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Abstract  
	
An estimated 12 million people worldwide are diagnosed with cancer every year, 

with around 17 million cancer-related deaths per year predicted by 2030 (Thun et 

al. 2010). Contemporary clinical treatments include surgery, chemotherapy and 

radiotherapy, however all vary in success and exhibit unpleasant side effects. 

Localised tumour hyperthermia is a moderately new cancer treatment envisaged 

by researchers, which exploits exclusive tumour vulnerabilities to specific 

temperature profiles (42-45°C) leading to cancer cell apoptosis, whilst normal 

tissue cells are relatively unaffected.  Hyperthermia is therefore proposed as an 

alternative potential therapy for cancer, by delivering localised treatment to cancer 

cells, without the severe side effects associated with traditional therapies.  

 

This project aimed to investigate potential hyperthermic treatment of cancer cells 

in vitro by adopting nanomedicine principles. Inorganic nanoparticles, such as gold 

or iron oxide, are both capable of generating heat when appropriately stimulated, 

therefore both have been suggested as candidates for inducing localised tumour 

heating following their internalisation into cells. In this project, both gold (GNPs) 

and magnetic (mNPs) were individually assessed for their potential to deliver toxic 

thermal energy to bone cancer cells (MG63) and breast cancer cells (MCF-7). 

Studies were carried out both in standard 2D monolayer and in 3D tumour 

spheroids.  

 

When considering use in vivo, it is essential that both GNPs and mNPs are 

biocompatible, therefore initial studies characterised the cell viability and metabolic 

activity following incubation with the NPs.  The NP internalisation was 

subsequently verified, prior to hyperthermic studies. Following hyperthermic 

treatment, both GNPs and mNPs were confirmed as inducing cancer cell death. 

Further studies were carried out using the GNPs, to identify the cell death 

pathways activated, where mitochondrial stress was evident following 2D culture 

tests.  Gene and protein expression analysis indicated that cell death occurred 

predominantly via several apoptotic pathways, through increased fold expression 

changes in apoptotic markers. Interestingly, cell protective mechanisms were 

simultaneously switched on, as cells were also observed to exhibit 

thermotolerance with a number of heat shock proteins (Hsps) being substantially 

increased during hyperthermic treatments.  
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1. General Introduction: 
 
1.1 Cancer  
 

Cancer is defined as a range of diseases, which originate from the unregulated 

proliferation of cells (Trosko 2009).	 The resultant cancerous tumours are 

malignant, which means they are able to spread, by invading neighbouring tissues, 

and/or distant tissues (via the bloodstream, or lymph system). The spread of the 

disease from one tissue or organ to another non-adjacent tissue or organ is 

referred to as metastasis, and it is this capability, which accounts for such high 

mortality rates in cancer patients (Geiger and Peeper 2009; Seyfried and 

Huysentruyt 2013).  Cancer-related deaths are projected to increase in the future, 

with the World Health Organization (WHO) estimating about 13.1 million cancer- 

related deaths by the year 2030. An estimated ten million people are diagnosed 

with the disease annually, with disease progression characterised by a multistep 

process involving various physiological systems, such as cell signalling and 

apoptosis, making it a highly complex disease (Misra et al. 2010). In humans, 

cancer refers to at least 100 versions of a disease capable of developing in almost 

any tissue in the body	 (Masoudi-Nejad et al. 2015). Although different cancers 

show various characteristics, all develop in a common system of progression, 

involving genetic and epigenetic incidences in addition to a complex network of 

interactions between cells and the extracellular matrix (Masoudi-Nejad et al. 

2015). Cancer arises as a result of alterations to DNA, enabling cells to avoid 

regulatory mechanisms that control normal cell growth and proliferation (Hyndman 

2016). In this state, cells display unique traits or ‘hallmarks’ – including genome 

instability; inhibition of apoptosis and growth suppression; proliferation and 

immortality; induction of angiogenesis and inflammation; invasion and metastasis 

(Hanahan and Weinberg 2000; Hyndman 2016).  

 

1.1.1 Carcinogenesis  
 

At its core, genomic instability is a characteristic feature of almost all human 

cancers (Negrini et al. 2010). DNA is vulnerable to a variety of stimuli, which can 

lead to DNA lesions and sites of damage. When referring to cancer, such stimuli 

are termed ‘carcinogens’, and include those in the environment such as UV 
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radiation, ionising radiation, drugs and dietary chemicals.  Carcinogens may also 

be present at the cellular level through metabolism, free radical production and gut 

microbiota (Roos et al. 2016). It is estimated that 95% of cancers occur through 

the interaction of environmental factors (such as tobacco smoke, dietary 

constituents, pollutants, drugs, radiation, and infectious agents) with genes, while 

the remaining 5% are attributed to hereditary mutations (Hyndman 2016). 

 

DNA lesions can cause significant structural and chemical alterations and eventual 

transcriptional mutagenesis (T. Gong et al. 2014). Damaged DNA can lead to cell 

death or survival based on DNA recognition repair mechanism and damage 

tolerance (Roos et al. 2016). Affected genes are broadly separated into proto-

oncogenes and tumour suppressor genes. Proto-oncogenes are a group of genes 

that usually encode for proteins involved in stimulating cell division and inhibiting 

differentiation and apoptosis. Oncogene activation can lead to replication stress 

and DNA double strand breaks as well as further genomic instability (Miron et al. 

2015). Onocogene activation and abnormal high expression can also cause the 

hyperactivation of signalling pathways that may be integral to control cell growth, 

proliferation, motility, and can have down stream implications of wider signalling 

networks that incite cancer progression, including the tumour microenvironment, 

angiogenesis, and inflammation (Sever and Brugge 2015).  

 

Tumour suppressor genes, meanwhile, generally encode for proteins involved in 

inhibiting cell proliferation and include proteins involved in cell cycle checkpoint 

controls, apoptosis, and DNA repair	(Velez and Howard 2015). If these genes are 

mutated, a loss-of-function occurs and an accumulation of genetic damage and 

double stranded breaks can arise (Broustas and Lieberman 2014; Sun and Yang 

2010; J. Zhang and Powell 2005). Also at this genomic level, continuous faulty 

DNA maintenance machinery and disruption to epigenetic modifiers can result in 

potentially thousands of sequence alterations and anomalies causing extreme 

difficulties in identifying global markers for various cancers	 (Du and Elemento 

2015).  
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1.1.2 Current Treatment Plans 
 

The need for early and effective detection, diagnosis and treatment is of upmost 

importance in treatment success. The most common cancer treatments to date are 

restricted to chemotherapy, radiation and surgery, however hyperthermia is 

emerging as a strong contender (Misra et al, 2010).  

 

1.1.2.1	Surgery	

 

Surgery is the oldest oncological discipline and involves the surgical removal of 

the primary tumour from the patient (Pagani et al. 2010; Wyld et al. 2015). In the 

case of breast cancer, the overall success of these procedures are debatable 

(Pagani et al. 2010). The removal of the primary tumour can inhibit the metastatic 

spread of cancer cells, while animal studies have shown the removal of tumours 

can restore immune function as primary tumours have been shown to compromise 

the immune system through release of immunosuppressive factors	(Gnerlich et al. 

2007; P. Sinha et al. 2005; Wood 2007).	 The removal of necrotic tumour tissue 

and overall reduction in cancer cells can also facilitate increased 

chemotherapeutic drug delivery within tumour sites (P. Sinha et al. 2005). Despite 

its relative success, major problems are associated with this treatment plan, 

including the fast-tracked relapse of the tumour, in response to its initial removal 

(Retsky et al. 2004). While the invasive nature of surgeries can lead to further 

complications such as infections and associated side effects of anaesthesia 

(Andreae and Andreae 2012; D. J. Jones et al. 2014). 

 

1.1.2.2	Chemotherapy		

 

Chemotherapy is a type of cancer treatment that uses specific drugs to kill cancer 

cells, by slowing the growth and proliferation of the rapidly dividing cells	 and is 

usually given in combination with surgery and/or radiotherapy (Pérez-Herrero and 

Fernández-Medarde 2015; Untch et al. 2014).  Chemotherapy is an aggressive 

form of treatment and due to its non-localised method of administration (e.g. by 

injection or oral tablet), has a global effect on the patient (Carr et al. 2014; Numico 

et al. 2015; Wissing 2015). The drugs used are toxic not only to cancerous cells 

but also to other rapidly proliferating normal cells, such as those of the bone 
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marrow, the intestinal epithelium and hair follicles, leading to severe side effects 

that can further hinder the recovery time and prognosis of the patient, as well as 

potentially leading to treatment failure (B. Yu et al. 2010). There are several 

different types of chemotherapeutics currently used in clinic, which are varied 

depending on the type of cancer, these are summarised in table 1-1.  

 

Table 1-1: A summary of the various types of chemotherapeutics available 
for cancer therapy. 

 

	

	
	

Drug Type Examples Mode of Action 

Alkylating 
agents 

Cisplatins; 

Mitomycin C  

Cell-cycle independent drugs. Typically, 
these chemotherapeutics alkylate (bind) 
DNA bases leading to the cross-linking of 
DNA strands and/or proteins, eventually 
leading to single and double stranded DNA 
breaks, leading to apoptosis	 (Puyo et al. 
2014).  

Antimetabolites Methotrexate; 
pemetrexed. 

Cell cycle dependent. Small molecules that 
closely resemble critical metabolites and are 
capable of interfering with the normal 
function of metabolic enzymes including 
those involved in DNA, RNA and protein 
synthesis	 (Bobrovnikova-Marjon and Hurov 
2014). 

Anti-microtubule 
agents 

Vinca alkaloids 
(vincristine, vinblastine 
etc); taxanes 
(paclitaxel, docetaxel). 

Cell cycle specific (s-phase). Inhibit 
microtubule function causing mitotic arrest 
and subsequent apoptosis	 (Klute et al. 
2014). 

Topisomerase 
inhibitors 

Irinoteacan/topotecan 
(I);etoposide, 
doxorubicin, 
mitoxantrone, 
novobiocin, aclarubicin 
(II). 

Cell cycle dependent. Inhibit enzymes 
(topoisomerase I and II) involved in DNA 
unwinding, therefore DNA replication and 
transcription; leading to apoptosis	 (Khadka 
and Cho 2013).  

Cytotoxic 
antibiotics 

actinomycin, 
doxorubicin,  
epirubicin, 
mitoxantrone. 

Cell cycle dependent. Generally act to 
interrupt cell division by intercalating with 
DNA and preventing the resealing of the 
DNA double helix, triggering the apoptotic 
pathway	(Tahover et al. 2015) 
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1.1.2.3	Radiotherapy	

 
Radiotherapy is a type of cancer treatment that utilises focused radiation in order 

to kill cancer cells. The exposure of radiation in tissue leads to the ionisation of 

molecules and eventually, DNA damage (Minniti et al. 2012). Radiation energy can 

be absorbed directly, in vital cellular components such as membranes, organelles, 

and importantly, DNA, while indirect radiation absorption through the ionisation of 

water and oxygen molecules leads to the formation of free radicals, further 

disrupting DNA integrity and eventually leading to apoptosis (Baskar et al. 2012; 

Willers et al. 2013). Radiotherapy is utilised ubiquitously in a wide variety of 

cancers with around 50% of cancer patients expected to receive radiotherapy as a 

form of cancer treatment (Baskar et al. 2012). As with chemotherapy, radiotherapy 

poorly discriminates between normal functional cells and cancerous cells, with 

both cell types susceptible to radiation therapy. However these effects have been 

somewhat alleviated, due to the efficiency of DNA repair in normal cells, upon 

radiation exposure, thus providing a small therapeutic window for successful 

treatment (Begg et al. 2011). Furthermore, due to variations in the tumour 

microenvironment, cancer cells are often characterised in oxygen deplete states 

(hypoxia)	 (J. M. Brown 2007). As radiotherapy primarily relies on the increased 

production of free radicals to kill cancer cells, a low concentration of oxygen 

molecules thus translates to a lower concentration of free radical production, thus 

lowering the impact of radiation therapy on cancer cells leading to the 

phenomenon of radioresistance (Willers et al. 2013). 

 

1.1.2.4	Malignant	Hyperthermia	

 
Hyperthermia is defined as a rise in temperature within the body. When 

considered as a cancer therapy, the increase in temperature is induced 

intentionally and results in cell death. The potential for localised treatments that 

will produce fewer side effects, yet accurately and effectively target cancerous 

cells for destruction, has led to the renewed interest in hyperthermia. The term 

‘hyperthermia’ in a cancer setting refers to a variety of techniques that utilise heat 

to treat cancer.	 It is considered that there is no intrinsic difference between the 

hyperthermia sensitivity of normal and cancerous cells, however it has been 

demonstrated that hyperthermia can lead to specific cancer cell apoptosis, while 
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normal tissues remain undamaged even after treatment for 1 hour at a 

temperature of up to 44°C (van der Zee 2002). Normal cells appear to exhibit 

thermotolerance and recovery upon hyperthermia exposure compared to cancer 

cells.  However the susceptibility of cancer cells to hyperthermia is likely due to the 

actual biophysical nature of tumours themselves, rather than inherent differences 

between normal cell and cancerous cells (Behrouzkia et al. 2016; Hegyi et al. 

2013).	 This includes the disorganised and compact vascular structure often 

presented during tumour development, which leads to difficulty in dissipating heat, 

while healthy tissues can more easily maintain a normal temperature (Hegyi et al. 

2013). Additionally, tumour environments are often hypoxic and exhibit a low pH 

that contribute to their sensitivity to hyperthermia (van der Zee 2002). 

 

“Those who cannot be cured by medicine can be cured by surgery. Those who 

cannot be cured by surgery can be cured by fire. Those who cannot be cured by 

fire, they are indeed incurable.”—Hippocrates (479–377 B.C.). 

 

The concept of treating cancer cells using hyperthermia dates back at least 5000 

years	 (K. Ahmed et al. 2015a). Before any knowledge of the molecular basis for 

cancer, there was an understanding that unexpected mass or growth lesions could 

be burned off as a form of treatment; this concept of using heat for cancer 

treatment is being revisited and explored more appropriately as hyperthermia 

(Glazer and Curley 2011). 

 

The effectiveness of the technique is predominantly dependent on the temperature 

range and exposure time (Raaphorst and Feeley 1990). However recent studies 

have also shown that the method of heat application to cells/tumours is also a 

significant variable in treatment success (Burke et al. 2012; Hegyi et al. 2013).	
Indeed, the recent resurgence in hyperthermic treatment is attributed to the rapid 

development of technology, with the delivery of controlled thermal energy to 

tumours and cancer sites in the body in a non-invasive fashion.  

 

At present, hyperthermia is used as an adjunct to traditional cancer therapies such 

as chemotherapy and radiotherapy, as it further renders cancer cells more 

vulnerable to such treatments, thus increasing their effectiveness (R. D. Issels 

2008; Jacoba van der Zee et al. 2000). In the case of chemotherapy, a 

temperature-dependent enhancement has been documented, including increased 
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cellular uptake of chemotherapeutic drugs upon exposure to hyperthermia (R. D. 

Issels 2008; Miyahara et al. 1993). The denaturation of proteins and inhibition of 

DNA repair by heat were also shown to increase the efficacy of certain 

chemotherapeutic drugs (Z. G. Cui et al. 2014d; DeNardo and DeNardo 2008). 

Hyperthermia also increases the local blood and interstitial fluid flow to facilitate 

chemotherapeutic delivery into tumour sites (L. Li et al. 2014). Although the exact 

mechanisms of action for the increased efficacy observed in 

chemotherapy/hyperthermia still remains unclear, it has been proposed that 

hyperthermia may affect sodium/potassium-ATPase activity, transmembrane 

conductivity, glutathione metabolism and P-gp activity (Hildebrandt et al. 2002; Y. 

Tang and McGoron 2013). Despite this lack of knowledge, clinical trials do support 

the use hyperthermia in conjunction to chemotherapy (Chicheł et al. 2007; 

Colombo et al. 2011; R. D. Issels 2008).  

 

For radiotherapy treatments, hyperthermia has radiosensitising properties that 

render cancer cells more susceptible to radiotherapy through multiple 

mechanisms, including cancer cells deemed resistant to radiotherapy effects	
(Datta et al. 2015; Horsman and Overgaard 2007). For example, hyperthermia 

affects cells in S phase - a phase where radiation is less effective – this also holds 

potential to increase treatment potency. As aforementioned, tumour cells have low 

oxygen concentration and therefore the effect of radiation and the production of 

reactive oxygen species that leads to the downstream effect of apoptosis are 

limited. The addition of hyperthermia counters this hypoxic effect by increasing 

blood flow and its clinical application has been greatly explored (E. L. Jones et al. 

2005; Kampinga and Dikomey 2001; Mallory et al. 2015; Zagar et al. 2010). 

However as explained previously, both chemotherapy and radiotherapy have 

challenging side effects for the patient and this has led to hyperthermia being 

evaluated as a sole mediator for cancer cell apoptosis, where it is being explored 

as a viable therapeutic alternative in its own right.  
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1.2 Hyperthermia at the Molecular Level  
 

A number of reviews have outlined the significant effects of hyperthermia on cells 

both in vitro and in vivo (M. Ahmed and Douek 2013; DeNardo and DeNardo 2008; 

Mallory et al. 2015). Broadly, hyperthermia has a variety of effects at both the 

cellular and molecular level as summarised in figure 1-1, which can inhibit cancer 

cell growth, function and ultimately viability, by promotion of apoptosis (Hildebrandt 

et al. 2002; C. H. Hou et al. 2014a).  

 

1.2.1 Apoptosis 
 
Apoptosis is an essential process and has multiple functions in ontogenetic 

development and tissue remodeling (Kerr et al. 1972). There are two major protein 

families that regulate apoptotic pathways; the caspase family and the Bcl-2 family. 

Once activated, these molecules determine the fate of the cell. Caspase proteins 

are a group of cysteine-aspartic proteases that either falls into the subcategories 

of pro inflammatory caspases (caspase -1, -4, 5 and 12), initiator caspases 

(caspase -2, -8, -9 and -10) and executioner caspases (caspase -3, -6 and -7) (D. 

R. McIlwain et al. 2013a; Perez-Hernandez et al. 2015). The caspase family thus 

provides critical links in cell regulatory networks and are integral components in 

supervising inflammation and cell death	(David R. McIlwain et al. 2013b). Caspase 

proteins are enzymes produced by cells as inactive zymogens	 (Shi 2004). The 

activation of caspase proteins are tightly controlled by the inactivation or activation 

of substrates and signalling events promoting their aggregation into dimers or 

macromolecular complexes, leading to their catalytic activation and the 

downstream	 demolition of cellular components and finally, apoptosis (David R. 

McIlwain et al. 2013b). 

 

The Bcl-2 proteins (B-cell lymphoma 2) are believed to negotiate whether the cell 

commits to apoptosis or aborts the process (Elmore 2007). It is thought that the 

main mechanism of action of the Bcl-2 family is the regulation of cytochrome c 

release from the mitochondria via alteration of mitochondrial membrane 

permeability. The Bcl-2 family therefore govern mitochondrial membrane 

permeability and can be either pro-apoptotic or antiapoptotic. Bcl-2 proteins thus 

regulate the permeabilisation of mitochondria, which leads to the activation of the 
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downstream caspase cascade events (J. H. Zheng et al. 2015). The Bcl-2 family is 

subdivided into pro-apoptotic proteins (e.g. Bak, Bax, Bid, Bim, Noxa, PUMA) and 

anti apoptotic proteins (e.g. Bcl-2, Mcl-1, Bcl-XL, etc) (Adams and Cory 2007). 

 

1.2.2 Mitochondrial Stress 
 
Hyperthermia has been shown to compromise the permeability of the 

mitochondrial membrane,	 although the exact mechanisms have not been fully 

realised (Z. G. Cui et al. 2014c). Caspase 2 has been shown to become active 

after hyperthemic exposure and once active can cleave and activate the pro-

apoptotic protein Bid	 (Bonzon et al. 2006).  The active Bid subsequently 

compromises mitochondrial permeability, leading to the release of a variety of 

proteins including cytochrome c into the cytosol, which disturbs the homeostasis of 

additional pro- and anti- apoptotic, Bcl-2 proteins (Bonzon et al. 2006; Saelens et 

al. 2004). Cytochrome c can also be released from the mitochondria via Bax 

activation in response to various death stimuli. Here, Bax undergoes a 

conformational change and consequently translocates to the mitochondria, leading 

to the eventual release of Cytochrome c (X. Yang et al. 2012a). Cytochrome c 

then interacts with the pro-caspase 9 on the scaffold protein, Apoptotic protease 

activating factor 1 (Apaf-1) and deoxyadenosine triphosphate (dATP) to form an 

apoptosome, leading to the activation of pro-caspase 9. This activation can initiate 

caspases that can then cleave and activate executioner caspases -3, -6 and -7. 

Executioner caspases are capable of cleaving critical proteins and leading the cell 

towards apoptosis (Adams and Cory 2007). Hyperthermia has also been reported 

to lead to the oligomerization of Bax and/or Bak. This conformational change leads 

to pore formation on the outer mitochondrial membrane and thus, the subsequent 

release of cytochrome c and the associated downstream effects (Pagliari et al. 

2005; Subburaj et al. 2015). 

 

1.2.3 Reactive Oxygen Species  
 

Apoptosis can also be induced by an increase in reactive oxygen species (ROS) 

(Chun et al. 2010; Slimen et al. 2014; Z. Wang et al. 2013c).	ROS are by-products 

generated during oxygen metabolism within mitochondria. An overproduction of 

ROS can stimulate oxidative stress and damage macromolecules, proteins, lipids 

and DNA (Ott et al. 2007). Antioxidant systems help neutralise ROS generation, 
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however a strong imbalance between antioxidants and elevated ROS 

concentration, upon hyperthermic exposure, can render the cell defenceless to the 

effects of oxidative stress (C.-H. Hou et al. 2014b; Mari et al. 2009).  Hyperthermia 

has been demonstrated to cause an increase in ROS in the form of hydrogen 

peroxide, superoxide anion and hydroxyl radical	 (Kikusato and Toyomizu 2013; 

Mujahid et al. 2006; Slimen et al. 2014).	Hyperthermia has also been shown to 

decrease crucial antioxidant levels such as superoxide dismutase, thus promoting 

the cell into apoptosis (El-Orabi et al. 2011). 

 

1.2.4 Cellular Damage 
 

The morphological changes of mammalian cells exposed to hyperthermia have 

been well documented (Andocs et al. 2016; Luchetti et al. 2002; Villanueva et al. 

2010; Vlad et al. 2010; Vlad et al. 2013; Welch and Suhan 1985). Hyperthermia 

has been demonstrated to cause disruption and fragmentation of the Golgi 

complex – an essential organelle involved in lipid and protein intracellular and 

extracellular transport as well as lysosome formation in response to hyperthermic 

temperatures (Welch and Suhan 1985). The cytoskeleton microtubule 

polymerisation can also be directly altered by hyperthermia, compromising not 

only the integrity of the cell, but also cell proliferation through the lack of mitotic 

spindle structure, a crucial component to chromosome alignment during mitosis 

(S. H. Huang et al. 1999). 

 

Perhaps the most damaging cellular effect of hyperthermia is the resultant 

unfolding and aggregation of proteins (J. L. Roti Roti 2008a). Hyperthermia can 

denature proteins, leading to the exposure of hydrophobic regions in polypeptides 

that can engage non-specific intermolecular interactions with additional proteins, 

promoting the aggregation of various proteins. This not only inhibits their function 

but can also have a consequential effect on cell function and viability at a 

molecular level (Taipale et al. 2010).  
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Figure 1-1: Cellular damage initiated by hyperthermia (adapted from Rangel 
et al., 2013). 

 

 

1.3 Thermotolerance and Heat Shock Proteins 
 

The direct impact of hyperthermia on cells is dependent on temperature levels and 

exposure times.  However cells do maintain a form of thermotolerance, allowing 

the cell to resist heat stress and this is strongly associated with an increase in heat 

shock protein expression (Hsp)	 (H.-Y. Wang et al. 2013a). Hsps are a specific 

family of proteins produced by cells in response to stressful conditions that govern 

resistance to heat, as well as other environmental insults such as UV exposure 

and cold environments. Hsps both assist in the recovery of the cell and inhibit 

apoptosis (Yanting Cui et al. 2013; Kalmar and Greensmith 2009; Lanneau et al. 

2008b). Hsps are found in various locations in the cell, including the endoplasmic 

reticulum, lysosomes, and the mitochondria, but are predominantly concentrated in 

the cytosol and nucleus (Venojärvi et al. 2013). Although continually expressed at 

basal levels in cells, Hsps are induced and up regulated in response to cellular 

stress and have various functions in order to recreate a homeostatic environment 

and thus preserve the cell. 
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Hsps are highly conserved and ubiquitous in all organisms, from plants, bacteria 

and animals (Jolly and Morimoto 2000). In mammalian cells, five major Hsps exist; 

these highly conserved proteins are grouped accordingly based on their molecular 

weight and further subdivided to large ATP dependent Hsp110, Hsp90, Hsp70, 

Hsp60 and small ATP independent Hsps (15–30 kDa) including Hsp27. Hsps are 

also overexpressed in cells exposed to environmental insults such as oxidative 

stress (Y. Cui et al. 2014a), heavy metals (B. M. Kim et al. 2014) and inflammation 

(Batulan et al. 2016). The heat shock response was first demonstrated in 1962 

and since this original report, many groups have investigated Hsps for their 

function in normal cell viability, in particular, protein synthesis and management as 

well as associated pathologies (Adachi et al. 2009; Ou et al. 2014; Venojärvi et al. 

2013).  

 

Hsps have various roles but predominantly function as “molecular chaperones” 

aiding in the maintenance of protein homeostasis and protein quality control (C.-J. 

Park and Seo 2015). Hsps are capable of repairing and refolding denatured 

proteins, which have exposed hydrophobic residues that can lead to protein miss 

folding and aggregation with other proteins. Hsps are also fundamental for the 

destruction of misfolded/dysfunctional proteins, binding and guiding them for 

destruction via ubiquitination or lysosomal degradation (Bozaykut et al. 2014).  

 

Hsps are synthesised in response to cell stress, and are transcriptionally regulated 

to produce a rapid response, occurring within minutes of cell stress, such as 

elevated temperature exposure (Åkerfelt et al. 2010; K. J. Kelly et al. 2001). In 

response to hyperthermic stress, the inactive complex of Hsp and heat shock 

factor 1 (HSF1) dissociates, with the former able to bind to denatured proteins. 

HSF1 meanwhile can trimerise with other free HSF1 within the cytoplasm and 

translocate into the nucleus. Once in the nucleus the trimeric HSF1 complexes can 

bind to heat shock elements (HSE), which are specific DNA sequences in the heat 

shock gene promoters. Once bound to DNA, HSF1 becomes phosphorylated, 

thereby initiating the transcription and translation of Hsps, as shown in figure 1-2 

(Horowitz and Robinson 2007; Kalmar and Greensmith 2009; Stetler et al. 2010; 

Venojärvi et al. 2013).  

 

The response times of these events have been well documented with Boehm et al, 

2003 showing the rapid activation of Hsp70 in drosophila flies within minutes from 
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heat shock stimuli in vivo (Boehm et al. 2003).	As the synthesis of Hsps increases, 

Hsp70 localises to the nucleus and inactivates HSF1 leading to dissociation of 

trimmers back to their inert monomeric state, thereby repressing Hsp gene 

transcription	 (Santoro 2000). Of these Hsps, Hsp -90, -70, and -27 have been 

predominantly demonstrated to increase expression in response to hyperthermia	
(Sajjadi et al. 2013; Samali et al. 2001; Tedeschi et al. 2015). 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 1-2: Activation of the heat shock response. Hyperthermia leads to the 
denaturation of proteins, and the dissociation of Hsp and HSF-1. Hsps begin 
refolding damaged proteins while free HSF-1 monomers, trimerise and 
become activated and translocate to the nucleus, binding to the heat shock 
element (HSE) located on the genes of Hsps. The activation of HSE mediates 
the upregulation of Hsps, orchestrating thermotolerance (personal image).  

 

1.3.1 Hsp90 
 

The importance of Hsp90 is apparent, due its highly ubiquitous and conserved 

nature within all kingdoms of life, with the exception of archaea (Taipale et al. 

2010). Hsp90 is a large dimeric protein found in almost every compartment of 

eukaryotic cells and has a range of functions including cell signalling, myelination 

of neuronal cells and predominantly, acting as chaperones for steroid and 

hormone receptors (Taipale et al. 2010; Tedeschi et al. 2015). Hsp90 relies on 
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ATP activity in order to fold proteins and is particularly aimed at a set pool of 

proteins involved in cell signalling, but in contrast to other Hsps, Hsp90 is 

responsible for maintaining proteins in a functional folded state rather than binding 

unfolded proteins and preventing aggregation (Karagoz and Rudiger 2015). Its 

chaperone activity has been shown to be dependent upon the interaction of a 

network of proteins or co-chaperones as well as an interaction with Hsp70, where 

Hsp70 members deliver protein substrates to the Hsp90 and co-chaperone 

complex (Richter et al. 2010). Although a comprehensive understanding of this 

process remains yet to be fully realised, several recent studies have demonstrated 

hyperthermia inducing Hsp90 expression	(Eng et al. 2014; Kalamida et al. 2015; T. 

Miyagawa et al. 2014a).	 
 

1.3.2 Hsp70  
 

The most widely understood heat shock family member, Hsp70 has been 

extensively studied in diabetes	 (Barbosa-Sampaio et al. 2015), chemo-resistance 

(Stope et al. 2016), radio-resistance	 (Lauber et al. 2015) as well as its possible 

role in the pathogenesis of various diseases such as inflammatory bowel disease	
(Samborski and Grzymislawski 2015). Hsp70 is highly conserved and ubiquitous in 

most prokaryotes and eukaryotes and has been heavily investigated for its role in 

cell thermotolerance for a number of years	 (Beckham et al. 2004; De Maio 2014; 

Jolesch et al. 2012; Manjari et al. 2015; Marquez et al. 1994; Sharma and Masison 

2009). The role of Hsp70 is clearly established under normal physiological 

conditions and involves the facilitation of protein synthesis, protein translocation, 

and protein homeostasis. During cellular stress Hsp70 is accountable for protein 

refolding and preventing protein aggregation,	thus protecting the cell against heat-

induced apoptosis (Bozaykut et al. 2014).  Hsp70 is possibly the most well known 

Hsp, known to be induced by minimum increases in temperature; a recent 

publication by Dangi et al (2014) demonstrated high Hsp70 protein expression 

compared to other Hsps in heat shocked barbari goats	(Dangi et al. 2015).  

 

The mechanistic chaperone activities of Hsp70 have been well characterised	
(Duncan et al. 2015). The ATP dependent chaperone is capable of binding to 

target proteins through its substrate-binding domain (SBD) while its affinity is 

grossly determined by the presence of either ATP (low substrate affinity) or ADP 

(high substrate affinity)	 (Clerico et al. 2015). The high versatility of Hsp70 allow it 
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to interact with nearly all proteins in their unfolded, misfolded, or aggregated states 

(Mayer 2013). Besides its protein homeostatic functions, Hsp70 has also been 

demonstrated to directly interact with members of the Bcl-2 family and can inhibit 

the activity of Bax proteins, resulting in the inhibition of apoptosis (X. Yang et al. 

2012a). Hsp70 has also been credited with the inhibition of the caspase pathway, 

the JNK stress signalling pathway, apoptosome formation and AIF (Apoptosis 

inducing factor) release, thus encouraging cell survival, as shown in figure 1-3 

(Evans et al. 2010).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-3: Pathways inhibited by Hsp70 to prevent apoptosis via 
hyperthermia. Hyperthermia leads to the activation of pro-apototic 
molecules orchestrated by the activation of the JNK pathway leading to the 
downstream release of cytochrome c and AIF. Hsp70 inhibits JNK activation, 
apoptosome formation and AIF activation, which are all integral components 
to the apoptosis pathway, thus preserving cell viability (personal image). 
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1.3.3 Hsp27  

 
Hsp27 is typically expressed at low basal levels within the cytosol of human cells	
and	 studies have shown that overexpression of Hsp27 protects cells from 

subsequent stress (Bechtold and Brown 2000; Rylander et al. 2010). Unlike the 

larger Hsps, Hsp27 is an ATP independent chaperone and has the capacity to be 

phosphorylated and oligomerise to form complexes up to 1000 kDa	 (Jego et al. 

2013; X. Wang et al. 2014b). The state of the oligomerisation appears to be 

significant to its cellular functions, with larger oligomers associated with anti-

oxidant properties by modulating ROS via the glutathione-dependent pathway and 

displaying potent chaperoning function (Rylander et al. 2010).  Smaller oligomers 

are known to play a role in favoring the ubiquitination and degradation of selected 

proteins under stress conditions as well as stabilising actin filaments (Jego et al. 

2013). Hsp27 has been shown to interact with and to inhibit key apoptotic proteins 

and is also involved in the negative regulation of cytochrome c (Bruey et al. 2000). 

A study by Bruey et al (2000) indicated that Hsp27 binds to cytochrome c released 

from damaged mitochondria and inhibit its interaction with Apaf-1 and procaspase-

9, thus preventing the formation of the apoptosome and the downstream activation 

of executor caspases (Samali et al. 2001). Hsp27 expression during hyperthermia 

has been evaluated both in vitro (Samali et al. 2001) and in vivo (Madersbacher et 

al. 1998) with Rylander et al (2010) observing the expression levels of Hsp27 

almost double that of Hsp70 at various hyperthermic profiles in prostate cells 

(Rylander et al. 2010). 

 
1.4 Nanomedicine  
 
Nanotechnology is the understanding and manipulation of matter at dimensions 

between approximately 1 and 100 nanometres. At these dimensions, materials 

produce unique phenomena that enable novel applications that have been 

fundamentally explored in areas of research and medicine. This exploaration has 

opened the relatively new field of nanomedicine, dealing with the detection, 

control, construction, repair, defence and improvement of all human biological 

systems (Boisseau and Loubaton 2011). The use of nanotechnology is not a new 

concept; indeed evidence suggests the use of nanocrystal-containing hair dyes by 

Egyptians, Greeks and Romans (Cole et al. 2011a). However it was not until 1959 
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when renowned physicist Richard Feynman presented his talk ‘There’s plenty 

room at the bottom’ where he discussed the possibilities and potential benefits of 

the manipulation of materials at the atomic level. This led to discussions with his 

peers about how we could begin ‘manipulating and controlling things on a small 

scale’. At its core, nanotechnology involves materials that have arrangements and 

structures of atoms at the nanoscale, whereby they display enhanced quantum 

level phenomena (Cherukuri et al. 2010). 

 

It has however, only been in the last three decades that researchers have begun 

to understand and subsequently exploit the unique properties materials 

demonstrate at the nanoscale (Sainz et al. 2015).	 In recent years, the field of 

nanotechnology has broadened to include expertise from material science, cell 

biology, chemistry, physics, engineering, computing, electronics energy, and 

biomedicine (Cherukuri et al. 2010).  

 

The application of nanotechnology within medicine has been termed 

‘nanomedicine’ (Rizzo et al. 2013), with a particular emphasis of nanosystems 

designed for therapeutics, diagnostics, and imaging (Boisseau and Loubaton 

2011; Langer and Weissleder 2015). Nanoscale particles, or nanoparticles (NPs), 

can be synthesised to a size compatible with biological molecules such as proteins 

and nucleic acids, as shown in figure 1-4, and can thus be appropriately 

developed for use as potential probes, delivery platforms, carriers and devices 

giving unique opportunities for improvements in disease detection, therapy and 

prevention (S. Tong et al. 2014). Furthermore, NPs can ultimately improve the 

pharmacokinetic and pharmacodynamic profiles of established and characterised 

therapeutics, making them very attractive vehicles for traditional anti-cancer 

compounds (Wicki et al. 2015). Indeed, nanomedicine has led to recent 

developments of nanoparticle-carriers for drug/gene delivery (W. Gao and Zhang 

2015; Look et al. 2015), imaging (Mu et al. 2016), and theranostics (diagnostics 

and therapeutics) (S. Tong et al. 2014).   
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Figure 1-4: Scale of materials in nanometer range Image adapted from 
WhichLab; http://www.wichlab.com/research). 

 
1.4.1 Nanoparticles  

 
Nanoparticles (NPs) are generally considered to be microscopic particles with at 

least one dimension less than 100 nm (Cole et al. 2011a).  NPs offer a unique 

advantage over traditional therapies as recent advances in nanotechnology allow 

researchers to synthesise NPs with dual modalities – integrating diagnostic as well 

as therapeutic capabilities within a single NP formulation (K. S. Kim et al. 2016b; 

Mieszawska et al. 2013; J. Park et al. 2015). Therefore, NPs hold great promise 

for theranostic purposes, and are considered to be highly applicable for 

personalising nanomedicine-based treatments. 

 

NPs are organic or inorganic in nature, with the latter often being implemented in 

nanotechnology, in particular nanomedicine as they offer unique inherent 

properties (Anselmo and Mitragotri 2015). Examples of both are shown in figure 1-

5. Inorganic NPs can be synthesised via bottom-up or top-down approaches, 

however bottom-up apporaches allow for a large degree of flexibility and control of 

size distributions (nm to µm scale), surface chemistry and physical properties the 

materials may infer; synthesis typically favours a co-precipitation technique, 

especially in the case of magnetic nanoparticle synthesis (Santhosh and Ulrih 

2013). The most popular method for gold nanoparticle synthesis involves the 

reduction of HAuCl4 (tetrachloroauric acid, TCCA) by reducing agents. This citrate 

reduction method was developed by Turkevich et al (1954) and later adapted by 

Fresn (1973) to produce comparatively monodisperse particles with a controlled 
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average equivolume diameter (Khlebtsov and Dykman 2010). Inorganic NPs, such 

as iron oxide and gold, are extensively investigated in both preclinical and clinical 

studies for the treatment, diagnosis, and detection of diseases (Anselmo and 

Mitragotri 2015).  

 

Figure 1-5. Examples of various types of inorganic and organic NPs that 
have been explored for their potential in nanomedicine (taken from (Xing et 
al. 2014)). 

 

Nanomedicine is a rapidly growing research field, involving the use of advanced 

NP design and functionalisation (Chang et al. 2015; Doane and Burda 2012). 

Currently, NPs are being explored as possible agents for drug	 (R. Singh and 

Lillard 2009), gene	 (G. Lin et al. 2015) and antibiotic	 (A. N. Brown et al. 2012) 

delivery due to their nano-scale size, and unique properties allowing for the 

capacity to cross natural barriers and interact with biomolecules in the blood, 

organs, tissues or cells	(Chang et al. 2015). The use of NPs as delivery agents is 

promising due to the multivalent properties NPs can exhibit, allowing NPs to 

deliver therapeutic payloads to target sites via ligand or antibody targeting	 (S. 

Kumar et al. 2008; R. Singh and Lillard 2009). NPs have also been explored as 

multifunctional agents with Hao and co-workers recently developing magnetic 

nanoparticles that were used as both contrasting agents for MRI and hyperthermia 

(R. Hao et al. 2013). More sophisticated NP synthesis have also been explored, 

producing multivalent NPs that express various ligands capable of interacting with 

specific receptors on targeted cells and increasing their internalisation into cells, 

compared to traditional NPs expressing a monovalent system	 (Avvakumova et al. 

2014). 
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1.4.2 Nanoparticles In Vivo 
 

When using NPs in vivo, as with any biomaterial, there are several immediate 

challenges, such as the host immune system. The immune system helps preserve 

and maintain tissue homeostasis by protecting the host from foreign environmental 

insults such as microbes and chemicals (Dobrovolskaia et al. 2016). NPs 

administered into the bloodstream are identified and subsequently coated by 

various components of the complement system, namely in the form of plasma 

proteins such as opsins, as indicated in figure 1-6 (Chaudhari et al. 2012). The 

NPs coated with these opsins are effectively ‘marked’ for recognition by the 

reticulo-endothelial system (RES). The RES is a diffusion system composed of 

phagocytic cells derived from the connective tissue framework of the liver, spleen 

and lymph nodes	(Berry 2005). Opsonisation aids the process of phagocytosis and 

thus the destruction of the NPs, it is therefore imperative for researchers to 

develop NP systems that can resist or avoid opsonisation and therefore avoid the 

cascade of events that can lead to the destruction of NPs although complete 

avoidance of the RES is still yet not possible. 

 

 

Figure 1-6: The fate of administrated NPs in vivo. NPs are coated by blood 
proteins (2) and sequestered by macrophages (3) upon opsonisation and are 
transported to the liver to be further metabolised and phagocytised (4). 
(Taken from (Jokerst et al. 2011)). 
 

There are two major routes for administration of NPs;  intravenously, where the 

blood circulation is used to transport the particles throughout the body, or directly 

injected into the tissue/organ of interest, where pressure gradients from blood 

vessels are assumed to aid diffusion to tissue spaces	(De Jong et al. 2008; Soni et 

al. 2014). First generation NPs aimed towards tumour therapy are designed 

without active targeting systems and instead rely on ‘passive targeting’ where 

systemically circulating NPs penetrate the leaky vasculature and poor tissue 

architecture often associated with tumours and accumulate due to slow clearance 
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from poor lymphatic drainage, a cumulative consequence termed the enhanced 

permeability and retention (EPR) effect	 (Cheng et al. 2015; Maeda et al. 2013; 

Ngoune et al. 2016; Soni et al. 2014).		
	
To maximise the EPR effect, NPs must be biocompatible within the bloodstream 

and must also avoid accumulation within the spleen and liver. The surface 

morphology, surface chemistry, charge and hydrophobicity are all important 

factors that influence NP pharmacokinetics, biodistribution and overall in vivo 

performance . For example, hydrophilic surfaces tend to resist opsonisation and 

are thus cleared slowly as opposed to hydrophobic surfaces, which are efficiently 

coated with plasma components and removed from the circulation at a faster rate 

(Shah et al. 2013). With regards to NP charge, negatively charged and neutral 

NPs are more biocompatible compared to their positively charged counterparts 

due to less protein binding in the blood (Duskey and Rice 2014).  NP size 

distribution and shape are also known to influence NP fate in terms of RES 

uptake, renal clearance and blood half-life with larger NPs (~100 nm) considered 

an optimal range for leveraging the EPR effect and minimising clearance in 

spherical NPs	 (Ernsting et al. 2013; S.-D. Li and Huang 2008). While more 

sophisticated geometries, such as rods and stars have shown to enhance 

circulation time compared to traditional spherical NPs	(Ernsting et al. 2013; Toy et 

al. 2014). 

 

In order to produce the optimum NP performance in vivo, the particles are 

sterically stabilised with either an inorganic or organic coating material, to increase 

their biocompatibility. The most commonly used coating materials to date are in 

the form of derivatives of polyethylene glycol (PEG)	 (Muhammad et al. 2016), 

dextran	(Peng et al. 2015), as well as amphiphilic molecules such as fatty acids or 

phospholipids (S. J. Soenen et al. 2009). PEG and dextran polymers in particular 

have been shown to prolong half-blood circulation times by inhibiting opsonisation 

(Inturi et al. 2015; Suk et al. 2016); coating NPs therefore effectively produces 

‘RES-evading’ particles.  

 

New generations of NPs have since been produced with ‘active targeting’ systems 

in the form of ligands	 (van der Meel et al. 2013), antibodies (M. Ahmed et al. 

2015c), peptides and polysaccharides, as well as specific cell surface receptors 

(Shah et al. 2013). Researchers therefore design NPs with increased blood half-
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life, which can avoid RES interaction and have a high specificity to target sites to 

increase particle accumulation.  

 

1.4.3 Nanoparticles in Cancer Hyperthermia 
 
Although hyperthermia is a highly regarded therapeutic alternative for cancer 

treatment, previous attempts before the intervention of NP-assisted hyperthermia, 

have produced partially satisfactory results	(K. Ahmed and Zaidi 2013). One of the 

crucial factors limiting the use of hyperthermia for clinical use is the means of heat 

delivery to tumours within patients. Traditional hyperthermia typically involves an 

external heating source that generates considerable temperature gradients from 

the external source to the tumour with the maximum heat dissipated on the body’s 

surface that dramatically decreases with distance from the heating source 

(outside-in hyperthermia) (Beik et al. 2016). Typically this traditional form of 

hyperthermia means the majority of energy is dissipated in the healthy tissues 

situated along the path of external radiation which can have toxic affects while also 

not providing adequate thermal energy within tumours to cause cell death (Beik et 

al. 2016). The use of NPs has helped alleviate these limitations as they act as the 

primary heating source and can be intravenously targeted into tumours, while also 

reversing the direction of heat loss, generating the necessary heating profiles (42-

45°C) within tumours and providing minimal damage to the surrounding tissue as 

the thermal energy dissipates from the tumour (inside-out hyperthermia) (Banobre-

Lopez et al. 2013; Beik et al. 2016).  

 

To be an effective candidate for NP-assisted cancer hyperthermia, NPs must 

exhibit low toxicity, ease of functionalisation, suitable biocompatibility and uptake 

into cells and importantly, able to generate efficient heating profiles upon exposure 

to an external non-invasive heating source (Banobre-Lopez et al. 2013; 

Ganeshlenin Kandasamy and Maity 2015b). Of the plethora of NPs that have been 

investigated for hyperthermia, both gold nanoparticles and magnetic nanoparticles 

have been proposed as the ideal candidates due to their low toxicity and inert 

nature in their inactive states, while their high conversion of energy into heat upon 

external laser exposure and external alternating magnetic field respectively, has 

placed them at the forefront for cancer hyperthermia (Chatterjee et al. 2011; 

Cherukuri et al. 2010; Curry et al. 2014; Giustini et al. 2010; Ingrid Hilger 2013). 
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1.5 Gold Nanoparticles  
 

The synthesis of Gold nanoparticles (GNPs) was first reported more than 150 

years ago however their resurgence in the last few decades has occurred due to 

the increased development, knowledge and functionalisation, thereby opening up 

opportunities to enhance and optimise their potential and breadth of their 

applicability (Alex and Tiwari 2015). In more recent years, GNPs have been 

investigated for use as drug/gene delivery carriers and diagnostics agents 

(Robinson et al. 2015). GNPs have also been investigated for cancer hyperthermia 

due to their unique optical properties when exposed to visible- near infrared (NIR) 

wavelengths (Wei et al. 2013), where they are capable of efficient conversion of 

light energy into heat, which is quickly dissipated into the environment. Over the 

past decade, researchers have concentrated on improving GNP design for 

hyperthermic treatments, focusing on varying particle shapes such as rods, cubes, 

stars, and prisms to promote GNP light absorption and thus heat generation	
(Dykman and Khlebtsov 2011). 

