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Abstract 
This thesis reports on an investigation of two non-trivial nucleation phenomena, with 

the goal that understanding these will enable greater understanding of nucleation 

generally. 

Non-photochemical laser-induced nucleation (NPLIN) phenomena have been 

investigated for more than twenty years but lack a complete explanation. The laser-

induced phase separation and nucleation (LIPSaN) phenomenon has been 

discovered and it is proposed as the mechanism behind NPLIN. A laser generates 

a potential which, when incident on a binary mixture in proximity to its critical point, 

causes the high-refractive index component to migrate to the focus. The effect bears 

a similarity to optical trapping of particles, as the trapped particle has a higher 

refractive index than the medium it is in. It has been shown that nucleation can be 

induced in metastable binary mixtures, which is analogous to the metastable 

supersaturated solutions which are typical in NPLIN experiments. It is proposed that 

NPLIN can only work if there is a hidden liquid-liquid critical point in the 

supersaturated regime. 

The liquid-liquid transition (LLT) is a ubiquitous example of polyamorphism – the 

transition between one liquid state with no long-range ordering to another. There 

are several examples of LLTs, but none that are quite as fiercely debated as 

triphenyl phosphite (TPP). The debate can be summarised as two competing 

hypotheses: Hédoux – the second liquid does not exist; it is actually the 

untransformed liquid mixed with nano or micro scale crystals, or Tanaka – the 

second liquid state exists, but nano or micro crystals are also produced at higher 

LLT temperatures. It will be shown using a wide range of techniques that Tanaka is 

at least partially correct, but the two sides are two sides of the same coin. The 

second liquid state exists and there is a first order LLT, but the so-called 

nanocrystals are better described as locally favoured structures that are similar to 

the structure of the crystal. There are three crystal polymorphs of TPP and their 

distinct unit cells and conformers have been characterised with single crystal X-ray 

diffraction (XRD). There is a conformational change during the LLT which has been 

characterised using infrared, density functional theory (DFT) and XRD data. The 

LLT is associated by a flip of a phenoxy arm and change from parallel ‘sandwich’ to 

T-shaped π- π stacking. 
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Both avenues of investigation emphasise the importance of critical points and their 

influence in how nucleation proceeds. The work presented here sheds some light 

on two poorly understood nucleation phenomena and will hopefully aid in a more 

robust understanding of nucleation generally. 
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1.  General Introduction 

1.1.1. Overview 

This thesis fundamentally reports on an investigation into nucleation phenomena, 

with the goal of helping to build a clearer picture of nucleation and its inhibition more 

generally. The two phenomena which have been investigated are non-

photochemical laser-induced nucleation (NPLIN) and the liquid-liquid transition 

(LLT) in triphenyl phosphite (TPP). These two specific areas could well have broad 

implications in terms of understanding the behaviour of pure liquids, liquid mixtures 

and how nucleation proceeds. 

This introductory chapter will focus on subjects that are shared between the two 

themes of this thesis. Thermodynamics, nucleation theory and critical points will be 

discussed, followed by the fundamental properties of light and the optical 

microscopy techniques used in this work. 

1.2. The Thermodynamics of Phase Transitions 

In order to under understand nucleation theory, it is essential to understand some 

basic thermodynamics and how different types of phase transition occur.  

1.2.1. Entropy 

Entropy S can be defined as the amount of possible microscopic variations in a 

system, which are hidden macroscopically. Entropy can be defined as 

 

 lnS k=     (1.1) 

where k is the Boltzmann constant (with units J K-1, which S shares) and Ω is the 

number of possible microscopic states of the system.1 Equation (1.1) only holds true 

if the probability of occupying each microstate is the same – like in an ideal gas. In 

many systems however, the probability of the occupation of each microstate can 

vary and must be taken into account and summed. Entropy is a measure of disorder, 

and the second law of thermodynamics states that for an isolated system, entropy 

increases over time as all possible processes occur, such that 

 

 0
dS

dt
 . (1.2) 
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In an isolated system, i.e. with no involvement of the surrounding environment, 

spontaneous processes cannot proceed at equilibrium, thus it is not possible to 

increase S. This implies that entropy maximises at equilibrium. Thus, entropy can 

be thought of as a driving force to achieve equilibrium.  

1.2.2. Free Energy 

If Equation (1.2) is combined with an expression for the first law of thermodynamics 

(the conservation of energy) 

 

 i idU TdS PdV dN= − +   (1.3) 

then the result is a form of the Clausius inequality 

 0i idU TdS PdV dN− + −    (1.4) 

where U is the internal energy, T is the temperature, P is the pressure, V is the 

volume, µi is the chemical potential and Ni is the change in the number of molecules. 

The inequality sign means that for irreversible processes there can be a ‘free’ energy 

associated with the process. A general expression for an infinitesimal change in free 

energy dφ can therefore be written as 

 
i id dU TdS PdV dN = − + −   (1.5) 

where when a single molecule or particle dNi added, it will contribute a change in 

internal energy dU, entropy dS, volume dV and chemical potential µi. As equilibrium 

is approached, entropy tends to maximise but free energy tends to minimise – this 

is easy to see in equation (1.4) as the entropic term is negative. From this, an 

expression for the free energy at constant temperature and pressure – the Gibbs 

free energy – which is the most appropriate for describing liquids, can be derived. If 

only work and heat are exchanged with the environment, dNi = 0 so it can be written 

that 

 0 0dG dU T dS P dV= − +   (1.6) 

where dG is the infinitesimal change in the Gibbs free energy. (1.6) can then be 

integrated to give 

 0 0G U T S PV= − + . (1.7) 
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Calculating an exact value for G is not practical, but it is very useful to consider ΔG 

for a given transition or reaction, as the sign indicates whether it will be spontaneous 

or not. A negative value of ΔG indicates that the product or final state has a lower 

Gibbs free energy than the reactant or initial state, meaning that there is ‘free’ energy 

available to do work and allow the reaction or transition to proceed. The enthalpy H 

= U + P0V, so the change in Gibbs free energy can be written as 

 G H T S =  −  .  (1.8) 

Equation (1.8) is ubiquitous in chemistry and very useful, as values of the change in 

enthalpy ΔH and absolute entropy S can be experimentally determined using a 

calorimeter. Consequently, there is a large amount of standard entropy and enthalpy 

data available for use in a simple calculation for predicting how a new reaction or 

transition will proceed. If ΔG is positive, a reaction is not thermodynamically 

favourable and will not occur spontaneously. If ΔG is negative, the reaction is 

favourable and can occur spontaneously – this says nothing about the rate of 

reaction, however. Kinetic factors may cause the rate of reaction of a transition to 

be slow to the point of being negligible. For example, ΔG < 0 for the transition 

between the carbon allotropes diamond and graphite, but the enormous energy 

barrier between them caused by the need to break multiple C-C bonds, means that 

diamond is stable even on geological timescales.  

1.2.3. Phase Transitions 

Qualitatively, a phase transition can be defined as a change from one distinct state 

of matter to another, but what defines a ‘state’ is not a trivial question. Classically 

the three states of matter are solid, liquid and gas for a pure substance, which can 

be defined as condensed immobile, condensed fluid and dispersed fluid. In recent 

times a fourth state known as plasma (a conductive ionised gas with free electrons, 

such as lightning or sparks) has been included in that category, but there are also 

states which only exist in extreme conditions relative to those seen on earth like 

Bose-Einstein condensates and new categories such as ferromagnetism. Lines can 

be drawn in a phase diagram to represent the points at which a system undergoes 

a transition, often in terms of pressure and temperature. A simplified phase diagram 

for water is shown in Figure 1. These phase equilibrium lines represent the 

temperatures and pressures at which the two adjoining phases can coexist at 

equilibrium. Two common features of phase diagrams are triple points and critical 

points. The triple point in Figure 1 for instance, is the point at which solid, liquid and 
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gas phases have the same free energy and so can coexist at equilibrium. A critical 

point is an extremity of a phase equilibrium line (often gas-liquid), after which the 

two phases become difficult to distinguish and in the gas-liquid case are referred to 

collectively as a supercritical fluid. Although there is no latent heat beyond the critical 

point, there still exists two zones which resemble the two phases, separated by what 

is known as the Widom line.2 

 

Figure 1 – Simplified phase diagram of water. The triple point is the pressure and temperature at which all three 

phases can coexist and the (gas-liquid) critical point marks the final point at which gas and liquid phases can 

coexist and distinguished. At higher temperatures and pressures water exists as a single, supercritical fluid 

phase. 

Phase transitions are often identified by Ehrenfest classification; if a transition is 

discontinuous in some quantity which is the first derivative of a free energy with 

respect to a variable of state – it is said to be a first order transition. In solid-liquid-

gas transitions for example, there is a change in density which is discontinuous. 

Density is the inverse of the first derivative of the free energy with respect to 

pressure, so the transition is first order. Density in this case is referred to as the 

order parameter, which as its name suggests is also a measure of order. Second 

order transitions are continuous in the first derivative, but show a discontinuity in the 

second derivative, e.g. magnetisation in a ferromagnet as it rises above the Curie 

temperature. For the most part, the modern way to classify phase transitions groups 

them together in the same way as Ehrenfest – first order transitions possess a latent 

heat, which is generally detectable using differential scanning calorimetry (DSC). 

Second order transitions are continuous and have no latent heat. Ehrenfest does 

not take into account transitions where an order parameter tends to infinity rather 

than having a discontinuity. This is quite common however, such as in the case of 
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liquid-liquid critical points which will be described in more detail after introducing 

nucleation theory. 

When a phase boundary is crossed, the free energy of the new phase is lower than 

that of the old phase, so ΔG < 0 and the transition is thermodynamically favourable. 

This doesn’t mean that the transition will proceed however, as it may be hindered 

kinetically by an energy barrier. The energy barrier typically originates from the need 

to form an interface between the two phases. This type of kinetics is referred to as 

nucleation and growth, and will now be discussed in more detail. 

1.3. Nucleation Theory 

Nucleation is the first stage of the formation of a new thermodynamic phase or 

structure. It applies to a variety of transitions from crystallisation and condensation 

to the self-assembly of polyoxometalates or amyloid fibrils. Once a phase has 

nucleated it can then grow until either the solute has run out, or the whole sample 

has transformed. The original, simple model of nucleation which is known as 

classical nucleation theory (CNT) or Gibbs theory will now be described. 

1.3.1. Classical Nucleation Theory 

The relative free energies of two phases can be used as measure of which of the 

two is more thermodynamically stable, so if a new phase has a lower free energy 

than the current phase, the transition can proceed spontaneously. The difference in 

Gibbs free energy between the two states is the maximum amount of non-volume 

work that the system can perform, so it is the more physically relevant parameter. 

When ΔG is negative, the transition is favourable. In order for a new phase to 

nucleate and grow, an interface must form between the first and second phases. 

The molecules or particles at the interface will inevitably be in a higher energy 

arrangement than in either bulk phases, which means an energy cost. The formation 

free energy of a nucleating droplet can be written as 

 i iN A   =  +   (1.9) 

where Δ𝜑 is the formation free energy, Δ𝜇𝑖 is the change in chemical potential when 

a molecule is added, 𝑁𝑖 is the number of molecules in the droplet, 𝜎 is the interfacial 

tension, with units of J m-2 and A is the surface area of the droplet.3 It can be more 

convenient to express this equation in terms of the radius of an ideal spherical 

nucleus, rather than individual molecules, so this will now be derived. At constant 
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temperature and pressure for a single component system, the sum of changes in 

chemical potential are equal to the Gibbs free energy, which can be written per unit 

volume as 

 34

3
i i V
N G r  =    (1.10) 

where Δ𝐺𝑉 is the Gibbs free energy per unit volume and r is the radius of the nucleus. 

The formation free energy can then be written as 

 3 24
4

3
VG r r   =  + . (1.11) 

The two terms in equation (1.11) can be referred to as the bulk and surface terms 

respectively. Since the bulk term has a cubic dependence on r and the surface is a 

square dependence, for low values of r, ΔGTotal > 0 so nucleation is unfavourable. 

As r increases however, Δ𝜑 maximises, which is referred to as the critical nucleus 

size rC which is the peak of the blue curve in Figure 2. At rC, the total energy of the 

droplet is at a maximum, but there is now a finite probability that the new phase will 

nucleate. Above this radius, the bulk energy term decreases faster than the surface 

term increases, eventually giving Δ𝜑 < 0, so the growth of the nucleus is now 

thermodynamically favourable. At rC the probability of nucleation is still low, which 

increases with the radius. The probability of nucleation can be expressed as a rate 

of nucleation J for a critical cluster in the form 

 1

e kTJ Z C e



−

=  (1.12) 

where Z is the Zeldovich non-equilibrium factor, 𝛽 is growth rate of nuclei and 𝐶1
𝑒 is 

the concentration of nuclei at equilibrium. The Zeldovich factor is a combination of 

several other constants including the surface tension, partial molecular volume and 

degree of supersaturation. It is worth noting that Z varies with the exponential of the 

degree of supersaturation, so small changes in temperature or concentration can 

have large effects on the nucleation rate. The equation cannot be used to calculate 

steady state concentrations, but it takes into account the growth of the nucleus 

above the critical radius and ‘evaporation’ from the nucleus to form smaller clusters 

elsewhere. 
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Figure 2 – Below the critical radius of a nucleus (the maximum turning point of the total energy – the grey 

curve), the energy associated with the interface between the nucleus and bulk dominates. Above the critical 

radius, the bulk energy decreases more rapidly than the surface term increases. The blue curve represents 

the total free energy of the nucleus – the energy maximum occurs at the critical radius. 

Classical nucleation theory is simplistic interpretation of homogeneous nucleation, 

which means nucleation in the bulk liquid. However, nucleation often proceeds 

heterogeneously, i.e. nucleation on the surface of another phase, like the walls of 

the container or an impurity. A classical interpretation of this is that the contact angle 

the nucleus makes with the surface means that there is less interface per unit 

volume than there would have been in the bulk. 

The extent to which a transition has been completed as a function of time can be 

described by the Avrami equation 

 1
nktx e−= −  (1.13) 

where x is the fraction completed, k is a time constant and n is a constant which 

depends on the number of dimensions of growth. Often n = dimensions + 1 is used 

but other derivations come to different definitions of n.4 

If a phase is cooled to a temperature where its free energy is slightly higher than a 

second phase, a transition is thermodynamically favourable but the nucleation rate 

may be very low. As the system is cooled, the nucleation rate will increase and the 

transition may proceed quickly with a rapid growth rate. This is accompanied by an 
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increase in viscosity, so the result is a competition between the increasing 

thermodynamic driving force and decreasing kinetics. Figure 3 shows curves which 

represent the progress in time of a transition at 0, 50 and 90%. The curves show a 

minimum time for transition progression at an ‘optimum’ temperature. 

 

Figure 3 – The time required for a certain percentage of a sample to transform as a function of temperature. 

As temperature decreases, the nucleation rate increases. As temperature decreases the viscosity also 

increases. The result is a minimum time for the transition to be complete. 

This behaviour can be observed in supercooled triphenyl phosphite, which will be 

detailed in Chapter 0. 

1.3.2. Non-Classical Nucleation Models 

Nucleation is a complex phenomenon, and classical nucleation theory for the most 

part, acts as a starting point for refinement of nucleation models. Homogeneous 

nucleation simulations carried out by Sanz and co-workers5 for water predict that it 

is practically impossible for homogeneous nucleation to occur above -20 °C. The 

nucleation rate predicted at -19.5 °C was J = 10-83 m-3 s-1, which corresponds to one 

critical ice nucleus in a cubic metre every 1075 years. Clearly this is not what is 

observed in reality as small volumes of water tend to freeze a few degrees below 

the melting point at 0 ° C. Their models neglect heterogenous nucleation, i.e. when 

nucleation occurs on container walls, contaminant particles or intentionally placed 

nucleation sites like boiling stones or seed crystals. Models have attempted to take 

this in to account by adjusting the surface term in (1.11) to be less than 4πr2, 

depending on factors like surface angle and contact angle. Models can further be 

refined by giving the interface a characteristic thickness, correcting the surface 

tension for its dependence on curvature (as the nucleus grows, the interface 
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flattens) and factoring in the contributions of degrees of freedom to the bulk free 

energy term3.  

CNT assumes the monomeric addition of molecules or particles. This has shown 

not always to be the case, as pre-nucleation clusters may form6, indicating a two-

step nucleation model. These are thermodynamically stable clusters on the sub-

nanometre scale which can aggregate reversibly to form assemblies. Depending on 

the type of transition, these clusters may go on directly to form a crystal as CNT 

describes, but form liquid-like domains and/or amorphous phases as alternative 

routes to the more thermodynamically stable crystal.  This ties in with the Ostwald 

step rule, which is the principle that less stable phases will form first, on the route 

from an unstructured liquid to a highly ordered and stable crystal. There have been 

several observations of pre-nucleation clusters, including in calcium phosphate7, 

calcium carbonate8 iron oxide9 and small organic molecules like amino acids10, 

using x-ray techniques, infrared spectroscopy and cryo-transmission electron 

microscopy. Dense liquid domains which are hundreds of nanometres in size have 

been observed during calcium carbonate (vaterite) nucleation11 in an aqueous 

solution. The domains resulted from density fluctuations, which led to crystal 

nucleation in the dense domains. A schematic showing pre-nucleation clusters and 

a dense liquid intermediate as an alternative route to nucleation is shown below in 

Figure 4. 

 

Figure 4 – From Gebauer et al6. The classical route to nucleation (top) and the non-classical pre-nucleation 

cluster route (bottom), including the aggregation of pre-nucleation clusters and liquid/amorphous solid 

intermediates. 
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1.3.3. Geometric Frustration 

According to CNT, as the temperature of a solution decreases and supersaturation 

ratio increases, the probability of nucleation increases. The same holds true for 

pure, supercooled liquids. Consequently, the nucleation rate increases, but the rate 

varies wildly between different chemicals and mixtures. Some crystallise or 

precipitate immediately after entering a metastable supersaturated or supercooled 

state, whereas others can remain metastable seemingly indefinitely and easily form 

glasses. An explanation for this is the idea of geometric frustration. The most 

energetically favourable local configuration of monomers may not lend itself to the 

formation of the crystal. If a central atom is co-ordinated to 12 other atoms – which 

is common in metals12 - is a regular dodecahedron with the atoms on the faces (or 

an icosahedron with the atoms at the vertices). Regular dodecahedra have five-fold 

symmetry which does not allow periodic tiling of three-dimensional space. It should 

be noted that there are arguably some exceptions to this, like pyrite (iron disulphide) 

which under certain conditions has a pyritohedral geometry, that is similar to a 

regular dodecahedron.13 Frank famously calculated using Lennard-Jones potentials 

that the regular dodecahedra were energetically favoured over face-centred cubic 

and hexagonal close packing lattices with the same number of atoms.14 This would 

mean that locally favoured dodecahedra would form instead of periodic structures, 

frustrating crystallisation.  

If a frustrated liquid is cooled well below its melting point, it may form an amorphous 

glass rather than crystallising. Glass formation is common and is accompanied by a 

glass transition temperature TG. The nature of the glass transition is controversial, 

as some consider it not to be a transition at all, merely a slow-down of dynamics 

relative to normal timescales. Glass transitions have a latent heat associated with 

them and are easily identifiable using DSC. 

The Frank model is simple and based on atoms as hard spheres, but clearly multi-

atom molecules can form many more geometries than the three listed above. The 

concept can be generalised as locally favoured structures (LFS) which lower the 

free energy locally but cannot tile space and thus frustrate the formation crystal 

phases by means of an energy barrier. LFS have been measured experimentally in 

glassy triphenyl phosphite using x-ray scattering and have a size of approximately 

3 nm, which corresponds to a couple of molecules.15 
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1.4. Liquid-Liquid Phase Separation in a Binary 

Mixture 

Liquid-liquid phase separation in a binary mixture will now be described, as it is 

crucial component of Chapter 2. In principle, at constant pressure all binary mixtures 

will mix and demix at some point. Mixtures like hexane with heptane may demix at 

an inaccessibly low temperature, and oil and water will mix at a hypothetical 

temperature above their boiling points. Poorly mixing liquids like nitrobenzene and 

decane exhibit an accessible phase equilibrium curve, which is depicted in Figure 

5. The peak of the upper (red) curve is called the binodal and is peaked by the critical 

point, or upper critical solution temperature (UCST). 

Phase separation in a binary mixture is in a sense difficult to classify as a continuous 

or a first order transition, as it proceeds differently, depending on whether the 

sample is critical or not. If the sample is of the critical composition, you see 

characteristic concentration fluctuations and an increase in viscosity as the critical 

point is approached and an instantaneous transition – so it is continuous. If the 

sample is not critical, there is a temperature gap between the binodal and spinodal 

lines, meaning that between those lines, the mixed state is metastable to the 

demixed state. As such, there can then be a latent heat associated with the transition 

– so it can be classified as first order. If you take two poorly mixing liquids and plot 

temperature against mole fraction, there exists a region which they are miscible, or 

immiscible where they decompose into two phases. Figure 5 shows these regions, 

which are separated by two curves, the binodal and spinodal. Above the binodal 

(also known as the co-existence curve) the liquids are miscible, i.e. they are mixed. 

Below the spinodal, the liquids separate in to two phases which are each typically 

rich in one of the pure components; if the binodal and spinodal are known, the Lever 

rule can be used to calculate the composition of the two phases. Between the two 

curves, a metastable region exists where the transition to the phase separated state 

is spontaneous, but there is an energy barrier associated with forming an interface 

which must be overcome. The peak of the curves where they overlap is called the 

critical point, or the upper critical solution temperature (UCST) or the upper 

consulate point. If a mixture of critical composition crosses from the single-phase 

region to the two-phase region, the transition proceeds immediately by spinodal 

decomposition. UCSTs are common, but it is also possible to have a lower critical 
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solution temperature (LCST) or indeed both in different regions of the phase 

diagram. 

 

Figure 5 – Phase diagram showing a typical upper critical solution temperature (UCST) with binodal and 

spinodal lines. Above the binodal a single phase exists and below the spinodal two phases exist. The two lines 

enclose a metastable region where the phase separated state is thermodynamically favourable but there is an 

energy barrier which must be overcome for nucleation to occur. 

1.4.1. Hidden Liquid-Liquid Critical Points 

Ten Wolde and Frenkel16 proposed the existence of a hidden liquid-liquid critical 

point which drastically increases the nucleation rate and altered the route to the 

nucleation of stable crystal. The authors simulated a colloidal solution of particles 

which interact weakly through Lennard-Jones potentials, which are a class of 

mathematically simple interatomic potentials. If the interaction length of the potential 

is long (which models weak interactions like in noble gases well), an accessible 

critical point at some temperature TC occurs (Figure 6 (a)). Above this point, the 

solution is a homogenous fluid and below it (or rather enclosed by the binodal line) 

the solution decomposes in two phases – vapour and liquid. It should be noted that 

the labels vapour, liquid and solid correspond to dilute fluid, condensed fluid, and 

condensed static phases in the solution. This is analogous to the phase diagram of 

a binary mixture where a mixed phase decomposes into the two components - an 
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example of this is shown later in Figure 5. If the interaction length is short relative to 

the particle size however, the critical point moves below the liquidus line (between 

fluid-fluid and fluid-solid regions) as shown in Figure 6 (b). 

 

Figure 6 – Reproduced phase diagrams inspired by those from Frenkel and ten Wolde’s paper16 which depicts 

solutions of spheres which interact via Lennard-Jones potentials over (a) a long-range relative to the particle 

radius and (b) a short range. (a) shows a binodal and critical point at TC which mirrors the phase diagram of 

badly mixing binary mixtures. When the interaction length is reduced in (b), the critical point moves below the 

liquidus (in this case, the line between the fluid-fluid and fluid-solid regions). 

Frenkel and ten Wolde mapped the free energy barrier landscape at various points 

around the fluid-fluid critical point in Figure 6 (b) – the maps far from and close to 

the critical point are shown in Figure 7 A and B respectively. The landscapes are a 

function of NCryst and Nρ which are the number of solid-like particles (if the 

surrounding particles show symmetry, they are designated solid-like) and the 

number of connected particles (liquid-like or solid-like) respectively. There are two 

important take-away from these diagrams. The first is that the saddle point in the 

free energy landscape shown in B is significantly lower than that of A, indicating an 

increased nucleation rate – which the authors quote to be a factor of 1013 higher 

than A. The second is the optimal pathway through the landscape to summit the 

saddle point. B indicates that many particles connect without forming solids – 

instead there are dense regions where nucleation is more probable. The work 

indicates that hidden critical points play an important role in direction of and the rate 

of nucleation. 
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Figure 7 – Two different routes nucleation pathways for protein solutions from Frenkel and ten Wolde.16 The 

graph axes NCryst and Nρ are the number of solid-like particles and number of connected particles respectively. 

The contour lines represent energy, and form saddles shapes. A shows a classical nucleation route where any 

connected particles are part of a solid – so they are roughly proportional. B shows a big increase in the 

number of connected particles - which can be a liquid – with next to no increase in the quantity of solid. 

Much of this thesis involves how light interacts with matter, specifically for 

microscopy, spectroscopy, diffraction and LIPSaN. As such it is essential to describe 

the fundamental properties of light. 

1.5. Properties of Light 

Classically, electromagnetic (EM) radiation (light) has wave-like properties.17 Light 

is massless and therefore carries no momentum. Light can be described as an 

oscillating electric field with an oscillating magnetic field perpendicular to it. Both 

fields are perpendicular, or transverse to the direction of propagation. Light travels 

at a constant velocity in a given medium of refractive index n, where the velocity is 

given by 

 
n

c
v

n
=   (1.14) 
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where the speed of light in a vacuum c = 2.998×108 m s-1. Two sources of light with 

the general equation 

 0( , ) cos( )y x t y kx t = − +   (1.15) 

can interfere either constructively or destructively, where y0 is the amplitude, k is the 

wavevector, ω is the angular frequency and φ is the phase. If it is assumed the two 

sources of light are coherent, i.e. have the same frequency, direction of propagation 

and phase, the resultant amplitude will simply be 2y (Figure 8 (left)). If one source 

experiences a delay or scatters from an object, a phase shift occurs and the 

resultant amplitude will be 0 < y(x, t) < 2y. If the phase shift is exactly φ = π radians, 

the two sources will interfere destructively and the amplitude will be zero(Figure 8 

(right)). 

