A STUDY
of
ACUTE LOBAR PNEUMONIA.

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 27626616
Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

In the construction of this thess the casen were, for commencence, numbered consecutiocls. from I to 120 and thronghour the coutexti, certainmbero wiel le obseroed, usethed within brackets, after serfain statements have been made. These menbers indicate the cases on whieh such statemento asc based.

In Part I. the "easuntial" elencencto or Peatures of the degnoxis of acute Preumonid are cousidered hamely temperahure. puese, respuration. lung. condihoin o expectoration.

In Oart 2. are corividere those features wheich are obcerved, hithe cource of an aructe attack butare hot esscu bicele cheracterinic of tite ieques, tho wanel, the nervous. Glood and urimatr coudilious de.

The following thesis is based on the study of 120 , more or less complete records of patients, admitted into the City Poorhouse Hospital of Glasgow, suffering from Acite Pneumonia. Some of these are very incomplete, and are incluod either for their generol bearing on the general statistical conclusions, or to illustrate certain points herein afterwards dealt with.

These patients were nearly all dram from the submerged tenth, the flotsam and jetsam of Society drifting between the Poorbouse, the Model Lodging House, the Prison and the Street. The alcoholie habit, eitber in the form of prolonged drinking at low pressure, as it were, or of periodical drinking bouts, can be obtained in fully 80% of the cases. The investigetion therefore derives some interest from this alcobolic factor being so prominent. One would naturally expect therefore that all or nearly all of these patients to be physical wrecks, yet it is astonishing what 2 number were admitted with the present being their first illness. In the others, the previous illnesses were the usuel ills that flesh is heir to; the diseases of childhood and of adult life, viz ; Enteric, Typhus, Scarlet and Rheumatic fevers, Ague, Bronchitis, etc.; but of 86 recorded cases, in 23, previous attacks of Pneumonia were noted. At first sight this large percentage (27) would appear to favour the idea, that a previous attack renders a patient more liable to a subsequent one. But, on going more carefully into these cases, this impression is not indicated with such certainty. Thus of 19 cases admitted with a history of one previous attack, in 8 only did the second onset affect the same lung, the shortest intervening period being two years and the longest ten. In 10 cases the opposite lung was the one attacked, the shortest period here being $\&$ months. Thus the facts, that in 53% of these cases, the opposite lung was the one
affected and that when the same lung was the seat of the disease, it was after the lapse of years, rather militates against the idea that one attack, per se, renders a patient more predisposed to a subsequent one. The same impression was also favoured by the histories of the 3 cases admitted with their ${ }^{3 \text { P/ }}$? n eumonia attack.

If a patient suffering from Achte Pneumonia comes under observation, we may, from his appearance, form an impression of the probable diagnosis. We then instinctively enquire for the duration of the illness, its form of onset and also the alleged cause. This leads us into an investigation of the History of Onset.

HISTORY OF ONSET.
In the majority of cases the onset is more or less sharp and sudden: With headache, feverishness, shivering and very freauently rigors. Sooner or later pain is complained of in one or other side. This pain may indeed be the first symptom but more usually it sets in after the general symptoms have been in existence for some time. In other instances the onset seems to expend its energies on the gastro- intestinal tract ; the symptoms then being complicated with troublesome vomiting and diarrhoea. Sometimes it is impossible to fix with precision the dey of onset, especially if the Preumonia has supervened on some pre- existent catarrhal or pyrexial condition.

In numerous cases, exposure to damp or cold, either with or without alcoholism or other irregularity is aduced as the eause. In many instances the actual onset of the disease does not appear until 2, 3 or 1 days after the alleged exposure, but so frequently is this history of exposure voluntarily given that it is difficult to exclude soch, oltogether, from being a potent factor in the eausation of the disease.

Again a few patients attribute their present illaess to some sudden
injury or violence.
In this series four gave definite histories of injuries. One man was struck on the right side by a plank of wood which was being swong round by a crane. Next day he was feverish and ceased work. On admission on the 7th. day a bruised area was observed over a right apical pneumonia. Another stated thata blow on the right side was the commencing point of his pneamonia on the corresponding side. The remaining two cases are somewhat different. The first had his scrotum and penis lacerated with a block and tackle, whilst the second sustained a fracture of the 7th. left rib with the subsequent developement of a right sided pneumonia. Such types are generally explained by the accident of coincidence, but the histories given were so definite that it is difficult to exclude such injuries altogether from some causal relationsbip, very probably not proximate, but possibly predispositional. Owing to the shock, the vital activities of the nervous system may be so depressed, that an opportunity is given for the action of some potent proximate cause.

An idea of the onset having been obtained, an observer now proceeds to register the Temperature, Pulse and Respiration.

THE TFMPRRATURE.
CHART, $n_{0} 1$

	AM PM	ANI PM	\|Am	PM	AMI FM/	Ana PM	IAmitm	IAMTPM	AMMPM				
tos	xhing bum	96,10266	2-tap	$26 / 1206$	2540 2640	2-610 2×610			260iz.04	20, 26.62	2060, 260	20690.6.4	2680\|2.640
					-								
104					-								
				$+0$									
193													
				1									
16													
									,		4*		
109	$\underline{\square}$												
	\square												
110						1							
												7	
49			.										
98								1					
	Canc 14.					γ			Eques 60				
Day	9 ${ }^{\text {r }}$	$\mathrm{L}^{\underline{2}}$	$5^{\text {m }}$	6^{5}	$7{ }^{\text {K/ }}$	$8{ }^{\text {ch }}$		9^{*}	$3{ }^{\circ \prime}$	$4^{\text {² }}$		$b^{\text {m }}$	${ }^{1 / 5}$
		Hus	strates	Ideal	tuspe	of Pn	neum	noni	a Char	rt. (p)	byrexia)		

An analysis of these temperature records induces one to conclude that no general rule can be predicated of the rise progress and fall of the pneumonic page 3
fever. The ideal type (see chart 1. Λ, almost the only one I can produce) where the pyrexia sets in more or less suddenly and remains high with slight diurnal variations of 1° or 2° until the crisis, is exceptional, and my impression is, that eases characterized by such evenly sustained temperature generally prove fatal. (cases 48, 71, 78 etc.). During the fastigium the temperature varies considerably. The average mean level may be 103° or 104°, but, on the other hand, it may never exceed 101° even when both lungs are implicated. It may intermit one day : another day it may be sustained : then for the next day or two decidedly remittent. A few charts show remittency or intermittency throughout. In others again the femperature. rises day by day to reach its maximum inst immediately before the crisis (Chert 2) or it may reach its maximum early and then begin to fall

Illustrates a continuous rising temperature until crisis was reached

Illustrates falling temperature interrupted by a crisis
gradually. This declining temperature may be suddenly interrupted by a
critical fall (chart 3), or it may fall steadily and gradually until the Ps. In the following Charts the temperature is registered in Black Ink

Red Pespirations , Green
(ढ).
normal temperature level is reached (chart 4).

lustrates early maximum temperature with deferveseence by continuous Lysis
th. day a considerable fall of temperature- it may be of 5° or 6° - to or near the normal level, with a subsequent increase of the pyrexia recorded. Such an incident is termed 2 False Crisis (see chart No. 5).

Temperature is here indicated in Black
Pulse
Respiration
Red
are
(3).

With occasional examples it is difficult to assure one- self that such a critical fall is really false in its nature especially if associated with a decided diminution of the pulse and respiration rates , and a coincident appearance of a curate deposit in the urine, and also with an amelioration of the general symptoms without any exacerbation during the subsequent, rise of temperature. In such a case, the question " May not this be a real crisis, followed by a post- critical rise due to some complicating and possibly unrecognized cause" ? is justifiably raised.

When a patient recovers the pyrexia most frequently disappears by a crisis, and by this is generally meant, a sudden and decided fall of temperature to the normal level 08°. 1 . In some instances the observer must be allowed sone liberty in adopting for "crisis" purposes, the normal mean level, as occasionally, it would, otherisise, be somewhat difficult to determine the presence of a crisis, if 98.4 is rigidly adhered to. Thus in cases, 18, 52,59 and 98 (see chart 8) the decided falls observed, although

luystrak estes of contended crises: also post-critieal rises of temperature.
The erises epoch only in these case are shown. Ψ Indicating the contended crises.
a only to a° in three oi these, were in reality critiogl in their nature, and coincided with a marked improvement in the general condition of the patients. The subsequent slight rises would consequently thus be, post-critical in their relationstip and of the nature of a rebound as it were.

With this reser-
who recovered, in 5?
was by crisis, the temper-
2. 2 to 7:5 in from 4 ation of these showed that t? and the oth. days (17 cases oritioel days.

The reliability of these be trusted too much; as they as given by the patients and relatives. In 14 of crisis commenced in the aft

Table nol.

$\begin{aligned} & \text { Day of } \\ & \text { Crisis } \end{aligned}$	Fotal n_{0}. of cases	Percentaqe Cakulated
$3{ }^{\text {dod }}$	1	1.9\%
$4^{\text {k }}$	0	0.
$5{ }^{3}$	6	11.3\%
$6^{\text {r }}$	6	11.3\%
$7^{\text {ret }}$	8	15.1\%
$8^{4 .}$	む	9.4\%
$9^{\text {re }}$	17	32.7
$10^{\text {k }}$	5	9.14\%
11^{k}	4	7.5\%
12^{5}	1	1.9\%
Total	53	99.8

vation : of 91 paitients
(-74.5%) the temination ature fallsvarying frout to 38 hours. A tabulthe 7th. (8 cases 15.1%)
$=32 \%$) ierethe favourite
fisures however, oannot are based on the histories themselves or theirefriends these cases (83*) the afternoon or evening, and seldom in the moraing. In other charts the temperature curve is seen to fill
more gradually. a Cu ure level of not reached until usual period. oth. dey the py pletely subted, defervescence to (cases 0b, or people the pyrexi be "ery sligbt,
(8ee ehart Y. page Y)

CHART. $\mathrm{H}_{0} \%$.

Hustirate low temperature in Serive Peumonia

Then the temperhealth is, generally 2. few days after the Indeed if by the rexia has not corione expeots the be by lysis
and 100). In olz rexia jtself may but nevertheless it
(8).
it is perhaps the rule to find pneumonic sanile paicients with temperatures - averaging olmost as hioh es in younger patibnts. (ous). One fact, bowever, stands out clearly in patients of 21l. ages, viz " the pneumonic pyraxia is in no way oroportionate to the lung implication."

THF PTISM.
As 2. rule during the initial stages, the pulse is firm, rapid, and of increased tension, but when the disease is fully astablished it becomes. full, soft, gnd easily compressible, snd in a fem instances dicrotism con be made out by digital examingtion. In later stages, pulse irregularity and even its diminution or disappearance during inspiration then cardiac falure is setting in, is obseeved. These statements can all be verified ky sphygomograpic tracings.

After studying the pulse records, it is observed that the pulse rete

IDustrates sustained pulse rate coinciding with sustained Zemperatucre.
follows the temperature variations with astonishing regularity. If the pyrexia is sustained so 9 Iso is the pulse (chart 8). The same correscondence is.observed whether the temperature is intermittent, remittent or irrecular .