 

There have been several advances in GNP synthetic processes, in particular the 

ubiquitous and simple citrate reduction method, which allows controllable GNP 

sizes at high throughput and narrow size distributions (X. Huang and El-Sayed 

2010). The use of various coating agents to further increase the biocompatibility of 

an already deemed inert GNP core includes a variety of organic self-assembled 

monolayers (SAMs) (e.g. thiolates, dithiolates, amines, carboxylates, cyanides, 

isothiocyanates, phosphines, etc.) (Connor et al. 2005; Krpetic et al. 2010; Love et 

al. 2005; X. Wu et al. 2013). Other biomolecules have also been used to increase 

GNP biocompatibility including, transferrin, lipids, sugars such as dextran, and 

polymers such as PEG (Dickerson et al. 2008; I. H. El-Sayed et al. 2006; J. L. Li et 

al. 2009; Nikoobakht 2003; Beatriz Pelaz and del Pino 2012; Pissuwan et al. 2006; 

Vankayala et al. 2014). These molecules are capable of easily decorating GNPs 

due to their highly reactive surface chemistry. GNP surfaces can subsequently be 

further functionalised to allow for increased biocompatibility, targeting and uptake 

(Bastus et al. 2007; I. H. El-Sayed et al. 2006; Melancon et al. 2008; Pissuwan et 

al. 2006). 
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These physiochemical properties make them an attractive candidate for 

nanomedicine applications, however is it the increased understanding in the last 

decade of GNP tunable optical properties that has propelled them to the forefront 

of cancer hyperthermia as photothermal agents. Photothermal therapy is 

essentially the killing of cells by local hyperthermia, achieved by converting optical 

energy into thermal energy upon irradiation with light (P. M. Tiwari et al. 2015b). 

GNPs are efficient converters of light energy into heat, making them promising 

agents for targeted photothermal effects, while also offering real time diagnostics 

as imaging agents, therefore making them ideal agents for cancer hyperthermia 

(X. Huang and El-Sayed 2010, 2011; H. Liu et al. 2012; M. Singh et al. 2015).  

 
1.5.1 Photothermal Properties Of Gold Nanoparticles 
 

GNPs within the size range 10–100 nm, undergo a plasmon resonance with light 

exposure which leads to surface plasmon resonance (SPR) (Pissuwan et al. 

2006). SPR occurs when free electrons oscillating on the surface of the GNPs 

interact with electromagnetic fields in the form of photons at specific angular 

momentum and frequency, as shown in the simple schematic in figure 1-7 (Huang 

et al. 2009). This leads to a collective oscillation of electrons on the surface of the 

GNP, which greatly increases absorption, or scattering of the photons (Dreaden et 

al. 2011). Surface plasmon absorption occurs rapidly, dissipating absorbed energy 

into the environment via eventual phonon–phonon relaxation that results in highly 

localised heat generation (X. Huang and El-Sayed 2010). GNP size and shape are 

very important factors in determining the absorbance cross-sections and 

wavelength interaction. Smaller particle sizes (~30 nm) cause absorption at 

shorter wavelengths while larger particles shift absorption to longer wavelengths 

and increases the ratio of scattered versus absorbed light (K. L. Kelly et al. 2003; 

Link and El-Sayed 2003). 
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Figure 1-7: A simplified schematic depicting localized surface plasmon 
resonance (SPR) of gold nanoparticles due to collective oscillation of 
surface electrons with incident light at a specific wavelength (personal 
image). 
 

Researchers exploit this SPR phenomenon for cancer hyperthermia. By actively 

controlling GNP size, they are able to produce GNPs with peak optical absorption 

cross sections in the near infrared regions (NIR) (Khan et al. 2013; N. G. 

Khlebtsov and Dykman 2010; Kevin L. Shuford et al. 2005b). NIR spectrum 

between 750 and 1300 nm provides a ‘biological window’ for optical absorption 

through tissue (while shorter and longer wavelengths are attenuated by biological 

entities such as hemoglobin, pigments, and water) (R. Weissleder 2001a). NIR 

wavelengths allow for maximum tissue depth penetration without causing 

significant damage to normal cells (J. Park et al. 2015). The dispersion of heat 

energy may also be released through photoacoustic effects, if the rate of heat 

absorption is much faster than the relaxation rate. In this instance, GNP surfaces 

may exceed many hundreds of degrees leading to cavitation effects and the 

formation and collapse of microbubbles that can release mechanical shockwaves, 

which can rupture cell membranes as well as other acoustic associated damage 

(Lapotko et al. 2006; Wei et al. 2013). Several recent in vitro and in vivo studies 

have demonstrated the potential for GNP hyperthermia via laser irradiation with a 

plethora of GNP sizes, geometries and functionalisation	 (Y. Y. Bai et al. 2014b; 

Choi et al. 2011; Robinson et al. 2015). 
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1.5.2 Gold Nanoparticle Size and Shape Influences Optical Properties  
 
The application of GNPs for photothermal therapy via laser irradiation does have 

several shortcomings. In order to synthesis GNPs that have optical absorption 

towards the NIR region, particles have to be synthesised at a fairly large size 

distribution, however the increase in size directly correlates to light scattering and 

absorption ratios. Therefore, GNPs over 40 nm begin to display light scattering 

characteristics while GNPs over 80 nm diameter the extinction is contributed by 

both absorption and scattering at similar ratios (X. Huang and El-Sayed 2010). 

More recently large GNPs (~80 nm) have been identified for use as strong 

contrast agents due to their high scattering efficiency	(P. K. Jain et al. 2006). Gold 

nanospheres in the size range commonly employed (40 nm) show absorption 

cross-section 5 orders higher than traditional dyes, while the magnitude of light 

scattering by 80 nm gold nanospheres is 5 fold higher than the light emission from 

fluorescing markers. The variation in the plasmon wavelength maximum of 

nanospheres, i.e., from 520 to 550 nm, is however too limited and reserved for 

more in vitro studies (Panchapakesan et al. 2011).  

 

For photothermal treatment to be fully realised, GNPs must be able to efficiently 

absorb light energy in the NIR region, however as described above, this involves 

increasing the size of GNPs. Increasing the size of GNPs has a negative impact 

on absorbance efficiency, with light energy predominantly scattered rather than 

absorbed, thus yielding a lower heating output that can not be effectively used for 

the purpose of hyperthermia	(Ivan H. El-Sayed et al. 2005; P. K. Jain et al. 2006). 

Due to the limitations of spherical GNPs, as described above, researchers began 

investigating the effects of GNP shape on light absorption and scattering, in order 

to synthesis GNPs that have optical light absorbance in the NIR region, suitable 

for laser therapy with low scattering and high absorbance to induce hyperthermia 

(Hua et al. 2015; Jihye et al. 2011). The more sophisticated geometries have 

included gold nanorods and gold nanoprisms, which have shown great potential as 

hyperthermic agents	(Mackey et al. 2014; J. E. Millstone et al. 2005; B. Pelaz et al. 

2012; Jing Wang et al. 2012a).	
 

 Nanorods are cylindrically shaped GNPs containing two distinct plasmon bands	
(Lakhani et al. 2015). This SPR spectrum split produces a stronger long-

wavelength band in the NIR region due to the longitudinal oscillation of electrons, 



	

28	

and a weaker short-wavelength band in the visible region around 520 nm due to 

the transverse electronic oscillation correlating to the length and width of the 

nanorods (X. Huang et al. 2008). The absorption spectrum of gold nanorods is 

dictated by the aspect ratio (length/width) of rods, a feature that can be 

manipulated by researchers to produce highly absorbing or scattering GNPs. By 

increasing the nanorod aspect ratio, the SPR absorption wavelength maximum of 

the longitudinal band significantly shifts toward the NIR region. This easily 

tuneable characteristic has made nanorods a suitable agent for cancer 

hyperthermia. Gold nanorods can therefore be synthesised to display the highest 

absorption peak in the NIR region that correlates well with laser wavelengths 

during photothermal irradiation both in vivo and in vitro and is seen as a key 

modulator for future GNP cancer hyperthermia therapies (A. M. Alkilany et al. 

2012; Dickerson et al. 2008; Tanya S. Hauck et al. 2008b; Qin et al. 2015). 
 

Gold nanoprisms represent a more complex nanoarchitecture, typically in the form 

of a triangular geometry	(Alfranca et al. 2016). Gold nanorpisms can be tailored by 

modifying their aspect ratio, tip sharpness, thickness and length, which can 

influence and promote enhanced optical properties as well as improve in vivo 

performance (Alfranca et al. 2016; Chenchen Bao et al. 2016). The optical 

properties of nanoprisms are not governed by diameter but instead are heavily 

influenced by their aspect ratio and symmetry (Jill E. Millstone, 2004). The aspect 

ratio is based on the thickness of the nanoprism and edge length, however the 

three tips of the nanoprisms are also crucial characteristics determining its optical 

properties (E. Hao et al. 2004; K. L. Shuford et al. 2005a).	 The absorption 

spectrum of gold nanoprisms in particular, often presents four frequency modes, 

which have been confirmed both theoretically and experimentally, namely in-plane 

and out of- plane modes, both of which in turn can be dipolar and quadrupolar (B. 

Pelaz et al. 2012; Perez-Hernandez et al. 2015). The major contribution to the UV-

vis-NIR spectrum of triangular gold nanoprisms (NPRs) is attributed to the in-plane 

dipolar mode located in the NIR range (B. Pelaz et al. 2012). The highly 

anisotropic shape of nanoprisims provides them with strong absorption in the NIR 

region and makes them highly suitable for biological applications including 

otpoacoustic imaging	 (C. Bao et al. 2013), bioesensing	 (Z. Guo et al. 2010a) and 

photothermal therapy (X. Ma et al. 2015). 
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1.6 Magnetic Nanoparticles 
 

In 1957, Gilchrist et al proposed the use of magnetic nanoparticles for cancer 

hyperthermia owing to their capacity to convert magnetic energy into thermal 

energy	 (C. S. Kumar and Mohammad 2011). Magnetic nanoparticles (mNPs) are 

composed of a magnetic metal core, very often in the form of magnetite, a potent 

magnetic material (Fe3O4), or its oxidised form, maghemite (Fe2O3), with an 

outer coating of a biocompatible material (e.g. dextran) (C. S. Kumar and 

Mohammad 2011). Synthesis is predominantly via a bottom up approach, allowing 

the generation of mNPs in the nanometre range that infer enhanced magnetic 

properties. In the presence of an alternating magnetic field, iron oxide mNPs 

generate heat and can induce hyperthermia. 

 

The current biomedical applications of mNPs have been outlined in several 

reviews (Catherine and Adam 2003; Gobbo et al. 2015; Yallapu et al. 2011), which 

detail the potential use of mNPs for cancer imaging, when used as contrast agents 

to enhance the contrast in magnetic resonance imaging (MRI) scans. A further 

potential use is with magnetic drug targeting, whereby the possibility of attaching 

various ligands (eg anti-cancer drugs) to the mNPs (figure 1-8) as well as the 

particles inherent magnetic properties are capitalised upon (Berry 2009).  Once 

inside the body, the mNPs can be attracted to external magnetic fields, allowing 

accumulation at specific sites where they can subsequently deliver their cancer 

therapeutic payloads. In 1996, the first clinical trial using magnetic drug targeting 

was performed in patients with advanced solid tumours	(Lubbe et al. 1996). 
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Figure 1-8: Schematic of a multifunctional mNP. MNPs can be functionalised 
with various biocompatible coatings including PEG and can also be further 
functionalised to act as a drug/gene chaperones or used as contrast agents 
with the addition of fluorescent molecules/dyes (personal image).  

 

Based on magnetic resonance tomographic techniques and histological detection, 

mNPs functionalised with epirubicin could be directed to tumours using magnetic 

fields localised outside the tumour surface. Magnetic nanoparticles are usually well 

physiologically tolerated within the body due to their external biocompatible 

coating with organic polymers (usually dextran), which have a very low toxicity 

index, while excess mNPs are cleared from the body via the aforementioned RES. 

Briefly, the RES, orchestrated mainly by the kuppfer cells within the liver, ingests 

the iron oxide mNPs via phagocytosis and the resultant products are stored within 

cellular compartments such as endosomes	 (Santhosh and Ulrih 2013).  The iron 

oxide is then metabolised into iron and oxygen with the former stored within 

storage proteins such as ferritin (Santhosh and Ulrih 2013). 

 

1.6.1 Magnetically-Mediated Hyperthermia  
 

Magnetic hyperthermia is dependent on two fundamental points (1) that the cancer 

cells uptake mNPs into the cell body, and (2) that the mNPs used are capable of 

generating heat when exposed to an alternating magnetic field. Gilchrist’s work 

was one of the first to utilise magnetic material for hyperthermia treatment, 

resulting in the heating of tissue samples using iron oxide nanoparticles ranging 

from 20-100 nm (1.2 MHz magnetic field exposure)(Gilcrest 1957). Since this 
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seminal report, many publications have been produced, with researchers 

attempting to use various metal NPs, including nickel, cobalt and zinc (C. S. 

Kumar and Mohammad 2011). However, whilst metals such as nickel and cobalt 

are also highly magnetic, they are also very toxic and can be easily oxidised within 

the body, causing cellular damage, thus iron oxide magnetic nanoparticles are 

reserved for biomedical application (S. Laurent et al. 2011). The effectiveness of 

mNP-hyperthermia relies on its inert, biocompatibility during inactivity and 

crucially, its ability to generate adequate heating profiles upon activation. The 

heating efficiency of mNPs is determined by the magnetic energy absorbed by 

mNPs and converted into thermal energy and is notably described as the specific 

absorbance rate (SAR). The SAR is expressed as an equation and is equal to the 

rate at which energy is absorbed per unit mass of the mNPs at a specific 

frequency, defined by the equation below	(Deatsch and Evans 2014; Guardia et al. 

2012; Arati G. Kolhatkar et al. 2013b). 

 

SAR, W/g = C (ΔT/ Δt) = (Area of hysteresis loop x (Frequency, f)) 

 

Where C is the specific heat capacity of water, and ΔT/Δt is the rate of change of 

temperature (A. G. Kolhatkar et al. 2013a). 

 

Although SAR is good indicator of heating potential, various groups have adopted 

different models, producing different degrees of consensus within the literature. 

For example Suto and co-workers emphasised the impact of the weight of mNPs 

and the frequency and strength of magnetic fields (Suto et al. 2009). Many groups 

that attempt to theoretically or experimentally estimate the SAR of mNP based 

heating highlight the significance of not just the mNP characteristics, but also the 

variation of the external alternating magnetic field, including field strength, 

frequency and duration (Deatsch and Evans 2014; C. S. Kumar and Mohammad 

2011; L. Yu et al. 2014). In general, the generation of heat produced by iron oxide 

magnetic nanoparticles is proportional to the square of the applied magnetic field 

amplitude, thus, as expected; an increase in magnetic field strength coincides with 

an increase heat generation within mNPs (Mehdaoui et al. 2010). The influence of 

magnetic field frequency is far more complex although at more physiologically 

appropriate boundaries, its impact becomes severely limited and is somewhat 

overlooked for hyperthermia investigations (Deatsch and Evans 2014). However 

the impact of field frequency itself does influence the size distribution of iron oxide 
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nanoparticles that can be used for hyperthermia experiments with studies showing 

the mNPs between 12 and 20 nm showing optimal magnetic field absorbance 

(Deatsch and Evans 2014). Physiological considerations have proved challenging 

for effective in vivo hyperthermia using mNPs as large amplitude, high frequency 

magnetic fields may induce uncontrolled local heating in tissues due to induced 

eddy currents	(Gunnar et al. 2006). Despite these limitations to the magnetic field 

variables, many groups have successfully used mNPs for hyperthermia 

experiments in vivo with promising results	 (I. Hilger et al. 2002; Thiesen and 

Jordan 2008). 

 

	
Table 1-2: A list of clinical trials involving mNP based hyperthermia. 

	
Clinical trials Key Features References  

Clinical hyperthermia 
of prostate cancer 
using magnetic 
nanoparticles: 
Presentation of a new 
interstitial technique  

Phase I study  
Concentration of ferrites in aqueous 
solution was 120 mg.ml-1   
15 nm and were coated with an amino                                                                                                                                         
silan-type shell in water  
Treatments were delivered in the first 
magnetic field applicator for use in 
humans (MFH300F, MagForceÕ 
Nanotechnologies GmbH, Berlin),  
alternating magnetic field with a 
frequency of 100 kHz and a variable field 
strength 
(0–18kAm-1).  

(M. Johannsen 
et al. 2005) 

Intracranial 
Thermotherapy using 
Magnetic 
Nanoparticles 
Combined with 
External Beam 
Radiotherapy: Results 
of a Feasibility Study 
on Patients with 
Glioblastoma 
Multiforme 

Phase I study  
 
Aminosilane coated iron oxide 
nanoparticles 
14 patients suffering with recurrent 
glioblastoma multiforme 
Used as an adjunct to radiotherapy  

(Maier-Hauff et 
al. 2007) 

mNP based 
hyperthermia 
combined with 
radiotherapy  

66 patients  
iron concentration of 112 mg.ml-1 
12 nm diameter with an aminosilane 
coating 

(Maier-Hauff et 
al. 2011) 
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1.6.2 Superparamagnetic Iron Oxide Nanoparticles (SPIONs) 
 

Superparamagnetic iron oxide NPs (SPIONs) are small particles (1-20 nm) 

containing an iron oxide magnetic core (Fe2O3 and Fe3O4) which exhibit 

superparamagnetic behaviour due to their small size and crucially, the subsequent 

switch from a multi domain structure to a single domain structure (S. Laurent et al. 

2011). Bulk magnetic material, such as iron are composed of multiple domains, 

each containing large numbers of atoms whose magnetic moments (orbital and 

spin motions of electrons within atoms) are parallel producing a net magnetic 

moment of the domains in random directions (Bashar Issa et al. 2013b). These 

randomly distributed domains within the material produce a zero net magnetic 

moment (Cindi L. Dennis and Ivkov 2013b). When ferromagnetic material are 

placed in a magnetic field, the magnetic moments of the domains align along the 

direction of the applied magnetic field forming a large net magnetic moment and a 

residual magnetic moment, allowing the material to retain its magnetism even after 

the magnetic field is removed (Bashar Issa et al. 2013b; Santhosh and Ulrih 2013).  

 

The change of SPIONs from a multiple domain structure to a single domain 

structure greatly alters their magnetic behaviour from ferromagnetic characteristics 

to superparamagnetic characteristics (B. Issa et al. 2013a; Wahajuddin and Arora 

2012b). In this single domain state the material can display either ferromagnetic or 

Combined treatment with radiotherapy 
showed more effective therapy 
 

Neo-adjuvant 
chemotherapy alone or 
with regional 
hyperthermia for 
localised high-risk soft-
tissue sarcoma: a 
randomised phase 3 
multicentre study 
 

Randomised phase 3 trial  
treatment for high-risk soft-tissue 
sarcoma (STS) in adults 
Patients received either neo-adjuvant 
chemotherapy consisting of etoposide, 
ifosfamide, and doxorubicin (EIA) alone, 
or combined with regional hyperthermia 
(EIA plus regional hyperthermia) in 
addition to local therapy. 
341 patients were enrolled, with 169 
randomly assigned to EIA plus regional 
hyperthermia and 172 to EIA alone. 
regional hyperthermia increases the 
benefit of chemotherapy 

(Rolf D. Issels 
et al. 2010) 
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paramagnetic characteristics depending on the presence or absence of an 

external magnetic field, respectively, leading to the phenomenon described as 

superparamagnetism (Amtenbrink et al, 2009).However unlike their larger, multi 

domain bulk, counterparts, single domain, superparamagnetic material do not 

retain their magnetism after the removal of an external magnetic field (Santhosh 

and Ulrih 2013). Thus, superparamagnetism is as a form of magnetism exhibited 

in small ferromagnetic NPs (Hervault and Thanh 2014). This form of magnetism 

relies on the presence of a magnetic field in order for particles to magnetise, 

therefore the loss or absence of a magnetic field leads to particles losing their 

magnetic potential and thus, magnetism and heating capacity (L. S. Wang et al. 

2012b). 

 

For biomedical applications, it is of paramount importance to have 

superparamagnetic behaviour at room temperature to prevent aggregation; 

aggregation is more common in SPIONs due to their smaller size, increased 

surface-to-volume ratio as well as magnetic attractive forces and weak Van Der 

Waals forces (Santhosh and Ulrih 2013). Superparamagnetic materials can flip the 

direction of their magnetisation under the influence of temperature and the time 

between these flips is termed the Neel relaxation time. In the absence of an 

external magnetic field, if the time used to measure the magnetisation of mNPs is 

longer than the Neel relaxation time, the magnetisation of the material is said to be 

approximately zero	(Arati G. Kolhatkar et al. 2013b).  

 

The Curie temperature is also an important parameter, which researchers can 

manipulate; the Curie temperature is the temperature at which a materials 

permanent magnetism changes, above these temperatures, materials lose their 

magnetism and effectively ‘turn off’	(Sharifi et al. 2012). This process inhibits their 

ability to heat, thus stopping them from over heating within the body (Rehman et 

al. 2002). The Curie temperature is therefore fundamental to hyperthermia 

therapies that can ‘turn off’ once the desired temperature is achieved	(Sharifi et al. 

2012).  
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1.6.3 Mechanism Of Heat Generation In Magnetic Nanoparticles 
 
As described above, SPIONs have a size range of 1-20 nm. At this size it is 

considered that the SPIONs change from a multiple domain structure to a single 

domain structure and thus change from having ferromagnetic characteristics to 

superparamagnetic characteristics (Wahajuddin and Arora 2012a). Frenkel and 

Dorfman first studied single domain theory in 1930 with further studies, identifying 

the importance of a shift from multiple domain to a single domain in the creation of 

permanent magnets	(Ortega et al. 2010).  

 

When SPIONs are subjected to an alternating magnetic field (AMF) they generate 

heat by two main mechanisms; hysteresis loss and relaxation (Mamiya and 

Jeyadevan 2011; Ruta et al. 2015). Hysteresis occurs when an AMF is applied to 

the particles leading to the atomic dipoles within the particles aligning themselves 

accordingly with the AMF albeit at a delay and becoming magnetised in response 

(C. S. Kumar and Mohammad 2011). Single domain SPIONs respond by rotating 

during the presence of an external AMF and this can create currents within the 

SPION carrier fluid (usually in the form of a ferrofluid) (C. S. Kumar and 

Mohammad 2011). 

 

Heat is also produced via a delay in the relaxation processes in the form of 

Brownian and Neel relaxation mechanisms, again producing heat via friction	
causing thermal cytotoxicity to tumour cells (J. Pearce et al. 2013a). Both Neel and 

Brownian relaxation mechanisms lead to thermal loss via an applied MF but both 

are produced by different phenomenons, as shown in figure 1-9. Neel relaxation 

mechanism occurs due to the rapid changes in direction of magnetic moments 

within the particles thus leading to rotation within the particle itself leading to heat 

loss (J. Bai et al. 2014a). Brownian relaxation meanwhile relies on the actual 

physical rotation of the particle itself within the carrier media it is suspended in 

(e.g. ferrofluid) via an external AMF	 (S. Laurent et al. 2011). This mechanism 

therefore relies on the external environment - the carrier fluid, including density, 

viscosity and other external dynamic factors which could either inhibit, suppress or 

resist the particles spinning, thus affecting the generation of heat produced (L. Yu 

et al. 2014). 
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Both Neel and Brownian relaxation rely on particle diameter. When particles are 

exposed to an external AMF, the time of magnetic reversal is less than the 

magnetic relaxation times of the particles, and heat is dissipated via the delay in 

relaxation of magnetic moments within the particles (Vallejo-Fernandez et al. 

2013). By increasing the size of SPIONs it is possible to increase the heating 

efficacy of these particles, but this must be balanced with the requirement to 

maintain superparamagnetism (Sharifi et al. 2012).  

 

Other factors also affect SPIONs ability to generate heat, including their shape and 

crystal structure (linked to domain size). Furthermore, particle internalisation into 

cells can also cause a shift in heating potential, with mNPs likely to experience 

inhibition of particle spinning or movement, thus limiting heat to Neel relaxation 

only (Espinosa et al. 2016). All these parameters need to either be satisfied or at 

least accounted for in order to estimate the specific absorption rate of the SPIONs 

and thus their effectiveness in vivo. 
 

 

 

Figure 1-9: Néel rotation and Brownian rotation. (Top) Néel rotation: The 
magnetic moment rotates while the particle remains fixed. (Bottom) 
Brownian rotation: The magnetic moment leads to the physical rotation of 
the particle (personal image). 
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1.6.4 Clinical Application of Magnetic Nanoparticles  
 

Over the last two decades considerable improvements have been made to 

magnetically-mediated hyperthermia to enable clinical translation (Cole et al. 

2011a). A number of parameters are vital to the success of this application, 

including (1) the position of the tumour (superficial or deep seated), (2) the half-life 

of the NPs (avoiding opsonisation), (3) the specific targeting of cancer cells (e.g. 

by identifying specific molecular markers on cancer cells, such as antibodies), (4) 

the strength and exposure time of the magnetic field (high enough to excite mNPs, 

but low enough to not cause any potential localised damage), and (5) general 

safety considerations (eg. potential toxicity issues). All these factors have to be 

negotiated in order to produce a mNP that will be safe to use in vivo and able to 

efficiently produce heat when located in a cancer cell and exposed to an 

alternating magnetic field. 

 

The use of hyperthermia treatment to treat cancer patients was first highlighted in 

studies from Jordan et al 2001 and Johannsen et al 2005, with both studies 

focusing on the susceptibility of cancer cells to cell death/apoptosis or necrosis 

upon exposure to hyperthermia (M. Johannsen et al. 2005; A. Jordan et al. 2001). 

In 2001, Jordan and colleagues presented the proposals for the manufacturing of 

a new AC magnetic field therapy system for the clinical application of mNP 

hyperthermia. The first prototype of a clinical magetic fluid hyperthermia (MFH) 

therapy system that will be set up at the Charité Medical School, Campus Virchow-

Klinikum, Clinic of Radiation Oncology in Berlin. The system was produced to 

match the limitations given by non-specific eddy current heating in highly 

conductive tissue as well as monitoring other potential safety concerns. The 

system was expected to be used for global hyperthermic applications but primarily 

for regional hyperthermia (A. Jordan et al. 2001). Johannsen and co-workers 

(2005) conducted a pilot study to evaluate mNP hyperthermia for the treatment of 

prostate cancer. MNPs were injected transperineally into the prostate. Treatments 

were conducted in the first magnetic field applicator for human use (MFH300F, 

MagForceÕ Nanotechnologies GmbH, Berlin), with the system producing an 

alternating current magnetic field with a frequency of 100 kHz and variable field 

strength (0–18 kA m-1). Patients were subjected to treatments for 60 minutes for 

six weekly hyperthermia sessions. CT scans and invasive temperature 

measurements confirmed mNPs were retained in the prostate during the treatment 
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interval for six weeks with temperature reaching hyperthermic temperature profiles 

(42-45°). The study showcased the great potential of mNP hyperthermia 

highlighted by the low mNP toxicity and distribution within the tumour, however the 

group did note that a greater concentration of mNP was required than initially 

calculated in order to generate sufficient hyperthermic profiles while the field 

strength, even at more moderate conditions still appeared to cause pain and 

discomfort and was subsequently cut by more than half the original dose (<5kA m-

1) (M. Johannsen et al. 2005). In 2007, the same group conducted a prospective 

phase 1 study on ten prostate cancer patients using aminosilane-type shell 

SPIONs (MFL AS, MagForce® Nanotechnologies, Berlin, Germany). Not only did 

the group show more successful hyperthermic temperature profiles hyperthermic 

to thermoablative temperatures were achieved in the prostates at only 25% of the 

available magnetic field strength. The group also investigated a noninvasive 

thermometry method specific for this approach, which shows great potential for 

future development (Manfred Johannsen et al. 2007). 

 

There are two distinct approaches to magnetic hyperthermia used by research 

groups; conventional mNP hyperthermia and magnetic thermoblation (Stapf et al. 

2015). Conventional mNP hyperthermia typically involves temperature profiles of 

around 42-45°, and has shown to cause cancer cell death and the shrinkage of 

tumours in animal models	with minimal/no damage associated with normal cells 

(Elsherbini et al. 2011). Magnetic thermoblation meanwhile is similar in principle to 

magnetic hyperthermia, however higher temperatures are achieved, ranging from 

43-55°C. In this case the increase in temperature not only causes tumour cell 

death, but also has strong cytotoxic effects for neighbouring healthy cells (I. Hilger 

et al. 2002). The reason for utilising magnetic thermoblation as opposed to 

magnetic hyperthermia is that a higher rate of tumour regression is often noted 

with thermoablation	(I. Hilger et al. 2002). Although considered effective, magnetic 

thermoblation is used precariously as elevated temperatures >50°C is associated 

with necrosis (Cherukuri et al. 2010). At present, the clinical use of agnetic 

hyperthermia is being predominantly explored as an adjunct to existing cancer 

therapy treatments, such as chemotherapy and radiotherapy, particularly as cells 

show an increased susceptibility to both these treatments when magnetic 

hyperthermia is also used (Giustini et al. 2010). 
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1.7 Aims and Objectives  
 

The aim of this project was to assess the potential application of gold 

nanoparticles and magnetic nanoparticles as hyperthermic agents in vitro.  In 

order for any NP to be considered for future in vivo use and in clinical settings, 

they must exhibit low toxicity upon cell exposure, show good biocompatibility and 

subsequent cellular uptake (Charlton et al. 2016; Mahmoudi et al. 2011; A. Panariti 

et al. 2012a). Therefore, both NP species were assessed in terms of their 

biocompatibility. Two cancer cell lines were adopted for the in vitro studies 

representing both hard and soft tissue; bone cancer cells (MG63) and breast 

cancer cells (MCF-7).  The NPs were assessed in standard monolayer culture and 

3D tumour spheroid culture.  

 

To be considered as ideal candidates for hyperthermia, NPs must exhibit sufficient 

heating potential to achieve hyperthermic temperature profiles (42-45°C) when 

exposed to an appropriate stimulant, such as a NIR laser or an external alternating 

magnetic field, in the case of GNPs and mNPs, respectively (Hayashi et al. 2013; 

B. N. Khlebtsov et al. 2012). Following biocompatibility tests, both the NP species 

employed in this project were also characterised for their respective heating 

potential.  

 

In this final part of the project, I aim to identify the apoptosis pathways responsible 

for hyperthermia-induced cell death, as the molecular events of hyperthermia 

induced cell death have not been fully realised (Joseph L. Roti Roti 2008b). The 

discrimination between apoptosis and necrosis is often overlooked and the various 

apoptosis pathways which may be activated are poorly studied, making clinically 

applicable data untranslatable (Kodiha et al. 2014; Yin et al. 2014).  
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The following objectives were completed to achieve these aims; 

 

1. Gold & magnetic NPs - to assess the effectiveness of both NPs to induce 

hyperthermia within cancer cells (42-47°) when exposed to (i) an 

alternating electromagnetic field (AMF) or (ii) light.  

	
2. Gold NPs – to adapt a laser system to allow for NP heating via plasmon 

excitation. 

 

3. Gold NPs - to study the mechanism events of cell death induced by 

hyperthermia and how this rate could be increased for cancerous cells as 

well as aiding non-cancerous cell survival. This may include use of targeted 

NPs (ie. targeting cancer cells). 

 

4. Magnetic NPs - to adapt a magnetherm device to allow testing of the 

parameters required to induced cancer hyperthermia in vitro. 
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2. Materials and Methods  
 
Table 2-1: A list of materials, reagents and suppliers used during 
experiments. (* Preparation methods of solutions are described in detail in 
section 2.1).  

Materials/Reagents Supplier(s)  

1. Cells 

Human breast adenocarcinoma (MCF-7 
Cells) 

Sigma Aldrich, UK 

Human osteosarcoma (MG63 Cells) Sigma Aldrich, UK 

2. Nanoparticles  

~11 nm Superparamagnetic Iron oxide 
nanoparticles (SPIONs) coated with dextran 
 

Synthesised by collaborators at the 
Aragón Materials Science Institute, 
Spain.  
 

Gold nanoprisms & nanorods coated with 
PEG 

Synthesised by collaborators in 
Zaragoza, Spain  

3. Cell Culture  

Dulbecco’s modified eagle medium (DMEM) Sigma-Aldrich, UK 

Ethylenediaminetetraacetic acid (EDTA) Sigma- Aldrich, UK  

Foetal bovine Serum (FBS)   Sigma- Aldrich, UK 

HEPES Fisher Scientific  

L- Glutamine 200 mM  Invitrogen, UK 

Media 199 Sigma- Aldrich, UK 

Penicillin-streptomycin  Sigma- Aldrich, UK 

Sodium Pyruvate mM Life Technologies  

Trypsin  Sigma-Aldrich 

Trypsin/Versene solution  In house  

Versene* 
  
 

In house (see section 2.1) 
 

4. Cell Viability  
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3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-
tetrazolium bromide (MTT) 

Sigma-Aldrich, UK  

Dimethyl sulfoxide Sigma-Aldrich, UK 

LIVE/DEAD® viability/Cytotoxicity kit Invitrogen, UK 

PBS Sigma-Aldrich, UK 

5. Cell Staining  

BSA Sigma-Aldrich, UK 
Formaldehyde (38%) Fisher Scientific, UK 

 
HEPES Fisher Scientific, UK 

Magnesium Chloride ((MgCl2) hexahydrate) VWR Chemicals, UK 

Primary antibodies Abcam, UK and Santa Cruz 
biotechnologies, UK 

Rhodamine-phalloidin Invitrogen, UK 

Secondary biotin conjugated antibodies Vector Laboratories, USA 

Sodium Chloride (NaCl) VWR Chemicals, UK 

Sucrose Fisher Scientific, UK 

Tertiary streptavidin- FITC Vector Laboratories, USA 

Triton X Sigma-Aldrich, UK 

Tween 20 Sigma-Aldrich, UK 

6. Electron Microscopy  

Aqueous uranyl acetate  Agar Scientific Ltd, UK 

Epon resin araldite (812 Kit E202)  TAAB Lab Equipment Ltd, UK  

Ethanol VWR Chemicals, UK 

Glutaraldehyde  (25% aq pure, EM Grade) Sigma-Aldrich, UK  

Methanol VWR Chemicals, UK 

Osmium tetroxide Agar Scientific Ltd, UK  

Propylene oxide VWR Chemicals, UK 

Reynolds lead citrate  Agar Scientific Ltd, UK  

Sodium cacodylate Agar Scientific Ltd, UK 
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2.1 Cell Culture Growth Media and Solutions  

 
Modified DMEM (standard growth media)  
MEM        400 mL 
Medium 199       100 mL 
FBS          50 mL 
Penicillin-streptomycin       10 mL  
Sodium pyruvate          5 mL  

 
 
Versene  
Water                  1000 mL 
NaCl         8 g 
KCl         0.4 g 
Glucose        1 g 
HEPES        2.38 g 
EDTA         0.2 g 
0.5% phenol Red       2 mL 
Adjusted to pH 7.5 
 
 
Trypsin/versene solution 
Versene (in house solution)       20 mL 
Trypsin         0.5 mL 
 
 
PBS Solution  
PBS          1 tablet 
Water          200 mL 
 
Cell Fixation buffer (fluorescent staining) 
PBS solution          90 mL 
Formaldehyde (38%)        10 mL 
Sucrose           2 g 
 
Cell Permeability buffer (fluorescent staining)     
PBS solution          100 mL 
Sucrose          10.3 g 
NaCl            0.292 g 

Thermanox Coverslip  ThermoScientific , UK 

Uranyl acetate  Sigma-Aldrich, UK  

7. Microscopes   

Axiovert 25 fluorescence Microscope  Zeiss, UK 

Jeol 6400 SEM Jeol Ltd, UK 

Leo 912AB TEM Zeiss, UK  
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MgCl2 hexahydrate             0.06 g 
HEPES           0.476 g 
Adjusted to pH 7.2           
Triton X           0.5 mL 
 
 
0.5% Tween 20 in PBS   
PBS solution          100 mL 
Tween 20            0.5 mL 
   
 
2.2 Monolayer Cell Culture  
 
The human osteosarcoma cell lines (MG63) and human breast adenocarcinoma 

cell line (MCF-7) were cultured in T75 flasks with Dulbecco’s modified Ealges 

medium (DMEM) supplemented with medium 199 (20%), foetal bovine serum 

(10%), antibiotics (2%) and sodium pyruvate (1%). Cells were incubated in an 

atmosphere of 5% CO2 at a temperature of 37ºC and cultured until 70% 

confluence. Once cells were confluent they were washed with HEPES solution and 

detached from the flask surface with 2 mL of trypsin/versene (5 minutes at 37ºC). 

Fresh media (~8 mL) was added to the cells to neutralise the trypsin/versene 

solution. The resultant cell suspension was centrifuged for 4 minutes at 1400 g, 

the supernatant was removed and the remaining cell pellet was re-suspended in 1 

mL of fresh media (unless otherwise stated). Cells were then counted using a 

hemocytometer and seeded into appropriate wells for experiments at a 

concentration of 1 x 104 per mL. 

 

2.3 Cell Viability  
 
Cells were analysed both for their metabolic activity using the MTT assay and also 

their viability, using a live/dead fluorescent stains.  

	
2.3.1 MTT Assay  
 
The MTT assay is a colorimetric assay designed to assess cell metabolic activity 

(when challenged with nanoparticles). The assay relies on the ability of NADPH-

dependent cellular oxidoreductase found within mitochondria to reduce yellow 

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) to purple 

formazan. Viable cells with an active metabolism will therefore produce a purple 
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colour at an absorbance near 570 nm. Measurements are recorded using a plate 

reader, with the concentration of purple (ie. formazan) proportional to the 

metabolic activity of the cells. The measurements are evaluated against control 

cell samples containing no nanoparticles (NPs), which are assumed to be 100%.  

 

MG63 and MCF-7 cells were seeded in 96 well plates at 1x104 per well and 

incubated for 24 hours. The media was then removed and replaced with fresh 

media containing the specific NPs at desired concentrations and the cells were 

incubated for a further 24, 48 and 72 hrs (5 replicates for each condition). 

Subsequently, 10 µL of yellow MTT dye solution (5 mg.mL-1 in phosphate buffer 

pH 7.4) was added to each well. The plates were wrapped in foil and placed into 

an incubator at 37°C for one hour. After one hour, the media was removed and 

any resultant formazan crystals were solubilised using 200 µL of DMSO per well. 

The absorbance of each well was read on a microplate reader (Dynatech MR7000 

instruments) at 550 nm.  

 

MTT data analysis: Percentage metabolic activity was calculated using the 

following equation:  

 

(Absorbance of NP-treated cells / Absorbance of control cells) x 100 = %) 

 
2.3.2 Live/Dead Fluorescent Staining   
 

The LIVE/DEAD® Viability/Cytotoxicity kit was also carried out, to determine cell 

viability. The assay is a two-colour fluorescence assay that allows simultaneous 

staining in both live and dead cells (via calcein AM and ethidium homodimer 

respectively). This allowed for the visualisation of cells exposed to NPs (as well as 

control group, containing no NPs). 

 

The kit contained two compounds, calcein AM and ethidium homodimer (EthD-1). 

MG63 and MCF-7 cells were seeded at 1 x 104 onto 13 mm diameter glass 

coverslips located in a 24 well plate and cultured for 24 hours to allow cell 

attachment. The media was then removed and replaced with fresh media 

containing the specific NPs at desired concentrations and the cells were incubated 

for a further 24, 48 and 72 hours (3 replicates for each condition). At the relevant 

time points, the media was removed from each sample, thoroughly washed in 



	

47	

warm PBS (3 times) and 1 mL of fresh media suspension containing 1 µL calcein 

AM and 1 µL ethidium homodimer was added to each sample. The well plates 

were foil wrapped and incubated for 1 hour (37°C, 5% CO2). After incubation, the 

media was removed and samples were washed twice in warm fresh media and 

stored in an incubator ready to be viewed. Samples were then imaged under an 

inverted fluorescence microscope; the excitation/emission wavelengths were 

485/515 nm for calcein AM and 525/590 for EthD-1 and were viewed with FITC 

and TRITC filters, respectively. 

 

2.4 Observation of Cell-NP Interaction and Internalisation 
 
2.4.1 Scanning Electron Microscopy  
 
Scanning electron microscopy (SEM) was used to visualise the interaction of the 

NPs with the cells.  The cells were seeded at 1 x 104 on 13 mm glass coverslips 

and cultured for 24 hours.  Samples were then incubated with the NPs diluted in 

fresh media at the desired concentrations (alongside control cells with no NPs). 

Two replicates were used for each condition.  

 

Samples were fixed 1 & 24 hours after NP introduction with 1.5% glutaraldehyde 

supplemented with 0.1 M cacodylate buffer at 4°C for 1 hour. Once samples were 

fixed, 1 mL of 1% osmium tetroxide in phosphate buffer was added to each 

sample for 1 hour followed by 0.5% uranyl acetate for 1 hour. Samples were then 

slowly dehydrated through a series of alcohol increments from 30-100%, before 

final dehydration with HMDS. The samples were then stored in a desiccator prior 

to gold sputter coating. 

 

2.4.2 Transmission Electron Microscopy  
 

Transmission electron microscopy (TEM) was used to observe NP internalisation 

into cells via analysis of a cross section of cells after NP culture. This allows us to 

verify internalisation and determine the intracellular localisation of the NPs.   

 

Cells were seeded at 1 x 105 cells per well on Thermanox coverslips in a 24 well 

plate for 24 hours prior to NP incubation. Cells were incubated with NPs at desired 

concentrations alongside control cells containing no NPs (two replicates were 
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used for each condition). Cell samples were then fixed, stained with 1% osmium 

tetroxide followed by 0.5% uranyl acetate and dehydrated through a series of 

alcohol increments from 30-100%, exactly as for SEM processing above.  

Following dehydration, cells were covered with a propylene oxide: Epon 812 resin 

araldite mix (1:1) overnight.  The samples were then placed in pure resin and 

cured in an oven at 60°C for 24 hours. Ultrathin sections were cut from the cured 

block and stained with 2% methanolic uranyl acetate and Reynolds lead citrate 

before being viewed under a LEOG12AB transmission electron microscope 

operating at 20−200 kV. 

 

Research Colleague Assistance Mrs. Margaret Mullin, Electron Microscopy 

Facility, University of Glasgow aided with the processing and imaging of SEM and 

TEM samples.   

 

2.4.3 Cell Fluorescence Staining  
 

Fluorescent staining was used to visualise F-actin and β-tubulin filaments within 

cells in order to determine if NP internalisation compromised the cell cytoskeleton 

structure. 

 

Cells were seeded at 1 x 104 onto glass coverslips within a 24 well plate and 

cultured for 24 hours before being incubated with NPs (two replicates per 

condition; control cells containing no NPs). The cells were cultured with the NPs 

for 24, 48 72 hours (unless otherwise stated). At the time points, cells were 

washed with warm PBS and samples were fixed with 1 mL 4% formaldehyde for 

15 minutes at 37°C. The fixative was removed, samples were washed in PBS and 

a permeabilising buffer was added to permeate the cell membrane (5 minutes at 

4oC). The permeabilising buffer was then removed and 1 mL of 1% BSA/PBS 

solution was added for a further 5 minutes at 37oC. Once removed, rhodamine 

phalloidin (1:100 in PBS/BSA) and anti-tubulin (1:100 in PBS/BSA) was added to 

each sample. The samples were then aluminium foil wrapped (to prevent loss of 

fluorescence) and incubated for 1 hour at 37oC. The solution was removed and the 

coverslips were washed three times in PBS/0.5% Tween. The relevant secondary 

biotin conjugated antibody (anti-mouse) was added (1:100 in PBS/BSA; 500 µL 

per coverslip) and samples were incubated a further hour at 37oC. After remove 

and washing (PBS/0.5% tween), FITC-streptavidin was added (500 µL per well; 
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1:100 PBS/BSA) for 30 minutes at 4oC. The cell samples were washed again in 

PBS/0.5% tween; the coverslips were mounted onto glass slides and finally 

stained with fluorescent DAPI. A 20x20 mm coverslip was subsequently placed on 

top and samples were viewed under a fluorescent microscope.  

 

2.5 Statistical Analysis  
 
One-way analysis of variance (ANOVA) was performed using GraphPad version 

6.01. The statistical significance of results was measured by calculating the 

probability of the null hypothesis being true using a predetermined limit  (p-value). 

If the level of confidence was less than 5% (p-value ≤0.05), the null hypothesis 

could be rejected and the results were considered statistically significant. Mean, 

standard error and standard deviation was calculated using the statistical analysis 

tool in Microsoft Office Suite (Excel) for each experiment. Studio R was used 

exclusively to analyse fluidigm data. 
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3. Gold Nanoparticles for Photothermal Therapy  
 
3.1 Introduction  
 
3.1.1 Gold Nanoparticles in Photothermal Therapy 
 
Gold nanoparticles (GNPs) exhibit unique properties, including surface plasmon 

resonance (SPR), which has been capitalised upon for the potential use of GNPs 

in photothermal therapy (hyperthermia).  As discussed in chapter 1, hyperthermia 

is known to induce apoptotic cancer cell death and also allows increased efficacy 

of chemotherapy and radiotherapy treatments (W. Li and Chen 2015). However its 

use as a cancer treatment is limited due to the overall lack of specificity for tumour 

tissues, the difficulty in heating tumours to therapeutic temperatures and 

thermolerance after treatment. GNPs are potential photothermic agents, which can 

be used to generate heat energy from electron excitation and relaxation (via SPR) 

when a laser of appropriate wavelength is applied. 

 
3.1.2 Gold Nanospheres and Nanoshells 
	

To date, many studies have focused on gold nanoshells (eg. silica particles with a 

gold coating) (Hirsch et al. 2003; Mayle et al. 2016a; Stern et al. 2007; Vera and 

Bayazitoglu 2009). This is because gold nanoshells present a tunable SPR, which 

can be tuned to the near-infrared (NIR) region, thus optimising the potential for 

achieving tumour tissue penetration (X. Huang and El-Sayed 2010; Mayle et al. 

