibility that
relatively low-dose combinations of (a) pharmacologic agonists that
could prime adenylyl cyclase and (b) PDE4 inhibitors, which are
undergoing clinical testing in other disease contexts, may have
therapeutic benefit in treating advanced colon cancers that are
refractory to existing cytotoxic therapies.
In summary, misregulation of signaling proteins occurs in many

cancers, leading to distorted circuitry and the establishment of
oncogene addiction to one or more signal transduction pathways.
It is becoming clear that the identification of such addictions can
provide therapeutic opportunities, and so understanding the
molecular events driving oncogene addiction, and hence tumor
cell proliferation and survival, is becoming increasingly important.
Here, we identify for the first time two ‘‘addictions’’ of chemo-
resistant cancer cells. Both of these addictions are required for
maintenance of cell proliferation and survival (i.e., activation of the
PI3K pathway and the need to maintain low cAMP levels in
compartments regulated by PDE4, which itself mediates effects on
the PI3K/Akt pathway). We have therefore identified a key point of
cross-regulation of two major second messenger–regulated path-
ways in these cells, those controlled by cAMP and PIP3, which are
critical for cancer cell viability. This raises the exciting possibility
that the adenylyl cyclase/PDE4 axis may be exploited for
therapeutic benefit.
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Src kinase modulates the activation, transport
and signalling dynamics of fibroblast growth
factor receptors
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The non-receptor tyrosine kinase Src is recruited to activated
fibroblast growth factor receptor (FGFR) complexes through the
adaptor protein factor receptor substrate 2 (FRS2). Here, we
show that Src kinase activity has a crucial role in the regulation of
FGFR1 signalling dynamics. Following receptor activation by
ligand binding, activated Src is colocalized with activated FGFR1
at the plasma membrane. This localization requires both active
Src and FGFR1 kinases, which are inter-dependent. Internaliza-
tion of activated FGFR1 is associated with release from
complexes containing activated Src. Src-mediated transport and
subsequent activation of FGFR1 require both RhoB endosomes
and an intact actin cytoskeleton. Chemical and genetic inhibition
studies showed strikingly different requirements for Src family
kinases in FGFR1-mediated signalling; activation of the phos-
phoinositide-3 kinase–Akt pathway is severely attenuated,
whereas activation of the extracellular signal-regulated kinase
pathway is delayed in its initial phase and fails to attenuate.
Keywords: Src; FGFR; phosphorylation; RhoB; actin
EMBO reports (2007) 8, 1162–1169. doi:10.1038/sj.embor.7401097

INTRODUCTION
The dynamics of signal propagation by receptor tyrosine kinases
(RTKs) has a crucial role in cellular responses to ligands (Marshall,
1995). Mutations in fibroblast growth factor receptors (FGFRs),
which slow ligand dissociation rates and extend signal duration,
lead to phenotypic effects in skeletal development (Wilkie et al,
1995; Hajihosseini et al, 2004) and act as ‘driver’ mutations in
various types of common tumour (Greenman et al, 2007). RTKs

are activated by ligand-mediated receptor homo- or hetero-
dimerization (Schlessinger 2000; Pellegrini et al, 2000; Furdui
et al, 2006); however, there is evidence that receptor activation
might occur indirectly or be modified by recruitment and
activation of other tyrosine kinases (Halford & Stacker, 2001). In
the case of FGFR, Src kinase is recruited, by receptor-mediated
phosphorylation, to the adaptor protein factor receptor substrate 2
(FRS2), influencing signalling dynamics by phosphorylation of the
attenuator Sprouty (Li et al, 2004).

This finding prompted further analysis of the relationship
between Src activity, FGFR1 activation and downstream signal-
ling. As Src regulates endosomal transport of tyrosine kinases,
including Src itself, through RhoB- and Rab11-containing endo-
somes (Sandilands et al, 2004), we reasoned that Src activation
might have a role in FGFR activation through a directed transport
mechanism. By using phospho-specific antibodies and Src
inhibition, we show that Src activity, through a RhoB and actin-
dependant pathway, controls FGFR activation and transport to and
from the plasma membrane, and has both positive and negative
roles in the activation and termination of FGFR signalling.

RESULTS AND DISCUSSION
Localization of activated FGFR and Src
Previous biochemical studies have shown that, following
FGF2 stimulation, Src is recruited to FRS2 in a kinase-dependant
manner, but the cellular location of this co-recruitment is
unknown (Li et al, 2004). In the first set of experiments,
phospho-specific antibodies directed against FGFR1/2-Tyr463
(characterized in supplementary Fig 1 online) and the activated
form of Src were used to define the spatial relationship between
Src localization, and Src and FGFR activation.

Mouse embryo fibroblasts (MEFs) were stimulated with FGF2,
and endogenous FGFR1 and activated FGFR were detected at
the plasma membrane and in endosomal vesicles throughout
the cytoplasm (Fig 1A, upper left panels). In Src/Fyn/Yes�/�

(SYF) MEFs, endogenous FGFR1 was also detected at the plasma
membrane and in endosomes; however, a lower basal level of
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Fig 1 | FGF2 induces co-recruitment of active Src and active FGFR to the plasma membrane. (A) MEFs or SYF�/�MEFs were maintained in serum-free

media and then stimulated with FGF2 (50 ng/ml�1) for 30 min. SYF�/�MEFs expressing Src-WT-GFP were maintained in serum-free media overnight

and then stimulated with FGF2 at (B) 50 ng/ml�1 for 30 min or (C) 1 ng/ml�1 and 50 ng/ml�1 for 1, 5, 30 or 120 min. Total FGFR1 was detected with an

FGFR1 antibody and active proteins were detected using anti-phospho-FGFR-Tyr463 or anti-phospho-Src-Tyr416. Solid arrows indicate protein

localized to the plasma membrane, dashed arrows indicate protein maintained in the perinuclear region and dotted arrows show endosomes. Green,

blue and red colours represent Src, phospho-Src-Tyr416 and phospho-FGFR-Tyr463, respectively. Scale bars, 25mM. FGFR, fibroblast growth factor

receptor; GFP, green fluorescent protein; MEF, mouse embryonic fibroblast; SYF�/�MEF, Src/Yes/Fyn-deficient MEF; WT, wild type.
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FGFR activation was detected in endosome-like structures in the
perinuclear region of cells. On closer inspection, we also found that
there was a trace of active FGFR at the plasma membrane (Fig 1A,
upper right panels). When SYF�/�MEFs were reconstituted with
Src-WT-GFP (Sandilands et al, 2004), there was a substantial
increase in the intensity of staining of activated FGFR, both at the
plasma membrane and in endosomal structures (Fig 1B, upper
panels). These findings show that Src protein is required for
enhanced activation of FGFR at the plasma membrane in FGF2-
stimulated cells, and that in the absence of Src, there is only a minor
pool of Src-independent activated FGFR constitutively localized at
the plasma membrane. This implies that FGF2 ligand stimulates an
‘amplification’ of active FGFR at the plasma membrane.

In the absence of FGF2 stimulation, Src-WT-GFP was localized
in a cytoplasmic and tight perinuclear position, and no remarkable
reactivity with anti-phospho-Src-Tyr416 or anti-phospho-FGFR-
Tyr463 was observed, indicating that neither protein is activated
under unstimulated conditions (Fig 1B; supplementary Fig 2 online).
This experiment indicates that activity, and not simply over-
expression of Src, is linked to the enhanced activation of FGFR at
the plasma membrane. Furthermore, in unstimulated cells, total
FGFR1 was retained in the cytoplasm in most of the cells (Fig 1B,
lower panels), until stimulation with FGF2 when total FGFR1 was
readily detected at the plasma membrane (Fig 1B, upper panels).

When SYF�/�MEFs expressing Src-WT-GFP were stimulated for
varying time durations with two different concentrations of FGF2,
the location of Src-WT-GFP, activated Src and activated FGFR was
visualized (Fig 1C). The results showed that, following FGF2
stimulation, there was a rapid (5 min) and prominent accumula-
tion of both active Src and active FGFR at the plasma membrane.
At higher concentrations of FGF2 (50 ng/ml), this localization and
phospho-specific staining decayed over the following 120 min—
implying receptor degradation. At low concentration (1 ng/ml), the
colocalization of active Src and FGFR in the peripheral membrane
location persisted for longer—for the duration of the time course
(Fig 1C, solid arrows). At early time points, active Src and active
FGFR were also observed in cytoplasmic vesicular structures
(Fig 1C, dotted arrows). This colocalization occurred only in a
sub-fraction of total cellular Src, as a significant proportion of
Src-WT-GFP (Fig 1C, left panel) remained in a cytoplasmic and
perinuclear location following stimulation, which is similar to the
findings of Sandilands et al (2004). Thus, only a small proportion
of Src is activated in a very tightly spatially regulated manner in
response to FGF2 stimulation and what is activated is co-recruited
with activated FGFR to the plasma membrane.

Together, these results show that FGF2 stimulation results in
the co-activation of Src and FGFR and in the co-recruitment of the
activated kinases to the peripheral plasma membrane, most likely
through cytoplasmic endosomes. The peripheral signals derived
from FGF2 decay in a manner that is inversely related to the
concentration of FGF2 used. These findings raise the question of
the mechanism of Src dependency of FGFR kinase activation at
the plasma membrane.