[^0](0).

Illustrates correspondence between remittent puiso a temperature

Iliustrates irregular bulse coinciding wilh irsequiar Zemberalure

It is only in odd cases, where marked pulse veriations independent of the temperature changes are noted. The sane co-relationship is observed, during defervescence, whether the pyrexia falls by crisis (cases 11.01, and 117) or by lysis (coses 3 and 9y). A high temperature honever, does not necessarily indicata a high pulse rate, although the variations of both may still closely correspond. It. Would thus appear that these two phenomena are either closely interdependent or related to the action of some cause common to both. The temperature and pulse mechanisms are each closely related to, and controlled by the nervous system, and possibly it is through this agency that they are influenced. Sphygmographic tracings show many facts about the condition of the pulse, much more clearly and in greater detail, than is possible by the digital palpation. Thus after examining these records it would aprear to be the rule for dicrotism to be present even in cases which recover. It mey exist for two or three days, but again it may only be noted on day before the crisis, but in others asain, although the pulse tension is low, it is not
fully dicrotic (tracing No. 1). Tf the signs of Gardiac failure set
in, then this the sphygomoby inoreased marked dicrotis hyper dicrotisd series No. 2.). rythm also
ionally the gtion is obsery of death, when heard in the

differences

character of

is reflected in
graphic tracings
rapidity and
ism with occasional
of the pulse (see
Trreguarity in the appears and occasinfluence of inspir-
vea. On the day
mucous rattling is
trachead, great
may be noted in the
of the tracine $3:$ page II.
shown in series/No. 3. in which 5 tracings are contrastpdana in one of there
(NoAlpine.
dicrotism was
When recovery remarkable
pulse tension

to find that
were almost al period in the

Spyamoaraphic tracings. Series. Ho 2 .
 1st. of series) scercely present. sets in, it is how quickly the improves f traoing It was astonishing dicrotic tracings ways ortaiaed at some great majority of ed with subsequent recovery. Thus, dicrotism, although it inaicates low pulse tension, cannot always mean cardiac failure or insufficiency per se. Tt is possible that a reasonable explanation of this can be deducped from the experiments of Schulein, who showed, thot although in the majority of pyrexial conditions, a

Shows the differeners in pulse zrecings oblained on day of death

a hagh interaal temperature is usually associated either with a cold or moderately warm skin, in Acute Pneumonia the surface or skin temperature almost equals the internal temperature, and the variations of both coincide. (see Fogge- Smith's system of Medicine). This great external heatthe probable cause of the hot pungent skin of pneumonia - can only be keot up by graet radiation, and possitly to some extent by increased local generation. . This is probably assooiated mith a considerable dilatition of the cutaneous capillaries, and perhaps the capillary circulation generally. The dilated capillaries by drawing a large quantity of blood from the arteries, would thus tend to lower the arterial blood tension. Such a hot pungent skin must also be associated with a greatly increased loss of moisture from cutaneous evaporation as well as thet lost through the breath, which in this disease is botb bot and rapid. This loss of fluid will tend to diminish the total volume of blcod in the circulation; so further lessening the arterial tension.

This explenation is readered possible if not probable by the pulse tracings of one case I was fortunate enough to obtain (see tracing No. 5市aqe is) Here at the connencement of the crisis the pulse was dicrotic: durine the critiogl fall this was lessened, and finally when the crisis was completed the dicrotism had disappeared. One can suppose thet et the orisis, the pneumonic poison and its influence on the nervous system had beon overcome. With this eeturn of gervous control, the capillaries would contract. The capillary capacity would thus be lessened, and in this manner the volume of blood in the arterial system would be augmented and so raise the arterial pulse tension as shown by the sphygmograph. If dicrotism really indicated cardiac weakness per se, it is unlikely that such a debilitated heart mould recover so rapidly as to exert so decided an influence on the arterial tension within so short a period. Although the arterial tension is greatly diminished, the muscular power of the heart, may still be good, and although unable to overcome this lowered arterial tension, is still able to respond sufficiently to the necessary requirements of the system. Thus when dicrotic pulse is noted, indicating a low tension in the systemic circulation, an acoentea second pulmonic sound, and epigastric pulsation with co-related loudness of the cardiac sounds of the same area, may ke observed. This shoms that such a heart is still able to respond sufficiently when the blood tension (as in part due to the contraction of the capillaries and arterioles themselves- in this instance the pulmonice) is normal or increased, altbough it may coincidently be unable to throw sufficient klood into the arterial circulation to ineke good that taken into the dilated systemic capillaries owing to is oven questionable if the heart could overcome this if it would, aspit itself must be receiving aircuatition a smatier supply of blood into its onn chambers. Moreover at 2 erisis the pulmonary consolidation and obstruction does not disappear at once, yet the :dissappearance of dicrotism is rapid and complete. To sum up therefore it
woul3 acoerr thet dicrotism (full) is not necessarily due to cardian
Wegkness or failure per se, but is a reflex of the physical conditions brougtt ghout by the systemic capillact Jilatation and dininished total volume of blood due to the loss of fluid fron the slin and frou the breath.

3 pyamographie Jracings. Series no 5

with the exertions of a delicious patient. (see chert No. 12).

The reduction of the normal pulse resoiration ratio from the proportion of 4 to 1 to anything from 1 to 1 , 2 or 3 is commonly observed but as the respiration is somewhat stable in its course, and the pulse apt to be very ircegular, the pulse- respiration ratio is subject to very considerable variations and may very from 1 to 1 up to 3 and uaring the acute stage of the illaess.

Apart from the discomfort and restraint caused by the presence of pleuritic pain the respiration rate seems to be influenced mainly by three conditions.
(1) During the early stage, when the signs of lung implication are absent, the augented oxygenation required from the existence of pyrexia is met by quiokened respirations.
(2) The onset and spread of consolidation causes the respiretory rate to rise, so that the influence of the temperature is lost or submerged, but, as alceady stated, this increase is not necessarily proportionate to
to the exient of the lung involved.
(3) When cardiac failure sets in as evinced by pulmonary congestion and rapidity or incegularity of the pulse, this is almost invariacly acconpaniea with greatly increaseả respirations whiob will continue high even in the face of a rapidly falling temperature, until death closes the scene. (see case 26 and 15. Shart 13).

Ilustrates the rise of pulse and respiration rates resulting from Cardice failure

When a crisis is taking place it is exceptional for the respiratory curve to show a critical fall. The defervescence is mostly by lysis, even when the other phenomena have terminated sudaenly. In the majocity the respiratory "defervescence" is ty a Iysis and 30 per minute must be regarded as the critical mean minimm level, as it is usually three or four days after the crisis before the respirations reach the aormal of health. (20 oer minute) although during this period the patient may be making a rapid recovery.

At the critical period the relationshio of the pulse, resoiration and tamperature to one another varies considerably, but these almost all can be arranged under three types (see chart 14).

Thus in the 1st. the tempergture reaches normal first, to be follomed in 3 fen hours by the pulse, and this again in a few hours later by the respiration. In the 2nd. type pulse and temperature fall together by 9 orisis, whilst the respirationsbecomə normal by a lysis in the course of 9 day or two, and in the last, all three reach the normal level togeiber by a crisis.

THE PUGMONARY STGNS AND SYMPTOMS.
The provisional diagnosis of Acute Pneumonia having keen made from the appearance and history of the patient, and after the coservance of the pulse, respiration and temperature ; one instinctively expmines the lungs for local implication, and an observer's diagnostic instincts ere 2lways on the alert until such evidence is obtained. This opens up on intensely fascinating ohapter of the natural bistory of Parmonia, viz the lung consolidation, its appeacance, develophent, and disappearance.

In Hospital practice the patients have generally been ill for a few
deys before admission, so that the opportunjty for personal observotion of the lung condition in the first day or tino of the disease, is seldon obtained. Of 106 pitients admitted, where the date of onset was more or less accurately ascertained, 5 only (4.7\%) were admitted on the first day of illness. In two of these, no characteristic pulmonsry physical signs had yet appeared, but crepitus appeared in one 1 case r9) on the second andiconsolidation on the fourth day. In the other case ((03) crepitus set in on the fourth day and consolidation on the fifth. In the remaining three cases, crepitus mas the only sidn detected on admission, and in one of these, crepitus and percussion dulness alone were observed throughout the illness and although tubular breatbing was not at any time detected, cthe post- mortem examingtion revenled the presence of consolidation (case 88). Tn the second case (No. 10r) the consolidetion apoeared on the second day and in the last, orepitus and crepitus only were detected throughout the illness witb recovery. Thus from this rapid survey of these five cases alone we see at a glance what differences there may be in the day of onset and rate of progression of the characteristio pulmonary physical signs. We see that orepitus may appear on the first, - or be delayed until the fourth day; also, how it may be the only physical sign observed in 2 patient who recovers. We also note that a consolidation may appear as early as the second day, or its appearance may be deleyed until the fifth day, and lastly it may be present and yet be not revealed by the classical physical sions.

By an extended study of the condition of the lungs on admission, other interecting facts are brought to light. In the contiguous table (No. 2.paq凡 100 cases are classified. The first column represents the day of illness on admission, and the second shows the number of patients admitted opoosite their corresponding deys of illness, from which it will

$\begin{aligned} & \text { Day } \\ & \text { aff } \\ & \text { animion } \end{aligned}$			$\begin{aligned} & \text { Reconsol } \\ & \text { Beabereqe } \\ & \text { Sppearan } \end{aligned}$			
14.	5	4.7\%	4	1	0	0%
$2^{\text {no }}$	$15)$	14.12	12	3	0	0%
$3^{\underline{n}}$	23	W6\%	11	2	10	43%
4^{*}	26		7	4	15	58%
5^{5}	15	14.12	5	2	8	53\%
$6{ }^{\text {K }}$	11	10.3\%.	1	1	9	82\%
y^{4}	10	9.4\%	0	\bigcirc	10	100%
$8^{\text {x }}$	1	944\%	0	0	1	100\%
	106		40	13	53	
$\underbrace{}_{106}$		$5_{\underbrace{}_{106}}^{59}$				

be sean how comparatively feit
sought admission ducing the pirst the days of the illness, 1.7 \% on the first day, and 11.1 if on the second ; a total percentage ofit 18.8 for the two days. Considering the suddenaess of the onset and the acuteness of the disease, this is a comparatively small proportion. and probably, no dobiot, is exolained by the wall- knonn habit of the poorer classes to aitempt to "work off" any acute mitack. It will be
seen, however, that a large proportion (48\%) have to "Eive in" during the third ano fourtb days and that by the fifth day 80% of all these cases had sought medical assistance. In the remaining three columns opposite their corresponding days, the condition of the lungs on jomission are classified. From these it will be observed, that in asne of the twenty patients admitted on aither of the first two days of the illness was consolidation present, and that only in ten cases out of trenty eisht ajwitted on the sed. day was it detccted ; 0 total percentage of 20.8 of all cases adnitted during the first three days. From these iacts alone it is reasonable to conclude that it is unusual for a consolidation to set in before the third day. In the last column is recorded the percentage of cases, celculated from the total admitted on each day, in which consolidation was present on admission, and this shows that each subsequent day of the illness is accompanied by an increasing proportion of instances where solidification bas appeared, so that, one expects to find it in all cases by the seventh day.