2016b; Prevo et al. 2008; G. Zhang et al. 2012; J. Zhao et al. 2014). However in 

recent years, advancements in nanoparticle synthesis have allowed for a variety of 

different GNP shapes and structures to be created. For example gold nanorods, 

whereby the aspect ratio can be altered to permit NIR benefits. When the shape of 

a GNP changes from spheres to rods, the SPR band is split into two bands; a 

strong band in the NIR region (corresponding to the long axis) and a weaker band 

in the visible spectrum (akin to gold nanospheres) (H. Kim et al. 2016a; Z. Zhang 

et al. 2013b). The NIR band can be tuned depending on the aspect ratio of the 

nanorod (ie. the length) thus increasing its heating efficacy at NIR wavelengths. 
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Photothermal therapy using GNPs can be achieved with pulsed or continuous 

wave lasers, with SRP absorption in the visible spectrum and thus suitable for 

near surface cancers (eg. skin). GNP photothermal therapy was first demonstrated 

in vitro and in vivo, by Hirsch et al (Hirsch et al. 2003). This report employed 

breast cancer cells incubated with PEGylated gold nanoshells. Cell death, via 

Calcein AM staining, was noted after 4 minutes exposure to a continuous wave 

NIR light (820 nm, 35 W/cm2). The corresponding in vivo study, where the GNPs 

were directly injected into a tumour, induced tissue damage and cell shrinkage.  

The following year they injected the PEGylated nanoshells into the bloodstream, 

rather than direct injection (mouse tail vein) and observed particles accumulation 

into the tumour via the enhanced permeability and retention effect (D. Patrick 

O'Neal et al. 2004b). 

A detailed study was also carried out in 2003 by Lin and co-workers, using a 

pulsed laser and gold nanospheres (Pitsillides et al. 2003). They targeted 

lymphocyte cells incubated with antibody-conjugated GNPs and a nanosecond 

pulsed laser (565 nm, 20 ns duration). Cell death was recorded with 100 laser 

pulses, with adjacent cells remaining viable and was attributed to micro-scale 

bubbles around the GNPs. Laser-induced bubbles were noted in subsequent 

studies using nanosecond laser pulses in vitro with breast and cervical cancer cell 

lines (Hleb et al. 2008; Zharov et al. 2003). However, the heating efficiency using 

nanosecond pulsed lasers is low, therefore continuous wave laser is often 

preferred to induce cell death in a larger area via hyperthermia, despite the lengthy 

time required (minutes as compared to seconds).  

Since these reports, an exponential number of studies have been conducted 

evaluating the use of GNPs for photothermal treatment.  The heating profiles of 

thermal treatments can be measured in real time (J. Park et al. 2015). While the 

biodistribution, accumulation within the liver and eventual clearance from the host 

without notably signs of toxicity has showcased GNPs as ideal candidates for 

clinical applications (Bednarski et al. 2015; Fraga et al. 2014). 
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3.1.3 Gold Nanorods and Nanoprisms 

In order to increase the proficiency of light to heat conversion, researchers have 

explored a range of GNP sizes (K. Jiang et al. 2013), shapes (Eustis and el-Sayed 

2006) and composition (hollow or solid GNPs) (Xie et al. 2013). To this end 

anisotropic GNPs, such as nanorods, have been extensively explored due to their 

strong optical properties they exhibit as discussed in section 1.5.2. Gold nanorods 

display an increased absorption cross-section and reduced light scattering in the 

NIR domain over traditional gold nanosphere shapes.  

As stated earlier, gold nanorods have gained particular attention over gold 

nanoshells and nanospheres due to their tuneable optical properties that can be 

tailored by changing the aspect ratio (rod length). Huang’s research group clearly 

demonstrated the capability of gold nanorods for use as both cancer cell imaging 

and photothermal therapy in the near- infrared region (X. Huang et al. 2006a). This 

study was the first to show photothermal therapy using gold nanorods in vitro, 

whereby ENT cancer cells incubated with gold nanorods were damaged following 

exposure to a continuous wave laser (4 minutes; 10W/cm2). Subsequent studies 

have demonstrated similar results, with cell death via apoptosis (Hironobu et al. 

2006; L. Tong and Cheng 2009). 

Alternative anisotropic GNPs have also been explored including nanoprisms, as 

previously discussed (chapter 1.5.2). The optical absorbance potential of 

nanoprisms is governed by a variety of parameters including length, thickness and 

the sharpness of the vertices (K. L. Kelly et al. 2003; K. L. Shuford et al. 2005a). 

The combination of these parameters produce nanoprisms that exhibit high aspect 

ratios and display stronger electromagnetic field enhancement - providing more 

distinct plasmon resonance in the near-infrared region in comparison to 

nanospheres and indeed, nanorods (Han et al. 2016b). The manipulation of gold 

nanoprism characteristics, ease of synthesis, functionalisation and 

characterisation has extended gold nanoprism use towards photodynamic therapy 

and imaging (You et al. 2016). An example of the versatility of gold nanoprisms 

was shown in a very recent study by Bao and co workers (2016). In this study, the 

group synthesised antibody functionalised gold nanoprisms for photoacoustic 

imaging, angiography, and photothermal therapy, allowing for the successful 

imaging and subsequent photothermal therapy treatment in situ, while 
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corresponding in vivo experiments led to a reduction in tumour size and improved 

survival rates within mice (Chenchen Bao et al. 2016). 

 
3.1.4 Successful GNPs Presentation In Vitro: Chapter Objectives 
	

GNPs are evaluated based on their in vitro and in vivo performance in regards to 

toxicity. To qualify GNPs for potential biomedical applications, such as for 

hyperthermic treatments, they must demonstrate success across a variety of 

parameters including low toxicity, high cellular uptake, low cellular stress and 

successful intracellular heating. To this end, GNP candidates are typically 

assessed in cell culture. This chapter evaluates the biocompatibility of gold 

nanorods and gold nanoprisms and assesses their potential as hyperthermic 

agents in vitro.  

3.1.4.1	Cell	Lines	Employed	

Two cancer cell lines were employed in this study; a human bone osteosarcoma 

cell line (MG63) and a human breast cancer cell line (MCF-7). Both cell types 

represent cancer lineages from bone (hard tissue) and epithelia (soft tissue), 

therefore MG63 and MCF-7 cells were used as they offer insight into GNP 

interactions with different cell/tissue types. In addition, we focused on bone and 

breast cell lines as it is predicted that one-third of women with breast cancer will 

develop bone metastases, leading to secondary tumours (Koutsilieris et al. 1999).  

3.1.4.2	Cell	Culture	Models		

This chapter also diverges from the majority of the literature in this area by 

comparing the biocompatibility and photothermal capability of gold nanorods and 

nanoprisms both in standard monolayer culture and 3D tumour spheroid culture. 

The use of 3D multicellular spheroids aims to better replicate the in vivo tumour 

conditions, which are lost when culturing cells directly on stiff non-native 

substrates, such as cell-to-cell adhesion, synthesis and secretion of extracellular 

matrix proteins and structural cell changes. It is well known that 2D cultures are 

more sensitive to drug exposure producing data that lacks genuine clinical 

application. This was observed by Loessner et al, 2010, where they found ovarian 

cancer cell viability was reduced to 40-60% in 3D cultures after paclitaxel 
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treatment, however the same treatment in the 2D cell monolayer led to an 80% 

reduced cell viability (Loessner et al. 2010). It is therefore imperative for research 

groups to move towards 3D systems as a ubiquitous model especially for the 

evaluation of cancer therapy. This is particularly important for photothermal 

therapy, while technical issues of tissue penetration and depth of lasers to 

stimulate GNP heating  can also be evaluated (Dreaden et al. 2012).  

	
	
3.2 Chapter Aims and Objectives  

This chapter aims to evaluate the potential of both gold nanorods and nanoprisms 

as photothermal agents to induce hyperthermia in both MG63 and MCF-7 cells. 

Once successfully internalised into cells, the GNPs should be able to trigger cell 

death via SPR upon irradiation with a compatible NIR laser. All observations were 

carried out both in 2D monolayer and 3D multicellular spheroids in order to 

produce more clinically relevant data.  

These aims were achieved as follows:  

• Cells were incubated with a range of different GNP concentrations to 

determine the optimum dose for biocompatibility in terms of cell metabolic 

activity, viability and morphology.  

• GNP internalisation was determined and quantified. 

• Laser irradiation of GNPs localised within cells both in 2D and 3D culture 

models. 
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3.3 Materials and Methods  
 

3.3.1 Gold Nanorod and Nanoprism Synthesis, Functionalisation and 
Characterisation 
 

3.3.1.1	Gold	Nanorod	and	Nanoprism	Syntheses	and	Functionalisation		

 

GNPs in the form of nanorods and nanoprisms were synthesised by our 

collaborators at the Institute of Nanoscience in the University of Zaragoza, Spain.  

Our collaborators confirmed their hyperthermic potential within 1 minute of laser 

exposure at a concentration of 0.1 mg.mL-1 which was used as a benchmark for 

future experiments.  

 

Gold Nanorod Synthesis 

Gold nanorods were synthesised by preparing a seed stock solution of 1 M NaBH4 

(aq) dissolved in 1 M NaOH (aq), which was subsequently dissolved 1:100 in Milli-

Q water. Meanwhile, the surfactant, CTAB (aq) 0.2 M was dissolved to 

homogeneity in a water bath at 37ºC; 5 mL of 1 mM HAuCl4 (aq) and 5 mL of 

CTAB were prepared.	An aliquot	 of	 460 µL of the prepared NaBH4/NaOH stock 

solution was then added to this solution to produce gold nanoseeds. The growth 

solution was immediately prepared by mixing 50 mL of 0.2 M CTAB and 50 mL of 

1 mM HAuCl4 solution, followed by the addition of 700 µL 0.1 M AgNO3. Finally, 1 

mL 0.5 M hydroquinone was added to complete the growth solution. A 1.6 mL 

aliquot of the seed solution was added and was incubated for 5 hours at 26ºC in a 

water bath until reaching an LSPR of 1080 nm. Several centrifugation-washing 

steps were required after each reaction to clean nanorods from excess, toxic 

CTAB. 	
 

For the PEGylation of nanorods, 37 µL of a 1 mg.mL-1 NaBH4 (aq.) solution was 

mixed with 5 mg of heterobifunctional HS-PEG-COOH (5 kDa) diluted in 1 mL 

Milli-Q water at a ratio of 1:1 to produce a PEG solution. The previously prepared 

growth solution meanwhile was centrifuged at 15,000 G, 15 min, 30ºC, and pellets 

were re-suspended in 100 mL Milli-Q water. An aliquot of 1 mL of the prepared 

PEG solution was then added to the growth solution and the pH raised by the 

addition of 100 µL of 1M NaOH. The samples were then incubated for 20 hours at 
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room temperature, to inhibit CTAB crystallisation. After 20 hours, the PEGylation 

step was repeated and the sample centrifuged (15,000 G, 15 min, 30ºC) to 

remove excess PEG and CTAB. The resulting mixture was then sonicated for 15 

min at 60ºC and the repeat process of addition of PEG solution and consequently 

centrifugation was repeated two more times, with the last centrifugation step 

yielding pellets which were re-suspended in a final volume of 15 mL Milli-Q water. 

These excessive washing and centrifugation steps were necessary to remove 

toxic CTAB molecules from the solution. 

  

Gold Nanoprism Synthesis 

Gold nanoprisms meanwhile were synthesised using a novel wet-chemical 

synthetic route to produce nanoprisms functionalised with PEG chains to improve 

stability as described in previous published literature (B. Pelaz et al. 2012) with 

improved modifications. Briefly, 220 mL 0.5 mM Na2S2O3 (aq) was added to 60 µL 

0.1 M KI solution (12.2 µM final concentration). An aliquot of 110 mL of this 

solution was added slowly to 200 mL 2 mM HACl4(aq). A second addition of 110 

mL of KI and Na2S2O3 was prepared and an additional 70 mL Na2S2O3 was mixed. 

The solution was left for 1 hour at room temperature to produce gold nanoprisms.  

 

Nanoprisms were stabilised using heterobifunctional SH-PEG-COOH (5 kDa). 

PEG was added to GNPs at a 1:2 ratio (nanoprisms:PEG) of the total weight of 

gold used in the synthesis. PEG was diluted in 1 mL Milli-Q and a determined 

volume of a 10 mL, 0.1 mg.ml-1 stock solution of NaBH4 was then added to reach 

1:1 molar ratio of PEG:NaBH4. This solution was added to the nanoprism solution 

and attuned to pH 12 with 2 M NaOH. The solution was sonicated for 1 hour at 60 

ºC and centrifuged at 4,400 G for 15 min at room temperature. Pellets were 

resuspended in Milli-Q water and centrifuged three times at 4,400 G for 9 min at 

room temperature and aliquoted in 50 mL centrifuge tubes and allowed to rest at 

room temperature for several weeks. 

	
3.3.1.2	Gold	Nanorod	and	Nanoprism	Characterisation	using	Transmisison	Electron	

Microscopy	

 

A 2 µL aliquot of gold nanoprisms and gold nanorods at 0.1 mg.ml-1 in miliQ H2O 

was dropped onto a carbon-coated grid and dried in air and observed using a 

LEOG12AB transmission electron microscope operating at 20−200 kV. 
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3.3.1.3	Gold	Nanorod	and	Nanoprism	UV-Visible	Absorbance	Spectra		

 
The GNP UV-visible absorbance was analysed by our collaborators in Zaragoza. 

The measurement protocol has been described (Alfranca et al. 2016). Briefly, GNP 

solutions were mixed with DMEM to a final volume of 300 µL per sample, at a 

concentration of 0.02 and 0.1 mg.ml-1.  Spectra were subsequently produced using 

a Cary 50 Probe® spectrophotometer from Varian.  

 

3.3.1.4	Gold	Nanorod	and	Nanoprism	Heating	Capacity			

 
The GNP heating capacity was assessed by our collaborators and was monitored 

using a temperature probe, placed into the GNP solutions during laser therapy, 

with the temperature recorded every 5 seconds as described (Alfranca et al. 

2016). Briefly, 300 µL per sample of GNPs at a concentration of 0.02 and 0.1 

mg.ml-1 were heated in a 96 WP using a 1 W, 1064 nm laser beam for 1 minute.  

 

3.3.2 Monolayer Cell Expansion and 3D Tumour Spheroid Culture  
 
MG63 and MCF-7 cells were cultured in T75 flasks with Dulbecco’s modified 

Eagles medium (DMEM) as described in section 2.2. Cells were seeded onto 

sterilised 13 mm coverslips within a 24 well plate at cell density of 1 x 104 per mL 

(for 2D monolayer culture) or 1 x 105 per mL (for 3D multicellular spheroid culture). 

Cells were grown for 24 hours prior to GNP exposure at 0.1 mg.ml-1 (unless 

otherwise stated).  

 
3.3.2.1	Tumour	Spheroid	Formation	via	Hanging	Drop		

 
A hanging drop ‘device’ to generate cell spheroids was created in-house using two 

6 cm petri dishes and nine 200 µL pipette tips. Briefly, an array of 3x3 dots (using 

24 WP format) was drawn on the base of a 6 cm dish and 2 mm holes were drilled 

into the corresponding dots. The holes were gently expanded to 3.5 mm while a 6 

mm drill was used to gently widen the opening of the hole. Nine 200 µL pipette tips 

were cut with the “head” completely removed and half an inch from the bottom 

removed to acts as “chambers”. The tips are then seated firmly onto the pre-drilled 

holes to create a suitable platform. This platform can be housed inside another 6 
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cm petri dish to form the lid and base of the device. Once prepared, the device 

was appropriately sterilised with 70% ethanol overnight, washed with sterile PBS 

(1x) and nitrogen dried. Cell concentrations with a maximum volume of 50 µL per 

chamber were gently pipetted into the chambers with the cell suspension forming 

a droplet at the bottom of the “chambers”/ pipette tips. The device was left in an 

incubator (37°C, 5% CO2) overnight for spheroids to form naturally within the 

droplet. 

 

3.3.2.2	Viability	of	3D	Tumour	Spheroids	Over	Time		

 
MG63 and MCF-7 cell viability during 3D spheroid culture was determined using 

the LIVE/DEAD® Viability/Cytotoxicity kit to verify the culture technique. Cells 

were expanded in flasks as described in section 2.2. MG63 and MCF-7 cells >90% 

confluence were trypsinised from flasks, centrifuged, counted and aliquots of cell 

suspensions at 1 x 104, 1 x 105 and 1 x 106 per 50 µL were prepared (n=5 for each 

cell density). The 50 µL cell solution was then gently pipetted into the chambers of 

the hanging drop device. The device was placed into an incubated humidified 

atmosphere with 5% CO2 in air at 37°C for 24, 48 and 72 hours. After this point, 5 

µL of fresh media was added to each chamber daily to accommodate for 

evaporation and availability of nutrients. 

At allocated time points (24, 48 and 72 hours) the droplets containing the 

spheroids were gently transferred into a new 24 well plate. This was achieved by 

first removing the base of the device and aligning the ‘chambers’ of the device 

over a fresh 24 well plate. The fresh 24 well plate contained 1 mL of pre-warmed 

sterile PBS in each well. The device was placed on top of the 24 well plate and the 

droplets, containing the spheroids were carefully dropped into the PBS by gently 

flooding the top of each chamber with ~250 µL of warm PBS. 

Spheroid viability was determined using the LIVE/DEAD® Viability/Cytotoxicity kit, 

as in section 2.3.2. Briefly, spheroids were washed gently in warm PBS three 

times. A media solution containing ethidium homodimer and calcein A/M (1 µL per 

mL) was then prepared and decanted into each well at 1 mL per spheroid. The 

well plate was foil wrapped and placed into an incubated humidified atmosphere 

with 5% CO2
 in air at 37°C for 1 hour. Spheroids were then washed twice in fresh 

warm media and imaged under an inverted fluorescence microscope as described 

in section 2.3.2. The excitation/emission wavelengths are 485nm/515 nm for 



	

60	

calcein A/M and 525/590 for EthD-1 and is viewed with FITC and TRITC filters, 

respectively. 

 
3.3.3 GNP Labelled Monolayer and 3D Tumour Spheroid Biocompatibility 
 

3.3.3.1	Cytotoxicity	of	GNP	Labelled	Monolayer	and	3D	Tumour	Spheroids	via	the	MTT	

Assay		

 
The MTT assay, which measures cell metabolic activity, was used to determine 

the influence of GNP internalisation in MG63 and MCF-7 cells both in monolayer 

and 3D tumour spheroids. Control groups contained no GNPs. 

 

Monolayer MTT Assay 

MG63 and MCF-7 cells were seeded in 3 separate 96 well plates at 1x104 cells per 

well and incubated for 24 hours prior to GNP introduction as described in section 

2.3.1. Briefly, gold nanorods at concentrations of 0.01, 0.05 and 0.1 mg.ml-1 and 

nanoprisms at 0.1, 0.5 and 1.0 mg.ml-1were incubated with cells at 24, 48 and 72 

hours (n=5). An aliquot of 10 µL of MTT dye solution was added to each well and 

the plates were incubated at 37°C for one hour. The media was then removed and 

200 µL DMSO was used to solubilise the formazan crystals. The absorbance of 

each well was read on a microplate reader (Dynatech MR7000 instruments) at 550 

nm. 

 

3D Tumour Spheroids MTT Assay 

A similar method was conducted for the 3D tumour spheroids.  Cells were seeded 

at 1x105 per well in a 96 well plate, after 24 hours cells were incubated with 0.1 

mg.ml-1 of either gold nanorods or nanoprisms for 24 hours to allow successful 

internalisation of GNPs into cells. The cells were then trypsinised and 1x105 cells 

per spheroid were formed via a hanging drop method as described in 3.3.2.1, with 

the slight modification of spheroids dropped into a 96 well plate. The spheroids 

were then assayed at 24, 48 and 72 hours.  
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3.3.3.2	Cell	Viability	of	GNP	Labelled	Monolayer	and	Tumour	Spheroids		

 

The LIVE/DEAD® Viability/Cytotoxicity kit was used to visualise the number of 

viable and dead cells within a sample. Monolayers of MG63 and MCF-7 cells were 

cultured at 1 x 104 per well for 24, 48 and 72 hours after 0.1 mg.ml-1GNP 

incubation, as described in section 2.3.2. (n=3) 

 

The cell viability of MG63 and MCF-7 cells labelled with GNPs and cultured in 

monolayer and 3D tumour spheroids was determined qualitatively using a 

LIVE/DEAD® Viability/Cytotoxicity. MG63 and MCF-7 cells were seeded at a 

density of 1 x 105 per mL, in a 24 well plate for 24 hours. Both nanorods and 

nanoprism GNPs were introduced to the samples (0.1 mg.ml-1 in growth media; 

n=3) for a further 24 hours to allow for GNP uptake. After 24 hours, the media was 

removed and samples were washed twice in HEPES solution. An aliquot of 200 µL 

of trypsin/versene was added to each sample (5 minutes at 37ºC) until cell 

detachment, when 800 µL of media was decanted into each sample. Each 

replicate was pooled together and centrifuged for 4 minutes at 1400 rpm. Once 

centrifuged, the supernatant was removed and the cell pellet was re-suspended in 

500 µL media; cells were counted on a haemocytometer and a cell solution of 1 x 

105 per 50 µL was prepared. The 50 µL cell solution was was gently pipetted into 

the chambers of the hanging drop device. The device was then incubated at 37°C 

for 24 hrs. After 24 hours, spheroids were removed from the device and stained 

with ethidium homodimer and calcein A/M (1 µL per mL) and imaged as described 

previously (section 2.3.2) (n=5).  

 

3.3.3.3	Scanning	Electron	Microscopy	Analysis	of	GNP	/	Cell	Interaction		

	
To observe the interaction at the cell membrane level with the gold nanorods and 

nanoprisms, SEM was carried out. MG63 and MCF-7 monolayers were seeded at 

a cell density of 1 x 104 per mL onto 13 mm coverslips for 24 hours. GNPs at 0.1 

mg.ml-1 were then added to each sample, with samples fixed at both 1 and 24 

hours after exposure. Samples were then processed for SEM as detailed in 

section 2.4.1. 
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3.4 GNP Internalisation into MG63 and MCF-7 Cells 
 
3.4.1 Inductively Coupled Plasma Mass Spectroscopy Analysis of GNP 
Internalisation 
 

To quantitatively assess the uptake rate of GNPs into MG63 and MCF-7 cells ICP-

MS was performed. ICP-MS is a form of mass spectrometry capable of quantifying 

levels of elemental gold within samples, thus the technique was used to quantify 

the amount of GNPs internalised into both cell types at various GNP 

concentrations.  

 

MG63 and MCF-7 cells were seeded in a 96 WP at 1 x 104 per well for 24 hours. 

Gold nanorods at concentrations of 0.3, 0.2, and 0.1 mg.ml-1and gold nanoprisms 

at 0.02, 0.1 and 0.2 mg.ml-1 were added to cells (n=3). Cells containing no GNPs 

were used as control groups. After 24 hours, cells were washed in 1X PBS to 

remove extracellular GNPs.  An aliquot of 200 µL of RIPA buffer was added to 

each sample for 10 minutes at room temperature. The buffer was then removed 

and added to 50 mL centrifuge tubes. Each well was then washed with 100 µL of 

distilled water and subsequently added to each of the corresponding centrifuge 

tubes. An aliquot of 1 mL of AquaRegia (3:1 mix of HCL and 70% nitric acid) was 

added to each tube and heated in a water bath overnight at 70°C. The samples 

were then made up to 50 mL using distilled water and were prepared for ICP-MS 

analysis. The converted values for GNP uptake were averaged (n=3) and used for 

statistical analysis.  

 

3.4.2 Cell Cytoskeleton Staining  
 
The fluorescence staining of β-tubulin and F-actin filaments was completed as 

described in section 2.4.3. Briefly, MG63 and MCF-7 cells were seeded onto 13 

mm sterilised coverslips within a 24 well plate at a cell density of 1 x 104 for 24 

hours. GNPs (0.1 mg.ml-1) were then added to samples for 24 hours prior to 

fixation and processing (n=3). 
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3.4.3 Transmission Electron Microscopy Analysis of GNP Internalisation  
	
To qualitatively assess gold nanorod and nanoprism internalisation by both cell 

types, TEM was carried out. MG63 and MCF-7 cells were incubated with the 

GNPs (0.1 mg.ml-1) in monolayer, prior to spheroid formation. The spheroids were 

subsequently fixed after 24 hours and processed for TEM as described in section 

2.4.2. 

3.4.4 Near Infrared Irradiation of GNP Labelled Monolayer and 3D Tumour 
Spheroids 
 

A Ventus 1 W unfocused continuous wave 1064 nm laser was used to irradiate 

GNPs that have been successfully internalised within cells in both monolayer and 

3D tumour spheroid culture. A viability stain was then used to visualise any 

resultant cell death after 1 minute laser irradiation (n=3). Control samples 

containing no GNPs were also irradiated and used to evaluate any potential effect 

of laser exposure on cells.  

 

3.4.4.1	Monolayer	Culture	Study	

 
For monolayer study, cells were cultured in a 24 well plate at a cell density of 

1x104 per sample. After 24 hours, cells were incubated with 0.1 mg.ml-1 GNPs for 

12 hours (to allow for GNP internalisation) and subsequently trypsinised and 

seeded onto 13 mm coverslips. The cells were cultured on the coverslips for a 

further 12 hours prior to irradiation. Cell samples were transferred to laser 

compatible culture chambers and positioned directly beneath the laser beam. 

Samples were then laser irradiated for 1 minute in triplicate, transferred back into 

the 24 WP and incubated for ~3 hours at 37°C, at which point cells were stained 

using the viability kit as described in section 2.3.2.  

 

3.4.4.2	3D	Tumour	Spheroid	Study	

 

Spheroids at 1x105 were prepared after monolayer incubation with GNPs (0.1 

mg.ml) and were treated exactly as the monolayer samples above. 
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3.4.5 Statistics  
 
Statistical analysis was performed in Graphpad using a one-way ANOVA. In all 

figures * = p<0.05, ** = p< 0.01, *** = p<0.001. Two tailed T-test were performed 

where mentioned.  
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3.5 Results  
 

3.5.1 Synthesis, Functionalisation & Characterisation of GNPs  
 
3.5.1.1	GNP	Size	and	Morphology	via	TEM		

 
Gold nanoprism and nanorod size, morphology, aggregation and purity were 

determined by TEM (figure 3-1). The images confirmed successful synthesis of 

both nanorods and nanoprism geometries. The nanoprisms were well dispersed, 

with varying sizes, with no indication of aggregation (figure 3-1 A,B). The 

nanoprism morphology indicated diversity not simply in size but also in the 

sharpness of the tips, which has been previously shown to affect absorbance (M. 

R. Jones et al. 2009; K. L. Kelly et al. 2003; K. L. Shuford et al. 2005a). Gold 

nanorods were also well dispersed and approximately 50 x 10 nm in size (average 

aspect ratio 7.2) (figure 3-1 C,D). Both GNP preparations did, however, present 

pseudo-spherical polyhedral particles. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1: TEM images of gold nanoprisms (A,B) and nanorods (C,D), 
obtained at 20-200kV. Polyhedral by-products were observed in both 
samples.  
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3.5.1.2	UV-Visible	Spectra	of	GNP	Absorbance	

 
UV-Vis spectroscopy results were performed by our collaborators in Zaragoza 

(figure 3-2). Both GNP preparations showed increased absorbance at longer 

wavelengths with peaks ~1064 nm (SPR) and thus heat generation when exposed 

to NIR wavelengths. While nanorods showed steep absorbance from ~900 nm 

until ~1064 nm and a subsequent decrease of absorbance at longer wavelengths 

thereafter, gold nanoprisms show a steady near-linear increase in absorbance 

from ~630 nm to ~1064 nm with an apparent increase in absorbance at longer 

wavelengths. Both GNPs also displayed a high absorbance peak at ~530 nm 

which may be due to a combination of GNPs transversal absorbance and pseudo-

spherical polyhedral gold nanoparticles within solutions which were also observed 

in TEM images above. 

 
 

Figure 3-2: The absorbance spectra for both gold nanorods and nanoprisms. 
Both GNPs present peak absorption values around 1064 nm wavelength 
(indicated by red dashed line).  
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3.5.1.3	GNP	Heating	Capacity	in	Response	to	Irradiation	

 
Following verification of the peak absorption at 1064 nm, the heating capacity of 

both GNPs was investigated following irradiation with a Ventus 1064 nm 

continuous wave laser. Both gold nanoprisms and nanorods demonstrated 

impressive heating capability at both 0.02 and 0.1 mg.ml-1, producing hyperthermic 

profiles within 60 seconds (figure 3-3). Gold nanorods achieved higher 

temperatures faster than their nanoprism counterparts; nanorods were able to 

reach hyperthermic profiles at ~30 seconds at 0.1 mg.ml-1 while nanoprisms at the 

same concentration required ~50 seconds. At 60 seconds, 0.1 mg.ml-1 

concentrations displayed temperatures above hyperthermic profiles, with gold 

nanorods in particular showing heating above 50°C. Blank samples containing 

DMEM were used to determine the heating effects of laser exposure alone, within 

a typical biological solution and a modest elevation of 3°C was noted after 60 

seconds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3: The hyperthermic temperature profiles of both gold nanoprisms 
and nanorods at 0.02 and 0.1 mg.ml-1 concentration during 60 seconds of 
irradiation with a 1064 nm continuous wave 1 W laser. 
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3.5.2 Monolayer Cell Expansion and 3D Tumour Spheroid Culture  
	
3.5.2.1	Tumour	Spheroid	Formation	via	Hanging	Drop		

 

MG63 and MCF-7 spheroids were formed via an in-house hanging drop device. 50 

µL of cell suspension was gently decanted into the nine 200 µL pipette tips, with 

spheroids forming naturally after ~24 hours incubation.  

 

 

Figure 3-4: In house, hanging drop device (A, C) and formation of MCF-7 
cells at a cell density of 1 x104 (B) and 1 x 105 (D) spheroids. Scale bar 
depicts 10 µm. 

	
3.5.2.2		3D	Tumour	Spheroid	Viability		

 
Cell viability of 3D tumour spheroids was assessed using the viability staining kit. 

Figure 3-5 indicates the MG63 spheroids (A and B) and figure 3-6 for MCF-7 

spheroids (A and B) at different cell densities when cultured for 24, 48 and 72 

hours. Several observations were made; (1) cells were viable across the time 

points studied; (2) the increased cell density correlated with a larger spheroid 
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diameter; (3) cells appeared to proliferate over time, with a clear increase in 

spheroid diameter. Spheroid growth patterns were however inconsistent as 

indicated by the variability within samples (n=5). It was noted that at lowest, 1 x 

104 cell density at 24 hours, unified spheroids were not often formed and instead, 

micro-satellite clusters of cells were observed; this prevented the accurate 

recording of a single spheroid size per replicate. However, at the same cell density 

after 48 hours, the maturation of a single spheroid was observed in both cell types. 

Strikingly, the spheroids displayed very obvious growth in size in modest time 

frames, which has not been seen in the literature with studies using similar 

techniques. Due to the technical limitations of using a standard fluorescence 

microsocope, the focal plane was focussed on the peripheral reigons of the 

spheroid in order to guage the overal size of the spheroid. Thus, in some of these 

images, the out of focus plane often coincinded with a lack of observable 

fluorescence within the centre of the spheroid. This could be remedied using a 

confocal microscope to appropriately image spheroids, as shown by previous 

groups (Sirenko et al. 2015; Zanoni et al. 2016). 
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Figure 3-5: Cell viability staining, illustrating the spheroid diameter of MG63 
cells and the corresponding graphical representation of spheroids cultured 
for 24, 48 and 72 hours at a cell densities of 1 x 104, 1 x 105 and 1 x 106. Cells 
were stained with calcein AM (green) and ethidium homodimer (red) to 
observe live and dead cells respectively (A). Spheroid diameter 
measurements were taken; scale bars depict 100 µm (B) Error bars denote 
standard deviation (n=5). Two tailed T-test was performed * = p<0.05,            
** = p< 0.01, *** = p<0.001. 

B 



	

71	

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-6: Cell viability staining, illustrating the spheroid diameter of MCF-7 
cells and the corresponding graphical representation of spheroids cultured 
for 24, 48 and 72 hours at a cell densities of 1 x 104, 1 x 105 and 1 x 106. Cells 
were stained with calcein AM (green) and ethidium homodimer (red) to 
observe live and dead cells respectively (A). Spheroid diameter 
measurements were taken; scales bar depict = 100 µm (B) Error bars denote 
standard deviation  (n=5). Two tailed T-test was performed * = p<0.05,           
** = p< 0.01, *** = p<0.001.  

 

B 



	

72	

3.5.3 GNP Labelled Monolayer and 3D Tumour Spheroid Biocompatibility 
 
3.5.3.1	GNP	Labelled	Monolayer	and	3D	Tumour	Spheroid	MTT	Assay	

 
The debate over the biocompatibility of GNPs utilised in cell culture studies has 

been discussed extensively within the literature (Chuang et al. 2013; Connor et al. 

2005; Naha et al. 2015; H. K. Patra et al. 2007a),	 however only a modest 

consensus have suggested GNPs themselves may be inherently toxic (A. M. 

Alkilany and Murphy 2010; A. M. Alkilany et al. 2012). Therefore an MTT assay 

was performed to assess the potential toxicity, in terms of cell metabolic activity, of 

GNPs when cultured with MG63 and MCF-7 cells, both in 2D and 3D spheroid 

models. The MTT assay was performed on both MG63 and MCF-7 cells in 

monolayer at 24, 48 and 72 hrs after GNP incubation. Cells were exposed to gold 

nanoprisms at 0.1, 0.2, 0.5 and 1.0 mg.ml-1 and nanorods at 0.01, 0.05, 0.1 and 

0.2 mg.ml-1. A control group containing no GNPs was used as a benchmark at an 

assumed 100% metabolic activity.  

 

Monolayer MTT Study 

 

Gold nanoprisms did not appear to show any signs of toxicity, with consistent 

levels observed at all time points in both cell types, with MCF-7 cells actually 

indicating an increase in cell metabolic activity (figure 3-8, A). Meanwhile, whilst 

both MG63 and MCF-7 cells incubated with gold nanorods showed high levels of 

metabolic activity across the three time points at the lower concentrations, there 

was a clear drop in cell metabolic activity at the higher concentration at all time 

points (0.2 mg.ml-1; figure 3-7, B and figure 3-8, B). In particular with MCF-7 cells, 

where cell activity appeared compromised at 24 hours (75%), it did improve with 

time in culture, rising to 95% at 48 hours and 90% at 72 hours. These results were 

in agreement with the viability staining, which indicated several dead cells when 

exposed to gold nanorods. 
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Figure 3-7: MTT assay indicating GNP labelled cell metabolic activity over 
time in monolayer culture. MG63 cells were treated (A) with gold 
nanoprisms, and (B) gold nanorods. Values are presented as mean +/- SD 
(n=5). 
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Figure 3-8: MTT assay indicating GNP labelled cell metabolic activity over 
time in monolayer culture. MCF-7 cells were treated (A) with gold 
nanoprisms, and (B) gold nanorods. Values are presented as mean +/- SD 
(n=5). 
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3D Tumour Spheroid MTT Study 

 

The metabolic activity of GNP labelled spheroids was over 80% in all conditions, 

with no compromise in spheroid development over 72 hours, demonstrating the 

biocompatibility of GNPs in 3D systems (figure 3-9). Both cell types showed 

improved metabolic activity in a near time-dependent manner.  

	
 

 

 

 

Figure 3-9: MTT assay indicating GNP labelled cell metabolic activity over 
time in 3D tumour spheroid culture. MG63 and MCF-7 cells were incubated 
with 0.1 mg.ml-1 of gold nanorods and nanoprisms prior to subsequent 
spheroid formation and culture up to 72 hours. Values are presented as 
mean +/- SD (n=5). 
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3.5.4. Viability of GNP Labelled Monolayer and 3D Tumour Spheroids  
 
The cell viability of both MG63 and MCF-7 cells following GNP labelling was 

determined in monolayer and 3D spheroid culture via live/dead staining.  

	

3.5.4.1.	Live/Dead	assay	of	MG63	and	MCF-7	Monolayers		 

 

The fluorescent viability assay was performed to assess the viability of MG63 and 

MCF-7 monolayer cultured cells incubated with both GNP preparations at 0.1 

mg.ml-1 for 24, 48 and 72 hours. Both cell types demonstrated a high quantity of 

viable cells across the time points, similar to control samples (containing no GNPs) 

(figure 3-10 A, B). In addition, the cell number increased over time in culture, 

suggesting that the presence of the GNPs did not affect cell proliferation. The gold 

nanoprisms in particular was coincided by an increase in cell density that was 

prevalent at all time points. Conversely, the gold nanorods did produce a few dead 

cells, although the overall cell culture did not appear negatively affected.  
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Figure 3-10: Fluorescent viability staining of (A) MG63 cells and (B) MCF-7 
cells, incubated with 0.1 mg.ml-1 gold nanoprisms or nanorods for 24, 48 and 
72 hours. Green fluorescence signals indicate viable cells and red indicates 
dead (control cells contain no GNPs). Scale bar depicts 100 µm. 
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3D Tumour Spheroid Viability Study 
	
Figure 3-11 indicates the spheroid viability staining, where cell viability was  

maintained throughout and successful growth and maturation of spheroids was 

noted for both cell types in the presence of  0.1 mg.ml-1 GNPs.  

 

 

Figure 3-11: Cell viability staining of GNP labelled MG63 and MCF-7 
spheroids. MG63 spheroids were incubated with (A) no GNPs; (B) gold 
nanoprisms and (C) gold nanorods, whilst MCF-7 spheroids were incubated 
with (D) no GNPs; (E) gold nanoprisms and (F) gold nanorods. 

 
3.5.5. Observation of GNP/Cell Interaction Using SEM  
 

SEM was used to provide a magnified view of the cell morphology after incubation 

with the GNP preparations. Figure 3-12 and 3-13 show MG63 and MCF-7 cells, 

respectively. Both figures highlighted an increased number of cytoplasmic 

extensions in the form of filopodia in the presence of GNPs, while control groups 

(containing no GNPs) demonstrated a smooth cell surface.  GNP deposits were 

also observed around some of the cells and on the glass coverslip.                                                                                                                                                                                                          
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Figure 3-12: SEM images of MG63 cells incubated for 24 hours with (A) gold 
nanoprisms, and (B) gold nanorod, whilst (C) control cells were not 
incubated with GNPs. GNP deposits were observed both on the cell 
membrane and on the coverslip surface (black arrowheads), inducing a large 
number of filopodia compared to controls. Scale bar depicts 5 µm. 

 

 

Figure 3-13: SEM images of MCF-7 cells incubated for 24 hours with (A) gold 
nanoprisms, and (B) gold nanorods, whilst (C) control cells were not 
incubated with GNPs. GNP deposits were again observed on the cells (black 
arrowheads), producing more filopodia compared to controls. Scale bar 
depicts 5 µm. 
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3.5.6. GNP Internalisation into MG63 and MCF-7 Cells 
 

3.5.6.1	Quantitative	Analysis	of	GNP	Internalisation	into	Cells	in	Monolayer	by	

Inductively	Coupled	Mass	Spectrometry		

	
ICP-MS is an analytical technique used for the detection of elements in a sample. 

A quantitative assessment was required to analyse the GNP internalisation after 

24 hours to (1) verify cellular internalisation and (2) determine any difference in 

internalisation due to GNP type (morphology). 

 

Results clearly indicated that the gold nanoprisms were internalised far more 

efficiently than the nanorods (figure 3-14). The increase in GNP concentration 

correlated to an increased GNP internalisation for both cell types, but neither GNP 

types showed any difference in internalisation between the two cell lines. One 

point to note is that the gold nanoprisms are considerably larger than their nanorod 

counterparts and thus these results could be slightly misleading as even a low 

quantity of nanorprism internalisation could translate to a percieved higher 

internalisation rate compared to nanorods; TEM was therefore conducted to 

validate these reuslts within 3D multicellular spheroids. 
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Figure 3-14: ICP-MS analysis of MG63 and MCF-7 monolayer cells treated 
with various concentrations of GNPs at 24 hours (n=3, error bars denote 
SD). 

	

3.5.6.2	The	Influence	of	GNP	Internalisation	on	Cell	Cytoskeletal	Structure		

 
GNP internalisation is thought to be via endocytosis, which involves the cell 

cytoskeleton. The SEM images clearly indicate cell membrane extensions and 

filopodia in response to GNP incubation and internalisation; therefore components 

of the cytoskeleton, namely β-tubulin and F-actin microfilaments, were stained and 

observed. Disruption to the cytoskeleton can lead to inhibition of cell viability, cell 

proliferation and cell function	(Alice Panariti et al. 2012b).   

 

Figure 3-15 illustrates MG63 cytoskeletal staining following cell incubated with 

gold nanoprisms and gold nanorods at 0.1mg.ml-1 after 24 hours (control cells with 

no GNPs). Control cells are well spread, with distinct microtubules and actin 

filaments radiating throughout the cells. Conversely, the cells incubated with 
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nanoprisms exhibit a smaller, more elongated cell morphology, with tightly packed 

microtubules and filaments. This may reflect the high internalisation noted with 

ICP-MS and TEM data. The cell morphology of MG63 cells, when incubated with 

the nanorods was also notably different to control, with a high degree of actin 

polymerisation, a lack of actin stress fiber formation and ruffling at the cell 

periphery, most likely due to nanorod endocytosis.  

 

Figure 3-16 is identical, but illustrates MCF-7 cytoskeletal staining. In this case, 

the cells do not appear to react as strongly as the MG63 cells.  Generally, cells 

incubated with either prisms or rods are comparable with control cells in terms of 

size and shape, with visible tubulin integrity. F-actin staining suggested some actin 

remodeling in response to the GNPs but the cells maintained a well spread 

morphology where microfilaments formed stress fibers heterogeneously 

throughout the cell. Vacuoles, similar to that seen in MG63 treated gold nanorod 

samples, were also prevalent, indicating a similar up-take mechanism was 

adopted by both MG63 and MCF-7 cells, when internalising gold nanorods.
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Figure 3-15: R
epresentative fluorescence im

ages of M
G

63 cells, 24 hours after 0.1 m
g.m

l-1G
N

P
 incubation. Im

ages depict the F-
actin cytoskeleton (red), β-tubulin (green) and D

A
P

I-stained nuclei (blue); scale bars: 50 µm
. 

 



	

84	

 Figure 3-16: R
epresentative fluorescence im

ages of M
C

F-7 cells, 24 hours after 0.1 m
g.m

l-1 G
N

P
 incubation. Im

ages depict the F-
actin cytoskeleton (red), β-tubulin (green) and D

A
P

I-stained nuclei (blue); scale bars: 50 µm
. 
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3.5.6.3	GNP	Intracellular	Localisation	within	Spheroid	Cultures	Observed	using	TEM		

 

TEM images confirmed the successful internalisation by both cell lines and further 

indicated the intracellular localisation of both GNP types into endosome-like 

structures (Huefner et al. 2014) within the 3D tumour spheroids (figure 3-17). The 

TEM images appeared to support the ICP-MS data with a visible difference 

between the amount of nanoprisms and nanorods internalised into cells. The 

nanorods did not appear to be aggregated, however the nanoprisms did seem to 

aggregate within cell endosomes. No GNPs were observed free within the 

cytoplasm; suggesting GNP internalisation was via a form of endocytosis rather 

than passive diffusion.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-17:  TEM images of spheroid cross sections indicate MG63 cells 
after 24 hours incubation with 0.1 mg.ml nanorods (A)  and nanoprisms (B), 
and MCF-7 cells with nanorods (C) and (D) nanoprisms. 
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3.5.7 Near Infrared Irradiation of GNP Labelled Monolayer and 3D Tumour 

Spheroids 

 

Results from 3.5.1.3 (assessment of gold nanoprism and nanorod heating 

following irradiation) indicated that both types of GNP generated hyperthermic 

temperature profiles in under 60 seconds. Following confirmation of the 

biocompatibility of the GNPs and their successful internalisation into both cell 

lines, this study aimed to irradiate GNP labelled monolayer and 3D spheroid 

cultures to determine whether the temperatures profiles generated were sufficient 

to cause cancer cell death.  

 

Monolayer Study 

Figure 3-18 illustrates the cell viability staining of both GNP labelled MG63 and 

MCF-7 cells following irradiation (1064 nm; 1 minute; 1 W). Several observations 

can be made; (1) both control and GNP labelled cells which were not treated with 

the NIR laser were viable; (2) control cells treated with the NIR laser were viable 

and (3) GNP labelled cells treated with the NIR laser were dead.  It can therefore 

be confirmed that the cell death observed was produced from laser energy 

absorption via surface plasmon resonance of GNPs in the area of beam radius 

(and the immediate periphery) with cells outside this focal point remaining viable. 

For both cell types, the radius of cell death seems to be larger for gold 

nanoprisms, which may reflect the increased uptake and concentration of 

nanoprisms in cells.  This could lead to peripheral cells outside the immediate 

beam focus still absorbing enough laser radiation to lead to cell death, creating a 

larger “kill zone” than the nanorods.  

 

3D Tumour Spheroid Study 

The 3D tumour spheroids mirrored the monolayer results (figure 3-19). Control 

cells were not affected by laser irradiation, however spheroids incubated with 

GNPs were clearly affected by laser exposure at focused spots on spheroids. The 

irradiation of MCF-7 spheroids incubated with gold nanoprisms in particular, 

showed complete dissection of the spheroid indicating the extremely potent affect 

of gold nanoprisms, again, perhaps due to their high internalisation.    
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Figure 3-18: Fluorescencent cell viability staining of GNP labelled (A) MG63 
cells and (B) MCF-7 monolayer cultures following irradiation with a 1064 nm 
laser for 1 minute. Control cells contain no GNPs. Green fluorescence 
indicates viable cells and red indicates dead cells. Scale bar = 100 µm. Three 
independent biological repeats (n=3). 
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Figure  3-19: Fluorescencent cell viability staining of GNP labelled (A) MG63 
cells and (B) MCF-7 3D tumour spheroids following irradiation with a 1064 
nm laser for 1 minute. Control cells contain no GNPs. Green fluorescence 
indicates viable cells and red indicates dead cells. Scale bar = 200 µm. Three 
independent biological repeats (n=3). 
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3.6 Discussion  
 

3.6.1 GNP Synthesis: Size and Morphlogy  

 

Both the nanoprisms and nanorods used in this study were successfully 

synthesised, as observed by TEM. The size range varied depending on the type of 

particle being synthesised. The gold nanorods produced were controlled and 

uniform in size and aspect ratio, with rods of ~ 50 x 10 nm in size with an average 

aspect ratio of 7.2 which have been characterised by our collaborators in a 

previous study	(Alfranca et al. 2016).  