 

Figure 8 – Superposition of two cosine waves when the phase difference is (left) ~0 radians and (right) ~180 

radians. There is a slight offset so that all curves are easier to distinguish. 

One of the characteristic effects of light is diffraction, which refers to phenomena 

that occur when light meets an object or a slit. Diffraction is only noticeable when 

the wavelength of the light is similar to the size of the object or slit. An example of 

diffraction is what happens when a beam of light is incident on a single slit. Light 

deviates from simply propagating forwards as according the Huygens’ principle, 

each point on the wavefront can be regarded as a new source of wavelets, 

emanating in all directions from that point. The resulting pattern in the far-field limit 

is a sinc2 function which is depicted in red in Figure 9. The positions of the minima 

can be given by 

 

 sind m =   (1.16) 
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where d is the slit width, m is the minimum number and   is the angle relative to the 

original propagation direction before the slit. The intensity pattern seen on the 

screen - a sinc2 function - is the square of the Fourier transform of the profile of the 

slit. If the slit is regarded as being infinitely long (into the page), it is effectively two 

dimensional. So, a 2D slit gives rise to sinc2 function. 

 

Figure 9 – Diffraction of light through a single slit results in a sinc pattern, with a large central maximum, and 

more minima and maxima at higher deflection angles. 

A light source can be split into n coherent sources by passing it through n slits. The 

coherent sources interfere in the way depicted in Figure 8 and this results in a series 

of minima and maxima. The more slits there are, the sharper the spots become. As 

will be explained in X-ray diffraction section in Chapter 3, the interference of waves 

can be expressed by Bragg’s law 

 sinS n =   (1.17) 

where S is the slit spacing and n is the maxima number, n = 0, 1, 2 etc. 
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Figure 10 – A double slit example of the pattern produced by a grating - i.e. multiple sources of coherent light 

with even spacing S. 

The diffraction limit relates to the wavelength of light. It is often referred to as the 

Rayleigh criterion for trying to resolve two-point sources where their radius must be 

farther apart than the radius of the airy disk. For a circular aperture, 

 sin 1.22r
d


 =   (1.18) 

Where θr is the angular resolution, λ is the wavelength of light and d is the diameter 

of lens aperture. An Airy disc is a 2D equivalent of a sinc function for a circular 

aperture as opposed to a 1D slit. For an optical microscope system specifically, 

(1.18) can be rearranged in terms of distance D, to what is often referred to as 

Abbe’s limit 

 
0.61

D
NA


=   (1.19) 

where NA is the numerical aperture of the objective lens. Practically, normal (air) 

objective lenses are limited to about NA = 0.95 for a very short working distance 

(the distance from lens to sample). The limit can be extended by using an objective 

lens which is immersed in a high refractive index liquid such as certain oils. 
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Now that the wave properties of EM radiation have been discussed, the next section 

will describe how light can act like a particle which has mass, and therefore can 

possess momentum. 

1.5.1. Wave-Particle Duality – Particulate 

Properties of Light 

EM radiation can exhibit particulate properties, and particles likewise act like waves. 

Beams of particles with low mass like electrons can interfere to produce diffraction 

patterns just like light. Electron microscopes can also be used to overcome Abbe’s 

limit to obtain even sub-atomic resolution. The particulate nature of EM radiation will 

now be described. When developing his theory of blackbody radiation, Max Planck 

made the assumption that atoms acted as quantised oscillators – making the energy 

they emitted in the form of light quantised as well. Albert Einstein later explained this 

– as well as famously the photoelectric effect – by postulating that the light itself 

existed as discrete quanta with energy 

 E hf=  (1.20) 

where f is frequency and the Planck constant h = 6.626 × 10-34 J s. The photoelectric 

effect can be explained with the following example. A quantity Q of low energy light 

is incident on a metal surface which results in the ejection of one electron with kinetic 

energy EK. One may suppose that shining a quantity 100Q will result in electrons 

with a higher kinetic energy, but instead 100 electrons of kinetic energy EK are 

emitted. However, a quantity Q of light with a shorter wavelength will result in an 

electron with a higher kinetic energy. Of course, it is also the case that certain 

optically non-linear materials like quartz can absorb two photons of energy E/2 and 

emit a single photon of energy E. This is referred to as frequency doubling (also 

known as second harmonic generation), but it only occurs at very high light 

intensities. 

One quantum mechanical interpretation of the photoelectric effect involves photon 

having momentum p, which relates to the wave vector k according to 

 p k=   (1.21) 

where ħ = h/2π is the reduced Planck constant. During reflection or refraction there 

will be a change in the photon wave vector and corresponding change in 

momentum, meaning momentum will be transferred. The phenomenon is often 

referred to as radiation pressure. Solar radiation pressure has a significant effect on 
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satellite orbits, and strong light beams such as lasers can use radiation pressure to 

push around microscopic objects, which is related to the technique of optical 

trapping. 

1.5.2. Optical Trapping 

Optical trapping (or optical tweezing) involves using a highly focussed laser beam 

to either attract or repel microscopic particles such as glass beads. The force is 

attractive if the refractive index of the particle is greater than that of the surrounding 

medium, and repulsive if the opposite is true. The ray optics interpretation of optical 

trapping is depicted in Figure 11 and can be described as follows: In the focus of a 

laser there are large gradients of light intensity. As light enters say, a dielectric glass 

bead, it refracts which causes a change in the momentum vector. The transferred 

momentum is directed away from the direction that the light refracted towards. If 

considerably more photons refract through one side of the bead, there will be a net 

force towards the region of highest intensity. This effect works transverse to the 

direction of propagation, but also vertically which could be described as a tractor 

beam – particularly if the cone of light is at a very high angle, creating a high field 

gradient in the vertical axis. In order to draw the bead towards the source of light, it 

must also overcome radiation pressure arising from absorption and reflection. If the 

object is a black body, the incident pressure will be 

 /IncidentP I c=   (1.22) 

where I is the intensity in W m-2 and c is the speed of light. In the case of reflection, 

there is momentum transferred during absorption and emission, so it is double that 

of a black body. 
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Figure 11 – Diagram depicting the ray optics interpretation of optical trapping. Two parts of a laser beam 1 and 

2 refract on opposite sides of a transparent, spherical particle. Due to Newton’s third law, the energy required 

to change the vector of the light beam results in a force, which are F1 and F2 for the two parts of the beam. Since 

the light intensity at 1 is larger than 2, the net force FNet points towards the region of highest electric field intensity. 

1.5.3. Microscopy 

Basic ray optics and lenses will now be described, followed by the elements of an 

upright optical microscope and microscopy techniques which are applicable to this 

work. 

1.5.4. Ray Optics 

If a light ray enters some medium of refractive index n from air (which for simplicity 

n = 1 will be assumed) normal to the surface, two things happen. Light slows down 

to a velocity which relates to n by equation (1.14), and as a consequence the 

wavelength lengthens according to 

 v f =   (1.23) 

where the frequency f stays constant. If light enters at angle of incidence θi with 

respect to the normal (dashed line in Figure 12), in to a medium refractive index n2 

> n1, the ray will bend towards the normal. Where n2 < n1, the opposite will happen 
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– light will bend away from the normal. The equation which describes the 

relationship is Snell’s law, 

 1 2sin sini rn n =   (1.24) 

where n1 and n2 are the refractive indices of the two media and θi and θr are the 

angles of incidence and refraction respectively. Figure 12 also depicts reflection, 

where the angle of incidence θi equals the angle of reflection θm. 

 

Figure 12 – Ray optics diagram illustrating reflection and refraction, the latter of which is described by Snell's 

law, the relationship between relative refractive indices and the bending of a light ray when entering or leaving 

media. 

Lenses which bulge outwards are referred to as convex whereas those which bend 

inwards are concave. Figure 13 depicts how a bi-convex (double sided) lens can be 

used to increase the size of the image of an object relative to the original size. The 

magnification of the lens M is the both the ratio of the heights of the image (h’) and 

object (h) and the distance from the image (s’) and object (s) to the lens, where 

 
' 's h

M
s h

= = . (1.25) 
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Figure 13 – Ray optics of a convex lens. The magnification of the lens is both the ratio of the distances s and 

heights of the image (left) and object (right). 

The thin lens equation relates the focal length of a lens with the distances to the 

object and image as follows: 

 
1 1 1

's s f
+ = . (1.26) 

Multiple lenses with specific purposes can be used in combination to produce high 

quality and high magnification images in the form of an optical microscope. 

1.5.5. Upright Optical Microscope 

Optical microscopes can be upright, with the light source at the base and 

camera/binoculars at the top or inverted where they are reversed. An upright 

microscope in transmission mode is used for the majority of experiments in this 

thesis. The diagram shown in Figure 14 shows the essential elements of an upright, 

transmission mode optical microscope, including the components used for 

polarisation and phase contrast modes. Light from a lamp is directed to the 

condenser lens, which focusses the light in the sample plane. The light is collected 

by the objective lens which it focusses to produce a real image on the camera. This 

fundamental mode of microscopy is referred to as bright field (BF). 
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Figure 14 – Block diagram of the components of an optical microscope with polarisation and phase contrast 

capabilities. Binoculars have been omitted as the setup used in experiments does not feature them due to risk 

management and laser safety. 

Optimising an image using Kohler illumination, followed by polarisation and phase 

contrast modes will now be described. 

1.5.6. Kohler Illumination 

Kohler illumination is a state where the image of the light source is at its most 

defocussed, and the sample is illuminated uniformly. Basically, this is achieved by 

contracting the condenser diaphragm (refer to Figure 14), centring it, then adjusting 

the position of the condenser lens until the diaphragm comes in to focus. The 

aperture is then opened so that the whole field of view is unobstructed, but no 

farther. The condenser diaphragm acts in the same way as the aperture in a 

handheld camera. Opening the aperture lets more light in but reduces the depth of 

field. The positioning of the condenser and the diameter of the aperture also defocus 

the image of the light source in the sample plane, for more uniform illumination. All 

microscope images in this thesis have been optimised using Kohler illumination prior 

to experiments. 

1.5.7. Polarisation microscopy 
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‘Crossed’ polarisers are placed above and below the sample (see Analyser and 

Polariser in Figure 14), oriented almost perpendicular to each other. This means 

that on the whole, only parts of the sample which cause the light polarisation to 

rotate will be transmitted to the camera. There is often a slight angular offset, in 

order to give contrast between light which has been rotated clockwise and anti-

clockwise. Figure 15 shows a chiral liquid crystal which has been imaged using 

crossed polarisers with slight positive and negative angular offsets. The dark spots 

become bright, and the bright background becomes dark. 

 

Figure 15 – A chiral liquid crystal phase which has been imaged using polarisation microscopy. In the left image 

the first polariser has an angular offset of  roughly 5° (clockwise) and in the right, roughly -5° (anticlockwise). 

The levorotary (left-handed) chiral phase rotates light the opposite way from the dextrorotary (right-handed) 

phase. This creates dark and light contrast which depends on the sign of the angular offset. 

When light experiences different refractive indices for different linear polarisation 

directions, the medium is said to be birefringent.  Birefringent crystals such as calcite 

and triphenyl phosphite (TPP) rotate linearly polarised light, so they can be viewed 

using crossed polarisers. TPP spherulites (crystals which grow radially) for example, 

show Maltese crosses when viewed using crossed polarisers (images in Chapter 

3). 
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Figure 16 – Illustration of how birefringent crystals lead to light being transmitted through crossed polarisers by 

rotating the light from the first polariser. 

1.5.8. Phase Contrast Microscopy 

Phase contrast (PC) microscopy converts phase shifts into differences in intensity, 

in order to enhance contrast. It is particularly useful for viewing sub-cellular detail - 

cells appear practically transparent using bright field microscopy. The PC technique 

can be used to easily resolve glass beads and droplets in water. For negative PC 

mode, high refractive objects which cause a phase shift and appear brighter. 

Likewise, objects with a lower refractive index than the bulk appear darker. This 

effect works very well for small objects on the micron scale, but larger objects are 

subject to the shade off effect. The shade-off effect causes the centre of large 

objects to have the same intensity as the bulk, but you can still tell whether a large 

droplet for example has a higher refractive index by the intensity profile at the edges 

(See Appendix 5.1). The diagram below illustrates the working principle of phase 

contrast microscope. 
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Figure 17 – Elements of a phase contrast microscope. Typically, a standard halogen lamp illuminates the 

sample, but passes through a phase contrast annulus which only allows high angle light to transmit. Some of 

the light passes through the sample plane without interaction, the yellow S-wave. Some interacts with the sample 

and experiences a phase shift, the orange D-wave. Both waves pass through a phase shift ring, that for negative 

PC mode, applies a phase shift equivalent to ¼ of the wavelength of green light to most of the D-wave. The S-

wave passes through the ring without a phase shift. The phase shift ring normally also attenuates the S-wave 

enough to bring it to a similar intensity to the D-wave, which gives the image far better contrast. The two waves 

constructively interfere to produce the P-wave which is incident on the camera. Parts of the sample that produce 

a greater phase shift result in a brighter interference pattern on the camera. 

Typically, a standard halogen lamp illuminates the sample, but passes through a 

phase contrast annulus which only allows high angle light to transmit. Some of the 

light passes through the sample plane without interaction, shown as the yellow S-

wave in Figure 17. Some interacts with the sample and experiences a phase shift, 

which is shown as the orange D-wave. Both waves pass through a phase shift ring, 

that for negative PC mode, applies a phase shift equivalent to ¼ of the wavelength 

of green light to most of the D-wave. The S-wave passes through the ring without a 

phase shift. The phase shift ring normally also attenuates the S-wave enough to 

bring it to a similar intensity to the D-wave, which gives the image far better contrast. 

The two waves constructively interfere to produce the P-wave which is incident on 

the camera. Parts of the sample that produce a greater phase shift result in a higher 

amplitude interference pattern and brighter intensity on the camera. 

1.5.9. Fluorescence Microscopy 
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Optical microscopes can be adapted to include an extra fluorescence module which 

is placed between the objective lens and the camera/detector. The module contains 

cubes which contain excitation and emission filters and a dichroic mirror which 

transmits long wavelength light and reflects short wavelength light. The light source 

can take the form of a broadband lamp, light-emitting diodes or even lasers in 

confocal fluorescence microscopes. The light is first directed perpendicular to the 

microscope column, through the excitation filter, to isolate the wavelength that the 

chosen fluorophore absorbs at. The shorter wavelength excitation light reflects off 

the dichroic, through the objective lens and to the sample. The sample absorbs the 

light and emits it at a longer wavelength via fluorescence. The emission light 

transmits through the dichroic mirror and is isolated using the emission filter before 

hitting the camera or detector. 

 

Figure 18 – Beam diagram of the essential components of a fluorescence module for an optical microscope. 

Broadband light passes through an excitation filter to isolate the desired wavelength that the fluorophore absorbs 

at. The light is reflected off a dichroic mirror and through the objective lens to the sample. The sample absorbs 

the light and fluoresces at a Stokes shifted, longer wavelength. The dichroic mirror is chosen such that the 

excitation wavelength reflects but the emission wavelength transmits. The emission light transmits through the 

dichroic and is then filtered using the emission filter, to discard any stray light heading for the camera or detector. 

Fundamentally, fluorescence is a form of luminescence where a singlet state in a 

molecule relaxes to a singlet ground state and emits a photon. A singlet state has a 

spin multiplicity or quantum number S = 0, whereas triplet states have S = 1. 

Transitions between excited singlet and triplet states are known as intersystem 

crossings (ISC) and are forbidden since spin is not conserved. The transition can 
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be weakly allowed however, as spin orbit coupling makes the total angular 

momentum the sum of spin and orbital angular momentum. Figure 19 illustrates how 

an electron which has been promoted to an exited singlet state S1 can sometimes 

cross by ISC to an excited triplet state, which then drops through phosphorescence 

to a singlet ground state. Phosphorescence is also forbidden due to lack of spin 

conservation. Fluorescence is a fairly rapid process, with the excited state lifetime 

of 1 – 10 ns. Since after an ISC the excited triplet state can only relax via a forbidden 

transition it has a much longer lifetime – anything from 10 ms to hours. In both cases, 

excited states can also drop down vibrational or rotational states via internal 

conversion (IC), which occurs over 1-100 ps. Since IC is a faster process than 

fluorescence or phosphorescence, the majority of luminescent photons have a lower 

energy and longer wavelength. The difference in energy between the absorption 

and emission peaks is known as the Stokes shift. 

 

Figure 19 – Jablonski diagram illustrating luminescence processes. A photon is absorbed which promotes the 

ground electronic state to an excited singlet state S2. The system undergoes a non-radiative internal conversion 

(IC) to an S1 level, followed by vibrational relaxation, which generates heat. The system either proceeds by 

fluorescence and the emission of a lower energy photon, or a forbidden intersystem crossing to a triplet state 

T2. An internal conversion is depicted between the T2 and T1 levels, followed by phosphorescence and the 

emission of a photon (which is also forbidden) to the ground state. 

The processes shown on the Jablonski diagram in Figure 19 can happen 

intermolecularly as well as intramolecularly. Fluorescent molecules are said to be 

quenched if energy is transferred to another molecule. Quenching typically occurs 

by at least one of two processes: Förster resonance energy transfer (FRET) and 

Dexter electron transfer. FRET is a form of non-radiative energy transfer, where the 

energy of a virtual photon from a donor molecule is instead transferred to promote 
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an electron in an accepter molecule. FRET often occurs between two fluorophores, 

so fluorescence emission can still occur in the acceptor molecule, but often at a 

longer wavelength than the donor. Dexter electron transfer requires the overlap of 

the wavefunctions of particular molecular orbitals of the donor and accepter and 

occurs in electron deficient quenchers like compounds with nitro groups.18 

The two quenching mechanisms can be discriminated by measuring their quenching 

rate as a function of intermolecular separation. Since Dexter requires wavefunction 

overlap, it requires shorter separation, and the rate varies linearly with distance. 

FRET on the other hand can operate over longer distances since it is a dipole-dipole 

interaction and the quenching rate has a dependence on separation to the sixth 

power.  

The topics which are common to both results chapter 2 and 3 have been introduced, 

so the chapters will now be presented individually, with chapter specific introductory 

topics. 
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2. Control over phase separation and 

nucleation near a liquid-liquid critical 

point using the electric potential of a 

laser 

2.1. Summary 

Gaining control over the nucleation of new phases is advantageous but has been 

hard to achieve. Despite there being a long period of crystallization engineering by 

varying physical and chemical parameters, controlling which polymorph crystallizes 

or whether a molecule crystallises or forms an amorphous glass is still something to 

be desired. In the last few decades several examples of control using laser-induced 

nucleation have surfaced, however the absence of a complete physical 

understanding is preventing the field from advancing. In this chapter, it will be 

demonstrated that the proximity to a liquid-liquid critical point on a binodal line allows 

the electric potential of a laser beam to induce concentration gradients in binary 

mixtures. In the metastable region between binodal and spinodal lines and near the 

critical point, the nucleation of a phase separated state can be induced. A simple 

theoretical model explains why this phenomenon is well within the laws of physics 

and bears a similarity to optical tweezers. The electric field of a laser produces a 

potential that lowers the free energy of the phase separated state with respect to 

the mixed state of a binary mixture of badly mixing liquids. Laser-induced phase 

separation and nucleation (LIPSaN) explains the physics behind non-photochemical 

nucleation phenomena and presents a new technique for the optical manipulation 

of matter. 

2.2. Introduction 

The nucleation and growth of phases, particularly crystals from solution, is critical to 

understand if scientists and engineers are to be able to produce the 

pharmaceuticals, coatings, electronics and other chemicals of the future. A 

significant proportion of pharmaceutical products and speciality chemical products 

are produced in crystalline form. Products include aspirin, paracetamol and other 

common drugs, paint pigments and silicon wafers. The fundamental process of 

nucleation is spontaneous, messy and is also badly understood. Classical 

nucleation theory, or Gibbs theory, has already been described in Chapter 1, along 
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with hidden liquid-liquid critical points16 and pre-nucleation clusters8 which can 

influence nucleation rate and the route to stable phases. A deeper understanding of 

nucleation is highly desirable, so it is hoped that this chapter can contribute to the 

picture by tackling the recently discovered phenomenon of non-photochemical 

laser-induced nucleation. But first, it is important to explain some of properties of 

lasers before the NPLIN experiments which use them are discussed. 

2.2.1. Lasers 

Laser beams have certain properties which are highly desirable for 

telecommunications, data storage, spectroscopy, metrology and medicine. Laser 

stands for ‘Light Amplification by Stimulated Emission of Radiation’. Laser beams 

are highly spatially and temporally coherent, so the photons are in phase and the 

beam tends to have a narrow linewidth, i.e. is monochromatic (except when pulse 

lengths are very short). As the acronym suggests, lasers achieve coherence by a 

phenomenon called stimulated emission which is depicted in Figure 20. Normally 

after a photon has been absorbed and has promoted an electron to some excited 

state E2 from ground state E1, a photon with be emitted spontaneously during decay 

back to E1. In stimulated emission, a second photon with energy hν interacts with 

the excited electron and triggers the emission of two photons, which are now 

spatially and temporally coherent. After many iterations, the result is a collection of 

photons of which a high proportion are coherent. 

 

Figure 20 – Depiction of stimulated emission. An electron is excited from E1 to E2 by a photon of energy E = 

hv. If a second photon interacts with the excited electron before it decays spontaneously, the emission is instead 

stimulated by the photon, and two coherent photons are emitted. 

In most materials the standard absorption of a photon is much more probable than 

stimulated emission, so they must be designed in a way which reverses this. The 

chief way that this is achieved is by population inversion, i.e. the majority of electrons 

remain in an excited state rather than the ground state. So,  
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where N  is the number of photons occupying a given energy level. Population 

inversion is achieved by designing a material which can act as a gain medium, e.g. 

titanium doped sapphire (Ti:Al2O3) which has four energy levels with specific 

energies and lifetimes (Figure 21). The gain medium is pumped with photons from 

a higher energy light source (often another laser such as a diode laser) which excites 

electrons from the ground state level 1 to level 4. This is followed by a relatively fast 

transition to level 3, so that level 4 continues to be free for other level 1 electrons to 

be promoted to. The transition from level 3 to level 2 determines the energy E = hν 

of emitted photons and is relatively slow, which acts in a sense like a bottleneck, so 

that excited electrons pile up in level 3. Level 2 to the ground state level 1 is relatively 

fast, which means that electrons do not remain there for long. Once equilibrium has 

been established, the number of photons in level 3 greatly outnumbers level 2, so 

population inversion has been achieved and stimulated emission becomes more 

probable. 

 

Figure 21 – Depiction of a four-level system which can achieve the population inversion requiring for lasing. A 

slow lasing transition and fast transitions from E4-E3 and E2-E1 maintain a high number of excited electrons in 

the E3 state and a small number in the E2 state. 

Laser gain media are typically housed inside an optical cavity with two plane parallel 

mirrors. If the two mirrors have similar reflectivity, the cavity is referred to as Fabry-

Pérot, but if one is more reflective than the other, it more like a Gires-Tournois cavity 

– both are used in different types of lasers. At least one of the mirrors has to be 
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partially reflective, in order for photons to leave the cavity. Housing the gain medium 

in a reflective cavity like this ensures a high density of photons and makes sure 

stimulated emission is undergone frequently enough to maintain beam coherence. 

The length of the cavity also affects which frequencies are amplified, as it acts as a 

resonator. Transverse and longitudinal standing waves form in the laser cavity with 

a wavelength 

 0 2 /nL m =   (2.2) 

where L is the length of the cavity, n is the refractive index of the gain medium and 

m is the mode number. As the equation describes, harmonics of the desired 

wavelength are produced, so these need to be filtered out. It should be noted that 

this equation is simplified – as many lasers have a longer cavity length than the 

length of the gain medium.  

What has been described so far roughly corresponds to a continuous wave (CW) 

laser which emits a constant beam of constant power. Lasers can be designed to 

emit trains of pulses, some of which can be < 100 attoseconds (10-16 s) in length.19 

Due to the Heisenberg uncertainty principle, as the pulse length gets very low, the 

spread of frequencies must rise. As a result, ultrafast pulsed lasers are not 

monochromatic, but cover a broad range of wavelengths. Pulses are typically 

generated through a process called mode locking, which involves using some 

method to force a fixed phase relationship between the cavity modes ωn. If adjacent 

modes have a random phase relationship, the amplitude of the laser will oscillate 

randomly. If the modes are fixed to oscillate with a phase shift equal to the spacing 

between the modes 1n n  + = −   then the sum will produce a short pulse, which 

is depicted in Figure 22. The more modes that are used, the shorter the pulse can 

become, which is of course at the cost of how narrow the spread of frequency is. 
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Figure 22 – Example of an ultrafast laser pulse. The envelope in this case is a squared hyperbolic secant 

function. 

If the simplification of a square pulse is made, the peak power of a laser pulse is 

given by 

 
pulse
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P

t
=


  (2.3) 

where Epulse is the pulse energy and Δt is the pulse width. The width of a laser pulse 

like the example in Figure 22 will be defined at the full width half maximum (FWHM). 

The peak power density, for which the Greek letter zeta (ζ) will be assigned, follows 

the relation 
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where d is the diameter of the beam at the waist (1/e of maximum) and A is the area 

of the beam. Pulsed lasers possess a repetition rate, or rep rate, which can vary 

from several Hz to MHz. Based on the repetition rate and pulse length, it is easy to 

calculate the fraction of time that the beam is in the ‘on’ state for 
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For the pulsed laser used for a typical experiment in this work, RRepetition = 1 MHz 

and Δt = 1 ps so the on/off fraction is 10-6. 

The optical setup which integrates two lasers – one CW and one pulsed – and is 

used for majority of experiments in this chapter will now be described. 

2.2.2. Optical Setup 

The optical setup used consists of an upright optical microscope with phase contrast 

and polarisation capabilities, a fluorescence module and two laser sources which 

are directed into the microscope column using a periscope and dichroic mirror. 

Figure 23 shows a plan view of the optical bench which in short, consists of two 

lasers which are along the same beam path towards the periscope, and can be 

alternated using the flip mirror M4. 

 

Figure 23 – Plan view diagram of the main elements of the laser bench setup. Lasers L1 and L2 are a 785 nm, 

CW, 250 mW diode laser and a 1040 nm, 350 fs - 4 ps, 1 MHz/100 kHz 8.5 W pulsed laser respectively. Mirrors 

M1, M2 and M3 are used for alignment L1, and M5 and M6 are used to align L2. M4 is a flip mirror which can 

direct either L1 (red beam) or L2 (green beam) towards the periscope P. T is a telescope which featured a 

spatial filter aperture and expands the beam diameter to better fill the back of the objective lens prior to reaching 

the sample. It should be noted that L1 contained an aspheric lens within its housing for collimation, which has 

not been illustrated or labelled. 