That this is true is also shom by the observation and classification of those records in which consolidation appeared after the patient had come under observation. Of this group, 53 were admitted, but from this 13 must be deduoted as they came under that equivocal class in which consolidation is never preseat, or at all events not discovered, thus leaving a total cif 10 cases in which solidification of lung tissue subsequently ensued. A classification of these (see takle 2.) asain shows

	$\begin{aligned} & n_{0} \text { of cases } \\ & \text { where eonnol } \\ & \text { appeared } \end{aligned}$	Peraentage $\begin{aligned} & \text { op } \\ & \text { Total } \end{aligned}$
1	0	0%
$2{ }^{\text {a }}$	1	2.5%
$3{ }^{-4}$	4	10.0\%
$4^{\text {K/ }}$	10	25.0\%
$5{ }^{\circ}$	1	20.0\%
6^{K}	9	22.6%
y ${ }^{\text {res}}$	6	15.0%
8	2	5.0%
Total $=40$		100-0.

that in no case did consolidation appear on the ricst day and only once had it devaloped by the second day (2.5%). In four instances (10%) it appeared on the third day : tous only in 12.5% of $2 l l$ these cases had consolidation developed by the third day. This Table also indicates that consoliaation makes its appearance with almost equal frequency on the fourth, fifth and sixth doys : the fourth slightly predominating. Eere again the expectancy that in 211 or almost all cases, that solidification mill certainly be present by the seventh day is readered reasoaable if not in fact prover, as only in 2 cases (5of was its appearance delayed until the eightbiday.

In table No. Athe cases are tabulated in decades, and according to the part of the lung or Iungs diseased, after the maximum extension had been reached. Here it will be seen that exactly 80 patients (50%) mere attacked between the ages of 30 and 50 years. It is also noted that the right lung had a greater tendenoy to be atiacked than the left, almost in proportion of two to one. The right base was only slightly more frequently affected than the left (37 to 33). The greatest difference was revealed in the apical consolidation. The right being more frequently affected than

Table. $\eta_{0} 4$. Portion of Lung affected

$\begin{gathered} \text { age in } \\ \text { Decades } \end{gathered}$	Tno.of cases theien deace	$\begin{aligned} & \text { Righz Rung } \\ & \text { apical Basal Median } \end{aligned}$	$\begin{array}{\|c\|} \text { Seft Rung } \\ \text { apical } \\ \text { Basal median } \end{array}$	Double.
0-9	6	$2 \ldots 1 \ldots$.0....... 1..... $0 .$.	2
	9...	1 5		1
29.	16	$5 \ldots . .3$..... $0 \ldots$	0......4--- 0	4
30-39.	29	-	$3 \ldots-12 \cdots 0$	2
40-49	31	Y 10	10...... 1.	1.
69	. 16	6-..-6...- 0 --	. 0-1.... $4 . . .20$	0
60.69	. 11.	3-.... 6	-0-..--1 1 -... 0.	0.--
yo-79.	. 2	0.....-1 1	A….. $0 \ldots \ldots$.0...
Total	120	$37 . . .2$	$33 \ldots$	
		70	38	12
Jota2	120		120	

the left, nearly in the proportion of eight to one (81 to 4 cases). In 12 instances both lungs were offected. The strictly median consclidations were the least freguentiy observed. In the order of greatest
frequeney these cases would thus be classified as follows:-

With this introduction it now remains to follow in detail the onset pregsess and disappeargnce of the characteristic signs observed in the lungs. Generally, the first eign to appar is a very fine crepitus, inspiratory in its character : universally known as Pneumonic crepitus. This is a very constant and characteristic phenomenon, but too great reliance cannot be placed on this sign alone. A certain woman, an habitué of the

Poorhouse frequently left this institution for a few doys drinking, and was often brought in, in a day or tw, in 2 feverish condition. Coincidently fine inspiratory crepitus zppeared gt the posterior bases. The first time I examined herd, she was sent into hospital with the suspicion of commencing pheumonia. It is interesting to note that the resilent physician aho preceded me, and also my successor, both fell into the same error mith this patient, but this diegnosis wes invoriekly negetived by a fen days observation. Pneunonic crepitus may not set in for a few days after the onset. Its duration is usually evanescent and generelly persists alone for one or two days only, but it may exist for five or six days before consolidation is observed. In the vast majority of cases, in the erea of crepitation, signs of supervening consolidation commencing tubulerity of the Fespiratory murmur or pure tubular breathing : increasing y.R. or pure bronchopbony etc.) ultimately set in. But although orepitus is first detected in a certein area, this does not necesserily indicate that the solidification will subsequently appear here. Not infreauently indeed, crepitus is first observed at the extreme posterior base of one or other lung and spreads upwards to the scapula, and bere the consolidation is first noted (coses 12, 6e and re). Again crepitus may even begin at the extreme base and extend upwards to the extreme apex fith the subsequent developement of a consolidation which remains strictly moicol throughout the illness (cases 45% go). Eenerally speaking, therefore, the first physical signs detected in the diseased lung are either inspiratory crepitus, on signs of commencing consolidation, and it must be admitted that in odd case's the latter may come into existence witbout any pre- existent crepitus having been observed.

In 9 few ooses there is still another form of onset, which there is some reason to admit, but of which I am not aware of any previous mention, unless perbeps those instances where Stokes speaks of a peculiar roughess
of the respiratory murmur preceding the appearance of orepitus, belons to this cotegory. Tf, strictly speaking, orepitus or evidence of commencing solioification are the first true local signs of lung implication, then, in these curious instences of pneumonia, the folloning contention must be for a pre- crepitant state of the luns, but still poeumonic, and for want of a better name night be coilled a " BRONCPTOTAR CONGBGTTVE STAGE".

Ir 0 oss 25 (see chari 10) the decỉed mod persistent rise of the

CHART Hols

Nlustrates argument for Bronehiolar $\phi_{i g n s}$ - See contexr. raspirations after the fifth day will be seen. The temperature oer se, was in all probability not sufficiently hich to cause the respiration to rise thus to sixty per minute. Nor was there undoubted evidence of cardiac failure to account for this, as at this period the pulse rate only averaged about one hundred per minute. On the fifth day a smoll consolidation appeared between the third and fourth ribs, and ky the next day tbis hod spread upwards to the scapular spine : its maximum extent, as verified by post-mortem examination. This is a very small consolidation to be the direct cause of such a hish respiratory rate. But in this patient, orevious to the onset and recognition of sclidification, and during which period no rusty expectoration was observed to indicate its possible centrel existence, certain signs were present and recorded which misht offer a reasonable explanation. Thus on admission, dimished F. M. and slight distant inspiratory wheczing ((sibilant rhoncbi) at the right posterior base, associated with doubtifully diminished lateral movement of the chest were recorded.

Next day these ohysical signs were observeà all over the right lunc, but there was now present distinctly dininished movement of the whole of the right side, with impoirment of the percussion note, but sbove all, increased respiratory movements of the left lund bad now appered. Finally on the top of these physicel signs pointing to mischief affecting the whole lung, a. small strictly apical consolidetion supervened, whilst the eemainine cortion continued as before. This diminished latergl movement ond diminished r.M. over the right, with coincident increased respiretory morements of the left lung, obviously indicetes obstruction to the antrence of air into the right lung which could not possibly be this purely apical consolidation, as these signs were not local, but affected the whole of the right side. The absence of moist or viscid crepitus, and the presence of distant sibilant rhonchi points to the cousetion being of a dey origin. Possibly, if not probably, this is due to swellins and congestion of the smallest bronchisl tabss and of the bronchioles. By obstrucing the free passage of air, this woulo reasonably explain the presence of the diminution in the volume of the respiratory murmur, and thus also, of the diminished lateral movement of the affected side. The air passing over the presumably congested and consequently irrecular surface of these tubes rould account for the presence of the distant sibilant rhonchi. If at any portion, the oresumed congestion becomes extreme and exudation ensues, this may result in the appearance and aetection of pneumonic orepitus.

This contention is also markedly illustrated in case 26. In tbis patient these bronchioler congestive signs- diminished R.M. and distant wheezing etcwere detected over the risht lung bosteriorly from apex to bose, and anteriorly down to the thira rib, whilst at the extreme anterior base, the kreathine tended to be puerile. This continued during the secono and thirō deys, and it was not until the fourth day that consolidation set in, which, after its maximum extent had been reached was strictly apical in distribution, the loner borders
beine anteriorly the fourth rib, and posteriorly the midscapula, whilst pulmonary oeduma suoervenej in the remaining portion.

In case ra the patient was gamitted on the second dey of illness When the prespnee of diminjshed r.M. prolonsed expiretion and bigh pitched distent wheezins, 1 long with marked diminished expansion of the richt lons were recorded. These sisns were strictly unilatersl ond were ossocistej nith slicht cardiac ecisastric pulsation, strons cresumptive evỉence, in tre absence of cardiac valvalar disease, of the existence of pulmonary obstruction. Next day crepitus apoeared between the second and foutb rib, and on the fourth dey a consolidaticn about one inch savare was observed betneen the third snd fourth ribs. Coincidently cardiac pulsation over its apical resion and also of the vessels in the neck were superaddei to the previously reconden epigestric pulsation, indicating a degrea of obstruction not explicebla by such a small consolidation. That this small area observed did not jenote a central implication of the lung is orobable as previously to this the respiration rate was not much inereased, but with the subsequent increase of the consolidation as shown by physical siens the respiratory kecane corcespondingly increased. Fere again we have strong presumptive evidence of some pulmonary obstruction not explained by the extent of the solidification.

In case 27 , the sisns recorded on ohmiscion were, diminishea movefent. R. $\begin{gathered}\text {. and } V . R . ~ a n d ~ s l i g h t ~ d i s t o n t ~ w h e e z i n g ~ e x t e n d i n g ~ f r o m ~ t h e ~ r i g h t ~ p o s t e r i o n ~\end{gathered}$ base to the scapular andle, with the subsequent development of a scapular consolidation two inches in depth, whilst the basal resion continued as above.

