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ABSTRACT 

The response of plants to abiotic stress factors is a major determinant of the growth 

and yields of crops. In this study the effects of two separate but related abiotic stress 

factors on elite spring barley cultivars (Horedeum vulgare ) were studied; the effects 

of high leaf temperatures (Tleaf) on photosynthesis rates, and the effects of high 

nitrogen supply on photosynthesis rates and flowering.   

 

A novel method was developed for precisely controlling Tleaf within ± 0.2ºC of the 

set temperature. These experiments confirmed the results of others that increasing 

Tleaf  above 36.0ºC for 3 hours severely impaired light saturated CO2 assimilation 

rates (Asat) by irreversibly suppressing the activity of the C3 cycle by >80%. This 

suppression was not attributable to stomatal closure, the generation of ROS, or an 

increase in photorespiration; instead the data were consistent with the hypothesis 

that limitations imposed by low chloroplast ATP levels. Measurements on whole leaf 

ATP levels in the light and dark of control and heat stressed leaves, however, were 

equivocal.  Whole leaf ATP levels of light adapted leaves increased with Tleaf 

whereas  the levels in dark adapted leaves initially decreased but increased again 

above 38ºC; most importantly, the difference – an estimate of chloroplast ATP levels 

- increased with Tleaf, an observation that is not consistent with the hypothesis.  

 

The effects of high Tleaf was assessed on plants grown in soil and hydroponic 

solutions over a range of N-supply. Similar responses were observed regardless of 

the nitrogen status of the plants.  Surprisingly, the unit leaf area (ULA) 
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photosynthesis rates of control (not heat stressed) attached leaves doubled when 

plants were grown in 16 mM N compared with 0.6 mM N (commensurate with arable 

soils); detailed analysis of CO2 Assimilation vs. Internal CO2 concentration (A/Ci) 

curves showed the carboxylation coefficient (ϕCO2) increased suggesting the ULA 

capacity of the C3 cycle had been boosted and this correlated well with ULA protein 

levels. It seems there is a good prospect, therefore, for boosting ULA photosynthesis 

rates, and hence grain yield, by increasing plant N-status above that currently used 

in arable production.  Increasing N-supply to these levels, however, has detrimental 

effects on the morphology and development of barley.  Increasing N-supply above 

0.3 mM induced tillering (increased resource sink strength) as well as yield; above 

1.6 mM, however, yields began to decline, flowering was delayed, although tillering 

(vegetative growth) continued to proliferate.  At the highest levels used (16 mM) 

floweing was completely suppressed; the crown meristem underwent a vegetative 

to reproductive transition but stem elongation was incomplete – plants rarely 

progress beyond the 3 node stage. A series of transcript profiling experiments were 

conducted to establish the mechanisms by which high N-status suppressed 

flowering.  Analysis of the transcriptional activity of key components of the flowering 

pathway in leaves, coupled with observations on floral spike development 

suggested flowering was triggered an initiated the development of the inflorescence 

at the crown meristem, but high N inhibits the  development of the floral primordia. 

A RNA-Seq experiment was undertaken to determine the transcriptome profiles of 

2-3 node stage floral primordia in plants grown in 16 mM and 0.64 mM N-supply. 

These studies were hampered by the poor level of annotation of published barley 

sequences, but none-the-less several interesting candidate sequences, including a 

homologue of the Arabisopsis flowering gene AtAPETELLA2, were strongly down 
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regulated; these results from these experiments are discussed in detail. Studies 

were also undertaken to manipulate sink strength in barley plants by reducing the 

number of tillers either mechanically (removal) or using ‘uniculm’ mutants from the 

Bowman barley accession lines. These experiments have proved to be challenging 

and progress has been slow; a discussion is provided on how these experiments 

may be completed.   

 

The ultimate goal of this project is to develop barley lines with an optimized sink 

strength (tiller number) that will not trigger excessive vegetative growth when plant 

N-status is high. This should lead to the retention of N in the leaves of the main culm 

leading to higher ULA photosynthesis rates and hence higher yields. To achieve 

this, however, these plants will have to be further manipulated so that high plant N-

status does not suppress flower development.  
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1 Introduction 

1.1 Food security 

Over the last century global food production (agricultural production) has increased 

dramatically due to the application of better agronomic practices, integrated pest 

control methods, classical plant breeding, and advance bioengineering technologies 

(Huang et al, 2006; Pretty, 2008). In particular cereal crop yields have literally 

doubled during the last 50 years since the beginning of the Green Revolution 

(Kishore and Shewmaker 1999; Toenniessen et al. 2003; Fischer and Edmeades 

2010). These achievements are attributed to the ingenuity and efforts of farmers, 

agronomists, and plant biologists (Mann 1999). It is likely, however, that both 

increased yields and the acquisition of new arable land will be required to meet the 

food demands of the 21st Century. Whatever technologies are developed and used, 

they must be sustainable in the long term (Bassett 2010). 

 

One problem is that food production is not uniformly distributed across the globe 

due to the diversity of terrain, local climatic conditions, the available germplasm and 

the local agricultural expertise. Clearly, there is a limit to the amount of land available 

for food production, and to the theoretical limit on the maximum attainable yield 

(yield potential) of any given crop (Barrett 2010). At present, global food production 

is unbalanced; 183 nations in the world depend on food from outside their borders 

(food imports) and this food comes from those countries with relatively low 

populations that practice intensive agriculture. Eighty percent of global cereal export 

is produced in the United States, Canada, Australia, and Argentina (Bureau, 2004; 
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Marchione and Messer, 2010), but this will not be the case in the next 60 years if 

the population continues to rise. Overall, based on realistic trends in food supply, it 

is forecast these countries may no longer be in a position to export food by 2050  ( 

Brown, 2000; Beddington, 2010). In addition to these difficulties the World’s 

population doubled between 1900 and 1960; by 2000, the population had reached 

6.8 billion citizens, more than three-and-a-half times the population of 1900. The 

World Bank and the United Nations FAO document that 1 to 2 billion people are now 

malnourished due to a combination of the inadequate food supply, low income, and 

unfair food distribution (Pimentel et al. 1997). 

 

In the past the demand for more food was met by increasing the area farmed. Our 

ancestors appropriated more natural habitat and turned it over to arable production. 

The germplasm used were landraces of wheat, barley, maize, rice, etc., plants that 

have their origins in lush tropical and sub-tropical climates. As farming spread into 

temperate and harsher regions new landraces were selected that performed well 

and practices such as irrigiation, and later fertlizer application, were adopted to 

increase yields. In others words, the habitats were modified to suit these tropical 

and sub-tropical domesticated grasses.   

 

Today the best (champion) yields of our major cereals are achieved, not in the 

regions where these plants evolved for tens of millions of years, but in intensively 

managed land with different climates often in different continents. Wheat, for 

example has it’s origins in the Middle-East yields 4 to 7 T/Ha, but champion yields 

of 14 to 16.5 T/Ha are consistently recorded in Northen Europe (Jones 2015; FAO 

2016).  
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Increasing crop production is now constrained by the amount of land that is suitable 

for agriculture, and by limited water supply and energy requirements. With limited 

suitable land and suitable elite crops lines to meet this challenge, improved crop 

yields and production are required (Beddington 2010). The available land for 

agricultural purposes is controlled by environmental factors such as protection of 

the remaining tropical rain forest to preserve biodiversity and to ameliorate the 

effects of green house gases. In addition, there is further pressure from urbanization 

due to the increase in human population over the next few decades. 

 

However, to develop crops with higher yields, new techniques are required to 

accelerate progress, as the classical breeding methods are limited in scope and 

slow to implement. One area of research that has been identified is improving CO2 

assimilation rates in cereals (Khush 2013; Alemayehu et al. 2014; Gu et al. 2014).  

 

1.2 Abiotic stress 

Abiotic stresses can limit crop production in arid regions of the tropics and 

subtropics, where soil water potentials are often low more negative than -1.3 MPa 

(Lobell and Asner 2003; Sharkey and Zhang 2010). These can reduce plant growth 

by reducing water availability for crops leading to a decrease in stomatal 

conductance (gs), which controls gaseous exchange between leaves and the 

surrounding environment to allow CO2 to be assimilated. However, gs responds to 

factors such as the vapor pressure deficits (VPD), blue light, and CO2 concentration. 

High atmospheric VPD decrease gs to minimize transpiration and maintain plant 

cell turgor pressure, which leads to a reduced assimilation rate (Asat) due to 
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deficiency of  CO2 entering chloroplasts of mesophyll cells (Ocheltree et al. 2014). 

A decrease in gs might lead to a rise in leaf temperature (Tleaf) as transpirational 

cooling would also be impaired (Farquhar and Sharkey 1982). 

 

1.2.1 Arid region crop production 

Water is a major factor for achieving high rates of crop production particularly in arid 

regions and this directly affects yield. In arid and semi arid regions plants grow in 

harsh environments with low water availability and usually very high air 

temperatures during daytime. In addition, high soil salinity and high VPD reduce the 

growth of crops and may  lead to death.   

 

In some regions very high day and night temperatures are routinely recorded, for 

example in Kuwait where the average maximum temperature in July is 45.6 °C, and 

the average Tair during July (the hottest month in the Arabian Peninsula) is 38.2°C.  

The annual average temperature is forecast to rise over the next few decades by 

0.4°C/ decade due to Global Climate Change (UNFCC 2012). That is the case for 

extreme arid regions where the crop production is very limited, but what are the 

predictions for the major crop growing in regions of the globe? how will the climate 

change and how will the established elite crop lines that have been developed to 

yield well in these regions respond? 

 

It is a testament to the ingenuity of humans that the Green Revolution brought  such 

improvments and is arguably our greatest achievment. The strategy of appropriating 

more natural habitat for arable production when food supply becomes limiting, 
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however, is not sustainable. The application of common sense, good genetics, and 

good agronomy has greatly extended the range of these crops but for a variety of 

reasons the prospects are poor to extending their range further into the less suited 

natural habitat that now remain. For example, there are vast tracts of lands in North 

Africa, South West Asia, the Americas, and Australia that are suitable for cereal 

production if rainfall was higher. Already 75% of the fresh water consumed by 

humans is used for food production; doubling food supply by 2050 by simply scaling, 

doing more of what we already do, will place severe pressure on global water 

supply, pressures that the planet may not be able to sustain. There are two potential 

solutions to the water shortage problem. One is to continue to attempt to exploit 

these arid habitats whilst developing crops that are more water use efficient. This is 

the high-tech strategy adopted in research programs in the Developed World, one 

that may be doomed to failure. Crops in arid habitats are also exposed to high 

temperatures that can quickly and irreversibly damage tissues unless transpirational 

cooling is significant. Reducing transpiration may conserve water but present the 

plant with a more acute problem, heat stress. Many wild plants that are native to 

these arid regions do reduce transpiration but have evolved complex mechanisms 

and adaptaion for coping wih high tissue temperatures, but our major crops simply 

do not posses these. 

 

Another potential solution for growing crops in arid climates may emerge from 

engineers, not biologists. Two-thirds of the surface of our planet is covered by water; 

there is no shortage of water. The problem, of course, is most of this water is highly 

saline and toxic to crops. Technologies exist, however, to de-salinate sea water to 

a level that is comparable to potable water extracted from rainfall run off. One of the 
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better tecnologies, reverse osmosis, uses pressure to force water molecules in sea 

water through re-cyclable semi-permable membranes. Commercial – scale reverse-

osmosis desalination plants are currently opperating in Western Australia and the 

Middle – East producing potable water at a cost of less than $0.50 a cubic meter 

(Zhou and Tol 2005; Zhang and Babovic 2012). This adds less than 20% to the cost 

of cereal production but further economic efficiencies are likley to arise through 

technological developments and economies of scale . Perhaps, instead, we should 

turn our attention to why we don’t grow crops in regions where there is sufficient 

rainfall (Northern Europe, Northern Asia, Canda, for example). Farming here is not 

practised because of late spring or early autumn frosts which decimate crops. The 

challenge then becomes one of developing cereal crops that can withstand freezing 

conditions (as do many wild grasses in these regions), or of shortening their life 

cycle by deactivating their circadian clocks (wheat, barley and rice lines exist that 

complete a life cycle in 8 weeks). 

 

Clearly, although the major crops do not yield well in hot arid regions unless 

extensively irrigated, what thermotolerance and drought tolerance mechanisms 

have the many species of wild plant that inhabit these regions developed? To 

address this question, it is perhaps instructive to consider, why plants need water. 

Water is the matrix in which all bio-catalytic process occurs. It is required to maintain 

the three-dimensional structure of bio-molecules, and to transport cargo within and 

between cells from one metabolic site to another. Water is required in plants for cell 

growth through the mechanisms of turgor-driven cell expansion in the zones of 

elongation adjacent to the meristems where cell division occurs (Taiz and Zeiger 

2006). Water is also required to establish turgor pressure in guard cells to open the 
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stomatal pore thereby enabling plants to acquire CO2 for growth (Taiz and Zeiger 

2006; Laanemets et al. 2013). In addition, turgor is also required to establish an 

erect habit, particularly in herbaceous, non-woody plants such as cereal crops. 

Without the ability to stand erect, a plant may in the long term, become out competed 

once a closed canopy forms above. The rate of water and nutrient ion transport 

through the xylem from the root to the shoot (transpiration) is also regulated by the 

turgor pressure of the guard cells, and so the acquisition of mineral ions and other 

simple solutes is dependent on leaf water potential (Farquhar and Sharkey 1982; 

Kim et al. 2010; Buckley and Mott 2013). Finally, water evaporation from the 

stomatal pores cools the leaf due to the latent heat of evaporation (Farquhar & 

Sharkey, 1982). 

 

1.2.2 Leaf Temperature (Tleaf) 

What happens when plants cannot gain sufficient water to maintain an optimal level 

of hydration? This occurs in many habitats, but is a particularly acute problem for 

plants growing in high temperatures in arid and semi-arid zones. 

 

Numerous studies have shown that when most herbaceous plants lose 10-20% of 

their tissue water they wilt severely, and in some cases the plants will not recover 

upon re-watering. One might predict that upon mild desiccation (>90% hydration 

state), the guard cells might lose their turgor resulting in stomatal closure thereby 

minimizing further water loss; but they do not. The vast majority of plants partly close 

their stomata but water loss to the atmosphere continues resulting in severe wilting. 

The reason for this can be determined by monitoring leaf temperature as leaves 
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begin to desiccate. The leaf temperature (TLeaf) of well watered plants in high air 

temperatures (>35 °C) is often 5-10 °C below air temperature (Tair) due to 

transpiration but as the rate slows (TLeaf) rises. The plant is now faced with several 

short-term and long-term dilemmas regarding its requirement for water. Partial 

desiccation will result in an increase in the cytoplasm /vacuole volume ratio and this 

will further decrease the concentration of solutes in the cytoplasm (osmotic potential 

Ψs); metabolic flux will slow although it is difficult to assess by how much, and this 

may have longer term consequences for growth and survival. Water loss will also 

cause a slowing of turgor-driven growth, and the onset of visible wilting symptoms 

(loss of erect stature); again all of these factors will compromise the plant in the 

medium-to-long term, but are unlikely to affect plant survival in the short term. 

 

One of the topics addressed in this thesis is the effects of heat stress on 

photosynthesis rates in barley leaves. The experiments reported will build on the 

finding of others from our laboratory (Shahwani 2011; Almalki 2014).  

 

1.2.2.1 High Tleaf 

Increasing leaf temperature, however, is a serious threat to plant survival in both the 

short and long term. Experiments have shown that elevating leaf temperature of 

some plants to 38 °C for just ten minutes effectively ‘cooks’ the leaf (Velitchkova et 

al. 2013). Re-watering and placement in optimal growth temperatures does not lead 

to a recovery; the leaf fully desiccates, turns brown and dies. Therefore, it is 

reasonable to assert that, leaf temperatures of >38ºC for a few hours irreversibly 

damages leaves, causing symptoms that are mistakenly attributed to water deficit. 
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If this is the case, research effort should be re-focused to determine the mechanism 

that confers thermal-tolerance on some plants, not drought-tolerance. 

 

Previous studies in our laboratory have shown the primary effect of heat stress is 

the impairment of carbon flow in the C3 cycle. In these studies, however, heat stress 

was applied to intact leaves in the dark to remove the effects of photochemically 

generated reactive oxygen species (ROS) on activity; this approach allowed the 

direct effect of heat stress on photosynthesis to be studied. Briefly, these studies 

have shown leaf temperatures (TLeaf) of 38.0°C for 3 hours in the dark suppresses 

intact leaf CO2 assimilation rate (ASat) by > 80%. The corresponding capacity for PS 

II photochemistry and photosynthetic electron transport is impaired by 40%, the CO2 

supply to the chloroplast is unaffected, but carbon flow through the C3 cycle is 

inhibited by 85%. The implication is that the primary cause for the observed decline 

in ASat is a direct effect of heat stress on the kinetic properties of the C3 cycle. 

Studies have subsequently shown that carbon flow between Ribose 5-phosphate 

and Ribulose 1,5-bisphosphate was severely impaired and chloroplastic ATP levels 

have been implicated (Schrader et al. 2004). 

 

1.2.3 Nutrient Availability 

Plants require mineral nutrients in inorganic form for growth. The essential nutrients 

required for plant growth are nitrogen, phosphorus and potassium. The amount of 

nutrients available to crops is a major determining factor of yields (Taiz and Zeiger 

2010; Marschner and Rengel 2012). Good  nutrient management programmes are 

essential for increasing food availability by raising the yields of crops. N is 
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assimilated by plant biochemical processes to maintain cellular growth through the 

supply of essential N-containing biomolecules such as amino acids, proteins, and 

nucleic acids so it has an important role in detrmining vegetative growth and yield 

of plants including crops. The Green Revoulution in the last century was achieved 

in part by better management of nutrient addition to the soil.  

 

A deficiency in N availability to cereals may lead to reduced growth and aberrant 

development. The deficiency modifies leaf colour to yellow which results in 

abscission of older leaves and the remaining N is remobilized into younger upper 

leaves with a light green colour. Stem and tiller hardness increased due to N 

deficiency and stem colour becomes a darker pink or brown (Taiz and Zeiger 2010).  

 

To study the effects of nutrient availability on plant growth, hydroponic experiment 

can be used with modified Hogland’s nutrient solution. By manipulating the 

concentration of different elements, the effect of these on plant growth can be 

assessed 

  

Another theme investigated in this study is the effects of high N supply on vegetative 

growth, photosynthesis rates and flowering in barley.  

 

1.3 Photosynthesis 

The source of organic carbon in our globe is the autotrophic algae and higher plants 

by fixation of atmospheric CO2 into organic forms of carbon that build up cell 
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structures via the C3 cycle. Nutrient availablity in the soil and other abiotic factors 

such as high temeprature and CO2 concentration can cotrol the photosynthesis 

rates in cereals. 

 

The energy obtained from the sun is the main source of energy that is essential for 

life on Earth. The process of photosynthesis is the only way living organisms can  

harvest and utilize the energy of the sun. Viewed simply, photosynthesis is a 

process that synthesizes carbohydrates by fixing atmospheric CO2 in presence of 

solar light. The fixation of CO2 requires ‘high energy’ compounds in the form of ATP 

and NADPH which are produced by splitting water molecules into O2 and H+ to 

supply ‘energized electrons’ for transport through the thylakoid membrane in the 

chloroplast. For convenience, photosynthesis can be divided into two reactions: the 

Light Reactions or Photochemistry, and Carbon Assimilation (Taiz and Zeigler 

2006).  

 

1.3.1 Light Reaction and Electron Transport 

Light drives the chemical reaction of photosynthesis through protein complexes 

imbedded in thylakoid known as photosystem I (PSI) and photosystem II (PSII) 

(Figure 1-1). Photosystem II (PSII) is activated by light and spilts H2O molecules 

which results in the release of  O2 gas, and two H+ that are released into lumen of 

the thylakoid, and two ‘energised’ electrons. The electrons (e-) are then transported 

through the thylakoid electron transport chain down a redox gradient through 

different acceptors such as quinones (QA, QB and PQ),  the Cytochrome b6f 

complex, and plastocyanin (PC) before reducing oxidized PSI (PSI+). PSI+ is 
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generated by light and the ‘released energized’ e- is transfered through other 

acceptors finally reducing the soluble flavoprotein ferredoxin-NADP reductase 

(FNR) which in turn reduces NADP+ to NADPH. The protons in the lumen that were 

released by PSII oxidation of water, and the protons transported into lumen via the 

reduction and oxidation of the Cytb6f complex, develops a pH gradient. This gradient 

(or proton motice force, pmf) drives the ATPsynthase complex and ATP is generated 

in the stroma. Thus, NADPH and ATP, which are required by C3 cycle to assimilate 

carbon, is generated by light (Baker 2008; Taiz and Zeiger 2010; Nickelsen and 

Rengstl 2013; Pribil et al. 2014).  

 
 
 
 

 
Figure 1-1 The Transfer of Electrons and Protons in the Thylakoid Membrane 

During the Light Reaction. 
After illumination both PSII and PSI become oxidized (PSII+ and PSI+) and the 
removed e- move to the right and pass through redox complexes down a gradient. 
PSII+ removes e- from water and regenerates PSII; O2 is evolved and H+ are 
released to the thylakoid lumen. The e- that are photochemically ejected from PSII 
pass through PQ, the cytochrome b6f complex and PC re-reduce PSI+; as this 
occurs, H+ are ‘pumped’ from the stroma to the lumen. The proton gradient that is 
established drives the ATP synthase resulting in the generation of ATP.      
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1.3.2 C3 Cycle 

The most important pathway of fixing atmospheric CO2 to provide carbon skeletons 

for the synthesis of organic compounds in autotrophs is the C3 (Calvin-Benson) 

Cycle. The elucidation of the C3 Cycle was provided in 1950s by a series of classic 

experiments (Benson and Calvin 1950; Benson 1951). The reaction shown in Figure 

1-2 starts when CO2 carboxylation take place by binding CO2 and water with 

Ribulose 1,5-Bisphosphate (RuBP) to generate two molecules of 3-

phosphoglycerate. The carboxylation reaction is catalyzed by Ribulose 1,5-

Bisphosphate Carboxylase / Oxygenase (RuBisCO). The second stage is the 

reduction of 3-phosphoglycerate (3PGA) to Glyceraldehyde 3-phosphate (G3P) 

through two steps. First, the formation of 1,3-Bisphosphoglycerate (1,3-GBP), by 

utilizing ATP which was generated in the light reactions, and is catalyzed by 3-

phosphoglycerate kinase. Second, the 1,3-GBP is reduced to Glyceraldehyde 3-

phosphate by NADPH that is also generated in the light reactions. The third and last 

phase of the C3 cycle results in the conversion of some of the G3P into RuBP to 

support further carboxylation events. This stage also requires ATP generated during 

the light reactions associated with the thylakoid. 
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Figure 1-2 C3 Cycle 
See text for description 
 
 

The fixation of atmospheric CO2 is the key point for studying the effect of abiotic 

stress on photosynthetic rates and many different factors might be involved. Figure 

1-3 shows the different component that regulate the C3 cycle. First, RuBisCO may 

be sensitive to stress and that can result in limitations of photosynthesis. Second, 

the enzyme that activates RuBisCO in leaves, is RuBisCO Activase (RCA), may be 

affected. Third, the regeneration of RuBP, which is dependent on the availblity of 

ATP, may be affected as shown by metabolomics profiling (Shahwany, 2011). The 

supply of CO2 through the stomatal pore (stomatal conductance, gs) and across the 

mesophyll cell (mesophyll conducance, gm) to the chloroplasts. Finally, 

photorespiration rates (RL) that arises from competition between CO2 and O2 for 

binding site on  RuBisCO, might also be affected. 
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Figure 1-3 The C3 Cycle and the Main Injury Sites Affecting Asat.  
The main three steps of C3 cycle and the major five locations that might be involved 
in decreasing of Asat in response to stress. Theses are: (1) RuBisCO, (2) RCA, (3) 
Regeneration RuBP, (4) CO2 transport across stomata and mesophyll cell 
membrane, and (5) Photorespiration. The modified diagram was adopted from 
(Singh et al. 2014).  
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1.3.2.1  Regeneration of RuBP 

The regeneration of RuBP is essential to allow the C3 cycle to continue and fix CO2. 

The regeneration of RuBP may be the most significant factor responsible for the 

decline of C3 turnover in response to high Tleaf (Schrader et al. 2004; Cen and Sage 

2005; Kubien and Sage 2008; Sage et al. 2008). The regeneration of RuBP might 

be limited by the activities of enzymes involved in regeneration of RuBP in the C3 

cycle or ATP levels in the chloroplast. Previously at the University of Glasgow, 

metabolomic studies on the leaves of spring barley cv. Optic indicated leaf 3PGA 

levels were depleted whilst the pools of precursors for RuBP synthesis were 

unchanged. These finding, suggest that thermal damage acts some where between 

Ribulose 5-phosphate (Ru5P) and 3PGA (Shahwani 2011). This implicates 

damages to one or more of the following enzymes: Ribose 5-phospate Isomerase 

(Ri5PI), phosphoribulokinase (PRK), RuBisCO, RCA, or a decline in ATPlevels. 

Experiments performed by Almalki (2014) indicated the endogenous activities of 

RuBisCO, Ri5PI, and PRK were not significantly affected by heat stress in leaves 

that showed >80% thermal inhibition of photosynthesis. 

 

ATP is required as a substrate for PRK for the conversion of Ru5P to RUBP. 

Currently, it is not clear whether the synthesis of ATP in chloroplasts is impaired by 

heat stress, as previously hypothesized (Lawlor 2002) . Other studies (Sharkey and 

Seemann 1989) found the amount of ATP in the chloroplast was unchanged under 

mild water stress while at the same time RuBP declined by 50%. Chloroplast ATP 

levels may not change in response to high Tleaf stress but changes in the 

ATP/NADPH ratio may affect the metabolic balance of chloroplast mechanisms 

resulting in impairment of Asat.      
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1.3.2.2  RuBisCO 

RuBisCO is the major enzyme in all phototrophic higher plants, algae, and 

photosynthetic prokaryotes. On the other hand, rather than fixing CO2 and turning 

C3 cycle to generate two molecules of  3-phosphoglycerate, RuBisCO can catalyze 

an oxygenation reaction to fix O2 resulting in photorespiration. In optimum condition 

of saturating light and CO2 concentration, the amount of RuBisCO in cereal leaves 

such as rice might be around 35-50% of total leaf protein (Makino et al. 2000). In 

contrast, RuBisCO accounts for only around 2-6% of the total cell protein in marine 

phytoplankton (Losh et al. 2013). The activation of RuBisCO requires CO2, Mg+2 

and RCA to convert RuBP and CO2 into 3PGA (Lorimer 1981; Uematsu et al. 2012). 

The kinetics of RuBisCO and mesophyll conductance vary among plant species In 

vivo (Walker et al. 2013).  

  

1.3.2.3  RuBisCO  Activase (RCA) 

RuBisCO requires activation in vivo and this is achieved by an increase in stromal 

pH, Mg2+ concentrations, and redox potential as well as the enzyme RCA which 

removes RuBP from RUBisCO allowing CO2 to bind first at the catalytic site. RCA is 

activated by ATP which then leads to the activation of RuBisCO  (Portis et al. 2007). 

However, overexpression of RCA in rice causes a slight increase in the activation 

state of RuBisCO with an accompanying decrease in RuBisCO content and Asat 

(Fukayama et al. 2012). In addition, most published research indicate that RCA is 

thermo sensitive and can limit photosynthesis under moderate and high 

temperatures (Crafts-Brandner and Salvucci 2000; Carmo-Silva et al. 2012; Carmo-

Silva and Salvucci 2013). Others, however, have indicated that moderate heat 
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stress induces a large subunit isoform of RCA which increases Asat during heat 

stress; stress doesn’t reduce the activity of RCA but  can increase Asat (Sage et al. 

2008; Wang et al. 2010; Prins et al. 2016). The results obtained from experiments 

in University of Glasgow determined that RuBisCO (and hence RCA) remained 

active after heat while Asat decreased by approximately 80% in barley leaves that 

were exposed to Tleaf 40 ºC (Schrader et al. 2004; Yan et al. 2011). Others have 

also found no correlation between thermal suppression of photosynthesis and RCA 

and RuBisCO activity (Yamori and von Caemmerer 2009).   

 

1.3.2.4  CO2 Supply 

In C3 plants such as wheat, barley and rice, CO2 diffuses passively from the 

surrounding air through the stomatal pore, across the intracellular air spaces, and 

across the cell membrane and cytoplasm and into the chloroplast stroma.  The rate 

of CO2 uptake is therefore determined by the CO2 concentration gradient (driving 

force) between the air (Ca) and the chloroplast (Cc), and the conduction pathway 

(comprised of the sum of the boundary layer , stomatal, and mesophyll 

conductances – ga, gs, gm respectively), but Cc and gs are the only components 

that the plant can regulate at the metabolic levels. Factors that affect gs include 

temperature, light intensity, water availability, ABA and CO2 concentration (Froese 

and Sehon 1975; Epron et al. 1995; Gillon and Yakir 2000; Cano et al. 2013). 

 

1.3.2.5  Photorespiration 

The competition between O2 and CO2 on the binding site of RuBisCO was first 

hypothesized in 1943 by Tamiya & Huzisige who provided no evidence for their 
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conclusion. Twenty-eight years later evidence was supplied through the in vitro 

experiments of Ogren and Bowes and others (Ogren and Bowes 1971; Lorimer 

1981). During water stress, low CO2 and high light intensity, leads to an increase in 

photorespiration rates and in addition ROS, one view is that photorespiration 

protects photosynthesis components from ROS (Voss et al. 2013; Walker et al. 

2014). Timm et al. (2015) concluded that an increase in photorespiration resulted in 

protection and subsequently enhanced assimilation rates in Arabidopsis.   

 

1.3.3 Reactions In Chloroplasts.  

ATP is generated in chloroplasts by the process of photophosphorylation which 

involves the formation of redox generated proton gradients and the action of the 

ATP synthase (Solhaug et al. 2014; Peltier et al. 2016). More recently, however, a 

role has been found for secondary redox reactions such as chlororespiration. 

 

1.3.3.1 Chlororespiration 

Changes in the redox status of the plastoquinone (PQ) pool of dark-adapted algae 

was first mentioned by Goedheer (1961). The term ‘Chlororespiration’ was 

mentioned by Bennoun in 1982 (Peltier and Cournac 2002). Further evidence was 

supplied from studies on the competition between cyclic and linear electron 

transport in algae and cyanobacteria (Dominy and Williams 1987) with changing 

temperature and light intensity; and this has been confirmed by others (Sage et al. 

2008; Wang et al. 2010). In addition, the presence of two NAD(P)H dehydrogenase 

(NDH) complexes in chloroplasts (NDH-1 and NDH-2) where the NDH-1 is similar 

to mitochondrial NDH complex has been found (Peltier and Cournac 2002; Peltier 
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et al. 2016). Chlororespiration is now viewed as a mechanisms to feed ‘respiratory’ 

electrons from NAD(P)H into the PQ pool in the dark to produce ATP by 

chemiosmosis (Cornic and Baker 2012; Peltier et al. 2016).    

 

1.3.3.2 Cyclic Electron Transport 

The electron flow from water through PSII and PSI  to NADP+ or oxygen is termed 

linear electron transport. The other electron transport pathway in the chloroplast of 

higher plants and algae (cyclic electron flow, CEF) has recently been reviewed 

(Eberhard et al. 2008; Peltier et al. 2016; Yamori and Shikanai 2016) where 

electrons flow around the PSI and PQ to increase proton concentration in the lumen 

without reducing NADP+ to NADPH. Abiotic stress is belived induces CEF to 

maintain the ATP/NADPH ratio and maintain ΔpH across the thylakoid. The demand 

on ATP increases which stimulates CEF in response high Tleaf, low Tleaf, drought, 

low CO2 and anaerobic conditions (Endo and Asada 2008; Yamori and Shikanai 

2016). While chlororespiration is dependent  upon NDH complexes in the thylakoid, 

CEF requires either electron transport through NDH complexes which are known 

components of the NDH-dependent pathway, or through PGR5-PGRL1 (Yamori and 

Shikanai 2016). Increasing Tleaf leads to an increase in the rate of CEF in rice 

cultivars that is associated mainly with the NDH pathway rather than the FQR 

complex pathway (Essemine et al. 2016).  

 

1.3.3.3 Water- Water Cycle (Mehler Reaction) 

The reaction was identified by Mehler (1951) in chloroplast where the electrons from 

the photo-oxidation of dioxygen are passed through PSII and PSI and used in a 
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futile cycle to reduce di-oxygen to produce hydrogen peroxide instead of reducing 

NADP+ (Endo and Asada 2008). The Mehler reaction is thought to act as a safety 

valve for photosynthetic ETR allowing the disspiation of captured light enegy when 

the C3 cycle is down-regulated. The hydrogen peroxide (H2O2) generated is 

subsequently converted to water by the action of catalase to prevent oxidative 

damage to the chloroplast. In addition, ROS (reactive oxygen species) can inhibit 

CO2 assimilation in minutes. However, the rate of the Mehler reaction is initially high 

upon illumination and before the start of CO2 assimilation, but gradually returns to 

basal levels once the C3 cycle is activated (Eberhard et al. 2008; Endo and Asada 

2008; Cornic and Baker 2012; Ozgur et al. 2015; Wiciarz et al. 2015) . 

 

1.4 The Effect of Nutrients on Plant Physiology.     

The amount of nutrients supplied to plants affects their growth and yield by 

controlling many different physiological processes, including photosynthesis, 

flowering, vegetative growth, secondary thickening, and others. The judicious 

management of fertilizer use is an important factor in altaining high crop yields.  

 

1.4.1 The Green Revolution 

There is a compelling case that a new Green Revolution is required to cope the 

raising food requirements over the next few decades. Through the history of human 

civilization there have been several green revolutions. The first major revolution was 

implemented by the Sumarians by constructing water canals from the Euphrates 

River and using nutrients and irrigation water to maximize the yields of barley and 
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wheat to 2 T Ha-1. Other green revolutions occurred at similar times in different parts 

of the globe as humans developed farming as the method for sustaininig a 

population. The second major green revolution occurred in United Kingdom during 

18th century. Here revolutionary agronomic methods such as crop rotation using 

legumes and grasses (called Norfolk rotation) improved the yield of wheat and 

barley to 2 T Ha-1 compare to the common yields in Europe 0.8 Ha-1(Sinclair and 

Sinclair 2010; Sinclair and Rufty 2012).  