The role of Src kinase activity in FGFR activation
SYF�/�MEFs were reconstituted with either a dominant-negative
kinase-deficient Src-251-GFP or a constitutively active
Src-Tyr527Phe-GFP (Timpson et al, 2001; Sandilands et al,
2004). In the absence of functional Src kinase, FGF2 stimulation

failed to activate peripheral FGFR kinase activity, as determined
by anti-phospho-FGFR staining (Fig 2A, upper panels). In the
presence of constitutively active Src, FGFR was obviously
phosphorylated (Fig 2A, lower panels) at peripheral membrane
structures in a ligand-independent manner. One characteristic of
these observations, as reported previously, is the localization of
constitutively active Src in sub-membrane aggregates containing
focal adhesion proteins (Avizienyte et al, 2002), whereas activated
FGFR is correctly located in the peripheral membrane. These data
imply that constitutively activated Src drives activated FGFR to its
peripheral membrane sites of activity, even in the absence of ligand.

We also confirmed the requirement for Src kinase activation in
FGFR activation by treating SYF�/�MEFs expressing Src-WT-GFP
with the selective Src inhibitor dasatinib (Lombardo et al, 2004;
Serrels et al, 2006) before stimulation with FGF2. These results
show that inhibition of Src kinase in the presence of FGF2
suppresses phosphorylation of both Src and FGFR, but does not
prevent the translocation of Src-WT-GFP to the cell membrane
(Fig 2B). Interestingly, the peripheral targeting of the low level
of basal FGFR detected in cells at high laser intensities is also
uninhibited (Fig 2B, right panel). By using a high-intensity CCD
camera under fixed laser settings, images were captured that
allowed quantification of the intensity of phospho-FGFR staining
at the plasma membrane in the presence of Src-WT-GFP (Fig 2C).
The results of this analysis showed that the active FGFR signal
was reduced by approximately 80% in the presence of dasatinib.
These findings show that Src is not necessary for the transport of
the low basal level of active FGFR present in these cells, whereas
it is both necessary and sufficient for ‘amplification’ of active
FGFR at the plasma membrane.

The mechanism of Src and FGFR co-recruitment
We were interested to learn more about the mechanism by which
Src is responsible for FGFR activation at the peripheral plasma
membrane. When we overexpressed the late endosomal marker
RhoB, we found that there was some colocalization with FGFR1
(Fig 3A). There was also a striking colocalization of Src, phospho-
FGFR and RhoB in cytoplasmic endosomal structures (Fig 3A, right
panel). This implies that activated FGFR might be a passenger in
the Src/RhoB-dependent endosome delivery pathway previously
described (Sandilands et al, 2004). We therefore interrogated
the requirement for RhoB in FGFR activation and peripheral
membrane localization. RhoB�/�MEFs were stimulated with FGF2
and colocalization of Src, FGFR1 and phospho-FGFR examined
(Fig 3B). We observed total FGFR1 at the plasma membrane and
in intracellular vesicles in these cells. However, the translocation
of Src-WT-GFP was inhibited by RhoB deficiency, as was the
increase in phospho-FGFR normally detected in FGF2-stimulated
MEFs expressing Src-WT-GFP (Fig 1A). Interestingly, a lack of
RhoB also inhibited the transport of the low level of basal
phospho-FGFR detected previously (Figs 1A,2C), as no signal was
detected at the plasma membrane of RhoB�/� cells (Fig 3B). Thus,
peripheral membrane localization of activated FGFR is dependent
on the presence of endosomal RhoB protein, and FGFR activation
is suppressed in the absence of RhoB.

We have recently shown that RhoB is involved in the transport
and activation of Src, using a farnesyl transferase inhibitor (FTI;
Sandilands et al, 2007). FTIs are a class of biologically active
anticancer drugs that inhibit farnesylation of many proteins such
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Fig 2 | Src activity is sufficient for increased peripheral membrane targeting of active FGFR. (A) SYF�/�MEFs expressing Src-251-GFP or

Src-Tyr527Phe-GFP were maintained in serum-free media or stimulated with FGF2. (B) SYF�/�MEFs expressing Src-WT-GFP were treated with

dasatinib (200 nM) for 2 h before stimulation with FGF2. (C) Images of 50 cells from (B) were taken under exactly the same conditions and the average

pixel intensity at the membrane was calculated and compared. Active proteins were detected using anti-phospho-FGFR-Tyr463 or anti-phospho-Src-Tyr416.

Solid arrows indicate protein localized to the plasma membrane and dashed arrows indicate protein maintained in the perinuclear region. Scale bars,

25mM. FGFR, fibroblast growth factor receptor; GFP, green fluorescent protein; MEF, mouse embryonic fibroblast; SYF�/�MEF, Src/Yes/Fyn-deficient MEF.
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as Ras and RhoB through inhibition of the enzyme farnesyl
transferase (Gibbs et al, 1994). Administration of an FTI, such as
L744832, has been shown to affect the function of RhoB (Du &
Prendergast, 1999), and therefore provides a test of the RhoB
dependence of membrane targeting. To ascertain whether FTIs
would influence the intracellular transport and activation of FGFR,
we treated SYF�/�MEFs expressing Src-WT-GFP with L744832
before stimulation with FGF2. The results indicate that although
total FGFR1 could be detected at the plasma membrane, increased

activation of this protein was not detected (Fig 3C). We could,
however, detect a low level of activation in endosomes through-
out the cytoplasm (Fig 3C, right panel). Together, these data
strongly indicate that FGFR activation and peripheral membrane
targeting are tightly linked.

RhoB endosomes harbour actin-regulatory proteins, and Src
and RhoB coordinate to control the actin assembly required for
the transport of RhoB endosomes to the peripheral membrane; in
essence, the RhoB/Src endosome shuttle is dependent on an intact

+ FGF2

+ FGF2

+ FTI 
+ FGF2

Src-WT-GFP

Src-WT-GFP

Src-WT-GFP

Phospho-FGFR1-Tyr463

Phospho-FGFR-Tyr463

FGFR1

FGFR1

Fig 3 | Targeting of activated FGFR after FGF2 stimulation is RhoB dependent. (A) SYF�/�MEFs expressing Src-WT-GFP and Myc–RhoB were

stimulated with FGF2. Left panel: green, Src-WT-GFP; blue, FGFR; red, RhoB. Right panel: green, Src-WT-GFP; blue, phospho-FGFR-Tyr463; red,

RhoB. (B) RhoB�/�MEFs expressing Src-WT-GFP were stimulated with FGF2. (C) SYF�/�MEFs expressing Src-WT-GFP were treated with L744832

(10mM) for 2 h before stimulation with FGF2. RhoB, FGFR and active FGFR were detected with Myc, FGFR1 and phospho-FGFR1-Tyr463 antibodies,

respectively. Solid arrows indicate protein localized to the plasma membrane, dashed arrows (B, left panel; C, bottom left panel) indicate protein

maintained in the perinuclear region, whereas the dotted arrow (A, right panel) indicates endosomal proteins. Scale bars, 25 mM. FGFR, fibroblast

growth factor receptor; GFP, green fluorescent protein; MEF, mouse embryonic fibroblast; SYF�/�MEF, Src/Yes/Fyn-deficient MEF.
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actin cytoskeleton to drive vesicle movement (Sandilands et al,
2004). This predicts that FGFR activation might be dependent on
actin and so abrogated by dissolution of the actin cytoskeleton.
Indeed, we found that pretreatment of FGF2-stimulated MEFs by
cytochalasin D inhibited activation of both FGFR and Src (Fig 4A),
establishing that enhanced ligand-induced FGFR activation was
dependent on both Src and an intact actin cytoskeleton. Low basal
levels of activated FGFR were detected in the perinuclear regions of
cytochalasin D-treated cells but were not visible at the plasma
membrane (Fig 4A, lower middle panel). The localization of total
FGFR1 did not seem to be affected by disruption of the actin
cytoskeleton (Fig 4B). We have previously shown that the use of an
interfering mutant of Scar1, a member of the WASP/Scar family of
adaptor proteins, disrupts filamentous actin, and inhibits transport
and activation of Src-WT-GFP (Sandilands et al, 2004). Here, we
show that expression of this protein inhibits the increase in
activation of FGFR1 and prevents translocation of basal activated
FGFR to the plasma membrane (supplementary Fig 3 online).

Collectively, these data show that there is an essential require-
ment for the Src kinase/RhoB-dependent shuttle previously identi-
fied, which is driven by actin cytoskeleton assembly, in delivery of
activated FGFR to the peripheral membrane. In the absence of this,
the peripheral targeting steps of FGFR activation are blocked.

Role of Src in signalling pathways downstream of FGFR1
We were interested to learn how the engagement of Src in the
process of FGFR activation and peripheral recruitment influenced

control of the dynamics of intracellular signalling pathways
downstream of activated FGFR. MEFs were stimulated with FGF2
in the presence of dasatinib (Fig 5A) to block Src activation (data not
shown), and we examined the kinetics of activation of the mitogen-
activated protein kinase (MAPK) and phosphoinositide-3 kinase/Akt
pathways. This showed a striking dependency of FGFR signalling
on Src activity, and this was quite distinct for the two signalling
pathways. In the case of Akt activation, FGF2 stimulation induced a
rapid rise in Akt activation, which reached a maximum amplitude
at about 4 min followed by a period of decay after 8 min (Fig 5A,
upper panels). Pharmacological inhibition of Src activity resulted in
attenuation of Akt activity. Although much weaker, the initial phase
of residual activation reached peak amplitude at similar time points
to control cells (Fig 5A, upper panels). An identical pattern was
seen following inhibition of FGFR kinase activity (data not shown).
This experiment was confirmed using SYF�/�MEFs, which have
significantly less active Akt than FGF2-stimulated MEFs (Fig 5B).

These data show that Akt activation is wholly dependent on the
activation of Src, and is linked to Src-dependent peripheral
membrane targeting of activated FGFR, presumably requiring
FGFR to be at the plasma membrane.

