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ABSTRACT 

Ageing is associated with differences in visual function which can be observed, for 

example, as a decline in performance on face and object processing tasks. One of the 

most prominent accounts of age-related decrement in perceptual and cognitive tasks 

alike is that of a reduction in information processing speed (Salthouse, Psychological 

Review 1996, 103:403). Differences in myelin integrity in some parts of the cortex, as 

well as in neuronal responsivity are physiologically plausible as the origins of the age-

related slowing-down of information processing. However, little research to date has 

directly investigated age-related slowing-down of visual information processing in 

humans. Previously, Rousselet et al. (Frontiers in Psychology 2010, 1:19) reported a 

1ms/year delay in face visual processing speed in a sample of 62 subjects aged ~20-80, 

using event-related potentials (ERPs). This result was replicated in another 59 subjects, 

and was independent of stimulus luminance and senile miosis (Bieniek et al. Frontiers in 

Psychology 2013, 4:268). To go beyond differences in average brain activity and 

interpret previous findings, in the first study (Chapter 2) we investigated what information 

is coded by early face ERPs in younger and older observers. In a detection task, young 

and older observers each categorized 2,200 pictures of faces and noise textures 

revealed through Gaussian apertures (“Bubbles”). Using reverse correlation and Mutual 

Information (MI), we found that the presence of the left eye elicited fastest detection in 

both age groups. Older observers relied more on the eyes to be accurate, suggesting a 

strategy difference between groups. In both age groups, the presence of the eye 

contralateral to the recording electrode modulated single-trial ERPs at lateral-occipital 

electrodes, but this association was weaker in older observers and delayed by about 40 

ms. We also observed a differentiated coding of the eyes across groups: in younger 

observers, both the N170 latency and amplitude coded the contralateral eye, whereas it 

was only the N170 amplitude in older adults. The latency modulation in younger adults 

was also higher in the right than in the left hemisphere, but very similar across 

hemispheres in older adults. Our results suggest that face detection in ageing is 

associated with delayed and weaker processing of the same face features, and point to 

potential coding differences. On the notion that incomplete or occluded stimuli (such as 

Bubbled images) might differentially affect older adults’ ability to perform a perceptual 

task, in the second study (Chapter 3) we sought to understand whether the age-related 

differences in eye sensitivity were preserved in a face context. Two groups of observers, 

young and older, performed a face detection task in which the visibility of the eye region 

was modulated in a parametric manner by adding phase noise. This way, we could 

investigate the modulation of ERPs by increasing information available in the eye region, 
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when the face context was preserved (or absent – in control conditions). In line with 

behavioural results reported in Chapter 2, modulating the visibility of the left eye had a 

greater effect on reaction times across older participants, and this modulation increased 

with decreasing face context information in older adults. Contralateral eye sensitivity was 

weaker than that reported in Chapter 2 and did not differ between young and older 

observers, suggesting that coding of the eye by the N170 acts differently when the eye is 

revealed through Bubble masks and when it is presented in the face context. In Chapter 

4, we investigated potential origins of the large N170 responses to textures observed in a 

sample of older participants before (Rousselet et al. BMC Neuroscience 2009, 10:114), 

and quantified age-related delays in visual processing speed of stimuli other than faces: 

houses and letters. Two groups of participants performed three simple detection tasks: 

face detection, house detection, and letter detection. Perceiving textures in the context of 

a face detection task, but not house detection or letter detection, influenced ERP 

responses to textures in older participants only to a small extent and after 200 ms post-

stimulus, suggesting that the large N170 responses to textures are unlikely due to a top-

down influence of the task at hand. Furthermore, visual processing speed of faces, 

houses and letters was delayed to a smaller extent than that predicted by the original 

study and depended on the nature of categorical comparisons made. Overall, our results 

fill the big gap in the literature concerned with age-related slowing of information 

processing: using Bubbles, we have presented direct evidence that processing of the 

same facial information is slower (and weaker) in ageing. However, quantifying visual 

processing speed using categorical designs yielded mixed evidence for the theory of 

slower information processing in ageing, pointing to the need for carefully designed 

visual stimuli in ageing research, and for careful selection of control stimuli for 

comparisons. 
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CHAPTER 1: INTRODUCTION 

It is well understood that ageing is associated with differences in visual function that may 

have a profound impact on older adults’ performance of everyday visual tasks (Owsley, 

2011). For example, older adults have impaired contrast sensitivity (Owsley, Sekuler, & 

Siemsen, 1983; Sekuler & Hutman, 1980) and visual acuity (Gittings & Fozard, 1986), 

they also perform worse on a variety of perceptual tasks, including orientation 

discrimination (Betts, Sekuler, & Bennett, 2007), motion perception (Bennett, Sekuler, & 

Sekuler, 2007), contour integration (Roudaia, Bennett, & Sekuler, 2008), as well as face 

and object processing (Boutet & Faubert, 2006). In particular, face recognition is one of 

the most commonly reported difficulties in the ageing population (Boutet, Taler, & Collin, 

2015). Studies show that face and facial expression recognition can be affected in 

addition to general functioning impairments in ageing (e.g. in memory), suggesting that 

face-specific factors may be subject to age-related decline (Boutet et al., 2015; 

Hildebrandt, Wilhelm, Schmiedek, Herzmann, & Sommer, 2011). 

Evidence that faces may be processed in a qualitatively different way than other objects 

comes from behavioural studies, neuroimaging studies showing specialized regions for 

face processing (Grill-Spector, Knouf, & Kanwisher, 2004; Haxby, Hoffman, & Gobbini, 

2000; Nancy Kanwisher, McDermott, & Chun, 1997), as well as neurophysiological 

studies showing a double dissociation between specific impairments in the recognition of 

faces following a lesion to the temporal lobe (i.e. prosopagnosia) and non-face objects 

(i.e. object agnosia). In addition, most objects are supposedly processed on the basis of 

their individual parts or components (features), which offers advantages such as allowing 

recognition of partly visible objects, or regardless of the configuration of parts (e.g. when 

rotated). To the contrary, it has been suggested that faces are processed in a different, 

more “holistic” way (Piepers & Robbins, 2012). Even though the term itself is 

controversial and subject to an ongoing debate regarding its exact nature, many studies 

have presented evidence that the recognition of faces nevertheless relies on the 

processing of configural information (Daphne Maurer, Grand, & Mondloch, 2002; 

McKone & Robbins, 2011). Configural information can refer to first-order relational 

properties, i.e. the basic configuration of face features – eyes above the nose, itself 

above the mouth; or second-order properties, i.e. variations in the spacing between and 

positioning of the features in individual faces (Daphne Maurer et al., 2002).  

A deficit in encoding configural information has been proposed as one of the accounts of 

impoverished face recognition in ageing, although evidence to support this hypothesis is 
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mixed (for a review, see Boutet et al., 2015). On a similar note, perceptual deterioration 

of sensory abilities such as visual acuity or contrast sensitivity cannot fully account for an 

age-related impoverishment on face recognition tasks (Boutet et al., 2015). Additionally, 

Boutet et al. (2015) point out that a variety of stimulus manipulations and testing 

conditions make it difficult to compare results in the literature and obtain an 

understanding of processes underlying age-related deficits. As such, a comprehensive 

understanding of age-related deterioration on face processing, and its underlying 

mechanisms is still missing from the literature. 

GENERAL SLOWING WITH AGEING 

One of the most prevalent accounts of behavioural differences between young and older 

adults is that of an age-related slowing down of neural processing speed (Salthouse, 

1996), broadly defined as how fast one can execute the mental operations needed to 

complete the task at hand (Salthouse, 2000). According to this view, a lot of age-related 

variance across cognitive (e.g. memory, reasoning, spatial abilities) and perceptual 

tasks, as well as sensory variables, such as visual acuity or auditory sensitivity is shared 

(Baltes & Lindenberger, 1997; Verhaeghen & Salthouse, 1997), and can be accounted 

for by inter-individual differences in processing speed (Salthouse & Ferrer-Caja, 2003).  

The reduction in processing speed leading to cognitive impairment has been proposed to 

operate via two mechanisms: the limited time mechanism and the simultaneity 

mechanism (Salthouse, 1996). The limited time mechanism posits that relevant cognitive 

processes are performed too slowly to be successfully completed in the available time. In 

other words, if complex operations depend on the quality of information processed in 

simpler operations, then less information processed in simpler operations (due to 

slowing) will lead to impairment in higher-order cognitive processes. This mechanism 

would be particularly relevant in tasks requiring an external time limit or other restrictions 

on the time available for processing, such as the presence of concurrent task demands. 

It would also predict a more pronounced effect on the speed and accuracy of complex 

operations. According to the simultaneity mechanism, slow processing reduces the 

amount of simultaneously available information needed for higher level processing. 

Simultaneously available information, which could be indexed, for example, by some 

measures of working memory, might decrease in availability (quality or quantity) over 

time. As such, a longer time required to process the information might result in its 

impoverishment or degradation by the time it is needed for a higher-level operation, 

suggesting a cumulative effect of ageing-related slowing on higher-order tasks, or 

perception of higher order stimuli, or both. 
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Salthouse (1996, 2000) speculated about a number of neurophysiological mechanisms 

that could account for the age-related slowing, including loss of nerve cells or de-

myelination, impairment on functioning of neurotransmitters, or reduced synchronization 

of activation patterns across multiple neural networks. However, his theory has not been 

tested thoroughly because the concept of processing speed on a neural level is not 

unitary and may reflect activity across multiple neural networks responsible for 

information processing. Specifically, it is still unclear what the neural bases for the 

observed behavioural differences in face perception are, and at which stages of the 

visual processing system the ageing-related deficits first occur.  

OVERVIEW OF AGE-RELATED STRUCTURAL DIFFERENCES AND CHANGES IN 

THE BRAIN 

Postmortem studies revealed a wide range of changes that occur in the aged brain: 

reduced overall weight and volume, enlarged ventricles and sulcal expansion, loss of 

and changes to the myelin structure, loss and shrinkage of neuronal bodies in the 

neocortex, the hippocampus and the cerebellum, loss of dendritic spines, and others (for 

a review, see Raz & Rodrigue, 2006). Overall, a reduction of about 10% for the total 

number of neurons in neocortex was observed between the ages of 20 and 90, or about 

0.18% per annum (Pakkenberg & Gundersen, 1997). However, the structural changes 

are not uniformly distributed across the brain but are rather a function of the brain region 

and cortical lamina. Ageing affects the volume changes especially in the frontal cortex 

and the hippocampus while, for example, the visual cortex is relatively spared (Uylings & 

de Brabander, 2002).  

A similar pattern of results was obtained in vivo using manual volumetry of the healthy 

ageing brain using magnetic resonance imaging (for a review, see Raz, 2005). Across 

cerebral cortex, the frontal areas were associated with the greatest decline of volume in 

ageing, followed by the temporal cortex. Parietal and occipital cortices revealed relatively 

smaller differences.  

Not only are brain regions affected differentially by ageing, but also the loss of gray and 

white matter seem to follow different trajectories across life span. Several cross-sectional 

studies reported that on a global level, gray matter volume decreases linearly from 

reaching its maximum in childhood, whereas white matter increases linearly into young 

adulthood, followed by a long-lasting plateau and a steady decline only in the old age 

(Raz, 2005). A similar trajectory of change was observed on a regional level in the brain 
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areas most susceptible to ageing (prefrontal and temporal cortices) – gray matter volume 

decreased in a linear fashion, whereas white matter followed a quadratic relationship 

with age, peaking in mid-40s and then declining (Bartzokis, 2001). A similar, non-linear 

decline in prefrontal white matter was observed in a longitudinal study over a 5-year 

period (Raz et al., 2005), with the deterioration beginning in the fifth decade of life.  

AGE-RELATED CHANGES TO WHITE MATTER MICROSTRUCTURE 

Apart from changes in the volume of gray and white matter, white matter microstructure 

is susceptible to the effect of ageing, and has been proposed to account for altered 

connectivity between brain regions (Raz, 2005). Myelin deformation and loss associated 

with healthy ageing has been thoroughly demonstrated both in animal models (Peters, 

2002, 2009) and in humans (Marner, Nyengaard, Tang, & Pakkenberg, 2003). 

Pathological changes that can compromise white matter integrity consist of accumulation 

of dark cytoplasm pockets that are produced by splitting of the major nerve, formation of 

spherical cytoplasmic cavities (“balloons”); continued production of redundant myelin so 

that a sheath is too large for the enclosed axon; and formation of double sheaths in 

which one layer of compact myelin is surrounded by another one (Peters, 2002). 

In monkeys, significant losses of myelinated nerve fibers were reported in optic nerve 

(Sandell & Peters, 2002), the anterior commissure (Sandell & Peters, 2003), the fornix 

and the splenium of corpus callosum (Peters, 2009a).  

Such losses of myelinated nerve fibers could result in disconnection between parts of the 

central nervous system and, in turn, lead to cognitive decline. For example, association 

between cognitive decline and myelinated nerve loss was found in monkey anterior 

commissure, which provides interhemispheric connections between the temporal lobes, 

as well as the orbitofrontal cortex and the amygdala (Peters, 2009b; Sandell & Peters, 

2003).  

The frequency of occurrence of myelin sheaths deformation in prefrontal cortex, 

splenium of the corpus callosum (Peters & Sethares, 2002) and anterior commissure 

(Sandell and Peters, 2003), but not in primary visual cortex (Peters, Moss, & Sethares, 

2001; Peters, Moss, & Sethares, 2000) also correlate significantly with the decline in 

cognitive behavior that occurs with increasing age in monkeys (Peters, 2002). The 

reason for such an association might be that damage to myelin sheaths results in a 

decrease in conduction velocity along nerve fibers (Peters, 2002; Xi, Liu, Engelhardt, 

Morales, & Chase, 1999). This, in turn, would disrupt the timing of sequential events in 
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neuronal circuits and could lead to slowing of responses as occurs in older individuals 

(Peters, 2002; Salthouse, 1996).  

A decrease in axonal conduction velocity could account for the observed age-related 

increase in latency of visual information processing in cortical areas V1 and V2 in old 

monkeys (Wang, Zhou, Ma, & Leventhal, 2005). Specifically, visual response latencies of 

cells in layer 4 of area V1, which receives afferent inputs from the lateral geniculate 

nucleus (LGN) of the thalamus and projects to the remaining layers of V1 and from there 

to V2, were similar in young and old monkeys and occurred at around 53 ms. Latencies 

recorded outside of layer 4 in area V1 were longer in senescence, and occurred at 70 ms 

in young, and 84 ms in old monkeys. In area V2, response latencies occurred at 82 ms in 

young, and at 114 ms in old monkeys. As such, visual information processing was 

delayed in ageing by 13 ms in V1 and by 32 ms in V2. Information also took longer to 

travel from area V1 to V2 (about 10 ms in young and about 20 ms in old monkeys), and 

the range of latencies observed in both areas was greater in old (30 ms in V1, 60 ms in 

V2) than in young (15 ms in V1, 30 ms in V2) monkeys indicating that intracortical 

information processing and the intercortical information transfer slow down during old 

age.  

In humans, similarly to monkeys, a 27-45% decrease in the lengths of myelinated nerve 

fibers (Marner et al., 2003; Tang, Nyengaard, Pakkenberg, & Gundersen, 1997), or a 

10% decrease per decade (Marner et al., 2003) has been observed. White matter 

integrity can be studied in humans by the means of diffusion tensor imaging (DTI), an 

MRI modality that measures the magnitude and direction of water diffusion. Diffusion 

anisotropy can be quantified with a number of measures, such as fractional anisotropy 

(FA) or apparent diffusion coefficient (ADC). In ageing, degradation of white matter 

typically decreases FA values and, as such, those measures can be used to quantify 

white matter integrity in aged adults.   

In a review of DTI studies investigating white matter changes in ageing, it was reported 

that major reductions of FA measures occur in frontal regions of interest (ROIs) relative 

to more posterior ROIs (Gunning-Dixon, Brickman, Cheng, & Alexopoulos, 2009). This 

pattern of changes seems to be in line with the “retrogenesis” (or “last-in-first-out”) 

hypothesis (Bender, Völkle, & Raz, 2016; Brickman et al., 2012), which states that fibers 

that myelinate early in development (such as sensory cortices) are thought to be more 

robust than later-myelinated fibers (such as in frontal cortices) and thus might be less 

susceptible to age-related damage.  
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Recently, a study combining magnetoencephalographic (MEG) measures of neural 

processing speed with magnetic resonance imaging (MRI) measures of white- and gray-

matter reported evidence for a direct relationship between neural slowing and brain 

atrophy (Price et al., 2016). Specifically, visual delay was mediated by differences in 

white-matter microstructure in the optic radiation, as opposed to auditory delay which 

was mediated by gray-matter differences in auditory cortex, suggesting dissociable 

effects on neural processing speed (Price et al., 2016). 

STRUCTURAL CORRELATES OF AGE-RELATED COGNITIVE DECLINE 

Under the hypothesis that white matter degradation with age leads to changes in 

conduction time, and thus in processing speed, recent studies have increasingly focused 

on the role of white matter as the biological basis underlying the cognitive slowing down 

(Eckert, 2011). For example, differences in white matter integrity in late-myelinating 

regions were correlated with cognitive processing speed (Charlton et al., 2006; Vernooij 

et al., 2008), or measures of executive functioning involving attentional set-shifting and 

working memory (Charlton et al., 2006; Charlton, Schiavone, Barrick, Morris, & Markus, 

2010; Kennedy & Raz, 2005; Schiavone, Charlton, Barrick, Morris, & Markus, 2006). 

Measures of white matter degradation in the anterior limb of the internal capsule were 

also associated with slower reaction times in older individuals (Madden et al., 2004).  

The association between white matter degradation and behavioural measures seems to 

be specifically restricted to the late-myelinating brain regions. For example, Lu and 

colleagues (2011) reported correlations between cognitive processing speed and white 

matter integrity in the frontal lobes and the genu of the corpus callosum, which connects 

the prefrontal cortices of the left and right hemispheres. On the other hand, the 

correlation was not significant in the splenium of the corpus callosum, which contains 

primarily sensory (visual) axons that tend to be fully and heavily myelinated in early 

childhood.  

In an attempt to link white matter connectivity to age-related difficulties in visual 

processing, Thomas et al. (2008) studied white matter integrity along two major tracts 

that pass through the fusiform face area (FFA) in the fusiform gyrus, which forms part of 

the “core” of the distributed neural network subserving the perception of faces, along with 

other regions such as the occipital face area (OFA) and the superior temporal sulcus 

(STS) (Haxby, Petit, Ungerleider, & Courtney, 2000; Ishai et al., 2005). However, there is 

growing evidence of reliance on a more widespread or “extended” cortical network 

including the amygdala and insula, as well as the inferior frontal gyrus, which might 
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contribute to some aspects of face perception (Haxby et al., 2000; Ishai et al., 2005). In 

light of the findings that face processing may be mediated by a distributed network of 

feedforward, feedback, and horizontal connections between regions of the ventral visual 

stream and frontal cortices (Haxby et al., 2000; Ishai et al., 2005), a reduction in 

connectivity could have clear adverse consequences in face processing. Keeping this 

proposition in mind, Thomas et al. (2008) reported that age was associated with a 

smaller number of fibers in the inferior fronto-occipital fasciculus (IFOF), specifically in 

the right hemisphere. They also observed an age-related decrement in perceptual 

processing of visual stimuli that was larger for faces than for cars. The ability to 

discriminate faces was correlated with white matter integrity of the IFOF in the right 

hemisphere, although no statistics were reported so the association between brain and 

behaviour should be treated with caution. In sum, age-related deficit in the perception of 

faces could be due to the alteration of long-range connections between the ventral 

pathway and the prefrontal cortex (Thomas et al., 2008), suggesting a potential 

breakdown or “disconnection” in the circuitry of the neural networks mediating face 

perception. It is yet unclear what role the frontal cortex might play in the processing of 

facial information, but suggestions have been made that it might be important for 

perceptual decision-making (D. Maurer et al., 2007), maintaining face representations in 

a working memory task (Druzgal & D’Esposito, 2003), or modulating activity in the 

fusiform gyrus with feedback connections when perceptual difficulty increases (Platek et 

al., 2006; Summerfield et al., 2006). Whatever the underlying function of the frontal 

cortices is, current research seems to converge on an idea that increased functional 

activation in certain brain regions is at the same time associated with disrupted 

connectivity between regions (for a review, see Sala-Llonch, Bartres-Faz, & Junque, 

2015), pointing out that task performance (e.g. slowing down) in young and older adults 

may be due to involvement of very different cortical networks. 

NEURONAL RESPONSIVITY 

Apart from gray and white matter losses, as well as deterioration to white matter integrity, 

other age-related changes can be seen on the level of neuronal responsivity to visual 

stimuli even in sensory cortices such as V1. For example, Schmolesky and colleagues 

(2000) reported significant degradation of orientation and direction selectivity in single 

neurons found in monkey primary visual cortex (area V1), accompanied by increased 

spontaneous and visually evoked activities that affected the signal to noise ratio of the 

responses. Less sensitivity to contrast and direction selectivity, enhanced visual 

response amplitudes, and higher levels of spontaneous activity were also found in V2 
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(Wang et al., 2005; Yu, Wang, Li, Zhou, & Leventhal, 2006) and in middle temporal 

visual area (MT) (Liang et al., 2010; Yang et al., 2008). In addition to a decrease in the 

stimulus selectivity, increased neuronal response latency was also reported in 

inferotemporal cortex (IT) of awake monkeys viewing images of real world objects and 

shapes (Csete, Bognár, Csibri, Kaposvári, & Sáry, 2015). Altogether, these findings can 

also be related to Salthouse’s (1996) theory because a lower signal to noise ratio might 

mean that accumulation of information in neuronal populations occurs over longer 

periods of time (Wang et al., 2005). 

Ageing also seems to affect different visual areas in a progressive manner, in line with 

Salthouse’s (1996) proposition that slowing at lower stages of information processing 

has a cumulative effect on higher stages. For example, very little age-related differences 

were found in the dorsal lateral geniculate nucleus (dLGN) (Schmolesky et al., 2000; 

Spear, 1993) compared with V1, whereas area V1 in turn was less severely affected by 

age than V2 (Wang et al., 2005; Yu et al., 2006) or MT (Liang et al., 2010; Yang et al., 

2008). Ageing also had a greater effect on complex than simple cells within area V1 

(Liang et al., 2012), suggesting that ageing effects increase along the hierarchical level 

of visual processing pathway. In line with this finding, longer processing times were 

found in old monkeys’ V2 than V1 (Wang et al., 2005).  

Altogether, consistent reports of decreased neuronal selectivity and increased response 

amplitudes to optimal, as well as non-optimal stimuli are in line with a hypothesis of an 

age-related degradation of inhibitory intracortical connections (Lustig, Hasher, & Zacks, 

2007; Schmolesky et al., 2000) It has been proposed that inhibitory connections are 

mediated by the neurotransmitter gamma-aminobutyric acid (GABA), and that age may 

be associated with decreased GABAergic inhibition in visual cortices (Hua, Kao, Sun, Li, 

& Zhou, 2008; Leventhal, Wang, Pu, Zhou, & Ma, 2003; Schmolesky et al., 2000). For 

example, administration of GABA agonist to neurons in area V1 improved their 

orientation and direction selectivity, as well as decreased their peak visual response and 

spontaneous background activity, thereby increasing signal-to-noise ratio (Leventhal et 

al., 2003). On the other hand, strong effects of GABA agonist administration was only 

seen in some cells of monkey V1, leaving it possible that factors other than degradation 

of GABA-mediated inhibition may also be involved in age-related visual changes.   

A recent neurocomputational model has proposed similar changes occurring in the 

human brain (S.-C. Li, 2005). Specifically, age-related changes to the efficacy of various 

neurotransmitter systems (e.g. dopaminergic, GABAergic) could reduce cortical neuron 

responsivity and increase neural noise, thereby resulting in less distinctive neural 
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representations elicited by different stimuli (Li, 2005). Some evidence for this account 

comes from studies using functional magnetic resonance imaging (fMRI) to study 

responses of specific brain regions to visual stimuli (Burianová, Lee, Grady, & 

Moscovitch, 2013; Park et al., 2004; Park et al., 2012; Payer et al., 2006; Voss et al., 

2008a). For example, Park and colleagues (2004) reported that regions of the ventral 

visual cortex that in young adults responded most strongly to particular stimulus 

categories, such as faces or houses, became less specialized in older adults. This de-

differentiation of neural responses could manifest either as an increased activation to 

non-preferred visual categories with little change in the response to the preferred 

category, or as a decrease in activation to the preferred category. Such dissociation in 

neural changes has been observed for faces (Park et al. 2012), where increased 

responses to non-preferred stimuli were observed in the fusiform face area (FFA) and 

decreased responses to faces were observed in the “extended” face network (Ishai, 

2008; Ishai, Schmidt, & Boesiger, 2005).  

Furthermore, a few studies reported that, unlike younger adults, older adults showed 

similar neural responses to both repetitions of the same face and different faces, thus 

showing no adaptation to face repetitions (Burianová et al., 2013; Lee, Grady, Habak, 

Wilson, & Moscovitch, 2011). Lack of adaptation suggests that different neuronal 

populations, which are supposed to be tuned to different identities, are responding less 

distinctively and have overlapping representations (broad tuning). In addition to broader 

tuning of neural responses in ventral face processing regions, ageing was also 

associated with increased functional connectivity between the fusiform gyrus in the right 

hemisphere and medial frontal cortex (Burianova et al., 2013), as well as with an 

additional recruitment of frontal and parietal regions (Lee et al., 2011). Such over-

recruitment of brain regions in older compared with young adults could be thought to 

compensate for impaired activity in visual processing regions (Grady et al., 1994; Payer 

et al., 2006) – a phenomenon termed the ‘posterior-anterior shift with ageing’ (PASA) 

(Davis, Dennis, Daselaar, Fleck, & Cabeza, 2008). The suggestion that over-recruitment 

of brain regions is compensatory comes from several studies that show a relationship 

between additional recruitment of frontal brain regions and better behavioural 

performance in older adults (for reviews, see Grady, 2012; Grady, 2008). However, this 

relationship is not always present, suggesting that over-recruitment might reflect less 

efficient use of neural resources rather than compensation (Grady, 2008, 2012). 

A distributed network of regions in parietal and prefrontal cortex has also been shown to 

be important for top-down control of visual perception (Bar, 2003; Gilbert & Li, 2013; 

Gilbert & Sigman, 2007). Top-down modulation can be thought of as any mechanism by 
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which cognitive influences and higher-order representations, such as attention or 

expectation, impinge upon earlier steps in information processing (Gilbert & Li, 2013). 

Such influences can have both a facilitatory effect by which neural responses to relevant 

stimuli are enhanced, as well as an opposite effect where suppression of irrelevant 

information takes place (Gazzaley, Cooney, Rissman, & D’Esposito, 2005). In an 

influential framework unifying perceptual and top-down factors, Gazzaley and colleagues 

proposed that ageing is associated with a selective deficit in the ability to inhibit irrelevant 

information (Gazzaley et al., 2008, 2005; Gazzaley & D’Esposito, 2007; Hasher & Zacks, 

1988). In a working memory paradigm, young and older participants were asked to 

comply with three different instructions: Remember faces and Ignore scenes, Remember 

scenes and Ignore faces, and Passively view faces and scenes without attempting to 

remember or evaluate them. The enhancement metric was calculated as a difference 

between BOLD signal in visual cortex on Remember trials versus Passive view trials, 

whereas the suppression metric was the difference between Passive view and Ignore 

trials. In young adults, there was enhancement of activity associated with stimuli relevant 

to the task (both faces and scenes) and suppression of activity associated with those 

irrelevant – but only for scenes (Gazzaley et al., 2005). Older adults revealed a 

pronounced deficit in the suppression of irrelevant information relative to younger adults. 

In a follow-up study using electroencephalography (EEG), a significant age-related 

suppression deficit on the P1 amplitude and the N170 latency in the right hemisphere 

was found, in the setting of preserved enhancement (Gazzaley et al., 2008; Zanto, Toy, 

& Gazzaley, 2010).  

AGE-RELATED SLOWING OF VISUAL PROCESSING 

Altogether, changes in the myelination throughout the cortex, as well as in neuronal 

responsivity in monkey cortex (possibly reflected as de-differentiation of neural 

responses in the human brain) are physiologically plausible as the origins of the age-

related slowing-down of information processing. However, our understanding of the 

slowing down of visual processing speed in humans is still elusive. Recent studies 

employing EEG, because of its high temporal resolution that makes it possible to record 

neurophysiological responses to stimuli with a millisecond precision, have attempted to 

shed some light on this issue. 

Overall, research on components thought to reflect primarily the sensory processing of 

visual or auditory stimuli (such as the P1, N1 and P2) presents mixed evidence for age-

related deficiencies (for a review, see D. Friedman, 2011). Early sensory components 

seem to be consistently associated with increased amplitudes in ageing, suggesting 
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deficiencies in inhibitory processing (De Sanctis et al., 2008), but not necessarily with 

latency delays.  

More specifically, comparing early responses to complex visual stimuli (e.g. faces, 

letters, houses) between young and older adults revealed mixed results. The first 200 ms 

after stimulus onset is sufficient for the visual system to elicit responses reflecting 

sensitivity to the higher-order content of the image, such as object category along the 

occipital-temporal pathway in young adults (Rousselet, Husk, Bennett, & Sekuler, 2008; 

VanRullen & Thorpe, 2001). Whether age affects this early processing of visual stimuli 

remains inconclusive. Some ageing studies reported that event-related potentials (ERPs) 

in the first 200 ms, in particular the N170 – an ERP component related to visual object 

recognition/categorization, were delayed by about 10 – 20 ms in older compared with 

young participants viewing images of faces (Daniel & Bentin, 2012; Gazzaley et al., 

2008; Nakamura et al., 2001; Wiese, Schweinberger, & Hansen, 2008), letters 

(Falkenstein, Yordanova, & Kolev, 2006), and letter-number pairs (De Sanctis et al., 

2008). Other studies did not find any age-related delays in the first 200 ms of processing 

faces (Chaby, George, Renault, & Fiori, 2003; Chaby, Jemel, George, Renault, & Fiori, 

2001; Gao et al., 2009; Pfütze, Sommer, & Schweinberger, 2002) but reported ageing 

effects on later stages visual processing, after 400 ms (Chaby et al., 2001).  

In line with this finding (Chaby et al., 2001), consistent age-related delays are observed 

for longer-latency components associated with higher-order processing stages (such as 

the N2b or P3) (D. Friedman, 2011; Polich, 1996, 1997). Accordingly, studying indices of 

stimulus processing, sensorimotor integration and motor-related processing revealed 

that age did not affect latencies of early processes associated with stimulus processing 

or response selection, but did affect motor response generation (Kolev, Falkenstein, & 

Yordanova, 2006; Yordanova, Kolev, Hohnsbein, & Falkenstein, 2004). As such, age-

related behavioural slowing might not be associated with ubiquitous delays across 

different stages of processing but rather be both task-dependent and process-specific 

(Bashore, Van Der Molen, Ridderinkhof, & Wylie, 1997), therefore speaking against the 

theory of general slowing (Salthouse, 1996). Given the inconsistency of findings from 

early time-domain components, studying event-related oscillations (i.e. EEG responses 

in different frequency bands, such as theta, alpha and gamma) might prove useful for 

revealing specific differences in sensory processing in young and older adults 

(Yordanova, Kolev, & Başar, 1998).  For example, Yordanova et al. (1998) found age-

dependent differences in alpha (8-13 Hz) and theta (4-8 Hz) band activity in the absence 

of significant differences for the time-domain N1 and P2 components. Other differences 

due to age include a decrease in magnitude of delta (2-4 Hz) power in occipital cortex, 
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as well as of low- (8-10.5 Hz) and high-band (10.5-13 Hz) alpha power in parietal, 

occipital, temporal and limbic areas (Babiloni et al., 2006). However, not all studies show 

consistent age-related differences in modulations of event-related oscillations. For 

example, both lower and upper alpha activity, related to the sensory and motor response 

processing had similar modulations in young and older adults, suggesting that alterations 

in alpha oscillatory networks with age may depend on the stimuli applied (Schmiedt-

Fehr, Mathes, & Basar-Eroglu, 2009).  

Similarly, the discrepancies in the results obtained with studies focusing on early ERPs 

could also be due to a number of factors such as low-level stimulus characteristics, but 

also task demands and statistical measures used to assess group differences. More 

importantly, focusing analyses on ERP peaks assumes that peaks reflect interesting 

information about the underlying neural processes. However, peaks are ill-defined in 

terms of selectivity to categories and processes (Schyns, Jentzsch, Johnson, 

Schweinberger, & Gosselin, 2003; Smith, Gosselin, & Schyns, 2007) and there is no 

reason to believe that an ERP peak is equivalent to a single functional brain component 

(Luck, 2005). Furthermore, comparing latencies from the same peak across different age 

groups presumes that one peak indexes the same neuronal processes over the life span, 

or that it responds to the same information (Rousselet et al., 2010). However, fMRI 

studies cited above seem to suggest this might not hold true in ageing, in a way that 

other brain areas might become involved in the same task in older adults, following a de-

differentiated response of the areas responsible for visual processing (Grady, 2008).   

Some of these limitations have recently been overcome by adopting an innovative, 

component-free approach to quantify age-related differences in the time course of visual 

processing of faces to which phase noise was added in a parametric manner (Rousselet 

et al., 2009). By contrasting evoked activity in response to images of faces and textures, 

it was shown that visual processing speed is reduced by about 1 ms per year (Rousselet 

et al., 2009, 2010), despite relatively small group differences on the N170 latency (about 

8 – 13 ms) (Rousselet et al., 2009). Specifically, sensitivity to image structure was 

spread over a longer period of time, and over two peaks on older adults – one weaker in 

the 100 – 200 ms time window, and one stronger after 230 ms. In contrast, young 

participants’ image sensitivity peaked in the time window of 100 – 200 ms (Rousselet et 

al., 2009, 2010). These results suggested a qualitative age-related shift in visual 

processing of complex objects that takes place around 47 years of age (Rousselet et al., 

2009), pointing to a possibility that in older adults a later time window might become 

functionally equivalent to the early one in young adults, and speaking against analyses 

restricted to ERP peaks. This delayed sensitivity was driven by the same image 
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parameters in both young and older participants (Rousselet et al., 2009, 2010), although 

older participants needed more stimulus information (i.e. stimuli with a lower noise level) 

to achieve the same level of behavioural performance as younger participants. The age-

related delay in the speed of visual processing was replicated in an independent sample 

of participants (Bieniek, Frei, & Rousselet, 2013) and was independent of stimulus 

luminance or pupil size, suggesting that the ageing effect is due to cortical, rather than 

optical origin (Bieniek et al., 2013). Another interesting finding was that the largest age-

related ERP differences were found for stimuli with the lowest phase coherence, i.e. 

textures that did not contain any meaningful information (Rousselet et al., 2009). These 

large evoked responses to textures occurred in the same time window as the responses 

to faces, i.e. around 150 – 170 ms after stimulus onset. It remained unclear whether 

such responses arose because of de-differentiation of neural responses in the occipital-

temporal brain regions in ageing, or due to processing of textures as meaningful stimuli 

by older adults, or some other influence. 

Despite recent advances in our knowledge of age-related slowing of visual processing of 

faces, we still have a limited understanding of the age-related differences in visual 

cortical information processing. This is because we need to know what information the 

brain processes and when, in order to understand some of the steps of the information-

processing network concerned with a particular image category (Schyns, Gosselin, & 

Smith, 2009). This can be achieved, for example by sampling the stimulus space in a 

randomized but principled manner, which can be then reverse-correlated with 

behavioural or brain responses to reveal information diagnostic (i.e. sufficient and 

necessary) to the task at hand (e.g. using Bubbles) (Gosselin & Schyns, 2001). We 

currently begin to have some understanding of the visual information processing of faces 

in young adults and its underlying neural correlates (Schyns, Gosselin, et al., 2009). For 

example, in a face detection task, presence of the left eye is important for behavioural 

and electrophysiological responses alike (Rousselet, Ince, van Rijsbergen, & Schyns, 

2014). Specifically, presence of the contralateral eye in the image was associated with 

the modulation of single-trial EEG activity in the time window of the N170, in a way that 

more visibility of the eye was associated with earlier and larger N170 (Rousselet et al., 

2014). Information about the eye can also be associated with ERPs independent of the 

task (Schyns et al., 2003; Smith, Gosselin, & Schyns, 2004), and the same time window 

can show sensitivity to other face regions, which are important for the task, such as the 

mouth in emotion categorization (Schyns, Petro, & Smith, 2007). Specifically, information 

encoding starts well before the peak of the N170 with the eyes (Schyns et al., 2007; 

Rousselet et al., 2014) and ends when enough stimulus information has been 
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accumulated to enable successful performance on the task (Schyns et al., 2007), 

suggesting that a peak of the ERP component (the N170 in this case) marks the end of a 

cascade of processes, rather than reflecting some perceptual process itself.  