 

The latest and major Green Revolution occurred between 1950s -1970s. At the 

beginning of the last century the availability of cheap fertilizer to farmers resulted in 

major increases in vegetative growth of crops although only modest increases in 

grain  yield. The use of the fertizilers in the first half of the 20th century was the main 

driver of the green revolution, but subsequently plant breeding played a significant 

role as well  (Borlaug 2007; Sinclair and Sinclair 2010; Sinclair and Rufty 2012). The 

highest yield production of wheat currently cultivated in United Kingdom which is 

around 14 t Ha-1, while rice production in Japan and Philippines reached 11 and 12 

T Ha-1 respectively (Fischer and Edmeades 2010; FAO 2016). At present the 

World’s population is growing faster than crop yields and crop production. The next 

Green Revolution, it is argued, will depend on the application of genetics to 

increasing photosynthesis rates and develop crops that are more tolerant of abiotic 

stress factors such as extremes of  temperature, limited water availability, and 

increasing atmospheric CO2 levels (Pretty 2008; Fan et al. 2012; Rakshit et al. 2012; 

Vermeulen et al. 2012; Komatsu et al. 2013; Yin 2013; Curtis and Halford 2014; 

Emebiri 2015; Chang et al. 2016). 
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The Green Revolution has its origins in Mexico just after World War II but through 

the 1960s and 1970s expanded to other parts fo the world. Huge improvements in 

crop production were attained principally through the development of improved 

germplasm and the adoption modern farming practices. The focus on improved 

germplasm involved the development of dwarf lines and improved resistance to 

pathogens, especially in wheat and rice (Borlaug 2007).  The major dwarf genes 

that were identified and involved in the Green Revolution  Reduced height (Rht) in 

wheat, and in rice Slender 1 (Sln1) and semidwarf 1 (sd 1) (Peng et al. 1999; 

Hedden 2003; Chandler and Harding 2013). Rht and Sln1 are nuclear encoded 

genes, and their products are transcription factors that include a DELLA protein 

motif and suppress growth through a downregulation of the transcription of key 

growth sequences (Hedden 2003; Saville et al. 2012; Chandler and Harding 2013). 

Sd1 is believed to regulate GA biosynthesis by deactivating GA 20 in rice; GA is 

normally required to degrade the DELLA transcription factors and stimulate growth, 

so its absence decreases shoot elongation (Spielmeyer et al. 2002; Khush 2013; 

Rao et al. 2014). The dwarf and semidwarf shoot phenotype solved the lodging 

problem, and the corresponding reduced sink (straw) ensured the acquired N 

increased biomass and N use efficiency resulting in higher yields (Fischer and 

Edmeades 2010; Sinclair and Rufty 2012; Bennett et al. 2013). The production of 

wheat in Mexico, for example, was around 0.5 t Ha-1 before the green revolution 

while it reached 8 t Ha-1 now days (Borlaug 2007).  Resistance to a variety of 

pathogens was enhanced by the identification and introgression of some key alleles 

(Saville et al. 2012; Chandler and Harding 2013; Boden et al. 2014; Van De Velde 

et al. 2017).  
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1.4.2 Effect of Nitrogen Levels on Crops. 

Increasing N levels supply results in an increase in Asat in rice and this has been 

attributed to an increase in RuBisCO content of leaves (Nakano et al. 1997; Makino 

et al. 2000; Tsutsumi et al. 2014).  Tsutsumi and coworkers (2014) found that in rice 

there was a strong positive correlation between RuBisCO content and N supply 

regardless of whether the plants were grown hydroponically or in soil (Tsutsumi et 

al. 2014). Agricultural soils typically contain the equivalent of between 0.5mM and 

0.8 mM available N (Marschner and Rengel 2012). The amount of N supplied to a 

plant may lead to an increase in Asat but excess nutrients may be stored in the 

leaves, stems, roots, or partitioned to the grain; consequently there are several sinks 

for these resources (Kirschbaum 2011). Storage of resources (nutrients and carbon) 

in these different sinks does not necessarily result in an increase in grain yield in 

crop plants such as barley, wheat and rice. In cereals, RuBisCO is considered as a 

nitrogen sink in leaves; RuBisCO can account for 30-50% of the total leaf protein, 

whilst it accounts for only 2-6% in phytoplankton (Makino et al. 1997; Losh et al. 

2013; White et al. 2016). The high amount of RuBisCO in leaves can cause a 

decrease in photosynthesis rates in CO2 enriched air; photosynthesis rates are 

normally expected to increase in high CO2 but transgenic rice containing only 60% 

of normal levels showed an increase in carbon assimilation compared with controls 

(Makino et al. 2000). Improving crop production in high concentrations of CO2 and 

developing appropriate fertilizer management regimes is an important goal over the 

next few decades as climate changes; this will help to optimize nitrogen application 

and decrease leaching of N into lower soil layers and water resources.  
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The capacity of Asat might be enhanced by increasing the amount of available 

nitrogen for plant growth which leads in high yields. Thus, the increasing N supply 

might lead to an increase in crop production and yield depending on what will be 

achieved by the next green revolution.  

 

Nitrogen is, of course, an essential nutrient for the synthesis of proteins and 

nucleotides. Soil N is available for acquisition by plants either as nitrate (NO3
-) 

or/and in the reduced form as ammonium (NH4
+). For metabolic assimilation in 

planta N has to be present as NH4
+ so acquired NO3

- must first be reduced.  This is 

achieved in non-green plastids in the roots of some plants, or in the chloroplats in 

the leaves of others. In these organelles, nitrate reductase converts NO3
- 

 to nitrite 

(NO2
-), and then Nitrite Reductase converts this to NH4

+. The ammonium ion can 

also be taken uptake directly from soil.  The assimilation of NH4
+ into amino acids 

also occurs in chloroplasts through the action of glutamine synthetase (GS) and the 

GOGAT (Glutamine-2-oxoglutarate aminotransferase) cycle (Forde and Lea 2007; 

Tabuchi et al. 2007; Xu et al. 2012). The product of the GOGAT cycle, glutamate, 

plays a central role in amino acid production as it is the precursor of all other amino 

acid synthesised in plants (Forde and Lea 2007; Xu et al. 2012).  

 

Several transport mechanisms for the acquisition of N from soils have been 

identified. The NRT2.1 gene encodes a NO3
- transporter that is induced by NRT1.1, 

which is also a NO3
- transporter. NRT2.1 expression is also triggered by NLP7, a 

NIN-Like Protein7 (Li et al. 2014c; Medici and Krouk 2014; Ruffel et al. 2014). 

Furthermore, NRTs have been implicated in loading and unloading NO3
- from the 

xylem in root and shoot tissues. The source/ sink  relationship controlling NO3
- 
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movement within the whole plant is complex. During the seedling and vegetative 

growth stage young leaves act as the N sink, whilst mature leaves become the N 

source, particularly during senescence (Dechorgnat et al. 2011; Xu et al. 2012). 

During leaf senescence amino acids and NH4
+ are remobilized into new plant 

organs. Both GS and the GOGAT pathway, and NADH, are required during 

proteolysis (Tabuchi et al. 2007; Avice and Etienne 2014). As there is a large energy 

requirement during NO3
- assimilation into NH4

+ in plastids, low ATP/NADPH ratios 

may occur. During photorespiration,  some N is lost as NH4
+ is converted to gaseous 

NH3 which is excreted from the plant. Therefore, CEF and the Mehler reaction, in 

addition to photorespiration, may be required to balance energy requirments of the 

cell. (Tabuchi et al. 2007; Xu et al. 2012; Walker et al. 2014). 

 

The relationship between nitrate assimilation and endogenous activities of the the 

phytohormones Cytokinins (CK) and Auxin is complex. Nitrate uptake stimulates the 

biosynthesis of CK in both roots and shoots, but CK also suppresses NRT gene 

expression thereby providing a negative feedback system for nitrogen homeostasis 

in the plant. CK also directly promote bud growth and branching which will result in 

an increased nitrogen sink strength (Albacete et al. 2008; Ghanem et al. 2011; Kiba 

et al. 2011; Kudoyarova et al. 2014) . In contrast, high soil NO3
- concentrations are 

sensed by the plant and this triggers an auxin-dependent lateral root initiation (Kiba 

et al. 2011). In addition, auxin regulates CK biosynthesis thereby adjusting the  

auxin:cytokinin ratio. A deficiency in CK result in reduced shoot growth and 

promotes the growth of root. Auxin biosynthesis itself is reduced by another negative 

feedback regulatory system which leads to a lowering of the auxin:cytokinin ratio. 

Several studies have demonstrated a close relationship between root:shoot 
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biomass ratio and auxin:cytokinin activities (Albacete et al. 2008; Ongaro and 

Leyser 2008; Werner et al. 2008; Xu et al. 2012; Takatani et al. 2014; de Wit et al. 

2016).       

 

1.5 Flowering in Crops 

The target for researchers is to increase yield production of the crops in general. In 

barley and all other cereals, this goal needs to be achieved in next few years by 

increasing the number and quality of the grain whilst cultivating the smallest  

possible area of agricultural land, that is increase crop production by increasing 

yields (T Ha-1) due to low availability of new suitable agricultural lands. Flowering 

can be induced by abiotic stress whilst the grain yields can be increased by fertilizer 

application. High yields with short time period between sowing and harvesting may 

allow multiple harvests per year.   

 

1.5.1 Control of Flowering in Cereal crops 

The crown or axillary meristem forms tillers in grasses during the vegetative phase 

of growth while it forms florets during the reproductive growth phase (Zhang and 

Yuan 2014). Flowering in plants is a complicated process that can be activated by 

several separate, and in some cases interacting, pathways. For example, in the 

model plant Arabidopsis flowering can be initiated by photoperiod, age 

(autonomous), the growth regulator gibberellin (GA), and exposure to low 

(vernalization) and warm temperature pathways (Wellmer and Riechmann 2010). In 

monocots inflorescence meristems are generated from the primary stem but 
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normally some of the secondary stems (tillers) can also develop inflorescences 

leading to the formation of spikelets and fertile floral organs in cereals. In some 

respects the flowering in cereals can be considered to be more complicated than 

other plants such as Arabidopsis (Zhang and Yuan 2014). 

 

In spring barley long days are sensed by the phytochrome receptor PHYC in the 

leaf. The transition from a vegetative to a reproductive crown meristem is controlled 

by the expression of photoperiod (PPD1) and constans (CO) genes in the leaf. In 

barley there are two CO proteins, the first HvCO1 is expressed during flower 

emergence until initiation, and the second HvCO2 is highly expressed in late stages 

of terminal spike production and heading (Song et al. 2015). Furthermore, CO and 

PPD1 induce HvVRN3 (the homologue of FT1 in Arabidopsis sp.), but this is not 

straightforward in barley. The expression of HvVRN3 is considered to be 

suppressed by other factors such as HvVRN2. In barley leaves HvVRN2 

expression, a suppressor of flowering, can itself be suppressed in favourable 

conditions by HvVRN1. The suppression of HvVRN2 will allow HvVRN3 to be 

expressed in leaves and transferred via the phloem to the crown meristem where it 

transcriptionally activates HvVRN1; this is an absolute requirement for flowering in 

cereals (Song et al. 2015). The ABCDE model of flower development, first 

developed in the Arabidopsis and Antirhinum (Coen and Meyerowitz, 1991), is also 

believed to operate in cereals the ‘E class’ genes are believed to function in floral 

meristem development which is controlled by two known sub families at AGL2 and 

AGL6, in addition to floral organs, ovule (integument) and seed development (Dreni 

and Zhang 2016). 
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Figure 1-4 Model for the Regulation of Flowering in Cereals. 
The circadian clock pseudo-response regulator (PPDH1) which activates the 
transcription factor CONSTANS (CO), leading to an accumulation of VRN3. VRN3 
is a mobile signal that moves through the phloem to the crown meristem where it 
activates VRN1; this triggers the transition of the vegetative to a reproductive 
meristem and is required for flowering in cereals through ABCDE box model. In 
winter lines, flowering in autumn is prevented by the (Long Day) activation of the 
suppressor of flowering VRN2. VRN1 accumulates in leaves in response to the cold 
conditions and short days of winter and eventually suppresses VRN2, so that on 
return to spring, VRN3 accumulates in leaves and triggers flowering in the crown 
meristem. 
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In addition to VRN1, VRN2, VRN3 and CO other factors also regulate  inflorescence 

development for example the growth hormone regulator GA. The production of GA 

will induce flowering in plant meristems. The role of nitrogen supply on flower 

development is unclear at present, but it is thought to affect VRN3 expression and  

GA production (Marín et al. 2011; Boden et al. 2014). The inhibition of GA 

biosynthesis might be controlled by KNOX proteins (Zhang and Yuan 2014), and 

ELF3 (Boden et al. 2014). The importance of nitrogen supply in increasing plant 

growth and yield is well established but the mechanisms that underpin these 

responses is far from clear. It is obvious that the growth and yield of crops such as 

barley are badly compromised when N-supply is deficient but very high levels of N-

supply suppress flowering whilst boosting biomass accumulation.  

1.6 Project Aims 

The original aims of this study were to build on earlier work from my host laboratory 

on the effects of high Tleaf on photosynthesis rates. Most of this work was conducted 

on barley plants grown in N-rich soils (compost) that generated aberrant phenotypes 

in barley. There were several aims for the work described in this thesis.  First, was 

to confirm these responses were also shown by barley plants grown in normal levels 

of N-supply exhibiting normal growth phenotypes. Second, to establish whether, in 

the field where plants are exposed to high irradiance, light-generated ROS in leaves 

will impose damage on the photosynthetic apparatus before any direct effects of 

thermal stress. Third, to extend the preliminary observations of previous workers on 

this project and assess whether changes in whole leaf  ATP levels can account for 

the observed changes in photosynthesis rates. It was hoped that a better 

understanding of these factors would lead on to a series of experiments where 

thermal tolerance in leaves of barley could be manipulated to improve yields under 
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high temperatures.  The results from this section of the project, however, suggested 

this would not be achieved easily and so further experiments were abandoned.  

What was observed during this phase of the project, however,  were interesting 

effects of N-supply on photosynthesis rates, and it was decided to set new aims and 

persue this line of enquiry.  Specifically, how does high N-supply promote tillering 

and suppress flowering in spring barley? Why do unit leaf area (ULA) 

photosynthesis rates increase with increasing N-supply. How does high N-supply 

suppress flowering in barley. Finally, can ϕCO2, (a measure of C3 cycle efficiency),  

and hence Asat, be increased without suppressing the development of fertile florets? 

To address these question a better understanding is required of the N sensors and 

signalling pathways that lead to the three observed phenotypic responses (increase 

in Asat and tillering, suppression of flowering). 
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2 Chapter 2: Materials and Methods 

 

2.1 Growth and Maintenance of Plant Material 

2.1.1 Growth in Soil. 

Spring barley (Hordeum vulgare L.) of cultivars Belgravia or Optic (malting barley) 

were obtained from Nickerson Limagrain Limited (Rothwell, Lincolnshire, UK) and 

Syngenta Seeds Limited (Cambridge, UK). Seeds were germinated damp paper 

towels for 5-7 days and seedlings transferred into 2-Liter pots containing a mixture 

of compost and perlite (1:5). The seedlings were placed in controlled environment 

growth room (16/ 8 hour Day/ Night photoperiod, light intensity 300 μmoles.m-2.s-1, 

23/18 °C temperature, humidity 60%). 

 

In some experiments plants were germinated as described above and placed in 5L 

pots containing 15% top soil and 85% sand, and subsequently supplemented with 

a NPK fertilizer (3:1:2) at a final rate of 0 , 2, 10, 20 and 47 g m-2 of N; fertilizer was 

added at the 4-week and 8-week stage in two equal amounts (N application of 10 g 

m-2 soil is equivalent to  100 kg / Ha, levels that are similar to those used in arable 

production). Pots were placed in a growth room (photoperiod of 16 / 8 hour, Light / 

Dark and 22°C / 16°C).  
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2.1.2 Growth in Hydroponic Solutions 

Spring barley (Hordeum vulgare L.) of cultivars Belgravia or Optiac were germinated 

(Section 2.1.1) and transferred after 7 days into 20L plastic tanks. Seedlings were 

secured in a 300 mm length of 40 mm dia. domestic plastic pipe and eight of these 

were secured into holes cut into a piece of expanded polystyrene sheet (400 x 600 

mm).  This assembly was then inserted, roots down, into one of the 20 L plastic 

tanks which was filled with 15L of modified aerated Hoagland’s solution ensuring 

the seedling roots were immersed.  The tanks were then placed in a 22ºC 

glasshouse supplemented with LED lighting providing an additional irradiance of 

200 µmol m-2 s-1 PPFD to the seedlings (14/10 hr Day/Night cycle). Solutions were 

replaced once every week. The tank, pipe, and polystyrene assembly was opaque 

to prevent light ingression to the roots. This assembly also ensured all plants grew 

upwards for 200 mm before emerging from the cut end of the pipe; this proved to 

be beneficial particularly for plants grown in high N-supply that were prone to a 

prostrate growth habit due to little secondary cell wall thickening. Root aeration was 

achieved by aquarium air pumps.  The hydroponics solutions used were based on 

Hoagland’s recipe except that all salts containing nitrogen (ammonium and nitrate) 

were removed and removed balancing ions made up with sodium or chloride salts, 

and nitrogen was added back to the desired level using ammonium nitrate.  This 

approach ensured the composition of the different Modified Hoagland’s solutions 

differed only in the amount of NH4NO3 added. The recipe for Modified Hoagland’s 

solution is presented in Table 2-1.  
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Table 2-1 Composition of Modified Hoagland’s Solution 
The amount of nutrients in milliLitres of stock solutions to added to water for a final 
15 L volume. Full-strength of Hoagland’s solution contains 16 mM nitrogen.  

Nutrient Stocks 

Concentration 

Concentration of N (mM) 

16 6.4 3.2 1.6 0.64 0.32 0.16 0.08 

KH2PO4 1.0 M 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 

Mg SO4.7H2O 2.0 M 15 15 15 15 15 15 15 15 

H3BO3 50 mM 15 15 15 15 15 15 15 15 

MnCl2.4H2O 500 µM 15 15 15 15 15 15 15 15 

ZnSO4.7H2O 200 µM 15 15 15 15 15 15 15 15 

CuSO4.5H2O 200 µM 15 15 15 15 15 15 15 15 

H2MoO4.H2O 700 µM 15 15 15 15 15 15 15 15 

Fe Na EDTA 45 µM 15 15 15 15 15 15 15 15 

NH4NO3 1.0 M 112.5 45 22.5 11.2 4.5 2.3 1.1 0.6 

K Cl 1.0 M 90 90 90 90 90 90 90 90 

CaCl2.2H2O 0.5 M 120 120 120 120 120 120 120 120 
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2.2 Measurement of Photosynthesis Parameters 

2.2.1 Infrared Gas Exchange 

The measurements of photosynthesis on barley leaves were taken by using infrared 

gas analysers (IRGAs; LCpro+, ADC Bioscientific Ltd., Hoddesdon, Herts., UK) 

fitted with a rectangular narrow leaf chamber (window area of 5.8 cm2). Mature 

attached leaves were carefully placed in the leaf chambers ensuring no damage 

occurred and the full area of the chamber was covered. Illumination was provided 

by the LCpro LED unit; CO2 supply, air temperature, and humidity were controlled 

by LCpro console. 

 

2.2.1.1 CO2 Response Curves   

Assimilation of CO2 with changes in air CO2 concentration, i.e. A/Ca curves, were 

collected using standard procedures (Farquhar et al., 1980). Using this approach 

useful photosynthetic parameters can be calculated and from estimates of the 

intracellular space CO2 concentration (Ci), A/Ci plot can also be constructed. This 

approach effectively removes any stomatal control of assimilation rate.  

 

Unless otherwise stated, mature leaves were sealed in LCpro+ leaf chamber and a 

program run with saturating light (>600 μmol photons .m-2 .s-1 PPFD), 5 mmol 

humidity mol-1 air, and ambient Ca (380 µmol CO2 mol-1 air) for 20 minutes to ensure 

the leaf was capable of achieving good rates of photosynthesis (i.e. over 10 µmol 

CO2 . m-2 . s-1). If this was achieved all leaf chamber parameters were held constant 
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and Ca was adjusted from 0 to 1200 µmol CO2 mol-1 air in incremental steps (0, 10, 

20, 50, 100, 200, 300, 400, 500, 600, 800, 1000 and 1200) of 15 minutes.  A typical 

control program is presented in Fig 2-1 and the corresponding A/Ca and A/Ci 

responses shown in Figure 2-2.  

 

2.2.1.2 Light Response Curve 

Immediately after completing a CO2 response curve, the IRGAs were normally 

programmed to perform a Light Response (A/I) curve on the same section of leaf.  

All leaf chamber parameters were held constant (Ca 380 µmol CO2 mol-1 air, 

humidity 5 mmol mol-1 air, constant Tair) but incident light intensity was incrementally 

changed from 0 to 1000 µmol photons . m-2 . s-1 PPFD) in 15 steps to provide the 

folwing leaf absorbtances (0, 9, 17, 44, 87,174, 261, 358, 435, 522, 696 and 870 

µmol m-2.s-1, PPFD). 

 

Figure 2-3 presents a typical light response curve from barley. From this curve, 

several important photosynthetic parameters can be extracted, such as the 

apparent quantum yield of photosynthesis (α), the maximum photosynthesis rate 

(Amax), light-saturated photosynthesis rate in normal air (Asat), and the dark 

respiration rate (Rd). A standard absorbance factor of 0.86 was used to estimate 

absorbed light, correcting for losses from reflectance and transmission; the 

absorbed light energy is considered to be divided equally between the two 

photosystems (von Caemmerer 2013). 
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Figure 2-1. Program of Leaf Chamber Conditions use to Obtained CO2 
Response Curves. 

The readings of IRGA were taken every one minute during the experiment to obtain 
CO2 response curves. Light illumination was fixed at 600 μmol photons .m-2.s-1 
(PPFD). Tch is the temperature of the leaf chamber; Tl is Tleaf, which is the 
temperature of leaf surface; eref, air humidity; Ca and Ci, CO2 concentration in the 
air and in the intercellular leaf spaces. 
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Figure 2-2. CO2 Response Curves for Barley. 
The barley leaf was sealed in LCpro leaf chamber with conditions described in 
Figure 2-1. The solid blue line is the relationship between net CO2 assimilation (A) 
and the internal CO2 concentration (Ci). Black solid line is the relationship between 
net CO2 assimilation (A) and the air CO2 concentration (Ca). Red Solid line ϕCO2 
(carboxylation efficiency) from the initial slope of the A/Ci curve. Red vertical dashed 
line ambient CO2 (380 μmol CO2 .mol-1 air). 
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Figure 2-3 Light Response Curve for Barley 
The barley leaf was sealed in LCpro leaf chamber with conditions described in 
Figure 2-1. Where the solid blue line is the relationship between net CO2 
assimilation (A) and light absorbance (PPFD). The CO2 concentration was ambient 
air (380 mol-1 air) and 5 mmol.mol-1 humidity. The response curve is shown Asat for 
barley c.v. Belgravia.  
  

-5

0

5

10

15

20

25

0 150 300 450 600 750 900 1050 1200

A 
(µ

m
ol

 m
-2

 s
-1

)

Absorbed Irradiance (µmol m-2 s-1)

Rd



 
 

 40 

2.2.2 Maximum Photosystem II Quantum Yield (Φ PSII max) and 

in vivo Electron Transport Rates (ETR) Measurements. 

The modulated chlorophyll fluorescence measurements were obtained by using 

PAM fluorometer (PAM2000H Walz, Effeltrich, Germany) fitted with a 2030-B Leaf 

Clip.  Irradiation was provided by the internal internal actinic light source or from an 

external quartz-halogen light source fitted with a fiber optic light guide (Zeiss KL 

1500). Measurements were made on PSII quantum efficiency of dark adapted (ΦPSII 

max), and light adapted leaves (ΦPSII) to determine the electron transport rate ETR. 

Attached leaf samples were left in the dark for at least 30 minutes before 

measurements on maximum photochemical efficiency were made (ΦPSII max); in 

vivo ETR were measured at steady states at least 5 minutes after the onset of 

irradiation.  

 

2.2.3 Measurement of Photorespiration. 

Initially, attempts were made to measure a full CO2 Response curves (Section 

2.2.1.1) in normal air (21% O2) adjusted for different CO2 content, and then again 

with modified air (1% O2) adjusted for different CO2 content.  This approach 

generated erratic data, probably because the attached leaf was exposed to partial 

anaerobic conditions for over two hours. To circumvent this problem leaves were 

then exposed to a given level of CO2 in normal air followed by exposure to the same 

CO2 level in modified air; the process was then repeated at a different CO2 level.  

This method was shown to be an improvement on the previously described method, 

but still the results were erratic.  For this reason, it was decided to reduce the time 

of exposure of leaves to modified air by measuring assimilation rates at ambient 
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CO2 levels (380 µmol CO2 mol-1 air) first in normal air (21% O2) and then for 20 

minutes in modified air (1% O2).  The different air compositions were prepared using 

Mass Flow Controllers (GFC, Aalborg) with nitrogen and oxygen gas cylinders; to 

deliver mixtures to the LCpro+ IRGAs of 79% of N2 and 21% of O2, and 99% N2 and 

1% O2 in the low level of O2; CO2 was added to these air streams by the IRGAs to 

provide 380 µmol CO2 mol-1 air stream.  In these experiments light levels were 

maintained at 600 μmol photons .m-2. s-1, humidity was 5 mmol mol-1air, and Tair 

was held at 25ºC.  

Photorespiration was calculated as the difference between Asat in normal (21% O2) 

and modified (1% O2) air. 

 

2.3 Exposure of Attached Leaves to High Tleaf  

2.3.1 Steady State Post Heat Stress Experiments 

Mature attached leaves were placed on an aluminium plate that was attached to the 

thermal block of a PCR machine (PTC-200, Peltier Thermal Cycle, MJ Instruments). 

The attached leaf was covered with a neoprene pad (120 x 70 mm) to ensure 

thermal insulation; bead thermocouples were placed both under and above the leaf 

to record Tleaf during the incubation period. The PCR machine was then 

programmed to hold a constant temperature for the desired period (normally 3 

hours). The temperatures recorded with the thermocouples showed no thermal 

gradients across the leaves and measured temperature did not vary by more than 

± 0.3ºC of the set temperature. After the incubation period, attached leaf sections 

were placed into the IRGA leaf chambers and photosynthesis parameters 

measured. Normally, heat stress was applied to leaves in the dark.  Where heat 
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stress was applied in the light, a neoprene pad with a 15 x 70 mm rectangular hole 

and covered in cling film was placed over the attached leaf which was irradiated with 

a cool white light source providing 600 µmol photons . m-2 . s-1 PPFD at the leaf 

surface. Tleaf was monitored throughout the incubation period using bead 

thermocouples and again temperatures did not vary by more than ± 0.3ºC from the 

set temperatures.  

 

2.3.2 Pseudo Steady State Heat Stress Experiments 

The effect of continuous exposure to heat on Barley leaf physiological parameters 

that related to photosynthesis was measured. Barley cv. Optic was used in this 

experiment. The whole plant was placed in Sanyo Growth Cabinet, which is 

programmed to manage air temperature inside it. The reason is the IRGA can 

control leaf temperatures at ±5°C of room temperature. First, measure the 

assimilation rates at control room temperature (25°C) for 30 minutes, then increased 

the cabinet temperatures to 35, 37, 38, 39, 40, 41, 42 and 43 (±0.4) °C of Tleaf. The 

conditions were ambient CO2 (380 μmol CO2 mol-1 air) and saturating light (560 

μmol photons m-2 s-1) for 210 minutes and the new steady state Asat and gs 

measured. 

 

2.4 Measurement of Whole Leaf ATP Levels 

2.4.1 Sample Preparation 

The intact leaves of barley were attached to a PAM fluorometer to measure in vivo 

ETRs before exposing the leaf to heat stress at the following temperatures: 25, 30, 
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35, 36, 37, 38 and 40 °C for three hours in the dark. Then each leaf was either 

incubated in dark or under 660 µmol m-2 s-1 PAR of light intensity for 20 minutes in 

normal air at 25ºC. During light incubation the ETRs were measured again. Then, 

after 20 minutes of light or dark incubation, the leaves were flash frozen in liquid 

nitrogen. This step was performed rapidly under constant light or dark conditions 

(<1s) to ensure endogenous ATP pools were not perturbed. The leaf samples were 

then ground in liquid nitrogen to a fine powder and ca.  50 mg samples (measured 

to ± 0.1 mg precision) were added to an Eppendorf tube containing 1.000 mL of hot 

distilled water in a water bath at 95°C and incubated for 5 minutes. The leaf extracts 

were then centrifuged at 12,000g for 5 minutes at 4°C and the supernatants 

transferred into fresh tubes. Previous experiments had demonstrated this process 

ensured ATP pools did not change during sample preparation; the high 

temperatures ensured phosphatase activity in the samples was inactivated 

immediately upon thawing.  These samples were then stored at -80ºC until required. 

 

2.4.2 Luciferin-Luciferase Assay 

The ATP assay was measured by using Molecular Probesʼ Molecular Probes ATP 

Determination Kit (A22066, Invitrogen, Ltd. 3 Fountain Drive Inchinnan Business 

Park Paisley PA4 9RF, United Kingdom). The Luciferase buffer for ATP assay was 

prepared as recommended by the manufacture in 10 mL total amount that contained 

0.5 mM D-luciferin, 25 mM Tricine buffer pH 7.8, 1mM DTT, 125 mg/mL firefly 

luciferase, 100 μM EDTA and 5mM MgSO4. The recombinant firefly luciferase and 

its substrate D-luciferin estimated ATP levels in 96 flat-bottomed well, black 

microtiter plates. The assay was run by using Luminoskan Ascent Microplate 



 
 

 44 

Luminometer (Thermo Ficher). The Luminometer was connected to a computer and 

Ascent software version 2.6 was used for controlling data collection and the analysis 

of the data.  The samples were loaded into the microtiter plate by adding 10 μL of a 

sample in each well in triplicate to minimize errors arising from sample handling. 

The reactions were started by the addition of 100 μL of luciferase buffer to each 

well. A standard curve was generated each day using stock ATP (0, 0.1, 0.5, 1, 5, 

10, 15 and 25 pmol of ATP). 

 

2.4.3 Sample Analysis 

The luciferin – luciferase assay reaction half-life is short so the signal rapidly decays 

exponentially; this means that the time lapse after starting the assay and measuring 

the signal is critical.  For this reason, after samples had been loaded into the 

microtiter plates, the luciferase buffer was added one column at a time using an 8-

channel multipipette (i.e. 1 column of samples on the 8 x 12 = 96 well plate). The 

differences in time between buffer additions was standardized as 10s. After 

collecting the signal decay curves for all samples, the data were analyzed in a 

spreadsheet by plotting the Log10 of signal against the time (seconds); this produced 

straight lines near time=0, and the off-set (+ 10 s intervals) time-corrected signals 

were estimated by extrapolating back to t=0s. The amount of ATP in each sample 

was then determined from the standard curves (Fig 2-4)     
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Figure 2-4. Calibration of Luciferin / Luciferase Assay for ATP Determination. 
Standard curves for ATP was generated by adding a series of ATP concentrations 
ranging from 0.1 to 10 picomoles added to a 110 µL reaction containing 1.25 μg/mL 
of firefly luciferase, 50 μM D-luciferin and 1 mM DTT in 1X Reaction Buffer (100 µL 
total volume). Luminescence was measured immediately after luciferin addition for 
10 min using a luminometer (arbitrary units) and corrected for time-dependent signal 
decay by extrapolation to time zero (see text for details).  
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2.5 Measurement of Growth, Development, and 

Morphological Parameters 

2.5.1 Growth Parameters 

Measurements included the number of leaves, grains, and spikes per tiller and per 

plant. The number of tillers including the main stem was counted at each plant at 

each N concentration. The number of nodes in each tiller was assessed externally, 

and the distance between nodes was also measured to determine the spike 

elongation.  
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2.6 Development 

2.6.1 Zadock’s Scale for Quantifying Stage of Growth 

The development of whole plants was assessed every second or third day using 

Zadock’s Growth Staging scale (Zadoks et al. 1974) which is detailed bellow: 

 

	

Description	

	

Description		  

Scale	 Scale	

Germination	 Booting	

0	 Dry	seed	 40	 -	

1	 Start	of	imbibition	 41	 Flag	leaf	sheath	extending	

3	 Imbibition	complete	 45	 Boots	just	swollen	

5	 Radicle	emerged	from	seed	 47	 Flag	leaf	sheath	opening	

7	 Coleoptile	emerged	from	seed	 49	 First	awns	visible	

9	 Leaf	just	at	coleoptile	tip	 Inflorescence	emergence	

Seedling	growth	 50	 First	spikelet	of	inflorescence	visible	

10	 First	leaf	through	coleoptile	 53	 1/4	of	inflorescence	emerged	

11	 First	leaf	unfolded	 55	 1/2	of	inflorescence	emerged	

12	 2	leaves	unfolded	 57	 3/4	of	inflorescence	emerged	

13	 3	leaves	unfolded	 59	 Emergence	of	inflorescence	completed	

14	 4	leaves	unfolded	 Anthesis	

15	 5	leaves	unfolded	 60	 Beginning	on	anthesis	

16	 6	leaves	unfolded	 65	 Anthesis	half-way	

17	 7	leaves	unfolded	 69	 Anthesis	completed	

18	 8	leaves	unfolded	 Milk	development	
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19	 9	or	more	leaves	unfolded	 70	 -	

Tillering	 71	 Kernel	watery	ripe	

20	 Main	shoot	only	 73	 Early	milk	

21	 Main	shoot	and	1	tiller	 75	 Medium	milk	

22	 Main	shoot	and	2	tillers	 77	 Late	milk	

23	 Main	shoot	and	3	tillers	 Dough	development	

24	 Main	shoot	and	4	tillers	 80	 -	

25	 Main	shoot	and	5	tillers	 83	 Early	dough	

26	 Main	shoot	and	6	tillers	 85	 Soft	dough	

27	 Main	shoot	and	7	tillers	 87	 Hard	dough	

28	 Main	shoot	and	8	tillers	 Ripening	

29	 Main	shoot	and	9	or	more	tillers	 90	 -	

Stem	Elongation	 91	 Kernel	hard	(difficult	to	divide	with	thumbnail)	

30	 Pseudo	stem	erection	 92	 Kernel	hard	(no	longer	dented	with	thumbnail)	

31	 1st	node	detectable	 93	 Kernel	loosening	in	daytime	

32	 2nd	node	detectable	 94	 Overripe,	straw	dead	and	collapsing	

33	 3rd	node	detectable	 95	 Seed	dormant	

34	 4th	node	detectable	 96	 Viable	seed	giving	50%	germination	

35	 5th	node	detectable	 97	 Seed	not	dormant	

36	 6th	node	detectable	 98	 Secondary	dormancy	induced	

37	 Flag	leaf	just	visible	 99	 Secondary	dormancy	lost	

39	 Flag	leaf	ligule/collar	just	visible	 	  
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Figure 2-5 A Field Guide to Cereal Staging  
The Zadock’s scale is shown at different stages adopted from (Alley et al. 2009). 
 

 

2.6.2 Meristem Development 

The main stem of plants grown under each N concentration was removed from the 

hydroponic solution and then dissected to reveal the crown meristem. The position 

of the meristem varies between plants depending on age and the concentration of 

N-supply. The stems were dissected under a stereo dissecting microscope using a 

fine blade scalpel and forceps to remove all materials surrounding and protecting 

the meristems. Images of the meristems were taken using a Dino-Eye Digital Eye 

Piece Camera (AM7023(R4), ANMO Electronics Corporation) attached to the C-

mount on the microscope. The camera was connected to a PC and controlled by 

DinoCapture 2.0 software version 1.5.12.  
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2.6.3 Cell Morphology and Number of Chloroplasts 

The leaf thickness was measured under the microscope by preparing cross sections 

of the leaf. The number of chloroplasts in each cell was measured under the 

microscope as well.  