In other patients, this Bronchiolar combination of sisns are associated with the presence of a consolidation on admission. Thas a Scapular consolidation is present with diminished movenent, R. W. and sibilant rhonchi in the other parts of the same lung (cases 2 and 10) and coincidently

With besal consolidation these signe are cbecred ot the goiogl resion（ eses E），Then e consolizetisu is present in a certain portion of lung tissue，

 mopements an puenile e．v．in those perts．On can readily anderebend hon en epicsl ooneoliastion fill lead to diniaished novenent of the arex ene e basel oonsoliaetion to effect the base in like manaer，kut if an apical or basel consolization so－⿰氵ists tith diminished wovement，diminished F．M．and Bietent ary mfeezing scarse in therest of the lung，it is act at all probable fist sach to be the direst cause．It is here，I think，that the presumption ef the presence of e browebiolar consestive condition becomes bighly probable． Thet there is some obstrotion to the free edmission of gir is also evilensej in or̉insey esses ty the ipveriecle diminution in the respiretory volume， Where lives 2reez of pasumbuic crepitetion ere exemined．

The significent fegtrees of these Eronchiolar eigns to remenber are （1）They appeer to Ee of ory orisin end（2）ere confined to the affected Hon䜤 ent stietly onilsterel in treir zistribution．

When a soligificetion sets in，it qay orocar at any part of the lund ant the zree ficst obeervej mey vary Ereetiy in size，But in all cases whioh －unc onder observetion sefly enoosh a＂Centre of Solidification＂for the consolixpted erge eqn senerylly be detected from which the precese extonds so
 completely solinitica from top to cotton at once，but invariakly is by exten sion from one or possichy two eatres，but whot jetenanes the localizing ot
 gas gely reget ite abxime on the dey of orisie．On the．other hent ita

variable one and may be anything from two inches square to a complete solidification of the whole lung.

Then a consolidetion gopegrs at either the anterior or posterior basal resion the most generel experienoe is to find it confining itself to the corresponding aspect of the chest and it is the rule in posterior besal oonsolidations to find the anterior or outer border coinciding with the postacior axillery border and the opper nargin on 0 line with the lower soapular angle.

Th many cases homever, the outer border extends to the midaxillary liae or even the anterior axillary border and the upoer border may be e the wissoppular region or even on a level with the scepular spine. The fovourite border lines for the aterior basal consolidations are the anterior axillary border and the fourtr rib. It is not the rule to find a posterior basal solidification extending round to the anterior base, but in the apical resion, bonever, the consolidation is usually detected both in front and behind, and these genecally remain strictly apical in distribution throughout the illness. Apical consolidations are generally first observed aither at the scepular region behind or about the third or fourth rib in front, and spread upwards. When a strictly posterior median consolidation is present it is difficult to foretell with accuracy hom it will spread and in 0 very few instances indeed does it remain strietly median. The majority extead, either upards to the apex or downards towards the base. Then a solidification is extending the borders geries hol page 2%. generflly spread throughout their whole extent'and it is exceptional to fina a tongue like process shooting out into the still unaffected lung tissue is shown in series 2. Page 2母. 2r.

About the critical period or very soon after the consoliation besins to disappear; the lung undergoes resolution. Grepitus redux is most freauently the first sion observed. This js soon folloney by an glteration or disacpearance of the tubular beeathing and bronchophony. Tndeed tubular breathing may disappar completely from an extensive area within twenty four hours (Casef3) (cgse os). Peroussion dulness next lessens in iatensity, or jisappearsaltogether in the course of a few days. Tt may bowever, iake weeks aña in a ien cases whilst under observation.
it never quite clears amay 4 In some cases the consolidation siens (T.B. and Br.) rapialy disaopear leaving only moist reles which asy persist for a considerable period : from ten days to tho months. In other jnstances asain the lung undergoes partial resolution, but a small coasclidated area persists and may exist unohanged for eight to ten days, then suddenly clear sway within twenty four bours without any orepitug reaux ever having been heard. To follow such is a very striking experience but is exceptional. The most
common course is for the crepitus redux to creep slowly into and through this area : leading ultimately to complete resclution.

During this diseppearance a law of the process of resolution can almost be asserted, namely, that " Thot portion of the lung first affecteo is the last to clear away".

Tn diagram No. 3 (case 84) patient mas sdmittej on the Eth. day with an axillary consolidation. In two days this bas spread inards according to $\begin{aligned} & \text { iogram to the vertekrae. Next dey the consolijation had }\end{aligned}$ resched the apex. This, tbe maximm extent was attained only on the doy preceding the crisis. After the crisis the consolidation cleared away almost in the inverse order of its spread as shown in the series. page 29.
Series No. 1 n(case 10) is also a good illustration of this law of resolution.

Truspatient was admitted on the fourth day with a scapular consolidation. Next day this had extenjed slishtly downwards kelow scepular anele, and upmards over the apex down to level of srd. rik. On the 6th. day the consolidation made its final extension down to posterior base. The inverse order in the clearing amay of this extensive solidificotion is also observed but the ultimate persistent scapular existed for 12 days before it finally disappearea.

(20).

Case No. 5 (see series 5 page is one where a scapular consolidation was first observed on the 3rd. day, but where the ultimate maximum extension remained apical. The first extension was uphards to suore- clavicular réion and outwards to axille posterior border. On the eth. dey it hod spread about $1^{\text {li' }}$ kelow scapular angle and also formards into the extreme apex and outer border of apical region in front. The method of clearance here, although not mathematically exact, illustrates the law of resolution remarkably well. After a little thoucht this sequence in the process of resolution is not so remarkable as it would at first sight appear, because, the part first affected, is the part, the structures of which heve been subjected to the pressure of the pethological products for the longest period and conseavently has had to live on an unduly restricted blood supply for the longest time. Thus presumably its recuperative power would be most impaired. Moreover, being generally situated towards the centre of a solidified area, it is the part most remote from the active capillery and lymphatic circulations which during resolution are carrying away the broken down debris from the lung alveali. In few coses the consolidotindisappearkso rapidy that thi sequance is not observed, but in a decided proportion of instences where the course of the disease has been carefully followed, it is very strikingly illustrated. So frequently indeed is this phenomenon observed that in those cases whicb have been admitted with a large area of consolidation already existent, it is not unreasonable to infer its seat of origin and centre of solidification from the maner of its disappearance. Thus in case 18 (see diagram series No. 6ג. page patient was admitted with a right posterior basal consolidation with its outer margin in a line with the anterior amillary border By the next day this consolidation extended three inches higher to the scapular spine. After this the crisis set in and the first part to clear up, was, what personal observation showed to be the latest addition.

But the question that here arises is, "Supposing one had followed the lung condition from the very first would such observation have shown that this consoliaation began at the scapular region as we knew that it there ended? The same question also arises as to whether we are justified in making the same deduction as to the probeble centre of origin of tbe affected area in those cases in which, on admission, the whole apical resion is consolidated and which when resolving, reveals the persistence and ultimate disappearance of a consolidation in the scapular region. "Did this apical solidification begin in the scapular area, and spread from this"? is the ouastion that here arises. (see series No. 7)page 32) This question although of subsidiary scientific interest, is of no clinical importance.

In the event of there being two centres of solidification in one lung, their future development may be two fold. I have only seen three cases altogetber bhat might belong to this catagory. In two of these

two distinct and separate areas were detected wnere the classical signs of consolidation were observed, but in one of these the post morter showed a uniform gray hepatization of the right basal lobe, so that here it was possible, that only one solidified area really existed, the cheracteristio signs being obliterated in the intervening area by some accidental cause (80). In The other case, a small solidified area was observed between 3rd. and 4th. ribs in front, and next day a small consolidation was observed in the intersoapular space of the same side, but here the post mortem revealed only one uniform gray bepatimation of the midale and lower part of the upper lobe, so that here what appeared to be two areas was brabably, in dua to some accidental obliterating cause, leadiag bo the suppression of the recognized and uneouivocal signs in the intervening region. Tn the last case (No. 88) the first consolidation was first recorded at the left apex, but subseguently towards the end of the illness a second one was observed at the left axillary base to the 4 th. rib, whilst the apical region during this interval had resolved. Here again, at the post mortem, gray hepatization of the anterior portion of the left basal lobe was found, but the opex yas only found in an oedematous condition, nor did the microscope shon distinct evidence of fibrinous and lencocytal deposition in the aldeoli. in the apical region.

Tn cases $(=10 \%)$ the consolidation pppeared in both lungs. This
number is too small for any deductions therefrom to be of much value and any conclusions that may, here, be more or less obscurely indieated, are of value mainly that they impart an interest to future cases for their verification or othernise.

If a double consolidation is present the main force of the disease seems to be expended on the lung ioitially attacked, which, in these cases, with only one exception, was alway the lung most extensively affected. Iurther, this second consolidation orgctically al ays sets in after the fiest one has glready been in existence for some time : the area affected is less extensive and its duration is $9 l w a y s$ shorter : it alnays disapoears before the lune first implicated has resolved. Moreover when this second solidification appears there mould seem to be a tendency for it to commence at that portion of the lung aproximately corresponding to the area gifectel in the first lung. Tn other words if a basal consolidation appears at one base you expaot to find

tne other at the oposite base, a medion to be followed by a medion and apical by an apical consoliaation. To go further, the second consoliłation frequently appears at the area approximately corresponding to the ceatre of soliaifieation for the first lung, and in only tho of these tivalve cases was this indubitably negatived. In one, however, the diagnosis lay equivocally between Pobar and Broncho-pneamonia. In the other an anterior and anterior left basal consolidation extended over the apex and ultimately to the extreme posterior
base with the later apoearance of a second consolidation at the right scapular region. In the others, honever, this probability seam indicated with some reason. Thus in cases 18 and 106 (see series No. 9 where the centres of solififioation are indicated by g Jarkec shadig)a scapular consolidation appared in the right lung with ultimate extension to the oosterior base and subsequently the second consolidation developed at the left scapular resion.

This exact sequence was also observed in one case I aftecwards saw in private series noq. practice. In cose No. 23 a consolidation sppeared in right side rith extension to apex, but still this was followed by a left scapular consolidation.

$$
\text { Series no8 page } 33 .
$$

In ease No. $56^{\text {grres atrictly apical consolidation fiest detected in the left lung }}$ was followed by a consolidation in the right lung strictly apical in its distribution. In case 35 and 81 an extensive right basal consolidation was followad by corresponding consolidations at the left base and lastly in case No. 107 a post mortem showed the ixistence of a solidification of the right base not detected during life, ccinciding with a known left basal consolidation.

As already stated these observations and ideas are based on too few records to be dogmatically asserted.

A comparison of the clinical signs with the post mortem records of the lung 2lso brings out some interesting and unexpected fegtures.

Certain facts and experiences would appear to indicate thot where the siens of consoliation are
best marked (pure hissing, T. E. Etc.) post morter revesls the presence of ree hepatizetion, and elso that these signs are apt to become obscured When presumely grey hepatizetion has set in. Tew experiences gre more stert ling thanto find, at the post mortem, consolidation in cases where it was lesst expected, espeoially when oo elassioel signs were observed to denote its gnte-moctem existence. In many instances its existence mast only be inferced fron the presence of percussion dulness and diminished respiratory marmur. Herein lies a possible source of error in diognosis, for these signs by themselves guite commonly persist after an attack of acute pheumonia gnd are asually attributed to oleural adhesion and thickening, but post-mortem experience shons thet behind these indefinite physical sisns ว gray hepatized consolidation may lis concealed.