The use of “bubbled” stimuli has been of great importance for identifying the features 

used by human and animal (Issa & DiCarlo, 2012) observers in detection and 

discrimination tasks. However, because images are presented through a restricted 

number of small apertures, which introduce substantial manipulations of these stimuli, it 

has been suggested that use of this technique could qualitatively alter natural face 

processing or affect strategies used by observers (Macke & Wichmann, 2010; Murray & 

Gold, 2004). For example, Bubbles could force the observer to switch to feature-based 

processing as opposed to perceiving the face as a whole (Neath & Itier, 2014) or attend 

to local cues (albeit not in a face perception task, Murray & Gold, 2004). In addition, the 

features returned by this method may not be those, which are predictive of human 

behavior under natural viewing conditions or in different tasks (Macke & Wichmann, 

2010; Murray & Gold, 2004). Finally, most information about the task is achieved with the 

presence of enough identification errors, i.e. when behaviour is maintained at some kind 

of a threshold, such as 75% accuracy. Nevertheless, a recent study has shown that even 

when visual degradation is introduced in the stimulus, a large amount of variance in face-

specific abilities can be still captured suggesting that face processing mechanisms 

appear to be insensitive to the visual impoverishment of the face stimulus (Royer, Blais, 

Gosselin, Duncan, & Fiset, 2015). Furthermore, observers’ strategies were not found to 

be different on expression and gender discrimination tasks compared with another 

reverse correlation technique using Gaussian white noise (Gosselin & Schyns, 2004). 

Finally, in real world sensory information reaching the eyes often is incomplete, as 

objects occlude parts of the neighbouring objects and parts of themselves, and yet our 

everyday object recognition does not suffer (Gosselin & Schyns, 2004; Sekuler, Gold, 

Murray, & Bennett, 2000). The visual systems seems to effectively treat partly occluded 

objects as functionally complete, although completion takes some measurable time so 

that recognition of partly occluded objects is achieved slower than their fully visible 

counterparts (Sekuler et al., 2000). Altogether, the use of Bubbles is still warranted as a 

method for extracting stimulus features on which the visual system can base its 

computations in a given task. 

AIMS OF THE THESIS 

Whether visual information processing is affected by age-related slowing down remains 

elusive. In this thesis, we aimed to shed light on this issue by investigating some of the 
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information processing steps in the ageing brain using one of the simplest perceptual 

tasks: face detection. We aimed to understand what information the brain processes 

when it detects a face, and when this information is processed with respect to the young 

brain. We tackled these two questions in Chapter 2 using EEG, which offers high 

temporal resolution, ideally suited to study fast visual processes. In order to find out what 

facial information is used by young and older adults alike, we employed the Bubbles 

paradigm which samples stimulus space in a randomized yet principled manner, and 

reverse-correlated the stimulus information revealed in single trials with behavioural and 

brain responses.  

Only two studies to date used reverse correlation techniques to study age-related 

behavioural differences in perception of faces. One of those studies investigated mental 

representations of age (van Rijsbergen, Jaworska, Rousselet, & Schyns, 2014) and the 

other one – of trustworthiness, anger and happiness judgments (Éthier-Majcher, Joubert, 

& Gosselin, 2013). In both studies, noise was added to grey-scale images of faces in 

order to introduce systematic variability of the image parameters, and classification 

images were computed to understand what features drove behavioural performance. 

Older adults had richer representations of age across all age categories (young, middle-

aged and old) suggesting a more accurate depiction of socially relevant information than 

younger adults (van Rijsbergen et al., 2014). Internal representations of trust, anger and 

happiness were very similar across young and older adults, although judgments of trust 

were more related to judgments of happiness in young than in older adults (Éthier-

Majcher et al., 2013). No study to date, on the other hand, used reverse correlation 

methods in a simple face detection task, either on the behavioural or brain imaging level.  

We capitalized on the findings obtained in the sample of young participants (Rousselet et 

al., 2014), where behavioural and brain responses in a face detection task were driven 

by the presence of the (contralateral) eye in the image, and aimed to apply the same 

tools to study visual processing of faces in a detection task in older adults. In line with 

the theory of slower information processing in ageing (Salthouse, 1996), we 

hypothesized that processing of the same information (the contralateral eye) would be 

delayed in ageing. Experimental findings were in line with this hypothesis by showing a 

40 ms delay in processing the contralateral eye in our sample of older adults. 

In a follow-up study (Chapter 3), we sought to understand whether the age-related 

differences in eye sensitivity were preserved in a face context, on a notion that 

incomplete or occluded stimuli (such as Bubbled images) might differentially affect older 

adults’ ability to perform a perceptual task. To our knowledge, only one study to date 
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(Daniel & Bentin, 2012) compared ERPs from young and older participants in response 

to whole images of faces and inner features only (i.e. the eyes, the nose and the mouth). 

Results of that study indicated an age-related sensitivity to global structure of the face 

visible as a reduction of the N170 amplitude when the face contour was eliminated 

(Daniel & Bentin, 2012). Unlike that study, however, we were not interested in comparing 

categorical responses to whole faces and/or inner components presented in isolation, 

but in measuring ERP responses to the visibility of the eye revealed in a parametric 

manner by adding phase noise in the eye region. This way, we could investigate the 

modulation of ERPs by increasing information available in the eye region, when the face 

context was preserved (or absent – in control conditions). We found that contralateral 

eye sensitivity was still observed in young and older adults alike, but to a lesser degree 

than in our first study, suggesting that coding of the eye by the N170 acts differently 

when the eye is revealed through Bubble masks and when it is presented in the face 

context.  

Finally, in Chapter 4 we were interested in investigating potential origins of the large 

N170 responses to textures reported already in previous studies (Rousselet et al., 2009), 

as well as in Chapter 2. Out hypothesis was that differences between texture trials could 

be due to a perceptual expectation effect, whereby perceiving textures in the context of 

different detection tasks would influence ERP responses to textures in a top-down 

manner. However, we found little evidence to support this notion.  

In the same study, we also sought to investigate whether the age-related delay in 

sensitivity to image structure obtained by comparing faces and textures (Rousselet et al., 

2009, 2010) would generalize to other stimulus categories, such as houses or letters. To 

date, only a couple of studies reported age-related latency delays in the N170 responses 

to visually presented letters (Falkenstein et al., 2006) or letter-number pairs (de Sanctis 

et al., 2008). To avoid peak measurements, we adopted a similar approach to that 

described by Rousselet and colleagues (2009), where we contrasted ERPs elicited by 

faces, houses and letters with those elicited by textures, and quantified the age-related 

processing delays on this difference. We found that visual processing speed was 

delayed to a smaller extent than that predicted by the original study (Rousselet et al., 

2009) and depended on the nature of categorical comparisons made.   
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CHAPTER 2: PROCESSING OF THE SAME FACE FEATURES IS 
DELAYED BY 40 MS AND WEAKER IN HEALTHY AGEING  

INTRODUCTION 

The human visual system undergoes many age-related changes that lead to slower 

processing (Rousselet et al., 2009, 2010) and reduced neuronal selectivity (Burianová, 

Lee, Grady, & Moscovitch, 2013; Park et al., 2004; Park et al., 2012). In particular, 

several studies have shown that face processing slows down by about 1 ms per year 

from 20 years of age onwards (Bieniek et al., 2013; Rousselet et al., 2009, 2010). The 

onset of the age-related delay in processing starts around 120 ms following stimulus 

onset, which suggests that this effect has a cortical origin (Bieniek, Bennett, Sekuler, & 

Rousselet, 2015; Bieniek et al., 2013). Consistent with this observation, the N170, an 

event-related potential (ERP) component associated with face processing (Bentin, 

Allison, Puce, Perez, & McCarthy, 1996; Itier, Alain, Sedore, & McIntosh, 2007; 

Rousselet, Ince, van Rijsbergen, & Schyns, 2014), is delayed in older participants 

(Gazzaley et al., 2008; Nakamura et al., 2001; Rousselet et al., 2009; Wiese, 

Schweinberger, & Hansen, 2008).  

Indication of reduced neuronal selectivity comes from fMRI studies showing an age-

related increase in brain responses to non-preferred stimuli in visual areas that respond 

preferentially to one stimulus category (e.g. faces) in young adults (Park et al., 2012). 

Our previous studies also indicate that a similar de-differentiation of EEG responses 

could occur in occipital-temporal brain regions (Rousselet et al., 2009). Specifically, 

Rousselet and colleagues (2009) reported a prominent peak in the time window of the 

N170 in response to phase noise in older participants (Bieniek et al., 2015; Rousselet et 

al., 2009, 2010). At the same time, the peak of discriminatory activity between face and 

texture trials was lower in older than in young participants in the time window of the 

N170, suggesting that the N170 might become less face-sensitive with age (Rousselet et 

al., 2009). As such, evoked responses in the time window of the N170 in older adults 

might reflect processing of non-diagnostic information (i.e. processing of textures as 

meaningful stimuli and/or processing of non-diagnostic face features) unlike in young 

adults (Rousselet et al., 2014; Schyns et al., 2007). 

Other studies also suggest an age-related decrement in the behavioural ability to use 

facial information in perceptual tasks. For example, older adults had a reduced ability to 

detect configural changes when the eye region was modified (Slessor, Riby, & Finnerty, 

2013), needed more stimulus information to reach the same behavioural performance as 
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younger adults in face categorisation tasks (Rousselet et al., 2009, 2010), were worse at 

facial identity matching when faces were shown in different views (Habak, Wilkinson, & 

Wilson, 2008), and seemed to be less efficient in extracting task-relevant information 

from horizontally-filtered faces (Chaby, Narme, & George, 2011; Obermeyer, Kolling, 

Schaich, & Knopf, 2012). Filtered images can test the influence of particular spatial 

frequencies on early visual processes (Dakin & Watt, 2009; Goffaux & Dakin, 2010), but 

they are only an approximation of what stimulus features drive face categorization 

performance.  

Although ageing research has identified age-related differences in behaviour and brain 

activity using a variety of tasks and stimuli, how the information content of brain activity 

changes with age remains unknown. This is because previous studies investigating age-

related differences on the N170 were based on categorical responses to whole faces. To 

go beyond average responses to image categories and understand what facial 

information is associated with electrophysiological responses in the time window of the 

N170, it is important to introduce stimulus variability in a principled manner and link 

single-trial brain activity to this stimulus variability. This can be done with reverse 

correlation methods, for example using Bubbles (Gosselin & Schyns, 2001) to sample 

stimulus space on a single-trial basis.  

Previously, using Bubbles we have shown that the N170 to face images in young adults 

is driven by the presence of the contralateral eye (Rousselet et al., 2014; Schyns, Petro, 

& Smith, 2007; Smith, Gosselin, & Schyns, 2004; Van Rijsbergen & Schyns, 2009). 

However, it is unknown what facial information is associated with ERP responses to face 

images in older adults and whether the observed delay in neural responses (Rousselet 

et al., 2009) is due to slowed information processing in older adults (Salthouse, 1996), or 

de-differentiation of neural responses (Park et al., 2004) that might in turn lead to 

processing of non-diagnostic face features and longer times necessary to accumulate 

visual information (Wang et al., 2005). 

To fill this gap in the field, in the current study we aimed to directly test what facial 

information is associated with both behavioural and brain responses in older adults in a 

face detection task. We address this question by using a Bubbles technique coupled with 

reverse correlation. We aim to determine how the first step in face processing, face 

detection, is affected by ageing. We hypothesize that in older adults, the N170 would be 

mostly sensitive to the presence of the left eye in the image (similarly to young adults), 

but processing of this feature would be delayed.    
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MATERIALS AND METHODS 

PARTICIPANTS 

Eighteen young (9 females, median age = 23, min 20, max 36) and nineteen older adults 

(7 females, median age = 66, min 60, max 86) participated in the study.  Results from 

fifteen of the young participants have been reported previously (Rousselet et al. 2014). 

All older adults were community dwellers, recruited through advertising at the University 

of Glasgow, active age gym classes, and a newspaper article. Volunteers were excluded 

from participation if they reported any current eye condition (i.e., lazy eye, glaucoma, 

macular degeneration, cataract), had a history of mental illness, were currently taking 

psychotropic medications or used to take them, suffered from any neurological condition, 

had diabetes, or had suffered a stroke or a serious head injury. Volunteers were also 

excluded from participation if they had their eyes tested more than a year (for older 

volunteers) or two years (for younger volunteers) prior to the study taking place, in order 

to minimise the chances that volunteers did not have knowledge of an underlying eye 

condition. Two older participants reported having cataracts removed, and one older 

participant reported having undergone a laser surgery. These participants were included 

because their corrected vision did not differ from that of the others. Participants’ visual 

acuity and contrast sensitivity were assessed in the lab on the day of the first session 

using a Colenbrander mixed contrast card set and a Pelli-Robson chart. All participants 

had normal or near-normal visual acuity as measured with the 63 cm viewing distance 

(computer distance) chart (Table 1). Three older participants had contrast sensitivity of 

1.65, and all others had contrast sensitivity of 1.95 log units. Both values fell within the 

normal range of contrast sensitivity for that age group (Elliott, Sanderson, & Conkey, 

1990). All young participants had contrast sensitivity of 1.95 log units and above. During 

the experimental session, participants wore their habitual correction if needed. 
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Table 1 Visual test scores. 

Visual acuity scores are reported for high contrast (HC) and low contrast (LC) charts presented at 
the 63 cm viewing distance, and expressed as raw visual acuity scores (VAS). The corresponding 
logMAR scores are presented below in italics, where higher values indicate poorer vision and 
negative values represent normal vision (logMAR score of 0 corresponds to 20/20 vision). Square 
brackets indicate the minimum and maximum scores across participants in each age group. 
Contrast sensitivity (CS) scores for young and older participants correspond to median log units 
across all participants in each age group.  

  HC 63 LC 63 CS 

young 108 [95, 110] 

-0.16 [0.10, -0.20] 

99 [94, 104] 

0.02 [0.12, -0.08] 

1.95 [1.95, 2.25] 

older 98 [93, 105] 

0.04 [0.14, -0.10] 

89 [82, 95] 

0.22 [0.36, 0.10] 

1.95 [1.65, 1.95] 

  

The study was approved by the local ethics committee at the College of Science and 

Engineering, University of Glasgow (approval no. FIMS00740), and conducted in line 

with the British Psychological Society ethics guidelines. Informed written consent was 

obtained from each participant before the study. Participants were compensated £6/h.  

STIMULI 

We used a set of 10 grey-scaled front view photographs of faces, oval cropped to 

remove external features, and pasted on a uniform grey background (Gold et al., 1999). 

The pictures were about 9.3° x 9.3° of visual angle; the face oval was about 4.9° x 7.0° of 

visual angle. A unique image was presented on each trial by introducing phase noise 

(70% phase coherence) into the face images (Rousselet, Pernet, Bennett, & Sekuler, 

2008). Textures were created by randomising the phase of the face images (0% phase 

coherence). All stimuli had the same amplitude spectrum, set to the mean amplitude of 

the face images. Face and texture images were revealed through ‘bubble masks’, i.e. 

masks containing 10 two-dimensional Gaussian apertures (sigma = 0.36°), with the 

constraint that the center of the aperture remained in the face oval (Rousselet et al., 

2014). Information sampling was dense enough to allow very good behavioural 

performance without revealing too much of the stimuli (Rousselet et al., 2014). We wrote 
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our experiments in MATLAB using the Psychophysics Toolbox extensions (Brainard, 

1997; Kleiner, Brainard, & Pelli, 2007; Pelli, 1997).  

PROCEDURE 

Testing was conducted in a sound-attenuated booth. The viewing distance of 80 cm was 

maintained with a chinrest. Participants were tested in two experimental sessions on 

separate days. During each session, participants were asked to minimise movement and 

blinking, or blink only when hitting a response button.   

In each experimental session, participants completed 12 blocks of 100 trials each. The 

first block was a practice block of images without bubble masks. A set of 10 face 

identities and 10 unique noise textures, each repeated 5 times were randomized within 

each block. Each session lasted about 60 to 75 minutes, including breaks, but excluding 

EEG electrode application. 

Within a block of trials, participants were asked to categorise images of faces and 

textures as fast and accurately as possible by pressing ‘1’ for face, and ‘2’ for texture on 

the numerical pad of a keyboard, using the index and middle finger of their dominant 

hand. After each block, participants could take a break, and they received feedback on 

their performance in the previous block and on their overall performance in the 

experiment (median reaction time and percentage of correct responses). The next block 

started after participants pressed a key indicating they were ready to move on.   

Each trial began with a small black fixation cross (12 x 12 pixels, 0.4° x 0.4° of visual 

angle) displayed at the centre of the monitor screen for a random time interval of 500 to 

1000 ms, followed by an image of a face or a texture presented for 7 frames (~82 ms). 

After the stimulus, a blank grey screen was displayed until the participant responded. 

The fixation cross, the stimulus and the blank response screen were all displayed on a 

uniform grey background with mean luminance of ~43 cd/m2. 

EEG RECORDING AND PRE-PROCESSING 

EEG data were recorded at 512 Hz using a 128-channel Biosemi Active Two EEG 

system (Biosemi, Amsterdam, the Netherlands). Four additional UltraFlat Active Biosemi 

electrodes were placed below and at the outer canthi of both eyes. Electrode offsets 

were kept between ±20 µV.  
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EEG data were pre-processed using MATLAB 2013b and the open-source EEGLAB 

toolbox (Delorme et al., 2011; Delorme & Makeig, 2004). Data were first average-

referenced and detrended. Two types of filtering were then performed. First, data were 

band-pass filtered between 1 Hz and 30 Hz using a non-causal fourth order Butterworth 

filter. Independently, another dataset was created in which data were pre-processed with 

fourth order Butterworth filters: high-pass causal filter at 2 Hz and low-pass non-causal 

filter at 30 Hz, to preserve accurate timing of onsets (Acunzo, MacKenzie, & van 

Rossum, 2012; Luck, 2005; Rousselet, 2012; Widmann & Schröger, 2012). 

Data from both datasets were then downsampled to 500 Hz, and epoched between -300 

and 1000 ms around stimulus onset. Mean baseline was removed from the causal-

filtered data, and channel mean was removed from each channel in the non-causal-

filtered data in order to increase reliability of Independent Component Analysis (ICA; 

Groppe, Makeig, & Kutas, 2009). Noisy electrodes and trials were then detected by 

visual inspection of the non-causal dataset, and rejected on a subject-by-subject basis. 

On average, more noisy channels were removed from older than from young 

participants’ datasets (older participants: median 10, min 0, max 24; young participants: 

median 5, min 0, max 28; median difference = 4 [2, 7]). More noisy Bubble trials were 

also removed from older than from young participants’ datasets (trials included in 

analyses, older participants: median 2130, min 1987, max 2180; young participants: 

median 2178, min 2023, max 2198; median difference = 42 [23, 64]).  

Subsequently, ICA was performed on the non-causal filtered dataset using the Infomax 

algorithm as implemented in the runica function in EEGLAB (Delorme & Makeig, 2004; 

Delorme, Sejnowski, & Makeig, 2007). The ICA weights were then applied to the causal 

filtered dataset to ensure removal of the same components, and artifactual components 

were rejected from both datasets (median = 4, min = 1, max = 27 for one older 

participant who displayed excessive blink activity; the second max was 17). Then, 

baseline correction was performed again, and data epochs were removed based on an 

absolute threshold value larger than 100 µV and the presence of a linear trend with an 

absolute slope larger than 75 µV per epoch and R2 larger than 0.3. The median number 

of bubble trials accepted for analysis was, out of 1100, for older participants: face trials = 

1069 [min=999, max=1092]; noise trials = 1067 [min=986, max=1088]; for young 

participants: face trials = 1090 [min=1006, max=1100]; noise trials = 1089 [min=1014, 

max=1098]. Finally, we computed single-trial spherical spline current source density 

waveforms using the CSD toolbox (Kayser, 2009; Tenke & Kayser, 2012). CSD 

waveforms were computed using parameters 50 iterations, m=4, lambda=10-5. The head 

radius was arbitrarily set to 10 cm, so that the ERP units are µV/cm2. The CSD 



 

 

33 

transformation is a spatial high-pass filtering of the data, which sharpens ERP 

topographies and reduces the influence of volume-conducted activity. CSD waveforms 

also are reference-free.  

ELECTRODE SELECTION 

Detailed analyses were performed on a subset of electrodes. The set of electrodes 

consisted of four posterior midline electrodes that have been previously shown to be 

sensitive to face features or conjunction of features: from top to bottom CPz, Pz, POz, 

Oz (Rousselet, Ince, van Rijsbergen, & Schyns, 2014; Schyns, Thut, & Gross, 2011). 

However, we report the results only from the Oz electrode because the other three 

showed weak mutual information values across the two groups. We also selected two 

posterior-lateral electrodes, one in the right hemisphere (right electrode, RE), and one in 

the left hemisphere (left electrode, LE). These electrodes were selected by measuring 

the difference between all bubble face trials and all bubble noise trials at all posterior-

lateral electrodes, squaring it, and selecting the left and the right electrodes that showed 

the maximum difference in the period 130-250 ms. The selected lateral electrodes were 

P7/8, or PO7/8, or their immediate neighbours, which are electrodes typically associated 

with large face ERPs in the literature. 

STATISTICAL ANALYSES 

Statistical analyses were conducted using Matlab 2013b and the LIMO EEG toolbox 

(Pernet et al., 2011). Throughout the paper, square brackets indicate 95% confidence 

intervals computed using the percentile bootstrap technique, with 1000 bootstrap 

samples. Unless otherwise stated, median values are Harrell-Davis estimates of the 2nd 

quartile (Harrell & Davis, 1982). 
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MEASURES OF EFFECT SIZE 

We estimated the size of the between-group differences using two robust techniques: 

Cliff’s delta and the median of all pairwise differences. Cliff’s delta (Cliff, 1996; Wilcox, 

2006) is related to the Wilcoxon-Mann-Whitney U statistic and estimates the probability 

that a randomly selected observation from one group is larger than a randomly selected 

observation from another group, minus the reverse probability. Cliff’s delta ranges from 1 

when all values from one group are higher than the values from the other group, to -1 

when the reverse is true. Completely overlapping distributions have a Cliff’s delta of 0. In 

line with Cliff’s delta approach, we also calculated all pairwise differences between 

young and older participants on the measures of interest (reaction times, percent 

corrects, N170 latencies and amplitudes), and took the median of the distribution of 

these differences. This way of measuring effect sizes enabled us to provide information 

about the typical difference between any two observations from two groups (Wilcox, 

2012).  

MUTUAL INFORMATION 

We used mutual information (MI) to quantify the dependence between stimulus features 

and behavioural and brain responses. MI is a non-parametric measure that quantifies (in 

bits) the reduction in uncertainty about one variable after observation of another and has 

been used to study the selectivity of neural and behavioural responses to external stimuli 

(Ince, Petersen, Swan, & Panzeri, 2009; Magri, Whittingstall, Singh, Logothetis, & 

Panzeri, 2009a; Panzeri, Brunel, Logothetis, & Kayser, 2010; Schyns et al., 2011). The 

advantage of using the MI lies in its ability to detect associations of any order, whether 

linear or non-linear (for a more extensive evaluation, see Rousselet et al., 2014). We 

calculated MI from the standard definition (Ince et al., 2009), using the following formula: 

 ! !!;! = ! !, ! !"#! !(!,!)
! ! !(!)!,!    

Where Bi represents the bubble mask value (pixel visibility) at pixel i and R represents 

the response of interest (either behavioural or EEG recording). P(b) is the probability of 

pixel i having bubble mask falling inside bin b (of the 3 equiprobable bins, as using 3 bins 

yielded best results, Rousselet et al., 2014); P(r) is the probability of the considered 

response falling inside bin r, and P(b,r) is the joint probability of the coincidence of both 

events. I(Bi; R) quantifies the reduction of uncertainty about the behavioural/neural 

response that can be gained from knowledge of the visibility of pixel i.     
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Here, we calculated several MI quantities in single participants: MI(PIX, RT) to establish 

the relationship between image pixels and reaction times; MI(PIX, CORRECT) to 

establish the relationship between image pixels and correct responses; MI(PIX, RESP) 

between pixels and response category; and MI(PIX, ERP) to establish the relationship 

between image pixels and ERPs. These quantities were computed separately for face 

and noise trials. To control for the variable number of trials in each participant arising as 

a result of EEG preprocessing, we scaled every MI quantity for every participant by a 

factor of 2Nln2 (Ince, Mazzoni, Bartels, Logothetis, & Panzeri, 2012), using the formula: 

!"!"#$%& = !" ×2 ×!" × log!, 

where MI refers to mutual information values, and Nt is the number of trials. MIscaled, 

therefore, reflects a measure of MI adjusted for a systematic upward bias in the 

information estimate that might arise due to limited data sampling, especially if the 

numbers of trials in the two age groups are systematically different. All group-difference 

analyses were performed using the scaled MI values.    

MUTUAL INFORMATION: CONTINUOUS APPROACH 

The binning approach described above can be sensitive to the problem of limited 

sampling bias. As such, we computed a new estimator of MI that can be used with 

continuous variables (Ince, Giordano, et al., 2016) and utilizes the concept of copulas 

(Nelsen, 2007), statistical structures that express the relationship between two random 

variables, independently of their marginal distributions.  

In single participants, we calculated MI between visibility of the left eye (a scalar value 

obtained as a sum of pixel visibility within the circular left eye mask on each trial) and 

EEG voltage over the time period of -300 ms before to 1000 ms after stimulus onset. We 

also computed the temporal gradient of the EEG voltage (dEEG) on each trial in order to 

account for the temporal relationship between neighbouring time points, and then 

combined the EEG voltage and its temporal gradient into a bivariate response (gradient 

MI, see Table S1 in Appendix A). We then calculated the time course of MI about the eye 

visibility in the bivariate response: MI(eye, [EEG dEEG]). Considering the gradient 

response together with the voltage smoothes out the artifactual dips in MI time courses, 

occurring at time points of zero-crossings when EEG voltages change the sign. It also 

introduces information about the shape of the ERP, otherwise missing from just 

considering instantaneous amplitudes. As such, the bivariate time course provides a 

clearer picture of the time window(s) over which the EEG signal is modulated by the 
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changing stimulus (Ince, Giordano, et al., 2016). However, this analysis yielded group 

differences comparable to those obtained with the binning method (Table S1 in Appendix 

A). As such, the binning method was sensitive enough to provide a good description of 

age-related differences in eye coding. 

MUTUAL INFORMATION: CLASSIFICATION IMAGES 

We refer to MI between pixels and behaviour or ERPs as classification images: they 

reveal the image pixels associated with modulations of the responses. Classification 

images for the MI(PIX, ERP) analysis were computed at every time point within the first 

400 ms following stimulus onset, using the non-causal and causal-filtered datasets, and 

at each of the 6 electrodes specified above. To provide a summary of the image pixels 

associated with the ERP distributions for every participant at every electrode, we saved 

the maximum MI across time points in the non-causal filtered dataset.    

Single-subject analyses. In order to establish which parts of the classification image 

showed significant association with the behavioural performance or ERPs in face and 

noise trials, we performed a permutation test coupled with the Threshold-Free Cluster 

Enhancement (TFCE) technique (Smith & Nichols, 2009) on individual participants’ data. 

First, the MI values were computed between the bubble masks and the response labels. 

The resulting classification images were then transformed with the TFCE technique. This 

technique boosts the height of spatially extended regions in the image without changing 

the location of their maxima. As such, clustered pixels will get much higher TFCE scores 

than individual ones, which combined with standard permutation testing alleviates the 

problem of multiple comparisons across many pixels (Pernet, Latinus, Nichols, & 

Rousselet, 2015; Rousselet et al., 2014; Smith & Nichols, 2009). TFCE parameters were 

E=1 and H=2. To estimate TFCE scores expected by chance, the trial labels were 

shuffled while keeping the bubble masks constant. The MI values were then computed 

and TFCE-scored again. This procedure was performed 1000 times. On every iteration 

of the permutation test, we saved the maximum TFCE value across pixels in order to 

create a distribution of TFCE values under the null hypothesis that the variables (pixel MI 

values and behavioural or ERP responses) are statistically independent. To obtain the 

image pixels associated with the response at the significance level of 0.05, the original 

TFCE scores were then compared against the 95th percentile of the permutation 

distribution. Following this analysis, data from two participants: one older and one young 

were excluded due to flat mutual information maps, resulting in a sample size of 17 

young and 18 older participants.   
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Group analyses. In order to assess classification image differences between the two age 

groups, we first computed Cliff’s delta on the MI values at every pixel separately. 

Similarly to the single-subject analyses, we then applied a permutation test in order to 

assess the statistical significance of these differences. However, instead of shuffling trial 

labels, we shuffled younger and older participants’ labels while keeping the classification 

images constant. Then, we computed Cliff’s delta on permuted classification images and 

saved the maximum delta score. This procedure was performed 1000 times in order to 

obtain a distribution of maximum delta scores under the null hypothesis that there are no 

differences in the classification images of the two age groups. We then compared the 

original delta scores against the 95th percentile of the permutation distribution.  

Feature-of-interest analyses. We quantified how the presence of the eyes modulated 

behavioural and brain responses by averaging MI values inside an eye mask. To create 

the mask, we centred a circle (radius = 15 pixels) on the pixel that showed the maximum 

MI value in the group-averaged MI(PIX, ERP) classification image, separately for the left 

and for the right eye (as seen by the observer in the picture plane). 

ERP ONSET ANALYSES 

We quantified ERP onsets using the causal-filtered datasets. To control for multiple 

comparisons, we used a bootstrap temporal clustering technique as implemented in 

LIMO EEG (Pernet et al., 2015; Pernet et al., 2011). 

ERPSTD onset. In order to determine whether age-related differences in timing of MI 

accumulation reflect differences in the onset of afferent activity to the visual cortex or 

information accumulation at later stages of visual processing, we looked at the time 

course of the standard deviation across electrodes of the mean ERP (ERPSTD). ERPSTD 

provides a compact description of the global ERP response, summarizing each 

participant’s evoked brain activity across electrodes in one vector. This analysis was 

based on the notion that early visual activity can be characterized by a sudden increase 

in standard deviation of the mean ERP across electrodes. We computed the ERPSTD 

time course, and subtracted mean baseline from it in each individual participant. Then, 

we localised the first peak whose minimum height was five times the height of any peak 

in the baseline. Then, using ARESLab toolbox (Jekabsons, 2015), we built a piecewise-

linear regression model with three basis functions using the Multivariate Adaptive 

Regression Splines (MARS; Friedman, 1991) method.  

MI onset. We quantified MI onsets using the same technique as with ERPSTD onsets. 
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TOPOGRAPHIC ANALYSES 

Topographic maps for each participant were computed from the whole-scalp MI(PIX, 

ERP) results at the individual MI peak latency. Individual topographic maps were 

normalised between 0 and 1, interpolated and rendered in a 67 x 67 pixel image using 

the EEGLAB function topoplot, and then averaged across participants in each age group. 

Using the interpolated head maps, we then computed a hemispheric lateralisation index 

for each participant. First, we saved the maximum pixel intensity in the left and the right 

hemisphere (lower left and right quadrants of the interpolated image), excluding the 

midline. Then, we computed the lateralisation index in each group as the ratio (MIleft - 

MIright)/ (MIleft + MIright).  
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RESULTS  

BEHAVIOURAL RESULTS  

On average, older participants were less accurate and slower than younger participants. 

Mean percent correct was 82% [80, 85] in older participants, 93% [92, 94] in younger 

participants, group difference = -11 percentage points (PP) [-14, -8]. The group median 

of individual median reaction times (RT) was 576 ms [527, 604] in older participants, and 

378 ms [349, 401] in young participants; group difference = 198 ms [148, 237]. 

On face trials, young participants were on average 91% correct and older participants 

were on average 75% correct (group difference = 15 PP [8, 19]). On noise trials, young 

participants were 96% correct and older participants were 92% correct (group difference 

= 4 PP [1, 13]). A larger group difference in percent corrects for face trials might suggest 

that older participants were more conservative on face trials, i.e. responded ‘face’ less 

often when there was a face, and there was a small interaction between trial type and 

age group (group difference of face-noise difference = 7 PP [0, 15]).  

Both groups were also less accurate on Bubble trials compared with practice trials 

(differencebub-practice, young: -4 PP [-6, -3]; older: -15 PP [-18, -11]), with average accuracy 

in each group reaching 98% [97, 98] on practice trials. The difference was significantly 

larger in older than in young participants (group difference: -11 PP [-14, -7]).  

Previously, Rousselet et al. (2014) showed that the presence of the left eye as seen by 

observers in the picture plane (hereafter, the left eye) was strongly associated with faster 

reaction times in a group of young participants. Here, we extend these results by 

showing that the RTs of almost all (N = 16/18) older participants, and all (N=17/17) 

young participants were modulated by the presence of the left eye (Figure 1A-B, top 

panel). The left eye region was also involved in modulating RTs in noise trials in a few 

older participants (N = 3), but the relationship was weak. The presence of right eye pixels 

influenced RTs in a few young and a few older participants (Figure 1B, top panel).  

Pixels in the eye region were also strongly associated with correct responses in almost 

all older participants (N = 16, Figure 1A-B, third panel). In contrast, the association 

between the eye region and correct responses was significant in only a few young 

participants (N = 4). This suggests that whereas young participants correctly detected 

faces on the basis of any feature, older observers needed to see the eye region to be 

accurate. We confirmed this dissociation by directly comparing the average classification 

images between the two groups. Relative to young participants, older participants relied 

significantly more on the eyes (third panel, Figure 1C) in making accurate judgments. 

However, despite a slightly stronger mean MI across older participants, there was no 
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significant difference between the two groups in the effect of the presence of the left eye 

on reaction times (first panel, Figure 1C). None of these effects were observed for noise 

trials. 

	
Figure 1 Age-related differences in behavioural classification images. 

(A) Group-average MI maps for young and older participants. Each row corresponds to one 
analysis condition. The maximum average MI on face trials was stronger in the RT condition than 
in the CORRECT condition for both age groups, and is therefore presented on a different scale. 
(B) Number of participants showing significant effects. The white number in the left upper corner 
of every image corresponds to the maximum number of participants showing a significant effect at 
the same pixel, whereas the number in the right upper corner corresponds to the total number of 
participants showing significant effects at any pixel. (C) Differences in MI between young and 
older participants. Scatterplots show individual MI values averaged within the left eye mask 
(represented as a red circle in the face inset; for explanation, see Methods). Red bars correspond 
to medians across participants. Distributions of individual MI values were different between the 
groups for correct responses, with 12 older participants (and 4 older participants in the RT 
condition) showing stronger MI than the maximum MI across all young participants. Images on the 
right display the differences between young and older average MI maps for every condition.  
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We established that the presence of the eye(s) was associated with different behavioural 

responses across the two age groups. Using a reverse analysis (Rousselet et al., 2014), 

we then quantified by how much changing the information about the eyes would 

influence participants’ behaviour. To this end, we first defined circular masks (radius = 15 

pixels) for the left eye and the right eye. We then correlated single-trial Bubble masks 

with each eye mask, to provide an estimate of eye pixel visibility. We then split these 

correlations into ten equally populated bins ranging from the lowest to the highest 

correlation values. Next, we quantified the effect of eye visibility on behavioural 

judgments by calculating the RT and percent correct difference between the 10th and the 

1st bin (Figure 2).  

In our group of young observers, high left eye visibility led to, on average, 53 ms [45, 61] 

faster and 15 percentage points (PP) [10, 20] more accurate responses; when the right 

eye was present participants were 17 ms [10, 24] faster and 7 PP [4, 11] more accurate.  

These effects were even stronger in older participants: they were 91 ms [68, 114] faster 

and 37 PP [25, 48] more accurate when the left eye was visible, and 16 ms [2, 30] faster 

and 28 PP [19, 36] more accurate when the right eye was visible (for effect sizes of 

group differences, see Table 2 and Figure 2). 