 

2.6.3.1 Preparation of Thin Cross Sections of Leaves, Stems, and 

Meristems 

Samples were cut from plants and immersed overnight in 3% glutaraldehyde to fix 

tissues. After this period, the samples were dehydrated by placing in a series of 

ethanol solutions (100 mL; 60% 80% and 100%) for 1 hour. The samples were then 

mounted in liquefied wax at 50ºC and cooled to room temperature to induce 

solidification.  The samples were then trimmed into blocks and mounted on a 

microtome and thin sections cut (<100 µm). Thin sections were then recovered, 

mounted on glass slides, stained with Toluidine Blue for 20 – 60 minutes, washed 

and cover slips fixed into position. Samples were then viewed using a light 

microscope at X50 – X250 magnification. 

 

2.6.4 Chlorophyll Content in Barley Leaf 

The amount of chlorophyll in barley leaves grown at different N levels was measured 

by using a portable Hansatech CL-01 Chlorophyll Content meter (Hansatech 

Instruments Ltd, Norfolk, UK).  
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2.7 Total Leaf Protein 

2.7.1 Sample Preparation 

Total leaf protein was assessed by cutting 3 leaf discs using a #3 cork borer (dia. 6 

mm). The discs were then ground in liquid nitrogen in Eppendorf tubes, 1.00mL of 

ice cold acetone added to the leaf powder, and the samples incubated in the dark 

at -20 °C for 24 hours. After the incubation period, the leaf extracts were centrifuged 

at 15,000g for 15 minutes at -10 °C and the supernatants discarded. The pellets 

were washed with ice cold acetone and centrifuged again; this step was repeated 

until the pellets were colourless. The final pellets were allowed to air dry at room 

temperature for 10 minutes and then stored. 

 

2.7.2 Assessment of Protein Content Using the Bradford Assay. 

The concentration of the total leaf protein was measured by using Bradford dye 

method (5000006, Bio-Rad, UK) according to the manufacturer’s instructions. The 

extraction buffer contained; 25 mM Tris, 75 mM NaCl, 5mM EDTA, 5 mM EGTA, 

5% glycerol, 0.05% Nonidet Np, and deionized water was added to 100 mL volume. 

An 800 µL aliquot of the buffer was added to the samples and the solutions were 

then vortexed and centrifuged at 15,000g for 15 minutes at 4 °C and the supernatant 

transferred into fresh tubes. A calibration curve was constructed each day using five 

concentrations of bovine serum albumin (BSA) standards. The assay starts by 

adding 200 µL the dye to 800 µL of sample and incubating the tube for 5 minutes to 

allow the reaction to complete. The absorbance was then measured at 595 nm. 
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2.7.3 Protein Gel Electrophoresis  

Leaf proteins were separated using SDS- polyacrylamide gel electrophoresis (SDS-

page). Total leaf protein was prepared (Section 2.7.1) and diluted 1:2 with sample 

buffer (1.25 mL 0.5 M Tris-HCl pH6.8, 2.5 mL glycerol, 2 mL 10% SDS, 0.2mL 0.5% 

Bromophenol Blue, and 3.55 mL deionized water). A total of 950 µL of solution was 

mixed with 50 µL of 1mM DTT just prior to use). The samples were then heated to 

95 °C for 5 minutes to denature secondary and tertiary structure just prior to loading 

into the wells. The resolving gel consisted of 10% acrylamide/bisacrylamide whilst 

the stacking gels were 6%. The resolving gel contained 1,5M Tris-HCl pH 8.8, 4 mL 

of 30% Acrylamide/Bis, 50 µL 10% APS and 5 µL TEMED. The Stacking gel contain 

0.5 M Tris-HCl pH 6.8,  2.7 mL of 30% Acrylamide/Bis, 50 µL 10% APS and 10 µL 

TEMED .The proteins were separated by using Running Buffer (Resolving buffer 

contain: 3.04 g of Tris base, 14.4g glycine, and 1g SDS) and 200 V for approximately 

1 hour or until the loading dye reached the bottom of the gel. To determine the 

molecular weight of the proteins, unstained molecular weight marker (P7703, New 

England Biolabs) were used.  Coomassie Brilliant Blue staining was used for SDS-

PAGE gels. The gels were incubated for 30 to 60 minutes in 0.1% Coomassie 

Brilliant Blue, 45% methanol and 10% acetic acid with shaking. The gels were then 

destained in 45% methanol and 10% acetic acid overnight. The gels were 

subsequently scanned after distaining. 
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2.8 Assessment of VRN 1, VRN 2 and VRN 3 Expression 

in Leaves.  

2.8.1 Genomic DNA Isolation 

Barley leaves were harvested and ground to a fine powder using liquid nitrogen in 

prechilled mortar and pestle. Approximately 50 mg of leaf powder were transferred 

into 1.5 mL microfuge tubes and 500 µL Extraction Buffer (200 mM Tris-HCl pH 7.5, 

250 mM NaCl, 25 mM EDTA and 0.5% SDS) was added, and the samples mixed 

by repeated pipetting; these samples were incubated at room temperature for 30 

minutes. The samples were then centrifuge at 15,000g for 5 minutes at room 

temperature and 400 µL of the supernatants transferred into new tubes and mixed 

with 400 µL Isopropanol; the tubes were then centrifuged again at 15,000g for 2 

minutes at room temperature. The isopropanol was discarded and the pellets 

washed with 75% iced cold ethanol. The pellets were then allowed to air dry for 30 

minutes before resuspension in 200 µL Extraction Buffer and incubation at room 

temperature for 1 hour. 

  

2.8.2 RNA Extraction 

2.8.2.1 RNA Extraction by using TRI-Reagent. 

The total extraction done by using Tri-reagent (T9424 - TRI Reagent®, Sigma-

Aldrich Chemical Co. Ltd., Dorset, UK). About 100 mg of frozen powder (Section 

2.8.1) was transferred into microfuge tubes. Approximately 1 mL TRI-reagent was 

added and vortexed briefly. The samples were then centrifuge at 12,000g for 10 
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minutes at 4 °C and the supernatants transferred to a fresh microfuge tubes and 

incubated on ice for 5 minutes. Then, 200 µL of chloroform was added to the tubes 

and shaken vigorously for 15 seconds, and incubated on ice for 10 minutes. The 

tubes were centrifuged again at 12,000g for 15 min at 4 °C and then incubated on 

ice for a further 10 minutes. The top colourless supernatants containing RNA were 

transferred to new, fresh tubes and mixed with 500 µL isopropanol. The samples 

were incubated on ice for 10 minutes and then centrifuged at 12,000 g for 15 min at 

4 °C, and the supernatants were discarded. The remaining pellet, containing total 

RNA ,was washed by adding 1 mL of ice-cold 75% ethanol and mixed by vortexing, 

and centrifuged at 7,500 g for 5 minutes at 4 °C. The pellets were then allowed to 

air dry at room temperature. Then the samples were re-suspended in 30 µL of DEPC 

water and the pellets dissolved at 55-65 °C for 30 minutes.  

 

2.8.2.2 Meristems RNA Extraction Using Hot Phenol Method 

Freshly dissected meristems were ground in liquid nitrogen to a fine powder and 50-

100 mg transferred to Eppendorf tubes. A 500µL aliquot of freshly prepared hot 

(80°C) Phenol Extraction Buffer (0.1M LiCl, 0.1M Tris HCl, 10mM EDTA, and 1% 

SDS) was added to the samples and vortexed for 30 – 40 seconds. Then 250µL of 

chloroform: isoamyl alcohol (IAA) (23:1) was added and samples, vortexed again 

for 30 seconds, and stored on ice. Samples were then centrifuged at 13,500g for 5 

minutes at room temperature and the aqueous supernatants transferred to fresh 

microfuge tubes and incubated on ice for 5 minutes. The total volume of each 

sample collected was carefully measured and an equal volume of 4M LiCl was 

added, vortex, and then incubated overnight in ice in a cold room. After this 
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incubation step the samples were centrifuged at 13,500g for 10 minutes at 4 °C. 

The supernatants were discarded and the pellets were re-suspended by adding 

250µL of DEPC treated water and vortexed until dissolved. A tenth volume (25µL) 

of 3M NaAcOH (pH5.2) and 2 volumes (500µL) of cold (-20°C) absolute ethanol was 

added, the samples mixed well by vortexing, and then incubated at -20°C at least 

for 2 hours.  The samples were then centrifuged at 13,500g for 10 minutes at 4°C, 

the supernatants discarded, and the pellet washed with pre-cold 70% ethanol (made 

with DEPC treated water).  Samples were then centrifuged again at 13,500g for 10 

minutes at 4°C. The ethanol was removed with care by using nuclease free tips, and 

the pellets allowed to air dry at room temperature, before re-suspension in 20-50µL 

of DEPC-treated water. 

 

2.8.3 Quantification of DNA and RNA  

Nucleic acid concentration in samples was estimated using nano-drop 

(Nanophotometer Peral, Imlen). A 2 µL aliquot volume of the sample was calibrated 

against a water blank and the absorbance measured at 230nm, 260 nm and 280 

nm. According to (Sambrook and W Russell 2001), the concentration was obtained 

by measuring absorbance at 260 nm where the absorbance of 1 mean 50 µg/mL of 

DNA  and 38 µg/mL of RNA. The purity of the samples was measured by the ratio 

of 260/280. 
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2.8.4 RNA Treatment with DNase  

The RNA samples were treated with RNAase-free DNase to remove DNA (DNA-

free, Ambion® ThermoFischer; Cat No. AM1907) according to the manufacturer’s 

instructions. Briefly, about 5 μg of RNA were incubated with 4 units of DNase I and 

1 x DNase buffer at 37°C for 1 hour. The reaction was stopped by addition of DNase 

Inactivation Reagent to the reaction mix. The samples were incubated for 5 minutes 

at room temperature and centrifuged at 12,000g at room temperature and the pellets 

were discarded.  

 

2.8.5 Agarose Gel Electrophoresis of RNA  

Where required, integrity of RNA was checked by agarose gel electrophoresis. One 

1 µg of RNA (see section 2.6.1.5) was separated on a 1.5 (w/v) agarose gel 

containing 10 % formaldehyde and 1 x MOPS buffer, pH 7.0 (20 mM MOPS, 5 mM 

sodium acetate, 1 mM EDTA (Sambrook and Russell, 2001)). Before loading, the 

RNA was mixed with 1 % (v/v) formaldehyde, 30 % (v/v) formamide, 1 x MOPS pH 

8.0, and 0.1 volumes of ethidium bromide as a staining agent. RNA mixtures were 

heated at 65 °C for 10 minutes, cooled on ice, then mixed with 0.2 volumes of 

loading dye (Promega UK, ltd., Southampton, UK) then loaded on the MOPS gel. 

Electrophoresis was performed in 1 x MOPS buffer pH 7.0 for 2 hours at 100 V and 

visualized by UV illumination. RNA integrity was assessed by the presence of 

defined bands. 
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2.9 RNA Sequencing 

Frozen powder for each of the extracted meristem total RNA samples was removed 

from the -80ºC freezer (Section 2.8.2.2) and dissolved in 15 µL DEPC-treated water 

to give a total RNA content of 1.8 – 3.5 µg. These were 3 biological replicates of 2-

to-3 node stage meristems from plants grown in High (16 mM) and 3 from Moderate 

(0.64 mM) N-supply.  These samples were then sent to the Glasgow Polyomics 

facility at the University of Glasgow for processing.  Briefly, this involved a quality 

control check using an Agilent 2100 Bioanalyser, and polyA RNA isolation and 

cDNA synthesis using a standard TruSeq total RNA kit (Illumina Inc.).  The cDNA 

samples were then fragmented in ca.100 bp lengths and unique adapter pairs 

ligated to each of the six cDNA samples to provide multiplexing capability. The 

samples were then mixed and loaded onto a flow cell for analysis using an Illumina 

NextSeq 500 DNA sequencer.  Over 400 million 100bp reads were obtained 

providing over 200 million paired end reads; these were sorted by the multiplex 

adapters into six data sets (3 High and 3 Moderate N-supply) each containing 30-

35 million paired end reads.  All subsequent data analysis was performed on the 

University of Glasgow Galaxy server (Love et al. 2014). each of the six data sets 

were then ‘trimmed’ to remove multiplex adapter and nonsense sequence using the 

Trimmomatic package (Bolger et al. 2014) and a quality control further checked 

performed using FastQC (Blankenberg et al. 2010).  The output from FastQC was 

then piped into the Kallisto package (Bray et al. 2016) and the reads aligned to the 

barley ‘cDNA’ reference genome consisting of known cDNAs, coding sequences, 

DNA, non-coding RNA, and peptides 
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 (ftp://ftp.ensemblgenomes.org/pub/plants/release-32/fasta/hordeum_vulgare). The 

aligned reads of all six data sets were then piped into the DESeq2 package for 

transcript quantification and statistical analysis using the barley cDNA annotation 

file (Love et al. 2014).   

 

2.10 Statistical Analysis 

Data were analyzed using Minitab ver 17 statistical package.  The Analysis of 

Variance General Linear Model (GLIM) was used in most cases and where 

appropriate data Log10 or square root transformations were applied to ensure the 

data sets conformed to a Normal Distribution. Differences between levels of 

experimental factors were assessed using Tukey’s a posteriori tests.  In some cases 

where the explanatory variables were continuous, regression lines were fitted using 

the GLIM Covariance routine.      
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3 Chapter 3: Response of Barley Photosynthesis 

Rates to Heat Stress. 

The effects of high leaf temperatures (Tleaf) on photosynthesis rates of attached 

barley leaves was measured using two different methods; attached leaf gas 

exchange using IRGAs and pulse modulated chlorophyll fluorescence. Two sets of 

experiments were performed.  

 

In the first measurements A/Ci curves (see Section 2.2.1) were constructed to 

assess important physiological parameters of attached leaves just prior to, and just 

after, a 3-hour period of controlled Tleaf (25.0 to 40.0°C, ± 0.2°C); this allowed a 

comparison of the effects of Tleaf on steady state photosynthesis rates at 25°C on 

the same section of attached leaf. These experiments will henceforth be referred to 

as Steady State Post Heat Stress measurements. 

 

In the second set of experiments attached leaves were enclosed in the leaf chamber 

of an IRGA and Tleaf was initially held at 25°C for 30 min to assess photosynthesis 

rates. Tleaf was then increased to either 35.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0 or 

43.0°C ± 0.7°C in normal air, and then Asat and other important parameters, were 

then measured at these elevated temperatures. These experiments also allowed 

the effects of Tleaf on photosynthesis rates to be assessed but here measurements 

were made at each Tleaf (cf. 25.0°C in the post heat stress experiments) on the same 

section of leaf. The advantage of this approach is that the effects of Tleaf on 

photosynthesis rates at high leaf temperatures can be assessed. The disadvantage, 
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however, is that leaves were at pseudo-steady state; Tleaf was held for 180 minutes 

at each elevated temperature and measurements were then made whilst further 

damage may have been imparted. These experiments will henceforth be referred to 

as Pseudo-Steady State Heat Stress measurements.  

 

3.1 Steady State Post Heat Stress Measurements 

Previous studies in our laboratory suggested Tleaf of 38.0°C for 3 hours in the dark 

suppresses intact leaf light saturated leaf CO2 assimilation rates (Asat) by 80% in 

the C3 cereal barley and in the C4 crop maize, regardless of the geographical 

origins of the cultivar (tropical or temperate). In that study it was reported that the 

corresponding capacity for PS II photochemistry and in vitro photosynthetic electron 

transport was impaired by 40%, the CO2 supply to the chloroplast was unaffected, 

but carbon flow through the C3 cycle was inhibited by 85%. The interpretation of 

these experiments was that the primary cause for the observed decline in Asat was 

a direct effect of heat stress on the kinetic properties of the C3 cycle (Almalki 2014). 

Amalki (2014) went on to shown that carbon flow between Ribose 5-phosphate and 

Ribulose 1,5-bisphosphate was severely impaired, and a high temperature-induced 

decrease in chloroplast ATP levels leading to a reduction in carbon flow through 

Phosphoribulokinase (see Figure 1-2) was implicated (Almalki 2014). 

 

The findings from that study are compelling but do not support a considerable body 

of literature that implicates the enzyme RuBisCO Activase (RCA) as the primary site 

of thermal damage to photosynthesis (Salvucci 2004; Salvucci and Crafts-Brandner 

2004; Carmo-Silva and Salvucci 2012; Evans 2013; Galmés et al. 2014). For this 
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reason it was decided to undertake a series of experiments to check the validity of 

the findings of previous work in the Arnott laboratory at the University of Glasgow. 

There are four areas of some concern regarding the experimental approach used 

by Almalki (2014) that require further clarification.  First, Post Heat Stress 

experiments were conducted on intact leaves heat stressed for three hours in the 

dark. The rationale for this approach was to remove any effects of photochemically 

generated reactive oxygen species (ROS) on photosynthetic activity; by heat 

stressing leaves in the dark the direct effect of elevated leaf temperature alone on 

photosynthesis could be studied. To state this potential problem in another way, 

does the presence of ROS exacerbate thermal injury to Asat of plants grown in the 

field as mentioned in the literature (Kosová et al. 2014)? Second, the evidence for 

thermally induced changes in leaf ATP levels were reported to be preliminary and 

not extensive. To ensure these conclusions of Almalki (2014) are consistent and 

robust, further analyses is required. Third, a decline in Asat can arise from a decline 

in gross photosynthesis rates or from an increase in respiration and 

photorespiration. It seemed prudent, therefore, to assess the effects of Tleaf on the 

rates of photorespiration and respiration, and on and photosynthesis. Finally, the 

barley plants used previously in the Arnott laboratory were grown in compost, a 

medium that is used extensively in our institute for growing the model dicot 

Arabidopsis. Whilst the weedy species Arabidopsis superficially appears to show no 

phenotypic response to growth in nitrogen rich soil, cereal crops do show gross 

abnormalities (profuse tillering, increased levels of leaf protein, prostrate habit – little 

secondary thickening, reduced fecundity, etc.,). The uptake of excess nitrogen and 

its accumulation in leaves as storage protein may present a particular problem; 

RuBisCO is reported to be one of the major nitrogen storage proteins in leaves, and 
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therefore it is conceivable the results of Almalki (2014) on the effects of heat stress 

on RuBisCO activity in barley leaves were compromised by the aphysiological levels 

of RuBisCO that might have accumulated in those plants. Again, it seems prudent 

to re-assess the findings of Almalki (2014) on phenotypically ‘normal’ barley plants 

grown in physiologically relevant levels of nitrogen. In addition, proteins related to 

nitrogen metabolism are downregulated by heat stress (Ashoub et al. 2015).  

 

3.1.1 High Tleaf Effects on Photosynthesis 

Barley plants were grown in physiologically relevant levels of nitrogen (Section 

2.1.1) and exposed to the heat stress (Section 2.3.1) as described in the Materials 

and Methods chapter. In all cases measurements were first made prior to heat 

stress to ensure the section of leaf under study exhibited a high rate of 

photosynthesis determined by gas exchange (> 10 µmol CO2 m-2 Leaf  s-1; Section 

2.2.1) or electron transport rate determined by chlorophyll fluorescence 

measurements (> 100 µmol electrons m-2 Leaf s-1; Section 2.2.2); subsequently, 

heat stress was applied and the relevant photosynthetic parameters determined. 

  

3.1.1.1 Gas Exchange Measurements 

Figure 3.1 presents the results from a series of Post Heat Stress experiments on 

attached barley leaves grown in physiologically relevant levels of nitrogen. Asat 

declined markedly when Tleaf exceeded 37°C for 3 hours in the dark, and 

temperatures of 40.0°C caused approximately 80% inhibition. These findings are 

entirely consistent with those reported by previous experiment in Arnott laboratory 
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(Hüve et al. 2011). It appears that a similar profile of thermal inactivation of Asat 

occurs regardless of the nitrogen status of the plant.  

 

Attached leaves were also exposed to the same temperature regimes but incubated 

in saturating levels of white light (560 µmol photons m-2 s-1PAR), however, results 

showed an almost identical pattern (Fig 3.1). The thermal profile of the decline in 

Asat of attached barley leaves in response to high Tleaf is almost identical regardless 

of whether incubation was carried out in the dark or in saturating light. 

 

Anova analysis using the GLIM routine of Minitab 17 and Tukey’s post hoc  test 

showed no significant interaction between factors Light and Temperature (Fig. A-1). 

Analysis of the main factor Light also failed to generate a significant diffrence (p= 

0.989), but main effect Temperature was highly significant  (p< 0.001). Tukey’s post 

hoc comparisons test revealed 40°C produced a significant ( p< 0.05) reduction in 

Asat when compared with a temperature of 37°C and below.     

 

To conclude, the results of these experiments on heat stress in the dark of plants 

grown in soil/sand mixtures with physiologically relevant levels of N are similar to 

those of plants grown in N-rich compost. There is no evidence, therefore, that the 

nitrogen status of leaves affects the thermal sensitivity of photosynthesis rates in 

barley. Further, exposure to high light during heat stress caused no more damage 

to photosynthesis rates than heat stress alone and it appears, therefore, that any 

thermal suppression of Asat observed in field-grown barley plants will arises from a 

direct effect on the photosynthetic apparatus and not from light-generated ROS. 
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Figure 3-1. The Effect of High TLeaf and High Light Intensity on CO2 

Assimilation in Barley Leaves. 
The 4th attached leaf of barley (cv. Optic) were marked with a fine pen and placed 
in the leaf chamber of an IRGA to measure Asat at 25.0°C in normal air (380 µmol 
CO2 mol-1air) and saturating light (560 µmol photons m-2 s-1PAR). Only leaves that 
showed an Asat rates of over 10.0 were subsequently used. The marked sections of 
the attached leaves were then exposed to a range of TLeaf (25, 35, 36, 37, 38, 39 
and 40°C (±0.2 °C) for three hours in high light (560 µmol photons m-2 s-1PAR) or 
the dark. Assimilation rates Asat were subsequently measured using ambient CO2 
(380 µmol CO2 mol-1air) and saturating levels of light (560 µmol photons m-2 s-1PAR) 
and a Tleaf 25.0°C. The values represent the average (± SE) of n= 5 independent 
intact leaves. The 100% rate for dark stressed leaves was equivalent to value of 
14.4, while that for light stressed leaves was 14.0 µmol CO2 m-2 s-1. 
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3.1.1.2 in vivo Electron Transport Rate Measurements 

The photosynthesis rates of attached leaves can also be estimated from pulse 

amplitude modulated chlorophyll fluorescence measurements of in vivo electron 

transport rates (Baker 2008). These measurements on Post Heat Stressed attached 

leaves provide a second independent and rapid method to assess the effects of high 

Tleaf on photosynthesis rates. It is important to emphasize, however, that 

measurements on in vivo ETR provide information on the consumption of 

photochemically-generated reducing potential by whole leaf processes, and not just 

the reduction of CO2 (i.e. reduction of NO3
-, SO4

2-, etc., and the Mehler reaction). 

Figure 3-2 presents estimates of steady state photosynthetic ETRs of attached 

leaves heat stressed in the dark using the methods described earlier (see Legend 

of Figure 3-1). A strong, significant (p<0.001; Appendix A-2) decrease in ETR was 

observed at Tleaf above 37.0°C, where the inhibition of ETR began to take place. 

After exposure to 40.0°C in vivo ETRs had declined to approximately 15% of their 

pre-stress levels (p<0.001; Appendix A-2). These data are consistent with those 

from the gas exchange Asat measurements (Fig 3-1), photosynthetic transport in 

barley leaves is severely impaired by over 80% after a 3 hour exposure to Tleaf 

38.0°C. 
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Figure 3-2. The Effect of Elevated Tleaf on Steady State in vivo Photosynthetic 

Electron Transport Rates of Attached Barley Leaves. 
Sections of fully expanded 4th or 5th emergent attached leaves were exposed to air 
(380 µL CO2 L-1 air) at 25°C and saturating light (580 µmol m-2 s-1 PAR) for 20 
minutes to establish maximum steady state photosynthesis rates.  In vivo ETR was 
then measured using pulse amplitude modulated fluorescence. These 
measurements were taken as the maximum (100%) rates of ETR. The same section 
of attached leaf was then exposed to one of a range of temperatures (25, 36, 37, 38 
or 40°C ±0.3°C) in the dark for three hours (Section 2.2.2). After this period the ETR 
of the treated attached section of leaf was reassessed as described above. The data 
points are the average and SE of n= 27 for 25°C, n=10 for 36°C and 37°C, and n=17 
for 38°C and 40°C. 100% is equivalent to 173.4 µmol m-2 s-1. 
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3.1.1.3 Photosystem II Photochemical Efficiency (ФPSII) 

Photosystem II (PSII) is particularly sensitive to damage from photoinhibition and 

photobleaching  and it seemed sensible, therefore, to assess the effects of high Tleaf 

on the stability of PSII. Modulated fluorescence can easily be used to measure the 

maximum efficiency of in vivo PSII photochemistry, that is the transfer of electrons 

from the electron donor (a tyrosine residue on the D2 protein) through the PSII 

reaction center special pair of chlorophyll molecules (P680) through to the primary 

electron acceptor quinone (Q), i.e. Y161 à P680 à Q. (Yamamoto et al. 2014; 

Allahverdiyeva et al. 2015; Yamori and Shikanai 2016). 

 

The maximum quantum efficiency photosystem II (ФPSII) was measured using 

modulated chlorophyll fluorescence to determine the effect of high Tleaf on 

photosystem II photochemical processes. Changes in ФPSII with increasing Tleaf 

were found but this was only approximately a 10% reduction at 38.0°C and 50% at 

40.0°C (Figure 3-3). This compares with a concomitant 60% and >80% decrease in 

Asat (Figure 3-1), and a 70% decrease in in vivo ETR (Figure 3-2), over the same 

temperature range.  

 

The results shows that Asat and ETR declines at lower temperatures with increasing 

Tleaf (Eberhard et al. 2008; Ventrella et al. 2008; Malnoe et al. 2014; Zhang et al. 

2014; Chauvet et al. 2015; Liu and Last 2015) than ФPSII, and the thermal damage 

to photosystem II photochemical processes are unlikely to account for the observed 

decline in whole leaf photosynthesis. 
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Figure 3-3. Effects of High Tleaf on the Maximum Quantum Efficiency (ΦPSII 
max) of Attached Barley Leaves. 

Attached fully expanded 4th and 5th emergent leaves were treated by exposure in 
the dark to a range of temperatures using a thermal block for three hours (Section 
2.3.1). Leaves were then left in air at 25°C in the dark for 20 minutes to recover and 
then ΦPSII was measured using pulse amplitude modulated fluorescence. Heat 
stress was 25°, 36°, 37°, 38° and 40°C (±0.2°C). Each data point is the average and 
SE of n= 27 (25 °C), n= 10 (36° and 37 °C), n= 17 (38° and 40°C). 100% is 
equivalent to 0.767 Fv/Fm ratio.  
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3.1.2 The Effects of Tleaf on Photorespiration Rates 

The major carboxylation enzyme of the C3 cycle, RuBisCO, binds the 5-carbon 

sugar ribulose 1,5-bisphospahte (RuBP) and CO2, in which case it catalyzes 

carboxylation, or O2 , in which case it catalyzes oxygenation – the breakdown of 

RuBP and the release of CO2 through the process of photorespiration (Lorimer 

1981; Archontoulis et al. 2012; Voss et al. 2013; Gandin et al. 2014; Walker et al. 

2016). Thus, CO2 and O2 compete with each other for the binding site on RuBisCO. 

Increasing the rate of photorespiration is reported to affect the yield of crops (Pick 

et al. 2013). RuBisCO catalyzes the assimilation of atmospheric CO2 as Ribulose 

1,5-bisphosphate (RuBP) is converted into two molecules of 3-phosphoglycerate 

(3PGA). Alternatively, oxygenation of RuBisCO (photorespiration) converts RuBP 

to 3PGA and 2-phosphoglycolate (2-PG). The plant’s photorespiration is viewed as 

an attempt to recovery of some of the 2-PG but this is only 50% efficient (Pick et al. 

2013).  

 

One possibility to explain the observed decline in Asat with increasing the Tleaf is that 

high temperatures increase photorespiration rates rather than induce a decline in 

photosynthesis (carboxylation). To assess this possibility, methods were developed 

to measure the effects of Tleaf on photorespiration directly. These experiments 

involved measuring gas exchange in leaves at 21% O2 and 1% O2 levels; the latter 

is reported to suppress photorespiration allowing gross photosynthesis rates to be 

measured. In normal air with a 21:79 mix of O2:N2 plus CO2 normal A/Ca and A/Ci 

responses were measured (Fig 3-4). Asat  in normal air (380 μmol CO2 mol
-1

air 21:79 

% O2:N2) were approximately 13 μmol CO2 m-2 s-1, and total respiration rates (dark 
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respiration plus photorespiration, Rd+ RL) were approximately -2.0 μmol m-2 s-1 

(Figure 3-4 A). In contrast, Asat in modified air (380 μmol CO2 mol air 1:99 % O2:N2) 

was ~ 17 μmol CO2  m-2 s-1 and total respiration rates were approximately -1.0 μmol 

CO2 m-2 s-1 (Figure 3-4 A). 
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Figure 3-4. A/Ca and A/Ci Curves of Attached Barley Leaves in 21% and 1% 
O2. 

Fully expanded 4th attached leaves were placed in the leaf chamber of an IRGA and 
exposed for 20 minutes to incremental increases in CO2 concentration (0, 50, 150, 
300, 380 (ambient), 450, 550, 700, 850 and 1100 μmol CO2 mol-1 air), saturating 
levels of white light (560 μmol photons m-2 s-1 PAR); Tleaf was 25.0 ±0.4 °C 
throughout. After assessing the steady state rate of carbon assimilation in normal 
air (21:79 O2:N2) the ratio of O2:N2 was adjusted using mass flow controllers to 1:99 
but the CO2 level was maintained. Panel A, A/Ca curve; panel B, A/Ci curve (see 
Section 2.2.3). The values represent the average (± SE) of n=5 independent leaves 
of cv. Belgravia.   
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At first sight these data appear contradictory. Photorespiration (RL) should decrease 

with increasing CO2 as O2 experiences increasing competition for the binding site 

on RuBisCO, but in all of the experiments performed to date the opposite is true; RL 

increased with increasing CO2 (cf. -2 μmol m-2 s-1 at zero CO2, -4 μmol m-2 s-1 at 380 

μmol CO2 mol-1 air and above).  The reason for this is not entirely clear but may be 

associated with the inability of the C3 cycle to generate sufficient quantities of the 

other substrate of RuBisCO, RuBP, when external CO2 levels (Ca) are low. 

 

Similar discrepancies were obtained when light response curves were measured in 

normal and modified air (Figure 3-5). In the dark, respiration rates in normal air 

(21:79 O2:N2 mixtures) were approximately -2.0 μmol CO2 m-2 s-1, where as in 

modified air (1:99 O2:N2 mixtures) they were approximately -0.5 μmol CO2 m-2 s-1 

(Figure 3-5). Presumably in low light the capacity of chloroplasts to generate enough 

RuBP to support photorespiration is compromised and this accounts for the low RL 

rates observed below an absorbtance of 200 μmol m-2 s-1 PAR. 
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Figure 3-5. Light Response Curve of Attached Barley Leaves in Air Containing 
21% and 1% Oxygen 

The 4
th 

attached leaf was placed on gas exchange (IRGA) leaf chamber and 
exposed to different light intensity (0, 20, 50, 100, 250, 400, 500, 560, 650, 800 and 
950 μmol photons m

2 
s

-1
), ambient CO2 concentration (380 μmol CO2 mol

-1
 21:79 

mixture), Tleaf was 25 °C and concentration of Oxygen manipulated by mass flow 
controllers to adjust the amount of O2 and N2 supplied to IRGA. The values 
represent the average (± SE) of n=4 independent leaves of c.v. Belgravia. 
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Figure 3-6. Assessment of RL Rates in Attached Barley Leaves in Response 
to Changing Ca and Absorbtance. 

Panel A. Photorespiration rates of attached barley leaves (Tleaf 25.0°C ± 0.4°C) in 
response to changing Ca. These data were collected using the methods described 
in Figure 3-4; the data were calculated as the Asat rates in modified air (1% O2) 
minus Asat in normal air (21% O2). Panel B; data from Panel A plotted against Ci.  
Panel C; Photorespiration rates of barley leaves (Tleaf 25.0°C ± 0.4°C ) in response 
to changing leaf absorbtance. These data were collected using the methods 
described in Figure 3-5; photorespiration rates were calculated as Asat rates in 
modified air (1% O2) minus Asat in normal air (21% O2). The values represent the 
average (± SE) of at least n=4 independent leaves of cv. Belgravia.  
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The methods used to assess photorespiration rates in attached leaves (Figure 3-6) 

have been used routinely in many studies. The data in Figure 3-6 do show sensible 

trends in photorespiration rates with increasing Ca and leaf Absorbtance, and 

provide sensible values in normal air (ca. 5 µmol CO2 m-2 s-1, about one-third of the 

corresponding observed Asat or one quarter of gross photosynthesis rates), but the 

high levels of variance incurred in these non-stressed leaves will probably make it 

difficult to draw firm conclusions on photorespiration rates in heat stressed leaves. 

For this reason, another method for assessing photorespiration rates was 

developed.  

 

This alternative method was designed to measure Asat in normal air (21% O2) for 15 

minutes followed by Asat measurements in modified air (1% O2). The intention of 

using this method was to avoid the accumulation of the products of anerobisis that 

might build up in tissues after repeated cycles exposed to 21% and 1% O2 over a 

full range of Ca or light intensity. The disadvantage of this approach, however, is 

that estimates of photorespiration can only be assessed at ambient levels of Ca 

(380 µmol CO2 mol-1 air); none-the-less, this approach was considered to be the 

best way forward. 

 

Figure 3-7 shows this modified method was successful in reducing the variance 

within the observed values of photorespiration allowing the effects of Tleaf to be 

assessed with some precision. No significant changes in photorespiration rates 

were observed when Tleaf was increased from 25°C to 36°C. Increasing Tleaf above 

36°C caused photorespiration to rise by approximately 50% (from ca. 2 to 3 µmol 
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CO2 m-2 s-1) but this was not statistically significant (Appendix A-3). This modest 

change in photorespiration, however, was accompanied by a major decrease in Asat, 

consistent with the decline observed before (Figure 3-1). Photorespiration rates did 

not increase above ca. 3 µmol CO2 m-2 s-1 in any of the heat stress treatments, and 

it is concluded, therefore, that the major suppression in  Asat observed in attached 

leaves exposed to Tleaf above 36°C is not attributable to an increase in 

photorespiration but to a decrease in carbon assimilation.   
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Figure 3-7. The Effect of Tleaf on Asat and Photorespiration Rates in Attached 

Barley Leaves. 
 