A different pattern of kinetic behaviour was seen for the MAP
kinase pathway following inhibition of Src activity. In this case,
the rising phase of extracellular signal-regulated kinase-1 (ERK)
activation was delayed compared with untreated cells (shown
in Fig 5A for treatment with dasatinib and confirmed in Fig 4C
with the Src inhibitor SU6656, right panels), consistent with a
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and FGF2

+ Cytochalasin D and FGF2+ FGF2

Src-WT-GFP

Src-WT-GFPSrc-WT-GFP

Phospho-FGFR-Tyr463 Phospho-Src-Tyr416
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Fig 4 | Targeting of activated FGFR after FGF2 stimulation is actin dependent. SYF�/�MEFs were treated with cytochalasin D (0.3mg/ml) for 1 h before

stimulation with FGF2. Cells were stained with (A) phospho-FGFR-Tyr463 antibody and anti-phospho-Src-Tyr416 or with (B) anti-FGFR1. Dashed

arrows indicate protein maintained in the perinuclear region. Scale bars, 25 mM. FGFR, fibroblast growth factor receptor; MEF, mouse embryonic

fibroblast; SYF�/�MEF, Src/Yes/Fyn-deficient MEF.
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requirement for Src activity for the correct FGFR-induced
signalling response. However, in stark contrast to activation of
Akt, robust activation of ERK persisted and it was the decay
component of ERK activation that was markedly slowed down by
inhibition of Src (Fig 5C, right panels). This inhibition of decay was
also observed in SYF�/�MEFs (data not shown). Thus, activation
of ERK, which occurs through Grb2/SOS engagement of FRS2
(Ong et al, 2001), is delayed in its initial phase, which is consistent
with the requirement for Src in FGFR activation, but prolonged
in the decay phase, indicating an additional role for Src kinase in
ERK attenuation after signal peak.

Several earlier studies have indicated that the Ras/Raf/ERK/
MAPK cascade is activated at both the plasma membrane and
cytosolic locations following growth factor stimulation (reviewed
by Miaczynska et al, 2004), and that the two pools of signalling
modules show markedly different dynamic properties (Harding
et al, 2005). On a similar basis, we can explain the requirement
for Src activation for attenuating ERK activity as a consequence

of Src releasing the activated ERK module to cytosolic locations
where it requires higher signalling inputs to sustain activity;
consequently, the amplitude of the signal degrades more quickly
when Src is present. When Src is inhibited, the module is not
released, continues to respond to inputs and fails to decay.

Given that Src activation is a common, if not indeed ubiquitous,
characteristic of signalling from RTK receptors (Parsons & Parsons,
2004), it seems possible that a crucial role of Src in cellular
signalling is to tune the dynamics of downstream processes by
regulating the spatial localization and confinement of activated
signalling complexes. This could also contribute to the functions
of oncogenic forms of Src, as one consequence of constitutively
activated Src is hypersensitization of RTK-mediated signalling
pathways, thereby emulating the consequences of activating
mutations in the RTKs themselves or downstream effectors. These
considerations indicate that therapeutic intervention by the
inhibition of Src might be accentuated in combination with agents
that inhibit RTK kinase activity (Mohammadi et al, 1997). Indeed,
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dasatinib is now licensed for clinical use in the treatment of
chronic myeloid leukaemia, and this agent and other Src inhibitors
are being clinically tested for activity against common solid
tumours. Our work raises the exciting possibility that such agents
might be useful in the treatment of cancers in which FGFR
mutations are driving proliferation.

METHODS
Cell culture. Src/Yes/Fyn-deficient MEFs (SYF�/�MEFs), control MEFs
and RhoB�/�MEFs were routinely grown in DMEM supplemented
with 10% FCS and 1% glutamine. Cells were transiently transfected
under serum-free conditions using FuGene6 (Roche Diagnostics Ltd,
Sussex, UK) or Polyfect Transfection Reagent (Qiagen, Crawley, UK).
Cells were treated with L744832 (10mM) for 2 h (Biomol Int, Exeter,
UK), cytochalasin D (0.3mg/ml) for 1h (Sigma, Poole, UK), dasatinib
(200 nM) for 2h (BMS, New York, NY, USA) or 50mM SU6656
(Calbiochem, Nottingham, UK) before stimulation with FGF2
(50ng/ml�1 for 30min) and 10mg/ml heparin (Sigma, Poole, UK).
Immunofluorescence. Cells were fixed in 3% paraformaldehyde,
washed in TBS/100 mM glycine and permeabilized with TBS/0.1%
saponin/20 mM glycine. After blocking with TBS/0.1% saponin/
10% FCS, cells were incubated with primary antibodies. Anti-
phospho-Tyr463 FGFR1 was generated in sheep (Diagnostics
Scotland, Edinburgh, UK) by immunization with a dendromeric
form of the phosphopeptide LAGVSEY(P)ELPED (Alta Biosciences,
Birmingham, UK) and purified by three cycles of affinity
chromatography on an immobilized form of the phosphopeptide.
Antibody specificity was confirmed by ELISA and in western blots,
and immunohistochemistry was confirmed by inhibition with
the phosphorylated form of the peptide. Anti-FGFR1 was used to
detect total FGFR1 (Santa Cruz, Santa Cruz, CA, USA), 9E10
monoclonal antibody was used to detect Myc-tagged RhoB and
anti-phospho-Tyr416-Src was used to detect active Src (Upstate
Biotechnology, New York, NY, USA). Non-conjugated antibody
detection was by reaction with species-specific fluorescein
isothiocyanate-, Cy5- or Texas Red-conjugated secondary anti-
bodies ( Jackson ImmunoResearch, Luton, UK). Cells were visua-
lized by using a Leica confocal microscope (Leica UK Ltd, Milton
Keynes, UK). Each experiment was repeated a minimum of three
times, 100 cells were counted for each condition for quantification
purposes and an image that represented the phenotype of most of
the cells was selected (supplementary Table 1 online).
Protein immunoblotting. Samples were lysed in radioimmuno-
precipitation buffer (20 mM Tris, 150 mM NaCl, 2 mM EDTA, 1%
Triton X-100, 10% glycerol, pH 7.4) containing protease and
phosphatase inhibitors (2 mM phenylmethylsulphonyl fluoride,
10mg/ml aprotinin, 1.5mM sodium fluoride and 300mM sodium
vanadate) and then centrifuged at 40 1C for 15min. Immunoblotting
was carried out using 50–100mg of lysate per sample. Proteins were
separated by SDS–10% polyacrylamide gel electrophoresis, trans-
ferred to nitrocellulose, blocked with 5% BSA in TBS–0.2% Tween 20
(Sigma, Poole, UK) and probed with anti-ERK (Sigma, Poole, UK),
anti-phospho-p44/42 MAP kinase (Thr202/Tyr204), anti-phospho-
Akt (Ser473) and anti-Akt (Cell Signalling, Hertfordshire, UK).
Detection was by incubation with horseradish peroxidase-conjugated
secondary antibodies and visualization was by enhanced chemi-
luminescence (Amersham, Buckinghamshire, UK).
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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Abstract  
Computational methods that assist in reasoning about biological processes provide an 
attractive framework for the formulation, evaluation and prioritisation of biological 
experiments. We use the stochastic pi-calculus proposed for analysing biological 
networks [Regev & Shapiro (2002) Nature 419, 343] to devise a model of the 
Fibroblast growth factor (FGF) signalling pathway. This pathway has recently been 
identified as a cause of cancer and skeletal deformities, and yet its mechanisms are 
poorly understood. Parameter space exploration indicates that pathway dynamics are 
dominated by the inter-linked rates of receptor kinase activation and signalling 
complex endocytosis and degradation. In particular, simulation and analysis of the 
model predicts two unexpected features, which we validate by in vitro experiment. 
First, inhibition of Src kinase activity delays signal decay. Second, increasing receptor 
affinity for ligand (as occurs in pathogenic mutant forms of the FGFR) accelerates 
signal activation and inhibits signal decay at low receptor occupancy. Our results 
confirm that new biological hypotheses can be obtained with the pi-calculus approach 
and yield important insights into pathogenic receptor signalling dynamics. 



Introduction 

Ligand-initiated receptor mediated signalling controls fundamental biological 
responses in multi-cellular organisms. Abnormal signalling lies at the heart of 
common pathologies, e.g. cancer, inflammation and tissue repair. Receptor mediated 
signalling can be considered as a series of concurrently occurring transitions: 
molecules change properties as a consequence of covalent modification 
(phosphorylation, ubiquitinylation); associate or disassociate with partner proteins; 
change location within the cell; and change in concentration as a result of synthesis or 
degradation. These processes are intertwined: changes in interactions or concentration 
may be regulated concurrently or independently by covalent modification; changes in 
location may result in altered interaction opportunities and covalent modifications. 
Thus, although the component molecules exhibit simple properties, the system as a 
whole can exhibit emergent properties that are not easily analysed by biological 
intuition.  
 