All participants were generally faster and more accurate on trials where higher 

correlation between one or both eyes and Bubble mask visibility was observed (for 

detailed results, see Figures S1 – S5 in Appendix A). However, even when there was no 

eye visibility on any given trial, young participants were still able to discriminate face 

images from noise images above chance (median: 72%, min: 56%, max: 92%). On the 

other hand, older participants performed well below chance on trials without eye visibility, 

with only two older participants performing similarly to an average young participant 

(median: 31%, min: 9%, max: 94%).  

In sum, here we show that in a face detection task, older participants use the same facial 

feature (the left eye) as young participants to make fast responses. However, whereas 

young participants can use any face feature to make a correct response, older observers 

rely predominantly on the eyes to do the same task. Both in reaction times and accuracy 

scores, the eye information revealed through the Bubble apertures modulates responses 

to a higher extent in older than in young participants. This suggests a different strategy in 

older observers, who use the presence of the eyes more to detect a face.    
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Table 2 Effect size estimates for group differences in high vs. low eye visibility. 

Values correspond to differences in RT (expressed in milliseconds) and percent correct 
(percentage points). Values correspond to the median of all pairwise differences between each 
young and every older participant. A corresponding Cliff’s delta is shown in italics. Square 
brackets indicate 95% confidence intervals. 

 Accuracy scores Reaction times 

 Face trials Noise trials Face trials Noise trials 

Left eye -21.3 [-30.5, -10.3] 

-0.71 [-0.93, -0.44] 

1.9 [-0.3, 3.8] 

0.37 [-0.02, 0.70] 

40.6 [19, 60.3] 

0.71 [0.41, 0.94] 

4.9 [-7.4, 13.2] 

0.16 [-0.23, 0.54] 

Right eye -19.2 [-26, -10.1] 

-0.73 [-0.94, -0.44] 

4.0 [0.9, 6.7] 

0.50 [0.12, 0.82] 

-2.5 [-16.2, 9.8] 

-0.08 [-0.49, 0.31] 

11.2 [-7.9, 27.2] 

0.25 [-0.17, 0.62] 

 

 
 

Figure 2 Behavioural modulation by eye visibility. 

Each point corresponds to the difference between high and low visibility of the left (blue) and the 
right (purple) eye, separately for young (triangles) and older (squares) participants, and for face 
(left panel) and noise (right panel) trials. Median accuracy score and around median reaction time 
differences are marked with vertical and horizontal lines, respectively. Group differences (empty 
circles and dashed CI lines) show stronger modulation of accuracy scores by the presence of 
each eye in older participants, as well as stronger RT modulation by the presence of the left eye. 
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EVENT-RELATED POTENTIALS 

We started by comparing the amplitude and latency of the N170 between the two age 

groups (Figure 3). We computed mean ERPs across trials for each participant, 

separately for face and noise trials, and for practice (without Bubbles) and regular (with 

Bubbles) trials. For ERPs recorded at the lateral-occipital electrode in the right 

hemisphere (RE), we then computed the N170 latency for individual participants as the 

latency of the minimum ERP in the time window of 110-230 ms following stimulus onset, 

and its corresponding amplitude. 

We found a strong age difference in the amplitude difference between face and noise 

practice trials: the ratio of older to young participants’ amplitude difference between face 

and noise trials was, on average, 33% (difference: 0.34 µV/cm2 [0.15, 0.48]; Table 3). 

There was no significant age difference on the N170 amplitude in practice face trials 

(difference: 0.09 µV/cm2 [-0.12, 0.24]). Rather, the effect was driven by the difference in 

practice noise trials: older participants’ ERPs were much larger than those of young 

participants (difference: 0.45 µV/cm2 [0.26, 0.66]).  

The N170 latencies in older participants were also significantly delayed compared with 

young participants: by 18 ms [9, 24] in practice face trials, and by 23 ms [9, 38] in 

practice noise trials. The age-related delay was similar across faces and noise textures 

(interaction between age and stimulus category = 6 ms [-3, 16]). 

In trials with Bubbles, latencies in older participants were delayed similarly to practice 

trials: by 22 ms [10, 32] in face trials, and by 18 ms [7, 31] in noise trials.  

However, due to sampling of face information on each trial our Bubble trials reflect a 

mixture of conditions that are not comparable to full faces. Therefore, comparing mean 

ERPs in practice and Bubble trials is not meaningful. As such, we ran a Mutual 

Information (MI) analysis in order to investigate how ERPs varied according to what 

stimulus information was revealed through Bubble apertures on a single trial level.  
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Table 3 Effect size estimates for group differences in N170 latency and amplitude. 

Effect size estimates for group differences (young – older) in N170 latency (LAT; expressed in 
milliseconds) and amplitude (AMP; expressed in µV/cm2). Values correspond to the median of all 
pairwise differences between each young and every older participant. A corresponding Cliff’s 
delta is shown in italics. Square brackets indicate 95% confidence intervals. 

Face Noise Face-Noise 

Trials without Bubbles 

N170 LAT 

-18 [-24, -9] 

-.64 [-.91, -.32] 

-23 [-39, -9] 

-.51 [-.82, -.16] 

6 [-3, 16] 

.27 [-.13, .62] 

N170 AMP 

.09 [-.12, .24] 

.16 [-.24, .51] 

.45 [.24, .64] 

.74 [.46, .95] 

-.34 [-.48, -.15] 

-.78 [-.96, -.54] 

Trials with Bubbles 

N170 LAT 

-22 [-32, -9] 

-.59 [-.86, -.26] 

-18 [-33, -6] 

-.52 [-.82, -.20] 

-2 [-8, 3] 

-.13 [-.50, .26] 

N170 AMP 

-.18 [-.37, .03] 

-.32 [-.65, .07] 

-.04 [-.18, .13] 

-.11 [-.50, .26] 

-.15 [-.24, -.05] 

-.62[-.85 -.34] 

 

 



 

 

45 

	

face trials

noise trials

face trials

noise trials

0.5

0

-0.5

0.5

0

-0.5

0.5

0

-0.5

0.5

0

-0.5

ER
P 

am
pl

itu
de

 (µ
V/

cm
2)

ER
P 

am
pl

itu
de

 (µ
V/

cm
2)

ER
P 

am
pl

itu
de

 (µ
V/

cm
2)

ER
P 

am
pl

itu
de

 (µ
V/

cm
2)

Time (ms)

YOUNG
OLD

LAT: 159 ms [156, 167]
AMP: -0.62 µV/cm2 [-0.77, -0.45] 

LAT: 141 ms [136, 146]
AMP: -0.52 µV/cm2 [-0.70, -0.40] P1

N170

LAT: 152 ms [141, 161]
AMP: 0.01 µV/cm2 [-0.15, 0.10] 

LAT: 175 ms [164, 185]
AMP: -0.47 µV/cm2 [-0.64, -0.31] 

LAT: 179 ms [170, 187]
AMP: -0.69 µV/cm2 [-0.92, -0.46] 

LAT: 204 ms [192, 216]
AMP: -0.48 µV/cm2 [-0.63, -0.33] 

LAT: 186 ms [172, 202]
AMP: -0.35 µV/cm2 [-0.53, -0.17] 

LAT: 211 ms [199, 224]
AMP: -0.29 µV/cm2 [-0.42, -0.17] 

A

B

face - noise 

0.5

0

-0.5

ER
P 

am
pl

itu
de

 (µ
V/

cm
2) -

-200 0 200 400 600 800 1000-100 100 300 500 700 900

-200 0 200 400 600 800 1000-100 100 300 500 700 900

-200 0 200 400 600 800 1000-100 100 300 500 700 900

-200 0 200 400 600 800 1000-100 100 300 500 700 900

-200 0 200 400 600 800 1000-100 100 300 500 700 900



 

 

46 

Figure 3 Group-average ERPs. 

Group-average ERPs in young (green) and older (blue) participants, for face and noise trials. (A) 
Average ERPs calculated for practice trials (without Bubble masks). (B) Average ERPs for trials 
with Bubble masks. Values reported in the subplots correspond to median latencies and 
amplitudes of the N170 component. 

 

BRAIN INFORMATION CONTENT 

To reveal the stimulus features that modulated electrophysiological responses in each 

age group, we quantified MI between pixels and ERP responses at three electrodes of 

interest: lateral-occipital electrodes over the left (LE) and the right (RE) hemisphere, and 

a midline occipital electrode (Oz, Figure 4). We found that in both groups, single-trial 

ERPs at lateral posterior electrodes were mostly modulated by pixels in the contralateral 

eye area: the left eye region was associated with ERPs recorded at the right electrode, 

and the right eye region was associated with responses at the left electrode. However, 

this association was weaker and delayed in older participants.  

At the left electrode (LE, Figure 4A, top panels), the group-average MI tended to cluster 

around the right (contralateral) eye. This effect was weaker in older participants and 

significant in a smaller number of older than young participants (Figure 4B, top panels). 

There was also some weak sensitivity to the left (ipsilateral) eye region in a few young 

participants. Sensitivity to each eye region was significantly stronger in young than in 

older participants (Figure 4C, top panels). To quantify the group effect, we averaged MI 

within the circular eye mask in each participant separately (see Figure 4 caption) and 

computed Cliff’s delta on the median difference between young and older participants. 

There was a large effect size for the group difference in MI: Cliff’s delta = 0.58 [0.21, 

0.81]. 

There was no sensitivity to any image features in noise trials for either young or older 

participants, suggesting that MI found in face trials was not due to spatial attention. No 

sensitivity in noise trials also suggests that elevated amplitudes of the N170 to textures 

in older participants do not reflect any functional processing.  

At the right electrode (RE, Figure 4A, middle panels), group-average MI was maximal in 

the region surrounding the contralateral (left) eye area in both young and older 

participants. It was, on average, significantly stronger across young compared with older 

participants (Figure 4C, middle panels). There was also a large effect size for the group 

difference in MI: Cliff’s delta = 0.57 [0.19, 0.80]. The association between the presence 
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of the contralateral eye and ERPs was also somewhat stronger at RE than at LE, in line 

with the right-hemispheric preference for face processing.  

The midline electrode (Oz, Figure 4A, bottom panels) showed generally weaker MI 

values than the lateral-posterior electrodes, and sensitivity to various face features 

(eyes, chin, mouth, nose, and forehead) in some participants in both age groups. 

Comparison of the MI values revealed stronger sensitivity to the right eye in young 

participants (Figure 4C, bottom panels). On the other hand, older participants had 

greater sensitivity to the forehead area. Additionally, on noise trials, one young and three 

older participants showed some sensitivity to face areas suggesting a low-level response 

to stimulation at this electrode (Rousselet et al., 2014). 

We made sure not to miss any effects by computing the classification image for the 

MI(PIX, ERP) across all electrodes, which showed sensitivity to the left eye region in 

both young and older participants (Figure S6 in Appendix A). 

Altogether, both in young and older participants, brain activity was mostly associated 

with the presence of the eyes at lateral electrodes, and with the presence of the eyes as 

well as other facial features at the midline electrode. Similarly to behavioural results, the 

same features were associated with ERP responses across groups. This association, 

however, was considerably stronger in young participants.  
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Figure 4 Age-related differences in ERP information content. 

(A) Group-average MI maps for young (left) and older (right) participants, displayed for the left 
(LE) and right (RE) lateral occipital-temporal electrodes, and the midline occipital electrode (Oz) 
independently for face and noise trials. The classification images for face and noise trials show 
maximum MI values across time points. RE showed significant MI to the left cheek area in 2 older 
participants in noise trials, suggesting some sensitivity to low-level image features that was 
absent in young participants. However, given the weakness and inconsistency of the effects, it 
could be a false positive. (B) Number of participants showing significant effects. The white 
number in the left upper corner of every image corresponds to the maximum number of 
participants showing a significant effect at the same pixel, whereas the number in the right upper 
corner corresponds to the total number of participants showing significant effects at any pixel. (C) 
Differences in mean MI between young and older participants. The scatterplot displayed to the left 
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of the image shows individual MI values averaged within the right eye mask (for the left 
electrode), or the left eye mask (for the right electrode). The number in each scatterplot 
corresponds to the number of young participants whose MI values were greater than the 
maximum MI value across older participants (marked as a black dashed line). The image on the 
right displays the difference between average young and older MI maps for every condition.  

 

TIME COURSE OF INFORMATION PROCESSING 

Knowing what face areas were mostly associated with brain activity, we then 

investigated how this relationship unfolds over time. We found that processing of the 

same facial information was delayed by 40 ms in older participants compared to young 

participants.    

To obtain the time courses of information processing, we saved the maximum MI across 

all pixels in the classification image computed at every time point, and then compared 

these time courses between age groups (Figure 5B). We observed a significant delay of 

40 ms in MI peak latencies in older compared to young participants at both lateral 

electrodes (CI of the median difference in ms = [28, 65] at LE, [23, 57] at RE). At LE, MI 

peaked at 166 ms [159, 175] in young and at 205 ms [195, 241] in older participants 

(Figure 5B, top panel). At RE, peak latencies occurred at 164 ms [158, 168] in young, 

and 204 ms [184, 221] ms in older participants (Figure 5B, middle panel). 

Using a measure similar to Rousselet et al. (2009, 2010), we found that it took older 

participants 23 ms [14, 33] more to integrate 50% of their MI time course at RE (median, 

young = 180 ms [174, 187]; older = 204 ms [197, 211]), and 25 ms [9, 38] at LE (median, 

young = 183 ms [172, 200]; older = 205 ms [201, 214]). 

As expected from the classification image analysis, the MI peak was significantly smaller 

across older participants at both lateral electrodes. At LE, the peak MI amplitude in older 

participants was about 58% [36, 89] that of young participants, and 57% [42, 82] at RE.  

MI peaked shortly before the peak of the N170 at both lateral electrodes in young 

participants (LE: 10 ms [4, 24]; RE: 8 ms [0, 16]), similarly to what was reported in 

Rousselet et al. (2014). This relationship, on the other hand, was not present across 

older participants (LE: 0 ms [-31, 8]; RE: 5 ms [-4, 18]).   

We made sure not to miss any local maxima of information by plotting maximum MI 

across pixels and all electrodes in both young and older participants. The time courses 
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were very similar to those obtained for the displayed electrodes (Figure S6 in Appendix 

A). 

Further evidence that we did not miss group effects which might have been localised in 

different brain regions in the two groups came from running a multivariate MI on all 

electrodes in each group. Comparing the maximum MI and its latency between young 

and older participants revealed similar results to those obtained with the electrodes of 

interest (see Table S1 in Appendix A). 

Using the whole-scalp MI results, we found that MI was maximum at posterior-lateral 

electrodes in both groups (Figure 5C). MI tended to be more right-lateralised across 

older participants (lateralisation index for face trials = -0.18 [-0.31, -0.05] in young, -0.23 

[-0.37, -0.09] in older participants). The group difference was not significant (young-older 

= 0.07 [-0.07, 0.21]).    

In order to understand when the ageing differences in MI first occurred, we quantified MI 

onsets using causal-filtered data (Figure 5A). The median onsets were 129 ms in young 

participants at LE [109, 149], and 137 ms [128, 146] at RE. In older participants, MI 

onsets occurred slightly later: at 154 ms [137, 172] at LE, and at 151 ms [138, 164] at 

RE. Onsets of MI were significantly delayed by 25 ms [-46, -5] in older than in young 

participants only at LE. Although MI onsets were also delayed by 13 ms [-24, 1] in older 

participants at RE, the group difference was not significant.  

There was also no significant difference in MI peak latencies (group difference: 3 ms [-

13, 19]) between groups at the midline electrode: the latencies were observed at 162 ms 

[154, 180] in young and 154 ms [148, 172] in older participants (Figure 5B, bottom 

panel). Peak amplitude in older observers was 100% that of young participants 

(amplitude difference = -0.1 [-14, 14] units).  

There were also no differences in group effects after computing MI using different 

methods (see Supplementary Results in Appendix A). 
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Figure 5 Time-courses of the maximum MI across pixels. 

(A) Causal-filtered data. Time-courses of average MI values are presented for young (green) and 
older (blue) participants, for face trials only. The vertical lines mark the onset of the group effect. 
(B) Non-causal-filtered data. Time-courses of average MI values are presented for both face and 
noise (insets) trials. The vertical lines mark median latencies of maximum MI in both groups, 
obtained for face trials. The two panels on the right display individual participants’ time-courses. In 
all graphs, shaded areas correspond to 95% confidence intervals around the 20% trimmed mean. 
(C) Group-averaged topographic maps. 

 

Finally, we looked at the onsets of afferent activity to the visual cortex (Figure 6), using 

the ERPSTD data. Using Global Field Power (GFP), a measure similar to ERPSTD, Foxe 

and Simpson (2002) found that the mean onset latency of the first visual component C1 

(said to represent initial occipital cortex activation) occurred at ~56 ms after stimulus 

presentation. Here, the onsets occurred at 68 ms [64, 72] in young participants, and at 

69 ms [62, 75] in older participants and were possibly delayed with respect to this in 

Foxe and Simpson (2002) due to our stimuli not being optimal to elicit a C1. Importantly, 

we found no difference in the onsets of afferent activity across the two groups (difference 

= -0.5 ms [-7, 5]), suggesting there was no general delay in the onset of visual cortical 

activity in older participants.  
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Figure 6 Onsets of afferent activity to the visual cortex. 

Thin grey lines show individual participants’ ERPSTD (µV/cm2), the thick line shows the group 
average, and the shaded areas show 95% confidence intervals around the group mean. The 
vertical lines mark the onset of cortical activity in each group. 
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ERP FEATURE-OF-INTEREST ANALYSIS 

So far, we have shown that the variability in single-trial ERP distributions was associated 

with the presence of the eyes in both young and older participants. However, this 

association was significantly weaker and delayed in older compared with younger 

participants at posterior lateral electrodes, and very similar across groups at the midline 

electrode.  

Previously, we have also shown that in young participants, amplitude and latency 

distributions of single-trial ERPs were modulated by pixels in the eye area, but the N170 

latency carried significantly more information about the contralateral eye than its 

amplitude, particularly at the right electrode (Rousselet et al., 2014). Here, we sought to 

investigate whether coding of the contralateral eye by the N170 latency was preserved in 

ageing. To this end, we used the same approach as in the behavioural analysis where 

we defined features of interest: the eye contralateral to the recording electrode, and the 

eye ipsilateral to the recording electrode. We then correlated single-trial Bubble masks 

with each feature, and computed MI between features and single-trial ERP distributions. 

Then, similarly to behavioural analysis, we split the correlation values for each feature of 

interest into 10 bins, and averaged the ERPs corresponding to each of the bins, 

separately for the left and right lateral electrodes. Presence of the eyes was associated 

with larger and earlier N170 at both electrodes in young participants. In contrast, in older 

participants, only the amplitude was modulated by the presence of the eyes (Figure 7A).  
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Figure 7 ERP modulation as a function of eye visibility in face trials. 

(A) Feature-of-interest analysis. A left-eye mask (red) was correlated with Bubble masks on each 
trial. These correlation values where then binned, where bin 1 (purple) corresponds to no visibility 
of the left eye through Bubble masks; and bin 10 (yellow) corresponds to high visibility of the eye. 
(B) Rows correspond to face trials in young and older participants at the left electrode (top two), 
and at the right electrode (bottom two). Columns correspond to ERP modulations as a function of 
the visibility of the contralateral eye (blue) or the ipsilateral eye (purple). In young, but not in older 
participants, presence of the contralateral eye was associated with earlier and larger N170, 
particularly at the right electrode. (C) Effects of eye visibility on the latency and amplitude 
differences between the 10th (high information) and the 1st (low information) bin ERPs, at the left 
(top) and right (bottom) lateral electrodes. Amplitude and latency modulations by the presence of 
the contralateral eye (blue) and ipsilateral eye (purple) are presented in both plots. Amplitude 
differences are expressed as proportion of the 1st bin ERP amplitudes, i.e. amplitude difference of 
50% means that amplitude of bin 10 ERPs was 150% the size of the amplitude of bin 1 ERPs. 
Filled circles correspond to median ERP modulations across young participants; squares show 
medians across older participants, and empty circles show group differences in median of the 
pairwise differences. Vertical and horizontal bars correspond to 95% confidence intervals. 
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To quantify this effect, we computed the N170 amplitude and latency in every participant 

and every feature, for the lowest (bin 1) and the highest (bin 10) correlation values, 

separately for the left and right electrode. We defined the N170 as the first local 

minimum in the time window 150 to 250 ms following stimulus onset in ERPs low-pass 

filtered at 20 Hz using a fourth order Butterworth non-causal filter. We then computed the 

differences between high and low amplitude and latency values for each group 

separately. Results are presented in Figure 7B.  

At the left electrode, the N170 in young participants was 12 ms [8, 17] earlier when the 

contralateral eye visibility was high compared to low, and 6 ms [2, 10] earlier when the 

ipsilateral eye visibility was higher. On the contrary, the N170 latency to the contralateral 

eye was not significantly modulated in older participants (difference = -1 ms [-9, 6]), and 

was delayed by 4 ms [1, 8] when the ipsilateral eye visibility was higher. At the right 

electrode, these effects were even stronger. The N170 was 24 ms [17, 31] earlier in 

young and only 5 ms [2, 11] earlier in older participants when more of the left eye was 

visible. The ipsilateral eye had opposite effects in the two groups: in young participants, 

the N170 latency to the presence of the right eye was shorter by 2 ms [1, 4], but longer 

by 4 ms [1, 8] in older participants.  

We then directly tested the interaction between age and latency modulation, i.e. whether 

the difference in latency modulation by the presence of the contralateral eye versus the 

ipsilateral eye differs between the two age groups. Finally, we computed the effect size 

estimates for the group difference in the latency modulations at each electrode. We 

found a significant group effect at the right (difference: -9 ms [-16, -3]), but not the left 

electrode (difference: 2 ms [-5, 9]). This means that presence of the contralateral eye 

had a stronger effect on the N170 latency modulation in young participants, but not older 

participants, in the right hemisphere. This effect was not found in the left hemisphere. 

Altogether, the results suggest a differential ageing effect on eye coding mechanisms 

across hemispheres. 

In terms of age effects on amplitude modulation (Figure 7B), the only significant group 

effect was found at the left electrode for Bubble visibility of the right eye: this was 

associated with 153% [140, 166] larger N170 amplitude in young, and 191% [157, 225] 

larger amplitude in older participants (Cliff’s delta, -0.41 [-0.76, -0.02]; for group 

differences in latency and amplitude refer to Table 4). Other amplitude modulations were 

similar across the two groups (Tables 4 and 5).  
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In summary, our feature-of-interest analysis suggests modulation of the N170 latency 

and amplitude as a mechanism involved in face detection in young participants. This 

mechanism changes with ageing. Specifically, while face detection is associated with 

modulation of the N170 amplitude, there is no modulation of latency in older adults. Our 

results also point to the right hemisphere as the site where the mechanism is localised. 

Table 4 Effect size estimates for eye coding by the N170.  

Effect size estimates for group differences (young-older) in N170 latency (LAT) and amplitude 
(AMP) for different facial features visibility, at left (LE) and right electrode (RE). Values 
correspond to median latencies expressed in milliseconds, and median difference (percentage 
points) in amplitude. Square brackets indicate 95% confidence intervals. A corresponding Cliff’s 
delta estimate is shown in italics. 

 N170 LAT N170 AMP 

 LE RE LE RE 

Left eye -11 [-16, -7] 

-0.79 
[-0.97, -0.56] 

-16 [-24, -11] 

-0.77 
[-0.92, -0.52] 

7 [-14, 22] 

0.16  
[-0.24, 0.58] 

-10 [-31, 17] 

-0.16  
[-0.54, 0.20] 

Right eye -11 [-18, -3] 

-0.48 
[-0.80, -0.11] 

-7 [-12, -4] 

-0.71  
[-0.92, -0.44] 

-40 [-64, -3] 

-0.41  
[-0.76, -0.02] 

2 [-17, 14] 

0.03  
[-0.39, 0.41] 

 

Table 5 Amplitude modulation by eye visibility.  

Amplitude modulation for left and right eye visibility, at left (LE) and right (RE) electrode. 
Amplitude differences are expressed as proportion of the 1st bin ERP amplitudes, i.e. amplitude 
modulation of 137% means that amplitude of the 10th bin ERPs was 137% the size of the 
amplitude of the 1st bin ERPs. Square brackets indicate 95% confidence intervals. 

 Young Older 

 LE RE LE RE 

Left eye 137%  

[125, 150] 

153%  

[132, 175] 

129%  

[111, 150] 

161%  

[141, 181] 

Right eye 153%  

[140, 166] 

133%  

[124, 142] 

191%  

[157, 225] 

131%  

[113, 149] 
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DISCUSSION 

To understand visual information processing in ageing, we must start by asking what 

facial information the aged brain processes and when. Here, for the first time in a sample 

of older participants, we address these two questions by using reverse correlation to link 

facial stimulus space to behavioural and brain responses.    

In the current study, we found that older adults used pixels around the eyes to detect 

faces, similarly to young adults. In particular, pixels around the left eye were associated 

with faster reaction times in both young and older participants. However, older adults 

were heavily dependent on the presence of the eyes to accurately detect faces, whereas 

young adults used any feature. These results suggest older participants used a different 

strategy to detect faces – they might be focusing on higher contrast information 

contained within the face, in line with previous studies showing that older adults require 

more contrast to detect and discriminate between faces (Lott, Haegerstrom-Portnoy, 

Schneck, & Brabyn, 2005; Owsley, Sekuler, & Boldt, 1981). The results pertaining to 

group differences in modulation of accuracies, however, should be treated with caution 

because young participants performance on Bubble trials was above 90% and, as such, 

could be regarded as being at ceiling. Given this high accuracy the task might not have 

been sensitive enough to elicit modulations of accuracy by face feature in young adults. 

As such, if performance of young participants was brought down, there might just as well 

be an observable association between presence of the eye, or other feature(s) and 

correct responses.  

Having established what information participants use to perform a face detection task, 

we quantified when that information was coded in the brain. In young and older 

participants alike, we found that single-trial ERPs are mostly associated with the 

presence of eye pixels contralateral to the recording lateral-occipital electrodes. This 

association (measured with Mutual Information) was also stronger at right hemisphere 

electrodes in both groups, in line with the right hemisphere dominance for face 

processing (Sergent, Ohta, & MacDonald, 1992). However, Mutual Information (MI) was 

significant in a smaller number of older than young participants and weaker in older 

participants. MI time courses also peaked about 40 ms earlier in young than in older 

participants suggesting that processing of the same face feature is weaker and delayed 

in ageing. Altogether, our results of delayed diagnostic information processing seem to 

be in line with the theory of slowed information processing in ageing (Salthouse, 1996). 

These results, together with behaviour, suggest a double-dissociation in age-related 

changes to face processing: a stronger reliance on the eyes in making behavioural 
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judgments is coupled with weaker and delayed brain sensitivity to these features in older 

adults, relative to young adults.  

The MI results were not due to our selection of electrodes. We made sure not to miss 

any effects by running the MI analysis on all electrodes and visualising maximum MI 

across electrodes in a classification image and a time course. Whole-scalp results, 

however, were very similar to those obtained on the electrode of interest (RE) suggesting 

that occipital-lateral electrodes showed maximum sensitivity to the eye region in both 

young and older observers.  

The age-related delay in processing of the eye could not be attributed to the presence of 

Bubbles either. Bubbles can be thought of as a form of masking procedure that degrades 

the visual input and has been suggested to entail object completion (Tang et al., 2014). 

Processing occluded stimuli by the visual system may require additional resources to 

perform the task, leading to longer processing times (Sekuler, Gold, Murray, & Bennett, 

2000). As such, any delay observed in a sample of older adults could be due to a 

combination of factors: a genuine slowing down of processing speed, as well as an 

increase in the time needed to process the occluded stimulus with respect to young 

adults. However, our ERP results show that the processing time of Bubbled images 

compared with full images was not different in young and in older participants. 

Specifically, even though processing of the Bubbled stimuli was delayed with respect to 

full images by about 20 ms in both young and older participants, there was no interaction 

between age and masking condition. In both practice (unmasked) and Bubble (masked) 

trials, the N170 latency to face images in older participants was delayed by about 20 ms 

(18 ms in practice trials and 22 ms in Bubble trials) with respect to that in young 

participants. This is in line with a recent study (Bieniek et al., 2013) showing that even 

though stimulus luminance affects the entire ERP time course in both young and older 

participants, it does not affect age-related differences in processing speed.  

On the other hand, there is some indication that ageing may indeed affect perception of 

partially occluded objects on a behavioural level. For example, older participants were 

less accurate and needed more stimulus information in tasks requiring perceptual 

closure (Cremer & Zeef, 1987; Salthouse & Prill, 1988; Whitfield & Elias, 1992), 

perceptual organization (Kurylo, 2006), contour integration (Roudaia et al., 2008) or 

perception of incomplete/fragmented figures (Danziger & Salthouse, 1978; Lindfield & 

Wingfield, 1999; Lindfield, Wingfield, & Bowles, 1994). Lower accuracy was not due to 

diminished retinal illuminance associated with ageing (e.g. because of senile miosis or 

increased lenticular density), but rather due to some general inefficiency in utilizing 
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segment information as effectively as young adults (Danziger & Salthouse, 1978; 

Salthouse & Prill, 1988). The reason for such age-related deterioration in performance 

on tasks involving perception of fragmented pictures or perceptual closure remains 

elusive, but it has been suggested that perceptual difficulties arise as a result of slowing 

within a neural network (Salthouse & Meinz, 1995; Salthouse, 1996). According to this 

hypothesis, slowing of the network responsible for a given task arises as a result of 

heightened noise or variability associated with the internal stimulus representation in the 

neural system (Salthouse & Lichty, 1985). This increased internal noise hypothesis has 

recently been tested behaviourally in studies investigating face perception across 

different views in older adults (Habak et al., 2008; Wilson, Mei, Habak, & Wilkinson, 

2011). Results showing an increase in bandwidths for head orientation and a drop in 

performance were in line with the hypothesis that decreased neural inhibition between 

neural representations of different face views contributed to an increase in internal noise 

(see also Bennett, Sekuler, & Sekuler, 2007), albeit these studies did not measure neural 

inhibition directly. Evidence for increased internal noise, leading to a lower signal-to-

noise ratio comes from monkey single-unit recordings (Schmolesky et al., 2000; Wang et 

al., 2005; Yang et al., 2008) and, indirectly, from fMRI studies in humans showing 

broader tuning of neural responses in ventral visual brain regions (Park et al., 2004, 

2012).  

The decrease in neural inhibition could explain the elevated responses to noise trials in 

the current study. We already reported that older adults show large N170-like responses 

to textures (Rousselet et al., 2009) and observed similar responses here. By 

investigating the information content of these noise trials in the current study, we shed 

some light on the potential origins of these responses. Specifically, we show that there 

was no significant information content on noise trials in either young or older participants. 

Lack of any information content on noise trials in the current study suggests that older 

adults are not processing textures as faces. Therefore, the large amplitude to textures 

might rather reflect some general activation to a visual stimulus without functional 

significance. Furthermore, lack of information on noise trials suggests that MI results on 

face trials were unlikely to be due to spatial attention to the eye region. If this were the 

case, we would have expected to observe some sensitivity to the eye area in noise trials 

as well. However, the effects of potential age-related differences in controlling spatial 

attention should not be ruled out completely. For example, a recent EEG study identified 

an age-related reduction of right-hemispheric control of spatial attention in a line 

bisection task (Learmonth, Benwell, Thut, & Harvey, 2017), in agreement with the 

“hemispheric asymmetry reduction in older adults” (HAROLD) model (Cabeza, 2002) 
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which proposes that cognitive function that are highly lateralised to one cerebral 

hemisphere in young adults become generally less lateralised in older adults. Although 

our results show that MI was right-lateralised in both young and older adults alike, this 

measure might not be sensitive enough to measure attentional biases in the two groups. 

Interestingly, our behavioural results suggested that both the left and the right eye 

regions were important for correct responses in older participants. However, with the 

present design it is not possible to say whether it was any eye available on a given trial 

that was associated with correct responses, or whether it was an integration of 

information from both eyes, and whether such integration (if found) was associated with 

a compensatory recruitment of the left hemisphere in older adults. Future studies should 

address this issue, for example by employing independent Bubbles sampling in the two 

visual hemifields and other paradigms aimed at testing feature integration. 

The relationship between diagnostic information and the peak of the N170 has only been 

investigated in a sample of young participants so far (Ince, Jaworska, et al., 2016; 

Rousselet et al., 2014; Schyns et al., 2007). Specifically, coding of the eye starts well 

before the peak of the N170 (Rousselet et al., 2014; Schyns et al., 2007), and the N170 

peaks when information diagnostic to the task at hand (e.g. the mouth in expressiveness 

task) has been integrated (Schyns et al., 2007). In a face detection task, since the 

contralateral eye provides the diagnostic information, the N170 peaks earlier and is 

larger in amplitude when visibility of the eye is higher (Rousselet et al., 2014). In the 

current study, we extended those results to a sample of older participants. Specifically, 

using reverse analysis we found that higher eye visibility was associated with larger 

amplitude of the N170 in older participants. However, there was no modulation of 

latency, contrary to young participants. Latency and amplitude modulation of the N170 

by the contralateral eye was also larger in the right hemisphere in young, but not older 

participants, suggesting an age-related difference in coding of the eye by the N170.  

Recently, Ince et al. (2016) also found that the rebound from the N170 peak codes the 

transferred ipsilateral eye from the other hemisphere, suggesting that the N170 reflects 

coding and transfer functions of an information-processing network involving both 

hemispheres. These results further support the notion that the peak of the N170 cannot 

be interpreted as an isolated event and that traditional ERP peak analyses should be 

abandoned in favour of investigating the entire time course of feature sensitivity 

(Rousselet & Pernet, 2011; Rousselet, Pernet, Caldara, & Schyns, 2011; Schyns et al., 

2007).  
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To go beyond peak measurements, Rousselet et al. (2009, 2010; Bieniek et al., 2013, 

2015) used an alternative measure that takes into account both the latencies and 

amplitudes of the entire ERP waveform, providing a cumulative index of the speed of 

visual processing. They reported that the earliest stage of image structure processing is 

spared in ageing, with onsets of face sensitivity taking place around 90 ms post-stimulus 

regardless of age. Ageing effects began at around 120 ms following stimulus onset and 

were the strongest at around 190 – 200 ms, with older adults being about 50 ms slower 

than young adults. Here, using a similar cumulative sum approach, we found that it took 

older participants only about 20 ms more to integrate 50% of their MI time course about 

contralateral eye sensitivity. In previous studies, older participants’ maximum sensitivity 

to image structure was also spread over two time windows, one weaker around the same 

time as in young participants (100 – 200 ms post-stimulus) and one stronger, after 200 

ms. As opposed to our results, the maximum sensitivity to image structure was also 

equally strong in both groups.  

Results from previous studies left it unclear whether the second period of sensitivity 

reflected involvement of a different mechanism in older adults, e.g. top-down control 

(Gazzaley et al., 2008; Grady, 2008), or slowing down of visual processing with age. If 

the latter were true, this could mean that, in older participants, the later time window 

might become functionally equivalent to the N170 time window in young participants. 

Here, we shed some light on this question by showing that the same information 

(contralateral eye sensitivity) is processed in the same time window of the N170 in young 

and older participants, but this processing is weaker and delayed in ageing. Our results 

also lack the second period of sensitivity found in previous studies, which might be the 

effect of applying Bubble masks to the images. As such, it would be interesting to 

compare how contralateral eye sensitivity is affected by ageing with the use of a different 

experimental manipulation. For example, visibility of the eye could be parametrically 

manipulated by adding different levels of phase noise to the eye region, thereby 

providing a direct comparison to results obtained previously (Rousselet et al., 2009, 

2010; Bieniek et al., 2013, 2015).  