Healthy, sections of fully expanded 4th attached barley leaves demonstrating high 
initial rates of Asat (>9 µmol CO2 m-2 s-1) were marked and then heat stressed by 
placement on a thermal block in the dark to 25.0, 36.0, 38.0 and 40.0 °C (±0.2 °C) 
for 3 hours. The Asat values from the same leaf sections was then re-assessed after 
10 minutes in normal air (21:79 O2:N2, plus 380 μmol CO2 mol-1 gas mix) and 
saturating white light (580 µmol m-2 s-1 PAR). The gas mix was then adjusted to 
modified air (1:99 O2:N2, plus 380 μmol CO2 mol-1 air) and Asat measured again after 
10 minutes. The values represent the average (± SE) of n >7 independent leaves of 
Barley. 
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3.1.3 ATP Levels in Heat Stressed Leaves 

Previous preliminary studies in our laboratory had indicated the decline in Asat with 

increasing Tleaf was accompanied by a decrease in whole leaf ATP levels (Almalki 

2014). To confirm this observation further experiments were conducted on the 

attached leaves of barley plants grown in physiologically relevant levels of nitrogen 

exposed to a range of Tleaf in the dark for 3 hours. Treated leaves were then exposed 

to normal air at 25°C and saturating levels of white light (560 µmol m
-2

 s
-1

PAR) for 

20 minutes to achieve maximum Asat. Steady state Asat was confirmed by assessing 

in vivo ETR rates using modulated fluorescence (Section 3.1.1.2), and then leaves 

were rapidly frozen in liquid nitrogen. Care was taken to keep the leaves fully 

illuminated throughout the procedure to ensure endogenous ATP levels were 

maintained until the tissue was fully frozen. Preliminary experiments using a thermal 

imaging camera demonstrated Tleaf decreased from 25°C to below -30°C (the low 

temperature limit of the camera) in less than 1s.  Unfortunately, it is not possible to 

assess chloroplast ATP levels in attached leaves, only whole leaf ATP levels. 

Adenylate levels in leaves change very rapidly (< 1s) with modest changes in 

irradiance, and it is not possible, therefore, to obtain meaningful results from 

choroplasts isolated from treated leaves (Sulpice et al. 2007). For this reason whole 

leaf ATP levels were measured in the light and dark and the difference taken as an 

estimate of in vivo chloroplast ATP levels. Briefly, attached leaves were heat 

stressed as described earlier (Section 3.1.1.1) and then adapted to saturating light 

or dark conditions for 20 minutes in normal air (25°C); in vivo ETR and NPQ were 

measured during this period to confirm of thermal effects on photosynthesis rates. 

Leaves were then flash frozen in liquid nitrogen, the samples recovered, ground to 

a fine powder in liquid nitrogen, and then stored at -80°C until required. ATP was 
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extracted from frozen samples by rapidly immersing approximately 20 mg sample 

(measured to 0.1 mg precision) into 1 mL of hot water (90°C) to inhibit phosphatase 

activity. The samples were incubated with shaking for a further 5 min before 

centrifugation for 5 minutes at 4°C. The supernatant was removed and the luciferin-

luciferase bioluminescence assay was performed using a luminometer (Section 

2.4). The amount of ATP in the samples was calculated from standard curves 

generated each day using a series of known ATP concentrations. 

 

In light adapted leaves the amount of ATP increased with Tleaf from ca. 2 nmol g-1 

FWt at 25.0°C to ca. 5 nmol g-1 FWt at 40.0°C (Figure 3-8). In contrast, samples 

from dark adapted leaves showed a decrease in whole leaf ATP levels when Tleaf 

was increase from 25.0°C (ca. 7.5 nmol g-1 FWt) to 38.0°C (ca. 2.0 nmol g-1 FWt); 

at higher temperatures, however, whole leaf ATP levels increased to over 22 nmol 

g-1 FWt. Anova analysis of the ATP data revealed a highly significant interaction 

between Light and Temperature (p<0.001) preventing further analysis of the main 

effect using a Factorial model (Appendix A-3). Covariance analysis of ATP data 

using factor Light alone revealed a highly significant correlation (p=0.008) with 

positive slope of approximately 1.1°C. Anova analysis of the ATP data for dark 

incubated samples using factor Temperature alone also showed a highly significant 

effect (p<0.001) and Tukey’s post hoc test revealed significant differences (p=0.05) 

at 40°C (Appendix A-3). 

 

These results, however, are not consistent with those measured previously at 

Glasgow (Almalki 2014). In those experiments whole leaf ATP levels of control 

leaves (25.0°) were found to be approximately 3 times higher in light adapted leaves 
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than in dark adapted leaves (7.5 cf. 2.5 nmol g-1 FWt). Further, in those experiments 

the Light-minus-Dark levels of ATP, which was taken as an estimate of chloroplast 

ATP levels, declined from ca. 5.5 to 3.0 nmol g-1 FWt as Tleaf
  increased from 25.0° 

to 40.0° C (Almalki 2014). Possible reasons for these discrepancies are discussed 

later.  
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Figure 3-8. The Effect of Increasing Leaf Temperature on Whole Leaf ATP 
Content in Barley Leaves. 

 
Fully expanded attached 3rd or 4th leaves of healthy barley plants were first 
incubated in the dark for 3hr on a thermal block set at 25.0, 36.0, 38.0 or 40.0°C (± 
0.2°C). After this period leaves were incubated for a further 20 minutes in normal air 
(380µmol CO2 mol-1 air) at 25°C either in the dark or in saturating white light (580 
µmol m-2 s-1 PAR). Leaf tissue was then rapidly frozen in liquid nitrogen, ground to 
a fine powder, and ATP levels determined using the luciferin-luciferase 
bioluminescence assay (Section 2.4.2). The values are the average and SE for n=7 
independent biological replicates at each temperature (7 light, 7 dark). Prior to heat 
stress the in vivo ETR of each leaf was assessed to ensure the leaves were capable 
of high rates of photosynthesis and only those with values greater that 100 µmol m-

2 s-1 – approximately equivalent to Asat of >10 µmol CO2 m-2 s-1 were used. 
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3.2 Pseudo-Steady State Heat Stress Measurements 

Prior exposure to high Tleaf caused a decline in Asat and this decrease might be due 

to several factors. These are: light harvesting capacity and energy transfer to the 

reaction centers (photosystem Ι and photosystem ΙΙ); ETR and ATP/ NADPH 

synthesis; the activity of the C3 cycle enzymes; CO2 concentration in the chloroplast 

(Cc) which is dependent on stomatal conductance (gs) and mesophyll conductance 

(gm). In this part of the project the effects of high Tleaf on pseudo steady state 

photosynthesis rates were studied. 

 

Stomatal aperture can be controlled by blue light, CO2 and ABA concentration and 

is mediated by changes in guard cell turgor pressure (Farquhar and Sharkey 1982). 

Open stomata allow CO2 uptake for photosynthesis and water vapor efflux by 

transpiration. At night, however, and under drought stress conditions and high air 

temperatures, stomata are reported to close. High temperatures may cause a 

decrease in turgor pressure which results in stomatal closure to conserve water 

(Farquhar and Sharkey 1982). 

 

In order to investigate the effect of transient changes in Tleaf on Asat and gs gas 

exchange measurement were made on plants placed in a controlled environment 

growth chamber set to different air temperatures (Tair). High Tair will tend to drive 

high Tleaf which can be measured with ± 0.3°C precision, but not controlled as 

precisely as it can using a thermal block (Section 3.1). Mature leaves were sealed 

in a the leaf chamber of an IRGA and exposed to normal air (380 µmol CO2 mol-1 

air) and saturating white light (580 µmol m-2 s-1 PAR) for 20 minutes and then 
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Pseudo Steady State photosynthetic parameters measured at 23°C (these included 

Asat, gs, Ci, E, and Tleaf; only leaves demonstrating high rates of Asat (> 10 µmol 

CO2 m-2 s-1) were subsequently used. After this period the temperature of the 

cabinet and the leaf chamber was increased from 25°C and held at a set elevated 

values for 180 minutes whilst photosynthesis parameters indicated above were 

measured again. Figure 3-9 shows the pseudo steady state changes in Asat and gs 

in response to increasing Tleaf. In these experiments a significant effect of 

temperature on  Asat was observed (p<0.001; Appendix A-4) above 40°C. 

 

In contrast, gs increased abruptly and significantly (p<0.005) when Tleaf exceeded 

37°C (~0.60 to 1.20) but declined to control levels at 40°C and above (Appendix A-

4). Even at 43°C, however, gs was greater than 0.3 mol m-2 s-1, the threshold level 

below which gs begins to exert a major influence on carbon assimilation (Figure 3-

9). The implications are that the large decline in Asat at high Tleaf are not attributable 

to gs limitations of CO2 supply to the chloroplast as has often been reported (Flexas 

et al. 2014; Sharma et al. 2014).  
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Figure Figure 3-9 . Effects of Increasing Tleaf on Measured Pseudo Steady 

State Asat and gs in Attached Barley Leaves. 
 
Pots containing barley plants were placed in a controlled environment growth 
cabinet set initially to 25°C. Fully expanded 4th attached leaves were placed in a leaf 
chamber attached to an IRGA and exposed to Tleaf of 25, 35, 37, 38, 39, 40, 41, 42 
and 43 (±0.4) °C. The leaves were exposed to normal air (380 μmol CO2 mol-1 air) 
and saturating white light (580 μmol photons. m-2 s-1 PAR).  Leaves were first held 
at 25°C for 30 minutes and Pseudo Steady State photosynthesis parameters 
measured. The cabinet temperature was then increased to one of the indicated 
temperatures for 210 minutes and the new steady state Asat and gs measured (see 
Section 2.3.2). The broken red line indicates the threshold level (~ 0.3 mol m-2 s-1) 
below which gs begins to exert a major influence on carbon assimilation (Appendix 
A-19). The values represent the average (± SE) of n=3 at 38, n>7 at 35 and 37, n> 
10 at 25, 39 and 43, n> 17 at 40, 41 and 42°C, independent leaves of cv. Optic. 
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3.3 Discussion 

3.3.1 Steady State Heat Stress Experiments 

The results presented in the Section 3.1.1 indicate there are no differences in the 

thermal suppression of Asat when stress is imposed in saturating light or in the dark. 

It would appear, therefore, that light generated ROS produced during heat stress 

events in field-grown barley can be ignored (Figure 3-1). The direct effects of heat 

stress (Tleaf > 36°C) on carbon assimilation rates, however, are profound. 

 

Further, the results presented in Section 3.1.2 indicates there was no significant 

increase in photorespiration rate that might be responsible for the inhibition of Asat 

in response to heat stress even at high Tleaf of 40°C and above. The conclusion is 

that the observed suppression of Asat (and ϕCO2) arises from a direct effect of high 

Tleaf on the turnover rate of the C3 cycle. (Shikanai 2010). In addition, the ΦPSII max 

did not change until Tleaf reached 38°C and above, whereas it has been reported 

that no change occurred below 43˚C; clearly, the changes in Asat reported here can 

not be attributed to changes in ΦPSII max (Lazár and Ilík 1997; Kalaji et al. 2011). 

 

Previous metabolomics studies by Shahwani (2012) on barley leaves indicated high  

Tleaf caused a severe blockage in C3 cycle carbon flow between in the C3 cycle 

between Ri5P and 3PGA, but none of the enzymes involved in this conversion was 

affected (Al-Malki 2014).  The only remaining possibilities to account for the 

combined observations of changes in Asat and the metabolite profile is a decline in 

the concentration of CO2 concentration in the chloroplast (Cc) or a decrease in 

chloroplast ATP levels preventing the efficient synthesis of RuBP by the 
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phosophoribulose kinase. Direct measurements on the effect of increasing Ca on 

photosynthesis rates in heat stressed leaves suggested the physical CO2 diffusion 

pathway was not affected (Al-Malki 2014; this study) leaving changes in the 

chloroplast ATP levels as the only remaining possibility to account for the combined 

observations of the effects of high Tleaf on whole leaf metabolite profiles and 

photosynthesis rates. Careful analysis on the effects of high Tleaf on whole leaf ATP 

levels, however, were not consistent with this view. Whole leaf ATP levels increased 

with Tleaf in post heat stressed leaves incubated for 20 minutes in the light (Fig 3-8) 

whilst concomitant measurements on in vivo electron transport rates showed a 

strong decline (Fig 3-2). If whole leaf ATP levels are reliable estimates of the levels 

in chloroplasts, it is difficult to attribute the observed decline in Asat to low turnover 

rates of PRK due to insufficient levels of ATP.  A different pattern of whole leaf ATP 

levels was observed when post heat stressed leaves incubated for 20 minutes in 

the dark (Fig 3-8). In unstressed leaves (25ºC) ATP levels were significantly higher 

when incubated in the dark than in saturating light (Fig 3-8) and declined Tleaf; above 

38ºC, however, ATP levels increased to well above the levels found in controls. No 

major changes in dark respiration were observed over the temperature range 

(Almalki 2014; this study, data not presented; AtKin et al. 2005) (Almalki 2014; this 

study, data not presented; AtKin et al. 2005) and of course in the dark 

photophosphorylation cannot occur, so the complex pattern of change in dark 

adapted heat stressed leaves must arise from changes in the consumption of whole 

leaf ATP, not its generation.  These conclusions are similar to those other who 

showed the amount of cytosolic ATP might be higher in the dark (Krömer et al. 1988; 

Gardestrom 1993). In addition, exposure of leaves to more extreme stress has been 

reported to increase ATP production (Kosová et al. 2014) 
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The Mehler reaction (water- water cycle) is believed to operate in vivo in 

chloroplasts, and this may in part contribute to the anomalous changes in whole leaf 

ATP. The Mehler reaction involves electron flow from water, through PSII and the 

Cyt b6/f complex but instead of reducing P700+ in the reaction centre of PSI, they 

reduce water in the stroma to hydrogen peroxide (which is subsequently converted 

back to water by the action of chloroplast catalase activity).  This process results in 

the synthesis of ATP through chemiosmosis but does not generate reducing 

potential in the form of ferredoxin or NADPH; cyclic electron flow around PSI might 

also occur and produce a similar effect (Munekage et al. 2004; Endo and Asada 

2008; Shikanai 2010, 2014; Peeva et al. 2012). In addition, chlororespiration might 

be involved in this increasing chloroplast ATP levels during dark at high TLeaf (Peltier 

and Cournac 2002; Nixon and Rich 2007). Furthermore, (Clarke and Johnson 2001) 

invistigated the role of the Mehler reaction and cyclic electron flow in maintaining 

thylakoid membrane function under high Tleaf in barley and concluded the Mehler 

reaction was not as important as CEF.  

 

Other studies have found changes in chloroplast ATP levels are inversely correlated 

with drought-induced changes in photosynthesis rates (Lawlor and Khanna-Chopra 

1984; Paul et al. 1995; Tezara et al. 1999); a decrease in photosynthesis rates 

resulted in an increase in whole leaf ATP as consumption, but not production, 

increased. Others, however, found water stress limited photosynthesis rates and 

the ratio of PGA to triose phosphate declined, but concluded ATP was not 

responsible (Sharkey and Badger 1982; Sharkey and Seemann 1989).  
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3.3.2 Effect of Pseudo Steady State Heat Stress on Asat and gs 

These experiments confirm a direct effect of high Tleaf on Asat, and also showed that 

stomata do indeed open in response to moderate heat stress (37°C-40°C). Above 

this temperature, however, stomata close but not to the extent that CO2 supply to 

the chloroplast limits photosynthesis. Raising Tleaf above 35°C, however, has the 

opposite effect, stomata open, presumably to increase transpiration and reduce 

Tleaf; this is a novel observation. The conclusion is that when Tleaf is above 35°C, 

preventing a further increase in Tleaf is more important than conserving water. 

 

In these experiments attached leaves were exposed to heat stress while irradiated 

with saturating levels of light and these observations support the results shown in 

Figure 3-1 where the ROS not causing the inhibition of Asat. In contrast, Figure 3-9 

shows the severe damages to Asat take place when Tleaf reached 43°C or above 

when the Asat declined in 65%, and the inhibition of Asat is 89% when Tleaf is 44°C. 

These results inconstant with the findings in Figure 3-1, where the inhibition of Asat 

is 80% when the Tleaf equal to 40°C. The reasons might be due to exposing only 

part of an attached leaf to high Tleaf using a heating block (in Section 3.1.1.1) where 

the function of stomata in cooling was limited. While, in this Section (3.2), the whole 

plant was exposed to high temperature (±6°C of Tleaf), and changes in stomatal 

function will affect leaf temperature. Exposure of barley leaves to Tleaf above 45°C 

has been reported to cause inhibition of PSII that were attributed to redox changes 

in the plastoquinone pool (Čajánek et al. 1998; Bukhov and Carpentier 2000; 

Egorova and Bukhov 2002; Kaa et al. 2008).  
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3.3.3 Effects of High Nitrogen and Tleaf on Photosynthesis Rates 

and Yields of Barley  

The increasing Tleaf might lead to a decline in Asat for no identified reasons on 

which is the sensitive component causing the damage. Furthermore, the majority 

of literature blaming RCA as a thermosensitive protein (Salvucci 2004; Carmo-

Silva et al. 2012; Henderson et al. 2013; Gontero and Salvucci 2014). In order 

to find the role amount of protein that might be acting as source of protein and 

could enhance photosynthesis rates, the effect of nitrogen supply need to be 

identified. Thus, both N levels and Tleaf are abiotic stress if increased or 

decreased at certain levels to the plants. 

 

The effect of N supply on photosynthesis rates and the yield of barley need to 

be studied. Moreover, the next two chapters will investigate the impact of N 

supply on physiology and flowering in barley.     

 

Earlier experiments conducted at Glasgow University on the effects of Tleaf on 

barley photosynthesis rates were conducted on plants grown in N-rich compost 

(Almalki 2014). These plants were exposed to N levels that were probably 30 

times higher than those experienced by plants growing in well- fertilized 

agricultural soil and showed several growth abnormalities. It is conceivable, 

therefore, that the responses reported by Almalki (2014) were artefacts that 

arose from exposure of plants to aphysiologically high levels of N. this possibility 

was investigated by repeating the experiments on plants grown in different levels 

of N (hydroponics or soil/sand mixtures) that generated plants with phenotypes 
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that are commonly found in field grown plants (3- 5 tillers and 1- 3 floral spikes 

per plant, etc.). The results from these experiments on the effect of Tleaf on 

photosynthesis rates, however, did not differ from those reported by Almalki 

(2014), and it is concluded that N- Supply did not generate experimental 

artefacts. 

 

In summary, raising Tleaf to over 36°C for 3 hours severely, and irreversibly, 

suppresses Asat in the elite barley cultivars Optic and Belgravia. Similar 

responses were found in a previous study (Al-Malki) where sub-tropical and 

temperate barley (C3) lines (landrace ‘Local’ from SE Asia, and Optic, 

respectively) and maize (C4) cultivars (Katamani from NE Africa and Sundance, 

respectively). Further analysis from A/Ci curves and on gs measurements 

confirmed the decline in Asat is attributable to a direct effect of high temperatures 

on the turnover of the C3 cycle (Shahwani, 2011; Almalki, 2014; experiments 

reported in this chapter). Metabolomics profiling (Shahwani 2011) and 

measurements on the activities of key C3 cycle enzymes (Almalki 2014) 

suggests the flow of carbon through RuBisCO is greatly affected but this could 

not be attributed to the activities of Ri5P Isomerase, phosphoribulose kinase, 

RuBisCO itself, or RuBisCO activase. In addition, the supply of CO2 to RuBisCO 

did not appear to be greatly affected. Heat stress might cause changes in the 

levels of many proteins in the leaf including those involved in photosynthesis 

(Rollins et al. 2013) 

 

Chloroplast ATP levels could affect carbon flow in the C3 cycle, but it is not 

possible to measure these directly. Instead, whole leaf ATP levels were 



 
 

 91 

measured immediately after heat stress and significant changes were observed. 

In saturating light whole leaf ATP levels increased significantly with Tleaf implying 

metabolic consumption of ATP may decline with temperature; there was no 

evidence that ATP production increased (Almalki, 2014; experiments reported 

in this thesis), these results are inconsistent with the hypothesis that Tleaf 

decreases chloroplast ATP levels and this impairs carbon flow through 

phosphoribulose kinase to generate the RuBisCO substrate RuBP (Figure 3-8). 

A high Tleaf-induced decline in chloroplast ATP levels can not be discounted, 

however, as only whole leaf ATP levels have been measured. Unfortunately, 

there are no reliable methods for measuring In vivo chloroplast ATP levels in the 

light and so this issue remains unresolved. It is conceivable that other 

chloroplast factors such as ionic balance, pH, co-factors are affected by high 

Tleaf and these suppress the activity of the C3 cycle. Further experiments are 

required to resolve this possibility.      
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4 Effect of Nitrogen Supply on Barley 

Photosynthesis and Development 

 

4.1 Introduction 

Barley is grown in many different geographical locations around the globe that 

includes temperate and subtropical climates,  the Nordic countries, at high altitudes 

in Peru, in the African Sahel (Ullrich 2011), and in arid region with a harsh 

environment such as Kuwait (Almenaie et al. 2013). Clearly, barley demonstrates 

an ability to tolerate abiotic stress such as cold, drought, and salinity. Barley lines 

have been developed to exploit local climatic conditions and consequently winter 

and spring lines have been selected (Landraces) or developed (cultivars). Spring 

barley is sown in March when soil temperatures are at least 5°C although optimum 

soil temperature may be between 15 and 24 °C. Early planting results in an earlier 

harvest with good quality grain and avoidance of thermal and drought stresses that 

can be experienced in mid- and late summer (Robertson and Stark 2003). Winter 

barley lines are normally sown in autumn, at least one month before the onset of 

any frost; this strategy allows the benefit of vigorous vegetative growth due to 

plentiful rainfall during the autumn/ winter/ early spring, allowing high yields in early 

summer before the onset of extreme summer temperatures and drought (Allen-

stevens 2013). 

 

Barley is to used as animal feed (55-60%), for malting (30-40%), as food (2-3%) for 

direct human consumption, and 5% for seed (Ullrich 2011). The nitrogen 
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requirement for winter and spring barley is different so the nutrient management 

programme for the two systems requires modification. Winter lines require about 

220 kg Ha-1 of N compared to 190 kg Ha-1 of N in spring lines; these applications, 

however, have to be decreased by 20-30% to attain good quality malting barley. 

Furthermore, the malt barley is normally grown in spring, with the vast majority of 

winter lines providing feed for livestock. Malting barley typically contains 10 – 13.5 

% of protein and 60-60 % starch but care with N application is required to ensure 

the quality is maintained (Schwarz and Li 2011; Ullrich 2011; Allen-stevens 2013). 

In England, around 30% of malting barley is grown over the winter. The cultivation 

of good quality winter malting barley ensures a dual-purpose product yielding grain 

suitable for animal feed and for malting purposes. (Robertson and Stark 2003; 

Ullrich 2011; Allen-stevens 2013).. 

 

Previous studies at Glasgow University have indicated high Tleaf affects the activities 

of the key enzymes of the C3 cycle , and this accounted for the observed thermal 

suppression of Asat (Almalki 2014). Specifically, carbon flow through RuBisCO in 

attached leaves appeared to be suppressed, an observation that is consistent with 

several publications in the literature that had identified RuBisCO Activase (RCA) as 

the temperature sensitive component (Section 1.3.2). However, in contrast to these 

in vitro studies on RuBisCO and RCA, the work of Almalki (2014) clearly showed in 

vivo RuBisCO activity, and therefore RCA activity, was unaffected and could not 

account for the observed decline in whole leaf photosynthesis rates. The 

experiments of Almalki, however, were conducted on barley plants grown in potting 

compost, a very nitrogen-rich medium (~30 times higher than found in agricultural 

soils). These elevated levels of N cause severe phenotype abnormalities in cereals 



 
 

 94 

(suppressed flowering, excessive tillering, reduced secondary wall thickening, 

excessively broad and elongated leaves, etc.) and are reported to lead to the 

accumulation of several major leaf proteins, including RuBisCO, which serves as a 

long term nitrogen store (Tsutsumi et al. 2014) . 

 

It is conceivable, therefore, that the apparent high in vivo activities of RuBisCO 

extracted from heat stressed leaves observed by Almalki (2014) was an artefact. It 

is possible that when luxury levels of N are available, two pools of RuBisCO develop. 

One contributes to endogenous carbon fixation and is severely affected by heat 

stress; the other, the larger of the two pools, does not contribute to in vivo CO2 

assimilation, is not significantly affected by heat stress, but does contribute to the 

activity measurement in vitro. For this reason, it was decided to re-assess the effect 

of high Tleaf on barley plants grown over a range of N-supply. The experiments 

reported in Chapter 3 have shown, however, that this was not the case. Similar 

effects of high Tleaf were found on photosynthesis rates regardless of whether plants 

were grown in N-rich medium or exposed to N levels commensurate with those 

found in agricultural settings. During these experiments, however, some unusual, 

unexpected, and very interesting phenotypical responses were observed, and this 

prompted a change in focus of the research direction. The results of experiments 

prompted by this change of focus are reported in this chapter and Chapter 5.  

 

Nitrogen is a major essential nutrient for plant growth and is required for the 

synthesis of amino acids, nucleic acid, and chlorophyll (Miller et al. 2007). Increasing 

N levels supply results in an increase in Asat in rice and this has been attributed to 

an increase in RuBisCO (Nakano et al. 1997; Makino et al. 2000; Tsutsumi et al. 
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2014) .  Tsutsumi et al. (2014) found that in rice there was a strong positive 

correlation between RuBisCO content and N supply regardless of whether the 

plants were grown hydroponically or in soil. Increasing soil N levels induced many 

developmental responses in barley plants grown in soil (Figure 4-1) and similar 

effects were observed when they are grown over a range of N-supply in hydroponic 

solutions (Figure 4-2). Agricultural soils typically contain the equivalent of between 

0.5mM and 0.8 mM available N (Marschner and Rengel 2012). 

 

4.2 Preliminary Observation on the Effects of N Supply 

on Barley Morphology.  

For the reason outlined above a series of experiments was conducted using Barley 

(Hordeum vulgare cvs. Belgravia and Optic) grown over a range of N supply to re-

assess the effects of high Tleaf on the thermal suppression of photosynthesis rates. 

In these experiments plants were grown in a nutrient depleted mixture of 15:85 top 

soil: sand to which NPK was added in two equal portions at the 4 week and 8-week 

stage (Figure 4-1). In addition, plants were also grown in hydroponics using a 

modified Hoagland’s solution.  Here, all salts containing N were removed and where 

appropriate the levels of other ions were increased to the levels specified in the 

Hoagland’s recipe; this constituted Hoagland’s Basal Media to which N in the form 

of ammonium nitrate was added (See Section 2.5.1.2 for full experimental details). 

Using this approach only N-supply changed between the hydroponic solutions. Up 

to eight plants were grown in 15L of Basal Hoagland’s Media supplemented with 

ammonium nitrate. The pH, NO3
-, and NH4

+ levels were monitored every second 

day to ensure the hydroponic solutions were stable, and fresh solutions were 
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prepared every week (Figure 4-2). It was clear from both the soil and hydroponic 

experiment plants grown in low N were stunted, uniculm (produced only one stem), 

showed an erect habit (demonstrated by some secondary cell wall thickening of 

stems), and flowered. With increasing N supply plants were larger, more tillers 

developed, and larger flowers appeared.  At the highest levels of N supply, biomass 

increased dramatically, tillering was profuse, and at the very highest levels in 

hydroponic flowering was suppressed and plants failed adopt an erect habit (Figure 

4-1 and 4-2). Further, measurements on Asat of control (non-heat stressed leaves) 

suggested a strong positive correlation with N supply. This observation was very 

interesting; Asat is a measure of the light saturated rates of carbon assimilation 

expressed on a per unit of leaf area (ULA) basis; that is an estimate of the ULA 

carboxylation processes in leaves.  The preliminary conclusions are that the 

carboxylation processes of photosynthesis in normal agricultural soils is limited by 

the supply of N, and increasing N supply above those normally applied in an 

agricultural setting will boost ULA photosynthesis rates. This chapter reports on a 

series of experiments that were conducted to assess the effects of a wide range of 

N supply on the growth and development of barley.    
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 Figure 4-1. Effect of Fertilizer Application on the Growth and Development of 

Soil-Grown Barley. 
Seeds of Hordeum vulgare cv. Optic were germinated on moist filter paper and 
planted in 5L pots containing 15% top soil (Levington Organic Blend, The Scot 
Miracle-Grow Co. Salisbury House Weyside Park, Catteshall Lane, Godalming, 
Surrey GU7 1XE, UK) and 85% agricultural sand and supplemented with a NPK 
fertilizer (3:1:2).  The pots were placed in a growth room (photoperiod of 16 / 8 hour, 
Light / Dark and 22°C / 16°C). The images are from plants after 10 weeks. Nitrogen 
applications were as follows: 0, 2, 10, 20 and 47 g / m-2 of N (Section 2.5.1.1). Half 
of the indicated level of fertilizer was added at the 4 weeks’ stage and the remainder 
at the 8-week stage. N application of 10 g m-2 soil is equivalent to 100 kg / ha, levels 
that are similar to those used in arable production.   
  

0	g 
a b c d e 
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Figure 4-2. The Effect of Nitrogen Application on the Growth of Barley in 
Hydroponic Solutions. 

Hordeum vulgare cv. Optic plants were grown for 5 weeks in full-strength Basal 
Hoagland’s Medium adjusted to contain the indicated N levels; fresh solutions were 
prepared every week (Section 2.5.1.2). Increasing N supply (as ammonium nitrate) 
above 0.16 mM induced tillering; at levels above 1.6 mM plants failed to go on to 
flower and remained in the vegetative state for the duration of the experiment (11 
weeks). Nutrient replete agricultural soils are reported to contain 0.5-0.8 mM N 
(Marschner and Rengel 2012). 
  

16mM1.6mM0.8mM0.32mM0.16mM0.08mM
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4.3 Photosynthesis 

4.3.1 Assimilation Rate 

Measurements of Asat from leaves of these plants showed an increase with N supply 

(Figure 4-3 for cv. Optic and 4-4 for cv. Belgravia). A/Ci plots were constructed from 

Asat versus Ca curves to remove the effect of stomatal control on photosynthesis, 

and the resulting carboxylation coefficient, ϕCO2, a measure of the turnover 

efficiency of the in vivo C3 cycle activity, was plotted against N-supply. The results 

are unequivocal; for both cultivars there is a highly significant (p<0.001; Appendix 

A-6 and A-7) linear increase in C3 cycle activity with the log of N-supply that appears 

to not be attributable to stomatal changes. The important points to note here is that 

both Asat and ϕCO2 are expressed on a unit leaf area basis. To state this conclusion 

another way, in typical agricultural soils (0.5- 0.8 mM N) the photosynthesis rates of 

light saturated barley plants in air appear to be limited by the amount of available N, 

possibly the concentration of C3 cycle enzymes.   
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Figure 4-3. The Effect of Increasing N Supply on Hydroponically Grown Barley 
Plants were grown for 5 weeks in full-strength Hoagland’s solution adjusted to 
contain the indicated N levels; fresh solutions were prepared every week. Light 
saturated levels (560 µmol m-2 s-1 PAR) CO2 assimilation rates in air (380 µmol CO2 
mol-1 air), Asat, were estimated from A/Ca curves measured from fully expanded 
attached leaves; the Carboxylation Coefficients, ϕCO2 were estimated from the initial 
slopes of the corresponding A/Ci plots (each data point is the average (± SE) of n= 
>4 biological replicates of barley cv Optic. 
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Figure 4-4. The Effect of Increasing N Supply on Hydroponically Grown Barley 
Plants were grown for 6 weeks in full-strength Hoagland’s solution adjusted to 
contain the indicated N levels; fresh solutions were prepared every week. Light 
saturated levels (560 µmol m-2 s-1 PAR) CO

2
 assimilation rates in air (380 µmol CO2 

mol-1 air), Asat, were estimated from A/Ca curves measured from fully expanded 
attached leaves; the Carboxylation Coefficients, ϕCO2 were estimated from the initial 
slopes of the corresponding A/Ci plots (each data point is the average (± SE) of n= 
>5 biological replicates of barley cv. Belgravia. 
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4.3.2 Electron Transport Rate 

Figure 4-5 presents values of steady state photosynthetic electron transport rates 

(ETRs) of attached leaves of hydroponically grown barley estimated by modulated 

chlorophyll fluorescence measurements. The ULA ETRs constantly increased 

significantly (p<0.001; Appendix A-8) with N supply in a fashion similar to that 

observed by gas exchange measurements (Figs. 4.3 and 4.4). The results in Figure 

4-5 indicate that the high N enhanced ETR. The ETR at 0.08 mM of N is 

approximately 56 µmol electrons m-2 s-1. This rate doubled across the N supply 

range and reached 126 µmol electrons m-2 s-1 at 16 mM of N. The efficiency of ETR 

is an important parameter of photosynthetic activity which suggests healthy plant 

growth can be expected. These data are consistent with those from Asat 

measurements, photosynthetic transport in barley leaves increases when N supply 

is increased. 

 

4.3.3 Maximum Quantum Efficiency of PSII (ϕPSII)  

The effect of N supply on photosystem II photochemical processes was determined 

by measuring ФPSII. Changes in ФPSII with increasing N supply showed a very slight 

increase over the range used. Values of ФPSII considered to be indicative of healthy, 

non-stressed leaf tissue (0.7 – 0.8; Baker, 2008) were observed at all levels of N 

supply (Figure 4-6). In conclusion, N supply has no major effect on ФPSII and the 

efficiency of photosystem II photochemical processes. 
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The results of this section indicate that ULA photosynthesis rate determined by two 

independent methods ( Asat and ϕCO2 from gas exchange measurements and in vivo 

ETR rates from modulated chlorophyll fluorescence) approximately tripple when N 

supply is increased from 0.08 to 16 mM. In contrast, measurements on ϕPSII was 

approximately constant across different N concentrations providing no evidence that 

primary photochemical reactions were affected.  
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Figure 4-5. The Effect of N-Supply on in vivo Photosynthetic Electron 
Transport Rates (ETRs) of 7 Week-Old Barley. 

Plants were grown in Hydroponic solution at different range of N-supply 0.08, 0.16, 
0.32, 0.64, 1.6, and 16 mM of N (Section 2.5.1.2). Leaves were incubated in the 
dark for 20 minutes and then steady state ETRs were measured using pulse 
amplitude modulated fluorescence at 25°C, Light saturated levels (560 µmol m-2 s-1 
PAR) immediately. Values are averages (± SE) of n= 6 measurements on leaves of 
separate plants, cv. Belgravia. 
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Figure 4-6. Effects of N Supply on Maximum Quantum Efficiency (ФPSII) of 7 
Week-Old Barley. 