Computational modelling is therefore invaluable in analysing the dynamics of 
signalling pathways. Molecular species in a signalling system can be modelled using 
two basic approaches: (i) continuous concentrations, which is known to suffer from 
combinatorial explosion in the number of differential equations in presence of 
concurrent state changes such as phosphorylation (Tolle & Le Novere, 2006); and (ii) 
discrete molecular populations, which avoids the problem by employing Monte Carlo 
simulation and, furthermore, is more accurate for low numbers of molecules. Inspired 
by (Regev & Shapiro, 2002), we use the stochastic pi-calculus formalism to model a 
pathway as a network of molecular agents, interacting according to biochemical 
reaction rules (Priami et al, 2001). Stochastic pi-calculus affords a compact, textual 
description of a pathway and admits discrete stochastic simulation using Gillespie 
(Regev & Shapiro, 2004) or more powerful reasoning techniques (Heath et al, 2006; 
Kwiatkowska et al, 2007). One advantage of this approach is the ease with which 
molecular interactions can be modified to test alternative schemes. Therefore, pi-
calculus models can be directly employed for robust hypothesis generation and 
selection to guide the design of experimental interventions. This is particularly 
desirable for signalling systems, since experimental technologies are currently labour-
intensive, costly and extremely slow compared to computational models. 
 
We apply the pi-calculus approach to model the FGF (Fibroblast growth factor) 
signalling pathway. We have chosen this pathway because mutations which affect 
quantitative features of pathway dynamics have been identified both as highly 
significant in common forms of human cancer (Greenman et al, 2007) and the 
underlying cause of congenital developmental skeletal dysmorphology syndromes 
(Kan et al, 2002). It is not, however, immediately obvious how these mutations might 
lead to pathogenic outcomes. Our goal is to use computational modelling supported 
by reasoning to characterize key parameters that shape pathway dynamics, which, in 
turn, can influence the prioritisation of biological experiments and development of 
effective therapeutic interventions. Noting that ODE models of the FGF pathway 
suffer from combinatorial explosion (Kwiatkowska et al, 2006), we develop and 
analyse a reusable family of stochastic pi-calculus models. 
 
Simulation results for the derived stochastic pi-calculus model of the FGF pathway 
closely resemble the known dynamic behaviour. By interrogation of parameter space 



and component dependencies (‘in silico’ genetics) we show that the behaviour of the 
pathway is dominated by two inter-linked variables: the rate of receptor kinase 
activation and the rate of signal attenuation by receptor complex internalisation. We 
confirm these findings in living cells by experimental intervention, which reveals that 
the interplay between receptor activation and attenuation exhibits counter-intuitive 
features, and that pathogenic mutations in FGF receptors lead to sustained signalling 
properties which are accentuated at low levels of receptor occupancy, thereby yielding 
novel insight into the function of oncogenic mutations. 
 
Results and Discussion 

Our approach consists of three steps: the derivation of the pi-calculus model; a series 
of simulation experiments to validate the model against existing experimental data 
and generate new predictions; and validation of the novel predictions by in vitro 
experiments. 
 
Design of the FGF signalling model 

The FGF model is based upon literature-derived information on the early steps of 
FGF signal propagation  (described in Table I), and incorporates several features 
which have been reported to negatively regulate FGF signal propagation (reviewed 
(Dikic & Giordano, 2003; Tsang & Dawid, 2004)).  
 
Identification of key variables that control pathway dynamics  

The model accurately predicts the behaviour of the FGF pathway for known 
conditions described in the literature. The concentration of the signalling response 
component FRS2:Grb2 shows a rapid increase shortly after exposure to FGF, 
reaching its maximum level at about 15-20 min. Activation of the negative feedback 
loops (steps 8, 9, 12, and 14) results in signal downregulation after its successful 
transduction, thus preventing sustained pathway activation.  
 
We interrogate the model in two ways: by exploration of parameter space to establish 
the key variables and by removing individual components to study their role in signal 
propagation. These steps are an advance on previous applications of pi-calculus to 
biological signalling (Phillips & Cardelli, 2005) in that they take computational 
modelling into the realm of experimental intervention rather than simulation, and are 
explicitly designed to formulate biological hypotheses.  
 
The responses of the average signalling amplitude and duration upon changes in the 
rates of individual reactions are shown in Table III (Supplementary information). In 
most cases, the resulting deviations of the signalling responses do not exceed 0.1% of 
the changes of the respective parameters, proving that the system is robust against 
parameter perturbations. The only sensitive parameters are those controlling Src-
mediated relocation of the receptor complex and FGFR kinase activation. 
 
Reducing the rate constant of FGFR kinase activity leads to the reduction of maximal 
value of the signal, which now occurs after considerable delay. Fig. 1A shows the 
outcome of 10- and 100-fold reduction of the rate of FGFR. Maximal signal 
expression reaches 90 and 60% of its initial value and is delayed by 10 and 30 min, 



respectively. A similar signal reduction and delay occurs in simulations in which the 
concentration of FGF was reduced to 10 and 5% (Fig. 1B). 
 
The consequences of different signal attenuation mechanisms are evaluated by ‘in 
silico` mutagenesis: removal of various model components before simulation. We 
observe that inhibition of Sprouty (Fig. 2A) does not affect the initial phase of signal 
upregulation, since it is synthesized after the signal passes its maximum value. Later, 
Sprouty attenuates signalling, primarily due to the competition for Grb2. Similar 
pattern of FRS2:Grb2 expression is generated when Shp2 is not present (Fig. 2A). 
 
Another key determinant of FGFR signalling dynamics in the model is the rate of 
internalisation, which we have encoded (perhaps speculatively) by the action of Src.  
As Table III and Fig. 2A demonstrates, the suppression of Src activity is predicted to 
have a major impact on signalling dynamics: after fast increase, the signal fails to 
decrease substantially. This suggests that, in particular, other negative feedback 
mechanisms are not sufficient to reduce the signal if internalisation is abolished.  
 
In sum, parameter variation and component removal studies of the model indicate that 
the overall dynamics of this system is dominated by two key variables: the rate of 
FGFR activation – as judged by varying the concentration of FGF or the rate 
constants of the FGFR kinase – and the rate of endocytosis modelled by the 
recruitment and activation of Src. 
 
The role of Src in regulating FGF signalling: from model to experiments 
and back 
 
Next, we turned to predictions which had not been experimentally validated 
previously. For this purpose we utilised an experimental model of activation of the 
Ras-MAPK (ERK) pathway in mouse embryonic fibroblasts (MEFs) stimulated with 
FGF2 using quantitation of phospho-ERK (pERK) by western blotting as the 
experimental readout. This approach assumes that the level of experimental pERK is a 
faithful surrogate for the computed value of the Grb2:FRS2 used in the modelling 
studies. We take this assumption to hold, as the quantitative behaviour of this output 
closely resembles the computed value in experimental reports and our own 
investigations (data not shown). 
 
The prediction we addressed was that inhibition of Src kinase activity would lead to 
prolongation of signalling as a consequence of Src acting to remove the activated 
receptor complex. Quiescent MEFs were stimulated with 50ng/ml FGF2 for varying 
time points in the presence or absence of the highly specific Src family kinase 
inhibitor Dasatinib (Lombardo et al, 2004), harvested and examined for the presence 
of pERK. These results clearly show that untreated MEFs exhibit an FGF stimulus 
response that conforms to the predicted kinetics, and that pharmacological 
suppression of Src kinase activity (Fig. 2C) indeed produces the predicted extended 
duration of pERK activation (Fig. 2A).  
 
In our initial model, Src encodes an abstraction of internalisation. Following 
conventional view of internalisation as termination of signalling, we assume that the 
internalised receptor complex disappears without specifying its subsequent fate. Fig. 
2C and further experimental studies of our group (Sandilands et al, 2007) show that 



Src exerts additional positive control on the initial phase of signalling by increasing 
the rate at which FGFR is recycled back to the membrane to re-engage with ligand. 
These results are consistent with previous reports of both negative and positive effect 
of receptor internalisation on signalling (reviewed (Clague & Urbe, 2001; Miaczynska 
et al, 2004)). 
 
We revise the model by incorporating a positive feedback loop, in which initial 
activation of FGFR leads to recruitment of Src, which subsequently recycles more 
receptors thus amplifying the signal. Simulations of the refined model demonstrate 
delayed signal which reaches lower amplitude but fails to attenuate when Src is 
inhibited (Fig. 2B), consistent with the experimental data (Fig. 2C). Through 
reiteration of modelling and experiments we thus uncovered a positive feedback loop 
activated at the initial phase of signalling.  
 
Cross-regulation between receptor activation and attenuation 

Next, we simulate the effects of pathological mutations in FGFR by increasing the 
affinity of receptor-ligand interaction. The initial model, which does not account for a 
positive Src regulation, is not able to produce a phenotypic difference between normal 
and mutant signalling (Fig. 3A). Surprisingly, the revised model (Fig. 3B) predicts 
that the pathway amplitude is upregulated in a long run due to recycling of more 
receptors to the membrane in mutant. Increased ligand binding changes the 
equilibrium between activation and attenuation roles of Src, resulting in delayed 
signal attenuation. 
 
We addressed the question if increasing the rate of receptor activation (i.e. pathogenic 
driver mutations) would lead to accelerated activation and delayed attenuation of 
signalling in vitro. For this purpose we employed a matched pair of MEFs: one 
derived form normal mouse embryos and the second derived from embryos 
harbouring the mutant Pro252Arg form of FGFR1 (Hajihosseini et al, 2004). The 
MEFs were rendered quiescent by serum starvation and then stimulated for varying 
time points with 0.1 ng/ml FGF2 and harvested for analysis as in the previous 
experiment. The result (Fig. 3C and D) reveals that the introduction of a single gene 
copy of the mutant driver form of FGFR1 has marked effect on signaling upon 
exposure to limiting concentrations of ligand. In the mutant cells peak amplitude is 
reached rapidly (~5 min) compared to wild type (~30 min) and signal duration is 
prolonged in the mutant cells, as the model predicts (Fig. 3B).  
 