 

However the nanoprisms varied in size, with an average size of around 170 nm 

edge and 9 nm thickness. The synthesis of triangular nanoprisms tend to yield a 

small percentage of polyhedral GNPs, while other groups have observed similar 

tip-truncated nanoprisms or nanodisk by-products (J. E. Millstone et al. 2005; J.  E 

Millstone et al. 2006; Noda and Hayakawa 2016; B. Pelaz et al. 2012). Whilst the 

images confirmed the succesful synthesis of both geometries, smaller polyhedral 

GNPs were also observed in both samples. These were identified as a by-product 

of the synthesis process, which can be extremely difficult to remove	(Y. J. Shin et 

al. 2013). Any by-products are usually removed via electrophoresis, centrifugation 

and decantation however the process is not entirely efficient. However, the 

contribution of the polyhedral GNP by-products to the overall characteristics of 

both the gold nanoprisms and nanorods is minimal and did not affect the overall 

characteristic of the GNP solutions; producing gold nanoprisms with a low size 

distribution however still remains challenging using conventional wet-chemical 

synthetic routes with studies now showing lower size distributions using 

techniques such as biological (green) synthesis (Geng et al. 2016) modified seed-

mediated approach (Zhirui Guo et al. 2010b) and plasmon driven synthesis (Brus 

2016). 
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3.6.2 GNP Synthesis: Absorbance and Heating Potential 

 

Complementary UV-visible data provided by our collaborators indicated that the 

spectra do show both GNPs peak SPR bands finely tuned in the NIR region, at 

1064 nm for gold nanorods, corresponding to the longitudinal mode and 1100 nm 

for gold nanoprisms, corresponding to the in-plane dipolar band (Han et al. 

2016a). The fine-tuning of the SPR of these GNPs in the NIR region is integral to 

their function as biomedical agents	 (Cai et al. 2008). This is due to the ‘biological 

window’ for optical absorption through tissue at NIR regions, that can be 

capitalised on for non-invasive clinical application (Y. Liu et al. 2015). Interestingly, 

the presence of the polyhedral GNP by-products may explain the rise in 

absorbance that can be seen in both samples at ~530 nm (figure 3-2) (Han et al. 

2016a) but equally, this increased absorbance at ~530 nm may be in accordance 

to the transverse mode exhibited by both of these geometries (Jena and Raj 2007; 

Ye et al. 2016).  

 

The extremely efficient heating potential of both GNPs was observed in just 60 

seconds of laser irradiation, even at fairly modest concentrations (figure 3-3). Gold 

nanorods have been extensively researched and considered to be the most 

effective photothermal contrast agents, both in vitro and in vivo, with optimum 

nanorod sizes explored both theoretically and experimentally by Mackey and co-

workers (Mackey et al. 2014). It has been well documented that the surface 

plasmon resonance absorption characteristics are highly dependent on particle 

size and shape and in particular for gold nanorods, the maximum wavelength 

absorbance is directly proportional to the aspect ratio of the nanorods and thus 

increasing the aspect ratio, increases the maximum wavelength absorbance to the 

NIR regions	 (Castellana et al. 2010). The nanorods used in these experiments 

have an average size of ~50 x 10 nm. Although larger nanorod size are associated 

with maximum wavelength absorbance in the NIR regions, they are also often 

associated with an increase in scattering and thus a reduce heating potential. The 

high aspect ratio of the gold nanorods in this project - which is independent of size, 

seem to facilitate their excellent heating capacity while their long, thin morphology 

contribute to their maximum absorbance in the NIR range (P. K. Jain et al. 2006; 

Near et al. 2013).  
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Figure 3-20: Normalised extinction spectra of the gold nanorod solutions. 
The average sizes of the nanorods are, from left to right, 37 × 19 nm (aspect 
ratio 2 ± 1), 50 × 12 nm (aspect ratio 4.2 ± 1) and 50 × 8 nm (aspect ratio 6 ± 2) 
(Junxi et al. 2012). 

 

Gold nanoprisms, owing to their varied optical characteristics, which include 

triangular structure, high truncations, aspect ratio and three tips, are thought to 

have stronger electromagnetic field enhancements and provide a more distinct 

SPR in the NIR compared to their nanorod, nanocube or nanosphere counterparts 

(Huanjun Chen et al. 2008b; Han et al. 2016a; Xu et al. 2013; You et al. 2016).  

However, in this study the gold nanorods appeared to display a higher heating 

efficacy than the gold nanoprisms,	presumably due to their higher specific surface 

area leading to increased NIR absorption (Alfranca et al. 2016). 

 

3.6.3 Cell Lines and 3D Tumour Spheroid Culture  

 

Two cell lines were used in this study; a bone osteosarcoma cell line (MG63) and 

an epithelial breast cancer cell line (MCF-7). These two cell lines were selected as 

they represent tumour cells from a ‘hard’ tissue and a ‘soft’ tissue, and so may 

have intrinsic differences in their behaviour in terms of GNP internalisation and 

subsequent cellular response to intracellular heating. In addition, on a 

physiological note, epithelial cancers, in particular breast cancers, suffer from 

dormancy post metastasis, whereby the cancer cells migrate in the bloodstream 
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and relocate in the bone marrow (Valastyan and Weinberg 2011; van Zijl et al. 

2011). The cancer cells can lie undetected and dormant for many years, suddenly 

recurring to form secondary bone tumours, which have progressed beyond 

treatment (Brackstone et al. 2007; Ossowski and Aguirre-Ghiso 2010).  

 

Monolayer cell cultures, typically grown on plastic or glass substrates, are used as 

in vitro models to study tumour cell behaviour and assess anti-cancer therapies. 

However promising results at this stage are often not translated to animal studies 

or clinical trials (Edmondson et al. 2014).  This is because the extracellular 

environment, where the tumour cells live, is not reproduced. The use of 3D in vitro 

models has progressed along with advances in tissue and cell engineering, which 

provide an opportunity to bridge this gap (Edmondson et al. 2014). To this end, 3D 

multicellular tumour spheroids have been identified as useful tools, providing a 

more representative environment, featuring tumour characteristics such as 

dormancy, hypoxia and anti-apoptotic behaviour, whilst allowing for the strict 

analysis and control in vitro examination allow	 (Imamura et al. 2015; Weiswald et 

al. 2015).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-21: A schematic comparison of a typical tumour in vivo and an in 
vitro tumour spheroid model (Phung et al. 2011). 

 

 

Early interest in tumour spheroid models began in the late 1970s, however its 

recent resurgence has coincided with our increased understanding of cancer cell 
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resistance to traditional therapies as well as the improved high throughput in vitro 

testing of tumour spheroids	 (Costa et al. 2016; Grimes et al. 2014). Spheroids 

often display more in vivo-like morphological and functional differentiation than 

their monolayer counterparts (Hornung et al. 2016), such as the notable diffusion 

limitation of spheroids, that has been suggested at around 100-150 µm for 

molecules such as oxygen, nutrients and metabolic waste	 (Curcio et al. 2007), 

while larger spheroids (~500 µm) usually display a hypoxic and necrotic core and 

an outer rim of quiescent cells and a peripheral layer of proliferating cells	(R. Z. Lin 

and Chang 2008). Tumour spheroid models also exhibit similar metabolic and 

signaling profiles, which are more closely related to in vivo conditions, compared 

to traditional monolayers and of particular interest for researchers is the 

aforementioned hypoxic environment that has been shown to lead to radiotherapy 

and chemotherapy resistance (Rey et al. 2016; Samanta et al. 2014). Thus, 

tumour spheroids help bridge the gap between standard two-dimensional and in 

vivo conditions and can further validate in vitro findings to better predict potential 

outcomes in in vivo models. 

 

Multicellular tumour spheroids were successfully produced and matured in this 

study, in the presence of GNPs, for 24 hours (figure 3-11).  Spheroids seeded at a 

lower initial cell density (1 x 104) often produced smaller ‘satellite’ aggregates of 

cells that were dispersed within the hanging drop solution, and therefore, did not 

readily form single uniform spheroids at the 24 hour time point. Meanwhile, 

spheroids seeded at the higher cell density (1 x 106) exhibited a number of dead 

cells within the spheroid structure with variability in the spheroid size (as noted by 

the higher standard deviations). Whilst characteristics such as a necrotic core 

would have been desirable, technical issues including the configuration and 

orientation of large spheroids for laser optics, and the resultant microscopy field of 

view prevented their use in this study (figure 3-5 and 3-6). Therefore, the middle 

cell density (1 x 105) was selected for photothermal therapy, due to its reliable 

production, relatively low variation in spheroid size and practicality; this was used 

for subsequent experiments.  

 

 

The presence of GNPs within the MG63 and MCF-7 spheroids did not affect their 

formation or development over 72 hours. Indeed, at the lower and middle cell 

densities the spheroids were noted to grow in diameter, suggesting cell 
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proliferation; the higher density did not appear to promote cell proliferation, with 

little/no significant change in diameter over time. 

 

3.6.4 GNP Biocompatibility 

 

The metabolic assay considered the ‘gold standard’ for cytotoxicity is the MTT 

assay	which is a colorimetric assay that measures the enzymatic activity of cellular 

mitochondria (Carnovale et al. 2016). If cells appropriately metabolise the MTT 

dye, the cell culture media will change colour, allowing for simple absorbance 

measurements to be used to quantify cellular activity (Marquis et al. 2009). The 

MTT assay, however does suffer from minor limitations (S. Wang et al. 2011a), so 

to supplement the quantitative data, the fluorescent viability staining was 

performed to visualise samples.  

 

Gold has long been considered to be chemically inert and therefore potentially 

safe in terms of biomedical applications, with gold-based compounds used in the 

clinic as anti-inflammatory agents to treat rheumatoid arthritis (Auranofin® and 

Tauredon®)(A. M. Alkilany and Murphy 2010). Due to the intricacy of nanoparticle 

toxicity, together with the lack of standardisation of experimental procedures, there 

is a discrepancy over the biocompatibility of GNPs in biological systems of 

increasing complexity (cell membrane, cells, tissues, organs and human body) 

(Fratoddi et al. 2015). The general consensus is that GNPs are well tolerated 

physiologically, as confirmed in a number of studies with both naked and 

decorated/functionalised GNPs in various cell lines (Arnida et al. 2010; Connor et 

al. 2005; J. H. Fan et al. 2009; Orlando et al. 2016). However some studies have 

also shown a potential toxicity of GNPs, particularly in relation to their size, where 

smaller GNPs (2-4 nm) can prove toxic (Hung-Jen Yen, 2009). This has been 

somewhat challenged with Mingfei Yao et al, (2015) who recently demonstrated 

that increasing particle diameter promoted the depolarisation of mitochondrial 

membrane potential, an early indicator of apoptosis.   

 

In addition to size, GNP shape has also been identified as being key in cytotoxicity 

studies, with more sophisticated geometries associated with a higher cytotoxic 

effect with gold nanorods often cited as a more toxic geometry as compared to 

nanospheres (Yinan Zhang et al, 2012). For example the in vitro cytotoxicity of 

gold nanorods in a human lung adenocarcinoma cell line was recently published 
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(Ying Tang, 2015). The study confirmed membrane damage within 4 hours of gold 

nanorod exposure while ROS production correlated to increased GNP 

concentration. Gold nanorods of varying aspect ratios were also evaluated for their 

cytotoxic potential across six different cell lines (Show-Mei Chuang, 2013). All 

three nanorods tested induced a dose-dependent suppression on cell growth to 

varying degrees, with ROS induced apopotosis and cell cycle inhibition the main 

route of GNP cytotoxicity. Bare/non-functionalised GNPs have been shown to lead 

to cell death in A549 cells (human hepatocellular liver carcinoma) in a dose 

dependent manner but not in HepG3 (human hepatocellular) and BHK21 (baby 

hamster kidney) (H. K. Patra et al. 2007a). The study confirmed cell death 

occurred through Poly ADP-ribose polymerase (PARP) activation. PARP is a 

protein which can be cleaved and leads to the downstream activation of caspases 

and cell death (H. K. Patra et al. 2007a) while oxidative stress and increased 

lactate dehydrogenase leakage was also induced in A549 cells, again in a dose 

dependent manner (Y. Tang et al. 2015).  
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The GNPs used in this study were functionalised with 5kDa PEG molecules which 

have been shown in a number of studies to improve the biocompatibility and 

stability of nanoparticles (T. Gong et al. 2014; Y. C. Park et al. 2014; Tlotleng et al. 

2016).  However, due to nanorod concerns highlighted above, it was important to 

evaluate the toxicity of both the nanoprisms and nanorods used in this study with a 

particular emphasis on the biocompatibility of the nanorods. The MTT assay 

indicated a slight reduction in cell metabolic activity for both cell lines with the 

nanorods at the highest concentration (figure 3-7 and 3-8), however, the values 

noted were not of concern and did not dip below 80% cell activity. 

 

The nanorods are synthesised in the presence of cetyltrimethylammonium 

bromide (CTAB), a cationic surfactant conventionally used by research groups 

(including our collaborators) to “grow” gold nanoseeds into nanorods. The 

surfactant CTAB is typically removed via purification or desorption techniques 

however these processes are often inadequate at removing all CTAB molecules 

and thus free CTAB molecules can remain within the nanorod solution	 (A. M. 

Alkilany and Murphy 2010). The synthesis process of gold nanorods, as described 

in section 3.3.1.1, detail the exhaustive processes used in order to remove the 

CTAB molecules from the GNP solutions.  CTAB has been argued as the main 

source of nanorod toxicity. Alkilany and Murphy (2009) validated this claim when 

they centrifuged GNP solutions, separating and analyzing the supernatant 

(containing free CTAB molecules), which was found to be cytotoxic (A. M. Alkilany 

and Murphy 2009). The potent cytotoxic effect of CTAB was also demonstrated 

well by Connor and co-workers in 2005, whereby using the MTT assay, they 

evaluated the toxicity of 18 nm GNPs to K562 cells (Connor et al. 2005). The GNP 

surface was modified with various ligands, including biotin, citrate, and CTAB. 

Both citrate- and biotin-modified particles were non-toxic when used up to a 

concentration of 250 mM, whereas CTAB-coated particles indicated toxicity at only 

0.05 mM. Once CTAB was cleared from the GNPs, the particle did not exhibit 

cytotoxic behaviour, highlighting GNPs themselves may not be toxic but rather, 

their precursors (Connor et al. 2005; N. Khlebtsov and Dykman 2011).   

 

The gold nanoprisms used in this study were synthesised without the use of the 

surfactant CTAB and thus avoided the potential cytotoxic issues encountered 

when synthesising the nanorods.  In fact, the MTT assay indicated an increase in 

cell activity in response to the nanoprisms, with consistently high cell viability.  
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One point to note is that the MTT assay may lead to an overestimation of cell 

activity. This is due to the technical processing of samples during a typical MTT 

assay. The GNPs are able to absorb and scatter light in the UV-visible range. The 

UV-visible spectra (figure 3-2) indicated an increased absorbance at around 530 

nm wavelength, while the absorbance wavelength used in by the microplate 

reader was set at 550 nm and can therefore, theoretically interfere with MTT 

results	(Kong et al. 2011).  Diaz et al (2008) assessed a variety of GNPs in media 

alone over 24, 48 and 72 hours, showing a general increase in absorbance with 

increased GNP concentration	 (Diaz et al. 2008), providing false positive results. 

The higher absorbance of nanorods at around 530 nm may account for the 

unexpectedly high viability of gold nanorods at the lower concentrations tested, 

particularly in MCF-7 cells, if they have not been adequately removed from the 

culture prior to being analysed in the plate reader (figure 3-8). Due to the nature of 

the MTT assay (the ability of mitochondrial dehydrogenase enzymes present in 

living cells capable of reducing MTT to purple formazan crystals), samples can 

display misleading false positive results. This is based on an increased metabolic 

rate  that may occur due the increased cellular activity and energy-consuming 

processes such as endocytosis, metabolism and exocytosis of the GNPs (van 

Tonder et al. 2015). This increase in cellular activity thus leads to the increased 

production of formazan, which can inaccurately be perceived as an increase in cell 

viability upon absorbance measurements.   

  

3.6.5 GNP Internalisation into the Cell Lines   
 

The SEM and TEM images (figures 3-12, 3-13 and 3-17) confirmed cell-GNP 

interaction and GNP internalisation. SEM images showed the increased number of 

cytoplasmic projections in the form of filododia in the presence of GNPs compared 

with control groups (containing no GNPs). Filopodia are cytoplasmic projections 

driven by actin polymerisation that extend beyond the leading edge of lamellipodia 

in migrating cells and are have crucial roles in and cell-cell interaction, migration 

and sensing	 (Mattila and Lappalainen 2008; S. Zhang et al. 2015). Hence an 

increase in filopodia is due to the close proximity of the GNPs to the cells.  

 

TEM imaging of GNP internalisation into MG63 and MCF-7 cells was observed by 

staining ultrathin cross sections of embedded spheroids (figure 3-17). The images 
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confirmed the GNP uptake into the cell body, the distribution and 

compartmentalisation of both GNP types into endosome-like structures (Huefner et 

al. 2014). This compartmentalisation into endosomes suggests GNP uptake was 

coordinated by a form of pinocytosis (Huefner et al. 2014), a form of energy-

dependent receptor-mediated endocytosis (RME) that is viewed as a dominant 

internalisation pathway, observed in a number of NP uptake studies (A. Albanese 

and Chan 2011a; Huefner et al. 2014; S. Jain et al. 2014). Furthermore, as 

Chithrani and Chan confirmed the influence of clathrin mediated uptake and its 

subsequent initiation of vesicle fomation in both nanorods and nanosphere 

internalisation, this suggests that a combination of uptake pathways are activated 

when cell lines are exposed to NPs (Chithrani and Chan 2007; McMahon and 

Boucrot 2011). 

 

The TEM images revealed large aggregated populations of gold nanoprisms in 

both cell types within lysosomes while a visibly lower quantity of nanorods were 

observed within similar endosome structures with little aggregation. The 

internalisation of GNPs via conventional routes such as receptor-mediated 

endocytosis follows an established pathway, including the formation of early 

endosomes, encapsulating GNPs, the maturation of the endosomes and fusion 

with lysosomes, all occurring in a spatial and temporal order	(Huotari and Helenius 

2011). The isolation of GNPs within the lysosomal system is believed to protect 

other important organelles from directly interacting with GNPs, with neither gold 

nanorods, nor nanoprisms observed in the nucleus, mitochondria, endoplasmic 

reticulum and Golgi body or free flowing within the cytosol in both cell types (W. 

Zhang et al. 2013a). It is important to note that GNPs were first introduced to cells 

whilst in a monolayer configuration (prior to spheroid formation) to allow for 

maximum GNP uptake however this may not accurately represent the 

internalisation and indeed the penetration capability of GNPs into spheroids.  

 

The GNP internalisation is dictated by the GNP geometry. This is highlighted in the 

ICP-MS results, where nanoprisms are internalised into cells far more efficiently 

than nanorods, in both cell types (figure 3-14). The striking variance between the 

two GNPs is due to their respective geometries, as NP shapes influences cell 

internalisation, as recently discussed (N. Ma et al. 2013; S. Salatin et al. 2015a).  

While relatively few studies have been dedicated to evaluating the uptake kinetics 

of nanoprisms, the debate over the proficiency of gold nanorods has been 
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reviewed, with disparity within the literature. For example, within human cervical 

cancer cells (HeLa cells), nanorods exhibit high internalisation, followed by 

spheres, cylinders, and cubes (N. Oh and Park 2014).  However it was noted in 

this study that gold nanorod internalisation was prominently decreased with a 

parallel increase in aspect ratio	(N. Oh and Park 2014). The nanorods used in this 

study have a larger than average aspect ratio and are not functionalised with 

additional ligands to assist uptake, which may account for their low uptake. 

 

It was also noted that nanorod exocytosis kinetics are faster when compared to 

spherical GNPs (N. Oh and Park 2014).  Zhang and co-workers observed the 

exocytosis of gold nanorods after just 30 minutes of incubation (W. Zhang et al. 

2013a). This may perhaps explain the lower amount of gold nanorods observed in 

this study, as samples were processed after 24 hours culture with GNPs.  

Although gold nanorods are capable of being re-internalised into cells, it may be 

the rate of exocytosis is considerably higher than the rate on endocytosis thus 

producing a low net concentration of gold nanorods within cells. 

 

3.6.6 The Cytoskeleton Post GNP Internalisation  
 

It has been reported that NPs produce sub-lethal damage to cells that may alter or 

inhibit cellular function, but are overlooked when assessing gross NP toxicity	
(Lanone et al. 2009). Therefore, although appearing viable, cells may incur 

intracellular stress following NP internalisation that is not picked up by assays 

such as the MTT assay, however such stresses are often indicated by alterations 

to the cytoskeletal network (Stefaan J. Soenen et al. 2012). Although these 

modifications to the cytoskeleton framework may simply be due to the 

internalisation process and subsequent endosomes/lysosome formation, 

disruption and reorganisation may also be indicative of additional cellular stress 

(Stefaan J. Soenen et al. 2011). 

 

Cytoskeletal staining was therefore applied to observe any alterations in 

cytoskeleton arrangement upon GNP internalisation, as reported by previous 

groups (Mironava et al. 2010; Noël et al. 2016; Tarantola et al. 2011).	F-Actin is a 

filamentous protein that facilitates the formation of microfilaments within the 

cytoskeleton; these microfilaments are integral for cell mobility and intracellular 

transport, cell-cell and cell-substrate interactions, and signal transduction	 (Calero 
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et al. 2014). Meanwhile, β-tubulin subunits are the major components of 

microtubules, which have cellular functions similar to those of microfilaments as 

well as involvement in endosome transport, apoptosis and the separation of 

chromosomes into daughter cells during interphase	 (Akhmanova and Steinmetz 

2015; Ogden et al. 2014). Potential damage to either of these components would 

suggest acute toxicity of NPs leading to inhibition of cell cycle, maturation, 

function, and of course viability.  

 

Our results suggest that, although both F-actin filaments and β-tubulin subunit 

formation were compromised to various degrees in the presence of GNPs (0.1 

mg.ml-1) after 24 hours. However, cytoskeletal reorganisation was not at the 

expense of cell attachment or viability. For MG63 cells exposed to gold 

nanoprisms the microtubule organising centre, located beside the nucleus, was 

intact, however disruption to the cytoplasmic microtubule network was noted and 

accompanied by large intercellular clefts (figure 3-15) (Tarantola et al. 2011).  TEM 

images (figure 3-17) confirmed the accumulation of GNPs enclosed within 

endosome vesicles. This increase in endosome size and number may actually, 

sterically hinder and deform the cytoskeletal architecture	 and thus explain the 

disruption and lack of dense microtubule networkat the perinuclear region	 and 

across the cell body (Alfranca et al. 2016; Estrela-Lopis et al. 2011; Hirak K. Patra 

et al. 2007b; Stefaan J. Soenen et al. 2012).  

 

Interestingly, actin filaments did not appear as affected within MG63 cells treated 

with nanoprisms, with a near homogenous distribution of filaments throughout the 

cell (figure 3-15). Conversely, MG63 cells treated with nanorods appeared to 

disrupt the microtubule network, again likely due to the formation and trafficking of 

endosomes (D. Choudhury et al. 2013a). With both nanorods and nanoprisms, a 

large concentration of actin filaments generating transverse protrusions, from the 

cell membrane were visible. These filamentous actin protrusions may be an 

indicator of cell internalisation mechanisms MG63 cells adopted, such as 

macropinocytosis;	 (Kuhn et al. 2014) an actin motivated process which is 

characterised by protrusions at the outer cell membrane, whilst a clathrin-mediated 

endocytosis	  is also dependent on actin involvement (Kaksonen et al. 2006). 

Soenen et al suggested NP-loaded endolysosomal structures located at the 

perinuclear region and near the microtubule organising centre begin to increase in 

size and lose their function due to the high influx of NPs into the cell. These large 
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structures may physically inhibit existing or newly forming cytoskeletal structures 

(Stefaan J. Soenen et al. 2012).  

 

MCF-7 cells exposed to GNPs were also evaluated in figure 3-16, with samples, 

containing no GNPs used as controls. The F-actin staining indicated that the 

majority of MCF-7 cells treated with GNPs did not exhibit an actin ring around the 

nucleus; a feature found in epithelial cells that featured in MCF-7 control samples 

although again this did not lead to any notable detrimental effects on the cell with 

β-tubulin largely remaining unaffected (Tarantola et al. 2011). 
 

 3.6.7 Photothermal Treatment of cells  
 

Due to their optical properties, both the gold nanorods and nanoprisms were 

capable of converting optical energy into thermal energy upon laser irradiation with 

a 1 W 1064 nm laser for 1 minute, as indicated in figures 3-3, 3-18 and 3-19 (P. M. 

Tiwari et al. 2015b). This NIR range would allow for maximum tissue depth 

penetration without causing notable injury to control cells (containing no GNPs) (J. 

Park et al. 2015), while longer wavelengths are attenuated by biological entities 

such as hemoglobin, pigments, and water (R. Weissleder 2001a). 

 

Following GNP internalisation, both monolayer and spheroids cell samples were 

treated with the 1 W 1064 nm laser for up to 1 minutes. All laser treated cells were 

rapidly killed with both nanorods and nanoprisms, as indicated by fluorescent 

viability staining. The absorption spectrum of the gold nanorods is dictated by their 

aspect ratio (length/width), a feature that can be manipulated by researchers to 

produce highly absorbing or scattering GNPs. By increasing the nanorod aspect 

ratio, the SPR absorption wavelength maximum of the longitudinal band 

significantly red-shifts toward the NIR regions. This easily tuneable characteristic 

has made nanorods a popular photothermal agent for cancer hyperthermia.  The 

nanorods displayed the highest absorption peak in the NIR region that correlates 

well with laser wavelengths during photothermal irradiation both in vivo and in vitro 

(Dickerson et al. 2008; T. S. Hauck et al. 2008a; Qin et al. 2015). Likewise, the 

gold nanorods used in this study indicated a strong absorbance in the NIR range 

due to their high aspect ratio of ~7.2, however the nanoprisms appeared to be 

more efficient at killing the cells, both in 2D and 3D.  
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Figure 3-22: (a) Normalised extinction spectra for gold nanorods with 
increasing aspect ratios showing a shift of wavelength to the right. The 
black, red, blue, magenta, and green spectra were taken for gold nanorods 
with aspect ratios 2.4, 2.7, 3.6, 4.4, and 6.1, respectively, with corresponding 
TEM images in (b) through (f) (Hinman et al. 2016). 

 

The aspect ratio of nanoprisms is based on the thickness of the nanoprism and 

edge length, however the three tips of the nanoprisms are also crucial 

characteristics determining its optical properties (E. Hao et al. 2004; Noda and 

Hayakawa 2016; K. L. Shuford et al. 2005a). The nanoprisms used here displayed 

excellent cell viability and but also strong heating capability upon laser excitation. 

The clear perimeter adjacent to the laser’s focal point indicates a large circular 

area with no cells present, and may be understood through the dispersion of heat 

energy that may also be released through photoacoustic effects. This occurs if the 

rate of heat absorption is much faster than the relaxation rate. In this instance, 

GNP surfaces may exceed a hundred degrees, leading to cavitation effects 

(Lapotko et al. 2006). The formation and collapse of microbubbles releases 

mechanical shockwaves, which can rupture cell membranes as well as other 

acoustic associated damage  forcing cells away from the laser focal point (Wei et 

al. 2013). Although laser treatment with both 2D and 3D models were succesful, 

technical challenges were present with 3D spheroids suspended in media. This 

included the movement of the spheroid during laser treatment; either through 

rotation or lateral motion of spheroids during treatment. This created difficulties in 

isolating the laser bean to specific regions on spheroids, although this was 

somewhat remedied by gently draining the excess media surrounding spheroid 

samples prior to treatment in order to restrict their motion.  
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3.7 Summary  

The aim of this chapter was to i) evaluate the biocompatibility of GNPs in both 2D 

and 3D and ii) assess their effectiveness as photothermal agents upon laser 

irradiation, leading to cell death  

As previously highlighted within this chapter, the debate over the biocompatibility 

of GNPs is controversial while further investigations into the shape of GNPs, in 

particular gold nanorods, influencing toxicity has been explored (Qiu et al. 2010; 

Shuguang Wang et al. 2008). The results in this study demonstrate the low toxicity 

of both gold nanoprisms and gold nanorods in MG63 and MCF-7 cells both in 

monolayer and 3D multicellular tumour spheroids, over 24, 48 and 72 hours. The 

results were particularly encouraging in the case of gold nanorods, which were 

synthesised in the presence of CTAB, which is believed to be the main culprit of 

gold nanorod associated toxicity (Wan et al. 2015).  Our results also further 

validates our collaborators removal process of CTAB during nanorod synthesis 

(Alfranca et al. 2016).  

Further investigations into the biocompatibility of the GNPs included the 

interaction, internalisation, compartmentalisation and quantification of GNPs into 

cells. Both GNPs successfully internalised within MG63 and MCF-7 cells both in 

monolayer and spheroids with TEM imaging suggesting GNP entry is 

predominantly governed by receptor mediated endocytosis and clathrin-mediated 

endocytosis.  

ICP-Mass spectroscopy revealed the large discrepancy between the two 

geometries, with nanoprisms appearing the more successfully internalised GNP in 

both cell types, over a range of concentrations. Upon internalisation into cells, 

GNPs appeared to affect the network of actin and tubulin filaments, although 

without deleterious consequences and did not appear to greatly impact cell 

viability. The remodelling of the cytoskeleton may be attributed to the increased 

quantity and volume of endosomes as a consequence of GNP uptake that can 

impair cytoskeleton integrity rather than GNPs themselves directly disrupting 

tubulin and actin formation.  
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Finally, GNPs were assessed for their photothermal efficiency via irradiation, using 

a 1 W 1064 nm unfocussed laser for 1 minute. Both GNPs displayed proficient 

heating upon NIR laser exposure as characterised by our collaborators 

experimentally within a GNP solution. In this project we evaluated photothermal 

capacity in vitro and verified its capability to lead to cell death across a large radius 

in monolayer. Within multicellular tumour models, the photothermal treatment 

demonstrated its potential for depth penetration and focus to lead to cell death on 

isolated regions within the spheroid.  
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4 Identifying the Underlying Mechanisms of Photothermal 
Hyperthermia  
 

4.1 Introduction  
 
4.1.1 Hyperthermia and Cancer Cells  

 
Hyperthermia is the process of raising the temperature, either locally or globally in 

a patient for medicinal purposes. As previously described in section 1.2. 

Hyperthermia (42-45°C) can lead to cellular and molecular events that promote 

cancer cells to undergo apoptosis and also render cancer cells more susceptible 

to treatments from chemotherapy and radiotherapy. For example, elevating the 

temperature within the tumour tissue leads to alterations in the vascular 

permeability, increasing blood flow and tumour oxygenation that can further 

intensify the cytotoxic effect of radiation or chemotherapy (Beik et al. 2016). 

Indeed, many clinical studies have confirmed that the use of hyperthermia 

alongside radiotherapy or chemotherapy significantly improves tumour control and 

patient survival rates in breast, cervix, bladder, brain, head and neck tumours 

(Beik et al. 2016).  

 

Generally, there are no intrinsic differences between normal and tumour cell 

sensitivity upon hyperthermia, however in vivo and in vitro studies have shown that 

a selective tumour cell killing effect is achieved at temperatures between 40 and 

44°C (Behrouzkia et al. 2016; van der Zee 2002). This has been attributed to the 

tumour tissue environment, where the disorganised and compact vascular 

structure of tumourss does not promote heat dissipation, leading to retention of 

high temperatures for longer periods, subsequently leading to cancer cell 

apoptosis, while normal vascular architecture facilitates heat dissipation (Hegyi et 

al. 2013). Cancer cells characteristically survive in a hypoxic environment, with low 

oxygen, alongside acidic (low pH) conditions, due to insufficient blood perfusion 

(van der Zee 2002). Interestingly, it has been recently noted that due to their high 

metabolic demands, constant anabolic and catabolic reactions may also lead to 

the production of sub-lethal intensities of heat (Hegyi et al. 2013; Keibler et al. 

2016). The use of additional hyperthermic treatments could therefore confer 

additional thermal energy to the cells, which takes them over a toxic threshold, 
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inducing the cancer cell to commit to apoptosis. The effectiveness of the technique 

is dependent on exposure time and temperature profiles achieved during 

treatment	 while considerations of cell and tissue type may determine these 

parameters (R. Haghniaz et al. 2015a; Hegyi et al. 2013). 

 

4.1.2 Apoptosis and Necrosis 
 
Apoptosis is integral to homeostatic processes and is involved in various 

physiological responses during normal development and morphogenesis, while 

also being activated during cell stress or damage (Nikoletopoulou et al. 2013). The 

morphological assessments of apoptotic features include; alterations in membrane 

composition, budding of plasma membrane without loss of integrity, mitochondrial 

permeability, shrinking of cytoplasm, condensation of nucleus, development of 

membrane bound vesicles, and fragmentation of cell into smaller bodies (apoptotic 

bodies) (Elmore 2007). 

 

However at higher temperatures (>47°C) complete thermal ablation of tissue can 

occur, this frank necrosis is often indiscriminate, effecting both healthy and 

cancerous cells. Necrosis is an acute and severe response leading to the 

premature death of cells consequently damaging nearby cells. Major hallmarks of 

necrosis include loss of membrane integrity, swelling of cytoplasm, mitochondrial 

disruption and calcification, fragmentation of organelles, and cell lysis leading to 

the release of intracellular components of the cell into the microenvironment, 

which is capable of eliciting an inflammatory response, damaging peripheral cells 

(Y. S. Cho 2014; X. Wang et al. 2014b).  
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Figure 4-1: Schematic depicting the intrinsic and extrinsic apoptotic 
pathway, previously described (Vucic et al. 2011). 

 
4.1.3 The Role of Mitochondria and Reactive Oxygen Species (ROS) in 
Apoptosis 
 
One of the major triggers to stimulate apoptosis is the ‘Intrinsic pathway’ and the 

‘Extrinsic pathway’ (as shown in figure 4-1). While the major catalyst for the 

intrinsic pathway is mitochondrial damage and subsequent release of pro-

apoptotic proteins, the extrinsic pathway is capable directly activating effector 

caspases but can also cross talk with the intrinsic pathway leading to 

mitochondrial disruption, ultimately leading to the formation of the apoptosome and 

activation of caspases, leading to apoptosis	(Yağmur Kiraz et al. 2016b; Winter et 

al. 2014). Mitochondrial stability is therefore vital for cell viability, with disruption of 

mitochondria recently been associated with an increase in ROS production 

(Leadsham et al. 2013; Ricci et al. 2004). The increased concentration of ROS in 

cells can cause damage to lipids, organelles, membranes and in particular, 

proteins and nucleic acids, further potentiating apoptosis	 (Redza-Dutordoir and 

Averill-Bates 2016). Increased ROS production has also been observed during 

heat stress with increased ROS concentration associated with increased apoptosis 

within samples (C.-H. Hou et al. 2014b; Katschinski et al. 2000; Z. Wang et al. 

2013c). 
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4.2 Chapter Aims and Objectives  
 

Chapter 3 assessed the potential use of gold nanorods and gold nanoprisms to 

induce hyperthermic cell death in bone (MG63) and breast (MCF-7) cancer cell 

lines. Both nanoparticle types were stable in biological solutions, biocompatible in 

both monolayer and 3D spheroid cell cultures and exhibited sufficient heating upon 

irradiation with a NIR laser to lead to cell death. This chapter will focus on 

assessing the gene and protein expression of key apoptotic candidates to identify 

the dominant process that occurs during the photothermal cell death induced by 

gold nanorods and nanoprisms.  

 

At the molecular level, apoptotic cells reveal key molecular players that have been 

previously discussed in chapter 1 (section 1.2.1), these include pro inflammatory-, 

initiator- and executioner caspases. Bcl-2 family members are also integral for 

regulating cell survival or apoptosis. To the best of our knowledge, studies 

involving nanoparticle-invoked hyperthermia have only screened for very small 

clusters of apoptotic markers (Espinosa et al. 2016; R. Haghniaz et al. 2015a; L. 

Mocan et al. 2015a; Shetake et al. 2015; S. Y. Yan et al. 2014; D. Yoo et al. 2013). 

While other groups determined apoptosis via morphological changes such as 

phospholipid phosphatidylserine (PS) translocation (Y. Oh et al. 2016) and 

membrane damage (Blanco-Andujar et al. 2016). 

 

This chapter will assess some of the integral molecules that belong to various 

families (e.g. Bcl-2, Hsps and caspases) that either influence cells to undergo 

apoptosis or attempt to preserve the viability of cells (in terms of thermotolerance, 

as described in chapter 1, section 1.3), with a view to identifying the mechanisms 

of gold nanoparticle induced hyperthermia.  Both cells types were assessed in 

monolayer and 3D tumour spheroid culture. All candidates were evaluated at both 

the gene and protein level. 

 

Gene expression levels were analysed using a Fluidigm Biomark HD system, 

which is a fluid dynamic high-throughput real-time automated PCR system that 

can simultaneously assess up to 96 RNA targets within a dynamic array.  Primers 

were selected based on their association with the intrinsic and extrinsic apoptotic 
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pathways; this includes members from the Hsp family, caspase family, Bcl-2 

family, cathepsins family as well as other notable apoptosis inducing molecules. 

 

Protein expression was measured using a human apoptosis antibody array, which 

allowed for the targeting of 43 apoptotic targets, including the primary members of 

the Bcl-2 family, caspase 3 and 8, Hsp -27, -60 and -70. 
 

For both RNA analysis, the cells that have undergone laser treatment were 

compared to non-laser treated cells. The conditions assessed were: 

 

• MG63 / MCF-7 monolayer; gold nanoprisms; +/- laser treated 

• MG63 / MCF-7 monolayer; gold nanorods; +/- laser treated 

• MG63 / MCF7 monolayer; no GNPs; +/- laser treated 

 

• MG63 / MCF-7 spheroids; gold nanoprisms; +/- laser treated 

• MG63 / MCF-7 spheroids; gold nanorods; +/- laser treated 

• MG63 / MCF-7 spheroids; no GNPs; +/- laser treated 

 
For protein analysis, only the monolayer cell samples were analysed, as the 

protocol uses cell lysates. 

	
Both techniques produced a snap shot of the selected RNA transcripts and 

selected protein levels after GNP laser treatment in both/either 2D and 3D models 

in MG63 and MCF-7 cells.  Figure 4-2 details the molecules assessed, indicating 

any overlap where some molecules were assessed by both techniques.
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Figure 4-2: Venn diagram representing both the RNA and the protein 
targets that were assessed as potential apoptotic markers. Protein 
targets were exclusively investigated in monolayer only. 
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4.3 Materials and Methods  
 

4.3.1 Laser treatment of Monolayer and 3D Spheroid Culture Models   
 
Both MG63 and MCF-7 cells were seeded at 1 x 104 onto 13 mm coverslips and 

cultured for 24 hours prior to GNP incubation at 0.1 mg.ml-1 (section 3.3.2). 

Meanwhile, MG63 and MCF-7 spheroids were prepared at 1 x105 cells following 

incubation with 0.1 mg.ml-1 GNP concentration (as section 3.3.2.1). Once 

prepared, cell samples were subjected to laser treatment, using the Ventus 1 W 

unfocused continuous wave 1064 nm wavelength laser for 1 minute (as section 

3.3.5). Control samples either contained no GNPs or were not subjected to laser 

treatment (n=3). 

 

4.3.2 RNA Extraction and Isolation 
 
Following laser treatment, samples were further incubated for 3 hours (37ºC, 5% 

CO2). Subsequently, the MG63 and MCF-7 monolayers were washed in HEPES, 

detached with versene/trypsin, resuspended in fresh growth media and centrifuged 

(3000 x g, 10 minutes) to cell pellets. For spheroid samples, cell spheroids were 

washed with HEPES saline, centrifuged (1000 x g, 5 minutes).  All pellets were re-

suspended in 1 mL PBS and prepared for RNA extraction and isolation using 

PicoPuretm RNA Isolation Kit (thermofisher KIT0202). 

 

Samples were then processed as per the manufacturers instruction. Briefly, the 

supernatant was gently removed from each sample and re-suspended in 1 ml per 

sample of suspension media (0.9 mL of 1 x PBS/10%BSA; 0.1 mL of 0.5 M 

EDTA). Samples were then centrifuged (3000 x g for 5 minutes) and the 

supernatant removed. Cells were then extracted using 100 µL  of extraction buffer 

(XB) while the cell pellet was gently re-suspended by pipetting; samples were then 

incubated at 42°C for 30 minutes and centrifuged (3000 x g for 2 minutes). The 

extracted RNA supernatant was then transferred into a fresh microcentrifuge tube.  

 

Meanwhile, RNA purification columns were pre-conditioned by pipetting 250 µL of 

condition buffer (CB) on the purification column filter membrane for 5 minutes at 

room temperature. The purification columns were then placed into corresponding 
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collection tubes and centrifuged at 16000 x g for 1 minute. Ethanol (10 µL of 70%) 

was added to the previously extracted RNA solution and the final RNA 

extract/ethanol mixture was transferred to the pre-conditioned purification column. 

To bind RNA, the samples were centrifuged for 2 minutes at 100 x g and then 

immediately centrifuged at 16000 x g for 30 seconds, to remove flowthrough. 

Subsequently, wash buffer (100 µL) was then added to the purification columns, 

which were again centrifuged at 8000 x g for 1 minute. Following centrifugation, 

100 µL of wash buffer II was then added into the purification column with 

centrifugation at 8000 x g for 1 minute. Wash buffer II was again added to the 

purification columns and centrifuged at 16000 x g for 1 minute. After centrifugation, 

the purification column was transferred to a fresh 0.5 mL microcentrifuge tube. 

Finally 10 µL  of elution buffer was added to each purification column and 

incubated for 1 minute at room temperature. The columns were then centrifuged at 

1000 x g for 1 minute in order to distribute elution buffer in the column and then re-

centrifuged at 16000 x g to elute RNA. The isolated RNA was then immediately 

stored at -80ºC for fluidigm processing. 

 
4.3.3 Fluidigm Analysis 
 

The isolated RNA samples were subjected to reverse transcription using a 

SuperScript III Reverse Transcriptase (Invitrogen). An aliquot of 11 µL of each 

sample was added to 1 µL of oligo (dT) and 1 µL dNTPmix, followed by heating at 

65ºC for 5 minutes. A solution containing 4 µL 5X First Strand buffer, 1 µL 0.1 M 

DTT, 1 µL RNaseOUT Recombinant RNase inhibitor, 0.5 µL SuperScript III RT 

and 0.5 µL water was prepared and added to samples for 5 minutes at 4ºC and 

then incubated at 50ºC for 30 minutes, and subsequently at 70ºC for 15 minutes to 

produce cDNA. All 48 primers were pooled together (1 µL) from each primer set 

pooled and 152 µL of DNA suspension buffer. A fresh solution containing 1.25 µL 

cDNA from each sample, 2.5 µL 2x TaqMan PreAmp Master Mix, 0.5 µL pooled 

primer mix and 0.75 µL of water was prepared. Samples were then vortexed, 

centrifuged and underwent 22 thermal cycles from the following programme.  
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Table 4-1: Thermal cycles of samples prior to fluidigm analysis  

	
 

After the cycles were completed a solution comprised of 1.4 µL water, 0.2 µL 

Exonuclease I reaction Buffer and 0.4 µL Exonuclease were added to each 

sample buffer being vortexed, centrifuged and incubated at 37ºC for 30 minutes 

followed by incubation for 15 minutes at 80ºC.  Once completed, 18 µL of TE 

buffer was added to each sample. The Exonuclease I treated sample (2.7 µL) was 

added to 3 µL of 2x SsoFast EvaGreen Supermix and 0.3 µL of 20x DNA Binding 

Dye sample loading reagent. Finally, samples were vortexed and centrifuged upon 

loading onto a 96.96 array chip. Furthermore, 0.3 µL of each individual primer set, 

as detailed in table 4-2, was added to 3 µL 2X assay loading reagent and 2.7 µL 

1x DNA suspension buffer was vortexed and centrifuged before being loaded onto 

the 96.96 array chip. 

 

Table 4-2: Fluidigm primers designed for human apoptotic targets.  

 

Primer Sequence  

Caspase 3 Forward:	5’	TGTGGAAGAACTTAGGCATC	3’	(20nt)	
Reverse:	5’	TTTGCTCACACTTTCTCTCA	3’	(20nt)	
 

Caspase 7 Forward:	5’-TCTTTTGTGCTGCTTCTTTG-3’	(20nt)	
Reverse:	5’-CCCACTCCTATCTTACTCCA-3’	(20nt)	
 

Caspase 8  Forward:	5’-	CTGGTCCCTGCTAACATTTG-3’	(20nt)	
Reverse:	5’-	CGCATAGTGACGAATGATG-3’	(19nt)	
 

Caspase 9  Forward:	5’-	CCTGGAGTCTTAGTTGGCT-3’	(19nt)	
Reverse:	5’-	TCATATGGGGCCTGAACA-3’	(18nt)	
	 	
 

Hsp60 Forward:	5’-	AGTGGAAATCAGGAGAGGTA-3’	(20nt)	
Reverse:	5’-	AGAGGAGGAATGAGAGAAGG-3’	(20nt)	
 

Hsp70  Forward:	5’-	ATGCCATGTACTTCTCTTGG-3’	(20nt)	

Condition Hold 22 cycles Hold 

Temperature 95℃ 95℃ 60℃ 4℃ 

Time 10minutes 15 seconds 4 minutes � 
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Reverse:	5’-	ATACAGAACATCTCCCACCT-3’	(20nt)	
 

Hsp90  Forward:	5’-	CACCACCCCAAATATCTTCT-3’	(20nt)	
Reverse:	5’-‘TAGCTCCTCACAGTTATCCA-3’(20nt)	
 

 
 
Once completed, a qPCR heat map was created of the CT values: 

 

((CT(target,untreated)-CT(ref, untreated))-(CT(target, treated)-CT(ref,treated))  

Samples were normalised to multiple housekeeping genes, representing the 

increase/decrease in gene expression.  