Plants were grown in Hydroponic solution at different range of N-supply 0.08, 0.16, 
0.32, 0.64, 1.6, and 16 mM of N (Section 2.5.1.2). Leaves were incubated in dark, 
then ФPSII was measured immediately using pulse amplitude modulated 
fluorescence at 25°C and Light saturated levels (560 µmol m-2 s-1 PAR; Section 
2.1.3). Values are average (± SE) of n= 6, cv. Belgravia. 
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4.4 Growth and Development 

The effects of N supply on the growth and development of barley is not noticeable 

for the first four or five weeks after transferring seedlings into hydroponic solutions 

containing different levels of N-supply but after this period clear morphological 

differences become apparent (Section 4.2). Apart from major differences in the 

extent of tillering and spike initiation, at high levels of N supply leaves became 

broader and longer. For this reason, it was decided to quantify growth staging (the 

timing of development) and seed set/ harvest parameters. 

 

4.4.1 Barley Growth 

After exposure for five weeks to the different N supply regimes clear differences in 

the number of leaves per tiller became apparent (Figure 4.7 A & B). When grown in 

soil the average number of leaves / tiller was 8 with no supplemental N and this 

declined significantly (p<0.001, Anova; p<0.001 Kruskal-Wallis non-parametric test 

; Appendix A-9)to approximately 6 with the addition of up to 47 g N / m2 (Fig 4.7 A). 

A similar pattern was observed when plants were grown in hydroponic solutions with 

values of ca. 7 leaves / tiller at 0.08 mM N declining to 5 or 6 at 16 mM N (Fig 4.7 

B) but neither Anova nor the Kruskal-Wallis test showed significance (Appendix A-

9).  These data indicate that the soil / sand mixture used in these experiments 

contained less than 0.08 mM N. Typical additions of N to arable land are within the 

range of 100 to 180 kg / ha (or 10 – 20 g / m2) and this is consistent with the claim 

that good agricultural soils contain 0.5-0.8 mM N (Marschner and Rengel 2012).  
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The effects of N supply on the number of tillers / plant are shown in Fig. 4-8. Tiller 

number / plant increased significantly (p<0.001, Anova and p<0.001 Kruskal-Wallis 

test; Appendix 10) from 1 in soil with no N additions up to ca. 7 at 47 g / m2 (Fig 4-

8 A).  For cv. Optic grown in hydroponics no tillering was initiated until N supply 

exceeded 0.32 mM, after which tillering continually increased significantly (p<0.001, 

Anova and p<0.001 Kruskal-Wallis test; Appendix 10) up to ca. 17 at the highest N 

level of 16 mM.  In contrast, in cv. Belgravia tillering increased significantly (p<0.001, 

Anova and p<0.001 Kruskal-Wallis test; Appendix 10) to over 5 / plant at 0.32 mM 

N supply and over 20 per plant were observed at 16 mM (Fig 4-8 B & C). These 

data clearly indicate tillering is promoted strongly when plants are exposed to high 

levels of N supply. Again, in the range of 0.64 to 1.2 mM N barley developed 5-8 

tillers / plant, and this is similar to plants grown in well-fertilized fields. 
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Figure 4-7. Effect of N Supply on the Number of Leaves Per Tiller in 10 Week 
Old Barley Plants. 

Hordeum vulgare seedlings (cv. Optic) were grown as mentioned in Section 2.5.1.2 
and assessed after 10 weeks. Panel A, soil-grown plants; the fertilizer application 
rates of N were 0, 2, 10, 20 and 47 g m-2.  Panel B, hydroponically-grown plants; 
the N concentrations were 0.08, 0.32, 0.64, 3.2 and 16 mM. Values are average (± 
SE) of n ≥  plants cv. Belgravia. 
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Figure 4-9 shows the number of floral spikes / plant was approximately 1 or slightly 

less at 0.08 mM N supply (where plants developed only 1 tiller – i.e. they were 

uniculm) but between 0.16 and 0.32 mM N floral spike initiation was triggered. In 

this experiment the maximum number of spikes was observed at 1.6 mM N (ca. 3.8 

/ plant) but no spikes were visible in 10 week-old plants when grown in 3.2 mM N 

supply (Fig 4-9; Appendix A-11). On further analysis dissection of the main tillers 

showed some spike development had occurred at the higher levels of N but this 

development was obscured by the surrounding leaf sheath.  After 10 weeks 

maximum spike length was observed in 0.32 mM N (ca. 32 cm) but growth was 

progressively and significantly (p<0.009) suppressed at higher N levels (Fig. 4-10 

A; Appendix A-12).  The number of nodes in 10 week-old plants was approximately 

3 but this did not change significantly (p>0.05) with N supply (Fig. 4-10B; Appendix 

A-12).   
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Figure 4-8. Effect of N Supply on Tillering in 10 Week-Old Barley 
Seven-day-old Hordeum vulgare cvs. Belgravia or Optic seedlings were transferred 
to soil or hydroponic solutions and grown for 10 weeks (Section 2.5.1).  
Panel A, soil-grown plants (Section 2.5.1.1); values are average (± SE) of n= 6 
plants of cv. Optic. Panel B, hydroponically-grown Optic plants (Section 2.5.2); 
values are average (± SE) of n=9 plants cv. Optic. Panel C, hydroponically-grown 
Belgravia plants (Section 2.5.1.2); plants were assessed after 10 weeks; values are 
the average (± SE) of n ≥ 4 plants. 
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Figure 4-9. Number of Spikes per Barley Plant Grown in Hydroponic Solutions 
with Different Levels of N. 

Seven-day-old Hordeum vulgare were transferred to hydroponic solutions 
containing a range of N concentrations (0.08, 0.16, 0.32, 0.64, 0.8, 1.6, 3.2 and 16 
mM; Section 2.5.1.2. Plants were grown in the glasshouse for a further 10 weeks 
and the number of floral spikes counted; values are the average (± SE) of n=8 
plants. 
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Figure 4-10. Effect of N Supply on Stem Development in 10 Week-Old Barley. 
Seven-day-old Hordeum vulgare cv. Belgravia were transferred to hydroponic 
solutions containing a range of N concentrations (0.08, 0.32, 0.64, 3.2 and 16 mM; 
Section 2.5.1.2). Plants were grown in the glasshouse for a further 10 weeks and 
then harvested and dissected. Panel A, stem elongation. Panel B, the number of 
nodes.  Values represent the average (± SE) of n ≥ 4 barley plants. 
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After 14 weeks, however, spike length had increased to over 50 cm for plants in 

0.64 mM N but this decreased sharply at higher levels; no spikes were observed in 

16 mM N although flowering and seed set had occurred at 0.64 mM and below (Fig. 

4-11 A; Appemdix 1-13).  Node number has also increased between 10 and 14 

weeks; five or six nodes had developed at 3.2 mM N or below, but at 16 mM only 2 

nodes were observed suggesting high nitrogen supply arrested spike development 

at the two or three node stage (Fig. 4-11 B; Appendix A-12). The dissected stem of 

13 week barley showing the nodes and internode position across stem of 

hydroponically grown barley (Fig. 4-12).  
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Figure 4-11. Effect of N Supply on Stem Development in 14 Week-Old Barley. 
Seven-day-old Hordeum vulgare cv. Belgravia were transferred to hydroponic 
solutions containing a range of N concentrations (0.08, 0.32, 0.64, 3.2 and 16 mM; 
Section 2.5.1.2). Plants were grown in the glasshouse for a further 14 weeks and 
then harvested and dissected. Panel A, stem elongation. Panel B, the number of 
nodes.  Values represent the average (± SE) of n ≥ 4 barley plants. 
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Increasing N supply to soil or hydroponically grown barley plants had a profound 

effect on grain production. Figure 4-13 shows that grain yield decreased significantly 

(p<0.001; Appendix A-14) when soil was supplemented with N levels of above 2 g / 

m2 (equivalent to 20 kg / Ha) and was completely abolished at 47 g / m2 (equivalent 

to 480 kg / Ha; Fig 4-13 A). The number of grain produced in soil grown plants 

peaked at 20 g / m2 additions (200 kg / Ha; Fig 4-13 C; Appendix A-14). 

Similar trends were observed in hydroponically grown plants (Fig 4-13 B & D; 

Appendix A-14). The maximum number of grain / plant was observed at 1.6 mM N 

but seed weight was slightly reduced (Fig 4-13 C; Appendix A-14). These data 

suggest the best grain yield in hydroponically grown plants would be achieved 

between 0.64 amd 1.6 mM N supply.  
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Figure 4-12 The Nodes Position and Development of Spike in Barley. 
Barley (H. vulgare cv. Belgravia) was grown in hydroponic solution (Section 2.5.1.2). 
The 13-week old dissected stem (A) showing the nodes, internodes and the floral 
meristem emerged on the 4th node. In (B), the floral meristem emerged from the 
node is presented, where the node is marked by red circle (    ) and the meristem 
marked with grey dashed circle (    ). The mature floral meristem and spikelet 
formation shown in (C).        
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Figure 4-13. Effect of N Supply on Grain Production in Barley. 
Plants grown as mentioned in section 2.5.1.1 at different amount of fertilizer 
phenotypes can be distinguished in this Figure. The age of plant at harvesting was 
11 weeks can be seen in graph A which show the weight of 1000 grain and graph 
C show the number of grains. Plants grown at different concentration of N as 
mentioned in section 2.5.1.2. Panel B and D show barley seedlings (cv. Optic) were 
grown in hydroponic solutions as described in Table 2-1 until seed had set. 
Increasing N supply from 0.08 to 1.6 mM resulted in a 50-fold increase in grain yield 
attributable to both an increase in gains / spike (10-fold) and spikes / plant (5-fold). 
Above 1.6 mM available N supply, however, flowering was completely suppressed 
and plants remained in a vigorous state of vegetative growth. Values represent the 
average (± SE) of n>8 plants 
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4.4.2 Zadoks Staging Scale 

The Zadoks Scale (Figure 4.14) can be used to assess the timing of developmental 

staging from germination until grain ripening. Thus, the lowest levels of N supply 

(0.08 mM) delayed time to seed maturity by 5 to 7 days when compared with 0.16, 

0.32, 0.64 and 1.6 mM N supply. The exceptions were the plants grown above 1.6 

mM N which failed to progress beyond the stem elongation stage (Zadock’s score 

of 30-40) and further reproductive development was arrested. 

 
 

 

Figure 4-14. Effect of N Supply on Barley Staging (Zadok’s Scale) 
Barley seedlings (cv. Optic) were placed in full-strength Hoagland’s solutions 
containing the indicated levels of N and grown in the glasshouse until the seed had 
fully ripened; fresh solutions were prepared every week (Section 2.6.1). 
Development was scores every 2-3 days on 8 plants at each concentration using 
the Zadok’s scale. 
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4.4.3 Meristem Elongation 

The effects of N supply on the initiation of flowers was determined by examining 

dissected shoot meristems using a stereo dissecting microscope. The results shown 

in Figure 4-15 give an overview on how N levels affected the growth and 

development of the shoot meristem in spring barley. In moderate levels of N supply 

(0.32 and 0.64 mM) meristems continued to develop beyond the 5 week stage and 

rudimentary awns were observed by 8 weeks (Fig 4-15).  In contrast, at the lowest 

levels (0.08 mM), although the meristems had grown in size, floret development and 

awn production was nor less pronounced probably due to the low availability of N.  

At higher levels of N supply (3.2 And 16 mM), however, further growth of the 

mersitems was suppressed at 7 and 8 weeks (cf  0.64 mM).  
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Figure 4-15. Effects of Nitrogen Supply on Barely Floral Meristem 
Development. 

Seven-day-old Hordeum vulgare cv. Belgravia were transferred to hydroponic 
solutions containing a range of N concentrations (0.08, 0.32, 0.64, 3.2 and 16 mM; 
Section 2.5.1.2). Plants were grown in the glasshouse for up to a further 9 weeks. 
Plants were harvested and dissected at the indicated times to reveal the floral 
meristem (Section 2.6.2). The scale bar is 1 mm for white bars, and 2 mm for yellow 
bars. 
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4.4.4  Chlorophyll Content 

The increase in photosynthesis rates with increasing N supply shown in Figs. 4-3 

and 4-4) might arise from an increase in chlorophyll content. To test this possibility 

the levels of chlorophyll in fully expanded 6th emergent leaves were determined. 

The data presented in Figure 4-16 indicates that leaf chlorophyll concentration did 

increase significantly (p<0.001; Appendix A-15) with increasing concentration, 

from ca. 4.5 to 10 (arbitrary units) across the range of N supply used, and this 

might account for the concurrent increases in photosynthesis rates.  
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Figure 4-16. The Effect of N Supply on Leaf Chlorophyll content of 8 Week-
Old Barley 

The concentration of chlorophyll in barley leaves was measured in vivo using a 
portable chlorophyll content meter (Section 2.6.5). The 6th attached leaf was 
examined to determine the chlorophyll concentration among different nitrogen 
levels. Values represent the average (± SE) of n=10 plants 
 

  

0

2

4

6

8

10

12

14

0.01 0.1 1 10 100

Ch
lo

ro
ph

yl
l  

(A
rb

itr
ar

y 
un

it 
)

N Supply (mM)



 

 123 

 

4.5 Protein Concentration 

A hypothesis was presented in the Introduction that the increase in ULA Asat and 

ϕCO2 observed with an increase in N supply could be attributable to an increase in 

the soluble protein levels in leaves, specifically the levels of C3 Cycle enzymes in 

the chloroplast.  To test this hypothesis total protein levels in mature, fully 

expanded 4th to 6th leaves of cv Belgravia was assessed. These data are presented 

in Fig. 4-17.  Total ULA protein levels increased from approximately 1.6 g m-2 to 

5.2 g m-2 over the N concentration range used (p<0.001; Appendix A-16) indicating 

3-fold increase on an area basis.   

 

Other leaf area parameters were measured to assess whether N supply affected 

leaf morphology or Asat directly. These included estimates of chloroplast number 

per cell and leaf thickness; these data are presented in Section 4.6 and 4.7.      
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Figure 4-17. A The Effect of N Supply on Total Leaf Protein Levels in Barley 
Plants were grown for 5 weeks in hydroponics over a range of N supply as 
described in Figure 4-2. After 5 weeks 3 leaf discs were cut from each of 4 fully 
expanded 4th -6th 

leaf and total leaf protein extracted in an SDS buffer, precipitated 
in acetone at -20°C overnight and re-suspended in the extraction buffer.  Protein 
levels were determined using the Biorad Protein Assay using BSA standards 
(Section 2.7). Total leaf protein is expressed per m2 of leaf. The data are the 
averages and SE of n=4 biological replicates. 
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4.6 Number of Chloroplast  

The number of chloroplast in leaf mesophyll tissues with increasing N-supply was 

estimated by counting the plastids visible in random cell cross-sections using a 

confocal microscope. These data are presented in Fig 4-18. Increasing N-supply 

produced a significant increase in chloroplast number where an Anova test was 

used (p=0.004; Appendix A-17). Further analysis using Tukey’s post-hoc test 

revealed no significant change over the 0.08 to 0.32 mM range (p> 0.05) but 

significant differences were observed at 0.8 mM and above (p<0.05; Appendix A-

17) when compared with the lower concentrations. Over the full range chloroplast 

numbers increased from ca. 10 ca. 15 per cell cross section. Scrutiny of the 

residuals from the Anova analysis, however, suggested these data may not have 

been normally distributed in which case Anova tests are invalid. For this reason a 

less sensitive non-parametric (distribution-free) statistical test, Kruskal-Wallis, was 

used. When a K-W test was used a probability of p=0.053 was calculated which is 

approximately equivalent to a 1 in 19 chance (cf. the normal 1 in 20) that the 

changes observed occurred randomly. Although the usual limit of significance 

accepted by biologists is p<0.05, a probability of p=0.053 is very close to this limit. 

Had more replicates been used significance may have emerged using this less 

sensitive, non-parametric test. Taking this point into consideration, and given the 

high level of significance generated by Anova test, it would seem reasonable to 

conclude N-supply dose increase chloroplast number by approximately 50% over 

the range used.  
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Figure 4-18 Estimates of Chloroplast Number in Barley Leaf Mesophyll Cells. 
The leaves of 7 weeks old barley were harvested and examined under a confocal 
microscope and the number of visible chloroplasts cross section in random cross 
sections of the mesophyll cells was determine (Section 2.6.3). Values represent 
the average (± SE) of n= 4   
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4.7 Leaf Thickness  

An increase in Asat and ϕCO2 with N-supply may have arisen from an increase in 

the number of cells per unit leaf area, i.e. leaf thickness. Fully expanded mature 

leaves (5th and 6th) were harvested and immediately fixed in formaldehyde and 

cross-sections prepared (Section 2.6.4). Estimates of leaf thickness were then 

made using a microscope. Figure 4-19 presents these data and Figure 4-20 show 

leaf sections used in measurements. Increasing N-supply from 0.08 to 0.8 mM 

produced a significant (p<0.001; Appendix A18) increase in leaf thickness (from 

ca. 60 to ca. 120 µm) but no further increase was observed at higher N 

concentrations. 
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Figure 4-19 Barley Leaf Thickness in Response to Different N Supply 
The leaf of 7 weeks old barley was harvested and dissected and examined under 
the microscope to determine the length between upper and lower epidermis of the 
leaf. Values represent the average (± SE) of n= 3   
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Figure 4-20 The Microscopy Images of Barley Leaf and Stem Among Different 

N Levels. 
The cross section of leaf grown under 0.64 mM of N (A) and 16 mM barley leaf (B). 
the both image was taken for the second vascular bundle from the midrib. The 
stem cells (bottom images) was examined under a light microscope by preparing 
longitudinal section.  
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4.8 Discussion 

Increasing N-supply above the levels normally encountered in agricultural soils 

(0.3-0.8mM N) appears to significantly increase ϕCO2 (Fig. 4-3 and 4-4) suggesting 

yield improvements should arise by increasing N fertilizer input. High levels of N-

supply, however, significantly suppresses flower development (Fig. 4-9 to 4-14), 

and increases tillering (Fig. 4-8) providing competing carbon sinks for developing 

grains.  Similar results were obtained when plants were grown in N-deplete soils 

supplemented with N, or hydroponic solutions (Fig 4-8 and 4-13). 

 

These barley traits are summarized in Fig. 4-21. These findings suggest barley 

has two endogenous nitrogen sensors. One is triggered when N-supply exceeded 

0.3mM a proliferation in tillering. The other is triggered when N- supply exceeds 

ca. 3.0 mM and leads to the suppression of flowering. Both traits of tillering and 

flower development will have profound effects on grain yields and it seems that 

modern elite lines of barley have been selected and bred from Landraces that 

performed well in this limited range of N-supply (0.3-3.0 mM). A better 

understanding of these two N-sensors might result in the prospect of manipulation 

of these processes, resulting in plants with higher ULA photosynthesis rates, 

reduced tillering (vegetative sinks), and enhanced flowering, and thus higher 

planting densities and high grain yields. Supplying barley with high level of N leads 

to late flowering and lower yield (Hall et al. 2014). 

 

Several experiments were conducted in an attempt to manipulate tillering. These 

included use of ‘uniculm’ mutants from the barley Bowman collection (BW205, 

BW207, BW 494, and the parental line (BW3) but these mutants (Fig 4-22) proved 
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to have very low fertility generating only two or three seeds per plant. Only two 

seeds from each mutant was went from the barley stock center (James Hutton 

Institute, Scotland) due to the low fertility issue, and it became apparent that it 

would take several years to generate the 100-200 seed required to complete the 

initial experiments. None-the-less, seed bulking is progressing at Glasgow and 

these experiments will be undertaken. 
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Figure 4-21 Nitrogen Supply Affects Tillering and Flowering in Barley 
The effect of different N levels on tillering and flowering in barley. The number of 
tillers per plant is one (horizontal dashed line) until N-supply exceeds 0.032 mM. 
affect which it increases to ca. 17 at 16 mM; the dashed left vertical line indicates 
the N-level that triggers tiller proliferation. The number of spikes per plant and grain 
yield increases progressively as N-supply is increased from 0.08 to 1.6mM, but 
declines sharply after that and no seed set was observed at this time from 3.2 to 
16 mM. The right vertical dashed line indicates the N-levels that triggers the 
suppression of flowering responses. 
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An alternative approach to reduce tiller number was attempted whereby new tillers 

were surgically removed with a sterile scalpel and wounds sealed with petroleum 

jelly. Despite best attempts, however, infection proved to be a major problem and 

this approach was also abandoned.  

 

Focus was then directed towards identifying in which tissues and at what stage of 

development high levels of N-supply suppressed flowering. In the introduction 

(Section 1.5) the flowering pathway in small grained cereal crops was outlined. 

Briefly, photoperiod (Long Days) triggers flowering; this is sensed in the leaves by 

the circadian clock initiating the CONSTANS-dependent synthesis of VRN3, a 

mobile transcription factor that shows sequences homology to the Arabidopsis 

activator of flowering FLT. VRN3 is translocated from the leaf via the phloem to the 

crown meristem where it activates the synthesis of VRN1, a MADS box 

transcription factor, that triggers the transition of the meristem to cease producing 

only vegetative primordia (leaves and tillers) to producing floral primordia and 

undergo development through the ABCDE pathway. The question to address ‘is 

where does high N-Levels suppress flowering; in the leaf (perception), 

translocation of VRN3 in the phloem, or in the crown meristem (transiton to a 

reproductive meristem or floral development)?’. 

 

Measurements on spike length and number of nodes of cv. Belgravia with time 

showed that flowering progressed normally at all levels of N-supply up to the 10-

week stage (Fig 4-10). Between 2 and 3 nodes had developed and some spike 

growth had occurred at the highest N levels even though the spikes had not 

emerged through the leaf sheaths. By 14 weeks (Fig 4-11) spikes had emerged at 

3.2 mM N and below but not at 16 mM. Careful dissection and analysis of the stems 
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of these plants revealed the number of nodes had increased from 2-3 to 5-6 over 

the 10-week to 14-week period for plants grown in all concentrations of N except 

for those grown in 16mM. At this concentration spike elongation and development 

did not progress beyond the 2 node stage. 

 

Leaf N content has been implicated in controlling chlorophyll content and leaf 

thickness (Cohu et al. 2014; Li et al. 2014a; Tsutsumi et al. 2014). Leaf thickness 

and chlorophyll content have also been reported to affect photosynthesis rates 

(Eberhard et al. 2008; Zhu et al. 2010; Li et al. 2013; Cohu et al. 2014; van Campen 

et al. 2016). Thus, increases in photosynthesis and enhanced absorbance of 

irradiance are likely consequences of increased N supply (Pandey and Kushwaha 

2005; Cohu et al. 2014; van Campen et al. 2016) which could result in improved 

yields (Zhu et al. 2010; Yuan 2017). 

 

Taken together, these observations suggest the high N-dependent suppression of 

flowering in barley is associated with the effects of N on floral development 

(ABCDE pathway) and not on the perception of photoperiod in the leaf, or the 

downstream signaling events that occur in the leaf (synthesis of CONSTANS and 

VRN3), the translocation of VRN3 to the crown meristem, or the VRN1-dependent 

transition of the crown meristem from purely vegetative to reproductive phase. 

 

The experiment have informed a decision to investigate the signaling events that 

lead to the suppression of flowering in high N-grown plants by comparing the 

transcription of the floral meristem of six-week old (2 node stage) plants grown in 

0.64 and 16 mM N-supply. The results of these experiments are presented in 

chapter 5.   
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In the Introduction evidence was presented to show that nitrogen stimulates the 

biosynthesis of plant growth regulators such as Cytokinins (CK) and Auxin. For 

reasons that are not entirely clear, the expression of the NRT class of nitrate 

transporters stimulate the biosynthesis of CK in roots and shoots, and this directly 

promotes bud growth and branching. In contrast, increasing N uptake by plants 

result in decreasing activity of auxin in the tissues (Albacete et al. 2008; Ghanem 

et al. 2011; Kiba et al. 2011; Kudoyarova et al. 2014). Cytokinins are also reported 

to inactivate the production of auxin and GA. GA and auxin repress CK 

biosynthesis (Balazadeh et al. 2014; Matías-hernández et al. 2016). High N levels 

inhibit the functional acitivity of auxin transporters which result in the accumulation 

of auxin in root tips and the induction of lateral root growth (Kiba et al. 2011). 

 

Auxin regulates floral meristem development in the cereal crops by inducing cell 

elongation (Zhang and Yuan 2014). In addition, CK promote the reproductive stage 

through meristem enlargement where cell division occurs, thereby increasing 

meristem size and activity. Grain yield increases in response to rising CK activity 

(Zhang and Yuan 2014; Matías-hernández et al. 2016). The role of gibberellins in 

controlling flowering is important as well as CK and auxin. In leaves GA induce 

flowering by degrading DELLA proteins which represses VRN3 (FT). Furthermore, 

in meristems, GA operates in parallel with, or possibly down stream of, FT to 

accelerate flowering  (Cheng et al. 2004; Boden et al. 2014; Chen et al. 2014; 

Fjellheim et al. 2014; de Wit et al. 2016; Matías-hernández et al. 2016). 
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Figure 4-22 Bowman Lines.  
The barley cv. Bowman (BW3) and its mutants BW 205, BW 207, BW 412 and BW 
494 showed that low number of tillers even in parent line (BW 3). The uniculm lines 
BW 205 and BW 207 produce single stem and low tillering line (BW 494).     

10
 c

m

BW 205 BW 207 BW 412 BW 494 BW 3
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The spike elongation which is controlling flowering by developing floral meristem 

through increasing number of nodes and the distances between these nodes had 

been regulated by N supply levels. The N supply decrease the spike length among 

high N levels (Figures 4-10 and 4-11). This elongation also affects on spike 

production in the plant where the lower number of nodes and shorter length of the 

stem may result in flower suppressing.  

 

The meristems development was affected by N supply, where increasing N levels 

delay meristem development and elongation. Pictures of Figure 4-15 show that 

phenomena. What is the role of N that causing that delay? Indeed,  (Boden et al. 

2014) indicates that the immaturity and delay in further development in barley 

meristems might be due to a decline in gibberellin production. 

 

Studies on wheat grown in soil pots showed that the increasing N levels induce 

tillering and increase yield (Hussain et al. 2006). These results are not compatible 

with what we found in this project. The increases N level induce tillering but 

suppress flowering. 

  

The photosynthesis rates increased with increasing nitrogen content in the growth 

medium which also supported by (Zhang et al. 2013), the results shown in Figure 

4-3 and 4-4 indicates the increasing of Asat and ϕCO2 in responses to N level for 

barley grown in hydroponic solution.    
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Comparison between soil and pots experiment for barley done by (Tavakkoli et al. 

2012) on salt stress that shows the same results when applying different 

concentration of N on hydroponic and soil pots grown barley which are similar to 

what we found in our data. 
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5 Chapter 5 Transcriptome Profiling of Barley 

Floral Meristems 

5.1 Introduction 

Chapter 4 describes a series of experiments that were undertaken to characterize 

the effects of very high rates of N-supply on the growth, development, and yields 

of barley.  The conclusions were that high N-supply can double ULA CO2 

assimilation rates and potentially result in higher yields.  These yield benefits may 

not be realised, however, unless the nitrogen-induced promotion of tillering and 

the suppression of flowering can be prevented. Studies reported in Chapter 4 

suggested High Nitrogen does not affect early events in the flowering pathway that 

occur in the leaf, but hinders flower development at the 2-to3 node stage in the 

crown meristem once flowering has been triggered.  It is also conceivable that 

current yields in barley are affected in part by the levels of nitrogen applied to fields 

in intensively managed systems. It is clear, therefore, that a better understanding 

is required of the mechanisms by which high levels of N supply limits seed 

production.  To address this issue it was decided to compare the full transcript 

profiles of the developing floral spikes of meristems at the 2-to-3 node stage of 

Hordeum vulgare (L.) cv. Belgravia plants (five-to-six week stage) grown in 0.64 

mM (Moderate) and 16 mM (High) N-supply hydroponic solutions. Full 

experimental procedures for the growth of material and the preparation of total 

RNA are presented in Section 2.5.1.2 and 2.8.2.2. 

 

Two methods are routinely used for assessing the full transcriptome profile of 

tissues; DNA Microarrays and high throughput Next Generation Sequencing 
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(NGS) technologies.  Both methods rely on the preparation of high quality total 

RNA from tissues and the subsequent generation of cDNA which is then used to 

hybridize to the microarray probes, or is then sequenced.  The Affymertix 

GeneChip Barley Genome Array was constructed from a collaboration between 

the barley research community and Affymetrix and became available for general 

use in 2003.   The community submitted EST sequences from 84 libraries providing 

approximately 400,000 raw sequences, and from the NCBI/GenBank non-

redundant batabases.  About 350,000 of these were considered to be of suitable 

quality and clustering analysis revealed 53,030 unigenes were represented; 

25,500 of these had complete 3’ ends and were subsequently used in the array 

construction. Agilent Technologies also manufacture a barley 4 x 44K array on a 

single glass slide. Despite the relative simplicity of use of DNA Microarrays, NGS 

has begun to supplant microarray technology; many feel sequencing cDNA 

generated from transcripts provides an additional level of confidence for 

quantification. 

 

Several NGS technologies are available for undertaking expression profiling.  

Broadly, sample preparation for each of these technologies is similar. Template 

DNA is fragmented and oligonucleotide adapters are ligated to the ends of the 

fragments; these modified fragments are then spatially separated by ligation to an 

inert solid surface, a unique position on a glass slide or a unique silicon bead.  The 

individual DNA fragments are then amplified by the PCR to generate spatially 

separated clusters of the amplified sequence (to improve signal strength) and 

followed by a second synthesis step when sequencing reactions are performed.  

The different technologies rely on different chemical reactions used to assess the 

DNA sequence of these clusters in a step-wise manner.  Four technologies are 
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routinely used at present; these are Pyrosequencing, Sequencing by Synthesis, 

Sequencing by Ligation, and Ion Semiconductor (Ion Torrent) Sequencing.   

 

Pyrosequencing relies on the one-base-at-a-time addition of modified nucleotides 

(A,C,G, or T) to the synthesised DNA fragment from the template. To read the nth 

base of every fragment on the solid support array (slide or bead), it has to be 

incubated and then washed sequentially with each of the four modified bases in 

turn. The addition of a modified nucleotide base results in the release of 

pyrophosphate which is then used to generate ATP. The successful addition of a 

base (say, A) to any one cluster is recorded by using the synthesised ATP to 

generate chemiluminescence using the Luciferin / Luciferase system; no 

chemiluminescence from a cluster would signify the next base is not an A.  All 

reagents are then washed away and the next modified base and DNA polymerase 

is added (C for example), and the Luciferin / Luciferase assay repeated. Once all 

four of the bases have been used to determine the nth base, these newly 

incorporated bases are modified to allow the addition of the nth+1 base and the 

process is repeated.  Pyrosequencing can produce reads of approximately 1kb but 

there is a relatively high error rate when there are runs of polynucelotides, and the 

costs are relatively high.  It can generate up to 1 million reads per run each with 

ca. 700 bp (i.e.  up to 0.7 Gb per run) at a cost of ca.  $10,000 US.  As 

Pyrosequencing provides long reads it is capable of effective de novo sequencing 

of cDNAs (transcripts) and would not require an assembly of reads by matching to 

a reference genome.  The low number of transcript reads (1 million) coupled with 

the current poor annotation of the barley genome makes this method less attractive 

than other NGS technologies for transcript profiling.  
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Another popular technology is Ion Semiconductor (Ion Torrent) Sequencing.  This 

method is similar to Pyrosequencing in that four reactions (one for each base) are 

run and assessed to determine the identity of the nth base before the terminal base 

is activated to allow the nth+1 base to be added.  Adaptors are added to the 

template DNA strand (ca. 100-150 bp) and each molecule is attached to a single 

well a semiconductor plate; the template sequence is then amplified to increase 

signal strength.  DNA polymerase, and one of terminator bases (A,C,G, or T) is 

added.  The major difference is that with the addition of each base a H+ is released 

and this is detected as a pH change by the semiconductor base.  It is therefore, a 

four-cycle, one base one-base-at-a-time DNA synthesis method, similar to 

pyrosequencing. 

 

DNA Sequencing by Synthesis is another technology that is routinely used in NGS 

projects.  These methods also rely on one-base-at-a-time synthesis of a new DNA 

strand using short single strand DNA templates (ca. 100-150 bp), DNA 

polymerase, and terminator bases that are labelled with a fluorescent dye. Here 

the nth base is attached and read during one reaction cycle as each of the four 

terminator bases is ligated to one of four specific dyes; the identity of the added 

terminator base is established from its colour. After scanning and reading the 

immobilized DNA clusters using a laser, the support matrix is thoroughly washed, 

a 3’ hydroxyl group is added to the newly added nth base enabling the addition 

nth+1 base, and the process is repeated. Illumina (Solexa) technology is the most 

widely used providing up to 3 billion reads of up to 150 bp (450 Gb) at a cost of ca, 

$0.10 US per million bases. The Polyomics facility at Glasgow University operates 

an Illumina NextSeq 500 instrument that provides up to 400 million reads of 

sequences of ca. 100 bases (40 Gb data). The technology allows samples to be 
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multiplexed and offers the advantages of paired end reads. Using this technology 

it is possible to sequence up to 200 million fragments and should provide a 

sufficient depth of sequencing to allow a quantitative assessment of the changes 

in the transcriptome of the developing florets of plants grown in high and moderate 

levels of N.  

 

More recently Nanopore Sequencing technology has emerged that is inexpensive 

and capable of rapid sequencing of both RNA and DNA.  This method relies on 

feeding long chain single stranded DNA (or RNA) molecules through a nanoscale 

hole (typically 1 nm diameter) inserted in a ceramic membrane of high electrical 

resistance; the pores are either proteins (e.g. α-haemolysin) or solid state 

(graphene or SiO2).   A low voltage is then applied across the membrane and a 

small electrical current passes between the buffers on either side. Once threaded 

through the nanopore, the DNA molecule spontaneously passes through. Each of 

the four bases has a different physical size and this affects the current flowing 

through the pore. By measuring the change in current with time the sequence of 

DNA can be read. Oxford Nanopore Technologies claim each pore is capable of 

reading 250 bases per second of DNA fragments that are up to 5kb long although 

the company claims fragments of 250kb can be sequenced. The MinION 

instrument uses a single cartridge containing 512 pores and can sequence 45Gb 

in 48 hours.  The PromethION instrument is a vastly parallel system containing 48 

cartridges each containing 3,000 pores; this instrument is therefore capable of 

sequencing 12Tb in 48 hours.  The accuracy of single reads (1D) is relatively low 

(~90%) but 2D reads are reported to be >99% (Oxford Nanopore Technologies, 

2016) (Nanopore Technolohgy 2016) .  Glasgow Polyomics has invested in a 

MinION system and it is currently under trial. At the time of writing, therefore, the 



 

 144 

system was considered to be too novel and it was decided not to proceed with this 

technology. 