A periscope is used to raise the beam to the height of the custom module for the 

microscope which contains a dichroic mirror. A series of apertures are placed 

before, within and after the periscope for alignment. Figure 24 depicts an elevation 

view of the microscope column which features a custom built module containing a 
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dichroic mirror for laser entry, a fluorescence module, positions for polarisers 

(labelled analyser, above the sample), a wheel of annuluses for phase contrast, and 

annuluses built in to the 10x and 20x objective lenses. There is also a 50x non-

phase contrast objective. As long the fluorescence emission filter is placed above 

the laser dichroic in the column, it is possible to carry out epifluorescence while 

simultaneously irradiating the sample with the laser. If the emission filter was placed 

within the filter cube of the fluorescence module, it would attenuate the laser 

significantly. 

 

Figure 24 – Elevation view of the microscope used for the majority of experiments. The microscope can be used 

in phase contrast mode if the phase contrast annulus is equipped. Polarisers can be inserted for polarisation 

microscopy (crossed polarisers). There are an array of filter cubes for epi-fluorescence. As the custom laser 

module is above the fluorescence module, the emission filter would block the laser if unmodified. To rectify this, 

the filter has been placed above the laser module. Despite there being a laser dichroic mirror, it was still essential 

to use a low pass filter to attentuate the transmitted laser light to an acceptable level for low light experiments.  
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Now that lasers and the optical setup used has been outlined, the literature 

surrounding the non-photochemical laser-induced nucleation (NPLIN) phenomenon 

will now be summarised. 

2.2.3. Non-Photochemical Laser-Induced 

Nucleation 

The principle of  non-photochemical laser-induced nucleation (NPLIN) is simple – 

direct a laser at a metastable solution and trigger nucleation – through a mechanism 

which does not involve heat. There are numerous examples of nucleation where 

heating produces cavitation bubbles20, or causes a photochemical reaction.21 The 

majority of the examples of NPLIN use nanosecond pulsed lasers with fairly high 

peak power densities in the range 10-100 MW cm-2.  The first example of NPLIN 

was demonstrated by Garetz and co-workers who used a 20 ns 1064 nm laser 

Nd:YAG laser to nucleate urea crystals from a supersaturated solution.22 The 

amplified pulse energy was 0.1 J and the beam area was ~2 mm2, resulting in a 

power density of 250 MW cm-2. They conclude that since there are no vibrational 

bands in urea near 1064 nm and at the power density used, multiphoton absorption 

is insignificant, the mechanism must be non-photochemical. Garetz proposed a 

mechanism based on the optical Kerr effect (OKE) causing molecules to align with 

the electric field, partly because the needle-like urea crystals tended to align with 

the field. This is puzzling as the peak power of the laser Garetz used (using equation 

(2.3) is 5 MW and the peak power required for the OKE to be significant tends to be 

~10 GW.23 Garetz revisited NPLIN four years later and demonstrated the same 

effect with supersaturated solutions of the amino acid glycine.24 The 

thermodynamically more stable γ polymorph of glycine25 was unexpectedly 

produced during NPLIN experiments, with only the kinetically favoured α polymorph 

being produced in control experiments with the laser off. This led to a more thorough 

study using 41 samples, where the nucleated polymorph was controlled with 100 % 

success – linearly polarised light produced γ and circularly polarised light produced 

α.26 The authors reported an increase in nucleation probability with laser power and 

implicitly rule out an OKE mechanism by calculation (although they use the OKE as 

a mechanism in subsequent publications). Since laser polarisation appears to have 

such an influence, the authors argue that this is further evidence that NPLIN is not 

a heat or photochemical effect. Since then, NPLIN has been reported to occur in 

solutions of phenylalanine27, L-histidine, hen egg lysozyme28, CO229,30, potassium 

halides31, sodium chlorate32, sulfathiozole33, carbamazapine34, pure acetic acid35 
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and a liquid crystal.36 Simulations carried out by Knott and co-workers cast further 

doubt on the OKE mechanism.37 Alexander and co-workers published a number of 

articles which repeated older experiments and cast doubt on some NPLIN 

claims.30,38,39 Their data shows no statistically significant relationship between linear 

polarisation direction and urea crystal orientation – casting further doubt on the OKE 

mechanism. They conclude that CO2 bubble nucleation in sucrose solutions is due 

a heating effect. Along with Clair and co-workers40, they doubt Garetz’s claim of 

100% polarisation switching of glycine polymorphs, saying that although control was 

possible, it was only achievable over a very narrow range of supersaturation ratios. 

In addition, they propose that NPLIN in glycine is caused by cavitation bubbles from 

impurity nanoparticle heating, which result in a local increase in supersaturation. 

Eral and co-workers come to the conclusion that the mechanism behind NPLIN is a 

pressure wave generated by the laser.41 Most recently, Alexander and Camp 

described the evidence for polarisation selection using NPLIN to be “patchy”, and 

the exact mechanism behind NPLIN to be uncertain.42 

Laser-induced nucleation experiments performed by Masuhara and co-workers 

using focussed CW lasers have reliably shown polarization control over polymorph 

selection, however only at the air-solution interface.43 This suggests that heating, 

evaporation, convection or Marangoni effects may play critical roles44, which would 

also explain why the method works in under-saturated solutions. However, 

interestingly, these experiments have also demonstrated polymorph selection. 

At this stage, NPLIN has a range of potential mechanisms ranging from the optical 

Kerr effect or some other electric field based mechanism, to pressure waves, 

cavitation bubbles and impurity heating. OKE has effectively been ruled out; a more 

plausible mechanism as suggested by Knott and co-workers45 is an Isard type – the 

growing nucleus has a higher refractive index than the surrounding liquid and is 

therefore stabilised by the field. One feature of NPLIN phenomena which has 

somewhat slipped under the radar is the rather small selection of solutions that it 

occurs in. If it is something as generic as the mechanisms outlined so far, why is 

NPLIN not observed more broadly? The mechanism which will be advanced here 

involves the influence of a liquid-liquid critical point like that which was described by 

Frenkel and ten Wolde16, which is hidden behind the curtain of crystallisation. 

Before moving on to discuss theory, a brief mention will be given to the related 

non-linear dielectric effect (NDE). 
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2.2.4. The Non-Linear Dielectric Effect 

The non-linear dielectric effect (NDE) is a bit of a tangent, but it is worth discussing 

due to its similarities with the LIPS effect. 

In 1965, Debye and Kleboth published a paper which showed the unusual dielectric 

behaviour of a mixture of nitrobenzene/2,2,4-trimethylpentane, when near the 

critical point TC of demixing.46 They reported that when a DC electric field is applied 

to the mixture, TC decreased slightly. They determined the size of the shift by 

comparing critical opalescence data at different electric field strengths. Critical 

opalescence is the exponential rise in opacity that is often seen during continuous 

phase transitions like demixing by spinodal decomposition. The authors found a 

depression in TC of 0.015 ˚C for a field intensity of 45,000 V cm-1. Ziolo and co-

workers carried out a similar experiment and made several observations: there was 

a greater change in TC for liquids that had a greater difference in dielectric constant, 

the effect was also greater for the liquid crystal N-(4-Methoxybenzylidene)-4-

butylaniline than for the molecular liquids, and the liquid with the higher dielectric 

constant was attracted preferentially to areas of high field.47 

There is a similarity between LIPSaN and the NDE. In both cases, mixtures with a 

difference in relative permittivity εr can be separated using high electric fields – the 

higher εr component being drawn to the high field region. Of course at zero 

frequency εr = ε0, the dielectric constant, and at visible frequencies εr ≈ n2. The 

interpretation of the NDE is different from the interpretation of LIPSaN described in 

this chapter. NDE is interpreted as a shift of a critical point (or the whole binodal), 

but LIPSaN is interpreted in this chapter either as the lowering of free energy by the 

high refractive index component occupying the laser focus, or as an analogue of 

optical trapping. 

2.3. Theory 

In this theory section the fundamental physical principles behind what will be termed 

the LIPSaN phenomenon will be laid out and some predictions will be made which 

will be compared to experiment in the results and discussion sections. Much of this 

section was recently published by us.48–50 The regular solution model in the next 

section will be amended to include a term to factor in the effect of the laser. This will 

be used to calculate the mole fraction in the focus and predict the effect of moving 

away from the critical point in terms of temperature. The steady-state heating in the 
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focal volume will be solved analytically in one dimension and the effect of 

thermophoresis (the Soret effect) will be estimated. 

2.3.1. Regular Solution Model of Mixing 

In order to model the free energy associated with the mixing/demixing of two liquids, 

the regular solution model as it is presented by Jones51 will be used as a starting 

point. The regular solution model builds on the ideal model of a mixture by factoring 

in an enthalpy of mixing as well as entropy. The enthalpic term is asymmetric with 

respect to mole fraction, however deviations from ideality are often asymmetric and 

so are not fully accounted for. A mixture can be defined with mole fractions of 

molecules A and B which are given by x0 and xB respectively, such that xB = 1 - x0. 

The regular solution model defines the energy of the interaction between A and B 

relative to their self-interaction by introducing the variable 𝜒 which is defined as 

 (2 )
2

AB AA BB

z
   = − −   (2.6) 

where z is the number of nearest neighbours of a given molecule in the mixture and 

ε is the molar interaction energy for each pairing. The term for the total molar free 

energy of mixing is then given by 

 0 0 0 0( , , ) ( ln ln )mix B B BF x T RT x x x x x x = = + +   (2.7) 

Here AAz  is approximately equal to the heat of vaporisation, which ranges from zero 

(at the gas/liquid critical point) to ~40 kJ mol-1. This means that   is positive on the 

order of a few kJ mol-1 for poorly mixing liquids. This equation can be used to 

calculate the free energy of mixing using a sensible choice of parameters, which is 

shown in Figure 25. 
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Figure 25 – (left) Free energy of mixing (defined in equation (2.7))for   = 5 kJ mol-1 and T = 200, 250, 300 

and 350 K (top to bottom). At high temperature there is one minimum at a mole fraction of 0.5. At low temperature 

there are two minima at either side, as the mixture separates in to two phases. (right) Binodal and spinodal lines 

for (lower curves)  = 2.5 and (upper curves) 5 kJ mol-1. 

The co-existence curve (binodal) is at dFmix/dx = 0 and the spinodal at d2Fmix/dx2 = 

0, which can be solved for T to give 
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and 

 
1

0 02 (1 )SpinodalT x x R −= − .  (2.9) 

As it can be seen in Figure 25, when χ = 5 kJ mol-1 gives a reasonable approximation 

for the binodal of a nitrobenzene-decane mixture which has TC = 295.96 K and xC = 

0.575 and will be used for the majority of the experiments described in this chapter. 

Like many examples of binary mixtures, the experimental binodal of nitrobenzene-

decane shows slight asymmetry (Figure 31), but a symmetric approximation will be 

sufficient for the model. 

The effect of free energy changes in a small volume caused by spontaneous 

concentration fluctuations now need to be considered. V0 is defined as the total 

volume of the sample and x0 as the mole fraction of the initial mixture in terms of A. 

Now a microscopic volume Vlaser is defined which will be the focal volume of the 

laser later on. If the mole fraction of the focal volume xlaser changes, so must the 

remaining xrest so that the total amounts of A and B are conserved. This implies 
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and so, the free energy in total of the system in a phase separated state is 
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The diagram in Figure 26 shows the change in free energy in a small volume Vlaser 

0( )sepF F F x = −  which is associated with a change in mole fraction in said volume 

for different initial mole fractions which are 0.3 (blue), 0.5 (orange) and 0.7 (green). 

The temperature is set a few K above the critical temperature at 301 K. As expected, 

the free energy increases when the concentration in VLaser changes. Near the critical 

concentration, the free-energy potential (orange) is fairly flat which results in large 

concentration fluctuations away from the equilibrium concentration. 

 

Figure 26 – The change in the free energy of mixing (ΔF) when the mole fraction of a small volume Vlaser is 

varied. Chosen parameters are χ = 5 kJ mol-1, Vlaser = 10-3×V0 and T = 301 K. The initial mole fractions are set 

to x0 = 0.3 (blue), 0.5 (orange) and 0.7 (green). 

2.3.2. The Effect of the Laser 

The assumption will be made that the refractive index of a mixture is the average of 

that of the two components, factoring in mole fraction such that 

 ( ) (1 )A Bn x xn x n= + −   (2.12) 

where nA and nB are the refractive indices of the components A and B respectively. 

This is a modified version of the Gladstone-Dale relation, which fits experimental 

data well for binary liquid mixtures.52,53 Since the molecular scale (10-10-10-9 m) is 



43 
 

much smaller than the scale of the wavelength of visible and near-IR light (10-8-10-

7 m), the dipole approximation can be used to calculate the stored electromagnetic 

energy in the field of the laser. The dipole approximation is given by 

 
2 2

0dipU n E= −   (2.13) 

where Udip has dimensions energy per unit volume. The energy stored in the field in 

the small volume in Joules is 
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The total free energy change is then given by 
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Here the laser intensity I can be defined as 

 ,2

0

laser extU
I E

Ac
= =   (2.16) 

where A is the area of the laser focus, c is the speed of light and ULaser, ext is the 

energy flux of the laser beam with units of Watts. For example, a laser with an optical 

power of 50 mW which is focussed to a spot of diameter 1.7 µm at the beam waist 

gives an intensity I ≈ 1 kJ m-3. 

Figure 27 shows the free energy change ΔF by the optical-tweezing effect of the 

laser when the assumption is made that component B has a higher refractive index. 

Switching on the optical-tweezing potential biases the potential minimum towards 

the right (larger x) and therefore the laser volume is expected to become enriched 

with the high refractive index liquid. This process will be referred to as laser-induced 

phase separation (LIPS)48–50. In the metastable case, switching on the laser causes 

the system to tip from metastable (two minima separated by a barrier) to unstable 

(single minimum determined by the tweezing laser) at sufficient laser power, thereby 

triggering phase separation. 
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Figure 27 – Plots of the free energy change F in a mixture of nitrobenzene-decane with mole fraction x0 of 

nitrobenzene when the mole fraction is changed to xlaser in a small volume. Here the initial nitrobenzene mole 

fraction is x0 = 0.5 (left)) and x0 = 0.7 (right), the laser intensity is I = 0 (red), 100 (blue), and 200 (green) J/m3, 

 = 5 kJ mol-1, and (left) T = 301 and (right) 280 K. The refractive indices are set to ndecane = 1.41 and nnitrobenzene 

= 1.54. The left panel represents a stable critical mixture undergoing LIPS – the free energy minimum for the 

laser volume moves to a higher mole fraction. The right panel represents a metastable sample where the global 

free energy minimum of the laser volume is at a high mole fraction, but it is stuck in a local minimum at the bulk 

mole fraction of 0.3. The effect of the laser is to remove the barrier between the two states, triggering nucleation. 

In the high temperature regime, the free-energy difference curve from equation 

(2.15), has only a single minimum. Thus, in principle, one could find this stable 

minimum by determining , 0sep laserd F

d


= , however, this does not have a simple 

analytical solution. Instead, the minimum of the free energy difference using a 

numerical algorithm will be determined. In the low temperature limit (below the 

spinodal), the free energy difference also has single minimum. However, for 

temperatures between the binodal and spinodal, the free energy difference has two 

minima. The numerical approach outlined here implies that the metastable minimum 

will be missed and only the stable minimum will be found. 

The experiments will be carried out by using PC microscopy, which is sensitive to 

changes in refractive index. Since the refractive index is linearly proportional to the 

volume fraction in the model (equation (2.12)) the volume fraction can be used as a 

proxy for the signal measured in the experiments. This can only be done for small 

objects, as for larger ones the shade-off effect renders the signal from the centre of 

the object the same as homogenous sample around the object – this will be 

demonstrated later. 

Figure 28 shows the predicted phase contrast signal calculated by finding the mole 

fraction φ that minimises the free-energy difference numerically and subtracting off 

the original volume fraction. The curves are a function of temperature – as the 
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temperature rises and system moves away from the critical point, the signal dies 

away. At higher laser intensities the LIPS effect extends to higher temperatures but 

is fairly consistent at temperatures very close to TC. The LIPS effect extends to 

higher temperatures when the mixture is closer to the critical mixture xC. The 

discontinuities which appear in both graphs in the blue and orange curves may be 

anomalies of the numerical method. 

 

Figure 28 – Plots of predicted phase contrast signal, calculated by finding the mole fraction φ that minimises the 

free-energy difference numerically and subtracting off the original volume fraction. The initial mole fractions are 

x0 = 0.3 (left) and 0.5 (right). The coloured curves represent different values of laser intensity: I = 100 (red), 200 

(blue). 300 (green) and 400 (yellow) J m-3. Also plotted is the power law 0.8×(T-260)-1 (black dashed line). As 

the mole fraction moves towards the critical mole fraction xC, the effect operates to higher temperatures. The 

signal is predicted to be stronger at temperatures very close to TC, but this may be an anomaly of the method – 

the discontinuities in the orange and blue curves in both graphs are unusual. 

2.3.3. The Kramers Equation for Diffusion 

The free-energy potentials derived above the basis for a calculation of the kinetics 

of LIPS. The liquid diffusion can be modelled by a Fokker-Planck equation, 

describing the evolution of the probability distribution function p(x, t) of a random 

variable x as 

 

2

2
( , ) [ ( , ) ( , )] [ ( , ) ( , )]p x t v x t p x t D x t p x t

t x x

  
= − +

  
  (2.17) 

where v(x, t) is the drift velocity and D(x, t) the diffusion coefficient. In this case, the 

diffusion coefficient can be taken as constant and so 𝜈(𝑥) = −𝜇𝜕𝑈(𝑥)/𝜕𝑥 can be 

substituted since the drift velocity scales with the gradient of the free-energy 

potential. The Stokes-Einstein equation states that 
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where µ is the mobility, η is the viscosity, r is the radius of the diffusing particle 

(molecule) and the Boltzmann constant kB = 1.380 × 10-23 J K-1. It then follows that 
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p x t p x t D p x t

t k T x x x
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  (2.19) 

which has been derived previously for the case of solvent-driven electron transfer.54 

When the potential U(x) is set to zero everywhere, the Green’s function of this 

Fokker-Planck equation can be derived, which is given by 
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4

x
Dtp x t e

Dt

−

=   (2.20) 

Thus, in the absence of a potential, in one dimension and where the initial 

distribution is a delta function, the standard deviation of the distribution varies eith 

time as  2Dt = . 

The diffusion coefficient D can be approximation using the Stokes-Einstein 

expression in equation (2.18) where the diffusion coefficient has units m2 s-1. If this 

equation is applied to nitrobenzene (parameters: molar mass 123.06 g mol-1, density 

1.199 g cm-3, viscosity = 2.03 cP, so R = 3.44 nm) it is found that Dtrans = 3.1 × 10-10 

m2 s-1. The thermal diffusivity for nitrobenzene α = 0.94 × 10-7 m2s-1 .55 Roughly 

speaking, the thermal diffusivity α ≈ D × 1000, which indicates that heat travels ≈ 

30× farther in the same amount of time. As such, the assumption will be made that 

thermal equilibrium is achieved significantly more quickly than concentration 

equilibrium. 

In the case of a focussed laser with a Gaussian beam profile of width w, the trapping 

potential is simply 

 
2 2/2( ) x wU x e−  (2.21) 

and the width is typically a couple of mm in my experiments (since long working 

distance objectives had to be used). The diffusion equation (2.19) with the trapping 

potential equation (2.21) was solved numerically using a 2nd-order Runge–Kutta 

method on a spatial grid. Typical results are shown in Figure 29 with parameters 

chosen to be relevant to the mixture nitrobenzene–hexadecane . The trapping laser 

draws nitrobenzene into the focus leaving behind a depletion region that gradually 

fills in over time. The peak of the distribution grows on a timescale of roughly 0.5 s, 

determined by the diffusion coefficient D. 
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Figure 29 – Simulation of the evolution of the concentration of the high refractive index substance under the 

influence of an optical trapping force. Box length 100 µm, 1-ms time step in simulation, 200 grid steps, Dtrans = 

3.1×10-10 m2s-1, T = 300 K, w = 6 µm. (inset) The value of the peak as a function of time in seconds. 

2.3.4. Heat Diffusion 

The equation described by Schmidt and co-workers56 for heating in optical traps can 

be used to obtain a steady state change in temperature in the focus of 0.50 K for 

decane and 0.57 for nitrobenzene. However, given the limited testing of the model, 

a new expression for steady-state heating in the focal volume was derived from 

scratch. 

The one-dimensional heat equation is57 

 
2 2

2 2
( ) ( )

p
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where u is the temperature field, k is the thermal conductivity, cp is the specific heat 

capacity, ρ is the mass density and α is the thermal diffusivity in m2 s-1. α has the 

same units and behaviour as the diffusion coefficient D. Adding a term for internal 

heat generation gives 
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where q is the heat generated per unit volume in W m-3. In reality the heat source is 

a laser, so it has an approximately 2D Gaussian profile, but this will be simplified to 

a delta function in order to find a steady state solution. Such a solution is only 

possible if a constant temperature is maintained, so a source of cooling is needed, 
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which in this case is temperature controlled Linkam THMS600 stage in experiments. 

Factoring in both of those changes, 
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where ( )x  is the Dirac delta function with units m-1, Q is the magnitude of the CW 

heat source with units W m-2, β is the rate of heat transfer and T0 is the set 

temperature of the sample stage. 

This differential equation is soluble using complex contour integration. To begin with, 

a Fourier transform gives 
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which can be rearranged in terms of u  to give 
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Equation (2.26) has poles at /k i  =  , so the inverse Fourier transform is 
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which can be solved for x > 0 by closing the contour in the upper half plane. Using 

the residue theorem, 
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For x < 0 the sign of the exponential term changes from negative to positive, so for 

all x 
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where 
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The characteristic width of the heating spot, which obviously takes the form of a 

Gaussian function, is approximately /  . Fourier’s law of heat flow can be used 

to estimate β, so 

 glass

glass

T
q

d



= −   (2.31) 

where ΔT is the temperature differential between the sample and the stage, dglass is 

the thickness of the glass/mica windows used and κglass the thermal conductivity. 

Thus, a logical differential equation for the change in liquid sample temperature with 

time is 
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so 
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Using the values shown in Table 1, β = 507 s-1 is obtained. 

Now, using equation (2.29) the diameter of the heated spot at e-1 of the maximum 

and the temperature change at that point can be calculated. For borosilicate glass 

windows the diameter is 13 µm and the maximum temperature change is 1.6 K. For 

this calculation the extinction coefficients of nitrobenzene and decane were 

determined experimentally using UV-Vis spectroscopy – the data is shown in Figure 

91 and Figure 92 in the Appendix, section 5.3. It was found that 1.5 µW out of a 200 

mW incident optical power was absorbed. 
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Specific heat capacity nitrobenzene  cp, nitrobenzene = 1400 J kg-1 K-1 

Mass density nitrobenzene nitrobenzene = 1175 kg/m3 

Thermal diffusivity of nitrobenzene55 nitrobenzene = 0.94 10-7 m2/s 

Thermal conductivity glass glass ≈ 1 W m-1 K-1. 

Thermal conductivity mica mica ≈ 0.71 W m-1 K-1 

Thickness window glass dglass = 80 µm 

Thickness window mica dmica = 100 µm 

Table 1 – Parameters used the heating calculation 

2.3.5. Thermophoresis 

It is essential to consider all possible mechanisms for the LIPS effect – so the 

change in concentration due to thermophoresis (the Soret effect) has been 

calculated.  Thermophoresis can be described as the preference of one component 

to reside in a hot or cold region relative to the other component and can be described 

by 

 ( (1 ) )TD D T
t


  


=   + − 


  (2.34) 

where χ is mole fraction, D is the diffusion coefficient and DT is the thermodiffusion 

coefficient. In one dimension  
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which can be amended by substituting the derivative of equation (2.29) with respect 

to x 
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assuming equilibrium conditions so 𝑑𝜒/𝑑𝑡 = 0 and the Soret coefficient S = DT/D 

the equation changes to 
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If a few substitutions are made (𝐴 = (𝑆/2𝛼)(𝑄/𝑐𝑝𝜌) and /B  = ) the equation 

simplifies to 
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which solves to give 
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 (2.39) tends to c0 when x goes to infinity. By substituting (2.30) AB can be simplified 

as 
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so, the concentration profile due to thermophoresis can finally be given as 
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Picking different orders of magnitude of the Soret coefficient gives rise to different 

effects on the mixture (Figure 30). S = 10 has a large effect, resulting in a region of 

one pure component. S = 10-3 however has an almost negligible effect – a change 

of a few ten thousandths in terms of mole fraction. Since the values of S which were 

determined by Wiegand and co-workers58 for various binary mixtures are of the 

order of 10-3, thermophoresis plays a negligible role for the samples used in this 

chapter. 

 

Figure 30 – Different values of the Soret coefficient S and the thermophoretic effect on a mixture like 

nitrobenzene-decane where ΔT = 1.57 K and √α/β = 12.2 µm. 

2.4. Methods 

2.4.1. Materials 
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Experiments were carried out on nitrobenzene, aniline, decane, hexadecane, 

cyclohexane and methylene blue (Sigma Aldrich) and used as supplied. All samples 

were filtered before use using 0.2 µm hydrophilic polytetrafluoroethylene filters 

(Millipore) to remove dust. For all microscopy experiments, a sample thickness of 

11.58 ± 0.19 μm was used, controlled by dispersing a low concentration of glass 

monodisperse particle standards (Whitehouse Scientific). Mixtures were 

sandwiched between borosilicate glass (VWR) and ruby mica discs, which were 

cleaned by rinsing in acetone, isopropyl alcohol and distilled water, followed by 

drying in an oven at 423 K for 30 mins. The sample temperature was controlled to 

± 0.1 K using a Linkam THMS600 microscopy stage. In the experiments, the 

samples were prepared above the critical temperature or binodal of the mixture, 

then cooled and held at the desired temperature to maintain a homogeneous 

mixture. 