Decreasing the rate of FGFR activation by simulating the effects of FGFR kinase 
inhibitors accords well with many published studies and should come as no surprise. 
We showed, however, that increasing the rate of FGFR kinase activation – thereby 
simulating the effect of pathological mutations in FGFR associated with skeletal 
development syndromes (Anderson et al, 1998; Hajihosseini et al, 2004) and cancer 
(Greenman et al, 2007) – leads to extended duration of signalling which is not 
overcome by the action of inhibitory regulators such as Sprouty or degradation of the 
receptor complex.  
 
Informed by these ‘in silico’ studies, we experimentally tested and confirmed two 
counter-intuitive predictions of the model: suppression of Src kinase prolongs the 
duration of FGF signalling and that driver mutations in FGFR exhibit fast activation 



and slow attenuation in response to low level stimulation. These studies prove the 
utility of the pi-calculus modelling approach for selecting appropriate biological 
hypotheses from many possibilities and for deriving new insights into normal and 
pathological signalling dynamics. 



Methods 

Constructing a stochastic pi-calculus model 

Stochastic pi-calculus and similar formalisms have been successfully applied to 
analyze small examples such as the Ras-MAPK signalling pathway (Phillips & 
Cardelli, 2005). This paper describes the first stochastic pi-calculus model of a 
realistic pathway that has been experimentally validated. The biochemical reactions 1-
14 of the FGF pathway can be directly translated into pi-calculus processes following 
the translation scheme proposed in (Regev & Shapiro, 2002; Regev & Shapiro, 2004).  
 
The stochastic pi-calculus model of FGF is described in more detail in Supplementary 
information. We have derived two further models directly from the FGF reactions 1-
14, using ODEs (Gaffney et al, submitted) and PRISM (Kwiatkowska et al, 2007), 
and find that the three models are consistent with each other. 
 
Rate parameters 

The values of kinetic parameters of FGF reactions 1-14 were assembled based on the 
literature, see Table II in Supplementary information. The stochastic pi-calculus 
assumes exponentially distributed reaction rates; this is justified since, if collision 
times are small compared to the times between collisions, molecules are moving 
chaotically, and a constant ratio of overall collisions lead to reactions. 
 
Simulation experiments 

We use BioSPI (Regev & Shapiro, 2004) as the simulation platform. The BioSPI 
system inputs the pi-calculus process and performs simulations using the Gillespie 
algorithm, starting from a given initial state. Reactions are selected according to a 
certain probability distribution in order to account for the rates and times at which 
they occur. Each channel is associated with a rate constant, and the actual rate is 
determined by a combination of this rate and the quantities of the reactant. In all 
experiments, we plot values averaged over 100 simulations. 
 
We run simulations starting with the initial number of FGF, unbound and 
unphosphorylated FGFR, unbound Src, Grb2, Cbl, PLC, and Sos set equal to 50 while 
unphosphorylated FRS2 is 100. Sprouty arrives into the system with the characteristic 
time of 20 min. Since the binding of Grb2 to FRS2 serves as the primary link between 
FGFR activation and ERK signalling, we examine the amount of Grb2 bound to FRS2 
as the output. Concentrations of elements in mutagenesis study (Fig. 2) are reduced by 
90%. Fig. 3 is generated using 10 molecules of FGF. 
 
The role of the model 

It is important to appreciate that the primary purpose of the model presented is as a 
tool to encode and evaluate biological hypotheses that are not easily obtained by 
intuition or manual methods, and not a detailed description of a real-life FGF 
pathway. 
 



We explicitly draw attention to the following issues. The reactions selected are based 
upon their current biological interest rather than complete understanding of the 
components of FGF signalling. Indeed, at this stage we have ignored many reactions 
that could prove significant in regulation of FGFR signalling in real cells. The model 
is idealised in that it does not take into account variations in composition, affinities or 
rate constants that might occur in different cell types or physiological conditions. 
However, the design permits the incorporation of further modifications to the core 
model as biological understanding advances. 
 
The model is based upon literature-defined events. It is probable that the reported 
biological significance of these processes reflects the experimental context, rather 
than the normal situation. For example, the significance of PLC in the relocation of 
FGFR signalling complexes has been the subject of some debate (Sorokin et al, 1994), 
as has the action of Sprouty (Hanafusa et al, 2002).  The model can be easily modified 
and extended as new biological information becomes available. 
 
In vitro investigations 

Primary MEF cells isolated from WT or FGFR1 Pro252Arg +/- mice were cultured at 
37ºC, 5% CO2, 3% O2 in Dulbecco’s modified Eagle medium supplemented with 2 
mM glutamine (Invitrogen), 0.1 mg/mL streptomycin, 0.2 U/mL penicillin, 4.5 g/L 
glucose (Sigma) and 10% fetal calf serum (v/v) (Labtech International) for less than 
10 passages.  MEF cells were stimulated with FGF2 (0-60 ng/mL) for various times 
and lysed in 1× SDS sample buffer (5% glycerol (v/v), 1% SDS (w/v), 0,05% 
bromophenol Blue (w/v), 100 mM 1, 4-Dithiothreitol, 50 mM Tis-HCL, pH 6.8).  
Lysates were passed through 21G needle to sheer DNA and heated at 95ºC, 5 min. 
Cleared lysates were resolved on 10% SDS-PAGE and transferred to PVDF 
(Millipore) membrane with standard procedures.  The membranes were dried 
according to manufacturer’s instructions and probed with anti mouse pERK (Santa 
Cruz) for 2 hrs.  Membranes were washed and incubated with anti mouse-HRP 
antibody (Amersham) for 1 hr.  Following washes, the membranes were incubated 
with Super-Signal enzyme chemiluminescence (ECL, Pierce) according to 
manufacturer’s instructions and exposed to X-ray films to detect signals.  The 
membranes were stripped and re-probed with anti rabbit ERK-1 (Santa Cruz) or anti 
mouse Tubulin (Sigma) as loading controls. 
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 Fig 1. Varying FGFR kinase activity and FGF levels: (A) 10- (green) and 100-fold 
(red) decrease of FGFR kinase rate compared with the default rate (blue); (B) 100% 
(blue), 10% (green), and 5% (red) of FGF concentration. 
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Fig 2. In silico mutagenesis: (A) simulations with inhibited Spry (green), Shp2 (red), 
and Src (cyan) and the full model (blue); (B) inhibition of Src (cyan) in the revised 
model (blue); (C and D) experimental validation of predictions with inhibited Src. 
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Fig 3. Effects of mutations: simulations with 10-fold inhibition of FGF:FGFR 
dissociation rate (green) compared to the normal rate (blue) in the initial (A) and 
revised (B) model; (C and D) experimental validation of phenotypic changes in 
mutant. 
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Table I. Reactions encoded in the model. 
Reaction Description References 
1 FGF ligand binds to the FGF receptor (FGFRs) creating a 

complex of two FGFRs and two FGF ligands 
 

2 The existence of an FGFR dimer leads to phosphorylation of 
FGFRs on two residues Y653 and Y654 in the activation 
loop of the receptor. Mutagenesis and structural studies  
have shown that phosphorylation of these residues is 
required for activation of FGFR kinase activity and 
phosphorylation of other substrates 

(Mohamma
di et al, 
1997) 

3 The dual Y653/654 form of the receptor leads to 
phosphorylation of other FGFR receptor residues (Y663, 
Y583, Y585, Y766) which have been shown in a number of 
studies to be required for execution of FGFR dependent 
signalling functions. In this paper we only consider Y766 
further. 

(Foehr et al, 
2001) 

4 FRS2 binds to both the phosphorylated and 
dephosphorylated forms of the FGFR. FRS2 has been 
shown in multiple studies to be an essential mediator of 
FGFR functions as a consequence of recruitment of 
effectors to specific phosphorylated sites on FRS2 

(Xu & 
Goldfarb, 
2001) 

5 The dual Y653/654 form of the receptor leads to 
phosphorylation of the FGFR substrate FRS2 

 

6 We incorporate a step in which FRS2 is dephosphorylated 
by a phosphotase (denoted Shp2). Shp2 has been shown 
experimentally to be a negative regulator of FRS2 functions  

(Hadari et 
al, 1998) 

7 A number of effector proteins interact with the 
phosphorylated form of FRS2. In this model we include Src, 
Grb2:Sos and Shp2 

(Schlessing
er, 2004) 

8 Src associated with the phosphorylated FRS2 Y219 leads to 
relocation (i.e. endocytosis and/or degradation) of 
FGFR:FRS2 

 

9 Another method of attenuating signal propagation is 
relocation/degradation of FGFR caused by PLCgamma 
being bound to Y766 of FGFR 

(Sorokin et 
al, 1994) 

10 The signal attenuator Sprouty is a known inhibitor of FGFR 
signalling and is synthesized in response to FGFR 
signalling. Here we include a variable to regulate the 
concentration of Sprouty protein in a time dependent 
manner 

(Hanafusa 
et al, 2002) 

11 We incorporate the association of Sprouty with Src and 
concomitant phosphorylation of Sprouty residue Y55 

(Li et al, 
2004) 

12 The Y55 phosphorylated form of Sprouty binds Cbl, which 
leads to ubiquitin modification of FRS2 and a decrease in 
FRS2 concentration by ubiquitin mediated proteolysis 

(Fong et al, 
2003) 

13 Y55P form of Sprouty is dephosphorylated by Shp2 bound 
to FRS2 

(Hadari et 
al, 1998) 

14 Sprouty Y55P competes with FRS2 for binding Grb2 as has 
been suggested from some studies in the literature 

(Hanafusa 
et al, 2002) 
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Representing signalling pathway models in stochastic pi-calculus. Stochastic pi-
calculus (Priami et al, 2001) is an extension of the pi-calculus (Milner, 1999) with 
exponential distributions. A pi-calculus model is a network of concurrent processes 
operating according to explicitly given reaction rules. The pi-calculus was proposed 
as a representation for biological systems in (Regev & Shapiro, 2002) and in (Regev 
& Shapiro, 2004) a translation scheme for molecular reactions was formulated. We 
use this scheme, described in more detail below, to represent biochemical reactions 1-
14 of the FGF pathway, and subsequent variants corresponding to new hypotheses. 
Under such translation scheme, the model describes a molecular network whose states 
contain sets of interacting proteins and complexes. The behaviour of each protein is 
governed by the reaction rules it participates in. Protein interactions do not depend on 
the precise sequence, but on conformation and binding of domains. Therefore, we 
encode proteins as sequences of subcomponents, each of which enables binding to 
other proteins or phosphorylation, which can further modify protein interaction 
capabilities. Subcomponents serve as both protein internal states and its interfaces 
through which the interactions with other proteins occur. Any subcomponent can 
undergo state transition between free and bound, or phosphorylated and 
unphosphorylated, independently of the other protein sites. The pi-calculus processes 
can be represented in a machine-readable textual format (here BioSPI (Regev & 
Shapiro, 2004)) or that of a graphical pi-calculus (Phillips & Cardelli, 2005). 
 