A certein patient as admitted, whose sole complaint was of difficulty in swallowing and regurgitation tbrough the nose when be atempted to swallow fluid. This mas verified by personal examination, but a laryngoscocic examination and the passage of oesophagead bongies revealed no gross lesion. He, honever, suifered from Chronic Bronohitis and slight dulness wes observed at the left base. There was no cough and at the post-mortem the left base was found in a stata of gray hepatization.

Another patient admitted for operation stated that two and a half months $2 g 0$ he suffered fron Acute Pneumonia. At the routioe physicel examination previous to the operation, slight dulaess and diminished r. M. was detected at the left Base and attributed to pleurgl adbesion. Here agoin post-mortem examination revealed the existence of gray hepatization although since his lest illness the petient had goined both in strength and weight. a orimary iaiopathic condition ath the secondary development of acute pneumoniz as a complication (cases 33 and 5). (2) Pleurisy itself Would appear to set in as a complication ofter resolution hes set in and be the cause of death (casa 41) (3) Tt may coincide mith and be an actual part of a phermonic attack. In many ceses of poeumonis the illness sets in with an acute pain in the side, but it is decidedly exceptional in such to detect pleuritic friction over this area.

Tn this series in 22 instonces pleuritic friction was recordea. This seems a small percentase ($18.5{ }^{\circ}$) ocnsidering that practically in all post mortems of such cases, fibrinous exudation is found on the pleurel membranes. In many patients, bowevar, fine crepitant sounds, diffioult to discriminate accurately betneen true creoitus and fine friction, are heard and in fact the dignosis ramans purely a matter of election on the Physician's part. In these cases suchatypical instances were reported as crepitus, and so may account for the a, bove small percentage.

Tndoubted pleuritic friction is seldon, if ever, beard over a solidified grea, but wenerally is present just beyond the consolidation marsin (cases 12 and 79). Sonetimes it is found a considerable distance from the affected region, as basol in an apicol pneumonia (cases 8 and 50). When heard at the beginning of the illness pleuritic feiction may be locally
 sets in.

```
" PQSM-MORNEY PITMONARY CONDTMTONS".
```

The following is bassd on the record of 20 examinations.
Within certain limits the post-mortem apoearances vary considerably. On opeaing the chest, pleural adhesions, old or recent, may be seen, and in
some instances there may be a considerable fiorinous pleural deposition even to half an inch in thickness. In othen again a serouse or milky fluid effusion is observed.

On inspection and palogtion it is perfectly obvious thet a certain portion of the lung has become solia, and that it oreatly outweighs its neighbour. Tndeed ibs weigtt mey increase from thicty five up to seventy four ounces (ceses 11 and 72 both meighed geventy four ounces). Taking twenty five ounces as the nornal weight of the lung, this indicates that in these two petients these has been a transference of fifty ounces, or a little over three pounds of materiel to the lung tissue. The consclidation , however, varus greatly in weight and size, and on section is seen to vary in colour somembet in different cases, being mostly, honever, red or gray : 2 few cases beine reddich or pinkish gray in colour suggesta transition between these tho extremes. Sections elso shon that the consolidation marsin is alnays sharply defined from the unafected lung, and does not merge graduelly into normal tisswe. The borders may coincide With and be limitad by the netural lober divisions of the lung, but more frequently it extenas through or beyond these to the neighbouring lobes, but the extending border still maintains its decided character. Moreover any pleural deposition present,generally extends begond the consolidation adge. On reviewing and contrasting the post mortem conditions with the ante-mortem clinical records sone instructive and startling results are obtained.
(1) Although pleuritic deposition of lymph is the rule, in only one of these twenty cases mas pleuritic friction racorded.
(2) When a consolidation shows both red gnd oray hepatization in different parts or in different lobes but fairly well differentiated it is found that the red hepatized aree corresponds
to the most recent extension.
(3) Tt is difficult to state with ocouraoy, at what perioc, groy hepatization may be expected to be present, at least ia fatal cases, as some observers doubt if gray hepatization ever appers in potients who recover.

In 3 instances only was distinct red hepatization alone present. Ta these death occurred on the third and fourth days, and in another case where death took place on the ninth day the red portion conincided with e recent extension. Tn the remaining cases, death occured only once es eerly as the fifth day, the others varining between the sixth and the ninth day, but the seventh was the most common. Tn all of these gray bepatization alone was present. Tt would thus appear, in fatal cases at least, thet this condition is charecteristic of the later staess. It is geacrelly, four days at least after the first detection of a luns solidification gray hepatization is present, but in one case (no. 16) it. was present on the third day, Thus the longer a case has been going on and the older that 0 consolidation is, the greeter is the certainty of its having reached the stage of gray hepatization.
(4) The post-mortem lesion is freguently mach more extensive than is indicated by the classical consolidation signs (Tubular breathing, Bronchopbomy €tc.) . Thus clinically a soapular consolidation may be all that is indubitably revealed and yet postmortem gray hepatization of the whole upper lobe is found (eases 1 and 16) : the obscure signs at the gnterior apical region being attributed to collateral congestion and also to the close proximity of the porterior solidification. In others an extensive gray hepatization of the base was present, not revealed by, positive clinical signs (cases 83 and 107). After reviening sucb types of cases one fact stands out prominently, Viz, the the consolidations wich
thus escape detection are found postmortem to be in the stage of gray bepotization. It mould apoear that when this stage is reached it is apt to be associated with the suppression of the classical physical signs of consolidation. It is therefore pasafe to exclude the existence of solidification even if dulness and noist reles ere alone detected. A positive examination only is trustarrthy, as e negetive observation does not exclude the existence of this pothological pulmonary condition.

NTCROSCQPIC APPEARANCES.

Dnder the microscope the alveoli are seen to be filled by cellular and fibrinous contents. The amount of fibdrin present varies greatly even in different alveoli of the same specimen, and in other specimens the contents \#ppear to consist of notbing but a mass of red blood corpuseles. The alveoli suffer very little indeed considering the grossness of the lesion. In some instances very little cellular infiltration is present ; in others again it is obviously crowded and distended, even in the same section. Fipithialial cells are most frequently detected when a specimen of lung tissue is examined, which is only congested. I am, bowever, not gualified to go into any great detail regarding the microscopic appearance thus seen.

THE EXPECTORATTON.

The expectoration when viscid scanty and rusty in colour is very typical if not pathognomonic of Acute [obar Pneumonia. Although generally scanty (2 to 3 oz. in 24 hours) it not infrequently increases up to 15 or 20 oz . In such instances its viscidity is always greatly lessened : this is really not a to the augmentation of the true pneumonic sput申mant to the appearance and admixture of a mucous and watery element.

This rusty expectoration may be present before any lung signs are observed. Occasionally at this early stage, the sputum is soanty clear and very viscid, but still not rusty. This type is, however, when present equally characteristic. Not infrequently a few streaks of blood appear independently of the part or extent of lung involved. Sometimes the expectoration disappears altogetber for a day or two to reappear before the crisis. In two cases, was the prune juice expectoration recorded and in both it at first consisted glmost totally of a dirty froth which ultimetely ran together to form a watery prune juica expectoration. after the crisis the expectoration not uncommonly ceases altogether even although extensive areas of solidi ficstion are resolving, but not infrequently it increases in amount becoming clear, watery, and very frothy. On the other hand it may continue rusty tinged for five deys.

Finally, practically in all cases for twelve to twenty four hours before death all expectoration ceases suddenly and completely.

In all the cases (24) where the sputum was examined systematically the pheumonic diplococeus, in very varying numbers, however, was always detected either singly, in rows or in groups and in a few instances were present either in or on the leucocytal or epithelial cells. few of the latter appeared croweded with these germs, but in the vast majority they found principally scattered throughout the muchus. They may be detected before consolidition is present and after it has disappeared (case 66), and in one patient they were observed in the scanty mucous expectoration twenty days after the crisis (cases 53 and 69.).

The diagnosis of Acute Pneumonia is practically always qade from the signs zlready remarked on, viz : the personal sppegrance, the temperature, pulse and respiration, the lung condition end lastly the expectoration. These, especially the last two, constitate the essential elements of diennosis, but when the course of this disease is followed many comcomitant phenomena, are evident, and olthoush perhaps of little or no diagnostic importance, are equally interesting, and belp to construct a more complete conposite picture of the life history of this Jisease. Anongst the first of these moy be mentioned the Coush. This may or it ney not be present and is very variable. Sometimes it is scarcely noticeable; ato ohemetimes it is a source of great trouble onj discomfort to the patient. and is restrained if the pain is very severe, but at best is a variable and unreliable sign. THE NAPTODS GONTTPTON.

In some petients a peculiar nervousness of menner is seen : a suppressed nervousness with an anxious watchful expression witb either flushing or pallor of the cheeks. The patient, homever, is ouite rationel and answers questions sensibly. The condition is well described by the word "Heady."

A pneumonic potient is practically alway troublej with sleeplessness ond often with delirium.

DETTRTDM. Nost constantly but by no means invariably, delirium, in the absence of supervening csraiac failure, is concurent with a bigh temperature range (108° or 104°), and very frequently it portends oncoming beart failure. It may then coincile with a low or falling temperature. Delirium may sppear at any stase of the illness, either before or after the a?pearance of consolidation and its intensity is in no way proporitionate to the extent of the lune mischief. Injeed, sometimes delirium only sets in after the consolidation has reached its maximum, and in ofj cases it is only
observed during the critical fell of temperature. Many patients, honever, jie without delirium ever being noted.

In pneumonia when a patient is delirious and talketive, his thoushts, words and actions are mostly in relation to his daily occupation. Then ceses are brought in et first suffering from doute olcholism, the delirium is then associsted with all the borrowsand hellucinetions of Delirium Premens but when the pneunonic condition hes become fully establishez, this type becomes submeryed by that cherasteristic of Acute fneumonie, viz, hallucinations pertaining to bis daily occupation.

Post Mortem examinations revegl no \$ross lesions to account for the existence of delirium. In some, serous ventricular effusion is present; but violent delirium exists where little or no effusion is subseavently found. Tn one autopsy the intraventricular pressure was so ereat thet a jet of serum spoutej out on opening into this osvity, yet no aelirium was recorded. Delirium mould appear, therefore, not to be jue to either the presence or gbsence of intraventricular pressure. In pneumonjo postmortems it is the rule to finj the veins and venules distended especially over the cerebral lobes. This is probably of hypostatic origin, but is aot more marked in those who had been delirious than in non- Jelirious patients.

This is perhaps the most appropriate place to deal with the fen records in which KNE JPRKS were either diminished or gone gltogether, but my attention was not drewn to the existence of this condition until my opportunither forther observation was nearing its close.

Tn thirteen out of perbaps thenty five or thirty cases the Knee Jerks were reported either jiminished or gone, and this goparently independent of the height of pyrexia or extent of lung misehief. In a few cases it has at first reported diminished in one les and completely absent in the other but ulimately its aksence was recorded in both. The absence of

Knee Jerks was not observed during the early deys of the illness and seldom before fifth or sixth dey. In six cases with recovery the knee jerks returned either on dey of crisis or very soon ofter, and in the seven fatal coses they could be elicited until one or two deys before death, but in otbers they were always obteined, even on the dey of leath.