 

A physical map of the barley genome cv. Morex was published in 2012 

(Consortium 2012). The haploid genome size was reported to be 5.1 Gb with more 

than 3.90 Gb of sequence anchored to a high-resolution genetic map. Using a 

deep whole-genome shotgun assembly, complementary DNA deposited in the 

public databases, and deep RNA sequence data, a framework was constructed 

that revealed 79,379 putative transcript clusters, with 26,159 identified as ‘high-

confidence’ genes with homology to other plant sequences. There was evidence 

for a considerable amount of alternative splicing and post-transcriptional 

regulation. One problem with the barley genome map, however, is that it was – 

and still remains – poorly annotated  (http://plants.ensembl.org/Hordeum  

_vulgare/Info/Index). The normal procedure for analysing RNA-Seq data from the 

Illumina platform (which produces a high number, here over 400 million, of 

relatively short 100 base reads) is to first align the sequences to the genome and 

discard those reads that do not align.  Unaligned sequences could arise for a 

number of reason; there could be errors in the original published genome 

sequence or in the Illumina read of the fragment.  It is also possible unaligned 

sequences arise from significant variation at the DNA level between the cultivar 

under investigation and the sequences cultivar Morex. Finally, it is conceivable that 

the alignment algorithms become confused between alignments to authentic 

genes and the many pseudogenes that are present in organisms such as barley 

with a low ratio of coding to non-coding genomic DNA (approximately 0.5%, cf. 

Arabidopsis with ~17%).  For this reason, in this current study it was decided to 

align the RNA-Seq reads to barley genes identified from the barley sequenced 
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cDNA, coding sequence, non-coding RNA, and proteins (available from:  

ftp://ftp.ensemblgenomes.org/pub/plants/release-32/fasta/hordeum_vulgare). It 

was hoped that by removing over 99% of the non-coding genome sequence 

alignments would be more rapid and stringencies could be set to be more tolerant 

of inter-varietal mismatches.   

 

5.2 Transcript Profiling of Barley Floral Meristem 

For these experiments two concentrations of N-supply were chosen, a Moderate 

Level (0.64 mM) to reflect plants that flower grown in good agricultural soils, and a 

High Level (16 mM) representing ‘super-luxury’ levels of N.  briefly, seeds of cv. 

Belgravia were germinated and seedlings grown in modified Hoagland’s solution 

in the glasshouse for 5 weeks (see Section 2.5.1.2); at this stage, both sets of 

plants had undergone stem elongation to the 2 or 3 node stage with a rudimentary 

floral spike of approximately 5 mm length. Plants were removed and the 

developing spikes rapidly dissected and instantly stored in liquid nitrogen. Once a 

sufficient number of immature spikes were collected, total RNA was extracted for 

analysis. In total 3 biological replicates of over 1µg from each concentration were 

prepared. The samples were analysed for quality and then sent to the Glasgow 

University Polyomics facility for RNA-Seq analysis using an Illimina NextSeq 500 

instrument.  Complimentary DNA was prepared from each of the six samples and 

then 100 bp fragments produced.  Adapters unique for each sample were ligated 

to both ends of the fragments and the six samples then mixed and loaded onto the 

NextSeq 500.  In total over 400 million paired end multiplexed reads were obtained 

(i.e. 200 million fragments were sequenced). These data were then filtered for 

suitable quality using the FastQ algorithms (Blankenberg et al. 2010) and then the 

Kallisto algorithm (Bray et al. 2016) was used to align reads to the downloaded 
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reference cDNA genome.  Differential abundance calculations and p-values were 

calculated using the DESeq2 algorithm mounted on the University of Glasgow 

Galaxy server (Love et al. 2014). A summary of these data are presented in Table 

5-1. 

 

Table 5-1. Summary of Illumina RNA Sequencing of Floral Meristems from 
Barley cv Belgravia Grown in Moderate and High Levels of 
Nitrogen 

 

Sample Read1 Read2 Trimmed 

Read1 

Trimmed 

Read2 

Aligned Percent 

Aligned 

0.64 #1 37,781,644 37,781,644 34,402,954 34,402,954 22,952,966 60.75% 

0.64 #2 32,860,640 32,860,640 30,191,273 30,191,273 20,072,826 61.08% 

0.64 #3 40,323,292 40,323,292 36,877,309 36,877,309 26,035,838 64.57% 

16 #1 38,090,836 38,090,836 34,836,701 34,836,701 24,785,305 65.07% 

16 #2 33,559,673 33,559,673 30,084,899 30,084,899 21,684,042 64.61% 

16 #3 39,160,069 39,160,069 36,032,947 36,032,947 24,580,458 62.77% 

Total  221,776,154 221,776,154 202,426,083 202,426,083 140,111,435 63.14% 

 Read1 and Read2 are +ve and -ve strand sequences. Trimmed reads are the 
number of reads after quality control filtering.  Aligned reads are the number of 
reads that were assigned to the reference ‘genome’ (genes, cDNAs, proteins, 
etc.,). 
 

Between 60.75 and 65.07% of the reads in each sample were aligned to the 62,584 

sequences in the reference genome database and in total 51,181 transcripts were 

found in at least one of the samples.  Disappointingly, approximately 35-40% of 

the reads, therefore, could not be aligned possibly for the reasons given above.  

The data were then filtered for significant differences between the two treatments 
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using p-values of < 0.05 (Anova Tests) yielding 2286 transcripts.  These were then 

further filtered to identify transcripts that were either more than 3-fold more 

abundant in High Nitrogen (16 mM) or in the Moderate Nitrogen (6.4 mM).  This 

generated a data set of 995 transcripts (p<0.05, > 3-fold change) in the Moderate 

N samples and 281 transcripts (p<0.05, > 3-fold change) in the High N samples. 

These two data sets, Upregulated in High N and Upregulated in Moderate N are 

presented in the Appendix as Table A-1 and Table A-2. Figure 5-1 presents some 

of the graphical output from DESSeq2 analysis of these data; these plots are 

broadly consistent with those predicted and provide confidence that real 

differences exist between the treatment (Love et al. 2014). 
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Figure 5-1.Graphical Representations of Barley Floral Meristem Transcript 

Profiles from DESSeq2 Package 
A; the plot shows the log2 fold changes from the treatment over the mean of 
normalized counts, i.e. the average of counts normalized by size factors. B; 
Principle Component Analysis (PCA) plot, the 6 samples shown in the 2D plane 
spanned by their first two principal components. This type of plot is useful for 
visualizing the overall effect of experimental covariates and batch effects. C; 
sample-to-sample distances represented as a Heatmap; the Euclidean distances 
between the samples are calculated from the regularized log transformation. Red 
are ‘upregulated’ and blue ‘downregulated’ sequences. D; Dispersion plot showing 
gene-wise estimates (black), the fitted values (red), and the final maximum a 
posteriori estimates used in testing (blue). Samples A1-A3 and B1-B4 are 
biological replicates of samples grown in 0.64 and 16 mM N, respectively. For full 
details see (Love et al. 2014). 
  

B.A.

C. D.
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After these procedures, the normal approach would be to automate an 

interrogation of the databases with the transcript identity codes and extract a 

variety of information on their biochemical function, metabolic function, cellular 

location, conserved protein domain (pfam) motifs, BLASTn and BLASTp 

similarities, etc. However, when this was attempted very little annotation was 

retrieved so little additional information was provided. On further investigation with 

Dr Graham Hamilton, the Lead Bioinformatician at the Glasgow Polyomics Unit, 

this might be due to the very low annotation for barley sequences, or to an interface 

problem between DESeq2 output and propriety annotation retrieval programs.  For 

this reason, it was decided to progress by manually downloading what annotation 

could be found and these data are also included in Table A-1 and A-2.   

 

With detailed annotation, including information on biochemical function, metabolic 

function, and cellular and tissue location it is possible to perform Gene Ontology 

(GO) analysis providing further insight into the sequences that might be important 

in the High Nitrogen-induced suppression of flowering in barley.  From the sparse 

annotation in Tables A-1 and A-2, however, it is clear that GO analysis was not 

feasible at this stage; further annotation will be required and this will involve 

complex analysis using a variety of programs on each of the 1276 identified 

sequences (995 +281). A discussion on how this might be achieved is included at 

the end of this chapter. 

 

Without the advantages of an automated GO analysis, it was decided to us a 

manual approach to attempt to characterize the differentially abundant transcripts 

in the two N treatments. Each of the differentially abundant 1276 sequences 

described above were then used to manually interrogate the public databases 
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(ENSEMBL) using BLASTp and BLASTn.  Where ever possible, GO annotations 

were added to each sequence.  Pie charts were then constructed using the 18 

most common GO Metabolic Function classes found and these are presented in 

Figure 5-2. 

 

The data presented in Fig 5-2A can be viewed as those metabolic processes that 

are upregulated (P<0.05, more than 3-fold) in the 0.6 mM samples (cf 16 mM 

samples). Alternatively, these same sequences could be viewed as Controls that 

reflect ‘normal’ levels of expression, in which case Fig 5-2A could be viewed as 

those metabolic processes that are downregulated in High Nitrogen (16 mM) and 

it is this approach that will be used here.  Comparing the changes in metabolic 

function classes in Fig 5-2A and B it appears that High Nitrogen supply perturbs 

Protein and Amino Acid Metabolism (7% increase cf 1% decrease), Translation 

(5% increase cf.3% decrease), as well as Growth (0% increase cf 5% decrease), 

and Development (5% increase cf 2% decrease).  Major changes were also 

observed in sequences involved in Abiotic stress (5% increase cf 1% decrease) 

and Cell Redox Homeostasis (9% increase cf. 5% decrease). In addition, 

Carbohydrate metabolism (1% increase cf 6% decrease), and various transport 

processes (5% increase cf 11% decrease) were also found in the High Nitrogen 

(16 mM) samples. Taken together these data indicate that exposure to High 

Nitrogen dramatically affects protein synthesis in the reproductive meristem, which 

may in part account for the transcriptional suppression of sequences involved in 

growth and development of the floral primordia. At the same time carbohydrate 

metabolism and the transport of metabolites appears to be shut down presumably 

as resources are no longer required to support the growth of the floral spike. 

 



 

 151 

A 

 

B 

 

Figure 5-2.Transcriptional Changes of GO Metabolic Function Classes in 
Barley Floral Meristems Grown in Moderate and High Levels of 
Nitrogen. 

Plants were grown to the 5-to-6 week stage (2nd -to-3rd node) in hydroponic 
solutions containing Moderate (0.64 mM) and High (16 mM) N supply (see Section 
2.5.1.2). Floral primordia were dissected, rapidly frozen, and total RNA extracted 
for RNA-Seq analysis by Illumina paired-end high throughput sequencing (see 
Section 2.9). Significant (p<0.05) differentially abundant sequences were identified 
that were >3-fold down (A) or >3 fold up (B) in the High N sample and where 
possible, placed into 18 Metabolic Function classes. 
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Other classes of GO Metabolic Function showed large and significant changes in 

the sequences expressed but these tended to be compensated by a reciprocal 

change in members of the same class. For example, 12% of the ‘upregulated’ and 

11% of those ‘down regulated’ sequences in High Nitrogen were associated with 

Transcription. Similar antiparallel changes were observed within the Go Metabolic 

Function classes of Signaling, Cell Division / Meiosis, Floral Development, and 

Protein Binding. 

 

Tables 5-2 and 5-3 present further GO Biochemical Function and Metabolic 

Function details gleaned from manual searches of selected sequences in the 

public databases.  Details on some of the more interesting sequences that should 

be investigated further are discussed below. 

 

5.3 Sequences Down Regulated in High Nitrogen. 

5.3.1 Expansins.  

The first and fourth most down regulated sequences in the High N samples (up 

regulated in Moderate N) appear to be Expansins (Table 5-2; 917 and 318 fold 

change) which are involved in growth.  Expansins are extracellular proteins that 

become activated on cell wall acidification (by p-type H+-ATPases) and result in 

carefully regulated cellulose microfiber (cell wall) loosening. This is accompanied 

by an increase in cell turgor pressure and leads to pressure-driven cell growth.  

This normally occurs in zones immediately behind meristems resulting in an up to 

100-fold increase in cell volume.  After expansion, the p-type ATPases are 

inactivated, the cell wall pH rises leading to an inactivation of Expansins and 

rigidification of the cellulose microfibers. The observation that transcription of two 
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key splice variants of the Expansin gene MLOC 65431 is significantly (p<7.2 E-15) 

and hugely downregulated (>318-fold) in floral meristems where growth of the 

spike is arrested and floral development curtailed makes good sense.  Further, 

homologues in rice (Expansin A-7) have been implicated in the rapid expansion of 

the rice floral spike(Shin et al. 2005). What is not clear, however, is how high levels 

of nitrogen suppresses the expression of MLOC 65431. 
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Table 5-2. List of Selective Highly Abundant Sequences in Floral Primordia of Barley Grown in 0.6 mM Nitrogen 

Gene ID P adj Chromo-
some 

Fold 
Change GO: Biochemical Function GO: Metabolic 

Function 

MLOC_65431.2 1.9E-24 5 917 
Similar to Expansin-A7 in Oryza sativa. May cause loosening and extension of plant 
cell walls by disrupting non-covalent bonding between cellulose microfibrils and matrix 
glucans. May be required for rapid internodal elongation. 

Development 

MLOC_15842.2 9.1E-25 4HL u/o 648 Negative Regulator of Translation, Endohydrolysis of the N-glycosidic bond at one 
specific adenosine on the 28S rRNA Translation 

MLOC_73247.2 3.7E-21 5 564 Pentatricopeptide (PPR) repeat-containing protein /  Transcription 

MLOC_65431.1 7.2E-15 5 318 Expansin-like CBD Development 

MLOC_2933.1 1.1E-12 5 191 GRAS type transcription factor Transcription 

MLOC_73247.3 4.0E-12 5 177 Pentatricopeptide (PPR) repeat-containing protein /  Transcription 

MLOC_34924.2 1.0E-10 6 147 Expressed protein/ Transmembrane helical Transcription 

MLOC_2934.2 1.1E-10 5 146 NAD(P)-binding domain Transcription 

MLOC_43830.6 1.1E-09 2 146 CLY1: AP2 /transcription factor activity, sequence-specific DNA binding Transcription 
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Gene ID P adj Chromo-
some 

Fold 
Change GO: Biochemical Function GO: Metabolic 

Function 

MLOC_64932.2 2.2E-10 4 139 Elongator complex protein 5/ Tetratricopeptide-like helical domain Transcription 

MLOC_55424.1 3.5E-10 4 130 60S acidic ribosomal protein P0 Translation 

MLOC_37780.1 1.6E-08 7 115 SANT/Myb domain  Nucelic Acid 
Metabolism 

MLOC_81053.7 2.1E-08 3 115 SLT1 protein or Gnk2-homologous domain General 
Metabolism 

MLOC_15842.1 5.0E-09 4HL u/o 114 Negative Regulator of Translation Signalling 

MLOC_23441.1 2.5E-10 4HL u/o 106 
Negative regulation of translation, rRNA N-glycosylase activity/ rRNA N-glycosidase; 
Catalytic Activity:Endohydrolysis of the N-glycosidic bond at one specific adenosine on 
the 28S rRNA.;Belongs to the ribosome-inactivating protein family. 

Translation 

MLOC_71332.1 3.0E-07 3 96 
Gam1/Gamyb: transcription factor activity / Flower development / Transcriptional 
activator of gibberellin-dependent alpha-amylase expression in aleurone cells. Involved 
in pollen and floral organs development 

Floral 
Development 

MLOC_24033.1 2.5E-15 
morex 
contig 

163507 
95 RPS12: Ribosomal protein S12 Translation 

MLOC_53531.1 5.9E-07 5 70 Gene silencing by RNA Nucelic Acid 
Metabolism 
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Gene ID P adj Chromo-
some 

Fold 
Change GO: Biochemical Function GO: Metabolic 

Function 

MLOC_67531.1 8.1E-27 7 67 Sucrose:fructan 6-fructosyltransferase , Belongs to the glycosyl hydrolase 32 family Carbohydrate 
Metabolism 

MLOC_51326.1 1.3E-06 6 66 O-methyltransferase COMT-type   Transcription 

MLOC_52439.4 1.4E-06 5 66 SANT/Myb domain  Nucelic Acid 
Metabolism 

MLOC_76615.2 4.9E-06 2 64 Asymmetric cell division/ serine-type endopeptidase activity Growth 

MLOC_5291.8 8.6E-06 6 62 Gravitropism/ photoperiodism, flowering Growth 

MLOC_63998.2 6.3E-06 3 56 
Ribonuclease T2 activity (Catalysis of the two-stage endonucleolytic cleavage to 
nucleoside 3'-phosphates and 3'-phosphooligonucleotides with 2',3'-cyclic phosphate 
intermediates) 

Translation 

MLOC_60198.2 1.1E-04 3 40 MYB-CC type transcription factor, LHEQLE-containing domain Transcription 

MLOC_4381.2 1.8E-04 7 39 Pollen development/ trichome differentiation/ leaf development / Transcription 

MLOC_54911.4 9.5E-04 1 29 Cell wall organization / Defense Growth 

MLOC_5849.2 5.5E-06 2 26 
SANT/Myb domain protein 37 [Source:Projected from Arabidopsis thaliana 
(AT5G23000) TAIR;Acc:AT5G23000] / myb domain protein 37 [Source:Projected from 
Arabidopsis thaliana (AT5G23000) TAIR;Acc:AT5G23000] 

Nucelic Acid 
Metabolism 

MLOC_54352.1 3.7E-03 7 24 KAO1: Ent-kaurenoic acid oxidase 1 / gpr5 (gibberellins biosynthesis) Growth 
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Gene ID P adj Chromo-
some 

Fold 
Change GO: Biochemical Function GO: Metabolic 

Function 

MLOC_4290.2 4.4E-03 6 22 S-adenosyl-L-methionine-dependent methyltransferases superfamily protein  (shoot 
system development/ methylation) Growth 

MLOC_55676.2 1.1E-02 1 18 DnaJ-like protein C11, C-terminal/ vegetative to reproductive phase transition of 
meristem Growth 

Sequences were filtered using the criteria of significant difference (p<0.05) and changes of over three-fold (cf. plants grown in 16 mM 
N).  This yielded a dataset of 995 sequences.  These have been ordered in the table above on ‘fold-change’; the values presented are 
the ratios of abundance in 0.6 mM samples compared with 16 mM samples (i.e. a 100 fold change increase here could be viewed as a 
100 fold suppression in the 16 mM sample).  GO Biochemical Functions and GO Metabolic Functions were obtained by manual BLASTp 
and BLASTn searches of the databases. 
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Table 5-3. List of Selective Highly Abundant Sequences in Floral Primordia of Barley Grown in 16 mM Nitrogen 

Gene ID P adj Chromo-
some 

Fold 
Change GO: Biochemical Function GO: Metabolic 

Function 

MLOC_21665.1 2.8E-26 6 908 Protein of unknown function  

MLOC_61992.1 4.6E-09 6 149 NB-ARC domain/ Leucine-rich repeat domain, L domain-like Protein Binding 

MLOC_62925.3 1.1E-08 7 122 Pentatricopeptide repeat (PPR) superfamily protein   General Metapolism 

MLOC_16403.1 2.1E-18 6 104 InterPro:F-box_dom_cyclin-like: Protein degradation Floral Development 

MLOC_4344.4 8.1E-08 7 103 NB-ARC domin/ Leucine-rich repeat domain, L domain-like (in the L domain 
from members of the epidermal growth-factor receptor (EGFR) family) Transcription 

MLOC_56325.1 1.5E-07 6 93 Protein kinase superfamily protein Signalling 

MLOC_56074.1 1.6E-53 5 87 BHLH (basic helix-loop-helix) / oxidoreductase activity Transcription 

MLOC_53617.2 2.7E-07 3 85 Z-finger Transcription factor - SUMOylated Transcription 

MLOC_10815.3 1.4E-07 7HS u/o 83 Transcription Factor Transcription 
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Gene ID P adj Chromo-
some 

Fold 
Change GO: Biochemical Function GO: Metabolic 

Function 

MLOC_34862.1 9.2E-07 5 80 Protein folding, protein transport Transport 

MLOC_55587.11 1.5E-06 5 77 Tetratricopeptide repeat (TPR)-like superfamily protein: RNA degradation? Nucelic Acid 
Metabolism 

MLOC_71346.10 9.5E-07 2 77 Translation Translation 

MLOC_14088.1 2.7E-06 4 73 Vesicle-mediated transport, Transport 

MLOC_51271.2 2.0E-06 2HL u/o 71 DNA-directed RNA polymerase activity Transcription 

MLOC_11726.3 5.2E-06 2 30 Kinase Signalling 

MLOC_46130.5 6.3E-03 
morex 
contig 

285871 
21 Metabolic process/ pollen development Development 

MLOC_62829.3 5.3E-06 3 8 
Cytochrome P450, family 90, subfamily D, polypeptide 1/ brassinosteroid 
biosynthetic process/ leaf development/ petal development/ stamen 
development 

Floral Development 

Sequences were filtered using the criteria of significant difference (p<0.05) and changes of over three-fold (cf. plants grown in 16 mM 
N).  This yielded a dataset of 281 sequences.  These have been ordered in the table above on ‘fold-change’; the values presented are 
the ratios of abundance in 16 mM samples compared with 0.6 mM samples (i.e. a 100 fold change increase here could be viewed as a 
100 fold suppression in the 0.6 mM sample).  GO Biochemical Functions and GO Metabolic Functions were obtained by manual BLASTp 
and BLASTn searches of the databases. 
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5.3.2  Transcription Factors.  

The abundance of several transcription factors were highly suppressed by growth 

in High Nitrogen. For example, MLOC 2933 was significantly (p< 1.1 E-12) down 

regulated (191-fold) in High Nitrogen and has putatively been annotated as a GRAS 

transcription factor. The family of GRAS proteins (GAI, RGA, SCR) share a variable 

N terminus and a highly conserved C terminus that contains five recognizable 

motifs. Proteins in the GRAS family are involved in gibberellin (GA) signaling known 

to be involved in many aspects of plant growth and development. Plant homologues 

of GRAS proteins include the Arabidopsis thaliana SCARECROW (SCR) protein 

which regulates cell division in the cortex/endodermal cells during root development 

and the SCARECROW-LIKE (SCL) protein. In addition, the Arabidopsis thaliana 

GIBBERELLIN-ACID INSENSITIVE (GAI) and REPRESSOR OF GA1 (RGA) are 

two closely related proteins involved in gibberellin signaling.  The Arabidopsis 

thaliana SHORT ROOT (SHR) protein which is required for cell division and the 

formation of the endodermis. In addition, the Solanum lycopersicon (tomato) protein 

LATERAL SUPPRESSOR (LS), controls the formation of lateral branches during 

vegetative development. It is tempting to speculate that MLOC 2933 may be 

involved in floret branching in barley and that high levels of nitrogen suppress its 

action resulting in the arrest of floral development (InterPro; 

https://www.ebi.ac.uk/interpro/).  

	

MLOC 37780, MLOC 52439, and MLOC 5849 encode SANT/Myb transcription 

factors and these were also highly down regulated in High Nitrogen (p< 1.4 E-6; 

>26-fold).  The SANT domain occurs in nuclear receptor co-repressors and has 
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been implicated in chromatin-remodeling complexes. SANT domains show 

structural similarities to the DNA binding domain of Myb transcription factors; both 

possess tandem repeats of three alpha-helices arranged in a helix-turn-helix motif 

containing an aromatic amino acid (Aasland et al. 1996). The observation that the 

expression MLOC 37780, MLOC 52439, and MLOC 5849 are so strongly 

suppressed in the developing flowers of barley by High Nitrogen suggests they play 

an important role in floral development, possibly at the epigenetic level. It is now 

well established that flowering time is in part regulated by epigenetic factors in both 

monocots and dicots. In biennial Arabidopsis, flowering in the first year is 

suppressed by the transcription factor FLOWERING LOCUS C (FLC). During this 

period the chromatin structure associated with FLC  is open (euchromatin) allowing 

expression. After exposure to a period of cold acclimation, however, two long non-

coding RNAs (lncRNAs), COOLAIR and COLDAIR, are transcribed and these bind 

to a Vernalization Response Element (VRE) located in the first intron of the FLC 

gene (Heo and Sung, 2011). These lncRNAs then recruit the Polyomb Repressor 

Complex 2 (PRC2) which leads to the methylation of key residues in the N-terminus 

of Histone H3 proteins of nucelosomes (principally trimethylation of lysine 27, 

H3K27me3) which causes closure of the structure to form heterochromatin.  With 

FLC, the suppressor of flowering, embedded in heterochromatin, transcription is no 

longer possible and flowering can be initiated (Sung and Amasino 2004; Dubin 

2015; Hepworth and Dean 2015).  

 

Vernalization is also required to initiate flowering in winter cereals, but here it is the 

transcription of the promoter of flowering in the crown meristem, VRN1, that is under 

epigenetic control. Before vernalization VRN1 burried in heterochromatin due to the 
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trimethylation of Histone H3K27 (H3K27me3); the markers for condensation are 

believed to reside in the first intron of VRN1. Vernalization results in the 

demethylation of H3K27, opening up the heterochromatin and enabling transcripton 

(Szűcs et al. 2007; Oliver et al. 2009). 

 

Further studies are required to clarify their role in flowering in barley and to discover 

how high levels of nitrogen supply suppresses their action.  Another Myb-like 

transcription factor was also highly suppressed by High Nitrogen. MLOC 60198 is a 

Myb-CC -like protein that was downregulated 40 fold (p<1.1 E-04). Myb-CC 

domains are found upstream of the C terminus and are characterized by a highly 

conserved LHEQLE amino acid sequence motif. No further details on their function 

are available.  

 

MLOC 43830 shows homology to AP2-like (APETELLA2) ethylene-responsive 

transcription factors in Arabidopsis.  APETELLA2 play a central role in Arabidopsis 

growth and development the protein encoded by At4g36920 has been shown to be 

essential for floral organ identity and establishment of floral meristem identity 

(Krogan et al. 2012). The AP2 protein from Arabidopsis also contain ethylene 

binding (ERF) domains that can bind to the GCC-box. 

	

5.3.3  Negative Regulators of Translation.  

Three sequences involved with translation were down regulated in the High Nitrogen 

samples. Two of these were splice variants of MLOC 15842 (p<5.0 E-9, >114-fold), 

and MLOC 23441 (p< 2.5E-10, 106 fold). Both of these sequences have been 
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implicated in the suppression of translation suggesting the synthesis of at least 

some protein sequences may have been upregulated in the High Nitrogen samples.  

These finding suggest the regulation of flowering may occur at the transcriptional as 

well as the translational level. 

	

5.3.3.1  Control of Flowering.   

Four sequences were identified that show homology to sequences that have been 

implicated in flowering in angiosperms and were significantly down regulated in High 

Nitrogen.  These were MLOC 5291 (p< 8.6 E-06, 62 fold), MLOC 4381 (1.8 E-04, 

39 fold), MLOC 54352 (p< 3.7 E-03, 24 fold) , and MLOC 55676 (p<0.01, 18 fold).  

MLOC 5291 has been implicated in garvitropism and photoperiodic responses 

related to flowering.  MLOC 55676 contains a Dna J -like (C11) domain; originally 

these proteins were considered to be prokaryotic molecular chaperones of the 

40KDa class, but it is now known they are present in all eukaryotes, and over 80 

have been identified in Arabidopsis thaliana (InterPro; IPR024586). Specifically, 

homologues of MLOC 55676 are implicated in the vegetative-to-reproductive phase 

transition of the meristem. Clearly, the role of High Nitrogen on the strong 

suppression of this sequence in floral primordia requires further investigation, but at 

present it is unclear how nitrogen exerts this effect. MLOC 4381 shows homology 

to sequences that have been implicated in pollen, trichome, and leaf development 

in Arabidopsis. The proposal that homologues of this sequence are involved in the 

development of three different organs is interesting and suggests it may be a 

general regulator of cell division or growth.  Finally, the protein encoded by MLOC 

54352 appears to function as an Ent-kaurenoic acid oxidase and involved in 

gibberellin (GA) biosynthesis.   GA, of course, has long been known to be involved 
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in plant growth and development, in part by accelerating the breakdown of DELLA 

protein which are transcriptional suppressors of growth (Sun and Gubler 2004; 

Boden et al. 2014). Interestingly, MLOC 71332, homologues of the Gam1/Gamyb 

transcription factors mentioned above, have been implicated in GA signalling. 

	

5.4 Sequences Up Regulated in High Nitrogen. 

5.4.1 Transcription Factors. 

Four barley sequences were significantly highly upregulated in the floral primordia 

of High Nitrogen grown plants that show some homology to other plant sequences 

annotated as transcription factors. These were MLOC 56074 (p< 1.6E-6, 87 fold); 

MLOC 53617 (p< 2.7 E-7, 85 fold); MLOC 10815 (p <1.4 E-7, 83 fold); MLOC 51271 

(p <2.0 E-6, 71 fold).  MLOC 56074 has a BHLH motif whilst MLOC 53617 contains 

a zinc-finger motif and also contains a putative SUMOylation domain. No further 

annotation was found for the other two putative transcription factors but when 

compared with their expression levels in the floral primordia of Moderate Nitrogen-

grown plants, their high abundance (over 70 fold) coupled with their high level of 

significance (p < 2.0 E-6) suggests they may be strong negative transcriptional 

suppressors of floral development. 

	

5.4.2 Control of Flowering.   

Homologues of MLOC 46130 and MLOC 62829 are implicated in flowering. The 

former was upregulated 21-fold in High Nitrogen (p < 6.3E-3), may be involved in 

pollen development, but exactly how these proteins function in the flowering 
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pathway is not known.  MLOC 62829 was upregulated 8 fold in High Nitrogen floral 

primordia (p < 5.3 E-6) and appears to be a P450 Cytochrome protein involved in 

brassinosteroid biosynthesis.  Members of this class of protein have been implicated 

in petal and stamen development. It is unclear why over expression of proteins 

involved in brassinosteroid biosynthesis and the promotion of floral development 

would lead to a suppression of flowering. 

	

5.4.3 Signalling.   

Two sequences have been tentatively annotated as kinases; MLOC 56325 and 

MLOC 11726.  The former was upregulated 93 fold (p < 1.5 E-7) and the latter 30 

fold (p < 5.2 E-6). The strong and significant up regulation of these two sequences 

lends further support to the suggestion that High Nitrogen induced suppression of 

flowering is controlled at the transcriptional and post-transcriptional level.  Two other 

sequences, MLOC 16403 (an F-box like protein involved in protein degradation, p < 

2.1 E-18, 104 fold) and MLOC 55587 ( a tetratricopeptide repeat protein with 

putative RNA degradation activity, p < 1.5 E-06, 77 fold) lends further support to this 

notion. 

	

5.5 Discussion 

The finding from the comparative RNA-Seq analysis of data collected from the floral 

primordia of barley plants grown in Moderate Nitrogen (0.64 mM) and High Nitrogen 

(16 mM) suggest highly significant changes occur at the transcriptional and post-

transcriptional level that could account for the suppression of flowering.  Several 
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sequences were highly up regulated whilst others were highly down regulated in the 

floral primordia at the 2-to-three node stage of High Nitrogen grown plants. It is 

unfortunate that more detailed annotation of barley sequences is not available as 

this would have led to a more detailed discussion on the possible mechanisms by 

which floral development is arrested.  The model for floral development, the ABCDE 

model, in dicots has come from detailed analysis of Arabidopsis and Antirrhinum 

(Dreni and Zhang 2016).  The model proposed for flower development in cereals 

has in part been based on the more detailed dicot model as homologues of some of 

the major sequences involved are found in monocots, but it is also clear that there 

are major differences in the flowering pathways of the two groups of flowering plants.  

None-the-less, the ABCDE model of floral development has been tacitly adopted in 

cereals until more detailed analysis refines or refutes it.  Regardless, in neither 

monocots or dicots is a complete understanding of floral development pathway 

available and further detailed genetic analysis will be required to achieve this (Bai 

et al. 2016; Dreni and Zhang 2016; Wu et al. 2017).   

 

Unfortunately, a full analysis of these data were not possible within the time frame 

of this study. In part, this was due to the poor annotation of the barley genome which 

is possibly a reflection of the relatively small global community who work on barley.  

Regardless, with time further annotation should become available and the data 

presented in this study can be analyzed again to provide more insight.  Another 

reason that a more in-depth analysis of the RNA-Seq data has not been provided is 

the failure to pipe the output of the RNA-Seq data from DESSeq2 into the Trinotate 

package (https://trinotate.github.io/) that automates sequence annotation. Trinotate 

has been developed by the Trinity consortium (Haas et al. 2013); the major 
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difference between packages that perform RNA-Seq analysis using reference 

genomes (such DESeq2, Cufflinks, Bowtie, etc.,) and Trinity is that the latter 

performs de novo assembly of reads into transcripts which are then counted and 

quantified for differences between the treatments.  To achieve de novo transcript 

assembly a very high number of reads are required, and a computer with a very 

large amount of RAM to assist with the assemblies. At this stage it is not clear 

whether the 200 million reads obtained in this study are sufficient, or whether the 

University of Glasgow Galaxy server has the raw computing power to undertake this 

task. Attempts were made to pipe the output from Deseq2 (which aligns to a 

reference genome) into Trinotate (that expects output from de novo transcript 

assembly) but the import failed and it is unclear at this stage why this has occurred. 

No doubt this problem will be resolved over the coming months but at the time of 

writing no code to assist with this problem has been posted on the Galaxy 

community forums. 

 

Cell growth in plants is effected by the force of turgor pressure acting on cell walls 

where intermolecular forces between the extracellular matrix have been reduced by 

the action of Expansins (EXP); the activity of EXP are regulated by cell wall pH (Shin 

et al. 2005; Cosgrove 2015).  As mentioned above, EXPA and EXPB stimulate the 

growth of different plant organs such as root growth (EXPB1, EXPB2, EXPA4 and 

EXPB23), leaf initiation (EXPA1), guard cells (EXPA1 and EXPA4), stem elongation 

(EXPB3, EXPB4, EXPB6 and EXPB11), and reproduction (Marowa et al. 2016). 

Expansin expression can be induced by indole-3-acetic acid (Marowa et al. 2016), 

ethylene (Li et al. 2014b) and GA (Li et al. 2014b; Xu et al. 2016). In addition, 

Expansin expression may be regulated by biotic and abiotic stress factors (Ding et 
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al. 2008; Cosgrove 2015). Expansins involved in the development of floral structures 

such as EXPA1 are active at the early stages of floral bud development. EXPA2, 7 

and 10 are active in all floral organs of rice, whereas  EXPA4, 5 ,6, 13, 16, 18, 25, 

26 and 29 are involved in floral initiation and development in rice (Shin et al. 2005; 

Marowa et al. 2016). 

 

One of the sequences down regulated under high N levels is Pentatricopeptide 

repeat (PPR) proteins which is one of the largest protein family in plants. PPR are 

required for many essential processes including RNA editing, RNA splicing, 

translation, and the restoration of fertility. PPRs play a role in responses to abiotic 

stress as well as plant development with tissue-specific expression at different 

developmental stages (Schmitz-Linneweber and Small 2008; Barkan and Small 

2014; Wei and Han 2016). 