The BioSPI system. The BioSPI (Regev & Shapiro, 2004) system is a simulation 
platform for stochastic pi-calculus implemented at the Weizmann Institute using 
Concurrent Prolog. BioSPI 2.0, which implements the Gillespie algorithm, allows one 
to obtain a full record of the time evolution of the system. Extensive examples of 
biological networks modelled using BioSPI are available from (Regev & Shapiro, 
2004) and the website http://www.wisdom.weizmann.ac.il/~biospi/ as well as 
Supplementary Material for (Regev & Shapiro, 2002). 
 
The graphical pi-calculus and the SPiM system. SPiM (Phillips & Cardelli, 2005) 
is a simulation platform for the stochastic pi-calculus based on an abstract machine 
implemented by Phillips (Phillips & Cardelli, 2005). The graphical stochastic pi-
calculus is a front-end to SPiM. The formalism was introduced in (Phillips & Cardelli, 
2005) and applied to a number of case studies, for example the MAPK cascade. More 
detail about the biological case studies and the tool is available from the websites 
http://www.doc.ic.ac.uk/~anp/spim/ and 
http://www.luca.demon.co.uk/BioComputing.htm.  
 
Representing biochemical reactions in graphical pi-calculus. A model in the 
graphical stochastic pi-calculus is a graph whose nodes correspond to pi-calculus 
processes (here proteins) and edges between the nodes correspond to biochemical 
reactions and subsequent modifications of proteins. Fig. 4 illustrates how basic 
reactions can be modelled. A formation of the complex is modelled by 
communication of the processes A and B over a channel bind. Reactant A  



 
 
 

 
performs a send on bind, sending its private channel rem (denoted by a bubble 
around A labelled with rem). After becoming bound, A can unbind by performing 
receive on rem. Respectively, B can bind to A by receiving on channel bind or 
unbind by sending on remA (which will be substituted by rem in the course of 
program execution). Highlighted nodes denote processes that perform substitution.  
 
In the course of some interactions, members of the complex can undergo 
phosphorylation changing the visibility of binding sites. This is modelled as a state 
transition of A on channel phosph, Fig. 4B. Proteins can also be synthesized and 
degraded as shown in Fig. 4C and D. Note that the synthesis operation corresponds to 
the creation of a new instance of A while the process actually performing the creation 
(Syn) returns to its original state. 
 
More complex reactions can be built up from basic building blocks. We illustrate 
parallel, competitive and context-dependent reactions. In a parallel reaction, an 
element can be simultaneously involved in different reactions, for example, binding of 
A to B and C can be done in parallel (FGF reactions 12 and 14). This corresponds to 
the existence of two independent binding sites in A through which bindings can be 
established. This can be represented by two parallel, unlabelled edges from node A, 
each of which denotes a concurrent execution path in the system. The node A in this 
case is represented as a solid rectangle (Fig. 5A). 
 
In a competitive reaction, the reactant A participates in two mutually exclusive 
reactions when its different partners, B and C, compete for the same binding site in A 
(FGF reaction 7 and 14). Such a reaction is presented in Fig. 5B. Each edge from A 
now denotes an alternative execution path by being labelled with separate action, 
bindB and bindC. 
 
Contextual reactions define an application of a basic reaction rule only when the 
reactants themselves are within the desired contexts. An example would be a rule 
stating that, if B is bound to A, B can undergo further state changes, for example, 
become phosphorylated on some residue (FGF reactions 2, 3, and 4). First, note that, 
since dephosphorylation of B is generally not connected to its binding to A, B can 
appear in either phosphorylated or unphosphorylated state while being bound to A. 
Therefore, we need to represent the binding site and phosphorylation site of B 
independently, as B1 and B2. We use the following protocol illustrated in Fig. 5C: B2 
can be phosphorylated following the receive operation from B1 binding site on 
channel pre. When B1 is bound, it notifies B2 about the possibility to phosphorylate. 

Fig 4. . Pi-calculus representation of complexation (A), phosphorylation (B), synthesis (C), and 
degradation (D) reactions. 
 



Channel pre is restricted to processes B1 and B2, as represented by a bubble around 
the processes labelled with the corresponding channel name.  
 

 
 
 
 
A clickable map of the FGF pathway (as in Fig. 6) giving access to the pi-calculus 
code for each component of the pathway is available from the website:  
http://www.cs.bham.ac.uk/~oxt/fgfmap.html 

The full machine-readable code (BioSPI 2.0, (Regev & Shapiro, 2004)) is also 
available below, as is the corresponding graphical pi-calculus variant based on 
(Phillips & Cardelli, 2005). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 5. Representation of parallel (A), competitive (B), and contextual (C) reactions. 

Fig 6. A diagrammatic representation of FGF pathway map. 
 



The model code in stochastic pi-calculus  
 
-language(spifcp). 
-include(fgfrates).  
 
public(fb(FGFBind), frb(FRSBind), sb(SRCBind), grb(GRBBind), 
srb(SPRYBind), shb(SHPBind), pb(PLCBind), cb(CBLBind), sosb(SOSBind), 
gsb(GSBind), ph653(FGFRPh1), ph766(FGFRPh2), phFRS(FRSPh), 
phSpry(SPRYPh), dph4(FRSDph), create_spry(SPRYIn), dph196(FRSDph), 
dph306(FRSDph), dph471(FRSDph)).  
 
System(N1,N2,N3) ::= <<  
 CREATE_FGFR(N1) | CREATE_FGF(N2) | CREATE_FRS(N3) | 
CREATE_SRC(N1) | CREATE_SHP(N1) | 
 CREATE_GRB(N1)  | CREATE_PLC(N1) | CREATE_CBL(N1) | 
CREATE_SOS(N1) | CREATE_DSPRY(N1) | Clock . 
 
CREATE_FGF(N)  ::= {N =< 0}, true ; {N > 0}, {N--} | FGF  | self . 
CREATE_FGFR(N) ::= {N =< 0}, true ; {N > 0}, {N--} | FGFR | self . 
CREATE_FRS(N)  ::= {N =< 0}, true ; {N > 0}, {N--} | FRS2 | self . 
CREATE_SRC(N)  ::= {N =< 0}, true ; {N > 0}, {N--} | Src  | self . 
CREATE_GRB(N)  ::= {N =< 0}, true ; {N > 0}, {N--} | Grb2 | self . 
CREATE_SHP(N)  ::= {N =< 0}, true ; {N > 0}, {N--} | Shp  | self . 
CREATE_DSPRY(N) ::= {N =< 0}, true ; {N > 0}, {N--} | Spry | Dself(N) 
. 
Dself(N) ::= create_spry ! [], CREATE_DSPRY(N) . 
CREATE_CBL(N)  ::= {N =< 0}, true ; {N > 0}, {N--} | Cbl  | self . 
CREATE_PLC(N)  ::= {N =< 0}, true ; {N > 0}, {N--} | Plc  | self . 
CREATE_SOS(N)  ::= {N =< 0}, true ; {N > 0}, {N--} | Sos  | self >> . 
 