In order to ascertein any possitle cause for this phemonenon, in every subseauent case of pyrexia, either continous or intermittent, from Whatever cause (Phthisis, Aoute Pheumatism, Puerperal Fever, etc.) the knee jerks were systematically examined, but only twice (koth Enteric Fever) was its absence noted. This therefore is rether against pyrexia per se being the prime factor in the causation. The rapid post- critical recovery of function is gainst eny stractural defect in the nerves beine. the oguse. It may, bonever, be due to temporery parelysis or paresis of nerve influence from auto intoxieation, but on the other hand it may well only be a reflex of muscular exheustion and prostration, as it only appears late in the disease in coses which recover, and only a dey or two before death in fetal dases.

HERPES. bein⿳ possibly of nervous origin may also appropriately come under the present headine. This was notej in 18 cases (15%) with only tro deeths (11%). Tt may anpear at any stage of the disease, before advanced pulnonary lesions are present, and then spreads and matures throughout the course of the illness (cases 56 and 62), but it may not come out until the Jay before crisis, in which case it matures during the post- critical period. It generally is deteced about the upper and lower lips or the angles of the mouth. It is also found on the elae nasi and even on the lobes of the ear (case 98) and in one instance Herpes Zoster was noted on risht side (case 70). Its presence does not seem to discommode tbe patient to any extent and in no way delays convalescenee. Nith the exception of sudaming vesicles, herpes
is almost the only skin eruption which appears during the pneumonic attack. Another interesting if not recognized feature found in many cases of pnevmoniz is the odour of the breath. Smells and odours are notoriously difficult of verbal Jescription and this "ENETMONTC ODODR" is no exception. This is notfoetiz or disasceeable but is of a peculiar heavy aromatic ouslity. It was only after considerable experience thet the existence of this phenomenon became impressed on onesconsciousness anj recognized, but a careful look out for its gopearance in subseauent cases seems to render the fact of its existence undoubteJ. Indeed sometimes the Jiagnosis of Acute pnevmonia nes first suspected by the recognition of this odour in the breath even vhen consolidation had not yet appeared (cases 4. $51,65,82$, etc.) and in one instence it did not appear until three days afternarós (case 26).

It is notel when the tongue is clean ond moist (case 21) or white and furred but still moist (case 4), and lastly when it is dry, brown and cracked (cases 71 and 78). Thusiit is not likely thet the appearance of this odour can be attrikuted to the local condition of the mouth. Sometimes the pneumonic ojour is only detected after consolidation has set in enj in those cases where it mopeared in the pre-consolidation stase, it becomes more distinct with the appearance of solidification. In a few instances it i is not recoenized until a day or two before death. It is possible that in some way this pneumonic odour is related to the presence of consolidation, as it becomes more evident with the appearance or extension of lung mischief. When one remembers the grossness of the lung lesion and also its close proxe imity with the breath, the idee of there being an ojour, more or less characteristic is perfecty feasible, nor is the treatment given a likely cause as it is recoznized in patients on admission, nor is it stopped by alterine the routine treatment. The folloning synopsis of four cases are
are inserted as illustrative types.
Case 1:- Mole ased 30. Admitted on third day. On Ath. day pneumonic ofour detected; tongue clean and moist, crepitus only between third and fourth right ribs. Crisis oth. day. . Case 15:- Vale aged 35. Admitted on sixth day, with left basel consolidation. Paeumonic olour detected on ainth day and well marked: tongue dry and bronn. Death 10tb. day.

Gase 26 :- Male aged 26. Sdmitted on second day with well marked pneumoaic olour : "Brionchiolar" signs only in right lunge tongue moist and fairly clean. Consolidation appeared on fifth day. Death on 8th. dey. During all this period this ojour persisted ind was very distinctive and decided.
 present but faint : crepitus only right base: tongue moist ano furred. Next day consolijation detectel and this odour was recosnized and persistef until death on seventh day.

GASTRO-TNTHSTTNAT SYMPTOMS: : There are no alimentary symptoms peculiar to this disesse and any that appear seem to be referable to the pyrexia. The Toneve may gt first be moist and slishtly furea and may continue thas throughout the whole course of the illness, but in others it becomes ary, brown, cracked, and tremulous.

The gastric symotoms are generally trivial and patients can usually take their nourishment well. Vomiting may, boaever, be observed and fletulence is not an infreguent symptom.

Diarrhoee is the most freauent intestinal complaint and sometimes is very severe. In this series it was oiten present onj at intervals the character of the stools rould arouse the suspicion of Enteric Fever. Nothing characteristic is detected clinically about either the river
or the soleen. The fiver may extend. below the costal margin and in ofd cases it is poinful and tenjer on palpation, but these could generolly ke attricuted to probable alcoholic congestion. The Spleen I-heve:neqere seen enlarged clinically. Post mortem examinations also corroborate tbese clinical experiences. The spleen is seen to be very soft, pulpy and sticky in consistency and veries greatly in veight ($\frac{s}{2}$ to 12 oz.). The Civer Neight varies considerably (60 to o o 0 .) but nothing cheracteristic is observed on section, except perhaps occasional suspicion of a fatty appearance, also probably of elcoholic orisin.

During the course of An Acute Pneumic attack, certain changes from the normal physical conditions of the heart are of frequent observance, and they a.poear to be as much a raflex of the changed physiosl conditions in the circulatory system, vic.the greatly increasel tension in the pulmonary circulation, as of the changes attribatebla to the pyrexia.

Perbaps the first and most constant of these superadded physical conditions, and indeed one almost invariably preseat, is an Accentuation of the second pulmonic sound. This sets in early and continues throuchout the illness until the crisis, and may persist for a week or two longer, especially if there is a small consolidation showing tardy resolution. Somewhat frequently the difference of tension between the pulmonic and systemic circulations is so great as to lead to well marked reduplication of the second sound at the base. This rapialy disuppears after defervescence is completba, but may persist for four days longer (case 88). In only four cases diã a f . S. Pulmonic murmur appear. In one this disappeared conpletely on the day of crisis (case ع8) and in the other on the second post-critioal day (care 100). The remaining two are somerbat curious, inasmuch as this muraur did not appear until after the orisis. In the first of these the V.S. pulnonic set in on the fourth post critical day and disappearsd on the 27 th . day (case 75), and in the other case it appeared on the second post-critical day and persisted for two and a half montbs.

The increased tension of the pulmonic circulation may be reflected still forther backwards, leadine to the presence and observation of epigastric pulsation and increased loudness of the cardiac sounds in this area from augmented action and dilatation of the right ventrisle. Tndead this may be so marked that the impulse may extenj along the abdominal wall below the umbilicus. In a few instences cardiac pulsation is seen in the intercostal spaces and also in the vessels of the neck.

In eleven patients the appearance, and in eight who recovered, the disappecrance, of a mitral systolic murmur was recorded. As the arterial tension, as shown by the dicrotism of pulse tracings, is greatly lowered, ond as it is probable that the left side of the heart is not receiving its full complement of blood, this complicotion cen hardly be ascribed to the some causes thet led to the appearance of the afore mentioned adventitious signs of the pulmonic artery ond right ventricle, viz increased circulatory tension. Indeed the foct of there being this difference in the tension between the risht and left side is ocossionally reveeled by the apperance of a reduplication of the first sound. As this mitral murmur is of late appearance it most probably is due to the effects of the concurrent pyrexia on the heart leading to reakness and diletation of the left ventricle. When such a mormur has occurred it may diseppear on day after orisis or persist for four or five doys and in one case (no. 103) it was detected for twenty one days after crisis.

THE OFANGES TR THE BCOOD TN PNGOMONTA.
In the use of the haemacytometer the sources of fallacy are many and obvious. At first the error may be slight and inappreciable but when it is multiplied by one hundred thousand to make up for the dilution required by the process, the final results obtained are occasionally stertling and obviously fallecious. The final calculation may ke so contradictory as to merit rejection. Two or even three subsequent examinations may be attempted until what appears a more probable result is obtained and accepted. This after all may not truly express the real state of matters.

In 30 cases I a itenpted to record the conation of the blood and note What changes, if any, would appear to result from the disease; the differentiation of the wite blood corpuscles not being attempted. The resiults are however, somewhet disappointing end not toc reliable. The method adopted aas to examine the blood on admission, or at least once prior to, and then immediately after the crisis, presuning that the difference, if any, betasen the tro observations nould to some extent indicate the blood changes attributable to the pneumonic process. Ten patients died before consecutive records could be obtained, byt on looking over these isolated results one facts stands out clearly in then all, viz the existance of [encocytosis.

Leucocytosis is a condition which would appear to be constantly present in Acute pneumonia, although in very varying degrees. By the third day it may be very decided. If at the initel observation, the proportion of the red to the white blood corpuscles is nearly normal, it is found thet as the disease advances leucocytosis sets in and becomes wore and more marked so that the proportion may be reduced from 1 to 300 or 100 to 1 to 91 (casas ©8, 87,76) or oven as low as 1 to 61 (case 24) . This disproportion begins to lessen after the crisis but the return to normal is a gradual procoss, and leucocytosis may still persist and be very decided as late as the
eleventh post critical day (cases $56,36,70,77$ and 81).
PeBble No. 5
is constructed from 12 selected cases to show the progress of this leucocytosis. On the left side ace the records indicating the changes during the precritical days and on the right hond the post-critical results, indicating the progress towards recovery. It is seldom that a patient can be persuaded to stay longer they 2 week after crisis, and consequently in no instance have T had the opportunity of tracing the progress towards complete recovery. The figures recorded in black indicate the number of white blood corpuscles per cubic millimetre and those in red, the proportion of the white to the red corpuscles.

Selected Records on Leucocytosis. Table no 5.

From this table it will be observed that the white corpuscles may increase from 12000 to 74000 per c.m.m. during the illness and that ky the sixth post critical day be reduced to 20000 (case 21). The same sequence alan
ce seen in the other illustrative cases although not to so extreme a desree. The Red blood corpuseles do not seem to be affected to any great extent by the disease. Tu this series, these averaged from $3,000,000$ to 1, 50C, 000 per c.m.m. and subsequenh exmminations, either pee-or postoritical, did not reveal any great gltargtion of these numbers from the irst observation.

The Hasmoglobin like the ced corpuscles seems to be little, if at 311. affected by the pheamoaic process. For these patientr the adopted standard of the haamoglokinometer (100) mould appear to be too high. Tt Was also impossible in those patients who cane under olseruation, to accurateIy ascectain the normal klood condition for any given patient when in bealtt. Only on one ocossion was 100\%of Hemoglobin reqistared. In 15% of these cases the maximum arerared only betmeen 70 and 80 and betaeen 80 and 90 in 30%. Woreover when asing the befmoglobinometer one cannot depend on the accuracy of the result within 5 . When what gpoears to inaicate the percentage of dilution has been obtained, it will be found that this can be diluted further without eny appreciable difference.