In conclusion, here we show for the first time that the information content of early visual 

ERPs in older adults does not differ from that of young adults. Specifically, the 

contralateral eye region modulates ERPs in young and older adults alike, although the 

processing of the eye is weaker and delayed in ageing. This finding is coupled with an 

increased reliance on the presence of the eyes in the image on a behavioural level, 

suggesting a dissociation of behavioural and brain responses in older adults. 
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Furthermore, eye visibility modulates only the N170 amplitude in older adults, but both 

the latency and amplitude in young adults.  
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CHAPTER 3: AGE-RELATED DIFFERENCES IN EYE SENSITIVITY 

WITH AND WITHOUT THE FACE CONTEXT 

INTRODUCTION 

In order to understand whether young and older adults use the same facial information to 

perform a face detection task, and when this information is processed in the brain, we 

have recently used a Bubbles paradigm (Gosselin & Schyns, 2001) coupled with reverse 

correlation (Jaworska et al., in prep). Participants were presented with images of faces 

and textures revealed through ten Gaussian apertures placed randomly on each trial. By 

correlating reaction times with stimulus information in single trials, we have shown that 

young and older participants alike responded faster when the left eye was visible through 

the Bubble masks (Jaworska et al., in prep). However, older participants relied on the 

presence of the eyes much more to make correct responses, whereas any face feature 

was sufficient for young participants (Jaworska et al., in prep). Presence of the 

contralateral eye in the image also modulated single-trial brain activity measured with 

electroencephalography (EEG) in both young (Rousselet et al., 2014; Schyns et al., 

2007; Van Rijsbergen & Schyns, 2009) and older adults (Jaworska et al., in prep). 

However, this association was weaker and delayed in older participants. As such, we 

have shown that in a face detection task, processing of the same diagnostic information 

(the contralateral eye) was slower in ageing.  

Since only partial image information is presented through the Bubble masks, it has been 

suggested that the use of this technique may force the observer to attend to features 

rather than process the face as an overall gestalt, and that diagnostic information might 

not generalize to other experimental paradigms (Neath & Itier, 2014). Furthermore, older 

adults have been shown to perform worse on face recognition when the stimulus is 

degraded (Grady, Randy McIntosh, Horwitz, & Rapoport, 2000), as well as on object 

recognition from fragmented pictures (Danziger & Salthouse, 1978; Lindfield & Wingfield, 

1999; Lindfield, Wingfield, & Bowles, 1994) or in tasks requiring perceptual closure 

(Cremer & Zeef, 1987; Salthouse & Prill, 1988; Whitfield & Elias, 1992). In line with these 

findings, older participants in our previous study were also generally less accurate in 

detecting a face from Bubbled images (Jaworska et al., in prep).  

As such, two questions remain unanswered. First, would behavioural and EEG sensitivity 

to the visibility of the eye generalize beyond the Bubbles paradigm? Secondly, would 

age-related delay in processing of the eye still be present in a less degraded stimulus? 
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To answer these questions, we employed a new experimental paradigm in which we 

manipulated eye visibility parametrically by introducing phase noise into the eye region. 

Previously, Rousselet et al. (2008, 2009) manipulated the visibility of full face images by 

randomizing their phase spectra in a parametric manner, and reported phase effects that 

reached maximum in the time window of the N170 in young participants (Rousselet, 

Pernet, et al., 2008). In older participants, sensitivity to phase information peaked in two 

time windows: one early (<200 ms) and one late (>200ms, Rousselet et al., 2009). In the 

current study, alongside manipulating the eye visibility, the rest of the face remained 

intact, thereby providing a “face context” and a more ecologically valid stimulus than 

Bubbled images. We then compared the results with a complementary condition in which 

the eye visibility was still manipulated but the rest of the face was phase-randomized 

(“face context absent”). This condition was related to the Bubbles stimulus such that only 

a portion of the image was revealed through an eye aperture, but it differed in that only 

the eye region was revealed on each trial, and a smaller proportion of the face area was 

revealed than through Bubble masks. 

Our hypotheses were that eye sensitivity in both face contexts would be associated with 

ERP modulation in the time window of the N170 in young adults, and that this sensitivity 

would be delayed in older adults.  

  



 

 

65 

MATERIALS AND METHODS 

PARTICIPANTS 

Twenty-four young (15 females, 3 left-handed; median age = 22, min = 20, max = 39) 

and twenty-three older adults (12 females, 3 left-handed; median age = 68, min = 59, 

max = 85) participated in the study. All young participants were recruited from the 

student body at the University of Glasgow. Older participants were local residents who 

had already taken part in the Bubbles study before (Jaworska et al., in prep) or were 

recruited from a local Active Age fitness class, the Retired Staff Association at the 

University of Glasgow, or through advertisement at a local optometrist. Young 

participants were recruited from the student body at the University of Glasgow. 

Volunteers were excluded from participation if they reported any current eye condition 

(i.e., lazy eye, glaucoma, macular degeneration, cataract, diabetic retinopathy), had a 

history of mental illness, were currently taking psychotropic medications or used to take 

them, suffered from any neurological condition, or had suffered a stroke or a serious 

head injury. Volunteers were also excluded from participation if they had their eyes 

tested more than a year (for older volunteers) or two years (for younger volunteers) prior 

to the study taking place, in order to minimise the chances that volunteers did not have 

knowledge of an underlying eye condition. Participants’ visual acuity was assessed 

during their first experimental session using a Colenbrander mixed contrast card set 

(Colenbrander & Fletcher, 2004) for the 40 cm and 63 cm viewing distances, and the 6 m 

Bailey-Lovie Chart (Bailey & Lovie, 1980). Participants’ contrast sensitivity was assessed 

with the Mars Letter Contrast Sensitivity set (Arditi, 2005). All participants had normal or 

corrected to normal visual acuity (Table 6) and contrast sensitivity of 1.72 log units and 

above, which fell within the normal range of contrast sensitivity for each age group 

(Haymes et al., 2006). In addition, older participants completed the Montreal Cognitive 

Assessment (MOCA) to screen for age-related cognitive impairment. MOCA scores of 

three older participants were one point below the normal threshold (more than or equal 

to 26 out of 30, Table 6) and the median score was 28 (min = 25, max = 30). Older 

participants also completed the Trail Making Test – part of the Delis-Kaplan Executive 

Function System (D-KEFS) (Delis, Kaplan, & Kramer, 2001) battery of tests to assess 

higher-order cognitive and executive functioning. Results of the Trail Making Test are 

reported in Table 6. During the experimental session, participants wore their habitual 

correction if needed. 
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The study was approved by the local ethics committee at the College of Science and 

Engineering, University of Glasgow (approval no. 300150007), and conducted in line with 

the British Psychological Society ethics guidelines. Informed written consent was 

obtained from each participant before they took part in the study. Participants were 

compensated £6 per hour.  

Table 6 Visual and cognitive test scores. 

Presented are visual acuity and contrast sensitivity (CS) scores for young and older participants, 
as well as MOCA and Trail Making Test Scores for older participants. Visual acuity scores are 
reported for high contrast (HC) and low contrast (LC) charts presented at the 40 cm, 63 cm and 6 
m viewing distances, and expressed as raw visual acuity scores (VAS). Their corresponding 
logMAR scores are presented below in italics, where higher values indicate poorer vision and 
negative values represent normal vision (logMAR score of 0 corresponds to 20/20 vision). For 
Trail Making Test, scores are age-scaled composite scores for Number-Letter Switching (NLS) 
task versus: Visual Scanning (VS), Number Sequencing (NS), Letter Sequencing (LS), Composite 
Scaled Score (CSS), and Motor Speed (MS). Scores correspond to median across all participants 
in each age group. Square brackets indicate the minimum and maximum scores across 
participants in each age group. 

 HC 40 LC 40 HC 63 LC 63 HC 600 LC 600 CS 

young 103 

[93, 105] 
-0.06 [0.14, 

-0.10] 

95 

[83, 103] 
0.10 [0.34, 

-0.06] 

105 

[97, 111] 
-0.10 [0.06, 

-0.22] 

94 

[86, 105] 
0.12 [0.28, 

-0.10] 

103 

[89, 110] 
-0.06 [0.22, 

-0.20] 

95 

[65, 103] 
0.10 [0.70, 

-0.06]  

1.84 

[1.72, 1.92] 

older 92 

[75, 105] 
0.16 [0.50, 

-0.10] 

83 

[65, 98] 
0.34 [0.70, 

0.04] 

100 

[85, 110] 
0.00 [0.30, 

-0.20] 

89 

[75, 100] 
0.22 [0.50, 

0.00] 

100 

[88, 105] 
0.00 [0.24, 

-0.10] 

91 

[75, 99] 
0.18 [0.50, 

0.02] 

1.80 

[1.68, 1.88] 

 MOCA D-KEFS Trail Making test: NLS vs. XXX 

  VS NS LS CSS MS 

older 28 

[25, 30] 

12 

[10, 15] 

11 

[9, 15] 

12 

[9, 15] 

11 

[9, 15] 

10 

[9, 13] 

 

STIMULI 

Participants were presented with a set of 10 grey-scaled front view photographs of faces 

(5 males and 5 females), oval cropped (9.3° x 6.4°) to remove external features, and 

pasted on a uniform grey background (Gold et al., 1999). All stimuli had the same 

amplitude spectrum and contrast variance (variance = 0.035). For each face identity, a 
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unique eye mask, including the eyebrow, was created by centring an ellipse on the pupil 

of each eye independently. As such, the eye mask for each identity varied slightly in 

shape and size. Each eye’s aperture was smoothed with a Gaussian filter (standard 

deviation = 5 pixels).  

There were six experimental conditions: four in which the face context was present, and 

two in which the face context was absent (Figure 8). In the face context conditions, either 

the left or the right eye (as seen by observers in the picture plane) visibility was 

parametrically manipulated by adding phase noise. At the same time, the opposite eye to 

the one sampled was either present or absent. In the conditions without the face context, 

visibility of only one eye (the left or the right) was changed.  

Noise in the sampled eye region was created by altering phase coherence of the face 

image, such that coherence varied across 60 levels from 1% to 60%. In conditions with 

the face context present (conditions 1 – 4, Figure 8A), the presence of the opposite eye 

was then manipulated by either completely randomizing phase coherence within the 

other eye aperture (0% coherence, ‘eye absent’, conditions 1 and 3) or leaving phase 

coherence intact (100% phase coherence, ‘eye present’, conditions 2 and 4). Both the 

sampled eye and the opposite eye where then combined with the face context. In 

conditions without the face context present (conditions 5 – 6, Figure 8A), either the left 

(condition 5) or the right eye (condition 6) visibility was manipulated in a similar manner 

to other conditions: by randomizing phase spectrum of a face image drawn at random. 

Independently, a texture was created by fully randomizing the phase spectrum of the 

same image. Then, the eye with added noise and the texture were combined. A set of 

textures, presented through the face oval, was also generated for the task of 

discriminating a face image from a texture image.  
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Figure 8 Examples of stimuli. 

(A) Experimental conditions. Columns correspond to examples of six phase coherence levels (c = 
0.1 to 0.6, or 10% to 60%) introduced to the sampled eye. Rows correspond to the six 
experimental conditions (numbers in the bottom right corner; see legend in the bottom right corner 
of the figure). Coloured circles in the top left corners correspond to condition coding used in ERP 
figures, reflecting an interaction between the visibility of the eyes in the stimulus and their coding 
in each hemisphere (either present in the hemifield contralateral or ipsilateral to the sensor of 
interest). (B) Example of stimulus coding with respect to analyses performed at the occipital-
temporal sensor on the right hemisphere (OTR). Example stimuli are shown at coherence level of 
30%. Top, a diagram depicting sampling of the eye contralateral to OTR while the ipsilateral eye 
is absent (condition 1). Bottom, sampling of the eye ipsilateral to OTR while the contralateral eye 
is present (condition 4).     

  

face context conditions

no-face context conditions
c=0.1 c=0.2 c=0.3 c=0.4 c=0.5 c=0.6

1

2

3

4

5

6

OTL OTR

1c=0.3
contralateral 
eye sampled

ipsilateral 
eye absent

A B

4 c=0.3

OTL OTR

contralateral 
eye present

ipsilateral 
eye sampled

1: sample Left eye, Right eye absent
2: sample Left eye, Right eye present
3: sample Right eye, Left eye absent
4: sample Right eye, Left eye present
5: sample Left eye
6: sample Right eye
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PROCEDURE 

All participants were tested in one experimental session consisting of a behavioural task 

and simultaneous EEG recordings. Participants sat in a dimly lit and sound-attenuated 

booth, and were given experimental instructions including a request to minimize 

movement and blinking, or to blink when hitting a response button. 

The experimental session consisted of 18 blocks of 80 trials (1440 trials in total). There 

was a total of 1080 face trials (6 conditions x 60 phase coherence levels x 3 repetitions 

of each coherence level) and 360 texture trials. All trials and face identities were 

randomized across the entire experiment.  

On each trial, participants were first presented with a small fixation cross (12 x 12 pixels, 

0.35° x 0.35° of visual angle) displayed at the centre of the monitor screen for a random 

time interval of 500 to 1000 ms, followed by an image of a manipulated face (see Stimuli) 

or a texture presented for 10 frames (~83 ms). After the stimulus, a blank grey screen 

was displayed until the participant responded. During that time, participants categorized 

the image by pressing ‘1’ for face, and ‘2’ for texture on the numerical pad of a keyboard, 

using the index and middle fingers of their dominant hand. They were requested to 

respond as fast and accurately as possible.  

After each block, participants could take a break, and they received feedback on their 

performance in the previous block and on their overall performance in the experiment 

(median reaction time and percentage of correct responses). The next block started after 

participants pressed a key indicating they were ready to move on.   

Stimuli were displayed on a VIEWPixx monitor (1920 x 1200 pixels; 22.5 inch diagonal 

display size; 120 Hz refresh rate). The fixation cross, the stimulus and the blank 

response screen were all displayed on a uniform grey background. The viewing distance 

measured from the chinrest to the monitor screen was 45 cm. Each session lasted about 

60 to 75 minutes, including breaks, but excluding EEG electrode application. The 

experiment was written in MATLAB using the Psychophysics Toolbox extensions 

(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). 

EEG RECORDING AND PRE-PROCESSING 

EEG data were recorded at 512 Hz using a 128-channel Biosemi Active Two EEG 

system (Biosemi, Amsterdam, the Netherlands). Four additional UltraFlat Active Biosemi 
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electrodes were placed below and at the outer canthi of both eyes. Electrode offsets 

were kept between ±20 µV.  

EEG data were pre-processed using MATLAB 2013b and the open-source EEGLAB 

toolbox (Delorme et al., 2011; Delorme & Makeig, 2004). Data were first average-

referenced and detrended. Two types of filtering were then performed. First, data were 

band-pass filtered between 1 Hz and 30 Hz using a non-causal fourth order Butterworth 

filter. Independently, another dataset was created in which data were pre-processed with 

fourth order Butterworth filters: high-pass causal filter at 2 Hz and low-pass non-causal 

filter at 30 Hz, to preserve accurate timing of onsets (D. J. Acunzo, Mackenzie, & van 

Rossum, 2012; Luck, 2005; Rousselet, 2012; Widmann & Schröger, 2012b). 

Data from both datasets were then downsampled to 500 Hz, and epoched between -300 

and 1000 ms around stimulus onset. Mean baseline was removed from the causal-

filtered data, and channel mean was removed from each channel in the non-causal-

filtered data in order to increase reliability of Independent Component Analysis (ICA) 

(Groppe, Makeig, & Kutas, 2009). Noisy electrodes and trials were then detected by 

visual inspection of the non-causal dataset, and rejected on a subject-by-subject basis. 

On average, more noisy channels were removed from older than from young 

participants’ datasets (young participants: median 15, min 6, max 28; older participants: 

median 21, min 8, max 42; median difference = 7, 95% confidence interval = [2, 11]).  

Subsequently, ICA was performed on the non-causal filtered dataset using the Infomax 

algorithm as implemented in the runica function in EEGLAB (Delorme & Makeig, 2004; 

Delorme et al., 2007). The ICA weights were then applied to the causal filtered dataset to 

ensure removal of the same components, and artifactual components were rejected from 

both datasets (young: median = 4.5, min = 1, max = 13; older: median = 3, min = 1, max 

= 20). Then, baseline correction was performed again, and data epochs were removed 

based on an absolute threshold value larger than 100 µV and the presence of a linear 

trend with an absolute slope larger than 75 µV per epoch and R2 larger than 0.3. Due to 

battery failure, data from 1360 trials were recorded for one young participant and from 

738 trials for one older participant. The median number of trials accepted for analysis 

was, for young participants: median 1402, min 1233, max 1434; for older participants: 

median 1403, min 713, max 1429 (median difference = -2 [-17, 10]). Finally, we 

computed single-trial spherical spline current source density waveforms using the CSD 

toolbox (Kayser, 2009; Tenke & Kayser, 2012). CSD waveforms were computed using 

parameters 50 iterations, m=4, lambda=10-5. The head radius was arbitrarily set to 10 

cm, so that the ERP units are µV/cm2. The CSD transformation is a spatial high-pass 
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filtering of the data, which sharpens ERP topographies and reduces the influence of 

volume-conducted activity. CSD waveforms also are reference-free.   

STATISTICAL ANALYSES 

Statistical analyses were conducted using Matlab 2013b. Throughout this chapter, 

square brackets indicate 95% confidence intervals computed using the percentile 

bootstrap technique, with 1000 bootstrap samples. Unless otherwise stated, median 

values are Harrell-Davis (Harrell & Davis, 1982) estimates of the 2nd quartile. 

MEASURES OF EFFECT SIZE 

We estimated the size of the between-group differences using two robust techniques: 

Cliff’s delta and the median of all pairwise differences. Cliff’s delta (Cliff, 1996; Wilcox, 

2006) is related to the Wilcoxon-Mann-Whitney U statistic and estimates the probability 

that a randomly selected observation from one group is larger than a randomly selected 

observation from another group, minus the reverse probability. Cliff’s delta ranges from 1 

when all values from one group are higher than the values from the other group, to -1 

when the reverse is true. Completely overlapping distributions have a Cliff’s delta of 0. In 

line with Cliff’s delta approach, we also calculated all pairwise differences between 

young and older participants on the measures of interest (reaction times, percent 

corrects, N170 latencies and amplitudes), and took the median of the distribution of 

these differences. This way of measuring effect sizes enabled us to provide information 

about the typical difference between any members of two groups (Wilcox, 2012).   

MUTUAL INFORMATION 

We used mutual information (MI) to quantify the dependence between the level of eye 

visibility (phase coherence) and behavioural and brain responses. MI is a non-parametric 

measure that quantifies (in bits) the reduction in uncertainty about one variable after 

observation of another and has been used to study the selectivity of neural and 

behavioural responses to external stimuli (Ince et al., 2009; Magri, Whittingstall, Singh, 

Logothetis, & Panzeri, 2009b; Panzeri et al., 2010; Schyns et al., 2011). The advantage 

of using the MI lies in its ability to detect associations of any order, whether linear or non-

linear.  

Here, we used a new estimator of MI that can be used with continuous variables (Ince, 

Giordano, et al., 2016) and utilizes the concept of copulas (Nelsen, 2007), statistical 

structures that express the relationship between two random variables, independently of 
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their marginal distributions. Previously (Jaworska et al., in prep), we used an approach 

where data were quantized into a number of bins, and MI was estimated over the 

resulting discrete spaces. However, the binning approach is sensitive to the problem of 

limited sampling bias. The copula method does not require the binning step and 

overcomes this problem while being computationally efficient (Ince, Giordano, et al., 

2016). 

We calculated several MI quantities in single participants: MI(eye, RT) to establish the 

relationship between visibility of the eye (i.e. phase coherence) and reaction times, as 

well as MI(eye, EEG) to establish the relationship between the visibility of the eye and 

EEG voltage over the time period of -300 ms before to 1000 ms after stimulus onset. 

These quantities were computed separately for each experimental condition (see 

Stimuli).  

We also computed the temporal gradient of the EEG voltage (dEEG) on each trial in 

order to account for the temporal relationship between neighbouring time points, and 

then combined the EEG voltage and its temporal gradient into a bivariate response. We 

then calculated the time course of MI about the eye visibility in the bivariate response: 

MI(eye, [EEG dEEG]). Considering the gradient response together with the voltage 

smoothes out the artifactual dips in MI time courses, occurring at time points of zero-

crossings when EEG voltages change the sign. It also introduces information about the 

shape of the ERP, otherwise missing from just considering instantaneous amplitudes. As 

such, the bivariate time course provides a clearer picture of the time window(s) over 

which the EEG signal is modulated by the changing stimulus (Ince, Giordano, et al., 

2016). 

50% INTEGRATION TIME 

In order to estimate the time course of information processing that takes into account the 

entire waveform and not just the peaks, we determined how long it took participants to 

integrate 50% of their MI time courses (Rousselet et al., 2010). For each participant, we 

computed the cumulated sum of the maximum MI across electrodes in both hemispheres 

in the time window of 0-500 ms. We then normalized that cumulated sum between 0 and 

1, such that it had a value of 0 at stimulus onset and a value of 1 at 500 ms after 

stimulus onset. Finally, we computed the time necessary to reach 50% of that function 

using a linear interpolation.  
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ELECTRODE SELECTION 

We selected three subsets of electrodes in each participant independently (Figure 9): 

midline electrodes (CE), posterior-lateral electrodes on the left hemisphere (LE) and on 

the right hemisphere (RE). Analyses were restricted to LE and RE. In order to avoid 

defining a single electrode of interest, we calculated the time courses of the maximum MI 

across all electrodes of interest in each hemisphere independently. We also checked 

that we did not miss any local maxima by repeating our group analyses on the maximum 

MI taken across all scalp electrodes. 

For ERP analyses, we selected two electrodes by measuring the difference between 

face mean ERPs and noise mean ERPs at posterior-lateral electrodes of interest, 

squaring it, and selecting the left and the right electrodes that showed the maximum 

difference in the period of 120-220 ms. The selected lateral electrodes were P7/8, or 

PO7/8, or their immediate neighbours, which are electrodes typically associated with 

large face ERPs in the literature. 
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Figure 9 Electrode locations. 

Location of electrodes included in three subsets: midline (CE, red), posterior-lateral in the left 
hemisphere (LE, green) and in the right hemisphere (RE, blue). 

  

LE
CE
RE
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RESULTS 

BEHAVIOURAL RESULTS 

Regardless of the condition, young participants were generally faster than older 

participants by about 130 ms [107, 151] (median of the median RTs in young participants 

= 419 ms [401, 437]; older = 545 ms [521, 564]). However, participants from the two 

groups had similar levels of accuracy (mean accuracy in young participants = 86% [83, 

89]; older = 87% [84, 90]; differenceolder-young = 1 percentage point (PP) [0, 2]). The 

average performance was brought down by the conditions in which the face context was 

absent (Table 7). Conditions in which the face context was present could be regarded as 

trivial given the amount of information available in the stimulus to make a correct 

response, and elicited ceiling performance in both groups, thus limiting the scope of 

considerations that could be made. As such, we report analyses comparing accuracies 

between two conditions when the face context was absent within each group, before 

moving to discuss reaction time differences in more detail. 

Average behavioural results for each condition are presented in Tables 7 and 8, and 

depicted graphically in Figure 10A. Both groups were more accurate in condition 5 

(sampling of the left eye) compared with condition 6 (sampling of the right eye) by 5 PP 

[2, 7] (young), and by 4 PP [2, 6] (older), suggesting an advantage of the presence of the 

left eye, as seen by observers in the picture plane (hereafter, the left eye) for accuracy 

scores. However, this effect could also be due to assigning a ‘texture’ response to the ‘2’ 

button on the numerical computer keyboard, which was also on the right side of the set 

of two response buttons. As such, when participants saw the right eye revealed through 

the noisy texture, they could have been more likely to erroneously respond it was a 

texture.  

In terms of reaction times, both groups were fastest when the left eye was present and 

the right eye was sampled (condition 4), and slowest when the left eye was absent and 

the right eye was sampled (condition 3), confirming the face detection advantage 

afforded by the presence of the left eye (Rousselet et al., 2014; Jaworska et al., in prep).  

We then looked at pairwise comparisons between each and every other condition 

(Figure 10B). In face context conditions, both groups were slower in condition 3 

compared with condition 2 (sampling of the left eye while the right eye is present; young 

= 19 ms [10, 25], older = 28 ms [19, 38]), and with condition 4 (sampling of the right eye 

when the left eye is present; young = 20 ms [12, 30], older = 38 ms [24, 52]). There was 
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a significant age x RT difference interaction for condition 3 vs. 4 comparison: on 

average, RT differences among older participants were larger by about 16 ms [3, 34].  

Participants were also slower on condition 3 compared with condition 1 (sampling of the 

left eye while the right eye is absent: young = 8 ms [-16, 1]; older = 18 ms [10, 30]). 

Here, the interaction was also significant: RT differences among older participants were 

larger by about 12 ms [1, 22], suggesting that the absence of the left eye, compared with 

the right eye has a greater effect on RTs in older participants. 

Both groups also showed an RT advantage of sampling the left eye compared with 

sampling the right eye in no-face context conditions (young = 17 ms [7, 30], older = 54 

ms [36, 70]; interaction: 35 ms [16, 54]. 

 

Figure 10 Behavioural results. 

(A) Median RT (top panel) and mean accuracy (bottom panel). Each dot in the plot corresponds 
to one participant. Dots are grouped by age (young participants, Y; older participants, O) and 
condition (C1 – C6). White horizontal lines mark the median (for RTs) or mean (for accuracy 
scores) across participants for each age group and condition. White solid line in each scatterplot 
corresponds to the median (for RTs) or the mean (for accuracy scores) across participants. (B) 
Pairwise differences between conditions. Each dot corresponds to one participant’s difference in 
median RTs (top two panels) or mean accuracy scores (bottom two panels) between the 
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corresponding conditions (e.g. comparison 1 corresponds to the difference between conditions 1 
and 2; see legend). Differences for young and older participants are plotted in separate panels.  

 

Table 7 Behavioural results: accuracy scores. 

Values correspond to the median across young and older participants separately, as well as the 
group difference, for each of the six experimental conditions and for textures. The last column 
shows median RT differences between older and young participants for each condition. Square 
brackets indicate 95% confidence intervals. Within face context conditions, there was a small but 
consistent group effect: older participants were, on average, better by about 1 PP. There were no 
group differences on accuracies in trials without the face context. 

Condition Young Older Older-Young 

Sample LE/ 

RE absent 
98 [97, 99] 99 [99, 100] 

1 [0, 2] 

0.37 [0.04, 0.63] 

Sample LE/ 

RE present 
98 [97, 99] 99 [99, 100] 

1 [0, 2] 

0.46 [0.14, 0.70] 

Sample LE/ 

RE absent 
98 [97, 98] 99 [98, 99] 

1 [0, 2] 

0.39 [0.06, 0.65] 

Sample LE/ 

RE present 
99 [98, 99] 100 [99, 100] 

0 [0, 1] 

0.35 [0.05, 0.59] 

Sample LE 64 [57, 70] 64 [59, 68] 
-1 [-8, 4] 

-0.07 [-0.39, 0.26] 

Sample RE 60 [52, 67] 60 [55, 64] 
1 [-7, 7] 

0.03 [-0.31, 0.35] 

Textures 85 [78, 90] 93 [89, 95] 
4 [0, 9] 

0.28 [-0.07, 0.56] 
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Table 8 Behavioural results: reaction times. 

Values correspond to the median across young and older participants separately, as well as the 
group difference, for each of the six experimental conditions and for textures. The last column 
shows median RT differences between older and young participants for each condition. Square 
brackets indicate 95% confidence intervals. Older participants were generally slower than young 
participants in each condition. 

Condition Young Older Older-Young 

Sample LE/ 

RE absent 
396 [353, 441] 508 [477, 540] 

113 [68, 157] 

0.71 [0.41, 0.87] 

Sample LE/ 

RE present 
387 [345, 431] 504 [473, 548] 

119 [71, 165] 

0.71 [0.41, 0.87] 

Sample LE/ 

RE absent 
409 [359, 446] 530 [497, 570] 

126 [76, 169] 

0.71 [0.41, 0.87] 

Sample LE/ 

RE present 
380 [343, 421] 494 [466, 524] 

113 [70, 149] 

0.74 [0.45, 0.89] 

Sample LE 470 [415, 510] 613 [566, 662] 
149 [93, 206] 

0.72 [0.43, 0.88] 

Sample RE 487 [432, 530] 669 [619, 713] 
181 [123, 240] 

0.75 [0.45, 0.90] 

Textures 476 [437, 510] 628 [593, 698] 
166 [110, 222] 

0.77 [0.47, 0.91] 
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MUTUAL INFORMATION 

Looking at median RTs in each condition is not, however, the same as quantifying the 

relationship between the visibility of the eye and RTs. To investigate this, we computed 

Mutual Information (MI) between eye visibility and RTs (MI(eye, RT)) in each condition 

and for each participant independently. We then computed the median MI across young 

and older participants (Table 9). Generally, MI values across conditions and groups were 

rather low, suggesting that manipulating the visibility of the eye either with face context 

present or absent did not have a large influence on reaction times. In both age groups, 

highest MI was observed in condition 5, in which the left eye was sampled without face 

context present. MI in this condition was also higher in older than in young participants 

(differenceolder-young = 0.039 bits [0.002, 0.116]), suggesting that increasing the visibility of 

the left eye modulated reaction times in older participants more, contrary to previous 

findings (Jaworska et al., in prep). Higher MI in older participants was also found in 

condition 6 (sampling of the right eye when no face context is present), as well as in 

condition 1 (sampling of the left eye when the right eye was absent in face context). 
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Table 9 MI(eye, RT). 

Values correspond to the median MI (expressed in bits) across young and older participants 
separately, for each of the six experimental conditions. The last column shows median differences 
between older and young participants for each condition. Square brackets indicate 95% 
confidence intervals. 

Condition Young Older Older-Young 

Sample LE/ 

RE absent 

0.004 [-0.001, 0.012] 0.042 [0.026, 0.060] 0.031 [0.015, 0.047] 

0.60 [0.27, 0.80] 

Sample LE/ 

RE present 

0 [-0.002, 0.009] 0.009 [-0.004, 0.027] 0.003 [-0.001, 0.022] 

0.22 [-0.13, 0.52] 

Sample LE/ 

RE absent 

0.001 [-0.001, 0.008] 0 [-0.002, 0.004] 0 [-0.006, 0.002] 

-0.09 [-0.40, 0.25] 

Sample LE/ 

RE present 

-0.001 [-0.003, 0.001] -0.001 [-0.004, 0.002] 0 [-0.002, 0.003] 

0.05 [-0.28, 0.38] 

Sample LE 0.023 [0.009, 0.039] 0.077 [0.028, 0.154] 0.039 [0.002, 0.116] 

0.38 [0.04, 0.65] 

Sample RE 0.004 [-0.002, 0.025] 0.037 [0.009, 0.092] 0.016 [0.004, 0.070] 

0.39 [0.05, 0.65] 

 

To directly test if there was an advantage of manipulating the visibility of the left, as 

opposed to the right eye for RTs, we then compared MI between pairs of conditions: 

sampling of the left eye (LE) vs. sampling of the right eye (RE) when the other eye was 

absent; sampling of LE vs. sampling of RE when the other eye was present; and 

sampling of LE vs. sampling of RE when no face context was present (Table 10). We did 

not find any significant differences between modulation of RTs by the left vs. the right 

eye in young participants. In older participants, increasing the visibility of the left eye 

modulated RTs to a higher extent than the right eye in two instances: in face context 

trials, when the opposite eye was absent; as well as in no face context trials. 
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Table 10 Condition differences in MI(eye, RT): left eye advantage. 

Values correspond to the difference in MI (expressed in bits) between sampling of the left and the 
right eye while the other eye is absent (first row), sampling of the left eye and the right eye while 
the other eye is present (second row); and sampling of the left and the right eye when there is no 
face context present (third row). Last column shows median group difference for each of the 
comparisons.   

Comparison Young Older Older-Young 

Sample LE/RE abs. – 

Sample RE/LE abs. 
0.003 [-0.002, 0.009] 0.024 [0.010, 0.040] 

0.020 [0.002, 0.038] 

0.39 [0.03, 0.66] 

Sample LE/RE pres. – 

Sample RE/LE pres. 
0 [-0.001, 0.006] 0.002 [-0.002, 0.005] 

0 [-0.008, 0.004] 

-0.03 [-0.36, 0.30] 

Sample LE – Sample 

RE 
0.008 [-0.002, 0.021] 0.029 [0.013, 0.060] 

0.021 [0.002, 0.050] 

0.35 [0.01, 0.62] 

 

Stronger modulation of RTs by the presence of the left eye when the opposite eye, or the 

face context was absent, suggested that degrading the visibility of some face regions 

had an impact on RTs in older participants. To test this, we ran pairwise comparisons 

between conditions 1, 3, and 5. In all these conditions, visibility of the left eye was 

manipulated. In addition, the three conditions could be thought of as different levels of 

stimulus information degradation: the face stimulus was most intact in condition 3, where 

the face context and the opposite eye were present (‘high context information’). In 

condition 1, some face information was degraded because the right eye was absent 

while the face context remained intact (‘medium context information’). Finally, trials in 

condition 5 presented the most degraded stimulus, where only the left eye was revealed 

but the rest of the face was absent (‘low context information’). Results are presented in 

Table 11. Overall, older participants had stronger RT modulation in medium compared 

with high context information conditions, and weaker RT modulation in medium, as well 

as high context compared with low context information conditions.  
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Table 11 Condition differences in MI(eye, RT): effects of decreasing stimulus information 
available from the face. 

Values correspond to the difference in MI (expressed in bits) between: sampling of the left eye 
while the right eye is absent, and sampling of the left eye while the right eye is present (first row); 
sampling of the left eye while the right eye is absent, and sampling of the left eye without face 
context (second row); as well as sampling of the left eye while the right eye is present, and 
sampling of the left eye without face context (third row). Last column shows median group 
difference for each of the comparisons.   

Comparison Young Older Older-Young 

Sample LE/RE abs. – 

Sample LE/RE pres. 
0.002 [-0.000, 0.009] 0.041 [0.026, 0.057] 

0.034 [0.019, 0.053] 

0.70 [0.39, 0.86] 

Sample LE/RE abs. – 

Sample LE 
-0.007 [-0.028, 0.004] -0.039 [-0.102, -0.003] 

-0.025 [-0.082, 0.011] 

-0.20 [-0.51, 0.16] 

Sample LE/RE pres. – 

Sample LE 
-0.021 [-0.034, -0.009] -0.074 [-0.149, -0.024] 

-0.046 [-0.117, -0.002] 

-0.37 [-0.64, -0.02] 

 

In sum, here we show that increasing the visibility of the left eye modulates RTs more 

than the right eye in older participants when the face context is present, as well as when 

it is absent. In contrast, young participants do not show preferential modulation of RTs by 

increasing the visibility of the left eye. In addition, modulation of RTs by the left eye 

visibility in older participants changes according to the amount of face information 

available: larger modulation of RTs was found on trials in which the opposite eye was 

absent compared with trials in which it was present. Similarly, larger modulation of RTs 

was found on trials where the face context was absent compared with those where face 

context was present, with a slightly larger difference found for trials where the right eye 

was also present. In young participants, this pattern was found only for the difference 

between the most intact condition (sampling of the left eye + the right eye present in face 

context) and the least intact condition (sampling of the left eye when face context is 

absent). As such, here we show that despite high accuracy in discriminating a face from 

noise, degrading the visibility of part of the face, especially the left eye, has a small effect 

on reaction times in older, but not young participants. 
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AGE-RELATED DIFFERENCES IN EYE SENSITIVITY WHEN FACE CONTEXT IS PRESENT  

Previously, using Bubbles we have shown that processing of the contralateral eye in 

older adults is delayed by about 40 ms in both hemispheres, and weaker by about 43% 

in the left, and by about 58% in the right hemisphere. Here, we revisit this question and 

compare the time courses of MI about contralateral, as well as ipsilateral eye visibility 

when face context is present. 

First, we consider whether there are any group differences in eye sensitivity regardless 

of the presence or absence of the opposite eye. To this end, we ran MI on concatenated 

conditions 1 and 2 (sampling of the left eye: contralateral to the right hemisphere, and 

ipsilateral to the left hemisphere), and concatenated conditions 3 and 4 (sampling of the 

right eye: contralateral to the left hemisphere, and ipsilateral to the right hemisphere) 

when face context is present. We present results regardless of the hemisphere in Figure 

11. 

Contrary to previous findings, the time course of EEG sensitivity about the contralateral 

eye was weak and did not show a clear peak either in young or in older participants 

(Figure 11). Only a small deflection from baseline could be seen between 100 and 200 

ms in both groups of participants, followed by another deflection that occurred between 

200 and 300 ms in young participants. Maximum MI values taken across all time points 

were generally low: median maximum MI in young participants was 0.03 bits [0.03, 0.04], 

and 0.03 bits [0.02, 0.04] in older participants. There were no group differences either in 

maximum MI or its latency (max MI difference = 0.003 bits [-0.004, 0.010]; latency 

difference = -9 ms [-61, 37]). MI peaked on average around 200 ms in young and 211 ms 

in older participants. However, the variability of peak latencies was large in both groups 

(inter-quartile range (IQR), young = 135 ms, 25th and 75th percentiles = [142, 277]; IQR, 

older = 156 ms [142, 298]).  