FGF ::= << f(FGFUn), remFgf(infinite), degFgf(infinite) . 
 %private channels 
 fb ? {f, remFgf, degFgf}, FGF_Bound .   
 %binding to the receptor 
 
FGF_Bound ::= f ! [], FGF ;     
 %dissociation from FGFR  
 remFgf ? [], FGF ;      
 %immediate dissociation 
 degFgf ? [], true >> .      
 %degradation 
 
 
FGFR ::= << f(FGFUn), fr(FRSUn), p(PLCUn), degPlc(PLCDeg), 
degPlcInf(infinite), pre653(infinite), preFRS1(10000), 
preFRS2(10000), pre766(infinite), remFgfr(infinite), 
remFrs(infinite), degFrs(infinite), remFgf(infinite), 
degFgf(infinite), degFGFR10(infinite), degFGFR11(infinite), 
degFGFR12(infinite), degFGFR20(infinite), degFGFR22(infinite), 
degFGFR23(infinite), degFGFR14(infinite), degFGFR24(infinite) . 
%the rates of phosphorylation notification messages are not infinite 
because of the memory error in the BioSPI implementation 
 
 FGFR_Ligand_Binding | FGFR_FRS2_Binding | FGFR_653 | FGFR_766 . 
%four independent domains (activities)  
 
FGFR_Ligand_Binding ::= fb ! {f, remFgf, degFgf}, FGFR_Ligand_Bound ;
 %binding to FGF, allow phosphorylation of res 653  
  degFGFR10 ? [], true;    
 %requested degradation 



  degFGFR20 ? [], true .    
 %requested degradation 
FGFR_Ligand_Bound ::= f ? [], FGFR_Ligand_Binding ;  
 %dissociation from FGF 
  pre653 ! [], FGFR_Ligand_Bound ;   %while 
bound, allow phosphorylation of res 653 
  degFGFR10 ? [], remFgf ! [], true ;  
 %requested degradation, remove FGF 
  degFGFR20 ? [], degFgf ! [], true .     
 %requested degradation, pass to FGF 
 
FGFR_FRS2_Binding ::=  
  frb ! {fr, preFRS2, remFrs, degFrs, remFgfr}, 
FGFR_FRS2_Bound ; %binding to FRS2  
  degFGFR11 ? [], true .      
 %requested degradation 
FGFR_FRS2_Bound ::=  
  fr ? [], FGFR_FRS2_Binding ;     
 %FRS2 dissociation 
  preFRS1 ? [], FGFR_FRS2_BoundP ; 
  remFrs ? [], FGFR_FRS2_Binding ; 
  degFrs ? [], degFGFR20 ! [], degFGFR22 ! [], degFGFR23 ! 
[], true ; %remove FGFR together with all bound partners  
  degFGFR11 ? [], remFgfr ! [], true . 
FGFR_FRS2_BoundP ::= 
  preFRS2 ! [], FGFR_FRS2_BoundP ;  
  fr ? [], FGFR_FRS2_Binding ;  
  remFrs ? [], FGFR_FRS2_Binding ; 
  degFrs ? [], degFGFR20 ! [], degFGFR22 ! [], degFGFR23 ! 
[], true;  
  degFGFR11 ? [], remFgfr ! [], true . 
  
FGFR_653 ::= pre653 ? [], (ph653 ! [], FGFR_653P ;  
 %phosphorylate, once condition pre653 is satisfied  
   degFGFR12 ? [], true ; 
   degFGFR22 ? [], true ) ; 
  degFGFR12 ? [], true ; 
  degFGFR22 ? [], true . 
FGFR_653P ::=  
  preFRS1 ! [], FGFR_653P ;     %allow 
phosphorylation of FRS2 if bound  
  pre766 ! [], FGFR_653P ;     %allow 
phosphorylation of res 766 
  degFGFR12 ? [], true ; 
  degFGFR22 ? [], true . 
 
FGFR_766 ::= pre766 ? [], (ph766 ! [], FGFR_766P ; degFGFR23 ? [], 
true ) ; 
  degFGFR23 ? [], true . 
FGFR_766P ::= pb ! {p, degPlc, degPlcInf}, FGFR_Plc_Bound ;  
 %bind Plc if phosphorylated 
  degFGFR23 ? [], true . 
FGFR_Plc_Bound ::= p ? [], FGFR_766P ;  
  degPlc ? [], ( degFGFR10 ! [], degFGFR11 ! [], degFGFR12 
! [], true ; degFGFR23 ? [], true ) ; %remove FGFR but leave all 
bound partners 
  degFGFR23 ? [], degPlcInf ! [], true >> .  
 
 
FRS2 ::= << s(SRCUn), fr(FRSUn), degSrc(SRCDeg), remFrs(infinite), 
degFrs(infinite), remFgfr(infinite), remSrc(infinite), 



degCbl3(infinite), remShp(infinite), degShp(infinite), 
remGrb(infinite), degGrb(infinite), gr(GRBUn), sh(SHPUn), 
pre196(infinite), pre306(infinite), pre471(infinite), preFRS2(10000), 
preFRS3(10000), post196(infinite), post306(infinite), 
degFRS11(infinite), degFRS12(infinite), degFRS13(infinite), 
degFRS20(infinite), degFRS22(infinite), degFRS23(infinite) .   
 
 FRS2_FBinding | FRS2_196 | FRS2_306 | FRS2_471 .  
 %four independent domains 
 
FRS2_FBinding ::=  
 frb ? {fr, preFRS2, remFrs, degFrs, remFgfr}, FRS2_FBound ; 
 %FGF binding site 
 degFRS20 ? [], true ; 
 degCbl3 ? [], degFRS12 ! [], degFRS11 ! [], degFRS13 ! [], true 
. 
FRS2_FBound ::= preFRS2 ? [], FRS2_FBoundP ; 
 fr ! [], FRS2_FBinding ; 
 remFgfr ? [], FRS2_FBinding ;  
 degCbl3 ? [], degFRS12 ! [], degFRS11 ! [], degFRS13 ! [], 
remFrs ! [], true ; 
 degFRS20 ? [], (degFrs ! [], true ; remFgfr ? [], true) . 
FRS2_FBoundP ::= fr ! [], FRS2_FBinding ;     %no 
subsequent dephosphorylation of 196, 306, 471 
 remFgfr ? [], FRS2_FBinding ;  
 degCbl3 ? [], degFRS12 ! [], degFRS11 ! [], degFRS13 ! [], 
remFrs ! [], true ; 
 degFRS20 ? [], (degFrs ! [], true ;  remFgfr ? [], true) ; 
 preFRS3 ! [], FRS2_FBoundP .      %allow 
phosphorylation of res 196, 306, 471 whenever bound 
 
FRS2_196 ::= preFRS3 ? [], (phFRS ! [], FRS2_196P;   
 %Src binding site, precondition for phosphorylation 
  post196 ? [], FRS2_196 ; 
  degFRS11 ? [], true ) ; 
 post196 ? [], FRS2_196 ; 
 degFRS11 ? [], true . 
FRS2_196P ::= sb ! {s, degCbl3, remSrc, degSrc}, FRS2_Src_Bound ; 
 post196 ? [], FRS2_196 ; 
 degFRS11 ? [], true .  
FRS2_Src_Bound ::= s ? [], FRS2_196P ; 
 degSrc ! [], ( degFRS20 ! [], degFRS22 ! [], degFRS23 ! [], 
true ; %degrade together with all bound partners 
  degFRS11 ? [], true ) ; 
 post196 ? [], remSrc ! [], FRS2_196 ; 
 degFRS11 ? [], true . 
 
FRS2_306 ::= preFRS3 ? [], (phFRS ! [], FRS2_306P ;  
 %Grb binding site  
  post306 ? [], FRS2_306 ; degFRS12 ? [], true ;  
  degFRS22 ? [], true) ; 
 post306 ? [], FRS2_306 ;  
 degFRS12 ? [], true ; 
 degFRS22 ? [], true . 
FRS2_306P ::= grb ! {gr, remGrb, degGrb}, FRS2_Grb_Bound ; 
 post306 ? [], FRS2_306 ;  
 degFRS12 ? [], true ; 
 degFRS22 ? [], true . 
FRS2_Grb_Bound ::= gr ? [], FRS2_306P ;  
 post306 ? [], remGrb ! [], FRS2_306 ; 
 degFRS12 ? [], remGrb ! [], true ;  



 degFRS22 ? [], degGrb ! [], true .  
 
FRS2_471 ::= preFRS3 ? [], (phFRS ! [], FRS2_471P ;  
 %Shp binding site 
  degFRS13 ? [], true ; 
  degFRS23 ? [], true) ; 
 degFRS13 ? [], true ; 
 degFRS23 ? [], true . 
FRS2_471P ::= shb ! {sh, remShp, degShp}, FRS2_Shp_Bound ;  
 degFRS13 ? [], true ; 
 degFRS23 ? [], true . 
FRS2_Shp_Bound ::= sh ? [], FRS2_471P ;     %Shp 
dissociation 
 dph196 ! [], post196 ! [], FRS2_Shp_Bound ;   
 %dephosphorylation of res 196 
 dph306 ! [], post306 ! [], FRS2_Shp_Bound ;   
 %dephosphorylation of res 306 
 dph471 ! [], remShp ! [], FRS2_471 ;    
 %dephosphorylation of res 471 
 degFRS13 ? [], remShp ! [], true ;     %request 
for degradation 
 degFRS23 ? [], degShp ! [], true >> .    
 %request for degradation 
 
 
Src ::= << degCbl3(infinite), degCbl2(infinite), cbl3(infinite), 
degSpry(infinite), sr(SPRYUn), srp(SPRYPUn), remSpry(infinite), 
s(SRCUn), remSrc(infinite), degSrc(SRCDeg).  
  
 Src_FBinding | Src_SBinding .     
 %independent FRS2 and Spry binding sites 
 
Src_FBinding ::=  
 sb ? {s, degCbl3, remSrc, degSrc}, Src_FBound ;  
 %Src binding 
 cbl3 ? [], Src_FBinding . 
Src_FBound ::= s ! [], Src_FBinding ;  
 remSrc ? [], Src_FBinding ; 
 degSrc ? [], degSpry ! [], true ;    
 cbl3 ? [], ( degCbl3 ! [], Src_FBinding ; 
   remSrc ? [], Src_FBinding ; 
   degSrc ? [], degSpry ! [], true ) . 
 
Src_SBinding ::= srb ! {sr, srp, remSpry, degCbl2},  Src_SBound ; 
 degSpry ? [], true . 
Src_SBound ::= sr ? [], Src_SBinding ; 
 srp ? [], Src_SBinding ; 
 degSpry ? [], remSpry ! [], true ;  
 degCbl2 ? [], cbl3 ! [], Src_SBound >> . 
 