Table No. 6 is constructed from seven selected examples to illustrate the progress of the red corpusclas and the heomoglobin.
contrasting these records it will be seen that the general tendency is for the haemoglobin to persist in statu quo (see red figuring) and that in a minority a tendency tomards diminution is observed during the festigium, but in only three coses was this decidedly merked. In eases 26 and 71 there vas a loss of 12% and 16% respectively of 14% in case 70. These vere charactexized by 2. high temperature, a high urea excretion and alnost complete absence of chlorides.

Case No. 70 also shons this diminution of haemorlobin may result when th the red corpuscles are little affeoted, and in this case the loss was rapidy made good after the orisis.

These observations may be summed up thus 1st. In all cases of Pneumonia some degree of leucocytosis is dmays present, and its recovery towards normal proportion would appear to be sradual. 2nd. The red corpuscles are little affected but in a fen cases a decided destruction of haemoglobin is noted, hoich, however, is rapidly regained after the crisis.

Tn seute pneumonia some very interestin changes are observed in the urine. It is nearly always deepened in colour ; of varyin shades of amber. THE SPECTETC GRAVITY varies somewhat and may be anything between 1010 and 1030. It is not necessarily high even during the height of the illness. Reaction :- In the vast majority of cases the urine is acid in reaction, the intensity , bowever, varying between high and very slight acidity, but in Eighteen instances at some period, an alkaline reaction was observed and in this series such specimens were always ammoniacal. An investigation into these reveals some very curious and some inexplicable vagaries in the behaviour of the reaction. Sometimes the urine was consistently alkaline throughout the illness, to kecome acid asain within two or three days after the crisis. In others the acidity and alkalinity alternated at intervals of one or two days during the fastifium. A very striking type is where during the illness the urine has continued acid, but where during the post-critical epoch the reaction becomes alkaline to continue thus for three or four days when it finally becomes normal. When phosphates were deposited the microscope invariably revealed the presence of triple phosphates, Drate of Soda and Bacterium termo, even in those instances where the alkalinity was evanescent and alternate. What the exact significance of these changes, is, it is difficult to state. Its existence does not inconvenience the patient. There is no urethral or bladder pain and undue frequency of micturition was not observed, nor does the presence of this alkaline and ammonical urine seem to retard recovery. Neither would it appear to render the prognosis more grave as only three of these eighteen cases died ($=17 \%$). The quantity of urine passed in the twenty four hours is seen to vary very considerably. The tendency is for it to be diminished in quantity (16 to 35 or 40 oz . in 24 hrs.) duning the fastisium. This is best marked in thése cases which died. This althoug generaly speaking
true is by no means invariable as cases are observed where the amount excreted was little below 80 or 70 oz. per day. After the crisis also the amount passed becomes only slightly augmented. Indeed it may continue diminisbed for two or three days before this slight increase is okserved. One does not see that the small quantity passed daily during the illness kecomes suddenly augmented immediately after the crisis.

During an attack of Acute Pnevmonie there are two urinary conditions which become strikingly menifest, viz Albuminuria and diminished cblorides. The more characteristic of these is DTMTNTEPED EXCFETION OF THF CHIORIDEB. This diminution is of very constent okservance. In the absence of proper Scientific instruments and reagents for the accurate quantitative estimetion of chlorides, after a little thought the following method was evolved and adopted. The urine to be exarined is poured into a test tube until a column an inch in deptb was obtained. To this the requisite reagents (Nitric Acid and silver nitrate solution) were added. The precipitate which now appeared was allowed to settle for twenty four hours when the depth of the deposit was read off in terms of an eight of on inch; the adopted unit equivalent. After testing several normal urines it was found that the. chlorides thus precipited formed a column about four eiebts or five-eiehts of an inch indepth. This balf-inch deposit was adopted as the Standerd of Health for comparison with the pneumcnic condition. The quantity of orine excreted in the twenty four hours bad also to be taken into consideration. Tbis method being adopted, it was found thet in pneumonic urine, the chlorides were generally diminished to an extent varying from 25 to 75% of the normal. In other words when the column of chlorides precipitated was reed off,insteed of being four-eifhts of en inch in depth it was generally only two or even one-eight of an inch deep. In a few instances, however, the amount of deposit was so slight that its measurement ky such clumsy means was impossible. It is exceptional to find the chlorides so diminished that no visible deposit
is coservable and in no case have I ever seen the chlorides completely absent.
Taking 50 oz. to be the average daily excretion of urine in twenty four hours and adopting a deposit of four-eigets of an inch as the average chloride excretion in realth we thus obtain the total daily excretion of chlorides. When celculated out we find this to ke 200 eight of an inch ; an eight of an inch as before stated being arbitrarily adopted as the unit equivalent. This number 200 is therefore adopted for comparative purposes.

In 20 cases the urine was collected and measured deily, as far as possikle, to enable this estimation of the chlorides and also of the urea to ke made. From this it became apperent that there was a great variation in the amount of chlorides excreted daily during the illness. Thus in Case 24 on the 4th. day 250 units were excreted, an increase of 25% above the normal of health. Next day 136 units only were recorded equal to a diminution of 32% below normal. On the 6th. day as there was no measurable deposit the chlorices coulo not be estimated. On the 7tb. . 160 units ($=20 \%$ diminution) and on the eight it again jumped up to 250 units ($=25$ above normal) and finally on the day of crisis only 68 units were registered thus indicating thet the chlorides had asin undergone a marked diminution to the extent of 66% below normal average. This case is fairly illustrative of the average type. When a crisis has taken place the diminished chlorides begin to increase in quantity as shewn by the deposit increasing, eitber from keing visible only or from one or two-eights of an inch to four or five eights, but here again the chlorides may continue diminished for days after a crisis. Thus in case 24 on the 7 th. post-critical day the chlorides were fully 50% kelow normal. In case 66 on the 4 th. post-critical day they were still 50% below normal whilst in case No. 70 they were 76% below the everage. In the latter the chloride excretion mounted to 156 units on 7 th. day after crisis still, however, indicating a diminution of 22%. This post-critical continua
of diminished chloride excretion was observed in o cases out of 12 who recovered (70\%). It would thus appear that although during the fastigium the chlorides are diminished they do not suddenly reappear or suddenly increase after a crisis, but that several days elapse before the normal is reached.

The method by which the above data were obtained is a very crude and rough one, and althcugh the data are not scientifically accurate or expressed in grains per oz, they still possess some value for comparative purposes, as they give some indication, however dim or obscure, of the curious variations and changes of chloride excretion during a pneumonic attack.

Albuminuria.

According to various observers, this condition is present in a very varying proportion of cases; from 0% (Metzger) up to 50% (Griesinger). But in 103 patients of this series where I was able to test the urine, albuminuria at some period or other was observed in $98,90.3 \%$ Its appearance and disappearance, and also the amount vary somewhat. Sometimes it appears only on the day of crisis (case 31), or it may only be present on one day in the early stage of the disease, or again it may persist through out the illness. Finally, in only a few cases, however, no albuminuria was ever detected during the fastigium. In a few odd instances albuminuria only appeared after the crisis and persisted for two or three days. In no instance was albumen absent in a fatal case. By the beat test the amount of alkumen present is indicated by the terms, a haze, a slight haze, a distinct cloud, etc.; and in the majority of instances no deposit of albumen was observed, but in 20 cases, a distinct and measureable deposit was reported varying from one eleventh of a column to $1 / 6^{t h}$, and in one patient a varying degree of albuminuria, two days before death, became so suddenly augmented thet fifurine was almost solid
after boiling. Of these 20 cases 14 died, a death rate equal to 70%. Indeed if a deposit of albumen is observed for two or three days the patient is very liable to succumb, but still this is not invariable. Albuminuria may be observed when the temperature is by no means high and its appearance would seem also to be independent of the extent of the lung mischief.

After the crisis albuminuria practically always disappears altogether. Of 33 cases, selected because of the urinary condition having been recorded c for several days after the crisis, alkuminuria disappeared on the first post-critical day in eight cases ($=24.2 \mathrm{q}$) a similar numper on the second day and seven in the third $(=21.2 \%)$; or roughly, in 70% of these cases the albuminuria had disappeared by the third day, and only in one patient who continued under observation for twelve days did this condition fail to disappear altogether. This would indicate that this change was due to conditions resultant from the disease itself and not to any pre-existent Kidney disease, and in the post-mortems of the fatal cases, the Kidneys were only slightly affected in three or four. only twice during life were tube casts detected.

HREA EXGRETIER:- The arount of urea eforeted per day varies greatly within very wide limits. soo grs. per day is generally aceopted as the average, but in these cases the daily excretion varied enormously. It cannot be said thet it is the rule for the excretion of urea to kecome increased during the illness, and that after the crisis this increase sucicnly falls to normal. Case No. 70 is the only instence where this sequence was closely observed. Here during the iflness a daily excretion varying ketween 700 and 800 grs . fell to 500 grs . after the crisis, but this is exceptional. In fatal cases there is a tendency for each.succeeding day towards the end to be associated with an increasing amount of urea. Thus in case 74 on the 4th. day 500 grs. were passed. 667 grs . on the 5 th. and 918 grs . on the 6th. with death on the 7th. Again in case No. 76 the daily excretion of urea
mounted up from 380 to 528 grs . during the four days preceeding death. This is in marked contrast to case 78 where during the last three days the amount of urea passed was 42 grs .75 grs . and 290 grs . respectively. The amount of urea per day during the height may vary frof 130 grs . on one day to 4.5, or 600 the next day. It is difficult to state what is the daily average, perbaps 300 or 400 grs . would be near the trutb. Freguently before the urea excretion attains its normal on the second, third or fourth post-critical day there is a sudden increase in the amount passed. It may amount up to 700 grains from 300 or 400 and after this become normal. About the critical period also, a deposition of urates afrequently is seen. This may be observed a day or two before the crisis or only on the dey of crisis, or it may be delayed until the second or third post-critical day. Docasionally during the illness, especially if there has been a false crisis this deposition is also noted.

THE DTAGNOSTS.
In many cases this is perfectly obvious from the appearance of the patient, his flushed countenance and dusky expression, the pyrexia, rapid breathing and perhaps dilating alae nasi and also the nervous "heady" manner; and the detection of a distinct rusty expectoration or the development of consolidation, at once clinches the diagnosis.

But there are two classes of cases met with where the diagnosis cannot be made at once and with such ease. In the first of these may be placed those instances where distinct consolidation never develops, while all the concomitant signs and symptons point to the condition being pneumonic. Indeed no pulmonary physical signs may be observed, or crepitus, either with or without suspicious impairment of the percussion note, may be all that is detected, and yet these signs, although obscure, disappear after the crisis. Lemon tinting of the expectoration may ke noted and deplococei may be numer-
cus (cases 80,82 and 118). Albuminuria and diminished chlorides may even be present ; also herpes (cases 82 and 00) and in one case the pneumonic odour was recorded (case e2). In fact all the concurrent signs habitually met with in undoubted cases may be observed in these equivocal ceses. In this series there were thirteen patients of this type. Onfortunately the detection of pneumococei in the sputum does not settle the diagnosis as they may be numerous and very typical in cases which undoutedly are not pnevmonic, as Fnteric Fever, Appendicitis, Phtbisis etc. Indeed the most numerous and typical capsulated deplococei I have ever seen, were obtained from a patient in whom the diagnosis lay between Fnteric Fever and Acute Miliary Puberculosis. Any obscure or early pulmonary signs that may be detected are possibly due to the eerly active congestive stage which, however, becomes aknorted at this period. Although this is very probable there is no way of proving it absolutely and conclusively, but in spite of this draw back, the probakility that these are really ceses of Acute but aborted pneumonia must be admitted.