 

4.3.4 Protein Expression in Monolayer Cell Samples Following Photothermal 
Therapy using Human Apoptosis Antibody Arrays 
 
Following laser treatment, both MG63 and MCF-7 monolayers were quantitatively 

assessed for apoptotic markers using the Human Apoptosis Antibody Array 

Membrane (Abcam, UK) as per the manufacturers protocol. Briefly, samples were 

laser treated as previously described and incubated for 24 hours to allow for 

optimal protein expression	(Graner et al. 2016; Moussa et al. 2016; A. S. Song et 

al. 2014; D. Tang et al. 2005; Sihong Wang et al. 2004; K.-L. Yang et al. 2016). 

Samples were washed twice in cold PBS and lysed with a protease inhibitor 

cocktail containing 1X lysis buffer and 100X Protease Inhibitor Cocktail 

Concentrate. Samples were incubated for 30 minutes at 4°C. The total protein 

lysate was then analysed via Thermo Scientific NanoDrop 2000c 

Spectrophotometer and normalised to 2.5 ug/µL per sample. Samples were 

transferred to microfuge tubes and centrifuged at 14000 x g for 10 minutes. The 

supernatant was removed from each lysate and transferred into fresh microfuges. 

Meanwhile, 2 mL of 1X blocking buffer was added to each membrane at room 

temperature (RT) for 30 minutes with gentle rocking. After 30 minutes, the blocking 

buffer was removed from membranes and sample lysates were added to 

membranes overnight at 4°C with gentle rocking. Sample lysate was aspirated 

from membranes and washed 3 x 5 minutes with 2 mL wash buffer I at room 

temperature RT and subsequently washed 2 x 5 minutes with 2 mL of 1X Wash 

Buffer II at RT. Once thoroughly washed, 1 mL of 1 X Biotin-conjugated Anti 
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Cytokines was added to each membrane with further incubation at 4°C (gentle 

rocking). Anti-cytokine reagent was aspirated from membranes and washed with 2 

mL wash buffer I at 3 x 5 minutes at RT and 2 mL 2 x 5 minutes with 1X Wash 

Buffer II at RT per membrane. Membranes were then incubated at room 

temperature (RT) for 2 hours with 1.5 mL of 1X Streptavidin-HRP. After 2 hours, 

samples were washed with wash buffer I and II as previously described and 

incubated overnight at 4°C. A solution containing detection Buffer C and detection 

Buffer D (250 µL of each buffer per membrane) was added to each membrane and 

plastic film was placed over the membranes. Samples were incubated for 2 

minutes at RT. The chemiluminescence of the samples was imaged using myECL 

Imager (thermofisher). Quantitative comparison of array images was produced via 

densitometry analysis using imageJ software. 

 

Many of these targets increase during apoptosis, and are induced during 

thermotolerance or change in response to environmental insults leading to 

dynamic genomic changes. While the majority of these targets have other primary 

functions within cells, the Bcl-2 family members, caspase members and Hsps are 

of particular interest as their main function within cells appears instrumental 

between cell survival and cell death. Other proteins such as cytochrome c, XIAP, 

livin, p53, SMAC, survivin, TRAILR -1, -2, -3, -4 and XIAP were also evaluated due 

to their direct/indirect effect on cell survival or death.   

 

4.3.5 Reactive Oxygen Species (ROS) Production Following Photothermal 
Treatment  
 
Following laser treatment of monolayer cell cultures, the cells were further 

incubated for 1 hour (37ºC, 5% CO2) and washed in HEPES saline. MitoSOX Red 

mitochondrial superoxide indicator (Molecular Probes, Invitrogen, USA) was pre-

treated according to manufacturer's instructions and added to samples at 1 mL per 

sample at 5 µM, final concentration in media. In the same media solution, 

MitoTracker® Green FM (molecular probes, Invitrogen, USA), at 100nM final 

concentration, was added. Samples were then incubated for an additional 30 

minutes (37ºC, 5% CO2) prior to washing in PBS and observation using a Axiovert 

200m fluorescence microscope (the excitation/emission wavelengths are 510/580 

nm for MitoSox Red and 490/516 for MitoTracker® Green). Images were acquired 

with ImagePro Plus Version 6.01 software (Media Cybernetics) and a sideport 
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Evolution QEi Monochrome CCD camera (Media Cybernetics). Images were 

processed using imageJ software (https://imagej.nih.gov). The 

immunofluorescence images were merged, with the co-localisation of the 

mitochondria and ROS, producing a representative fluorescence yellow image. 
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4.4 Results 
 
4.4.1 Apoptotic Marker Analysis via Fluidigm  
 
Following laser induced hyperthermia, the gene expression levels of apoptosis 

targets in MG63 and MCF-7 cells in both monolayer and 3D spheroid cultures 

were verified by fluidigm analysis. The 42 apoptotic gene markers assessed 

included members of the caspase family, Hsp family members, Bcl-2 only family 

members and cathepsin members as indicated in table 4-3  

 

APAF-1, ATP5B, B2M, BAD, BAK, BAX, BBC3, Bcl-2, BCL2L15,  

BCL2L2, BCL-XL, BID, BIK, BIM, BMF, BOK, Caspase 3, Caspase 7, Caspase 8,  

Caspase 9, Cathepsin B, Cathepsin D, Cathepsin G, Cathepsin K, Cathepsin L,  

Cathepsin S, CFLAR, CyC1, Cytochrome C, DIABLO, ENOX2, FAS, FAS-L, 

GNB2L7, Hsp60, Hsp70, Hsp90, MCL-1, PARP, PMAIP, Serpin B 10, Serpin B 3, 

Serpin B4, Survivin, TNFSF10, TYW1, UBE2D2, XIAP 

 

Table 4-3: RNA targets for human apoptotic pathways.  

 

Target Pathway 

APAF-1 Predominantly intrinsic pathway but also linked to extrinsic 

pathway  

ATP5B Housekeeping gene 

B2M Housekeeping gene 

BAD Intrinsic Pathway  

BAK Predominantly intrinsic pathway but also linked to extrinsic 

pathway  

BAX Predominantly intrinsic pathway but also linked to extrinsic 

pathway  

BBC3/PUMA Predominantly intrinsic pathway but also linked to extrinsic 

pathway  

Bcl-2 Predominantly intrinsic pathway but also linked to extrinsic 

pathway  

BCL2L15 Predominantly intrinsic pathway but also linked to extrinsic 
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pathway  

BCL2L2 Intrinsic pathway  

BCL-XL Intrinsic pathway and ROS induced-apoptosis pathway 

BID Extrinsic and intrinsic pathway  

BIK Intrinsic pathway  

BIM Intrinsic pathway  

BMF Intrinsic pathway  

BOK Intrinsic pathway  

CASPASE 3 Intrinsic and extrinsic pathway  

CASPASE 7 Intrinsic and extrinsic pathway  

CASPASE 8 Extrinsic pathway  

CASPASE 9 Intrinsic pathway  

Cathepsin B  Lysosome-mediated apoptosis  

Cathepsin D Lysosome-mediated apoptosis  

Cathepsin G Lysosome-mediated apoptosis  

Cathepsin K Lysosome-mediated apoptosis  

Cathepsin L Lysosome-mediated apoptosis  

Cathepsin S Lysosome-mediated apoptosis  

CFLAR/C-FLIP Extrinsic pathway 

CyC1 Intrinsic pathway  

Cytochrome c Intrinsic pathway  

DIABLO/SMAC Intrinsic pathway  

ENOX2 House keeping gene 

FAS Extrinsic pathway 

FAS-L Extrinsic pathway 

GNB2L7 House keeping genes  

Hsp60 Expressed in response to heat stress  

Hsp70 Expressed in response to heat stress  

Hsp90 Expressed in response to heat stress  

MCL-1 Extrinsic pathway (TRAIL mediated apoptosis) 

PARP Intrinsic, extrinsic pathway and lysosome activation 

PMAIP/NOXA Oxidative stress-triggered p53-mediated apoptosis 

Serpin B3 TNF-α induce apoptosis  

Serpin B4 TNF-α induce apoptosis 
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Serpin B 10 TNF-α induce apoptosis 

Survivin Intrinsic pathway  

TNFSF10 Extrinsic pathway 

TYW1 House keeping gene 

UBE2D2 House keeping gene 

XIAP Caspase-dependent pathway and lysosome activation 

 

 

The following figures depict the screening of apoptotic genes using a 96x96 

Fluidigm Biomark HD system. In an attempt to visually plot and compare the 

considerable differences identified, the average fold change was transformed to 

log2 to graphically depict all the results within a modest range. The graphs 

therefore all show the log2 gene fold changes based on CT calculations using 

average values from 6-housekeeping genes and then comparing laser to non laser 

samples.  

 

4.4.1.1	MG63	and	MCF-7	Monolayer	Control	Cultures	(no	GNPs)	

 
The fold change in apoptotic genes of MG63 control monolayers containing no 

GNPs when comparing laser treated to non-laser treated is shown in figure 4-3. 

There were little/no changes to the majority of apoptotic genes in the presence of 

laser treatment, indicated by the relatively low fold change expression in the 

majority of targets. Targets that show >2 fold change will be discussed in further 

detail and include the pro-apoptotic associated genes such as BID, BOK, FAS-L, 

caspase 3, BIM, BIK but also the anti-apoptotic gene Bcl-2. Although these pro-

apoptotic markers increased >2 fold, suggesting cellular stress upon laser 

exposure, these molecular events did not translate to cell death within the culture, 

as inferred in previous results from viability staining post-laser treatment (chapter 

3, section 3.4.7). 

The fold change in MFC-7 cells is shown in figure 4-4. Again, minimal fold change 

expression was detected, indicating that laser treatment did not drive cells towards 

apoptosis.  The increased expression of cytochrome c, an early apoptotic indicator 

did show a 5-fold increase	 (Chandra et al. 2002), however this did not activate 

caspase 9 or further downstream apoptotic markers, resulting in viable cells 

(chapter 3, section 3.4.7). 
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       Figure 4-3: Fold change in apoptotic gene expression in m
onolayer control M

G
63.  C

ells contained no G
N

P
s, laser treated sam

ples 
are norm

alised against non-laser treated sam
ples (n=3).  

        Figure 4-4: Fold change in apoptotic gene expression in m
onolayer control M

C
F-7. C

ells contained no G
N

P
s, laser treated sam

ples 
are norm

alised against non-laser treated sam
ples (n=3). 

M
G

6
3

 C
o

n
tr

o
l M

o
n

o
la

y
e

r

L o g 2  G e n e  F o ld  C h a n g e  o f la s e r  /N .L

H s p 6 0

H s p 7 0

H s p 9 0

X IA P

T N F S F 1 0

C F L A R

C Y C 1

F A S -L

F A S

S u rv iv in

P A R P

D IA B L O

P M A IP  1

B B C 3

B C L -X L

B A X

B A D

B C L 2 L 1 5

B C L 2 L 2

B ID

B IK

B IM

B M F

B O K

B A K

B C L -2

C y to c h ro m e  c

A P A F -1

C a th e p s in  D

C a th e p s in  K

C a th e p s in  S

C a th e p s in  L

C a th e p s in  B

C a th e p s in  G

C a s p a s e  3

C a s p a s e  7

C a s p a s e  8

c a s p a s e  9

S e rp in  B 3

S e rp in  B 4

S e rp in  B 1 0

M C L -1

-4
0

-3
0

-2
0

-1
0 0

1
0

2
0

3
0

4
0

M
C

F
-7

 C
o

n
tr

o
l M

o
n

o
la

y
e

r

L o g 2  G e n e  F o ld  C h a n g e  o f la s e r / N .L

H s p 6 0

H s p 7 0

H s p 9 0

X IA P

T N F S F 1 0

C F L A R

C Y C 1

F A S -L

F A S

S u rv iv in

P A R P

D IA B L O

P M A IP  1

B B C 3

B C L -X L

B A X

B A D

B C L 2 L 1 5

B C L 2 L 2

B ID

B IK

B IM

B M F

B O K

B A K

B C L -2

C y to c h ro m e  c

A P A F -1

C a th e p s in  D

C a th e p s in  K

C a th e p s in  S

C a th e p s in  L

C a th e p s in  B

C a th e p s in  G

C a s p a s e  3

C a s p a s e  7

C a s p a s e  8

c a s p a s e  9

S e rp in  B 3

S e rp in  B 4

S e rp in  B 1 0

M C L -1

-4
0

-3
0

-2
0

-1
0 0

1
0

2
0

3
0

4
0



	

	124	

4.4.1.2	MG63	and	MCF-7	Spheroid	Control	Cultures	(no	GNPs)	

 

The fold change in apoptotic genes of MG63 control spheroids is shown in figure 4-5. 

Results indicate a greater fold change expression when compared to the 

corresponding monolayer results, with >2 fold in the majority of markers. Of these 

targets, Hsp90, Cytochrome c, BCL2L15, BID, and caspase 3, showed >4 fold 

change expression. This suggests that spheroid cultured MG63 cells induce a larger 

cellular stress in response to laser exposure than monolayer cells, however it should 

again be noted that little/no cell death was evident in viability staining (section 3.4.7). 

 
The fold change for MCF-7 cells is shown in figure 4-6. As with its monolayer 

counterpart, laser exposure did not appear to lead to any notable changes in 

apoptotic marker expression. 
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       Figure 4-5: Fold change in apoptotic gene expression in control spheroid M
G

63 cells.  C
ells contained no G

N
P

s, laser treated 
sam

ples are norm
alised against non-laser treated sam

ples (n=3). 

        Figure 4-6: Fold change in apoptotic gene expression in control spheroid M
C

F-7 cells.  C
ells contained no G

N
P

s, laser treated 
sam

ples are norm
alised against non-laser treated sam

ples (n=3). 
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4.4.1.3	MG63	and	MCF-7	Monolayer	Cultures	Labelled	with	Gold	Nanoprisms	

 

The fold change in apoptotic genes of MG63 monolayers labelled with gold 

nanoprisms and laser treated is shown in figure 4-7. Large increases were observed 

in almost all markers, in agreement with the cell death observed following laser 

treatment in chapter 3 (section 3.4.7). The majority of cell death occurred via the 

intrinsic pathway, with >10 fold change in the expression of markers associated with 

this pathway, such as, BID, BAK, BAD, DIABLO/SMAC, BCL-XL, and caspase 3, 7 

and 9 (Elmore 2007; M. Tiwari et al. 2015a; C. Wang and Youle 2009; Zhou et al. 

2011). Hsp70 and Hsp90 showed pronounced expression changes, >15 and >20 fold 

respectively, indicative of hyperthermia induced thermotolerance (Tomoyuki 

Miyagawa et al. 2014b). 

 

The fold change for MCF-7 cells is shown in figure 4-8. The majority of these markers 

showed >2 fold increase in expression with a particular increase in   APAF-1, BMF, 

Hsp70, DIABLO/SMAC, XIAP, caspase 9 and BID. Caspase 8 in particular showed a 

fold change of >21.  
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       Figure 4-7: Fold change in apoptotic gene expression in m
onolayer M

G
63 cells labelled w

ith gold nanoprism
s. Laser treated 

sam
ples are norm

alised against non-laser treated sam
ples (n=3). 

        Figure 4-8: Fold change in apoptotic gene expression in m
onolayer M

C
F-7 cells labelled w

ith gold nanoprism
s. Laser treated 

sam
ples are norm

alised against non-laser treated sam
ples (n=3). 
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4.4.1.4	MG63	and	MCF-7	Spheroid	Cultures	Labelled	with	Gold	Nanoprisms	

 

The fold change in apoptotic genes of MG63 spheroids labelled with gold nanoprisms 

is shown in figure 4-9. As with the corresponding monolayer cultures (figure 4-7), 

results showed an increased expression of almost all markers, with a particular 

increase in caspase 3, cathepsin S, MCL-1, caspase 8 and 9, APAF-1, BAX, BID, 

cathepsin –B, –K, -S, FAS, SERPIN B3, Cytochrome c and BAD. These results 

support activation of both the intrinsic and extrinsic pathways. Hsp70 and Hsp90 

were again expressed at high levels to induce thermotolerance and preserve cell 

viability	(Behrouzkia et al. 2016; X. Wang et al. 2014b). 
 

The fold change for MCF-7 spheroid is shown in figure 4-10.  Large increases in 

apoptotic markers were observed; CFLAR (also referred to as, C-FLIP), cytochrome 

c, caspase 9, Bcl-2, BAK, caspase 8 and BAX demonstrated high expression 

changes (>10 fold change) as well as >20 fold change in BID, indicating the intrinsic 

pathway is predominantly responsible for cells undergoing apoptosis, while the 

increased expression of Hsp90 was noted. 
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       Figure 4-9: Fold change in apoptotic gene expression in spheroid M
G

63 cells labelled w
ith gold nanoprism

s. Laser treated sam
ples 

are norm
alised against non-laser treated sam

ples (n=3). 

        Figure 4-10: Fold change in apoptotic gene expression in spheroid M
C

F-7 cells labelled w
ith gold nanoprism

s. Laser treated 
sam

ples are norm
alised against non-laser treated sam

ples (n=3). 
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4.4.1.5	MG63	and	MCF-7	Monolayer	Cultures	Labelled	with	Gold	Nanorods	

 

The fold change in apoptotic genes of MG63 monolayers labelled with gold nanorods 

and laser treated is shown in figure 4-11. Changes were noted in most markers.  

Whilst large fold changes (>10) were observed in markers associated with the 

intrinsic pathway (BID, capasase 9, caspase 7, BAK), increased levels of 

SERPINB10, FAS-L and BBC3 also suggested an alternative route of cell death to 

the more commonly associated hyperthermia-induced apoptosis involving the 

traditional intrinsic and/or extrinsic pathway.  

 

The fold change for MCF-7 monolayers is shown in figure 4-12. Although a fold 

change >2 is seen in most markers, the changes themselves appear more subtle 

than MCF-7 samples incubated with gold nanoprisms, with >10 fold increase 

observed in XIAP, Hsp90 and Hsp70. However a >5 fold increase was observed in 

BMF, CLFAR, Cathepsin K, BIM, Cathepsin S, Cathepsin B, BAK, SERPIN B10, 

caspase 9, cytochrome c, BID and caspase 7. These results suggest a combination 

of both the intrinsic and extrinisic (TNF) apoptosis pathways.  

 



	

	131	

        Figure 4-11: Fold change in apoptotic gene expression in m
onolayer M

G
63 cells labelled w

ith gold nanorods. Laser treated sam
ples 

are norm
alised against non-laser treated sam

ples (n=3). 

          Figure 4-12: Fold change in apoptotic gene expression in m
onolayer M

C
F-7 cells labelled w

ith gold nanorods. Laser treated sam
ples 

are norm
alised against non-laser treated sam

ples (n=3). 
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4.4.1.6	MG63	and	MCF-7	Spheroid	Cultures	Labelled	with	Gold	Nanorods	

 

The fold change in apoptotic genes of MG63 spheroids labelled with gold nanorods is 

shown in figure 4-13.  High fold changes (>10) were noted for many apoptotic 

markers, with cytochrome c and caspase 8 indicating fold changes of >30 and >27, 

respectively. Again, heat shock proteins were induced, with Hsp70 and Hsp90 

increased >14 and >18 respectively. 

 

Differences in gene expression levels were noted with MCF-7 cells (figure 4-14) but 

the pattern was different to MG63 cells. A large increase was observed with many 

markers showing a fold change of >3. Of these markers, Bcl-2, PARP, cathepsin S, 

BIK, caspase 8, BAK, and cytochrome c show fold changes >10.  
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        Figure 4-13: Fold change in apoptotic gene expression in spheroid M
G

63 cells labelled w
ith gold nanorods.  Laser treated sam

ples 
are norm

alised against non-laser treated sam
ples (n=3). 

         Figure 4-14: Fold change in apoptotic gene expression in spheroid M
C

F-7 cells labelled w
ith gold nanorods.  Laser treated sam

ples 
are norm

alised against non-laser treated sam
ples (n=3). 
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4.4.2 Apoptotic Protein Marker Analysis    

 

Antibody arrays were used to quantify the expression and fold change of 43 

apoptotic proteins within monolayer MG63 and MCF-7 cells labelled with gold 

nanorods or nanoprisms following photothermal laser treatment. Whilst the RNA 

levels have been identified, mRNA molecules are transient and often shortly after 

synthesis are degraded, therefore not all mRNAs will be used as templates to 

generate proteins.  For example, in mammalian cells, on average two copies of a 

given mRNA are synthesised per hour, however cells are capable of producing 

dozens of copies of the corresponding protein per mRNA per hour and, while the 

half-life of mRNA is short (2.6–7 hours), proteins exist for longer time periods (46 

hours); thus can also impact on the perceived fold change expression of samples 

(Vogel and Marcotte 2012b). By profiling the expression of genes and proteins 

from samples it was possible to evaluate the effects of hyperthermia on cells at 

both the genomic and proteomic level.  

 

Table 4-4: The array contained a membrane substrate enclosing 43 
antibodies of known apoptotic markers; 

Target Pathway 

Bad Intrinsic Pathway  

Bax Predominantly intrinsic pathway but also 

linked to extrinsic pathway  

Bcl-2 Predominantly intrinsic pathway but also 

linked to extrinsic pathway  

Bcl-w/bcl2l2 Intrinsic pathway  

BID Extrinsic and intrinsic pathway  

BIM Intrinsic pathway  

Caspase3 Intrinsic and extrinsic pathway  

Caspase 8 Extrinsic pathway 

CD40 (TNFR) family 

member)  

JNK/AP-1 pathway 

CD40L JNK/AP-1 pathway 

cIAP-2 (Inhibitor of apoptosis 

family)  

Extrinsic pathway 

Cytochrome c Intrinsic pathway  
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DR6 (death receptor family) Intrinsic pathway  

Fas Extrinsic pathway 

FasL Extrinsic pathway 

Hsp27 Expressed in response to heat stress 

Hsp60 Expressed in response to heat stress  

Hsp70 Expressed in response to heat stress  

HTRA (member of the serine 

protease)  

Intrinsic pathway  

IGF-I (insulin-like growth 

factor member) 

Inhibits apoptosis  

IGF-II Inhibits apoptosis 

IGFBP-1 (Insulin-like growth 

factor-binding protein 

Inhibits apoptosis (forms a proapoptotic 

p53/BAK complex to promote cell survival) 

IGFBP-2 Inhibits apoptosis  

IGFBP-3 Promotes apoptosis (p53-induced apoptosis) 

IGFBP-4 Promotes apoptosis via intrinsic pathway  

IGFBP-5 Promotes apoptosis (caspase-dependent 

apoptosis) 

IGFBP-6  Promotes apoptosis (p53-induced apoptosis) 

IGF-1sR Blocks apoptosis by inhibiting BAD activation  

livin Blocks apoptosis by inhibiting members of the 

intrinsic pathway  

p21 (The cyclin-dependent 

kinase inhibitor p21) 

Inhibitor of apoptosis  

p27 Inhibits apoptosis  

p53 Promotes apoptosis  

DIABLO/SMAC Intrinsic pathway  

Survivin (member of the 

inhibitor of apoptosis family) 

Inhibits apoptosis  

sTNF-R1 (soluble TNF 

receptors) 

Activates extrinsic pathway  

sTNF-R2 Promotes extrinsic pathway  

TNF-alpha (tumour necrosis 

factor)  

Activates extrinsic pathway 

TNF-beta Activation of the JNK pathway and intrinsic 
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pathway  

TRAILR-1 (TNF related 

apoptosis inducing ligand 

receptor 1)  

Activate extrinsic pathway linked to lysosomal 

apoptosis  

TRAILR-2 Activate extrinsic pathway linked to lysosomal 

apoptosis 

TRAILR-3 Inhibits apoptosis via TRAILR-1 and -2 

inhibition 

TRAILR-4 Inhibits apoptosis via TRAIL inhibition 

XIAP Caspase-dependent pathway  

 

These targets have been shown in a variety of studies to increase in response to 

cells either undergoing apoptosis or responding to environmental insults leading to 

dynamic proteomic changes within cells	 (K. Ahmed et al. 2015a; Hassan et al. 

2014; Moulin and Arrigo 2008). While Hsps, caspases and Bcl-2 members have 

been discussed, proteins such as cytochrome c, XIAP, livin, p53, DIABLO/SMAC, 

survivin, TRAILR -1, -2, -3, -4 and XIAP will also been evaluated due to their 

direct/indirect effect on the survival or death of cells.  An example of a stained 

antibody array is shown in figure 4-15, imaged by myECL Imager (ThermoFisher). 

Differences in protein levels were quantified by comparison of array images 

produced via densitometry analysis using imageJ software. 
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Figure 4-15: Example of a human apoptosis antibody array membrane, 
targeting 43 apoptotic markers expressed by MCF-7 cells incubated with 
gold nanoprisms and laser treated. Positive controls are indicated by bright 
spots, whilst negative controls are blank areas on the membrane. 

	

4.4.2.1	MG63	and	MCF-7	Monolayer	Control	Cultures	(no	GNPs)	

 

The protein expression of pro-apoptotic and anti-apoptotic markers in control 

monolayer MG63 cells, that were either exposed to laser treatment or not, is 

shown in figure 4-16. A basal level of almost all markers was recorded, with an 

increase in several markers in response to laser treatment, indicating cellular 

stress, however previous results noted that cell viability was not compromised 

during laser treatment alone (chapter 3, section 3.4.7).  

 

Similarly, the protein expression of apoptosis markers in control monolayer MCF-7 

cells also demonstrated an increase in several markers in response to laser 

treatment, as shown in figure 4-17.  In particular, an increase of ~1.5 fold was 

observed in Hsp27 and caspase 8, which have been previously demonstrated to 

interact with each other (Y. Guo et al. 2015). While Hsp60, a potent anti-apoptotic 

chaperon, showed increased expression.  These results do, therefore, confirm that 

laser irradiation does cause mild stress to cells, but these molecular events do not 

lead to cell death. 
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        Figure 4-16: A
poptotic protein m

arker expression in m
onolayer control M

G
63 cells, w

ithout or w
ith laser treatm

ent. A
verage peek 

intensity w
as transform

ed to log
2 . D

ata show
n is m

ean ± S
.D

.  (n = 4). 

        Figure 4-17: A
poptotic protein m

arker expression in m
onolayer control M

C
F-7 cells, w

ithout or w
ith laser treatm

ent. A
verage peek 

intensity w
as transform

ed to log
2 . D

ata show
n is m

ean ± S
.D

.  (n = 4). 
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4.4.2.2	MG63	and	MCF-7	Monolayer	Cultures	Labelled	with	Gold	Nanoprisms	

 

The protein expression of apoptosis markers in monolayer MG63 cells labelled with 

gold nanoprisms, and either exposed to the laser or not is shown in figure  4-18. 

There was a significant increase in all markers for laser treated cells when compared 

to non-laser treated, demonstrating that the gold nanoprisms facilitate cellular heating 

and subsequent stimulation of apoptotic markers.   The nanoprism labelled cells 

which were not exposed to the laser (i.e. the darker bars in figure 4-18) exhibited 

higher values across almost all markers when compared the corresponding non-laser 

treated cells in figure 4-16, suggesting that the internalisation of the gold nanoprisms 

causes cellular stress. This was expected, as previous studies have shown an 

increase in cellular stress markers upon NP internalisation (Xifei Yang et al. 2010). 

However this internalisation was assessed in chapter 3 and did not compromise cell 

viability.  

 

The protein expression pattern was similar for the gold nanoprism labelled MCF-7 

cells, as shown in figure 4-19. The nanoprism labelled cells exposed to laser 

treatment consistently showed higher levels of apoptosis markers. Furthermore, the 

non-irradiated samples again showed higher levels of marker expression than the 

control MCF-7 cells (figure 4-17), indicating that nanoprism internalisation caused 

cellular stress.   
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        Figure 4-18: A
poptotic protein m

arker expression in m
onolayer M

G
63 cells labelled w

ith gold nanoprism
s, w

ithout or w
ith laser 

treatm
ent. A

verage peek intensity w
as transform

ed to log
2 . D

ata show
n is m

ean ± S
.D

. (n = 4). 

          Figure 4-19: A
poptotic protein m

arker expression in m
onolayer M

C
F-7 cells labelled w

ith gold nanoprism
s, w

ithout or w
ith laser 

treatm
ent. A

verage peek intensity w
as transform

ed to log
2 . D

ata show
n is m

ean ± S
.D

. (n = 4). 
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4.4.2.3	MG63	and	MCF-7	Monolayer	Cultures	Labelled	with	Gold	Nanorods	

 

Figure 4-20 and figure 4-21 shows the protein marker expression in MG63 and MCF-

7 monolayer cells labelled with gold nanorods respectively. In both cell types, a large 

increase in apoptotic markers is noted following laser treatment.  

 

As with the nanoprisms, there was an increase in protein expression for non-

irradiated cell samples (when compared to corresponding control monolayers in 

figure 4-16 and figure 4-17 for MG63 and MCF-7 samples, respectively), however as 

stated, the internalisation, metabolism and downstream effects of GNPs could lead to 

minor cellular stress (Petrache Voicu et al. 2015).  
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        Figure 4-20: A
poptotic protein m

arker expression in m
onolayer M

G
63 cells labelled w

ith gold nanorods, w
ithout or w

ith laser 
treatm

ent. A
verage peek intensity w

as transform
ed to log

2 . D
ata show

n is m
ean ± S

.D
. (n = 4). 

          Figure 4-21: A
poptotic protein m

arker expression in m
onolayer M

C
F-7 cells labelled w

ith gold nanorods, w
ithout or w

ith laser 
treatm

ent. A
verage peek intensity w

as transform
ed to log

2 . D
ata show

n is m
ean ± S

.D
. (n = 4). 
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4.4.3 Reactive Oxygen Species (ROS) production Following Photothermal 

Treatment  

 

Results from the previous fluidigm and protein expression analysis appeared to 

show the importance of ROS generation in stimulating apoptosis within cells via 

the increased expression of cathepsin members as well as p53, XIAP and TRAIL	
(Aits and Jäättelä 2013; Werneburg et al. 2012). Therefore, a mitochondrial and 

ROS fluorescence stain was used to visualise the mitochondria and ROS 

accumulation in MG63 cells, both laser treated and non-laser treated, labelled with 

gold nanoprisms and nanorods, or controls (containing no GNPs), shown in figure 

4-22. The non-laser treated results showed no cellular stress in control cells, with 

some minor co-localised staining evident in GNP labelled cells (upper panel figure 

4-22). However, a mass accumulation of ROS was observed in laser treated GNP 

labelled cells, as indicated by the overlay of both Mitotracker (green; mitochondria) 

and MitoSox (red; ROS). The staining confirmed an increase in cellular stress 

evident following photothermal treatment, which is linked to the mitochondria.
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Figure 4-22: Representative immunofluorescence showing MitoTracker 
staining (green fluorescence) and MitoSox staining (red fluorescence) in 
MG63 cells in laser treated and non-laser treated samples, labelled with 
gold nanoprisms, gold nanorods, or controls (containing no GNPs).  Co-
localisation is indicated by yellow; scale bar represents 50 µm.
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4.5 Discussion  
 

Gold nanoparticles (GNPs) are excellent potential candidates for photothermal 

therapy. In the previous chapter, gold nanoprisms and nanorods were assessed in 

terms of their biocompatibility in bone and breast cancer cell lines and their ability 

to generate toxic heat levels in cells following irradiation.  The resultant cell death, 

both in monolayer and 3D tumour spheroid cultures, was verified using a 

fluorescence viability stain. 

 

In this chapter, I aimed to confirm cell death via apoptosis and identify the 

pathways responsible, by using both gene and protein analysis. Most cancer 

treatments, including radiotherapy and chemotherapy, involve the activation of 

apoptosis in cancer cells, via the intrinsic and/or extrinsic pathway. It is believed 

that understanding the molecular events involved in apoptosis activation in 

response to photothermal therapy will contribute towards the development of a 

rational approach to combating cancer (S. Fulda and Debatin 2006). 

 

4.5.1 Activation of Apoptosis via the Extrinsic and Intrinsic Pathway 

 

Apoptosis is initiated through two main routes involving the plasma membrane by 

activating death receptors (the extrinsic pathway) or the mitochondria (the intrinsic 

pathway). The main molecules that have been identified and extensively studied to 

date are highlighted in figure 4-23. Both pathways converge to induce the 

activation of caspases as the terminal molecules that effect cell death (although it 

is noted that caspase-independent apoptosis pathways have been identified). 
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Figure 4-23: Schematic depicting the extrinsic and intrinsic apoptosis 
pathways with key molecules involved in initiating cell death. Note that the 
extrinsic pathway utilise membrane-bound death receptors, whilst the 
intrinsic relies on external stimuli to influence the mitochondria (Mariño et 
al. 2014). 

 

4.5.1.1	The	Intrinsic	Pathway	

 

The intrinsic, mitochondrial, pathway is initiated by stress signals such as 

radiation, hypoxia, free radicals and hyperthermia (Elmore 2007). These stimuli 

can directly affect the inner mitochondrial membrane, resulting in the mitochondrial 

permeability transition (MPT) pore, loss of the mitochondrial transmembrane 

potential and DNA damage. This in turn causes the release of apoptotogenic 

factors such as cytochrome c, apoptosis inducing factor (AIF) or Smac/DIABLO 

from the mitochondrial intermembrane space into the cytosol and activation of p53 

(Nikoletopoulou et al. 2013). P53 is a potent tumour suppressor gene and upon 

activation during DNA damage or intrinsic/extrinsic signalling, acts a transcription 

factor to activate the transcription of target genes such as BAX, NOXA and PUMA, 

all key pro-apoptotic proteins involved in the disruption of the mitochondrial 

membrane and thus, the intrinsic pathway	(Yağmur Kiraz et al. 2016b). 
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As indicated in figure 4-23, once cytochrome c has been released into the cytosol, 

it is capable of activating caspase 9 by interacting with the cytoplasmic protein, 

Apaf-1 and procaspase-9 to form the active multiprotein apoptosome. Activating 

caspase 9 in turn stimulates effector caspases 3, 6 and 7, resulting in degradation 

of cellular components and apoptosis	(Ilmarinen et al. 2014; K. Sinha et al. 2013). 

Meanwhile, SMAC/DIABLO, along with HtrA2/Om, also released from the 

mitochondria are capable of interacting with, and impeding IAPs (inhibitors of 

apoptosis proteins), including XIAP (X-linked inhibitor of apoptosis protein), c-IAP1 

(Apoptosis Inhibitor 1) and c-IAP2 Apoptosis Inhibitor 2) (Du and Elemento 2015; 

Gustavo Martinez-Ruiz et al. 2008b; Q.-H. Yang and Du 2004). 

 

In addition, activation of BAX/BAK also occurs at the mitochondrial outer 

membrane (MOM)	 (Nikoletopoulou et al. 2013). Upon activation, BAK and BAX 

undergo conformational changes to form homo-oligomers and translocate to the 

mitochondrial membrane, disrupting mitochondrial potential and the subsequent 

release of important pro-apoptotic molecules such as cytochrome c and 

DIABLO/SMAC	 (Ren et al. 2010). Though the exact mechanism of BAK/BAX 

initiation is still unknown, it has been proposed that the pro-apoptotic protein, 

PUMA can activate BAX and BAK-dependent permeabilization of the MOM	
(Nakano and Vousden 2001). Although Willis et al also observed BAX/BAK 

activation occurring naturally once BH-3 only proteins inhibit pro-survival proteins 

such as Bcl-2, Bcl-xL, and Mcl-1 (Willis et al. 2007).  

 

The mitochondrial outer membrane (MOM) permeability is a vital catalyst to 

activating the intrinsic pathway, with Blc-2 members responsible for regulating its 

permeability	 (Gillies and Kuwana 2014). Disruption to the MOM can occur via 

truncated BID (tBID); the conformational change of BID to tBID is actually 

orchestrated by caspase-2 in response to various stimuli including an increase in 

ROS concentration (Bonzon et al. 2006; S. Kumar 2009). The activation of tBID 

leads to the  oligomerisation of  Bak and/or Bax at the MOM, again leading to the 

disruption of mitochondrial outer membrane potential and the subsequent release 

of cytochrome c and SMAC/DIABLO into the cytosol	 (S. Fulda and Debatin 2006; 

Kantari and Walczak 2011; Ren et al. 2010).  The convergence between the 

intrinsic and extrinsic pathway is observed in this initiation as BID is also activated 

by caspase 8, which has been previously shown to be an active member of both 

the extrinsic and intrinsic pathways (Kantari and Walczak 2011).  
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4.5.1.2	The	Extrinsic	Pathway	

 

In apoptosis initiated by death receptor signalling, the extrinsic pathway, 

mitochondrial damage is not required in most cells as caspase 8 can directly 

activate downstream caspases	 (Westphal et al. 2011). The cell surface death 

receptors, include Fas (CD95/APO1), TRAIL-R (TNF related apoptosis receptor), 

death receptor 5 (DR5; also known as TNFRSF10B) receptors and TNFα (tumour 

necrosis factor-α) receptors (Nikoletopoulou et al. 2013). These receptors can be 

activated by their respective ligands, such as CD95 ligand, TNFα as well as TRAIL 

(Simone Fulda 2015). Once activated, corresponding receptors begin to activate 

and the recruitment of adaptor proteins such as adaptor FADD (FAS-associated 

DEATH domain protein), or in the case of TNFR1 the adaptor TRADD (TNFR1-

associated DEATH domain protein), begin to complex with inactive caspase 8, 

leading to the formation of DISC (death-inducing signaling complex) (Simone 

Fulda 2015; Vucic et al. 2011).  DISC can activate caspase 8, this active caspase 

8 is then capable of cleaving BID to tBID, thus leading to the downstream 

activation of BAX/BAK, and the intrinsic apoptosis pathway, although it can also 

activate caspase 3 and 7 independently, thus bypassing the intrinsic pathway	 (Y. 

Kiraz et al. 2016a).  

 

4.5.1.3	Lysosome-mediated	apoptosis		

 

For many years, caspases have been regarded as the chief instigators of 

apoptotic signaling however fairly recent studies have begun to show the 

significance of proteases from the endosomal/lysosomal systems (Ivanova et al. 

2008). Lysosomes are cytoplasmic membrane-enclosed organelles containing a 

plethora of hydrolytic enzymes, including proteases such as cathepsin members 

(cathepsin -B,-D, -L)  which are capable of activating pro-apoptotic effectors such 

as caspase 2, BID, BAX/BAK and can even directly influence the MOMP, 

prompting the intrinsic pathway (Boya and Kroemer 2008b). For cathepsins (and 

other hydrolytic enzymes) to escape the lysosome and become active within the 

cytosol, the lysosome membrane must first be permeabilised, this lysosomal 

membrane permeabilisation (LMP) can occur via various stimuli, including an 

increase in ROS concentration, upstream protease activation, p53 activation/DNA 

damage and pro-apoptotic Bcl-2 members (Aits and Jäättelä 2013). LMP has also 
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been shown to be involved in processes such as necrosis, necrotoposis, 

autophagy as well as apoptosis (Repnik et al. 2013). It is thought that a 

quantitative relationship exists between the amounts of LMP within a cell and the 

pathway of cell death with more moderate stimuli triggering a modest LMP 

reaction leading towards more of an apoptotic pathway while more rigorous insults 

leading to an increased LMP response and a complete release of lysosomal 

contents, favouring a more necrotic pathway (Kroemer and Jaattela 2005; Repnik 

et al. 2013; B. Turk and Turk 2009). 
 

4.5.2 Changes in Apoptotic Gene Expression  

 

4.5.2.1	Laser	Treatment	Alone	Induces	Mild	Cell	Stress	

 

The results in this chapter indicate that laser treatment of unlabelled cells (i.e. 

control cells) causes mild cellular stress but does not affect cell viability.  The 

results indicating which genes were increased in both monolayer and 3D cultured 

cells are summarised in table 4-5. 
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Table 4-5. A table indicating the genes expressed and the related apoptosis 
pathway following laser treatment of unlabelled control MG63 (bone) and 
MCF-7 (breast) cancer cell lines in 2D and 3D culture. 

 

 

With MG63 monolayer cells, the main increases noted were in BOK, BID, FAS-L, 

Bcl-2 and caspase 3. BOK is a pro-apoptotic Bcl-2 family member that has been 

shown to lead to BAX/BAK activation and thus the intrinsic pathway (Echeverry et 

al. 2013), while the overexpression of BID is also linked to BAX/BAK activation 

and the subsequent release of pro-apoptotic proteins from mitochondria.  The 

elevated Bcl-2 expression may have reduced capsase 9 and thus caspase 3 

activation through inhibition of cytochrome c release (Elmore 2007), however 

caspase 3 expression was elevated, suggesting involvement of the extrinsic 

pathway involving FAS-L (although subsequent activation of FAS and caspase 8 

would be required, which was not shown here). It may therefore appear that 

caspase 3 was activated by a novel ROS activated pathway (C.-H. Hou et al. 

2014b). The mitochondrial / ROS fluorescent staining in figure 4-22 did indicate 

Cell 
Type 

Culture Increased Genes 
Expressed 

Apoptosis 
Pathway 

Thermotolerance 

MG63  monolayer BID, BOK, BIK 
 
FAS-L,  
Caspase 3  
(>2 fold change) 

Intrinsic 
 
Extrinsic 

 

MCF-7  monolayer PMAIP 1 
Cytochrome c 
(>2 fold change) 

Intrinsic 
 

Hsp90 

MG63  spheroid BAX  
 
Caspase 7 
 
PARP 
(>5 fold change) 

Intrinsic  
 
Intrinsic/extrinsic 
 
DNA damage, 
oxidative stress 

Hsp90 

MCF-7 spheroid Caspase 8 
 
 
Cytochrome c, 
Survivin 
(>2 fold change) 

Extrinisic pathway 
 
Intrinsic pathway 
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the presence of ROS in some cells while the generation of ROS in cells upon 

continuous wave laser exposure has been previously confirmed (Mohanty et al. 

2006).  

 

Interestingly the breast cancer cell line, MCF-7, whilst also indicating signs of 

cellular stress, showed very small variations in markers, although a fold change >2 

was observed in Hsp70, PMAIP 1 and >4 fold change in cytochrome c. These 

markers have previously been noted in response to an increase in ROS 

accumulation within cells, an occurrence that has been linked to NIR exposure 

(Eno et al. 2013). Oxidative stress within cells can also lead to the downstream 

release of cytochrome c from mitochondria, which may account for its increase 

expression (C.-H. Hou et al. 2014b).  

 

When cells were cultured in 3D spheroids, MG63 cells showed a greater level of 

cell stress as an increase in the majority of apoptotic markers were observed with 

BAX, caspase 7, PARP and Hsp90 showing >5 fold increase. Caspase 7 can be 

directly activated by capsase 9 and as our results suggest, this intrinsic activation 

may be responsible for its increased expression (Brentnall et al. 2013). PARP-1 

plays key roles in DNA repair, chromatin modulation, and transcription upon 

cellular stress and is highly expressed in cells exposed to oxidative stress and 

thermal pressure (Luo and Kraus 2012). Its unregulated expression suggests laser 

exposure may increase ROS concentration in cells and possible genetic 

disruption, although again previous data supports the high viability of MG63 

spheroid control samples. Hsp90, as previously described in chapter 1 (section 

1.3.1) is an integral member of the heat shock protein family, Hsp90 is involved in 

cellular homeostasis, transcriptional regulation, chromatin remodeling, and DNA 

repair (Pennisi et al. 2015). The expression of both Hsp90 and PARP-1 suggest 

DNA damage via increased ROS production. Hsp90 may also be critical in 

regulating apoptosis by supporting Protein kinase B (PKB) activation, which in turn 

prevents cytochrome c release, and also by negatively regulating the association 

of Apaf-1 with caspase 9	(Workman and Powers 2007).  

 

However, MCF-7 spheroids displayed similar results to their monolayer 

counterparts, although a >2 fold change increase was observed in caspase 8, 

cytochrome c, and survivin. Survivin is a member of the IAP family and can inhibit 

apoptosis and promote cell proliferation (S. Cho et al. 2010b). Survivin has 
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previously been shown to inhibit SMAC/DIABLO while also stabilising XIAP – a 

protein capable of inhibiting caspase 3,7 and 9 (S. B. Bratton et al. 2002; Y.-F. Lin 

et al. 2013b; Pavlyukov et al. 2011). 

 

In summary, the bone cancer cell line (MG63) appears to be more susceptible to 

laser treatment than the breast cancer cells (MCF-7). Furthermore, cells respond 

more acutely to the laser when cultured as 3D spheroids rather than in monolayer 

cultures. This may be due to the tighter cell-cell interactions within spheroid culture 

allowing for a greater number of cells to be activated, or it may point towards an 

issue in heat dissipation in 3D compared to 2D, which has not been previously 

observed (Khoei et al. 2004; A. S. Song et al. 2014; Yamamoto et al. 2015). In 

both cases cellular stress appears to be linked to an increase in ROS within the 

cells, which is supported by the occasional ROS/mitochondria staining in figure 4-

22. 

 

4.5.2.2	Laser	Treatment	of	GNP	Labelled	Cells	Activates	Apoptosis	

 

The screening of 42 apoptotic genes has provided a widespread analysis of the 

molecular events that occur following hyperthermia via photothermal laser 

treatment of samples labelled with GNPs. Fluidigm analysis confirmed cell death 

occurred via apoptosis, in both 2D monolayers and 3D multicellular tumour 

spheroids when cells were labelled with GNPs and laser treated. The results are 

summarised in table 4-6 detailing the genes that were increased and the apoptosis 

pathway they are lined to (table 4-6.). When considering all samples, it appears 

the predominant pathway to induce apoptosis within cells is the intrinsic 

(mitochondrial) pathway (Z.-G. Cui et al. 2014e; Pérez-Hernández et al. 2015; J.-f. 

Zhang et al. 2016). However the high expression of caspase 8, BID and caspase 3 

in some samples may suggest that apoptosis occurring via the extrinsic pathway 

(Nagarsekar et al. 2008).  
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Monolayer MG63 Cells: Gold Nanoprisms and Nanorods 
 
MG63 monolayers labelled with gold nanoprisms showed an increased gene 

expression in the majority of apoptotic markers, with >5 fold change expression 

measured in survivin, BAD, BAX, PMAIP 1, BAK and cathepsin S. While a >10 

fold change expression was measured in caspase 8, cathepsin B, caspase 3, BID, 

caspase 7, caspase 9, DIABLO/SMAC, BCL-XL and Hsp70 and Hsp90. The 

majority of these markers indicate the intrinsic apoptotic pathway, as seen by the 

increased expression of BID, cytochrome c, DIABLO/SMAC and caspase -3, -7 

and -9, however the expression of caspase 8 also supports the activation of the 

extrinsic pathway. 