2.4.2. Microscopy and Laser Setup 

Microscopy was carried out using an Olympus BX53 light microscope that features 

modular units for phase-contrast (PC) and fluorescence microscopy, and a custom 

unit allowing for simultaneous laser irradiation and microscopy. The light source for 

fluorescence was a CooLED pE-300 and filter set used was TXRED (centre 

wavelengths of 559 and 630 nm for excitation and emission respectively). The 

primary laser used was a 785-nm diode laser (Thorlabs) producing a maximum 

power incident on the sample of 200 mW with an elliptical mode with a mean beam 

radius (at half height) of 1.7 and 2.4 µm when using a 10× and 20× objective 

respectively. The laser used for pulsed experiments was a 1040 nm Newport 

Spectra Physics Spirit One, which produces an average power of up to 8.5 W and 

produces a TEM00 mode with M2 < 1.1. Phase-contrast microscopy converts small 

differences in optical path length into intensity, therefore it can be used as a measure 

of refractive index. Negative phase contrast (PC) has been used here and results in 

intensity scaling with refractive index for objects on the micrometre scale. 

Nitrobenzene strongly quenches many fluorescent dyes, but the dye methylene blue 

is quenched relatively weakly. This produces contrast between the nitrobenzene-

rich and decane-rich phases in fluorescence microscopy. 

2.4.3. Data Analysis 

Image data were captured using the ImageJ add-on Micro Manager and analysed 

primarily using ImageJ. IGOR was used to fit data. Most of the LIPS intensity data 
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was processed by fitting a Gaussian function to radial distributions of the LIPS 

droplets and taking the area under the curve. In general, there was little difference 

between the data obtained via this method, and simply taking the average intensity 

of the centre of the LIPS droplet. The latter method was only used when collecting 

formation and decay data as the number of data points would make the former 

method very time consuming with little if any benefit. 

2.5. Results 

This results section will be broken down in to two parts which correspond to 

experiments involving laser-induced phase separation (LIPS), and laser-induced 

nucleation (LIN) in the metastable region between the binodal and spinodal lines. 

2.6. Laser-Induced Phase Separation  

The mixture that was chosen for the majority of the experiments described in this 

chapter was nitrobenzene-decane. Many nitrobenzene-alkane mixtures show 

UCSTs, but decane has a lower vapour pressure than shorter alkanes like hexane 

and octane, which was helpful for sample preparation and sample longevity. 

Nitrobenzene-decane mixtures have critical parameters xC = 0.575 and TC = 295.96 

K in the literature.59 xC was determined experimentally to be 0.575 but TC was found 

to be 296.8 ± 0.1 K. The slight difference in TC could be a confinement effect as the 

samples are sandwiched between glass or mica slides with a separation of 11 µm, 

however a study which investigated the effect of confinement on the binodal of 

nitrobenzene-hexane mixtures showed little difference when confined in 100 nm 

pores60. Alternatively, the difference may be down to chemical purity, as no further 

purification was carried out after purchase. The binodal of nitrobenzene-decane is 

shown in Figure 31, and has been fitted with a fourth order polynomial rather than a 

parabola to better illustrate the plateaued top of the experimental binodal. The 

binodal data were determined by gradually warming the mixture from a phase 

separated state to a homogeneous one. If the mixture were to be cooled from a 

mixed state, it would be possible to cross the binodal for non-critical mixtures. As 

was stated earlier, within the binodal the phase separated or demixed state is 

thermodynamically favoured and outside it, the mixed state is favoured. 
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Figure 31 – Phase diagram showing the binodal or co-existence curve of a nitrobenzene-decane mixture when 

sandwiched between two borosilicate glass slides with a thickness of 11 µm. The peak, or critical point, is at TC 

= 296.8 K and xC = 0.575. The experimental data matches the literature value of xC, but is a touch higher than 

the literature value for TC of 295.96 K.59 This effect is likely due to confinement, pushing up the critical point. 

Using a critical mixture, the temperature was held 0.1 K above the binodal, and the 

sample was irradiated with a focussed 785 nm CW laser at 200 mW. When viewed 

with phase contrast microscopy, a diffuse bright spot is visible in the laser focus 

(Figure 32). Since negative phase contrast was used, a bright object indicates a 

phase delay, so it can be deduced that the object has a higher refractive index. The 

mixture was chosen carefully so that components had a large difference in refractive 

index. Nitrobenzene has n = 1.54 and decane n = 1.41. Thus, the bright spot 

indicates a higher fraction of nitrobenzene. Based on the intensity using phase 

contrast of phase separated droplets and the lever rule, the refractive index and 

composition of the droplet can be estimated (See Appendix 5.1 for a more complete 

description of the method). The change in refractive index between the droplet and 

the surrounding bulk is Δn = 0.002, and the mole fraction of nitrobenzene in the 

droplet is 0.589 compared to 0.575 in the bulk. 
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Figure 32 – False coloured PC image of the LIPS effect in a nitrobenzene-decane mixture.48 The image shows 

a bright spot - indicating an object with a higher refractive index than its surroundings. In the nitrobenzene-

decane case, this is nitrobenzene-rich, as nitrobenzene has a higher refractive index. A 785 nm laser with a 200 

mW optical power was used. 

A radial distribution function of the LIPS droplet shown in Figure 33 reveals that it 

has a FWHM diameter of 2.4 µm when using a 10× objective, which is larger than 

the 1.7 µm beam waist of the laser (since the diode laser profile is elliptical, the long 

axis has been chosen). Figure 33 shows a dip in phase contrast intensity 

surrounding the central droplet at a radius of ~7 µm which goes away over time and 

moves farther away (~9 µm at 25.8s). PC microscopy is an interference-based 

technique which naturally produces dark fringes around bright objects and vice 

versa. Based on that alone, mole fraction cannot be determined accurately, but the 

fact that the minimum in PC intensity moves tells us that there is a non-equilibrium 

dip in nitrobenzene concentration around the LIPS droplet which fades over time as 

equilibrium is reached. 
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Figure 33 – Radial distribution function of the LIPS droplet in nitrobenzene-decane. It reveals a steady-state 

droplet diameter of 2.4 µm at FWHM. 

In order to make completely sure that the LIPS droplet contains a higher fraction of 

nitrobenzene as the PC microscopy indicates, fluorescence microscopy was used. 

Nitrobenzene strongly quenches fluorescent dyes via the Dexter mechanism18, 

which can be used to generate contrast between nitrobenzene-rich and poor 

regions. Initially, solvatochromic dyes like Coumarin 153 were used in an attempt to 

determine composition, but nitrobenzene proved too strong a quencher to get a 

reliable signal using the microscope or even a sensitive fluorimeter. The dye 

Methylene blue was chosen as it has a relatively low quenching constant when 

dissolved in nitrobenzene.61 Methylene blue has an excitation λMAX at 665 nm and 

emission λMAX at 716.9 nm. Due to limited availability of filter sets, a Texas red set 

was used (ex 559 nm, em 630 nm), but this proved to be satisfactory. Figure 34 

shows a fluorescence microscopy image of methylene blue dissolved in a critical 

nitrobenzene-decane mixture. There was a degree of overlap between the tail of the 

laser light and the emission filter, and since the laser is obviously many orders of 

magnitude brighter, it obscured the LIPS droplet. To get around this, the laser was 

repeatedly switched on and off, recording at as fast a frame rate as was practical. 

Twenty of the first frames following the laser being switched off were averaged to 

give the final image in Figure 34. Clearly there is a dark spot visible where the laser 

previously was, which corroborates the finding that the LIPS droplet is nitrobenzene-

rich. As a control, the same experiment was carried out using a non-critical sample 

where the LIPS effect was not observed, and no dark spot was resolvable. 
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Figure 34 – Fluorescence microscopy image of a LIPS droplet in a mixture of nitrobenzene and decane, using 

the dye methylene blue. Nitrobenzene quenches the fluorescence of the dye, creating a dark spot in the focus 

where the fraction of nitrobenzene is the highest. 

Figure 35 shows a range of critical mixtures which show the LIPS effect at a 

temperature of 0.1 K above their respective critical points. The LIPS effect was 

observed most strongly in benzene derivatives mixed with alkanes, but also 

nitromethane and n-octanol. 

 

Figure 35 – Six of the mixtures that were tested for the LIPS effect. The LIPS effect was observed for (a) 

nitrobenzene-decane, (b) nitrobenzene-hexadecane, (c) aniline-cyclohexane, (d) phenol-decane and faintly in 

(e) nitromethane-1-octanol. The effect was not observed for (f) nitromethane-1-butanol, likely for two reasons: 

they have a very similar refractive index, so the LIPS effect should be very weak, but objects with the same 

refractive index show the same signal in phase contrast, so it may not be visible even if the LIPS effect took 

place. It should be noted that the bright line in (e) is a phase boundary due to critical fluctuations. 
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Mixture TC (K) xC Δn 

Nitrobenzene-Hexane 293.6 59 0.430 0.1812 

Nitrobenzene-Octane 293.2 59 0.51 0.1430 

Nitrobenzene-Decane 296.0 59 0.575 0.1452 

Nitrobenzene-Dodecane 300.4 59 0.630 0.116 

Nitrobenzene-Hexadecane 309.6 62 0.716 0.1107 

Nitromethane-n-Octanol 322.2 59 0.664 0.0355 

Nitromethane-n-Butanol 290.4 63 0.582 0.0055 

Aniline-cyclohexane 302.9 64 0.44 0.1594 

Phenol-Decane 340.6 59 0.671 0.1190 

Table 2 – Mixtures used in this chapter and their literature critical parameters to four significant figures. 

In the case of the nitromethane mixtures (e) and (f), the difference in refractive index 

is small, particularly in the case of n-butanol (0.0055 compared to 0.1812 for 

nitrobenzene-hexane). The effect in (e) is very faint, but visible. (f) does not show 

an effect, for two possible reasons. The most likely reason is that in the dipole 

approximation (2.13) the energy stored in the field Udip increases with the square of 

the refractive index n, so is not much of a thermodynamic drive for LIPS. The second 

possibility is that the droplet is simply invisible because PC microscopy turns phase 

delays from refractive index differences into intensity. The two possibilities can be 

tested by plotting the LIPS intensities of the mixtures as a function of refractive index 

difference, shown in Figure 36. A straight-line fit would indicate that the droplets are 

only more intense because of the microscopy and a cubic fit would show that the 

dipole approximation is valid and both are contributing to the increased intensity. 

The data clearly have a non-linear relationship and fit a cubic function with a lower 

R2 value than that of a quadratic function. Fitting the data to a function of the form 

𝑎𝑥𝑛 gave n = 3.001. As such, the lack of a LIPS droplet in n-butanol is due in part 

to less energy being stored in the field because of the small difference in refractive 

index. This result validates the hypothesis that the effect relates to energy being 

stored in the field according to the dipole approximation. 
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Figure 36 – LIPS Intensity of a LIPS droplet 0.1 K above the critical point of various critical mixtures as a function 

of refractive index difference. 

The intensity of LIPS droplets in nitrobenzene-decane mixtures were measured as 

a function of mole fraction. The intensity was at its highest at the critical mole fraction 

(0.575) and faded away as the mixtures became dominated by one component. 

 

Figure 37 – Mole fraction dependence of the magnitude of the LIPS effect. There is clearly a relationship 

between proximity to the critical point and the effect.48 The single error bar represents the standard error when 

multiple measurements were taken at different points on the sample. 
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The effect of proximity to critical points can be tested by carrying out temperature 

dependences on critical mixtures. Figure 38 shows temperature dependences at P 

= 70 mW for nitrobenzene mixed with octane, hexadecane and decane from left to 

right. They all show good fits with power laws of the form a(T-T0)-n where the 

exponent n is 1, 2.4 and 1 respectively. The effect is weak, but present for quite a 

large range of temperatures. The power laws diverge to asymptotes at a 

temperature T0 which is a lower than the critical points of the mixtures, so no data 

could be collected between those two temperatures as the mixture was demixed. 

For example, nitrobenzene-decane gave T0 = 21.8 °C but has TC = 23.6 °C. 

 

Figure 38 – Temperature dependences of the LIPS effect for the following critical mixtures: (a) Nitrobenzene-

Octane, (b) Nitrobenzene-Hexadecane and (c) Nitrobenzene-Decane. As the mixtures cool towards their 

respective critical points, the magnitude of the LIPS effect rises according to a power law of the form ax-n where 

the exponents n are 1, 2.4 and 1 respectively. 

Power dependences in Figure 39 of the same mixtures as Figure 38 show a trivial 

linear relationship between laser power and LIPS intensity (N.B. the first point in 

Figure 39 (a) is below the lasing threshold). The intensity appears to saturate due 

to the shade-off effect which is inherent in phase-contrast microscopy (See 

Appendix). 

 

Figure 39 – Power dependences of the LIPS effect for the follow critical mixtures: (a) Nitrobenzene-Octane, (b) 

Nitrobenzene-Hexadecane and (c) Nitrobenzene-Decane. The data has been fitted to sigmoid functions to 

illustrate the saturation above 110 mW for (a) and 70 mW for (b) and (c). 

Temperature dependences were carried out on a critical mixture of nitrobenzene-

decane at a range of powers from 46.9 – 75 mW, to determine whether there is a 

relationship between power, and the temperature asymptote T0 when plotted in the 
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form a/(T-T0)n. Looking at the data in Figure 40 it is clear that, as would be expected, 

the temperature dependence fits rise in intensity with increased laser power. The 

asymptotes are plotted in Figure 41, and there appears to be no relationship 

between the temperature asymptote and laser power, within the chosen range of 

powers.  

 

Figure 40 – Temperature dependences at a range of laser powers. There is a rise in the LIPS intensity of the 

fits as the laser power is increased. 

 

Figure 41 – Asymptotes from the temperature dependences in Figure 40 as a function of laser power. There 

does not appear to be any correlation between the two. 

LIPS droplets do not appear instantaneously as the formation and decay processes 

are limited by the diffusion of molecules. Figure 42 shows the formation and decay 

of three nitrobenzene based critical mixtures with alkanes of different chain length. 

The data are fitted to exponential functions, and the formation and decay times are 

the time taken to reach e-1 of the maximum LIPS intensity (listed in Table 3). From 
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the limited sample of three, a relationship between chain length and formation or 

decay time cannot be determined. Since the viscosity of the alkane increases with 

chain length, it may be expected that the formation and decay would take longer. 

As chain length increases however, the refractive index also rises, so the refractive 

index difference Δn reduces. It may be the case that an increase in viscosity leading 

to longer times is offset by LIPS effect being reduced and the droplet having a mole 

fraction which is less different from the bulk. 

 

Figure 42 – Formation and decay curves of LIPS droplets in the following mixtures: (a), (b) Nitrobenzene-Octane, 

(c), (d) Nitrobenzene-Hexadecane and (e), (f) Nitrobenzene-Decane. The data are fitted to exponential functions 

for illustration. 
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Component 1 Component 2 Viscosity (cP) Formation (s) Decay (s) 

Nitrobenzene Octane 1.10 0.60 0.87 

Nitrobenzene Decane 1.31 1.31 1.68 

Nitrobenzene Hexadecane 2.48 1.19 1.11 

Table 3 – Formation and decay times of critical nitrobenzene mixtures with alkanes of different chain lengths. 

Given the limited data, a link cannot be established between alkane chain length and formation and decay 

times. 

The LIPS effect also works when an ultrafast pulsed laser is used in place of a CW 

laser. The LIPS intensity produced was similar when the average power was the 

same as the power of the CW laser. The pulsed laser used here has a wavelength 

of 1040 nm the base repetition rate used was 1 MHz. The pulse length of the laser 

can be varied between 350 fs and 4 ps, so a pulse length dependence was carried 

out. A random number generator was used to choose between five pulse lengths 

and 52 measurements were made in total. The intensity of the LIPS effect dropped 

slightly over the course of the experiment, so LIPS Intensity was measured as a 

function of time in a control experiment so that the data in Figure 43 was detrended 

before it was fitted to a straight line Using linear regression, a p-value of 0.02 was 

calculated, so as it below the 0.05 significance threshold, the null hypothesis can be 

rejected. The null hypothesis in this case was that there is no relationship between 

pulse length and LIPS intensity. As such, laser pulse length has a subtle effect on 

magnitude of the LIPS effect within the range 350 fs – 4 ps. 

 

Figure 43 – The average intensity of the LIPS effect as a function of pulse length. The p-value of 0.02 refutes 

the null hypothesis, so there is an inverse relationship between the pulse length and the intensity of the LIPS 

effect. 
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This section has demonstrated how the LIPS effect manifests itself in, for the most 

part, critical mixtures. The next section will move on to using non-critical, metastable 

samples in or near the gap between the binodal and spinodal to induce nucleation 

using the LIPS effect. 

2.6.1. Laser-Induced Nucleation 

Given that NPLIN has been extensively demonstrated in the last twenty years, it 

was essential that the model was backed up by nucleation experiments. Lased-

induced nucleation (LIN) was achieved by irradiating the sample for between 1 and 

60 seconds using non-critical mixtures of nitrobenzene and decane. It was initially 

predicted (Figure 27 left) that LIN would only be viable in samples with a lower-than-

critical mole fraction of nitrobenzene, but the opposite was found to be case in the 

samples that were tried. A small range of mixtures in the interval 0.62 < x < 0.69 

exhibited LIN – the most pronounced being at the lower end of the interval. Figure 

44 shows frames from a video made of a metastable mixture of mole fraction 0.632 

at 297.1 K (which is on or slightly below the binodal when mica slides are used), 

which was irradiated for 30s. At first, the LIPS effect manifests itself normally (a), 

but only once the laser is switched off does nucleation occur (b-d), forming well-

defined droplets (unlike the diffuse edged droplets seen in LIPS). The droplets were 

stable for tens of minutes, after which the properties of the sample generally begin 

to appreciably change, since the samples used here are not sealed at the edges of 

the glass slides.  
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Figure 44 – Progression of a laser-induced nucleation experiment in a metastable nitrobenzene-decane mixture, 

conducted at x = 0.632 and T = 297.1 K with a laser power of 100 mW which was on for 30 s. (a) The laser is 

switched on and a LIPS droplet forms from a visibly homogenous mixture, causing a few degrees of heating. 

(b) Once the laser is switched off, the temperature equilibrates faster than the concentration, so the mixture 

drops down under the spinodal line, triggering the nucleation of the phase-separated state. (c), (d) After a second 

or so, a droplet with a defined interface forms through Ostwald ripening (competition between droplets mean 

that large ones get larger and small ones are consumed by the larger ones), which is stable for tens of minutes 

at least. 

The LIN effect manifests itself differently at different mole fractions. At the highest 

mole fraction where an effect is visible (Figure 45 (a)), an array of droplets which 

are ~1 µm in size form. As the mole fraction is reduced, the sample is closer to the 

critical point, strengthening the LIPS effect. At x = 0.63, a large and defined droplet 

forms. The closer the sample gets to the critical point however, the narrower the 

metastable region becomes, so eventually no effect can be observed with the 

apparatus used, suggesting the metastable region (the temperature interval 

between binodal and spinodal lines) is < 0.1 K thick. 
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Figure 45 – The LIN effect at different mole fractions. (a) x = 0.675 (b) x = 0.957 and (c) x = 0.632. Higher mole 

fractions are farther away from the critical point, reducing the magnitude of the effect. 

For x = 0.632 samples, there is in increase in the mean size of the central droplet 

as the exposure time increases (Figure 46 (a)). Although no quantifiable data to 

back this observation up is presented here, the droplets appear fainter as the 

exposure time rises. Droplet diameter also increases with laser power (b). 

 

Figure 46 – The diameter of the droplet induced by LIN effect (before Ostwald ripening), as a function of (left) 

laser exposure time and (right) laser power48. Droplet diameter increases with both. 

2.7. Discussion 

The mechanism in the case of metastable binary mixtures is slightly different from 

that of supersaturated solutions and NPLIN. NPLIN samples are typically far into the 

supersaturated regime, so a small degree of heating does not have much of an 

effect. In the case of LIN, even a degree or two can lift the sample above the binodal. 

As such, nucleation is not triggered immediately as heating proceeds faster to 

equilibrium than diffusion by a factor of (~30 as was shown in 2.3.3) Figure 47 

depicts the complete mechanism which proceeds as follows. Heating of a few 

degrees (this is estimated to be of 1.6 K at e-1 of the peak of the Gaussian heat 
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profile) lifts the state of the sample of out of the metastable regime (a) and the 

sample undergoes the LIPS effect – splitting in to an ‘enriched’ zone in the laser 

volume and a depleted region around it (b). The laser is then switched off, cooling 

the sample (c) but the enriched and depleted regions remain for longer (d). If this 

process is carried out with a critical mixture (e) a typical LIPS effect is observed. If 

it carried out at a higher mole fraction of nitrobenzene (or any high refractive index 

component), the depleted region moves within the binodal if the initial mole fraction 

and temperature are chosen correctly, triggering nucleation in that region (f). In the 

case of (g), only the much smaller enriched region will breach the binodal, which 

should phase separate according to the lever rule, only it is constantly acting against 

diffusion to deplete the volume, rending it unstable and unobservable. This 

interpretation fits with the observation that LIN only works at higher volume fractions. 

LIN also operates over much larger distances than the size of the LIPS droplet (60 

µm as opposed to 2.4 µm), which mirrors what is seen by Sugiyama and Masuhara 

with NPLIN of phenylalanine crystals.65 This cannot be explained by only the laser 

volume moving in to the binodal. As the exposure time increases, the depletion 

region which is affected by the laser electric potential will increase and move closer 

to the mole fraction of the bulk. The depleted volume moving below the binodal fits 

with this picture. 

 

Figure 47 – Depiction of mechanism behind laser-induced nucleation (LIN)48. (a) The small degree of heating in 

the laser focus lifts the sample state above the binodal so that nucleation cannot occur and (b) but the LIPS 

effect still manifested itself. After the laser is switched off, (c) the temperature drops faster than (d) the mixture 

can equilibrate. This leads to the large depleted volume dropping below the binodal and triggering nucleation in 

a wide area.  
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Photothermal separation has been documented in binary mixtures of molecular 

liquids66 and polymers67, but relies on the system in question having a lower critical 

solution temperature (LCST), the opposite of the UCST present in the mixtures that 

are used here. Bunkin and co-workers used such an LCST mixture and using a 

model based on the Navier-Stokes equation concluded that heat-induced 

barodiffusion (diffusion due to pressure) was the dominant mechanism68. Any 

heating in an LCST system forces the mixture into the separated state, whereas 

heating in a UCST mixture moves further into the mixed regime. As such, the 

mechanism of the LIPS effect cannot be due to a direct heating effect. One of the 

main mixtures used here - nitrobenzene-decane - has no absorption bands at the 

diode laser wavelength of 785 nm (see Appendix 5.3) so the mechanism of resonant 

trapping of fluorescent molecules can be ruled out.69 Thermophoresis, or the Soret 

effect, is the diffusion of molecules in a mixture due to their preference to be in a 

region of high or low temperature, lowering the overall free energy. Typically, the 

larger or heavier particle will experience positive thermophoretic behaviour, i.e it will 

move from hot to cold. Thermal conductivity, absorption coefficient and the thermal 

gradient all play a role however, making the sign hard to predict. The differential 

equation which describes thermophoresis has been solved (see 2.3.5 in the 

Introduction), and using the steady-state focal heating calculation, and values of the 

approximate Soret coefficient from Wiegand58, it can be concluded that the change 

in mole fraction is negligible relative to change due to the LIPS effect. 

The LIPS effect bears a striking similarity to optically trapping of particles such as 

glass beads where, due to refraction within the particle, there is a small transfer of 

momentum which leads to a net restoring force towards the region of highest electric 

field. In optical trapping there is a second force at play however, the scattering force, 

which is collinear with the beam. In order to trap particles in bulk liquid for example, 

the restoring force must be greater than or equal to the scattering force, which 

requires an objective lens with a numerical aperture >~ 1.70 The experimental setup 

used here requires a high working distance lens, which has a much lower numerical 

aperture of 0.3. As such in the experiments, the LIPS effect droplet is only observed 

against the lower cover slip. 

The LIPS effect detailed here does not depend on the presence of pre-nucleation 

clusters that can be trapped and aggregated by the laser. Rather the laser generates 

an electric potential which lowers the free energy of the phase separated state. The 

mixtures that were used were chosen because their critical points are easily 
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accessible and not hidden below a liquidus or above the boiling points of the 

components. Ultimately, this is a generic effect which applies to all mixtures and not 

simply those which mix poorly. 

The LIPS effect was not observed using PC microscopy for mixtures with small 

differences in refractive index, however this does not prove conclusively that there 

is no droplet there. A diffuse droplet with the same refractive index as its medium 

would be effectively transparent under phase contrast since there would be no 

phase shift. One would expect an approximately linear relationship between the PC 

signal intensity and refractive index of the object, but the data in Figure 36 show that 

the data fits a higher order function. Equation 9 predicts that there will be a quadratic 

contribution to the PC signal from the greater electric potential generated by the 

laser – resulting in a cubic relationship overall. Fitting the data to a function of the 

form 𝑎𝑥𝑛 gave n = 3.001 and cubic fits gave better R2 values than quadratic fits. 

This result validates the model described earlier which includes a quadratic 

contribution from the dipole approximation. 

The LIPS effect is likely to be related to the laser-induced nucleation of amino acid 

crystals observed by Masuhara et al.43 although the experiments could only be 

carried out at air-solution interfaces, implying that evaporation of Marangoni effects 

may play a role. A repeat of these experiments in the bulk would be worthwhile, 

bearing in mind the possibility of a hidden liquid-liquid critical point enhancing 

concentration fluctuations. Bulk NPLIN phenomena described by Garetz22,26, 

Alexander38,42 and others65 fit with the narrative outlined here as the final states have 

higher refractive indices than their precursor mixtures. There are two potential 

exceptions to this picture, the first being carbon dioxide (CO2) bubbles. Peters and 

co-workers reported NPLIN of CO2 bubbles from solutions of CO2 in water.29 As a 

gas, CO2 has a much lower n than water, so this does not fit with the theory 

presented here. The threshold pulse energy of the effect was reported to be 

independent of wavelength and purity of the chemicals – suggesting heating does 

not play a role - but due to small sample sizes and a lack of error bars, this claim 

may not be valid. Alexander and co-workers ran similar experiments and found that 

filtering their solutions, or thoroughly cleaning glassware in acid increased the 

threshold and decreased the lability (number of nucleation events).30 In any case, 

since experiments show a depletion region which has a higher fraction of the low n 

component, this may be responsible for lowering the energy barrier to CO2 

nucleation. The second potential exception to this rule is NPLIN of glacial acetic 
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acid35, as it is a pure liquid rather than a solution or mixture. It is well established 

that pure liquids can exhibit liquid-liquid critical points, such as triphenyl phosphite71, 

n-butanol72 and d-mannitol.73 It may be the case that acetic acid exhibits a yet 

undocumented liquid-liquid critical point.  