 

DELLA proteins are members of the GRAS family of transcription regulators 

(Hedden 2003; Chandler and Harding 2013). In addition to DELLA, other subfamilies 

of the GRAS family are Scarecrow (SCR) in Arabidopsis mesophyll sheath; 

Nodulation Signaling Pathway 1 (OG-NSP1) which is involved in the biosynthesis of 

strigolactone in rice; Lateral Suppressor (OG-LS) which functions as Monoculum1 

in rice; Nodulation Signaling Pathway 2 (NSP2) which interacts with DELLA; 

Phytochrome A Signal Transduction (PAT) that includes CIGR2; SCL3 which 

promotes GA signaling and represses DELLA proteins; Dwarf and Low-Tillering 

(DLT) in rice; (Hirsch and Oldroyd 2009; Li et al. 2016; Sun et al. 2016; Cenci and 

Rouard 2017).  
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High level of N up regulate Tetratricopeptide repeat (TPR)-like superfamily of 

proteins which are regulatory sequences involved in many processes in the cell such 

as Auxin signalling, targeting, and import of proteins into the peroxisome, 

chloroplast, and mitochondria. In addition, TPRs have also been implicated in 

chloroplast development and greening (Hu et al. 2014; Zhang et al. 2015). 
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6 Chapter 6 General Discussion 

The original aims of this project were threefold.  First, to confirm whether earlier 

findings on the effects of high leaf temperature (Tleaf) on leaf photosynthesis rates 

of barley grown in a physiologically high levels of nitrogen were also applicable to 

plants grown in nitrogen levels encountered in agricultural soils. Second, to confirm 

the preliminary finding from our group that high Tleaf impaired carbon assimilation 

by reducing chloroplast ATP levels which subsequently impaired the synthesis of 

RuBP, a substrate for RuBisCO. Third, to assess the prospects for engineering 

thermal tolerance of high temperatures in crops.  

 

6.1 Effect of High Tleaf on Photosynthesis 

A series of experiments is reported in Chapters 3 and 4 where barley plants were 

grown either in soil or in hydroponics over a range of N-supply. Using this approach 

plants with a phenotypes similar to those of plants grown on arable farms were 

subjected to a range of Tleaf.  Leaf gas exchange and chlorophyll fluorescence 

measurements were made to assess the effects of heat stress on various 

photosynthesis parameters and the findings were unequivocal; similar responses 

were observed regardless of whether plants were grown in moderate (i.e. 

comparable with arable production) or artificially high (i.e. 16 mM) levels of nitrogen. 

In barley, elevating Tleaf to 38°C for three hours severely and irreversibly suppresses 

light saturated photosynthesis rates measured by two independent methods, leaf 

gas exchange and chlorophyll fluorescence.  These observations are in some 

respects similar but also notably different from the studies reported by others. 
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Careful analysis of A/Ci curves (Figure 3-1) provides further evidence that the 

capacity of the C3 cycle to fix carbon is compromised by high Tleaf, and that this 

does not arise by stomatal limitations of CO2 uptake.  The suppression of 

photosynthesis reported in Chapter 3 occurred at temperatures 2-4°C lower than 

that described elsewhere and was also irreversible (Frolec et al. 2008) compared 

with full recovery within an hour, (Hüve et al. 2011).  It is not clear why these 

differences have arisen. It could be due to the different species of plant used, in this 

study barley compared with cotton and tobacco (Crafts-Brandner and Salvucci 

2000, 2002). Alternatively, it might be due to the methods used.  One of the major 

difficulties with exposing attached leaves to a consistent and uniform Tleaf in the 

effect of transpirational cooling which might be patchy across the leaf (Baker 2008). 

Tleaf is determined by the combined processes that heat and cool leaves. The 

heating processes include short (visible light) and long wave (infra-red) radiation 

(radiative processes), and Tair (if Tair is above Tleaf) coupled with air speed at the 

surface of the leaf (conductive / convective processes). The cooling processes 

include mainly long wavelength radiative losses, and Tair (if Tleaf is above Tair) and 

air speed (conductive and convective processes), plus transpiration.  In most 

experiments in the literature where attached leaf measurements have been made, 

Tair in the leaf chamber was controlled usually within the limits of ± 1-2°C of the set 

temperature.  The reason for this fluctuation is that whilst Tair and airspeed can be 

controlled, and radiative losses are governed by Tleaf and the laws of physics, 

stomatal conductance and transpirational cooling are controlled by the plant. This 

problem is exacerbated by fluctuations in gs during the period of heat stress.  What 

has been reported in the literature, therefore, is the average Tleaf and a review of 

the literature shows that Tleaf is averaged and the incurred variance in Tleaf, which 
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might be as high as 2°C, is simply ignored. It is for this reason that the Post Heat 

Stress experiments were designed (Chapter 3-2).  In these experiments attached 

leaves were placed on a thermal block in the dark and covered with a neoprene pad 

for thermal insulation. Careful analysis with multiple thermocouples demonstrated 

that a uniform Tleaf could be imposed on the attached leaf section that varied less 

than 0.3°C between leaves. Further, as these experiments were performed in the 

dark in a small volume of still air, radiative heating and transpirational cooling was 

effectively eliminated. It is reasonable to conclude, therefore, that the thermal profile 

of the effects of high leaf temperatures on photosynthesis rates provided in Chapter 

3 are a better representation of events than those presented in the published 

literature. 

 

One criticism that could be levelled at the Post Heat Stress experiments described 

in Chapter 3 relates to the exposure of leaves to high temperatures in the dark.  

Whilst this approach may show the direct effect of high Tleaf on attached leaves, in 

the field where plants are normally exposed to high Tair and high irradiance, other 

factors such as light-generated reactive oxygen species (ROS) may also cause 

significant damage before the reported thermal effects are apparent.  To explore 

this possibility leaves were exposed to saturating levels of irradiance (approximately 

600 µmol m-2 s-1 PAR) for 3 hours whilst held over a range of Tleaf. The effects on 

photosynthesis rates were almost identical to those observed on leaves treated in 

the dark, and it can be concluded that up to this light level damage to the 

photosynthetic apparatus appears to arise from a direct effect of high temperature 

on a component or components of the C3 cycle.  It could be argued that plants that 

are exposed to Tleaf > 36ºC are likely to be exposed to full sunlight, which at midday 
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in the height of summer may be as high as 1500 or 2000 µmol m-2 s-1 PAR 

depending on the latitude.  The levels of irradiance used in Chapter 3 were 

approximately a third of these maximal levels, and it could be argued that had higher 

levels been used ROS-induced damage might have been observed at those 

intensities. Whilst this remains a possibility, it should be stressed these are maximal 

levels of irradiance that peak at midday at the height of summer.  Further, significant 

amounts of ROS would still be generated at 600 µmol m-2 s-1 PAR when 

photosynthetic electron transport rates are impaired. Measurements of 

photosynthetic electron transport rates also show a large decline at 38°C in which 

case absorbed light could not be dissipated through normal chloroplast metabolism 

(C3 cycle, nitrate reduction, etc.), through the Mehler reaction, or through the 

ascorbate/glutathione cycle. Under these conditions the density of excited 

chlorophyll molecules in the light harvesting complexes would have increased 

leading to the formation of triplet excited chlorophyll and then singlet oxygen, a very 

potent oxidant that causes severe damage to tissues.  An argument could be made 

to repeat these experiments using very high levels of irradiance (e.g. 2000  µmol m-

2 s-1 PAR) to test if ROS damage is significant. An alternative approach would be to 

assess the temperature profile of photosynthesis of plants growing in the field that 

are exposed to both high Tleaf and very high irradiance.  These experiments would 

have the advantage of making meaningful measurements on barley plants exposed 

to natural conditions, but might be compromised by attempts to interpret a data set 

where Tleaf cannot be held constant and consequently suffers from large inherent 

variance (see above).   
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A decline in light saturated photosynthesis rates (Asat) might arise from a direct 

suppression of high Tleaf on carbon assimilation, or by a direct stimulation in 

photorespiration.  Previous work comparing the metabolite pools of control and heat 

stressed attached barley leaves suggested the C3 cycle is perturbed and that 

carbon flow between Ribose 5-phopsphate and 3-phosphoglycerate was impaired 

(Almalki 2014). These observations suggest that an increase in photorespiration 

does not account for the decline in Asat with high leaf temperature.  Similarly, other 

reports where photorespiration was measured on attached leaves suggested it was 

not a significant factor on the decline in carbon assimilation (Crafts-Brandner and 

Salvucci 2002),  but it was pointed out above that the temperature profiles of these 

experiments were somewhat different from those presented in this thesis. None-the-

less it seemed sensible to check the possibility that high Tleaf affects carbon 

assimilation rates by perturbing photorespiration. Established methods for 

estimating rates of photorespiration involve determining A/Ca (and hence A/Ci) 

curves from attached leaves exposed to normal air (21% oxygen – 210 mmol O2 

mol-1 air, variable CO2) where there is significant competition between CO2 and O2 

for binding sites on RuBisCO, and modified air (1% O2 – 10 mmol O2 mol-1 air, 

variable CO2) where there is much less competition; the difference between these 

two reading can be taken as the rate of photorespiration.  These methods proved to 

be unsuitable for attached barley leaves. Often over 30 minutes was required to 

attain steady state CO2 assimilation readings and when exposed to 1% oxygen, this 

may have induced severe anaerobises.  For this reason, measurements were made 

on attached leaves exposed first to normal air (380 µmol CO2 and 210 mmol O2 mol-

1 Air) for 20 minutes followed immediately by exposure to modified normal air (380 

µmol CO2 and 10 mmol O2 mol-1 Air) for a similar period.  In this way steady state 
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readings could be achieved but clearly it was not possible to construct A/Ca or A/Ci 

curves and assess the rates of photorespiration over a range of CO2/O2 ratios.  The 

findings from these experiments were unequivocal; although high Tleaf did result in 

a small increase in photorespiration between 37° and 40 °C, it accounted for only 

15% of the observed 80-90% decline in Asat. The conclusions are that high Tleaf 

directly affects the C3 cycle and has only a minor effect on photorespiration. 

 

In the Introduction (Chapter 1) it was stated that previous work at Glasgow 

University on the effects of high Tleaf on photosynthesis had suggested carbon flow 

between Ri5P and RuBP in the C3 cycle was affected but the two enzymes involved 

in catalysing this conversion, Ribose 5-phosphate Isomerase (Ri5PI) and 

Phosphoribulose Kinase (PRK) were almost fully active after heat stress (Almalki 

2014).  Further work in that report, and new work presented in this thesis (Chapter 

3) has confirmed the supply of CO2 to the chloroplast was not affected, and this left 

only one possibility to account for a decrease in carbon flow from Ri5P to RuBP, the 

concentration of ATP in the chloroplast.  Preliminary measurement reported in 

Almalki (2014) suggested high Tleaf did indeed result in a decline in estimates of 

chloroplast ATP levels in vivo but this needed to be checked. In those experiments 

estimates of chloroplast ATP levels were made by calculating the difference 

between the steady state levels measured in the light and the dark.  Whilst this 

method did suggest a decline in chloroplast ATP levels with increasing Tleaf, the 

experiments were incomplete as only differences were reported.  For this reason, 

these preliminary experiments were repeated and extended in an attempt to confirm 

the role of ATP supply on the C3 cycle.  The experiments reported in Chapter 3 did 

not confirm this hypothesis, however.  First, in the light whole leaf ATP levels 
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increased significantly with increasing Tleaf suggesting there should have been 

sufficient chloroplast ATP to support the PRK-dependent conversion of Ru5P to 

RuBP.  Second, the levels of whole leaf ATP in control attached leaves in the dark 

were higher than in the light; this is in direct contrast with the preliminary data of 

Almalki (2014) who showed the converse. It is unclear why these discrepancies 

have arisen.  ATP levels within a cell are of course the sum of those in the 

chloroplasts, the mitochondria, and the cytoplasm; the assumption with these 

experiments is that mitochondrial and cytoplasmic levels do not change between 

the light and dark, and the difference therefore reports light-generated ATP in the 

chloroplast.  This is clearly a crude assumption and caution must be applied when 

interpreting the results from these experiments.  Also, it should be stressed that 

what measured was whole leaf steady state levels of ATP in the light and in the 

dark.  ATP concentration may change because the capacity to generate or consume 

ATP changes, and this is also a complicating factor when interpreting these data.  

The increase in light adapted whole leaf ATP levels with increasing Tleaf (Figure 3-

11) might have arisen, therefore, from an increase in the capacity to generate ATP 

or from a decrease in the consumption of ATP, or both.  Although not measured in 

this current study, Almalki (2014) did measure over a range of Tleaf the dark decay 

in the apparent Fo level of chlorophyll fluorescence after a period of illumination; 

this is considered to reflect the capacity of the thylakoid membrane to develop and 

sustain a proton motive force (pmf; Baker 2008).  The conclusion from these 

experiments was that in leaves where Asat was severely suppressed by high Tleaf, 

the pmf was comparable to that found in control, non-stressed leaves.  What was 

not clear form these experiments, however, is whether the ATPsynthase was fully 

functional and able to use the established pmf to generate ATP in the chloroplast.  
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The fact that ATP levels increase in light adapted leaves with Tleaf suggests that if 

there was sufficient ATP in the stroma to support the activity of PRK (and PGK) at 

25°C, there certainly should have been a sufficient level at higher temperatures.  

This leads to the conclusion that chloroplast ATP levels in the light do not impair the 

generation of the substrate RuBP required for RuBisCO activity leading to the 

suppression of Asat. It would appear that on closer analysis there is no evidence to 

support the hypothesis of Almalki (2014) that low stromal ATP levels account for the 

observed decline in photosynthesis rates at high leaf temperatures. 

 

The conclusion that stromal ATP levels do not account for the observed suppression 

of leaf photosynthesis rates is problematic.  Compelling evidence has been provided 

by Almalki (2014) and in this thesis for the following:  the activity of the C3 cycle is 

severely suppressed by high Tleaf; the supply of CO2 to the chloroplast is not greatly 

affected; neither the enzymes that convert Ri5P to 3PGA nor stromal ATP levels are 

affected and at least this part of the C3 cycle remains fully functional; metabolite 

profiling has implicated carbon flow between Ri5P to 3PGA is compromised.  

Clearly, the last two statements are incompatible; one of these observations must 

be incorrect.  The way forward to resolve this discrepancy would be to re-analyse 

the metabolite profiles of heat-stressed and control barley leaves to confirm the 

original analysis reported in Almalki (2014) was valid. Alternatively, a biochemical 

approach could be used to isolate and then assay each and every enzyme of the 

C3 cycle with the hope this would identify the site of thermal damage; this is a 

daunting challenge, many of the substrates for enzymes of the C3 cycle are not 

available commercially and some complex chemical synthesis would be required.  
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During the early days of research into the bioenergetics of chloroplasts it was 

common to isolate intact plastids and measure the rate of ATP synthesis directly 

using 32P-labelled phosphate. An argument could be made that such an in vitro 

approach could be used here to confirm the role of ATP in heat-stressed leaves.  

Intact chloroplasts could be isolated from control leaves, placed in appropriate 

buffers and heat stressed in vitro; subsequently, the capacity of these chloroplasts 

to generate ATP could then be assessed using well established conventional 

methods.  Although compelling, such an approach has its drawbacks.  First, 

chloroplast preparations are rarely homogeneous and usually consist of a mixture 

of good intact and partially intact chloroplast, plus a variable amount of released 

thylakoid membranes from lysed plastids.  Further, it is now well established that 

chloroplasts ‘age’ rapidly in vitro; some consider it pointless to make measurements 

on preparations that are over 60 minutes old (Dominy et al.  1981) and it would not 

be possible, therefore, to expose them to in vitro heat stress for 3 hours. For this 

reason, it is not recommended to use this approach. 

 

One of the interesting observation to emerge from the Pseudo-Steady State 

measurements reported in Section 3.2 relates to the role of stomata. There is a tacit 

assumption that as air temperature increases and leaves begin to wilt, that stomata 

close to conserve water (Taiz and Zeiger 2010). Indeed, agronomists are well aware 

of ‘midday closure’ where gs declines between ca. 11:00 and 14:00 causing a 

decline is photosynthesis rates (Lambers et al. 2005). Clearly these observations 

are real in a temperate arable setting where irradiance, Tair – and therefore Tleaf also 
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– are moderate.  On closer consideration, however, this is not a sensible strategy 

for plants exposed to high irradiance and Tair as a high Tleaf will ensue and stomatal 

closure will make matters worse, potentially leathal.  At moderate levels of light and 

Tair partial stomatal closure may raise Tleaf above Tair, but not to the extent that it 

exceeds the critical level of 36°C; in these conditions the plant is faced with two 

problems, potential leaf desiccation and potential thermal damage if Tleaf exceeds 

36°C.  In contrast plants exposed to very high irradiance and high Tair might result 

in Tleaf of 36°C; partial stomatal closure would result in less transpirational cooling 

and a further increase in Tleaf, beyond the critical threshold level for irreversible 

damage (Frolec et al. 2008).  In these circumstances, leaves are faced with the 

same two problems, but keeping Tleaf below 38°C is imperative.  Faced with the 

dilemma of conserving water or maintaining Tleaf, it appears that barley leaves do 

the latter; stomata open to apertures not normally observed in non-stressed leaves 

(above 1.0 mol m-2 s-1 cf. typical values of 0.3 – 0.5 for non-stressed leaves).  The 

observations reported in Section 3.2 on the effects of high Tleaf on gs are novel and 

demonstrate that guard cells respond to high temperatures as well as the well 

documented stimuli of blue light, Ca, and water status  

 

6.2 The Effects of Nitrogen Supply on the Growth and 

Development of Barley 

In Chapters 4 and 5 a series of experiments are reported on the effects of nitrogen 

supply on barley.  This represented a change in direction of the original aims of the 

project (to investigate the effects of high Tleaf on photosynthesis rates – see Chapter 

3).  The reasons for this change of direction were two-fold.  First, it was felt the 
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studies on leaf temperature on photosynthesis rates had reached an impasse.  All 

of the possible candidates explaining the metabolomics profiling results had been 

carefully discounted leaving the option of repeating the metabolomics experiments 

(and possibly incurring a similar error) or undertaking a major study of metabolite 

flux through the different sections of the C3 cycle. Second, one of the original 

objectives of this project was to assess the role of N-supply on the thermal 

suppression of photosynthesis; this was necessary because some of the earlier 

work from our lab was done on barley plants with abnormal phenotypes.  Whilst 

undertaking these studies some unusual and very exciting observations were made. 

For these reasons, on one hand an impasse with the heat stress experiments, and 

on the other potentially very important observations on the effects of nitrogen status 

and nitrogen sinks on cereal productivity resulted in a re-focusing of the research 

direction.   

 

To summarize briefly, measurements on Asat and the carboxylation coefficient 

determined from A/Ci curves showed that unit leaf area photosynthesis rates 

increased with increasing N-supply.  At the levels of N normally used in arable 

production in the Developed World there was clear evidence that photosynthesis 

rates were approximately half of those found in plants grown in high N-supply and 

that as a consequence grain yields in well fertilized soils are constrained by plant N-

status.    

 

Further studies revealed more interesting observations; barley appears to have two 

endogenous sensors of N-status. One seems to operate at N-supplies of around 
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300 µM; below this threshold level plants develop a single culm that flowers (no 

tillers develop) but higher concentrations lead to a progressive increase in tiller 

number.  The other sensor mechanism seems to operate at a higher endogenous 

N-status.  Flowering continues and grain yield increases up to ca. 1.6 mM but then 

yield declines and flowering is progressively delayed; at 3 mM N-supply flowering is 

completely suppressed.  The effects of plant N-status appears to be exerted on the 

crown vegetative and reproductive meristems. Low N-status suppresses tillering, 

that is the ability of the lateral crown meristems to produce lateral vegetative buds 

but when triggered undergoes a transition to a reproductive meristem generating 

floral buds. Higher levels of N-supply (up to 1.6 mM) promote profuse tillering and 

the transition to flower occurs when the appropriate signal is received.  Beyond 1.6 

mM N-supply, however, tillering becomes profuse but the meristem remains in the 

vegetative phase generating only vegetative buds. 

 

For this reason, barley plants grown in hydroponic solutions containing a range of 

N-supply are morphologically very different and the explanation follows. Cereal 

crops are essentially wild grasses and despite domestication they still retain many 

of the strategies and traits ingrained by millions of years of evolution. One of these 

may be their response to N-supply. When N-supply is high members of the Poaceae 

family (which includes wheat, barley, oats and rye) could remain in the vegetative 

phase of growth indefinitely with the main shoot axis (the culm) and many secondary 

shoots (tillers). Below a critical threshold level (ca. 3 mM in barley), however, the 

VRN1 protein (which triggers flowering) accumulates in the crown meristem and the 

reproductive structures develop; below a second critical level (ca. 0.25 mM in barley) 

tillering is suppressed, the plant flowers but is ‘uniculm’.  Surprisingly, unlike animals 
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which reproduce when conditions are favourable, it appears that grasses tend to 

flower only when they are unfavourable (i.e. when they are N-stressed).  This switch 

between vegetative and reproductive phases of growth in response to N-supply may 

be a good ecological strategy for wild plants, but it is not ideal for crop production – 

increasing N increases biomass but suppresses flowering.  The implication of these 

findings is that in typical arable settings (0.3-0.5 mM soil N-supply) barley develops 

two or three flowering culms but photosynthesis rates are impaired by leaf protein 

levels (i.e. the abundance of the C3 Cycle enzymes).  

 

These observations suggest that if leaf nitrogen status could be boosted an increase 

in ULA photosynthesis rates would occur leading to an increase in grain yield.  To 

achieve these gains, however, barley would have to be modified in two ways.  First, 

the mechanism(s), presumably located in the crown meristem, that sense nitrogen 

status in plants grown above 0.3 mM N-supply and result in the crown meristems 

undergoing tillering (i.e. nitrogen sinks) would have to be inactivated or at least 

modulated. This would lead to an increase in main stem nitrogen levels and higher 

ULA photosynthesis rates.  Second, the mechanism(s), again probably located in 

the crown meristem, that sense the nitrogen status of plants grown above 1.6 mM 

N-supply and suppresses the vegetative-to-floral phase transition would have to be 

inactivated to ensure the gain in carbon assimilation would lead to a gain in grain 

yield. 

 

In Chapter 4 the details of some experiments were provided where attempts were 

made to reduce tillering and hence sink strength.  These included the mechanical 

removal of tillers and experiments with ‘uniculm’ mutants.  Both of these approaches 
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failed.  Mechanical removal of new tillers resulted in infection of the crown that was 

difficult to control. Further, the three ‘uniculm’ / ‘low number of tillers’ mutants tested 

showed very low fertility and it has not yet been possible to generate enough seed 

to undertake a set of experiments with the appropriate controls. It seems that 

whatever genetic lesions have resulted in a failure of the crown meristem of these 

plants to generate multiple vegetative buds (tillers), the same lesions have resulted 

in a failure of the same meristems to generate multiple florets after undergoing a 

vegetative-to-reproductive transition. Over twenty uniculm mutants have been 

isolated in the Bowman background, and there are probably many others in different 

backgrounds. It is not clear whether all of these uniculm mutants also show very low 

fertility, but the received wisdom is that they do (Prof Robbie Waugh, James Hutton 

Institute, per comm). To date, none of the mutations that cause the uniculm 

phenotype has been mapped. A better understanding the mechanisms that control 

tillering in cereals is required as this may provide insight into how to suppress 

tillering without compromising flowering. Performing time course transcriptome 

profiling experiments on the vegetative crown meristem of developing (2-to-5 weeks 

old) plants may provide this insight, and exposure to a range of N-supply may help.  

It is recommended that these experiments are undertaken with some urgency, 

although the minute size of the crown meristem at this stage (<0.5 mm length) will 

make this approach challenging. 

 

In Chapter 5 the results of transcriptome profiling experiments are reported on older 

barley plants (5-to-7 weeks old) where the crown meristem had already undergone 

a vegetative-to-reproductive transition.  These experiments were designed to 

investigate why high levels of N-supply suppressed floral development at the 2-to-3 
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node stage.  These experiments were hampered in part by the poor annotation of 

the barley sequences deposited in the public databases. A discussion is presented 

at the end of Chapter 5 on how this problem might be resolved.  None-the-less, in 

the developing floral meristem high nitrogen status significantly (p < 0.05) 

suppressed nearly one thousand transcripts and up regulated nearly 300 transcripts 

by a factor of 3 or more. Manual interrogation of the public databases with each of 

these sequences revealed some annotation from which Gene Ontology (GO) 

classes could be determined for Metabolic and Biochemical function.  Amongst 

those sequences that were down regulated by high nitrogen supply were 

transcription factors (including homologues of sequences involved in organ identity 

in other plants, ie.g.  SCARECROW, GAI, and APETELLA2), regulators of flowering, 

suppressors of translation, and Expansins (that could be responsible for spike 

elongation). Sequences that were up regulated by high nitrogen included 

transcription factors, controllers of flowering, and various signalling components 

(kinases, etc.,). 

 

6.3 Future perspectives 

In this study the direct effect of high temperatures on photosynthesis was assessed. 

All of the work presented in this thesis, and from others at Glasgow University, has 

indicated high Tleaf causes a decline in chloroplast ATP levels, and this impairs the 

synthesis of RuBP by Phosphoribulose Kinase, and hence photosynthesis rates. 

Unfortunately, it was not possible to demonstrate unequivocally a decrease in 

chloroplast ATP levels with heat stress.  This might be due to the methods used to 

assess ATP levels in whole leaves (the luciferin-luciferase assay), and it might be 
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priuent to try alternative assays. Chromatographic separation and quantification of 

adenylates is one possibility and has the advantage that both ADP and ATP can be 

resolved, therebyby providing a check as one form is converted to the other.  The 

major limitation with these experiments, however, might be the inability to separate 

chloroplast adenylate levels from those in the rest of the cell.  It is difficult to devise 

a method that can do this on attached leaves. Fractionation of chloroplasts from leaf 

tissue will inevitably lead to changes in the dynamic state of the adenylate pools 

during the preparation stage, rendering the results useless.  One possibility might 

be attempting to resolve chloroplast ATP levels in vivo using 31P NMR. This has 

been achieved with mitochondria in excised maize root tips (Roberts et al. 1984), 

but this approach has not been developed for routine analysis, and it is not clear 

how this could be achieved for an attached illuminated leaf. Further work is required 

to confirm the role of ATP levels on Asat in heat stressed attached leaves; patricular 

attention could be given to resolving ATP biosynthesis and ATP consumption as 

both processes would lead to a change in the dynamic state of ATP/ADP ratios. 

 

In a previous PhD study at Glasgow University no evidence was found for genotypic 

differences between C3 or C4 cereal crops and landraces that have been developed 

in tropical / sub-tropical and temperate latitudes. In all cases when Tleaf rose above 

38˚C for an hours or more, Asat was severely and irreversibly inhibted (AlMalki 

2014). None-the-less, there are endemic plants (agave, cactus, etc.,) which thrive 

in arid regions of the world that can tolerate Tleaf of over 50˚C. It is conceivable the 

photosynthetic apparatis in these species is inherently more tolerant of heat stress, 

and this opens the prospect of biongineering these homologous proteins into cereal 

crops. The finding of the recent work on heat stress on barley undertaken at 
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Glasgow University has not identified specific proteins that cause thermal stress and 

so a transgenic approach to improve thermal tolerance in crops seems unlikely at 

present.  

 

One possible cause for the remarkable thermal tolerance of the photosynthetic 

processes in plants such as agave is the presence of powerful repair mechanisms.  

This is generally attributable to Heat Shock Proteins (HSP) and an in-depth study of 

these in heat tolerant plants might be illuminating.  For example, cotton (a 

moderately heat tolerant plant) shows a high induction of heat and thermal tolerance 

HSPs (Zhang et al. 2016). These include the accumulation of GHSP26, HSP101, 

HSC70 and HSFA but details of their exact role is sketchy. In barley HSP90, HSP70, 

HSP26 and the small HSPs (sHSP) have been implicated in refolding heat 

denatured proteins back to their functional forms. A full and detailed comparison at 

the level of the proteome of the HSP systems in heat tolerant and sensitive plants 

now seems timely.  

  

The experiments reported in chapters 4 and 5 offer an opportunity for increasing 

cereal crop yields. These experiments provide a framework for more detailed time-

series analyses on the changes in the transcriptome profiles of floral meristems from 

High and Moderate N-supply grown plants. These may provide some insight into 

how plant nitrogen status suppresses flower development and opens up the 

prospect of manipulating elite lines to produce higher yields in response to nitrogen 

applications. The  effects of high N supply on the growth and development of spring 

barley requires further investigation. One avenue is to better understand the role of 

N-supply on tillering; tillers are nitrogen sinks and as such, are likely to reduce the 
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protein levels (and photosynthesis rates) in the main stem. Manipulation of tiller 

number (resource sinks) might lead to higher photosynthesis rates and higher 

yields.  To address this, attempts were made to control tiller numbers by surgical 

removal with a scalpel, but problems with infection were encountered. Repeating 

these experiments under sterile or semi-sterile conditions may allow these 

experiments to be completed; cauterising scar tissue with dental wax might also 

work.  Another approach that was attempted was the use of Uniculm mutants.  

Seeds from three Bowman lines that produce low tillers were procured and grown, 

but their inherently low fertility (2-3 seeds per plant per generation) has seriously 

hampered these experiments (approximately 100 seedlings will be required to 

undertake a full set of experiments over the full range of N-supply). Bulking up these 

seed may take six or seven harvests, but these experiments are underway.  Another 

approach is to attempt to identify uniculm mutants that have normal levels of fertility. 

 

Manipulating the resource sink strength may boost protein levels in the main stem 

and result in increased photosynthesis rates, but this is unlikely to result in imporved 

yields due to an increased suppression of flowering.  The transcriptome profiling 

experiments reported in this study have identified a number of sequences in floral 

primordia meristems who’s abundance is either highly increased or decreased in 

response to N-supply. What is not known at this stage are the molecular 

mechanisms that regulate these changes. The undifferentiated crown meristem 

produces leaf primordia; with increasing N-supply the meristem splits to generate 

two-or-more vegetative primordia that go on to produce tillers. When the signal to 

flower (VRN3) is translocated from the leaves to the crown, the vegetative 

meristems undergo a transition to the floral meristem.  What is poorly understood 
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are the molecular mechanisms that regulate these changes; unravelling these 

mechanisms will provide a framework for controlling tillering at low nitrogen, whilst 

maintaining flowering at high nitrogen. The experiments reported here have 

provided some information on the role of N-supply on the suppression of flowering 

at the 2-3 node spike stage. What is now required are time-series transcriptome 

experiment over a range of N-supply,  the results should allow models of vegetative 

and floral meristem development to be constructed for subsequent testing using 

classical loss-of-function and gain-of-function mutational analysis.  

 

Undoubtedly, plant growth regulators (or hormones) will be involved in regulation of 

vegetative and reproductive stages in barley but these were not examined in this 

project. The roles of these hormones (which include auxins, cytokinins, and 

gibberellins) and their interaction with nitrogen require further study. The 

assessment of the concentrations of these compounds in tissues, however, is not 

trivial and few laboratories can perform these analyses with routine precision. 

Normally, ultra high performance liquid chromatography coupled with tandem mass 

spectrometry (UPLC-MS/MS) is required, along with experienced operaters. To 

provide a full understanding of the role of these growth regulators on the 

development of the crown meristem, and understanding of the changes is the 

activity of the receptors, as well as changes in concentration of the hormones, will 

be required.   
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Appendixes 

 

Appendix A-1. General Linear Model: Asat versus Temperature, Light  
Fig 3-1 
Factor     Type   Levels  Values 

Temp  fixed       6  25, 35, 36, 37, 38, 40 

Light      fixed       2  Dark, Light 

 

 

Analysis of Variance for AsatDat, using Adjusted SS for Tests 

 

Source          DF   Seq SS   Adj SS  Adj MS     F      P 

Temp             5   536.99   518.20  103.64  5.25  0.000 

Light            1     0.59     0.00    0.00  0.00  0.989 

Temp*Light       5    19.35    19.35    3.87  0.20  0.963 

Error           61  1204.84  1204.84   19.75 

Total           72  1761.77 

 

 

S = 4.44427   R-Sq = 31.61%   R-Sq(adj) = 19.28% 

 

 

Grouping Information Using Tukey Method and 95.0% Confidence 

 

Temp   N  Mean  Grouping 

25        20  14.2  A 

35         9  13.9  A 

37         9  13.1  A 

36        10  12.3  A 

38        18  10.0  A B 

40         7   4.6    B 

 

Means that do not share a letter are significantly different. 

 

 

Grouping Information Using Tukey Method and 95.0% Confidence 

 

Light   N  Mean  Grouping 

Light      39  11.4  A 

Temp       34  11.4  A 
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Means that do not share a letter are significantly different. 
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Appendix A-2 ETR vs Temp 

Fig 3-2 

General Linear Model: ETR Percent_1 versus ETRTemp1  
 
Factor    Type   Levels  Values 

ETRTemp1  fixed       5  25, 36, 37, 38, 40 

 

 

Analysis of Variance for ETR Percent_1, using Adjusted SS for Tests 

 

Source    DF  Seq SS  Adj SS  Adj MS      F      P 

ETRTemp1   4   49133   49133   12283  46.15  0.000 

Error     54   14373   14373     266 

Total     58   63506 

 

 

S = 16.3143   R-Sq = 77.37%   R-Sq(adj) = 75.69% 

 

 

Unusual Observations for ETR Percent_1 

 

           ETR 

Obs  Percent_1     Fit  SE Fit  Residual  St Resid 

 25    118.397  86.098   5.438    32.299      2.10 R 

 31     53.511  86.098   5.438   -32.587     -2.12 R 

 47     97.138  54.547   4.525    42.591      2.72 R 

 51     11.916  54.547   4.525   -42.631     -2.72 R 

 

R denotes an observation with a large standardized residual. 