  



 

 

84 

 

Figure 11 Age-related differences in eye sensitivity with face context present. 

Top panel shows MI time courses for processing of the contralateral (left) and the ipsilateral (right) 
eye, separately for young (green) and older (blue) participants. Time courses show maximum MI 
across sensors on the left and the right hemisphere. Bottom panels show the difference between 
groups. Shaded areas correspond to 95% confidence intervals.  
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AGE-RELATED DIFFERENCES IN EYE SENSITIVITY WHEN FACE CONTEXT IS ABSENT  

Next, we looked at processing of the eye when no face context was present (Figure 12). 

This condition was hypothesized to be similar to Bubbles stimuli used previously, in 

which only a small portion of the face was revealed on any given trial (Jaworska et al., in 

prep). We first report results on the contralateral eye sensitivity, separately for the left 

and the right hemisphere (Figure 12A) before moving on to report ipsilateral eye 

sensitivity (Figure 12B). 

In conditions when face context was absent, we observed a pattern of MI that was 

different from previous findings (Rousselet et al., 2014; Jaworska et al., in prep). 

Average MI time courses about the contralateral eye tended to rise slowly and peak in 

the time window of 250-350 ms both in young (OTL: 285 ms [232, 319]; OTR: 262 ms 

[218, 286]) and older (OTL: 327 ms [299, 383]; OTR: 299 ms [263, 352]) observers. 

Maximum MI was delayed in older compared to young participants (differenceyoung-older, 

OTL: -48 ms [-120, -2]; OTR: -56 ms [-121, -6]), but not significantly weaker 

(differenceyoung-older, OTL: 0 bits [-0.02, 0.01], OTR: 0.02 bits [-0.03, 0.06]). Median 50% 

ITs were delayed by 23 ms [7, 40] in older participants compared with young 

participants. 

Sensitivity to the ipsilateral eye was generally weak in both groups (Figure 12B). 

Maximum MI was similar across the two groups (differenceyoung-older, OTL: 0.01 bits [-0.02, 

0.02], OTR: 0.01 bits [-0.01, 0.03]), but delayed in older observers by about 80 ms in 

both hemispheres (OTL: 78 ms [1, 148], OTR: 78 ms [2, 147]). 50% ITs were delayed by 

about 33 ms [14, 54] in older compared with young participants. 
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Figure 12 Age-related differences in eye sensitivity with face context absent. 

(A) Contralateral eye sensitivity. Plotted are MI time courses for processing of the eye 
contralateral to the occipital-temporal sensor on the left hemisphere (OTL) and on the right 
hemisphere (OTR). Separate MI time courses are plotted for young (green) and older (blue) 
participants, with the difference between groups plotted in the bottom row. Shaded areas 
correspond to 95% confidence intervals. (B) Ipsilateral eye sensitivity. (C) Top panel: MI time 
courses for the difference in contralateral eye sensitivity between OTL and OTR, for young and 
older participants separately. MI was slightly stronger at OTR than OTL around 300 ms in young 
(0.04 bits [0.02, 0.06]), but not in older (0.03 bits [-0.01, 0.06]) participants. Bottom panel: MI time 
courses for the difference in ipsilateral eye sensitivity between OTL and OTR. MI was slightly 
stronger at OTR than OTL in young (difference: 0.01 bits [0.0003, 0.03]) but not older adults 
(difference: 0 bits [-0.01, 0.01]). 
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We then compared processing of the contralateral eye with the ipsilateral eye. Maximum 

MI about the contralateral eye was stronger than about the ipsilateral eye at OTR in 

young and older participants alike: by about 0.03 bits [0.02, 0.05] in young, and 0.03 bits 

[0.003, 0.06] in older participants. No differences were found at OTL: young participants 

= 0.004 bits [-0.002, 0.018], older participants = 0.02 bits [-0.001, 0.03]. Latencies of 

maximum MI did not differ between conditions in young (differencecontra-ipsi, OTL: -7 ms [-

49, 30], OTR: 5 ms [-35, 40]) or older participants at OTL (-27 ms [-94, 37]). There was, 

however, a delay of 30 ms [6, 70] in processing the ipsilateral eye with respect to 

contralateral eye at OTR in older participants, a result confirmed with integration times 

difference of 27 ms [13, 39] (differencecontra-ipsi, young: -12 ms [-26, 8]). Looking at 

individual participants’ time courses (Figure S7 in Appendix B), however, revealed that 

the time courses of ipsilateral eye sensitivity in when face context is absent were 

generally flat and the results should be treated with caution.  

MUTUAL INFORMATION ABOUT CATEGORICAL DIFFERENCES BETWEEN FACE AND 

TEXTURE 

In order to relate our experimental design to previous studies in the lab (Bieniek et al., 

2013; Rousselet et al., 2009, 2010), next we ran MI analysis about categorical 

differences between ERP responses to face and texture trials in each condition. To this 

end, we compared trials with the highest phase coherence level (between 50% and 60%) 

with textures.  

MI was higher at OTR than OTL in young and in older participants (Table S5 in Appendix 

B), in line with the reported dominance of the right hemisphere for face processing 

(Sergent et al., 1992). There were no group differences in the hemispheric differences in 

maximum MI or its latency (Tables S5 – S6 in Appendix B). As such, here we present 

results only for the right hemisphere (Figure 13; for detailed depiction of results at OTL, 

see Figure S8 and Tables S2 – S4 in Appendix B). 

In line with previous findings (Rousselet et al., 2009, 2010; Bieniek et al., 2013), 

categorical MI about the face/texture contrast measured in young participants tended to 

peak in the 100-200 ms time window in face context conditions (Figure 13). Median MI 

latencies in each condition are presented in Table 13. 

In contrast to that, we observed a qualitative change in the MI time courses in older 

adults (Figure 13). Specifically, older adults tended to show face sensitivity in two time 

windows: the first one, weaker, around 140 ms and the second, stronger, around 230 – 
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250 ms. As such, older participants’ maximum MI latency was delayed by about 50 – 90 

ms in face context conditions (for group differences in MI latencies, see Table 13). 

Looking at 50% integration times revealed group differences of about 30 – 45 ms 

depending on condition (Table 14). The time courses of the difference between young 

and older participants (Figure 13) revealed that MI was stronger in the group of young 

participants in the early time window, but weaker in the later time window. In fact, taking 

the maximum MI across all time points revealed no significant group differences in any 

condition (Table 12). 

Using unplanned comparisons, we found some differences between face context 

conditions in a group of young participants. Specifically, it appeared that contrasting 

textures with trials where either the left or the right eye was present, while the opposite 

eye was sampled, was associated with higher MI than when the eye was absent 

(contra/ipsi abs. – contra/ipsi pres. = -0.05 bits [-0.09, -0.003]; contra/ipsi abs. – 

ipsi/contra pres. = -0.05 bits [-0.09, 0.01]; ipsi/contra abs. – contra/ipsi pres. = -0.07 bits 

[-0.12, -0.002]; ipsi/contra abs. – ipsi/contra pres. = -0.07 bits [-0.13, -0.01]). The 

absence of the left or the right eye was also associated with slightly later MI latency 

(contra/ipsi abs. – contra/ipsi pres. = 13 ms [2, 20]; ipsi/contra abs. – contra/ipsi pres. = 

16 ms [5, 28]; ipsi/contra abs. – ipsi/contra pres. = 15 ms [-1, 30]). These results could 

point to a facilitatory effect of the visibility of both eyes in driving categorical responses to 

face stimuli. However, the effects from these unplanned comparisons were weak and 

would need to be replicated before drawing any strong conclusions.  
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Figure 13 MI(face/noise, ERP) at OTR. 

MI time courses are presented for each condition and separately for young (green) and older 
(blue) participants. The mean difference between young and older participants is plotted in black 
in separate panels. Shaded areas correspond to 95% confidence interval. 
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Figure 14 Scatterplots of individual maximum MI, latency and 50% integration times. 

Each dot corresponds to individual participant’s measure of interest: maximum MI (A), max MI 
latency (B), or 50% integration time (C). Dots are grouped by age (young participants: Y, older 
participants: O) and condition (C1: sampling of the contralateral eye when the ipsilateral eye is 
absent; C2: sampling of the contralateral eye when the ipsilateral eye is present; C3: sampling of 
the ipsilateral eye when the contralateral eye is absent; C4: sampling of the ipsilateral eye when 
the contralateral eye is present; C5: sampling of the contralateral eye without face context; C6: 
sampling of the ipsilateral eye without face context). Maximum MI and its latency were taken 
across the cluster of electrodes in the right hemisphere, whereas 50% integration times were 
computed across all sensors in the left and the right hemisphere. White lines correspond to the 
median across participants in each group and condition.  
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Table 12 Categorical differences: maximum MI. 

Values correspond to the median of the maximum MI across time points (expressed in bits), 
separately for young and older participants, for the categorical differences between each of the 
experimental conditions and textures. The last column shows the median of pairwise differences 
between older and young participants. Square brackets indicate 95% confidence intervals. Cliff’s 
delta estimates are presented in italics.   

 Young Older Older-Young 

Contra/ Ipsi abs. 0.38 [0.30, 0.46] 0.39 [0.33, 0.51] 0.03 [-0.07, 0.13] 

0.13 [-0.22, 0.44] 

Contra/ Ipsi pres. 0.42 [0.35, 0.50] 0.38 [0.30, 0.47] -0.04 [-0.14, 0.06] 

-0.11 [-0.43, 0.23] 

Ipsi/ Contra abs. 0.33 [0.28, 0.40] 0.33 [0.28, 0.43] 0.01 [-0.06, 0.09] 

0.06 [-0.28, 0.38] 

Ipsi/ Contra pres. 0.42 [0.34, 0.51] 0.39 [0.29, 0.51] -0.02 [-0.14, 0.08] 

-0.08 [-0.41, 0.26] 

Contra 0.23 [0.20, 0.28] 0.22 [0.17, 0.31] -0.02 [-0.07, 0.05] 

-0.13 [-0.46, 0.22] 

Ipsi 0.18 [0.16, 0.20] 0.17 [0.15, 0.20] -0.01 [-0.03, 0.02] 

-0.06 [-0.39, 0.28] 
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Table 13 Categorical differences: MI latency. 

Values correspond to the median of the maximum MI latency (expressed in milliseconds), 
separately for young and older participants, for the categorical differences between each of the 
experimental conditions and textures. The last column shows the median of pairwise differences 
between older and young participants. Square brackets indicate 95% confidence intervals. Cliff’s 
delta estimates are presented in italics. 

 Young Older Older-young 

Contra/ Ipsi abs. 179 [155, 204] 236 [212, 257] 52 [7, 88] 

0.39 [0.03, 0.67] 

Contra/ Ipsi pres. 147 [132, 174] 232 [203, 251] 72 [23, 101] 

0.43 [0.06, 0.69] 

Ipsi/ Contra abs. 165 [155, 186] 234 [213, 256] 61 [18, 85] 

0.40 [0.02, 0.67] 

Ipsi/ Contra pres. 147 [135, 163] 240 [224, 262] 89 [53, 110] 

0.63 [0.27, 0.83] 

Contra 238 [184, 272] 264 [238, 289] 23 [-11, 82] 

0.20 [-0.15, 0.49] 

Ipsi 253 [221, 279] 278 [241, 317] 20 [-22, 63] 

0.17 [-0.18, 0.47] 
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Table 14 Categorical differences: 50% integration times. 

Values correspond to the median of time to integrate 50% of the MI time course (expressed in 
milliseconds), separately for young and older participants, for the categorical differences between 
each of the experimental conditions and textures. The last column shows the median of pairwise 
differences between older and young participants. Square brackets indicate 95% confidence 
intervals. Cliff’s delta estimates are presented in italics. 

 Young Older Older-young 

Contra/ Ipsi abs. 203 [190, 219] 247 [232, 262] 45 [27, 62] 

0.67 [0.36, 0.84] 

Contra/ Ipsi pres. 191 [183, 210] 244 [232, 255] 46 [33, 61] 

0.72 [0.42, 0.88] 

Ipsi/ Contra abs. 213 [196, 235] 247 [235, 257] 32 [11, 49] 

0.44 [0.08, 0.70] 

Ipsi/ Contra pres. 204 [183, 227] 246 [235, 261] 44 [20, 65] 

0.61 [0.29, 0.81] 

Contra 247 [234, 261] 275 [255, 309] 31 [5, 67] 

0.39 [0.04, 0.65] 

Ipsi 255 [236, 268] 284 [267, 303] 31 [8, 53] 

0.47 [0.13, 0.71] 
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REVERSE ANALYSIS 

In previous studies, we have shown that a reverse analysis – whereby stimulus 

information is linked to modulations of the N170 amplitude and latency – can provide 

important information about the age-related differences in coding of the eye by the N170, 

which is otherwise missing from MI analysis (Rousselet et al., 2014; Jaworska et al., in 

prep). Visibility of the eye revealed through Bubble masks was associated with 

significantly earlier and larger N170 in young participants, particularly in the right 

hemisphere. In older participants, on the other hand, only modulation of amplitude but 

not latency was found for trials with higher eye visibility, and the effect was similar across 

hemispheres (Jaworska et al., in prep). 

Here, we performed the reverse analysis in a similar vein, separately for each of the six 

experimental conditions in order to check whether a small MI deflection from baseline 

observed in Figure 11 was associated with a qualitatively similar modulation of the N170 

as in the previous studies. To this end, we binned the visibility of the sampled eye in 

each condition into 6 discrete bins, such that bin 1 contained trials with the lowest eye 

visibility (1 – 10% phase coherence), and bin 6 contained trials with the highest eye 

visibility (51 – 60% phase coherence). We then averaged ERPs corresponding to trials in 

each of the bins, and plotted them separately for each condition and age group (Figure 

15). Since the pattern of results was similar in both hemispheres, we only present results 

at OTR (for detailed depiction of results at OTL, see Figures S9 – S10 and Tables S8 – 

S9 in Appendix B).  

From the graphical depiction of results in Figure 15 it can be seen that a small 

modulation of ERPs by binned eye visibility was present in young participants for 

sampling of the contralateral eye (Figure 15A). Considerable modulation of amplitude 

was also present in conditions where face context was absent (Figure 15A, rightmost 

panels). In older participants, on the other hand, ERPs seemed to be rather similar 

regardless of the bin or condition (Figure 15B). In order to quantify these differences, or 

lack thereof, we computed the N170 latency and amplitude modulation indices in a 

similar vein to previous studies (Rousselet et al., 2014; Jaworska et al., in prep). 

Specifically, in individual participants we subtracted average latencies in bin 1 from those 

in bin 6, and divided average amplitudes in bin 1 by those in bin 6 to obtain a ratio of 

amplitudes (Figure 16; for numerical values, see Table 15). We then computed the 

median of pairwise differences between young and older participants for each condition 

(Figure 16, Table 16). 
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We found a significant N170 latency modulation by contralateral eye visibility in young 

participants, in both conditions: when the ipsilateral eye was present, and when it was 

absent. Compared to trials with low eye visibility, high eye visibility was associated with 

the N170 latency shorter by 4 ms [2, 7] when the ipsilateral eye was absent, and by 3 ms 

[1, 6] when the ipsilateral eye was present. In older participants, latency modulation was 

also 4 ms in both conditions, although the confidence intervals were a bit wider ([-8,1] in 

both conditions). No other modulation of latency was found in young participants or older 

participants (Table 15). Likewise, the only significant amplitude modulation in young 

participants was found for contralateral eye sensitivity. On those trials, higher eye 

visibility was associated with amplitudes that were 1.17 times the size of those on trials 

with low eye visibility (95% CI: ipsilateral absent, [1.01, 1.35]; ipsilateral present, [0.95, 

1.44]). No significant modulations of amplitude were found in older participants in any 

condition.  

Although it appears from Figure 15 that in young participants there was a considerable 

modulation of amplitude in conditions without face context present, quantifying the 

modulation in individual participants revealed large inter-individual variability. This can be 

seen in large confidence intervals depicted by vertical lines in Figure 16, such that 

amplitudes on high visibility trials could be anything from 0.36 to 1.73 times the size of 

amplitudes on low visibility trials (contralateral eye sampling, Table 15).  

Instead, ERPs recorded from both groups displayed a non-linear response to the 

visibility of the eye after 200 ms. Specifically, binning ERPs according to the level of eye 

visibility revealed that ERPs falling in the first two bins (i.e. lowest eye visibility) were 

qualitatively different from the rest (i.e. medium and high visibility). As such, we witness a 

possibly categorical response that might reflect participants’ perception of whether the 

eye (the face) was there (high visibility) or not (low visibility), and that started after 200 

ms following stimulus onset. Because the modulation of ERPs by eye visibility occurred 

late and was not tied to any ERP peak, we could observe a trend of accumulation of 

sensitivity to the eye over a longer period of time, particularly visible in the MI time 

course of contralateral eye sensitivity in young participants (Figure 12).  

Comparing the N170 latency and amplitude modulation between young and older 

participants revealed no group differences either in latency or amplitude modulation in 

any condition (Figure 16, Table 16).  
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Figure 15 Modulation of ERPs by eye visibility at OTR. 

ERPs from each condition are averaged across trials falling in one of six bins corresponding to 
different levels of eye visibility (bin 1: lowest visibility, bin 6: highest visibility). Average ERPs are 
presented separately for young (A) and older (B) participants. 

 

Figure 16 Group-average modulation of the N170 by eye visibility at OTR. 

Effects of eye visibility on the N170 latency and amplitude were quantified as a difference 
between latencies in bin 6 (high visibility) and in bin 1 (low visibility), and as a ratio of amplitudes 
in bin 1 to amplitudes in bin 6, separately for each condition. For example, negative values on the 
x-axis (latency modulation, expressed in milliseconds) indicate shorter latencies in bin 6 than bin 
1, and positive values on the y-axis (amplitude modulation, expressed as a ratio) indicate larger 
amplitudes in bin 6 than bin 1. Green circles correspond to the median across young participants, 
whereas blue stars – to median across older participants. Black squares show median group 
differences between young and older participants, expressed as a difference in median latency 
modulations, and a ratio of median amplitude modulations. Vertical and horizontal lines 
correspond to 95% confidence intervals.   

  

0

0.5

1

1.5

2

-10 -5 0 5 10 15

contra/ ipsi abs contra/ ipsi pres contra/ no face context

ipsi/ contra abs ipsi/ contra pres ipsi/ no face context

older

young

group
difference

N170 latency difference N170 latency difference N170 latency difference

N
17

0 
am

pl
itu

de
 r

at
io

N
17

0 
am

pl
itu

de
 r

at
io

0

0.5

1

1.5

2

-10 -5 0 5 10 15
0

0.5

1

1.5

2

-10 -5 0 5 10 15

0

0.5

1

1.5

2

-10 -5 0 5 10 15
0

0.5

1

1.5

2

-10 -5 0 5 10 15
0

0.5

1

1.5

2

-10 -5 0 5 10 15



 

 

98 

Table 15 Group-average N170 latency and amplitude modulation by eye visibility at OTR. 

Values correspond to median of individual participants’ latency modulation expressed in 
milliseconds, and median ratio of amplitudes. In individual participants, latency modulation was 
calculated by subtracting average latency across trials in bin 1 (low eye visibility) from trials in bin 
6 (high eye visibility). Amplitude modulation was calculated by dividing average bin 1 amplitude by 
average bin 6 amplitude. Square brackets correspond to 95% confidence intervals.     

 N170 Latency N170 Amplitude 

 Young Older Young Older 

Contra/Ipsi abs. -4 [-7, -2] -4 [-8, 1] 1.17 [1.01, 1.35] 0.98 [0.90, 1.03] 

Contra/Ipsi pres. -3 [-6, -1] -4 [-8, 1] 1.17 [0.95, 1.44] 1.06 [0.98, 1.16] 

Contra/ no face context 0 [-2, 3] 0 [-2, 3] 0.81 [0.36, 1.73] 1.04 [0.95, 1.13] 

     

Ipsi/Contra abs. 0 [-2, 1] -3 [-6, 0] 1.13 [0.99, 1.37] 1.01 [0.89, 1.07] 

Ipsi/Contra pres. -1 [-3, 0] -2 [-4, 2] 1.11 [0.98, 1.32] 1.03 [0.94, 1.17] 

Ipsi/ no face context 2 [-1, 6] -1 [-5, 3] 0.90 [0.49, 1.28] 0.98 [0.87, 1.07] 
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Table 16 Group differences in the N170 latency and amplitude modulation at OTR. 

For latency modulation, a median difference between individual latency modulations in the groups 
of young and older participants was computed. For amplitude modulation, a median ratio of 
individual amplitude modulations in both groups (young/older) was computed (first row of values), 
as well as the difference between individual values in young and older groups (second row of 
values). Corresponding Cliff’s delta estimates are presented in italics. Square brackets indicate 
95% confidence intervals. 

 N170 Latency N170 Amplitude 

Contra/Ipsi abs. 0 [-5, 4] 

-0.03 [-0.35, 0.31] 

1.11 [0.93, 1.33] 

0.15 [-0.03, 0.36] 

0.36 [0.01, 0.63] 

Contra/Ipsi pres. 0 [-4, 4] 

-0.01 [-0.34, 0.33] 

1.25 [1.04, 1.54] 

0.24 [0.01, 0.45] 

0.14 [-0.22, 0.46] 

Contra/ no face context 0 [-3, 4] 

-0.01 [-0.33, 0.32]  

0.76 [0.36, 1.59] 

-0.00 [-0.59, 0.87] 

-0.11 [-0.45, 0.25] 

   

Ipsi/Contra abs. 2 [0, 6] 

0.30 [-0.06, 0.58] 

1.10 [0.96, 1.42] 

0.10 [-0.05, 0.34] 

0.30 [-0.05, 0.58] 

Ipsi/Contra pres. 0 [-4, 2] 

-0.03 [-0.35, 0.31] 

1.18 [1, 1.40] 

0.17 [-0.00, 0.36] 

0.17 [-0.17, 0.48] 

Ipsi/ no face context 4 [-1, 10] 

0.25 [-0.08, 0.54] 

0.75 [0.38, 1.18] 

-0.03 [-0.45, 0.43] 

0.02 [-0.33, 0.37] 
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EVENT-RELATED POTENTIALS  

The absence of effects in reverse analysis, particularly in older participants, could not be 

attributed to a lack of evoked responses to face stimuli. To the contrary, both young and 

older participants had a large N170 to both face and texture images in all conditions, with 

older participants showing enhanced responses with respect to the young. 

Average ERPs are presented in Figure 17. Both young (top panels) and older 

participants (bottom panels) had a large N170 in each condition with face context 

present. In addition to that, older participants also had a strong N170-like component 

towards stimuli without the face context, as well as for textures. In young participants, the 

responses to textures, as well as to stimuli without face context were weaker than those 

to stimuli with face context present.  

Average N170 latencies and amplitudes for each condition are presented in Table 17, 

and group differences are presented in Table 18. In general, the N170 was delayed in 

older compared with young participants, albeit not significantly in most conditions. The 

differences ranged from 4 ms [-18, 13] for sampling the contralateral eye when the 

ipsilateral eye was absent (at OTL) to 17 ms [2, 33] when the contralateral eye was 

sampled on trials without the face context and 20 ms [6, 44] when the ipsilateral eye was 

sampled and the contralateral eye was present (at OTR). Amplitudes were consistently 

larger in older than in young participants at both sensors and in all conditions (Table 18). 
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Figure 17 Event-related potentials. 

Event-related responses are averaged across young (top) and older (bottom) participants in each 
of the six experimental conditions and textures, separately at OTL and OTR. CSD data are 
expressed in µV/cm2.   
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Table 17 N170 latency and amplitude averaged across young and older participants. 

Latencies are expressed in milliseconds and amplitudes in µV/cm2. Square brackets indicate 95% 
confidence intervals.  

 OTL OTR 

Condition young older young older 

 N170 latency 

Contra/Ipsi abs. 159 [147, 181] 162 [153, 174] 157 [152, 167] 164 [155, 173] 

Contra/Ipsi pres. 158 [144, 219] 160 [152, 173] 157 [152, 168] 162 [156, 177] 

Ipsi/Contra abs. 158 [148, 171] 163 [154, 175] 157 [152, 163] 164 [157, 175] 

Ipsi/Contra pres. 152 [142, 164] 159 [149, 173] 149 [143, 154] 165 [154, 183] 

Contra  163 [147, 182] 169 [158, 181] 156 [141, 166] 172 [162, 182] 

Ipsi 165 [148, 184] 169 [158, 182] 163 [156, 176] 171 [163, 182] 

 N170 amplitude 

Contra/Ipsi abs. -0.33  

[-0.43, -0.26] 

-0.59  

[-0.72, -0.44] 

-0.37  

[-0.49, -0.27] 

-0.57  

[-0.73, -0.44] 

Contra/Ipsi pres. -0.33  

[-0.43, -0.28] 

-0.62  

[-0.75, -0.45] 

-0.41  

[-0.50, -0.30] 

-0.57  

[-0.76, -0.43] 

Ipsi/Contra abs. -0.32  

[-0.43, -0.26] 

-0.59  

[-0.71, -0.42] 

-0.39  

[-0.48, -0.30] 

-0.57  

[-0.73, -0.43] 

Ipsi/contra pres. -0.34  

[-0.44, -0.28] 

-0.61  

[-0.75, -0.45] 

-0.41  

[-0.50, -0.29] 

-0.58  

[-0.76, -0.47] 

Contra  -0.25  

[-0.32, -0.21] 

-0.55  

[-0.76, -0.38] 

-0.25  

[-0.36, -0.19] 

-0.50  

[-0.66, -0.37] 

Ipsi -0.23  

[-0.29, -0.20] 

-0.53  

[-0.73, -0.37] 

-0.25  

[-0.31, -0.19] 

-0.50  

[-0.65, -0.35] 
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Table 18 Group differences in the N170. 

Differences in N170 latency (expressed in ms) and amplitude (expressed in in µV/cm2) between 
young and older participants. Square brackets indicate 95% confidence intervals for the 
difference.  

 OTL OTR 

 amplitude latency amplitude latency 

Contra/Ipsi abs. 0.22 [0.09, 0.39] -4 [-18, 13] 0.17 [0.02, 0.38] -6 [-17, 5] 

Contra/Ipsi pres. 0.24 [0.06, 0.44] -5 [-19, 13] 0.15 [-0.02, 0.33] -6 [-21, 5] 

Ipsi/Contra abs. 0.20 [0.07, 0.38] -7 [-21, 6] 0.16 [0.01, 0.31] -8 [-20, 2] 

Ipsi/contra pres. 0.22 [0.06, 0.38] -8 [-21, 6] 0.18 [0.01, 0.33] -20 [-44, -6] 

Contra  0.26 [0.11, 0.45] -8 [-24, 7] 0.20 [0.07, 0.36] -17 [-33, -2] 

Ipsi 0.27 [0.11, 0.47] -6 [-23, 10] 0.22 [0.09, 0.39] -6 [-20, 5] 
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DISCUSSION 

Previously, using Bubbles we have shown that presence of the left eye in the image is 

associated with faster responses in young and older adults, with more accurate 

responses in older adults, and with modulation of ERPs recorded on the contralateral 

hemisphere in the time window of the N170, that was weaker and delayed in older 

adults. In the present study, we sought to replicate the eye sensitivity in both groups 

using stimuli in which face context was either present, or absent. To this end, in face 

context conditions, we manipulated the visibility of either the left or the right eye while the 

opposite eye was present or absent at the same time. In conditions without face context, 

visibility of either the left or the right eye was modulated while the rest of the face was 

phase-randomized. 

Investigating the effects of eye visibility on reaction times (RTs) using Mutual Information 

(MI) revealed that the absence of, or modulating the visibility of the left eye had a greater 

effect on RTs across older participants, and this RT modulation in older adults increased 

with decreasing face context information. These results are in line with those reported 

previously (Jaworska et al., in prep), where modulating the visibility of the left eye, but 

not the right eye, had a greater effect on RTs in older participants. Notably, in our 

previous study (Jaworska et al., in prep), older participants also relied much more on the 

presence of the eyes in the image to make correct responses, in contrast to young adults 

who could use any feature to correctly discriminate a face from a texture. Here, both 

groups of participants were equally accurate regardless of whether the face context was 

present or absent. High accuracy on face context trials, coupled with an effect of the left 

eye visibility on RTs might suggest that processing of local facial information (such as 

the eye) is less efficient in older adults (Meinhardt-Injac, Persike, & Meinhardt, 2014), 

although the effect might be mitigated by increasing the face context available during the 

task.  

In terms of brain sensitivity to the visibility of the eye, quantified with MI, a small 

deflection from baseline was visible between 100 and 200 ms post-stimulus for the 

contralateral eye visibility in face context conditions in both groups. However, MI time 

courses did not show the clear peak observed in previous studies in either group 

(Rousselet et al., 2014; Jaworska et al., in prep). Comparing maximum MI and its latency 

between young and older adults revealed no differences. As such, in face context 

conditions, we did not replicate contralateral eye sensitivity revealed in the Bubbles study 

either in young or in older participants (Rousselet et al., 2014; Jaworska et al., in prep). 

We also did not observe any group differences on MI latency or maximum amplitude. 
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The lack of eye sensitivity could be due to a saturation of face information from other 

parts of the face, which could be used in the detection task. Provided with this wealth of 

information in the form of the face context, participants could simply ignore the eyes in 

making responses as they get used to the stimuli. As such, it would be interesting to run 

a control experiment in which participants had to attend to the eye region to make a 

correct response, for example by reporting the number of eyes that could be perceived in 

the face context, ranging from 0 if both eye regions were phase-randomized to 2 if both 

eyes were clearly visible.    

We then investigated eye sensitivity in the complementary conditions, in which the face 

context was absent and the eye visibility was modulated. These conditions were 

hypothesized to be more related to the Bubbles stimulus in a way that only a portion of 

the image was revealed through an eye aperture. However, modulating eye visibility in 

the absence of the face context also elicited a different pattern of results than that 

reported previously. Specifically, in both young and older participants MI peaked in the 

time window of 250 – 350 ms, which was much later that the peaks of MI reported in the 

Bubbles study (164 ms [158, 168] in young, and 204 ms [184, 221] in older participants; 

Jaworska et al., in prep). In the absence of face context, MI was delayed in older 

compared with young participants by about 50 ms – a delay similar to that reported in the 

Bubbles study where processing of the contralateral eye was delayed by about 40 ms 

[23, 57] in older participants (Jaworska et al., in prep). However, MI was not weaker in 

older participants in the present study, in contrast to the Bubbles study in which older 

participants’ eye sensitivity was only about 57% [42, 82] the size of that of young 

participants (Jaworska et al., in prep). As such, two main findings emerge from 

conditions in which the face context was absent. First, similarly to face context 

conditions, we did not replicate the contralateral eye sensitivity in the first 200 ms of 

stimulus processing either in young or in older participants. On the other hand, we 

observed eye sensitivity that peaked much later (250 – 350 ms) in both groups and was 

delayed, but not weaker in older participants.  

Altogether, our results show that strong eye sensitivity observed in a face detection task 

using Bubbles (Rousselet et al., 2014; Jaworska et al., in prep) is not generalizable to 

stimuli in which the face context is preserved, or stimuli in which the face context is 

absent.  

The lack of eye sensitivity may suggest that the EEG activity in the first 200 ms of 

stimulus processing does not reflect encoding of a single feature – the contralateral eye. 

In order to test this possibility and to relate our findings to previous studies (Rousselet et 



 

 

106 

al., 2014; Jaworska et al., in prep) we conducted a reverse analysis in which we related 

eye visibility to the modulation of the latency and amplitude of the N170. Previously, we 

reported a large latency and amplitude modulation of the N170 in young participants 

when the contralateral eye visibility increased through Bubble masks (Rousselet et al., 

2014; Jaworska et al., in prep): on average, in young adults the N170 recorded on the 

right hemisphere was 24 ms [17, 31] earlier and 153% [132, 175] larger when the left eye 

was visible compared to when it was not. On the other hand, in older adults it was 161% 

[141, 181] larger, and only 5 ms [2, 11] earlier. In the current study, in face context 

conditions we found a significant latency and amplitude modulation for the contralateral 

eye in young participants, but it was much smaller compared with previous results: with 

higher eye visibility, the N170 was earlier by about 3 – 4 ms [2, 7], whether the ipsilateral 

eye was present or absent. In both conditions, on trials with high eye visibility the N170 

was also 1.17 times (or 117%) larger than that on trials with low eye visibility. There was 

no amplitude modulation in older adults, but their N170 was, on average, also earlier by 

4 ms [-1, 8] on high visibility trials. There was no modulation of the N170 by the 

ipsilateral eye in either group, in line with flat MI time courses for the ipsilateral eye 

sensitivity. Importantly, the reverse analysis in the current study confirmed the results 

obtained with MI: that there were no age-related differences in coding of the contralateral 

eye by the N170 in face context conditions. Altogether, the reverse analysis revealed 

these findings: 

- First, in both groups the N170 was earlier by about 4 ms when the eye visibility 

was high compared with low, and also slightly larger in amplitude in young, but 

not older participants.  

- Second, the N170 amplitude and latency modulation by eye visibility in young, 

but not older participants was much smaller in the present study compared with 

that reported in the Bubbles study.  

- Third, the N170 amplitude and latency modulation by eye visibility did not differ 

across the two age groups in the present study when face context was present, in 

contrast to the Bubbles study that revealed considerable age-related differences.  

Contrary to previous findings (Rousselet et al., 2014), our results suggest that the N170 

is not primarily concerned with coding the contralateral eye when face context is present. 

Instead, depending on the experimental paradigm and task demands, the N170 might 

reflect a number of processes, including but not limited to an automatic response to the 

eyes (Bentin et al., 1996; Itier et al., 2007; Schyns, Jentzsch, Johnson, Schweinberger, & 

Gosselin, 2003; Smith et al., 2004), structural encoding of the face components (Eimer, 

1998), feature detection or the encoding of information diagnostic to the task at hand, 



 

 

107 

such as the mouth in emotion recognition task (Schyns et al., 2007; Van Rijsbergen & 

Schyns, 2009). Indeed, there is no reason to believe that an ERP peak, such as the 

N170 is equivalent to a single functional brain component (Luck, 2005). Instead, activity 

recorded at one EEG sensor on any given time point might reflect a mixture of sources 

and processes (Luck, 2005). For example, it has been suggested that at least three 

different brain areas are synchronously active in the time window of the N170: the 

occipital extrastriate area, the more anterior area around the fusiform gyrus (Itier, 

Herdman, George, Cheyne, & Taylor, 2006), as well as a region in the superior temporal 

sulcus (STS) (Itier & Taylor, 2004). Furthermore, Itier et al. (2007) suggested that both 

face-selective and eye-selective neurons coexist in STS and may contribute to the 

observed N170 depending on the stimulus characteristics. For example, single-cell 

recordings in monkeys revealed that majority of face-selective cells continue to respond 

even if parts of the face (e.g. the eyes) are obscured, whereas other, eye-selective cells 

respond to the eyes presented in isolation but fail to respond to the whole face when the 

eyes are obscured (Perrett, Rolls, & Caan, 1982). In a similar vein, eye-selective 

neurons may fail to respond when presented in a face context, but start responding when 

the face context/configuration is disrupted and the eye is no longer perceived in a normal 

face context in humans (Itier et al., 2007). For example, contrast reversal or inversion 

(or, perhaps, the use of Bubble masks) could lead to disruption of the normal face 

context and an additional activity of the eye-selective neurons, leading to an increase in 

the N170 amplitude (Itier et al., 2007). In our study, the modulation of eye visibility was 

associated with a small amplitude modulation in young participants, such that weaker 

eye visibility was associated with smaller amplitude. Weaker eye visibility was also 

associated with a longer N170 latency, in line with previous studies reporting a similar 

delay of 4 ms in responses to faces without the eyes compared with whole faces (Eimer, 

1998; Itier et al., 2007). These results suggest a disruptive effect of manipulating eye 

visibility on the N170 that might affect structural face encoding (Eimer, 1998), or the 

additional involvement of eye-selective neurons that start responding when the normal 

face context is disrupted (Itier et al., 2007), or both. However, these two possibilities are 

difficult to disentangle in the current paradigm. Interestingly, we did not observe any eye 

sensitivity in the time window of the N170 in conditions where the face context was 

absent. Neither the latency nor the amplitude of the N170 was modulated by the visibility 

of the eye in either group. These results suggest that when face context was absent, the 

N170 did not code the presence of the eyes, in contrast to classic ERP studies showing 

that presenting the eyes in isolation leads to even larger responses than presenting a 

face (Bentin et al., 1996; Itier et al., 2007). 
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Our results are hard to compare with previous studies because of inherent differences in 

stimulus characteristics. Specifically, here we manipulated eye visibility in a parametric 

manner while keeping the face context present or not, whereas previous studies 

compared whole face images with images of faces without the eyes (Eimer, 1998; Itier et 

al., 2007), and images of isolated eyes (Itier et al., 2007). Also, whereas in previous 

studies the eyes were completely removed, thereby leaving the eye region blank, here 

we manipulated phase coherence of the eye region such that some local contrast in the 

eye region was preserved. Finally, in contrast to previous studies, we presented either 

the left or the right eye without the face context, but not in isolation. Instead, the face 

context was phase-randomized to preserve the overall contrast of the image, and the 

eye at different levels of visibility was presented in the periphery. As such, conclusions 

from past studies may not generalize to our current paradigm.  