 

The up regulation of cathepsin has been linked to activating caspase 3 and 7, as 

well as BID activation	 (Leist and Jaattela 2001). Cathepsins are proteases which 

mainly located within lysosomes and capable of protein degradation; they were 

originally believed to cause degradation during necrotic and autophagic death (V. 

Turk et al. 2012). Their functions have been extensively explored and shown to 

promote apoptosis by degrading anti-apoptotic proteins such as Bcl-2, Bcl-xL, Mcl-

1 and XIAP, thereby tipping the scale towards apoptosis (V. Turk et al. 2012).
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Figure 4-24: Schematic depicting the permeabilization of a lysosome 
membrane by a variety of external stimuli, DNA damage or via intracellular 
signalling leading to the release of cathepsin from the lysosome and the 
simultaneous degredation of pro-survival proteins and subsequent 
activation of pro-apoptotic proteins. 

 

Cathepsin S is a cellular cysteine protease, with the over-expression of this 

protease, associated with cell survival	 (K.-L. Chen et al. 2012). However the 

increased expression is also linked to autophagy - a highly conserved metabolic 

process that permits the degradation and recycling of cellular constituents, in 

response to cell stress	 (Mariño et al. 2014). Cathepsin B is released upon 

lysosomal disruption and has been shown to degrade Bcl-xL proteins, thus 

promoting apoptosis and shifting the intracellular events away from necrotic 

activity (de Castro et al. 2016).  Cathepsin D activity is more controversial, and has 

shown both anti- and pro- apoptotic properties and has unfortunately not been fully 

characterised, although its activation appears similar to cathepsin B, released into 

the cytosol upon lysosome disruption (Minarowska et al. 2007). Oxidative stress 

again appears as a marker, as the increased expression of PMAIP (Noxa) was 

observed in increasing ROS concentrations (Eno et al. 2013). PMAIP expression 

has been shown to elevate in response to increased ROS concentration, in 
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particular hydrogen peroxide (h2O2)	 (Eno et al. 2013). H2O2 has also shown to 

cause lysosomal membrane permeabilisation, which may explain the increased 

expression of cathepesin observed.  

The increase in NOXA expression is also associated with a decrease in Bcl-2 and 

Bcl-xl and may explain the more modest expression values seen in Bcl-2 

expression (Barkinge et al. 2009). BAD is a pro-apoptotic marker, that contributes 

to the intrinsic pathway and is integral at lowering the threshold at which tBID and 

BAX/BAK are instigated and inhibiting Bcl-2 and Bcl-xl, although results show a 

minor fold change in Bcl-2, Bcl-xl expression remains unaffected by its increased 

expression (Howells et al. 2011). Survivin, is a unique inhibitor of apoptosis, that 

also showed >5 fold change, and although its function has not been entirely 

characterised, it has been shown that survivin can inhibit caspase 9 activation, 

although our results do not reflect this (Y. Lin et al. 2016; McKenzie and Grossman 

2012). Bcl-xl is an anti-apoptotic protein, found localised in the cytosol, 

surrounding the outer mitochondrial membrane, although its definitive role still 

remains controversial, Bcl-xl has been shown to inhibit pro-apoptotic members 

such as BAX/BAK tBID, BIM and PUMA (Janet H. Zheng et al. 2016; Zhou et al. 

2011). These results show a heavy influence of both the intrinsic pathway and 

ROS induced-apoptosis pathway, which has been explored and supported in 

isolation by previous groups. 

 

When MG63 monolayers were labelled with gold nanorods a similar large increase 

(>10 fold) was observed in genes including BID, Hsp90, caspase 9, SERPIN B10, 

and Fas-L, whilst BAD, BAK, BBC3 (PUMA), capsase 3, Hsp70 and APAF-1 

targets were also increased (>5 fold). As with the MG63 cells labelled with gold 

nanoprisms, many genes were linked to the intrinsic pathway, however there were 

some key genes in this pathway that differed from the MG63 cells labelled with 

nanoprisms, such as BBC3 (commonly referred to as PUMA). This is a pro-

apoptotic complex and has been discussed for its role in directly activating Bax 

and Bak activation proteins leading the subsequent release of cytochrome c from 

mitochondria and caspase 3 activation. This in turn leads to the proteolysis of key 

cellular substrates, including PUMA itself (Ramírez-Labrada et al. 2015). 
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Monolayer MCF-7 Cells: Gold Nanoprisms and Nanorods 
 
MCF-7 monolayers labelled with gold nanoprisms displayed potent intrinsic 

markers such as cytochrome c caspase 9, APAF-1, DIABLO, caspase 7 and 

caspase 3, suggesting hyperthermia contributed to the direct disruption of the 

outer membrane mitochondrial potential via ROS production and/or rupture by the 

persistent opening of the permeability transition pore due to mitochondrial calcium 

overload during heat stress (Belhadj Slimen et al. 2014). This would explain the 

more modest fold change expression of BAX and BAK, which are the notable 

proteins that instigate the intrinsic pathway. 

 

With regards to the extrinsic pathway, caspase 8, which chiefly coordinates the 

pathway, demonstrated a large increase (>21 fold change). No notable expression 

changes were observed in FAS or TNFSF10 gene expression, but the caspase 8 

fold change coincided with increased expression of BID and the subsequent 

release of cytochrome c. With regards to thermotolerance, as seen previously, in 

MG63 monolayers labelled with gold nanoprisms, in hyperthermic conditions, both 

Hsp70 (> 10 fold) and Hsp90 (>5 fold) were expressed. 

 

When MCF-7 cells were labelled with gold nanorods, as with the MG63 cells, the 

majority of genes were linked with the intrinsic pathway, with a >5 fold change in 

BMF, BIM, BAK, caspase 9, cytochrome c and caspase 7.  BIM, a pro-apoptotic 

Bcl-2 family member and is believed to facilitate BAX/BAK activation (Bean et al. 

2013; Koenig et al. 2014). Unlike MG63 cells, there were little/no changes in the 

extrinsic pathway, however interestingly the lysosome pathway was strongly 

implicated, with large increased noted in cathepsins -B, -K and -S. In addition, a 

>5 fold was noted in CFLAR (c-FLIP), CFLAR is a protein that can inhibit the 

extrinsic pathway by blocking the activation of FAS and TRAIL receptors thus 

preventing the activation of caspase 8, however it has been suggested CFLAR 

expression may potentiate necrotoposis (Safa 2013; Tsuchiya et al. 2015). The 

potent expression of Hsp70 and Hsp90 (>10 fold change) suggest a high 

concentration of denatured proteins via hyperthermia, while the overexpression of 

XIAP (>10 fold change) is associated with anti-apoptotic features as previously 

described (Hamacher-Brady and Brady 2015).  
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Figure 4-25: Apoptosis signaling pathways and roles of c-FLIP in preventing 
apoptosis. Interaction of TRAIL with its receptors DR4 and DR5 or binding of 
Fas ligand to Fas receptor initiates the death receptor (extrinsic) and 
subsequently mitochondrial apoptosis signaling pathways through FADD-
dependent autocatalytic activation of caspases -8 and -10 and Bid cleavage. 
c-FLIP inhibits caspase-8 and -10 activation, preventing the downstream 
apoptosis cascade. (Taken from(Safa 2013)).  

 

In summary, when referring to table 4-6 to identify and compare changes in 

monolayer MG63 and MCF-7 cultures following GNP induced photothermal 

hyperthermia, similarities and differences are noted between cell types. Both bone 

and breast cancer cell lines respond strongly to hyperthermic treatment, with large 

increases noted in apoptotic genes. Gold nanoprisms activate apoptosis mainly 

through the intrinsic pathway, involving mitochondria, in both cell types. However 

MG63 cells also engage the lysosomal pathway (figure 4-24). Meanwhile, when 

apoptosis was activated by gold nanorods, MG63 cells initiated both the intrinsic 

and extrinsic pathways, whilst MCF-7 cells responded differently, utilising the 

intrinsic and lysosomal pathways and necrotoposis/autophagy.  
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3D Spheroid MG63 Cells: Gold Nanoprisms and Nanorods 

 

MG63 spheroids labelled with gold nanoprisms demonstrated a large increase in 

markers associated with both the intrinsic and extrinsic pathway and the lysosomal 

pathway.  Similar to their corresponding monolayer results, which heavily relied on 

the intrinsic pathway, a >5/>10 fold change expression was observed in BAX, 

BAD, BID, cytochrome c, APF-1 and caspase 3. However when MG63 cells were 

cultured as 3D spheroids and labeled with nanoprisms, several new genes were 

highly expressed (>5/>10 fold) including FAS, Bcl-2 and MCL-1; all involved in the 

extrinsic pathway. In addition, spheroid culture further activated apoptosis via the 

lysosomal pathway, with >5 fold changes in cathepsins -K, -S and -B.  

Thermotolerance was again noted, with >10 fold change in Hsp90 and Hsp70. 

Therefore, results suggest that MG63 cells in 3D culture undergo apopotosis via 

the conventional intrinsic and extrinsic pathway, but also via more novel caspase-

independent pathway orchestrated by cellular oxidative stress. 

 

As the majority of these molecules have been discussed, focus will be drawn to 

the lesser-known apoptotic markers. MCL-1 showed ~13.8 fold change 

expression. Although known as a potent anti-apoptotic Bcl-2 family member, 

precisely how it functions to promote survival of normal and malignant cells is 

poorly understood although it has been shown to interact with BAK, tBID, BIM and 

PUMA (Gelinas and White 2005; Perciavalle et al. 2012; Thomas et al. 2010).  In 

addition, SERPIN B3 displayed ~12.4 fold change. SERPIN B3 (Squamous Cell 

Carcinoma Antigen, SCCA1) is a member of the ov-serpins, a serine protease 

inhibitors family and is an important modulator in apoptosis, serving to protect cells 

from apoptotic stimuli, such as TNF-α signaling. While its role in inhibiting 

cytochrome c has been observed (Thomas et al. 2010). Importantly, however, 

SERPIN B3 protects against oxidative damage caused through the increased 

intracellular ROS concentration and interestingly, is upregulated under hypoxic 

conditions, a feature associated with 3D multicellular tumour spheroids (Cannito et 

al. 2015; Ciscato et al. 2014; Vidalino et al. 2009). 

 

When MG63 spheroids labelled with gold nanorods were laser treated, as with the 

nanoprism labelled spheroid MG63 cells, apoptosis was activated through a range 

of pathways, including the intrinsic, extrinsic and lysosomal. Genes involved in the 

intrinsic pathway were similar to monolayer cultures and nanorod spheroids, they 
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included a >5 fold change in BID, BIK, BAK, Bcl-2, BCL2L15, caspases 3, 7 and 9, 

with a > 20 fold increase in BAD, and a >30 fold increase in cytochrome c.  Whilst 

these are similar genes to monolayer samples, the increases in 3D culture are 

much higher. 

 

The extrinsic pathway was again activated when MG63 cells were laser treated in 

3D culture with a >10 fold change in TNFSF10, FAS-L and a >27 fold increase in 

caspase 8 observed. TNFSF10 (also referred to as tumour- necrosis-factor-related 

apoptosis-inducing ligand -TRAIL) once activated by appropriate complexes can 

aggregate, leading to the oligomerisation of TRAIL receptors and the initiation of 

adapter molecules such as FADD as well as signalling molecules such as caspase 

8 to form the death-inducing signalling complex (DISC), eventually leading to the 

activation of caspase 8 and thus, the extrinsic pathway, as previously described	
(Ramírez-Labrada et al. 2015). This would validate the greatly increased 

expression observed in caspase 8 (>27Fc), while Fas-L (fas ligand), upon binding 

to FAS receptors, can initiate the same pathway. However as compared to the 

prism spheroid cultures a >5 fold change was noted in SERPIN B3. Survivin, a 

member of the family of inhibitor of apoptosis proteins, capable of inhibiting active 

caspase 9, also showed > 5 fold increase (Y. Lin et al. 2016; Alain C. Mita et al. 

2008b), while thermotolerance was again induced with increases noted in Hsp90 

and Hsp70, indicative of hyperthermia-induced apoptosis	 (Reihaneh Haghniaz et 

al. 2015b).  
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Figure 4-26: Extrinsic Apoptosis Signaling Network. The extrinsic apoptosis 
pathway is activated upon ligand binding to death receptors (TNFR1, 
Fas/CD95, DR4/5) leading to the assembly of FADD/TRADD and caspase 8 to 
form the death-inducing signaling complex (DISC), leading to caspase 8 
activation and downstream effects. TNFR1 may promote survival signaling 
through activation of NFκB (from(Krakstad and Chekenya 2010)).  

 
3D Spheroid MCF-7 Cells: Gold Nanoprisms and Nanorods 

 
Whilst apoptosis was activated mainly via the intrinsic pathway in nanoprism 

monolayer cultures, the 3D MCF-7 spheroids labelled with gold nanoprisms 

employed both intrinsic and extrinsic pathways. Increases of >5 fold were noted in 

BIM, BAK, caspase 7 and >10 fold in BID, BAX, caspase -3 -8 and -9, Bcl-2 and 

cytochrome c for the intrinsic pathway. However >5 fold changes were recorded 

for PARP, FAS-L, and MCL-1 in the extrinsic pathway, suggesting accumulation of 

ROS concentration and oxidative stress within MCF-7 spheroids (Luanpitpong et 

al. 2013; Luo and Kraus 2012). The denaturing effect of hyperthermia was again 

apparent with the increased expression of Hsp90 and Hsp70.  
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The MCF-7 spheroids labelled with gold nanorods indicated that apoptosis was 

activated mainly by the intrinsic and lysosome pathways, similar to the 

corresonding monolayer cultures.  Fold changes (>5) in APAF-1, caspase 9, 

cathepsin K, DIABLO/SMAC, caspase 7, while a > 10 fold change was detected in 

cytochrome c. These results suggest that apoptosis was mainly orchestrated by 

the intrinsic pathway, owing to the increased expression of caspase 9 and APAF-1 

expression, although preceding markers (e.g. BAX/BAK) expression was low, 

which may indicate that hyperthermic treatment with nanorods disrupted the outer 

membrane potential, independently from these complexes, as has been 

hypothesised elsewhere (White et al. 2012). The lysosomal pathway was also 

implicated, up to a lesser extent, with increased expression of cathepsin -B, -L, 

and -K, which is released upon lysosomal disruption and has been shown to 

degrade Bcl-xL proteins and promote apoptosis (de Castro et al. 2016). 

 

In summary, when considering the apoptosis response of 3D spheroid cultures at 

the gene expression level, both bone and breast cancer spheroid cultures commit 

to apoptosis following GNP-induced hyperthermia using a combination of 

pathways. MG63 spheroids differed from their corresponding monlayer culture 

results by utilising a wider range of pathways and demonstrating higher levels of 

gene changes, whilst response between prisms and rods in 3D were similar. 

Meanwhile MCF-7 spheroids also differed from their corresponding monolayer 

results with the nanoprism results, as this time the extrinsic pathway was also 

involved, whilst nanorods induced a similar response in monolayer and spheroid. 

 

Apoptotic Gene Expression: Apoptosis Pathways and Thermotolerance  
 

The quantification of various apoptotic gene markers was conducted via fluidigm 

analysis. Overall, these results suggested that laser treatment alone can induce 

mild cellular stress within samples. Cellular stress was believed to be to due to an 

increase in ROS accumulation within cells, as indicated by the increase in markers 

up-regulated in response to ROS such as PARP-1	(Rodríguez-Vargas et al. 2012), 

PMAIP	 (Tonino et al. 2011) and caspase 3	 (D. Y. Shin et al. 2009). ROS 

generation in cells has been directly linked to laser exposure	 (Mohanty et al. 

2006). Mohanty and Gupta studied the effects of a continuous wave 5W laser 

laser on HeLa cells and observed mitochondrial membrane potential changes, with 
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the subsequent leakage of electrons from the respiratory chain, resulting in the 

increased generation of ROS in the cytosol (Mohanty et al. 2006). However, whilst 

these intracellular events also occurred in our control samples (with no GNPs), 

they did not translate to cell death, as shown in previous viability staining (section 

3.4.7).  

 

As expected, cells labelled with GNPs and laser irradiated displayed a far larger 

fold change in apoptotic markers, resulting in cell death (viability staining, section 

3.4.7) (Lucian Mocan et al. 2015b). The activation of the intrinsic pathway was 

expected	 as several previous reports had demonstrated activation of intrinsic 

pathway markers in response to hyperthermic temperature profiles	 (C.-H. Hou et 

al. 2014b; Klostergaard et al. 2006; Tu et al. 2006).	 In this study, caspase 3, 9, 

APAF-1, and BAX/BAK expression was particularly highlighted. However, the 

extrinsic pathway was also activated within this study, in particular with the 

spheroid cultures (Nagarsekar et al. 2008), as demonstrated by the increased 

expression of caspase 8, BID, FAS, and FAS-L; indeed, MG63 spheroid samples 

incubated with gold nanorods resulted in a >25 fold change in caspase 8.  

 

The expression of cathepsins was also an interesting observation, which was 

particularly notable in MG63 monolayers and spheroid cultures when labelled with 

nanoprisms, and MCF-7 monolayer and spheroid cultures when labelled with 

nanorods. As previously explained, (figure 4-24) cathepsins are proteases that are 

located primarily within lysosomes, known as ‘suicide bags’. The loss of the 

lysosomal integrity, and the subsequent release of cathepsin into the cytosol, has 

been implicated in various forms of cell death including necrosis (de Castro et al. 

2016). Due to their broad spectrum of protein degradation, cathepsin up-regulation 

can lead to necrotic cell death due to loss of cellular functions, such as energy 

production and osmotic balance, as well as loss of cell structural integrity.  

However, cathepsin release has also been associated with caspase-dependent 

apoptosis via BID activation and mitochondrial membrane permeability (de Castro 

et al. 2016). Cathepsin (B) expression is also a feature during hypoxia, which may 

likely occur in tumour spheroids, and may therefore explain its dramatic up-

regulation in spheroid samples rather than monolayer samples that appear to have 

elevated basal cathepsin B expression (Wickramasinghe et al. 2005). 

Nonetheless, the increased expression of cathepsin measured in nanoprism 
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labelled MG63 monolayers may suggest cell death via necrosis or be indicative of 

the process of autophagy.  

Autophagy has been reported in response to hyperthermia, though it has been 

argued that it’s role may be more protective than destructive, by degrading 

misfolded proteins and preserving protein homeostasis (Dokladny et al. 2015). 

This has been further validated by previous studies in which Hsp70 inhibitors 

prevented the activation of autophagy (Budina-Kolomets et al. 2014). The 

exponential expression of caspase 8 in nanoprism labelled MCF-7 

monolayer/spheroid cultures, as well as nanorod labelled MCF-7 spheroids, and 

nanoprism/nanorod labelled MG63 monolayers was difficult to explain, as the 

majority of these samples did not show an increased expression in preceding 

extrinsic factors (Fas, Fas-L, TNFSF10), although isolated studies have shown 

that the activation of caspase 8 may occur during hypoxia and ROS generation 

(Byeong Mo Kim and Chung 2007). Caspase 3 has also shown to increase the 

expression of caspase 8, which then activates BID and the activation of BAX/BAK 

to further permeate the mitochondrial membrane, thus feeding a positive loop of 

caspase-depenent apoptosis (Karine Sá Ferreira et al. 2012b). Gonzalvez et al, 

(2008) also challenged the activation of caspase 8, describing caspase 8 

integration into Cardiolipin (CL)-rich domains of the outer mitochondrial membrane 

results in full activation of caspase 8 which can then directly access and cleave its 

substrate Bid (Schug and Gottlieb 2009). The quantification of caspase 8 from our 

samples suggests caspase 8 up-regulation occurs predominantly via the caspase 

3 positive feedback loop and activation by Cardiolipin at the outer mitochondrial 

membrane, as well as the conventional extrinsic pathway involving death receptor 

aggregation and DISC formation (figure 4-23).  

 

With regards to thermotolerance, in all hyperthermic cell cultures both Hsp70 and 

Hsp90 were upregulated owing to their chaperon functioning upon disruption to 

protein homeostasis as previously described in section 1.3. While Hsp27 is a 

potent chaperon, Hsp90 and Hsp70 are primarily investigated during heat shock 

response (Zunino et al. 2016). Miyagawa and co-workers validated this by 

demonstrating that the inhibition of Hsp90 and Hsp70 increased the sensitivity of 

magnetic nanoparticle-mediated hyperthermia in melanoma cells (Tomoyuki 

Miyagawa et al. 2014b). In a similar set up to our own, Ali et al demonstrated that 

Hsp70 inhibition produced an increased level of cells undergoing apoptosis and a 

reduction in MCF-7 cell viability after photothermal treatments using gold nanorods 
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(Ali et al. 2016). Hsp70 functions in the transportation of precursor proteins into 

cellular compartments and is vital for protein homeostasis, including protein folding 

and degradation of unstable proteins (Sanjay Kumar et al. 2016). However, during 

cellular stress human cells produce high levels of Hsp70, constitutively expressed 

as Hsp70, mitochondrial Hsp75, and GRP78, which are found in the endoplasmic 

reticulum and act as molecular chaperones, assisting proper folding/refolding 

(Sanjay Kumar et al. 2016). While its chaperon activity has been established, 

Hsp70 has also been shown to participate as an anti-apoptotic protein, capable of 

inhibiting both strands of the extrinsic and intrinsic pathway. In the intrinsic 

pathway Hsp70 has been shown to inhibit BAX translocation, inhibiting the 

formation of the apoptosome (caspase 9, APAF-1, cytochrome c, complex)	
(Shawn B. Bratton and Salvesen 2010). In the extrinsic pathway, Hsp70 has been 

shown to inhibit BID activation (to tBID) (Lanneau et al. 2008a). These events are 

summarised in figure 4-26. Hsp90 has also demonstrated similar inhibitory 

mechanisms, inhibiting BID and indirectly inhibiting caspase 8, as shown in figure 

4-26 (Lanneau et al. 2008a).  

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-27. Heat shock proteins: essential proteins for apoptosis regulation 
(Lanneau et al. 2008). 
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4.5.3 Photothermal Changes in Apoptotic Protein Expression  
 
Following on from the gene expression studies, the expression of 43 protein 

apoptotic markers were evaluated in bone cell (MG63) and breast cell (MCF-7) 

monolayer cultures to (i) determine the key molecules involved in apoptosis and 

(ii) verify the apoptosis pathways highlighted in the gene expression studies.  All 

monolayer cultures were labelled with either gold nanoprisms or nanorods (0.1 

mg.ml-1) and intracellular protein levels were assessed by cell lysis and antibody 

arrays.  

 

4.5.3.1	Laser	Treatment	Alone	Induced	Cellular	Stress	Response	

 

The results (figures 4-16 and figure 4-17), of laser treatment on control cell culture 

(with no GNPs) indicated an increase in several apoptotic markers in the presence 

of laser treatment alone compared to control groups (no laser treatment), however 

these peak mean intensity fold changes were small, with a large standard 

deviation leading to lack of statistical validity, therefore suggesting that the effect 

of laser treatment may not be as prominent as first assumed.  

 

With regards to MG63 cells, the markers that were increased included proteins 

involved in the extrinsic pathway (DR6), those involved in both the intrinsic and 

extrinsic pathway (BID, caspase 3), with apoptosis promoters (p53) and a range of 

apoptosis inhibitors (p27, IGF-I and in particular IGF-II). Both p27 and p53 have 

been widely explored for their roles in apoptosis and cell cycle arrest	(L. Fan et al. 

2014). The tumour suppressor p53 protein has important functions within cells, 

regulating cell senescence, metabolism, DNA repair and, importantly, cell cycle 

and apoptosis	 (J.-P. Kruse and Gu 2009). It is believed that an increased 

expression of p53 can encourage cell cycle arrest or apoptotic initiation upon 

cellular stress, however levels of p53 expression can activate p27 and p21 

expression (L. Fan et al. 2014). This may explain the proportional increase in p27 

expression observed, although only a small increase in expression was detected 

in p21. This may somewhat be explained as p21 can be activated by, and act as, a 

substrate for caspase 3 (Chiappara et al.), therefore an increase caspase-3 

concentration may reduce p21 levels in cells, this collaboration leads to pro-

apoptotic signalling, encouraging cells to undergo apoptosis. 
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The increase in BID expression has been previously linked to hyperthermia via 

caspase-2 activation	(Bonzon et al. 2006). However the increase in BID, caspase-

8 and caspase-3 is closely associated with the intrinsic pathway cumulating to 

apoptosis -	 although it is noted that this pathway is associated with increased 

cytochrome c expression, as shown in figure 4-23, which our results do not 

indicate (K. S. Ferreira et al. 2012a). As previously explained, cytochrome c is 

released from the mitochondria upon the destabilisation of the mitochondrial 

membrane potential (figure 4-25). Once released into the cytosol, cytochrome c 

can trigger the intrinsic apoptotic pathway via caspase cascade or amplify extrinsic 

apoptotic signalling (Kulikov et al. 2012). Interesting, caspase 3 and 8 are also 

integral players in the extrinsic pathway	 (Westphal et al. 2011). Caspase 8 

activation is believed to activate both caspase 3 and BID activation leading to 

either apoptosis or stimulating the intrinsic pathway. Caspase 8 activation however 

is predominantly orchestrated by ligands such as FasL, tumour-necrosis factor α 

(TNFα), or TNF-related apoptosis inducing ligand (TRAIL) which did not appear to 

show significant changes (Kulikov et al. 2012). 
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Figure 4-28: Oxidative stress: the mitochondria-dependent and 
mitochondria-independent pathways of apoptosis, (Sinha et al. 2013). 
Multiple pathways to apoptosis. The mitochondrial (or intrinsic) pathway is 
induced as a response to cellular stress and results in the activation of the 
pro-apoptotic BH3-only proteins. BH3-only proteins may directly bind and 
activate Bax and Bak (I, dashed lines), and may also bind to the prosurvival 
Bcl-2-like proteins to indirectly activate Bax and Bak (II). Once activated, Bax 
and Bak oligomerise to form pores in the mitochondrial outer membrane that 
release cytochrome c. Cytosolic cytochrome c leads to caspase activation 
and subsequent cell death. The death receptor (extrinsic) pathway is 
initiated by death ligands such as FasL, tumour-necrosis factor α (TNFα), or 
TNF-related apoptosis inducing ligand (TRAIL) binding to cell surface 
receptors, resulting in the activation of caspase-8. Active caspase-8 can 
either activate downstream caspases directly (in type I cells) or engage the 
intrinsic pathway via a cleaved form of the BH3-only protein Bid (tBid) (in 
type II cells) (Kulikov et al. 2012; Westphal et al. 2011). 
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One of the most notable fold changes in MG63 laser irradiated control sample was 

observed in the DR6 protein. DR6, conversely known as TNFRSF21, is a fairly 

new member of the death receptor family and only in the last few years has been 

confirmed for over expression to induce apoptosis (Sessler et al. 2013; Zeng et al. 

2012).  Zeng and co-workers demonstrated the unusual characteristics of DR6 

with their results suggesting that DR6 functions independently from the 

conventional type I and II signal transduction pathways via death receptor-

mediated death signals, with the inhibition of caspase-8 and knockdown of BID 

having no effect on DR6-induced apoptosis (Zeng et al. 2012). The authors 

suggest that DR6-induced apoptosis occurs through a novel, BAX dependent 

pathway (Zeng et al. 2012). This would suggest that the large increase in DR6 

expression could promote cells to commit to apoptosis via BAX activation, 

however the modest increase in BAX expression suggests minimal  apoptotic 

activation within the sample and would support the notion of only a small quantity 

of cells undergoing apoptosis during laser exposure.  

 

MCF-7 control cells (figure 4-17) displayed fairly innocuous results; only a few 

markers were increased, FAS (extrinsic pathway), caspase 8, which is involved in 

both the intrinsic/extrinsic pathway, IGFBP5 which propmots apoptosis (through 

caspase action) and heat shock proteins (Hsp27 and Hsp60).  IGFBP5 (Insulin-like 

growth factor-binding protein 5) is one of six members of the insulin-like growth 

factor-binding protein family, which are integral modules of the IGF (insulin-like 

growth factor) axis	 (Beattie et al. 2006). Of the six members, IGFBP5 has been 

heavily researched for its role in cancer progression and cancer development, 

whilst also being touted as a therapeutic target for human melanoma (Junyun 

Wang et al. 2015). IGFBP5 overexpression has been recently shown to promote 

apoptosis and cell cycle arrest (Su et al. 2011), and can induce a caspase-

dependent apoptotic pathway in human breast cancer cells via activation of 

caspase 8 (Butt et al. 2005). This was also observed in our results however the 

intrinsic activation  (i.e. of cytochrome c and BID) was not, observed in comparison 

to the previous study using human breast cancer cells (Butt et al. 2005).   

 

FAS, is a cell-surface receptor, commonly known as Cd95, and is the most well-

characterised member of the tumour necrosis factor (TNF) superfamily of 

receptors (Peter and Krammer 2003). The association of FAS and FASL has 

demonstrated pro-apoptotic signaling, as highlighted in figure 4-28 (Punsawad et 
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al. 2015). Thermotolerance was induced following laser treatment, with increases 

noted in Hsp27 and Hsp60. While the ubiquitous nature of Hsps as ‘molecular 

chaperones’ has been highlighted and illustrated in figure 4-27 (Hsp -27, -70 and -

90), the mechanism of action for Hsp60 has been poorly characterised. Hsp60 has 

been recognised for its protective function in cells (Ortega-Ortega et al. 2011), but 

does provide difficulty in characterising as studies have suggested an additional 

role in actually promoting apoptosis and subsequent phagocytosis of dying cells	
(Goh et al. 2011; S. Gupta and Knowlton 2005). Hsp60 is believed to have a 

protective quality, inhibiting apoptosis in stressed cells. This is further supported 

by Zhang and co-workers, who demonstrated bacterial GroEL-like Hsp60 

protected epithelial cells from UV radiated stress-induced death through activation 

of ERK and inhibition of caspase 3 (L. Zhang et al. 2004).  

 

Interestingly, unlike MG63 cells, there was no increase in DR6 as an apoptosis-

inducing receptor. The may reflect that DR6 is cell-type dependent, as exogenous 

expression of DR6 was found previously to induce apoptosis in HeLa cells 

(cervical carcinoma cell line) but not in MCF-7 cells	(Kasof et al. 2001). 

 

In summary, while we know that cell viability was not compromised, the results 

here show that, as with the RNA markers, laser treatment of control cell monolayer 

culture (ie. no GNPs) did indicate mild cellular stress. As with the RNA gene 

expression results, the bone cancer cell line (MG63) appeared to respond to laser 

treatment more that the breast cancer cell line (MCF-7), with a higher number of 

protein markers increased in response to treatment. 

	

4.5.3.2	Gold	Nanoprisms	Activate	Apoptosis	Following	Photothermal	Treatment	

 

When considering the effect of labelling cells with gold nanoprisms, the first results 

of note reflects the RNA apoptotic targets; with an immediate cell response of cells 

when labelled with gold nanoprisms (without laser treatments). An increase in fold 

change of ~1 to ~1.5 for the majority of apoptotic protein markers was recorded 

when compared to non-labelled control cells. This increased expression of both 

pro-apoptotic and anti-apoptotic markers indicated that the internalisation of gold 

nanoprisms caused cell stress, an observation corresponding to previous MTT 

results. Of these proteins, cIAP2 (cellular inhibitor of apoptosis proteins 2) 
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increased around 2 fold in the presence of gold nanoprisms.  CIAP2 is one of 8 

members of a family of factors called inhibitor of apoptosis (IAP) proteins. This 

family has been found to play a major role in a multitude of cellular processes, 

while cIAP2 remains one of the most characterised members (Kocab and Duckett 

2016). As their name suggests, IAPs are capable of inhibiting apoptosis in 

response to both extrinsic (death receptors-mediated) and intrinsic (cell stress-

mediated) signalling pathways	 (Guicciardi et al. 2014). CIAP2 in particular has 

shown cytoprotective features by inhibiting TNF-α-induced apoptosis	(S. Guo et al. 

2014). CIAP2 contain unique features such as a conserved RING domain at their 

C-terminal end, allowing these proteins to mimic E3 ubiquitin ligase, allowing for 

the ubiquitination and proteasomal degradation of caspases (casapse 3 and 7), 

TRAF2, and several other partner molecules (K. Wang and Lin 2013). CIAP has 

been shown to also bind to caspase 9, and XIAP that can additionally stimulate 

downstream signalling pathways such as the Akt survival cascade and/or NF-κB 

activation, which can counteract apoptosis (K. Wang and Lin 2013).  

 

When analysing the protein marker increases in nanoprism labelled cells following 

laser treatment, apoptosis was very clearly activated, with large increases in 

almost every single marker studied (figure 4-18). Large increases in particular 

were noted for protein markers linked to the intrinsic pathway (cytochrome c, BAD, 

BAX, BIM, SMAC), the extrinsic pathway (CIAP2, FAS, caspase 8) and those 

linked to both (BID, caspase 3), supporting wide scale apoptosis activation. The 

apoptosis promoter p53 was increased, but inhibitors of apoptosis were also 

activated, in particular IGFBP-1 and p27, indicating cell protection mechanisms 

were activated, along with Hsp70.  Interestingly, DR6, which was highly expressed 

in control cells (figure 4-16) following laser treatment, was not particularly affected 

with nanoprism labelled cells following laser treatment.   

 

A large increase was noted in Hsp70. Hsp70 has been extensively researched as 

an anti-apoptotic protein, preserving cells against environmental insults, including 

protecting cells from both chemotherapy, radiotherapy and ROS production whilst 

also being expressed during cell proliferation and differentiation (Multhoff et al. 

2015). Hsp70 has a multitude of functions within the cell, including protein 

homeostasis via protein folding, refolding, and assembly of nascent polypeptides. 

During cellular stress, Hsp70 is involved in preventing protein aggregation, and 

assisting the transport of other proteins across membranes (Multhoff et al. 2015). 
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It has also been noted as a potent inhibitor of apoptosis. Our results also suggests 

FAS, FAS-L and caspase expression was uninhibited by the elevated Hsp70 

expression. This was also a similar trend in BAX expression, whose activation is 

usually inhibited by Hsp70 expression therefore preventing mitochondrial 

membrane permeabilization and the release of pro-apoptotic factors such as the 

aforementioned cytochrome c as well as caspase 3 (Radons 2016; Xiaokui Yang 

et al. 2012b). However our results suggest these pro-apoptotic markers are 

unaffected even in the presence of the high Hsp70 expression.  

 

As with MG63 cells, when MCF-7 cells were labelled with gold nanoprisms (non-

laser treated), an increase in apoptotic markers was noted (as compared to non-

labelled cells), indicating cellular stress. However, as previously stated, this did not 

influence cell viability. A substantial increase in all apoptotic markers was noted, 

across a range of apoptosis pathways. The results were very similar to the MG63 

protein markers although the difference between laser and non-laser treated were 

more pronounced.  Again, DR6 was not affected, reinforcing the hypothesis of its 

cell specific role.    

 

The larger noted fold change expressions (compared to non-laser treated cells) 

were for TRAIL-R4 and BAX proteins. TRAIL-R4 (TNF-related apoptosis-inducing 

ligand- receptor 4) is a member of the TNF-receptor superfamily, alluded to in 

figure 4-28. The debate over its role in apoptosis still remains elusive, as TRAIL-

R4 does not contain a functional death domain and thus, upon activation via 

TRAIL, does not appear to induce the apoptotic pathway commonly associated 

with other TRAIL-R members (TRAIL R 1 and 2) (Lalaoui et al. 2011). Instead 

TRAIL-R4 has been considered an anti-apoptotic complex, with a number of 

studies showing the expression of TRAIL-R3 or TRAIL-R4 providing resistance to 

TRAIL-induced apoptosis in tumours (Lalaoui et al. 2011). 
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Figure 4-29:  Human TRAIL receptors and intracellular signal cascade. TRAIL 
binds to two death-mediating receptors, TRAIL-R1 and TRAIL-R2, and to two 
non-death receptors (“decoy receptors”), TRAIL-R3 and TRAIL-R4. TRAIL-
mediated apoptosis occurs upon binding of the trimerized ligand to the 
receptor, which instigates the recruitment of the signaling protein, FADD 
(Fas-associated death domain) and pro-caspase 8 (pro-FLICE). Activation of 
pro-caspase 8 leads to the generation of caspase 8 and subsequent 
activation of caspase 3, which mediates caspase-activated DNase and 
apoptotic demise of the cell. Moreover, TRAIL signaling may modulate 
mitochondrial apoptosis routes via induction of JNK and regulation of the 
bcl-2 family members bcl-2, BIM and BAX (taken from (Aktas et al. 2007)).  

 

TRAIL-R4 expression had been shown to inhibit TRAIL-mediated apoptosis in 

various tumours, while also binding to the pro-apoptotic complex, TRAIL-R2 

(Koschny et al. 2015). Typical TRAIL activation involves the clustering of receptor 

complexes and the activation of the death-inducing signalling complex (DISC) and 

the eventual activation of caspase 8 and 3	 (Bertsch et al. 2014). The inhibition of 

this pathway via TRAIL-R4 interaction may explain the increased expression of 

TRAIL-R4, and indeed TRAIL-3, which has also shown pro-apoptotic potential, 

leading to a modest increase of TRAIL-R1, TRAIL-R2, caspase 8 and caspase 3 

expression. (Degli-Esposti et al. 1997) when comparing non-laser treated and 

laser treated samples.  
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In summary, gold nanoprisms activated apoptosis following laser treatment, with 

large increases observed across the intrinsic and extrinsic pathways, as well as 

instigating cell protective mechanisms and thermotolerance. Whilst the pattern of 

protein marker expressions were similar for both cell types, the difference between 

non-laser treated and laser treated nanoprism labelled cells were greater in bone 

cancer cells (MG63 cells).  

 

4.5.3.3	Gold	Nanorods	Activate	Apoptosis	Following	Photothermal	Treatment	

 

As with the nanoprisms, the internalisation of gold nanorods also initiated cell 

stress, although again there was no compromise in cell viability. In the untreated 

nanorod labelled MG63 cells, Hsp27 displayed a near 4-fold increase in 

expression. The overexpression of Hsp27 has been shown to increase the 

resistance of cell to various apoptotic stimuli (Takayama et al. 2003). Although, 

conversely, the overexpression of Hsp27 can actually lead to the increased 

expression of caspase -3, -8 and -9, as well BIM activation, which were all highly 

expressed in our results	 (Y. Guo et al. 2015). Guo and co-workers also noted the 

pro-apoptotic role of Hsp27 in both the intrinsic and possibly extrinsic pathway via 

TRAIL in pancreatic cancer cells (Y. Guo et al. 2015).  

 

Nanorod labelled MG63 cells that were subsequently laser treated demonstrated 

increased apoptotic markers, resulting in the cell death observed in chapter 3. The 

makers were across a range of apoptosis pathways including the intrinsic 

(cytochrome c, BAD, SMAC), extrinsic (FAS, FASL, TRAILR2) and lysosome 

(CD40, TNFB) (figure 4.23). In addition, promoters of apoptosis were increased 

(p53) as well as apoptosis inhibitors (p21, p27, surviving, livin) and indicators of 

thermotolerance (Hsp -27, -60 and -70).   

 

Livin is a novel member of the inhibitor of apoptosis (IAP) protein family and highly 

expressed in many types of human malignancies, preserving the cell against 

apoptotic stress through the inhibition of the caspase signaling cascade, as well as 

inhibiting the cell death receptor tumour necrosis factor receptor-mediated 

apoptosis signaling pathway (Zhuang et al. 2015).  Livin is believed to function by 

inhibiting the caspase-3, -7, and -9, as well as promoting SMAC degradation (B. 

Yan 2011). Our results, however, show SMAC expression was increased 

compared to controls, suggesting SMAC was not degraded by livin. 
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SMAC (second mitochondria-derived activator of caspases) is a pro-apoptotic 

factor, found within mitochondria. Upon mitochondria damage, SMAC, along with 

cytochrome c, is released from the mitochondria, into the cytosol (figure 4-27). 

SMAC interacts with apoptosis inhibitor proteins, such as XIAP, cIAP1 and cIAP2, 

allowing for the release of caspase 3 and 9, causing apoptosis (G. Martinez-Ruiz 

et al. 2008a).  

 

Survivin is a member of the family of inhibitor of apoptosis proteins and 

predominantly functions in the regulation of mitosis progression and apoptosis 

inhibition (Y. Lin et al. 2016). Survivin activity is inhibited by increased expression 

of SMAC and interesting, p53, another key apoptotic marker that showed 

increased expression. Although survivin is known to inhibit apoptosis by inhibiting 

active caspase-9, it showed no inhibition towards caspase-3 and caspase-7 while 

its functionality seems dependent on association with X-linked IAP	 (A. C. Mita et 

al. 2008a). 

 

HTRA (high temperature requirement A) showed a five-fold increase in expression 

compared to untreated samples. HTRA is a protective protease complex involved 

in protein quality control pathways and is crucially up-regulated under protein 

folding stresses, to prevent accumulation and aggregation of misfolded proteins 

that induce cellular stress and apoptosis (Tennstaedt et al. 2012). This 5-fold 

increase in HTRA strongly suggests a potent accumulation of unfolded and 

aggregated, denatured proteins, a hallmark of hyperthermic treatment (Yanting Cui 

et al. 2014b). 

 

As with the MG63 cells, non-laser treated MCF-7 cells showed an increase in most 

apoptotic markers following gold nanorod internalisation, inducing mild cell stress. 

However, following laser treatment, these marker levels were again highly 

increased, demonstrating cell apoptosis. The protein markers that were highly 

increased following laser treatment were again across a range of apoptotic 

pathways, including the intrinsic pathway (cytochrome c, Bcl-2, BAD), the extrinsic 

pathway (TRAILR1) and proteins linked to both pathways (caspases 3 and 8, BID) 

as well as lysosome stress (CD40) and cathepsin activation (figure 4.23).  Several 

pro-apoptotic proteins were also highlighted, such as IGFBP-3 (via promotion of 

p53) and IGFBP-4 (via involvement in the intrinsic pathway). In addition, numerous 
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anti-apoptotic proteins were also induced, including p21, p27 and IGFBP-5 

(through caspase interactions), as well as thermotolerance (Hsp -27, -60 and -70). 

 

The results from this experiment therefore seem to suggest laser treated MCF-7 

cells containing gold nanorods are led to apoptosis via the intrinsic, extrinsic and 

lysosomal pathways. In summary, gold nanorods, as with nanoprisms, strongly 

activate apoptosis in both cell lines.  In particular the JNK pathway was activated 

with both cell types (only observed in bone – MG63 – cells with the nanoprisms), 

supporting caspase-independent cell death.   

 

4.5.4 Hyperthermia-Induced Apoptosis via Increased ROS Production 
 

The RNA and protein apoptosis marker studies suggest that one of the main 

triggers of apoptosis may be due to the increase generation and accumulation of 

intracellular ROS concentration	 (Bettaieb and Averill-Bates 2008; F. Chen et al. 

2008a). Much focus within the hyperthermia literature to date has been 

hyperthermia leading to protein denaturation, indicated by increased expression 

Hsp family	 members	 (Glory et al. 2014; Kalamida et al. 2015; I. S. Singh and 

Hasday 2013; Y. Zhang and Calderwood 2011).	While our results do support this 

(both RNA and protein analysis), the strong association of ROS production 

indicated in the fluorescent staining (figure 4-22) during onset of apoptosis in cells 

may reflect ROS-induced cellular stress	 (Kanwal Ahmed et al. 2015b). 

Hyperthermia has been shown in a number of studies to increase ROS production 

in various cell lines, including MG63 and MCF-7 cells (Bohara et al. 2015; Z.-G. 

Cui et al. 2014f; C.-H. Hou et al. 2014b; Q.-L. Zhao et al. 2006). For example, 

hyperthermia-induced increases in ROS generation were noted by decreasing the 

expression of superoxide dismutase 1 (SOD-1), a potent antioxidant enzyme at 

both the mRNA and protein level (El-Orabi et al. 2011). This can lead to the 

overexpression and accumulation of ROS such as superoxide anion (El-Orabi et 

al. 2011), which can dismute to form hydrogen peroxide or react with other 

radicals such as NO to produce potent oxidant species (Q.-L. Zhao et al. 2006). 

 

The increased expression of ROS leads to nonspecific modifications of lipids, 

proteins, and nucleic acids, resulting in global, cellular dysfunction (Kanwal Ahmed 

et al. 2015b). ROS accumulation can also lead to mitochondrial damage and the 

activation of the intrinsic pathway, while also linked to the extrinsic pathway by 
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directly activating death receptors (TNFα, FASL, and TRAIL) and thus apoptotic 

induction through ROS-induced receptor clustering (Circu and Aw 2010). ROS 

accumulation can also stimulate apoptosis through independent signalling which 

can induce both the intrinsic and extrinsic pathways (Circu and Aw 2010).  

 

Hyperthermia has also been shown to induce endoplasmic reticulum (ER)- 

triggered apoptosis in numerous cancers; the ER is responsible for protein folding, 

modification and synthesis as well as lipid synthesis (C.-H. Hou et al. 2014b; 

Shellman et al. 2008). Cellular stress can be caused via heat and oxidative stress, 

that can disrupt ER homeostasis and thus lead to the accumulation of unfolded or 

misfolded proteins (C.-H. Hou et al. 2014b). Our results confirm hyperthermia 

increased ROS concentration, while laser treatment on control cells did yield some 

ROS accumulation, this is expected to occur as laser irradiation has been 

demonstrated to disrupt cellular organelles, including the mitochondria, leading to 

the disruption of ROS homeostasis and thus a small increase of ROS was 

observed in control samples exposed to laser treatment	(Minai et al. 2013).  
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4.6 General Conclusion  
 

4.6.1 GNP internalisation causes mild cell stress  
 

The results obtained from the apoptotic marker analysis confirmed that the 

labelling of both MG63 and MCF-7 cells with either gold nanorods or gold 

nanoprisms elicited mild cellular stress as indicated by the increased expression of 

apoptotic markers. Although this global increase in apoptotic markers revealed 

cellular stress, it did not translate to a decrease in cell viability as confirmed in 

chapter 3 (section 3.4.3).  