 
Spry ::= << c(CBLUn), sr(SPRYUn), srp(SPRYPUn), remSpry(infinite), 
gs(GSUn), degSpry(infinite), degGrb(infinite), degCbl(infinite), 
degCbl2(infinite), degCbl1(CBLDeg), remGrb(infinite), 
remCbl(infinite), spryp(infinite), dspryp(infinite) .  
 
 Spry_SBinding | Spry_CBinding | Spry_GBinding .  
 %independent binding to Src, Cbl and Grb 
 
Spry_GBinding ::= spryp ? [], SpryP_GBinding ;    
 %can bind Grb after being phosphorylated  



 degSpry ? [], true . 
SpryP_GBinding ::= gsb ! {gs, remGrb, degGrb}, SpryP_GBound ;  
 dspryp ? [], Spry_GBinding ;  
 degSpry ? [], true . 
SpryP_GBound ::= gs ? [], SpryP_GBinding ;  
 dspryp ? [], ( remGrb ! [], Spry_GBinding ;  
        degSpry ? [], degGrb ! [], true) ; 
 degSpry ? [], degGrb ! [], true . 
 
Spry_CBinding ::= spryp ? [], SpryP_CBinding ;    
 %can bind Cbl after being phosphorylated  
 degSpry ? [], true . 
SpryP_CBinding ::= cb ! {c, remCbl, degCbl1, degCbl}, SpryP_CBound ;  
 dspryp ? [], Spry_CBinding ;  
 degSpry ? [], true . 
SpryP_CBound ::= c ? [], SpryP_CBinding ; 
 dspryp ? [], ( remCbl ! [], Spry_CBinding ;  
        degSpry ? [], degCbl ! [], true) ; 
 degSpry ? [], degCbl ! [],  true . 
 
Spry_SBinding ::= srb ? {sr, srp, remSpry, degCbl2}, Spry_SBound ; 
 dspryp ! [], Spry_SBinding . 
Spry_SBound ::= phSpry ! [], SpryP_SBound ; 
 sr ! [], Spry_SBinding ; 
 remSpry ? [], degSpry ! [], degSpry ! [], true ;  
 dspryp ! [], Spry_SBound . 
SpryP_SBound ::=  
 srp ! [], SpryP_SBinding ; 
 remSpry ? [], degSpry ! [], degSpry ! [], true ;  
 degCbl1 ? [], ( degCbl2 ! [], SpryP_SBound ;  
   remSpry ? [], degSpry ! [], degSpry ! [], true) ; 
 spryp ! [], SpryP_SBound . 
SpryP_SBinding ::= srb ? {sr, srp, remSpry, degCbl2}, SpryP_SBound ; 
 degCbl1 ? [], SpryP_SBinding ; 
 spryp ! [], SpryP_SBinding >> . 
 
 
Cbl ::= << degCbl1(CBLDeg), c(CBLUn), remCbl(infinite), 
degCbl(infinite) .  
 cb ? {c, remCbl, degCbl1, degCbl}, Cbl_Bound . 
Cbl_Bound ::= c ! [], Cbl ;  
 remCbl ? [], Cbl ; 
 degCbl ? [], true ;   
 degCbl1 ! [], Cbl_Bound >> . 
 
 
Grb2 ::= << gr(GRBUn), gs(GSUn), remGrb(infinite), degGrb(infinite), 
sos(SOSUn), remSos(infinite), degSos(infinite) . 
 grb ? {gr, remGrb, degGrb}, Grb2_FBound ; 
 gsb ? {gs, remGrb, degGrb}, Grb2_Spry_Bound . 
 
Grb2_FBound ::= sosb ! {sos, remSos, degSos}, Grb2_FSBound ; 
 gr ! [], Grb2 ;  
 remGrb ? [], Grb2 ; 
 degGrb ? [], true .      
Grb2_FSBound ::= sos ? [], Grb2_FBound ; 
 gr ! [], remSos ! [], Grb2 ; 
 remGrb ? [], remSos ! [], Grb2 ; 
 degGrb ? [], degSos ! [], true .  
 
Grb2_Spry_Bound ::= gs ! [], Grb2 ; 



 degGrb ? [], true ;       %request 
for degradation 
 remGrb ? [], Grb2 >> . 
 
 
Sos ::= << sos(SOSUn), remSos(infinite), degSos(infinite) .  
 sosb ? {sos, remSos, degSos}, Sos_Bound . 
Sos_Bound ::= sos ! [], Sos ; 
 degSos ? [], true ;  
 remSos ? [], Sos >> . 
 
 
Shp ::= << sh(SHPUn), remShp(infinite), degShp(infinite) .  
 shb ? {sh, remShp, degShp}, Shp_FBound . 
 
Shp_FBound ::= sh ! [], Shp ; 
 remShp ? [], Shp;  
 degShp ? [], true >> .  
 
 
Plc ::= << p(PLCUn), degPlc(PLCDeg), degPlcInf(infinite).  
 pb ? {p, degPlc, degPlcInf}, Plc_Bound. 
Plc_Bound ::= p ! [], Plc; degPlc ! [], true ; degPlcInf ? [], true 
>>. 
 
 
Clock ::= 
 ph653 ? [], Clock ;  
 ph766 ? [], Clock ; 
 phFRS ? [], Clock ; 
 phSpry ? [], Clock ; 
 dph196 ? [], Clock ; 
 dph306 ? [], Clock ; 
 dph471 ? [], Clock ;  
 create_spry ? [], Clock . 
 
 



Table II. Rate constants used in simulation studies. 
 
Reaction Parameter Value Ref 
1 FGF binding 

FGF
b = 116

sM105
!!

" , 

FGF
r = 13

s 105
!!

"  

(Felder et al, 
1993; 
Mohammadi et 
al, 2005) 

2 FGFR Y653/654 
phosphorylation 

FGFR1
ph =0.013 1

s
!  (Furdui et al, 

2006) 
3 FGFR Y766 

phosphorylation 
FGFR2

ph =0.004 1
s
!  (Furdui et al, 

2006) 
4, 7, 9 FRS2, Src, Grb2, 

Shp2, PLC binding 
PLC Shp, Grb, SRC, FRS,b = 116

sM 102.5
!!

" , 

PLC ,Shp, Grb, SRC, FRS,r = 12
s105
!!

"   

(Panayotou et 
al, 1993; 
Skolnik et al, 
1993) 

5 FRS2 
phosphorylation 

FRS
ph =0.005 1

s
!  (Furdui et al, 

2006) 
6, 13 FRS2, Spry 

dephosphorylation 
Spry FRS,dph =12 1

s
!  (Montalibet et 

al, 2005) 
7,11,14,1
2 

Sos, Spry, Cbl 
binding 

Cbl Spry, Sos,b = 5
10

1
M

! 1
s
! , 

Cbl Spry, Sos,r = 14
s10
!!  

(Sastry et al, 
1995) 

8 FRS2:Src 
relocation 

SRC
t =1/

SRC
egd =15 min (Ware et al, 

1997) 
9 FGFR:PLC 

relocation 
PLC
t =1/

PLC
egd =60 min (Sorokin et al, 

1994) 
10 Spry induction 

Sprysyn =0.083 nM 1
s
!  (Hanafusa et 

al, 2002) 
11 Spry 

phosphorylation 
Spryph =10 1

s
!  estimated 

12 FRS2 
ubiquitinylation and 
proteolysis 

Spryt =1/ Spryegd =25 min (Wong et al, 
2001) 

 



Table III. Sensitivity coefficients calculated for the reference state: 
0

FGF =50 nM , 

0
FGFR =50 nM , 

0
PLC =50 nM , 

0
FRS =100 nM , 

0
SRC =50 nM , 

0
Grb2 =50 nM , 

0Shp2 =50 nM , 0Spry =0 nM , 
0

Cbl =50 nM . Values smaller than 5
101

!
"  are 

annotated as ~0. 
Parameter j  A

jC  D

jC  
FGF bind/release 

FGF
b /

FGF
r  0.003/-0.002 0/0 

FGFR Y653/654 
phosphorylation 

FGF1
ph  0.12 -0.02 

FGFR Y766 
phosphorylation 

FGF2
ph  ~0 0 

PLC bind/release 
PLC
b /

PLC
r  ~0/ 5

102
!

"!  0/0 
FRS2 bind/release 

FRS
b /

FRS
r  5

102
!

"! /0.008 0/-0.001 
FRS2 phosphorylation 

FRS
ph  0.01 -0.01 

FRS2 
dephosphorylation 

FRS
dph  4

102
!

"  0 

SRC bind/release 
SRC
b /

SRC
r  -0.001/ 4

104
!

"  -0.03/0.02 
Grb2 bind/release 

Grb
b /

Grb
r  0.008/-0.005 0.004/-0.003 

Shp2 bind/release 
Shpb / Shpr  4

103
!

"! /~0 0/0 
SRC-mediated 
relocation 

SRC
egd  -0.14 -0.97 

PLC-mediated 
degradation 

PLC
egd  0.0005 0 

Spry synthesis 
Sprysyn  -0.002 -0.004 

Spry degradation 
Spryegd  -0.02 -0.04 

Spry bind/release 
Spryb / Spryr  -0.006/~0 -0.006/0 

Spry phosphorylation 
Spryph  -0.0007 0 

Spry 
dephosphorylation 

Sprydph  0.013 0.011 

Cbl bind/release 
Cbl
b /

Cbl
r  0.0003/~0 -0.002/0 

Cbl-mediated 
degradation 

Cbl
egd  -0.0002 -0.004 

Grb/Spry bind/release 
GS
b /

GS
r  -0.006/~0 -0.002/0 
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