In terms of conditions in which the face context was absent, it could be argued that weak 

eye sensitivity was due to representation of noise at the fovea when participants fixated 

the centre of the screen. Information presented at the fovea is processed more efficiently 

than in the periphery, due to cortical magnification in V1 (Azzopardi & Cowey, 1993) that 

is then used to bias image representations in higher-level processing regions, such as in 

the inferotemporal cortex (Rolls, Aggelopoulos, & Zheng, 2003). The foveal bias (i.e. 

more efficient processing of stimuli presented at or near fixation) could explain faster 

responses to foveal that extra-foveal stimuli (Lueschow, Miller, & Desimone, 1994). In 

our study, since the task involved detecting a face, a stronger foveal representation of 

noise would be expected to hamper behavioural performance – which we indeed 

observed in both groups of participants who were slower and less accurate when face 

context was absent compared to when the face context was present. As such, the full 

account of face/eye detection mechanisms should consider the influence of cortical 

magnification and fixation locations that could either amplify or abolish sensitivity to eye 

features (de Lissa et al., 2014; Nemrodov, Anderson, Preston, & Itier, 2014; Rousselet et 

al., 2014; Zerouali et al., 2013). 

Nevertheless, it remains clear that modulating the visibility of the eye in the face context 

has a small effect on the N170, and this effect is much larger when the face context is 

obscured with Bubble masks (in young participants). Future research should clarify 

whether same or different processes underlie the observed amplitude and latency 

modulations of the N170 in the two paradigms. Specifically, if the N170 reflects two 

independent processes: one responsible for feature detection, and another for face 

perception, it would be interesting to test how much face context is sufficient for the 

N170 to respond to the face, before switching to detecting an eye (or another feature). It 
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would also be interesting to see whether the same sources in the brain respond most 

strongly to the eye when the face context is preserved or disrupted, for example using 

magnetoencephalography (MEG).  

Source localization could prove particularly useful in the context of ageing, in order to 

understand whether the same brain areas respond to the eyes with or without the face 

context. To date, only one study compared face processing in young and older adults 

using MEG, and did not report differences in source locations despite age-related delays 

on the M170, a magnetic counter-part of the N170 (Nakamura et al., 2001). However, the 

task in that study was not related to processing faces – instead, participants detected a 

cross within a stream of images. Furthermore, there was no stimulus variability within the 

face stimulus, therefore the observed neuro-magnetic response could have reflected 

general processing of any visual stimulus – unlike in our studies.  

To recap our age-related effects, previously we found that single-trial EEG responses in 

both young and older participants alike were driven mostly by the presence of the 

contralateral eye revealed through Bubble masks (Jaworska et al., in prep). In older 

adults, this eye sensitivity was delayed and weaker, as well as associated with a 

modulation of the N170 amplitude and only a 4 ms modulation of the N170 latency. In 

young adults, presence of the eye was associated with much larger latency modulation 

and similar amplitude modulation as in older adults. In the current study, when face 

context was present the N170 latency and amplitude modulation by eye visibility was 

very small in both young and older participants. Crucially, we did not find any N170 

group differences when the face context was present. These results suggest that neural 

processing of faces (and more specifically, the eye) might be differentially affected in 

older adults when revealed through Bubble masks, and remain unaffected when the face 

context is intact. This suggestion would be in line with a previous study showing that 

degradation of face stimuli had a greater effect on older adults, although the age 

difference was reduced when performance on non-degraded faces was taken into 

account (Grady et al., 2000). In that study, different brain regions displayed correlations 

with behaviour on degraded face matching – in young adults, it was an area in the 

fusiform gyrus; whereas in older adults, a posterior occipital region, in addition to the 

thalamus and hippocampus (Grady et al., 2000). As such, a degree of brain plasticity in 

terms of regions responsible for performance on the same perceptual task was observed 

in older adults. Given that we did not find age-related differences on the processing of 

the eye when presented in the face context, but we did find such differences on the 

processing of the eye revealed through Bubble masks, an outstanding question remains 

whether older adults use the same of different functional brain networks in an easy 
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(present study) and a difficult (Bubbles study) task, and whether these networks are 

different between young and older adults. Indeed, several fMRI studies reported that 

lower, or less differentiated (Park et al., 2004) activity in brain areas responsible for 

perceptual tasks in visual cortices are accompanied by a pattern of over-recruitment of 

frontal areas (Grady et al., 1994; Madden et al., 2004; Payer et al., 2006), often termed a 

posterior-anterior shift in ageing (Davis et al., 2008). 

Although EEG lacks the spatial resolution of fMRI, and therefore would not be able to 

compare activity from separate brain regions and shed light on plasticity in functional 

brain networks, an MEG study could overcome such difficulties. Nevertheless, our 

previous studies seem to support the notion of de-differentiation of neural responses in 

the early visual processing to some extent (Rousselet et al., 2009). In particular, 

comparing responses elicited by full images of faces and textures revealed that whereas 

young adults had a clear peak of discriminatory activity in the 140 – 180 ms time window, 

in older adults it tended to be spread over a longer period of time and present over two 

peaks – one weaker, around 150 – 160 ms and one stronger that peaked around 230 ms 

(Rousselet et al., 2009, 2010; Bieniek et al., 2013). Importantly, the activity in the time 

window of the N170 seemed to become less face-sensitive with age (Rousselet et al., 

2009). Here, using a categorical comparison between faces and textures in each 

experimental condition, we found a similar pattern of responses, where MI was weaker in 

older adults in the early time window and stronger in the later time window when face 

context was present. As such, in older adults the maximum discriminatory activity 

peaked in the second time window, and was delayed by 32 – 45 ms. The nature of the 

second peak of stimulus discriminability in older adults remains unclear and could be 

explained either as a delayed processing of visual stimulus, where a later time window 

becomes functionally equivalent to the N170 in older subjects, or be a consequence of 

additional attentional resources required by older subjects to perform the task. The first 

possibility is rather unlikely given our two sets of findings: first, in our Bubbles study, 

processing of the same information (the contralateral eye) occurred in the same time 

window of the N170, albeit the N170 was delayed in older participants with respect to the 

young. Second, in the present study we found no group differences in the modulation of 

the N170 by eye visibility. With regards to the second possibility, a peak of activity 

occurring after 200 ms has been related to task difficulty (Philiastides & Sajda, 2006) or 

increased processing demands due to adding noise to images (Bankó, Gál, Körtvélyes, 

Kovács, & Vidnyánszky, 2011), albeit only in young adults. A third and simple possibility 

is that the difference between face and noise ERPs is driven by a peculiar pattern of 

activity in response to noise trials only. Indeed, we already reported that largest age-
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related differences were found for trials with the lowest coherence level, i.e. textures 

(Rousselet et al., 2009). Textures elicit very strong responses in the time window of the 

N170, as well as after 200 ms and might contribute to the observed age-related 

differences. As such, it would be interesting to determine if similar differences were 

obtained by contrasting faces with other stimulus categories (e.g. letters, houses) apart 

from textures, and whether processing speed of other categories was similarly affected.  
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CHAPTER 4: TOP-DOWN EFFECTS ON THE PERCEPTION OF 

TEXTURES IN THE CONTEXT OF OBJECT DETECTION TASKS 

INTRODUCTION 

Recent studies investigating age-related differences in the time course of face 

processing revealed strong early visual evoked responses to noise textures in older 

adults (Bieniek, Bennett, Sekuler, & Rousselet, 2015; Jaworska et al., in prep; Rousselet 

et al., 2009, 2010). In the original study (Rousselet et al., 2009), phase information of 

face images was manipulated parametrically by introducing phase noise. The largest 

age-related differences were found for trials with the lowest phase coherence, such that 

images contained relatively unstructured noise textures. Specifically, older participants 

had a pronounced negative-going peak in the time window of the N170, whereas young 

participants did not. Group differences diminished as phase coherence of the images 

increased. It remained unclear whether such responses arose because of de-

differentiation of neural responses in the occipital-temporal brain regions in ageing (Park 

et al., 2004, 2012), due to processing of textures as meaningful stimuli by older adults, or 

some other influence, such as increased attention or expectation to perceive a particular 

image category. 

Recently, we ran a study to investigate the information content of ERPs to face and 

texture images in young and older adults (Jaworska et al., in prep). On each trial, 

participants were presented with an image of either a face or a texture revealed through 

randomly placed Gaussian apertures (“bubbles”, Gosselin & Schyns, 2001) and asked to 

perform a face detection task. Similarly to previous studies, older adults had a strong 

response to textures in the time window of the N170. However, single-trial ERPs to 

textures were not consistently modulated by any region in the image in either young or 

older participants, suggesting that the strong response to textures in older adults is not 

likely to be driven by spatial attention. The lack of any information content on ERPs to 

textures also suggested that older adults did not process textures as faces, leaving open 

the question of the origin of the strong responses to noise. 

Even if older participants did not process textures as faces, the nature of the detection 

task could have influenced the neural responses to textures in some way. In the 

detection task, the two responses do not have the same status because of the nature of 

the stimuli. Specifically, structure in the image is associated with a face, whereas no 

structure – with a texture. As such, a texture is an absence of a face and an easier 
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strategy adopted in the task could be to simply respond whether a face was there or not, 

instead of discriminating whether the image was a face, or a texture – processing of 

which is more difficult and takes longer because of its inherent lack of structure. An 

interesting question is thus whether older adults develop some kind of an expectation to 

detect a face, which would then enhance their N170 responses to noise in a top-down 

manner. Top-down modulation can be thought of as any mechanism by which cognitive 

influences and higher-order representations, such as attention or expectation, impinge 

upon earlier steps in information processing (Gilbert & Li, 2013). Such influences can 

either enhance neural responses to relevant stimuli, or suppress responses to irrelevant 

information (Gazzaley, Cooney, Rissman, & D’Esposito, 2005). To our knowledge, the 

modulation of the N170 by expectation or context effects in older adults has only been 

tested in a working memory task (Gazzaley, Cooney, McEvoy, Knight, & D’Esposito, 

2005; Gazzaley et al., 2008). In a paradigm where participants had to remember, ignore, 

or passively view faces (or scenes), older adults did not modulate the N170 latency in 

response to ignored compared to passively viewed stimuli whereas young participants 

did (Gazzaley et al., 2008), suggesting a selective impairment in suppression of 

irrelevant information in a working memory task. Both groups also showed an earlier 

N170 to attended, compared with passively viewed stimuli, suggesting a preservation of 

the capacity to enhance relevant information in ageing. Interestingly, in later studies 

using the same paradigm larger N170 amplitudes to ignored faces were found compared 

with attended or passively viewed in both age groups (Deiber et al., 2010; Zanto, 

Hennigan, Oestberg, Clapp, & Gazzaley, 2010), whereas no such effect was observed 

for letter stimuli. This pattern of responses suggested that faces might attract attention to 

a greater extent than other stimuli, even if presented in a task-irrelevant manner. As 

such, if the observed strong responses to textures in our studies were driven by a top-

down effect of the face detection task, this influence could potentially be abolished in 

detection tasks using different stimuli, which do not attract attention to such an extent.  

Although top-down effects on the N170 in older adults have only been tested in a 

working memory paradigm, there are some studies involving young participants, which 

suggest that expectation to see a face can produce strong N170-like responses to 

meaningless stimuli or even to textures. In young adults, top-down influence on the N170 

has been tested, for example, by manipulating the context in which visual objects were 

presented (Bentin & Golland, 2002; Bentin, Sagiv, Mecklinger, Friederici, & von Cramon, 

2002; Kato et al., 2004). Specifically, pairs of dots separated horizontally evoked only a 

weak N170 when presented in isolation (Bentin et al., 2002). The same dots were then 

presented in a face context, such that they were interpretable as the eyes. After priming 
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with the face context, the N170 response to dots alone increased to resemble that of full-

face images, suggesting that the N170 is susceptible to modulation of context or 

expectation. In another study, Wild and Busey (2004) tested how the N170 was 

modulated by expectation to see a face or a word. Interestingly, they used noise-only 

displays to test the effects of expectation, and reported a larger N170 in response to 

noise when participants expected to see a face.       

In light of these findings, it remains unclear whether the strong N170 responses to 

textures observed in our previous studies (Rousselet et al., 2009, 2010; Jaworska et al., 

in prep) could reflect a similar expectation effect to that observed in young adults 

expecting to see a face in a meaningless stimulus, possibly explained by the age-related 

inability to suppress irrelevant information (Gazzaley et al., 2005, 2008). As such, in the 

current study we sought to investigate whether the large N170 in response to textures in 

older adults is an outcome of attending to, or expecting to see a particular image 

category. Specifically, we hypothesized that if the N170 to noise is driven by top-down 

enhancement, we should be able to manipulate it by changing task requirements. As 

such, in addition to faces we introduced two other stimulus categories: letters and 

houses, and asked participants to perform a detection task with each of the stimulus 

categories in separate blocks. Participants’ expectation was modulated at the beginning 

of each block of trials, when they were instructed to discriminate one image category 

(faces, houses, or letters) from textures. If the N170 to noise was modulated by the 

expectation to see a particular stimulus category, we hypothesized that differences in the 

N170 to noise in older adults would resemble categorical differences between objects in 

terms of their time courses and topographies.  
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METHODS 

PARTICIPANTS 

Twenty-four young (15 females, 3 left-handed; median age = 22, min = 20, max = 39) 

and twenty-four older adults (13 females, 3 left-handed; median age = 67.5, min = 59, 

max = 85) participated in the study. All young participants were recruited from the 

student body at the University of Glasgow. Older participants were local residents who 

had already taken part in the Bubbles study before (Jaworska et al., in prep) or were 

recruited from a local Active Age fitness class, the Retired Staff Association at the 

University of Glasgow, or through advertisement at a local optometrist. Young 

participants were recruited from the student body at the University of Glasgow. 

Volunteers were excluded from participation if they reported any current eye condition 

(i.e., lazy eye, glaucoma, macular degeneration, cataract, diabetic retinopathy), had a 

history of mental illness, were currently taking psychotropic medications or used to take 

them, suffered from any neurological condition, or had suffered a stroke or a serious 

head injury. Volunteers were also excluded from participation if they had their eyes 

tested more than a year (for older volunteers) or two years (for younger volunteers) prior 

to the study taking place, in order to minimise the chances that volunteers did not have 

knowledge of an underlying eye condition. Participants’ visual acuity was assessed 

during their first experimental session using a Colenbrander mixed contrast card set 

(Colenbrander & Fletcher, 2004) for the 40 cm and 63 cm viewing distances, and the 6 m 

Bailey-Lovie Chart (Bailey & Lovie, 1980). Participants’ contrast sensitivity was assessed 

with the Mars Letter Contrast Sensitivity set (Arditi, 2005). All participants had normal or 

corrected to normal visual acuity (Table 19) and contrast sensitivity of 1.72 log units and 

above, which fell within the normal range of contrast sensitivity for each age group 

(Haymes et al., 2006). In addition, older participants completed the Montreal Cognitive 

Assessment (MOCA) to screen for age-related cognitive impairment. MOCA scores of 

three older participants were one point below the normal threshold (more than or equal 

to 26 out of 30, Table 19) and the median score was 28 (min = 25, max = 30). Older 

participants also completed the Trail Making Test – part of the Delis-Kaplan Executive 

Function System (D-KEFS) (Delis et al., 2001) battery of tests to assess higher-order 

cognitive and executive functioning. Results of the Trail Making Test are reported in 

Table 19. During the experimental session, participants wore their habitual correction if 

needed. 
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The study was approved by the local ethics committee at the College of Science and 

Engineering, University of Glasgow (approval no. 300150007), and conducted in line with 

the British Psychological Society ethics guidelines. Informed written consent was 

obtained from each participant before they took part in the study. Participants were 

compensated £6 per hour.  

Table 19 Visual and cognitive test scores. 

Visual acuity and contrast sensitivity (CS) scores for young and older participants, as well as 
MOCA and Trail Making Test Scores for older participants. Visual acuity scores are reported for 
high contrast (HC) and low contrast (LC) charts presented at the 40 cm, 63 cm and 6 m viewing 
distances, and expressed as raw visual acuity scores (VAS). Their corresponding logMAR scores 
are presented below in italics, where higher values indicate poorer vision and negative values 
represent normal vision (logMAR score of 0 corresponds to 20/20 vision).  For Trail Making Test, 
scores are age-scaled composite scores for Number-Letter Switching (NLS) task versus: Visual 
Scanning (VS), Number Sequencing (NS), Letter Sequencing (LS), Composite Scaled Score 
(CSS), and Motor Speed (MS). Scores correspond to median across all participants in each age 
group. Square brackets indicate the minimum and maximum scores across participants in each 
age group. 

 HC 40 LC 40 HC 63 LC 63 HC 600 LC 600 CS 

young 103 

[93, 105] 
-0.06 [0.14, 

-0.10] 

95 

[83, 103] 
0.10 [0.34, 

-0.06] 

105 

[97, 111] 
-0.10 [0.06, 

-0.22] 

94 

[86, 105] 
0.12 [0.28, 

-0.10] 

103 

[89, 110] 
-0.06 [0.22, 

-0.20] 

95 

[65, 103] 
0.10 [0.70, 

-0.06]  

1.84 

[1.72, 1.92] 

older 92 

[75, 105] 
0.16 [0.50, 

-0.10] 

83 

[65, 98] 
0.34 [0.70, 

0.04] 

101 

[85, 110] 
-0.02 [0.30, 

-0.20] 

90 

[75, 100] 
0.20 [0.50, 

0.00] 

100 

[88, 105] 
0.00 [0.24, 

-0.10] 

91 

[75, 99] 
0.18 [0.50, 

0.02] 

1.80 

[1.68, 1.88] 

 
MOCA 

D-KEFS Trail Making test: NLS vs. XXX 

 VS NS LS CSS MS 

older 28 

[25, 30] 

12 

[10, 15] 

11 

[9, 15] 

12 

[9, 15] 

11 

[9, 15] 

10 

[9, 13] 

 

STIMULI 

We used three sets of objects in this experiment (Figure 18): a set of 10 grey-scaled 

front view photographs of faces (5 males and 5 females), a set of 10 images of the 

uppercase letters A, F, G, J, L, P, E, R, T, Y in the Geneva font (Gold, Bennett, & 

Sekuler, 1999), and a set of front-view photographs of houses (Husk, Bennett, & 
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Sekuler, 2007). All stimuli had the same amplitude spectrum and contrast variance of 

0.05. Images were presented at 90% phase coherence level. Textures in each of the 

detection blocks were created by randomizing the phase spectrum of an image selected 

at random from the same stimulus category. Generating textures from the same object 

category was performed in order to preserve any low-level differences (that might have 

been left after controlling for amplitude spectrum and contrast variance) between 

textures in different detection tasks, as well as to match the stimulus design from 

previous experiments (Rousselet et al., 2009, 2010; Bieniek et al., 2015). 

 

Figure 18 Stimuli. 

Top row shows all ten identities of faces, the second row shows all ten images of houses, and the 
third row shows images of the ten letters used in this study. All images are presented at 100% 
phase coherence. The bottom row shows ten examples of textures created by randomizing the 
phase coherence of one of the 30 object images presented above. 

PROCEDURE 

All participants were tested in one experimental session consisting of a behavioural task 

with simultaneous EEG recordings. Participants sat in a dimly lit and sound-attenuated 

booth, and were given experimental instructions including a request to minimize 

movement and blinking, or to blink when hitting a response button. 

The session consisted of 7 blocks of 100 trials (700 trials in total). In the first block, 

participants were presented with a set of 100 textures. Textures were created by 

randomizing the phase spectrum of one image randomly drawn among the thirty objects. 

The remaining six blocks presented textures intermixed with images of objects from only 

one category.  
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Throughout the experiment, participants completed four tasks. In the first block, the task 

was to always press one key on the keyboard (‘2’) to move on to the next trial after a 

texture had been presented. In the remaining six blocks, participants completed three 

detection tasks: the face, the house, or the letter detection. They responded by pressing 

‘1’ for the object (either a face, or a house, or a letter depending on the block), and ‘2’ for 

texture, using the index and middle fingers of their dominant hand. In each of the 

detection blocks, participants were presented with 50 trials of textures and 50 trials of 

object images, randomly intermixed. Each object category was presented in two 

separate blocks over the course of the experiment, such that there was a total of 100 

trials per object category. 

The order of the detection blocks was predefined manually such that each participant 

within each age group followed a different block order. The first three of the six blocks 

presented the three object detection tasks, and the presentation of each category was 

then repeated in the remaining three blocks with the restriction that no category was 

repeated across the two adjacent blocks. 

On each trial, participants were first presented with a small fixation cross (12 x 12 pixels, 

0.35° x 0.35° of visual angle) displayed at the centre of the monitor screen for a random 

time interval of 500 to 1000 ms. After the fixation cross disappeared, the stimulus was 

presented for 10 frames (~83 ms). After the stimulus, a blank grey screen was displayed 

until the participant responded, using the numerical pad of a keyboard. Participants were 

requested to respond as fast and accurately as possible.  

After each block, participants could take a break, and they received feedback on their 

performance in the previous block and on their overall performance in the experiment 

(median reaction time and percentage of correct responses). The next block started after 

participants pressed a key indicating they were ready to move on.   

Stimuli were displayed on a VIEWPixx monitor (1920 x 1200 pixels; 22.5 inch diagonal 

display size; 120 Hz refresh rate). The fixation cross, the stimulus and the blank 

response screen were all displayed on a uniform grey background. The viewing distance 

from the chinrest to the monitor screen was 45 cm. Each session lasted about 60 to 75 

minutes, including breaks, but excluding EEG electrode application. 

The experiment was written in MATLAB using the Psychophysics Toolbox extensions 

(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). 
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EEG RECORDING AND PRE-PROCESSING 

EEG data were recorded at 512 Hz using a 128-channel Biosemi Active Two EEG 

system (Biosemi, Amsterdam, the Netherlands). Four additional UltraFlat Active Biosemi 

electrodes were placed below and at the outer canthi of both eyes. Electrode offsets 

were kept between ±20 µV.  

EEG data were pre-processed using MATLAB 2013b and the open-source EEGLAB 

toolbox (Delorme et al., 2011; Delorme & Makeig, 2004). Data were first average-

referenced and detrended. Two types of filtering were then performed. First, data were 

band-pass filtered between 1 Hz and 30 Hz using a non-causal fourth order Butterworth 

filter. Independently, another dataset was created in which data were pre-processed with 

fourth order Butterworth filters: high-pass causal filter at 2 Hz and low-pass non-causal 

filter at 30 Hz, to preserve accurate timing of onsets (Acunzo, MacKenzie, & van 

Rossum, 2012; Luck, 2005; Rousselet, 2012; Widmann & Schröger, 2012). 

Data from both datasets were then downsampled to 500 Hz, and epoched between -300 

and 1000 ms around stimulus onset. Mean baseline was removed from the causal-

filtered data, and channel mean was removed from each channel in the non-causal-

filtered data in order to increase reliability of Independent Component Analysis (ICA; 

Groppe, Makeig, & Kutas, 2009). Noisy electrodes and trials were then detected by 

visual inspection of the non-causal dataset, and rejected on a subject-by-subject basis. 

On average, more noisy channels were removed from older than from young 

participants’ datasets (older participants: median = 20, min = 6, max = 34; young 

participants: median = 10.5, min = 3, max = 30; median difference = 7, 95% confidence 

interval = [3, 11]).  

Subsequently, ICA was performed on the non-causal filtered dataset using the Infomax 

algorithm as implemented in the runica function in EEGLAB (Delorme & Makeig, 2004; 

Delorme et al., 2007). The ICA weights were then applied to the causal filtered dataset to 

ensure removal of the same components, and artifactual components were rejected from 

both datasets (young: median = 4.5, min = 1, max = 11; older: median = 3, min = 1, max 

= 25; median difference = 1 [0, 3]). Then, baseline correction was performed again, and 

data epochs were removed based on an absolute threshold value larger than 100 µV 

and the presence of a linear trend with an absolute slope larger than 75 µV per epoch 

and R2 larger than 0.3. The median number of trials accepted for analysis was, for young 

participants: median = 683, min = 648, max = 693; for older participants: median = 681.5, 

min = 604, max = 695 (median difference = -2 [-9, 5]). Finally, we computed single-trial 
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spherical spline current source density waveforms using the CSD toolbox (Kayser, 2009; 

Tenke & Kayser, 2012). CSD waveforms were computed using parameters 50 iterations, 

m=4, lambda=10-5. The head radius was arbitrarily set to 10 cm, so that the ERP units 

are µV/cm2. The CSD transformation is a spatial high-pass filtering of the data, which 

sharpens ERP topographies and reduces the influence of volume-conducted activity. 

CSD waveforms also are reference-free.   

STATISTICAL ANALYSES  

Statistical analyses were conducted using Matlab 2013b. Throughout the paper, square 

brackets indicate 95% confidence intervals computed using the percentile bootstrap 

technique, with 1000 bootstrap samples. Unless otherwise stated, median values are 

Harrell-Davis (Harrell & Davis, 1982) estimates of the 2nd quartile. 

MEASURES OF EFFECT SIZE 

We estimated the size of the between-group differences using two robust techniques: 

Cliff’s delta and the median of all pairwise differences. Cliff’s delta (Cliff, 1996; Wilcox, 

2006) is related to the Wilcoxon-Mann-Whitney U statistic and estimates the probability 

that a randomly selected observation from one group is larger than a randomly selected 

observation from another group, minus the reverse probability. Cliff’s delta ranges from 1 

when all values from one group are higher than the values from the other group, to -1 

when the reverse is true. Completely overlapping distributions have a Cliff’s delta of 0. In 

line with Cliff’s delta approach, we also calculated all pairwise differences between 

young and older participants on the measures of interest (reaction times, percent 

corrects, N170 latencies and amplitudes), and took the median of the distribution of 

these differences. This way of measuring effect sizes enabled us to provide information 

about the typical difference between any members of two groups (Wilcox, 2012).   

MUTUAL INFORMATION 

Mutual Information (MI) is a non-parametric measure that quantifies (in bits) the 

reduction in uncertainty about one variable after observation of another and has been 

used to study the selectivity of neural and behavioural responses to external stimuli (Ince 

et al., 2009; Magri et al., 2009b; Panzeri et al., 2010; Schyns et al., 2011). The 

advantage of using the MI lies in its ability to detect associations of any order, whether 

linear or non-linear.  

Here, we used a new estimator of MI that can be used with continuous variables (Ince, 
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Giordano, et al., 2016) and utilizes the concept of copulas (Nelsen, 2007), statistical 

structures that express the relationship between two random variables, independently of 

their marginal distributions. Previously (Jaworska et al., in prep), we used an approach 

where data were quantized into a number of bins, and MI was estimated over the 

resulting discrete spaces. The copula method does not require the quantization step and 

is computationally efficient (Ince, Giordano, et al., 2016). 

We used MI to quantify the dependence between the category of the visual stimulus and 

brain responses. To do so, we computed the temporal gradient of the EEG voltage 

(dEEG) on each trial in order to account for the temporal relationship between 

neighbouring time points, and then combined the EEG voltage and its temporal gradient 

into a bivariate response. We then calculated the time course of MI about the eye 

visibility in the bivariate response: MI(eye, [EEG dEEG]). Considering the gradient 

response together with the voltage smoothes out the artifactual dips in MI time courses, 

occurring at time points of zero-crossings when EEG voltages change sign. It also 

introduces information about the shape of the ERP, otherwise missing from considering 

just the instantaneous amplitudes. As such, the bivariate time course provides a clearer 

picture of the time window(s) over which the EEG signal is modulated by the changing 

stimulus (Ince, Giordano, et al., 2016). 

In single participants, we calculated several MI(image category, EEG) quantities to 

establish the relationship between the pair of categories in question and EEG voltage 

over the time period of -300 ms before to 1000 ms after stimulus onset. The pairs of 

categories were as follows: 1) Objects versus texture: Faces vs. textures, Houses vs. 

textures, and Letters vs. textures; 2) Categorical differences of full images: Faces vs. 

Houses, Faces vs. Letters, and Houses vs. Letters; 3) Categorical differences of 

textures: textures in the Face detection block vs. textures in the House detection block, 

textures in the Face vs. Letter detection blocks, and textures in House vs. Letter 

detection blocks; and finally 4) Texture differences: textures in block 1 (baseline) vs. 

each of the three object detection blocks (three comparisons). 

50% INTEGRATION TIME 

In order to estimate information processing speed, we determined how long it took 

participants to integrate 50% of their MI time-courses, a measure that takes into account 

the entire waveform and not just the peaks of MI (Rousselet et al., 2010). For each 

participant, we computed the cumulated sum of the maximum MI across electrodes in 

both hemispheres in the time window of 0-500 ms. We then normalized that cumulated 
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sum between 0 and 1, such that it had a value of 0 at stimulus onset and a value of 1 at 

500 ms after stimulus onset. Finally, we computed the time necessary to reach 50% of 

that function using linear interpolation.  

ELECTRODE SELECTION 

We selected three subsets of electrodes in each participant independently (Figure 19): 

posterior-lateral electrodes on the left hemisphere (LE) and on the right hemisphere 

(RE). In order to avoid defining a single electrode of interest, we calculated the time-

courses of the maximum MI across all electrodes of interest in each hemisphere 

independently. We also checked that we did not miss any local maxima by repeating our 

group analyses on the maximum MI taken across all electrodes. 

For ERP analyses, we selected two electrodes by measuring the difference between 

mean ERPs elicited by face, house, or letter images and their corresponding textures. 

The differences were computed at all posterior-lateral electrodes in the left and the right 

hemisphere and then squared. We then selected the left and the right electrodes that 

showed the maximum difference in the period of 100-250 ms.  
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Figure 19 Electrode location. 

Location of electrodes included in three subsets: midline (CE, red), posterior-lateral in the left 
hemisphere (LE, green) and in the right hemisphere (RE, blue). 

 

TOPOGRAPHIC ANALYSES 

Topographic maps for each participant were computed from the whole-scalp MI(image 

category, ERP) results at the individual MI peak latency. Individual topographic maps 

were normalised between 0 and 1, interpolated and rendered in a 67 x 67 pixel image 

using the EEGLAB function topoplot, and then averaged across participants in each age 

group. Using the interpolated head maps, we then computed a hemispheric lateralisation 

index for each participant. First, we saved the maximum pixel intensity in the left and the 

right hemisphere (lower left and right quadrants of the interpolated image), excluding the 

midline. Then, we computed the lateralisation index in each group as the ratio (MIleft - 

MIright) / (MIleft + MIright).   

LE
CE
RE
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RESULTS 

BEHAVIOURAL RESULTS 

Across all conditions, older participants were generally slower than young participants 

(differenceolder-young = 92 ms [37, 123]; median, young = 308 ms [290, 347], older = 413 

ms [390, 437]). On the other hand, young participants were slightly less accurate than 

older ones (differenceolder-young = 1.7 percentage points (PP) [0.3, 3.5]; median, young = 

96.4% [94.8, 98.1], older = 98.4% [97.8, 99]), although no group differences were found 

within image categories (Table 21). 

To investigate whether age affected reaction times (RTs) in simple versus more complex 

tasks differentially, we computed the difference between RTs to textures presented in the 

first block (‘baseline’) and those presented in object detection blocks for young and older 

participants. In the baseline block, only textures were presented so participants were 

only asked to press one key on the keyboard as soon as they saw a texture (simple-RT). 

In all other blocks, participants had to discriminate between an object (either a face, or a 

house, or a letter) and a texture by pressing one key for the object and another for the 

texture (choice-RT). Young adults were slower to respond on choice-RT trials than on 

simple-RT trials by 132 ms [114, 157], and older adults by 219 ms [190, 246]. The 

interaction between age and task complexity was significant: older adults were slower 

than young adults by 79 ms [47, 114] on choice-RT trials compared with simple-RT trials. 

In other words, there was no group difference on simple-RT trials (differenceolder-young: 11 

ms [-23, 49]), but older adults were consistently slower than young adults on choice-RT 

trials (for group differences in each stimulus category, see Table 20). 

Regardless of the object category, younger adults were also faster to respond on object 

trials than on texture trials by 27 ms [18, 35], whereas older adults were faster by 14 ms 

[5, 26]. However, here the group difference was not significant (-9 ms [-24, 4]).  

 

  



 

 

125 

Table 20 Behavioural results: reaction times. 

We report the median across participants of the median reaction times in milliseconds, for each 
stimulus category: faces, houses and letters; textures in face detection (Fnoise), house detection 
(Hnoise), and letter detection (Lnoise) tasks; as well as textures presented in the baseline block 
(base). Last column shows the median of pairwise differences between young and older 
participants. Cliff’s delta estimates are shown in italics. Square brackets correspond to 95% 
confidence intervals. 

 young older group difference 

Faces 299 [275, 337] 405 [385, 435] 
98 [54, 134] 

0.59 [0.25, 0.80] 

Houses 319 [288, 367] 405 [385, 430] 
83 [45, 119] 

0.51 [0.16, 0.75] 

Letters 322 [285, 357] 419 [403, 444] 
99 [58, 137] 

0.60 [0.27, 0.81] 

Fnoise 324 [308, 380] 429 [398, 475] 
87 [38, 130] 

0.51 [0.16, 0.74] 

Hnoise 338 [324, 374] 441 [416, 470] 
91 [43, 130] 

0.51 [0.16, 0.75] 

Lnoise 333 [316, 373] 438 [402, 473] 
87 [38, 129] 

0.53 [0.19, 0.75] 

base 192 [169, 216] 206 [181, 247] 
11 [-23, 49] 

0.10 [-0.23, 0.41] 
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Table 21 Behavioural results: percent correct. 

We report the median across participants of median percent correct, for each stimulus category: 
faces, houses and letters; textures in face detection (Fnoise), house detection (Hnoise), and letter 
detection (Lnoise) tasks; as well as textures presented in the baseline block (base). Last column 
shows the median of pairwise differences between young and older participants. Cliff’s delta 
estimates for the group difference are shown in italics. Square brackets correspond to 95% 
confidence intervals. 

 young older group difference 

Faces 97.5 [96, 98.5] 97.3 [94.7, 98.3] 
-0.1 [-2, 1.1] 

-0.05 [-0.36, 0.27] 

Houses 96.9 [94.7, 98.1] 95.4 [94.1, 97.4] 
-0.8 [-3, 1.1] 

-0.11 [-0.42, 0.22] 

Letters 96.5 [94.5, 97.8] 96.1 [93.9, 97.7] 
-0.1 [-2.5, 2] 

-0.03 [-0.35, 0.29] 

Fnoise 96.4 [94, 97.9] 96.6 [94.8, 98.1] 
0.3 [-1.5, 2.1] 

0.06 [-0.27, 0.37] 

Hnoise 95.3 [92.5, 97.3] 95.5 [93.3, 97.8] 
0.3 [-1.7, 2.9] 

0.06 [-0.27, 0.37] 

Lnoise 95.7 [93.1, 97.6] 95.4 [92.6, 97.2] 
0 [-2.7, 2] 

0 [-0.32, 0.32] 

base 100 [100, 100] 100 [100, 100]  
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EVENT-RELATED POTENTIALS 

Previously, in a face detection task where participants had to press one key if they saw a 

face and another if they saw a texture, we reported pronounced event-related potentials 

(ERPs) to textures in the time window of the N170 in older, but not young participants 

(Rousselet et al., 2009; Jaworska et al., in prep; Bieniek et al., 2015). Here, we show 

similarly large evoked responses, also in the time window of the N170, to textures in 

three detection tasks (Figure 20): face detection (‘Fnoise’), house detection (‘Hnoise’), 

and letter detection (‘Lnoise’). We also observed a large N170 in response to textures 

presented in the baseline block (‘base’), in which only textures were presented and, as 

such, participants did not engage in a detection task, but rather always pressed a unique 

key on the keyboard as soon as they saw a texture. These large responses to noise 

were only observed in older, but not in young participants.  