2.8. Conclusion 

At a phase boundary the free energies of the two phases are identical and 

fluctuations in concentration or densities can be observed, particularly in the 

absence of an energy barrier between them. Fluctuations are strongest in proximity 

to critical points, such as the UCST seen in the binary mixtures in this thesis. It has 

been demonstrated that these fluctuations can be harnessed using a laser, which 

generates an electric potential that draws the high refractive index component of the 

mixture into the focus. In critical and near-critical mixed samples which are within 

~1 K of the critical point, the electric potential drives phase separation (Figure 32). 

In metastable samples, the laser electric potential lowers the energy barrier to the 

separated state and can trigger nucleation (Figure 44). 

It has been shown that an inexpensive laser-diode can be used to induce phase 

separation and nucleation in critical binary liquid mixtures. The effect depends on 

both a difference in refractive index, and more importantly proximity to a liquid-liquid 

critical point. The theory presented here applies to laser-induced crystal nucleation 

and provides a framework for future research on the subject.  

Thus, LIPS effectively harnesses critical concentration fluctuations to drive the 

system towards the phase separated state. It can explain all the laser-induced 

nucleation experiments even in the absence of an obvious critical point (that is, it 

may be hidden in a metastable region such as below the liquidus).  
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The Liquid-Liquid Transition in Triphenyl 

Phosphite 

2.9. Summary 

Debate has been raging for decades about the nature of a possible second liquid 

phase (A.K.A the glacial phase) of triphenyl phosphite and the validity of having 

more than one liquid phase more generally. One hypothesis which is proposed by 

Hajime Tanaka principally is that the glacial phase is a second liquid state, which 

differs from the original liquid by forming locally favoured structures (LFS) of a few 

molecules.74 The second hypothesis – of which the main proponent is Alain Hédoux 

- is that the elusive phase is nothing but a mixture of the original liquid and 

micro/nanocrystallites which have aborted crystallisation.75 A review of the literature 

surrounding TPP tends to favour the Tanaka hypothesis, but the Hédoux hypothesis 

is also supported by a large body of evidence. Both maintain the existence of 

nanocrystals, but the evidence for this is weak. A variety of techniques have been 

used to elucidate the nature of the glacial phase (which will be referred to as L2) of 

TPP. 

2.10. Introduction 

To begin with, the techniques and background literature which are relevant only to 

this chapter will be introduced. Techniques will be discussed first, followed by a 

literature review about liquid-liquid transition, with an emphasis on triphenyl 

phosphite. 

2.10.1.  Infrared Spectroscopy 

Infrared (IR) spectroscopy involves measuring light absorption in the infrared region, 

which typically corresponds to molecular vibrations, rotations and translations. The 

fingerprint region in the mid-IR (4000 - 400 cm-1) is particularly useful in identifying 

compounds or their chemical and physical properties, as the vibrations produce 

intense and distinct lines, in contrast to the broad peaks of the far-IR. The gross 

selection rule for absorption by a particular molecular vibration is that there must be 

a change in the dipole moment vector. This does not mean that molecules that have 

a permanent dipole moment have vibrations that are always IR active and vice 

versa. For example, Figure 48 depicts the symmetric and anti-symmetric stretch 

modes of CO2, which are IR inactive and active respectively. The symmetric stretch 
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has no net dipole moment at any point of its oscillation, but the dipole moment vector 

of its antisymmetric counterpart oscillates between pointing at either oxygen. 

 

Figure 48 – Depiction of CO2 at rest and undergoing (a) symmetric and (b) asymmetric stretches. The symmetric 

stretch has no net dipole moment at any point during the vibrations since the partial negative charges on the 

oxygens cancel out, making it IR inactive. The asymmetric stretch dipole moment vector varies from side to side 

during the vibration, so it is IR active. 

In terms of quantum mechanics, the transient dipole moment can be expressed as 

the transition dipole moment µfi between initial and final vibrational states ψi and ψf. 

So 

 ˆ
fi f id  =     (3.1) 

where 𝝁̂ is the transition dipole moment operator. So, the gross selection rule is 

therefore 

 0fiμ .  (3.2) 

The magnitude of IR absorption increases with the square of the transition dipole 

moment, where Einstein’s coefficient of stimulated absorption 
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ε0 is the dielectric constant and ħ is the reduced Planck constant.76  

Older IR spectrometers are dispersive, which means they measure absorption a few 

wavelengths at a time sequentially. Modern spectrometers are often Fourier 

Transform Infrared Spectrometers (FTIRs) which record absorption as a function of 

the position of a mirror, which is then converted to spatial frequency (i.e. 

wavenumber) using a Fourier transform. This is possible because length (m) and 



73 
 

spatial frequency (m-1) are conjugate variables. FTIRs possess what are basically 

Michelson interferometers (Figure 49 (a)). A coherent and broadband beam of 

infrared light passes through a 50/50 beamsplitter to produce two identical and 

perpendicular beams. The beams reflect off two mirrors, one of which moves on a 

translation stage. The optical path difference (OPD) due to moving the mirror 

generates a phase difference. The phase difference gives rise to an interference 

pattern on the detector as a function of mirror position as shown in Figure 49 (b). 

The beam interacts with the sample, whether the FTIR is in reflectance, 

transmission or attenuated total reflectance mode, and heads to the detector. Each 

frequency of IR light will produce minima and maxima at different mirror positions 

for the same phase difference – the frequencies can be extracted out using a Fourier 

transform. A background spectrum measurement is obviously necessary in order to 

factor in any changes due to sample container, air, moisture and optics. 

 

Figure 49 – (left) A Michelson interferometer which is configured for an FTIR. A coherent, broadband beam of 

IR light is split in to two, and a phase delay is introduced by moving one of the mirrors. The beam recombined 

with an interference pattern shown in (right) as a function of mirror position. The Fourier transform of the pattern 

is a standard IR absorption spectrum.[CCO, public domain]  

The resolution of a dispersive spectrometer is limited by the width of a slit, as all 

frequencies are dispersed by a grating at different angles. A thinner slit means 

higher resolution, but at the cost of brightness which leads to longer acquisition 

times and a larger number of grating positions needing measured. The FTIR has a 

throughput advantage as it irradiates the sample with all frequencies at once, which 

can be easily decomposed computationally using a Fourier transform. The 

resolution is limited by the length of the mirror arm, i.e. the maximum OPD possible. 

The resolution scales with the inverse of the OPD, so four times smaller (better) 

resolution requires an OPD (or mirror arm) that is four times longer. An FTIR in 
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transmission mode will be used for all IR experiments which are detailed in this 

thesis, at a resolution of 2 or 4 cm-1. 

2.10.2. Infrared Imaging 

Since IR light has a longer wavelength than visible light, attempts at high resolution 

microscopy will be hampered due to Abbe’s limit. IR microscope resolution is limited 

to roughly the wavelength, providing that a bright, highly spatially coherent source 

is used such as from a synchrotron.77 Light with wavenumber ν = 1200 cm-1 (which 

is the roughly the main wavenumber of interest in this work) corresponds to a 

wavelength of λ = 8.3 µm, so that is roughly the resolution limit. One way of carrying 

out infrared imaging is to use pass IR light from a synchrotron in to an FTIR to shine 

a broadband beam through a square aperture of, for example 10 by 10 µm and 

raster scan a pre-determined field of interest by moving the sample stage. The result 

is a spectrum for every ‘pixel’, which is also known as hyperspectral imaging. A 

smaller aperture, while in principle providing better resolution, is not practically 

viable due to significant beam attenuation. IR spectroscopy is traditionally a bulk 

technique, so for samples with multiple phases present, IR imaging can be very 

useful for picking out what phases give rise to particular spectra. 

2.10.3. X-Ray Diffraction 

X-rays correspond to a region of the EM spectrum with wavelength λ = 0.01 – 10 

nm, or energy E = 100 eV – 100 keV. The low wavelength means that they can be 

used to probe sub-atomic length scales, which are the order of 0.1 nm. In a 

laboratory, X-rays tend to be produced by accelerating electrons to strike a metal 

surface like tungsten, molybdenum or copper. An incident electron can eject an 

inner shell electron from a metal atom, causing an outer electron to drop to fill the 

vacancy and the emission of a photon corresponding to the difference in energy 

between the two states. Naturally this means that different metals have different x-

ray energies, which means different scattering angles (λ varies with θ in (3.4)), so 

laboratories tend to have multiple sources to maximise the range of sizes that can 

be probed. X-rays and other regions of the EM spectrum can also be produced in 

the form of synchrotron radiation, where electrons are accelerated to a high velocity 

and deflected using magnetic fields, where the wavelength of the radiation depends 

on the velocity and the radius of the path of the electron. Like all waves, X-rays can 

interfere and form diffraction patterns with maxima and minima. Since X-rays can 

have shorter wavelengths than the spacing between atoms in a lattice, the positions 
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of the maxima can be used to determine the distances between lattice planes in 

crystals, and even angles if the sample is a single crystal. The Bragg condition is  

 2 sind n =   (3.4) 

where d is the spacing between lattice planes, θ is the incident angle of the x-rays 

(90° being normal to the plane), n is the integer maximum number and λ is the 

wavelength. The Bragg condition is illustrated in Figure 50.  

 

Figure 50 – Depiction of the Bragg law, showing coherent x-rays beams reflecting off successive lattice planes, 

with a phase difference equal to dsinθ. 

Powder or polycrystalline samples can have lattice planes in any orientation, so 

some information is lost and a ringed pattern show in Figure 51 (b). Typically, a 

radial distribution function is taken of the powder rings so that they are presented as 

peaks, where the x-axis is the angle 2θ. Bragg’s law is then used to convert 2θ to 

d-spacing, which is the distance between any two repeating units. Knowing d-

spacings is helpful, but it does not tell you about the orientation of the planes with 

respect to each other or which d-spacing corresponds to the unit cell, so determining 

a unit cell can be difficult if this is the first time a crystal has been analysed. 

Crystallographic lattice planes can be classified using Miller indices (h, k and l), 

which are integer coefficients of the basis set of three direct lattice vectors a1, a2 

and a3. The unit cell of a crystal corresponds to the planes [100], [010] and [001]. 

A given lattice plane of a single crystal has a single orientation, and so light scattered 

from a single crystal has a single direction and produces a spot Figure 51 (a). Single 

crystal samples can then be rotated to get a full three-dimensional crystal structure. 
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Figure 51 – Examples of diffraction patterns for (a) a single crystal and (b) a powder or polycrystalline sample. 

The latter have crystals in random orientations, so discrete spots build up to form rings. 

Talking in terms of lattice planes is a simplification of x-ray diffraction. 

Fundamentally, the x-rays scatter elastically (Rayleigh scattering) from repeating 

patterns of electron density. As such, XRD can not only determine the spacings and 

orientations of planes, but the relative positions of individual atoms. Modern 

crystallography software can practically instantly determine molecular structure, the 

time-limiting step being the rotation of the detector to record patterns every 0.5 ° for 

example. It is not impossible to determine molecular structure from powder patterns, 

but bright, high quality beams and long exposure times can make it easier to 

determine molecular structure through Rietveld refinement – which is a least 

squares method of fitting experimental patterns to known patterns. 

2.10.4. Density Functional Theory 

Density functional theory (DFT) is a quantum mechanical method of modelling 

electronic structure in multiple-body structures such as molecules. Simple systems 

like a hydrogen atom can be solved easily using the Schrödinger equation in terms 

of wavefunctions, but two electron atoms for example do not have exact solutions 

and thus require approximation methods like DFT. Energy is a function of electron 

density, and electron density is a function of position – this function of another 

function is referred to as a functional. Wavefunction based approximations like 

Hartree-Fock have 3N degrees of freedom (where N is the number of atoms) and 

so 3N variables (111 for TPP). Electron density is only a function of position in 3D 

space, so only x, y and z – this is part of Hohenberg-Kohn theorems, which form the 
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basis of DFT. The total energy of the system tends to be approximated by the sum 

of five potentials in the Kohn-Sham equations 

 1 0 2

12

(2)
{ (1)} (1) (1)XC m m mh j d V

r


   + + =   (3.5) 

where ion-electron potential energy, ion-ion potential energy, electron-electron 

potential energy and kinetic energy are expressed by the first two terms and VXC is 

the exchange-correlation energy. The latter is difficult to calculate, as it originates 

from the abstract Pauli exclusion principle which states that in a quantum system 

like a molecule, no two fermions (including electrons) can be in the same quantum 

state. The choice of functional often translates to how the exchange-correlation 

energy is calculated. The Hartree-Fock method calculates an exact electron 

correlation energy based on the interaction between an electron and a mean field 

around it. It does not take in to account individual correlations between all the 

electrons – which would make it a ludicrously more computationally intensive 

calculation. One selling point of DFT is that it combines exchange and correlation 

energies and approximates it as the exchange-correlation energy VXC. The common 

B3LYP hybrid functional mixes the exact calculation of the correlation energy of 

Hartree-Fock with the approximate method of DFT and is often referred to as a 

hybrid functional. 

Typically, a basis set and a method are chosen which lend themselves to a particular 

problem. A basis set is a fundamental set of vectors that can be used to describe a 

space, for example i, j and k for 3D Cartesian space. In chemistry the vectors 

represent atomic or molecular orbitals. A carbon atom for example, has electronic 

structure 1s2 2s2 2p2, and since s orbitals are spherically symmetric, the unique 

orbitals are 1s, 2s, 2px, 2py and 2pz. A carbon atom can be represented by a 

minimum of five vectors for its five atomic orbitals. The common basis set 6-31g(d) 

or 6-31G* has one vector, or basis function per atomic orbital. 

Once a structure has been solved, normal-mode vibrational frequencies and their 

magnitude can be derived – giving predictions for infrared and Raman spectra. Free 

energies can also be calculated, which gives an indication of how stable each 

conformer is. Together, DFT and IR can be important tools in determining molecular 

conformation in amorphous structures, where XRD is not useful. One limitation of 

DFT that it is not easy to account for the interactions of other molecules and packing. 

Molecules with large dipole moments for example will interact strongly with each 
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other via the dipole-dipole interaction or hydrogen bonding. Multiple molecules can 

be modelled but time and computer processing costs will increase and quickly 

become impractical. DFT will be used to model a single molecule to determine the 

stability of different conformers, and predictions of IR spectra will be compared to 

experimental results to determine the structure of TPP molecules in the different 

phases. 

2.10.5. Liquid-Liquid Transitions 

Polymorphism is the ability of a substance to exist in two or more crystal structures 

– for example CaCO3 can exist as calcite, aragonite and vaterite which belong to 

the crystal systems trigonal, orthorhombic and hexagonal respectively. It is a 

phenomenon which is easy to characterise using many of the methods involved in 

this thesis such as X-ray diffraction and infrared spectroscopy. Polyamorphism is a 

rarer and more challenging phenomenon to investigate – the ability of a substance 

to exist as two or more amorphous forms. Amorphous substances can be defined 

as having no long-range ordering or periodic structures. By elimination this means 

that local structure is what differentiates polyamorphic phases. The transition 

between two polyamorphic liquids is often referred to as a liquid-liquid transition 

(LLT). LLTs have been documented (controversially) in triphenyl phosphite (TPP)71, 

n-butanol72, phosphorus78, silicon79, germanium80, a metal alloy81 and possibly d-

mannitol.82 

Perhaps the most promising LLT candidate is triphenyl phosphite (TPP), a slightly 

polar room temperature liquid, which will be used in all the experiments in this 

chapter. The extensive literature surrounding the LLT in TPP will now be 

summarised. 

2.10.6. Triphenyl Phosphite 

Unusual behaviour in supercooled TPP was first noted by Kivelson and co-workers 

in a brief paper in 199683, which was followed up with a more detailed investigation 

using X-Ray scattering, calorimetry and light scattering.84 The authors observed that 

when supercooled below its melting point at 297 K to 245 K, TPP crystallised as 

expected. When quenched (rapidly cooled) to 213 < TQ < 225 K however, 

crystallisation did not occur, yet it was well above TG at 204 K. Instead, TPP went 

through a slow transition to an apparently amorphous phase which they termed 

glacial. The salient fact of their first paper was that the cold-crystallisation 

temperature of the glacial phase was 10 K higher than that of the untransformed 
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liquid. This phase was therefore different from the ‘normal’ liquid phase, and the 

crystal. The follow up paper made several key observations. The glacial phase, 

which will be referred to as liquid 2 or L2 from here on, is denser than liquid 1 (L1) 

or the crystal. DSC experiments show a latent heat and therefore indicate a first 

order phase transition, X-ray diffraction patterns show broad peaks very similar to 

both liquid 1 and liquid 1 as a glass – no sharp peaks like the crystal. Light scattering 

experiments indicated the existence of Fischer clusters on the scale of hundreds of 

nanometres, which are now known to be growing droplets of L2.85 The authors 

tentatively claim that both the nucleation and growth rates of the clusters decrease 

with decreasing temperature. Kivelson concludes that their observations fit within 

the theory of frustration limited domains86, which involves locally favoured structures 

of a few molecules, which cannot tile space and therefore geometrically frustrate the 

formation of the more thermodynamically stable crystal (See 1.3.3 for a description 

of geometric frustration). Below the temperature of a hypothetical critical point T*, 

locally favoured structures form and cause strain. Two length scales emerge below 

T*: one corresponding to the size of domains consisting of locally favoured 

structures (which will now be referred to as LFS), and the other associated with the 

size of density fluctuations in the untransformed liquid. Kivelson suggests the 

domains may align themselves periodically, to form what he refers to as a defect-

ordered crystal. Kivelson paints a thorough and convincing picture, but his studies 

have spawned decades of research with conflicting conclusions. For ease of 

reading, the following abbreviations defined again here: 
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Liquid 1 

(L1) 

The untransformed liquid which is stable at room temperature. 

Liquid 2 

(L2) 

The transformed liquid which forms between 204 < T < 226 K, 

often referred to in most literature as the glacial phase. 

Crystal 1 

(C1) 

The crystal which results from crystallisation at high temperature 

TQ~> 245 K, also referred to as monoclinic or mon. 

Crystal 2 

(C2) 

The crystal which results from crystallisation at low temperature 

TQ~< 245 K, often referred to as rhombohedral, hexagonal or hex. 

Crystal 3 

(C3) 

The monoclinic crystal which has previously formed in an ionic 

liquid solvent87, and in a beaker at 253 K in a freezer in this study. 

Glass 1 

(G1) 

The glass which results from quenching liquid 1 to TQ < 204 K 

Glass 2 

(G2) 

The glass which corresponds to liquid 2 – liquid 2 is defined by 

some to be a glass, but others contest this – the latter will be 

used. 

NG The nucleation and growth regime between 215.5 ≤ TQ < 226 K 

SD The spinodal decomposition regime between 204 < TQ < 215.5 K 

FLD Frustration limited domain 

LFS Locally favoured structures 

LLT Liquid-liquid transition 

Table 4 – Definitions of abbreviations used to refer to different phases of TPP and others. 

Rossler and co-workers used 31P nuclear magnetic resonance (NMR), dielectric 

spectroscopy and Brillouin scattering to show that the glacial phase is distinct from 

the crystal.88 Brillouin scattering indicated that L2 is isotropic on the length scale of 

phonons, i.e. atomic length scales and the Brillouin shift for L2 is distinct from L1 

and crystal – a combination of L1 and crystal was not observed. Dielectric 

spectroscopy showed slower molecular motion in L1 than L2. 31P NMR, as well as 

dielectric spectroscopy showed that considerable collective motion takes place, so 

the authors suggest a transition from a fragile to strong liquid. Puzzlingly, the authors 

state in the conclusion that the LLT was not observed in DSC yet assert the opposite 

in the results section – the endotherm of the LLT occurs at 224 K, followed by cold-

crystallisation at 237 K (Figure 52). 
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Figure 52 – DSC traces by Rossler and co-workers at different heating rates. For the slow heating rate, which 

is represented by the solid line, the LLT is visible at 224 K. The fast heating rate does not allow for sufficient 

time for the LLT to take place, so the endotherm at 224 K is not visible88. 

Alain Hédoux published two articles in 1998/99 which came to the opposite 

conclusion of Rossler and Kivelson. He based his argument on low-frequency 

Raman spectroscopy89 and X-ray diffraction (XRD).75 Phonons are quantised 

collective lattice vibrations, which can be detected using Raman spectroscopy at 

low frequencies. In a long-range ordered structure like a crystal, Raman phonon 

peaks are sharp, but in a liquid are broad and overlap. The L2 spectrum shows 

broad liquid-like peaks which differ from L1. Hédoux fits the L2 spectrum using the 

wavenumbers of some of peaks from the crystal spectrum, and states that the L2 

spectrum acts as the perfect envelope of the phonon peaks observed in the crystal. 

He concludes by saying that his observations agree with that of Kivelson in terms of 

L2 being a defect-ordered crystal, but that the LFS may simply be crystalline. 

Powder XRD at a number of quench temperatures (TQ) showed varying degrees of 

sharpness, but were generally broad and liquid-like.75 The powder pattern was used 

to incorrectly assign a monoclinic unit cell – it was subsequently shown by Hédoux 

himself that six units with monoclinic symmetry make up a larger plate-like 

rhombohedral cell90 with unit cell dimensions a, b = 37.8 Å c = 5.7 Å. The Debye-

Scherrer equation was used to calculate the crystallite size in L2 at different TQ – 
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size was shown to decrease with decreasing TQ, dropping to below two of the unit 

cell dimension sizes at 30 Å. The Debye-Scherrer equation relates the broadening 

of XRD peaks to crystallite size. Despite acknowledging that this is problematic, the 

conclusion is drawn that Kivelson’s LFS are simply nanocrystals and abortive 

crystallisation means that crystal nuclei stop growing due to competition with volume 

and area forces. One more important take-away from these papers is that the length 

scale of structures seems to increase with temperature when TQ > 215 K (Figure 

53), although there are too few data points to draw a reliable conclusion. 

 

Figure 53 – Crystallite size calculations as a function of the aging (quench) temperature using the Scherrer 

equation and powder XRD patterns75. 

Johari and Ferrari suggested that L2 is a plastic crystal or liquid crystal91, which ties 

in with the Ostwald step rule. L2 could be an intermediate between the normal L1 

and the crystal. Oguni used dielectric relaxation spectroscopy to show that higher 

TQ means a larger LFS/crystallite size and a more ordered state – indicating that L2 

may not be one defined phase, but a series of metastable states which depends on 

the history of the sample.92 Two small angle neutron scattering (SANS) studies were 

carried out by Tarjus93 and Yarger94 in 2000 and 2001 which contained information 

about structure sizes. Scattering patterns by Tarjus indicated ‘structural organisation 

on a mesoscopic scale (~ 80 Å) and we have shown that no sign (sic) of aborted 

crystallization to the normal crystalline phase’. This conclusion is based on a 

shoulder on a curve at Q = 0.1 Å-1 which only appears at 225 K, but not at 218 K. 

Yarger concluded that small clusters of 16 Å form at 210 K, which grow in size at 

higher temperature and agglomerate to a maximum cluster size of 60 Å on heating. 
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Hédoux carried out XRD at a synchrotron and used Rietveld refinement to resolve 

a rhombohedral crystal structure and molecular conformation which almost had 

mirror plane symmetry.90 He concludes that TPP stacks along the short c axis 

through weak hydrogen-bonding. In 2004, Tanaka and co-workers visualised the 

LLT using phase contrast (PC) microscopy for the first time.95 It was clear that the 

LLT had two kinetic regimes: nucleation and growth (NG) where 215.5 K < TQ < 223 

K and spinodal decomposition 205 K < TQ < 215.5 K. This confirms part of FLD 

theory – the existence of a narrowly missed critical point. The authors showed using 

rheological measurements that at 220 K and 213 K at least, L2 is in a glassy state, 

whereas the untransformed L1 is a highly viscous liquid in that range of 

temperatures. During the LLT there is a jump of orders of magnitude in G’, the real 

part of the complex shear modulus. This points to the existence of a different, higher 

TG for L2, which ties in with the higher cold-crystallisation temperature observed by 

Kivelson. Based on kinks in graphs of nucleation and growth rates with respect to 

TQ at 223 K, the authors estimate TBinodal to be 230 K by extrapolation. Above 223 

K, both nucleation and growth rates of the crystal outstrip that of L2 and below 223 

K the opposite is true, although it is important to note L2 is still more favourable than 

L1 in the range 223 K < T < 230 K. Calorimetric measurements show that when TQ 

≥ 228 K, the crystal forms rather than L2, which agrees with the binodal estimate. 

Tanaka published a follow up paper in the same year which used PC microscopy 

quantitatively to prove the existence of L2, and calculate structure factors.74 He has 

subsequently admitted that the structure factored were calculated incorrectly.96 

Tanaka proposes the phase diagram shown in Figure 54, where the x-axis is the 

order parameter S - the local fraction of LFS. 
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Figure 54 – Phase diagram proposed by Tanaka and co-workers where the order parameter S is the local 

fraction of locally favoured structures95. 

Senker carried out 1H and 31P NMR which indicated micro or nanocrystalline 

material forming only when TQ > 223 K.97 31P radio-frequency-driven spin-diffusion 

exchange spectroscopy indicated small clusters of ‘a few’ parallel aligned molecules 

(30-40 Å) which is the order of magnitude of the LFS.  

Golovanov made the first observation of a second monoclinic crystal of TPP, which 

he crystallised in bulk in an ionic liquid solvent.87 Single crystal XRD revealed unit 

cells dimensions a = 11.8, b = 9.9 and c = 13.5 which are distinct from both the 

rhombohedral crystal 2 (C2) and the incorrectly assigned monoclinic crystal by 

Hédoux. The molecular conformation of monoclinic TPP (C3) appears similar to that 

of C2, but with a change in the torsion angle O-P-O-C, as is illustrated in Figure 55. 
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Figure 55 – Mon (solid lines) and hex (dashed lines) conformations of TPP, in the former case calculated by 

single crystal XRD by Golovanov and co-workers87. 