 

4.6.2 Laser treatment causes mild cell stress, but no cell death. 
 

Laser treatment alone appeared to cause minor cellular stress in both cell types 

but again this did lead to a compromise in cell viability (section 3.4.7). The 

increased expression of Hsp members (Hsp -26, -60, -70) also demonstrated the 

protective characteristics of Hsps in response to environmental insults such as 

laser exposure.  While previous studies have shown intense laser exposure can 

induce mitochondrial damage and ROS generation, our moderate laser exposure 

showed minor ROS production upon laser irradiation (figure 4-22) (M. J. Jou et al. 

2002; M.-J. Jou et al. 2004).  

 

4.6.3 Nanoprisms & Nanorods caused cell death by a range of apoptotic 
pathways  
 

Our results suggest that GNP-assisted photothermal treatment of MG63 and MCF-

7 cells, both in monolayer and multicellular tumour spheroids leads to the 

activation of both the intrinsic and extrinsic pathway as indicated by the increased 

expression of pro-apoptotic Bcl-2 family members and caspases. As previously 

alluded to, many groups attempt to confirm apoptosis after photothermal treatment 

by quantifying a handful of effector caspases such as caspase 3, 6 and 7 

(Abadeer and Murphy 2016; Espinosa et al. 2016; L. Mocan et al. 2015a). 

Although the increase in expression of these markers confirms cell death via 

apoptosis, the actual pathways are often overlooked. In this project, we 

determined cell death predominantly occurs via the intrinsic and extrinsic pathway, 
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although we have also observed the more novel and less characterised, lysosomal 

apoptotic pathway, which was continuously observed in photothermal treated 

samples and is associated with an increase in ROS generation. This was an 

important discovery as lysosomal degradation, cathepsin release and ROS 

generation have also been linked to autophagy, necrotopsis and necrosis (Boya 

and Kroemer 2008a; Brojatsch et al. 2015; Eskelinen and Saftig 2009; 

Vandenabeele et al. 2010).	While thermotolerance was induced by samples, as 

indicated by the increased expression of Hsp members, the process appeared 

unsuccessful at preventing apoptosis as observed in chapter in 3 (section 3.4.7).  

 

4.6.4 Correlation between RNA & protein targets 
 

In this project, we attempted to characterise cell death using a range of apoptotic 

markers and attempted to quantify their expression at the genomic and proteomic 

level to better understand the molecular events leading to cell death upon 

exposure to photothermal treatment. The targets that were quantified at both the 

genomic and proteomic level are shown in figure 4-2. For RNA expression, the 

results presented here were transformed (log2) due to the large disparity between 

targets and to provide a more symmetrical data and thus any value below 0, 

although indicating positive fold change is insignificant. The notoriously genome-

wide correlation between expression levels of mRNA and protein having ~40% 

explanatory power across has been shown in numerous studies	 (Abreu et al. 

2009; Koussounadis et al. 2015; Vogel and Marcotte 2012a). Despite this, our 

results indicate strong correlation between both gene and protein markers in 

monolayer samples with only BID and Bcl-2 markers showing particularly high 

disparities between data sets. Both data sets however, are in an agreement that 

multiple apoptotic pathways appear to be activated simultaneously upon 

photothermal treatment while a photothermal response (Hsp -60 and -70) was 

activated, regardless of cellular signalling to undergo apoptosis.  

 

4.6.5 Comparison of monolayer and Spheroid response to photothermal 
treatment 
 

The results from this project suggests 3D tumour spheroids were more susceptible 

to photothermal therapy compared to monolayer samples, although a thorough 

statistical analysis would be required to validate. The susceptibility of spheroids 
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may be due to the thermodynamic nature of heat. In monolayer, laser exposure 

occurred in the middle of the sample with heat dissipating across the sample 

however only those cells in the epicentre of the laser displayed cell death while 

peripheral cells remained viable, possibly due to hyperthermic temperature profiles 

not reached as heat dissipated away from the epicentre of the sample. With 

spheroid samples however, due to laser penetration, the spheroid could be heated 

not only on the peripheral cells on the outer rim of the spheroid, but those near the 

core of spheroid (figure 3-18), with heat radiating from near the core of the 

spheroid, superficially more cells were thus affected by higher temperature 

profiles, promoting cellular stress and apoptosis.  

 

4.6.6 Influence of cell type on photothermal treatment  
 

The effectiveness of photothermal therapy via GNPs was evident in both cell 

types, with both MG63 and MCF-7 cells displaying apoptotic tendencies however it 

appears MG63 cells are slightly more susceptible to photothermal treatment 

although again, a detailed statistical analysis would be required to confirm this 

observation however it is reasonable that different cell lines, owing to their 

physiological differences, detoxification pathways, thermotolerance and metabolic 

output may show slight variations during hyperthermic exposure.  

 

4.6.7 Gold nanoprisms and gold nanorods can successfully instigate 
apoptosis via laser irradiation  
 

Both GNPs successfully triggered apoptotic events upon exposure to laser 

irradiation in different cell types as well as within monolayer and spheroids. From 

our apoptotic protein analysis data (section 4.3.2) it appears that gold nanoprisms 

were particularly effective in both cell types and this may be due to the remarkable 

internalisation of gold nanoprisms into both cell types in comparison to gold 

nanorods that demonstrated poor internalisation even at a higher concentration 

(figure 3-13). This may explain why gold nanorods, although displaying a higher 

temperature profile than gold nanoprisms (figure 3-3) does not yield a significantly 

increased apoptotic response within samples. 
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5 Magnetic Nanoparticle Induced Hyperthermia  
 
5.1 Introduction  
 
5.1.1 Magnetic Nanoparticles and Hyperthermia 
 
Hyperthermia is not intrinsically cancer-specific, however hyperthermic techniques 

can capitalise on tumour physiology in order to deliver and concentrate toxic heat 

levels to cancer cells within a tumour	 (Kaddi et al. 2013). This is due to the 

heterogeneous tissue structure and unregulated growth which tumours exhibit, 

making them more prone to heat stress	(Vaupel and Kelleher 2010). Tumours are 

also distinguishable by their grossly disordered vascular architecture, high 

interstitial fluid pressure, and hypoxic regions, features that actually diminish the 

potency of conventional treatment such as chemotherapy and radiotherapy (C. L. 

Dennis and Ivkov 2013a). Hyperthermia has been seen to address these issues by 

increasing blood perfusion, oxygenating tumours and facilitating transport of 

compounds into the tumour	 (B. F. Jordan and Sonveaux 2012).  Magnetic 

nanoparticles (mNPs) are capable of producing heat when subjected to an 

alternating magnetic field and as tissue is weakly diamagnetic, it does not 

attenuate or scatter static or low frequency magnetic fields allowing for the easy 

transmission of an alternating magnetic field (AMF) through an entire tissue with 

relative ease and minimal toxicity issues (C. L. Dennis and Ivkov 2013a).   

 
As described in chapter 1, section 1.6, mNPs have demonstrated their potential in 

various biomedical applications including drug delivery (Unterweger et al. 2014), 

gene delivery (Majidi et al. 2016), magnetic resonance imaging (G. Wang et al. 

2014a) and  hyperthermia (Gruttner et al. 2013). The use of mNPs in hyperthermia 

has seen a dramatic rise in research interest over the last 20 years, as noted with 

a simple literature search in figure 5-1. There have been a number of successful 

applications in vitro	(Liao et al. 2015; Munoz de Escalona et al. 2016; Sabale et al. 

2015) and in vivo studies (Attaluri et al. 2015; Moros et al. 2015; Radovic et al. 

2015). As with GNPs, mNPs are being explored with the view to use in therapy as 

an adjunct to both radiotherapy	and chemotherapy (H. C. Kim et al. 2015; M. Lin et 

al. 2013a).  
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Figure 5-1: Number of publication hits using ‘magnetic nanoparticle 
hyperthermia’ search term, from 2001 to 2015 (pubmed).   

 

The multifunctional capability of these particles with regards to hyperthermia have 

also been highlighted by Yallapu et al (2011), in which superparamagnetic NPs 

(SPIONs) were used for simultaneous imaging, heating and drug delivery	 on 

A2780CP (ovarian), MDA-MB-231 (breast), and PC3 (prostate) cancer cells 

(Yallapu et al. 2011). Interestingly, iron oxide NPs have recently shown bimodal 

capacity, being effectively used for magnetic and photothermal treatment, termed 

‘magnetophotothermal’ treatment, both in vitro and in vivo	(Espinosa et al. 2016).  

 

5.1.2 Magnetic Nanoparticle Heat Generation  
 

With regards to hyperthermia, mNPs are assessed for their intrinsic ability to 

generate heat upon exposure to an alternating magnetic field via Neel and 

Brownian Relaxation mechanisms. As alluded to previously (chapter 1, section 

1.6.2), mNP size influences their heating capability, as the superparamagnetic 

properties iron oxides exhibit is observed at around 1-20 nm. Parmar et al 

performed a series of experiments to characterise 13 nm and 20 nm SPIONs 

synthesised from co-precipitation and solvothermal reduction, respectively. 

Though the 20 nm mNPs displayed a higher magnetisation than their 13 nm 

N
u

m
b

e
r 

o
f 

P
u

b
li

c
a

ti
o

n
s

2 0 0 1
2 0 0 2

2 0 0 3
2 0 0 4

2 0 0 5
2 0 0 6

2 0 0 7
2 0 0 8

2 0 0 9
2 0 1 0

2 0 1 1
2 0 1 2

2 0 1 3
2 0 1 4

2 0 1 5
0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

Y e a r s



	

	185	

counterpart (due to higher crystallinity and phase purity), the smaller 13 nm mNP 

produced higher heating capacity when dispersed in a glycerol solution	(Parmar et 

al. 2015). This is directly related to size;  the Neel relaxation time is much greater 

than the Brownian relaxation time with smaller NPs (John Pearce et al. 2013b). 

Both Neel and Brownian times depend on the size of the particles, however the 

Brownian time is influenced in a linear fashion with the size of mNP, which means 

Brownian relaxation forces are the dominant force in heating larger mNPs (Reeves 

and Weaver 2012). This becomes problematic in more viscous mediums, with 

Brownian forces becoming severely reduced and only modest Neel relaxation 

mechanisms contributing to heat production, thus lowering the overall heating 

potential of larger mNPs. Therefore, the mNPs used in this project have been 

synthesised at ~11 nm diameter, so as not to be influenced by cellular viscosity 

(Kuimova et al. 2009).  

 

In this project, a device termed the magnetherm was employed to induce mNPs to 

generate heat (Nanothermics, Keele, UK). The magnetherm allows the 

measurement of thermal effects from mNPs by subjecting them to an alternating 

current magnetic field, of variable strength and frequency.  Aside from the mNP 

size, as described above, other parameters also dictate successful heating, 

including saturation magnetisation, magnetic susceptibility, magnetic anisotropy, 

particle distribution, field strength and frequency of the AC field.  Whilst NP 

synthesis allows us to control the NP physical characteristics, the magnetherm 

allows us to control the magnetic field strength and frequency.  

 

The sample loading chamber in the magnetherm was designed ideally for small 

animal use, therefore we needed to design and create a cell seeding substrate 

which could be adapted for use in the device. Cura, an online computer aided 

design (CAD) software was used to design and 3D print a novel cell seeding 

chamber which could be used with the magnetherm sample loading chamber, 

allowing us to carry out hyperthermic experiments.  
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5.1.3 Magnetic Nanoparticle Biocompatibility 
 
The toxicity of mNPs, in particular SPIONs has been discussed in several reviews 

and studies and remains controversial (Ghasempour et al. 2015; G. Liu et al. 

2013a; S. Naqvi et al. 2010a; Y. C. Park et al. 2014; L. Harivardhan Reddy et al. 

2012b). One of the major issues when working with mNP, in particular SPIONs, is 

the metabolism and subsequent degradation of iron oxide into free iron, which can 

subsequently lead to the increased generation of ROS, capable of damaging 

proteins, lipids, polysaccharides and DNA, ultimately leading to cellular apoptosis	
(N. Singh et al. 2010a).   

 

Previous studies have also shown that following cellular internalisation, mNPs can 

accumulate in mitochondria, vesicles and lysosomes, suggesting that any 

observed cytotoxicity is related to inflammatory response and oxidative stress 

(Hanini et al. 2011; Hussain et al. 2005; Xia et al. 2006).	 In addition, Soenen and 

co-workers reported how the intracellular trafficking of various SPIONs across two 

different cell lines ultimately led to a reduced efficiency of protein expression and 

disrupted the maturation of actin fibres	(S. J. H. Soenen et al. 2010). 

 

In this study, following synthesis and characterisation, mNPs were assessed in 

terms of their impact on cell metabolic activity, cytoskeleton and viability, as well 

as their ability to be internalised into cells and subsequently produce heat via 

exposure to an alternating magnetic field.  
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5.2 Chapter Aims and Objectives  

The previous two chapters have focused on the use of gold nanoparticles for 

photothermal hyperthermia in bone (MG63) and breast (MCF-7) cancer cell lines, 

this chapter will focus on the use of mNPs as potential hyperthermic agents to 

induce hyperthermia in bone cancer cells (MG63).  The mNPs used in this project 

were kindly donated by our collaborators in Spain and were characterised prior to 

use in cell culture, with a zeta-potential (mV) of -40, a core size of ~11 nm and a 

hydrodynamic size of 100 nm due to the biocompatible coating of dextran.  As with 

any NP platform, following successful synthesis and characterisation, mNPs 

should be internalised into cells without causing structural damage or invoking 

cellular stress.  Once biocompatibility is established, the mNPs should be able 

trigger apoptosis via hysteresis and Neel and Brownian relaxation mechanisms 

upon exposure to an alternating magnetic field.  

These objectives were achieved as follows:  

• Particle biocompatibility was assessed via MTT assay and fluorescent 

cell viability staining, labelling cells with a range of different mNP 

concentrations over time in culture.  

• Cell – particle interaction was studied using scanning electron 

microscopy (SEM).  

• The mNP internalisation was assessed by transmission electron 

microscopy (TEM).  

• The heating potential of the mNPs was determined using the 

magnetherm. 

• 3D printing software was used to design a cell culture chamber for use 

in monolayer cell studies using the magnetherm.  
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5.3 Materials and Methods  
 
5.3.1 Magnetic Nanoparticle Characterisation 
 

MNPs were synthesised and characterised by our collaborators at the Aragón 

Materials Science Institute, Spain.  

 
5.3.1.1	Cell	Metabolic	Activity	(MTT	Assay)	

 

The MTT assay was performed as described in chapter 2, section 2.3.1. Briefly, 

MG63 cells were seeded at 1 x 104 in a 96 well plate for 24 hours to allow 

attachment prior to mNP introduction. Cells were then incubated with mNPs at 

concentrations of 0.1 and 1.0 mg.ml-1 for 24, 48 and 72 hours (n=5). The  0.1 

mg.ml-1 concentration in particular was recommended by our collaborators as the 

lowest concentration that could be utlised for hyperthermic experiments and was 

used as the standard for future experiments, while the 1.0 mg.ml-1  concentation 

was evaluated for its potential biocompatibility for future cell work. The MTT assay 

was run at the time points stated, whereby cells were further incubated with MTT 

for 1 hour before the solution was solubilised with DMSO.  The absorbance of 

each well was read on a microplate reader (Dynatech MR7000 instruments) at 550 

nm. 

 

5.3.1.2	Cell	Viability	

 

The cell viability assay was carried out as described in chapter 2, section 2.3.2. 

MG63 cells were seeded at 1 x 104 in a 24 well plate for 24 hours before 

incubation with mNPs at concentrations of 0.1 and 1.0 mg.ml-1 for 24, 48 and 72 

hours (n=3). The cell viability was assessed by simultaneous incubation with 

calcein AM and ethidium homodimer for 1 hour followed by washing with fresh 

warm growth media and immediate imaging.  

 

From the cell viability and cell metabolic activity results; it appeared only 0.1 

mg.ml-1 mNP concentration would be applicable for future cellular experiements 

and thus only was the only concentration selected for  downstream experiments 

including cell-NP interaction and in vitro hyperthermia experiments.  
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5.3.1.3	Cell	–	Nanoparticle	Interactions		

 
SEM 
 

The MG63 cells were seeded at 1 x 104 in a 24 well plate, left for 24 hours, then 

incubated with 0.1 mg.ml-1 mNPs for 1 hour and 24 hours (n=2) prior to fixation 

and processing as stated in section 2.4.2. 

 

Fluorescent Cytoskeleton Staining 
 

The MG63 cells were seeded at 1 x 104 in a 24 well plate, left for 24 hours, then 

incubated with 0.1 mg.ml-1 mNPs for 24, 48 and 72 hours (n=2) prior to 

fluorescently stained for F-actin and β-tubulin using the protocol described in 

section 2.4.3.  

 

 Nanoparticle Internalisation via TEM 
 

The MG63 cells at seeded at 1 x105 in a 24 well plate for 24 hour, then incubated 

with 0.1 mg.ml-1 mNPs for 1 hour and 24 hours (n=2) prior to fixation and 

processing as stated in section 2.4.3 

 

5.3.2 Magnetic Heating and Magnetherm Studies 
 
5.3.2.1	Heating	of	mNP	Samples	via	Magnetherm	Device		

 

Samples of mNP solutions were assessed for their heating potential using the 

magnetherm device (nanotherics, UK). Aliquots of 2 mL of various concentrations 

of mNPs were placed within a universal and located in the sample loading 

chamber in the magnetherm device, as illustrated in figure 5-2, producing an 

optimised characterised magnetic field (volt= 27.2, current= 9.3, frequency= 115 

kHz). Concentrations ranging from 0.01, 0.1, 1.0, and 5.0 mg.ml-1 were utilised to 

obtain a range of heating potentials. The temperature was measured via a 

thermocouple device and samples were recorded from baseline room 

temperature. The samples were left in the magnetherm device until a desired 

temperature profile was met, with a cut-off point of approximately 30 minutes if 

unsuccessful. 
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Figure 5-2: A photograph of the magnetherm set-up as used in experiment. 
The samples were loaded into the sample loading chamber, power applied 
and magnetic fields generated using the function generator (viewed on the 
oscilloscope).  The magnetic fields were governed by a capacitor / copper 
coil located within the maghetherm. 

 

5.3.2.2	3D	Printing	of	Culture	Chambers	for	the	Magnetherm	Experiment	

 
The magnetherm is not presently designed to allow  testing of monolayer cell 

culture samples, with the cylindrical sample loading chamber proving difficult to 

position petri dishes to allow simultaneous multi-well analysis of treated cell 

cultures. In order to pursue cell culture work within the magnetherm device and to 

compare samples, conditions and controls simultaneously, a 3D cell seeding 

chamber was constructed onto a polycarbonate substrate using acrylonitrile 

butadiene styrene (ABS). This 3D device was constructed onto a 2 cm2 

polycarbonate platform via a 3D printer (Ultimaker2) to create four identical culture 

chambers (1.25 X 104 cells per chamber). The final dimension of the device was 2 

cm2 with each of the four chambers measuring 9 mm2, as shown in figure 5.3. 
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Figure 5-3: Schematic of the 3D printed cell seeding chambers, printed onto 
a polycarbonate substrate using ABS.  

 

Prior to use with cells, the 3D chambers were initially rinsed with 70% ethanol and 

02 plasma treated (to ensure hydrophilicity) for 1 minute. The chambers were 

subsequently sterilised with 70% ethanol and allowed to dry within a laminar flow 

hood for 30 minutes. The chambers were finally washed thoroughly with HEPES 

saline and air dried within a laminar flow hood ready for cell culturing  

 

5.3.2.3	In	Vitro	heating	of	MG63	Cell	via	Magnetherm	using	3D	Printed	Culture	

Chambers		

 

The MG63 cells were seeded at a cell density of 1.25 x 104 per 200 µL in each 

chamber. The device was then carefully housed within a 35 mm petri dish and 

incubated for 24 hours (5% CO2; 37°C). After 24 hours, culture media was 

removed and cells were washed three times in PBS before incubation with mNPs 

in media, at a final concentration of 0.1 mg.ml-1 (200 µL per chamber), and 

incubated for a further 24 hours (5% CO2; 37°C). The device was then removed 

from the incubator and two of the four chambers were washed with PBS and re-

suspended with 200 µL of fresh media (this was to evaluate the performance of 

internalised mNPs only and not simply those within the media) before being placed 

into the sample loading chamber in the magnetherm. The magnetherm was then 
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tuned to an optimised magnetic field (volt= 27.2, current= 9.3, frequency= 115 

kHz) for 20 minutes. The potential effects from AMF exposure alone was 

determined by a control sample containing no mNPs.   

 
5.3.2.4	Cell	Staining	via	Coomassie	Blue		

 

Following hyperthmic treatment of MG63 cells, the 3D printed chambers were 

removed from the magnetherm and placed into an incubator (5% CO2; 37°C) for 3 

hours. The media was then removed from each chamber, the cells were fixed in 

4% formaldehyde for 15 minutes at 37°C washed in PBS and 200 µL coomassie 

blue stain was added for 2 minutes. The stain was washed well with PBS and 

subsequent light microscopy images were then taken on an inverted light 

microscope.  
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5.4 Results  

 
5.4.1 Magnetic Size and Morphology via TEM 
 
MNP size, morphology and aggregation state were determined by TEM (figure 5-

4). The image confirmed successful synthesis of mNPs that were well dispersed 

and with no indication of aggregation. MNPs displayed a low size distribution 

between 9 and 15 nm and an average size of 11 nm which has been previously 

shown to display optimal heating capactiy (Gonzales-Weimuller et al. 2009; 

Ganeshlenin Kandasamy and Maity 2015b). 

 

 

 

 

 

 
 

 

 

Figure 5-4: TEM of mNPs (A) and size distribution graph (B). 

 
5.4.2 Magnetic Nanoparticle Biocompatibility 
 
5.4.2.1	Cell	Metabolic	Activity	(MTT	Assay)	

 
The MTT assay provides an insight into the metabolic activity of cell cultures, 

providing an indicator of cell health. As may be expected, the metabolic activity 

was inversely proportional to mNP concentration, concluding that higher mNP 

concentrations invoked a negative cell response. However the lower 0.1 mg.ml-1 

mNP concentration did not substantially affect cell metabolic activity, although 

there was a time dependent effect noted with prolonged mNP exposure (Bellusci 

et al. 2014).  
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Figure 5-5: Metabolic activity of MG63 cells following incubation with 
magnetic nanoparticles. MTT analysis of MG63 cells treated with 0.1 and 1.0 
mg.ml-1 for 24, 48 and 72 hours (n = 5; error bars indicate SD).  

 

5.4.2.2	Cell	Viability			

 

While the MTT assay provides a quantitative assessment of the cell metabolic 

activity, limitations over the use of the assay have been highlighted (Kong et al. 

2011; S. Wang et al. 2011a) which could lead to false positive and false negative 

results. The cell viability fluorescent imaging allows the qualitative assessment of 

cell sample based on the integrity of cell membranes – a major indicator of 

apoptosis.  

 

The viability images are shown in figure 5-6 and show correlation with the MTT 

assay; cells exhibit an initial high viability at 24 hours, as observed by the high 

number of green (live cells) and low number of red (dead cells), however after 

prolonged exposure (48 and 72 hours) cell viability depreciates in comparison to 

control samples (containing no mNPs). In summary, cell viability appears 

compromised in correlation to the increased NP concentration (Saba Naqvi et al. 

2010b).
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Figure 5-6: MG63 cell viability following incubation with magnetic 
nanoparticles. Fluorescence images of MG63 cells treated with 0.01, 0.1 and 
1.0 mg.ml-1 mNPs for 24, 48 and 72 hours. Green and red fluorescence 
indicates living and dead cells, respectively (controls are cells containing no 
NPs, n=2). Scale bar = 100 µm. 
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5.4.2.3	Cell	–	Nanoparticle	Interactions		

 
SEM Imaging  
 

Figure 5-7 shows SEM images of MG63 cells after 1 and 24 hours incubation with 

mNPs.  Corresponding cells containing no mNPs were used as controls. Cells 

incubated with mNPs displayed an increased expression of filopodia, both as 

protrusions on the edges of the cell surface, with long protrusions extending from 

the cell edges as well as notable filopodia protrusions on the cell body	(P. Tseng et 

al. 2012). SEM images also indicated the aggregation of mNPs, both on the cell 

surface and also on the coverslip, which may have consequences for cell toxicity, 

internalisation and metabolism (Bae et al. 2011; Stefaan J. Soenen et al. 2011)
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Figure 5-7: SEM image of MG63 cells incubated with 0.1 mg.ml-1 mNPs at 1 
hour and 24. Subsequent control cells containing no NPs were used for 
comparison at 1 hour (A) and 24 hours (B). SEM images were taken at 3000 x 
magnification at 300kV voltage. 

 
Fluorescent Cytoskeleton Imaging 
 
Fluorescence microscopy, as shown in figure 5-8. was performed on MG63 cells 

incubated with 0.1 mg.ml-1 mNPs for 24, 48 and 72 hours to further investigate any 

adverse interactions with the cell cytoskeleton over time.  As time progressed, the 

mNP treated cells displayed smaller, more condensed cell bodies. The β-tubulin 

microtubules appeared denser, with less elongation throughout the cell body, 

whilst F-actin filaments also appeared denser, with punctate areas, which may 

indicate exocytosis processing (Gasman et al. 2004). 
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Figure 5-8: Cytoskeletal imaging of MG63 cells following incubation with 
magnetic nanoparticles. Fluorescent images of MG63 cells incubated with 
mNPs at 0.1 mg.ml-1 for 24, 48 and 72 hours (control cells contained no 
mNPs). F-actin (red), β-tubulin (green), counterstained with DAPI to visualise 
the cell nucleus (blue).  Scale bar 10 µm. 
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Particle Internalisation via TEM Imaging  
 

TEM images in figure 5-9 confirmed the successful internalisation, distribution and 

compartmentalisation of mNPs (0.1 mg.ml-1) at 1 and 24 hours, into endosome-like 

structures. TEM images appeared to show large quantities of mNPs internalised 

into cells after just 1 hour of mNP incubation (figure 5-9 A,B). Figure 5-9 B in 

particular appears to show the invagination of the cell membrane around the 

mNPs, indicative of a form of receptor mediated endocytosis involving invagination 

and formation of intracellular vesicles	(Zhenjia Wang et al. 2011b). No mNPs were 

observed free within the cytoplasm, suggesting that the NPs entered cells via 

endocytosis rather than passive diffusion. At 24 hours, mNPs were observed 

densely populated within endosome-like structures Figure 5-9 C,D) however a 

high concentration of mNPs were also apparent outside the cell, which may 

indicate slow uptake or exocytosis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-9: The internalisation of magnetic nanoparticles into MG63 cells. 
TEM images of MG63 cells incubated with 0.1 mg.ml-1 mNPs confirming mNP 
internalisation after just 1 hour with early signs of cell membrane 
invagination and endocytosis driven uptake (A and B). At 24 hours large 
concentrations of mNPs were seen grouped and packaged within large 
endosome like structures however, large concentration of mNPs were also 
observed outside the cells (C and D). Images were taken at 10000x 
magnification at 120 kV voltage. 
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5.4.3 Magnetic Heating and Magnetherm Studies 
 
5.4.3.1	Heating	of	mNP	Samples	via	Magnetherm	Device		

 
Magnetic samples of various concentrations were located in universals and placed 

into the magnetherm sample loading chamber. Samples were heated for 30 

minutes or until hyperthermic profiles were attained (42-45°C) as shown in figure 

5-10. The higher concentrations (1.0 and 5 mg.ml-1) heated rapidly, reaching the 

desired temperature profiles in less than 5 minutes. The mid-range concentration 

(0.1 mg.ml-1) achieved the profile in under 20 minutes, however the lowest 

concentration (0.01 mg.ml-1) failed to achieve a hyperthermic temperature profile, 

with a modest increase of temperature after 30 minutes (~12°C).  

 

 

 

 

 

 

 

 
 

 

 

 

Figure 5-10: Temperature profiles of various concentrations of magnetic 
nanoparticles stimulated in the magnetherm. The heating potential of 2 mL 
aliquots of mNPs at concentrations of 0.01, 0.1, 1.0, and 5.0 mg.ml-1 within a 
magnetherm producing a characterized magnetic field (volt= 27.2, current= 
9.3, frequency= 115 kHz, nanotherics, UK). The magnetherm device was 
switched off after 30 minutes or after hyperthermic profiles (42-45°C) were 
achieved, indicated by the black dash. 
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5.4.3.2	In	Vitro	heating	of	MG63	Cells	via	Magnetherm	using	3D	Printed	Culture	

Chambers		

 

Initial hyperthermic experiments were carried out; the MG63 cells were seeded in 

the 3D printed culture chambers, labelled with 0.1 mg.ml-1 mNPs and located with 

the magnetherm	 for 30 minutes. Coomassie blue staining was used to assess the 

cell morphology following treatment, as shown in figure 5-11. Control cells 

exhibited typical stellate adhered cell morphology, however an immediate 

alteration in morphology was observed in samples containing mNPs; cells were 

notably smaller and displayed decreased cell-cell adhesion. At the higher 20 x 

magnification, the mNP labelled cell bodies appear condensed, with areas of cell 

debris, suggesting cell death.  

 

Figure 5-11: Coomassie stain of mNP labeled MG63 cells following 
hyperthermic treatment within a magnetherm. Cells were labeled with 0.1 
mg.ml-1 mNPs, +/- PBS washed and located within the magnetherm for 30 
minutes, prior to coomassie blue staining.  
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5.5 Discussion  
 
5.5.1 MNP Synthesis: Size and Morphlogy  
 
MNPs used in this study were successfully synthesised and imaged via TEM and 

a size distribution graph was generated. MNPs synthesised,  showed a narrow 

size distribution predominantly  between 9 and 13 nm with an average core size of 

~11 nm, a crucial attribute for SPION heating capcity (Gonzales-Weimuller et al. 

2009; Ganeshlenin Kandasamy and Maity 2015b). MNPs displayed a consistent 

sphere morphology and importantly, did not show signs of aggregation, which has 

been shown to alter NP internalisation rate into cells (Alexandre Albanese and 

Chan 2011b). Aggregation to mNPs and in particular, SPIONs has also been 

shown to decrease their heating capacity (SAR), while a further reduction in 

heating capactiy has been observed for SPIONs in suspensions containing cells, 

but the origin of this further reduction is still elusive (Jeon et al. 2016).  

 

5.5.2 Magnetic Nanoparticle Biocompatibility 
 
The mNPs used in this study had a magnetic core size of ~ 11 nm, with a 

hydrodynamic radius of 100 nm following stabilisation with dextran. It is well known 

that both the size and shape of NPs can influence their biocompatibility and 

internalisation into cells (Arami et al. 2015; Forest et al. 2017; Neenu Singh et al. 

2010b; Vanessa Valdiglesias et al. 2016; Yameen et al. 2014a). Therefore this 

chapter aimed to characterise the mNPs prior to use as agents for in vitro 

hyperthermia.  

There are many methods employed to assess particle toxicity.  The MTT assay is 

a well established technique for in vitro cellular toxicity evaluation and is 

extensively used (Watanabe et al. 2013). The results indicated that lower 

concentrations were favourable, as cell metabolic activity decreased with an 

increase in mNP concentration. This is somewhat in agreement with the general 

consensus of the literature concerning functionalised mNPs (Khot et al. 2013; Y. 

Liu et al. 2011; Mejias et al. 2013; Mojica Pisciotti et al. 2014). Dextran is a widely 

used biocompatible coating for many mNPs, including those used for in vivo 

imaging, due to its inert, biocompatible characteristics; indeed many of the FDA 

approved SPIONs are coated with dextran molecules (L. Harivardhan Reddy et al. 
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2012b).  The difficulty with comparing the toxicological affect of dextran coated 

SPIONs with those studies in the literature is due, not only by the variance of 

concentrations used by respective groups, but also the use of different cell lines 

tested and the physical, chemical and structural characteristics of SPIONs (S. 

Laurent et al. 2012a). 

Recently, the concept of ‘nanotoxicity’ has evolved as a distinct research area.  

Nanotoxicity does not only connote cell death in response to nanomaterial 

exposure, but has broadly extended into identifying other markers associated to 

cell stress. This includes oxidative stress, genotoxicity, cell cycle disruption and 

morphological changes, which have all been previously explored in dextran-coated 

mNPs	 (Remya et al. 2016; V. Valdiglesias et al. 2015a). A great deal of difficulty 

therefore exists in forming a cohesive opinion on the toxicity of SPIONs. As well as 

the various characteristics of NPs that can influence cytotoxicity, it also appears 

that the response of identical NPs differ among various organs and cell types 

(Sophie Laurent et al. 2012b). SPIONs in particular appear to demonstrate large 

variance within cell lines due to various cell types responding differently towards 

the uptake of SPIONS, and follow different detoxification mechanisms to overcome 

the toxicity induced by SPIONs (N. Singh et al. 2010a).  

The results in this chapter suggest that dextran-coated mNPs over a prolonged 

period of time (> 24hours) are mildly toxic to bone cancer cells (MG63). The 

increased cytotoxicity at 1.0 mg.ml-1 may be due to an increased accumulation of 

mNP concentration internalised within cells that can be readily metabolised 

(Buyukhatipoglu and Clyne 2011).  The metabolised free iron can be transported 

and stored (via ferritin proteins), however too much free iron that cannot be 

continually stored in ferritin and similar proteins may lead to the breakdown of iron 

oxide into free iron ions within lysosomes	 (Vanessa Valdiglesias et al. 2015b).  

This ‘free iron’ has the capacity to cross mitochondrial membranes, and react with 

hydrogen peroxide and oxygen produced naturally by mitochondria leading to the 

formation of highly reactive hydroxyl radicals and ferric ions (Fe3) via the Fenton 

reaction	 (Malvindi et al. 2014; N. Singh et al. 2010a). ROS have been shown to 

interfere with and cause DNA damage as well as proteins and lipid peroxidation	
leading to the eventual induction of apoptosis (N. Singh et al. 2010a). Several 

studies have also drawn concerns of using iron oxide NPs at high concentrations, 



	

	204	

including compromises to the cytoskeleton (as shown in this chapter), 

mitochondria and DNA (Calero et al. 2014; Sadeghi et al. 2015).  

5.5.3 Magnetic Nanoparticle Internalisation 

The SEM imaging confirmed the interaction of the mNPs on the cell surface, with 

resultant increased expression and exension of filopodia (Pauksch et al. 2014). 

Flopodia have been previously described as 'antennae' or 'tentacles' that are 

capable of probing their microenvironment, although their function has not been 

fully characterized, filopodia and are capable of creating 'sticky fingers' along the 

leading edge promoting cell adhesion, migration and guidance towards 

chemoattractants (Mattila and Lappalainen 2008). Although the cytoskeleton 

imaging demonstrated reduced cell  size and morphology, both the SEM and TEM 

images suggest that the mNPs do not alter the general morphology of cells too 

drastically, or compromise the integrity of plasma membrane or affect cellular 

aherence which has been noted in previous studies (Berry et al. 2003; Calero et 

al. 2014; Rivet et al. 2012). SEM images however did demonstrate the 

aggregation of mNPs, which may influence mNP toxicity and uptake. 

The mNPs were clearly internalised as shown in the TEM images. Endocytosis is 

the major route of NP transport across the membrane and broadly categorised into 

either phagocytosis or pinocytosis.  There are several different mechanisms 

known to be involved in the uptake of NPs, these include clathrin-dependent 

endocytosis and clathrin-independent endocytosis, which includes caveolae-

mediated endocytosis, micropinocytosis and phagocytosis, as shown in figure 5-12 

(Kou et al. 2013).  The images taken during this chapter support both endocytosis 

and pinocytosis, with SEM imaging supporting the former, whilst TEM and 

condensed/punctate F-actin supporting the latter. 
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Figure 5-12: Schematic depicting the main routes of nanoparticle 
internalisation into cells. Nanoparticles (green dots) are taken up by 
endocytosis and enclosed within early endosomes (EE), which mature to 
become multivesicular bodies / late endosomes (MVB),which fuse to form 
lysosomes (Lys).  Nanoparticles can also be recycled back to the cell 
surface through recycling endosomes (RE) (image adapted from ‘Cellular 
Toxicity of Nanoparticles’, Seallab wordpress). 

 

These mechanisms of entry are intrinsically dependent on several factors including 

NP shape, size, surface area, morphology, chemistry and functionalization and 

could subsequently influence NPs toxicology, exocytosis and metabolism (Kettler 

et al. 2014; Kou et al. 2013; Sara Salatin et al. 2015b). Although it has been 

observed that mNP can cause cytotoxic effects without being internalised within 

cells, most effects are uptake-dependent, with corresponding toxicity dependent 

on NP fate within the cell	 (Nel et al. 2009). Thus, an increased uptake of mNPs 

may lead to a decrease in viability and may account for the decreased metabolic 

activity observed in higher mNP concentrations.  

Invaginations of cell membrane with bound mNPs was observed after 1 hour of 

mNP incubation, with mNPs contained in large vesicles (Wilhelm and Gazeau 

2008). Research groups that have used dextran coated mNPs similar to our own 
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have also reported mNP uptake via an endocytosis pathway. This was confirmed 

via endocytosis inhibition that subsequently blocked mNP uptake into cells, and 

upon restoration, mNPs were successfully internalised into Hela cells	(Wilhelm and 

Gazeau 2008) and A549 cells	(J.-S. Kim et al. 2006). Rofe’s group also confirmed 

final destination of dextran-coated mNPs into lysosomes using lysosome-specific 

staining which validate our TEM images after 24 hours (figure 5-9. C and D), in 

which mNPs are clearly observed packaged within vesicles	(Rofe and Pryor 2016).  

F-Actin is a protein producing linear filaments that facilitates the formation of 

microfilaments within the cytoskeleton; these microfilaments are integral for cell 

mobility and intracellular transport, cell-cell and cell-substrate interactions, and 

signal transduction (Calero et al. 2014). Actin filaments are  also involved in 

cellular processes, including apoptosis and mitosis, through integrin-mediated 

signaling, as integrins are mechanically linked to the actin cytoskeleton in so-

called focal adhesion complexes (FACs)	 (S. J. H. Soenen et al. 2010). β-tubulin 

subunits meanwhile, form microtubules, which have fundamental functions similar 

to that of microfilaments including motility and vesicle transport, however play an 

essential role in apoptosis and the separation of chromosomes into daughter cells 

during interphase	 (Kettler et al. 2014; Mundra et al. 2015; Y. Song and Brady 

2015). Potential damage to either of these components would suggest acute 

toxicity of NPs. The results from previous cell metabolic and cell viability results 

suggest a time-dependent affect on cell cultures exposed to mNPs, which is in an 

agreement with the F-actin and β-tubulin staining, where filaments and tubules 

appear to be compromised with notable morphological changes at 24, 48 and 72 

hours. Actin filament disruption has also been shown to increase in a dose 

dependent manner upon mNP incubation (A. K. Gupta and Gupta 2005). At 72 

hours, both F- actin and β-tubulin filaments showed clear alterations, indicating 

potential long term effects of mNPs on cellular structure and function, although it 

has been suggested that this reorganisation or remodelling of the cytoskeleton 

maybe linked to different mechanisms involved in NP internalisation, as shown in 

figure 5-12, rather than as a direct response to the mNPs (A. K. Gupta and Gupta 

2005). 

 

As previously mentioned, the high intracellular concentration of nondegradable 

and solid nanoparticles, such as mNPs, may provoke the synthesis of large 

endosomes to compartmentalise internalised mNPs and it may be these 



	

	207	

organelles that may actually, sterically hinder and deform the cytoskeletal 

architecture	 (Stefaan J. Soenen et al. 2012). The same observation was noted 

with the MG63 cells exposed to GNPs in chapter 3, with β-tubulin disruption, which 

further supports that NP internalisation disrupts β-tubulin networks (Diptiman 

Choudhury et al. 2013b).  Regardless of the effects noted with longer term 

incubation with the mNPs, there was little/no compromise in overall cell viability, as 

shown in figure 5-6. 

 
5.5.4 Hyperthermia using Magnetic Nanoparticles 

 
SPIONs have been shown to cause hyperthermia both in vitro (Reihaneh 

Haghniaz et al. 2015b) and in vivo (C. L. Dennis et al. 2009). To first evaluate the 

mNP heating potential, samples of various concentrations were assessed as to 

their heating potential using the magnetherm (figure 5-10). As expected, the 

heating capacity increased in a dose dependent manner; the mid-range 

concentration of 0.1 mg.ml-1 was selected as the most suitable candidate for cell 

studies, as this concentration was considered a reasonable threshold between cell 

tolerance and heating capacity.  

 

In general, mNP-heating capacity is proportional to the applied MF amplitude, with 

studies showing an increase in field strength corresponding to an increase in 

mNP-heating capacity	(Deatsch and Evans 2014; Mehdaoui et al. 2010). However 

this approach is not clinically relevant due to the physiological difficulties high 

frequency magnetic fields may inflict, such as induced local heating in non-

magnetic tissue due to induced eddy currents (Deatsch and Evans 2014). 

Therefore many studies use fairly narrow frequencies between 100 to 150 kHz for 

medical considerations (André C. Silva et al. 2011b). The characterised MF 

produced in this chapter for hyperthermic experiments was optimised at 115 kHz 

and therefore seems towards the upper limit of clinically relevant parameters and 

the strength was considered the maximum threshold. The mNP diameter/size also 

plays a role in its heating capacity, with smaller particles often releasing heat 

predominantly via Neel relaxation (< 15 nm), therefore our mNPs are expected to 

generate heat in this fashion, which is considered ideal as it is not influenced by 

the viscosity of its environment (Smolkova et al. 2015).  
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The magnetherm is not ideal for cell culture experiments, and in-house 

measurements were used to attempt to locate our 3D printed cell chambers in the 

centre of the applied field, where the force will be strongest, as shown in figure 5-

13. If cells are located at the optimal position, the mNP should cluster within the 

cell upon stimulation, causing maximum cell disruption. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-13: Magnetic nanoparticle heating within an alternating magnetic 
field. Magnetic nanoparticles generate their maximum potential heat, 
identified as an increase in temperature (ΔT), when located within the centre 
of an alternating magnetic field (image adapted from  Piñeiro-Redondo et al, 
2011). 

 

Due to time restraints, only initial gross cell morphology results were obtained. The 

results suggest MF alone does not contribute to cell death nor does it appear to 

affect cellular morphology. Cells exposed to mNPs and MF (and thus 

hyperthermia) showed striking, morphological changes indicative of cell stress 

such as loss of cell extensions, rounding up morphologies and cell detachment 

(Reihaneh Haghniaz et al. 2015b). The shrunken morphology and blebbing in cells 

exposed to hyperthermia may also indicate cells in the latter stages of apoptosis 

while the loss of the organisation of the cell layer and cell-to-cell contact and a 

significant decrease in the number of attached cells demonstrate the global effect 

of hyperthermia on cell monolayers (P. Garcia et al. 2012). 
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5.6 Conclusion 
	
 

The aim of this chapter was to evaluate mNPs as potential hyperthermic agents. 

The ideal candidate must be biocompatible, internalised into cells and able to 

produce hyperthermic temperature profiles (42-45°C) upon exposure to an 

external alternating magnetic field (Bañobre-López et al. 2013).  

 

The mNPs used in this study showed great potential when used at 0.1 mg.ml-1, 

demonstrating cell viability, mNP internalisation and hyperthermic temperature 

profiles in under 20 minutes	 (M. Gong et al. 2015; S. Naqvi et al. 2010a). 

(Orynbayeva et al. 2015; Alice Panariti et al. 2012b; M. Yu et al. 2012a). The 

imaging (SEM, cytoskeleton and TEM) confirmed the interaction and subsequent 

internalisation of mNPs via endocytosis pathways, in particular clathrin-mediated 

endocytosis and pinocytosis appearing the most dominant processes, with mNPs 

packaged within lysosome structures within the cell body (no NPs were observed 

free within the cytoplasm)	(Yameen et al. 2014b).  

 

A 3D printed cell culture chamber was designed to adapt our in vitro studies to the 

magnetherm device used and MG63 cells were successfully cultured and exposed 

to a characterised magnetic field (H. S. Huang and Hainfeld 2013).  Subsequent 

coomassie staining confirmed that exposure to an applied magnetic field (AMF) 

alone did not affect cells, whilst mNP labelled cells exposed to an AMF showed a 

considerable decrease in cell attachment, morphology and size, representative of 

apoptotic/necrotic features. If time had allowed, I had planned a series of 

experiments to further analyse the effects of the AMF on the MG63 cells; initial cell 

viability staining would be carried out to confirm cell death, followed by annexin V 

staining to identify apoptosis. Further TEM imaging could be applied to further 

identify the mechanism of cell death. As shown in figure 5-14, the application of an 

AMF is known to result in the release of lysosome contents, therefore TEM 

analysis post hyperthermic treatment could identify mNP location within cells and 

verify if any particles were free in the cytoplasm, indicative of lysosomal bursting.  
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Figure 5-14: Iron oxide nanoparticles induce cell death by release from 
lysosomes following excitation by an alternating magnetic field (AMF) 
(image adapted from Domenech et al, 2013). 

 

The vast majority of studies perform hyperthermic experiments at room 

temperature, however Glover et al recently carried out mNP hyperthermic 

experiments with a starting temperature of 37°C to mimic in vivo like conditions. 

The temperature was then raised by just 5°C by mNP-induced hyperthermia to 

42°C in just 30 seconds. If time permitted, I would be keen to try and replicate this 

process of culturing cells at a baseline of 37°C before hyperthermic treatment.  
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5.7 Supplementary Data  

 

During the course of this final chapter, several other magnetic nanoparticles were 

assessed for their biocompatibility and heating potential via the magnetherm, 

however to date no others qualified for future study. The magnetic field parameters 

was investigated previously by a postdoctoral researcher to optimise the 

magnetherm device for hyperthermic experiments however the frequency range 

and magnetic field strength was curtailed towards more biological and clinically 

relevant conditions (Deatsch and Evans 2014; A. C. Silva et al. 2011a). 