Furthermore, older adults on average had larger N170 to object images: faces, houses, 

and letters, (Figure 3, insets; see Tables S10 – S11 in Appendix C for quantification of 

the N170 latency and amplitude for texture and object trials).  

In order to investigate whether there were any categorical differences between ERP 

responses to textures, as well as among object images embedded within different 

detection tasks, we now turn to Mutual Information (MI) analyses.  
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Figure 20 Event-related potentials. 

In the main plots, responses are averaged across texture trials in each task: face detection 
(Fnoise), house detection (Hnoise), and letter detection (Lnoise), as well as in the baseline block 
(base). Young participants are in green, older participants in blue. ERPs are presented separately 
at OTL (left) and OTR (right). Insets present responses averaged across object trials in the 
corresponding detection tasks. CSD data are expressed in µV/cm2. Shaded areas correspond to 
95% confidence intervals. 
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BRAIN SENSITIVITY: MUTUAL INFORMATION 

Analyses focusing on differences in ERP peak latencies and amplitudes can hide 

important information about the time course of information processing (Rousselet & 

Pernet, 2011; Rousselet et al., 2011; Schyns et al., 2007). In this study, peak analyses 

on ERPs to texture trials would be particularly problematic, because young adults do not 

have a clear peak in response to textures. To overcome the limitations associated with 

peak analyses, we calculated categorical Mutual Information (MI) to quantify the 

dependence between ERPs and image category.  

In order to simplify the presentation of MI results for each of the comparisons, time 

courses displayed in Figures 21 – 24 depict the maximum MI taken across sensors of 

interest in the left and right hemispheres. We took the maximum MI from the time 

window of 80 ms to 400 ms post-stimulus, based on the recent finding that the earliest 

categorical differences start around 90 ms after stimulus onset regardless of age 

(Bieniek et al., 2015).   

CATEGORICAL DIFFERENCES: OBJECTS 

First of all, we sought to investigate how ERPs in response to objects, i.e. faces, houses 

and letters differed from each other. To this end, we computed MI for three comparisons: 

faces vs. letters, faces vs. houses, and letters vs. houses. Strong MI was found in both 

age groups for all three comparisons (Figure 21). For each comparison, MI peaked in the 

time window between 100 and 200 ms post-stimulus, but at slightly different times. 

MI for the face vs. house contrast peaked at 131 ms [128, 137] in young, and at 140 ms 

[127, 147] in older participants, and did not differ significantly between groups 

(differenceolder-young = 5 ms [-14, 15]).  

On the other hand, MI was stronger by 0.08 bits [0.01, 0.14] in young than in older 

participants (median MI, young = 0.25 bits [0.21, 0.31], older = 0.16 bits [0.12, 0.24]). MI 

was larger over right hemisphere electrodes in young (-0.17 [-0.23, -0.10]), but not in 

older participants (-0.03 [-0.21, 0.09]). However, the group difference was not significant 

(0.12 [-0.02, 0.23]). 

MI for the face vs. letter contrast peaked at 158 ms [140, 176] in young, and at 151 ms 

[140, 173] in older participants, and there was no age-related delay in timings (difference 

= 2 ms [-19, 24]). Again, MI about faces vs. letters contrast was stronger in young than in 

older participants by about 0.08 bits [0.01, 0.16] (young = 0.29 bits [0.23, 0.34], older = 
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0.20 bits [0.16, 0.25]). Information was symmetrical across hemispheres in both young 

and older participants (young = 0.06 [-0.10, 0.17], older = 0.00 [-0.07, 0.08], group 

difference = -0.03 [-0.15, 0.11]). 

Finally, MI about the house vs. letter contrast peaked about 21 ms [6, 46] later in older 

than in young participants (young = 170 ms [156, 180], older = 189 ms [172, 221]) and 

was weaker by about 0.09 bits [0.04, 0.15] (young = 0.27 bits [0.21, 0.32], older = 0.15 

bits [0.14, 0.20]). Here, MI was more left-lateralized in young (0.13 [0.04, 0.24]) but not 

older (0.07 [-0.06, 0.20]) participants (group difference = -0.06 [-0.19, 0.05]). 
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Figure 21 Categorical differences between full images. 

(A) Top panel: MI time courses for the difference between faces and houses (left), faces and 
letters (middle), and houses and letters (right), averaged across young (green) and older 
participants (blue). Insets show MI topographies averaged across young and older participants 
(green and blue boxes, respectively). Bottom panel shows group differences between the average 
MI time courses. Shaded areas correspond to 95% confidence intervals. (B) Individual 
participants’ maximum MI (left), max MI latency (middle), and 50% integration times (right). Each 
dot corresponds to one participant. Dots are grouped into young (Y) and older (O) participants, for 
each of the contrasts (faces vs houses - F/H, etc.). White horizontal bars correspond to median 
values. 

  

 

 

-100 0 100 200 300 400 500 -100 0 100 200 300 400 500 -100 0 100 200 300 400 500

0

0.1

0.2

0.3

0.4

0.5

M
I (

bi
ts

)

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

-100 0 100 200 300 400 500 -100 0 100 200 300 400 500 -100 0 100 200 300 400 500
Time (ms) Time (ms) Time (ms)

-0.2

-0.1

0

0.1

0.2

0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.2

-0.1

0

0.1

0.2

0.3

M
I (

bi
ts

)

Face vs House Face vs Letter House vs Letter

young
older

A

Y O Y O Y O
0

0.2

0.4

0.6

0.8

max MI

100

150

200

250

300
MI latency 50% IT

Y O Y O Y O Y O Y O Y O

T
im

e 
(m

s)

M
I (

bi
ts

)

B

F/H F/L H/L F/H F/L H/L F/H F/L H/L



 

 

132 

CATEGORICAL DIFFERENCES: TEXTURES 

Next, we quantified the categorical differences between textures presented in different 

detection tasks. We hypothesized that, if ERPs to textures in older participants were 

driven by the presence of the task at hand, then expecting to see a particular image 

category would influence responses to textures in a similar manner. As such, we 

expected categorical differences between textures embedded in the three detection 

tasks to resemble those between their corresponding objects, as presented in Figure 21. 

However, contrary to our expectations, time courses of categorical MI between textures 

from different tasks were rather flat (Figure 22A) and did not resemble categorical MI to 

corresponding objects (Figure 21A). Plotting the average difference between young and 

older participants revealed only very weak age-related differences (Figure 22B). 

Although the MI time courses were relatively flat, a very weak deflection of MI from 

baseline was observed between 200 and 300 ms post-stimulus for the difference 

between textures in the face and house tasks (“Fnoise vs. Hnoise”); as well as for the 

difference between textures in the face detection and letter detection tasks (“Fnoise vs. 

Lnoise”). Although the difference in average time courses for young and older 

participants (Figure 22B) seemed to reveal no group differences at all, comparing 

maximum MI did seem to differ between groups (Figure 22C). Specifically, max MI was 

stronger in older compared to young participants by about 0.01 bits [0.002, 0.03] (Cliff’s 

delta = 0.34 [0.01, 0.60]) in the Fnoise vs. Hnoise contrast (median MI, young = 0.06 bits 

[0.05, 0.07]; older = 0.07 bits [0.06, 0.09]). MI was also stronger by about 0.02 bits 

[0.002, 0.03] (Cliff’s delta = 0.35 [0.02, 0.62]) in older participants in the Fnoise vs. 

Lnoise contrast (median, young = 0.06 bits [0.05, 0.07]; older = 0.07 bits [0.06, 0.09]). No 

significant differences were found in the Hnoise vs. Lnoise contrast (differenceyoung-older = 

0 bits [-0.01, 0.01]; median, young = 0.06 bits [0.05, 0.08]; older = 0.06 bits [0.05, 0.08]). 

These moderate effects of detection category on brain responses to textures seem 

unrelated to the group-average MI time course (Figure 22B) because of considerable 

spread of maximum MI latencies across participants. The inter-quartile range (IQR) for 

max MI latencies in the Fnoise vs. Hnoise contrast was 99 ms in young, and 125 ms in 

older participants (25th and 75th percentiles, young = [203, 302]; older = [209, 334]). Even 

larger values were observed for the Fnoise vs. Lnoise contrast (IQR, young = 146 ms 

[169, 315]; older = 188 ms [158, 346]).  
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As such, despite the lack of clear categorical differences between textures perceived in 

various detection tasks, we found a moderate, task-related modulation of brain 

responses to textures in older participants. In particular, this effect is only present for 

textures perceived in the face detection task, and not the house, or the letter detection 

tasks.  

 

Figure 22 Age-related categorical differences between textures. 

(A) MI time courses for the difference between textures in face detection block and in house 
detection block (left), in face detection and letter detection block (middle), and in house detection 
and letter detection (right), averaged across young (green) and older participants (blue). Insets 
show MI topographies averaged across young and older participants (green and blue boxes, 
respectively). (B) Group differences. Plotted are: the time course of MI group differences (black), 
and the time course of Cliff’s delta (red). Shaded areas correspond to 95% confidence intervals. 
(C) Scatterplot of maximum MI across time points, separately for young adults (YA) and older 
adults (OA). Red horizontal bars correspond to median across participants in each age group. 
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AGE-RELATED DIFFERENCES IN BRAIN SENSITIVITY TO BASELINE VS. TASK-RELATED 

TEXTURES 

We then wanted to investigate whether ERP responses to textures perceived in a 

detection task could be distinguished from those in the baseline block (where no 

detection task was present), and whether any age-related differences could be observed. 

We ran three comparisons: textures in baseline block were compared with textures 

perceived in the face detection task (“Fnoise vs. noise”), with textures perceived in the 

house detection task (“Hnoise vs. noise”) and with textures perceived in the letter 

detection task (“Lnoise vs. noise”). Figure 23 presents average MI time courses 

associated with these comparisons. 

In each of the three comparisons, there was a clear difference that started around 100 

ms post-stimulus and continued throughout the time window of interest, until 500 ms 

post-stimulus. 

Comparing average time-courses between young and older adults revealed no 

significant group differences. Comparing maximum MI or its latency did not reveal any 

significant group differences either.  
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Figure 23 Age-related differences in brain sensitivity to baseline vs. task-related textures. 

(A) MI time courses for the difference between textures in face detection block and baseline block 
(left), in house detection and baseline block (middle), and in letter detection and baseline block 
(right), averaged across young (green) and older participants (blue). Insets show MI topographies 
averaged across young and older participants (green and blue boxes, respectively). (B) Group 
differences. Plotted are: the time course of MI group differences (black), and the time course of 
Cliff’s delta (red). Shaded areas correspond to 95% confidence intervals. (C) Scatterplot of 
maximum MI across time points, separately for young adults (YA) and older adults (OA). Red 
horizontal bars correspond to median across participants in each age group. 
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AGE-RELATED DIFFERENCES IN IMAGE STRUCTURE SENSITIVITY 

In our last set of comparisons, we wanted to extend work previously conducted in the lab 

(Rousselet et al., 2009, 2010; Bieniek et al., 2013) and investigate age-related 

differences in the time courses of sensitivity to image structure, using images of houses 

and letters (in addition to previously used faces). 

Results showing MI sensitivity to image structure are presented in Figure 24A. Both 

young and older participants showed a clear and strong MI peak in the 100 – 200 ms 

time window for each of the three contrasts between objects (faces, houses, letters) and 

textures. MI peaked at 134 ms [130, 139] for faces, at 170 ms [155, 200] for houses, and 

at 166 ms [160, 172] for letters in young participants. In older participants, MI peak 

latencies occurred at 164 ms [145, 190] for faces, 191 ms [181, 205] for houses, and 200 

ms [182, 214] for letters. 

Age-related differences depended on the image category. Overall, MI in older 

participants was delayed for faces and letters, but not for houses, and lower for letters, 

but not faces or houses. 

Compared to young participants, MI was significantly delayed in older participants by 29 

ms [13, 53] for faces, by 31 ms [16, 46] for letters, but not for houses, with a difference of 

18 ms [-7, 37]. Similar results were obtained by looking at 50% integration times: it took 

older adults, on average, 33 ms longer [21, 48] to accumulate 50% of their MI time 

courses for the face contrast, 28 ms longer [18, 36] for the letter contrast, and 17 ms [-2, 

32] for the house contrast.  
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Figure 24 Age-related differences in sensitivity to image structure. 

(A) Top panel, MI time courses for the difference between faces and textures (left), houses and 
textures (middle), and letters and textures (right), averaged across young (green) and older 
participants (blue). Insets show MI topographies averaged across young and older participants 
(green and blue boxes, respectively). Bottom panel shows differences between the average MI 
time course for young and older participants. Shaded areas correspond to 95% confidence 
intervals. (B) Individual participants’ maximum MI (left), max MI latency (middle), and 50% 
integration times (right). Each dot corresponds to one participant. Dots are grouped into young (Y) 
and older (O) participants, for each of the contrasts (faces vs texture - F/N, etc.). White horizontal 
bars correspond to median values. 
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Maximum MI was similar across age groups for houses (difference: -0.05 bits [-0.12, 

0.02]; young = 0.25 bits [0.20, 0.35], older = 0.21 bits [0.14, 0.31]). On the other hand, 

average max MI was stronger in young than in older participants for faces (difference = -

0.09 bits [-0.18, 0.02]; median MI in young participants = 0.44 bits [0.39, 0.52], older 

participants = 0.38 bits [0.27, 0.46]) and letters (difference = -0.09 bits [-0.19, -0.01]; 

young = 0.4 bits [0.35, 0.48], older = 0.32 bits [0.24, 0.40]).  

Average scalp topographies (Figure 24A, insets) revealed a clear right-lateralised pattern 

of MI for faces in both young (lateralization index = -0.16 [-0.23, -0.05]) and older (-0.12 

[-0.21, -0.04]) participants. The average topographies for houses were mostly localised 

in the midline electrodes with a slight dominance of the right hemisphere (young = -0.09 

[-0.19, 0.03], older = -0.08 [-0.18, 0.01]). The average topographies for letters were very 

slightly left-lateralised in young (0.05 [-0.01, 0.10]), but not in older participants (0.01 [-

0.06, 0.06]). There were no group differences in lateralization indices for any comparison 

(differencefaces = 0.01 [-0.10, 0.12]; differencehouses = 0.00 [-0.10, 0.12]; differenceletters = -

0.05 [-0.13, 0.03]). 
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DISCUSSION 

The goal of the present study was to investigate the potential origin of the large visual 

evoked responses to textures in older adults. Our hypothesis was that early ERPs to 

noise were modulated by the expectations associated with the task at hand.  Specifically, 

we hypothesized that textures perceived in the context of different tasks would elicit ERP 

differences similar qualitatively to those observed in response to full images of target 

objects in those tasks.  

We found that, in comparison with young adults, older adults had elevated maximum 

Mutual Information (MI) values when comparing textures perceived in the face detection 

vs. house detection, and vs. letter detection tasks. There were no group differences 

when comparing textures perceived in the house detection vs. letter detection tasks. 

These results seem to suggest that ERPs recorded in response to textures might be 

susceptible to top-down effects to some extent, although this effect might be present in 

the context of the face detection task only. It should be noted, however, that MI was 

generally quite weak in most participants, with only a few participants showing elevated 

values. In some participants, MI peaked in the first 100 – 200 ms of stimulus processing, 

but in most of them it peaked between 200 ms and 300 ms post-stimulus, suggesting 

that the moderate effect observed in the face detection task relative to the house or letter 

detection tasks might not be related to the large N170.    

Contrary to the small categorical differences between ERPs to textures, limited to trials in 

the face detection task, we found strong group differences between ERPs elicited by 

objects. Specifically, maximum MI was consistently stronger in young participants in 

each of the categorical comparisons. MI about categorical differences between objects 

also peaked between 130 ms and 190 ms post-stimulus in both groups, so roughly in the 

time window of the N170. As hypothesized, we found hemispheric differences: the 

face/house MI was stronger over the right hemisphere, whereas the house/letter MI was 

stronger over the left hemisphere. However, both the left-lateralization of letters and the 

right-lateralization of faces was only the case in young participants. Altogether, results 

from categorical comparisons of ERPs elicited by objects suggest that clear categorical 

differences can be found in both age groups, and that significant age-related differences 

can be observed for each pair of objects. These differences, however, were not 

paralleled in texture-only trials. 

As a control condition in this study, at the beginning of the experimental session we 

presented participants with a set of textures without any object images. The reasoning 
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behind it was that if large ERP responses to textures in older adults were driven by the 

task at hand, we would see a strong difference between textures in the control 

(‘baseline’) block and textures in the detection blocks. MI revealed considerable 

differences between textures presented in those two types blocks in young and older 

participants: they began around 100 ms post-stimulus and were sustained for a long 

period of time (until 500 ms). However, there were no group differences, suggesting that 

large responses to textures in older adults are not driven by the presence of a detection 

task. A similar sustained difference in young participants was found in studies comparing 

the N1 elicited by foveally presented stimuli during two types of tasks, similar to ours. In 

simple RT tasks, participants pressed a single button upon detecting any stimulus, 

whereas in choice RT tasks participants pressed one of two buttons depending on the 

type of the stimulus (Ritter, Simson, & Vaughan, 1983; Vogel & Luck, 2000). Larger 

posterior N1 was elicited by stimuli during choice-RT tasks even in the absence of motor 

response, and was not due to greater arousal or task difficulty (Vogel & Luck, 2000). As 

such, the difference between textures in the two types of blocks in our study might reflect 

a general-purpose discrimination mechanism (Ritter et al., 1983; Vogel & Luck, 2000), 

which does not differ in ageing.  

We also compared reaction times on these two types of the task, i.e. a simple task where 

participants had to press only one key as soon as they saw a texture, and a more 

complex task where they had to press one of the two keys to discriminate a texture from 

an object. Older participants had similar average reaction times to young participants on 

the simple task, but were significantly slower on the more complex task. These results 

can be thought of as an example of the complexity effect, where behavioural slowing 

increases with increasing task complexity (Salthouse, 2000). A similar finding was also 

reported in an ERP study investigating simple- and choice-reaction tasks to visually 

presented letters (J. Yordanova et al., 2004). Age-related behavioural slowing was 

attributed to motor response generation, and was specifically associated with a strongly 

enhanced and prolonged activity in the contralateral motor cortex (Falkenstein et al., 

2006; Kolev et al., 2006; J. Yordanova et al., 2004), rather than a decline in perceptual 

speed marked with a prolonged N170.  

Altogether, our results suggest that a small influence of the presence of the face 

detection task might have an effect on ERPs recorded from older adults. However, this 

effect might not be related to large amplitudes of the N170 specifically recorded in 

response to textures, and visible only in a few participants. The fact that the effect was 

not so clearly visible might also be related to the design of our experiment. In particular, 

since object images were not degraded or masked with addition of phase noise, they 
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were very clearly distinguishable from images of textures, therefore yielding the task 

trivial for both young and older observers. Introducing ambiguity or uncertainty into the 

visual object might probe the brain to execute more top-down control in order to perceive 

the image (Gilbert & Sigman, 2007). One such example of top-down specificity can be 

seen in priming (Bentin et al., 2002; Gilbert & Sigman, 2007; Kato et al., 2004). For 

example, it would be interesting to run Bentin et al.’s (2002) paradigm in a sample of 

older participants by comparing the magnitude of the N170 elicited in response to pairs 

of dots presented in isolation before and after seeing them embedded in a face context 

(thereby making them interpretable as the eyes). If older adults exerted greater top-down 

control over ambiguous stimuli, then we could expect a larger priming effect on the 

magnitude of the N170 than in young participants. Alternatively, participants could view 

images of textures intermixed with trials containing objects masked with different levels 

of noise (Mayer, Schwiedrzik, Wibral, Singer, & Melloni, 2016; Philiastides & Sajda, 

2006; Rousselet et al., 2009; Wild & Busey, 2004). Biasing older adults’ expectations 

could produce larger effects on the N170 response to texture only trials. Finally, we used 

equal numbers of object and texture trials in this study, which might have been 

suboptimal at eliciting strong expectation effects. The original study included 84 trials per 

each of the 11 levels of phase coherence (Rousselet et al., 2009). Considering the fact 

that detecting a face was possible across several phase coherence levels (from ~30% to 

100%), the expectation effect could have been stronger in the original study. On the 

other hand, we observed strong N170-like responses to textures in the current study, 

even though there was not enough evidence for categorical differences in textures 

presented in different detection blocks. As such, further research is needed in this area.  

Recently, using magnetoencephalography (MEG) Mayer et al. (2016) reported that 

expectations about visually presented letters lead to increased prestimulus alpha 

oscillations in a network representing grapheme/morpheme associations. Furthermore, 

larger expectation-driven effects in prestimulus alpha power were associated with larger 

differences in early evoked (P1/N1) component (Fellinger, Gruber, Zauner, Freunberger, 

& Klimesch, 2012; Gruber, Klimesch, Sauseng, & Doppelmayr, 2005). As such, it would 

be interesting to test whether older adults modulate prestimulus alpha power when 

expecting to see a particular stimulus category and if so, whether this modulation is 

related to large N170 amplitudes on texture trials.  

On the other hand, larger evoked responses in older adults not specific to any stimulus 

category might be a feature of healthy ageing and linked to age-related differences in 

inhibitory processing (De Sanctis et al., 2008). An age-related deficit in suppression of 

irrelevant information in older adults was previously found using EEG in a working 
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memory task (Gazzaley et al., 2008). However, the suppression deficit was described as 

an inability to modulate the N1 latency, not amplitude (Gazzaley et al., 2008). Larger 

amplitudes in older adults were previously reported for visually presented faces 

(Rousselet et al., 2009), letters (Falkenstein et al., 2006; Yordanova et al., 2004), and 

letter-number pairs (De Sanctis et al., 2008), although two studies reported an 

attenuation of the N1 amplitude to letters in very old participants (80+ years old) and no 

difference between young (18-32 years old) and young-old (65-79 years old) participants 

(Daffner, Haring, & Alperin, 2013; Zhuravleva et al., 2014).  

Evidence for an age-related deterioration in inhibitory control that was related to 

increased visual response amplitudes comes from single-neuron recordings in animals. 

Monkey studies reported significant degradation of orientation and direction selectivity in 

single neurons from V1 (Schmolesky et al., 2000), V2 (Wang et al., 2005; Yu et al., 

2006) and MT (Yang et al., 2008), possibly related to deterioration in GABA-mediated 

inhibition (Hua et al., 2008; Leventhal et al., 2003). These changes were accompanied 

by enhanced visual response amplitudes to preferred as well as non-preferred stimuli, 

higher signal-to-noise ratios, and higher levels of spontaneous activity. In humans, 

similar de-differentiation of responses was found using functional magnetic resonance 

imaging (fMRI) in brain areas that respond maximally to certain stimulus categories in 

young adults, such as faces or words (Burianová, Lee, Grady, & Moscovitch, 2013; Park 

et al., 2004; Park et al., 2012; Voss et al., 2008). For example, the area in fusiform gyrus 

responding most strongly to faces in young adults (fusiform face area, FFA; Kanwisher, 

McDermott, & Chun, 1997) showed increased responses to other stimulus categories in 

older adults (Park et al., 2004; Park et al., 2012; Payer et al., 2006). Voss et al. (2008) 

computed a differentiation index providing a measure of discriminability, or specificity of 

neural responses in certain brain areas and reported a significant age-related reduction 

in neural specificity in regions responding to faces and places. However, to our 

knowledge no study to date assessed de-differentiation of neural responses using EEG. 

In this study, results showing lower MI in categorical differences between objects in older 

adults might suggest that neural responses elicited by faces, houses and letters are less 

differentiated than in young adults. On the other hand, comparing responses elicited by 

objects and their corresponding textures revealed similar MI in young and older adults 

alike for faces and houses, but not letters, where MI was stronger in young participants. 

Similar MI for faces and houses is in line with previous findings from our lab in which we 

reported no age-related differences in effect sizes for the difference between face and 

texture trials (Rousselet et al., 2009, 2010; Jaworska et al., in prep), suggesting that 

these two types of evoked responses can be discriminated similarly in the two groups. 
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As such, further research is needed in order to assess whether large N170 in response 

to textures might be driven by deterioration of inhibitory control and a resulting de-

differentiation of neural responses. For example, local variations in GABA levels found in 

visual cortices of young and older adults could be measured in the same individuals 

performing object detection task using EEG to investigate the relationship between levels 

of GABA and amplitudes of the N170 elicited in response to textures. It would also be 

interesting to compare responses elicited by our stimuli using MEG, which offers better 

spatial resolution and similar temporal resolution as EEG. A differentiation index similar 

to that used by Voss and colleagues (2008) could then be computed in regions 

responding most strongly to stimuli used in our study.     

In our final set of comparisons, we looked at MI between objects and textures to 

investigate processing speed differences between young and older adults. Previous 

studies in our lab only contrasted face stimuli with textures (Rousselet et al., 2009, 2010; 

Bieniek et al., 2013, 2015: Jaworska et al., in prep) and reported a 1 ms/year slowing in 

processing speed (Rousselet et al, 2010; Bieniek et al., 2013). Here, in comparison to 

textures, processing of faces and letters (but not houses) was delayed by about 30 ms in 

older participants. This difference was somehow smaller than in previous studies, in 

which a delay of about 50 ms was reported, and could be attributed to a difference in the 

shape of the time courses. Previous studies reported that, in older adults, sensitivity to 

image structure was spread over two time windows, one weaker around 150 ms 

following stimulus onset, similarly to young adults, and one stronger after 200 ms 

(Rousselet et al, 2009, 2010). Here, MI peaked only once, and in the same time window 

both in young and older participants. The reason for this discrepancy might be in the 

stimuli used. Specifically, in previous studies phase noise was added to images of faces 

in a parametric manner (Rousselet et al., 2009, 2010) or such that faces had 70% phase 

coherence (Bieniek et al., 2013). Here, phase coherence of object images was kept at 

90% and only randomized to create textures. As such, the second period of face 

processing, observed in previous studies and occurring after 200 ms in older adults 

could reflect differences introduced by the presence of a higher level of phase noise in 

the images. The second peak, occurring after 200 ms and corresponding to the P2 

component, has been reported previously in young participants processing stimuli with 

added noise and suggested to reflect task difficulty (Philiastides and Sajda, 2006) or 

increased sensory processing demands of noisy stimuli (Bankó et al., 2011). Notably, in 

our previous studies, the second peak was not observed in young participants with the 

same stimuli with added noise, suggesting that older adults specifically are less able to 
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tolerate distortion in the stimulus that occurs with introduction of noise (Grady et al., 

2000).  
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CHAPTER 5: GENERAL DISCUSSION 

The ultimate goal of cognitive neuroscience is to understand the brain as an organ of 

information processing, for example when detecting faces in the surroundings. Although 

face detection might seem trivial from a behavioural point of view, our understanding of 

the exact computational stages that the brain goes through from the moment when the 

input arrives from the retina to the visual cortex, until this input is categorized in order to 

allow for decision making to take place is still far from comprehensive. Furthermore, 

given that the brain ages as dramatically as the body, we cannot be certain that these 

information-processing stages remain the same throughout the lifespan.  

One of the most prominent accounts of cognitive ageing proposed that behavioural 

impairments on a variety of perceptual and cognitive tasks can be accounted for by a 

generalized slowing down of the neural information processing (Salthouse, 1996). 

Although there exist human and monkey studies (reviewed in Chapter 1) showing 

evidence for the structural and physiological differences and changes in the brain that 

could account for the observed behavioural slowing of responses and deterioration in 

accuracy, little research has in fact directly tested the slowing hypothesis on a neural 

level. Recent studies using EEG have tackled this problem and investigated processing 

of faces in comparison to textures (Rousselet et al., 2009, 2010; Bieniek et al., 2013, 

2015) to show that ageing slows down visual processing speed by 1 [0.79, 1.25] ms per 

year and that this effect has a cortical, rather than optical origin. As such, two groups of 

participants whose mean or median ages are separated by 50 years will be expected to 

show a 50 [39.5, 62.5] ms delay in processing the same stimulus. However, although 

similar statistical properties of the image were shown to drive the electrophysiological 

visual responses, it remained unclear what actual face information was associated with 

these responses. 

In this thesis, we aimed to shed light on this issue by investigating some of the 

information processing steps in the ageing brain using the most basic task for social 

cognition: face detection. In order to understand how the aged brain processes 

information in a face detection task, we must begin by asking questions: what 

information the brain processes when it detects a face, and when this information is 

processed with respect to the young brain. We tackled these two questions in Chapter 2. 

In order to find out what facial information is used by young and older adults alike, we 

employed the Bubbles paradigm which samples stimulus space in a randomized yet 

principled manner, and reverse-correlated the stimulus information revealed in single 
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trials with behavioural and brain responses. We have shown that the same information 

(the eye region) is associated with faster reaction times in both young and older adults 

alike, although older adults relied on the presence of the eyes more to make a correct 

discrimination. Furthermore, single-trial EEG responses were also modulated by the 

presence of the contralateral eye in the image, thereby extending similar results found 

previously in a sample of young adults (Rousselet et al., 2014) to a sample of older 

adults. Importantly, this association was weaker and delayed by 40 ms in older 

compared with young participants, although the delay amounted to only 20 ms when 

measured with the 50% integration times – the same technique employed previously by 

Rousselet et al. (2009). This modulation of EEG responses by eye visibility was 

demonstrated at the level of the N170 – an ERP component frequently associated with 

face categorization (Bentin et al., 1996). In young adults, higher eye visibility was 

associated with earlier and larger N170, whereas in older adults – only with larger 

responses. This pattern of responses was also more pronounced in the right hemisphere 

in young, but not older adults, suggesting a differential coding of the eye by the N170 in 

ageing. It should be kept in mind that the observed delay was smaller than the increase 

in reaction times, suggesting that both sensory and post-perceptual (decision-making, 

motor execution) slow with age. As such, it would be interesting to track information 

transmission across visual processing stages with newly developed techniques, such as 

Directed Information (DFI, Ince et al., 2016). Also, it would be interesting to extend 

analyses to later ERPs, such as the P300, which is considered an index of post-sensory 

evaluation processes. 

Altogether, the results from this study fill the big gap in the literature concerned with age-

related slowing of information processing: we have presented direct evidence that 

processing of the same facial information is slower (and weaker) in ageing, in line with 

Salthouse’s (1996) theory.  

In a follow-up study (Chapter 3), we sought to understand whether the age-related 

differences in eye sensitivity were preserved in a face context, on a notion that 

incomplete or occluded stimuli (such as Bubbled images) might differentially affect older 

adults’ ability to perform a perceptual task. The results confirmed our suspicions in a way 

that contralateral eye sensitivity was still observed in young and older adults alike, but to 

a lesser degree than in the Bubbles study. Importantly, we did not observe any age-

related differences on the N170 coding of the eye, and the observed weak eye sensitivity 

was not weaker or delayed in older adults. As such, in the second experiment we 

demonstrated that processing of the eye is not delayed or weaker in older, compared 

with young adults when the face context is preserved, in contrast to the theory of slower 
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processing speed in ageing. However, a categorical comparison of ERP activity elicited 

by faces and textures revealed similar differences as those observed in previous studies 

(Rousselet et al., 2009, 2010). In the present study, processing of faces with respect to 

textures was delayed by 32 – 46 ms depending on the condition. As such, we observed 

the age-related delay reported in previous studies but only when making a categorical 

comparison between faces and textures, suggesting that this difference might be due to 

larger responses to textures in older adults. 

In order to explore the origins of these large responses to textures reported already in 

previous studies (Rousselet et al., 2009), in particular on the N170, we conducted the 

third experiment (Chapter 4) in which we employed a series of simple detection tasks 

involving faces, houses and letters. We analysed differences between texture trials, in 

order to test if perceiving textures in the context of different detection tasks would 

influence ERP responses to textures in a top-down manner. However, we did not find an 

effect of the presence of the detection task on early (<200 ms) responses to textures, 

although there was a weak effect of a face detection task on later responses (>200 ms). 

We concluded that this effect did not present enough evidence to suggest a top-down 

influence on the responses to textures, and that an alternative explanation could be 

related to an inhibition, or de-differentiation of cortical responses in ageing. In terms of 

visual processing speed, we found that running categorical comparisons between 

textures and faces, houses or letters revealed group differences of about 17 – 33 ms; 

however, comparing ERPs elicited by objects only revealed no age-related delays 

between faces and houses or faces and letters, and only a small difference between 

houses and letters. Given that the age difference between the two samples used in this 

study was 45.5 years, the observed processing-speed differences were smaller than the 

reported 1 [0.79, 1.25] ms/year delay observed for faces previously (Rousselet et al., 

2009), even after taking into account confidence intervals associated with the original 

finding. 

How do our findings tie in with the existing theories of ageing? In a recent study age has 

been shown to have dissociable effects o neural processing speed in visual and auditory 

evoked responses (Price et al., 2016), suggesting that neural delay should not be 

thought of as unitary concept that affects all brain regions equally. Furthermore, Price et 

al. (2016) provided evidence for dissociation in structural differences of functionally 

relevant brain regions responsible for transfer and processing of information: whereas 

visual delays were linked to white matter integrity, auditory delays were underlined by 

local differences in grey matter. Here, although our first study provided evidence for 

slower information processing in ageing, results from the other two experiments yielded 
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mixed results suggesting that slowing within a visual system might not be generalizable 

across visual stimuli, thereby extending results of Price et al. (2016) to within-domain.  

On the other hand, consistently across studies we found large N170-like responses to 

textures. Elevated early sensory responses to visual stimuli in older adults seem to be a 

ubiquitous observation in the ERP literature (Falkenstein et al., 2006; De Sanctis et al., 

2008; Rousselet et al., 2009; Bieniek et al., 2015). Large ERP amplitudes to redundant 

information in older adults could be explained in terms of a decrease in efficiency of 

inhibitory processing, or some general activation to a visual stimulus without functional 

significance (De Sanctis et al., 2008). Notably, we also found weaker brain sensitivity to 

visual information in older adults, which could be suggestive of de-differentiation of early 

ERPs (Park et al., 2004, 2012) although further confirmatory research is needed to 

support this idea. As pointed out in Introduction, de-differentiation of neural responses 

could arise as a result of decreased signal-to-noise ratio of neuronal responses 

(Schmolesky et al., 2000), which itself could be related to weaker inhibitory processing 

due to changes in neurotransmitter function (Leventhal et al., 2003). Increased neural 

noise might, in turn, result in higher sensory thresholds and slower rates of neural 

information processing (Salthouse & Meinz, 1995; Salthouse, 1996). As such, the results 

presented in this thesis could be due to a combination of neurophysiological causes 

andit is impossible to disentangle the underlying factors with the current methods.  

Future studies should investigate these issues further by merging a variety of 

neuroimaging and stimulation methods with different behavioural tasks. For example, 

continuous theta burst stimulation (cTBS) with transcranial magnetic stimulation (TMS) 

(Huang, Rothwell, Chen, Lu, & Chuang, 2011; Pascual-Leone et al., 2011) could 

perhaps be used to increase neural inhibition over the lateral-occipital regions in older 

adults. It would be interesting to investigate not only whether increased inhibitory 

processing led to a reduction in the N170 amplitude to meaningless stimuli and whether 

representation of diagnostic information was stronger in older adults, but also if speed of 

information processing would be affected. On a behavioural level, paradigms merging 

careful stimulus control with inhibitory processing, such as garden path sentences, 

Stroop tasks, negative priming or go no-go tasks could in principle shed more light on the 

involvement of inhibitory processing in ageing. Likewise, according to Salthouse’s (1996) 

theory, generalized slowing should be more pronounced as task complexity increases, 

suggesting a simple to test hypothesis that more difficult tasks should produce neural 

delays of larger magnitudes. For example, future studies should investigate and replicate 

age-related differences of information content on more complex and socially relevant 

tasks, such as gender or age discrimination, identity judgments or emotion 
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categorization, and assess task-dependent delay of information coding with respect to 

the N170 in both groups. Finally, future studies should attempt to employ multimodal 

imaging techniques, for example MRI and MEG (Price et al., 2016), as well as MR 

spectroscopy in order to better understand the relationship between structural, 

physiological and functional age-related differences in information processing. In 

summary, future research should aim to integrate across behavioural, information-

processing and neurobiological levels in order to obtain an integrative understanding of 

cognitive ageing phenomena (Li, Lindenberger, & Sikström, 2001). 