Hédoux published another article which included Raman spectroscopy and XRD in 

2006, adding microscopy to his data.98 The micrographs, which were taken at TQ = 

214, 220 K look very different from that of Tanaka, and the microscopy images which 

are displayed in the results section. Hexagonal plate-like crystallites are clearly 

visible in the 220 K image, despite the fact that the crystal grows needle-like crystals 

spherulitically, and at 220 K it grows radially to form discs/spheres. The Raman and 

XRD data do not add anything new. Alain Hédoux’s final major contribution to the 

subject of the LLT in TPP took the form of density functional theory (DFT) 

calculations to make a start at determining the conformation of TPP in the liquid 

phase. Two degrees of freedom were allowed by rotating two torsion angles and 

made an energy surface plot of those conformers. This resulted in three stable 

conformers, with C3, C1 and CS symmetry.99 The differences in energy between the 

conformers are likely within error, owing to DFT being performed as a single 

molecule at absolute zero, not taking packing into account. However, two and three 

molecules are simulated as rods, which are connected by weak hydrogen bonds, 

which may be trimers of the rod/needle like structures in C2. He concludes that the 

study was difficult and maintains his thesis that L2 is simply a mixture of L1 and C2. 
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After a gap of a few years, interest in TPP revived in 2014 with a paper by Drozd 

and co-workers who identified a new polymorph of TPP100 which will be termed C1. 

It was not clear at the time whether it was the monoclinic form (C3) previously 

identified by Golovanov87 and it is shown in the results section that it is indeed not 

C3. Drozd showed that by quenching to 243 K, holding for 15 mins, then heating to 

270 K, the C1 form could be crystallised in a reliably large proportion. DSC revealed 

a different melting point of 291.6 K, compared to 299.1 K of C2. IR spectroscopy 

was carried out, showing the intervals 840 – 910 cm-1, 1050 – 1100 cm-1 and 1570 

– 1620 cm-1. It is clear from their data (an example is shown in Figure 56) that the 

two crystals have unique spectra – the C1 form which they refer to as metastable, 

having more and arguably sharper peaks. 

 

Figure 56 – IR data from Drozd and co-workers100 of the two crystal polymorphs of TPP: 1 – ‘stable’ 

rhombohedral C2 crystal, 2 – ‘metastable’ C1 crystal. The two are clearly distinct, with 2 having extra peaks at 

1074.3 and 1079.6 cm-1. 

In the same month, Tanaka and co-workers published a depolarised visible light 

scattering study of the LLT in TPP.96 The transient VV (vertical vertical) scattering 

patterns shown in Figure 57 agrees with previous measurements of viscosity. The 

permanent nature of the Maltese crosses in the VH (vertical horizontal) patterns 

indicate birefringent structure on the order of 10-7 m. The intensity of the cross 

increases with TQ and is practically zero where TQ < 213.5 K – which the authors 

suggest as is the spinodal temperature TSD. This leads Tanaka to a conclusion which 
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is a bit of an olive branch to Hédoux – nanocrystals are embedded in L2, and the 

processes proceed independently. 

 

Figure 57 – Depolarised visible light scattering patterns of the LLT in TPP over time at TQ = 215 K. VV agrees 

with increases in viscosity during the LLT. Maltese crosses seen in VH show permanent birefringent structure 

in L296. 

Wynne and co-workers used fluorescence lifetime imaging to analyse the LLT, using 

two environmentally sensitive dyes - perylene and coumarin 153.71 They observed 

a change in fluorescence lifetime during the LLT, which was larger at higher TQ. 

Interestingly, they observe contrasting lifetimes for two different crystal forms. The 

second crystal form gives rise to a longer fluorescence lifetime in coumarin 153, 

which indicates a more polar structure, which ties in with the more polar monoclinic 

C3 polymorph observed by Golovanov. They conclude that the transition to L2 is 

associated with conformational change involving a twist of a phenoxy ring and the 

LFS suggested by Kivelson. The two liquid phases can be thought of as echoes of 

the crystal polymorphs. 

Tanaka published again in 2015, with an X-ray scattering study where he reiterates 

that the order parameter of the LLT is the number density of locally favoured 

structures, whose size is a few nanometres.15 However, he proposes that the LLT 

in fact has two order parameters, as there are two independent processes taking 

place: the growth of L2, and ‘microcrystals’ forming at the interface which are frozen 

in to the highly viscous or glassy L2. He claims that you can see evidence of 

microcrystals only in the NG regime. The SAXS data in Figure 58 show two separate 

features – a power law (a straight line on a logarithmic y-axis in Figure 58) which 

varies inversely with q (nm-1) in the Porod regime (0.08 < q < 0.3) and a static bump 



88 
 

at q = 0.7 nm-1 (Tanaka denotes this is 0.4 nm-1). It should be noted here that the 

parameter q used by Tanaka appears to have been divided by 2π, which is not 

consistent with other literature. So, the Porod regime corresponds to sizes 13 < d < 

3 nm) and 3 nm for the LFS. The slope of the line in the Porod regime can indicate 

the surface area. A gradient of -4 indicates a sphere, -3 to -4 indicates a rough ball 

and < -3 others shapes such as rods. The slope of samples where TQ > 213 K is 

clearly around -4, but spherical particles of this size would be impossible to form. 

The objects are roughly 3-13 nm in size, which is far too small for an even vaguely 

spherical spherulite of C2 to form. C2 TPP has unit cell has dimensions a,b = 3.8 

nm and c = 0.6 nm. Data from Senker97 and Hédoux98 has shown that TPP in C2 

stacks to form anti-parallel rods along the c-axis. The rods therefore have cross 

sectional dimensions of 3.8 by 3.8 nm, which could not form a 3-13 nm spherulite. 

If the particles are indeed roughly spherical, it is more likely that they are just larger 

LFS, which Tanaka concludes have a radius of gyration of 3.3 nm in the interval 

212-218 K. In addition, an increase in the intensity in the Porod regime could mean 

either an increase in surface area S, indicating rough structures, or indeed the q-4 

line indicating spheres. In summary, the SAXS data in the Porod regime are not 

convincing proof of the larger structures being either LFS or crystalline material. 

 

Figure 58 – SAXS data taken by Tanaka and co-workers which indicates smooth spherical micro-crystallites in 

the Porod regime (the -4 gradient indicates smooth spheres) and locally favoured structures  at 0.8 nm-1 which 

appear between 212 – 233 K.15 
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In 2016 Tanaka published a thorough study of the LLT using flash DSC, with a very 

high heating rate of 1000 Ks-1 and a small sample mass of 20-50 ng. From the offset, 

this method presents two main problems: firstly, the position of transitions in DSC 

shift with heating rate and secondly, the small sample size could introduce 

confinement effects. The high heating rate allows the reverse LLT to be elucidated 

however by bypassing crystallisation. Tanaka identifies the two liquid phases using 

their distinct TG (which the authors acknowledge are shifted drastically). The authors 

annealed countless samples at 216 K over ten hours, then the samples are heated 

to some temperature TRC before being quenched to 173 K. The samples are then 

measured in the DSC. By increasing TRC from 222 K to 262 K the higher temperature 

glass transition of L2 disappears, while the L1 glass transition increases to the point 

that there is no L2 left. Although the paper provides strong evidence for L2, the 

results will be taken with a pinch of salt because of the extreme heating rate and 

potential confinement effects. The following year Tarnaka and Kaminski published 

a paper which was critical of the confinement effects in Tanaka’s paper101, and 

agreed instead with the thesis of Hédoux. Their critique has two of its own problems, 

however. The authors confine TPP in pores which are 35 and 150 nm in size, which 

was orders of magnitude smaller than that of Tanaka. A sphere of 50 ng of TPP 

would have a diameter of 43 µm. Secondly, the authors observe no LLT in their 

confined TPP, but also see no LLT in their bulk TPP which should act as a control. 

This points to a significant problem with their sample and/or methods, so their results 

are too unreliable to be considered. 

The final contributions to-date of TPP literature are two papers by Babkov and co-

workers who carried out IR spectroscopy and used DFT to try to identify the 

conformer(s) present in the liquids and crystals.102,103 The 2017 paper was only 

available in Russian103, so Google Translate has been used as an aid. The 2016 

paper focussed on part of the mid infrared region (700-920 cm-1) and recorded a 

degree of peak sharpening and a change from five to seven distinct peaks during 

the LLT at 225 K. They also carry out crystallisation at 240 K from the glacial phase 

and see further degree of peak sharpening. The authors showed that the spectra of 

the glacial phase and C2 do not change significantly over a broad range of 

temperatures (12 – 225 K for the former, 12 – 300 K for the latter). The data in Figure 

99 (Appendix 5.7) show that this is the same with L1 in the T range 211 – 300 K. 

The 2017 paper also features IR spectra, but over a broader range with three 

predicted conformers and their predicted spectra. There is a single graph of the 
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region 1150-1250 cm-1 which is the region that will be focused on in the results 

section of this chapter. The predicted spectra show either a single peak or a single 

peak with a shoulder in the interval. The experimental data show what appears to 

be a peak with a shoulder splitting in to two more distinct peaks – not simply 

sharpening. What could have been two very informative and useful studies for the 

DFT calculations in this chapter are sadly lacking. The authors note the existence 

of six torsion angles, about the P-O and O-C bonds on each of the three phenoxy 

arms. Unfortunately the authors only consider the O-C torsions (red in Figure 59), 

which correspond to the phenyl rings twisting about the O-C bond. Due to two lone 

pairs on the oxygens, the P-O-C angles are ~120 °. This means a change in the P-

O torsion of 180 ° amounts to a flip of the whole phenoxy ring like the depiction in 

Figure 55. The lack of reference to the P-O torsion angle, or whether it was a 

constant or a variable, makes their conclusions about conformations of little value. 

As will be discussed later, a change in one of the P-O torsion angles is a key finding 

in the DFT and IR results. 

 

Figure 59 – TPP molecule in the rhombohedral (C2) conformation showing the two torsion types where lp is 

lone pair: lp-P-O-C (orange) and P-O-C-C (red). The lone pair not pictured, but would extend out of the page 

and upwards from the P atom, completing the tetrahedral geometry. 

TPP can be seen through the lens of two competing theories – Tanaka vs. Hédoux – 

a second liquid state composed of locally favoured structures vs. nanocrystals in 

untransformed liquid respectively. It is possible that the two arguments may be two 

sides of the same coin. The full scope of the literature surrounding TPP, alongside 
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new results reported here, will be used to consolidate it all into a single coherent 

theory about the nature of the liquid-liquid transition in triphenyl phosphite. 

2.11. Methods 

Mid-IR data was obtained using a Bruker Vertex 70 FTIR spectrometer equipped 

with a globar lamp, a DLaTGS detector and KBr beamsplitter. Data was taken with 

either 2 cm-1 or 4 cm-1 resolution between 400 and 4000 cm-1 in transmission mode. 

Samples were housed in and temperature controlled using a liquid N2 cooled Oxford 

Instruments cryostat. The sample, inner and outer windows were made of CaF, ZnS 

and KRS-5 respectively. No spacer was used between the CaF sample windows 

due to detector saturation with thicker samples.  

Infrared imaging was carried out at the beamline B22 multimode infrared imaging 

and microspectroscopy (MIRIAM) at the Diamond Light Source synchrotron in 

Didcot, Oxford. Mid-IR imaging data were recorded using a Bruker Vertex 80 which 

was combined with a Hyperion 3000 optical microscope which had an automated, 

translating sample stage. Mid-IR imaging samples were housed in a liquid N2 cooled 

Linkam THMS600 stage with 0.1 K temperature control and sandwiched between 

BaF2 windows with no spacer.  

Microscopy was carried out using an Olympus BX53 microscope with PC and 

polarisation capabilities. For microscopy, samples were also housed in the same 

Linkam stage, but with 11 µm glass spacer beads (Whitehouse Scientific) and 

borosilicate glass slides (VWR).  

X-ray diffraction data were collected using a Bruker D8 Venture geometry 

diffractometer equipped with a Photon-II CPAD detector and dual (Copper and 

Molybdenum) ImS 3.0 microfocus sources. Samples were kept cold using an Oxford 

Cryosystem n-Helix low temperature device which flowed cool N2 over the sample. 

Data were collected at 150 K. Samples were housed in an open 100 µm diameter 

capillary for powder patterns and mounted on a needle for single crystal diffraction. 

Single crystals of C1 were obtained using the Linkam stage used for microscopy, 

but with 155 µm spacer beads, in order to produce large enough single crystals. 

Single crystals of C2 and C3 were obtained by crystallising TPP in a large sealed 

flask in a domestic freezer at -19 °C. Glass slides for the Linkam stage were cleaned 

with the procedure: wash in acetone, isopropyl alcohol, distilled water, blow dry with 
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N2 gas then oven for 30 mins at 150 °C. IR windows were cleaned in the same way 

but without acetone.  

Triphenyl phosphite (99% Sigma-Aldrich) was filtered using 0.2 µm hydrophilic 

polytetrafluoroethylene filters (Millipore) to remove dust particles. The standard 

procedure for IR, Microscopy and XRD was to quench samples from 300 K at the 

maximum cooling rates of the Linkam stage (150 K min-1) and cryostat (ca. 10 K 

min-1) to the desired temperature in range 211 – 250 K. 

Density functional theory calculations were performed (by a collaborator, Dr Hans 

Senn) by first optimising using a force field calculation on Avogadro, then Gaussian 

using the method/basis set M06-2X/def2-TZVP. Data were analysed using 

Gaussview for DFT, Mercury for XRD, ImageJ for microscopy and Opus and Igor 

for IR/IR imaging. 

2.12. Results 

The following results section is broken down by technique rather than being in 

chronological order, although where possible, it will be chronological. The chapter 

will begin with infrared spectroscopy data, followed by infrared imaging, density 

functional theory calculations, optical microscopy and finally XRD. 

2.12.1. Infrared Spectroscopy 

Infrared spectroscopy in the entire mid region (400 - 4000 cm-1) was carried out on 

TPP – as only select bands had been reported thus far.102,103 Substantial changes 

during the LLT in the 1150-1250 cm-1 region were observed, which had only briefly 

been reported once and glossed over.103 Figure 60 shows a dynamic experiment 

where the quench temperature was TQ = 219 K and the sample was left for several 

hours to transform from L1 (red) to L2 (blue). The vibrations in this region correspond 

to antisymmetric C-O stretches and a degree of in plane bending of the phenyl rings 

(From DFT calculations in Table 8). For reference, Figure 62 shows the molecular 

structure of TPP in the conformation found in C2 by Hédoux and co-workers, from 

the Cambridge Structural Database(Deposition No. 214221).104 The two strongest 

peaks in the region will be referred to as peak A (~1180 cm-1) and peak B (~1200cm-

1). The liquid 1 spectrum in this region consists of a strong peak (B) with a shoulder 

(A) at lower wavenumber. There is also a peak with roughly half the absorbance at 

1160cm-1. There are a number of isosbestic points – points which do not vary in 

absorbance throughout the transition – the most obvious of which is at 1170 cm-1 in 
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these data. A full assignment of all strongly absorbing bands in the range 945-4000 

cm-1 based on existing IR tables and DFT can be found in the appendix (5.6). If 

indeed L2 is a liquid state with no long-range ordering, the strong, repeatable 

changes in this region of the IR spectrum suggest either a change in molecular 

conformation (conformer), local ordering or both. 

 

Figure 60 – The LLT at TQ = 219 K from L1 (red) to L2 (blue) over two hours. The region corresponds to 

combinations bands of antisymmetric C-O stretches and in plane-bending in the phenyl rings. The two strongest 

absorbing peaks with be referred to as peak A (~1185 cm-1) and peak B (~1205 cm-1), which correspond to 

double and triple simultaneous asymmetric C-O stretches (Mode 70 and 71 in Table 8 respectively). 

The transition from L1 to crystal (which will be shown later to be C2) shows more 

pronounced changes than the LLT, in particular a big change in the position of peak 

B (Figure 61). Again, a number of isosbestic points can be seen, and appear in 

different locations to those in the LLT at 219 K. 



94 
 

 

Figure 61 – Transition between liquid 1 (L1) and the crystal at TQ = 226 K over two hours, which will be identified 
by microscopy and XRD as C2.  

 

Figure 62 – The molecular structure of TPP in the conformation present in the stable crystal C2. The central 

phosphorous (orange) is bonded to three phenoxy rings. The molecule has six key degrees of freedom: three 

rotations of the phenoxy arms around the torsions of the form lp-P-O-C and three phenyl ring rotations around 

the P-O-C-C torsions. If the oxygens (red) point downwards with respect to the phosphorous, the phenoxy rings 

tend to point ‘up up down (uud)’ in C2. There is almost a mirror plane, so the molecule approximately belongs 

to the CS point group. Carbons are coloured grey and hydrogens white. 
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Peak A does not show a significant shift in wavenumber during the LLT, but peak B 

does. The higher the quench temperature TQ, the more significant the shift is. Figure 

63 shows the spectrum of L2/C2 at various quench temperatures and L1 for 

comparison.  

A number of different samples were used to collect the data, which have a range of 

sample thicknesses. The smallest spacer thicknesses which were accessible 

proved too thick, as the detector saturated several strong bands. As such, the TPP 

sample was sandwiched between CaF windows with no spacer, so sample 

thickness was not well controlled. The result is variability in absorbance between 

samples, so the data have been scaled so that peak A has a constant absorbance. 

There is clustering of peak B around ~1201cm-1 at lower TQ and above 219 K the 

peak shifts to higher wavenumber. 

 

Figure 63 – L2 spectra at different quench temperatures TQ. There is an inverse relationship between the shift 

of the strongest 1150-1250 cm-1 peak and TQ, or rather a direct relationship between the peak position and TQ. 

The absorbance values on the y-axis have been scaled to make comparison easier – samples needed to be 

extremely thin to prevent detector saturation, which made controlling sample thickness difficult. L1 and C2 (230 

K) example spectra have been included for reference. 

Figure 64 shows a plot of the final position (wavenumber) of peak B as a function of 

quench temperature. The peak position in C2 and in the isotropic L1 (which does 
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not have a quench temperature) have been included for reference. The position of 

peak B in L1 is constant across the range of temperatures that are involved in 

experiments (213 – 300 K). L1 spectra as a function of temperature are given in the 

appendix (5.7). Firstly, during these experiments, each sample was cold-crystallised 

by heating. All with TQ < 226 K cold-crystallised, but at 226 K the spectrum did not 

change, indicating that it is essentially C2. There is a roughly linear relationship 

between the position and TQ in the interval 220 < TQ < 226 K, but the peak position 

flattens out as the temperature drops < 220 K. Overall the data follows a sigmoidal 

curve. One interpretation of this data would be that > 220 K there is some crystalline 

character to L2. Another would be there is a distinct metastable state associated 

with each TQ, which could mean differences in local ordering. The latter picture 

agrees with the conclusions of Oguni and co-workers92, that an increase in TQ 

means an increase in average cluster size, increase in ordering within the cluster 

(not inter-cluster ordering) and a corresponding increase in glass transition 

temperature TG of L2. As will be discussed later, this could also indicate the 

proportion of multiple conformers of TPP. 

 

Figure 64 – The position of the strongest peak in the 1150 - 1250cm-1 region with respect to quench temperature 

TQ. The peak position in untransformed L1 at 222 K (although it does not appreciably shift with temperature) 

and crystal 2 at TQ = 230 K have been includes as reference points. The peak position decreases with 

decreasing temperature but levels off at TQ < 220 K. It can be interpreted that this means there is some 

proportion of crystal when TQ > 220 K as the nucleation rates of L2 and C2 become similar. When TQ < 220 K, 

the L2 shift is fairly constant, and distinct from L1. 
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As mentioned earlier, several isosbestic points occur in the infrared spectra during 

the LLT from L1-L2. Since isosbestic points indicate specific transitions or reactions, 

the Hédoux hypothesis that L2 is simply a mixture of L1 and crystal can be tested, 

as the isosbestic points should match between L1-L2 and L1-crystal. Figure 65 

shows the LLT occurring at TQ = 220 K with the isosbestic points marked with orange 

lines to zero. Also shown is a transition using the same sample from L1 to what is 

now known to be C2, with isosbestic points marked with purple lines to zero. The 

isosbestic points clearly lie in different locations across the region, which refutes the 

hypothesis. The data support the Tanaka hypothesis that L2 is a distinct, second 

liquid state. 

 

Figure 65 – Graph showing isosbestic points during two transitions: L1-L2 at TQ = 220 K and L1-C2 at 230 K. 

Since the position of isosbestic points in wavenumber indicate a specific transition, the fact that they occur in 

different places indicates that there are separate transitions and L2 is a distinct state. The Hédoux hypothesis 

would predict that the points would stay in the same place – since the glacial phase is simply a mixture of L1 

and crystal. 

A full list of the dynamic spectra of the LLT in TPP occurring at different TQ can be 

found in the appendix (5.4). 

Motivated by the work of Drozd and co-workers100, a different crystal polymorph was 

crystallised at higher temperature, which will be termed crystal 1 or C1. The authors 

recommended quenching to 243 K, holding for 15 minutes then heating to 270 K. 
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However, when crystallised between glass slides at least, C1 can be readily 

crystallised at a wide range of temperatures with no specific holding time. After 

quenching, samples for experiments were held for ten minutes for consistency. The 

infrared spectrum of C1 is different to that of C2 in the region 1150-1250 cm-1, as 

can be seen in Figure 66. In C1 at TQ = 250 K, peak A and B shift less than in the 

transition to C2, unlike when TPP is converted to C2, but a change to higher 

wavenumber is seen in the smaller peak at 1160cm-1. Peak B shifts to 1200.5 cm-1, 

which is similar to the shifts seen in L2 below TSD. It is highly likely that this shift is 

due to a degree of C2 contamination. A full examination of the sample at TQ = 250 

K revealed that although C1 makes up the majority of the crystals, there is still a 

significant proportion of C2. However, it also cannot be ruled out completely that 

peak B in pure C1 would shift. In the conversion to C2, the peak at 1160cm-1 splits 

in to three peaks, one at higher wavenumber like in C1, and two overlapping peaks 

at lower wavenumber. 

 

Figure 66 – A comparison between the four classes of states: Liquid 1, Crystal 1, Liquid 2 and Crystal 2. As 

stated previously the liquid 2 spectrum changes depending on quench temperature TQ, so 218 K has been 

chosen as an example. The strong peak at ~1200cm-1 shifts during the transition to L2 and shifts further as C2 

forms. There is no shift during the L1-C1 transition at 250 K. There is a difference of a couple of wavenumbers 

which is attributed to a small degree (a few %) of contamination of C2. 

The transition from L1 – C1 is shown below in Figure 67. Peak B and to some extent peak 

A reduce in absorbance and sharpen. 
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Figure 67 – The spectrum of TPP over 30 minutes at 250 K from L1-C1 (red to blue), inspired by Drozd and co-

workers100. The shifts in the strongest peaks A and B during the conversion to L2 or C2 are not seen here, they 

simply drop in absorbance and sharpen to some extent. A small shift to higher wavenumber is seen for smaller 

1160cm-1 peak. Spectra were recorded at an interval of 30 seconds. 

The change in position of peak B in the LLT and L1-C2 and the lack of a shift in L1-

C1, indicates that the two liquid states may act as precursors to the two crystal 

states. In addition, L1 is the stable liquid at high temperature and C1 nucleates 

preferably at higher temperature. L2 only forms < 226 K and C2 is only nucleates 

preferentially over C1 at lower temperatures (but above 226 K of course). 

Several conclusions can be drawn from the IR data. Firstly, the change in the 

spectra of L2 as a function of TQ suggests that L2 is not one phase, but a series of 

metastable phases at different TQ. Dielectric relaxation data from Oguni and co-

workers showed that there was a direct relationship between TQ and LFS size92 – it 

is possible this is the source of the different spectra. It is also possible that the 

different metastable states have different proportions of crystal, which is why as TQ 

rises, L2 resembles C2 more and more. Above 219 K this may be the case, as the 

data in Figure 64 show, but not at lower temperatures. The presence of crystal is 

unlikely because there are different isosbestic points for L1-L2 and L1-C2 

transitions. This refutes the hypothesis that L2 is simply L1 and nanocrystals and 

indicates that L2 is indeed a second liquid state. The split peaks A and B of L2 and 
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C2 and the lack of splitting in L1 and C1 indicate that the two liquid phases may be 

precursors of the two crystals. 

2.12.2. Infrared Imaging 

Infrared imaging at beamline B22 at Diamond Light Source was carried out for TQ > 

220 K, which meant that large droplets could form in a reasonable time and could 

be imaged. In the first instance, point spectra were taken inside and outside of 

droplets, with a point on the sample which contained no TPP (but still through the 

ZnSe windows) being used as a background. The point spectra inside and outside 

of the droplet matched the bulk measurements of L2 and L1 respectively (shown in 

Figure 68). A shift of peak B can be seen, and no significant shift in peak A. The 

isosbestic point at 1170 cm-1 is also consistent with the bulk IR measurements. 

These data confirm that above the spinodal decomposition temperature, the L2 

phase nucleates droplets in a sea of untransformed L1 – there in no change in the 

spectrum of the sea of L1 as the transition progresses. 

 

Figure 68 – Infrared spectra of the 1100-1250 cm-1 region inside and outside of a droplet of L2 at TQ = 224 K. 

The two spectra in/out of the droplet match the before/after spectra from the bulk measurements. 

Infrared images were typically 11x11 arrays with a slit size of 20x20 µm and a 

spacing of 10 µm which allowed a degree of overlapping. With slit sizes less than 

this, the wavelength of the IR light would be of a similar size (e.g. ν = 1200 cm-1 
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corresponds to λ = 8.3 µm), which causes significant attenuation of the beam which 

would mandate longer acquisition times and this was not practical. 

 

Figure 69 – Bright field microscopy image of a droplet of L2 at TQ = 224 K with an infrared image overlay. The 

colour scale corresponds to the integral of the peak area of the interval 1200-1215 cm-1. As the peak in L2 is 

higher in wavenumber than L1, a high value indicates L2. (left) shows the full 11x11 IR image, which has been 

smoothed with contours. (right) shows a contrast enhanced bright field image of the droplet, with half the IR 

image overlaid. 

2.12.3. Density Functional Theory 

DFT calculations which were carried out by a collaborator Dr Hans Senn, were run 

in two sessions. The first session involved ab initio calculations, i.e. with no starting 

molecular conformation. The second used the C1, C2 and C3 conformers which 

were calculated using the XRD data from ourselves, Hédoux(CSD Refcode 

PUXLUP01)105 and Golovanov(CSD Refcode PUXLUP04)87 respectively. 