 

A commercially available SPION formulation were acquired from collaborators in 

Liquids Research Limited (LRL, UK). These SPIONs had a ~ 13 nm core and  a 

DMSA (dimercaptosuccinic acid) biocompatible layer. They were evaluated in 

terms of biocompatibility and heating potential using the protocols within this 

chapter. Although not conventionally used, DMSA is a well-known molecule, 

considered non-toxicand orally administrated as a chelating agent to remove 

heavy metals from an organism representing its biocompatibility (M. P. Garcia et 

al. 2005; Miller 1998). DMSA has also verified its biocompatibility in vivo with 

mouse studies (M. P. Garcia et al. 2005) as well as non-human primates (Monge-

Fuentes et al. 2011). Silva et al assessed the biocompatibility and uptake of both 

magnetic and gold NPs decorated with DMSA on mesenchymal stem cells; both 

types of NPs showed excellent viability but only mNPs were proficient for magnetic 

targeting in vivo (L. H. Silva et al. 2016).  Unfortunately, the compromise between 

the biocompatibility/toxicity of these particular SPIONs and the concentration 

required to produce hyperthermic temperature profiles was unattainable, as shown 

in figures 5-15 and 5-16 respectively. Whilst a mNP concentration of 0.01 mg.ml-1 

was deemed the most biocompatible for biological experiments (figure 5-15), this 

concentration only permitted a modest change in temperature was observed that 

did not reach hyperthermic temperature profiles (figure 5-16). Interestingly, it has 

been previously reported that dispersed single magnetic nanoparticles were able 

to increase the temperature of their immediate surroundings within a magnetic 

field, in an amplitude dependent manner, without increasing the temperature of the 

bulk solution (Creixell et al. 2011; Krpetić et al. 2010). Perhaps further 

investigations using these mNPs may identify whether this could occur. Figure 5-

17 and 5-18 show the temperature elevation during magnetherm experiements of 
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both DMSA and PEG coated mNPs at 0.1 mg.ml-1 concentration at various 

characterised frequencies. No strong correlation was observed with an increased 

frequency on temperature between 100-130 kHz however a frequency of 200kHz 

showed a notable increase in temperature although this frequency is not 

considered biologically applicable. A frequency of 115 kHz provided the most 

biologically  appropriate condition as well as consistent and high heating 

temperature without compromising cell viabilty and was subsequently selected for 

experiments conducted within this study.  
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Figure 5-15: Metabolic activity of MG63 cells following incubation with LRL 
magnetic nanoparticles. MTT analysis of MG63 cells treated with 0.01, 0.1 
and 1.0 mg.ml-1 mNPs for 24, 48 and 72 hours (n = 5; error bars indicate SD). 

 

 

 

 

 

 

 

 

 

 

Figure 5-16: Temperature profiles of LRL mNPs stimulated in the 
magnetherm. Concentration used were 0.01, 0.1, 1.0, and 5.0 mg.ml-1, with a 
characterised magnetic field (volt= 27.2, current= 9.3, frequency= 115kHz, 
nanotherics, UK). The magnetherm device was switched off after 30 minutes 
or once a hyperthermic profile (42-45°C) was achieved, indicated by the 
black dash. 

 

 

C o n c e n tra t io n  m g .m l- 1

M
e

ta
b

o
li

c
 A

c
ti

v
it

y
 %

0 .0 1  m g .m l
-1

0 .1  m g .m l
-1

1 .0  m g .m l
-1

0

2 0

4 0

6 0

8 0

1 0 0

2 4  H o u rs

4 8  H o u rs

7 2  H o u rs

T im e , M in u te s

T
e

m
p

e
ra

tu
re

o
C

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

2 0

4 0

6 0

8 0

0 .0 1  m g .m l- 1

0 .1  m g .m l- 1

1 .0  m g .m l- 1

5 .0  m g .m l- 1



	

	214	

 

 

 

 

 

 

 

 

 

 

 

Figure 5-17: Temperature profiles of LRL mNPs at 0.1 mg.ml-1  stimulated by 
the magnetherm device at a range of frequencies. Magnetic field strength 
was maintained (volt= 27.2, current= 9.3) after 20 minutes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-18: Temperature profiles of PEG coated mNPs used throughout this 
study, at 0.1 mg.ml-1  stimulated by the magnetherm device at a range of 
frequencies. Magnetic field strength was maintained (volt= 27.2, current= 
9.3) after 20 minutes. 
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6 Final Discussion 
 

6.1 Nanoparticles in Hyperthermic Cancer Treatment 
 

Although nanomedicine is considered a promising field with exciting prospects for 

the diagnostics and clinical treatment of human disease, important parameters 

such as the biodistribution, biological interaction and toxicological effects of new 

nanomaterials must be carefully assessed before actual clinical use (Nikolai 

Khlebstov et al, 2010; Ruchi Roy et al, 2014).  Many nanoparticles (NPs) have the 

ability to absorb energy (magnetic pulse, laser light, ultrasound etc) and turn it into 

heat.  The use of nanothermal therapy as a viable future option for cancer 

treatment has been recently discussed (Chatterjee et al. 2011; Krishnan et al. 

2010).  It is noted that researchers have to focus their attention not only on the NP 

heating efficacy, but also on parameters such as NP blood half-life, toxicity, organ 

distribution and renal clearance. To date a number of studies have made the 

successful leap from in vitro to in vivo with encouraging results	 (G. Kandasamy 

and Maity 2015a; Muldoon et al. 2005). The following discussion sections will 

detail the key in vitro and in vivo studies for both gold and magnetic naonparticles 

that have been carried out to date, including those that have achieved clinical trial 

status. The ultimate goal of this field of research looks forward towards using gold 

or magnetic nanoparticles as successful, practical thermal agents in cancer 

treatment. One consideration when using NPs in vivo is the route of 

administration. For NP intravenous administration - which is the standard to date 

for accessing tumours, researchers have exploited the phenomenon of the 

enhanced permeability and retention effect (EPR), which allows the natural 

‘passive’ accumulation of NPs into tumours	(Nichols and Bae 2014). This is due to 

the increased leakiness of tumour blood vessels allowing for NPs to seep into the 

disorganised vascular architect and accumulate, as shown in figure 6-1 (Nichols 

and Bae 2014). Accumulation is further amplified through the lack of functional 

lymphatic drainage in tumours that inhibits the removal of extravasated NPs 

leading to increased retention times	 (Baetke et al. 2015). The EPR effect can be 

further increased through ‘active’ targeting with nanosystems designed to increase 

the targeting, uptake and retention of NPs to specifically targeted sites (Cherukuri 

et al. 2010; Cole et al. 2011b).  
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Figure 6-1: Nanoparticle transport to cancerous tissues via the enhanced 
permeability and retention (EPR) effect. Nanoparticles of various sizes 
accumulate more in cancerous tissues (right) than normal tissues (left) due 
to disorganised vasculature and impaired lymphatic drainage (Sun et al, 
2014).   

 

The interaction, consequences and fate of NPs within a biological system remain 

complex and it is important for researches to understand the cell-nanoparticle 

interactions in order to predict potential toxicity issues	(Verma and Stellacci 2010).  

In this regard, a further consideration for NP use in vivo is NP interaction with 

proteins within a biological fluid, such as growth media in vitro or blood in vivo, 

which are able to adhere to and essentially coat NPs, thereby influencing the 

overall NP performance. The type and amount of these proteins that attach onto 

NPs, termed “protein corona”, could lead to a very different cellular responses as 

compared to uncoated NPs, by altering the ‘cell vision’ (i.e. how a cell type views a 

particular NP) (Mahmoudi et al. 2012; Saptarshi et al. 2013). Both the NP protein 

corona and the cell vision of different cell types could holistically lead to restricted 

clinical use of NPs and should therefore be considered, or negated, when 

designing a NP-based platform for bioapplications.  
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6.2 Gold Nanoparticles as Photothermal Agents 
 

6.2.1 Gold Nanoparticle Biocompatibility In Vitro  
 

Bulk gold is well known to be chemically inert and gold-based compounds have 

been used in clinic, such as anti-inflammatory agents to treat rheumatoid arthritis.  

The chemical reactivity for nanoscale gold particles, however, is different to bulk 

gold. The debate over the biocompatibility and potential toxicity of GNPs has been 

extensively discussed within the literature (Ellen E. Connor, 2005; Pratap C. Naha, 

2015; Hirak K. Patra, 2007; Show-Mei Chuang, 2013). However only a modest 

consensus has suggested that GNPs themselves may be inherently toxic 

(Ahamed et al. 2016; A. M. Alkilany and Murphy 2010; A. M. Alkilany et al. 2012; 

Karakoçak et al. 2016). With GNPs being explored as prospective drug delivery 

agents (Coelho et al. 2015), contrasting agents (Q. Wu et al. 2015), gene delivery 

agents (Bishop et al. 2015) and, in this case, hyperthermic agents (Hainfeld et al. 

2014), the potential short-term and long-term toxicity must be fully realised in order 

to safely and reliably translate for clinical application. 

 

6.2.1.1	Cytotoxicity	is	Dictated	by	Size	and	Shape:	Nanorods	and	Nanoprisms	

 
GNP toxicity has been directly linked to their size and shape.  There have been 

numerous studies in this regards, table 6-1 summarises some of those studies, 

indicating the cell culture model used and the size and shape of the GNP. As the 

table shows, the response is varied. 
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Table 6-1 S
um

m
ary of S

tudies show
ing G

N
P

 toxicty observations (adapted from
 C

larence S
. Y

ah et al, 2013). 

Type 
exposed 
organism

 

S
ize of 

G
N

P
s 

R
oute of 

E
xposure 

D
ose 

S
urface 

C
oating 

Test 
B

iological E
ffect 

R
ef 

M
ale W

U
 

W
istar-

derived rats 

10, 50, 
100 
and 
250 nm

 

Intravenously 
1 m

L 
S

pherical 
G

N
P

s 
O

rgan index 
The G

N
P

s w
ere found in the liver and spleen. 10 nm

 w
as 

presnt in all blood, liver and spleen. G
N

P
s found in the 

liver and m
acrophages 

[53] 

Fem
ale m

ice 
2, 40 
and 
100 nm

 

Intratracheal  
1.4-1.6 
m

g/kg 
N

egatively 
charged 
m

onodisperse 
and spherical 
G

N
P

s 

O
rgan index 

(liver) 
G

N
P

s found in liver and m
acrophages 

[88] 

M
ice 

13.5 
nm

  
O

ral, 
Intraperitoneal 
routes and tail 
vein 
intravenous 
injection 

137.5-
2200 
µg/kg 

S
pherically 

citrate-coated 
A

nim
al survival, 

w
eight, 

heam
otology, 

organ index 

H
igh G

N
P

 induced decrease in body w
eight, red blood 

cells. N
o effect at low

 level. O
ral adm

in caused a 
significant decrease in body w

eight, spleen index and red 
blood cells 

[14] 

B
A

C
B

/C
 

M
ice 

3-100 
nm

 
Intraperitoneal 

8 m
g/k/w

eek 
N

one 
P

hysical and 
behavioural 
exam

ination  

G
N

P
s of 8, 12, 17, 37 nm

 induced fatigue, loss of 
appetite, change of fur colour and w

eight loss. M
ost died 

w
ithin 21 days. 3-5 nm

 did not induce sickness 

[68] 

M
ale W

istar 
rats 

20 nm
 

Tail-vein, 
intravenous 
injection 

0.2 m
L 

(0.01 
m

g/kg) 

G
N

P
s 

O
rgan index 

G
N

P
s accum

ulated and persisted in the liver and spleen 
and other organs. M

any up and dow
n regulated gene 

w
ere expressed.  

[37] 

M
ale m

ice 
C

57/B
L6 

~12.5 
nm

 
Intraperitoneal 

40-400 
µg/kg/day  

C
olloids citrate 

coated G
N

P
s 

A
nim

al survival, 
w

eight, 
heam

otology 
m

orphology and 
organ index 

G
N

P
s w

ere able to cross the vrain barrier and 
accum

ulate in neural tissues but no toxicity evident but 
there w

as uptake in the spleen, kidney and liver.  

[87] 
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  R
at 

5 nm
 

Tail vein 
intravenous 
and 
Intratracheal 

570-870 
µg/kg  

P
E

G
 coated 

G
N

P
s 

O
rgan index 

P
E

G
 coated G

N
P

s accum
ulated m

ostly in liver and 
spleen  

[90] 

M
ale m

ice 
~15 nm

 
Tail vein 
intravenous 
and 
Intratracheal 

150-200 
µL   

H
um

an serum
 

album
in, G

N
P

s 
O

rgan index 
Functionalised G

N
P

s accum
ulated in the hippocam

pus, 
thalam

us, hypothalam
us and the cerebral cortex 

[91] 

B
A

LB
c/c 

A
nN

H
sd 

fem
ale m

ice 

~2.5 
nm

 
S

ubcutaneous 
injection 

200 µL 
P

E
G

-TM
P

C
 

coated 
O

rgan index 
100%

 survial at all the different concentrations of P
E

G
-

TM
P

C
 and TM

P
C

. P
articles present in the organs but 

TM
P

C
 is not suitable for in vivo studies 

[92] 
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Smaller GNPs were reported to elicit greater toxicity than larger GNPs, where 

particles <3 nm were observed to intercalate in DNA  (Hung-Jen Yen, 2009). A 

study by Goodman et al also demonstrated cytotoxicity of cationic 2 nm diameter 

gold nanospheres (Goodman et al, 2004). However control experiments, 

assessing the same GNPs with a negatively charged surface, tested in the same 

cell line with the same dose were not found to be toxic, as the cationic GNPs 

interacted with the negatively charged cell membrane and caused disruption. 

Therefore, such studies should always be thorough, to determine the correct 

parameter influencing toxicity.  

 

The perspective of smaller particle sizes conferring cytotoxicity has been 

challenged recently by Mingfei Yao et al, who demonstrated that an increase in 

particle diameter promoted the depolarisation of mitochondrial membrane 

potential, an early indicator of apoptosis (Yao et al. 2015). Therefore size is not 

always a clear determinant for cell response.  

 

Synthesised GNPs come in a variety of shapes, including rods, spheres, tubes, 

wires, cubic, hexagonal triangular and tetrapods. GNP shape is known to influence 

cytotoxicity, with more sophisticated geometries associated with a higher cytotoxic 

effect	 (Carnovale et al. 2016). For example gold nanorods are often cited as a 

more toxic geometry as compared to nanospheres (Yinan Zhang et al, 2012), 

nanocages (Y. Wang et al. 2013b) and nanohexapods (Y. Wang et al. 2013b). The 

in vitro cytotoxicity of gold nanorods in a human lung adenocarcinoma cell line was 

recently published (Ying Tang, 2015). The study confirmed membrane damage 

within 4 hours of gold nanorod exposure while ROS production correlated to 

increased GNP concentration. In another study, gold nanorods with three varying 

aspect ratios were also evaluated for their cytotoxic potential across 6 cell lines 

(Show-Mei Chuang, 2013). All three nanorods induced a dose-dependent 

suppression on cell growth to varying degrees, with ROS induced apoptosis and 

cell cycle inhibition considered the main route of GNP cytotoxicity. Conversely, the 

nanorods used in this project exhibited low cytotoxicity even at high concentrations 

and produced similar biocompatible features as their gold nanoprism counterparts.
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The associated toxicity of gold nanorods in particular may be due to the synthesis 

process rather than the actual geometry, as previously highlighted by Alkilany and 

co-workers (Alaaldin M. Alkilany et al. 2009). As previously highlighted in chapter 

3, section 3.5.4, CTAB is a cationic surfactant conventionally used by groups to 

“grow” gold nanoseeds into nanorods, could indeed be the the primary source of 

toxicity. CTAB is typically removed via purification or desorption techniques, 

however these processes are often inadequate at removing all CTAB molecules 

and thus free CTAB molecules can remain within the nanorod solution leading to 

toxicity (A. M. Alkilany and Murphy 2010). Alkilany and Murphy (2009) validated 

this claim when they centrifuged GNP solutions and removed and analysed the 

supernatant (containing free CTAB molecules). They observed the concentration 

of CTAB in the supernatant was able to cause cytotoxicity and a reduction in cell 

viability. The study may explain the associated toxicity of gold nanorods and other 

geometries both in vitro and in vivo (A. M. Alkilany and Murphy 2010).  In addition, 

gold nanorods synthesized in the presence of CTAB conjugates have been shown 

to lead to toxicity in both cells and in animals (Akiyama et al. 2009; Wan et al. 

2015), with CTAB shown to damage mitochondria and increase the activation of 

intracellular ROS, inducing cell apoptosis and autophagy (Wan et al. 2015). 

However, despite its use in the production of the gold nanorods used in this 

project, our collaborators have taken measures to remove as much CTAB as 

possible from the gold nanorod solution (chapter 3, section 3.3.1), which may 

clarify the low toxicity levels observed throughout the project.  

 

6.2.1.2	Variation	in	Cell	Response	Between	Different	Cell	Lines	

 

The general outcomes drawn from various studies are unfortunately, inconclusive 

due to the inherent variations in how the different research groups carry out 

experiments, including using different cell lines, different NP sizes, different 

surface coatings, different concentrations/doses and different time points. For 

example, with regards to cell lines, GNPs have been shown to lead to cell death in 

A549 cells (human hepatocellular liver carcinoma) in a dose dependent manner, 

but not in HepG3 (human hepatocellular) or BHK21 (baby hamster kidney) (H. K. 

Patra et al. 2007a). The study confirmed cell death occurred through Poly ADP-

ribose polymerase (PARP) activation, a protein which can be cleaved and leads to 

the downstream activation of caspases and cell death (H. K. Patra et al. 2007a) 
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while oxidative stress and increased lactacte dehydrogenase leakage was also 

induced in A549 cells, again in a dose dependent manner (Ying Tang, 2015).  

 

The results in chapter 3 confirmed the relative inert nature of both gold nanorods 

and nanoprisms (without heating) in the two cell lines, with no differences noted 

between MG63 and MCF-7 cells in either monolayer or spheroid culture. This was 

surprising, given that the gold nanorods that were synthesized in the conventional 

“see-mediated” method utilizing the CTAB surfactant. Gold nanoprisms were 

synthesised without the use of CTAB and thus no toxicity was anticipated.  

The results in chapter 3 did highlight variation in GNP internalization based on 

geometry, with nanoprisms being internalized with far greater efficiency than 

nanorods.  The size of GNPS is known to influence both the rate and extent of 

cellular uptake, with smaller particle sizes proving more efficient (Chithrani et al, 

2006). A study by Gao et al adopted a mathematical approach to identify an 

optimum particle size of 27-30 nm to permit the most efficient internalisation	 (H. 

Gao et al. 2005). However, whilst there were no practical experiments to support 

this claim, the gold nanoprisms used in this project were much larger and quickly 

internalized by both cell lines. 

 

6.2.1.3	GNP	Coating	and	Cytotoxicity	

 

The biocompatibility of the gold nanoprisms and nanorods may be attributed to 

their functionalization with 5 kDa PEG chains. The PEGylation of NPs has been 

shown to improve systemic performance, decreasing inflammatory responses in a 

PEG dose-dependent manner and increasing endocytosis into lung alveolar 

endothelial cells (Ibricevic et al. 2013). PEGylated NPs have also been shown to 

increase cancer cell uptake, reducing nonspecific accumulation and prolonging 

blood circulation by decreasing the rate of opsonisation and thus RES clearance	
(Hongwei Chen et al. 2013; J. Liu et al. 2013c). 

 

The PEGylation of NPs has also been demonstrated to increase the accumulation 

and residence time within tumours while also enhancing the affect of photothermal 

treatment in vivo as compared to bare GNPs, possibly due to the increased uptake 

and tumour accumulation of PEGylated GNPs	(J. Bai et al. 2014a; Huiyu Liu et al. 

2013b). The pharmacokinetics of PEGylated GNPs illustrated the passive 

accumulation of both gold nanoshells and nanorods in tumourss within mice, while 
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PEG functionalisation preserves GNP stability against agglomeration at 

physiological conditions during systemic circulation (Constantin et al. 2013; 

Terentyuk et al. 2013). 

 

One of the major advantages to the use of GNPs over other NPs is their ‘active’ 

surface chemistry (Pissuwan et al. 2006). GNPs can be functionalised with ease 

by a wide range of thiolated molecules with very high affinity (Beatriz Pelaz and 

del Pino 2012) and can be easily functionalised with various ligands (Constantin et 

al. 2013), antibodies	(Di Pasqua et al. 2009) and proteins	(Di Pasqua et al. 2009). 

Although geometry (Chithrani et al. 2006), size (Freese et al. 2012) and 

functionalisation	(Y. Jiang et al. 2015)  can all affect the GNP uptake, it seems the 

most conventional route is receptor-mediated endocytosis (Dykman and Khlebtsov 

2014; N. Oh and Park 2014). Our results support a combination of endocytosis 

and pinocytosis for nanoprism and nanorod cellular uptake.  

 

The intracellular distribution of GNPs has been previously studied, with consensus 

supporting storage in vesicles, howvever GNPs are also reported to leave the cell 

via exocytosis. Chithrani and Chan (2007) detailed the elimination of GNPs from 

cells, which was size dependent, with smaller GNPs removed faster than large 

GNPs in a practically linear pattern (14, 30, 50, 74, 100 nm), while gold nanorods 

seem to be removed from cells at a greater rate than spheres. Chan et al group 

also observed a similar pattern on the uptake rate of sphere and rods, with 

spheres showing more efficient uptake into cells than rods, with a higher aspect 

ratio of rods also correlating to a lower uptake rate (Chithrani et al. 2006; Chithrani 

and Chan 2007; E. C. Cho et al. 2010a). 

 

6.2.2 Gold Nanoparticle biocompatibility in 3D Culture  

 

Traditional in vitro studies are performed in 2D, with cells cultured on plastic or 

glass substrates which provide a lack of relevance to the in vivo environment, 

while the behaviour, intracellular fate and toxicity of NPs in in vitro studies often 

exhibit poor consistency when scaling to in vivo models (Joris et al. 2013). Testing 

NP platforms immediately within animal models does present unique challenges, 

including ethical issues, while animal models do not correlate to human systems. 

The economical issues, practicality and feasibility of in vivo studies also limit their 
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use. To bridge the gap between in vitro and in vivo, with the aim to produce more 

clinically relevant data, 3D cell culture models are instrumental.  

 

In this project multicellular tumours spheroids were employed alongside 

corresponding monolayer cell cultures. The standard biocompatibility assessment 

in chapter 3 did not reveal discriminate differences between the 2D and 3D 

models, as reported by previous studies that detail 3D models as more resistant to 

toxicological affects than their 2D counterparts (Jungwoo Lee et al. 2009; H. 

Tseng et al. 2015; Wills et al. 2016). Recent studies have challenged the 

hypothesis of 3D cultures being more resistant to toxicity than 2D models, often 

citing difficulties with colorimetric dye-based cytotoxic assays (such as MTT 

assays) in 3D cultures (Bonnier et al. 2015). In addition, other groups have 

observed 3D models as more susceptible to nanotoxicity when compared to 2D 

models, with different cytotoxic mechanisms occuring in either 2D or 3D culture 

upon NP exposure (Sambale et al. 2015; Theumer et al. 2015; Miao Yu et al. 

2012b). 

 

6.2.3 Gold Nanoparticle Induced Hyperthermia via Photothermal Treatment  

 

6.2.3.1	Modest	Screening	Provides	Ambiguous	Results	

 

The results from chapters 3 and chapter 4 confirm the that both cell lines labelled 

with either gold nanoprisms or nanorods and laser treated resulted in hyperthermic 

temperature profiles, leading to cell death	 (Raji et al. 2011a).  The cell death was 

apparent in both 2D and 3D cultures, confirming that the laser was capable of 

penetrating the spheroids, which were approximately 200 µm (Madsen et al. 

2015).  

 

Many other groups carried out experiments detailing photothermal treatment on a 

plethora of monolayer cancer cell cultures using various GNP platforms with 

success	 (C.S et al. 2012; Chiu et al. 2015; Gobin et al. 2010; L. Mocan et al. 

2015a; Raji et al. 2011b; L. Yang et al. 2015).	 	The majority of studies confirm a 

decrease in cell viability and increase in apoptosis using standard viability assays 

and focusing on a single apoptosis pathway (Alfranca et al. 2016; Gobin et al. 

2010; Y. Guo et al. 2013; X. Huang et al. 2006b). Unfortunately these studies do 
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not clearly distinguish if cell death occurred via apoptosis or necrosis and of the 

two, which appeared the more dominant process.  There are no studies which 

have screened both 2D and 3D cultures for a wide range of RNA and protein 

targets to identify the various pathways activated during cell death, as was carried 

out during this project. 

 

To somewhat answer these apparent shortcomings, groups have focused on 

speficic markers, for example evaluating the intracellular events after photothermal 

treatment by identifying increases in heat shock protein expression (Ali et al. 2016; 

Leung et al. 2013; L. Yang et al. 2015) and/or apoptosis via caspase 3 expression 

(C.S et al. 2012; Raji et al. 2011a). Although caspase 3 is a good indicator of cell 

death via apoptosis, caspase 3 is actually an effector caspase mediating apoptosis 

once activated by either the intrinsic, extrinsic pathway, while also playing a role in 

lysosome degradation, providing ambiguous results (Oberle et al. 2010). To the 

best of our knowledge only a few groups have attempted to decipher the more 

intrinsic intracellular events and pathways of apoptosis upon photothermal laser 

irradiation, including the analysis of Bcl-2 family members and proteins associated 

with mitochondria (Abadeer and Murphy 2016; Perez-Hernandez et al. 2015; 

Shiwen Zhang et al. 2014).  

 

6.2.3.2	Identifying	the	Intracellular	Events	of	Photothermal	Treatment		

 

In this project, we attempted to characterise photothermal-induced apoptosis, by 

screening a variety of apoptotic markers both at the genetic and proteomic level. 

Experiments were carried out using two cell lines, two GNP types and two cell 

culture models, with a view to clarifying any differences observed. Although the 

intrinsic pathway appeared the dominant protagonist for apoptosis, our results also 

showed a more broad activation of both the extrinsic pathway and cathepsin 

mediated apoptosis upon photothermal treatment (K. Ahmed et al. 2015a; 

Shellman et al. 2008). These more novel pathways are orchestrated by cellular 

oxidative stress as well as autophagy (Shellman et al. 2008).  Our results further 

suggested that hyperthermia-induced apoptosis was activated primarily via ROS 

accumulation as well as protein degradation and activation of pro-apoptotic 

markers.  
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6.2.4 Gold Nanoparticle Hyperthermia In Vivo and the Clinic  

 

The in vivo performance and associated toxicities of GNPs has been discussed 

(Nikolai Khlebtsov, 2010; Carrie A. Simpson et al, 2015; Xiao-Dong Zhang, 2011; 

Nikhat J Siddiqi, 2012; Mayara Klimuk Uchiyama, 2012). GNPs have been seen to 

accumulate at different rates within different tumour models, where the 

accumulation of GNPs was 5 times higher in breast cancer tumours compared to 

fibrosarcoma tumours, suggesting tumour type is influential on GNP accumulation 

(Dam et al. 2015). Interestingly, this group also noted discrepancies in the GNP 

half-life in males and females, although no hypothesis was put forward.  Aside 

from tumour accumulation, GNPs also accumulate in the spleen and liver (Black et 

al, 2013). The particle shape appears to be a factor in determining the half-blood 

life and clearance of NPs, with nanospheres retained for longer in circulation as 

compared to disks, rods and cages (Black et al, 2013). As with toxicity studies, 

comparisons are often difficult due to variation in experimental design, including 

the administration route, passive/active targeting, concentration, exposure time as 

well as individual particle features (shape, size charge etc).  However, in summary 

most groups showed no significant permanent toxicity associated damage when 

using in vivo animal models (Sung Gu Han et al, 2015; Samuel A. Jensen, 2009), 

even up to 120 days after exposure (Goel et al, 2009).  

 

The use of GNPs for the thermal tumour therapy was first documented in mice in 

2003 by Hirsch et al (Hirsch et al. 2003). Histological samples confirmed the 

irreversible tissue damage of irradiated tumourss containing gold nanoshells. 
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Figure 6-2: Effects of GNP photothermal treatment.  a) Gross pathology after 
in vivo treatment with nanoshells and NIR laser reveal hemorrhaging and 
loss of tissue birefringence beneath the apical tissue surface. (b) Silver 
staining of a tissue section reveals the region of localized nanoshells 
(outlined in red). (c) Hematoxylin/eosin staining within the same plane 
clearly shows tissue damage within the area occupied by nanoshells. (d) 
Likewise, MRTI calculations reveal an area of irreversible thermal damage of 
similar dimension to a, b, and c. (taken (Hirsch et al. 2003)). 

 

Since this report, many other in vivo animal studies have been conducted with 

promising results (Bogdanov et al. 2015; Dickerson et al. 2008; Melancon et al. 

2008; D. P. O'Neal et al. 2004a; Rengan et al. 2015). Systemic studies focused on 

GNP biodistribution, has shown that smaller GNPs result in a more widespread 

distribution in both rat (De Jong et al. 2008) and mouse organs	 (Hillyer and 

Albrecht 2001) via intravenous injection and oral intake, respectively. A 

comprehensive systemic review by Mohan Singh et al in 2015 detailed the use of 

GNP thermal therapy solely for gastrointestinal cancers with eleven studies that 

were conducted using rodents and demonstrated excellent therapeutic outcomes. 

However, in another animal trial, more severe effects have been reported by Chen 

and co workers, where GNPs within a size range (8-37 nm) led to various side-

effects including fatigue, loss of appetite, change of fur colour, and weight loss, 

while more stark characteristics such as crooked spines and loss of lung structural 

integrity were also noted	 (Y.-S. Chen et al. 2009). While Zhang and co-

workers(2011) demonstrated an increase in alanine transaminase and aspartate 

transaminase levels, clinical markers signifying liver damage upon the introduction 

of PEGylated GNPs at 10 nm and 60 nm, within mice (Xiao-Dong Zhang, 2011). 
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Despite this, GNP thermotherapy has shown more promising potential in a number 

of studies including treatment for prostate cancer (Terentyuk et al. 2013), 

pancreatic cancer	 (C. R. Patra et al. 2010) and breast cancer (Jihyoun Lee et al. 

2014b). 

 

The success of in vitro and in vivo studies has lead to clinical trials. In 2011, a 

Phase I clinical trial confirmed GNP biocompatibility while a predicted yet 

controlled fever occurred in patients due to immune activation and inflammation	
(Elsabahy and Wooley 2013; Libutti et al. 2010). The study not only showed how 

the use of PEGylated 27 nm colloidal gold nanospheres, even at previously 

believed toxic concentrations, can be tolerated by the body, but also demonstrated 

the efficacy of targeting systems to traffic GNPs to tumour tissue (Libutti SK, 

2010).  

 

Currently, only one GNP photothermal treatment system has progressed to clinical 

trials produced by Nanospectra Biosciences, Inc., founded in 2002. The company 

focuses on commercialising photothermal therapeutics for the destruction of solid 

tumours (Abadeer and Murphy 2016). While a US Food and Drug Administration 

(FDA) approved	AuroLase® pilot study using silica-gold nanoshells  (AuroShells) 

has been completed, for the photothermal treatment of patients with primary and 

metastatic lung tumours. AuroLase Therapy involves the use 150 nm PEGylated 

gold nanoshells. The nanoshells are injected intravenously, while the PEGylation 

allows GNPs to circulate in the blood long enough to accumulate in tumours via 

the EPR effect (Abadeer and Murphy 2016). As NIR laser penetration is ~10 cm, 

deep seated tumours may not be adequately treated and therefore fibre optic NIR 

lasers will be inserted into the body to alleviate this fundamental issue (Abadeer 

and Murphy 2016; Ralph Weissleder 2001b). The use of a fibre optic NIR laser 

has been proved effective by Schwartz and co-workers (2009) who successfully 

utilised photothermal therapy in a venereal tumour in a canine brain model 

(Schwartz et al. 2009). A second AuroLase® pilot study has also been completed 

using AuroShells for the treatment of neck and head tumours. Although both 

studies have been completed, the results have not yet been publicised (Pedro 

Pedrosa, 2015). A schematic of the GNP core is shown in figure 6-3. 
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Figure 6-3: The AuroShell GNPs currently being used in the AuroLase 
clinical trial program. While information is limited; the image on the left 
shows the particle and its mode of action, whilst the image on the right 
illustrated an IV bag of AuroShells. (Image adapted from Nanospectra 
Biosciences;http://nanospectra.com/our-technology/products/aurolase-
therapy).  

 

6.2.5 GNPs as an Adjunct to Established Cancer Therapies  

While GNP photothermal therapy has been highlighted as a viable, alternative 

therapy for cancer treatment, GNPs have also recently been investigated as an 

adjunct to established cancer therapies (J. Lee et al. 2014a; Lucian Mocan et al. 

2016). For example, photothermal heating has been synergistically used to reduce 

the amount of radiation dose required during radiotherapy (James F. Hainfeld, 

2014) and for the dual modality of targeted chemotherapeutic delivery and 

hyperthermia to cells (Hussaina Banu, 2015). Jaesook Park et al, (2015) showed 

the effectiveness and range of uses of hollow GNPs for triple combination therapy 

and CT imaging, with the hollow core housing chemotherapeutic payloads. The 

GNPs also featured a high x-ray absorption capability, which increased the effect 

of radiotherapy while its own heating capability contributed to hyperthermic 

profiles. The combination of hyperthermia, radiotherapy and chemotherapy 

dramatically delayed tumour growth (by a factor of 4.3) and reduced tumour 

weight (6.8-fold) compared to control tumourss, while the ability of GNPs as 

contrast agents for CT scans were in accordance with previous literature (Ahn et 

al. 2013). This extensive study highlights the huge potential of GNPs as 

contrasting agents and as nanoscale heaters.  
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6.3 Magnetic Nanoparticles as Hyperthermia Agents  
 

6.3.1 Magnetic Nanoparticle Biocompatibility 

 

As with GNPs, the toxicity of mNPs, in particular SPIONs, have been well 

documented in several comprehensive reviews (Sophie Laurent et al. 2012b; G. 

Liu et al. 2013a; Mahmoudi et al. 2011; L. H. Reddy et al. 2012a).  The importance 

of a biocompatible coating surrounding mNPs has been well established, with 

Miao Yu et al demonstrating the potentially cytotoxic nature of bare SPIONs, while 

SPIONs coated with PEG or dextran showed little toxicity in both 2D and 3D 

models	 (Miao Yu et al. 2012b).  Morteza Mahmoudi’s group further confirmed the 

uptake and cytotoxicity at both the cellular and molecular level with thirteen cell 

lines exposed to the same SPION at various concentrations (Mahmoudi et al. 

2012). Not only did the study demonstrate that the toxicity levels of different cell 

types to SPION exposure varied, it also probed the potential detoxification 

pathways different cell types use to remove ROS and remain viable.  

 

A number of studies have demonstrated, DNA damage (Mahmoudi et al. 2011), 

oxidative stress (Ivask et al. 2015; U. A. Reddy et al. 2015), mitochondrial damage 

(Unfried et al. 2009) and protein denaturation (Vanessa Valdiglesias et al. 2015b) 

of cells in the presence of mNPs. These toxicity issues are believed to occur upon 

internalisation of SPIONs, where iron oxide can be metabolised by heme 

oxygenease-1 to form haemoglobin and hence maintain iron cell homeostasis 

(Kumar and Faruq, 2011). However the increase concentration of iron within the 

body can lead to the production of free radicals that can lead to oxidative stress 

and eventual death of cells (Santhosh and Ulrih 2013). 

 

Despite these potential pitfalls, the FDA and the European Medicines Agency 

(EMA) have both approved the medical use of selected iron oxide nanoparticles, 

which have been applied to human clinical trials for the treatment of brain cancer, 

glioblastoma (Bayazitoglu et al. 2013; Tombacz et al. 2015). For future medical 

applications, mNPs must show efficacy in biocompatibility and long-term stability in 

vivo for use in thermotherapy treatment  of cancer cells	 (Gobbo et al. 2015; C. S. 

Kumar and Mohammad 2011).  
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Our short study, in chapter 5, confirmed the low toxicity of dextran-coated mNPs, 

even at a relatively high concentration (0.1 mg.ml-1), which was required for 

adequate hyperthemic temperature profiles (42-45°C)	 (Toraya-Brown and Fiering 

2014). Successful cellular uptake into monolayer MG63 cells was observed, most 

likely due to the biocompatible dextran, which has been shown to increase mNP 

internalisation and also reduce mNP toxicity compared to bare and PEG coated 

mNPs	 (Miao Yu et al. 2012b). Dextran coated mNPs also boast an advantage in 

biological systems where they have been shown to prolong blood duration time 

allowing access to macrophages located in tissues such as lymph nodes, kidney, 

brain	(Easo and Mohanan 2013).  

	
6.3.2  Magnetic Hyperthermia In Vivo and the Clinic  

 

The mNPs used in this project were able to generate heat upon exposure to an 

external alternating magnetic field (volt= 27.2, current= 9.3, frequency= 115 kHz) 

within 20 minutes, leading to a decrease in cell viability and change in cellular 

morphology indicative of apoptosis (P. Garcia et al. 2012).  Although further 

analysis is certainly required, the experiments confirmed substantial cell death 

upon elevated temperature exposure, while cells exposed to AMF alone did not 

appear to show signs of cellular stress or apoptosis (Beik et al. 2016). 

 

In 2011, Alsayed A.M. Elsherbini’s group used mNPs to induce hyperthermia in 

mice implanted with subcutaneous Ehrlich carcinomas.  Although the experiment 

was not entirely successful at destroying the entire carcinoma, it did demonstrate 

the dual modality capability of mNPs as both nanoscale heaters for hyperthermia 

and contrast agents for MRI (Elsherbini et al. 2011; Yallapu et al. 2011).  Other in 

vivo studies of magnetic nanoparticles have shown more encouraging results with 

regards tumour destruction in animal models (Balivada et al. 2010; Espinosa et al. 

2016; Hayashi et al. 2013; Ingrid Hilger 2013; J. H. Lee et al. 2011). Studies 

include systems that use magnetic targeting, by locating a permanent magnet over 

the tumour to increase SPION concentration in cancer cells, thereby diluting the 

concentration of SPIONs found in the spleen, liver and tissue (Min et al. 2010; 

Prijic et al. 2010).  
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Other groups are taking this forward by designing mNPs which can actively target 

tumour cells by incorporating targeting systems onto the mNP surface, for 

example ligands that bind to overexpressed receptors on tumour cells such as 

transferrin receptor 1 (TfR1) (K. Fan et al. 2012).  MNPs have also been 

functionalised with Galactose-Carrying Polymers	(M. K. Yoo et al. 2007), folic acid	
(Q. L. Jiang et al. 2014), PEG modified, cross-linked starch (Cole et al. 2011a) and 

homing peptides (A. M. Kruse et al. 2014) to increase their proximity to target 

cells. The competency of active targeting was demonstrated in SPIONs 

functionalised with anti-human epidermal growth factor receptor-2 aptamers, with 

hyperthermia induced at a 90-fold lower concentration than untargeted SPIONs 

(Kaur et al. 2016). Although a valuable component, active targeting systems via 

ligands, antibodies and peptides are influenced by the complex relationship of 

mNP shape, size, ligand density, surface hydrophobicity and are compromised 

with issues of non-specific binding which can influence their overall in vivo 

performance (Bertrand et al. 2014).		
	
One of the first clinical trials using mNP based hyperthermia was conducted in 

1991.  In this clinical trial, mNP-mediated hyperthermia was performed in 23 brain 

tumour patients, while the results were still preliminary, an overall response of 

~35% was recorded	 ((response rate was the ratio of responded cases to the total 

treated cases) (Kobayashi et al. 1991).  A more recent brain tumour clinical trial 

was performed in 2006, in which patients with glioblastoma multiforme were 

treated with a combination of magnetic hyperthermia and radiotherapy. This 

showed promising results with no apparent toxicity, while the exposure of an 

external AMF was tolerated by the majority of patients with only minor side effects 

reported	 (Maier-Hauff et al. 2007). In 2001, Jordan and co-workers developed an 

alternating magnetic field heating (MFH) device that was made available for 

medical experiments and developed the world’s first MFH (R) 300F-type magnetic 

induction hyperthermia instrument available for clinical treatment	 (A. Jordan et al. 

2001). To date, clinical trials of mNP hyperthermia have been conducted for 

prostate cancer	 (Manfred Johannsen et al. 2007), recurrences of different tumour 

entities and deep regions of the human body	(Gneveckow et al. 2004; Sreenivasa 

et al. 2003; Thiesen and Jordan 2008; Wust et al. 2006). In no cases were several 

side effects reported whilst the effectiveness of mNP based hyperthermia proved a 

feasable alternate therapy prospect for both deep seated and superficial tumours.   
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6.3.3 Magnetic nanoparticles as an Adjunct to Established Cancer Therapies 

 

More recent and larger scale phase 3 clinical trials have been conducted on 341 

patients enrolled in either chemotherapy alone or chemotherapy and hyperthermia 

via mNP heating. Results showed the combinational impact of regional 

hyperthermia and chemotherapy as an effective future treatment strategy	 (Rolf D. 

Issels et al. 2010). Similarly, the combinational approach of radiotherapy and mNP 

hyperthermia was recently carried out in clinical trials, with the combined effect of 

hyperthermia and a reduced radiation dose leading to a safe and effective therapy 

for recurrent glioblastoma, increasing overall survival rates (Maier-Hauff et al. 

2011). 

 

 

 

 

 

 

 

 
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	

	 235	

6.4 Conclusion  
 

The research involved in this PhD project primarily set out to identify whether gold 

nanoparticles, in the form of nanoprisms and nanorods, and magnetic 

nanoparticles could be used as nanoscale heaters in cancer cell cultures to induce 

toxic heat levels.  If successful, I then aimed to further investigate the molecular 

mechanisms behind the cell death (apoptosis), to establish the types of 

intracellular pathways involved. If we can understand the process and pathways 

involved, this can help future nanoparticle design. The first part of the project, 

chapter 3, characterised gold nanoprisms and nanorods in terms of their 

biocompatibitly and cellular uptake.  This was studied (i) in two cell lines, bone and 

breast cancer, to determine if tissue origin would influence nanoparticle 

performance, and (ii) in 2D and 3D cultures, to verify monolayer results were 

translated to the 3D environment. Both types of GNP proved to be highly 

biocompatible and rapidly internalised, with minimal disruption to cell morphology 

or structure. The GNPs demonstrated excellent heating profiles when excited with 

a 1 W continuous wave laser; 1 minute laser irradiation of labelled cells caused 

rapid cell death, in both 2D and 3D, demonstrating the potential depth of laser 

penetration at fairly modest laser intensity and duration.  

 

Following gold nanoparticle characterization and successful photothermal 

treatment, chapter 4 focused on assessing apoptotic markers at both the genomic 

and proteomic level with particular emphasis on large families such caspases, 

Hsps, bcl-2 and cathepsins, while influential molecular markers such as 

cytochrome C, DIABLO/SMAC, survivin, livin and TRAILR -1, -2, -3 and -4 were 

also evaluated. This analysis revealed a unique insight into the mechanisms of cell 

death attributed by elevated temperature profiles (42-45°), which to the best of our 

knowledge have not been explored in this depth previously.  Our results, although 

conforming to the majority of the literature of hyperthermia-induce apoptosis via 

the intrinsic pathway, also revealed the importance of both the extrinsic pathway 

and in particular autophagy, orchestrated by members of the cathepsin family. 

These results indicate that apoptosis can occur via more novel or less 

characterised pathways upon heat stress, while the main instigators of cell death 

upon hyperthermia exposure may be due to the generation and accumulation of 

ROS and endoplasmic stress.  
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The final chapter focused on the use of magnetic nanoparticles as hyperthermia 

agents. Several types of mNP were trialled during this section of work, however 

only one particle type was successful in balancing biocompatibility with the 

generation of hyperthermic temperature profiles. I employed a magnetherm device 

during this chapter, whereby 3D printed cell culture chambers were designed to be 

compatible with the device. Although these results were preliminary, the mNP 

labelled cells did appear to demonstrate a reduction in cell attachment and change 

in morphology akin to induction of apoptosis following exposure to an an external 

AMF, while cells exposed to the external AMF alone, did not appear affected.  

 

The NPs used in this project displayed various potential as viable future 

hyperthermic agents. The extensively studied GNPs used in this study displayed 

incredibly high heating potential within one minute at low concentrations                

(0.1 mg.ml-1). Although displaying excellent biocompatiblity and low toxicity at this 

concentration, the GNPs may be used at even lower concentrations (to futher 

decrease toxicity issues) while still reaching hyperthermic profiles albeit at an 

increase laser exposure time that would still be applicable for clinical application. 

Of the two GNP types, our data suggests that although nanorods show higher 

heating potential, the nanoprism; due to their enhanced biocompatibility and 

internalisation, may actually produce stronger photothermal effects upon laser 

treatment. When compared to mNPs, GNPs not only displayed lower toxicity and 

improved biocompatbility, they demonstrated stronger hyperthermic compatiblity at 

the same concentration within a minute of laser treatment as opposed to the 20 

minutes required during mNP heating via an external alternating magnetic field. 

The limiting factor for photothermal treatment would be the required laser 

exposure and depth penetration accessible within patients. This can present 

complications or slightly more invasive treatments in the case of deep seated 

tumours where a laser light source would be directed into the patient in such 

cases. In comparion, mNP heating involves magnetic fields that can easily 

penetrate the body and thus capable of stimulating mNPs located deep within the 

patients body and possibly in several sites without the need for any invasive 

procedures and thus maybe more desirable in a clinical application. However, of 

the two NP types used in this study, it appears GNPs are the stronger candidates 

for future application and put forward for future research. 
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6.5 Recommendation for future work 
 

One of the main focuses of the project was to attempt to better understand the 

elusive molecular events that occur upon hyperthermic exposure in cells, both in 

2D and 3D. While this was successful in terms of GNPs and has opened up further 

potential for future studies, particular areas of interest are described and 

summarised below.  

 

• Establishing cell death following mNP-mediated hyperthermia and 

evaluating the molecular events responsible (at the gene and protein level). 

 

• Investigating the effects of ROS generation (individual species) and RE 

stress upon hyperthermia exposure. 

 

• Further evaluating more novel cell stress/cell death pathways such as 

autophagy, necotoposis and necrosis after hyperthermia exposure. 

 

• Analysing cell death to quantify and discriminate between apoptosis and 

necrosis after photothermal and magnetic treatment, optimising laser 

power/duration to ensure safe treatment. 

 

• The functionalisation of the GNPs with chemotherapeutic payloads may be 

an attractive possibility for synergistic effect of drug payloads and 

hyperthermia; this could be assessed by standard monolayer and 3D 

testing platforms as used here. 

 

• Moving the GNP from successful current 3D in vitro studies to an in vivo 

small animal model to confirm the therapeutic effect of photothermal 

therapy.  
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