Overall, the experimental work described in this thesis has furthered the knowledge with 

regards to what information is processed by the aged brain in a face detection task, and 

when. As such, we have explicitly addressed the hypothesis arising from Salthouse’s 

(1996) account of a generalized slowing down of information-processing speed by 

showing that in both age groups, the contralateral eye (the what) is processed in the time 

window of the N170 (the when), and is delayed by 40 ms (or 20 ms measured with 50% 

integration times) with respect to young participants. However, there were no age-related 

differences on the eye coding by the N170 when face context was present. Furthermore, 

we have replicated the previous account of a slower visual processing speed (Rousselet 

et al., 2009) only to some extent. Depending on the stimulus and the comparison, we 

have either observed age-related differences of about 17 – 46 ms in visual processing 

speed or no differences at all. Altogether, these results suggest that the age-related 

delay of 1 ms/year observed in earlier studies might be due to a peculiar form of the ERP 

wave in response to textures, and might not hold true for categorical differences obtained 

with other object categories. Alternatively, the distinctive shape of the face vs. texture 

waveform in older adults could be driven by the response to images of faces that have 

been phase-randomized. This pattern was observed in studies where phase coherence 

of entire face images was phase randomized in a parametric manner (Rousselet et al., 

2009, 2010), or kept at 70% (Bieniek et al., 2015), or where phase coherence of the eye 

region was modulated between 0% and 60% (Chapter 3), but not when face images 

were presented at 90% phase coherence (Chapter 4). As such, it would be interesting to 

revisit the datasets analysed in Rousselet et al. (2009, 2010) to check whether a similar 

pattern of responses is present at different levels of face visibility.   

It has been shown previously that stimulus degradation has an adverse effect on a face 

matching task in older adults (Grady et al., 2000). In our three studies, we have used 

three different stimulus manipulations to study visual processing speed: in the first study, 

the images of faces were degraded to the largest extent by revealing portions of the 

image through the Gaussian apertures. In the second study, we modulated the visibility 
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of the eye parametrically by introducing different levels of phase coherence, whereas the 

face context remained intact. In the third study, the stimuli were manipulated to the 

smallest extent: all objects in the three categories were presented at 90% phase 

coherence. Each of these approaches might have advantages and disadvantages 

depending on the research question being answered. The use of Bubbles seems to be 

ideally suited for investigating the information processing in the brain. This is because 

the stimulus itself acts as its own control condition (Schyns et al., 2003) – we are not 

interested in comparing categorical responses elicited by, for example faces and 

textures. Instead, we can study single-trial fluctuations of activity that crucially depend on 

the information available from the stimulus. However, this paradigm might not be ideal to 

study age-related differences in information processing because older adults seem to 

benefit from the available contextual information, as we have shown when the whole 

face context was preserved (thereby providing a more ecologically valid stimulus) in 

Chapter 3. In light of these findings, it would be interesting to investigate whether the eye 

sensitivity can be preserved in ageing when more informative stimuli are used, albeit not 

as revealing as in our second study (Chapter 3). For example, a number of apertures 

could be increased for older participants so that their performance is matched to that of 

young participants (in our first study, the same number of Bubbles was used in both 

groups). Alternatively, a more meaningful stimulus set could be used that, for example, 

contains coloured faces and reveals external features aiding detection (such as hair). 

Another possibility would be to use 3-D Bubbles sampling (Gosselin & Schyns, 2001; 

Schyns et al., 2007, 2011; Schyns, Petro, & Smith, 2009), rather than 2-D sampling used 

in Chapter 2 of this thesis. With 3-D Bubbles, sampling is performed independently in 

different spatial frequency bands in addition to sampling over a two-dimensional image 

plane. Adding Bubbles sampled over a wide range of spatial frequencies allows for 

presentation of face features visible at lower spatial frequencies than presented here 

(therefore preserving the face context). Presenting a stimulus sampled over different 

spatial scales might reveal more global features of the face (such as the oval of the face 

against the background), in addition to fine detail preserved in high spatial frequencies. 

All in all, our results point to the need for carefully and tightly controlled visual stimuli in 

ageing research, and careful selection of control stimuli for comparisons. 

LIMITATIONS AND FUTURE DIRECTIONS 

There are certain limitations present in the experimental work that constituted this thesis 

that we acknowledge and address in turn. First, we did not record eye movements in 

either experiment. Although participants were instructed to fixate the cross presented at 
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the centre of the screen, and the stimulus duration (about 83 ms) was too short to initiate 

saccadic eye movements, we cannot rule out the possibility that participants fixated 

slightly off the cross in a systematic way that could have affected our results. This could 

be problematic because information presented at the fovea is processed more efficiently 

than in the periphery, due to cortical magnification in V1 (Azzopardi & Cowey, 1993) as 

well as in higher-level processing regions, such as the inferotemporal cortex (Rolls et al., 

2003). Furthermore, when allowed a variable number of fixations on the face stimulus, 

humans tend to land their first fixation just to the left of the centre of the nose (Hsiao & 

Cottrell, 2008), suggesting a left-side perceptual bias in face perception (Gilbert & 

Bakan, 1973), also found in older participants (Williams, Grealy, Kelly, Henderson, & 

Butler, 2016). In addition, eye movements associated with left perceptual bias did not 

differ between young and older participants (Williams et al., 2016), although age-related 

disruptions in sampling behaviour (more fixations and more transitions) were found in a 

different experimental setting (Firestone, Turk-Browne, & Ryan, 2007). Future studies 

should employ eye tracking at least in order to make sure that participants are fixating 

the correct position on the screen. Ideally, the full account of face/eye detection 

mechanisms should consider the influence of cortical magnification and fixation locations 

that could either amplify or abolish sensitivity to eye features (de Lissa et al., 2014; 

Nemrodov et al., 2014; Rousselet et al., 2014; Zerouali et al., 2013). 

Furthermore, older participants wore habitual correction if needed. However, given 

presbyopia (i.e. age-related blurring of close-up vision due to loss of elasticity of the lens 

of the eye) this solution could be sub-optimal as a corrective measure. Specifically, use 

of either reading or distance glasses might be inefficient at computer distance, which is 

often considered intermediate. As a result, habitual correction might be inefficient at 

correcting blur in older participants, which could, in turn, lead to age-related differences 

at the behavioural level. For example, the observed reliance on the eye region to detect 

a face in older adults (Chapter 2) could be due to a behavioural strategy to focus on the 

face region with more contrast, to compensate for potentially increased blur. To 

overcome this issue in ideal world, visual acuity at the exact computer distance used in 

the study should be assessed and optimal correction at this distance should be given to 

each participant. However, limitations to this approach include the need for non-standard 

distance tests, and a range of correction spectacles available for use in the laboratory, 

associated with a significant increase in costs needed to run a study.      

Furthermore, all studies reported in this thesis used relatively small sampled and unusual 

participants. In particular, studies were conducted at the University of Glasgow, and 

recruitment of participants (both young and older alike) was conducted in the vicinity of 



 

 

152 

the university. As such, it is likely that our sample of older adults over-represented those 

healthy, well-educated, highly motivated and generally high-functioning volunteers, some 

of whom were retired university staff. It should be kept in mind that sampling bias might 

be particularly problematic in ageing studies in general. Less healthy persons could be 

less able to participate in research studies, and health itself might deteriorate in ageing. 

As such, progressively older adults who do participate in studies may be progressively 

less representative of the group they are intended to reflect (Golomb et al., 2012). 

Although we cannot say whether better health or education would influence brain activity, 

especially that related to a simple face detection task, this issue should be explored 

further. One way to ensure the separation of age-related factors from other sources of 

individual variation is to provide a sufficient sample size in each age group. Recent study 

from our lab suggested that testing at least 20 participants per group appears to reduce 

the variability of data points considerably (Bieniek et al., 2015). In order to meet this 

requirement, we tested 23 participants in the second study, and 24 in the third study, but 

only 18 participants in the Bubbles study. Given that not all older participants had 

significant Mutual Information between stimulus space and ERPs (Chapter 2), the time 

courses and the resulting group differences could have been due to only a few 

individuals displaying strong effects. As such, information processing speed should 

ideally be quantified using large samples of individual participants. Additionally, 

collaborative efforts could address the issue of sample size by attempting to combine 

datasets collected in multiple locations and performing analyses on an enlarged dataset 

(Babiloni et al., 2006; Fennema-Notestine et al., 2007; Gaetz, Roberts, Singh, & 

Muthukumaraswamy, 2012). 

Furthermore, to ensure that observed age-related patterns of neural change are relevant 

to population at large, to it advisable to use a population-based representative sample, 

for example using primary care population list of residents as the sampling frame (Shafto 

et al., 2014). However, recruitment of older adults for participation in research is a 

recognized difficulty due to several barriers, such as mistrust and transportation 

obstacles, caregiver burden, medical concerns and indifference (McHenry et al., 2015). 

Increasing efforts to recruit larger and representative samples should thus become an 

area of systematic planning and evaluation in labs undertaking ageing research. For 

example, McHenry et al. (2015) reported a successful recruitment plan for a medical 

study, detailing four strategies as important for representative participant recruitment and 

retention: 

1) Accessing an appropriate population, e.g. by maintaining solid relationships with 

community-based organizations in multiple geographical locations; 
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2) Communication and trust-building, e.g. by maintaining face-to-face contact; 

3) Providing for comfort and security, e.g. by limiting perceived burden such as 

discomfort, fatigue, time and travel; 

4) Expression of gratitude. 

Overall, ageing studies should start considering sampling and recruitment as critical 

components of the experimental design (Falk et al., 2013). 

Apart from the sampling bias, we used cross-sectional designs, meaning that cohort 

effects (e.g. in educational attainment, nutritional differences) could also potentially 

confound results in a yet unknown manner. For example, Nyberg et al. (2010) reported 

qualitative differences in recruitment of frontal regions in older adults for cross-sectional 

versus longitudinal designs, suggesting that longitudinal designs might be needed to 

confirm or disprove the results obtained with cross-sectional designs.  

Finally, due to low spatial resolution of EEG, we have no way of saying which brain 

areas contributed to the reported effects, and whether the same sources (or processes) 

were responsible for the effects reported in the two age groups. This question is 

particularly relevant in light of the two findings reported in Chapters 2 and 3, i.e. large 

group differences on the latency and amplitude coding of the eye in the Bubbles study 

versus similar coding of the eye in the face context. This issue could be addressed, for 

example, by using MEG, which offers similar temporal resolution and better spatial 

resolution than EEG. Investigating where the task-diagnostic information is processed is 

another step in trying to understand the information-processing networks in the brain. 

This is particularly important in ageing, which has been associated with de-differentiation 

of neural responses in face-selective areas in the ventral visual stream (Park et al., 

2004) and increased functional connectivity with frontal and parietal regions (Burianova 

et al., 2013; Lee et al., 2011), suggesting that task-related brain networks lose some 

specificity and become less modular in nature (Meunier, Achard, Morcom, & Bullmore, 

2009) in older adults. As a result, very different cortical networks could mediate 

equivalent performance in the brains of young and older adults.  
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APPENDICES 

APPENDIX A 

Supplementary material for Chapter 2. 

SUPPLEMENTARY RESULTS 

EFFECT SIZES FOR BRAIN SENSITIVITY TO IMAGE STRUCTURE 

In order to establish similar brain response sensitivity across the two age groups, we 

computed Cliff’s delta estimates for the difference between ERPs to face and noise trials 

(for practice and Bubble trials separately) for every time point and every electrode in 

each participant separately. Then, we saved the maximum delta value across time points 

and electrodes in each participant, and computed the median across participants in each 

age group.  

The brain response sensitivity to full images was similar across the two groups in 

practice trials (difference (young-older): 0.01 [-0.07, 0.09]; median Cliff’s delta in young 

participants = 0.64 [0.58, 0.68], median Cliff’s delta in older participants = 0.60 [0.54, 

0.69]).  

This effect was smaller in Bubble trials in both groups: 0.35 [0.32, 0.40] in young, and 

0.30 [0.25, 0.35] in older participants (difference: 0.06 [0.01, 0.11]). This small difference, 

however, is difficult to interpret given sparse sampling of face information on single-trial 

level. Therefore, similar values of the Cliff’s delta estimates in both groups in practice 

trials are an indication of similar brain response sensitivity across age groups.  
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COMPARISON OF MI VALUES OBTAINED WITH DIFFERENT METHODS 

In the main manuscript, we used an approach where data were quantized into a number 

of bins, and MI was estimated over the resulting discrete spaces. However, the binning 

approach can be sensitive to the problem of limited sampling bias. In order to test the 

results described in the main manuscript, here we computed a new estimator of MI that 

can be used with continuous variables (Ince, Giordano, et al., 2016) and utilizes the 

concept of copulas (Nelsen, 2007), statistical structures that express the relationship 

between two random variables, independently of their marginal distributions. The copula 

method does not require the binning step and overcomes this problem while being 

computationally efficient (Ince, Giordano, et al., 2016).  

In single participants, we calculated MI between visibility of the left eye (a scalar value 

obtained as a sum of pixel visibility within the circular left eye mask on each trial, cf. main 

manuscript) and EEG voltage over the time period of -300 ms before to 1000 ms after 

stimulus onset (regular MI, Table S1). We also computed the temporal gradient of the 

EEG voltage (dEEG) on each trial in order to account for the temporal relationship 

between neighbouring time points, and then combined the EEG voltage and its temporal 

gradient into a bivariate response (gradient MI, Table S1). We then calculated the time 

course of MI about the eye visibility in the bivariate response: MI(eye, [EEG dEEG]). 

Considering the gradient response together with the voltage smoothes out the artifactual 

dips in MI time courses, occurring at time points of zero-crossings when EEG voltages 

change the sign. It also introduces information about the shape of the ERP, otherwise 

missing from just considering instantaneous amplitudes. As such, the bivariate time 

course provides a clearer picture of the time window(s) over which the EEG signal is 

modulated by the changing stimulus (Ince, Giordano, et al., 2016). Finally, in order to 

check whether information about the eye visibility was coded in a more distributed 

manner across the scalp in older compared with young participants, we ran Principal 

Component Analysis (PCA) on each time point in individual participants. Then, we 

computed MI between the top four components and eye visibility (multivariate MI, Table 

S1).   

All analyses yielded group differences comparable to those obtained with the binning 

method and described in the main manuscript: MI about the left eye was delayed by 

about 37 - 47 ms in older compared with young participants, and peak MI in older 

participants was 49 - 59% the size of that in young participants. As such, the binning 

method was sensitive enough to provide a good description of age-related differences in 

eye coding. 
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Table S 1 Comparison of MI obtained with different methods. 

We computed continuous MI between eye visibility and EEG (regular), bivariate MI between eye 
visibility and combined EEG and its temporal gradient (gradient) and MI between eye visibility 
and PCA components (multivariate) in single subjects. Values correspond to the Harrell-Davis 
estimates of the median latency (expressed in milliseconds) of maximum MI, and maximum MI 
(expressed in bits) computed across young and older participants and at the left occipito-temporal 
(LE) and the right occipito-temporal sensors separately. Group differences are expressed as the 
median of all pairwise differences between participants in each group. Additionally, the group 
difference in MI amplitudes is expressed as a ratio of the median amplitude in young to the 
median amplitude in older participants.  Square brackets indicate 95% confidence intervals. 

 

 Latency (ms) Amplitude (bits) 

regular LE RE LE RE 

young 165 [158, 177] 162 [158, 172] 0.07 [0.04, 0.11] 0.12 [0.09, 0.14] 

older 212 [195, 249] 201 [191, 218] 0.04 [0.03, 0.06] 0.05 [0.04, 0.08] 

difference 47 [29, 89] 39 [25, 58] -0.03 [-0.07, 0] 

ratio:  

0.59 [0.39, 1.03] 

-0.06 [-0.09, -0.03] 

ratio:  

0.51 [0.35, 0.77] 

gradient     

young 166 [157, 188] 164 [156, 175] 0.07 [0.05, 0.11] 0.12 [0.09, 0.14] 

older 213 [196, 256] 201 [189, 219] 0.04 [0.03, 0.05] 0.05 [0.04, 0.08] 

difference 47 [19, 84] 37 [21, 56] -0.03 [-0.07, 0] 

ratio:  

0.58 [0.36, 1.04] 

-0.07 [-0.09, -0.03] 

ratio:  

0.49 [0.33, 0.72] 

multivariate     

young 171 [166, 183] 0.09 [0.08, 0.12] 

older 210 [195, 237] 0.06 [0.04, 0.08] 

difference 38 [20, 70] -0.03 [-0.07, -0.01] 

ratio: 0.57 [0.39, 0.85] 
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SUPPLEMENTARY FIGURES 

 

Figure S 1 Boxplots of MI results. Presented are boxplots for MI between eye visibility (summed 
within the left and the right eye aperture) and correct responses (top) and reaction times (bottom), 
separately for young (green) and older (blue) participants and for face (left) and noise (right) trials. 
Numbers above each boxplot present the number of participants showing significant MI for each 
condition. 
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Figure S 2 Reverse analysis: Left eye (face trials). Each column of dots presents one 
participant’s accuracy scores (top) and reaction times (bottom) averaged within each of the 10 
bins of left eye visibility in face trials (bin 1: low visibility, bin 10: high visibility). Young (right) and 
older (left) participants’ scores are presented separately. Low eye visibility (low bin numbers and 
purple to blue colours) were associated with lower accuracies and slower reaction times. This 
association was particularly visible in older participants’ accuracies. 
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Figure S 3 Reverse analysis: Left eye (noise trials). For details, see Figure S 2 caption. 
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Figure S 4 Reverse analysis: Right eye (face trials). For details, see Figure S 2 caption. 
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Figure S 5 Reverse analysis: Right eye (noise trials). For details, see Figure S 2 caption. 
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Figure S 6 MI(pix, ERP): all electrodes. 

We ran the MI(PIX, ERP) analysis on all electrodes, and at all time points between 0 and 400 ms 
following stimulus onset, for each participant individually. (A) Classification images averaged from 
individual classification images showing the highest MI values across all time points and 
electrodes, for face and noise trials in young participants (top two images), and for face and noise 
trials in older participants (bottom two images). Across both young and older observers, the left 
eye area was strongly associated with ERPs on face trials. No MI was found on noise trials. (B) 
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Time courses of the maximum MI across all electrodes and pixels, averaged across young and 
older participants, for face and noise trials separately. Both time courses averaged for young and 
older participants were very similar to those obtained in the main analysis. 

APPENDIX B 

Supplementary material for Chapter 3. 

SUPPLEMENTARY RESULTS 

 

Figure S 7 Individual participants' MI time courses. Presented are time courses for conditions in 
which face context was absent: sampling of the contralateral and the ipsilateral eye, separately for 
the left hemisphere (OTL) and the right hemisphere (OTR). Individual participants’ time courses 
are presented separately for young (top) and older (bottom) participants. 
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MUTUAL INFORMATION ABOUT CATEGORICAL DIFFERENCES BETWEEN FACE AND 

TEXTURE (OTL) 

 

 

Figure S 8 MI(face/noise, ERP) at OTL. 

MI time courses are presented for each condition and separately for young (green) and older 
(blue) participants. The mean difference between young and older participants is plotted in black 
in separate panels. Shaded areas correspond to 95% confidence interval. 
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Table S 2 Categorical differences: maximum MI (OTL). 

Values correspond to the median of the maximum MI across time points (expressed in bits), 
separately for young and older participants, for the categorical differences between each of the 
experimental conditions and textures. The last column shows the median of pairwise differences 
between older and young participants. Square brackets indicate 95% confidence intervals. Cliff’s 
delta estimates are presented in italics. 

 Young Older Older-Young 

Contra/ Ipsi abs. 0.26 [0.22, 0.30] 0.26 [0.21, 0.36] 0.01 [-0.05, 0.10] 

0.05 [-0.29, 0.38] 

Contra/ Ipsi pres. 0.27 [0.23, 0.32] 0.29 [0.24, 0.35] 0.01 [-0.05, 0.08] 

0.07 [-0.27, 0.39] 

Ipsi/ Contra abs. 0.25 [0.21, 0.31] 0.28 [0.23, 0.37] 0.03 [-0.04, 0.11] 

0.14 [-0.20, 0.45] 

Ipsi/ Contra pres. 0.31 [0.27, 0.37] 0.32 [0.27, 0.38] -0.004 [-0.08, 0.06] 

-0.02 [-0.35, 0.31] 

Contra 0.21 [0.18, 0.23] 0.19 [0.16, 0.24] -0.01 [-0.05, 0.03] 

-0.05 [-0.37, 0.29] 

Ipsi 0.15 [0.14, 0.18] 0.16 [0.14, 0.19] -0.001 [-0.03, 0.03] 

-0.02 [-0.35, 0.31] 
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Table S 3 Categorical differences: MI latency (OTL). 

Values correspond to the median of the maximum MI latency (expressed in milliseconds), 
separately for young and older participants, for the categorical differences between each of the 
experimental conditions and textures. The last column shows the median of pairwise differences 
between older and young participants. Square brackets indicate 95% confidence intervals. Cliff’s 
delta estimates are presented in italics. 

 Young Older Older-young 

Contra/ Ipsi abs. 200 [158, 274] 261 [247, 270] 57 [-15, 103] 

0.26 [-0.11, 0.57] 

Contra/ Ipsi pres. 174 [154, 213] 257 [237, 268] 71 [32, 99] 

0.54 [0.20, 0.76] 

Ipsi/ Contra abs. 179 [150, 224] 241 [220, 265] 60 [20, 90] 

0.48 [0.14, 0.72] 

Ipsi/ Contra pres. 166 [144, 217] 253 [231, 272] 72 [22, 107] 

0.50 [0.15, 0.74] 

Contra 221 [153, 277] 271 [202, 308] 22 [-28, 89] 

0.15 [-0.19, 0.46] 

Ipsi 240 [189, 298] 276 [235, 342] 42 [-14, 86] 

0.24 [-0.11, 0.53] 
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Table S 4 Categorical differences: 50% integration time (OTL). 

Values correspond to the median of time to integrate 50% of the MI time course (expressed in 
milliseconds), separately for young and older participants, for the categorical differences between 
each of the experimental conditions and textures. The last column shows the median of pairwise 
differences between older and young participants. Square brackets indicate 95% confidence 
intervals. Cliff’s delta estimates are presented in italics. 

 Young Older Older-young 

Contra/ Ipsi abs. 217 [193, 250] 246 [235, 258] 28 [-4, 58] 

0.30 [-0.06, 0.59] 

Contra/ Ipsi pres. 205 [184, 229] 259 [238, 282] 55 [25, 82] 

0.56 [0.24, 0.78] 

Ipsi/ Contra abs. 220 [185, 256] 264 [245, 308] 59 [19, 86] 

0.48 [0.14, 0.71] 

Ipsi/ Contra pres. 203 [185, 231] 249 [234, 268] 44 [18, 69] 

0.50 [0.17, 0.73] 

Contra 246 [214, 266] 293 [265, 314] 43 [-1, 81] 

0.33 [-0.03, 0.61] 

Ipsi 254 [227, 296] 285 [230, 353] 24 [-30, 93] 

0.15 [-0.20, 0.47] 
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Table S 5 Maximum MI: hemispheric difference (OTR-OTL). 

Values correspond to the median of the difference (OTR-OTL) in maximum MI across time points 
(expressed in bits), separately for young and older participants, for the categorical differences 
between each of the experimental conditions and textures. The last column shows the median of 
pairwise differences between older and young participants. Square brackets indicate 95% 
confidence intervals. Cliff’s delta estimates are presented in italics. 

 Young Older Older-Young 

Contra/ Ipsi abs. 0.10 [0.05, 0.15] 0.10 [0, 0.19] 0 [-0.10, 0.10] 

0.01 [-0.33, 0.34] 

Contra/ Ipsi pres. 0.13 [0.06, 0.18] 0.09 [0.004, 0.15] -0.04 [-0.12, 0.04] 

-0.16 [-0.46, 0.18] 

Ipsi/ Contra abs. 0.06 [0.01, 0.12] 0.06 [-0.01, 0.15] 0 [-0.08, 0.08] 

-0.02 [-0.34, 0.32] 

Ipsi/ Contra pres. 0.09 [0.01, 0.17] 0.05 [-0.03, 0.13] -0.03 [-0.12, 0.05] 

-0.11 [-0.42, 0.23] 

Contra 0.04 [0.01, 0.08] 0.01 [-0.03, 0.06] -0.04 [-0.10, 0.03] 

-0.19 [-0.49, 0.16] 

Ipsi 0.03 [-0.001, 0.05] 0.02 [-0.02, 0.05] -0.01 [-0.05, 0.03] 

-0.08 [-0.40, 0.26] 
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Table S 6 MI latency: hemispheric differences (OTR-OTL). 

Values correspond to the median of the differences (OTR-OTL) in maximum MI latency 
(expressed in milliseconds), separately for young and older participants, for the categorical 
differences between each of the experimental conditions and textures. The last column shows the 
median of pairwise differences between older and young participants. Square brackets indicate 
95% confidence intervals. Cliff’s delta estimates are presented in italics. 

 Young Older Older-Young 

Contra/ Ipsi abs. -20 [-75, 17] -14 [-36, 6] 0 [-47, 64] 

0 [-0.33, 0.33] 

Contra/ Ipsi pres. -28 [-73, 11] -16 [-55, 2] -1 [-40, 47] 

0 [-0.33, 0.33] 

Ipsi/ Contra abs. 5 [-36, 23] -7 [-44, 10] -12 [-48, 17] 

-0.14 [-0.45, 0.20] 

Ipsi/ Contra pres. -11 [-66, 8] 0 [-23, 19] 14 [-19, 64] 

0.16 [-0.19, 0.46] 

Contra -4 [-33, 44] 13 [-17, 46] 10 [-44, 57] 

0.05 [-0.28, 0.37] 

Ipsi -12 [-55, 70] 0 [-49, 42] -6 [-87, 55] 

-0.01 [-0.34, 0.32] 
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Table S 7 50% integration time: hemispheric differences (OTR-OTL). 

Values correspond to the median of the differences (OTR-OTL) in time to integrate 50% of the MI 
time course (expressed in milliseconds), separately for young and older participants, for the 
categorical differences between each of the experimental conditions and textures. The last 
column shows the median of pairwise differences between older and young participants. Square 
brackets indicate 95% confidence intervals. Cliff’s delta estimates are presented in italics. 

 Young Older Older-Young 

Contra/ Ipsi abs. -23 [-70, 0] -1 [-12, 30] 38 [0, 86] 

0.30 [-0.05, 0.58] 

Contra/ Ipsi pres. -20 [-36, 1] -12 [-35, 1] 2 [-27, 27] 

0.03 [-0.31, 0.35] 

Ipsi/ Contra abs. -12 [-38, 1] -13 [-67, 6] -4 [-54, 29] 

-0.05 [-0.37, 0.29] 

Ipsi/ Contra pres. -7 [-36, 23] -12 [-34, 1] -13 [-55, 14] 

-0.15 [-0.46, 0.19] 

Contra -2 [-33, 41] -23 [-51, 18] -15 [-66, 34] 

-0.11 [-0.42, 0.24] 

Ipsi -8 [-33, 21] -10 [-43, 41] 0 [-44, 59] 

0.01 [-0.32, 0.34] 
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REVERSE ANALYSIS (OTL)
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Figure S 9 Modulation of ERPs by eye visibility at OTL. 

ERPs from each condition are averaged across trials falling in one of six bins corresponding to 
different levels of eye visibility (bin 1: lowest visibility, bin 6: highest visibility). Average ERPs are 
presented separately for young (A) and older (B) participants. 

 

Figure S 10 Group-average modulation of the N170 by eye visibility at OTR. 

Effects of eye visibility on the N170 latency and amplitude were quantified as a difference 
between latencies in bin 6 (high visibility) and in bin 1 (low visibility), and as a ratio of amplitudes 
in bin 1 to amplitudes in bin 6, separately for each condition. For example, negative values on the 
x-axis (latency modulation, expressed in milliseconds) indicate shorter latencies in bin 6 than bin 
1, and positive values on the y-axis (amplitude modulation, expressed as a ratio) indicate larger 
amplitudes in bin 6 than bin 1. Green circles correspond to the median across young participants, 
whereas blue stars – to median across older participants. Black squares show median group 
differences between young and older participants, expressed as a difference in median latency 
modulations, and a ratio of median amplitude modulations. Vertical and horizontal lines 
correspond to 95% confidence intervals.   
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Table S 8 Group-average N170 latency and amplitude modulation by eye visibility at OTL. 

Values correspond to median of individual participants’ latency modulation expressed in 
milliseconds, and median ratio of amplitudes. In individual participants, latency modulation was 
calculated by subtracting average latency across trials in bin 1 (low eye visibility) from trials in bin 
6 (high eye visibility). Amplitude modulation was calculated by dividing average bin 1 amplitude by 
average bin 6 amplitude. Square brackets correspond to 95% confidence intervals.   

 N170 Latency N170 Amplitude 

 Young Older Young Older 

Contra/Ipsi abs. -4 [-7, -1] -3 [-5, 1] 0.82 [0.51, 0.98] 1.02 [0.88, 1.13] 

Contra/Ipsi 

pres. 

-2 [-6, 1] -5 [-9, -2] 0.91 [0.75, 1.05] 0.93 [0.89, 0.99] 

Contra 2 [0, 12] 0 [-4, 4] 0.78 [0.42, 1.05] 1.01 [0.93, 1.12] 

Ipsi/Contra abs. -2 [-4, -1] -3 [-6, 1] 1.00 [0.86, 1.36] 0.94 [0.85, 1.04] 

Ipsi/Contra 

pres. 

-1 [-3, 1] -1 [-4, 4] 0.93 [0.80, 1.01] 0.99 [0.91, 1.08] 

Ipsi 2 [-2, 7] -3 [-7, 0] 0.98 [0.71, 1.40] 0.96 [0.92, 0.99] 
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Table S 9 Group differences in the N170 latency and amplitude modulation at OTL. 

For latency modulation, a median difference between individual latency modulations in the groups 
of young and older participants was computed. For amplitude modulation, a median ratio of 
individual amplitude modulations in both groups (young/older) was computed (first row of values), 
as well as the difference between individual values in young and older groups (second row of 
values). Corresponding Cliff’s delta estimates are presented in italics. Square brackets indicate 
95% confidence intervals. 

 N170 Latency N170 Amplitude 

Contra/Ipsi abs. -2 [-6, 2] 

 

-0.12 [-0.44, 0.22] 

0.79 [0.48, 0.97] 

-0.23 [-0.50, -0.02] 

-0.34 [-0.61, 0.00] 

Contra/Ipsi 

pres. 

3 [-2, 7] 

 

0.20 [-0.14, 0.50] 

0.96 [0.78, 1.12] 

-0.04 [-0.21, -0.12] 

-0.08 [-0.41, 0.26] 

Contra 5 [-1, 13] 

 

0.26 [-0.09, 0.55] 

0.76 [0.53, 1.04] 

-0.24 [-0.62, -0.02] 

-0.35 [-0.64, 0.03] 

Ipsi/Contra abs. 1 [-4, 4] 

 

0.06 [-0.28, 0.38] 

1.07 [0.86, 1.42] 

0.06 [-0.14, 0.30] 

0.09 [-0.25, 0.41] 

Ipsi/Contra 

pres. 

-1 [-6, 4] 

 

-0.05 [-0.38, 0.29] 

0.92 [0.76, 1.05] 

-0.08 [-0.25, 0.06] 

-0.22 [-0.51, 0.13] 

Ipsi 6 [-1, 10] 

 

0.31 [-0.03, 0.58] 

0.97 [0.71, 1.46] 

-0.03 [-0.24, 0.45] 

-0.04 [-0.39, 0.32] 
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APPENDIX C 

Supplementary material for Chapter 4. 

  



Table S 10 ERP amplitudes and latencies: object trials.  

Values correspond to the median N170 latency and amplitude across young and older participants, averaged for face, house and letter trials and presented separately 
for OTL and OTR. The column labelled ‘difference’ shows median differences between older and young participants, and the corresponding Cliff’s delta estimate of the 
group difference is shown in italics. Amplitude is expressed in µV/cm2 and latency is expressed in milliseconds. Square brackets correspond to 95% confidence 
intervals. 

N170 latency OTL OTR 

 young older difference young older difference 

Faces 147 [138, 153] 154 [146, 162] 8 [-2, 18] 

0.27 [-0.06, 0.55] 

147 [144, 151] 158 [149, 167] 12 [1, 22] 

0.35 [0.01, 0.62] 

Houses 155 [144, 166] 162 [151, 173] 8 [-6, 23] 

0.17 [-0.16, 0.47] 

155 [144, 162] 166 [161, 176] 14 [3, 30] 

0.39 [0.04, 0.65] 

Letters 157 [153, 163] 161 [152, 169] 3 [-7, 14] 

0.09 [-0.23, 0.41] 

154 [148, 159] 166 [159, 176] 13 [3, 25] 

0.41 [0.07, 0.66] 

N170 amplitude  

Faces -0.32 [-0.46, -0.15] -0.61 [-0.73, -0.55] -0.31 [-0.51, -0.16] 

-0.57 [-0.77, -0.25] 

-0.36 [-0.46, -0.23] -0.61 [-0.81, -0.46] -0.26 [-0.46, -0.13] 

-0.47 [-0.70, -0.14] 

Houses -0.18 [-0.28, -0.09] -0.49 [-0.67, -0.35] -0.32 [-0.50, -0.16] 

-0.62 [-0.80, -0.32] 

-0.16 [-0.27, -0.08] -0.45 [-0.60, -0.32] -0.27 [-0.42, -0.13] 

-0.55 [-0.76, -0.23] 

Letters -0.41 [-0.55, -0.28] -0.62 [-0.87, -0.41] -0.22 [-0.50, -0.04] 

-0.34 [-0.60, -0.00] 

-0.42 [-0.54, -0.33] -0.48 [-0.72, -0.36] -0.08 [-0.28, 0.09] 

-0.17 [-0.47, 0.17] 
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Table S 11 ERP amplitudes and latencies: texture trials.  

Values correspond to the median N170 latency and amplitude across young and older participants, averaged for texture trials in the face detection (Fnoise), house 
detection (Hnoise) and letter detection (Lnoise) tasks and presented separately for OTL and OTR. The column labelled ‘difference’ shows median differences between 
older and young participants, and the corresponding Cliff’s delta estimate of the group difference is shown in italics. Amplitude is expressed in µV/cm2 and latency is 
expressed in milliseconds. Square brackets correspond to 95% confidence intervals. 

N170 latency OTL OTR 

 young older difference young older difference 

Fnoise 160 [130, 192] 171 [158, 186] 33 [-10, 60] 

0.30 [-0.07, 0.60] 

140 [113, 171] 173 [156, 188] 55 [19, 78] 

0.50 [0.14, 0.75] 

Hnoise 128 [105, 152] 156 [148, 165] 48 [21, 64] 

0.53 [0.17, 0.76] 

151 [122, 182] 161 [148, 174] 27 [-2, 56] 

0.32 [-0.04, 0.61] 

Lnoise 163 [136, 191] 159 [147, 172]  6 [-27, 34] 

0.07 [-0.27, 0.39] 

141 [116, 166] 159 [145, 174] 30 [2, 55] 

0.35 [0.01, 0.63] 

N170 amplitude 

Fnoise -0.07 [-0.12, -0.03] -0.39 [-0.53, -0.22] -0.30 [-0.46, -0.13] 

-0.64 [-0.82, -0.33] 

-0.06 [-0.17, 0.02] -0.35 [-0.45, -0.23] -0.24 [-0.38, -0.09] 

-0.53 [-0.75, -0.21] 

Hnoise -0.07 [-0.12, -0.00] -0.30 [-0.45, -0.17] -0.22 [-0.37, -0.11] 

-0.62 [-0.81, -0.33] 

-0.00 [-0.10, 0.05] -0.26 [-0.37, -0.15] -0.22 [-0.34, -0.11] 

-0.55 [-0.76, -0.22] 

Lnoise -0.10 [-0.16, -0.05] -0.33 [-0.48, -0.24] -0.23 [-0.37, -0.11] 

-0.64 [-0.82, -0.34] 

-0.12 [-0.25, -0.03] -0.29 [-0.36, -0.20] -0.15 [-0.27, -0.03] 

-0.37 [-0.63, -0.04] 
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