Structures were pre-optimised using a Merck molecular force field calculation 

(MMFF94s) on Avogadro. They were then were optimised with Gaussian using the 

M06-2X hybrid functional and def2-TZVP basis set. The calculations do not take 

packing into account, so are effectively in the gas phase at 0 K. 

The ab initio calculation minimised three conformers, which have been termed up 

up up (uuu), up up down 1 (uud1) and up up down 2 (uud2). The up and down 

descriptors correspond to the lp-P-O-C torsion angle, where angles between -90 < 

θlp-P-O-C < 90 ° are up and 90 < θlp-P-O-C < 270 ° are down. Lp is an abbreviation for 

lone-pair (of electrons). To illustrate, Figure 70 shows typical uuu and uud 

conformers where one phenoxy ring has been flipped from an up to down position. 

The structural co-ordinates can be found in the appendix (Table 9,Table 10 and 

Table 11).  
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The predicted IR spectrum from the Uuu conformer shows a peak with a shoulder 

which looks remarkably similar to peak A and B in L1, factoring in the 0.946 scaling 

factor which is specific to the functional and basis set used. Both uud conformers 

show a splitting of peak A and B, which is reminiscent of L2. There is a lack of the 

fairly strong band at 1160 cm-1, but there are some weak bands at higher 

wavenumber, like in L1/L2. The two uud conformers show different degrees of peak 

splitting, so in principle L1 and L2 could different forms of uud, but this is less likely. 

These predicted spectra suggest that there may be a change in conformation 

associated with the LLT, which is largely a rotation in the lp-P-O-C torsion from an 

uuu configuration to uud. 

 

Figure 70 – TPP molecules in typical (a) up up up (uuu) and (b) up up down (uud) conformation categories. ‘Up’ 

is where the lp-P-O-C torsion is between 270 and 90 ° and ‘down’ is between 90 and 270 °. 

 



103 
 

 

Figure 71 – The predicted IR spectrum of the three conformers initially predicted by DFT. ‘uuu’ (red) shows a 

peak and shoulder like L1 (the peak and shoulder are reversed in terms of wavenumber), and both ‘uud1’ and 

‘uud2’ like L2, shows a splitting of the two strong peaks but to different extents. Neither show the fairly strong 

band(s) at ~1160 cm-1, although there are some weak peaks in uud1 and uud2 at higher wavenumber, like L1 

and L2. The peak similarity to the L1/L2 in these spectra suggests that there is a conformational change in TPP 

from L1 to L2. The change is likely uuu to one of the uud conformers. 

As part of the second run of DFT, the three conformations which were observed 

from single crystal x-ray diffraction (see 2.12.5) were used as starting points. All 

three of the conformations from XRD were of the uud family, and changed very little 

upon optimisation with DFT. The IR spectra from normal mode calculations are 

shown in Figure 72, along with an uuu conformer. All three show substantial splitting 

of the two main peaks. C2 shows peak B to be stronger than peak A, just like in 

experimental L2 and C2 spectra. The uuu conformer again shows peak A & B to be 

overlapping, just like in the first round of calculations and L1. This supports the 

hypothesis that L1 has a high proportion of a conformer with an ‘up up up’ type 

geometry. 

The peak splitting differs between the C1 and C2 spectra – they are approximately 

23 and 18 wavenumbers respectively. This is similar to the lesser peak splitting in 

the experimental IR spectrum of C1 relative to C2, which can be seen in Figure 66. 
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Figure 72 – Predicted IR spectra from DFT calculations. The data have been scaled in terms of wavenumber 

by a method/basis specific factor of 0.946. The Mon (C3) and Hex (C2) spectra used the conformers predicted 

by using XRD data from the CSD for the monoclinic and rhombohedral (hexagonal) polymorphs respectively. 

The uuu2 spectrum (mislabelled as uuu here), like the uuu spectrum in Figure 71, features two strong, 

overlapping peaks which are reminiscent of the L1 spectrum. 

Table 5 is a summary of all the TPP conformations which were minimised during 

DFT. The uud conformations have similar free energies (within 3.5 kJ mol-1) and are 

consistently lower than the two uuu conformations (7.8 and 9 kJ mol-1). Notably, 

conformer 7, which almost belongs to the C3 point group (has a threefold rotational 

symmetry), is 8 kJ mol-1 higher than the minimum and has been considered in a 

previous DFT study of the LLT in TPP99. 

Conformer No. Conformation ΔE/ kJ mol-

1 

ΔGCorr / kJ mol-1(*) |μ| / D 

1 (C2) uud 0.0 0.0 0.395 

2 (C3) uud 1.5 0.9 1.482 

3 uud 1.4 1.3 1.137 

4 uud 1.7 1.6 1.137 

5 (C1) uud 3.0 3.0 0.440 

6 uud 3.8 3.5 1.057 

7 (Run 1) uuu 8.7 7.8 1.402 

8 uuu 10.0 9.0 1.671 

(*) ΔGCorr is calculated for T = 298.15 K and P = 101.325 by scaling by 0.971 
Table 5 – A summary of the conformations of TPP generated after two runs of DFT optimisations. Relative 

electronic energies (ΔE), Gibbs free energies (ΔG) and dipole moments (|μ|) have been calculated. Packing is 

not taken into account so the results are equivalent to the gas phase. 
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The calculated IR spectra of the three conformers which were generated by Babkov 

and co-workers DFT calculations103 resemble the uuu and uuu2 conformers from 

DFT in the 1150-1250 cm-1 region of the mid-IR. They have overlapping (or single) 

peaks which suggests that their undefined P-O torsion angles were between -90° 

and 90° like the uuu conformers. 

The DFT data presented in this work indicate that L1 is composed in a large part of 

some form of uuu conformer, and L2 a form of uud. Therefore, the LLT is at least in 

some part, associated with an inversion of a phenoxy arm, rotating around one of 

the lp-P-O-C torsion angles. Additionally, the lesser splitting of the main peaks in 

the C1 derived conformer relative to the C2 derived conformer agrees with the IR 

data which is laid out in 2.12.1. 

2.12.4. Polarisation Microscopy 

3.4.4.1 Polyamorphs 
Polarisation microscopy was carried out to observe the LLT at different TQ and 

compare L2 droplets to the different crystal polymorphs to gain insight in their 

crystalline character. In the nucleation and growth (NG) regime, the LLT is visible 

using PC, polarisation and to a lesser extent normal BF microscopy (Figure 73). It 

is easiest to visualise the LLT using the former two, as better contrast is achieved 

between the nucleating droplets of L2 and the untransformed L1. PC gives 

amplitude contrast between the two phases in smaller droplets but due to shade off 

effect, only interfaces are enhanced in larger droplets. Polarisation microscopy, or 

rather crossed polarisers (CP), can reveal whether a sample possesses optical 

activity or birefringence. Optically active materials like quartz (which can be left or 

right handed) can rotate the angle of incident linearly polarised light such that a there 

is a perpendicular component which can pass through the second polariser 

(analyser). Birefringent materials like calcite on the other hand, possess different 

refractive indices depending on polarisation angle of the incident light. This leads to 

the phenomenon of double refraction where different polarisations of the incident 

light split in to two beams and refract at different angles. Like many non-cubic 

crystals, TPP (which has been shown to have monoclinic and rhombohedral 

polymorphs) is birefringent. When, for example, a vertically (linearly) polarised beam 

is normal to a birefringent crystal, the slow axis experiences a phase delay relative 

to the fast axis. The result is elliptically polarised light where the phase delay 0 < φ 
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< λ/4 or if the thickness of the crystal is chosen correctly, fully circularly polarised 

light for φ = λ/4. 

 

Figure 73 – TPP undergoing the LLT at TQ = 221 K, viewing using an optical microscope in (a) bright field (BF), 

(b) phase contrast (PC) and (c) crossed polariser (CP, polarisation) modes. PC enhances droplet edges and 

tells us that L2 has a higher density than L1 at 221 K. 

When TPP nucleates in the NG regime between 226 K > TQ > 215.5 K, droplets 

grow radially (Figure 74). There is an inverse relationship between TQ and the 

nucleation probability/density of droplets. In PC mode, an increase in brightness 

corresponds to a phase delay, which means a higher refractive index and generally 

speaking, density. For the lowest temperatures above TSD
 (215 – 217 K), individual 

droplets can be resolved, but they are too small to see any structure within them 

with the highest magnification lens available (50x) as they bump in to other droplets 

at a maximum of ~5 µm in diameter at 217 K. At 218 K (Figure 74 (c)), faint Maltese 

crosses can be seen when CPs are used. Maltese crosses appear when birefringent 

samples which have radial ordering are viewed with CP.106 The linearly polarised 

light that comes from the first polariser is rotated by the sample in either clockwise 

or anti-clockwise; this could either be more parallel with, or more perpendicular to 

the second polariser (analyser), generating a difference in brightness. Maltese 

crosses are often associated with liquid crystals, polymers and other 

macromolecules which align radially.72 From 217 – 223 K the Maltese crosses are 

only slightly brighter than their surroundings, but this begins to change at higher TQ. 

In Figure 74(j) for example at 224 K, the droplet appears rougher than at low TQ, 

and the cross is brighter than the background. By 226 K the droplet is much brighter 

than the background, but is disordered, which suggests multiple nucleation sites, 

and probably crystal content. Above 226 K, droplets (which should now be called 

spherulites) are fully crystalline based on IR data which is illustrated in Figure 65. 

They have bright, clean Maltese crosses as shown in Figure 76 and grow with 

needle-like crystals which are larger at higher temperatures. 
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Figure 74 – Polarisation microscopy images of L2 TPP at TQ = (a) 215 (b) 217 (c) 218 (d) 219 (e) 220 (f) 221 

(g) 222 (h) 223 (i) 224 (j) 224.7 (k) 224.9 (l) 225 (m) 225.5 (n) 225.8 (o) 226 K. The nucleation probability and 

the density of L2 droplets varies inversely with temperature, as is predicted by Gibbs theory. The images here 

agree with previous assertions that the LLT proceeds by spinodal decomposition below ~215.5 K. Image (a) at 

215 K shows very small nuclei which grow, so TSD may be lower, but this cannot be said with confidence due to 

potential confinement effects. Some lettering is coloured for easy reading. 
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The long-range ordering, or crystallinity, of droplets/spherulites at different TQ is 

plotted in Figure 75, and was calculated using the average brightness of the Maltese 

crosses, with the brightness of the background of each image and a crystal at 273 

K as references. With the exception of an outlier at 223 K, the crystallinity remains 

< 1% of the maximum when TQ < 224 K. At 226 K there is a large jump to > 80 % 

which indicates it now crystalline. The polarisation microscopy measure of 

crystallinity corroborates the figure of TQ ≥ 226 K from IR, where TPP is crystalline. 

 

Figure 75 – Droplet Crystallinity as a function of quench temperature TQ on a (a) linear scale and (b) log scale. 

L2 droplets show vague Maltese crosses, indicating weak long-range radial ordering. As TQ edges over 226 K 

there is a drastic increase in droplet brightness, indicating that the droplets are essentially crystalline spherulites. 

(a) also shows a blue line which is a fit of viscosity data107 for TPP as a function of temperature. 

3.4.4.2 Polymorphs 
The C1 polymorph of TPP was crystallised first at TQ = 243 K using the method 

described by Drozd and co-workers, however it was found that simply quenching to 

a range of temperatures from 230-250 K was all that was necessary. The C1 

polymorph nucleates alongside the C2 polymorph at 243K but has a remarkably 

different appearance. C1 is bright under CP but does not show a strong Maltese 

cross like C2, indicating less ordering directed radially, but still crystallinity (Figure 

76). It has a rough, multi-coloured appearance under CP and appears to incorporate 

impurities into the spherulite as opposed to expelling them like C2 does. The 

photograph illustrates that C2 grows faster than C1 at 243 K. Had they grown at the 

same rate, the interface between them would be a vertical line, but it curves towards 

C1 instead. 
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Figure 76 – Polarisation microscopy image taken using a Sony A5000 mirrorless photography camera with no 

lens attached. Despite growing radially like C2, C1 shows only a vague Maltese cross, suggesting little radial 

ordering. The colourful appearance of C1 suggests a disordered, polycrystalline state. 

If the two crystal forms are heated close to their melting points at 283 K, they grow 

rapidly but once again differ in appearance. C2 has dense, needle-like shards 

whereas C1 has more plate-like crystallites. 

 

Figure 77 – Comparison between the appearance of (a) C2 and (b) C1 crystals at 283 K. C2 shows dense 

needle-like shards and C1 has wider, plate like crystals. 

Figure 78 shows C1 (left) and C2 (right) crystals side by side during melting. Drozd 

reports melting points of 299.1 K and 291.6 K for C2 and C1 respectively.  
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Figure 78 – Four panel image illustrating the different melting points of the two crystal polymorphs C1 (on the 

left of each image) and C2 (on the right-hand side of each image). The temperatures that each image was taken 

at were 287 (top left), 290 (top right), 293 (bottom left) and 297 K (bottom right). 

Drozd made the claim that the more stable C2 polymorph nucleates preferentially 

below 233 K. TPP samples were crystallised between 230 and 250 K at 1 K intervals 

and all experiments were repeated three times. The proportion of nucleation sites 

within the same camera frame was noted and the data is graphed in Figure 79. The 

data indicate that C2 nucleates preferentially <239 K and C1 >239 K. Nucleation 

sites were counted within a single camera frame for consistency and to reduce 

human error, but this does mean that the majority of the sample is not included. 

Even at 250 K, there were some C2 spherulites over the whole 201 mm2 sample but 

were too sparse to appear reliably in the 1.78 mm2 camera frame. 
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Figure 79 – The proportion of nucleation sites which gave rise to C1 and C2 crystals. The data clearly show that 

C1 is favourable at high temperature like L1, and C2 is favourable at low temperature like L2. The data displayed 

here was collected, processed and graphed by undergraduate project student Ewen McEwen, under 

supervision. 

PC microscopy of growing TPP droplets confirms that L2 has a higher density than 

L1 at 221 K. Polarisation microscopy has been used to measure the long-range 

ordering, or crystallinity of L2 droplets. The plot as a function of TQ shows that the 

Maltese crosses of the L2 droplets are mostly < 1 % of the brightness of C2 

spherulites. The long-range ordering could be caused by crystals, liquid-crystal or 

partial ordering of LFS. The novel C1 polymorph was surprisingly easy to crystallise 

alongside C2, and preferentially nucleates above 239 K.  It has a disordered, multi-

coloured appearance and does not shows as strong as Maltese cross as C2. The 

C1 polymorph spherulites incorporate impurities into its structure, but C2 spherulites 

expel them. The C1 polymorph grows more slowly than C2 and has a lower melting 

point range of 289.6 - 291.3 K compared to 296.6 - 298.5 K.  These figures broadly 

agree with existing melting point data obtained from DSC.  

Figure 80 shows C2 nucleating from C1 after a C1 spherulite was grown at 250 K, 

then cooled to 230 K. The converse process does not occur – C1 does not nucleate 

from C2 spherulites at high temperatures like 250 K. Along with melting point data, 
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this indicates that C2 is the thermodynamically more stable polymorph not just below 

the 239 K crossover temperature but above it too at 250 K.  

 

Figure 80 – The sample was quenched to 250 K and C1 spherulites are allowed grow, followed by cooling to 

230 K, where C2 can be seen nucleating from the C1 growth front. The converse does not occur, i.e. C1 does 

not nucleate from C2. 

2.12.5. X-Ray Diffraction 

Drozd and co-workers discovered a new polymorph of TPP (C1) with a different 

melting point, and different infrared spectrum.100 Polarisation microscopy in Figure 

76 reveals C1 to be more disordered and highly colourful under CP, with a melting 

point which agreed with Drozd and was distinct from the melting point of C2. The 

method used by Drozd to nucleate and grow C1 was unnecessarily complex and it 

is shown in this work that C1 could be preferentially nucleated when TQ > 239 K. 

XRD was carried out to ascertain once and for all that C1 is a different polymorph 

with a unique diffraction pattern and unit cell parameters. 
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TPP crystals grow as spherulites and as has been documented before, growing and 

collecting single crystal was a difficult task which required much trial and error. In 

the meantime, powder patterns were taken first. 

2.12.6. Powder Diffraction 

Crystals were grown in glass capillaries using the same recipes as were used in 

microscopy and IR spectroscopy – quenching to a high temperature for C1 and low 

for C2. Quenching to 253 K yielded C1, with a pattern shown in red in Figure 82 

which was distinct from that of C2 and C3 (taken from Cambridge Structural 

Database, blue and green respectively). It was also distinct from the pattern taken 

by Hédoux of C2 which was erroneously assigned as monoclinic75. Quenching to 

230 K gave C2, which matches data from the CSD. 

 

Figure 81 – Powder diffraction patterns of (left) C2 and (right) C1. The C2 pattern matches the d-spacings from 

the CSD, but C1 is different from all known patterns for TPP. Both shown a degree of anisotropy, but it is more 

pronounced in C1 - this is likely due to the growth of crystals along the capillary. C1 also shows some spotting, 

rather than just homogenous lines. This suggests larger crystallites than C2, which bodes well for future attempts 

at single crystal XRD.   



114 
 

 

Figure 82 – Powder diffraction patterns as a function of 2θ of three distinct crystal forms: C2 (the common 

rhombohedral or hexagonal form which forms preferentially < 239 K), C3 (the monoclinic form, first measured 

by Golovanov87) and a hitherto unmeasured polymorph which forms preferentially >239 K). 

The Bragg equation (3.4) can convert 2θ to d-spacings, which are listed in Table 6 

Peak no. 2θ / ° d-spacing / Å Intensity / a.u. 

1 5.08 17.40 690 

2 10.16 8.71 3000 

3 12.18 7.27 2530 

4 13.49 6.57 270 

5 14.48 6.12 510 

6 15.30 5.79 580 

7 15.80 5.61 320 

8 16.68 5.31 1520 

9 18.62 4.77 10000 

10 19.12 4.64 760 

11 20.22 4.39 910 

12 20.86 4.26 2480 

13 21.48 4.14 1170 

14 22.44 3.96 2680 

15 23.26 3.82 3500 

16 24.32 3.66 890 

17 26.74 3.33 1230 

Table 6 – 2θ values and d-spacings of the C1 polymorph. 
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Based on powder diffraction data (although technically a polycrystalline sample in 

a capillary in a single crystal diffractometer), C1 is a new polymorph of TPP which 

is distinct from the already characterised C2 and C3 forms. 

2.12.7. Single Crystal Diffraction 

Single crystals of all three polymorphs of TPP have been successfully isolated. 

Single crystals of C3 have been characterised previously in the literature (after 

crystallisation from an ionic liquid solution), but C1 has only been characterised by 

powder XRD at a synchrotron. A large single crystal of C1 was successfully isolated 

by growing a large spherulite between glass slides with 150 µm spacer beads. The 

glass was then broken, the crystal extracted and characterised by single crystal 

XRD. At this time the structure is not available in the public domain on the CSD, but 

it can be requested directly from myself. C3 single crystals were found in a large 

flask of TPP which was simply put in a domestic freezer at -19 °C. The majority of 

the crystals in the flask were C2, but one happened to be C3 – it is unknown what 

proportion of flask was C3, or indeed how to reliably crystallise C3. The unit cell 

parameters are shown in Table 6 and agree with the data from the CSD in the case 

of C2 and C3, and the powder patterns in capillaries for C1. 

 Space Group a (Å) b (Å) c (Å) α (°) β (°) γ 

(°) 

C1 P21/c 17.4434(12) 5.8920(3) 14.9985(10) 90 97.462 90 

C2 R3̅ (148) 37.867(14) 37.867(14) 5.714(2) 90 90 120 

C3 P21/n (14) 11.8572(16) 9.8747(14) 13.5070(14) 90 102.52 90 

Table 7 – Unit cell parameters of the C2 and C3 polymorphs of TPP, retrieved using single crystal XRD 

The conformers present in the single crystal samples were all forms of uud – the 

main differences coming from two torsion rotations. The C3 conformer was the most 

distinct, showing a rotation in the torsion angle lp-P-O-C (the torsion responsible for 

a flip from uuu to uud). The C2 conformer practically has mirror plane symmetry, 

which can be seen in Figure 84. C2 and C3 have no other obvious symmetry 

elements. The C1 and C2 conformers differ by a rotation of the P-O-C-C torsion on 

one of the ‘up’ arms, i.e. a rotation of the phenyl ring along. If it is the case that L1 

and L2 act as precursors for C1 and C2, then it can be deduced that the LLT is 

associated with a P-O-C-C torsion rotation. The single crystal XRD data reveals that 

C1 possesses a degree of π-π stacking of phenyl rings in a sandwich configuration. 

The ring-centroid distance is 4.028 Å and centroid to plane distance is 4.744 Å, 
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which are reasonable for a π-π interaction. The rings have an offset of 1.486 Å and 

an angle of ~22°. The packing in C2 however showed substantial π-π stacking in a 

t shaped configuration (rings at roughly right angles), which is depicted in Figure 86. 

Sherill and Sinnokrot used DFT calculations to show that aromatic rings had lower 

energy in the T shaped form than sandwich form when either in a dimer or packed.108 

The π-π interaction is therefore an explanation for why C2 is thermodynamically 

more stable than C1.  

These C2 and C3 conformations were used as starting points for the second run of 

DFT calculations and are shown overlaid with C1 in Figure 83. 

 

Figure 83 – The three conformations of TPP are overlaid, aligned by the PO3 group. The chief difference 

between them is a change in the angle of the lp-P-O-C torsion on one of the ‘up’ phenoxy rings. C1 (the newly 

discovered polymorph) is orange, C2 (the common hexagonal polymorph) is dark blue and C3 (The ionic liquid 

crystallised monoclinic polymorph discovered by Golovanov) is cyan. In terms of conformation, C1 and C2 differ 

by a ~90° rotation of a phenyl ring along the P-O-O-C torsion. C3 differs from C2 by a smaller ~45° rotation of 

a different phenoxy arm around a lp-P-O-C torsion. 
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Figure 84 – Ball and stick representations of the three crystal polymorphs of TPP, viewed along the O-C bond 

axis of the 'down' phenoxy ring. The main difference between C1 and C2 is a rotation along the P-O-C-C torsion 

on one of the up rights (right hand side on this image). 
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Figure 85 – Figure showing slightly offset ‘sandwich’ π-π stacking in crystal 1. The ring-centroid centroid 

distance is 4.028 Å and centroid to plane of the other ring of 3.744 Å. The ring offset is 1.486 Å and the angle 

is 22 °. 

 

Figure 86 – T shaped π-π interaction between the aromatic rings on neighbouring molecules. The mean centroid 

to nearest carbon distance is 3.683 Å. Hydrogens are omitted. 



119 
 

Single crystals of C1, C2 and C3 have been successfully isolated for XRD and 

assigned unit cells and conformers which match the powder pattern for C1, existing 

refined powder patterns for C2 and single crystal data for C3. All three have an uud 

type conformation, and this is first single crystal characterisations of C1 and C2. C1 

and C2 differ by a rotation of a phenyl ring along the P-O-C-C torsion and a change 

from parallel ‘sandwich’ to T-shaped π-π stacking. 

2.13. Discussion 

The debate surrounding the LLT in TPP can be summarised as two competing 

hypotheses. Hédoux – L2 is not a second liquid state but simply a mixture of 

untransformed L1 and micro/nanocrystals. Tanaka – L2 is a second liquid state 

which is distinct from the first by local ordering, but nanocrystals form at the 

interfaces as droplets grow. One of the most obvious questions to ask is why do the 

nanocrystals not continue to grow? TG has been shown repeatedly to be 204-205 K, 

so at 220 K for example, the liquid is not viscous enough to arrest crystal growth. 

Indeed, the droplets of L2 grow at 220 K, so it is quite a leap to suggest that the 

more thermodynamically stable crystal would nucleate but stop growing. Hédoux 

describes the glacial state as ‘a heavily nucleated state composed of nanocrystals 

of the stable crystalline phase embedded in the matrix of non-transformed 

supercooled liquid’.105. If this picture is taken further, a heavily nucleated state in a 

viscous, but not glassy L1 would lead to randomly oriented grains of nano or micro 

scale crystals bumping in to each other, leaving only those aligned radially to grow. 

This leads to a spherulite, which is what can be seen in C2, where TQ > 226 K. 

Spherulites show bright Maltese crosses under CP like is clear in C2, but the 

brightness drops drastically under 226 K by a factor of 100. The Hédoux hypothesis 

therefore seems highly implausible. The hypothesis favoured by Tanaka is more 

convincing – L2 has been described by some as a glass in the LLT regime, so it 

could in principle arrest the growth of crystals which arise from growth front 

nucleation (GFN). So the question remains: what is causing the long-range ordering 

which leads to the faint Maltese crosses in L2 droplets? It seems plausible that at 

say, TQ = 225 K the droplets contain some crystal contamination as they are rougher 

and slightly brighter than for say TQ = 220 K when viewed using polarisation 

microscopy, not to mention that it is very close to 226 K, where C2 nucleates. 