The second type of case differs very materially from the above. A few patientsporiously not in good physical condition, give a bistory of Acute chest pain as the beginning of the illness, kut otherwise the history both of their previous health and present illness is very indefinite and unsatisfactony On examination consolidation and râles are observed. At first the diagnosis may be uncertain, kut two or three days observation soon reveals the phthisical nature of the complaint. In three such cases, the pneumococei were detected in the spotum. A diffidence in making a decided diagnosis at once in such cases does not cast any reflection on a physician's ability. Thus supposing a. Poorhouse patient is suffering from Phthisis, but who is unaware of its existence and who has never felt specially out of sorts, probably because he may never in bis experience have felt in-sorts, comes under observation with a
bistory of dcute pain in his chest perbaps coincident with a pyrexial attack. If on auscultation a consolidation is present-it need not be apical, as in two cases I have seen it basal, one posterior and the other axillary; a temporary error of diagnosis might guite excusably be made. It is quite a common experience for Fhthisicel patients, where the presence of consolidation is known, and where there is little or no pyrexia and who are able to go about, to $\mathrm{b} \in$ seized witb sudden pain and pyrexia. Now, supposing such a patient at this stage, especially if unintelligent, were to come under observation with a bistory of sudden and acute pain of one two or three days duration and on examination a distinct consolidation is found, the diagnosis of Acute pneumonia would almost be justified. A few days continuous observation however, soon clears ap any doubt in such instances.

Lastly in one or two anomalous cases, the diagnosis of Acute pneamonia is made because it.is difficult to think what else it can ke. Case 110 was admitted with a history of two weeks illness which commenced with sudden pain of right side just above the liver. As the result of the physical examination a diagnosis of right pleoral effusion was made, ond 42 oz. was drawn off. After this an auscultotion a consolidation of the right posterior base extending upwards to the scapular angle was noted. During the next two weeks the temperature was intermittent ranging between 102, 103 and 104 and normal or subnormal. The expectoration was mucous lut not eusty and on three occasions the deplococei were observed. Eleven days after, whathe temperature had become and continued normal, andtwenty three days after the first observation the consolidation had cleared away: Was this condition pneumonice This diagnosis seems to be almost the only allowable one in spite of the anomalous and irregular course of the disease.

In giving a prognosis of any diseased condition, the observer forus an idea of the probability of either death or recovery ensuing. This presupposes a knowledge of the life history of the dissase and the influence of various conditions which may be pre-existent or may arise during the course of the illness. One naturally, therefore, desires to know what is the average death rate and bow it is influenced by age, babit, complications, itc. Of these 120 cases there were 40 deaths equal to about 41%. This high death rate way possibly be due to the great prevalence of the alcobolic habit. These figures when arranged according to the day of death show that comparatively fer patients died befcre the sixth day. Only one case died on tbe 3ra. day; and eact succeeding day up to the eth. is accompanied with an increasing proportion of deaths. (see pable \boldsymbol{y}).

Day of Death	n_{0} of Deah,	Percentage	a.
$3{ }^{\text {rad }}$	1	2\%	
$4^{\text {R }}$			
$5^{\text {k }}$	3	6%	18\%
$6{ }^{\text {\% }}$	4	8\%)
4	13	26%)
$8{ }^{\text {m }}$	11	22\%	66\%
9^{n}	8	16\%)
10^{3}	9	6%	
11^{*}	4	8\%	\} 16%
12^{56}	1	2%	
	49	i $+1 \%$	$=41 \%$

Thus in only 9 cases $=18 \%$ did those causes that make for death result in a fatal ending by the sixth day. But it would appar that the 7th. 8th.
and oth. days of the disease are very fatal days. On the seventh day thirteen died, eleven on the eigth, and eight on the ninth day, roughly about 66_{k}^{α} of all death. There is a peculiar hardship about this fact as one cannot help feeling that these patients died just on the thres-hold of the crisis, and that could they have been tided over another twelve or twenty four hours all might have been well. Agrin it is observed that death may ke delayed even as late as the twelfth, aqd 16% of all deaths did not result until after the eth. day.

These figuresnwhen classified accoeding to age show that the more advanced the age the greater is the natural tendency towards death. Thus in the decades $30-39$ and 40-49 although the numbers are about equal (29 to 31 cases) the death rate of the latter (50%) is higher than the former or lower decade (41.5\%). The younger the patient the greater are his chances Tabienos.
Showing liability to death as affected by AGE.

age in Decades	Total number Cases	number of deatho	Pereentage
0.9	6	0	0%
$10-19$	9	2	22%
$20-29$	16	5	31%
30.39	29	12	41%
$40-49$	31	16	50%
60.69	16	7	43%
60.69	11	7	63%
70.79	2	1	58%
	120	49	41%

of recovery, and even in the $\begin{aligned} & \text { orrk-house, no person below ten gears of }\end{aligned}$ age should die of Acute Lobar Pneumonia. Also when these records are classified according to the part of lung diseesed it would seem that the part of the lung affected has little or no special bearing on the death rate. Thes ${ }^{\text {There }}$ were 31 right apical pneumonias with 14 deaths equivalent to a death rate of 45%. Of the 37 right kasal pneumonias 16 died (43.2%) and of

34 left basals 14 died equal to about 41%. Thus according to these figures it would appear that the mortality is little influenced by the part of lung consolidated.

In pneumonia it is very unsafe to give a prognosis of either recovery or death. Statistical arrangement of cases that have been, show some interesting conclusions but unfortunately the conclusions that can be drawn are at such variance with what one sees, that they are of little use when brought to bear on a case under observation. In the absence of heart failure all one can say is that the patient is doing well so far, but one never knows when this complication will supervene. Many cases are seen where the patient seems all right, the consolidation is small and is not spreading. It exists in statu quo for a few days then with little warning heart failure sets in and death ensues. Again many cases recover which appeared almost hopeless. So many are these surprises and so many apparently contradictory conditions are present therewith that in the absence of actual heart failure almost no scientific prognosis of any real value can be made. Until the crisis. the only course is to watch and wait.

One would naturally expect that the more extensively the lung is diseased the greater would be the certainty of death. Yet the only three cases that I have seen where the whole lung was solidified recovered and of the twelve double pneumonias only 4 died equal to 33% only, as against 41%, the average for the total series. Thus a classification and assortment of these records do not bear out one's first natural impressions. Under the heading " Temporary Cardiac Conditions" there were eleven patients in whom a mitral murmur developed, and four in whom a pulmonic murmur appeared. One would naturally expect that as the result of the strain that was put on the heart, the heart had dilated somewhat, giving rise to the physical conditions davouring the appearance of a murmur, and consequently would be in a more weakened and dangerous condition than if no such murmur were present, and

64.

to that extent would be nearer the line that divides cardiac incompetence from competence. Moreover one would reasonably expect that they were justified in giving a more grave prognosis, yet of these only three died ($=26 \%$). Again there were 18 patients in whom the urine became alkaline. Here one would be justified in attributing this to weakened inhibitory attion of the bladder mucous menbrane on bacterial growth, and consequently a general weakness of the tissues and system generally. of this type, bowever, only tbree died a death rate of 17% as against the total average of 41%. Here again a rational proconception is not proven by experience.

There were 20 patients in whom a deposit of albumen in the urine was recorded with 14 deaths, equal to 70%. This clearly shows the great gravity of this complication. Still its appearance does not render the prognosis necessarily hopeless as the remaining 30% recovered. In cases 18 and 23 there were distinct deposits of albumen for two andthree days before the crisis. Th the former the urine was normal on the seventh postcritical day and in the latter on the $5 t h$.

In 13 instances the patients were admitted with the existence of cardiac valvular disease. Of these seven died ($=54 \%$). Here again the existence of cardiac valvular disease does not render prognosis absolutely hopeleis as the remaining 46% recovered, but he it is worthy of note that where recovery ensued, the cardiac lesion was a mitral systolic one.

In fact so many surprises does one see in the course of pneumonia, that very little reliance can be placed on the value of a prognosis, so long as cardiac failure is not actually present. Short of this, there is almost no extreme from which a patient cannot recover : high temperature, high pulse or respiration rates, extensive or double consolidations, temporary and permanent cardiac lesions, marked albuminuria etc. etc.

When however, Cardiac failure sets in, the case becomes quite hopeless and
the patients sinks surely and steadily towards death. It is recognized by extreme rapidity and weakness of heart and pulse, and perhaps irregularity may be present. The face becomes pale and livid and the whole body covered with a cold perspiration. Delirium may set in , if not already present, and the patient sinks down into the bed, the breathing which becomes more and more rapid becomes associated with loud mucous tracheal rattling he or she generally remains conscious and although is unobservant may still answer questions in an intelligent but kreathless and exhausted manner. Sometimes be may become completely unconscious for a few minutes, bt finally death closes the struggle and all is still.

But when a crisis is once fully established the prognosis is almost absolutely perfect . That is to say one expects that almost everyone then will recover. Only once have I seen a complicating sequela ensue, namely in one case where gangrene of the lung set in. Tn none was there anything to lead to a suspicion of a tubercular element being fanned into flame by a pneumonic attack. Any relationship that tbere may be between pneumonia and Phthisis must be a very loose one. This is also seen from an investigation into this point, from the other side, viz by noting the past histories of patients who were the victims of phthisis, and observing the time relationship in those, in whom a history of a previous atack of pneumonia was recorded. Onen bundred such were guestioned. Of these 10 had had Acute pneumonia previously, but in 12 this was from 10 to 25 years of age. Of the remaining 7 , one had acute pneumonia a year ago, four two years, and the remaining two, three years ago. There is thus a possble causal relationsbip between pneumonia and Phtbisis,but it is very slight. Practically, therefore, in all cases after the crisis the recovery is perfect and complete.

Treatment:- There is nothing special to record as these were practically treated all alike;andcomplications, as they arose. The routine treat-
mont was stimulant in character, digitalis, brandy, etc. as indicated. Of the complications of pneumonia I am in a position to say little as I have seen very few with the exception perhaps of Cardiac Valvular lesions.

Joseph a daw blarke.
"Declaration"
I hereby acceare that the forcgomer. Shes is has been prepared entirely by wy own effort from clinical material, polecesed pertorually, except in so far as \mathcal{L} was indebted to the meramp staff for the registraction of the temperature, pulse and respiration also for reatrdinp the initial once of either delervien, dicorrhoca or oomitimp k.

Signed
fouph Adam lelarthe mus Ch B

[^0]: (see chartog and 10.page 9)