 

 

Grouping Information Using Tukey Method and 99.9% Confidence 

 

ETRTemp1   N   Mean  Grouping 

25        24  100.0  A 

36         9   86.1  A 

37         5   82.2  A B 

38        13   54.5    B 

40         8   16.6      C 

 

Means that do not share a letter are significantly different. 
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Appendix A-3.  General Linear Model: Log Asat versus Temperature, Oxygen  
Fig 3-7 
Factor      Type   Levels  Values 

PResTemp    fixed       4  25, 36, 38, 40 

PResOxygen  fixed       2  1, 21 

 

 

 

Analysis of Variance for LogPResDat, using Adjusted SS for Tests 

 

Source                DF    Seq SS   Adj SS   Adj MS      F      P 

PResTemp               3   5.44767  5.44767  1.81589  32.92  0.000 

PResOxygen             1   0.29512  0.44024  0.44024   7.98  0.005 

PResTemp*PResOxygen    3   0.19265  0.19265  0.06422   1.16  0.326 

Error                132   7.28226  7.28226  0.05517 

Total                139  13.21770 

 

 

S = 0.234880   R-Sq = 44.91%   R-Sq(adj) = 41.98% 

 

 

Grouping Information Using Tukey Method and 95.0% Confidence 

 

PResTemp  PResOxygen   N  Mean  Grouping 

25         1          30   1.0  A 

25        21          30   0.9  A 

38         1          14   0.8  A B 

36         1          20   0.8  A B 

36        21          20   0.8  A B 

38        21          14   0.7    B C 

40         1           6   0.4      C D 

40        21           6   0.1        D 

 

Means that do not share a letter are significantly different. 
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Appendix A-4. General Linear Model: LogATPLight versus  
Fig 3-8 
Factor  Type  Levels  Values 

Covariance 

 

Analysis of Variance for LogATPDatLight, using Adjusted SS for Tests 

 

Source        DF  Seq SS  Adj SS  Adj MS     F      P 

ATPTempLight   1  1.0900  1.0900  1.0900  7.63  0.008 

Error         47  6.7112  6.7112  0.1428 

Total         48  7.8012 

 

 

S = 0.377878   R-Sq = 13.97%   R-Sq(adj) = 12.14% 

 

 

Term              Coef   SE Coef      T      P 

Constant       -0.4383    0.3323  -1.32  0.194 

ATPTempLight  0.026048  0.009428   2.76  0.008 
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General Linear Model: ATPDatDark versus ATPTempDark  
Fig 3-8 
Factor       Type   Levels  Values 

ATPTempDark  fixed       5  25, 36, 37, 38, 40 

 

 

Analysis of Variance for ATPDatDark, using Adjusted SS for Tests 

 

Source       DF   Seq SS   Adj SS  Adj MS     F      P 

ATPTempDark   4  2556.81  2556.81  639.20  7.05  0.000 

Error        41  3717.99  3717.99   90.68 

Total        45  6274.80 

 

 

S = 9.52274   R-Sq = 40.75%   R-Sq(adj) = 34.97% 

 

 

Grouping Information Using Tukey Method and 95.0% Confidence 

 

ATPTempDark   N  Mean  Grouping 

40           11  21.6  A 

25           12   7.9    B 

36            8   4.8    B 

37            3   3.2    B 

38           12   2.3    B 

 

Means that do not share a letter are significantly different. 
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Appendix A-5.General Linear Model: Asat versus Temperature  
Fig. 3-9  
Factor       Type   Levels  Values 

Temperature  fixed       9  25, 35, 37, 38, 39, 40, 41, 42, 43 

 

 

Analysis of Variance for Asat, using Adjusted SS for Tests 

 

Source       DF   Seq SS   Adj SS  Adj MS      F      P 

Temperature   8  2110.76  2110.76  263.84  25.69  0.000 

Error        87   893.52   893.52   10.27 

Total        95  3004.28 

 

 

S = 3.20474   R-Sq = 70.26%   R-Sq(adj) = 67.52% 

 

 

Grouping Information Using Tukey Method and 95.0% Confidence 

 

Temperature   N  Mean  Grouping 

25           12  16.4  A 

35            5  15.5  A 

38            3  14.9  A B 

37            6  13.6  A B 

39           11  13.1  A B 

40           12   9.6    B C 

41           20   7.3      C D 

42           19   4.8        D E 

43            8   1.5          E 

 

Means that do not share a letter are significantly different. 
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General Linear Model: LogStomata versus Temperature  
Fig 3-9 
Factor       Type   Levels  Values 

Temperature  fixed       9  25, 35, 37, 38, 39, 40, 41, 42, 43 

 

 

Analysis of Variance for LogStomata, using Adjusted SS for Tests 

 

Source       DF   Seq SS   Adj SS   Adj MS     F      P 

Temperature   8  2.37662  2.37662  0.29708  4.48  0.000 

Error        87  5.77101  5.77101  0.06633 

Total        95  8.14763 

 

 

S = 0.257553   R-Sq = 29.17%   R-Sq(adj) = 22.66% 

 

 

Grouping Information Using Tukey Method and 95.0% Confidence 

 

Temperature   N  Mean  Grouping 

38            3   0.1  A 

39           11   0.0  A 

40           12  -0.1  A B 

35            5  -0.2  A B 

25           12  -0.2  A B 

37            6  -0.2  A B 

41           20  -0.3  A B 

42           19  -0.4    B 

43            8  -0.5    B 

 

Means that do not share a letter are significantly different. 
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Appendix A-6. General Linear Model: Asat_2 versus N supply_2  
Fig 4-3 
Factor      Type   Levels  Values 

N supply_2  fixed       6  0.08, 0.16, 0.32, 0.80, 1.60, 16.00 

 

 

Analysis of Variance for Asat_2, using Adjusted SS for Tests 

 

Source      DF   Seq SS   Adj SS  Adj MS      F      P 

N supply_2   5  464.360  464.360  92.872  27.07  0.000 

Error       32  109.791  109.791   3.431 

Total       37  574.151 

 

 

S = 1.85229   R-Sq = 80.88%   R-Sq(adj) = 77.89% 

 

 

 

Grouping Information Using Tukey Method and 95.0% Confidence 

 

N supply_2  N  Mean  Grouping 

16.00       5  16.7  A 

 1.60       8  11.2    B 

 0.32       6   8.7    B C 

 0.80       6   8.7    B C 

 0.16       7   6.3      C D 

 0.08       6   5.3        D 

 

Means that do not share a letter are significantly different. 

 



 
 

 203 

 

  

5.02.50.0-2.5-5.0

99

90

50

10

1

Residual

Pe
rc

en
t

15.012.510.07.55.0

4

2

0

-2

-4

Fitted Value

Re
si

du
al

43210-1-2-3

8

6

4

2

0

Residual

Fr
eq

ue
nc

y

35302520151051

4

2

0

-2

-4

Observation Order

Re
si

du
al

Normal Probability Plot Versus Fits

Histogram Versus Order

Residual Plots for Asat_2



 
 

 204 

General Linear Model: Phi_2 versus N supply_2  
Fig 4-3 
Factor      Type   Levels  Values 

N supply_2  fixed       6  0.08, 0.16, 0.32, 0.80, 1.60, 16.00 

 

 

Analysis of Variance for Phi_2, using Adjusted SS for Tests 

 

Source      DF     Seq SS     Adj SS     Adj MS      F      P 

N supply_2   5  0.0093853  0.0093853  0.0018771  23.34  0.000 

Error       32  0.0025736  0.0025736  0.0000804 

Total       37  0.0119588 

 

 

S = 0.00896799   R-Sq = 78.48%   R-Sq(adj) = 75.12% 

 

 

 

Grouping Information Using Tukey Method and 95.0% Confidence 

 

N supply_2  N  Mean  Grouping 

16.00       5   0.1  A 

 1.60       8   0.1    B 

 0.80       6   0.0    B C 

 0.32       6   0.0    B C 

 0.16       7   0.0      C D 

 0.08       6   0.0        D 

 

Means that do not share a letter are significantly different. 
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Appendix A-7. General Linear Model: Asat_1 versus N supply_1  
Fig 4-4 
Factor      Type   Levels  Values 

N supply_1  fixed       6  0.08, 0.16, 0.32, 0.64, 3.20, 16.00 

 

 

Analysis of Variance for Asat_1, using Adjusted SS for Tests 

 

Source      DF   Seq SS  Adj SS  Adj MS     F      P 

N supply_1   5   760.05  760.05  152.01  6.64  0.000 

Error       40   915.05  915.05   22.88 

Total       45  1675.10 

 

 

S = 4.78291   R-Sq = 45.37%   R-Sq(adj) = 38.54% 

 

Grouping Information Using Tukey Method and 95.0% Confidence 

 

N supply_1   N  Mean  Grouping 

 3.20        5  19.0  A 

16.00        7  18.9  A 

 0.64        6  13.8  A B 

 0.32       10  13.7  A B 

 0.16       10  12.9  A B 

 0.08        8   6.4    B 

 

Means that do not share a letter are significantly different. 
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General Linear Model: Phi_1 versus N supply_1  
Fig 4-4 
Factor      Type   Levels  Values 

N supply_1  fixed       6  0.08, 0.16, 0.32, 0.64, 3.20, 16.00 

 

 

Analysis of Variance for Phi_1, using Adjusted SS for Tests 

 

Source      DF     Seq SS     Adj SS     Adj MS     F      P 

N supply_1   5  0.0329317  0.0329317  0.0065863  9.24  0.000 

Error       40  0.0285050  0.0285050  0.0007126 

Total       45  0.0614367 

 

 

S = 0.0266950   R-Sq = 53.60%   R-Sq(adj) = 47.80% 

 

Grouping Information Using Tukey Method and 95.0% Confidence 

 

N supply_1   N  Mean  Grouping 

 3.20        5   0.1  A 

16.00        7   0.1  A 

 0.64        6   0.1  A B 

 0.32       10   0.1  A B 

 0.16       10   0.1    B C 

 0.08        8   0.0      C 

 

Means that do not share a letter are significantly different. 
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Appendix A-8. General Linear Model: ETR versus ETR  N  
Fig 4-5 
Factor  Type   Levels  Values 

ETR  N  fixed       6  0.08, 0.16, 0.80, 1.60, 3.20, 16.00 

 

 

Analysis of Variance for ETR, using Adjusted SS for Tests 

 

Source  DF   Seq SS   Adj SS  Adj MS      F      P 

ETR  N   5  16029.9  16029.9  3206.0  26.49  0.000 

Error   25   3026.0   3026.0   121.0 

Total   30  19055.8 

 

 

S = 11.0018   R-Sq = 84.12%   R-Sq(adj) = 80.94% 

 

Grouping Information Using Tukey Method and 95.0% Confidence 

 

ETR  N  N   Mean  Grouping 

16.00   4  123.0  A 

 1.60   5   93.4    B 

 3.20   4   93.3    B 

 0.80   8   81.3    B 

 0.16   5   53.9      C 

 0.08   5   53.0      C 

 

Means that do not share a letter are significantly different. 
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Appendix A-9. General Linear Model: Leaves/tiller versus nitrogen addition  
Fig 4-7 A 
Factor             Type   Levels  Values 

nitrogen addition  fixed       5  0, 2, 10, 20, 47 

 

 

Analysis of Variance for Leaves/tiller, using Adjusted SS for Tests 

 

Source              DF   Seq SS   Adj SS  Adj MS     F      P 

nitrogen addition    4   63.624   63.624  15.906  7.52  0.000 

Error              131  276.934  276.934   2.114 

Total              135  340.559 

 

 

S = 1.45396   R-Sq = 18.68%   R-Sq(adj) = 16.20% 

 

 

Grouping Information Using Tukey Method and 95.0% Confidence 

 

nitrogen 

addition   N  Mean  Grouping 

 0         6   8.2  A 

 2         7   8.1  A 

47        59   6.1    B 

10        27   5.8    B 

20        37   5.7    B 

 

Means that do not share a letter are significantly different. 
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Kruskal-Wallis Test: Leaves/tiller versus nitrogen addition  
 
Kruskal-Wallis Test on Leaves/tiller 

 

nitrogen 

addition    N  Median  Ave Rank      Z 

 0          6   8.000     119.8   3.26 

 2          7   8.000     117.2   3.36 

10         27   5.000      59.4  -1.35 

20         37   6.000      58.3  -1.84 

47         59   6.000      68.1  -0.11 

Overall   136              68.5 

 

H = 24.81  DF = 4  P = 0.000   
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General Linear Model: Leaves/Tiller2 versus L/T2 N Level  
Fig 4-7 B 
Factor        Type   Levels  Values 

L/T2 N Level  fixed       5  0.08, 0.16, 0.64, 3.20, 16.00 

 

 

Analysis of Variance for Leaves/Tiller2, using Adjusted SS for Tests 

 

Source        DF  Seq SS  Adj SS  Adj MS     F      P 

L/T2 N Level   4  14.402  14.402   3.601  2.43  0.074 

Error         25  37.003  37.003   1.480 

Total         29  51.405 

 

 

S = 1.21660   R-Sq = 28.02%   R-Sq(adj) = 16.50% 

 

 

 

 

Kruskal-Wallis Test: Leaves/Tiller2 versus L/T2 N Level  
 
Kruskal-Wallis Test on Leaves/Tiller2 

 

L/T2 N 

Level     N  Median  Ave Rank      Z 
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 0.08     4   6.750      25.5   2.44 

 0.16     5   6.000      18.2   0.75 

 0.64     6   5.429      13.3  -0.67 

 3.20    10   5.281      11.7  -1.67 

16.00     5   5.738      15.0  -0.14 

Overall  30              15.5 

 

H = 7.87  DF = 4  P = 0.096 
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Appendix A-10. General Linear Model: Tiller/ plant_1 versus T/P 1 N  
Fig 4-8 A 
Factor   Type   Levels  Values 

T/P 1 N  fixed       5  0, 2, 10, 20, 47 

 

 

Analysis of Variance for Tiller/ plant_1, using Adjusted SS for Tests 

 

Source   DF   Seq SS   Adj SS  Adj MS      F      P 

T/P 1 N   4  230.628  230.628  57.657  10.79  0.000 

Error    24  128.200  128.200   5.342 

Total    28  358.828 

 

 

S = 2.31120   R-Sq = 64.27%   R-Sq(adj) = 58.32% 

 

 

Grouping Information Using Tukey Method and 95.0% Confidence 

 

T/P 

1 N  N  Mean  Grouping 

47   6   8.5  A 

20   6   6.0  A B 

10   6   4.5    B C 

 2   5   1.4      C 

 0   6   1.0      C 

 

Means that do not share a letter are significantly different. 
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Kruskal-Wallis Test: Tiller/ plant_1 versus T/P 1 N  
 
Kruskal-Wallis Test on Tiller/ plant_1 

 

T/P 1 N   N  Median  Ave Rank      Z 

 0        6   1.000       5.5  -3.07 

 2        5   1.000       8.1  -1.99 

10        6   5.000      15.8   0.24 

20        6   6.000      20.8   1.88 

47        6   6.500      23.7   2.80 

Overall  29              15.0 

 

H = 19.83  DF = 4  P = 0.001 

H = 21.17  DF = 4  P = 0.000  (adjusted for ties) 
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General Linear Model: LogT/P 2 versus T/P N 2  
Fig 4-8 B 
Factor   Type   Levels  Values 

T/P N 2  fixed       6  0.08, 0.16, 0.32, 0.80, 1.60, 16.00 

 

 

Analysis of Variance for LogT/P 2, using Adjusted SS for Tests 

 

Source   DF  Seq SS  Adj SS  Adj MS       F      P 

T/P N 2   5  6.5503  6.5503  1.3101  122.17  0.000 

Error    30  0.3217  0.3217  0.0107 

Total    35  6.8720 

 

 

S = 0.103552   R-Sq = 95.32%   R-Sq(adj) = 94.54% 

 

 

Grouping Information Using Tukey Method and 95.0% Confidence 

 

T/P N 2  N  Mean  Grouping 

16.00    6   1.2  A 

 1.60    6   0.7    B 

 0.80    6   0.5    B 

 0.32    6   0.1      C 

 0.16    6   0.1      C 

 0.08    6   0.0      C 

 

Means that do not share a letter are significantly different. 

 



 
 

 219 

 

Kruskal-Wallis Test: Tiller/ plant_2 versus T/P N 2  
 
Kruskal-Wallis Test on Tiller/ plant_2 

 

T/P N 2   N  Median  Ave Rank      Z 

 0.08     6   1.000       7.5  -2.80 

 0.16     6   1.000      10.5  -2.04 

 0.32     6   1.000      10.5  -2.04 

 0.80     6   3.000      22.0   0.89 

 1.60     6   4.500      27.0   2.16 

16.00     6  15.500      33.5   3.82 

Overall  36              18.5 

 

H = 30.19  DF = 5  P = 0.000 
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General Linear Model: Tiller/ plant_3 versus T/P N 3  
Fig 4-8 C 
Factor   Type   Levels  Values 

T/P N 3  fixed       5  0.08, 0.16, 0.64, 3.20, 16.00 

 

 

Analysis of Variance for Tiller/ plant_3, using Adjusted SS for Tests 

 

Source   DF   Seq SS   Adj SS  Adj MS      F      P 

T/P N 3   4  1721.99  1721.99  430.50  15.02  0.000 

Error    20   573.37   573.37   28.67 

Total    24  2295.36 

 

 

S = 5.35428   R-Sq = 75.02%   R-Sq(adj) = 70.02% 

 

 

Grouping Information Using Tukey Method and 95.0% Confidence 

 

T/P N 3  N  Mean  Grouping 

16.00    4  27.0  A 

 3.20    6  19.7  A B 

 0.64    6  13.2    B C 

 0.16    5   6.6      C D 

 0.08    4   2.0        D 

 

Means that do not share a letter are significantly different. 
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Kruskal-Wallis Test: Tiller/ plant_3 versus T/P N 3  
 
Kruskal-Wallis Test on Tiller/ plant_3 

 

T/P N 3   N  Median  Ave Rank      Z 

 0.08     4   2.000       3.0  -2.96 

 0.16     5   7.000       7.5  -1.87 

 0.64     6  11.500      13.3   0.10 

 3.20     6  19.500      17.9   1.88 

16.00     4  27.000      22.1   2.71 

Overall  25              13.0 

 

H = 19.01  DF = 4  P = 0.001 

H = 19.05  DF = 4  P = 0.001  (adjusted for ties) 
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Appendix A-11. General Linear Model: Spike versus Spike N  
Fig 4-9 
Factor   Type   Levels  Values 

Spike N  fixed       8  0.08, 0.16, 0.32, 0.64, 0.80, 1.60, 3.20, 16.00 

 

 

Analysis of Variance for Spike, using Adjusted SS for Tests 

 

Source   DF   Seq SS  Adj SS  Adj MS      F      P 

Spike N   7   94.943  94.943  13.563  15.41  0.000 

Error    61   53.704  53.704   0.880 

Total    68  148.647 

 

 

S = 0.938294   R-Sq = 63.87%   R-Sq(adj) = 59.73% 

 

Grouping Information Using Tukey Method and 95.0% Confidence 

 

Spike N   N  Mean  Grouping 

 1.60     9   3.8  A 

 0.80     8   2.9  A 

 0.64     5   2.6  A B 

 0.32    13   1.3    B C 

 0.08    14   1.2    B C 

 0.16     9   1.0    B C 

16.00     5   0.0      C 

 3.20     6  -0.0      C 

 

Means that do not share a letter are significantly different. 
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Kruskal-Wallis Test: Spike versus Spike N  
 
Kruskal-Wallis Test on Spike 

 

Spike N   N       Median  Ave Rank      Z 

 0.08    14  1.000000000      30.9  -0.87 

 0.16     9  1.000000000      29.0  -0.96 

 0.32    13  1.000000000      33.0  -0.39 

 0.64     5  3.000000000      46.8   1.37 

 0.80     8  3.000000000      55.1   3.01 

 1.60     9  3.000000000      58.9   3.83 

 3.20     6  0.000000000       8.0  -3.45 

16.00     5  0.000000000       8.0  -3.12 

Overall  69                   35.0 

 

H = 43.94  DF = 7  P = 0.000 

H = 46.59  DF = 7  P = 0.000  (adjusted for ties) 
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Appendix A-12. General Linear Model: Spikee Length versus Spike Length N  
Fig 4-10 A 
Factor         Type   Levels  Values 

Node Length N  fixed       5  0.08, 0.16, 0.64, 3.20, 16.00 

 

 

Analysis of Variance for Spike Length, using Adjusted SS for Tests 

 

Source         DF   Seq SS   Adj SS  Adj MS     F      P 

Spike Length N   4  1208.28  1208.28  302.07  7.59  0.002 

Error          14   557.49   557.49   39.82 

Total          18  1765.77 

 

 

S = 6.31035   R-Sq = 68.43%   R-Sq(adj) = 59.41% 

 

 

 

Grouping Information Using Tukey Method and 95.0% Confidence 

 

Node 

Length N  N  Mean  Grouping 

 0.16     3  32.0  A 

 0.08     4  26.9  A B 

 0.64     4  26.6  A B 

 3.20     4  15.6    B C 

16.00     4  10.1      C 

 

Means that do not share a letter are significantly different. 
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Kruskal-Wallis Test: Spike Length versus Spike Length N  
 
Kruskal-Wallis Test on Spike Length 

 

Spike 

Length N   N  Median  Ave Rank      Z 

 0.08      4   27.15      13.5   1.40 

 0.16      3   37.57      15.3   1.79 

 0.64      4   26.52      13.0   1.20 

 3.20      4   15.25       7.0  -1.20 

16.00      4   10.16       2.5  -3.00 

Overall   19              10.0 

 

H = 13.62  DF = 4  P = 0.009 
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General Linear Model: Num Nodes versus Num Node N  
Fig 4-10 B 
Factor      Type   Levels  Values 

Num Node N  fixed       5  0.08, 0.16, 0.64, 3.20, 16.00 

 

 

Analysis of Variance for Num Nodes, using Adjusted SS for Tests 

 

Source      DF   Seq SS   Adj SS  Adj MS     F      P 

Num Node N   4   2.8577   2.8577  0.7144  0.75  0.573 

Error       19  18.2146  18.2146  0.9587 

Total       23  21.0723 

 

 

S = 0.979115   R-Sq = 13.56%   R-Sq(adj) = 0.00% 

 

 

 

 

Kruskal-Wallis Test: Num Nodes versus Num Node N  
 
Kruskal-Wallis Test on Num Nodes 

 

Num Node N   N  Median  Ave Rank      Z 

 0.08        4   3.500      15.6   0.97 

 0.16        5   3.250      14.4   0.68 

 0.64        5   3.231      13.7   0.43 
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 3.20        6   2.928       9.7  -1.13 

16.00        4   2.754       9.8  -0.85 

Overall     24              12.5 

 

H = 2.85  DF = 4  P = 0.582 

H = 2.86  DF = 4  P = 0.582  (adjusted for ties) 
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Appendix A-13. General Linear Model: Spike Length 2 versus Spike N 2  
Fig 4-11 A 
Factor    Type   Levels  Values 

Spike N 2  fixed       5  0.08, 0.16, 0.64, 3.20, 16.00 

 

 

Analysis of Variance for Spike Length 2, using Adjusted SS for Tests 

 

Source    DF  Seq SS  Adj SS  Adj MS      F      P 

Spike N 2   4  7168.7  7168.7  1792.2  70.09  0.000 

Error     18   460.3   460.3    25.6 

Total     22  7629.0 

 

 

S = 5.05662   R-Sq = 93.97%   R-Sq(adj) = 92.63% 

 

 

Grouping Information Using Tukey Method and 95.0% Confidence 

 

Spike N 2  N  Mean  Grouping 

 0.64     5  55.4  A 

 0.16     3  50.8  A B 

 3.20     4  42.3    B 

 0.08     6  40.3    B 

16.00     5   6.2      C 

 

Means that do not share a letter are significantly different. 
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Kruskal-Wallis Test: Node Length 2 versus Node N 2  
 
23 cases were used 

 

Kruskal-Wallis Test on Spike Length 2 

 

Spike N 2   N  Median  Ave Rank      Z 

 0.08      6  41.500      10.6  -0.60 

 0.16      3  51.000      16.7   1.28 

 0.64      5  55.000      20.4   3.13 

 3.20      4  40.000      11.4  -0.20 

16.00      5   6.000       3.0  -3.35 

Overall   23              12.0 

 

H = 18.19  DF = 4  P = 0.001 

H = 18.21  DF = 4  P = 0.001  (adjusted for ties) 
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General Linear Model: Num Nodes 2 versus Node N 2  
Fig 4-11 B 
Factor    Type   Levels  Values 

Node N 2  fixed       5  0.08, 0.16, 0.64, 3.20, 16.00 

 

 

Analysis of Variance for Num Nodes 2, using Adjusted SS for Tests 

 

Source    DF  Seq SS  Adj SS  Adj MS      F      P 

Node N 2   4  42.642  42.642  10.660  25.37  0.000 

Error     19   7.983   7.983   0.420 

Total     23  50.625 

 

 

S = 0.648209   R-Sq = 84.23%   R-Sq(adj) = 80.91% 

 

Grouping Information Using Tukey Method and 95.0% Confidence 

 

Node N 2  N  Mean  Grouping 

 0.08     6   6.2  A 

 0.16     4   6.0  A 

 0.64     5   5.6  A 

 3.20     4   5.3  A 

16.00     5   2.6    B 

 

Means that do not share a letter are significantly different. 
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Kruskal-Wallis Test: Num Nodes 2 versus Node N 2  
 
Kruskal-Wallis Test on Num Nodes 2 

 

Node N 2   N  Median  Ave Rank      Z 

 0.08      6   6.000      17.8   2.10 

 0.16      4   6.000      17.0   1.39 

 0.64      5   6.000      13.6   0.39 

 3.20      4   5.000      10.6  -0.58 

16.00      5   2.000       3.0  -3.38 

Overall   24              12.5 

 

H = 14.35  DF = 4  P = 0.006 

H = 16.18  DF = 4  P = 0.003  (adjusted for ties) 
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Appendix A-14. General Linear Model: 1000 g wt Soil versus Grain N Soil  
Fig 4-12 A 
 

Factor        Type   Levels  Values 

Grain N Soil  fixed       5  0, 2, 10, 20, 47 

 

 

Analysis of Variance for 1000 g wt Soil, using Adjusted SS for Tests 

 

Source        DF   Seq SS   Adj SS  Adj MS      F      P 

Grain N Soil   4  11985.0  11985.0  2996.2  99.08  0.000 

Error         25    756.0    756.0    30.2 

Total         29  12740.9 

 

 

S = 5.49903   R-Sq = 94.07%   R-Sq(adj) = 93.12% 

 

Grouping Information Using Tukey Method and 95.0% Confidence 

 

Grain 

N Soil  N  Mean  Grouping 

 2      6  59.5  A 

 0      6  46.5    B 

20      6  35.2      C 

10      6  28.3      C 

47      6  -0.0        D 

 

Means that do not share a letter are significantly different. 
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General Linear Model: 1000 g wt Hyd versus Grain N Hyd  
Fig 4-12 B 
 

Factor       Type   Levels  Values 

Grain N Hyd  fixed       6  0.08, 0.16, 0.32, 0.64, 1.60, 16.00 

 

 

Analysis of Variance for 1000 g wt Hyd, using Adjusted SS for Tests 

 

Source       DF   Seq SS  Adj SS  Adj MS      F      P 

Grain N Hyd   5   6838.1  6838.1  1367.6  11.04  0.000 

Error        45   5574.3  5574.3   123.9 

Total        50  12412.4 

 

 

S = 11.1299   R-Sq = 55.09%   R-Sq(adj) = 50.10% 

 

Grouping Information Using Tukey Method and 95.0% Confidence 

 

Grain 

N Hyd   N  Mean  Grouping 

 1.60   9  37.5  A 

 0.64   7  31.4  A B 

 0.32   8  28.2  A B 

 0.16   9  24.3  A B 

 0.08  10  21.6    B 

16.00   8   0.0      C 

 

Means that do not share a letter are significantly different. 
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General Linear Model: Grain Num Soil versus Grain N Soil  
Fig 4-12 C 
actor        Type   Levels  Values 

Grain N Soil  fixed       5  0, 2, 10, 20, 47 

 

 

Analysis of Variance for Grain Num Soil, using Adjusted SS for Tests 

 

Source        DF   Seq SS   Adj SS  Adj MS      F      P 

Grain N Soil   4  12485.1  12485.1  3121.3  15.36  0.000 

Error         25   5080.3   5080.3   203.2 

Total         29  17565.5 

 

 

S = 14.2553   R-Sq = 71.08%   R-Sq(adj) = 66.45% 

 

Grouping Information Using Tukey Method and 95.0% Confidence 

 

Grain 

N Soil  N  Mean  Grouping 

20      6  52.8  A 

10      6  43.3  A 

 2      6  19.2    B 

 0      6   7.3    B 

47      6   0.0    B 

 

Means that do not share a letter are significantly different. 
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Kruskal-Wallis Test: Grain Num Soil versus Grain N Soil  
 
Kruskal-Wallis Test on Grain Num Soil 

 

Grain N 

Soil      N       Median  Ave Rank      Z 

 0        6  7.000000000       9.8  -1.79 

 2        6  2.00000E+01      16.3   0.23 

10        6  4.65000E+01      23.5   2.49 

20        6  4.60000E+01      24.5   2.80 

47        6  0.000000000       3.5  -3.73 

Overall  30                   15.5 

 

H = 24.98  DF = 4  P = 0.000 

H = 25.22  DF = 4  P = 0.000  (adjusted for ties) 
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General Linear Model: Grain Num Hyd versus Grain N Hyd  
Fig 4-12 D 
 

Factor       Type   Levels  Values 

Grain N Hyd  fixed       6  0.08, 0.16, 0.32, 0.64, 1.60, 16.00 

 

 

Analysis of Variance for Grain Num Hyd, using Adjusted SS for Tests 

 

Source       DF   Seq SS   Adj SS  Adj MS      F      P 

Grain N Hyd   5  26593.9  26593.9  5318.8  23.82  0.000 

Error        45  10047.1  10047.1   223.3 

Total        50  36641.0 

 

 

S = 14.9422   R-Sq = 72.58%   R-Sq(adj) = 69.53% 

 

Grouping Information Using Tukey Method and 95.0% Confidence 

 

Grain 

N Hyd   N  Mean  Grouping 

 1.60   9  63.1  A 

 0.64   7  32.6    B 

 0.32   8  13.5    B C 

 0.16   9   5.7      C 

 0.08  10   1.5      C 

16.00   8   0.0      C 

 

Means that do not share a letter are significantly different. 
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Kruskal-Wallis Test: Grain Num Hyd versus Grain N Hyd  
 
Kruskal-Wallis Test on Grain Num Hyd 

 

Grain N Hyd   N       Median  Ave Rank      Z 

 0.08        10  2.000000000      12.4  -3.23 

 0.16         9  5.000000000      24.1  -0.43 

 0.32         8  1.30000E+01      31.2   1.07 

 0.64         7  3.70000E+01      40.3   2.74 

 1.60         9  5.80000E+01      45.1   4.25 

16.00         8  0.000000000       6.0  -4.14 

Overall      51                   26.0 

 

H = 45.31  DF = 5  P = 0.000 
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Appendix A-15. General Linear Model: Chlorophyll versus Chl N 
Fig 4-15 
  

 
Factor  Type   Levels  Values 

Chl N   fixed       5  0.08, 0.16, 0.32, 0.64, 16.00 

 

 

Analysis of Variance for Chlorophyll, using Adjusted SS for Tests 

 

Source  DF   Seq SS   Adj SS  Adj MS     F      P 

Chl N    4  280.622  280.622  70.155  9.95  0.000 

Error   45  317.405  317.405   7.053 

Total   49  598.026 

 

 

S = 2.65583   R-Sq = 46.92%   R-Sq(adj) = 42.21% 

 

Grouping Information Using Tukey Method and 95.0% Confidence 

 

Chl N   N  Mean  Grouping 

16.00  10  10.8  A 

 0.64  10   8.0  A B 

 0.32  10   5.5    B C 

 0.16  10   4.8    B C 

 0.08  10   4.5      C 

 

Means that do not share a letter are significantly different. 
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Appendix A-16. General Linear Model: Protein versus Protein N  
Fig. 4-16  
Factor     Type   Levels  Values 

Protein N  fixed       4  0.16, 0.32, 0.80, 16.00 

 

 

Analysis of Variance for Protein, using Adjusted SS for Tests 

 

Source     DF  Seq SS  Adj SS  Adj MS      F      P 

Protein N   3  34.960  34.960  11.653  16.50  0.000 

Error      16  11.298  11.298   0.706 

Total      19  46.258 

 

 

S = 0.840298   R-Sq = 75.58%   R-Sq(adj) = 71.00% 

 

 

Grouping Information Using Tukey Method and 95.0% Confidence 

 

Protein N  N  Mean  Grouping 

16.00      5   5.2  A 

 0.80      5   4.0  A B 

 0.32      5   3.5    B 

 0.16      5   1.5      C 

 

Means that do not share a letter are significantly different. 
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Appendix A-17 .General Linear Model: Num Chloroplasts versus Choroplast 
N  
Fig 4-17 
Factor        Type   Levels  Values 

Choroplast N  fixed       6  0.08, 0.16, 0.32, 0.80, 1.60, 16.00 

 

 

Analysis of Variance for Num Chloroplasts, using Adjusted SS for Tests 

 

Source        DF   Seq SS   Adj SS  Adj MS     F      P 

Choroplast N   5  108.667  108.667  21.733  9.23  0.004 

Error          8   18.833   18.833   2.354 

Total         13  127.500 

 

 

S = 1.53433   R-Sq = 85.23%   R-Sq(adj) = 76.00% 

 

 

Grouping Information Using Tukey Method and 95.0% Confidence 

 

Choroplast N  N  Mean  Grouping 

16.00         2  16.5  A 

 1.60         2  15.0  A B 

 0.80         3  14.3  A B 

 0.16         2  10.5    B C 

 0.08         3  10.3    B C 

 0.32         2   8.5      C 

 

Means that do not share a letter are significantly different. 

 



 
 

 244 

 
 

Kruskal-Wallis Test: Num Chloroplasts versus Choroplast N  
 
Kruskal-Wallis Test on Num Chloroplasts 

 

Choroplast N   N  Median  Ave Rank      Z 

 0.08          3  11.000       4.7  -1.32 

 0.16          2  10.500       4.8  -1.00 

 0.32          2   8.500       2.3  -1.92 

 0.80          3  14.000      10.0   1.17 

 1.60          2  15.000      10.8   1.19 

16.00          2  16.500      12.8   1.92 

Overall       14               7.5 

 

H = 10.82  DF = 5  P = 0.055 

H = 10.92  DF = 5  P = 0.053  (adjusted for ties) 
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Appendix A-18. General Linear Model: Leaf thickness versus Leaf Th N  
Fig 4-18 
 

Factor     Type   Levels  Values 

Leaf Th N  fixed       5  0.08, 0.16, 0.32, 0.80, 16.00 

 

 

Analysis of Variance for Leaf thickness, using Adjusted SS for Tests 

 

Source     DF   Seq SS  Adj SS  Adj MS     F      P 

Leaf Th N   4   8052.1  8052.1  2013.0  7.97  0.001 

Error      17   4293.3  4293.3   252.5 

Total      21  12345.5 

 

 

S = 15.8918   R-Sq = 65.22%   R-Sq(adj) = 57.04% 

 

 

Grouping Information Using Tukey Method and 95.0% Confidence 

 

Leaf Th N  N   Mean  Grouping 

16.00      6  113.3  A 

 0.80      5  112.0  A 

 0.32      5   88.0  A B 

 0.16      3   80.0  A B 

 0.08      3   60.0    B 

 

Means that do not share a letter are significantly different. 
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A 19. Plot of Asat Against Stomatal Conductance (gs) of Barley Leaves 
Asat and gs were measured from unstressed attached barley leaves exposed to 
saturating levels of PAR (580 µmol m-2 s-1) in normal air (~380 µmol CO2 mol-1 Air) 
at different times of the day.  The data show that gs has a profound effect on Asat 
below 0.25 – 0.30 mol m-2 s-1, but above that threshold level other factors 
dominate. 
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Table A-1 List of Highly Abundant Sequences in Floral Primodia of Barley 
Grown in 0.6 mM Nitrogen 

In the supplemented DVD. 

 

Table A- 2. List of Highly Abundant Sequences in Floral Primodia of Barley 
Grown in 16 mM Nitrogen 

In the supplemented DVD. 
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