Tanaka proposed that the nano/microcrystal and L2 formation are independent 

processes, based on depolarised light scattering and wide and small angle x-ray 

scattering (WAXS/SAXS). Tanaka’s data which is shown in Figure 58 is fairly 
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convincing. There are separate features in his SAXS patterns for 3nm clusters which 

he assigns to be LFS and larger clusters which he assumes to be nearly spherical 

microcrystallites based on the gradient of the line in the Porod regime. The Porod 

law is an approximation of an equation describing scattering pattern intensity for 

objects around 1 – 10 nm in size. The scattering intensity I(q) is proportional to the 

interfacial surface area of the objects and to the inverse of q to some power n. The 

former can clearly be used as an indicator of roughness, but so can the second. If 

the power n is four, the objects are smooth spheres, but if between 3 and 4, are 

rough spheres. The slope of samples where TQ > 213 K is clearly around four, but 

spherical particles of this size would be too small to form. The objects are roughly 

3-13 nm in size, which is far too small for an even vaguely spherical spherulite of 

C2 to form. C2 TPP has unit cell dimensions a, b = 3.8 nm and c = 0.6 nm. Data 

from Senker97 and Hédoux98 has shown that TPP in C2 stacks to form anti-parallel 

rods along the c-axis. The rods therefore have cross sectional dimensions of 3.8 by 

3.8 nm, which could not form a 3-13 nm spherulite. These rods likely act as 

templates for the needle-like crystals that can be seen in the microscopy images. If 

the particles are indeed roughly spherical, it is more likely that they are just larger 

LFS, which Tanaka concludes have a radius of gyration of 3.3 nm in the interval 

212-218 K. In addition, an increase in the intensity I(q) in the Porod regime could 

mean an increase in surface area S, indicating rough or non-spherical structures, 

which contradicts the claim that the -4 gradient of the Porod law line indicates 

smooth spheres. The fact that there are two separate features to the pattern is 

convincing, but there are several sources of contradictory data – this is not the first 

time that there has been an attempt to determine the size of structures in L2. The 

increase in the intensity and steepness of the gradient relates rises with quench 

temperature – which could be an indication of increasing cluster size. An extensive 

study by Oguni showed there is a relationship between LFS size and quench 

temperature.92 The supposed 3 nm LFS peak that is assigned by Tanaka contradicts 

this as it does not change scattering angle as a function of TQ. Similarly, data from 

Hédoux suggested that clusters (which he assumes are crystals) increase from ~3 

nm when TQ < 216 K to 30 nm when TQ = 222 K. A small angle neutron scattering 

(SANS) experiments by Tarjus and co-workers shows ‘structural organisation on a 

mesoscopic scale (~ 80 Å) and we have shown that no sign (sic) of aborted 

crystallization to the normal crystalline phase’. The statement is based on a shoulder 

at Q = 0.1 Å-1 which only appears at TQ = 225 K, but not at 218 K. A similar SANS 
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study by Yarger concludes that small clusters at 16 Å at 210 K which appear larger 

at higher temperatures and they surmise that they agglomerate to a maximum of 60 

Å on heating.109 What is clear from polarisation microscopy in this work, and light 

and x-ray scattering and other techniques from literature is that there definitely is 

nanoscopic or mesoscopic local structure in L2 that is not present in L1. There are 

multiple sources which suggest that these local structures, which will be termed 

locally favoured structures (LFS) increase in size as a function of TQ. The 

nanocrystal hypothesis is practically unfalsifiable using many techniques due to their 

small size and Tanaka’s scattering experiments offer weak evidence at best. L2 

certainly appears to resemble or echo C2 in terms of Raman and XRD data, which 

favours the pro-nanocrystal consensus, but it is not conclusive. Both L2 droplets and 

C2 spherulites show Maltese crosses, although the former are around 1 % as 

intense under CP when compared to C2 for the most part. Although L2 having some 

crystalline C2 material within in it first appears a sensible suggestion, the mountain 

of data which appears to support this has significant flaws as has been outlined 

above. The Hédoux vs Tanaka (nanocrystal yes/no) dichotomy may be a simple 

lens with which to view the debate around the LLT in TPP, but it may be that they 

are looking at two sides of the same coin. ‘Nanocrystals’ may simply be LFS in L2 

and L2 is a higher density, second liquid state which resembles C2. In the liquid-

liquid transition in water, high density liquid water becomes a low density liquid 

whose density and local hydrogen bond structure is closer to, but is still distinct from 

that of the (hexagonal) ice.110 

The IR spectrum of L2 resembles C2, with the peak and shoulder of L1 splitting in 

to two distinct peaks. In addition, the C1 spectrum resembles the L1 spectrum to 

some extent – the peaks do not shift significantly but sharpen and peak B drops in 

intensity. The similarities between the IR spectra indicates that the two liquid phases 

L1 and L2 act as precursors to C1 and C2. It has been suggested before that L2 is 

thermodynamically favoured over L1 at temperatures above 226 K.95 The 

microscopy data indicate that C2 nucleates preferentially at relatively high 

temperatures (~250 K), and is favoured over C1 at <239 K. It can be deduced 

therefore that the LLT occurs at higher temperatures, but L2 immediately converts 

to C2. The reason that L2 droplets can be seen when TQ < 226 K is that 226 K is 

the TG temperature of L2.95 

While understanding packing into different crystals/LFS is critical, changes in 

molecular conformation must also be considered to complete the picture of the LLT 
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in TPP. DFT calculations have produced two distinct conformations which have an 

uuu structure (Figure 71, Figure 72) and both feature the strong peaks A & B 

(corresponding to C-O stretching) in the 1150-1250 cm-1 interval merged. There are 

numerous uud conformations, which all have separated peaks A & B to different 

extents. The IR spectra of L1 and L2 show merged and separated peaks 

respectively. It is therefore likely that a flip of one of the phenoxy arms around the 

lp-P-O-C torsion is associated with the liquid-liquid transition. 

Single crystal XRD shows that the molecules in all three crystals are in the uud 

conformation. The main difference between the conformations of C1 and C2 is a 

rotation of one of the P-O-C-C torsions, causing a switch in packing from sandwich 

to T-shaped π-π stacking respectively. The nucleation fraction data in Figure 79 and 

the IR spectra in Figure 66 show that there is mirroring between the liquids and 

crystals. Therefore, it can be deduced that there is also a change from sandwich to 

T-shaped π-π stacking during the LLT. The change is a suitable order parameter 

for the LLT. 

There is strong evidence to suggest that L2 is not one phase, but a series of 

metastable glassy phases as is depicted in Figure 87. It is well established that the 

properties of a glass such as its entropy depend on the way it is cooled.111 The 

properties of L2 vary significantly with quench temperature, so L2 can be viewed as 

a series of metastable glassy states L2, L2’, L2” and so on. Phases of L2 which form 

at higher TQ have more long-range ordering and IR spectra which more closely 

resembles that of C2. Existing literature data suggest that there is also a direct 

relationship between TQ and cluster size, number density of LFS, TG, cold 

crystallisation temperature and dielectric relaxation times. 
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Figure 87 – The properties of L2 vary significantly with quench temperature, so it can be viewed as a series of 

metastable states rather than a single one. Forms of L2 which form at higher temperatures are closer to the 

crystal in terms of long-range ordering from microscopy and peaks in the 1150-1250cm-1 interval shifting to the 

uud pattern of C2. Existing data suggests that LFS cluster size and number density increase with temperature 

also. The diagram is denoted with both uuu/uud and sandwich π-π/T-shaped π-π conformations. The latter is 

indicated by XRD of C2, but the former cannot be ruled out. 

2.14. Conclusion 

The debate surrounding TPP has been raging for decades between two camps 

which can be represented by Hédoux and Tanaka. Hédoux believes that L2 does 

not exist and is instead a heavily nucleated mixture of untransformed L1 and C2. 

Tanaka argues that L2 does exist but contains small nano or micro crystallites 

forming at the interfaces between L1 and L2. Tanaka has already provided a lot of 

data which shows L2 to be real and the isosbestic points in the IR spectra presented 

in this chapter confirm the Hédoux hypothesis to be false. L2 is at the very least, a 

distinct phase. Tanaka’s hypothesis is convincing, but it is argued here that Tanaka 

and Hédoux are looking at two sides of the same coin. L2 can instead be described 

as dense state of C2 resembling locally favoured structures, which show faint long-

range ordering. Even if there are nanocrystals in TPP, they make up < 1 % of the 

total material when TQ < 224 K as evidenced by the polarisation microscopy data 

presented in this chapter. IR and microscopy data confirm previous observations 

that the figure of 226 K is the point at which C2 forms rather than L2, and is the 

glass transition temperature of L2.95 During the LLT, there is a change from 

sandwich to T-shaped π-π stacking, which can be deduced from the crystal 

structures of C1 and C2 as the polyamorphs mirror the polymorphs as evidenced by 
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IR spectra and nucleation fraction data. This change is a suitable order parameter 

for the LLT and is used as the x-axis in the cartoon depiction of the behaviour of 

TPP in Figure 88. There are two conformational change associated with the LLT. 

Firstly, a flip of one of the phenoxy rings around the lp-P-O-C torsion and secondly 

a rotation of one of the phenoxy arms around the P-O-C-C. L1 and L2 are precursors 

of C1 and C2, and L2 is thermodynamically favoured over L1 <239 K. This is 

reflected in the proportion of crystals which nucleate at a range of temperatures 

around 239 K. The existence of the NG and SD regimes indicates that there is a 

narrowly missed critical point, as was predicted by the frustration-limited domain 

theory, pioneered by Kivelson. L2 shows substantial variations with quench 

temperature TQ, which includes peak splitting in the 1150-1250 cm-1 region of the 

IR spectrum and crystallinity from polarisation microscopy. This indicates that a 

picture of L2 as a series of metastable glassy states which exhibit hysteresis is more 

appropriate than as a single phase.  

TPP undergoes an LLT prior to the nucleation of C2, but the intermediate L2 state 

is too transient to be observable at higher temperatures. The higher TG of L2 causes 

nucleation of C2 to be arrested below 226 K. The window between the two glass 

transition temperatures (204 K and 226 K) permits analysis of the so-called glacial 

phase. Although the ability to study this phase is uncommon among molecular 

liquids, it is reasonable to assume that the existence of multiple liquid phases is 

common. 

As a fragile glass forming molecular liquid, triphenyl phosphite is ideal for studying 

the properties of supercooled liquids and the enigmatic phenomenon that is the 

liquid-liquid transition. IR, IR imaging, XRD, microscopy and DFT calculations have 

been used to elucidate a clearer picture of the properties of triphenyl phosphite. 
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Figure 88 – Cartoon depicting the order parameter of the LLT and crystallisation in TPP. The horizontal axis is 

the order parameter, which goes from parallel ‘sandwich’ -stacking of the phenoxy rings on neighbouring 

molecules on the left () to T-shaped stacking on the right (). The vertical axis represents the quench 

temperature TQ. Solid lines show the four relevant forms of TPP (liquid 1, liquid 2, crystal 1, and crystal 2) and 

arrows the transitions between them, with the thickness of the arrow indicating the relative probability of a 

transition. Liquid 2 is formed from liquid 1 through nucleation and growth (N&G), and spinodal decomposition 

(SD). 
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3. General Conclusion 
Two specific nucleation phenomena – non-photochemical laser-induced nucleation 

(NPLIN) and the liquid-liquid transition (LLT) in triphenyl phosphite (TPP) have been 

studied. It was found that the fundamental mechanism behind NPLIN is what has 

been termed here as laser-induced phase separation and nucleation (LIPSaN). The 

strong concentration fluctuations around critical points can be harnessed by the 

electric potential generated by a laser, to attract high refractive components to the 

focus and increase the probability of forming a critical nucleus. Using a broad range 

of spectroscopic and microscopic techniques, it has been concluded that the LLT in 

TPP does occur and nano- or micro-crystals do not play a role in the process. The 

LLT forms a second liquid phase which has locally favoured structures of a few 

molecules at low temperatures. The size of the LFS rises with quench temperature. 

There is also a subtle conformational change which involves the rotation of phenyl 

rings to give T π-π stacking rather than the less favourable sandwich π-π stacking. 

It is also possible that the conformational change involves a phenoxy ring flip from 

an ‘up up up’ type state to an ‘up up down’ type state. The crystal polymorphs of 

TPP have been fully characterised with single crystal X-ray diffraction and the two 

liquid phases have been shown to act as precursors to two of those polymorphs. 

Research into nucleation has made limited progress in terms of a unifying theory 

since the work of Josiah Willard Gibbs, who formed much of the basis of classical 

nucleation theory. This thesis presents a detailed mechanistic understanding of two 

somewhat esoteric nucleation phenomena which have broader implications. Hidden 

critical points like those in NPLIN and the LLT in TPP likely play an important and 

poorly understood role in nucleation rates and routes. The challenge remains to fully 

understand their influence on the intricate phenomenon of nucleation. 
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5. Appendix 

5.1. Calculation of the refractive index and 

composition of a LIPS droplet 

The LIPS droplet composition can be estimated by calculating the changes in 

refractive index as measured on the edge of phase-separated nitrobenzene 

droplets. From the cross sections of PC images shown in Figure 89, the droplet 

edges have intensities of 1820 and the LIPS droplet a central amplitude of 110 

(relative to the background). These values vary linearly with the difference in 

refractive index Δn between the droplets and the bulk. Using the lever rule in the 

phase diagram in Figure 31, the nitrobenzene-rich droplet and surrounding decane-

rich region can be calculated to have mole fractions of 0.68 and 0.45 respectively. 

Under the reasonable assumption that the refractive index varies linearly with mole 

fraction, mole fractions of 0.68 and 0.45 correspond to refractive indices of 1.505 

and 1.473 respectively. Therefore, Δn = 0.032 for the separated case, and the ratio 

110/1820 can be used to calculate Δn = 0.002 for the LIPS droplet. Therefore n = 

1.493 in the LIPS droplet compared to n = 1.491 in the bulk. This means that the 

mole fraction of nitrobenzene within the LIPS droplet can be calculated to be 0.589 

compared to 0.575 in the bulk. 

 

Figure 89 – (left) A PC image of a critical sample of nitrobenzene–decane (xC = 0.575) at a temperature (296.2 

K) in a phase separated state. The line dissects a large droplet of nitrobenzene. (right) Phase-contrast intensity 

(or LIPS Intensity) along the cut line of a nitrobenzene–decane sample at the critical mole fraction at T = 296.2 

K (phase separated) and T = 296.8 K (mixed) but in the presence of a LIPS-inducing laser. The curve at 296.2 

K clearly shows saturation caused by the shade-off effect 2 inherent in phase-contrast microscopy of larger 

objects48. 
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5.2. Experimental Phase Diagram for a 

Nitromethane-n-octanol Mixture 

 

Figure 90 – The critical parameters of nitromethane and n-octanol were determined to TC = 49.0 °C = 322.2 K 

and x0 = 0.664 by fitting a fourth order polynomial. 

 

5.3. Determination of the Extinction Co-efficient 

using UV-Vis Spectroscopy 

The UV-Vis spectra of nitrobenzene and decane in Figure 91 show no combination 

or overtone bands at the laser wavelength of 785 nm. Nevertheless, the absorbance 

can be used as part of a heating calculation, but first subtracting the contribution 

from the cuvette. Three cuvette path lengths were used (1, 2 and 10 mm) and a line 

was fitted the absorbances in order to calculate the y-intercept, i.e. the contribution 

of the cuvette. The calculated cuvette absorbance of 0.0293 was used to calculate 

the heat term Q in Eq (2.40). 
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Figure 91 – UV-Vis spectra of nitrobenzene and decane. Both show no combination or overtone bands near 

785 nm (the peak wavelength of the laser). 

 

Figure 92 – The contribution of the cuvette glass to the UV-Vis signal was found to be 0.0293. 

5.4.  Dynamic IR spectra of TPP during the LTT 
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Figure 93 – LLT at TQ = 213 K. 

 

Figure 94 – LLT at TQ = 215 K. 
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Figure 95 – LLT at TQ = 218 K. 

 

Figure 96 – LLT at TQ = 221 K. 
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Figure 97 – LLT at TQ = 223 K. 

5.5. Full IR spectrum of TPP 

 

Figure 98 – Full mid-IR spectrum of TPP from 900 - 4000 cm-1. Using CaF windows meant that reliable data 

could not be collected where 𝜐̃ < 900 cm-1. 
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5.6. IR band assignment from 945 – 4000 cm-1 for 

the uuu conformer from DFT 

Mode# ν (cm-1) Amplitude Description 

47 949 35.2 P-O stretch, C-O bend x3 asym, C-H out 

of plane 

48 961 48.6 P-O stretch, C-O bend x3 sym, C-H out of 

plane 

49-57 992-1026 0.1-1.5 C-H out of plane bends 

58-66 1056-1176 0.1-17.6 Various C-H in plane bending 

67 1186 13.1 C-H in plane bend x1 ring 

68 1195 19.3 C-H in plane bend x2 ring #1 

69 1196 5.3 C-H in plane bend x2 ring #2 

70 1257 211.5 C-O stretch P-O bend x2 

71 1263 700.6 C-O stretch P-O bend x3 

72 1302 4.2 C-O stretch P-O bend x3 sym 

82 1538 118.8 C-C stretch/bend + C-O stretch x3 

83 1540 277.5 C-C stretch/bend + C-O stretch x2 

88, 89 1670, 1673 130.8, 61.3 C-C stretch/bend 

91-105 3204-3236 0.8 – 8.9 C-H stretches 

Table 8 – IR band assignment from 945 – 4000 cm-1 for the uuu conformer from DFT calculations. 
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5.7. Liquid 1 as a Function of TQ 

 

Figure 99 – L1 spectrum as a function of temperature from 220 - 300 K. If anything, there is a small drop in 

absorbance, but no other changes.a 

5.8. C1 Single Crystal Diffraction Parameters 

 x y z Uiso*/Ueq 

P1 0.76907 (3) 0.66564 (8) 0.68132 (3) 0.02400 (14) 

O1 0.79949 (7) 0.6998 (2) 0.58449 (8) 0.0280 (3) 

O2 0.79043 (7) 0.9093 (2) 0.73027 (8) 0.0268 (3) 

O3 0.67831 (7) 0.7360 (2) 0.65977 (9) 0.0297 (3) 

C1 0.77769 (10) 0.8722 (3) 0.52184 (12) 0.0244 (4) 

C2 0.71565 (10) 0.8361 (3) 0.45641 (13) 0.0290 (4) 

H2 0.685847 0.701088 0.456312 0.035* 

C3 0.69758 (11) 0.9999 (4) 0.39090 (13) 0.0347 (5) 

H3 0.654931 0.977487 0.345531 0.042* 

C4 0.74130 (12) 1.1967 (4) 0.39102 (14) 0.0361 (5) 

H4 0.728879 1.308188 0.345703 0.043* 

C5 0.80291 (12) 1.2295 (3) 0.45730 (13) 0.0358 (5) 

H5 0.832756 1.364410 0.457578 0.043* 
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C6 0.82162 (11) 1.0676 (3) 0.52338 (13) 0.0302 (4) 

H6 0.863996 1.090418 0.569066 0.036* 

C7 0.86285 (9) 0.9322 (3) 0.78138 (11) 0.0217 (4) 

C8 0.89190 (10) 0.7693 (3) 0.84295 (12) 0.0253 (4) 

H8 0.863402 0.634910 0.850674 0.030* 

C9 0.96331 (11) 0.8052 (3) 0.89326 (12) 0.0290 (4) 

H9 0.984038 0.693895 0.935503 0.035* 

C10 1.00468 (11) 1.0015 (3) 0.88254 (13) 0.0300 (4) 

H10 1.053846 1.024229 0.916747 0.036* 

C11 0.97407 (11) 1.1639 (3) 0.82185 (12) 0.0286 (4) 

H11 1.002061 1.299734 0.814980 0.034* 

C12 0.90291 (10) 1.1307 (3) 0.77089 (12) 0.0252 (4) 

H12 0.881898 1.242964 0.729248 0.030* 

C13 0.62138 (10) 0.5721 (3) 0.63892 (12) 0.0254 (4) 

C14 0.63539 (11) 0.3658 (3) 0.60061 (13) 0.0315 (4) 

H14 0.685753 0.328679 0.587589 0.038* 

C15 0.57493 (12) 0.2136 (4) 0.58138 (15) 0.0392 (5) 

H15 0.584146 0.070079 0.555963 0.047* 

C16 0.50201 (12) 0.2684 (4) 0.59872 (16) 0.0422 (5) 

H16 0.460818 0.163530 0.584868 0.051* 

C17 0.48837 (11) 0.4756 (4) 0.63624 (15) 0.0401 (5) 

H17 0.437611 0.513355 0.647684 0.048* 

C18 0.54810 (11) 0.6294 (3) 0.65744 (13) 0.0319 (4) 

H18 0.538933 0.771385 0.684162 0.038* 

Table 9 – Fractional atomic co-ordinates and isotropic or equivalent isotropic displacement parameters (Å2) 
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 U11 U22 U33 U12 U13 U23 

P1 0.0209 (2) 0.0217 (2) 0.0285 (3) -0.00043 
(17) 

0.00005 
(18) 

-0.00009 
(18) 

O1 0.0255 (6) 0.0276 (7) 0.0307 (7) 0.0050 (5) 0.0031 (5) -0.0015 (5) 

O2 0.0235 (6) 0.0241 (6) 0.0316 (7) 0.0015 (5) -0.0012 
(5) 

-0.0037 (5) 

O3 0.0216 (6) 0.0272 (7) 0.0399 (8) -0.0022 (5) 0.0024 (5) -0.0012 (6) 

C1 0.0234 (8) 0.0273 (9) 0.0238 (9) 0.0017 (7) 0.0073 (7) -0.0028 (7) 

C2 0.0243 (9) 0.0322 (10) 0.0313 
(10) 

-0.0049 (7) 0.0063 (8) -0.0011 (8) 

C3 0.0262 
(10) 

0.0495 (12) 0.0289 
(10) 

0.0021 (8) 0.0052 (8) 0.0023 (9) 

C4 0.0436 
(12) 

0.0356 (11) 0.0321 
(10) 

0.0057 (9) 0.0160 (9) 0.0066 (9) 

C5 0.0476 
(12) 

0.0290 (10) 0.0342 
(11) 

-0.0081 (9) 0.0187 (9) -0.0061 (8) 

C6 0.0311 
(10) 

0.0349 (10) 0.0257 (9) -0.0069 (8) 0.0082 (8) -0.0081 (8) 

C7 0.0198 (8) 0.0255 (9) 0.0204 (8) 0.0008 (7) 0.0048 (6) -0.0041 (7) 

C8 0.0289 (9) 0.0230 (9) 0.0249 (9) -0.0025 (7) 0.0074 (7) -0.0014 (7) 

C9 0.0312 
(10) 

0.0323 (10) 0.0230 (9) 0.0037 (8) 0.0016 (7) 0.0015 (8) 

C10 0.0229 (9) 0.0407 (11) 0.0257 (9) -0.0025 (8) 0.0011 (7) -0.0077 (8) 

C11 0.0310 
(10) 

0.0280 (9) 0.0283 
(10) 

-0.0077 (8) 0.0099 (8) -0.0064 (8) 

C12 0.0305 (9) 0.0223 (9) 0.0236 (9) 0.0007 (7) 0.0067 (7) -0.0014 (7) 

C13 0.0211 (8) 0.0304 (9) 0.0243 (9) -0.0052 (7) 0.0016 (7) 0.0041 (7) 

C14 0.0255 (9) 0.0326 (10) 0.0368 
(11) 

-0.0022 (8) 0.0060 (8) -0.0021 (8) 

C15 0.0397 
(11) 

0.0331 (11) 0.0443 
(12) 

-0.0080 (9) 0.0039 (9) -0.0061 (9) 

C16 0.0302 
(11) 

0.0445 (13) 0.0510 
(13) 

-0.0148 (9) 0.0017 (9) 0.0012 (10) 

C17 0.0205 (9) 0.0520 (13) 0.0485 
(13) 

-0.0031 (9) 0.0072 (9) 0.0035 (10) 

C18 0.0280 
(10) 

0.0344 (11) 0.0337 
(10) 

0.0013 (8) 0.0056 (8) 0.0007 (8) 

Table 10 –  Atomic Displacement Parameters (Å) 
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P1—O1 1.6222 (13) C8—C9 1.386 (3) 

P1—O2 1.6333 (13) C9—H9 0.9500 

P1—O3 1.6279 (13) C9—C10 1.384 (3) 

O1—C1 1.402 (2) C10—H10 0.9500 

O2—C7 1.396 (2) C10—C11 1.380 (3) 

O3—C13 1.391 (2) C11—H11 0.9500 

C1—C2 1.380 (3) C11—C12 1.384 (3) 

C1—C6 1.382 (3) C12—H12 0.9500 

C2—H2 0.9500 C13—C14 1.380 (3) 

C2—C3 1.384 (3) C13—C18 1.385 (3) 

C3—H3 0.9500 C14—H14 0.9500 

C3—C4 1.388 (3) C14—C15 1.386 (3) 

C4—H4 0.9500 C15—H15 0.9500 

C4—C5 1.379 (3) C15—C16 1.370 (3) 

C5—H5 0.9500 C16—H16 0.9500 

C5—C6 1.384 (3) C16—C17 1.378 (3) 

C6—H6 0.9500 C17—H17 0.9500 

C7—C8 1.382 (2) C17—C18 1.386 (3) 

C7—C12 1.382 (2) C18—H18 0.9500 

C8—H8 0.9500   

    

O1—P1—O2 102.20 (7) C8—C9—H9 119.7 

O1—P1—O3 102.32 (7) C10—C9—C8 120.63 (18) 

O3—P1—O2 91.41 (7) C10—C9—H9 119.7 

C1—O1—P1 126.73 (11) C9—C10—H10 120.2 

C7—O2—P1 117.97 (11) C11—C10—C9 119.58 (17) 

C13—O3—P1 121.02 (12) C11—C10—H10 120.2 

C2—C1—O1 118.97 (16) C10—C11—H11 119.7 

C2—C1—C6 121.50 (18) C10—C11—C12 120.57 (17) 

C6—C1—O1 119.39 (16) C12—C11—H11 119.7 

C1—C2—H2 120.6 C7—C12—C11 119.15 (17) 

C1—C2—C3 118.85 (18) C7—C12—H12 120.4 
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C3—C2—H2 120.6 C11—C12—H12 120.4 

C2—C3—H3 119.8 C14—C13—O3 123.03 (16) 

C2—C3—C4 120.48 (19) C14—C13—C18 121.09 (17) 

C4—C3—H3 119.8 C18—C13—O3 115.86 (17) 

C3—C4—H4 120.2 C13—C14—H14 120.5 

C5—C4—C3 119.65 (19) C13—C14—C15 119.05 (18) 

C5—C4—H4 120.2 C15—C14—H14 120.5 

C4—C5—H5 119.7 C14—C15—H15 119.7 

C4—C5—C6 120.58 (19) C16—C15—C14 120.6 (2) 

C6—C5—H5 119.7 C16—C15—H15 119.7 

C1—C6—C5 118.94 (18) C15—C16—H16 120.0 

C1—C6—H6 120.5 C15—C16—C17 120.02 (19) 

C5—C6—H6 120.5 C17—C16—H16 120.0 

C8—C7—O2 121.79 (15) C16—C17—H17 119.7 

C8—C7—C12 121.13 (16) C16—C17—C18 120.56 (19) 

C12—C7—O2 117.01 (16) C18—C17—H17 119.7 

C7—C8—H8 120.5 C13—C18—C17 118.71 (19) 

C7—C8—C9 118.92 (17) C13—C18—H18 120.6 

C9—C8—H8 120.5 C17—C18—H18 120.6 

Table 11 – Geometric Parameters (Å, °)) 


